
Robotic Framework for Autonomous Assembly:
a Report from the Robothon 2021 Grand Challenge

Jonas Wittmann
Chair of Applied Mechanics

TUM School of Engineering and Design
Munich Institute of Robotics and Machine Intelligence

Technical University of Munich
jonas.wittmann@tum.de

Patrick Ruhkamp
Computer Aided Medical Procedures & AR

Department of Informatics
Technical University of Munich

p.ruhkamp@tum.de

Felix Sygulla
Chair of Applied Mechanics

TUM School of Engineering and Design
Munich Institute of Robotics and Machine Intelligence

Technical University of Munich
felix.sygulla@tum.de

Florian Pachler
Chair of Applied Mechanics

TUM School of Engineering and Design
Munich Institute of Robotics and Machine Intelligence

Technical University of Munich
florian.pachler@tum.de

Hyunjun Jung
Computer Aided Medical Procedures & AR

Department of Informatics
Technical University of Munich

hyunjun.jung@tum.de

Daniel Rixen
Chair of Applied Mechanics

TUM School of Engineering and Design
Munich Institute of Robotics and Machine Intelligence

Technical University of Munich
rixen@tum.de

Abstract—Up to now, many repetitive industrial processes, like
welding in automotive, have been automated. However, robust
solutions for assembly operations that, besides precise robot po-
sitioning, also require precise tactile interaction are not available
yet. The current research efforts on sensitive collaborative robots
and their control are a promising step towards assembly au-
tomation. In our contribution we present an autonomous robotic
framework to automate assembly tasks. It implements state-of-
the-art algorithms for object localization, motion planning, force
control, error handling and task scheduling. We present the
implementation details of our localization and insertion skills
on a FRANKA EMIKA robot and an Intel RealSense, the two
main components of the framework. Further, we introduce the
Robothon Grand Challenge, a new biennial competition series
that deals with automated electronic waste decomposition. Within
that competition, our framework made the fifth place out of nine
teams.

Index Terms—Compliant Assembly, Intelligent and Flexible
Manufacturing, Software Architecture for Robotic and Automa-
tion

I. INTRODUCTION

The current consumer demand for individualized products
drives factories into low-batch production. Further, due to
cost pressure, more and more industrial assembly processes
have to be automated. The individualized production and
the need for sensitivity requires advanced technologies, such
as tactile robots and robust object detection. At the same

PCAC BDTask SchedulerPDDL Planner

Deliberator Sequencer Behavioral Control

Fig. 1. 3T robot control architecture: High-level action planning is part of the
Deliberator that triggers a task, e.g. task board disassembly. The Sequencer,
e.g. implemented as behavior tree, ensures the proper task execution by
selecting appropriate skills from the low-level Behavioral Control.

time, automation solutions need to be easy-to-use and easy-to-
program for shorter system down times and changeover times,
and to also enable application of such technologies in small
and medium-sized enterprises without expertise in robotics.

978-1-6654-8217-2/22/$31.00 ©2022 IEEE

The three-tiered (3T) architecture is the most dominant for
the implementation of the underlying control architecture [1].
It ensures that the main system components, e.g. vision system,
high-level task planner and low-level control, can interact
dynamically for a robust process automation in dynamic
environments. To increase the flexibility of the architecture,
the current trend of robot software design goes towards robotic
skills. These are implemented in the lower Behavioral Control
layer of the 3T architecture which in this context is referred to
as skill-based architecture [2]–[7]. Fig. 1 shows a schematic
overview. Within our proposed robotic assembly framework,
we deal with the second and third layer, i.e. the Sequencer

2022 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
Santa Maria da Feira, Portugal – April 29-30, 2022

59

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

ut
on

om
ou

s R
ob

ot
 S

ys
te

m
s a

nd
 C

om
pe

tit
io

ns
 (I

C
A

R
SC

) |
 9

78
-1

-6
65

4-
82

17
-2

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
A

R
SC

55
46

2.
20

22
.9

78
47

75

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on June 07,2022 at 11:53:28 UTC from IEEE Xplore. Restrictions apply.

and the Behavioral Control. Therefor, we implement the Task
Scheduler as the Sequencer and the Parameterizable Com-
pliant Assembly Controller (PCAC) and the Board Detector
(BD) as the low-level skills. Implementation details of the three
components are given in Section III.

