
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Implementing a Molecular Dynamics
Simulation for the Invasive Run-time Support

System

Huaiwei Zhang

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Implementing a Molecular Dynamics Simulation for
the Invasive Run-time Support System

Author: Huaiwei Zhang
Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz
Advisor: Santiago Narváez, M.Sc.
Date: May 6th, 2022

I confirm that this master’s thesis is my own work and I have documented all sources and
material used.

Munich, May 6th, 2022 Huaiwei Zhang

Acknowledgements

First, I want to thank my supervisor Prof. Bungartz sincerely. I really appreciate the
topic he gave to me, and it is a memorable experience to complete the thesis and the project.
During this work, I learned a lot about molecular dynamics simulation and invasive comput-
ing, which helps me lay a solid foundation for my career in the future. I also appreciate the
favor M.Sc. Narváez did for me. Not only he gave helpful support to me about the project
development, but he also provided me with guidance about the thesis writing. Without his
help, it will take me longer time to finish the work.

I also want to give thanks to my family and friends. Although they did not directly help
me about the thesis, they keep supporting my work during my life. All in all, I hope all of
them can be lucky in their work and life.

vii

viii

Abstract

The invasive Run-time Support System (iRTSS) is a run-time system that supports the in-
vasive Message Passing Interface (iMPI) API. iMPI extends the functionality of the standard
MPI such that applications using it can change their resources at runtime. In the thesis, the
application in iRTSS can change the number of iMPI processes during its execution.

During the thesis I ported miniMD, a C++ molecular dynamics simulation application,
to iRTSS. miniMD is a simplification of the well-known LAMMPS application. Besides the
default simulation scenario of miniMD, I added two collision simulation scenarios to it, which
makes it easier to observe the simulation process. A Transmission Control Protocol/Internet
Protocol (TCP/IP) communication scheme to gather the results of the simulation is a new
part of the application. The result of this part is the invasive miniMD (iminiMD). iminiMD
is executed in bare metal, which can transmit the simulation data to the visualization
application.

The visualization application is developed with C++ based on MPI and OpenGL. It can
receive the simulation data transmitted from iminiMD, visualize the simulation data, and
record it in files. The visualization application runs on a Linux machine, which is connected
with the bare metal executing iminiMD through a network cable.

ix

x

Contents

Acknowledgements vii

Abstract ix

I. Introduction and Background 1

1. Introduction 2
1.1. Motivation . 2

1.1.1. The significance of computer simulation 2
1.1.2. The message passing interface . 2
1.1.3. Invasive Run-Time Support System 3
1.1.4. A parallel molecular dynamics microapplication - miniMD 4

1.2. Objectives . 4

2. Related Work 6
2.1. Invasive computing . 6

2.1.1. Basic theory . 8
2.1.2. Current developments . 10
2.1.3. A parallel operating system - OctoPOS 11

2.2. Libraries in OctoPOS . 13
2.2.1. MPI in OctoPOS . 13
2.2.2. iMPI in OctoPOS . 16
2.2.3. TCP in OctoPOS . 20

2.3. OctoPOS applications . 24
2.3.1. The setup of an OctoPOS application 24
2.3.2. An iMPI application to compute the heat matrix 24
2.3.3. The invasive swe-x10 . 25

2.4. Molecular dynamics simulation . 26
2.4.1. Basic theory . 26
2.4.2. Examples of molecular dynamics simulation 30

II. Thesis Development 32

3. Design and Implementation of iminiMD 33
3.1. Basic adaptations . 36
3.2. iminiMD extensions . 42
3.3. Data transmission . 44

xi

4. Design and Implementation of the Visualization Application 46
4.1. Basic design and implementation . 47
4.2. Data transmission . 47
4.3. Visualization . 53

III. Results and Conclusions 58

5. Evaluation 59
5.1. Experiments in QEMU . 59

5.1.1. Evaluation setup . 59
5.1.2. Results . 60

5.2. Experiments in bare metal . 68
5.2.1. Evaluation setup . 68
5.2.2. Results . 68

6. Conclusions 77
6.1. Achievements . 77
6.2. Future work . 78

6.2.1. New content in iminiMD . 78
6.2.2. New content in the visualization application 78

Bibliography 84

Part I.

Introduction and Background

1

1. Introduction

1.1. Motivation

As computer systems develop higher computing speed and larger memory storage, molecular
dynamics simulation that plays an important role in simulation science can be completed
more efficiently. But it is sometimes hard to utilize the computing resource properly. With
the help of iRTSS and iMPI [1], developers can manage the hardware and software resources
before and during the process of a molecular dynamics simulation. In my thesis, a molecular
dynamics simulation application will be developed to simulate one physical process with
the capability of managing the resources all through the execution. Thus, the goal to test
the functionalities of the iRTSS system can be achieved. Another goal is to visualize the
simulation process.

1.1.1. The significance of computer simulation

The traditional scientific method to do research on natural processes is to construct an
artificial model, describe appropriate variables, and develop an experiment under certain
conditions in the laboratory. With the help of experiments, researchers get mathematical
formulations to describe how each variable behaves and interacts with each other in the
artificial model. However, it is hard to simulate some natural processes in the laboratory
because of numerous variables, long simulation time, complex mathematical computation,
etc. For example, there are 2.68678 · 1025 atoms in a cubic meter of gas at a pressure of
101.325 kilopascal and a temperature of 273.15 Kelvin [2], which leads to a large number
of computations in an experiment. Even though researchers can finish the experiment
successfully, it is sometimes not easy to reproduce the experimental conditions. It is also
hard to observe the experiment at a specific point in time if the process is rapid.

Researchers can create the initial experimental conditions, simulate the process, and
observe the experiment at a given point in time with the help of a computer simulation.
With a correct mathematical description of a natural process, its discrete simulation process
can be executed in a computer, which efficiently leads to a solution with acceptable precision
if researchers make a compromise between solution accuracy and time complexity. The
simulation techniques can be sorted into Molecular Dynamics (MD), Monte Carlo (MC), and
hybrid techniques of both of them [3]. The MD is used in my project.

1.1.2. The message passing interface

Before MPI arises, software developers needed to do inter-process communication using
different library functions provided by hardware vendors, which was not convenient when

2

1.1. Motivation

the hardware platform changed. In 1994, the first version of MPI was released. It provided
a unified standard of message passing interface for different hardware vendors. Nowadays,
two implementations of MPI - MPICH and Open MPI are widely used in high-performance-
computing software development [4]. As a result, a wide range of hardware platforms can
support a single MPI-based software without source code modification.

Implementing the simulation program by MPI can reduce the execution time effectively
if the workload is distributed evenly in each process without considerable performance
overheads. In order to combine the simulation application with the invasive computing
better in the iRTSS platform, which will be introduced in Subsection 1.1.3, the invasive
application sometimes needs to retreat allocated hardware resources and reallocate them
for better resource management during the execution. Thus the iMPI library is needed
in my project. The iMPI library in iRTSS includes some basic MPI operations and iMPI
operations. These iMPI operations facilitate the adaptations of processes in order to adjust
resources dynamically. In consequence, simulation applications in iRTSS can support elastic
resource management well even with an enormous number of allocated processes and complex
mechanisms of inter-process communication in iRTSS.

1.1.3. Invasive Run-Time Support System

iRTSS can work closely with a standard Unix-like host operating system. It can be scaled to
a high extent, and it integrates methods, principles, and abstractions for the application-
aware configuration, adaptation, and extension of invasive computing systems 1. In parallel
systems, invasive computing is intended to focus on the management of both the hardware
and software, so as to provide the users with the capability of resource-aware programming.
The resource-aware programming is based on the invasive programming. The invasive pro-
gramming means that a program running in a parallel system is able to request and claim
temporarily processor, memory, and communication resources in its computing neighborhood,
to execute the program in the claimed resources, and to free the claimed resources after
the execution. A typical process of invasive programming is divided into an invade step,
an infect step, and a retreat step. In the invade step, the operating system is required to
allocate resources. In the infect step, the program is executed in the resources allocated. In
the retreat step, the allocated resource is freed and can be reallocated again [5].

An iRTSS system consists of the Operating System Abstraction Layer (OSAL), an agent
system, a parallel operating system OctoPOS, and the Hardware Abstraction Layer (HAL).
OSAL provides the application with the interfaces of iRTSS. The agent system is intended
to assign the applications to hardware. OctoPOS constructs the invade, retreat, and in-
fect abstractions of invasive computing, and maps operations of the run-time system onto
different kinds of hardware according to configurations. With the support of the invasive
computing abstractions, application developers can explicitly allocate and free computing
units, memory block, and communication resources during executions. Because I need to
provide a simulation application with adjustable initial resources, dynamic numbers of nodes,
and other hardware for an efficient execution in a distributed system, OctoPOS can help
me achieve this goal. HAL can provide OctoPOS with interfaces to access the hardware

1https://invasic.informatik.uni-erlangen.de/en/tp_c1_PhIII.php

3

https://invasic.informatik.uni-erlangen.de/en/tp_c1_PhIII.php

1. Introduction

platform [6].
The TCP interfaces implemented in iRTSS make real-time data transmission from the

simulation application in OctoPOS to the client application running in the same host com-
puter as that of the OctoPOS platform or another device possible. In my thesis, servers in
OctoPOS can connect and communicate with clients outside OctoPOS after TCP connections
are established. The client can visualize the dynamic simulation process over time using
C++ visualization tools such as OpenGL and OpenCV.

1.1.4. A parallel molecular dynamics microapplication - miniMD

miniMD is a lightweight, scalable, parallel molecular dynamics simulation application. It is
intended to run on supercomputers or other computer architectures and test their perfor-
mance 2. Users can simulate various cases of molecular dynamics processes by changing the
size of the problem, the number of time steps to simulate the process, the cutoff distance
between particles, the particle density, the force between particles, etc [7]. Based on the ideal
extensibility of miniMD, I can add extra features. MPI is also supported in miniMD, which
is helpful for me to add iMPI operations to it. The libraries available in OctoPOS can fulfill
the requirements of the development and extension of miniMD. Therefore, it is reasonable to
port miniMD to OctoPOS. By contrast, other more sophisticated simulation applications
such as LAMMPS, which consists of over 200000 lines of code 3, typically include C++
libraries not supported in OctoPOS, therefore it is nearly impossible to reproduce them in
OctoPOS.

In order to use the miniMD code in OctoPOS, I need to implement it in C language only
with the support of library functions available in OctoPOS. By running miniMD in OctoPOS
on the 64-bit architecture hardware, I can achieve the following goals. First, I verify whether
the libraries from OctoPOS, such as the MPI library, the iMPI library and the TCP library,
can perform correctly. Once I can run the adapted miniMD in OctoPOS correctly, a client
application which can receive the simulation data from the miniMD application through
TCP connections in normal UNIX operating system needs to be developed, in order to
visualize the real-time motions of the particles and record the simulation data. After the
functional verification, I can summarize the performance metrics under conditions of different
simulation scenarios and numbers of processes.

1.2. Objectives

There are three objectives needed to be achieved:

1. The miniMD application based on iMPI needs to be implemented in OctoPOS, and its
performance will be tested. miniMD needs to be reproduced by C language and the
implementation should only depend on the libraries provided by OctoPOS. Different
molecular dynamics simulation scenarios will be constructed. They should be simulated
correctly and their performance metrics should be produced.

2https://github.com/Mantevo/miniMD
3https://github.com/lammps/lammps

4

https://github.com/Mantevo/miniMD
https://github.com/lammps/lammps

1.2. Objectives

2. A visualization application in normal UNIX operating system will be implemented. It
can visualize the real-time trajectories of particles and the change of each process’s
simulation domain in the simulation box. At the meantime, it can record the data
of particles and simulation domains per a certain number of time steps. It will also
show important information of simulation such as: the number of particles, the size of
the simulation box and the current simulation iteration index. Visualizing the real-
time scenarios can help researchers track the simulation process during the execution.
Recording the simulation data can help researchers analyze the simulation process after
the execution.

3. The experiment to visualize target scenarios and the strong scaling experiment will
be implemented. The default simulation case in miniMD and new scenarios will be
simulated. The simulation result will be performed by the visualization application. In
the strong scaling experiment, multiple executions based on dynamic scales of resources
will be tested given a fixed problem. The strong scaling experiment of one problem
can be finished in one time of execution with the help of iMPI.

5

2. Related Work

2.1. Invasive computing

Invasive computing is a new paradigm for designing and programming parallel systems. It
involves a wide range of definitions: programming language, compiler, operating system,
hardware, etc [5]. Based on adaptations on these components, resource-aware programs
can be achieved in invasive computing systems, and high utilization of resources as well as
efficiency of energy can be realized. Nowadays, the parallel system is widely applied, thus
invasive computing can help developers to manage resources with more cores integrated
into a single chip 1. Figure 2.1 describes the parallelism of each level, which is common in
current devices. For instance, the Fermi CUDA [8] architecture implemented in NVIDIA
Graphics Processing Units (GPUs) supported by 512 thread processors led to a powerful
computing capability of 6 GB Graphics Double Data Rate of version 5 (GDDR5) Random
Access Memory (RAM) and 1 TFLOPS [5]. The scalable CUDA unified graphics and parallel
architecture are both developed to facilitate high-performance computing and programmable
graphics [9]. The parallel system can be programmed through APIs, which could lead to
higher efficiency and flexibility if it is combined with invasive computing.

The research on invasive computing was already started in the Transregional Collaborative
Research Center 89: Invasive Computing. It is being funded by the Deutsche Forschungsge-
meinschaft. It is in its third stage from July 2018. Scientists from Technische Universität
München, Karlsruher Institut für Technologie, and Friedrich-Alexander-Universität Erlangen-
Nürnberg have joined in the research group. The research includes projects about the
language and algorithm of invasive computing, system architecture, compiler, run-time
system, and applications of the invasive computing system 2. It will highly improve the
efficiency of utilizing resources on various hardware platforms such as embedded system and
high-performance distributed system.

1https://invasic.informatik.uni-erlangen.de/en/index.php
2https://invasic.informatik.uni-erlangen.de/en/index.php

6

https://invasic.informatik.uni-erlangen.de/en/index.php
https://invasic.informatik.uni-erlangen.de/en/index.php

2.1. Invasive computing

Figure 2.1.: Levels of parallelism.
Source: [10]

7

2. Related Work

2.1.1. Basic theory

Parallel computing is being popular because of its powerful computing capability. It is widely
applied to supercomputers, computer graphics, and single-chip devices. However, there
exist problems needed to be solved before its application. First, it is not easy to map the
program to thousands of cores properly. Second, the adaptive abilities to occupy and release
run-time resources may be necessary for the elastic management of resources. Third, the
scalability of programs, heat dissipation, reliability, and fault-tolerance of executing programs
should also be provided by platforms. Last but not least, the interconnected structure
between components should be able to reconstruct the component topology dynamically
and efficiently during run-time period because of dynamics load changes and time-variant
resource constraints [5].

In order to solve the problems above, invasive computing is introduced. It can help
the executing programs to coordinate and manage the processing elements by linking the
processing resource to the program [5]. It leads to invasive programming which is introduced
in Subsection 1.1.3. Specifically, the following theory gives the basis to construct a typical
invasive computing system.

Some notations about invasive computing should be described. No matter what the
extended language or the system architecture is, the basic instructions of invasive computing
are the invade instruction, the infect instruction, and the retreat instruction [10]. A basic
invasive program is shown in Listing 2.1 [6]. A claim means a group of resources those can
be accessed by applications. The resource can refer to processing elements, memory storage,
or interconnect devices. For instance, a claim of processing elements in X10 constructs a
partitioned global address space. Analogically, claims mean a group of constituents each of
which can be a single claim or a group of claims. An invasive-let (i-let) means a piece of
invasive computing program that can be executed in parallel. It is a fundamental unit of
a program section with concurrent execution potential [5]. This simple program fragment
means: the invade method returns the allocated resource claim according to constraints,
the infect method executes the program ilet on claim, and the retreat method frees
claim. The invade instruction declares the resource the current process needs and the
invaded resource can not be invaded by any other process until one successful retreat
instruction of the corresponding resource is completed. During the infect instruction, an
i-let is copied and deployed in the assigned hardware. The i-let deployed in the hardware
is called as the i-let incarnation. Once it is executed by the scheduler of the operating
system, it is called as the i-let execution. A team refers to a set of i-let incarnations.
The infect instruction only returns after all the programs are finished. The data of the
team will not be deleted before a retreat instruction. The retreat instruction explicitly
frees the resource that is invaded before. After the completion of retreat, an i-let can not
be executed in the claim through the invade instruction anymore.

