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Abstract

Standard Template Library ( STL) is a universally used set of C++ template classes.
The STL provides the most commonly used programming data structures and functions,
such as lists, stacks, and arrays. All STL container classes, algorithms, iterators, and other
elements are parameterized to be generalized. The library has many essential and highly
optimized elements that almost every modern C++ code uses it. This also includes programs
that run on new operating systems like OctoPOS, designed from the ground up for future
many-core architectures. In the case of the molecular dynamics simulation LAMMPS in
the combination of OctoPOS, an STL implementation is missing. To be more specific, the
LAMMPS source code depends on the MPI-API, which OctoPOS already provide, and a
C++11 STL implementation is missing. This thesis explains what the Standard Template
Library is in detail and where the library is defined. Furthermore, how to implement them
and test core elements from OctoPOS.
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Zusammenfassung

Die Standard Template Library ( STL) ist eine universell verwendete Sammlung von C++
Vorlagenklassen. Die STL bietet die am häufigsten verwendeten Programmierdatenstrukturen
und -funktionen, wie lists, stacks und arrays. Alle STL-Containerklassen, Algorithmen,
Iteratoren und andere Elemente sind parametrisiert und können verallgemeinert werden.
Die Bibliothek enthält so viele grundlegende und hoch optimierte Elemente, dass fast
jeder moderne C++-Code darauf aufbaut. Dazu gehören auch Programme, die auf neuen
Betriebssystemen wie OctoPOS laufen, das von Grund auf für zukünftige Many-Core-
Architekturen entwickelt wurde. Im Falle der Molekulardynamiksimulation LAMMPS in
der Kombination mit OctoPOS fehlt eine STL-Implementierung. Genauer gesagt, hängt
der LAMMPS-Quellcode von der MPI-API ab, die OctoPOS bereits zur Verfügung stellt,
allerdings fehlt eine C++11 STL Implementierung. Diese Arbeit erklärt, was die Standard
Template Library im Detail ist und wo diese definiert wurde. Außerdem wird erklärt, wie
man sie implementiert und die Kernelemente von OctoPOS testet.
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Introduction and Theory/Background

1



1. Introduction

We nearly reached a time when multi-core architectures were getting out of fashion. Not long
ago, everything started with single-core CPUs. Intel released its Intel 4004 in 1971, with it
they revolutionized the microprocessor design and the entire integrated circuit industry with
it [Bio]. The next big step for Intel was from the 4004 to the 8086, which had ten times more
transistors. Furthermore, every new CPU generation had more performance by combining
an exponential increase of transistors and the addition of dedicated floating-point units,
multipliers, and improvements in the general instruction set and its extensions. In those
times, technologies and designs that nowadays we take granted, were just being developed,
like the pipeline CPU design, which started with the Intel i386. Nevertheless, the most
significant contributor to the immense CPU performance increase was “simply” decreasing
the transistor size, so it was possible to put more transistors in the same space as before.
In early 2000, the CPU manufacturers increased their clock speeds, new CPU designs were
created and optimized, and new features like branch prediction and multi-threading were
introduced. These innovations peaked in the top single-core CPU of its time, the Intel
Pentium 4 with 3.8GHz and support for two threads.

Everything indicated that at some point, we would have a CPU that would run at 10GHz.
However, the increasing clock frequency and shrinking transistor sizes resulted in higher
power consumption, increasing the risk of current leaking. Moreover, all that current running
through the CPU produces much heat that is not efficiently dissipated. All these problems
meant there was a ceiling for the CPU frequency for consumers. Therefore a new CPU
design was needed, so multiple single-core processors were connected to one big multi-core
processor.

Nowadays, a system consists of multiple physical CPUs that share one primary memory
pool and peripherals on one single motherboard. Only super-computers and servers used the
first such systems, and the first actual multi-core processor got released by IBM under their
Power4 architecture in 2001. Over time the GHz race slowed down, and regular consumers
used the multi-core processor systems. These days AMD and Intel are selling consumer
multi-core CPUs, where one CPU can have up to 16 cores and 32 threads.

After multi-core CPUs, the following step for super-computer and server CPUs might be a
many-core architecture with 103 and more processors on a single chip [OSK+11]. The shared
and distributed memory could coexist on a single chip on these CPUs. We might have so
many cores on a single many-core system that every thread will run on its private core at
some point in the future. At that point, multi-threaded cores will be the exception, and
many-core systems will be the default. When we reached that point in hardware, we also
needed a new way for operating systems to manage processors, and programmers needed a
way to manage fine-grained parallelism.

A way to benefit from these new multi-processor systems on chip (MPSoC) got intro-
duced in “Invasive Computing: an Overview” [THH+11]. From that emerged OctoPOS, a
redesigned from ground up OS developed from the Transregional Collaborative Research
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Centre “Invasive Computing” (SFB/TR 89) funded by the German Research Foundation.1

With OctoPOS, a new OS got developed that is optimized for the future many-core ar-
chitecture that renounced heavyweight threads. In addition, OctoPOS includes a partial
implementation of MPI. That way, it is possible to run existing C-MPI programs without
any modifications.
A problem arises when we want to compile a C++ MPI program, like the molecular

dynamics simulation code LAMMPS, which is written in C++11. OctoPOS is missing
an implementation of the Standard Template Library (STL). Thus, this thesis aims to
implement a part of the STL special fitted to OctoPOS’s current limitations. In addition,
the thesis tries to provide answers to the following questions:

• Which dependencies does LAMMPS have, and how to find them?

• Where to find the STL definitions?

• How to test the OctoPOS components? (including the special version of the STL)

• What are the performance differences between the existing STL and the OctoPOS
STL implementation?

• What are the performance differences between the special STL on bare-metal and a
guest system?

• Is it worth implementing and having a special version of STL?

1http://www.invasic.de
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2. Related work / Background

2.1. LAMMPS

LAMMPS stands for Large-scale Atomic/Molecular Massively Parallel Simulator [TAB+22,
LAM21]. As the name already indicates, LAMMPS is a molecular dynamics simulation
code with a focus on materials modeling. It is specially designed for parallel execution. The
LAMMPS project is open-source, and it is distributed freely under the terms of the GNU
Public License Version 2 (GPLv2). Under the GPLv2 license, LAMMPS can be used free
of charge, and it can be modified for different purposes, but there are specific rules if the
changes redistribution is wanted.

LAMMPS can simulate particles in liquid, solid, or gaseous states. The LAMMPS
documentation lists every system that the simulator can model, among others, atomic,
biological, coarse-grained, granular, macroscopic, polymeric, or solid-state (metals, ceramics,
oxides). In addition, LAMMPS uses a variety of interatomic potentials (force fields) and
boundary conditions. The simulation can be in 2D or 3D systems with only a few particles
or up to millions or billions of them.

LAMMPS is designed and optimized for parallel computers, but it can be built and
executed on consumer laptops or desktop machines. By default, LAMMPS runs in a serial
process. The MPI message-passing library is used to utilize the full potential of the parallel
systems. Some parts of LAMMPS also use OpenMP multi-threading, vectorization, and
GPU acceleration. Spatial decomposition combined with MPI parallelization divides the
simulation domain into smaller chunks of equal computational cost to distribute the load on
parallel machines.

The codebase of LAMMPS is written in C++ and requires a compiler that is at least
compatible with the C++-11 standard. The code structure is very modular, so it is
straightforward to modify and extend LAMMPS with new features. Newton’s equations
of motion are integrated into a collection of interacting particles at the core of LAMMPS.
Depending on the simulation scenario, a particle can be an atom or a molecule, or an
electron, a coarse-grained cluster of atoms, or a mesoscopic or microscopic clump of material.
A neighbor list is used to keep track of particles that can interact with each other. The lists
are optimized for systems with repulsive particles at short distances so that the local density
of particles never becomes too large.

2.2. Invasive Computing

The idea behind Invasive Computing and Programming is defined in [THH+11] as following:

Invasive Programming denotes the capability of a program running on a parallel computer
to request and temporarily claim processor, communication and memory resources in the
neighborhood of its actual computing environment, to then execute in parallel the given
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2.2. Invasive Computing

program using these claimed resources, and to be capable to subsequently free these resources
again.

With these definitions, the authors of [THH+11] hope to be able to benefit from future
multiprocessor system-on-chip (MPSoC) by allowing programs to manage and control the
processing resources (i.e., processor cores, communication links, cache lines), but only up to
a certain degree and in context of the local state of the underlying computing hardware.

