
TUM School of Computation, Information and Technology
Technische Universität München

Modeling Continuous-time Event Data with

Neural Temporal Point Processes

Oleksandr Shchur

Vollständiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universität München zur Erlangung des akademischen
Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:
Prof. Dr. Nils Thuerey

Prüfende der Dissertation:
1. Prof. Dr. Stephan Günnemann
2. Prof. Dr. Scott Linderman,

Stanford University

Die Dissertation wurde am 04.07.2022 bei der Technischen Universität München
eingereicht und durch die TUM School of Computation, Information and Technology am
14.11.2022 angenommen.

Abstract

Event data lies at the core of many high-impact applications of machine learning. Hospi-
tal visits in electronic health records, earthquake catalogs in seismology, and spike trains
in neuroscience — all can be represented as variable-length event sequences in continuous
time. Temporal point processes (TPPs) provide a natural framework for modeling such
data. However, conventional TPP models lack the ability to capture complex patterns
present in real-world event data. Neural TPPs aim to address this limitation by com-
bining neural networks with the fundamental ideas from point process literature. The
two main themes of this thesis are (1) design of flexible, tractable and efficient neural
TPP models, and (2) their applications to real-world problems. Our first contribution
is the connection between TPPs and the field of neural density estimation. This allows
us to develop the first neural TPP model, where likelihood computation, sampling, and
prediction can all be done efficiently in closed form. Next, we propose TriTPP — a new
class of expressive TPP models, where, unlike existing methods, all operations can be
done in parallel. Fast parallel sampling opens new applications for TPP models. We
show this by deriving a variational inference scheme for continuous-time discrete-state
systems. Finally, we combine goodness-of-fit testing approaches with neural TPP models
to create a simple and effective anomaly detection method for event sequences.

iii

Zusammenfassung

Zeitlich aufgelöste Daten bilden einen wichtigen Bestandteil vieler Anwendungen des
maschinellen Lernens. Seien es Krankenhausbesuche erfasst elektronischen Krankenak-
ten, Erdbebenkataloge in der Seismologie oder Spike Trains in der Neurowissenschaft,
all diese Daten lassen sich als Ereignisfolgen darstellen. Den natürlichen Rahmen zur
Modellierung der zeitlichen Entwicklung von Ereignisfolgen bilden stochastische Prozesse
oder genauer Temporale Punktprozesse (TPPs). Während konventionelle TPP-Modelle
limitiert darin sind, komplexe Muster aus realen Ereignisdaten zu erfassen, können neu-
ronale TPPs diese Einschränkung beheben, indem sie neuronale Netze mit den Meth-
oden der Punktprozesstheorie kombinieren. Den Schwerpunkt dieser Arbeit bilden (1)
der Entwurf flexibler, interpretierbarer und effizienter neuronaler TPP-Modelle und (2)
die Anwendung dieser auf reale Probleme. Hierbei ist die gemeinsame Betrachtung von
TPPs und dem Gebiet der neuronalen Dichteschätzung ein erster Beitrag. Das Resul-
tat hieraus ermöglicht die Entwicklung des ersten neuronalen TPP-Modells, bei dem
Likelihood-Berechnung, das Sampling und die Vorhersage effizient und in geschlossener
Form durchgeführt werden können. Darauf aufbauend wird eine neue Klasse von flexi-
blen TPP-Modellen, TriTPP, eingeführt, welche im Gegensatz zu bestehenden Methoden
erlaubt, alle Operationen parallel durchzuführen. Das schnelle und parallele Sampling
eröffnet auf diese Weise neue Anwendungen für TPP-Modelle, da es Variationsverfahren
für zeitkontinuierliche Systeme mit diskreten Zuständen erlaubt. Zuletzt wird gezeigt,
wie die Kombination von Goodness-of-Fit-Tests und neuronalen TPP-Modellen eine ein-
fache und effektive Methode zur Erkennung von Anomalien in Ereignisfolgen darstellt.

v

Acknowledgments

First of all, I would like to thank Prof. Stephan Günnemann. I feel so lucky and grateful
for the opportunity to pursue a PhD under your guidance. Thank you for being such an
incredible advisor, for showing me how to become a better researcher and teacher, and,
especially, for our stimulating brainstorming sessions and discussions. I really appreciate
your mentorship and support.
I am grateful to everyone at the DAML group at TUM for your readiness to help, the

interesting conversations, and the great time we spent together both in the university
and outside. Special thanks to Leon Hetzel for helping me translate the abstract of the
dissertation to German.
I would like to thank my collaborators at TUM Aleksandar Bojchevski, Daniel Zügner,

Marin Bilos, and Nicholas Gao. I learned so much from each of you, and working with
you was both inspiring and lots of fun.
Thank you to all the incredible people that I was fortunate to work with during my

internships. I am grateful to Caner Türkmen, Tim Januschowski and Jan Gasthaus at
AWS, and Max Nickel and Matt Le at FAIR for their mentorship.
I want to also thank my parents for their support and encouragement, and for giving

me an opportunity to study in Germany.
Thank you Vera for always being there for me and bringing so much joy to my life. I am

grateful for your unwavering support throughout these years, your help with designing
posters and presentations, and our inspiring discussions about research. There is no way
I could complete this journey without you.

vii

Contents

Abstract iii

Zusammenfassung v

Acknowledgments vii

Contents ix

I Introduction 1

1 Introduction 3
1.1 Machine learning for continuous-time event data 3

1.2 Contributions and outline . 4

1.3 Own publications . 5

2 Background 7
2.1 Generative probabilistic modelling . 7

2.2 Temporal point processes . 8

2.2.1 Representation . 8

2.2.2 TPP as an autoregressive model 9

2.2.3 Conditional intensity function . 10

2.2.4 Conventional TPP models . 10

2.2.5 Random time change theorem . 15

2.2.6 Parameter estimation . 16

2.2.7 Simulation methods . 17

2.2.8 Marked temporal point processes 21

2.3 Deep learning for sequential data . 23

II Neural temporal point process models 25

3 Intensity-free learning of temporal point processes 27
3.1 Background . 27

3.2 Models . 29

3.2.1 Modeling p(τ) with normalizing flows 30

3.2.2 Modeling p(τ) with mixture distributions 31

ix

CONTENTS

3.2.3 Incorporating the conditional information 32

3.2.4 Marked TPP . 33

3.2.5 Discussion . 35

3.3 Related work . 36

3.4 Experiments . 37

3.4.1 Event time prediction using history 37

3.4.2 Learning with marks . 39

3.4.3 Learning with additional conditional information 39

3.4.4 Missing data imputation . 39

3.4.5 Sequence embedding . 40

3.5 Conclusions . 41

4 Fast and flexible temporal point processes with triangular maps 43
4.1 Background . 43

4.2 Defining temporal point processes using triangular maps 44

4.2.1 Requirements for efficient TPP models 45

4.2.2 Fast temporal point process models 46

4.2.3 Defining more flexible triangular maps 47

4.3 Related work . 48

4.4 Experiments . 49

4.4.1 Scalability . 49

4.4.2 Density estimation . 50

4.5 Conclusions . 52

III Applications 53

5 Learning with sampling-based losses 55
5.1 Background . 55

5.1.1 Sampling-based losses for TPPs . 55

5.1.2 Monte Carlo gradient estimators 56

5.2 Reparametrization trick for TPPs . 57

5.2.1 Inversion method as reparametrization sampling 57

5.2.2 Differentiable relaxation for TPP losses 58

5.3 Variational inference for Markov jump processes 60

5.4 Related work . 61

5.5 Experiments . 62

5.5.1 Variational inference on simulated data 62

5.5.2 Variational inference on real-world data 63

5.6 Conclusions . 64

6 Anomaly detection 65
6.1 Anomaly detection and goodness-of-fit testing 65

6.2 Review of existing GoF test statistics for TPPs 68

x

CONTENTS

6.3 Sum-of-squared-spacings (3S) statistic for TPPs 69

6.3.1 Goodness-of-fit testing with the 3S statistic 69

6.3.2 Out-of-distribution detection with the 3S statistic 71

6.4 Related work . 72

6.5 Experiments . 73

6.5.1 Standard Poisson process . 73

6.5.2 Detecting anomalies in simulated data 75

6.5.3 Detecting anomalies in real-world data 76

6.6 Conclusions . 77

IV Conclusion 79

7 Conclusion 81
7.1 Retrospective . 81

7.1.1 Neural TPP architectures . 81

7.1.2 Reparametrization sampling for TPPs 82

7.1.3 Applications . 82

7.2 Open questions and future work . 83

Bibliography 85

A Notation 103

B Abbreviations 109

C Characterizing a temporal point process 111

D Supplementary materials for Chapter 3 113
D.1 Survival and intensity functions for the proposed models 113

D.2 Discussion of constant & exponential intensity models 113

D.3 Discussion of the FullyNN model . 114

D.4 Implementation details . 116

D.4.1 Shared architecture . 116

D.4.2 Log-normal mixture . 116

D.4.3 Baselines . 117

D.4.4 Deep sigmoidal flow . 117

D.4.5 Sum-of-squares polynomial flow . 117

D.5 Dataset statistics . 118

D.5.1 Synthetic data . 118

D.5.2 Real-world data . 119

D.6 Additional discussion of the experiments 120

D.6.1 Event time prediction using history 120

D.6.2 Learning with marks . 122

D.6.3 Learning with additional conditional information 123

xi

CONTENTS

D.6.4 Missing data imputation . 123
D.6.5 Sequence embedding . 124

E Supplementary materials for Chapter 4 125
E.1 Implementation details . 125

E.1.1 Batch processing . 125
E.1.2 Sampling . 126
E.1.3 Ensuring that the TPP is valid . 126
E.1.4 Parametrizing transformations using splines 127

E.2 Datasets . 127
E.3 Experimental setup . 128

E.3.1 Scalability . 128
E.3.2 Density estimation . 129

E.4 Additional experiments . 130
E.4.1 Density estimation . 130

F Supplementary materials for Chapter 5 133
F.1 Model definition . 133

F.1.1 Markov jump process (MJP) . 133
F.1.2 Markov modulated Poisson process (MMPP) 134
F.1.3 Derivation of the ELBO . 135
F.1.4 Parameter estimation . 138

F.2 Experimental setup . 138

G Supplementary materials for Chapter 6 139
G.1 Difference between GoF testing and OoD detection 139
G.2 Other statistics based on squared spacings 140
G.3 Proof of Proposition 1 . 141
G.4 Implementation details . 142
G.5 Datasets . 144

G.5.1 Standard Poisson process . 144
G.5.2 Simulated data . 144
G.5.3 Real-world data . 146

G.6 Experimental setup . 146
G.6.1 GoF for the SPP (Section 6.5.1) 146
G.6.2 OoD detection (Sections 6.5.2 & 6.5.3) 146

G.7 Fisher’s method for KS statistics . 147

xii

Part I

Introduction

1

1 Introduction

1.1 Machine learning for continuous-time event data

Financial transactions, online communication, neural spike trains, earthquakes — vari-
ous human-made and natural phenomena can be represented as sequences of events in
continuous time. Probabilistic models for such event data known as temporal point pro-
cesses (TPP) can be used to make predictions, find patterns and better understand the
respective real-world systems. The theory of TPPs was developed in the 20th century
in the seminal works of Feller [57, 58], Cox [35, 38], Lewis [105, 106], Hawkes [79], and
Ogata [133, 134]. Thanks to the ubiquity of event data, TPPs became widely adopted
both in scientific fields like seismology [82, 135] and neuroscience [46, 68], as well as in
industries such as finance [9, 80] and healthcare [3, 56].
Last decades saw an explosion in both scale and complexity of event data encoun-

tered in practical applications. New techniques in seismology enable collection of rich,
diverse datasets with millions of earthquakes [126, 192]. Online services like Twitter and
Facebook capture social interactions on an unprecedented scale, and hosting providers
such as AWS generate petabytes of data each day [165]. Analyzing this data can unlock
immense value. However, conventional TPP models, like Poisson or self-exciting pro-
cesses, are unable to capture the complex patterns present in such data. Moreover, the
event sequences are often accompanied by additional attributes (e.g., locations) that are
relevant for prediction tasks, but incorporating them into conventional TPPs requires
tedious feature engineering. Dealing with these issues requires developing new TPP
models that have the flexibility to represent complex patterns and are scalable enough
to handle large diverse datasets.
In recent years a new class of models known as neural TPPs emerged to address the

above challenges [170]. Neural TPPs combine the fundamental ideas from the theory of
point process with deep learning approaches. Deep learning methods are based on neural
networks — expressive function approximators defined via composition of differentiable
transformations [72]. Neural-network-based approaches significantly advanced the state
of the art in computer vision [101, 186], natural language processing [23, 48], machine
learning on graphs [212] and a number of other fields. In this thesis, we study the
application of deep learning to continuous-time event data.
In the context of neural TPPs, the flexibility of neural networks allows us to learn

different patterns of event occurrence automatically from the data, instead of specifying
them manually, as in conventional models. For instance, in a self-exciting process, ob-
served events can only increase the rate of arrival of future events — a rather limiting
assumption that does not hold in many real-world event datasets (e.g., inhibitory neu-
rons in the brain decrease the firing rate [46]). In contrast, a neural TPP model can

3

1 Introduction

automatically learn both inhibiting and excitatory effects of different event types in a
purely data-driven way.

The seminal works by Du et al. [52] and Mei & Eisner [119] in 2016 were the first to
show the new possibilities opened by combining TPPs with neural networks. These were
followed by a number of papers that proposed new model architectures and parameter
estimation algorithms for neural TPPs [95, 108, 181, 198–200]. However, there remain a
number of open questions related to both design and application of deep-learning-based
TPP models.

1.2 Contributions and outline

Neural TPP models should meet a number of requirements to be successfully applied
to real-world tasks. Expressiveness, tractability, efficient training and inference for such
models are often at odds with each other, and existing neural TPP architectures make
suboptimal tradeoffs between these properties. In the first part of the thesis, we focus
on these aspects of TPP model design, which we formulate as our first research question:

Research Question 1: How can we define flexible neural TPP models that are at the
same time tractable and efficient?

We start by reviewing the basics of probabilistic modeling and deep learning, as well
as provide a self-contained introduction to TPPs from a machine learning perspective
in Chapter 2. In Chapter 3, we discuss the limitations of existing neural TPP mod-
els and introduce a new class of models that address these shortcomings. By drawing
connections to the field of neural density estimation, we construct flexible neural TPPs,
where both likelihood computation and sampling can be done analytically. This is a
major improvement compared to existing approaches, none of which satisfy all these
criteria simultaneously. Next, in Chapter 4, we take a different path and show how all
TPPs can be viewed through the lens of triangular maps. Based on this insight, we pro-
pose TriTPP — a new flexible and efficient TPP parametrization based on compositions
of invertible transformations. Modern TPP architectures usually utilize autoregressive
neural networks (e.g., RNNs and transformers) and therefore are inherently sequential.
In contrast, in TriTPP both sampling and training can be done in parallel, which leads
to massively improved efficiency. Moreover, efficient sampling with reparametrization
opens new applications for TPPs. This leads directly to our second research question:

Research Question 2: How can we apply neural TPPs to solve real-world problems?

In Chapter 5, we show how the reparametrization trick allows us to efficiently train
TPP models with sampling-based losses. Such loss functions for TPPs are typically
discontinuous, which makes optimizing them with gradient-based methods impossible.
To address this challenge, we introduce a differentiable relaxation for losses involving
variable-length event sequences. To show the utility of this approach, we develop a
variational inference scheme for continuous-time discrete-state systems like Markov jump
processes. Finally, in Chapter 6, we tackle anomaly detection for event sequences with
TPPs. We demonstrate how the anomaly detection problem — for arbitrary data types,

4

1.3 Own publications

Table 1.1: List of own publications that this thesis is based on. Code and datasets for the re-
spective publications are available at https://github.com/shchur/[repository].

Ch. Ref. Title Conference Repository

2–3 [170] Neural Temporal Point Processes: A Review IJCAI 2021 N/A
3 [167] Intensity-free Learning of Temporal Point Processes ICLR 2020 /ifl-tpp/

4–5 [168]
Fast and Flexible Temporal Point Processes
with Triangular Maps

NeurIPS 2020 /triangular-tpp/

6 [169]
Detecting Anomalous Event Sequences
with Temporal Point Processes

NeurIPS 2021 /tpp-anomaly-detection/

not just event sequences — can be approached using goodness-of-fit tests for generative
models. We combine this framework with our neural TPP model from Chapter 3, which
leads to a simple and effective method for anomaly detection.

1.3 Own publications

The content of Chapters 3 to 6 is mostly based on papers previously published at inter-
national peer-reviewed conferences. We list these papers in Table 1.1. We also provide
the full list of publications that the author was involved in during the PhD studies below:

[1] Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Günnemann.
Netgan: Generating graphs via random walks. In International Conference on Ma-
chine Learning, 2018.

[2] Federico Monti, Oleksandr Shchur, Aleksandar Bojchevski, Or Litany, Stephan
Günnemann, and Michael M Bronstein. Dual-primal graph convolutional networks.
Graph Embedding and Mining Workshop, ECML-PKDD, 2018.

[3] Oleksandr Shchur, Marin Biloš, and Stephan Günnemann. Intensity-free learning of
temporal point processes. In International Conference on Learning Representations,
2020. (cited on pages 5, 43, 45, 49, 50, 75, 83, and 146)

[4] Oleksandr Shchur, Aleksandar Bojchevski, Mohamed Farghal, Stephan Günnemann,
and Yusuf Saber. Anomaly detection in car-booking graphs. In International Con-
ference on Data Mining Workshops, ICDM, 2018.

[5] Oleksandr Shchur, Nicholas Gao, Marin Biloš, and Stephan Günnemann. Fast and
flexible temporal point processes with triangular maps. In Advances in Neural In-
formation Processing Systems, 2020. (cited on pages 5, 55)

[6] Oleksandr Shchur and Stephan Günnemann. Overlapping community detection with
graph neural networks. Deep Learning on Graphs Worshop, KDD, 2019.

[7] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. Pitfalls of graph neural network evaluation. Relational Representa-
tion Learning Workshop, NeurIPS, 2018.

5

1 Introduction

[8] Oleksandr Shchur, Ali Caner Türkmen, Tim Januschowski, Jan Gasthaus, and
Stephan Günnemann. Detecting anomalous event sequences with temporal point
processes. Advances in Neural Information Processing Systems, 2021. (cited on
pages 5, 7)

[9] Oleksandr Shchur, Ali Caner Türkmen, Tim Januschowski, and Stephan
Günnemann. Neural temporal point processes: A review. International Joint Con-
ference on Artificial Intelligence, 2021. (cited on pages 3, 5, 7, 65, and 83)

6

2 Background

In this chapter we go over the mathematical foundations of TPPs. We introduce notation
and important concepts that will allow us to discuss the contributions of the thesis. The
overview of TPPs is primarily based on the lecture notes by Rasmussen [152], tutorial
by Gomez-Rodriguez & Valera [71] and the review paper by Shchur et al. [170]. For a
rigorous measure-theoretic treatment of TPPs, see Daley & Vere-Jones [41, 42].

We provide an overview of the notation and abbreviations used throughout the thesis
in Appendices A and B respectively.

2.1 Generative probabilistic modelling

Probabilistic models are the foundation of modern machine learning [16, 127]. Generative
probabilistic models are a class of approaches that define a stochastic procedure for
generating data, usually in a way that matches the behavior of some real-world system.
For instance, in seismology we might be interested in defining a model that generates
realistic aftershock sequences to better understand or forecast earthquake sequences
occurring in nature. Even if the system that we model is deterministic on the macroscopic
level (e.g., earthquakes, climate, server logs), treating it as stochastic allows us to account
for unobserved variables and imprecise measurements.

Typically, a generative model is governed by a set of parameters θ that need to be
estimated using observed data Dtrain produced by the system under study. A prominent
example is the maximum likelihood principle, where the parameters of the generative
model are optimized to maximize the (logarithm of the) probability of observed data [4]

θMLE = argmax
θ

log pθ(Dtrain). (2.1)

Once the parameters have been estimated, the model can be used in a number of ways.
A common application is conditional generation — given a partially observed data in-
stance, a generative model can provide distribution over the missing data or predict the
future. Examples of this task include generating possible sentence continuations [23],
inpainting missing parts of an image [204], and earthquake forecasting [21]. Sometimes,
learned parameters of the model can help us understand real-world systems. For in-
stance, by fitting a generative model to neural spike trains, it is possible to recover the
connectivity structure between the neurons [112]. Finally, by testing the goodness of fit
of the model to the data, we can assess the validity of scientific hypotheses (e.g., “Does a
certain stimulus elicit a response in this part of the brain?”) [46, 68] or detect anomalies
in the data [169].

7

2 Background

0 t1 t2 t3 t4 t5 T time

0 t1 t2 t3 t4 t5 T
0
1
2
3
4
5

N
(t

)
N(t)

Figure 2.1: A realization of a TPP can be represented either as a sequence of arrival times
T = (t1, . . . , tN) (above) or as a counting process {N(t) : t ∈ [0, T]} (below).

2.2 Temporal point processes

2.2.1 Representation

In the most intuitive sense, a temporal point process (TPP) is a generative model for
variable-length event sequences in continuous time. For example, suppose we would like
to model the activity of a single user on a social network over some time window [0, T].
We can represent each post made by the user by its arrival time ti and the activity over
the entire time window as an event sequence T = (t1, . . . , tN). TPP allows us to define
a probability distribution over such sequences, where both N , the number of events, as
well as their arrival times ti are random.1 Note that it is also possible that no events
are observed in the time window, that is N = 0. Sometimes it is convenient to instead
work with the inter-event times (τ1, . . . , τN+1), where we define τi := ti− ti−1, assuming
t0 = 0 and tN+1 = T .

We can also view TPP as a type of stochastic process — i.e., a probability distribu-
tion over functions — known as a counting process. In this case, we represent a TPP
realization by a function N(t) that returns the number of events observed in the interval
[0, t]. This is formally defined as

N(t) :=
∑
ti∈T

1(t ≥ ti) for t ∈ [0, T]. (2.2)

Here 1(·) is the indicator function that returns 1 if its argument is true and 0 otherwise.
Figure 2.1 demonstrates the event sequence and counting process representations.

1We make the standard assumption that the point process is simple — that is, almost surely no two
events happen at the exact same time. This means that the arrival times t1, . . . , tN are strictly
increasing, and therefore the inter-event times τ1, . . . , τN+1 are strictly positive with probability 1.

8

2.2 Temporal point processes

2.2.2 TPP as an autoregressive model

Now we discuss how a TPP mathematically specifies the distribution over event se-
quences. One way to do this is to treat TPP as an autoregressive model and generate
the arrival times one by one. More specifically, for each i = 1, 2, 3, ... we need to specify
Pi(ti|t1, ..., ti−1) — the distribution of the next arrival time ti conditioned on the past
events (t1, . . . , ti−1). Since Pi(ti|t1, ..., ti−1) is a continuous probability distribution, it
can be defined by one of the following functions:

• probability density function (PDF)

pi(t|t1, ..., ti−1) = Pr(event ti ∈ [t, t+ dt] | t1, ..., ti−1) (2.3)

where dt denotes an infinitesimal change in t, formally defined as

:= lim
∆t→0

Pr(event ti ∈ [t, t+∆t] | t1, ..., ti−1)

∆t
. (2.4)

• cumulative distribution function (CDF)

Fi(t|t1, ..., ti−1) = Pr(event ti ∈ [ti−1, t] | t1, ..., ti−1) (2.5)

• survival function (SF)

Si(t|t1, ..., ti−1) = Pr(event ti ∈ [t,∞) | t1, ..., ti−1) (2.6)

• hazard function (HF)

ϕi(t|t1, ..., ti−1) = Pr(event ti ∈ [t, t+ dt] | t1, ..., ti−1, ti /∈ [ti−1, t)) (2.7)

• cumulative hazard function (CHF)

Φi(t|t1, ..., ti−1) =

∫ t

ti−1

ϕi(t|t1, ..., ti−1)dt (2.8)

PDF and CDF are well-known in machine learning literature, while SF, HF and CHF
are commonly used in the field of survival analysis [94]. Most relevant to our discussion
of TPPs are the PDF and HF. The key difference between these two is that the hazard
function additionally conditions on the fact that the next event ti has not occurred until
time t.

Each of the above functions (Equations 2.3 to 2.8) uniquely specifies the conditional
distribution Pi(ti|t1, ..., ti−1) as well as the other four functions (see Appendix C for
details). However, the choice of which function to parametrize can be very important in
practice, as we discuss in detail in Chapter 3.
To summarize, we can define a TPP autoregressively by specifying a sequence of

conditional distributions {P1(t1), P2(t2|t1), P3(t3|t1, t2), ...}. We can do it, for example,
by defining the conditional PDFs {p1(t), p2(t|t1), p3(t|t1, t2), ...}.

9

2 Background

2.2.3 Conditional intensity function

An alternative to the autoregressive description of TPPs is based on the conditional
intensity function. The conditional intensity, denoted as λ∗(t), represents the instan-
taneous rate of arrival of new events at time t given the history of past events H(t) =
{tj ∈ T : tj < t}. Formally, we define the conditional intensity as

λ∗(t) := Pr(N(t+ dt)−N(t) = 1 | H(t)), (2.9)

where the ∗ symbol reminds us of conditioning on the history H(t).

It is important to note that the history H(t) includes the information that no event
happened in the interval [ti−1, t), assuming that ti−1 is the last event before time t. This
fact allows us to see how the conditional intensity is connected to the autoregressive
characterization of the TPP — we can define λ∗(t) in a piecewise manner by stitching
together the conditional hazard functions (Equation 2.7):

λ∗(t) =

ϕ1(t) if 0 < t ≤ t1,

ϕ2(t|t1) if t1 < t ≤ t2,
...

ϕN+1(t|t1, ..., tN) if tN < t ≤ T.

(2.10)

Similarly, we can recover the conditional PDFs from the intensity as

pi(t|t1, ..., ti−1) = λ∗(t) exp

(
−
∫ t

ti−1

λ∗(u)du

)
. (2.11)

In Appendix C we provide the formulas for obtaining other distribution functions.

For convenience, we assume that we always deal with non-terminating TPPs, where
the next event will always happen at some point in the future. Mathematically, this cor-
responds to the condition

∫∞
t λ∗(u)du = ∞ holding for any t and H(t). We additionally

assume that the intensity is always strictly positive. Both these assumptions are just
technicalities that simplify the theory when discussing simulation algorithms, but have
little effect in practice — since we always work with TPPs on a bounded interval [0, T],
we can approximate a terminating TPP with zero intensity by pretending that the next
event happens after time T with probability 1− ε, where ε is arbitrarily small.

2.2.4 Conventional TPP models

We will now discuss several instances of conventional (non-neural) TPP models. These
are important for several reasons. First, these examples show how simple parametric in-
tensity functions can produce different dynamics of event occurrence. More importantly,
these examples provide a useful sanity check when developing new models — in later
chapters we will use them to determine whether our neural TPPs are flexible enough to
capture different patterns generated by the simpler conventional models.

10

2.2 Temporal point processes

Homogeneous Poisson process (HPP) is the TPP characterized by the constant
intensity function

λ∗(t) = µ, (2.12)

where µ > 0 is the rate parameter. From this definition of λ∗(t) we can conclude that
the rate of arrival of new events in the HPP does not depend on the history (known as
the “memoryless property”) and is constant over time. From these facts, we can derive
several other properties of the HPP that are important both for theoretical analysis and
design of algorithms:

(a) The number of events in any two disjoint intervals are independent.

(b) The number of events in any interval [a, b] for 0 ≤ a < b ≤ T follows Poisson
distribution with rate µ · (b− a).

(c) Conditioned on N , the arrival times (t1, . . . , tN) are independently and identically
distributed (i.i.d.) according to the Uniform([0, T]) distribution.

(d) The inter-event times (τ1, τ2, . . .) are i.i.d. random variables that follow the expo-
nential distribution with rate µ.

0 t1 t2 t3 t4 t5 T
0.0

0.5

1.0

λ
∗ (
t)

λ∗(t)

0 t1 t2 t3 t4 t5 T time

Figure 2.2: Homogeneous Poisson process with constant intensity λ∗(t) = µ.

Standard Poisson process (SPP), also known as HPP with unit rate, defined by

λ∗(t) = 1, (2.13)

is an important special case of the Poisson process. In many senses, the role of SPP in
point process theory is similar to the role of the Uniform([0, 1]) distribution in univariate
statistics. For instance, SPP is the highest entropy TPP on an interval [0, T] [7]. More
importantly, SPP can be used to generate samples from an arbitrary TPP, similar to

11

2 Background

how the Uniform([0, 1]) distribution is used in inverse transform sampling for univariate
random variables [49]. We discuss this aspect in more detail in Sections 2.2.5 and 2.2.7.

Inhomogeneous Poisson process (IPP) generalizes the homogeneous Poisson pro-
cess by making the intensity vary over time:

λ∗(t) = µ(t), (2.14)

where µ(t) is a positive integrable function. Such formulation of the intensity preserves
the memoryless property, like in the HPP, but is now able to capture periodic changes in
the rate of arrival of new events. For example, IPP is a reasonable model for timestamps
of calls arriving to a call center — the rate of activity may change throughout the day,
but we can treat the calls as independent from each other. The inhomogeneous Poisson
process also has a number of important properties:

(a) The number of events in any two disjoint intervals are independent.

(b) The number of events in any interval [a, b] for 0 ≤ a < b ≤ T follows Poisson

distribution with rate
∫ b
a µ(u)du.

(c) Conditioned on N , the arrival times (t1, . . . , tN) are i.i.d. random variables with

probability density function f(t) = µ(t)/
∫ T
0 µ(u)du.

Finally, it is worth noting that a TPP has the memoryless property if and only if it is a
Poisson process.

0 t1 t2 t3 t4 t5 t6 T
0.0

0.5

1.0

λ
∗ (
t)

λ∗(t)

0 t1 t2 t3 t4 t5 t6 T time

Figure 2.3: Inhomogeneous Poisson process has a history-independent intensity λ∗(t) = µ(t)
and can model trends in the arrival rate of new events.

Renewal process (RP) [172] provides yet another generalization for the homoge-
neous Poisson process. Recall that in HPP the inter-event times (τ1, τ2, . . .) are i.i.d.
exponential random variables. RP replaces the exponential inter-event time distribution
with another arbitrary distribution P (τ) supported on [0,∞). Suppose this inter-event

12

2.2 Temporal point processes

time distribution is characterized by a hazard function φ(τ). Then, the conditional
intensity function of the corresponding RP is

λ∗(t) = φ(t− ti−1), (2.15)

where ti−1 is the last observed event before time t (Figure 2.4).
One application where renewal processes naturally arise is reliability analysis. Sup-

pose, we need to predict when a certain machine component that is prone to failures (e.g.,
lightbulb) needs to be replaced. Assuming that the time until failure for all lightbulbs
follows the same distribution P (τ), and whenever one lightbulb breaks it is replaced by
a new one, the sequence of failure times will follow the renewal process.

0 t1 t2 t3 t4 t5 t6 T
0.0

0.5

1.0

λ
∗ (
t)

λ∗(t)

0 t1 t2 t3 t4 t5 t6 T time

Figure 2.4: Renewal process with Gamma(2, 1) inter-event time distribution.

Self-exciting process, also known as Hawkes process (HP) [79], has the property
that its intensity increases whenever an event occurs. This leads to “bursty” event
sequences, where multiple events often happen in quick succession. In the most general
form, the conditional intensity of a Hawkes process is defined as

λ∗(t) = µ(t) + α
∑

tj∈H(t)

γ(t− tj). (2.16)

The base rate µ(t) captures the seasonal change in event frequency, similar to IPP.
The branching factor α ∈ (0, 1) represents the expected number of “offspring” events
produced by each event. Finally, the triggering kernel γ(τ) (subject to

∫∞
0 γ(τ)dτ = 1)

determines how the self-exciting effect decays over time.
One common choice is the exponential triggering kernel

γ(t− tj) = β exp(−β(t− tj)) (2.17)

with decay parameter β > 0 (Figure 2.5). Hawkes process with the exponential kernel
is quite special, as it is the only self-exciting process that has the Markov property
[132]. This means at any time t we can summarize the entire history H(t) with a single

13

2 Background

number that can later be reused when computing the intensity at a future time t′ > t.
The Markov property allows us to construct efficient algorithms for simulation [45] and
parameter estimation [133] for Hawkes processes with the exponential kernel.
Other triggering kernels are also used in practice, but they lack the Markov property

and thus require us to always keep track of all the past events H(t). For example, the
power-law kernel

γ(t− tj) =
ηcη

(t− tj + c)1+η
(2.18)

is commonly used to model aftershocks in seismology [134] and information propagation
on social media [158].

0 t1 t2t3 t4 t5t6 T
0.0

0.5

1.0

λ
∗ (
t)

λ∗(t)

0 t1 t2t3 t4 t5t6 T time

Figure 2.5: Self-exciting (Hawkes) process produces “bursty” event sequences. Here we use a
constant base rate µ and exponential triggering kernel γ(t− tj) = exp(−(t− tj))

Self-correcting process (SCP) [90] is in a sense the opposite of the self-exciting
process — it allows observed events to inhibit future activity via the following intensity
function

λ∗(t) = exp

µt− ∑
tj∈H(t)

α

 (2.19)

with positive parameters µ, α. The intensity rises steadily over time, but decreases by a
multiplicative factor of e−α after each event, which produces sequences of evenly-spaced
events (Figure 2.6). The SCP can be used to model events that rarely happen in quick
succession, such as large-magnitude earthquakes.
Summary. It is worth highlighting that all TPPs that we discussed above can equiv-

alently be specified using the conditional PDFs pi(t|t1, . . . , ti−1) or the hazard functions
ϕi(t|t1, . . . , ti−1). Still, the description in terms of the conditional intensity λ∗(t) hap-
pens to be more elegant and compact — we often do not have to worry about the indices
i, and we can understand the properties of respective TPPs (such as global trends or

14

2.2 Temporal point processes

0 t1 t2 t3 t4 t5 t6 T
0

2

4

λ
∗ (
t)

λ∗(t)

0 t1 t2 t3 t4 t5 t6 T time

Figure 2.6: Self-correcting process produces evenly-spaced events.

burstiness) by inspecting the definition of λ∗(t). In future chapters we will encounter
other models, where intensity is not the most convenient representation anymore. How-
ever, we should always keep in mind that these different descriptions are interchangeable,
and we can always move between them, if necessary.

2.2.5 Random time change theorem

We now present the random time change theorem — a central result in the theory of
TPPs that lays the foundation for several contributions of this thesis. The random
time change theorem shows us how we can connect an arbitrary TPP to the standard
Poisson process using the conditional intensity λ∗(t). This is similar to how in univariate
statistics the CDF transform converts any continuous random variable on R into the
uniform distribution [49].

Theorem 1 (Random time change theorem [22]). Suppose T = (t1, . . . , tN) is a real-
ization of a TPP with conditional intensity λ∗ on an interval [0, T]. Define the trans-
formation

Λ∗(t) =
∫ t

0
λ∗(u)du. (2.20)

Then the transformed sequence Z = (Λ∗(t1), ...,Λ∗(tN)) is distributed according to the
standard Poisson process on the interval [0,Λ∗(T)].

The function Λ∗(t), called the integrated intensity function or compensator, provides
yet another way to characterize the TPP, in addition to the options listed in Sections 2.2.2
and 2.2.3. Therefore, we can express the compensator in terms of other functions char-
acterizing the TPP, such as the cumulative hazard function (Equation 2.8):

Λ∗(t) = Φi(t|t1, . . . , ti−1) +

i−1∑
j=1

Φi(tj |t1, . . . , tj−1), (2.21)

15

2 Background

0 t1 t2 T
0

Λ∗(t1)

Λ∗(t2)

Λ∗(T)

time

Λ∗(t)

Figure 2.7: Compensator Λ∗ transforms a realization T = (t1, . . . , tN) of a TPP on [0, T] into a
sample Z = (Λ∗(t1), . . . ,Λ∗(tN)) from the standard Poisson process on [0,Λ∗(T)].

where ti−1 is the last event before time t.
Note that Λ∗ : [0,∞) → [0,∞) is a strictly increasing invertible function since we

defined it by integrating the strictly positive conditional intensity function of a non-
terminating TPP. Invertability of the compensator will play an important role in our
discussion of simulation algorithms for TPPs in Section 2.2.7. In Chapter 4 we will
explore this property in more depth to define a new class of efficient and flexible neural
TPP parametrizations. Moreover, the random time change theorem allows us to con-
struct goodness-of-fit tests for arbitrary TPPs, which we will use to develop an anomaly
detection framework in Chapter 6.

2.2.6 Parameter estimation

As we discussed in Section 2.1, applying a generative model usually requires estimating
its parameters. Temporal point processes are no exception, and parameters of TPPs are
typically learned using the maximum likelihood estimation (MLE) procedure.
Given an observed sequence T = (t1, . . . , tN), the likelihood of a TPP model with

conditional intensity λ∗(t) is computed as

p(T) =

(
N∏
i=1

λ∗(ti)

)
exp

(
−
∫ T

0
λ∗(t)dt

)
. (2.22)

Intuitively, this quantity can be interpreted as the probability that there are exactly N
events before time T , one in each of the infinitesimal intervals [ti, ti + dt]. The function
p(T) is sometimes also called point process density. We will use p(T) to refer both to the
density function itself, as well as to the corresponding distribution over event sequences.
When estimating the parameters we instead work with the logarithm of the likelihood

log p(T) =
N∑
i=1

log λ∗(ti)−
∫ T

0
λ∗(t)dt. (2.23)

16

2.2 Temporal point processes

In practice, the expression in Equation 2.23 is often divided by T , the length of the
observed interval, to obtain values that are comparable across different sequences.
Recall that the conditional intensity function provides one of multiple equivalent ways

to characterize a TPP. Similarly, the log-likelihood function can be equivalently expressed
using other functions, e.g.,

log p(T) =
N∑
i=1

log pi(ti|t1, . . . , ti−1) + logSN+1(T |t1, . . . , tN), (2.24)

where pi(t|t1, . . . , ti−1) are the conditional PDFs and SN+1(t|t1, . . . , tN) is the survival
function of the event number N + 1.
The standard procedure for fitting a TPP model to a dataset consisting of i.i.d. event

sequences Dtrain = {T (1), . . . , T (M)} via MLE looks as follows. First, we pick some
parametric form the conditional intensity λ∗θ(t) with parameters θ. For example, we may
select the self-correcting process (Equation 2.19) with parameters θ = {µ, α}. Then, we
find the parameters θMLE that maximize the log-likelihood of the sequences in Dtrain:

θMLE = argmax
θ∈Θ

∑
T ∈Dtrain

log pθ (T) . (2.25)

Here Θ encodes the potential constraints on the parameters (e.g., in self-correcting pro-
cess µ and α must be positive), and the likelihood for each individual sequence is com-
puted according to Equation 2.23. For some parametrizations of the TPP, it might be
more convenient to implement the likelihood computation according to Equation 2.24
instead. Computing MLE analytically is only possible for simple models, such as HPP, so
the optimization problem from Equation 2.25 is usually solved with numerical methods
like gradient descent. Once we obtain the parameters by solving the above optimization
problem, the learned model can be used for other prediction tasks.

While MLE is a simple and popular method for learning TPP models, there exist
alternatives based on different objective functions and training procedures [108, 198, 202].
We will discuss these alternative approaches in detail in Chapter 5.

2.2.7 Simulation methods

Once we estimate the parameters of a TPP, we can use it to generate new event sequences.
We will use the words simulation and sampling interchangeably to refer to the process
of generating new event sequences from a TPP model. First, we consider generating
event sequences “from scratch”, that is, starting from time t = 0 and assuming no
past events. At the end of this section, we will discuss conditional sampling, where we
generate possible continuations of a partially-observed event sequence.
Different TPP simulation algorithms have different prerequisites, and therefore are

suitable for different TPP models. We start by providing a simulation algorithm for
the homogeneous Poisson process (Equation 2.12) that will serve as an important
building block when generating samples from arbitrary TPPs. Recall that the inter-event
times τi of HPP with rate µ are i.i.d. Exponential(µ) random variables (Property (d) of

17

2 Background

the HPP in Section 2.2.4). Algorithm 1 makes use of this property to simulate HPP on
an aribtrary interval [0, T].