1 val c la im = Claim . invade (c on s t r a i n t s) ;
2 c la im . i n f e c t (i l e t) ;
3 c la im . r e t r e a t () ;

Listing 2.1: A basic invasive program.

8

2.1. Invasive computing

Problems at the architecture level need to be solved. For instance, Figure 2.2 shows how
invasive computing works at tiles, each of which includes cores of Reduced Instruction Set
Computer (RISC) processor, hardware accelerators, and local memory. One tile is connected
with another tile by flexible network-on-a-chip (NoC) interconnects. In the invasion step,
each Core i-let Controller (CIC) component in one tile transmits the information of hardware
to the invasion process. Afterward, the configurations about CICs are decided, which show
the infection of available cores. In the end, the distribution of the executing program is
decided based on an overall optimization strategy. The CIC in each tile plays an important
role in dynamically mapping the processing requests to hardware controlled by iRTSS and
the operating system. This example can illustrate the potential process of invasive com-
puting based on the loosely-coupled Multi-Processor Systems-on-a-Chip (MPSoC) platform.
Examples of the invasive computing processes in Tightly-coupled Processor Arrays (TCPAs)
and High Performance Computing (HPC) platforms can be found in [5].

The resource-aware programming idea should be considered when programmers design
invasive algorithms and analyze their complexity. Besides the algorithmic problem, the
problem to extend programming languages such as C++, X10 also needs to be solved, because
the resource-aware language constructs are not common in normal programming languages [5].

Figure 2.2.: Invasive computing in a loosely-coupled MPSoC architecture.
Source: [5]

9

2. Related Work

2.1.2. Current developments

The project of invasive computing developed on the Transregional Collaborative Research
Center 89 consists of different projects. Figure 2.3 shows the research fields of the project
group A, B, C, and D. Each group focuses on an area intersected by specific project areas
and hardware [1].

Figure 2.3.: Project groups and application fields.
Source: [1]

The main areas of project A are the basic theory of invasive computing, adding the abilities
to schedule the application and to distribute the load throughout the hardware resources,
and the techniques to analyze the invasive computing applications and the run-time systems.
The sub project A1 developed the resource-aware programming X10: InvadeX10. Developers
can develop programs by it in both the distributed system and shared memory system [1].

Project B focuses on the hardware mechanisms for adaptive invasive microarchitectures,
the efficient implementation of invasive computing on TCPAs, the techniques to save energy
and power on platforms of invasive computing, the mechanisms to monitor the properties of
invasive hardware, and the design of the NoC equipment [1].

Project C consists of sub projects C1, C2, C3, and C5. The sub project C1 built an
operating system OctoPOS, which can support the resource-aware programming in multi-core
systems. In my project, the molecular dynamics simulation application can be developed in
OctoPOS. Therefore, OctoPOS will be discussed in details. The sub project C2 focuses on
the exploration of simulative design space, which can help developers improve the invasive
hardware and resource-aware software. The sub project C3 concentrates on the techniques
of compilation, code generation, program transformation, and optimization for both the
procedural code and the regularly-structured as well as task-level code 3. The sub project
C5 focuses on the security problems of invasive computing systems.

Project D focuses on the applications of invasive computing. For instance, the sub project
D1 applies invasive computing to robotics. The sub project D3 focuses on the following

3https://invasic.informatik.uni-erlangen.de/en/tp_c3_PhIII.php

10

https://invasic.informatik.uni-erlangen.de/en/tp_c3_PhIII.php

2.1. Invasive computing

three fields: numerical methods for resource-aware computing and their implementations, the
advantages of resource-aware computing in HPC systems, and the combination of resource-
aware computing with the hardware and programming models of current HPC systems [1].

2.1.3. A parallel operating system - OctoPOS

OctoPOS is a parallel operating system supporting invasive computing. As Figure 2.4 shows,
OctoPOS acts as an intermediate layer between the run-time system as well as the agent
system and the hardware architectures 4. It supports operating system functionalities such
as the Remote Procedure Call (RPC) mechanism for communication through the i-NoC
devices and managing i-lets through CIC components [6]. The run-time system supports the
three fundamental commands of invasive computing, and the commands can be mapped by
OctoPOS to the underlying hardware. OctoPOS can support the management of processors,
automatically hide the latency, reduce the contention on the resources, and maintain the
locality [10], [11], [12], [13]. The agent system is responsible for scheduling the invasive
computing operations [14], [15]. It can distribute applications on the hardware based on
the exchange of the local information and keep the overhead of management stable with an
increasing number of cores [6]. Two important concepts about OctoPOS: the programming
model and hardware model are introduced as follow.

The programming model of OctoPOS is shown in Figure 2.5. This model illustrates the
transitions between the three fundamental primitives of invasive computing. The invade
primitive claims the allocated resources for the current process. Then, the function assort
constructs a team, according to the invaded resources. The team consists of some related
threads those execute the program of the process. After the team is made, the infect
primitive can copy the code to the invaded resource and start the execution. During the
execution, the invade and retreat primitives are used to adapt the allocated resources.
More details are given in Subsection 2.1.1.

The development of a wide range of hardware with parallelisms provides more choices
for the construction of the hardware model with invasive computing. As Figure 2.1 shows,
the traditional multi-core CPU can give parallelism on the level of process and thread. My
application supported by OctoPOS will be executed based on the iMPI model, which needs
the high-level parallelism of processes, thus it is enough to deploy it on a normal system with
multi-core CPUs.

OctoPOS can run in a Linux system. A project in OctoPOS is eventually built as a binary
file which can be executed in normal UNIX-like operating system or bare metal. More details
about OctoPOS application setup are in Section 2.3.

4https://invasic.informatik.uni-erlangen.de/en/tp_c1_PhIII.php

11

https://invasic.informatik.uni-erlangen.de/en/tp_c1_PhIII.php

2. Related Work

Figure 2.4.: Interaction between OctoPOS and other system components.

Figure 2.5.: Programming model of OctoPOS.
Source: [10]

12

2.2. Libraries in OctoPOS

2.2. Libraries in OctoPOS

MPI plays an important role in communication between processes in distributed systems. It
was widely used in networks of workstations and parallel computers [16]. It provides develop-
ers with a unified standard to pass messages between processes. Therefore, developers can
ignore the underlying mechanisms of different device vendors and develop applications conve-
niently. Nowadays, two implementations of MPI: Open MPI [17], [18], [19], [20], [21], [22], and
MPICH [23], [24], [25], [26], [27], are the mainstream [1]. In OctoPOS, all the iMPI operations
and a part of MPI operations are realized for the use of parallel programming on it. MPI
and iMPI in OctoPOS are introduced in Subsection 2.2.1 and Subsection 2.2.2. Another im-
portant library in OctoPOS is the network data passing library introduced in Subsection 2.2.3.

2.2.1. MPI in OctoPOS

Before more specific knowledge about MPI is introduced, basic definitions of MPI need to
be discussed. A group in MPI refers to an ordered set of processes, and each process has a
unique rank number in this group [1]. The communication between processes in this group
happens in a communicator. By contrast, two processes in two different communicators can
not reach each other. After a MPI program is initialized, a communicator MPI_COMM_WORLD
is established. In OctoPOS, the normal initialization interface is MPI_Init, and it should
be called at the beginning of the MPI program. Afterward, the execution environment is
finished and then the subsequent MPI operations are accessible. At the end of the MPI
program, the MPI_Finalize operation needs to be called to clean the MPI environment.
Programmers must make sure all the communication work is finished and each process has
exited or is only doing its local work before the MPI_Finalize call 5.

In the MPI 4.0 version, the features those can be set up by programmers are communica-
tion mode, customized data type, communication topology, etc. The communication modes
include the one-sided communication mode, the point-to-point communication mode, the
partitioned point-to-point communication mode, and the collective communication mode. In
OctoPOS, the point-to-point communication and collective communication cases are widely
used.

The point-to-point communication mode means that the message of one process can be
transmitted to another process directly. In OctoPOS, the general point-to-point functions are
MPI_Send and MPI_Recv. Their non-blocking versions MPI_Isend and MPI_Irecv are also
implemented. For instance, Listing 2.2 shows the MPI_Send interface. The parameter buf
refers to the starting address of the data to be sent. The count means the number of datatype
elements. datatype can be any kind of MPI data type. dest is the rank number of the
process of destination. tag is used to match the sender and receiver. However, it can also be
MPI_ANY_TAG, which is a wildcard and can match one MPI_Recv operation with any tag. The
main difference between the blocking version and the non-blocking version is that the data
buffer pointed by the parameter buf can be used immediately after the return of one blocking
call, but the data buffer of one non-blocking call can only be used after the termination
of a communication process. There is an additional parameter of type MPI_Request in the
non-blocking version. This new parameter should be tested after the return of a non-blocking

5https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

13

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

2. Related Work

call. Only after the request succeeds to tell whether this communication call is successful or
not through the interface MPI_Wait or MPI_Test, the data buffer can be used again.

The collective communication interfaces in OctoPOS include MPI_Reduce, MPI_Allreduce,
MPI_Bcast, MPI_Alltoall, MPI_Alltoallv, etc. A collective communication call involves all
the processes in one communicator, and all the processes wait synchronously for the return of
this call. MPI_Alltoall means each process sends an equal number of bytes to all the other
processes, and each process receives the data from all the other processes. MPI_Alltoallv is
a more flexible version of MPI_Alltoall. Each process can parameterize the number and
location of data sent and received. MPI_Bcast means a root process broadcasts its data to all
the other processes. The MPI_Reduce operation does a mathematical operation in one data
from all the processes in one communicator and copies the result to the root process. The
MPI_Allreduce interface differs from the MPI_Reduce one in that it copies the mathematical
result to all the processes. Figure 2.6 shows the process of a MPI_Allreduce operation in a
three-process communicator.

14

2.2. Libraries in OctoPOS

1 int MPI_Send(const void∗ buf , int count , MPI_Datatype datatype , int dest ,
int tag , MPI_Comm comm) ;

Listing 2.2: MPI_Send C interface.

Figure 2.6.: Example of the process of MPI_Allreduce.
Source: [1]

15

2. Related Work

A part of the MPI routines was implemented in OctoPOS, and others can not be ac-
cessed in OctoPOS. For instance, the cartesian operations such as the MPI_Cart_create,
MPI_Cart_shift functions are not available in the “mpi” library. They operate with the
cartesian topology information and help find the local location of each process in its process
neighborhood. In such a case, a new C function in the MPI application of OctoPOS to play
a similar role is needed.

2.2.2. iMPI in OctoPOS

The iMPI interfaces in OctoPOS refer to the basic four operations which are frequently used:
MPI_Init_adapt, MPI_Probe_adapt, MPI_Comm_adapt_begin, and MPI_Comm_adapt_commit.
These interfaces solve the problem of dynamic adaptation in the traditional MPI, and they can
support the resource management during the iMPI execution to some extent. The traditional
MPI interfaces to scale the program are MPI_Comm_spawn and MPI_Comm_spawn_multiple.
They can spawn new processes and deploy the original program on them. A parent pro-
cess and a children process are in two different communicators. They communicate with
each other through an intercommunicator. However, the spawning is based on some fixed
resources. It is controlled only by the application rather than the resource manager [1]. The
resource manager is intended to manage the resources in a cluster 6, in order to monitor the
real-time status of resources. Thus, the traditional interfaces can not realize resource-aware
programming and are not proper for my project.

The MPI_Init_adapt operation shown in Listing 2.3 can replace the MPI_Init operation
in a traditional MPI program. It initializes the adaptive execution environment. Besides
the command line arguments, the additional parameter local_status points to the final
status of the process. The status can be the new status or the joining status. The new status
MPI_ADAPT_STATUS_NEW means the calling process is initialized by the normal executing com-
mand. For instance, the “mpirun” command is used to specify the parameters of execution
and run a MPI program. The joining status MPI_ADAPT_STATUS_JOINING means the calling
process is initialized by the resource manager [1].

The MPI_Probe_adapt operation tells whether there exists an adaptation in the resource
manager and helps the current process to decide if it is time to start an adaptation win-
dow. The adaptation is launched by the resource manager, but in OctoPOS it is not the
case. MPI_Resize_request is used to specify the new number of processes in the com-
municator and launch the adaptation. Listing 2.4 shows the MPI_Probe_adapt routine.
The possible values of pending_adaptation are MPI_ADAPT_TRUE and MPI_ADPAT_FALSE,
and its value determines if there is an adaptation happening. The local_status can be
MPI_ADAPT_STATUS_STAYING, MPI_ADAPT_STATUS_LEAVING, or MPI_ADAPT_STATUS_JOINING.
A staying status points out that the calling process will stay in the current group. By
contrast, a leaving status means the calling process will be removed after the adaptation [1].

If there exists an adaptation, each process can start a MPI_Comm_adapt_begin command.
Listing 2.5 shows the details of this routine. The parameter intercomm refers to a temporal
communicator during the adaptation. The parameter new_comm_world means the new com-
municator after the adaptation. Each process with status joining or staying can access each

6http://www.schedmd.com

16

http://www.schedmd.com

2.2. Libraries in OctoPOS

other in the new_comm_world communicator. However, a process with status leaving can not
reach the new_comm_world communicator, but it can be reached by parent processes in the
MPI_COMM_WORLD communicator or by children processes in the intercomm communicator.
The staying_count refers to the number of processes those will stay in the current group.
The leaving_count refers to the number of processes those will leave the current group. The
joining_count refers to the number of new processes those will join in the current group [1].
When this routine can be called is decided by programmers, thus it improves the flexibility
of programming.

After the MPI_Comm_adapt_begin command and other operations during the adaptation
window are completed, the MPI_Comm_adapt_commit command can be called. It has no
parameter. It will replace the old MPI_COMM_WORLD communicator with a new_comm_world
communicator. The adaptations made on the communicator can be adding joining processes
to it or removing leaving processes from it. Furthermore, the resource manager is notified
that the current adaptation is finished, thus a new adaptation can be launched [1].

With these four iMPI routines implemented in OctoPOS, an invasive program is easier to
be developed at the application level. The advantages of these routines are summarized as
follow. First, dynamic resource management is controllable at the application level through
these routines. Second, the probing operation makes it more flexible to decide the opportunity
to launch an adaptation. Third, operations not relevant to adaptations can be started during
the adaptation window, in order to improve the executing efficiency. For example, Listing 2.6
shows an iMPI program in OctoPOS. The current number of the processes npb_nprocs and
the largest possible number of processes max_npb_nprocs are defined at the global variable
area of the main program. This example inserts additional processes per iteration during a
for loop of adaptations. Each process gets its status at the MPI_Init_adapt call. A parent
process should get a new status because it is not launched by the resource manager. A new
children process should get a joining status, and receive the current iteration index of loop
through a MPI_Recv operation because it will join the for loop as a new member of the group
after the current adaptation. A parent process that already stayed in the current group
needs to probe whether there is an adaptation happening through a MPI_Probe_adapt call.
A MPI_Resize_request operation is called to launch an adaptation which will generate a
new group with new_size processes. Each process can start an adaptation once the probing
call returns a true status. During the adaptation window, the current iteration index is sent
to children processes through the MPI_Send operation in the process with rank 0. These
operations are called during the adaptation window, in order to hide the latency of adapting
the group.

17

2. Related Work

1 int MPI_Init_adapt (int∗ argc , char∗∗∗ argv , int∗ l o c a l_s ta tu s) ;

Listing 2.3: MPI_INIT_ADAPT C interface.

1 int MPI_Probe_adapt (int∗ pending_adaptation , int∗ l o ca l_status , MPI_Info∗
i n f o) ;

Listing 2.4: MPI_PROBE_ADAPT C interface.

1 int MPI_Comm_adapt_begin(MPI_Comm∗ intercomm , MPI_Comm∗ new_comm_world , int∗
staying_count , int∗ leaving_count , int∗ jo in ing_count) ;

Listing 2.5: MPI_COMM_ADAPT_BEGIN C interface.

