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Abstract

Event data lies at the core of many high-impact applications of machine learning. Hospi-
tal visits in electronic health records, earthquake catalogs in seismology, and spike trains
in neuroscience — all can be represented as variable-length event sequences in continuous
time. Temporal point processes (TPPs) provide a natural framework for modeling such
data. However, conventional TPP models lack the ability to capture complex patterns
present in real-world event data. Neural TPPs aim to address this limitation by com-
bining neural networks with the fundamental ideas from point process literature. The
two main themes of this thesis are (1) design of flexible, tractable and efficient neural
TPP models, and (2) their applications to real-world problems. Our first contribution
is the connection between TPPs and the field of neural density estimation. This allows
us to develop the first neural TPP model, where likelihood computation, sampling, and
prediction can all be done efficiently in closed form. Next, we propose TriTPP — a new
class of expressive TPP models, where, unlike existing methods, all operations can be
done in parallel. Fast parallel sampling opens new applications for TPP models. We
show this by deriving a variational inference scheme for continuous-time discrete-state
systems. Finally, we combine goodness-of-fit testing approaches with neural TPP models
to create a simple and effective anomaly detection method for event sequences.
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Zusammenfassung

Zeitlich aufgeloste Daten bilden einen wichtigen Bestandteil vieler Anwendungen des
maschinellen Lernens. Seien es Krankenhausbesuche erfasst elektronischen Krankenak-
ten, Erdbebenkataloge in der Seismologie oder Spike Trains in der Neurowissenschaft,
all diese Daten lassen sich als Ereignisfolgen darstellen. Den natiirlichen Rahmen zur
Modellierung der zeitlichen Entwicklung von Ereignisfolgen bilden stochastische Prozesse
oder genauer Temporale Punktprozesse (TPPs). Wahrend konventionelle TPP-Modelle
limitiert darin sind, komplexe Muster aus realen Ereignisdaten zu erfassen, konnen neu-
ronale TPPs diese Einschrénkung beheben, indem sie neuronale Netze mit den Meth-
oden der Punktprozesstheorie kombinieren. Den Schwerpunkt dieser Arbeit bilden (1)
der Entwurf flexibler, interpretierbarer und effizienter neuronaler TPP-Modelle und (2)
die Anwendung dieser auf reale Probleme. Hierbei ist die gemeinsame Betrachtung von
TPPs und dem Gebiet der neuronalen Dichteschéatzung ein erster Beitrag. Das Resul-
tat hieraus ermoglicht die Entwicklung des ersten neuronalen TPP-Modells, bei dem
Likelihood-Berechnung, das Sampling und die Vorhersage effizient und in geschlossener
Form durchgefiihrt werden kénnen. Darauf aufbauend wird eine neue Klasse von flexi-
blen TPP-Modellen, TriTPP, eingefiihrt, welche im Gegensatz zu bestehenden Methoden
erlaubt, alle Operationen parallel durchzufithren. Das schnelle und parallele Sampling
eroffnet auf diese Weise neue Anwendungen fiir TPP-Modelle, da es Variationsverfahren
fiir zeitkontinuierliche Systeme mit diskreten Zustédnden erlaubt. Zuletzt wird gezeigt,
wie die Kombination von Goodness-of-Fit-Tests und neuronalen TPP-Modellen eine ein-
fache und effektive Methode zur Erkennung von Anomalien in Ereignisfolgen darstellt.
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1 Introduction

1.1 Machine learning for continuous-time event data

Financial transactions, online communication, neural spike trains, earthquakes — vari-
ous human-made and natural phenomena can be represented as sequences of events in
continuous time. Probabilistic models for such event data known as temporal point pro-
cesses (TPP) can be used to make predictions, find patterns and better understand the
respective real-world systems. The theory of TPPs was developed in the 20th century
in the seminal works of Feller [57, 58], Cox [35, 38], Lewis [105, 106], Hawkes [79], and
Ogata [133, 134]. Thanks to the ubiquity of event data, TPPs became widely adopted
both in scientific fields like seismology [82, 135] and neuroscience [46, 68|, as well as in
industries such as finance [9, 80] and healthcare [3, 56].

Last decades saw an explosion in both scale and complexity of event data encoun-
tered in practical applications. New techniques in seismology enable collection of rich,
diverse datasets with millions of earthquakes [126, 192]. Online services like Twitter and
Facebook capture social interactions on an unprecedented scale, and hosting providers
such as AWS generate petabytes of data each day [165]. Analyzing this data can unlock
immense value. However, conventional TPP models, like Poisson or self-exciting pro-
cesses, are unable to capture the complex patterns present in such data. Moreover, the
event sequences are often accompanied by additional attributes (e.g., locations) that are
relevant for prediction tasks, but incorporating them into conventional TPPs requires
tedious feature engineering. Dealing with these issues requires developing new TPP
models that have the flexibility to represent complex patterns and are scalable enough
to handle large diverse datasets.

In recent years a new class of models known as neural TPPs emerged to address the
above challenges [170]. Neural TPPs combine the fundamental ideas from the theory of
point process with deep learning approaches. Deep learning methods are based on neural
networks — expressive function approximators defined via composition of differentiable
transformations [72]. Neural-network-based approaches significantly advanced the state
of the art in computer vision [101, 186], natural language processing [23, 48|, machine
learning on graphs [212] and a number of other fields. In this thesis, we study the
application of deep learning to continuous-time event data.

In the context of neural TPPs, the flexibility of neural networks allows us to learn
different patterns of event occurrence automatically from the data, instead of specifying
them manually, as in conventional models. For instance, in a self-exciting process, ob-
served events can only increase the rate of arrival of future events — a rather limiting
assumption that does not hold in many real-world event datasets (e.g., inhibitory neu-
rons in the brain decrease the firing rate [46]). In contrast, a neural TPP model can
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automatically learn both inhibiting and excitatory effects of different event types in a
purely data-driven way.

The seminal works by Du et al. [52] and Mei & Eisner [119] in 2016 were the first to
show the new possibilities opened by combining TPPs with neural networks. These were
followed by a number of papers that proposed new model architectures and parameter
estimation algorithms for neural TPPs [95, 108, 181, 198-200]. However, there remain a
number of open questions related to both design and application of deep-learning-based
TPP models.

1.2 Contributions and outline

Neural TPP models should meet a number of requirements to be successfully applied
to real-world tasks. Expressiveness, tractability, efficient training and inference for such
models are often at odds with each other, and existing neural TPP architectures make
suboptimal tradeoffs between these properties. In the first part of the thesis, we focus
on these aspects of TPP model design, which we formulate as our first research question:

Research Question 1: How can we define flexible neural TPP models that are at the
same time tractable and efficient?

We start by reviewing the basics of probabilistic modeling and deep learning, as well
as provide a self-contained introduction to TPPs from a machine learning perspective
in Chapter 2. In Chapter 3, we discuss the limitations of existing neural TPP mod-
els and introduce a new class of models that address these shortcomings. By drawing
connections to the field of neural density estimation, we construct flexible neural TPPs,
where both likelihood computation and sampling can be done analytically. This is a
major improvement compared to existing approaches, none of which satisfy all these
criteria simultaneously. Next, in Chapter 4, we take a different path and show how all
TPPs can be viewed through the lens of triangular maps. Based on this insight, we pro-
pose TriTPP — a new flexible and efficient TPP parametrization based on compositions
of invertible transformations. Modern TPP architectures usually utilize autoregressive
neural networks (e.g., RNNs and transformers) and therefore are inherently sequential.
In contrast, in TriTPP both sampling and training can be done in parallel, which leads
to massively improved efficiency. Moreover, efficient sampling with reparametrization
opens new applications for TPPs. This leads directly to our second research question:

Research Question 2: How can we apply neural TPPs to solve real-world problems?

In Chapter 5, we show how the reparametrization trick allows us to efficiently train
TPP models with sampling-based losses. Such loss functions for TPPs are typically
discontinuous, which makes optimizing them with gradient-based methods impossible.
To address this challenge, we introduce a differentiable relaxation for losses involving
variable-length event sequences. To show the utility of this approach, we develop a
variational inference scheme for continuous-time discrete-state systems like Markov jump
processes. Finally, in Chapter 6, we tackle anomaly detection for event sequences with
TPPs. We demonstrate how the anomaly detection problem — for arbitrary data types,



1.3 Own publications

Table 1.1: List of own publications that this thesis is based on. Code and datasets for the re-

spective publications are available at https://github.com/shchur/[repository].

Ch. Ref. Title Conference Repository

2-3 [170] Neural Temporal Point Processes: A Review TJCAT 2021 N/A

3 [167] Intensity-free Learning of Temporal Point Processes ICLR 2020 /ifl-tpp/
Fast and Flexible Temporal Point Processes .

4-5 [16§] with Triangular Maps NeurIPS 2020 /triangular-tpp/
Detecting Anomalous Event Sequences : .

6 [169] with Temporal Point Processes NeurIPS 2021 /tpp-anomaly-detection/

not just event sequences — can be approached using goodness-of-fit tests for generative

models. We combine this framework with our neural TPP model from Chapter 3, which
leads to a simple and effective method for anomaly detection.

1.3 Own publications

The content of Chapters 3 to 6 is mostly based on papers previously published at inter-
national peer-reviewed conferences. We list these papers in Table 1.1. We also provide

the

1]

full list of publications that the author was involved in during the PhD studies below:

Aleksandar Bojchevski, Oleksandr Shchur, Daniel Ziigner, and Stephan Giinnemann.
Netgan: Generating graphs via random walks. In International Conference on Ma-
chine Learning, 2018.

Federico Monti, Oleksandr Shchur, Aleksandar Bojchevski, Or Litany, Stephan
Gilinnemann, and Michael M Bronstein. Dual-primal graph convolutional networks.
Graph Embedding and Mining Workshop, ECML-PKDD, 2018.

Oleksandr Shchur, Marin Bilo§, and Stephan Giinnemann. Intensity-free learning of
temporal point processes. In International Conference on Learning Representations,
2020. (cited on pages 5, 43, 45, 49, 50, 75, 83, and 146)

Oleksandr Shchur, Aleksandar Bojchevski, Mohamed Farghal, Stephan Giinnemann,
and Yusuf Saber. Anomaly detection in car-booking graphs. In International Con-
ference on Data Mining Workshops, ICDM, 2018.

Oleksandr Shchur, Nicholas Gao, Marin Bilos, and Stephan Giinnemann. Fast and
flexible temporal point processes with triangular maps. In Advances in Neural In-
formation Processing Systems, 2020. (cited on pages 5, 55)

Oleksandr Shchur and Stephan Giinnemann. Overlapping community detection with
graph neural networks. Deep Learning on Graphs Worshop, KDD, 2019.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Ginnemann. Pitfalls of graph neural network evaluation. Relational Representa-
tion Learning Workshop, NeurIPS, 2018.
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[8] Oleksandr Shchur, Ali Caner Tiirkmen, Tim Januschowski, Jan Gasthaus, and
Stephan Giinnemann. Detecting anomalous event sequences with temporal point
processes. Advances in Neural Information Processing Systems, 2021. (cited on
pages 5, 7)

[9] Oleksandr Shchur, Ali Caner Tirkmen, Tim Januschowski, and Stephan
Gunnemann. Neural temporal point processes: A review. International Joint Con-
ference on Artificial Intelligence, 2021. (cited on pages 3, 5, 7, 65, and 83)



2 Background

In this chapter we go over the mathematical foundations of TPPs. We introduce notation
and important concepts that will allow us to discuss the contributions of the thesis. The
overview of TPPs is primarily based on the lecture notes by Rasmussen [152], tutorial
by Gomez-Rodriguez & Valera [71] and the review paper by Shchur et al. [170]. For a
rigorous measure-theoretic treatment of TPPs, see Daley & Vere-Jones [41, 42].

We provide an overview of the notation and abbreviations used throughout the thesis
in Appendices A and B respectively.

2.1 Generative probabilistic modelling

Probabilistic models are the foundation of modern machine learning [16, 127]. Generative
probabilistic models are a class of approaches that define a stochastic procedure for
generating data, usually in a way that matches the behavior of some real-world system.
For instance, in seismology we might be interested in defining a model that generates
realistic aftershock sequences to better understand or forecast earthquake sequences
occurring in nature. Even if the system that we model is deterministic on the macroscopic
level (e.g., earthquakes, climate, server logs), treating it as stochastic allows us to account
for unobserved variables and imprecise measurements.

Typically, a generative model is governed by a set of parameters 0 that need to be
estimated using observed data Di;ain produced by the system under study. A prominent
example is the mazimum likelihood principle, where the parameters of the generative
model are optimized to maximize the (logarithm of the) probability of observed data [4]

OviE = arg;nax log pe(Dirain)- (2.1)

Once the parameters have been estimated, the model can be used in a number of ways.
A common application is conditional generation — given a partially observed data in-
stance, a generative model can provide distribution over the missing data or predict the
future. Examples of this task include generating possible sentence continuations [23],
inpainting missing parts of an image [204], and earthquake forecasting [21]. Sometimes,
learned parameters of the model can help us understand real-world systems. For in-
stance, by fitting a generative model to neural spike trains, it is possible to recover the
connectivity structure between the neurons [112]. Finally, by testing the goodness of fit
of the model to the data, we can assess the validity of scientific hypotheses (e.g., “Does a
certain stimulus elicit a response in this part of the brain?”) [46, 68] or detect anomalies
in the data [169].
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Figure 2.1: A realization of a TPP can be represented either as a sequence of arrival times
T = (t1,...,tn) (above) or as a counting process {N(¢t) : t € [0,T]} (below).

2.2 Temporal point processes

2.2.1 Representation

In the most intuitive sense, a temporal point process (TPP) is a generative model for
variable-length event sequences in continuous time. For example, suppose we would like
to model the activity of a single user on a social network over some time window [0, T7].
We can represent each post made by the user by its arrival time t; and the activity over
the entire time window as an event sequence T = (t1,...,tn). TPP allows us to define
a probability distribution over such sequences, where both N, the number of events, as
well as their arrival times t; are random.! Note that it is also possible that no events
are observed in the time window, that is N = 0. Sometimes it is convenient to instead
work with the inter-event times (71,...,7n+1), where we define 7; := t; — t;_1, assuming
to =0 and tN+1 =T.

We can also view TPP as a type of stochastic process — i.e., a probability distribu-
tion over functions — known as a counting process. In this case, we represent a TPP
realization by a function N(¢) that returns the number of events observed in the interval
[0,¢]. This is formally defined as

N(t):=> 1(t=>t) for t € [0,T]. (2.2)
t;eT

Here 1(-) is the indicator function that returns 1 if its argument is true and 0 otherwise.
Figure 2.1 demonstrates the event sequence and counting process representations.

"'We make the standard assumption that the point process is simple — that is, almost surely no two
events happen at the exact same time. This means that the arrival times ti,...,tx are strictly
increasing, and therefore the inter-event times 71, ..., 7n41 are strictly positive with probability 1.
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2.2.2 TPP as an autoregressive model

Now we discuss how a TPP mathematically specifies the distribution over event se-
quences. One way to do this is to treat TPP as an autoregressive model and generate
the arrival times one by one. More specifically, for each ¢ = 1,2, 3, ... we need to specify
Pi(ti|t1,...,t;—1) — the distribution of the next arrival time ¢; conditioned on the past
events (t1,...,t;—1). Since P;(t;|t1,...,t;—1) is a continuous probability distribution, it
can be defined by one of the following functions:

e probability density function (PDF)

pi(t|t1, cees tifl) = Pr(event t; € [t,t + dt] | t1,eeny tifl) (23)
where dt denotes an infinitesimal change in ¢, formally defined as

Pr(event t; € [t, t+ At] | t1, ..., ti—l)

- e e
e cumulative distribution function (CDF)
Fi(t|t1,...,ti—1) = Pr(event t; € [ti—1,t] | t1,...,ti—1) (2.5)
e survival function (SF)
Si(tlt1, ..., ti—1) = Pr(event t; € [t,00) | t1,...,ti—1) (2.6)
e hazard function (HF)
Gi(tltr, ..o ti1) = Pr(event t; € [t,t + dt] | t1, ..o tic1,ti & [ti_1,1)) (2.7)
e cumulative hazard function (CHF)
t
(|t s ti1) = /t Gi(tltr, s ts 1) dt (2.8)

PDF and CDF are well-known in machine learning literature, while SF, HF and CHF
are commonly used in the field of survival analysis [94]. Most relevant to our discussion
of TPPs are the PDF and HF. The key difference between these two is that the hazard
function additionally conditions on the fact that the next event ¢; has not occurred until
time t.

Each of the above functions (Equations 2.3 to 2.8) uniquely specifies the conditional
distribution P;(¢;|t1,...,t;i—1) as well as the other four functions (see Appendix C for
details). However, the choice of which function to parametrize can be very important in
practice, as we discuss in detail in Chapter 3.

To summarize, we can define a TPP autoregressively by specifying a sequence of
conditional distributions { P (t1), Pa(t2|t1), Ps(ts|t1,t2),...}. We can do it, for example,
by defining the conditional PDFs {p1(t), p2(t|t1), ps(t|t1, t2), ...}
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2.2.3 Conditional intensity function

An alternative to the autoregressive description of TPPs is based on the conditional
intensity function. The conditional intensity, denoted as A*(t), represents the instan-
taneous rate of arrival of new events at time ¢ given the history of past events H(t) =
{t; € T : t; < t}. Formally, we define the conditional intensity as

N (t) == Pr(N(t +dt) — N(t) = 1 | H(t)), (2.9)

where the % symbol reminds us of conditioning on the history #(t).

It is important to note that the history H(¢) includes the information that no event
happened in the interval [¢t;_1,t), assuming that ¢;_; is the last event before time ¢. This
fact allows us to see how the conditional intensity is connected to the autoregressive
characterization of the TPP — we can define A*(¢) in a piecewise manner by stitching
together the conditional hazard functions (Equation 2.7):

P1(t) if0<t<t,

)\*(t) _ ?Q(t’tl) if L <t< tQ, (2.10)

¢N+1(t’t1,...,t]v) ifty <t<T.

Similarly, we can recover the conditional PDF's from the intensity as

t

pi(t|t1, ...,tl;l) = )\*(t) exXp <— A*(u)du) . (2.11)

ti—1

In Appendix C we provide the formulas for obtaining other distribution functions.

For convenience, we assume that we always deal with non-terminating TPPs, where
the next event will always happen at some point in the future. Mathematically, this cor-
responds to the condition [[”° A*(u)du = oo holding for any ¢ and #(t). We additionally
assume that the intensity is always strictly positive. Both these assumptions are just
technicalities that simplify the theory when discussing simulation algorithms, but have
little effect in practice — since we always work with TPPs on a bounded interval [0, 7],
we can approximate a terminating TPP with zero intensity by pretending that the next
event happens after time T with probability 1 — €, where ¢ is arbitrarily small.

2.2.4 Conventional TPP models

We will now discuss several instances of conventional (non-neural) TPP models. These
are important for several reasons. First, these examples show how simple parametric in-
tensity functions can produce different dynamics of event occurrence. More importantly,
these examples provide a useful sanity check when developing new models — in later
chapters we will use them to determine whether our neural TPPs are flexible enough to
capture different patterns generated by the simpler conventional models.

10



2.2 Temporal point processes

Homogeneous Poisson process (HPP) is the TPP characterized by the constant
intensity function

N (L) = p, (2.12)

where 1 > 0 is the rate parameter. From this definition of A\*(¢) we can conclude that
the rate of arrival of new events in the HPP does not depend on the history (known as
the “memoryless property”) and is constant over time. From these facts, we can derive
several other properties of the HPP that are important both for theoretical analysis and
design of algorithms:

(a) The number of events in any two disjoint intervals are independent.

(b) The number of events in any interval [a,b] for 0 < a < b < T follows Poisson
distribution with rate p - (b — a).

(c) Conditioned on N, the arrival times (¢1,...,ty) are independently and identically
distributed (i.i.d.) according to the Uniform([0,77]) distribution.

(d) The inter-event times (71,72, ...) are i.i.d. random variables that follow the expo-

nential distribution with rate pu.

1.04
— X

0.5

A*(t)

0.0

v

0 t ty 3 t4 t5 T

® oo o o

»
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Figure 2.2: Homogeneous Poisson process with constant intensity A\*(t) = p.

Standard Poisson process (SPP), also known as HPP with unit rate, defined by
A*(t) =1, (2.13)

is an important special case of the Poisson process. In many senses, the role of SPP in
point process theory is similar to the role of the Uniform([0, 1]) distribution in univariate
statistics. For instance, SPP is the highest entropy TPP on an interval [0,T] [7]. More
importantly, SPP can be used to generate samples from an arbitrary TPP, similar to

11
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how the Uniform([0, 1]) distribution is used in inverse transform sampling for univariate
random variables [49]. We discuss this aspect in more detail in Sections 2.2.5 and 2.2.7.

