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ABSTRACT

Boundary-layer transition on the surface of a space trans-
portation vehicle highly influences the heat-flux the thermal
protection system has to withstand in a re-entry scenario. Dis-
tributed surface roughness can cause cross-flow like vortices
in the wake of the roughness patch that highly destabilize
the flow regime. The variety of roughness parameters which
influence the generation of a cross-flow vortex is addressed
with the training of a Deep Neural Network. This paper
presents a database of Direct Numerical Simulations (DNS)
of a restricted domain of an Apollo-like space capsule with
different distributed roughness patches. This study is us-
ing machine learning to predict the streamwise vorticity of
a cross-flow-like vortex generated by a distributed random
roughness patch. A sensitivity analysis identifies the impor-
tance of surface derivatives and the location of the maximum
and minimum peak in the roughness patch.

Index Terms— Hypersonic Flow, Machine Learning,
Distributed Roughness, Re-entry Capsule

1. INTRODUCTION

A space transportation vehicle requires a thermal protection
system (TPS) in order to withstand the heat load in a re-entry
scenario. The heat flux depends on the flow regime on the
surface of the space capsule. In case of a laminar to tur-
bulent transition, the heat flux can be increased by a factor
of ten [1]. It is therefore a mission-critical aspect to prop-
erly model the laminar-turbulent transition in the hypersonic
flow regime. During the re-entry of a space capsule, a sur-
face roughness on the heat shield is the most-likely cause for
laminar-turbulent transition as the accelerated flow is modally
stable and transient growth is unlikely [2].

Schneider [3] presents in an overview on the experimental
investigation of surface roughness in hypersonic flow. On
the numerical side, several studies investigated the effect of
isolated roughness elements in hypersonic transition. Among
others, Padilla Montero and Pinna [4] investigated the role of
isolated roughness elements in a laminar boundary layer at
Mach 6. Two different roughness geometries, a sharp-edged

cubical element and a three-dimensional sharp-edged ramp,
were investigated. The isolated element produced a pair of
counter-rotating vortices in the wake which generates strong
velocity gradients leading to a three-dimensional shear-layer.
The streamwise evolution of the wake instabilities are inves-
tigated through a temporal growth-rate decomposition. The
majority of potential energy within the roughness-induced
instabilities in the wake is gained by the transport of distur-
bance entropy across temperature gradients in the base flow.
A new cross-flow like vortex induced by a distributed rough-
ness patch was observed by Di Giovanni and Stemmer [5] at
M = 5.9 flow of a blunt capsule configuration. The rough-
ness induced cross-flow showed higher amplification rates in
comparison with counter-rotation vortices in the wake of a
spanwise periodic roughness element with the same maxi-
mum height. The authors emphasize the necessity to include
the roughness shape into a future transition criteria.

In order to better understand the role of the roughness topol-
ogy of distributed patches, Ulrich and Stemmer [6] investigate
two different types of random roughnesses with a sinusoidal
and triangular base function. Stronger streamwise vorticity is
computed for the triangular base-function patches. In a 2D
Fourier transformation, the growth of acoustic disturbances
is investigated in the wake of both roughness types. The
stronger vortex in the triangular case generates stronger wall-
normal and spanwise gradients leading to transition further
upstream.

Brunton et al. [7] provide an overview of the usage of ma-
chine learning (ML) in the field of fluid mechanics and point
out the potential this method provides. The prediction of
Nikuradse equivalent sand-grain height k£, with a Deep Neu-
ral Network (DNN) and Gaussian Process Regression (GPR)
is proposed by Jouybari et al. [8] in order to understand in-
fluence of a rough surface topology on turbulent flow. The
machine learning models were able to predict the equivalent
sand-grain height with an average error of less then 10%.
The ML approach was significantly better than polynomial
models. Further, the author see the potential to compute
physics-related flow quantities, e.g. flow separation locations,
with their database in the future.
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Lee et al. [9] improve the estimation of the drag on irregular
rough surfaces with a transfer learning-step. In a pre-training
step, the neural network is learning known surface statistics
which have an influence on the drag. The ’approximated
knowledge’ is then fine-tuned in a second step. The proposed
transfer framework is adapting the drag model on empirical
data and therefore requires only a limited number of compu-
tationally demanding Direct Numerical Simulations. Despite
the improvement of the prediction error by the pre-step, the
database should be increased for the generalization ability of
the framework.