18

2.2. Libraries in OctoPOS

1 #inc lude " octopos . h"
2 #inc lude "mpi . h"
3
4 const int npb_nprocs = 4 ;
5 const int max_npb_nprocs = 255 ;
6 int num_adaptations = 5 ;
7 int main (int argc , char ∗∗ argv) {
8 MPI_Info i n f o ;
9 MPI_Comm intercomm , new_comm_world ;

10 int rank , o ld_size , new_size , l o ca l_status , tmp_status , pending_adapt ,
11 staying_count , leaving_count , jo in ing_count ;
12 MPI_Init_adapt (argc , argv , &lo ca l_s ta tu s) ;
13
14 int cur_i te r = 0 ;
15 i f (l o ca l_s ta tu s == MPI_ADAPT_STATUS_JOINING) {
16 MPI_Comm_adapt_begin(&intercomm , &new_comm_world , &staying_count ,
17 &leaving_count , &jo in ing_count) ;
18 MPI_Status s t a tu s ;
19 MPI_Recv(&cur_iter , 1 , MPI_INT, 0 , MPI_ANY_TAG, intercomm , &s ta tu s) ;
20 MPI_Comm_adapt_commit() ;
21 }
22
23 for (int i t e r = cur_ite r ; i t e r < num_adaptations ; i t e r++) {
24 MPI_Comm_rank(MPI_COMM_WORLD, &rank) ;
25 MPI_Comm_size(MPI_COMM_WORLD, &old_s ize) ;
26 i f (i t e r != num_adaptations − 1) {
27 new_size = o ld_s ize + 2 ;
28 MPI_Resize_request (MPI_COMM_WORLD, new_size) ;
29 MPI_Probe_adapt(&pending_adapt , &tmp_status , &i n f o) ;
30 while (pending_adapt != MPI_ADAPT_TRUE) {
31 MPI_Probe_adapt(&pending_adapt , &tmp_status , &i n f o) ;
32 }
33 MPI_Comm_adapt_begin(&intercomm , &new_comm_world , &staying_count ,
34 &leaving_count , &jo in ing_count) ;
35 i f (rank == 0) {
36 for (int j = o ld_s ize ; j < new_size ; j++) {
37 int tmp = i t e r + 1 ;
38 MPI_Send(&tmp , 1 , MPI_INT, j , 0 , intercomm) ;
39 }
40 }
41 MPI_Comm_adapt_commit() ;
42 }
43 }
44 MPI_Finalize () ;
45 return 0 ;
46 }

Listing 2.6: The code of an iMPI program example.

19

2. Related Work

2.2.3. TCP in OctoPOS

TCP transmits data with high reliability and low error rate [28]. A critical feature of TCP
is its three-way handshake connection. During the process of a connection, the flags SYN,
ACK, and SYN-ACK are used. At the first step, the client endpoint sets an initial sequence
number, and packs the data packet with this number and a SYN flag. After receiving this
packet, the server endpoint not only inserts the SYN and ACK flags into the responding data
packet, but also packs the packet with the acknowledgement number which is equal to the
sequence number plus one. Finally, the client endpoint sends a ACK flag with a responding
acknowledgement number to the server endpoint, and then the connection is established.
This three-way handshake process makes sure that the client endpoint can match the server
endpoint in case of the data missing and out-of-order segments [29]. Figure 2.7 shows the
whole process of three-way handshake.

Figure 2.7.: TCP three-way handshake process.

The TCP operations in OctoPOS are implemented in the “octo_tcp” library. A general
process in the server consists of creating the socket, binding the socket to an IP address
and a port number, listening to the socket, and accepting the connection from the client.
The setup of the client is connecting the server according to the IP address and the port
number. The operation of creating a socket creates a socket of the type octo_tcp_socket_t
when the function call returns a status of success. Functions to bind a socket to an ipv4 or
ipv6 address and a port number are supported. If the ipv4 address can not be confirmed,
an argument of “0.0.0.0” can be used to bind the socket to any address available on the
current system. Similarly, “[::0]” can match any accessible ipv6 address. The listening
operation keeps listening to possible clients until it is finished. This operation can specify
the maximum number of connections. The accepting operation is intended to accept a
number of connections based on the socket created previously. An operation to abort the
accepting process is also provided. Once the connection is established, the server and client

20

2.2. Libraries in OctoPOS

can use the octo_tcp_send and octo_tcp_recv operations to send and receive information.
Table 2.1 shows common TCP synchronous operations. The full set of the TCP operations in
OctoPOS can be viewed in the directory “irtss/src/os/krn/cface/header”. The “irtss” refers
to the directory of iRTSS. The common return values of these operations can be ESUCCESS,
ENOMEM, or EINVAL. These values mean that the call is successful, that not enough memory
is available, or that some parameters are invalid. The octo_tcp_sync_shutdown operation
can close the data transmission channels in one socket. The parameter modes is a bitmask
that can specify the channels to close.

One TCP operation may have an asynchronous version. An asynchronous operation
is an operation with the same aim as that of the synchronous operation and a follow-
ing operation waiting for the completion of the previous one. For instance, Table 2.2
describes the interface of asynchronously creating a new socket and the interface of wait-
ing for its completion. The parameter handle stores an asynchronous handle which is
checked in the octo_tcp_create_wait call. The waiting operation will be blocked until the
octo_tcp_create call is finished.

21

2. Related Work

Description Interface

Creating a new socket enum Errors __must_check
octo_tcp_sync_create
(octo_tcp_socket_t *socket);

Binding a socket enum Errors __must_check
to ipv4:port octo_tcp_sync_bind4

(octo_tcp_socket_t socket, const octo_ip4_t *ipv4, uint16_t port);
Binding a socket enum Errors __must_check
to ipv6:port octo_tcp_sync_bind6

(octo_tcp_socket_t socket, const octo_ip6_t *ipv6, uint16_t port);
Listening on a socket enum Errors __must_check

octo_tcp_sync_listen
(octo_tcp_socket_t socket, uint16_t backlog);

Accepting a connection enum Errors __must_check
octo_tcp_sync_accept
(octo_tcp_socket_t socket, octo_tcp_socket_t *accepted);

Connecting a socket enum Errors __must_check
to ipv4:port octo_tcp_sync_connect4

(octo_tcp_socket_t socket, const octo_ip4_t *ip, uint16_t port);
Connecting a socket enum Errors __must_check
to ipv6:port octo_tcp_sync_connect6

(octo_tcp_socket_t socket, const octo_ip6_t *ip, uint16_t port);
Writting data to a socket enum Errors __must_check

octo_tcp_sync_send
(octo_tcp_socket_t socket, const void *src, uintptr_t *size);

Reading data from a socket static inline enum Errors __must_check
octo_tcp_sync_recv
(octo_tcp_socket_t socket, void *dst, uintptr_t *size);

Shutting down data enum Errors __must_check
channels octo_tcp_sync_shutdown

(octo_tcp_socket_t socket, unsignedmodes);
Closing a socket enum Errors __must_check

octo_tcp_sync_close
(octo_tcp_socket_t socket);

Table 2.1.: Synchronous TCP interfaces in OctoPOS.

22

2.2. Libraries in OctoPOS

Operation to create a socket Waiting operation

enum Errors __must_check enum Errors __must_check
octo_tcp_create octo_tcp_create_wait

(octo_tcp_create_t *handle); (octo_tcp_create_t handle, octo_tcp_socket_t *socket);

Table 2.2.: Asynchronous creation of a new socket and its waiting operation for the comple-
tion.

23

2. Related Work

2.3. OctoPOS applications

Based on OctoPOS, invasive applications can be developed. My project is based on iMPI
and developed by C. The following sections give the setup of an OctoPOS application and
two examples of the iMPI application in OctoPOS.

2.3.1. The setup of an OctoPOS application

The setup of an OctoPOS application includes two parts: building an iRTSS release and
building the application in OctoPOS.

After the installation of iRTSS, an iRTSS release needs to be built and used by OctoPOS.
The fundamental step is to generate the platform configuration of resources. The platform
configuration is defined in a Perl module file. The Perl module file includes the name of
architecture, the name of the release variant, the number of tiles, the features of devices such
as the shared memory and interconnect network device, and the specific features of the tile
such as the number of processes and memory device in the tile. It is critical that the size of
the configured hardware resources must be big enough so as to fulfill the requirements of the
OctoPOS application. iRTSS supports various executing architectures such as x64native and
x86guest. For instance, an OctoPOS application running as a guest on the top of a Linux
operating system uses the x86guest variant. In my project, the OctoPOS application uses
the x64native variant and runs in the 64-bit architecture bare metal.

After the iRTSS configuration, an iRTSS release can be built by a Perl script based on the
configuration file. A link in OctoPOS needs to point to the built release, therefore iRTSS
can be used by applications in OctoPOS. In an OctoPOS application, the “Makefile” file
defines the project name, the OctoPOS release version, architecture, and the release vari-
ant. After building the source code with the “Makefile” file, the execution file can be generated.

2.3.2. An iMPI application to compute the heat matrix

This is an iMPI application to compute the heat matrix which can show an example of
numerical simulation in OctoPOS. The first part is the data initialization. The root process
initializes the global data and constructs the grid population according to the heat sources
at the beginning. Then the root process determines the local data grid size for each process,
and the local data is broadcast through MPI_Bcast. After that, the global matrix is split
and distributed to other processes through MPI_Send. The main loop of computing starts
after the data preparation. In each iteration, all the processes calculate the Jacobi matrix
collectively and synchronize the overlapping data between neighbor processes. Whether to
expand the group is according to if there are enough resources left which is decided by the
comparison between the new potential number of processes and max_npb_nprocs. If the
remaining processes are enough to support the adaptation, a MPI_Resize_request operation
is started. After that, all the data is collected and updated in the root process. If there is an
adaptation in the current iteration, an adaptation window is started. After the adaptation,
the local data in each process gets initialized and the global data is distributed from the root
process to other processes in the new group. Then a new iteration is ready.

24

2.3. OctoPOS applications

2.3.3. The invasive swe-x10

A software package to solve the Shallow Water Equation (SWE) problem shown by Equa-
tion 2.1 is a great example of invasive simulation in OctoPOS. SWE refers to a nonlinear
system of conservation laws for momentum and depth. It plays an important role in the
research of the coastal inundation and the propagation of tsunamis [30]. As Equation 2.1
shows, u and v note the velocities in two dimensions, and h refers to the height in the
remaining dimension. The right side S(t, x, y) is a source term that can be modeled as
other effects such as the friction of the ocean floor [31]. The notation [g]x means the partial
derivative with respect to the independent variable x.

[h, hu, hv]t + [hu, hu2 +
1

2
gh2, huv]x + [hv, huv, hv2 +

1

2
gh2]y = S(t, x, y) (2.1)

The invasive X10-based swe application performs well in both the shared memory system
and the distributed system, compared with previous C++ applications based on a hybrid
model of MPI and OpenMP [31]. A critical algorithm of the invasive swe-x10 is the actor
model. As Figure 2.8 illustrates, one actor noted by a node in the figure represents an
equal-size local domain of the unknowns needed to be solved. Each actor communicates
directly with its direct neighbors by channels. A channel containing a data buffer connects
the output port of one actor with the input port of another port. Data passing the channel
is First In First Out (FIFO). During one iteration of the simulation, an actor gets the result
of its neighbor at the previous time step, and the result in the current time step is updated
according to the result received. Therefore, the unknowns can be updated per iteration.

Figure 2.8.: The communication between actors and their neighbors.
Source: [31]

Another important feature of the invasive swe-x10 is the “ActorX10” library [32]. It is
based on the Asynchronously Partitioned Global Address Space (APGAS) programming
model of X10, which allows a running program to dynamically create and deploy threads on

25

2. Related Work

a cluster of nodes. In order to lower the difficulty of programming with APGAS, the actor
model discussed previously is combined with PGAS, and the resulting model is implemented
in X10 to develop the “ActorX10” library.

The communication part of the invasive swe-x10 is an example of transmitting data in
OctoPOS. The Input/Output (IO) tile, which includes IO and ethernet devices, can transmit
data to a visualization application: a normal C++-based project in a Linux system that
can receive network data and configure the visualization of simulation with colorization,
movement, and scaling. The real-time scenario can be then presented during the simulation
process. This application gives an example of visualizing molecular dynamics simulation
based on OctoPOS and UNIX-like systems.

2.4. Molecular dynamics simulation

Besides traditional experiments to simulate scientific scenarios, computer simulation is a new
powerful tool to help do research on microscopic interactions between particles and their
structures. Basic theory about molecular dynamics simulation is introduced as follows.

2.4.1. Basic theory

The first important theory about MD is the interaction between particles. The total force in
one particle can be calculated by Equation 2.2.

f i = − ∂

∂ri
V (2.2)

The numerator V (rN) where rN = (r1, r2, ...rN) refers to the potential between parti-
cles [2], and the Lennard-Jones (LJ) variant of pair-potential is used in my project.

vLJ (r) = 4 · ϵ[
(σ
r

)12
−
(σ
r

)6
] (2.3)

Equation 2.3 describes the computing of the LJ potential. The parameter σ denotes the
zero crossing of the potential [33]. The parameter ϵ denotes the depth of the potential,
thus larger ϵ means stronger bond between particles. The parameter r denotes the distance
between particles. The diagram of the LJ potential is described in Figure 2.9. The potential
and force decay rapidly, which leads to the idea to neglect the minor effects of those particles
far from the current particle.

26

2.4. Molecular dynamics simulation

Figure 2.9.: Lennard-Jones potential with σ=1 and ϵ=1.
Source: [2]

In order to decrease the time complexity of computing the particle-to-particle force from
O(N2) to O(N), the LJ potential is approximated to zero if the distance between particles
exceeds a radius cutoff rcut. The rcut is typically chosen as 2.5 · σ. Neglecting the LJ
forces of the particles from a distance over rcut leads to an error in computing the total
LJ force in the current particle and changes the total energy of the current simulation
domain isolated mechanically and thermically [2]. Another error comes from the numeri-
cal scheme, which will be introduced in the next segment. Combining Equation 2.2 and
Equation 2.3, Equation 2.4 showing the calculation of the total LJ force on one particle i is got.

F i ≈ 24 · ϵ
N∑

j=1,j ̸=i
0<rij≤rcut

1

r2ij
·
(

σ

rij

)6

·

(
1− 2 ·

(
σ

rij

)6
)
rij (2.4)

In my project, only the short-range force such as the LJ force is calculated. Therefore,
the cell list or the neighbor list can be used to compute the forces between particles [34]. In
miniMD, the neighbor list is used, and it stores less particles those should be checked for the
force computing than the cell list. The simulation box is evenly split into local domains. Only
particles in the domain whose distance from the local domain does not exceed the neighbor
cutoff ncut are considered into the force computing between particles. The parameter ncut is
bigger than rcut considering the motions of particles in the domain between two neighboring
operations.

27

2. Related Work

In miniMD, the Embedded Atom Method (EAM) potential [35], [36], [37] is also included.
It is used to compute the interactions between atoms of metals or their alloys. For example,
the EAM potential has been applied to the fields of surface reactions, phase transitions of
solids as well as other materials, and crack information [38]. The fundamental idea of EAM
is the electron density induced by energy potentials [2]. For a single atom i, its energy is
decided by the potential which is contributed to by all the surrounding atoms in the position
xi. The atom i can be regarded as embedded in a bulk of electron density. This embedding
energy V emb

i is described in Equation 2.5 [2].

V emb
i = Fi(ρ

host
i)

ρhosti =
N∑

j=1,j ̸=i

ρatomj (∥ rij ∥)
(2.5)

ρhosti refers to the electron density induced by all the other atoms in the position xi. The
parameter rij denotes the distance between the atoms in xi and xj . Besides Equation 2.5,
the pair potential described by Equation 2.6 should be computed. ϕij is a function that only
depends on the types of atom i and j [2]. The combination of the embedded energy and
pair potential leads to the total potential in Equation 2.7. The function Zi refers to the
“effective charges” [2]. Zi is constructed properly so as to feature a decaying function value
as rij grows. The typical method to model Zi and Fi is to use cubic splines to describe them.
The coefficients of the cubic splines are computed through a weighted least square approach,
thus common physical properties can be modeled accurately [2]. ρatomj is computed by the
Hartree-Fock approximation method [39]. In my project, the EAM mode is removed because
the LJ interaction is enough to simulate desired scenarios.

