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ABSTRACT The task of remaining useful life (RUL) estimation is a major challenge within the field of
prognostics and health management (PHM). The quality of the RUL estimates determines the economical
feasibility of the application of predictive maintenance strategies, that rely on accurate predictions. Hence,
many effectivemethods for RUL estimation have been developed in the recent years. Especially deep learning
methods have been among the best performing ones setting new record accuracies on bench mark data
sets. However, those approaches often rely on numerous and representative run-to-failure sequences of the
components under investigation. In real-world use cases, this kind of data (i.e. run-to-failure sequences and
RUL labels) is hardly ever present. Therefore, this paper proposes a new, data-efficient method, which is
based on Gaussian process classification to derive abstract health indicator (HI) values in a first step, and
warped, monotonic Gaussian process regression for indirect RUL estimation in a second step. The proposed
approach does neither rely on entire run-to-failure sequences nor on any RUL labels and was tested on the
benchmark C-MAPSS turbo fan and FEMTO bearing data sets, achieving comparable results to the state-
of-the art whilst using only a small fraction of the available training data. Hence, the proposed approach
allows RUL estimation in use cases, in which gathering enough failure data for the application of deep
learning models is infeasible.

INDEX TERMS C-MAPSS, gaussian processes, prognostics and health management, remaining useful life
estimation.

NOMENCLATURE

AI Artificial intelligence.
DI Discrad large RUL estimates; strategy to

handle large RUL estimates, described in
Section IV.

DL Deep learning.
EP Expectation propagation.
FFT Fast fourier transformation.
GP Gaussian process.
GPC Gaussian process classification.
GPR Gaussian process regression.
HI Health indicator.
ICPHM International Conference on Prognostics and

Health Management.
MAE Mean absolute error.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhaojun Li .

MR Set maximum RUL value; strategy to handle
large RUL estimates, described in Section IV.

PCA Principal component analysis.
PDF Probability density function.
PHM Prognostics and health management.
RMS Root mean square.
RMSE Root mean squared error.
RUL Remaining useful life.

I. INTRODUCTION
With increasing digitization of production processes and the
introduction of Industry 4.0 into factories all over the world,
access to additional economic profit by further automating
and flexibilizing the industrial processes is expected [1], [2].
Especially the topic of prognostics and health management
(PHM), which forms the basis of deploying predictive main-
tenance strategies [3], is a prominent use case of Indus-
try 4.0, since it offers the avoidance of unnecessary and
unplanned failures of industrial assets. This leads to higher
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equipment efficiencies, less downtime and lower costs due to
disturbances in global supply chains [4]. However, in order
to take advantage of the mentioned benefits, access to the
current degradation state, the future degradation state and
the resulting remaining useful life (RUL) is necessary [5].
Hence, the task of RUL estimation is a crucial part in
the topic of PHM and the Industry 4.0. In the literature,
many authors have addressed the task of RUL estimation
in many different ways, which can be categorized into
physics-based approaches, statistical approaches and artifi-
cial intelligence (AI) approaches [6]. Especially the latter two
have been subject of extensive investigations within the last
few years. This is due to the accessibility of computing power,
the availability of large, simulated benchmark data sets and
ongoing algorithmic advances [7]. Many of the presented
approaches in the literature achieve great results in cases
where data sets containing many run-to-failure sequences for
the monitored components are available [8]–[10]. In real use
cases, however, the entire run-to-failure sequence is rarely
available. Even in cases, where data of the monitored com-
ponents has been recorded for entire life cycles, usually
only few run-to-failure sequences are available. This leads to
the problem of estimating the RUL based on little historic
data and potentially the total absence of entire run-to-failure
sequences [7].

This work addresses this issue by presenting a new
approach, which is based on [11] and which combines
Gaussian process classification (GPC) and Gaussian process
regression (GPR) to estimate the RUL. It will be shown, that
this new approach achieves good results compared to the
state of the art on standard benchmark data sets needing only
a fraction of the historic data provided. The approach will
be evaluated based on the C-MAPSS turbo fan engine data
set [12] and will be transferred to the FEMTO data set [13].
Summarizing, the following contributions will be made:

1) A new, data-efficient approach, based on a data-efficient
health indicator (HI) for the task of RUL estimationwill
be presented.

2) The presented approach will be applied to the
C-MAPSS data set with only two training instances in
order to simulate training data scarcity, which is often
present in real use cases.

3) The resulting RUL estimation accuracy will be com-
pared to state of the art results, which rely on all avail-
able training data sequences.

4) The approach will be applied to the FEMTO data set in
order to demonstrate its transferability.

The rest of the article is structured as follows: In Section II,
an overview of the state of the art for RUL estimation is
given. In Section III, the theoretical background is presented.
The proposed, data-efficient approach for RUL estimation is
presented in Section IV. The approach was applied to the
two benchmark data sets C-MAPSS and FEMTO, which is
described in detail in Section V. The results are presented in
Section VI. In Section VII the work is summarized and an
outlook on future work is given.

