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Reduced-Model Based Fault Detector and Controller
Design for Discrete-Time Switching Fuzzy Systems

Yaoyao Tan, Xiaojie Su, Zhenshan Bing, Xiaokui Yang, and Alois Knoll

Abstract—The reduced model-based coordinated design of
fault detectors and controllers for discrete-time switching
fuzzy systems is examined. First, the mean-square exponen-
tial stabilization of switching Takagi-Sugeno fuzzy systems
is performed using the average dwell time method under
an arbitrary switching law. Next, using segmented Lyapunov
function techniques, a dynamic full- and reduced-order fault
detector and controller is designed to ensure that the overall
dynamic residual system is mean-square exponentially stable
with a balanced H∞ performance level (ξ, β). The solvability
conditions for the fault detector and controller are derived
using a linearization method, and the relevant parameters can
be determined using the mathematical linear matrix solver
toolbox. Two examples including a switching Chua’s circuit
system are presented to demonstrate the effectiveness of the
proposed fault detector and controller.

Index Terms—Fuzzy systems, fault detection, fuzzy control,
switched systems

I. Introduction

Abroad class of engineering systems and processes,
including physical experimental systems, advanced

traffic control systems, and automated vehicle high-speed
systems, can be described as hybrid switching systems [1],
which consist of a limited number of subsystems and a
switching law that determines the active subsystem at an
arbitrary or expected moment [2], [3]. In addition, a series
of intelligent control techniques based on hybrid switch
controllers have been developed [4], which can effectively
overcome the limitations of traditional single controllers
and enhance the performance of closed-loop systems [5].
According to the relevant analyses, research on switching
systems is of significance for the following two reasons [6],
[7]: 1) Owing to their intrinsic switching characteristics,
many practical engineering systems can be modeled as
switching systems; 2) in several cases, the performance of a
controller in achieving the control goal is not satisfactory,
and thus, multiple controllers must be adopted.
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A key approach to design nonlinear control systems
is to use a Takagi-Sugeno (T-S) fuzzy method [8] to
approximately express dynamic nonlinear systems. This
model represents intelligent control methods that imitate
human empirical reasoning and decision-making processes
[9]. The T-S fuzzy model is expressed by a set of regular
or empirical rules, which establishes the local linear
input-output relations of a dynamic nonlinear discrete-
or continuous-time system [10]. [11]–[14] introduce the
fuzzy modeling process in detail, and the latter three
articles also describe the process of designing a fuzzy state
feedback controller. As a matter of fact, the fuzzy control
technology can be applied to many engineering projects,
such as behavior-based robot control [15], automobile
servo control [16], intelligent traffic control [17] and so
on.

The modeling and control of switching system based on
fuzzy control technology has received much attention of
many researchers. For the prospect of practical engineering
application, the switching fuzzy system, as a new kind
of dynamic composite system, is worthy to be focused
by more scholars. So far, many articles related to the
modeling and control of switching fuzzy systems have
been published: dynamic output feedback controller in
[18], fault-tolerant control in [19], asynchronous H∞ filter
in [20], observer in [21], antidisturbance control in [22],
state feedback controller in [23]–[25], etc. Obviously, the
discretization process exists in most practical engineering
systems [26], and the number of existing studies on
discrete-time switching systems is considerably less than
that on continuous-time switching systems. Moreover,
for systems that are inconvenient to measure the state
variables directly, the state feedback controller can not
be widely used in the actual systems [27]. In addition,
research on discrete-time switching T-S fuzzy systems con-
sidering stochastic uncertainties remains limited. Because
stochastic uncertainties [28] frequently appear in practical
engineering systems, it is necessary to extensively examine
systems with stochastic uncertainties.

During system operation, owing to the harsh environ-
ment and other nonhuman factors, the sensors or actuators
in the system will may incur damage [29] or undergo
failures, resulting in irreparable damage to the system
[30]. Therefore, the system fault detection and fault-
tolerant control must be robust to prevent accidents and
ensure safe and smooth production [31]. Although certain
researchers have focus on this aspect [32]–[35], research on
fault detection and fault-tolerant control of switching T-S
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fuzzy stochastic systems is limited owing to the complexity
of switching systems. Specifically, due to the particularity
of switching system, the fault detection of this kind of
system needs to be paid more attention [36].

To sum up, this paper has following three starting
points: 1) For systems with switching characteristics in
practical applications, it is necessary to study T-S fuzzy
technology for local linearization to approximate the origi-
nal nonlinear switching system; 2) If there exist stochastic
uncertainties in the original system, the probability of
system failure increases. In order to solve these practical
problems, the collaborative design of fault detector and
controller is needed; 3) For the sake of reducing the compu-
tational complexity of high-order system and ensuring the
real-time performance of calculation, the order reduction
technology for high-order system is worth studying. There-
fore, this paper presents the design of a full- and reduced-
order fault detector and controller (FRFDC) for discrete-
time switching systems with stochastic uncertainties. The
dynamic switching subsystems are described by fuzzy
variables instead of a single numerical value. The main
contributions of this paper can be summarized as follows:

1) A class of discrete-time switching fuzzy systems with
noise disturbances, stochastic uncertainties and fault
signals are studied, and then a cooperative design
strategy of fuzzy fault detector and controller is
proposed.

2) The reduced-order fault detector and controller are
designed by using the model reduction technology,
which reduces the computational complexity on the
basis of ensuring the residual system performance.

3) Based on the proposed theoretical method, the
effectiveness and feasibility of the proposed method
are verified by modeling and analyzing the switching
Chua’s circuit system.