Inhomogeneous Poisson process (IPP) generalizes the homogeneous Poisson pro-
cess by making the intensity vary over time:

AN () = p(t), (2.14)

where p(t) is a positive integrable function. Such formulation of the intensity preserves
the memoryless property, like in the HPP, but is now able to capture periodic changes in
the rate of arrival of new events. For example, IPP is a reasonable model for timestamps
of calls arriving to a call center — the rate of activity may change throughout the day,
but we can treat the calls as independent from each other. The inhomogeneous Poisson
process also has a number of important properties:

(a) The number of events in any two disjoint intervals are independent.

(b) The number of events in any interval [a,b] for 0 < a < b < T follows Poisson
distribution with rate f; w(u)du.

(c) Conditioned on N, the arrival times (¢1,...,tx) are i.i.d. random variables with
probability density function f(t) = u(t)/ fOT p(u)du.

Finally, it is worth noting that a TPP has the memoryless property if and only if it is a
Poisson process.

1.04
— \(1)
=05
,(
0.0 >
0 tl tg f‘l f-l tﬁ tﬁ T
o0 o900 o
0 tl tg f‘g IL_1 t5 t@ T ti:ne

Figure 2.3: Inhomogeneous Poisson process has a history-independent intensity \*(t) = u(t)
and can model trends in the arrival rate of new events.

Renewal process (RP) [172] provides yet another generalization for the homoge-
neous Poisson process. Recall that in HPP the inter-event times (71,72,...) are i.i.d.
exponential random variables. RP replaces the exponential inter-event time distribution
with another arbitrary distribution P(7) supported on [0,00). Suppose this inter-event

12



2.2 Temporal point processes

time distribution is characterized by a hazard function (7). Then, the conditional
intensity function of the corresponding RP is

A1) = o(t —tiz1), (2.15)

where t;_; is the last observed event before time ¢ (Figure 2.4).

One application where renewal processes naturally arise is reliability analysis. Sup-
pose, we need to predict when a certain machine component that is prone to failures (e.g.,
lightbulb) needs to be replaced. Assuming that the time until failure for all lightbulbs
follows the same distribution P(7), and whenever one lightbulb breaks it is replaced by
a new one, the sequence of failure times will follow the renewal process.

1.04
_— (1)
=05 | /
~< /
0.0 / >
0 T
0 T ti:ne

Figure 2.4: Renewal process with Gamma(2, 1) inter-event time distribution.

Self-exciting process, also known as Hawkes process (HP) [79], has the property
that its intensity increases whenever an event occurs. This leads to “bursty” event
sequences, where multiple events often happen in quick succession. In the most general
form, the conditional intensity of a Hawkes process is defined as

N =pt)+a Y At—t) (2.16)

t;EH (L)

The base rate u(t) captures the seasonal change in event frequency, similar to IPP.
The branching factor a € (0,1) represents the expected number of “offspring” events
produced by each event. Finally, the triggering kernel v(7) (subject to fooo y(T)dr = 1)
determines how the self-exciting effect decays over time.

One common choice is the exponential triggering kernel

v(t —t;) = Bexp(—B(t —t;)) (2.17)

with decay parameter 5 > 0 (Figure 2.5). Hawkes process with the exponential kernel
is quite special, as it is the only self-exciting process that has the Markov property
[132]. This means at any time ¢ we can summarize the entire history #(¢) with a single
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number that can later be reused when computing the intensity at a future time t’ > t.
The Markov property allows us to construct efficient algorithms for simulation [45] and
parameter estimation [133] for Hawkes processes with the exponential kernel.

Other triggering kernels are also used in practice, but they lack the Markov property
and thus require us to always keep track of all the past events #H(t). For example, the
power-law kernel

Yt —t;) = ( e’ (2.18)

t— tj + C)1+77

is commonly used to model aftershocks in seismology [134] and information propagation
on social media [158].

A
— O\ (T
10 O]
<05
0.0 >
0 T
0 ty tots 1y tste T  time

Figure 2.5: Self-exciting (Hawkes) process produces “bursty” event sequences. Here we use a
constant base rate 1 and exponential triggering kernel v(t — t;) = exp(—(t — t;))

Self-correcting process (SCP) [90] is in a sense the opposite of the self-exciting
process — it allows observed events to inhibit future activity via the following intensity
function

A(t) =exp | pt — Z ! (2.19)
tjEM(t)

with positive parameters u, a. The intensity rises steadily over time, but decreases by a
multiplicative factor of e™® after each event, which produces sequences of evenly-spaced
events (Figure 2.6). The SCP can be used to model events that rarely happen in quick
succession, such as large-magnitude earthquakes.

Summary. It is worth highlighting that all TPPs that we discussed above can equiv-
alently be specified using the conditional PDFs p;(t|t1,...,t;—1) or the hazard functions
@i(t|t1, ..., t;i—1). Still, the description in terms of the conditional intensity A*(¢) hap-
pens to be more elegant and compact — we often do not have to worry about the indices
i, and we can understand the properties of respective TPPs (such as global trends or

14
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Figure 2.6: Self-correcting process produces evenly-spaced events.

burstiness) by inspecting the definition of A\*(¢). In future chapters we will encounter
other models, where intensity is not the most convenient representation anymore. How-
ever, we should always keep in mind that these different descriptions are interchangeable,
and we can always move between them, if necessary.

2.2.5 Random time change theorem

We now present the random time change theorem — a central result in the theory of
TPPs that lays the foundation for several contributions of this thesis. The random
time change theorem shows us how we can connect an arbitrary TPP to the standard
Poisson process using the conditional intensity A*(¢). This is similar to how in univariate
statistics the CDF transform converts any continuous random variable on R into the
uniform distribution [49].

Theorem 1 (Random time change theorem [22]). Suppose T = (t1,...,tN) is a real-
ization of a TPP with conditional intensity \* on an interval [0,T]. Define the trans-
formation

A*(t):/0 A*(u)du. (2.20)

Then the transformed sequence Z = (A*(t1),...,A*(tn)) is distributed according to the
standard Poisson process on the interval [0, A*(T)].

The function A*(t), called the integrated intensity function or compensator, provides
yet another way to characterize the TPP, in addition to the options listed in Sections 2.2.2
and 2.2.3. Therefore, we can express the compensator in terms of other functions char-
acterizing the TPP, such as the cumulative hazard function (Equation 2.8):

i—1
A*(t) = @i(t‘tl, e 7ti—1) + Z (I)i(tj‘tl, ce. ,tj_l), (2.21)
j=1
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A
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Figure 2.7: Compensator A* transforms a realization T = (¢1,...,tx) of a TPP on [0, T] into a
sample Z = (A*(t1),...,A*(tn)) from the standard Poisson process on [0, A*(T)].

where ¢;_1 is the last event before time ¢.

Note that A*: [0,00) — [0,00) is a strictly increasing invertible function since we
defined it by integrating the strictly positive conditional intensity function of a non-
terminating TPP. Invertability of the compensator will play an important role in our
discussion of simulation algorithms for TPPs in Section 2.2.7. In Chapter 4 we will
explore this property in more depth to define a new class of efficient and flexible neural
TPP parametrizations. Moreover, the random time change theorem allows us to con-
struct goodness-of-fit tests for arbitrary TPPs, which we will use to develop an anomaly
detection framework in Chapter 6.

2.2.6 Parameter estimation

As we discussed in Section 2.1, applying a generative model usually requires estimating
its parameters. Temporal point processes are no exception, and parameters of TPPs are
typically learned using the maximum likelihood estimation (MLE) procedure.

Given an observed sequence T = (t1,...,tn), the likelihood of a TPP model with
conditional intensity \*(t) is computed as

p(T) = (f[l )\*(ti)> exp (— /OT A*(t)dt) : (2.22)

Intuitively, this quantity can be interpreted as the probability that there are exactly N
events before time 7', one in each of the infinitesimal intervals [t;, t; + dt]. The function
p(T) is sometimes also called point process density. We will use p(7) to refer both to the
density function itself, as well as to the corresponding distribution over event sequences.

When estimating the parameters we instead work with the logarithm of the likelihood

N T
logp(T) =Y log \*(t;) — / A*(t)dt. (2.23)
i=1 0
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2.2 Temporal point processes

In practice, the expression in Equation 2.23 is often divided by T, the length of the
observed interval, to obtain values that are comparable across different sequences.

Recall that the conditional intensity function provides one of multiple equivalent ways
to characterize a TPP. Similarly, the log-likelihood function can be equivalently expressed
using other functions, e.g.,

N
logp(T) = Z logpi(ti\tl, ... 7ti—1) + log SN_H(T‘tl, ... ,tN), (2.24)
=1

where p;(t|t1,...,t;—1) are the conditional PDFs and Sy1(t[t1,...,tx) is the survival
function of the event number N + 1.

The standard procedure for fitting a TPP model to a dataset consisting of i.i.d. event
sequences Dirain = {7'(1), ... ,’T(M)} via MLE looks as follows. First, we pick some
parametric form the conditional intensity Aj(¢) with parameters . For example, we may
select the self-correcting process (Equation 2.19) with parameters @ = {u, a}. Then, we
find the parameters Oy g that maximize the log-likelihood of the sequences in Dypain:

O\iLE = argmax Z log pe (7). (2.25)
6€® T €Dtrai
train

Here © encodes the potential constraints on the parameters (e.g., in self-correcting pro-
cess 1 and « must be positive), and the likelihood for each individual sequence is com-
puted according to Equation 2.23. For some parametrizations of the TPP, it might be
more convenient to implement the likelihood computation according to Equation 2.24
instead. Computing MLE analytically is only possible for simple models, such as HPP, so
the optimization problem from Equation 2.25 is usually solved with numerical methods
like gradient descent. Once we obtain the parameters by solving the above optimization
problem, the learned model can be used for other prediction tasks.

While MLE is a simple and popular method for learning TPP models, there exist
alternatives based on different objective functions and training procedures [108, 198, 202].
We will discuss these alternative approaches in detail in Chapter 5.

2.2.7 Simulation methods

Once we estimate the parameters of a TPP, we can use it to generate new event sequences.
We will use the words simulation and sampling interchangeably to refer to the process
of generating new event sequences from a TPP model. First, we consider generating
event sequences “from scratch”, that is, starting from time ¢ = 0 and assuming no
past events. At the end of this section, we will discuss conditional sampling, where we
generate possible continuations of a partially-observed event sequence.

Different TPP simulation algorithms have different prerequisites, and therefore are
suitable for different TPP models. We start by providing a simulation algorithm for
the homogeneous Poisson process (Equation 2.12) that will serve as an important
building block when generating samples from arbitrary TPPs. Recall that the inter-event
times 7; of HPP with rate p are i.i.d. Exponential(u) random variables (Property (d) of

17



2 Background

the HPP in Section 2.2.4). Algorithm 1 makes use of this property to simulate HPP on
an aribtrary interval [0, 7).

Algorithm 1 Simulating a HPP on [0, 7] using inter-event times

Parameters: Interval length T, rate pu.

1. Set t =0, i =1.

2. Repeat until ¢t > T
(a) Sample the next inter-event time 7; ~ Exponential(u).
(b) Compute the next arrival time t =t + 7.

(¢) If t < T, record the arrival time t; = ¢t and increase the counter i =i + 1.

Output: Sequence of arrival times T = (¢1,...,tn).

Algorithm 1 requires drawing samples from the exponential distribution. This can be
done using the inverse CDF transform method for univariate random variables, as
shown below.

Algorithm 2 Inverse CDF transform sampling for univariate random variables [49]

Parameters: Cumulative distribution function F': R — [0, 1].

1. Sample u ~ Uniform([0, 1])

2. Solve F(t) = u for t.
Output: Sample ¢t drawn from the distribution with CDF F'.

The CDF F(t) = (1 — exp(—put)) - 1(t > 0) of the exponential distribution is invertible,
which allows us to perform step 2 of Algorithm 2 analytically t = F~!(u) = —% log(1—w).

Combining Algorithms 1 and 2 provides us with a concrete and easy-to-implement
method for simulating the HPP. This, in turn, can be used to construct sampling methods
for an arbitrary TPP with conditional intensity A\*(¢). We will now discuss two such
generic methods that are most commonly used in practice.

Inverse transform method for TPPs can be seen as the converse of the random
time change theorem (Theorem 1). Recall that if 7 = (¢1,...,tn) is a realization of a
TPP with compensator A* on [0,7], then Z = (z1,...,2n) = (A*(t1),...,A*(tn)) is a
realization of the standard Poisson process on the interval [0, A*(T")]. The main idea of
this approach is to first simulate a sequence Z = (z1, ..., zy) from the SPP and then ob-
tain the actual arrival times as 7 = (t1,...,tn) = (A*"*(21),...,A* *(2n)). The main
problem is that we do not know N, the number of events, in advance. However, since

18



2.2 Temporal point processes

each t; and the compensator A*(¢;) only depend on the previous arrival times ¢y, ..., t;_1,
we can generate the events one by one. The procedure is outlined in Algorithm 3.

Algorithm 3 Inverse transform sampling (via random time change theorem)

Parameters: Interval length 7', compensator A*.

1. Set t =0, z=0and i = 1.
2. Repeat until ¢ > T
(a) Sample the next SPP inter-event time v; ~ Exponential(1).
(b) Compute the next SPP arrival time z = z + v;.
(c) Obtain the next observed arrival time as t = A*~1(z).
(d

) If ¢ < T, record the arrival time ¢; =t and increase the counter i = ¢ + 1.

Output: Sequence of arrival times T = (t1,...,tn).

Recall that since we consider non-terminating TPPs with strictly positive intensity, the
compensator A* is an invertible function (Section 2.2.5). Therefore, we use A*~1(2) to
denote the unique solution to the equation A*(t) = z.

Another way to understand the inverse transform method is by considering the autore-
gressive description of the TPP model. From this viewpoint, Algorithm 3 boils down to
generating the arrival times ¢; one by one from the respective conditional distributions
Pi(t;|t1,...,t;—1), for instance, using the inverse CDF transform.

Algorithm 4 Inverse transform sampling (via inverse CDF transform)

Parameters: Interval length 7', arrival time CDFs {Fy(t), Fx(t|t1), F5(t|t1,t2), ... }.

1. Set t =0 and ¢ = 1.

2. Repeat until t > T
(a) Sample u ~ Uniform(|0, 1]).
(b) Obtain the next observed arrival time as t = F," ' (ulty,... t;_1).

(2

(c) If t < T, record the arrival time t; =t and increase the counter i = ¢ + 1.

Output: Sequence of arrival times T = (t1,...,tn).

The equivalence between Algorithms 3 and 4 can be proved using the relationships be-
tween CDF, CHF and the compensator (Appendix C). Finally, we note that the existence
of the inverse conditional CDF's FZ-_1 follows from the invertability of the compensator.

The inverse transform method provides a straightforward way to generate event se-
quences from an arbitrary TPP. The main requirement for applying this method in prac-
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tice is the ability to efficiently sample from the conditional distribution P;(¢;|t1,...,ti—1)
(or, equivalently, invert the compensator). This, however, can be challenging for certain
TPP parametrizations, such as Hawkes processes, where the compensator cannot be
inverted analytically, and thus numerical root-finding methods are required.

Thinning algorithm [105, 133] provides an alternative that is computationally less
efficient, but, unlike inverse transform, does not require inverting the compensator. The
two prerequisites for applying the thinning algorithm are the ability to evaluate the
intensity A*(¢) and a method to compute an upper bound on the intensity that fulfills

b*(t) > sup A*(s). (2.26)
s€t,T)

Note that the upper bound also depends on past events H(t) that occured before time
t. The main idea of the thinning algorithm is to first generate candidate events from a
HPP that has higher intensity than the TPP of interest, and then to thin out some of
the events to correct for oversampling. This is similar in spirit to the rejection sampling
method from univariate statistics [49]. The procedure is described in Algorithm 5.

Algorithm 5 Ogata’s modified thinning algorithm [133]

Parameters: Interval length 7', conditional intensity A*(t), upper bound m(t).

1. Set t =0 and 7 = 1.

2. Repeat until t > T
(a) Compute the upper bound py = b*(t).
(b) Generate an HPP inter-event time v; ~ Exponential(y).
(c) Generate u ~ Uniform([0, 1]).
(d) Compute candidate event as t =t + v;.
(e) If t <T and u < %gt), accept the event t; =t and set i =i + 1.

Output: Sequence of arrival times T = (¢1,...,tN).

The main disadvantage of the thinning method is that it may suffer from high rejection
rates, and therefore be inefficient. This can happen if there is a lot of variation in the
intensity, which results in low acceptance probability %g) Moreover, obtaining an upper
bound b*(¢) may be challenging or even impossible for certain TPP parametrizations.

To summarize, both inverse transform and thinning permit exact simulation of TPPs,
but have different prerequisites and involve different tradeoffs. When developing new
TPP parametrizations, it is important to ensure that the requirements for at least one
of the algorithms are met, so that the new model can be used for sampling. Otherwise
an arbitrary neural TPP model may meet none of the prerequisites and therefore be of
limited practical use.
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Figure 2.8: Marked TPP with C = 3 categorical marks corresponding to different event types.

Conditional generation. The simulation methods we discussed so far allow us
to generate event sequences from scratch for the entire time interval [0,7]. However,
this is not suitable for many practical applications, where the events up to some time
tobs € [0,T] are already observed. For instance, in earthquake forecasting the goal is
usually to generate aftershock sequences in the forecast interval (¢qp, 7], conditioned on
the previously observed earthquakes in [0, topg)-

Luckily, Algorithms 4 and 5 can both be easily adapted to the conditional setting.
The thinning algorithm requires initializing ¢ = t,ps and conditioning on the observed
events when computing A*(¢) and b*(¢). For the inverse transform method, we need to
change how we generate the first event. If N events were observed in [0, tos], we need
to account for the fact that event N + 1 did not occur in the interval [ty tops]. This
can be incorporated into Algorithm 4, e.g., by first computing the survival probability
w=1—Fny1(tops|t1,--.,tn) and then sampling the event as F]ﬁ_l(l—w-uN\tl, cotN).

2.2.8 Marked temporal point processes

So far we discussed event sequences where each event is represented only by its arrival
time t;. However, in many practical applications we have access to additional metadata
associated with each event (e.g., magnitude and location of each earthquake). In this
case, we denote each event by a tuple (¢;, m;), where m; € M is a mark that contains the
additional attributes. The definition of the mark space M depends on the type of the
available metadata. For instance, we can model earthquakes with magnitude, longitude
and latitude with M = (0,00) x R%  Another important case are categorical marks
M ={1,...,C} that allow us to model events of C' different types (Figure 2.8). This,
for example, can be used to model the activity of C' distinct users on a social network,
each represented by their own mark.

Most of the previously discussed concepts can be straightforwardly extended to the
marked case. We represent a marked TPP realization as 7 = ((tl, mi),...,(tN, mN)),
and the history now also includes the past marks H(t) = {(¢;,m;) : t; < t}. A marked
TPP can be defined autoregressively, i.e., by specifying the distribution of the next
arrival time t; and mark m; conditioned on the history

p; (t,m) == p; (t,m|(t1,m1), ..., (tic1,miz1)) fori=1,2,3,.... (2.27)
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Here we slightly abused the notation and for brevity used the % symbol to denote con-
ditioning on the past events.? We can decompose the conditional density as

p(t,m) = pi(¢) - pi(mlt; = ). (2.28)

Here p;(m|t; = t) is either a probability density function or a probability mass function,
depending on whether the marks are continuous or discrete. The conditional intensity
for a marked TPP can be similarly expressed as

N (t,m) = N (t) - pl(mlt; = 1). (2.29)

This means, we can model the distribution of the arrival times using A*(¢), analogous
to how we did it for the unmarked case in Section 2.2.4, except that now the intensity
A*(t) may also depend on past marks.

In a general marked TPP, we usually condition the mark m on the arrival time ¢, as
we just saw in Equations 2.28 and 2.29 (of course, both m and ¢ are also conditioned on
the history H(t), as indicated by *). However, in case of categorical marks, it may be
more convenient to model the distribution of the arrival times separately for each mark.
This can be done by directly specifying an individual conditional intensity function A’ ()
for each mark type c € {1,...,C}

As(t) == A" (t,m = ¢). (2.30)

To make this idea more concrete, let us consider a specific example of the multivariate
Hawkes process, where for each mark ¢ we define the intensity as

N =pet D> Ampey(t—t). (2.31)
(t.m;) EH(L)

This definition is similar to the (unmarked) Hawkes process with exponential kernel that
we discussed in Section 2.2.4, but with a few important differences. First, each mark
now has its own base rate .. More importantly, the C' x C' nonnegative influence matrix
A allows us to model interactions between different event types: Every time an event of
type [ occurs, the intensity of mark c increases by 4; . and then fades according to the
decay kernel ().