2.2.1. Invasive Operations

A particular programming paradigm and notation are needed to enable invasive programs to
request and control processing resources. After claiming the resources, the operating system
decides how many of them the program can use. Because of that, an invasive computing
program should be able to adapt and be aware of its resources. The program might change
its behavior in the case it did not get all the wanted resources based on the three basic
primitives, which are described in [THH+11] as follows:

invade A request indicates that an entity needs more hardware resources. If the invasion is
successful, the run-time support system will assign the requested resources to a claim.

infect The command will infect a granted resource and its process with the program, much
like a virus. After successful infection, the parallel execution may start on all infected
resources.

retreat The retreat command leads to freeing the claimed resources by the run-time systems
if the retreat was successful.

start invade infect retreat exit

Figure 2.1.: State diagram of an invasive program [OSK+11]

The typical state transitions of an invasive program is shown in Figure 2.1. The live
cycle starts with the construction of the initial claim. The claim construction is done by
issuing a call to invade. If the invasion was successful, a program would be granted exclusive
access to some resources. At the same time, it is not required to have a mechanism for
resource-sharing because there is a superior instance that decides how the resources are
distributed. After a successful invasion, infect is used to start the actual application code
on the claimed resources. As soon as the execution finishes on all resources, the number of
resources inside the claim can be altered. That can be done by calling invade or retreat to
expand or shrink the application’s claim. If there is no change in the degree of parallelism,
it is also possible to dispatch another program onto the same resources by another call to
infect. A program needs to retreat from all resources by leaving the claim empty to exit.
Therefore there are no computing resources left for further execution. Hence it terminates
its execution.
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2. Related work / Background

In [THH+11] a basic unit of execution, i.e., a piece of program subject to invasive-parallel
execution, is referred to as an i-let, which is short for “invasive-let”. An i-let got defined
as a section of a program that will potentially be executed in parallel. If only one process
unit was invaded, or because of other scheduling decisions, it may be executed in serial. A
group of i-lets is called a team. Like the desired scheduling technique, hints about run-time
behavior can be added to a team. After its creation, a team is used to infect a given claim.

2.3. OctoPOS

OctoPOS is an operating system designed and implemented specifically for the Invasive
Computing paradigm to address the hardware and software challenges of future massively
parallel systems like a Multi-Processor System on a Chip (MPSoC). The name OctoPOS is
a combination of the prefix ’Octo’ and the abbreviation ’POS’, which stands for a parallel
operating system. The prefix ’Octo’ refers to the octopus, which can use all its tentacles in
parallel and adapt very well to its environment. The properties mentioned of parallelism
and adaptability are also of central importance for OctoPOS.

2.3.1. OctoPOS Design and Goals

OctoPOS was designed as an Invasic Run-time Support System (iRTSS), which, together with
the agent system, provides the basis for the execution environment. In particular, OctoPOS
is designed explicitly for a Partitioned Global Address Space (PGAS) programming model
like it is used with tiled many-core architectures [MBZ+15]. The cores of such architectures
see a global address space, but cache coherence is only guaranteed for a group of cores that
form a tile. Inter-tile communication is done over a simple scaleable interconnection in a
message-based fashion. Not relying on global cache coherency allows OctoPOS to support
large systems efficiently.

Several design goals were pursued in the design of OctoPOS. These are briefly listed below:

Resource-aware operating system Resource management must be extended for resource-
aware programming. In addition to managing existing resources, exclusively reserved
resources must be considered when allocating them. The abstractions within the
operating system must themselves be resource-aware.

Micro parallelism Efficient use of the available processors requires lightweight support for
application parallelism. Even small programs should be able to be executed in parallel
with the help of efficient abstractions. For these abstractions carriers are required to
have low costs and the critical path as short as possible for the activation and loading
of activity.

Scalability The operating system should scale well and not become a bottleneck in executing
parallel applications.

Availability for application development Simultaneous design and implementation of the
hardware and software requires an alternative platform for independent development
of the software. Therefore, OctoPOS will be designed and maintained for multiple
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2.3. OctoPOS

architectures. This also decouples hardware and software development, which speeds
up development and can also be used for debugging.

Hardware support The hardware extensions available on the architecture for “Invasive
Computing” are used efficiently by the operating system. In doing so, classical tasks of
an operating system - if available - are taken over by hardware components. However,
software emulations are also required for architectures on which invasive hardware
components are unavailable.

2.3.2. OctoPOS Hardware

The Parallel execution implementation from OctoPOS is very lightweight compared to other
comparable operating systems. Switching overhead between two i-lets after the first one is
finished is similar to the overhead of calling an indirect function [OSK+11].

An i-let is a structure with a void-function pointer and another pointer to an additional
piece of data. When OctoPOS executes an i-let, the function pointer will be invoked with
the data pointer as its only argument.

The OctoPOS version used runs on computing cores accessing the same piece of memory
with uniform access costs. OctoPOS supports neither spatial nor temporal preemption to
support a slimmed-down operation system [OSK+11].

As a result, an executed i-let will run till its completion unless the i-let itself calls a
blocking system call. In that case, OctoPOS will stop the blocking execution and remove
the i-let from the processing unit. At some point, the blocking system call will end, and
the i-let will want to return to its execution. For that reason, the execution context needs
to be temporally saved. Similar to other traditional operating systems, OctoPOS as well
as a concept of process context that is typically represented by a stack on which an i-let
is executed. At the current state of the implementation, for OctoPOS, a context consists
of a stack frame, a field for a saved stack pointer to resume the context later on, and a
field indicating if the context is used or free. A blocked i-lets instruction pointer and its
non-scratch registers are getting pushed on the current context’s stack. The stack pointer
will be saved, and the context itself will be removed from the processing unit to make space
for the next one. Out of the pool of new contexts, one will be selected and fetched to start
the execution on the available processing unit. After the blocking system call ends, the i-let
can be rescheduled. The new i-let will be exchanged by the no longer blocked one, and the
new i-lets context will be moved back into the pool of free contexts.

Three targets are supported by OctoPOS [OSK+11]. These are:

SPARC Leon The initial architecture used for invasive computing. It features a hardware-
based Core i-let Controller (CiC), which is responsible for dispatching ready i-lets to
the available cores of the claim.

x86 Guest Compiling OctoPOS for this target produces an x86 binary that can be run under
Linux. If executed, OctoPOS runs as a “guest” program under the Linux operating
system. This target is not intended to be used in production, only for development
and debugging.

7



2. Related work / Background

x64 Native Targets standard x64 (x86-64, AMD64) hardware. On platforms with multiple
Nonuniform Memory Access (NUMA) domains, OctoPOS creates a tile for every
NUMA domain.

OctoPOS is ideal for large and highly parallel programs that take advantage of micro-
parallelism, mainly through the fast and scalable execution model and the provided
lightweight primitives for executing i-lets and efficient synchronization mechanisms.

2.4. Standard Template Library

The C++ Standard Library is a collection of classes and functions in the C++ programming
language, and it is part of the C++ ISO Standard (ISO/IEC 14882) [2211]. The Standard
Template Library (STL) is a set of C++ template classes to provide common programming
data structures and functions such as lists, stacks, and arrays. The library also includes
often used container classes, algorithms, and iterators. Moreover, the STL gets its name
from being a generalized library, so its components are parameterized. The benefit of using
the STL is that it saves time and effort by providing reliable and fast data structures and
algorithms, which can be easily extended.

2.4.1. Structure of STL

The STL can be divided up into the following main categories, with those in bold being
relevant to this thesis:

• Algorithms

• Atomic operations

• C library wrappers

• Concepts

• Containers

– Sequence containers

– Ordered associative contain-
ers

– Unordered associative con-
tainers

– Container adapters

• Container views

• Error and exception handling

• General utilities

• I/O and formatting

• Iterators

• Language support

• Localization

• Math and numerics

• Memory management

• Multi-threading

• Ranges

• Regular expressions

• Strings and character data

• Time

The categories, which are important for this thesis, are described in the following subsec-
tions [Mic]:
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2.4. Standard Template Library

Algorithms

Algorithms are a fundamental part of the C++ Standard Library. Algorithms mainly use
iterators and do not work with containers. Therefore, all container classes provide a custom
iterator.
The three headers <algorithm>, <cstdlib>, <numeric> belong to the category of the

algorithm.

C library wrappers

As the category name hints, 26 header files wrap C functionality inside the std namespace.
However, sometimes C functions and macros are undefined and re-implemented in the std
namespace. Examples for such are wrapper are: <cassert>, <cmath>, <cstdio>, which
wrap the <assert.h>, <math.h>, <stdio.h> respectively.

Containers

STL defines a wide range of types-safe containers to store and manage a wide variety of
objects. The type of elements that the containers are storing is defined over templates at
compile time. All containers can be constructed with a std::initializer list, and they
all have member functions to add, remove elements, and do other operations. We move
between the container’s elements and access them individually with iterators. The iterators
are either used explicitly by calling the member functions or implicit by range-for loops. All
C++ STL iterators have a standardized interface, and all containers have their specialized
iterators. For example the std::map class has a tree iterator.
The container category can be divided into three subcategories: sequence containers,

associative containers, and container adapters:

Sequence Containers Sequence containers maintain the ordering of inserted elements that
you specify. Typical sequence containers are std::array and std::vector, which
have a fixed and dynamic length respectively

Associative Containers In contrast to other containers, Associative Containers store “sorted
data” compared to other containers. The benefit of this is, searching through ordered
data much faster than random ordered ones. The downside is that the inserting of
new elements takes much longer. The associative containers can be grouped into two
subsets: maps and sets. Maps consist of key/value pairs, and every key is unique. A
set only allows one instance of a key, and the value is also the key. The keys are used
to order the inserted elements in both maps and sets.