Skills are generic preprogrammed software modules that
encapsulate the expert knowledge of the robot developer and
allow autonomous task planning within the 3T architecture [4].
Their parameterization must be straightforward, e.g. for the
shop floor user. Robotic skills are situated meaning their
execution is triggered in a specific system state. Further, skills
can monitor their execution success using pre- and postcon-
dition checks which is referred to as cognizant failure [1].
Several subfeatures, i.e. primitives, compose their execution
process [3]. Depending on the task domain, i.e. whether the
robot is applied for logistics, assembly, inspection etc. a
limited set of generic robotic skills is sufficient for achieving
the tasks within that domain. E.g. [7] derives six robotic skills
like pickup or locate that are sufficient for logistic tasks and
ten generic skills required for assistive tasks. [8] states that
for assembly applications 40% of all tasks are insertion, i.e.
peg-in-hole tasks.

We present the hardware and software architecture of our
robot framework that automates assembly tasks. Besides mo-
tion planning, task scheduling and error handling, the local-
ization and insertion skills are the two main components. The
localization task involves the computation of the 6D pose of an
object of interest in a defined coordinate frame. The insertion
task is a typical peg-in-hole task in automated assembly,
like key insertion or plugging a receptacle. We give the
implementation details of the framework, and we demonstrate
the skills’ and the framework’s robustness in experiments.
Further, we benchmarked our framework within the Robothon
2021 Grand Challenge [9], a new biennial competition series
that deals with automated electronic waste decomposition. We
provide our results and we make our code open-source to
reduce the entry barrier of the competition for future teams.

The remainder of this paper is organized as follows: In
Section II, we present related work. Details on the hardware
and software architecture of our framework and the localiza-
tion and insertion skills are given in Section III. Section IV
evaluates the skills and framework in experiments and presents
the competition result. Conclusions follow in Section V.

II. RELATED WORK

There is a big variety of solution approaches for solving
the individual tasks that compose an automated assembly
application. Apart from specialized solutions, the majority of
the approaches are derivatives of a generic set of localization
and insertion skills. [10], [11] propose frameworks that com-
bine the localization and insertion skills for autonomous robot
manipulation.

For planar objects, [12] proposes a classical localization
approach by combining RGB and geometric information from
an RGB-D sensor. [13] uses the fully supervised learning-
based approach, and photo-realistic renderings are used to

reduce the domain gap between the training and inference.
[14] introduces a differentiable Perspective-n-Point (PnP) al-
gorithm to facilitate fully end-to-end learning [15], and focus
on photometrically challenging objects [16] with polarimetric
information and physical cues.

[17] proposes a compliant motion control policy as the
foundation for robot insertion skills. The compliant motion is
implemented based on a hybrid position/force control that tries
to follow a computed motion in the end effector’s direction
while minimizing resulting forces perpendicular to the motion.
In contrast to our approach, also the target location during
an insertion task is one of the inputs to the control scheme.
However, this location may not always be known accurately
enough or the geometric dimensions might be too small to
allow position-based approaches. [18] proposes to utilize com-
pliant control strategies that are parameterized by high-level
task planners for wiping tasks. Thereby, the Cartesian motion,
stiffness and force are derived as the main control parameters.
Similar to our approach, [19] uses visual and tactile sensing to
solve a peg-in-hole task. However, the focus lies on adaptive
assembly skills, i.e. the incorporation of uncertainties due to
e.g. unknown part motions using a Bayesian state estimator
and an adaptive robot motion generator. [2] implements a
screwing skill and a pick and place skill. However, a vision
system is not incorporated. Therefore, the parameterization
process of the pick and place skill, i.e. the required poses,
have to be recorded from user demonstration. [6] proposes
an assembly skill for mounting an antenna on an electronic
board. However, only feature detection is used to compensate
for position inaccuracies, and corresponding evaluations are
not provided. We instead rely on Cartesian compliance and a
wiggle motion as a search approach.

There are commercial app stores that provide prepro-
grammed robotic skills. For example in the FRANKA WORLD
app store [20] the application Press Button is offered that can
be parameterized with a push duration and a desired force.
However, these app-based programs are less flexible as we
will show in Section IV.