II. RELATED WORK
The literature on RUL estimation is vastly diverse and has
been rapidly growing within the last few years. Lei et al.
conducted an extensive literature research and proposed
to categorize the approaches into the following four cate-
gories: physics-based, statistical-based, AI-based and hybrid
approaches [6]. The latter three are referred to as data-driven
approaches in this work.

Often, the true physical wear process is too complex to
be modeled directly, which is the reason for physics-based
approaches being less common in the literature [6]. On the
contrary, data-driven approaches, which exploit correlations
between sensor signals and wear or failure, do not model
physical principals directly and, therefore, are more appli-
cable in many cases. The data-driven approaches for RUL
estimation can be further divided into direct and indirect
approaches [14]. In direct approaches a given sequence of
sensor signals is directly mapped to an RUL value, whereas
indirect approaches estimate the current health, expressed
by an HI, and extrapolate the HI value up until exceed-
ing a preset threshold, at which the end-of-life time is
defined [15]. By subtracting the time of the last measure-
ment from the defined end-of-life time, the RUL estimate is
formed.

Due to advances in methods of AI, direct approaches
have been flourishing in the literature, recently. Especially
the application of deep learning (DL) models with architec-
tures of all kinds achieved impressive RUL estimation per-
formances for various applications and often outperformed
the state of the art on established benchmark data sets [8].
Chinomona et al., for example, applied long short-termmem-
ory neural networks to the problem of battery RUL estima-
tion [16], Sun et al. applied auto-encoder neural networks
to predict the RUL of cutting tools [17] and Yang et al.
applied convolutional neural networks to the task of bearing
RUL prediction [18]. Recent approaches tackle the issue of
uncertainty quantification and utilization in DL applications
to RUL prediction by applying Bayesian neural networks [9].
Although all the mentioned works demonstrated high accu-
racies in RUL prediction, they all have in common, that they
need large, representative training data sets, which are often
not available in real industrial applications [7]. This issue was
addressed by Lv et al., who proposed a so called sequence
adaption adversarial network, that yields good results on
small data sets [19]. Another example for an approach, which
tries to achieve good RUL estimates with little data was
presented by Zhang et al., who introduced a transfer learning
approach [20]. Their proposed neural network was trained on
a source task with large amount of data and fine tuned on a
target task, in which only little data was available. Although
their source task and target task data sets were both from the
C-MAPSS data set, they demonstrated, that transfer learning
can enhance RUL prediction performance. However, both
discussed approaches still rely on RUL labels and, ultimately
on run-to-failure sequences, that are very rarely present in real
use cases.
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Indirect approaches to RUL estimation include the
approach proposed by Nguyen and Medjaher, who optimized
the construction of an abstract HI with the help of a genetic
algorithm and extrapolated this HI with different machine
learning regression models [21]. Their experiments showed
good results on the C-MAPSS and FEMTO data sets. How-
ever, the authors did not provide details about their model
implementations and the proposed approach relied on a large
number of training observations. Another recent indirect
approach was presented by Wen et al., who also constructed
a composite HI with a genetic algorithm and extrapolated
it with a regression model, that followed a power law [22].
The advantage of their regression model is that, due to the
power law, it can represent accelerated, linear and decelerated
trends. All of those models have a monotonic behavior, as has
degradation and wear. Their experiments with the C-MAPSS
data set demonstrated the usefulness of the constructed HI
and the resulting high accuracy in RUL estimation. However,
the presented results relied on all available training units
of the C-MAPSS data set. Another notable approach was
presented by Li et al., who aimed at estimating the RUL for
machine tool ball screws on a feed drive test bench [23]. After
identifying relevant features from time and frequency domain
data, they constructed an HI via linear regression and extrapo-
lated this HI with a GPRmodel, in order to estimate the RUL.
The covariance function they applied for the GPR model
was the radial basis function kernel (see Appendix A-A),
which is implicitly assuming stationary data. A wear sensi-
tive HI, however, is non-stationary, i.e. the expected value
of the HI changes over time with degradation. Nevertheless,
they outlined an approach based on only nine training obser-
vations and showed the applicability on a real world data
set. Benker et al. built on the general idea of Li et al. and
presented a modified concept, which first adapted a GPC
model for HI construction bounding the HI values on the
interval [0], [1]. Second, the HI values were extrapolated
with a GPR model including a non-stationary covariance
function [11]. Due to the non-stationary nature of the GPR
model, decreasing HI values could be better captured and
extrapolated. In contrast to using a non-stationary covariance
function, Liu and Chen proposed to construct a GPR model
with a linear mean function and a stationary covariance func-
tion for extrapolating a HI for the use case of battery capacity
prediction [24]. Due to the linear mean function, their model
can capture non-stationary data, such as a decrease in capac-
ity. Finally, Aye and Heyns investigated GPR models, which
combined different mean functions and stationary, as well as
non-stationary, covariance functions [25]. On their data set
from a bearing degradation test bench, the best results were
performed with stationary covariance functions in combina-
tion with a linear mean function. All above mentioned GPR
models did not consider monotonicity or boundedness of the
HI values, however.

This work aims at addressing the shortcomings in the state
of the art by proposing a novel approach, which can be
trained with only a small amount of healthy and degraded

observations, making run-to-failure sequences needless, and
which applies a warped, monotonic GPRmodel to extrapolate
sensible HI values within the interval [0], [1] in order to
accurately estimate RUL.