Given the conditional intensity A}(¢) for each mark ¢, we can, for example, recover
A*(t), the rate of arrival of the next event of any type, by summing the intensities
A¥(t) = Zle Af(t). Similarly, we can compute the probability that the next event that
occurs at time ¢; has specific type c as

(1)
AL

2Note that we overloaded the meaning of the * symbol. In the conditional PDF p} (t,m) the * denotes
conditioning on past events ((tl,ml), ey (tiza, mifl)), while in the conditional intensity A*(t) the
* additionally includes the information that event ¢; did not happen in the interval [¢;—1,t].

pi(m=clt=1t;) = (2.32)
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Similar to the unmarked case, log-likelihood of a marked TPP can be expressed using
either the conditional intensity or the conditional distributions as

N T
log p(T) = 3 log A" (£, my) — /0 X (u)du (2.33)
=1
N
= Zlogp;f(ti, m;) +log Sy41(T) (2.34)
=1

and in case of categorical marks as

N C
=S toeai 1) - 3

c=1

/ ' )\Z(u)du) . (2.35)

0

In the rest of this thesis we primarily focus on unmarked TPPs, unless explicitly stated
otherwise. Still, many of the insights are transferable to the marked case thanks to the
similarities we discussed above.

2.3 Deep learning for sequential data

The TPP models we have encountered so far are defined with hand-crafted parametric in-
tensity functions that capture simple patterns of event occurrence (e.g., self-excitation).
Neural TPPs take a different approach and parametrize the intensity using neural net-
works. This results in more flexible models that are able to learn various patterns from
the data. We will now review some deep learning architectures that are commonly used
when constructing neural TPP models. The contents of this section are primarily based
on the textbook by Goodfellow et al. [72].

Multilayer perceptron (MLP), also known as feedforward neural network is
the quintessential deep learning model. An MLP defines a function g: RPin — RDout
operating on fixed-dimensional vectors € R”» by stacking affine transformations of
the form Wx + b and element-wise activation functions o: R — R. For example, a
two-layer MLP is defined as

g(x) = E(Wa& (Wix + by) + ba), (2.36)

where Wi, Wy, by, by are the learnable parameters (also known as weights) and &1, &
are nonlinear activation functions, such as {(z) = tanh(xz). MLPs embody one of the
main principles of deep learning — they define a flexible function by composing simple
transformations. Thanks to their simplicity and flexibility, MLPs are often used as
building blocks in other deep learning architectures.

Recurrent neural network (RNN). When working with TPPs, we have to deal
with variable-length event sequences. This requires neural network architectures that
can operate with variable-length inputs and outputs. RNN is one of the simplest ar-
chitectures with such property. We represent the input to the RNN as a sequence of
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vectors (x1,...,2y). In a nutshell, an RNN processes the inputs x; € RPin one by one
and updates its hidden state h; € Rf. This way the hidden state h;i1 can extract
relevant information from the previous inputs (x1,...,x;).

More specifically, an RNN starts with the initial hidden state vector h; and recursively
compute the next state as

hz‘_;,_l = Update(hi, .’BZ) (2.37)

Different implementations of the Update(-,-) function correspond to different RNN ar-
chitectures.
One of the simplest variants is the Elman RNN [55] with update function

hiy1 = tanh(Wrh; + Wox; + b), (2.38)

where W}, W, b are the learnable parameters. This RNN architecture has several known
limitations, such as its poor ability to capture long-range dependencies between inputs,
as well possible optimization problems due to vanishing and exploding gradients.

Various other RNN versions have been proposed to address these shortcomings, two
most notable examples being long-short term memory (LSTM) [86] and gated
recurrent unit (GRU) [31]. The main idea of these architectures is to have learn-
able gates that control the flow of information and therefore enable learning long-range
dependencies. For example, the GRU update function is implemented as

Ti+1 = U(Whrhi + ermi + b?‘)

Zi+1 = U(thhi + szmi + bZ)
. 2.39
hit1 = tanh(Wypx; + rip1 © (Whphi + b)) (2.39)

hivi=(1—ziy1) Ohi + 201 O higy.

Here, the update gate z; 11 € (0,1), defined using the sigmoid function o(x) = 1/(1 +
exp(—x)), allows the network to ignore certain inputs x; and therefore better retain
information from previous steps.

These architectural differences, however, do not play an important role in our sub-
sequent discussion of neural TPPs. The main takeaway message of this section is
that an RNN can encode a variable-length sequence of inputs (z1,...,®;) into a fixed-
dimensional state vector h;11. We can treat the choice of the specific architecture (e.g.,
GRU vs. LSTM) as one of the hyperparameters of a neural TPP model. Similarly, we
can replace RNN with other deep learning architectures for sequential data, such as
transformers [185].

We have discussed all the important prerequisites and are ready to discuss how these
deep learning architectures can be combined with the ideas from point process theory
that we introduced in Section 2.2 to create flexible neural TPP models.
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3 Intensity-free learning of temporal point
processes

In this section, we begin our discussion of neural TPPs — generative models for event
data based on neural networks. The main advantage of neural TPPs is their high ex-
pressiveness compared to traditional TPP models such as self-exciting or self-correcting
processes (Section 2.2.4). Designing neural TPPs, however, usually involves trade-offs
along the following dimensions:

o Flexibility: Can the model approximate any distribution?
e Ffficiency: Can the likelihood function be evaluated in closed form?
e FEase of use: Can we easily sample new sequences and make predictions?

Existing methods [52, 119, 139] defined in terms of the conditional intensity function
typically fall short in at least one of these regards.

Instead of modeling the intensity function, we suggest treating the problem of learning
in temporal point processes as an instance of conditional density estimation. By using
tools from neural density estimation [15, 155], we can develop methods that have all of
the above properties. To summarize, our contributions are the following:

e We connect the fields of temporal point processes and neural density estimation.
We show how normalizing flows can be used to define flexible and theoretically
sound models for learning in temporal point processes.

e We propose a simple mixture model that performs on par with the state-of-the-art
methods. Thanks to its simplicity, the model permits closed-form sampling and
moment computation.

e We demonstrate how the proposed models can be used for prediction, conditional
generation, sequence embedding, and training with missing data.

3.1 Background

Throughout this chapter we will use notation and terminology from Chapter 2 (see Ap-
pendices A and B for a recap). Recall that a TPP can be specified by a parametric
conditional intensity function Aj(t) that defines the rate of arrival of new events condi-
tioned on the history (Equation 2.9). The chosen parametrization of \j(t) determines
the flexibility of the TPP model, that is, what patterns of event occurrence it is able
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3 Intensity-free learning of temporal point processes

to capture (e.g., global trends; intensity increasing or decreasing after observed events).
The intensity also plays an important role when learning the model parameters via
maximum likelihood estimation (MLE). The goal of MLE is to find the parameters that
maximize the log-likelihood of observed events 7 = (¢1,...,¢xy) in the time interval [0, T']
that is computed as

N T
logpo(T) = >~ log Xylt:) — [ Aglu)du. (3.1)
i=1 0

The main challenge when picking a parametric form for A\j(¢) is the following trade-
off: For a “simple” intensity function, the integral f(;f Ap(u)du has a closed form, which
makes the log-likelihood easy to compute. However, such models typically have limited
flexibility. A more sophisticated intensity parametrization can better capture the dy-
namics of the system but will often require approximating the integral numerically (e.g.,
with Monte Carlo), leading to inefficient optimization. To demonstrate these tradeoffs
more concretely, we consider several existing neural TPP models.

Recurrent Marked Temporal Point Process (RMTPP) [52] was the first deep-
learning-based TPP model. RMTPP consists of two components: First, an RNN is used
to encode the history H(t;) = {t1,...,t;—1} into a fixed-dimensional vector h;. Then, a
decoder uses the history embedding h; to parametrize the conditional intensity function.
We focus on the decoder as it is most relevant to our discussion. Assuming that ¢;,_1 is
the last event that occurred before time ¢, the intensity is computed as

N(t) = exp(vThy —w(t —t;i_1) + ), (3.2)

where v, w,b are learnable parameters. The intensity of RMTPP can be integrated
analytically, which leads to efficient MLE training. Moreover, the compensator A*(¢) can
be easily inverted, enabling inverse transform sampling (Algorithm 3). This, however,
sacrifices flexibility, as Equation 3.2 can only represent a monotonically increasing or
decreasing intensity between events.

Neural Hawkes Process [119] takes a different approach and instead encodes the
history with a state h(t) that evolves in continuous time in addition to discrete updates
after each observed event. The state h(t) then defines the intensity as

A*(t) = softplus ('UTh(t)) : (3.3)

Here, v is a learnable parameter and the softplus function log(1 + exp(x)) ensures posi-
tivity of the intensity. Such parametrization is more flexible than in case of RMTPP but,
unfortunately, cannot be integrated analytically. This also means that we must resort
to the potentially inefficient thinning algorithm (Algorithm 5) to sample new sequences
with NHP.

Fully Neural Network Point Process (FullyNN) [139] is a recently proposed
flexible, yet computationally tractable model for TPPs. The key idea of the FullyNN
model is to instead parametrize the cumulative hazard function ®;(t|ty,...,t;—1) with
a monotonic neural network. The intensity is then defined as the derivative of the
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3.2 Models

Neural Normalizing Mixture
RMIPP Hawkes Fully NN Flows Distribution
Closed-form likelihood v X 4 v v
Flexible X v v v v
Closed-form E[7] X X X X v
Closed-form sampling v X X X v

Table 3.1: Comparison of neural TPP models that encode history with an RNN.

cumulative hazard function, which allows us to efficiently compute the log-likelihood.
Still, in its current state, the model has downsides: it does not define a valid TPP,
sampling cannot be done exactly, and the expectation has no closed form.!

This work. We show that the drawbacks of the existing approaches can be remedied
by looking at the problem of learning in TPPs from a different angle. Conventional TPP
models (e.g., Poisson, Hawkes, self-correcting processes) are usually defined in terms
of the conditional intensity function A\*(¢), and existing neural TPPs follow the same
strategy. We suggest to instead define neural TPPs autoregressively and directly work
with the conditional PDFs p;(t|t1,...,ti—1). Modeling probability distributions with
neural networks is a well-researched topic, that, surprisingly, is not usually discussed in
the context of TPPs. By adopting this alternative point of view, we are able to develop
new theoretically sound and effective methods (Section 3.2), as well as better understand
the existing approaches (Section 3.3).

3.2 Models

For convenience, in this section we will represent event sequences using inter-event times
(T1,...,7N+1) instead of arrival times (¢1,...,tx), as we did before. All previous results
and notation naturally translate to this alternative representation. We will again use x
as a shortcut for conditioning on past events p}(7) := p;(7|71,...,7i—1). For example,
the log-likelihood (Equation 3.1) can be expressed as

N

logpe(T) = > _logp}(r;) +log Sy 1 (Tv41), (3.4)
=1

where p;(7) is the conditional PDF of the next inter-event time 7; and Sy (7) is the
conditional survival function of 7iy11. We always assume that the conditional PDF and
SF are governed by the parameters 8 but hide them in our notation for compactness.
The main idea of our approach is to define the TPP autoregressively by modeling p} (1)
instead of working with the conditional intensity function. First, we assume for simplicity
that each inter-event time 7; is independent of the history (that is, pf(7) = p(7) for all 7).
In Section 3.2.1, we show how state-of-the-art neural density estimation methods based

LA more detailed discussion of the FullyNN model follows in Section 6.4 and Appendix D.3.
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3 Intensity-free learning of temporal point processes

on normalizing flows can be used to model p(7). Then in Section 3.2.2, we propose a
simple mixture model that can match the performance of the more sophisticated flow-
based models, while also addressing some of their shortcomings. Finally, we discuss how
to make p!(7) depend on the past events (7i,...,7;—1) in Section 3.2.3.

3.2.1 Modeling p(7) with normalizing flows

The core idea of normalizing flows [155, 176] is to define a flexible probability distribution
by transforming a simple one. Assume that y is distributed according to a PDF ¢(u). Let
x = g(u) for some differentiable invertible transformation g : i/ — X (where U, X C R).2
We can obtain the PDF p(z) of x using the change of variables formula as

0

p(x) = q(g™ (x)) 875971(%) : (3.5)

By stacking multiple transformations g1, ..., gpr, we obtain an expressive probability den-
sity function p(z).

To draw a sample x ~ p(x), we need to draw u ~ ¢(u) and compute the forward
transformation x = (gpyo---0g1)(u). To compute the density at an arbitrary point z, it
is necessary to evaluate the inverse transformation u = (g; oo g;/ll)(x) and compute
q(u). Modern normalizing flows architectures parametrize the transformations using
flexible functions f,, such as polynomials [91] or neural networks [88]. The flexibility
of these functions comes at a cost — while the inverse f;l exists, it typically does
not have a closed form. That is, if we use such a function to define one direction
of the transformation in a flow model, the other direction can only be approximated
numerically using iterative root-finding methods [85]. In this work, we do not consider
invertible normalizing flows based on dimension splitting, such as RealNVP [50], since
they are not applicable to 1D data.

In the context of TPPs, our goal is to model the PDF p(7) of the inter-event times. In
order to learn the parameters of p(7) using maximum likelihood, we need to be able to
evaluate the density at any point 7. For this we need to define the inverse transformation
[ (gf1 0-+-0 gj\jjl). First, we set ups = g&l(T) = log 7 to convert a positive 7 € R
into ups € R. Then, we stack multiple layers of parametric functions fy : R — R that
can approximate any transformation. We consider two choices for fy:

e deep sigmoidal flow (DSF) [88]

PSP () (Z wpo <fﬂ - Hk)) (3.6)

e sum-of-squares (SOS) polynomial flow [91]

K R R
£595(2) = ag + Z Z Z Upklqk  p+q+1 (3.7)
k=1 p=0 ¢=0 p+aq+ 1
2 All definitions can be extended to RP for D > 1. We consider the one-dimensional case since our goal
is to model the distribution of inter-event times 7 € R.
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3.2 Models

where a, w, s, i are the transformation parameters, K is the number of components, R
is the polynomial degree, and o(z) = 1/(1 4+ e™*). We denote the two variants of the
model based on fP5F and f599 building blocks as DSFlow and SOSFlow respectively.
Finally, after stacking multiple g,,! = fp, , we apply a sigmoid transformation 91 =g
to convert ug into u; € (0,1) that follows g(u;) = Uniform(]0, 1]).

For both models, we can evaluate the inverse transformations (g o --- o gy}'), which
means the model can be efficiently trained via maximum likelihood. The density p(7)
defined by either DSFlow or SOSFlow model is extremely flexible and can approximate
any distribution (Section 3.2.5). Unfortunately, this is not sufficient for some use cases.
Generating samples from both models requires evaluating the forward transformation
(gpro---0g1) at a point uy ~ g(up). This, however, cannot be done analytically since the
functions fP9F and f59° do not have a closed-form inverse. We can approximate the
inverse with numerical root finding by solving the equation (g; lo.iio g&l)(’r) —u; =0
for 7, but this approach is slow and inexact. As another example, we may be interested
in predicting E,[7], the expected time until the next event. Again, flow-based models
are not optimal, since for them E,[7] does not in general have a closed form.

This raises the question: Can we design a model for p(7) that is as expressive as the
flow-based models, but in which sampling and computing moments is easy and can be
done in closed form?

3.2.2 Modeling p(7) with mixture distributions

While mixture models are commonly used for clustering, they can also be used for density
estimation. Mixtures work especially well in low dimensions [118], which is the case in
TPPs, where we model the distribution of one-dimensional inter-event times 7. Since the
inter-event times 7 are positive, we choose to use a mixture of log-normal distributions
to model p(7). The PDF of a log-normal mixture is defined as

(logr—,uk)2
p(rw, s zwkw e (R

k=1

(3.8)

where w are the mixture weights, g are the mixture means, and s are the scale parame-
ters. Because of its simplicity, the log-normal mixture model has a number of attractive
properties.

Moments. Since each component k has a finite mean, the mean of the entire dis-
tribution can be computed as Ep[r] = Y, wgexp(ux, + s7/2), i.e., a weighted average
of component means. Higher moments can be computed based on the moments of each
component [64].

Sampling. While flow-based models from Section 3.2.1 require iterative root-finding
algorithms to generate samples, sampling from the log-normal mixture can be done in
closed form:

z ~ Categorical(w) e ~ Normal(0, 1) T=exp(s’z-e+ pulz)

where z is a one-hot vector of size K.
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Sequence emb.  e;

Metadata 1y, ¢ — p;=Vyc;+b,
History  h;

I p(7lei)
|
1
I ,
- >
ti-1+ 7

Figure 3.1: Model architecture. Parameters of p}(7|¢;) are generated from the context vector
¢; that consists of history embedding and additional attributes.

In some applications, such as reinforcement learning [183], we might be interested in
computing gradients of the samples w.r.t. the model parameters. The samples 7 drawn
using the procedure above are differentiable with respect to the means g and scales s.
We can obtain gradients w.r.t. all the model parameters by using the Gumbel-softmax
trick [92] when sampling z. For this we replace sampling z ~ Categorical(w) with the
following procedure

(logw—l—o)
z = softmax | ——— |,

¢

where each of is sampled i.i.d. from the standard Gumbel distribution and ¢ > 0 is
the temperature parameter. As ( approaches zero, samples from the Gumbel-softmax
distribution approach exact samples from the Categorical(w) distribution.

Such reparametrization gradients have lower variance and are easier to implement
than the score function estimators used in other works [121]. Other flexible models
(such as multi-layer flow models from Section 3.2.1) do not permit sampling through
reparametrization, and thus are not well-suited for the above-mentioned scenario. In Sec-
tion 3.4.4, we show how reparametrization sampling can also be used to train with miss-
ing data by performing imputation on the fly. In Chapter 5 we provide a detailed discus-
sion of reparametrization sampling for TPPs and the correspoding sampling-based losses.

3.2.3 Incorporating the conditional information

History. The key feature of TPPs is that the time 7; = (¢; — t;—1) until the next event
may be influenced by all the events that happened before. A standard way of capturing
this dependency is to process the event history #H(¢;) with a recurrent neural network
(RNN) and embed it into a fixed-dimensional vector h; € R”. We accomplish this by
following the procedure described by Du et al. [52].

The RNN starts with the initial hidden state hi. Then, after each observed event 7,
the new hidden state h;y; is computed using the previous state h; and the RNN input
x; = [log ;] according to the RNN update equation

h¢+1 = Update(hi, mz) (3.9)
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More specifically, we use the Elman RNN architecture (Equation 2.38) [55] in our exper-
iments. The hidden state h; serves as the history embedding that summarizes observed
events (T1,...,7Ti—1).

Conditioning on additional features. The distribution of the time until the next
event might depend on factors other than the history. For instance, distribution of
arrival times of customers in a restaurant depends on the day of the week. As another
example, if we are modeling user behavior in an online system, we can obtain a different
distribution p;(7) for each user by conditioning on their metadata. We denote such
side information as a vector y;. Such information is different from marks [152], since
(a) the metadata may be shared for the entire sequence and (b) y; only influences the
distribution p!(7]y;), not the objective function.

In some scenarios, we might be interested in learning from multiple event sequences.
In such case, we can assign each sequence 7U) a learnable sequence embedding vector
ej. By optimizing e;, the model can learn to distinguish between sequences that come
from different distributions. The learned embeddings can then be used for visualization,
clustering or other downstream tasks.

Obtaining the parameters. We model the conditional dependence of the distri-
bution p}(7) on all of the above factors in the following way. The history embedding
h;, metadata y; and sequence embedding e; are concatenated into a context vector
¢ = [hil||yi||e;]. Then, we obtain the parameters of the distribution p;(7) as an affine
function of ¢;. For example, for the log-normal mixture model we have

w; = softmax(Vi,¢; + by) s; = exp(Vse; + bg) i = Vyuci + by, (3.10)

where the softmax(-) and exp(-) transformations are applied to enforce the constraints
on the distribution parameters, and {Vi, Vi, Vi, by, bs, b, } are learnable parameters.
Such model resembles the mixture density network architecture [15]. The whole process
is illustrated in Figure 3.1. We obtain the parameters of the flow-based models in a
similar way (see Appendix D.4).

3.2.4 Marked TPP

The flow-based and mixture-based models introduced above can be naturally extended
to marked TPPs (Section 2.2.8). In a marked TPP, each event is represented by a mark
m; € M in addition to the inter-event time 7;. Different mark types M require different
modifications to the model architecture (i.e., the history encoder, parametrization of the
conditional distribution and the loss).

