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Preface

This cumulative thesis is based on three papers published in Ref. [1–3]. Two of them have already
been published in international peer-reviewed journals. The last one has been submitted to an
international peer-reviewed journal. It will not be accepted until submission of this thesis, but is
already publicly available as a preprint on ChemRxiv. This thesis aims to give a broader insight
and embeds the used papers in an overall context. Furthermore, an introduction to the methods
used and the corresponding literature is given. Summaries and author contributions of the papers
are also included in this thesis. The papers themselves, as well as supplementary information are
attached as appendix. The supporting information to the paper, which is uploaded on ChemRxiv,
is also included, but has not been uploaded yet to the platform.

The entire work was carried out between June 2018 and August 2020 at the Chair of Theoretical
Chemistry at TU Munich and from September 2020 to June 2022 at the Fritz Haber Institute of the
Max Plank Society in Berlin, under the supervision of Prof. Dr. Karsten Reuter. A research stay at
the Engineering Department at the University of Cambridge in October 2019 hosted by Prof. Dr.
Gábor Csányi completes this work.

Sina Stocker, Berlin, June 2022
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Abstract

The combination of machine learning (ML) and computational chemistry offers unprecedented
opportunities to gain new insights into chemical processes. Established computational chemistry
methods are often either too computationally demanding or do not provide the required accuracy.
Machine learning methods might overcome these limitations and are able to predict physical
properties very accurately, but significantly cheaper than quantum mechanical (QM) methods.
However, the generation of large reference databases, which are often required for training ML
models, is still a computationally costly task. This results in the fact that only few of such large
databases exist that cover certain sub-parts of the chemical space. The focus of this thesis is
therefore to explore the transferability of ML models trained on such fixed databases, but by
applying them to predictions on other subsets of chemical or reaction space. This exploration will
be shown and discussed on the basis of three different examples.

In the first example, established ML methods in chemical compound space were used to predict
reaction energies in chemical reaction space. The predicted reaction energies can then be utilized
to explore and reduce complex reaction networks. As a first step, a QM-based reference database
of closed-shell molecules and radical systems has been generated to describe chemical reactions.
Moreover, the analysis demonstrated that for adequate predictions in reaction space, certain
requirements have to be satisfied for compound space ML methods to ensure transferable models.
The resulting model could be used for the non-empirical reduction of reaction networks, with
methane combustion as an example.
The second example focused on the exploration of different parts of the chemical space with

molecules of large size differences. An important requirement for this is the use of size-extensive
ML models. To this end, this part of the thesis showed how size-extensive ML models can be build
to satisfactorily predict properties of large molecules, when training on small systems. The results
further showed, that non size-extensive models completely failed in that task.

In the last example, the robustness of advanced graph neural network (GNN) models in atomistic
simulations was investigated. To this end, models were trained on different subsets of the fixed
QM7-x database. This is an interesting test scenario, as the capabilities of GNNs were mostly tested
on established databases, whereas fewer studies have been conducted to show their applicability
in chemical simulations. The results showed that stable dynamics could be achieved for GNN
models trained on large training set sizes. Furthermore, it was found that instabilities during the
simulations could occur, even though the model produces low errors on a fixed test set.
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Zusammenfassung

Die Kombination aus maschinellem Lernen (ML) and computergestützter Chemie bietet zuvor noch
nie dagewesene Möglichkeiten ein tieferes Verständnis über chemische Vorgänge zu erlangen, da
etablierte Methoden der theoretischen Chemie oft entweder zu rechenintensiv sind oder nicht die
geforderte Genauigkeit liefern. Maschinell gelernte Modelle können physikalische Eigenschaften
sehr genau vorhersagen, wobei sie eine kostengünstige Alternative zu quantenmechanischen (QM)
Methoden darstellen. Die Erzeugung großer Referenzdatenbanken, die für das Trainieren von
ML Modellen benötigt werden, stellt sich jedoch aus Kostengründen noch als schwierig heraus,
was zur Folge hat, dass nur wenige solcher großen Datenbanken existieren. Diese decken dabei
jeweils auch nur einen gewissen Teilbereich des “Chemical Space” ab. Der Fokus dieser Thesis
liegt daher auf der Untersuchung der Transferierbarkeit von ML Modellen, die auf solch großen
Datenbanken trainiert wurden. Die Vorhersagen werden jedoch für andere Teile des “Chemical
Space” oder “Reaction Space” getroffen. Dies wird anhand dreier unterschiedlicher Beispiele
gezeigt und diskutiert.
Im ersten Beispiel wurden etablierte ML Methoden des “Compound Space” verwendet, um

Reaktionsenergien im “Reaction Space” vorherzusagen. Die vorhergesagten Reaktionsenergien
können dann genutzt werden, um komplexe Reaktionsnetzwerke zu untersuchen oder um sie
zu vereinfachen. Für die Vorhersage von Reaktionsenergien wurde im ersten Schritt eine QM-
basierte Referenzdatenbank von geschlossenschaligen Molekülen und Radikalen erstellt. Diese
Datenbank ist nötig, um chemische Reaktionen beschreiben können. Die Analysen zeigten, dass
für angemessene Vorhersagen im “Reaction Space” bestimmte Anpassungen für die ML Methoden
im “Compound Space” gemacht werden müssen, um übertragbare Modelle zu gewährleisten. Das
finale Modell konnte für die nicht-empirische Reduktion von Reaktionsnetzwerken am Beispiel
der Methanverbrennung verwendet werden.
Das zweite Beispiel setzte den Fokus auf die Erkundung verschiedener Teilbereiche des “Che-

mical Space” für Moleküle mit erheblichen Größenunterschieden. Eine wichtige Voraussetzung
für diese extrapolierende Erkundung ist dabei die Verwendung von extensiven ML Modellen. Die
Erzeugung dieser wurde daher in diesem Teil der Arbeit dargestellt und diskutiert. Es wurde
gezeigt, dass extensive ML Modelle zufriedenstellende Vorhersagen für große Moleküle liefern
können, wenn die Modelle zuvor auf kleine Systeme trainiert wurden. Die Ergebnisse zeigten
außerdem, dass nicht extensive Modelle bei dieser Aufgabe völlig versagen.

Im letzten Beispiel wurde die Robustheit von sogenannten “Graph Neural Networks” (GNNs) in
atomistischen Simulationen untersucht. Diese neuronalen Netze wurden zuvor auf verschiedenen
Teilmengen der QM7-x Datenbank trainiert. Die Untersuchungen sind in sofern interessant, da
die Performance von GNNs meist auf etablierte Datenbanken getestet wird. Es wurde bislang
jedoch noch weniger ihre Anwendbarkeit in chemischen Simulationen untersucht. Die Ergebnisse
zeigten, dass stabile Simulationen mit GNNs erreicht werden können, wenn diese Modelle mit
großen Datenmengen trainiert werden. Darüberhinaus wurde festgestellt, dass Instabilitäten
während den Simulationen auftreten können, auchwenn dieModelle kleine Fehler auf sogenannten
Testdatensätzen liefern.
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1 Introduction

Chemists are interested in the composition, properties and reactions of chemical compounds.
In this respect, a microscopic picture on the atomistic level provides fundamental insights into
a chemical structure or process and allows for the discovery of new materials with favourable
properties [4–7] and great value for both technology and industry. The understanding of individual
molecular reaction paths in chemical processes, for example, may help to find better catalysts that
facilitate the production of industrially relevant products or for the development of renewable fuels
that contribute to a sustainable future. [8–11] In this context, computer-aided calculations and
simulations are essential tools to provide specifically these insights into the chemical structures
and processes as the search space for finding new compounds can be incredible vast [12, 13].

In many respects, first principles quantummechanical (QM)methods form the basis for atomistic
studies in computational chemistry. Such QM calculations are typically based on the numerical so-
lution of the Schrödinger equation formulated within the Born-Oppenheimer approximation [14]
and allow for the determination of accurate ground-state properties for given geometries. Unfortu-
nately, the computational cost for evaluating physical properties with electronic structure methods,
such as density functional theory (DFT) [15–17], quickly becomes prohibitively expensive and
therefore limits the calculations to relativity small system sizes. This expense factor is particularly
impractical in high throughput screenings. Furthermore, only ps time scales are feasible, when
propagating the chemical system over time in so-called ab initio molecular dynamics simula-
tions [18]. These limitations pose significant challenges for the simulation of realistic chemical
systems and processes.
To circumvent these limitations, empirical force fields (FF) with simple analytic expressions

are often used and have been parametrized to simulate the system of interest at desired length
and time scales [19–21]. Their usage, however, involves some disadvantages regarding predictive
accuracy and parameterization. On the one hand, empirical FF are less accurate in contrast to DFT,
whereby this lack in accuracy can be problematic to quantitatively model molecular interactions or
chemical reactions. On the other hand, finding appropriate functional forms and parametrizations
usually results in a difficult and tedious quest [22–25]. A solution to both disadvantages is offered
by modern machine learning (ML) methods, which have been proven to perform highly accurate
predictions—when trained on QM data—without deciding for a predefined functional form. [25–27]
An ML algorithm can in principle learn any complex relationship between input and output

values from a training database. Computational chemists have taken advantage of this ability
and use ML methods as surrogate models to fit structure-property relationships. A commonly
applied example for this is the expression of the potential energy (and/or forces) as a function
of atomic positions, which is in this context denoted as machine learning interatomic potentials
(MLIPs) [28–30]. Learning such relations typically requires an encoding of the molecular structures
from a reference database and subsequently learning the structure-energy relationship with
kernel [31–35] or neural network (NN) [36–42] based regression models. These methods are
able to simulate chemical systems at desired time and length scales on QM accuracy, however,
with a fraction of the cost of the underlying reference method. [43–46] Besides structure-energy
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relationships, other properties such as dipole moments [47], band gaps[48], polarizabilities [49,
50], enthalpies [51] or binding energies on surfaces [52] have been successfully predicted by ML
methods and consequently demonstrated their applicability for computational chemistry questions
also in a high throughput fashion.
The training database plays an essential role for the successful generation of an ML model

and its quality of the predictions. In case this database does not contain essential features and
representative configurations relevant for the predictions, it is not assumed to lead to an adequate
ML model. In contrast to applications such as image recognition [53] or natural language pro-
cessing [54], where big data is available, this is typically not the case in computational chemistry.
Quantummechanical reference calculations are computationally expensive and the dimensionality
of chemical compound or reaction spaces including many elements across the periodic table is
tremendously large.
Nonetheless, QM-based databases for certain sub-parts of the chemical space exist, which

are predominantly generated for molecular structures. Prominent examples for such databases
are the QM9 [55, 56] or the QM7-x [57] data set consisting of around 134,000 and 4.2 million
configurations of small closed-shell organic molecules, respectively. While the QM9 data set
provides only equilibrium structures of molecules consisting of up to nine non-hydrogen atoms
(C, O, N, F), QM7-x contains both equilibrium and non-equilibrium configurations with molecules
up to seven non-hydrogen atoms (C, O, N, S, Cl). Both databases provide various DFT calculated
properties such as energies and forces for each configuration. However, even these databases
with more than 100,000 or millions of structures are rather sparse approximations of the chemical
compound space, considering that the chemical compound space of drug relevant molecules is
estimated to contain more than 1060 molecules [58].
Nevertheless, if a fixed database is available or has been generated that covers important sub-

parts of the chemical space, an intriguing next step would be to examine the corresponding ML
models in the extrapolative regime, i.e. when applying them to other sub-parts of chemical or
even reaction space. In this context, ML models are trained on fixed databases and extrapolated
predictions can be made without—or at least with only a few—additional expensive reference
calculations, which leads to data-efficient approaches. This cumulative thesis addresses this
scientific issue and explores the transferability of chemical machine learning methods in the
following three (published) examples. An illustrative overview about these examples is given in
Fig. 1.1.
In our first example published in [1], we transfer established atomization energy (AE) predic-

tions in chemical compound space to the calculations of reaction energies (RE) in reaction space
for the exploration and rational reduction of large and complex reaction networks. Our second
publication [2] addresses size-extensivity issues in ML models with so-called global representa-
tions. Here, we were particularly interested in the exploration of ML methods trained on small
molecules and tested on significantly larger configurations to explicitly show the importance
of size-extensivity for data-efficient models. Finally, in the third contribution [3], we explore
the applicability of modern graph neural network (GNN) MLIPs [59] in long and hot molecular
dynamics (MD) simulations, when trained on QM7-x. This rather novel class of MLIP produces
highly accurate predictions on benchmark data sets, which is a commonly applied test scenario
for GNNs. Their robustness in dynamic studies has been, however, less explored.

To put the work contained in this cumulative thesis into a broader perspective, the subsequent
chapters will present the theoretical background for the here used methods to provide a com-
prehensive picture of ML methods and their application in computational chemistry. Therefore,
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Fig. 1.1: Cumulative Thesis Overview. The figure provides a pictorial overview of three examples for testing
the transferability of machine learning models examined in this thesis. The focus has been set on ML
models that have been trained on benchmark databases (Rad-6, QM9, QM7-x) and the performance
was explored and tested in extrapolated regimes. This includes atomization energy (AE) predictions
on the Rad-6 database and corresponding calculations of reaction energies (RE) for given reaction
networks in the first example (1). In the second example, we use rather ’small’ molecules from the
QM9 database in the training procedure and evaluate the prediction error on significantly larger
molecules to address size-extensivity issues in the use of global representations (2). Finally, we use the
QM7-x database to train a graph neural network (GNN) and explore the corresponding robustness of
the potential in long and hot MD simulations (3) in the third example.

chapter 2 will introduce the reader to the fundamental concepts of theoretical chemistry, starting
with the quantum mechanical treatment of molecular systems and the resulting concept of the
potential energy surface (PES). This is followed by the explanation of DFT required to numerically
calculate the PES. Furthermore, the basic concepts of MD simulations are introduced, which is a
method to dynamically explore the PES.
In this thesis, a particular focus has been set on ML models and the generation of MLIP in

computational chemistry. Therefore, an extensive overview about ML is given in chapter 3, which
includes the generation of a training database, the representations of molecular geometries, the
learning algorithms for both NN and kernel-based ML and the appropriate validation of respective
ML models.
Afterwards, content summaries and the assignment of individual author contributions of the

relevant publications are given in chapter 4. The thesis is completed with a conclusions and
outlook chapter. All thesis relevant publications are attached as appendix.
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2 Theoretical Basics of Computational
Chemistry

As already introduced, this thesis focuses on the transferability of ML methods in computational
chemistry applications. Therefore, this chapter provides the reader with the fundamental chemical
concepts required to build these ML models. In particular, the focus is on an introduction to those
theoretical chemistry methods applied during the work of this thesis. In principle, this can be
summarized in terms of the following two aspects: On the one hand, the reader will be introduced
into quantum mechanical computations to build accurate reference databases, from which the ML
algorithm learns. And on the other hand, a short introduction into atomistic simulations is given,
from which physical observables can be derived using ML methods.

2.1 Potential Energy Surface

Computational chemists use atomistic simulations to gain fundamental insights into the constitu-
tion and properties of matter or to study mechanistic processes of chemical reactions. In case of
the latter, an illustrative example is given by a simple dissociation reaction where one molecule
cleaves into two smaller fragments through a bond breaking event. Studying such an atomistic
process, in which nuclei and electrons are involved, requires a quantum mechanical treatment.
The central equation in quantum mechanics and therefore computational chemistry, which models
the interactions between 𝑁 nuclei and 𝑛 electrons in a chemical system, e.g. a molecule, is the
(non-relativistic) time-independent Schrödinger equation (SE)

�̂� Ψ(r,R) = 𝐸 Ψ(r,R) . (2.1)

Here, �̂� is the Hamiltonian, 𝐸 is the energy of the chemical system andΨ(r,R) is the wavefunction.
The latter depends on both: the nuclear (R) and electronic (r) coordinates. To be more specific,
the Hamiltonian is defined as a sum of kinetic 𝑇 and potential energy 𝑉 operators, which is

�̂� = 𝑇el +𝑇Nucl +𝑉el-el +𝑉el-Nucl +𝑉Nucl-Nucl, (2.2)

where the subscript el and Nucl describe the electronic and nuclear contributions, respectively.
Although the SE provides a recipe to calculate the systems energy, it is only analytically solvable

for very simple systems, like the hydrogen atom. As a consequence, for more complex systems,
such as molecules, approximations are required that simplify the SE. In this context, the adiabatic
Born-Oppenheimer approximation (BOA) [14] is often applied, postulating the separation of
electronic and nuclear variables. Since electrons are much lighter in mass compared to nuclei, they
move faster. Thus, they are able to immediately follow the motions of the nuclei. This assumption
enables the formulation of an electronic Hamiltonian

�̂�el = 𝑇el +𝑉el-el +𝑉el-Nucl , (2.3)
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Fig. 2.1: Potential Energy Surface. Illustrative example of a two-dimensional PES. Chemical relevant points
are marked with arrows accordingly. A and B correspond to minimum configurations. The saddle
point represents the transition state (TS) separating both equilibrium geometries via the lowest energy
path.

which depends only on the electronic variables. Nuclear contributions are added parametrically.
Solving the resulting electronic SE

�̂�elΨ(r) = 𝐸el Ψ(r) (2.4)

leads to the electronic ground state energy 𝐸el of the system and defines the potential energy
surface (PES), which builds the basis for most atomistic simulations. [60–63]
The PES is a 3𝑁 dimensional hypersurface, where 𝑁 is the number of atoms in the system.

Since the energy is invariant to global translations and rotations, this typically reduces to 3𝑁 -
6 dimensions. Of particular interest are certain points on the PES that correspond to specific
configurations of the chemical system. Local minima for example, correspond to meta-stable
states. Gradients of the potential energy with respect to atomic coordinates (i.e. forces) can be
used to perform local geometry optimizations, ending up in a nearby minimum configuration
(equilibrium configuration). Other important points are saddle points that belong to transition
state (TS) geometries. They connect minimum configurations via lowest energy paths in chemical
reactions. The energy barrier that has to be overcome in such a reaction is denoted as the reaction
barrier. It corresponds to the energy—relative to the reactant—that is required to form the TS.
This reaction barrier as well as the temperature, at which a reaction takes place determine the
speed of a chemical reaction and thus the reaction rate that allows for studying reaction kinetics.
Knowing the entire PES of a chemical system enables the exploration of stable configurations and
corresponding reactions among them. Figure 2.1 gives an illustrative example of a fictional PES,
showing respective chemical meaningful points. [60, 63]
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2.2 Density Functional Theory

In this section, we address the question of how the electronic SE (Eq. 2.4) can be solved in a
practical way and which machinery can be applied to obtain the energy of a molecular system. A
commonly applied approach in computational chemistry is density functional theory (DFT). This
method is based on the three-dimensional electronic density 𝜌 (r) instead of the high dimensional
wavefunction. Thereby, the systems energy is expressed as an energy functional in terms of the
density 𝐸 [𝜌 (r)]. The main concepts of DFT are introduced in the following.

Fundamentals in DFT are given by the two Hohnberg-Kohn [16] theorems. The first theorem
defines a relation between the electronic ground state density 𝜌0(r) and the ground state energy
of the system. In addition, the second Hohnberg-Kohn theorem shows that there is a unique
energy functional 𝐸 [𝜌0(r)], which leads to the ground state energy of the system. Specifically,
this means that any trial density 𝜌 (r), non equal to 𝜌0(r), leads to a higher energy of the chemical
system. The second theorem is mathematically expressed as:

𝐸0 = 𝐸 [𝜌0(r)] < 𝐸 [𝜌 (r)] with 𝐸 [𝜌 (r)] = 𝑇el [𝜌 (r)] +𝑉el-Nucl [𝜌 (r)] +𝑉el-el [𝜌 (r)] , (2.5)

where 𝑇el [𝜌 (r)] represents the kinetic energy functional and 𝑉el-Nucl [𝜌 (r)] and 𝑉el-el [𝜌 (r)] the
potential energy functionals for the electron-nuclei and electron-electron interactions, respec-
tively. Equation 2.5 provides an expression to obtain the system’s energy in terms of the electronic
ground state density. The crux, however, is that only the potential energy term 𝑉el-Nucl [𝜌 (r)] is
mathematically accessible. Formulations and approximations for 𝑇el [𝜌 (r)] and 𝑉el-el [𝜌 (r)] are
derived in the following. [15]

The basics have been established by Kohn and Sham in so-called Kohn-Sham DFT [17] (KS-DFT).
There, the first fundamental assumption is to express large parts of𝑇el [𝜌 (r)] and𝑉el-el [𝜌 (r)], for
which formulations in terms of the density are mathematically accessible. Missing contributions
are stored in an additional functional: the exchange correlation functional 𝐸XC [𝜌 (r)]. By this
assumption Eq. 2.5 can be reformulated as:

𝐸 [𝜌 (r)] = 𝑉el-Nucl [𝜌 (r)] +𝑇N [𝜌 (r)]︸     ︷︷     ︸
large

+ 𝐽 [𝜌 (r)]︸   ︷︷   ︸
large

+𝐸XC [𝜌 (r)] with

𝐸XC [𝜌 (r)] = (𝑇el [𝜌 (r)] −𝑇N [𝜌 (r)])︸                         ︷︷                         ︸
small

+ (𝑉el-el [𝜌 (r)] − 𝐽 [𝜌 (r)])︸                          ︷︷                          ︸
small

.
(2.6)

Here, 𝐽 [𝜌 (r)] is the classical Coulomb energy in terms of the density for the electronic interactions

𝐽 [𝜌 (r)] = 1
2

∫
𝜌 (r)𝜌 (r′)
|r − r′ | 𝑑r𝑑r

′. (2.7)

Everything that is not covered by the classical Coulomb energy, i.e. non-classical contributions,
such as electron correlation and exchange effects or self-interaction corrections, go into the
exchange correlation functional.
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To express parts of the kinetic energy functional, a fictitious reference system of non-interacting
electrons was introduced. The special feature of this auxiliary system is that its density is
constructed in a way to be in accordance with the true ground state density of the system
with interacting electrons. By introducing this reference system, the kinetic energy functional
𝑇N [𝜌 (r)] of the non-interacting system can be calculated. Again missing parts of kinetic energy
contributions are stored in 𝐸XC [𝜌 (r)].
In KS-DFT, the electrons are defined by single-electron orbitals 𝜓𝑖 (r), from which a Slater

determinant is constructed, representing the ground state of the non-interacting system. These
orbitals are used to calculate the density of the non-interacting system (𝜌KS) and thus the true
ground state density of the real system

𝜌0(r) = 𝜌KS(r) =
𝑛∑︁
𝑖

|𝜓𝑖 (r) |2 . (2.8)

As a consequence of the non-interacting system, it can be written as a sum of 𝑛 single-particle
Hamiltonian operators ℎ̂KS,𝑖

ℎ̂KS,𝑖 = −12∇
2
𝑖 + 𝑣eff (r),with 𝑣eff (r) =

𝑁∑︁
𝑎

𝑍𝑎

|r −R𝑎 |
+

∫
𝜌 (r′)
|r − r′ |𝑑r

′ +𝑉xc. (2.9)

The first term in the Hamiltonian defines the kinetic energy of the auxiliary system. The second
term denotes an effective potential that is constructed in a way to ensure that both densities
(interacting and non-interacting densities) are equal. This construction is mathematically defined
as a sum of two Coulomb interaction terms and an exchange correlation potential. While the
first Coulomb term represents the interactions between an electron and all 𝑁 nuclei with proton
number 𝑍𝑎 , the second Coulomb term describes the interactions between electrons. The latter
is formulated as the interaction between an electron and a mean field electronic density 𝜌 (r′)
created by all electrons in the system. Lastly, the exchange correlation potential 𝑉xc is defined as
the derivative of the exchange correlation energy 𝜕𝐸xc [𝜌 (r) ]

𝜕𝜌 (r) .
The resulting 𝑛 Kohn-Sham equations (coupled via the electron density)(

−12∇
2
𝑖 + 𝑣eff (r)

)
𝜓𝑖 (r) = 𝜖𝑖𝜓𝑖 (r) (2.10)

can be transformed into a matrix form. They are solved by applying the second Hohenberg-Kohn
theorem in combination with a self-consistent field (SCF) approach. Within the SCF, the systems
energy is minimized iteratively by varying the density until a convergence criterion is reached.
Kohn-Sham DFT formally scales with O(𝑛3). This, however, may differ in various types of imple-
mentations. [15, 26, 61–63]

So far, functional expressions in terms of the density have been formulated for all energy
terms with the exception of one: the 𝐸XC [𝜌 (r)] functional. As seen before, this term contains the
unknown parts of the kinetic energy and non-classical energy contributions. In case an expression
for 𝐸XC [𝜌 (r)] is mathematically accessible, Eq. 2.10 could be solved exactly. So far, it has not been
possible to formulate such an exact expression. Consequently, approximate forms are required
and different functionals have been developed varying in computational cost and accuracy to be
sufficient for different types of chemical applications.
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Examples for exchange-correlation functionals are the localized density approximation (LDA)
or the generalized gradient approximation (GGA) functionals. These families of LDA and GGA
functionals include local density information (the former) as well as information about the gradient
of the density (the latter). However, they do not go beyond, i.e. they do not include non-local
information.

