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Abstract

Seismic simulations are used for example for geothermal and mining exploration,
and for studying earthquakes. Current seismic simulations usually manually define a
refinement area around the source and the regions of interest. Recently an adaptive
mesh-refinement technique is presented for tsunami simulations. It uses the adjoint
equation to run the simulation in reverse from a point of interest. The result is combined
with a forward simulation to construct the refinement. We adapt this method in this
thesis for elastic wave equations. We primarily use statically adaptive mesh refinement.
The generated refinements follow the paths which the waves take to the receivers. This
results in lower error than manually created refinements for a test scenario which
produces only P-Waves and a scenario which models the geology under Helsinki as a
1d-velocity model. However, the manual refinement is better in a simpler system which
only consists of two different materials.

A prototype for creating dynamically adaptive grid with the same method was also
implemented and tested with promising results.
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1 Introduction

Seismic simulation has many applications from modeling the impact of possible future
earthquakes to exploration and feasibility checks for mining and geothermal opera-
tions. Seismic waves reflect and refract on material changes. The paths that a wave
takes to areas of interest, are largely unpredictable without simulating the scenario.
This means a larger domain is needed to simulate possible returning waves and this
makes predicting areas needing refinement more difficult. Current simulations usually
define a large coarse grid and refine the region around the epicenter and the receivers
[Kre+21][Ulr+19]. [BH22] have developed a method which creates a statically adaptive
grid based on velocity aware refinement.

In [DL16], a dynamically adaptive mesh refinement technique is introduced for
tsunami simulations. It firstly runs the simulation on a coarse grid. It then simulates
the scenario backwards from a region of interest by using an adjoint equation. They
have shown that areas, where the inner product between both simulations is large, have
a large impact on the solution at the region of interest. This is then used to refine the
regions where the inner product exceeds a user defined threshold.

This thesis prototypes that method for elastic wave equations and evaluates its feasi-
bility. Dynamically adaptive mesh refinement is rarely used for earthquake simulations.
Therefore, the focus was set on statically adaptive mesh refinement, as it also is theoret-
ically simpler to analyze and implement than dynamically adaptive mesh refinement.
To better understand the statically adaptive refinement, a simple dynamically adaptive
refinement method was later implemented and tested. The PDEs are solved with
ExaHype [Rei+20], a Discontinuous Galerkin solver for C++. The combination of the
results and the refinement is done with Python. Python is used to combine the forward
and backward solutions and uses the results to create the refinement, which is then
read by ExaHype.

Chapter 2 gives an introduction into elastic wave equations [LeV+02], the PDE
discretisation Discontinuous Galerkin [HW07] and derives the adjoint method [DL16]
for elastic wave equations. Chapter 3 gives an overview of ExaHype [Rei+20] and the
structure and implementation of the adjoint-guided mesh refinement method. Chapter
4 presents three different scenarios, shows their refinements an details their results.
The first scenario produces only P-Waves on a uniform material with a free surface
boundary, the second scenario consists of two halfspaces with different materials and
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1 Introduction

the third one uses a 1D-velocity model for the geology below Helsinki. The quality of
the refinements is tested by comparing them against manually constructed refinements.
This chapter additionally compares a prototype of a dynamically adaptive variant to
the static refinements of the Helsinki based scenario.
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2 Theory

This chapter gives a short overview over elastic wave equations and the PDE solving
method Discontinuous Galerkin. Additionally the adjoint-guided mesh refinement
technique is explained and derived for the elastic wave equations.

2.1 Elastic Wave Equations

This section is based on [LeV+02]. Earthquakes can be modeled by a set of hyperbolic
partial differential equations called elastic wave equations. The relevant quantities
are stress σ, strain ε and the velocities (u, v, w)T. Stress and strain are both 3x3
symmetric tensors with six distinct elements. For small deformations, stress and strain
are linearly dependent according to Hooke’s law. Furthermore, assuming isotropic
material properties allows substituting the strain with stress in these equations. We
align the stress components to the planes normal to the coordinate axes. The stress is
then composed of stresses (σ11, σ22, σ33) normal to those planes and the shear stresses
σ12, σ23, σ13.

This results in the following system of equations:

σ11
t − (λ + 2µ)ux − λvy − λwz =0

σ22
t − λux − (λ + 2µ)vy − λwz =0

σ33
t − λux − λvy − (λ + 2µ)wz =0

σ12
t − µ(vx + uy) =0

σ23
t − µ(vz + wy) =0

σ13
t − µ(uz + wx) =0

ρut − σ11
x − σ12

y − σ13
z =0

ρvt − σ12
x − σ22

y − σ23
z =0

ρwt − σ13
x − σ23

y − σ33
z =0

(2.1)

Here ρ denotes the density, µ is the shear modulus and λ is a combination of several
material parameters without having a direct physical interpretation itself. To allow for
a faster numerical simulation, a simplified system with only two spatial dimensions
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2 Theory

can be derived from that system. For this we set qz = 0 by assuming that there are no
variations in the third dimension. The resulting system looks like this:

σ11
t − (λ + 2µ)ux − λvy =0

σ22
t − λux − (λ + 2µ)vy =0

σ12
t − µ(vx + uy) =0

ρut − σ11
x − σ12

y =0

ρvt − σ12
x − σ22

y =0

(2.2)

These equations can be written in a compact form as a sum of matrices times the
derivative vectors

qt + Aqx + Bqy + Cqz = 0, (2.3)

and for the two-dimensional version

qt + Aqx + Bqy = 0. (2.4)

Due to the computational intensity of the three dimensional equation we will only
use the two dimensional variant for this thesis. The eigenvalues s of the matrices are
the shear wave speed cs and the pressure wave speed cp

s1 = cp, s2 = −cp, s3 = cs, s4 = −cs, s5 = 0 (2.5)

cp =

√
λ + 2µ

ρ
cs =

√
µ

ρ
. (2.6)

The shear and the pressure wave are commonly known as S- and P-waves, with S-waves
being slower and carrying more energy.