III. THEORETICAL BACKGROUND
A. GAUSSIAN PROCESSES
A Gaussian process (GP), also referred to as prior over
functions [26], is defined as a collection of random variables,
any finite subset of which have a joint Gaussian distribution,
where the random variables are function values f (x) at input
locations x =

[
x1 x2 · · · xd

]> [27]. Any GP is completely
specified by a mean function

m(x) = E [f (x)] , (1)

and a covariance function

k
(
x, x′

)
= E

[
(f (x)− m(x))

(
f (x′)− m(x′)

)]
. (2)

A function following a GP can formally be denoted as
f (x) ∼ GP

(
m(x), k

(
x, x′

))
. Usually, the mean functionm(x)

is set to zero. This is adapted in this paper as well and subse-
quently f (x) ∼ GP

(
0, k

(
x, x′

))
. In order to sample from the

random function f (x), it can be discretized and evaluated at
multiple input locations X = {x}Ni=1. This leads to a random
vector f, following a multivariate normal distribution with
the mean vector being zero and the covariance matrix being
K
(
X ,X ′

)
, i.e.

f ∼ N
(
0,K

(
X ,X ′

))
. (3)

Exemplary sampling from different GP priors, yielding
random vectors f with mean zero and different covariance
functions is shown in Fig. 1. It can be seen, that different
covariance functions impose different structures on the mod-
eled function f (x) even before data is observed, which allows
the incorporation of prior knowledge (see Appendix A-A for
details).

FIGURE 1. Prior distributions over functions f (x) ∼ GP
(
0,k

(
x, x′

))
for a

stationary radial basis covariance function k
(
x, x′

)
RBF and a

non-stationary, composite covariance function k
(
x, x′

)
CMP (see

Appendix A-A for details); it can be seen, that the covariance functions
impose a certain structure on the function f (x) before (i.e. prior to)
observing any data. The grey shaded area represents 1.96 standard
deviations from the mean.
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B. GAUSSIAN PROCESS REGRESSION
Assuming, that a historic data set D = {xi, yi}Ni=1 consisting
of input variables xi and noisy target variables yi = f (xi)+εi,
where εi ∼ i.i.d . N

(
0, σ 2

n
)
, is available, a joint distribution

of observed target values y = {y}Ni=1 and unobserved target
values f? at new input locations X? can be denoted as[

y
f?

]
∼ N

(
0,
[
K (X ,X )+ σ 2

n I K (X ,X?)
K (X?,X) K (X?,X?)

])
, (4)

with I being the identity matrix.
The posterior (i.e. predictive) distribution for new targets

f? based on a new input locations X?, historic inputs X and
historic targets y is then given by

p
(
f?|X , y,X?

)
∼ N

(
f̄?, cov

(
f?
))
,with

f̄? = K
(
X?,X

) [
K (X ,X )+ σ 2

n I
]−1

y,

cov
(
f?
)
= K

(
X?,X?

)
− K

(
X?,X

)
×

[
K (X ,X )+σ 2

n I
]−1

K
(
X ,X?

)
. (5)

A detailed derivation of this solution can be found in [27].
An exemplary predictive distribution for different covariance
functions is shown in Fig. 2. It can be seen, that the different
covariance functions yield different results for the predictive
distribution p (f?|X , y,X?). Hence, a careful design of a suit-
able covariance function for the problem at hand can be an
decisive step in modeling with Gaussian processes.

FIGURE 2. Posterior (i.e. predictive) distribution p
(
y?|X , y,X?

)
after

observing noisy data for a GP with a stationary radial basis covariance
function k

(
x, x′

)
RBF and a GP with a non-stationary, composite

covariance function k
(
x, x′

)
CMP (see Appendix A-A for details); the grey

shaded area represents 1.96 standard deviations from the mean.

1) MONOTONICITY IN GAUSSIAN PROCESSES REGRESSION
In cases, where the function, which is about to be modeled,
is known to be monotonic, imposing monotonicity is another
way of introducing prior knowledge. This is a difficult task,
since for GPs it implies that all values are correlated with
each other [28]. The common covariance functions, such as
the ones used in this work, define the correlation between

function values only based on a distance between the inputs x
(see Appendix A-A). The further the values are apart from
each other the less strong they correlate up to a point, where
correlation becomes negligible. One way of dealing with this
difficulty is to enforce monotonicity on only a finite number
of inputs. Riihimäki and Vehtari developed a method for
incorporating monotonicity information in GPR by inducing
virtual derivative observations. Since the derivatives of a GP
are GPs themselves, it is possible to include them into the
GPR model, and define them to be non-negative at the induc-
ing input locations. Details can be found in Appendix A-C.
For this work, the Matlab R© implementation of this method,
provided by Vanhatalo et al., was used [29].