Algorithm 1 Simulating a HPP on [0, T] using inter-event times

Parameters: Interval length T , rate µ.

1. Set t = 0, i = 1.

2. Repeat until t > T :

(a) Sample the next inter-event time τi ∼ Exponential(µ).

(b) Compute the next arrival time t = t+ τi.

(c) If t < T , record the arrival time ti = t and increase the counter i = i+ 1.

Output: Sequence of arrival times T = (t1, . . . , tN).

Algorithm 1 requires drawing samples from the exponential distribution. This can be
done using the inverse CDF transform method for univariate random variables, as
shown below.

Algorithm 2 Inverse CDF transform sampling for univariate random variables [49]

Parameters: Cumulative distribution function F : R → [0, 1].

1. Sample u ∼ Uniform([0, 1])

2. Solve F (t) = u for t.

Output: Sample t drawn from the distribution with CDF F .

The CDF F (t) = (1− exp(−µt)) · 1(t > 0) of the exponential distribution is invertible,
which allows us to perform step 2 of Algorithm 2 analytically t = F−1(u) = − 1

µ log(1−u).
Combining Algorithms 1 and 2 provides us with a concrete and easy-to-implement

method for simulating the HPP. This, in turn, can be used to construct sampling methods
for an arbitrary TPP with conditional intensity λ∗(t). We will now discuss two such
generic methods that are most commonly used in practice.

Inverse transform method for TPPs can be seen as the converse of the random
time change theorem (Theorem 1). Recall that if T = (t1, . . . , tN) is a realization of a
TPP with compensator Λ∗ on [0, T], then Z = (z1, . . . , zN) = (Λ∗(t1), . . . ,Λ∗(tN)) is a
realization of the standard Poisson process on the interval [0,Λ∗(T)]. The main idea of
this approach is to first simulate a sequence Z = (z1, . . . , zN) from the SPP and then ob-
tain the actual arrival times as T = (t1, . . . , tN) =

(
Λ∗−1(z1), . . . ,Λ

∗−1(zN)
)
. The main

problem is that we do not know N , the number of events, in advance. However, since

18

2.2 Temporal point processes

each ti and the compensator Λ∗(ti) only depend on the previous arrival times t1, . . . , ti−1,
we can generate the events one by one. The procedure is outlined in Algorithm 3.

Algorithm 3 Inverse transform sampling (via random time change theorem)

Parameters: Interval length T , compensator Λ∗.

1. Set t = 0, z = 0 and i = 1.

2. Repeat until t > T :

(a) Sample the next SPP inter-event time νi ∼ Exponential(1).

(b) Compute the next SPP arrival time z = z + νi.

(c) Obtain the next observed arrival time as t = Λ∗−1(z).

(d) If t < T , record the arrival time ti = t and increase the counter i = i+ 1.

Output: Sequence of arrival times T = (t1, . . . , tN).

Recall that since we consider non-terminating TPPs with strictly positive intensity, the
compensator Λ∗ is an invertible function (Section 2.2.5). Therefore, we use Λ∗−1(z) to
denote the unique solution to the equation Λ∗(t) = z.
Another way to understand the inverse transform method is by considering the autore-

gressive description of the TPP model. From this viewpoint, Algorithm 3 boils down to
generating the arrival times ti one by one from the respective conditional distributions
Pi(ti|t1, . . . , ti−1), for instance, using the inverse CDF transform.

Algorithm 4 Inverse transform sampling (via inverse CDF transform)

Parameters: Interval length T , arrival time CDFs {F1(t), F2(t|t1), F3(t|t1, t2), . . . }.

1. Set t = 0 and i = 1.

2. Repeat until t > T :

(a) Sample u ∼ Uniform([0, 1]).

(b) Obtain the next observed arrival time as t = F−1
i (u|t1, . . . , ti−1).

(c) If t < T , record the arrival time ti = t and increase the counter i = i+ 1.

Output: Sequence of arrival times T = (t1, . . . , tN).

The equivalence between Algorithms 3 and 4 can be proved using the relationships be-
tween CDF, CHF and the compensator (Appendix C). Finally, we note that the existence
of the inverse conditional CDFs F−1

i follows from the invertability of the compensator.
The inverse transform method provides a straightforward way to generate event se-

quences from an arbitrary TPP. The main requirement for applying this method in prac-

19

2 Background

tice is the ability to efficiently sample from the conditional distribution Pi(ti|t1, . . . , ti−1)
(or, equivalently, invert the compensator). This, however, can be challenging for certain
TPP parametrizations, such as Hawkes processes, where the compensator cannot be
inverted analytically, and thus numerical root-finding methods are required.

Thinning algorithm [105, 133] provides an alternative that is computationally less
efficient, but, unlike inverse transform, does not require inverting the compensator. The
two prerequisites for applying the thinning algorithm are the ability to evaluate the
intensity λ∗(t) and a method to compute an upper bound on the intensity that fulfills

b∗(t) ≥ sup
s∈[t,T]

λ∗(s). (2.26)

Note that the upper bound also depends on past events H(t) that occured before time
t. The main idea of the thinning algorithm is to first generate candidate events from a
HPP that has higher intensity than the TPP of interest, and then to thin out some of
the events to correct for oversampling. This is similar in spirit to the rejection sampling
method from univariate statistics [49]. The procedure is described in Algorithm 5.

Algorithm 5 Ogata’s modified thinning algorithm [133]

Parameters: Interval length T , conditional intensity λ∗(t), upper bound m(t).

1. Set t = 0 and i = 1.

2. Repeat until t > T :

(a) Compute the upper bound µ0 = b∗(t).

(b) Generate an HPP inter-event time νi ∼ Exponential(µ0).

(c) Generate u ∼ Uniform([0, 1]).

(d) Compute candidate event as t = t+ νi.

(e) If t < T and u < λ∗(t)
µ0

, accept the event ti = t and set i = i+ 1.

Output: Sequence of arrival times T = (t1, . . . , tN).

The main disadvantage of the thinning method is that it may suffer from high rejection
rates, and therefore be inefficient. This can happen if there is a lot of variation in the
intensity, which results in low acceptance probability λ∗(t)

µ0
. Moreover, obtaining an upper

bound b∗(t) may be challenging or even impossible for certain TPP parametrizations.

To summarize, both inverse transform and thinning permit exact simulation of TPPs,
but have different prerequisites and involve different tradeoffs. When developing new
TPP parametrizations, it is important to ensure that the requirements for at least one
of the algorithms are met, so that the new model can be used for sampling. Otherwise
an arbitrary neural TPP model may meet none of the prerequisites and therefore be of
limited practical use.

20

2.2 Temporal point processes

0 t1 t2 t3 t4 t5 t6 t7 t8 T time

Mark 1

Mark 2

Mark 3

Figure 2.8: Marked TPP with C = 3 categorical marks corresponding to different event types.

Conditional generation. The simulation methods we discussed so far allow us
to generate event sequences from scratch for the entire time interval [0, T]. However,
this is not suitable for many practical applications, where the events up to some time
tobs ∈ [0, T] are already observed. For instance, in earthquake forecasting the goal is
usually to generate aftershock sequences in the forecast interval (tobs, T], conditioned on
the previously observed earthquakes in [0, tobs].

Luckily, Algorithms 4 and 5 can both be easily adapted to the conditional setting.
The thinning algorithm requires initializing t = tobs and conditioning on the observed
events when computing λ∗(t) and b∗(t). For the inverse transform method, we need to
change how we generate the first event. If N events were observed in [0, tobs], we need
to account for the fact that event N + 1 did not occur in the interval [tN , tobs]. This
can be incorporated into Algorithm 4, e.g., by first computing the survival probability
ω = 1−FN+1(tobs|t1, . . . , tN) and then sampling the event as F−1

N+1(1−ω ·uN |t1, . . . , tN).

2.2.8 Marked temporal point processes

So far we discussed event sequences where each event is represented only by its arrival
time ti. However, in many practical applications we have access to additional metadata
associated with each event (e.g., magnitude and location of each earthquake). In this
case, we denote each event by a tuple (ti,mi), where mi ∈ M is a mark that contains the
additional attributes. The definition of the mark space M depends on the type of the
available metadata. For instance, we can model earthquakes with magnitude, longitude
and latitude with M = (0,∞) × R2. Another important case are categorical marks
M = {1, . . . , C} that allow us to model events of C different types (Figure 2.8). This,
for example, can be used to model the activity of C distinct users on a social network,
each represented by their own mark.

Most of the previously discussed concepts can be straightforwardly extended to the
marked case. We represent a marked TPP realization as T =

(
(t1,m1), . . . , (tN ,mN)

)
,

and the history now also includes the past marks H(t) = {(tj ,mj) : tj < t}. A marked
TPP can be defined autoregressively, i.e., by specifying the distribution of the next
arrival time ti and mark mi conditioned on the history

p∗i (t,m) := pi (t,m|(t1,m1), . . . , (ti−1,mi−1)) for i = 1, 2, 3, (2.27)

21

2 Background

Here we slightly abused the notation and for brevity used the ∗ symbol to denote con-
ditioning on the past events.2 We can decompose the conditional density as

p∗i (t,m) = p∗i (t) · p∗i (m|ti = t). (2.28)

Here p∗i (m|ti = t) is either a probability density function or a probability mass function,
depending on whether the marks are continuous or discrete. The conditional intensity
for a marked TPP can be similarly expressed as

λ∗(t,m) = λ∗(t) · p∗i (m|ti = t). (2.29)

This means, we can model the distribution of the arrival times using λ∗(t), analogous
to how we did it for the unmarked case in Section 2.2.4, except that now the intensity
λ∗(t) may also depend on past marks.

In a general marked TPP, we usually condition the mark m on the arrival time t, as
we just saw in Equations 2.28 and 2.29 (of course, both m and t are also conditioned on
the history H(t), as indicated by ∗). However, in case of categorical marks, it may be
more convenient to model the distribution of the arrival times separately for each mark.
This can be done by directly specifying an individual conditional intensity function λ∗c(t)
for each mark type c ∈ {1, . . . , C}

λ∗c(t) := λ∗(t,m = c). (2.30)

To make this idea more concrete, let us consider a specific example of themultivariate
Hawkes process, where for each mark c we define the intensity as

λ∗c(t) = µc +
∑

(tj ,mj)∈H(t)

Amj ,c · γ(t− tj). (2.31)

This definition is similar to the (unmarked) Hawkes process with exponential kernel that
we discussed in Section 2.2.4, but with a few important differences. First, each mark
now has its own base rate µc. More importantly, the C×C nonnegative influence matrix
A allows us to model interactions between different event types: Every time an event of
type l occurs, the intensity of mark c increases by Al,c and then fades according to the
decay kernel γ(·).
Given the conditional intensity λ∗c(t) for each mark c, we can, for example, recover

λ∗(t), the rate of arrival of the next event of any type, by summing the intensities
λ∗(t) =

∑C
c=1 λ

∗
c(t). Similarly, we can compute the probability that the next event that

occurs at time ti has specific type c as

p∗i (m = c|t = ti) =
λ∗c(t)∑K
k=1 λ

∗
k(t)

. (2.32)

2Note that we overloaded the meaning of the ∗ symbol. In the conditional PDF p∗i (t,m) the ∗ denotes
conditioning on past events

(
(t1,m1), . . . , (ti−1,mi−1)

)
, while in the conditional intensity λ∗(t) the

∗ additionally includes the information that event ti did not happen in the interval [ti−1, t].

22

2.3 Deep learning for sequential data

Similar to the unmarked case, log-likelihood of a marked TPP can be expressed using
either the conditional intensity or the conditional distributions as

log p(T) =
N∑
i=1

log λ∗(ti,mi)−
∫ T

0
λ∗(u)du (2.33)

=
N∑
i=1

log p∗i (ti,mi) + logS∗
N+1(T) (2.34)

and in case of categorical marks as

=
N∑
i=1

log λ∗mi
(ti)−

C∑
c=1

(∫ T

0
λ∗c(u)du

)
. (2.35)

In the rest of this thesis we primarily focus on unmarked TPPs, unless explicitly stated
otherwise. Still, many of the insights are transferable to the marked case thanks to the
similarities we discussed above.

2.3 Deep learning for sequential data

The TPP models we have encountered so far are defined with hand-crafted parametric in-
tensity functions that capture simple patterns of event occurrence (e.g., self-excitation).
Neural TPPs take a different approach and parametrize the intensity using neural net-
works. This results in more flexible models that are able to learn various patterns from
the data. We will now review some deep learning architectures that are commonly used
when constructing neural TPP models. The contents of this section are primarily based
on the textbook by Goodfellow et al. [72].
Multilayer perceptron (MLP), also known as feedforward neural network is

the quintessential deep learning model. An MLP defines a function g : RDin → RDout

operating on fixed-dimensional vectors x ∈ RDin by stacking affine transformations of
the form Wx + b and element-wise activation functions σ : R → R. For example, a
two-layer MLP is defined as

g(x) = ξ2(W2ξ1(W1x+ b1) + b2), (2.36)

where W1,W2, b1, b2 are the learnable parameters (also known as weights) and ξ1, ξ2
are nonlinear activation functions, such as ξ(x) = tanh(x). MLPs embody one of the
main principles of deep learning — they define a flexible function by composing simple
transformations. Thanks to their simplicity and flexibility, MLPs are often used as
building blocks in other deep learning architectures.
Recurrent neural network (RNN). When working with TPPs, we have to deal

with variable-length event sequences. This requires neural network architectures that
can operate with variable-length inputs and outputs. RNN is one of the simplest ar-
chitectures with such property. We represent the input to the RNN as a sequence of

23

2 Background

vectors (x1, . . . ,xN). In a nutshell, an RNN processes the inputs xi ∈ RDin one by one
and updates its hidden state hi ∈ RH . This way the hidden state hi+1 can extract
relevant information from the previous inputs (x1, . . . ,xi).

More specifically, an RNN starts with the initial hidden state vector h1 and recursively
compute the next state as

hi+1 = Update(hi,xi). (2.37)

Different implementations of the Update(·, ·) function correspond to different RNN ar-
chitectures.
One of the simplest variants is the Elman RNN [55] with update function

hi+1 = tanh(Whhi +Wxxi + b), (2.38)

whereWh,Wx, b are the learnable parameters. This RNN architecture has several known
limitations, such as its poor ability to capture long-range dependencies between inputs,
as well possible optimization problems due to vanishing and exploding gradients.
Various other RNN versions have been proposed to address these shortcomings, two

most notable examples being long-short term memory (LSTM) [86] and gated
recurrent unit (GRU) [31]. The main idea of these architectures is to have learn-
able gates that control the flow of information and therefore enable learning long-range
dependencies. For example, the GRU update function is implemented as

ri+1 = σ(Whrhi +Wxrxi + br)

zi+1 = σ(Whzhi +Wxzxi + bz)

ĥi+1 = tanh(Wxhxi + ri+1 ⊙ (Whhhi + bh))

hi+1 = (1− zi+1)⊙ hi + zi+1 ⊙ ĥi+1.

(2.39)

Here, the update gate zi+1 ∈ (0, 1)H , defined using the sigmoid function σ(x) = 1/(1 +
exp(−x)), allows the network to ignore certain inputs xi and therefore better retain
information from previous steps.
These architectural differences, however, do not play an important role in our sub-

sequent discussion of neural TPPs. The main takeaway message of this section is
that an RNN can encode a variable-length sequence of inputs (x1, . . . ,xi) into a fixed-
dimensional state vector hi+1. We can treat the choice of the specific architecture (e.g.,
GRU vs. LSTM) as one of the hyperparameters of a neural TPP model. Similarly, we
can replace RNN with other deep learning architectures for sequential data, such as
transformers [185].
We have discussed all the important prerequisites and are ready to discuss how these

deep learning architectures can be combined with the ideas from point process theory
that we introduced in Section 2.2 to create flexible neural TPP models.

24

Part II

Neural temporal point process
models

25

3 Intensity-free learning of temporal point
processes

In this section, we begin our discussion of neural TPPs — generative models for event
data based on neural networks. The main advantage of neural TPPs is their high ex-
pressiveness compared to traditional TPP models such as self-exciting or self-correcting
processes (Section 2.2.4). Designing neural TPPs, however, usually involves trade-offs
along the following dimensions:

• Flexibility : Can the model approximate any distribution?

• Efficiency : Can the likelihood function be evaluated in closed form?

• Ease of use: Can we easily sample new sequences and make predictions?

Existing methods [52, 119, 139] defined in terms of the conditional intensity function
typically fall short in at least one of these regards.

Instead of modeling the intensity function, we suggest treating the problem of learning
in temporal point processes as an instance of conditional density estimation. By using
tools from neural density estimation [15, 155], we can develop methods that have all of
the above properties. To summarize, our contributions are the following:

• We connect the fields of temporal point processes and neural density estimation.
We show how normalizing flows can be used to define flexible and theoretically
sound models for learning in temporal point processes.

• We propose a simple mixture model that performs on par with the state-of-the-art
methods. Thanks to its simplicity, the model permits closed-form sampling and
moment computation.

• We demonstrate how the proposed models can be used for prediction, conditional
generation, sequence embedding, and training with missing data.

3.1 Background

Throughout this chapter we will use notation and terminology from Chapter 2 (see Ap-
pendices A and B for a recap). Recall that a TPP can be specified by a parametric
conditional intensity function λ∗θ(t) that defines the rate of arrival of new events condi-
tioned on the history (Equation 2.9). The chosen parametrization of λ∗θ(t) determines
the flexibility of the TPP model, that is, what patterns of event occurrence it is able

27

3 Intensity-free learning of temporal point processes

to capture (e.g., global trends; intensity increasing or decreasing after observed events).
The intensity also plays an important role when learning the model parameters via
maximum likelihood estimation (MLE). The goal of MLE is to find the parameters that
maximize the log-likelihood of observed events T = (t1, . . . , tN) in the time interval [0, T]
that is computed as

log pθ(T) =

N∑
i=1

log λ∗θ(ti)−
∫ T

0
λ∗θ(u)du. (3.1)

The main challenge when picking a parametric form for λ∗θ(t) is the following trade-
off: For a “simple” intensity function, the integral

∫ T
0 λ∗θ(u)du has a closed form, which

makes the log-likelihood easy to compute. However, such models typically have limited
flexibility. A more sophisticated intensity parametrization can better capture the dy-
namics of the system but will often require approximating the integral numerically (e.g.,
with Monte Carlo), leading to inefficient optimization. To demonstrate these tradeoffs
more concretely, we consider several existing neural TPP models.
Recurrent Marked Temporal Point Process (RMTPP) [52] was the first deep-

learning-based TPP model. RMTPP consists of two components: First, an RNN is used
to encode the history H(ti) = {t1, . . . , ti−1} into a fixed-dimensional vector hi. Then, a
decoder uses the history embedding hi to parametrize the conditional intensity function.
We focus on the decoder as it is most relevant to our discussion. Assuming that ti−1 is
the last event that occurred before time t, the intensity is computed as

λ∗(t) = exp(vThi − w(t− ti−1) + b), (3.2)

where v, w, b are learnable parameters. The intensity of RMTPP can be integrated
analytically, which leads to efficient MLE training. Moreover, the compensator Λ∗(t) can
be easily inverted, enabling inverse transform sampling (Algorithm 3). This, however,
sacrifices flexibility, as Equation 3.2 can only represent a monotonically increasing or
decreasing intensity between events.
Neural Hawkes Process [119] takes a different approach and instead encodes the

history with a state h(t) that evolves in continuous time in addition to discrete updates
after each observed event. The state h(t) then defines the intensity as

λ∗(t) = softplus
(
vTh(t)

)
. (3.3)

Here, v is a learnable parameter and the softplus function log(1 + exp(x)) ensures posi-
tivity of the intensity. Such parametrization is more flexible than in case of RMTPP but,
unfortunately, cannot be integrated analytically. This also means that we must resort
to the potentially inefficient thinning algorithm (Algorithm 5) to sample new sequences
with NHP.
Fully Neural Network Point Process (FullyNN) [139] is a recently proposed

flexible, yet computationally tractable model for TPPs. The key idea of the FullyNN
model is to instead parametrize the cumulative hazard function Φi(t|t1, . . . , ti−1) with
a monotonic neural network. The intensity is then defined as the derivative of the

28

3.2 Models

RMTPP
Neural
Hawkes

Fully NN
Normalizing

Flows
Mixture

Distribution

Closed-form likelihood ✓ ✗ ✓ ✓ ✓

Flexible ✗ ✓ ✓ ✓ ✓

Closed-form E[τ] ✗ ✗ ✗ ✗ ✓

Closed-form sampling ✓ ✗ ✗ ✗ ✓

Table 3.1: Comparison of neural TPP models that encode history with an RNN.

cumulative hazard function, which allows us to efficiently compute the log-likelihood.
Still, in its current state, the model has downsides: it does not define a valid TPP,
sampling cannot be done exactly, and the expectation has no closed form.1

This work. We show that the drawbacks of the existing approaches can be remedied
by looking at the problem of learning in TPPs from a different angle. Conventional TPP
models (e.g., Poisson, Hawkes, self-correcting processes) are usually defined in terms
of the conditional intensity function λ∗(t), and existing neural TPPs follow the same
strategy. We suggest to instead define neural TPPs autoregressively and directly work
with the conditional PDFs pi(t|t1, . . . , ti−1). Modeling probability distributions with
neural networks is a well-researched topic, that, surprisingly, is not usually discussed in
the context of TPPs. By adopting this alternative point of view, we are able to develop
new theoretically sound and effective methods (Section 3.2), as well as better understand
the existing approaches (Section 3.3).

3.2 Models

For convenience, in this section we will represent event sequences using inter-event times
(τ1, . . . , τN+1) instead of arrival times (t1, . . . , tN), as we did before. All previous results
and notation naturally translate to this alternative representation. We will again use ∗
as a shortcut for conditioning on past events p∗i (τ) := pi(τ |τ1, . . . , τi−1). For example,
the log-likelihood (Equation 3.1) can be expressed as

log pθ(T) =
N∑
i=1

log p∗i (τi) + logS∗
N+1(τN+1), (3.4)

where p∗i (τ) is the conditional PDF of the next inter-event time τi and S
∗
N+1(τ) is the

conditional survival function of τN+1. We always assume that the conditional PDF and
SF are governed by the parameters θ but hide them in our notation for compactness.
The main idea of our approach is to define the TPP autoregressively by modeling p∗i (τ)

instead of working with the conditional intensity function. First, we assume for simplicity
that each inter-event time τi is independent of the history (that is, p∗i (τ) = p(τ) for all i).
In Section 3.2.1, we show how state-of-the-art neural density estimation methods based

1A more detailed discussion of the FullyNN model follows in Section 6.4 and Appendix D.3.

29

3 Intensity-free learning of temporal point processes

on normalizing flows can be used to model p(τ). Then in Section 3.2.2, we propose a
simple mixture model that can match the performance of the more sophisticated flow-
based models, while also addressing some of their shortcomings. Finally, we discuss how
to make p∗i (τ) depend on the past events (τ1, . . . , τi−1) in Section 3.2.3.

3.2.1 Modeling p(τ) with normalizing flows

The core idea of normalizing flows [155, 176] is to define a flexible probability distribution
by transforming a simple one. Assume that y is distributed according to a PDF q(u). Let
x = g(u) for some differentiable invertible transformation g : U → X (where U ,X ⊆ R).2
We can obtain the PDF p(x) of x using the change of variables formula as

p(x) = q(g−1(x))

∣∣∣∣ ∂∂xg−1(x)

∣∣∣∣ . (3.5)

By stacking multiple transformations g1, ..., gM , we obtain an expressive probability den-
sity function p(x).
To draw a sample x ∼ p(x), we need to draw u ∼ q(u) and compute the forward

transformation x = (gM ◦ · · · ◦ g1)(u). To compute the density at an arbitrary point x, it
is necessary to evaluate the inverse transformation u = (g−1

1 ◦ · · · ◦ g−1
M)(x) and compute

q(u). Modern normalizing flows architectures parametrize the transformations using
flexible functions fψ, such as polynomials [91] or neural networks [88]. The flexibility
of these functions comes at a cost — while the inverse f−1

ψ exists, it typically does
not have a closed form. That is, if we use such a function to define one direction
of the transformation in a flow model, the other direction can only be approximated
numerically using iterative root-finding methods [85]. In this work, we do not consider
invertible normalizing flows based on dimension splitting, such as RealNVP [50], since
they are not applicable to 1D data.
In the context of TPPs, our goal is to model the PDF p(τ) of the inter-event times. In

order to learn the parameters of p(τ) using maximum likelihood, we need to be able to
evaluate the density at any point τ . For this we need to define the inverse transformation
g−1 := (g−1

1 ◦ · · · ◦ g−1
M). First, we set uM = g−1

M (τ) = log τ to convert a positive τ ∈ R+

into uM ∈ R. Then, we stack multiple layers of parametric functions fψ : R → R that
can approximate any transformation. We consider two choices for fψ:

• deep sigmoidal flow (DSF) [88]

fDSF (x) = σ−1

(
K∑
k=1

wkσ

(
x− µk
sk

))
(3.6)

• sum-of-squares (SOS) polynomial flow [91]

fSOS(x) = a0 +
K∑
k=1

R∑
p=0

R∑
q=0

ap,kaq,k
p+ q + 1

xp+q+1 (3.7)

2All definitions can be extended to RD for D > 1. We consider the one-dimensional case since our goal
is to model the distribution of inter-event times τ ∈ R+.

30

3.2 Models

where a,w, s,µ are the transformation parameters, K is the number of components, R
is the polynomial degree, and σ(x) = 1/(1 + e−x). We denote the two variants of the
model based on fDSF and fSOS building blocks as DSFlow and SOSFlow respectively.
Finally, after stacking multiple g−1

m = fθm , we apply a sigmoid transformation g−1
1 = σ

to convert u2 into u1 ∈ (0, 1) that follows q(u1) = Uniform([0, 1]).
For both models, we can evaluate the inverse transformations (g−1

1 ◦ · · · ◦ g−1
M), which

means the model can be efficiently trained via maximum likelihood. The density p(τ)
defined by either DSFlow or SOSFlow model is extremely flexible and can approximate
any distribution (Section 3.2.5). Unfortunately, this is not sufficient for some use cases.
Generating samples from both models requires evaluating the forward transformation
(gM ◦· · ·◦g1) at a point u1 ∼ q(u1). This, however, cannot be done analytically since the
functions fDSF and fSOS do not have a closed-form inverse. We can approximate the
inverse with numerical root finding by solving the equation (g−1

1 ◦ · · · ◦ g−1
M)(τ)− u1 = 0

for τ , but this approach is slow and inexact. As another example, we may be interested
in predicting Ep[τ], the expected time until the next event. Again, flow-based models
are not optimal, since for them Ep[τ] does not in general have a closed form.
This raises the question: Can we design a model for p(τ) that is as expressive as the

flow-based models, but in which sampling and computing moments is easy and can be
done in closed form?

3.2.2 Modeling p(τ) with mixture distributions

While mixture models are commonly used for clustering, they can also be used for density
estimation. Mixtures work especially well in low dimensions [118], which is the case in
TPPs, where we model the distribution of one-dimensional inter-event times τ . Since the
inter-event times τ are positive, we choose to use a mixture of log-normal distributions
to model p(τ). The PDF of a log-normal mixture is defined as

p(τ |w,µ, s) =
K∑
k=1

wk
1

τsk
√
2π

exp

(
−(log τ − µk)

2

2s2k

)
(3.8)

where w are the mixture weights, µ are the mixture means, and s are the scale parame-
ters. Because of its simplicity, the log-normal mixture model has a number of attractive
properties.
Moments. Since each component k has a finite mean, the mean of the entire dis-

tribution can be computed as Ep[τ] =
∑

k wk exp(µk + s2k/2), i.e., a weighted average
of component means. Higher moments can be computed based on the moments of each
component [64].
Sampling. While flow-based models from Section 3.2.1 require iterative root-finding

algorithms to generate samples, sampling from the log-normal mixture can be done in
closed form:

z ∼ Categorical(w) ε ∼ Normal(0, 1) τ = exp(sTz · ε+ µTz)

where z is a one-hot vector of size K.

31

3 Intensity-free learning of temporal point processes

ci

ej

yi

p(τi|φi)

ti−1ti−2ti−3

τi−1τi−2τi−3

hi

ti−1 + τi

Metadata

RNN

History

Sequence emb.

φi = Vφci + bφ

Figure 3.1: Model architecture. Parameters of p∗i (τ |φi) are generated from the context vector
ci that consists of history embedding and additional attributes.

In some applications, such as reinforcement learning [183], we might be interested in
computing gradients of the samples w.r.t. the model parameters. The samples τ drawn
using the procedure above are differentiable with respect to the means µ and scales s.
We can obtain gradients w.r.t. all the model parameters by using the Gumbel-softmax
trick [92] when sampling z. For this we replace sampling z ∼ Categorical(w) with the
following procedure

z = softmax

(
logw + o

ζ

)
,

where each ok is sampled i.i.d. from the standard Gumbel distribution and ζ > 0 is
the temperature parameter. As ζ approaches zero, samples from the Gumbel-softmax
distribution approach exact samples from the Categorical(w) distribution.
Such reparametrization gradients have lower variance and are easier to implement

than the score function estimators used in other works [121]. Other flexible models
(such as multi-layer flow models from Section 3.2.1) do not permit sampling through
reparametrization, and thus are not well-suited for the above-mentioned scenario. In Sec-
tion 3.4.4, we show how reparametrization sampling can also be used to train with miss-
ing data by performing imputation on the fly. In Chapter 5 we provide a detailed discus-
sion of reparametrization sampling for TPPs and the correspoding sampling-based losses.

3.2.3 Incorporating the conditional information

History. The key feature of TPPs is that the time τi = (ti − ti−1) until the next event
may be influenced by all the events that happened before. A standard way of capturing
this dependency is to process the event history H(ti) with a recurrent neural network
(RNN) and embed it into a fixed-dimensional vector hi ∈ RH . We accomplish this by
following the procedure described by Du et al. [52].
The RNN starts with the initial hidden state h1. Then, after each observed event τi,

the new hidden state hi+1 is computed using the previous state hi and the RNN input
xi = [log τi] according to the RNN update equation

hi+1 = Update(hi,xi). (3.9)

32

3.2 Models

More specifically, we use the Elman RNN architecture (Equation 2.38) [55] in our exper-
iments. The hidden state hi serves as the history embedding that summarizes observed
events (τ1, . . . , τi−1).
Conditioning on additional features. The distribution of the time until the next

event might depend on factors other than the history. For instance, distribution of
arrival times of customers in a restaurant depends on the day of the week. As another
example, if we are modeling user behavior in an online system, we can obtain a different
distribution p∗i (τ) for each user by conditioning on their metadata. We denote such
side information as a vector yi. Such information is different from marks [152], since
(a) the metadata may be shared for the entire sequence and (b) yi only influences the
distribution p∗i (τ |yi), not the objective function.
In some scenarios, we might be interested in learning from multiple event sequences.

In such case, we can assign each sequence T (j) a learnable sequence embedding vector
ej . By optimizing ej , the model can learn to distinguish between sequences that come
from different distributions. The learned embeddings can then be used for visualization,
clustering or other downstream tasks.
Obtaining the parameters. We model the conditional dependence of the distri-

bution p∗i (τ) on all of the above factors in the following way. The history embedding
hi, metadata yi and sequence embedding ej are concatenated into a context vector
ci = [hi||yi||ej]. Then, we obtain the parameters of the distribution p∗i (τ) as an affine
function of ci. For example, for the log-normal mixture model we have

wi = softmax(Vwci + bw) si = exp(Vsci + bs) µi = Vµci + bµ (3.10)

where the softmax(·) and exp(·) transformations are applied to enforce the constraints
on the distribution parameters, and {Vw,Vs,Vµ, bw, bs, bµ} are learnable parameters.
Such model resembles the mixture density network architecture [15]. The whole process
is illustrated in Figure 3.1. We obtain the parameters of the flow-based models in a
similar way (see Appendix D.4).

3.2.4 Marked TPP

The flow-based and mixture-based models introduced above can be naturally extended
to marked TPPs (Section 2.2.8). In a marked TPP, each event is represented by a mark
mi ∈ M in addition to the inter-event time τi. Different mark types M require different
modifications to the model architecture (i.e., the history encoder, parametrization of the
conditional distribution and the loss).
Categorical marks correspond to M = {1, . . . , C} and can be used to model events

of C different categories. To feed such marks as input to the RNN history encoder, we
can use an embedding layer [52]. That is, we define a matrix V ∈ RC×Demb , where
each row Vc,: corresponds to a learnable embedding of the respective mark. We obtain
the RNN input for event (τi,mi) as xi = [log τi||Vmi,:]. This choice allows the history
embedding hi to incorporate the information about marks of past events H(ti).
There exist two ways to specify the conditional distribution of the next event. The

simpler option is to make τi and mi conditionally independent given the history.

33

3 Intensity-free learning of temporal point processes

This means, we do not permit any interactions between τi and mi and model their
distributions independently p∗i (τ,m) = p∗i (τ) · p∗i (m) using the context vector ci. We
can define the probability mass function (PMF) p∗i (m) of the next mark mi with a
categorical distribution, where the logits are computed from ci similar to Equation 3.10.
We model the distribution p∗i (τ) of the next inter-event time τi exactly like we did in
Section 3.2.1. We can implement the log-likelihood computation of the conditionally
independent model as

log pθ(T) =

N∑
i=1

(
log p∗i (τi) + log p∗i (mi)

)
+ logS∗

N+1(τN+1). (3.11)

When generating new events from this model, we sample τi and mi independently from
the respective distributions.
The main limitation of the conditionally independent model is that the probability of

observing an event of a specific type does not change over time. We can overcome this
limitation by defining a model with a separate distribution per mark. For this we
need to define a separate PDF p∗i (τ |m = c) for each event type c ∈ {1, . . . , C} — for
example, by obtaining C different sets of log-normal mixture parameters using different
model weights in Equation 3.10. The log-likelihood computation for this model can be
implemented as

log pθ(T) =
N∑
i=1

log p∗i (τi|m = mi) +
C∑
c=1
c ̸=mi

logS∗
i (τi|m = c)

+ logS∗
N+1(τN+1).

(3.12)

We highlight that the various expressions for marked TPP log-likelihood (Equations 3.11,
3.12, as well as 2.33–2.35) correspond to the exact same objective function. However,
choosing different formulations for different models allows us to efficiently implement
the log-likelihood computation on a computer. We can generate new events from the
“separate distribution” model as follows:

1. For each mark c ∈ {1, . . . , C}, sample a candidate time τic from the respective
conditional distribution with PDF p∗i (τ |m = c).

2. Set the next observed event (τi,mi) as the “earliest” of the candidates τic

τi = min
c ∈ {1,...,C}

τic mi = argmin
c ∈ {1,...,C}

τic.

Continuous marks correspond to M = RC and can be used, for example, to model
locations of events. We can concatenate the marks to the RNN input as xi = [log τi||mi]
or manually specify features based on mi using domain knowledge. We can again use
the conditionally independent approach to model p∗i (τ) and p∗i (m) separately, like we
did in Equation 3.11. A more flexible alternative is to model the joint density p∗i (τ,m)

34

3.2 Models

of the next inter-event time and the mark with a normalizing flow or a mixture model.
In this case, the log-likelihood can be computed as

log pθ(T) =

N∑
i=1

log p∗i (τi,mi) + S∗
N+1(τN+1). (3.13)

3.2.5 Discussion

Universal approximation. The SOSFlow and DSFlow models can approximate any
probability density on R arbitrarily well [91, Theorem 3], [88, Theorem 4]. It turns out,
a mixture model has the same universal approximation (UA) property.

Theorem 1 [44, Theorem 33.2]. Let p(x) be a continuous density on R. If q(x) is any
density on R and is also continuous, then, given ε > 0 and a compact set S ⊂ R, there
exist number of components K ∈ N, mixture coefficients w ∈ ∆K−1, locations µ ∈ RK ,
and scales s ∈ RK+ such that for the mixture distribution p̂(x) =

∑K
k=1wk

1
sk
q(x−µksk

) it
holds supx∈S |p(x)− p̂(x)| < ε.

This results shows that, in principle, the mixture distribution is as expressive as the
flow-based models. Since we are modeling the conditional density, we additionally need
to assume for all of the above models that the RNN can encode all the relevant informa-
tion into the history embedding hi. This can be accomplished by invoking the universal
approximation theorems for RNNs [163, 171].
Note that this result, like other UA theorems of this kind [39, 43], does not provide

any practical guarantees on the obtained approximation quality, and does not say how
to learn the model parameters. Still, UA intuitively seems like a desirable property of
a distribution. This intuition is supported by experimental results. In Section 3.4.1, we
show that models with the UA property consistently outperform the less flexible ones.
Interestingly, Theorem 1 does not make any assumptions about the form of the base

density q(x). This means we could as well use a mixture of distribution other than
log-normal, such as Weibull. However, many other popular distributions on R+ have
drawbacks: log-logistic does not always have defined moments and gamma distribution
does not permit straightforward sampling with reparametrization.
Intensity function. For both flow-based and mixture models, the conditional sur-

vival function S∗
i (τ) and PDF p∗i (τ) are readily available. This means we can easily

compute the respective intensity functions (see Appendix C). However, we should still
ask whether we lose anything by modeling p∗i (τ) instead of λ∗(t). The main arguments in
favor of modeling the intensity function in traditional models (e.g. self-exciting process)
are that it is intuitive, easy to specify and reusable [182].

“Intensity function is intuitive, while the conditional density is not.” —While it is true
that in simple models (e.g., Hawkes processes) the dependence of λ∗(t) on the history is
intuitive and interpretable, modern RNN-based intensity functions (as in [52, 119, 139])
cannot be easily understood by humans. In this sense, our proposed models are as
intuitive and interpretable as other existing intensity-based neural network models.
“λ∗(t) is easy to specify, since it only has to be positive. On the other hand, p∗i (τ)

must integrate to one.” — As we saw, by using either normalizing flows or a mixture

35

3 Intensity-free learning of temporal point processes

distribution, we automatically enforce that the PDF integrates to one, without sacrificing
the flexibility of our model.

“Reusability: If we merge two independent point processes with intensities λ∗(1)(t) and
λ∗(2)(t), the merged process has intensity λ∗(t) = λ∗(1)(t) + λ∗(2)(t).” — An equivalent

result exists for the SFs S∗
(1)(τ) and S∗

(2)(τ) of two independent processes. The SF of
the merged process is obtained as S∗(τ) = S∗

(1)(τ)S
∗
(2)(τ), which can be derived from

the connection between the conditional intensity and the cumulative hazard function
(Appendix C).

As we just showed, modeling p∗i (τ) instead of λ∗(t) does not impose any limitation
on our approach. Moreover, a mixture distribution is flexible, easy to sample from and
has well-defined moments, which favorably compares it to other intensity-based deep
learning models.

3.3 Related work

Neural temporal point processes. Conventional TPP models (e.g. self-exciting
[79] or self-correcting [90] processes) often provide poor fit to real-world dataset due to
their low flexibility. Multiple recent works address this issue by proposing more flexible
neural-network-based point process models. These neural models are usually defined in
terms of the conditional intensity function. For example, Mei & Eisner [119] propose a
novel RNN architecture that can model sophisticated intensity functions. This flexibility
comes at the cost of inability to evaluate the likelihood in closed form, and thus requiring
Monte Carlo integration.

Du et al. [52] suggest using an RNN to encode the event history into a vector hi.
The history embedding hi is then used to define the conditional intensity, for example,
using the constant intensity model λ∗(ti) = exp(vThi + b) [89, 108] or the more flexible
exponential intensity model λ∗(ti) = exp(w(ti − ti−1) + v

Thi + b) [52, 183]. By con-
sidering the conditional inter-event time distribution p∗i (τ) of the two models, we can
better understand their properties. Constant intensity corresponds to the exponential
distribution, and exponential intensity corresponds to the Gompertz distribution (see
Appendix D.2). Clearly, these unimodal distributions cannot match the flexibility of a
mixture model (as can be seen in Figure D.1).

Omi et al. [139] introduce a flexible fully neural network (FullyNN) intensity model,
where they model the cumulative hazard function Φ∗

i (τ) with a neural net. The function
Φ∗
i converts τ into an exponentially distributed random variable with unit rate [152],

similarly to how normalizing flows model p∗i (τ) by converting τ into a random variable
with a simple distribution. However, due to a suboptimal choice of the network archi-
tecture, the FullyNN model assigns non-zero probability to negative inter-event times
(see Appendix D.3). In contrast, SOSFlow and DSFlow always define a valid PDF on
R+. Moreover, similar to other flow-based models, sampling from the FullyNN model
requires iterative root finding.