II. System Description and Preliminaries
Based on the motivations of this paper, we consider

a class of discrete-time switching systems with noise
disturbances, stochastic uncertainties and fault signals,
and then use fuzzy control technology to conduct fuzzy
modeling for all switching subsystems. The plant model
is established as follows:

Plant Form:
Rule H[s]

i : IF σ
[s]
1 (k) is ϱ

[s]
i1 and σ

[s]
2 (k) is ϱ

[s]
i2 and ... and

σ
[s]
τ (k) is ϱ

[s]
iτ , THEN

x(k + 1) = A
[s]
i x(k) +B

[s]
i u(k) +D

[s]
1i d(k)

+D
[s]
2i x(k)ω(k) + E

[s]
i (h)f(k) (1a)

y(k) = C
[s]
i x(k) + L

[s]
i d(k) + F

[s]
i f(k) (1b)

where x(k) ∈ Rm is the state vector; y(k) ∈ Rn is the mea-
surement output; d(k) ∈ Rp is the noise vector belonging
to ℓ2

[
0,∞

)
; f(k) ∈ Rq is the fault signal belonging to

ℓ2
[
0,∞

)
; ω(k) is the scalar stochastic uncertainty defined

on the probability space (Ω,F ,P) relating to an increasing
family (Fk)k∈N of σ-algebras Fk ⊂ F generated by

(ω(k))k∈N, which is independent and satisfies E{ω(k)} = 0
and E{ω2(k)} = η. r is the number of fuzzy rules.
{ϱ[s]i1 , ..., ϱ

[s]
iτ } is the fuzzy set. {σ[s]

1 (k),σ[s]
2 (k),...,σ[s]

τ (k)}
is the premise variable set. N is a positive scalar, which
represents the number of switching subsystems.

ρs(k) : [0,∞) → {0, 1}

is a set of switching sequences, which decides to boot a
subsystem at a certain instant and satisfies

ρ1(k) + ρ2(k) + ...+ ρs(k) = 1, s ∈ 1, 2, ...,N

A
[s]
i is a real constant matrix of the switching T-S fuzzy

system, and B
[s]
i , D[s]

1i , D[s]
2i , E[s]

i , C [s]
i , L[s]

i , and F
[s]
i are

defined in the same way as A
[s]
i .

Suppose that the control input u(k) and premise vari-
ables σ[s](k) are independent of each other. The original
switching T-S fuzzy system can be rewritten as

Rule H[s]
i : IF σ

[s]
1 (k) is ϱ

[s]
i1 and σ

[s]
2 (k) is ϱ

[s]
i2 and ... and

σ
[s]
τ (k) is ϱ

[s]
iτ , THEN

x(k + 1) = A
[s]
i (k)x(k) +B

[s]
i (k)u(k) +D

[s]
1i (k)d(k)

+D
[s]
2i (k)x(k)ω(k) + E

[s]
i (k)f(k) (2a)

y(k) = C
[s]
i (k)x(k) + L

[s]
i (k)d(k) + F

[s]
i (k)f(k) (2b)

where

A
[s]
i (k) ≜

N∑
s=1

ρs(k)

r∑
i=1

h
[s]
i

(
σ[s](k)

)
A

[s]
i

and B
[s]
i (k), D[s]

1i (k), D
[s]
2i (k), E

[s]
i (k), C [s]

i (k), L[s]
i (k) and

F
[s]
i (k) are defined in the same way as A[s]

i (k). In addition,
the fuzzy basis functions are defined as follows

h
[s]
i

(
σ[s](k)

)
≜ θ

[s]
i (σ[s](k))

r∑
i=1

θ
[s]
i (σ[s](k))

,

r∑
i=1

h
[s]
i

(
σ[s](k)

)
= 1

h
[s]
i

(
σ[s](k)

)
⩾ 0, θ

[s]
i

(
σ[s](k)

)
⩾ 0

where

θ
[s]
i (σ[s](k)) ≜

{
ϱ
[s]
i1

(
σ
[s]
1 (k)

)}
×
{
ϱ
[s]
i2

(
σ
[s]
2 (k)

)}
× · · · ×

{
ϱ
[s]
iτ

(
σ[s]
τ (k)

)}
Remark 1. Stochastic uncertainty ω(k) is considered a
type of multiplicative noise in this switching T-S fuzzy
system, which is irregular and bounded in a small period.
In a large period, the sequence ω(k) represent a set of
points that conform to a certain rule. In our work, ω(k) is
a one-dimensional set of zero-mean Gaussian white noise
sequences, that is, E{ω(k)} = 0 and E{ω2(k)} = η.

Suppose that rule sets H[s]
i are available for the fault

detector and controller design. To achieve fault detection,
the structure of the dynamic fuzzy controller model is
established as follows:

Fault Detector and Controller Form:
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Fig. 1. Block diagram of the overall dynamic residual system

Rule H[s]
j : IF σ

[s]
1 (k) is ϱ

[s]
j1 and σ

[s]
2 (k) is ϱ

[s]
j2 and ... and

σ
[s]
τ (k) is ϱ

[s]
jτ , THEN

xf (k + 1) = A
[s]
fj(k)xf (k) +B

[s]
fj (k)y(k) (3a)

u(k) = K
[s]
fj (k)xf (k) (3b)

yf (k) = C
[s]
fj (k)xf (k) (3c)

yd(k) = yf (k)− f(k) (3d)

where xf (k) ∈ Rf is the state vector, and A
[s]
fj(k), B

[s]
fj (k),

C
[s]
fj (k) and K

[s]
fj (k) are defined in the same way as

equation (2), which are all designed later with full- and
reduced-dimensions.

Then, the overall dynamic residual system can be given
as

x̄(k + 1) =

N∑
s=1

ρs(k)

r∑
i=1

h
[s]
i

(
σ[s](k)

) r∑
j=1

h
[s]
j

(
σ[s](k)

)
×
[
Ā

[s]
ij x̄(k) + D̄

[s]
ij ϖ(k) + D̄

[s]
2i x(k)ω(k)

]
(4a)

yd(k) =

N∑
s=1

ρs(k)

r∑
i=1

h
[s]
i

(
σ[s](k)

) r∑
j=1

h
[s]
j

(
σ[s](k)

)
×
[
C̄

[s]
j x̄(k) + F̄

[s]
0 ϖ(k)

]
(4b)

where

x̄(k) ≜
[
x(k) xf (k)

]T
, ϖ(k) ≜

[
d(k) f(k)

]T
and

Ā
[s]
ij ≜

[
A

[s]
i B

[s]
i K

[s]
fj

B
[s]
fjC

[s]
i A

[s]
fj

]
, C̄

[s]
j ≜

[
01×n C

[s]
fj

]
D̄

[s]
ij ≜

[
D

[s]
1i E

[s]
i

B
[s]
fjL

[s]
i B

[s]
fjF

[s]
i

]
, D̄

[s]
2i ≜

[
D

[s]
2i 0n×n

0n×n 0n×n

]
F̄

[s]
0 ≜

[
01×1 −I1×1

]

The block diagram of the overall dynamic residual system
(4) is shown in Fig. 1. Then, the following two definitions
are introduced for subsequent derivations.