General utilities

In this category, we have general useful structs, functions, and operators, like inside the
<utility> header, where the struct pair is defined, which is used when two objects need
to be treated as one. Alternatively, a tuple can hold an object of varying types from the
same-named <tuple> header. Inside the <type traits> header, templates for compile-time
constants are defined, giving information about their type arguments’ preterites or producing
transformed types.

9



2. Related work / Background

Iterator

The iterator category only has one element: the <iterator> header file, which defines iterator
primitives, predefined iterators, and stream iterators. STL has some predefined specialized
iterators, like the std::reverse iterator, which uses another iterator and reverses its
operators.

Memory management

The memory management includes the <allocators>, which defines several templates that
help allocate and free memory blocks for node-based containers. Furthermore, the <new>
header controls allocation and freeing storage with types and functions and defines compo-
nents for reporting storage management errors.

Strings and character data

In this category, the basic string class is defined inside the <string>, which is the basis for
the std::string alias. In addition, operations and comparisons of char and double-wide char
arrays are defined or wrapped inside the std namespace.

2.4.2. History of STL

Alexander Stepanov was the first who suggested the basic design and idea behind a standard-
ized template library [Shu]. He started working on his initial idea of generic programming
in 1979 and explored its potential for a revolution in software development. In 1971, David
Muser had already developed and advocated some aspects of generic programming. It was
limited to a rather specialized area of software development.

ADA was the first programming language used to generate a generic library. Stepanov
and Musser published the ADA library in 1987, with generic list processing as the first
implemented component of the library.

Stepanov switched from ADA to C++ for its fast access and managing of data storage due
to pointers. The crucial point was to achieve a generality without losing efficiency, which
was possible by having flexible access to storage via pointers. Together with Musser and
later with Meng Le in 1992, Stepanov experimented with many architectural and algorithmic
formulations in C and C++ and contributed to Stepanov’s HP project.

In November 1993, Stepanov presented his work to the ANSI/ISO committee for C++
standardization. The committee’s response was so overwhelmingly favorable that it led to a
formal proposal for the following committee meeting in March 1993.

At that time, Hewlett-Packard decided to continue working on Stepanov’s implementation
of the STL and considerably improve it. In August 1994, the decision was made to make
the implementation freely available. Nowadays, HP implementation is the basis of many
implementations used by compilers and other libraries.

2.4.3. C++ Committee

In 1990-91 the ISO C++ committee was formed and was called WG21 (working group
21), officially ISO/IEC JTC1 (Joint Technical Committee 1) / SC22 (Subcommittee 22) /

10



2.4. Standard Template Library

WG21 [fSb]. The committee consists of accredited experts from member nations of ISO/IEC
JTC1/SC22 who are interested in C++ work.

Every year the WG21 organizes three full week-long face-to-face meetings. Traditionally,
two meetings are held inside the continental United States. The third one is often in Europe
but periodically in Canada, Hawaii, the Caribbean, Japan, or Australia.
The meetings are always six days long (Mon-Sat) and start with everyone in the same

room for a planning session [fSa]. With everyone together, the work is organized for the rest
of the week. At the end of Saturday, the committee will habe decided what new features
will be included in the approval polls. There is technical discussion in smaller subgroups for
the rest of the week.

2.4.4. ISO IEC 14882

Inside the ISO/IEC 14882, the requirements for implementation of the C++ programming
language are specified. Since 1998 six editions have been published. The first is called
ISO/IEC 14882:1998. The first requirement of every edition is that they implement the lan-
guage, which also defines C++ itself. Inside the ISO/IEC 14882, besides other requirements,
the STL and the synopsis of the individual STL header files are also defined.

The current ISO ISO/IEC 148821 from 2020 defines C++ as a general-purpose program-
ming language based on the C programming language described in ISO/IEC 9899:2018
Programming languages — C (from now on, referred to as the C standard). C++ can be
described as a superset of C and extends it by including additional data types, classes, tem-
plates, exceptions, namespaces, operator overloading, function name overloading, references,
storage management operators, and additional library facilities.
There already are many implementations of STLs which are following the ISO standard

like:

• GNU C++ Standard Library (libstdc++)

• LLVM C++ Standard Library (libc++)

• NVIDIA C++ Standard Library (libcu++)

• Microsoft C++ Standard Library (MSVC STL)

1https://www.iso.org/standard/79358.html
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3. The requirements to make LAMMPS
compile

As already mentioned in the Chapter 2 the code base of LAMMPS is written in C++, more
specifically the C++-11 standard, plus LAMMPS uses the MPI library, which is already
defined inside OctoPOS. In addition, to compile, we need either CMake or make. The
advantages and disadvantages of the two combined with LAMMPS are described in the
following section.

3.1. LAMMPS build

To build LAMMPS, we have two options, either use CMake or make.

3.1.1. CMake

CMake is entirely open-source and is used to build, test, and package software on many
different platforms [Kit]. CMake is used to control the software compilation process using
simple platform and compiler independent configuration files and generate native makefiles
and workspaces that can be used in the compiler environment of anyone’s choice.

LAMMPS lists the following advantages to use CMake in its documentation [LAM21]:

• Using CMake is beneficial for people with limited experience in compiling software.

• CMake makes it also easy to extend the existing CMake configurations

• CMake will adapt the LAMMPS default builds according to the detected available
hardware, tools, features, and libraries.

• The settings customization can be done in text mode or with a graphical user interface,
both are supported by CMake.

• With a single operation, all enabled components can be compiled.

• For all files and configuration options, we have an automated dependency tracking
system.

3.1.2. make

This thesis did not need any of the previously mentioned features, so we modified and
extended an existing makefile and used make directly, which is the traditional way of
compiling LAMMPS. Other OctoPOS applications use pre-defined makefiles to compile, thus
it made sense to make also use of it in combination with LAMMPS. The makefile for serial
LAMMPS execution was used as a base, and the OctoPOS makefile gets included. LAMMPS
and OctoPOS use different variables for the same thing, and all import variables are listed

13
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makefile variable names
description

OctoPOS - LAMMPS

CXX - CC compiler for C++-files
CXXFLAGS - CCFLAGS flags for C++-files

- SHFLAGS shared flags for C++-files
- DEPFLAGS dependency flags
- LINK compiler for linked files

LDFLAGS - LINKFLAGS flags for linked files
- LIB name of MPI library
- SIZE

AR - ARCHIVE command for archives
- ARFLAGS archive flags
- SHILIBFLAGS shared library flags

CPP SRC - SRC C++-files
C SRC - C-files

CXX SRC - Cxx-files
OBJECTS - OBJ object files

Table 3.1.: Makefile variable description

in the Table 3.1. We modified the LAMMPS makefile but kept the LAMMPS naming
convention and extended the LAMMPS variables by the OctoPOS equivalent ones. For the
variables which define compilers, there the OctoPOS variables are used. By extending or
overwriting the LAMMPS variables, all other makefile commands and configurations can be
used and do not have to be modified. This also includes the original LAMMPS commands
to compile everything together.

3.2. LAMMPS dependencies

LAMMPS uses the standard template library extensively and therefore depends on the
header files, which are listed in Appendix A. There are different ways in which one could get
a list of all needed dependencies. There are static code analyzers and special compiler flags.
Static code analyzers are mainly used to examine code, even before it gets compiled

and executed. For example, with static analysis, weaknesses in source code, leading to
vulnerabilities can be identified. That also could be done by manual code reviews of merge
requests, but automated tools, like the open-source static code analyzer Cppcheck1, are
much more effective. Nonetheless, they usually cannot replace the manual code review
process. The feature we are interested in is the static dependency analysis. It is mainly used
to find dependency cycles and display the dependency in a graph. Furthermore, with it, we
have a list of all dependencies.
We only need to know the std header files and the c standard header files, which the

LAMMPS serial implementation uses. Since LAMMPS uses g++ to compile C++ and
link files, we can simply use the -H flag of g++2. With the -H flag, the compiler prints the

1https://github.com/danmar/cppcheck/
2https://linux.die.net/man/1/g++
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3.2. LAMMPS dependencies

name of each header file used and other regular activities. It also indicates the depth in the
#include stack by the indentation. Because of that, we do not need any additional tools or
software to assist us.

For example we have the simple hello world code in Listing 3.1 written in C++:

1 #include <iostream>
2
3 int main ( ) {
4 std : : cout << ”He l lo World ! ” << std : : endl ;
5 return 0 ;
6 }

Listing 3.1: C++ hello world example

And in the Listing 3.2 we have the first few lines of the compiler output form g++ -H

helloWorld.cpp, when compiled on a Ubuntu 20.04.

