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Induced Earthquakes

• Earthquakes caused by human activity
• Mining, geothermal energy production, carbon capture and storage, oil/gas extraction
• 1239 induced earthquakes in the HiQuake database1.
• Examples
• Pohang 2017: M5.5 (Palgunadi et al. 2020)
• Otaniemi 2018: < M2 (Hillers et al. 2020)

In order to understand these earthquakes better: Numerical simulations with SeisSol

1Wilson et al. 2017: https://inducedearthquakes.org/, accessed 23rd June, 2022
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Earthquake simulations

Solve the elastic wave equation:
• ∂tq + A∂xq + B∂yq + C∂zq = 0
• q contains stresses and velocities, A, B and C contain material information.

Figure: (Palgunadi et al. 2020):
“Dynamic Fault Interaction during a
Fluid-Injection-Induced Earthquake:
The 2017 Mw 5.5 Pohang Event”
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SeisSol: ADER-DG for Earthquake simulations

Discontinuous Galerkin method with Arbitrary DERivatives time-
stepping: ADER-DG: Achieve the same high order in space and
time

SeisSol specific:
• Tetrahedral elements
• Modal (orthogonal) basis functions: Diagonal mass matrix,

upper triangular stiffness matrix
• Exact Riemann solver for the numerical flux between elements
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HPC optimizations

Parallelization
• Element local discretization with DG
• Mesh partitioning based on workload estimate
• Exchange values at partition boundaries

Node-level performance
• Update scheme is a sequence of tensor contractions.
• Use code generator YATeTo 2 to map the tensor operations to GEMMs

(C = αAB + βC).
• Use architecture specific backends for optimized code.

2(Uphoff and Bader 2020)
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Strong Scaling

Figure: Strong scaling on recent supercomputers. Image taken from (Krenz, Uphoff, et al. 2021).
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Anisotropic materials

• Directional dependent material behaviour, e.g. cracked or layered media
• Jacobian A, B, C are more densely populated, but can reuse the numerical scheme

from the elastic wave equation (Wolf, Gabriel, and Bader 2020)

Figure: Left: isotropic material, Right:
anisotropic material

Isotropic:

σ = λtr(ε)I + 2µε

Anisotropic:

σij =
3∑

k ,l=1

cijklεkl
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Poroelastic materials

• Interaction of fluid and solid phase introduces a stiff source term to the wave equation
• Replace Cauchy-Kowalevski procedure with space-time variant of ADER-DG
• Use sparsity pattern of the system matrix to efficiently solve the linear system (Wolf,

Galis, et al. 2022)

Figure: Double couple source in a
poroelastic medium

Figure: Sparsity patterns for the space-time
ADER-DG variant
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Scalability

Figure: Parallel
efficiency of a
poroelastic setup
with 7.3 million
elements for global
(GTS) and local
(LTS) time-stepping
on SuperMUC-NG.
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Kinematic earthquake sources

• Prescribe slip at a several points or
along the complete fault fault.
• Watch how waves propagate

through the medium.
• No information about what happens

at the fault
• No interaction between wavefield

and fault. Figure: Sketch of an earthquake source
along a fault. Image taken from (Uphoff
2020)
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Dynamic rupture earthquake sources

• Instead of numerical fluxes: Solve a
friction problem at (selected)
element interfaces.
• Interaction between wave

propagation and source dynamics
• Gives insight into the rupture

process
• Up to now dynamic rupture works

only with (visco-)elastic materials.
Figure: Complicated fault network, image
taken from (Ulrich et al. 2019).

S. Wolf et al. | SeisSol for Induced Earthquakes | PASC22 | 27th June, 2022 11



Combine all the Multiphysics

Elasticity + Pore Fluids + Friction Problem
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How does Dynamic Rupture work in elastic media

Elasticity + Pore Fluids + Friction Problem
1. Solve the Riemann problem to get states at the interface.
2. Compute fault strength τS based on the friction law.
3. Find shear traction t and slip rate s such that τss = t‖s‖.
4. Impose state with s and t at the interface.

Figure: Solution structure of the elastic Riemann problem
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What do we need to change for poroelastic media

Elasticity + Pore Fluids + Friction Problem
1. Fluid pressure now affects solution of the Riemann problem.
2. Fault strength depends on the pressure (and temperature)3.
3. Find shear traction t and slip rate s, but what about relative fluid velocity?

Figure: Solution structure of the poroelastic Riemann problem

3(Noda and Lapusta 2010)
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How to verify the results?

• Hard to find analytic solutions for combined friction and wave propagation problem.
• Community effort through SCEC to compare different dynamic rupture codes.

Figure: Left: Geometry of the SCEC benchmark TPV12. Image taken from (Harris et al. 2009).
Right: Results of the TPV105 benchmark (top: pressure, bottom: temperature).
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Conclusion

• Extended SeisSol’s functionality to incorporate more complicated material models.
• Work in progress: Dynamic Rupture in poroelastic materials.
• Upcoming work: Compute, compute, compute
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Quantify poroelastic effects relevant for wave propagation

• Compare poroelastic materials with their elastic equivalents
• Study the Utsira sandstone formation used for CCS4

• Energy dissipation at material interfaces.

Figure: Cut through the layered Utsira model.

4Equinor 2022
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Nuisance patterns from the stimulation of Enhanced
Geothermal systems
• Geothermal Energy production near Helsinki:

Neighbors reported sound disturbance
connected to induced earthquakes.
• We used the elastic-acoustic coupling feature of

SeisSol to simulate which sounds an earthquake
emits.
• Parameter study: How does the source

mechanism and the geological subsurface
structure influence the nuisance pattern? (Krenz,
Wolf, et al. 2022).
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Backup Slide Equations

Weak formulation of the PDE in 1D:∫
T
∂tq · φdx −

∫
T

Aq∂xφdx +

∫
∂T
φAq · nds =

∫
T

Eqφdx

Semidiscrete form:
∂tQpl

∫
T
φlφkdx − ApqQpl

∫
T
φl∂xφkdx

+

∫
∂T

Fpk (Qpl ,Qi
pl)ds

= EpqQpl

∫
T
φlφkdx
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