Several works used mixtures of kernels to parametrize the conditional intensity func-
tion [138, 177, 178]. Such models can only capture self-exciting influence from past

36

3.4 Experiments

events. Moreover, these models do not permit computing expectation and drawing sam-
ples in closed form. Recently, Biloš et al. [26] and Türkmen et al. [181] proposed neural
models for learning marked TPPs. These models focus on event type prediction and
share the limitations of other neural intensity-based approaches. Other recent works
consider alternatives to the maximum likelihood objective for training TPPs. Examples
include noise-contrastive estimation [77], Wasserstein distance [199, 201, 202], and rein-
forcement learning [108, 183]. This line of research is orthogonal to our contribution, and
the models proposed in our work can be combined with the above-mentioned training
procedures.
Neural density estimation. There exist two popular paradigms for learning flexible

probability distributions using neural networks: In mixture density networks [15], a
neural net directly produces the distribution parameters; in normalizing flows [155, 176],
we obtain a complex distribution by transforming a simple one. Both mixture models
[54, 74, 164] and normalizing flows [140, 216] have been applied for modeling sequential
data. However, surprisingly, none of the existing works make the connection and consider
these approaches in the context of TPPs.

3.4 Experiments

We evaluate the proposed models on the established task of event time prediction (with
and without marks) in Sections 3.4.1 and 3.4.2. In the remaining experiments, we show
how the log-normal mixture model can be used for incorporating extra conditional in-
formation, training with missing data and learning sequence embeddings. We use 6
real-world datasets containing event data from various domains: Wikipedia (article
edits), MOOC (user interaction with online course system), Reddit (posts in social me-
dia) [102], Stack Overflow (badges received by users), LastFM (music playback) [52], and
Yelp (check-ins to restaurants). We also generate 5 synthetic datasets (Poisson, Re-
newal, Self-correcting, Hawkes1, Hawkes2), as described in [139]. Detailed descriptions
and summary statistics of all the datasets are provided in Appendix D.5.

3.4.1 Event time prediction using history

Setup. We consider two normalizing flow models, SOSFlow and DSFlow (Equa-
tions 3.6 and 3.7), as well a log-normal mixture model (Equation 3.8), denoted as Log-
NormMix. As baselines, we consider RMTPP (i.e. Gompertz distribution / expo-
nential intensity from [52]) and FullyNN model from Omi et al. [139]. Additionally,
we use a single log-normal distribution (denoted LogNormal) to highlight the benefits
of the mixture model. For all models, an RNN encodes the history into a vector hi.
The parameters of p∗i (τ) are then obtained using hi (Equation 3.10). We exclude the
NeuralHawkes model from our comparison, since it is known to be inferior to RMTPP in
time prediction [119], and, unlike other models, does not have a closed-form likelihood.
Each dataset consists of multiple sequences of event times. The task is to predict

the time τi until the next event given the history H(ti). For each dataset, we use 60%
of the sequences for training, 20% for validation and 20% for testing. We train all

37

3 Intensity-free learning of temporal point processes

4

5

Yelp Reddit LastFM MOOC Stack Overflow Wikipedia
0

1

2

St
an

da
rd

ize
d

te
st

 N
LL LogNormMix

DSFlow
SOSFlow
FullyNN
LogNormal
RMTPP

Figure 3.2: Time NLL loss when learning without marks. NLL of each model is standardized
by subtracting the score of LogNormMix. Lower score is better. Despite its
simplicity, LogNormMix consistently achieves excellent loss values.

4.5

5.0

Reddit MOOC
0.0

0.5

1.0

St
an

da
rd

ize
d

te
st

 N
LL

Figure 3.3: Time NLL loss when learning
with marks. Rest of the setup
is identical to Figure 3.2.

Yelp

0.00

0.05

0.10

0.15

0.20

0.25

St
an

da
rd

ize
d

te
st

 N
LL

Both hi & yi

Only hi

Only yi

None

Figure 3.4: Additional conditional informa-
tion improves time prediction
ability of the model.

models by minimizing the negative log-likelihood (NLL) of the inter-event times in the
training set. To ensure a fair comparison, we try multiple hyperparameter configurations
for each model and select the best configuration using the validation set. Finally, we
report the NLL loss of each model on the test set. All results are averaged over 10
train/validation/test splits. Details about the implementation, training process and
hyperparameter ranges are provided in Appendix D.4. For each real-world dataset,
we report the difference between the NLL loss of each method and the LogNormMix
model (Figure 3.2). We report the differences, since scores of all models can be shifted
arbitrarily by scaling the data. Absolute scores (not differences) in a tabular format, as
well as results for synthetic datasets are provided in Appendix D.6.1.

Results. Simple unimodal distributions (Gompertz/RMTPP, LogNormal) are always
dominated by the more flexible models with the universal approximation property (Log-
NormMix, DSFlow, SOSFlow, FullyNN). Among the simple models, LogNormal provides
a much better fit to the data than RMTPP/Gompertz. The distribution of inter-event
times in real-world data often has heavy tails, and the Gompertz distributions fails to
capture this behavior. We observe that the two proposed models, LogNormMix and
DSFlow consistently achieve the best loss values.

38

3.4 Experiments

Observed Mean Sampled

?

0 50 100 150 200
Iteration

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

No sampling
Mean imputation
Sampling + reparam.

Model NLL

No imputation 1.01 ± 0.20
Mean imputation 0.81 ± 0.27
Sampling with
reparametrization

0.36 ± 0.05

Figure 3.5: By sampling the missing values from p∗(τ) during training, LogNormMix learns the
true underlying data distribution. Other imputation strategies overfit the partially
observed sequence.

3.4.2 Learning with marks

Setup. We apply the models for learning in marked temporal point processes. Marks
are known to improve performance of simpler models [52], we want to establish whether
our proposed models work well in this setting. We use the same setup as in the previous
section, except that now each event has an associated categorical mark. In this experi-
ment, we consider categorical marks and model them with a conditionally independent
model (Equation 3.11). The marked model is implemented according to the description
in Section 3.2.4.

Results. Figure 3.2 (right) shows the time NLL loss (i.e. −
∑

i log p
∗
i (τi)) for Reddit

and MOOC datasets. LogNormMix shows dominant performance in the marked case,
just like in the previous experiment. Like before, we provide the results in tabular
format, as well as report the marks NLL loss in Appendix D.6.

3.4.3 Learning with additional conditional information

Setup. We investigate whether the additional conditional information (Section 3.2.3)
can improve performance of the model. In the Yelp dataset, the task is predict the time
τ until the next check-in for a given restaurant. We postulate that the distribution p∗i (τ)
is different, depending on whether it is a weekday and whether it is an evening hour,
and encode this information as a vector yi. We consider 4 variants of the LogNormMix
model, that either use or do not use yi and the history embedding hi.

Results. Figure 3.4 shows the test set loss for 4 variants of the model. We see
that additional conditional information boosts performance of the LogNormMix model,
regardless of whether the history embedding is used.

3.4.4 Missing data imputation

In practical scenarios, one often has to deal with missing data. For example, we may
know that records were not kept for a period of time, or that the data is unusable for
some reason. Since TPPs are a generative model, they provide a principled way to
handle the missing data through imputation.

39

3 Intensity-free learning of temporal point processes

60 62 64 66 68 70

Time

Figure 3.6: Interpolating between learned
embeddings generates sequences
with changing characteristics.

t-SNE component 1

t-S
NE

 c
om

po
ne

nt
 2

Poisson
Renewal
Self-correcting
Hawkes1
Hawkes2

Figure 3.7: Learned embeddings let us dis-
tinguish between sequences form
different distributions.

Setup. We are given several sequences generated by a Hawkes process, where some
parts are known to be missing. We consider 3 strategies for learning from such a partially
observed sequence: (a) ignore the gaps, maximize log-likelihood of observed inter-event
times (b) fill the gaps with the average τ estimated from observed data, maximize log-
likelihood of observed data, and (c) fill the gaps with samples generated by the model,
maximize the expected log-likelihood of the observed points. The setup is demonstrated
in Figure 3.5. Note that in case (c) the expected value depends on the parameters of
the distribution, hence we need to perform sampling with reparametrization to optimize
such loss. A more detailed description of the setup is given in Appendix D.6.4.

Results. The 3 model variants are trained on the partially-observed sequence. Fig-
ure 3.5 shows the NLL of the fully observed sequence (not seen by any model at training
time) produced by each strategy. We see that strategies (a) and (b) overfit the partially
observed sequence. In contrast, strategy (c) generalizes and learns the true underlying
distribution. The ability of the LogNormMix model to draw samples with reparametriza-
tion was crucial to enable such training procedure.

3.4.5 Sequence embedding

Different sequences in the dataset might be generated by different processes, and exhibit
different distribution of inter-event times. We can “help” the model distinguish between
them by assigning a trainable embedding vector ej to each sequence j in the dataset. It
seems intuitive that embedding vectors learned this way should capture some notion of
similarity between sequences.

Learned sequence embeddings. We learn a sequence embedding for each of the
sequences in the synthetic datasets (along with other model parameters). We visualize
the learned embeddings using t-SNE [115] in Figure 3.7 colored by the true class. As we
see, the model learns to differentiate between sequences from different distributions in a
completely unsupervised way.

Generation. We fit the LogNormMix model to two sequences (from self-correcting
and renewal processes), and, respectively, learn two embedding vectors eSCP and eRP .
After training, we generate 3 sequences from the model, using eSCP , 1/2(eSCP + eRP)

40

3.5 Conclusions

and eRP as sequence embeddings. Additionally, we plot the learned conditional intensity
function of our model for each generated sequence (Figure 3.6). The model learns to
map the sequence embeddings to very different distributions.

3.5 Conclusions

We use tools from neural density estimation to design new models for learning in TPPs.
We show that a simple mixture model is competitive with state-of-the-art normaliz-
ing flows methods, as well as convincingly outperforms other existing approaches. By
looking at learning in TPPs from a different perspective, we were able to address the
shortcomings of existing intensity-based approaches, such as insufficient flexibility, lack
of closed-form likelihoods and inability to generate samples analytically. We hope this
alternative viewpoint will inspire new developments in the field of TPPs.

41

4 Fast and flexible temporal point
processes with triangular maps

In Chapter 3 we presented a family of flexible neural TPPs based on autoregressive
neural networks. While such models are expressive and can achieve good results in
various prediction tasks, they are poorly suited for sampling — events ti can only be
generated one by one, which results in slow sequential sampling. This applies both to
RNN-based models [52, 139, 167], as well as to the more recent neural TPPs based on
the transformer architecture [185, 208, 217].
In this chapter we show how to overcome the above limitation and design flexible TPP

models without relying on autoregressive neural networks. Our approach is based on the
framework of triangular maps [91] and recent developments in the field of normalizing
flows [53]. This new class of models will open new TPP applications that we will present
in Chapter 5. Our main contributions are:

• We propose a new parametrization for several conventional TPPs. This enables
efficient parallel likelihood computation and sampling, which was impossible with
existing parametrizations.

• We propose TriTPP — a new class of TPPs that matches the flexibility of neural-
network-based methods, while allowing orders of magnitude faster sampling.

4.1 Background

In this chapter we will use notation from Chapter 2 (see Appendices A and B for a recap).
A TPP defines a probability distribution over variable-length sequences of strictly in-
creasing arrival times T = (t1, . . . , tN) in a time interval [0, T]. One way to specify a TPP
is via the conditional intensity function λ∗(t) := λ∗(t|H(t)) that defines the rate of arrival
of new events given the history H(t) = {tj ∈ T : tj < t} (Equation 2.9). We will also
make use of an alternative description in terms of the compensator Λ∗(t) := Λ(t|H(t))
(Equation 2.20). We can compute the likelihood of a TPP realization T on [0, T] as

p(T) =

(
N∏
i=1

λ∗(ti)

)
exp

(
−
∫ T

0
λ∗(u)du

)

=

(
N∏
i=1

∂

∂ti
Λ∗(ti)

)
exp (−Λ∗(T)) .

(4.1)

This quantity p(T) is also called point process density.

43

4 Fast and flexible temporal point processes with triangular maps

Triangular maps [91] provide a framework that connects autoregressive models,
normalizing flows and density estimation. Bogachev et al. [20] have shown that any
density p(x) on RN can be equivalently represented by another density p̃(z) on RN and
an increasing differentiable triangular map F = (f1, . . . , fN) : RN → RN that pushes
forward p into p̃.1 A map F is called triangular if each component function fi depends
only on (x1, . . . , xi) and is an increasing function of xi. Intuitively, we can think of F
as converting a random variable x ∼ p into a random variable z := F (x) with a density
p̃. We can compute the density p(x) using the change of variables formula

p(x) = |det JF (x)| p̃ (F (x))

=

(
N∏
i=1

∂

∂xi
fi(x1, . . . , xi)

)
p̃ (F (x))

(4.2)

where det JF (x) is the Jacobian determinant of F at x. Here, we used the fact that
JF (x) is a positive-definite lower-triangular matrix. To specify a complex density p(x),
we can pick some simple density p̃(z) and learn the triangular map F that pushes p into
p̃. It is important that F and its Jacobian determinant can be evaluated efficiently if
we are learning p(x) via maximum likelihood. We can sample from p(x) by applying
the inverse map F−1 to the samples drawn from p̃(z). Note that F−1 : RN → RN is
also an increasing differentiable triangular map. Fast computation of F−1 is important
when learning p(x) via sampling-based losses (e.g., in variational inference).

4.2 Defining temporal point processes using triangular maps

We can notice the similarity between the right-hand sides of Equations 4.1 and 4.2, which
seems to suggest some connection between TPPs and triangular maps. Indeed, it turns
out that triangular maps can also be used to specify densities of point processes. Let
T = (t1, . . . , tN) be a realization of a TPP with compensator Λ∗ on the time interval [0, T]
(i.e. with density p(T)). The random time change theorem (Theorem 1) states that in
this case Z = (Λ∗(t1), . . . ,Λ∗(tN)) is a realization of the standard Poisson process (SPP)
on the interval [0,Λ∗(T)] (Figure 4.1a).
We denote the transformation that maps T = (t1, . . . , tN) to Z = (z1, . . . , zN) as F

F

t1
t2
...
tN

 =

Λ(t1)

Λ(t2|t1)
...

Λ(tN |t1, . . . , tN−1)

 =

z1
z2
...
zN

 . (4.3)

The transformation F = (f1, . . . , fN) : T 7→ Z is indeed an increasing triangular map.
Each component function fi(T) = Λ(ti|t1, . . . , ti−1) only depends on (t1, . . . , ti) and
is increasing in ti since ∂

∂ti
Λ∗(ti) = λ∗(ti) > 0. The number N of the component

functions fi depends on the length of the specific realization T . Notice that the term

1Note that some other works instead define F as the map that pushes the density p̃(z) into p(x).

44

4.2 Defining temporal point processes using triangular maps

t1 t2 T

Λ∗(t1)

Λ∗(t2)

Λ∗(T)
Λ∗

(a) Triangular map F (T) = (Λ∗(t1), ...,Λ
∗(tN))

is used for computing p(T).

t1 t2 T t3

z1

z2

z3

Discard ti > T

Λ∗

(b) Sampling is done by applying F−1 to a sam-
ple Z from the standard Poisson process.

∏N
i=1

∂
∂ti

Λ∗(ti) in Equation 4.1 corresponds to the Jacobian determinant of F . Similarly,
the second term, p̃(Z) = p̃(F (T)) = exp(−Λ∗(T)), corresponds to the density of the
SPP on [0,Λ∗(T)] for any realization Z. This demonstrates that all TPP densities
(Equation 4.1) correspond to increasing triangular maps (Equation 4.2). As for the
converse of this statement, every increasing triangular map that is bijective on the space
of increasing sequences defines a valid TPP (see Appendix E.1.3).

Our main idea is to define TPP densities p(T) by directly specifying the respective
maps F . In Section 4.2.1, we show how maps that satisfy certain properties allow us to
efficiently compute density and generate samples. We demonstrate this by designing a
new parametrization for several established models in Section 4.2.2. Finally, we propose
a new class of fast and flexible TPPs in Section 4.2.3.

4.2.1 Requirements for efficient TPP models

Density evaluation. The time complexity of computing the density p(T) for various
TPP models can be understood by analyzing the respective map F . For a general
triangular map F : RN → RN , computing F (T) takes O(N2) operations. For example,
this holds for Hawkes processes with arbitrary kernels [79]. If the compensator Λ∗ has
Markov property, the complexity of evaluating F can be reduced to O(N) sequential
operations. This class of models includes Hawkes processes with exponential kernels
[45, 132] and RNN-based autoregressive TPPs [52, 139, 167]. Unfortunately, such models
do not benefit from the parallelism of modern hardware. Defining an efficient TPP
model will require specifying a forward map F that can be computed in O(N) parallel
operations.

Sampling. As a converse of the random time change theorem, we can sample from a
TPP density p(T) by first drawing Z from an HPP on [0,Λ∗(T)] and applying the inverse
map, T = F−1(Z). This corresponds to the inverse transform method (Algorithm 3).
There are, however, several caveats to this approach. Not all parametrizations of F
allow computing F−1(Z) in closed form. Even if F−1 is available, its evaluation for
most models is again sequential [45, 52]. Lastly, the number of points N that will

45

4 Fast and flexible temporal point processes with triangular maps

be generated (and thus Λ∗(T) for SPP) is not known in advance. Therefore, existing
methods typically resort to generating the samples one by one (Algorithm 3). We show
that it is possible to do better than this. If the inverse map F−1 can be applied in
parallel, we can produce large batches of samples ti, and then discard the points ti > T
(Figure 4.1b). Even though this method may produce samples that are later discarded,
it is much more efficient than sequential generation on GPUs (Section 4.4.1).

To summarize, defining a TPP efficient for both density computation and sampling
requires specifying a triangular map F , such that both F and its inverse F−1 can
be evaluated analytically in O(N) parallel operations. We will now show that maps
corresponding to several classic TPP models can be defined to satisfy these criteria.

4.2.2 Fast temporal point process models

Inhomogeneous Poisson process (IPP) (Equation 2.14) is a TPP whose conditional
intensity does not depend on the history,

Λ(t|H(t)) = Λ(t). (4.4)

The corresponding map is F = Λ, where Λ applies the function Λ : [0, T] → R+

elementwise to the sequence (t1, ..., tN).

Renewal process (RP) (Equation 2.15) is a TPP where each inter-event time ti −
ti−1 is sampled i.i.d. from the same distribution with the cumulative hazard function
Φ: R+ → R+. The compensator of an RP is

Λ(t|H(t)) = Φ(t− ti−1) +

i−1∑
j=1

Φ(tj − tj−1), (4.5)

where ti−1 is the last event before t. The triangular map of an RP can be represented
as a composition F = C ◦Φ ◦D, where D ∈ RN×N is the pairwise difference matrix,
C ≡D−1 ∈ RN×N is the cumulative sum matrix, and Φ applies Φ elementwise.

Modulated renewal process (MRP) [37] generalizes both inhomogeneous Poisson
and renewal processes. The cumulative intensity is

Λ(t|H(t)) = Φ(Λ(t)− Λ(ti−1)) +

i−1∑
j=1

Φ(Λ(tj)− Λ(tj−1)). (4.6)

Again, we can represent the triangular map of an MRP as a composition, F = C ◦Φ ◦
D ◦Λ.

All three above models permit fast density evaluation and sampling. Since Φ and
Λ (as well as their inverses Φ−1 and Λ−1) are elementwise transformations, they can
obviously be applied in O(N) parallel operations. Same holds for multiplication by the
matrix D, as it is bidiagonal. Finally, the cumulative sum defined by C can also be
computed in parallel in O(N) [18]. Therefore, by reformulating IPP, RP and MRP
using triangular maps, we can satisfy our efficiency requirements.

46

4.2 Defining temporal point processes using triangular maps

Parametrization for Φ and Λ must satisfy several conditions. First, to define a
valid TPP, Φ and Λ have to be positive, strictly increasing and differentiable. Next, both
functions, their derivatives (for density computation) and inverses (for sampling) must
be computable in closed form to meet the efficiency requirements. Lastly, we want both
functions to be highly flexible. Constructing such functions is not trivial. While IPP,
RP and MRP are established models, none of their existing parametrizations satisfy all
the above conditions simultaneously. Luckily, the same properties are necessary when
designing normalizing flows [143]. Recently, Durkan et al. [53] used rational quadratic
splines (RQS) to define functions that satisfy our requirements. We propose to use RQS
to define Φ and Λ for IPP, RP and MRP. This parametrization is flexible, while also
allowing efficient density evaluation and sampling — something that existing approaches
are unable to provide (see Section 4.3).

4.2.3 Defining more flexible triangular maps

Even though the splines can make the functions Φ and Λ arbitrarily flexible, the overall
expressiveness of MRP is still limited. Its conditional intensity λ∗(t) depends only on
the global time and the time since the last event. This means, MRP cannot capture,
e.g., self-exciting [79] or self-correcting [90] behavior. We will now construct a model
that is more flexible without sacrificing the efficiency.

The efficiency of the MRP stems from the fact that the respective triangular map
F is defined as a composition of easy-to-invert transformations. More specifically, we
are combining learnable element-wise nonlinear transformations Φ and Λ with fixed
lower-triangular matrices D and C. We can make the map F more expressive by
adding learnable lower-triangular matrices into the composition. Using full N ×N lower
triangular matrices would be inefficient (multiplication and inversion are O(N2)), and
also would not work for variable-length sequences (i.e., arbitrary values of N). Instead,
we define block-diagonal matrices Bl, where each block is a repeated H × H lower-
triangular matrix with strictly positive diagonal entries. Computing B−1

l takes O(H2),
and multiplication by Bl or B

−1
l can be done in O(NH) in parallel. We stack L such

matrices Bl and define the triangular map F = C ◦Φ2 ◦BL ◦ · · · ◦B1 ◦Φ1 ◦D ◦Λ. The
blocks in every other layer are shifted by an offset H/2 to let the model capture long-
range dependencies. Note that now we use two element-wise learnable splines Φ1 and
Φ2 before and after the block-diagonal layers. Figure 4.2 visualizes the overall sequence
of maps and the Jacobians of each transformation. We name the temporal point process
densities defined by the triangular map F as TriTPP.

Both the forward map F and its inverse F−1 can be evaluated in parallel in linear time,
making TriTPP efficient for density computation and sampling. Our insight that TPP
densities can be represented by increasing triangular maps was crucial for arriving at
this result. Alternative representations of TriTPP, e.g., in terms of the compensator Λ∗

or the conditional intensity λ∗, are cumbersome and do not emphasize the parallelism
of the model. TriTPP and our parametrizations of IPP, RP, MRP can be efficiently
implemented on GPU to handle batches of variable-length sequences (Appendix E.1).

47

4 Fast and flexible temporal point processes with triangular maps

C Φ2 BL B1 Φ1 D Λ

. . .
Jacobian
of each

transform

Figure 4.2: TriTPP defines an expressive map F = C ◦Φ2 ◦BL ◦ · · · ◦B1 ◦Φ1 ◦D ◦ Λ as a
composition of easy-to-invert transformations.

4.3 Related work

Triangular maps [91] can be seen as a generalization of autoregressive normalizing flows
[67, 100, 143]. Existing normalizing flow models are either limited to fixed-dimensional
data [50, 142] or are inherently sequential [140, 184]. Our model proposed in Section 4.2.3
can handle variable-length inputs, and allows for both F and F−1 to be evaluated
efficiently in parallel.

Sampling from TPPs. Inverse method for sampling from inhomogeneous Poisson
processes can be dated back to Çinlar [24]. However, traditional inversion methods for
IPPs are different from our approach (Section 4.2). First, they are typically sequential.
Second, existing methods either use extremely basic compensators Λ(t), such as λt or eαt,
or require numerical inversion [144]. As an alternative to inversion, thinning approaches
[105] became the dominant paradigm for generating IPPs, and TPPs in general. Still,
sampling via thinning has a number of disadvantages. Thinning requires a piecewise-
constant upper bound on λ(t), which might not always be easy to find. If the bound
is not tight, a large fraction of samples will be rejected. Moreover, thinning is not
differentiable, does not permit reparametrization, and is hard to express in terms of
parallel operations on tensors [181]. Our inversion-based sampling addresses all the above
limitations. It is also possible to generate an IPP by first drawing N ∼ Poisson(Λ(T))
and then sampling N points ti i.i.d. from a density p(t) = λ(t)/Λ(T) [36]. Unlike
inversion, this method is only applicable to Poisson processes. Also, the operation of
sampling N is not differentiable, which limits the utility of this approach.

Inhomogeneous Poisson processes are commonly defined by specifying the in-
tensity function λ(t) via a latent Gaussian process [35]. Such models are flexible, but
highly intractable. It is possible to devise approximations by, e.g., bounding the inten-
sity function [1, 51]. Our spline parametrization of IPP compares favorably to the above
models: it is also highly flexible, has a tractable likelihood and places no restrictions on
the intensity. Importantly, it is much easier to implement and train. If uncertainty is of
interest, we can perform approximate Bayesian inference on the spline coefficients [207].
Recently, Morgan et al. [124] used splines to model the intensity function of IPPs. Since
Λ−1 cannot be computed analytically for their model, sampling via thinning is the only
available option.

Modulated renewal processes have been known for a long time [12, 37], but have
not become as popular as IPPs among practitioners. This is not surprising, since infer-
ence and sampling in MRPs are even more challenging than in Cox processes [103, 150].

48

4.4 Experiments

Our proposed parametrization addresses the shortcomings of existing approaches and
makes MRPs straightforward to apply in practice.

Neural TPPs. Du et al. [52] proposed a TPP model based on a recurrent neural
network. Follow-up works improved the flexibility of RNN-based TPPs by e.g. changing
the RNN architecture [119], using more expressive conditional hazard functions [26, 139]
or modeling the inter-event time distribution with normalizing flows [167]. All the above
models are inherently sequential and therefore inefficient for sampling (Section 4.4.1).
Turkmen et al. [181] proposed to speed up RNN-based marked TPPs by discretizing
the interval [0, T] into a regular grid. Samples within each grid cell can be produced in
parallel for each mark, but the cells themselves still must be processed sequentially.

Several recent neural TPP models replaced the RNN with a transformer neural net-
work [208, 215, 217]. Unlike RNN-based TPPs, such models can compute the likelihood
in parallel. However, the time and memory complexity of transformer models scales as
O(N2), which limits their applicability to sequences with more than 103 events [185].
More importantly, these models are only able to generate events one by one because
of their autoregressive structure. Quadratic scaling and sequential dependencies mean
that, in practice, transformer-based TPPs are even less scalable than their RNN-based
counterparts.

4.4 Experiments

4.4.1 Scalability

Setup. The key feature of TriTPP is its ability to compute likelihood and generate
samples in parallel, which is impossible for RNN-based models. We quantify this differ-
ence by measuring the runtime of the two models. We implemented TriTPP and RNN
models in PyTorch [145]. The architecture of the RNN model is nearly identical to the
ones used in [52, 139, 167], except that the cumulative conditional hazard function is
parametrized with a spline [53] to enable closed-form sampling. Appendix E.3 contains
the details for this and other experiments. We measure the runtime of (a) computing the
log-likelihood (and backpropagate the gradients) for a batch of 100 sequences of varying
lengths and (b) sample sequences of the same sizes. We used a machine with an Intel
Xeon E5-2630 v4 @ 2.20 GHz CPU, 256GB RAM and an Nvidia GTX1080Ti GPU. The
results are averaged over 100 runs.

Results. Figure 4.3 shows the runtimes for varying sequence lengths. Training is
rather fast for both models, on average taking 1-10ms per iteration. RNN is slightly
faster for short sequences, but is outperformed by TriTPP on sequences with more than
400 events. Note that during training we used a highly optimized RNN implementation
based on custom CUDA kernels (since all the event times ti are already known). In
contrast, TriTPP is implemented using generic PyTorch operations. When it comes
to sampling, we notice a massive gap in performance between TriTPP and the RNN
model. This happens because RNN-based TPPs are defined autoregressively and can
only produce samples ti one by one: to obtain p(ti|t1, ..., ti−1) we must know all the
past events. Recently proposed transformer TPPs [208, 217] are defined in a similar

49

4 Fast and flexible temporal point processes with triangular maps

Figure 4.3: Scalability analysis. Standard deviations are below 1ms.

autoregressive way, so they are likely to be as slow for sampling as RNNs. TriTPP
generates all the events in a sequence in parallel, which makes it more than 100 times
faster than the recurrent model for longer sequences.

4.4.2 Density estimation

Setup. A fast TPP model is of little use if it cannot accurately learn the data distri-
bution. The main goal of this experiment is to establish whether TriTPP can match
the flexibility of RNN-based TPPs. As baselines, we use the IPP, RP and MRP models
from Section 4.2.2 and Hawkes process [8].

Datasets. We use 6 synthetic datasets from Omi et al. [139]: Hawkes1&2 [79],
self-correcting (SCP) [90], inhomogeneous Poisson (IPP), renewal (RP) and modulated
renewal (MRP) processes. Note that the data generators for IPP, RP and MRP by Omi
et al. are not parametrized using splines, so these datasets are not guaranteed to be
fitted perfectly by our models. We also consider 7 real-world datasets: PUBG (online
gaming), Reddit-Comments, Reddit-Submissions (online discussions), Taxi (customer
pickups), Twitter (tweets) and Yelp1&2 (check-in times). See Appendix E.2 for more
details.

Metrics. The standard metric for comparing generative models, including TPPs,
is negative log-likelihood (NLL) on a hold-out set [139, 167, 181]. We partitioned the
sequences in each dataset into train/validation/test sequences (60%/20%/20%). We
trained the models by minimizing the NLL of the train set using Adam [98]. We tuned
the following hyperparameters: L2 regularization {0, 10−5, 10−4, 10−3}, number of spline
knots {10, 20, 50}, learning rate {10−3, 10−2}, hidden size {32, 64} for RNN, number of
blocks {2, 4} and block size {8, 16} for TriTPP. We used the validaiton set for hyper-
parameter tuning, early stopping and model development. We computed the results for
the test set only once before including them in the paper. All results are averaged over
5 runs.

While NLL is a popular metric, it has known failure modes [180]. For this reason, we
additionally computed maximum mean discrepancy (MMD) [76] between the test sets
and the samples drawn from each model after training. To measure similarity between
two realizations T and U , we use a Gaussian kernel k(T ,U) = exp(−d(T ,U)/2σ2), where

50

4.4 Experiments

Table 4.1: Average test set NLL on synthetic and real-world datasets (lower is better). Best
NLL in bold, second best underlined.

Hawkes1 Hawkes2 SC IPP MRP RP PUBG Reddit-C Reddit-S Taxi Twitter Yelp1 Yelp2

IPP 1.06 1.03 1.00 0.71 0.70 0.89 -0.06 -1.59 -4.08 -0.68 1.60 0.62 -0.05
RP 0.65 0.08 0.94 0.85 0.68 0.24 0.12 -2.08 -4.00 -0.58 1.20 0.67 -0.02
MRP 0.65 0.07 0.93 0.71 0.36 0.25 -0.83 -2.13 -4.38 -0.68 1.23 0.61 -0.10
Hawkes 0.51 0.06 1.00 0.86 0.98 0.39 0.11 -2.40 -4.19 -0.64 1.04 0.69 0.01
RNN 0.52 -0.03 0.79 0.73 0.37 0.24 -1.96 -2.40 -4.89 -0.66 1.08 0.67 -0.08
TriTPP 0.56 0.00 0.83 0.71 0.35 0.24 -2.41 -2.36 -4.49 -0.67 1.06 0.64 -0.09

Table 4.2: MMD between the hold-out test set and the generated samples (lower is better).

Hawkes1 Hawkes2 SC IPP MRP RP PUBG Reddit-C Reddit-S Taxi Twitter Yelp1 Yelp2

IPP 0.08 0.09 0.58 0.02 0.15 0.07 0.01 0.10 0.21 0.10 0.16 0.15 0.16
RP 0.06 0.06 1.13 0.34 1.24 0.01 0.46 0.07 0.18 0.57 0.14 0.16 0.23
MRP 0.05 0.06 0.50 0.02 0.11 0.02 0.12 0.09 0.20 0.09 0.13 0.13 0.16
Hawkes 0.02 0.04 0.58 0.36 0.65 0.05 0.16 0.04 0.35 0.20 0.20 0.20 0.32
RNN 0.01 0.02 0.19 0.09 0.17 0.01 0.23 0.04 0.09 0.13 0.08 0.19 0.18
TriTPP 0.03 0.03 0.23 0.02 0.08 0.01 0.16 0.07 0.16 0.08 0.08 0.12 0.14

d(T ,U) is the “counting measure” distance from [199, Equation 3]. For completeness,
we provide the definitions in Appendix E.3.2. MMD quantifies the dissimilarity between
the true data distribution p⋆(T) and the learned density p(T) — lower is better.

Results. Table 4.1 shows the test set NLLs for all models and datasets. We can
see that the RNN model achieves excellent scores and outperforms the simpler base-
lines, which is consistent with earlier findings [52]. TriTPP is the only method that is
competitive with the RNN — our method is within 0.05 nats of the best score on 11
out of 13 datasets. TriTPP consistently beats MRP, RP and IPP, which confirms that
learnable block-diagonal transformations improve the flexibility of the model. The gap
get larger on the datasets such as Hawkes, SCP, PUBG and Twitter, where the inabil-
ity of MRP to learn self-exciting and self-correcting behavior is especially detrimental.
While Hawkes process is able to achieve good scores on datasets with “bursty” event
occurrences (Reddit, Twitter), it is unable to adequately model other types of behavior
(SCP, MRP, PUBG).

Table 4.2 reports the MMD scores. The results are consistent with the previous
experiment: models with lower NLL typically obtain lower MMD. One exception is the
Hawkes process that achieves low NLL but high MMD on Taxi and Twitter. TriTPP
again consistently demonstrates excellent performance. Note that MMD was computed
using the test sequences that were unseen during training. This means that TriTPP
models the data distribution better than other methods, and does not just simply overfit
the training set. In Appendix E.4.1, we provide additional experiments for quantifying
the quality of the distributions learned by different models. Overall, we conclude that
TriTPP is flexible and able to model complex densities, in addition to being significantly
more efficient than RNN-based TPPs.

51

4 Fast and flexible temporal point processes with triangular maps

4.5 Conclusions

Future work & limitations. We parametrized the nonlinear transformations of our
TPP models with splines. Making a spline more flexible requires increasing the number of
knots, which increases the number of parameters and might lead to overfitting. New deep
analytically invertible functions will improve both our models, as well as normalizing
flows in general. Currently, TriTPP is not applicable to marked TPPs [152]. Extending
our model to this setting is an important task for future work.
Conclusions. We have shown that TPP densities can be represented with increasing

triangular maps. By directly parametrizing the respective transformations, we are able
to construct TPP models, for which both density evaluation and sampling can be done
efficiently in parallel. Using the above framework, we defined TriTPP— a new class
of flexible probability distributions over variable-length sequences. In addition to being
highly efficient thanks to its parallelism, TriTPP shows excellent performance on density
estimation, as shown by our experiments. High flexibility and efficiency of TriTPP make
it perfectly suited for tasks beyond density estimation, as we will demonstrate in the
next chapter.

52

Part III

Applications

53

5 Learning with sampling-based losses

In Chapters 3 and 4 we introduced flexible neural TPP models, where new event se-
quences can be sampled exactly using the inversion method (Algorithm 3). The ability
to sample from a TPP allows us to answer prediction queries such as “How many events
are expected to happen in the next hour given the history?”. Even more importantly,
sampling with reparametrization enables us to train TPPs with sampling-based losses
that arise in application areas such as reinforcement learning [108, 183], variational in-
ference [28, 168], and adversarial training [198, 199, 202].
Unfortunately, as we demonstrate in this chapter, such sampling-based losses for TPPs

are plagued by discontinuities, which prevents us from effectively optimizing them with
gradient descent. We propose a solution to this problem by introducing a differentiable
relaxation for TPP losses. To demonstrate the utility of this approach, we derive a vari-
ational inference scheme for continuous-time discrete-state probabilistic models known
as Markov jump processes [141]. To summarize, our contributions are the following:

• We introduce the reparametrization trick for TPPs. Combined with a new dif-
ferentiable relaxation for TPP losses, it allows us to efficiently train TPPs using
sampling-based objective functions.

• Based on the previous insight, we develop a variational inference scheme for Markov
jump processes.

5.1 Background

5.1.1 Sampling-based losses for TPPs

We can think of a TPP as a probability distribution pθ(T) over variable-length event
sequences T = (t1, . . . , tN). In Chapters 2 to 4 we focused on learning TPP parameters
θ using maximum likelihood estimation (Equation 2.25).

max
θ

log pθ(T). (5.1)

This, however, is not the only possible option. In a number applications we are interested
in learning TPP models using objective functions involving expectations

max
θ

ET ∼pθ(T)[g(T)]. (5.2)

We refer to such objectives as sampling-based losses, since they involve averaging over
event sequences T that are sampled from the TPP pθ(T). Let us consider several
examples to make this discussion more concrete.

55

5 Learning with sampling-based losses

Reinforcement learning. Upadhyay et al. [183] apply TPPs to find optimal times
for posting content on social media to get the highest possible ranking in the feed. We
can think of the times T = (t1, . . . , tN) when content is posted as a TPP realization,
and therefore model our stochastic policy that chooses when to make posts with a TPP
p(T). The goal is to maximize the reward r(T) that is defined as the fraction of the time
spent on top of the followers’ news feeds. This is equivalent to finding a policy p(T),
defined by a TPP, that that maximizes the following objective function

max
p

ET ∼p(T)[r(T)]. (5.3)

Variational inference. Consider a system that is governed by a binary latent state
that switches at random times [61]. For example, a computer in a network might behave
differently depending on whether it is in “on” or “off” state. We can model the switching
times T = (t1, . . . , tN) as a latent variable with prior distribution p(T). The switching
times T determine the state of the system, which in turn affects the observed behavior
denoted as X . We represent this mechanism through a conditional distribution p(X|T).

A common task is to infer the unobserved switching times T given the observations X .
Unfortunately, the posterior distribution p(T |X) is often intractable. The main idea of
variation inference is to approximate the intractable posterior p(T |X) with a tractable
distribution q(T) [17, 187]. We can find the best possible approximation by minimizing
the Kullback–Leibler divergence between the approximate posterior q(T) and the true
posterior p(T |X), which corresponds to maximizing the Evidence Lower BOund (ELBO)

max
q

ET ∼q(T)[log p(X|T) + log p(T)− log q(T)]. (5.4)

In the case that we consider, T is a variable-length sequence of events in continuous
time, so p(T), p(T |X) and q(T) are all represented by TPPs.

Adversarial learning provides an alternative to the maximum likelihood parameter
estimation procedure for generative models. Suppose we would like to fit a TPP p(T)
using a training set Dtrain = {T (1), . . . , T (M)}. The main idea of adversarial training is
to additionally train a discriminator function d(·) that should discriminate between true
instances from Dtrain and sequences sampled from p(T) [198, 199, 202]. This corresponds
to solving the following optimization problem

max
p

min
d

ET ∼p(T) [d(T)]− 1

M

M∑
m=1

d
(
T (m)

)
. (5.5)

Optimizing with respect to both p and d (subject to certain constraints [6]) forces the
generative model p(T) closer to the distribution that produced Dtrain.

5.1.2 Monte Carlo gradient estimators

The standard way to solve optimization problems such as in Equation 5.3–5.5 is to pick
a parametric TPP model pθ(T) and to learn its parameters θ with a gradient-based

56

5.2 Reparametrization trick for TPPs

method. For this we need to be able to evaluate the gradient of the objective function

∇θ ET ∼pθ(T)[g(T)]. (5.6)

In all but simplest cases, neither the expectation ET ∼pθ(T)[g(T)], nor its gradient w.r.t.
θ can be computed analytically. We can, however, approximate Equation 5.6 using
approaches known as Monte Carlo (MC) gradient estimators [121].
Score function estimator [196] (also known as REINFORCE) is one example of

MC gradient estimators. This approach is based on the following identity

∇θET ∼pθ(T)[g(T)] = ET ∼pθ(T)[∇θ log pθ(T)g(T)]. (5.7)

We can approximate the expectation using samples T (1), . . . , T (S) drawn from pθ(T) as

ET ∼pθ(T)[∇θ log pθ(T)g(T)] ≈ 1

S

S∑
s=1

∇θ log pθ
(
T (s)

)
g
(
T (s)

)
. (5.8)

This is a generic approach that can be combined with any generative model, where
sampling and density computation are tractable. This algorithm has also been used in
the context of TPPs [108, 183]. The main disadvantage of the score function estimator
is its high variance [121], so applying the estimator in practice often requires employing
additional variance reduction techniques [147].