The influence of a distributed roughness element on the wake
flow presents a parameter-rich problem which requires a
large database of computationally expensive Direct Numeri-
cal Simulations. We present a database of such simulations
with over 4830 simulations which makes it one of the largest
databases for distributed roughness patches in the hypersonic
flow regime. Further, we describe the possibilities and chal-
lenges to predict the maximum vorticity in the roughness
wake.

2. GOVERNING EQUATIONS

This study used a database of DNS which are computed us-
ing the compressible Navier-Stokes equations in three dimen-
sions. This includes the continuity equation,

dp

(pui) =0, 6]

with the density p and the velocity component « in the Ein-
stein notation. Further, we use the following momentum
equations:
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with the spatial coordinates x; and the time ¢. The stress ten-
sor o;; is computed with the viscosity  and
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this system is closed with a chemical gas model which takes
high temperature effects into account and provides the equi-
librium temperature and composition for the ideal gas equa-
tion of state for the individual species.

This study uses a five species gas model (N2, O2, NO, N, O)
proposed by Park [10] to compute the transport and thermody-
namic properties of the fluid in chemical equilibrium. Since
this investigation is focusing on the prediction of streamwise

vorticity computational more demanding chemical models,
such as chemical (and thermal) non-equilibrium, are not used.
This simplification can be justified, because the influence of
the gas model on the velocity field is much smaller compared
to its influence on the thermal boundary layer. A detailed
comparison between the different gas models can be found
in[11, 12].

3. DATABASE SETUP

The training dataset is generated with a large number of
DNS calculations. These simulations investigate a restricted
domain (see Section 3.1) on the surface of an Apollo-like
capsule. Each domain is equipped with a random rough-
ness patch which is described in Section 3.3. The distributed
roughness patch generates a cross-flow like vortex in the
wake of the roughness. The maximum streamwise vorticity
is measured in a y-z-slice at the outflow of the domain. The
maximum vorticity values along with geometrical roughness
parameters (see Section 3.4) are stored in the database are
used to train, test and validate the DNN.

3.1. Computational Domain

This study investigates the influence of random roughness
patches in a restricted domain on the heat shield of an Apollo-
like capsule. The inflow conditions of this domain were de-
rived from a 2D DNS of a Mach 20 flow with a zero angle of
attack at an altitude of 60 km. The domain is refined in the
bow-shock region and has a symmetry line through the stag-
nation point. A schematic drawing of the 2D domain can be
found in Fig. 1 a. The initial conditions for this 2D simulation
can be found in Tab. 1. From the results of the 2D simulation,

Table 1. Freestream-conditions for the re-entry Simulation

Parameter Value Comment
Mach 20 -

Doo 29.9 Pa

T 253.3 K

Twan 1800 K

Re 1.97-10% m™!

the inflow conditions of the restricted domain are derived.
The restricted domain is located in the shoulder region of
the space capsule at an angular extension from 6; = 35.3° —
38.0°. A detailed description of the two domains can be found
in [6].
The reduced domain has a streamwise extension of 28 cm and
is 17 cm wide in the spanwise direction. The maximum do-
main height is 6.6 cm. The grid resolution was set to 7 = 85
(streamwise direction), j = 69 (wall-normal direction) k =
200 (spanwise direction) with a total number of grid points
of 1,173,000. The resolution of the domain was tested by a
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Fig. 1. Sketch of the restricted and reduced restricted domain.

grid convergence study. This study ensured that the value of
maximum of streamwise vorticity downstream of the rough-
ness patch was not effected by the chosen grid resolution. The
grid points in the wall-normal direction were distributed in a
finer fashion to fully resolve the boundary-layer and the cross-
flow-like vortex.