Categorical marks correspond to M = {1,...,C} and can be used to model events
of C different categories. To feed such marks as input to the RNN history encoder, we
can use an embedding layer [52]. That is, we define a matrix V € RE*Pemb  where
each row V. corresponds to a learnable embedding of the respective mark. We obtain
the RNN input for event (;,m;) as x; = [log7;||Vin,:]. This choice allows the history
embedding h; to incorporate the information about marks of past events H(¢;).

There exist two ways to specify the conditional distribution of the next event. The
simpler option is to make 7; and m; conditionally independent given the history.
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3 Intensity-free learning of temporal point processes

This means, we do not permit any interactions between 7; and m; and model their
distributions independently p(7,m) = p!(7) - pf(m) using the context vector ¢;. We
can define the probability mass function (PMF) pf(m) of the next mark m; with a
categorical distribution, where the logits are computed from ¢; similar to Equation 3.10.
We model the distribution p}(7) of the next inter-event time 7; exactly like we did in
Section 3.2.1. We can implement the log-likelihood computation of the conditionally
independent model as
N
logpe(T) =Y (logp; (i) +logp} (ms)) + log Sk 41 (T 41)- (3.11)
i=1

When generating new events from this model, we sample 7; and m; independently from
the respective distributions.

The main limitation of the conditionally independent model is that the probability of
observing an event of a specific type does not change over time. We can overcome this
limitation by defining a model with a separate distribution per mark. For this we
need to define a separate PDF p}(r|m = c¢) for each event type ¢ € {1,...,C} — for
example, by obtaining C' different sets of log-normal mixture parameters using different
model weights in Equation 3.10. The log-likelihood computation for this model can be
implemented as

N c
logpe(T) = Y | logpi(rilm = ms) + Y log Sf(rilm = ¢) | +1log Sk y1(Tv41).
i=1 c=1

cEm;

(3.12)

We highlight that the various expressions for marked TPP log-likelihood (Equations 3.11,
3.12, as well as 2.33-2.35) correspond to the exact same objective function. However,
choosing different formulations for different models allows us to efficiently implement
the log-likelihood computation on a computer. We can generate new events from the
“separate distribution” model as follows:

1. For each mark ¢ € {1,...,C}, sample a candidate time 7;. from the respective
conditional distribution with PDF p!(7|m = ¢).

2. Set the next observed event (7;,m;) as the “earliest” of the candidates 7.

= min T m; = argmin Tj..
ce{l,..,C} ce{1,..,C}

Continuous marks correspond to M = R® and can be used, for example, to model
locations of events. We can concatenate the marks to the RNN input as x; = [log 7;||m]
or manually specify features based on m; using domain knowledge. We can again use
the conditionally independent approach to model p(7) and p}(m) separately, like we
did in Equation 3.11. A more flexible alternative is to model the joint density p}(7,m)
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of the next inter-event time and the mark with a normalizing flow or a mixture model.
In this case, the log-likelihood can be computed as

N
logpe(T) = Y log p (7i,mi) + Sx41 (Tn11)- (3.13)
=1

3.2.5 Discussion

Universal approximation. The SOSFlow and DSFlow models can approximate any
probability density on R arbitrarily well [91, Theorem 3], [88, Theorem 4]. It turns out,
a mixture model has the same universal approximation (UA) property.

Theorem 1 /44, Theorem 33.2]. Let p(x) be a continuous density on R. If q(x) is any
density on R and is also continuous, then, given € > 0 and a compact set S C R, there
exist number of components K € N, mixture coefficients w € AX~1, locations p € RE,
and scales s € RE such that for the mizture distribution p(z) = Zle wkiq(x;:’“) it
holds sup,cgs [p(x) — p(x)| < e.

This results shows that, in principle, the mixture distribution is as expressive as the
flow-based models. Since we are modeling the conditional density, we additionally need
to assume for all of the above models that the RNN can encode all the relevant informa-
tion into the history embedding h;. This can be accomplished by invoking the universal
approximation theorems for RNNs [163, 171].

Note that this result, like other UA theorems of this kind [39, 43|, does not provide
any practical guarantees on the obtained approximation quality, and does not say how
to learn the model parameters. Still, UA intuitively seems like a desirable property of
a distribution. This intuition is supported by experimental results. In Section 3.4.1, we
show that models with the UA property consistently outperform the less flexible ones.

Interestingly, Theorem 1 does not make any assumptions about the form of the base
density ¢(z). This means we could as well use a mixture of distribution other than
log-normal, such as Weibull. However, many other popular distributions on R, have
drawbacks: log-logistic does not always have defined moments and gamma distribution
does not permit straightforward sampling with reparametrization.

Intensity function. For both flow-based and mixture models, the conditional sur-
vival function S}(7) and PDF pf(7) are readily available. This means we can easily
compute the respective intensity functions (see Appendix C). However, we should still
ask whether we lose anything by modeling p!(7) instead of A*(¢). The main arguments in
favor of modeling the intensity function in traditional models (e.g. self-exciting process)
are that it is intuitive, easy to specify and reusable [182].

“Intensity function is intuitive, while the conditional density is not.” — While it is true
that in simple models (e.g., Hawkes processes) the dependence of \*(t) on the history is
intuitive and interpretable, modern RNN-based intensity functions (as in [52, 119, 139])
cannot be easily understood by humans. In this sense, our proposed models are as
intuitive and interpretable as other existing intensity-based neural network models.

“X*(t) is easy to specify, since it only has to be positive. On the other hand, p}(7)
must integrate to one.” — As we saw, by using either normalizing flows or a mixture
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3 Intensity-free learning of temporal point processes

distribution, we automatically enforce that the PDF integrates to one, without sacrificing
the flexibility of our model.

“Reusability: If we merge two independent point processes with intensities X(kl) (t) and
Ao (t), the merged process has intensity A*(¢) = /\?1)@) + Ay (t).” — An equivalent
result exists for the SFs SEkl)(’T) and 57, (1) of two independent processes. The SF of
the merged process is obtained as S*(T§ =50 (T)SE‘2)(T), which can be derived from
the connection between the conditional intensity and the cumulative hazard function
(Appendix C).

As we just showed, modeling p}(7) instead of A*(¢) does not impose any limitation
on our approach. Moreover, a mixture distribution is flexible, easy to sample from and
has well-defined moments, which favorably compares it to other intensity-based deep

learning models.

3.3 Related work

Neural temporal point processes. Conventional TPP models (e.g. self-exciting
[79] or self-correcting [90] processes) often provide poor fit to real-world dataset due to
their low flexibility. Multiple recent works address this issue by proposing more flexible
neural-network-based point process models. These neural models are usually defined in
terms of the conditional intensity function. For example, Mei & Eisner [119] propose a
novel RNN architecture that can model sophisticated intensity functions. This flexibility
comes at the cost of inability to evaluate the likelihood in closed form, and thus requiring
Monte Carlo integration.

Du et al. [52] suggest using an RNN to encode the event history into a vector h;.
The history embedding h; is then used to define the conditional intensity, for example,
using the constant intensity model \*(t;) = exp(v? h; + b) [89, 108] or the more flexible
ezponential intensity model \*(t;) = exp(w(t; — t;—1) + vTh; +b) [52, 183]. By con-
sidering the conditional inter-event time distribution p;(7) of the two models, we can
better understand their properties. Constant intensity corresponds to the exponential
distribution, and exponential intensity corresponds to the Gompertz distribution (see
Appendix D.2). Clearly, these unimodal distributions cannot match the flexibility of a
mixture model (as can be seen in Figure D.1).

Omi et al. [139] introduce a flexible fully neural network (FullyNN) intensity model,
where they model the cumulative hazard function ®;(7) with a neural net. The function
®F converts 7 into an exponentially distributed random variable with unit rate [152],
similarly to how normalizing flows model p}(7) by converting 7 into a random variable
with a simple distribution. However, due to a suboptimal choice of the network archi-
tecture, the FullyNN model assigns non-zero probability to negative inter-event times
(see Appendix D.3). In contrast, SOSFlow and DSFlow always define a valid PDF on
R4. Moreover, similar to other flow-based models, sampling from the FullyNN model
requires iterative root finding.

Several works used mixtures of kernels to parametrize the conditional intensity func-
tion [138, 177, 178]. Such models can only capture self-exciting influence from past
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events. Moreover, these models do not permit computing expectation and drawing sam-
ples in closed form. Recently, Bilos et al. [26] and Tiirkmen et al. [181] proposed neural
models for learning marked TPPs. These models focus on event type prediction and
share the limitations of other neural intensity-based approaches. Other recent works
consider alternatives to the maximum likelihood objective for training TPPs. Examples
include noise-contrastive estimation [77], Wasserstein distance [199, 201, 202], and rein-
forcement learning [108, 183]. This line of research is orthogonal to our contribution, and
the models proposed in our work can be combined with the above-mentioned training
procedures.

Neural density estimation. There exist two popular paradigms for learning flexible
probability distributions using neural networks: In mixture density networks [15], a
neural net directly produces the distribution parameters; in normalizing flows [155, 176],
we obtain a complex distribution by transforming a simple one. Both mixture models
[54, 74, 164] and normalizing flows [140, 216] have been applied for modeling sequential
data. However, surprisingly, none of the existing works make the connection and consider
these approaches in the context of TPPs.

3.4 Experiments

We evaluate the proposed models on the established task of event time prediction (with
and without marks) in Sections 3.4.1 and 3.4.2. In the remaining experiments, we show
how the log-normal mixture model can be used for incorporating extra conditional in-
formation, training with missing data and learning sequence embeddings. We use 6
real-world datasets containing event data from various domains: Wikipedia (article
edits), MOOC (user interaction with online course system), Reddit (posts in social me-
dia) [102], Stack Overflow (badges received by users), LastFM (music playback) [52], and
Yelp (check-ins to restaurants). We also generate 5 synthetic datasets (Poisson, Re-
newal, Self-correcting, Hawkesl, Hawkes2), as described in [139]. Detailed descriptions
and summary statistics of all the datasets are provided in Appendix D.5.

3.4.1 Event time prediction using history

Setup. We consider two normalizing flow models, SOSFlow and DSFlow (Equa-
tions 3.6 and 3.7), as well a log-normal mixture model (Equation 3.8), denoted as Log-
NormMix. As baselines, we consider RMTPP (i.e. Gompertz distribution / expo-
nential intensity from [52]) and FullyNIN model from Omi et al. [139]. Additionally,
we use a single log-normal distribution (denoted LogNormal) to highlight the benefits
of the mixture model. For all models, an RNN encodes the history into a vector h;.
The parameters of pf(7) are then obtained using h; (Equation 3.10). We exclude the
NeuralHawkes model from our comparison, since it is known to be inferior to RMTPP in
time prediction [119], and, unlike other models, does not have a closed-form likelihood.

Each dataset consists of multiple sequences of event times. The task is to predict
the time 7; until the next event given the history #(¢;). For each dataset, we use 60%
of the sequences for training, 20% for validation and 20% for testing. We train all
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Figure 3.2: Time NLL loss when learning without marks. NLL of each model is standardized
by subtracting the score of LogNormMix. Lower score is better. Despite its
simplicity, LogNormMix consistently achieves excellent loss values.
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Figure 3.4: Additional conditional informa-
tion improves time prediction

is identical to Figure 3.2. ability of the model.

models by minimizing the negative log-likelihood (NLL) of the inter-event times in the
training set. To ensure a fair comparison, we try multiple hyperparameter configurations
for each model and select the best configuration using the validation set. Finally, we
report the NLL loss of each model on the test set. All results are averaged over 10
train/validation/test splits. Details about the implementation, training process and
hyperparameter ranges are provided in Appendix D.4. For each real-world dataset,
we report the difference between the NLL loss of each method and the LogNormMix
model (Figure 3.2). We report the differences, since scores of all models can be shifted
arbitrarily by scaling the data. Absolute scores (not differences) in a tabular format, as
well as results for synthetic datasets are provided in Appendix D.6.1.

Results. Simple unimodal distributions (Gompertz/RMTPP, LogNormal) are always
dominated by the more flexible models with the universal approximation property (Log-
NormMix, DSFlow, SOSFlow, FullyNN). Among the simple models, LogNormal provides
a much better fit to the data than RMTPP/Gompertz. The distribution of inter-event
times in real-world data often has heavy tails, and the Gompertz distributions fails to
capture this behavior. We observe that the two proposed models, LogNormMix and
DSFlow consistently achieve the best loss values.
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Figure 3.5: By sampling the missing values from p*(7) during training, LogNormMix learns the
true underlying data distribution. Other imputation strategies overfit the partially
observed sequence.

3.4.2 Learning with marks

Setup. We apply the models for learning in marked temporal point processes. Marks
are known to improve performance of simpler models [52], we want to establish whether
our proposed models work well in this setting. We use the same setup as in the previous
section, except that now each event has an associated categorical mark. In this experi-
ment, we consider categorical marks and model them with a conditionally independent
model (Equation 3.11). The marked model is implemented according to the description
in Section 3.2.4.

Results. Figure 3.2 (right) shows the time NLL loss (i.e. — ), logpj(7;)) for Reddit
and MOOC datasets. LogNormMix shows dominant performance in the marked case,
just like in the previous experiment. Like before, we provide the results in tabular
format, as well as report the marks NLL loss in Appendix D.6.

3.4.3 Learning with additional conditional information

Setup. We investigate whether the additional conditional information (Section 3.2.3)
can improve performance of the model. In the Yelp dataset, the task is predict the time
7 until the next check-in for a given restaurant. We postulate that the distribution p}(7)
is different, depending on whether it is a weekday and whether it is an evening hour,
and encode this information as a vector y;. We consider 4 variants of the LogNormMix
model, that either use or do not use y; and the history embedding h;.

Results. Figure 3.4 shows the test set loss for 4 variants of the model. We see
that additional conditional information boosts performance of the LogNormMix model,
regardless of whether the history embedding is used.

3.4.4 Missing data imputation

In practical scenarios, one often has to deal with missing data. For example, we may
know that records were not kept for a period of time, or that the data is unusable for
some reason. Since TPPs are a generative model, they provide a principled way to
handle the missing data through imputation.

39



3 Intensity-free learning of temporal point processes

"‘ © Poisson
Renewal

o~
<
o Self-correcting
8 Hawkesl
£ w Hawkes2
A AMAA A A ILJ

u ‘

o Mgy : hat
o

60 62 64 66 68 70

Time t-SNE component 1

Figure 3.6: Interpolating between learned  Figure 3.7: Learned embeddings let us dis-
embeddings generates sequences tinguish between sequences form
with changing characteristics. different distributions.

Setup. We are given several sequences generated by a Hawkes process, where some
parts are known to be missing. We consider 3 strategies for learning from such a partially
observed sequence: (a) ignore the gaps, maximize log-likelihood of observed inter-event
times (b) fill the gaps with the average 7 estimated from observed data, maximize log-
likelihood of observed data, and (c) fill the gaps with samples generated by the model,
maximize the expected log-likelihood of the observed points. The setup is demonstrated
in Figure 3.5. Note that in case (c) the expected value depends on the parameters of
the distribution, hence we need to perform sampling with reparametrization to optimize
such loss. A more detailed description of the setup is given in Appendix D.6.4.

Results. The 3 model variants are trained on the partially-observed sequence. Fig-
ure 3.5 shows the NLL of the fully observed sequence (not seen by any model at training
time) produced by each strategy. We see that strategies (a) and (b) overfit the partially
observed sequence. In contrast, strategy (c) generalizes and learns the true underlying
distribution. The ability of the LogNormMix model to draw samples with reparametriza-
tion was crucial to enable such training procedure.

3.4.5 Sequence embedding

Different sequences in the dataset might be generated by different processes, and exhibit
different distribution of inter-event times. We can “help” the model distinguish between
them by assigning a trainable embedding vector e; to each sequence j in the dataset. It
seems intuitive that embedding vectors learned this way should capture some notion of
similarity between sequences.

Learned sequence embeddings. We learn a sequence embedding for each of the
sequences in the synthetic datasets (along with other model parameters). We visualize
the learned embeddings using t-SNE [115] in Figure 3.7 colored by the true class. As we
see, the model learns to differentiate between sequences from different distributions in a
completely unsupervised way.

Generation. We fit the LogNormMix model to two sequences (from self-correcting
and renewal processes), and, respectively, learn two embedding vectors egcp and egp.
After training, we generate 3 sequences from the model, using escp, 1/2(escp + erp)
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and erp as sequence embeddings. Additionally, we plot the learned conditional intensity
function of our model for each generated sequence (Figure 3.6). The model learns to
map the sequence embeddings to very different distributions.

3.5 Conclusions

We use tools from neural density estimation to design new models for learning in TPPs.
We show that a simple mixture model is competitive with state-of-the-art normaliz-
ing flows methods, as well as convincingly outperforms other existing approaches. By
looking at learning in TPPs from a different perspective, we were able to address the
shortcomings of existing intensity-based approaches, such as insufficient flexibility, lack
of closed-form likelihoods and inability to generate samples analytically. We hope this
alternative viewpoint will inspire new developments in the field of TPPs.

41






4 Fast and flexible temporal point
processes with triangular maps

In Chapter 3 we presented a family of flexible neural TPPs based on autoregressive
neural networks. While such models are expressive and can achieve good results in
various prediction tasks, they are poorly suited for sampling — events ¢; can only be
generated one by one, which results in slow sequential sampling. This applies both to
RNN-based models [52, 139, 167], as well as to the more recent neural TPPs based on
the transformer architecture [185, 208, 217].

In this chapter we show how to overcome the above limitation and design flexible TPP
models without relying on autoregressive neural networks. Our approach is based on the
framework of triangular maps [91] and recent developments in the field of normalizing
flows [53]. This new class of models will open new TPP applications that we will present
in Chapter 5. Our main contributions are:

e We propose a new parametrization for several conventional TPPs. This enables
efficient parallel likelihood computation and sampling, which was impossible with
existing parametrizations.

e We propose TriTPP — a new class of TPPs that matches the flexibility of neural-
network-based methods, while allowing orders of magnitude faster sampling.

4.1 Background

In this chapter we will use notation from Chapter 2 (see Appendices A and B for a recap).
A TPP defines a probability distribution over variable-length sequences of strictly in-
creasing arrival times 7 = (¢1,...,ty) in a time interval [0, T]. One way to specify a TPP
is via the conditional intensity function \*(t) := A*(¢t|H(t)) that defines the rate of arrival
of new events given the history H(t) = {t; € T : t; < t} (Equation 2.9). We will also
make use of an alternative description in terms of the compensator A*(¢) := A(¢t|H(t))
(Equation 2.20). We can compute the likelihood of a TPP realization 7 on [0,7] as

N T
p(T) = (ll_ll)\ (ti)) exp (—/0 A (u)du>
A
= (H aﬂ*(ti)) exp (~A*(1)).
i=1 "

This quantity p(7) is also called point process density.

(4.1)
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Triangular maps [91] provide a framework that connects autoregressive models,
normalizing flows and density estimation. Bogachev et al. [20] have shown that any
density p(x) on RV can be equivalently represented by another density #(z) on RY and
an increasing differentiable triangular map F = (f1,..., fx) : R — R¥ that pushes
forward p into p.! A map F is called triangular if each component function f; depends
only on (z1,...,x;) and is an increasing function of z;. Intuitively, we can think of F
as converting a random variable & ~ p into a random variable z := F'(x) with a density
p. We can compute the density p(x) using the change of variables formula

p(x) = |det Jp(z)|p (F(z))
Ay
i=1 "

where det Jp(x) is the Jacobian determinant of F' at x. Here, we used the fact that
Jr(x) is a positive-definite lower-triangular matrix. To specify a complex density p(x),
we can pick some simple density p(z) and learn the triangular map F that pushes p into
p. It is important that F' and its Jacobian determinant can be evaluated efficiently if
we are learning p(x) via maximum likelihood. We can sample from p(x) by applying
the inverse map F~! to the samples drawn from p(z). Note that F~! : RN — RV is
also an increasing differentiable triangular map. Fast computation of F~! is important
when learning p(x) via sampling-based losses (e.g., in variational inference).

(4.2)

4.2 Defining temporal point processes using triangular maps

We can notice the similarity between the right-hand sides of Equations 4.1 and 4.2, which
seems to suggest some connection between TPPs and triangular maps. Indeed, it turns
out that triangular maps can also be used to specify densities of point processes. Let
T = (t1,...,tn) be arealization of a TPP with compensator A* on the time interval [0, T']
(i.e. with density p(7)). The random time change theorem (Theorem 1) states that in
this case Z = (A*(t1),...,A"(tn)) is a realization of the standard Poisson process (SPP)
on the interval [0, A*(T)] (Figure 4.1a).
We denote the transformation that maps 7 = (¢1,...,ty) to Z = (21,...,2n) as F

1 A(ty) 21
7 t:2 _ A(t?’tl) _ 2:2 ' (4.3)
tN Altnlte, .. tn—1) N
The transformation F = (f1,..., fn): T — Z is indeed an increasing triangular map.

