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Impedance Control on Arbitrary Surfaces for
Ultrasound Scanning using Discrete Differential

Geometry
Michael Dyck, Arne Sachtler, Julian Klodmann, and Alin Albu-Schäffer

Abstract—We propose an approach to robotic ultrasound
scanning and interaction control with arbitrary surfaces using
a passivity-based impedance control scheme. First, we introduce
task coordinates depending on the geometry of the surface, which
enable hands-on guidance of the robot along the surface, as well
as teleoperated and autonomous ultrasound image acquisition.
Our coordinates allow controlling the signed distance of the robot
to the surface and alignment of the tool to the surface normal
using classical impedance control. This corresponds to implicitly
obtaining a foliation of parallel surfaces. By setting the desired
signed distance negative, i.e., into the surface, we obtain passive
contact forces and simultaneously provide an intuitive way to
control the maximum penetration depth into the surface. We
extend the approach to also incorporate coordinates allowing to
control the specific point on the surface and, automatically, on all
parallel surfaces. Finally, we demonstrate the performance of the
controller on the seven degrees of freedom lightweight robot DLR
MIRO: the robot tracks complex trajectories while accurately
keeping the desired distance to the surface and applying an
almost constant contact force. Finally, we compare the approach
to the state of the art.

I. INTRODUCTION

ULTRASOUND (US) has become one of the most com-
monly used diagnostic and therapeutic imaging modali-

ties in medicine [1]. US provides major advantages over other
medical imaging techniques, such as low cost, portability, non-
invasiveness, has real-time capabilities and is radiation-free
[1]. However, US image acquisition requires the presence of a
skilled sonographer, capable of simultaneously adjusting probe
orientation and contact force to improve image quality and
maximize patient comfort. This induces a very high cognitive
and physical workload, while quality and repeatability of the
imaging process become strictly operator-dependent [2].

Robotic ultrasound (RUS) systems have been subject of
extensive research efforts [3] recently, ranging from tele-
operated image acquisition, to semi- and fully autonomous
RUS systems. These systems show promising trends towards
mitigating the operator-dependence, high cognitive workload
and ergonomic deficits of physician-performed US, while
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Fig. 1. Target surface and task coordinates of our impedance controller. Each
point on the surface S0 can be assigned a unique, directed normal vector (left).
The task coordinates result in a wrench pulling the tool to the surface and
orienting it along the surface normal (middle). Calculation of the coordinates
is based on the proxy point χ̄ ∈ S0 on the surface, the corresponding surface
normal n and the vector c between χ̄ and tool position xt.

increasing the reproducibility and accessibility of diagnostic
US scanning. Li et al. identify contact force control as a
major feature in RUS image acquisition [3]. Any excessive
force leading to tissue deformation can lead to image artifacts,
patient pain and tissue damage. Simultaneously, good acoustic
coupling is necessary to achieve high image quality.

Impedance control [4] is a very popular approach to realize
compliant behavior, allowing the definition of force ranges
interacting between robot and environment. Direct and indirect
force control compose the two main techniques for active
interaction control [5]. Indirect force control methods, e.g., via
a feed-forward force, suffer from unpredictable, non-passive
behavior upon contact loss. Similar issues arise in the direct
force control paradigm and methods such as hybrid posi-
tion/force control [6], lacking in robustness and ability to deal
with environmental uncertainties. The authors in [7] propose
a method combining force tracking and impedance control
for interaction with arbitrary analytic surfaces, while proving
passivity and stability for arbitrary passive environments.

Several authors have investigated solutions to RUS tissue
scanning in the past [8]–[10]. Usually, a feed-forward force
controller realizes a desired contact force between US probe
and tissue. These solutions generally rely on the built-in
force-torque (F/T) sensing capabilities of the robotic system
to estimate the external force at the end-effector. Virga et
al. present a RUS system for screening of abdominal aortic
aneurysms and use a standard Cartesian impedance controller
[11] in x, y to move the US probe along a trajectory based
on elastical registration of the patient to a generic MRI-based
atlas [8]. The simplicity of this control scheme makes it
unsuitable for US scanning on tissues of complex geometry.
Similarly, [10] use Cartesian impedance control guiding the
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robotic manipulator along a predefined trajectory on the human
spine. Augmenting the impedance controller with a feed-
forward force controller they perform RUS scanning, intended
for application in neurosurgical scenarios. Jiang et al. [9]
additionally employ a F/T-sensor to improve force control
accuracy and to automatically adjust the orientation of the
US probe perpendicular to the tissue surface. Huang et al.
[12] use a depth camera to estimate the 3D surface of the
target anatomy via a point cloud. The robot is controlled in a
point-to-point mode, using force feedback of two F/T-sensors
attached to either side of the probe to adjust in-plane rotation.