3.2. Numerical Solver

All DNS are performed with the semi-commercial code
Navier-Stokes-Mutli-Block Solver (NSMB). Di Giovanni and
Stemmer successfully used this finite volume solver [5] and
validated its usage in the current configuration. A documen-
tation of the code can be found in [13]. The program is using
the Message Passing Interface (MPI) to parallelize the simu-
lation.

The current domain is divided into 560 blocks which are
handled on 20 nodes with 28 CPUs. A fourth-order accu-
racy central scheme is used for the spatial discretization.
We computed steady simulations with an implicit Eulerian
method based on a Lower-Upper (LU) symmetric Gauss-
Seidel method for the time-integration.

Further, we analyzed how the maximum streamwise vorticity
is deviating from the converged value, where the Lo criteria
of the density is below 107'2. As the L, criterion contin-
ues to converge, the maximum of the streamwise vorticity
gets closer to the final converged value. We chose to stop
the convergence of the DNS within the database at a value
of Ly < 10~7. The achieved precision of the streamwise
vorticity (107°) is high enough, especially since the predic-
tion capabilities of a neural network are several orders of
magnitude less.

3.3. Random Roughness Patches

Besides the grid resolution and the convergence criteria, the
domain size was carefully chosen to only incorporate an area
of interest to reduce computational time. Hence, the domain
ends shortly (0.02 m) downstream of the roughness patch
and does not simulate the downstream development of the
cross-flow vortex in the wake.

The database consists of a set of 4830 DNS of the same
restricted domain with different random roughness patches.
All distributed roughnesses are composed of three sinusoidal
waves in spanwise and streamwise direction with a random
amplitude and phase. A normalization process ensures that
all patches have the same maximum peak height of 18% of
the boundary layer height § in the smooth case.

The distributed roughness £ is defined in the following way:

2mq 27r
&)

with a maximum roughness height of h,,4, = 4.3 mm and
the polynomial smoothing function g(x) which ensures a
continuous transition from the smooth capsule surface to the
roughness patch. The patch is composed by random sinu-
soidal waves with an amplitude A, , € [0,1] and the phase
¢q,r € [0,27]. However, certain amplitudes are assigned with
the value zero to ensure the presence of a minimal wave-
length, if n2 + m? > N? + 1. The fundamental roughness-
wavelength \g = 170 mm is referring to the spanwise exten-
sion of the domain. Further, the smooth capsule surface is at
a height of zero.

3
hz,z) = hmaz-g(2) Z Z A, rsin

q=1r=1

3.4. Geometrical Input Parameter

We chose several statistical values as input parameters de-
rived from geometrical parameter of the roughness surface.
We computed the average roughness heights hqqg,

1 .
havg = m ; h(%k)a (6)

with the number of points V;,Nj in the streamwise and span-
wise directions, respectively. The average value was also
computed for the derivative in the streamwise direction

Oh(i,k)
7
0i @)
the derivative in the spanwise direction,
Oh(i,k)
8
ETA 3

the mean curvature,

, B Oh(ik) ~ Oh(ik)
curv(h(z,k))mean—().f)( 5 + ok >, )

and the Gaussian curvature,

Oh(i k) 8’1@3’“)) .0

curv(h(i,k))gauss_( Ty

Further, we computed the root-mean square (RMS) of the
height

1 .
hrms = \/Nl K Nk; Z (h(Z,k) - ha’vg)z, (11)

ik
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as well as the rms-values accordingly with the stream- and
spanwise derivative and the mean and Gaussian curvature.
Also the skewness was computed from the height and the
other geometrical factors,

1 1 )
Sk(h) = 35— mE:(h(z,k)—havg)?’ . (12)
™ms 7 ik

With the skewness value of the streamwise derivative, we
compute the streamwise inclination angle

I, = tan™! (0.5 . Sk (Méé”“))) (13)

and accordingly in the spanwise direction,

B _ Oh(i,k)
I, = tan (O.5~Sk< ok )) (14)

We also included the position of the roughness maximum
height Pos,,qz,; and minimum FP0s,,;,, ; in streamwise and
spanwise coordinates (Posy,az,j,P08min, k).