Another class of functionals are so-called hybrid functionals, which express exchange-correlation
terms by mixing parts of the exact Hartree-Fock (HF) exchange energy (for more details about
HF see Ref. [60, 62, 63]) into LDA or GGA functional expressions. Mixing exact exchange en-
ergy from HF into these functionals reduces parts of the self-interaction error present in the
exchange-correlation functional due to the separation of 𝑉el−el into a classical and a non-classical
term. An example hybrid functional that is often applied for molecular systems and also during
the work of this thesis in [1, 3] is the PBE0 functional [64, 65]. This functional mixes parts of the
Perdew–Burke-Ernzerhof [66] (PBE, GGA) exchange energy with the HF exchange energy

𝐸PBE0XC = 0.25𝐸HFX + 0.75𝐸PBEX + 𝐸PBEC . (2.11)

This leads to an improvement of describing many molecular properties in contrast to the PBE
functional and is therefore a suitable choice for the generation of molecular reference databases. [15,
26, 60, 63]

2.3 Molecular Dynamics Simulations

So far, fundamentals in computational chemistry have been introduced, i.e. the concept of the PES
and how it can be obtained by approximately solving the electronic SE. Density functional theory
provides potential energy calculations of chemical systems with fixed nuclear positions. These
calculations yield an energy description at zero temperature. However, computational chemists are
often interested in atomistic processes and want to mimic them in silico to gain insights into these
systems. Such processes, like catalytic reactions on a surface or molecule/enzyme interactions
take place at finite temperatures. Therefore, simulation techniques are needed allowing to follow
the dynamical motions of a chemical system or to calculate ensemble averaged properties (e.g.
free energies) at finite temperatures and pressures.

The prototypical way of propagating a chemical system over time is to use a molecular dynamics
trajectory (MD), in which molecular positions are adjusted by following Newtons equations of
motion

F𝑎 (𝑡) = −
(
𝜕𝑉 (R)
𝜕R𝑎

)
=𝑚𝑎

¥R𝑎 . (2.12)

Here F is the force that acts on atom 𝑎, 𝑉 is the potential energy,𝑚 is the mass and R are the
atomic positions in Cartesian coordinates. ¥R denotes the second derivative of the atomic positions
with respect to time 𝑡 . [61] Equation 2.12 describes a classical evolution of the atomic positions.
This description is valid for many chemical applications, as quantum nuclear effects can often be
neglected. Specifically, this is true when dealing with non hydrogen atoms. [67]
Another interesting aspect to discuss is the realization of conserved physical variables, such

as the temperature, during the simulation. This aspect is important to deduce experimentally
observed thermodynamic properties. These properties are usually obtained as time averages, when
the system is simulated in a statistical ensemble. The canonical ensemble (NVT), for example,
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mimics experimental conditions where the particle number, the volume and the temperature are
conserved during the simulation. A conserved temperature is realized by coupling the simulated
system to an external heat bath through a thermostat.
An example thermostat is the Langevin thermostat [68], which was also used in molecular

dynamics simulations during the work of this thesis in [3]. Here, temperature conservation is
achieved through stochastic collisions between the simulated system and an imaginary heat bath.
Langevin dynamics are modeled by adding a friction and a random collision term to Newton’s
equations of motions:

𝑚𝑎
¥R𝑎 = −

(
𝜕𝑉 (R)
𝜕R𝑎

)
− 𝛾f𝑚𝑎

¤R𝑎︸   ︷︷   ︸
friction force

+ ηR (𝑡)︸︷︷︸
random force

. (2.13)

Following the systems evolution over time by integrating the respective Langevin equations, leads
to configurations corresponding to the canonical ensemble. [69, 70]

In a MD trajectory, atomic forces have to be evaluated at every time step. These forces can
be obtained as gradients of the potential energy in terms of atomic positions evaluated with
DFT. Consequently, producing such ab initio molecular dynamics (AIMD) trajectories could be
computationally very demanding, since it requires the approximate solution of the SE at every time
step. Thus, system sizes in AIMD simulations are limited to a few hundreds of atoms and only ps
simulation times are feasible. As a consequence, other approaches are required to approximate
energy and force calculations in MD simulations or other atomistic simulation techniques.

Here, machine learning methods are posed to revolutionize the field of computational chemistry.
Machine learning interatomic potentials can predict molecular quantities very accurately when
fitted to quantum mechanical references. Moreover, they do not rely on empirical functions, but
instead learn structure-property relationships from reference data. As these methods seem to be
impressive tools, the next chapter will give a detailed overview about the current state of ML
methods in computational chemistry. [25]
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3 Machine Learning in Computational
Chemistry

Over the past decades machine learning (ML) methods and artificial intelligence (AI) have become
very popular in many fields of our daily lives and we experience a veritable “ML-boom” at the
moment. Machine learning algorithms are fundamental especially in these days of social media,
however, they are also applied in various other fields such as image classification [53], natural
language processing [54], robotics [71], energy economics and finance [72]. With an ML algo-
rithm it is possible to recognize similarities, regularities or relevant patterns in a given data set.
This knowledge is then used to define a model predicting the properties of unknown samples or
clustering data. Being impressed by the success of ML algorithms in many diverse fields, natural
scientists started to use ML methods in scientific research hoping that for instance these methods
could generate computationally efficient interatomic potentials with the accuracy of quantum
mechanical (QM) methods. [26, 30]

To start with a more general introduction, ML can be divided in several types of learning. One way
of learning is the so-called supervised machine learning. Here, the user is looking for an ML
model 𝑓 that maps a set {(x𝑖 , 𝑦𝑖)}𝑀𝑖=1 of given input values (training data) x𝑖 to respective outputs
(labels) 𝑦𝑖 , where𝑀 is the number of observations. In case the output values 𝑦𝑖 are featured by a
set of classes or categories, the learning task is denoted as a classification problem. A solution to
this problem can give several ML algorithms, such as partial least squares-discriminant analysis
or support vector machines.

Another well-known representative for supervised ML is regression. Within a regression task
the inputs are fitted to a continuous function. Prominent ML algorithms used for regression
are ridge regression, kernel ridge regression (KRR), Gaussian process regression (GPR), artificial
neural networks (ANNs) or support vector regression. As we will see in the following, regression
can be used to learn potential energies and forces as a function of atomic positions for chemical
systems.
Unsupervised learning is a further discipline of ML. Here, unlabeled input values x𝑖 enter

the machine learning algorithm to find some latent features in the data or to cluster the data.
This includes also the reduction of dimensionality for data visualisation or data prepossessing
for other ML tasks like classification. Specifically, the former (dimensionality reduction) was also
applied in [1] during the work of this thesis for visualization purposes. Unsupervised ML methods
are principal component analysis, kernel principal component analysis, k-means clustering and
self-organizing maps. Figure 3.1 summarizes the main differences of supervised and unsupervised
learning and gives a pictorial overview. [26]

In the interests of completeness, reinforcement learning is a third class of learning, using in
the training process some kind of reward system. However, reinforcement learning was not used
in the work of this thesis, consequently no further details are provided. The interested reader is
referred to the literature [73].
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Fig. 3.1: Types of Machine Learning. The figure summarizes the differences between supervised (left) and
unsupervised ML (right). Supervised ML produces models learned from labeled training data (x𝑖 , 𝑦𝑖 ).
After training, the ML model is able to predict the function value (regression task) or class label
(classification task) of unknown samples. Unlabeled data sets are used in unsupervised ML. Depending
on the application, the algorithm either reduces the dimensionality of the database or identifies clusters
in the data set.

In the foregoing paragraphs, the different types of learning have been introduced and we have
already mentioned that learning potential energies in terms of atomic coordinates is a regression
task. It remains to be clarified, which key ingredients are required to generate machine learning
models in computational chemistry. Figure 3.2 gives an overview to that issue. On the one hand,
it illustrates the main features needed to learn a relationship between molecular properties and
respective molecular configurations. On the other hand, it simultaneously outlines the major
topics that will be discussed in this chapter and further have been used during the work of this
thesis in [1–3].

For clarification, models aiming to represent a structure-energy (force) relation are denoted as
MLIPs in the following, as they fit the PES and thus avoid solving the SE. This applies regardless
of whether the model is robust and stable in MD simulations, i.e. it represents the entire PES
including forces as gradients of the potential energy [3]. It further applies to models that are
specifically able to predict specific sub-spaces of the PES, such as equilibrium configurations [1, 2].
Figure 3.2 illustrates the general workflow required for generating a MLIP. First, we need

a representative reference database containing molecular configurations and respective QM
properties. Second, a mathematical representation (descriptor) is required to encode the atomic
structures andmake them accessible as inputs for theML algorithm. Based on these representations
and corresponding labels (e.g. energies and/or forces), the ML model is trained via a regression
algorithm (e.g. with KRR or ANNs) in a third step. Note, that graph neural networks (GNNs) are
able to simultaneously learn atomic representations and perform the regression. Then, the ML
model is validated to ensure appropriate performance for the respective task. Finally, the ML
model is applied in the respective task. [26, 31]
Machine learning is more and more used in theoretical chemistry and a lot of progress has

already been made. Specifically, this is reflected in excellent review papers [25–27, 74] that arose
during the last two years. The current chapter is mainly based on these sources.
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Fig. 3.2: Overview Machine Learning Interatomic Potentials. The figure gives an illustrative overview
howmolecular properties, such as energies and forces, can be learned as a function of three-dimensional
molecular structures. Therefore, a molecular database is required comprising atomic structures and
quantum chemical reference calculations (1). A mathematical representation encodes the atomic con-
figurations as input vectors (2). These representations can either represent the entire molecule (global)
or encode local atomic environments within a cutoff value 𝑅cut. The represented molecular structures
serve as input values for the ML model. The model “learns” the structure-property relationship via
regression (3). To this end, kernel-based methods or ANNs are commonly employed. This sketch lists in
(3) the KRR method as this is used during the work of this thesis. The explained route (a) corresponds
to the more “traditional” way of training a MLIP. With the advent of GNNs, atomic representation
learning and the regression part is simultaneously done in one “learning” step (b). Furthermore, model
parameters have to be adjusted and the model has to be validated (4). Finally, it can be applied in the
respective task (5).

3.1 The Database

A reference database D builds the basis for any ML applications in theoretical chemistry, as the
ML algorithm learns from that database. The data set should be constructed to be a representative
set of atomic configurations and respective high quality calculated reference properties, such as
energies and forces. In many cases, these reference calculations are computed via DFT. However,
depending on the specific task, for which an ML model is trained, the choice of the reference
method has to be well considered, since it determines the accuracy of the model. [26, 31]

Over the last decade, researchers have established large QM-based molecular databases such as
QM9 [55, 56], QM7-x [57], MD17 [75], OE62 [76], OC20 [11] or Rad-6 [1] for the development
of ML methods and corresponding benchmark purposes. These databases contain either only
equilibrium configurations or both equilibrium and non-equilibrium structures. QM9 or Rad-6
for instance, are databases consisting of equilibrium configurations. As a consequence, they
are mainly usable for fitting relationships between equilibrium configurations and respective
energies [1, 2]. Moreover, they are rather unpractical in the use of generating MLIPs applied in
dynamical approaches. These databases do not completely cover the molecular phase space, since
configurations between equilibrium structures are not included. Thus, the model has to “guess”
function values in those regions. This may lead to instabilities and unpredictable situations in
dynamical evaluations. As a consequence, further databases (e.g. MD17 or QM7-x) were developed
that explicitly add samples fromMD simulations or displaced configurations (along normal modes)
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to account for that problem. Consequently, ML models can be trained and used for dynamical
approaches [3].
For many applications, e.g. in the field of materials science, large QM-based databases are

usually not available. Therefore, the researcher has to generate the reference database from
scratch. These database generations are commonly done within an iterative procedure and the
help of active learning. Here, the database grows in each iteration by sampling new configurations
from atomistic simulations. These simulations are performed by the potential of the current
iteration. New structures are selected by an active learning criterion (uncertainty estimate or
similarity measure). Reference calculations are performed for these structures and they are added
to the training set of the next iteration. As a result, the potential learns from itself about sparsely
sampled or unstable phase space regions and appropriate databases are generated, thereby.

To decrease the amount of reference calculations, physical knowledge is directly incorporated
into the ML model (see section 3.2 for details). Furthermore, lower level baseline methods can
be used (Δ-machine learning, Δ-ML). This has proven to be particularly useful in applications,
where highly accurate ML models are required and thus, very expensive reference methods are
used [77]. In Δ-ML, the property of interest is evaluated with both levels of theory methods. The
ML model will then learn the differences between these methods during the training. This results
in a simplified and smoother learning problem. Including a baseline model consequently helps to
be data-efficient and it additionally increases the robustness of the model. [26]

Finally, it remains to be clarified how a representative set of training configurations is drawn
for a specific task, if a fixed database is available. Therefore, some kind of similarity measure is
required that maximizes the variety of structures in the training set. Kernel functions incorporate
such a metric, for which a more detailed explanation will be given in section 3.4. Let’s assume for
now that we have such a metric that measures the distances between data points in chemical space.
Then, the farthest-point sampling (FPS) method can be employed to select a representative
and diverse set of configurations from a database D.
The FPS algorithm starts with a set of given structures S . It is also possible that S contains

only one structure at the beginning. In the next step, the algorithm selects a new structure 𝐴 by
maximizing the distances between 𝐴 and all other structures in S . Mathematically, this is:

𝐴 = argmax𝐴∈D

(
min
𝐴′∈S

𝐷 (𝐴,𝐴′)
)
with 𝐷 (𝐴,𝐴′) =

√︁
𝐾 (𝐴,𝐴) + 𝐾 (𝐴′, 𝐴′) − 2𝐾 (𝐴,𝐴′), (3.1)

with 𝐷 (𝐴,𝐴′) being the distance between structure 𝐴 and 𝐴′ and 𝐾 (𝐴,𝐴′) the respective kernel
entry. The algorithm stops adding new structures to the training set when the chosen maximal
number of structures are selected. [1, 35]. Note, that FPS can also be applied in iterative training
workflows. [78]

3.2 Representations of Atomic Configurations

The previous section provides details about the database, from which the ML algorithm learns the
atomic structure-property relationship. The consequent next step is therefore, an introduction of
an atomic representation encoding the three-dimensional coordinates of the chemical system to
make them accessible for theML algorithm. Depending on the literature, molecular representations
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are also denoted as descriptors or as molecular features. In general, such representations should
fulfill a number of requirements to ensure a reliable and robust ML model. The following will list
these requirements. [31]
Symmetry: A molecular representation should be invariant to translations, rotations and

permutations of identical atoms, as the potential energy is also invariant to these symmetry
operations. This consequently excludes the use of Cartesian coordinates as suitable representations
for atomic configurations, since they are not relative values. Therefore, further developments of
molecular representations have been made in recent years to fulfill the symmetry requirement.
These additionally go beyond the simple use of internal coordinates, such as bonds, angles, or
dihedrals. [74] Finally it should be noted here, that the ML model can in principle learn the
invariances from the data. This, however, requires a massive amount of data and that is commonly
not suitable in chemical applications. [79]

Uniqueness and generality: It is further intuitive that the same representation of a molecular
structure should lead to the same energy. Moreover, the representation should be valid and
applicable to all kinds of chemical systems. This includes both molecules and materials with
periodic boundary conditions. [30]
Smoothness: In the generation of MLIPs, the potential energy is a continuous function in

terms of atomic positions. Further, molecular forces can be derived as respective gradients of the
potential energy with respect to the coordinates. This results in the requirement of smoothness
for molecular representations. [74, 79]

Going beyond these physical requirements, Fig. 3.2 illustrates that representations can be
constructed to either represent the entire molecular configuration within global representations,
such as the Coulomb matrix [34], bag of bonds [80] and the many-body tensor representation
(MBTR) [79] or in terms of local atomic environments defined within a certain cutoff value (local
representations). Examples for the latter are the smooth overlap of atomic positions representation
(SOAP) [81] or Behler-Parinello symmetry functions [36]. Global representations provide direct
access to global properties such as the potential energy. However, their scaling to larger systems
is rather poor and they are not inherently size-extensive. [31]

To overcome these limitations, Behler and Parrinello [36] introduced a representation, in which
the molecule is not represented as a whole, but in terms of local atomic environments. Within
this picture, the potential energy of a molecule 𝐴 is then expressed as a sum of atomic energies 𝜀𝑎

𝐸 (𝐴) =
𝑁∑︁
𝑎

𝜀𝑎 . (3.2)

Respective representations encode the atomic environment by including information about the
atoms neighborhood. Here, the neighborhood of an atom is usually defined within a certain cutoff
value and comprises of different body order contributions. [31, 82]

It is worth to point out that the above mentioned assumption of locality is an approximation
and is not verified by the SE. It has to be tested if this assumption is suitable for the specific
task. [29] Nonetheless, when using local descriptions, long range contributions (e.g. electrostatics
and dispersion) can be additionally incorporated into the ML model [38, 42, 83, 84].
Moreover, local descriptors naturally account for size-extensive predictions. Thus, they allow

to reasonably predict larger systems compared to the ones in the training set. [74] A more detailed
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explanation about size-extensive ML will be given in the respective sub-section of section 3.4.2.
Recently, GNNs [37–42, 85, 86] arrive as rather new kid to this family of machine learning

potentials (see Fig. 3.2b). In contrast to the more traditional ML potentials, GNNs do not handle
the representation and regression task separately, but combine them via message passing steps
in one simultaneous learning task. Since this thesis contains an additional section about neural
networks, further details about message passing networks will be given there. [82] For now, this
section will give a closer look into two different representations as they are used during the work
of this thesis—the local SOAP descriptor in [1] and the global MBTR in [2].

3.2.1 Smooth Overlap of Atomic Positions

The smooth overlap of atomic positions (SOAP) [81] representation is a local descriptor that
encodes the atomic environment of an atom in any kind of chemical system. In the interests of
simplification, we start with the construction of a SOAP representation for a chemical system that
contains only one type of atomic species (e.g. for an atom in a C60 fullerene molecule). Afterwards,
we will expand this derivation to multi-element systems in a second step.

The atomic environment X𝑎 of the atom 𝑎 is represented as the density in terms of atomic
coordinates 𝜌𝑎 (R):

𝜌𝑎 (R) =
∑︁
𝑏∈X𝑎

exp
(
− |R −R𝑎𝑏 |2

2𝜎2at

)
𝑔cut( |R|) . (3.3)

This density is defined as a sum of atom-centered Gaussians with variance 𝜎2𝑎𝑡 . The sum ranges
over all atoms 𝑏 present in the atomic neighborhood of atom 𝑎 within a cutoff radius. It should
be explicitly noted that 𝑎 as the central atom within the cutoff circle is also included in that sum.
Furthermore, the function 𝑔cut ensures a smooth decay of the density to zero outside the cutoff
radius.

