
Image Grid Recognition and Regression for Fast
and Accurate Face Detection

Liguo Zhou
Institut für Informatik VI

Technical University of Munich
Garching, Germany
liguo.zhou@tum.de

Guang Chen
School of Automotive Studies

Tongji University
Shanghai, China

guangchen@tongji.edu.cn

Chao Zhang
Institut für Informatik VI

Technical University of Munich
Garching, Germany

ge37kik@tum.de

Alois Knoll
Institut für Informatik VI

Technical University of Munich
Garching, Germany

knoll@in.tum.de

Abstract—CNN-based face detection methods have achieved
significant progress in recent years. However, for high perfor-
mance face detection, there are still many challenging problems,
e.g., the speed-accuracy balance and the performance degrada-
tion in adverse conditions. In this paper, by taking advantage
of the characteristic of CNN, we propose an effective anchor
generation and bounding-box regression method that can make
a good balance between speed and accuracy, and also work
well in bad conditions. The classic structure of CNN produces
pyramid-like feature maps due to the pooling or other downscale
operations. According to the size of a feature map, we divide the
image into grids. Each grid corresponds to a point in the feature
map. We make the corresponding feature point responsible for
identifying the content of the grid. If this grid area belongs
to the face area, it is a natural anchor for face bounding-box
regression. Since this anchor is square, it is reasonable to use it
to predict the face bounding-box which is square-like. The points
in the lower-level feature map correspond to smaller grids, which
are dedicated to predicting the bounding-boxes of smaller faces.
The points in the higher-level feature maps correspond to larger
grids, which are responsible for predicting the bounding-boxes of
larger faces. Hence our method can effectively detect multi-scale
faces. With this effectiveness, our method can achieve a high
detection accuracy using fewer parameters which leads to a fast
detection speed. The experiments demonstrate the effectiveness
of our method.

I. INTRODUCTION

Face detection is an important task in computer vision and
has been widely studied in the past decades. Nowadays, many
emerging applications, such as identity authentication and se-
curity surveillance, hinge on face detection. Since AlexNet [1]
was proposed, Convolutional Neural Networks (CNN) have
achieved significant progress in face detection. However, for
high-performance face detection, there are still a series of
challenging problems. The balance between detection speed
and accuracy is an essential problem because it determines
whether a face detection method can be applied in practical
applications. To improve the accuracy of face detection, more
and more complicated structures of networks are proposed,
which results in serious time consumption. In adverse condi-
tions, performance degradation is another problem that hinders
the applying of face detection algorithms. In this paper, we
propose an effective anchor generation and bounding-box
regression method that can obtain a good speed-accuracy
balance and also work well in bad conditions.

As a special object detection, the pipeline of face detection
is similar to that of general object detection. R-CNN [2], the
first successful CNN-based object detection method, contains
two stages. First, thousands of the candidate regions of objects
are proposed by the selective search [3]. Second, each of the
candidate regions is cropped from the image and input the
CNN to classify what kind of object it contains. For those
regions containing needed objects, their positions are refined
by bounding-box regression. Fast R-CNN [4] and Faster R-
CNN [5] improve R-CNN and focus on selecting candidate
regions of objects better and faster. Faster R-CNN designs Re-
gion Proposal Networks (RPN) to search the potential regions
containing objects. In RPN, a series of rectangles with multi-
scales are proposed and assumed to contain objects. These
rectangles are called anchors. If an anchor is determined to
contain an object, the coordinate of this anchor will be refined
to obtain the candidate region. While the series methods of
R-CNN only use a single scale of feature map to detect
objects, Feature Pyramid Networks (FPN) [6] utilizes multi-
scales feature maps to enhance the network’s ability to detect
multi-scale objects. To reduce the time consumption, SSD [7]
and YOLO [8] combine the region proposal and the region
classification to one stage by mapping the anchors and their
containing to bounding box coordinates and class probabilities
directly. In general, except for the CNN’s ability of feature
extraction, both one-stage and two-stage detection methods
rely on anchor/region proposal and bounding box regression.