2) WARPING FOR GAUSSIAN PROCESSES REGRESSION
In this work the extrapolation of future HI values should
predict values within the range [0], [1], which leads to the
problem of bounded regression. As the GP posterior distri-
bution p (f?|X , y,X?) has infinite support, it is unbounded
in general. One way to bound the output space of a
GPR model is warping, which was originally proposed by
Snelson et al. [30]. It transforms the model output by a so
called warping function. Although Snelson et al. proposed to
learn the warping function automatically, a Gaussian cumu-
lative function centered at 0.5 was applied in this work, since
this is known to produce good results, as well [31].

C. BINARY GAUSSIAN PROCESS CLASSIFICATION
GPs can also be used to perform classification tasks. How-
ever, the evaluation of the predictive distribution is more
challenging than in the regression setting described in
Section III-B. In a binary (i.e. two-class) classification task,
where the predictions give class probabilities ranging from 0
to 1, the idea is to predict the latent value f ? with Eq. (5) and
then map the results onto [0], [1], using a so called squashing
function σ (f ?). Two examples for squashing functions are
the logit and probit functions. The probability π? can then be
computed as

π? = p
(
y? = 1 |X , y,X?

)
=

∫
σ
(
f ?
)
p
(
f ?|X , y,X?

)
df ?. (6)

Unfortunately, the expression in Eq. (5) cannot be evalu-
ated analytically anymore in the classification case. In order
to tackle this problem, one has to resort to analytic approx-
imations or numerical approaches. A suitable approxi-
mation was found to be expectation propagation (EP)
algorithm [32], which was first proposed by Minka [33] and
which is described in further detail in Appendix A-B.

IV. PROPOSED APPROACH
The proposed approach is based on two steps, which are
depicted in Fig. 3. First, a model building step, in which a
binary GPC model is trained on historic training data con-
sisting of observations of healthy and degraded states of a
system, i.e. the entire run-to-failure sequence, is not needed.
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FIGURE 3. Illustration of the proposed approach.

Instead, only a small percentage of the first few healthy
observations at the beginning of the life time (referred to as
hyper-parameter ph) and a small percentage of the last few
degraded observations at the end of the life time (referred to
as hyper-parameter pd ) are needed. For real use cases, this
data is easier to get than entire run-to-failure sequences, since
one does not necessarily need to wait until the end-of-life, but
can instead artificially induce wear and make measurements.
The GPC model was chosen, since it outputs a probability
of class membership, i.e. a probability of a given data point
belonging to a healthy or degraded state. This probability
from Eq. (15) serves as an HI, which is always within the
range [0], [1].
This HI is extrapolated in the second step, themodel appli-

cation step. Here, a new, unobserved sequence is handed over
to the trained GPC model, which translates the sequence of
sensor signals into a sequence of HI values. Based on those
HI values, a warped, monotonic GPR model is applied to
forecast the future progress of the HI values. The end-of-life
time is defined at the point in time, where the forecasted
HI values fall below a defined threshold, indicating that the
system state is degraded with a critically high probability.

In some situations, where the HI values do not exhibit a
trend yet, the GPR model does not forecast falling HI values
and, therefore, forecasts an RUL value, which is obviously
too large and not within a sensible range. This is often the case
at the beginning of the life time of an investigated instance.
In a real use case, wheremaintenance actionsmust be planned
in advance, this is unacceptable. For this situation the two
following strategies are introduced:
• Discard large RUL estimates (DI): This is a naive strat-
egy, which simply discards the RUL estimates that are
too large. It has to be noted, that this is only applicable
in practice if one does not rely entirely on a predictive
maintenance strategy, which requires RUL estimates,

but instead can fall back on a planned maintenance
schedule.

• Set a maximum RUL value (MR): This strategy limits
the maximum RUL estimates to a defined value. In case
the proposed approach generates estimates higher than
this defined maximum RUL value, those estimates are
set equal to the maximum RUL value. In contrast to
the DI strategy, no RUL estimate is discarded enabling
the application of an entirely predictive maintenance
strategy.

In has to be noted, that both strategies imply amaximumRUL
value in principal. The strategy DI discards RUL estimates
that are larger than a maximum RUL value and the strategy
MR limits the RUL value to the maximumRUL value. Hence,
both strategies assume, that a sensible maximum RUL value
can be set either based on experience or based on established
life time calculations such as [34]. Both strategies, DI and
MR, were evaluated within the experiments described in the
next section.

V. EXPERIMENTS
The proposed approach from Section IV was applied to
the two data sets C-MAPSS and FEMTO. In the following
subsections the data sets and implementation details of the
conducted experiments are described.

A. C-MAPSS DATA SET
The C-MAPSS data set, published by [12], consists of four
subsets, each subset being composed of a training and test
data set of simulated run-to-failure sequences of turbo fan
engines. In each sequence, 21 equally spaced time series of
different sensors are recorded. The subsets are varying in the
number of training sequences, test sequences, fault modes and
operational conditions (see (see Table 1). The training data set
consists of entire run-to-failure sequences, whereas the test
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TABLE 1. Overview of the different C-MAPSS subsets.

TABLE 2. Chosen hyper-parameters for the presented C-MAPSS and
FEMTO experiments.

data set consists of interrupted run-to-failure sequences and
the associated true RUL values.