The source of the earthquake is modeled by a point dislocation with the seismic
moment M0 = µDS. D is the average offset of the fault and S is the area of the fault
[Kan77]. The moment magnitude scale

Mw =
log(M0)− 9.05

1.5
(2.7)

(M0 in Nm) is commonly used to measure the intensity of earthquakes [HK79]. For
example a M0 = 1018Nm corresponds to a 6.0 on that scale.

The surface interface is modeled by so-called free surface boundary conditions. The
normal traction between air and the ground is negligible, so the stress has to be set to
zero. For the solver we use, this can be achieved by having ghost cells which mirror the
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2 Theory

neighboring stresses and extrapolate the velocities. For non-surface boundaries, out-
flowing conditions without reflections are wanted, as they are only domain boundaries
and should not have any physical effects. Boundary conditions do not have control
over stresses parallel to the boundary and therefore, outflow without reflections at
the boundary can not be achieved [LeV+02]. Instead, the reflections are minimized by
setting the values of the ghost cells at outflow boundaries to zero.

2.2 Adjoint

The idea of the adjoint is, having a method to compute a scalar product with an
equation without having to compute the results of the equation directly. To better
illustrate the adjoint method we apply it to systems of linear equations Ax(i) = b(i)

for i ∈ 1 . . . n, n ∈N. We also assume we are only interested in the result of φTx(i) for
a given vector φ. We can then define and solve the adjoint equation ATy = φ. The
resulting vector y can be used to solve our initial problem as follows:

yTb(i) = (A−Tφ)Tb(i) = φT A−1b(i) = φTx(i). (2.8)

This allows computing φTx(i) by only solving one system and using the inner products
afterwards instead of the traditional approach by first doing a LU decomposition and
afterwards needing a quadratic amount of operations per equation for resolving the
corresponding triangular system through forward and backward substitution. This
principle can be applied to systems of PDEs even though we are using the adjoint
differently than direct computational speedup.

2.2.1 Derivation of the Adjoint

This chapter derives the adjoint analogously to [DL16] For this we assume that we are
interested in a small region or in the data of a single receiver. This region is described
by a smoothed weight function ϕ.around the point or area of interest.

We further assume that the functional

J =
b∫

a

d∫
c

ϕ(x, y)q(x, y, t f )dydx (2.9)

approximates the values we are interested in. The Dirac-δ function is a function that
fulfills δ(α) = 0 for α 6= 0 and integrates to one over R. As we are usually only
interested in a single point, setting ϕ to a translated Dirac-δ function would be optimal.
Directly implementing the δ function is neither possible, nor would it be numerically
stable. Therefore a smoothed variant is used.
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2 Theory

With [a, b]× [c, d] being the boundaries of our simulation domain and t f final time of
the simulation. We now derive the corresponding adjoint equation of the elastic wave
equation (2.4). We multiply it by a test function p and integrate it over the domain and
time

qt + Aqx + Bqy = 0 (2.10)

b∫
a

d∫
c

t f∫
t0

pT(qt + Aqx + Bqy)dtdydx = 0 (2.11)

We apply integration by parts for each summand. Each term is only integrated over the
variable from which it contains a derivative.

b∫
a

d∫
c

pTq
∣∣∣t f

t0

dydx +

d∫
c

t f∫
t0

pT Aq
∣∣∣b

a
dtdy +

b∫
a

t f∫
t0

pTBq
∣∣∣d
c
dtdx−

b∫
a

d∫
c

t f∫
t0

qT(pt + (AT p)x + (BT p)y)dtdydx = 0

(2.12)

We now define the adjoint equation as

pt + (AT p)x + (BT p)y = 0. (2.13)

We further set the boundary conditions of the adjoint equations to fulfill the following
equations.

b∫
a

t f∫
t0

qTBT p
∣∣∣d
c
dtdx = 0

d∫
c

t f∫
t0

qT AT p
∣∣∣b

a
dtdy = 0

(2.14)

Then, only the first term of (2.12) is not zero. Setting the initial condition of the
adjoint equation to p(x, y, t f ) = φ(x, y) (the adjoint is solved backwards in time), results
in the equation being:

b∫
a

d∫
c

pT(x, y, t0)q(x, y, t0)dydx =

b∫
a

d∫
c

pT(x, y, t f )q(x, y, t f )dydx (2.15)

=

b∫
a

d∫
c

ϕ(x, y)q(x, y, t f )dydx = J (2.16)
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2 Theory

which in combination with the initial condition of the adjoint equation is our definition
of J in (2.9).

As t0 is not bound directly by the equation it can be set to an arbitrary point between
the start and end time. From this follows that points which have a large inner product
between p and q have a large impact on our solution value.

For Eq (2.14) to hold we have to set appropriate boundary conditions. Zero bound-
aries trivially fulfill this requirement. For free surface boundaries we can expand the
inner computation to

qTBT p = λvqσ11
p + (λ + 2µ)vqσ22

p + µuqσ12
p +

σ12
q up

ρ
+

σ22
q vp

ρ
. (2.17)

As free surface boundaries cause the stress to be zero at the boundary, setting both the
forward and adjoint boundaries to free surface conditions causes the term to be zero as
each summand contains at least one stress component.

2.2.2 Refinement Procedure

We adapt the refinement procedure of [DL16] in this thesis. Initially the scenario is
run on a coarse grid with frequent snapshots of the domain. Independent of that, the
adjoint, corresponding to the relevant region, is run with plots at the same timestamps
as the forward one. The inner product can be computed from plots taken at the same
simulation time. The result could then be directly used for adaptive mesh refinement if
one was only interested in the state at the point of interest at exactly the final time.