Each component function f;(7) = A(ti|t1,...,ti—1) only depends on (ti,...,t;) and
is increasing in ¢; since (%A*(ti) = A*(t;) > 0. The number N of the component
functions f; depends on the length of the specific realization 7. Notice that the term

!Note that some other works instead define F' as the map that pushes the density j(z) into p(x).

44



4.2 Defining temporal point processes using triangular maps

A Discard t; > T
a3

\J

(a) Triangular map F(7) = (A*(t1),..., A" (tn)) (b) Sampling is done by applying F~' to a sam-
is used for computing p(7). ple Z from the standard Poisson process.

Hf\i 1 %A*(ti) in Equation 4.1 corresponds to the Jacobian determinant of F'. Similarly,
the second term, p(Z) = p(F(T)) = exp(—A*(T)), corresponds to the density of the
SPP on [0, A*(T)] for any realization Z. This demonstrates that all TPP densities
(Equation 4.1) correspond to increasing triangular maps (Equation 4.2). As for the
converse of this statement, every increasing triangular map that is bijective on the space
of increasing sequences defines a valid TPP (see Appendix E.1.3).

Our main idea is to define TPP densities p(7T) by directly specifying the respective
maps F'. In Section 4.2.1, we show how maps that satisfy certain properties allow us to
efficiently compute density and generate samples. We demonstrate this by designing a
new parametrization for several established models in Section 4.2.2. Finally, we propose
a new class of fast and flexible TPPs in Section 4.2.3.

4.2.1 Requirements for efficient TPP models

Density evaluation. The time complexity of computing the density p(7) for various
TPP models can be understood by analyzing the respective map F. For a general
triangular map F : RV — RY computing F(T) takes O(N?) operations. For example,
this holds for Hawkes processes with arbitrary kernels [79]. If the compensator A* has
Markov property, the complexity of evaluating F' can be reduced to O(N) sequential
operations. This class of models includes Hawkes processes with exponential kernels
[45, 132] and RNN-based autoregressive TPPs [52, 139, 167]. Unfortunately, such models
do not benefit from the parallelism of modern hardware. Defining an efficient TPP
model will require specifying a forward map F' that can be computed in O(N) parallel
operations.

Sampling. As a converse of the random time change theorem, we can sample from a
TPP density p(T) by first drawing Z from an HPP on [0, A*(T")] and applying the inverse
map, 7 = F~1(Z). This corresponds to the inverse transform method (Algorithm 3).
There are, however, several caveats to this approach. Not all parametrizations of F
allow computing F~1(Z) in closed form. Even if F~! is available, its evaluation for
most models is again sequential [45, 52]. Lastly, the number of points N that will
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be generated (and thus A*(T) for SPP) is not known in advance. Therefore, existing
methods typically resort to generating the samples one by one (Algorithm 3). We show
that it is possible to do better than this. If the inverse map F~' can be applied in
parallel, we can produce large batches of samples ¢;, and then discard the points ¢; > T
(Figure 4.1b). Even though this method may produce samples that are later discarded,
it is much more efficient than sequential generation on GPUs (Section 4.4.1).

To summarize, defining a TPP efficient for both density computation and sampling
requires specifying a triangular map F, such that both F and its inverse F~! can
be evaluated analytically in O(N) parallel operations. We will now show that maps
corresponding to several classic TPP models can be defined to satisfy these criteria.

4.2.2 Fast temporal point process models

Inhomogeneous Poisson process (IPP) (Equation 2.14) is a TPP whose conditional
intensity does not depend on the history,

A(LH) = At). (4.4)

The corresponding map is F = A, where A applies the function A : [0,7] — R4
elementwise to the sequence (t1,...,txN).

Renewal process (RP) (Equation 2.15) is a TPP where each inter-event time ¢; —
t;_1 is sampled i.i.d. from the same distribution with the cumulative hazard function
®: Ry — R;. The compensator of an RP is

i—1

AUH@) = Dt —ti1) + 3 B(t — t5-1), (4.5)

=1

where t;_1 is the last event before t. The triangular map of an RP can be represented
as a composition F = C o ® o D, where D € RY*V is the pairwise difference matrix,
C = D! € RV*N is the cumulative sum matrix, and ® applies ® elementwise.

Modulated renewal process (MRP) [37] generalizes both inhomogeneous Poisson
and renewal processes. The cumulative intensity is

i—1
A(HH(E) = D(A(E) = Altio1) + Y (A(H)) — Altj—1))- (4.6)

Jj=1

Again, we can represent the triangular map of an MRP as a composition, FF = C o ® o
Do A.

All three above models permit fast density evaluation and sampling. Since ® and
A (as well as their inverses ® ! and A~!) are elementwise transformations, they can
obviously be applied in O(N) parallel operations. Same holds for multiplication by the
matrix D, as it is bidiagonal. Finally, the cumulative sum defined by C can also be
computed in parallel in O(N) [18]. Therefore, by reformulating IPP, RP and MRP

using triangular maps, we can satisfy our efficiency requirements.
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Parametrization for & and A must satisfy several conditions. First, to define a
valid TPP, ® and A have to be positive, strictly increasing and differentiable. Next, both
functions, their derivatives (for density computation) and inverses (for sampling) must
be computable in closed form to meet the efficiency requirements. Lastly, we want both
functions to be highly flexible. Constructing such functions is not trivial. While IPP,
RP and MRP are established models, none of their existing parametrizations satisfy all
the above conditions simultaneously. Luckily, the same properties are necessary when
designing normalizing flows [143]. Recently, Durkan et al. [53] used rational quadratic
splines (RQS) to define functions that satisfy our requirements. We propose to use RQS
to define ® and A for IPP, RP and MRP. This parametrization is flexible, while also
allowing efficient density evaluation and sampling — something that existing approaches
are unable to provide (see Section 4.3).

4.2.3 Defining more flexible triangular maps

Even though the splines can make the functions ® and A arbitrarily flexible, the overall
expressiveness of MRP is still limited. Its conditional intensity A\*(¢) depends only on
the global time and the time since the last event. This means, MRP cannot capture,
e.g., self-exciting [79] or self-correcting [90] behavior. We will now construct a model
that is more flexible without sacrificing the efficiency.

The efficiency of the MRP stems from the fact that the respective triangular map
F' is defined as a composition of easy-to-invert transformations. More specifically, we
are combining learnable element-wise nonlinear transformations ® and A with fized
lower-triangular matrices D and C. We can make the map F' more expressive by
adding learnable lower-triangular matrices into the composition. Using full N x N lower
triangular matrices would be inefficient (multiplication and inversion are O(N?)), and
also would not work for variable-length sequences (i.e., arbitrary values of N). Instead,
we define block-diagonal matrices Bj, where each block is a repeated H x H lower-
triangular matrix with strictly positive diagonal entries. Computing B;” ! takes O(H?),
and multiplication by B; or B, 1 can be done in O(NH) in parallel. We stack L such
matrices B; and define the triangular map FF = Co®90Bpo---oBjo®i0DoA. The
blocks in every other layer are shifted by an offset H/2 to let the model capture long-
range dependencies. Note that now we use two element-wise learnable splines ®; and
@, before and after the block-diagonal layers. Figure 4.2 visualizes the overall sequence
of maps and the Jacobians of each transformation. We name the temporal point process
densities defined by the triangular map F' as TriTPP.

Both the forward map F and its inverse F~! can be evaluated in parallel in linear time,
making TriTPP efficient for density computation and sampling. Our insight that TPP
densities can be represented by increasing triangular maps was crucial for arriving at
this result. Alternative representations of TriTPP, e.g., in terms of the compensator A*
or the conditional intensity A\*, are cumbersome and do not emphasize the parallelism
of the model. TriTPP and our parametrizations of IPP, RP, MRP can be efficiently
implemented on GPU to handle batches of variable-length sequences (Appendix E.1).
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Figure 4.2: TriTPP defines an expressive map F = Co®s0Bpo---oBjo®i0DoA as a
composition of easy-to-invert transformations.

4.3 Related work

Triangular maps [91] can be seen as a generalization of autoregressive normalizing flows
[67, 100, 143]. Existing normalizing flow models are either limited to fixed-dimensional
data [50, 142] or are inherently sequential [140, 184]. Our model proposed in Section 4.2.3
can handle variable-length inputs, and allows for both F and F~! to be evaluated
efficiently in parallel.

Sampling from TPPs. Inverse method for sampling from inhomogeneous Poisson
processes can be dated back to Cinlar [24]. However, traditional inversion methods for
IPPs are different from our approach (Section 4.2). First, they are typically sequential.
Second, existing methods either use extremely basic compensators A(t), such as M\t or e,
or require numerical inversion [144]. As an alternative to inversion, thinning approaches
[105] became the dominant paradigm for generating IPPs, and TPPs in general. Still,
sampling via thinning has a number of disadvantages. Thinning requires a piecewise-
constant upper bound on A(¢), which might not always be easy to find. If the bound
is not tight, a large fraction of samples will be rejected. Moreover, thinning is not
differentiable, does not permit reparametrization, and is hard to express in terms of
parallel operations on tensors [181]. Our inversion-based sampling addresses all the above
limitations. It is also possible to generate an IPP by first drawing N ~ Poisson(A(T))
and then sampling N points ¢; ii.d. from a density p(t) = A(¢)/A(T") [36]. Unlike
inversion, this method is only applicable to Poisson processes. Also, the operation of
sampling N is not differentiable, which limits the utility of this approach.

Inhomogeneous Poisson processes are commonly defined by specifying the in-
tensity function A(¢) via a latent Gaussian process [35]. Such models are flexible, but
highly intractable. It is possible to devise approximations by, e.g., bounding the inten-
sity function [1, 51]. Our spline parametrization of IPP compares favorably to the above
models: it is also highly flexible, has a tractable likelihood and places no restrictions on
the intensity. Importantly, it is much easier to implement and train. If uncertainty is of
interest, we can perform approximate Bayesian inference on the spline coefficients [207].
Recently, Morgan et al. [124] used splines to model the intensity function of IPPs. Since
A~! cannot be computed analytically for their model, sampling via thinning is the only
available option.

Modulated renewal processes have been known for a long time [12, 37], but have
not become as popular as IPPs among practitioners. This is not surprising, since infer-
ence and sampling in MRPs are even more challenging than in Cox processes [103, 150].
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Our proposed parametrization addresses the shortcomings of existing approaches and
makes MRPs straightforward to apply in practice.

Neural TPPs. Du et al. [52] proposed a TPP model based on a recurrent neural
network. Follow-up works improved the flexibility of RNN-based TPPs by e.g. changing
the RNN architecture [119], using more expressive conditional hazard functions [26, 139]
or modeling the inter-event time distribution with normalizing flows [167]. All the above
models are inherently sequential and therefore inefficient for sampling (Section 4.4.1).
Turkmen et al. [181] proposed to speed up RNN-based marked TPPs by discretizing
the interval [0, 7] into a regular grid. Samples within each grid cell can be produced in
parallel for each mark, but the cells themselves still must be processed sequentially.

Several recent neural TPP models replaced the RNN with a transformer neural net-
work [208, 215, 217]. Unlike RNN-based TPPs, such models can compute the likelihood
in parallel. However, the time and memory complexity of transformer models scales as
O(N?), which limits their applicability to sequences with more than 103 events [185].
More importantly, these models are only able to generate events one by one because
of their autoregressive structure. Quadratic scaling and sequential dependencies mean
that, in practice, transformer-based TPPs are even less scalable than their RNN-based
counterparts.

4.4 Experiments

4.4.1 Scalability

Setup. The key feature of TriTPP is its ability to compute likelihood and generate
samples in parallel, which is impossible for RNN-based models. We quantify this differ-
ence by measuring the runtime of the two models. We implemented TriTPP and RNN
models in PyTorch [145]. The architecture of the RNN model is nearly identical to the
ones used in [52, 139, 167], except that the cumulative conditional hazard function is
parametrized with a spline [53] to enable closed-form sampling. Appendix E.3 contains
the details for this and other experiments. We measure the runtime of (a) computing the
log-likelihood (and backpropagate the gradients) for a batch of 100 sequences of varying
lengths and (b) sample sequences of the same sizes. We used a machine with an Intel
Xeon E5-2630 v4 @ 2.20 GHz CPU, 256GB RAM and an Nvidia GTX1080Ti GPU. The
results are averaged over 100 runs.

Results. Figure 4.3 shows the runtimes for varying sequence lengths. Training is
rather fast for both models, on average taking 1-10ms per iteration. RNN is slightly
faster for short sequences, but is outperformed by TriTPP on sequences with more than
400 events. Note that during training we used a highly optimized RNN implementation
based on custom CUDA kernels (since all the event times ¢; are already known). In
contrast, TriTPP is implemented using generic PyTorch operations. When it comes
to sampling, we notice a massive gap in performance between TriTPP and the RNN
model. This happens because RNN-based TPPs are defined autoregressively and can
only produce samples t; one by one: to obtain p(t;|t1,...,ti—1) we must know all the
past events. Recently proposed transformer TPPs [208, 217] are defined in a similar
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Figure 4.3: Scalability analysis. Standard deviations are below lms.

autoregressive way, so they are likely to be as slow for sampling as RNNs. TriTPP
generates all the events in a sequence in parallel, which makes it more than 100 times
faster than the recurrent model for longer sequences.

4.4.2 Density estimation

Setup. A fast TPP model is of little use if it cannot accurately learn the data distri-
bution. The main goal of this experiment is to establish whether TriTPP can match
the flexibility of RNN-based TPPs. As baselines, we use the IPP, RP and MRP models
from Section 4.2.2 and Hawkes process [8].

Datasets. We use 6 synthetic datasets from Omi et al. [139]: Hawkesl&2 [79],
self-correcting (SCP) [90], inhomogeneous Poisson (IPP), renewal (RP) and modulated
renewal (MRP) processes. Note that the data generators for IPP, RP and MRP by Omi
et al. are not parametrized using splines, so these datasets are not guaranteed to be
fitted perfectly by our models. We also consider 7 real-world datasets: PUBG (online
gaming), Reddit-Comments, Reddit-Submissions (online discussions), Taxi (customer
pickups), Twitter (tweets) and Yelpl&2 (check-in times). See Appendix E.2 for more
details.

Metrics. The standard metric for comparing generative models, including TPPs,
is negative log-likelihood (NLL) on a hold-out set [139, 167, 181]. We partitioned the
sequences in each dataset into train/validation/test sequences (60%/20%/20%). We
trained the models by minimizing the NLL of the train set using Adam [98]. We tuned
the following hyperparameters: Lo regularization {0,107°,10~#, 1073}, number of spline
knots {10, 20, 50}, learning rate {1073, 1072}, hidden size {32, 64} for RNN, number of
blocks {2,4} and block size {8,16} for TriTPP. We used the validaiton set for hyper-
parameter tuning, early stopping and model development. We computed the results for
the test set only once before including them in the paper. All results are averaged over
5 runs.

While NLL is a popular metric, it has known failure modes [180]. For this reason, we
additionally computed maximum mean discrepancy (MMD) [76] between the test sets
and the samples drawn from each model after training. To measure similarity between
two realizations 7 and U, we use a Gaussian kernel k(7 ,U) = exp(—d(T,U)/20?), where
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Table 4.1: Average test set NLL on synthetic and real-world datasets (lower is better). Best
NLL in bold, second best underlined.

| Hawkesl Hawkes2 ~SC IPP MRP  RP | PUBG Reddit-C  Reddit-S Taxi Twitter Yelpl Yelp2

PP 1.06 1.03 1.00 0.71 0.70 0.89 -0.06 -1.59 -4.08 -0.68 1.60  0.62 -0.05
RP 0.65 0.08 094 085 0.68 0.24 0.12 -2.08 -4.00  -0.58 1.20  0.67 -0.02
MRP 0.65 0.07 093 0.71 036 0.25 -0.83 -2.13 -4.38 -0.68 1.23 0.61 -0.10
Hawkes 0.51 0.06 1.00 0.86 0.98 0.39 0.11 -2.40 -4.19  -0.64 1.04 0.69 0.01
RNN 0.52 -0.03 0.79 0.73 0.37 0.24 -1.96 -2.40 -4.89 -0.66 1.08 0.67 -0.08
TriTPP 0.56 0.00 083 0.71 0.35 0.24 | -2.41 -2.36 -4.49 -0.67 1.06 0.64 -0.09

Table 4.2: MMD between the hold-out test set and the generated samples (lower is better).

‘Hawkesl Hawkes2 SC IPP MRP RP ‘ PUBG Reddit-C  Reddit-S Taxi Twitter Yelpl Yelp2

IPP 0.08 0.09 0.58 0.02 0.15 0.07 0.01 0.10 0.21  0.10 0.16 0.15 0.16
RP 0.06 0.06 1.13 0.34 124 0.01 0.46 0.07 0.18 0.57 0.14 016 0.23
MRP 0.05 0.06 0.50 0.02 0.11 0.02 0.12 0.09 0.20 0.09 0.13 013 0.16
Hawkes 0.02 0.04 0.58 0.36 0.65 0.05 0.16 0.04 0.35 0.20 020 020 0.32
RNN 0.01 0.02 0.19 0.09 0.17 o0.01 0.23 0.04 0.09 0.13 0.08 0.19 0.18
TriTPP 0.03 0.03 0.23 0.02 0.08 0.01 0.16 0.07 0.16 0.08 0.08 0.12 0.14

d(T,U) is the “counting measure” distance from [199, Equation 3]. For completeness,
we provide the definitions in Appendix E.3.2. MMD quantifies the dissimilarity between
the true data distribution p*(7") and the learned density p(7) — lower is better.

Results. Table 4.1 shows the test set NLLs for all models and datasets. We can
see that the RNN model achieves excellent scores and outperforms the simpler base-
lines, which is consistent with earlier findings [52]. TriTPP is the only method that is
competitive with the RNN — our method is within 0.05 nats of the best score on 11
out of 13 datasets. TriTPP consistently beats MRP, RP and IPP, which confirms that
learnable block-diagonal transformations improve the flexibility of the model. The gap
get larger on the datasets such as Hawkes, SCP, PUBG and Twitter, where the inabil-
ity of MRP to learn self-exciting and self-correcting behavior is especially detrimental.
While Hawkes process is able to achieve good scores on datasets with “bursty” event

occurrences (Reddit, Twitter), it is unable to adequately model other types of behavior
(SCP, MRP, PUBG).

Table 4.2 reports the MMD scores. The results are consistent with the previous
experiment: models with lower NLL typically obtain lower MMD. One exception is the
Hawkes process that achieves low NLL but high MMD on Taxi and Twitter. TriTPP
again consistently demonstrates excellent performance. Note that MMD was computed
using the test sequences that were unseen during training. This means that TriTPP
models the data distribution better than other methods, and does not just simply overfit
the training set. In Appendix E.4.1, we provide additional experiments for quantifying
the quality of the distributions learned by different models. Overall, we conclude that
TriTPP is flexible and able to model complex densities, in addition to being significantly
more efficient than RNN-based TPPs.
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4 Fast and flexible temporal point processes with triangular maps

4.5 Conclusions

Future work & limitations. We parametrized the nonlinear transformations of our
TPP models with splines. Making a spline more flexible requires increasing the number of
knots, which increases the number of parameters and might lead to overfitting. New deep
analytically invertible functions will improve both our models, as well as normalizing
flows in general. Currently, TriTPP is not applicable to marked TPPs [152]. Extending
our model to this setting is an important task for future work.

Conclusions. We have shown that TPP densities can be represented with increasing
triangular maps. By directly parametrizing the respective transformations, we are able
to construct TPP models, for which both density evaluation and sampling can be done
efficiently in parallel. Using the above framework, we defined TriTPP— a new class
of flexible probability distributions over variable-length sequences. In addition to being
highly efficient thanks to its parallelism, TriTPP shows excellent performance on density
estimation, as shown by our experiments. High flexibility and efficiency of TriTPP make
it perfectly suited for tasks beyond density estimation, as we will demonstrate in the
next chapter.
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5 Learning with sampling-based losses

In Chapters 3 and 4 we introduced flexible neural TPP models, where new event se-
quences can be sampled exactly using the inversion method (Algorithm 3). The ability
to sample from a TPP allows us to answer prediction queries such as “How many events
are expected to happen in the next hour given the history?”. Even more importantly,
sampling with reparametrization enables us to train TPPs with sampling-based losses
that arise in application areas such as reinforcement learning [108, 183], variational in-
ference [28, 168], and adversarial training [198, 199, 202].

