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Abstract

Many system reliability problems involve performance functions with a dis-
continuous distribution. Such situations occur in both connectivity- and
flow-based network reliability problems, due to binary or multi-state ran-
dom variables entering the definition of the system performance or due to
the discontinuous nature of the system model. When solving this kind of
problems, the standard subset simulation algorithm with fixed intermediate
conditional probability and fixed number of samples per level can lead to
substantial errors, since the discontinuity of the output can result in an am-
biguous definition of the sought percentile of the samples and, hence, of the
intermediate domains. In this paper, we propose an adaptive subset simu-
lation algorithm to determine the reliability of systems whose performance
function is a discontinuous random variable. The proposed algorithm chooses
the number of samples and the intermediate conditional probabilities adap-
tively. We discuss two MCMC algorithms for generation of the samples in
the intermediate domains, the adaptive conditional sampling method and a
novel independent Metropolis-Hastings algorithm that efficiently samples in
discrete input spaces. The accuracy and efficiency of the proposed algorithm
are demonstrated by a set of numerical examples.

Keywords: Subset simulation, System reliability analysis, Limit state
function with discontinuous distribution, Conditional sampling,
independent Metropolis-Hastings

Preprint submitted to To be determined May 16, 2022



1. Introduction1

Infrastructure networks, such as power grids and water supply systems,2

deliver essential services to society. Failures of such networks can have severe3

consequences. Quantification of the probability of survival or, conversely, the4

probability of failure of such systems is essential in understanding and man-5

aging their reliability; this is the main purpose of network system reliability6

assessment.7

For reliability analysis purposes, the performance of the system can be as-8

sessed by the limit state function (LSF), also known as performance function9

or structure function, g(X). X is an n-dimensional vector of random vari-10

ables with joint cumulative distribution function (CDF) FX and represents11

the uncertainty in the model input. By convention, failure of the system12

occurs for all system states x for which g(x) 6 0. The probability of failure13

of the system is defined as14

pf , P(g(X) 6 0) =

∫
g(x)60

dFX(x) (1)

The vector of basic random variables X entering the definition of the LSF15

of network systems usually contains discrete random variables, which results16

in a LSF with discontinuous distribution. This is due to the fact that the17

performance of the network is often calculated through a function of a large18

number of binary or multi-state components. Moreover, real-world infras-19

tructure networks are often designed to be highly reliable. This leads to20

high-dimensional reliability assessment problems with small failure probabil-21

ities [1].22

Network performance is often measured through connectivity or ’travel time’(or23

flow) [2]. In connectivity-based problems, one evaluates the probability that24

a given set of nodes are connected, given that each component of the network25

fails with some probability. Typically, both the system performance and the26

component state are modeled as binary random variables. In this context,27

g(X) is known as the structure function [3]. A set of sampling-based methods28

have been proposed for such kind of problems (e.g., [4, 5, 6, 7, 8, 9, 10, 11]),29

and a comparative study can be found in [12, 13].30

In this paper, we focus on flow-based problems where the system performance31

and/or the component are typically modeled as multi-state or continuous32

random variables instead of binary ones, and, hence, most of the sampling33

techniques tailored for connectivity-based problems cannot be implemented34
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directly. One of the major concerns in this area is the maximum flow that a35

stochastic network can deliver, i.e., the probability that the maximum flow36

from one or more source nodes to one or more terminal nodes is less than a37

predefined demand level. A number of sampling based methods have been38

proposed for this type of problems [14, 15, 16, 17, 18, 19, 20, 21, 22]. How-39

ever, all these methods assume that the edge capacities are independent and40

discrete random variables, which is often unrealistic. [1] employs the stan-41

dard subset simulation (SuS) algorithm [23] to efficiently solve maximum-flow42

reliability problems, where both the edge capacity and the network perfor-43

mance are modeled as continuous random variables. [24] use the standard44

SuS algorithm in reliability analysis of gas pipelines. However, as discussed45

in this paper, the adaptive approach of the standard SuS for determining the46

intermediate levels is not suitable for LSFs with discontinuous distribution,47

which is the case for most network reliability problems. As an example, Fig.48

1 shows the CDF of the LSF of the IEEE39 bus benchmark system (described49

in Section 5.4). The CDF is discontinuous with ’jumps’. To overcome this

0 0.2 0.4 0.6
g(x)

10-5

10-3

1

Figure 1: CDF of the LSF of the IEEE39 bus benchmark system of Section 5.4

50

limitation, one may construct a problem equivalent to the original one but51

with LSFs with continuous distribution, and then use SuS to solve this equiv-52

alent problem. This approach has been explored by Ching and Hsu [2] for53

connectivity-based problems, where a virtual random walk model is solved54

to get a continuous proxy of the original binary connectivity. Typically, such55

transformations need to be derived for the problem at hand.56
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The generalized splitting method [25] has also been employed to solve both57

connectivity- [10] and flow-based problems [26] in combination with tailored58

and efficient Gibbs samplers. It should be stressed that the determination of59

the intermediate levels in the generalized splitting method is through a pilot60

run of the adaptive multilevel splitting algorithm [25, 10, 27], which is essen-61

tially the standard SuS algorithm. Therefore, transformation of discontinu-62

ously distributed LSF to continuous one is also needed for these approaches.63

The basic idea of SuS is to express the probability of failure as a product of64

larger conditional probabilities of a set of intermediate nested events. Two65

ingredients of the SuS algorithm are essential for obtaining an accurate and66

efficient estimator. The first is the efficient simulation of conditional samples,67

which is achieved through Markov Chain Monte Carlo (MCMC) methods68

[23, 28]. The second is the proper choice of the intermediate events. Simi-69

larly to the cross entropy method [29, 30], the intermediate failure events in70

SuS are chosen adaptively, so that the estimates of the conditional probabil-71

ities equal a predefined value p0. This is achieved through generating a fixed72

number of samples in each conditional level, sorting the samples according73

to their LSF values and determining the p0-percentile of the samples, which74

is set as the threshold defining the next intermediate failure event. When75

solving network reliability problems, the discontinuous nature of the LSF can76

result in a large number of samples in a certain conditional level having the77

same LSF value. In such cases, the standard SuS method will result in an78

ambiguous definition of the intermediate domains. In extreme conditions,79

all samples generated in a certain level might have the same LSF value, in80

which case the sample process can get stuck and might not reach the failure81

domain.82

To address this issue, we introduce a novel variant of SuS called adaptive83

effort subset simulation (aE-SuS) method. Our method chooses the number84

of samples per level and the respective conditional probability adaptively85

to ensure that an adequate number of samples fall in the subsequent inter-86

mediate domain. Compared with other non-sampling based methods (e.g.,87

[31, 32, 33, 34, 35]), the proposed method facilities using advanced deter-88

ministic network analysis algorithms considering complex network dynamics89

like cascading failure. On the other hand, owing to its sampling nature, the90

aE-SuS algorithm may require a large number of simulations to achieve an ac-91

ceptable result. It should be stressed that the proposed aE-SuS algorithm is92

applicable for dependent input random variables and any MCMC algorithm93

that enables efficient sampling of the intermediate conditional distributions94
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can be combined with the proposed algorithm.95