As discussed above, a representation should be invariant with respect to translations, rotations
and permutations of identical species. Here, the constructed density is invariant to translations and
permutations, however, not with respect to rotations. The latter can be additionally implemented
by expanding the density in an orthogonal basis of radial basis functions 𝑔𝑛 ( |R|) and spherical
harmonics 𝑌𝑙𝑚 (R̂)

𝜌𝑎 (R) =
∑︁
𝑛𝑙𝑚

𝑐𝑛𝑙𝑚𝑔𝑛 ( |R|)𝑌𝑙𝑚 (R̂), (3.4)

and then using the expansion coefficients 𝑐𝑛𝑙𝑚 for constructing a rotationally invariant represen-
tation 𝑝𝑛,𝑛′𝑙 (𝑎) that is defined as the power spectrum of the density

𝑝𝑛𝑛′𝑙 (𝑎) = 𝜋
√︂

8
2𝑙 + 1

∑︁
𝑚

𝑐
†
𝑛𝑙𝑚

𝑐𝑛′𝑙𝑚 . (3.5)

For practical reasons, the power spectrum is truncated after 𝑛 ≤ 𝑛max and 𝑙 ≤ 𝑙max contributions.
Of course, the more contributions are included, i.e. larger 𝑛max and 𝑙max, the higher is the spatial
resolution of the density and the more accurate is the resulting fit. However, as usual this comes
with an increase in computational cost so that appropriate values have to be determined. [87, 88]
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Fig. 3.3: Smooth Overlap of Atomic Positions. Illustrative example of the neighborhood density function in
an ethane molecule. Densities are constructed separately for each elemental species around a central
carbon atom (indicated by an asterisk) within a cutoff radius (black circle). The left panel shows
𝜌𝐶
𝐶
(R) and 𝜌𝐻

𝐶
(R) is displayed on the right. This figure is a reprint from Ref. [1], published under the

CC BY 4.0 license; http://creativecommons.org/licenses/by/4.0/. It is reproduced with
permission from Springer Nature. Copyright ©2020, Sina Stocker, Gábor Csányi, Karsten Reuter and
Johannes T. Margraf.

To expand the SOAP representation for multi-element systems, separate densities are generated
for each of the species 𝑍 individually

𝜌𝑍𝑎 (R) =
∑︁

𝑏∈X𝑍
𝑎

exp
(
− |R −R𝑎𝑏 |2

2𝜎2at

)
𝑔cut( |R|) . (3.6)

Figure. 3.3 illustrates such individually generated densities for an ethane molecule around a carbon
atom (central atom) as an example. The individual densities are then again expanded in a basis of
radial basis functions and spherical harmonics

𝜌𝑍𝑎 (R) =
∑︁
𝑛𝑙𝑚

𝑐𝑍
𝑛𝑙𝑚

𝑔𝑛 ( |R|)𝑌𝑙𝑚 (R̂) . (3.7)

The resulting partial power spectrum 𝑝
𝑍1𝑍2
𝑛𝑛′𝑙 (𝑎) contains now cross-species terms 𝑍1 and 𝑍2 and

encodes the atomic environment of atom 𝑎

𝑝
𝑍1𝑍2
𝑛𝑛′𝑙 (𝑎) = 𝜋

√︂
8

2𝑙 + 1
∑︁
𝑚

(𝑐𝑍1
𝑛𝑙𝑚

)†𝑐𝑍2
𝑛′𝑙𝑚 . (3.8)

In total, we obtain 𝑁Z (𝑁Z+1)
2 vectors for a chemical system with 𝑁Z atomic species, which are

finally concatenated to one final SOAP representation vector p(𝑎) for each atom. [88, 89]

3.2.2 Many-Body Tensor Representation

The many-body tensor representation (MBTR) [79] is an example for a global representation.
In a more pictorial view, MBTR provides a fingerprint for a molecular geometry by returning
the frequency of different many-body (𝑘-body) contributions present in a chemical system. One-
body terms are described as atom counts, two-body terms are represented as inverse interatomic
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distances and angles are encoded as three-body contributions. Higher 𝑘-body contributions, such
as dihedrals (four-body) may be included as requested. In many applications, however, MBTR is
limited to the lowest two or three-body terms, while only one and two-body contributions have
been used during the work of this thesis in [2].
Within MBTR, each element and 𝑘-body combination is smeared by a Gaussian and summed

up to a final distribution function. In addition, a weighting function𝑤𝑘 is applied that smooths
the 𝑘-body contributions to zero and ensures non-interacting particles at large distances. The
individual 𝑘-body distribution functions are mathematically expressed as:

𝑔𝑘 (x, 𝑧1, ..., 𝑧𝑘 ) =
𝑁∑︁

𝑎1,...,𝑎𝑘

𝑤𝑘 (𝑎1, ..., 𝑎𝑘 )N (x|𝐺𝑘 , 𝜎
2
𝐺 )

𝑘∏
𝑏=1

𝛿𝑧𝑏 ,𝑍𝑎,𝑏
, (3.9)

with 𝑧1, ..., 𝑧𝑘 being atomic numbers, 𝐺𝑘 scalar 𝑘-body functions depending on the individual
atoms 𝑎1, ..., 𝑎𝑘 , 𝑍𝑎 the proton number of an element and N (x|𝜇G, 𝜎2𝐺 ) is a Gaussian distribution
with mean 𝜇G and variance 𝜎2

𝐺
. The product of 𝛿 functions ensures the correct allocation of

element combinations. As an illustrative example, Fig. 3.4 displays the resulting one and two-body
distribution functions in ethane.
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Fig. 3.4: Many-Body Tensor Representation. The figure illustrates one-body and two-body distribution
functions in the MBTR descriptor for ethane. Concatenating all 𝑘-body distribution functions results
in the final MBTR feature vector.

In the end, the global MBTR descriptor is a concatenated vector that consists of the discretized
feature distribution functions for all elements and element combinations up to the chosen order,
where symmetric contributions (i.e. H-C and C-H) are left out. In the example for the ethane
molecule, where we have two one-body distribution functions and three two-body distributions
the resulting vector is given as:

vMBTR = v1,𝑧1 ⊕ v1,𝑧2 ⊕ v2,𝑧1𝑧1 ⊕ v2,𝑧1𝑧2 ⊕ v2,𝑧2𝑧2, (3.10)

where the first subscript denotes the 𝑘-body contribution and the second the elemental species or
element contributions, respectively. ⊕ indicates concatenation.
During the work of this thesis in [2], a normalized version of MBTR was used to ensure

size-extensive ML models and corresponding predictions. Therefore, each k-term distribution
is normalized according to the corresponding 𝑘-body 𝐿2-norm, to be not dominated by higher
𝑘-body contributions. The resulting representation for the ethane molecule has the following
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form:

viMBTR =
v1,𝑧1
|v1 |

⊕
v1,𝑧2
|v1 |

⊕
v2,𝑧1𝑧1
|v2 |

⊕
v2,𝑧2𝑧2
|v2 |

⊕
v2,𝑧1𝑧2
|v2 |

,

with v1 = v1,𝑧1 ⊕ v1,𝑧2 and v2 = v2,𝑧1𝑧1 ⊕ v2,𝑧1𝑧2 ⊕ v2,𝑧2𝑧2 .
(3.11)

This is particularly important for fitting intensive quantities. In [2], the intensive MBTR version
was denoted as iMBTR. [2, 76, 79, 90, 91] For more details about size-extensive kernel-based ML
see the respective size-extensivity subsection in section 3.4.2.

3.3 Universal Approximations and Loss Function

In computational chemistry, ML methods can be employed to learn a structure-energy relationship
for chemical systems, i.e. having a surrogate model for approximately obtaining the potential
energy of a given geometry. However, this structure-energy relationship can be arbitrarily complex
and in many cases it is not solvable within a “normal” linear regression task. As a consequence,
so-called universal approximators are required, which are able to imitate any continuous and
smooth function with sufficient accuracy from a given training database. [26]
In many ML applications, this universal approximation of any relation between input and

output data is realized by the concept of “linearization”. This means, that the nonlinear problem in
“real space” can be mapped to a so-called “feature space”, where the problem can linearly be solved.
In kernel-based ML methods, this is achieved by using the “kernel trick”, which will be further
discussed in section 3.4.1. Within neural networks (NNs), the nonlinear problem is divided into
a linear and nonlinear part represented by connected layers of neurons. Here, the connections
represent linear operations with adjustable parameters and the neurons are nonlinear activation
functions. Specifically deep neural networks, where the network consists of many such layers, can
learn any complex relationships between input and output data. [25] In this context, it is further
interesting to mention that the equivalence of kernel-based regression and NNs can be shown.
This holds for a NN with one hidden layer that is infinitely wide. [29]

Nonetheless, using universal approximators bears the risk of overfitting. In ML, overfitting
denotes the capability of a function to perform very well on training data, while providing highly
biased predictions on test data. Thus, it is not necessarily optimal to obtain an ML model that
passes through each data point in the training set, but to have a model that generalizes to
unseen data. Better generalization can be achieved by using simpler ML models. Consequently,
regularization is often applied, which favors e.g. the selection of simpler models. [25, 26]

One commonway to apply regularization is given by solving the following optimization problem

𝑓 = argmin
𝑓 ∈F


𝑀∑︁
𝑖

L (
𝑓 (x𝑖), 𝑦𝑖

)
+ 𝜆R(θ)

︸                               ︷︷                               ︸
L′ (θ;X,y)

, (3.12)

where the first part constitutes a loss function L that describes the differences between the model
𝑓 and output values y, usually as the squared error. The second part defines a regularization
termR, which is additionally added to the final regularized cost function L′. Here, thisR term
depends on the model parameters θ to shrink them to rather small values as this corresponds
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to a simpler model. A common example is the Tikhonov regularization approach [92], which
incorporates the 𝐿2-norm of the model parameters to prevent the model from choosing values that
are too large. In addition, the regularization parameter 𝜆 > 0 is a hyperparameter, that controls
the complexity of the fitted model. It can be considered as a tuning parameter, with which the
degree of generalization and accuracy can be defined. Besides the Tikhonov regularization also
other regularization strategies, such as early stopping [93] or dropouts [94] can be employed,
specifically for NNs. [26, 95, 96]

3.4 Kernel-Based Methods

3.4.1 The Kernel Trick

As indicated above, complex structure-energy relationships are usually nonlinear problems, which
cannot bemodeledwith linear regression on the features of the input representation. To circumvent
this limitation, nonlinear basis functions Φ(x) are introduced to map the inputs x into a high
dimensional feature space as it is illustrated in Fig. 3.5. The crux, however, is to define such basis
functions that are appropriate for the specific task. On the other hand, it can be computationally
demanding to evaluate input values in the feature space, especially if it is high dimensional.

x1

x
2

x1 x2

x3

HP

Φ

Input Space Feature Space

Fig. 3.5: The Kernel Trick. The figure visualizes the basic idea of the kernel trick using a classification
problem as an example. The left sub-panel shows a two-dimensional binary classification problem,
which is not linearly separable (different colors define the two classes). By mapping the inputs into a
higher dimensional feature space via the nonlinear basis function Φ the two classes can be separated
linearly by a hyperplane (HP).

On a more positive note, many ML approaches such as classification or regression problems
can be reformulated in terms of scalar products between the input values. In case basis functions
Φ are applied to the inputs, the reformulated problem does not depend on their specific definition
anymore, but on the expression of their scalar product

〈
Φ(x),Φ(x′)

〉
. As a consequence, the

explicit basis functions have in principle not to be known, however, the corresponding behaviour
of the inner product for them. In this context, kernel functions may help, since they act on inputs
in input space, however, perform as the scalar product in feature space. They are mathematically
defined as:

𝑘 (x,x′) :=
〈
Φ(x),Φ(x′)

〉
. (3.13)

This can be understood as an introduction of a similarity measure, which defines how similar two
inputs are in real space and consequently in feature space. [30] As a consequence, the explicit
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basis functions have not to be designed, only a suitable kernel function has to be selected. An
introduction to kernel functions that have been used during the work of this thesis in [1, 2] and
resulting requirements for chemical applications are given in the following. For more details about
kernel functions, the interest reader is referred to [97].

3.4.2 Kernel Functions

Prominent Kernel Functions

For two given inputs x and x′ (e.g. two representation vectors from section 3.2) the following
kernels are defined as: The polynomial kernel

𝑘 (x,x′) =
(〈
x,x′

〉
+ 𝛽

)𝜁
, (3.14)

which can be transformed for 𝛽 = 0 and 𝜁 = 1 into the linear kernel

𝑘 (x,x′) =
〈
x,x′

〉
. (3.15)

The linear kernel performs as the original input features, without mapping them into a “higher”
dimensional feature space. Besides these two, a further kernel function represents the RBF (radial
basis function) or Gaussian kernel

𝑘 (x,x′) = exp
(
−𝛾 |x − x′ |2

)
, (3.16)

where 𝛾 defines a length scale parameter. Using the RBF kernel corresponds to an infinitely large
feature space. [30]

As it is shown in Eq. 3.1, kernels do not only provide a similarity measure between data points,
but allow for explicitly calculating the distance between them. Furthermore, kernels contain
additional parameters so-called hyperparameters, such as the length scale parameter 𝛾 in the
RBF kernel. These parameters may have a drastic influence on the resulting fit if they are chosen
incorrectly. The selection of appropriate hyperparameters will be further discussed in section 3.6.

Local and Global Kernels

Machine learning interatomic potentials typically employ the concept of locality, where the total
energy is divided into a sum of atomic energy contributions (Eq 3.2) and respective atoms are
encoded by local representations. However, DFT reference calculations for molecular systems
only provide total energies and atomic energies are usually not available. As a consequence, local
representations or corresponding local kernels have to be transformed into global kernel elements
𝐾 (𝐴,𝐴′) measuring the similarity between two molecules 𝐴 and 𝐴′. The global kernel matrix is
then employed to fit on molecular energies.

Using local SOAP kernels [81]—SOAP representations in combination with polynomial kernels—
as an example, two different global kernels can be constructed. One example is given by the
average kernel [35, 89], which is mathematically expressed as

𝐾 (𝐴,𝐴′) =
∑︁

𝑎∈𝐴,𝑎′∈𝐴′

1
𝑁𝐴𝑁𝐴′

𝑘
(
p(𝑎),p(𝑎′)

)
. (3.17)
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Here, the sum runs over all atoms 𝑎 and 𝑎′ present in molecule 𝐴 and 𝐴′, respectively. 𝑁𝐴 and
𝑁𝐴′ are the number of atoms in the molecules. Note that the average kernel (intensive kernel)
is commonly normalized to ensure that the self-similarity is equal to one. A second example is
given by the sum kernel [47, 98]

𝐾 (𝐴,𝐴′) =
∑︁

𝑎∈𝐴,𝑎′∈𝐴′
𝑘

(
p(𝑎),p(𝑎′)

)
, (3.18)

whereby this global kernel is simply expressed as the sum over all local kernel elements.
In summary, themain difference between these two kernels is that the average kernel is intensive,

due to the averaging over all atoms. In contrast, the sum kernel is extensive and measures size
differences between molecules. It has been demonstrated during the work of this thesis in [2], that
ignoring size-extensivity in ML methods leads to poor transferability of ML models, when training
on small molecules and predicting on larger configurations. Requirements for size-extensive
kernels are given in the next sub-section. [1, 2]

Size-Extensivity

As kernel-based machine learning methods incorporate invariances with respect to symmetry
operations, it would be consistent to also include size-extensivity in these methods. If the target
property is extensive, like the atomization energy (AE) of a molecule, then the kernel element
between molecule 𝐴 and two non interacting molecules, should be twice as the self-similarity of
𝐴. This is mathematically expressed as:

𝐾 (𝐴, 2𝐴) = 2𝐾 (𝐴,𝐴). (3.19)

On the other hand, when predicting intensive properties (e.g. AE per atom) the following condition
has to be fulfilled:

𝐾 (𝐴, 2𝐴) = 𝐾 (𝐴,𝐴) = 1. (3.20)

As it was discussed during the work of this thesis in [2], both equations are not fulfilled, when
using MBTR (vMBTR) in combination with the RBF (Gaussian) kernel. Since the Gaussian kernel
includes the Euclidean distance in the exponent, the kernel element 𝐾 (𝐴, 2𝐴) will result in a
value close to zero, when using the respective representation shown in Fig. 3.6a. The exact
value for 𝐾 (𝐴, 2𝐴) will finally depend on the length scale parameter 𝛾 , however, it will not be
equal to 2𝐾 (𝐴,𝐴). As a consequence, the MBTR/Gaussian kernel is not a size-extensive kernel.
Equation 3.19 is fulfilled, when using MBTR in combination with the linear kernel. In contrast,
the iMBTR in combination with the Gaussian kernel is an intensive kernel that fulfills Eq. 3.20.
Using the respective representation visualized in Fig. 3.6b, the exponent in Eq. 3.16 will be equal
to zero and the kernel element will consequently result in a value of one.

While the current section provides an overview about kernel functions and their requirements
in chemical applications, there is still an open question of how we can use kernels to model a
structure-energy relation for chemical systems. One possibility is to employ KRR, which is one
type of regression, where model parameters can be obtained by solving a linear least squares
problem. More details are provided in the next section. [2]
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Fig. 3.6: Differences in MBTR and iMBTR for Size-Extensive ML. The figure illustrates the differences in
the two-body distribution functions for a single water molecule (dashed lines) and two non interacting
water molecules (dotted lines) for MBTR (a) and iMBTR (b). Reproduced from Ref. [2].

3.4.3 Kernel Ridge Regression

In kernel ridge regression (KRR), the target values y are approximated by a function 𝑓 (x), for
which the following equation is fulfilled:

y = 𝑓 (x) + ξ. (3.21)

Here, measurement noise in training data is allowed and incorporated via the ξ term. In case of
fitting a MLIP, the target values are energies and corresponding input vectors are representations
of the molecular geometries. According to the representer theorem [99], the learnable function
𝑓 (x) can be expressed in terms of weighted basis functions

𝑓 (x) =
𝑀∑︁
𝑖

𝛼𝑖𝐾 (x,x𝑖) (3.22)

where the 𝛼𝑖s are the expansion coefficients or model parameters (θ in Eq. 3.12) of the ML method.
The basis functions are kernels and their elements 𝐾 (x,x𝑖) measure the similarity between inputs
x and xi and act as their inner product in feature space. The sum in Eq. 3.22 runs over all𝑀 data
points in the training set.
To obtain the function 𝑓 (x), the model parameters α have to be determined by solving the

optimization problem in Eq. 3.12 with the following regularized cost function

L′(𝑓 (x),y) =
𝑀∑︁
𝑖

(
𝑓 (x𝑖) − 𝑦𝑖

)2 + 𝜆 𝑀∑︁
𝑖, 𝑗

𝛼𝑖𝐾 (𝑥𝑖 , 𝑥 𝑗 )𝛼 𝑗 , (3.23)

and rewritten in matrix vector notation

L′(𝑓 (x),y) = (Kα − y)𝑇 (Kα − y) + 𝜆α𝑇Kα. (3.24)

Here, the Tikhonov regularization is applied where the regularization term is interwoven with the
respective kernel elements to account for the correct norm in feature space. Solving the resulting

23



convex optimization problem provides a closed form solution for the coefficients α and these
can be obtained by setting the gradient to zero ∇αL(𝑓 (x),y) = 0, which leads to the following
solution:

α = (K + 𝜆I)−1y, (3.25)

where I is the identity matrix. Equation 3.22 holds respective predictions for unseen data points
x̃. [1, 25, 27, 30]

It should be mentioned for completeness, that the here derived kernel-based regression method
corresponds to the so-called weight-space view and is mostly denoted as KRR in literature. In
contrast, the solution for the regression coefficients can be also derived from a probabilistic point
of view. This is denoted as the so-called function-space view and is known as GPR. Gaussian
process regression does not only provide predictions of unseen data points, but additionally allows
for calculating corresponding uncertainties. [27]
Furthermore, KRR (or GPR) quickly becomes computationally intense especially for large

training sets, since the inversion of the matrix in Eq. 3.25 scales as O(𝑀3). In this context,
so-called sparse GPR is thus often applied. This method uses a (representative) subset of 𝐿
configurations (𝐿 << 𝑀) to construct the model, while the loss function still uses information
from the entire training set. This reduces the cost of sparse GPR to O(𝑀𝐿2), which means that
this method scales linearly with the number of training samples𝑀 . The prediction of a new data
point scales in sparse GPR as O(𝐿). [27, 29, 98] More details about sparsification are given in
Ref. [100].

3.4.4 Kernel Principal Component Analysis

For many applications in computational chemistry, the underling data set is high dimensional.
This could be problematic on the one hand, when the database is screened for certain patterns that
are relevant for certain applications and no visualization is possible. On the other hand, the cost
for computations might be artificially increased. Both drawbacks result from the fact that in many
applications only a few number of features represent the process of interest, while remaining vari-
ables only include some noise. It might be thus very helpful to perform a dimensionality reduction
of the data set (or so-called embedding), where the high dimensional data set is transformed into
a lower dimensional space while important information is still retained. [26, 88]
This embedding can be achieved by the principal component analysis (PCA) tool or its corre-

sponding non-linear counterpart kernel principal component analysis (kPCA). Since kPCA is used
for visualization purposes during the work of this thesis in [1], here only the main concepts are
introduced. This is done by giving an introduction to PCA. The conceptional idea of kPCA is the
same and kPCA is derived by the kernelization of PCA. For mathematical derivations the reader is
referred to [101, 102].
The main concept of PCA is to project the data set consisting of many variables (high dimen-

sional) into a lower dimensional space. This new space is spanned by a set of orthogonal vectors:
the principal components (PC). These PCs are linear combinations of the old variables and point
into the directions of largest variance, since latent features are expected behind this variation. The
PCs are obtained by solving the eigenvalue problems of the data set covariance matrix (for kPCA
the kernel matrix). Importantly only the first few PCs that represent the highest proportion of the
variance are chosen. Projecting then the data set onto these few PCs leads to the dimensionality
reduction of the original data set. [101] Principal component analysis and kPCA are commonly
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Fig. 3.7: Kernel Principal Component Analysis. The graph exemplifies the visualization of molecular data
sets via kPCA for the Rad-6 database. The arrows give an interpretation of the first two PCs that
explain the underlying pattern. Black dots represent selected molecules that have been obtained from
applying a FPS to the database. This figure is reprinted in parts from Ref. [1], published under the
CC BY 4.0 license; http://creativecommons.org/licenses/by/4.0/. It is reproduced with
permission from Springer Nature. Copyright ©2020, Sina Stocker, Gábor Csányi, Karsten Reuter and
Johannes T. Margraf.

used to visualize data sets. To this end, the different PCs are plotted against each other as it is
shown in Fig. 3.7.

