
TUM School of Computation, Information and Technology
Technische Universität München

Integrity and Correctness of Machine Learning Data

Nicolas Müller

Vollständiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universität München zur Erlangung des akademischen Grades
eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz:
Prof. Dr. Gudrun Klinker

Prüfende der Dissertation:
1. Prof. Dr. Claudia Eckert
2. Prof. Dr. Marc-Oliver Pahl

Die Dissertation wurde am 04.07.2022 bei der Technischen Universität München eingereicht
und durch die TUM School of Computation, Information and Technology am 05.12.2022
angenommen.

Abstract

In the last few years, machine learning (ML) has solved many problems where traditional
algorithms have failed. However, as a data-driven technology, ML relies on large sets of
training data, and only when correct data can be supplied, the model has a chance to learn.
Yet, there are several threats to the correctness and integrity of training data: These
range from mere labelling mistakes to adversarial attacks, which introduce malicious data
into the training set. These attacks can break a model entirely and have already been
observed in real-world scenarios.
From this flows the research question motivating this thesis: What influences (i.e.,

both attacks and data errors) compromise the integrity and correctness of ML datasets,
and how can this be counteracted? We structure such threats and present appropriate
mitigation strategies:
First, we present the analysis of a severe data artifact we found in arguably the

most established deepfake-detection dataset [1]. This artefact has caused the anti-spoof
community to systematically overestimate their deepfake-detection models’ performance.
In this thesis, we propose an approach for identifying such errors in the future. Second,
we examine Active Learning, a popular tool for creating labelled data, and identify a
previously unpublished adversarial weakness [2] and present a corresponding defence.
Third, we present an approach to identifying mislabeled data, caused by negligence or an
adversary that changes random instances’ labels [3]. Fourth, we present defence strategies
when such an adversary acts deliberately, i.e. changes specific instances’ data or labels in
order to maximize impact in the context of regression [4]. Fifth, we examine the same
scenario in the context of classification learning [5].

Finally, we observe that for all of the threats to ML datasets, the product of occurrence
probability and damage (which we call ‘riskiness’) is approximately constant. Nevertheless,
we find that in the scientific community, some of the threats presented in this thesis
are significantly understudied. Thus, we argue that there is some unjustified research
favouritism and that the research community should not neglect these areas. From this
flow our suggestions for future research.

3

Zusammenfassung

In den letzten Jahren hat das maschinelle Lernen (ML) viele Probleme gelöst, bei denen
traditionelle Algorithmen versagt haben. Da es sich jedoch um eine datengesteuerte
Technologie handelt, ist ML auf große Mengen von Trainingsdaten angewiesen, und nur
wenn korrekte Daten geliefert werden können, hat das Modell eine Chance zu lernen.
Es gibt jedoch eine Reihe von Bedrohungen für die Korrektheit und Integrität der
Trainingsdaten: Diese reichen von einfachen Beschriftungsfehlern bis hin zu adversariellen
Angriffen, die bösartige Daten in den Trainingssatz einbringen. Diese Angriffe können ein
Modell vollständig zerstören und wurden bereits in realen Szenarien beobachtet.
Daraus ergibt sich die Forschungsfrage, die diese Arbeit motiviert: Welche Einflüsse

(d.h. sowohl Datenfehler als auch Angriffe) können die Integrität und Korrektheit von
ML-Datensätzen beeinträchtigen, und wie kann dem entgegengewirkt werden? Wir
strukturieren solche Bedrohungen und stellen geeignete Abhilfestrategien vor:
Zunächst stellen wir die Analyse eines schwerwiegenden Datenartefakts vor, das wir

in dem wohl bekanntesten Datensatz zur Erkennung von Audio-Deepfakes gefunden
haben [1]. Dieses Artefakt hat die Anti-Spoof-Community dazu veranlasst, die Leistung
ihrer Modelle zur Erkennung von Fälschungen systematisch und deutlich zu überschätzen.
In dieser Arbeit schlagen wir einen Ansatz vor, um solche Fehler in Zukunft zu erkennen.
Zweitens untersuchen wir Active Learning, ein beliebtes Tool zur Erstellung von gelabelten
Daten, identifizieren eine bisher unveröffentlichte adversarielle Verwundbarkeit [2] und
präsentieren eine entsprechende Verteidigung. Drittens stellen wir einen Ansatz zur
Identifizierung falsch gelabelter Daten vor, die durch Nachlässigkeit oder einen Gegner
zustande kommen, der die Labels von zufällig Instanzen ändert [3]. Schließlich stellen wir
Verteidigungsstrategien für den Fall vor, dass ein solcher Angreifer vorsätzlich handelt,
d.h. spezifische Instanzdaten oder -labels ändert, um die Wirkung im Kontext von
Regression [4] zu maximieren. Fünftens untersuchen wir dasselbe Szenario im Kontext
des Klassifikationslernens [5].

Schließlich stellen wir fest, dass bei allen Bedrohungen für ML-Datensätze das Produkt
aus Eintrittswahrscheinlichkeit und Schaden (das wir als "Riskiness" bezeichnen) annäh-
ernd konstant ist. Dennoch stellen wir fest, dass einige der in dieser Arbeit vorgestellten
Bedrohungen in der wissenschaftlichen Gemeinschaft noch deutlich zu wenig erforscht
sind. Wir argumentieren daher, dass es eine ungerechtfertigte Bevorzugung gibt und dass
die Forschungsgemeinschaft diese Bereiche nicht vernachlässigen sollte. Daraus ergeben
sich unsere Vorschläge für die künftige Forschung.

5

Contents

Abstract 3

Zusammenfassung 5

Contents 7

List of Figures 11

List of Tables 13

Acronyms 15

1 Introduction 17
1.1 Motivation & Research Challenge . 17
1.2 Research Contribution . 20
1.3 Research Output . 21

2 Prerequisites 23
2.1 Artificial Intelligence: An Overview . 23

2.1.1 Algorithmic vs. Data-Driven Problem Solving 23
2.1.1.1 Comparison . 24

2.1.2 Distinguishing AI, Machine Learning, and Deep Learning 24
2.1.3 Regression vs. Classification Learning 25
2.1.4 Neural Networks . 26
2.1.5 The Limits of Machine Learning 28

2.2 Adversarial Machine Learning: An Overview 29
2.2.1 Evasion and Poisoning Attacks . 29

2.2.1.1 Evasion Attacks . 30
2.2.1.2 Poisoning Attacks . 31

2.2.2 Related Work and State-of-the-Art 33
2.2.2.1 Data Poisoning Attacks in Classification Learning 33
2.2.2.2 Data Poisoning Attacks in Regression Learning 34

2.2.3 The motivation for attacking Machine Learning 34
2.2.4 Current Limitations of Adversarial Attacks 35

3 Artefacts in ML-Datasets 37
3.1 Introduction to the ASVspoof challenge 37

3.1.1 The ASVspoof 2019 Logical Access (LA) Dataset 38

7

CONTENTS

3.2 The artifact: silence as a shortcut to learning 38
3.3 Experimental Analysis . 39

3.3.1 Preliminaries . 39
3.3.2 Model and Metrics Descriptions . 40

3.3.2.1 Random Baseline . 40
3.3.2.2 Weak Baseline . 40
3.3.2.3 Strong Models from Related Work 40

3.3.3 Experimental Description . 41
3.3.3.1 Experimental Setup . 41
3.3.3.2 Experiment: Predictive Power of Length of Silence 41
3.3.3.3 Experiment: Predictive Power of Silence in Related Work 42
3.3.3.4 Experiment: Predictive Power of Silence in ASVSpoof 2021 42

3.3.4 Results and Analysis . 43
3.3.4.1 Results: Predictive Power of Length of Silence 43
3.3.4.2 Results: Predictive Power of Silence in Related Work . . 43
3.3.4.3 Results: Predictive Power of Silence in ASVSpoof 2021 . 43

3.4 Mitigation Strategies specific to ASVspoof 44
3.5 A General Approach to Detecting Learning Shortcuts in ML-Datasets . . 45

3.5.1 Challenges in Identifying Learning Shortcuts 45
3.5.2 How to Find Learning Shortcuts 46

3.5.2.1 Explainable-AI techniques 46
3.5.2.2 Data-only approaches . 46

3.5.3 Limitations of Proposed Approach 48

4 Integrity of Active Learning 51
4.1 Active Transfer Learning . 51
4.2 Related Work . 52

4.2.1 Active Learning with Transfer Learning. 52
4.2.2 Poisoning Active Learning. 52
4.2.3 Adversarial Collisions . 53

4.3 Attacking Active Transfer Learning . 53
4.3.1 Threat model . 53
4.3.2 Feature Collision Attack . 54

4.3.2.1 Choice of Collision Vector 56
4.3.2.2 Improving attack efficiency 56

4.4 Implementation and Results . 56
4.4.1 Active Transfer Learner Setup . 56

4.4.1.1 Prevention of Overfitting. 57
4.4.1.2 Datasets . 57

4.4.2 Feature Collision Results . 58
4.4.3 Impact on the Model . 60
4.4.4 Hyper Parameters and Runtime . 60
4.4.5 Defending Against Adversarial Transfer Poisoning Attacks 61

4.4.5.1 Evaluation . 62

8

CONTENTS

4.5 Conclusion . 63

5 Identifying Mislabeled Data 65
5.1 Motivation . 65
5.2 Related Work . 65

5.2.1 Taxonomy of Label Noise . 66
5.2.2 Learning With Label Noise . 66
5.2.3 Label Cleansing . 67
5.2.4 Label Noise Identification . 67

5.3 Methodology . 68
5.3.1 Problem Statement . 68
5.3.2 Proposed Algorithm . 68
5.3.3 Data Preprocessing . 69
5.3.4 Classification Algorithm . 69
5.3.5 Automatic Hyperparameter Selection 70

5.4 Evaluation . 71
5.4.1 Quantitative Evaluation . 71

5.4.1.1 Datasets . 71
5.4.1.2 Introducing Artificial Label Noise 72
5.4.1.3 Metrics . 72
5.4.1.4 Results . 75

5.4.2 Qualitative Evaluation . 75
5.4.3 Improvement Over Related Work 76

5.5 Summary . 78

6 Identifying Adversarially Poisoned Data in Regression Learning 79
6.1 Motivation . 79
6.2 Contribution . 80
6.3 Case Study: Warfarin Dosage Estimation 80
6.4 Data Poisoning in Regression Learning . 81

6.4.1 Threat Model . 81
6.4.2 Related Poisoning Attacks in Regression 82

6.4.2.1 Related White-Box Attacks 82
6.4.2.2 Related Black-Box Attacks 83

6.4.3 Flip: A Black-Box Attack on Nonlinear Regressors 83
6.5 Data Poisoning Defenses . 85

6.5.1 Requirements for Applicable Data Poisoning Defenses 86
6.5.2 Related Defenses . 86
6.5.3 The Iterative Trim Defense . 88

6.5.3.1 Algorithm Description . 88
6.5.3.2 Poison Rate Selection . 89
6.5.3.3 Threshold Selection . 91

6.6 Empirical Evaluation . 91
6.6.1 Experimental Setup . 91

9

CONTENTS

6.6.2 Datasets and Regressors . 92
6.6.3 Evaluation of StatP . 92
6.6.4 Evaluation of Flip . 92
6.6.5 Evaluation of Trim and iTrim . 93
6.6.6 Runtime . 94

6.7 Warfarin Revisited . 95
6.8 Conclusion . 96

7 Identifying Adversarially Poisoned Data in Classification Learning 97
7.1 Motivation . 97
7.2 Contribution . 98
7.3 Related Defense Algorithms . 98
7.4 Poisoning Attack . 98

7.4.1 Threat Model . 99
7.4.2 DoS Poisoning via Label Flipping Attack 99
7.4.3 DoS Poisoning via Back-gradient Optimization Attack 99

7.5 Poisoning Defence . 102
7.5.1 Requirements . 102
7.5.2 Our proposed algorithm . 102

7.6 Evaluation . 105
7.6.1 Experimental Setup . 105
7.6.2 Attack Results . 106
7.6.3 An Example of Applying our Defence 106
7.6.4 Defense Results . 108
7.6.5 Evaluation Against Related Defences 109

7.7 Conclusion . 110
7.8 Data Poisoning in Regression and Classification: A Comparison 111

7.8.1 Similarities . 111
7.8.2 Differences . 112

8 Conclusion 115
8.1 Answering the Research Question . 115
8.2 Evaluating Current Research Trends . 116
8.3 Future Work . 117

Bibliography 119

A Appendix 131
A.1 The Need For Activation Functions in DNN 131
A.2 Identifying Mislabeled Instances . 131
A.3 Identifying Data Poisoning in Regression Learning 134

A.3.1 Evaluation of the StatP Attack . 134
A.4 Identifying Data Poisoning in Classification Learning 140

10

List of Figures

1.1 A diagram illustrating how new, supervised ML-datasets are created . . . 18

2.1 A Venn diagram on AI, machine learning, and neural networks 25
2.2 Architecture of a neural network . 26
2.3 Figure from [6], showing three images with corresponding adversarial noises 30
2.4 Image of an adversarially perturbed stop sign. 35

3.1 The Pascal VOC 2007 watermark shortcut 38
3.2 Distribution of silence in the ASV2019 dataset 39
3.3 Aggregation of dataset information as described in equation (3.1). 47
3.4 Random samples from the ASVspoof 2019 dataset 49
3.5 Detection of artificially added artifacts in ASVspoof 2019 49

4.1 A diagram illustrating the effects of the Active Learning collision attack
presented in [2] . 55

4.2 Images poisoned with our proposed feature collision attack 58
4.3 Visualisation of the poisoned transfer learner’s feature space 59
4.4 The effect of our proposed pixel-shift defense 62

5.1 Four mislabelled instances from the Fashion-MNIST dataset 66
5.2 Four mislabelled instances from the CIFAR-100 dataset 75
5.3 Four mislabelled instances from the MNIST dataset 76

6.1 The effects of over- and underestimating the poisoning rate for the Trim
defense . 87

6.2 Train vs. test loss when applying Trim for varying degrees of estimated
poison rate . 90

6.3 Results of the empirical evaluation of our proposed Flip attack 93
6.4 Comparison of the performance of the Trim and iTrim defense 94

7.1 Trajectory of malicious data sample during a data poisoning attack 100
7.2 The effects of related data poisoning attacks on a classification problem . 107
7.3 A figure illustrating our proposed defense [4] 107
7.4 ROC curves obtained by applying our defense [4] on seven poisoned datasets109

8.1 Work presented in this thesis on a spectrum ‘probability of occurrence’ and
‘damage’ . 116

11

LIST OF FIGURES

A.1 Estimating the degree of data poisoning via train/test comparison using iTrim.135
A.2 Evaluation of the performance of the StatP attack [7] against nonlinear

regressors . 135
A.3 Comparison between the StatP and Flip data poisoning attack. 137
A.4 Comparison between the Trim and iTrim data poisoning defense. 138
A.5 Comparison between the Trim and iTrim data poisoning attack, averaged

by regressor. 139
A.6 Changes in a model’s decision surface due to data poisoning 142

12

List of Tables

2.1 Comparison of Evasion and Poison Attacks. 32

3.1 Accuracy of Models trained only on the length of silence in ASV2019 . . . 43
3.2 Comparison between trimming and retaining the leading silence in the

ASV2019 dataset . 44
3.3 The impact of removing silence in ASV2019 on state-of-the-art models

such as RawNet2 . 44
3.4 Interplay between feature predictiveness and semantics. 47

4.1 Results of the feature collision poisoning on three audio and image data sets 60
4.2 Performance of the proposed defense strategies on the STL dataset 63

5.1 Taxonomy of Label Noise. 66
5.2 Hyperparameter grid used in [3] . 70
5.3 List of datasets used for evaluating [3] . 73
5.4 Results of the evaluation of the algorithm presented in [3] 74
5.5 A potentially mislabelled instance from the 20-newsgroup dataset 77
5.6 Another potentially mislabelled instance from the 20-newsgroup dataset . 77

6.1 The impact of data poisoning on the prediction of dosage of medical drugs. 81
6.2 Mean absolute error (MAE) of different regression models when poisoned

using the Flip attack. 95

7.1 Datasets used when evaluating DoS data poisoning in the context of
classification . 105

7.2 Results of applying the label flipping and back-gradient attack from related
work . 106

7.3 Results when evaluating our proposed defense against data poisoning in
classification learning . 108

7.4 Comparison of our proposed defense [4] against related work 110

8.1 Overview of the popularity of various research fields in the field of ML data
correctness. 118

A.1 List of mislabeled instances in CIFAR-100 132
A.2 List of mislabeled instances in the Fashion-MNIST data set 133
A.3 The 26 datasets used for the empirical evaluation of [5]. 136
A.4 Results of our proposed defense [4] on a CNN. 141

13

LIST OF TABLES

A.5 Results when evaluating our proposed defense [4] against data poisoning . 141

14

Acronyms

AI Artificial Intelligence.
AL Active Learning.
ASV Automatic Speaker Verification.

CNN Convolutional Neural Network.

DBLP Digital Bibliography & Library Project.
DNN Dense Neural Network.
DSGVO Datenschutz-Grundverordnung.

EER Equal Error Rate.

GDPR General Data Protection Regulation.

HMM Hidden Markov Model.

IMDB Internation Movie Database.
IWPC International Warfarin Pharmacogenetics Consortium.

KDE Kernel Density Estimation.
KNN k-Nearest Neighbour.

MAE Mean Absolute Error.
MAE Mean Squared Error.
MFCC Mel Frequency Cepstral Coefficients.
ML Machine Learning.

NN Neural Network.

PCA Principal Component Analysis.

RNN Recurrent Neural Network.

SOTA State of the Art.
SVM Support Vector Machine.
SVR Support Vector Regressor.

15

Acronyms

TL Transfer Learning.

16

1 Introduction

In this chapter, the reader is given a brief overview of this thesis. In section 1.1, we
present the research challenge. In the section 1.2, we detail how this thesis addresses the
aforementioned research question. Finally, in section 1.3, the impact of our research is
discussed.

This chapter does not introduce prerequisites such as basic machine learning knowledge
or theory on adversarial machine learning; such introduction is deferred to chapter 2.

1.1 Motivation & Research Challenge

This chapter motivates and presents the research question of this thesis.

The success of machine learning

There are many challenges in the field of computer science which have long been considered
too complex to solve algorithmically. Some of these include provably hard problems such
as the NP-hard Travelling Salesman Problem, for which there exist approximations or
size-constrained algorithms [8] which work well enough in practice. However, a great deal
of problems has long since eluded both exact and approximate solutions, such as

• agent control in complex, non-stationary environments with limited and even with
perfect knowledge (e.g. autonomous driving, StarCraft II, Go, . . .),

• classification of text, speech, and visual data (e.g. malware detection, handwriting
recognition, radiological diagnosis, speech-detection, spam filtering, . . .),

• generative modelling (speech synthesis, image manipulation, . . .),

• anomaly detection (identifying credit card fraud, predictive maintenance, . . .), and
many more.

Yet, in the last few years, machine learning-based techniques have started to tackle many
of these problems both effectively and efficiently. Interestingly enough, the underlying
machine-learning algorithms themselves have been formulated well before the advent of
this millennium. For example, the foundation of the popular neural network architecture
has been laid by F. Rosenblatt in 1958 [9]. However, due to a lack of computing power
and data, these algorithms could not be applied satisfactorily in practice for a long time.

As of today, the requirement for sufficient computing power is satisfied: The tremendous
advances in the design of semiconductors allow to readily obtain powerful hardware for
little money.

17

1 Introduction

Figure 1.1: A diagram illustrating how new supervised ML-datasets are created. Given some
underlying data distribution p(X), n samples are drawn independently and randomly.
This yields an unlabeled dataset X. This dataset is then labelled, either by a human
annotator, a crowd working platform such as Amazon’s Mechanical Turk, or even
(semi)-automatically, depending on the data. Finally, the labelled data (X, y) is
used to train a model. As shown in the red boxes, the dataset can be compromised
during all of these stages.

The need for training data

Thus, data becomes the bottleneck for training quality machine learning algorithms. The
best algorithm is useless when data is too small or too bad in quality.

However, compared to twenty years ago, data has become more easily available through
the ubiquity of digitization. For popular use cases, large and high-quality datasets can
just be downloaded in high quality for free (e.g. for handwritten digit recognition [10] or
object detection [11]).
However, when the use case is not as mainstream, training data often is not available

that easily. It has to be collected from a variety of (untrusted) entities, scraped from the
web, or even created manually by human annotators, for example by student workers
(as we did in [12]) or using crowd-labelling techniques such as Amazon Mechanical Turk.
The many moving parts and external factors make the resulting dataset susceptible to a
variety of errors and attacks, as we’ll explain in the following section.

The Correctness of Training Data is Paramount

We now turn our attention to this process and shortly describe how ML datasets are
created. Figure 1.1 provides a flowchart that presents the dataset creation steps in blue
and the various intermediate results in white. First, some underlying distribution is
queried for random samples. Then, the resulting data is stored and labelled. Finally, it is
used to train a model. In practice, the drawing from the underlying distribution p(X) is
realized by collecting evidence in the real world, i.e. measuring or observing the features

18

https://www.mturk.com/

1.1 Motivation & Research Challenge

in question. However, there are several avenues for compromising this data, as indicated
in Figure 1.1 in red:

• Sampling mistakes. First, the data may be inconsistent due to sampling mistakes.
This is a more subtle error than labelling mistakes, since the analysis of (X,) or
even (X, y) alone cannot catch this error. Usual sanity checks such as the train/test
split do not work in this context (since the sampling incongruencies affect all data,
i.e. both train and test data). Rather, a human expert is required who compares
the data-generating distribution p(X) (which humans often have a pretty good idea
about) to the drawn samples (X,).

Thus, while hard to detect, this kind of error can have extreme consequences: Users or
even whole research communities who rely on incongruent data may systematically
overestimate the performance of their machine-learning models, which perform
poorly on separate, real-world test data, c.f. chapter 3.

• Sampling attacks. Second, an adversary may also compromise auxiliary data-
creation pipelines such as active learning. This corresponds to attacks during the
sampling stage. This results in a poisoned dataset where the adversary has full
control over the injected instances, and model performance is severely diminished
(c.f. Chapter 4).

• Labeling mistakes. Third, the data may contain mislabeled instances, i.e. mis-
takes due to negligence on the human annotators’ side. Data annotation is a
monotonous task, and errors (i.e. assigning label ’0’ instead of ’1’) can easily happen.
As we will show in Chapter 5, even professional data sets such as Fashion-MNIST
by Zalando [13] contain a considerable fraction of instances whose labels are just
plain wrong. One may envision the quality of data collected by individuals with
fewer resources.

• Adversarial poisoning attacks. Finally, the labelled data may be compromised
by an adversary. This means that some third parties may have deliberately intro-
duced instances with wrong labels into the dataset. Why would an adversary want
to perform such an attack? Adversarial data poisoning makes it possible to either a)
break the model, or b) control the model. This allows an attacker to achieve their
goal, such as financial gain, unauthorized access, the exercise of revenge, etc. We will
discuss this in more detail in Section 2.2.1. For now, suffice it to say that adversarial
data poisoning is one of the two major threats to machine-learning systems; the
second one being test-time ’adversarial evasion attacks’, c.f. Section 2.2.1.1, which
is not in focus in this thesis.

Research Question

These considerations thus raise the following research question: What influences (i.e.,
both attacks and data errors) compromise the integrity and correctness of ML datasets,
and how can this be counteracted? Here, integrity means ’free from attacks’, while
correctness means ’free from errors’.

19

1 Introduction

1.2 Research Contribution

The contribution of this thesis is to answer the aforementioned research question. We
do this by examining the most relevant failure points in the ML-data creation pipeline,
c.f. figure 1.1, and examining appropriate mitigation. Concretely:

• First, we present an analysis of a severe sampling artifact in the ASVSpoof 2019
dataset, c.f. chapter 3.

– We find that the ASVSpoof-community has been systematically overestimating
the performance of their spoof-detection (colloquial: audio-deepfake detection)
models. This is due to a severe data artifact: We show that the length of the
leading silence strongly hints at the target label (spoof or authentic).

– We show [1] that because of this, most related work from the last three years
has considerably overestimated the generalization capabilities of audio-spoof
detection.

– We present an algorithmic approach to detecting this kind of error in the
future. We implement a corresponding prototype and show its applicability.

• As the second part of our contribution, we examine active learning, a popular set of
auxiliary techniques and algorithms used to maximize efficiency when creating a
labelled dataset, c.f. chapter 4.

– We show that algorithms previously thought unaffected by adversarial attacks
(active learning algorithms) are indeed highly susceptible.

– We suggest, discuss and evaluate appropriate defence strategies [2], thereby
showing how to apply these algorithms in practice while minimizing exposure
and susceptibility to adversarial poisoning attacks.

• Third, in Chapter 5, we examine mislabeled instances. Specifically:

– We present a novel algorithm [3] to identify mislabeled instances in classification
data and thoroughly evaluate this algorithm on 29 data sets.

– We apply this algorithm to the most popular machine-learning data sets (e.g.
CIFAR, MNIST, Fashion-MNIST, Twenty-Newsgroup) and find significant
quantities of real-world mislabeled data which have not been described before.

• The final part of our contribution is two algorithms to identify adversarial data in
regression and classification data, respectively (c.f. Chapter 6 and Chapter 7). This
includes the design of a new attack algorithm, which we use in addition to existing
attacks to evaluate our proposed defence. Specifically:

– We present a new defence against data poisoning on regression learning [4].

– We present a new defence against data poisoning on classification learning [5].

Both defences improve over related work in several ways; but most notably, they
are designed to be applicable in practice, i.e. without the need for a controlled
environment.

20

1.3 Research Output

1.3 Research Output

The results of this thesis w.r.t. research output can be summarized as follows:

• Publications. During the course of writing this thesis, eight publications have
emerged. These can be separated into those that lead towards the research question
motivating this thesis [14], [12], those that supply core research w.r.t. the research
question [3, 4, 5, 2, 1] and finally, work that rounds off the topic of adversarial
machine learning [15].

• Source code and tooling. For some of these works, source code has been
released [3]. This tooling has already been used by other researchers and has been
extended with follow-up ideas, such as Atkinson et Al. [16]. Also, a dataset on
GDPR requirements for privacy policies has been built, vetted, and published
online [12].

• Identification of mislabeled instances. We identify mislabeled instances in
highly popular, real-world datasets such as CIFAR10, MNIST, etc. These instances
contribute to understanding why even the most sophisticated model does not achieve
a 0% error rate [17] in these benchmarks.

• Impact on the anti-spoofing community. Our discovery of the data artifact
in the ASVSpoof 2019 and 2021 datasets has had an impact on the anti-spoofing
community. A reviewer summarizes: ’This work could be considered controversial
and it can make us question part of the work presented so far.’ After the acceptance
of the publication [1], the community has been informed via the official conference
summary presentation (pages 9 and 14 in [18]). The conference organizers re-
evaluated all of the official baselines, both with and without the presence of the
artifact, and verified our results. It has been announced that this topic will be given
more consideration in future ASVspoof conferences.

21

2 Prerequisites

This chapter provides an introduction to machine learning and adversarial attacks,
concepts that are essential to understanding the rest of this thesis. This chapter does not
present novel research.

2.1 Artificial Intelligence: An Overview

2.1.1 Algorithmic vs. Data-Driven Problem Solving

There are two fundamental approaches to telling a computer program how to solve a
given problem.

• The algorithmic approach. In many cases, it is possible to provide a sequence of
finitely many computer-implementable steps, i.e. an algorithm. For example, given
a graph consisting of vertices and nodes, Dijkstra’s algorithm [19] is guaranteed to
find the shortest path between two given nodes in a finite number of steps. This
algorithm has been proven to be correct and can be implemented efficiently. It is a
perfect example of a problem where applying artificial intelligence does not make
sense.

However, there is another class of problems for which algorithms struggle to find
solutions efficiently. Let us examine the toy problem of classifying images of animals,
for example, dogs vs. cats. Writing down an exact rule set to differentiate between
these two is not trivial: First, there is the problem to extract semantic features from
a given image, such as the size of the animal, colour, and the presence of features
such as whiskers, snout, etc. Second, given a set of features, it is not clear which
values uniquely constitute a cat: Is it always smaller than a dog, or leaner, or of a
certain colour, or does it have a rounder snout, ...? We see that it is very hard to
define an exact set of rules, and thus an algorithm for this problem. Note that this
is not a problem of ambiguity (humans usually have no problem telling a dog from
a cat), rather, the difficulty lies in defining and separating the feature space.

• The data-driven approach. The difficulty in solving such problems with tra-
ditional methods and algorithms leads to the second approach: the data-driven
approach. In this approach, there is no explicit rule set or sequence of steps to
derive a solution. Rather, we provide a set of examples (in this case, a set of images
of cats and dogs) and, by clever application of statistics, let the computer figure out
which is which. Before diving into how such a ’clever application’ is implemented,
we briefly summarize the advantages and disadvantages of both approaches. We
will see that they are complementary; where one is weak, the other is strong.

23

2 Prerequisites

2.1.1.1 Comparison

The advantages of algorithmic approaches are as follows. First, they are usually understood
in their entirety. We can compute all relevant properties such as run-time, memory
consumption, and quality of solution exactly or at least provide lower or upper bounds.
Second, algorithmic solutions are reliable and interpretable; one can often prove their
correctness and understand exactly how they work. Third, no training data is required.
On the other hand, the disadvantages are as follows: First, for many problems, computer
science has struggled to find algorithms that solve the problem satisfactorily. This is
because either we have simply not found a suitable algorithm, or we cannot formulate the
problem in a suitable (mathematical) way. Remember our example: how to define the
difference between images of cats and dogs? Second, algorithms tend to miss edge cases.
Any special case that the designer of the algorithm has failed to integrate may result in
erratic behaviour.
The data-driven approach excels where traditional approaches fail: problems do not

have to be formulated explicitly, and if enough data is supplied, edge cases are learned
by the model naturally. Classifying dogs vs. cats becomes easy, state-of-the-art achieves
an accuracy of 99.70 percent [20]. On the other hand, data-driven solutions can behave
unpredictably (an extreme example of this are ’adversarial attacks’, see Section 2.2).
Additionally, their solutions are usually approximate, and one cannot prove correctness
nor has satisfactory model explainability. Also, the process of developing data-driven
approaches can feel like a series of ’educated guesses’ as opposed to the rigorous application
of statistics. Finally, a big downside is a need for sufficient and correct training data - an
issue we hope to at least partly alleviate with this thesis.

2.1.2 Distinguishing AI, Machine Learning, and Deep Learning

This section provides a distinction between artificial intelligence, machine learning, neural
networks, and deep learning. We feel that such a recapitulation is necessary since these
terms are often confounded.

Figure 2.1 shows a Venn diagram detailing the relationship between the field of artificial
intelligence as a whole, machine learning, and neural networks. The outermost category
represents the field of AI. Machine learning is a subset of this discipline. It is concerned
with data-driven approaches. However, there are other areas within the field of artificial
intelligence that do not employ the data-driven approach, such as Automated Planning
and Scheduling (AI Planning). For example, ’state-space search’ is the process of finding
the states of an instance with the desired property. This problem can be encoded in a
graph, and techniques such as breadth-first-search or depth-first-search may be employed
to algorithmically derive a solution. In summary, machine learning does not equal
artificial intelligence, even though the terms are often used interchangeably. Rather,
machine learning is the branch or subset of artificial intelligence that is interested only in
data-driven approaches (to learn from data, thus the name).
Finally, there are several different tools and techniques to extract information from

training data. These techniques differ in goal and applicability, but all share the underlying

24

2.1 Artificial Intelligence: An Overview

Figure 2.1: A Venn diagram illustrating the relation between the field of AI, machine learning,
and neural networks.

paradigm of data-driven learning. Neural Networks, Support Vector Machines (SVM),
Principal Component Analysis (PCA), etc. are just a few examples of these tools. The
field of computer science which is concerned with Neural Networks is called Deep Learning.
It is a strictly data-driven discipline.

2.1.3 Regression vs. Classification Learning

In the domain of supervised learning, we have datasets (X, y), where X is the data and y
are the features. The data consists of a set of features, i.e. observable properties, such as
the pixels of an image, or numeric measurements of some sort. The labels are scalar values
that indicate what the class means, i.e. what the image or the numeric measurements
represent. We distinguish between classification and regression learning:
In classification, the targets are integer values, representing class membership. For

example, instances in an image dataset may be labelled as either cat, dog or horse. We
can represent classes as integers y ∈ N. Note that there is no sensible distance metric on
the labels since cat is not more or less similar to dog than to horse.

Another way to interpret the targets y is regression learning : Here, they are real-valued
scalars y ∈ R. For example, a dataset of historical stock market data could be labelled
with the current stock price, in an attempt to predict future stock prices.

25

2 Prerequisites

...
...

...

I1

I2

In

H1

Hl

O1

Ok

Input
layer

Hidden
layer

Ouput
layer

Figure 2.2: A feed forward neural network with two layers (not counting the input layer).

Regression and classification share many architectural and algorithmic properties, such
as the model structure and learning algorithm (backpropagation). However, there are
several key differences, for example in the domain of loss functions. For more, see [21].

2.1.4 Neural Networks

A very popular machine learning model is the neural network. First outlined by Rosen-
blatt [9], it gained considerable traction with the advent of big data and massive computing
power. Motivated by biological neurons in the human brain, it consists of a sequence
of neural layers. Figure 2.2 provides a schematic. It shows a neural network with three
layers: One input layer I, one middle layer H, and one output layer O. The layers which
are not the input or output are called hidden layers. All layers are connected sequentially,
which is why this kind of neural network is called a feed-forward network. Input x can be
processed if it has the dimensionality of the input layer I, i.e. if dim(x) = n. The output
then has dimensionality dim(O(H(x))) = k.

The arrows between the layers depict the weights of the neural network. These weights
denote how input is changed during the transition from one layer to the next. Each arrow
corresponds to one real-valued scalar weight, i.e. mij ∈ R. The input x is only changed
in transition from one layer to the next. Thus, one commonly omits the input layer when
counting a model’s layers, since it does not process the input, but only reads it in. This
is why the network in Figure 2.2 is said to have two layers.