In general data is needed for a longer time range. This also holds for earthquake
simulations. Therefore, each forward checkpoint has to be multiplied by multiple
adjoints. As the initial condition of the adjoint does not depend on time or on a
forward solution at a specific time, any point in time can be defined as the initial
time. Therefore, a single run of the adjoint is sufficient. To fully cover the time range
of interest, interpolation in time would be required. Instead plots are taken at a
sufficiently small time interval. The value that is taken into account for the refinement
is the maximum value that the scalar product takes for a point:

Jre f (x, y, t) = max
0≤τ≤t f−t

pT(x, y, t f − τ)q(x, y, t). (2.18)

As the initial condition of the adjoint is a smoothed δ-function, with no scaling based
on physical properties, the absolute values of the scalar products do not have a direct
physical relevance. Therefore the cutoff points for the refinement levels have to be
chosen manually.
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2 Theory

2.3 Discontinuous Galerkin

Discontinuous Galerkin [HW07] is a subclass of finite element methods. In our case the
domain of the simulation is split into right angular cells. The quantities in each cell
are represented by a polynomial basis function, usually a tensor product of Lagrange
polynomials around Gauss-Legendre points. The cell values across bordering cells are
not continuous.

The timestep length is governed by the CFL-condition [Dum+14]

∆t ≤ 1
d

1
2N + 1

h
|λmax|

, (2.19)

with h being the cell size, d the number of spatial dimensions and N the order of the
cell polynomials. The largest eigenvalue of the Jacobian of the Flux λmax = cp also
contributes to the condition. It is the P-wave-speed for elastic wave equations.

For the update of a cell only the neighboring cells are needed. This allows for easy
parallelization.

2.4 Peano Curve Traversal

Optimizing cache accesses plays a major role in optimizing a program. Space-filling
curve based traversals are better at keeping neighboring cells in cache than iterating
row or column wise.

One such method uses the Peano curve to construct the grids and create a refinement
order [Bad13]. Figure 2.1 shows the construction of the Peano curve. The first iteration
starts with the pattern containing a P. It is replaced by the 3× 3 grid of patterns the
arrow points to. In the following iterations all patterns are replaced by their production
rule. For the grid traversal, the grid is constructed analogously during its initialization.
It starts with a 3× 3 grid (annotated with P). Each cell is then expanded iteratively
according to the Peano curve definition until the desired size is reached. Each cell
stores its first sub-cell (i.e. the sub-cell where the curve starts (e.g. the lower left corner
for P)) and the following cell of the same level (if it exists). The traversal is done in the
same order as depth-first-search would traverse. Figure 2.2 shows an example grid and
the corresponding traversal. For adaptive mesh refinement the curve is only expanded
for the cells which should be further refined.
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2 Theory

Figure 2.1: Replacement scheme for the Peano curve. Taken from [Bad13]

Figure 2.2: Example of a grid traversal which is constructed by the Peano curve. The
refinement criterion for this example allows at most one black dot in a cell.
Taken from [Bad13]
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3 Implementation

This chapter describes the implementation progress and general architecture of the
thesis. The PDEs are implemented in C++ with the ExaHype framework and the
refinement procedure is created in Python. Figure 3.1 shows a general overview of the
procedure. The C++ code code is available at [Hin22a], the Python code at [Hin22b]
and a fork of the ExaHype engine at [EH22].

forward.exahype adjoint.exahype

Forward solving Adjoint solving

Adjoint outputForward output

Refinement Generation

refinement.npy refined.exahype

Refined Solving

Figure 3.1: Flowchart of the adjoint-guided mesh refinement method. The purple
trapezoids represent input files. The intermediate files are shown as red
rectangles with rounded corners. The independent programs are shown as
orange rectangles.
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3 Implementation

3.1 ExaHype

ExaHype [Rei+20] is an open-source PDE-framework for Discontinuous Galerkin and
finite volume methods. Each ExaHype-project is based on a single configuration file.
It defines the solver, PDE characteristics, optimizations and runtime parameters. A
script uses the configuration file to generate C++ files accordingly. Most of those files
are overridden when rerunning after configuration changes. A ".cpp/.h" file pair is
generated for each solver. It is not regenerated in later passes of the toolkit to preserve
user changes. It contains method stubs in which the PDE has to be implemented in
(e.g. the initial condition, flux, eigenvalues, point sources, etc.) One specialty is that
those function are called by ExaHype instead of the user having to manually assemble
the solver by calling the functions of the framework.
The cells are iterated over in a Peano curve. Therefore the number of cell in the
largest dimension is two less than a power of three (for the two rows of boundary
cells). ExaHype only supports square cells, resulting in the domain being extended in
directions that have a smaller domain size.

For adaptive mesh refinement the user defines a function which returns whether the
refinement level of a cell should be either increased, kept or erased. The framework
iterates over the cells and adapts the grid until all cells want to keep their current
refinement level.

Build System Improvements: The build system of ExaHype consists of several
Makefiles. When compiling a project, the .o-Files are put in the same folder as their
.cpp source. This project needs the implementation of two different equations that are
independent of each other and therefore should produce a different executable. As
both equations have different parameters and may result in differently compiled files,
the build has to be cleaned and rebuilt, every time one switches the equation that is
compiled.
ExaHype contains multiple .cpp-Files with the same name, so copying all .o-Files into
the same folder does not work. As a solution the Makefile creates a build folder at
the primary Makefile and recreates the entire folder structure of the used .cpp-Files to
place the .o-Files in them.

3.2 PDEs

The elastic wave equation (2.2), in further context called the forward equation, is imple-
mented directly. The only caveat is that because the matrices A, B of equation (2.4) are
not part of derivatives the equation has to be implemented as a non-conservative prod-
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Figure 3.2: Plot of σ12 at the source of the earthquake. It is set to Equation (3.1) with
M0 = 1018

uct instead of as a flux. The initial condition of the forward equation is implemented as
a point source. The point source influences σ12 at its location by a force of

M0 ·
t

0.12 exp(− t
0.1

). (3.1)

This is the moment-rate time history as used by [06]. Figure 3.2 shows its value over
time for the value of M0 = 1018 that is used for most experiments.