By taking advantage of the characteristic of CNN, we
propose a new method for the generation of anchors. Although
CNN has experienced considerable development, the most
popular networks always have a similar structure with the
very original LeNet [9] which contains several downscale
operations and produces pyramid-like feature maps. Fig. 1(a)
shows a face image and its feature pyramid produced by CNN.
The correlation and downscale operations in CNN establish
a connection between the points in the feature map and the
pixels in the input image. In general, a point in the feature
map has a relationship with a square area in the input image.
This square area is called Receptive Field [10]. The point in
the feature map of lower-level has a smaller Receptive Field,
while the point in the feature map of higher-level has a larger
Receptive Field. Inspired by the pyramid-like feature maps

and Receptive Field, we assign each point in the feature map
a square area in the image. This square area has the same
center with its corresponding feature point’s Receptive Field.
Each point in the feature map is responsible for determining
whether its corresponding square area is foreground. Naturally,
the side length of this square area should be the side length
ratio between the input image and the feature map. In Fig. 1(a),
the size of the input image is 64×64 and the sizes of the
four selected feature maps are 16×16, 8×8, 4×4, and 2×2,
respectively. Fig. 1(b) shows the assigned areas that the points
in the four feature maps correspond to. If a grid area locates
at or has a larger part overlapped with the foreground of the
input image, we label it as foreground. Otherwise, we label
this grid area as background. In Fig. 1(b), the white ones
are labeled as foreground, and the other grids are labeled as
background. In the first grid image, no grid is selected as
foreground because no grid has a larger part overlapped with
the ground-truth bounding-box. In the last grid image, the
grids are too small compared to the ground-truth bounding-
box and the small grids are not used for detecting too large
faces. Each grid’s corresponding point in the feature map is
responsible for recognizing this grid. If a grid is recognized
as foreground, this grid is used as an anchor for regressing
to the ground-truth bounding-box. The lower-level feature
map whose points correspond to smaller grids is responsible
for detecting smaller faces, while the higher-level feature
map whose points correspond to larger grids is dedicated to
detecting larger faces. In testing, the face detection pipeline is
shown in Fig. 2. Assume that the foreground and background
grids are all classified correctly, then we get 12 anchors. By
regressing the 12 anchors to face bounding-boxes, we get 12
predicted bounding-boxes. After Non-Maximum Suppression
(NMS) [11], we get the best-predicted bounding-box. Fig. 2
only shows detection on the second-level feature map. The
final result comes from the fusion of all the four levels of
feature maps.

Compare with the state of the arts, the generation of anchors
in our method is simpler and more well-founded. We use
different levels of feature maps for detecting faces of different
sizes more explicitly and strictly. The ranges of face size
for each level of feature map to detect are finer. These
enhance the network’s ability to detect multi-scale faces. For
one feature point, the single square anchor we set is more
suitable for the regression of face bounding-boxes and can
make better use of the representation ability of the network
than the multi-anchors with different aspect ratios and multi-
scales set by other methods. Our source code is released on
https://github.com/zhouliguo/GRR .

II. RELATED WORKS

A. Object detection

As a special object detection task, the progress of face detec-
tion benefits from the development of object detection. Since
R-CNN [2] was proposed, various excellent object detection
algorithms have emerged one after another. Object detection

(a) Select Feature Maps for Detection

(b) Divide Image into Grids and Label Each Grid

Fig. 1. (a) CNN processes a 64×64 face image and produces a feature
pyramid. We select four features with resolutions of 2×2, 4×4, 8×8, and 16×16
for face detection. (b) The yellow box is the ground-truth. The face image
is divided into grids according to the sizes of the feature maps. Let the side
length of a grid be d, if the grid has half part or more overlapped with the
ground-truth and the side length of the ground-truth belongs to [d, d2], the
grid is labeled as foreground. The white grids are the labeled foreground grids.