Reparametrization trick (also known as the pathwise gradient estimator) [99, 157]
provides a lower-variance alternative to the score function estimator [121]. The main idea
of this approach is to replace sampling from pθ(T) by the following two-step procedure.
First, we sample Z from a distribution p̃(Z) that does not depend on θ. Then, we obtain
T by passing Z through a deterministic transformation parametrized by θ. We will now
show how this approach can be generalized to TPPs.

5.2 Reparametrization trick for TPPs

5.2.1 Inversion method as reparametrization sampling

In Chapter 4, we discussed how sampling from any TPP pθ(T) can be represented using
the same two-step procedure: We generate Z from the standard Poisson process p̃(Z)
(Equation 2.13) and then apply the triangular map F−1

θ to obtain a sample from pθ(T)
as T = F−1

θ (Z). This corresponds to the reparametrization trick and, therefore, allows
us to compute gradients of sampling-based losses

∇θET ∼pθ(T)[g(T)] = EZ∼p̃(Z)

[
∇θg

(
F−1
θ (Z)

)]
. (5.9)

We approximate this expectation using samples Z(1), . . . ,Z(S) drawn from the SPP p̃(Z)

EZ∼p̃(Z)

[
∇θg(F−1

θ (Z))
]
≈ 1

S

S∑
s=1

g
(
F−1
θ

(
Z(s)

))
. (5.10)

57

5 Learning with sampling-based losses

The main prerequisite for applying the above technique is the ability to compute
the inverse map F−1

θ analytically. This is true for the models that we developed in
Chapter 4. TriTPP (Section 4.2.3) defines a flexible triangular map F−1

θ that can be
applied in O(N) parallel operations. This means, TriTPP is perfectly suited for learning
with sampling-based objectives — sampling is efficient thanks to the parallelism of the
map F−1

θ , and the reparametrization trick allows us to compute gradients with respect
to the TPP parameters θ. The same applies to parametrizations of inhomogeneous
Poisson and (modulated) renewal processes that we introduced in Section 4.2.2. Finally,
the LogNormMix model from Chapter 3 also permits approximate reparametrization
sampling, however, not as efficiently due to sequential dependencies in the RNN (see
Section 3.2.2 for details).

Non-differentiability of TPP losses. The reparametrization trick for TPPs (Equa-
tions 5.9 and 5.10) allows us to compute gradients of sampling-based losses w.r.t. the
TPP parameters θ. Unfortunately, this is not sufficient to optimize such losses with
gradient-based methods — as we will see shortly, such losses for TPPs are in general
discontinuous and, therefore, not differentiable. This is a property of the loss functions
that is independent of the parametrization of pθ(T). In the following, we provide a
simple example and a solution to this problem.

5.2.2 Differentiable relaxation for TPP losses

Entropy maximization. To demonstrate the non-differentiability problem, we con-
sider a toy task of maximizing the entropy of a homogeneous Poisson process. An entropy
penalty can be used as a regularizer during density estimation [73] or as a part of the
ELBO in variational inference [187].

Let pµ(T) be a homogeneous Poisson process (HPP) on [0, T] with rate µ > 0. It
is known that the entropy is maximized when µ = 1, but for sake of example assume
that we want to learn µ that maximizes the entropy with gradient ascent [7]. This
corresponds to the following optimization problem

max
µ∈R+

ET ∼pµ(T)[− log pµ(T)]. (5.11)

We use the reparametrization trick for TPPs to estimate the objective function. We
generate a sequence Z = (z1, z2, ...) from the standard Poisson process (SPP) and apply
the inverse map T = F−1

µ (Z) = 1
µZ. We obtain an Monte Carlo estimate of the entropy

using a single such sample T = (t1, t2, ...) as

ET ∼pµ(T)[− log pµ(T)] ≈ µT −
∞∑
i=1

1(ti ≤ T) logµ

= µT −
∞∑
i=1

1

(
1

µ
zi ≤ T

)
logµ

(5.12)

Here, the indicator function 1(·) discards all the events ti > T .

58

5.2 Reparametrization trick for TPPs

0 1 2 3

µ

0.0

0.5

1.0

E
st
im

a
te
d
en
tr
op

y

ζ = 0.05

No relaxation

Figure 5.1: Monte Carlo estimate of the en-
tropy.

0 100 200 300 400

Iteration

−6

−4

−2

0

E
st
im

at
ed

en
tr
op

y

No relaxation

ζ = 10
−4

ζ = 10
−1

Figure 5.2: Maximizing the entropy with
different values of ζ.

We can see that for any sample Z = (z1, z2, . . .) the right-hand side of Equation 5.12
is not continuous with respect to µ at points µ = 1

T zi. At such points, decreasing µ by
an infinitesimal amount will “push” the event ti =

1
µzi outside the [0, T] interval, thus

increasing log pµ(T) by a constant log µ. We plot the right-hand side of Equation 5.12
as a function of µ in Figure 5.1, estimated with 5 MC samples. Clearly, such a function
cannot be optimized with gradient ascent. Increasing the number of MC samples almost
surely adds more points of discontinuity and does not fix the problem. In general, non-
differentiability arises when estimating expectations of a function g(T) that depends on
the events ti inside [0, T]. For any TPP density p(T), the discontinuities occur at the
parameter values that map the SPP events zi to the interval boundary T .
Relaxation. We obtain a differentiable approximation to Equation 5.12 by replacing

the indicator functions 1(ti ≤ T) with sigmoid σζ(T − ti) as

µT −
∞∑
i=1

1

(
1

µ
zi ≤ T

)
logµ ≈ µT −

∞∑
i=1

σζ

(
T − 1

µ
zi

)
logµ, (5.13)

where σζ(x) = 1/(1+exp(−x/ζ)) is the sigmoid function with a temperature parameter
ζ > 0. This relaxation is similar in spirit to the Gumbel-softmax trick for the categorical
distribution [92, 116] — we enable reparametrization gradients and decrease the variance
at the cost of introducing bias to the gradient estimates. Decreasing the temperature
ζ makes the approximation more accurate but complicates optimization, and ζ = 0
recovers the original non-differentiable objective.
Figure 5.2 shows the convergence plots of the entropy maximization task for different

temperature values ζ. As expected, gradient ascent fails on the original non-differentiable
objective function but works well on the relaxed objective. This example demonstrates
the feasibility of optimizing sampling-based TPP losses using reparametrization sampling
and our differentiable relaxation technique.
Next, we compare the variance of the relaxed reparametrization gradient estimator

(Equation 5.10) to the variance of the score function estimator (Equation 5.8). Figure 5.3
shows the variance of the different estimators as a function of rate parameter µ. We

59

5 Learning with sampling-based losses

−2 0 2 4

logµ

10−2

100

102

104

106

G
ra
d
ie
n
t
va
ri
an

ce

Score function

Rep. ζ = 0.1

Rep. ζ = 1

Figure 5.3: Gradient variance for score func-
tion and reparametrization gradi-
ent estimators in the HPP entropy
maximization task.

0 5 10 15 20

Time

1

2

si state oj observation

Figure 5.4: Markov modulated Poisson
process. Latent state follows a
2-state MJP that controls the
arrival rate of observed events.

observe that the reparametrization estimator achieves lower variance than the score
function estimator, especially at larger values of µ (note the log scale). This follows the
general trend observed in other application areas [121] and highlights the advantages of
the reparametrization trick over the score function estimator.

Summary. We showed how sampling-based TPP losses can be optimized using the
reparametrization trick. Our approach consists of two components: inverse transform
sampling allows us to compute the gradient with respect to model parameters, and
the differentiable relaxation makes gradient-based optimization possible. Our relaxation
scheme is applicable to any TPP loss g(T) that can be expressed in terms of the indicator
functions. In the next section, we will combine this framework with our flexible and
efficient models from Chapter 4 to develop a variational inference scheme for Markov
jump processes.

5.3 Variational inference for Markov jump processes

Background. A Markov jump process (MJP) {s(t)}t≥0 is a piecewise-constant stochas-
tic process on [0,∞). At any time t, the process occupies a discrete state s(t) ∈ {1, ...,K}.
The times when the state changes are called jumps. A trajectory of an MJP on an interval
[0, T] with N jumps can be represented by a tuple (T ,S) of jump times T = (t1, ..., tN)
and the visited states S = (s1, ..., sN+1). Note that N may vary for different trajectories.
The prior over the trajectories p(T ,S|π,A) of an MJP is governed by an initial state
distribution π and a K ×K generator matrix A (see Appendix F.1.1).

MJPs are commonly used to model the unobserved (latent) state of a system. In a
latent MJP, the state s(t) influences the behavior of the system and indirectly manifests
itself via some observations X . For concreteness, we consider the Markov-modulated
Poisson process (MMPP) [61]. In an MMPP, each of the K states of the MJP has an
associated observation intensity λk. An MMPP is an inhomogeneous Poisson process

60

5.4 Related work

where the intensity depends on the current MJP state as λ∗(t) = λs(t). For instance, a
2-state MMPP can model the behavior of a social network user, who switches between an
“active” (posting a lot) and “inactive” (working or sleeping) states (Figure 5.4). Given
the observations X , we might be interested in inferring the trajectory (T ,S), the model
parameters ψ = {π,A,λ}, or both.

Variational inference (VI). The posterior distribution p(T ,S|X ,ψ) of MMPP is
intractable, so we approximate it with a variational distribution q(T ,S) = q(T)q(S|T).
Note that this is not a mean-field approximation used in other works [206]. We model
the distribution over the jump times q(T) with TriTPP (Section 4.2.3). We find the
best approximate posterior by maximizing the ELBO [207]

max
q(T)

max
q(S|T)

Eq(T)

[
Eq(S|T) [log p(X|T ,S,ψ) + log p(T ,S|ψ)− log q(T ,S)]

]
(5.14)

Given jump times T , the true posterior over the states p(S|T ,X ,ψ) is just the posterior
of a discrete hidden Markov model (HMM). This means we only need to model q(T);
the optimal posterior over the states q⋆(S|T)

q⋆(S|T) = argmax
q(S|T)

Eq(S|T) [log p(X|T ,S,ψ) + log p(T ,S|ψ)− log q(S|T)] (5.15)

= p(S|T ,X ,ψ) (5.16)

can be found efficiently via the forward-backward algorithm [188]. The inner expec-
tation w.r.t. q(S|T) in Equation 5.14 can be computed analytically. We approximate
the expectation w.r.t. q(T) with Monte Carlo. Since all terms of Equation 5.14 are not
differentiable, we apply our relaxation from Section 5.2.2. We provide a full derivation
of the ELBO and the implementation details in Appendix F.1.3.

The proposed framework is not limited to approximating the posterior over the tra-
jectories. With small modifications (Appendix F.1.4), we can simultaneously learn the
parameters ψ, either obtaining a point estimate ψ⋆ or a full approximate posterior
q(ψ). Our variational inference scheme can also be extended to other continuous-time
discrete-state models, such as semi-Markov processes [59].

5.4 Related work

Monte Carlo gradient estimators play an important role both in machine learn-
ing [121] as well as other research fields [33, 160]. Score function gradient estimator
[196] and the reparametrization trick [99, 157] are the two families of approaches most
commonly used in practice. Reparametrization trick typically provides lower variance
and therefore faster convergence, but is not as general as the score function estimator
[121]. For example, exact reparametrization sampling from discrete distributions is not
possible in general. However, there exist relaxation methods that allow us to approx-
imate reparametrization sampling, e.g., for the categorical distribution [92, 116]. Our
relaxation technique complements these approaches and can be seen as their extension
to event sequences with a random number of events.

61

5 Learning with sampling-based losses

True MJP trajectory
State 1 State 2 State 3 Observed event

Variational inference

0 10 20 30 40 50 60
Time

MCMC

Figure 5.5: Posterior distributions over the latent trajectory of a Markov modulated Poisson
process learned using our VI approach and the MCMC sampler from [149].

Sampling-based losses for TPPs arise naturally in applications such as reinforce-
ment learning [108, 183] and adversarial training [198, 199, 202]. Existing works rely
on the score function estimator when learning TPPs with such sampling-based losses.
The reparametrization sampling method for TPPs that we introduced in this chapter
provides an easy-to-implement low-variance alternative to the score function estimator.

Latent space models. TPPs governed by latent Markov dynamics have intractable
likelihoods that require approximations [84, 197]. For MJPs, the state-of-the-art ap-
proach is the Gibbs sampler by Rao & Teh [149]. It allows to exactly sample from
the posterior p(T ,S|X ,ψ), but is known to converge slowly if the parameters ψ are to
be learned as well [205]. Existing variational inference approaches for MJPs can only
learn a fixed time discretization [206] or estimate the marginal statistics of the posterior
[141, 194]. In contrast, our method produces a full distribution over the jump times.

5.5 Experiments

5.5.1 Variational inference on simulated data

Setup. We apply our variational inference method from Section 5.3 for learning the
posterior distribution over the latent trajectories of an Markov modulated Poisson pro-
cess (MMPP). We parametrize the variational distribution q(T) over the jump times

62

5.5 Experiments

0 50 100 150 200 250 300

Iteration

680

700

720

740

760

780

EL
BO

Seed 0
Seed 1
Seed 2
Seed 3
Seed 4

Figure 5.6: Convergence of our variational inference procedure with 5 different random seeds.

using the TriTPP model from Chapter 4. We simulate an MMPP with K = 3 latent
states that correspond to different arrival rates of observed events X . As a baseline, we
use the state-of-the-art MCMC sampler by Rao & Teh [149]. In both cases we assume
that the MMPP parameters ψ are known. See Appendix F.2

Results. Figure 5.5 shows the true latent MJP trajectory, as well as the marginal
posterior probabilities learned by our method and the MCMC sampler of Rao & Teh.
We can see that TriTPP accurately recovers the true posterior distribution over the
trajectories. The three components that enable our new variational inference approach
are our efficient parallel sampling algorithm for TriTPP (Section 4.2), reparametrization
trick for TPPs (Section 5.2.1) and the differential relaxation (Section 5.2.2).

Convergence plots. Figure 5.6 additionally shows the convergence of the variational
inference procedure by plotting the ELBO over the training iterations. As we see, we
achieve stable optimization thanks to the differentiable relaxation of the loss.

Random initializations. In order to show that our results are not cherry-picked,
we provide the plots of marginal posterior trajectories (similar to Figure 5.5) obtained
with 3 different random seeds. Figure 5.7 shows that our results are consistent across
the random seeds.

0 10 20 30 40 50 60

Posterior trajectory

0 10 20 30 40 50 60

Posterior trajectory

0 10 20 30 40 50 60

Posterior trajectory

Figure 5.7: Marginal posterior trajectories obtained when using different random seeds.

5.5.2 Variational inference on real-world data

Setup. We apply our model to the server log data.1 We simultaneously learn the
posterior over the trajectories (T ,S) as well as the model parameters ψ = {π,A,λ} by

1https://www.kaggle.com/shawon10/web-log-dataset

63

https://www.kaggle.com/shawon10/web-log-dataset

5 Learning with sampling-based losses

Variational inference
Observed event
State 1
State 2

0 25 50 75 100 125 150 175 200
Time

MCMC

Figure 5.8: Segmentation of server data obtained using our VI approach and MCMC. In both
cases, we estimate the posterior p(T ,S|X ,ψ) as well as the MMPP parameters ψ.

solving the following optimization problem

max
ψ

max
q(T ,S)

Eq[log p(X|T ,S,ψ) + log p(T ,S|ψ)− log q(T ,S)]. (5.17)

Like before, we optimize a differentiable relaxation of this objective with gradient ascent.
We compare our approach to the MCMC sampler of Rao & Teh as the baseline. For the
MCMC sampler, we adopt an EM-like approach, where we alternate between closed-form
parameter updates for ψ and simulating the posterior trajectories.
Results. Figure 5.8 shows the obtained posterior trajectories for the two approaches.

Both models learn to segment the sequence into a high-event-rate and a low-event-rate
states. This confirms that our variational inference approach is a viable alternative to
the MCMC sampler.

5.6 Conclusions

We have shown how the reparametrization trick combined with a new differentiable re-
laxation allows us to train TPP models using sampling-based objective function. To
demonstrate the utility of this framework, we developed an approximate posterior in-
ference scheme for continuous-time discrete-state systems. Our generalization of the
reparametrization trick can be combined with various TPP, and therefore lays the foun-
dation for using TPPs as plug-and-play components of other machine learning models.

64

6 Anomaly detection

Temporal point processes (TPPs) provide a natural representation for transactions in
financial systems, server logs, or user activity traces. Detecting anomalies in such data
can provide immense industrial value. For example, abnormal entries in system logs may
correspond to unnoticed server failures, atypical user activity in computer networks may
correspond to intrusions, and irregular patterns in financial systems may correspond to
fraud or shifts in the market structure.

Manual inspection of such event data is usually infeasible due to its sheer volume. At
the same time, hand-crafted rules quickly become obsolete due to software updates or
changing trends [81]. Ideally, we would like to have an adaptive system that can learn
the normal behavior from the data, and automatically detect abnormal event sequences.
Importantly, such a system should detect anomalies in a completely unsupervised way,
as high-quality labels are usually hard to obtain.

Assuming “normal” data is available, we can formulate the problem of detecting
anomalous event sequences as an instance of out-of-distribution (OoD) detection. Mul-
tiple recent works consider OoD detection for image data based on deep generative
models [128, 154, 189]. However, none of these papers consider continuous-time event
data. Neural TPPs that we discussed in earlier chapters define a generative model for
such variable-length event sequences. Still, the literature on neural TPPs mostly focuses
on prediction tasks, and the problem of anomaly detection has not been adequately
addressed by existing works [170]. We aim to fill this gap in this chapter.

Our main contributions are the following:

• Approach for anomaly detection with generative models. We draw connec-
tions between OoD detection and GoF testing for TPPs (Section 6.1). By combining
this insight with neural TPPs, we propose an approach for anomaly detection that
shows high accuracy on synthetic and real-world event data.

• A new test statistic for TPPs. We highlight the limitations of popular GoF
statistics for TPPs and propose the sum-of-squared-spacings statistic that addresses
these shortcomings (Section 6.3). The proposed statistic can be applied to both
unmarked and marked TPPs.

6.1 Anomaly detection and goodness-of-fit testing

Background. In this chapter we will use a slightly different notation compared to the
rest of the thesis (see Appendices A and B for an overview). We use P to denote a TPP
and the respective distribution over variable-length event sequences. We denote a TPP

65

6 Anomaly detection

1 2 3 4

Value of the test statistic s(X)

0.0

0.5

1.0

1.5

D
en

si
ty

of
s(
X
)|H

0

s(x)

p-value ps(x)
=

2×area of the
shaded region

Figure 6.1: p-value is computed as the tail probability under the sampling distribution s(X)|H0.

realization as X = (t1, . . . , tN), where N , the number of events, is itself a random vari-
able. Same as before, we can characterize a TPP using a conditional intensity function
λ∗(t) := λ(t|H(t)) that is equal to the rate of arrival of new events given the history
H(t) consisting of past events (Equation 2.9). Equivalently, a TPP can be specified with
the compensator Λ∗(t) =

∫ t
0 λ

∗(u)du (Equation 2.20).

Out-of-distribution (OoD) detection. We formulate the problem of detecting
anomalous event sequences as an instance of OoD detection [109]. Namely, we assume
that we are given a large set of training sequences Dtrain = {X1, . . . , XM} that were
sampled i.i.d. from some unknown distribution Pdata over a domain X . At test time,
we need to determine whether a new sequence X was also drawn from Pdata (i.e., X is
in-distribution or “normal”) or from another distribution Q ̸= Pdata (i.e., X is out-of-
distribution or anomalous). We can phrase this problem as a null hypothesis test:

H0 : X ∼ Pdata H1 : X ∼ Q for some Q ̸= Pdata. (6.1)

To reiterate, here we consider the case where X is a variable-length event sequence and
Pdata is some unknown TPP. However, the rest of the discussion in Section 6.1 also
applies to distributions over other data types, such as images.

Goodness-of-fit (GoF) testing. First, we observe that the problem of OoD de-
tection is closely related to the problem of GoF testing [40]. We now outline the setup
and approaches for GoF testing, and then describe how these can be applied to OoD
detection. The goal of a GoF test to determine whether a random element X follows a
known distribution Pmodel

1

H0 : X ∼ Pmodel H1 : X ∼ Q for some Q ̸= Pmodel. (6.2)

1We test a single realization X, as is common in TPP literature [22]. Note that this differs from works
on univariate GoF testing that consider multiple realizations, i.e., H0 : X1, . . . , XM

i.i.d.∼ Pmodel.

66

6.1 Anomaly detection and goodness-of-fit testing

We can perform such a test by defining a test statistic s(X), where s : X → R [62]. For
this, we compute the (two-sided) p-value for an observed realization x of X as2

ps(x) = 2×min{Pr(s(X) ≤ s(x)|H0), 1− Pr(s(X) ≤ s(x)|H0)}. (6.3)

The factor 2 accounts for the fact that the test is two-sided. We reject the null hypothe-
sis (i.e., conclude that X does not follow Pmodel) if the p-value is below some predefined
confidence level α. Note that computing the p-value requires evaluating the cumula-
tive distribution function (CDF) of the sampling distribution, i.e., the distribution test
statistic s(X) under the null hypothesis H0.

GoF testing vs. OoD detection. The two hypothesis tests (Equations 6.1 and
6.2) appear similar—in both cases the goal is to determine whether X follows a certain
distribution P and no assumptions are made about the alternative Q. This means that
we can perform OoD detection using the procedure described above, that is, by defining
a test statistic s(X) and computing the respective p-value (Equation 6.3). However,
in case of GoF testing (Equation 6.2), the distribution Pmodel is known. Therefore, we
can analytically compute or approximate the CDF of s(X)|X ∼ Pmodel, and thus the
p-value. In contrast, in an OoD detection hypothesis test (Equation 6.1), we make no
assumptions about Pdata and only have access to samples Dtrain that were drawn from
this distribution. For this reason, we cannot compute the CDF of s(X)|X ∼ Pdata

analytically. Instead, we can approximate the p-value using the empirical cumulative
distribution function (eCDF) of the test statistic s(X) on Dtrain.

The above procedure can be seen as a generalization of many existing methods for
unsupervised OoD detection. These approaches usually define the test statistic based
on the log-likelihood (LL) of a generative model fitted to Dtrain [32, 154, 161]. However,
as follows from our discussion above, there is no need to limit ourselves to LL-based
statistics. For instance, we can define a test statistic for event sequences based on the
rich literature on GoF testing for TPPs. We show in Section 6.5 that this often leads
to more accurate anomaly detection compared to LL. Moreover, the difference between
OoD detection and GoF testing is often overlooked. By drawing a clear distinction
between the two, we can avoid some of the pitfalls encountered by other works [128], as
we elaborate in Appendix G.1.

The anomaly detection framework we outlined above can be applied to any type of
data—such as images or time series—but in this work we mostly focus on continuous-
time event data. This means that our main goal is to find an appropriate test statistic
for variable-length continuous-time event sequences. In Section 6.2, we take a look at
existing GoF statistics for TPPs and analyze their limitations. Then in Section 6.3,
we propose a new test statistic that addresses these shortcomings and describe in more
detail how it can be used for OoD detection.

2In the rest of the paper, the difference between the random element X and its realization x is unim-
portant, so we denote both as X, as is usually done in the literature.

67

6 Anomaly detection

6.2 Review of existing GoF test statistics for TPPs

Here, we consider a GoF test (Equation 6.2), where the goal is to determine whether an
event sequence X = (t1, . . . , tN) was generated by a known TPP Pmodel with compen-
sator Λ∗. We will return to the problem of OoD detection, where the data-generating
distribution Pdata is unknown, in Section 6.3.2.

Many popular GoF tests for TPPs are based on the random time change theorem
(Theorem 1). The theorem states that a sequence X = (t1, . . . , tN) is distributed ac-
cording to a TPP with compensator Λ∗ on the interval [0, T] if and only if the sequence
Z = (Λ∗(t1), . . . ,Λ∗(tN)) is distributed according to the standard Poisson process (SPP)
on [0,Λ∗(T)]. Intuitively, this result can be viewed as a TPP analogue of how the CDF
of an arbitrary random variable over R transforms its realizations into samples from
Uniform([0, 1]). Similarly, the compensator Λ∗ converts a random event sequence X into
a realization Z from the SPP.

Therefore, the problem of GoF testing for an arbitrary TPP reduces to testing whether
the transformed sequence Z follows the SPP on [0,Λ∗(T)]. In other words, we can define
a GoF statistic for a TPP with compensator Λ∗ by (1) applying the compensator to X
to obtain Z and (2) computing one of the existing GoF statistics for the SPP on the
transformed sequence. This can also be generalized to marked TPPs (where events can
belong to one of C classes) by simply concatenating the transformed sequences Z(c) for
each event type c ∈ {1, . . . , C} (see Appendix G.4 for details).
SPP, i.e., the Poisson process with constant intensity λ∗(t) = 1, is the most basic

TPP one can conceive. However, as we will shortly see, existing GoF statistics even for
this simple model have considerable shortcomings and can only detect a limited class
of deviations from the SPP. More importantly, test statistics for general TPPs defined
using the above recipe (Theorem 1) inherit the limitations of the SPP statistics.
For brevity, we denote the length of the transformed interval as V = Λ∗(T) and

the transformed arrival times as Z = (v1, . . . , vN) = (Λ∗(t1), . . . ,Λ∗(tN)). One way to
describe the generative process of an SPP is as follows [144]

N |V ∼ Poisson(V) ui|N,V ∼ Uniform([0, V]) for i = 1, . . . , N. (6.4)

An SPP realization Z = (v1, . . . , vN) is obtained by sorting the ui’s in increasing order.
This is equivalent to defining the arrival time vi as the i-th order statistic u(i). We can
also represent Z by the inter-event times (w1, . . . , wN+1) where wi = vi−vi−1, assuming
v0 = 0 and vN+1 = V .
Barnard [10] proposed a GoF test for the SPP based on the above description (Equa-

tion 6.4) and the Kolmogorov–Smirnov (KS) statistic. The main idea of this approach is
to check whether the arrival times v1, . . . , vN are distributed uniformly in the [0, V]
interval. For this, we compare F̂arr, the empirical CDF of the arrival times, with
Farr(u) = u/V , the CDF of the Uniform([0, V]) distribution. This can be done using
the KS statistic on the arrival times (KS arrival), defined as

κarr(Z) =
√
N · sup

u∈[0,V]
|F̂arr(u)− Farr(u)| where F̂arr(u) =

1

N

N∑
i=1

1(vi ≤ u). (6.5)

68

6.3 Sum-of-squared-spacings (3S) statistic for TPPs

Another popular GoF test for the SPP is based on the fact that the inter-event times
wi are distributed according to the Exponential(1) distribution [36]. The test compares
F̂int, the empirical CDF of the inter-event times, and Fint(u) = 1− exp(−u), the CDF
of the Exponential(1) distribution. This leads to the KS statistic for the inter-event
times (KS inter-event)

κint(Z) =
√
N · sup

u∈[0,∞)
|F̂int(u)− Fint(u)| where F̂int(u) =

1

N + 1

N+1∑
i=1

1(wi ≤ u).

(6.6)

KS arrival and KS inter-event statistics are often presented as the go-to approach for
testing the goodness-of-fit of the standard Poisson process [41]. Combining them with
Theorem 1 leads to simple GoF tests for arbitrary TPPs that are widely used to this
day [5, 66, 97, 108, 179].
Limitations of the KS statistics. The KS statistics κarr(Z) and κint(Z) are only

able to differentiate the SPP from a narrow class of alternative processes. For example,
KS arrival only checks if the arrival times vi are distributed uniformly, conditioned on
the event count N . But what if the observed N is itself extremely unlikely under the
SPP (Equation 6.4)? KS inter-event can be similarly insensitive to the event count—
removing all events V

2 < vi ≤ V from an SPP realization Z will only result in just a
single atypically large inter-event time wi, which changes the value of κint(Z) at most
by 1

N+1 . We demonstrate these limitations of κarr(Z) and κint(Z) in our experiments
in Section 6.5.1. Other failure modes of the KS statistics were described by Pillow
[146]. Note that ad-hoc fixes to the KS statistics do not address these problems. For
example, combining multiple tests performed separately for the event count and arrival
times using Fisher’s method [36, 63] consistently decreases the accuracy, as we show in
Appendix G.7. In the next section, we introduce a different test statistic that aims to
address these shortcomings.

6.3 Sum-of-squared-spacings (3S) statistic for TPPs

6.3.1 Goodness-of-fit testing with the 3S statistic

A good test statistic should capture multiple properties of the SPP at once: it should
detect deviations w.r.t. both the event count N and the distribution of the arrival or
inter-event times. Here, we propose to approach GoF testing with a sum-of-squared-
spacings (3S) statistic that satisfies these desiderata,

ψ(Z) =
1

V

N+1∑
i=1

w2
i =

1

V

N+1∑
i=1

(vi − vi−1)
2. (6.7)

This statistic extends the sum-of-squared-spacings statistic proposed as a test of unifor-
mity for fixed-length samples by Greenwood [75]. The important difference between our
definition (Equation 6.7) and prior works [40] is that we, for the first time, consider the

69

6 Anomaly detection

2 3

3S statistic
(a)

0

1

2

F
re
q
u
en

cy

ψ | N = 85, V

ψ | N = 115, V

1 2 3

KS arrival
(b)

0.0

0.5

1.0

1.5
κarr | N = 85, V

κarr | N = 115, V

0.1 0.2

KS arrival w/o
√
N correction

(c)

0

5

10

15

κ̃arr | N = 85, V

˜κarr | N = 115, V

1 2

KS inter-event w/o
√
N correction

(d)

0.0

0.5

1.0

1.5

κ̃int | N = 85, V

κ̃int | N = 115, V

Figure 6.2: Distribution of different test statistics for the standard Poisson process on [0, 100],
conditioned on different event counts N . The 3S statistic allows us to differentiate
between different values of N , while KS statistics are not sensitive to changes in N .

TPP setting, where the number of events N is random as well. For this reason, we use
the normalizing constant 1/V instead of N/V 2 (see Appendix G.2 for details). As we
will see, this helps capture abnormalities in the event count and results in more favorable
asymptotic properties for the case of SPP.

Intuitively, for a fixed N , the statistic ψ is maximized if the spacings are extremely
imbalanced, i.e., if one inter-event time wi is close to V and the rest are close to zero.
Conversely, ψ attains its minimum when the spacings are all equal, that is wi =

V
N+1 for

all i.

In Figure 6.2a we visualize the distribution of ψ|N,V for two different values of N .
We see that the distribution of ψ depends strongly on N , therefore a GoF test involving
ψ will detect if the event count N is atypical for the given SPP. This is in contrast to
κarr and κint, the distributions of which, by design, are (asymptotically) invariant under
N (Figure 6.2b). Even if one accounts for this effect, e.g., by removing the correction
factor

√
N in Equations 6.5 and 6.6, their distributions change only slightly compared

to the sum of squared spacings (see Figures 6.2c and 6.2d). To analyze other properties
of the statistic, we consider its moments under the null hypothesis.

Proposition 1. Suppose the sequence Z is distributed according to the standard Poisson
process on the interval [0, V]. Then the first two moments of the statistic ψ := ψ(Z) are

E[ψ|V] =
2

V
(V + e−V − 1) and Var[ψ|V] =

4

V 2
(2V − 7 + e−V (2V 2 + 4V + 8− e−V)).

The proof of Proposition 1 can be found in Appendix G.3. From Proposition 1 it
follows that

lim
V→∞

E[ψ|V] = 2 lim
V→∞

Var[ψ|V] = 0. (6.8)

This leads to a natural notion of typicality in the sense of Nalisnick et al. [128] and
Wang et al. [189] for the standard Poisson process. We can define the typical set of
the SPP as the set of variable-length sequences Z on the interval [0, V] that satisfy
|ψ(Z) − 2| ≤ ϵ for some small ϵ > 0. It follows from Equation 6.8 and Chebyshev’s
inequality that for large enough V , the SPP realizations will fall into the typical set with

70

6.3 Sum-of-squared-spacings (3S) statistic for TPPs

2 3
0

1

2

3
s(X)|X ∼ Pdata

s(X)

s(X)|X ∼ Pmodel

Figure 6.3: Sampling distribution for the OoD test (blue) and the GoF test (orange). While
the same statistic s(X) is used in both cases, the p-values are computed differently
depending on which test we perform.

high probability. Therefore, at least for large V , we should be able to detect sequences
that are not distributed according the SPP based on the statistic ψ.

Summary. To test the GoF of a TPP with a known compensator Λ∗ for an event se-
quenceX = (t1, . . . , tN), we first obtain the transformed sequence Z = (Λ∗(t1), . . . ,Λ∗(tN))
and compute the statistic ψ(Z) according to Equation 6.7. Since the CDF of the statis-
tic under H0 cannot be computed analytically, we approximate it using samples drawn
from Pmodel. That is, we draw realizations Dmodel = {X1, . . . , XM} from the TPP (e.g.,
using the inversion method [153]) and compute the p-value for X (Equation 6.3) using
the eCDF of the statistic on Dmodel [131].

6.3.2 Out-of-distribution detection with the 3S statistic

We now return to the original problem of OoD detection in TPPs, where we have access
to a set of in-distribution sequences Dtrain and do not know the data-generating process
Pdata.

Our idea is to perform the OoD detection hypothesis test (Equation 6.1) using the sum-
of-squared-spacings test statistic that we introduced in the previous section. However,
since the data-generating TPP Pdata is unknown, we do not know the corresponding
compensator that is necessary to compute the statistic. Instead, we can fit a neural
TPP model Pmodel [52] to the sequences in Dtrain and use the compensator Λ∗ of the
learned model to compute the statistic s(X).3 High flexibility of neural TPPs allows
these models to more accurately approximate the true compensator. Having defined the
statistic, we can approximate its distribution under H0 (i.e., assuming X ∼ Pdata) by
the eCDF of the statistic on Dtrain. We use this eCDF to compute the p-values for our
OoD detection hypothesis test and thus detect anomalous sequences. We provide the
pseudocode description of our OoD detection method in Appendix G.4.

3We can replace the 3S statistic on the transformed sequence Z with any other statistic for the SPP,
such as KS arrival. In Sections 6.5.2 and 6.5.3, we compare different statistics constructed this way.

71

6 Anomaly detection

We highlight that an OoD detection procedure like the one above is not equivalent
to a GoF test for the learned generative model Pmodel, as suggested by earlier works
[128]. While we use the compensator of the learned model to define the test statistic
s(X), we compute the p-value for the OoD detection test based on s(X)|X ∼ Pdata. This
is different from the distribution s(X)|X ∼ Pmodel used in a GoF test, since in general
Pmodel ̸= Pdata. Therefore, even if the distribution of a test statistic under the GoF test
can be approximated analytically (as, e.g., for the KS statistic [117]), we have to use
the eCDF of the statistic on Dtrain for the OoD detection test. Figure 6.3 visualizes this
difference. Here, we fit a TPP model on the in-distribution sequences from the STEAD
dataset (Section 6.5.3) and plot the empirical distribution of the respective statistic s(X)
on Dtrain (corresponds to s(X)|X ∼ Pdata) and on model samples Dmodel (corresponds
to s(X)|X ∼ Pmodel).

6.4 Related work

Unsupervised OoD detection. OoD detection approaches based on deep generative
models (similar to our approach in Section 6.3.2) have received a lot of attention in the
literature. However, there are several important differences between our method and
prior works. First, most existing approaches perform OoD detection based on the log-
likelihood (LL) of the model or some derived statistic [32, 125, 128, 154, 161]. We observe
that LL can be replaced by any other test statistic, e.g., taken from the GoF testing
literature, which often leads to more accurate anomaly detection (Section 6.5). Second,
unlike prior works, we draw a clear distinction between OoD detection and GoF testing.
While this difference may seem obvious in hindsight, it is not acknowledged by the exist-
ing works, which may lead to complications (see Appendix G.1). Also, our formulation
of the OoD detection problem in Section 6.1 provides an intuitive explanation to the
phenomenon of “typicality” [128, 189]. The (ϵ, 1)-typical set of a distribution P simply
corresponds to the acceptance region of the respective hypothesis test with confidence
level ϵ (Equation 6.1). Finally, most existing papers study OoD detection for image data
and none consider variable-length event sequences, which is the focus of our work.

Our OoD detection procedure is also related to the rarity anomaly score [60, 93].
The rarity score can be interpreted as the negative logarithm of a one-sided p-value
(Equation 6.3) of a GoF test that uses the log-likelihood of some known model as the
test statistic. In contrast, we consider a broader class of statistics and learn the model
from the data.

Anomaly detection for TPPs. OoD detection, as described in Section 6.1, is not
the only way to formalize anomaly detection for TPPs. For example, [137] developed
a distance-based approach for Poisson processes. Recently, [214] proposed to detect
anomalous event sequences with an adversarially-trained model. Unlike these two meth-
ods, our approach can be combined with any TPP model without altering the training
procedure. [114] studied anomalous event detection with TPPs, while we are concerned
with entire event sequences.

72

6.5 Experiments

GoF tests for TPPs. Existing GoF tests for the SPP usually check if the arrival
times are distributed uniformly, using, e.g., the KS [107] or chi-squared statistic [35].
Our 3S statistic favorably compares to these approaches thanks to its dependence on
the event count N , as we explain in Section 6.3 and show experimentally in Section 6.5.1.
Methods combining the random time change theorem with a GoF test for the SPP (usu-
ally, the KS test) have been used at least since Ogata [134], and are especially popular
in neuroscience [22, 66, 179]. However, these approaches inherit the limitations of the
underlying KS statistic. Replacing the KS score with the 3S statistic consistently leads
to a better separation between different TPP distributions (Section 6.5).
Gerhard and Wulfram [65] discussed several GoF tests for discrete-time TPPs, while

we deal with continuous time. Yang et al. [203] proposed a GoF test for point processes
based on Stein’s identity, which is related to a more general class of kernel-based GoF
tests [34, 113]. Their approach is not suitable for neural TPPs, where the Papangelou
intensity cannot be computed analytically. A recent work by [191] designed a GoF test
for self-exciting processes under model misspecification. In contrast to these approaches,
our proposed GoF test from Section 6.3.1 can be applied to any TPP with a known
compensator.
Sum-of-squared-spacings statistic. A similar statistic was first used by Green-

wood [75] for testing whether a fixed number of points are distributed uniformly in an
interval. Several follow-up works studied the limiting distribution of the statistic (con-
ditioned on N) as N → ∞ [83, 148, 174]. Our proposed statistic (Equation 6.7) is not
invariant w.r.t. N and, therefore, is better suited for testing TPPs. We discuss other
related statistics in Appendix G.2.

6.5 Experiments

Our experimental evaluation covers two main topics. In Section 6.5.1, we compare the
proposed 3S statistic with existing GoF statistics for the SPP. Then in Sections 6.5.2
and 6.5.3, we evaluate our OoD detection approach on simulated and real-world data,
respectively. The experiments were run on a machine with a 1080Ti GPU. Details on
the setup and datasets construction are provided in Appendix G.5 & G.6.