Definition 1. [37] For any χ ∈ [1,∞) and ϑ ∈ [0, 1],
supposing we have E

{
∥x̄(k)∥

}
≤ χ∥x̄(k0)∥ϑk−k0 , for all

k ≥ k0, then the dynamic residual system satisfies mean-
square exponentially stable (MSES) under a set of random
switching rules.

Definition 2. [37] For any ξ ∈ (0,∞) and β ∈ (0, 1),
the dynamic residual system is guaranteed to has an H∞
performance level (ξ, β) if it stabilizes in mean-square
exponential way when ϖ(k) ≡ 0, and under the initial
condition of x̄(k) = 0, for all nonzero ϖ(k) ∈ ℓ2[0,∞), the
following inequality holds:

E
{ ∞∑

s=k0

βsyTd (s)yd(s)

}
< ξ2E

{ ∞∑
s=k0

ϖT (s)ϖ(s)

}
(5)

To formulate the fault detection problem, a residual
evaluation function 𝟋(yd) is constructed to evaluate the
residual signal. Define

𝟋(yd) ≜ E
{[ k∑

ς=0

yTd (ς)yd(ς)

] 1
2
}

(6)

The fault signal can be detected by selecting a threshold

𝟋th ≜ sup
0 ̸=ϖ∈ℓ2,f=0

𝟋(yd) (7)

Then, the relationship between 𝟋th and 𝟋(yd) is shown
as follows

1) 𝟋(yd) > 𝟋th: fault threshold valve is triggered;
2) 𝟋(yd) ≤ 𝟋th: fault threshold valve is not triggered.
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III. System Performance Analysis

This section will analyze the stability of the overall
dynamic residual system (4) to obtain the sufficient
conditions for the design of FRFDC.

Theorem 1. Given scalars ξ > 0, 0 < β < 1 and ε ≥ 1,
supposing there exist positive definite symmetric matrix
P [s], such that the following inequalities hold for l, s ∈ N

Ω
[s]
ii < 0, i = 1, 2, ..., r (8a)

1

r − 1
Ω

[s]
ii +

1

2

(
Ω

[s]
ij +Ω

[s]
ji

)
< 0, 1 ≤ i < j ≤ r (8b)

P [s] − εP [l] ≤ 0, ∀s, l ∈ N (8c)

where

Ω
[s]
ij ≜

 Υ
[s]
110 Υ

[s]
2ij

⋆ Υ
[s]
330

 , Υ
[s]
110 ≜

[
−βP [s] 0

0 −ξ2I

]

Υ
[s]
2ij ≜

 (Ā
[s]
ij )

T (C̄
[s]
j )T (D̄

[s]
2i )

T

(D̄
[s]
ij )

T (F̄
[s]
0 )T 0


Υ

[s]
330 ≜

 −(P [s])−1 0 0
0 −I 0
0 0 −(ηP [s])−1


then, for a series of arbitrary switching signals with
the average dwell time Ta > T ∗

a = lnε
β , the overall

dynamic residual system (4) is MSES with a balanced
H∞ performance level (ξ, β). Meanwhile, the following
inequality holds for χ ∈ [1,∞), ϑ ∈ [0, 1]

E
{
∥x̄(k)∥

}
≤ χ∥x̄(k0)∥ϑk−k0 (9)

where

a ≜ min
∀s∈N

λmin(P
[s]), b ≜ max

∀s∈N
λmax(P

[s])

ϑ ≜
√
βε

1
Ta , χ ≜

√
b

a

Proof. Construct the following segmented Lyapunov func-
tion

V̄(k) ≜ x̄T (k)

( N∑
s=1

ρs(k)P
[s]

)
x̄(k) (10)

where P [s], the predefined parameter sets, are to be
designed later. For k ∈ [kδ, kδ+1), we construct the

following equation

E
{
∆V̄
(
x̄(k), ρs(k)

)}
≜ E

{
V̄
(
x̄(k + 1), ρs(k + 1)

)
− V̄

(
x̄(k), ρs(k)

)}
= E

{ N∑
s=1

ρs(k)

r∑
i=1

h
[s]
i

(
σ[s](k)

) r∑
j=1

h
[s]
j

(
σ[s](k)

)
× x̄(k)T

[
(Ā

[s]
ij )

TP [s]Ā
[s]
ij + η(D̄

[s]
2i )

TP [s]D̄
[s]
2i

− P [s]
]
x̄(k) +ϖ(k)T (D̄

[s]
ij )

TP [s]D̄
[s]
ij ϖ(k)

+ x̄(k)T (Ā
[s]
ij )

TP [s]D̄
[s]
ij ϖ(k)

+ϖ(k)(D̄
[s]
ij )

TP [s]Ā
[s]
ij x̄(k)

}
and

E
{
∆V̄
(
x̄(k), ρs(k)

)
− (β − 1)V̄

(
x̄(k), ρs(k)

)}
= E

{ N∑
s=1

ρs(k)

r∑
i=1

h
[s]
i

(
σ[s](k)

) r∑
j=1

h
[s]
j

(
σ[s](k)

)
× x̄(k)T

[
(Ā

[s]
ij )

TP [s]Ā
[s]
ij + η(D̄

[s]
2i )

TP [s]D̄
[s]
2i

− βP [s]
]
x̄(k) +ϖ(k)T (D̄

[s]
ij )

TP [s]D̄
[s]
ij ϖ(k)

