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Abstract

Collaboration and communication are two essential aspects of Building In-
formation Modeling (BIM). Current practice and international standards im-
plement BIM collaboration on the basis of domain model federation where
loosely coupled models are managed as separated files and coordinated in a
mostly manual fashion. The concept has severe limitations regarding con-
currency and version control, as the granularity of change tracking remains
on the level of complete files and does not reach individual model objects.
Due to this lack of change traceability, high manual effort for the subse-
quent coordination across the domains is generated. These limitations can
be overcome by implementing modern approaches of digital collaboration
based on object-level synchronization, widely denoted as BIM level 3. This
paper presents a sound methodological basis for object-based version control
by (1) representing the object networks of BIM models as formal property
graph structures and (2) describing changes of the model by graph transfor-
mations. Consequently, modifications can be transmitted as graph transfor-
mation rules which are subsequently integrated on the receiving side, thus
achieving object-level synchronization. The paper provides the underlying
theory of describing model changes by means of graph transformations and
demonstrates its benefits using the example of domain models implementing
the Industry Foundation Classes (IFC) as their underlying data model.
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1. Introduction1

The design, construction, and maintenance of buildings and civil infras-2

tructure are among the most essential societal tasks. Particularly in large3

projects, such as the design of major transportation infrastructure or highly4

equipped buildings, a very large number of experts and domains is involved5

to generate cost-effective yet efficient solutions for challenging environments.6

To accomplish solutions for complex multi-disciplinary engineering problems7

with contradicting objectives such as cost reduction, environmental preser-8

vation, and responsible resource consumption, planning and design tasks of-9

ten require several iterations to meet all requirements from various domains10

and parties. Through these iterations, the design of the built asset to be11

constructed is successively refined and elaborated. Iterative processes en-12

tail that information which is shared at one point in time might no longer13

be valid in the future. Hence, keeping an overview of an evolving informa-14

tion set becomes a cumbersome task. Therefore, powerful management tools15

are essential to coordinate all complex dependencies and relations among all16

involved parties.17

To reliably represent and exchange design information, the methodology18

of Building Information Modeling (BIM) has been increasingly adopted by19

the Architecture, Engineering, and Construction (AEC) industry throughout20

the last years [1, 2, 3]. As the advantages of BIM over conventional drawing-21

based practices are overwhelming, a rising number of public authorities and22

contractors demand BIM-based collaboration. To streamline BIM informa-23

tion management, a number of standards have been defined. Among the most24

important is ISO 19650 [4] that specifies the principle of model federation25

and describes the Common Data Environment (CDE) as the technological26

solution for data management in BIM projects [5, 6, 7]. At its heart, the27

principle of model federation relies on discipline-specific partial models (such28

as Architecture, Structural, or HVAC models) that are created and main-29

tained independently, but coordinated in well-defined intervals to achieve a30

coherent overall design solution. The main motivation for federated model31

approaches lies in the fact that legal responsibility for disciplinary design de-32

cisions must remain with the respective author. In addition, the practice has33

shown that asynchronous collaboration is much more appropriate for cross-34

enterprise BIM design projects than synchronous collaboration, as it allows35

for the desired independence of the involved partners in terms of time and36

resource planning.37
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According to ISO19650, the domains models and associated documents38

are managed and exchanged by means of so-called Information Containers.39

Implementing this approach, current best practise relies on transmitting en-40

tire and complete domain models stored in files each time a model version is41

shared. In consequence, the changes applied to the respective domain model42

are neither explicitly propagated nor tracked or managed by the CDE. There-43

fore, it remains the responsibility of the stakeholders to manually find the44

applied changes and check for potential inconsistencies with their own domain45

models. This severely limits the available technical support for model-based46

collaboration and increases the risk for inconsistencies.47

1.1. Problem statement48

Even though a file-based data exchange suits the traditional fashion to49

store information on a hard drive, there are significant limitations when it50

comes to fulfilling the requirements of high-frequency model-based collabo-51

ration taking into account the large size of model data and the various de-52

pendencies across the design disciplines. Combining the situation of multiple53

versions being created and deployed as files throughout design phases with54

the large number of tasks that must be considered, the manual tracking of55

changes can be overwhelming and results in repetitive, error-prone processes.56

A much more effective approach can be achieved by exchanging only the dif-57

ferences between the two model versions. Incremental updates enable precise58

tracking of changes, allowing engineers to concentrate on these updates and59

the required modifications of their own discipline models. In addition, it60

opens ways for automated (yet controlled) updates across disciplines wher-61

ever a formal description of dependencies is possible, without violating the62

principle of discipline-oriented ownership and responsibility. As a side effect,63

data traffic produced to deploy a new version is drastically reduced as the64

ratio between modified components and the overall number of elements in a65

model is typically quite low.66

While there are established version control systems (VCS) such as Git67

or Subversion, which implement the concept of incremental changes, they68

are dominantly based on tracking and updating textual representations like69

program code. Knowledge representations used in the AEC industry, how-70

ever, are complex, highly connected object networks that are much better71

represented by graph structures than by serialized textual representations.72

Approaches that formally describe engineering knowledge by means of graphs73

have been already investigated by a vast number of publications and provide74
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a promising basis to implement object-based update tracking for BIM-based75

workflows.76

1.2. Contribution77

The work presented in this paper aims to overcome the limitations of file-78

based collaboration by developing graph-based methods for update tracking79

and federation in BIM models. A novel method for version control of BIM80

models is proposed that operates on object level and extends existing version-81

ing concepts by introducing graph-based mechanisms. In particular, object82

models are proposed to be represented by directed, attributed graphs and83

modifications are formally described by graph transformations.84

In terms of the system architecture, we assume a centralized hub for data85

management, which various clients can connect to and use to share their86

domain-specific models. For synchronizing the local model version with the87

central one, however, mere update patches are transferred instead of complete88

model files. These update patches contain the corresponding graph transfor-89

mations. The concept of federated models, asynchronous collaboration, and90

eventual synchronization of all domain models into a centralized coordination91

model is maintained and implemented in accordance with existing standards92

and guidelines.93

While the concepts for graph-based model versioning are generic, it is94

not the aim of the paper to define a new all-embracing data model that95

fits multiple domains. Rather, the developed method features existing and96

well-developed data models targeting highly specialized branches of the AEC97

industry and map their data sets onto a common graph structure.98

In summary, the main contributions to be presented in this paper are:99

• The concept of graph-based version control applied to BIM collabora-100

tion.101

• A generic representation of BIM instance models by means of attributed,102

directed graphs.103

• A graph-based algorithm that computes the difference between two104

versions of a BIM model on the basis of their graph representations.105

• A mechanism to exchange and integrate model updates by means of106

formal graph transformations.107
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The paper is organized as follows: Section 2 discusses related work in108

the field, section 3 describes the developed method from a theoretic point of109

view. Section 4 presents a case study to provide a proof-of-concept, section110

5 contains the discussion and section 6 closes the paper with a summary of111

the main findings.112
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2. Background & related work113

The ongoing development of digital technologies has equipped various114

industry sectors with new opportunities to enhance data exchange and col-115

laboration. In this regard, especially approaches to collaborate across do-116

main borders expose a great potential. This section provides an overview of117

existing versioning systems suitable for textual knowledge representations.118

Furthermore, existing approaches for representing complex object networks119

by means of graph theory and graph transformations are introduced and put120

into the domain context of the AEC industry.121

2.1. Representations of engineering knowledge122

Domain experts involved in the design and engineering process of building123

and civil infrastructure assets capture knowledge typically in the form of124

discipline-specific data representations that are referred to as BIM models125

[8]. Such instance models contain semantic and geometric information of the126

designed asset from the viewpoint of the respective domain and are composed127

of a set of model elements reflecting a physical, logical, or contextual item128

and their mutual relationships. A BIM model instantiates a data model,129

which defines available types, classes, and their relationships. Various data130

models exist to ensure a common understanding of the knowledge shared131

within an instance model. These specifications implement the Meta Object132

Facility (MOF) definitions [9, 10]. The MOF specifications standardized by133

the Object Management Group (OMG) distinguish between instance data134

(M0), data model (M1), metamodel (M2), and metametamodel (M3). In the135

context of the paper at hand, the terms instance model and BIM model refer136

to the concepts stated in M0. The underlying structure, which abstracts the137

given real-world problem from a domain-specific perspective, is defined as138

data model. The abstraction of a data model in its generic items such as139

attribute types and relationships is defined in a meta model.140

The exchange domain models is currently realized by uploading entire141

files to so-called Common Data Environments (CDEs) [11, 12, 4]. Yet, in-142

dividual objects inside a instance model are typically not accessible for the143

CDE, not analyzed further, and hence not subject to versioning and concur-144

rency control. In consequence, the granularity of versioning remains on a145

rather coarse level of entire domain models. In order to facilitate an object-146

based versioning of the populated instances, a general understanding of the147

structures and common representation types is necessary.148
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In most cases, a textual representation of the instance model is used149

to translate each object from the internal memory of the authoring soft-150

ware into a textual representation, which is then transferred to the project’s151

