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Abstract—FMCW radar sensors receive target reflections from
the environmental surrounding at frequencies around 77 GHz.
The increasing number of sensors on the road operating in
this frequency range leads to a higher likelihood of unfavorable
radar-to-radar interference. Consequences can be the appearance
of artificial targets or the degradation of the noise spectrum,
where targets with a small RCS might disappear. We use
a Neural Network-based outlier detection method to identify
corrupted samples in the time domain signal after the ADC. The
architecture consists of a recurrent Neural Network with Long-
Short-Term-Memory cells to extract the temporal information.
The small network and the stream processing make it suitable
for embedded devices. The semi-supervised trained network can
detect various interference patterns with reduced training effort.
We evaluate the system in a complete pipeline with zeroing
mitigation on simulated randomized FMCW data. The method
increases the Signal-to-Noise-Ratio ratio by up to 30 dB in
the presence of interference and increases the overall system
performance and reliability.

Index Terms—Interference, FMCW, Neural Network, LSTM,
Semi-Supervised

I. INTRODUCTION AND BACKGROUND

Radar sensors are relevant elements for environmental sens-
ing in different driving scenarios. In contrast to other sensors
such as cameras, they provide direct information about the
distance, velocity, and azimuth angle of a target and are
capable to work in various weather conditions [1]. Therefore,
they are suitable sensors for use in driver assistance systems
and autonomous vehicles.

Instead of passive cameras, radar receives target reflections
from the transmitted signal and can, therefore, be influenced
by other signals. In the literature, this radar-to-radar signal
superposition is called interference. More sensors per vehicle
increase the probability of interference in the same frequency
band under different conditions as shown by [2]. In this
work, we focus on radar-to-radar interference of Frequency
Modulated Continuous Wave (FMCW) radar sensors.

Outlier detection is an open challenge in different ap-
plications such as images, time series, or video sequences.
Neural Networks (NNs) outperform traditional methods like
Autoregressive—-Moving-Average (ARIMA) on time series pre-
diction, as shown with Long-Short-Term-Memory (LSTM)
networks by [3]. Therefore, we demonstrate an LSTM network
for outlier detection of radar-to-radar interference in the time
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Fig. 1. Possible interference patterns with FMCW radar chirp sequence (black
line), example target reflection (dotted gray), and an aggressor chirp sequence
(dashed red). The IF-Bandwidth (orange) is defined by the radar settings of
the victim sensor. The first chirp with parallel slopes generates a ghost target
and the other two interference intersections increase the noise level.

domain Intermediate Frequency (IF) signal. The network is
capable to detect deviations from the expected normality and
enables the identification of interfered samples without pre-
processing the signal.

The work is structured as follows: We start with the descrip-
tion of FMCW radar and interference background. Section II
provides an overview of interference detection and mitigation
methods and Section III describes our proposed methodology.
We then explain our setup and the corresponding results in
Section IV and follow with a discussion of our observations.
The last section outlines conclusions and highlights the impor-
tance of real-world datasets for the comparison of interference
detection and mitigation methods.

A. FMCW Radar

In the automotive sector, mostly 77 GHz FMCW radar sen-
sors are used. They send out a transmit signal and receive the
superposition of the target reflections. The receiver generates
the IF signal by mixing the input with the transmit signal.
The transmit signal consists of frequency chirps with a linear
frequency change, as indicated in Figure 1. The chirp sequence
is defined by the individual chirp frequency bandwidth A f and
the Chirp timing Tidies Tpayloada and Tflyback'~ The received
signal from a target is delayed by the round trip time from
the sensor to the target and back. Hence, the time delay is
proportional to the frequency difference between the transmit
and receive signal of a target reflection. The velocity in relation
to the radar sensor can be obtained by observing the phase
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change across consecutive chirps, called chirp sequence or
frame. This phase shift comes from a minor change in the
round trip time of the reflected signal. Radar signal processing
uses the Fast Fourier Transform (FFT) to extract the range and
velocity. The first (range) FFT is applied on every chirp and
the second (Doppler shift, velocity) FFT across the chirps. We
refer to [4], [S] for more radar signal processing details.