The adjoint is solved backwards in time but ExaHype can only solve equations
forwards in time. Therefore, the equation has to be transformed by negating the time
component

∂p
∂t


σ11

σ22

σ12

u
v

−
∂p
∂x


− 1

ρ u
0
− 1

ρ v
−(λ + 2µ)σ11 − λσ22

−µσ12

−
∂p
∂y


0
− 1

ρ v
− 1

ρ u
−µσ12

−λσ11 − (λ + 2µ)σ22

 = 0. (3.2)
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The initial condition of the adjoint sets some variables to

exp(−4(x− xs)2 − 4(y− ys)2)

4π
. (3.3)

Which variables are chosen depends on the scenario and discussed in section 4.1.2.
Both equations create plots of the solution as vtk-unstructured-grids. The forward

equation can also create probes that write the values at a single point over time.

3.3 Refinement Framework

As the goal of this thesis is to prototype and test the feasibility of adjoint-guided mesh
refinement for elastic wave equations, we chose Python as the language to implement
the remaining code in for faster implementation time and easier debuggability.

The python code requires the ExaHype configuration files for the forward equation
(for both the coarse and the refined run) and templates for the output files of the
forward and adjoint equation. The ExaHype configuration files are used for metadata
like the domain size or the timestep of the output files.

The output files are read with the vtk-library. They contain unstructured grids with
no apparent order of the points and cells contained, even if the plotted grid is Cartesian.
The order of the points stays constant for all output files of a single run, meaning a
forward and an adjoint run on the same grid will result in general in differently ordered
points. The order of the points in both output files was checked for equality to possibly
skip the interpolation step. As this never occurred, it was later removed. As a first step
the adjoints are interpolated onto the forward grid. This allows usage of differently
structured forward and adjoint grids. As interpolation kernel a nearest neighbor kernel
is used, as it is assumed that the forward grid has approximately the same structure
and linear interpolation is not possible due to limitations of the vtk-library (the linear
interpolation kernel in the vtk-library simply averages all points in the vicinity [KIT22]).
The result of the interpolation is stored on disk and reused if the same adjoint and
forward combination is used. The results are identified by the hash of the second
output file of both the adjoint and forward solution (the second plot is used as the first
one contains only zeros for the forward equation).

After that the algorithm loops over all forward files and computes the inner product
of it and each adjoint in the relevant time frame (e.g. for a forward plot at t = 0.2 all
adjoints up to tend − 0.2 are used). The maximum value of the inner product for each
position is then mapped to the refinement grid (see section 3.4) with vtk interpolation.
The level of refinement is determined by user-defined percentiles, e.g 1

6 of all cells get
refined once and 1

18 of the area gets refined twice, meaning 1
3 of the cells refined once

get refined a second time.
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3 Implementation

1 0
2

Figure 3.3: 3× 3 refinement grid with max level n = 2. Empty cells mean zeros. The
three-to-one balancing algorithm currently works on the blue level 0 cell.
The explicitly stated 0 is the value responsible whether the cell should be
refined. The red area is the region which is checked for level 2 refinements.
As one is found, the cell has to be refined to level 1 and the 0 in the middle
has to be set to 1.

The refinement is saved as a NumPy array in a .npy file. The .npy-format is a simple
file format, starting with a short ASCII-header containing the dimensions, byte- and
element-order of the array. After the header the array data is stored in binary in the
same layout as in memory. This file is loaded during the initialization of ExaHype in
the refined run. Examples of the refinement array can be seen in the Results Chapter 4
with Figure 4.1 having a more detailed description. The array has a value for every cell
of the grid that can be further refined (i.e. not for cells of the highest level).

3.4 Three to one balancing

Too large differences in size between neighboring cells may lead to unwanted effects as
the larger cells can not represent all frequencies that the smaller cells can. Section 4.2.2
shows that this can even be a problem with differences of only one level. Therefore we
have to ensure that the level between neighboring cells differs at most by one, a process
called two-to-one balancing (as levels are usually based on powers of two). ExaHype
does not give access to the refinement status of neighboring cells. Therefore, we have
to ensure this balance in the python code. This is the main reason we chose a direct
mapping between the refinement grid and the cells in the solver.

Let n + 1 be the maximum refinement level, i.e. the number of times an unrefined
cell can be refined. The refinement grid in python is a numpy array which has an entry
for every cell of the grid that can be further refined (i.e. not for cells of the highest level)

14



3 Implementation

An element of that array determines up to which level the corresponding cell should be
refined. Algorithm 1 shows the procedure. It loops over all levels except the unrefined
one (0) and the largest refinement level (n + 1). In this loop the algorithm loops over
all cells of the next lower level to check whether they should be marked for refinement.
A cell needs to be marked when either a subcell (of level lvl) or a neighboring cell of
level lvl should be further refined (to at least lvl + 1). Figure 3.3 shows an example
with a maximum refinement level of 2.

1 for lvl : n→ 1 do
2 foreach (x, y) ∈ PointsOfLvl(lvl-1) do
3 s← StrideOfLevel(lvl) ;
4 for i : −2→ 2 do
5 for j : −2→ 2 do
6 if gridx+s∗i,y+i∗s > lvl then
7 gridx,y ← max(gridx,y, lvl)
8 end
9 end

10 end
11 end
12 end

Algorithm 1: Three to one balancing algorithm. The stride computation was
simplified for visualization purposes and the bounds checking is omitted.

3.5 Refinement in ExaHype

For the refinement we introduce a new optional parameter for the solver attribute called
"adg" in the .exahype file. If it is set to a file (the refinement NumPy array), the code
enables refinement. During the initialization of the solver the NumPy array is loaded
with the cnpy-library [Rog18] from the given file. NumPy treats 2d-arrays as matrices
so the first index enumerates the rows but to make the python code more readable the
first index was used for the x-direction and the second index for the y-direction. The
array is transposed in the python code and therefore NumPy stores it in memory and
in the files in FORTRAN-order, which allows us to treat the array as a C-order array
during the refinement.

Listing 3.1 shows how the refinement level is read for a cell. data is the refinement
array, xsize and ysize give its dimensions in x- and y- direction respectively.
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3 Implementation

Listing 3.1: Computation of the refinement level

auto xmap=(cellCentre[0]-offset[0])*xsize/domainsize[0];

auto xind= (int)std::floor(xmap);

auto ymap=(cellCentre[1]-offset[1])*ysize/domainsize[1];

auto yind= (int)std::floor(ymap);

return data[xind+(yind)*xsize];

If the requested level is higher for a cell than its current refinement level, the cell returns
that it should be refined, otherwise it returns that it should keep its refinement level.