Hence, we feed the neural network with a total of 26 differ-
ent parameters derived from the surface function (Eq. 5) of an
individual roughness surface. No additional simulations are
performed to compute these parameters.

4. NEURAL NETWORK STRUCTURE

This investigation uses a Deep Neural Network with an input-
layers, several hidden layer and an output layer. The aim of
the DNN is to solve a regression problem by predicting the
continuous value of the maximum streamwise vorticity in the
wake.

The network is trained with a random selection (80%) of
the simulations. The input parameters are normalized in the
first layer. Then the data is processed in three hidden layers
with 512 neurons each. After each neuron, the information
is passed though an Exponential Linear Unit (elu) activation
function. Finally, a single value as a result will be computed
in the output layer. An overview of the network structure is
given in Fig. 2.

5. RESULTS

5.1. Steady Baseflow

First, we want to discuss some of the DNS results of the DNS
database. This supports the understanding of the physical pro-
cess behind the cross-flow formation.

Two random samples are chosen from the database. In Fig. 3,
the roughness surface of the two patches is displayed. The
roughness height is colored to highlight peaks and valleys of
the patch. The interaction with the random distributed rough-
ness patch leads to the formation of a cross-flow vortex in the

1% hidden layer

3" hidden layer

input layer N output layer

Fig. 2. Network graph of the used DNN

wake. The streamwise vorticity w,, is displayed as a contour
plot in a y-z-slice at the end of the domain. Further, a stream-
line through the vortex core of the strongest cross-flow vortex
is drawn at z = 0.28 m.

For both patches, the strongest vortex is observed downstream
the highest peak in the patch. The peak is forcing fluid in a
upward motion and the adjacent valley downstream the high-
est peak is inducing a spanwise velocity which forms the vor-
tex. Also the streamline of the vortex core passes through this
valley. The streamline in Fig. 3a is displaced about 30% fur-
ther in the (negative) spanwise direction than in the patch in
Fig. 3b. The maximum streamwise vorticity is 30% higher
compared to patch sample a, but the vortex is 8% closer to the
wall. An overview of the position and the magnitude of the
strongest cross-flow vortex in the wake for both patches can
be found in Tab. 2.

Two vortices are formed for both patches in the wake. The
small vortex is located in close proximity to the wall, while
the strongest cross-flow like vortex is detached from the sur-
face. Di Giovanni and Stemmer [5] identified this vortex as
the dominating source of instability in the wake.

Table 2. Vortices of two random samples

Grid  w, [1/s] z-Position of the

vortex core [mm)]

y-Position of the
vortex core [mm)]

a 135,062.7
b 174,474.1

9.18
8.49

-53.83
28.03

5.2. Neural Network Performance

Identifying a relation between the vorticity magnitude and ge-
ometrical roughness parameters remains a challenge. In a pre-
vious study [6], we have identified the importance of stream-
and spanwise derivatives, but on a smaller set of simulations.
A precise physical relation between the geometrical param-
eters and the streamwise vorticity with a single or a few pa-
rameters was not possible for this database. The problem is
highly nonlinear and parameter rich, hence the prediction ca-
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Fig. 3. Streamline of the cross-flow vortex and y-z-slice of
streamwise vorticity for two random roughness patches

pability of a DNN was tested.

From the original database, 20% of the simulations were used
to test the prediction performance of the network. This ran-
domly selected data was not processed by the DNN before.
With the proposed input parameter, the DNN predicted the
streamwise vorticity with an average error of 20.7% with only
30 percent exceeding the average error. About one third of the
test data is predicted with a relative error under 10%. How-
ever, around 10 grids were predicted very poorly with a max-
imum error of 187%. An overview of the relative error distri-
bution is given in Fig. 5.2b.

The simulated or frue vorticity values are plotted against the
predicted values in Fig. 5.2a. The green line indicates where
a simulated and predicted value would match. The larger the
distance from the bisecting line, the larger the error gets. Val-
ues below the green line are estimated with a too low vorticity
value. This especially happens for the high vorticity DNS re-
sults. At these high values, the number of simulations in the
training set is not high enough to present the network with suf-
ficient training data. Hence, the network is under-performing
in these vorticity regions. Domains challenged the network
where almost no cross-flow vortex was formed by the rough-
ness patch.