The receiver signal sgx is a superposition of all target
reflections and unwanted components like interference. It is
defined as

Nturget N'interf

sex(t) = Y Aj-cos(p;()+ Y Ai-cos(pi(t)),
=0 i=0

targets interference

D

where each target out of [V is defined by the amplitude A; and
the phase ¢;(¢), which depends on the radar transmit power,
the antenna gain, the receiver gain, and the target material and
distance-dependent Radar Cross Section (RCS). The interfer-
ence component is depicted by the interference amplitude A;
depending on the transmit power of the aggressor and the time-
dependent frequency component ¢;(t). The receiver signal
is mixed with the transmitter signal to obtain the IF signal.
For further details, we refer to an analytical investigation of
interference [6].

B. FMCW Interference

Interference occurs in different forms and leads to various
performance degradations such as an increase of the noise
floor, the loss of targets at specific ranges, or even ghost
targets [2]. The reasons are various signal combinations, as
indicated by the crossings of the dashed and the constant line
in Figure 1. The ego transmitter — defined as the victim — has
a constant chirp sequence and a bandwidth-limited IF due to
receiver design and settings, indicated with the orange area.
A target reflection within the IF band has a stable frequency,
amplitude, and phase per chirp. Interference mainly occurs
if the instantaneous frequency of the aggressor’s transmit
signal is in the bandwidth of the victim. In the case of the
parallel slope, the IF frequency of the aggressor is constant
and will produce a ghost target. Such a scenario, indicated
in the first ramp of Figure 1, is improbable [7], [2]. The
more common problem is the non-coherent interference that
occurs during the crossing of the chirps, as indicated in the two
following ramps. The IF frequency of the interference changes
linearly but is only defined within a time-limited interval.
This interference has a wide frequency spectrum and increases
the noise level [7], which can exceed target reflections [8].
The duration and amplitude of the interference affect the
performance degradation. The amplitude of an interference
signal is often higher than for targets at the same distance
because a target has twice the signal path [2]. Hence, an
aggressor can affect the victim even outside the detectable
distance.

II. RELATED WORK

Interference is a well-known effect in the literature and it is
possible to reduce or detect interference in various application
domains, such as the optimization of the antenna design,
randomization of the chirp sequence, sensor communication,
or the processing of the signal in time, or frequency domain.
These different methods can be sorted into three categories:
avoidance, detection, and mitigation, which we describe in the
following.

Avoidance methods reduce the possibility of interference
by narrow antenna beams [9], or the randomization of the
chirp sequence, by individual ramps with different timing,
bandwidth, or initial frequency [10]. Also, the utilization
of car-to-car communication can provide deterministic in-
formation to adjust the transmitter sub-band or the chirp
sequence. Avoidance techniques can reduce the possibility of
interference, especially coherent interference [2], but can also
affect the processing parameters or introduce delays due to
communication overhead.

The interference detection is a crucial component to apply
interference mitigation in the time or frequency domain. In the
time domain, often dynamic thresholding methods are applied,
because the power of the interfered signal is typically higher
than the reflections from targets at the same distance [2].
After the first FFT, the change of the Signal-to-Noise-Ratio
(SNR) across different chirps indicates interference in one
chirp. The exact interference interval cannot be extracted due
to its wideband power spectrum. Another method discussed by
[9] is to apply a Finite Impulse Response filter in the frequency
domain, which combines adjacent frequency bins.

Interference mitigation reduces the affected samples which
have been flagged by the detection algorithm. In the time
domain, the detected samples can be replaced by zeros,
extrapolation, known signal characteristics, or filtered samples
[11], [8]. Zeroing is a simple and effective method with low
computational costs to mitigate interference.