+ x̄(k)T (Ā
[s]
ij )

TP [s]D̄
[s]
ij ϖ(k)

+ϖ(k)(D̄
[s]
ij )

TP [s]Ā
[s]
ij x̄(k)

}
By (8), we can get the following result when ϖ(k) = 0

E
{
∆V̄
(
x̄(k), ρs(k)

)
− (β − 1)V̄

(
x̄(k), ρs(k)

)}
< 0,

(13)
∀k ∈ [kδ, kδ+1), ∀s ∈ N

Let 0 < k0 < · · · < kδ < · · · < kN (δ = 1, . . . ,N ) denote
the segmented connection points of ρs on the time range
(0, k). Therefore, for k ∈ [kδ, kδ+1), we can derive that

E
{
V̄
(
x̄(k), ρs(k)

)}
< βk−kδE

{
V̄
(
x̄(kδ), ρs(kδ)

)}
Combining (10) and (8c) acquires

E
{
V̄
(
x̄(kδ), ρs(kδ)

)}
< εE

{
V̄
(
x̄(kδ−1), ρs(kδ−1)

)}
Therefore, one can get

E
{
V̄
(
x̄(k), ρs(k)

)}
≤ βk−k0εNa(k0,k)E

{
V̄
(
x̄(k0), ρs(k0)

)}
Then, the following inequality can be obtained by consid-
ering the correlation Na(k0, k) ≤ k−k0

Ta
, that is

E
{
V̄
(
x̄(k), ρs(k)

)}
≤ (βε

1
Ta )k−k0E

{
V̄
(
x̄(k0), ρs(k0)

)}
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Note from the definition of a and b, two positive integer
a and b are available, which satisfy a ≤ b. Thus we can
get the following inequalities

1

a
E
{
V̄
(
x̄(k), ρs(k)

)}
≥ E

{
∥x̄(k)∥2

}
(14a)

1

b
E
{
V̄
(
x̄(k0), ρs(k0)

)}
≤ ∥x̄(k0)∥2 (14b)

Next, the following inequality yields from (14)

E
{
∥x̄(k)∥2

}
≤ 1

a
E
{
V̄
(
x̄(k), ρs(k)

)}
≤ b

a
(βε

1
Ta )k−k0∥x̄(k0)∥2

Define ϑ ≜
√

βε
1

Ta , and we can get

E
{
∥x̄(k)∥

}
−
√

b

a
ϑk−k0∥x̄(k0)∥ ≤ 0 (15)

In addition, define J (k) as the below form

J (k) ≜ E
{
∆V̄
(
x̄(k), ρs(k)

)
− (β − 1)V̄

(
x̄(k), ρs(k)

)
+yTd (k)yd(k)− ξ2ϖT (k)ϖ(k)

}
(16)

The following equation can be yielded

J (k) =

N∑
s=1

ρs(k)

r∑
i=1

h
[s]
i

(
σ[s](k)

) r∑
j=1

h
[s]
j

(
σ[s](k)

)
×
[

x̄(k)
ϖ(k)

]T  Ξ
[s]
11ij − βP [s] Ξ

[s]
12ij

⋆ Ξ
[s]
22ij

[ x̄(k)
ϖ(k)

]
(17)

where

Ξ
[s]
11ij ≜ (Ā

[s]
ij )

TP [s]Ā
[s]
ij + (C̄

[s]
j )T C̄

[s]
j + η(D̄

[s]
2i )

TP [s]D̄
[s]
2i

Ξ
[s]
12ij ≜ (Ā

[s]
ij )

TP [s]D̄
[s]
ij + (C̄

[s]
j )T F̄

[s]
0

Ξ
[s]
22ij ≜ (D̄

[s]
ij )

TP [s]D̄
[s]
ij + (F̄

[s]
0 )T F̄

[s]
0 − ξ2I

Considering (8) and Schur’s complement, we can obtain
J (k) < 0 for k ∈ [kδ, kδ+1). Define Λ(k) ≜ yTd (k)yd(k) −
ξ2ϖT (k)ϖ(k), and the following inequality can be derived

E
{
∆V̄
(
x̄(k), ρs(k)

)}
< E

{
(β − 1)V̄

(
x̄(k), ρs(k)

)
− Λ(k)

}

For k ∈ [kδ, kδ+1), we obtain

E
{
V̄
(
x̄(k), ρs(k)

)}
< βk−kδE

{
V̄
(
x̄(kδ), ρs(kδ)

)}
−E
{ k−1∑

s=kδ

βk−1−sΛ(k)

}
...

E
{
V̄
(
x̄(k1), ρs(k1)

)}
< βk1−k0εE

{
V̄
(
x̄(k0), ρs(k0)

)}
−εE

{ k1−1∑
s=k0

βk1−1−sΛ(k)

}

Since Na(k0, k) ≤ k−k0

Ta
, we get

E
{
V̄
(
x̄(k), ρs(k)

)}
< E

{
βk−k0εNa(k0,k)V̄

(
x̄(k0), ρs(k0)

)
−

k−1∑
s=k0

βk−1−sεNa(k0,k)Λ(k)

}
Then, the above inequality implies

E
{ k−1∑

s=k0

βk−1−sε−Na(0,s)
(
yTd (k)yd(k)− ξ2ϖT (k)ϖ(k)

)}
< 0

Note that Na(0, s) ≤ s
Ta

and Ta ≥ − ln ε
ln β , so the above

inequality can be converted to the following inequality

E
{ k−1∑

s=k0

βk−1−sεs
ln β
ln ε yTd (k)yd(k)

}

< ξ2E
{ k−1∑

s=k0

βk−1−sϖT (k)ϖ(k)

}
Finally, we can obtain a significant result, that is

E
{ ∞∑

s=k0

βsyTd (s)yd(s)

}
< ξ2E

{ ∞∑
s=k0

ϖT (s)ϖ(s)

}
(18)

Therefore, the dynamic residual system (4) is proved to
have mean-square exponentially stability with a balanced
H∞ performance level (ξ, β). This completes the proof.

