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ABSTRACT Point cloud registration is a core task in 3D perception, which aims to align two point clouds.
Moreover, the registration of point clouds with low overlap represents a harder challenge, where previous
methods tend to fail. Recent deep learning-based approaches attempt to overcome this issue by learning
to find overlapping regions in the whole scene. However, they still lack robustness and accuracy, and thus
might not be suitable for real-world applications. Therefore, we present a novel registration pipeline that
focuses on object-level alignment to provide a robust and accurate alignment of point clouds. By extracting
and completing the missing points of the object of interest, a rough alignment can be achieved even for point
clouds with low overlap captured from widely apart viewpoints. We provide a quantitative and qualitative
evaluation on synthetic and real-world data captured with a Kinect v2. The proposed approach outperforms
the current the current state-of-the-art methods by more than 29% w.r.t. the registration recall on the
introduced synthetic dataset. We show that the overall performance and robustness increases due to the
object-level alignment, while the baselines perform poorly as they take the entire scene into account.

INDEX TERMS Point Cloud Registration, Sensor Fusion, 3D Reconstruction, Deep Learning

I. INTRODUCTION

MULTI perception sensor setups with 3D depth sensors
[1] and LIDARs [2] are becoming more and more

prevalent for manufacturing. However, such multi sensor
systems require accurate and robust extrinsic calibration in
order to be usable. An increasing degree of automation in
industrial manufacturing processes also raises a requirement
for automated (re-)calibration, to keep the growing complex-
ity in set-up and maintenance manageable.

While being a general computer vision problem, point
cloud registration also provides a potential solution for ex-
trinsic calibration of 3D sensors. The goal is to find the rela-
tive transformation between a point cloud pair with respect to
a reference frame. Previous research was mainly based on tra-
ditional registration methods [4]–[6], which were combined,
in most research works, with specific calibration objects [7]–
[10] or markers [11]–[14]. Even though the target-based
methods offer reliable and precise calibration, they are per-
formed manually and require expert knowledge, which is not
satisfactory for highly automated industrial processes. Later
work [15] showed that automated and target-less calibration

Object-centric alignment

Ours PREDATOR [3]

Scene-level alignment

FIGURE 1: Right: The scene-level approach [3] focuses on
the entire point clouds for finding correspondences and fails
registration. Left: Our object-centric approach successfully
registers the real-world point clouds. The proposed method
finds and roughly aligns the object-of-interest in both point
clouds. Then, this object-of-interest is used as a fulcrum point
to fine-tune the scene-level matching process.
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is possible but still relies on an approximate initial guess
of the sensor placement. Moreover, traditional registration
methods suffer from instability and lack robustness, if the
input point clouds are captured from widely apart viewpoints
and their overlap is relatively low.

However, these methods represent a bottleneck for reach-
ing higher levels of autonomy in industrial processes where
vision systems are vital. In such cases, learning-based tech-
niques are used to overcome these issues. The tremendous
success of deep learning for various 3D perception tasks
[16]–[19] has resulted in the use of deep learning for point
cloud registration as well. This can be seen in a number
of approaches [3], [20]–[29] that appeared in the recent
years. Despite learning-based approaches trying to mitigate
the problems of previous registration methods, they require
large amount of data, lack generalization and accuracy, and
tend to fail when the test data distribution differs from the
training data distribution.

Therefore, instead of learning low-level features on the
entire point cloud, we could simply focus on an object of
interest within the scene, as shown in figure 1. Moreover,
a valid assumption for most relevant 3D computer vision
applications is that there will always be at least one unique
object, i.e. an object of interest in the scene. For example,
vehicles in automated driving use cases, robot manipulators
in industrial work cells, or furniture in domestic indoor
scenes. Thus, by focusing on an object-centric alignment,
we can overcome the problems of point clouds captured
from different viewpoints, point clouds with low overlap, and
the need for learning correspondences on the entire scene.
Moreover, by applying this simple yet effective hypothesis,
we can use any off-the-shelve methods and easily integrate
them into our pipeline to adapt to any given requirements.

Hence, we propose a simple and modular registration
pipeline for point cloud data to mitigate the limitations men-
tioned above. First, the object of interest is extracted from the
input point cloud pair. The extracted points partially represent
the object of interest, due to the self-occlusion of 3D sensors.
Therefore, the next step in our registration pipeline predicts
the missing points, which highly increases the similarity be-
tween the extracted point clouds. We leverage this similarity
and perform a rough alignment of the completed point clouds
of the object of interest. This provides a relatively good
transformation estimation. Finally, we refine the alignment
on the entire captured scene by using the roughly estimated
transformation parameters as an initial guess.