Other methods utilize the Range-FFT or the Range-Doppler-
Map (RDM) for noise reduction and interference detection
with mitigation. [12] applies a Convolutional Neural Network
(CNN) on the range Short-Time Fourier Transform (STFT),
where the 2-dimensional input data size is defined by the FFT
points and the window size of the STFT. They propose two
CNN architectures with different numbers of convolutional
layers to be able to reduce the input dimension from different
sizes to a one-dimensional FFT. Therefore, they use up to
21 convolutional layers with Rectified Linear Unit (ReLu)
activation and optional pooling layers. The network is trained
on an artificial dataset consisting of 40,000 samples in the time
domain with and without interference. Another approach pro-
posed by [13], uses a CNN on complex-valued RDMs. After
hyperparameter optimization, they focused on a network with
4 layers and 562 kernels of size 3x3. Training is performed on
data with and without interference based on a simulated and
a combination of simulated interference and real data. [14]
shows a similar method for Range-FFT and RDM denoising.
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Fig. 2. Overview of the system architecture for FMCW radar-to-radar

interference detection in the time domain by using an LSTM network to
predict normality. It shows an ideal implementation without temporal latency
between input and output.

An often neglected problem of NNs is the generalization
of such networks, because during training they are biased to
specific noise and interference patterns, and they are not able to
perform well on deviating samples. Besides, the computational
cost correlates with the number of parameters and the input
dimension. The processing of Range-FFTs or RDMs uses a
multi-dimensional input and reduces the temporal processing
capability. Therefore, we propose a temporal solution for
radar-to-radar interference detection to benefit from the small
input dimension and enable stream processing.

1. METHOD

The overall architecture is shown in Figure 2 with the
continuous time series input x(¢) and the corresponding output
y(t) with the indication if an outlier was detected Yoygier(?)-
In the following, we will use the word outlier instead of
interference because the approach is not only limited to detect
interference. Instead, it is capable to detect deviations from
normality, which can be for example radar-to-radar interfer-
ence or other deviations in the time domain signal.

A. Outlier Detection

We propose the following outlier detection system based
on a Recurrent Neural Network (RNN). We use a one-step-
ahead prediction consisting of two layers, each with 25 LSTM
neurons, to track the temporal dependencies on long and
short time spans. The LSTM [15] is a gated neuron with a
latent cell state and an input, an output, and a forget gate.
These neurons are more complex than traditional neurons with
recurrent connections, but reduce the problem of vanishing or
exploding gradient during training. The neuron output state
depends on the historical and current input values. The hidden
state of the last LSTM layer is a limited representation of
extracted features from the time series. The network output
combines the hidden state in a single linear neuron. For
more details about RNNs and LSTMs, we refer to [16]. We

have selected our network based on the complexity and the
point of diminishing returns of the prediction performance.
The network comprises 8026 parameters due to the recurrent
connections and the gated LSTM cells. The network is trained
in a semi-supervised manner, which reduces the training effort
greatly. The LSTM network is thus trained by the expected
normality without any outliers. Therefore, the network is
highly adjustable to different radar settings and the system
can differentiate between normality and various unseen outlier
patterns.

Based on the historical and current input, the network
predicts the next value, which is used to define the outlier
score:

score(t) = x(t) — &(t), (2)

where x(t) is the input value at time ¢ and Z(¢) is the predicted
value from the network. We use a static threshold

) 1, if |score(t)| > threshold
outlier(t) = {0 otherwise

3)

to differentiate between outlier and normality. The perfor-
mance is similar for dynamic threshold techniques, but it
is more hardware-friendly. A lower threshold increases the
sensitivity and the probability of false-positive detections.
Hence, it is crucial to select the threshold based on the
expected variations.

In the task of radar-to-radar interference detection, multiple
successive samples are affected, but the algorithm detects
mainly the edges of the interference pattern, because the fre-
quency deviation equals zero for the center of the interference.
Therefore, we apply an outlier smoothing function to generate
sequences of outliers, which we can further use for interference
mitigation. If an outlier was detected at time ¢ the probability
of an outlier at ¢ + 1 increases and the same for subsequent
outliers. We implemented a counter ¢ with zero as a lower limit
to keep all previously detected outliers and an upper limit to
adjust the smoothing length to the real interference windows.
The upper limit depends on the sampling frequency of the
signal and can be selected during simulation. The counter c is
defined as:

c+1,
c—1,

if outlier(t) == 1,
otherwise.