Remark 2. The number of parameter P [s] (s ∈ 1, 2, ...,N )
of the Lyapunov function V̄(k) designed in this paper
is consistent with the number of switching systems, so
that P [s] is a set of parameters rather than a fixed
value. In practical application, if there are many switching
subsystems, the determination of parameter P [s] will
be more difficult. Therefore, how to strike a balance
between reducing conservatism and simplifying P [s] is
worth studying in the future.

IV. Dynamic Fault Detector and Controller Design

In this section, the FRFDC are designed and discussed,
and the differences between the design processes of full-
and reduced-order system are analyzed. Subsequently,
some discussions and explanations of these two methods
are listed.

A. Full-order Fault Detectors and Controllers Design

In this subsection, we identify a general design criterion
to address the full-order fault detector and controller
design problem of the system defined in (4).
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Theorem 2. Given scalars ξ > 0, 0 < β < 1 and ε ≥ 1,
supposing there exist S [s], W [s], A[s]

fj , B
[s]
fj , C [s]

fj and K
[s]
fj

such that the below formulas hold for l, s ∈ N

Ω̃ii < 0, i = 1, 2, ..., r (19a)
1

r − 1
Ω̃

[s]
ii +

1

2

(
Ω̃

[s]
ij + Ω̃

[s]
ji

)
< 0, 1 ≤ i < j ≤ r (19b)

P [s] − εP [l] ≤ 0, ∀s, l ∈ N (19c)
P [s]Q[s] − I = 0 (19d)

where

Ω̃ij ≜
[

Υ̃110 Υ̃2ij

⋆ Υ̃330

]
, Υ̃110 ≜

[
−βP [s]

0 0

0 −ξ2I

]

Υ̃2ij ≜

 (Ã
[s]
ij )

T (C̃
[s]
j )T (D̃

[s]
2i )

T

(D̃
[s]
ij )

T (F
[s]
0 )T 0


Υ̃330 ≜

 −Q[s]
0 0 0

0 −I 0

0 0 − 1
ηQ

[s]
0


then, the full-order dynamic residual system (4) is MSES
with a balanced H∞ performance level (ξ, β). Further-
more, the full-order parameters can be constructed by:

A
[s]
fj B

[s]
fj

C
[s]
fj 0

K
[s]
fj 0

≜


(R[s])−1 0 −(R[s])−1(S [s])TB
[s]
i

0 I 0

0 0 I



×


A[s]

fj − (S [s])TA
[s]
i W [s] B[s]

fj

C[s]
fj 0

K[s]
fj 0


×

[
(X [s])−T 0

−C
[s]
i W [s](X [s])−T I

]
Proof. Let

P [s] ≜
[

S [s] R[s]

(R[s])T T [s]

]
, Q[s] ≜

[
W [s] X [s]

(X [s])T V [s]

]
and

F [s]
P ≜

[
S [s] I

(R[s])T 0

]
, F [s]

Q ≜
[

I W [s]

0 (X [s])T

]

One has F [s]
Q = (P [s])−1F [s]

P ,F [s]
P = (Q[s])−1F [s]

Q . Intro-
ducing

W ≜ diag{F [s]
Q , I, F [s]

P , I, F [s]
P }

the following equations can be obtained by performing
congruence transformations to (8a)-(8b) by W

(Ã
[s]
ij )

T ≜ (F [s]
Q )T (Ā

[s]
ij )

TF [s]
P , (D̃

[s]
ij )

T ≜ (D̄
[s]
ij )

TF [s]
P

(D̃
[s]
2i )

T ≜ (F [s]
Q )T (D̄

[s]
2i )

TF [s]
P , (C̃

[s]
j )T ≜ (F [s]

Q )T (C̄
[s]
j )T

P [s]
0 ≜ (F [s]

Q )T (P [s])TF [s]
Q , Q[s]

0 ≜ (F [s]
P )T (Q[s])TF [s]

P

Thus we obtain the following expanded forms

(Ã
[s]
ij )

T =

 Y11 (A
[s]
i )T

(A[s]
fj)

T Y22

 ,P [s]
0 =

[
S [s] I

I W [s]

]

(D̃
[s]
2i )

T =

 (D
[s]
2i )

TS [s] (D
[s]
2i )

T

(D[s]
2i )

TS [s] (D[s]
2i )

T

 ,Q[s]
0 = P [s]

0

(D̃
[s]
ij )

T =

 Y33 (D
[s]
1i )

T

Y44 (E
[s]
i )T

 , (C̃
[s]
j )T =

[
0

(C[s]
fj )

T

]
(D[s]

2i )
T = (W [s])T (D

[s]
2i )

T

Y11 = (A
[s]
i )TS [s] + (C

[s]
i )T (B[s]

fj)
T ,

Y22 = (W [s])T (A
[s]
i )T + (K[s]

fj)
T (B

[s]
i )T

Y33 = (D
[s]
1i )

TS [s] + (L
[s]
i )T (B[s]

fj)
T

Y44 = (E
[s]
i )TS [s] + (F

[s]
i )T (B[s]

fj)
T

Till now, the proof of Theorem 2 is completed.
Remark 3. Because S [s] and W [s] are known, two nonsin-
gular matrices R[s] and X [s] can be obtained by solving
the following equation

R[s](X [s])T = I − S [s]W [s]

S [s], R[s], T [s], W [s], X [s], and V [s] have the same di-
mensions (n×n) as the system state matrix. Consedering
P [s]Q[s] = I, the following equation can be derived:

(R[s])TW [s] + T [s](X [s])T = 0

Remark 4. Apparently, Eq. (17) can be converted into
linear matrix inequalities after using Schur complement
lemma, which can be solved directly through the linear
matrix inequality toolbox in MATLAB. In order to reflect
the design differences between full- and reduced-order
residual system, Theorem 1 is linearized and the design
of full-order fault detector and controller in Theorem 2
is obtained. Then, by introducing matrix E , it plays an
critical role in the design of reduced-order fault detec-
tor and controller. Finally, the corresponding allowable
performance parameters (ξ, β), and the parameters Afj ,
Bfj , Cfj and Kfj are designed from the derived results,
which can be readily solved by using standard numerical
software.