Our main contributions can be summarized as follows:
• A novel registration pipeline based on object-level

alignment
• The object extraction and completion modules that en-

able accurate and robust registration even for point
clouds with low overlap

• Extensive experiments on a new synthetic dataset con-
taining point clouds with low overlap captured from
widely apart viewpoints, and qualitative evaluation on
real point cloud data.

II. RELATED WORK
In this section, we provide an analysis of relevant related
research. Furthermore, we extract the limitations for each
subclass of the family of point cloud registration methods.

A. TRADITIONAL POINT CLOUD REGISTRATION
Point-based Registration Methods. The most known tradi-
tional optimization-based point cloud registration method is
Iterative Closest Point (ICP), which was introduced by [30]
and [31]. The core idea behind ICP is to iteratively search
for correspondences and estimate the transformation between
them, thus finding the optimal transformation between source
and target point cloud. The main drawback of this method is
that it heavily relies on a good initial pose estimate, which
in case of a bad estimate can lead to convergence to a local-
minima. To overcome this, [32], [33] and [34] use branch-
and-bound to search for global optimal solution. Although
these approaches may be effective with bad initial estimates,
they still lack in terms of robustness in the case of point
cloud pairs with low overlap. Additionally, global registration
methods come with a high price in required computational
effort, which makes them unusable for real-time applications.
Finally, [35] introduces the estimation of the velocity of the
rangefinder into the ICP algorithm to compensate for any
kind of distortion caused by the movement of the sensor.

Handcrafted Descriptors. Contrary to optimization-
based registration techniques, handcrafted descriptor-based
approaches [36]–[39] try to extract relevant features from
point cloud pairs, and thus find correspondences between
them. Their advantage over most of the optimization-based
methods is that handcrafted descriptors don’t require an
initial guess. However, some disadvantages of these methods
are sensitivity due to noise and occlusions, which can result
in wrong correspondences. Moreover, handcrafted feature
extraction methods underperform when dealing with point
cloud pairs with low overlap, because there might be fewer,
or even none at all, matching correspondences in the two
input point clouds.

B. LEARNING-BASED POINT CLOUD REGISTRATION
Feature Learning. The rapid advancement of data-driven
deep learning approaches enabled the usage of these tech-
niques for point cloud registration. Unlike the handcrafted
feature extractors, feature learning approaches train deep
neural networks on large training data sets for finding corre-
spondences. 3DMatch [20] is one of the first feature learning
point cloud registration approaches. It leverages volumetric
data representation and 3D Convolutional Neural Networks
(CNN) to learn 3D local descriptors for finding correspon-
dences. The authors from [20] introduced the well-known
real-world data registration benchmark under the same name
as the method. In order to jointly capture local and global
features, Deep Closest Point (DCP) [21] employs Dynamic
Graph Convolutional Neural Network (DGCNN) [40] and
leverages Transformer [41] to learn contextual information.
Finally, an Singular Value Decomposition (SVD) module
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produces the transformation matrix. A comprehensive survey
of data-driven feature learning methods can be found in [42],
including works up to 2021. More recent methods [22], [3]
and [24] try to overcome the problem of registration of point
clouds with low overlap. The approach in [22] enhances the
quality of the correspondences, in a regime with low overlap,
by using a graph-based self- and cross-attention network.
PREDATOR [3] introduces a novel overlap-attention block
that aims to focus more on the overlapping parts of point
cloud pairs. [24] proposes to solve the registration of partially
overlapping point clouds by learning overlapping masks to
register those regions.

However, the main limitations of the above-mentioned
methods are: 1) they need an immense amount of training
data, and 2) if there is a relatively large gap between the
training data and new scenes, then these methods suffer from
a significant performance drop. 3) These methods still fail
to accurately register extremely point cloud pairs with low
overlap. On the contrary, our method focuses on finding cor-
respondences on an object level. This object-centric strategy
helps to address the aforementioned drawbacks. Moreover,
our modular pipeline makes use of state-of-the-art methods
and thus leveraging its strengths.