. / usr / in c lude /c++/9/iostream

. . / usr / in c lude /x86 64−l inux−gnu/c++/9/b i t s /c++con f i g . h

. . . / usr / in c lude /x86 64−l inux−gnu/c++/9/b i t s / o s d e f i n e s . h

. . . . / usr / in c lude / f e a t u r e s . h15

. . . . . / usr / in c lude /x86 64−l inux−gnu/ sys / cd e f s . h

. . . . . . / usr / in c lude /x86 64−l inux−gnu/ b i t s /words ize . h

. . . . . . / usr / in c lude /x86 64−l inux−gnu/ b i t s / long−double . h

. . . . . / usr / in c lude /x86 64−l inux−gnu/gnu/ stubs . h

. . . . . . / usr / in c lude /x86 64−l inux−gnu/gnu/ stubs −64.h

. . . / usr / in c lude /x86 64−l inux−gnu/c++/9/b i t s / cpu de f i n e s . h

. . / usr / in c lude /c++/9/ostream

. . . / usr / in c lude /c++/9/ i o s

. . .

Listing 3.2: C++ hello world compiler output

In the very first line of the compiler output in the Listing 3.2, we find out that the
<iostream> header file can be found inside the /usr/include/c++/9/ folder, as are all other
STL header files. In addition, all files located directly in /usr/include are the standard C
header files, which might be used by the STL header files or are used by LAMMPS directly.

For the thesis, we added the -H flag temporally to the original serial makefile of LAMMPS.
This way, we get all headers that are used and all headers that the headers use, and so on.
After we got the dependency list in the format of the output of the Listing 3.2, we removed
the dots and the spaces at the beginning of the file paths, sorted them by name, and deleted
the duplicates. In the end, we have a complete list of all LAMMPS dependencies.
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LAMMPS depends on a lot of different header files from the STL and as well as C standard
header files. All needed files are listed in the Appendix A. LAMMPS depends on 43 different
STL header files and 21 standard C header files. However, it is worth mentioning that most
C files are only indirectly accessed over a wrapper in the STL files.
In addition, from this point onward, we will call this special implementation of the STL

for OctoPOS liboctoc++. It is a combination of library, OctoPOS, and C++, and is
similar to other STL implementation naming conventions, like the GNU libstdc++.

4.1. Implementation process

As already mentioned in the Chapter 2 the STL is described in the ISO/IEC 14882. Because
LAMMPS is based on C++11, we follow the ISO/IEC 14882:2011 standard requirements.
Inside the standard, the synopsis of the header files is written down, as well as how the
functions and classes should behave, but not directly how they should be implemented.
The synopsis defines all functions, classes, and interfaces that can be accessed in the std
namespace.

4.2. Implementation examples

For this thesis, a lot of different header files were implemented, which are all listed in the
Appendix A. Out of all of them, we selected the std::stable partition function from the
<algorithm> header file and the std::map class to be our examples, because both of them
are non-trivial to implement, and therefore it took more time than other parts to develop
them. Plus the std::set is based on the same tree data-structure as the std::map class,
and therefore the benchmarks look similar.

4.2.1. stable partition

One of the many algorithm functions is the std::stable partition, located in the
<algorithm> header file. The std::stable partition reorders the elements in the range
[first, last) in such a way that all elements for which the predicate pred returns true precede
the elements for which the predicate pred returns false [cpp]. The relative order of the
elements is preserved. The std::stable partition function from the <algorithm> header
file is described in the Partition subsection inside the ISO/IEC 14882. The synopsis of the
function is defined as follows:

1 template<class Bid i r I t e r , class Predicate>
2 B i d i r I t e r s t a b l e p a r t i t i o n ( B i d i r I t e r f i r s t , B i d i r I t e r l a s t , Pred i ca te pred ) ;

Listing 4.1: std::stable partition synopsis
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The standard also defines the effects, returns, and complexity of this function with [2211]:

Effects: Places all the elements in the range [first, last) that satisfy pred before all the
elements that do not satisfy it.

Returns: An iterator i such that for any iterator j in the range [first, i), pred(∗j) ! = false,
and for any iterator k in the range [i, last), pred(∗k) == false . The relative order of
the elements in both groups is preserved.

Complexity: At most (last− first) ∗ log(last− first) swaps, but only a linear number of
swaps if there is enough extra memory. Exactly (last − first) applications of the
predicate.

Following the standard requirements, there are two possibilities to implement it: either
in-place or with additional memory space.
When the additional space is available, the algorithm is quite simple. This is just a

simplified explanation, not how it is implemented in libstdc++. Let us define N as the
number of elements that equals (last− first). Start with allocating N additional temporary
elements. Then count the elements where the predicate returns true. This way, we know
the offset of the elements which are returning false. Now we swap from the input range to
the temporary allocated memory. Because we know the offset by this point, we also know
to which the elements belongs. In the end, we move all elements back to the input range
in the order in which they are in the temporary memory section. The last thing is to free
the allocated temporary memory and return the iterator to the first element of the second
group, based on the offset.

Alternatively, one could use the in-place method. For this, we modify the in-place merge-
sort algorithm because merge-sort is stable. Unlike the typical merge-sort, we do not compare
two elements to see which one is smaller than the other. Rather, we check if both elements
are in the same group. If not, we swap them. Everything else is the same as the typical
in-place merge-sort algorithm.

1 namespace std {
2 namespace par {
3 template <class B i d i r e c t i o n a l I t e r , class Pred>
4 void i np laceMergePar t i t i on ( B i d i r e c t i o n a l I t e r f i r s t , B i d i r e c t i o n a l I t e r middle ,
5 B i d i r e c t i o n a l I t e r l a s t , Pred pred ) {
6 i f ( f i r s t == l a s t | | middle == l a s t | | f i r s t + 1 == l a s t )
7 return ;
8
9 i f ( ! pred (∗middle ) )
10 return ;
11
12 B i d i r e c t i o n a l I t e r pointA = std : : p a r t i t i o n p o i n t ( f i r s t , middle , pred ) ;
13 B i d i r e c t i o n a l I t e r pointB = std : : p a r t i t i o n p o i n t ( middle , l a s t , pred ) ;
14
15 std : : r o t a t e ( pointA , middle , pointB ) ;
16 }
17
18 template <class B i d i r e c t i o n a l I t e r , class Pred>
19 void mergeSortPart i t i on ( B i d i r e c t i o n a l I t e r f i r s t , B i d i r e c t i o n a l I t e r l a s t ,
20 Pred pred ) {
21 i f ( f i r s t == l a s t | | f i r s t + 1 == l a s t )
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22 return ;
23
24 B i d i r e c t i o n a l I t e r mid = f i r s t + ( l a s t − f i r s t ) / 2 ;
25 mergeSortPart i t ion<B i d i r e c t i o n a l I t e r >( f i r s t , mid , pred ) ;
26 mergeSortPart i t ion<B i d i r e c t i o n a l I t e r >(mid , l a s t , pred ) ;
27 i np laceMergePart i t i on<B i d i r e c t i o n a l I t e r >( f i r s t , mid , l a s t , pred ) ;
28 }
29 } // namespace par
30
31 template <class B i d i r e c t i o n a l I t e r , class Pred>
32 B i d i r e c t i o n a l I t e r s t a b l e p a r t i t i o n ( B i d i r e c t i o n a l I t e r f i r s t ,
33 B i d i r e c t i o n a l I t e r l a s t , Pred pred ) {
34 f i r s t = std : : f i n d i f n o t ( f i r s t , l a s t , pred ) ;
35
36 i f ( f i r s t == l a s t )
37 return f i r s t ;
38
39 par : : mergeSor tPart i t i on ( f i r s t , l a s t , pred ) ;
40
41 return std : : p a r t i t i o n p o i n t ( f i r s t , l a s t , pred ) ;
42 }
43 } // namespace std

Listing 4.2: std::stable partition implementation of liboctoc++

The GNU C++ standard library implementation tries to use the first algorithm first,
and if the allocation of memory fails, it falls back to the in-place algorithm. The in-place
algorithm is in the best-case scenario as fast as the alternative. Nevertheless, depending on
the predicate function, it can be slower.

The liboctoc++ implementation can be seen in the Listing 4.2. The std::stable partition

function starts out with searching for the first element, for which the pred function returns
false. If the input is empty at this point, the function ends here. Otherwise, a custom
merge-sort gets called, and at the end, the partition point of the input is returned.

4.2.2. map

The std::map class from the <map> header file is a handy container inside STL. The
std::map is defined as a kind of associative Container that supports unique keys (contains
at most one of each key) and provides fast retrieving values of another type T based on the
keys [2211]. The map class supports bidirectional iterators.

According to the standard, std::map has to meet the requirements of Containers, Alloca-
torAwareContainers, AssociativeContainers, and ReversibleContainer. An Object that is
used to store other objects and take care of the memory management is called a Container.
When a Container also has an instance of an Allocator, and when the Container uses that
instance in all its member functions to allocate and deallocate memory and construct and
destroy an object in that memory, then such Container is an AllocatorAwareContainer.
AllocatorAwareContainer can handle objects like container elements and nodes (or, for
unordered containers, bucket arrays). An AssociativeContainer orders its elements based on
its keys to have a fast lookup capability of the inserted objects. A Container that has either
a bidirectional or random-access iterators is also called ReversibleContainer because it can
be iterated in both forward and backward order.
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The synopsis of the std::map class is defined as follows in Listing 4.3, with the third and
fourth template variables predefined with the std::less function to compare the keys and the
allocator for the key-value pair. The complete std::map class and public member functions’
synopsis can be found at the cppreference.com website1.

