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Abstract— Model predictive control (MPC) is a commonly
applied vehicle control technique, but its performance depends
highly on how accurate the model captures the vehicle dy-
namics. It is disreputable hard to get a precise vehicle model
in complex situations. The unmodeled dynamic will cause the
uncertainty of the prediction which brings the risk while over-
taking. To address this issue, Gaussian process (GP) regression
is employed to acquire the unexplored discrepancy between the
nominal vehicle model and the real vehicle dynamics which can
result in a more accurate model. To achieve safe overtaking
at highway curves, the constraint conditions are carefully
designed. The implementation of GP-based MPC including
approximate uncertainty propagation and safety constraints
ensures that the ego vehicle overtakes the obstacles without
collision. Simulation results show that GP-based MPC has a
strong adaptability to different scenarios and outperforms MPC
in overtaking control.

I. INTRODUCTION

Vehicle control especially overtaking control is an impor-
tant field of autonomous driving research. As a commonly
used vehicle control strategy, model predictive control (MPC)
utilises an explicit model of the dynamic procedure to get
future plant response [1]. However, the capability of the MPC
is highly dependent on how accurate the model reflects the
dynamic process, which indicates a small disturbance will
cause a huge impact on the performance. In addition, the
complexity of the model may also lead to a large increase
in calculation affecting the overall efficiency [2]. Therefore,
a learning-based MPC controller, which combines a fixed
uncomplicated nominal model and a learning based distur-
bance model, is considered a promising approach to capture
unmodeled dynamics and hence enhance the accuracy of the
vehicle controller.

Gaussian process (GP) is a recently widely used proba-
bilistic machine learning approach which can represent the
uncertainty of estimation based on prior process knowledge
and show excellent performance when combined with MPC
[3]. According to this feature, GP can be used as a learning-
based model in MPC to predict periodic time-varying effects
[4]. An application of constrained tracking MPC combined
with GP provided by Ostafew et al. [5], which reduces the
path-tracking errors of robots, shows that GP can achieve
a high-performance dynamic modelling from measured data.
Hewing et al. designed designed a GP-based MPC (GPMPC)
structure to enhance conventional MPC control effect for a
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race car [6]. Arany applied GPMPC to obtain vehicle safe
and stable control under changing friction road conditions
[7]. GPMPC is also implemented to overtaking problems in
autonomous driving [8], but it’s only applicable to overtaking
scenarios on straights.

Overtaking is one of the most complex manoeuvres for
road automation which comprises three consecutive steps
[9]. The vehicle which plans to overtake is called the ego
vehicle and the one which will be overtaken is named the
lead vehicle. In general, an autonomous overtaking system
consists of two important functions, which were designated
as trajectory planning and trajectory tracking [10]. The
method based on these functions was typically applied in
[11]. However, only a elementary point mass model is
considered and the method is not applicable at high speed.
Recently, many researchers deal with trajectory planning and
trajectory tracking at the same time in a controller. This can
be typically seen in [12]. On the other hand, only the static
obstacles rather than moving obstacle vehicles are considered
which leads to the increased complication when there exist
moving obstacles. In [13], a clever overtaking prototype is
proposed based on adaptive MPC considering both stationary
obstacles and moving obstacle vehicles. The problem of this
method is that only the kinematics model is considered.
The lateral control on the subject of the tire model is also
simplified which results in generating infeasible trajectories.
Besides, the algorithm also only considers the application
of overtaking scenarios on the straight road. In [14], the
authors achieve overtaking by using a high-level decision
maker based on finite state machine and a trajectory planner
based on chance constrained MPC, however, the algorithm
is also only applicable to overtaking scenarios on straights.

As mentioned above, most of the previous studies are
based on straight road scenarios and suffer from unmodeled
dynamics. If the unmodeled uncertainty is not considered, the
overtaking controller can easily drive off the current road or
crash the overtaken vehicle, as illustrated in Fig. 1 (a), (b)
and (c). In the current study, GPMPC is used to solve the
overtaking problems with specific constraints and a model
allowing to acquire unmodeled dynamics is proposed. The
trajectory generated by GPMPC can be more accurate in
curve road scenarios. Its performance is shown in Fig. 1 (d),
(e) and (f).