3.5 Neural Networks

As it was introduced in section 3.3, both kernel functions and neural networks (NNs) are universal
approximators. Therefore, NNs can be used to learn complex structure-property relations to fit
a MLIP for simulation applications. The most straightforward way to build a NN is to use an
architecture, in which all input layer neurons x and a bias term b are fully connected to the output
layer y via a weight matrixW . This is mathematically expressed as:

y = Wx + b, (3.26)

where W and b are model parameters (θ from Eq. 3.12) that are learned during the training.
Nonetheless, Eq. 3.26 defines a function that linearly maps the inputs onto the output values and
represents therefore not an universal approximator. To use NNs as universal approximators, at
least one additional layer has to be inserted between the input and the output layer (see Fig. 3.8).
This additional layer is denoted as hidden layer h. Each neuron in the hidden layer performs
a non-linear transformation on the received input via a non-linear activation function 𝜙 . The
resulting output is expressed as

y = W ′h + b′,with h = 𝜙 (Wx + b) . (3.27)

In many applications, however, deep neural networks are commonly applied, i.e. that not only
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Fig. 3.8: Neural Networks. The figure illustrates an example NN architecture with one hidden layer (a). In
addition, an exemplary non-linear activation function 𝜙 (𝑥) is shown in (b). Adapted from Ref. [25].

one but many hidden layers are interconnected after each other. The output can therefore be
rewritten as a nesting of all 𝐿 layers before

y = W𝐿+1𝜙 (W𝐿𝜙 (...𝜙 (W2 𝜙 (W1x + b1)︸           ︷︷           ︸
h1

+b2)...) + b𝐿) + b𝐿+1. (3.28)

Note that the index labels have been changed here for simplicity. The number of used layers
is a hyperparameter, which typically has to be defined by the user. In contrast, the weights
and bias terms are ML model parameters and are determined during the training procedure
within an optimization scheme. Similar to kernel methods, a (regularized) loss function is defined
that quantifies the difference between predicted and target values. The weights are obtained
by minimizing the loss function with the help of the stochastic gradient descent method or
other gradient decent methods, such as mini-batching in combination with the backpropagation
algorithm. Thereby, the weights are adjusted over different iterations by updating their values
based on the negative gradient of the loss function, scaled by the learning rate 𝜂𝑛 . The latter defines
a step size for the update and is also a hyperparameter. Applying these iterative minimization
schemes for training NN models is crucial, since no closed form solution exists for obtaining the
weights as it does in kernel-based methods. For NNs, cost scalings for new predictions of new
data points are linearly with the number of model parameters and independent of the number of
training configurations. [25, 26]

Graph Neural Networks and Message Passing

Besides descriptor-based NN potentials [36, 45], Graph neural networks [37–42] (GNNs) have
gained great popularity in recent years. Graph neural networks are powerful tools that act
on graph data. It is therefore an obvious step to apply them for molecules (or other chemical
systems) as the molecule itself can be represented as a graph. Such a molecular graph consists of
atoms represented as nodes, and bonds or atomic interactions denoted as edges. In many GNN
frameworks, the edges are defined between all atom pairs within a cutoff radius. A special feature
of GNNs are message passing (MP) iterations [59], through which atomic representations can be
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learned from data. Consequently, no molecular representations with hand-crafted features have
to be designed as it is the case in “conventional” NNs and kernel-based methods.

Within a message passing neural network (MPNN) framework, initial atom-wise vector repre-
sentations h(0)

𝑎 are assigned to the nodes (see Fig. 3.9a). These vectors capture the information
of elemental species and are usually called “embeddings” as element-dependent knowledge is
embedded in an high dimensional feature space. Furthermore, feature vectors are allocated with
the edges e𝑎,𝑏 , typically based on information about the interatomic distances. The atom embed-
dings are then refined though MP steps. Specifically, this means that in each MP step each node
receives information from edges and nodes located in the neighborhood of the atom. To update
the embedding of node 𝑎 at iteration 𝑙 the message m(𝑙)

𝑎 is calculated in terms of nodes and edges
in the neighborhood (N ) and then combined with information from the old state h(𝑙)

𝑎 via the
following equation

h(𝑙+1)
𝑎 = 𝑢 (h(𝑙)

𝑎 ,m(𝑙)
𝑎 ), withm(𝑙)

𝑎 =
∑︁

𝑏∈N (𝑎)
𝑚(h(𝑙)

𝑎 , e𝑎,𝑏,h
(𝑙)
𝑏
) . (3.29)

Here 𝑢 is an update function and𝑚 models the interaction between the atoms. Both are learnable
functions, usually represented as NNs. [38, 40, 103] Message passing neural network potentials
typically vary in different implementations of the update and interaction function. [25] After𝑇 MP
steps, final atom embeddings h(𝑇 )

𝑎 are obtained and fed into an additional network that is trained
to perform the regression task and that predicts atomic energies. These are pooled together to the
final total energy of a molecular configuration. [25, 26, 38, 50, 103, 104]

Although GNNs use cutoff functions similar to the SOAP representation, the resulting embed-
dings can encode information from beyond as it is visualized in Fig. 3.9b. In the first MP step,
each node receives information from its neighbors within the cutoff sphere. Thus, each updated
node contains both its own information and information from its surroundings. In the next MP
step, nodes indirectly receive some information beyond their cutoff, since the neighboring atoms
already received information from their neighbors within their cutoffs. This procedure commonly
ends after 3-6 MP steps. [25, 103]

Similar to representations in kernel-based methods and descriptor-based NNs, the here learned
representations should be invariant (or equivariant) to symmetry operations. The invariance with
respect to permutations is fulfilled due to the sum operation in Eq. 3.29. Rotational invariance is
obtained in most GNNs such as SchNet [37] by using pairwise distances. Furthermore, directional
message passing networks allow leveraging higher-order contributions like angular informa-
tion. [25, 82] A state-of-the-art representative of the latter is the geometric message passing neural
network (GemNet) [41], which has also been used during the work of this thesis in [3].

As in traditional MPNNs, GemNet assigns initial embeddings to all atoms (h(0)
𝑎 ). Additionally,

GemNet embeds the interactions between atoms based on atom pairs within a cutoff radius. These
pairs are represented via directed edge embeddings e(0)

𝑎,𝑏
. These edges thereby define a direction in

3D, where it points from atom 𝑎 to atom 𝑏. This direction allows to define angles between triplets
of atoms 𝜑𝑎𝑏𝑐 and dihedrals 𝜃𝑎𝑏𝑐𝑑 between quadruplets of atoms. The atom and edge embeddings
are then updated via several MP steps based on other atom and edge embeddings within the cutoff
sphere. These MP steps additionally incorporate information about the distances, angles and
dihedrals of the respective atoms. After each MP step, the model outputs a separate set of atom
and edge embeddings, which are transformed into local energy contributions. These contributions
are then summed up to obtain the molecular energy. In addition, GemNet can predict forces by
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Fig. 3.9: Message Passing in Graph Neural Networks. (a) Illustration of the initial node embedding in an
ethane molecule. For simplicity, the cutoff sphere has been omitted and edge features e𝑎,𝑏 are allocated
between direct neighbors. (b) Visualization of MP steps for a more complex naphthalene molecule.
In the first MP step, node 𝑎 receives information (black arrows) from neighboring atoms within the
cutoff sphere (gray circle), i.e. that h(1)

𝑎 gets updated based on its own and neighbors information.
Here, the colors represent a measure to visualize the information exchange of updated embeddings. In
the second MP step, node 𝑎 indirectly receives information beyond the cutoff. Adapted from Ref. [103].

calculating the negative energy gradients with respect to the atomic positions. For more details
about GemNet and directional message passing the interested reader is referred to [40, 41, 85].

3.6 Hyperparameter Selection

As already seen in previous sections, ML models contain additional parameters, so-called hyperpa-
rameters, that have to be defined before the final ML model is trained. These parameters may have
a drastic impact on model generalization, if they are wrongly selected. In general, the model itself
can be considered as a hyperparameter, i.e. the choice of which kernel function is employed or
which NN architecture is used. Apart from the model itself another type of hyperparameter exists,
given by additional model parameters that are not determined within the training procedure itself.
To this type belong for example the regularization parameter 𝜆, the length scale parameter 𝛾 of
the RBF kernel or the learning rate 𝜂𝑛 in a NN. Appropriate values for these parameters have to
be determined to ensure a decent model generalization error. [25, 26]

In many cases, hyperparameter selection is done within a grid search, an optimization procedure
or both in combination with a validation set. Furthermore, Bayesian approaches [105] can also be
applied. When using a grid search for the hyperparameter selection, the training set is divided
into two subsets, where the larger one defines the training set and the smaller one a validation set.
The hyperparameters are then systematically varied and the respective error (in many cases the
root mean square error) is evaluated. Finally, those hyperparameters are typically chosen that
perform best on the validation set.
Since the choice of the validation set may influence the hyperparameter selection, similar

approaches exists with focus on improving the statistics. A prominent example is the 𝑘-fold cross-
validation, where the training set is divided into 𝑘 subsets and one of these subsets represents the
validation set. The remaining 𝑘 −1 subsets represent the training set. The training is then repeated
𝑘 times, while using always a different subset of the𝑘 folds as validation set and the rest for training.
The final hyperparameters are chosen from the ensemble of 𝑘 models. Note, that each training is
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Fig. 3.10: Model Complexity. The figure illustrates different situations for bias and variance trade-offs.
Therefore, ML models of different complexity are displayed as red dashed lines in each sub-panel.(a)
The ML model is too simple to describe the true function (underfitting). (b) The ML model is of
reasonable complexity to provide an appropriate description of the true function. (c) The ML model
is too complex to describe the true function (overfitting).

combined with a hyperparameter selection part similar as described for a single validation set
before. It should also be mentioned here that for many applications the hyperparameters are
quite robust and usable for different databases. Moreover, some hyperparameters have physical
meanings or can be derived as educated guesses from the data.

After successful hyperparameter selection, the ML model is then fitted on the training set and
predictions are evaluated on a test set. The latter was already separated from the training set before
hyperparameter selection. The resulting test set error is used to approximate the generalization
error. [25, 26]

In this context, the terms bias and variance are often used. The bias describes the error between
the predictions and the true values. A high bias typically means that the model is highly regularized
and the prediction error for both the training and the test set are large. This is also known as
underfitting, which means that the resulting function is too simple (see Fig. 3.10a). On the other
hand the variance describes the ability of the model to generalize to unknown data. High variance
means that the function is usually too complex. A model that has high variance and low bias
is mostly overfitted, i.e. that the training data produce a tiny error, while the test set error is
huge (see Fig. 3.10c). For a good ML model a sweet-spot between the bias and variance has to be
determined, which is illustrated in Fig. 3.10b. Consequently, this leads to low training set errors
and good generalization to unseen samples. [26, 106]
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4 Publications

This chapter gives an overview about the published articles that build the basis of this cumulative
thesis. Summaries of each article as well as individual author contributions are provided. The
articles themselves and supplementary information are attached as appendix.

4.1 Machine Learning in Chemical Reaction Space

Sina Stocker, Gábor Csányi, Karsten Reuter and Johannes T. Margraf
Nat. Commun. 11, 5505 (2020).
DOI: https://doi.org/10.1038/s41467-020-19267-x

Summary

In this paper, we used established chemical compound space ML methods and adjust them for use
in reaction energy predictions in reaction space. Existing databases utilized for the development of
ML models in chemical space cannot be used for this purpose, as they only consist of closed-shell
molecules and thus lack important intermediates and fragments. Therefore, as an indispensable
first step towards the exploration of reaction space, an exhaustive DFT-based database (Rad-6) and
corresponding reaction network (Rad-6-RE) of open and closed-shell systems have to be generated
to describing bond dissociation and formation events in chemical reactions.
For the ML models, we employed the SOAP representation and constructed the sum and

average kernels as introduced in section 3.2 and 3.4. Kernel ridge regression was used to predict
atomization energies (AE) of molecules from the Rad-6 database and calculate reaction energies
(RE) in Rad-6-RE. Furthermore, we applied the FPS method (section 3.1) to select a representative
training set of molecular configurations based on both, the sum and the average kernel. Our results
exhibited good performances and similar AE prediction accuracies for both kernels and training
set selections. However, we noticed significant differences in the calculations of corresponding
RE in Rad-6-RE. Specifically, for the models based on the extensive FPS training set selection we
obtained huge RE errors for small training set sizes. These discrepancies could be attributed to
essential hub molecules that are involved in many reactions in the network. These molecules
should be included in the training as an incorrect prediction of their AE increases drastically the
RE error. Appropriate weightings in the loss function and training set selections according to the
network connectivity can solve this issue.

All described models used the optimized DFT geometry as inputs to predict the respective DFT
energies. This constellation of input-output values is rather impractical for generating ML models
in practice. If the relaxed DFT geometry were known, the corresponding energy would also be
available and the ML model redundant. Therefore, we further generated ML models, which use
force field (UFF) [19] based geometries as inputs to predict the DFT energy (of the DFT minimum
geometry) as target value. These ML models show the same trends as the pure DFT models,
however, with higher mean absolute errors.
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Finally, we employed the predicted reaction energies to reduce a complete reaction network
with more than 21,000 reactions to the essential steps with methane combustion as an example.
Therefore, a micro-kinetic simulation was used and the reaction energies were predicted via the
largest UFF-based ML model with the average kernel and intensive FPS. With this simulation,
we were able to reduce the network to a total of 887 reactions containing all reaction interme-
diates proposed in literature. Moreover, we found unexpected intermediates that have not been
considered before. These findings illustrate the importance of ML methods to rationally and
non-empirically reduce reaction networks, as essential steps could be otherwise overlooked when
constructing these networks (simply) by chemical intuition.

Individual contributions

The idea of this paper is the consequent advancement of the systematic enumeration of molecules
and resulting reaction networks from Johannes T. Margraf and Karsten Reuter [13] to offer a route
for the reduction of such exhaustive networks to the most relevant sub-parts. Therefore, Johannes
T. Margraf provided the UFF-based geometries of the Rad-6 database and the Rad-6-RE network
based on the algorithm developed in [13]. He further performed the micro-kinetic simulation and
corresponding analysis as well as the BS-DFT single point calculations. All authors were involved
in devising the project. Gábor Csányi especially contributed with his knowledge about the SOAP
representation and corresponding kernels.

I performed all DFT geometry optimizations and DFT single point calculations on UFF geome-
tries for the Rad-6 database in a high throughput fashion. Moreover, I analyzed the respective
DFT optimization outcomes regarding the consistency with initial UFF geometries to ensure
that the same molecular topology is used in the force field based ML models and consequently
build up the final Rad-6 database. I further fitted all ML models including both DFT-based and
UFF-based models, implemented the sum kernel in the mltools [107] package, carried out the
FPS for training set selections and analyzed the results on the basis of self written python codes
and scripts. Moreover, I did the kPCA for the visualization of the Rad-6 database, performed the
RE analysis on Rad-6-RE and created respective figures for the paper. I drafted the initial version
of the manuscript, which was revised and edited by Johannes T. Margraf. The final draft was
proofread and refined by Gábor Csányi and Karsten Reuter.
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4.2 Size-Extensive Molecular Machine Learning with Global
Representations

Hyunwook Jung∗, Sina Stocker∗, Christian Kunkel, Harald Oberhofer, Byungchan Han, Karsten
Reuter and Johannes T. Margraf
ChemSystemsChem 2, e1900052 (2020).
DOI: https://doi.org/10.1002/syst.201900052

Summary

Machine learning models accelerate the exploration of chemical and compound space or can be
used to study for example large reaction networks. To train such models, suitable representations
have to be developed that encode the molecular geometry. Such representations are typically
categorized into global and local representations, for which the differences are shown in section
3.2. While many ML models are based on local representations, for which size-extensivity is by
construction fulfilled, the correct treatment of differently sized molecular geometries with global
representations is not always ensured.
In this paper, we showed that this limitation can be overcome in kernel-based ML, using the

many-body tensor representation (MBTR) as an example. We stated that the original version
of MBTR together with a Gaussian kernel (MBTR/Gaussian) does not fulfill the size-extensivity
requirements as shown in section 3.4.2. However, MBTR is extensive when used with the linear
kernel (MBTR/linear). Furthermore, we introduced a normalized version of the MBTR (iMBTR)
(see section 3.2 for details), which ensures size-extensivity in combination with the Gaussian
kernel (iMBTR/Gaussian).
The importance of size-extensivity was demonstrated by training the ML models on small

molecules and evaluating predictions on significant larger systems. This test study showed that
size-extensive models such as iMBTR/Gaussian and MBTR/linear generated energy predictions
that show good correlations with DFT reference calculations. On the other hand, we found that
MBTR/Gaussian performs adequately when training and test molecules are of similar sizes but
produced disastrous results when extrapolating to larger systems. Our findings substantiate the
significance of size-extensivity for building transferable and data-efficient ML models.

Individual contributions

The idea behind this paper was developed in parallel to mywork on “Machine Learning in Chemical
Reaction Space” [1]. Since we found size-extensivity to be essential for a proper description of
reaction energies, the latter project focused on the local SOAP representation, which (unlike global
representations) naturally ensures this property. This led Johannes T. Margraf and me to explore
ideas for size-extensive ML models with global representations. In this context, I developed
a range of ML models for molecular systems based on MBTR in combination with different
kernel functions. This allowed me to connect the lacking size-extensivity in the MBTR/Gaussian
kernel with the normalization conditions of the representation, kernel and fitting target. As a
consequence, Johannes T. Margraf and I designed an improved version of MBTR that yields the
correct normalization and is size-extensive.

∗These authors contributed equally
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To demonstrate the benefits of this new methodology, we decided to apply it in a setting
that underscores the importance of size-extensivity, namely training on small molecules and
predicting the properties of large ones. This application was realized by Hyunwook Jung under
my supervision, during his research stay at TUM. There, he trained the corresponding ML models,
created the figures for the paper and analyzed the results together with me and Johannes T.
Margraf. Christian Kunkel recalculated the energies for the QM9 database with the same DFT
settings used for the OE62 data set to ensure consistency of the reference calculations.

I was involved in drafting the manuscript and writing the theory section, where we introduced
the requirements for kernels to be size-extensive. Furthermore, I created the table of content
figure. All authors contributed to writing the manuscript.

34



4.3 How Robust are Modern Graph Neural Network Potentials in
Long and Hot Molecular Dynamics Simulations?

Sina Stocker∗, Johannes Gasteiger∗, Florian Becker, Stephan Günnemann and Johannes T. Margraf
Published on ChemRxiv. Cambridge: Cambridge Open Engage, (2022).
DOI: https://doi.org/10.26434/chemrxiv-2022-mc4gb‡
Submitted for publication to Machine Learning: Science and Technology.§

Summary

Graph neural networks (GNNs) are powerful tools to accurately predict molecular properties on a
QM accuracy level. Their excellent performance has been widely demonstrated on established
benchmark databases, however, their robustness in real chemical simulations has been less explored.
In this paper, we wanted to make up this omission and test the applicability of GemNet [41]—a
highly accurate GNN—in long and hot MD simulations as an example. To this end, we trained
several GemNet models with different training set sizes drawn from the QM7-x database [57] and
ran a total of 245 ns of MD trajectories. Our results demonstrated that models with low test set
errors do not automatically produce stable MD trajectories. In contrast, highly stable dynamics
could be generated with exhaustive GemNet models, i.e. with sufficiently large training sets of
300,000 configurations and more. This is notable, since stable potentials are commonly generated
with iterative learning procedures, e.g. in the field of kernel-based ML. Such training procedures
are more difficult to enforce with complex GNN architectures as they typically require more
training data and times.

Furthermore, we used the most exhaustively trained potential with a training set size of 3.2 Mio
molecules to extrapolate predictions for significantly larger molecules and explore the robustness
in high-temperature MD simulations. The resulting stable trajectories show systematic errors for
energy predictions when validated with DFT, however, high correlations and impressive accurate
force predictions. We additionally made the 3.2 Mio GemNet potential and our corresponding
python wrapper for performing MD simulations with the atomic simulation environment
(ase) [108] package publicly available.

Individual contributions

The paper came about as part of the interdisciplinary IGSSE project between the chair of theoretical
chemistry and the informatics department “Data Mining and Analytics” at TUM with Johannes T.
Margraf as project team leader (PLT). Johannes Gasteiger is a PhD student of the latter department
and is working on GNNs as cost-effective alternative of QM methods. He developed the theory
and components of the GemNet architecture [41] as well as for its predecessor DimNet++ [85].
The idea of the current contribution was developed by Johannes T. Margraf to combine the
knowledge of both research fields, namely using GemNet and explore its robustness in MD
simulations as these dynamical tests are missing in literature. To this end, Florian Becker fitted

∗These authors contributed equally
‡This content is a preprint.
§An updated version of the peer-reviewed and accepted paper is now publicly available on
DOI: https://doi.org/10.1088/2632-2153/ac9955.
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the GNN potentials in the learning curves of the paper and provided the ase wrapper during his
Master thesis, while he was under the direct supervision of Johannes Gasteiger.
I was responsible for the chemistry part of the paper and performed the MD simulations as well as
respective DFT calculations for validating the dynamics. Furthermore, I carried out the respective
analysis of the results regarding the MD simulations and prepared all figures in the paper. I drafted
the manuscript and Johannes Gasteiger wrote the respective parts about the GemNet architecture.
The draft was revised by Johannes T. Margraf and proofread by Stephan Günnemann.
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5 Conclusions and Outlook

Over the last decades, ML and AI have emerged as powerful tools that have become an integral part
of our daily life, which ranges from smart items and voice assistants up to self-driving transport
vehicles. Furthermore, these statistical methods are increasingly used in the field of computational
chemistry to provide new insights into chemical processes by accelerating physical property
calculations at a fraction of the cost in contrast to the underling QM-based computations. By this,
ML models allow for the simulation of chemical systems at desired length and time scales, thus
bridging the gap between accuracy and efficiency that has existed since then between QM-based
methods and empirical force fields. As an essential first step towards the successful generation
of ML models, a data set is needed, from which the ML model can learn the structure-property
relationship of interest. Generating molecular databases that cover large parts of of the chemical
space is computationally intense as the QM reference calculations are expensive. Therefore,
ML concepts that have been developed on established databases in compound space should be
transferred to further sub-parts of the chemical compound or reaction space in order to solve
various chemical questions in data-efficient approaches.