Another field of research that involves controlling a tool
onto a surface is robotic manufacturing like polishing, grind-
ing, or painting. Many publications deal with these kinds of
problems, e.g. [7], [13], [14]. The classical setting in these
scenarios is precomputing a Cartesian trajectory based on
the object model and then executing it using a Cartesian
impedance controller. Contact forces are usually generated
by additional feed-forward force control. Ochoa and Cortesão
capture polishing movements from humans and transform
them to surfaces by shifting and rotating the movements in
space [15]. These approaches precompute trajectories and
cannot be used for hands-on modes. Kana et al. show a
method to control the end-effector to an arbitrary surface by
introducing a virtual proxy point that wanders around on the
surface [16]. Their method allows for hands-on scenarios in
human-robot co-manipulation. Additional contact forces are
applied using active force control.

We present a novel approach to RUS scanning using a
passivity-based impedance control scheme [17] on arbitrary
surfaces, allowing for hands-on US probe guidance, as well
as for teleoperated or intuitive two-dimensional (2D) path
planning for autonomous execution of scanning paths. Our
proposed control paradigm is based on representation of
the environment as discretized, triangular mesh objects, thus
providing high flexibility for usage in various applications. To
this end, pre-operative imaging can be used to obtain a three-
dimensional (3D) representation of the tissue surface, that can
be seamlessly integrated with our controller. In contrast to
[7]–[10], [13]–[16], we present a novel method for interaction
with arbitrary surfaces, relying solely on classical impedance
control augmented by special task coordinates, inherently
guaranteeing stability and passivity. One of these coordinates
is the signed distance to the surface. This coordinate can be
used to continuously adjust the interaction force and realize
probe-surface interaction with a desired impedance.

A. Contributions
(C1) Impedance control on arbitrary surfaces featuring contin-

uous interaction force adjustment and control over the
penetration depth even for soft structures;

(C2) Novel choice of task coordinates respecting the surface
geometry and curvature, and intuitively applicable for
hands-on, teleoperated and autonomous RUS scanning;

(C3) Real-time control on triangular meshes, efficiently calcu-
lating surface-specific quantities in a 3 kHz control loop.

II. IMPEDANCE CONTROL ON PARALLEL SURFACES

Our aim is to design an impedance controller regulating the
end-effector of a robot to a desired signed distance from an
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Fig. 2. Foliation view on the introduced task coordinates. (a) 2D example
of offset curves with two representative osculating circles. Red curves: when
going beyond the minimal curvature radius the map Ψd is no longer one-to-
one. (b) Interaction force between tool and surface via a spring in the distance
coordinate, pulling the tool towards its proxy point on S0. (c) Three leaves
of the foliation as parallel surfaces given by d = const.

arbitrary surface (Fig. 1). At the same time the controller shall
align the end-effector with the normal of the surface.

Consider a two-dimensional target surface S0 ⊂ R3 and
suppose that the surface is oriented, i.e., it has an in- and an
outside. Each point χ ∈ S0 has a unit normal vector n(χ)
such that n : S0 → S2 with the two-sphere S2 is smooth
on S0. The normal vectors allow defining consistent signed
distances. Fig. 1 sketches an example for a target surface in
yellow and shows some normal vectors in black.

Impedance controllers can be visualized as virtual springs
and dampers in task coordinates. Likewise, with our proposed
task coordinate the control goal of regulating the end-effector
to a signed distance d and aligning the tool to the surface
normal is achieved by virtual springs and dampers (Fig. 1).

When controlling the distance coordinate to d ̸= 0, we
implicitly control the end-effector onto a parallel surface Sd

obtained by shifting the base surface S0 along the normals

Sd = {χ+ dn(χ) |χ ∈ S0} . (1)

This family of surfaces generates a foliation, where the parallel
surfaces and S0 are the leaves. We sketch the base leaf S0 and
two parallel surfaces S1 and S−1 in Fig. 2c.

Consider the example in two dimensions in Fig. 2a where
a couple of offset surfaces as well as two osculating circles
are shown. The parallel surfaces start self-intersecting as soon
as the distance |d| is larger than the smallest curvature radius
rmin of the base surface. For −rmin < d < rmin a smooth
foliation is obtained and a one-to-one mapping between points
on the parallel surfaces Sd and the base surface S0 can be
obtained: we can find Ψd : S0 → Sd such that Ψ is continuous
and invertible. For parallel surfaces farther than rmin the offset
surfaces self-intersect and no one-to-one mapping is possible.
This generalizes to the three-dimensional case. We assume we
stay in the allowed region for d from now on.

Because the map Ψd is invertible, we can transport functions
φ0 : S0 → Y on S0 to Sd

φd = φ0 ◦Ψ−1
d . (2)

Setting φ0 = n we can, for instance, pull the normals to all
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the other parallel surfaces Sd. The same is true for any kind
of chart on S0. Similar to the idea in previous work [18], we
can first define coordinates on S0 and let them grow to other
leaves of the foliation.