The major intention of this paper is to investigate the appli-
cation of GPMPC vehicle controller in overtaking scenarios,
especially at highway curves. In brief, the contributions will
be outlined as follows:

• We introduce a double circle parametrisation of the
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Fig. 1. Three major overtaking scenarios will be introduced, namely
avoiding a still obstacle (black rectangle) shown in (a) and (d), the ego
vehicle (yellow car) and the lead vehicles (blue car) driving in the same
direction shown in (b) and (e) and opposite direction shown in (c) and (f),
respectively. The transparency vehicles represent the predicted position by
the controller. Due to the disturbance, driving with NMPC may lead to the
collision or being out of boundary while overtaking as shown in (a), (b)
and (c). Using GPMPC under the same conditions can ensure the safety
and provide a better trajectory to overtake as shown in (d), (e) and (f).

shape of the vehicle. We then achieve safe overtaking
on both straight and curved roads by carefully design-
ing the safety constraints based on the double circle
parametrisation, which also eliminates the need for path
planning.

• We utilise a comparatively uncomplicated vehicle
model, but attain better control effects through GP
learning.

• We convert the vehicle state constraints into a soft
constraint consisting in a relaxed barrier function related
to vehicle states. We then integrate this item into a MPC
stage cost function, which improves the efficiency of the
optimiser.

II. BASIC THEORY

A. Gaussian Process Regression

The GP regression aims to construct a function that can
predict the output at an unrecognised input location, given a
certain training data set with input data and corresponding
output value pairs. The notation of the training data set can
be described as follows:

D = {Z = [z1, . . . ,zN ] ∈ Rnz×N

Y = [y1, . . . ,yN ] ∈ R1×N}
where zk ∈ Rnz ,k = 1, ...,N stands for the input vector and
yk ∈ R, i = 1, ...,N denotes the output vector which is given
as below:

yk = d (zk)+ εk (1)

where d : Rnz →R represents an unknown function and εk ∼
N

(
0,σ2

ε

)
represents the measurement noise of Gaussian

process. The posterior distribution of the unknown function
at a certain test data z∗ is also a Gaussian distribution which
could be represented by a mean function µd(z∗) and a
variance function Σd (z∗) [15]:

µ
d(z∗) = K⊤

∗
[
K+σ

2
n I
]−1 Y (2)

Σ
d(z∗) = K∗,∗−K⊤

∗
[
K+σ

2
n I
]−1 K∗ (3)

where d stands for the d-th dimension of the output.
K, K∗ and K∗,∗ are abbreviated to K(Z,Z), K(Z,z∗)
and K(z∗,z∗), separately. Where [K(Z,Z)]i j = k (zi,z j),
[K(Z,z∗)] j = k (z j,z∗) and K(z∗,z∗) = k (z∗,z∗). In this study,
a squared exponential kernel with noise variance σ2

n is
considered to be the choice of the kernel function.

k
(
z,z′

)
= σ

2
f exp

(
−1

2
(
z− z′

)T M−1 (z− z′
))

+σ
2
n (4)

where M = diag
([
ℓ1, . . . , ℓnz

])
stands for the diagonal pos-

itive semi-definite matrix used to parameterise the length
scale of the covariance and σ f denotes the signal variance.
The free parameters σn, σ f and M of the kernel were
combined into the following hyperparameter vector θ =
[ℓ1, ..., ℓnz ,σ

2
f ,σ

2
n ]. To achieve good prediction, the hyper-

parameters are optimised by maximum likelihood estimate
with the log marginal likelihood as evidence [16].

The result of multivariate GP approximation at an unob-
served test point z∗ combining the output with nd dimensions
is specified as:

d(z∗)∼ N
(

µ
d(z∗),Σd(z∗)

)
(5)

where µd (z∗) =
[
µ1 (z∗) , . . . ,µnd (z∗)

]⊤, Σ
d (z∗) =

diag
([

Σ1 (z∗) ; . . . ;Σnd (z∗)
])

B. Model Predictive Control

This study mainly concentrates on nonlinear model predic-
tive control (NMPC). The form of the non-linear prediction
model is given by:

xk+1 = f (xk,uk)

yk = h(xk,uk)
(6)

where xk ∈Rn represents the system model state and uk ∈Rm

denotes the control inputs sequence. The function f refers to
the discrete-time dynamics of the system model and h is the
output function related to system states and control inputs.