One can describe a neural network formally. Assume the input layer is n-dimensional,
and the output layer is l-dimensional. The weights can be expressed as a real-valued matrix
of shape M ∈ Rn×l, and input and output are represented as vectors. A feed-forward

26

2.1 Artificial Intelligence: An Overview

pass of input x ∈ R1×n is then expressed by matrix multiplication

y = xM (2.1)

which is dimensionally correct:

dim(y) = dim(xM) = (1, n)× (n, l) = (1, l) = dim(y) (2.2)

Thus, the application of a feed-forward layer is a linear transformation (as defined by
its matrix M). The subsequent application of several linear layers is thus also linear,
since the matrices M1, ...,Mt ’collapse’ to a single matrix Z, as is shown in Appendix A.1.
Thus, to gainfully apply more than one layer, one has to introduce non-linearity between
layers to avoid this ’collapse’. This is the task of activation functions, which are non-linear,
differentiable functions c which operate element-wise on the output of a given layer:

y = c(Mx) = [c(Mx)0, ..., c(Mx)l]
T (2.3)

Popular activation functions include

• Rectified Linear Unit: ReLU(x) = max(0, x),

• Hyperbolic Tangent: tanh(x) = 2/(1 + e−2x)− 1,

• and Sigmoid: σ(x) = 1/(1 + e−x).

Once the network architecture is fixed, suitable entries mij need to be found for each
matrix M or layer in the neural network. For more complex networks, the trainable
entries include not only the weights of the matrices but also biases (constant offsets) and
other trainable parameters such as in Batch Normalisation [22]. In literature, the entirety
of the trainable parameters is commonly referred to as θ.
To find these weights θ, one needs to mathematically define what suitable means, i.e.

one has to provide some measure to quantify the network’s performance. For example,
when predicting, say, the stock price for a given value, a suitable measure would be the
magnitude of the difference in predicted price and actual price, i.e. |ypred − ytrue|, which
we usually abbreviate to |y′ − y|. Such measures by which we quantify and subsequently
optimize the model are called loss functions. They denote how ’far off’ the prediction y′

is from the ground truth y. Thus, one usually aims for minimizing this loss: Lower loss
equals a better model. Some of the most common loss functions include

• L1 Loss: L(y, y′) = |y − y′|
• L2 Loss: L(y, y′) = (y − y′)2

• Cross-Entropy-Loss:
L(y, y′) = −

∑
i

yi log(y′i) (2.4)

where p is a probability density function such as softmax

softmax(x) =
exi∑
i e
xi
. (2.5)

27

2 Prerequisites

The weights of a neural network can then be found by stochastic optimization [23], where
for each pair (x, y) in the training data, we obtain the model’s prediction f(x) = y′ and
then minimize the loss between the predicted output y′ and the true output y. Formally:

θ∗ = arg min
θ
L(fθ(x), y) (2.6)

where θ are the model weights. Since solving Equation (2.6) is intractable even for shallow
neural networks, approximation techniques such as Gradient Descent are used. It consists
of iteratively optimizing a randomly initialized set of weights θ0 towards the optimal
solution θ∗ by computing the gradient of the loss concerning the model’s parameters θi at
timestep i, and then updating the weights accordingly. Formally:

θi+1 = θi − α∇θiL(fθi(x), y) (2.7)

Here, f is the neural network (parameterized by θi at timestep i), L is the loss function,
and (x, y) is a training sample consisting of input x and observed output y. The gradient
with respect to the parameters θ is represented by the Nabla operator ∇θ. It is a vector-
valued operator with dimensionality T = dim(θ), i.e. with as many entries as there are
model parameters. The gradient ∇θL can be understood as the direction and magnitude
of the steepest ascent of L concerning the model parameters θi. Put differently, this
means that the gradient points toward the set of parameters which maximize the loss for
the current training sample (x, y). Formally:

∇θL(f(x)) =

∂L
∂θ0

(f(x))
...

∂L
∂θT−1

(f(x))

 (2.8)

where ∂L
∂θi

(f(x)) is the partial derivative of L with respect to θi. Note that from now
on, we will write f instead of fθ when there is no ambiguity as to the set of weights
that parametrize f . Finally, the model is updated with the newly learned information as
encoded in the gradient ∇L, which is multiplied by −1 (because we want to minimize
rather than maximize the loss). Thus, −∇L is added to the current set of parameters,
scaled by a constant α called the learning rate (c.f. Equation (2.7)).

Both the loss and each component of the neural architecture must be differentiable since
otherwise the gradient cannot be computed because the partial derivates are not defined.
Training a model for i steps then consists of applying equation 2.7 sequentially i times.
Deep neural networks such as Tacotron [24] can require more than 100,000 steps, which
takes days on modern hardware. The number of training steps required varies from model
to model and depends on the complexity of the network as well as the number of model
parameters. Some extremely large models have over 175 billion trainable parameters,
pushing training costs well into the millions of dollars [25].

2.1.5 The Limits of Machine Learning

Although neural networks excel in many fields and even show superhuman performance [26]
in some areas, their capabilities are sometimes overestimated. This chapter describes
what deep-learning techniques can and cannot do.

28

2.2 Adversarial Machine Learning: An Overview

Neural networks excel at tasks that are based on pattern recognition. Whenever there
is a problem where a mapping f : A → B is to be found (mapping images to animal
names; mapping a spoken sentence to its transcribe; mapping a chess position to the next
optimal move), deep learning can reliably find this mapping f , provided

• training data of sufficient size and quality and

• a suitable, mathematical way to quantify the quality of the network’s output (i.e. a
loss function) are available.

Missing training data can usually be acquired (although possibly at a high expense).
But often, there is no way to formulate the loss function. For example, how would
one formally describe the task of composing a ’good short story’, an ’interesting piece
of music’ or a ’beautiful poem’? Even in more objective domains such as law, how
would one mathematically quantify the degree to which, for example, a given statement
complies with a given law, or a certain website complies with the General Data Protection
Regulation (GDPR)? These problems are very hard for AI to solve because they require
more than just pattern recognition skills: They require real, human-like understanding of
the object, which currently we do not know how to instill into artificial intelligence.

Thus, the AI we have today is called Weak AI : Weak AI is artificial intelligence with a
narrow field of application, trained for one specific task. It is based on pattern recognition.
It can understand semantics, i.e. the meaning of data (such as the content of an image, the
meaning of the text, etc.) only via statistical and correlation analysis: meaning is inferred
not by understanding, but, at its core, by co-occurrence of observables (for example, the
fact that cows tend to stand on green grass and not on water is understood simply by
observing the co-occurrence of cows and grass in the dataset, and not by ‘understanding’
the inherent properties of grass as a solid surface as opposed to non-supporting water
surfaces).
In contrast, Strong AI would be artificial intelligence based on understanding, with

a broad range of applications, mirroring the intelligence of a human. All current AI,
however sophisticated, belongs to the first category.

2.2 Adversarial Machine Learning: An Overview

This section provides an overview of Adversarial Machine Learning, which concerns
itself with the security of machine learning. We first give an introduction about how
attacks on machine learning work technically, then explain why an attacker might want
to compromise a model, and finally present current limitations of adversarial machine
learning.

2.2.1 Evasion and Poisoning Attacks

This section introduces the two most important attacks on machine learning: evasion and
poisoning attacks.

29

2 Prerequisites

Figure 2.3: Figure from [6], showing three adversarial images x+ δ. The leftmost row shows x,
and the middle row presents the adversarial noise δ, and the rightmost row shows
x + δ. Even though humans do not perceive a difference, a neural network will
assign different classes for x and x+ δ.

2.2.1.1 Evasion Attacks

Evasion Attacks are attacks on an already trained machine learning model. They do not
alter the trained model; instead these attacks create a malicious input x+ δ such that
the model f classifies x and x+ δ differently:

f(x) 6= f(x+ δ) (2.9)

δ is called the adversarial noise. This adversarial noise is what causes the model f to
change its prediction of x. It always has the same dimensionality as x, since it is added
to x. To be imperceptible for humans, it has a low magnitude, i.e. small vector norm.

For example, assume the input to be an image, i.e. x ∈ Rh×w. In this scenario, h and w
are the height and width of an image, for example h = w = 32 for the CIFAR dataset [11].
From this it follows that δ ∈ Rh×w. Figure 2.3, taken from Szergedy et al. [6], shows an
example of this. Three example images are presented (left column): a bus, a bird, and a
temple. A neural network trained for image recognition classifies these correctly and with
high confidence. The middle row now presents adversarially crafted noise δ (enlarged
to be visible). When added to the original images, we see that sum x + δ is virtually
imperceptible (right column). For humans, x and x+ δ show the same object. A neural
network, however, is fooled: It now classifies all three images in the rightmost column as
’ostrich’.

Adversarial noise is found via back-propagation and gradient descent, similarly to Equa-
tion (2.7), but instead of optimizing with respect to the model’s weights, one optimizes

30

2.2 Adversarial Machine Learning: An Overview

with respect to the adversarial noise δ:

δi+1 = δi − α∇δJ(fθ, x, δi, ytarget) (2.10)

where again α ∈ R is the learning rate, fθ the trained neural network, x the input image
and ytarget the target class, in the case of Figure 2.3 an ’ostrich’. The loss function J
consists of a loss function L similar or identical to the one used to train the neural network,
plus weighted regularisation on the noise δ. For example:

J(fθ, x, δi, ytarget) = L
(
fθ(x+ δi), ytarget

)
+ γ‖δ‖2 (2.11)

=
(
fθ(x+ δi)− ytarget

)2
+ γ‖δ‖2 (2.12)

where we assume L as L2 loss. The scalar value γ ∈ R adjusts the strength of regularisation.
Thus, adversarial examples are found in the following process:

1. Assume a trained neural network fθ and a ’starting image’ with its correct classifi-
cation (x, y).

2. Define initial δ0 = 0. For images: δ0 = 0h×w. Alternatively, one may initialize δ0

with random values.

3. Choose a target class ytarget 6= y.

4. Iteratively apply Equation (2.10) until convergence, i.e. δi+1 − δi| < ε for arbitrary
ε ∈ R.

5. Let δ := δi+1 and yield the adversarial example x+ δ.

Intuitively, a single step of gradient descent as described in Equation (2.10) finds the
noise δi which, when added to x, makes the input x+ δi seem more like the target class
ytarget for the neural network fθ. Additionally, the noise δ is kept low in magnitude (due
to the regularisation, c.f. Equation (2.11)) and thus remains undetectable for a human.
In summary, adversarial evasion attacks are attacks on machine learning models where a
trained model is fooled by an adversarial image.

2.2.1.2 Poisoning Attacks

Data poisoning attacks are the second branch of adversarial attacks on machine learning
and motivate a significant part of research in this thesis. In contrast to evasion attacks,
data poisoning attacks are executed at training time. Malicious instances (xp, yp) are
inserted into the training data set, which causes the model to either degenerate (denial of
service poisoning attack) or allows an attacker to control the model at test time (backdoor
poisoning attacks). In contrast to evasion attacks, poisoning attacks change the model.
This motivates the name: Similar to how poison damages the human body, adversarial
data poison samples damage the machine learning model.
Since poison attacks are less straightforward than evasion attacks, we introduce them

in several steps: First, we compare them to evasion attacks. Second, we introduce them
formally. Third, we outline how they are created. Fourth, we give insight into how an

31

2 Prerequisites

Evasion Attack Poisoning Attack
When Attack at test time Attack at training time
Impact Does not change the model Changes the model
Result Attacker controls model with malicious input Attacker controls model with benign input, or DoS
Requires Test time access Training dataset access

Table 2.1: Key differences between Adversarial Evasion Attacks and Data Poisoning Attacks.

attacker might succeed in introducing adversarial poison samples into a defender’s data
set.
Comparison to evasion attacks. As stated above, data poisoning attacks are attacks

at train time that change a model by introducing malicious instances in the training set,
which deteriorate any model that is trained on them. Table 2.1 highlights key differences to
evasion attacks. Which attack is easier to perform in practice depends on the capabilities
of the attacker: It may be hard to introduce data in the training pool, but easy to submit
poisoned samples at test time or the other way around. These considerations motivate
the appropriate choice of attack.
Formal description of data poisoning. Given a model fθ which is to be trained

on a dataset D = {(xi, yi)}, a data poisoning attack consists in finding a set of poisoned
instances Dp = {(xpj , y

p
j)} such that a model fθ trained on D ∪Dp is compromised in one

of the following ways:

• Denial of Service. In this scenario, the trained model will perform poorly on test
data, i.e. the test-loss L(fθ(x), y) for (x, y) ∈ Dtest will be high. Put differently, the
model will not have learned a useful mapping from input to output, and can thus
not be used for its designated purpose. However, the defender may not notice the
high test loss since the test set may also be poisoned (usually, the test set is just a
portion of data taken from the initial training data set). But even if they notice:
To make the model usable again, they need to be able to remove the malicious
instances from the data set, which usually is not trivial.

• Backdoor Attack. In this scenario, the trained model will perform correctly on a
validation set Dval, i.e. incur small test loss. However, for very specific instances
(x, y), which may or may not be present in the defender’s dataset, fθ(x) = z 6= y.
Put differently, the data poisoning attack allows the attacker to control the model
for a few, specifically chosen instances.

How to create poison samples. The creation of poison samples is technically not as
straightforward as the creation of evasion attack samples. This is because one needs
to take the training process into consideration, which is completely irrelevant in the
context of evasion attacks. Where evasion attacks need to compute the gradient of the
model’s output with respect to some noise δ, poisoning attacks would need to compute
how changes in a given poison sample (xp, yp) affect the training process - which itself is
a sequence of optimization steps as described in Equation (2.7). As exact computation
is intractable, heuristics are used. We defer the presentation of these to Chapter 6 for
regression learning and Chapter 7 for classification learning, where we will present different

32

2.2 Adversarial Machine Learning: An Overview

attacks, implement them and use them in order to have strong baselines against which to
evaluate our proposed defences. For now, it suffices to know that there are both white-box
and black-box data poisoning attacks, i.e. attacks that either do or do not require access
to the model f .
Feasibility of data poisoning attacks. Finally, we examine how an attacker may

succeed in introducing poisoning data into the training set. When using public data sets
such as MNIST [27] or CIFAR [11], the threat of an attacker compromising the data set
may seem unrealistic: After all, the data is vetted by the open-source community and
downloaded ’en block’ - there is little room for manipulation. However, when data is
not as mainstream as MNIST or CIFAR, it cannot be acquired as easily. It has to be
bought from third parties, scraped from the web or a variety of sensors, or needs to be
collected by a group of individuals who all own a small portion of relevant data. In each
of these cases, an adversary can smoothly introduce malicious data. Thus, the threat of
data poisoning is very real, especially for entities such as small and medium enterprises
(SME) with smaller pools of resources, which have to rely on possibly untrusted third
parties to acquire a sufficiently sized data set.

2.2.2 Related Work and State-of-the-Art

In this section, we give a short overview of existing literature on data poisoning attacks.
Related work on defences will be presented when we introduce our proposed defences.
Some passages in this chapter may be cited verbatim from our seminar papers [5, 4].

2.2.2.1 Data Poisoning Attacks in Classification Learning

Early work on data poisoning attacks against classification learning is presented by Biggio
et al. [28] and Xiao et al. [29], which use the Karush-Kuhn-Tucker conditions to find
optimal poisoning samples against linear models. Biggio et al. [28] were the first to
develop a poisoning attack against SVMs. Additionally, Xiao et al. [13] contribute by
evaluating the security of feature selection against poisoning attacks. They adapt the
approach to LASSO, Ridge Regression, and Elastic Net. In both scenarios, the attacker
attempts to increase the test error and, thus, decrease the overall performance of the
classifier.
Munoz-Gonzales et al. [30] are the first to extend data poisoning to the multi-class

scenario, which allows for targeted attacks. Instead of the Karush-Kuhn-Tucker conditions,
they use back-gradient optimization to generate the first poison samples for neural networks
in an end-to-end fashion without the need for a surrogate model.

Shafahi et al. [31] build upon the work of Munoz-Gonzalez et al. [30] and demonstrate
reliable clean-label attacks, in which the attacker can control the input data x, but not the
corresponding labels y. In transfer learning scenarios, the authors show the effectiveness
of a single poison sample. In end-to-end learning settings, i.e. when training the complete
model, they develop a watermarking approach to poisoning.

33

2 Prerequisites

Two data poisoning attacks from related work are presented in Section 7.4, where we
implement them and evaluate them against our proposed defence. Thus, we defer a more
in-depth analysis for now.

2.2.2.2 Data Poisoning Attacks in Regression Learning

Data poisoning has so far been examined almost exclusively for classification learning.
For regression learning, there is work only by Jagielski et al. [7]. They build upon work by
Xiao et al. [29], who introduce a gradient-based optimization attack for linear classifiers
such as Lasso, Ridge Regression, and Elastic Net for feature selection. Jagielski et al. [7]
use the same approach for the same models, but interpret the model’s decision surface
as a predictor for the continuous target variable, yielding a poisoning attack for linear
regression. Additionally, they introduce a non-gradient-based attack, plus a defence called
Trim and evaluate it on three datasets. Their approach in evaluating the defence is,
however, not applicable in practice, since they use an oracle to determine the defence’s
hyperparameters. More specifically, they assume they know the fraction ε of poisoned
samples in the dataset of size n, which is generally unknown. We elaborate on this
in Chapter 6.

Nonlinear regressors such as Kernel Ridge, Kernel SVM, and Neural Networks have, to
the best of our knowledge, not yet been examined in the context of adversarial poisoning.
This may be because the attack presented by Xiao et El. [29] is not applicable to nonlinear
learners.
Finally, note that there are a few regressors that are inherently designed to resist

adversarial data poisoning. One example is the Huber Regressor, which uses a combination
of L1 and L2 loss to mitigate the effects of outliers. While these models are effective
in dealing with data poisoning (c.f. Table 6.1), they are limited in their applicability,
because they are linear models.

2.2.3 The motivation for attacking Machine Learning

In order to motivate why adversarial attacks are a realistic threat, it is necessary to
illustrate that not only the attacks are feasible, but also profitable for the attacker. In this
section, we give some examples of real-world use-cases when attacking machine learning.

• Autonomous Cars. In 2017, Evtimov et al. [32] showed that image detection for
road signs can be adversarially broken under real-world conditions. They crafted a
set of stickers, consisting of white and black squares, which cause misclassification
when affixed to traffic signs. Figure 2.4 provides an example. Groups that may
be motivated to break an autonomous car’s traffic sign recognition model include
terrorists, activists, or competitors.

• Face recognition. Breaking face recognition [33] allows an attacker to gain
unauthorized access (to someone’s iPhone, Car, or to a facility), or to evade
surveillance.

34

2.2 Adversarial Machine Learning: An Overview

Figure 2.4: An adversarially perturbed stop sign by Evtimov et al. [32], which is classified as
’Speed Limit 45mph’.

• Stock price manipulation. Just as conventional attacks with explosives are
employed by individuals to manipulate a company’s stock [34], adversarial attacks
may be employed to damage a company and thus manipulate the price of shares.

• Medical use cases. Finlayson et al. [35] provide an interesting use case, where
adversarial machine learning may be used by a physician to evade the insurance
company’s predictive model, allowing access to a greater range of narcotics.

• Fraud detection. Additionally, adversarial machine learning may be used to evade
fraud detection systems. A malicious adversary can thus modify the features of
their fraudulent activity to hide it from a fraud detection system [36].

• Spam and Malware detection. Adversarial machine learning may also be used
to disguise spam and malware as legitimate by introducing specific phrases or bit
patterns, which are designed to fool the detection algorithm [37], [38].

2.2.4 Current Limitations of Adversarial Attacks

There are a few areas where adversarial machine learning struggles. First, these include
use cases where the adversarially perturbed sample has to bridge the ’air gap’, i.e. where
the adversarial sample cannot be supplied to the model directly. One such example
is speech recognition, where the user speaks into a microphone, and AI transcribes or
executes a given command. Adversarial attacks are challenging in this domain since
they have to ’bridge the air gap’: The noise δ in the adversarial sample x+ δ must be
both small enough to be imperceptible, but robust enough to remain effective in the
presence of channel perturbations that come with speaking and recording an utterance
(such as microphone bumps, reverberations, delay, ..). While a satisfactory solution to
this problem has not yet been found, our research [15] and others [39, 40] explore these
limitations. Note that in other fields, such as image recognition, this air gap has already
been bridged [41].

35

2 Prerequisites

Second, active learning has so far remained robust to adversarial attacks. In this
domain, there is only little related work, which assumes very high capabilities of the
attacker to successfully compromise a model [42].
Third, it remains challenging to find optimally effective data poisoning samples, espe-

cially in a black-box scenario. While there is success in this regard for evasion attacks [43],
a solution remains elusive for poisoning attacks. We will elaborate on this extensively in
Chapter 6 when we introduce the current state-of-the-art.

36

3 Artefacts in ML-Datasets

A first challenge when creating a machine-learning dataset is the correctness of the dataset
w.r.t. ’data artifacts’ that can lead to so-called ’learning shortcuts’. Such an artifact is
present when features Fi in the data are predictive of the target T but do not carry the
desired semantics. Consider the top-left image in figure 3.1, which shows the Pascal VOC
2007 image classification dataset. In this dataset, all images of horses happened to contain
the photographer’s tag in the bottom left corner. Machine learning models trained on
this data would learn that feature Fi = <Tag in Image> is 100% predictive for target
T = <horse>. A model which relies on such features does not need to learn the true
semantics of a horse and thus will perform poorly in a real-world scenario. A ’learning
shortcut’ has occurred and made the model unsuited to any practical application.

In this chapter, we analyze this phenomenon further. We present a previously unidenti-
fied, real-world learning shortcut we found in arguable the most established audio deepfake
detection dataset, show its implications and make suggestions on how to identify such
artifacts in the future. We argue that learning shortcuts are not negligible technicalities,
but rather fundamental observations, because they lead to systematic over-estimation
of model capability. As one reviewer summarizes, ’this work [...] can make us question
part of the work presented so far.’ Please note that this chapter presents work from and
quotes verbatim on our publication where we disclosed our findings to the community [1].

3.1 Introduction to the ASVspoof challenge

Artificial intelligence methods are not only leading to improvements in many areas such
as medical technology, object recognition, and computer-human interfaces but are also
creating new and very unique problems. Perhaps one of the most outstanding challenges
in this regard is deepfakes, i.e. computer-generated video or audio recordings of people.
These fake media can be used to put arbitrary words into the mouths of targets [45]. This
enables hate campaigns, denial, and fraud [46].
One of the possible countermeasures is the computer-assisted detection of deepfakes.

This also operates on a pattern detection basis, i.e. by using AIs that distinguish deepfakes
from real media content. This branch of research is also called ’anti-spoofing’. The most
important conference in the field of audio anti-spoofing is the ASVspoof conference [47, 48],
which has also published several datasets that it uses to organize biennial competitions.

The ASVspoof 2019 Challenge Dataset [47] is the most established dataset for training
and benchmarking systems designed for the detection of spoofed audio and audio deepfakes.
Overall, the dataset presents two related tasks: logical access (LA) and physical access
(PA). All of the data is based on the VCTK corpus [49]. In this chapter, we focus
exclusively on the LA task, which is concerned with the detection of spoofed speech (i.e.

37

3 Artefacts in ML-Datasets

Figure 3.1: Figure from the Pascal VOC 2007 dataset, illustrating the concept of ’shortcut
learning’. Here, the photographer’s watermark (highlighted by a yellow rectangle)
is a strong indicator for the classification of an image as ’horse’. Images with the
watermark are classified as a horse (top row), and images without are not classified
as a horse (bottom row), irrespective of the actual content of the image. Figure
taken from [44].

’deepfakes’). This is because the PA task does not contain the artifact. This is because the
PA task concerns itself not with deepfakes, but with lifelines detection (i.e. the detection
of whether an audio is spoken live by a human or a playback of a recording).

3.1.1 The ASVspoof 2019 Logical Access (LA) Dataset

The dataset consists of pairs "speech, label" where speech is a recording of human speech,
either synthesized (label=spoof) or authentic (label=bonafide). Samples can be listened
to at https://deepfake-demo.aisec.fraunhofer.de/samples. Already, several competitions
have been organized, which all base their challenges on this dataset [47, 48], and a
significant number of related work has been published which uses ASVspoof as their
baseline [50, 51, 52, 53]. More details about the dataset are detailed in [54].

3.2 The artifact: silence as a shortcut to learning

We notice the following irregularity in the ASVspoof 2019/2021 data:
The distribution of the silence in the audio datasets is skewed. Specifically, the length

of an audio’s silence strongly hints at the target label (spoof or benign). Figure 3.2
visualizes this for each of the three data splits ‘train’, ‘dev’, ‘eval’. The bonafide samples
have much longer silences than many of the attacks. This is highly problematic since a
model learns to base its decision on the duration of the silence. Any data-driven learner,
such as a neural network, will pick up on this uneven distribution of silences in the
ASVspoof data. Such dataset artifacts are not unknown in machine learning. Consider
the issue found in the Pascal VOC 2007 dataset, where all images of horses also contained
a specific watermark [44]. A model could exploit this artifact by learning a ’shortcut’,

38

https://deepfake-demo.aisec.fraunhofer.de/samples

3.3 Experimental Analysis

Figure 3.2: The duration of the leading + trailing silence per attack ID in the LA part of
ASVspoof 2019, shown individually for the bonafide data (blue) and the attacks
(red). The error bars highlight the standard deviation and the red horizontal line
displays the average silence duration over all malicious attacks. Note the average
length of silence is much shorter for attacks (red) than for bonafide audios (blue).

(a) The average silence duration in seconds per audio
file for the ‘train’ split.

(b) This plot shows the average silence duration in
seconds per audio file for the ‘eval’ split.

i.e. that watermark equals horse, without actually learning the true features of a horse.
Removing the watermark completely broke the model, c.f. figure 3.1 We hypothesize that
deepfake-detection AIs may behave similarly in the context of ASVspoof. This raises
the question: has related work learned to discriminate audio deepfakes solely, or at least
partially, based on the duration of the leading and trailing silences?

3.3 Experimental Analysis

This section presents extensive experiments to answer this question. First, however, we
give some technical background on the evaluation of anti-spoof models.

3.3.1 Preliminaries

Anti-spoof models usually are regression models, i.e. they predict a score between 0 and 1,
or between −∞ and +∞. This is because spoof detection works in two stages: first, they
judge the ’anomalousness’ of an audio. Using this score, a threshold needs to be found
above which the audio is considered authentic, and below which the audio is considered
fake or spoofed. Splitting the problem into these two sequential steps allows for a more
fine-grained evaluation than immediate binary classification, and is true to the observation
that fakes can have various qualities. It additionally allows to fine-tune the threshold
to specific requirements and take into account the trade-off between false-positive and
false-negative cost.

39

3 Artefacts in ML-Datasets

Thus, when evaluating anti-spoof methods, we are usually most interested in the first
problem, i.e. the score computation. Given good scores, finding an appropriate threshold
is feasible. Thus, the metric used is not Accuracy, but Equal Error Rate (EER). The
EER is a single-number metric that measures the error rate of an anti-spoofing system,
assuming that false-positive and false-negative rates are balanced. The theoretically
maximal value of the EER is 1. However, this usually is of small practical importance,
since in practice, the lower limit is usually 0.5, which translates to random guessing. A
perfect model would achieve an EER of 0. Note that percent and decimal notation are
equivalent, i.e. an EER of 0.5 equals 50% EER. In summary, the EER is the error rate at
which false-positive and false-negative errors are balanced.

3.3.2 Model and Metrics Descriptions

To evaluate the impact of the observed data artifact further, we first need to set up various
deepfake-detection AIs. We then study their behavior, which allows us to determine
whether the artifact will result in a learning shortcut. We implement the following models:

3.3.2.1 Random Baseline

First, we implement a random ’dummy’ baseline, which has no trainable parameters and
scores new samples with a random scalar λ ∈ [0, ..., 1]. This is equivalent to random
guessing. We expect this model to yield an Equal Error Rate (EER) of 50% on any given
dataset or task.

3.3.2.2 Weak Baseline

Additionally, we implement a fully connected neural network (FCNN) with two hidden
layers of size 128, ReLU activation, 10% Dropout, and a single output neuron with sigmoid
activation. This simple model takes as input an audio file (preprocessed as spectogram)
and outputs a scalar value. This model can learn sensible mappings but has very low
capacity. It serves as a baseline for more advanced learners.

3.3.2.3 Strong Models from Related Work

We implement four models, a Deep Residual Network, an LSTM, a CNN-GRU model,
and RawNet2 as described below. These models are more powerful than the previously
employed linear model and achieve an impressive EER of up to 5.87% when trained on
the ‘train’ split and evaluated on the ‘eval’ split of ASVspoof 2019.
ResNet. This model is a deep residual pre-activation network similar to [51]. It consists

of a stack of four residual layers, each of which consists of two stacks of batch-norm,
leaky-relu, and a two-dimensional convolutional network. We use a kernel size of (3, 3),
stride of (1, 1) and padding of (1, 1). Since these configurations do not shrink the spatial
dimensions, each ResNet block employs AveragePooling along the feature dimension,
preserving the time dimension (i.e. kernel size of (3, 1)). After the last ResNet block, we
reshape the output to shape (B,L, F) where B is the batch size, L is the length of the

40

3.3 Experimental Analysis

time dimension, and F is the flattened feature vector. Finally, two dense layers compress
this into (B,L, 1), which is aggregated via mean along the time axis and yields a single
logit λ ∈ R per element in the mini-batch.
CNN. This model closely follows the architecture presented in [55], and consists of a

stack of convolutional layers with (3,3) kernels, each with batch-norm and ReLU activation,
followed by a Gated Recurrent Network. The CNN output is reshaped to conserve the
time dimension (i.e. aggregating channel and feature dimension) and fed into a three-layer
GRU, whose outputs are fed into two linear layers with 50% dropout. The final linear
layer has a single output neuron, followed by sigmoid activation. These linear layers
classify each feature frame separately, and the result is aggregated via mean over the time
dimension and finally activated via the sigmoid function.
LSTM. This model follows [56], and consists of a three-layered, bi-directional LSTM

with a 10% percent dropout and 256 hidden neurons. The output of the LSTM is fed into
a linear projection layer, which has a single output neuron. We take the mean overall
outputs along the time dimension, which yields a single logit λ ∈ R. Finally, we apply
sigmoid activation to match the targets ∈ [0, 1].
RawNet2. This model [57] is a state-of-the-art convolutional/residual neural network

using raw features as input. This means that the audio is not transformed into spectogram,
but that the waveform (16000 samples per second) is supplied to the model directly, which
then employs stacks of convolutional layers to extract higher-level features. This model is
an official baseline for the ASVspoof 2021 challenge. We use the source code provided by
the authors.

3.3.3 Experimental Description

In this section, we describe the experiments we perform to estimate the impact of the
observed data artifact.

3.3.3.1 Experimental Setup

We shortly give a general description of our experiment setup. We train our models on
the ‘train’ split and evaluate their performance both on the ‘dev’ and ‘eval’ split. We
implement the models in Python 3.8 using PyTorch and run the experiments on an Nvidia
A100 GPU. We train the models for 50 epochs each with a learning rate of 0.001, using
the Adam Optimizer [58] with a weight-decay of 1e−6. No early stopping is employed.
We standard-normalize our features (subtracting the mean and dividing by the standard
deviation) and use binary cross-entropy loss.

3.3.3.2 Experiment: Predictive Power of Length of Silence

To evaluate the impact of the leading silence, we train the FCNN described in Sec-
tion 3.3.2.1 on the ASVspoof 2019 dataset, but extract only a single feature: The
duration of the leading silence in seconds. If there is information contained in just the
duration of the silence, we expect the FCNN to outperform the random baseline, i.e.
obtain EER less than 50%. Section 3.3.4.1 presents the results.

41

3 Artefacts in ML-Datasets

3.3.3.3 Experiment: Predictive Power of Silence in Related Work

Additionally, we use three stronger models, a Deep Residual Network (ResNet), an LSTM
and a CNN-GRU model (c.f. Section 3.3.2.1) in combination with CQT features [59], and
train them with and without access to the audio silence. More specifically, we employ
two different pre-processing techniques:

• Time-wise subselection: The first pre-processing technique is dubbed ’time-wise
subselection’. If enabled (t > 0), it returns a random subsection of the audio of
duration t. For each epoch, a new random selection is returned. If t = −1, this
pre-processing technique is disabled and the audio remains unchanged. We test two
settings: t = 2.4s and t = −1. For t = 2.4s, a randomly chosen slice of duration
150 (since 150 ∗ 0.016s = 2.4s) from the audio is returned (where the hop size is
0.016 seconds). This has, among others, the effect that the model does not have
consistent access to the audio silence.

• Trim Silence. The second pre-processing technique trims, if enabled, the silence
of all audios before returning them to the model. We use the librosa [60] library for
this and employ librosa.effects.trim with a ref_db of 40 as a threshold to get the
duration of the leading silence.

We train these models with four possible combinations of the two data augmentation
techniques (time-wise subselection, and silence trimming). These combinations yielded
twelve configurations. We run each of these two times, resulting in training 24 models in
total. We expect to see a deterioration in EER if indeed the duration of the silence leaks
significant information w.r.t. the target label. Results are presented in Section 3.3.4.2.

In another version of this experiment, we repeat the previous trial but remove the silence
only from the evaluation data. More specifically, we train a model on the unmodified
‘train’ split of ASVspoof 2019 with full access to the original audio, i.e. with access to
the silences. We then evaluate the model on two versions of the ‘eval’ split: First, we
evaluate it on the unchanged evaluation data. Second, we test it on the evaluation data
wherein the leading and trailing silence had been truncated. Results are presented in
Section 3.3.4.2.

3.3.3.4 Experiment: Predictive Power of Silence in ASVSpoof 2021

Additionally, we integrated RawNet2 [57], one of the official ASVspoof2021 baselines,
into our test setup. Since it uses feature subselection by design (t = 4s), we skip the
configuration t = −1, but evaluate only the impact of silence trimming. We train the
model for 50 epochs and three times for each configuration and present the results in
Section 3.3.4.3.