Commanding a desired distance d < 0, a passive interaction
force can be realized (Fig. 2b). In contrast to classical ap-
proaches [7], no additional force control is required to be able
to continuously adjust the interaction force, but the approach
is rather based purely on passive impedance laws. Given the
stiffness of the controlled distance spring kd and the object
stiffness kO the required distance for a desired contact force
f can be computed by d = f

kd−kO
.

A. Task Coordinates and Impedance Controller

Let us define the surface-specific task coordinates p ∈ R4

p(q) =

�
d(q)
ϵ(q)

�
, (3)

where d(q) computes the signed-distance of the end-effector to
the surface. Let χ̄(q) implement a map Ψ (2) between Sd and
S0. As our manifold is oriented, we can look up the normal of
the proxy point χ̄(q) and take the quaternion h = [λ, ϵ] ∈ H
between the end-effector orientation and the normal of the
proxy point. We stack its vector part ϵ into p(q) (3). q ∈ Q are
the generalized configuration coordinates of the manipulator.

Using the task coordinate function (3) we define an
impedance control law [4], [11]

τ = JT
p (q) [K(pd − p(q)) +D(q)(ṗd − ṗ)] , (4)

where K is a symmetric, positive definite (pd) stiffness matrix
and Jp(q) = ∂p/∂q denotes the Jacobian of p(q). The
symmetric and pd damping matrix D(q) is designed based
on the double diagonalization design proposed in [19]. For
pd = ṗd = 0 the controller will pull the end-effector onto
the surface and align its z-axis with the normal of the surface.
Fig. 1 shows this case for the example surface representing
the forces as springs. This choice of desired coordinates is
particularly useful for interaction cases, e.g. when clinicians
want to guide the robot in hands-on mode along the tissue.

Let us now design p(q). Assume the Cartesian forward
kinematics fkin : Q → SE(3) | q 7→ x is given and also the
corresponding geometric Jacobian Jx(q)

ẋ =

�
v
ω

�
= Jx(q)q̇, (5)

where ω denotes the angular velocity vector and v transla-
tional velocities. We defer the computation of the proxy point
on the surface χ̄(q) to a later section and assume it given
for now. Let c(q) = xt − χ̄, with xt ∈ R3×1 representing
the translational component of x = fkin(q). Then the signed
distance is determined by (rightmost column Fig. 1)

d(q) = sign(n(χ̄(q)) · c(q)) ∥c(q)∥. (6)

Next, let’s design ϵ(q) via the quaternion h(q) describing
the relative rotation between the tool z-axis ẑT (q) and the
unit normal n(χ̄). For any input vectors n ̸= −ẑT we use

h(q) =

"p
2 (1 + ẑ · n)

2
,

ẑ × np
2(1 + ẑ · n)| {z }

ϵ(q)

#
. (7)

and h(q) = [0, n⊥] otherwise. The vector n⊥ is any unit
vector orthogonal to n. The combination of (6) and (7) yields
the desired task coordinates p(q).

For the impedance controller we need the overall Jacobian
Jp ∈ R4×n, where n denotes the number of joints. Apply the
chain rule and write

ṗ =
∂p

∂t
=

∂p(x)

∂x

∂x(q)

∂q

∂q(t)

∂t
= JpxJxq̇ = Jpxẋ. (8)

We can express the desired Jacobian Jp as a product Jp =
JpxJx of the known geometrical Jacobian Jx and a new
Jacobian Jpx to be determined. Let’s split it into blocks:

ṗ = Jpxẋ =

�
Jdv 0
J ϵv J ϵω

� �
v
ω

�
. (9)

The first component Jdv ∈ R1×3 describes the linear
relation between translational Cartesian velocities v and the
velocity in the distance coordinate ḋ. This relation is given by
the orthogonal projection of v onto the normal vector between
the proxy point χ̄ and the end-effector position xt

Jdv =
(xt − χ̄)T

|xt − χ̄| . (10)

The mapping from angular velocities ω ∈ R3 of the end-
effector onto velocities in ϵ ∈ R3 is given by [20]

J ϵω =
1

2




λ ϵ3 −ϵ2
−ϵ3 λ ϵ1
ϵ2 −ϵ1 λ


 , (11)

with λ, ϵ1,2,3 being the components of the quaternion h.
Lastly, the component J ϵv ∈ R3×3 relates translational

Cartesian velocities and velocities ϵ̇ describing the rate of
change of the relative orientation between surface normal and
the end-effector. In other words, J ϵv represents the change in
ϵ by the change in the surface normal dn, arising from any
tangential motion along the non-planar surface.