CDE. Open, vendor-neutral instance models typically follow common en-152

coding mechanisms (such as XML, JSON, STEP Physical File), whereas153

proprietary file formats typically implement binary representations. While154

proprietary file formats are still in wide use for various reasons, in the scope of155

this paper, specific emphasis is put on vendor-neutral information exchange.156

At a first glance, approaches for versioning textual representations appear157

promising to identify, track and manage model modifications.158

2.2. Existing version control systems159

The versioning of structured information is a relevant issue in many in-160

dustry branches. Specifically, in the field of software development, various161

methods, protocols, and systems exist that enable distributed version con-162

trol of text files [13]. Prominent examples of VCS are Apache Subversion1,163

Mercurial2 and Git3 among others. In most approaches, a central database164

stores the global history of change events, integrates incoming modifications,165

and allows a user to clone the entire history with all incremental changes166

to a local machine. If changes are ready to be shared with others, the user167

commits the local state and pushes it to the central database again. The168

chain of update messages forms the entire history of the project. Incoming169

updates can be integrated automatically if they do not create any conflicts170

with existing or concurrent local changes. Only in case of conflicts, the user171

needs to resolve them and choose the desired content manually [14].172

Even though such version control systems are well established, they show173

significant limitations when it comes to the management of complex object174

networks given in BIM models. Most of the time, serializing connected infor-175

mation into textual representations requires the introduction of additional176

identifiers to specify dependencies between objects. These identifiers are177

not part of the actual domain to be described in the model and are sim-178

ply due to the need to represent associations between instances in a textual179

manner. Engineering knowledge can be serialized into instance models in a180

completely different order depending on the serialization strategy, resulting181

1https://subversion.apache.org/
2https://www.mercurial-scm.org/
3https://git-scm.com/

7



in seemingly diverging files which in fact represent the same content. Thus,182

pure text-based comparisons are not capable of reflecting the complex and183

highly interconnected object networks.184

In the AEC industry, a number of researchers have already investigated185

the representation and exchange of modifications on specific data sets. For186

example, Koch and Firmenich [15] have presented a comprehensive versioning187

approach for procedural building representations. Their approach is based188

on representing both, design states and state transitions, thus enabling the189

exchange of change-oriented information by means of design steps denoted as190

modeling operations. Even though the general vision is highly related to the191

approach, the paper at hand focuses on expressing modifications by graph192

transformations applied on the model. On the contrary, the work of Koch and193

Firmenich focuses on a procedural description of the model creation process194

and the subsequent versioning of them. A similar approach is taken by195

Vilgertshofer and Borrmann [16], which however focuses on the generation of196

models. Both publications suggest a general validity of the approaches used,197

but further consideration of the framework conditions is required to apply198

them in the context of BIM models featuring domain-specific requirements.199

Apart from research initiatives, multiple software vendors have identi-200

fied cloud computing and collaboration systems as crucial to their product201

portfolio. Prominent vendors like Autodesk, Trimble, Graphisoft, and others202

provide cloud-based solutions to allow working on data sets in a collaborative203

manner [17, 18, 19]. Their approaches, however, feature only vendor-specific204

file formats and data models. A good example is Graphisoft’s BIM cloud205

service, which was formally know as Graphisoft Delta Server, implementing206

the idea of transmitting deltas (model differences) for synchronizing a dis-207

tributed system [20]. To the best knowledge of the authors, these products208

do not provide a generic approach that can be applied to a multitude of data209

models used for interdisciplinary data exchange. Besides, the technological210

foundations used in the collaboration systems are often not publicly docu-211

mented, which makes it complex to argue about their applicability to data212

structures other than their internal ones.213

By contrast, the Speckle platform presented by Poinet et al. [21] aims to214

provide an object-based collaboration system for BIM data by implement-215

ing direct communication between senders and receivers. The overall data216

exchange relies on a generic object definition called SpeckleObject, which car-217

ries dynamically created attributes. Therefore, the approach correlates with218

fundamental concepts of dynamically typed languages such as Python and219
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enables the user to create and modify the attributes of a certain object in220

a flexible manner. Even though Poinet et al. [21] claim to support subsets221

of vendor-neutral data models in their system, a common understanding of222

Speckle’s object architecture is required at all sending and receiving systems.223

Subsequently, the approach appears promising but also contains the risk to224

create yet another data exchange standard in the industry connecting only225

a selected set of systems.226

To allow object-level versioning of complex object networks in a generic227

manner (i.e., independent of a specific data model or vendor), novel methods228

are necessary to detect modifications between two versions directly in the229

object network instead of computations on their text-based serializations.230

Therefore, the next paragraphs reports on existing approaches to reflect BIM231

models in graph structures.232

2.3. Graph representations of object networks233

Capturing and representing engineering information by means of graph234

structures has been of research interst in many industries and domains. A235

major advantage of graphs is the ability to model dependencies and relation-236

ships between individual objects in a generic manner [22]. Physical and log-237

ical assets can be abstracted in a flexible manner without having to consider238

application-specific conditions for each object or relationship. Therefore,239

graph structures are often used to enrich information resources by adding240

extended knowledge to them. Application scenarios can range from opti-241

misation problems (e.g., agent routing through complex networks [23]) over242

computational synthesis tasks [24] to data fusing applications that aim to243

detect implicit dependencies in large data sets [25, 26, 27].244

All graphs G=(N, E) consist of a set of nodes N and edges E, with each245

edge connecting a number of nodes (usually 2) in a directed or undirected246

manner. Depending on the specific domain, nodes and edges may carry247

additional information in the form of attributes and labels supporting efficient248

querying, sorting, and other computational features. Subsets of graphs are249

called sub-graphs or graphlets whereas the term pattern is used to specify a250

graph or graphlet (e.g., to be used in a query statement).251

Graph representations for structured data sets can be divided in two ma-252

jor categories. Approaches related to Linked Data principles represent the253

object networks using a triple centered approach where each triple is com-254

posed of a subject, a predicate, and an object [28]. A triple can model an255

attribute belonging to an object (e.g., ”the material of a wall is concrete”)256
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or describes a relationship between two objects (e.g., ”the wall is contained257

in a building”). In terms of the corresponding graph, each triple is rep-258

resented by an edge. Each information item (objects but also attributes)259

is represented by a node. Correspondingly, graph structures representing260

complex models consist of a large number of nodes and edges. In contrast,261

entity-centered approaches are more closely aligned with the principles of262

object-oriented analysis and design (OOAD), where each object has a set of263

attributes, which describes the current state of the instance. In the corre-264

sponding graph structure, each object carries its attributes as weights and265

edges are only used to model relationships with other objects.266

A number of researchers have investigated the representation of building267

information models as graphs. The approaches typically rely on (1) repre-268

senting first-class object types such as walls, windows, doors as nodes and269

(2) representing their topological or functional relationships with the help of270

edges between the corresponding nodes. The presented approaches vary in271

the choice of first-class objects and considered relationships, as they follow272

different purposes or views on buildings [29, 30, 31, 32].273

Various approaches exist to define, store, exchange, and deploy triple-274

based data. One prominent specification is the Resource Description Frame-275

work (RDF), which defines a common grammar or schema definition on how276

triples are formulated. Like XML, the RDF standard is maintained by W3C277

4. The application of RDF knowledge representations in the AEC sector has278

been addressed by numerous publications [33, 34]. Additionally, many re-279

searchers have investigated query mechanisms of BIM models modeled in280

RDF techniques [35, 36, 37]. Oraskari and Törmä [38] have applied diff com-281

putation mechanisms on RDF graphs that were produced from IFC instance282

models. Further, Rasmussen et al. [39] propose the definition of an ontology283

to describe the evolution of RDF graphs in a formal and computer-readable284

manner.285

As RDF data sets often evolve dynamically, Roussakis et al. [40] have pre-286

sented a method to identify and analyze by calculating the delta between two287

given RDF graphs. As the definition of an alteration is highly dependent on288

the specific knowledge reflected within an RDF graph, configurable SPARQL289

queries are used to identify changes among two versions. Furthermore, Singh290

et al. [28] use the expression dataset dynamics to describe constant changes291

4https://www.w3.org/RDF/
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applied to an information resource. Their DELTA-LD change model com-292

bines resource and triple-centered views into a common change management293

model for linked data sets. Bobed et al. [41] have investigated version con-294

trol systems of RDF-based knowledge representations and have defined two295

major states: An update captures a mutation applied to a small subset of296

the RDF graph whereas a snapshot freezes and stores the current state of297

the knowledge system.298

As already addressed, a major disadvantage of storing BIM models in299

triples is the large file size compared to entity-centered approaches. To over-300

come these limitations, Zhao et al. [42] have presented an approach to merge301

data sets facilitating the IFC data model based on graph structures. Even302

though their approach appears promising for coordination tasks and decen-303

tralized collaboration, their approach is dependent on the IFC data model304

and cannot be transferred to other data representations used in the AEC305

industry. Same applies for the research by Shi et al. [43], who have proposed306

an approach that allows detecting differences between two BIM models based307

on a similarity metric. Their system runs a normalization on all instances308

stored in the model first and calculates a similarity score afterward using309

a recursive depth-first search. Unfortunately, the resulting similarity rate is310

presented as a mere scalar value, which does not provide access to the altered311

objects within the model. Looking on graph similarity from a generic per-312

spective, the concept of Maximum Common Subgraph (MCS) by Schultheiß313

et al. [44] supports the identification of repetitive graph structures that ap-314

pear in multiple graph structures. Further research tackling aspects of MCS315

was conducted by Wang and Maple [45], Bunke et al. [46], Conte et al. [47].316

2.4. Graph transformations317

In addition to graph querying and filtering, graph transformations are318

a very relevant field of research for the scope of this paper. The concept of319

graph transformation (also denoted as graph rewriting) has its roots in formal320

graph theory and its sound mathematical definitions. The general idea of321

graph rewriting is the mutation of a given host graph H into a resulting graph322