42

3.3 Experimental Analysis

Table 3.1: The results of training a dense neural network on only the duration of leading silence,
compared against a random baseline. The network can significantly outperform
the random baseline (see test EER, highlighted in blue). Results for the 2021 data
(Deepfake and Logical Access) are copied verbatim from the submission platform
(progress phase).

Model Dev EER Eval EER LA21 DF21

FCNN 31.09±3.8 15.12±0.1 19.93 17.42
Random 50.0±0.0 50.0±0.0 - -

3.3.4 Results and Analysis

3.3.4.1 Results: Predictive Power of Length of Silence

Table 3.1 shows the results when training the FCNN only on the duration of the leading
silence. The data is averaged over four individual runs, and shown with standard deviation.
Our very simple model substantially outperforms the random baseline, and achieves a
respectable 15.12% EER on the test set (vs. 50% EER of the random baseline), using
only a single feature as input: the duration of the leading silence (i.e. only a single, scalar
input).
To put this in perspective, related work [61, 62, 51] achieves about 4-8% test EER,

which is not that much better than our naive baseline.

3.3.4.2 Results: Predictive Power of Silence in Related Work

This section presents the results of the experiment described in 3.3.3.3, where we train
models from Section 3.3.2.1 both with and without access to the audio silence. Table 3.2
presents the individual results.
Note that there is a single configuration of pre-processing steps where the model has

the chance to consistently exploit the information contained in the duration of the leading
silence: Subselection t = -1 and Trim Silence = False. For all models, this configuration
considerably outperforms all other configurations: The models net an EER of 5.87%,
7.48%, and 8.33% (blue boxes) when they have reliable access to the leading silence. In
the other three scenarios, they never achieve more than 19.05% EER. This is less than
what the very basic single-feature dense network in Section 3.3.4.1 achieved. This strongly
hints at the fact that the models draw considerable, if not most of their discriminatory
power from either the duration of the silence or the silence itself.

3.3.4.3 Results: Predictive Power of Silence in ASVSpoof 2021

Table 3.3 presents the results for RawNet2, one of the ASVspoof 2021 baselines.
We observe the same trend when as in the previous chapters, c.f. Table 3.3: For both

the DF and the LA task, trimming the silence during training severely degrades model
performance (EER increases from 6.28% to 20.79% for the deepfake and 10.38% to 27.39%

43

3 Artefacts in ML-Datasets

Table 3.2: Three Deep Learning Models are trained on the ASVspoof 2019 ‘train’ split and
evaluated on both ‘dev’ and ‘eval’, each with four different configurations of data
augmentation. For each model, the test EER is lowest (blue box) when the data
augmentation allows consistent access to the audio silence.

Model Trim Sil. Subsel. Dev EER Eval EER
ResNet False -1 7.08±1.5 5.87±1.8
ResNet False 2.4s 1.66±0.4 24.68±2.2
ResNet True -1 8.83±7.6 27.23±3.2
ResNet True 2.4s 1.83±0.1 29.13±1.6
CNN False -1 0.15±0.1 7.48±0.6
CNN False 2.4s 0.61±0.2 20.02±0.9
CNN True -1 0.68±0.4 26.27±3.5
CNN True 2.4s 0.34±0.1 25.47±0.9
LSTM False -1 0.84±0.5 8.33±1.2
LSTM False 2.4s 4.50±0.2 19.05±0.6
LSTM True -1 6.21±0.7 27.28±1.4
LSTM True 2.4s 6.44±1.2 25.62±0.4

Table 3.3: RawNet2 [57], one of the baselines of the ASVspoof 2021 challenge, trained with and
without access to the audio silence. Results averaged over three runs. Removing
silence from the Training set prevents the model from using the duration of the
silence in the eval set as a cue. Consequently, 2019 ‘eval’ EER deteriorates by about
500%. The same phenomenon can be observed for the 2021 data from the Deepfake
(DF) and Logical Access (LA) track (EER values copied as-is from the CodaLab
submission website during the progress phase on July 7th, 2021).

Model Trim Sil. EER Eval-19 DF-21 LA-21

RawNet2 False 3.61±1.2 6.28 10.38
RawNet2 True 15.50±5.2 20.79 27.39

for the LA part). The same is true for the ASVspoof 2019 data. Again, we observe that
suspiciously much information is contained in the audio silence, without which model
performance degrades significantly.

3.4 Mitigation Strategies specific to ASVspoof

In the previous section, we showed that the learning shortcut in the ASVspoof dataset
leads to systematic over-estimation of model capabilities. Naturally, the question arises
on how to fix this issue. Let us first consider the validity of including silence in spoofing-
detection datasets such as ASVspoof. Silence usually is not just ’nothing’ or a string of
zeros, but has humanly imperceptible properties and characteristics, for example, faint
background noises, artifacts from the microphone used, etc. Thus, silence in a digital

44

3.5 A General Approach to Detecting Learning Shortcuts in ML-Datasets

recording is represented by a series of non-zero scalar values of low magnitude. It is
reasonable to assume that a TTS system will not be able to fake silence perfectly, so
silence can be legitimately used to classify audio recordings into spoof/bonafide. Thus, in
general, it is permissible and even desirable for recordings in a dataset such as ASVspoof
to include leading and trailing silence.
What is problematic, however, is an uneven distribution of silence. As we show in

Figure 3.2, the mere duration of silence strongly hints at the ground-truth label. In this
case, the model learns classification not due to the properties and characteristics of the
silence itself, but due to its duration (c.f. Table 3.1).

Thus, we suggest including silence in the dataset but have it distributed evenly between
the bonafide and spoofed instances. However, it is questionable if the existing ASVspoof
datasets can be augmented with sufficient samples such that the distribution of silence is
balanced. Thus, this approach should be considered primarily for upcoming datasets. For
ASVspoof 2019 and 2021, we suggest publishing a revised version of the dataset, where
the leading silence has been removed. This is easy to implement via the Python librosa
library or a forced aligner such as the Montreal Forced Aligner (MFA) [63].

3.5 A General Approach to Detecting Learning Shortcuts in
ML-Datasets

Learning shortcuts are not just a problem in the ASVSpoof dataset. As described above,
they have been found in other datasets, such as Pascal VOC 2007 [44]. Still, is an
underappreciated problem that is poorly researched and often ignored. In this section,
we lay out why these shortcuts are so difficult to find, and why their impact cannot be
measured using traditional metrics. We suggest directions for further research to develop
systems and techniques for detecting these shortcuts.

3.5.1 Challenges in Identifying Learning Shortcuts

Usually, the vast majority of learning issues in artificial intelligence are identified via the
train/test methodology. This means that the data is split into (at least) two disjoint parts,
and the learner is trained on one part and evaluated on the other. Common problems
such as overfitting, underfitting, and lack of generalization can be easily detected by
comparing success metrics (accuracy, EER, etc.) between the train and evaluation split.
At first glance, this approach seems sound: If the model performs well on unseen data,
it is assumed to generalize to unseen data. However, train/test generalisation is only a
necessary, not sufficient condition for model generalisation. Necessary because if the model
cannot handle unseen test data, it does not generalize. Sufficient because generalization on
test data has only limited meaningfulness w.r.t. true model generalization. This is because,
as we saw in the example of ASVspoof, artifacts that are present in both splits of the
data lead to learning shortcuts. While these shortcuts improve train/test generalization,
they work against true model generalization. However, since the established methodology
for finding learning errors is the train/test evaluation, these shortcuts are seldom found.

45

3 Artefacts in ML-Datasets

In fact, since they do help train/test performance, researchers tend to embrace them. In
summary, learning shortcuts are challenging to detect because the research community
lacks the tools to detect them, and the tools available actually favor the presence of
learning shortcuts.

3.5.2 How to Find Learning Shortcuts

Thus, in order to identify data artifacts leading to learning shortcuts, a new approach
is required. We suggest that the current paradigm of train/test evaluation, which is
susceptible to learning shortcuts, should be extended by a qualitative evaluation of the
dataset itself. We suggest exploring one of the following strategies:

3.5.2.1 Explainable-AI techniques

. One possibility would be to evaluate the model, not via some numerical metric, but
to employ a human expert to asses if the model performs appropriately. This is already
common practice in the field of generative models, for example, speech synthesis. Here, the
quality of synthesis is determined via a Mean Opinion Score (MOS), where humans rate
the audio quality on a scale between 0 and 5. This is done because there are no success
metrics that adequately capture the quality of the prediction ŷ, even in the presence
of the ground-truth y. However, such an assessment is difficult for classification- or
regression models, which produce only a class score or scalar value as output. Techniques
from the domain of explainable AI could help, for example, saliency maps or attention
maps, which show how a model derives its output. For example, refer to figure 3.1 on
page 38: The heatmap on the right side of the four images clearly shows where the model’s
attention is focused, and one can see that classification is based only on a single feature,
namely the presence of the watermark in the lower-left hand corner. A human assessor
would need to check a selection of images’ heatmaps, and compare them against the
human understanding of the learning goal. While this process is expensive and cannot be
automated, it is preferable having one’s model broken due to learning shortcuts.

3.5.2.2 Data-only approaches

While techniques from explainable AI as described above certainly work, they come with
several downsides. They are hard to automatize, which might lead to little practical
usage. Additionally, they do not directly capture the data artifact, but rather the learning
shortcut which derives from it. A more immediate, data-only, model-agnostic technique
is thus desired. We present an approach in the following paragraph.
We can define shortcuts as features Fi which are

• not independent w.r.t. target T (i.e., the feature is predictive, p(T |Fi) 6= p(T)),

• and which are semantically unrelated to target T (i.e., the feature should not be
predictive).

46

3.5 A General Approach to Detecting Learning Shortcuts in ML-Datasets

Figure 3.3: This figure shows an aggregation of the ASVspoof 2019 dataset’s information as
described in equation (3.1). The x axis represents time, while the y axis represents
frequency bins. Bright spots represent areas where the pixel xij holds much infor-
mation w.r.t. the target class y, while darker regions represent areas where there is
less information (per pixel). We see that the left part of the image contains high
pixel-wise information, corresponding to the prevalence of silence, depending on the
label. Refer to figure 3.4 for visualisation of the individual data instances.

p(T |Fi) 6= p(T) p(T |Fi) = p(T)

Fi meaningful ideal not ideal
Fi irrelevant possible learning shortcut ok

Table 3.4: Interplay between feature predictiveness and semantics. Meaningful features that
are predictive are useful for data-driven learners. Irrelevant features that are not
predictive are also acceptable. Meaningful features that are not predictive do not
pose a problem but are squandered possibilities. Finally, irrelevant features that are
predictive are a big problem, since they enable learning shortcuts.

In contrast, how (in)dependence and feature semantics should be related is shown in ta-
ble 3.4. Only when an irrelevant feature is predictive for T , does the possibility for
learning shortcuts arise.
Whether or not a feature should be predictive requires a human judge. However,

estimating whether a feature is predictive can be solved using the following approach:

p(T |Fi)
?
= p(T)

⇔ p(T, Fi)
?
= p(T)P (Fi)

⇔ p(Fi|T)
?
= p(Fi)

⇔ log p(Fi|T)
?
= log p(Fi)

⇔ 0
?
= log p(Fi)− log p(Fi|T)

⇔ 0
?
= log

p(Fi)

p(Fi|T)

47

3 Artefacts in ML-Datasets

Since we have only sample to work with, we evaluate this over our dataset D:

EFi∼D log
p(Fi)

p(Fi|T)
=
∑
Fi

p(Fi) log
p(Fi)

p(Fi|T)
= KL (p(Fi)||p(Fi|T)) (3.1)

Here, KL is the KL-Divergence. The probabilities p(Fi) and p(Fi|T) can be estimated
using, for example, a histogram. Note that p(Fi|T) requires to select a target T = t, i.e.
we compute p(Fi|T = t). Equation (3.1) can then be aggregated via either mean or max
over all target classes t. Thus, in summary, we derive a way to measure an individual
feature’s predictiveness, given dataset D.

We have implemented this approach as an early prototype, and present the first results
in figure 3.3. This figure shows a representation of the ASVspoof 2019 dataset, where the
information in all audio files has been aggregated and contrasted between the two classes
y = 0 and y = 1 (authentic and spoof). We can see that the first half of the image is
bright, whereas the second part is dark. This corresponds to the fact that soundwaves
during the first few timesteps (with time denoted on the x axis) hint at the target label:
if the audio starts without a pause, it has a high probability of being spoofed. Figure 3.4
shows random samples for the ASVspoof 2019 dataset, where the top row shows benign
and the bottom row malicious samples. Note how the benign samples have long leading
silence, corresponding to empty frequency bins in the left half of the images.
While this artifact could be identified by closely looking at the samples, there are

other data artifacts imaginable that cannot be spotted by inspecting individual samples.
For example, we introduce an artificial artifact into the dataset: we chose three random
frequencies, which we attenuate to 95%, but only for instances where the target y = 0.
This means that, on average, certain frequencies are a bit less pronounced than others for
the spoofed instances. The top row of figure 3.4 shows an MFCC-representation of such
audio files. The artifact is very difficult to detect visually, especially for the unsuspecting
eye. However, applying equation (3.1) yields an information heatmap as shown in the left
image in figure 3.5, where the frequency-masking is clearly visible. In this aggregated
view, the artifact is clearly visible. In summary, such a tool may be an easy, quick and
straightforward way to check the data for artifacts and possible learning shortcuts.

3.5.3 Limitations of Proposed Approach

A key limitation is that we cannot compute this measure for more than one or, at the
most, two features Fi simultaneously. Put differently, we cannot compute

KL (p(Fi, . . . , Fj)||p(Fi, . . . , Fj |T))

The problem lies in estimating probabilities p(Fi, . . . , Fj) and p(Fi, . . . , Fj |T) given the
data: If we used a histogram with k bins (as above), estimating the joint (conditional)
probabilities would require kN bins, whereN is the number of random variables Fi, , . . . , Fj .
The number of bins rises exponentially, while the amount of data remains constant. Thus,
for larger N, say N > 2, the histogram’s bins would be populated only very sparsely,
yielding pathological probability estimates. This prevents us from analyzing shortcuts

48

3.5 A General Approach to Detecting Learning Shortcuts in ML-Datasets

Figure 3.4: Random samples from the ASVspoof 2019 dataset, with the label y = 0 in the first
row, and y = 1 in the second. The images show the first 150 time-slots on the x
axis, and the frequency bins on the y axis. The longer silences for y = 0 are not
visible for every instance.

Figure 3.5: To demonstrate how data artifacts may be discovered, we introduced an artificial
artifact into the ASVspoof dataset shown in figure 3.4: Three randomly chosen
frequencies have been masked by 5% for all instances where the class is y = 0. One
can observe faint vertical lines for the top-row images of figure 3.4. However, it may
be hard to spot this just from the data, when not knowing what to look for. Data
aggregation as per equation (3.1) could alleviate this problem: This figure presents
such an aggregation, where the artifact is much more clearly visible (distinct vertical
lines). Note that we see the original artifact (missing silence) as the bright streaks
on the left of the images.

that only occur as a combination of several Fi. An example would be a shortcut such as
Fi = Fj =⇒ T = t and Fi 6= Fj =⇒ T = ¬t.
In summary, there are some promising approaches to identifying data artifacts. We

strongly argue for the necessity of such tools, because if such sanity checks are left
out, entire research communities may over-estimate the performance of their models, as
happened in the case of ASVspoof [1].

49

4 Integrity of Active Learning

The previous chapter was concerned with detecting errors in the data sampled from the
underlying, data-distribution p(X). Now, let us consider deliberate data contamination,
i.e. adversarial attacks on the sampling process. In this chapter, we present such an
attack that lets the attacker control which instances are included in the final dataset,
with a success rate of up to 100%. We analyze implications and design and evaluate
appropriate countermeasures. Please note that this research has first been published as a
first-authored paper in the 19th Symposium of Intelligent Data Analysis, and passages
are quoted verbatim from the corresponding paper [2].

4.1 Active Transfer Learning

Training supervised machine learning algorithms such as neural networks requires large
amounts of labelled training data. In order to solve problems for which there is no or
little training data, previous work has developed techniques such as Transfer Learning
and Active Learning.

• Transfer Learning (TL) applies knowledge gained from one problem to a second
problem. For example, consider the problem of training a Neural Network on a very
small image dataset (say N = 500). Training directly on the dataset will yield poor
generalization due to the limited number of training examples. A better approach
is to use a second, already-existing network trained on a different task to extract
high-level semantic features from the training data, and train the first network on
these features instead of the raw images themselves. For images, this is commonly
employed practice and easily accessible via the tensorflow library. For audio data,
similar feature extractors are also easily accessible [64].

• Active Learning (AL) on the other hand is a process where a learning algorithm
can query a user. AL is helpful when creating or expanding labelled datasets. Instead
of randomly selecting instances to present to a human annotator, the model can
query for specific instances. The model ranks the unlabelled instances by certainty
of prediction. Those instances for which it is most uncertain are the ones where a
label is queried from the human annotator. Model uncertainty can be understood
as the distance to the decision surface (SVM), or entropy of the class predictions
(uncertainty sampling for Neural Networks). In summary, Active Learning can help
in finding the optimal set of instances to label in order to optimally use a given
budget [65].

51

4 Integrity of Active Learning

Since these approaches are complementary, they can be combined straightforwardly: One
designs a transfer active learning system by combining an untrained network with a
pre-trained feature extractor and then allows this combined model to query a human
expert. Previous work has examined this in detail and finds that it can accelerate the
learning process significantly [66, 67, 68]. In this chapter, we show that this combination
of AL with TL is highly susceptible to data poisoning.

4.2 Related Work

In this section, we discuss related work on transfer active learning. We first present work
on combining transfer and active learning and then discuss related data poisoning attacks
for each approach. We observe that there is no prior work on data poisoning for the
combined method of transfer active learning.

4.2.1 Active Learning with Transfer Learning.

Kale et Al. [66] present a transfer active learning framework which "leverages pre-existing
labelled data from related tasks to improve the performance of an active learner". They
take large, well-known datasets such as Twenty Newsgroup, and evaluate the number of
queries required in order to reach an error of 0.2 or less. They can reduce the number
of queries by as much as 50% by combining transfer learning with active learning. The
authors of [67] perform similar experiments, and find that "the number of labelled examples
required for learning with transfer is often significantly smaller than that required for
learning each target independently". They also evaluate combining active learning and
transfer learning, and find that the "combined active transfer learning algorithm [...]
achieve[s] better prediction performance than alternative methods".

Chan et al. [69] examine the problem of training a word sense disambiguation (WSD)
system on one domain and then applying it to another domain, thus ’transferring’
knowledge from one domain to another domain. They show that active learning approaches
can be used to help in this transfer learning task. The authors of [70] examine how to
borrow information from one domain in order to label data in another domain. Their
goal is to label samples in the current domain (in-domain) using a model trained on
samples from the other domain (out-of-domain). The model then predicts the labels
of the in-domain data. Where the prediction confidence of the model is low, a human
annotator is asked to provide the label, otherwise, the model’s prediction is used to label
the data. The authors report that their approach significantly improves test accuracy.

4.2.2 Poisoning Active Learning.

Poisoning active learners requires the attacker to craft samples which, in addition to
adversely affecting the model, have to be selected by the active learner for labeling and
insertion into the dataset. This attack aims at both increasing overall classification error
during test time as well as increasing the cost for labeling. In this sense, poisoning active
learning is harder than poisoning conventional learners, since two objectives have to be

52

4.3 Attacking Active Transfer Learning

satisfied simultaneously. Miller et Al. [42] present such an attack: They poison linear
classifiers and manage to satisfy both previously mentioned objectives (albeit with some
constraints): Poisoned instances are selected by the active learner with high probability,
and the model trained on the poisoned instances induces significant deterioration in
prediction accuracy.

4.2.3 Adversarial Collisions

There exists some related work on adversarial collisions, albeit with a different focus from
ours: Li et Al. [71] observe that neural networks can be insensitive to adversarial noise of
large magnitude. This results in ’two very different examples sharing the same feature
activation’ and results in a feature collision. However, this constitutes an attack at test
time (evasion attack), whereas we present an attack at training time (poison attack).

4.3 Attacking Active Transfer Learning

In this section, we introduce the proposed attack. We first present the threat model and
then detail the attack itself. In Section 4.4, we evaluate the effectiveness of our attack
empirically.

4.3.1 Threat model

Our thread model is largely identical to the one presented in section 6.4.1. However, in the
transfer active learning setup, there are additional components that we have not taken into
consideration before: This includes the active learning algorithm itself, and the feature
extractor. Additionally, the input data is now unlabeled, in contrast to section 6.4.1,
where the data was labeled. We shortly outline how this impacts our threat model.

• The attacker may introduce a small number of adversarially perturbed instances
into the active learning pool. These instances are unlabeled. They are screened by
the active learning algorithm and may, along with the benign instances, be selected
by the Active Learning algorithm for labelling by the human annotator.

• The attacker cannot compromise the output of the human annotator, i.e. they
cannot falsify the labels assigned to either the benign or poison instances.

• Additionally, the attacker cannot influence the pool of benign instances (i.e. they
cannot remove or alter benign instances).

• The attacker knows the feature extractor used. This could, for example, be a
popular open-source model such as resnet50 [72] or YAMNet [73]. These models
are readily available and widely used [74].

• The attacker has no knowledge about, or access to the model trained on top of the
feature extractor.

• The attacker does not know the active learning algorithm.

53

4 Integrity of Active Learning

This is a realistic scenario and commonly found in related work. For example, Shafahi et
Al. [75] present an attack where poisoned data is published on the internet, waiting for
unsuspecting crawlers. The authors proceed to show the applicability of their attack in
the domain of image classification, where transfer learning is commonly employed.

4.3.2 Feature Collision Attack

Since transfer active learning is designed to use found data, i.e. data from untrusted
sources, it is highly susceptible to data poisoning attacks. In this section, we present such
an attack and show how it completely breaks the learned model.
Let X,Y be a set of unpoisoned data, where the data X and targets Y consist of N

instances. An instance pertains to one of M different classes (e.g. ’dog’ or ’cat’). Let f be
the pretrained feature extractor, which maps a sample xi ∈ X to a dζ dimensional feature
vector (i.e. f(xi) = ζi). Let g be the dense model head, which maps a feature vector ζi
to some prediction ypred ∈ [0, 1]M , where ypred is a one-hot vector, i.e.

∑M−1
m=0 y

m
pred = 1.

Thus, an image is classified by the subsequent application of the feature extractor f and
the dense model head g:

y = arg max
i

g(f(xi)) (4.1)

For a set of instances {xi}, a set of adversarial examples {xi + δi} can be found by
minimizing, for each xi separately:

δi = arg min
δ

∥∥f(xi + δ)− µ
∥∥

2
+ β‖δ‖2 (4.2)

where β ∈ R+ and µ is a fixed vector of size dζ . Solving Equation 4.2 will find adversarial
examples that 1) are selected by the active learner 2) break the model, and 3) are
imperceptible to the human annotator:

1. Examples are queried. A set of thusly found adversarial examples {xi + δi} will
all be mapped to the same output µ, i.e. f(xi + δi) = µ for all i. This will ’confuse’
the active learner, since all adversarial examples share the same feature vector, but
have different class labels. Thus, the active learner will incur high uncertainty for
instances mapped to this collision vector µ, and thus will query almost exclusively
these (we verify this experimentally in Section 4.4.2).

2. Examples are harmful. These examples will break any model head trained on
the extracted features ζi, since all adversarial examples share identical features, but
different labels. Figure 4.1 gives a visual representation.

3. Examples are undetected by a human annotator. Once queried, the adversar-
ial examples xi + δi will be reviewed by a human annotator and labelled accordingly.
The second part of Equation 4.2 ensures that the adversarial noise is small enough
in magnitude to remain undetected by human experts. The adversarial example
will thus be assigned the label of xi, but not raise suspicion of the human annotator.
The scalar β is a hyperparameter controlling the strength of this regularisation.

54

4.3 Attacking Active Transfer Learning

Figure 4.1: This diagram shows the effects of the proposed feature collision attack on Active
Learning. On the left hand side, the raw images are shown: A larger stack of benign
images (blue), and a smaller stack of images perturbed with our feature collision
attack (red). The middle part of the figure represents the feature space of the
transfer learner, f(x). Observe how different classes (as indicated by the different
shapes, i.e. circles, squares and diamonds) are mapped to different regions in feature
space. However, due to the collision attack, malicious samples are all mapped to the
same region in feature space, albeit they originate from different classes. The right
part of the figure shows the target space of the dense model head, g(f(x)), i.e. the
different class bins. The dense head can easily match the benign samples by finding
a sensible mapping between regions in feature space and the class bins. For example,
Class A is represented by the diamond shape, which is found in the upper left
region of the feature space. The poison samples, however, cannot be distinguished
in feature space, because they all cluster around the collision vector. Thus, they
confuse the dense model head g (shown by the red, dangling arrow and the question
marks), incurring high uncertainty. Thus, they’ll be selected preferentially by the
AL algorithm, trumping the benign samples.

55

4 Integrity of Active Learning

4.3.2.1 Choice of Collision Vector

The Collision Vector µ is chosen as the zero vector µ = 0dζ because of two reasons: First,
we find that it helps numerical convergence of Equation 4.2 when training with Gradient
Descent. Second, a zero-vector of features is highly uncommon with unpoisoned data.
Thus, it induces high uncertainty with the active learner, which in turn helps to promote
the adversarial poison samples for labeling and inclusion in the training dataset from the
beginning. It is possible to chose a different µ, for example the one-vector µ = 1dζ , or
the mean of the feature values µ = ζi. However, we find that the zero-vector works best,
most likely due to the reasons detailed above.

4.3.2.2 Improving attack efficiency

We propose two improvements over the baseline attack. First, when choosing the base
instances from the test set to poison and to include in the train set, it is advisable to
select those where either the L1 vector norm

‖f(x)− µ‖1 =
∑
j

∣∣f(x)j − µj
∣∣ (4.3)

or alternatively the L2 vector norm

‖f(x)− µ‖2 =
(∑

j

(
f(x)j − µj

)2)1/2
(4.4)

is smallest. j ∈ [0, ..., dζ − 1] iterates over the vector components of f(x) and µ, which
have the dimensionality of the feature extractor’s output size. Intuitively, this pre-screens
the samples for those where the optimization step (Equation 4.2) requires the least work.
In our experiments, we use the L2 vector norm as defined by Equation (4.4). Second,
maintaining class balance within the poison samples improves effectiveness. This helps
in maximally confusing the active learner, since a greater diversity of different labels
for the same feature vector µ increases the learner’s uncertainty with respect to future
samples that map to µ. In all of the following analysis, we evaluate the attack with these
improvements in place.

4.4 Implementation and Results

In this section, we first describe our transfer active learning setup and the data sets
used for evaluation. We then implement our attack and demonstrate its effectiveness (c.f.
Section 4.4.2).

4.4.1 Active Transfer Learner Setup

This section describes the data we use and our choice of transfer learner.
For our experiments, we use image and audio data. This is because Active Learning

requires a human oracle to annotate instances, and humans are very good at annotating

56

4.4 Implementation and Results

both image and audio data, but rather inefficient at processing purely numerical data.
This motivates the choice of the active learner, namely a neural network, which in recent
times has been shown to provide state-of-the-art performance on image and audio data.
Thus, we create the transfer learner as follows: We use a large, pre-trained model

to perform feature extraction on the audio and image data. For image data, we use
a pre-trained resnet50 model [72], which comes with the current release of the python
tensorflow library. For audio data, we build a feature extractor from the YAMNet model,
a deep convolutional audio classification network [73]. Both of these feature extractors
map the raw input data to a vector of features. For example, resnet50 maps images with
32 ∗ 32 ∗ 3 = 3072 input dimensions to a vector of 2048 higher-level features. A dense
neural network (dense head) is then used to classify these feature vectors. Our Active
Learner uses Entropy Sampling [65] to compute the uncertainty

uncertainty(xi) = H(g(f(xi))) (4.5)

= −
∑
m∈M

g(f(xi))
m log g(f(xi))

m (4.6)

for all unlabelled xi. The scalar value g(f(xi))
m indicates softmax-probability of the

m-th class for of the network’s output. The active learner computes the uncertainty for
all unlabelled instances xi and selects the one with the highest uncertainty to be labeled.

4.4.1.1 Prevention of Overfitting.

As detailed in Section 4.1, we use active transfer learning in order to learn from very small
datasets. Accordingly, we use at most N = 500 instances per dataset in our experiments.
In this scenario, overfitting can easily occur. Thus, we take the following countermeasures:
First, we keep the number of trainable parameters low and use a dense head with at most
two layers and a small number of hidden neurons. Second, we use high Dropout (up to
50%) and employ early stopping during training. Third, we refrain from training the
weights of the Transfer Learner (this is commonly referred to as fine-tuning). This is
motivated by the observation that the resnet50 architecture has more than 25 Million
trainable weights, which makes it prone to overfitting, especially on very small datasets.

4.4.1.2 Datasets

We use three datasets to demonstrate our attack.

• Google AudioSet [76], a large classification dataset comprising several hundred
different sounds. We use only a subset of ten basic commands (right, yes, left, etc.).

• Cifar10 [77], a popular image recognition dataset with 32x32 pixel images of cars,
ships, airplanes, etc.

• STL10 [78], a semi-labelled dataset, comprising several thousand labelled 96x96
pixel images in addition to tens of thousand unlabelled images, divided into ten
classes. In this supervised scenario, we use only the labelled subset.

57

4 Integrity of Active Learning

Figure 4.2: Images with index 155 (bird), 308 (horse), 614 (dog) and 3964 (deer) from the STL
dataset. The left image of each pair shows the base instance, i.e. the unpoisoned
image. The right image shows the poisoned image which causes the collision in the
transfer learner’s output space.

Each dataset is split into a train set and two test sets, test1 and test2 using an 80, 10
and 10 percent split. Following previous work [75], we train on the train set, use the test1
set to craft the adversarial examples, and evaluate the test accuracy on the test2 set.
Thus, the adversarial examples base instances originate from the same distribution as the
train images, but the two sets remain separate.

4.4.2 Feature Collision Results

We now verify empirically that the created instances look inconspicuous and are hard
to distinguish from real, benign instances. Consider Figure 4.2. It shows four randomly
selected poison instances of the STL10 dataset. Observe that the poisoned images are
hardly distinguishable from the originals. We also provide the complete set of audio
samples for the Google Audio Set1, both poisoned and original .wav files.
We now proceed to visually illustrate the results of the feature collision. Consider

Figure 4.3: For the poisoned and benign training data in the AudioSet10 dataset, it shows
the corresponding feature vectors after PCA-projection in two dimensions. Thus, it shows
what the dense model head ’sees’ when looking at the poisoned data set. Note that while
the unpoisoned data has a large variety along the first two principal components (as is
expected, since the individual instances pertain to different classes), the poison data’s
features collide in a single point (red dot) - even though they also pertain to different
classes. Thus, we observe a ’feature collision’ of the poison samples to a single point
in feature space, which, in combination with the different labels, will cause maximum
’confusion’ in the active learner.

1https://drive.google.com/file/d/1JtXUu6degxnQ84Kggav8rgm9ktMhyAq0/view

58

https://drive.google.com/file/d/1JtXUu6degxnQ84Kggav8rgm9ktMhyAq0/view

4.4 Implementation and Results

Figure 4.3: Visualisation of the transfer learner’s feature space. The top image shows the first two
principal components of the Google AudioSet 10 dataset’s features when using the
YAMNet feature extractor. The bottom image shows the same visualization of the
Cifar10 dataset, using the imagenet50 feature extractor. The blue dots represent the
unpoisoned training data. The red dots represent poison data found via Equation 4.2,
chosen equally per class (50 instances for each of the ten classes). Observe the
large diversity of the unpoisoned training data compared to the adversarial poison
data, which is projected onto a single point, thus creating a ’feature collision’ which
massively deteriorates the active learner’s performance.

59

4 Integrity of Active Learning

Table 4.1: Results of the feature collision poisoning on three data sets: Cifar10, STL and Google
Audio Set. The Head of the Active Learner has one (NN1) or two (NN2) dense layers.
The success rate provides the ratio with with poison samples are selected by the
active learner.

Dataset Model Accuracy
(Clean)

Accuracy
(Poisoned)

Loss
(adv.)

Loss
(initital) N

Success
Rate

(Poison)

Success
Rate

(Random)

Time
(s)

STL NN1 0.862 0.347 107.729 66450.624 500 1.0 0.126 113.08
Cifar10 NN1 0.432 0.267 39.746 5016.588 500 1.0 0.013 93.425

Audio Set 10 NN1 0.252 0.143 0.488 24.59 500 1.0 0.016 73.083
STL NN2 0.844 0.7 107.729 66450.624 500 0.86 0.126 113.08

Cifar10 NN2 0.428 0.341 39.746 5016.588 500 0.832 0.013 93.425
Audio Set 10 NN2 0.263 0.141 0.488 24.59 500 0.998 0.016 73.083

4.4.3 Impact on the Model

In this section, we evaluate the impact on the classification accuracy of transfer active
learners when exposed to the poison samples. For each of the three datasets, we create
500 poison samples and include them into the training set. We then create a transfer
active learner (a neural network with one / two layers), train it on 20 unpoisoned samples,
and simulate human annotation by letting the active learner query for 500 new instances
from the training set (which contains a majority of benign data plus the injected poison
samples). We find that the active learner

• almost exclusively selects poisoned samples, and

• test performance is degraded severely (by up to 50% absolute).

Table 1 details our results.
For example, consider the first row, which evaluates a one-layer neural network (NN1)

on the STL-dataset. In an unpoisoned scenario, after having queried 500 images, the
active learner has a test-accuracy of 86 percent. When introducing 500 poison instances,
we observe the following: First, even though the poison instances are outnumbered 1:8,
the active learner chooses 500 out of 500 possible poison instances for manual annotation
- a success rate of 100 percent. In comparison, if the adversarial instances would be
queried with the same probability as unpoisoned samples, only 12.6 percent of them
would be chosen (random success rate). Secondly, observe that test accuracy is degraded
significantly from 86 percent to 34 percent. This is because the model can not learn on
data that, due to the feature collision attack, looks identical to one another for the dense
head.