3.6 Dynamically Adaptive Mesh Refinement

We have also implemented a prototype for the dynamically adaptive mesh refinement.
The duration of the simulation is split into 20 equal time slices. The refinement of each
slice is constructed using the coarse forward outputs from the slice and the following
one. For example, when setting the total duration to 3s then each slice is 0.15s long, so
the first slice uses the coarse grids data from 0s to 0.3s and second from 0.15s to 0.45s
this continues up to the last slice which only uses the data from 2.85s to the end.

This is implemented in the refinement construction in Python by using 20 accumulator
arrays for the inner product. From those arrays 20 refinement grids are created by
calling the same function, as for the statically adaptive refinement method, 20 times.
The refinement arrays are written to disk as a single NumPy array of size (20, x, y). The
merging into a single array changes the array memory layout and requires the C++
code to treat the array as if it was using the FORTRAN-order. The only other changes
for C++ code are calculating which grid to use, passing it to the function which reads
the refinement level and the refinement function returning ERASE when the level given
by the array is lower than the current level.
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4 Results

In this chapter we test the adjoint-guided mesh refinement technique on multiple
different scenarios and analyze the results. Additionally we briefly evaluate the
dynamically adaptive variant of the technique.

4.1 Test Setup

ExaHype does not adapt the timestep length to plot probes at the specified times,
instead it measures it after the first timestep that ends after the specified time. These
time errors are usually under 1% of the plotting step, but are about nine times larger
(due to the CFL-condition) for the coarse forward grids. Therefore all probes are
resampled during the comparison step. They are linearly interpolated to the regular
time points.

To compare probes against each other the Root Mean Square (RMS) error of [Kri+06]
is used. It is defined as

RMS =

√√√√√∑
t
|q(t)− qREF(t)|2

∑
t
|qREF(t)|2

. (4.1)

In all following examples the probe measuring interval is 20ms. The coarse forward
and adjoint equations are plotted every 25ms, as fewer plots would result in forward
and adjoint waves passing each other over certain spots in between plots. This would
results in holes in the refinement where the waves passed each other outside of a plot.
The base unit of the used coordinate systems is km.

4.1.1 P-Waves only

To validate the basic functionality of the method, a simple example without S-waves
was run. The domain has an S-wave speed of zero, a P-wave speed of 6.0 km

s and a
density of 2700 kg

m3 . This results in µ = 0. Therefore, the point source has to set σ11

and σ22 instead of σ12 as σ12 stays constant in time. The M0 factor was set to 1018

which does not have all its described physical properties due to only simulating the
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4 Results

P-waves. We set a free surface boundary at y = 0, the source of the P-waves is set
to (5, 5) and the measuring probe to (12, 5). Figure 4.1 shows the scenario, including
the refinement created by the adjoint-guided mesh refinement method. The domain is
(−5, 25)× (0, 15), the unrefined cell size is 30

79 and the unrefined grid has 79× 40 = 3160
cells. The scenario was run for 3s, which is long enough for the wave that reflected at
the surface to reach the probe, but short enough to avoid returning waves from other
boundaries which should not be reflective. Due to simulating only P-waves, we set
σ11 and σ22 to non-zero values in the adjoint initial condition. We chose to refine 1

6
of the grid once and 1

18 of the total area twice, i.e. 1
3 of the refined cells get refined a

second time. Figure 4.1 shows the refinement. For the adjoint-guided refinement the
most refined region is the direct path between the source and the probe. The start, the
finish and the area at the surface, where the wave reflects to the measuring probe, is
also refined at the strongest level. The remaining part of the reflected path and the
surrounding area of all paths is refined at a lower level.

Figure 4.1: Refinement of the P-wave only scenario. The source is marked as a red
dot, the probe as a blue X. On the left is the adjoint-guided refinement, on
the right is a manually created refinement with the same number of cells.
The lightest green means no refinement, the darkest means two levels of
refinement and the middle one means one level of refinement.

To compare this refinement we manually constructed a refinement grid as there are
no other widely used automatic mesh refinement methods for seismologic simulations.
The number of refined cells of each level is the same for both the adjoint-guided
refinement and the manual refinement. We create a box around the source for the level
2 refinement of the manual refinement. For the level 1 refinement we have enough cells
to extend the box to the surface, where it can easily be seen that a reflection will occur
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4 Results

without looking at an adjoint or forward output.
A fully refined grid (2 layers more than coarse grid) was used to compute a reference

result. Table 4.1 shows the RMS for all components of this scenario. It is zero for σ12

as σ12 is constantly zero and cannot change. For the variables with non-zero values
the adjoint-guided refinement is slightly better than the manual refinement. Figure
4.2 shows how the velocity in x-direction u behaves over time and how close both
refinement methods are to the reference solution. The arrival of the P-Wave (starting
at t = 1.2s) and its reflection (at t = 2.1) are visible. The results show that the manual
refinement is worse for the direct wave and almost as accurate as the adjoint guided
refinement for the reflected wave.

Table 4.1: RMS for the point (5, 12) in the P-wave scenario

σ11 σ22 σ12 u v

adjoint-guided refinement 0.0220 0.0220 0 0.0146 0.0362
manual refinement 0.0237 0.0237 0 0.0168 0.0378

Figure 4.2: Plot of u in the P-wave scenario at (12, 5) on the left and the absolute error
of the same on the right.