The paper is organized as follows: Section 2 gives a brief introduction to the96

standard SuS. Section 3 discusses two MCMC algorithms in the context of97

network reliability assessment. Section 4 introduces the basic idea as well as98

the implementation details of the aE-SuS method. In Section 5, the perfor-99

mance of the proposed algorithm is illustrated by a set of numerical examples,100

a one-dimensional multi-state problem, a multidimensional flow-based prob-101

lem with combined continuous and binary capacities, a binomial experiment102

with small success probability, and a benchmark power transmission network103

system. The paper closes with the conclusions in Section 6.104

2. Standard subset simulation105

2.1. Brief introduction of subset simulation106

The basic idea of SuS is to express the rare failure event F = {x :107

g(x 6 0)} as the intersection of a sequence of nested intermediate events108

F1 ⊃ F2 ⊃ · · · ⊃ Fm. Owing to the nestedness of the intermediate events,109

the failure event can be expressed as F = ∩ml=1Fl. The failure probability can110

then be decomposed as the following product of conditional probabilities:111

P (F ) =
m∏
l=1

P (Fl|Fl−1) (2)

where F0 is the certain event. Ideally, the intermediate events are selected112

such that each conditional probability is large, typically > 0.1. In this way,113

the original problem of estimating a small probability is transformed to a114

sequence of m intermediate problems of evaluating larger conditional proba-115

bilities.116

The estimation of each conditional probability P(Fl|Fl−1) requires sampling117

from the distribution of the random variables conditional on Fl−1, denoted as118

Q(·|Fl−1), where Q(·|F0) represents the initial input distribution and equals119

the generalized derivative of the input CDF FX(·). Q(·|F0) can be sampled120

by standard Monte Carlo sampling, but the distributions Q(·|Fl), l > 0, are121

only known point-wise up to a normalizing constant and, hence, cannot be122

sampled directly. Therefore MCMC sampling is employed. The sampling123

process in the l-th conditional sampling level is performed as follows: (1)124

Select the samples P(l−1) from the (l− 1)-th level that fall in Fl as the seeds125

S(l) (P(0) is generated through Monte Carlo sampling). (2) From each seed,126
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start a Markov chain that has the target distribution Q(·|Fl) as the station-127

ary distribution, and record all the states as new samples P(l). (3) Take128

the samples P(l) located in Fl+1 as new seeds S(l+1) and estimate P(Fl+1|Fl)129

as |S
(l+1)|
|P(l)| where |S(l+1)| and |P(l)| denote the number of seeds and samples,130

respectively. The above three steps are repeated successively until F is ap-131

proached. We note that the number of the samples per level |P(l)| is usually132

fixed prior to the analysis.133

Defining the intermediate events a priori is typically challenging. Hence, in134

standard SuS the intermediate failure events are chosen adaptively during135

the simulation such that each conditional probability equals a predefined136

constant p0. This standard SuS approach is also termed (fixed effort) adap-137

tive multilevel splitting [25]. In this variant, step (3) in the above sampling138

process is modified as follows: Order the samples P(l) by their LSF val-139

ues. The first p0-percent of these sorted samples are then taken as seeds140

for the next sampling level and the LSF value of the p0-percentile bl+1 is141

used to define the boundary of the next intermediate domain, such that142

Fl+1 = {x : g(x) 6 bl+1}. The resulting SuS estimator of the probability of143

failure is given as:144

p̂f = pm−10

Nf

N
(3)

where N and Nf represent the number of samples and failure samples at final145

level, respectively. The standard SuS algorithm is summarized in Algorithm146

1.147

As previously mentioned, MCMC sampling is applied to generate samples148

from each conditional distribution Q(·|Fl). In SuS, the seeds S(l) already149

follow approximately the target distribution [23], hence, a burn-in period is150

not considered in practice. Since the samples generated from the same seed151

are states of the same Markov chain, they will be dependent; their correla-152

tion depends on the autocorrelation function of the underlying Markov chain.153

The stronger the correlation between samples, the larger the variance of the154

estimates of the conditional probabilities. Additionally, samples that share155

the same history, namely, their Markov chains are branches with root at the156

same Monte Carlo sample, will be correlated, even when they are in different157

levels. Such correlation introduces a dependency of the conditional proba-158

bility estimators, which further increases the variance of the SuS estimator.159

Hence, the quality of the final probability estimate strongly depends on the160

particular choice and setting of the MCMC algorithm.161
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Algorithm 1: SuS algorithm

Input: p0 ∈ (0, 1), an integer N multiple of 1
p0

1 l← 0, bl ← inf
2 while bl > 0 do
3 if l = 0 then
4 Generate N samples {xk}Nk=1 from the initial distribution

Q(·|F0)
5 else
6 Generate N samples {xk}Nk=1 from the target distribution

Q(·|Fl) with an MCMC algorithm with seeds S(l)

7 Sort {xk}Nk=1 by increasing order of their LSFs g(·), and denote
the sorted samples as {x̄k}Nk=1

8 bl+1 ← g(x̄p0·N)
9 if bl+1 6 0 then

10 bl+1 ← 0

11 Nf =
∑N

k=1 I{g(x̄k) 6 0}
12 Take the S(l+1) , {x̄k}p0·Nk=1 as the seeds for the next level
13 l← l + 1

14 p̂f ← pl−10
Nf

N

Output: p̂f
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2.2. Accuracy of the Subset Simulation estimator163

The accuracy of the SuS estimator of the probability of failure p̂f can be164

assessed by the mean-square error, which is decomposed as:165

MSE(p̂f ) = (pf − E(p̂f ))
2 + Var(p̂f ) (4)