4.4.4 Hyper Parameters and Runtime

Table 1 details the run time to find a single adversarial example on an Intel Core i7-
6600 CPU (no GPU), which ranges from one to two minutes. We used the following
hyperparameters to find the adversarial samples: For the audio samples, we used β = 0.3
and 2000 iterations with early stopping and adaptive learning rate. For the image samples,

60

4.4 Implementation and Results

we used β = 1e− 5 and 500 iterations. The difference in β between image and audio data
is due to the difference in input feature scale, which ranges from ±127 for images to ±215

for audio data.

4.4.5 Defending Against Adversarial Transfer Poisoning Attacks

How can one defend against such an attack? One possiblity would be to somehow break
the adversarial collision, i.e. maniuplate either the feature extractor or the data s.t.

g(x′) 6= µ

for x′ poisoned instances. There are two possibilites to achieves this:

• First, we can alter the feature extractor g. This could theoretically be achieved by
unfreezing the model, i.e. re-training of the feature extractor g along with the dense
model head. Such training on the poison samples actually serves as ’adversarial
retraining’, which has been shown to boost model robustness [79]. However, this is
not a suitable approach due to the following concerns.

– Lack of labelled samples. In order to unfreeze the weights of the feature
extractor f , a large number of labelled samples is required. These are not
available at the start of the active learning cycle. Thus, retraining can only
occur during later stages. Until then, however, the adversary has free reign to
introduce their poison samples into the dataset.

– High computational overhead. Retraining the feature extractor f incurs
high computational overhead in comparison to training only the dense head g.

– Overfitting. Training f , especially on a small dataset, may result in overfit-
ting, as described in Section 4.4.1.1.

Thus, in summary, completely unfreezing the model is not a suitable defense.
However, one might change g only slightly, for example by setting a small learning
rate (e.g. 1e−6.). We implement an evaluate this approach and show results
in table 4.2.

• Second, in order to break the relationship g : x′ 7→ µ, we can introduce some
perturbation p(x′) s.t.

g(p(x′)) 6= µ

The following perturbations are natural candidates, which we implement and
evaluate, c.f. table 4.2:

– Channel swapping, i.e. randomly permuting the red, green, blue (rgb)
channels.

– Pixel Shifting, i.e. shifting the complete image by 1, 2 or 3 pixels to the
right. This causes the convolutional filters to misalign to the adversarial noise.

– Adding Gaussian Noise, where we chose σ = 12.75, i.e. 5% of the feature
range (0 to 255).

61

4 Integrity of Active Learning

Figure 4.4: The effect of our proposed pixel-shift defense (right) vs. employing no defense (left).
Observe how the adversarial samples are distributed much more evenly in the feature
space, thereby not coinciding on the collision vector.

– Image rotation by 90 degrees. This, again, should misalign the adversarial
noise and the convolutional filters of g.

– Horizontal flipping, which serves a similar purpose.

Additionally, we implement a naive ‘dummy’ defense, where we set all pixels to
random values. This serves as a sanity check.

4.4.5.1 Evaluation

The following table 4.2 presents the results of our defense on the STL dataset. The image
shifting defense is able to almost completely negate the loss in accuracy, whilte at the same
time drastically reducing the number of poison samples to be chosen (from 100% to about
45%). The horizontal-mirroring defense performs best w.r.t. this metric (adversarial
success rate of only 30%, compared to the baseline probability of 12%). However, it incurs
significant loss of model accuracy (about 20%). To summarize, the pixel-shift defense
works well, incurring no accuracy-penalty while at the same time largely reducing the
adversarial success rate. The effectiveness of this defense is likely due to the fact that
convolutional filters are invariant to small shifts in pixel space, since they focus on larger,
semantic units, but adversarial noise is not.

Figure 4.4 visualizes the succes of the pixel-shift defense by plotting the feature-space
of the training and adversarial data. We see that adversarial data no longer coincides
strongly over the collision vector µ.

62

4.5 Conclusion

Model Defense Acc. Clean Acc. Poisoned Success Rate Pois.
NN1 no_defense 0.852 0.394 1.000

dummy_defense 0.083 0.089 0.120
swap_channels 0.799 0.734 0.458
shift_img_1px 0.829 0.847 0.520
shift_img_2px 0.829 0.853 0.474
shift_img_3px 0.841 0.844 0.436

add_gauss_noise 0.791 0.774 0.462
rotate_img 0.674 0.625 0.400

unfreeze_small_lr 0.816 0.356 1.000
mirror_horizontally 0.687 0.688 0.286

NN2 no_defense 0.824 0.645 0.834
dummy_defense 0.104 0.105 0.134
swap_channels 0.751 0.744 0.436
shift_img_1px 0.818 0.817 0.514
shift_img_2px 0.832 0.815 0.444
shift_img_3px 0.812 0.801 0.398

add_gauss_noise 0.734 0.797 0.428
rotate_img 0.673 0.652 0.356

unfreeze_small_lr 0.816 0.678 0.812
mirror_horizontally 0.678 0.687 0.302

Table 4.2: Performance of the proposed defense strategies on the STL dataset. The best results
per column are highlighted. Note that the dummy_defense does achieve low poison
success rate, but also breaks the model (see Accuracy score), so it is not a suitable
defense, but rather a baseline or sanity check.

4.5 Conclusion

In this chapter, we present an intriguing weakness of the combination of active and
transfer learning: By crafting feature collisions, we manage to introduce attacker-chosen
adversarial samples into the dataset with a success rate of up to 100 percent. Additionally,
we decreased the model’s test accuracy by a significant margin (from 86 to 36 percent).
The success rate for randomly choosing a poison samples is about 12%, since they poison
samples are outnumbered by the benign instances by about 1 : 7 (500 poison samples
vs. 3500 benign samples). This attack can effectively break a model, wastes resources of
the human oracle, and is very hard to detect for a human when reviewing the poisoned
instances. Additionally, we show that by using simple input filters such as pixel-shift, we
can mitigate the attack to some extent without compromising on model performance. To
the best of our knowledge, this particular weakness of transfer active learning has not
been observed before.

63

5 Identifying Mislabeled Data

The second step in the data-creation pipeline, c.f. figure 1.1, is the labeling of the sampled
data. These labels involve human annotators, which can easily result in mislabelled
instances, i.e. data instances xi where the corresponding label yi is incorrect. Since this
poses problems for model training and, especially, evaluation, an efficient way to identify
such mislabelled instances is required. This chapter presents our research on this subject.
Specifically, we design and implement an algorithm that can find mislabelled instances in
classification data. This allowed us to find a variety of mislabelled instances in popular,
real-world datasets that have not been described before. Passages are quoted verbatim
from work submitted to the International Joint Conference of Neural Networks 2019,
where this research has been accepted as a full paper [3] and was first presented to the
scientific community.

5.1 Motivation

As outlined in Chapter 1, machine learning relies on high-quality training data. A
requirement for high-quality data is the correctness and reliability of the data labels. This
means that for each instance (x, y), the label y has to match the semantic content of
x. For example, an image of a horse x should have the corresponding label horse and
not butterfly. The presence of such incorrect labels can be described as ’label noise’ or
the presence of data poisoning where the adversary acts randomly. As we will see in
Chapter 7, this algorithm can be extended to mitigate the effects of deliberate adversaries,
i.e. adversarial data poisoning.

Ensuring the correctness of the training data’s labels is not trivial, because the human
annotators who create these datasets make mistakes. This is a widely recognized fact:

’...the process that generated the original labels had humans in the loop and
errors creep in that way.’
(Han Xiao [80], Creator of the Fashion-MNIST dataset)

For datasets containing as many as 60,000 instances (e.g., Fashion-MNIST), it is nearly
impossible to manually find mislabelled data, such as shown in Figure 5.1. This is why a
tool to help identify mislabelled instances is needed.

5.2 Related Work

In this section, we give an overview of related work w.r.t. identifying mislabelled instances
in machine learning training data. We observe that there are three ways to deal with noisy

65

5 Identifying Mislabeled Data

Figure 5.1: Mislabelled instances in the Fashion-MNIST training set. The heading shows the
original label and the instance number w.r.t the training set. Note how the semantic
content of the image does not fit the label, which is why these instances are considered
’mislabeled’. The correct labels should be ’dress’, ’shirt’, ’shirt’, ’dress’.

Completely At Random At Random Not At Random
Depends on - Class Class and Features
Example Dogs & Trees Leopards & Lions Yellow Cats & Lions

Table 5.1: Taxonomy of label noise as per Frenay et Al. [81, 82]

datasets. First, one may choose to design robust algorithms that can learn even from
noisy data. Second, mislabelled instances can be identified and automatically removed
from the dataset before training. Third, mislabelled instances can be identified and then
re-evaluated by a domain expert. We now proceed to briefly present related work in each
of these categories.

5.2.1 Taxonomy of Label Noise

It turns out the label noise comes in different varieties. A comprehensive overview of
class label noise is provided by Frenay et Al. [81, 82], who summarize the literature on
label noise and distinguish three sources of noise: completely at random, at random,
and not at random. According to their definition, errors occurring completely at random
are independent of the true class and the feature values. Put differently, everything is
confused with everything else. Errors at random only depend on the class (e.g., confusing
lions and leopards but not lions and trees). Finally, errors not at random, depend on the
class as well as the feature values (e.g., confusing only big yellowish cats with lions but
not black ones). Table 5.1 provides a summary.

5.2.2 Learning With Label Noise

The first step in dealing with mislabelled training data is to simply accept it, and try to
design one’s model around the label noise.

If humans did their best reasonable effort when producing the dataset, then
algorithms have to live with it. Han Xiao, [80]

Here, the usual approaches for designing robust models can be employed: Using Dropout [83],
high learning rates, or regularisation are good starting points.

66

5.2 Related Work

Additionally, one may employ algorithms specifically designed to be robust against
label noise [84, 85]. Finally, there are semi-supervised methods such as [86], which assume
the presence of a larger noisy, and a smaller clean dataset, which can be then used to
improve robustness to label noise on the larger dataset.

5.2.3 Label Cleansing

A second approach consists of finding and removing mislabelled instances. These methods
are usually some sort of anomaly or outlier detection, bootstrapped on a smaller, clean
dataset.
For example, Brodely et Al. [87] propose to first train filters on parts of the training

data to identify mislabelled examples in the remaining training data. To this end, they use
cross-fold validation among decision trees, nearest neighbor classifiers, and linear machines.
Mislabelled instances are subsequently removed from the training set. Then, a learning
algorithm is trained on the reduced training set. Sabzevari et Al. [88] train random
forests on bootstrapped samples to create ensembles. A threshold for the disagreement
ratio of the classifiers is introduced to detect mislabelled data. The downside of these
approaches is that they diminish the size of the dataset.

5.2.4 Label Noise Identification

A third class of approaches, to which our proposed algorithm belongs, identifies and
corrects mislabelled instances. While possibly more costly, such approaches yield a larger
training set. Often, these approaches are conceptually similar to the ’label cleansing’
methods from the previous subsection and simply omit the re-labeling step.

Ekambaram et Al. [89] present a two-level approach to identifying mislabelled instances
in binary classification data: First, a support vector machine (SVM) is trained on the
dataset. The support vectors (points close to the decision boundary) are considered noisy,
and the rest of the data is considered clean. A second classifier is trained on the clean
data and used to re-evaluate the noisy data. Each mismatch is presented to a human
annotator for judgment. After reviewing over 15% of the images in ImageNet (about
7500 images), the authors identify 92 mislabelled pictures. In comparison, our proposed
method has a much higher yield, c.f. Section 5.4.

Another approach is presented by Alrawi et Al. [90]. They train a convolutional neural
network (CNN) ensemble on parts of the dataset to evaluate the remaining dataset via
majority voting. This method is applied to different image datasets (CIFAR10, CIFAR100,
EMNIST, and SVHN). We compare their method against ours, c.f. Section 5.4.3.
Although most publications have focused on image data, similar techniques can be

applied to text documents [91] and e-mail spam filtering [92]. In this context, however,
the problem of ambiguity becomes more prominent: Even for a domain expert, it is not
always clear what the correct label should be. This is especially true for regression data,
where a domain expert is needed to fill the role of the human oracle. Note that in the
domain of machine learning, an oracle is some entity with absolute knowledge, usually
about the target variable y. It contrasts with the learning model’s prediction in that the

67

5 Identifying Mislabeled Data

oracle is assumed to always be correct. Usually, the oracle is a human who can be queried
for the correct label of an instance. Thus, the number of queries is limited and the oracle
has to be queried sparingly.

5.3 Methodology

The following section provides our proposed algorithm to identify mislabelled instances in
a given classification dataset D = (x, y).

5.3.1 Problem Statement

Assume a dataset (x, y) of size N and dimensionality D, where each instance pertains to
one of C classes. We can encode the targets y as a one-hot matrix of shape (N,C), and
the data x as a matrix of shape (N,D)
We define I ⊆ D as the set of mislabelled instances. Hence, I = ∅ if there are no

mislabelled instances in D. The set I is, of course, unknown to the user but for every
index n ∈ {0, . . . , N − 1} a domain expert could manually check whether (xn, yn) ∈ I,
i.e. if the instance is mislabelled or not. We refer to some domain expert reviewing every
single d ∈ D as the naive approach. As detailed in the introduction, the naive approach is
often prohibitively expensive. We assume that |I| � N , because otherwise there is not
much room to improve upon the naive approach.
To reduce the number of required reviews by the human annotator, our goal is to

construct a mapping

fα : D → Iα

for some 0 < α < 1 (determining the number of instances to be reviewed) such that
|Iα ∩ I| is maximized while |Iα| is minimized. Here, Iα where |Iα| = αN is the set of
instances that are to be reviewed by a domain expert. Thus, we aim to construct a system
fα that suggests a set of potentially mislabelled instances Iα. Our goal is to have the set
Iα contain as many truly mislabelled instances as possible.
To make the system user-friendly, we design it to require a minimal set of hyper

parameters: Those are α (determining the size of the output set) and the labelled dataset
D. As we show below, one may even omit the α parameter, which makes the system
entirely free from hyperparameters. As noted above, this makes our proposed system
highly applicable in practice.

5.3.2 Proposed Algorithm

To detect mislabelled instances in a given dataset D, we propose the following pipeline.

1. Supply a dataset D = (x, y) and, optionally, a parameter α. Here, α is the percentage
of images the user is willing to manually re-evaluate.

2. Find appropriate preprocessing, network layout, and model hyperparameters auto-
matically as detailed in Section 5.3.4.

68

5.3 Methodology

3. Preprocess the dataset (x, y) (c.f. Section 5.3.3) and train a model g on it.

4. Use the trained model g to re-classify x, and obtain g(x) = ỹ.

5. For all n ∈ {0, . . . , N − 1}, compute the inner product

〈yn, ỹn〉 =
∑
j

yjnỹ
j
n. (5.1)

This yields the probability that instance xn is assigned the original label yn.

6. Finally, return the set

Iα ⊂ {0, ..., N − 1} where |Iα| = αN (5.2)

such that
∑
Iα〈yi, ỹi〉 is minimized. This can be implemented efficiently by sorting

〈yn, ỹn〉n∈{0,...,N−1} by argument in ascending order and then returning the first
αN instances. Alternatively, the user may choose α = 1 and review the returned,
ordered instances until resources such as time or budget are exhausted. Since the
probability of being mislabelled decreases with every instance, this will optimally
utilize available resources.

In summary, train a classifier g on a given dataset (x, y), and use the same classifier g to
obtain class probabilities for x. Then look for instances for which the class probability of
the original label is minimal, e.g., instances for which the classifier considers the original
label extremely unlikely given the feature distribution learned during training. These are
the instances that are most likely mislabeled.

5.3.3 Data Preprocessing

To properly learn from a user-supplied dataset, appropriate data preprocessing is essential.
We preprocess numerical, image, and natural language data as follows.

• Numerical data is preprocessed by feature-wise scaling to [0, 1]. This process is
known as MinMax scaling.

• Image data is preprocessed by feature-wise setting the data mean to 0 and feature-
wise dividing by the standard deviation (std) of the dataset. This process is known
as standardization.

• Natural language data is preprocessed using word embeddings [93] as follows: First,
we apply very basic textual preprocessing such as splitting on whitespaces, then
we map individual words to 300-dimensional word embeddings using a pre-trained
embedding [94], and finally, we retrieve the corresponding representation for the
whole sequence of words by simply summing up the individual embeddings.

5.3.4 Classification Algorithm

To find mislabelled instances in a dataset as described in Section 5.3.2, a robust classifier
g is required. That is to say, g must be able to generalize well and not overfit the

69

5 Identifying Mislabeled Data

Numerical Textual
Depth {1, 2, 3, 5} {1, 2, 3, 5}
Units per Layer {50, 120} {50, 120}
Dropout per Layer {0, 0.1, 0.2} {0, 0.1, 0.2}

Table 5.2: Parameter grid for cross-validation based hyperparameter optimization. For Image
data, we use a convolutional network with fixed hyperparameters.

dataset D. This is necessary because since D = (x, y) is assumed to be noisy (due to
mislabelled instances), overfitting on D results in the classifier simply ‘remembering’
all instances (xn, yn) for n ∈ {0, . . . , N − 1}. In this scenario, deviations in individual
(xn, yn) from the overall distribution would not be found, thus severely diminishing the
system’s performance.
Hence, g needs to 1) be flexible to correctly learn from a variety of text, image, and

numerical datasets and 2) generalize well on noisy datasets. Neural networks, especially
with Dropout, are a natural choice in this setting. How we apply them to the individual
categories of datasets is detailed in the following subsection.

5.3.5 Automatic Hyperparameter Selection

This chapter describes how we find suitable model architectures and hyperparameters for
each type of input data automatically. This relieves the user of this task and makes our
pipeline more easily accessible.

• For numerical and textual data, we use a dense feed-forward neural network and
optimize the following hyperparameters: Number of hidden layers, number of units
per hidden layer, and dropout rate. We use 3-fold cross-validation to search the
space of suitable hyperparameters (see Table 5.2) for the best combination of
parameters. For preprocessing, we apply data normalization. Additionally, textual
data is mapped to a vector representation using word embeddings.

• For image data, we use a convolutional network . It consists of three blocks: Block
one consists of two convolutional layers with 48 2x2 kernels, followed by 3x3 max-
pooling and 25% dropout. Block two is the same as block one, but with 96 kernels.
Block three flattens the convolutional output of block two and applies three dense
layers with 50% Dropout and ReLu non-linearities. We chose this architecture
because convolutions work for all kinds of input images, as convolutional layers
can cope with varying image input sizes. Note that we omit the hyperparameter
grid search in the interest of computation time. Overfitting is prevented by using
high dropout (between 25 and 50% per layer) and early stopping on the validation
accuracy. We also experimented with transfer learning, using a ResNet50 as a
feature extractor, followed by a dense network. However, we find that this approach
is inferior to our convolutional network in terms of precision and recall.

We chose these architectures since they are standard baselines that have been shown
to work with the corresponding data types [10, 95, 96]. Since we want the networks

70

5.4 Evaluation

to be able to generalize well and learn even from noisy data, we need to prevent the
networks from overfitting, i.e., simply ’remembering‘ the training data. Thus, we select
the hyperparameters via cross-validated grid search. Additionally, we add several levels of
Dropout to the parameter grid and use an aggressive learning rate of 1e-2, which also cuts
computation time. Also, we use early stopping with patience= 15 and threshold= 0.005.
The final layer feeds into a softmax activation function, which returns class probabilities.

Finally, to deal with imbalanced class labels, we adjust the gradients during training
using class weights and employ balanced F-score as an evaluation metric.

5.4 Evaluation

We evaluate our system in two ways:

• Quantitative evaluation. We create mislabelled instances ourselves by changing
the labels in a variety of datasets. Then, we apply our tool and try to identify them.

• Qualitative evaluation. We apply our tool to popular, real-world datasets and
try to find new mislabelled instances.

In the following section, we describe this evaluation in detail and present the results. We
make all experiments accessible by publishing our source code, c.f. https://github.
com/mueller91/labelfix.

5.4.1 Quantitative Evaluation

To evaluate the effectiveness of our system quantitatively, we proceed as follows.

1. We select 29 datasets from the domain of text, image, and numerical data, for each
of which we change µ percent. Here, µ denotes the ratio of mislabelled instances.
For example, µ = 3% if we assume that 3% of the instances in a dataset have
incorrect labels. This yields a new, noisy dataset D′.

2. We apply our algorithm to this noisy dataset D′, c.f. Section 5.3.2.

3. We evaluate the output Iα of our algorithm by computing the precision and recall
(c.f. Equation (5.3) and Equation (5.4)).

5.4.1.1 Datasets

We use the following datasets (c.f. Table 5.3).

• From sklearn [97]: breast cancer, digits, forest cover type, iris, twenty newsgroup,
and wine;

• from kaggle.com: pulsar-stars, Sloan digital sky survey

• from the UCI Machine Learning Repository [98]: adult, credit card default
[99], SMS spam [100], and liver;

71

https://github.com/mueller91/labelfix
https://github.com/mueller91/labelfix

5 Identifying Mislabeled Data

• from keras [101]: CIFAR-10 and CIFAR-100[11], Fashion-MNIST [13], IMDb [102],
MNIST [10], and SVHN [103].

Additionally, we create six synthetic datasets with varying feature and target dimensional-
ity (see Table 5.3) using sklearn’s make_classification functionality plus one blob dataset
using sklearn’s blob functionality.

5.4.1.2 Introducing Artificial Label Noise

How to find a suitable fraction of label noise µ for our quantitative evaluation? Estimating
the ratio of mislabelled instances µ for real-world datasets is intractable and may differ
significantly between datasets. However, [81] suggests that real-world datasets have
around 5% mislabelled data. Since we use mainstream datasets, we chose a smaller value
µ = 0.03 (i.e. 3%), because we believe that a 5% error rate may be too large for these
well-researched datasets. We find that for other choices of µ, the results of our algorithm
are comparable. These may be easily recreated by running the provided script with
different parameters.
We simulate both ‘noise completely at random’, i.e. noise independent of either class

and feature values, and ‘noise at random’, i.e. noise dependent on the class, but not
the feature values. We do not evaluate labeling mistakes that depend both on class and
feature values (i.e. ‘not at random’ label noise, c.f. table 5.1). This is because these errors
are so specific that they do not apply to the large majority of datasets, where classes are
very distinct.

5.4.1.3 Metrics

We report two different metrics: the α-precision and the α-recall:

α-precision =
|Iα ∩ I|
|Iα|

, (5.3)

α-recall =
|Iα ∩ I|
|I|

. (5.4)

The α-precision (see Equation (5.3)) returns the ratio of the number of flipped labels
among the returned αN instances to the output size αN (i.e., how many of the system’s
suggestions are indeed wrongly labeled?). For example, an α-precision value of 0.8 for
α = 0.01 and µ = 0.03 for some dataset D has the following interpretation: Among the set
Iα, which has size 0.01N , 80% flipped labels are found. Hence, this method is more than
26 times better than random guessing, but still returns 20% correctly labelled instances
to be re-checked.

The α-recall (see Equation (5.4)) specifies how many of the flipped labels are found by
looking only at the first α percent of the data (i.e., how many of the wrongly labelled
instances are present in the system’s output suggestions?). For example, assume the
following: Let α = 0.03 and µ = 0.03 for some dataset D. A recall value of 0.8 means
that we find 80% of the 3% flipped labels if we review only 0.03N instances as suggested
by our system.

72

5.4 Evaluation

Dataset Size Type Classes
adult (32561, 14) numerical 2
breast_cancer (569, 30) numerical 2
cifar10 (50000, 32, 32, 3) image 10
cifar100 (50000, 32, 32, 3) image 100
cifar100, at random (50000, 32, 32, 3) image 100
cifar100, subset aqua (2500, 32, 32, 3) image 5
cifar100, subset flowers (2500, 32, 32, 3) image 5
cifar100, subset household (2500, 32, 32, 3) image 5
credit card default (30000, 23) numerical 2
digits (1797, 64) numerical 10
fashion-mnist (60000, 28, 28, 3) image 10
forest covertype (10%) (58101, 54) numerical 7
imdb (25000, 100) textual 2
iris (150, 4) numerical 3
mnist (60000, 28, 28, 3) image 10
pulsar_stars (17898, 8) numerical 2
sloan-digital-sky-survey (10000, 17) numerical 3
sms spam (5572, 300) textual 2
svhn (73257, 32, 32, 3) image 10
synthetic 1 (10000, 9) numerical 3
synthetic 2 (10000, 9) numerical 5
synthetic 3 (10000, 45) numerical 7
synthetic 4 (10000, 45) numerical 15
synthetic 5 (10000, 85) numerical 15
synthetic 5 (10000, 85) numerical 7
synthetic blobs (4000, 12) numerical 12
twenty newsgroup (18846, 300) textual 20
twitter airline (14640, 300) textual 3
wine (178, 13) numerical 3

Table 5.3: List of datasets used for evaluating [3]

73

5 Identifying Mislabeled Data

Dataset Runtime α-precision α-recall
α = 0.01 α = 0.02 α = 0.03 α = 0.01 α = 0.02 α = 0.03

adult 2.1 min 0.80 0.63 0.51 0.27 0.42 0.51
breast_cancer 34.0 sec 0.76 0.80 0.74 0.22 0.52 0.74
cifar10 9.47 min 0.98 0.88 0.72 0.33 0.59 0.72
cifar100 13.07 min 0.94 0.82 0.67 0.31 0.54 0.67
cifar100, at random 11.48 min 0.43 0.35 0.31 0.14 0.23 0.31
cifar100, subset aqua 20.2 sec 0.61 0.38 0.32 0.20 0.25 0.32
cifar100, subset flowers 32.8 sec 0.63 0.43 0.34 0.21 0.29 0.34
cifar100, subset household 48.6 sec 0.62 0.46 0.37 0.21 0.30 0.37
credit card default 1.9 min 0.18 0.17 0.18 0.06 0.12 0.18
digits 51.8 sec 0.98 0.95 0.86 0.31 0.63 0.86
fashion-mnist 10.71 min 0.99 0.98 0.90 0.33 0.66 0.90
forest covertype (10%) 4.6 min 1.00 0.95 0.74 0.33 0.63 0.74
imdb 3.71 min 0.70 0.61 0.51 0.23 0.41 0.51
iris 26.9 sec 1.00 0.53 0.55 0.25 0.40 0.55
mnist 3.74 min 1.00 1.00 0.97 0.33 0.67 0.97
pulsar_stars 51.8 sec 0.91 0.86 0.78 0.30 0.57 0.78
sloan-digital-sky-survey 1.5 min 0.80 0.71 0.63 0.27 0.47 0.63
sms spam 1.44 min 0.85 0.86 0.79 0.28 0.57 0.79
svhn 13.6 min 0.92 0.90 0.83 0.31 0.60 0.83
synthetic 1 2.05 min 1.00 0.98 0.89 0.33 0.66 0.89
synthetic 2 2.74 min 1.00 0.99 0.89 0.33 0.66 0.89
synthetic 3 3.79 min 1.00 0.99 0.91 0.33 0.66 0.91
synthetic 4 4.9 min 0.98 0.90 0.74 0.33 0.60 0.74
synthetic 5 3.53 min 0.95 0.84 0.70 0.32 0.56 0.70
synthetic 6 3.58 min 1.00 0.98 0.86 0.33 0.65 0.86
synthetic blobs 37.8 sec 1.00 1.00 0.98 0.33 0.67 0.98
twenty newsgroup 3.2 min 0.79 0.73 0.63 0.26 0.49 0.63
twitter airline 2.39 min 0.66 0.52 0.43 0.22 0.34 0.43
wine 28.1 sec 1.00 1.00 0.88 0.20 0.60 0.88
Average 0.84 0.77 0.68 0.27 0.51 0.68

Table 5.4: Precision and recall values for artificially added 3% noise, averaged over five runs.

74

5.4 Evaluation

Figure 5.2: Four mislabelled instances in the CIFAR-100 training set, with corresponding label
and index of the image in the dataset.

As the returned instances are already sorted by their probability to be mislabeled, we
expect the α-precision to become lower for higher values of α as fewer new mislabelled
instances are added to Iα. On the other hand, the α-recall increases for higher values
of α, as α = 1 implies that Iα ⊆ I, hence α-recall = 1. Furthermore, for α = µ, these
metrics coincide, i.e. α-precision = α-recall (see Table 5.4 for α = µ = 0.03).

5.4.1.4 Results

We run our tool on 29 datasets with α = 0.03, and present the results in Table 5.4. We
observe the following:

1. Effectiveness. Our algorithm works well on all types of input data, i.e. images,
natural language, and numerical data. For example, the α = 0.01 precision is
0.84, meaning that a user reviewing the first percent of the algorithm’s output
would find, on average, 84 mislabelled instances for every 100 instances reviewed.
This significantly outperforms the random baseline, where a user would find only 3
mislabelled instances for every 100 images examined.

2. Sensitivity. The algorithm detects both severe, obvious labeling errors among
very different classes (e.g. bridge vs. apple) as well as nuanced errors among similar
classes (e.g. rose vs. tulip, both from the CIFAR-100 subset flowers dataset, see
’cifar-100, at random’),

3. Efficiency. The algorithm has reasonable computing time, ranging from seconds
to minutes, depending on the dataset size and the number of classes. We use an
Intel E5-2640-based machine and assigned 20 cores to perform our computations.
The convolutional network is trained on an Nvidia Titan X GPU.

In comparison to [90], we are training only one neural network, which saves time while
achieving very good results (see Table 5.4). Furthermore, our approach is more general
since, for example, natural language can be processed as well. As opposed to [89], we do
not require additional information such as classes that are easily confused.

5.4.2 Qualitative Evaluation

For the quantitative evaluation in Section 5.4.1, we have evaluated artificially noisy data
where we added µ = 3% noise. Now, we perform a qualitative evaluation: We apply our

75

5 Identifying Mislabeled Data

Figure 5.3: Four mislabelled instances in the MNIST training set. The headings indicate the
original label and the index of the image.

algorithm to popular real-world datasets without adding extra noise, hoping to find truly
mislabelled instances. The datasets we consider in this section contain either images or
natural language since we can easily spot mislabelled instances in these domains.
Setting α = 0.003 or 0.3%, we manually review 150 images in CIFAR-100 and 180

images in Fashion-MNIST and inspect for mislabelled instances. Whine in doubt, we
stick to the assigned label. Following this procedure, we detect labeling errors that, to
the best of our knowledge, have not been reported yet. Our findings include the following
mislabelled instances.

• CIFAR-100. We identify seven mislabelled instances. Four examples are shown in
Figure 5.2; the full results are presented in Table A.1 in the Appendix;

• Fashion-MNIST. We identify over 60 mislabelled instances within the first 180
instances. Some examples are shown in Figure 5.1; for a complete list, refer to
Table A.2 in the Appendix.

• MNIST. We also present four mislabelled instances from the MNIST dataset,
c.f. Figure 5.3.

To show that our tool can also process natural language, we apply it to the twenty
newsgroup dataset, a collection of e-mails, each of which is assigned a group label. Our
algorithm finds instances for which the class label and the e-mail content do not match,
see Table 5.5 and Table 5.6.

Note that the list of instances we present for each dataset is not supposed to be complete,
but rather intends to illustrate that even well-researched datasets contain mislabelled
instances. Hence, a tool to simplify the process of re-checking is of great importance.

5.4.3 Improvement Over Related Work

With our algorithm, we overcome a fundamental restriction imposed by Ekembaram et
Al. [89], who require the user to supply a set of classes likely to be confused. Another
restriction is that their approach, at its core, is limited to binary classification problems.
Application to multi-class data is possible but does not scale. In contrast, our algorithm
applies naturally to multi-class data and does not require auxiliary input whatsoever.
In comparison to [90], we are more rigorous in considering something as ’mislabeled‘.

Where Alrawi et Al. accept instances with ambiguous labels as mislabeled [90], we only

76

5.4 Evaluation

Table 5.5: An example of an instance from the twenty newsgroup dataset where the content
does not meet the label.

Index Nr. 13622
Category: sci.med
From: turpin@cs.utexas.edu (Russell Turpin)
Subject: Meaning of atheism, agnosticism (was: Krillean Photography)

Sci.med removed from followups. (And I do not read any of the other newsgroups.)

>As a self-proclaimed atheist my position is that I _believe_ that
>there is no god. I don’t claim to have any proof. I interpret
>the agnostic position as having no beliefs about god’s existence.

As a self-proclaimed atheist, I believe that *some* conceptions of god are inconsistent or in conflict
with fact, and I lack belief in other conceptions of god merely because there is no reason for me to
believe in these. I usually use the word agnostic to mean someone who believes that the existence of
a god is unknown inherently unknowable. Note that this is a positive belief that is quite different
from not believing in a god; I do not believe in a god, but I also do not believe the agnostic claim.

Table 5.6: A second example of an instance from the twenty newsgroup dataset where the
content does not meet the label.

Index Nr. 13203
Category: talk.politics.mideast
From: kevin@cursor.demon.co.uk (Kevin Walsh)
Subject: Re: To All My Friends on T.P.M., I send Greetings
Reply-To: Kevin Walsh <kevin@cursor.demon.co.uk>
Organization: Cursor Software Limited, London, England
Lines: 17

In article OAF.93May11231227@klosters.ai.mit.edu oaf@zurich.ai.mit.edu writes:
>In message: C6MnAD.MxD@ucdavis.edu Some nameless geek
szljubi@chip.ucdavis.edu writes:
»To Oded Feingold:
»
»Call off the dogs, babe. It’s me, in the flesh. And no, I’m not
»Wayne either, so you might just want to tuck your quivering erection
»back into your M.I.T. slacks and catch up on your Woody Allen.
»
>This is an outrage! I don’t even own a dog.
>
Of course you do. You married it a while ago, remember?