H ′ by applying a set of transformation rules r. The formulation of rules builds323

upon mapping functions that express relationships between nodes and edges324

of different (sub-)graphs [48]. The general principle of a graph transformation325

is depicted in figure 1.326

Each transformation rule consists of a pattern graph L and a rewrite graph327

R. The pattern graph specifies the structure, which the rule should be applied328
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pattern graph 𝐿𝐿 rewrite graph 𝑅𝑅

host graph 𝐻𝐻 resulting graph 𝐻𝐻𝐻

Rule application

𝑟𝑟
preservation 

morphism

matching𝑚𝑚 matching𝑚𝑚𝑚

Figure 1: An SPO-based graph transformation rule inserting a new node connected by
two edges. Each color indicates a unique node, which makes the specified patterns occur
exactly once in the host and resulting graphs H and H ′. (inspired by Blomer et al. [49]
and Vilgertshofer and Borrmann [16])

to. Once the pattern graph is identified in the host graph (i.e., a subgraph329

exists in H that is homomorphic to the pattern graph L), the rule is applied330

by replacing the pattern L by the rewrite graph R. Well-established transfor-331

mation techniques are the Double-Push-Out (DPO) approach among other332

techniques such as Single Push Out, Sesqi Push Out, and others [50, 51, 52].333

Even though all methods have in common the goal of transforming a given334

host graph into a modified state, the Double-Push-Out approach consists of335

two separate pushout operations. This characteristic requires a more precise336

definition of how inclined edges to a inserted or removed node should be337

handled during the transformation. For detailed explanations and algebraic338

background information, the reader is advised to read the publications of339

Buchwald [53] and Blomer et al. [49].340

Starting with the pre-condition of a DPO transformation rule, the Left341

Hand Side (LHS) L specifies a pattern that the transformation system is342

searching for in a given host graph H. If an occurrence of the pattern L is343

detected in H (i.e., L is a homomorphic subgraph to H), all nodes and edges344

contained in L but not in the interface I are removed from H, which results345
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in the context graph D. The interface I is defined such that I is isomorphic346

to L, which can be seen as an intermediate state after applying the remove347

operations. Accordingly, the Right Hand Side (RHS) specifies all nodes and348

edges that are inserted to achieve the intended resulting graph denoted as349

H ′. The interface graph I is homomorphic to a subgraph of R describing the350

Right Hand Side of the rule. All nodes and edges present in R but not in351

I will be inserted to achieve the resulting graph H ′. Accordingly, the graph352

R is naturally homomorphic to the rewriting result H ′. Figure 2 depicts the353

involved graphs and patterns including all morphism statements necessary354

for a DPO transformation rule. In this example, the first transformation l355

removes the edge labeled with 2 connecting the pink and the green node.356

The removal is achieved by the preservation morphism l between I and L.357

Accordingly, the edge labeled with 3 is inserted to connect the green and the358

blue node using the preservation morphism r between I and R.359

host graph 𝐻𝐻 context graph D resulting graph 𝐻𝐻𝐻

matching𝑚𝑚 matching 𝑑𝑑 matching𝑚𝑚∗

pattern graph 𝐿𝐿 interface graph 𝐼𝐼 pattern graph 𝑅𝑅

𝑙𝑙 𝑟𝑟
1a b

c

1a b

c

1a b

c

1

3

5

a b

c

d

f

e

1

3

5

a b

c

d

f

e

1

3

5

a b

c

d

f

e

Figure 2: The DPO approach describing a graph transformation by a Left Hand Side L,
an Interface pattern I, and the Right Hand Side pattern R. Each color indicates a unique
node, which makes the specified patterns occur exactly once in the host and resulting
graphs H and H ′. (Figure inspired by Kniemeyer [54] and Javed [55])

Besides use cases like refactoring and optimization problems, various re-360

search activities have involved the application of graph rewriting in the scope361

of parametric geometry [16] or building models [56]. Helms and Shea [24] and362
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Königseder [57] have investigated the field of computational design synthesis363

based on formal graph grammars. Even though their research grounds on364

related concepts of set and graph theory, their approaches aim to generate365

solution spaces containing a large set of options an engineer could consider366

for his design task. The transfer of a modification applied to a BIM model,367

however, should result in exactly one solution, namely the updated state the368

model author has generated. Nevertheless, graph transformation is suitable369

tool to express exactly this change. The exact formulation of a transforma-370

tion rule depends on the graph meta model, which provides a suitable vocab-371

ulary to express a specific modification. The meta model used to implement372

the proposed version control systems for BIM models will be described in373

section 3.2.374

2.5. Identified research gap375

In summary, the literature review proves an enormous interest in version-376

ing control systems of structured data across various engineering disciplines.377

However, none of the existing techniques can be used for the incremental378

version control of BIM models based on their underlying object networks. A379

large number of research items deals with the reflection of information pro-380

duced during a design process in graph structures. Yet, only a few approaches381

address issues related to evolving object structures in a domain-independent382

manner or use flexible graph meta models that are capable of reflecting var-383

ious data models.384

The paper at hand investigates the combination of established principles385

of common graph representations and how they can support incremental386

versioning systems for data models used in the AEC industry. The under-387

lying hypothesis is that graph theory is well suited to capture the complex388

and highly interconnected object networks of a BIM model, and that graph389

transformation is a suitable mechanism to describe modifications of these390

structures. Contrary to many existing approaches, the applicability of the391

developed system for a wide range of data models is a key objective. The392

following section introduces a graph meta model, which reflects commonly393

used data specifications generically and discusses the representation of mod-394

ifications by graph transformation rules. Furthermore, it will provide an395

illustrative example demonstrating the application of the methodology.396
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3. The developed graph-based diff-and-patch method397

3.1. Overview398

A novel approach that supports the formal identification of updates (diff )399

in BIM models and their integration into federated copies of a model (patch)400

is required to overcome the limitations of collaboration systems currently401

used in the AEC sector. To ensure the successful integration of the pro-402

posed approach in existing workflows, all concepts build upon the assumption403

of asynchronous collaboration using loosely coupled discipline-specific BIM404

models. Hence, each domain works in its specialized software environment405

and provides discrete versions of the developed domain model to a central406

project repository to share it with other collaborators. This involves a syn-407

chronization step where all deployed copies (e.g., to project platform or other408

designers) of the model are updated such that it mirrors the most recent state409

of the model stored at the author.410

In the developed method, each time a new version of a BIM model is411

produced, the unchanged parts are identified that have already been made412

available in the previous version. Subsequently, only the modification (i.e.,413

the transformation rule) necessary to update outdated replicas of the previous414

version is deployed to other project stakeholders. The proposed method is415

generic in the sense that it is agnostic to specific data models, i.e., applicable416

to a wide range of existing object-oriented data models. This is realized by417

employing graph structures to represent the complex object networks of BIM418

models. For representing the changes between two versions, the concepts of419

maximum common subgraphs (MCS) and graph transformations are applied.420

Figure 3 depicts the envisioned data flow between a sender and a receiver.421

In most cases, the sending side is formed by a modeler’s workstation and the422

receiving side is the central repository. However, de-centralized architectures423

are also supported. Once a model author has developed a new shareable state424

of the domain model, the diff between the latest deployed version and the new425

model revision is computed by comparing the graph representations of both426

versions. The comparison results in the definition of a graph transformation427

rule p, which expresses the applied modification. Contrary to classical graph428

transformation problems, the transformation rule (i.e., the pattern describing429

L, I, and R) is not known a priory and is computed based on the initial and430

the updated model graphs. On the receiver side, an interpreter applies the431

transformation rule to the locally stored graph to obtain the same updated432

state that the sender has created. The resulting graph can be translated433
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back into a file-based representation to ensure compatibility with existing434

software applications, which provide import modules for the particular data435

specification.436

Sender

exports
model

exports
model

model 𝑣𝑣𝑖𝑖
file-based

model 𝑣𝑣𝑖𝑖+1
file-based

model 𝑣𝑣𝑖𝑖
graph-based

model 𝑣𝑣𝑖𝑖+1
graph-based

Diff

transformation
rule

Patch

model 𝑣𝑣𝑖𝑖
file-based

model 𝑣𝑣𝑖𝑖
graph-based

Receiver

model 𝑣𝑣𝑖𝑖+1
file-based

model 𝑣𝑣𝑖𝑖+1
graph-based

+

imports
model

imports
model

=/

Figure 3: System architecture for object-based modification exchange between a sender
and a receiver using graph transformation rules

3.2. Translation of object-oriented information into graph structures437

As most information exchange scenarios employ well-defined data models438

that follow object-oriented paradigms, we adopt the approach of modeling439

object-oriented domain models as attributed, directed property graphs in-440

troduced by Hidders [58]. Like any other graph structure, property graphs441

consist of a set of nodes N and a set of edges E. The core concept of this ap-442

proach lies in representing each class instance by a single node of the graph.443