III. AUTONOMOUS ROBOTIC ASSEMBLY FRAMEWORK

This section gives an overview of our proposed assembly
framework. We present the hardware and software architecture
and the implementation details of the localization and insertion
skills. Further, we introduce a new biennial robotic competi-
tion series in which we benchmarked our framework against
solutions of other teams.

The design objectives of our framework are the following:

• Flexibility: Implementation of generic robotic skills that
are easy to adapt to different tasks.

• Autonomy: Autonomous task scheduling that allows ran-
dom object poses and includes error detection and recov-
ery without user interaction.

• Low-cost: Exploitation of intrinsic robot sensor informa-
tion and low-cost vision hardware. Total system cost:

˜23.000 EUR.

2022 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
Santa Maria da Feira, Portugal – April 29-30, 2022

60
Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on June 07,2022 at 11:53:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Rendered view of the competition board with five assembly tasks:
push two buttons (1,5); remove an Ethernet cable from a socket and plug it
into another (2); grasp a key, insert it into a hole and turn it (3); remove two
batteries from a case and put them in a storage (4). A microcontroller (6) was
used to monitor the performance.

• Accessibility: Usage of state-of-the-art tools and open-
source third-party libraries.

We developed the framework for the Robothon 2021 Grand
Challenge competition [9], a biennial competition coinciding
with the automatica trade fair to regularly benchmark per-
formance in robotic manipulation. The organizing committee
defines relevant tasks representing pressing and unsolved chal-
lenges in industry. In 2021, the competition took place for
the first time with the focus identifying manipulation skills
for electronic waste disassembly. Nine teams were selected to
develop a fully automated solution using a single arm robotic
manipulator. Thereby, each team was provided with the task
board shown in Fig. 2 that includes five assembly tasks and
that is randomly positioned in front of the robot. Detailed
information on the competition and the task board are given
in [9].

A. Hardware Architecture

Fig. 3 shows the hardware architecture of our approach.
With its integrated torque sensors, the FRANKA EMIKA robot
allows to implement tactile algorithms for insertion tasks with
position inaccuracies. We mounted an Intel RealSense D435i
camera on the end effector for the task board detection. The
end effector is equipped with 3D-printed fingers whose design
was iteratively optimized for the competition. PETG was used
due to its flexibility, and the fingers are covered by a rubber
coating to achieve sufficient grip for the interaction tasks. A
recess is added to the finger tips for a robust grasp of the
batteries and to passively ensure the correct alignment between
fingers and batteries. A small extruded cylinder at the finger
tip levers the batteries during removal.

B. Software Architecture

Fig. 4 shows the software architecture of the proposed
robotic assembly framework that is implemented in C++. The
Robot Operating System (ROS) is used as communication plat-
form between the three main modules that are implemented as
independent ROS nodes. For a proper interface design, ROS-
provided services are used for the communication. The Task

B0

Bee

Btb
Bcam

Fig. 3. Hardware architecture of our solution approach. The task board is
randomly located on the surface and fixed with Velcro strips. We plan the
motions of the end effector frame Bee in the robot’s base frame B0. The
task board pose is determined in the camera’s frame Bcam.

Rel. Task Poses
Motion
PCAC Parameters

Controller Manager
Parameterizable

Compliant
Assembly
Controller

Follow
Joint

Trajectory
Controller

Task
Supervisor

Error
Handler

CAD Model

Environ-
ment

Model Path
Planner

Inverse
Kinematics

Task Scheduler Board Detector

Planar Pose
Estimation

Hand Eye
Calibration

Robot
Interface

Blue Button
Key

Ethernet
Batteries

Red Button

camDref
eeDcam

IDtask

refDtask

Taskboard.png

Camera
Interface

Fig. 4. The framework is composed of three main modules: Motion; Task
Scheduler and Board Detector. The upper green boxes define the user
interfaces. The lower green boxes define the hardware interfaces.

Scheduler triggers the execution of the five assembly tasks
given in Fig. 2. Currently, the Task Scheduler is implemented
as a script based on if-else-statements. The Board Detector
implements the localization skill that detects the 6D pose of the
task board (see Section III-C). The Motion module implements
motion planning and execution, the insertion skill (see Section
III-D), the Error Handler and the Task Supervisor for the
assembly operation.