77

5 Identifying Mislabeled Data

report those which are clearly mislabeled. Furthermore, our approach is more efficient
since we use only a single model instead of an ensemble. Additionally, we require no
test-train split and can therefore process smaller datasets more accurately. The biggest
improvement however is that our tool is not limited to image data, but can be applied to
numerical and natural language data as well.

5.5 Summary

In this chapter, we presented an automated system to help find potentially mislabelled
instances in classification datasets. This has the potential to improve classifiers trained
on these datasets, especially when the datasets have, unlike CIFAR, not been exposed to
a large audience and can only be reviewed by a few domain experts. Since we cannot
assume these domain experts to be proficient in machine learning techniques, we designed
our system such that no hyperparameters have to be supplied – the system works out
of the box for numerical, image, and text datasets. The only input data required is
the dataset to be analyzed and a parameter that identifies the size of the output set.
Hyperparameters are inferred automatically to improve the tool’s usability.

We evaluate our system on over 29 datasets on which we add a small fraction of label
noise, and find mislabelled instances with an averaged precision of 0.84 when reviewing
our system’s top 1% recommendation. Applying our system to real-world datasets, we
find mislabelled instances in CIFAR-100, Fashion-MNIST, and others (see Appendix).
Finally, please note that passages in this chapter have been quoted verbatim from our
IEEE paper, where this research has been first published [3]. As we will see in chapter 7,
this algorithm can be extended to detect adversarial data poisoning.

A limitation of this approach is that it will not detect mislabelled data that is consistently
mislabeled. For example, if for a given dataset of animals, all horses are labelled cat,
our proposed method cannot detect this. This, however, is a principled limitation of
the pattern-recognition approach of machine learning. Without external feedback, no
algorithm will be able to detect this. We note that such extreme cases are very rare, even
in a Data Poisoning scenario, because an attacker would need to mislabel almost every
single horse instance in the dataset. Focusing on the much more common case of erroneous
labels, our algorithm can reliably identify those instances that do not correspond to the
features of the majority of the class instances.

78

6 Identifying Adversarially Poisoned
Data in Regression Learning

The last chapter introduced an algorithm to find mislabelled instances due to human error
or a randomly acting adversary. This chapter introduces algorithms to find mislabelled
instances originating from a different process: A deliberate adversary, who aims at
maximally degrading the model. In literature, this is called an adversarial attack.
We study adversarial attacks in the context of regression learning (this chapter) and

classification learning (c.f. Chapter 7). Please note that this chapter quotes verbatim
from our conference paper [4], which has been published at the 25th IEEE Pacific Rim
International Symposium on Dependable Computing (PRDC 2020), where the work
presented in this chapter has first been presented to the scientific community.
This chapter is structured as follows: Section 6.1 motivates the threat of adversarial

attacks in the domain of regression learning and outlines our contribution. Section 6.3
presents a medical use case where data poisoning is detrimental, and Section 6.4.2 presents
related work. We introduce a new data poisoning attack in Section 6.4.3, against which
we evaluate our newly proposed defense in Section 6.5. The evaluation is presented in
Section 6.6.

6.1 Motivation

In this chapter, we argue for the importance of secure and reliable regression learning
and motivate the problem of data poisoning in this domain.

Regression learning is increasingly used in mission-critical systems: In medicine for the
development of pharmaceuticals [104, 105], in the financial sector for predictive analysis
such as managing hedge funds [106, 107] and cash forecasting [108], as well as for predictive
maintenance [109] and quality control [110].

As we rely more and more on these systems, researchers find that they are vulnerable to
malicious data poisoning attacks, which can result in significant real-world casualties. As
an example, consider the following scenario. A widely used blood thinner is the Warfarin
drug. It has a very small therapeutic window, meaning that too high dosages lead to
bleeding, while too low dosages lead to blood clotting [111]. Machine learning can help in
estimating the correct dosage, and pharmaceutic companies provide appropriate datasets
[112] on which regression learning has been successfully applied [113, 114, 115].
However, such an estimation is susceptible to data poisoning attacks: An adversary

may introduce a very small percentage of ’poisoned samples’ into the dataset. Motives
for such an attack can be manifold: Personal motives (a malignant doctor, underpaid
caregiver or simply a psychopath nurse [116]), financial motives (one company damaging

79

6 Identifying Adversarially Poisoned Data in Regression Learning

another company’s reputation, or an individual betting on the crash of some company’s
stock value, similar to [117]), or even political or terrorist motives.

Such poisoning attacks are not just theoretical threats, but can be executed even with
moderate resources: Because of the narrow therapeutic window of the Warfarin drug, and
(as we will show) the large impact of even only a few malicious samples, data poisoning
can be realized even by an individual with a significant impact on the learner. Related
work confirms this, showing that data poisoning is feasible and has already been observed
in real-life scenarios [31, 118].

6.2 Contribution

To address this issue, in this chapter, we present work from our seminar paper [4], where
me and my co-authors contribute as follows:

• Use Case. We show the harmfulness of data poisoning in regression learning by
analyzing the Warfarin dosage prediction use-case.

• New Attack. We present a new black-box attack that exceeds previous state-of-the-
art, and for the first time evaluate poisoning attacks on nonlinear regression learners.
We present this attack to have a strong baseline to estimate attacker-capability
under real-world conditions.

• New Defense. We present an improvement over previously suggested defenses
that consistently outperforms SOTA.

• Evaluation. We thoroughly evaluate our attack and defense on 26 datasets and
several state-of-the-art regression learners, i.e. Neural Networks, Kernel SVR, and
Kernel Regression.

• Tooling and Reproducibility. We publish all source code and experiments to
enable full reproducibility.

6.3 Case Study: Warfarin Dosage Estimation

In order to further motivate our research, this section demonstrates the feasibility and
practicality of adversarial data poisoning on mission-critical systems: We examine the
medical use case of Warfarin dosage prediction.

The International Warfarin Pharmacogenetics Consortium, a group of pharmacogenetic
research centers, have created the IWPC or Warfarin dataset [112]. It is the joint effort
of 59 contributors, resulting in an average contribution of 1.7% of the data per member.
Based on this dataset, models have been developed which predict the therapeutic dosage
of Warfarin for a patient [113, 114, 115].
We use a new black-box poisoning attack (to be detailed in Section 6.4.3) and add

2% poison data to the Warfarin dataset, which is about as much as the average IWPC
contributor did. Table 6.1 shows the Mean Absolute Error (MAE) of different models
after training on this dataset. In the absence of poison samples, the MAE of models

80

6.4 Data Poisoning in Regression Learning

Model Clean Error Poisoned Error Increase in MAE Decrease in acceptable Dosages

Elastic Net 8.52 11.07 1.30 21.25%
Huber Reg. 8.40 8.46 1.01 -1.09%
Kernel Ridge 8.41 10.98 1.31 21.07%
Lasso 8.49 11.20 1.32 22.31%
MLP 10.05 12.33 1.23 11.41%
Ridge Reg. 8.49 10.99 1.29 22.34%
SVR 10.85 12.52 1.15 14.13%
Median 8.49 11.07 1.29 21.07%

Table 6.1: Mean absolute error (MAE) of different regression models when poisoning theWarfarin
dataset. The first column (Clean Error) shows the MAE when no data poisoning is
present. The second column (Pois. Error) shows the MAE when 2% poison samples
are introduced, with the relative change indicated by the third column. The poisoning
strongly affects the number of patients who receive an acceptable dosage of Warfarin
(fourth column). For example, when using the Elastic Net model, 21.25% percent
of the patients no longer receive an acceptable dosage due to 2% data poisoning.
Note that the only regressor not impacted by this is the Huber Regressor, which is
specialized in dealing with poisoned data.

like Lasso, Elastic Net, and Ridge is around 8.50, which is comparable to state of the
art [114]. When adding just 2% of data poisoning, the median error increases to 11.07
(a 29 percent increase): In comparison to its size, the poison data has an influence 14
times as high on the training error. This has tangible effect on the patients: The rate of
acceptable dosages decreases by 21%, due to just 2% of poison data. Here, we follow Ma
et Al. [114]: we examine the percentage of patients whose predicted dosage of Warfarin
is within 20% of the true therapeutic dosage. This is referred to as an acceptable dosage.
We will revisit this use case in more detail in Section 6.7, where we show how to defend
against such attacks.

6.4 Data Poisoning in Regression Learning

In this section, we present our threat model and examine previously suggested attacks.
Additionally, we introduce a new and improved attack, which is thoroughly evaluated on
26 datasets in Section 6.6. Our motivation for presenting this new attack is to have a
stronger baseline against which to evaluate our newly proposed defense (c.f. Section 6.5).
Existing attacks are either computationally infeasible, or require (black-box) access to to
trained model, which may not be realistic (c.f. section 6.4.2.2). Our attack is completely
independent of the model, while at the same-time outperforming related attack, and
thereby suited for realistic estimation of attacker capability.

6.4.1 Threat Model

We consider a realistic attack scenario where the attacker has only limited capabilities,
such as a malicious individual could have. Specifically, we consider black-box attacks
where

81

6 Identifying Adversarially Poisoned Data in Regression Learning

• the attacker knows nothing about the model (not even what kind of regressor is
used),

• the attacker does not have access to the training dataset (X, y), but only to a
smaller substitute dataset (Xsub, ysub), and

• where the attacker is capable of fully controlling the εn data samples he contributes
to the dataset. He is not able to manipulate the rest of the data.

As indicated in the introduction and Section 6.3, the possibility of introducing small
amounts of poison data into the dataset is highly realistic. If the dataset is crawled and
collected automatically, malicious instances just need to be placed where the crawler can
find them [31, 119]. If it is collected manually, the ability to poison a dataset is proportional
to an individual’s contribution to the dataset. As detailed in Section Section 6.3, the
Warfarin dataset is collected by 59 individuals; thus, an average contribution constitutes
about 2% of the dataset. We show that this amount of poisoning is sufficient to effectively
poison the dataset (c.f. Section 6.3, Section 6.6.4, and Section 6.7).

6.4.2 Related Poisoning Attacks in Regression

Jagielski et Al. [7] present both a white-box and a black-box attack on regression learning.
In this section, we present these attacks and their limitations.

6.4.2.1 Related White-Box Attacks

Deriving from Xiao et Al. [29], Jagielski [7] present a white-box attack on linear regressors.
The attacker’s objective is formulated as a bi-level optimization problem:

D∗p = arg max
Dp
W(Dtest, θ

∗
p) (6.1)

s.t. θ∗p = arg min
θ∈Θ
L(Dtr ∪Dp, θ) (6.2)

Equation (6.2) represents the usual minimization of the model loss L during the fitting of
a model on both the clean training dataset Dtr and the poisoned dataset Dp. This yields
a trained model with weights θ∗p, i.e. a poisoned model.
A short note on the notation used: The set of poison datasets to be optimized over

is called Dp, while the optimal poison dataset as per Equation (7.1) is called D∗p; the
asterisk denoting optimality. Similarly, the set of model parameters to be optimized over
are called θ ∈ Θ, while the best set of parameters θ∗p results from training the model up
to convergence on the train and poisoned data (c.f. Equation (7.2)). This step is called
the ’inner optimization’.
Equation (6.1) refers to maximising the attacker’s objective W with respect to some

test set Dtest, using the model’s weights as determined by Equation (6.2). Solving the first
equation depends on the solution of the second equation, which is why it is considered a
bilevel optimization problem. This is a hard problem: The attacker has to determine how
the points they introduce in the dataset will change the model weights during training.
The authors [29, 7] solve this using the Karush-Kuhn-Tucker (KKT) conditions. These are

82

6.4 Data Poisoning in Regression Learning

a set of conditions that are assumed to remain satisfied when a given poison sample Xc is
introduced. The authors can then proceed to solve a linear system, and thus derive the
gradients. While effective and even applicable to classification learning (c.f. Section 7.4.3),
this approach has two drawbacks:

• Feasibility. This approach is not feasible for deep neural networks, since the
time required for solving this linear system is in O(p3), where p is the number of
parameters in the model, and DNNs easily have a few million parameters or more
[120]. For a more detailed analysis, see Munoz-Gonzalez et Al. [30].

• White-Box Threat Model. Additionally, this is a white-box attack and thus
requires access to the gradients of the model. Our threat model assumes a more
realistic black-box scenario where the attacker has no knowledge of the model and
cannot access the gradients.

6.4.2.2 Related Black-Box Attacks

Jagielski et Al. [7] also present a black-box attack called StatP. This attack samples εn
points from a multivariate Gaussian distribution, where the corresponding mean µ and
covariance matrix Σ are estimated as the mean and co-variance of the true dataset Dtr.
Then, StatP rounds the feature variables to the corners, queries the model, and rounds
the target variable to the opposite corner. The corners are defined as the minimum and
maximum of the feasibility domain γ of each variable. Both features and target are scaled
to [0, 1], thus the feasibility domain is a high dimensional cube [0, 1]d+1 where d is the
number of features. In summary, this attack creates a few isolated clusters of adversarial
data, where both features and target take only extreme values of either γmin = 0 or
γmax = 1.
This attack, however, still requires access to the trained black-box model, which may

be unrealistic in a real-world scenario. Additionally, we find that while this attack is
successful on linear models, it is unsuccessful when applied to non-linear models. We show
this empirically in Appendix A.3.1, but give a brief explanation here: Nonlinear learners
(such as Neural Networks, Kernel SVR, and Kernel Regression) can accommodate both
the poison points created by StatP and the true data simultaneously. This is because
the thusly created poison data does not contradict the true data points, since true data
points rarely have features in the corners of the feasibility domain. In summary, this
attack works only on linear models. This insight will motivate our proposed Flip attack
on nonlinear learners, which we present in the next section.

6.4.3 Flip: A Black-Box Attack on Nonlinear Regressors

Algorithm 1 presents our proposed black-box attack called Flip. This algorithm
computes a set of adversarial poison points for any poisoning rate 0 < ε < 1. The attack
is completely independent of the regressor model and only requires

1. a substitute dataset (Xsub, ysub) from the same domain as the training dataset Dtr,

2. and the feasibility domain of the target variables [γmin, γmax].

83

6 Identifying Adversarially Poisoned Data in Regression Learning

Algorithm 1 Flip attack
Require:
1: Substitute data Xsub, ysub of size m
2: Number of poison points dεne to compute
3: Feasibility domain [γmin, γmax] of the target values
4: Function Flip
5: ∆←− ∅
6: for i ∈ [1, ...,m] do
7: ∆←− ∆ ∪max(ysubi − γmin, γmax − ysubi)
8: end for
9: Tε ←− t ∈ R s.t. t is the dεne-th highest value of ∆

10: Iε ←− {i ∈ [1, ...,m] s.t. di >= Tε where di ∈ ∆}
11: Xp ←− ∅, yp ←− ∅
12: for i ∈ Iε do
13: if yi > 1

2(γmax − γmin) then
14: yp,i ←− γmin
15: else
16: yp,i ←− γmax
17: end if
18: yp ←− yp ∪ yp,i
19: Xp ←− Xp ∪Xsub

i

20: end for
21: return Xp, yp

84

6.5 Data Poisoning Defenses

The feasibility domain is necessary because we usually assume that only certain target
variables are valid. Extreme values are bound to raise suspicion, such as a room tempera-
ture of −400 degrees Celsius, or medical dosages that are unreasonably high or low. Note
that in contrast to the StatP algorithm, our proposed attack does not modify the data’s
feature values when creating the poisoning instances.
We now describe our attack (c.f. Algorithm 1). After having initialized an empty set

∆ in line 5, we populate it in the following for loop (line 6-9). For each instance in the
substitute dataset, we find the maximum of the distance to the lower or upper end of the
feasibility domain and save the results to ∆. Then, in line 10 we find the dεne-highest
value t ∈ R in ∆. This is used in line 11 to compute the indices of those points for which
there is most potential to disturb. Thus, the rationale of line 10-11 is to find those points
for which the target value is closest to either γmin or γmax. These values are the ones
that can be maximally disturbed by shifting the target variable to the other side of the
feasibility domain. This is implemented in line 13-22, where we compute the poison set
by retaining the feature values and ’flipping’ the target value to the other side of the
feasibility domain for the appropriate candidates as specified by Iε. Finally, in line 23, we
return the found poison data.
The intuition behind this algorithm is as follows:

• First, we observe that we do not want to change the feature values. If we change
the feature values, a non-linear regressor can still accommodate both benign and
poisoned data. We have observed this for the StatP attack from related work,
c.f. section 6.4.2.2, which works well for linear models, but not for non-linear
models.

• Second, we want to change the target labels, but only so much as to not arise
suspicion (thus the feasibility domain). This is because higher (but still insusceptible)
feature values will impact the learner more.

Before presenting an empirical evaluation concerning its effectiveness, we review related
data poisoning defenses, evaluate shortcomings, and propose our new defense algorithm.
Section 6.6 will then evaluate both our proposed attack and defense, where we show that
the proposed Flip attack can reliably poison datasets, irrespective and without access to
the defender’s learning model.

6.5 Data Poisoning Defenses

In this section, we present defenses for adversarial data poisoning in regression. First,
we list a set of requirements to make a defense applicable in the real world. Second, we
evaluate existing defenses with respect to these requirements. Finally, we present our
improvement over the baseline. A quantitative evaluation is given in Section 6.6, while a
qualitative evaluation is presented in Section 6.7.

85

6 Identifying Adversarially Poisoned Data in Regression Learning

6.5.1 Requirements for Applicable Data Poisoning Defenses

When creating a dataset such as the Warfarin Dataset [112], the defender or creator does
not know the degree of data poisoning ε. It is also entirely possible that no poisoning
has occured, i.e. that ε = 0. Thus, while ε may be known to the attacker, it is unknown
to the defender. Thus, the quality of defense should not depend too much on a correct
guess of ε, and should not deteriorate the quality of an unpoisoned dataset. With this
requirement in mind, we proceed to present and evaluate existing defenses.

6.5.2 Related Defenses

Since there exists so little work on data poisoning in regression, existing defenses are also
few. Two defenses from the domain of classification learning are presented by Steinhardt
et Al [121]. The Sphere defense first computes centroids in the poisoned data, and then
removes points outside a spherical radius around the centroids. The Slab defense ’projects
points onto the line between the centroids and then discards points that are too far
away’ [121]. However, the authors themselves note that these defenses may leave datasets
vulnerable, and present an example based on the International Movie Database (IMDB)
classification dataset where both Sphere and Slab fail [121]. For this reason, we do not
consider these defenses to be viable.

Algorithm 2 Trim defense, as proposed in [7]
Require:
1: Poisoned dataset Dtr ∪Dp of combined size n
2: Some model loss L
3: Estimated fraction of poison points ε̂
4: Function Trim
5: I(0) ← a random subset of indices with size n 1

1+ε̂

6: θ(0) ← arg minθ L(DI
(0)
, θ)

7: i← 0
8: while True do
9: i← i+ 1

10: I(i) ← subset of size n 1
1+ε̂ with minimal loss L(DI

(i)
, θi−1)

11: θ(i) ← arg minθ L(DI
(i)
, θ)

12: break if some convergence condition is met
13: end while
14: return DI

(i)

15: End

A state-of-the-art defense is Trim [7], for which we give pseudo-code in Algorithm 2.
It is an iterative algorithm, which first fits a regressor to a subset of the poisoned data,
and then iteratively calculates the error between the regressor’s prediction on the train
set and the train targets. It refits the regressor on those points with the smallest error
and repeats until a convergence criterion is met. Finally, it returns the points with the

86

6.5 Data Poisoning Defenses

Figure 6.1: Three real-world datasets (Warfarin, Loan and Housing [7]) are poisoned with
the Flip attack, where ε = 0.04. We then apply the Trim defense with different
values of ε̂, and train a regressor on the resulting dataset. Finally, we plot the test
MSE against ε̂, averaged over all datasets and regressors. Observe that the Trim
defense is highly dependent on the correct choice of ε̂ (in this case 0.04): If ε̂ is
estimated too low, poison points remain in the training data, skewing the regressor
and causing high test loss. If ε̂ is estimated too high, legitimate points are removed
with the poisoned points. This loss in training data causes the regressor to learn a
distribution different from the test distribution, which also incurs higher test loss.
Thus, it is important to accurately estimate the degree of poisoning ε̂.

smallest error as a ’cleaned’ dataset. The number of points to fit on, and conversely, the
number of points to discard, is determined by a supplied parameter ε̂, the assumed degree
of poisoning. If ε̂ = ε, the defense has been shown to work very well [7]. However, there
is a caveat: In a realistic scenario, the defender does not know ε.

Consider Figure 6.1, where we poison three real-world datasets, including the Warfarin
dataset, with a fraction of data poisoning ε = 0.04. Then, for each dataset, we clean it
using the Trim defense and supply ε̂ ∈ [0.00, 0.02, 0.04, 0.06, 0.08, 0.10] (i.e. we clean the
poisoned dataset with different estimates ε̂ to quantify the effect of ε̂ on Trim). On the
resulting data (which is partially or fully free from poison samples, depending on ε̂), we
train a regressor and calculate the MSE on a separate test set. Then, we average the
MSE over all datasets and plot the median of the regressors against ε̂.

We make one key observation: The effectiveness of Trim highly depends on the correct
choice of ε̂. Selecting ε̂ below the actual degree of poisoning results in not all poison
samples being removed and, thus, in an increase of the test error of a regressor. Selecting
ε̂ above the actual degree of poisoning results in benign data being removed, which also
removes relevant structure/information contained in the dataset and, as a result, also

87

6 Identifying Adversarially Poisoned Data in Regression Learning

increase test error. Therefore, a better selection strategy than blind overestimation of ε̂ is
required.
In summary, the state-of-the-art poisoning defense Trim is not applicable in practice,

since it requires the defender to precisely know the true poison rate ε.

6.5.3 The Iterative Trim Defense

Algorithm 3 iTrim defense
Require:
1: Poisoned dataset Dtr ∪Dp

2: Some model loss L
3: Maximum estimated poisoning rate εmax
4: Number of runs r
5: Threshold t
6: Function iTrim
7: I ←

{
εmax

j
r−1 s.t. j ∈ {0, ..., r − 1}

}
8: for i ∈ I do
9: D(i) ← trim(Dtr ∪Dp,L, ε̂ = i)

10: L(i) ← minθ L(D(i), θ)
11: end for
12: εopt ← min{i ∈ I s.t. |L(i) − L(i−1)| < t}
13: return trim(Dtr ∪Dp,L, ε̂ = εopt)
14: End

As shown in the last subsection, the Trim defense has the potential to accurately
remove poison samples from a given dataset, provided that ε̂ is chosen correctly, but over-
or underestimating ε̂ significantly decreases test performance. This insight motivates our
proposed Iterative Trim defense (iTrim), which enhances Trim by an iterative search for
the best ε̂. In this section, we present this algorithm and show how to select suitable
values for ε̂. In Section 6.6, we show empirically, on 26 datasets, that iTrim can be
applied to poisoned data under realistic conditions, and reliably identifies and removes
the poisoned data.

6.5.3.1 Algorithm Description

Algorithm 3 details the iTrim defense. It takes as arguments the poisoned dataset
Dtr ∪Dp, a loss L, and three scalar hyperparameters. The first, εmax, is an estimate of
the maximum possible poisoning rate. This hyperparameter can be chosen arbitrarily
large without impacting the defense’s result, but if chosen adequately will improve run
time. The second hyperparameter specifies the number of runs r. This hyperparameter
does not have too much influence on the algorithm’s performance; it influences together
with εmax which values of ε̂ will be tried. The final hyperparameter, the threshold t, does

88

6.5 Data Poisoning Defenses

have an impact on the algorithm’s performance, and we will discuss how to chose it later
on.

iTrim starts by calculating a set I of possible candidates ε̂ (line 7). The hyperparameters
εmax and r define the right bound and the number of points, respectively. Then, for each
candidate, calculate the cleaned dataset D(i) using Trim, train the regressor and obtain
the corresponding train loss L(i) (lines 8 - 11). Finally, the optimal value for ε̂ is found
when the error in train loss between two consecutive losses L(i) − L(i−1) first undercuts
some threshold t (line 12). Finally, the dataset is cleaned using Trim with this estimate,
and the result is returned (line 13).

6.5.3.2 Poison Rate Selection

Before we give an intuition for our algorithm, we shortly address validation approaches to
finding ε̂. As already mentioned, ε̂ is a hyperparameter of Trim. In machine learning,
a common approach to finding hyperparameters are validation schemes such as cross-
validation. But for this approach to work, we require a clean validation dataset. Since
we only have a single dataset, we have to assume that any validation split will contain
poisoned instances, rendering conventional validation approaches invalid for finding
hyperparameters in this setting.

Thus, we now proceed to explain our iterative approach to finding ε̂: Consider Figure 6.2,
where we apply Trim to the Warfarin dataset poisoned with ε = 0.04. The orange dashed
line shows the train loss for different candidate values ε̂ ∈ [0.00, 0.02, 0.04, 0.06, 0.08, 0.10].
Note that for the correct estimation of poisoning degree ε̂ = 0.04, the train loss becomes
almost zero, decreasing several orders of magnitude compared to ε̂ = 0.00. Further
increasing ε̂ still decreases the train MSE, but only insignificantly. Thus, the training
loss can be approximated by two straight lines, joined at a distinctive kink where ε̂ = ε.
Figure A.1 in the Supplementary Material shows this for other real-world datasets. We
can understand this kink as the point where the dataset ceases to contain data that incur
extremely high train loss - in other words, where all adversarial poison data have been
removed. This assumption is supported by the blue line in Figure 6.2, which shows the
test MSE for the same Kernel Ridge regressor trained on the thusly cleaned datasets. For
ε̂ = 0.04, the test loss is minimal. For ε̂ > 0.04, Trim starts to remove legitimate data
(since all poison data have been removed), which is why test performance deteriorates.
Section 6.6 will verify this empirically.
Based on the insight that the training loss can be approximated by two straight lines

that intersect at ε, we develop our selection criterion for ε̂. We define t as the maximum
absolute gradient of the straight line where ε̂ > ε (i.e. the slope of the orange dashed line
on the ’right’ side of the graph, where all poison data have been removed). We will refer
to this straight as the normal straight. Then |L(i) − L(i−1)| is used to approximate the
gradient of the straight for each subinterval. The division by the length of the interval
is omitted since all intervals are equidistant. We choose ε̂ as the first candidate so the
estimated straight is normal (i.e. |L(i) − L(i−1)| < t).

89

6 Identifying Adversarially Poisoned Data in Regression Learning

Figure 6.2: Applying Trim to the Warfarin dataset, poisoned with ε = 0.04. The orange dashed
line shows the averaged train loss for different estimations of poisoning ε̂, using
KernelRidge regression. There is high train loss for ε̂ = 0 and 0.02, because in these
cases, not all poison points in the dataset can be removed. Once all adversarial
poison data is removed (ε̂ = 0.04, the delta in train loss decreases by several orders
of magnitude, approaching zero. The line in blue shows the test error for the same
setup. Note that the best ε̂ is indeed characterized by a sudden change of train loss,
as indicated in the left figure. Also note that for ε̂ > 0.04, Trim starts to remove
legitimate data, which deteriorates test performance.

90

6.6 Empirical Evaluation

6.5.3.3 Threshold Selection

iTrim is dependent on an appropriate choice of the threshold t. If t is vastly too large,
poison points are left in the dataset. If t is too small, iTrim deteriorates to Trim, and
starts removing non-poison points. However, we find that there is rather a large window
of appropriate values of t. This is because 1) we apply feature/target scaling to [0, 1],
and 2) the difference in train loss we observe once all poisoned points are removed is
dramatic (c.f. Figure 6.2). Based on our evaluation on 26 datasets (c.f. Section 6.6.2), we
find empirically that choosing values between 0.05 and 0.0001 performs comparably, and
thus decide on a threshold t = 0.001. This threshold is then used on all datasets, which
mimics real-world circumstances where fine-tuning to individual datasets is not feasible
(since this would require evaluation data).

In summary, we find that:

• Trim lacks a mechanism to find a good estimate for the percentage ε̂ of poisoned
points in the dataset.

• Over- and underestimation of ε̂ deteriorate the dataset to be cleaned.

• Appropriate values for ε̂ can be found via iTrim.

6.6 Empirical Evaluation

In this section, we evaluate our attack and defense algorithms against 26 datasets. We
show that we 1) can reliably poison nonlinear and linear models while assuming a realistic
black-box threat model, and 2) defend against this attack better than previously suggested
defenses.

6.6.1 Experimental Setup

We try to make our experiment as general and realistic as possible. First, we split each
of the 26 datasets into a randomly drawn substitute set of size 0.25, a train set of size
0.75 ∗ 0.8 and a test set of size 0.75 ∗ 0.2. For each combination of the 26 substitute
datasets and ε ∈ [0.00, 0.02, 0.04, 0.06, 0.08, 0.10], we create a poisoned dataset using the
respective attack, which we append to the corresponding train set and shuffle. This
results in 6 ∗ 26 = 156 combinations of train dataset and poisoning rate. This step does
not depend on the regressors. Then, for each regressor and each of the 156 poisoned
train datasets, we perform a cross-validated grid search to find suitable hyperparameters.
Finally, for all 156 poisoned train datasets and both defenses (Trim and iTrim), we apply
the defense to each of the 156 poisoned train datasets. We then train a regressor and
measure test error on the corresponding test data sets and report below. Thus, in total, we
run 156 ∗ 7 ∗ 2 = 2184 experiments (7 being the number of different regressors evaluated).
Each experiment mirrors a data set being poisoned and then cleaned with either of the
defenses. The experiments and source code are published to enable reproducibility, c.f.
https://github.com/Fraunhofer-AISEC/regression_data_poisoning.

91

https://github.com/Fraunhofer-AISEC/regression_data_poisoning

6 Identifying Adversarially Poisoned Data in Regression Learning

6.6.2 Datasets and Regressors

For our experiments, we use 26 datasets: Three datasets introduced in [7], eight datasets
from the GitHub repository imbalanced dataset [122], and 15 datasets from the KEEL
regression repository [123]. Each dataset contains at least 1000 data points. For datasets
where n > 10000, we randomly sample a subset n = 10000. In keeping with [7], we scale
features and targets to [0, 1]. See Appendix A.3.1 for a detailed summary.

We evaluate four linear models (HuberRegressor, Lasso, Ridge, Elastic Net) and three
non-linear models (Neural Networks, Kernel Ridge with RBF kernel, and Support Vector
Regressor with RBF kernel). To the best of our knowledge, we are the first to evaluate
poisoning attacks against non-linear regressors.

6.6.3 Evaluation of StatP

In this section, we very briefly report the effectiveness of StatP on non-linear regressors.
As detailed in [7], the attack is effective for linear regressors. We find, however, that it
is not effective when applied to non-linear learners. For example, a Neural Network’s
MSE remains nearly unchanged (from 0.051 to 0.055) when poisoned with ten percent of
poison samples created by StatP. In Appendix A.3, we elaborate this in more detail and
evaluate additional non-linear learners such as Kernel SVM and Kernel Ridge, which we
find to behave similarly.

6.6.4 Evaluation of Flip

In this section, we present the results when evaluating our proposed Flip attack against
26 datasets and seven regressors. Figure 6.3 shows the performance of the Flip attack,
averaged over all datasets. Figure A.3 in the Supplementary Material shows results per
dataset.
We observe that the attack is highly effective: When adding only 4% of poison data,

the MSE of most regressors doubles compared to the non-poisoned case. We observe that
all models seem equally susceptible to our attack, except for the Huber Regressor and
Support Vector Regressor, which are designed to be outlier-resistant.
We shortly discuss why these models are more resilient:

• Huber Regressor. The Huber Regressor is design to be outlier resistant. This
is achieved by using a specialized Huber Loss function [124], which is a mixture
between L1 and L2 loss:

Lδ(x) =

{
1
2x

2 for |x| ≤ δ,
δ
(
|x| − 1

2δ
)

otherwise.

Thus, the impact of outliers (defined as those points with large magnitude) on the
loss function is limited by replacing the L2 loss and its quadratic penalty with the
linear L1 loss. However, thus Huber loss has a major downside: It requires an
additional hyper-parameter δ, which defines the magnitude above which feature

92

6.6 Empirical Evaluation

Figure 6.3: Evaluation of our proposed Flip attack. This plot shows the MSE for different
poison rates per regressor, averaged over all 26 datasets. Most regressors obtain an
MSE of around 0.003 when ε = 0, and all but two deteriorate linearly as ε increases.
Figure A.3 in the Supplementary Material shows the same results, but for each
dataset individually. Note the effectiveness of the attack: For only four percent of
poison data, the test error increases to well over 200% for most models.

values are considered as outlier. This, obviously, is data-dependant, and one either
has to guess δ or find it via expensive hyper-parameter optimization such as grid-
search. In this vase, however, it is not clear which evaluation metric to use, since the
poisoned data would also be present in the test data. Thus, while using the Huber
loss can work well, its dependence on the parameter δ makes real-world application
difficult.

• Support Vector Regressor. This model proves to be more robust to the poisoned
data than other models, such as the neural network (i.e. MLPRegressor). However,
it still is affected: Test MSE increases by about 250% when 10% poisoned data is
introduced.

In summary, while some models are more robust to poisoned data than others, the
benefit of employing these has to be carefully weighted against potential downsides. The
Huber Loss can also be used in the context of neural networks, and can prove a suitable
alternative to the MSE-Loss, provided one has a way to estimate δ. For problems that
are not too complex and where the full flexibility of neural networks may not be needed,
the rbf -kernel Support Vector Regressor may be a useful algorithm.