Accordingly, associations between two class instances are modeled as an at-444

tributed edge in the graph. In a property graph, to both nodes and edges445

properties can be assigned. Each property is represented as a key-value pair,446

such as {weight: 10}, {color: ’red’}, {name: ’Alice’}. Depending on the cho-447

sen graph system, property graphs might require the definition of a graph448

meta model describing available labels and attributes of nodes and edges.449

As stated earlier, the method presented here aims at providing a generic,450
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schema-independent approach. At the same time, a basic structure of the451

underlying data model is assumed that helps to identify changes across ver-452

sions. Hence, the graph meta model employed to represent BIM models as453

graphs consists of three different node types and one edge type: primary454

nodes, secondary nodes, and connection nodes.455

By definition, instances of primary nodes have a unique identifier at-456

tribute. This kind of uniquely identifiable instances exists in any known457

data models in the BIM context. By contrast, secondary nodes reflect all458

class instances that specify information without having a unique identifier.459

The third type of nodes is denoted as connection nodes. These nodes460

represent one-to-many or many-to-many relationships among instances. To461

identify all nodes belonging to a specific version of a domain model, each of462

these items gets an additional label attached indicating the timestamp of the463

creation date (typically defining, when the domain model is exported from464

the authoring tool). Therefore, the graph structure reflecting a particular465

version of a domain model can be easily identified. All attributes of a class466

instance are stored in the property set of the node representing this instance.467

Additionally, the EntityType attribute reflects the name of the class as a468

textual value. Associations between classes are realized by edges between469

two nodes. To define the association properly, each edge carries an relType470

attribute reflecting the association name. In case an association references a471

set of instances, an additional counter attribute is attached to each edge to472

preserve the order of the set.473

In all of the investigated data schemata (including the Industry Foun-474

dation Classes (IFC), LandXML, CityGML, PlanPro, RailML and others),475

class instances with unique identifiers establish a semantic skeleton, to which476

several ”resources” are bound that regularly do not possess unique identi-477

fiers. These resources are defined according to domain-specific requirements478

and may represent geometric shapes, material associations, costs etc.479

Figure 4 depicts a fictitious example of a data model, an instantiation480

and the resulting property graph structure reflecting the instances. The481

data model is described with the modeling language EXPRESS. The schema482

definition in the upper left corner defines entities (i.e., classes without meth-483

ods).484

The mapping of the given domain model onto the proposed graph struc-485

ture follows the rules previously explained:486

1. Each node reflects one entity instance.487
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2. All instance attributes are directly attached to the respective node488

reflecting the specific instance whereas associations are modeled as di-489

rected graph edges.490

3. Each edge carries the attribute name from the class, from where the491

association was initialized.492

4. Both instances of the ShapeElement entity are represented as a primary493

node depicted in blue color as they possess a unique identifier attribute.494

5. All remaining instances are reflected by secondary nodes illustrated in495

yellow.496

ISO-10303-21;
HEADER;
FILE_SCHEMA (('GeomData'));
ENDSEC;

DATA;
#1=Line("Line1",#2,#3);
#2=Point(0.0,2.0);
#3=Point(1.0,5.5);
#4=ShapeElement("NwVbQ3K3YQLO6GsWrQ",#1);
#5=ShapeElement("2gG1du9OH4eQ4omNtg",#6);
#6=Line("Line2",#3,#7);
#7=Point(3.0,8.0);

ENDSEC;
END-ISO-10303-21;

SCHEMA GeomData;
ENTITY Point
XCoord : REAL;
YCoord : REAL;
END_ENTITY;

ENTITY Line
Name : STRING;
StartPoint : Point;
EndPoint: Point;

END_ENTITY;

ENTITY ShapeElement
GUID : STRING;
Representation : Line;

END_ENTITY
END_SCHEMA;

SCHEMA SPECIFICATION CLASS INSTANCES

GRAPH REPRESENTATION
:

re
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yp
e

R
ep
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nt
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n

:EntityType ShapeElement
:GUID NwVbQ3K3YQLO6GsWrQ

:EntityType Line
:Name Line1

:EntityType Point
:XCoord 0.0
:YCoord 2.0

:EntityType Point
:XCoord 1.0
:YCoord 5.5

:EntityType ShapeElement
:GUID 2gG1du9OH4eQ4omNtg

:EntityType Line
:Name Line2

:EntityType Point
:XCoord 3.0
:YCoord 8.0

Figure 4: Correlation between a data schema in EXPRESS, instances serialized into a
STEP Physical File (SPF) representation, and the resulting property graph

The next paragraphs describe how two versions of a model are compared497

and how the subsequent patch is created.498

3.3. Diff Calculation499

In principle, there are two options for identifying the changes between500

two versions of the BIM domain model to formulate the patch:501

1. Tracking changes by listening at the BIM authoring application through502

API callbacks.503
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2. Comparing two versions of files exported from the BIM authoring ap-504

plication into an open exchange format.505

For this study, we decided for option 2 as it is more generic and allows for506

integrating a large number of authoring tools without specific adaptions. As,507

however, option 1 is more compelling from a conceptual point of view, we will508

investigate it in future publications. Hence, the developed method covering509

option 2 is based on determining the transformation rule by comparing the510

initial and the updated graph representation of a given BIM model. Apply-511

ing the concept of the DPO graph transformations depicted in figure 2 to512

the outlined situation, the host graph H reflects the BIM model in its initial513

state whereas the resulting graph H ′ stands for the updated version of the514

BIM model. Accordingly, the context graph D reflects all instances and asso-515

ciations that are present in the initial and the updated model version, thus,516

reflecting all unchanged parts of the BIM model. Hence, the Diff computa-517

tion aims to define a transformation rule based on the host and the desired518

resulting graph, which is contrary to many classical graph transformation519

problems where the host graph and the transformation rules are known.520

For the comparison between two versions of the graph, the concept of521

Maximum Common Subgraphs (MCS) assists in identifying all parts of the522

graph that remained unchanged [44, 45, 46, 47]. The MCS algorithm tra-523

verses through both graphs and applies a depth-first approach. For each pair524

of matched nodes, the algorithm finds correspondences in the sets of their525

direct children, and so on recursively. The recursion considers a node of the526

initial version as potentially equivalent to a node of the updated domain527

model if both nodes are associated with the previously matched node pair528

using the same relType attribute. Figure 5 illustrates a recursion step and529

the subsequent semantic comparison of two nodes.530
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EQUIVALENT_TOts1

:GlobalId "3BIjkEK2nD9gX0CmwCIbfT"
:Name "Project_version01"
:Description "None"
:EntityType IfcProject

ts2

:GlobalId "3BIjkEK2nD9gX0CmwCIbfT"
:Name "Project_version02"
:Description "TUM new campus"
:EntityType IfcProject

ts1

:EntityType IfcUnitAssignment

ts2

:EntityType IfcUnitAssignment

ts1

:ContextType Model
:CoordinateSpaceDimension 3
:Precision 0.0001
:EntityType IfcGeometricRepresentationContext

ts2

:ContextType Model
:CoordinateSpaceDimension 3
:Precision 0.0001
:EntityType IfcGeometricRepresentationContext

ts2

:ChangeAction ADDED
:CreationDate 1623145551
:LastModifiedDate 1623145551
:EntityType IfcOwnerHistory

Initial Graph Updated Graph

diff_properties()

diff_properties()

Figure 5: Recursion step starting from a pair of PrimaryNodes: Two nodes ninit, nupdated

are considered as equivalent if their inbound edges share the same edge attributes. The
node labels ts1 and ts2 indicate the affiliations to a particular version of the BIM model.
The identified equivalence between two nodes is reflected by an undirected edge labeled
as EQUIVALENT TO

To start the recursive traversal, the property of unique identifiers assigned531

to each primary node is utilized to find two nodes that represent the same532

object in the initial and the updated domain model. The algorithm stops the533

depth-first search if a leaf node is detected (no edges pointing outwards) or534

a node pair has been already marked as equivalent, respectively. Nodes that535

have been already considered as equivalent are connected by an additional536

undirected edge connecting them across the version-specific graphs. Doing537

so, it is straight-forward to identify all nodes from the graph system, which538

belong to the current version but have not been matched with a node of the539

previous version.540

Hence, nodes reflecting instances in the initial graph but do not have541

a EQUIVALENT TO edge indicate a remove operation whereas nodes in542

the updated graph representation lead to an insert operation being applied.543

These situations are denoted as structural modifications which require the544

formulation of full graph rewriting patterns. Apart from them, nodes might545

be detected that have diverging properties but have equivalent edges to all546
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neighboring nodes. These changes are treated as property modifications, are547

comparatively simpler, but will also be represented as graph transformation548

rules.549

On this basis, further processing of structural changes is necessary to550

identify the entire graphlet removed or inserted that is referenced by the551

node found by the diff algorithm . Figure 6 schematically illustrates the552

general situation of an insertion.553

EQUIVALENT_TO

EQUIVALENT_TO

EQUIVALENT_TO

EQUIVALENT_TO

EQUIVALENT_TO

EQUIVALENT_TO

EQUIVALENT_TO

EQUIVALENT_TO

EQUIVALENT_TO

EQUIVALENT_TO

EQUIVALENT_TO

newly inserted node 
identified during 
the diff process

new graphlet inserted in the updated 
model version

Figure 6: Schematic illustration of diff result and the patch formulation: Nodes with an
equivalent counterpart in the compared model version have an EQUIVALENT TO edge.
The blue node with green margin has been identified as added, therefore, further processing
is necessary to identify the graphlet inserted (depicted with dashed yellow margins) and
the edges connecting the inserted graphlet to nodes that are present in both versions of
the graph.