1 template<
2 class Key ,
3 class T,
4 class Compare = std : : l e s s<Key>,
5 class Al l o ca to r = std : : a l l o c a t o r<std : : pa ir<const Key , T> >
6 > class map ;

Listing 4.3: std::map class synopsis

The std::map class has the following sections, types, constructor/copy/destructor, iterators,
capacity, element access, modifiers, observers, map operations, and non-member functions
like lexicographically comparing the values and specialization of the std::swap algorithm.
All public std::map member types are listed in the Table 4.1. On the base of them,

we have the key type and mapped type for the key and value variables, respectively. The
value type combines these two into one pair type. The size type is used to count the
elements in a map, and the difference type is for the distance between two map elements.
The iterators have to be implemented to move in both directions, i.e., incremented and
decremented.

Member type Definition

key type Key

mapped type T

value type std::pair<const key type, mapped type>

size type Unsigned integer type (usually std::size t)

difference type Signed integer type (usually std::ptrdiff t)

key compare Compare

allocator type Allocator

reference value type&

const reference const value type&

pointer std::allocator traits<Allocator>::pointer

const pointer std::allocator traits<Allocator>::const pointer

interator LegacyBidirectionalIterator to value type

const iterator LegacyBidirectionalIterator to const value type

reverse iterator std::reverse iterator<iterator>

const reverse iterator std::reverse iterator<const iterator>

Table 4.1.: map member types with its definition and description

For the member functions, the ISO/IEC 14882 defines their effects and their complexity.
For example, for the default constructor, the effect should be to construct an empty map
using the specified comparison object and allocator, and its complexity should be constant.
The standard directly defines the implementation for others, like the element access member

1https://en.cppreference.com/w/cpp/header/map
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function with the square bracket operator. For the T& operator[](const key type& x);

function, the standard bases it on the insert function, which itself has a complexity of
O(log(n)):

1 (∗ ( ( i n s e r t ( make pair (x , T( ) ) ) ) . f i r s t ) ) . second

Listing 4.4: map access operator[] function return

Maps are usually implemented as red-black trees. The self-balancing binary search tree
gets its name by storing an extra bit that represents “color”, which is either “red” or “black”.
After each modification, the tree gets re-balanced by following predefined rules to restore
the coloring properties. Through the re-balancing searching, inserting and deleting elements
are guaranteed to have a runtime of O(log(n)), even if the re-balancing is not perfect.

1 namespace std {
2 template <class key type , class mapped type> class RedBlackTreeMap {
3 public :
4 . . .
5 NodePtr i n s e r t ( const std : : pa ir<key type , mapped type> &p) ;
6 . . .
7 }
8
9 template <class Key , class T, class Compare = l e s s<Key>,
10 class Al l o ca to r = a l l o c a t o r<pair<const Key , T>>>
11 class map base {
12 public :
13 . . .
14 i t e r a t o r in s e r tVa lue ( const va lue type &value ) {
15 return TreeIteratorMap<key type , mapped type , va lue type >(
16 &tree , t r e e . i n s e r t ( va lue ) ) ;
17 }
18 . . .
19 private :
20 RedBlackTreeMap<key type , mapped type> t r e e ;
21 }
22
23 template <class Key , class T, class Compare = l e s s<Key>,
24 class Al l o ca to r = a l l o c a t o r<pair<const Key , T>>>
25 class map : private map base<Key , T>{
26 public :
27 . . .
28 // element a c c e s s
29 mapped type &operator [ ] ( const key type &x) {
30 return (∗ ( ( i n s e r t ( make pair ( x , mapped type ( ) ) ) ) . f i r s t ) ) . second ;
31 }
32 . . .
33 pair<i t e r a t o r , bool> i n s e r t ( const va lue type &x) { return i n s e r t h e l p e r ( x ) ;

}
34 . . .
35 private :
36 pair<i t e r a t o r , bool> i n s e r t h e l p e r ( const va lue type &x) {
37 auto node = f i nd (x . f i r s t ) ;
38 i f ( node != end ( ) )
39 return std : : pa ir<i t e r a t o r , bool>(node , fa l se ) ;
40 i t e r a t o r p = map base<Key , T> : : i n s e r tVa lue (x ) ;
41 return std : : pa ir<i t e r a t o r , bool>(p , p != end ( ) ) ;
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42 }
43 }
44 }

Listing 4.5: std::stable partition implementation of liboctoc++

The Listing 4.5 shows the code which is used to insert elements into an std::map instance.
It also shows how the class depends on other classes. The std::map class is derived from the
map base, because there is the std::multimap class as well. The std::multimap shares a
lot of logic with the normal std::map, and to have a DRY (Don’t Repeat Yourself) code,
there has to be a base class. The base class mainly handles the access to the red-black tree
data structure. Furthermore, to insert a new element over the operator[], we try to insert
a new element with the default value of the mapped type with the key x. If the map has no
entry under the key, a new element will be inserted. Otherwise, the reference of the already
existing element will be returned, ready to be read, or modified.

4.3. Library dependencies

As mentioned before, the standard template library has some C wrapper header files. In the
Figure 4.1 all 16 of them that are needed are displayed with their dependencies. Nearly all
of them only depend on the C header file for which they are the wrapper. The round nodes
are the C++ STL headers, and the C header files are hexagons.

assert.h

ctype.h

errno.h

float.h

inttypes.h

limits.h

locale.h

stdint.h

cassert

cctype

cerrno

cfloat

cinttypes
cstdint

climits

clocale

math.h

stdarg.h

stddef.h

stdio.h

stdlib.h

string.h

time.h

wchar.h

cmath

cstdarg

cstddef

cstdio

cstdlib

cstring

ctime

cwchar

Figure 4.1.: LAMMPS C wrapper header files

The C wrapper dependencies are pretty much straightforward, unlike the rest of the
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STL header files, which can be seen in the Figure 4.2. However, the graph here is highly
simplified. In reality, the STL headers are very interconnected. For example, the <map>
header file from the container libraries depends directly on the <memory> header, the
<iterator> header file, and the std::pair struct from the <utility> header file. The
complete dependencies graph is in the Appendix B.

Utilities libraries

Dynamic memory management

Numeric limits

Error handling

String libraries
Container libraries

Iterators

Algorithm libraries

Numeric libraries

localization libraries Input/output libraries

cstdarg
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initializer_list

tuple

type_traits

typeinfo

utility

memory

new cassert

cfloat

climit

cstdint

limits

exception iterator

stdexcept

system_error

cctypes

cstring
array

cwchar

string

map

set

vector

algorithm

cmath

complex

numeric

random

clocale cstdio

locale ios

iosfwd

iostram

istream

ostream

sstream

streambuf

Figure 4.2.: LAMMPS STL dependencies simplified

4.4. Implementation references

All the STL are defined in the ISO/IEC 14882 standard, and the current edition 6 is sold
by the independent and non-governmental international ISO organization for 198,– CHF.
The 2011 version of the standard that got retracted is no longer purchasable over the ISO
store, but the ASIE store still sells it for 60,–USD. Moreover, the ISO/IEC 9899 is also
needed, which defines the C language itself and its header files, on which a lot of the STL
components are based. Furthermore, the PDF for this standard is also sold for 198,–CHF at
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the ISO store. Fortunately, there are also free alternatives, like the docs from IBM. We find
the structure and defined macros of standard C header files in them.
A much better resource is the cppreference.com website. The site was created and is

maintained by a group of C++ enthusiasts from around the world. It is set up like other
wiki pages, and everyone can contribute to it. According to the site’s about page, its goal
is to provide programmers with a complete online reference for the C and C++ languages
and standard libraries, i.e., a more convenient version of the C and C++ standards. The
standard library descriptions are significant for this thesis.
The site not only lists all STL header files and their synopsis but also sometimes simple

implementations, which might not be the most efficient ones, but are a helpful base. In
addition, they list which part of each header file got added with which C++ iteration and
a detailed description of every function variation. As well as add a comment if a part is
deprecated or if it got replaced with something else.

All the content of the cppreference.com website is licensed under the Creative Commons
Attribution-Sharealike 3.0 Unported License (CC-BY-SA). By the GNU Free Documentation
License, we can share and alter the content, but only if we attribute the website and
distribute the modified code with the same, similar, or compatible license.
In most cases, we did not have a ready-to-copy implementation on cppreference.com.

Therefore we either implement the algorithms according to the description or, alternatively,
we look at other already implemented STL libraries. A reference implementation that was
used at the beginning of the implementation of liboctoc++ was the uClibc++2, which is
a subset of the C++ standard library and is especially designed for embedded systems.
uClibc++ is well structured and is simple to understand, but unfortunately, its code is
not entirely ISO conforming when compared with the definitions from cppreference.com.
It is notable is that the std::string and std::vector implementations from uClibc++
were used and adapted to be ISO conforming and is now used inside liboctoc++. In the
cases where the cppreference.com and uClibc++ could not help, there was also the STL
implementation by GNU. The libstdc++ is, of course, ISO conforming and highly optimized.
Although, its code is very complicated and structured with many helper functions, it is
still an excellent source, especially in the moments where the cppreference.com reference
implementations uses decltype, which is not supported yet by OctoPOS, and GNU does
not use them in their implementation.