Fig. 2. The detection pipeline using the second-level feature map.

algorithms can be broadly divided into two categories: one-
stage and two-stage. R-CNN and its improved versions, Fast
R-CNN [4] and Faster R-CNN [5], all belong to the two-stage.
They firstly search the region proposals and then classify the
contents in the proposals. SSD [7] and YOLO [8] are two
representative one-stage methods. They are based on global
regression/classification in which the image pixels are mapped

directly to bounding box coordinates and class probabilities.
In the above methods, bounding-box regression is an essential
part. In Faster R-CNN, YOLO, and SSD, a series of anchors
are assumed to contain objects and regressed to the ground-
truth bounding-box. For detecting objects of different sizes and
shapes, they design complicated anchor generation methods.

B. Face detection

Many CNN-based object detection methods are used in face
detection [12], [13]. To improve the accuracy on the popular
face benchmarks, FDDB [14] and WIDER FACE [15], loads
of complicated components are added in the networks, which
result in over-fitting in these benchmarks and loss of speed.
PyramidBox [16] proposes a context-assisted single shot face
detector. DSFD [17] introduces a feature enhance module
to extend the single shot detector to the dual shot detector.
EXTD [18] generates the feature maps by iteratively reusing
a shared lightweight and shallow backbone network instead
of a single backbone network. RetinaFace [19] unifies face
detection, 2D face alignment, and 3D face reconstruction in
single-shot inference. These SSD-based face detectors all get
high accuracy on the WIDER FACE benchmark. Based on the
YOLOv5 object detector, YOLO5Face [20] achieves a better
performance on the WIDER FACE benchmark by adding a
five-point landmark regression head and using the Wing loss
function [21]. Hambox [22] proposes an online strategy to
mine high-quality anchors for detecting outer faces.

III. METHOD

A. Network

Our network is shown in Fig. 3. The feature extracting part
includes a backbone, FPN [6] and PAN [23]. Our backbone
is similar to the CSPDarkNet which is used in YOLOv5 [24].
CSP [25] and SPP [26] are used for better feature extraction.
The Conv with S=2 and Upscale layers downscale the feature
map to 1/4 and enlarge the feature map to 4 times, respectively.
The operation layers with the same color output feature map
with the same size.

At the end of the network, there are four branches for
recognizing grid area and predicting face bounding-box. The
widths and heights of Feature1-4 are 1/4, 1/8, 1/16, and 1/32
of the width and height of the input image. In Feature1-4, the
channels is 5, so a feature point in Feature1-4 can be denoted
as a vector Z(z0, z1, z2, z3, z4).

B. Grid Area Recognition (Anchor Generation)

By dividing the image into grids according to the sizes of
Feature1-4, we get four grid images as shown in Fig. 1(b).
Then we label each grid for training.

If a grid has half part or more overlapped with the ground-
truth bounding-box, we label it as 1, otherwise 0. As shown
in Fig. 1(b), all the grids in the first grid image should be
labeled as 0. The white grids in the second and third grid
images should be labeled as 1, and the other grids should be
labeled as 0.

To enhance the ability of our method to detect multi-scale
faces, Feature1-4 are used for detecting faces of different sizes.
We set the side-length of a grid to d. If the length of the longer
side of a ground-truth belongs to [d, d2], the grid image’s
corresponding feature map is responsible for detecting this
face. For this reason, none of the grids in the last grid image
in Fig. 1(b) are labeled as 1.

For grid area recognition, the first element z0 of a feature
point Z in Feature1-4 is used for recognizing whether its
corresponding grid area is foreground by

p
′
=

1

1 + e−z0
, (1)

where p
′

is the probability that the grid belongs to the
foreground.

In training, we optimize the recognition loss for each
branch. The loss function is defined in

L
(d)
cls = − 1

N (d)

N(d)∑
n=1

[w0(1− pn) log(1− p
′

n) + w1pn log(p
′

n)],

(2)
where (d) is used for distinguishing the loss functions in
different branches, N (d) is the number of grids that needed
to be recognized in one batch and is defined in (3), pn and p′n
are the true probability and the predicted probability that the
n-th grid belongs to the foreground. w0 and w1 are set to solve
the class imbalance. We set w0 to 1 and w1 to the multiple
between the number of background grids and the number of
foreground grids.

N (d) = (
32

d
)2nab. (3)

In (3), n, a and b are defined in Fig. 3. The loss of the
recognition is defined in (4). It is the sum of the losses of
the four branches.