The upper green boxes in Fig. 4 show the four user
interfaces of the framework: 1) the PCAC Parameters de-
fines the task-specific parameterization of the PCAC (see
Section III-D); 2) the CAD Model defines the geometric
information of the environment model that is composed of
simplified geometries, e.g. boxes and spheres; 3) the Rel. Task
Poses define the relative poses of the tasks w.r.t. to the task
board reference frame Btb (see Fig. 2); 4) the TaskBoard.png
image of the task board is the reference for the localization.
1)-3) are implemented as YAML files, and the values are
loaded on the ROS parameter server during program start-up.
The two controllers in the Motion module are implemented
as ROS Controllers [21] and command the reference joint

2022 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
Santa Maria da Feira, Portugal – April 29-30, 2022

61
Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on June 07,2022 at 11:53:28 UTC from IEEE Xplore. Restrictions apply.

values to the FRANKA EMIKA robot via the robot’s hardware
interface, i.e. the franka hw [22]. We use [23] as the camera
interface.

The Task Scheduler calls the services provided by Motion
and Board Detector to implement the following high-level
process in which ID denotes a specific task, e.g. key:

1) Generate environment model
2) Detect task board location
3) For each task:

a) Move the end effector to task pose 0DID

b) Parameterize and activate PCAC
While the task board’s geometry is predefined, its location

is not. The required end effector pose to solve a task ID
w.r.t. the task board’s reference frame Btb is defined by the
user within the Rel. Task Poses file and given by tbDID.
The transformation between the camera frame and the end
effector frame eeDcam is determined by a hand-eye calibration
(see Section III-C). With the online localization of the task
board frame w.r.t. the camera frame camDtb the following
transformation determines the required end effector pose w.r.t.
robot’s base frame B0 for each task:

0DID = 0Dee eeDcam camDtb tbDID (1)

To plan and execute the motion of the end effector, Inverse
Kinematics on position-level are computed for the end effec-
tor’s goal 0DID within the Path Planner. The implementation
of the RRT-connect planner [24] in the open-source frame-
work MoveIt! [25] plans collision-free motions in the robot’s
configuration space based on the Environment Model, and
the computed path is tracked by the Follow Joint Trajectory
Controller.

The Task Supervisor monitors the task success, e.g. based
on the achieved push force when pressing the button. Due
to inaccuracies during object detection and positioning of the
end effector the success rate of the insertion tasks, esp. the
key insertion, limits the system’s robustness. Therefore, we
implemented the Error Handler that monitors the execution
of insertion tasks and triggers retries in case of failure.
Algorithm 1 shows the implemented logic. To avoid deadlocks
during the insertion, we define the timeout tlim. The insertion
process is defined successful when a position threshold zlim is
reached. After each failed insertion attempt, the pre-insertion
pose of the end effector w.r.t. BID is modified: a task-
independent delta, whose magnitude depends on the current
number of attempts n, is added to the x-coordinate. We only
modify the x-component as pose estimation inaccuracies in
this direction were highest in tests and had great impact on
the robustness, especially for the key insertion. This is due to
inaccuracies when estimating the orientation of Btb in Fig. 2
that, due to the considerable y-distance of Btb and Bkey , lead
to a reasonable inaccuracy in the x-component of Bkey . We
define a maximum number of attempts nmax.

C. Localization: Board Detector

Here, we implement two different approaches, a learning-
based and a classical approach, to solve the task of 6D object

Algorithm 1 Error Handling for Insertion Skills
1: n← 0
2: while (n < nmax) do
3: moveEndEffector(0DID)
4: while t < tlim do
5: if (zee < zlim) then
6: return true
7: end if
8: end while
9: n← n+ 1

10: adaptPreInsertionPose(n)
11: end while
12: return false

pose estimation of the task board in the camera coordinate sys-
tem Bcam. To transform the pose to the coordinate system of
the end effector Bee, a hand-eye calibration [26] is performed.

For the learning-based pipeline, we leverage [13], a two
step approach composed of heat map prediction and pose
refinement, which is trained in a supervised fashion. A CNN
first predicts eight corner points of the task board in the given
image, then the final pose is computed through EPnP [27]
with predefined corner points on the 3D CAD model of the
object. To provide a realistic and robust data set for training,
we rendered the CAD model of the task board in Unity with
various augmentations such as material, lighting, camera pose
and backgrounds. The training is done with a total of 7500
images and took 14 epoch to converge.