The first term on the right-hand side of Eq.(4) represents the bias contribu-166

tion and the second term the variance of the SuS estimator.167

Assume first that the intermediate events are defined before the simulation.168

In the Monte Carlo level (l = 0), samples P(0) are generated from Q(·|F0)169

independently, and therefore the seeds S(1) follow the distribution Q(·|F1).170

This will lead to so-called perfect sampling when simulating the Markov171

chains in the next level. Since the chains have already reached the stationary172

state at the beginning, no burn-in time is needed, and all samples P(1) will173

follow Q(·|F1). In this way, samples P(l) generated in any l-th conditional174

level will follow the target distribution Q(·|Fl) and the corresponding esti-175

mator of the conditional probability p̂(Fl+1|Fl) will be unbiased. Moreover,176

[25] proves that the resulting failure probability estimator p̂f is also unbiased177

if both intermediate events and length of the Markov chain are predefined,178

i.e., if they are independent of the simulation process.179

Since the intermediate events are selected adaptively in SuS, samples S(l)
180

will not completely follow the target distribution. As a result, both condi-181

tional probability estimator and failure probability estimator will be slightly182

biased. Nevertheless, compared to the variance of the estimator, the squared183

bias is one order of magnitude smaller [23] and, hence, its contribution to184

the mean-square error (MSE) of the estimator is negligible. In other words,185

the error of the SuS is mainly due to the variance of the failure probability186

estimator rather than the bias. The most common and reliable way to calcu-187

late the variance Var(p̂f ) is to run SuS several times and to use the sample188

variance as the unbiased estimation of the Var(p̂f ). One can also evaluate189

the variance approximately through a single run of the SuS. More details can190

be found in [23] and [28]. However, this approximate estimator is shown to191

underrepresent the true variance of p̂f , especially for small target pf .192
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3. Markov Chain Monte Carlo algorithm for network reliability193

assessment194

Most MCMC algorithms that are widely used in risk analysis can be195

regarded as variants of the Metropolis-Hastings (M-H) algorithm. These in-196

clude, for example, Gibbs sampling [10][26], conditional sampling [28] and197

Hamiltonian Monte Carlo [36]. To sample from the intermediate target dis-198

tribution Q(·|Fl) in SuS, M-H algorithm proceeds in the following two steps199

[28]:200

1. Generate a candidate sample v from the distribution Q
(l)
p (·|xk) which201

is termed the proposal distribution.202

2. Accept or reject v.203

xk+1 =

{
v, with prob. α

xk, with prob. 1− α
where204

α = I {v ∈ Fl}min
{

1,
Q(v|F0)Q

(l)
p (xk|v)

Q(xk|F0)Q
(l)
p (v|xk)

}
205

It can be shown that the M-H algorithm satisfies the detailed balance condi-206

tion independent of the choice of the proposal distribution. In this section, we207

first discuss the adaptive conditional sampling method of [28] in the context208

of network reliability assessment and then propose a more efficient yet less209

general independent M-H algorithm, which is applicable in problems with210

discrete input spaces.211

3.1. Adaptive conditional sampling in standard normal space212

3.1.1. Implementation in standard normal space213

Let U denote an n-dimensional random vector that has the indepen-214

dent standard normal distribution. The original random vector X can be215

expressed in terms of the vector U through an isoprobabilistic mapping216

T : Rn → Rn. One can define the reliability problem in the U -space as217

follows:218

pf = P(g(X) 6 0) = P(G(U) 6 0) =

∫
G(u60)

ϕn(u)du (5)

where G(U ) = g(T (U)) and ϕn(u) is the n-dimensional independent stan-219

dard normal joint probability density function (PDF). The mapping T (·)220
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can be obtained by the Rosenblatt transformation, which is implemented as221

follows:222

x1 = F−1X1
(Φ(u1))

x2 = F−1X2
(Φ(u2)|x1)

...

xn = F−1Xn
(Φ(um)|x1, · · · , xn−1)

(6)

where Φ represents the CDF of standard normal distribution and FXd
(·|x1, · · · , xd−1)223

denotes the conditional CDF of Xd given X1 = x1, · · · , Xd−1 = xd−1. If any224

subset of X consists of discrete random variables, then it is possible that the225

functions FXd
(·|x1, · · · , xd−1) are not strictly invertible. Therefore, we use226

the following extended definition of the inverse of a CDF227

F−1(a) = inf(x : F (x) ≥ a) (7)

We note that in such cases the Rosenblatt transformation is not one-to-one228

and hence, the inverse mapping from X to U is not uniquely defined.229

3.1.2. Adaptive conditional sampling algorithm230

Having defined the transformation from the original X-space to the U -231

space, SuS can be used to solve the reliability problem in the transformed232

space. At the l-th level of SuS, MCMC sampling is applied to sample from233

the conditional standard normal density pU (·|Fl). Sampling according to234

this density can be performed by application of the aCS algorithm. Before235

describing the aCS algorithm, we first discus its non-adaptive variant, the236

standard conditional sampling (CS) algorithm. The transition from the cur-237

rent state uk to a new state uk+1 using CS is as follows: First, a candidate238

v is generated. The CS sampler imposes that the candidate and the current239

state are jointly Gaussian with standard normal marginal distribution ϕn(·)240

and predefined symmetric cross-correlation matrix, R. One then samples v241

from the joint Gaussian distribution conditional on the current state, i.e.,242

from N (v;Ruk, I−RRT), where I is the identity matrix. The candidate is243

accepted if it is located in the intermediate failure domain Fl, in which case244

it is set as the new state uk+1. Otherwise, uk is taken as the new state. CS245

can be summarized as follows:246

1. Generate candidate sample v from the normal distributionN (v;Ruk, I−247

RRT).248
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2. Accept or reject v.249

uk+1 =

{
v,v ∈ Fl
uk,v /∈ Fl

250

It can be proven that the above transition satisfies the detailed balance con-251

dition with respect to the target distribution pU (·|Fl), hence, pU (·|Fl) is the252

stationary distribution of the generated Markov chain [28, 37]. In fact, CS253

can be regarded as the M-H sampler with proposal distribution taken as254

N (v;Ruk, I −RRT) [28]. We further note that the CS sampler will never255

generate repeated candidates, which results in an acceptance probability that256

is independent of the dimension of the vector U . Hence, it is suitable for257

application to high-dimensional problems.258

The performance of the CS sampler depends on the choice of the matrix R259

or, equivalently, the covariance matrix of the proposal distribution N . Usu-260

ally, R is chosen as a diagonal matrix with d-th diagonal term equal to ρd,261

which implies a component-wise sampling scheme, i.e., the d-th component262

of candidate, vd, is sampled from N (vd; ρduk,d, 1 − ρ2d). Large values of ρd263

lead to strong correlation between current and next state, but small values264

also lead to increased correlation due to the high rejection rate in the second265