Unfortunately, as we demonstrate in this chapter, such sampling-based losses for TPPs
are plagued by discontinuities, which prevents us from effectively optimizing them with
gradient descent. We propose a solution to this problem by introducing a differentiable
relaxation for TPP losses. To demonstrate the utility of this approach, we derive a vari-
ational inference scheme for continuous-time discrete-state probabilistic models known
as Markov jump processes [141]. To summarize, our contributions are the following:

e We introduce the reparametrization trick for TPPs. Combined with a new dif-
ferentiable relaxation for TPP losses, it allows us to efficiently train TPPs using
sampling-based objective functions.

e Based on the previous insight, we develop a variational inference scheme for Markov
jump processes.

5.1 Background
5.1.1 Sampling-based losses for TPPs

We can think of a TPP as a probability distribution pg(7) over variable-length event
sequences 7 = (t1,...,tn). In Chapters 2 to 4 we focused on learning TPP parameters
0 using maximum likelihood estimation (Equation 2.25).

max log pe(T). (5.1)

This, however, is not the only possible option. In a number applications we are interested
in learning TPP models using objective functions involving expectations

max By, l9(T))- (5.2)

We refer to such objectives as sampling-based losses, since they involve averaging over
event sequences 7 that are sampled from the TPP pg(7). Let us consider several
examples to make this discussion more concrete.
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5 Learning with sampling-based losses

Reinforcement learning. Upadhyay et al. [183] apply TPPs to find optimal times
for posting content on social media to get the highest possible ranking in the feed. We
can think of the times 7 = (¢1,...,tx) when content is posted as a TPP realization,
and therefore model our stochastic policy that chooses when to make posts with a TPP
p(T). The goal is to maximize the reward r(7) that is defined as the fraction of the time
spent on top of the followers’ news feeds. This is equivalent to finding a policy p(7),
defined by a TPP, that that maximizes the following objective function

max By (7). (5.3)

Variational inference. Consider a system that is governed by a binary latent state
that switches at random times [61]. For example, a computer in a network might behave
differently depending on whether it is in “on” or “off” state. We can model the switching
times 7 = (t1,...,tn) as a latent variable with prior distribution p(7). The switching
times T determine the state of the system, which in turn affects the observed behavior
denoted as X'. We represent this mechanism through a conditional distribution p(X|7).

A common task is to infer the unobserved switching times 7 given the observations X.
Unfortunately, the posterior distribution p(7|X’) is often intractable. The main idea of
variation inference is to approximate the intractable posterior p(7|X) with a tractable
distribution ¢(7) [17, 187]. We can find the best possible approximation by minimizing
the Kullback—Leibler divergence between the approximate posterior ¢(7) and the true
posterior p(7|&X’), which corresponds to maximizing the Evidence Lower BOund (ELBO)

max E7qcr[log p(X|T) +log p(T) — log ¢(T)]- (5.4)

In the case that we consider, T is a variable-length sequence of events in continuous
time, so p(7T), p(T|X) and ¢(T) are all represented by TPPs.

Adversarial learning provides an alternative to the maximum likelihood parameter
estimation procedure for generative models. Suppose we would like to fit a TPP p(T)
using a training set Dipain = {7, ..., T}, The main idea of adversarial training is
to additionally train a discriminator function d(-) that should discriminate between true
instances from Dyqi, and sequences sampled from p(7) [198, 199, 202]. This corresponds
to solving the following optimization problem

M
1
' _ (m)
max min Erper [d(T))] El d (7 ) . (5.5)

Optimizing with respect to both p and d (subject to certain constraints [6]) forces the
generative model p(T) closer to the distribution that produced Dyain.

5.1.2 Monte Carlo gradient estimators

The standard way to solve optimization problems such as in Equation 5.3-5.5 is to pick
a parametric TPP model pg(7) and to learn its parameters 8 with a gradient-based
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method. For this we need to be able to evaluate the gradient of the objective function

Vo Etpe(9(T)]- (5.6)

In all but simplest cases, neither the expectation Er,, (7 [g(T)], nor its gradient w.r.t.
0 can be computed analytically. We can, however, approximate Equation 5.6 using
approaches known as Monte Carlo (MC) gradient estimators [121].

Score function estimator [196] (also known as REINFORCE) is one example of
MC gradient estimators. This approach is based on the following identity

VoETpom)[9(T)] = E7rpe() [V log pe(T)g(T)]. (5.7)
We can approximate the expectation using samples 7, ..., 75 drawn from pe(T) as
1 S
E7po(r)[Vologpe(T)g(T)] = 5 > _ Velogps (T (8)> g (T (8)) . (5.8)
s=1

This is a generic approach that can be combined with any generative model, where
sampling and density computation are tractable. This algorithm has also been used in
the context of TPPs [108, 183]. The main disadvantage of the score function estimator
is its high variance [121], so applying the estimator in practice often requires employing
additional variance reduction techniques [147].

Reparametrization trick (also known as the pathwise gradient estimator) [99, 157]
provides a lower-variance alternative to the score function estimator [121]. The main idea
of this approach is to replace sampling from pg(7) by the following two-step procedure.
First, we sample Z from a distribution p(Z) that does not depend on 8. Then, we obtain
T by passing Z through a deterministic transformation parametrized by 8. We will now
show how this approach can be generalized to TPPs.

5.2 Reparametrization trick for TPPs

5.2.1 Inversion method as reparametrization sampling

In Chapter 4, we discussed how sampling from any TPP pg(7T) can be represented using
the same two-step procedure: We generate Z from the standard Poisson process p(Z2)
(Equation 2.13) and then apply the triangular map Fy ! to obtain a sample from pg (T)
as T = Fy 1(2). This corresponds to the reparametrization trick and, therefore, allows
us to compute gradients of sampling-based losses

VoET o 19(T)] = Ez(2) [Vey (Fy '(2))]. (5.9)

We approximate this expectation using samples Z(1) ... Z(5) drawn from the SPP (Z2)

Ezp(z) [Vog(Fy ' (2))] ~ % ZS: g(F' (29)). (5.10)
s=1
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5 Learning with sampling-based losses

The main prerequisite for applying the above technique is the ability to compute
the inverse map F, ! analytically. This is true for the models that we developed in
Chapter 4. TriTPP (Section 4.2.3) defines a flexible triangular map F,, ' that can be
applied in O(N) parallel operations. This means, TriTPP is perfectly suited for learning
with sampling-based objectives — sampling is efficient thanks to the parallelism of the
map Fy ! and the reparametrization trick allows us to compute gradients with respect
to the TPP parameters 8. The same applies to parametrizations of inhomogeneous
Poisson and (modulated) renewal processes that we introduced in Section 4.2.2. Finally,
the LogNormMix model from Chapter 3 also permits approximate reparametrization
sampling, however, not as efficiently due to sequential dependencies in the RNN (see
Section 3.2.2 for details).

Non-differentiability of TPP losses. The reparametrization trick for TPPs (Equa-
tions 5.9 and 5.10) allows us to compute gradients of sampling-based losses w.r.t. the
TPP parameters 6. Unfortunately, this is not sufficient to optimize such losses with
gradient-based methods — as we will see shortly, such losses for TPPs are in general
discontinuous and, therefore, not differentiable. This is a property of the loss functions
that is independent of the parametrization of pg(7). In the following, we provide a
simple example and a solution to this problem.

5.2.2 Differentiable relaxation for TPP losses

Entropy maximization. To demonstrate the non-differentiability problem, we con-
sider a toy task of maximizing the entropy of a homogeneous Poisson process. An entropy
penalty can be used as a regularizer during density estimation [73] or as a part of the
ELBO in variational inference [187].

Let p,(T) be a homogeneous Poisson process (HPP) on [0,7] with rate p > 0. It
is known that the entropy is maximized when pu = 1, but for sake of example assume
that we want to learn p that maximizes the entropy with gradient ascent [7]. This
corresponds to the following optimization problem

max Er_, «[—logpu(T)]. (5.11)
HERY
We use the reparametrization trick for TPPs to estimate the objective function. We
generate a sequence Z = (21, 22, ...) from the standard Poisson process (SPP) and apply
the inverse map 7 = F), 1(2) = LZ. We obtain an Monte Carlo estimate of the entropy
using a single such sample 7 = (;fl, ta,...) as

B, (7) = 10g pu(T)] ~ T =Y " 1(t; < T)log
=1
~ (5.12)
=uT -1 <z §T> log
4 Iz
=1

Here, the indicator function 1(-) discards all the events ¢; > T.
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Figure 5.1: Monte Carlo estimate of the en- Figure 5.2: Maximizing the entropy with
tropy. different values of (.

We can see that for any sample Z = (21, 29, ... ) the right-hand side of Equation 5.12
is not continuous with respect to p at points u = %zi. At such points, decreasing u by
an infinitesimal amount will “push” the event ¢; = izi outside the [0, 7] interval, thus
increasing log p,,(7) by a constant logu. We plot the right-hand side of Equation 5.12
as a function of p in Figure 5.1, estimated with 5 MC samples. Clearly, such a function
cannot be optimized with gradient ascent. Increasing the number of MC samples almost
surely adds more points of discontinuity and does not fix the problem. In general, non-
differentiability arises when estimating expectations of a function ¢g(7) that depends on
the events ¢; inside [0,T]. For any TPP density p(7), the discontinuities occur at the
parameter values that map the SPP events z; to the interval boundary 7T

Relaxation. We obtain a differentiable approximation to Equation 5.12 by replacing
the indicator functions 1(t; < T') with sigmoid o¢(T" —t;) as

—_ (1 - 1
uT — Z 1 <M2i < T> log =~ pT — ZO‘C (T — MZi> log 1, (5.13)
i=1

i=1

where o¢(z) = 1/(1+exp(—x/()) is the sigmoid function with a temperature parameter
¢ > 0. This relaxation is similar in spirit to the Gumbel-softmax trick for the categorical
distribution [92, 116] — we enable reparametrization gradients and decrease the variance
at the cost of introducing bias to the gradient estimates. Decreasing the temperature
¢ makes the approximation more accurate but complicates optimization, and { = 0
recovers the original non-differentiable objective.

Figure 5.2 shows the convergence plots of the entropy maximization task for different
temperature values (. As expected, gradient ascent fails on the original non-differentiable
objective function but works well on the relaxed objective. This example demonstrates
the feasibility of optimizing sampling-based TPP losses using reparametrization sampling
and our differentiable relaxation technique.

Next, we compare the variance of the relaxed reparametrization gradient estimator
(Equation 5.10) to the variance of the score function estimator (Equation 5.8). Figure 5.3
shows the variance of the different estimators as a function of rate parameter u. We
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observe that the reparametrization estimator achieves lower variance than the score
function estimator, especially at larger values of p (note the log scale). This follows the
general trend observed in other application areas [121] and highlights the advantages of
the reparametrization trick over the score function estimator.

Summary. We showed how sampling-based TPP losses can be optimized using the
reparametrization trick. Our approach consists of two components: inverse transform
sampling allows us to compute the gradient with respect to model parameters, and
the differentiable relaxation makes gradient-based optimization possible. Our relaxation
scheme is applicable to any TPP loss g(7") that can be expressed in terms of the indicator
functions. In the next section, we will combine this framework with our flexible and
efficient models from Chapter 4 to develop a variational inference scheme for Markov
jump processes.

5.3 Variational inference for Markov jump processes

Background. A Markov jump process (MJP) {s(¢) }+>0 is a piecewise-constant stochas-
tic process on [0, 00). At any time ¢, the process occupies a discrete state s(t) € {1, ..., K'}.
The times when the state changes are called jumps. A trajectory of an MJP on an interval
[0,T] with N jumps can be represented by a tuple (7,S) of jump times T = (t1,...,tn)
and the visited states S = (s, ..., sy+1). Note that N may vary for different trajectories.
The prior over the trajectories p(7,S|mw, A) of an MJP is governed by an initial state
distribution 7 and a K x K generator matrix A (see Appendix F.1.1).

MJPs are commonly used to model the unobserved (latent) state of a system. In a
latent MJP, the state s(¢) influences the behavior of the system and indirectly manifests
itself via some observations X. For concreteness, we consider the Markov-modulated
Poisson process (MMPP) [61]. In an MMPP, each of the K states of the MJP has an
associated observation intensity Ar. An MMPP is an inhomogeneous Poisson process

60



5.4 Related work

where the intensity depends on the current MJP state as A*(t) = Ay(). For instance, a
2-state MMPP can model the behavior of a social network user, who switches between an
“active” (posting a lot) and “inactive” (working or sleeping) states (Figure 5.4). Given
the observations X', we might be interested in inferring the trajectory (7,S), the model
parameters ¥ = {m, A, A}, or both.

Variational inference (VI). The posterior distribution p(7,S|X, %) of MMPP is
intractable, so we approximate it with a variational distribution ¢(7,S) = ¢(T)q(S|T).
Note that this is not a mean-field approximation used in other works [206]. We model
the distribution over the jump times ¢(7) with TriTPP (Section 4.2.3). We find the
best approximate posterior by maximizing the ELBO [207]

max max Eq(r) [Eq(sim) logp(X[T, S, 9) +logp(T, S|p) —logq(T,S)]]  (5.14)

Given jump times T, the true posterior over the states p(S|7T, X, v) is just the posterior
of a discrete hidden Markov model (HMM). This means we only need to model ¢(7);
the optimal posterior over the states ¢*(S|T)

*(S|T) = ar%sﬁl;'?XEq(8|T) logp(X|T,S, %) + logp(T,S|yp) —logq(S|T)]  (5.15)
q

=p(S|T, X, ) (5.16)

can be found efficiently via the forward-backward algorithm [188]. The inner expec-
tation w.r.t. ¢(S|T) in Equation 5.14 can be computed analytically. We approximate
the expectation w.r.t. ¢(7) with Monte Carlo. Since all terms of Equation 5.14 are not
differentiable, we apply our relaxation from Section 5.2.2. We provide a full derivation
of the ELBO and the implementation details in Appendix F.1.3.

The proposed framework is not limited to approximating the posterior over the tra-
jectories. With small modifications (Appendix F.1.4), we can simultaneously learn the
parameters ), either obtaining a point estimate ®* or a full approximate posterior
q(%). Our variational inference scheme can also be extended to other continuous-time
discrete-state models, such as semi-Markov processes [59].

5.4 Related work

Monte Carlo gradient estimators play an important role both in machine learn-
ing [121] as well as other research fields [33, 160]. Score function gradient estimator
[196] and the reparametrization trick [99, 157] are the two families of approaches most
commonly used in practice. Reparametrization trick typically provides lower variance
and therefore faster convergence, but is not as general as the score function estimator
[121]. For example, exact reparametrization sampling from discrete distributions is not
possible in general. However, there exist relaxation methods that allow us to approx-
imate reparametrization sampling, e.g., for the categorical distribution [92, 116]. Our
relaxation technique complements these approaches and can be seen as their extension
to event sequences with a random number of events.
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Figure 5.5: Posterior distributions over the latent trajectory of a Markov modulated Poisson
process learned using our VI approach and the MCMC sampler from [149].

Sampling-based losses for TPPs arise naturally in applications such as reinforce-
ment learning [108, 183] and adversarial training [198, 199, 202]|. Existing works rely
on the score function estimator when learning TPPs with such sampling-based losses.
The reparametrization sampling method for TPPs that we introduced in this chapter
provides an easy-to-implement low-variance alternative to the score function estimator.

Latent space models. TPPs governed by latent Markov dynamics have intractable
likelihoods that require approximations [84, 197]. For MJPs, the state-of-the-art ap-
proach is the Gibbs sampler by Rao & Teh [149]. It allows to exactly sample from
the posterior p(7,S|X, ), but is known to converge slowly if the parameters 1 are to
be learned as well [205]. Existing variational inference approaches for MJPs can only
learn a fixed time discretization [206] or estimate the marginal statistics of the posterior
[141, 194]. In contrast, our method produces a full distribution over the jump times.

5.5 Experiments

5.5.1 Variational inference on simulated data

Setup. We apply our variational inference method from Section 5.3 for learning the
posterior distribution over the latent trajectories of an Markov modulated Poisson pro-
cess (MMPP). We parametrize the variational distribution ¢(7) over the jump times
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Figure 5.6: Convergence of our variational inference procedure with 5 different random seeds.

using the TriTPP model from Chapter 4. We simulate an MMPP with K = 3 latent
states that correspond to different arrival rates of observed events X. As a baseline, we
use the state-of-the-art MCMC sampler by Rao & Teh [149]. In both cases we assume
that the MMPP parameters 1 are known. See Appendix F.2

Results. Figure 5.5 shows the true latent MJP trajectory, as well as the marginal
posterior probabilities learned by our method and the MCMC sampler of Rao & Teh.
We can see that TriTPP accurately recovers the true posterior distribution over the
trajectories. The three components that enable our new variational inference approach
are our efficient parallel sampling algorithm for TriTPP (Section 4.2), reparametrization
trick for TPPs (Section 5.2.1) and the differential relaxation (Section 5.2.2).

Convergence plots. Figure 5.6 additionally shows the convergence of the variational
inference procedure by plotting the ELBO over the training iterations. As we see, we
achieve stable optimization thanks to the differentiable relaxation of the loss.

Random initializations. In order to show that our results are not cherry-picked,
we provide the plots of marginal posterior trajectories (similar to Figure 5.5) obtained
with 3 different random seeds. Figure 5.7 shows that our results are consistent across
the random seeds.

Figure 5.7: Marginal posterior trajectories obtained when using different random seeds.

5.5.2 Variational inference on real-world data

Setup. We apply our model to the server log data.! We simultaneously learn the
posterior over the trajectories (7,S) as well as the model parameters ¥ = {m, A, A} by

"https://www.kaggle.com/shawon10/web-log-dataset
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5 Learning with sampling-based losses
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Figure 5.8: Segmentation of server data obtained using our VI approach and MCMC. In both
cases, we estimate the posterior p(7,S|X, 1) as well as the MMPP parameters ).

solving the following optimization problem

max ma Eqllog p(Y|T. 8, ) + log (T, Sl4) ~loga(T. 5)] (5.17)
ql/,

Like before, we optimize a differentiable relaxation of this objective with gradient ascent.
We compare our approach to the MCMC sampler of Rao & Teh as the baseline. For the
MCMC sampler, we adopt an EM-like approach, where we alternate between closed-form
parameter updates for ¢ and simulating the posterior trajectories.

Results. Figure 5.8 shows the obtained posterior trajectories for the two approaches.
Both models learn to segment the sequence into a high-event-rate and a low-event-rate
states. This confirms that our variational inference approach is a viable alternative to
the MCMC sampler.

5.6 Conclusions

We have shown how the reparametrization trick combined with a new differentiable re-
laxation allows us to train TPP models using sampling-based objective function. To
demonstrate the utility of this framework, we developed an approximate posterior in-
ference scheme for continuous-time discrete-state systems. Our generalization of the
reparametrization trick can be combined with various TPP, and therefore lays the foun-
dation for using TPPs as plug-and-play components of other machine learning models.
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6 Anomaly detection

Temporal point processes (TPPs) provide a natural representation for transactions in
financial systems, server logs, or user activity traces. Detecting anomalies in such data
can provide immense industrial value. For example, abnormal entries in system logs may
correspond to unnoticed server failures, atypical user activity in computer networks may
correspond to intrusions, and irregular patterns in financial systems may correspond to
fraud or shifts in the market structure.

Manual inspection of such event data is usually infeasible due to its sheer volume. At
the same time, hand-crafted rules quickly become obsolete due to software updates or
changing trends [81]. Ideally, we would like to have an adaptive system that can learn
the normal behavior from the data, and automatically detect abnormal event sequences.
Importantly, such a system should detect anomalies in a completely unsupervised way,
as high-quality labels are usually hard to obtain.

Assuming “normal” data is available, we can formulate the problem of detecting
anomalous event sequences as an instance of out-of-distribution (OoD) detection. Mul-
tiple recent works consider OoD detection for image data based on deep generative
models [128, 154, 189]. However, none of these papers consider continuous-time event
data. Neural TPPs that we discussed in earlier chapters define a generative model for
such variable-length event sequences. Still, the literature on neural TPPs mostly focuses
on prediction tasks, and the problem of anomaly detection has not been adequately
addressed by existing works [170]. We aim to fill this gap in this chapter.

Our main contributions are the following:

e Approach for anomaly detection with generative models. We draw connec-
tions between OoD detection and GoF testing for TPPs (Section 6.1). By combining
this insight with neural TPPs, we propose an approach for anomaly detection that
shows high accuracy on synthetic and real-world event data.

e A new test statistic for TPPs. We highlight the limitations of popular GoF
statistics for TPPs and propose the sum-of-squared-spacings statistic that addresses
these shortcomings (Section 6.3). The proposed statistic can be applied to both
unmarked and marked TPPs.