We briefly recap some central concepts of the differential
geometry of surfaces that are relevant to finally derive J ϵv .
The presented material can be found in any textbook like [21];
we recommend [22] for a visual and intuitive introduction.
Consider again n : S0 → S2, the vector field mapping points
on the manifold S0 to their corresponding unit normal vector.
The map n associates each point on S0 to a point on the
unit sphere S2. This is known as the Gauß map. Now, the
differential dn of the Gauß map, referred to as the Weingarten
map, tells how the surface normal changes while moving along
the surface. Since n maps onto unit vectors, we know that any
change of the surface normal can only be tangential to the
surface itself. Hence, the Weingarten map dn in a tangential
direction X ∈ TχS0 at a point χ ∈ S0 is a mapping from
the tangent space TχS0 to itself [21]. The Weingarten map
dn relates velocities in the tangent space to changes in the
normal, which is precisely what we need for the block J ϵv .

Before deriving J ϵv , let us briefly recap normal curvature
and principal curvature with help of the example in Fig. 3a.
The normal curvature κn at a point χ ∈ S0 in direction
X ∈ TχS0 is the curvature of the planar curve γ ⊂ S0

obtained by intersecting the surface with the plane spanned by
X and the normal n(χ). The blue planes in Fig. 3a show two
special cases of such planes. We take the tangential directions
X1, X2 where the surface bends the most and least. These
directions are called principal directions of curvature and their
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(a) Normal and Principal Curvatures (b) Curvature Change

Fig. 3. (a) Normal curvature and principal curvatures. Intersecting the surface
with a plane containing the normal and a tangent vector X yields a locally
planar curve with normal curvature κn. (b) Parallel surfaces share principal
directions of curvature, the curvature values change with the distance d.

corresponding curvature values are called principal curvatures
κ1, κ2. Fig. 3a shows the resulting planar curves γ1,2 and the
corresponding osculating circles with radius 1/κ1,2. Principal
directions are always orthogonal [21].

We use the directions of principal curvature at each point
to determine local coordinates of the manifold S0. In these
coordinates the second fundamental form II is particularly
simple, being a diagonal matrix of the principal curvatures.
The Weingarten map can be computed projecting a vector v
onto the tangent plane spanned by X1, X2 and applying the
second fundamental form [23]

dn(v) = P TIIPv = P T

�
κ1 0
0 κ2

�
Pv, (12)

where P ∈ R2×3 contains X1 and X2 as rows.
Using these concepts we derive an expression for our Jaco-

bian component J ϵv ∈ R3×3, relating translational Cartesian
velocities of the tool to velocities in the orientational task
coordinates ϵ

J ϵv = J ϵω[n]×P
TIIP , (13)

where [n]× denotes the skew-symmetric cross product matrix
of the vector n. The cross-product matrix is introduced to
transform the change in the normal to angular velocities.

Consider a case where the robot is at a distance d+ > 0
and assume the robot is moving along the surface keeping d+
constant. We travel along a parallel surface S+. Fig. 3b depicts
a local section of the planar curves γ ⊂ S0 and γ+ ⊂ S+.
Both surfaces S0 and S+ have the same principal directions
[21]. However, the radius r′ = r+ d+ of the osculating circle
of S+differs from the radius r of the osculating circle and
thus the curvature of S0. This change in curvature for parallel
surfaces with an offset d is encoded in the second fundamental
form in principal coordinates by

ĨI =

�
κ1(1− dκ1) 0

0 κ2(1− dκ2)

�
. (14)

This generalizes to d = 0 and we consequently implement
(13) always using ĨI .

B. Optional Surface Parametrization
The concept in the previous section allows controlling the

robot to a distance to the surface and aligning the surface
normal and the tool. This is especially helpful for interaction
cases when the position on the surface shall not be constrained.

For a variety of tasks, such as teleoperation or autonomous
path scanning (cmp. Sec. I) it is also required to stabilize and
control the particular position on the surface. In that case we

S0

X

Φ−1

s1

s2

Φ

(a) Parametrization

s1 = 0s2 = 0

S0
d = d0 S1

d = d1
(b) Orthogonal Foliations

Fig. 4. (a) Parametrization Φ of the surface S0 ⊂ R3 with coordinates
s1, s2 in the parameter domain X . Red and green lines represent isolines of
the coordinates s1, s2 in X and S0, respectively. The blue trajectory shows
an exemplary lissajous curve in X and its corresponding image on S0. (b)
Orthogonal foliations represented by s1 = const. (red), s2 =const. (green).

require additional coordinates to specify the position of the
proxy point χ̄ on the surface. We consider 2D surfaces here,
therefore two additional coordinates are required.

We need the inverse of a parametrization Φ : X → S0 of
a surface where X is called the parameter domain [21]. The
function Φ(s), with s = [s1, s2]

T, maps a point s ∈ X onto
the immersed surface S0. Provided that we find a Φ(s) for
our target surface S0, we can use its inverse s = Φ−1(χ) as
global coordinates to specify where we are on the surface. We
augment the previously chosen task coordinates:

ρ(q) =

�
s(χ̄(q))
p(q)

�
=



s1(q)
s2(q)
d(q)
ϵ(q)


 . (15)

Any non-singular parametrization Φ can be used.
We have defined coordinates on the base manifold S0 which

we can propagate to all leaves Sd of the foliation using Ψd

as in [18]. In our case Ψd is implemented by the proxy point
function χ̄, i.e., on Sd we use s = Φ−1◦χ̄. Thus, we implicitly
have consistent coordinates s on all leaves Sd and obtain also
foliations for s1 = const. and s2 = const. (Fig. 4b).