6.5.1 Standard Poisson process

In Section 6.2 we mentioned several failure modes of existing GoF statistics for the
SPP. Then, in Section 6.3.1 we introduced the 3S statistic that was supposed to address
these limitations. Hence, the goal of this section is to compare the proposed statistic
with the existing ones in the task of GoF testing for the SPP. We consider four test
statistics: (1) KS statistic on arrival times (Equation 6.5), (2) KS statistic on inter-
event times (Equation 6.6), (3) chi-squared statistic on the arrival times [35, 179], and
(4) the proposed 3S statistic (Equation 6.7).
To quantitatively compare the discriminative power of different statistics, we adopt an

evaluation strategy similar to [65] and [203]. First, we generate a set Dmodel consisting of
1000 SPP realizations. We use Dmodel to compute the empirical distribution function of

73

6 Anomaly detection

0.0 0.2 0.4 0.6 0.8 1.0

Detectability

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
O

C
 A

U
C

 s
co

re

DecreasingRate

0.0 0.2 0.4 0.6 0.8 1.0

Detectability

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Stopping

0.0 0.2 0.4 0.6 0.8 1.0

Detectability

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Renewal

0.0 0.2 0.4 0.6 0.8 1.0

Detectability

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Hawkes

0.0 0.2 0.4 0.6 0.8 1.0

Detectability

0.4

0.5

0.6

0.7

0.8

0.9

1.0

InhomogeneousPoisson

0.0 0.2 0.4 0.6 0.8 1.0

Detectability

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SelfCorrecting

KS arrival KS inter-event Chi-squared S3 statistic

Figure 6.4: GoF testing for the standard Poisson process using different test statistics, measured
with ROC AUC (higher is better). See Section 6.5.1 for the description of the
experimental setup.

each statistic s(Z) under H0. Then, we define two test sets: DID
test (consisting of samples

from Pmodel, the SPP) and DOOD
test (consisting of samples from Q, another TPP), each

with 1000 sequences. Importantly, in this and following experiments, the training and
test sets are always disjoint.
We follow the GoF testing procedure described at the end of Section 6.3.1, which

corresponds to the hypothesis test in Equation 6.2. That is, we compute the p-value
(Equation 6.3) for each sequence in the test sets using the eCDF of s(Z) on Dmodel. A
good test statistic s(Z) should assign lower p-values to the OoD sequences from DOOD

test

than to ID sequences from DID
test, allowing us to discriminate between samples from Q

and Pmodel. We quantify how well a given statistic separates the two distributions by
computing the area under the ROC curve (ROC AUC). This effectively averages the
performance of a statistic for the GoF hypothesis test over different significance levels
α.

Datasets. We consider six choices for the distribution Q:

• Rate, a homogeneous Poisson process with intensity µ < 1;

• Stopping, where events stop after some time tstop ∈ [0, V];

• Renewal, where inter-event times are drawn i.i.d. from the Gamma distribution;

• Hawkes, where events are more clustered compared to the SPP;

• Inhomogeneous, a Poisson process with non-constant intensity λ(t) = β sin(ωt);

• SelfCorrecting, where events are more evenly spaced compared to the SPP.

For cases the last 4 cases, the expected number of events is the same as for the SPP.
For each choice of Q we define a detectability parameter δ ∈ [0, 1], where higher δ

corresponds to TPPs that are increasingly dissimilar to the SPP. That is, setting δ = 0
corresponds to a distribution Q that is exactly equal to the SPP, and δ = 1 corresponds
to a distribution that deviates significantly from the SPP. For example, for a Hawkes
with conditional intensity λ∗(t) = µ+ β

∑
tj<t

exp(−(t− tj)), the detectability value of
δ = 0 corresponds to µ = 1 and β = 0 (i.e., λ∗(t) = 1) making Q indistinguishable

74

6.5 Experiments

from P. The value of δ = 0.5 corresponds to µ = 0.5 and β = 0.5, which preserves the
expected number of events N but makes the arrival times ti “burstier.” We describe how
the parameters of each distribution Q are defined based on δ in Appendix G.5. Note
that, in general, the ROC AUC scores are not guaranteed to monotonically increase as
the detectability δ is increased.
Results. In Figure 6.4, we present AUC scores for different statistics as δ is varied. As

expected, KS arrival accurately identifies sequences that come from Q where the absolute
time of events are non-uniform (as in Inhomogeneous). Similarly, KS inter-event is
good at detecting deviations in the distribution of inter-event times, as inRenewal. The
performance of the chi-squared statistic is similar to that of KS arrival. Nevertheless, the
above statistics fail when the expected number of events, N , changes substantially—as
in KS arrival and chi-squared on Rate, and KS inter-event on Stopping. These failure
modes match our discussion from Section 6.2.
In contrast, the 3S statistic stands out as the most consistent test (best or close-to-best

performance in 5 out of 6 cases) and does not completely fail in any of the scenarios. The
relatively weaker performance on SelfCorrecting implies that the 3S statistic is less
sensitive to superuniform spacings [40] than to imbalanced spacings. The results show
that the 3S statistic is able to detect deviations w.r.t. both the event count N (Rate and
Stopping), as well as the distributions of the inter-event times wi (Renewal) or the
arrival times vi (Hawkes and Inhomogeneous)—something that other GoF statistics
for the SPP cannot provide.

6.5.2 Detecting anomalies in simulated data

In this section, we test the OoD detection approach discussed in Section 6.3.2, i.e., we
perform anomaly detection for a TPP with an unknown compensator. This corresponds
to the hypothesis test in Equation 6.1. We use the training set Dtrain to fit an RNN-
based neural TPP model [167] via maximum likelihood estimation (see Appendix G.6
for details). Then, we define test statistics for the general TPP as follows. We apply the
compensator Λ∗ of the learned model to each event sequence X and compute the four
statistics for the SPP from Section 6.5.1 on the transformed sequence Z = Λ∗(X). We
highlight that these methods are not “baselines” in the usual sense—the idea of combin-
ing a GoF statistic with a learned TPP model to detect anomalous event sequences is
itself novel and has not been explored by earlier works. The rest of the setup is similar to
Section 6.5.1. We use Dtrain to compute the eCDF of each statistic under H0, and then
compute the ROC AUC scores on the p-values. In addition to the four statistics dis-
cussed before, we consider a two-sided test on the log-likelihood log q(X) of the learned
generative model, which corresponds to the approach by Nalisnick et al. [128].
Datasets. Like before, we define a detectability parameter δ for each scenario that de-

termines how dissimilar ID and OoD sequences are. Server-Stop, Server-Overload
and Latency are inspired by applications in DevOps, such as detecting anomalies in
server logs.

• Server-Overload and Server-Stop contain data generated by a multivariate
Hawkes process with 3 marks, e.g., modeling network traffic among 3 hosts. In

75

6 Anomaly detection

0.0 0.2 0.4 0.6 0.8 1.0

Detectability

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
O

C
 A

U
C

 s
co

re

ServerStop

0.0 0.2 0.4 0.6 0.8 1.0

Detectability

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ServerOverload

0.0 0.2 0.4 0.6 0.8 1.0

Detectability

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Latency

0.0 0.2 0.4 0.6 0.8 1.0

Detectability

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SpikeTrains

KS arrival KS inter-event Chi-squared S3 statistic Log-likelihood

Figure 6.5: OoD detection on simulated data using different test statistics, measured with with
ROC AUC (higher is better). See Section 6.5.2 for the description of the experi-
mental setup.

OoD sequences, we change the influence matrix to simulate scenarios where a host
goes offline (Server-Stop), and where a host goes down and the traffic is routed
to a different host (Server-Overload). Higher δ implies that the change in the
influence matrix happens earlier.

• Latency contains events of two types, sampled as follows. The first mark, the
“trigger,” is sampled from a homogeneous Poisson process with rate µ = 3. The
arrival times of the second mark, the “response,” are obtained by shifting the times
of the first mark by an offset sampled i.i.d. from Normal(µ = 1, σ = 0.1). In OoD
sequences, the delay is increased by an amount proportional to δ, which emulates
an increased latency in the system.

• SpikeTrains [175] contains sequences of firing times of 50 neurons, each repre-
sented by a distinct mark. We generate OoD sequences by shuffling the indices
of k neurons (e.g., switching marks 1 and 2), where higher detectability δ implies
more switches k. Here we study how different statistics behave for TPPs with a
large number of marks.

Results are shown in Figure 6.5. The 3S statistic demonstrates excellent performance
in all four scenarios, followed by KS arrival and chi-squared. In case of Server-Stop
and Server-Overload, the 3S statistic allows us to perfectly detect the anomalies
even when only 5% of the time interval are affected by the change in the influence
structure. KS inter-event and log-likelihood statistics completely fail on Server-Stop
and Server-Overload, respectively. These two statistics also struggle to discriminate
OoD sequences in Latency and SpikeTrains scenarios. The non-monotone behavior
of the ROC AUC scores for some statistics (as the δ increases) indicates that these
statistics are poorly suited for the respective scenarios.

6.5.3 Detecting anomalies in real-world data

Finally, we apply our methods to detect anomalies in two real-world event sequence
datasets. We keep the setup (e.g., configuration of the neural TPP model) identical to
Section 6.5.2.

76

6.6 Conclusions

Table 6.1: ROC AUC scores for OoD detection on real-world datasets (mean & standard error
are computed over 5 runs). Best result in bold, results within 2 pp. of the best
underlined.

KS arrival KS inter-event Chi-squared Log-likelihood 3S statistic

Logs — Packet corruption (1%) 57.4 ± 1.7 62.1 ± 0.9 66.6 ± 1.8 75.9 ± 0.1 95.5 ± 0.3
Logs — Packet corruption (10%) 59.2 ± 2.3 97.8 ± 0.6 59.1 ± 2.3 99.0 ± 0.0 99.4 ± 0.1
Logs — Packet duplication (1%) 81.1 ± 5.2 82.8 ± 5.0 74.6 ± 6.5 88.1 ± 0.1 90.9 ± 0.3
Logs — Packet delay (frontend) 95.6 ± 1.2 98.9 ± 0.4 99.3 ± 0.1 90.9 ± 0.0 97.6 ± 0.1
Logs — Packet delay (all services) 99.8 ± 0.0 94.7 ± 1.1 99.8 ± 0.0 96.1 ± 0.0 99.6 ± 0.1

STEAD — Anchorage, AK 59.6 ± 0.2 79.7 ± 0.1 67.4 ± 0.2 88.0 ± 0.1 88.3 ± 0.6
STEAD — Aleutian Islands, AK 53.8 ± 0.5 88.8 ± 0.3 62.2 ± 0.9 97.0 ± 0.0 99.8 ± 0.0
STEAD — Helmet, CA 59.1 ± 0.9 98.7 ± 0.0 70.0 ± 0.6 96.9 ± 0.0 92.6 ± 0.3

Logs: We generate server logs using Sock Shop microservices [190] and represent them
as marked event sequences. Sock Shop is a standard testbed for research in microservice
applications [2] and contains a web application that runs on several containerized ser-
vices. We generate OoD sequences by injecting various failures (e.g., packet corruption,
increased latency) among these microservices using a chaos testing tool Pumba [104].
We split one large server log into 30-second subintervals, that are then partitioned into
train and test sets.

STEAD (Stanford Earthquake Dataset) [126] includes detailed seismic measurements
on over 1 million earthquakes. We construct four subsets, each containing 72-hour
subintervals in a period of five years within a 350km radius of a fixed geographical
location. We treat sequences corresponding the San Mateo, CA region as in-distribution
data, and the remaining 3 regions (Anchorage, AK, Aleutian Islands, AK and Helmet,
CA) as OoD data.

Results. Table 6.1 shows the ROC AUC scores for all scenarios. KS arrival and
chi-squared achieve surprisingly low scores in 6 out of 8 scenarios, even though these two
methods showed strong results on simulated data in Sections 6.5.1 and 6.5.2. In contrast,
KS inter-event and log-likelihood perform better here than in previous experiments, but
still produce poor results on Packet corruption. The 3S statistic is the only method that
consistently shows high ROC AUC scores across all scenarios. Moreover, we observe that
for marked sequences (Logs and all datasets in Section 6.5.2), the 3S statistic leads to
more accurate detection compared to the log-likelihood statistic in 9 out of 9 cases.

6.6 Conclusions

Limitations. Our approach assumes that the sequences in Dtrain were drawn i.i.d.
from the true data-generating distribution Pdata (Section 6.1). This assumption can be
violated in two ways: some of the training sequences might be anomalous or there might
exist dependencies between them. We have considered the latter case in our experiments
on SpikeTrains and Logs datasets, where despite the non-i.i.d. nature of the data our
method was able to accurately detect anomalies. However, there might exist scenarios
where the violation of the assumptions significantly degrades the performance.

77

6 Anomaly detection

No single test statistic can be “optimal” for either OoD detection or GoF testing,
since we make no assumptions about the alternative distribution Q (Section 6.1). We
empirically showed that the proposed 3S statistic compares favorably to other choices
over a range of datasets and applications domains. Still, for any fixed pair of distributions
P and Q, one can always find a statistic that will have equal or higher power s.t. the
same false positive rate [130]. Hence, it won’t be surprising to find cases where our (or
any other chosen a priori) statistic is inferior.

Broader impact. Continuous-time variable-length event sequences provide a natural
representation for data such as electronic health records [56], server logs [81] and user
activity traces [214]. The ability to perform unsupervised anomaly detection in such data
can enable practitioners to find at-risk patients, reduce DevOps costs, and automatically
detect security breaches—all of which are important tasks in the respective fields. One of
the risks when applying an anomaly detection method in practice is that the statistical
anomalies found by the method will not be relevant for the use case. For example, when
looking for health insurance fraud, the method might instead flag legitimate patients
who underwent atypically many procedures as “suspicious” and freeze their accounts.
To avoid such situations, automated decisions systems should be deployed with care,
especially in sensitive domains like healthcare.
Conclusion. We have presented an approach for OoD detection for temporal point

processes based on goodness-of-fit testing. At the core of our approach lies a new GoF
test for standard Poisson processes based on the 3S statistic. Our method applies to a
wide class of TPPs and is extremely easy to implement. We empirically showed that the
proposed approach leads to better OoD detection accuracy compared to both popular
GoF statistics for TPPs (Kolmogorov–Smirnov, chi-squared) and approaches commonly
used in OoD detection literature (model log-likelihood). While our analysis focuses on
TPPs, we believe our discussion on similarities and distinctions between GoF testing
and OoD detection offers insights to the broader machine learning community.

78

Part IV

Conclusion

79

7 Conclusion

In this thesis we discussed various aspects of design and application of temporal point
processes for modeling continuous-time event data. In Part II, we presented two families
of neural TPP models based on recurrent neural networks and triangular maps. In
addition to being flexible, these models permit reparametrization sampling and can be
trained efficiently via maximum likelihood. These properties open new applications for
TPPs, as we showed in Part III. More specifically, we demonstrated how TPPs can be
used for anomaly detection and trained using sampling-based losses.

We conclude this thesis with a retrospective, where we discuss subsequent works in
the field of TPPs and show how our contributions fit into the broader research context.
Finally, we list open research questions and possible directions for future work.

7.1 Retrospective

7.1.1 Neural TPP architectures

The LogNormMix model that we introduced in Chapter 3 follows the general encoder-
decoder architecture for neural TPPs: The encoder embeds the event history H(ti) into
a summary vector hi, and the decoder uses hi to model the distribution p∗i (ti) of the
next event. The novelty of our approach lies in a new decoder parametrization that
enables efficient training and sampling, while the encoder is based on a recurrent neural
network, similar to earlier works [52, 139].

Transformer. Several subsequent works [120, 208, 215, 217] suggested replacing
the RNN encoder with a transformer [185]. Sharma et al. [166] have shown that our
LogNormMix model can similarly be combined with a transformer encoder. The main
advantage of the transformer compared to the RNN is its ability to capture long-range
dependencies between events thanks to the self-attention mechanism. This, however,
comes at increased computational cost — time and space complexity of evaluating the
log-likelihood for a sequence with N events scale as O(N2) for a transformer. The RNN
encoder is more efficient with its O(N) scaling. This means that transformer-based
neural TPPs cannot be trained on very long sequences (more than 103–104 events) but
can achieve superior predictive results compared to RNN-based models [208].

Neural ordinary differential equations (neural ODEs). Another line of research
explored TPP architectures based on neural ODEs [95, 159]. Such approaches define
a state h(t) that evolves in continuous time according to a neural ODE [30]. The
intensity λ∗(t) at each time t ∈ [0, T] is then defined directly as a function of the state
λ∗(t) = g(h(t)). This is different from encoder-decoder architectures that we discussed
before, where the history embedding hi is only updated after observed events. ODE-

81

7 Conclusion

based models are, in theory, more flexible since they do not assume a parametric form
for the conditional intensity function. However, training and prediction in such models
rely on numerical integration, and therefore are slower and less accurate than in encoder-
decoder TPPs. A recent work by Bilos et al. [13] showed a way to overcome this limitation
by directly parametrizing the ODE solution. Their model, known as Neural Flow, can
also be combined with LogNormMix in an encoder-decoder architecture.

Summary. Different families of neural TPP architectures (RNN-, transformer- and
ODE-based) provide different trade-offs between efficiency, expressiveness and ability
to capture long-range dependencies. Unfortunately, a thorough and fair comparison
between different methods is difficult due to lack of standardized implementations and
benchmarks. We will discuss this aspect in more detail in Section 7.2.

7.1.2 Reparametrization sampling for TPPs

In Part II, we presented LogNormMix and TriTPP — two neural TPP models that
permit reparametrization sampling, and therefore can be trained using sampling-based
losses. Later, Chen et al. [28] derived a similar reparametrization sampling method for
TPP models based on neural ODEs. As in case of TriTPP, the approach of Chen et al.
is based on the inverse transform algorithm (Algorithm 3).

Kajino [96] took a different approach and derived a differentiable relaxation of the
thinning algorithm (Algorithm 5) for the spike-response model [68]. This approach is
motivated by variational inference in spiking neural networks [156]. Their method uses
the Gumbel-softmax trick [92, 116] to deal with non-differentiability of the loss function.

These different approaches for optimizing sampling-based losses all rely on specific
properties of the underlying TPP model. For example, the spike-response model from
[96] has a straightforward upper bound on the intensity, which is a prerequisite for apply-
ing the thinning algorithm. On the other hand, reparametrization trick for LogNormMix
relies on our ability to differentiate through samples from the mixture distribution.

In conclusion, the availability of reparametrization sampling methods opens new ap-
plications for TPP models that go beyond the standard prediction tasks.

7.1.3 Applications

LogNormMix model (Chapter 3) can be trained and sampled from efficiently, which
led to the adoption of this model in several follow-up works. For example, it has been
used to simulate communication between computers, with applications in cybersecurity
[122] and distributed system planning [173]. Gupta et al. [78] use LogNormMix to impute
missing observations in partially-observed event sequences. Two other works extend our
model to cluster event sequences, which is used to detect coordinated malicious accounts
on social media [166, 211].

Anomaly detection. In Chapter 6, we presented an approach for detecting anoma-
lous event sequences with neural TPP models. We consider sequence-level anomalies,
where an entire event sequence can be either normal or anomalous. Such formulation
can be used to find suspicious activity traces corresponding to fraudulent behavior in

82

7.2 Open questions and future work

cybersecurity, or to find periods of abnormal activity in server logs. However, there exist
other ways to formulate the anomaly detection task for TPPs. For instance, a concur-
rent work by Liu and Hauskrecht [114] aims to detect individual events that might be
abnormal.

More broadly, the problem of unsupervised out-of-distribution detection with genera-
tive models has received a lot of attention in the machine learning community [27, 128,
129]. Similar to our approach in Chapter 6, Bergamin et al. [11] observed the close con-
nection between the goodness-of-fit testing problem and out-of-distribution detection.
They repurpose several general goodness-of-fit statistics based on the likelihood func-
tion, while we considered statistics for TPP models based on the random time change
theorem.

Marked event sequences. In this thesis, we primarily focus on modeling unmarked
event sequences, where events are represented only by their arrival time. An important
line of ongoing research deals with marked TPPs, where each event contains additional
metadata like type or location. For instance, structure discovery [209, 210] aims to
detect causal relationships between different event types using TPPs with categorical
marks. Spatio-temporal point processes [29, 213] predict event locations in addition to
their times, which is useful in domains such as earthquake forecasting. Our LogNormMix
model present can also be extended to the marked setting, as outlined in Section 3.2.4
and demonstrated by subsequent works [110]. Extending the TriTPP model (Chapter 4)
to the marked setting, however, is more challenging and remains an important direction
for future work.

7.2 Open questions and future work

Temporal point processes are now firmly established in the machine learning community,
and an ever-increasing number of papers is published on this topic every year. Many of
the works (including ones that constitute this thesis) focus on developing new neural TPP
architectures [52, 119, 139, 167, 208, 215, 217]. We believe that some of the potentially
most impactful directions for future work involve reconsidering how we evaluate and
apply neural TPP models. We broadly divide these into the following categories.

Evaluation metrics. The two most commonly used approaches for evaluating the
predictive performance of neural TPPs are based on negative log-likelihood (NLL) and
single-event prediction (e.g., predicting time or type of the next event). Both of these
have their disadvantages: NLL can be misleading and does not guarantee good sam-
ple quality [180], while single-event-based metrics provide limited insight into TPPs as
generative models for entire event sequences [170, Section 7.2].

To guide our search for better TPP models we need metrics that are more closely
aligned with the practical application of these models. For example, we can look into
the field of seismology, where TPPs are used to forecast aftershock sequences [162]. Tools
from probabilistic forecasting [69, 70] could be adopted to measure the quality of long-
term forecasts generated by TPPs. Such metrics would both be relevant to practitioners

83

7 Conclusion

and properly evaluate TPPs as generative models for entire sequences — two properties
that are not satisfied by NLL and single-event-based metrics.

Datasets and benchmarks. Progress in many other subfields of machine learning
has been driven by the availability of large high-quality datasets [47, 48, 87, 111]. Unfor-
tunately, no such collections of event data are available for training and evaluating TPP
models. Many event sequence datasets used in the literature are not motivated by any
particular real-world application of TPPs. Therefore, it is unclear whether models that
perform well on these datasets will generalize to real-world tasks. Enguehard et al. [56]
also point out that several popular TPP datasets can be perfectly modeled by a simple
history-independent baseline, so they are likely poorly suited for evaluating neural TPPs.
Another related issue is the lack of reference implementations of neural TPP models.

A typical neural TPP implementation requires many preprocessing, hyperparameter and
architectural choices. All of these vary greatly across different implementations, which
makes it hard to pinpoint the source of improved performance. To conclude, developing
standardized open-source neural TPP libraries as well as collecting high-quality event
sequence datasets are both crucial for the progress of TPP research.
Applications. Many earlier developments in the field of TPPs were motivated by

applications in scientific disciplines like seismology [134, 135] and neuroscience [46, 68].
Conventional TPP models like Hawkes and Neymann–Scott processes are still widely
used by researchers in these domains [136, 195]. However, most of the recent work on
neural TPPs stays limited to the machine learning community and has not propagated
back to the practitioners.
Adapting neural TPPs to the traditional domains like seismology and neuroscience

is important for several reasons. On the one hand, such work has practical significance
for the respective fields. On the other hand, these application areas come with their
own challenges, such as need for scalable and interpretable models. Addressing these
challenges will in turn require innovation on the machine learning side of neural TPPs.
There also exist other domains like information security, DevOps, demand forecasting
and process mining that are full with potential applications for TPP models.

84

Bibliography

[1] Ryan Prescott Adams, Iain Murray, and David J. C. MacKay. Tractable nonpara-
metric Bayesian inference in Poisson processes with Gaussian process intensities.
In International Conference on Machine Learning, 2009. (cited on page 48)

[2] Carlos M Aderaldo, Nabor C Mendonça, Claus Pahl, and Pooyan Jamshidi. Bench-
mark requirements for microservices architecture research. In International Work-
shop on Establishing the Community-Wide Infrastructure for Architecture-Based
Software Engineering, 2017. (cited on page 77)

[3] Ahmed M. Alaa, Scott Hu, and Mihaela van der Schaar. Learning from clinical
judgments: Semi-Markov-modulated marked Hawkes processes for risk prognosis.
In International Conference on Machine Learning, 2017. (cited on page 3)

[4] John Aldrich. RA Fisher and the making of maximum likelihood 1912-1922. Sta-
tistical science, 1997. (cited on page 7)

[5] Mahnoosh Alizadeh, Anna Scaglione, Jamie Davies, and Kenneth S Kurani. A
scalable stochastic model for the electricity demand of electric and plug-in hybrid
vehicles. IEEE Transactions on Smart Grid, 2013. (cited on page 69)

[6] Mart́ın Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative
adversarial networks. In International Conference on Machine Learning, 2017.
(cited on page 56)

[7] François Baccelli and Jae Oh Woo. On the entropy and mutual information of
point processes. In International Symposium on Information Theory, 2016. (cited
on pages 11, 58)

[8] E. Bacry, M. Bompaire, S. Gäıffas, and S. Poulsen. tick: a Python library for
statistical learning, with a particular emphasis on time-dependent modeling. ArXiv
preprint, 2017. (cited on page 50)

[9] Emmanuel Bacry, Iacopo Mastromatteo, and Jean-François Muzy. Hawkes pro-
cesses in finance. Market Microstructure and Liquidity, 2015. (cited on page 3)

[10] GA Barnard. Time intervals between accidents—a note on Maguire, Pearson and
Wynn’s paper. Biometrika, 1953. (cited on page 68)

85

7 Conclusion

[11] Federico Bergamin, Pierre-Alexandre Mattei, Jakob Drachmann Havtorn, Hugo
Senetaire, Hugo Schmutz, Lars Maaløe, Soren Hauberg, and Jes Frellsen. Model-
agnostic out-of-distribution detection using combined statistical tests. In Inter-
national Conference on Artificial Intelligence and Statistics, 2022. (cited on page
83)

[12] Mark Berman. Inhomogeneous and modulated gamma processes. Biometrika,
1981. (cited on page 48)

[13] Marin Biloš, Johanna Sommer, Syama Sundar Rangapuram, Tim Januschowski,
and Stephan Günnemann. Neural flows: Efficient alternative to neural ODEs.
Advances in Neural Information Processing Systems, 2021. (cited on page 82)

[14] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj
Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and
Noah D. Goodman. Pyro: Deep Universal Probabilistic Programming. Journal of
Machine Learning Research, 2018. (cited on pages 118, 125)

[15] Christopher M Bishop. Mixture density networks. 1994. (cited on pages 27, 33,
and 37)

[16] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine
learning. 2006. (cited on pages 7, 110)

[17] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A
review for statisticians. Journal of the American statistical Association, 2017.
(cited on page 56)

[18] Guy E Blelloch. Prefix sums and their applications. Technical report, 1990. (cited
on page 46)

[19] Avrim Blum, John Hopcroft, and Ravindran Kannan. Foundations of data science.
2016. (cited on page 139)

[20] Vladimir Bogachev, Aleksandr Kolesnikov, and Kirill Medvedev. Triangular trans-
formations of measures. Sbornik: Mathematics, 2005. (cited on page 44)

[21] Andrew Bray and Frederic Paik Schoenberg. Assessment of point process models
for earthquake forecasting. Statistical science, 2013. (cited on page 7)

[22] Emery N Brown, Riccardo Barbieri, Valérie Ventura, Robert E Kass, and Loren M
Frank. The time-rescaling theorem and its application to neural spike train data
analysis. Neural computation, 2002. (cited on pages 15, 66, and 73)

[23] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,

86

7.2 Open questions and future work

Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
Advances in Neural Information Processing Systems, 2020. (cited on pages 3, 7)

[24] Erhan Çinlar. Introduction to Stochastic Processes. 1975. (cited on page 48)

[25] Oscar Celma. Music recommendation. In Music recommendation and discovery.
2010. (cited on page 119)

[26] Bertrand Charpentier, Marin Biloš, and Stephan Günnemann. Uncertainty on
asynchronous time event prediction. In Advances in Neural Information Processing
Systems, 2019. (cited on pages 37, 49)

[27] Bertrand Charpentier, Daniel Zügner, and Stephan Günnemann. Posterior net-
work: Uncertainty estimation without OOD samples via density-based pseudo-
counts. In Advances in Neural Information Processing Systems, 2020. (cited on
page 83)

[28] Ricky T. Q. Chen, Brandon Amos, and Maximilian Nickel. Learning neural event
functions for ordinary differential equations. In International Conference on Learn-
ing Representations, 2021. (cited on pages 55, 82)

[29] Ricky T. Q. Chen, Brandon Amos, and Maximilian Nickel. Neural spatio-temporal
point processes. In International Conference on Learning Representations, 2021.
(cited on page 83)

[30] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural
ordinary differential equations. In Advances in Neural Information Processing
Systems, 2018. (cited on page 81)

[31] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio.
On the properties of neural machine translation: Encoder–decoder approaches. In
Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation,
2014. (cited on page 24)

[32] Hyunsun Choi, Eric Jang, and Alexander A Alemi. WAIC, but why? Generative
ensembles for robust anomaly detection. ArXiv preprint, 2018. (cited on pages 67,
72, and 139)

[33] Neil A Chriss and Neil Chriss. Black–Scholes and beyond: Option pricing models.
1997. (cited on page 61)

[34] Kacper Chwialkowski, Heiko Strathmann, and Arthur Gretton. A kernel test of
goodness of fit. In International Conference on Machine Learning, 2016. (cited on
page 73)

87

7 Conclusion

[35] David R Cox. Some statistical methods connected with series of events. Journal
of the Royal Statistical Society: Series B (Methodological), 1955. (cited on pages
3, 48, and 73)

[36] David Roxbee Cox. The statistical analysis of series of events. Monographs on
Applied Probability and Statistics, 1966. (cited on pages 48, 69)

[37] David Roxbee Cox. The statistical analysis of dependencies in point processes.
Stochastic Point Processes. Wiley: New York, 1972. (cited on pages 46, 48)

[38] David Roxbee Cox and Valerie Isham. Point processes. 1980. (cited on page 3)

[39] George Cybenko. Approximation by superpositions of a sigmoidal function. Math-
ematics of control, signals and systems, 1989. (cited on page 35)

[40] Ralph B D’Agostino. Goodness-of-fit-techniques. 1986. (cited on pages 66, 69, 75,
and 140)

[41] Daryl J Daley and David Vere-Jones. An introduction to the theory of point pro-
cesses. Volume I: Elementary theory and methods. 2003. (cited on pages 7, 69)

[42] Daryl J Daley and David Vere-Jones. An introduction to the theory of point pro-
cesses. Volume II: General theory and structure. 2008. (cited on page 7)

[43] Hennie Daniels and Marina Velikova. Monotone and partially monotone neural
networks. IEEE Transactions on Neural Networks, 2010. (cited on page 35)

[44] Anirban DasGupta. Asymptotic theory of statistics and probability. 2008. (cited
on page 35)

[45] Angelos Dassios and Hongbiao Zhao. Exact simulation of Hawkes process with
exponentially decaying intensity. Electronic Communications in Probability, 2013.
(cited on pages 14, 45)

[46] Peter Dayan, Laurence F Abbott, et al. Theoretical neuroscience: Computational
and mathematical modeling of neural systems. Journal of Cognitive Neuroscience,
2003. (cited on pages 3, 7, and 84)

[47] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. ImageNet:
A large-scale hierarchical image database. In Conference on Computer Vision and
Pattern Recognition, 2009. (cited on page 84)

[48] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-
training of deep bidirectional transformers for language understanding. In Annual
Conference of the North American Chapter of the Association for Computational
Linguistics, 2019. (cited on pages 3, 84)

[49] Luc Devroye. Nonuniform random variate generation. Handbooks in operations
research and management science, 1986. (cited on pages 12, 15, 18, and 20)

88

7.2 Open questions and future work

[50] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using
Real NVP. In International Conference on Learning Representations, 2017. (cited
on pages 30, 48, 116, and 117)

[51] Christian Donner and Manfred Opper. Efficient Bayesian inference of sigmoidal
Gaussian Cox processes. The Journal of Machine Learning Research, 2018. (cited
on page 48)

[52] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-
Rodriguez, and Le Song. Recurrent marked temporal point processes: Embedding
event history to vector. In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016. (cited on pages 4, 27, 28, 32, 33, 35, 36, 37, 39,
43, 45, 49, 51, 71, 81, 83, 114, 117, 119, and 122)

[53] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural
spline flows. In Advances in Neural Information Processing Systems, 2019. (cited
on pages 43, 47, 49, and 127)

[54] Emil Eirola and Amaury Lendasse. Gaussian mixture models for time series mod-
elling, forecasting, and interpolation. In International Symposium on Intelligent
Data Analysis, 2013. (cited on page 37)

[55] Jeffrey L Elman. Finding structure in time. Cognitive science, 1990. (cited on
pages 24, 33)

[56] Joseph Enguehard, Dan Busbridge, Adam Bozson, Claire Woodcock, and Nils
Hammerla. Neural temporal point processes for modelling electronic health
records. In Machine Learning for Health, 2020. (cited on pages 3, 78, and 84)

[57] William Feller. On the integro-differential equations of purely discontinuous
markoff processes. Transactions of the American Mathematical Society, 1940.
(cited on page 3)

[58] William Feller. On the theory of stochastic processes, with particular reference to
applications. In Proceedings of the Berkeley Symposium on Mathematical Statistics
and Probability, 1949. (cited on page 3)

[59] William Feller. On semi-Markov processes. Proceedings of the National Academy
of Sciences of the United States of America, 1964. (cited on page 61)

[60] Erik M Ferragut, Jason Laska, and Robert A Bridges. A new, principled ap-
proach to anomaly detection. In International Conference on Machine Learning
and Applications, 2012. (cited on page 72)

[61] Wolfgang Fischer and Kathleen Meier-Hellstern. The Markov-modulated Poisson
process cookbook. Performance Evaluation, 1993. (cited on pages 56, 60)

[62] Ronald Aylmer Fisher. Design of experiments. British Medical Journal, 1936.
(cited on page 67)

89

7 Conclusion

[63] Ronald Aylmer Fisher. Answer to question 14 on combining independent tests of
significance. 1948. (cited on pages 69, 147)

[64] Sylvia Frühwirth-Schnatter. Finite mixture and Markov switching models. 2006.
(cited on page 31)

[65] Felipe Gerhard and Wulfram Gerstner. Rescaling, thinning or complementing? On
goodness-of-fit procedures for point process models and generalized linear models.
In Advances in Neural Information Processing Systems, 2010. (cited on page 73)

[66] Felipe Gerhard, Robert Haslinger, and Gordon Pipa. Applying the multivariate
time-rescaling theorem to neural population models. Neural computation, 2011.
(cited on pages 69, 73, and 143)

[67] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE:
Masked autoencoder for distribution estimation. In International Conference on
Machine Learning, 2015. (cited on page 48)

[68] Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal
dynamics: From single neurons to networks and models of cognition. 2014. (cited
on pages 3, 7, 82, and 84)

[69] Tilmann Gneiting and Matthias Katzfuss. Probabilistic forecasting. Annual Re-
view of Statistics and Its Application, 2014. (cited on page 83)

[70] Tilmann Gneiting, Larissa I Stanberry, Eric P Grimit, Leonhard Held, and
Nicholas A Johnson. Assessing probabilistic forecasts of multivariate quantities,
with an application to ensemble predictions of surface winds. 2008. (cited on page
83)

[71] Manuel Gomez-Rodriguez and Isabel Valera. Learning with temporal point pro-
cesses. Tutorial at International Conference on Machine Learning, 2018. (cited on
page 7)

[72] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. 2016. (cited
on pages 3, 23)

[73] Yves Grandvalet and Yoshua Bengio. Entropy regularization. Semi-supervised
learning, 2006. (cited on page 58)

[74] Alex Graves. Generating sequences with recurrent neural networks. ArXiv preprint,
2013. (cited on page 37)

[75] M Greenwood. The statistical study of infectious diseases. Journal of the Royal
Statistical Society: Series A, 1946. (cited on pages 69, 73)

[76] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and
Alexander Smola. A kernel two-sample test. Journal of Machine Learning Re-
search, 2012. (cited on pages 50, 129, and 130)

90

7.2 Open questions and future work

[77] Ruocheng Guo, Jundong Li, and Huan Liu. INITIATOR: Noise-contrastive esti-
mation for marked temporal point process. In International Joint Conference on
Artificial Intelligence, 2018. (cited on page 37)

[78] Vinayak Gupta, Srikanta Bedathur, Sourangshu Bhattacharya, and Abir De.
Learning temporal point processes with intermittent observations. In Interna-
tional Conference on Artificial Intelligence and Statistics, 2021. (cited on page
82)

[79] Alan G Hawkes. Spectra of some self-exciting and mutually exciting point pro-
cesses. Biometrika, 1971. (cited on pages 3, 13, 36, 45, 47, and 50)

[80] Alan G Hawkes. Hawkes processes and their applications to finance: A review.
Quantitative Finance, 2018. (cited on page 3)

[81] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. Experience report: Sys-
tem log analysis for anomaly detection. In International Symposium on Software
Reliability Engineering, 2016. (cited on pages 65, 78)

[82] Agnes Helmstetter and Didier Sornette. Importance of direct and indirect triggered
seismicity in the ETAS model of seismicity. Geophysical Research Letters, 2003.
(cited on page 3)

[83] ID Hill. Approximating the distribution of Greenwood’s statistic with Johnson
distributions. Journal of the Royal Statistical Society: Series A, 1979. (cited on
page 73)

[84] Marcel Hirt and Petros Dellaportas. Scalable Bayesian learning for state space
models using variational inference with SMC samplers. In International Conference
on Artificial Intelligence and Statistics, 2019. (cited on page 62)

[85] Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++:
Improving flow-based generative models with variational dequantization and ar-
chitecture design. In International Conference on Machine Learning, 2019. (cited
on page 30)

[86] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 1997. (cited on page 24)

[87] Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure
Leskovec. Ogb-lsc: A large-scale challenge for machine learning on graphs. ArXiv
preprint, 2021. (cited on page 84)

[88] Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron C. Courville.
Neural autoregressive flows. In International Conference on Machine Learning,
2018. (cited on pages 30, 35)

91

7 Conclusion

[89] Hengguan Huang, Hao Wang, and Brian Mak. Recurrent Poisson process unit for
speech recognition. In AAAI Conference on Artificial Intelligence, 2019. (cited on
page 36)

[90] Valerie Isham and Mark Westcott. A self-correcting point process. Stochastic
processes and their applications, 1979. (cited on pages 14, 36, 47, and 50)

[91] Priyank Jaini, Kira A. Selby, and Yaoliang Yu. Sum-of-squares polynomial flow.
In International Conference on Machine Learning, 2019. (cited on pages 30, 35,
43, 44, and 48)

[92] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with
gumbel-softmax. In International Conference on Learning Representations, 2017.
(cited on pages 32, 59, 61, and 82)

[93] Dominik Janzing, Kailash Budhathoki, Lenon Minorics, and Patrick Blöbaum.
Causal structure based root cause analysis of outliers. ArXiv preprint, 2019. (cited
on page 72)

[94] Stephen P Jenkins. Survival analysis. Unpublished manuscript, Institute for Social
and Economic Research, University of Essex, Colchester, UK, 2005. (cited on page
9)

[95] Junteng Jia and Austin R. Benson. Neural jump stochastic differential equations.
In Advances in Neural Information Processing Systems, 2019. (cited on pages 4,
81)

[96] Hiroshi Kajino. A differentiable point process with its application to spiking neural
networks. In International Conference on Machine Learning, 2021. (cited on page
82)

[97] Song-Hee Kim and Ward Whitt. Are call center and hospital arrivals well mod-
eled by nonhomogeneous Poisson processes? Manufacturing & Service Operations
Management, 2014. (cited on page 69)

[98] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In International Conference on Learning Representations, 2015. (cited on pages
50, 120)

[99] Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In In-
ternational Conference on Learning Representations, 2014. (cited on pages 57,
61)

[100] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and
Max Welling. Improved variational inference with inverse autoregressive flow. In
Advances in Neural Information Processing Systems, 2016. (cited on page 48)

92

7.2 Open questions and future work

[101] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classifica-
tion with deep convolutional neural networks. In Advances in Neural Information
Processing Systems, 2012. (cited on page 3)

[102] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding
trajectory in temporal interaction networks. In ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, 2019. (cited on pages 37, 119)

[103] Thomas A. Lasko. Efficient inference of Gaussian-process-modulated renewal pro-
cesses with application to medical event data. In Conference on Uncertainty in
Artificial Intelligence, 2014. (cited on page 48)

[104] Alexei Ledenev et al. Pumba: Chaos testing tool for Docker. https://github.

com/alexei-led/pumba, 2016. (cited on pages 77, 146)

[105] PA W Lewis and Gerald S Shedler. Simulation of nonhomogeneous Poisson pro-
cesses by thinning. Naval research logistics quarterly, 1979. (cited on pages 3, 20,
and 48)

[106] P.A.W. Lewis. Stochastic Point Processes: Statistical Analysis, Theory and Appli-
cations. 1972. (cited on page 3)