V pair
i =

1

2

N∑
j=1,j ̸=i

ϕij(∥ rij ∥) (2.6)

V =
N∑
i=1

Fi(
N∑

j=1,j ̸=i

ρatomj (∥ rij ∥)) +
1

2

N∑
i=1

N∑
j=1,j ̸=i

Zi(∥ rij ∥)Zj(∥ rij ∥)
∥ rij ∥

(2.7)

In order to get discrete mathematical results, numerical methods need to be applied to
approximate the locations and velocities of particles. A simple example of the numerical
method is the explicit Euler method. Equation 2.8 shows its scheme.

v⃗(t+△t)
.
= v⃗(t) +△t⃗a(t)

r⃗(t+△t)
.
= r⃗(t) +△tv⃗(t)

(2.8)

The first step is to compute the velocity v⃗(t+△t) in the next time step t+△t with the
current acceleration a⃗(t). The second step is to compute the location r⃗(t+△t) in the next
time step with the current velocity v⃗(t). But this method lacks the stability of computing,
and its accuracy of the result is not high. Other methods include the implicit Euler method,
Crank Nicolson method, Leapfrog method, etc. The method used in miniMD is the Velocity
Störmer Verlet method. Equation 2.9 shows its routine. It uses two separate steps to get the

28

2.4. Molecular dynamics simulation

velocity v⃗(t+△t) in the next time step. At the beginning, the velocity in the intermediate
time step v⃗(t+△t

2) is computed. The next location is got based on the velocity in t+△t
2 . Then,

the velocity in the intermediate time step and the acceleration in the next time step lead to
the velocity v⃗(t+△t). From the theoretical perspective, this method has second order, which
leads to higher accuracy than the explicit Euler method. It is more stable when errors happen.

v⃗(t+
△t

2
) = v⃗(t) +

△t

2
a⃗(t)

r⃗(t+△t) = r⃗(t) +△tv⃗(t+
△t

2
)

v⃗(t+△t) = v⃗(t+
△t

2
) +

△t

2
a⃗(t+△t)

(2.9)

In a typical molecular dynamics simulation application such as miniMD, the physical
properties of simulation such as the temperature of the simulation box is computed based
on the number and velocities of particles. How the temperature T is computed is given
in Equation 2.10 [2]. kB is the Boltzmann constant. Ekin refers to the kinetic energy. N
denotes the number of particles. The temperature sometimes needs to be adjusted to keep
the balance between the kinetic energy and the potential energy [2]. Equation 2.11 shows
that the target temperature TD is got by scaling the velocities with a factor β [2].

T =
2

3NkB
Ekin =

2

3NkB

N∑
i=1

mi

2
v2
i (2.10)

β :=
√
ED

kin/Ekin =
√

TD/T

vn
i := βvn

i

(2.11)

In molecular dynamics simulation, general boundary conditions are needed. Some widely-
used examples can be the Dirichlet boundary conditions or Neumann boundary conditions.
For materials with regular structures such as crystals, the periodic boundary conditions can
be used to extend the simulated domain into infinity [2]. In the case of periodic boundary
conditions, when a particle moves out of the subdomain along the direction of its velocity, an
image particle in the opposite direction will move into this subdomain through the boundary
on the opposite side. The outflow boundary conditions refer to boundaries that particles
can cross before they leave the simulation box. Similarly, the inflow boundary conditions
refer to boundaries that particles can cross before they enter the simulation box. As the
simulation process goes on, the number of particles in the simulation box may decrease in
the case of outflow boundary conditions. By contrast, the reflecting boundary conditions can
make sure that each particle that comes close to the boundary will be bounced back. There
are two methods to realize this principle. The first one is to set a mirror virtual particle
with the same mass for each particle outside the boundary. Thus there exists a repulsive
force between the real particle and the virtual particle, and the force will tend to infinity
when the particle gets close enough to the boundary. The second one is to move the particles
outside the simulation box into the simulation box. The position and velocity of the new
particle are mirrored across the boundary [2]. Figure 2.10 presents a sketch of the reflecting
boundary conditions.

29

2. Related Work

Figure 2.10.: Reflecting Boundary Conditions.
Source: [2]

2.4.2. Examples of molecular dynamics simulation

LAMMPS is a molecular parallel simulator that can simulate scenarios with a large diversity
of features. New external constraints, diagnostics, and interatomic potentials can be added to
LAMMPS [40]. Fundamental simulation methods used in LAMMPS are distributed neighbor
lists, spatial decomposition in parallel, parallel Fast Fourier Transforms (FFTs) which is
used to compute the interactions of long-range Coulomb force [41], and the Störmer Verlet
symplectic method [42]. Because of its versatility, LAMMPS is widely applied to various
simulation fields such as material science, biology, and geography 7. The substances it can
simulate range from solid and soft materials to mesoscopic and coarse-grained systems 8.
The source code of LAMMPS was developed at Sandia National Laboratories. The languages
it consists of are C++, C, Fortran, and Python. It can not only be executed in one CPU
core, but it can also run in a parallel system based on message passing with accelerators.

miniMD was developed in the Mantevo project at Sandia National Laboratories. It is a
simplified version of LAMMPS [41], [43]. It shares lots of features of LAMMPS. For instance,
it uses a parallel spatial decomposition similar to LAMMPS. But not all the features of
LAMMPS are included in miniMD. For example, the models of the interaction between
particles only include the LJ and EAM models. Only short-range force can be computed in
miniMD. The miniMD code supports weak scaling and strong scaling, which is perfect to
test the performance of machines in the cases of different problem sizes and configurations
of hardware resources. Compared with the complicated LAMMPS code, it only consists of
5000 lines of C++ code. Thus, developments based on miniMD will be convenient. There
are different variants of miniMD. The most proper one for my project is the “miniMD_ref”
one, because the MPI feature is implemented in its code and it does not refer to complicated
external libraries such as Kokkos [44]. The features users can set up include the size of
the simulation box, the number of processes and threads, the mode of interaction between
particles, the density of particles, the number of time steps to run, cutoff radius, etc. The
features it owns can fulfill the basic requirements of molecular dynamics simulation [45]. All

7https://www.olcf.ornl.gov
8https://www.lammps.org/

30

https://www.olcf.ornl.gov
https://www.lammps.org/

2.4. Molecular dynamics simulation

in all, miniMD is much easier to be reproduced and modified in OctoPOS than LAMMPS.

31

Part II.

Thesis Development

32

3. Design and Implementation of iminiMD

The adaptations made in miniMD include three parts: basic changes such as the recon-
struction of functions, the development of extra content, and the visualization content. The
work of the first two parts leads to iminiMD in OctoPOS. The result of the third part is a
C++ program based on OpenGL and MPI in Linux. Figure 3.1 shows the basic process of
iminiMD. The “Simulation process” in Figure 3.1 means a whole process of the molecular
dynamics simulation in miniMD. The loop means that the simulation process is executed for
several times with different numbers of iMPI processes. At the end of each iteration, except
the last one, an iMPI adaptation is necessary to expand the communicator and new children
processes are prepared for the next iteration. The details about the “Simulation process” of
Figure 3.1 are shown in Figure 3.2. The main part of the process is a loop of simulation.
The real-time simulation data is sent to the client program per a number of iterations. The
reneighboring, which consists of the reallocation of local particles, the communication of
ghost particles, and the construction of neighbor lists, is called per neigh_every iterations
shown in Table 3.1. Otherwise, only the information of ghost particles is communicated
between processes. Then the force and the velocity of each particle, the total energy, the
temperature, and the pressure of the simulation box are computed. At the end of an iteration,
the location of each particle is updated according to its velocity. There is a visualization
program intended to receive the data sent from the iminiMD application through TCP.
It starts with two MPI processes, one of which is responsible for visualizing the data and
the other of which aims at receiving the data and printing them in files. The visualiza-
tion tools are provided by the OpenGL library. The specific implementations of iminiMD
are described in this Chapter. The details about the visualization application are in Chapter 4.

33

3. Design and Implementation of iminiMD

Start

iMPI environment initialization

Joining status ?

Start the adaptation window

Communicate the loop information

Commit the adaptation window

Simulation process

Last iteration ?

Probe adaptation

Adaptation pending ?

Print the performance metrics

Stop

Yes

No

No

Yes

No Yes

Figure 3.1.: Flow chart of iminiMD.

34

Start

TCP data transmission?

Send data

Reneighboring?

Assign local particles to processes

Assign ghost particles to processes

Construct neighbor list

Communicate ghost particles

Update forces, velocities, locations, etc

Last iteration ?

Stop

Yes

No

Yes

No

Yes

No

Figure 3.2.: Flow chart of the molecular dynamics simulation process.

35

3. Design and Implementation of iminiMD

3.1. Basic adaptations

In order to run miniMD in OctoPOS, the first objective is to reconstruct the source code
and to make it fit into OctoPOS.

The first adaptation is the change of the programming language. It is reasonable to deploy
a C-version miniMD in OctoPOS. The routines not supported by both C and C++ must be
modified. C++ is based on object-oriented programming that is not available in C. All the
C++ class definitions in miniMD were replaced with the C struct definitions in my project.
Listing 3.1 shows the “Integrate” class in miniMD, which is responsible for simulating the
process and computing the performance metrics. Correspondingly, the “Integrate” struct
is defined in iminiMD. As Listing 3.2 describes, the old member variables keep the same,
and some new member variables are inserted to add new features. nrk stores the color
data of particles. send_every refers to the interval of sending data. init_scenario refers to
the simulation scenario type. is_server can be set to decide whether the simulation data
should be sent through TCP. tcp_connection refers to the socket used to send the data
through TCP. invasive_iter refers to the current iMPI iteration index. num_adaptations
means the number of iMPI iterations. It is equal to the number of iMPI adaptations plus
one, because the first simulation does not need the iMPI adaptation. Because C does not
support member functions in a class, member functions in the “Integrate” class are moved
outside its class definition, and a pointer to an “Integrate” struct acts as a new parameter
in these functions. These functions access the member variables of the “Integrate” struct
through this pointer. The function run is moved to another struct in iminiMD. Similar
adjustments were also made in other class definitions of miniMD. Another important
transformation of language is about the memory management. Dynamic allocation and
deallocation are supported by C++ through the new and delete operations. These two
operations can separately allocate and free storage space in a pool which is called the free
store 1. In C, the malloc and free operations can be the substitutions of the new and
delete operations. It is up to programmers to manage the memory 2. But programmers
must be careful to allocate a reasonable size of memory and remember to free the memory
after its usage. In Subsection 2.3.1, it is pointed out that the size of memory in each tile is
predefined in the configuration file in OctoPOS, thus any excessive allocation of memory in
the code may lead to a memory overflow. Additionally, a free operation to match a previous
malloc operation will help the execution to get rid of memory leaks. Especially in one pass
of execution for several iMPI adaptations aiming at strong scaling, any memory should
be deallocated if it was allocated using the malloc operation and will not be accessed anymore.

1https://docs.microsoft.com/en-us/cpp
2https://www.cplusplus.com/reference

36

https://docs.microsoft.com/en-us/cpp
https://www.cplusplus.com/reference

3.1. Basic adaptations

1 class I n t e g r a t e
2 {
3 pub l i c :
4 MMD_float dt ;
5 MMD_float d t f o r c e ;
6 MMD_int ntimes ;
7 MMD_int n loca l , nmax ;
8 MMD_float∗ x , ∗v , ∗ f , ∗xold ;
9 MMD_float mass ;

10 MMD_int sort_every ;
11 ThreadData∗ threads ;
12
13 I n t e g r a t e () ;
14 ~In t eg r a t e () ;
15 void setup () ;
16 void i n i t i a l I n t e g r a t e () ;
17 void f i n a l I n t e g r a t e () ;
18 void run (Atom&, Force ∗ , Neighbor&, Comm&, Thermo&, Timer&) ;
19 } ;

Listing 3.1: Definition of class Integrate in C++.

1 typedef struct{
2 MMD_float dt ;
3 MMD_float d t f o r c e ;
4 MMD_int ntimes ;
5 MMD_int n loca l , nmax ;
6 MMD_float∗ x , ∗v , ∗ f , ∗xold ;
7 int∗ nrk ;
8 int i nva s i v e_ i t e r , num_adaptations ;
9 MMD_float mass ;

10 MMD_int send_every , sort_every ;
11 enum Scena r i oS ty l e i n i t_s c ena r i o ;
12 enum I s S e r v e r i s_se rve r ;
13 octo_tcp_socket_t∗ tcp_connection ;
14 ThreadData∗ threads ;
15 } In t e g r a t e ;
16
17 void i n i t_ i n t e g r a t e (I n t e g r a t e ∗) ;
18 void des t roy_integra te (I n t e g r a t e ∗) ;
19 void in tegrate_setup (In t e g r a t e ∗) ;
20 void i n i t i a l_ i n t e g r a t e (I n t e g r a t e ∗ , Atom∗ , int) ;
21 void f i n a l_ i n t e g r a t e (I n t e g r a t e ∗ , Atom∗) ;

Listing 3.2: Definition of struct Integrate in C.

37

3. Design and Implementation of iminiMD

The second necessary adaptation is to make the replacements of the inaccessible functions
of miniMD in OctoPOS and delete the features those can not be reproduced in OctoPOS. For
instance, the MPI operations about cartesian grid are not available in OctoPOS. In miniMD,
they tell the location of each process in the cartesian grid. Then each process can locate the
processes to communicate with. The function replacements responsible for computing the
rank number according to the three-dimensional location in the three-dimensional cartesian
grid and computing the location according to the rank number, are introduced in Listing 3.3
and Listing 3.4. The algorithm used here is similar to that of the cartesian functions in Open
MPI. Listing 3.3 shows the function get_location to compute the three-dimensional location
by the rank number. The array procgrids stores the numbers of processes in three dimensions.
The location of the process is computed and then loaded into myloc. In Listing 3.4, the
function get_neighbor describes how the cartesian grid location is used to compute the
rank number. The parameter dims is equivalent to the parameter procgrids in the previous
function, and the parameter periodic tells the periodicity of coordinate in each dimension.
Another important example is about the performance metrics. The library used to compute
the execution time is the “timer” library in miniMD, which is not fully supported in OctoPOS.
As a result, the function MPI_Wtime is used to the compute the execution time. MPI_Wtime
aims at acting as a wall clock or elapsed clock with high accuracy, whose resolution is
determined by another function MPI_Wtick 3. Based on the MPI_Wtime function, a “Timer”
struct was implemented in iminiMD. It includes a function intended to return the current
double-precision time in seconds and structures storing the performance metrics of each
execution.

3https://www.mpich.org/static/docs/v3.3/www3/MPI_Wtime.html

38

https://www.mpich.org/static/docs/v3.3/www3/MPI_Wtime.html

3.1. Basic adaptations

1 void get_locat ion (const int procg r i d s [] , int rank , int myloc [])
2 {
3 int nnodes = procg r i d s [0] ∗ procg r i d s [1] ∗ procg r i d s [2] ;
4 for (int i = 0 ; i < 3 ; i++)
5 {
6 nnodes = nnodes / p ro cg r i d s [i] ;
7 int tmp_coord = rank / nnodes ;
8 myloc [i] = tmp_coord ;
9 rank = rank % nnodes ;

10 }
11 }

Listing 3.3: Function: getting the cartesian grid location according to the rank number.

1 void get_neighbor (const int dims [] , const int p e r i o d i c [] , const int coords
[] , int∗ rank)

2 {
3 int coord , mu l t i p l i e r , ndims = 3 ;
4 ∗ rank = 0 ;
5 mu l t i p l i e r = 1 ;
6 for (int i = ndims − 1 ; i >= 0 ; i −−)
7 {
8 coord = coords [i] ;
9 i f (p e r i o d i c [i])

10 {
11 i f (coord >= dims [i])
12 coord = coord % dims [i] ;
13 else i f (coord < 0)
14 {
15 coord = coord % dims [i] ;
16 i f (coord)
17 coord = dims [i] + coord ;
18 }
19 }
20 ∗ rank += mu l t i p l i e r ∗ coord ;
21 mu l t i p l i e r ∗= dims [i] ;
22 }
23 }

Listing 3.4: Function: getting the rank number according to the cartesian grid location.

39

3. Design and Implementation of iminiMD

There are features in miniMD those can not be reproduced in OctoPOS. OpenMP is
currently not supported in OctoPOS, so it was removed in iminiMD. It is not enough to only
remove the OpenMP directives. In miniMD, the total work in each process is split evenly
into parts, and these parts are loaded into threads. In iminiMD, the multi-threading model
is not implemented. Thus the work distribution within one process and the synchronization
between threads are not needed anymore. To understand this case easier, it can be imagined
there is only one thread in each process. The directives such as the pragma omp parallel for
were removed, and local variables in the local domain of each thread were replaced with
the global variables in each process. In short, only one thread in each process occupies all
the resources in this process. Although there is only one thread in each process, the class
“ThreadData” storing the constructions of thread in miniMD is preserved. The reason to
keep it is that the OpenMP directives and their corresponding adaptations could be added
to OctoPOS if OpenMP is supported in OctoPOS in the future. After the work above
was finished, other minor changes only include removing unnecessary input and output
operations and deleting the features not needed such as the EAM interaction mode. The
initial parameters of simulation are no longer in files, and they are configured in the source
code.