In order to incorporate these parametrization coordinates
into the impedance control, we extend our Jacobian Jpx

to include the mapping from translational velocities v to
velocities ṡ

ρ̇ = Jρx(x)ẋ =



Jsv 0
Jdv 0
J ϵv J ϵω


 ẋ. (16)

For any point on the surface the gradients ∇s1 and ∇s2
determine the directional derivatives of s1 and s2 for tangent
vectors to the surface. However, the gradients ∇s1 and ∇s2
cannot be computed for points x /∈ S0. Therefore, we again
use the proxy point χ̄ and need to adapt the gradients to com-
pensate for the change of curvature (see Fig. 3b). Intuitively,
for curved surfaces, the proxy and query point do not travel
with the same speed. Consider again the local coordinates
given by the principal directions P ∈ R2×3 used in (12).
Then, the first fundamental form on a parallel surface at given
distance d to S0 in local principal coordinates is given by

Ĩ =

�
(1− dκ1)

2 0
0 (1− dκ2)

2

�
. (17)

To include the influence of d into our Jacobian, we set

Jsx =

�
∇Ts1(χ̄)
∇Ts2(χ̄)

�
P T

�
(1− dκ1)

2 0
0 (1− dκ2)

2

�
P . (18)

We calculate the total Jacobian Jρ(q) ∈ R6×n relating joint
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velocities q̇ to velocities in the task coordinates ρ̇ via

ρ̇ = Jρ(q)q̇ = Jρx(x)Jx(q)q̇ (19)

and implement an impedance controller in ρ by

τ = JT
ρ (q) [Kρ(ρd − ρ(q)) +Dρ(q)(ρ̇d − ρ̇)] . (20)

C. Discrete Differential Geometry

Instead of using analytic methods to describe the target
surface S0 as in e.g. [7], [24], we use a discrete representation
in terms of a triangular mesh. Triangular meshes provide a
flexible interface to load surfaces into the controller and are
generated e.g. by CAD software, 3D scanning or computer
vision approaches [25]. Additionally, the discrete version
can handle basically arbitrary surfaces including complicated
topologies and sharp corners. In contrast to the smooth set-
ting, where a surface with sharp corners and edges is not
manifold, discrete differential geometry offers techniques to
handle edges and corners by smoothing out the normal map.

Let the target surface S0 be described by a triangular mesh
(see Fig. 5a). This is encoded by a matrix of N vertices V ∈
RN×3 and M faces F ∈ NM×3, where the entries in F are
the vertex indices. Further, we assume a list of normals N ∈
RN×3, where the i-th row is the unit normal at the i-th vertex.

For the task coordinates the proxy point query χ̄(q) must
be implemented. We first use the Cartesian forward kinematics
to determine the position of the end-effector xt(q). Then, we
find the closest triangle

f̄(q) = min
j∈{1..M}

d▷(fj ,xt(q)), (21)

where d▷(f,x) computes the distance of a point x ∈ R3 to the
face f (Fig. 5b). In order to perform the query (21) efficiently
we use an axis-aligned bounding box (AABB) tree [26], which
can be constructed before execution. The AABB tree allows
query in O(logM) time and thus enables us to use (21) in
real-time applications also for large meshes. The construction
time of the tree is in the order of milliseconds to seconds for
meshes with up to a million triangles.

Given the closest triangle f̄ we compute the corresponding
closest point on it and take the proxy point χ̄ to be that point.
We have taken the term proxy point from Kana et al. [16].
They project the connection vector into the tangent space of
the surface at the proxy point and then describe its motion
using first order dynamics. On the one hand this ensures a
continuous trajectory of the proxy point; on the other hand
the additional dynamics make the task forces depend not only
on q, but also on their history: one cannot integrate the task
forces to potential fields and there are no coordinates, such that
their proxy point position is a function of q only. In contrast,
we directly take the closest point query to obtain the proxy
point: our coordinates only depend on q, not on any dynamics.
We ensure continuity by constraining the maximally allowed
distance to rmin as before. In this region the map Ψ−1

d between
parallel surfaces Sd and S0 is one-to-one and continuous; it is
implemented by the closest point query.

In discrete meshes many properties like the normals, cur-
vatures and later the parametrization s(χ) are only known on
the vertices. Therefore, we apply the principle of barycentric
interpolation. Given a point χ on the triangle we assign masses
mi to the three vertices of the triangle such that

P
i mi = 1.