5.3. Sensitivity Analysis

We performed a sensitivity analysis in order to understand
the influence of single and multiple geometric input factors
on the capability of the DNN to predict the streamwise vor-
ticity. We measured the difference in the achieved mean error
between the complete database and a reduced database where
single or multiple input parameters were omitted.
An overview of the sensitivity analysis can be be found in
Tab. 3. First, we tested the influence of every single pa-
rameter being excluded. This exclusion lead to a maximum
increase of 7.32% of the mean error of DNN prediction.
Especially the location of the maximum, the streamwise po-
sition of the minimum and the rms value of the roughness
height are contributing significantly to the network. We un-
derlined the importance of the rms roughness value in [6].
Further, we selected groups of parameters that we derived
from the same geometrical parameter, for example all input
parameters that we computed with streamwise derivative. In
Tab. 3, these groups of parameters are positioned in the sec-
ond group. Here, we see the importance for the prediction of
maxima and minima positions and also the derivatives. Since
there is a connection between the streamwise and spanwise
derivative, the DNN can comprehend the omission of one di-
rectional derivative. However, the error increases by 24.41%
when all factors derived from the directional derivatives are
missing in the database.
The last group in Tab. 3 refers to input parameters which
are derived from all geometrical features but with different
statistical features, such as the maximum or rms value. All
parameters contribute to the prediction with rms parameter
being the most influential.
Finally, we see that not all parameters are necessary. The
omission of certain parameters reduces the error further.
However, this is only happening in the single-factor group
and is due to over-fitting. It would be beneficial to only in-
clude the average value of the spanwise derivative, but not
also the maximum, the rms-value and the skewness.

With the investigated combinations, we can see the impor-
tance of the surface derivatives as well as the position of the
surface maxima and minima. Also, the rms roughness height
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is contributing to the prediction. Further, it is necessary to
reduce the number of parameters derived from the same geo-
metrical feature to prevent over-fitting.

Table 3. Sensitivity analysis

removed parameter(s)  AError [%]
Ravg -1.52
curv(h)mean,avg -1.09
curv(h) gauss,avg -1.81
Oh/Digug -0.16
Oh/0kaug 2.77
J— 4.94
curv(h) mean,maz -1.05
curv(h) gauss,maz 2.61
Oh/Oimax 0.43
Oh/Okmax -0.82
Rrms 5.84
curv(h) mean,rms 0.93
curv(h) gauss,rms 3.01
Oh/Qirms 2.71
Oh Ok s -1.63
S k( ) 2.94
Sk(curv(h)mean) -1.59
Sk(curv(h )gauss) 1.72
Sk(0h/0i) 0.17
Sk(Oh/Ok) -1.18
I, -0.88
I, -3.00
Posmaz,i 7.32
Posmaz i 6.61
POSmin,i 5.22
POSmin,k -0.75
all heights 7.80
all derivatives 24.41
all 9h/0i 8.71
all Oh/0k 4.30
I; Iy, 1.76
all positions 22.88
all curvature 4.30
all average 0.59
all maximum 1.31
all rms 6.28
all skewness 0.64

5.4. Reduction of Roughness Peak Height

In this section, the peak height is reduced and the effect
on the streamwise vorticity is analyzed. An increase in the
roughness peak height does also change the derivatives on the
roughness surface as well as the other roughness parameters.
The decrease of the roughness peak height will not lead to a
change in the position of the maximum and minimum peak
height. The sensitivity analysis identifies the derivative pa-
rameter and the maximum and minimum position as the most
influential parameter. Hence, this section also investigates
the change in geometrical roughness parameters but with a
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constant maximum/minimum location.
The original database had a roughness peak height to boundary-
layer height ratio of h,,,4. /9 = 0.18. A second set of simula-
tions is performed with .4, /0 = 0.148, a reduction of 21%
of the peak height.
In Fig. 5a, the vorticity distribution of both databases is plot-
ted. The lower peak height database (black) is shifted towards
lower vorticity values compared to the higher peak database
in red. The most common vorticity value is reduced by half
from = 100k 1/s to =~ 50k 1/s.