C|[O,ma.t] = 4)

The network is trained to predict the normality by utilization
of Back-Propagation-Through-Time (BPTT). The method un-
folds the network over time for back-propagation learning. The
computational graph size is defined by the length of the time
series with the same weights for all time-steps [16]. We reduce
the problem of vanishing gradient in deep computational
graphs by splitting the training series into smaller chunks. We
use the Adam optimizer for gradient optimization [16].

B. Outlier Mitigation

We combine our NN interference detection with the zeroing
mitigation method, which has already shown good perfor-
mance [11]. It replaces the detected outliers with zeros and
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TABLE I
SETTINGS OF THE VICTIM FMCW SENSOR AS DESCRIBED IN FIGURE 1.
Parameter | | Value
fo initial frequency 77 GHz
Af sweep bandwidth | 275 MHz
Tidie idle time 10us
Tpayioad ramp time 42us
Triyback return time 2us
TABLE II

PARAMETER RANGE OF THE RANDOMLY GENERATED INTERFERENCE
SCENARIOS. SOME SCENARIOS HAVE MINOR EFFECTS ON THE SYSTEM
BUT ARE NECESSARY TO SIMULATE REAL-WORLD BEHAVIOR.

Parameter | | Range

fo initial frequency 76 GHz | 78 GHz
Af sweep bandwidth 0.2 GHz | 1.5 GHz
Tidie idle time 2us 12us
Tpayload | ramp time 40pus 90us
Triyback return time lpus 12us
INR interference-noise-ratio | 10 dB 40 dB

removes interference and signal components. The indication
of interfered samples from the outlier detection method is
highly affecting the performance of the mitigation. Hence,
wrongly flagged outliers result in a signal loss and a bad
performance. A limitation of the zeroing mitigation occurs for
long interference windows because a large portion of the mea-
surement is zeroed and thus, relevant signal information are
lost. This limitation could be reduced by more advanced and
complex methods like extrapolation or interpolation, but we
state zeroing is an interesting technique due to its simplicity.

IV. SETUP

We generate a simulated dataset with a radar simulator,
which includes noise from various sources within the radar
receiver chain to emulate real-world behavior. The RX signal is
the superposition of target reflections and aggressor signals as
in equation 1. Before the Analog-to-Digital Converter (ADC)
we apply a band-pass filter to limit the bandwidth of the
IF signal. In the digital module, we perform a decimation
to reduce the sampling rate. The victim sensor uses eight
chirps with the settings in Table I and the aggressor settings
vary randomly in the range defined in Table II. The randomly
generated aggressor chirps have a high probability to interfere
with the victim device. Also, we generated random targets
in the environment of the sensor with the setting boundaries
shown in Table IIl. Additionally, we emulate transmitter to
receiver leakage, which is a typical effect in real systems.

TABLE III
PARAMETER RANGE FOR EACH RANDOM GENERATED TARGET IN THE
RADAR SIMULATION.

Parameter | | Range

d distance Im 200 m

« azimuth angle -50° +50°

v velocity 0 m/s 40 m/s
RCS radar cross-section | -20 dBsm | + 80 dBsm

The system overview with interference detection and miti-
gation method is shown in Figure 2. The system input is the
time domain signal for a complete chirp sequence after the
digital decimation. We generate the dataset based on various
combinations of target scenarios and interference patterns.
The training dataset consists of radar time series without
interference but with random target scenarios, where each
target is in the parameter range defined in Table III. Due to
randomization, we also get data with close targets and high
RCS, which leads to a saturation of the limited signal range.
During training, we remove these saturated samples and in the
evaluation, we use these saturation samples to show that the
proposed method can detect further abnormal situations.

The training data consists of 410 radar time series with
randomly generated target scenarios without interference. We
transform the series into sequences of 100 samples from ¢
until t99 with the label t199 by using a one-step moving
window. The reduced length is important during training to
minimize the vanish gradient problem and the training time,
which is not necessary during inference. The training loss
is the mean squared error of predicted and expected values.
During training, it is crucial to continuously observe the
performance of unseen data. Thus, we use another dataset of
50 time series without interference to calculate the network
validation loss, which is again the mean squared error of
expected and predicted samples. Hence, we use complete step-
by-step time series predictions for validation, where the input
is always the real time series and the output is the prediction
of the next value.