By now, iminiMD is able to be executed in OctoPOS, and it is reasonable to insert the iMPI
operations into it. The iMPI operations are mainly responsible for adapting the number of
processes for strong scaling. Given a fixed problem of simulation, after each iMPI adaptation,
new children processes start an adaptation window to join the current communicator. In
each iteration of the invasive loop, all the processes in the current communicator simulate the
scenario together, then launch an adaptation window together with new children processes.
In Listing 3.5, the simulation code is included in the function main_func, which represents
the content of “Simulation process” in Figure 3.1. The variable cur_iter tells in which
iteration the new children process should join, and this value is sent from a parent process
to children processes through MPI_Send. Besides the iMPI content, the new content includes
additional scenarios of simulation, the performance metrics part, and the data transmission
part. These will be introduced in details in Section 3.2 and Section 3.3.

40

3.1. Basic adaptations

1 (. . .)
2 int main (int argc , char∗∗ argv)
3 {
4 MPI_Info i n f o ;
5 MPI_Comm intercomm , new_comm_world ;
6 int rank , o ld_size , new_size , l o ca l_status , tmp_status , pending_adapt ,

staying_count , leaving_count , jo in ing_count ;
7 MPI_Init_adapt (argc , argv , &lo ca l_s ta tu s) ;
8 int cur_i te r = 0 ;
9 i f (l o ca l_s ta tu s == MPI_ADAPT_STATUS_JOINING)

10 {
11 MPI_Comm_adapt_begin(&intercomm , &new_comm_world , &staying_count , &

leaving_count , &jo in ing_count) ;
12 MPI_Status s t a tu s ;
13 MPI_Recv(&cur_iter , 1 , MPI_INT, 0 , MPI_ANY_TAG, intercomm , &s ta tu s) ;
14 MPI_Comm_adapt_commit() ;
15 }
16 for (int i t e r = cur_ite r ; i t e r < num_adaptations ; i t e r++)
17 {
18 main_func (argc , argv , l o ca l_s ta tu s) ;
19 MPI_Comm_rank(MPI_COMM_WORLD, &rank) ;
20 MPI_Comm_size(MPI_COMM_WORLD, &old_s ize) ;
21 i f (i t e r != num_adaptations − 1)
22 {
23 new_size = o ld_s ize + 2 ;
24 MPI_Resize_request (MPI_COMM_WORLD, new_size) ;
25 MPI_Probe_adapt(&pending_adapt , &tmp_status , &i n f o) ;
26 while (pending_adapt != MPI_ADAPT_TRUE)
27 {
28 MPI_Probe_adapt(&pending_adapt , &tmp_status , &i n f o) ;
29 }
30 MPI_Comm_adapt_begin(&intercomm , &new_comm_world , &staying_count , &

leaving_count , &jo in ing_count) ;
31 i f (rank == 0)
32 {
33 for (int j = o ld_s ize ; j < new_size ; j++)
34 {
35 int tmp = i t e r + 1 ;
36 MPI_Send(&tmp , 1 , MPI_INT, j , 0 , intercomm) ;
37 }
38 }
39 MPI_Comm_adapt_commit() ;
40 }
41 }
42 (. . .)
43 }

Listing 3.5: Code of the iMPI adaptations in iminiMD.

41

3. Design and Implementation of iminiMD

3.2. iminiMD extensions

There is only one way to initialize the particles in miniMD. It generates particles according
to parameters in the configuration file such as the predefined density and the problem size.
The generated particles are randomly distributed into processes, but the initial distribution
of particles is approximately even in the simulation box. Each process has its local domain,
and it manages the particles located at its local domain. The properties of each particle
are stored in the arrays. During the simulation, the forces on particles are computed, and
then physical properties of particles such as the velocities and locations are updated per
iteration. According to visualization experiments, the scenario in miniMD looks chaotic.
Thus, a new collision scenario should be developed. It is easier to observe the particles
while one object strikes another object. Two scenarios of collision between objects with
outflow boundary conditions and reflecting boundary conditions were added to iminiMD.
The initial configurations of a collision simulation example can be checked in Table 3.1. In
the outflow boundary conditions scenario, a smaller object with a given velocity v collides
with a larger resting object, and both of them are superimposed with a thermal motion
based on the Maxwell-Boltzmann distribution [2]. A possible method to generate a Maxwell-
Boltzmann distribution is to generate a number according to a N(0, 1) normal distribution
and multiply it with a factor. The result can be a velocity component of the thermal
motion. factor is described in Equation 3.1. ⟨v2d⟩ means the mean squared velocity of
each component of a velocity v. Another collision case includes the reflecting boundary
conditions and adds the gravity force to the dropping object. The t_target parameter in
Table 3.1 means the temperature the simulation box keeps during the execution. In order to
keep the temperature t_target, the velocities of particles are scaled per a number of iterations.

factor =
√
⟨v2d⟩ (3.1)

42

3.2. iminiMD extensions

Symbol Value Meaning

L1 ∗ L2 ∗ L3 250*250*10 sizes of simulation box
boundarytype OBC outflow boundary conditions

ϵ 5.0 ϵ in LJ
σ 1.0 σ in LJ
m 1 mass of particle
N 2000 total number of particles
N1 400 number of particles in dropping object
N2 1600 number of particles in resting object
v (0, 10, 0) initial velocity of dropping object
fcut 2.5*σ cutoff radius of force
δt 0.005 time step

ntimes 20000 number of iterations
neigh_every 20 interval of constructing the neighbor list
has_gravity 0 gravity not available
t_target 100.00 the constant temperature in the simulation box

Table 3.1.: Initial parameters for one collision simulation example.

43

3. Design and Implementation of iminiMD

The performance metrics part is a modified version of that in miniMD. By the functions
of the “Timer” struct in iminiMD, the time interval from one starting point to the current
point in time can be computed by the function MPI_Wtime. miniMD computes the time
of the communication between processes, constructing the neighbor list, computing the
forces, and the whole simulation. Similarly, splitting the total execution time into several
parts is also achieved in iminiMD. Furthermore, the time used in the iMPI adaptation and
the time used in the network data transmission are computed in iminiMD. Therefore, it
can be summarized how the invasive operations and the data transmission affect the whole
simulation. Clear statistics of the time cost in each part can be generated after each execution.

3.3. Data transmission

In order to visualize the real-time motions of particles and record the simulation data,
the data needs to be transmitted to another visualization application running in a Linux
system. In the swe-x10 application described in Subsection 2.3.3, the data is transmitted
using a socket through TCP. In this case, the swe application is a server, and another C++
visualization application acts as a client. Fortunately, OctoPOS provides developers with a
well-integrated TCP library. By including “octo_tcp.h”, the TCP interfaces are available for
developers.

In the source code of iminiMD, there is a variable send_every that shows the iteration
interval of transmitting the simulation data. It is time-consuming to transmit data, thus
frequent communication may make the execution time too long. Listing 3.6 describes the
function of sending data to clients. The init_flag shows whether it is the first time to send
data, because only the first time to call the communication function needs creating a socket,
binding the socket to an IP address and a port number, listening to clients, and accepting con-
nections. Once the socket client_connection is accepted, the interface octo_tcp_sync_send
can be used to send data to clients. rank refers to the rank number of the caller process,
and this parameter is common in iminiMD because it is indispensable to debug the iMPI
programs according to the output of the program. step shows the number of times needed to
send all the data in the send_buffer array, and the step_size is the number of bytes sent
per octo_tcp_sync_send operation. Because there is an upper limit of the size of data that
can be stored in the data packet of TCP, splitting the data and sending them for several
times could be necessary. step_size should be chosen carefully in order to match the speed
of sending data in iminiMD and the speed of receiving data in the visualization application,
and this will be introduced in details in Section 4.2. port is a global variable that is equal to
8080, and the local port of each process is calculated by port+ rank. The macro local_ip
is equal to “192.168.132.100”, which is the IP address of OctoPOS and defined in the file
“Device.cc” of iRTSS. With this IP address, external applications can locate the OctoPOS
application. If the current communication ends, the socket must be closed through the
interface octo_tcp_sync_close.

44

3.3. Data transmission

1 void send_data (int i n i t_ f l a g , octo_tcp_socket_t∗ c l i ent_connect ion , int rank
, char∗ send_buffer , int step , int s t ep_s i ze)

2 {
3 enum Errors e r r ;
4 uint16_t loca l_port = port + rank ;
5 i f (i n i t_ f l a g != 0) {
6 octo_tcp_socket_t l i s t en_sock e t ;
7 e r r = octo_tcp_sync_create(& l i s t en_sock e t) ;
8 i f (e r r != ESUCCESS) {
9 p r i n t f ("ERROR: Could not c r e a t e socke t \n") ;

10 return ;
11 }
12 octo_ip4_t ip4 ;
13 e r r = octo_ip4(&ip4 , l o ca l_ ip) ;
14 i f (e r r != ESUCCESS) {
15 p r i n t f ("ERROR: Could not convert the IP %s\n" , l o ca l_ ip) ;
16 return ;
17 }
18 e r r = octo_tcp_sync_bind4 (l i s t en_socke t , &ip4 , l oca l_port) ;
19 i f (e r r != ESUCCESS) {
20 p r i n t f ("ERROR: Could not bind socket to %s :%d\n" , loca l_ip , l oca l_port

) ;
21 return ;
22 }
23 uint16_t numc = 10 ;
24 e r r = octo_tcp_sync_listen (l i s t en_socke t , numc) ;
25 i f (e r r != ESUCCESS) {
26 p r i n t f ("ERROR: Could not l i s t e n to socket %s :%d\n" , loca l_ip ,

l oca l_port) ;
27 return ;
28 }
29 e r r = octo_tcp_sync_accept (l i s t en_socke t , c l i en t_connec t i on) ;
30 i f (e r r != ESUCCESS) {
31 p r i n t f ("ERROR: Could not accept c l i e n t s in socke t %s :%d\n" , loca l_ip ,

l oca l_port) ;
32 return ;
33 }
34 }
35 i f (i n i t_ f l a g == 0 | | e r r == ESUCCESS) {
36 for (int i = 0 ; i < step ; i++) {
37 uintptr_t send_size = step_s i ze ∗ (s izeof (char)) ;
38 e r r = octo_tcp_sync_send (∗ c l i ent_connect ion , (void ∗) (send_buffer + i ∗

s t ep_s i ze) , &send_size) ;
39 i f (e r r != ESUCCESS) {
40 p r i n t f ("ERROR: Could not send data to c l i e n t %s :%d\n" , loca l_ip ,

l oca l_port) ;
41 return ;
42 }
43 }
44 }
45 else
46 p r i n t f ("ERROR: Cl i en t connect ion f a i l e d %s :%d\n" , loca l_ip , l oca l_port) ;
47 }

Listing 3.6: Function: sending data to client through TCP.

45

4. Design and Implementation of the
Visualization Application

In the case of visualization, iminiMD plays the role of server in communication. Thus, a
corresponding client application is needed. In order to develop the application without the
restrictions in OctoPOS mentioned in the previous chapters, the application is designed to
be a C++ application in Linux. Figure 4.1 describes the outline of the visualization process.
Each process in iminiMD sends the data of local particles to the root process. Then the root
process sends the data to the data transmission process in the client. After that, the data is
sent to the visualization process where the simulation data is visualized. More details are
introduced in the next sections.

Figure 4.1.: Visualization process.

46

4.1. Basic design and implementation

4.1. Basic design and implementation

The data in the server is sent to one data transmission process in the client, and another
visualization process is needed to visualize the real-time motions of particles. The multi-
process mechanism is needed in the implementation. Therefore, it is reasonable to design the
client based on the MPI routines. The data transmission process connects with OctoPOS
by the IP address and port number of OctoPOS. Then the simulation data can be sent
from OctoPOS to the data transmission process. With MPI, the simulation data can be
sent to the visualization process. The OpenGL library provides the interfaces to visualize
the simulation. OpenGL is a kind of widely used two-dimensional and three-dimensional
graphics API library. It is independent of operating systems and hardware, which makes
it flexible and convenient to use this tool 1. The objects of the simulation are represented
by two-dimensional and three-dimensional instances in OpenGL. For instance, I used eight
points and their connecting lines to represent the simulation box in OpenGL. The particles
moving in it are solid spheres whose properties such as their radius, color, and position can
be adjusted by specific OpenGL interfaces.

4.2. Data transmission

The flow chart of the data transmission process is shown in Figure 4.2. In Figure 4.1, the
data transmission process possesses a socket, which has the same IP address and port number
as those in OctoPOS. For instance, a process in the server sends data through a socket bound
to the IP address “192.168.132.100” and the port number “8080”. Correspondingly, a socket
with the same IP address and port number in the client undertakes the responsibility of
receiving the simulation data. The connection between the client and the server keeps alive
until the current simulation ends. Frequent termination of the connection and establishment
of it will lead to high overhead, thus keeping the connection alive improves the execution
efficiency. The simulation data is packed into a byte array before it is sent and is converted
into the desired data format after it is received. For instance, an unpack_int function copies
the received data bytes to the storage address of an int variable, and then this variable can
be used further. In iminiMD and the client, other data formats include float and double.
In iminiMD, the default format is the float one, but it can be adjusted to the double one
if the double precision is chosen in the initial configuration.

After the connection between the server and the client is built, the general simulation data
is transmitted in Figure 4.2. The general simulation data includes the number of simulation
iterations, the number of visualization iterations, the number of iMPI iterations, the iMPI
iteration index, the number of processes, the size of the simulation box, the simulation
scenario type, and the data precision. Then, the visualization loop in Figure 4.2 can start.
In each iteration, the locations, colors, and velocities of particles are transmitted. Besides,
the sizes and locations of all the local domains in current simulation iteration are received.
However, the data is likely to be lost through TCP. Listing 4.1 describes the code of receiving
the location data of particles. num_rank refers to the number of processes in iminiMD.
num_data_arr stores the number of particles in each process. DIM_NUM is the number

1https://www.khronos.org/opengl

47

https://www.khronos.org/opengl

4. Design and Implementation of the Visualization Application

of dimensions. FLOATSTEP refers to the number of bytes needed to store a float value.
DOUBLESTEP refers to the number of bytes needed to store a double value. Within each
iteration, the location data of the particles in one process is received. But the size of data
sent per transmission is only group_size bytes, in order to match the speed of sending the
data and the speed of receiving the data. In my experiment, a too high group_size may
lead to frequent data loss. For instance, in the hardware experiment of Chapter 5, some
simulation data is lost if 1200 bytes are sent per sending operation. If the number of received
data bytes cur_num is not equal to group_size, it means that a part of the simulation data
is lost and the visualization program must be terminated. The data of all the particles is
sent to the visualization process through the MPI_Send interface, and then the visualization
process can collect all the data necessary to visualize the scene of the current iteration.

In order to verify the correctness of the data received, analyze the history simulation, and
reproduce the simulation in a professional software of molecular dynamics simulation, the
data of particles and the data of simulation domains are written to visualization toolkit (vtk)
files. During the simulation, a temporary file is intended to store point cloud data. Each line
of the temporary file includes the position and color data of one particle. The point cloud
data of each process in one iteration is stored in one file, and all the files for one iteration
are integrated into one vtk file that stores all the point cloud data in the same iteration.
The vtk file can store the information of structured points, structured grid, rectilinear grid,
polygonal data, and unstructured grid 2. There is no professional vtk structure to store
point cloud data. A polygonal structure is used to store the point cloud data. The example
of point cloud data in vtk format is described in Listing 4.2. The first few lines define the
version of file, the information of data, and the type of file. Then the real data follows. In
this example, the dataset POLYDATA is used. The line including the keyword POINTS means
that the coordinates of n points with the float precision are given. The precision descriptor
can also be double. The keyword VERTICES is used to describe the polygonal topology. Each
line represents a cell. n refers to the length of the cell list. 2n refers to the total number
of integers in the cell list. The last part defines the color of each point and each color is
represented by an integer. It is also proper to store the construction of the simulation box in
a vtk polygonal structure 3. Listing 4.3 shows an example to construct a simulation box.
The data after the line “POINTS 8 float” refers to the eight vertices of the box, and 30
values following the keyword POLYGONS are used to describe the graph topology of the box.
Each line following POLYGONS depicts a square with 4 vertices. Besides the global simulation
box, the local simulation domain of each process is also recorded in a single vtk file. In the
future work, the dynamic change of the local simulation domain is needed to reach the load
balancing of work, thus the local simulation domain may be different in different points in
time.