Further, we picked a random set of simulations from the

Table 4. Overview over two domains with different peak
height

hmaz/8  wy [1/s] vortex core vortex core
y-Pos. [mm] z-Pos. [mm]

0.18 148,537.23 5.7 -19.1

0.148 112,374.57 3.5 -17.3

Ahpar  Awg [%] APosy [%] APos, [%]

21 32 62 10

database to compare the flow field of the same roughness
patch differing only in the maximum roughness-peak height
side by side. The position of the roughness peaks and valleys
is the same for these patches. The streamwise velocity is
displayed in Fig. 5b for both roughness peak heights for the
same roughness patch. Both patches show a similar flow field
where no cross-flow-like vortex is present. Also the spanwise
location of the vortices does change by only 10% when the
peak height is reduced. Nevertheless, an increase in vorticity
of 32% is observed and the vortices are lifted from the wall
further in the wall-normal direction. The y-position of the
vortex core increases by 62%. An overview over two patches
can be found in Tab. 4.

A database with decreased peak height leads to a general
reduction of the maximum vorticity in the wake. We further
observe that the wall-normal location of the vortex core is in-
creasingly influenced by the change of the roughness parame-
ter than the spanwise location with constant maxima/minima
location. This corresponds to the results in Sec. 5.1 where
the cross-flow vortex core is observed downstream the maxi-
mum roughness peak. If this peak is decreased, also spanwise
derivatives decrease, but this has only little effect on the
spanwise location of the vortex core in the wake.

6. SUMMARY

This investigation presents the generation of a large database
of DNS (4830 simulations) for the prediction of streamwise
vorticity of cross-flow like vortex in the wake of distributed
random roughness patches. A suitable domain resolution was
chosen to meet the required accuracy and reduce computa-
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Fig. 5. a): histogram of streamwise vorticity distribution
b): y-z-slice of streamwise velocities for hy,q./0 = 0.18
(red) and Ay, /0 = 0.15 (black)

tional time.

From this database, a random set of two roughness grids are
chosen and the baseflow of these simulation was displayed.
The fluid is lifted by the maximum peak height in both sim-
ulations and forms a cross-flow like vortex downstream the
maximum peak.

A DNN was trained with the database and tested with a sepa-
rate set of simulations in a second step. The network is able to
predict the maximum streamwise vorticity value in the wake
with given roughness parameter with an average error.

A sensitivity analysis has revealed the surface derivatives as
well as the position of the roughness maximum and minimum
as the most influential parameter. Also using rms-values rel-
ative to skewness values of the geometric input parameter in-

2nd International Conference on Flight Vehicles, Aerothermodynamics and Re-entry Missions & Engineering (FAR)
19 - 23 June 2022. Heilbronn, Germany



creases the prediction capability of the DNN.

A second set of DNS was generated with a maximum peak
height reduced by 18%. The maximum streamwise vorticity
in the wake showed a similar distribution curve, but the curve
is shifted towards lower vorticity magnitudes. As expected,
the lower peak amplitude of the patch leads to a decrease
in vorticity in the wake. By comparing two DNS with the
roughness patch only differing in the maximum peak height,
we see that the streamwise velocity is differing a lot in the
vortex region while the rest of the flow field remains simi-
lar. Since the position of the maxima and minima remains the
same compared to the other roughness parameter, we saw that
the position of the vortex core is linked to the position of the
maximum peak height.

In the future, the authors want to focus on the improvement
of the precision of the DNN. A better performance can be
achieved with cross-validation and increasing of the database
size which will also further reduce over-fitting of the network.
Certain products of input parameters could be used as new in-
put might to further increase the performance. However, it is
necessary not to overfit the network to the proposed database.
Also the DNN itself could be optimized by hypertuning of
network parameter such as the number and size of the hidden
layers.
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