For the verification of our outlier detection method, we use
a test set with random targets and interference scenarios. It
consists of 2266 sequences of which 51.4% include interfer-
ence scenarios. As shown in Figure 2, we forward the series
into the predictor, outlier detector, and mitigator. The outlier
labels are generated automatically during the simulation at the
known intersection points of the chirps. The interference level
is set based on the Interference-to-Noise-Ratio (INR), which
we defined between 10 dB and 40 dB. Below that interval, the
interference power is low and has a minor effect on the system
performance, but exceeding the range leads to saturation of
the normalized time signal and can be detected by simple
saturation detectors or by the proposed method. Important to
mention is that the detected outliers in the first 20 time steps
of the proposed method are not valid, due to the settling time
of the LSTM network. As already indicated earlier, we use
zeroing mitigation to evaluate the improvement of the SNR
based on the detected interference after the smoothing function
with an upper limit of ten.

V. RESULTS

In the following section, we evaluate the proposed method’s
performance on the randomly generated dataset. Therefore, the
network is trained in PyTorch with 50 epochs, a learning rate
of 0.001, and a batch size of 512. The training and validation
loss is defined as equal or greater than zero, which means that
the deviation of the true from the predicted value is smaller
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Fig. 3. Dependency between the Fl-score and the selected outlier threshold
of the test set. The best-performing threshold is highlighted with a dashed
orange line at 0.09.

in a system with a loss close to zero. In this work, we reach
a loss of 0.0004 and 0.0016 for the training and validation
dataset on the given task.

The evaluation of the outlier detection is challenging be-
cause the automated labeling process does not perfectly cover
the interference pattern due to oscillation effects that occur
after interference. Since evaluating the detected outlier for each
time step is not possible, we compare whether an outlier was
detected in the chirp valid region, which are the important
samples for further signal processing. Therefore, we extract
the region of interest per chirp for the series and labels. Also,
we simulate one additional chirp because the LSTM network
needs time to stabilize in the simulation environment, but this
chirp is removed before evaluation.

We follow standard statistical metrics to evaluate the perfor-
mance of the system as described in [17]. The representation
of accuracy can be misleading in unbalanced datasets [17].
Hence, we use precision, recall, and the Fl-score, which
combines precision and recall. Figure 3 shows the relation
between the outlier detector threshold value and the F1-score
in the test dataset. A low threshold leads to a better recall but
reduces heavily the precision. A higher threshold decreases
the number of false positive and increases the false negative
detections. Based on these results we use the best performing
outlier threshold score of 0.09 for further evaluation. The
reached precision indicates that 88% of all detected outliers
are expected outliers. Deeper observations of the false positive
detections show that some cases are valid outliers, which
occur due to oscillating disturbances followed by a previous
interference outside the valid samples or a deviation in the
initial settling. The network reaches a recall of 93%, which
indicates the percentage of correctly detected outliers among
all labeled outliers. A further investigation of the undetected
outliers shows that 89% have a minor influence on the overall
performance because the interference affects less than 1% of
the samples of each chirp. Overall, the network reaches an
F1-score of 90.5%.

The network shows a high detection rate and is also capable
to detect unlabeled outliers, which negatively affects the F1-
score. Therefore, we also evaluate the performance with the
optional zeroing mitigation method. Figure 2 indicates that
the proposed system can continuously forward the detected
outliers to mitigate interference. For simulation purposes, we
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Fig. 4. Example Range-FFT of clean, interfered, and mitigated signal.