III. PROPOSED METHOD
Our novel point cloud registration method focuses on finding
an object of interest in the input point cloud pairs for accu-
rate and precise transformation estimation. Additionally, we
make the assumption that a unique object of interest exists,
specific for a particular use case, within any given scene.
The proposed point cloud registration pipeline is modular,
and thus enables the easy plug-and-play exchange of each
module with other off-the-shelf methods or network models.
Figure 2 shows our proposed calibration pipeline, which can
be subdivided into four main modules:

1) We first extract the object of interest in the source and
target point cloud (Sec. III-B).

2) The extracted points of the object of interest from
both point clouds represent a partial point cloud rep-
resentation and are completed within the point cloud
completion module (Sec. III-C).

3) The completed point clouds of the object of interest
from the input point cloud pair are roughly aligned
using Principal Component Analysis (PCA) and ICP
[30] (Sec. III-D).

4) The final step includes estimating the transformation
parameters using ICP [30] (Sec. III-D). For the so-
called initial guess, the estimated transformation pa-
rameters, from the previous step, are used.

The following subsections explain in detail the novel point
cloud registration pipeline.

A. PROBLEM STATEMENT
Lets consider two input point clouds, source P =
{p1, ...,pi, ...,pM | pi ∈ R3} and target point cloud

Q = {q1, ...,qi, ...,qN | qi ∈ R3}, where M = N can
be but is not necessary. Assume that the source and target
point cloud have L point matches, where 0 < L < N . The
task of point cloud registration is to estimate the rigid trans-
formation matrix TQP , which consists of a rotation matrix R
and translation vector t, where R ∈ SO(3) and t ∈ R3, by
minimizing the least squares error:

E(R, t) =
1

L

L∑
i=1

‖qi − (Rpi + t)‖2. (1)

The well-known ICP method tries to iteratively solve Eq. 1
by alternating in finding the right point matches, i.e. corre-
spondences, and the optimal transformation matrix. Unfortu-
nately, this approach is very sensitive to local optima and it
fails to converge if the initial guess is poor. Therefore, we aim
to provide a relatively well-aligned initial guess by focusing
first on the object of interest in both the source and target
point cloud.

B. OBJECT OF INTEREST EXTRACTION
As already mentioned, our approach finds first corre-
sponding points on an object-level instead of searching
for correspondences or features in the entire input point
cloud sets like it is done by previous methods. Thus, the
first step is to extract the object of interest point clouds
PS = {pS,1, ...,pS,i, ...,pS,J | pS,i ∈ R3} and QS =
{qS,1, ...,qS,i, ...,qS,K | qS,i ∈ R3} from the source P and
target point cloud Q, where PS ⊂ P , QS ⊂ Q, and J = K
can be but is not necessary. It can be described with:

PS = fe(P),
QS = fe(Q),

(2)

where fe is a function that extracts the points of the object of
interest from the input point cloud data. Since our approach
is modular, the function for extracting the object of interest
points can be implemented by any method which is able to
distinguish the object of interest from the background. For
example, a 3D object detection module, trained to detect the
object of interest, can be used for this task.

In our experiments, we use the DGCNN [40] semantic
segmentation network as fe from equation 2 for extracting
the object of interest points from the background. DGCNN
is a lightweight graph-based network architecture leveraging
edge convolution operations. The input point cloud is con-
verted to a graph-based structure by using k nearest neigh-
bours. Furthermore, their newly introduced edge convolution
operation specifically combines global information with the
local neighbourhood information. For more details, please
refer to the original work.

C. POINT CLOUD COMPLETION
The extracted points PS and QS , of the same object of
interest from both input point clouds, represent only partially
the object of interest. This is due to obvious self-occlusion
since the 3D sensor can only capture one side of an object.
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FIGURE 2: Our point cloud registration pipeline. The input point clouds are first passed through the object extraction module to
retrieve the points from the object of interest. Then, the point cloud completion module infers the missing points of the object
of interest. Object-Level alignment is applied on the completed object of interest point clouds. Afterward, the scene-level fine
alignment module refines the point cloud registration on all the points.