The vtk files can be visualized in ParaView, which is a data visualization and analysis
application 4. ParaView can help reproduce the simulation and analyze it after the simulation
is completed. For example, developers can choose the point cloud data of one process or
choose the data of multiple processes to present. A group consisting of vtk files in several
iterations can be played in succession to show a consecutive process of simulation. Besides

2https://vtk.org/wp-content/uploads/2015/04/file-formats.pdf
3https://kitware.github.io/vtk-examples
4https://www.paraview.org

48

https://vtk.org/wp-content/uploads/2015/04/file-formats.pdf
https://kitware.github.io/vtk-examples
https://www.paraview.org

4.2. Data transmission

the visualization result of the point cloud data, the statistics of data such as the number of
points and the range of their positions can also be presented in ParaView. The viewpoint
and scale of the visualizing window, the opacity, color, and radius of particle, and the opacity
as well as the color of the simulation box can be adjusted to make the simulated scenario
clearer.

49

4. Design and Implementation of the Visualization Application

Start

Connect to server

Receive general simulation data

Receive simulation data of each iteration

Write data to files

Send data to visualization process

Last iteration ?

Stop

No

Yes

Figure 4.2.: Flow chart of the data transmission process.

50

4.2. Data transmission

1 int buf_start = 0 ;
2 for (int k = 0 ; k < num_rank ; k++) {
3 i f (num_data_arr [k] == 0)
4 continue ;
5
6 group_size = GROUPSIZE1;
7 t o t a l_ s i z e = num_data_arr [k] ∗ DIMNUM ∗ ((p r e c i s i o n == 0) ?FLOATSTEP:

DOUBLESTEP) ;
8 group = to t a l_ s i z e / group_size ;
9 s t a r t = 0 ;

10
11 for (int i = 0 ; i < group ; i++) {
12 int cur_num = recv (sockfd , recv_buf + buf_start + s ta r t , group_size , 0) ;
13 i f (cur_num != group_size) {
14 p r i n t f ("ERROR: I t l o s e s l o c a t i o n data o f p roce s s %d in range %d−%d ,

and r e c e i v e s %d bytes in s t ead o f %d bytes ! \ n" , k , s t a r t , s t a r t +
group_size , cur_num , group_size) ;

15 e x i t (0) ;
16 }
17 s t a r t += group_size ;
18 }
19
20 i f (s t a r t < to t a l_ s i z e) {
21 int cur_num = recv (sockfd , recv_buf + buf_start + s ta r t , t o t a l_ s i z e −

s t a r t , 0) ;
22 i f (cur_num != to t a l_ s i z e − s t a r t) {
23 p r i n t f ("ERROR: I t l o s e s l o c a t i o n data o f p roce s s %d in range %d−%d ,

and r e c e i v e s %d bytes in s t ead o f %d bytes ! \ n" , k , s t a r t ,
t o ta l_s i z e , cur_num , t o t a l_ s i z e − s t a r t) ;

24 e x i t (0) ;
25 }
26 }
27
28 buf_start += to t a l_ s i z e ;
29 }

Listing 4.1: Code of receiving the location data in client.

51

4. Design and Implementation of the Visualization Application

1 # vtk DataFi le Vers ion 2 .0
2 Simulat ion Point Cloud Data
3 ASCII
4 DATASET POLYDATA
5 POINTS n f l o a t
6 p_(0x) , p_(0y) , p_(0 z)
7 p_(1x) , p_(1y) , p_(1 z)
8 . . .
9 p_((n−1)x) , p_((n−1)y) , p_((n−1)z)

10 VERTICES n 2n
11 1 0
12 1 1
13 . . .
14 1 n−1
15 CELL_DATA n
16 SCALARS c e l l_ s c a l a r s i n t 1
17 LOOKUP_TABLE de f au l t
18 color_ (0)
19 color_ (1)
20 . . .
21 color_ ((n−1))

Listing 4.2: VTK file format to store point cloud data.

1 # vtk DataFi le Vers ion 2 .0
2 Simulat ion box
3 ASCII
4 DATASET POLYDATA
5 POINTS 8 f l o a t
6 0.000000 0.000000 0.000000
7 250.000000 0.000000 0.000000
8 250.000000 250.000000 0.000000
9 0.000000 250.000000 0.000000

10 0.000000 0.000000 10.000000
11 250.000000 0.000000 10.000000
12 250.000000 250.000000 10.000000
13 0.000000 250.000000 10.000000
14 POLYGONS 6 30
15 4 0 1 2 3
16 4 4 5 6 7
17 4 0 1 5 4
18 4 2 3 7 6
19 4 0 4 7 3
20 4 1 2 6 5

Listing 4.3: VTK file format to store a simulation box.

52

4.3. Visualization

4.3. Visualization

To start the visualization step, the visualization process initializes the GLUT environment,
configures general displaying modes, and configures the size and the position of the GLUT
window. GLUT refers to the OpenGL Utility Toolkit, which provides developers with
OpenGL API and can be used to write OpenGL programs. The simulation box is drawn in
this window. The simulated scenario takes place in the simulation box. The synchronization
between the visualization process and the data transmission process is achieved through the
MPI_Send and MPI_Recv operations. After the data transmission operations in the current
iteration are completed, the data transmission in the next iteration and the visualization
process of the current iteration will then be in progress in parallel. Figure 4.3 shows the flow
chart of the visualization process. The main work of it consists of receiving the simulation
data, drawing the simulation box, drawing the particles, and printing general simulation
information. These steps are integrated into a callback function called update_box. A
time interval in milliseconds to trigger the callback function, the callback function pointer,
and arguments of the callback function are passed to the function glutT imerFunc, then
update_box can be called automatically per the time interval 5. The length of the time
interval should be chosen carefully because this interval should be close to the time used to
receive the data from the server, copy it into its target storage space, and send the data to
the visualization process. Too short or too long time interval to trigger a new update_box
call will make the visualization process or the data transmission process wait for the other
one and then prolong the execution time.

A part of the callback function update_box is shown in Listing 4.4. Firstly, the sce-
nario type is received, which will be used to decide whether the three-dimensional mode
or the two-dimensional mode is chosen. The evenly distributed particles are based on a
three-dimensional case. As is discussed before, it is not easy to observe the collision in a
three-dimensional space, because different initial shapes constructed by particles may be
mixed after some iterations. However, the two-dimensional box can make the collision more
clear. The particles of the collision cases have a zero velocity in the z direction of the
coordinate system, thus a two-dimensional box to show the motions of particles is reasonable.
Then other simulation data is received. According to the size of the simulation box and the
fixed size of the GLUT window, the scaling parameter of each dimension can be computed.
The scaling parameters are also used to scale the positions of particles. Once the data is
ready, the particles and the simulation box will be drawn by draw_atoms and draw_box.
MPI_Wtime is needed to compute the time interval of drawing the objects. The simulation
box is composed of eight points and twelve lines. A particle is represented by a solid sphere,
whose features include its location, radius, color, etc. Figure 4.4 and Figure 4.5 show the
GLUT windows at the beginning and at the 4000th iteration of a 9000-iteration collision
simulation. The general information printed in the GLUT window includes the current
simulation iteration index, the number of the simulation iterations, the current number of
particles, and the size of the simulation box. It is important to choose a proper radius and a
distinctive color of particle for clear observation, especially when two objects mix together
and the trajectories of their particles are pretty close to each other. In the end of update_box,
it calls glutT imerFunc again until the visualization process ends. num_iter refers to the

5https://www.opengl.org/resources/libraries/glut/spec3/node64.html

53

https://www.opengl.org/resources/libraries/glut/spec3/node64.html

4. Design and Implementation of the Visualization Application

visualization iteration index, and max_iter means the number of visualization iterations
in the current simulation. In the strong scaling case, the same simulation can be executed
for multiple times. After each iMPI adaptation in iminiMD, the visualization of one whole
simulation will be presented again. invasive_iter notes the current iMPI iteration index,
and num_adaptations notes the number of iMPI iterations. After the current simulation
is finished, update_box is called if the next iMPI iteration is available. Otherwise the
visualization process is synchronized with the data transmission process through a MPI_Recv
operation and a corresponding MPI_Send operation, and then the application exits.

54

4.3. Visualization

Start

GLUT environment initialization

Call the timer callback

Receive simulation data

Draw simulation box and particles

Last visualization frame ?

Synchronize with data transmission process

Stop

No

Yes

Figure 4.3.: Flow chart of the visualization process.

55

4. Design and Implementation of the Visualization Application

Figure 4.4.: Visualization window in the client application (1).

Figure 4.5.: Visualization window in the client application (2).

56

4.3. Visualization

1 void update_box (int arg)
2 {
3 (. . .)
4
5 double start_time = MPI_Wtime() ;
6
7 char∗ t ex t = (char∗) mal loc (CHARSIZE ∗ TEXTSIZE) ;
8 s p r i n t f (text , " I t e r a t i o n %d in t o t a l %d i t e r a t i o n s with %d atoms\n box

s i z e :%f−%f−%f " , i t e r_ in f o [0] , i t e r_ in f o [1] , num_total , boxes [0] , boxes
[1] , boxes [2]) ;

9 t extout (−0.2 , −0.05 , −0.02 , t ex t) ;
10 f r e e (t ex t) ;
11
12 draw_atoms (l o c a t i on s , nranks , num_total) ;
13 draw_box () ;
14 double end_time = MPI_Wtime() ;
15 p r i n t f ("Draw atoms at i t e r a t i o n %d with %l f seconds . . . \ n" , num_iter ,

end_time − start_time) ;
16
17 num_iter++;
18
19 (. . .)
20
21 i f (num_iter < max_iter)
22 glutTimerFunc (3000 , update_box , −1) ;
23 else {
24 i f (i nva s i v e_ i t e r == num_adaptations − 1) {
25 p r i n t f ("INFO: V i s u a l i z a t i o n proce s s i s wa i t ing f o r the end o f the

program ! ! ! \ n") ;
26 int end_flag ;
27 MPI_Recv(&end_flag , 1 , MPI_INT, 0 , rank , MPI_COMM_WORLD, &s ta tu s) ;
28 e x i t (0) ;
29 }
30 else {
31 num_iter = 0 ;
32 glutTimerFunc (3000 , update_box , −1) ;
33 }
34 }
35 }

Listing 4.4: Function: callback function of updating simulated scenario.

57

Part III.

Results and Conclusions

58

5. Evaluation

5.1. Experiments in QEMU

5.1.1. Evaluation setup

During the development of iminiMD, it is convenient to run the application using the QEMU
tool, which can help me virtualize the target hardware. A binary file is generated according
to the code of iminiMD in OctoPOS, and this binary file can be executed in QEMU or
hardware. It is more convenient to run the simulation in QEMU than hardware, and the
result can help verify the code before the experiment is moved to hardware.

Figure 5.1 shows how to connect iminiMD and the visualization application. The virtual
tap device is used as the network device in QEMU, and its IP address is in the same
subnetwork as that of OctoPOS. The visualization application runs in Linux and can receive
the data from the tap device.

Figure 5.1.: Diagram of the QEMU experiment setup.

The experiment setup consists of four parts. The first part is the QEMU setup. The
QEMU command needs to configure the number of nodes, the number of CPU cores, the
memory size, the network device, etc. Each core will be occupied by one process in OctoPOS.
The tap device needs to be created by the tunctl command. A ifconfig command should
be used to configure the IP address of the tap device.

The second part is building iRTSS and the setup of OctoPOS. This part is already intro-
duced in Subsection 2.3.1.

The third part is the simulation setup in iminiMD. In each simulation, init_scenario
and num_adaptations are two important parameters. The init_scenario can be EVENLY,
RBCCOLLISION, or OBCCOLLISION. The first one refers to the default simulation case in min-
iMD, and the last two cases refer to two new collision cases. The parameter num_adaptations

59

5. Evaluation

means the number of iMPI iterations through the iMPI interfaces. Before each iMPI iteration
except the first one, an iMPI window is started and new children processes are added to the
communicator.

The last part is about the visualization application. A “mpirun” command is used to
boot the MPI-based visualization application after the output log of iminiMD shows that
OctoPOS is accepting the connection of it. The output log is shown in Figure 5.2. Early
booting of the visualization application may lead to an error because it can not find the server.

Figure 5.2.: Output log of requiring a client in iminiMD.

The experiment in three scenarios will be carried on. In each scenario, the simulation will
be executed in one setup with num_adaptations=1 for getting the simulation data in the
client and another strong scaling one. In the strong scaling simulation, the network data
transmission between OctoPOS and the visualization application is closed in order to get
more stable performance metrics, because the network condition varies in different points
in time. The simulation data visualized by ParaView and the performance metrics will be
given in Subsection 5.1.2.

5.1.2. Results

The first visualization simulation executed by QEMU is the EVENLY scenario. The initial
configurations of this scenario are shown in Table 5.1. 4 iMPI processes are used to simulate
2048 particles with 40000 iterations. The time step δt is 0.0005 seconds, thus the total
simulation time is 20 seconds with 40000 iterations. The locations of particles are generated
according to an algorithm in miniMD, in order to distribute the particles in the simulation
box almost evenly. For each particle, a unique random seed is used to generate a unique
velocity vector for it. Then the velocities are recomputed to reach the initial temperature
t_request shown in Table 5.1 and zero the velocity of center of mass in the simulation box.

The simulation result is shown in Figure 5.3. The simulation box is split into 4 independent
local domains, each of which is occupied by one process. One box with one color refers to a
process. The local particles in one process are in the same color. At the iteration 0, all the
particles are initialized and located at its local domain. When more iterations of simulation
are completed, particles from different processes mix with each other.

The second visualization simulation is the RBCCOLLISION scenario. The initial configura-
tions of this scenario are shown in Table 5.2. 4 iMPI processes are used to simulate a collision
process with 4361 particles for 20000 iterations. The time step δt is 0.0004 seconds, thus the
total simulation time is 8 seconds. The particles are in two groups. One group constructs a
dropping disk with the initial velocity v and the gravity G, and the other group constructs
a resting rectangle. For the velocity of each particle, a thermal motion generated according
to the Maxwell-Boltzmann distribution is added to it. The squared velocity of the thermal
motion in the x and y dimension is 0.0049. The squared velocity in the z dimension is 0.
More details about this part are in Section 3.2. The velocities are scaled per a number of
iterations to make the simulation box keep the constant temperature t_target.

60

5.1. Experiments in QEMU

Figure 5.4 describes the simulation pictures in iteration 0, iteration 4000, iteration 8000,
and iteration 20000. The particles in one object are in the same color, and they can be
in different processes. When the dropping disk enters into the resting rectangle, it begins
to dissolve in the rectangle. The collision between the two objects leads to a wave. The
wave spreads from the middle of the simulation box to the boundaries gradually. Particles
hitting the boundaries of simulation box are bounced back because of the reflecting boundary
conditions, and the total number of particles in the simulation box keeps the same.

The third visualization simulation is the OBCCOLLISION scenario. The initial configurations
of OBCCOLLISION scenario are shown in Table 5.3. 4 iMPI processes are used to simulate 4035
particles with 12000 iterations. The time step δt is 0.0005 seconds, thus the total simulation
time is 6 seconds. The particles are also split into two groups. One is a dropping rectangle
with the initial velocity v, and the other group constructs a rectangle without the initial
velocity. The squared velocity of the thermal motion in the x and y dimension is 0.01. The
squared velocity in the z dimension is 0. The gravity G is not implemented in this scenario.
A constant temperature is also kept in this simulation process.

Figure 5.5 shows the simulation pictures in iteration 0, iteration 4000, iteration 8000,
and iteration 12000. When the dropping object strikes the still object, the particles con-
structing the bodies begin to break apart because of the strong collision. Particles moving
outside the boundaries are deleted and the number of particles in the simulation box decreases.

61

5. Evaluation

Symbol Value Meaning

L1 ∗ L2 ∗ L3 13.436769*13.436769*13.436769 sizes of simulation box
boundarytype PBC periodic boundary conditions

ϵ 1.0 ϵ in LJ
σ 1.0 σ in LJ
m 1 mass of particle
N 2048 total number of particles
ρ 0.8442 density of particles

fcut 2.5*σ cutoff radius of force
δt 0.0005 time step

ntimes 40000 number of time steps
neigh_every 20 interval of constructing the neighbor list
has_gravity 0 gravity not available
t_request 1.44 initial temperature

Table 5.1.: Initial parameters for the simulation of the EVENLY scenario.

(a) t=0.0 (b) t=2.0

(c) t=10.0 (d) t=20.0

Figure 5.3.: Simulation pictures of the EVENLY scenario in QEMU.