B. Reduced-order Fault Detectors and Controllers Design
On the basis of full-order fault detector and controller,

we establish a method to design the reduced-order fault
detector and controller.
Theorem 3. Given scalars ξ > 0, 0 < β < 1 and ε ≥ 1,
supposing there exist S [s], W [s], Ǎ[s]

fj , B̌
[s]
fj , Č [s]

fj and Ǩ
[s]
fj

such that the following formulas hold for l, s ∈ N
Ω̌ii < 0, i = 1, 2, ..., r (20a)

1

r − 1
Ω̌

[s]
ii +

1

2

(
Ω̌

[s]
ij + Ω̌

[s]
ji

)
< 0, 1 ≤ i < j ≤ r (20b)

P [s] − εP [l] ≤ 0, ∀s, l ∈ N (20c)
P [s]Q[s] − I = 0 (20d)
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where

Ω̌ij ≜
[

Υ̌110 Υ̌2ij

⋆ Υ̌330

]
, Υ̌110 ≜

[
−βP̄ [s]

0 0

0 −ξ2I

]

Υ̌2ij ≜

 (Ǎ
[s]
ij )

T (Č
[s]
j )T (Ď

[s]
2i )

T

(Ď
[s]
ij )

T (F̌
[s]
0 )T 0


Υ̌330 ≜

 −Q̄[s]
0 0 0

0 −I 0

0 0 − 1
η Q̄

[s]
0


then, the reduced-order dynamic residual system (4) is
MSES with a balanced H∞ performance level (ξ, β).
Furthermore, the reduced-order parameters are given by:

Ǎ
[s]
fj ≜ (ER[s])−1

(
Ǎ[s]

fj − (S [s])TA
[s]
i W [s] − B̌[s]

fjC
[s]
i W [s]

−(S [s])TB
[s]
i Ǩ[s]

fj

)
(EX [s])−T

B̌
[s]
fj ≜ (R[s])−1B̌[s]

fj , Č
[s]
fj ≜ Č[s]

fj (X
[s])−T

Ǩ
[s]
fj ≜ Ǩ[s]

fj(X
[s])−T

Proof. Redefine F̄ [s]
P and F̄ [s]

Q as:

F̄ [s]
P ≜

[
S [s] I

(ER[s])T 0

]
, F̄ [s]

Q ≜
[

I W [s]

0 (EX [s])T

]
(21)

Performing congruence transformations to (8a)-(8b) by
W̄ ≜ diag{F̄ [s]

Q , I, F̄ [s]
P , I, F̄ [s]

P }, one obtains

(Ǎ
[s]
ij )

T=

 Ȳ11 (A
[s]
i )T

(A[s]
fj)

T Ȳ22

 , P̄ [s]
0 = P [s]

0

(Ď
[s]
2i )

T=

 (D
[s]
2i )

TS [s] (D
[s]
2i )

T

(D[s]
2i )

TS [s] (D[s]
2i )

T

 , Q̄[s]
0 = Q[s]

0

(Ď
[s]
ij )

T =

 Ȳ33 (D
[s]
1i )

T

Ȳ44 (E
[s]
i )T

 , (Č
[s]
j )T =

[
0

E(C[s]
fj )

T

]
(D[s]

2i )
T = (W [s])T (D

[s]
2i )

T

Ȳ11 = (A
[s]
i )TS [s] + (C

[s]
i )T (B[s]

fj)
T ET

Ȳ22 = (W [s])T (A
[s]
i )T + E(K[s]

fj)
T (B

[s]
i )T

Ȳ33 = (D
[s]
1i )

TS [s] + (L
[s]
i )T (B[s]

fj)
T ET

Ȳ44 = (E
[s]
i )TS [s] + (F

[s]
i )T (B[s]

fj)
T ET

The results in Theorem 3 can be obtained easily based on
the above equations. Therefore, the proof is completed.

Remark 5. Considering E = [Ik×k 0k×(n−k)]
T , the di-

mensions of the parameters can be modified to S [s]
n×n,

(ER[s])n×k, T [s]
k×k, W [s]

n×n, (EX [s])n×k, and V [s]
k×k, in which

k is the desired dimension of the state matrix of the
control system. To ensure the validity of the solution, we
assume that R[s]

k×k and X [s]
k×k are nonsingular. Otherwise,

we consider R[s]
k×k + ∆R[s]

k×k and X [s]
k×k + ∆X [s]

k×k, where

∆R[s]
k×k and ∆X [s]

k×k are adequate small matrices. In such
a case, F̄ [s]

P and F̄ [s]
Q remain valid. Additionally, Theorem

3 transforms to Theorem 2 when n = k.

Remark 6. Note that another method commonly used
in reduced-order controller design is to use projection
lemma [38], [39]. The design results obtained using this
technique are usually represented in the form of linear
matrix inequalities plus an additional rank constraint.
Since the rank constraint is non-convex, it is difficult
to meet this condition using numerical software. In this
paper, we solve the FRFDC design problem by using a
linearization technology, which can be realized by available
software. Therefore, the target FRFDC is designed by
solving:

min ς

subject to (19) or (20) with ς = ξ2

Remark 7. Compared with [12]–[14], the number of sub-
systems of this paper is rN . Besides, a set of switching
fuzzy output feedback controllers are designed while con-
sidering the fault detection in this paper. It can be noted
that this paper does not directly use the original system
states for state feedback control, which is more practical
for the system whose state variables cannot be directly
monitored.

Remark 8. The time complexity level of the proposed
method is O(N rm3). Note that the complexity of the
dynamic residual system is mainly determined by the
dimensions of the system state matrix m, the number of
fuzzy rules r and switching subsystems N . It can be seen
that the increase of m means that the operation times of
the dynamic residual system will increase, and the increase
of r or N means that the iteration times of the dynamic
residual system increases. Undoubtedly, they are closely
related to the computational complexity of the algorithm
in this paper.