[107] Peter A. W. Lewis. Some results on tests for Poisson processes. Biometrika, 1965.
(cited on page 73)

[108] Shuang Li, Shuai Xiao, Shixiang Zhu, Nan Du, Yao Xie, and Le Song. Learn-
ing temporal point processes via reinforcement learning. In Advances in Neural
Information Processing Systems, 2018. (cited on pages 4, 17, 36, 37, 55, 57, 62,
and 69)

[109] Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing the reliability of out-of-
distribution image detection in neural networks. In International Conference on
Learning Representations, 2018. (cited on page 66)

[110] Haitao Lin, Cheng Tan, Lirong Wu, Zhangyang Gao, Stan Li, et al. An empirical
study: Extensive deep temporal point process. ArXiv preprint, 2021. (cited on
page 83)

[111] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft COCO: Common
objects in context. In European conference on computer vision, 2014. (cited on
page 84)

[112] Scott W. Linderman and Ryan P. Adams. Discovering latent network structure
in point process data. In International Conference on Machine Learning, 2014.
(cited on page 7)

93

https://github.com/alexei-led/pumba
https://github.com/alexei-led/pumba

7 Conclusion

[113] Qiang Liu, Jason D. Lee, and Michael I. Jordan. A kernelized Stein discrepancy
for goodness-of-fit tests. In International Conference on Machine Learning, 2016.
(cited on page 73)

[114] Siqi Liu and Milos Hauskrecht. Event outlier detection in continuous time. In
International Conference on Machine Learning, 2021. (cited on pages 72, 83)

[115] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal
of machine learning research, 2008. (cited on page 40)

[116] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution:
A continuous relaxation of discrete random variables. In International Conference
on Learning Representations, 2017. (cited on pages 59, 61, and 82)

[117] George Marsaglia, Wai Wan Tsang, Jingbo Wang, and Others. Evaluating Kol-
mogorov’s distribution. Journal of Statistical Software, 2003. (cited on page 72)

[118] Geoffrey McLachlan and David Peel. Finite mixture models. 2004. (cited on page
31)

[119] Hongyuan Mei and Jason Eisner. The neural Hawkes process: A neurally self-
modulating multivariate point process. In Advances in Neural Information Pro-
cessing Systems, 2017. (cited on pages 4, 27, 28, 35, 36, 37, 49, and 83)

[120] Hongyuan Mei, Chenghao Yang, and Jason Eisner. Transformer embeddings of
irregularly spaced events and their participants. In International Conference on
Learning Representations, 2021. (cited on page 81)

[121] Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte
Carlo gradient estimation in machine learning. ArXiv preprint, 2019. (cited on
pages 32, 57, 60, 61, and 124)

[122] Kristen Moore, Cody J Christopher, David Liebowitz, Surya Nepal, and Renee
Selvey. Modelling direct messaging networks with multiple recipients for cyber
deception. ArXiv preprint, 2021. (cited on page 82)

[123] PAP Moran. The random division of an interval. Supplement to the Journal of
the Royal Statistical Society, 1947. (cited on pages 140, 141)

[124] Lucy Morgan, Barry Nelson, Andrew Titman, and David Worthington. A spline-
based method for modelling and generating a nonhomogeneous Poisson process.
In Winter Simulation Conference, 2019. (cited on page 48)

[125] Warren R. Morningstar, Cusuh Ham, Andrew G. Gallagher, Balaji Lakshmi-
narayanan, Alex Alemi, and Joshua V. Dillon. Density of states estimation for
out of distribution detection. In International Conference on Artificial Intelligence
and Statistics, 2021. (cited on page 72)

94

7.2 Open questions and future work

[126] S Mostafa Mousavi, Yixiao Sheng, Weiqiang Zhu, and Gregory C Beroza. STanford
EArthquake Dataset (STEAD): A global data set of seismic signals for ai. IEEE
Access, 2019. (cited on pages 3, 77, and 146)

[127] Kevin P Murphy. Machine learning: A probabilistic perspective. 2012. (cited on
page 7)

[128] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, and Balaji Lakshminarayanan.
Detecting out-of-distribution inputs to deep generative models using a test for
typicality. ArXiv preprint, 2019. (cited on pages 65, 67, 70, 72, 75, 83, 139,
and 140)

[129] Eric T. Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Görür, and Balaji
Lakshminarayanan. Do deep generative models know what they don’t know? In
International Conference on Learning Representations, 2019. (cited on page 83)

[130] Jerzy Neyman and Egon Sharpe Pearson. On the problem of the most efficient
tests of statistical hypotheses. Philosophical Transactions of the Royal Society of
London: Series A, 1933. (cited on page 78)

[131] Bernard V North, David Curtis, and Pak C Sham. A note on the calculation of
empirical p-values from Monte Carlo procedures. The American Journal of Human
Genetics, 2002. (cited on pages 71, 143)

[132] David Oakes. The Markovian self-exciting process. Journal of Applied Probability,
1975. (cited on pages 13, 45)

[133] Yosihiko Ogata. On Lewis’ simulation method for point processes. Transactions
on Information Theory, 1981. (cited on pages 3, 14, and 20)

[134] Yosihiko Ogata. Statistical models for earthquake occurrences and residual analysis
for point processes. Journal of the American Statistical Association, 1988. (cited
on pages 3, 14, 73, and 84)

[135] Yosihiko Ogata. Seismicity analysis through point-process modeling: A review.
Seismicity patterns, their statistical significance and physical meaning, 1999. (cited
on pages 3, 84)

[136] Yosihiko Ogata. Statistics of earthquake activity: Models and methods for earth-
quake predictability studies. Annual Review of Earth and Planetary Sciences,
2017. (cited on page 84)

[137] César Ali Marin Ojeda, Kostadin Cvejoski, Rafet Sifa, Jannis Schuecker, and Chris-
tian Bauckhage. Patterns and outliers in temporal point processes. In SAI Intel-
ligent Systems Conference, 2019. (cited on page 72)

[138] Maya Okawa, Tomoharu Iwata, Takeshi Kurashima, Yusuke Tanaka, Hiroyuki
Toda, and Naonori Ueda. Deep mixture point processes: Spatio-temporal event

95

7 Conclusion

prediction with rich contextual information. In ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, 2019. (cited on page 36)

[139] Takahiro Omi, Naonori Ueda, and Kazuyuki Aihara. Fully neural network based
model for general temporal point processes. In Advances in Neural Information
Processing Systems, 2019. (cited on pages 27, 28, 35, 36, 37, 43, 45, 49, 50, 81, 83,
114, 117, 118, and 127)

[140] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.
Wavenet: A generative model for raw audio. ArXiv preprint, 2016. (cited on pages
37, 48)

[141] Manfred Opper and Guido Sanguinetti. Variational inference for Markov jump
processes. In Advances in Neural Information Processing Systems, 2007. (cited on
pages 55, 62)

[142] George Papamakarios, Iain Murray, and Theo Pavlakou. Masked autoregressive
flow for density estimation. In Advances in Neural Information Processing Systems,
2017. (cited on page 48)

[143] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed,
and Balaji Lakshminarayanan. Normalizing flows for probabilistic modeling and
inference. ArXiv preprint, 2019. (cited on pages 47, 48)

[144] Raghu Pasupathy. Generating homogeneous Poisson processes. Wiley encyclopedia
of operations research and management science, 2010. (cited on pages 48, 68)

[145] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Köpf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems, 2019. (cited on
pages 49, 116, and 125)

[146] Jonathan W. Pillow. Time-rescaling methods for the estimation and assessment
of non-Poisson neural encoding models. In Advances in Neural Information Pro-
cessing Systems, 2009. (cited on page 69)

[147] Rajesh Ranganath, Sean Gerrish, and David M. Blei. Black box variational infer-
ence. In International Conference on Artificial Intelligence and Statistics, 2014.
(cited on page 57)

[148] JS Rao and Morgan Kuo. Asymptotic results on the Greenwood statistic and
some of its generalizations. Journal of the Royal Statistical Society: Series B,
1984. (cited on page 73)

96

7.2 Open questions and future work

[149] Vinayak Rao and Yee Whye Teh. Fast MCMC sampling for Markov jump processes
and extensions. The Journal of Machine Learning Research, 2013. (cited on pages
62, 63, and 138)

[150] Vinayak A. Rao and Yee Whye Teh. Gaussian process modulated renewal pro-
cesses. In Advances in Neural Information Processing Systems, 2011. (cited on
page 48)

[151] Vinayak A. Rao and Yee Whye Teh. MCMC for continuous-time discrete-state
systems. In Advances in Neural Information Processing Systems, 2012. (cited on
page 133)

[152] Jakob Gulddahl Rasmussen. Temporal point processes. Lecture Notes, 2011. (cited
on pages 7, 33, 36, 52, and 113)

[153] Jakob Gulddahl Rasmussen. Lecture notes: Temporal point processes and the
conditional intensity function. ArXiv preprint, 2018. (cited on page 71)

[154] Jie Ren, Peter J. Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark A. DePristo,
Joshua V. Dillon, and Balaji Lakshminarayanan. Likelihood ratios for out-of-
distribution detection. In Advances in Neural Information Processing Systems,
2019. (cited on pages 65, 67, and 72)

[155] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with nor-
malizing flows. In International Conference on Machine Learning, 2015. (cited on
pages 27, 30, and 37)

[156] Danilo Jimenez Rezende, DaanWierstra, andWulfram Gerstner. Variational learn-
ing for recurrent spiking networks. In Advances in Neural Information Processing
Systems, 2011. (cited on page 82)

[157] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic back-
propagation and approximate inference in deep generative models. In International
Conference on Machine Learning, 2014. (cited on pages 57, 61)

[158] Marian-Andrei Rizoiu, Young Lee, Swapnil Mishra, and Lexing Xie. A tutorial on
Hawkes processes for events in social media. ArXiv preprint, 2017. (cited on page
14)

[159] Yulia Rubanova, Tian Qi Chen, and David Duvenaud. Latent ordinary differential
equations for irregularly-sampled time series. In Advances in Neural Information
Processing Systems, 2019. (cited on page 81)

[160] Reuven Y Rubinstein. Monte Carlo optimization, simulation, and sensitivity of
queueing networks. 1986. (cited on page 61)

[161] Lukas Ruff, Jacob R Kauffmann, Robert A Vandermeulen, Grégoire Montavon,
Wojciech Samek, Marius Kloft, Thomas G Dietterich, and Klaus-Robert Müller.

97

7 Conclusion

A unifying review of deep and shallow anomaly detection. Proceedings of the IEEE,
2021. (cited on pages 67, 72)

[162] William H Savran, Maximilian J Werner, Warner Marzocchi, David A Rhoades,
David D Jackson, Kevin Milner, Edward Field, and Andrew Michael. Pseudo-
prospective evaluation of UCERF3-ETAS forecasts during the 2019 ridgecrest se-
quence. Bulletin of the Seismological Society of America, 2020. (cited on page
83)

[163] Anton Maximilian Schäfer and Hans Georg Zimmermann. Recurrent neural net-
works are universal approximators. In International Conference on Artificial Neu-
ral Networks, 2006. (cited on page 35)

[164] Mike Schuster. Better generative models for sequential data problems: Bidirec-
tional recurrent mixture density networks. In Advances in Neural Information
Processing Systems, 2000. (cited on page 37)

[165] SeedScientific. How much data is created every day? https://seedscientific.

com/how-much-data-is-created-every-day/. Accessed: 2022-04-06. (cited on
page 3)

[166] Karishma Sharma, Yizhou Zhang, Emilio Ferrara, and Yan Liu. Identifying coor-
dinated accounts on social media through hidden influence and group behaviours.
2020. (cited on pages 81, 82)

[167] Oleksandr Shchur, Marin Biloš, and Stephan Günnemann. Intensity-free learning
of temporal point processes. In International Conference on Learning Representa-
tions, 2020. (cited on pages 5, 43, 45, 49, 50, 75, 83, and 146)

[168] Oleksandr Shchur, Nicholas Gao, Marin Biloš, and Stephan Günnemann. Fast
and flexible temporal point processes with triangular maps. In Advances in Neural
Information Processing Systems, 2020. (cited on pages 5, 55)

[169] Oleksandr Shchur, Ali Caner Türkmen, Tim Januschowski, Jan Gasthaus, and
Stephan Günnemann. Detecting anomalous event sequences with temporal point
processes. Advances in Neural Information Processing Systems, 2021. (cited on
pages 5, 7)

[170] Oleksandr Shchur, Ali Caner Türkmen, Tim Januschowski, and Stephan
Günnemann. Neural temporal point processes: A review. International Joint
Conference on Artificial Intelligence, 2021. (cited on pages 3, 5, 7, 65, and 83)

[171] Hava T Siegelmann and Eduardo D Sontag. On the computational power of neural
nets. In Proceedings of the fifth annual workshop on Computational learning theory,
1992. (cited on page 35)

[172] Walter L Smith. Renewal theory and its ramifications. Journal of the Royal
Statistical Society: Series B (Methodological), 1958. (cited on page 12)

98

https://seedscientific.com/how-much-data-is-created-every-day/
https://seedscientific.com/how-much-data-is-created-every-day/

7.2 Open questions and future work

[173] Markus Steinbach, Anshul Jindal, Mohak Chadha, Michael Gerndt, and Shajulin
Benedict. Tppfaas: Modeling serverless functions invocations via temporal point
processes. IEEE Access, 2022. (cited on page 82)

[174] Michael A Stephens. Further percentage points for Greenwood’s statistic. Journal
of the Royal Statistical Society: Series A, 1981. (cited on page 73)

[175] Olav Stetter, Demian Battaglia, Jordi Soriano, and Theo Geisel. Model-free recon-
struction of excitatory neuronal connectivity from calcium imaging signals. PLoS
Computational Biology, 2012. (cited on page 76)

[176] Esteban G Tabak and Cristina V Turner. A family of nonparametric density
estimation algorithms. Communications on Pure and Applied Mathematics, 2013.
(cited on pages 30, 37)

[177] Behzad Tabibian, Isabel Valera, Mehrdad Farajtabar, Le Song, Bernhard
Schölkopf, and Manuel Gomez-Rodriguez. Distilling information reliability and
source trustworthiness from digital traces. In Proceedings of the Web Conference,
2017. (cited on page 36)

[178] Matthew A Taddy, Athanasios Kottas, et al. Mixture modeling for marked Poisson
processes. Bayesian Analysis, 2012. (cited on page 36)

[179] Long Tao, Karoline E Weber, Kensuke Arai, and Uri T Eden. A common goodness-
of-fit framework for neural population models using marked point process time-
rescaling. Journal of Computational Neuroscience, 2018. (cited on pages 69, 73,
and 143)

[180] Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation
of generative models. In International Conference on Learning Representations,
2016. (cited on pages 50, 83)

[181] Ali Caner Türkmen, Yuyang Wang, and Alexander J Smola. FastPoint: Scalable
deep point processes. In ECML-PKDD, 2019. (cited on pages 4, 37, 48, 49, and 50)

[182] Utkarsh Upadhyay and Manuel Gomez Rodriguez. Temporal point processes. Lec-
ture notes for Human-Centered ML, 2019. (cited on page 35)

[183] Utkarsh Upadhyay, Abir De, and Manuel Gomez Rodriguez. Deep reinforcement
learning of marked temporal point processes. In Advances in Neural Information
Processing Systems, 2018. (cited on pages 32, 36, 37, 55, 56, 57, 62, 113, 117,
and 121)

[184] Aäron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Koray Kavukcuoglu, Oriol
Vinyals, and Alex Graves. Conditional image generation with PixelCNN decoders.
In Advances in Neural Information Processing Systems, 2016. (cited on page 48)

99

7 Conclusion

[185] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in Neural Information Processing Systems, 2017. (cited on pages 24,
43, 49, and 81)

[186] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios
Protopapadakis. Deep learning for computer vision: A brief review. Computational
intelligence and neuroscience, 2018. (cited on page 3)

[187] Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential
families, and variational inference. Foundations and Trends in Machine Learning,
2008. (cited on pages 56, 58)

[188] Pengyu Wang and Phil Blunsom. Collapsed variational Bayesian inference for
hidden Markov models. In International Conference on Artificial Intelligence and
Statistics, 2013. (cited on pages 61, 136)

[189] Ziyu Wang, Bin Dai, David P. Wipf, and Jun Zhu. Further analysis of outlier detec-
tion with deep generative models. In Advances in Neural Information Processing
Systems, 2020. (cited on pages 65, 70, and 72)

[190] Weave. Sock shop : A microservice demo application. https://github.com/

microservices-demo/microservices-demo, 2017. (cited on pages 77, 146)

[191] Song Wei, Shixiang Zhu, Minghe Zhang, and Yao Xie. Goodness-of-fit test for
mismatched self-exciting processes. In International Conference on Artificial In-
telligence and Statistics, 2021. (cited on page 73)

[192] Malcolm CAWhite, Yehuda Ben-Zion, and Frank L Vernon. A detailed earthquake
catalog for the San Jacinto fault-zone region in southern California. Journal of
Geophysical Research: Solid Earth, 2019. (cited on page 3)

[193] Andreas Wienke. Frailty models in survival analysis. 2010. (cited on page 113)

[194] Christian Wildner and Heinz Koeppl. Moment-based variational inference for
Markov jump processes. In International Conference on Machine Learning, 2019.
(cited on page 62)

[195] Alex H. Williams, Anthony Degleris, Yixin Wang, and Scott W. Linderman. Point
process models for sequence detection in high-dimensional neural spike trains. In
Advances in Neural Information Processing Systems, 2020. (cited on page 84)

[196] Ronald J Williams. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine learning, 1992. (cited on pages 57, 61)

[197] Jing Wu, Owen Ward, James Curley, and Tian Zheng. Markov-modulated Hawkes
processes for sporadic and bursty event occurrences. ArXiv preprint, 2019. (cited
on page 62)

100

https://github.com/microservices-demo/microservices-demo
https://github.com/microservices-demo/microservices-demo

7.2 Open questions and future work

[198] Qitian Wu, Chaoqi Yang, Hengrui Zhang, Xiaofeng Gao, Paul Weng, and Gui-
hai Chen. Adversarial training model unifying feature driven and point process
perspectives for event popularity prediction. In International Conference on Infor-
mation and Knowledge Management, 2018. (cited on pages 4, 17, 55, 56, and 62)

[199] Shuai Xiao, Mehrdad Farajtabar, Xiaojing Ye, Junchi Yan, Xiaokang Yang,
Le Song, and Hongyuan Zha. Wasserstein learning of deep generative point process
models. In Advances in Neural Information Processing Systems, 2017. (cited on
pages 4, 37, 51, 55, 56, 62, and 130)

[200] Shuai Xiao, Junchi Yan, Xiaokang Yang, Hongyuan Zha, and Stephen M. Chu.
Modeling the intensity function of point process via recurrent neural networks. In
AAAI Conference on Artificial Intelligence, 2017. (cited on page 4)

[201] Shuai Xiao, Hongteng Xu, Junchi Yan, Mehrdad Farajtabar, Xiaokang Yang,
Le Song, and Hongyuan Zha. Learning conditional generative models for tem-
poral point processes. In AAAI Conference on Artificial Intelligence, 2018. (cited
on page 37)

[202] Junchi Yan, Xin Liu, Liangliang Shi, Changsheng Li, and Hongyuan Zha. Improv-
ing maximum likelihood estimation of temporal point process via discriminative
and adversarial learning. In International Joint Conference on Artificial Intelli-
gence, 2018. (cited on pages 17, 37, 55, 56, and 62)

[203] Jiasen Yang, Vinayak A. Rao, and Jennifer Neville. A Stein-Papangelou goodness-
of-fit test for point processes. In International Conference on Artificial Intelligence
and Statistics, 2019. (cited on page 73)

[204] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S. Huang.
Generative image inpainting with contextual attention. In Conference on Com-
puter Vision and Pattern Recognition, 2018. (cited on page 7)

[205] Boqian Zhang and Vinayak Rao. Efficient parameter sampling for Markov jump
processes. ArXiv preprint, 2017. (cited on page 62)

[206] Boqian Zhang, Jiangwei Pan, and Vinayak A. Rao. Collapsed variational Bayes for
Markov jump processes. In Advances in Neural Information Processing Systems,
2017. (cited on pages 61, 62)

[207] Cheng Zhang, Judith Bütepage, Hedvig Kjellström, and Stephan Mandt. Advances
in variational inference. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2018. (cited on pages 48, 61, and 135)

[208] Qiang Zhang, Aldo Lipani, Ömer Kirnap, and Emine Yilmaz. Self-attentive
Hawkes process. In International Conference on Machine Learning, 2020. (cited
on pages 43, 49, 81, and 83)

101

7 Conclusion

[209] Qiang Zhang, Aldo Lipani, and Emine Yilmaz. Learning neural point processes
with latent graphs. In Proceedings of the Web Conference, 2021. (cited on page
83)

[210] Wei Zhang, Thomas Kobber Panum, Somesh Jha, Prasad Chalasani, and David
Page. CAUSE: Learning Granger causality from event sequences using attribution
methods. In International Conference on Machine Learning, 2020. (cited on page
83)

[211] Yizhou Zhang, Karishma Sharma, and Yan Liu. Vigdet: Knowledge informed
neural temporal point process for coordination detection on social media. Advances
in Neural Information Processing Systems, 2021. (cited on page 82)

[212] Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey.
Transactions on Knowledge and Data Engineering, 2020. (cited on page 3)

[213] Zihao Zhou, Xingyi Yang, Ryan Rossi, Handong Zhao, and Rose Yu. Neural point
process for learning spatiotemporal event dynamics. In Learning for Dynamics
and Control Conference, 2022. (cited on page 83)

[214] Shixiang Zhu, Henry Shaowu Yuchi, and Yao Xie. Adversarial anomaly detec-
tion for marked spatio-temporal streaming data. In International Conference on
Acoustics, Speech and Signal Processing, 2020. (cited on pages 72, 78)

[215] Shixiang Zhu, Minghe Zhang, Ruyi Ding, and Yao Xie. Deep fourier kernel for
self-attentive point processes. In International Conference on Artificial Intelligence
and Statistics, 2021. (cited on pages 49, 81, and 83)

[216] Zachary M. Ziegler and Alexander M. Rush. Latent normalizing flows for discrete
sequences. In International Conference on Machine Learning, 2019. (cited on page
37)

[217] Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Trans-
former Hawkes process. In International Conference on Machine Learning, 2020.
(cited on pages 43, 49, 81, and 83)

102

A Notation

General

• RD — D-dimensional Euclidean space.

• R+ = (0,∞) — set of strictly positive real numbers.

• [0, T] ⊂ R — time interval on which the TPP is observed.

• ti ∈ [0, T] — arrival time of the ith event.

• M — set of possible values that a mark can take (usually {1, . . . , C} or RD).

• mi ∈ M — mark corresponding to the ith event.

• τi = ti − ti−1 — the ith inter-event time (assuming t0 = 0 and tN+1 = T).

• T = (t1, ..., tN) — realization of a TPP represented by a sequence of strictly
increasing arrival times.

• N — number of events in a TPP realization.

• H(t) = {tj ∈ T : tj < t} — history consisting of events observed before time t.

• dt — infinitesimal change in t. Corresponds to a shortcut g(dt) = lim∆t→0
g(∆t)
∆t

for any function g.

• P ∗
i (t|t1, . . . , ti−1) — probability distribution over the next arrival time ti given past

events. This is always a continuous distribution supported on [ti−1,∞).

• p∗i (t) = pi(t|t1, ..., ti−1) — probability density function (PDF) of the ith event
(Equation 2.3).

• F ∗
i (t) = Fi(t|t1, ..., ti−1) — cumulative distribution function (CDF) of the ith event

(Equation 2.5).

• S∗
i (t) = Si(t|t1, ..., ti−1) — survival function (SF) of the ith event (Equation 2.6).

• ϕ∗i (t) = ϕi(t|t1, ..., ti−1) — hazard function (HF) of the ith event (Equation 2.7).

• Φ∗
i (t) = Φi(t|t1, ..., ti−1) — cumulative hazard function (CHF) of the ith event

(Equation 2.8).

• λ∗(t) = λ(t|H(t)) — conditional intensity at time t (Equation 2.9).

103

A Notation

• Λ∗(t) = Λ(t|t1, ..., ti−1) — cumulative conditional intensity at time t, also known
as the compensator (Equation 2.20).

• Z = (z1, ..., zN) — arrival times transformed by the compensator as zi = Λ∗(ti)
(see Theorem 1).

• p(T) — likelihood, also known as point process density (Equation 2.22). We use
p(T) to refer both to the density function as well as the corresponding TPP .

• θ — parameters of a TPP model. We implicitly assume that all above functions
λ∗(t), Λ∗(t), p∗i (t), F

∗
i (t), S

∗
i (t), ϕ

∗
i (t), Φ

∗
i (t), p(T) are parametrized by θ.

• 1(x) — indicator function defined as

1(x) =

{
1 if x is True,

0 else.

• C — number of event types in a marked TPP with categorical marks.

• λ∗c(t) — conditional intensity of mark c ∈ {1, . . . , C} in a marked TPP with cate-
gorical marks (Equation 2.30).

Chapter 3

• g — bijective differentiable transformation that specifies a normalizing flow model
(Equation 3.5).

• fψ — individual parametric functions that are composed to define g.

• σ(x) = 1/(1 + e−x) — the sigmoid function.

• hi — history embedding computed after observing events (t1, . . . , ti−1).

• yi — additional conditional information for each event.

• ej — learnable embedding vector for the event sequence.

• ci — context vector obtained by concatenating hi, yi, and ej .

• φi — parameters of the conditional distribution p∗i (τ |φi).

• w ∈ ∆K−1, µ ∈ RK , s ∈ RK+ — parameters of the log-normal mixture distribution
(Equation 3.8).

• K — number of components for DSF, SOS and LogNormMix models. Higher value
corresponds to a more flexible distribution (potentially with more modes).

• H — dimension of the history embedding hi.

104

Chapter 4

• p̃(Z) — density of the standard Poisson process (SPP).

• F = (f1, ..., fN) — increasing lower-triangular map that converts a realization T
of a TPP with compensator Λ∗ into a sample Z from the SPP.

• fi(t1, ..., ti) = Λ∗(ti) = Λ(ti|t1, ..., ti−1) — component function of the map F .

• F−1 — inverse of the map F defined above. F−1 converts a sample Z = (z1, . . . , zN)
from the SPP into a realization T = (Λ∗−1(z1), . . . ,Λ

∗−1(tN)) from a TPP with
compensator Λ∗.

• Λ: [0, T] → R+ — Cumulative intensity of an inhomogeneous Poisson process.
(Note the difference from the compensator Λ∗ of a general TPP that depends on
the history, as indicated by ∗.)

• Λ — a map that applies the function Λ elementwise to a variable-length sequence
(t1, . . . , tN).

• Φ: R+ → R+ — cumulative hazard function of a renewal process. (Note the
difference from the conditional CHF Φ∗

i of a general TPP that is different for each
i and is history-dependent.)

• Φ — a map that applies the function Φ elementwise to a variable-length sequence
(τ1, . . . , τN+1).

• C — the N ×N cumulative sum matrix,

Cij =

{
1 if i ≤ j,

0 else.

• D ≡ C−1 — the N ×N difference matrix,

Dij =

1 if i = j,

−1 if i = j + 1,

0 else.

• B — an N × N block-diagonal matrix, where each block is a repeated H × H
lower-triangular matrix with strictly positive diagonal entries.

Chapter 5

• F−1
θ — a map that converts a sample Z from the SPP into a realization T of a

TPP with compensator Λ∗. Defined same as in Chapter 4, but now we make the
dependence on parameters θ explicit.

105

A Notation

• S — number of Monte Carlo samples used to approximate the expectation.

• ζ > 0 — temperature parameter for the differentiable relaxation.

• σζ(x) = 1/(1+exp(−x/ζ)) — sigmoid function with temperature parameter ζ. As
ζ → 0, the sigmoid function σζ(x) approaches the indicator function 1(x > 0).

• K — number of states in a Markov jump process.

• (T ,S) — a Markov jump process trajectoriy represented by the jump times T and
the sequence of visited states S.

• X — observed events in a Markov modulated Poisson process.

• q(T ,S) — approximate posterior distribution over jump times and visited states.

• ψ = {π,A,λ} — parameters of the Markov modulated Poisson process (see Ap-
pendix F.1.1).

Chapter 6

• X = (t1, ..., tN) — realization of a TPP (was denoted by T in preceding chapters).

• P — a TPP (i.e., a probability distribution over event sequences).

• X — set of variable-length event sequences (i.e., sample space of a TPP).

• H0 and H1 — null hypothesis and alternate hypothesis.

• Pdata — probability distribution that generated the training data.

• Pmodel — probability distribution corresponding to the fitted model.

• Q — probability distribution corresponding to the alternate hypothesis.

• Dtrain = (X1, . . . , XM) — training set consisting of samples generated i.i.d. from
some distribution Pdata.

• Dtest = DID
test ∪ DOOD

test — test set consisting of in-distribution sequences DID
test and

out-of-distribution sequences DOOD
test .

• δ — detectability parameter, higher values make the distributions P and Q more
dissimilar.

• s : X → R — test statistic.

• ps — p-value computed based on the test statistic s.

• α — confidence level (i.e., desired false positive rate).

106

• Z = (v1, ..., vN) = (Λ∗(t1), ...,Λ∗(tN)) — event sequence X converted using the
compensator (was denoted by Z = (z1, ..., zN) in preceeding chapters).

• V = Λ∗(T) — length of the transformed interval in random time change theorem.

• wi = vi−vi−1 — inter-event times in the transformed sequence Z (assuming v0 = 0
and vN+1 = V).

• κarr — Kolmogorov–Smirnov statistic for the arrival times (Equation 6.5).

• κint — Kolmogorov–Smirnov statistic for the inter-event times (Equation 6.6).

• ψ — sum-of-squared-spacings (3S) statistic (Equation 6.7).

107

B Abbreviations

General

• CDF — cumulative distribution function (Equation 2.5).

• CHF — cumulative hazard function (Equation 2.8).

• GPU — graphics processing unit.

• GRU — gated recurrent unit RNN architecture (Equation 2.39).

• HF — hazard function (Equation 2.7).

• HP — Hawkes process, a.k.a. self-exciting process (Equation 2.16).

• HPP — homogeneous Poisson process (Equation 2.12).

• IPP — inhomogeneous Poisson process (Equation 2.14).

• LL — log-likelihood (Equation 2.23).

• LSTM — long-short term memory RNN architecture.

• MLE — maximum likelihood estimation (Equation 2.25).

• MLP — multilayer preceptron (Equation 2.36).

• NLL — negative log-likelihood (Equation 2.23).

• PDF — probability density function (Equation 2.3).

• RNN — recurrent neural network.

• RP — renewal process (Equation 2.15).

• SCP — self-correcting process (Equation 2.19).

• SF — survival function (Equation 2.6).

• SPP — standard Poisson process, a.k.a. HPP with unit intensity (Equation 2.13).

• TPP — temporal point process.

109

B Abbreviations

Chapter 3

• FullyNN — Fully Neural Network Point Process.

• DSFlow — Deep sigmoidal flow.

• LogNormMix — TPP model based on the log-normal mixture distribution.

• RMTPP — Recurrent Marked Temporal Point Process model.

• SOSFlow — Sum-of-squares polynomial flow.

Chapter 4

• MRP — modulated renewal process (Equation 4.6).

• MMD — maximum mean discrepancy (Equation E.2).

• TriTPP — TPP model based on compisition of invertible maps (Figure 4.2).

Chapter 5

• ELBO — evidence lower bound.

• EM — expectation-maximization [16].

• MJP – Markov jump process.

• MMPP — Markov modulated Poisson process.

• MC — Monte Carlo.

• MCMC — Markov chain Monte Carlo.

• VI — variational inference.

Chapter 6

• 3S — sum-of-squared-spacings statistic.

• eCDF — empirical cumulative distribution function.

• GoF — goodness-of-fit.

• ID — in-distribution.

• KS — Kolmogorov–Smirnov.

• OoD — out-of-distribution.

• ROC AUC — area under the receiver operating characteristic curve.

110

C Characterizing a temporal point process

As mentioned in Section 2.2, the distribution of a TPP can be equivalently described
using different functions. Here we provide a set of identities that allow us to switch
between the different representations.

We can characterize the conditional distribution Pi(ti|t1, . . . , ti−1) of the next arrival
time given the history with one of the following functions:

• probability density function (PDF)

pi(t|t1, . . . , ti−1) =
d

dt
Fi(t|t1, . . . , ti−1) (C.1)

= − d

dt
Si(t|t1, . . . , ti−1) (C.2)

= ϕi(t|t1, . . . , ti−1) exp

(
−
∫ t

ti−1

ϕi(u|t1, . . . , ti−1)du

)
(C.3)

=
d

dt
Φi(t|t1, . . . , ti−1) exp (−Φi(t|t1, . . . , ti−1)) (C.4)

• cumulative distribution function (CDF)

Fi(t|t1, . . . , ti−1) =

∫ t

ti−1

pi(u|t1, . . . , ti−1)du (C.5)

= 1− Si(t|t1, . . . , ti−1) (C.6)

= 1− exp

(
−
∫ t

ti−1

ϕi(u|t1, . . . , ti−1)du

)
(C.7)

= 1− exp (−Φi(t|t1, . . . , ti−1)) (C.8)

• survival function (SF)

Si(t|t1, . . . , ti−1) =

∫ ∞

t
pi(u|t1, . . . , ti−1)du (C.9)

= 1− Fi(t|t1, . . . , ti−1) (C.10)

= exp

(
−
∫ t

ti−1

ϕi(u|t1, . . . , ti−1)du

)
(C.11)

= exp (−Φi(t|t1, . . . , ti−1)) (C.12)

111

C Characterizing a temporal point process

• hazard function (HF)

ϕi(t|t1, . . . , ti−1) =
pi(t|t1, . . . , ti−1)∫∞

t pi(u|t1, . . . , ti−1)du
(C.13)

= − d

dt
log(1− Fi(t|t1, . . . , ti−1)) (C.14)

= − d

dt
logSi(t|t1, . . . , ti−1) (C.15)

=
d

dt
Φi(t|t1, . . . , ti−1) (C.16)

• cumulative hazard function (CHF)

Φi(t|t1, . . . , ti−1) = − log

(∫ ∞

t
pi(u|t1, . . . , ti−1)du

)
(C.17)

= − log(1− Fi(t|t1, . . . , ti−1)) (C.18)

= − logSi(t|t1, . . . , ti−1) (C.19)

=

∫ t

ti−1

ϕi(u|t1, . . . , ti−1)du (C.20)

We can also use any of the above functions to compute the conditional intensity λ∗(t)
or the compensator Λ∗(t). Suppose that ti−1 is the last event that occured before time
t. Then we can use the following identities

λ∗(t) = ϕi(t|t1, . . . , ti−1) (C.21)

Λ∗(t) = Φi(t|t1, . . . , ti−1) +

i−1∑
j=1

Φj(tj |t1, . . . , tj−1) (C.22)

Φi(t|t1, . . . , ti−1) = Λ∗(t)− Λ∗(ti−1). (C.23)

Combining these identities with Equations C.1–C.20 allows us to move between the
conditional intensity and autoregressive characterizations of a TPP.

112

D Supplementary materials for Chapter 3

D.1 Survival and intensity functions for the proposed models

The survival function (SF) of a normalizing flow model can be obtained as follows. If
u has a SF Q(u) and τ = g(u) for increasing g, then the SF S(τ) of τ is obtained as

S(τ) = Q(g−1(τ))

Since for both SOSFlow and DSFlow we can evaluate g−1 in closed form, S(τ) is easy
to compute.

For the log-normal mixture model, SF is by definition equal to

S(τ) =
K∑
k=1

wkΦ̄

(
log τ − µk

sk

)

where Φ̄(·) is the SF of a standard normal distribution.

Given the conditional PDF and SF, we can compute the conditional intensity λ∗(t)
for each model as

λ∗(t) =
p∗i (t− ti−1)

S∗
i (t− ti−1)

where ti−1 is the arrival time of most recent event before t [152]. This connection means
that we are not losing any benefits of the intensity parametrization by directly modeling
the inter-event times, as both ways to describe the model are in fact equivalent.

D.2 Discussion of constant & exponential intensity models

Constant intensity model as exponential distribution. The conditional intensity
function of the constant intensity model [183] is defined as λ∗(ti) = exp(vThi + b),
where hi ∈ RH is the history embedding produced by an RNN, and b ∈ R is a learnable
parameter. By setting c = exp(vThi + b), it is easy to see that the PDF of the constant
intensity model p∗i (τ) = c exp(−cτ) corresponds to the exponential distribution.

Exponential intensity model as Gompertz distribution. PDF of a Gompertz
distribution [193] is defined as

p(τ |α, β) = α exp

(
βτ − α

β
exp(βτ) +

α

β

)

113

D Supplementary materials for Chapter 3

0 1 2 3
0.0

0.5

1.0

1.5

2.0

p(
)

Constant intensity
= 0.5
= 1.0
= 2.0

0 1 2 3

Exponential intensity
a = 0.2, b = 1
a = 1.0, b = 1
a = 2.0, b = 1

0 1 2 3

Log-normal mixture
= 0, = 0.5
= 0, = 5.0
= 1, = 0.2

Mixture

Figure D.1: Different choices for modeling p(τ): exponential distribution (left), Gompertz dis-
tribution (center), log-normal mixture (right). Mixture distribution can approxi-
mate any density while being tractable and easy to sample from.

for α, β > 0. The two parameters α and β define its shape and rate, respectively. For
any choice of its parameters, Gompertz distribution is unimodal and light-tailed. The

mean of the Gompertz distribution can be computed as E[τ] = 1
β exp

(
α
β

)
Ei(−α

β), where

Ei(z) =
∫∞
−z exp(−v)/v dv is the exponential integral function (that can be approximated

numerically).
The conditional intensity function of the exponential intensity model [52] is defined

as λ∗(ti) = exp(w(ti − ti−1) + vThi + b), where hi ∈ RH is the history embedding
produced by an RNN, and v ∈ RH , b ∈ R, w ∈ R+ are learnable parameters. By defining
d = vThi + b, we obtain the PDF of the exponential intensity model [52, Equation 12]

p∗i (τ |w, d) = exp

(
wτ + d− 1

w
exp(wτ + d) +

1

w
exp(d)

)
.

By setting α = exp(d) and β = w we see that the exponential intensity model is equiv-
alent to a Gompertz distribution.
Discussion. Figure D.1 shows densities that can be represented by exponential and

Gompertz distributions. Even though the history embedding hi produced by an RNN
may capture rich information, the resulting distribution p∗i (τ) for both models has very
limited flexibility, is unimodal and light-tailed. In contrast, a flow-based or a mixture
model is significantly more flexible and can approximate any density.

D.3 Discussion of the FullyNN model

Summary. The main idea of the approach by [139] is to model the cumulative hazard
function (CHF, Equation 2.8) of the inter-event times

Φ∗
i (τ) =

∫ τ

0
λ∗(ti−1 + s)ds

using a feedforward neural network with non-negative weights

Φ∗
i (τ) := fi(τ) = softplus(W (3) tanh(W (2) tanh(W (1)τ + b̃

(1)
i) + b(2)) + b(3)) (D.1)

114

D.3 Discussion of the FullyNN model

where b̃
(1)
i = V hi + b

(0), hi ∈ RH is the history embedding, W (1) ∈ RD×1
+ , W (2) ∈

RD×D
+ , W (3) ∈ R1×D

+ are non-negative weight matrices, and V ∈ RD×H , b(0) ∈ RD,
b(2) ∈ RD, b(3) ∈ R are the remaining model parameters.

FullyNN as a normalizing flow. Let u ∼ Exponential(1), that is

F (u) = 1− exp(−u) p(u) = exp(−u)

We can view f : R+ → R+ as a transformation that maps τ to u

u = fi(τ) ⇐⇒ τ = f−1
i (u)

We can now use the change of variables formula to obtain the conditional CDF and PDF
of τ .

Alternatively, we can obtain the conditional intensity as

λ∗(t) =
d

dτ
Φ∗
i (τ) =

d

dτ
fi(τ)

and use the fact that Φ∗
i (τ) =

∫ τ
0 λ

∗(ti−1 + s)ds.