step of CS. The correlation of the generated Markov chains can be con-266

trolled by choosing ρd or, equivalently, the standard deviation σd =
√

1− ρ2d267

adaptively, employing intermediate results from the simulation. In adaptive268

MCMC algorithms, the chain correlation is usually controlled by matching269

a near-optimal acceptance probability of the chain [38]. The aCS algorithm270

[28] adapts the sampling parameters by running batches of Na chains start-271

ing from randomly selected seeds. After running each batch, the acceptance272

probability is estimated and the sampling parameters are adapted to match273

a pre-defined acceptance probability α∗. The aCS algorithm for generating274

N samples according to pU (·|Fl) starting from seeds S(l) is given in Appendix275

A.276

3.2. Independent Metropolis-Hastings algorithm277

In network reliability assessment, the probability content at the inter-278

mediate domains in SuS typically centers at multiple discrete system states279

(modes) and, hence, the intermediate target distribution is multimodal. To280

efficiently sample from such distribution, we propose a novel independent M-281

H algorithm. The algorithm is applicable when all input random variables282

are discrete and exploits the information of the discarded samples in previous283
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sampling levels to form a proper proposal distribution in the M-H algorithm284

that is independent of the current state of the chain. Specifically, let Xl rep-285

resent the set of samples discarded at level l, in other words, the generated286

samples at level l that are not in the (l + 1)-th intermediate domain. The287

proposal distribution Q
(l)
p (x) of the M-H algorithm at level l is then defined288

as the original input distribution Q(x|F0) excluding the states visited by the289

previously discarded samples. That is,290

Q(l)
p (x) ∝ Q(x|F0)I {x /∈ ∪i=0,...,l−1Xi} (8)

Since all samples in ∪i=0,...,l−1Xi are located outside the intermediate domain291

Fl, Fl is included in the support of the proposal distribution, Ω
(l)
p = x /∈292

∪i=0,...,l−1Xi. This is illustrated in Fig. 2. Moreover, the proposal distribution

 

Figure 2: Schematic diagram of proposal distributions. (The black dots represent the
basic random events, and the dotted curve indicates the intermediate failure domain)

293

has exactly the same shape as the intermediate target distribution in Fl as294

they are both proportional to the input distributionQ(x|F0). The acceptance295

rate α of the candidate generated by this proposal is given as296

α = I {x ∈ Fl}min

{
1,
Q(x|F0)Q(xk|F0)

Q(xk|F0)Q(x|F0)

}
= I {x ∈ Fl} (9)

Note that both the generation and the acceptance of the candidate are inde-297

pendent of the current state. In the literature, M-H samplers whose proposal298

distribution is independent of the current state are termed independent M-H299

samplers. We note that the samples generated by this algorithm are not300
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independent, since we get a repeated sample when rejecting the candidate.301

This is the main difference between the independent M-H algorithm and302

rejection sampling with envelope 1
E[α]Q

(l)
p (x), which generates independent303

samples [39]. In the latter, one gets a new sample only when the candidate304

is accepted and, hence, the computational cost of rejection sampling is much305

higher than the independent M-H algorithm especially as the mean accep-306

tance rate E[α] is small. The average acceptance probability, E[α], can be307

calculated through dividing P(X ∈ Fl) by P(X /∈ ∪i=0,...,l−1Xi), i.e.,308

E
Q

(l)
p

[α] =
P(X ∈ Fl)

P(X /∈ ∪i=0,...,l−1Xi)
(10)

The magnitude of E[α] tends to decrease as the intermediate level goes higher.309

Additionally, the sample size at each level, the dimension of the problem and310

the input distribution will also influence the mean acceptance rate E[α]. The311

influence is investigated in detail through a binomial experiment in Section312

5.313

The implementation of the above independent M-H algorithm is relatively314

simple and can be performed in the following two steps:315

1. Generate candidate sample v from the proposal distribution Q
(l)
p (x).316

2. Accept or reject v.317

xk+1 =

{
v,v ∈ Fl
xk,v /∈ Fl

318

To sample from the proposal distribution, Q
(l)
p (x), one can sample directly319

from the input distribution and keep those samples that differ from the pre-320

vious discarded samples. However such process can be quite inefficient when321

the proposal distribution is far from the input distribution, for instance, at322

deep intermediate levels. Such issue can be circumvented by applying the323

bound-based sampling algorithm [12], given that the input random variables324

are multivariate categorical distributed. Details on this algorithm can be325

found in Appendix B.326

4. Adaptive effort subset simulation method327

In each conditional level l of the SuS method with fixed number of samples328

per level and adaptive estimation of the intermediate events, the p0-percentile329

of the LSF values of the samples P(l), bl+1, is used to define the boundary330
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of the intermediate domain. This adaptive approach works well when only331

a few samples are located on the boundary g(x) = bl+1, i.e., a few samples332

have the same LSF value as the p0-percentile. However, it can happen that333

many samples fall on this boundary, particularly in the following cases:334

(1) X includes discrete random variables.335

(2) The LSF is defined such that the probability measure of the set {x :336

g(x) = bl+1} is strictly greater than zero.337

(3) The parameters of the MCMC algorithm are inappropriately set, re-338

sulting in the candidates being rejected successively many times.339

While case (3) can be avoided by an appropriate implementation of the340

MCMC algorithm, cases (1) and (2) are common in the context of network341

reliability assessment. This will result in an ambiguous definition of the in-342

termediate domain Fl+1 and can lead to an inaccurate estimate of the failure343

probability. In extreme situations, all samples generated in a certain level344

will have the same LSF value and the adaptive sampling process can get345

stuck and never reach the failure domain.346

In this section, we modify the standard SuS algorithm to circumvent this347

problem. The resulting algorithm modifies the adaptive selection of the in-348

termediate domains and adapts the number of samples per level (sampling349

effort) throughout the simulation. We term the proposed approach aE-SuS.350

As will be made clear, these modifications enable application of the method to351

general network reliability problems. The proposed algorithm is introduced352

in the following and summarized in Algorithm 2.353

4.1. Intermediate domains354

In order to provide a clear (unambiguous) definition of the intermediate355

domains, one can apply the following adaptive approach. At each conditional356

level, generate a set of samples P(l) and define a temporary event Ftemp as357

{x : g(x) 6 bl+1} where bl+1 is the p0-percentile of the LSF values of P(l).358

If Ftemp = Fl, define the next intermediate event Fl+1 as {x : g(x) < bl+1},359

otherwise set Fl+1 = Ftemp. This approach guarantees that Fl+1 ( Fl, which360

avoids a degeneracy of the sampling process.361

Because of the discrete nature of g(x), it might be difficult to check whether362