62

5.1. Experiments in QEMU

Symbol Value Meaning

L1 ∗ L2 ∗ L3 250*100*10 sizes of simulation box
boundarytype RBC reflecting boundary conditions

ϵ 1.0 ϵ in LJ
σ 1.0 σ in LJ
m 1 mass of particle
N 4361 total number of particles
N1 341 number of particles in dropping object
N2 4020 number of particles in resting object
v (0, 20, 0) initial velocity of dropping object
fcut 4.0*σ cutoff radius of force
δt 0.0004 time step

ntimes 20000 number of time steps
neigh_every 20 interval of constructing the neighbor list
has_gravity 1 gravity G = (0, 12, 0) [2] available
t_target 100.00 the constant temperature in the simulation box

Table 5.2.: Initial parameters for the simulation of the RBCCOLLISION scenario.

(a) t=0.0 (b) t=1.6

(c) t=3.2 (d) t=8.0

Figure 5.4.: Simulation pictures of the RBCCOLLISION scenario in QEMU.

63

5. Evaluation

Symbol Value Meaning

L1 ∗ L2 ∗ L3 250*150*10 sizes of simulation box
boundarytype OBC outflow boundary conditions

ϵ 5.0 ϵ in LJ
σ 1.0 σ in LJ
m 1 mass of particle
N 4035 total number of particles
N1 1020 number of particles in dropping object
N2 3015 number of particles in resting object
v (0, 30, 0) initial velocity of dropping object
fcut 2.5*σ cutoff radius of force
δt 0.0005 time step

ntimes 12000 number of time steps
neigh_every 20 interval of constructing the neighbor list
has_gravity 0 gravity not available
t_target 100.00 the constant temperature in the simulation box

Table 5.3.: Initial parameters for the simulation of the OBCCOLLISION scenario.

(a) t=0.0 (b) t=2.0

(c) t=4.0 (d) t=6.0

Figure 5.5.: Simulation pictures of the OBCCOLLISION scenario in QEMU.

64

5.1. Experiments in QEMU

The strong scaling experiment is also an important part. In Figure 5.6, the performance
metrics of the simulation with 9000 iterations and 7 iMPI adaptations in EVENLY scenario are
shown. The total execution time is split into several parts. The force time means the time
used to compute the potential energy, pressure, temperature, and force. The communication
time is for the communication between processes. As Figure 5.6 shows, the communication
time becomes longer as the number of processes grows. It leads to an important overhead in
the parallel computing of the simulation. The neighboring time is for building the neighbor
lists of particles, which are used to compute the potential energy and force between particles.
The optimal number of processes for this simulation is 3 according to the metrics. More
processes may lead to higher overhead of communication and synchronization between
processes. The other time refers to the time that can not be sorted into a specific variety. In
each iMPI adaptation, one process is inserted into the current group. Compared with the
total execution time, the invasive time shown in Figure 5.7 is quite short. For instance, the
time interval used to insert one process into the communicator with 3 processes is only 0.0381
seconds in QEMU while the total execution time is 26.4917 seconds. When the program
boots, the process is not initialized by the resource manager, thus the invasive time for
“New number of processes = 1” is 0. The invasive time length is almost the same in each
adaptation. The performance metrics of the RBCCOLLISION and OBCCOLLISION scenarios are
in Figure 5.8 and Figure 5.9. The simulation of the RBCCOLLISION scenario is executed for
9000 iterations and 7 iMPI adaptations. The simulation of the OBCCOLLISION scenario is
executed for 9000 iterations and 7 iMPI adaptations. Both of them have the optimal number
of processes to get the best performance, and the iMPI overhead is inevitable. The initial
particles are distributed in the same positions for different numbers of processes and they
are not located in the simulation box evenly, thus the load balancing is not realized and it
can lower the execution efficiency.

0 1 2 3 4 5 6 7 8
0

10
20
30
40
50
60
70
80
90
100

Number of processes

E
xe

cu
ti

on
ti

m
e

[s
]

Strong scaling in the EVENLY scenario

total time
force time

neighboring time
communication time

other time

Figure 5.6.: Performance metrics of strong scaling in the EVENLY scenario.

65

5. Evaluation

0 1 2 3 4 5 6 7 8
0

2.5

5

New number of processes

iM
P

I
ad

ap
ta

ti
on

ti
m

e
[1
0−

2
s]

iMPI adaptations of strong scaling in the EVENLY scenario

invasive time

Figure 5.7.: Invasive time of consecutive iMPI adaptations in the EVENLY scenario.

0 1 2 3 4 5 6 7 8
0

20
40
60
80
100
120
140
160
180
200
220

Number of processes

E
xe

cu
ti

on
ti

m
e

[s
]

Strong scaling in the RBCCOLLISION scenario

total time
force time

neighboring time
communication time

other time

Figure 5.8.: Performance metrics of strong scaling in the RBCCOLLISION scenario.

66

5.1. Experiments in QEMU

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

Number of processes

E
xe

cu
ti

on
ti

m
e

[s
]

Strong scaling in the OBCCOLLISION scenario

total time
force time

neighboring time
communication time

other time

Figure 5.9.: Performance metrics of strong scaling in the OBCCOLLISION scenario.

67

5. Evaluation

5.2. Experiments in bare metal

5.2.1. Evaluation setup

After the verification in virtual machines, it is time to do the same experiment in the
hardware. The hardware in the experiment consists of two computers shown in Figure 5.10.
Linux operating system is installed in the client computer. The visualization application
can be executed on it. The client computer is configured with Dynamic Host Configuration
Protocol (DHCP) and Trivial File Transfer Protocol (TFTP), and it is connected with
the server computer which executes the binary file of iminiMD. The client computer is
booted in the Preboot Execution Environment (PXE) mode, which is the model to boot
the client connected with the server via a local network. The server computer is based on
x86_64 architecture and can execute 64-bit binary files. It owns two Non-Uniform Memory
Access (NUMA) nodes and 88 CPUs. One process in OctoPOS runs in one CPU. The server
computer gets an IP address assigned by DHCP and receives the binary file of iminiMD
transmitted by TFTP from the client computer. After that, OctoPOS starts and iminiMD
is executed. The visualization application can receive the simulation data from OctoPOS
through TCP.

Figure 5.10.: Diagram of the hardware experiment setup.

The experiment setup of OctoPOS, iminiMD, and the visualization application remains the
same as that of the QEMU experiment. There is no need to virtualize the hardware anymore.
The experiment also consists of the visualization experiment for the three simulation scenarios
and the strong scaling experiment.

5.2.2. Results

The visualization experiment uses the initial configurations in Table 5.1, Table 5.2, and
Table 5.3. The visualization results are almost the same with those in the QEMU experi-
ment. Although the same initial configuration is used, the slight difference of the simulation
comes from the random generation of the initial positions and velocities of particles. The
visualization scenarios are shown in Figure 5.11, Figure 5.12, and Figure 5.13.

68

5.2. Experiments in bare metal

(a) t=0.0 (b) t=2.0

(c) t=10.0 (d) t=20.0

Figure 5.11.: Simulation pictures of the EVENLY scenario in hardware.

69

5. Evaluation

(a) t=0.0 (b) t=1.6

(c) t=3.2 (d) t=8.0

Figure 5.12.: Simulation pictures of the RBCCOLLISION scenario in hardware.

70

5.2. Experiments in bare metal

(a) t=0.0 (b) t=2.0

(c) t=4.0 (d) t=6.0

Figure 5.13.: Simulation pictures of the OBCCOLLISION scenario in hardware.

71

5. Evaluation

The performance metrics of these three experiment are described in Table 5.4, Table 5.5,
and Table 5.6. As shown in Figure 5.14, Figure 5.15, and Figure 5.16, it is obvious that the
IO time which means the data transmission time makes up the main portion of the execution
time.

Total
time [s]

Other
time [s]

Force
time [s]

Communication
time [s]

Neighboring
time [s]

IO time
[s]

296.835766 17.843868 24.216906 15.989113 7.099721 231.686158

Table 5.4.: Visualization experiment performance metrics of the EVENLY scenario.

Total
time [s]

Other
time [s]

Force
time [s]

Communication
time [s]

Neighboring
time [s]

IO time
[s]

321.066898 23.875709 22.202931 8.225496 3.799221 262.963541

Table 5.5.: Visualization experiment performance metrics of the RBCCOLLISION scenario.

Total
time [s]

Other
time [s]

Force
time [s]

Communication
time [s]

Neighboring
time [s]

IO time
[s]

179.602533 41.828064 2.139494 3.467272 1.309806 129.857897

Table 5.6.: Visualization experiment performance metrics of the OBCCOLLISION scenario.

Force and Communication and Neighboring time

15.9%

Other time

6.0%

IO time

78.1%

Figure 5.14.: Percentage of time used in each part of the visualization experiment of the
EVENLY scenario.

72

5.2. Experiments in bare metal

Force and Communication and Neighboring time

10.7%

Other time

7.4%

IO time

81.9%

Figure 5.15.: Percentage of time used in each part of the visualization experiment of the
RBCCOLLISION scenario.

Force and Communication and Neighboring time
4.4%

Other time

23.3%

IO time

72.3%

Figure 5.16.: Percentage of time used in each part of the visualization experiment of the
OBCCOLLISION scenario.

73

5. Evaluation

The total execution time of the strong scaling experiment for EVENLY is shown in Table 5.7.
The simulation configured in Table 5.1 is executed for 8 times, and 9000 iterations are
simulated for each time. Each strong scaling execution includes 7 times of iMPI adaptations,
and the execution should be completed for 3 times, in order to get the average execution time.
The same setup is applied to the RBCCOLLISION and OBCCOLLISION scenarios. Figure 5.17
shows the change of total execution time of the three scenarios according to different numbers
of processes. When the number of processes is 5, the execution time of EVENLY is the shortest.
The overhead of MPI synchronization and communication makes the simulation time longer
in the other numbers of processes.

Number of
process

The time of the
1st execution [s]

The time of the
2nd execution [s]

The time of the
3rd execution [s]

Average
execution
time [s]

1 30.054693 30.043211 30.048298 30.048734
2 17.558879 17.551351 17.546096 17.552109
3 13.986825 13.950851 13.933834 13.957170
4 14.238795 14.497033 14.578159 14.437996
5 12.232582 12.085666 12.054135 12.124128
6 14.868155 15.255555 15.201959 15.108556
7 15.123108 16.109290 16.914537 16.048978
8 20.029437 20.182976 20.604569 20.272327

Table 5.7.: Strong scaling experiment result of the EVENLY scenario.

74

5.2. Experiments in bare metal

The total execution time of the strong scaling experiment for RBCCOLLISION is shown in
Table 5.8. The simulation configured in Table 5.2 is also executed for 8 times, and 9000
iterations are simulated for each time. The optimal number of processes is 7. The initial
positions of particles are fixed and one process is in charge of the particles located in its local
domain, thus the workload could not be distributed to each process evenly. The workload
distribution may be more even when the number of processes is 7, and it can to some extent
explain why the optimal number of processes is 7. By contrast, the initial particles are
distributed to each process more evenly in the EVENLY scenario, thus its change of execution
time with different numbers of processes is more smooth. The result of the total execution
time for OBCCOLLISION is shown in Table 5.9. The optimal number of processes is 4. The
problem of imbalanced workload distribution also exists.

Number of
process

The time of the
1st execution [s]

The time of the
2nd execution [s]

The time of the
3rd execution [s]

Average
execution
time [s]

1 48.031937 48.026710 48.032957 48.030535
2 26.191915 26.175602 26.183919 26.183812
3 23.577565 23.520012 23.539988 23.545855
4 19.910044 19.830752 19.794636 19.845144
5 20.217733 20.178668 19.935885 20.110762
6 26.130325 26.438657 26.335962 26.301648
7 19.220771 19.250932 18.738457 19.070053
8 22.528887 23.189829 22.056508 22.591741

Table 5.8.: Strong scaling experiment result of the RBCCOLLISION scenario.

Number of
process

The time of the
1st execution [s]

The time of the
2nd execution [s]

The time of the
3rd execution [s]

Average
execution
time [s]

1 18.892991 18.891494 18.891858 18.892114
2 11.460446 11.512442 11.512897 11.495262
3 11.505218 11.399156 11.441426 11.448600
4 10.700879 11.025259 11.067419 10.931186
5 12.033263 12.604530 12.112412 12.250068
6 13.614653 14.469517 13.554784 13.879651
7 12.357655 12.559938 12.031661 12.316418
8 14.245429 16.185356 14.734550 15.055112

Table 5.9.: Strong scaling experiment result of the OBCCOLLISION scenario.

75

5. Evaluation

0 1 2 3 4 5 6 7 8
10

20

30

40

50

Number of processes

E
xe

cu
ti

on
ti

m
e

[s
]

Strong scaling in the EVENLY, RBCCOLLISION, and OBCCOLLISION scenarios

EVENLY
RBCCOLLISION
OBCCOLLISION

Figure 5.17.: Total execution time of strong scaling in the EVENLY, RBCCOLLISION, and
OBCCOLLISION scenarios.

76

6. Conclusions

6.1. Achievements

The basic three objectives are described in Chapter 1. The first objective is to develop
iminiMD. With the limitation of libraries in OctoPOS, a reconstruction of miniMD was
already completed. After the reconstruction, new simulation scenarios, data transmission,
and performance metrics were added to the code. In order to help the application dynamically
adjust the resources used, the iMPI content was developed in the code. The second objective
is to visualize iminiMD. The product for this is a C++ application, which is based on
OpenGL and MPI. Real-time data through TCP can be received in this application, and
the data is visualized through the OpenGL interfaces. For better analysis of the simulation,
the data is written into vtk files, which can be visualized and analyzed in software such as
ParaView. The third objective is the experiment. The first experiment is to visualize the
default scenario in miniMD and two collision cases. The second experiment is to simulate
one fixed problem with different numbers of processes. With the help of iMPI, the number
of processes can be changed during the execution, therefore a strong scaling experiment can
be completed with one execution of the code. The performance metrics are generated after
each execution.

As is shown in Chapter 3, my main work in miniMD is to convert the code to a C-based
miniMD by the interfaces in OctoPOS and to develop new features. It is not easy to do
the reconstruction because of the language gap and limited functions available in OctoPOS.
New features are based on the great understanding of miniMD. They include two collision
scenarios, the invasive functionality based on iMPI, the data transmission functionality based
on the “octo_tcp” library, and the performance metrics based on MPI_Wtime. Features of
miniMD impossible to be implemented in OctoPOS such as OpenMP are not reproduced in
iminiMD.

Without the limitation of libraries in OctoPOS, the visualization application can use
the C and C++ libraries. I needed to design a structure of the application. There are
only two processes in the application, one of which is for receiving the simulation data
and the other of which is for visualizing the simulation data. My previous design of the
visualization application is to use the same number of processes as that in iminiMD to receive
the data. One process is responsible for receiving the data transmitted from one process in
OctoPOS. In this case, each process in the visualization application possesses its own socket.
Correspondingly, each process in iminiMD also has a socket. This design is complex and is
not easy to be implemented. Another disadvantage is that the number of the processes in
OctoPOS should be known prior to the execution of the visualization application launched
by the “mpirun” command. In the strong scaling experiment, the number of processes in
the “mpirun” command needs to be adjusted before each iMPI adaptation of iminiMD, thus
the visualization application needs to be restarted for several times. In the 2-process design,
a fixed number of processes makes the implementation of the source code easier, and it

77

6. Conclusions

also makes the execution more convenient. A strong scaling experiment including several
consecutive iMPI adaptations can be completed with only one execution of the visualization
application. The real-time displaying of simulation in the GLUT window helps researchers
to find the potential problems during the simulation process. The visualization application
can write the simulation data, the initial configurations, and performance metrics to files.
With these archived files, the history simulation can be reproduced in ParaView, and the
performance metrics data can be used to analyze one simulation after its execution.

The experiment part is shown in Chapter 5. It is convenient to test the project in QEMU
before the experiment in hardware. Modification of the code can be completed according to
the result in QEMU. The visualization experiment presented the simulation correctly and
perfectly, which can verify the effect of iminiMD directly. The strong scaling experiment
gave a method to verify the iMPI functionality in OctoPOS and showed the performance
metrics efficiently.