Since the proposed approach builds on a GPC model,
which does not need the entire run-to-failure sequence as an
input, the C-MAPSS training data had to be modified, first.
The absence of the entire run-to-failure sequence was simu-
lated by reducing the training data: only a small percentage
of the sequence of healthy observations at the beginning of
the training run-to-failure sequence and a small percentage of
the sequence of faulty observations at the end of the training
run-to-failure sequence were used (see Table 2). In order to
simulate data scarcity, two random engines from the training
data set were selected for each of the four subsets. In case
of the FD001 subset, this implied that only two out of one
hundred instances (i.e. engines) were used for training. As a
consequence, a data set suitable for binary classification was
generated. This data set was scaled to mean zero and unit
variance. Based on this data set, the GPC model was trained.
After training, the unobserved sequences from the test data set
served as input for the trained GPC model, which predicted
the probability of class membership for each single observa-
tion within the test sequence up to the latest measurement,
resulting in a sequence of HI values over time. Based on this
sequence of HI values, a warped, monotonic GPR model was
applied to forecast the future progress of the HI values. The
end-of-life time was defined at the point in time, where the
forecasted values fell below a threshold of 0.10. The RUL
was calculated as the difference between the end-of-life time
and the time of the latest measurement. Details concerning
the implemented models are given in Appendix B. In case
of applying the MR strategy for too large RUL estimates,
the maximum RUL was set to 125 cycles, which is in accor-
dance with [10] and [9]. In order to account for statistical
fluctuations in the results, the experiments were conducted
ten times, each time selecting two different random engines
for training the GPC model.

B. FEMTO DATA SET
In contrast to the C-MAPSS data set, which provides simu-
lated run-to-failure sequences, the FEMTO data set consists

TABLE 3. Overview of the different FEMTO operating conditions.

of run-to-failure sequences that were recorded on a real test
bench, the so called PRONOSTIA test bench, developed at
the FEMTO-ST Institute in Besano̧n, France [13]. On this
test bench, rolling bearings were run to failure without induc-
ing errors beforehand and therefore, generating realistic run-
to-failure sequences for bearings. The bearings were clamped
on a bearing support shaft, which was actuated by an elec-
trical motor. On the outer ring of the bearings a radial force
was induced by a hydraulic actuator. The run-to-failure exper-
iments were performed in three different operating conditions
(see Table 3). During the experiments, acceleration and tem-
perature was measured by two accelerometers and a ther-
mocouple. The failure threshold was set to the acceleration
exceeding 20 g. The acceleration was measured every 10 s
in 0.1 s snippets with a sampling rate of 25.6 kHz. Tempera-
ture measurements were conducted continuously with a sam-
pling rate of 10Hz. However, the temperature measurements
are only available for one condition and, therefore, were
neglected for all conditions in this work. For each condition
two run-to-failure sequences are available. For conditions one
and two, five sequences and for condition three, one sequence
is available for testing. Similarly to the C-MAPSS data set,
only the first few (i.e. ph percent) and last few (i.e. pd percent)
observations of the two training run-to-failure sequences
were selected for training (see table Table 2). In case of
the FEMTO data set, further pre-processing of the data was
necessary, since in contrast to the C-MAPSS data set, the raw
data is not composed of degradation sensitive features. Three
kinds of features were extracted. First, statistical features
from the time and the frequency domain were calculated (see
Table 7 in Appendix C). The features were transformed via
PCA and the first six principal components were selected,
which showed to be a sensible trade-off between dimen-
sional reduction and information loss, explaining approxi-
mately 90% of the variance of the original data. Second,
the feature extraction approach from Sutrisno et al. [35]
was adopted, which generates moving average values
of the kurtosis of the frequency band from 5.5 kHz to
6 kHz. Third, the feature extraction method proposed by
Kim et al. [36], which computes entropy values of spe-
cific, normalized energy spectrum bands, was implemented.
Since only two training run-to-failure sequences are available
for each condition, the experiments were only performed
once.

C. PERFORMANCE METRICS
The resulting RUL estimates y?RUL of the proposed approach
were judged by their deviation from the true RUL values
yRUL with respect to four performance metrics, which are
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also reported in the related work presented in Section II
and, therefore, allow a comparison. For the results of the
experiments with the C-MAPSS data set, the deviation of the
ith test prediction is denoted as τi = y?RUL,i − yRUL,i. First,
the root mean squared error (RMSE) for each subset in the
C-MAPSS test data set was computed:

RMSE =

√√√√ M∑
i=1

(τi)
2, (7)

with M being the number of test predictions. In addition,
the mean absolute error (MAE) was computed:

MAE =
M∑
i=1

|τi| . (8)

For the C-MAPSS data set, an asymmetric score func-
tion was proposed by [12], which punishes late predictions
stonger than earlier predictions:

s (τi) =

{
s1 (τi) = e−

τi
13 − 1, for τi < 0.

s2 (τi) = e
τi
10 − 1, for τi ≥ 0.

(9)

The rationale behind this scoring function is, that late pre-
dictions and the associated unplanned failure of an instance
lead to higher costs than too early replacements. The lower,
the score value is, the better is the prediction.