Ftemp = Fl or not when Fl = {x : g(x) < bl}. Therefore, we check if363

bl+1 = max{g(x) : x ∈ P(l)} instead. The latter condition checks whether364

the p0 percentile of the LSF values equals the maximum LSF value of the365

samples P(l), and is a necessary (but not sufficient) condition of Ftemp = Fl.366
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Note that Fl+1 ( Fl still remains true after this modification, since Fl/367

Fl+1 6= ∅ and contains at least the samples taking the maximum LSF value368

in P(l). The above adaptive approach for choosing the intermediate domains369

is described in lines 11-20 of Algorithm 2.370

4.2. Sampling at the intermediate levels371

The approach for selecting the intermediate domains, introduced in Sec-372

tion 3.1, could potentially lead to a very small number of failure samples373

per level, which reduces the accuracy of the estimates of the intermediate374

conditional probabilities. We hence need to adapt the number of samples375

per level to ensure that these estimates remain accurate. We first calculate376

the number of samples that fall into the domain Fl+1 (the number of seeds377

Ns). If this number is smaller than a predefined constant C, we increase378

the current sampling effort Nc and append P(l) with N new samples. De-379

note the extended sample set as P(l)
ext. The new samples should also follow380

the target distribution Q(·|Fl), and hence approximately P(Fl+1|Fl) of these381

samples should be located in Fl+1. Therefore, one needs to further generate382

N = Nc · C−Ns

Ns
samples to get approximately C seeds, which is shown in line383

22 of Algorithm 2. Note that N > 0 always holds. In the algorithm, the con-384

stant C is taken as a predefined proportion tol ∈ (0, 1) of p0 ·N0, the product385

of initial conditional probability and the initial sample size. Larger tol will386

lead to more accurate but less efficient result. We have found tol ∈ (0.5, 0.8)387

to be a good choice for the investigated cases.388

In practice, the above appending process may need to be iterated several389

times to achieve at least C seeds. For a fixed Fl+1, with every iteration and390

increasing number of samples, the number of the seeds will keep increasing391

until the desired threshold C is achieved. By doing this, even in the extreme392

case where all the samples in P(l) have the same LSF value, the sampling393

process will keep moving forward towards the failure domain and will no394

longer get stuck in this level as in the standard SuS algorithm.395

To append new samples which follow the target distribution Q(·|Fl), we pro-396

pose to extend the Markov chains generated in the initial intermediate sam-397

pling step (iter = 0, in Algorithm 2). This is illustrated in Fig. 3. As shown398

in the figure, for each seed in S(l), a Markov chain is constructed in the 0th399

iteration. The last sample (tail) of this chain is then taken as the seed for the400

chain in the next iteration. The transition distribution of the chain remains401

unchanged. The above process may be iterated several times and is described402

as Algorithm 3. For iteration it = 0, · · · , the input of Algorithm 3 consists403
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of 4 values: the number of samples to append N , the number of Markov404

chains Nch = |S(l)|, the transition distribution of each chain {Γi}Nch
i=1 , which405

is determined by the target distribution Q(·|Fl) and the employed MCMC406

algorithm, and the seed for each chain {e(it)i }
Nch
i=1 , which is taken as S(l) when407

it = 0 and otherwise as the tail of the Markov chains from the previous iter-408

ation {t(it−1)i }Nch
i=1 . The output of the algorithm is N new generated samples409

P(l)
new and the tail (last sample) of each chain {t(it)i }

Nch
i=1 .410

 

Figure 3: Schematic diagram of the appending method.

411

5. Examples412

5.1. Multistate random variable413

Consider a discrete random variable X with 7 states {x1, · · · , x7}. We414

consider two cases. In case 1, the CDF ofX , FX(·), is set such that FX(xi+1)
FX(xi)

≤415

10, while in case 2, there is a big ’jump’ between the third and the fourth416

state, i.e., FX(x4)
FX(x3)

≈ 599. The CDF of X for the two considered cases is given417

in Table 1 and is illustrated in Fig 4. The LSF is defined as g(X) = X + 5418

such that the failure probability P(X 6 −5) equals 10−5 for both cases.419

We implement SuS and the proposed aE-SuS respectively in standard normal420

space to evaluate the failure probability and compare them with crude MCS.421

The MCMC algorithm is aCS. For SuS, the sampling effort is fixed to 1,000,422

and the conditional probability is 0.1. For aE-SuS, the parameters are set to423

be tol = 0.5, N0 = 1,000, p0 = 0.1. Each method is run 1,000 times to get the424

relative bias, coefficient of variation and average computational cost of the425
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Algorithm 2: Adaptive effort subset simulation algorithm

Input: tol ∈ (0, 1), p0 ∈ (0, 1), an integer N0 multiple of 1/p0
1 l← 0, bl ← inf, N ← N0, P(l) ← ∅
2 while bl > 0 do
3 iter ← 0, Ns ← 0
4 while Ns < tol ·N0 · p0 do
5 if l = 0 then
6 Generate N samples {xk}Nk=1 from the initial distribution

Q(·|F0) and add them to P(l)

7 else
8 Generate N samples {xk}Nk=1 from the target distribution

Q(·|Fl) with appending algorithm and add them to P(l)