Lcls = L
(4)
cls + L

(8)
cls + L

(16)
cls + L

(32)
cls . (4)

In testing, those grids that are recognized as having a high
probability (e.g. higher than 0.5) of being the foreground are
the anchors we selected for face bounding-box regression.

C. Bounding-box Regression

We design a new method of bounding box regression to
support our anchor generation method. We code the ground-
truth bounding-box first. In the pixel domain of an image, a
ground-truth bounding-box can be denoted as (tx, ty, tw, th)
and a grid is (gx, gy, d, d). (tx, ty) and (gx, gy) are the center
points. (tw, th) and (d, d) are the widths and heights. We code
the ground-truth of each branch by (5). Since the upper limit
of tw and th is d2, the tx c and ty c ∈ (−0.5, 0.5). The tw c

and th c are transformed to feature domain.

tx c =
tx − gx

d2
, ty c =

ty − gy
d2

,

tw c =
tw
d
, th c =

th
d
.

(5)

The rest elements (z1, z2, z3, z4) of a feature point Z is used
for bounding-box regression. These values are normalized to

Fig. 3. The network consists of a backbone and a detection head with four branches. The input size is n×32a×32b×c where n is batch-size, 32a, 32b and
c are height, width and channel. K, S, P, C and N denote the kernel size, stride, padding size, output channel and number of repeated module, respectively.

(0, 1) by (1) and the result is (z′1, z
′
2, z

′
3, z

′
4). The predicted

coded bounding-box Pc(px c, py c, pw c, ph c) in each branch
can be got by

px c = z′1 − 0.5, py c = z′2 − 0.5,

pw c =
d2z

′
3

d
, ph c =

d2z
′
4

d
.

(6)

Since z′ ∈ (0, 1), px c and py c ∈ (−0.5, 0.5) and d2z
′ ∈

(0, d2). The Pc(px c, py c, pw c, ph c) can be used to present
the Tc(tx c, ty c, tw c, th c).

We use CIoU [27] as the loss function in training. The
regression loss of each branch is defined in

L(d)
reg =

1

N (d)

N(d)∑
n=1

lCIoU (Pc, Tc), (7)

where N (d) is the number of grids that are labeled as fore-
ground in one batch. The loss function of regression is

Lreg = L(4)
reg + L(8)

reg + L(16)
reg + L(32)

reg . (8)

The loss function of the whole network is

L = Lcls + Lreg + λ||W ||2, (9)

where W are the weights in the network and λ||W ||2 is added
to avoid over-fitting. If a grid is predicted as foreground, the
predicted bounding-box P (px, py, pw, ph) can be obtained by

px = (z′1 − 0.5)d2 + gx, py = (z′2 − 0.5)d2 + gy,

pw = d2z
′
3 , ph = d2z

′
4 .

(10)

D. Post Processing

In testing, if input an image into the network, each point
in Feature1-4 will be transformed into a probability and a
bounding-box. We fuse those bounding-boxes with high proba-
bility produced in each branch by Non-Maximum Suppression

(NMS) and get the best bounding-boxes of each branch. Then
we fuse the results of the four branches by NMS to obtain the
final predicted bounding-boxes. Fig. 2 shows the process of
obtaining the best bounding-boxes in the second branch.

IV. EXPERIMENT

Our experiments mainly consist of two parts. One is training
large models using the network in Fig. 3 to compare the
accuracy and speed with the state of the arts on GPU. The
other is reducing the parameters of the network in Fig. 3 and
training it to compare the accuracy and speed on CPU.

Our models are trained on NVIDIA GPU V100 with the
deep learning framework PyTorch [28]. Our data augmentation
includes mosaic augmentation, resizing the image with a
random scale from 0.5 to 1.5, and flipping the image randomly
and horizontally. We use the maximum batch size that the
memory can handle and train 300 epochs. We set the initial
learning rate to 0.01 and adjust the learning rate every epoch
by cosine learning rate decay [29] until 0.001. The optimizer
used in the training is stochastic gradient descent [9].