The purpose of MPC is to minimise the cost function
based on the system state and control input constraints.
According to Rawlings et al. [17], the cost function J(k) will
be written into two parts which are stage cost f0 and final cost
φ(xN) for simplification. For now, the constraints are only
defined as box constraints with state and input permissible
values according to X = {x ∈ Rn | xmin ≤ x ≤ xmax} and
U = {u ∈ Rm | umin ≤ u ≤ umax}.



So far with the predefined cost function and constraints,
the MPC optimal control problem will be stated as:

min
x,u

J(k) =
N−1

∑
k=0

fo (xk,uk)+φ (xN)

s.t. xk+1 = f (xk,uk)

xk ∈ X ,k = 0, . . . ,N
uk ∈ U ,k = 0, . . . ,N −1,

(7)

When using the above MPC formulation several steps
should be followed. First, measurement or estimation of the
current state x0 should be obtained. The second step is to
solve the open-loop optimal control formulation of (7). Then
the the optimal control input sequence will be obtained.
Finally, the first component of it should be applied on the
system.

C. Vehicle Dynamic Model
A non-linear single-track approximate model is utilised

to imitate the movement of the autonomous vehicle. The
morphological parameters of the vehicle are vehicle mass M,
the moment of inertia I, steering angle δ , and the distance
from the front and rear wheel to the center of gravity of
the vehicle L f and Lr. The longitudinal and lateral direction
forces on the front and rear wheels are represented as
Ff ,x, Ff ,y, Fr,x and Fr,y, respectively. Lastly, given the global
position coordinates (X ,Y ), the yaw angle ϕ , vx and vy which
refers to the longitudinal and lateral velocities of the vehicle
and the yaw rate ω , the vehicle dynamic model will be stated:

ẋ(x,u)=



vx cos(ϕ)− vy sin(ϕ)
vx sin(ϕ)+ vy cos(ϕ)

ω
1
M

(
Fr,x +Ff ,x cos(δ )−Ff ,y sin(δ )+Mωvy

)
1
M

(
Fr,y +Ff ,x sin(δ )+Ff ,y cos(δ )−Mωvx

)
1
I

(
Ff ,yL f cos(δ )+Ff ,xL f sin(δ )−Fr,yLr

)

 (8)

where the single-track model state is x = [X ,Y,ϕ,vx,vy,ω]⊤

and u = [δ ,T ]⊤ represnts the control input. T (T ∈ [−1,1])
denotes the acceleration or deceleration pedal.

The longitudinal forces Ff ,x and Fr,x can be simply calcu-
lated with T and the torque distribution ζ , the specific details
can be found in our previous work [8]. For the lateral forces
Ff ,y and Fr,y, Pacejka [18] uses the Magic formula to define
these forces in order to approximate the non-linear lateral
wheel dynamics:

Ff ,y = D f sin
[
C f arctan

(
B f α f −E f

(
B f α f − arctan

(
B f α f

)))]
Fr,y = Dr sin [Cr arctan(Brαr −Er (Brαr − arctan(Brαr)))]

(9)

where B, D are construed respectively as stiffness and peak
factor. C and E are factors both related to shape. α f and
αr represent the front wheel slip angle and rear wheel slip
angle, separately. The model using this Magic formula serves
as the real dynamic vehicle model in this study. To explore
the potential of the learning-based MPC controller, a simpler
nominal vehicle model with linear lateral wheel dynamics is
here considered [19]:

Ff ,y =Cl, f α f

Fr,y =Cl,rαr
(10)

where Cl, f and Cl,r denote the cornering stiffness from the
front and rear sides. The front and rear wheel slip angles α f
and αr are expressed as:

α f = arctan
(

vy +L f ω

vx

)
−δ

αr = arctan
(

vy −Lrω

vx

) (11)

The deviation between the true and nominal model will be
seen as the unmodeled dynamics and will be captured by
GP to learn the vehicle movement process and provide to
the MPC controller.