6.1 Anomaly detection and goodness-of-fit testing
Background. In this chapter we will use a slightly different notation compared to the

rest of the thesis (see Appendices A and B for an overview). We use P to denote a TPP
and the respective distribution over variable-length event sequences. We denote a TPP
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Figure 6.1: p-value is computed as the tail probability under the sampling distribution s(X)|Hy.

realization as X = (t1,...,tn), where N, the number of events, is itself a random vari-
able. Same as before, we can characterize a TPP using a conditional intensity function
A*(t) == A(t|H(t)) that is equal to the rate of arrival of new events given the history
H(t) consisting of past events (Equation 2.9). Equivalently, a TPP can be specified with
the compensator A*(t) = fg A*(u)du (Equation 2.20).

Out-of-distribution (OoD) detection. We formulate the problem of detecting
anomalous event sequences as an instance of QoD detection [109]. Namely, we assume
that we are given a large set of training sequences Dyain = {X1,..., Xy} that were
sampled i.i.d. from some unknown distribution Pg,i, over a domain X. At test time,
we need to determine whether a new sequence X was also drawn from Pga, (ie., X is
in-distribution or “normal”) or from another distribution Q # Pgata (i-e., X is out-of-
distribution or anomalous). We can phrase this problem as a null hypothesis test:

Hy: X ~ Pgata Hi: X ~Q for some Q # Pgata- (6.1)

To reiterate, here we consider the case where X is a variable-length event sequence and
Pyata is some unknown TPP. However, the rest of the discussion in Section 6.1 also
applies to distributions over other data types, such as images.

Goodness-of-fit (GoF) testing. First, we observe that the problem of OoD de-
tection is closely related to the problem of GoF testing [40]. We now outline the setup
and approaches for GoF testing, and then describe how these can be applied to OoD
detection. The goal of a GoF test to determine whether a random element X follows a
known distribution Ppoder*

Ho: X ~ ]P)model H1: X ~ Q for some Q 75 ]Pmodel' (6.2)

'We test a single realization X, as is common in TPP literature [22]. Note that this di_ffedrs from works
on univariate GoF testing that consider multiple realizations, i.e., Ho: X1,..., X R Prodel -

66



6.1 Anomaly detection and goodness-of-fit testing

We can perform such a test by defining a test statistic s(X), where s: X — R [62]. For
this, we compute the (two-sided) p-value for an observed realization = of X as?

ps(z) = 2 x min{Pr(s(X) < s(z)|Hp),1 — Pr(s(X) < s(z)|Hp)}. (6.3)

The factor 2 accounts for the fact that the test is two-sided. We reject the null hypothe-
sis (i.e., conclude that X does not follow Pp,qe) if the p-value is below some predefined
confidence level a. Note that computing the p-value requires evaluating the cumula-
tive distribution function (CDF) of the sampling distribution, i.e., the distribution test
statistic s(X) under the null hypothesis Hy.

GoF testing vs. OoD detection. The two hypothesis tests (Equations 6.1 and
6.2) appear similar—in both cases the goal is to determine whether X follows a certain
distribution P and no assumptions are made about the alternative Q. This means that
we can perform QoD detection using the procedure described above, that is, by defining
a test statistic s(X) and computing the respective p-value (Equation 6.3). However,
in case of GoF testing (Equation 6.2), the distribution Pp0ge1 is known. Therefore, we
can analytically compute or approximate the CDF of s(X)|X ~ Puodel, and thus the
p-value. In contrast, in an OoD detection hypothesis test (Equation 6.1), we make no
assumptions about Pg.» and only have access to samples Diyain that were drawn from
this distribution. For this reason, we cannot compute the CDF of s(X)|X ~ Pgata
analytically. Instead, we can approximate the p-value using the empirical cumulative
distribution function (eCDF) of the test statistic s(X) on Dyrain.

The above procedure can be seen as a generalization of many existing methods for
unsupervised OoD detection. These approaches usually define the test statistic based
on the log-likelihood (LL) of a generative model fitted to Dyyain [32, 154, 161]. However,
as follows from our discussion above, there is no need to limit ourselves to LL-based
statistics. For instance, we can define a test statistic for event sequences based on the
rich literature on GoF testing for TPPs. We show in Section 6.5 that this often leads
to more accurate anomaly detection compared to LL. Moreover, the difference between
OoD detection and GoF' testing is often overlooked. By drawing a clear distinction
between the two, we can avoid some of the pitfalls encountered by other works [128], as
we elaborate in Appendix G.1.

The anomaly detection framework we outlined above can be applied to any type of
data—such as images or time series—but in this work we mostly focus on continuous-
time event data. This means that our main goal is to find an appropriate test statistic
for variable-length continuous-time event sequences. In Section 6.2, we take a look at
existing GoF statistics for TPPs and analyze their limitations. Then in Section 6.3,
we propose a new test statistic that addresses these shortcomings and describe in more
detail how it can be used for OoD detection.

2In the rest of the paper, the difference between the random element X and its realization z is unim-
portant, so we denote both as X, as is usually done in the literature.
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6 Anomaly detection

6.2 Review of existing GoF test statistics for TPPs

Here, we consider a GoF test (Equation 6.2), where the goal is to determine whether an
event sequence X = (t1,...,ty) was generated by a known TPP P40 with compen-
sator A*. We will return to the problem of OoD detection, where the data-generating
distribution Pg,t, is unknown, in Section 6.3.2.

Many popular GoF tests for TPPs are based on the random time change theorem
(Theorem 1). The theorem states that a sequence X = (¢1,...,ty) is distributed ac-
cording to a TPP with compensator A* on the interval [0, T if and only if the sequence
Z = (A*(t1),...,A*(tn)) is distributed according to the standard Poisson process (SPP)
on [0, A*(T)]. Intuitively, this result can be viewed as a TPP analogue of how the CDF
of an arbitrary random variable over R transforms its realizations into samples from
Uniform([0, 1]). Similarly, the compensator A* converts a random event sequence X into
a realization Z from the SPP.

Therefore, the problem of GoF testing for an arbitrary TPP reduces to testing whether
the transformed sequence Z follows the SPP on [0, A*(T")]. In other words, we can define
a GoF statistic for a TPP with compensator A* by (1) applying the compensator to X
to obtain Z and (2) computing one of the existing GoF statistics for the SPP on the
transformed sequence. This can also be generalized to marked TPPs (where events can
belong to one of C classes) by simply concatenating the transformed sequences Z © for
each event type ¢ € {1,...,C} (see Appendix G.4 for details).

SPP, i.e., the Poisson process with constant intensity A\*(¢f) = 1, is the most basic
TPP one can conceive. However, as we will shortly see, existing GoF statistics even for
this simple model have considerable shortcomings and can only detect a limited class
of deviations from the SPP. More importantly, test statistics for general TPPs defined
using the above recipe (Theorem 1) inherit the limitations of the SPP statistics.

For brevity, we denote the length of the transformed interval as V' = A*(T) and
the transformed arrival times as Z = (v1,...,vn) = (A*(t1),...,A*(tn)). One way to
describe the generative process of an SPP is as follows [144]

N|V ~ Poisson(V) u;i| N,V ~ Uniform([0,V]) fori=1,...,N. (6.4)

An SPP realization Z = (v1,...,vy) is obtained by sorting the u;’s in increasing order.
This is equivalent to defining the arrival time v; as the i-th order statistic u;). We can
also represent Z by the inter-event times (w1, ..., wy4+1) where w; = v; — v;_1, assuming
vo=0and vy41 =V.

Barnard [10] proposed a GoF test for the SPP based on the above description (Equa-
tion 6.4) and the Kolmogorov—Smirnov (KS) statistic. The main idea of this approach is
to check whether the arrival times vy,...,vy are distributed uniformly in the [0, V]
interval. For this, we compare Fl,, the empirical CDF of the arrival times, with
Forr(u) =u/V, the CDF of the Uniform([0,V]) distribution. This can be done using
the KS statistic on the arrival times (KS arrival), defined as

, , 1 &

Karr(Z) = VN - SEPV] | Fawe (1) = Fane(u)| - where  Fye(u) = D (v <w). (6.5)

ue|0, i=1
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6.3 Sum-of-squared-spacings (3S) statistic for TPPs

Another popular GoF test for the SPP is based on the fact that the inter-event times
w; are distributed according to the Exponential(1) distribution [36]. The test compares
Fint, the empirical CDF of the inter-event times, and Fini(u) =1 — exp(—u), the CDF
of the Exponential(1) distribution. This leads to the KS statistic for the inter-event
times (KS inter-event)

. . 1
Kint(Z) = VN . sup |Fint(u) — Fint(uw)|  where  Fip(u)

=3 1w < ).
UE[0,00) N+ 1 i=1 '

(6.6)

KS arrival and KS inter-event statistics are often presented as the go-to approach for
testing the goodness-of-fit of the standard Poisson process [41]. Combining them with
Theorem 1 leads to simple GoF tests for arbitrary TPPs that are widely used to this
day [5, 66, 97, 108, 179].

Limitations of the KS statistics. The KS statistics kan(Z) and kint(Z) are only
able to differentiate the SPP from a narrow class of alternative processes. For example,
KS arrival only checks if the arrival times v; are distributed uniformly, conditioned on
the event count N. But what if the observed N is itself extremely unlikely under the
SPP (Equation 6.4)? KS inter-event can be similarly insensitive to the event count—
removing all events % < v; <V from an SPP realization Z will only result in just a
single atypically large inter-event time w;, which changes the value of ki (Z) at most
by ﬁ We demonstrate these limitations of kup(Z) and kit (Z) in our experiments
in Section 6.5.1. Other failure modes of the KS statistics were described by Pillow
[146]. Note that ad-hoc fixes to the KS statistics do not address these problems. For
example, combining multiple tests performed separately for the event count and arrival
times using Fisher’s method [36, 63] consistently decreases the accuracy, as we show in
Appendix G.7. In the next section, we introduce a different test statistic that aims to
address these shortcomings.

6.3 Sum-of-squared-spacings (3S) statistic for TPPs

6.3.1 Goodness-of-fit testing with the 3S statistic

A good test statistic should capture multiple properties of the SPP at once: it should
detect deviations w.r.t. both the event count N and the distribution of the arrival or
inter-event times. Here, we propose to approach GoF testing with a sum-of-squared-
spacings (3S) statistic that satisfies these desiderata,

1 N+1 1 N+1
W(Z) = > wi= v > (i — i) (6.7)
=1 =1

This statistic extends the sum-of-squared-spacings statistic proposed as a test of unifor-
mity for fixed-length samples by Greenwood [75]. The important difference between our
definition (Equation 6.7) and prior works [40] is that we, for the first time, consider the
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Figure 6.2: Distribution of different test statistics for the standard Poisson process on [0, 100],
conditioned on different event counts N. The 3S statistic allows us to differentiate
between different values of N, while KS statistics are not sensitive to changes in V.

TPP setting, where the number of events N is random as well. For this reason, we use
the normalizing constant 1/V instead of N/V? (see Appendix G.2 for details). As we
will see, this helps capture abnormalities in the event count and results in more favorable
asymptotic properties for the case of SPP.

Intuitively, for a fixed N, the statistic ¢ is maximized if the spacings are extremely
imbalanced, i.e., if one inter-event time w; is close to V and the rest are close to zero.
Conversely, ¥ attains its minimum when the spacings are all equal, that is w; = for
all 4.

v
N+1

In Figure 6.2a we visualize the distribution of ¥|N,V for two different values of N.
We see that the distribution of ¢ depends strongly on N, therefore a GoF test involving
1 will detect if the event count IV is atypical for the given SPP. This is in contrast to
Karr and Kipt, the distributions of which, by design, are (asymptotically) invariant under
N (Figure 6.2b). Even if one accounts for this effect, e.g., by removing the correction
factor v/N in Equations 6.5 and 6.6, their distributions change only slightly compared
to the sum of squared spacings (see Figures 6.2c and 6.2d). To analyze other properties
of the statistic, we consider its moments under the null hypothesis.

Proposition 1. Suppose the sequence Z is distributed according to the standard Poisson
process on the interval [0, V]. Then the first two moments of the statistic 1 := (Z) are

2 _ 4 _ _
(Ve V1) and Var[p|[V] = o5 (2V = T+ e VRV2 44V 48— V).

The proof of Proposition 1 can be found in Appendix G.3. From Proposition 1 it
follows that

E[p|V] =

lim Efy[V] =2 Jim Var[p|v] =o. (6.8)

This leads to a natural notion of typicality in the sense of Nalisnick et al. [128] and
Wang et al. [189] for the standard Poisson process. We can define the typical set of
the SPP as the set of variable-length sequences Z on the interval [0, V] that satisfy
[(Z) — 2| < € for some small ¢ > 0. It follows from Equation 6.8 and Chebyshev’s
inequality that for large enough V', the SPP realizations will fall into the typical set with
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Figure 6.3: Sampling distribution for the OoD test (blue) and the GoF test (orange). While
the same statistic s(X) is used in both cases, the p-values are computed differently
depending on which test we perform.

high probability. Therefore, at least for large V', we should be able to detect sequences
that are not distributed according the SPP based on the statistic 1.

Summary. To test the GoF of a TPP with a known compensator A* for an event se-
quence X = (t1,...,tn), we first obtain the transformed sequence Z = (A*(t1),...,A*(tn))
and compute the statistic 1(Z) according to Equation 6.7. Since the CDF of the statis-
tic under Hp cannot be computed analytically, we approximate it using samples drawn
from P oge1. That is, we draw realizations Dyoqel = {X1,- .., Xar} from the TPP (e.g.,
using the inversion method [153]) and compute the p-value for X (Equation 6.3) using
the eCDF of the statistic on Dyder [131].

6.3.2 Qut-of-distribution detection with the 3S statistic

We now return to the original problem of OoD detection in TPPs, where we have access
to a set of in-distribution sequences Dy a1, and do not know the data-generating process
Pqata-

Our idea is to perform the OoD detection hypothesis test (Equation 6.1) using the sum-
of-squared-spacings test statistic that we introduced in the previous section. However,
since the data-generating TPP Pg,t, is unknown, we do not know the corresponding
compensator that is necessary to compute the statistic. Instead, we can fit a neural
TPP model P4 [52] to the sequences in Dypain and use the compensator A* of the
learned model to compute the statistic s(X).? High flexibility of neural TPPs allows
these models to more accurately approximate the true compensator. Having defined the
statistic, we can approximate its distribution under H (i.e., assuming X ~ Pqata) by
the eCDF of the statistic on Dirain. We use this eCDF to compute the p-values for our
OoD detection hypothesis test and thus detect anomalous sequences. We provide the
pseudocode description of our OoD detection method in Appendix G.4.

3We can replace the 3S statistic on the transformed sequence Z with any other statistic for the SPP,
such as KS arrival. In Sections 6.5.2 and 6.5.3, we compare different statistics constructed this way.
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6 Anomaly detection

We highlight that an OoD detection procedure like the one above is not equivalent
to a GoF test for the learned generative model Ppo4e1, as suggested by earlier works
[128]. While we use the compensator of the learned model to define the test statistic
s(X), we compute the p-value for the OoD detection test based on s(X)|X ~ Pgata. This
is different from the distribution s(X)|X ~ Pp0qel used in a GoF test, since in general
Prodel # Pdata. Therefore, even if the distribution of a test statistic under the GoF' test
can be approximated analytically (as, e.g., for the KS statistic [117]), we have to use
the eCDF of the statistic on Dypain for the OoD detection test. Figure 6.3 visualizes this
difference. Here, we fit a TPP model on the in-distribution sequences from the STEAD
dataset (Section 6.5.3) and plot the empirical distribution of the respective statistic s(X)
on Diyain (corresponds to s(X)|X ~ Pgata) and on model samples Dypge1 (corresponds
to S(X)’X ~ ]Pmodel)-

6.4 Related work

Unsupervised OoD detection. OoD detection approaches based on deep generative
models (similar to our approach in Section 6.3.2) have received a lot of attention in the
literature. However, there are several important differences between our method and
prior works. First, most existing approaches perform OoD detection based on the log-
likelihood (LL) of the model or some derived statistic [32, 125, 128, 154, 161]. We observe
that LL can be replaced by any other test statistic, e.g., taken from the GoF testing
literature, which often leads to more accurate anomaly detection (Section 6.5). Second,
unlike prior works, we draw a clear distinction between OoD detection and GoF testing.
While this difference may seem obvious in hindsight, it is not acknowledged by the exist-
ing works, which may lead to complications (see Appendix G.1). Also, our formulation
of the OoD detection problem in Section 6.1 provides an intuitive explanation to the
phenomenon of “typicality” [128, 189]. The (e, 1)-typical set of a distribution P simply
corresponds to the acceptance region of the respective hypothesis test with confidence
level € (Equation 6.1). Finally, most existing papers study OoD detection for image data
and none consider variable-length event sequences, which is the focus of our work.

Our OoD detection procedure is also related to the rarity anomaly score [60, 93].
The rarity score can be interpreted as the negative logarithm of a one-sided p-value
(Equation 6.3) of a GoF test that uses the log-likelihood of some known model as the
test statistic. In contrast, we consider a broader class of statistics and learn the model
from the data.

Anomaly detection for TPPs. OoD detection, as described in Section 6.1, is not
the only way to formalize anomaly detection for TPPs. For example, [137] developed
a distance-based approach for Poisson processes. Recently, [214] proposed to detect
anomalous event sequences with an adversarially-trained model. Unlike these two meth-
ods, our approach can be combined with any TPP model without altering the training
procedure. [114] studied anomalous event detection with TPPs, while we are concerned
with entire event sequences.
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GoF tests for TPPs. Existing GoF tests for the SPP usually check if the arrival
times are distributed uniformly, using, e.g., the KS [107] or chi-squared statistic [35].
Our 3S statistic favorably compares to these approaches thanks to its dependence on
the event count IV, as we explain in Section 6.3 and show experimentally in Section 6.5.1.
Methods combining the random time change theorem with a GoF test for the SPP (usu-
ally, the KS test) have been used at least since Ogata [134], and are especially popular
in neuroscience [22, 66, 179]. However, these approaches inherit the limitations of the
underlying KS statistic. Replacing the KS score with the 3S statistic consistently leads
to a better separation between different TPP distributions (Section 6.5).

Gerhard and Wulfram [65] discussed several GoF tests for discrete-time TPPs, while
we deal with continuous time. Yang et al. [203] proposed a GoF test for point processes
based on Stein’s identity, which is related to a more general class of kernel-based GoF
tests [34, 113]. Their approach is not suitable for neural TPPs, where the Papangelou
intensity cannot be computed analytically. A recent work by [191] designed a GoF test
for self-exciting processes under model misspecification. In contrast to these approaches,
our proposed GoF test from Section 6.3.1 can be applied to any TPP with a known
compensator.

Sum-of-squared-spacings statistic. A similar statistic was first used by Green-
wood [75] for testing whether a fixed number of points are distributed uniformly in an
interval. Several follow-up works studied the limiting distribution of the statistic (con-
ditioned on N) as N — oo [83, 148, 174]. Our proposed statistic (Equation 6.7) is not
invariant w.r.t. N and, therefore, is better suited for testing TPPs. We discuss other
related statistics in Appendix G.2.

6.5 Experiments

Our experimental evaluation covers two main topics. In Section 6.5.1, we compare the
proposed 3S statistic with existing GoF statistics for the SPP. Then in Sections 6.5.2
and 6.5.3, we evaluate our OoD detection approach on simulated and real-world data,
respectively. The experiments were run on a machine with a 1080Ti GPU. Details on
the setup and datasets construction are provided in Appendix G.5 & G.6.

6.5.1 Standard Poisson process

In Section 6.2 we mentioned several failure modes of existing GoF statistics for the
SPP. Then, in Section 6.3.1 we introduced the 3S statistic that was supposed to address
these limitations. Hence, the goal of this section is to compare the proposed statistic
with the existing ones in the task of GoF testing for the SPP. We consider four test
statistics: (1) KS statistic on arrival times (Equation 6.5), (2) KS statistic on inter-
event times (Equation 6.6), (3) chi-squared statistic on the arrival times [35, 179], and
(4) the proposed 3S statistic (Equation 6.7).

To quantitatively compare the discriminative power of different statistics, we adopt an
evaluation strategy similar to [65] and [203]. First, we generate a set Dy,odel consisting of
1000 SPP realizations. We use Dyyodel to compute the empirical distribution function of
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Figure 6.4: GoF testing for the standard Poisson process using different test statistics, measured
with ROC AUC (higher is better). See Section 6.5.1 for the description of the
experimental setup.

each statistic s(Z) under Hy. Then, we define two test sets: D}, (consisting of samples
from Ppoqe1, the SPP) and DQOP (consisting of samples from Q, another TPP), each
with 1000 sequences. Importantly, in this and following experiments, the training and
test sets are always disjoint.