A. Datasets
WIDER FACE [15], Dark Face [30], MAFA [31], and

TFD [32] are used to demonstrate the effectiveness and robust-
ness of our method. WIDER FACE contains 32,203 images
and 393,703 labeled faces with a high degree of variability
in scale, pose, and occlusion. The whole dataset is divided
into training, validation, and test sets. The Dark Face releases
6000 images captured in dark environments. We randomly
select 5000 images for training and validation. The rest 1000
images are used for the test. MAFA contains 30,811 Internet
images and 35,806 masked faces. Faces in MAFA have various
orientations and occlusion degrees, while at least one part of
each face is occluded by mask. TFD contains 11,124 face
images from 927 subjects, covering a variety of tilt angles on
the overhead view. Fig. 4 shows the examples of these datasets.

(a) WIDER FACE (b) Dark Face

(c) MAFA (d) TFD

Fig. 4. Examples in WIDER FACE, Dark Face, MAFA and TFD.

B. Effectiveness Analysis

To demonstrate the effectiveness of our method, we replace
the detection heads of the state-of-the-art object detection
methods with our method and compare the performances
between the original detection heads and ours. As shown in
Table I, the performances of the detection methods with our
detection head are better.

TABLE I
COMPARISON OF ACCURACY WITH DIFFERENT DETECTION HEADS

(WIDER FACE VAL SET)

Methods Average Precision FLOPs (×109)Easy Medium Hard
EfficientDet-D4 [33] 0.938 0.922 0.823 40.4

EfficientDet-D4-Ours 0.944 0.940 0.900 45.1
YOLOv3 [8] 0.966 0.959 0.897 154.9

YOLOv3-Ours 0.969 0.962 0.916 144.8
YOLOv5x [24] 0.969 0.960 0.901 204.2

YOLOv5x-Ours 0.970 0.964 0.924 200.0

To demonstrate the ability of our method to detect multi-
scale faces, We count the detection accuracy of each method
at different scales. Table II shows that our method outperforms
the other methods at each scale, especially the tiny faces.

C. Comparison of Models Inferring on GPU

WIDER FACE collects and releases the detection accuracy
of the state of the arts. As shown in Fig. 5, the performance
of our method can reach the state-of-the-art on WIDER
FACE. To compare the accuracy on Dark Face, MAFA and
TFD, the open-source face detection methods DSFD [17],
EXTD [18] and PyramidBox [16] as well as the state-of-the-
art object detection methods YOLOv3 [8], EfficientDet [33]

TABLE II
COMPARISON OF ACCURACY ON FACES WITH DIFFERENT SIZES

(WIDER FACE VAL SET)

Average Precision
Longer Side of GT BBox ≤16 (16, 64] (64, 256] >256

Number of GT BBox 16844 17793 4482 586
PyramidBox [16] 0.566 0.898 0.954 0.934

EXTD [18] 0.507 0.862 0.917 0.917
DSFD [17] 0.534 0.917 0.968 0.951

YOLOv3 [8] 0.569 0.919 0.967 0.874
EfficientDet-D4 [33] 0.356 0.846 0.936 0.941

YOLOv5x [24] 0.579 0.922 0.969 0.895
Ours 0.685 0.928 0.971 0.956

and YOLOv5x [24] are selected. Table III shows our method
outperforms the others and demonstrates that our method is
robust in adverse conditions. The above methods are also used
for comparing the detection speed. We resize the 3,226 images
in WIDER FACE Val set to specific resolutions and input them
into the networks running on NVIDIA V100 GPU one by one
to calculate the average FPS. Table IV shows our method is
faster than the other methods at each resolution.