4.1.2 Adjoint initial condition

For shallow water equations setting a pulse in the water height is chosen as the initial
condition for the adjoint in [DL16]. There is no directly corresponding measure for
elastic wave equations, so we looked at reasonable options. Setting u without setting v

19



4 Results

Figure 4.3: Adjoint velocity magnitude at t = 0.08s for different adjoint initial condi-
tions. Different linear color scales are used for each picture with red being
the maximum and blue being zero. In the first row, from left to right: only
σ12 is set, all three stress components are set, σ11 and σ22 are set. In the
second row: both velocities are set, all five variables are set, σ11, σ22,u and v
are set.

is not useful as this is biased in one direction, the same holds for the other way round
and for σ11 and σ12 respectively. Figure 4.3 shows the velocity magnitude of the tested
initial conditions at t = 80ms (the scenario has a uniform material). All plots use a
different color scale as only relative differences in the adjoint have an impact on the
refinement. In three of the scenarios the wave only spreads along the x-y-diagonal and
they are therefore unfeasible as an initial condition.

The largest velocity magnitude for the initial condition that sets σ11 and σ22 is 0.54
but for the initial condition that sets the velocities it is only 0.039. This explains why
the runs that sets σ11 and σ22 and the run that sets σ11, σ22, u and v produce a similar
result but for the latter the upper right side of the circular wave has higher values than
the lower left side which makes that one also unsuitable. The run that sets σ11 and
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Figure 4.4: Adjoint velocity magnitude at t = 0.5s for the adjoints which sets σ12 (left)
as the initial condition and the one that sets σ11 and σ22 (right). As the
absolute scale is not of relevance, both images contain a different scale for
easier readability.

σ22 in the initial condition produces almost perfectly uniform velocities at the same
distance to the source. The run that sets σ12 in the initial condition has no differences in
the four cardinal directions, but achieves higher velocities along the diagonals. Figure
4.4 shows the last two candidates for the initial condition at t = 500ms. The run which
sets σ12 in the initial condition shows the faster P-waves and the slower S-waves. Both
waves are not circular, but have the same direction biases as the forward equation.
The run that sets σ11 and σ22 as the initial condition produces only a single circular
wave moving at P-wave speed. Both having the same waves as the forward equation
and treating all angles the same can be useful as later results will show. To allow for
better readability we will name both initial conditions. The adjoint that sets σ11 and σ22

in its initial condition will be called α-adjoint and the corresponding adjoint-guided
mesh refinements are called α-adjoint refinement. The adjoint that sets σ12 in its
initial condition will be called β-adjoint and the corresponding adjoint-guided mesh
refinements are called β-adjoint refinement.

4.1.3 Two Halfspaces

As the first scenario actually using the elastic wave equations, we use two halfspaces
next to each other with all edges having outflowing boundary conditions. Figure 4.5
shows the setup and defines the material parameters. We analyze two points, the first
is a point at (9, 13), close to the source in the same material as the source, and the
second point (13, 18) is further away in a different material than the source. Due to the

21



4 Results
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Figure 4.5: The setup of the scenario with two Halfspaces.

horizontal domain we now use a 53× 79 grid (4187 cells) as the unrefined grid. As
before we run the simulation up to t = 3s to measure the passing S and P-waves at the
probe points and to mostly avoid unwanted reflections from the artificial boundaries.
The magnitude of the earthquake was set to 5.97 (a round value for M0 = 1018).

Table 4.2: RMS for the point (9, 13) in the Two Halfspaces scenario. ( 1
9 , 1

18 cutoff, unless
specified

σ11 σ22 σ12 u v q

manual refinement 0.00423 0.00425 0.00178 0.00469 0.00562 0.00310
α-adjoint refinement 0.00440 0.00521 0.00201 0.00426 0.00572 0.00356
β-adjoint refinement 0.00427 0.00427 0.00200 0.00620 0.00526 0.00320

α-adjoint refinement: 1
18 , 1

36 cutoff 0.0154 0.0137 0.00888 0.0198 0.0209 0.0116

Figure 4.6 shows the refinements for both points. At first glance one might assume
that the refinement area is too large for the (9, 13) setup but Table 4.2 shows a signifi-
cantly worse error for the smaller refinement. The table also shows that the manual
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Figure 4.6: Refinements of the Two Halfspace scenario with the point of interest at
(9, 13) on the left and (13, 18) on the right. The manual refinements are
at the top, the middle ones are generated from adjoints which set σ11 and
σ22 and the bottom ones are generated from adjoints that set σ12. In all
refinements 1

6 of the cells are refined once and 1
18 of the total area is refined

twice.
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refinement gets slightly better results than the β-adjoint and better results than the
α-adjoint. However both methods had a better accuracy for one of the velocities than
the manual approach . Figure 4.7 shows u at the probe location and how close the
refinement are to the fully refined grid. The only visible deviation in the left graph are
oscillations by the β-adjoint, starting from t = 1.7s, which has the highest RMS for u
for this probe. The absolute errors correspond to the results one would expect from the
RMS-table for u, although most of the error occurs after the passing of the waves.

Figure 4.7: Plot of u in the Two Halfspaces scenario at (9, 13) on the left and the absolute
error of the same on the right.

Table 4.3: RMS for the point (13, 18) in the Two Halfspaces scenario with 1
9 , 1

18 cutoff.

σ11 σ22 σ12 u v q

manual refinement 0.00572 0.00818 0.00337 0.00524 0.00563 0.00625
α-adjoint refinement 0.0120 0.0135 0.0135 0.0120 0.0165 0.0127
β-adjoint refinement 0.00746 0.00763 0.0160 0.00719 0.0151 0.00956

Table 4.3 shows that for the second point the manual approach achieves a better
accuracy for all variables, especially σ12. Figure 4.8 shows the seismogram of the
wave and the errors of the different refinements. Almost no differences between the
refinements are visible in the plot of u. The error plot shows that the manual refinement
is clearly better. This shows especially at the start, which is presumable due to not
having holes in the refinement of the direct path from the source to the probe.

The manual refinements are created by circles of appropriate size for the point (9, 13)
and by including points up to certain distance around the line connecting the source
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Figure 4.8: Plot of u in the Two Halfspaces scenario at (13, 18) on the left and the
absolute error of the same on the right. The x-axis starts at t = 1.2 as the
first wave arrives at t = 1.3.

and the probe at (13, 18), to refine the same number of cells as the adjoint refinements.
These shapes are valid for comparisons to the adjoint refinements as they produce a
lower error.