9 Nc ← |P(l)| // total sample size

10 Sort the elements of P(l) by increasing order of their LSF

values g(x), and denote the sorted samples as {x̄k}Nc
k=1

11 if iter = 0 then
12 bl+1 ← g(x̄p0·N0)
13 if bl+1 6 0 then
14 bl+1 ← 0

15 Ns ←
∑Nc

k=1 I{g(x̄k) 6 bl+1}, Fl+1 , {x : g(x) 6 bl+1}
16 Break

17 else if bl+1 < g(x̄Nc) then

18 Ns ←
∑Nc

k=1 I{g(x̄k) 6 bl+1}, Fl+1 , {x : g(x) 6 bl+1}
19 Break

20 Ns ←
∑Nc

k=1 I{g(x̄k) < bl+1}, Fl+1 , {x : g(x) < bl+1}
21 if Ns < tol ·N0 · p0 then

22 N ← dNc · tol·N0·p0
max(1,Ns)

e −Nc > 1

23 iter ← iter + 1

24 Take the S(l+1) , {x̄k}Ns
k=1 as the seeds for the next level

25 N ← N0 −Ns, P(l+1) ← S(l+1), l← l + 1

26 p̂(Fl|Fl−1)← Ns

Nc

27 p̂(F )←
∏l

j=1 p̂(Fj|Fj−1)
Output: p̂(F )
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Algorithm 3: Appending algorithm

Input: N , Nch, {Γi}Nch
i=1 , {e(it)i }

Nch
i=1

1 Randomly choose mod(N,Nch) elements from the set
{1, 2, · · · , Nch}, say χ

2 P(l)
new ← ∅

3 for i = 1, · · · , Nch do
4 if i ∈ χ then
5 j ← b N

Nch
c+ 1

6 else
7 j ← b N

Nch
c

8 x0 ← e
(it)
i

9 for k = 1, · · · , j do
10 Sample xk from transition density Γi(·|xk−1)
11 Add xk to P(l)

new

12 t
(it)
i ← xj

Output: P(l)
new, {t(it)i }

Nch
i=1

failure probability estimator. The results for case 1 and case 2 are shown in426

Tables 2 and 3 respectively. In both cases, aE-SuS shows good accuracy, a427

negligible bias and a much smaller coefficient of variation than crude MCS.428

We note that the coefficient of variation of crude MCS is given for the same429

computational effort as the proposed aE-SuS method. In contrast, SuS gives430

a strongly biased estimate of the failure probability with high coefficient of431

variation in the first case and falls into a dead loop in the second case.432

Table 1: CDF of X for Example 5.1.

State -6 -4 -3 -2 -1 0 1
CDF(case1) 1e-5 1e-4 1e-3 1e-2 1e-1 5e-1 1
CDF(case2) 1e-5 3e-5 5e-5 3e-2 1e-1 5e-1 1
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Figure 4: CDF of X for Example 5.1.

Table 2: Statistical characteristics of the estimator of the probability of Example 5.1 (Case
1).

relative bias(%) coefficient of variation average computational effort
SuS -97.8 3.747 7,222

aE-SuS 3.5 0.376 5,970
MCS 0 4.093 5,970

Table 3: Statistical characteristics of the estimator of the probability of Example 5.1 (Case
2).

relative bias(%) coefficient of variation average computational effort
SuS / / /

aE-SuS 2.4 0.242 44,737
MCS 0 1.495 44,737
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5.2. Multidimensional flow-based problem433

In this example, the failure event is defined as434

n∑
i=1

Xi(1− Yi) > t (11)

where Xi are independent and identically distributed (iid) according to the435

normal distribution N (·;µ, σ2) and Yi are also iid and follow the Bernoulli436

distribution Ber(1− pfc) with outcomes {0, 1}. Each Xi can be regarded as437

a loss variable associated to a failure event with probability pfc. The failure438

event is further defined as the total loss exceeding the predefined threshold439

t. Let X̃i = −Xi ∼ N (·;−µ, σ2), t̃ = −t, and Ỹi = 1 − Yi ∼ Ber(pfc). The440

failure probability then becomes441

pf = P

(
n∑
i=1

−Xi(1− Yi) 6 −t

)
= P

(
n∑
i=1

X̃iỸi 6 t̃

)

=
n∑
i=0

P

(
n∑
j=1

Ỹj = i

)
P

(
n∑
k=1

X̃kỸk 6 t̃

∣∣∣∣ n∑
j=1

Ỹj = i

)

=
n∑
i=1

(
n
i

)
pifc(1− pfc)n−iΦ

(
t̃− (−µi)√

i · σ2

)
+ (1− pfc)nI(t̃ > 0)

(12)

Eq.(12) shows that the failure probability pf is a function of n and t̃ when442

fixing µ, σ and pfc. For different n, we choose t̃ such that the failure proba-443

bility equals to p∗f . In this way, we define a series of failure events of different444

dimension but with the same failure probability, p∗f . Note that there is a445

’jump’ of value (1−pfc)n at the origin coordinate; this value decreases as the446

dimension increases. Fig. 5 shows the failure probability pf as a function of447

t̃ for the case n = 1 (the dimension is 2) and n = 50 (the dimension is 100).448

The failure probability can also be regarded as the CDF of
∑n

i=1 X̃iỸi.449

Next, MCS, standard SuS and aE-SuS are carried out to obtain the failure450

probabilities. SuS and aE-SuS are performed in standard normal space with451

aCS as the MCMC algorithm. Here, we set pfc = p∗f = 10−3, µ = −10, σ = 1452

and vary n from 1 to 50. tol, N0 and p0 for aE-SuS are set to be 0.5, 1,000, 0.1,453

respectively. As shown in Fig. 6, the computational cost of aE-SuS, which454

is measured by the total number of LSF evaluations, decreases rapidly with455

increasing dimension and reaches around 4,000 calls of the LSF for higher456
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Figure 5: Failure probability pf vs. t̃ for the flow problem of Example 5.2.

dimensions. In order to obtain the statistical characteristics of the aE-SuS457

estimator and to compare them with MCS and standard SuS, 500 indepen-458

dent trials of aE-SuS and SuS are carried out. The results of MCS are459

calculated theoretically with the same computational cost (total number of460

samples Ntot) as aE-SuS. The MCS estimator is unbiased and the coefficient461

of variation is
1−pf√
Ntot·pf

. Fig. 7 and Fig. 8 illustrate the relative bias and the462

coefficient of variation of both aE-SuS and MCS. We see that the behavior463

of aE-SuS is similar to that of MCS in low dimensions where the jump at the464

origin is large, while in high dimensions where the jump of the CDF becomes465

smaller, aE-SuS is more efficient. We note that the influence of the number466

of random variables on the performance of the MCMC algorithm used in467

aE-SuS is insignificant. This is due to the fact that the aCS is especially468

designed for high dimensional problems.469

Fig. 9 compares the square root of MSE (RMSE, calculated through esti-470

mates of the two terms of Eq.(4)) of aE-SuS with different settings of standard471

SuS. It can be seen that even with well-tuned parameters (p0 = 1/40), stan-472

dard SuS can lead to significant errors in low to moderate dimensions where473

the jump in the CDF of the LSF is large.474

As the ’jump’ vanishes for large n, the results of aE-SuS become similar475

to that of standard SuS. In low dimensions, the aE-SuS algorithm behaves476

similar to crude MCS.477
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Figure 6: Computational cost of the aE-SuS for Example 5.2.
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Figure 7: Relative bias (aE-SuS vs. MCS) for Example 5.2.