This cumulative thesis has aimed to make a contribution to this field by exploring the trans-
ferability of chemical ML. This was done by starting to explore the applicability of established
compound space ML methods in chemical reaction space. Therefore, an appropriate database
(Rad-6) had to be generated that contains molecular and radical species occurring in large and
complex reaction networks. We used the FPS algorithm to select representative training sets and
employed KRR with the sum and average kernel to predict AE and additionally calculate corre-
sponding RE in the Rad-6-RE network. We found that some molecules are key for the assessment
of RE predictions as they are involved in many reactions and therefore may drastically influence
the error. Consequently adjustments had to be made. The predicted RE could be used for the
reduction of large and complex reaction networks.
Besides the exploration of chemical reaction space, we further investigated the transferability

of kernel-based ML models to predict molecules with large size differences. This is particularly
important for ML with global representations as these are per se not size-extensive. We showed
how size-extensivity can be included into the MBTR by using appropriate normalization conditions
and kernel functions. In addition, we demonstrated the relevance of size-extensivity by designing
a difficult test case and training ML models on small molecules while predicting much larger
molecules. Our results showed that size-extensive ML models are necessary to accomplish this
highly challenging task. However, for an adequate and data-efficient description of large molecules,
some of them should be included in the training set. Otherwise phenomena like long range
interactions cannot be described properly.
Finally, we explored the robustness of modern GNN MLIPs (here for GemNet) in molecular

dynamics simulations, when trained on QM7-x. Their complex architecture and the resulting
long training times make it difficult to apply iterative training, which has proven to be partic-
ularly effective for generating stable MLIPs. Therefore, large databases with many molecular
configurations such as QM7-x are very important for generating stable potentials. Nevertheless,
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GemNet can be considered as a cost-effective option to QM-based methods, providing impressively
accurate results when trained on sufficiently large training sets.
The combination of machine learning and computational chemistry is an emerging field, in

which great progress has been achieved in recent years. Nevertheless, further developments and
improvements are still necessary. Specifically, in the field of catalysis I expect great progress for the
design of new catalysts. The continuous further development of new machine learning concepts
is particularly key to this field, since the tremendously large search space for new catalysts cannot
be explored otherwise. Machine learning models are required that allow for the simulation of
large length and time scales and thus enable the prediction of thermodynamic and kinetic data,
the exploration of reaction networks and an acceleration of the determination of transition states
(TS). In this context, researchers may develop MLIPs for surface science that can predict reaction
barriers in large reaction networks. This includes not only TS searches within low-coverage
regimes, but also dynamical approaches at high coverages. Specifically, the latter is important
to model scenarios, which are much closer to experiments and therefore allow for more realistic
descriptions.
Furthermore, including long range interactions into ML models is also a major topic at the

moment. Machine learning interatomic potentials are mostly built with local representations,
which give good results for many applications. However, long range effects, such as dispersion
or electrostatics, may play a significant role in the transferability and scalability of ML models.
Therefore, they should be included if requested.

Last but not least, the sufficient production of appropriate data is always important for fitting ML
models. As mentioned above, the generation of accurate reference data in computational chemistry
is very expensive and therefore solutions are required. One way to build data-efficient ML models
is to use physical baseline methods. These methods already describe large parts of the physics
and consequently only the differences between the QM and baseline method has to be learned.
This typically produces accurate and robust potentials. On the other hand, active learning in
combination with uncertainty estimates additionally supports data-efficient approaches. Thereby,
the machine learning model learns by itself, which data should be included in the training process.
Even though these two approaches help to build data-efficient ML models and reduce the number
of reference calculations, it is still inevitable to create and publish sophisticated and large databases
in the field of theoretical chemistry. In addition, much more experimental data should be used
for training ML models. The collaboration of theoretical chemists with experimentalists and data
scientists will be essential in the future for the successful generation of even better ML models.
This underlines the idea of chemistry as a central science where many different disciplines are
interconnected.
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ARTICLE

Machine learning in chemical reaction space
Sina Stocker 1, Gábor Csányi 2, Karsten Reuter 1,3 & Johannes T. Margraf 1✉

Chemical compound space refers to the vast set of all possible chemical compounds, esti-

mated to contain 1060 molecules. While intractable as a whole, modern machine learning

(ML) is increasingly capable of accurately predicting molecular properties in important

subsets. Here, we therefore engage in the ML-driven study of even larger reaction space.

Central to chemistry as a science of transformations, this space contains all possible chemical

reactions. As an important basis for ‘reactive’ ML, we establish a first-principles database

(Rad-6) containing closed and open-shell organic molecules, along with an associated

database of chemical reaction energies (Rad-6-RE). We show that the special topology of

reaction spaces, with central hub molecules involved in multiple reactions, requires a mod-

ification of existing compound space ML-concepts. Showcased by the application to methane

combustion, we demonstrate that the learned reaction energies offer a non-empirical route to

rationally extract reduced reaction networks for detailed microkinetic analyses.
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Reaction networks are essential tools for the description,
illustration, and fundamental understanding of chemical
processes in such diverse fields as catalysis1–4, combus-

tion5–7, polymerization8, atmospheric chemistry9, systems
chemistry10,11, and the origin of life12. Indeed, any study of
chemical kinetics or selectivity is essentially a study of a reaction
network. In many cases, however, the understanding of complex
chemical processes is hampered by the sheer size of the networks
in question1,13–21. For example, we recently reported a database
of over 1 million elementary reactions for molecules no larger
than four non-hydrogen atoms containing carbon, oxygen and
hydrogen22.

The reaction networks typically used in microkinetic studies of
natural and industrial processes are therefore necessarily merely
sub-graphs of the full network of possible reactions (see Fig. 1)20,23.
This is not automatically a problem, as large parts of the latter may
not be thermodynamically accessible. It is therefore entirely possible
that a microkinetic model based on a reduced reaction network
correctly describes the overall kinetics of a complex process1,6,20.
Meanwhile, the big advantage of focusing on sub-graphs is that the
kinetics and thermochemistry of each elementary step may be
explicitly computed from first principles. This offers a non-
empirical route to understanding complex reaction mechanisms.

Notwithstanding, the difficulty lies in knowing which parts of the
full network to keep. One would need at least an approximate
notion of the reaction thermochemistry (and ideally the kinetics) of
the full network, to be able to do this on a rational basis. This
information is typically not available. Indeed, not even the topology
of the full network is usually taken into account. Instead, state-of-
the-art reaction networks are generally built by hand, based on
chemical intuition and (sparse) experimental evidence. The fre-
quently observed failure to correctly predict the selectivities of
complex catalytic processes with first–principles microkinetics
indicates that such ad hoc networks may miss important links24–26.

The central impediment towards a non-empirical construction of
reduced reaction networks is the large computational cost of first-
principles electronic structure methods such as density-functional
theory (DFT). It is simply not feasible to routinely compute tens or
hundreds of thousands of reaction energies (REs) and activation
barriers. In this context, machine-learning (ML) models that are
trained on a limited number of DFT calculations have recently

emerged as powerful tools for the high-throughput prediction of
molecular and materials properties27–33. Simply put, ML can be
used to interpolate properties (such as energies) across chemical
compound space. State-of-the-art methods actually surpass che-
mical accuracy (ca. 0.05 eV) when applied to standard benchmarks
like the QM9 database34–38. Similarly, ML models can be applied to
conformational space (e.g., when trained on ab initio molecular
dynamics trajectories) or even interpolate across chemical and
conformational space at the same time39–41.

While exploring compound space is useful in its own right
(e.g., for drug or materials design), chemistry is the science of
transformations in chemical space. In contrast, virtually all ML
models for organic molecules to date are trained on reference data
derived from the chemical universe database of Reymond and
coworkers, which enumerates potentially stable, drug-like mole-
cules41–43. Almost by construction, these models therefore cannot
describe elementary reactions such as the ones shown in Fig. 1,
which typically involve radical or charged intermediates. In our
view, the application of ML to areas like catalysis and combustion
requires a shift of focus from stable molecules to radicals (i.e., the
nodes in Fig. 1) and to reactions (the edges). The goal of this
paper is therefore to begin the development of ML models for the
exploration of reaction space, as opposed to compound space.

Specifically, we introduce a new DFT database of closed- and
open-shell molecules that covers an extensive network of chemical
reactions. We then develop ML models to predict atomization and
REs. Finally, the models are used to explore the reaction network of
methane combustion and identify the most relevant reaction steps
and fragments out of a large initial database.

Results
Data and kernels. To train reactive ML models, a reference
database of both open and closed-shell systems must be estab-
lished. A large set of such structures was enumerated using a
graph-based approach22, and the ground-state geometry and
energy of each system was determined with DFT calculations
using the hybrid PBE0 functional with Tkatchenko-Scheffler
dispersion corrections44–46. The resulting Rad-6 reference data-
base comprises 10,712 molecules containing carbon, oxygen and
hydrogen, the largest of which consists of six non-hydrogen
atoms. As illustrated in Fig. 2, this dataset is rich in

ba

Fig. 1 Visualization of chemical reaction spaces as graphs with molecules as nodes and reactions as edges. a Full network of bond dissociation reactions
for carbon-, oxygen-, hydrogen-containing molecules with up to four heavy atoms. b Reduced reaction network of the initial steps of natural gas
combustion. Nodes are colored according to the number of incident edges/reactions (their degree) from low (white) to high (dark green).
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unconventional structural motifs, such as poly-radicals. As is
commonly observed, the space of possible compounds scales
exponentially with the system size (see Fig. 2, left). This figure
also reveals that radical fragments in fact dominate the database,
as they are combinatorically much more frequent (by an order
of magnitude) than closed-shell systems. Notably, this dominance
of open-shell systems prevails, although more than half of the
originally enumerated radicals decomposed or rearranged upon
geometry optimization. Importantly, these unstable cases were
not included in the database. This choice was made because
the definition of a chemical reaction requires the specification of
the molecular topologies of educts and products (and how they
are transformed). The full Rad-6 database is provided in the
supporting information to this article.

Two central quantities that are needed to fully understand the
overall kinetics of a reaction network are the RE (Ereac, RE) and
the activation energy (barrier) for each reaction. Indeed, REs
provide the most important features of the reaction network and
can in some cases even be used to predict activation energies via
the Brønsted-Evans-Polanyi relation47–49. Furthermore, while the
activation energy is a property of each individual reaction (the
edges in a graph), the RE can be computed from molecular
atomization energies (Eat, AE), i.e. information from pairs of
nodes in a graph, meaning that much fewer calculations are
required to predict the REs in a large reaction network.
Specifically, to predict 1000 REs for 20 molecules, one only
needs 20 ground-state geometries. In contrast, predicting the
corresponding activation energies would require 1000 additional
transition state (TS) geometries. Not only are there more TS
geometries, but these are also much harder to obtain, both in
terms of computational effort and in terms of the human
intervention needed for successful transition state searches. This
makes predicting REs the logical first step in the ML-driven
exploration of reaction networks.

Specifically, for a reaction of the type:

A�!Bþ C; ð1Þ

the REs can be computed from molecular atomization energies via:

Ereac ¼ EB
at þ EC

at � EA
at; ð2Þ

where we define the AE without loss of generality as the total energy
of the molecule minus total energies of the isolated neutral atoms.

Learning atomization energies across chemical compound
space is a well-established practice in the ML literature. In a
first approach, we can therefore apply such compound space
models for predicting REs, as long as they are trained on a
reactive database like Rad-6. Herein, we use Kernel Ridge
Regression (KRR) with the SOAP50 representation, as a state-
of-the-art ML method (see SI for details). In brief, KRR uses a
kernel function k(xi, xj), to measure the similarity between
representations xi and xj. The herein used SOAP representation is
one of a class of atom-density projections that have been found to
yield highly accurate molecular ML models51,52. With this type of
model, the AE of an unknown molecule can be predicted
according to its similarity with known molecules in a training set.
Since the AE is a molecular property and SOAP is an atomic
representation, an additional step is required for evaluating the
similarity of molecules. This can, for example, be achieved with
the average kernel37:

K intðA;BÞ ¼
X

a2A;b2B

1
NA NB

kðxa; xbÞ; ð3Þ

where NA and NB are the numbers of atoms a and b in molecules
A and B, respectively, and xa is the SOAP representation of the
chemical environment of atom a. The lower-case k is used to
differentiate the atomic from the molecular kernel function K.
Alternatively, one can also use the sum kernel:

KextðA;BÞ ¼
X

a2A;b2B
kðxa; xbÞ: ð4Þ

Both average and sum kernels have been successfully used in
ML models of the AE, but there is a crucial difference in their
properties34,36: Specifically, the average kernel disregards size
differences between molecules. It provides a measure for how
similar the atoms in molecule A are to the ones in molecule B, on
average. Meanwhile, the non-normalized sum kernel is sensitive
to size differences. Consequently, models using the average kernel
should be used to predict intensive quantities, and models using
the sum kernel should predict extensive properties53. Herein, all
models using the average kernel are therefore trained on the
atomization energy per atom (AE/N, an intensive quantity). The
predicted AE/N is afterwards simply multiplied with the number
of atoms N to recover the AE. Meanwhile, the sum kernel can
directly be trained on (and predict) the AE53. In the following we
will refer to Eq. (3) as the intensive kernel (Kint) and to Eq. (4) as
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Fig. 2 The Rad-6 database. a Number of molecules in the database, according to their number of non-hydrogen atoms. b Structures of representative
molecules in the database. Dots indicate radicals and respective SMILES strings are listed.
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the extensive kernel (Kext). As an aside, it should be noted that
using such linear combination kernels is equivalent to the
partitioning of the total energy inherent, for instance, to Gaussian
Approximation Potentials29,36.

To train ML models, the Rad-6 database is split into training,
validation (for hyperparameter optimization) and test sets. To
obtain representative training sets, we use the farthest point
sampling (FPS) method36. In FPS, data-points are sequentially
selected to maximize the distance between a new data-point (a
molecule A) and all previously selected points (molecules B
already in the training set). In the present context, this means new
molecules added to the training set should be as dissimilar as
possible to all previously selected molecules. The distance
between molecules is measured using the previously introduced
kernels, according to:

DðA;BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðA;AÞ þ KðB;BÞ � 2KðA;BÞ

p
: ð5Þ

Because D(A, B) depends on the kernel, we obtain different
training sets for the intensive and extensive kernels.
Most importantly, while we normalize Kint so that
Kint(A, A) = Kint(B, B) = 1, Kext is not normalized. Consequently,
KextðA;AÞ � N2

A and KextðB;BÞ � N2
B. This means that the

distance Dext(A, B) evaluated with the extensive kernels tends to
be greater between large systems than the distance between small
systems. Accordingly, mostly large molecules are selected during
the early iterations of FPS with Dext, whereas the intensive
distance Dint maximizes the average chemical diversity in the
training set irrespective of size. It should be noted that a FPS
selection based on maximally diverse atomic environments rather
than molecules (e.g. using a softmax criterion54) would also be
possible. This may be a better choice for datasets with large
molecules.

Beyond their use in regression methods like KRR, kernels can
also be used for dimensionality reduction and visualization of
large data sets with the kernel principal component analysis
(kPCA) method55,56. In Fig. 3, kPCA plots of the Rad-6 chemical
compound space for the intensive and extensive kernels are
shown. Here, the two principal components mainly reflect the
degree of saturation (the number of hydrogen atoms) and the
oxygen/carbon ratio. The main difference in both projections is
that the extensive kernel additionally displays a size-dependence,

with small molecules (up to 4 heavy atoms) concentrated in the
bottom right corner (see SI for more details).

Superposed on the projected landscapes, Fig. 3 shows the color-
coded variation of the DFT computed AEs. A clear trend from
more negative values in the top right to less negative values in the
bottom left can be discerned for Kint. This correlation of AE/N
with the degree of saturation results simply because highly
saturated molecules contain only single bonds, while unsaturated
molecules contain double and triple bonds. The gradual variation
of both AE and AE/N also provides an intuitive understanding of
why kernel models work for predicting molecular energies:
Molecules that are close in the kPCA plot (i.e., considered to be
similar by the kernel) also have a similar AE. Finally, Fig. 3 also
illustrates the distribution of the FPS-selected training points,
which evenly cover the compound space, but also span most of
the more isolated points at the bottom of the figure.

Machine learning in compound space. In Fig. 4, the learning
curves for AE predictions with the extensive and intensive kernels
and using both Dext-based and Dint-based FPS sets are shown, i.e.,
we also combine extensive kernel learning with intensive training
sets and vice versa. It can be seen that with the largest training
sets, all four models are able to predict atomization energies for
these systems with mean absolute errors (MAEs) well below 0.1
eV. In all cases, the log-log plots display the expected linear
relationship (i.e., the learning curve can be fitted as a power law),
indicating that even higher accuracy could be achieved with more
data. To put this performance into perspective, it should be noted
that our baseline method (dispersion-corrected hybrid DFT) itself
has an average accuracy of ca. 4–5 kcal mol−1 (0.2 eV) for REs
and barriers57,58.

Additional ML models were trained on randomly sampled
training sets, to provide a baseline for the FPS schemes. The
corresponding AE learning curves are comparable to the
extensive FPS (see SI). As has previously been noted, random
sampling is actually advantageous for very small training sets, but
the learning rate is lower than for both FPS schemes translating
into inferior performance for larger training sets36.

Following common practice, all errors are shown for the total
AE, even for the intensive models. Clearly, this is not a
completely fair comparison, as the intensive models are trained
to minimize the AE/N and not the total AE error. This explains
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the seemingly counter-intuitive fact that the extensive model
performs better even on the intensive FPS training set. It has
been suggested in the context of electronic structure methods
that AE/N may generally be a more appropriate target for fitting
and benchmarking58,59. Specifically, fitting on the total AE will
selectively favor large systems over small ones, as they offer a
larger potential for improvement in the loss function. This also
carries over to the FPS selection, as extensive selection will
initially focus on larger molecules which are deemed to be more
dissimilar than smaller ones. We will see later that this has
significant consequences for reaction networks and REs.
Nevertheless, based on the data in Fig. 4 one would deduce a
slight superiority of the extensive kernel.

Fully optimized DFT geometries will unfortunately not be
available for ML training and prediction in a realistic
application. If they were, the DFT energy would be known
and the ML prediction would be redundant60. We therefore also
used simple forcefield geometries (based on the universal
forcefield, UFF)61 for training and prediction, still using the
ground-state energies of relaxed DFT geometries as the target
property. As shown in Fig. 4c and detailed in the SI, all trends
discussed for the DFT geometries are unchanged, but the MAEs
are somewhat higher, roughly by a factor of two. Such inferior
performance of ML models using approximate geometries has
also been observed for closed-shell data sets like QM9, but it is
more pronounced here36. This reflects the fact that general
forcefields like UFF are not designed for the description of
radicals, which make up a large part of Rad-6. In this context,
semi-empirical electronic structure methods might offer an
alternative low-cost method for more reliable geometries62,63.
Note however that such methods will invariably afford some
amount of rearrangement and decomposition upon geometry
optimization, which would introduce a mismatch between
the structure used to build the SOAP representation and
the structure for which the target energies are computed.
This could in principle be mitigated by using constrained
relaxations, but defining universal geometrical constraints in a
high-throughput setting is not trivial.

It has also been shown that predictions from approximate
geometries can be improved by using a measure of the quality of
the training geometries to adjust the model regularization for
each training sample36. As shown in the SI, this is not successful
for Rad-6. Again, we attribute this to the overall poor and
inconsistent quality of the UFF geometries for open-shell systems,

highlighting another challenge when moving towards ML
approaches for reaction space.

Nonetheless, even UFF-based models with fairly small training
sets already provide a reasonable estimate of the AEs across
chemical compound space. This is illustrated in Fig. 5, where an
interpolated AE/N surface for an ML model trained on 1000 UFF
structures is compared to the DFT reference values. The plots are
visually almost indistinguishable. This serves to emphasize that
even a ML model trained on 10% of the database already provides
an adequate representation of its overall thermochemistry. Recall
that the core task for the development of rationally reduced
reaction networks is not an excessive accuracy of this thermo-
chemistry as typically targeted in existing ML work for compound
space. Instead, the overall topology needs to be appropriately
represented to a degree that enables the selection or dismissal of
reactions when building sub-graphs.

Machine learning in reaction space. With the ML-predicted
AEs, one can readily calculate REs using Eq. (2), in strict analogy
to how they are computed with first-principles methods. In this
case, errors in the predicted AEs will propagate to the predicted
REs. Under the most basic assumptions (i.e., an uncorrelated,
constant uncertainty σAE for every AE prediction), one would
expect the uncertainty in the RE prediction for a reaction A⟶
B+ C to be

ffiffiffi
3

p
σAE. While this is a very rough estimate, it indi-

cates that we would generally expect the error on REs to correlate
with the AE error, and that the former should be larger than the
latter.

To test these expectations, a reaction network containing
32,515 bond-breaking reactions, Rad-6-RE, was generated using
the Rad-6 molecules (see SI for details and the full dataset). In
Fig. 6, we show the relation between the performance of different
ML models for AE and RE predictions, using both FPS training
set selections (multiple points for each method correspond to the
different training set sizes shown in Fig. 4). These plots reveal
several interesting trends. As expected, the RE error correlates
with the AE error. However, there are significant differences both
with respect to the FPS selection and the kernels. Most notably,
all models display unexpectedly large errors for the smaller (N ≤
2000) extensive training sets. In contrast, the models trained on
the intensive FPS display RE errors that are much closer to the
corresponding AE errors. Strikingly, the combination of intensive
kernel learning and intensive training set selection leads to RE
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errors that are almost identical to the corresponding AE errors
across all training set sizes.