Furthermore, we can assume that the two extracted point
clouds only partially overlap which is caused by different
viewpoints while capturing the input point clouds. The larger
the translational and rotational difference between the two in-
put point clouds is the smaller the expected overlap between
them, and thus the harder the estimation problem. To tackle
these issues we propose to predict the missing points of the
extracted object of interest point clouds with:

PC = fc(PS),

QC = fc(QS),
(3)

where fc is a function that predicts the missing points
of PS and QS . The complete point cloud representa-
tions of the extracted object of interests is denoted with
PC = {pC,1, ...,pC,i, ...,pC,U | pC,i ∈ R3} and QC =
{qC,1, ...,qC,i, ...,qC,V | qC,i ∈ R3}, where U = V can be
but is not necessary, and PS ⊂ PC and QS ⊂ QC . The aim
of completing the two extracted point clouds is to get a set of
points that are similar w.r.t. their geometrical shape. We use
this similarity between the two completed point clouds of the
object of interest to roughly align them, but this is described
in more detail in the following section.

To infer missing points from partial input point clouds, we
use the PoinTr [43] network as fc from equation 3. PoinTr is a
transformer-based network architecture for the task of point
cloud completion. To process the incomplete point cloud a
lightweight DGCNN model is employed. However, to reduce
the computational cost, the input point cloud is hierarchically
downsampled using farthest point sampling (FPS). More
details can be found in the original research article.

D. TRANSFORMATION PARAMETER ESTIMATION
As mentioned in Sec. III-A, the ICP algorithm is prone to
errors if the initial alignment is inaccurate, which leads to a
bad transformation matrix estimation, hence a bad registra-
tion. We solve this issue by providing a relatively good initial
alignment of the input point clouds, by leveraging the simi-
larity of the completed point clouds of the object of interest.
We apply PCA [44], by following [45] and [46], and find the

covariance matrices, CPC
∈ R3×3 and CQC

∈ R3×3, of
both completed point clouds:

CPC
=

1

U

U∑
i=1

(pC,i − p̄C)(pC,i − p̄C)
T ,

CQC
=

1

V

V∑
i=1

(qC,i − q̄C)(qC,i − q̄C)
T ,

(4)

where the centroids of the completed point clouds, p̄C ∈ R3

and q̄C ∈ R3, are calculated with:

p̄C =
1

U

U∑
i=1

pC,i,

q̄C =
1

V

V∑
i=1

qC,i.

(5)

The point cloud reference system for each completed object
of interest point cloud is defined by its principal components,
i.e. feature vectors of the previously calculated covariance
matrix, and with the centroid as its origin. By aligning the
reference frame of the two completed point clouds, retrieved
from the source and target input points, and applying ICP
for further refinement, we obtain an object-level alignment
TQC

PC ,rough.
Finally, we use the object-level alignment as the initial

guess for the minimization problem of equation 1 and solve it
using ICP on the entire input point clouds for finding TQP,fine.
Since we can provide an initial guess, which is already
close to the optimal solution, the ICP algorithm converges
and finds the optimal solution without getting stuck in local
optima.

IV. EXPERIMENTS
In this section, we give a detailed description of the used
dataset and give an overview of the implementation details
and the used evaluation metrics. Then we provide an ab-
lation study showing the contribution of our object-centric
strategy. Finally, we compare the quantitative and qualitative
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FIGURE 3: Qualitative comparison on real point cloud data captured with a Kinect v2. The traditional baseline methods
underperform because searching for correspondences in the entire scene is prone to failure. On the other hand, only our method
achieves satisfying registration due to the emphasis on object-centric alignment.

FIGURE 4: Kuka LBR iiwa collaborative robot mounted on
a worktable inside our workcell dedicated for research pur-
poses. We use multiple Kinect v2 depth sensors mounted in
the corners of the workcell to get full coverage. The extrinsic
calibration, i.e. point cloud registration, of the 3D vision sys-
tem is performed with our proposed method, because it pro-
vides robust and accurate alignment due to the object-centric
approach. Additionally, for the indoor real-world scenario, we
assume that the movement of the object of interest, in our
case the robot arm, cannot cause any significant positional
discrepancy in the depth sensors. This assumption is valid
because the time synchronization of multiple connected depth
sensors is usually by magnitudes faster than the movement of
any object within a scene.

performance of our method to traditional baselines, i.e. ICP
[30] and [31], Fast Glogal Registration (FGR) [38], Random
Sample Consensus (RANSAC) [37] and RANSAC followed
by ICP, and, lastly, with one state-of-the-art feature learning-
based method PREDATOR [3]. Firstly, we describe the used
dataset.