V. Illustrative Examples

In this section, two examples are considered, namely a
numerical example and a practical example. The second
example aims to verify the applicability of fault detector
and controller design technique in a switching Chua’s
circuit system.

Example 1. Consider the number of switching subsystems
as 2, and the parameters are given as:
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Subsystem 1.

A
[1]
1 =

 −0.4 0.1 0.4
0.3 0.8 0.1
0.1 0.5 0.6

 , D
[1]
11 =

 0.1
0.2
−0.1


A

[1]
2 =

 −0.6 0.1 0.3
0.3 0.6 0.5
0.2 0.5 0.8

 , D
[1]
12 =

 0.1
0.1
0.3


D

[1]
21 =

 0.01 0.01 0.02
0.01 0.03 0
0 0.02 0.01

 , B
[1]
1 =

 0.1
0.2
0.5


D

[1]
22 =

 0.01 0.01 0.02
0.01 0.03 0
0 0.02 0.01

 , B
[1]
2 =

 0.3
0.1
0.4


E

[1]
1 =

[
0.1 0.1 0.1

]T
, E

[1]
2 =

[
0.1 0.1 0.1

]T
C

[1]
1 =

[
0.6 0.2 1.8

]T
, C

[1]
2 =

[
0.8 0.2 1.2

]T
L
[1]
1 = 0.3, L

[1]
2 = 0.1, F

[1]
1 = 0.1, F

[1]
2 = 0.2

Subsystem 2.

A
[2]
1 =

 −0.5 0.1 0.4
0.3 0.6 0.1
0.3 0.2 0.6

 , D
[2]
11 =

 0.2
0.1
0.1


A

[2]
2 =

 −0.4 0.1 0.2
0.3 0.8 0.4
0.3 0.5 0.8

 , D
[2]
12 =

 0.1
0.2
0.1


D

[2]
21 =

 0.03 0.01 0.02
0.01 0.03 0.02
0.01 0.02 0.01

 , B
[2]
1 =

 0.1
0.3
0.4


D

[2]
22 =

 0.01 0.01 0.02
0.01 0.03 0.01
0 0.02 0.01

 , B
[2]
2 =

 0.2
0.1
0.5


E

[2]
1 =

[
0.1 0.1 0.1

]T
, E

[2]
2 =

[
0.1 0.1 0.1

]T
C

[2]
1 =

[
0.6 0.2 1.4

]T
, C

[2]
2 =

[
0.7 0.2 1.6

]T
L
[2]
1 = 0.2, L

[2]
2 = 0.1, F

[2]
1 = 0.1, F

[2]
2 = 0.3

In addition, select the following equations as the fuzzy
membership functions:

h
[s]
1 (x

[s]
1 (k)) ≜ (1 + sin2(x

[s]
1 (k)))

2

h
[s]
2 (x

[s]
1 (k)) ≜ (1− sin2(x

[s]
1 (k)))

2

Besides, d(k) and f(k) are selected as:

d(k) = 0.1 exp(−0.25k) sin(0.4k), k > 0

f(k) =


0.05 + 0.001 sin(k), 40 ≤ k ≤ 60

0.06
√
56.25− 0.09(k − 80)2, 70 ≤ k ≤ 90

0, otherwise

Case 1: In this case, the full-order fault detector
and controller is solved. The minimum feasible scalar
ξ is obtained as ξmin = 1.0053. The simulation results
are shown in Figs. 2-6. Figs. 2 and 3 display the states
change of the full-order dynamic residual system. The

0 20 40 60 80 100

Time in samples(k)

0

5

10

15

S
ta

te
 r

es
p

o
n
se

10
-3

Fig. 2. The states of the original system in Case 1

control input u(k), residual signal yd(k), and evaluation
function 𝟋(yd) are shown in Figs. 4-6, respectively. From
the simulation results, it can be seen that the states
of the dynamic residual system eventually tend to be
stable. When a fault signal occurs, the fault detector can
respond quickly by setting an appropriate threshold 𝟋th.
The setting of a threshold can refer to our previous work
[10].

Case 2: In this case, the reduced-order fault detector
and controller is derived. We obtain the minimum feasible
scalar ξ as ξmin = 1.0097. The simulation results are
shown in Figs. 7-10. Fig. 7 presents the states of the fault
detection and control system, in which the number of
states is reduced to 2, which is the significance of using
the order reduction method. The control input u(k) is
depicted in Fig. 8. The control input is significantly smaller
than that in the full-order system, which means that the
reduced-order dynamic residual system can be better ap-
plied to the actual system with control input constraints.
Figs. 9 and 10 show the residual signal yd(k) and residual
evaluation function 𝟋(yd), respectively. When there are
no faults, the value of the residual evaluation function of
the reduced-order residual system is smaller than that of
the full-order residual system. This find means that the
reduced-order residual system is more sensitive to small
amplitude fault signals, that is, the selection of thresholds
𝟋th is more flexible.

Example 2. A switching Chua’s circuit system [40] is used
to verify the effectiveness of the proposed method. The
original system is characterized by

V̇1 = −1
C1κR

V1 +
1

C1κR
V2 − 1

C1κ
Gκ(V1)− 1

C1κ
u

V̇2 = 1
C2R

V1 − 1
C2R

V2 − 1
C2

iL

i̇L = 1
LV2 − 1

LVd

(22)

where C1κ and Gκ(V1) (κ = 1, 2) are the κth capacitor
and the ith current flowing through the nonlinear resistor
Rnlκ, respectively. V1 and V2 are the voltage across the
capacitors C1κ and C2, respectively. iL is the current
flowing through the inductor L. u is the current from
generator as active control action of circuit, and Vd denotes
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Fig. 3. The states of the control system in Case 1
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Fig. 4. Control input u(k) in Case 1

voltage loss R0iL ( R0 is a constant resistance). In this
paper, we assume that Gt(V1) has the following form:

Gκ(V1) = ΛbV1 + ΛaV1ω(t)