III. GP-BASED MPC IMPLEMENTATION

A. Model Learning and Data Acquisition

Adding a GP leaning module into the NMPC controller
which can capture the unmodeled dynamics offers many
benefits [6]. According to the vehicle dynamic model stated
in (8), a discrete-time model can be established using the
fourth order Runge-Kutta method which can be modified as:

xk+1 = f nom (xk,uk) (12)

where f nom (xk,uk) represents the nominal function also
known as the discretization of the vehicle dynamic model.
Thus, the resulting learning-based prediction which combines
the nominal model and a disturbance model is formulated as:

xk+1 = f nom (xk,uk)+Bd (d (zk)+ωk) (13)

where zk = [xk;uk] constitute a pair of state and input data
points representing regression features and d refers to the
GP for learning unknown dynamics. The matrix Bd is used
to select the states of xk+1 which are influenced by the
model error. In this study, only the velocity vx and vy and
the yaw rate ω will be considered to be influenced by the
disturbance, which means the matrix in this case will be
set as Bd = [0 I3]

⊤. The process noise ωk is independent
and identically distributed, hence ωk ∼ N (0,Σω), where
Σ

ω = diag
[
σ2

vx ,σ
2
vy ,σ

2
ω

]
. The measurement data which is

used for the GP model to learn the unmodeled dynamic
is calculated by the prediction error at every time step.
Therefore, the training output of the input data zk is given
by:

yk = d (xk,uk)+ωk = B†
d (xk+1 − f nom (xk,uk)) (14)

Here B†
d denotes the Moore-Penrose pseudo-inverse. The

input vector and output data pair (zk,yk) is the training data
of the GP model. The three affected states are independent of
each output dimension which results in the situation that the
training for the GP model of these three states is separated
[20]. There also exists a problem of training capacity. A
large number of data will increase the calculated complexity.
To keep the training data size within a balanced range, we
limited the capacity of the data dictionary to Nmax. When the
maximum size Nmax of the training data is reached, some old
data should be replaced by new data [8]. The replaced data
selection mechanism is according to a distance measure Θ∗.



This method can refer to [2]. The distance measure of a
specified data location point z∗ is a posterior variance based
on all the other data in the training data set Z\∗, which can
be expressed as follows:

Θ∗ = Kz∗,z∗ −Kz∗,Z\∗(KZ\∗,Z\∗ +σI)−1KZ\∗,z∗ (15)

σ represents a parameter to be tuned. At every selection
process, the old data with the lowest Θ∗ should be replaced
by new data.

B. Approximate Uncertainty Propagation

When the prediction needs several steps forward, the
stochastic output needs to be used as input in the next pre-
diction [21]. For a test input z∗ with a Gaussian distribution
z∗ ∼ N

(
µz∗ ,Σz∗

)
, the exact predictive distribution can be

described by:

p
(
d (z∗) | µz∗ ,Σz∗

)
=

∫
p(d (z∗) | z∗) p

(
zk | µz∗ ,Σz∗

)
dz∗ (16)

Under normal conditions, the Gaussian distribution mapped
from a non-linear function results in a non-Gaussian distri-
bution. The predictions then will become random variables
and the evaluation of (16) is analytically intractable [22].
One solution to make the prediction tractable is to utilise
the extended Kalman filter (EKF) approach to linearise the
random variables stated in (13). At every time step the states
and non-linear disturbances are jointly Gaussian distributed,
which can be written as:[

xT
k (dk +wk)

T
]T ∼ N (µk,Σk)

= N

([
µx

k
µd

k

]
,

[
Σ

x
k (Σdx

k )T

Σ
dx
k Σ

d
k +Σ

w

]) (17)

where dk is the GP disturbance. Σ
dx
k stands for the covari-

ances between states and GP. The predicted states distribution
can be depicted by updating the state mean and variance:

µ
x
k+1 = f nom (µx

k,uk)+Bd µ
d
k (18)

Σ
x
k+1 =

[
∇x f nom

(
µx

k,uk
)

Bd
]

Σk
[
∇x f nom

(
µx

k,uk
)

Bd
]⊤ (19)

For now, the result of the linearised transformation is
Gaussian distributed. Several terms in the mean and variance
from the equations (18) and (19) can be approximated using
a first order Taylor approximation based on simple and cheap
computation which results in:

µ
d
k = µ

d (
µ

z
k

)
, Σ

d
k = Σ

d (
µ

z
k

)
, Σ

dx
k = ∇xµ

d (
µ

z
k

)
Σ

x
k (20)

C. Safe Overtaking Constraints in Curves

Proper constraints can ensure safety while overtaking for
both the ego vehicles and lead vehicles. Constraints can be
divided into two types: internal and external constraints [23].
Internal constraints refer to the limitation of the vehicle kine-
matics and dynamic model. Therefore, the input constraints
U will be subject to the following restrictions:[

δmin
Tmin

]
≤
[

δ

T

]
≤
[

δmax
Tmax

]
(21)