6.6.5 Evaluation of Trim and iTrim

In this section, we report the results when defending against the Flip attack. We report
both the performance of the Trim defense and our proposed iTrim defense and compare
efficiency. In order to mimic the behaviour of a defender in a realistic scenario, we

93

6 Identifying Adversarially Poisoned Data in Regression Learning

Figure 6.4: Evaluation of the Trim and iTrim defense (lower error is better). First, we poison
the 26 datasets using Flip. Then we apply the Trim or iTrim defense and calculate
the test MSE. Finally, we normalize by the baseline MSE - the error obtained
by a model trained on unpoisoned data. The resulting quotient represents the
degree to which the defenses can negate the Flip attack. We observe that iTrim
consistently outperforms Trim by a large margin. More detailed, non-averaged
results are presented in Figure A.4 and Figure A.5 in the Supplementary Material.

set both ε̂ = 0.14 (for Trim) and εmax = 0.14 (for iTrim). A defender would have to
guess the percentage of poisoned data ε, with a preference for overestimation rather than
underestimation (as explained in Section 6.5.3).
We proceed as follows: With varying degrees of poisoning, we poison all 26 datasets

using the Flip attack. Then, for each regressor, we clean (i.e. ’defend’) the datasets using
the Trim as well as the iTrim defense (separately). We fit the regressor on the thusly
obtained dataset and compare the test error against a regressor trained on the clean data.
Figure 6.4 shows the median of all regressors for Trim (blue line) and iTrim (orange
dashed line). The Supplementary Material provides more details: Figure A.4 presents
the results for each regressor individually, while Figure A.5 depicts the results for all 26
datasets.

We observe that both defenses are effective. However, iTrim achieves higher performance
than Trim, especially when there is a large discrepancy between ε and ε̂. This is due to
iTrim’s capability of more accurately estimating the degree of poisoning. Especially for
ε̂ > ε, we see considerable improvement due to iTrims more advanced estimate of ε.

6.6.6 Runtime

In this section, we detail the runtime of the iTrim defense algorithm. iTrim calls the
Trim defense r times, which in turn performs j fit operations of the regressor - until either
a convergence criterion is met, or the number of runs j is exhausted. In our experiments,
we choose r = 6, j = 20. Running the complete experiment (attacking all 26 datasets,

94

6.7 Warfarin Revisited

Table 6.2: Mean absolute error (MAE) of different regression models when poisoned using the
Flip attack.

Model MAE C MAE P MAE D MAE P/C MAE D/C Accbl. P/C Accbl. D/C

Elastic Net 8.52 11.07 8.51 1.30 1.00 21.25 -0.82
Huber Reg. 8.40 8.46 8.41 1.01 1.00 -1.09 -0.82
Kernel Ridge 8.41 10.98 8.41 1.31 1.00 21.07 0.53
Lasso 8.49 11.20 8.49 1.32 1.00 22.31 0.00
MLP 10.05 12.33 9.86 1.23 0.98 11.41 -2.80
Ridge Reg. 8.49 10.99 8.51 1.29 1.00 22.34 1.06
SVR 10.85 12.52 11.19 1.15 1.03 14.13 2.90
Median 8.49 11.07 8.51 1.29 1.00 21.07 0.00

for seven regressors, and six poisoning rates ε) results in 26 ∗ 6 ∗ 7 = 1092 calls to the
iTrim defense. On a Intel(R) Xeon(R) CPU E7-4860 v2 @ 2.60GHz with 96 cores, this
takes about 120 minutes when parallelizing into 15 separate processes. Thus, running a
single iTrim defense takes, on average, 120/1092 ∗ 15 = 1.6 minutes per 6-core process.
Obviously, this is highly dependent on the regressor’s complexity, the size of the dataset,
the number of features, and the parallelism capabilities of the program code. Still, this
indicates the feasibility of applying the iTrim defense in a real-world scenario, where
after weeks, months, or even years of data gathering, running the iTrim incurs negligible
additional time overhead.

6.7 Warfarin Revisited

In Section 6.3, we presented the medical use case of predicting the therapeutic Warfarin
dosage and showed that data poisoning can significantly impact the performance of
regressors applied to this problem. In this section, we will illustrate the empirical results
of Section 6.6.5 on the use case of Warfarin dosage prediction, and show that by using
our defense, we can effectively defend the dataset against data poisoning in this medical
use case.

We structure the different stages of data poisoning into three different scenarios: First,
the (C)lean case. In this scenario, no data poisoning occurs. This case will be used as a
baseline for measuring the effects of data poisoning and defense. Second, the (P)oison
case. In this scenario, the attacker introduces 2% poison samples using the Flip attack
proposed in Section 6.4.3. No countermeasures are taken. Third, the (D)efended case. In
this scenario, the data are poisoned with 2% poison samples like in (P), but iTrim is used
as a countermeasure. The results for these three scenarios are summarized in Table 6.2.

To recapitulate: Warfarin is a blood thinner with a narrow therapeutic window resulting
in high medical significance for the correct prediction of the therapeutic Warfarin dosage.
The scenarios (C) and (P) have already been presented in Section 6.3. On clean data, the
models used in our evaluation perform comparable to state-of-the-art models, and 2%
poison samples are sufficient to considerably increase MAE and decrease the number of
patients receiving an acceptable dosage of Warfarin by up to 22%.

95

6 Identifying Adversarially Poisoned Data in Regression Learning

In Table 6.2, the column ’MAE D/C’ provides the factor by which the MAE of a
regressor increases when the dataset is poisoned with 2% poison samples and then
defended using iTrim. As we can see, the median is 1.00, indicating that the damage
is completely mitigated. The individual values range from 0.98 to 1.03, which indicates
that where previously Flip incurred an increase in MAE of up to 31%, the iTrim defense
reduces this error increase to less than a tenth. In summary, the MAE of the tested
models in the (D) scenario is approximately the same as in the (C) scenario, meaning the
defense successfully eliminates (most) of the negative impact of the poison samples.
The column Acceptable D/C gives the percentage by which the number of patients

receiving an acceptable Warfarin dosage decreases in the (D) scenario compared to the
(C) scenario. The median reduces from 21.07 in scenario (P) to a median of close to 0 in
scenario (D). This shows that the number of patients receiving an unacceptable Warfarin
dosage due to data poisoning is significantly reduced when the iTrim defense is employed.
In summary, we observe that the iTrim defense decreases the influence of the poison
samples significantly, almost restoring the dataset to unpoisoned quality. Thus, it results
in more patients receiving adequate predictions for their therapeutic Warfarin dosage.

6.8 Conclusion

In this chapter, we introduced a novel data poisoning attack on regression learning as well
as a corresponding defense mechanism. We show the effectiveness of our proposed attack
and defense algorithm in a large empirical evaluation over seven regressors and 26 datasets.
Both attack and defense assume realistic constraints: The attack is black-box and doesn’t
assume access to the true dataset, but only a substitute dataset. The defense, on the other
hand, does not assume any knowledge of the poisoning rate ε, but estimates it using an
iterative approach. The content of this chapter has been published and peer-reviewed as a
scientific paper at 2020 IEEE 25th Pacific Rim International Symposium on Dependable
Computing [4]. Passages in this chapter have been quoted verbatim from this work.

96

7 Identifying Adversarially Poisoned
Data in Classification Learning

The previous chapter presented a defence against adversarial data poisoning in regression
data. This chapter examines a related problem: Identifying adversarial data poisoning in
classification learning. This chapter is based on research first presented in the conference
paper ’Defending against adversarial denial-of-service data poisoning attack’ [5], published
at the DYNAMICS workshop of the Annual Computer Security Applications Conference
2020 (ACSAC’20) conference. Thus, passages are cited verbatim from this publication.

Also, please note that while the threat model and parts of the defender’s model
architecture are largely identical between a regression and classification data poisoning
scenario, the algorithms to create and find adversarial instances differ significantly. This
difference is a key factor in motivating this research, instead of simply applying the results
of the last chapter to the domain of classification. Section 7.8 elaborates these differences
further.

7.1 Motivation

The significance of machine learning for the prediction of categorical targets (i.e. clas-
sification learning) is unwavering: In recent years, it has led to a continuous stream of
breakthroughs in countless fields, for example, image classification [72, 125] or speech
recognition [126, 127]. Important classification problems also include security-sensitive
applications such as face recognition [128], fingerprint identification [129], autonomous
driving [130] and the detection of spam [131], malware [132] and network intrusion [133].
Similar to the scenario of regression learning, data poisoning attacks are a serious

threat to these systems. For example, Nelson et al. [131] use DoS data poisoning to
attack a spam filter. By sending attack emails that contain many words likely to occur in
legitimate emails, they increase the likelihood of future benign emails to be marked as
spam by the learning algorithm. As spam filters rely on very low false-positive rates, they
are effectively shut down by this attack. A similar attack is presented by Biggio et Al.
[134], who poison a machine-learning based malware clustering system. Further poisoning
attacks are detailed in [135, 28, 136, 30, 29].
To mitigate the threat of DoS poisoning, previous work has developed defenses based

on measuring the influence of samples on a model [136, 131] or clustering and anomaly
detection [137, 138]. However, most defenses are computationally inefficient or susceptible
to the curse of dimensionality [139]. Also, anomaly detection based approaches often
suffer from the arbitrary selection of detection thresholds.

97

7 Identifying Adversarially Poisoned Data in Classification Learning

7.2 Contribution

This chapter contributes by presenting a new defense against DoS data poisoning attacks
in the domain of classification. It improves upon related work as follows:

• Robustness: The proposed defense is not based on anomaly detection or metric
learning. Thus, it is not susceptible to the curse of dimensionality [140], as opposed
to [136, 131, 137, 138]. This allows for application on very high-dimensional data.

• Broad and realistic applicability: Our proposed defense does not come with
restrictions (such as exclusive applicability on linear or binary models). Additionally,
it does not depend on the defender knowing the true fraction of outliers (as opposed
to [141]); but even provides an estimate of the poisoning rate.

• Performance: We outperform state-of-the-art: False positive / false negative rates
are improved by at least 50%, often more (c.f. Section 7.6).

7.3 Related Defense Algorithms

To mitigate the threat of DoS poisoning attacks against spam filters, Nelson et al. [131]
propose to measure the impact of each training sample on the classifier’s performance.
This defense can effectively determine samples that decrease the accuracy and should be
discarded. However, it is computationally expensive and can suffer from overfitting when
the dataset is small compared to the number of features. A similar approach based on
influence functions is presented in [136].
The authors of [141] propose a two-step defense strategy for logistic regression and

classification. After applying outlier detection, the algorithm is trained in solving an
optimization problem based on the sorted correlation between the classifier and the
remained samples. However, this approach is not feasible in practice as the fraction of
poison samples is required for the algorithm to perform well.
There are also different approaches to outlier detection. The authors of [138] use the

k-nearest neighbors algorithm to find instances whose labels differ from that of their
neighbors. These instances are considered to be adversarial. In contrast, the authors
of [137] first split the instances in the poisoned dataset into their respective classes and
then use different metrics for outlier detection to identify poison instances with high
outlierness scores. Note that this defense requires a training set of trusted data. Both
approaches highly depend on the selection of appropriate thresholds and suffer from the
curse of dimensionality.

7.4 Poisoning Attack

In this section, we present two DoS poisoning attacks from related work. We implement
them in order to obtain a strong attack against which to evaluate our proposed defense.

98

7.4 Poisoning Attack

7.4.1 Threat Model

Our thread model is the same as the one presented in section 6.4.1. To reiterate:
We assume an attacker who can introduce some percentage of poisoned data into the
dataset. We evaluate our proposed defense against both a black-box attack (label flipping,
c.f. Section 7.4.2) and a stronger white-box attack (back-gradient optimization, c.f.
Section 7.4.3).

7.4.2 DoS Poisoning via Label Flipping Attack

As a baseline attack, we consider the Random Label Flipping attack, where the attacker
randomly selects a percentage ε of instances from the training dataset and changes their
labels to a class different from the original one [138]. This simple concept of label flipping
describes a black-box attack, as it only requires the attacker to have access to the labels
of the training dataset Dtr.

7.4.3 DoS Poisoning via Back-gradient Optimization Attack

In this section, we briefly describe the current state-of-the-art attack for DoS data
poisoning by Munoz et Al. [30], which is derived from Xiao et Al. [29]. Conceptually, it is
very similar to the white-box attack on regression learning examined in Section 6.4.2.1. It
is a white-box attack that iteratively introduces poison samples into the training dataset.
An attacker objective function W maps a model with poisoned parameters θ∗p and a test
set Dtest to a real number, i.e. W(Dtest, θ

∗
p) ∈ R. The attacker aims at finding a poisoned

dataset D∗p such that their objective W is maximized on Dtest for a model trained on
D∗p ∪Dtr. Formally:

D∗p = arg max
Dp
W(Dtest, θ

∗
p) (7.1)

s.t. θ∗p = arg min
θ∈Θ
L(Dtr ∪Dp, θ) (7.2)

Equation (7.1) is called ‘outer problem’, since it depends on the model parameters θ∗p,
which are found during model training (‘inner problem’, Equation (7.2)). Thus, finding
a set of poison data D∗p which maximizes the attacker reward is a bi-level optimization
problem. Note that for DoS poisoning attacks, maximizing the attacker’s objective
function W is equivalent to maximizing the model loss L.
Since the bi-level optimization problem is intractable, it is not solved directly, but an

iterative approach is employed: The attacker initializes an empty set D∗p = ∅ and adds
the poison samples one by one, each of which is created as follows. First, the poison
sample is initialized either by sampling a random instance from a train or substitute set.
Then, the label of the instance is flipped, i.e. changed to a different class. Finally, the
attack iteratively applies poisoning steps which modify the features of the poison sample
in order to increase its impact. Instead of solving Equation (7.1), which is intractable,
each step applies back-gradient optimization to derive ∇xpW. This gradient describes

99

7 Identifying Adversarially Poisoned Data in Classification Learning

Figure 7.1: Top image: The trajectory of a malicious sample during a poisoning attack against
the two-dimensional points dataset. After initially switching the label from 2 to
1, the instance is moved from xp = [−0.74,−1.18] (region of smaller validation
loss) to xp = [2.96,−3.7] (region of higher validation loss) by iteratively applying
back-gradients. Bottom image: The same plot is shown for a validation accuracy
colormap.

100

7.4 Poisoning Attack

how the attacker’s objective function changes w.r.t. a single poison instance xp’s feature
values, which can then be modified accordingly. This gradient is computed as follows:

∇xpW = ∇xpL+
∂θ

∂xp
∇θL (7.3)

It is difficult to compute ∂θ
∂xp

, which indicates how the model changes with respect to
the poison sample. Early poisoning attacks have replaced the inner problem with its
stationary KKT conditions, but this approach can be prohibitively expensive in time
and memory, especially for larger neural networks (the attack has cubic complexity in
the number of model parameters). The approach presented in [30] replaces the inner
optimization with a sequence of learning steps to smoothly update the parameters θ.
After an incomplete optimization of the inner problem within T iterations, the parameters
θT can be used to compute the desired gradients of the outer problem. While current
state-of-the-art approaches based on KKT conditions require solving one linear system per
parameter and computationally demanding matrix operations that scale in time as O(|θ|3)
and in memory as O(|θ|2), the time complexity of back-gradient descent is in O(T). This
significantly reduces the complexity of computing the outer gradient and enables to poison
large neural networks and deep learning algorithms. To avoid storing the whole training
trajectory θ1, ..., θT along with the forward derivatives for back-propagation, Munoz et
Al. [30] propose to compute these parameters during the backward pass based on θT by
reversing the steps of the learning algorithm. Pseudo-code algorithms in [30] summarize
how to derive ∇xpL by reversing a gradient-descent procedure with a fixed number of
epochs and a fixed step size. We refer to this attack as a back-gradient optimization
attack. We implement it both in Python and Matlab and use it to evaluate our defense
against a strong, white-box adversary.

Intuition. We give a visual example of this attack in Figure 7.1. This figure shows
the points dataset (c.f. Section 7.6.1) with three classes (shown as blue, red, and green
dots) over a two-dimensional feature space. The black crosses represent a single poisoned
instance as it evolves during T = 26 iterations of the attack. This poison sample is
created by taking a legitimate data instance and flipping its label to a poison label, in
this case from 2 to 1. Then, over the course of 26 iterations, the attack gradually shifts
the poisoned instance to a region where it will induce higher validation loss and lower
validation accuracy. The effects of training a model on the normal data Dtr plus a single
poisoned instance xp are shown by the background color map, whose x1, x2 coordinates
represent the feature values of the poisoned instance xp. To create the background plot,
we partition the feature space into a grid, train a model for each poison instance on the
grid, and plot validation loss and accuracy. This gives us the ‘ground truth’ with respect
to how the poison sample should be changed in order to be maximally effective. Observe
how the attack modifies the point such that it is moved to regions of higher validation
loss and lower validation accuracy - i.e. to regions that are associated with bad model
performance.

101

7 Identifying Adversarially Poisoned Data in Classification Learning

7.5 Poisoning Defence

While the previous section detailed strong baseline attacks from related work, this section
presents our contribution: A new defense to detect DoS data poisoning, which we later
evaluate against the previously presented attacks, and which improves over previously
presented defenses.

7.5.1 Requirements

Our defense is designed to identify poison samples in a dataset without knowledge of the
poisoning rate ε. It requires only the model and the poisoned dataset, both of which are
available to the defender. This is the most unrestricted input conceivable and shows the
applicability of our defense in any real-world setting.

7.5.2 Our proposed algorithm

We present an algorithm that identifies poison instances and removes them from the
dataset, while legitimate data remains. This approach is inspired by our previous work
[3], where we detect mislabeled instances in classification datasets.
We define the following notation: Let D be a dataset D = (x, y), consisting of N

instances out of C target classes. Put differently, input x represents N data instances
while target y represents N data labels as one hot-encoded vectors of length C. Both
x and y can be conveniently expressed in matrix notation. Finally, let D∗p ⊆ D for
D = (x, y) be the set of poison instances, which is unknown to the defender.
Informal description. To identify these poison samples, we train a classifierM on the

given dataset D and use the same classifier to obtain new class probabilities for x. We then
discard instances for which the class probability is small, which means that the classifier
considers the original label extremely unlikely based on the feature distribution learned
during training. This works because there is still a significant majority of unpoisoned
data in the training dataset. This is a reasonable assumption to make for crowd-sourced
datasets, where a malicious individual can only introduce a small portion of malicious
data. Nevertheless, we show in our experiments that our system works with up to 10% of
poison data in the training dataset.
Formal description. Formally, our proposed defence corresponds to an indicator

function ι → {0, 1} where ι(d) = 1 indicates that d ∈ D is malicious. We aim at
maximizing the intersection between the true poisoned samples D∗p and {d ∈ D|ι(d) = 1}
while minimizing the intersection of D∗p and {d ∈ D|ι(d) = 0}. Our proposed algorithm
is detailed in algorithm 4. Additionally, we provide a textual description in the following
paragraph.

1. Prerequisites: Given a dataset D = (x, y), which may contain malicious poison
instances, i.e. D = Dtr ∪D∗p. We allow D∗p to be empty (no attack is present).

2. Train model M on the dataset D.

102

7.5 Poisoning Defence

Algorithm 4 Our proposed defense
Require:
1: Dataset Dorig = Dtr ∪D∗p, where Dtr is the training data and D∗p the poisoned data
2: A defender training loss L
3: An upper window size s to approximate the discrete derivative of ln
4: Function
5: D ←− Dorig

6: while True do
7: θ∗ ←− arg minθ E(x,y)∼DL(fθ(x), y)
8: ∆←− ∅
9: for i ∈ [1, ..., |Dorig|] do
10: ypredi ←− fθ∗(xi) where xi ∈ Dorig

11: li ←− 〈yi, ypredi 〉
12: ∆←− ∆ ∪ {li}
13: end for
14: ∆′ ←− sort_ascending(∆)

15: k = arg maxi
∑|D|−s

i=1
1
s

∑s
k=1 |li+k/2 − li−k/2| where li ∈ ∆′

16: D′ ←− {xi ∈ ∆′|i ≥ k}
17: if D′ = D then
18: break
19: end if
20: D ←− D′
21: end while
22: return D

103

7 Identifying Adversarially Poisoned Data in Classification Learning

3. Reclassify training input x using the trained model M and obtain the new class
probabilities (or logits) M(x) = y′.

4. Calculate for all n ∈ {0, ..., N−1} the label likelihood ln that instance xn is assigned
the original label yn. Because yn is a one-hot vector, i.e. yn = [0, 0, . . . , 1, . . . , 0]T ,
this computation is trivial:

ln : = 〈yn, y′n〉

= 0y′
0
n + 0y′

1
n + · · ·+ 1y′

c
n + · · ·+ 0y′n

N−1

= y′
c
n.

Here, c is the non-zero valued index in the one-hot vector yn and y′cn indicates the
c-th vector component of y′n.

5. Sort all training instances according to ln in ascending order. This yields a graph
as presented in Figure 7.3, where instances with small likelihood w.r.t their original
label are on the left side of the plot.

6. Determine a threshold k ∈ {0, ..., N − 1} to distinguish between wrongly labeled
poison data and correctly labeled benign data. We find this threshold by approxi-
mating the first derivative of ln over a sliding window, and simply choosing k as
the argmax. We motivate this in Section 7.6.3.

7. Remove instances D′p where li ≤ lk (i.e. left of the cutoff point) from the training
set. Retrain the model on D −D′p.

8. Iteratively apply steps 2 to 7 until convergence.

Intuition. The intuition behind this algorithm is as follows: By computing the
likelihood ln for each instance, we estimate the probability that the target label is correct.
This is because a high label likelihood ln indicates that the target label comes from the
same distribution as the majority of the dataset D = D∗p ∪Dtr. Note that we assume that
the majority of the data points as being benign. This is a very reasonable assumption,
which is usually made in literature. To reiterate: One generally assumes that Dtr � D∗p
because the attack can introduce only a small amount of data (c.f. Section 6.3). A high
value of ln thus correlates with the sample in question being unpoisoned or benign.

Extracting information about the unpoisoned data distribution from a poisoned dataset
requires a model M which can generalize well even in the presence of adversarial data.
Such a model may not be optimal in an unpoisoned scenario, as it may discard a more
complicated structure in the benign data. However, it is suitable in a poisoned scenario,
because we want to discard everything except the most rudimentary structure in the data.
The goal is to learn from the benign data what the poisoned instances’ labels should be.

We then sort the instances by ln and remove a portion that has very small ln (and thus
likely has a wrong label, which indicates adversarial data). We retrain our model on the
remaining data and iteratively re-evaluate the whole dataset. In our empirical evaluation
in Section 7.6, we find that this approach reliably identifies poisoned instances with low
false positive and false negative rates.

104

7.6 Evaluation

Name Size Classes |Dtr| |Dval| |Dtest|

breast_cancer (540, 30) 2 100 220 220
fashion_mnist_156 (6300, 784) 3 300 3000 3000
fashion_mnist_17 (2100, 784) 2 100 1000 1000
mnist_156 (6300, 784) 3 300 3000 3000
mnist_17 (2100, 784) 2 100 1000 1000
points (300, 2) 3 100 100 100
spambase (4200, 57) 2 200 2000 2000

Table 7.1: Datasets used when evaluating DoS data poisoning in the context of classification

Concerning the model M , we note that it must be able to generalize well on the
dataset. It crucial that the model does not overfit, because if it does, it will not learn
to approximate the underlying distribution of the samples Dtr, but simply remember all
instances of D, including the poisoned instances in D∗p. Such a model yields high label
likelihood ln for all instances, which renders the defense strategy invalid. Neural networks
can satisfy these requirements. To prevent overfitting, we use an aggressive learning rate
and early stopping.
Conceptual similarity to LabelFix algorithm. Note the conceptual similarity of

our approach to the LabelFix algorithm in chapter 5. In both cases, we identify mislabeled
or poisoned samples by training a strongly generalizing model on the noisy or poisoned
data set. The model is able to ignore outliers, focusing on the majority of the clean
data. Using the label likelihood ln, we can identify the likelihood of data given the model,
i.e. find data that does not conform to the model, and thus does not originate from the
majority, i.e. the benign class.

7.6 Evaluation

In this section, we evaluate our proposed defense against the attacks presented in Sec-
tion 7.4. We find that these attacks, especially the back-gradient attack, considerably
deteriorate the dataset, and that our defense can effectively mitigate the attack. Finally,
we compare our defense against previously published data poisoning defenses.

7.6.1 Experimental Setup

We evaluate our model on seven numerical and image datasets from Keras [10, 13] and
the UCI Machine Learning Repository [142], as presented in Table 7.1. Poison instances
D∗p are sampled from the validation set Dval at run time. We use a neural network with
one inner layer consisting of 10 neurons, as is appropriate for the small datasets we use.
This is in line with related work [30]. For the image datasets, we also perform these
experiments with a two-layer convolutional network.

105

7 Identifying Adversarially Poisoned Data in Classification Learning

dataset test loss test accuracy

clean flip back-grad clean flip back-grad

breast_cancer 0.14 0.21 0.30 0.96 0.93 0.89
f_mnist_156 0.09 0.24 0.30 0.98 0.92 0.92
f_mnist_17 0.00 0.19 0.19 1.00 0.92 0.92
mnist_156 0.14 0.44 0.50 0.96 0.88 0.88
mnist_17 0.04 0.31 0.56 0.99 0.91 0.86
points 0.21 0.26 0.26 0.94 0.93 0.93
spambase 0.47 0.61 0.87 0.88 0.82 0.79
mean 0.16 0.32 0.42 0.96 0.90 0.88

Table 7.2: Results of applying the label flipping and back-gradient attack against a neural
network with one inner layer, averaged over 5 runs. Poisoning 10% of the training
data considerably degrades the model’s performance with respect to the test loss and
test accuracy.

7.6.2 Attack Results

In this section, we present the results of the aforementioned data poisoning attacks on our
datasets. We inject up to 10% poison data, and average all results of five individual runs.

The results for attacking an exemplary dataset (spambase) are shown in Figure 7.2 and
Table 7.2. It can be seen that both the black-box and white-box attacks are effective
and that the ’back-gradient’ attack consistently outperforms the more naive black-box
’flipping’ attack.

Additionally, we evaluate the effectiveness of the ’back-gradient’ attack by plotting the
model’s decision surface. Figure A.6 in the appendix shows a points classification task
with no adversarial data poisoning, as well as data poisoning induced by the flipping and
back-gradient attack. Observe how the attack dramatically alters the decision surface.
Table A.5 shows the individual and averaged results for all datasets for five and ten percent
of data poisoning. We compare the effectiveness of this attack against corresponding
attacks in the domain of regression learning in Section 7.8.
Finally, we apply the ’back-gradient’ optimization attack to a convolutional neural

network consisting of two convolutional layers (kernel_size = (3, 3), pool_size = (2, 2)).
The authors of [30] report that convolutional neural networks are more resilient against
optimal poisoning attacks. We can confirm this result empirically, see Table A.4 in the
Appendix.

7.6.3 An Example of Applying our Defence

In this section, we apply our defense against a single, exemplary dataset to further
illustrate how the defense works. The complete, empirical evaluation on all datasets is
presented in the following section.

106

7.6 Evaluation

Figure 7.2: Degrading a model’s performance by increasing the fraction of poison samples in
the spambase training dataset. The test loss and accuracy are averaged over 5
runs. Error bars represent the standard deviation. The figure on the left shows
the increase of test loss (attacker reward) while the figure on the right shows the
decrease of test accuracy when training a model on increasingly poisoned data. Both
attacks can be considered effective, however the back-gradient attack outperforms
flip significantly.

Figure 7.3: The result of applying our defense until convergence (shown: iteration one (left)
and two (right)) on the mnist_17 training dataset. Each image shows a ‘knee plots’
of label likelihood values ln (blue), sorted in ascending order. The x-axis lists the
ln-sorted instances, while the y-axis shows the corresponding label likelihood-values
ln. The red line represents the true fraction of poison samples (10%), while the
green line represents the fraction estimated by our defence algorithm. Our defence is
accurate in estimating the poison rate (c.f. right image, where the red and green line
overlap). Additionally, it identifies individual instances with a low FPR = 0.014
and a low FNR = 0.013. This results in the poisoned test loss being restored from
0.58 to 0.10, and the test accuracy being increased from 0.86 to 0.97.

107

7 Identifying Adversarially Poisoned Data in Classification Learning

dataset ν̂ FP FN test loss test accuracy

random defence random defence before after before after

breast_cancer 0.088 0.09 0.023 0.09 0.034 0.32 0.31 0.89 0.92
fashion_mnist_156 0.107 0.09 0.016 0.09 0.008 0.30 0.16 0.92 0.97
fashion_mnist_17 0.095 0.09 0.000 0.09 0.004 0.18 0.00 0.93 1.00
mnist_156 0.113 0.09 0.022 0.09 0.008 0.51 0.17 0.88 0.96
mnist_17 0.101 0.09 0.014 0.09 0.013 0.58 0.10 0.86 0.97
points 0.070 0.09 0.005 0.09 0.034 0.26 0.24 0.92 0.94
spambase 0.072 0.09 0.028 0.09 0.055 0.80 0.79 0.81 0.84
mean 0.092 0.09 0.016 0.09 0.022 0.42 0.25 0.89 0.94
std 0.015 0.00 0.009 0.00 0.018 0.20 0.24 0.04 0.05

Table 7.3: Results of our defence against the back-gradient optimization attack on a neural
network with one inner layer, averaged over 5 runs. The datasets contain 10% poison
samples each. The column ν̂ shows the poison rate estimated by the defence algorithm
while the next two columns compare FPR and FNR of our defence against a random
baseline. Test loss and accuracy improve considerably when using the defence on the
poisoned datasets.

Applying our defense. Assume a poisoned dataset D. After applying steps 2-3
from the defense (c.f. Section 7.5.2), we obtain a model M trained on D. Step 4 yields
ln = 〈yn, y′n〉 for all instances in the dataset D. Remember that this label likelihood ln
denotes the likelihood of instance n being assigned the original label.
Step 5 consists of sorting all training instances according to ln. This results in a

so-called knee plot. Figure 7.3 presents such a plot for the mnist_17 dataset. The red
line shows the true rate of poison samples in our training dataset (ε = 10%), and the
green line is the model’s estimate of the poisoning rate. This estimate ε̂ is selected as the
highest increase in ln over n, or put differently, ε̂ is the arg max of the first derivative of
ln. Since obviously ln is a discrete function, we approximate its derivative using a sliding
window. Finally, in step 7 and 8, we chose as new training data where ln falls above the
threshold, and retrain the model on this data. This process is iterated until convergence,
in the example Figure 7.3 for two iterations.

The intuition behind this approach is as follows: The poison estimate ε̂ separates values
of low and high label likelihood ln. Low values indicate a mismatch between feature and
target values, which may indicate poisoned data. An oracle would assign benign data a
label likelihood of ln = 1 and poisoned data a likelihood of ln = 0. Thus, the obvious
choice of threshold would be the point of discontinuity in ln. Since we need to work
with an imperfect classifier instead of an oracle, the discontinuity is not as pronounced.
However, the largest derivative is a solid approximation which we find to work well.

7.6.4 Defense Results

We apply our defense on data poisoned with the label back-gradient optimization attack,
the strongest baseline attack in related work, c.f. Section 2.2.2. Table 7.3 presents the

108

7.6 Evaluation

Figure 7.4: ROC curves averaged over 5 runs, obtained by applying our defence on seven
datasets poisoned with the back-gradient optimization attack. The x-axis presents
the fraction of false positive samples (benign data) while the y-axis presents the
fraction of true positive samples (poison data) at varying thresholds.

results. We identify poisoned instances with an averaged FPR = 0.02 and FNR = 0.02,
significantly outperforming a random baseline where both FPR,FNR = 0.09. The
false-positive rate corresponds to the non-poison samples left of the threshold that our
classifier wrongly assumes to be poisoned and will be discarded from the training dataset.
The false-negative rate corresponds to the poison samples right of the threshold that our
classifier wrongly assumes to be benign and will remain in the training dataset. Note that
our defense does not know the poisoning rate.

For additional illustration, we also present ROC curves, c.f. Figure 7.4, which plots the
false positive rate FPR against the true positive rate TPR. An optimal model achieves
a TPR = 1 with no false-positives (i.e. FPR = 0). For the fashion_mnist_17 dataset,
we can present such a perfect model (green line). The random baseline (diagonal black
line) is significantly outperformed for all experiments.

Table A.5 in the appendix provides an evaluation of non-poisoned models to demonstrate
the utility of our defence. In this case, our method only discards a few samples of low
label likelihood with a minimum effect on the test loss and accuracy of the model.

To show that our approach is not limited to a specific learning model, we also apply it
on a convolutional neural network (see Table A.4 in the appendix).

7.6.5 Evaluation Against Related Defences

We implement two popular approaches for data-poisoning detection from related work
and compare their results to our defense, c.f. Table 7.4. The defense in [138] finds the k
nearest neighbors for each sample in the training set using the euclidean distance. If the

109

7 Identifying Adversarially Poisoned Data in Classification Learning

dataset FP FN

[138] (kNN) [137] (L2) [137] (LOF) our defence [138] (kNN) [137] (L2) [137] (LOF) our defence

breast_cancer 0.034 0.009 0.031 0.023 0.011 0.085 0.050 0.034
fashion_mnist_156 0.017 0.059 0.035 0.016 0.009 0.014 0.032 0.008
fashion_mnist_17 0.000 0.038 0.040 0.000 0.000 0.000 0.000 0.004
mnist_156 0.019 0.125 0.046 0.022 0.023 0.012 0.016 0.008
mnist_17 0.025 0.061 0.034 0.014 0.020 0.032 0.034 0.013
points 0.020 0.025 0.029 0.005 0.013 0.011 0.013 0.034
spambase 0.098 0.012 0.042 0.028 0.051 0.097 0.075 0.055
mean 0.031 0.047 0.037 0.016 0.018 0.036 0.031 0.022
std 0.029 0.037 0.006 0.009 0.015 0.036 0.023 0.018

Table 7.4: Comparing our defence to outlier detection used in previous poisoning defences (see
[137, 138]), averaged over 5 runs.

fraction of data points with the most common label among these k nearest neighbors is
above a given threshold t and if this most common label is different from the actual class
of the sample, the sample is considered to be poisoned and will be rejected. Based on the
experiments in [138], we use k = 10 and t = 0.6 for all datasets.
The outlier detection mechanism in [137] first splits a small fraction of trusted data

into the different classes and then trains an outlier detector for each class. Every sample
is assigned an outlierness score, which is either the Euclidean distance (L2 norm) or
the local outlier factor (LOF) with respect to its k nearest neighbors. The threshold to
detect outliers is set by using the Empirical Cumulative Distribution Function of the
benign training data and identifying the score at a certain α-percentile. Samples with an
outlierness score above that threshold are discarded. The parameters k = 5 and α = 0.99,
respectively α = 0.95, are chosen according to the authors’ suggestions.
Summary. We significantly outperform related defenses, c.f. Table 7.4, both in terms

of FPR and FNR. Additionally, we observe that all of these methods suffer from the
curse of dimensionality since they are based on a notion of metric distance. Experiments
were conducted in real-world conditions: We average over all datasets and supply neither
trusted reference data nor access to the ground-truth poisoning rate to our defense.