A. DATASET
We assume that for most 3D computer vision applications
that require point cloud registration as a necessary prepro-
cessing step, a unique object of interest will be present within
the captured scene. Hence, let us consider the scenario of

an indoor industrial robotics workcell inside a manufacturing
plant. We can assume that a robot manipulator will be present
in all the captured scenes since it represents the main element
for the operation of a robot workcell. Thus, we can consider
the robot manipulator as our unique object of interest in
any given robotic workcell use case. To the best of our
knowledge, there are no open-source datasets that satisfy our
task description.

TABLE 1: Synthetic dataset details.

SIR Dataset Train Validation Test

Maps 1 1 1
Point cloud pairs 2250 250 250

Overlap ratio Mean Max Min

30.16(±2.75) 36.32 21.48

Therefore, we introduce a new synthetic dataset, con-
taining dense point clouds of an industrial workcell with a
Kuka LBR iiwa inside it. This dataset is generated using
Blender [47] by realistically recreating our real-world lab
robotic workcell, as can be seen in figure 4 and its real-
world 3D scan taken with a Kinect v2 in figure 3, and
contains 2750 scan pairs with randomly sampled robot joint
states for each scan. Additionally, the scans were taken from
random poses within the workcell with the condition that the
robot arm is inside the field of view. Our synthetic dataset
can be used to train for semantic segmentation, point cloud
completion, and point cloud registration tasks. Therefore, we
give the ground truth point-wise labels containing either the
background class or the robot arm class. In addition to that,
we provide the complete robot arm point cloud for each scan
as ground truth data, in order to be able to train a point
cloud completion network. The split into subsets for training,
validation, and testing can be seen in table 1. We follow [3]
to calculate the overlap ratio between the point cloud pairs,
which is reported in table 1 as well. The overlap ratio tells us
how many points of the perfectly aligned source and target
point cloud lie within a threshold distance. The lower the
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overlap ratio between two input point clouds is, the fewer
potential correspondences exist, thus making the registration
problem harder. The mean overlap ratio of the point cloud
pairs from our introduced synthetic dataset is relatively low at
around 30%. If we compare our dataset with the well-known
3DMatch dataset [20], where only scan pairs with an overlap
> 30% are considered, we can see that our dataset represents
a harder challenge for registration.Specifically, point cloud
pairs with an overlapping region < 30% are considered to be
low overlapping [3] and thus various methods show a rapid
decrease in performance.

B. IMPLEMENTATION DETAILS

TABLE 2: Quantitative evaluation of semantic segmentation
of DGCNN [40] on the synthetic dataset. We use the inter-
section over union metric to show the point-wise semantic
segmentation performance on our synthetic dataset.

DGCNN [40] Train Validation Test

IoU ↑ 0.914 0.902 0.898

Our method is implemented in the programming language
Python using the well-known machine learning framework
PyTorch [48] and Open3D [49] for 3D data processing and
visualization. As mentioned previously, we used Blender [47]
to generate our synthetic dataset. For the object of interest
extraction module, we use the DGCNN [40], trained on our
dataset by following their recommendations regarding the
hyperparameters. We report in table 2 the performance of
DGCNN [40] on our synthetic dataset based on the Intersec-
tion over Union (IoU) metric. The point cloud completion
is obtained by using the PoinTr network [43], again fol-
lowing their hyperparameter recommendations. We trained
PoinTr on our dataset, with the addition of generating the
corresponding ground truth, i.e. the complete robot arm point
cloud representation for each scan, with Blender. Table 3
shows the performance of PoinTr [43] on our introduced
dataset. We set the threshold for ICP in the rough and
fine alignment steps to 0.01 and 0.1, respectively. The ex-
periments were conducted on our workstation PC with an
AMD Ryzen Threadripper 2950X (16-Core) and an NVIDIA
GeForce RTX 3090 GPU.

TABLE 3: Quantitative evaluation of point cloud completion of
PoinTr [43] on the synthetic dataset. We use the L1 Chamfer
Distance to show the performance on our synthetic dataset.

PoinTr [43] Train Validation Test

CD - l1(×1000) ↓ 14.712 18.377 18.754

For the traditional baselines, we use the implementation
provided in the Open3D library [49], while for the feature
learning-based method we use their publicly available open-
source implementation. For fairness, we trained the feature
learning-based method, PREDATOR [3], on our introduced

synthetic data set by using their recommended hyperparame-
ter settings.