On the contrary, external constraints focus more on the
driving corridor and obstacles. The vehicle used in this
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Fig. 2. Circle decomposition of the vehicle

simulation is approximated as a rectangle with the length lveh
and the width lveh/2. Fig. 2 (a) illustrates the decomposition
of the vehicle shape into two circles of radius rveh. As shown
in Fig. 2 (b), Cego1, Cego1, Clead1 and Clead2 refer to the circles
decomposed by the ego vehicle and the lead vehicle, respec-
tively. The distance between these circles for the different
vehicles should satisfy the threshold and the calculation is
based on the current yaw angle ϕ and the global position
coordinates (X ,Y ) from the state vector x. This leads to four
calculation pairs (Cego1,Clead1), (Cego1,Clead2), (Cego2,Clead1)
and (Cego2,Clead2) as follows:

((Xe +
lveh

2
cosϕe)− (Xl +

lveh

2
cosϕl))

2+

((Ye +
lveh

2
sinϕe)− (Yl +

lveh

2
sinϕl))

2 ≥ (2rveh)
2

((Xe +
lveh

2
cosϕe)− (Xl −

lveh

2
cosϕl))

2+

((Ye +
lveh

2
sinϕe)− (Yl −

lveh

2
sinϕl))

2 ≥ (2rveh)
2

((Xe −
lveh

2
cosϕe)− (Xl +

lveh

2
cosϕl))

2+

((Ye −
lveh

2
sinϕe)− (Yl +

lveh

2
sinϕl))

2 ≥ (2rveh)
2

((Xe −
lveh

2
cosϕe)− (Xl −

lveh

2
cosϕl))

2+

((Ye −
lveh

2
sinϕe)− (Yl −

lveh

2
sinϕl))

2 ≥ (2rveh)
2

(22)

where Xe, Ye, ϕe and Xl , Yl , ϕl represent the global position
coordinates and current yaw angle of the ego vehicle and the
lead vehicle severally.

D. Cost Function and GPMPC Formulation

A strategy named model predictive contouring controller
(MPCC) which aims to maximise the progress of vehicle’s
movement on a specified reference path will be used to estab-
lish the cost function [12]. In our study, the reference tracking
path is specified as the centre line of a certain lane, but here it
is only a measure of progress. The arc length ξ ∈ [0,ξmax] of
the track of the center line is chosen to parameterise the track
by using third order spline polynomials, which represents
the traveled length along the reference path in the current
lap. The corresponding center line position given an ξ is
written as [Xc(ξ ),Yc(ξ )], as well as orientation Φc(ξ ) and
the track radius Rc(ξ ) can be obtained using third order
spline polynomials interpolation. The contour error ec, lag
error el , offset error eo f f and the orientation error eo are used
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the parameter ξ

to penalise the discrepancy from the centre line and ensure
the prediction of the vehicle movement close to it. These
penalties which are given by the link of the real vehicle
position and the position on the centre line shown in Fig. 3
are defined as:

el (ux
k,ξk) =− cos(Φ(ξk))(Xc (ξk)−Xk)

+ sin(Φ(ξk))(Yc (ξk)−Yk)

ec (ux
k,ξk) =− sin(Φ(ξk))(Xc (ξk)−Xk)

− cos(Φ(ξk))(Yc (ξk)−Yk)

eo (ux
k,ξk) =1−|cos(Φ(ξk))cos(ϕ)+ sin(Φ(ξk))sin(ϕ) |

eo f f (ux
k,ξk) =

1
Rc (ξk)

√
el
(
ux

k,ξk
)2

+ ec
(
ux

k,ξk
)2 −1

(23)
where [Xk;Yk] represents the current mean position of the
vehicle. If there are no constraints, the MPC formulation can
work more efficient. In order to guarantee that the vehicle
does not leave the boundary of the road, there are inevitably
vehicle state constraints. To improve the computing perfor-
mance of MPC, we convert the vehicle state constraints into
a soft constraint which is a relaxed barrier function related
to vehicle states. Then we integrate this item into the stage
cost function of MPC. The relaxed barrier function Rb(eo f f )
is designed as:

Rb(eo f f ) = β

√(
c+ γ(λ − eo f f )2

)
γ

− (λ − eo f f )

 (24)