5.3. Binomial experiment478

This example studies the behavior of the independent M-H algorithm
proposed in Section 3.2. Consider a binomial experiment with n trials. Each
trial is an independent event that has two outcomes: 0 and 1. The probability
that a trial is successful (takes outcome 1) is equal to p and we evaluate the
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Figure 8: Coefficient of variation (aE-SuS vs. MCS) for Example 5.2.
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Figure 9: RMSE (aE-SuS vs. SuS) for Example 5.2.

probability that at least t trials are successful. The LSF is then defined as:

g(X) = t−
n∑
i=1

Xi
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where Xi represents the outcome of the i-th trial. The exact failure proba-479

bility can be expressed as 1 − FB(t − 1;n, pfc) where FB(·;n, p) is the CDF480

of the binomial distribution with parameters n and p.481

In order to study the performance of the independent M-H algorithm in dif-482

ferent dimensions, we fix p at 10−3 and vary n. For each n, aE-SuS with the483

independent M-H algorithm is run 200 times with parameters tol = 0.8, p0 =484

0.1, N0 = 2,000.485

For different dimensions and conditional levels of aE-SuS, the mean accep-486

tance rate of the independent M-H algorithm, E(α), is calculated through487

Eq.(10) and is summarized in Table 4. Note that P(X ∈ Fl) and P(X /∈488

∪i=0,...,l−1Xi) in Eq.(10) are abbreviated as P(Fl) and P(∪Xi), respectively.489

One can see that both P(Fl) and P(∪Xi) decrease as conditional level l in-490

creases. However, P(∪Xi) drops much slower than P(Fl) at high levels, which491

results in small E(α). This is because, to form a good proposal in the inde-492

pendent M-H algorithm, the states that need to be excluded from the input493

distribution grow exponentially with l. This effect is more pronounced in494

high dimensions, leading to a faster decrease of E(α). At the fourth level,495

the mean acceptance rate for n = 100 is only 0.2% of the rate for n = 25 in496

this example.497

Nevertheless, if the mean acceptance rate is not too small, the independent498

M-H algorithm performs well. For instance, if we fix the threshold t at 4, the499

results of 200 independent runs of aE-SuS are summarized in Table 5. For500

all 4 cases, aE-SuS is slightly biased with less computational cost than crude501

MCS for achieving the same coefficient of variation. Note that the average502

computational cost for n = 25 is much higher than the other three cases,503

which is due to the larger ’jumps’ in the CDF of the LSF.504

505

5.4. Power network system506

In this example, we consider the IEEE39 bus benchmark system, which507

consists of 39 nodes and 46 weighted edges. The topology of the network is il-508

lustrated in Fig. 10 where orange circles represent the source nodes and grey509

circles represent the terminal nodes. Edges are weighted by their reactance510

values shown on the right-hand side of Fig. 10 and by their capacities shown511

on the left-hand side. The line capacity is modeled here as being proportional512

to the number of most efficient paths between any source and terminal node513

pair passing through that line. This example was previously investigated by514

Scherb et al. [40] to quantify the network reliability considering cascading515
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Table 4: Mean acceptance rate of the independent M-H algorithm for Example 5.3.

n = 25 n = 50 n = 75 n = 100

l = 1
(g(X) < t)

P(Fl) 0.025 0.049 0.072 0.095
P(∪Xi) 0.025 0.049 0.072 0.095
E(α) 1 1 1 1

l = 2
(g(X) < t− 1)

P(Fl) 2.95 · 10−4 0.0012 0.0026 0.0046
P(∪Xi) 2.95 · 10−4 0.0012 0.0026 0.0046
E(α) 1 1 1 1

l = 3
(g(X) < t− 2)

P(Fl) 2.26 · 10−6 1.89 · 10−5 6.40 · 10−5 1.50 · 10−4

P(∪Xi) 2.26 · 10−6 1.89 · 10−5 1.87 · 10−4 0.0017
E(α) 1 1 0.34 0.087

l = 4
(g(X) < t− 3)

P(Fl) 1.24 · 10−8 2.22 · 10−7 1.15 · 10−6 3.63 · 10−6

P(∪Xi) 1.24 · 10−8 9.70 · 10−6 1.84 · 10−4 0.0017
E(α) 1 0.023 0.0063 0.0021

Table 5: Statistics of the aE-SuS estimator for Example 5.3.

n = 25 n = 50 n = 75 n = 100
pf 1.24 · 10−8 2.22 · 10−7 1.15 · 10−6 3.63 · 10−6

relative bias(%) 2 3 5 2
coefficient of variation 0.15 0.14 0.20 0.34

average cost 8.23 · 104 3.77 · 104 2.68 · 104 2.09 · 104

MCS cost 3.58 · 109 2.30 · 108 2.17 · 107 2.38 · 106
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effects and spatially distributed hazards, and by ro-Velasquez and Straub516

[41] to select representative failure scenarios.517

The state of each node is considered as an independent Bernoulli random

source nodes

terminal nodes

Figure 10: IEEE39 bus system, with edge thicknesses proportional to their estimated
capacities (left) and reactances (right)[40].