4.1.4 Helsinki Model

As a more sophisticated example the model from [Leo+21] is used. The model was
created by observing seismic events at a geothermal borehole. Half of the sensors
were placed in the borehole at different depths and the other half was placed in the
vicinity. Figure 4.9 shows the resulting model of the P-wave speeds of the geology
below Helsinki. The wave speeds only vary in depth, the S-wave speed is 1

1.71 of the
P-wave speed and the density was assumed to be 2700 kg

m3 .
The domain is set to (−5, 25)× (0, 15) with a free surface boundary at y = 0 and the

y-axis denoting the depth below the surface. We reuse parameters from the previous
scenarios. The end time is set to t = 3.0s, we have a 79× 40 = 3160 cell configuration
and set M0 = 1018 (5.97 magnitude).

We firstly focus on the point (11, 2). Here we choose two different cutoff percentiles
for the first refinement level ( 1

6 and 1
9 and set the second level to 1

12 for both refinements).
Figure 4.10 shows the refinements. The manual refinements are created by the same
method as the refinements for the point (13, 18) of the previous experiment.

Figure 4.11 shows that the reflected P-wave and the S-wave, on its direct path, overlap
at our point of interest. It also shows that the S-waves and the P-waves split into two
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Figure 4.9: A model of the P-Wave speed under Helsinki developed by [Leo+21] .

separate waves when they reflect at the boundary. The region with the highest velocity
is around the point source. This is caused by the stress differences remaining in the
material after an earthquake.

Table 4.4 shows the results of the run with fewer refined cells. The β-adjoint refine-
ment produces the best results after the α-adjoint refinement. The manual refinement
achieves better errors than the α-adjoint refinement for σ12 and v, but in total is sig-
nificantly worse than the other two refinements. Figure 4.12 shows u and its absolute
error over time. This is the first scenario where the errors are large enough to be easily
visible in the primary plot. In the first part the manual refinement is better, but it gets
worse results for the start and end of the reflected S-wave (t = 2.2 and t = 2.5).

Table 4.4: RMS for the point (11, 2) in the Helsinki scenario with 1
9 , 1

12 cutoff

σ11 σ22 σ12 u v q

manual refinement 0.0971 0.0724 0.0798 0.105 0.0517 0.0865
α-adjoint refinement 0.0592 0.0629 0.0967 0.0958 0.0527 0.0653
β-adjoint refinement 0.0623 0.0555 0.0766 0.0845 0.0455 0.0614

Table 4.5 shows the results when increasing the number of cells that are refined once
by 50% (to 1

6 ). All three runs produce better results than the less refined variant (Table
4.4). The manual refinement has a higher RMS error for σ11, σ22 and u than both adjoint
refinements. It lands in between the errors for σ12 and achieves the best result for v. In
total the α-adjoint achieves the best result even though the β-adjoint has a lower error
for three of the five variables. Figure 4.13 shows u and its absolute error over time.
In the plot of u very few errors are visible, mostly just that the run with the manual

26



4 Results

Figure 4.10: Refinements of the Helsinki scenario with the point of interest at (11, 2) .
The manual refinements are at the top, the α-adjoint refinements are in the
middle and the β-adjoint refinements are at the bottom On the left 1

9 of the
cells are refined once and 1

12 of the total area is refined twice on the right 1
6

of the cells are refined once and 1
12 are refined twice.
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Figure 4.11: Velocity magnitude of the Helsinki scenario at t = 1.8s, α-adjoint refine-
ment with 1

6 , 1
12 cutoff. The straight white line connects the source (on the

left) and the probe location. The waves are more visibly clearer defined in
the refined part on the right than on the left.

Figure 4.12: Plot of u in the Helsinki scenario with 1
9 , 1

12 cutoff at (11, 2) on the left and
the absolute error of the same on the right. The plot starts at t = 0.8 as the
first wave arrives at t = 1.0.
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Figure 4.13: Plot of u in the Helsinki scenario with 1
6 , 1

12 cutoff at (11, 2) on the left and
the absolute error of the same on the right. The plot starts at t = 0.8 as the
first wave arrives at t = 1.0.

refinement is deviating at the end. The error plot shows almost the same result as the
errors for the less refined runs at half the scale.

Table 4.5: RMS for the point (11, 2) in the Helsinki scenario with 1
6 , 1

12 cutoff

σ11 σ22 σ12 u v q

manual refinement 0.0590 0.0433 0.0497 0.0650 0.0305 0.0525
α-adjoint refinement 0.0319 0.0354 0.0560 0.0397 0.0420 0.0364
β-adjoint refinement 0.0396 0.0343 0.0489 0.0454 0.0357 0.0387

4.2 Problems

4.2.1 Static Stress Region Near the Point Source

One of the problems that causes suboptimal refinements is the static stress region
around the point source. Figure 4.11 shows that this is the region with the largest
velocity. Figure 4.14 shows the magnitude of the stress at the same time. We had to use
a logarithmic scale to show both the point source and the waves. The magnitude of the
stress at the point source is 100 to 1000 times larger than at the wavefront of the S-waves.
This has the effect that a position, in which the angle of the variables to the adjoint has
an error of 0.01 (radians), can move from an scalar product of zero to a scalar product
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Figure 4.14: The magnitude of the stress of the Helsinki scenario (α-adjoint refinement)
at t = 1.8. A logarithmic scale is used to show more than just the area
around the point source.

that is larger than the maximum scalar product at the wavefront. This effect can be
seen in the six-armed star pattern of the stress at the point source, reappearing in many
refinements (e.g. the α-adjoint refinements in Figure 4.6 and Figure 4.10).

4.2.2 Reflections on refinement boundary

Another reason why some adjoint-guided results are worse than the manually refined
ones is due to reflections occurring on refinement borders. One of the easiest ways to
see this, are the error spikes on the manual refinement (Figure 4.1 and 4.2) of the only
P-waves scenario. The reflected waves from the refinement boundary arrive at 1.26s
for the fine refinement (1.45km to the refinement boundary in y-direction) and at 1.49s.
Figure 4.15 shows the section where the oscillations are visible.