For the classical approach, we implement the pose estima-
tion approach in [12] as the task board has a planar surface
area and leverage the RGB-D information of our setup. To
detect the pose camDtb of the planar task board, we need to
detect three orthonormal vectors on the surface that describe
the coordinate frame of the object. Therefore, the robot first
moves to a predefined pose above the expected task board
area and acquires an overhead image. Robust features [28]
on the task board of the live camera view are matched with
a pre-acquired user-provided target image (Taskboard.png in
Fig. 4). A homographic transformation between the current
view and the target is computed from the feature matches with
a robust RANSAC scheme to filter outliers. The target image
defines three points on the image plane, with a center point and
two points with orthogonal vectors (e.g. the image center and
two points in x- and y-axis of the image, respectively). These
points are transformed into the current view via the estimated
homographic transformation. Now, the depth values from the
active depth sensor are queried from the point cloud and the
3D center point yields the translational part of the task board
pose. The z-axis (towards the camera) is computed as cross
product of the x- and y-axis, where the axes are defined by
the three coplanar points defined before. The rotation is then
computed from the unit vectors along the three axes.

2022 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
Santa Maria da Feira, Portugal – April 29-30, 2022

62
Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on June 07,2022 at 11:53:28 UTC from IEEE Xplore. Restrictions apply.

D. Insertion: Parameterizable Compliant Assembly Controller

We rely on an impedance-based insertion strategy similar
to [29]. However, instead of adding an additional wrist force
sensor, we use the integrated torque sensors. We implemented
the PCAC as our insertion skill that computes the reference
joint torques τ ref in each 1 kHz control cycle. Our imple-
mentation builds upon the algorithm in [30] that implements
a Cartesian force controller and a Cartesian impedance con-
troller. Compared to [30], we add a D-gain and I-gain for
the force controller and the impedance controller respectively.
Further, our implementation allows force control in arbitrary
directions which is required e.g. for turning the key or remov-
ing the batteries. Algorithm 2 shows our implementation of
the PCAC. Therein, xEE and pEE define the end effector’s
position and orientation respectively. Note that orientation
computations are implemented using unit quaternions and ⊗
defines the quaternion multiplication. fEE defines the external
forces and torques acting on the end effector. The PCAC
composes three primitives: a PID Cartesian force controller
(line 4); a Cartesian impedance controller (line 12) and a
wiggle motion feature (line 8). The former applies the pa-
rameterized forces, e.g. for pressing the button, in the defined
coordinate direction. As no force trajectories are computed
and as the force controller has to be activated when there
is no contact with the environment yet, the PID control
scheme ensures a smooth application of the desired force value
(instead of e.g. using only a P gain). The Cartesian impedance
controller keeps the end effector at the current pose, e.g. during
turning the key or when removing the Ethernet plug. The
wiggle motion compensates position errors during insertion
tasks which set the insertionTask flag to activate the wiggle
motion feature within the PCAC. Note that in the sense of a
hybrid position/force control, one coordinate direction is either
controlled by the Cartesian impedance control or by the PID
force control. This is enabled within the PCAC Parameters
file (see Fig. 4) by setting either the desired force or the
desired Cartesian stiffness to zero for the respective coordinate
direction.

Within the PCAC Parameters file in Fig. 4, the user defines
the specific parameters for each task: desired end effector
force fEE,des; P-, I- and D-gains for the force controller and
impedance controller; flag insertionTask to activate the wiggle
motion; frequency f and amplitude A of the wiggle motion.
The initial end effector position xEE,init and the initial end
effector orientation pEE,init are stored at controller start-up
and further serve as input. To ensure critical damping, we
set KD,Imp =

√
2KP,Imp. A second-order low pass filter

processes the force error and computes the corresponding D-
component of the PID force controller. The wiggle motion
applies a sinusoidal oscillation of the end effector’s orientation
in its x- and y-direction based on f and A. The dynamic robot
model computes the compensation of the gravity, centrifugal
and Coriolis forces g(q) and η(q, q̇).