The node depicted with the green margin has been identified as inserted554

in the updated version of the graph. With this node being identified, the555

graphlet describing the inserted subgraph is identified from the graph. This556

graphlet contains all nodes and edges the resulting patch must insert into the557
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host graph when applying the transformation rule. Furthermore, some of the558

newly inserted nodes have edges to nodes that have been previously existing,559

i.e., have an EQUIVALENT TO relationship indicating that the node exists560

in both versions of the graph.561

3.4. Representing patches as graph transformations562

For structural modifications, it is essential that the transformation rule563

does not only describe the actual graphlet to be inserted or removed, but also564

its context or embedding into the object network that has been available al-565

ready in the previous version. In the DPO concept, the insertion or removal566

of graphlets is formally described through the preservation morphisms l be-567

tween I and L, and r between I and R, respectively. As explained in Section568

2.4, nodes and edges are kept unchanged if they are included in both graph569

patterns of a transformation rule.570

In the scope of BIM models, the preservation morphism can be under-571

stood as the context, new information should be embedded into or removed572

from. A practical example can be found in the insertion of a physical element573

like a wall into a building storey, which provides a (local) coordinate system574

the wall should be placed into. In this case, the coordinate system and the575

nodes representing the storey are already contained in the host graph the576

patch is applied to on the receiving side. Accordingly, the transformation577

rule must provide this contextual information and insert appropriate edges578

connecting existing nodes and the newly inserted graphlet. Similarly, the579

removal of information must not affect any shared resources other parts of580

the object network might still refer to.581

Considering the above-mentioned aspects, the corresponding transforma-582

tion rule is assembled by three essential parts:583

1. the graphlet of nodes and edges that have to be inserted or removed584

2. the context the graphlet is inserted in or removed from585

3. the edges that glue the graphlet and the context586

In case of an insertion, the Left Hand Side L and the Interface pattern587

I contain all nodes and edges describing the context. As secondary nodes588

lack a unique identifier, each secondary node involved in gluing edges must589

be specified by a path that contains at least one primary node or connection590

node. The existence of globally unique IDs attached to these nodes types591

makes the specified pattern match exactly once in the host graph H. Sub-592

sequently, the pattern describing the Right Hand Side R contains all nodes593
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and edges of L and I (to preserve their existence) and the graphlet to be594

inserted. Similarly, removal operations follow similar principles as described595

for an insertion but with slightly different patterns L and R. In this case, L596

contains the graphlet to be removed along with the context whereas I and597

R carry the nodes and edges reflecting the context of the removed graphlet.598

Based on the generic concepts introduced before, any modification of a599

BIM model can be described by a combination (series) of rules and can be600

captured in DPO-based transformation rules. To apply the transformation on601

the receiver’s side to update the (host) graph, a set of fundamental operations602

needs to be supported by the graph system. These operations include:603

• Match a node or a graph pattern (e.g., to find the Left Hand Side L in604

the host graph H).605

• Insert a new node.606

• Insert a new graphlet consisting of nodes and edges that connect these607

nodes.608

• Remove a node and remove the dangling edges that previously con-609

nected it to nodes that must be preserved.610

• Insert an edge.611

• Remove an edge.612

The specific operations and statements that need to be performed are613

derived from the DPO rule.614

3.5. The application of CYPHER for encoding graph transformations615

For encoding graph transformations, multiple options exist, including the616

use of bespoke languages of graph transformation systems such as Gr.Gen617

[59]. In this study, we have chosen the graph manipulation language CYPHER618

that is operating on property graphs. CYPHER was originally developed for619

the graph database Neo4j, but is now maintained independently through the620

openCypher project [60]. It is supposed to become the basis for the graph621

query language (GQL) standard being developed by ISO. However, it is im-622

portant to note that CYPHER does not only allow to query graphs but also623

to modify them. As modifications are located through (host graph) patterns,624
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CYPHER becomes a suitable candidate for representing graph transforma-625

tion rules.626

A decent overview about the CYPHER syntax has been provided by627

Francis et al. [61] including the set operations that are processed with each628

keyword. CYPHER was developed to query and mutate property graphs and,629

therefore, supports numerous concepts. As one of the most essential parts630

of the syntax, it is possible to specify graph patterns. In a pattern state-631

ment, round brackets specify nodes (e.g., (n1:nodeLabel)) whereas square632

brackets declare edges (e.g., -[e1:edgeLabel]->). Both, nodes and edges,633

carry a set of labels that are specified after the colon operator (:. Multi-634

ple labels can be concatenated using the colon operator several times (e.g.,635

n1:nodeLabel1:nodeLabel2). Nodes and edges may be specified using a636

variable like n1, e1, .... This way, these items can be reused on multiple637

positions inside a single query statement. To describe a topological structure638

of a pattern, nodes and edges are assembled in a descriptive fashion. Addi-639

tionally, nodes and edges may bear property sets, which are specified in curly640

brackets (e.g. (n1:nodeLabel {propertyName: "propertyValue"} ).641

The transfer of the transformation rules between a sender and a re-642

ceiver is ultimately implemented by means of the Java Script Object Notation643

(JSON ). However, other serialization techniques can also be applied. Listing644

1 depicts the transformation rule representing the modification illustrated in645

figure 2.646

1 "structuralModification": {
2 "L": "(n1:a)-[e1:1]->(n2:b)<-[e2:2]-(n3:c)",

3 "I": "(n1:a)-[e1:1]->(n2:b), (n3:c)",

4 "R": "(n1:a)-[e1:1]->(n2:b), (n1)<-[e3:3]-(n3:c)"

5 }
Listing 1: Transfer of the structural modification using descriptive CYPHER statements
for the Left Hand Side L, the interface I, and the Right Hand Side R following the Double-
Push-Out-Approach. The variables n1, n2, and n3 specify labeled nodes (a, b, c). The
variables e1, e2, and e3 define the edges between the nodes.

To apply the transformation rule on a host graph, listing 2 shows how647

the descriptive statements specified in listing 1 are transformed into a series648

of CYPHER statements to be performed on the host graph stored at the649

receiver’s machine. Lines starting with "//" provide additional comments650

and are not executed by the statement interpreter.651
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1 // find left hand side and declare query variables for further use

2 MATCH (n1:a)-[e1:e1]->(n2:b)<-[e2:e2]-(n3:c)

3 // remove edge e2 because it was included in L but not in I

4 DELETE e2

5 // insert new edge labeled as e3 because it was included in R but

not in I

6 MERGE (n1)<-[e3:e3]-(n3)

Listing 2: Application of DPO rule given in listing 1

3.6. Optional back-translation into file-based representations652

In order to seamlessly integrate the resulting graph in existing BIM work-653

flows again, it might be necessary to translate the altered graph back into654

a file-based representation. Depending on the underlying MOF M2 model,655

the translation of an edge into an association between two entity instances656

may require the instantiation of identifiers specific to the file (e.g., the en-657

tity numbering in STEP files). In the example illustrated in figure 4, the658

identifier #3 was assigned to a Point instance, which in turn got associated659

with both Line instances identified by #1 and #6. These identifiers are only660

valid locally within the file and can thus change with each serialization pro-661

cess depending on the order the graph nodes are translated into instances.662

Therefore, the application of the transformation is considered successful if663

the following criteria are met:664

• The resulting graph Gres produced by applying the transformation rule665

p on the outdated graph representation Ginit is homomorphic to the666

graph reflecting the updated version Gupdated.667

• Commutativity must be given such that the execution of the diff algo-668

rithm between Ginit and Gupdated results in the same transformation as669

diff(Ginit, Gres).670

• According to Kniemeyer [54], DPO-based graph transformations are671

associative. Hence, the reverse application of the transformation rule672

p (denoted as p−1) must result in the graph GA reflecting the state of673

the initial model version.674

3.7. Illustrative example675

Figure 7 depicts a situation where a new building element colored in light676

green has been inserted into a BIM model, which had already contained677
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one building element named Cuboid1 along with various default information678

(e.g., unit settings). The new component named Cuboid2 is represented with679

a extruded geometry in the three-dimensional design space and and is placed680

relatively to a coordinate system already specified by the construction site681

node.682

Figure 7: Left: the initial BIM model. Right: the updated version of the BIM model
including a newly inserted building component depicted in blue

Following the outlined method, the transformation rule consists of the683

graphlet to be inserted into the host graph, the context, and the gluing684

edges that connect the newly inserted graphlet with existing nodes of the685

host graph. Figure 9 illustrates the nodes to be inserted. Besides, figure686

8 shows the nodes and edges forming the context, which the gluing edges687

connect the push-out graphlet to the existing host graph (depicted in figure688

10).689

Ultimately, the three parts computed are assembled constituting the Left690

Hand Side L, the interface I, and the Right Hand Side R. As the modification691

was an insertion of a new component, the patterns describing L and I consist692

of the context pattern depicted in figure 8 only. Accordingly, the pattern693

reflecting R contain the Push Out pattern, the context, and the gluing edges.694

The entire Right Hand Side pattern is illustrated in figure 11.695
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relType: Representations
listItem: 0relType: Representation relType: ContextOfItems
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listItem: 0