(a) Discretized surface.

d▷
d▷

d▷

d▷

f

(b) Closest point.

u1

u2 u3

m1

m2 m3

u =
3P

i=1
miui

(c) Barycentric coordinates.

Fig. 5. Discretization of the smooth surface S0. (a) Wireframe of the dis-
cretized surface. (b) Closest point query between tool position and surface. (c)
Barycentric coordinates used for interpolation of various per-vertex quantities
defined on the triangular mesh.

The barycenter of the triangle with the new vertex masses will
be at χ. Suppose we have a scalar function u : S0 → R on
the surface, which we only know on the vertices. Using the
barycentric coordinates we can approximate u(χ) at any point
on the surface by (see Fig. 5c)

u(χ) =
3X

i=1

mi(χ)u(vi). (22)

We use barycentric interpolation on the vertex normals to
obtain the normal at the proxy point n(χ̄(q)).

In order compute the Jacobian (9) also the principal cur-
vatures and principal curvature directions are required. We
use quadric fitting by Panozzo et al. [27] to estimate the
principal curvatures and their directions at every vertex and
again use barycentric interpolation to enable computing the
them everywhere. The principal curvatures and their directions
are precomputed and stored for every vertex.

Next we add the parametrization χ = Φ(s) for the discrete
mesh. Here we assume that the surface is of disk-topology,
i.e., two-dimensional, with no holes and a single boundary.
To our advantage this is a well studied problem in the field
of computer graphics and various approaches are available.
Sheffer et al. [28] provide an overview on these techniques.
We use the as-rigid-as-possible (ARAP) parametrization by
Liu et al. [29], which optimizes for isometry. We have shown
the result obtained by this algorithm already in Fig. 4a.

The rationale behind using the ARAP parametrization be-
comes clear when considering the telemanipulation case: using
a joystick or arrow-keys to command velocities in the param-
eter domain X , we desire that these velocities map to the
same velocities on the surface. Additionally, isometry implies
conformality, i.e, arrow keys in orthogonal directions will also
correspond to right angles on the surface.

The output of the ARAP parametrization algorithm is a
matrix S ∈ RN×2, where the i-th row s(vi) ∈ X represents
the coordinates of the i-th vertex in the parametrization domain
X . Using barycentric interpolation we compute s(χ). Finally,
the gradients ∇sk are required, which we obtain calculating
the discrete gradient operator for the piecewise linear functions
sk at each mesh vertex and again interpolating barycentrically.
Now, we have everything to implement the concept from the
smooth setting on the discrete mesh.

III. EXPERIMENTS

We demonstrate our approach in our experimental setup
with the seven degrees of freedom (DoF) robot arm DLR
MIRO [30]. It is equipped with torque sensors allowing to di-
rectly command the joint torques computed by our impedance
controller (4) or (20) to the joint-level torque controllers.
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(a) Experimental Setup (b) Silicone cast of test object
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(c) Interface to our implementation

Fig. 6. Experimental setup, silicone phantom and implementation.

Fig. 6a shows our experimental setup. To simulate soft tissue,
we have cast a model of our target surface using Dragon
Skin™ silicone with Shore 10A hardness (on the ASTM D-
2240 scale) with a wall thickness of approximately 1 cm and
solid material underneath (Fig. 6b). From that we can estimate
the object stiffness kO and thus specify dd and control gain kd
to realize intended passive interaction forces. Further, we take
a dummy tool consisting of a cylinder and a spherical tip and
a total length of 14 cm. We use MIRO’s built-in F/T-sensors
(10 DoF) to estimate the interaction force on the tool tip.

We implemented our impedance controller (20) in MAT-
LAB/Simulink, and designed a custom Simulink block in C++
using the libigl library [31] for geometry processing, calculat-
ing our task coordinates ρ(x) and Jacobian Jρx(x) (Fig. 6c).
This can be easily connected to a block computing the forward
kinematics of any robot. We output the task coordinates and
Jacobian, which is multiplied to the geometric Jacobian of the
robot to obtain Jρ as required by the impedance controller
(20). The target surface S0 is specified by a triangular mesh
in terms of an STL or Wavefront file.

Our test surface consists of N = 13367 vertices and M =
26360 faces. It has a maximum curvature of κmax = 65.77
and we set our allowed distance cautiously to dmax = 15mm.
For this surface, the construction of the AABB tree takes
tinit = 18ms. One cycle of querying the tree and computing
all quantities required for ρ and Jρx takes tcall = 11.91 µs.
We use our controller within a 3 kHz real-time control loop.

The seven DoF robot is kinematically redundant under
the given choice task coordinates ρ(q) and has an inherent
nullspace at the elbow joint. We control this nullspace and
apply an additional joint spring in the seventh joint and project
them by a dynamically consistent nullspace projection [32].