Algorithm 2 Insertion Skill
Input: xEE,init,pEE,init, fEE,des,KP,PID,KI,PID,

KD,PID,KP,Imp,KI,Imp, f, A, insertionTask
Output: τ ref

1: ferr ← fdes − estimateExternalForce()
2: ferr,I ←

∫
ferr dt

3: ferr,D ← secondOrderLowPassDerivative(ferr)
4: fPID ← KP,PIDferr +KI,PIDferr,I +KD,PIDferr,D
5: xEE,err ← xEE,init − xEE
6: pEE,des ← pEE,init
7: if insertionTask then
8: pEE,des ←changeOrientation(f,A,pEE,init)
9: end if

10: pEE,err ← p−1EE ⊗ pEE,des
11: ωerr ← [xEE,err;pEE .toRotMatrix()log(pEE,err)]
12: fImp ← KP,Impωerr +KI,Imp

∫
ωerr dt−KD,ImpJq̇

13: τ ref ← g(q) + η(q, q̇) + JT (fPID + fImp)

TABLE I
TASK BOARD POSE ESTIMATION ERROR

Translational Error Rotational Error
RGB-D 9.8± 3.5 mm 0.72±0.32◦

Learning-Based 9.2±3.8 mm 7.32± 4.46◦

IV. RESULTS

A. Board Detector

We benchmark the accuracy of our localization and com-
pare the learning-based approach [13] against the classical
method [12]. Table I shows the average pose error and the
standard deviation for both approaches over eight trials. The
pose error is computed against the ground-truth pose of
the task board, which is determined by measuring the 3D
coordinates of four corner points of the task board through the
forward kinematics of the robot’s end effector. The rotational
component of the estimated 6D pose for the learning-based
approach is less accurate with large deviations. Hence, we
opted in our final system to use the classical approach due to
its better performance, generalization and no need for training.
The relative large translational error is due to inaccuracies of
the depth sensor which lead to errors in the z-direction of the
estimated position. For this reason, the height of the task board
is hard coded, as the board usually lies on a flat surface with
constant height w.r.t. the robot base. The proposed insertion
skill in Section III-D was able to compensate the translational
error and successfully achieved the insertion tasks.

B. Robotic Assembly Framework

To evaluate the robustness of our framework, we did ten
task board runs. Fig. 5 shows a complete task board run. We
benchmark the PCAC implementation with a human and an
easy-to-program app-based solution based using the FRANKA
WORLD app store [20] (see Section I). Table II compares the
task-specific average success rate, the average solution time

2022 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
Santa Maria da Feira, Portugal – April 29-30, 2022

63
Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on June 07,2022 at 11:53:28 UTC from IEEE Xplore. Restrictions apply.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Fig. 5. Complete task board run with the five assembly tasks in Fig. 2.

TABLE II
BENCHMARK OF TASK BOARD SOLUTION APPROACHES

Success Rate [%] Time [s] Effort Flex.
Button Key LAN Battery

Human 100 100 100 100 16 • •••
Framework 100 90 100 85 153 ••• ••
App 100 100 100 75 193 •• •

for the task board and the qualitative implementation effort
and flexibility of the three approaches.

The ten task board runs include 20 button presses (red
and blue), ten key insertions, ten Ethernet insertions and 20
battery removal and insertions operations (two batteries). The
success rate is determined as the number of successful task
executions divided by the number of total task attempts, e.g.
20 for the button task. Both automation solutions can not
compete with a human worker. The app-based approach and
our framework showed similar robustness for the individual
tasks. Both can solve tactile interaction tasks like pressing a
button robustly. Also insertion tasks with a lower demand on
position accuracy, e.g. the LAN task, are solved robustly. Inser-
tion tasks with a higher demand on position accuracy, e.g. the
key insertion, are more challenging, and our framework failed
once in the evaluation. Thereby, our error handler adapted
the key insertion pose in seven runs. The battery recycling
is composed of several subtasks and therefore showed the
worst performance for both automation solutions. W.r.t. time
our framework can compete with the app-based program and
even shows better performance. However, note that this is
a qualitative statement as we did not exploit the actuators’
limits. When it comes to implementation effort, our framework
is worse than the app-based approach. The main advantage
of our framework compared to the app-based approach is its
flexibility: the app-based approach restricts the integration of
further modules and therefore can not be used for applications
in which the task board pose is not known. In contrast to that,
our framework allows a localization of the task board and is
thus able to solve it in various pose ranges. The corresponding

evaluation video shows all three approaches and the ten runs
of our framework with random repositioning of the task board:
https://youtu.be/Yg3tPoy7zxw. Note that we did the evaluation
with the current implementation that we have worked on since
the Robothon 2021 Grand Challenge.