Project
GlobalId: 2KrDsiaI1FkRwWUa5EvoNK

Name: ProjectName
EntityType: IfcProject

Site
GlobalId: 2gG1du9OH4eQ4omNt$zfn1

Name: Site Item
EntityType: IfcSite

Cuboid1
GlobalId: 3xn$Io5tr8TOYxqxH15Rkg

Name: Cuboid1
EntityType: IfcBuildingElementProxy

Aggregates
GlobalId: 3FNv6N_ur0zQ8tygS1XDuH

Name: Project_Site Aggregation
EntityType: IfcRelAggregates

Contains
GlobalId: 3FNv6N_ur0zQ8tygS1XDuH

Name: Site Container
EntityType: IfcRelContainedInSpatialStructure

Placement
EntityType: IfcLocalPlacement

LocalPlacement
EntityType: IfcAxis2Placement

CartesianPoint
EntityType: IfcCartesianPoint

Coordinates: (0.0, 0.0,0.0)

SubContext
EntityType: IfcGeometricRepresentationSubContext

PrdDefShape
EntityType: IfcProductDefinitionShape

ShapeRepr
RepresentationIdentifier: Body

RepresentationType: SweptSolid
EntityType: IfcShapeRepresentation

GeomContext
EntityType: IfcGeometricRepresentationContext

Figure 8: Context pattern
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ShapeRepr
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RepresentationType: SweptSolid
EntityType: IfcShapeRepresentation

Solid
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EntityType: IfcExtrudedAreaSolid
Direction

DirectionRatios: (0.0,0.0,1.0)

Area
ProfileName: rectangle
ProfileType: AREA

XDim: 5.0
YDim: 8.0

Figure 9: Push Out pattern
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Figure 10: Gluing edges
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Figure 11: The resulting Right Hand Side pattern R containing all three parts: the push
out part, the context pattern and the gluing edges.

4. Case study696

The applicability of the proposed method has been tested with several697

BIM models targeting various use cases. As the underlying data model for698

validation, the Industry Foundation Classes (IFC) data model developed and699

maintained by the buildingSMART organization has been chosen. IFC was700

selected over other established data specifications capturing domain-specific701

engineering knowledge because of its openness, clear documentation, and702

broad adoption in the AEC industry and its advanced support in various703

software applications. In addition to IFC, the data model of LandXML [62]704
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and CityGML [63] were implemented to verify the applicability of the chosen705

graph meta model independent of the applied data model.706

4.1. Experiment setup707

The graph database system neo4j by neo technologies [64] was chosen708

to store and interact with all graph representations produced in the exper-709

iment. This graph database is broadly used in industry and academia and710

supports attributed, multi-labeled graphs with directions. Additionally, var-711

ious packages for a large set of programming languages and an Application712

Programming Interface (API) with direct access to the storage system assists713

in extending core functionalities for specific problems. As neo4j focuses on714

the storage of graph structures, its support of formal graph transformations715

implementing Double-Push-Out or Single-Push-Out algorithms is limited.716

Therefore, a parser was developed that (1) applies the transformation rules717

to a given graph in the database and (2) translates instance models into718

their respective graph representations. To test the implemented procedures,719

comparisons with Gr.Gen has been carried out as well.720

Figure 12 visualizes the system setup for the experiment.721

Figure 12: Experiment setup of the case study. All graph representations are stored and
managed by a neo4j database. The BIM models implement the IFC data model.

4.2. Result validation722

To check and validate the resulting graph structures after applying the723

transformation rules, two major validation steps have been conducted during724
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the process. Validation 1 compares the results of the diff algorithm against725

the results of BIM model checking tools that provide comparison methods.726

Here, the well-established software packages Solibri Office [65] and BIM Vi-727

sion [66] have been used. Additionally, validation 2 aims to proof the correct728

application of the update patch on a receiving machine according to the729

criteria specified in 3.4.730

4.3. Translation of IFC instance data into the proposed graph structure731

For each data model that is supposed to be reflected in the graph struc-732

ture, a mapping between the corresponding data model and the introduced733

node types is necessary. For IFC, the publicly available specification defines734

all IFC classes and is consequently used to map each class to a suitable node735

type defined in the graph meta model [67]. In general, IFC defines multiple736

layers in its documentation containing various concept and class definitions.737

Most important for the mapping are the classes derived from IfcRoot and738

all definitions contained in the resource layer.739

The abstract base class IfcRoot introduces an GlobalId attribute, which740

serves as a unique identifier for the instances of all sub-classes of this class.741

From IfcRoot, the classes IfcObjectDefinition, IfcRelationship and742

IfcPropertyDefinition are derived. All instances, which inherit from IfcObjectDefinition743

and IfcPropertyDefinition, are handled as primary nodes in the graph744

structure. Entities derived from IfcRelationship express one-to-many or745

many-to-many relationships among instances and are subsequently reflected746

by the node type connection node. Contrary to these uniquely addressable747

class instances, all classes contained in the resource layer are reflected as748

secondary nodes as these instances are not derived from IfcRoot, hence do749

not carry a unique identifier and might be associated with multiple instances.750

Figure 13 depicts the mapping of the IFC classes onto the graph meta model.751

4.4. Proof of concept752

The proof of concept aims to demonstrate the entire process of comparing753

two model versions to calculate the Delta, formulating the graph transforma-754

tion rules, and applying them on a receiver’s updated graph representation.755

After multiple tests with IFC-based BIM models, the authors consider the756

model illustrated in Figure 14 to be representative for typical modifications757

in AEC design revision processes.758

Both versions of the model were created using the authoring software759

Graphisoft ArchiCAD and exported into the IFC format, version 2x3. The760
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IfcConstraintResource

IfcCostResource

IfcDateTimeResource

IfcExternalReferenceResource

IfcGeometricConstraintResource

IfcGeometricModelResource

IfcGeometryResource

IfcMaterialResource

IfcMeasureResource

IfcPresentationAppearanceResource

IfcPresentationDefinitionResource

IfcPresentationOrganizationResource

IfcProfileResource

IfcPropertyResource

IfcQuantityResource

IfcRepresentationResource

IfcStructuralLoadResource

IfcTopologyResource

IfcUtilityResource

IFC Resource Layer

IfcRoot

IfcObjectDefinition IfcPropertyDefinition IfcRelationship

IFC Root Layer

Secondary
Node

Primary
Node

Connection
Node

Graph Meta Model

Figure 13: The mapping between the IFC data model and the presented graph meta model
illustrated by dashed arrows. Contrary to the classes depicted in the IFC Root Layer, the
resource layer subsumes multiple classes in each resource, which are not visualized in this
figure.

right rendering in figure 14 depicts the changes applied to the original model.761

The modifications comprise removing and inserting elements, as well as cor-762

responding changes in the relationship structure and changes in the values763

of attributes, including the location of elements.764

4.4.1. Diff calculation765

To detect the modifications between the two versions, the diff algorithm766

presented in section 3.3 was applied. Three model components were detected767

as removed : A wall element in the roof level, a window on the first floor, and768

an instance of IfcOpeningElement entity. Five elements (a door, a wall, and769

a new ceiling element together with a new space definition and an opening770

element) were identified as inserted in the updated model. Besides removed771

and inserted components, 27 elements were identified as altered, which has772

caused 61 node properties to be adjusted. These property modifications reach773

from updates applied to PrimaryNodes (e.g., the modification of the name774

attribute) to changes in the properties of SecondaryNodes. All detected775

changes in the diff computation comply with the modifications identified in776
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Figure 14: The entire model (left) was tested in the scope of the case study together with
a visualization of the applied modifications (right). The visualizations were created using
Solibri Office.

the software tools introduced in the system setup.777

4.4.2. Formalization of applied modifications in graph transformation rules778

As discussed in paragraph 3.4, structural and property modifications are779

expressed by means of graph transformation rules. As property modifications780

capture attribute updates on nodes that exist in the initial and the updated781

model, the graphlets defining the Left Hand Side, the interface, and Right782

Hand Side share the same topological structure and only alter the properties783

of one node. A typical example of such a property modification is the change784

of an object placement by updating the Cartesian point defining the location.785

In the scenario represented in figure 15, the modeler moved an existing wall786

by a given value in the x-direction. By adding the primary node (the wall)787

carrying the GlobalId property to the patterns, exactly one graphlet of the788

host graph (i.e., the graph reflecting the initial model version) matches the789

specified pattern in the Left Hand Side L. Thus, the illustrated patterns790

replace the Coordinates property in node n4 with the updated value specified791

in the Right Hand Side R.792

Structural modifications that alter the structure of the graph by inserting793

or removing nodes and edges require more comprehensive graph transforma-794

tion rules. In these cases, the transformation rule comprises the graphlet to795

be removed or inserted and its embedding in the existing graph structure. In796

the case of inserting a new building component, the graphlet to be inserted797

may reflect its geometry, the position in the design space, and dependencies798

to additional semantic information like materials and cost items. Especially,799

the placement of elements within a logical unit such as a building or a space800
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(n1{EntityType: 'IfcWall’,          
GlobalId:   '0I_5eIRzL7QhiRmNZWVpkh’}),

(n2{EntityType: 'IfcLocalPlacement’}),
(n3{EntityType: 'IfcAxis2Placement3D’}),
(n4{EntityType: 'IfcCartesianPoint’,

Coordinates:'(6301.643, 5150.0, 0.0)'})

[e1{relType: 'ObjectPlacement'}],
[e2{relType: 'RelativePlacement'}],
[e3{relType: 'IfcAxis2Placement3D'}]

(n1{EntityType: 'IfcWall’,          
GlobalId:   '0I_5eIRzL7QhiRmNZWVpkh’}),

(n2{EntityType: 'IfcLocalPlacement’}),
(n3{EntityType: 'IfcAxis2Placement3D’}),
(n4{EntityType: 'IfcCartesianPoint’})