These observations can be understood in light of the fact that
not all molecules are equally weighted in a reaction network. As
can be seen in Fig. 1, some molecules are central hubs in the
network (dark green), whereas others lie on the periphery and
only contribute to few reactions (white)11,19. The existence of
such hubs, which correspond to molecules with dramatically
higher importance, is a fundamental difference between reaction
space and the homogeneously weighted chemical compound
space. In Rad-6-RE, the most important such hubs are small
molecules that correspond to functional groups (OH, CH3, etc.)
and the isolated atoms C, H and O. As mentioned previously, the
extensive kernel distance Dext will consider all smaller molecules
to be more similar in terms of their kernel distance (Eq. (5)),
because the terms Kext(A, A) and Kext(B, B) scale with the number
of atoms. Small molecules are therefore selected later in an
extensive FPS selection, and are consequently absent from the
smaller training sets. This can lead to relatively large errors on
important hub molecules, which will consequently have an out-
sized impact on the RE error.

In other words, the large discrepancy between RE and AE for
small extensive training sets is because small molecules are less
likely to be included. This notion is further reinforced by

considering the performance of the models based on random
sampling. While the AE predictions of these models are of
comparable accuracy with the FPS models (in particular for the
smaller training sets), the performance for RE prediction is very
poor, with MAEs above 1 eV for small training sets (see SI). Even
when the extensive kernel is trained on intensive sets, smaller
molecules still offer less potential for improving the loss function
and thus lead to a poorer performance for REs.

In complete contrast to the situation in compound space, an
intensive kernel with an intensively selected training set is
therefore a better choice for ML models in reaction space. This
indicates that some of the experience gathered hitherto for ML in
chemical compound space (like the significant work on the QM9
database)34–36 will not necessarily carry over to reaction spaces.
Realizing the particular relevance of hub molecules, a straightfor-
ward adaptation could for instance simply be to inversely scale
the extensive distance used in the FPS selection by the degree of
the node in the reaction network, i.e., by the number of reactions
in which the molecule is involved (see Fig. 1). Similarly, the least-
squares problem for an extensive kernel could be adjusted by
weighting the molecules according to their inverse size. With
this work, we hope to initiate such dedicated methodological
development for reaction spaces and will pursue corresponding
research in the future.
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It should also be noted that the special topology of reaction
networks makes model evaluation for REs in a strict statistical
learning framework difficult. The reaction network Rad-6-RE
contains most of the Rad-6 molecules. Computing the REs for
this network is therefore not a pure prediction, as some molecules
in each reaction may be in the training set. In principle, it would
be desirable to evaluate the performance on a separate reaction
network that contains no training molecules at all. However, this
can only be achieved in two ways: Either the test network
contains no small molecules like CO and OH, or these molecules
are excluded from the training set. The former option leads to a
very unnatural reaction network, that misses the most frequent
classes of bond-breaking events. Meanwhile, the latter option
leads to a very poor training set, and thus an overly pessimistic
estimate of model performance.

We therefore decided not to follow this strict separation of
training and prediction for the RE MAEs shown in Fig. 6. This
also explains why the RE error is in some cases actually lower
than the AE error, contrary to expectation: The RE MAE benefits
from the fact that the prediction error of all tested models is
somewhat lower on the training sets (see SI). Indeed, KRR models
can in practice display a negligible error on the training set if the
regularization parameter is chosen to be very small, as is
advocated by some authors64.

Exploration of reaction networks. Finally, we return to the
original motivation of this work, namely the ML-aided
exploration of complex reaction networks. To illustrate the
use of ML-predicted REs, we consider a closed network of over
21,393 elementary reactions, containing a large variety of bond-
breaking, transfer and rearrangement reactions for oxygen,
carbon and hydrogen-containing molecules22. Note that this
network is deliberately not a subset of Rad-6, although there
is significant overlap (ca. 80% of the involved molecules are
included in Rad-6). This is thus, at least partially, an out-of-
sample application. The challenge lies in determining which of
the elementary reactions are likely relevant to a chemical pro-
cess of interest. As an exemplary process we consider the early
stages of methane combustion65–69.

To validate the proposed ML models for this application,
additional DFT calculations were performed on the out-of-
sample systems. Unfortunately, these systems mostly decompose
or rearrange upon DFT geometry optimization. Note that this
does not necessarily mean that they are inherently unstable,
however, just that the corresponding local minima were not
found when starting from a (inaccurate) UFF geometry. We
therefore used DFT single point calculations on UFF geometries
here. Overall, a good correlation between DFT and ML-predicted
energies is found, with systematically lower ML AEs (see SI). This
systematic bias can easily be understood since the ML models
predict the DFT energies of relaxed geometries, but the validation
energies are for frozen UFF geometries. The latter is by definition
larger than the former. This shows that the ML model can be used
to estimate relaxed DFT energies even when these are not readily
available from DFT calculations.

To qualitatively explore this network, a mean-field micro-
kinetic simulation of the reaction of equal parts CH4 and O2 was
performed, assuming a constant activation barrier for all reactions
(see SI for details). Under these assumptions, the reaction
dynamics are only driven by the REs and the law of mass-action.
While the true activation energies and detailed reaction
conditions (initial concentrations, temperature, pressure, etc.)
will obviously play a crucial role for the actual mechanism, such a
simplified microkinetic simulation provides insight into how
thermochemistry and the topology of the reaction network define

which intermediates and reaction steps are at all relevant to the
process. By observing how the reaction network grows with
simulation time, we can furthermore understand how inter-
mediates and reactions sequentially become available, as mass
flows through different paths of the network. Only requiring ML-
predicted REs as input, such a simulation is therefore a first step
towards the envisioned rational reduction of the full network to
tractable sub-graphs.

Figure 7 summarizes the results obtained based on the
intensive kernel ML model trained with an intensively selected
FPS set of 9582 UFF structures. Shown are the reduced reaction
networks extracted as those parts of the full network that are
accessed at increasing simulation times. These reduced networks
are highly revealing, as they form a hierarchy of different
chemistries relevant to combustion. For example, in line with
general expectations6, the smallest network contains peroxide
chemistry, with the hydrogen transfer from methane to molecular
oxygen as the dominant pathway. Subsequently formed COyHx

intermediates also comprise generally anticipated molecules like
methanol (CH3OH) or formic acid (HCOOH), but also more
exotic species like the Criegee intermediate (CH2OO). Interest-
ingly, the formation of the main product CO2 only appears in
larger subgraphs after dimerization reactions have already led to
C2 intermediates like ethylene (C2H4) and ethane (C2H6). Finally,
the largest subgraphs shown include already more complex
molecules like propane (C3H8) and propene (C3H6) and comprise
a total of 887 reactions.

It should be emphasized that the networks in Fig. 7 are not
intended to represent a definitive mechanism for methane
combustion, not least because this mechanism strongly depends
on reactions conditions like temperature, pressure and the
methane/oxygen ratio68. Instead, this analysis provides insight
into what intermediates and elementary steps should be
considered when constructing reduced reaction networks for
mechanistic studies. While assuming constant barriers is clearly
a harsh approximation in a microkinetic simulation, we note
that predicting activation energies for the full network is not
necessary to extract the relevant reduced reaction network for
subsequent analysis. In many cases, an elementary reaction can
be discarded because of a large thermochemical barrier alone.
In other words, if a reaction is found to be irrelevant in a
microkinetic simulation with constant barriers, it will not
become relevant once activation barriers are included. Of
course, activation barriers for the reduced network must still be
computed for a quantitative microkinetic simulation, but this is
only a small subset of the full network.

Note also that a pure ML approach may miss important domain
knowledge. For example, both singlet and triplet spin-states of CH2

are relevant in combustion6,68. Instead, the graph-based enumera-
tion approach22 used to generate Rad-6, generically only considers
the lowest-spin state of each molecule (with manually implemented
exceptions of triplet O2 and the isolated atoms to prevent
completely unphysical results). Nonetheless, our pure ML approach
finds all intermediates considered in empirical reduced methane
combustion mechanism like the skeletal mechanism of Lu et al.6,70.
On the other hand, the unbiased nature of ML approaches has the
benefit of providing unexpected suggestions that would perhaps not
be considered otherwise. For example, already our proof-of-concept
reduced reaction networks of methane combustion suggest a
pathway for CO2 formation via the Criegee intermediate (CH2OO)
and cyclic compounds like dioxirane (CH2OO*) that is not
generally considered in state-of-the-art empirical networks. In our
view, domain knowledge and ML-based exploration should there-
fore be combined in practice.

Indeed, the generation of reference databases is also to an extent
domain specific. The reaction networks considered herein are quite
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universal and could be applied to atmospheric chemistry,
combustion or catalysis. However, these fields have distinct
requirements with respect to the first-principles reference data.
Clearly, catalysis can only be studied if the effect of the catalyst is
accounted for. Meanwhile, thermal contributions to the free-energy
will be large and important for a realistic description of combustion,
and the role of different spin-states must be considered in both
combustion and atmospheric chemistry. Nevertheless, the ML
framework presented herein can easily be transferred to accom-
modate these situations.

To demonstrate this, a second set of energies for Rad-6 was
computed using broken-symmetry (BS) DFT (see SI for details).
In BS-DFT, the DFT energy is further minimized by exploiting
the breaking of spatial and spin-symmetry in the Kohn-Sham
determinant. The resulting determinants consequently do not
correspond to a predefined multiplicity but represent the lowest

energy solution irrespective of the spin state. Importantly, we find
that ML models trained on this data have very similar predictive
accuracy to the ones discussed so far (see Fig. 8). This shows that
the Rad-6 database can serve as a benchmark for developing and
improving ML models in reaction space, much like the popular
QM9 set has done for chemical compound space.

Discussion
In this paper, we have explored the applicability of ML models to
chemical reaction networks. In this context, we introduced the Rad-
6 database of ca. 10,000 open and closed-shell molecules and an
associated reaction network of ca. 30,000 reactions (Rad-6-RE).
Established compound space KRR methods were shown to accu-
rately predict atomization energies of the Rad-6 molecules. While
the AE prediction accuracy was fairly similar for different choices in
training set selection and kernel construction, these choices had a

Fig. 7 ML-based exploration of a complex reaction network. Each frame shows the reduced reaction network extracted from a microkinetic simulation of
methane combustion at different stages in simulation time. The abstract simulation time is shown for each frame in arbitrary units, see text. Educts and
products (in bold), as well as important intermediates are highlighted. Nodes are colored according to their absolute atomization energies from low (red) to
high (blue). Cyclic compounds are marked with an asterisk, to distinguish them from the corresponding linear compounds.
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large effect on RE prediction accuracy. In particular, we found the
use of an intensive kernel for both FPS-based training set selection
and KRR learning to work very well for RE prediction, while models
trained on extensive FPS sets displayed unexpectedly large RE
errors. This can be rationalized by the special topology of reaction
networks, in which certain small molecules constitute important
hubs that should be included early on in the training sets.

We note that the extensive and intensive kernels used herein
are merely interesting representatives of a wider range of possible
models. Fundamentally, the observed differences in performance
between the AE and RE prediction reflect that not all concepts
established for the ML-based exploration of chemical compound
space can be carried over to reaction space. Multiple methodo-
logical developments are required to establish reliable protocols,
for example with respect to the weighting of molecules in the loss
function of the ML model. If the topology of the reaction network
of interest is known, these weights could for example be selected
according to the connectivity of the molecule in the network (as
shown in Fig. 1). Alternatively, weighting by size (or molecular
weight) would likely be a useful heuristic to avoid the problems
observed for the extensive kernel.

We also presented a proof-of-principle application of a reactive
ML model to the exploration of the methane combustion reaction
network. Here, a microkinetic simulation based on ML energetics
was carried out, revealing relevant pathways and elementary steps
in a large reaction network of 21,000 reactions. In our view, there
are two ways to proceed from here. On one hand, the relevant
subgraph thus extracted from of a much larger reaction network
could be studied in depth with first-principles methods. On the
other hand, we can envision an ML-driven computational reactor,
where this is done in a more integrated fashion. Important steps
(as identified by an ML-driven microkinetic simulation) could be
studied with DFT and the results used to retrain the ML model.
This would lead to an active-learning-type iterative procedure,
where the predicted energetics of the reaction network are con-
tinuously improved in a targeted fashion, and no subgraph
selection is necessary (within the computational constraints of the
microkinetic simulation).

Methods
Computational details. Reference geometries and energies were obtained using
DFT as implemented in FHI-Aims46,71. Specifically, the PBE0 functional72 was
used with tight integration settings and tier-2 numerical atomic orbital basis
sets. Dispersion interactions were treated via the pair-wise Tkatchenko-Scheffler
van-der-Waals correction73. Approximate geometries were obtained with the UFF
forcefield61.

Machine-learning models. All reported ML models are based on Kernel Ridge
Regression and use the SOAP kernel37,50. SOAP representations were computed
with the quippy code (https://github.com/libAtoms/QUIP). Kernel matrices and
training/test splits were generated with the mltools package (https://github.com/
simonwengert/mltools.git). The atomic simulation environment was used
throughout to process molecular data74.

Full methodological details are provided in the Supplementary information.

Data availability
All datasets used in this paper are available as Supplementary Data 1.

Code availability
The code used to fit the ML models is available at https://doi.org/10.5281/
zenodo.4025972.
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Supplementary Note 1: Rad-6 Database

The Rad-6 reference database comprises both closed-shell molecules and (poly-)radical

fragments containing carbon, oxygen and hydrogen (see below for a detailed description).

SMILES strings1 for structures containing up to 6 non-hydrogen atoms were created using the

graph-based approach of Margraf and Reuter2 and subsequently converted to 3D structures

using the RDKit package.3 Geometries were initially relaxed with the universal forcefield

(UFF).4 Final geometries and energies were obtained using DFT as implemented in FHI-

Aims5,6. Specifically, the PBE0 functional7 was used with tight integration settings and tier-2

numerical atomic orbital basis sets. Dispersion interactions were treated via the pair-wise

Tkatchenko-Scheffler van-der-Waals correction.8 The final reported geometries are converged

to a maximum residual force component of 10 meV Å−1 per atom.

As ML models do not explicitly consider electronic structure, special considerations with

respect to spin states are required. In Rad-6, all DFT calculations were initialized with

low-spin densities (singlet multiplicity for even number of electrons, doublet for odd number

of electrons), constructed according to the location of radical electrons in the SMILES

string. Exceptions were made for the carbon and oxygen atoms as well as for the oxygen

molecule, which were treated as triplets. This was to ensure correct atomization energies

and reasonable energetics for oxidation reactions with O2. All open-shell systems were

treated with collinear spin-polarization. These choices are arbitrary, but inconsequential to

the conclusions of this study. A rigorous treatment of spin in a ML context is in principle

possible, but this would require fitting a separate model for each spin-state.

A second important issue relates to the geometries used for ML. Many of the initially

constructed poly-radicals decompose during the DFT relaxation or simply do not converge.

This is problematic for two reasons: Firstly, the definition of chemical reactions presupposes

a certain molecular topology (i.e. how atoms are connected). Secondly, in this case the

UFF geometry (with fixed topology) describes a different molecule than the DFT one. In a

realistic setting, the DFT geometries will not be available for ML predictions. If they were,

the DFT energy would also be known and the ML prediction would be redundant.9,10 In the

main manuscript, both UFF and DFT geometries are used for training and prediction, but

the energies of relaxed DFT geometries are always the target property (see Supplementary

Figure 1).
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Supplementary Figure 1. Schematic representation of a DFT (blue, solid line) and forcefield (red,

dashed line) potential energy surface. As it is mentioned in the text, two different types of ML

models are used in this work. (1) The ML models predict the energies of relaxed DFT geometries

(point A) and the corresponding DFT geometries (point A). (2) The ML models predict the energies

of relaxed DFT geometries (point A) based on structures relaxed with a forcefield (point B).

In order to allow for a clear definition of reactions in terms of bond-breaking and for-

mation, only those systems where UFF and DFT geometries describe the same molecular

topology are included in the database. This leads to a drastic reduction from the initial

set of over 27,000 systems to 10,712 structures in the final Rad-6 database. A positive side

effect of this is that the structures in Rad-6 can be expected to be reasonably stable, since

they represent local minima on the DFT calculated potential energy surface.

Rad-6-BS database: To investigate the stability of the proposed ML approach with

respect to changes in the data (in particular regarding the spin-state), a second set of single-

point energies was calculated for the Rad-6 database, using broken-symmetry DFT. Here,

calculations were performed with the revPBE functional and def2-TZVP basis-set using

Orca.11,12 To enable symmetry breaking even for nominally closed-shell systems, the beta-

spin orbitals in the initial guesses were perturbed by randomly mixing an occupied and

unoccupied orbital. After convergence, four additional calculations were performed for each

system, reusing the converged wavefunctions from previous runs and further perturbing the

orbitals. This procedure was used to avoid SCF convergence into local minima or saddle

points.13
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Supplementary Figure 2. The smooth overlap of atomic positions (SOAP) kernel uses a three-

dimensional neighborhood density function ρZa (r) of broadened atomic positions within a cutoff.

As mentioned in the text, for every species a separate density is constructed. Planar cuts through

ρC
a (r) (left) and ρH

a (r) (right) around a cutoff centered carbon atom (star) in ethylene are shown.

The black circle represents the radial cutoff distance.

Supplementary Note 2: Theory and Computational Methods

Smooth overlap of atomic positions (SOAP): SOAP is a local kernel that measures

the similarity of atomic environments.10 It was found to be highly successful in molecular

and solid-state applications.10,14–16 Below, a brief overview of the concept is given, more

details can be found in the literature.17,18

SOAP is based on the neighborhood density function ρa(r) around a reference atom a:

ρa(r) =
∑

i∈χa

exp

(
−(r− rai)2

2σ2
at

)
× fcut(r) (1)

where the sum runs over all neighboring atoms i (within a cutoff radius, the atomic environ-

ment χ) and fcut(r) is a damping function ensuring that the density smoothly approaches

zero at the cutoff. Each atom (including the reference atom) within the cutoff is broad-

ened with a Gaussian of width σat, leading to a smooth, local representation of the atomic

environment.

The atom centred neighborhood density in Supplementary Eq. 1 complies with a system

containing only one type of atomic species. For systems with different types of elements,

like molecules, the density is individually constructed for every atomic species (Z) within
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the atomic environment χ of atom a (see Supplementary Figure 2):

ρZa (r) =
∑

i∈χZ
a

exp

(
−(r− rai)2

2σ2
at

)
× fcut(r). (2)

The similarity between two such environments can be measured via a rotationally aver-

aged overlap integral:

k̃(χa, χb) =

∫
dR̂

∣∣∣∣∣

∫ ∑

Z

ρZa (r)ρZb (R̂r)dr

∣∣∣∣∣

2

(3)

where the outer integral is over all rotations R̂, so that k̃(χa, χb) is invariant to rotations

or permutations of atoms. The power of two in the inner integral ensures that the kernel

retains angular information about the neighborhood density.

Importantly, this integral can be solved analytically, if the neighborhood density is ex-

panded in an atom-centered basis of orthogonal radial basis functions gn(|r|) and spherical

harmonics Ylm:

ρZχa
(r) =

∑

nlm

cZnlmgn(|r|)Ylm(r). (4)

The coefficients cZnlm are then transformed into the so-called power spectrum for individual

species:

pZ1Z2

nn′l = π

√
8

2l + 1

∑

m

(cZ1
nlm)†cZ2

n′lm (5)

which we truncate at n ≤ 8 and l ≤ 8.

The kernel from Supplementary Eq. 3 can now be computed as a simple dot product of

the ’partial’ power spectra:

k̃(χa, χb) =
∑

Z1Z2

pZ1Z2(χa)pZ1Z2(χb) (6)

To obtain the final SOAP kernel, this function is normalized and squared so that:

k(χa, χb) =


 k̃(χa, χb)√

k̃(χa, χa)k̃(χb, χb)




2

. (7)

The atomic kernels are the basis to build global kernels for structure matching (e.g.

molecules) instead of local environments. Here, we use the average (Eq. 4) and sum kernel

5



Supplementary Figure 3. Kernel diagonal elements against the number of atoms in a molecule

squared. The plot shows that Kext(A,A) ∼ N2
A.

(Eq. 5) described in the main text. It is worth stressing that the average kernel, an intensive

kernel has to be normalized:

K(A,B) =
K̄(A,B)√

K̄(A,A)K̄(B,B)
, (8)

while the sum kernel should not, i.e. K(A,B) = KΣ(A,B). Consequently, the magnitude

of the diagonal elements of the sum kernel matrix scales with the square of the number of

atoms in the molecule (see Supplementary Figure 3)

In this work, we use the quippy code19 and the mltools package20 to compute SOAP

kernels. In order to have flexibility in the description of short and mid-range contributions,

a kind of ’multiscale’ (ms) SOAP is used. Specifically, two global SOAP kernels with cutoff

values of 2 Å (K2) and 4 Å (K4) are applied simultaneously. We use σat of 0.3 Å for K2 and

σat of 0.6 Å for K4. We combine short and mid-range contributions for the average kernel

as the average of the normalized kernels K2 and K4, i.e. Kms
int =

K2,int+K4,int

2
. For the sum

kernel we simply sum up the individual sum kernels Kms
ext = K2,ext +K4,ext.

21

Kernel ridge regression: Kernel ridge regression (KRR) is a supervised machine learn-

ing technique to obtain function values for given input configurations xi. In this section we

give a short overview about this technique, however for a detailed description and mathe-

matical derivations the reader is referred to literature.22

The function can be expressed as linear combinations of kernel functions (K(xi, x)):

f(x) =
N∑

i

αiK(xi, x), (9)

while the kernel functions act as similarity measures between different input configura-

tions x and xi with target properties y and yi. The xi are feature vectors of training data
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points and αi are regression weights.

KRR provides a closed-form solution for the optimal set of weights α. This can be

obtained by minimizing the loss-function l (of a regularized least-squares problem):

l =
N∑

j

(
N∑

i

αiK(xi, xj)− yj
)2

+ σαTKα (10)

The solution of this problem is than given in matrix vector notation:

α = (K + σI)−1y, (11)

where K is the kernel matrix of the training set (withKij = K(xi, xj)), σ is the regularization

parameter and I is the identity matrix. σ is a hyperparameter that has to be determined

empirically (see Supplementary Note 3). It represents the noise level of the reference data

and is used to control over- and underfitting.

In our work we applied mean-correction to the observables in the fit with the intensive

kernel while we did not for the extensive kernel.