We provide a video of all experiments in the multimedia
material attached to the letter. Additionally, we perform ex-
periments on teleoperation mode and hands-on guidance and
show results in the video.
A. Commanding a Trajectory in Our Task Coordinates

For the first experiment, we command a desired trajectory
in the surface coordinates s and d by defining a Lissajous

TABLE I
STIFFNESS PARAMETERS FOR THE EXPERIMENTS

ks1 ks2 kd kϵ1 kϵ2 kϵ3
unit N/m N/m N/m Nm/rad Nm/rad Nm/rad
III-A 2500 2500 1000 50 50 50
III-B2 2500 2500 0 50 50 50
III-B3 2500 2500 250 50 50 50

kx ky kz kα kβ kγ
unit N/m N/m N/m Nm/rad Nm/rad Nm/rad

III-B1 2500 2500 0 50 50 50

curve (cmp. Fig. 4a) in s and a sine trajectory in d

s1,d(t)
s2,d(t)
dd(t)


 = 45mm



sin(3ω0t)
sin(4ω0t)
sin(4ω0t)


 for ω0 = 0.12 s−1. (23)

Further, we command ϵd = 0, i.e., the tool’s normal shall
follow the surface normal. We set the stiffness matrix Kρ

to a diagonal matrix with the values given in Table I (row
III-A) and specify a damping ratio of ζ = 0.7. The selected
values rest on heuristic experimental examination and the
known stiffness of our silicone object. Since we deploy an
almost isometric ARAP parametrization, we note that the
units of the stiffnesses ks1 , ks2 will only be approximately
N/m. We use the impedance control law (20) and achieve
the results shown in Fig. 7. The evolutions of the three task
coordinates s1, s2 and d are shown in Fig. 7a together with the
external force Fext in z-direction measured at the end-effector.
Additionally, we show the achieved and desired trajectory
in the parametrization domain in Fig. 7b and the resulting
trajectory of the tool tip on the surface. Finally, Fig. 7c
presents the image of the Gauß map, i.e., the path unit vectors
trace out on the unit sphere, for the desired normal n on sd
and the actual orientation of the tool axis ẑT .

Overall we achieve a good tracking performance, with a
root-mean-square error (RMSE) in the parametrization coor-
dinates of RMSEs1

= 0.917mm, RMSEs2
= 1.465mm.

Commanding a sine trajectory in the distance coordinate we
show consistency of the parametrization coordinates s along
all leaves of the foliation, and demonstrate the effect of con-
trolling the tool at different distances to the surface. For sec-
tions where dd > 0mm we achieve a RMSEd = 0.871mm.
As expected, for dd < 0mm a discrepancy between actual
and desired distance remains. As a result, the tool exerts forces
onto the surface, whose magnitude depends on object and con-
troller stiffnesses kO, kd, and the magnitude of dd < 0mm.
We demonstrate how controlling the distance can be used
to realize passive interaction forces and, more importantly,
continuously adjust these forces without the need of explicit
force control. At the same time, our control method provides
a straightforward way of limiting the penetration depth of
the US tool into the tissue. The images of the Gauß map
along the commanded and actual trajectories (n(sd),n(s))
in Fig. 7c illustrate the high curvature of our test surface and
the capability of our controller to accurately realize a tool
orientation normal to the surface.
B. Comparison of Contact Force Control Strategies

We show three additional experiments, comparing different
strategies for contact force control, which is of major impor-
tance for US scanning. The stiffness parameters for all three
experiments are listed in Table I.
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Fig. 7. Results of commanding a Lissajous trajectory in our task coordinates.

1) Cartesian Impedance Control with Feed-Forward Force:
For comparison to the state of the art we use classical 6D
Cartesian impedance control to move the robot along a pre-
planned trajectory on the surface. We use the same trajectory
(23) in s and map each point on the Lissajous curve to 6D
Cartesian poses x ∈ SE(3). We set the stiffness in the z-
coordinate to Kz = 0N/m and add a feed-forward force term
F d ∈ R6 with z-component Fz,d = −2N and zero elsewhere

τ = JT
x(q) [F d +Kx(xd − x) +Dx(ẋd − ẋ)] . (24)

We show the results in the left column in Fig. 8. The upper
row shows the distance of the tool tip to the phantom surface,
the lower figure depicts the measured external force at the
end-effector in z-direction. Mean and std of the interaction
force Fz are given in Table II, which shows constant and
accurate interaction force overall. Observe that the tool is not
constantly in contact with the silicone surface. The high peak
in the distance plot at t ≈ 23 sec represents loss of contact
and results in a subsequent control input arising from the feed-
forward force term F d, forcing the tool back onto the surface
with an impact (negative peak in measured force).

2) Mesh Impedance Control with Feed-Forward Force: We
extend our controller (20) adding an additional feed-forward
force term F d ∈ R6 as in (24) and control the tool to the
same Lissajous curve. We set the stiffness in the d-coordinate
to zero and command Fd,d = −2N. The middle column in
Fig. 8 depicts the results. Again, overall the contact force of
2N is realized (see Table II); however, the tool clearly looses
contact to the surface at t ≈ 7 sec, leading to a subsequent
impact collision due to the feed-forward force control.