C. EVALUATION METRICS
We follow [3], [50], [22], and evaluate the point cloud regis-
tration performance w.r.t. the relative translation (RTE) and
rotation error (RRE) calculated by:

RTE = ‖t̂− tgt‖2,

RRE = arccos
Tr(R̂Rgt)

2
,

(6)

where R̂ and t̂ are the estimated, and, tgt and Rgt the
ground truth transformation parameters. Based on RTE and
RRE, we calculate the mean translation (MTE) and rotation
error (MRE), in order to evaluate the performance of the
compared methods. Additionally, we also calculate the regis-
tration recall rate (RR), which gives a quantitative measure
of the registration success ratio. A registration is considered
successful if the relative translation and rotation error is
below a certain threshold. For our use case, we consider the
following thresholds: RTE < 0.05m and RRE < 5◦.

D. ABLATION STUDY

TABLE 4: Ablation study of the proposed registration pipeline
performed on our synthetic test set. The threshold for the
relative translation and rotation error were set to 0.05m and
5 deg.

Method MTE [m] ↓ MRE [deg] ↓ RR [%] ↑
A 5.85∗ 106.61∗ 0
B 3.92∗ 86.41∗ 0
C 0.056 1.418 8.84
D 0.0073 0.223 20.88
Full 0.0065 0.211 86.35

* We report the overall MTE and MRE if no point cloud pair is success-
fully registered

We ablate our proposed registration pipeline to prove the
robustness of our object-centric alignment strategy, as shown
in table 4. The ablation study is conducted on the introduced
synthetic data set. First, we evaluate the performance of only
using the object extraction module (model A) and apply ICP
on the partial point clouds. By adding the object completion
module (model B) and applying ICP on it, we can observe
how the performance improved. By using the object extrac-
tion, object completion, and object-level alignment module
(model C), we see a clear increase in performance, but still,
the overall registration recall remains relatively low for the
selected thresholds. Model D represents all the modules
except the object completion module. Here, we intend to
emphasize the importance of the object completion module.
Additionally, model D simulates a scenario where the reg-
istration pipeline fails to correctly complete the object of
interest, which is caused by either poor point-wise extraction
of the object extraction module or a poor reconstruction
of the extracted points of the object completion module.
However, if we compare model D with the entire pipeline
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FIGURE 5: Qualitative comparisons on our synthetic dataset. The traditional methods fail because of the large viewpoint
difference of the point clouds, and due to the low overlap. Even though our method and the learning-based baseline appear
to be visually identical at the scene-level, it is clear that our method performs better for the points measured on the shelf, which
can be seen in the zoomed in region. Our approach has a better registration quality because we use an object of interest as a
fulcrum point for rough alignment. This rough alignment serves as a good starting point for the fine alignment step at the scene
level and makes the search for correct correspondences easier.

(model Full), one can see the importance of the object
completion module, which adds to the overall robustness
of the registration pipeline by improving the registration
recall by more than 66%. The robustness increases because
the object completion module minimizes the discrepancy of
the geometrical shapes between the two extracted object-of-
interest point clouds significantly. Moreover, this step enables
a rough alignment which serves as the initial guess for the
fine alignment step.

E. QUANTITATIVE RESULTS

Traditional methods are not robust against point cloud pairs
with low overlap, because they can’t find enough relevant
correspondences, which results in poor performance. Only
the method, where RANSAC is used together with ICP,
manages to register a few point cloud pairs very accurately,
but still, due to a very low registration recall, this approach
remains unusable for real-world applications. On the other
hand, PREDATOR manages to generalize well over the
test set, showing the robustness of a learning-based method
specifically designed for point cloud pairs with low overlap.

TABLE 5: Evaluation results on our synthetic test set. The
threshold for the relative translation and rotation error were
set to 0.05m and 5 deg.