6.2. Future work

6.2.1. New content in iminiMD

The load balancing between processes is not supported in iminiMD, which may lower the
execution efficiency because some processes can deal with more work than the other processes.
In miniMD, one process is responsible for an equal-volume local domain and in charge of the
local particles. If the particles are not distributed evenly, the workload varies in different
processes. Some processes are responsible for much more work than others while the other
processes are almost idle in the meantime. For example, the numbers of particles in different
processes are not close to each other in Figure 5.12. One possible method is that one process
is responsible for a group with the same number of particles, but it will change the logic of
source code a lot because the management of particles is based on the spatial decomposition
parallelism. However, it really helps to improve the execution efficiency.

New simulation features can be developed in iminiMD. For example, only the LJ interac-
tion is supported in iminiMD. The EAM interaction can be added to the project, and it
can help to simulate the scenario in metals and alloys. A long-range force feature is also a
great complement to construct more scenarios. Three boundary conditions are supported
now in iminiMD, and new boundary conditions such as the inflow boundary conditions can
be implemented.

6.2.2. New content in the visualization application

There exist many potential features to be added to the visualization application with the
help of C++ libraries. The main work could be the improvement of the visualization effect.
The real-time window in OpenGL can not be scaled, rotated, or moved. Developers can
choose more versatile libraries to realize a more flexible window. More features of particles
can be presented in the window. It only includes the location and color now, but the
velocity, type, or energy of particle can be shown in the particle. For example, different
types of particles can be shown by objects with different shape, texture, color, and spatial

78

6.2. Future work

structure. Additional work could be to print more simulation information in the window. It
includes the iteration information, the size of the simulation box, and the number of particles.
More information such as the temperature, pressure, potential, and dynamic energy of the
simulation box can also be presented. Besides, the display of the simulation information can
be dynamic in different levels. With the dynamic and hierarchical display of information,
information can be shown or hidden with specific actions of the user. For example, if the
user clicks one particle with the mouse, the physical properties of this particle are shown.
If the user clicks the domain of one process, the number of local particles and other infor-
mation of this process appear in the window. By clicking the particle or domain again, the
information is hidden. This feature could be realized by a monitoring function which keeps
listening to the registered events and calls one callback function if one of these events happens.

79

List of Figures

2.1. Levels of parallelism . 7
2.2. Invasive computing in a loosely-coupled MPSoC architecture 9
2.3. Project groups and application fields . 10
2.4. Interaction between OctoPOS and other system components 12
2.5. Programming model of OctoPOS . 12
2.6. Example of the process of MPI_Allreduce 15
2.7. TCP three-way handshake process. 20
2.8. The communication between actors and their neighbors 25
2.9. Lennard-Jones potential with σ=1 and ϵ=1 27
2.10. Reflecting Boundary Conditions . 30

3.1. Flow chart of iminiMD. 34
3.2. Flow chart of the molecular dynamics simulation process. 35

4.1. Visualization process. 46
4.2. Flow chart of the data transmission process. 50
4.3. Flow chart of the visualization process. 55
4.4. Visualization window in the client application (1). 56
4.5. Visualization window in the client application (2). 56

5.1. Diagram of the QEMU experiment setup . 59
5.2. Output log of requiring a client in iminiMD 60
5.3. Simulation pictures of the EVENLY scenario in QEMU. 62
5.4. Simulation pictures of the RBCCOLLISION scenario in QEMU. 63
5.5. Simulation pictures of the OBCCOLLISION scenario in QEMU. 64
5.6. Performance metrics of strong scaling in the EVENLY scenario. 65
5.7. Invasive time of consecutive iMPI adaptations in the EVENLY scenario. . . . 66
5.8. Performance metrics of strong scaling in the RBCCOLLISION scenario. 66
5.9. Performance metrics of strong scaling in the OBCCOLLISION scenario. 67
5.10. Diagram of the hardware experiment setup 68
5.11. Simulation pictures of the EVENLY scenario in hardware. 69
5.12. Simulation pictures of the RBCCOLLISION scenario in hardware. 70
5.13. Simulation pictures of the OBCCOLLISION scenario in hardware. 71
5.14. Percentage of time used in each part of the visualization experiment of the

EVENLY scenario. 72
5.15. Percentage of time used in each part of the visualization experiment of the

RBCCOLLISION scenario. 73
5.16. Percentage of time used in each part of the visualization experiment of the

OBCCOLLISION scenario. 73

80

List of Figures

5.17. Total execution time of strong scaling in the EVENLY, RBCCOLLISION, and
OBCCOLLISION scenarios. 76

81

List of Tables

2.1. Synchronous TCP interfaces in OctoPOS. 22
2.2. Asynchronous creation of a new socket and its waiting operation for the

completion. 23

3.1. Initial parameters for one collision simulation example. 43

5.1. Initial parameters for the simulation of the EVENLY scenario. 62
5.2. Initial parameters for the simulation of the RBCCOLLISION scenario. 63
5.3. Initial parameters for the simulation of the OBCCOLLISION scenario. 64
5.4. Visualization experiment performance metrics of the EVENLY scenario. 72
5.5. Visualization experiment performance metrics of the RBCCOLLISION scenario. 72
5.6. Visualization experiment performance metrics of the OBCCOLLISION scenario. 72
5.7. Strong scaling experiment result of the EVENLY scenario. 74
5.8. Strong scaling experiment result of the RBCCOLLISION scenario. 75
5.9. Strong scaling experiment result of the OBCCOLLISION scenario. 75

82

List of Codes

2.1. A basic invasive program. 8
2.2. MPI_Send C interface. 15
2.3. MPI_INIT_ADAPT C interface. 18
2.4. MPI_PROBE_ADAPT C interface. 18
2.5. MPI_COMM_ADAPT_BEGIN C interface. 18
2.6. The code of an iMPI program example. 19

3.1. Definition of class Integrate in C++. 37
3.2. Definition of struct Integrate in C. 37
3.3. Function: getting the cartesian grid location according to the rank number. 39
3.4. Function: getting the rank number according to the cartesian grid location. 39
3.5. Code of the iMPI adaptations in iminiMD. 41
3.6. Function: sending data to client through TCP. 45

4.1. Code of receiving the location data in client. 51
4.2. VTK file format to store point cloud data. 52
4.3. VTK file format to store a simulation box. 52
4.4. Function: callback function of updating simulated scenario. 57

83

Bibliography

[1] Comprés Ureña and Isaías Alberto. Resource-elasticity support for distributed memory
hpc applications. PhD thesis, Technische Universität München, 2017.

[2] M Griebel S Knapek and G Zumbusch. Numerical simulation in molecular dynamics,
numerics, algorithms, parallelization, applications, 2007.

[3] Michael P Allen et al. Introduction to molecular dynamics simulation. Computational
soft matter: from synthetic polymers to proteins, 23(1):1–28, 2004.

[4] Peter Pacheco and Matthew Malensek. An introduction to parallel programming. Morgan
Kaufmann, 2021.

[5] Jürgen Teich, Jörg Henkel, Andreas Herkersdorf, Doris Schmitt-Landsiedel, Wolfgang
Schröder-Preikschat, and Gregor Snelting. Invasive computing: An overview. Multipro-
cessor System-on-Chip, pages 241–268, 2011.

[6] Sascha Roloff, Frank Hannig, and Jürgen Teich. Modeling and Simulation of Invasive
Applications and Architectures. Springer, 2019.

[7] PAUL CROZIER and STEVEN PLIMPTON. minimd v. 1.0. Technical report, Sandia
National Laboratories, 2009.

[8] David Patterson. The top 10 innovations in the new nvidia fermi architecture, and the
top 3 next challenges. Nvidia Whitepaper, 47, 2009.

[9] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. Nvidia tesla: A
unified graphics and computing architecture. IEEE micro, 28(2):39–55, 2008.

[10] Benjamin Oechslein, Jens Schedel, Jürgen Kleinöder, Lars Bauer, Jörg Henkel, Daniel
Lohmann, and Wolfgang Schröder-Preikschat. Octopos: A parallel operating system
for invasive computing. In Proceedings of the International Workshop on Systems for
Future Multi-Core Architectures (SFMA). EuroSys, pages 9–14. Citeseer, 2011.

[11] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, M Frans Kaashoek,
Robert Tappan Morris, Aleksey Pesterev, Lex Stein, Ming Wu, Yue-hua Dai, et al.
Corey: An operating system for many cores. In OSDI, volume 8, pages 43–57, 2008.

[12] Adrian Schüpbach, Simon Peter, Andrew Baumann, Timothy Roscoe, Paul Barham, Tim
Harris, and Rebecca Isaacs. Embracing diversity in the barrelfish manycore operating
system. In Proceedings of the Workshop on Managed Many-Core Systems, volume 27,
2008.

84

Bibliography

[13] David Wentzlaff and Anant Agarwal. Factored operating systems (fos) the case for a
scalable operating system for multicores. ACM SIGOPS Operating Systems Review,
43(2):76–85, 2009.

[14] Mohammad Al Faruque, Janmartin Jahn, Thomas Ebi, and Jörg Henkel. Runtime
thermal management using software agents for multi-and many-core architectures. IEEE
Design & Test of Computers, 27(6):58–68, 2010.

[15] Hyacinth S Nwana. Software agents: An overview. The knowledge engineering review,
11(3):205–244, 1996.

[16] David W Walker and Jack J Dongarra. Mpi: a standard message passing interface.
Supercomputer, 12:56–68, 1996.

[17] Dieter Kranzlmüller, Dieter Kranzlmuller, Peter Kacsuk, and Jack Dongarra. Recent
advances in parallel virtual machine and message passing interface: 11th european
pvm/mpi users’ group meeting, budapest, hungary, september 19-22, 2004, proceedings.
2004.

[18] Roman Wyrzykowski, Jack Dongarra, Norbert Meyer, and Jerzy Wasniewski. Parallel
Processing and Applied Mathematics: 6th International Conference, PPAM 2005, Poznan,
Poland, September 11-14, 2005, Revised Selected Papers, volume 3911. Springer, 2006.

[19] Jeffrey M Squyres and Andrew Lumsdaine. The component architecture of open mpi:
Enabling third-party collective algorithms. In Component Models and Systems for Grid
Applications, pages 167–185. Springer, 2005.

[20] Richard L Graham, Galen M Shipman, Brian W Barrett, Ralph H Castain, George
Bosilca, and Andrew Lumsdaine. Open mpi: A high-performance, heterogeneous mpi.
In 2006 IEEE International Conference on Cluster Computing, pages 1–9. IEEE, 2006.

[21] Richard L Graham, Brian W Barrett, Galen M Shipman, Timothy S Woodall, and George
Bosilca. Open mpi: A high performance, flexible implementation of mpi point-to-point
communications. Parallel Processing Letters, 17(01):79–88, 2007.

[22] Nathan Hjelm. Optimizing one-sided operations in open mpi. In Proceedings of the 21st
European MPI Users’ Group Meeting, pages 123–124, 2014.

[23] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of collective
communication operations in mpich. The International Journal of High Performance
Computing Applications, 19(1):49–66, 2005.

[24] William Gropp. Mpich2: A new start for mpi implementations. In European Parallel
Virtual Machine/Message Passing Interface Users’ Group Meeting, pages 7–7. Springer,
2002.

[25] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-performance,
portable implementation of the mpi message passing interface standard. Parallel
computing, 22(6):789–828, 1996.

85

Bibliography

[26] Darius Buntinas, Guillaume Mercier, and William Gropp. Design and evaluation of
nemesis, a scalable, low-latency, message-passing communication subsystem. In Sixth
IEEE International Symposium on Cluster Computing and the Grid (CCGRID’06),
volume 1, pages 10–pp. IEEE, 2006.

[27] Darius Buntinas, Guillaume Mercier, and William Gropp. Implementation and evaluation
of shared-memory communication and synchronization operations in mpich2 using the
nemesis communication subsystem. Parallel Computing, 33(9):634–644, 2007.

[28] Hari Balakrishnan, Srinivasan Seshan, Elan Amir, and Randy H Katz. Improving tcp/ip
performance over wireless networks. In Proceedings of the 1st annual international
conference on Mobile computing and networking, pages 2–11, 1995.

[29] Behrouz A Forouzan. TCP/IP protocol suite. McGraw-Hill Higher Education, 2002.

[30] Randall J LeVeque, David L George, and Marsha J Berger. Tsunami modelling with
adaptively refined finite volume methods. Acta Numerica, 20:211–289, 2011.

[31] Alexander Pöppl and Michael Bader. Swe-x10: An actor-based and locally coordinated
solver for the shallow water equations. In Proceedings of the 6th ACM SIGPLAN
Workshop on X10, pages 30–31, 2016.

[32] Sascha Roloff, Alexander Pöppl, Tobias Schwarzer, Stefan Wildermann, Michael Bader,
Michael Glaß, Frank Hannig, and Jürgen Teich. Actorx10: An actor library for x10. In
Proceedings of the 6th ACM SIGPLAN Workshop on X10, pages 24–29, 2016.

[33] Jenn Huei Lii and Norman L Allinger. Molecular mechanics. the mm3 force field for
hydrocarbons. 3. the van der waals’ potentials and crystal data for aliphatic and aromatic
hydrocarbons. Journal of the American Chemical Society, 111(23):8576–8582, 1989.

[34] Ulrich Welling and Guido Germano. Efficiency of linked cell algorithms. Computer
Physics Communications, 182(3):611–615, 2011.

[35] Michael I Baskes. Modified embedded-atom potentials for cubic materials and impurities.
Physical review B, 46(5):2727, 1992.

[36] Murray S Daw and Michael I Baskes. Semiempirical, quantum mechanical calculation
of hydrogen embrittlement in metals. Physical review letters, 50(17):1285, 1983.

[37] Murray S Daw and Michael I Baskes. Embedded-atom method: Derivation and applica-
tion to impurities, surfaces, and other defects in metals. Physical Review B, 29(12):6443,
1984.

[38] Kai Kadau. Molekulardynamik-Simulationen von strukturellen Phasenumwandlungen
in Festkorpern, Nanopartikeln und ultrad unnen Filmen. PhD thesis, Ph. D. thesis,
Gerhard-Mercator-Universitat Duisburg, 2001.

[39] E Clementi and C Roetti. Atomic and nuclear data tables, vol. 14, 1974.

86

Bibliography

[40] Aidan P Thompson, H Metin Aktulga, Richard Berger, Dan S Bolintineanu, W Michael
Brown, Paul S Crozier, Pieter J in’t Veld, Axel Kohlmeyer, Stan G Moore, Trung Dac
Nguyen, et al. Lammps-a flexible simulation tool for particle-based materials modeling at
the atomic, meso, and continuum scales. Computer Physics Communications, 271:108171,
2022.

[41] Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal
of computational physics, 117(1):1–19, 1995.

[42] Loup Verlet. Computer" experiments" on classical fluids. i. thermodynamical properties
of lennard-jones molecules. Physical review, 159(1):98, 1967.

[43] Steve Plimpton, Roy Pollock, and Mark Stevens. Particle-mesh ewald and rrespa for
parallel molecular dynamics simulations. In PPSC. Citeseer, 1997.

[44] H Carter Edwards and Christian R Trott. Kokkos: Enabling performance portability
across manycore architectures. In 2013 Extreme Scaling Workshop (xsw 2013), pages
18–24. IEEE, 2013.

[45] Michael A Heroux, Douglas W Doerfler, Paul S Crozier, James M Willenbring, H Carter
Edwards, Alan Williams, Mahesh Rajan, Eric R Keiter, Heidi K Thornquist, and
Robert W Numrich. Improving performance via mini-applications. Sandia National
Laboratories, Tech. Rep. SAND2009-5574, 3, 2009.

87

	Acknowledgements
	Abstract
	Introduction and Background
	Introduction
	Motivation
	The significance of computer simulation
	The message passing interface
	Invasive Run-Time Support System
	A parallel molecular dynamics microapplication - miniMD

	Objectives

	Related Work
	Invasive computing
	Basic theory
	Current developments
	A parallel operating system - OctoPOS

	Libraries in OctoPOS
	MPI in OctoPOS
	iMPI in OctoPOS
	TCP in OctoPOS

	OctoPOS applications
	The setup of an OctoPOS application
	An iMPI application to compute the heat matrix
	The invasive swe-x10

	Molecular dynamics simulation
	Basic theory
	Examples of molecular dynamics simulation

	Thesis Development
	Design and Implementation of iminiMD
	Basic adaptations
	iminiMD extensions
	Data transmission

	Design and Implementation of the Visualization Application
	Basic design and implementation
	Data transmission
	Visualization

	Results and Conclusions
	Evaluation
	Experiments in QEMU
	Evaluation setup
	Results

	Experiments in bare metal
	Evaluation setup
	Results

	Conclusions
	Achievements
	Future work
	New content in iminiMD
	New content in the visualization application

	Bibliography