Both approaches lead to the same conclusion

F ∗
i (τ) = 1− exp(−fi(τ)) p∗i (τ) = exp(−fi(τ))

d

dτ
fi(τ)

However, the first approach also provides intuition on how to draw samples τ̃ from the
resulting distribution p∗i (τ)

1. Sample ũ ∼ Exponential(1).

2. Obtain τ̃ by solving f(τ)− ũ = 0 for τ (using e.g. bisection method).

This recovers the inverse transform method (Algorithm 3). Similarly to other flow-
based models, sampling from the FullyNN model cannot be done exactly and requires a
numerical approximation since f cannot be inverted analytically.

An even more important shortcoming is that FullyNN does not define a valid TPP.
The chosen parametrization of Φ∗

i (τ) assigns a non-zero probability mass to the (−∞, 0)
interval, which violates the assumption that inter-event times are strictly positive with
probability 1. This assumption corresponds to the constraint Prob(τi ≤ 0) = F ∗

i (0) = 0,
or equivalently Φ∗

i (0) = 0. However, we can see that

Φ∗
i (0) = f(0) = softplus(W (3) tanh(W (2) tanh(b̃(1)) + b(2)) + b(3)) > 0

which means that the FullyNN model assigns a non-zero probability to negative inter-
event times, and therefore doesn’t define a valid TPP.

115

D Supplementary materials for Chapter 3

D.4 Implementation details

D.4.1 Shared architecture

We implement SOSFlow, DSFlow and LogNormMix, together with baselines: RMTPP
(Gompertz distribution), exponential distribution and a FullyNN model. All of them
share the same pipeline, from the data preprocessing to the parameter tuning and model
selection, differing only in the way we calculate p∗(τ). This way we ensure a fair evalu-
ation. Our implementation uses Pytorch [145].

From arival times ti we calculate the inter-event times τi = ti − ti−1. Since they can
contain very large values, RNN takes log-transformed and centered inter-event time and
produces hi ∈ RH . In case we have marks, we additionally input mi — the index of the
mark class from which we get mark embedding vector mi. In some experiments we use
extra conditional information, such as metadata yi and sequence embedding ej , where
j is the index of the sequence.

As illustrated in Section 3.2.3 we generate the parameters φ of the distribution p∗(τi)
from [hi||yi||ej] using an affine layer. We apply a transformation of the parameters to
enforce the constraints, if necessary.

All decoders are implemented using a common framework relying on normalizing flows.
By defining the base distribution q(u) and the inverse transformation (g−1

1 ◦ · · · ◦g−1
M) we

can evaluate the PDF p∗i (τ) at any τ , which allows us to train with maximum likelihood
(Section 3.2.1).

D.4.2 Log-normal mixture

The log-normal mixture distribution is defined in Equation 3.8. We generate the param-
eters of the distribution w ∈ RK ,µ ∈ RK , s ∈ RK (subject to

∑
k wk = 1, wk ≥ 0 and

sk > 0), using an affine transformation (3.10). The log-normal mixture is equivalent to
the following normalizing flow model

u1 ∼ GaussianMixture(w,µ, s)

u2 = au1 + b

τ = exp(u2)

By using the affine transformation u2 = au1+b before the exp transformation, we obtain
a better initialization, and thus faster convergence. This is similar to the batch normal-

ization flow layer [50], except that b = 1
N

∑N
i=1 log τi and a =

√
1
N

∑N
i=1(log τi − b) are

estimated using the entire training, not using batches.

Forward direction samples a value from a Gaussian mixture, applies an affine trans-
formation and applies exp. In the backward direction we apply log-transformation to an
observed data, center it with an affine layer and compute the density under the Gaussian
mixture.

116

D.4 Implementation details

D.4.3 Baselines

We implement FullyNN model [139] as described in Appendix D.3, using the official
implementation as a reference.1 The model uses feed-forward neural network with non-
negative weights (enforced by clipping values at 0 after every gradient step). Output of
the network is a cumulative intensity function Φ∗

i (τ) from which we can get intensity
function λ∗(ti−1 + τ) as a derivative w.r.t. τ using automatic differentiation in Pytorch.

We implement RMTPP / Gompertz distribution [52]2 and the exponential distribution
[183] models as described in Appendix D.2.

All of the above methods define the conditional PDF p∗i (τ). Since the inter-event times
may come at very different scales, we apply a linear scaling τ̃ = aτ , where a = 1

N

∑N
i=1 τi

is estimated from the data. This ensures a good initialization for all models and speeds
up training.

D.4.4 Deep sigmoidal flow

A single layer of DSFlow model is defined as

fDSFθ (x) = σ−1

(
K∑
k=1

wkσ

(
x− µk
sk

))

with parameters θ = {w ∈ RK ,µ ∈ RK , s ∈ RK} (subject to
∑

k wk = 1, wk ≥ 0 and
sk > 0). We obtain the parameters of each layer using Equation 3.10. We define p(τ)
through the inverse transformation (g−1

1 ◦ · · · ◦ g−1
M), as described in Section 3.2.1.

uM = g−1
M (τ) = log τ

· · ·
um = g−1

m (um+1) = fDSFθm (um+1)

· · ·
u1 = σ(u2)

u1 ∼ q1(u1) = Uniform([0, 1])

We use the batch normalization flow layer [50] between every pair of consecutive layers,
which significantly speeds up convergence.

D.4.5 Sum-of-squares polynomial flow

A single layer of SOSFlow model is defined as

fSOS(x) = a0 +

K∑
k=1

R∑
p=0

R∑
q=0

ap,kaq,k
p+ q + 1

xp+q+1

1https://github.com/omitakahiro/NeuralNetworkPointProcess
2https://github.com/musically-ut/tf_rmtpp

117

https://github.com/omitakahiro/NeuralNetworkPointProcess
https://github.com/musically-ut/tf_rmtpp

D Supplementary materials for Chapter 3

There are no constraints on the polynomial coefficients a ∈ R(R+1)×K . We obtain a
similarly to Equation 3.10 as a = Vac+ ba, where c is the context vector.

We define p(τ) by through the inverse transformation (g−1
1 ◦ · · · ◦ g−1

M), as described
in Section 3.2.1.

uM = g−1
M (τ) = log τ

· · ·
um = g−1

m (um+1) = fSOSθm (um+1)

· · ·
u1 = σ(u2)

u1 ∼ q1(u1) = Uniform(0, 1)

Same as for DSFlow, we use the batch normalization flow layer between every pair of
consecutive layers. When implementing SOSFlow, we used Pyro3 for reference.

D.5 Dataset statistics

D.5.1 Synthetic data

Synthetic data is generated according to Omi et al. [139] using simple conventional TPPs.
We sample 64 sequences for each process, each sequence containing 1024 events.
Poisson (Equation 2.13). Conditional intensity function for a homogeneous (or sta-

tionary) Poisson point process is given as λ∗(t) = 1. Constant intensity corresponds to
the exponential inter-event time distribution.
Renewal (Equation 2.15). A stationary process defined by a log-normal probability

density function p(τ), where we set the parameters to be µ = 1.0 and σ = 6.0. Sequences
appear clustered.
Self-correcting (Equation 2.19). Unlike the previous two, this point process depends

on the history and is defined by a conditional intensity function λ∗(t) = exp(t−
∑

ti<t
1).

After every new event the intensity drops, inhibiting the future activity. The resulting
point patterns appear regular.
Hawkes. We use a self-exciting point process with a conditional intensity function

λ∗(t) = µ+
∑
ti<t

M∑
j=1

αjβj exp(−βj(t− ti)).

As per Omi et al. [139], we create two different datasets:

• Hawkes1 with M = 1, µ = 0.02, α1 = 0.8 and β1 = 1.0.

• Hawkes2 with M = 2, µ = 0.2, α1 = 0.4, β1 = 1.0, α2 = 0.4 and β2 = 20.

For the imputation experiment we use Hawkes1 to generate the data and remove some
of the events.
3https://pyro.ai/ [14]

118

https://pyro.ai/

D.5 Dataset statistics

Table D.1: Dataset statistics.

Dataset name Number of sequences Number of events

LastFM 929 1268385
Reddit 10000 672350
Stack Overflow 6633 480414
MOOC 7047 396633
Wikipedia 1000 157471
Yelp 300 215146

D.5.2 Real-world data

In addition we use real-world datasets that are described bellow. Table D.1 shows their
summary. All datasets have a large amount of unique sequences and the number of
events per sequence varies a lot. Using marked temporal point processes to predict the
type of an event is feasible for some datasets (e.g. when the number of classes is low),
and is meaningless for other.

LastFM [25]. The dataset contains sequences of songs that selected users listen over
time. Artists are used as an event type.

Reddit [102]. On this social network website users submit posts to subreddits. In
the dataset, most active subreddits are selected, and posts from the most active users
on those subreddits are recodered. Each sequence corresponds to a list of submissions
a user makes. The data contains 984 unique subreddits that we use as classes in mark
prediction.

Stack Overflow [52]. Users of a question-answering website get rewards (called
badges) over time. A sequence contains a list of rewards for each user. Only the most
active users are selected and only those badges that users can get more than once.

MOOC [102]. Contains the interaction of students with an online course system.
An interaction is an event and can be of various types (97 unique types), e.g. watching
a video, solving a quiz etc.

Wikipedia.[102]. A sequence corresponds to edits of a Wikipedia page. The dataset
contains most edited pages and users that have an activity (number of edits) above a
certain threshold.

Yelp.4 We use the data from the review forum and consider the reviews for the 300
most visited restaurants in Toronto. Each restaurant then has a corresponding sequence
of reviews over time.

4https://www.yelp.com/dataset/challenge

119

https://www.yelp.com/dataset/challenge

D Supplementary materials for Chapter 3

D.6 Additional discussion of the experiments

D.6.1 Event time prediction using history

Detailed setup. Each dataset consists of multiple sequences of inter-event times. We
consider 10 train/validation/test splits of the sequences (of sizes 60%/20%/20%). We
train all model parameters by minimizing the negative log-likelihood (NLL) of the train-
ing sequences. After splitting the data into the 3 sets, we break down long training
sequences into sequences of length at most 128. Optimization is performed using Adam
[98] with learning rate 10−3. We perform training using mini-batches of 64 sequences.
We train for up to 2000 epochs (1 epoch = 1 full pass through all the training sequences).
For all models, we compute the validation loss at every epoch. If there is no improve-
ment for 100 epochs, we stop optimization and revert to the model parameters with the
lowest validation loss.

We select hyperparameter configuration for each model that achieves the lowest av-
erage loss on the validation set. For each model, we consider different values of L2

regularization strength λreg ∈ {0, 10−5, 10−3}. Additionally, for SOSFlow we tune the
number of transformation layers M ∈ {1, 2, 3} and for DSFlow M ∈ {1, 2, 3, 5, 10}. We
have chosen the values of K such that the mixture model has approximately the same
number of parameters as a 1-layer DSFlow or a 1-layer FullyNN model. More specifi-
cally, we set K = 64 for LogNormMix, DSFlow and FullyNN. We found all these models
to be rather robust to the choice of K, as can be seen in Table D.2 for LogNormMix.
For SOSFlow we used K = 4 and R = 3, resulting in a polynomial of degree 7 (per each
layer). Higher values of R led to unstable training, even when using batch normalization.

Additional discussion. In this experiment, we only condition the distribution p∗i (τ)
on the history embedding hi. We do not learn sequence embeddings ej since they can
only be learned for the training sequences, and not fore the validation/test sets.

There are two important aspects related to the NLL loss values that we report. First,
the absolute loss values can be arbitrarily shifted by rescaling the data. Assume, that
we have a distribution p(τ) that models the distribution of τ . Now assume that we are
interested in the distribution q(x) of x = aτ (for a > 0). Using the change of variables
formula, we obtain log q(x) = log p(τ) + log a. This means that by scaling the data we
can arbitrarily offset the log-likelihood score that we obtain. Therefore, the absolute
values of of the (negative) log-likelihood L for different models are of little interest —
all that matters are the differences between them.

The loss values are dependent on the train/val/test split. Assume that model 1
achieves loss values L1 = {1.0, 3.0} on two train/val/test splits, and model 2 achieves
L2 = {2.0, 4.0} on the same splits. If we first aggregate the scores and report the average
L̂1 = 2.0 ± 1.0, L̂2 = 3.0 ± 1.0, it may seem that the difference between the two mod-
els is not significant. However, if we first compute the differences and then aggregate
(L2 − L1) = 1.0 ± 0.0 we see a different picture. Therefore, we use the latter strategy
in Figure 3.2. For completeness, we also report the numbers obtained using the first
strategy in Table D.3.

120

D.6 Additional discussion of the experiments

0 24 48 72 96 120
0.00

0.02

0.04

0.06

p(
)

Exponential

0 24 48 72 96 120

RMTPP

0 24 48 72 96 120

FullyNeuralNet

0 24 48 72 96 120

LogNormMix

Figure D.2: Models learn different conditional distribution p∗(τ) on Yelp dataset. Since check-
ins occur during the opening hours, true distribution of the next check-in resembles
the one on the right.

As a baseline, we also considered the constant intensity / exponential distribution
model [183]. However, we excluded the results for it from Figure 3.2, since it consistently
achieved the worst loss values and had high variance. We still include the results for
the constant intensity model in Table D.3. We also performed all the experiments on
the synthetic datasets (Appendix D.5.1). The results are shown in Table D.4, together
with NLL scores under the true model. We see that LogNormMix and DSFlow, besides
achieving the best results, recover the true distribution.

Finally, in Figure D.2 we plot the conditional distribution p∗(τ) with models trained
on Yelp dataset. The events represent check-ins into a specific restaurant. Since check-
ins mostly happen during the opening hours, the inter-event time is likely to be on the
same day (0h), next day (24h), the day after (48h), etc. LogNormMix can fully recover
this behavior from data while others either cannot learn multimodal distributions (e.g.
RMTPP) or struggle to capture it (e.g. FullyNN).

Table D.2: Time NLL of the LogNormMix model for different numbers K of mixture compo-
nents.

K 2 4 8 16 32 64

Reddit 10.239 10.208 10.189 10.185 10.191 10.192
LastFM -2.828 -2.879 -2.881 -2.880 -2.877 -2.860
MOOC 6.246 6.053 6.055 6.055 6.050 5.660
Stack Overflow 14.461 14.438 14.435 14.435 14.436 14.428
Wikipedia 8.399 8.389 8.385 8.384 8.384 8.386
Yelp 13.169 13.103 13.058 13.045 13.032 13.024
Poisson 1.006 0.992 0.991 0.991 0.990 0.991
Renewal 0.256 0.254 0.254 0.254 0.256 0.259
Self-correcting 0.831 0.785 0.782 0.783 0.784 0.784
Hawkes1 0.530 0.523 0.532 0.532 0.523 0.523
Hawkes2 0.036 0.026 0.024 0.024 0.026 0.024

121

D Supplementary materials for Chapter 3

Table D.3: Time prediction test NLL on real-world data.

Reddit LastFM MOOC Stack Overflow Wikipedia Yelp

LogNormMix 10.19 ± 0.078 -2.88 ± 0.147 6.03 ± 0.092 14.44 ± 0.013 8.39 ± 0.079 13.02 ± 0.070
DSFlow 10.20 ± 0.074 -2.88 ± 0.148 6.03 ± 0.090 14.44 ± 0.019 8.40 ± 0.090 13.09 ± 0.065
SOSFlow 10.27 ± 0.106 -2.56 ± 0.133 6.27 ± 0.058 14.47 ± 0.049 8.44 ± 0.120 13.21 ± 0.068
FullyNN 10.23 ± 0.072 -2.84 ± 0.179 6.83 ± 0.152 14.45 ± 0.014 8.40 ± 0.086 13.04 ± 0.073
LogNormal 10.38 ± 0.077 -2.60 ± 0.140 6.53 ± 0.016 14.62 ± 0.013 8.52 ± 0.078 13.44 ± 0.074
RMTPP 10.88 ± 0.293 -1.30 ± 0.164 10.65 ± 0.023 14.51 ± 0.014 10.02 ± 0.085 13.36 ± 0.056
Exponential 11.07 ± 0.070 -1.28 ± 0.152 10.64 ± 0.026 18.48 ± 3.257 10.03 ± 0.083 13.78 ± 1.250

Table D.4: Time prediction test NLL on synthetic data.

Poisson Renewal Self-correcting Hawkes1 Hawkes2

True model 0.999 0.254 0.757 0.453 -0.043

LogNormMix 0.99 ± 0.006 0.25 ± 0.010 0.78 ± 0.003 0.52 ± 0.047 0.02 ± 0.049
DSFlow 0.99 ± 0.006 0.25 ± 0.010 0.78 ± 0.002 0.52 ± 0.047 0.02 ± 0.050
SOSFlow 1.00 ± 0.013 0.25 ± 0.010 0.88 ± 0.011 0.59 ± 0.056 0.06 ± 0.046
FullyNN 1.00 ± 0.006 0.28 ± 0.013 0.78 ± 0.004 0.55 ± 0.047 0.06 ± 0.047
LogNormal 1.08 ± 0.008 0.25 ± 0.010 1.03 ± 0.006 0.55 ± 0.047 0.06 ± 0.049
RMTPP 0.99 ± 0.006 1.01 ± 0.023 0.78 ± 0.003 0.74 ± 0.057 0.69 ± 0.058
Exponential 0.99 ± 0.006 1.00 ± 0.023 0.94 ± 0.002 0.74 ± 0.055 0.69 ± 0.054

D.6.2 Learning with marks

Detailed setup. We use the same setup as in Appendix D.6.1, except two differences.
For learning in a marked temporal point process, we mimic the architecture from Du
et al. [52]. The RNN takes a tuple (τi,mi) as input at each time step, where mi is the
mark. Moreover, the loss function now includes a term for predicting the next mark:
Ltotal = −

∑N
i=1 [log p

∗
i (τi) + log p∗i (mi)].

The next mark mi at time ti is predicted using a categorical distribution p∗(mi).
The distribution is parametrized by the vector πi, where πi,c is the probability of event
mi = c. We obtain πi using the history embedding hi passed through a feedforward
neural network

πi = softmax
(
V

(2)
π tanh(V

(1)
π hi + b

(1)
π) + b

(2)
π

)
where V

(1)
π ,V

(2)
π b

(1)
π , b

(2)
π are the parameters of the neural network.

Additional discussion. In Figure 3.2 (right) we reported the differences in time
NLL between different models Ltime = −

∑N
i=1 log p

∗
i (τi). In Table D.5 we additionally

provide the total NLL Ltotal = −
∑N

i=1 [log p
∗
i (τi) + log p∗i (mi)] averaged over multiple

splits.

Using marks as input to the RNN improves time prediction quality for all the models.
However, since we assume that the marks are conditionally independent of the time
given the history (as was done in earlier works), all models have similar mark prediction
accuracy.

122

D.6 Additional discussion of the experiments

Table D.5: Time and total NLL and mark accuracy when learning a marked TPP.

Time NLL Total NLL Mark accuracy
Reddit MOOC Reddit MOOC Reddit MOOC

LogNormMix 10.28 ± 0.066 5.75 ± 0.040 12.40 ± 0.094 7.58 ± 0.047 0.62±0.014 0.45±0.003
DSFlow 10.28 ± 0.073 5.78 ± 0.067 12.39 ± 0.064 7.52 ± 0.074 0.62±0.013 0.45±0.004
SOSFlow 10.35 ± 0.106 6.06 ± 0.084 12.49 ± 0.158 7.78 ± 0.107 0.62±0.013 0.46±0.009
FullyNN 10.41 ± 0.079 6.22 ± 0.224 12.51 ± 0.094 7.93 ± 0.230 0.63±0.013 0.46±0.004
LogNormal 10.42 ± 0.076 6.38 ± 0.019 12.51 ± 0.080 8.11 ± 0.026 0.62±0.013 0.42±0.005
RMTPP 11.15 ± 0.061 10.29 ± 0.209 13.26 ± 0.085 12.14 ± 0.220 0.62±0.014 0.41±0.006

D.6.3 Learning with additional conditional information

Detailed setup. In the Yelp dataset, the task is to predict the time τi until the next
customer check-in, given the history of check-ins up until the current time ti−1. We
want to verify our intuition that the distribution p∗i (τ) depends on the current time ti−1.
For example, p∗i (τ) might be different depending on whether it is a weekday and / or
it is an evening hour. Unfortunately, a model that processes the history with an RNN
cannot easily obtain this information. Therefore, we provide this information directly
as a context vector yi when modeling p∗i (τ).

The first entry of context vector yi ∈ {0, 1}2 indicates whether the previous event ti−1

took place on a weekday or a weekend, and the second entry indicates whether ti−1 was
in the 5PM–11PM time window. To each of the four possibilities we assign a learnable
64-dimensional embedding vector. The distribution of p∗i (τ) until the next event depends
on the embedding vector of the time stamp ti−1 of the most recent event.

D.6.4 Missing data imputation

Detailed setup. The dataset for the experiment is generated as a two step process:
1) We generate a sequence of 100 events from the model used for Hawkes1 dataset
(Appendix D.5.1) resulting in a sequence of arrival times {t1, . . . tN}, 2) We choose
random ti and remove all the events that fall inside the interval [ti, ti+k] where k is
selected such that the interval length is approximately tN/3.

We consider three strategies for learning with missing data (shown in Figure 3.5 (left)):

a) No imputation. The missing block spans the time interval [ti, ti+k]. We simply
ignore the missing data, i.e. training objective Ltime will include an inter-event
time τ = ti+k − ti.

b) Mean imputation. We estimate the average inter-event time τ̂ from the observed
data, and impute events at times {ti + nτ̂ for n ∈ N, such that ti + nτ̂ < ti+k}.
These imputed events are fed into the history-encoding RNN, but are not part of
the training objective.

c) Sampling . The RNN encodes the history up to and including ti and produces hi

that we use to define the distribution p∗(τ |hi). We draw a sample τ
(imp)
j form this

123

D Supplementary materials for Chapter 3

distribution and feed it into the RNN. We keep repeating this procedure until the

samples get past the point ti+k. The imputed inter-event times τ
(imp)
j are affecting

the hidden state of the RNN (thus influencing the likelihood of future observed

inter-event times τ
(obs)
i).

We sample multiple such sequences in order to approximate the expected NLL of

the observed inter-event times Eτ (imp)∼p∗
[
−
∑

i log p
∗(τ (obs)i)

]
. Since this objective

includes an expectation that depends on p∗, we make use of reparametrization
sampling to obtain the gradients w.r.t. the distribution parameters [121].

D.6.5 Sequence embedding

Detailed setup. When learning sequence embeddings, we train the model as described
in Appendix D.6.1, besides one difference. First, we pre-train the sequence embeddings
ej by disabling the history embedding hi and optimizing −

∑
i log pi(τi|ej). Afterwards,

we enable the history and minimize −
∑

i log pi(τi|ej ,hi).
In Figure 3.6 the top row shows samples generated using eSCP , embedding of a self-

correcting sequence, the bottom row was generated using eRP , embedding of a renewal
sequence, and the middle row was generated using 1/2(eSCP + eRP), an average of the
two embeddings.

124

E Supplementary materials for Chapter 4

E.1 Implementation details

E.1.1 Batch processing

By representing TPP densities with transformations, we can implement both density
evaluation and sampling efficiently and in parallel. Our implementation enables paral-
lelism not only for the events ti of a single sequence, but also for entire batches consisting
of multiple sequences of different length.

First, consider a single event sequence T = (1, 2.5, 4) with N = 3 events that was
observed on the time interval [0, 5]. We represent this sequence by a vector

t =
[
1 2.5 4 5

]
.

The vector t contains timestamps of the events, and the last entry corresponds to T = 5,
the length of the observed interval. We additionally introduce a binary mask b that tells
us which entries of the padded vector t correspond to actual events (i.e., not padding)

b =
[
1 1 1 0

]
.

We implement the transformation F similarly to normalizing flow frameworks like pyro
[14] and torch.distributions [145]. We define a method forward that computes z,
the result of the transformation, and j, logarithm of the diagonal entries of the Jacobian
JF (t):

z = F (t) =
[
z1 z2 z3 z4

]
j =

[
log
∣∣∣∂z1∂t1

∣∣∣ log
∣∣∣∂z2∂t2

∣∣∣ log
∣∣∣∂z3∂t3

∣∣∣ log
∣∣∣∂z4∂t4

∣∣∣]
From the definition of F (Section 4.2), we can see that the last entry of z (that we

denote as z−1) corresponds to Λ∗(T). Also, each entry ji of j corresponds to log
∣∣∣∂Λ∗(ti)

∂ti

∣∣∣.
Therefore, we can compute the log-density log p(t) as

log p(t) = sum(b⊙ j)− z−1

=

N ′∑
i=1

mi log

∣∣∣∣∂zi∂ti

∣∣∣∣− z−1

=
N∑
i=1

log

∣∣∣∣∂Λ∗(ti)
∂ti

∣∣∣∣− Λ∗(T)

(E.1)

125

E Supplementary materials for Chapter 4

where N ′ denotes the length with the padding. We can verify that this is equal to the
logarithm of the TPP density in Equation 4.1. Note that if we use a longer padding,
such as

t =
[
1 2.5 4 5 5 5 5

]
b =

[
1 1 1 0 0 0 0

]
then Equation E.1 will still correctly compute the log-likelihood for the sequence. This
observation allows to process multiple sequences {t(1), t(2), ...} in a single batch. We
simply pad all the sequences with T up to the length of the longest sequence, stack them
into a matrix of shape [batch size, max seq len] and process all of them in parallel.

As described in Section 4.2.3, we actually define F by stacking multiple transforma-
tions. We sequentially call the forward method for each transformation in the chain to
obtain the final z, and sum up the log-diagonals of the Jacobians j along the way. Each
transformation and its Jacobian can be evaluated in parallel in linear time, making the
whole operation efficient.

E.1.2 Sampling

Sampling is implemented similarly. We start by simulating a vector z̃ from the standard
Poisson process (Algorithm 1). The length of z̃ must be “long enough” (more on this
later). We define the method inverse that computes t̃ = F−1(z̃). We obtain a final
sample t by clipping the entries of t̃ as ti = min{t̃i, T}. If we would like to compute the
density of the generated sample t, we will also need the mask b that can be obtained as
bi = 1(t̃i < T). In some use cases, such as entropy maximization or variational inference,
we need to use a differentiable approximation to the mask bi = σζ(T − t̃i). This recovers
our relaxation from Chapter 5.

By slightly abusing the notation, we use N ′ to denote the number of events in our
initial HPP sample z̃ = (z̃1, ..., z̃N ′). N ′ must be large enough, such that the event
t̃N ′ (corresponding to z̃′N) happens after T . We can easily ensure this by setting N ′ to
some large number (e.g., 100 or 1000), and increasing it if for some sample t̃N ′ is less
than T . As we saw in Figure 4.3, using larger sequence length leads to no noticeable
computational overhead when using GPU.

E.1.3 Ensuring that the TPP is valid

We showed in Section 4.2 that every TPP density p(T) corresponds to a differentiable
increasing triangular map F defined by the compensator Λ∗. When directly parametriz-
ing F , we need to check one of the two equivalent conditions to ensure that our map F
defines a valid temporal point process.

Condition 1. The compensator Λ∗(t) defined by F must be a continuous function
of t. (The compensator is already increasing and piecewise-differentiable since F is
increasing and differentiable)

Condition 2. The map F is bijective (invertible) on the space of increasing sequences.
In simple words, we need to ensure that for every increasing sequence Z = (z1, ..., zN) of

126

E.2 Datasets

arbitrary length N , there exists a unique increasing sequence T = (t1, ..., tN), such that
F (T) = Z.
Both of these conditions are satisfied for the models presented in Chapter 4. In the

next section, we explain how these functions are implemented to make sure that they
satisfy the necessary constraints.

E.1.4 Parametrizing transformations using splines

Rational quadratic splines used by Durkan et al. [53] define a flexible nonlinear function
g : (0, 1) → (0, 1). When defining our TPP models in Section 4.2, we need to parametrize
functions Λ : [0, T] → R+ and Φ : R+ → R+ that operate on domains different from
(0, 1). Moreover, we need to ensure domain compatibility when stacking different trans-
formations, such that the overall transformation F is bijective on the space of increasing
sequences (Appendix E.1.3).
We introduce shortcuts for several helper functions that ensure the domain compati-

bility

1. ψ applies the function ψ(x) = 1− exp(−x) element-wise, where ψ : R+ → (0, 1)

2. ψ−1 applies the function ψ−1(y) = − log(1−y) element-wise, where ψ−1 : (0, 1) →
R+

3. σ applies the function σ(x) = 1/(1 + exp(−x)) element-wise, where σ : R → (0, 1)

4. σ−1 applies the function σ−1(p) = log p − log(1 − p) element-wise, where σ−1 :
(0, 1) → R

5. G applies a rational quadratic spline g : (0, 1) → (0, 1) element-wise.

We implement the transformation for the modulated renewal process (MRP) as

F = ψ−1 ◦G2 ◦ψ ◦D ◦ λI ◦G1 ◦
1

T
I

where I is the identity matrix.
Similarly, we implement the transformation for TriTPP as

F = ψ−1 ◦G3 ◦ σ ◦BL ◦ · · · ◦B1 ◦ σ−1 ◦G2 ◦ψ ◦D ◦ λI ◦G1 ◦
1

T
I

See the code for more details.

E.2 Datasets

For each synthetic TPP model from Omi et al. [139, Section 4.1], we sampled 1000 se-
quences on the interval [0, 100]. This includes theHawkes1, Hawkes2, self-correcting
(SCP), inhomogeneous Poisson (IPP), modulated renewal (MRP) and re-
newal (RP) processes. See Appendix D.5 for more details.

127

E Supplementary materials for Chapter 4

PUBG.1 Each sequence contains timestamps of the death of players in a game of
Player Unknown’s Battleground (PUBG). We use the first 3001 games from the original
dataset.

Reddit-Comments. Each sequence consists of the timestamps of the comments in
a discussion thread posted within 24 hours of the original submission. We consider the
submissions to the /r/askscience subreddit from 01.01.2018 until 31.12.2019. If several
events happen at the exact same time, we only keep a single event. The posts are filtered
to have a score of at least 100. We collected the data ourselves using the pushshift

API.2

Reddit-Submissions. Each sequence contains the timestamps of submissions to the
/r/politics subreddit within a single day (24 hours). We consider the period from
01.01.2017 until 31.12.2019. If several events happen at the exact same time, we only
keep a single event. The data is again collected using the pushshift API.

Taxi3 contains the records of taxi pick-ups in New York. We restrict our attention to
the south of Manhattan, which corresponds to the points with latitude in the interval
(40.700084, 40.707697) and longitude in (-74.019871, -73.999443).

Twitter4 contains the timestamps of the tweets by user 25073877, recorded over
several years.

Yelp 1 and 25 contain the user check-in times for the McCarran International Airport
and for all businesses in the city of Mississauga in 2018, respectively.

Table E.1 shows the number of sequences, average sequence length and the duration
of the [0, T] interval for all the datasets.

E.3 Experimental setup

E.3.1 Scalability

For both the RNN-based model and TriTPP we used 20 spline knots. We ran TriTPP
with blocks of size H = 16 and a total of L = 4 block-diagonal layers. This is the
configuration of TriTPP with the largest number of parameters that we used across
our experiments. For the RNN model, we used the hidden size of 32. This is the
configuration of the RNN model with the smallest number of parameters that we used
across our experiments. We did not use JIT compilation for either the RNN model or
TriTPP, even though enabling JIT would make TriTPP even faster. When measuring
the sampling time, we disabled the gradient computation with torch.no grad(). To
remove outliers for the RNN model, we removed 10 longest runtimes for both models.

1https://kaggle.com/skihikingkevin/pubg-match-deaths
2https://pushshift.io/
3https://www.kaggle.com/c/nyc-taxi-trip-duration/data
4https://twitter.com
5https://www.yelp.com/dataset/challenge

128

https://kaggle.com/skihikingkevin/pubg-match-deaths
https://pushshift.io/
https://www.kaggle.com/c/nyc-taxi-trip-duration/data
https://twitter.com
https://www.yelp.com/dataset/challenge

E.3 Experimental setup

Table E.1: Statistics for the synthetic & real-world datasets

Dataset name Number of sequences Average sequence length Interval duration

Hawkes 1 1000 95.4 100
Hawkes 2 1000 97.2 100
SCP 1000 100.2 100
IPP 1000 100.3 100
MRP 1000 98.0 100
RP 1000 109.2 100

PUBG 3001 76.5 40
Reddit-C 1356 295.7 24
Reddit-S 1094 1129.0 24
Taxi 182 98.4 24
Twitter 2019 14.9 24
Yelp 1 319 30.5 24
Yelp 2 319 55.2 24

E.3.2 Density estimation

NLL. In this experiment, we train all models by minimizing the average negative log-
likelihood of the training set Dtrain = {T (1), T (2), ...}

min
θ

− 1

|Dtrain|
1

Navg

∑
T ∈Dtrain

log pθ(T)

We normalize the loss by Navg, the average number of events in a sequence in the training
set, in order to obtain values that are at least somewhat comparable across the datasets.
We perform full-batch training since the all the considered datasets easily fit into the
GPU memory. For all models, we use learning rate scheduling: if the training loss does
not improve for 100 iterations, the learning rate is halved. The training is stopped after
5000 epochs or if the validation loss stops improving for 300 epochs, whichever happens
first. We train all models using the parameter configurations reported in Section 4.4.2
and pick the configuration with the best validation loss.

MMD. We train the models & tune the hyperparameters using the same procedure
as in the NLL experiment. Then, we compare the distribution p(T) learned by each
model with the empirical distribution p⋆(T) on the hold-out test set by estimating the
maximum mean discrepancy (MMD) [76]. The MMD between distributions p and p⋆ is
defined as

MMD(p, p⋆) = ET ,T ′∼p[k(T , T ′)]− 2ET ∼p,U∼p⋆ [k(T ,U)] + EU ,U ′∼p⋆ [k(U ,U ′)] (E.2)

Here, T = (t1, ..., tN) and U = (u1, ..., uM) denote variable-length TPP realizations
from different distributions, and k(·, ·) is a positive semi-definite kernel function that

129

E Supplementary materials for Chapter 4

0 t0 t1 t2 t3u0 u1 u2 u3 T
Time

0

1

2

3

4

C
ou

nt
Figure E.1: The blue area represents the counting measure distance between two event se-

quences T = (t1, . . . , tN) and U = (u1, ..., uM) (figure adapted from [199]).

quantifies the similarity between two TPP realizations. We use the Gaussian kernel

k(T ,U) = exp

(
−d(T ,U)

2σ2

)
,

where d(T ,U) is the counting measure distance between two TPP realizations from [199,
Equation 3], defined as

d(T ,U) =
N∑
i=1

|ti − ui|+
M∑

i=N+1

(T − ui)

Here, we assume w.l.o.g. that N ≤ M . Following Section 8 of Gretton et al. [76], the
parameter σ is estimated as the median of d(T ,U) with T ,U ∼ p ∪ p⋆.

E.4 Additional experiments

E.4.1 Density estimation

Effect of the block size and number on TriTPP performance. In this experiment,
we show that TriTPP works well with different numbers L and sizes H of block-diagonal
layers. We use the same setup as in the density estimation experiment. Table E.2 shows
the test set NLL scores for different configurations. Smaller block are helpful for datasets
with a clear global trend (e.g., Reddit-S, Taxi, Yelp), and larger blocks help for datasets
with bursty behavior (Reddit-C, Twitter). In all cases, TriTPP is better than simpler
baselines, like MRP, RP and IPP (Table 4.1).
Visualizing the effect block-diagonal matrices. A completely arbitrary com-

pensator Λ∗ leads to a completely arbitrary increasing triangular map F . However, by
picking a parametric class of models, such as MRP or TriTPP, we restrict the set of pos-
sible maps F that our model represent. One way to visualize the dependencies captured
by the map F is by looking at its Jacobian JF .
Figures E.2 and E.3 show the Jacobians of the component transformations for the

modulated renewal process and TriTPP. We can obtain the overall (accumulated) Ja-
cobian of the entire transformation by multiplying the component Jacobians from right

130

E.4 Additional experiments

Table E.2: Test set NLL for different configurations of TriTPP.

Configuration Hawkes1 Hawkes2 SCP IPP MRP RP PUBG Reddit-C Reddit-S Taxi Twitter Yelp1 Yelp2

TriTPP (L = 2, H = 4) 0.58 0.01 0.86 0.71 0.35 0.24 -0.95 -2.26 -4.69 -0.68 1.11 0.62 -0.1
TriTPP (L = 4, H = 4) 0.57 0.01 0.85 0.71 0.35 0.24 -2.04 -2.28 -4.57 -0.68 1.06 0.63 -0.1
TriTPP (L = 2, H = 8) 0.56 0.01 0.84 0.71 0.35 0.24 -1.93 -2.3 -4.42 -0.66 1.06 0.64 -0.09
TriTPP (L = 4, H = 8) 0.56 0.0 0.83 0.71 0.35 0.24 -2.41 -2.33 -4.46 -0.67 1.06 0.64 -0.09
TriTPP (L = 2, H = 16) 0.56 0.0 0.84 0.71 0.36 0.25 -1.78 -2.35 -4.45 -0.64 1.06 0.67 -0.06
TriTPP (L = 4, H = 16) 0.56 0.0 0.84 0.72 0.36 0.25 -1.83 -2.36 -4.49 -0.64 1.07 0.67 -0.06

to left. We can see that thanks to the block-diagonal layers TriTPP is able to capture
more complex transformations, and thus richer densities, than MRP.

C Φ D Λ

Jacobian
of each

transform

Accumulated
Jacobian

Figure E.2: Jacobians of the component transformations of the modulated renewal process.
We obtain the Jacobian of the combined transformation F = C ◦ Φ ◦D ◦ Λ by
multiplying the Jacobians of each transform (right to left).

C Φ2 B4 B3 B2 B1 Φ1 D Λ

Jacobian
of each

transform

Accumulated
Jacobian

Figure E.3: Jacobians of the component transformations of TriTPP. We obtain the Jacobian
of the combined transformation F = C ◦Φ2 ◦B4 ◦B3 ◦B2 ◦B1 ◦Φ1 ◦D ◦Λ by
multiplying the Jacobians of each transform (right to left).

Distribution of sequence lengths. In this experiment, we additionally quantify
how well each model captures the true data distribution. Like before, we train all models
on the training set. We then generate sequences T from a trained model and compare
the distribution of their lengths to the distribution of the lengths of the true data using
Wasserstein distance. We use the whole dataset since the test sets is too small in some

131

E Supplementary materials for Chapter 4

0 10 20 30 40 50
Length

0.0

0.1

0.2

0.3

F
re

qu
en

cy

TriTPP

data

(a) TriTPP (WD = 0.17)

0 10 20 30 40 50
Length

0.0

0.1

0.2

0.3

F
re

qu
en

cy

RNN

data

(b) RNN (WD = 0.10)

0 10 20 30 40 50
Length

0.0

0.1

0.2

0.3

F
re

qu
en

cy

Hawkes

data

(c) Hawkes (WD = 0.50)

Figure E.4: Histograms of sequence lengths (true and generated) for Twitter. The difference
between the two is quantified using Wasserstein distance (WD) — lower is better.

cases. Using Python pseudocode, this procedure can be expressed as

lengths sampled = [len(t) for t in model samples]

lengths true = [len(t) for t in dataset]

wd = wasserstein distance(lengths sampled, lengths true)

Figure E.4 shows the distributions for the Twitter dataset together with the respective
Wasserstein distances. Note that the histograms are used only for visualization purposes,
the Wasserstein distance is computed on the raw distributions. Quantitative results are
reported in Table E.3. We observe the same trend as before: the RNN-based model and
TriTPP consistently outperform the other methods. Recall that Hawkes process achieves
a good NLL on the Twitter data (Table 4.1). However, when we sample sequences from
the trained Hawkes model, the distribution of their lengths does not actually match the
true data, as can be seen in Figure E.4c.

Table E.3: Wasserstein distance between the distributions of lengths of true and sampled se-
quences.