TABLE III
COMPARISON OF ACCURACY ON DARK FACE, MAFA AND TFD

Methods Average Precision
Dark Face MAFA TFD

PyramidBox [16] 0.796 0.748 0.994
EXTD [18] 0.689 0.661 0.942
DSFD [17] 0.634 0.772 0.989

EfficientDet-D4 [33] 0.755 0.753 0.956
YOLOv3 [8] 0.801 0.773 0.990

YOLOv5x [24] 0.824 0.788 0.995
Ours 0.852 0.807 0.997

TABLE IV
COMPARISON OF DETECTION SPEED ON NVIDIA V100 GPU

Methods Layers Params FLOPs Speed (FPS)
(×106) (×109) 640×480 1280×720 1920×1080

PyramidBox 234 67.269 296.2 2.75 1.99 1.40
EXTD 93 0.162 27.9 6.07 4.24 2.45
DSFD 544 120.058 691.6 3.48 3.36 2.37

YOLOv3 333 61.524 154.9 25.27 22.94 22.39
EfficientDet-D4 1111 20.543 40.4 14.50 8.53 3.15

YOLOv5x 567 86.218 204.2 77.09 75.02 74.13
Ours 679 57.054 155.7 80.87 76.56 75.18

D. Comparison of Light Models Inferring on CPU
By reducing the channels of each Conv layer in Fig. 3 to

1/4 and setting the module number of each CSP block to 1, we
can get a light network that can work on Non-GPU devices.
We convert the existing light face detection models, retrained
YOLOv5n [24] model and ours to ONNX [34] format and run
them on Intel i7-5930K CPU for comparison. The images in
the WIDER FACE Val set are resized to 640×480 for the test.
Table V shows our method can run on a Non-GPU device with
real-time speed while keeping a high detection accuracy.

(a) Val-Easy (b) Val-Medium (c) Val-Hard

(d) Test-Easy (e) Test-Medium (f) Test-Hard

Fig. 5. Comparison of PR Curves and Average Precision on Val and Test Sets of WIDER FACE.

TABLE V
COMPARISON OF LIGHT MODELS ON INTEL I7-5930K CPU

(WIDER FACE VAL SET)

Methods Layers Params (×106) FLOPs (×109) Average Precision Latency (ms)
Easy Medium Hard Forward Post-Proc

FaceBoxes [35] 33 1.013 1.541 0.845 0.777 0.404 16.52 7.16
ULFG-slim-640 [36] 42 0.401 2.000 0.810 0.794 0.630 19.03 2.37
ULFG-RFB-640 [36] 52 0.401 2.426 0.816 0.802 0.663 21.27 1.90
YuFaceDetectNet [37] 43 0.085 2.549 0.856 0.842 0.727 23.47 32.81

LFFD-v2 [38] 45 1.520 37.805 0.875 0.863 0.752 178.47 6.70
LFFD-v1 [38] 65 2.282 55.555 0.910 0.880 0.778 229.35 10.08
YOLOv5n [24] 270 1.872 4.520 0.942 0.933 0.856 29.21 0.80

Ours 301 1.746 4.536 0.935 0.933 0.875 24.15 0.69

V. CONCLUSION

In this paper, we propose a new method of anchor genera-
tion and bounding-box regression for face detection, which
can achieve a good balance between accuracy and speed
on both GPU and CPU, and also perform well in adverse
conditions, such as faces in low light, masked faces, and
faces with extreme tilt. Our method takes the advantage of the
characteristic of classic CNNs and uses the pyramidal feature
maps to enhance the ability to detect multi-scale faces. Our
method is more effective for detecting faces with small sizes.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[2] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580–587.

[3] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders,
“Selective search for object recognition,” International journal of com-
puter vision, vol. 104, no. 2, pp. 154–171, 2013.

[4] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), December 2015.

[5] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” arXiv preprint
arXiv:1506.01497, 2015.

[6] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
2117–2125.

[7] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21–37.

[8] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[10] J.-M. Alonso and Y. Chen, “Receptive field,” Scholarpedia, vol. 4, no. 1,
p. 5393, 2009.

[11] J. Hosang, R. Benenson, and B. Schiele, “Learning non-maximum
suppression,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 4507–4515.

[12] J. Guo, J. Deng, A. Lattas, and S. Zafeiriou, “Sample and com-
putation redistribution for efficient face detection,” arXiv preprint
arXiv:2105.04714, 2021.

[13] Y. Zhu, H. Cai, S. Zhang, C. Wang, and Y. Xiong, “Tinaface: Strong
but simple baseline for face detection,” arXiv preprint arXiv:2011.13183,
2020.