With a previous version of our proposed framework, we
made the fifth place in the Robothon 2021 Grand Challenge
competition and the results are available at [9]. During the
competition we could resolve all tasks except turning the key
and took 200 seconds.

V. CONCLUSIONS

In contrast to welding and drilling, robust automation solu-
tions for industrial assembly operations are not mature yet.
Within these applications, there is still a lack of technol-
ogy transfer from state-of-the-art research to industry. The
proposed framework demonstrates the potential of low-cost
automation solutions for assembly tasks. The main features
of the individual software modules are based on open source
third-party libraries. The proposed localization is accurate
enough for a robust execution of the other robotic tasks, but
is limited to piece-wise planar objects like the task board
we used. Compared to that, a learning-based approach suffers
from large rotational errors, which may be accounted for in
the future with a self-supervised 6D pose refinement stage.
Such approaches are an active and challenging field of research
in the vision community. The proposed insertion approach,
combined with the proposed error handling, shows a robust
operation. Its straightforward parameterization allows its ap-
plication in a wide range of assembly and tactile interaction
operations. To lower the entry barrier of the biennial Robothon
Grand Challenge competition series for other teams, we make
our framework open source: https://gitlab.lrz.de/AM/rgc21. We
also provide the files for our 3D-printed fingers and the file
for running the app-based program using FRANKA Desk.

REFERENCES

[1] B. Siciliano and O. Khatib, Springer Handbook of Robotics. Berlin,
Heidelberg: Springer-Verlag, 2007.

[2] F. Steinmetz and R. Weitschat, “Skill parametrization approaches and
skill architecture for human-robot interaction,” 2016 IEEE International
Conference on Automation Science and Engineering (CASE), pp. 280–
285, 2016.

[3] M. Pedersen, L. Nalpantidis, R. Andersen, C. Schou, S. Bgh, V. Krger,
and O. Madsen, “Robot skills for manufacturing: From concept to in-
dustrial deployment,” Robotics and Computer-Integrated Manufacturing,
vol. 37, 02 2016.

[4] M. Crosby, F. Rovida, M. Pedersen, R. Petrick, and V. Krüger, “Planning
for robots with skills,” in Proceedings of the 4th Workshop on Planning
and Robotics (PlanRob). ICAPS, Jun. 2016, pp. 49–57, 4th ICAPS
Workshop on Planning and Robotics 2016, PlanRob 2016.

[5] J. Saukkoriipi, T. Heikkilä, J. Ahola, T. Seppälä, and P. Isto, “Program-
ming and control for skill-based robots,” Open Engineering, vol. 10,
no. 1, pp. 368–376, Jan. 2020.

[6] H. Herrero, A. Abou Moughlbay, J. Outn, D. Salle, and K. Lopez-de
Ipia, “Skill based robot programming: Assembly, vision and workspace
monitoring skill interaction,” Neurocomputing, vol. 255, 03 2017.

[7] S. Bøgh, O. Nielsen, M. Pedersen, V. Krüger, and O. Madsen, “Does
your robot have skills?” in Proceedings of the 43rd International
Symposium on Robotics. VDE Verlag GMBH, Aug. 2012.

[8] J. Jiang, Z. Huang, Z. Bi, X. Ma, and G. Yu, “State-of-the-art control
strategies for robotic pih assembly,” Robotics and Computer-Integrated
Manufacturing, vol. 65, p. 101894, 2020.

2022 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
Santa Maria da Feira, Portugal – April 29-30, 2022

64
Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on June 07,2022 at 11:53:28 UTC from IEEE Xplore. Restrictions apply.

[9] Munich Institute of Robotics and Machine Intelligence. (2021)
Robothon- the grand challenge series of munich i an international
competition in robot manipulation. [Online]. Available: https://www.
robothon-grand-challenge.com/

[10] L. Johannsmeier, M. Gerchow, and S. Haddadin, “A framework for robot
manipulation: Skill formalism, meta learning and adaptive control,” in
2019 International Conference on Robotics and Automation (ICRA).
IEEE, 2019.