For this thesis, around 20000 lines of code were added to the liboctoc++ library. Around
a third of it is just the synopsis directly copied from the cppreference.com website. When we
take the <algorithm> header file, for example, the synopsis of all the algorithm functions is
around 900 lines, and the implementation has around 1500 lines of code. Furthermore, to
test all the newly added functionality, around 6000 lines of test code were added, which are
described in the upcoming Chapter 7.

2https://cxx.uclibc.org/
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5. Testing framework

5.1. Catch2 testing framework

For testing, we use the testing framework Catch2 [Org]. Catch2 is mainly a unit testing
framework for C++, but it also provides basic micro-benchmarking features and simple
Behavior-Driven Development (BDD) macros. BDD is a variation of test-driven development
(TDD), where functions are first described as a story from the user’s point of view, and then
a test is created and implemented based on this.

Catch2 describes itself as a simple testing framework that feels natural when using it.
The Catch2 test cases, written in regular C++ code, auto-register themselves. The tests do
not have to be named with valid identifiers, and sections provide an excellent way to share
set-up and tear-down code in tests.

5.1.1. Why use this testing framework?

Catch2 is not the only established C++ framework out there. The most used one is Google
Test, but there also exists Boost Test, CppUnit, Cute, and many, many more.

Besides having a catchy name, the Catch2 documentation lists the following key features
as remarkable for the test framework:

• It is quick and easy to get started. For example, by simply adding Catch2 as a git
sub-module.

• Besides a compiler with C++14 support, there are no other external dependencies.
(the older version v2.x depends on C++11)

• Every test case is a function that registers itself.

• Test-cases can be grouped into sections, each run in isolation. That way, there is no
need for fixtures.

• Uses BDD-style Given-When-Then sections as well as traditional unit test cases.

• The framework uses the default assert function from STL wrapped in a macro for the
test elements. At the same time, the entire expression is decomposed, and lhs and rhs
values are logged.

• Tests are named using free-form strings, that means there is no strict naming rule for
the tests.

Other mentionable core features are:

• Besides grouping test cases with sections, they can also be grouped by tags for quickly
running ad-hoc groups of tests.
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5.1. Catch2 testing framework

• The test result outputs are handled by modular reporter objects, which output basic
textual and XML reports. Additional output formats can easily be added.

• For third-party tools, like a CI server, JUnit XML output is included as well.

• The latest version of Catch2 provides a default main() function, which a custom one
can replace (e.g., integration into your own test runner GUI).

• Even if a custom main() function is used, the command line parsers will still be
provided and still can be used.

• Besides the default test assertion macro, which aborts the test case if it fails, there are
also other macros, which only report and count the failed test and go on executing
the rest of the test case. Moreover, others are waiting for an exception itself when
executing.

• A complete set of floating-point comparisons is provided by default (Catcha::Approx)

• Internal and friendly macros are isolated so name clashes can be managed

• Data generators (data-driven test support)

• Microbenchmarking support

5.1.2. Why do we use Catch2?

Lets look at the C++ ecosystem survey 1. In the annual developer ecosystem survey,
Jetbrains asked the participants, among other questions, which language they use as their
primary programming language and what standard they are most comfortable with. In the
case of C++, they also asked which compiler and which build system the community uses
the most and which unit testing framework they use regularly. Google Test is in first place
with 32%, Catch2 is in second place with 11%, and third place goes to Boost.Test with 9%.
It is interesting to note that 30% of the participants said they are not writing any unit test
for C++ code.

For this Thesis, we selected Catch2 over Google Test because another team already uses
Catch2 for unit tests for iRTSS, so it was easy to modify it for our needs for the OctoPOS
unit tests. In addition, Catch2 made the integration of the framework very straightforward.

5.1.3. Why write unit tests

There are many different reasons why we want to have unit tests. The most important ones
are [Goe]:

Find Stupid Bugs Early We need unit tests to find incorrectly defined constants or wrongly
implemented algorithms before it is too late. Without these tests, vulnerabilities can
go unnoticed in the code and only become apparent later during integration tests or
even worse in production. If we take the time and do unit tests while writing the
methods or functions, such errors will be noticed in the early stages of production.

Avoid Regressions Sometimes, a bug is hidden in the production code and only appears
after a patch or a system update. To prevent such a scenario running a unit test on
every build helps verify that new features do not introduce bugs in the old code.

1https://www.jetbrains.com/lp/devecosystem-2021/cpp/
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5. Testing framework

Get Early Feedback Unit testing will give you feedback on, among others, if you caused a
new regression or whether the new code is doing what you want it to do.

Create Built-in Documentation We can always look into the test to not rely on outdated
comments. As long as they run through without any errors, tests are the one thing
that gets updated regularly, especially when we have continuous integration tests.

We want to write a practical test of discrete units and verify their functionality in isolation.
When a failed test does not make apparent what caused the failure, the unit test is not
isolated.

5.2. Testing in OctoPOS

Unfortunately, we can not use the full version of Catch2 to run tests and benchmarks
with OctoPOS. Catch2 uses exceptions and catches them if a test assertion fails. The test
frameworks count how many test cases were successful and failed and how many assertions
were in them.

We use a subset of Catch2 that does not throw exceptions at this time point. It counts
the failed assertions. The problem with this method is that it might count a failed test case
multiple times if there are multiple failed asserts in one test case.

5.2.1. OctoPOS lib test concept

The idea was to test every newly implemented dependency that LAMMPS needs independent
of the LAMMPS itself. LAMMPS depends on 43 C++ header and 21 C header files. Of
these 39 C++ headers that needed to be implemented, for the C headers, only five were
missing.
The test cases got split up into libc++ and libc tests.
In total, we have 3805 asserts in 431 tests. The libc test only has 16 asserts in 4 test cases,

and the rest are libc++ tests. We only have a few libc tests because the newly implemented
c headers are mainly constants and macros defined.
We call and test every newly implemented function at least once.

5.2.2. Test example implementation

Representative for other tests, the unit test implementation for std::stable partition

is in the Listing 5.1. The test starts with defining a container and inserting elements in a
range between zero and 100. A lambda expression to check if an integer is even is defined
as well. After that the std::stable partition is used on the container with the is even

function. Directly afterwards, the std::is partitioned is used to verify if the container’s
elements are partitioned now, but not if the algorithm was stable. Therefore we need to go
through the vector and check if the relative position of the elements did not change.

1 #include <algor ithm>
2 #include <catch2 . hpp>
3 #include <vector>
4
5 TEST CASE( ” t e s t s t a b l e p a r t i t i o n ” , ” [ l i b c++−t e s t s ] [ a lgor i thm ] [ p a r t i t i o n ] ” )
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5.2. Testing in OctoPOS

6 {
7 std : : vector<int> v = {} ;
8 for ( int i = 0 ; i < 100 ; ++i ) {
9 v . push back ( i ) ;
10 }
11 auto i s e v en = [ ] ( int i ) { return i % 2 == 0 ; } ;
12
13 std : : s t a b l e p a r t i t i o n (v . begin ( ) , v . end ( ) , i s e v en ) ;
14
15 REQUIRE( std : : i s p a r t i t i o n e d (v . begin ( ) , v . end ( ) , i s e v en ) ) ;
16 for ( int i = 0 ; i < v . s i z e ( ) ; ++i ) {
17 i f ( i < v . s i z e ( ) / 2)
18 v . at ( i ) = i ∗ 2 ;
19 else
20 REQUIRE(v . at ( i ) == ( i − ( v . s i z e ( ) / 2) ) ∗ 2 + 1) ;
21 }
22 }

Listing 5.1: std::stable partition unit test

Other tests, especially for components of the <algorithm>, are structured similar to the
Listing 5.1. They start out by defining a container, which could be a array, vector, map or
set and continues with inserting a few elements in a predefined order. Very often a custom
lambda expression is defined as well. After the setup, the method which we want to test is
called. And at the end of the test-case the output gets checked against the expected output.
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6. Comparison of efficiency between
OctoPOS and normal Linux

To compare the OctoPOS and a normal Linux system, the std::stable partition al-
gorithm and the std::map were selected. Two different input variants will be tested on
different batch sizes to test their performance. First, the input elements are in order, which
means the input goes from zero to N, which is the batch size. For the second test, the input
is pseudo-randomized. That is achieved by selecting a bigger prime number than the batch
size. We start at zero and add the prime number and use the module with the batch size.
We repeat that process for the whole batch. Because we use a prime number, we get every
number only once.