[14] V. Jain and E. Learned-Miller, “Fddb: A benchmark for face detection
in unconstrained settings,” UMass Amherst technical report, Tech. Rep.,
2010.

[15] S. Yang, P. Luo, C.-C. Loy, and X. Tang, “Wider face: A face detection
benchmark,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 5525–5533.

[16] X. Tang, D. K. Du, Z. He, and J. Liu, “Pyramidbox: A context-assisted
single shot face detector,” in Proceedings of the European Conference
on Computer Vision (ECCV), 2018, pp. 797–813.

[17] J. Li, Y. Wang, C. Wang, Y. Tai, J. Qian, J. Yang, C. Wang, J. Li,
and F. Huang, “Dsfd: dual shot face detector,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 5060–5069.

[18] Y. Yoo, D. Han, and S. Yun, “Extd: Extremely tiny face detector via
iterative filter reuse,” arXiv preprint arXiv:1906.06579, 2019.

[19] J. Deng, J. Guo, E. Ververas, I. Kotsia, and S. Zafeiriou, “Retinaface:
Single-shot multi-level face localisation in the wild,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

[20] D. Qi, W. Tan, Q. Yao, and J. Liu, “Yolo5face: Why reinventing a face
detector,” arXiv preprint arXiv:2105.12931, 2021.

[21] Z.-H. Feng, J. Kittler, M. Awais, P. Huber, and X.-J. Wu, “Wing loss for
robust facial landmark localisation with convolutional neural networks,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 2235–2245.

[22] Y. Liu, X. Tang, X. Wu, J. Han, J. Liu, and E. Ding, “Hambox: Delving
into online high-quality anchors mining for detecting outer faces,” arXiv
preprint arXiv:1912.09231, 2019.

[23] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network
for instance segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 8759–8768.

[24] G. Jocher, “ultralytics/yolov5,” https://github.com/ultralytics/yolov5,
Oct. 2020.

[25] C.-Y. Wang, H.-Y. M. Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and I.-H.
Yeh, “Cspnet: A new backbone that can enhance learning capability of
cnn,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition workshops, 2020, pp. 390–391.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep
convolutional networks for visual recognition,” IEEE transactions on
pattern analysis and machine intelligence, vol. 37, no. 9, pp. 1904–
1916, 2015.

[27] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren, “Distance-iou loss:
Faster and better learning for bounding box regression,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, 2020,
pp. 12 993–13 000.

[28] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” arXiv preprint
arXiv:1912.01703, 2019.

[29] T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li, “Bag of
tricks for image classification with convolutional neural networks,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 558–567.

[30] W. Yang, Y. Yuan, W. Ren, J. Liu, W. J. Scheirer, Z. Wang, T. Zhang,
Q. Zhong, D. Xie, S. Pu et al., “Advancing image understanding
in poor visibility environments: A collective benchmark study,” IEEE
Transactions on Image Processing, vol. 29, pp. 5737–5752, 2020.

[31] S. Ge, J. Li, Q. Ye, and Z. Luo, “Detecting masked faces in the wild
with lle-cnns,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 2682–2690.

[32] N. Wang, Z. Wang, Z. He, B. Huang, L. Zhou, and Z. Han, “A tilt-angle
face dataset and its validation,” in 2021 IEEE International Conference
on Image Processing (ICIP). IEEE, 2021, pp. 894–898.

[33] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient
object detection,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 10 781–10 790.

[34] “Open neural network exchange,” https://github.com/onnx/onnx.
[35] S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, and S. Z. Li, “Faceboxes:

A cpu real-time face detector with high accuracy,” in 2017 IEEE
International Joint Conference on Biometrics (IJCB). IEEE, 2017,
pp. 1–9.

[36] Linzaer, “1mb lightweight face detection model,” https://github.com/
Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB, 2020.

[37] S. Yu, “libfacedetection,” https://github.com/ShiqiYu/libfacedetection,
2021.

[38] Y. He, D. Xu, L. Wu, M. Jian, S. Xiang, and C. Pan, “Lffd: A light and
fast face detector for edge devices,” arXiv preprint arXiv:1904.10633,
2019.