[11] D. Wahrmann, A.-C. Hildebrandt, C. Schuetz, R. Wittmann, and
D. Rixen, “An autonomous and flexible robotic framework for logistics
applications,” Journal of Intelligent & Robotic Systems, vol. 93, no. 3,
pp. 419–431, Mar 2019.

[12] S. K. Paul, M. T. Chowdhury, M. Nicolescu, and M. Nicolescu, “Object
detection and pose estimation from rgb and depth data for real-time,
adaptive robotic grasping,” in Proceedings of the International Confer-
ence on Image Processing, Computer Vision, and Pattern Recognition
(IPCV), 2020.

[13] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birch-
field, “Deep object pose estimation for semantic robotic grasping of
household objects,” in Conference on Robot Learning (CoRL), 2018.

[14] Y. He, H. Huang, H. Fan, Q. Chen, and J. Sun, “Ffb6d: A full flow
bidirectional fusion network for 6d pose estimation,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021.

[15] G. Wang, F. Manhardt, F. Tombari, and X. Ji, “GDR-Net: Geometry-
guided direct regression network for monocular 6d object pose esti-
mation,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2021, pp. 16 611–16 621.

[16] D. Gao, Y. Li, P. Ruhkamp, I. Skobleva, M. Wysock, H. Jung, P. Wang,
A. Guridi, N. Navab, and B. Busam, “Polarimetric pose prediction,”
2021.

[17] F. Dai, A. Wahrburg, B. Matthias, and H. Ding, “Robot assembly
skills based on compliant motion,” in Proceedings of ISR 2016: 47st
International Symposium on Robotics, 2016, pp. 1–6.

[18] D. Leidner, A. Dietrich, M. Beetz, and A. Albu-Scheffer, “Knowledge-
enabled parameterization of whole-body control strategies for compliant
service robots,” Autonomous Robots, 03 2016.

[19] K. Nottensteiner, A. Sachtler, and A. Albu-Scheffer, “Towards au-
tonomous robotic assembly: Using combined visual and tactile sensing
for adaptive task execution,” Journal of Intelligent & Robotic Systems,
vol. 101, 03 2021.

[20] FRANKA EMIKA GmbH. (2021) Franka world. [Online]. Available:
https://world.franka.de/products

[21] S. Chitta, E. Marder-Eppstein, W. Meeussen, V. Pradeep,
A. Rodrı́guez Tsouroukdissian, J. Bohren, D. Coleman, B. Magyar,
G. Raiola, M. Lüdtke, and E. Fernández Perdomo, “ros control: A
generic and simple control framework for ros,” The Journal of Open
Source Software, 2017.

[22] FRANKA EMIKA. (2022) franka hw. [Online]. Available: https:
//github.com/frankaemika/franka ros/tree/develop/franka hw

[23] Intel RealSense team. (2022) Ros wrapper for intel realsense devices.
[Online]. Available: https://github.com/IntelRealSense/realsense-ros

[24] J. Kuffner and S. LaValle, “Rrt-connect: An efficient approach to single-
query path planning,” in IEEE International Conference on Robotics and
Automation, vol. 2, 2000, pp. 995–1001 vol.2.

[25] “MoveIt!” https://moveit.ros.org/, accessed: 2021-06-12.
[26] R. Tsai and R. Lenz, “Real time versatile robotics hand/eye calibration

using 3d machine vision,” in Proceedings. 1988 IEEE International
Conference on Robotics and Automation, 1988, pp. 554–561 vol.1.

[27] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o(n)
solution to the pnp problem,” International Journal of Computer Vision,
vol. 81, 02 2009.

[28] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, pp. 91–, 11 2004.

[29] P. Zou, Q. Zhu, J. Wu, and J. Jin, “An approach for peg-in-hole assem-
bling based on force feedback control,” in 2019 Chinese Automation
Congress (CAC), 2019, pp. 3269–3273.

[30] “Force control tutorial by FRANKA EMIKA,” https://github.com/
frankaemika/icra18-fci-tutorial, accessed: 2021-06-12.

2022 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
Santa Maria da Feira, Portugal – April 29-30, 2022

65
Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on June 07,2022 at 11:53:28 UTC from IEEE Xplore. Restrictions apply.