The liboctoc++ implementation is compared against the GNU libstdc++ with the
g++ compiler set to the C++11 language standard with -std=c++11. Additionally, all
benchmarks got compiled with the -O3 optimization flag. This way, the compiler attempts
to improve the performance at the expense of compilation time and output code size. With
-O3 we turn on all optimizations specified by -O2, that also includes -O1 optimizations, as
well as additional optimization flags like -fguess-branch-probability and many more 1.

For each performance test we execute the code multiple times, measure the time with
clock() from the C header file <time.h>, and take the average. The smaller test sizes are
executed a few thousand times and the bigger batch sizes are executed at least sixteen times.
In addition we also can calculate the standard deviation. We used the following formulas,
with N as the batch size and xi as the i-th execution time.

µ =
1

N
�

N∑
i=1

xi

σ =

√√√√ 1

N
�

N∑
i=1

(xi − µ)2

6.1. stable partition

As already mentioned before, std::stable partition, from the <algorithm> header file,
reorders all the elements in the range [first, last), that all elements for which a binary
function, called pred for the predicate, returns true, are placed before all elements for which
the pred returns false. Additionally, the relative order of the elements has to be preserved.

What we can see in the Figure 6.1 and what was evident from the beginning was that the
partition of the already sorted array is faster than in a more realistic scenario. However, the

1https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
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Figure 6.1.: Stable partition benchmark comparison: x86guest liboctoc++ vs C++11 lib-
stdc++

more exciting part is that the time difference between the g++ in-order and pseudo-random
benchmark is minimal, and both grow linear with the array size. This indicates that there
are only a linear number of swaps and that the algorithm allocates additional memory, like
it is expected by the ISO/IEC 14882.

On the other side, the OctoPOS implementation does not try to allocate any memory. This
way, it always uses the in-place method. Because the method does not allocate additional
memory, and in the case of the ordered array benchmark, the algorithm does not need
to swap any elements. Nevertheless, even without swapping the elements, the OctoPOS
implementation is multiple times slower than the reference implementation. Just going
through the array and making N*log(N) times many comparisons takes much longer than
creating a new memory block and moving the elements to the right place after finding the
right offset.

6.2. map insert

For the benchmark, we insert N pairs into the map. As for the benchmark before, we added
the elements once in order and the second time in randomized order. When the elements are
inserted in order, we force the underlying self-balancing tree data-structure to re-balance
periodically. A restructure of the tree is needed, because we only add elements at the right
side of the tree, and without it, we would end up with a linked list, with the smallest element
as root. In the case, when we insert the values randomly, the re-balancing does not have
to be done that often. Based on that the expectation is that, the execution time of the
randomly inserted elements is slightly faster, because the tree structure is better fitted for
such inputs.

The GNU and the OctoPOS implementation use a red-black tree as a base for the map
class. If the tree gets “too unbalanced”, the tree fixes itself. In the GNU implementation, we
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6.3. x86guest vs x64native
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Figure 6.2.: Map insert benchmark comparison: x86guest liboctoc++ vs C++11 libstdc++

can see a point where the random inserts are no longer slower than the in-order executions.
The reason is that at some point, the tree does not need to be fixed after a couple of inserts
because the randomness of the input spreads the new elements up to the different leaves.
Even when, in principle, both implementations are based on a red-black tree, the GNU

implementation is around three times faster, as can be seen in the Figure 6.2. The main
reason is that OctoPOS uses a simple implementation of the red-black tree without any
optimizations and hardly ever uses hints, which indicate where an element might be inserted
next.

6.3. x86guest vs x64native

So far the stdlibc++ got compared against the liboctoc++ on x86guest. The reason is
mainly for convenience. With x86guest, we can execute the benchmark like any other
program on the host system. Furthermore, the results can be copied and pasted, unlike
with x64native, where we load the tests via a PXE boot server and therefore have to tip off
the test results. Alternatively, the output data can be extracted form a photo using freely
available Optical Character Recognition (OCR).

The expectation was that x86guest was slower than the x64native variant because x64native
directly runs on the hardware. As all comparisons show, in Figure 6.3 and Figure 6.4. The
x64native benchmarks start faster with tiny input sizes, which is explainable by not having
the overhead from a host system and not having additional code to support that.

With the std::stable partition benchmark the x86guest is already faster on an input
size of 256 elements. And when inserting elements into an std::map class, x86guest gets
faster after 2048 inserted elements.
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Figure 6.3.: Stable partition benchmark comparison: x86guest vs x64native
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Figure 6.4.: Map insert benchmark comparison: x86guest vs x64native
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7. Testing

To test the source code, a modified version of Catch2 is used. The modification was needed
because the testing framework is based on C++14, and so far, OctoPOS only supports the
C++11 standard. Plus, OctoPOS does not support throwing and catching exceptions, which
the testing framework uses to count the failed test cases. Catch2 takes the test expression
and asserts them. If the assertion fails, an exception gets thrown, and the test case gets
counted and logged as failed.
For this thesis a test-driven development was used. First, a test was created for the

feature, which was implemented next. The tests were checked by running them against
the GNU stdlibc++ implementation. In total, we have 431 test cases, which have 3807
assertions. These all are distributed into 49 test files, from which three are used to test
standard C functions. The directory tree is displayed in the Appendix C. In one of the C
files, strtok from <string.h> is tested and the second one checks strcasecmp/strncasecmp
from <strings.h>. These three functions were validated, because they were missing at the
time of the implementation of liboctoc++. In the all-c.cc and all-c++.cc all C and
C++ from the libc and libc++ folders are imported respectively, to check for redefinitions
of functions and classes. Every newly implemented header file of the liboctoc++ has its
own test file, with the corresponding name. In addition the unit-tests of <algorithm> were
grouped into ten category and every one of them is in a separate file. And <map> was
split into two files for testing std::map and std::multimap. <set> was similar, but for
std::set and std::multiset.

All test cases are equipped with tags, which allow the grouping of the related test together.
In the full version of Catch2, tags are used to select tests (for running or just for listings)
and even by an expression that combines several tags. We do not have that functionality in
the modified version. Currently, it is only possible to run all test cases. The test framework
entirely ignores the tags, but they might be helpful in the case when the framework is
upgraded to the full version.

7.1. Tests build setup

The tests are set up like other OctoPOS apps and can be built over the make command.
Like with other apps, we can change the target architecture and architecture-specific variant
with the build parameters ARCH and VARIANT respectively.

There also exists a new Docker image, structured as a multi-stage build. The first of
two stages is for iRTSS and starts by installing all necessary dependencies for iRTSS, and
afterward, iRTSS itself gets built. The build target can be influenced by the build argument
IRTSS PLATFORM, which defines which platform variant configuration should be used. By
default it will be built for the x86guest architecture and the generic-debug variant. In
the second stage, the dependencies are installed again, this time only the ones needed for
the OctoPOS. Inside the docker, the x86guest variant can be executed as expected. If the

33



7. Testing

x64native architecture is needed to be executed, QEMU is also installed in the docker image.
Although QEMU needs to have read and write access to the KVM device of the host system.
A user can start up a container with privileged rights, to lift all limitation enforcements and
give the running container all rights to access the KVM device. However, a better solution
is to give the container only access to devices it needs, i.e., only the /dev/kvm.

7.2. Test execution

In the following example output in the Listing 7.1, the tests get compiled and run inside
a docker container. With make the tests are getting compiled for the default architecture,
which in this case is x86guest and the generic-debug variant. Furthermore, we can run
through the tests after it is compiled simply by executing the test runner file.
The test starts OctoPOS and waits for the tile synchronization, but only executes the

test on the tile zero and does not do any tests in parallel. Moreover, there is no checker
that tests the liboctoc++ against race conditions or any other problems associated with
executing code in parallel. Which is not usually tested by unit tests anyway.

user@docker : / iHPC/ octopos / t e s t s $ make
user@docker : / iHPC/ octopos / t e s t s $ . / t e s t r unne r

125 MiB o f TLM fr e e , 15 MiB o f SHM f r e e
iRTSS − r e l e a s e . x86guest . gener i c−debug −

v2019−03−960−g8633ce524−d i r t y − t i l e type : compute
iRTSS bu i l t at 2022−03−25 12 : 25 : 31 ( Build−ID : 2793148034)
iRTSS committed at 2022−03−24 ( authored : 2022−03−24)
iRTSS con f i gu r a t i on :
Scheduler : Work−s t e a l i n g s chedu l e r with

l i b : : adt : : WorkStealingQueue with capac i ty 64
T i l e s : 16 − Cores : 15
T i l e ID 0 o f 15 ready f o r t i l e sync
Waiting f o r t i l e sync : [ T i l e sync complete ]
OctoPOS star tup completed .
This i s a catch−mini host app l i c a t i o n

======================================================
Al l t e s t s passed (3807 a s s e r t i o n s in 431 t e s t ca s e s )

Listing 7.1: unit test result of x86guest

7.3. Shortcomings

Because of the time limitations of the thesis, every implemented method, on average, only
has one test case with multiple assertions. Often edge cases were not tested, like empty,
random, or massive inputs. So far, the tests mainly verify that liboctoc++ works with
the primitive built-in data types from C++. It does not mean it would not work with
user-defined data types, but there are hardly any tests with user-defined structs and classes.
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8. Conclusion