Hawkes1 Hawkes2 SCP IPP MRP RP PUBG Reddit-C Reddit-S Taxi Twitter Yelp1 Yelp2

IPP 0.11 0.11 0.03 0.00 0.03 0.07 0.01 0.76 0.27 0.10 0.52 0.07 0.12
RP 0.07 0.09 0.19 0.14 0.38 0.02 0.67 0.67 0.28 0.85 0.28 0.31 0.20
MRP 0.08 0.07 0.02 0.00 0.01 0.01 0.05 0.66 0.27 0.09 0.28 0.06 0.11
Hawkes 0.01 0.05 0.03 0.15 0.15 0.03 0.12 0.25 0.65 0.09 0.50 0.10 0.15
RNN 0.00 0.01 0.00 0.04 0.03 0.00 0.08 0.40 0.07 0.08 0.10 0.05 0.12
TriTPP 0.05 0.03 0.00 0.01 0.01 0.00 0.05 0.53 0.24 0.08 0.17 0.05 0.09

132

F Supplementary materials for Chapter 5

F.1 Model definition

F.1.1 Markov jump process (MJP)

We represent the trajectory of an MJP as a tuple (T ,S), where T = (t1, ..., tN) are the
(strictly increasing) jump times and S = (s1, ..., sN+1) is the sequence of visited states.
For convenience, we additionally set t0 = 0 and tN+1 = T .

The distribution over the trajectories (T ,S) is defined by a K ×K nonnegative gen-
erator matrix A and an initial state distribution π. Each entry Akl denotes the rate
of transition from state k to state l of the MJP. Note that we use the formulation that
permits self-jumps [151] (i.e., it may happen that si = si+1). We denote the total tran-
sition rate of state si as Asi =

∑K
k=1Asik. We can simulate an MJP trajectory using

the following procedure

s1 ∼ Categorical(π)

ti − ti−1 =: τi ∼ Exponential (Asi)

si+1 ∼ Categorical (Asi:/Asi)

(F.1)

Here Asi:/Asi is the si’th row of matrix A that is normalized to sum up to 1.

According to the above generative process, the likelihood of a trajectory (T ,S) for an
MJP with parameters (π,A) can be computed as

p(T ,S|π,A) = πs1 ×

(
N∏
i=1

Asi−1si

)
× exp

(
−
N+1∑
i=1

(ti − ti−1)
K∑
l=1

Asil

)

We reformulate this expression using indicator functions 1(·), which will be allow us to
derive a differentiable relaxation later

=

(
K∏
k=1

π
1(s1=k)
k

)
×

(
N∏
i=1

K∏
k=1

K∏
l=1

A
1(si=k,si+1=l)
kl

)

× exp

(
−
N+1∑
i=1

(ti − ti−1)

K∑
k=1

1(si = k)

(
K∑
l=1

Akl

))
.

133

F Supplementary materials for Chapter 5

By applying the logarithm to the above equation, we obtain

log p(T ,S|π,A) =

(
K∑
k=1

1(s1 = k) log πk

)

+

(
N∑
i=1

K∑
k=1

K∑
l=1

1(si = k, si+1 = l) logAkl

)

−

(
N+1∑
i=1

(ti − ti−1)

K∑
k=1

1(si = k)

(
K∑
l=1

Akl

))
.

(F.2)

F.1.2 Markov modulated Poisson process (MMPP)

MMPP consists of a latent MJP p(T ,S) and observed events X = (x1, ..., xM). The
distribution of X is governed by unobserved state of the MJP s(t) and the emission
rates for each state λ ∈ RK+ . More specifically, the observations X are sampled from an
inhomogeneous Poisson process with piecewise-constant intensity that depends on the
current state: λ(t) = λs(t).

Likelihood of the observations X given (T ,S) and λ can be computed as

p(X|T ,S,λ) =

(
N+1∏
i=1

λ
M[ti−1,ti)

si

)
× exp

(
−
N+1∑
i=1

(ti − ti−1)λsi

)

whereM[ti−1,ti) is the number of events xj in the interval [ti−1, ti). Again, using indicator
functions, we rewrite it as

=

N+1∏
i=1

M∏
j=1

(
K∏
k=1

λ
1(si=k)
k

)1(xj∈[ti−1,ti))

× exp

(
−
N+1∑
i=1

(ti − ti−1)

K∑
k=1

1(si = k)λk

)

By applying the logarithm, we obtain

log p(X|T ,S,λ) =

N+1∑
i=1

M∑
j=1

1(xj ∈ [ti−1, ti))
K∑
k=1

1(si = k) log λk

−

(
N+1∑
i=1

(ti − ti−1)

K∑
k=1

1(si = k)λk

) (F.3)

To summarize, an MMPP is governed by parameters ψ = {π,A,λ}. The initial state
probabilities π and the generator A define a prior over the (unobserved) trajectories
p(T ,S|π,A), and the emission rates λ governs the distribution over the observed events
p(X|T ,S,λ).

134

F.1 Model definition

F.1.3 Derivation of the ELBO

We consider the following problem: Given the observed events X and the number of
latent states K, we want to infer the unobserved trajectories (T ,S). According to the
Bayes theorem, the posterior over trajectories of an MMPP is computed as

p(T ,S|X ,π,A,λ) ∝ p(T ,S,X|π,A,λ)
= p(T ,S|π,A)p(X|T ,S,λ).

Unfortunately, this quantity is intractable, so we approximate it with a variational dis-
tribution q(T ,S). We find the “optimal” approximate posterior by maximizing the
evidence lower bound (ELBO) [207]

ELBO(q,ψ) = Eq(T ,S)
[

log p(T ,S|π,A)︸ ︷︷ ︸
trajectory log-likelihood

+ log p(X|T ,S,λ)︸ ︷︷ ︸
observations log-likelihood

− log q(T ,S)︸ ︷︷ ︸
entropy

]

Since we are interested only in q, we assume that the model parameters ψ = {π,A,λ}
are known. In the next section, we will discuss how the parameters ψ can be learned as
well.

As described in Section 5.3 we model the approximate posterior as q(T ,S) = q(T)q(S|T).
The distribution q(T) over the jump times is defined using TriTPP, and q(S|T) is eval-
uated exactly for each Monte Carlo sample T . We rewrite the ELBO as

ELBO(q,ψ) = Eq(T)

[
Eq(S|T)

[
log p(T ,S|π,A) + log p(X|T ,S,λ)− log q(S|T)

]
− log q(T)

]

We already derived the expressions for log p(T ,S|π,A) (Equation F.2) and log p(X|T ,S,λ)
(Equation F.3). The expression for log q(S|T) can be obtained similarly as

log q(S|T) =
N+1∑
i=1

K∑
k=1

1(si = k) log q(si = k|T). (F.4)

Finally, we compute the log-density log q(T) of a single sample T = (t1, ..., tN) us-
ing the change of variables formula, as described in Appendix E.1. We denote Z =
(z1, ..., zN , zN+1) = F (t1, ..., tN , T), and z−1 denotes the last entry of Z.

log q(T) =
N∑
i=1

log

∣∣∣∣∂zi∂ti

∣∣∣∣− z−1. (F.5)

135

F Supplementary materials for Chapter 5

ELBO (non-differentiable version). Putting everything together, we get

ELBO(q,ψ) = Eq(T)

[
Eq(S|T)

[K∑
k=1

1(s1 = k) log πk

−
N+1∑
i=1

(ti − ti−1)
K∑
k=1

1(si = k)
K∑
l=1

Akl

+
N∑
i=1

K∑
k=1

K∑
l=1

1(si = k, si+1 = l) logAkl

+

N+1∑
i=1

M∑
j=1

1(xj ∈ [ti, ti+1))

K∑
k=1

1(si = k) log λk

−
N+1∑
i=1

(ti − ti−1)
K∑
k=1

1(si = k)λk

−
N+1∑
i=1

K∑
k=1

1(si = k) log q(si = k|T)

]

−
N∑
i=1

log

∣∣∣∣∂zi∂ti

∣∣∣∣+ z−1

]

(F.6)

Note that N is the length of the sample T generated from q(T), so N will take different
values for different samples. We can evaluate the inner expectation w.r.t. q(S|T) by
using the following two facts

Eq(S|T) [1(si = k)] = q(si = k|T)

Eq(S|T) [1(si = k, si+1 = l)] = q(si = k, si+1 = l|T)

Recall that we set q(S|T) to the true posterior p(S|T ,X ,ψ) over states given the jumps
(Equation 5.15). This allows us to exactly compute both the posterior marginals q(si =
k|T) and the posterior transition probabilities q(si = k, si+1 = l|T) using the forward-
backward algorithm [188, Equations 7, 8]. Therefore, the inner expectation w.r.t. q(S|T)
in Equation F.6 can be computed analytically.
ELBO (differentiable relaxation). The ELBO, as defined above in Equation F.6,

is discontinuous w.r.t. the parameters of the density q(T) for the reasons described in
Section 5.2.2. The expression inside the expectation depends only on the events ti that
happen before T . Infinitesimal change in the parameters of q(T) may “push” the point
ti outside [0, T], thus changing the function value by a fixed amount and resulting in a
discontinuity.
We fix this problem using the approach described in Appendix E.1 and Section 5.2.2.

We obtain an “extended” sample t̃ by first simulating a sequence z̃ = (z̃1, ..., z̃N ′) from
a HPP with unit rate and computing t̃ = F−1(z̃) (more on this in Appendix E.1). We
get a “clipped” / “padded” sample t = (t1, ..., tN ′) as ti = min{t̃i, T} (Figure F.1).

136

F.1 Model definition

0 t1 t2 t3 t4

T = 3.0

Extended sample t̃ (0.8, 2.0, 4.5, 5.1)
Clipped sample t (0.8, 2.0, 3.0, 3.0)
Hard indicator 1(ti < T) (1.00, 1.00, 0.00, 0.00)
Relaxed indicator σζ(T − ti) (1.00, 0.97, 0.01, 0.00)

Figure F.1: Examples of values involved in the ELBO computation.

Finally, we compute z = (z1, ..., zN ′) = F (t) (this is necessary for computing the correct
cumulative intensity Λ∗(T) after clipping). We can now express the ELBO in terms of
the “extended” samples t̃ and “clipped” samples t:

ELBO(q,ψ) = Eq(T)

[
Eq(S|T)

[K∑
k=1

1(s1 = k) log πk

−
N ′∑
i=1

(ti − ti−1)

K∑
k=1

1(si = k)

K∑
l=1

Akl

+

N ′∑
i=1

1(t̃i < T)

K∑
k=1

K∑
l=1

1(si = k, si+1 = l) logAkl

+

N ′∑
i=1

M∑
j=1

1(xj ∈ [ti, ti+1))

K∑
k=1

1(si = k) log λk

−
N ′∑
i=1

(ti − ti−1)

K∑
k=1

1(si = k)λk

−
N ′∑
i=1

1(t̃i−1 < T)

K∑
k=1

1(si = k) log q(si = k|T)

]

−
N ′∑
i=1

1(t̃i < T) log

∣∣∣∣∂zi∂ti

∣∣∣∣+ z−1

]

(F.7)

Changes from Equation F.6 are highlighted in blue. Even though the formula looks dif-
ferent, the result of evaluating Equation F.7 will be exactly the same as for Equation F.6.
By using different notation we only made the process of “discarding” the events ti > T
explicit. The new formulation allows us to obtain a differentiable relaxation. For this,
we replace the indicator functions 1(ti < T) with sigmoids σζ(T − ti). The indicator
function 1(xj ∈ [ti, ti+1)) can also be relaxed as

1(xj ∈ [ti, ti+1)) = 1(ti+1 > xj)− 1(ti ≥ xj)

≈ σζ(ti+1 − xj)− σζ(ti − xj)
(F.8)

137

F Supplementary materials for Chapter 5

By combining all these facts, we obtain a differentiable relaxation of the ELBO. Our
method leads to an efficient implementation that uses batches of samples. We sample a
batch of jump times {T (1), T (2), ...} from q(T), evaluate the posterior q(S|T) using with
forward-backward for all of them in parallel, and evaluate the relaxed ELBO (Equa-
tion F.7).

F.1.4 Parameter estimation

In Section 5.3, we perform approximate posterior inference over the trajectories (T ,S)
by maximizing the ELBO w.r.t. q(T ,S)

max
q(T ,S)

Eq[log p(T ,S|ψ) + log p(X|T ,S,ψ)− log q(T ,S)] (F.9)

Since ELBO(q,ψ) provides a lower bound on the marginal log-likelihood log p(X|ψ),
we can also simultaneously learn the model parameters ψ = {π,A,λ} by solving the
following optimization problem (subject to appropriate constraints on ψ)

max
ψ

max
q(T ,S)

Eq[log p(T ,S|ψ) + log p(X|T ,S,ψ)− log q(T ,S)] (F.10)

Finally, we can perform fully Bayesian treatment and approximate the posterior distri-
bution over the parameters as well as the trajectories. For this, we can place a prior p(ψ)
and approximate p(ψ, T ,S|X) with q(ψ, T ,S) = q(ψ)q(T)q(S|T ,ψ). This corresponds
to the following optimization problem

max
q(ψ,T ,S)

Eq[log p(T ,S|ψ) + log p(X|T ,S,ψ)− log q(T ,S)]−KL(q(ψ)∥p(ψ)) (F.11)

where KL denotes KL-divergence. By applying our relaxation from Section 5.2.2, it
is possible to solve all of the above optimization problems (Equations F.9, F.10, F.11)
using gradient ascent.

F.2 Experimental setup

We simulate an MMPP with K = 3 states and the following parameters

A =

0.1 0.1 0.1
0.1 0.1 0.1
0.1 0.1 0.1

 π =

0.52
0.22
0.26

 λ =

 1
5
20

We use the following configuration for TriTPP in this experiment: L = 2 blocks of size
H = 4, learning rate 0.01, no weight decay. We estimate the ELBO using 512 Monte
Carlo samples from q(T) and use the temperature ζ = 0.1 for the relaxation.
We implemented the MCMC sampler by Rao & Teh [149] in Pytorch. We discard

the first 100 samples (burn-in stage), and use 1000 samples to compute the marginal
distribution of the posterior.

138

G Supplementary materials for Chapter 6

G.1 Difference between GoF testing and OoD detection

The connection between OoD detection and GoF testing was first pointed out by Nalis-
nick et al. [128]. They proposed to perform a GoF test for a deep generative model to
detect OoD instances. However, as we explained in Section 6.1, these two problems are
in fact not equivalent. We now demonstrate how this insight allows us to explain and
improve upon some results obtained by Nalisnick et al. [128].
First, we consider the Gaussian annulus test for normalizing flow models that was

also used by Choi et al. [32]. A normalizing flow model Pmodel defines the distribution of
a D-dimensional random vector X by specifying a diffeomorphism f : RD → RD, such
that Z = f(X) is distributed according to N (0D, ID), the standard normal distribution.
In other words, f(X)|X ∼ Pmodel follows the standard normal distribution, so any test
for the normal distribution can be used to test the GoF of a normalizing flow model.
Based on this, Nalisnick et al. [128] define the following test statistic

ϕ(X) =
∣∣∣∥f(X)∥2 − EX∼Pmodel

[∥f(X)∥2]
∣∣∣ = ∣∣∣∥f(X)∥2 −

√
D
∣∣∣. (G.1)

The idea here is to replace a two-sided test on the statistic ∥f(X)∥2 with a one-sided
test on the statistic ϕ(X) defined above. Since f(X)|X ∼ Pmodel follows the standard
normal distribution, the statistic ϕ(X)|H0 will concentrate near 0 [19, Theorem 2.9].
Therefore, checking if ϕ(X) is below a certain threshold ϵ is equivalent to performing
the GoF null hypothesis test (Equation 6.2).
However, the above approach will not work for an OoD detection hypothesis test

(Equation 6.1). If we learn a model Pmodel on training instances Dtrain that were gen-
erated by some distribution Pdata, we will in general have Pmodel ̸= Pdata. This im-
plies that f(X)|X ∼ Pdata will not follow the standard normal distribution. Therefore,
EX∼Pdata

[∥f(X)∥2] ̸=
√
D and the distribution of ∥f(X)∥2 might not even be symmetric

around its mean. This means we cannot replace a two-sided test on ∥f(X)∥2 with a
one-sided test on ϕ(X) when doing OoD detection. A better idea is to directly compute
the two-sided p-value for the OoD detection test using the statistic ∥f(X)∥2, following
our approach in Section 6.1.

Similarly, for the (single-instance) typicality test, the test statistic is defined as

φ(X) =
∣∣∣ log q(X)− EX∼Pmodel

[log q(X)]
∣∣∣, (G.2)

where log q(X) is the log-likelihood of a generative model trained on Dtrain. This leads to
the same problems when trying to apply this statistic for OoD detection as we encoun-
tered with the Gaussian annulus test above—the expected value EX∼Pmodel

[log q(X)] is

139

G Supplementary materials for Chapter 6

only suitable for a GoF test. However, in this case Nalisnick et al. [128] report that
they found EX∼Pdata

[log q(X)] to work better in practice. By drawing a clear distinction
between the OoD detection test and the GoF test we can explain this empirical result.
An even better idea is to use the two-sided p-value (Equation 6.3) instead of Equa-
tion G.2, since the distribution of the statistic log q(X)|X ∼ Pdata is not guaranteed to
be symmetric.

G.2 Other statistics based on squared spacings

The following discussion is based on Moran [123] and D’Agostino [40].

Sum-of-squared spacings (3S) statistic for Uniform([0, 1]). Suppose that samples
{u1, . . . , uN} are drawn i.i.d. from the Uniform([0, 1]) distribution. Additionally, assume
w.l.o.g. that the ui’s are sorted in an increasing order, i.e., u1 ≤ · · · ≤ uN . The 3S
statistic for Uniform([0, 1]) is defined as

ψ
Unif([0,1])
N = N

N+1∑
i=1

(ui − ui−1)
2, (G.3)

where u0 = 0 and uN+1 = 1. The factor N ensures that ψ
Unif([0,1])
N approaches the

standard normal distribution as N → ∞. However, the convergence of ψ
Unif([0,1])
N to its

limiting distribution is rather slow.

3S statistic for Uniform([0, V]). The statistic above can be generalized to the uni-
form distribution on an arbitrary interval [0, V]. Suppose {v1, . . . , vN} are drawn i.i.d.
from the Uniform([0, V]) distribution, and again are sorted in an increasing order. The
3S statistic for Uniform([0, V]) is defined by simply dividing the vi’s by the interval
length V .

ψ
Unif([0,V])
N = N

N+1∑
i=1

(vi
V

− vi−1

V

)2
=

N

V 2

N+1∑
i=1

(vi − vi−1)
2,

(G.4)

where v0 = 0 and vN+1 = V .

3S statistic for the SPP on [0, V]. Remember that the N factor makes the dis-

tribution of ψ
Unif([0,V])
N (asymptotically) invariant for different values of N . This means

that such statistic would not be able to detect anomalies in terms of the event count.
To remove this undesirable property, we define the 3S statistic for the standard Poisson

140

G.3 Proof of Proposition 1

process by replacing N with its expectation E[N |V] = V .

ψSPP([0,V]) =
E[N |V]

V 2

N+1∑
i=1

(vi − vi−1)
2

=
1

V

N+1∑
i=1

(vi − vi−1)
2

(G.5)

This is the definition that we introduced in Equation 6.7. As a side note, replacing N
with E[N |V] is one of the possible choices that ensures that (1) the statistic is sensitive
to changes in the event count and (2) the expected value E[ψSPP([0,V])|V] does not change
for different values of V , and hence is comparable across different transformed sequences.

As we show in Sections 6.3 and 6.5, the above definition of the TriTPP statistic for
the SPP allows us to detect a broad class of anomalies (i.e., deviations from the SPP)
that differ both in the distribution of the event count N as well as the arrival times vi.

G.3 Proof of Proposition 1

To compute the moments of the 3S statistic for the standard Poisson process (Equa-
tion 6.7) we need to marginalize out the event count N , which is equivalent to applying
the law of iterated expectation

E[f(ψ)|T] =
∞∑
n=0

E[f(ψ)|N = n, V] Pr(N = n|V)

=

∞∑
n=0

E[f(ψ)|N = n, V]
V ne−V

n!

(G.6)

where we used the fact that N |V ∼ Poisson(V).

We obtain the expectations of ψ and ψ2 conditioned on N and V using the result by

Moran [123] on the moments of ψ
Unif([0,1])
N (Equation G.3), the TriTPP statistic for the

Uniform([0, 1]) distribution.

E[ψ|N = n, V] =
2V

(n+ 2)

E[ψ2|N = n, V] =
4V 2(n+ 6)

(n+ 2)(n+ 3)(n+ 4)

(G.7)

These can also be easily derived from the moments of the Dirichlet distribution, by using
the fact that the scaled inter-event times (w1/V , . . . ,wN+1/V) are distributed uniformly
on the standard N -simplex (i.e., according to Dirichlet distribution with parameter
α = 1N+1).

141

G Supplementary materials for Chapter 6

By plugging in Equation G.7 into Equation G.6, we obtain

E[ψ|V] = 2V e−V
∞∑
n=0

V n

n!(n+ 2)

= 2V e−V
1

V 2

(
eV (V − 1) + 1

)
=

2

V
(V + e−V − 1).

(G.8)

Similarly, we compute the non-centered second moment as

E[ψ2|V] = 4V 2e−V
∞∑
n=0

V n(n+ 6)

n!(n+ 2)(n+ 3)(n+ 4)

= 4V 2e−V
1

V 4

(
eV (V 2 − 6) + 2(V 2 + 3V + 3)

)
=

4

V 2

(
V 2 − 6 + 2e−V (V 2 + 3V + 3)

)
.

(G.9)

Finally, we obtain the variance as

Var[ψ|V] = E[ψ2|V]− E[ψ|V]2

=
4

V 2

(
2V − 7 + e−V (2V 2 + 4V + 8− e−V)

)
.

Higher-order moments of ψ|V can be computed similarly using Equation G.6.

G.4 Implementation details

The following code describes the procedure for computing the p-values for both hypoth-
esis tests discussed in Section 6.1—namely, the GoF test (Equation 6.2) and the OoD
detection test (Equation 6.1). The code below is for demonstration purposes only, the
actual implementation used in our experiments is better optimized.

1 def compute_p_value(x_test , samples , score_fn):

2 scores_id = [score_fn(x) for x in samples]

3 score_x = score_fn(x_test)

4 num_train = len(samples)

5 num_above = 0

6 for s in scores_id:

7 if s > score_x:

8 num_above += 1

9 num_below = num_train - num_above

10 return min(

11 (num_below + 1) / (num_train + 1),

12 (num_above + 1) / (num_train + 1)

13)

142

G.4 Implementation details

The +1 correction in the numerator and denominator for the p-value computation is
done as described by North et al. [131]. If we define samples as the set of in-distribution
sequences Dtrain that were generated from Pdata, we recover the OoD detection test
(Equation 6.1 and Section 6.3.2). If we define samples as the set of sequences Dmodel that
were generated from Pmodel, we recover the GoF test (Equation 6.2 and Section 6.3.1).
In the snippet above, score fn corresponds to a test statistic s : X → R. In our

experiments, we consider the following choices for s:
1. KS arrival (Equation 6.5).

2. KS inter-event (Equation 6.6).

3. Chi-squared: we partition the interval [0, V] into B = 10 disjoint buckets of equal
length, and compare the observed event count Nb in each bucket with the expected
amount L = V/B

χ2(Z) =
B∑
b=1

(Nb − L)2

L
. (G.10)

4. Sum-of-squared spacings (Equation 6.7).

5. Log-likelihood

log q(X) =
N∑
i=1

log
∂Λ∗(ti)
∂ti

− Λ∗(T). (G.11)

All these statistics are computed based on some TPP model with compensator Λ∗.
For statistic 1–4, we compute s(X) by first obtaining the transformed sequence Z =
(Λ∗(t1), . . . ,Λ∗(T)) and then evaluating the respective SPP statistic on Z. The log-
likelihood is directly evaluated based on the model’s conditional intensity.
Marked sequences. In a marked sequence X = {(t1,m1), . . . , (tN ,mN)} each event

is represented by a categorical mark mi ∈ {1, . . . , C} in addition to the arrival time ti.
A marked TPP model is specified by C compensators {Λ∗

1, . . . ,Λ
∗
C}.

We obtain the transformed sequence Z necessary for statistics 1–4 as follows. Let(
t
(c)
1 , . . . , t

(c)
Nc

)
denote the events of mark c in a given sequence X. For each event type

c ∈ {1, . . . , C}, we obtain a transformed sequence Z(c) =
(
Λ∗
c

(
t
(c)
1

)
, . . . ,Λ∗

c

(
t
(c)
Nc

)
,Λ∗

c

(
T
))

.

Then we concatenate the transformed sequences for each mark, thus obtaining a single
SPP realization on the interval [0,

∑C
c=1 Λ

∗
c(T)]. For example, suppose the transformed

sequence for the first mark is Z(1) = (1.0, 2.5, 4.0) and for the second mark Z(2) =
(0.5, 3.0). Then the concatenated sequence will be Z = (0.0, 1.0, 2.5, 4.0+0.5, 4.0+3.0) =
(0.0, 1.0, 2.5, 4.5, 7.0). Our approach based on concatenating the Z(c)’s is simpler than
other methods for combining multiple sequences by Gerhard et al. [66] & Tao et al. [179],
and we found ours to work well in practice.
The log-likelihood for a marked sequence is computed as

log q(X) =

C∑
c=1

N∑
i=1

1(mi = c) log
dΛ∗

c(ti)

dti
−

C∑
c=1

Λ∗
c(T). (G.12)

143

G Supplementary materials for Chapter 6

G.5 Datasets

G.5.1 Standard Poisson process

In-distribution sequences (corresponding to Pmodel) are all generated from an SPP (i.e.,
a homogeneous Poisson process with rate µ = 1) on the interval [0, 100]. The OoD
sequences (corresponding to Q) for each of the scenarios are generated as follows, where
δ ∈ [0, 1] is the detectability parameter.

(i) Rate: homogeneous Poisson process with rate µ = 1− 0.5δ.

(ii) Stopping: We generate a sequence X = (t1, . . . , tN) from an SPP and then
remove all the events ti ∈ [tstop, T], where we compute tstop = T (1− 0.3δ).

(iii) Renewal: A renewal process, where the inter-event times τi are sampled i.i.d.
from a Gamma distribution with shape k = 1 − δ and scale θ = 1

1−δ . Thus, the
expected inter-event time stays the same, but the variance of inter-event times
increases for higher δ.

(iv) Hawkes: Hawkes process with conditional intensity λ∗(t) = µ+α
∑

tj<t
exp(−(t−

tj)). The parameters are chosen as µ = 1− δ and α = δ.

(v) Inhomogeneous: inhomogeneous Poisson process with intensity λ(t) = 1 +
β sin(ωt), where ω = 2π/50 and β = 2δ.

(vi) SelfCorrecting: self-correcting process with intensity λ∗(t) = exp
(
µt−

∑
tj<t

α
)
,

where we set µ = δ + 10−5 and α = δ.

In all above scenarios setting δ = 0 recovers the standard Poisson process, thus making
Pdata and Q indistinguishable. Note that the parameters in scenarios (iii)–(vi) are chosen
such that the expected number of events N is always equal to T , like in the SPP. For
all scenarios, Dtrain, DID

test and DOOD
test consist of 1000 sequences each.

Additional experiments. For completeness, we consider two more scenarios.
(vii) IncreasingRate: Similar to scenario (i), but now the rate is increasing instead

as µ = 1 + 0.5δ.
(viii) RenewalB: Similar to scenario (iii), but the variance now decreases for higher

δ. For this we define the parameters of the Gamma distribution as k = 1
1−δ and θ = 1−δ.

The results are shown in Figure G.1. As we can see, the same qualitative conclusions
apply here as for the experiments in Section 6.5.1.

G.5.2 Simulated data

Server-Stop and Server-Overload: In-distribution sequences for both scenarios are
generated by a multivariate Hawkes process with C = 3 marks on the interval [0, 100]
with following base rates µ and influence matrix A:

µ =

3
0
0

 A =

0 0 0
1 0 0
1 0 0

144

G.5 Datasets

0.0 0.2 0.4 0.6 0.8 1.0

Detectability

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
O

C
 A

U
C

 s
co

re

IncreasingRate

0.0 0.2 0.4 0.6 0.8 1.0

Detectability

0.4

0.5

0.6

0.7

0.8

0.9

1.0

RenewalB

KS arrival KS inter-event Chi-squared S3 statistic

Figure G.1: GoF testing for the SPP using additional scenarios.

This scenario represents communication between a server (mark 1) and two worker ma-
chines (marks 2 and 3)—events for the workers can only be triggered by incoming re-
quests from the server.

In OoD sequences, the structure of the influence matrix is changed at time tstop =
T (1−0.5δ), which represents the time of a failure in the system. For Server-Stop, the
influence matrix is changed to Astop, and for Server-Overload the influence matrix
is changed to Aoverload.

Astop =

0 0 0
0 0 0
1 0 0

 Aoverload =

0 0 0
0 0 0
2 0 0

The sets Dtrain, DID

test and DOOD
test consist of 1000 sequences each.

Latency: Event sequences consist of two marks. ID sequences are generated as fol-
lows. Events of the first mark (“the trigger”) are generated by a homogeneous Poisson
process with rate µ = 3. Events of the second mark (“the response”) are obtained
by shifting the arrival times of the first mark by offsets that are sampled i.i.d. from
Normal(µ = 1, σ = 0.1). In OoD sequences, the offsets are instead sampled from
Normal(µ = 1 + 0.5δ, σ = 0.1). That is, OoD sequences correspond to increased la-
tency between the “trigger” and “response” events. The sets Dtrain, DID

test and DOOD
test

consist of 1000 sequences each.

SpikeTrains: The original fluorescence data is provided at www.kaggle.com/c/

connectomics. We extracted the spike times from the fluorescence recordings using the
code by https://github.com/slinderman/pyhawkes/tree/master/data/chalearn. We
dequantized the discrete spike times by adding Uniform(−0.5, 0.5) noise and selected the
first 50 marks.

The original data consists of a single sequence that is 3590 seconds long. We split the
long sequence into overlapping windows that are 20 seconds long. We select the first
500 sequences for training (as Dtrain), and 96 remaining sequences for testing (as DID

test).
OoD sequences (i.e., DOOD

test) are obtained by switching c = ⌊δC⌋ marks. For example,
if marks 5 and 10 are switched, all events that correspond to mark 5 in DID

test will be
labeled as mark 10 in DOOD

test , and vice versa.

145

www.kaggle.com/c/connectomics
www.kaggle.com/c/connectomics
https://github.com/slinderman/pyhawkes/tree/master/data/chalearn

G Supplementary materials for Chapter 6

G.5.3 Real-world data

Logs: We ran the Sock Shop microservices testbed [190] on our in-house server. We
consider the logs corresponding to the user service. There are 4 types of log entries
that we model as 4 categorical marks. We use the timestamps of log entries as arrival
times of a TPP. We slice the logs into 30-second-long non-overlapping windows, each
corresponding to a single TPP realization.
We run the service for ≈14 hours to generate training data, and then for additional

≈5 hours to generate test data. The test data contains 5 types of injected anomalies
produced by Pumba [104]. See Table 6.1 for the list of anomalies. Each anomaly injection
lasts 10 minutes. We mark a test sequence as OoD if the system was “attacked” by
Pumba during the respective time window. In total, we use 1668 sequences as Dtrain,
502 sequences as DID

test, and 22 sequences as DOOD
test for each of the attack scenarios (i.e.,

110 OoD sequences in total).
STEAD: The original dataset by Mousavi et al. [126] contains over 1 million earthquake

recordings. We sample 72-hour sub-windows and treat times of earthquake as arrival
times of a TPP, as usually done in seismological applications. We treat the sequences as
unmarked. We select 4 geographic locations: (1) San Mateo, CA, (2) Anchorage, AK,
(3) Aleutian Islands, AK, and (4) Hemet, CA. We group the earthquakes that happen
within a 350 km radius (geodesic) around each of the locations, thus obtaining 4 sets
of sequences (5000 sequences for each location). We use the sequences corresponding to
(1) San Mateo, CA, as in-distribution data, and the remaining 3 locations as OoD data.
We use 4000 ID sequences as Dtrain, 1000 ID sequences and DID

test, and 1000 sequences
per each remaining location as DOOD

test .

G.6 Experimental setup

G.6.1 GoF for the SPP (Section 6.5.1)

We compute the p-values for the GoF test using the procedure described in Appendix G.4.
For the GoF test, we use 1000 event sequences generated by an SPP as samples in the
algorithm. The test statistics are computed using the compensator of the SPP Λ∗(t) = t.
We compute the p-value for each event sequence in DID

test and DOOD
test , and then compute

the ROC AUC score based on these p-values. The results are averaged over 10 random
seeds.

G.6.2 OoD detection (Sections 6.5.2 & 6.5.3)

We train a neural TPP model similar to Shchur et al. [167]. We parametrize the inter-
event time distribution with a mixture of 8 Weibull distributions. The marks are con-
ditionally independent of the inter-event times given the context embedding, as in the
original model. Mark embedding size is set to 32, and the context embedding (i.e., RNN
hidden size) is set to 64 for all experiments.
We optimize the model parameters by maximizing the log-likelihood of the sequences

in Dtrain (batch size 64) using Adam with learning rate 10−3 and clipping the L2-norm of

146

G.7 Fisher’s method for KS statistics

the gradients to 5. We run the optimization procedure for up to 200 epochs, and perform
early stopping if the training loss stops improving for 10 epochs. The p-values are
computed according to the procedure described in Appendix G.4. The results reported
in Section 6.5.2 are averaged over 10 random seeds. In Section 6.5.3, we train the neural
TPP model with 5 different random initializations to compute the average and standard
error in Table 6.1.

G.7 Fisher’s method for KS statistics

Here we show that ad-hoc fixes to the KS statistics that make them sensitive to the
variations in the event count N lead to worse discriminative power in other scenarios.
For this, we replicate the experimental setup from Section 6.5.1 with two additional
statistics.
Fisher arrival. We compute the two-sided p-value pN for the event count N using

the CDF of the Poisson(V) distribution. Then, we compute the two-sided p-value pκarr
for KS arrival statistic (Equation 6.5) using Kolmogorov distribution. We combine the
two p-values using Fisher’s method [63] as −2(log pN + log pκarr). Fisher inter-event
is defined similarly using the two-sided p-value pκint for the KS inter-event statistic
(Equation 6.6).

0.0 0.2 0.4 0.6 0.8 1.0
Detectability

0.4
0.5
0.6
0.7
0.8
0.9
1.0

RO
C

AU
C

sc
or

e

DecreasingRate

0.0 0.2 0.4 0.6 0.8 1.0
Detectability

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Stopping

0.0 0.2 0.4 0.6 0.8 1.0
Detectability

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Renewal

0.0 0.2 0.4 0.6 0.8 1.0
Detectability

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Hawkes

0.0 0.2 0.4 0.6 0.8 1.0
Detectability

0.4
0.5
0.6
0.7
0.8
0.9
1.0

InhomogeneousPoisson

0.0 0.2 0.4 0.6 0.8 1.0
Detectability

0.4
0.5
0.6
0.7
0.8
0.9
1.0

SelfCorrecting
KS arrival KS inter-event Fisher arrival Fisher inter-event

Figure G.2: Comparing KS statistics with the respective Fisher versions that are sensitive to
the event count N .

Results. Results are shown in Figure G.2. We see that the Fisher versions of the
statistics indeed fix the failure modes of the two KS scores on Rate and Stopping,
where the event count N changes in OoD sequences. However, the Fisher versions of
the statistics perform worse than the respective KS statistics in 3 out of 4 remaining
scenarios. In contrast, the 3S statistic performs well both in scenarios where N changes,
as well as when the distribution of the arrival/inter-event times is varied.

147

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	I Introduction
	1 Introduction
	1.1 Machine learning for continuous-time event data
	1.2 Contributions and outline
	1.3 Own publications

	2 Background
	2.1 Generative probabilistic modelling
	2.2 Temporal point processes
	2.2.1 Representation
	2.2.2 TPP as an autoregressive model
	2.2.3 Conditional intensity function
	2.2.4 Conventional TPP models
	2.2.5 Random time change theorem
	2.2.6 Parameter estimation
	2.2.7 Simulation methods
	2.2.8 Marked temporal point processes

	2.3 Deep learning for sequential data

	II Neural temporal point process models
	3 Intensity-free learning of temporal point processes
	3.1 Background
	3.2 Models
	3.2.1 Modeling p() with normalizing flows
	3.2.2 Modeling p() with mixture distributions
	3.2.3 Incorporating the conditional information
	3.2.4 Marked TPP
	3.2.5 Discussion

	3.3 Related work
	3.4 Experiments
	3.4.1 Event time prediction using history
	3.4.2 Learning with marks
	3.4.3 Learning with additional conditional information
	3.4.4 Missing data imputation
	3.4.5 Sequence embedding

	3.5 Conclusions

	4 Fast and flexible temporal point processes with triangular maps
	4.1 Background
	4.2 Defining temporal point processes using triangular maps
	4.2.1 Requirements for efficient TPP models
	4.2.2 Fast temporal point process models
	4.2.3 Defining more flexible triangular maps

	4.3 Related work
	4.4 Experiments
	4.4.1 Scalability
	4.4.2 Density estimation

	4.5 Conclusions

	III Applications
	5 Learning with sampling-based losses
	5.1 Background
	5.1.1 Sampling-based losses for TPPs
	5.1.2 Monte Carlo gradient estimators

	5.2 Reparametrization trick for TPPs
	5.2.1 Inversion method as reparametrization sampling
	5.2.2 Differentiable relaxation for TPP losses

	5.3 Variational inference for Markov jump processes
	5.4 Related work
	5.5 Experiments
	5.5.1 Variational inference on simulated data
	5.5.2 Variational inference on real-world data

	5.6 Conclusions

	6 Anomaly detection
	6.1 Anomaly detection and goodness-of-fit testing
	6.2 Review of existing GoF test statistics for TPPs
	6.3 Sum-of-squared-spacings (3S) statistic for TPPs
	6.3.1 Goodness-of-fit testing with the 3S statistic
	6.3.2 Out-of-distribution detection with the 3S statistic

	6.4 Related work
	6.5 Experiments
	6.5.1 Standard Poisson process
	6.5.2 Detecting anomalies in simulated data
	6.5.3 Detecting anomalies in real-world data

	6.6 Conclusions

	IV Conclusion
	7 Conclusion
	7.1 Retrospective
	7.1.1 Neural TPP architectures
	7.1.2 Reparametrization sampling for TPPs
	7.1.3 Applications

	7.2 Open questions and future work

	Bibliography
	A Notation
	B Abbreviations
	C Characterizing a temporal point process
	D Supplementary materials for chap:ifl-tpp
	D.1 Survival and intensity functions for the proposed models
	D.2 Discussion of constant & exponential intensity models
	D.3 Discussion of the FullyNN model
	D.4 Implementation details
	D.4.1 Shared architecture
	D.4.2 Log-normal mixture
	D.4.3 Baselines
	D.4.4 Deep sigmoidal flow
	D.4.5 Sum-of-squares polynomial flow

	D.5 Dataset statistics
	D.5.1 Synthetic data
	D.5.2 Real-world data

	D.6 Additional discussion of the experiments
	D.6.1 Event time prediction using history
	D.6.2 Learning with marks
	D.6.3 Learning with additional conditional information
	D.6.4 Missing data imputation
	D.6.5 Sequence embedding

	E Supplementary materials for chap:tritpp
	E.1 Implementation details
	E.1.1 Batch processing
	E.1.2 Sampling
	E.1.3 Ensuring that the TPP is valid
	E.1.4 Parametrizing transformations using splines

	E.2 Datasets
	E.3 Experimental setup
	E.3.1 Scalability
	E.3.2 Density estimation

	E.4 Additional experiments
	E.4.1 Density estimation

	F Supplementary materials for chap:sampling
	F.1 Model definition
	F.1.1 Markov jump process (MJP)
	F.1.2 Markov modulated Poisson process (MMPP)
	F.1.3 Derivation of the ELBO
	F.1.4 Parameter estimation

	F.2 Experimental setup

	G Supplementary materials for chap:anomaly
	G.1 Difference between GoF testing and OoD detection
	G.2 Other statistics based on squared spacings
	G.3 Proof of Proposition 1
	G.4 Implementation details
	G.5 Datasets
	G.5.1 Standard Poisson process
	G.5.2 Simulated data
	G.5.3 Real-world data

	G.6 Experimental setup
	G.6.1 GoF for the SPP (sec:exp-spp)
	G.6.2 OoD detection (Sections 6.5.2 & 6.5.3)

	G.7 Fisher's method for KS statistics