Mitigation is done by zeroing out the corrupted samples, detected by our
proposed outlier detection method. Target at 173 meters is 1 dB below the
noise level and not detectable. The interference mitigation improves the noise
floor by 18 dB and increases the SNR of the 170-meter target from -1 dB to
19 dB.

extract the valid samples from the radar time series before
further processing. We analyze the SNR with and without
interference by applying the first FFT. The test dataset contains
additional time series without interference because we want
to detect all targets with Constant False Alarm Rate (CFAR).
We use this CFAR-mask to calculate the mean noise level
and signal power for different interference scenarios. Applying
CFAR detection to interference samples leads to an undetected
loss of targets and the misinterpretation of the SNR. Figure 4
shows an example Range-FFT. The clean signal has a noise
level of around -86 dB and there are two targets, one at 173
meters with -56 dB and another at 234 meters with -62 dB.
Due to interference, the noise floor increases from -86 dB
to -58 dB, and target one has a power level of -59 dB and
is not detectable because it is slightly below the noise floor.
Applying our proposed interference detection and the zeroing
mitigation method improves the noise floor by 18 dB and the
targets are well separable from the noise level. The SNR for
target one improves by 19 dB and for target two by 12 dB
compared to the interfered signal. This architecture achieves
an improvement of the noise floor up to 32.17 dB and an
average of 1.45 dB for the complete dataset by accounting all
detected outliers. It also increases the SNR by up to 30 dB.
Additionally, we observe that the performance of the noise
floor and SNR can decrease for correctly detected outliers,
which indicates limitations of zeroing mitigation, as already
reviewed by [11].

VI. DISCUSSION

In this work, we presented a deep learning inspired outlier
detection method which we apply to the task “FMCW radar-
to-radar interference detection”. The proposed outlier detector
consists of a multilayer LSTM network, with high flexibility
and pattern independent detection, due to the semi-supervised
training.

Other NN-inspired methods use the Range-FFT or RDM
to apply convolutional filters to perform image denoising.
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The proposed method uses the time domain signal to enable
early detection and to reduce the memory footprint because
it does not store the intermediate samples such as it would
be necessary for denoising of RDMs. Also, the proposed
network uses a one-dimensional temporal input compared to
the multidimensional input of CNN based methods, where
the dimension correlates with the radar settings. Therefore,
a change in the number of samples per ramp increases or
decreases the input dimension and can affect the necessary
number of convolutional layers and kernels. Our proposed
system can be retrained to the specific scenario without input
dimension modifications, which makes it better suitable for
hardware implementations.

Another crucial factor is the training of NN methods. The
fact that outliers appear sparsely and in various shapes, often
unsupervised methods such as clustering [18] are utilized. The
unsupervised methods reduce the controllability of the learned
features, which can be an important aspect in safety-related
applications. Thus, we use semi-supervised training for our
proposed method, where we train only the normality and can
distinguish between deviations from the expected values. This
reduces the training effort and the need for extensive datasets
containing sparse outliers.

Additionally, the proposed method comprises a self-mon-
itoring potential based on the number of detected outliers
per chirp. The reason for many outliers within a chirp is
twofold: (1) An incorrect prediction of the LSTM or (2) the
signal saturates due to strong target reflections or interference.
The differentiation between these two cases is challenging,
and further analysis provides the possibility for avoidance
or mitigation by adjusting the radar settings or retraining
the predictor. An opportunity for differentiation would be to
observe whether interference occurs outside the valid samples.
In these situations, the zeroing mitigation cannot improve the
signal because crucial signal information are removed.

Besides, we analyze the extension of the detector with
zeroing mitigation because of its low hardware complexity
compared to other methods like extrapolation. As shown by
[11], we expect better performance with other methods with
higher computational complexity.

VII. CONCLUSION AND FUTURE SCOPE

Detecting outliers has a wide field of application, from
fraud detection to faulty sensors. We use a semi-supervised
LSTM approach to score the deviation from normality for
radar-to-radar interference detection. The network achieves
an Fl-score of 90% and improves the noise floor by up to
31 dB with zeroing mitigation. We highlight the trade-off
between low complexity mitigation and reduced performance.
We also show a monitoring capability of the network and the
sensor by observing the number of outliers per chirp. This
method expands the detectability by observing the complete
IF signal time series, which provides more information for
dynamic interference avoidance. The proposed method uses
the temporal stream to reduce hardware complexity, utilizing
the memory capability of an LSTM network. We realize that

a benchmark dataset from real radar measurements would
increase the comparability of the algorithms. Therefore, we
suggest the creation of a dataset with and without interference
in real-world radar applications based on the temporal signal
for high flexibility in the input signal selection.
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