The overall goal of this thesis was to implement all missing dependencies of LAMMPS. More
specifically, adding a custom C++11 STL implementation to OctoPOS. The thesis started by
analyzing the build process of LAMMPS and getting a complete list of all dependencies. By
comparing the LAMMPS dependencies list against the standard header files that OctoPOS
had already implemented, we determined which header files are still missing from OctoPOS.
Test-driven development was chosen as the software development process, and a unit-

testing framework was integrated into the OctoPOS project. This way, we enforced that
every newly developed component of liboctoc++ has at least one unit test. The unit-testing
framework Catch2 was selected for its ease of use and for being easy to modify and integrate.
The cppreference.com website provided the missing STL definitions. The interfaces of

the new components of the liboctoc++ are ISO-conforming. Due to time constraints, not
everything of liboctoc++ got implemented according to the standard. Through the unit
tests, we tested if the functionality of the liboctoc++ is correct, but it does not check for
the time and space complexity of the components.
During the implementation of liboctoc++, the functionality was the focus, and the

performance suffered. That is why there is a significant performance difference between
liboctoc++ and GNU’s libstdc++. In hindsight, it is evident that a self-developed library
can not compete against a library in development for decades and has a massive community
behind it.
A point that could not be answered in this thesis is why the execution on bare-metal

with the x64native target is slower than on the guest system with additional overhead to
execute. The expectation was that the program should perform better without the guest
target overhead. However, as the comparisons have shown unless the input size is tiny, the
guest target is slightly faster.

Furthermore, it was worth implementing a separate STL implementation for the last point.
It depends on the further goals of the STL implementation. When we need complete control
over the implementation and want to guarantee compatibility, we need to implement and
test every component. However, it needs more work and even more testing to achieve that.

The goal of the thesis was to implement a custom version of the STL. Another possibility
would have been to use an already existing implementation and make it work with OctoPOS.
It all depends on the further goals of liboctoc++. If complete compatibility and total control
over the implementation is a high priority, then liboctoc++ needs to be extended. However,
if the performance is of a higher significance, it would make sense to invest time to integrate
the STL implementation from GNU, stdlibc++, for example.
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9. Future work

The current implementation of liboctoc++ still has room for improvements, and it is not
feature-complete yet.

9.1. Performance improvements

As seen in the previous Chapter 6, some implementations are much better optimized
and often switch between different algorithms depending on the input. For example for
std::sort, stdlibc++ uses IntroSort. IntroSort is a hybrid of QuickSort, HeapSort, and
InsertionSort. QuickSort is used by default, and if it takes longer than N ∗ log(N) because
of unfair partitioning, it will be switched to HeapSort. Furthermore, if the input size is tiny,
InsertionSort will be used. In liboctoc++ MergeSort is used, which has a worst-case run-time
of O(N ∗ log(N)). The main reason why MergeSort was selected is that the algorithm to
merge data is also part of the STL standard. So by using the std::merge function, it
was easy to implement MergeSort. In addition, if the STL defines an algorithm, it often
also defines an in-place variant of it. Sometimes the in-place algorithm is only used as a
fallback, like in std::stable partition function, and other times it is separately callable,
like std::merge and std::inplace merge. In liboctoc++, to save implementation and
testing time, in most cases only the in-place methods were implemented. And in the case
of the two merge functions, the std::merge method just calls the std::inplace merge

function.

9.2. Library extensions

Other parts still needed to be extended, like the std::map container class. At this point,
the map implementation meets the requirements for being a Container, an AssociativeCon-
tainer, and a ReversibleContainer. However, according to the standard, it also needs to
be AllocatorAwareContainer, which means the current implementation does not use the
std::allocator from the <memory> header file to manage the inserted elements’ data.
Some other headers files are not implemented at all at this point. For example, from

the container category, <deque>, <list>, <queue>, <stack>, <unordered map> and
<unordered set> are missing from liboctoc++.

9.3. Exception handling

Another big part that is missing is exception handling. To work around that the -fno-exceptions
flag got added, for the tests and LAMMPS compilation. The basic exception classes are im-
plemented in the liboctoc++, like the std::exception class and the derived from it classes
in the <stdexcept> header file, like the std::length error and the std::overflow error.
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9.4. Using libstdc++

Nevertheless, the underlying compiler functions 1 for the exception handling are missing.
For example the cxa allocate exception library function, to allocate space to store the
exception object and the exception header cxa exception. Alternatively, or as an exten-
sion, for the -fno-exceptions flag it is also possible to overwrite the exception allocation
and raising function, and overwriting try and catch keywords. When the exception library
functions are called, abort will be called, and the program ends without any feedback. The
keyword try will be simply replaced by an if statement that is always true. And catch

gets transformed into an else, which will never be reached.

1 void c x a a l l o c a t e e x c e p t i o n ( ) { abort ( ) ; }
2 void cxa throw ( ) { abort ( ) ; }
3
4 #undef try
5 #undef catch
6 #define try i f ( true )
7 #define catch i f ( fa l se )

Listing 9.1: example for overwriting core exception handling functions

9.4. Using libstdc++

Instead of implementing the STL from ground-up, an alternative would be to use stdlibc++
from GNU. The benefit would be that the implemented library would be standard conforming
and feature-complete. However, libstdc++ expects that all standard C header files are
available and that they are correctly implemented. We also have to configure what features
and version we want to have activated, plus having in mind what features the hardware
supports. The whole list of prerequirements is listed in the install documentation on
gnu.gcc.org 2. Also, exception handling is a big part of the stdlibc++, so the exception
standard library functions have to be implemented never the less. It is theoretically possible
to switch between the different C++ STL versions after all requirements are met. As
mentioned multiple times in this thesis, LAMMPS depends on C++11, and the newest
version of the testing framework we used is based on C++14.

1https://maskray.me/blog/2020-12-12-c++-exception-handling-abi
2https://gcc.gnu.org/install/prerequisites.html
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A. LAMMPS dependencie list

LAMMPS depends directly and indirectly on the following C++11 STL header files:

⋆ <algorithm>

⋆ <array>

⋆ <cctype>

⋆ <cfloat>

⋆ <cinttypes>

⋆ <clocale>

⋆ <cmath>

⋆ <complex>

⋆ <cstdarg>

⋆ <cstddef>

⋆ <cstdint>

⋆ <cstdio>

⋆ <cstring>

⋆ <ctime>

⋆ <cwchar>

⋆ <excpetion>

⋆ <functional>

⋆ <initializer list>

⋆ <ios>

⋆ <iosfwd>

⋆ <iostream>

⋆ <istream>

⋆ <iterator>

⋆ <limits>

⋆ <locale>

⋆ <map>

⋆ <memory>

• <new>

⋆ <numeric>

⋆ <ostream>

⋆ <random>

⋆ <set>

⋆ <sstream>

⋆ <stdexcept>

⋆ <stdlib.h>

⋆ <streambuf>

⋆ <string>

⋆ <system error>

⋆ <tuple>

⋆ <type traits>

⋆ <typeinfo>

⋆ <utility>

⋆ <vector>

and it also depended on the following standard C headers:

• <alloca.h>

• <ctype.h>

⋆ <dirent.h>

• <endian.h>

• <errno.h>

⋆ <fcntl.h>

• <inttypes.h>

• <limits.h>

• <locale.h>

• <malloc.h>

• <math.h>

• <pthread.h>

⋆ <sched.h>

• <stdint.h>

• <stdio.h>

• <stdlib.h>

• <string.h>

⋆ <strings.h>

⋆ <time.h>

⋆ <unistd.h>

⋆ <wchar.h>

⋆ <wctype.h>

All header files which have an “⋆” as a bullet point were implemented for this thesis.
Prior to this thesis, from the C++ header files, only the <new> header file was already
implemented Additionally most standard C header files were already implemented as well.
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B. Complete libc++ dependency tree

assert.h

ctype.h

errno.h

float.h

inttypes.h

limits.h

locale.h

math.h

stdarg.h

stddef.h

stdint.h

stdio.h

stdlib.h

string.h

time.h

wchar.h

algorithm

cstdlib

functional

iterator

type_traits

utility

exception

memory

char_traits

cstddef

ostream

initializer_list

array

cassert

cctype

cerrno

cfloat

cwchar

cstring

cinttypes

cstdint

climits

clocale

cmathcomplex

cstdarg

cstdio

ctime

new

tuple

ios

iosfwd

system_error

string

iostream istream

limits

locale

vector

map

numeric

random

set

sstream

stdexcept

streambuf

typeinfo
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C. OctoPOS tests directory tree

octopos

apps

...

libs

...

releases

...

tests

catch-mini

testcases

libc

all-c.cc

string.h.cc

strings.h.cc

libc++

algorithm

binarySearchings.cc

...

sortings.cc

map

map.cc

multimap.cc

set

set.cc

multiset.cc

all-c++.cc

array.cc

...

vector.cc

test main.cc

Makefile

README.md

tools

...
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