7.7 Conclusion

In this chapter, we present a new approach to defending against DoS poisoning attacks in
classification learning. Our proposed algorithm can detect and discard malicious instances,
either by selecting a threshold automatically or by sorting the instances for efficient triage
by a human expert. While previous work has mostly used clustering and outlier detection
against poisoning attacks, we re-evaluate the training samples by the poisoned classifier.
This approach outperforms related state-of-the-art.

The success of our proposed approach shows that learning models themselves can
identify adversarial instances, even under the influence of severe data poisoning. Strong
regularisation and a focus on generalisation capability allows for detecting data poisoning
instances as those points that are different from the majority of the remaining data.

110

7.8 Data Poisoning in Regression and Classification: A Comparison

7.8 Data Poisoning in Regression and Classification: A
Comparison

We now proceed to summarize the key differences and similarities of data poisoning
attacks between regression and classification learning. These differences motivate our
decision to separate the topic into two parts, Chapter 6 and Chapter 7. This section
does not present new technical contributions but provides additional in-depth detail on
data-poisoning on regression and classification learning.

7.8.1 Similarities

We will start by examining the similarities.

• Threat Model. For both classification and regression, the threat model is identical.
A defender trains a model (regressor or classifier) on their dataset. The attacker
can introduce a small percentage of poison samples into this dataset. The goal of
the attacker, their knowledge, and capabilities may vary but are not dependent on
whether the problem is a regression or classification task. Thus, the threat model is
identical.

• Architecture of the Defender’s Model. Also, the architecture of the defender’s
model and the training process are identical for both classification and regression,
or at least very similar. Often, neural networks are employed, which are mostly
identical between the two domains. There are only a few differences: a) the loss
function (Lp loss for regression, Cross-Entropy-Loss for classification) and b) the
final layer (1 neuron with linear activation vs. n neurons with linear or softmax
layer). Additionally, data preprocessing and success metrics may vary. However,
this is independent of targets being continuous or categorical. These models are
always trained with stochastic gradient descent or variants thereof. Also, traditional
machine learning techniques such as Support Vector Machines or Decision Trees
exist for both regression and classification problems. In summary, the marginal
differences in the defender’s model do not justify splitting research on data poisoning
between regression and classification learning.

• Unbounded Feature Values. Also, in both classification and regression, the
feature values of the data are bounded/unbounded not because of the target variable,
but because of the problem domain. Put differently, whether or not the feature
values are constrained to a given interval (i.e. image pixels are constrained to
[0, 1] ∈ R) does not depend on the task being a classification or regression problem,
but on the nature of the data. In both a regression and classification scenario, the
attacker has to be careful not to exceed the limits of the feature values to avoid a)
creating invalid data, and b) creating suspicious data. For example, an adversarial
poisoning sample that holds a temperature value of −300 degree Celsius is very
easy to spot for any outlier-based defense since absolute zero is −273.15 degree
Celsius. In summary, for both classification and regression, the defender has to be

111

7 Identifying Adversarially Poisoned Data in Classification Learning

mindful of how to change the feature values. Often, the solution is to introduce a
’feasibility domain’, c.f. Section 6.4.2.2.

7.8.2 Differences

However, there are also considerable differences between classification and regression
learning in the field of adversarial poisoning attacks. These motivate different algorithms
for both creating and defending against adversarial data poisoning.

• Datasets. The most obvious difference lies in the available datasets: Classification
learning requires data that is labelled categorically, i.e. with classed 0, ..., n − 1.
Regression learning requires data with continuous targets, i.e. with unbounded
targets ∈ R or at least ∈ N. The meaning of these targets is very different: In
classification learning, the metric distance between two targets has no meaning.
For example, class 0 is not more similar to class 1 than to class 9. This becomes
intuitively clear when looking at the CIFAR-10 image dataset: Class 0 represents
airplanes, class 1 represents cars, and class 9 represents trucks. It is nonsensical to
assume that an airplane is 9 times more similar to a car than a truck. However,
in regression learning, the converse is true: The targets usually represent some
measurable quantity like weight, speed, gram, dollar, bits per second, etc., which
allow for comparability.

• Manipulation of Target Values. The difference in target values between regres-
sion and classification problems also affects adversarial data poisoning: In regression
learning, an attacker usually shifts the targets towards extreme values at the border
of the feasibility domain (c.f. the StatP or Flip attack, Section 6.4.2.2). In contrast,
for classification learning, there are no such ’extreme’ target values the poisoned
instance may assume. This is because the targets are categorical, and the notion
of distance is not defined as explained above. It is not clear how an attacker can
choose optimal targets for their poisoned instances. In fact, related work relies
heavily on choosing the targets randomly (c.f. Backgradient attack or Random Flip
attack, Section 7.4.3).

• Effectiveness of Attack. When comparing the strongest data-poisoning attacks
in literature in the domain of regression learning vs. classification learning, we
observe a discrepancy in effectiveness. Attacks on regression learning are far more
effective: With about two to four percent of poison data, the test error is increased
to more than 200 percent (c.f. Figure 6.3). In a corresponding classification task, the
accuracy drops from an averaged 0.95 to 0.92 for five percent of data poisoning. This
means that the model’s ’rate of failure’ increases from 5% to 8%, which is equivalent
to an increase of test error to 160% (c.f. Table A.5). In summary, when poisoning
datasets, we observed that SOTA data poisoning is less effective in classification
learning than in regression learning. This is because regression learning allows for
modifying the feature values to the extremes, whereas in classification learning, the
attacker is largely confined to changing the feature values (c.f. Section 7.4.3).

112

7.8 Data Poisoning in Regression and Classification: A Comparison

• Applicability of Defense. The difference in target values motivates different
defense strategies because the meaning and interpretability of the targets differ
between the domains of classification and regression. Consider for example our
proposed defense in Section 7.5.2. To compute the label likelihood ln = 〈yi, y′i〉, a
categorical target vector yi is required which can be interpreted as a probability
distribution. While classification targets are naturally interpretable as a probability
distribution, regression targets are not, since they represent the value of some
quantity. Conversely, the Trim and iTrim defense identify data poisoning by sorting
all instances by the magnitude of the training loss they incur. While this motivates
our proposed data poisoning defense for classification (c.f. Chapter 7), migrating
this defense to the domain of classification incurs a change in loss function and
target values, which in turn requires that this defense substitute the training loss
with the label likelihood ln.

• Related Work. Finally, the amount of related work also differs between poisoning
classification and regression data. We note that there is significantly more research
on ’classification’ than on ’regression’ learning: Google Scholar lists more than five
times more related work for the search term ’data poisoning classification’ vs ’data
poisoning regression’: 981k vs 190k on Dec. 17th, 2020. These numbers are obviously
inflated, but show that classification is studied more than regression learning. We
can confirm that there is significantly more related work for classification poisoning,
especially in the domain of defenses against data poisoning. This may be because
humans are more interested and better at interpreting classification data (e.g.
images) than regression (numbers & measurements), thus it attracts more research.

In summary, while many aspects of data poisoning are consistent throughout regression
and classification learning, there are considerable differences: Most importantly, regression
targets are interpreted differently from classification targets, from which follows that
attack and defense strategies need to be adapted.

113

8 Conclusion

This chapter concludes the thesis and reflects on its contributions. It summarizes our
answer to the proposed research question, discusses current research trends in this field,
and finally concludes with suggestions for future research.

8.1 Answering the Research Question

The main research question of this thesis is: What influences (i.e., both attacks and data
errors) compromise the integrity and correctness of ML datasets, and how can this be
counteracted?

Our answer is as follows: The integrity and correctness of ML datasets can be compro-
mised by either random or deliberate adversaries; i.e. errors in the data, or adversarial data
poisoning attacks. Thus, the integrity and correctness of ML datasets can be maintained
by employing data-sanitation techniques that address both of these scenarios:

• Random Adversary / Data Errors. To assert the correctness of the data labels
against labeling mistakes, we propose to use our tool LabelFix as presented in [3],
which has also been published on GitHub, see www.github.com/mueller91/
labelfix. We show that it reliably detects labeling mistakes and thus contributes
to the correctness of ML data. To guard against data errors that lead to learning
shortcuts, we suggest careful exploratory analysis (as in [1]) and information-
aggregation schemes such as presented in equation (3.1).

• Deliberate Adversary. If possibly untrusted data has been incorporated into
the training set, one should use a sanitation algorithm such as we present in [4] or
[5], depending on the target domain. We show that these algorithms can reliably
estimate the presence and degree of data poisoning, so it is always a good idea to
apply them to learn more about one’s dataset and maintain integrity. When using
active learning, one has to take the possibility of data poisoning into account [2]
and should consider adversarial retraining.

Our algorithms beat state-of-the-art in adversarial settings and find previously unpublished
errors in some of the most popular machine-learning datasets. We show that the algorithms
can be applied in realistic scenarios and are viable when the degree or presence of data
poisoning is unknown. They run efficiently even when only limited computing power is
available. In summary, we argue that it is always a good idea to apply our proposed
algorithms to a newly created dataset. Compared to the effort of collecting, processing,
and especially labeling the data, the overhead induced by our algorithms is negligible,
but there is a tangible benefit in catching errors and malicious data before the dataset is
used in downstream tasks or even published.

115

www.github.com/mueller91/labelfix
www.github.com/mueller91/labelfix

8 Conclusion

Figure 8.1: Work presented in this thesis on a spectrum ‘probability of occurrence’ and ‘dam-
age’. We identify three categories: First, specialized attacks such as ‘adversarial
active transfer learning’, e.g. work presented in chapter 4. These attacks have a
lower probability of occurrence since they require a rather specialized setup. The
damage inflicted however is high, since the active learning algorithm is completely
broken, thus human annotation effort is wasted. Second, work on data poisoning,
c.f. chapter 6 and chapter 7. These threats have a medium probability of occurrence
and inflict medium damage (the dataset has to be cleaned, but no manual labeling
effort is lost). Third, data errors (c.f. chapter 5 and chapter 3), which have a high
probability of occurrence, but are often thought of as not too important and/or
impactful.

8.2 Evaluating Current Research Trends

A natural way to structure the work presented in this thesis is to place them on a spectrum
between two poles. Let us consider two spectra: First, the damage or harm inflicted
by the attacks and errors presented in the previous chapters. We define damage as the
amount of resources (human effort and computation time) required to undo the negative
results of the attacks or dataset errors. Second, we structure our work by the probability
of occurrence, i.e. sort from most likely to least likely. When aligning our work on these
two spectra, three subgroups emerge. We visualize this in figure 8.1.

• Specialized Attacks. First, there are specialized attacks such as ‘adversarial
active transfer learning’, e.g. work presented in chapter 4. These attacks inflict
high damage if successful since the active learning algorithm is completely broken.
This is because the human annotators are provided with attacker-chosen instances
instead of those which would benefit the model the most. Thus, the advantageous
properties of the active-learning setup are completely negated. This is especially
harmful since human annotation is very time-consuming, and repetition is costly.
However, these attacks are rather specialized and thus have a lower probability of
occurrence than other attacks.

• Data Poisoning. The second group is work on data poisoning, c.f. chapter 6
and chapter 7. These threats have a medium probability of occurrence: They
require some attacker capabilities but are rather straightforward to execute and do
not target specialized machine-learning pipelines, but common classification and

116

8.3 Future Work

regression models. They inflict medium damage: the dataset has to be cleaned and
the model retrained, but no manual labeling effort is lost.

• Data Errors. Third, there are data and labelling errors, c.f. chapter 5 and chapter 3.
These have a high probability of occurrence, as we have shown: We find labeling
errors in many of the state-of-the-art datasets, c.f.chapter 5. The same is true for
data errors, which we identify in the most-established audio-deepfake detection
datasetchapter 3. The impact of these attacks ranges from limited to severe. There
is a tendency to underestimate the impacts.

Having defined probability of occurrence and damage, it is natural to conceptualize the
riskiness as the product of both:

riskiness = damage × probability

Thus, riskiness is the expected damage. We observe that the riskiness is approximately
constant across all three groups described above. This is because where one factor is high,
the other one is low, and vice-versa. Interestingly enough, this equal riskiness between
the three groups does not lead to equal research effort by the scientific community. We
select three representative queries for each of the groups and run them against Google
Scholar and the Digital Bibliography & Library Project (DBLP), two of the major search
engines for scientific publication. The results confirm that ‘adversarial data poisoning’
is much more researched than data errors and specialized attacks. Table 8.1 lists our
queries and the number of hits. While this table is only a rough approximation of
the research landscape, it shows that there is about 4-10 times more research for the
popular ’adversarial data poisoning’ topic. This corresponds to our perception of the
scientific landscape, and also explains why the data artifact in ASVspoof 2019 has not
been identified before: other topics seem to attract more interest and thus, more research
effort - even though the data artifact has massive impact on all work performed.

In summary, even though all three groups should warrant equal attention, the scientific
community has picked its favorite and somewhat ignores both high-damage, low-probability
attacks, as well as (perceived) low-damage, high-probability data errors. We hypothesize
that this is because the former seems ’too unlikely’ to worry about, while the latter is
ignored because it seems not harmful enough. However, we argue against this trend:
Since all groups share the same riskiness, they should receive equal research attention.

8.3 Future Work

From the analysis in the previous chapter flows our suggestions for future work.
Most importantly, we suggest allocating equal research effort for equal riskiness. This

means that both specialized attacks and dataset errors should not be neglected. For
example, we need to find new ways to identify data artifacts that can lead to learning
shortcuts [1]. We make some concrete suggestions in section 3.5.2. Solutions to this
problem will not only prevent dataset errors but also help models generalize beyond
the training dataset. They will also improve our understanding of the learning models,

117

8 Conclusion

Query Google Scholar DBLP
active transfer data poison 174k 0
adversarial active learning 171k 63

transfer learning data poisoning 66k 0
data poisoning 2600k 180
adversarial data 674k 993

data poison attack 403k 127
shortcut learning 129k 29

data artefact machine learning 97k 0
mislabelled data 48k 41

Table 8.1: This table shows the number of hits when querying Google Scholar (in thousands)
and DBLP for various keywords from the field of ML data correctness. While Google
Scholar is much less restrictive than DBLP, we observe a similar trend: Firstly, there
is a large body of work on ‘data poisoning’ (middle). Specialized attacks such as
‘active transfer data poisoning’ (top) and dataset-related issues (bottom) are much
less researched. This favoritism seems unjustified since all three groups share similar
riskiness. All results as per 02.03.2022.

making their predictions explainable, which can lead to greater trust and thus a more
widespread use.

Apart from this, it would be interesting to transfer our technical approach to other fields
of IT security: the idea to identify errors or attacks by re-evaluating contaminated data
could also be employed in the domain of anomaly detection. For example, one might train
a classification model with heavy regularisation on a dataset with outliers. As presented
in chapter 5, the label probability ln could identify which instances are outliers. It would
be interesting to apply this approach to other domains, such as predictive maintenance or
health-related use-cases. Forgoing traditional anomaly detection techniques comes with
some advantages (no threshold detection, avoiding the curse of dimensionality), so this
technique may prove fruitful beyond the domain of adversarial machine learning.

118

https://scholar.google.de/
https://dblp.org/

Bibliography

[1] N. M. Müller, F. Dieckmann, P. Czempin, R. Canals, K. Böttinger, and J. Williams.
Speech is silver, silence is golden: What do asvspoof-trained models really learn?
ASVSpoof, 2021.

[2] N. M. Müller and K. Böttinger. Adversarial vulnerability of active transfer learning.
In 19th Symposium on Intelligent Data Analysis (IDA), 2021.

[3] N. M. Müller and K. Markert. Identifying mislabeled instances in classification
datasets. In 2019 International Joint Conference on Neural Networks (IJCNN),
2019.

[4] N. M. Müller, D. Kowatsch, and K. Böttinger. Data poisoning attacks on regression
learning and corresponding defenses. In 25th IEEE Pacific Rim International
Symposium on Dependable Computing (PRDC), 2020.

[5] N. M. Müller, S. Roschmann, and K. Böttinger. Defending against adversarial denial-
of-service data poisoning attacks. In DYNAMICS Workshop, Annual Computer
Security Applications Conference (ACSAC), 2020.

[6] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199,
2013.

[7] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li. Manipulating
Machine Learning: Poisoning Attacks and Countermeasures for Regression Learning.
In Proceedings - IEEE Symposium on Security and Privacy, volume 2018-May, pages
19–35. IEEE, may 2018. URL: https://ieeexplore.ieee.org/document/
8418594/, doi:10.1109/SP.2018.00057.

[8] R. Bellman. Dynamic programming treatment of the travelling salesman problem.
Journal of the ACM (JACM), 9(1):61–63, 1962.

[9] F. Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958.

[10] Y. LeCun, C. Cortes, and C. Burges. Mnist handwritten digit database. ATT Labs
[Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

[11] A. Krizhevsky, V. Nair, and G. Hinton. Cifar-100 (canadian institute for advanced
research). URL: http://www.cs.toronto.edu/~kriz/cifar.html.

119

https://ieeexplore.ieee.org/document/8418594/
https://ieeexplore.ieee.org/document/8418594/
http://dx.doi.org/10.1109/SP.2018.00057
http://www.cs.toronto.edu/~kriz/cifar.html

BIBLIOGRAPHY

[12] N. M. Müller, D. Kowatsch, P. Debus, D. Mirdita, and K. Böttinger. On gdpr
compliance of companies’ privacy policies. In International Conference on Text,
Speech, and Dialogue, pages 151–159. Springer, 2019.

[13] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[14] N. M. Müller, P. Debus, and K. Böttinger. Distributed anomaly detection of
single mote attacks in rpl networks. In Proceedings of the 16th International Joint
Conference on e-Business and Telecommunications, volume 2, 2019.

[15] T. Dörr, K. Markert, N. M. Müller, and K. Böttinger. Towards resistant audio
adversarial examples. In Proceedings of the 1st ACM Workshop on Security and
Privacy on Artificial Intelligence, pages 3–10, 2020.

[16] G. Atkinson and V. Metsis. Identifying label noise in time-series datasets. In Adjunct
Proceedings of the 2020 ACM International Joint Conference on Pervasive and
Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium
on Wearable Computers, pages 238–243, 2020.

[17] Mnist on benchmarks.ai. https://benchmarks.ai/mnist. (Accessed on
05/18/2022).

[18] J. Y. et Al. Asvspoof 2021 worshop slides: Accelerating progress in spoofed and
deepfake speech detection. ASVSpoof, 16th September 2021.

[19] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

[20] P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

[21] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

[22] S. Ioffe. Batch renormalization: Towards reducing minibatch dependence in batch-
normalized models. In Advances in neural information processing systems, pages
1945–1953, 2017.

[23] S. Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1608.04747, 2015.

[24] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly, Z. Yang,
Y. Xiao, Z. Chen, S. Bengio, et al. Tacotron: Towards end-to-end speech synthesis.
arXiv preprint arXiv:1703.10135, 2017.

[25] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakan-
tan, P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

120

https://benchmarks.ai/mnist

BIBLIOGRAPHY

[26] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[27] L. Deng. The mnist database of handwritten digit images for machine learning
research [best of the web]. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[28] B. Biggio, B. Nelson, and P. Laskov. Poisoning attacks against support vector
machines. arXiv preprint arXiv:1206.6389, 2012.

[29] H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, and F. Roli. Is feature selection
secure against training data poisoning? In International Conference on Machine
Learning, pages 1689–1698, 2015.

[30] L. Muñoz-González, B. Biggio, A. Demontis, A. Paudice, V. Wongrassamee, E. C.
Lupu, and F. Roli. Towards poisoning of deep learning algorithms with back-gradient
optimization. In Proceedings of the 10th ACM Workshop on Artificial Intelligence
and Security, pages 27–38, 2017.

[31] A. Shafahi, W. Ronny Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras,
and T. Goldstein. Poison frogs! Targeted clean-label poisoning attacks on
neural networks. In Advances in Neural Information Processing Systems, volume
2018-Decem, pages 6103–6113, 2018. URL: http://papers.nips.cc/paper/
7849-poison-frogs-targeted-clean-label-poisoning-attacks-on-neural-networks.
pdf, arXiv:1804.00792.

[32] I. Evtimov, K. Eykholt, E. Fernandes, T. Kohno, B. Li, A. Prakash, A. Rahmati,
and D. Song. Robust physical-world attacks on machine learning models. arXiv
preprint arXiv:1707.08945, 2(3):4, 2017.

[33] Y. Dong, H. Su, B. Wu, Z. Li, W. Liu, T. Zhang, and J. Zhu. Efficient decision-
based black-box adversarial attacks on face recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 7714–7722, 2019.

[34] Inside the plot to bomb borussia dortmund soccer team to make
money. https : / / money . cnn . com / 2017 / 04 / 21 / investing /
dortmund-bombing-stock-plot/. (Accessed on 12/02/2020).

[35] S. G. Finlayson, J. D. Bowers, J. Ito, J. L. Zittrain, A. L. Beam, and I. S. Kohane.
Adversarial attacks on medical machine learning. Science, 363(6433):1287–1289,
2019.

[36] M. Carminati, L. Santini, M. Polino, and S. Zanero. Evasion attacks against banking
fraud detection systems. In 23rd International Symposium on Research in Attacks,
Intrusions and Defenses ({RAID} 2020), pages 285–300, 2020.

[37] N. H. Imam and V. G. Vassilakis. A survey of attacks against twitter spam detectors
in an adversarial environment. Robotics, 8(3):50, 2019.

121

http://papers.nips.cc/paper/7849-poison-frogs-targeted-clean-label-poisoning-attacks-on-neural-networks.pdf
http://papers.nips.cc/paper/7849-poison-frogs-targeted-clean-label-poisoning-attacks-on-neural-networks.pdf
http://papers.nips.cc/paper/7849-poison-frogs-targeted-clean-label-poisoning-attacks-on-neural-networks.pdf
http://arxiv.org/abs/1804.00792
https://money.cnn.com/2017/04/21/investing/dortmund-bombing-stock-plot/
https://money.cnn.com/2017/04/21/investing/dortmund-bombing-stock-plot/

BIBLIOGRAPHY

[38] H. S. Anderson, A. Kharkar, B. Filar, and P. Roth. Evading machine learning
malware detection. Black Hat, 2017.

[39] N. Carlini and D. Wagner. Audio adversarial examples: Targeted attacks on speech-
to-text. In 2018 IEEE Security and Privacy Workshops (SPW), pages 1–7. IEEE,
2018.

[40] H. Yakura and J. Sakuma. Robust audio adversarial example for a physical attack.
arXiv preprint arXiv:1810.11793, 2018.

[41] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok. Synthesizing robust adversarial
examples. In International conference on machine learning, pages 284–293. PMLR,
2018.

[42] B. Miller, A. Kantchelian, S. Afroz, R. Bachwani, E. Dauber, L. Huang, M. C.
Tschantz, A. D. Joseph, and J. D. Tygar. Adversarial active learning. In Proceedings
of the 2014 Workshop on Artificial Intelligent and Security Workshop, pages 3–14,
2014.

[43] C. Guo, J. R. Gardner, Y. You, A. G. Wilson, and K. Q. Weinberger. Simple
black-box adversarial attacks. arXiv preprint arXiv:1905.07121, 2019.

[44] S. Lapuschkin, S. Wäldchen, A. Binder, G. Montavon, W. Samek, and K.-R. Müller.
Unmasking clever hans predictors and assessing what machines really learn. Nature
communications, 10(1):1–8, 2019.

[45] Audio deep fake: Demonstrator entwickelt am fraunhofer aisec - youtube. https:
//www.youtube.com/watch?v=MZTF0eAALmE. (Accessed on 02/22/2022).

[46] A voice deepfake was used to scam a ceo out of $243,000. https:
/ / www . forbes . com / sites / jessedamiani / 2019 / 09 / 03 /
a-voice-deepfake-was-used-to-scam-a-ceo-out-of-243000. (Ac-
cessed on 08/16/2021).

[47] J. Yamagishi, M. Todisco, M. Sahidullah, H. Delgado, X. Wang, N. Evans, T. Kin-
nunen, K. A. Lee, V. Vestman, and A. Nautsch. Asvspoof 2019: The 3rd automatic
speaker verification spoofing and countermeasures challenge database. 2019.

[48] Asvspoof 2021: Automatic speaker verification spoofing and countermeasures chal-
lenge. https://www.asvspoof.org/index2019.html. Accessed: 2021-06-11.

[49] C. Veaux, J. Yamagishi, K. MacDonald, et al. Superseded-cstr vctk corpus: English
multi-speaker corpus for cstr voice cloning toolkit. 2017.

[50] A. Chintha, B. Thai, S. J. Sohrawardi, K. Bhatt, A. Hickerson, M. Wright, and
R. Ptucha. Recurrent convolutional structures for audio spoof and video deepfake
detection. IEEE Journal of Selected Topics in Signal Processing, 14, 2020.

122

https://www.youtube.com/watch?v=MZTF0eAALmE
https://www.youtube.com/watch?v=MZTF0eAALmE
https://www.forbes.com/sites/jessedamiani/2019/09/03/a-voice-deepfake-was-used-to-scam-a-ceo-out-of-243000
https://www.forbes.com/sites/jessedamiani/2019/09/03/a-voice-deepfake-was-used-to-scam-a-ceo-out-of-243000
https://www.forbes.com/sites/jessedamiani/2019/09/03/a-voice-deepfake-was-used-to-scam-a-ceo-out-of-243000

BIBLIOGRAPHY

[51] M. Alzantot, Z. Wang, and M. B. Srivastava. Deep residual neural networks for
audio spoofing detection. arXiv preprint arXiv:1907.00501, 2019.

[52] B. Chettri, D. Stoller, V. Morfi, M. A. M. Ramírez, E. Benetos, and B. L. Sturm.
Ensemble models for spoofing detection in automatic speaker verification. arXiv
preprint arXiv:1904.04589, 2019.

[53] Z. Wang, S. Cui, X. Kang, W. Sun, and Z. Li. Densely connected convolutional
network for audio spoofing detection. In 2020 Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference (APSIPA ASC), pages
1352–1360. IEEE, 2020.

[54] X. Wang, J. Yamagishi, M. Todisco, H. Delgado, A. Nautsch, N. Evans, M. Sahidul-
lah, V. Vestman, T. Kinnunen, K. A. Lee, et al. Asvspoof 2019: A large-scale
public database of synthesized, converted and replayed speech. Computer Speech &
Language, 64:101114, 2020.

[55] Y. Wang, D. Stanton, Y. Zhang, R.-S. Ryan, E. Battenberg, J. Shor, Y. Xiao, Y. Jia,
F. Ren, and R. A. Saurous. Style tokens: Unsupervised style modeling, control and
transfer in end-to-end speech synthesis. In International Conference on Machine
Learning, pages 5180–5189. PMLR, 2018.

[56] Y. Jia, Y. Zhang, R. J. Weiss, Q. Wang, J. Shen, F. Ren, Z. Chen, P. Nguyen,
R. Pang, I. L. Moreno, et al. Transfer learning from speaker verification to multi-
speaker text-to-speech synthesis. arXiv preprint arXiv:1806.04558, 2018.

[57] H. Tak, J. Patino, M. Todisco, A. Nautsch, N. Evans, and A. Larcher. End-to-end
anti-spoofing with rawnet2. In ICASSP 2021-2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 6369–6373. IEEE,
2021.

[58] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[59] J. C. Brown. Calculation of a constant q spectral transform. The Journal of the
Acoustical Society of America, 89(1):425–434, 1991.

[60] B. M. et Al. librosa/librosa: 0.8.1rc2, May 2021. URL: https://doi.org/10.
5281/zenodo.4792298, doi:10.5281/zenodo.4792298.

[61] R. Kubichek. Mel-cepstral distance measure for objective speech quality assessment.
In Proceedings of IEEE Pacific Rim Conference on Communications Computers
and Signal Processing, volume 1, pages 125–128. IEEE, 1993.

[62] S. Davis and P. Mermelstein. Comparison of parametric representations for mono-
syllabic word recognition in continuously spoken sentences. IEEE transactions on
acoustics, speech, and signal processing, 28(4):357–366, 1980.

123

https://doi.org/10.5281/zenodo.4792298
https://doi.org/10.5281/zenodo.4792298
http://dx.doi.org/10.5281/zenodo.4792298

BIBLIOGRAPHY

[63] M. McAuliffe, M. Socolof, S. Mihuc, M. Wagner, and M. Sonderegger. Montreal
forced aligner: Trainable text-speech alignment using kaldi. In Interspeech, volume
2017, pages 498–502, 2017.

[64] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 22(10):1345–1359, 2009.

[65] B. Settles. Active learning literature survey. Technical report, University of
Wisconsin-Madison Department of Computer Sciences, 2009.

[66] D. Kale and Y. Liu. Accelerating active learning with transfer learning. In 2013
IEEE 13th International Conference on Data Mining, pages 1085–1090, Dec 2013.
doi:10.1109/ICDM.2013.160.

[67] L. Yang, S. Hanneke, and J. Carbonell. A theory of transfer learning with ap-
plications to active learning. Machine Learning, 90, 02 2013. doi:10.1007/
s10994-012-5310-y.

[68] X. Wang, T.-K. Huang, and J. Schneider. Active transfer learning under model
shift. In E. P. Xing and T. Jebara, editors, Proceedings of the 31st International
Conference on Machine Learning, volume 32 of Proceedings of Machine Learning
Research, pages 1305–1313, Bejing, China, 22–24 Jun 2014. PMLR. URL: http:
//proceedings.mlr.press/v32/wangi14.html.

[69] Y. S. Chan and H. T. Ng. Domain adaptation with active learning for word sense
disambiguation. In Proceedings of the 45th Annual Meeting of the Association
of Computational Linguistics, pages 49–56, Prague, Czech Republic, June 2007.
Association for Computational Linguistics. URL: https://www.aclweb.org/
anthology/P07-1007.

[70] X. Shi, W. Fan, and J. Ren. Actively transfer domain knowledge. In Proceedings of
the 2008th European Conference on Machine Learning and Knowledge Discovery
in Databases - Volume Part II, ECMLPKDD’08, page 342–357, Berlin, Heidelberg,
2008. Springer-Verlag.

[71] K. Li, T. Zhang, and J. Malik. Approximate feature collisions in neural nets. In
Advances in Neural Information Processing Systems, pages 15842–15850, 2019.

[72] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[73] M. Plakal and D. Ellis. Yamnet. Jan 2020. github.com/tensorflow/models/
tree/master/research/audioset/yamnet.

[74] Resnet and resnetv2. https://keras.io/api/applications/resnet/.
(Accessed on 11/26/2020).

124

http://dx.doi.org/10.1109/ICDM.2013.160
http://dx.doi.org/10.1007/s10994-012-5310-y
http://dx.doi.org/10.1007/s10994-012-5310-y
http://proceedings.mlr.press/v32/wangi14.html
http://proceedings.mlr.press/v32/wangi14.html
https://www.aclweb.org/anthology/P07-1007
https://www.aclweb.org/anthology/P07-1007
github.com/tensorflow/models/tree/master/research/audioset/yamnet
github.com/tensorflow/models/tree/master/research/audioset/yamnet
https://keras.io/api/applications/resnet/

BIBLIOGRAPHY

[75] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras, and
T. Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural
networks. In Advances in Neural Information Processing Systems, pages 6103–6113,
2018.

[76] Google audio set. https://research.google.com/audioset/, 2017. (Ac-
cessed on 11/26/2020).

[77] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny
images. Citeseer 2009, 2009.

[78] Stl-10 dataset. http://ai.stanford.edu/~acoates/stl10/, 2011. (Ac-
cessed on 11/26/2020).

[79] B. Li, Y. Vorobeychik, and X. Chen. A general retraining framework for scalable
adversarial classification. arXiv preprint arXiv:1604.02606, 2016.

[80] Mislabeled instances found · issue #166 · zalandoresearch/fashion-mnist. https://
github.com/zalandoresearch/fashion-mnist/issues/166. (Accessed
on 11/19/2020).

[81] B. Frénay and A. Kabán. A comprehensive introduction to label noise. In ESANN,
2014.

[82] B. Frénay and M. Verleysen. Classification in the presence of label noise: a survey.
IEEE transactions on neural networks and learning systems, 25(5):845–869, 2014.

[83] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of
machine learning research, 15(1):1929–1958, 2014.

[84] Y. Li, J. Yang, Y. Song, L. Cao, J. Luo, and L.-J. Li. Learning from noisy labels
with distillation. In ICCV, pages 1928–1936, 2017.

[85] J. Bootkrajang. A generalised label noise model for classification in the presence of
annotation errors. Neurocomputing, 192:61–71, 2016.

[86] D. Hendrycks, M. Mazeika, D. Wilson, and K. Gimpel. Using trusted data to train
deep networks on labels corrupted by severe noise. arXiv preprint arXiv:1802.05300,
2018.

[87] C. E. Brodley and M. A. Friedl. Identifying mislabeled training data. Journal of
artificial intelligence research, 11:131–167, 1999.

[88] M. Sabzevari, G. Martínez-Muñoz, and A. Suárez. A two-stage ensemble method
for the detection of class-label noise. Neurocomputing, 275:2374–2383, 2018.

[89] R. Ekambaram, D. B. Goldgof, and L. O. Hall. Finding label noise examples in large
scale datasets. In Systems, Man, and Cybernetics (SMC), 2017 IEEE International
Conference on, pages 2420–2424. IEEE, 2017.