+
1

2
(Λa − Λb)(|V1 + V̄ | − |V1 − V̄ |)

where Λa, Λb < 0. To obtain a fuzzy model, we assume
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Fig. 5. Residual signal yd(k) in Case 1
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Fig. 6. Residual evaluation function 𝟋(yd) in Case 1
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Fig. 7. The states of the control system in Case 2

V1 ∈ [−υ0, υ0], and then Gκ(V1) can be rewritten as

Gκ(V1) =


ΛaV1ω(t) + ΛbV1 − (Λa − Λb)V̄ , V1 ⩽ −V̄

ΛaV1ω(t) + ΛaV1, −V̄ < V1 < V̄

ΛaV1ω(t) + ΛbV1 + (Λa − Λb)V̄ , V1 ⩾ −V̄

Therefore, the following sector to bound Gκ(V1) can be
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Fig. 9. Residual signal yd(k) in Case 2
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Fig. 10. Residual evaluation function 𝟋(yd) in Case 2

obtained:

G1(V1) = ΛaV1ω(t) + ΛaV1

G2(V1) = ΛaV1ω(t) + ΛvV1

where Λv = Λb +
(Λa−Λb)V̄

υ0
. With Λa ̸= Λb, we can obtain

the membership functions as following

W1(V1) =


−V̄−(V̄ /υ0)V1

[1−(V̄ /υ0)]V1
, V1 ⩽ −V̄

1, |V1| < V̄

V̄−(V̄ /υ0)V1

[1−(V̄ /υ0)]V1
, V1 ⩾ −V̄

W2(V1) = 1−W1(V1).

Denote x(t) = [V1(t), V2(t), iL(t)], and a discrete-time
switching fuzzy model can be approximately formulated
using the Euler method. Specifically, Ak = I + AtT ,
where Ak and At denote the state matrix of the expected
discrete-time model and original continues-time model,
respectively. In the same way, Bk = BtT . Then, the
discrete-time switching fuzzy model parameters can be

obtained as:

A
[s]
1 =

 Ms − ΛaT
C1s

T
C1sR

0
T

C2R
−T
C2R

T
C2

0 T
L

−TR0

L

 , Ms = 1− T

C1sR

A
[s]
2 =

 Ms − ΛvT
C1s

T
C1sR

0
T

C2R
−T
C2R

T
C2

0 T
L

−TR0

L

 , C
[s]
i =

 1
0
0

T

D
[s]
2i =

 1 + ΛaT 0 0
0 0 0
0 0 0

 , B
[s]
i =

 −T
C1s

0
0


D

[1]
1 =

 0.01
0.02
−0.01

 , E
[1]
1 =

 0.03
0.01
0.01

 , L
[1]
1 = 0.03

D
[1]
2 =

 0.01
0.01
0.03

 , E
[1]
2 =

 0.01
0.01
0.02

 , L
[1]
2 = 0.01

F
[1]
1 = 0.01, F

[1]
2 = 0.02, F

[2]
1 = 0.01, F

[2]
2 = 0.03

D
[2]
1 =

 0.02
0.01
0.01

 , E
[2]
1 =

 0.01
0.02
0.01

 , L
[2]
1 = 0.02

D
[2]
2 =

 0.01
0.02
0.01

 , E
[2]
2 =

 0.01
0.03
0.01

 , L
[2]
2 = 0.01

We choose C11 = 0.764, C12 = 0.466, R = 1.637, C2 = 8,
L = 0.8, R0 = 0.012, T = 0.1, Λa = −0.3, Λb = −0.01,
V̄ = 1, and υ0 = 8. The above is the whole process of
discrete-time switching fuzzy modeling for the switching
chua’s circuit. By employing LMI algorithms, we obtain
that the minimised feasible ξ is ξ = 1.0042 and ξ = 1.0038
in the full- and reduced-order residual system, respectively.
Furthermore, d(k) and f(k) are selected as:

d(k) = 0.8 exp(−0.25k) sin(0.4k), k > 0

f(k) = 0.1 + 0.01 sin(k), 40 ≤ k ≤ 80

The full-order residual system simulation of Example 2
are not repeated here. Figs. 11-15 show the reduced-order
residual system simulation results of Example 2. Figs. 11
and 12 show the states change of the dynamic residual
system. The control input u(k), residual signal yd(k),
and evaluation function 𝟋(yd) are shown in Figs. 13-15,
respectively. In the simulation results of full-order residual
system, the maximum value of control input u(k) in the
process of dynamic response can reach 700(V ), which
is not desirable for switching Chua’s circuit. However,
Fig. 13 reflects the maximum value of the control input of
the reduced-order residual system is only 6(V ), which is
more in line with the control requirements for the actual
engineering system. Of course, this phenomenon is also
shown in Example 1. As can be seen from Figs. 14 and 15,
the change trend of the fault signal can be reflected by the
residual function yd(k). When a fault signal appears, the
residual evaluation function 𝟋(yd) has a large numerical
mutation which is not in accordance with the normal
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Fig. 11. The states of the original system in Example 2
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Fig. 12. The states of the control system in Example 2

condition. Finally, the appropriate threshold can be set
to determine whether the fault occurs.

In general, the design of reduced-order fault detector
and controller will not affect the fault detection and
control of the original system. The experimental results
show that the reduced-order fault detector and controller
are more likely to be suitable for practical systems. In
addition, compared with the full-order residual system,
the reduced-order residual system can also maintain the
H∞ performance close to the full-order dynamic residual
system while reducing the computational complexity.

VI. Conclusion

This research addresses the problem of FRFDC design
for discrete-time switching fuzzy systems. The average
dwell time method is used to ensure that the dynamic
residual system has mean-square exponential stability
under any switching control law. Moreover, a segmented
Lyapunov function is constructed to derive sufficient
conditions that ensure that the corresponding residual
system exponentially stabilizes with a balanced H∞ per-
formance level (ξ, β). Several linear matrix inequalities are
derived using the linearization method, and the FRFDC
parameters can be obtained using the mathematical solver
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Fig. 13. Control input u(k) in Example 2
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toolbox. Finally, two examples are considered to demon-
strate the effectiveness of the proposed methods.
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