Kernel principal component analysis (kPCA): Principal component analysis is a

tool for projecting high dimensional data into a lower dimensional space and therefore enables

the visualization of that specific data. In PCA, data is transformed into a new coordinate

system such that the new coordinate axes point into the direction of largest variance (first

coordinate into the direction of largest variance, so-called PC 1, second coordinate into the

direction of second largest variance and orthogonal to PC 1, so-called PC 2, ...). Kernel

PCA is an extension to PCA and makes the dimensionality reduction of non-linear data

possible.23

To this end, the kernel matrix is constructed analogous to KRR and then ’centralized’:

K̂ = K− 1NK−K1N + 1NK1N, (12)

where 1N is a matrix with the same dimensions as the kernel matrix, in which every element

is identically 1/N (with the number of data points N). For K̂, the eigenvalue problem has

to be solved,

K̂vi = λivi, (13)

where vi is the ith eigenvector and λi the respective eigenvalue. The data can be projected

into the new space via:

PCi = Kvi. (14)
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Supplementary Note 3: Training Set Selection, Hyperparameter Search and

Learning Curves

Training set selection: We divide the Rad-6 database into a training, validation (100

structures) and test set (1030 structures). The farthest point sampling (FPS) technique is

used to select representative and diverse training configurations. The FPS algorithm starts

with an arbitrary data point and sequentially adds new structures so that the distance

between the newest structure and all previously selected ones is maximized.10,18,21 This

requires a distance matrix that is constructed using the kernel, according to:

D(A,B) =
√

(K(A,A) +K(B,B)− 2K(A,B)) (15)

A sequence is generated for the complete Rad-6 database. The last 1030 structures went into

test set and 100 structures before the last 1030 into the validation set. Since the distance

matrix is a function of the kernel, we obtain different training, validation and test sets for

the average and sum kernel. In this work the FPS is done with Kint and Kext using UFF

geometries and started with the H-atom, respectively.

Hyperparameter search: Our ML models contain several hyperparameter in the SOAP

kernel and one hyperparameter in kernel ridge regression. In this work we do not focus on the

optimization of the hyperparameter in the SOAP kernel, but optimize the σ hyperparameter

in KRR. This is done by evaluating the RMSE of the validation set in a grid search.9 The

results for all kernels and FPS splits are shown in Supplementary Figures 4-7.

Including also the hyperparameter optimization for the SOAP kernels could lead to even

smaller errors on the predictions.

Learning curves: Learning curves of AE and RE for the respective kernels and FPS

splits are shown in Supplementary Figures 8-11. These plots show the MAE and RMSE

for training, validation and test set (two left subplots) as well as for the reaction network

Rad-6-RE (two right subplots).

Supplementary Note 4: Learning AE with UFF Geometries

Supplementary Figure 12 displays the results for the predictions of atomization energies

using DFT geometries (Fig. 4 main text) as well as the MAEs for AE using UFF geometries.

As mentioned in the main text, using UFF instead of DFT geometries leads to the same
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Supplementary Figure 4. Hyperparameter search for Kint FPS int.

Supplementary Figure 5. Hyperparameter search for Kext FPS ext.

trends in learning curves for the different kernels and FPS splits. However, it results in

higher errors on the predictions since the ML model has to additionally learn the differences

between the geometries for the different levels of theory (see. Supplementary Figure 1).
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Supplementary Figure 6. Hyperparameter search for Kext FPS int.

Supplementary Figure 7. Hyperparameter search for Kint FPS ext.
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Supplementary Figure 8. Learning curves Kint FPS int.

Supplementary Figure 9. Learning curves Kext FPS ext.

Supplementary Figure 10. Learning curves Kint FPS ext.
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Supplementary Figure 11. Learning curves Kext FPS int.

Supplementary Figure 12. Learning curves for atomization energy (AE) predictions (on the test

set) using extensive and intensive kernels and DFT and UFF geometries. The two subplots show

the results for both FPS splits.

12



Supplementary Note 5: Timings of ML Model vs. DFT Calculations

A fundamental advantage of using ML is that the predictions for new data points can

be made in much less time than the original calculations. To illustrate this we provide

the timings for 100 predicitons on random molecules from the Rad-6 database for (1) DFT

calculations using computational settings listed in Supplementary Note 1 and (2) a KRR ML

model trained on 9582 configurations. More precisely the recorded time for the ML model

refers to the calculation of the multisoap average kernel, i.e. the generation of two 9582×100

matrices (K2 and K4, see Supplementary Note 2 ) and the prediction of the 100 molecules

using the previously obtained model coefficients α. Unsurprisingly, the KRR model is more

than two order of magnitudes faster than a geometry optimization at DFT (PBE0) level.

Supplementary Table 1. Comparison of timings for AE prediction of 100 molecules with the ML

model and via full DFT geometry relaxation (at the PBE0+TS level). More details are given in

the text.

DFT KRR

total time used 949.03 h 1468.19 s

time per molecule 9.49 h 14.68 s

Supplementary Note 6: kPCA

kPCA is a data visualization tool in which huge data sets are intuitively presented and

insights into the database are provided. Herein, kPCA is used to have a closer look into the

Rad-6 database and visualize similarities and differences between the intensive and extensive

kernel (see Supplementary Figures 13, 14).

The location of molecules in the PCA plot is determined by their structural topology.

Specifically, PC 1 separates saturated molecules (like hexane) on the left in the PCA plot

from very unsaturated ones (like fumaryl) on the right. Simply put, the separation of

molecules among PC 1 results in counting hydrogen atoms in the molecules. This is slightly

more pronounced in the extensive kernel visible in the colored stripes in Supplementary

Figure 13. Furthermore, PC 2 displays the ratio of O / C atoms in the molecule.

The upper and lower right sub-panels in Supplementary Figure 13 show the distribution
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Supplementary Figure 13. kPCA plots of molecules based on the intensive (top) and extensive

(bottom) kernel using UFF geometries. Left column: Separation of molecules through PC 1.

Colors represent the number of H atoms in a molecule. Middle column: Separation of molecules

through PC 2. Colors represent the O / C ratio in a molecule. Right column: Distribution of small

molecules with maximum 4 heavy atoms in a molecule.

of small molecules located in the database. We denote molecules with a maximum number

of 4 heavy atoms (i.e. non H-atoms) as small molecules. These account for around 4 % of

the database. While the small molecules are distributed over the whole space in the plot

of Kint, for Kext they are bounded on the bottom right. This picture illustrates why small

molecules are selected relatively late in FPS with the extensive kernel, because the distances

among them are relatively close.

Supplementary Figure 14 is an extension of Fig. 3 in the main text. The plot shows

the kPCA for the extensive (bottom) and intensive (top) kernels colored by the predicted

atomization energies and atomization energies per atom for ML models with 1000 training

configurations, respectively. Additionally, the differences between the ML models and the

reference DFT calculated energies are displayed on the right. Kext shows higher errors on
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Supplementary Figure 14. kPCA plot of molecules based on the intensive (top) and extensive

(bottom) kernel using UFF geometries: Points are colored according to the predicted atomization

energy per atom (top left) and the predicted total atomization energy (bottom left) using ML

models with 1000 training points. The absolute differences between the ML models and DFT

reference values are shown on the top right picture for Kint and on the bottom right for Kext.

Small black dots indicated training structures. The arrows provide a qualitative interpretation of

the principal component axes.

the predictions on the right half of the plot where especially small molecules are located.

This illustrates again the poor performance of the extensive kernel in predicting reaction

energies. A precise description of small molecules is crucial for calculating reaction energies,

since they represent important hubs in the reaction network.
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Supplementary Figure 15. kPCA plot for the intensive kernel and an intensive FPS split. The

individual subplots show the distribution of training configurations with different training set sizes.

The bottom right panel shows the distribution of validation (triangles) and test set (squares).

Supplementary Figure 16. kPCA plot for the intensive kernel and an extensive FPS split showing

the distribution of the training, validation and test set configurations (see Supplementary Figure

15 ).
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Supplementary Figure 17. kPCA plot for the extensive kernel and an extensive FPS split showing

the distribution of the training, validation and test set configurations (see Supplementary Figure

15 ).

Supplementary Figure 18. kPCA plot for the extensive kernel and an intensive FPS split showing

the distribution of the training, validation and test set configurations (see Supplementary Figure

15 ).
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Supplementary Note 7: σ-Scaling

As discussed in the main text, for real applications using forcefield or semiempirical

instead of DFT geometries is inevitable. The description of molecular geometries with UFF

can be of varying quality for different molecules, which implies that there is not a constant

level of noise on the reference data (see Supplementary Figure 19). To this end, Bartók et

al.10 suggested to weight training structures so that the ML model naturally assumes higher

uncertainties for configurations that have poor geometries. In their work they quantify the

difference between high and low level structures as the root mean square deviation (RMSD)

d and scale the regularization parameter σ to be proportional to the factor f = exp(d
2

λ
).

By this a new hyperparameter λ arises that has to be determined empirically. To estimate

the range of reasonable parameters we plot the scaling factor f as a function of λ using the

maximum and mean RMSD in the database (see Supplementary Figure 20). The plot shows

a huge deviation between the scaling factors, especially for small λ. In this case structures

with a large RMSD are scaled by 4-17 orders of magnitude and structures with an average

RMSD by around 1 order of magnitude for the three lowest λ values.

The results of learning the atomization energies with and without σ-scaling for Kext and

Kint with both FPS splits are shown in Supplementary Figure 21. We found that σ-scaling

does not effect the prediction of AEs using the intensive FPS split. For every point in the

learning curve the RMSE for validation and test set remains the same and the λ values

assume one of the highest values resulting in a scaling factor of 1.
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Supplementary Figure 19. Histogram of RMSD values. Average (dotted) and maximum RMSD

(dashed) are indicated.

18



10 1 100 101

102

105

108

1011

1014

1017

ex
p(

d2 /
)

max 0.3
max 1.4

Supplementary Figure 20. Illustrative scaling values for the diagonal elements using the maximum

RMSD d = 1.4 Å and average RMSD d = 0.3 Å. The labels represent the used λ values in the grid

search.

In contrast, the results change somewhat for the predictions using the extensive FPS

split (left subplots in Supplementary Figure 21). In these cases, σ-scaling lowers the error

of the validation set, but increases the RMSE in the test set for both the extensive and the

intensive kernel and thus leads to some degree of over-fitting.

To conclude, an improvement of the predictions for AE using the RMSD of UFF and

DFT training configurations to scale the regularization parameter was not successful. This

is likely due to the different and poor quality of UFF geometries of open-shell structures.

In this work the RMSD values are calculated with the code rmsd obtained from GitHub.24,25

Since the molecules for the UFF and DFT geometry optimization are created from the same

smile string, no reordering was applied.
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Supplementary Figure 21. Learning curves of AE predictions for validation and test structures

with and without σ-scaling using the extensive and intensive kernels with both FPS splits. The

RMSE is displayed because the hyperparameter are selected according to the minimum RMSE of

the validation set.

Supplementary Note 8: Learning RE with UFF Geometries

Supplementary Figure 22 shows the correlation plots between the predicted atomization

energies and reaction energies for DFT and UFF geometries. Comparable to the learning of

AE, trends for RE with UFF geometries are similar to those with DFT, but with an higher

MAE.

Supplementary Note 9: Training Set Selection with Random Sampling

In this section we show the performance for the prediction of AE and RE using random

sampling for training set selection in contrast to the farthest point sampling used in the main

manuscript. To this end we generated a randomly chosen sequence of up to 9582 training,

100 validation (for hyperparameter optimization) and 1030 test configurations. This split

is applied to the predictions of atomization energies and corresponding reaction energies of

Rad-6-RE using the extensive and the intensive kernels. kPCA plots illustrating the random

20



Supplementary Figure 22. Mean absolute errors (MAEs) for AE and RE predictions using DFT

(dashed lines) and UFF (dotted lines) geometries and the extensive and intensive kernels described

in the manuscript. Multiple points for each model represent the different training set sizes shown

in Supplementary Figure 12.

sets are shown in Supplementary Figures 23 and 24.

Hyperparameter search: The hyperparameter search was performed as described

in Supplementary Note 3 (see also Supplementary Figures 25 and 27). However, an

exception was made in the case of the intensive kernel. Here, only 99 molecules were used in

the validation set to determine the regularisation parameter σ. This is because large errors

for the carbon dimer lead to a poor choice of σ in this case (i.e. the models were severely

underfitted). This illustrates the dangers of pure random sampling: C2 has low similarity

with all other molecules in the dataset and should therefore be included in the training set

(see also Supplementary Figure 26).

Learning curves: The learning curves are analogous to Supplementary Figures 8-11

but use training sets from random sampling.

Learning atomization energies: Supplementary Figure 30 shows the results of

the atomization energy predictions for random sampling (right subplot) together with both

FPS splits for the intensive and extensive kernels. The general trends with respect to kernel

selection and the effect of UFF vs. DFT geometries are the same in all cases. However, the

prediction errors for large training sets are somewhat larger in the case of random sampling,

though it is competitive for small training sets.
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Supplementary Figure 23. kPCA plot for the intensive kernel and a random training set sampling.

The individual subplots show the distribution of training configurations with different training set

sizes. The bottom right panel shows the distribution of validation (triangles) and test set (squares).

Supplementary Figure 24. Same plot as Supplementary Figure 23 but for the extensive kernel with

random training set selection.
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Supplementary Figure 25. Hyperparameter search for Kext and random sampling.

Supplementary Figure 26. Correlation plot of DFT calculated and predicted AE/N for the valida-

tion set with the intensive kernel using random sampling and different training set sizes.

Learning reaction energies: In this section we compare the results of random training

set selection with farthest point sampling for the prediction of reaction energies in the Rad-

6-RE network (see Supplementary Figure 31). We see that for small training set sizes,

random sampling performs drastically worse for the predictions of reaction energies. Similar

to what is observed for the extensive FPS split, this is attributed to large errors for essential

’hub’ molecules, which are absent from the training set. This is only mitigated for the larger

training sets, which approach the FPS sets (though still displaying larger MAEs).
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Supplementary Figure 27. Hyperparameter search for Kint and random sampling.

Supplementary Figure 28. Learning curves for Kext and random sampling.

Supplementary Figure 29. Learning curves for Kint and random sampling.
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Supplementary Figure 30. Comparison of learning curves for atomization energy (AE) predictions

using extensive and intensive kernels for both DFT and UFF geometries. The three subplots show

the results for the entensive and intensive FPS splits as well as for random sampling.

Supplementary Figure 31. Mean absolute errors (MAEs) for AE and RE predictions using DFT

(dashed lines) and UFF (dotted lines) geometries and the extensive and intensive kernels for both

FPS splits and random sampling. Multiple points for each model represent the different training

set sizes shown in Supplementary Figure 30.

Supplementary Note 10: Comparison Rad-6 and Rad-6-BS

As discussed in the manuscript, the choice of reference spin-states taken for Rad-6 is

somewhat arbitrary and may not be ideal for every application. Nonetheless, we expect the

ML methodology developed herein to be equally applicable to reference data with different

choices in spin-states. In this light, it is instructive compare the results from the main

manuscript with models trained on the Rad-6-BS database (for computational details see

Supplementary Note 1.)

The corresponding hyperparameter searches, learning curves and final results are shown
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Supplementary Figure 32. Hyperparameter search for ML models of the Rad-6-BS database. The

panels show the hyperparameter surfaces for the intensive (left) and extensive (right) kernel.

in Supplementary Figures 32-33 . These results are obtained with Kint and Kext and

the corresponding FPS split. As expected the differences in the reference methods between

Rad-6 and Rad-6-BS do not significantly affect the performance of the ML models for AE

and RE prediction.
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Supplementary Figure 33. Learning curves for Rad-6-BS predictions showing the MAE and RMSE

for the intensive and extensive kernel. Dotted positive signs are the AE errors of the training sets,

solid diamonds are the AE errors of the validation sets, dashed circles are the AE errors of the test

sets and solid triangles are the errors of the reaction energies.

Supplementary Note 11: Microkinetic Simulation

In the main text, we explore a realistic reaction network consisting of 21,392 reactions us-

ing an approximate microkinetic simulation. This network contains bond-breaking, transfer

and rearrangement reactions of the general form:

A+B 
 C +D,

where molecules B and/or D can be ’empty’ placeholders for bond-breaking and rearrange-

ment reactions.2

The kinetics of this reaction network are governed by differential equations of the form:

dθA
dt

= −
∑

B,CD

2δABθAθBk
CD
AB +

∑

CD,B

2δABθCθDk
AB
CD,

where θA is the concentration of molecule A, kCDAB is the rate constant for the reaction

A + B → C + D. Note that the first sum is over all elementary reactions that consume A,

and the second sum is over the corresponding reverse reactions, where A is formed.

The term θAθBk
CD
AB corresponds to the current rate of a given reaction, rCDAB . In other

words, the rate depends on the concentration of the educts and the rate constant kCDAB , which

is in turn proportional to the reaction energy and the activation energy. As mentioned in

the main text, all activation energies are assumed to be identical. We can then compute the

rate constants from transition state theory via:

kCDAB = e
−∆E
kBT
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Here, the energy difference ∆E is the reaction energy plus the activation energy for an

endothermic reaction and the activation energy for an exothermic reaction. Under these

circumstances, the actual value of the activation energy is not important (it is chosen to be

0.3 eV), and only changes the arbitrary time unit of the simulation. Similarly, we choose a

constant pre-exponential factor of 1 for all reactions.

The simulation is initialized with equal concentrations of CH4 and O2, all other con-

centrations set to 0. At the beginning of the simulation, all rates are thus also 0, except

for reactions involving CH4 and O2. We then propagate the differential equations specified

above using a third-order Runge-Kutta integrator.26 As the concentrations are updated,

more rates become larger than zero. The subgraphs shown in the main manuscript show all

reactions with non-zero rates at a given simulation time.

Supplementary Note 12: Validation of Out-Of-Sample Predictions

As discussed in the main manuscript, the reaction network used in the microkinetic

analysis contains several systems that are not included in Rad-6, and thus represent a true

out-of-sample application of the ML model. To evaluate the quality of these predictions,

DFT calculations were preformed on these out-of-sample systems. Unfortunately, these

systems are missing from Rad-6 because they either decomposed upon geometry relaxation

or had SCF convergence issues in the original high-throughput simulations for the database.

We were, however, able to obtain single-point DFT energies on frozen UFF geometries

(DFT@UFF, same computational settings as for Rad-6) for all but one of these systems.

In Supplementary Figure 34, correlation plots for DFT@UFF, DFT@DFT and ML pre-

dicted AEs are shown (with the out-of-sample systems highlighted in blue). As expected,

the ML and DFT@DFT values display an excellent correlation. Meanwhile, both of these

approaches consistently predict more negative AEs than the DFT@UFF approach, since

the latter is missing geometry relaxation effects. Importantly, this is also the case for the

out-of-sample predictions, meaning that the ML model can be used to estimate relaxation

effects even when DFT relaxations are not available.

Overall, there is also a good correlation between the DFT@UFF values and the ML pre-

dictions, with R2 =0.994. To quantify the magnitude of geometry relaxation effects, we

calculate the mean error (ME) between DFT@UFF and ML, in addition to the MAE. We
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Supplementary Figure 34. Correlation plots for predicted atomization energies. Left: ML model

(used in main text) vs. single point DFT calculations at UFF geometries (DFT@UFF). Middle:

Optimized DFT calculations (DFT@DFT) vs. DFT@UFF. Right: ML model vs. DFT@DFT.

Note that the left panel contains the additional out-of-sample data points (highlighted in blue, see

text for details).

find that the ME and MAE are nearly identical (ca. 0.6 eV, see Supplementary Table 2

), confirming the systematic nature of the deviation. For comparison, the corresponding

DFT@DFT values are also shown, again with identical ME and MAE. Note that the de-

viations relative to DFT@UFF are not identical for ML and DFT@DFT because the ML

comparison includes more systems (the out-of-sample set). Taken as a whole, these ob-

servations provide a strong indication that our ML model predicts reasonable AEs for the

out-of-sample molecules in the network.

This data is also used to verify the reaction energies that go into the microkinetic simu-

lations, as shown in Supplementary Figure 35. Again, we find a good correlation between

our ML model and the DFT@UFF calculations, with some scatter. Importantly, similar cor-

relation and scatter are observed when comparing DFT@DFT and DFT@UFF, confirming

the high quality of the ML predictions.
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Supplementary Figure 35. Correlation plots for reaction energies. Labels are analogous to Supple-

mentary Figure 34. Shown reaction energies are from the reduced network at t=128 (see manuscript

for details).

Supplementary Table 2. Summary of statistics (MAE, ME and R2) pertaining to the plots in

Supplementary Figures 34 and 35.

MAE AE [eV] ME AE [eV] R2 N

DFT@UFF - ML 0.606 0.599 0.994 130

DFT@UFF - DFT@DFT 0.414 0.414 0.997 101

DFT@DFT - ML 0.022 0.0005 1.000 101

MAE RE [eV] ME RE [eV] R2 N

DFT@UFF - ML 0.572 -0.044 0.840 365

DFT@UFF - DFT@DFT 0.420 -0.074 0.910 225

DFT@DFT - ML 0.009 0.0004 1.000 225
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Abstract

A sizeable difference: The machine-learning (ML) based exploration of chemical space requires
models that can appropriately handle molecules of different sizes. To achieve this, the size-
extensivity of ML models should be enforced. In this paper conditions for extensive ML models
are discussed, and extensive models are shown to effectively extrapolate to large molecules, when
trained on small ones.
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Size-Extensive Molecular Machine Learning with Global
Representations**
Hyunwook Jung+,[a, b] Sina Stocker+,[a] Christian Kunkel,[a] Harald Oberhofer,[a]

Byungchan Han,[b] Karsten Reuter,[a] and Johannes T. Margraf*[a]

Machine learning (ML) models are increasingly used in combi-
nation with electronic structure calculations to predict molec-
ular properties at a much lower computational cost in high-
throughput settings. Such ML models require representations
that encode the molecular structure, which are generally
designed to respect the symmetries and invariances of the
target property. However, size-extensivity is usually not guaran-
teed for so-called global representations. In this contribution,
we show how extensivity can be built into global ML models

using, e. g., the Many-Body Tensor Representation. Properties of
extensive and non-extensive models for the atomization energy
are systematically explored by training on small molecules and
testing on small, medium and large molecules. Our results show
that non-extensive models are only useful in the size-range of
their training set, whereas extensive models provide reasonable
predictions across large size differences. Remaining sources of
error for extensive models are discussed.