Here β , λ , γ and c represent the constant parameters.
Including all the terms introduced above, the stage cost
function can be expressed:

l (ux
k,ξk) =∥ec (ux

k,ξk)∥2
qc
+∥el (ux

k,ξk)∥2
ql

+∥eo (ux
k,ξk)∥2

qo
+
∥∥Rb(eo f f (ux

k,ξk))
∥∥2

qo f f

(25)

where ql , qc, qo and qo f f are the weights for the corre-
sponding penalty factor. The end cost φ(µx

N) which is only
affected by the last prediction step’s state is simply defined
as twice of the stage cost function without the influence by
input factor:

φ(µx
N) = 2 · f0(µ

x
N ,0) (26)

Based on all the prerequisites of overtaking optimization

problem, the GP-based MPC formulation can be written as:

min
u

J(µx
k,ξk) =

N−1

∑
k=0

l(µx
k,ξk)+φ(µx

N)

s.t. ux
k+1 = f nom (ux

k,uk)+Bd(d (ux
k,uk)+wk)

(22)
uk ∈ U ,k = 0, . . . ,N −1
µ

x
0 = x(k),Σx

0 = 0,ξ0 = ξ (k)

(27)

IV. SIMULATION AND RESULT

In this paper, the basic framework of GPMPC is the same
as that in [3] and [6]. But many details are different. For
example, simplified state chance constraints are used in their
paper, but we instead convert the vehicle state constraints into
a soft constraint which is a relaxed barrier function related
to the vehicle states. We then integrate this item into the
cost function of MPC. What’s more, the focus is different.
In [3] and [6], they focus on autonomous racing. Their aim
is to drive along a defined race track as quickly as possible
without leaving the current track. In our study, we focus on
improving vehicle overtaking. The safety constraints based
on the geometric relationship between the ego vehicle and
other obstacle vehicles are added. Then we can not only
avoid driving out of the track, but also avoid dynamic and
static obstacles in the track. Then the overtaking task can
be achieved. But in [3] and [6], they did not consider the
avoidance of dynamic and static obstacles. The focus is
different, so the comparison is meaningless. Besides, it can
often be seen that NMPC is used to avoid dynamic and static
obstacles in recent studies [24], [25]. So, we compare the
proposed GPMPC with NMPC algorithms in our study.

A. Simulation framework

In our study, three major overtaking scenarios will be
introduced as shown in Fig. 1. In the first scenario, an
obstacle stays still in the curve and the ego vehicle will
try to avoid collision with it and pass the curve. In the
scenario of the same direction, the lead vehicle will drive at
a constant speed in the curve and the ego vehicle will move
faster with a variable speed. The decision of overtaking that
occurs from left or right depends on the calculation of the
GPMPC controller. In the last opposite direction scenario,
the lead vehicle is also given by an invariable speed and the
ego vehicle can change the speed according to the different
situations. In the simulation, the second and third scenarios
will also extend to have multiple lead vehicles.

A circular runway with four ninety-degree angles and a
width of 6 meters will be used in the simulation process. All
the vehicles and obstacles will be abstracted into small blocks
which are 2 meters long and 1 meter wide. The physical
parameters of the vehicles and tire Magic formula will be
given properly for preparing the simulation.

B. GPMPC controller setup

During the simulation, there will be a comparison between
NMPC and GPMPC controller. For the basic MPC, the length
of the prediction horizon is set to Np = 7 and the maximum



TABLE I
INPUT CONSTRAINTS

δmin(
o) Tmin vtrackmin (m/s) δmax(

o) Tmax vtrackmax (m/s)

-20 -1 5 20 1 25

number of MPC iterations for each time step is limited to
15. The input constraints from (21) are shown in Table I
within the controllable range. The defined weights for the
corresponding penalty factor of the cost function (25) as well
as the smooth barrier function (24) will also be given within
the feasible range.

The steps of the simulation with the GPMPC controller
are as follows. First, at the initial point the ego vehicle
starts only with the NMPC controller which means all the
GP variables are kept to zero. After collecting the data
into the dictionary from step one, the GP model will be
trained to learn the disturbance. Then, by maximizing the
log marginal likelihood the optimal hyperparameters will
be obtained. Using the loaded data from the dictionary the
GPMPC will be activated to predict the trajectory. Please
note that during the process the new coming data will be
added to the dataset and some old data will be deleted
according the data selection method mentioned in (15) when
the dataset size reaches Nmax = 300.