For the experiments with the FEMTO data set a relative
error, which was originally proposed by [13], and which is
calculated as

error = 100×
yRUL − y

?
RUL

yRUL
, (10)

was calculated in order to assess the performance of the
proposed approach and relate it to a benchmark approach.

VI. RESULTS
In this section the results of the experiments, described in
Sections V-A and V-B, are presented. The section is struc-
tured according to the contributions declared in Section I.

A. DATA-EFFICIENCY OF THE PROPOSED HEALTH
INDICATOR
The first objective of this work is to present a data-efficient
HI. For the evaluation of the achievement concerning this
objective, three different test instances from the C-MAPSS
data set, and their respective estimated HIs are shown
in Fig. 4. Training was conducted with only two training
instances. In addition to the HI produced by the GPC model,
results produced by simple linear regression and logistic
regression models are shown. It can be seen, that the resulting
HIs produced by the GPC model are much steadier than the
HIs produced by linear regression and logistic regression
models. This is important for the second step of the proposed
approach, where the estimated HI values are extrapolated in
order to estimate the RUL. Actually, the HIs of the linear
regression models are very noisy for engines number 16 and

FIGURE 4. Exemplary HI sequences generated by the fitted GPC model for
three engines of the C-MAPSS FD001 test subset; training was conducted
with two training instances.

number 30. A sensible extrapolation of those noisy HI values
is hardly possible. Another issue of using a linear regression
model for estimating HIs becomes visible for engine num-
ber 52. Here, the HI estimates at the beginning of the life
cycle are higher than one and the HI estimates at the end of the
life cycle are lower than zero. This is an unwanted behavior,
since for such HIs, defining end-of-life time thresholds is
considerably harder than for HIs that are always within the
range [0], [1]. The HI estimated by the logistic regression
model, in contrast, is within the range [0], [1] by definition,
as the logistic regression model outputs a probability of class
membership. However, it can be observed, that the HIs pro-
duced by the logistic regression model are almost constant for
a long proportion of the life cycle and drop abruptly when the
end-of-life time is near. This can be seen especially in the case
of engine number 52. This behavior is undesirable as well,
since an extrapolation of a suddenly dropping HI is hard and
can lead to inaccurate RUL estimates. However, the HI values
estimated by the GPC model are convincing, since they are
within the range [0], [1] by definition and they are neither
too noisy, nor do they drop too fast. Hence, they are expected
to be suitable for extrapolation.

B. APPLICATION TO THE C-MAPSS DATA SET
The second objective of this work is to present an approach
which can accurately estimate the RUL of a new, unseen
instance, based on the data-efficient HI provided by the GPC
model. In Fig. 5, exemplary extrapolations and the true end-
of-life time values are shown, again for the three exemplary
test engines 16, 30 and 52. First of all, it can be seen,
that the warped, monotonic GPR model’s mean prediction,
shown as a black line, is in accordance with the observed
HI values and their trend. Furthermore it can be seen, that
the threshold set at 0.1 and the subsequently resulting end-
of-life time estimate match the true end-of-life time almost
exactly for the engines 16 and 30. For engine 52, the RUL
estimate is not as accurate, since the observed HI values
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TABLE 4. Summary table of results for the C-MAPSS data set; results show the summary statistics mean and variance of all results produced by ten
experiments.

FIGURE 5. Exemplary RUL estimation for the C-MAPSS FD001 subset
trained on two instances; the grey area represents 1.96 standard
deviations from the mean.

are already close to the threshold. From this example it can
be seen, that the accuracy of the RUL estimate is mainly
determined by theGPCmodel, which generates theHI values.
The results for the entire C-MAPSS test data, including all
subsets, are shown in Table 4. There, the results for ten runs
of the experiments are reported. It becomes visible, that the
mean performances differ from subset to subset, which is in
line with expectations, due to the different fault modes and
operating conditions. It is noticeable, that the MR strategy
for handling large RUL estimates is always outperforming the
DI strategy. Furthermore, the standard deviations are lower
for the MR strategy. However, the standard deviations remain
rather high, such that a closer look into the distribution of
the performances of the single test instances is necessary.
In Fig. 6, all prediction results for the performance metric
score are shown for all ten runs. It can be observed, that few
very poor performing predictions (i.e. high scores) are present
and corrupt the reported mean and standard deviations. How-
ever, the interquartile ranges of the distributions of the scores
for the FD001 and FD003 subsets, indicated by the boxplots,
show both, good scores and low distance from the median
score. For the FD002 and FD004 subsets, the performance is
worse. Here, the distributions are not as compact around the
median, which itself is at higher (i.e. worse) scores.

C. COMPARISON WITH STATE OF THE ART METHODS
The third objective of this work is the comparison to the
performance reported in the state of the art. Recent work by

FIGURE 6. C-MAPSS results of all ten experimental runs (X-axis displayed
as log scale.)

Jiang et al. [37] aggregated some notable approaches from
the literature and their performances. A selection of those is
shown in Table 5 for convenience. Compared to the state of
the art results, the achieved mean performance in terms of
RMSE and score of the proposed approach is comparably
good. In the case of the FD001 subset it is even outper-
forming some of the DL approaches. Considering that the
proposed approach only uses two training instances compared
to 100 training instances used by the state of the art methods,
the fact that comparable performances can be achieved is
remarkable. This is evenmore the case when considering, that
no run-to-failure data was used.