[e1{relType: 'ObjectPlacement'}],
[e2{relType: 'RelativePlacement'}],
[e3{relType: 'IfcAxis2Placement3D'}]

(n1{EntityType: 'IfcWall’,          
GlobalId:   '0I_5eIRzL7QhiRmNZWVpkh’}),

(n2{EntityType: 'IfcLocalPlacement’}),
(n3{EntityType: 'IfcAxis2Placement3D’}),
(n4{EntityType: 'IfcCartesianPoint’,

Coordinates:'(2603.286, 5150.0, 0.0)'})

[e1{relType: 'ObjectPlacement'}],
[e2{relType: 'RelativePlacement'}],
[e3{relType: 'IfcAxis2Placement3D'}]

Figure 15: Correlation between a modeling operation and the corresponding graph trans-
formation rule consisting of the Left Hand Side L, Interface I, and the Right Hand Side
R. The property sets attached to each node and edge is depicted along with the graph
pattern. The specified pattern should be detected exactly once in the host graph because
of the given specified GlobalId property attached to node n1.

is often expressed relative to existing elements. Hence, the inserted graphlet801

must establish additional edges in the resulting graph to reflect such associ-802

ations properly. The same principle applies for detected remove operations803

accordingly. The pattern to be removed from the initial graph must be lim-804

ited to the nodes that model the actual building component or logical unit805

whereas its embedding is specified by nodes and edges that are given in the806

interface pattern I and the Left Hand Side of the rule L.807

In addition to removing or inserting operations of entire building compo-808

nents, design refinements to applied to existing components can also occur.809

These cases appear for example if the geometric representation of a compo-810

nent has been modified to a higher detailing level or expressed by another811

shape. In these cases, the Left Hand Side specifies the geometric shape to be812

replaced. The interface pattern I in turn represents the intermediate state,813

in which the component only exists in its semantic skeleton without any ge-814

ometry. Finally, the Right Hand Side R describes the new geometric shape815

to be inserted and leads to the updated version.816
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Figure 16: Correlation between applied modification, resulting BIM model, and the for-
mulation of the corresponding graph rewriting rule following the DPO approach.

Figure 16 illustrates the correlation between the editing task of removing817

an opening element, the BIM model transformation, and the graph-based818

rewriting rule. Nodes depicted with red bounds represent the opening ele-819

ment and are identified as nodes to be removed (i.e., the push out part of the820

transformation rule). Edges depicted in gray represent gluing edges between821

the removed graphlet and parts of the graph that must remain unchanged822

during the transformation. Hence, only the edge itself, but not the target823

node is removed from the graph. Because secondary nodes lack a unique824

property, the associated resources must be specified by a graph pattern that825

includes a primary node as ”anchor”, which provides the context of the826

transformation rule. By utilizing the feature of globally unique identifiers827

assigned to each primary node, each secondary node that has an inbound828

gluing edge is uniquely specified, which ensures the correct application of the829

transformation rule on the receiver’s system.830

Tables 1 and 2 provide a quantitative insight into the number of nodes831

included in each rewriting rule reflecting the removal or insertion of a model832

component.833

In addition to structural modifications, the system reports on 60 modi-834

fied node attributes affecting 29 model components. The average path length835
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context
Removed components removed nodes secondary primary
Opening element 18 6 5
Window 374 10 109
Wall 24 10 49

Table 1: Quantitative assessment of removed components in the BIM model

context
Inserted components inserted nodes secondary primary
Door 71 6 5
Wall 377 10 107
Covering 53 13 142
Space 48 9 93
DoorType 48 9 60

Table 2: Quantitative assessment of inserted components in the BIM model

between the modified node and its parent primary node is 4.9 where the min-836

imum distance is 0 (e.g., the modification of the name attribute attached to a837

primary node) and the maximum distance is 8. Together with the necessary838

patterns for inserting and removing model components and their associated839

resources, the graph transformation rules are composed of 3,828 nodes in to-840

tal. Each model version has resulted in around 186,700 nodes reflecting one841

model version. Comparing the results of the presented experiment with the842

total number of nodes per model, our patch-based mechanism demands only843

2% of the nodes reflecting an entire model to properly describe the applied844

modification.845

The transfer of the formulated transformation rules was realized using the846

data structure outlined in 3.4. According to the quantitative assessments in847

table 1 and 2, the patterns used in these transformation rules are much larger848

than the example illustrated in 3.7 and therefore difficult to visualize in their849

full extend.850

4.4.3. Results851

The proposed version control system detected all expected differences be-852

tween the tested model versions, which provided all necessary information to853

formulate suitable graph transformation rules. Furthermore, the system was854

capable of describing all detected modifications in suitable transformation855
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rules that have been ultimately applied to the initial version. The compari-856

son of the transformed graph with the graph produced by the updated model857

file has resulted in no differences, which has proven the successful transfer858

and application of the transformation rules.859
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5. Discussion860

The approach discussed in this paper builds upon an entity-centered ap-861

proach to reflect the object network of a BIM model in an attributed, di-862

rected graph and transfers updates using formal graph transformation rules.863

The proposed method lays the foundation for tracking updates applied to a864

BIM model on object basis instead of deploying entire files containing the865

updated design information. Incremental updates support the precise track-866

ing of changes and help engineers to focus on the impact modifications in867

”foreign” models may have on their own discipline models. Additionally, the868

proposed method creates new possibilities for automated (yet controlled) up-869

dates across disciplines wherever a formal description of dependencies across870

domains is possible. Nevertheless, the principle of discipline-oriented owner-871

ship and responsibility remains fully respected.872

The method is generic in the sense that it is independent of the underlying873

data model. The prerequisites are limited to the existence of a well-defined874

data model that employs the basic principles of object-oriented data model-875

ing. Furthermore, the proposed diff computation is based on the existence of876

identifiers, which are considered as consistent across all versions. The formu-877

lation of patches utilizes well-defined concepts of graph transformations and878

is backed up by numerous research contributions and algebraic proofs. A new879

contribution in this regard is the reverse construction of the transformation880

rule by comparing the initial and the final state of a model and the integra-881

tion of common characteristics of the AEC industry. Especially the abstract882

concept of preservation morphisms have been set into a practical context and883

will provide the basis for future research and developments. The system fits884

perfectly into existing applications and BIM workflows, which is assured by885

providing a one-to-one bidirectional translation between the instances popu-886

lated in a BIM model and its corresponding graph representation.887

5.1. Algorithmic limitations888

Despite the successful test of the developed version management system889

in the case study, some challenges remain unsolved and require further in-890

vestigation. One major limitation lies in the traversing nature of the diff891

computation. By storing node pairs that have been already identified as892

equivalent, the algorithm traverses each pair only once. At the same time,893

each node is visited at least once. Hence, the computation cannot be executed894

in concurrent threads, which would reduce the computational time needed895
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to traverse the entire graphs of both versions compared. A possible improve-896

ment can be seen by shrinking the graph to nodes that reflect only semantic897

information of a model and to outsource geometric representations into ex-898

ternal storage types. Such modification in the translation of models into their899

graph representation, however, breaks the concept of reflecting each entity900

instance in the BIM model by exactly one node in its graph. This condition901

greatly assists in developing new interfaces for additional data models as no902

special treatment for specific domain representations is required. Rather, it903

just employs the object-oriented principles of classes and associations.904

In addition to the limitations caused by the traversing strategy, future905

improvements are necessary to detect advanced modifications such as the906

re-assembly of components within the logical structure of a model or refine-907

ment actions. As outlined in the motivation, BIM models typically evolve908

over time, which often leads to scenarios where a single component is replaced909

by an assembly of elements with higher detailing. The current method iden-910

tifies such modifications as a combination of removals and insertions and911

will deploy both transformations accordingly. Of course, the object-based912

synchronization of all replicas can be achieved successfully. From a user per-913

spective, however, the information about the shift of an existing component914

would be much more valuable to attach discipline-specific routines.915

5.2. Domain-specific limitations916

In addition to limitations caused by the chosen comparison and trans-917

formation strategies, the method relies on the existence of stable identifier918

attributes such as the GlobalId attribute. Even though the definition implies919

the intention to identify an object across several occurrences, current IFC920

export interfaces of renowned software providers prove that consistent ob-921

ject IDs are not self-evident. Hence, additional investigations are required to922

identify components among different versions that still reflect the same ob-923

ject but might have an altered identifier. Apart from the GlobalId attribute,924

characteristics like the position of a component of the spatial containment925

may assist here. Such variations are difficult to solve on a generic level, be-926

cause knowledge about the specific application field and the reflected data927

set is required.928

Even though the general approach has been tested successfully on BIM929

models implementing the IFC data standard, some peculiarities specific to930

data models in the AEC sector hamper a performance-efficient application931

of the proposed method so far. Especially explicit boundary representations932
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defining the shape of a component require an extensive amount of nodes and933

edges to reflect all instances contained in the BIM model. Figure 17 depicts934

a quantitative analysis of the IFC entities mostly instantiated in the models935

presented in the case study. Instances of the IfcCartesianPoint entity936

cause around one-third of all instances included in the BIM model. Some of937

them specify the placement of components within the model. However, the938

dominant majority of these nodes are instantiated to model explicit boundary939

representations of components.940
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Figure 17: Frequency plot of the entities instantiated in the building model presented in
the experiment. The initial and the revised version of the BIM model result in a very
similar frequency plot. Therefore, only the quantitative analysis of the initial version is
depicted in this figure.