518

variable, with component failure probability randomly chosen from the uni-519

form distribution U [0, 10−2]. The LSF is then defined as a function of the520

system state x, which is a binary vector, as follows:521

g(x) =
E(x)

E(1)
− threshold (13)

522

E(x) =
1

|SN ||TN |
∑

s∈SN,t∈TN,t 6=s

effst(x) (14)

effst is the efficiency of the most efficient path from source node s to terminal523

node t, which is evaluated as the inverse of the sum of the reactance values524

along that path. E(x) is the efficiency of the whole system associated to the525

system state x (The vector 1 is the intact system state). It is equal to the526

mean value of all the effst from each source node in set SN to each terminal527

nodes in set TN .528

In order to model cascading effects, Eq.(13) is modified to529

g(x) =
E(C(x))

E(1)
− threshold (15)
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where C(x) is the final system state after cascading effects due to overloading530

of system components. These are triggered by overloading in individual lines531

following initial failures, and are modeled following [40] and [42].532

The threshold is fixed to 0.3, which means the system is considered as failed533

when its efficiency is less than 30% of that of the intact system. We ap-534

ply the aE-SuS algorithm in original Bernoulli space and set the parameters535

N = 2,000, p0 = 0.1, tol = 0.8. The MCMC algorithm is the independent536

M-H algorithm. Fig. 11 shows the empirical CDF of g(X) obtained by537

MCS and the aE-SuS algorithm respectively. The aE-SuS algorithm is run538

200 times to obtain the mean value, 10 percentile and 90 percentile of the539

empirical CDF, while a single MCS run with 106 samples is carried out for540

validation.541

The average computational cost of aE-SuS is 9,507 calculations of the LSF542

g(·) and the relative bias of the failure probability is 0.9%, while the coef-543

ficient of variation is 0.338. To achieve the same coefficient of variation as544

aE-SuS, crude MCS needs 1.74 · 105 calculations of the LSF in theory, which545

is significantly larger than that of aE-SuS. The average CPU time over 200546

repetitions of aE-SuS is reported as 682 seconds on a 3.50GHz Intel Xeon547

E3-1270v3 computer. As a comparison, the CPU time for crude MCS with548

1.74 · 105 samples on the same machine is 9.83 · 103 seconds, which is about549

14 times larger than the CPU time of aE-SuS.550

The standard SuS algorithm is not applicable for this example due to the551

large jump in the CDF of the LSF.552

6. Conclusions553

We introduce adaptive effort subset simulation, which enables solving554

reliability problems with performance functions that follow a discontinuous555

distribution. Such problems often occur in network reliability assessment be-556

cause of discrete random variables appearing in the input random vector or557

due to discontinuities in the function that defines the system performance.558

The proposed method modifies the adaptive selection of the intermediate559

domains of the standard SuS and adapts the number of samples and the560

respective conditional probability throughout the simulation to ensure that561

there is an adequate number of seeds at each level.562

Any MCMC algorithm that enables efficient conditional sampling can be563

combined with the proposed algorithm. We implement the aCS algorithm564

in an underlying standard normal space. If the input random variables are565
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Figure 11: Results obtained by aE-SuS and MCS for IEEE39 network of Example 5.4.

all discrete, we propose a more efficient yet less general independent M-H566

algorithm, which operates in the original space. The mean acceptance rate567

of the independent M-H algorithm tends to decrease with increase of the in-568

termediate simulation level with decreasing rate depending on the dimension569

of the input space. Hence, the algorithm becomes inefficient in estimating570

small probabilities of high dimensional systems. The acceptance rate of the571

aCS algorithm is independent of the input dimension, however aCS performs572

worse than the independent M-H algorithm in moderate dimensional discrete573

input spaces.574

Numerical results demonstrate that the aE-SuS estimator is only slightly575

biased and has substantially higher efficiency than crude Monte Carlo in576

problems where standard SuS fails to converge. The computational cost of577

the aE-SuS algorithm depends highly on the magnitude of the jumps in the578

distribution of the LSF.579
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Appendix A. Adaptive conditional sampling algorithm583

The aCS algorithm presented herein differs from the one of [28], which584

assumes that N = 1−p0
p0
Nseed. N is the number of new generated samples585

and Nseed represents the number of seeds. The implementation of the aCS is586

summarized in Algorithm 4. In the algorithm, l is the intermediate level, and587

n is the dimension. Fl is the intermediate event. Sl represents the seeds, and588

λl−1 is the updated scaling parameter at the l − 1-th level. It is suggested589

in [28] to choose λ0 as 0.6. a∗, Na, {σ0,d}nd=1 are respectively the optimal590

acceptance rate, number of chains to consider for adaption, and the starting591

values for standard deviation. The suggested values can also be found in [28].592

Appendix B. Bound based sampling algorithm593

The original bound-based sampling algorithm [12, 8] is proposed for con-594

nectivity based problems in multivariate Bernoulli spaces. However, it can be595

modified to sample from the proposal distribution at level l of the indepen-596

dent M-H algorithm of Section 3.2, Q
(l)
p (x) ∝ Q(x|F0)I {x /∈ ∪j=0,...,l−1Xj},597

if the input random variables follow the multivariate categorical distribution.598

That is599

Q(x|F0) =
n∏
d=1

nd∑
i=1

I{xd = i}θd,i (B.1)

where θd,i represents the probability that the d-th component xd equals value600

i given all preceding components x1, ..., xd−1. n and nd represent the number601

of components and the number of the states of xd, respectively. For each602

component d, it holds that
∑nd

i=1 θd,i = 1.603

The bound-based sampling algorithm proceeds in a component-wise scheme604

and is shown in Algorithm 5. Following this algorithm, one generates samples605

in the space {x : x /∈ ∪j=0,...,l−1Xj} with probability proportional to the input606

distribution Q(x|F0). A detailed proof can be found in [8].607

608
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Algorithm 4: Adaptive conditional sampling algorithm

Input: N , Fl, S(l), λl−1
1 Ns ← |S(l)|, λ← λl−1
2 Define a∗, Na, {σ0,d}nd=1 according to [28]

3 Randomly sort the seeds S(l)

4 Randomly choose mod(N,Ns) elements from the set {1, 2, · · · , Ns},
say χ

5 P(l) ← ∅, c1 ← 0, c2 ← 0
6 for i = 1, · · · , Ns do

7 σd ← min(1, λσ0,d), ρd ←
√

1− σ2
d; d = 1, · · · , n

8 if i ∈ χ then
9 j ← b N

Ns
c+ 1

10 else
11 j ← b N

Ns
c

12 u0 ← the i-th seed
13 for k = 1, · · · , j do
14 for d = 1, · · · , n do
15 %% sample the d-th component of candidate v
16 vd ← N (·; ρduk−1,d, σ2

d)

17 if v ∈ Fl then
18 uk ← v
19 c1 ← c1 + 1, c2 ← c2 + 1

20 else
21 uk ← uk−1
22 c1 ← c1 + 1

23 Add uk to P(l)

24 if i is a multiple of Na then
25 λ← λexp(( i

Na
)−1/2[ c2

c1
− a∗])

26 c1 ← 0, c2 ← 0

27 λl ← λ

Output: P(l), λl
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