D. TRANSFER TO THE FEMTO DATA SET
The fourth objective of this work was to apply the proposed
approach to the FEMTO data set and comparing the achieved
performance to the state of the art. This is reported in Table 6.
There it can be seen, that the performance is comparable to
the benchmark work from Sutrisno et al. [35], who were one
of thewinning teams of the International Conference on Prog-
nostics andHealthManagement (ICPHM) 2012 FEMTOdata
challenge. It has to be noted, that the predictive performance
on the FEMTO data set is not as remarkable as it is on the
C-MAPSS data set for both, the proposed approach and the
benchmark approaches from the state of the art. This is due to
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TABLE 5. Selection of state of the art results for the C-MAPSS data set based on [37].

TABLE 6. Summary table of results for the FEMTO data set.

the complexity of the raw data of the FEMTO data set and the
resulting difficulty to extract failure sensitive features. Nev-
ertheless, the proposed approach achieves comparable results
with only a fraction of the data the benchmark approach
consumes.

VII. DISCUSSION AND OUTLOOK
In this work, a novel Gaussian process based approach for
data-efficient RUL estimation was presented. The approach
is estimating the RUL indirectly by first constructing a GPC
model to translate a machinery’s sensor signal into an HI
value. In a second step, this HI value is extrapolated with
the help of a warped, monotonic GPR model. The time the
extrapolated HI values surpass a preset threshold is defined
to be the estimated end-of-life time. Based on this, the esti-
mated RUL can be calculated. The approach was applied to
the well known benchmark data set C-MAPSS. In addition,
the poposed approach was applied to the FEMTO data set.
The experiments yielded the following insights:

1) In use cases where the operating conditions are not
relevant for correlating a signal to wear, the approach
yields good results compared with the state of the art,
as it was shown for the C-MAPSS FD001 subset.

2) In use cases with different fault modes, the approach
also yields comparatively good results, as well, as it
was shown for the C-MAPSS FD003 subset.

3) When operating conditions are not controlled but
implicitly recorded in the sensor signals, the
approach fails to extract those operating conditions

automatically, leading to bad RUL estimates, as it was
shown with the C-MAPSS FD002 and FD004 sub-
sets. Hence, further investigations for cases, in which
operating conditions are known and can be controlled,
are needed. One approach to account for operating
conditions for the C-MAPSS data set was presented
by Wang et al. [40].

4) The approach can be also applied to a real world data
set, which was exemplarily shown with the FEMTO
data set. Here, the major constraint of the approach
became visible: the proposed approach relies on sig-
nals, which are sensitive to wear and failure. This is the
case in the C-MAPSS data set, which explains the good
performance on that data set. For the FEMTO data set,
however, this is not the case. The extraction of reliable,
failure sensitive features has not been achieved satisfac-
torily with the adapted pre-processing techniques from
the state of the art, which ultimately leads to worse
performances on this data set.

Summarizing, the proposed approach adds value to the
research in RUL estimation as it enables accurate predictions
in use cases, where wear and failure sensitive features are
known, operating conditions can be controlled but historic
run-to-failure data is absent except for single observations of
healthy and faulty states.

Future improvements of the proposed approach should
deal with the automatic extraction of wear and failure sen-
sitive features (as exemplarily shown by Michau et al. [41]),
the incorporation of controlled operating conditions into the
GPC and GPRmodel, optimizing the hyper-parameters of the
approach and transferring the approach to other real world
data sets.

APPENDIX A
ADDITIONAL DETAILS ON GAUSSIAN PROCESSES
A. COVARIANCE FUNCTIONS
In this appendix, the different covariance functions used in
this work are formally denoted. All formal definitions are
based on [27]. First, the radial basis function (RBF) covari-
ance function was used in order to model smooth, stationary
functions. Formally it is defined as

k
(
x, x′

)
RBF = σ

2 exp

[
−

(
x− x′

)2
2`2

]
, (11)
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with the lengthscale parameter ` and the magnitude
parameter σ 2. Second, a non-stationary covariance function
designed for remaining useful life estimation and presented
in [11] was used for the Figs. 1 and 2. It is defined as

k
(
x, x′

)
CMP=k

(
x, x′

)
RBF+k

(
x, x′

)
Poly+k

(
x, x′

)
WN , (12)

with the polynomial covariance function being

k
(
x, x′

)
Poly = σ

2 k
(
x, x′

)
DP k

(
x, x′

)
DP , (13)

where k
(
x, x′

)
DP = x · x′, and the white noise (WN) covari-

ance function being

k
(
x, x′

)
WN = σ

2. (14)

B. EXPECTATION PROPAGATION SOLUTION FOR
GAUSSIAN PROCESS CLASSIFICATION
According to Rasmussen and Williams [27] and for the case
of GPC, EP can be used to approximate the predictive dis-
tribution p (y? = 1 |X , y,X?) with a variational distribution
q(y? = 1|X , y,X ), which can be computed with

q(y? = 1|X , y,X?) =
∫
8(f ?)q

(
f ?|X , y,X?