125

https://research.google.com/audioset/
http://ai.stanford.edu/~acoates/stl10/
https://github.com/zalandoresearch/fashion-mnist/issues/166
https://github.com/zalandoresearch/fashion-mnist/issues/166

BIBLIOGRAPHY

[90] M. Al-Rawi and D. Karatzas. On the labeling correctness in computer vision
datasets. In Proceedings of the Workshop on Interactive Adaptive Learning, pages
1–23, 2018.

[91] A. Esuli and F. Sebastiani. Improving text classification accuracy by training label
cleaning. ACM Transactions on Information Systems (TOIS), 31(4):19, 2013.

[92] A. Kolcz and G. V. Cormack. Genre-based decomposition of email class noise.
In Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 427–436. ACM, 2009.

[93] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed repre-
sentations of words and phrases and their compositionality. CoRR, abs/1310.4546,
2013. URL: http://arxiv.org/abs/1310.4546, arXiv:1310.4546.

[94] E. (Github). eyaler/word2vec-slim: word2vec google news model slimmed down
to 300k english words. https://github.com/eyaler/word2vec-slim. (Accessed on
03/28/2019).

[95] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of massive datasets, pages
1–19. Cambridge university press, 2014.

[96] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in
deep neural networks? In Advances in neural information processing systems, pages
3320–3328, 2014.

[97] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[98] D. Dheeru and E. Karra Taniskidou. UCI machine learning repository, 2017. URL:
http://archive.ics.uci.edu/ml.

[99] I.-C. Yeh and C.-h. Lien. The comparisons of data mining techniques for the
predictive accuracy of probability of default of credit card clients. Expert Systems
with Applications, 36(2):2473–2480, 2009.

[100] T. A. Almeida, J. M. G. Hidalgo, and A. Yamakami. Contributions to the study
of sms spam filtering: new collection and results. In Proceedings of the 11th ACM
symposium on Document engineering, pages 259–262. ACM, 2011.

[101] F. Chollet et al. Keras. https://keras.io, 2015.

[102] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning
word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies,
pages 142–150, Portland, Oregon, USA, June 2011. Association for Computational
Linguistics. URL: http://www.aclweb.org/anthology/P11-1015.

126

http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1310.4546
http://archive.ics.uci.edu/ml
http://www.aclweb.org/anthology/P11-1015

BIBLIOGRAPHY

[103] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits
in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2/2011, page 5, 2011.

[104] S. Ekins, A. C. Puhl, K. M. Zorn, T. R. Lane, D. P. Russo, J. J. Klein, A. J. Hickey,
and A. M. Clark. Exploiting machine learning for end-to-end drug discovery and
development. Nature materials, 18(5):435, 2019.

[105] H. Kuchler. The start-up striving to accelerate drug discov-
ery, May 2019. URL: https : / / www . ft . com / content /
374a3aa8-6bf9-11e9-80c7-60ee53e6681d.

[106] R. Wigglesworth. Why hedge fund managers are happy to let the ma-
chines take over, Oct 2019. URL: https://www.ft.com/content/
338962c0-eeaf-11e9-ad1e-4367d8281195.

[107] K. Porzecanski. Jpmorgan commits hedge fund to ai in technology arms race, Jul
2019. URL: https://www.bloomberg.com/news/articles/2019-07-02/
jpmorgan-to-start-ai-hedge-fund-strategy-in-technology-arms-race.

[108] Handelsblatt. Zahlungsverhalten vorhersagen, Oct 2018.
URL: https : / / www . handelsblatt . com / adv / verovis /
zahlungsverhalten-vorhersagen-cash-forecasting-mit-predictive-analytics/
23117258.html?ticket=ST-49709747-JhbnSilLfnpK0OTZfGf2-ap5.

[109] PWC. Predictive Maintenance 4.0. 2017. URL: https://www.pwc.nl/nl/
assets/documents/pwc-predictive-maintenance-4-0.pdf.

[110] U. A. de Ciudad Juárez. (pdf) using regression models for predicting
the product quality in a tubing extrusion process, Aug 2019. URL:
https://www.researchgate.net/publication/324132141_Using_
regression_models_for_predicting_the_product_quality_in_a_
tubing_extrusion_process.

[111] W. Contributors. Warfarin, Oct 2019. URL: https://en.wikipedia.org/
wiki/Warfarin#Dosing.

[112] IWPC. Pharmgkb. downloads - iwcp dataset, 2019. URL: https://www.
pharmgkb.org/page/downloadDrugsHelp.

[113] A. Sharabiani, A. Bress, E. Douzali, and H. Darabi. Revisiting warfarin dosing using
machine learning techniques. Computational and Mathematical Methods in Medicine,
2015:1–9, 2015. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC4471424/, doi:10.1155/2015/560108.

[114] Z. Ma, P. Wang, Z. Gao, R. Wang, and K. Khalighi. Ensemble of machine learning
algorithms using the stacked generalization approach to estimate the warfarin dose.
PloS one, 13(10):e0205872, 2018. URL: https://www.ncbi.nlm.nih.gov/
pubmed/30339708, doi:10.1371/journal.pone.0205872.

127

https://www.ft.com/content/374a3aa8-6bf9-11e9-80c7-60ee53e6681d
https://www.ft.com/content/374a3aa8-6bf9-11e9-80c7-60ee53e6681d
https://www.ft.com/content/338962c0-eeaf-11e9-ad1e-4367d8281195
https://www.ft.com/content/338962c0-eeaf-11e9-ad1e-4367d8281195
https://www.bloomberg.com/news/articles/2019-07-02/jpmorgan-to-start-ai-hedge-fund-strategy-in-technology-arms-race
https://www.bloomberg.com/news/articles/2019-07-02/jpmorgan-to-start-ai-hedge-fund-strategy-in-technology-arms-race
https://www.handelsblatt.com/adv/verovis/zahlungsverhalten-vorhersagen-cash-forecasting-mit-predictive-analytics/23117258.html?ticket=ST-49709747-JhbnSilLfnpK0OTZfGf2-ap5
https://www.handelsblatt.com/adv/verovis/zahlungsverhalten-vorhersagen-cash-forecasting-mit-predictive-analytics/23117258.html?ticket=ST-49709747-JhbnSilLfnpK0OTZfGf2-ap5
https://www.handelsblatt.com/adv/verovis/zahlungsverhalten-vorhersagen-cash-forecasting-mit-predictive-analytics/23117258.html?ticket=ST-49709747-JhbnSilLfnpK0OTZfGf2-ap5
https://www.pwc.nl/nl/assets/documents/pwc-predictive-maintenance-4-0.pdf
https://www.pwc.nl/nl/assets/documents/pwc-predictive-maintenance-4-0.pdf
https://www.researchgate.net/publication/324132141_Using_regression_models_for_predicting_the_product_quality_in_a_tubing_extrusion_process
https://www.researchgate.net/publication/324132141_Using_regression_models_for_predicting_the_product_quality_in_a_tubing_extrusion_process
https://www.researchgate.net/publication/324132141_Using_regression_models_for_predicting_the_product_quality_in_a_tubing_extrusion_process
https://en.wikipedia.org/wiki/Warfarin#Dosing
https://en.wikipedia.org/wiki/Warfarin#Dosing
https://www.pharmgkb.org/page/downloadDrugsHelp
https://www.pharmgkb.org/page/downloadDrugsHelp
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4471424/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4471424/
http://dx.doi.org/10.1155/2015/560108
https://www.ncbi.nlm.nih.gov/pubmed/30339708
https://www.ncbi.nlm.nih.gov/pubmed/30339708
http://dx.doi.org/10.1371/journal.pone.0205872

BIBLIOGRAPHY

[115] G. Truda and P. Marais. Evaluating warfarin dosing models on multiple datasets with
a novel software framework and evolutionary optimisation. Journal of Biomedical
Informatics, page 103634, 2020.

[116] M. Eddy. Hundreds of bodies, one nurse: German serial killer leaves as many ques-
tions as victims. The New York Times, May 2019. URL: https://www.nytimes.
com/2019/05/10/world/europe/germany-serial-killer-nurse.
html.

[117] T. Rogers. The get-rich-quick scheme that almost killed a german soccer team, Oct
2018. URL: https://www.bloomberg.com/news/features/2018-10-29/
the-get-rich-quick-scheme-that-almost-killed-a-german-soccer-team.

[118] S. Chen, M. Xue, L. Fan, S. Hao, L. Xu, H. Zhu, and B. Li. Automated poisoning
attacks and defenses in malware detection systems: An adversarial machine learning
approach. Computers and Security, 73:326–344, 2018. URL: https://arxiv.
org/pdf/1706.04146.pdf, doi:10.1016/j.cose.2017.11.007.

[119] R. Perdisci, D. Dagon, W. Lee, P. Foglat, and M. Sharif. Misleading worm signature
generators using deliberate noise injection. In Proceedings - IEEE Symposium on
Security and Privacy, volume 2006, pages 17–31, 2006. URL: https://personal.
utdallas.edu/{~}muratk/courses/dmsec{_}files/ieee-sp-06.pdf,
doi:10.1109/SP.2006.26.

[120] Applications - Keras Documentation, Sep 2019. [Online; accessed 6. Nov. 2019].
URL: https://keras.io/applications.

[121] J. Steinhardt, P. W. Koh, and P. Liang. Certified defenses for data poisoning
attacks. In Advances in Neural Information Processing Systems, volume 2017-
Decem, pages 3518–3530, 2017. URL: http://papers.nips.cc/paper/
6943-certified-defenses-for-data-poisoning-attacks . pdf,
arXiv:1706.03691.

[122] P. Branco. GitHub Imbalanced-Regression-Datasets, 2019.
https://github.com/paobranco/Imbalanced-Regression-DataSets, last checked
September 11th, 2020.

[123] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, S. García, L. Sánchez, and
F. Herrera. KEEL Data-Mining Software Tool: Data Set Repository, Integration of
Algorithms and Experimental Analysis Framework. Technical report, 2011. URL:
http://the-data-mine.com/bin/view/Software.

[124] P. J. Huber. Robust estimation of a location parameter. In Breakthroughs in
statistics, pages 492–518. Springer, 1992.

[125] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 8697–8710, 2018.

128

https://www.nytimes.com/2019/05/10/world/europe/germany-serial-killer-nurse.html
https://www.nytimes.com/2019/05/10/world/europe/germany-serial-killer-nurse.html
https://www.nytimes.com/2019/05/10/world/europe/germany-serial-killer-nurse.html
https://www.bloomberg.com/news/features/2018-10-29/the-get-rich-quick-scheme-that-almost-killed-a-german-soccer-team
https://www.bloomberg.com/news/features/2018-10-29/the-get-rich-quick-scheme-that-almost-killed-a-german-soccer-team
https://arxiv.org/pdf/1706.04146.pdf
https://arxiv.org/pdf/1706.04146.pdf
http://dx.doi.org/10.1016/j.cose.2017.11.007
https://personal.utdallas.edu/{~}muratk/courses/dmsec{_}files/ieee-sp-06.pdf
https://personal.utdallas.edu/{~}muratk/courses/dmsec{_}files/ieee-sp-06.pdf
http://dx.doi.org/10.1109/SP.2006.26
https://keras.io/applications
http://papers.nips.cc/paper/6943-certified-defenses-for-data-poisoning-attacks.pdf
http://papers.nips.cc/paper/6943-certified-defenses-for-data-poisoning-attacks.pdf
http://arxiv.org/abs/1706.03691
http://the-data-mine.com/bin/view/Software

BIBLIOGRAPHY

[126] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep recurrent
neural networks. In 2013 IEEE international conference on acoustics, speech and
signal processing, pages 6645–6649. IEEE, 2013.

[127] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, and
G. Zweig. Achieving human parity in conversational speech recognition. arXiv
preprint arXiv:1610.05256, 2016.

[128] Y. Sun, X. Wang, and X. Tang. Deep learning face representation from predicting
10,000 classes. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1891–1898, 2014.

[129] R. Wang, C. Han, Y. Wu, and T. Guo. Fingerprint classification based on depth
neural network. arXiv preprint arXiv:1409.5188, 2014.

[130] B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil, M. Andriluka,
P. Rajpurkar, T. Migimatsu, R. Cheng-Yue, et al. An empirical evaluation of deep
learning on highway driving. arXiv preprint arXiv:1504.01716, 2015.

[131] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. Rubinstein, U. Saini, C. A.
Sutton, J. D. Tygar, and K. Xia. Exploiting machine learning to subvert your spam
filter. LEET, 8:1–9, 2008.

[132] J. Saxe and K. Berlin. Deep neural network based malware detection using two
dimensional binary program features. In 2015 10th International Conference on
Malicious and Unwanted Software (MALWARE), pages 11–20. IEEE, 2015.

[133] A. Javaid, Q. Niyaz, W. Sun, and M. Alam. A deep learning approach for network
intrusion detection system. In Proceedings of the 9th EAI International Conference
on Bio-inspired Information and Communications Technologies (formerly BIONET-
ICS), pages 21–26, 2016.

[134] B. Biggio, K. Rieck, D. Ariu, C. Wressnegger, I. Corona, G. Giacinto, and F. Roli.
Poisoning behavioral malware clustering. In Proceedings of the 2014 workshop on
artificial intelligent and security workshop, pages 27–36, 2014.

[135] B. Biggio, B. Nelson, and P. Laskov. Support vector machines under adversarial
label noise. In Asian conference on machine learning, pages 97–112, 2011.

[136] P. W. Koh and P. Liang. Understanding black-box predictions via influence functions.
In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 1885–1894. JMLR. org, 2017.

[137] A. Paudice, L. Muñoz-González, A. Gyorgy, and E. C. Lupu. Detection of adversarial
training examples in poisoning attacks through anomaly detection. arXiv preprint
arXiv:1802.03041, 2018.

129

BIBLIOGRAPHY

[138] A. Paudice, L. Muñoz-González, and E. C. Lupu. Label sanitization against label
flipping poisoning attacks. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 5–15. Springer, 2018.

[139] E. Keogh and A. Mueen. Curse of Dimensionality, pages 314–315.
Springer US, Boston, MA, 2017. URL: https://doi.org/10.1007/
978-1-4899-7687-1_192, doi:10.1007/978-1-4899-7687-1192.

[140] M. Köppen. The curse of dimensionality. In 5th Online World Conference on Soft
Computing in Industrial Applications (WSC5), volume 1, pages 4–8, 2000.

[141] J. Feng, H. Xu, S. Mannor, and S. Yan. Robust logistic regression and classification.
In Advances in neural information processing systems, pages 253–261, 2014.

[142] D. Dua and C. Graff. UCI machine learning repository, 2017. URL: http:
//archive.ics.uci.edu/ml.

130

https://doi.org/10.1007/978-1-4899-7687-1_192
https://doi.org/10.1007/978-1-4899-7687-1_192
http://dx.doi.org/10.1007/978-1-4899-7687-1 192
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

A Appendix

A.1 The Need For Activation Functions in DNN

In this section, we show that DNNs consisting solely of a sequence of linear layers have
severely limited expressiveness: They are comparable to a one-layer linear DNN.

Consider a DNN with T linear layers L1, . . . , Lt where t ∈ 1, . . . T . These layers can be
expressed as matrices M1, . . . ,Mt of dimensionality

Mt ∈ Rd
t
in,d

t
out . (A.1)

In order for the layers Mt to be applicable in sequence, the input dimensions have to
match up with the output dimensions of the respective previous layers, i.e.

dtout = dt+1
in (A.2)

The sequential application of M1 through Mt is equivalent to

Mt(Mt−1(...(M1(x)))) = xM1M2...Mt−1Mt =: xZ (A.3)

where Z is a real-valued matrix with dimensionality

dim(Z) = dim(M1M2...Mt−1Mt)

= (d1
in, d

1
out)× (d2

in, d
2
out)× · · · × (dTin, d

T
out)

= (d1
in, d

2
in)× (d2

in, d
3
in)× · · · × (dTin, d

T
out)

= (d1
in, d

T
out)

(A.4)

since dtout = dt+1
in as per equation (A.2). Thus, stacking linear layers always yields a linear

model. This is why activation functions are used.

A.2 Identifying Mislabeled Instances

This section holds supplementary material for chapter 5.

131

A Appendix

Instance Label
6093 crab
24900 cloud
33823 television
31377 camel
48760 motorcycle
31467 shark
45694 forest

Table A.1: Mislabeled instances in CIFAR-100 for α = 0.003. This dataset seems to be labeled
quite accurately, as we could identify only seven instances in the training set where
the image’s label and content would not conform with the content.

132

A.2 Identifying Mislabeled Instances

Instance original label suggested label
3415 pullover coat
28264 dress shirt
29599 pullover top/shirt
37286 top/shirt shirt
36049 shirt dress
9059 shirt dress OR coat
18188 shirt dress OR coat
1600 dress top/shirt
34381 shirt dress
22750 top/shirt shirt
39620 sneaker ankle boot
50494 shirt dress OR coat
38208 ankle boot sneaker
53257 top/shirt shirt
29487 shirt dress
13026 shirt dress
20544 shirt dress
51464 top/shirt shirt
28764 pullover top/shirt
29154 shirt dress
24804 top/shirt shirt
28341 top/shirt dress
46125 pullover top/shirt
46259 dress coat ?
25419 top/shirt shirt
36325 shirt ?
29728 coat ?
43703 top/shirt ?
45536 pullover top/shirt
3512 top/shirt dress
22264 top/shirt dress
4027 shirt dress
33982 coat top/shirt
17243 shirt dress
34804 pullover top/shirt
20701 pullover dress
55829 dress top/shirt
35505 dress shirt
36061 dress shirt
38722 top/shirt shirt
33590 top/shirt shirt
44903 top/shirt dress
50013 shirt dress
40513 pullover top/shirt
46926 top/shirt dress
21771 shirt top/shirt
1074 shirt top/shirt
42018 pullover dress
42110 dress pullover
51735 top/shirt dress
45592 shirt dress
11885 pullover dress
27350 coat top/shirt
35321 top/shirt dress
34598 top/shirt dress
49983 top/shirt shirt
2843 shirt top/shirt
20319 pullover dress OR coat
29628 shirt top/shirt
49736 pullover top/shirt
2468 shirt dress
21245 top/shirt shirt
34063 pullover top/shirt
25643 shirt top/shirt

Table A.2: List of mislabeled instances in Fashion-MNIST for α = 0.3%. Among the 180 pictures
returned by our tool set (i.e. α = 0.003), we identify 64 mislabeled instances. Hence,
more than 35,5% of the reviewed images indeed carry a wrong label.

133

A Appendix

A.3 Identifying Data Poisoning in Regression Learning

This section holds supplementary material for chapter 6.

A.3.1 Evaluation of the StatP Attack

In additions to the evaluation of our newly proposed poisoning attack (c.f. 6), we evaluate
the performance of existing poisoning attacks on regression learning, and identify its
shortcomings. As described in Section 6.4.2, the only black-box data poisoning attack
on regression data found in literature is the StatP attack [7]. We implement this attack
and evaluate it twice: First, we apply the attack on the Warfarin dataset and three
non-linear models. Second, we evaluate all 26 datasets against both the statP and Flip
attack (Figure A.3). We observe the following:

• StatP does not work on nonlinear regressors. For nonlinear regressors, StatP
is ineffective. The MAE remains near constant when adding even significant amounts
of poison samples (see Figure A.2). When analyzing the poison data created by
StatP, we find an intuitive explanation for this: StatP pushes all data points ’to
the corners’, i.e. to the edge of the feasibility domain. While these data do conflict
with the ’clean’ data for linear regressors, nonlinear models can easily accommodate
both poison and clean data, as long as the samples don’t overlap in feature-space.

• Flip outperforms StatP . When evaluating both attacks on all 26 datasets, av-
eraging four linear and three non-linear models, we can confirm the above results:
Flip consistently outperforms StatP (c.f. Figure A.3).

134

A.3 Identifying Data Poisoning in Regression Learning

Figure A.1: Similarly to Figure 6.2, this plot shows the train and test error for varying degrees
of ε̂. The model is a KernelRidge regressor, the dataset is the loan dataset, and the
true poison rate is ε = 0.04. We observe that the train loss gives clear indication
as to when all poison samples are removed via iTrim: The lowest test loss (blue)
coincides with the sharp discontinuity in training loss (orange).

Figure A.2: Evaluation of the performance of the StatP attack [7] against nonlinear regressors.
The StatP attack is applied to three nonlinear regressors, averaged over all 26
datasets. The x axis shows the degree of poisoning, while the y axis shows the test
MSE. The attack is not effective. While these do disturb linear regressors, they are
easily accommodated by nonlinear models without increasing any test loss.

135

A Appendix

Table A.3: The 26 datasets used for the empirical evaluation of [5].

Name features n

0 ANACALT.dat 7.0 4052.0
1 accel 22.0 1732.0
2 ailerons.dat 40.0 13750.0
3 armesHousing 248.0 1460.0
4 availPwr 49.0 1802.0
5 bank8fm 8.0 4499.0
6 california.dat 8.0 20640.0
7 compactiv.dat 21.0 8192.0
8 concrete.dat 8.0 1030.0
9 cpu 12.0 8192.0
10 elevators.dat 18.0 16599.0
11 friedman.dat 5.0 1200.0
12 fuelCons 88.0 1764.0
13 heat 30.0 7400.0
14 house.dat 16.0 22784.0
15 loan 202.0 5000.0
16 mortgage.dat 15.0 1049.0
17 plastic.dat 2.0 1650.0
18 pole.dat 26.0 14998.0
19 quake.dat 3.0 2178.0
20 rings 10.0 4177.0
21 torque 95.0 1802.0
22 treasury.dat 15.0 1049.0
23 wankara.dat 9.0 1609.0
24 warfarin 177.0 5528.0
25 wizmir.dat 9.0 1461.0

136

A.3 Identifying Data Poisoning in Regression Learning

Figure A.3: Comparison between the StatP (top) and the Flip (bottom) data poisoning attack.
This plot shows the increase in MAE when using a poisoned dataset instead of
a clean dataset during model training. The results are averaged over all seven
regressors, but displayed individually per dataset. For an average over all datasets,
refer to Figure 6.3. Top Image: All 26 datasets when attacked with the StatP
attack. While the degree of effectiveness varies between datasets, we generally
observe a linear correlation between degree of poisoning and increase in test error.
Bottom Image: The same datasets attacked with the Flip. Note that this attack
consistently outperforms StatP, as seen on the higher MAE.

137

A Appendix

Figure A.4: Comparison between the Trim (top) vs. iTrim (bottom) data poisoning defense,
averaged by dataset. Top Image: This plot shows the effectiveness of Trim when
defending against the Flip attack, averaged over all 26 datasets. The datasets are
poisoned as indicated by ε on the x axis. Then, the Trim defense is applied, the
regressor is fitted to the dataset, and the resulting test MSE is compared against the
test MSE on a clean, unpoisoned dataset. We see that, depending on the regressor,
datasets cleaned with Trim still incur significant decrease in test performance.
Bottom Image: The same process is applied to iTrim. We observe that test MSE is
considerably decreased, especially for ε < 0.08. The larger ε, the more similar the
two defences become. Additional information is provided by Figure A.5.

138

A.3 Identifying Data Poisoning in Regression Learning

Figure A.5: Trim (top) vs. iTrim (bottom), averaged by regressor. Similar to Figure A.4,
this plot shows the increase in MAE when using a poisoned and subsequently
defended dataset instead of a clean dataset during model training. The results
are averaged over all seven regressors, but displayed individually per dataset (as
opposed to figure A.4, where the results are aggregated by regressor). Top image:
Increase in MAE when defending against a Flip attack using Trim. Bottom image:
Increase in MAE when defending against a Flip attack using iTrim. Notice that
iTrim outperforms Trim almost consistently (as seen by the overall lower MAE,
shown in bold black)

139

A Appendix

A.4 Identifying Data Poisoning in Classification Learning

This section holds supplementary material for chapter 7.

140

A.4 Identifying Data Poisoning in Classification Learning

dataset ν̂ FP FN test loss test accuracy

random defence random defence before after before after

fashion_mnist_156 0.125 0.09 0.029 0.09 0.002 0.17 0.17 0.94 0.97
fashion_mnist_17 0.097 0.09 0.000 0.09 0.003 0.13 0.01 0.99 1.00
mnist_156 0.117 0.09 0.025 0.09 0.007 0.39 0.22 0.86 0.95
mnist_17 0.100 0.09 0.006 0.09 0.005 0.16 0.08 0.95 0.98
mean 0.110 0.09 0.015 0.09 0.004 0.21 0.12 0.94 0.98
std 0.012 0.00 0.012 0.00 0.002 0.10 0.08 0.05 0.02

Table A.4: Results of our defence against the back-gradient optimization attack on a convo-
lutional neural network, averaged over 5 runs. The datasets contain 10% poison
samples each. The column ν̂ shows the poison rate estimated by the defence algo-
rithm while the next two columns compare FPR and FNR of our defence against a
random baseline.

dataset ν ν̂ FP FN test loss test accuracy

random defence random defence before after before after

breast_cancer 0.00 0.028 0.000 0.028 0.000 0.000 0.16 0.18 0.96 0.95
fashion_mnist_156 0.00 0.010 0.000 0.010 0.000 0.000 0.09 0.11 0.98 0.98
fashion_mnist_17 0.00 0.010 0.000 0.010 0.000 0.000 0.00 0.00 1.00 1.00
mnist_156 0.00 0.009 0.000 0.009 0.000 0.000 0.13 0.14 0.96 0.96
mnist_17 0.00 0.028 0.000 0.028 0.000 0.000 0.05 0.08 0.98 0.97
points 0.00 0.024 0.000 0.024 0.000 0.000 0.20 0.23 0.94 0.94
spambase 0.00 0.025 0.000 0.025 0.000 0.000 0.48 0.53 0.88 0.88
mean 0.00 0.019 0.000 0.019 0.000 0.000 0.16 0.18 0.96 0.95
std 0.00 0.017 0.000 0.017 0.000 0.000 0.16 0.17 0.04 0.04

breast_cancer 0.05 0.071 0.048 0.027 0.057 0.004 0.30 0.25 0.91 0.95
fashion_mnist_156 0.05 0.066 0.048 0.022 0.048 0.004 0.19 0.15 0.95 0.97
fashion_mnist_17 0.05 0.046 0.048 0.000 0.057 0.002 0.07 0.00 0.97 1.00
mnist_156 0.05 0.053 0.047 0.014 0.047 0.009 0.36 0.18 0.91 0.95
mnist_17 0.05 0.057 0.046 0.012 0.055 0.002 0.33 0.06 0.91 0.98
points 0.05 0.037 0.048 0.006 0.057 0.017 0.22 0.24 0.93 0.94
spambase 0.05 0.069 0.050 0.043 0.050 0.021 0.68 0.59 0.84 0.88
mean 0.05 0.057 0.048 0.018 0.053 0.008 0.31 0.21 0.92 0.95
std 0.00 0.021 0.003 0.019 0.005 0.010 0.19 0.19 0.04 0.04

Table A.5: Results of our defence against the back-gradient optimization attack on a neural
network with one inner layer, averaged over 5 runs. The datasets contain 0% or
5% poison samples each. The column ν̂ shows the poison rate estimated by the
defence algorithm while the next two columns compare FPR and FNR of our defence
against a random baseline. Test loss and accuracy remain consistent in the case
of no poisoning or improve considerably when using the defence on the poisoned
datasets.

141

A Appendix

Before poisoning attack

After label flipping

After back-gradient attack

Figure A.6: The effect of introducing 11 poison instances into a points classification dataset.
The top figure shows the unpoisoned dataset, where the bold crosses indicate the
data instances to be changed during the upcoming attacks. The middle figure shows
the small change of the decision surface when the flip attack is applied. The bottom
figure shows the considerably altered decision surface after the back-gradient attack.
Note that not only the labels, but also the feature values of the poison data have
changed.

142

	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Motivation & Research Challenge
	1.2 Research Contribution
	1.3 Research Output

	2 Prerequisites
	2.1 Artificial Intelligence: An Overview
	2.1.1 Algorithmic vs. Data-Driven Problem Solving
	2.1.1.1 Comparison

	2.1.2 Distinguishing AI, Machine Learning, and Deep Learning
	2.1.3 Regression vs. Classification Learning
	2.1.4 Neural Networks
	2.1.5 The Limits of Machine Learning

	2.2 Adversarial Machine Learning: An Overview
	2.2.1 Evasion and Poisoning Attacks
	2.2.1.1 Evasion Attacks
	2.2.1.2 Poisoning Attacks

	2.2.2 Related Work and State-of-the-Art
	2.2.2.1 Data Poisoning Attacks in Classification Learning
	2.2.2.2 Data Poisoning Attacks in Regression Learning

	2.2.3 The motivation for attacking Machine Learning
	2.2.4 Current Limitations of Adversarial Attacks

	3 Artefacts in ML-Datasets
	3.1 Introduction to the ASVspoof challenge
	3.1.1 The ASVspoof 2019 Logical Access (LA) Dataset

	3.2 The artifact: silence as a shortcut to learning
	3.3 Experimental Analysis
	3.3.1 Preliminaries
	3.3.2 Model and Metrics Descriptions
	3.3.2.1 Random Baseline
	3.3.2.2 Weak Baseline
	3.3.2.3 Strong Models from Related Work

	3.3.3 Experimental Description
	3.3.3.1 Experimental Setup
	3.3.3.2 Experiment: Predictive Power of Length of Silence
	3.3.3.3 Experiment: Predictive Power of Silence in Related Work
	3.3.3.4 Experiment: Predictive Power of Silence in ASVSpoof 2021

	3.3.4 Results and Analysis
	3.3.4.1 Results: Predictive Power of Length of Silence
	3.3.4.2 Results: Predictive Power of Silence in Related Work
	3.3.4.3 Results: Predictive Power of Silence in ASVSpoof 2021

	3.4 Mitigation Strategies specific to ASVspoof
	3.5 A General Approach to Detecting Learning Shortcuts in ML-Datasets
	3.5.1 Challenges in Identifying Learning Shortcuts
	3.5.2 How to Find Learning Shortcuts
	3.5.2.1 Explainable-AI techniques
	3.5.2.2 Data-only approaches

	3.5.3 Limitations of Proposed Approach

	4 Integrity of Active Learning
	4.1 Active Transfer Learning
	4.2 Related Work
	4.2.1 Active Learning with Transfer Learning.
	4.2.2 Poisoning Active Learning.
	4.2.3 Adversarial Collisions

	4.3 Attacking Active Transfer Learning
	4.3.1 Threat model
	4.3.2 Feature Collision Attack
	4.3.2.1 Choice of Collision Vector
	4.3.2.2 Improving attack efficiency

	4.4 Implementation and Results
	4.4.1 Active Transfer Learner Setup
	4.4.1.1 Prevention of Overfitting.
	4.4.1.2 Datasets

	4.4.2 Feature Collision Results
	4.4.3 Impact on the Model
	4.4.4 Hyper Parameters and Runtime
	4.4.5 Defending Against Adversarial Transfer Poisoning Attacks
	4.4.5.1 Evaluation

	4.5 Conclusion

	5 Identifying Mislabeled Data
	5.1 Motivation
	5.2 Related Work
	5.2.1 Taxonomy of Label Noise
	5.2.2 Learning With Label Noise
	5.2.3 Label Cleansing
	5.2.4 Label Noise Identification

	5.3 Methodology
	5.3.1 Problem Statement
	5.3.2 Proposed Algorithm
	5.3.3 Data Preprocessing
	5.3.4 Classification Algorithm
	5.3.5 Automatic Hyperparameter Selection

	5.4 Evaluation
	5.4.1 Quantitative Evaluation
	5.4.1.1 Datasets
	5.4.1.2 Introducing Artificial Label Noise
	5.4.1.3 Metrics
	5.4.1.4 Results

	5.4.2 Qualitative Evaluation
	5.4.3 Improvement Over Related Work

	5.5 Summary

	6 Identifying Adversarially Poisoned Data in Regression Learning
	6.1 Motivation
	6.2 Contribution
	6.3 Case Study: Warfarin Dosage Estimation
	6.4 Data Poisoning in Regression Learning
	6.4.1 Threat Model
	6.4.2 Related Poisoning Attacks in Regression
	6.4.2.1 Related White-Box Attacks
	6.4.2.2 Related Black-Box Attacks

	6.4.3 Flip: A Black-Box Attack on Nonlinear Regressors

	6.5 Data Poisoning Defenses
	6.5.1 Requirements for Applicable Data Poisoning Defenses
	6.5.2 Related Defenses
	6.5.3 The Iterative Trim Defense
	6.5.3.1 Algorithm Description
	6.5.3.2 Poison Rate Selection
	6.5.3.3 Threshold Selection

	6.6 Empirical Evaluation
	6.6.1 Experimental Setup
	6.6.2 Datasets and Regressors
	6.6.3 Evaluation of StatP
	6.6.4 Evaluation of Flip
	6.6.5 Evaluation of Trim and iTrim
	6.6.6 Runtime

	6.7 Warfarin Revisited
	6.8 Conclusion

	7 Identifying Adversarially Poisoned Data in Classification Learning
	7.1 Motivation
	7.2 Contribution
	7.3 Related Defense Algorithms
	7.4 Poisoning Attack
	7.4.1 Threat Model
	7.4.2 DoS Poisoning via Label Flipping Attack
	7.4.3 DoS Poisoning via Back-gradient Optimization Attack

	7.5 Poisoning Defence
	7.5.1 Requirements
	7.5.2 Our proposed algorithm

	7.6 Evaluation
	7.6.1 Experimental Setup
	7.6.2 Attack Results
	7.6.3 An Example of Applying our Defence
	7.6.4 Defense Results
	7.6.5 Evaluation Against Related Defences

	7.7 Conclusion
	7.8 Data Poisoning in Regression and Classification: A Comparison
	7.8.1 Similarities
	7.8.2 Differences

	8 Conclusion
	8.1 Answering the Research Question
	8.2 Evaluating Current Research Trends
	8.3 Future Work

	Bibliography
	A Appendix
	A.1 The Need For Activation Functions in DNN
	A.2 Identifying Mislabeled Instances
	A.3 Identifying Data Poisoning in Regression Learning
	A.3.1 Evaluation of the StatP Attack

	A.4 Identifying Data Poisoning in Classification Learning