An older version of the refinement algorithm produced the refinement grid in Figure
4.16 for the only P-Waves scenario (section 4.1.1) Even though the refinement covers
the direct path from the source to the point of interest the refinement is worse than the
manual refinement, due to chaotic reflections at the refinement boundary.

The reflections might be less of an issue in PDE-solvers which do grid refinement by
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Figure 4.15: Partial plot of u in the P-waves only scenario. In the manual refinement
are visible oscillations at t = 1.26s and t = 1.49s which are caused by the
reflection at the boundaries.

halving the cells in each dimensions, instead of splitting them into thirds.

4.3 Dynamically Adaptive Mesh Refinement

To test whether some of those problems occured from using statically adaptive mesh
refinement, we implemented a prototype of a dynamically adaptive mesh refinement
variant.

This was originally not tested extensively, due to ExaHype failing to construct at least
one of the 20 generated refinement grids and therefore, all runs crashed before finishing.
The run which managed simulate the most (75%), had a significantly worse result
than the statically adaptive refined grids and took longer (even though simulating less
grid cells at the same time). The following example was run later to reuse one of the
experiment setups of this thesis and experienced no such problems.

We continue using the scenario from section 4.1.4 with the point of interest at (11, 2).
For the dynamic adaptivity we have set the refinement parameters to only refine 1

12
once and 1

24 twice to account for the additional time needed for grid changes and to
not allow the dynamic refinement to refine everything at once. The actual time needed
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Figure 4.16: Refinement for the P-wave only scenario, produced by an outdated version
of the refinement method.

is 26 and 27 minutes for the dynamic refinements and 38 and 40 minutes for the static
refinements. The run durations were reconstructed from the timestamps of the output
files. They were run single threaded and in single process (due to frequent crashes
and limited speedup of ExaHype’s parallelization) on a zen2 processor at 4.2 GHz.
Figure 4.17 shows both the refinement and the the waves at the same time. It shows
that the algorithm refines almost 180° of the S-wave wavefront, while it only minimally
refines the path for the P-waves. Only the direct path to the point of interest, the
path which reflects at the surface and a stretch at the boundary, preparing for surface
waves, are refined. It uses more cells than for that to refine the region around the
source even though no new waves will emerge from it, giving another example for the
problem with the static stress region, discussed in section 4.2.1). Figure 4.18 shows the
six refinements that follow after the previous example, which continue to provide the
minimal refinement for paths of the P-waves and a broad refinement for the S-waves.

Table 4.6 shows that both dynamically adaptive refinements achieve a lower error
than the statically adaptive refinements.
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Figure 4.17: Wireframe of the refinement and the velocity magnitude of the dynamic
β-adjoint refinement at t = 0.75s, directly after switching to the fifth
refinement grid. The white diagonal line shows the direct path between
the source and the point of interest. Each cell is shown as a 3× 3-grid
(Exahype does this to interpolate the Legendre-polynomials of a cell to the
output). All doubly refined cells and most cells that are refined once, are
included in the picture. The edges of the grid are colored according to the
local velocity magnitude.
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Figure 4.18: Refinement grids six to eleven for the dynamic β-adjoint refinement (from
left to right, top to bottom). These grids are active from t = 0.9s to t = 1.8s.
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Table 4.6: RMS for the point (11, 2) in the Helsinki scenario with 1
6 , 1

12 cutoff for the
static refinement and 1

12 , 1
24 refinement cutoffs for the dynamically adaptive

mesh refinements.

σ11 σ22 σ12 u v q

static α-adjoint refinement 0.0319 0.0354 0.0560 0.0397 0.0420 0.0364
staticβ-adjoint refinement 0.0396 0.0343 0.0489 0.0454 0.0357 0.0387

dynamic α-adjoint refinement 0.0275 0.0322 0.0364 0.0363 0.0196 0.0304
dynamic β-adjoint refinement 0.0265 0.0202 0.0264 0.0328 0.0141 0.0242
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5 Conclusion

We have derived the adjoint-guided mesh refinement technique for elastic wave equa-
tions in chapter 2. This works perfectly analogously to the derivation for shallow water
equations by [DL16]. In chapter 3, we have implemented the adjoint and forward
equations in ExaHype, developed a script to create the refinement and a method to
read and apply it in a ExaHype simulation. We have tested the adjoint-guided mesh
refinement method on three scenarios. The first scenario produces only P-Waves on
a uniform material with a free surface boundary, the second scenario consists of two
halfspaces with different materials and third one uses a 1D-velocity model for the
geology below Helsinki. We have found that the adjoint-guided mesh refinement
technique produces refinements that visibly follow the path from the source of the
seismic event to the point of interest. We have manually created refinements with an
equal number of refined cells to test our method. The adjoint-guided refinements have
performed better for reflected waves than the manual refinements and worse for the
waves on a direct path. This caused the adjoint-guided method to perform better for
the Helsinki and only P-Waves scenario and worse in the two halfspace scenario which
does not simulate a surface.

One of the issues is that the region around the source contains a larger magnitude of
a static stress that does not move than the stress in the waves, which causes regions
near the source to be refined even though they have essentially no impact at the point of
interest. Another issue is that the waves are reflecting on refinement boundaries. This
might be less of an issue for future projects as most PDE-solvers do grid refinement by
halving the cells in each dimensions, instead of splitting them into thirds.

We have compared the method that sets the normal stresses for the initial condition
of the adjoint (α-adjoint) and the method that sets the shear stress for the adjoint initial
condition (β-adjoint). The afore mentioned problems make it difficult to determine
whether the α- or the β-adjoint produces the better refinement.

We also prototyped a dynamically adaptive mesh refinement variant. The preliminary
number of tests we ran showed better results than both the statically adaptive mesh
refinement and the manually constructed one.

Furthermore, the dynamically adaptive method could be improved by tuning param-
eters like reducing the time a refinement is used or reducing the overlap between two
refinements that are sequential in time. Major reworks could try to normalize S- and
P-waves to account for the difference in magnitude in them.
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