Method MTE [m] ↓ MRE [deg] ↓ RR [%] ↑ A.R. [s] ↓
ICP 1 [30] 5.81∗ 107.21∗ 0 48.47
ICP 2 [31] 5.44∗ 106.31∗ 0 38.17
FGR [38] 6.72∗ 137.92∗ 0 13.24
RANSAC [37] 5.82∗ 112.23∗ 0 9.27
RANSAC + ICP 0.0085 0.013 4.42 9.80
PREDATOR [3] 0.0288 0.706 57.03 0.135
Ours 0.0065 0.2111 86.35 4.02

* We report the overall MTE and MRE if no point cloud pair is success-
fully registered

1 point to point
2 point to plane

However, our proposed method performs similar or more
accurately, w.r.t. the MTE and MRE, and is more robust in
terms of registration recall compared to the baseline methods,
as shown in 5. The reason for achieving such robustness
is because our method focuses first on finding an object of
interest and predicts the missing points to generate a similar
shape. On the other hand, high accuracy is obtained with
the combination of the object-level and scene alignment. The
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FIGURE 6: Registration recall with different translation and
rotation error thresholds on the introduced synthetic dataset.
Our approach outperforms the baselines in the low threshold
region by a large margin, because of the object-centric align-
ment strategy followed by a scene-level fine alignment step.

alignment on the entire scene begins with a good initial guess,
retrieved from the object-level alignment, which guarantees
convergences to an optimal solution for most cases.

Furthermore, we evaluate the registration recall with dif-
ferent translation and rotation error thresholds, as shown in
figure 6. Comparing the results, our method shows superi-
ority for lower threshold values, which indicates that it is
highly reliable for applications with a strict requirement on
accuracy, such as industrial robotic workcell use cases. The
better performance of our method can be attributed to the
effective strategy of our novel registration pipeline. Instead
of finding low-level correspondences in the entire scene, we
first focus on roughly aligning an object of interest to provide
a good starting point for the scene level fine alignment.

F. QUALITATIVE RESULTS
The qualitative comparison of the baseline methods and the
introduced registration approach on the synthetic test data is
shown in figure 5. As expected, the traditional methods suffer
from instability and fail to achieve satisfying alignment,
because of the widely apart viewpoints the point clouds
were captured from, and due to the low overlap. On the
other hand, PREDATOR manages to handle such input pairs
and successfully registers them. However, by comparing the
highlighted part of PREDATOR and our method, it is clearly
visible that the learning-based baseline falls short of accu-
rately aligning the input point cloud pair. The reason for this
might be that the learning-based method probably requires
larger amount of training data in order to learn more fine-
grained correspondences.

Finally, a qualitative comparison on real-world point cloud
data, is displayed in figure 3. The scenes were captured
with two Kinect v2 which were mounted in the corners of
our workcell, as shown in figure 4. Again, the traditional
baselines fail for the same reasons to successfully register
the point clouds with low overlap. Surprisingly, the learning-
based method, PREDATOR, fails as well to align the real
point cloud pair. This is very likely due to the difference in

data distribution between the training set and the real point
cloud data. However, only our approach successfully regis-
ters the real input point clouds, which can be attributed again
to the effective design choice of the proposed registration
pipeline, by first putting the focus on an object-level instead
of on the entire scene.

V. DISCUSSION AND FUTURE WORK
The design of our point cloud registration pipeline enables
two properties: 1) scalability and 2) simplicity. Each module
within our point cloud registration pipeline can be exchanged
with any other off-the-shelf method and adapted accordingly.
Therefore, our proposed method can be easily extended for
other applications where an accurate and robust registration
of challenging point cloud pairs is required, e.g. automated
driving, 3D indoor mapping, multi-agent slam, and others.
Moreover, our approach opens up a number of directions
for further research. It would be interesting to see how our
method could be used for cross-source point cloud regis-
tration, where different densities of the input point clouds
present a difficult challenge for current methods. Finally,
publicly available datasets, such as the 3DMatch [20], lack
the ground truth information about the completed point cloud
for potential objects of interest within the scene. Therefore,
to fill this gap, we believe that our synthetic dataset will
help further research in this particular direction. Finally, the
conducted experiments on synthetic and on real-world data
showcase the robustness and accuracy of our object-centric
alignment strategy.

VI. CONCLUSION
In this work, we introduced a simple and modular approach
for robust and accurate registration of point clouds with low
overlap. The main idea behind this novel registration pipeline
was to put focus on an object of interest in the input point
cloud pair and use it as a fulcrum point. Inferring the missing
points of the object of interest created a geometrically similar
shape of it in both the input point clouds, which then helped
to roughly align them. This rough alignment provided a good
and robust initial guess for the scene-level fine alignment, and
thus ensured convergence to an optimal solution. Moreover,
we showed that the introduced approach outperforms other
baselines on our synthetic dataset, and our method proved to
be robust on even noisy real-world data while the compared
baselines failed.
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