The current system does not provide any schema preservation mecha-941

nisms so far. It is theoretically possible to alter graph representations in a942

way that they do not comply with the restrictions defined in the underlying943

data model. Similar to the issue of modified identifier attributes, this aspect944

can only be circumvented by working in controlled environments, which pre-945

vent the user from modifications that are not schema-compliant. A suitable946

39



approach may be given by incorporating preliminary checks of the generated947

graph transformation rules against compliance rules. Conformance checking948

of data sets opens another large field with a vast number of existing tech-949

niques, definitions, and experiments that will support future improvements950

in patch-based update strategies.951
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6. Summary and Outlook952

The current practise of BIM-based collaboration is mainly based on the953

transfer of entire discipline-specific instance models. As changes are tracked954

on the granularity of entire BIM models stored in files, object-based change955

tracking and version control are not yet provided in today’s CDE systems.956

This lack requires the manual identification of changes applied to new model957

versions.958

To overcome the addressed limitations, the paper at hand contributes a959

generic approach that is applicable to instances of any object-oriented data960

model. The core of the approach lies in representing BIM models as graphs961

and employing the concept of graph transformations to describe the mod-962

ifications applied to the BIM model. Hence, only these modifications are963

transferred by sending the graph transformations to the receiver. Modifica-964

tions are formally described by means of transformation rules implementing965

the well-established concept of Double-Push-Out rewriting. The concept can966

be applied in different distributed system setups, including client-server sys-967

tems with a central repository as well as dispersed peer-to-peer networks.968

Regarding the collaborative process, the stakeholders of any discipline969

continue to work in an asynchronous collaboration mode, using the design970

environment of their choice. They keep the responsibility over their authored971

discipline models as demanded by ISO 19650. In addition, each designer has972

full control over when a model should be made available to other project973

participants. Once a new version of a BIM model is authored and ready974

to be shared with other project partners, the version management system975

identifies the applied modification between the initial and the updated state976

of the BIM model. Thereafter, only this modification is transmitted by means977

of graph transformations. On the receiver’s machine, the application of the978

incoming patch modifies the graph reflecting the outdated model version to979

the most recent state, which leads to a consistent up-to-date representation980

of the BIM model at all involved parties.981

The proposed system becomes particularly useful for any design project982

that involves a multitude of disciplines, experts, and subsequently large983

model files. Especially in complex design tasks that require the expertise984

of many experts, the patch-based exchange of new model versions can signif-985

icantly enhance the overall collaboration workflow by providing quick access986

to new versions and the ability to perform subsequent processing of incoming987

modifications. This way, engineers and designers can directly evaluate the988
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impact of modifications in foreign discipline models on their specific design989

tasks and may alter their own models accordingly.990

In the future, the management of large geometric representations requires991

dedicated emphasis and should aim to overcome the limitations addressed.992

Nonetheless, the proposed method reveals great potential by combining es-993

tablished principles of BIM-based collaboration with formal graph theory994

and object-based model synchronization.995

Acknowledgments996

We gratefully acknowledge the support of the German Research Founda-997

tion (DFG) for partly funding the project under grant FOR2363. Addition-998

ally, we would like to thank Autodesk, Inc. for their financial support.999

References1000

[1] C. Eastman, P. Teicholz, R. Sacks, K. Liston, BIM handbook: A guide1001

to building information modeling for owners, managers, designers, engi-1002

neers and contractors, John Wiley & Sons, Inc., 2008.1003

[2] A. Bradley, H. Li, R. Lark, S. Dunn, BIM for infrastructure: An overall1004

review and constructor perspective, Automation in Construction 711005

(2016) 139–152.1006

[3] A. Borrmann, M. König, C. Koch, J. Beetz, Building Information Mod-1007

eling: Why? What? How?, in: Building Information Modeling, Springer1008

International Publishing, Cham, 2018, pp. 1–24.1009

[4] ISO, Iso 19650-1 organization and digitization of information about1010

buildings and civil engineering works, including building information1011

modelling (bim)–information management using building part 1: con-1012

cepts and principles information modelling, 2018.1013

[5] C. Preidel, A. Borrmann, H. Mattern, M. König, S.-E. Schapke, Com-1014

mon Data Environment, in: Building Information Modeling, Springer1015

International Publishing, Cham, 2018, pp. 279–291.1016

[6] J. Radl, J. Kaiser, Benefits of Implementation of Common Data En-1017

vironment (CDE) into Construction Projects, IOP Conference Series:1018

Materials Science and Engineering 471 (2019).1019

42



[7] M. Taylor, Crossrail project: building a virtual version of London’s1020

Elizabeth line, Proceedings of the Institution of Civil Engineers - Civil1021

Engineering 170 (2017) 56–63.1022

[8] M. Oh, J. Lee, S. W. Hong, Y. Jeong, Integrated system for bim-based1023

collaborative design, Automation in Construction 58 (2015) 196–206.1024

[9] Object Management Group, OMG Meta Object Facility (MOF) Core1025

Specification, 2019.1026

[10] J. F. Overbeek, Meta Object Facility (MOF) investigation of the state1027

of the art, 2006.1028

[11] P.-H. Chen, L. Cui, C. Wan, Q. Yang, S. K. Ting, R. L. Tiong, Im-1029

plementation of ifc-based web server for collaborative building design1030

between architects and structural engineers, Automation in Construc-1031

tion 14 (2005) 115–128.1032

[12] BSi, Pas 1192-2: 2013: Specification for information management for1033

the capital/delivery phase of construction projects using building infor-1034

mation modelling, 2013.1035

[13] S. Chacon, Pro Git, Apress, 2009.1036

[14] J. D. Blischak, E. R. Davenport, G. Wilson, A Quick Introduction to1037

Version Control with Git and GitHub, PLoS Computational Biology 121038

(2016) 1–18.1039

[15] C. Koch, B. Firmenich, An approach to distributed building modeling1040

on the basis of versions and changes, Advanced Engineering Informatics1041

25 (2011) 297–310.1042

[16] S. Vilgertshofer, A. Borrmann, Using graph rewriting methods for the1043

semi-automatic generation of parametric infrastructure models, Ad-1044

vanced Engineering Informatics 33 (2017) 502–515.1045

[17] Autodesk, Revit cloud worksharing — autodesk bim 360, 2021.1046

Https://www.autodesk.de/bim-360/design-collaboration/revit-cloud-1047

worksharing/ (visited on 2021-12-10).1048

43



[18] Tekla, Tekla model sharing - bim-basierte zusammenarbeit — tekla,1049

2021. Https://www.tekla.com/de/produkte/tekla-model-sharing (vis-1050

ited on 2021-12-10).1051

[19] GRAPHISOFT, Bimcloud bim without constraints, 2021.1052

Http://www.graphisoft.com/bimcloud/overview/ (visited on 2021-1053

12-10).1054

[20] S. Boeykens, Bridging building information modeling and parametric1055

design, in: eWork and eBusiness in Architecture, Engineering and Con-1056

struction: ECPPM 2012, Taylor and Francis Group, 2012, pp. 453–458.1057

[21] P. Poinet, D. Stefanescu, E. Papadonikolaki, Collaborative Workflows1058

and Version Control Through Open-Source and Distributed Common1059

Data Environment, volume 98, Springer International Publishing, 2020.1060

[22] M. Chein, M.-L. Mugnier, M. Croitoru, Visual reasoning with graph-1061

based mechanisms: the good, the better and the best, The Knowledge1062

Engineering Review 28 (2013) 249–271.1063

[23] A. Kneidl, A. Borrmann, D. Hartmann, Generation and use of sparse1064

navigation graphs for microscopic pedestrian simulation models, Ad-1065

vanced Engineering Informatics 26 (2012) 669–680.1066

[24] B. Helms, K. Shea, Computational synthesis of product architectures1067

based on object-oriented graph grammars, Journal of Mechanical Design1068

134 (2012).1069

[25] S. Kwon, L. V. Monnier, R. Barbau, W. Z. Bernstein, Enriching1070

standards-based digital thread by fusing as-designed and as-inspected1071

data using knowledge graphs, Advanced Engineering Informatics 461072

(2020).1073

[26] J. Hao, L. Zhao, J. Milisavljevic-Syed, Z. Ming, Integrating and navigat-1074

ing engineering design decision-related knowledge using decision knowl-1075

edge graph, Advanced Engineering Informatics 50 (2021).1076

[27] J. Johansson, M. Contero, P. Company, F. Elgh, Supporting connec-1077

tivism in knowledge based engineering with graph theory, filtering tech-1078

niques and model quality assurance, Advanced Engineering Informatics1079

38 (2018) 252–263.1080

44



[28] A. Singh, R. Brennan, D. O’Sullivan, DELTA-LD: A change detection1081

approach for linked datasets, 4th Workshop on Managing the Evolution1082

and Preservation of the Data Web (MEPDaW) (2018).1083

[29] A. Braun, S. Tuttas, A. Borrmann, U. Stilla, Automated progress mon-1084

itoring based on photogrammetric point clouds and precedence rela-1085

tionship graphs, in: Proceedings of the International Symposium on1086

Automation and Robotics in Construction, IAARC Publications, 2015,1087

pp. 1–7.1088
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