C. Result and Analysis

For easier observing, lead vehicles and obstacles will be
shown as black-filled blocks and the ego vehicle is a hollow
block. The sampling time is set to Ts = 20s with the time step
size dt = 0.1s. The blue to yellow colored line represents the
route of ego vehicle already traveled and the dots ahead is the
trajectory prediction within the predicted horizon. The grey
dots refer to the approximate vehicle position projected on
the center line. The red arrows show the driving orientation
of lead vehicle. We limit the speed of the ego vehicle from
5 m/s to 25 m/s considering the reality. The lead vehicles
will move with a invariable speed of 4 m/s and 1 m/s in the
same and opposite direction scenarios, respectively.

The left column of Fig. 4 presents the trajectory prediction
with NMPC in different scenarios and the right column is
with GPMPC. Images in the same row represent the same
scenario. Fig. 4 (a) and 4 (b) are the scenario of avoiding a
still obstacle. Fig. 4 (c) to 4 (h) are the scenarios of driving in
the same direction with a different number of lead vehicles.
Fig. 4 (i) to 4 (n) represent the opposite direction scenarios.
As demonstrated in Fig. 4 (a) and 4 (i), the ego vehicle
with NMPC will face the problem of being out of road
bound while overtaking. As a comparison, GPMPC performs
better in the same situation and can keep the vehicle within
the boundary. Fig. 4 (c) and 4 (m) also reveal that NMPC
increases the risk of crashing onto moving lead vehicles.
GPMPC can resolve the crisis as shown in Fig. 4 (d) and 4
(n) and accomplish the overtaking mission without collision.
Meanwhile, GPMPC can maximise the progress along the
centre line and keep an advisable speed while ensuring safety.

NMPC GPMPC

a b

c d

e f

g h

i j

k l

m n

Fig. 4. Comparison of overtaking scenarios between NMPC and GPMPC

Regardless of the different scenes, GPMPC can always give
a proper control input which shows the strong adaptability
of the updated vehicle controller to different situations.

To quantify how GPMPC improves the prediction per-
formance compared to NMPC owing to the GP learning,
the remaining model error in the dimension of vx, vy and
ω will be determined by the nominal model with NMPC
and learning model with GPMPC, separately. The prediction
error is the result of subtracting the real state and the
predicted state of each controller as defined in (28) and (29):

∥eNMPC∥= ∥xk+1 − f (xk,uk)∥ (28)
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Fig. 5. Prediction error of same direction scenario with one lead vehicle

TABLE II
MSE OF THE PREDICTION ERROR

Model ∥evx∥
∥∥evy

∥∥ ∥eω∥ ∥e∥

NMPC 9.101e-3 1.053e-1 7.056e-2 1.849e-1
GPMPC 2.012e-9 4.961e-6 8.403e-9 1.655e-6

∥eGPMPC∥=
∥∥∥xk+1 −

(
f (xk,uk)+Bd µ

d (zk)
)∥∥∥ (29)

The comparison of the prediction error for the second
scenario with one lead vehicle is shown in Fig. 5. From the
diagrams, it is obvious to see that GPMPC executes much
better than NMPC after using the optimal hyperparameters.
GPMPC can significantly reduce the prediction error by
several orders of magnitude for every dynamic state. For
better understanding the ability of the GP, the mean squared
error (MSE) of the prediction error of each dynamic state
including the average value are shown in Table II. GPMPC
has five orders of magnitude higher accuracy than NMPC
which shows that GPMPC can bring a strong improvement
to the vehicle controller performance.

V. CONCLUSION

This study has presented an MPC vehicle controller com-
bined with a GP regression model that allows for autonomous
driving of different overtaking scenarios on curved roads.
The GP model can learn unknown dynamics to reduce the
prediction uncertainty, which can considerably enhance the
performance of the nominal MPC controller. The specific
cost function and constraints are also established to ensure
safety while overtaking vehicles in curves. The simulation
result shows that the GPMPC controller can accomplish
overtaking tasks no matter on straights or corners without
collision and reduce the prediction error. The application in
the different scenarios with multiple obstacles also shows the
strong adaptability of GPMPC.
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ramosca, “Nonlinear model predictive path following controller with
obstacle avoidance,” Journal of Intelligent & Robotic Systems, vol.
102, no. 1, pp. 1–18, 2021.

[25] Z. Elmi and S. Elmi, “Autonomous vehicle path planning using mpc
and apf,” in Motion Planning. IntechOpen, 2022.