3) Mesh Impedance Control with Negative Distance: Fi-
nally, we use our presented impedance controller (20) and
command a negative desired distance of dd = −10mm, i.e.,
we control the tool onto the parallel surface S−10mm. We
select a lower stiffness kd for the distance coordinate for this
experiment (Table I) and follow the same Lissajous curve (23)

TABLE II
MEAN AND STD OF INTERACTION FORCE IN SEC III-B

III-B1 III-B2 III-B3
mean std mean std mean std

Fz [N ] -2.178 0.521 -2.183 0.495 -2.403 0.498

(see Fig. 8, right column). In contrast to the previous force
control strategies, we show that our control results in almost
continuous contact between tool and phantom. At the same
time, the controller realizes an interaction force comparable
to the two force control experiments (see Table II), without
the issue of contact loss and subsequent impact collision.

IV. DISCUSSION AND CONCLUSIONS

We presented a novel approach to impedance control on
arbitrary surfaces, which can be used for robotic ultrasound
applications. Our experiments show strong performance in
tracking of a complex Lissajous trajectory. We demonstrate
our choice of task coordinates (3) allows controlling the robot
along complex surfaces including patches of high curvature,
where the controller generates high velocities in the robot’s
joints. By quantifying the relationship between curvature and
joint velocities, it may be possible to predict and limit situa-
tions of high joint velocities to increase safety in medical sce-
narios. There were no issues regarding real-time capabilities
despite using a complex surface with many faces. The AABB
tree structure helps to obtain fast queries. No discretization
artefacts were apparent during the experiments. Barycentric
interpolation locally smoothens properties on the mesh. Thus,
we can utilize discretized representations of arbitrary sur-
faces, which clearly distinguishes us from previous work on
impedance control on analytic surfaces, see e.g. [7].

Furthermore, our results prove the expected behavior when
controlling the tool at a negative distance to the surface, i.e.
when applying an interaction force to the surface. The right
column in Fig. 8 depicts the evolution of the interaction force
during tracking of the Lissajous trajectory. Overall, we see an
interaction force between tool and silicone phantom which
stays in the vicinity of a constant force, with a standard
deviation of 0.498N comparable to classical approaches with
feed-forward force control (Table II). Our proposed control
method allows to continuously adjust the interaction force
by simply adjusting stiffness and set point of our impedance
control. This is in contrast to current methods deploying
indirect, direct or hybrid position/force control to achieve a
desired interaction force [6], [7], which inherently suffer from
passivity and stability issues upon contact loss.

Our choice of task coordinates form an integrable system,
which can be seen in the results of Sec. III-A and Fig. 7a.
The parametrization coordinates s are valid on all leaves of
the foliation and can be controlled independently from the
distance coordinate d. This is an immediate consequence of
the foliation structure of the parallel surfaces. This enables
us to continuously switch within the foliation, i.e. adjust the
interaction force or increase the distance to the surface, while
using consistent parametrization coordinates s.

Overall, our proposed control scheme is capable of continu-
ous adjustment of the interaction force, and shows comparable
performance to classical Cartesian impedance control with an
additional feed-forward force when it comes to realization of
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Fig. 8. Left column, experiment III-B1: Cartesian impedance control with feedforward force. The upper row shows the distance d in mm of the tool tip to
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impedance control with feedforward force. Right column, experiment III-B3: Mesh impedance control with negative distance.

constant forces (Table II). We bypass some of the downsides
inherent to force control, providing a novel way of contact
force control for robotic US scanning. The inherent passivity
and stability of our controller leads to deterministic and safe
behavior on contact loss and guarantees that no uncontrolled
and undesired impact onto the tissue surface occurs. Our
task coordinates allow to intuitively control the maximum
penetration depth of the US probe into the tissue, thus making
it possible to limit tissue deformation during US scanning.

A. Future Work
We will further evaluate our controller in more realistic

clinically relevant settings for RUS, conducting more in-vitro
experiments and consulting clinicians. From a technological
point of view, we would like to extent our controller by an
outer cascade, adjusting the impedance and its desired task
coordinates based on visual servoing to enhance the US image
quality. Besides that, using a F/T-sensor at the tool could be
utilized for stiffness estimation of the object at the current
point of interaction, making it possible to locally update the
mesh structure representing the surface, and thus providing
new means for dealing with deformable tissue. Additionally,
we consider extending our method to also realize out-of-
plane rotation around the transducer axis. Furthermore, we will
investigate how the presented control can be extended to be
applicable as prohibited zone virtual fixture in robotic surgery.
Lastly, we plan on enhancing our control methodology by
considering solutions for the in Fig. 2a introduced focal points
of parallel surfaces, and generalizing to arbitrary foliations.
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