)
df ?, (15)

where q (f ?|X , y,X?) is Gaussian with mean

Eq
[
f ?|X , y,X?

]
= k

(
X ,X?

)> (k (X ,X)+ 6̃)−1 µ̃, (16)

and variance

Vq
[
f ?|X , y,X?

]
= k

(
X?,X?

)
− k

(
X ,X?

)>
×

(
k (X ,X)+ 6̃

)−1
k
(
X ,X?

)
. (17)

The predictive probability for a new input q(y? =

1|X , y,X ) is given by:

8

 k (X ,X?)>
(
k (X ,X)+ 6̃

)−1
µ̃√

1+k(X?,X?)−k(X ,X?)>
(
k (X ,X)+6̃

)−1
k(X ,X?)

.
(18)

The parameters µ̃ and 6̃ are the mean vector and covari-
ance matrix of the local likelihood approximations of the
approximate posterior q (f ?|X , y,X?). They are sequen-
tially obtained in multiple EP steps until convergence of
the marginal likelihood can be observed. 8 is the probit
function.

C. MONOTONICITY FOR GAUSSIAN PROCESS
REGRESSION
Riihimäki and Vehtari presented a method to locally ensure
monotonicity around observations [42]. The idea is to add
so called virtual observations (xv|yv) that carry monotonicity
information and jointly train the GP on the normal and virtual
observations. The positions xv can be either chosen to uni-
formly lie on a grid, or adaptively inserted at places with high

probability of having the wrong kind of gradient. If the dis-
tance between two virtual observations is comparable to the
length-scale of the covariance function, the region between
them will also be affected by their monotonicity information,
due to its covariance structure. As the derivative of a GP
is also a GP [43], it is possible to add derivative observa-
tions into the process. The linearity of expected value and
variance operations allows analytic expressions describing
the derivative of an expected value, the covariance between
a derivative and a distribution, and the covariance between
two derivatives. Unfortunately, this insights make it possible
to include only specific values of slope and not an overall
increasing or decreasing trend of the latent function. For this
reason, a probit likelihood is used to link virtual monotonicity
observations yv ∈ {−1, 1}, at points xv with their derivatives,
resulting in

p

(
yv |

∂fv

∂x(d)v

)
= 8

(
∂fv

∂x(d)v

1
ν

)

=

∫ ∂fv

∂x(d)v

1
ν

−∞

N (t | 0, 1) dt, (19)

with ν being a parameter controlling the steepness of the
probit function. If ν → 0, probit becomes a step function,
assigning all ∂fv

∂x(d)v
> 0 to 1 and ∂fv

∂x(d)v
< 0 to −1, symbolizing

increasing and decreasing behaviors. Following [42], this
work set ν = 10−6, in order to tolerate small errors. Equipped
with this tool, the full posterior on all latent function values
becomes

p
(
f, f′|X ,Xv, y, yv

)
=

1
Z
p (y|f) p

(
yv|f′

)
p
(
f, f′|X ,Xv

)
, (20)

where f′ represents the derivative of f, Z the marginal like-
lihood, p

(
yv | f′

)
is the introduced likelihood in 19, and

p
(
f, f′ | X ,Xv

)
the GP prior

p
(
f, f′ | X ,Xv

)
= N

(
fjoint | 0,Kjoint

)
, (21)

with

fjoint =
[
f
f′

]
,

Kjoint =
[
K (X ,X ) K (X ,Xv)
K (Xv,X ) K (Xv,Xv)

]
. (22)

This creates a similar problem as in GP classification,
because p

(
yv | f′

)
is non-Gaussian and thus the expression

cannot be evaluated analytically. Again, EP was used to
approximate this posterior.

APPENDIX B
MODEL IMPLEMENTATION DETAILS
For the HI value estimation the GPy.core.GP()1 imple-
mentation was used with an RBF covariance function,
a Bernoulli likelihood, a probit link function and EP as
inference method. The maximum number of optimization

1https://github.com/SheffieldML/GPy
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TABLE 7. Overview of statistical features used for PCA for the FEMTO data experiments. In the time domain, x[i ] is the i th sample of a signal and N the
total number of samples. In the frequency domain, X [fi ] is the magnitude at the i th frequency and fM the highest frequency. For the frequency domain,
a FFT was used to create a one-sided positive frequency spectrum.

steps was set to 200. For the extrapolation of the HI val-
ues, the Matlab R© gpstuff implementation of monotonic
regression, gp_monotonic, was used [29]. A Gaussian
likelihood with log uniform prior on the variance was used,
as well as an RBF covariance function with a uniform prior
on the length-scale parameter and squared uniform prior on
the magnitude parameter. Positive noise, which is added to
the diagonal of the covariance matrix for numerical stability,
was set to the value 10−9 and the default scaled conjugate
gradient method was chosen for optimization. The warping
function was defined as a Gaussian cumulative function with
mean 0.5 and variance 0.1.

APPENDIX C
EXTRACTED STATISTICAL FEATURES
The extracted features used for the FEMTO experiments are
described in Table 7.
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