We follow the GoF testing procedure described at the end of Section 6.3.1, which
corresponds to the hypothesis test in Equation 6.2. That is, we compute the p-value
(Equation 6.3) for each sequence in the test sets using the eCDF of s(Z) on Dpoqel- A
good test statistic s(Z) should assign lower p-values to the OoD sequences from Diog
than to ID sequences from D{L,, allowing us to discriminate between samples from Q
and Ppoqe1. We quantify how well a given statistic separates the two distributions by
computing the area under the ROC curve (ROC AUC). This effectively averages the
performance of a statistic for the GoF hypothesis test over different significance levels
.

Datasets. We consider six choices for the distribution Q:

e RATE, a homogeneous Poisson process with intensity p < 1;

e STOPPING, where events stop after some time tgop € [0, V];

e RENEWAL, where inter-event times are drawn i.i.d. from the Gamma distribution;
e HAWKES, where events are more clustered compared to the SPP;

e INHOMOGENEOUS, a Poisson process with non-constant intensity A(t) = [ sin(wt);
e SELFCORRECTING, where events are more evenly spaced compared to the SPP.

For cases the last 4 cases, the expected number of events is the same as for the SPP.
For each choice of Q we define a detectability parameter 6 € [0, 1], where higher §
corresponds to TPPs that are increasingly dissimilar to the SPP. That is, setting § = 0
corresponds to a distribution Q that is exactly equal to the SPP, and § = 1 corresponds
to a distribution that deviates significantly from the SPP. For example, for a Hawkes
with conditional intensity \*(t) = u+ th <1 exp(—(t —t;)), the detectability value of
d = 0 corresponds to p = 1 and f = 0 (i.e., A*(¢) = 1) making Q indistinguishable
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from P. The value of § = 0.5 corresponds to y = 0.5 and 8 = 0.5, which preserves the
expected number of events N but makes the arrival times t; “burstier.” We describe how
the parameters of each distribution Q are defined based on ¢ in Appendix G.5. Note
that, in general, the ROC AUC scores are not guaranteed to monotonically increase as
the detectability ¢ is increased.

Results. In Figure 6.4, we present AUC scores for different statistics as § is varied. As
expected, KS arrival accurately identifies sequences that come from Q where the absolute
time of events are non-uniform (as in INHOMOGENEOUS). Similarly, KS inter-event is
good at detecting deviations in the distribution of inter-event times, as in RENEWAL. The
performance of the chi-squared statistic is similar to that of KS arrival. Nevertheless, the
above statistics fail when the expected number of events, IV, changes substantially—as
in KS arrival and chi-squared on RATE, and KS inter-event on STOPPING. These failure
modes match our discussion from Section 6.2.

In contrast, the 3S statistic stands out as the most consistent test (best or close-to-best
performance in 5 out of 6 cases) and does not completely fail in any of the scenarios. The
relatively weaker performance on SELFCORRECTING implies that the 3S statistic is less
sensitive to superuniform spacings [40] than to imbalanced spacings. The results show
that the 3S statistic is able to detect deviations w.r.t. both the event count N (RATE and
STOPPING), as well as the distributions of the inter-event times w; (RENEWAL) or the
arrival times v; (HAWKES and INHOMOGENEOUS)—something that other GoF statistics
for the SPP cannot provide.

6.5.2 Detecting anomalies in simulated data

In this section, we test the OoD detection approach discussed in Section 6.3.2, i.e., we
perform anomaly detection for a TPP with an unknown compensator. This corresponds
to the hypothesis test in Equation 6.1. We use the training set Diain to fit an RNN-
based neural TPP model [167] via maximum likelihood estimation (see Appendix G.6
for details). Then, we define test statistics for the general TPP as follows. We apply the
compensator A* of the learned model to each event sequence X and compute the four
statistics for the SPP from Section 6.5.1 on the transformed sequence Z = A*(X). We
highlight that these methods are not “baselines” in the usual sense—the idea of combin-
ing a GoF statistic with a learned TPP model to detect anomalous event sequences is
itself novel and has not been explored by earlier works. The rest of the setup is similar to
Section 6.5.1. We use Di;ain to compute the eCDF of each statistic under Hy, and then
compute the ROC AUC scores on the p-values. In addition to the four statistics dis-
cussed before, we consider a two-sided test on the log-likelihood log ¢(X) of the learned
generative model, which corresponds to the approach by Nalisnick et al. [128].

Datasets. Like before, we define a detectability parameter § for each scenario that de-
termines how dissimilar ID and OoD sequences are. SERVER-STOP, SERVER-OVERLOAD
and LATENCY are inspired by applications in DevOps, such as detecting anomalies in
server logs.

e SERVER-OVERLOAD and SERVER-STOP contain data generated by a multivariate
Hawkes process with 3 marks, e.g., modeling network traffic among 3 hosts. In
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Figure 6.5: OoD detection on simulated data using different test statistics, measured with with
ROC AUC (higher is better). See Section 6.5.2 for the description of the experi-
mental setup.

OoD sequences, we change the influence matrix to simulate scenarios where a host
goes offline (SERVER-STOP), and where a host goes down and the traffic is routed
to a different host (SERVER-OVERLOAD). Higher § implies that the change in the
influence matrix happens earlier.

e LATENCY contains events of two types, sampled as follows. The first mark, the
“trigger,” is sampled from a homogeneous Poisson process with rate 4 = 3. The
arrival times of the second mark, the “response,” are obtained by shifting the times
of the first mark by an offset sampled i.i.d. from Normal(x = 1,0 = 0.1). In OoD
sequences, the delay is increased by an amount proportional to §, which emulates
an increased latency in the system.

e SPIKETRAINS [175] contains sequences of firing times of 50 neurons, each repre-
sented by a distinct mark. We generate OoD sequences by shuffling the indices
of k neurons (e.g., switching marks 1 and 2), where higher detectability ¢ implies
more switches k. Here we study how different statistics behave for TPPs with a
large number of marks.

Results are shown in Figure 6.5. The 3S statistic demonstrates excellent performance
in all four scenarios, followed by KS arrival and chi-squared. In case of SERVER-STOP
and SERVER-OVERLOAD, the 3S statistic allows us to perfectly detect the anomalies
even when only 5% of the time interval are affected by the change in the influence
structure. KS inter-event and log-likelihood statistics completely fail on SERVER-STOP
and SERVER-OVERLOAD, respectively. These two statistics also struggle to discriminate
OoD sequences in LATENCY and SPIKETRAINS scenarios. The non-monotone behavior
of the ROC AUC scores for some statistics (as the ¢ increases) indicates that these
statistics are poorly suited for the respective scenarios.

6.5.3 Detecting anomalies in real-world data

Finally, we apply our methods to detect anomalies in two real-world event sequence
datasets. We keep the setup (e.g., configuration of the neural TPP model) identical to
Section 6.5.2.
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Table 6.1: ROC AUC scores for OoD detection on real-world datasets (mean & standard error
are computed over 5 runs). Best result in bold, results within 2 pp. of the best

underlined.

KS arrival KS inter-event Chi-squared Log-likelihood 3S statistic
Loas — Packet corruption (1%) 574+ 1.7 62.1+09 66.6+ 1.8 75.9+£0.1 95.5 +0.3
Loas — Packet corruption (10%) 59.2 £ 2.3 97.8 £ 0.6 59.1 £ 2.3 99.0 £ 0.0 99.4 £0.1
Loas — Packet duplication (1%) 81.1 £5.2 82.8 £5.0 74.6 £ 6.5 88.1 £0.1 90.9 +0.3
Loas — Packet delay (frontend) 95.6 £ 1.2 989 +£04 99.3+0.1 90.9 £0.0 976 £0.1
Loas — Packet delay (all services) 99.8 £ 0.0 94.7+11 99.8 £0.0 96.1 £0.0 99.6 £0.1
STEAD — Anchorage, AK 59.6 £ 0.2 79.7 £ 0.1 67.4 £ 0.2 88.0 £ 0.1 88.3 +0.6
STEAD — Aleutian Islands, AK 53.8 £ 0.5 88.8 £ 0.3 62.2 + 0.9 97.0 £ 0.0 99.8 £0.0
STEAD — Helmet, CA 59.1 £ 0.9 98.7 £ 0.0 70.0 £ 0.6 96.9 £ 0.0 92.6 £0.3

Loas: We generate server logs using Sock Shop microservices [190] and represent them
as marked event sequences. Sock Shop is a standard testbed for research in microservice
applications [2] and contains a web application that runs on several containerized ser-
vices. We generate OoD sequences by injecting various failures (e.g., packet corruption,
increased latency) among these microservices using a chaos testing tool Pumba [104].
We split one large server log into 30-second subintervals, that are then partitioned into
train and test sets.

STEAD (Stanford Earthquake Dataset) [126] includes detailed seismic measurements
on over 1 million earthquakes. We construct four subsets, each containing 72-hour
subintervals in a period of five years within a 350km radius of a fixed geographical
location. We treat sequences corresponding the San Mateo, CA region as in-distribution
data, and the remaining 3 regions (Anchorage, AK, Aleutian Islands, AK and Helmet,
CA) as OoD data.

Results. Table 6.1 shows the ROC AUC scores for all scenarios. KS arrival and
chi-squared achieve surprisingly low scores in 6 out of 8 scenarios, even though these two
methods showed strong results on simulated data in Sections 6.5.1 and 6.5.2. In contrast,
KS inter-event and log-likelihood perform better here than in previous experiments, but
still produce poor results on Packet corruption. The 3S statistic is the only method that
consistently shows high ROC AUC scores across all scenarios. Moreover, we observe that
for marked sequences (LOGS and all datasets in Section 6.5.2), the 3S statistic leads to
more accurate detection compared to the log-likelihood statistic in 9 out of 9 cases.

6.6 Conclusions

Limitations. Our approach assumes that the sequences in Diyain were drawn i.i.d.
from the true data-generating distribution Pgat, (Section 6.1). This assumption can be
violated in two ways: some of the training sequences might be anomalous or there might
exist dependencies between them. We have considered the latter case in our experiments
on SPIKETRAINS and LOGS datasets, where despite the non-i.i.d. nature of the data our
method was able to accurately detect anomalies. However, there might exist scenarios
where the violation of the assumptions significantly degrades the performance.
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No single test statistic can be “optimal” for either OoD detection or GoF testing,
since we make no assumptions about the alternative distribution Q (Section 6.1). We
empirically showed that the proposed 3S statistic compares favorably to other choices
over a range of datasets and applications domains. Still, for any fized pair of distributions
P and Q, one can always find a statistic that will have equal or higher power s.t. the
same false positive rate [130]. Hence, it won’t be surprising to find cases where our (or
any other chosen a priori) statistic is inferior.

Broader impact. Continuous-time variable-length event sequences provide a natural
representation for data such as electronic health records [56], server logs [81] and user
activity traces [214]. The ability to perform unsupervised anomaly detection in such data
can enable practitioners to find at-risk patients, reduce DevOps costs, and automatically
detect security breaches—all of which are important tasks in the respective fields. One of
the risks when applying an anomaly detection method in practice is that the statistical
anomalies found by the method will not be relevant for the use case. For example, when
looking for health insurance fraud, the method might instead flag legitimate patients
who underwent atypically many procedures as “suspicious” and freeze their accounts.
To avoid such situations, automated decisions systems should be deployed with care,
especially in sensitive domains like healthcare.

Conclusion. We have presented an approach for OoD detection for temporal point
processes based on goodness-of-fit testing. At the core of our approach lies a new GoF
test for standard Poisson processes based on the 3S statistic. Our method applies to a
wide class of TPPs and is extremely easy to implement. We empirically showed that the
proposed approach leads to better OoD detection accuracy compared to both popular
GoF statistics for TPPs (Kolmogorov—Smirnov, chi-squared) and approaches commonly
used in OoD detection literature (model log-likelihood). While our analysis focuses on
TPPs, we believe our discussion on similarities and distinctions between GoF' testing
and OoD detection offers insights to the broader machine learning community.
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7 Conclusion

In this thesis we discussed various aspects of design and application of temporal point
processes for modeling continuous-time event data. In Part II, we presented two families
of neural TPP models based on recurrent neural networks and triangular maps. In
addition to being flexible, these models permit reparametrization sampling and can be
trained efficiently via maximum likelihood. These properties open new applications for
TPPs, as we showed in Part III. More specifically, we demonstrated how TPPs can be
used for anomaly detection and trained using sampling-based losses.

We conclude this thesis with a retrospective, where we discuss subsequent works in
the field of TPPs and show how our contributions fit into the broader research context.
Finally, we list open research questions and possible directions for future work.

7.1 Retrospective

7.1.1 Neural TPP architectures

The LogNormMix model that we introduced in Chapter 3 follows the general encoder-
decoder architecture for neural TPPs: The encoder embeds the event history H(¢;) into
a summary vector h;, and the decoder uses h; to model the distribution p}(t;) of the
next event. The novelty of our approach lies in a new decoder parametrization that
enables efficient training and sampling, while the encoder is based on a recurrent neural
network, similar to earlier works [52, 139].

Transformer. Several subsequent works [120, 208, 215, 217] suggested replacing
the RNN encoder with a transformer [185]. Sharma et al. [166] have shown that our
LogNormMix model can similarly be combined with a transformer encoder. The main
advantage of the transformer compared to the RNN is its ability to capture long-range
dependencies between events thanks to the self-attention mechanism. This, however,
comes at increased computational cost — time and space complexity of evaluating the
log-likelihood for a sequence with N events scale as O(N?) for a transformer. The RNN
encoder is more efficient with its O(N) scaling. This means that transformer-based
neural TPPs cannot be trained on very long sequences (more than 103-10* events) but
can achieve superior predictive results compared to RNN-based models [208].

Neural ordinary differential equations (neural ODEs). Another line of research
explored TPP architectures based on neural ODEs [95, 159]. Such approaches define
a state h(t) that evolves in continuous time according to a neural ODE [30]. The
intensity A\*(¢) at each time ¢ € [0,77] is then defined directly as a function of the state
A*(t) = g(h(t)). This is different from encoder-decoder architectures that we discussed
before, where the history embedding h; is only updated after observed events. ODE-
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based models are, in theory, more flexible since they do not assume a parametric form
for the conditional intensity function. However, training and prediction in such models
rely on numerical integration, and therefore are slower and less accurate than in encoder-
decoder TPPs. A recent work by Bilos et al. [13] showed a way to overcome this limitation
by directly parametrizing the ODE solution. Their model, known as Neural Flow, can
also be combined with LogNNormMix in an encoder-decoder architecture.

Summary. Different families of neural TPP architectures (RNN-, transformer- and
ODE-based) provide different trade-offs between efficiency, expressiveness and ability
to capture long-range dependencies. Unfortunately, a thorough and fair comparison
between different methods is difficult due to lack of standardized implementations and
benchmarks. We will discuss this aspect in more detail in Section 7.2.

7.1.2 Reparametrization sampling for TPPs

In Part II, we presented LogNormMix and TriTPP — two neural TPP models that
permit reparametrization sampling, and therefore can be trained using sampling-based
losses. Later, Chen et al. [28] derived a similar reparametrization sampling method for
TPP models based on neural ODEs. As in case of TriTPP, the approach of Chen et al.
is based on the inverse transform algorithm (Algorithm 3).

Kajino [96] took a different approach and derived a differentiable relaxation of the
thinning algorithm (Algorithm 5) for the spike-response model [68]. This approach is
motivated by variational inference in spiking neural networks [156]. Their method uses
the Gumbel-softmax trick [92, 116] to deal with non-differentiability of the loss function.

These different approaches for optimizing sampling-based losses all rely on specific
properties of the underlying TPP model. For example, the spike-response model from
[96] has a straightforward upper bound on the intensity, which is a prerequisite for apply-
ing the thinning algorithm. On the other hand, reparametrization trick for LogNormMix
relies on our ability to differentiate through samples from the mixture distribution.

In conclusion, the availability of reparametrization sampling methods opens new ap-
plications for TPP models that go beyond the standard prediction tasks.

7.1.3 Applications

LogNormMix model (Chapter 3) can be trained and sampled from efficiently, which
led to the adoption of this model in several follow-up works. For example, it has been
used to simulate communication between computers, with applications in cybersecurity
[122] and distributed system planning [173]. Gupta et al. [78] use LogNormMix to impute
missing observations in partially-observed event sequences. Two other works extend our
model to cluster event sequences, which is used to detect coordinated malicious accounts
on social media [166, 211].

Anomaly detection. In Chapter 6, we presented an approach for detecting anoma-
lous event sequences with neural TPP models. We consider sequence-level anomalies,
where an entire event sequence can be either normal or anomalous. Such formulation
can be used to find suspicious activity traces corresponding to fraudulent behavior in
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cybersecurity, or to find periods of abnormal activity in server logs. However, there exist
other ways to formulate the anomaly detection task for TPPs. For instance, a concur-
rent work by Liu and Hauskrecht [114] aims to detect individual events that might be
abnormal.

More broadly, the problem of unsupervised out-of-distribution detection with genera-
tive models has received a lot of attention in the machine learning community [27, 128,
129]. Similar to our approach in Chapter 6, Bergamin et al. [11] observed the close con-
nection between the goodness-of-fit testing problem and out-of-distribution detection.
They repurpose several general goodness-of-fit statistics based on the likelihood func-
tion, while we considered statistics for TPP models based on the random time change
theorem.

Marked event sequences. In this thesis, we primarily focus on modeling unmarked
event sequences, where events are represented only by their arrival time. An important
line of ongoing research deals with marked TPPs, where each event contains additional
metadata like type or location. For instance, structure discovery [209, 210] aims to
detect causal relationships between different event types using TPPs with categorical
marks. Spatio-temporal point processes [29, 213] predict event locations in addition to
their times, which is useful in domains such as earthquake forecasting. Our LogNormMix
model present can also be extended to the marked setting, as outlined in Section 3.2.4
and demonstrated by subsequent works [110]. Extending the TriTPP model (Chapter 4)
to the marked setting, however, is more challenging and remains an important direction
for future work.

7.2 Open questions and future work

Temporal point processes are now firmly established in the machine learning community,
and an ever-increasing number of papers is published on this topic every year. Many of
the works (including ones that constitute this thesis) focus on developing new neural TPP
architectures [52, 119, 139, 167, 208, 215, 217]. We believe that some of the potentially
most impactful directions for future work involve reconsidering how we evaluate and
apply neural TPP models. We broadly divide these into the following categories.

Evaluation metrics. The two most commonly used approaches for evaluating the
predictive performance of neural TPPs are based on negative log-likelihood (NLL) and
single-event prediction (e.g., predicting time or type of the next event). Both of these
have their disadvantages: NLL can be misleading and does not guarantee good sam-
ple quality [180], while single-event-based metrics provide limited insight into TPPs as
generative models for entire event sequences [170, Section 7.2].

To guide our search for better TPP models we need metrics that are more closely
aligned with the practical application of these models. For example, we can look into
the field of seismology, where TPPs are used to forecast aftershock sequences [162]. Tools
from probabilistic forecasting [69, 70] could be adopted to measure the quality of long-
term forecasts generated by TPPs. Such metrics would both be relevant to practitioners
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and properly evaluate TPPs as generative models for entire sequences — two properties
that are not satisfied by NLL and single-event-based metrics.

Datasets and benchmarks. Progress in many other subfields of machine learning
has been driven by the availability of large high-quality datasets [47, 48, 87, 111]. Unfor-
tunately, no such collections of event data are available for training and evaluating TPP
models. Many event sequence datasets used in the literature are not motivated by any
particular real-world application of TPPs. Therefore, it is unclear whether models that
perform well on these datasets will generalize to real-world tasks. Enguehard et al. [56]
also point out that several popular TPP datasets can be perfectly modeled by a simple
history-independent baseline, so they are likely poorly suited for evaluating neural TPPs.

Another related issue is the lack of reference implementations of neural TPP models.
A typical neural TPP implementation requires many preprocessing, hyperparameter and
architectural choices. All of these vary greatly across different implementations, which
makes it hard to pinpoint the source of improved performance. To conclude, developing
standardized open-source neural TPP libraries as well as collecting high-quality event
sequence datasets are both crucial for the progress of TPP research.

Applications. Many earlier developments in the field of TPPs were motivated by
applications in scientific disciplines like seismology [134, 135] and neuroscience [46, 68].
Conventional TPP models like Hawkes and Neymann—Scott processes are still widely
used by researchers in these domains [136, 195]. However, most of the recent work on
neural TPPs stays limited to the machine learning community and has not propagated
back to the practitioners.

Adapting neural TPPs to the traditional domains like seismology and neuroscience
is important for several reasons. On the one hand, such work has practical significance
for the respective fields. On the other hand, these application areas come with their
own challenges, such as need for scalable and interpretable models. Addressing these
challenges will in turn require innovation on the machine learning side of neural TPPs.
There also exist other domains like information security, DevOps, demand forecasting
and process mining that are full with potential applications for TPP models.
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