1. Introduction

In recent years, machine-learning (ML) methods are increasingly
applied to the prediction of molecular properties such as
atomization and orbital energies, dipole moments and ioniza-
tion potentials.[1–9] One of the main promises of ML in chemistry
is that it allows surpassing the size and time scales accessible to
accurate first-principles electronic structure calculations, e.g.
based on density-functional theory (DFT). This is particularly
relevant in a high-throughput setting, e.g. when a large
chemical reaction network with many intermediates and
transition states is to be explored, or a large chemical space is
of interest.[10–13]

The wide range of ML methods that have emerged in this
context raises the question which one should be used for a
given application. Since the atomization energy (AE) has a long
tradition as the foremost benchmark property to judge the
accuracy of quantum chemical approximations,[14–16] it has also
become one of the standard targets to illustrate the accuracy of

novel ML methods.[1,3] The most straightforward way to
construct a ML model for the AE is to use some vectorized
representation v of the molecule . Constructing the ML model is
then simply a regression task between v and the property of
interest y vð Þ.[17] While any general linear or non-linear regression
method (e.g. Kernel Ridge Regression, KRR or Artificial Neural
Networks) can be used, the choice of the representation is
critical. In particular, several physically motivated criteria such
as translational, permutational, and rotational invariance and
uniqueness should be fulfilled.[5,18]

The Coulomb matrix (CM) developed by Rupp et al.[4] was
one of the earliest (global) molecular representations used to
this end (see below for a specification of global in contrast to
local representations). However, it suffers from two notable
limitations, namely that the size of v depends on the number of
atoms in the system and that permutational invariance can only
be achieved through a canonical ordering of the vector
elements.[2] This led to several subsequent improvements of the
CM concept, such as the Bag-of-Bonds,[19] different histogram
based methods[1] and the Many-Body Tensor Representation
(MBTR).[6,18] These representations fix the main drawbacks of the
CM and can thus be used to construct more accurate and data-
efficient ML models of molecular properties, typically using KRR.

However, the combination of KRR with global representa-
tions still suffers from the problem that the resulting predictions
are typically not size-extensive. This should in principle be a
fundamental problem for predicting any extensive property like
the AE. In practice, this issue can be and has been overlooked
to some extent, as the databases that are hitherto typically
used to test ML models (e.g. QM9)[20] do not contain large size
differences. For example, ca. 97% of the molecules in QM9
contain 8 or 9 heavy atoms. Consequently, an approximate size-
extensivity of the model can be learned by simply including all
small systems in the training set explicitly.[17] However, this only
obscures the fundamental problem, and such a model will fail
when applied to significantly larger molecules. Similarly, the
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description of chemical reactions (where a large molecule can
decompose into smaller fragments) cannot be consistently
achieved when the predicted energies are non-extensive.[21]

The goal of the present paper is to address the size-
extensivity of ML models that use a global representation of the
molecular structure, using KRR models with the MBTR of Huo
and Rupp as an illustrative example.[18] We will discuss how
extensive ML models can be constructed with MBTR and
compare them with the conventional, non-extensive formula-
tion. Importantly, the performance of the models is compared
across different size-ranges both within the QM9 database and
between databases going up to molecules with more than 80
heavy atoms.[11,22]

2. Theory

Kernel Ridge Regression: In KRR, the target property y vð Þ (i. e.
here the AE) of an unknown molecule with the representation v
is calculated via:

yðuÞ ¼
X

i

wiKðu; uiÞ (1)

where vi are the representations of training data points and wi
are regression weights. Here, we introduced the kernel function
K v; v0ð Þ, which provides a similarity measure between two
representations v and v0. A common choice for K v; v0ð Þ is the
Gaussian kernel:

Kðu; u0Þ ¼ exp �
u � u0k k22
2s2

� �

: (2)

Here, σ is the kernel length scale, a hyperparameter that
governs how prone the kernel is to classify systems as similar.
Specifically, a large value of σ will indicate some degree of
similarity between most inputs, whereas a small value will only
find similarities for systems that are very close in feature space.
Below, we also use the linear kernel, which simply consists of
the dot-product of v and v0.

The optimal (in a least-squares sense) set of weights ω can
be obtained via the expression:

w ¼ ðKþ lIÞ� 1y, (3)

where K is the kernel matrix of the training set (with
Kij ¼ K vi; vj

� �
), λ is a regularization parameter and I is the

identity matrix. λ is another hyperparameter of the model,
which represents the uncertainty of the observations.

Training a KRR model is thus a simple linear algebra
operation. Obviously, the performance of the model critically
depends on the choice of representation and kernel function. In
analogy to the common notation of Functional/Basis-Set in DFT,
this choice is designated as Representation/Kernel in the
following.
Many-Body Tensor Representation: Herein, we use the MBTR

of Huo and Rupp as a prototypical global representation of

molecular structure.[18] Simply put, the MBTR provides a
measure of how often characteristic geometric features (corre-
sponding to different orders of a many-body expansion) occur.
Canonically, these features are atom counts (1-body), inverse
interatomic distances (2-body), angles (3-body), dihedrals (4-
body), etc. For each body-order and element combination, a
broadened distribution function of these features is constructed
as a sum of Gaussians, as shown in Figure 1 for the 2-body
terms in water. These Gaussians are additionally scaled by a
distance-dependent weighting function, which introduces a
characteristic length-scale to the representation. Beyond this
length-scale atoms or molecules are effectively non-interacting.

For a given body order k and Nspecies chemical species there
are in principle Nmax ¼ N

k
species such distribution functions.

Although some combinations can be excluded by symmetry
(i. e. C� H is equal to H� C), this means that the size of the MBTR
vector quickly explodes with the body order. In practice, the
MBTR is therefore usually limited to the lowest order terms, i. e.
including up to 2- or 3-body contributions. The final MBTR
vector is obtained by concatenating the discretized feature
distribution functions vk,i:

vMBTR ¼ v1;1 � v1;2 � :::� vkmax ;Nmax (4)

Figure 1. Sample illustration of 2-body MBTR output of a single water
molecule (solid) and two distant water molecules (dashed). Interatomic
interactions include: H� H (black), H� O (red), and O� O (blue). (Top) MBTR
(Bottom) iMBTR
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In this original formulation, the representation thus contains
absolute counts of the occurrence of a given feature. In
contrast, below, we also consider a normalized version of the
MBTR, where each distribution function is normalized according
to its l2-norm:

uiMBTR ¼
1

u1;1

�
�

�
�
� u1;1 �

1
u1;2

�
�

�
�
� u1;2 � :::�

1
ukmax ;Nmax

�
�

�
�
� ukmax ;Nmax (5)

For clarity, this normalized MBTR version is designated as
iMBTR (for intensive).
Size-Extensivity: According to eq. 1, the target property (here

the AE) is predicted as a linear combination of kernel functions.
Consequently, it is advantageous if the kernel can be
constructed in such a way that it adheres to conditions known
to be fulfilled by the target property. For example, the AE is
invariant to translations and rotations of a molecule. Conse-
quently, MBTR-based kernels are constructed to satisfy these
same invariances.

A less commonly imposed condition relates to the extensive
or intensive nature of the target property. As with the
invariances, the kernel should ideally reflect the extensivity or
intensivity of the property of interest. Specifically, for two non-
interacting molecules A,

K A; 2Að Þ ¼ 2� K A;Að Þ, (6)

for an extensive property (such as the AE) and

K A; 2Að Þ ¼ K A;Að Þ, (7)

for an intensive property (such as the ionization potential).
Unfortunately, the original MBTR/Gaussian kernel is neither

intensive nor extensive. While the distribution functions that
make up the representations for A and 2A have identical shapes,
the amplitude of each peak is twice as large for 2A (see
Figure 1, top). Since the norm of the difference between MBTR
vectors enters the Gaussian kernel, it will evaluate to approx-
imately zero (depending on the lengthscale σ). In contrast, the
combination iMBTR/Gaussian leads to an intensive kernel. This is
because the iMBTR for an arbitrary number of non-interacting
molecules becomes identical to the single molecule case due to
its normalization (see Figure 1, bottom). Finally, the combina-
tion MBTR/linear leads to an extensive kernel. This can easily be
verified by considering that each element in the MBTR of 2A
differs from the MBTR of A by a factor of two.

From this perspective, the MBTR/linear kernel appears to be
the most appropriate choice for learning AEs. However (as the
name implies) KRR with the linear kernel is simply linear
regression. As the main advantage of KRR is the introduction of
non-linearity (e.g. via the Gaussian kernel), this is not ideal.

Fortunately, we can resort to a simple trick to obtain an
extensive non-linear KRR model. Specifically, an iMBTR/Gaussian
model can be trained to predict the atomization energy per
atom (AE/N), which is an intensive quantity. Indeed, it has
already been suggested in the context of electronic structure

methods that AE/N may actually be a more appropriate target
for fitting and benchmarking.[21,23]

Note that this intensive atomization energy should not be
interpreted as a local atomic energy (see below). Instead it can
be understood as a generalization of the concept of cohesive
energy for extended crystals to finite systems.[23] In Figure 2, AE/
N is plotted for linear hydrocarbons (i. e., alkanes, alkenes, and
alkynes) of different sizes. All three curves converge to a
constant value (the cohesive energy of the corresponding 1D
crystal) for large systems and display a smooth dependence on
the number of atoms for smaller systems. To predict the AE
with the iMBTR/Gaussian model, we thus train on AE/N and
subsequently simply multiply the prediction by the number of
atoms. For comparison, the original MBTR/Gaussian and MBTR/
linear models are trained on the AE, as usual.
Global and Local representations: So far, we have focused on

the general case of a global representation v, which encodes
the entire structure of the molecule/system with the property
y vð Þ. A major advantage of global ML models is that the
assumed relationship between structure and property mirrors
the fact that any property can in principle be computed from
the Schrödinger equation.[24,25] Meanwhile, a significant draw-
back is that the cost of computing global representations does
not scale linearly with the size of the system. This inhibits the
use of global representation as universal descriptors applicable
to proteins or solids. Fortunately, this is not problematic for
molecular systems with tens to hundreds of atoms. A second,
more critical aspect is that global representations are not
automatically size-extensive, as discussed in the previous
section.

In contrast to this, a variety of local ML models have been
developed that guarantee size-extensivity and linear
scaling.[26–28] In the tradition of empirical interatomic potentials,
these models approximate the total property (here the AE) as a
sum of local (e.g. atomic) contributions:

Figure 2. Atomization energy per atom for linear alkanes (CnH2n+2), alkenes
(CnH2n) and alkynes (CnH2n� 2) from C1 to C13.
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y �
X

atom

yatom (8)

Here, the local properties yatom (e.g. atomic energies in the
case of AE) only depend on the immediate chemical environ-
ment of the atom. Importantly, these local energies result from
an optimal decomposition of the total property and are not
necessarily physically meaningful.

While the expression in Eqs. 8 is manifestly extensive, it also
generally introduces an approximation to the model. For
instance, in the case of total energies or AEs it effectively
neglects any long-range interatomic interactions. Furthermore,
the local properties (like a local energy) might not necessarily
be quantum mechanical observables. In practice, the severity of
this approximation is property and material dependent. For
example, in many cases excellent interatomic potentials based
on Eqs. 8 have been obtained.[29,30]

For kernel-based regression, there is an interesting con-
nection between global and local representations, as there are
several ways to convert local to global kernels. For example, as
noted by Bártok and coworkers, a ML potential based on the
local SOAP representation is equivalent to a global model using
the averaged kernel:[3]

KðA; BÞ ¼
X

i2A;j2B

1
NANB

kði; jÞ; (9)

where K A; Bð Þ is a global kernel comparing molecules A and B,
and k i; jð Þ is a local kernel comparing atoms i and j. Similarly, a
sum of local kernels can also form a global kernel:[31]

KðA; BÞ ¼
X

i2A;j2B

kði; jÞ; (10)

From the perspective taken in this paper, Eqs. 9 and 10 are
recipes to construct global kernels from local representations,
which conform to Eqs. 7 and 6, respectively. These kernels are
special cases of the general case discussed herein, in the sense
that local representations can be used to build extensive
kernels, but not all extensive kernels must be built from local
representations. Recently, Tamblyn and coworkers also sug-
gested semi-local, extensive ML models based on deep neural
networks.[32]

3. Methods

Datasets: In this paper, we use two reference databases of DFT
AEs, namely the QM9 and OE62 sets.[20,22] The QM9 set includes
over 134,000 drug-like organic molecules and is frequently used
as a benchmark for ML studies.[1,3,6] The molecules in QM9 have
a heavy atom count (HAC) of up to nine and are comprised of
the elements H, C, O, N, and F. As alluded to above, most of
these molecules (ca 97%) contain 8 or 9 heavy atoms. This
leaves a total of 3993 molecules with a HAC=1–7, which we
will use for training.

The OE62 dataset originates from a high-throughput screen-
ing study for organic semiconductors by Schober et al. and has
also been used for benchmarking different ML methods.[6,22]

While somewhat smaller than QM9 (61,489 molecules) it is
significantly more chemically diverse. For example, OE62
contains 16 different elements and much larger molecules, with
up to 174 atoms (max. HAC=92).

Predicting properties of the OE62 set is therefore a very
hard task for ML models trained on the small molecules
contained in QM9, but it should in principle be possible for a
size-extensive model. However, this can only work if both
datasets are consistent. We therefore focus here on a subset of
32,467 OE62 molecules that contain the same elements as QM9
(H, C, O, N, and F). Furthermore, the original QM9 data was
computed at the B3LYP/6-31G(2df,p) level, whereas the OE62
database is based on the Perdew-Burke-Ernzerhof (PBE) func-
tional with Tkatchenko-Scheffler Van-der-Waals correction (PBE-
vdW), tight integration grids and a “tier2” basis set of numerical
atomic orbitals.[33–35] To increase the consistency between both
datasets, the atomization energies for all QM9 molecules were
correspondingly recomputed with the OE62 settings (using the
original QM9 geometries). This new dataset is freely available
from the authors.
Hyperparameter Optimization: The hyperparameters σ and λ

(from Eqs. 2 and 3) were optimized through 4-fold cross
validation (CV). Specifically, the parameters that minimize the
average root mean square difference (RMSD) in CV were
obtained using the Nelder-Mead minimization algorithm[36,37] as
implemented in the scikit-learn package.[38] MBTR vectors were
obtained via the DScribe package, including only one- and two-
body terms.[39] Unlike σ and λ, the MBTR-specific hyperpara-
meters were not optimized, and the default values for broad-
ening and damping functions were used (see SI).

We note that using higher order terms and optimizing all
hyperparameters would certainly lead to somewhat lower
errors. However, the goal of this study is not to benchmark
MBTR itself but to understand the role of size-extensivity on ML
models with global representations. For this purpose, we found
the above choices to be adequate.

4. Results and discussion

As discussed in the theory section, we will focus on three KRR
models, namely the combinations MBTR/Gaussian, iMBTR/
Gaussian and MBTR/linear. In line with previous ML studies on
predicting AEs, we start by checking the predictive performance
of the models within a dataset.[2,6,18] Here, we focus on a subset
of QM9, containing all 3,993 molecules with up to seven heavy
atoms. The average RMSD from 4-fold CV on this set is shown in
Table 1.

The MBTR/Gaussian kernel performs best, followed by the
iMBTR/Gaussian and MBTR/linear models. This shows the
benefit of the non-linear Gaussian kernel, though the results of
the linear kernel are also respectable, in line with what was
reported by Huo and Rupp.[18] For consistency, all errors are
reported with respect to total AEs, even for the iMBTR/Gaussian
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model which is trained on AE/N. It is therefore not surprising
that iMBTR/Gaussian performs somewhat more poorly than
MBTR/Gaussian, given that it minimizes a different loss function.
Still, one might naively conclude from this analysis that the
conventional MBTR/Gaussian kernel is suitable for predicting
AEs, in spite of its lacking extensivity.

This picture changes radically when the models are forced
to extrapolate beyond the scope of their training sets, however.
To this end, we consider a separate test set of 2000 QM9
molecules with nine heavy atoms. In addition to the standard
HAC=1–7 training set, we thereby also consider training sets
containing only up to four, five, and six heavy atoms,
respectively, to specifically test the extrapolation capabilities of
the models. The results for all models are summarized in
Figure 3.

Contrary to the previous result, the original MBTR/Gaussian
method now shows the worst prediction performance among
the three models, which is a direct manifestation of its lacking
size-extensivity. Even the (extensive) MBTR/linear model shows
significantly lower RMSD compared to MBTR/Gaussian. Finally,
the iMBTR/Gaussian model combines proper extensivity with
the non-linearity of the Gaussian kernel and performs best.
Indeed, it even provides qualitatively useful predictions (with a
relative error of ca. 1–2%) for the smallest training set, which
consists of just 48 molecules with up to four heavy atoms.

An even more challenging test case is predicting the AEs of
the OE62 set while still training on QM9. As mentioned above,
the latter has a very narrow heavy atom distribution (peaking at

9) whereas the former has a wide distribution peaking around
20 (see Figure S1 in the SI). Furthermore, OE62 contains
chemical structures that are absent from QM9, such as
polycyclic aromatic compounds. As before, the models are
trained on the 3,993 QM9 molecules with up to seven heavy
atoms.

The correlations between predicted and reference AEs for
all KRR models are shown in Figure 4. Here, the most notable
feature is the abysmal performance of MBTR/Gaussian, with an
RMSD of 4,327 kcal/mol. While the model actually displays
reasonable accuracy up to AEs around ca. 2,500 kcal/mol (i. e.
for molecules similar to the training set), it completely fails
beyond this range. Indeed, as the kernel function vanishes for
large molecules, the model predicts an AE of zero for all large
molecules. This poor performance of MBTR/Gaussian vividly
demonstrates its lack of size-extensivity.

In contrast, the iMBTR/Gaussian and MBTR/linear models
both show good correlations with the reference across the full
range of systems (R2 =0.99), with dramatically lower RMSDs of
184.4 and 138.2 kcal/mol, respectively. At first glance, this is still
a large margin of error, compared to the results for QM9. It
should however be noted that the error of a predicted AE
should itself be size-extensive, so that larger errors are to be
expected for larger systems.[21] Given that the AEs of the OE62
set range up to ca. 18,000 kcal/mol, an RMSD of ca. 100 kcal/
mol is actually not that poor in relative terms. To quantify this,
the RMSD can be normalized by the standard deviation of the
Aes in the data set. This yields normalized RMSDs of 0.10
(iMBTR/Gaussian) and 0.08 (MBTR/linear), respectively (where
1.0 would be the performance of a random Gaussian model
with appropriate mean and standard deviation).

Furthermore, this error is quite systematic, with the AEs of
large systems being consistently underestimated. A linear fit of
the correlation plots reveals that this is a bit more pronounced
for iMBTR/Gaussian than for MBTR/linear (see Figure 4). Indeed,

Table 1. Averaged RMSD from 4-fold cross validation KRR models trained
on the 3,993 QM9 molecules with HAC=1–7.

MBTR
Normalization

Kernel Training
Target

RMSD
(kcal/mol)

iMBTR Gaussian AE/N 3.14
MBTR linear AE 4.09
MBTR Gaussian AE 2.30

Figure 3. Accuracy of KRR models trained on small QM9 molecules (max.
HAC=4–7) when predicting larger molecules from QM9 (HAC=9).

Figure 4. Correlation plots of predicted OE62 AEs for MBTR/Gaussian (!
green), iMBTR/Gaussian (* blue) and MBTR/linear (× orange). All models
were trained on 3,993 QM9 molecules with HAC=1–7. Prediction was
performed on 32,467 OE62 molecules consisting of C, H, O, N and/or F.
Linear regression lines and equations are shown for iMBTR/Gaussian (blue)
and MBTR/linear (orange).
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if the results of the linear regressions are subtracted from the
predictions, the corresponding RMSDs are reduced to
63.85 kcal/mol (iMBTR/Gaussian) and 61.33 kcal/mol (MBTR/
linear).

Of course, even in relative terms, the errors of these models
are still larger than what would be expected purely based on
the cross-validation RMSD of their training sets. This is because
extensivity is not the only relevant size-effect. For example,
long-range interactions like electrostatics and dispersion can
play a significant role in stabilizing large molecules. Further-
more, electronic effects like quantum confinement may occur
on the nanometer scale. These effects lead to a net stabilization
of larger molecules, reflected in the systematic underestimation
of the AEs mentioned above.

Consequently, AE/N is not converged for systems with
seven heavy atoms, even in the fairly simple case of linear
hydrocarbons (Figure 2). In Figure 5, the distribution of AE/N vs.
N is shown for the full QM9 and OE62 sets. Interestingly, the
basic features of this plot are remarkably similar to Figure 2. In
particular, it can be seen that the mean AE/N is approximately
constant for molecules with more than ca. 20 atoms. This
regime corresponds to the largest molecules in QM9. The figure
also provides an intuitive explanation of why the iMBTR/
Gaussian method works. By choosing AE/N as the target
quantity, the variability that the model must account for is
decreased from ca. 18,000 kcal/mol to ca. 80 kcal/mol.

5. Conclusion

In this contribution, we have explored the size-extensivity of
molecular ML models based on global representations such as
the MBTR. While the conventional MBTR/Gaussian model is not
ideal for either extensive or intensive properties, we showed
that there are appropriate kernels for both cases, namely the
MBTR/linear (extensive) and iMBTR/Gaussian (intensive). While
current extensive ML models are typically built from local

representations, our work shows that this is not strictly a
requirement. We also showed how an intensive kernel can be
used to predict an extensive property. To illustrate the
significance of these results, a highly challenging ML task with
large size differences between the molecules in the training
and test sets was devised. We found that properly extensive
models perform reasonably well in this setting, whereas the
conventional MBTR/Gaussian approach fails outright.

Importantly, we stress that a non-extensive model can still
be quite accurate if the size of the chemical space of interest is
limited. However, in those areas of chemistry where ML is
expected to have a large impact, this is not the case. In
particular, for the study of large reaction networks (e. g. within
systems chemistry or catalysis) a useful ML model must
adequately describe the transition from small molecules to
larger systems and even polymers (and vice versa). The present
work represents an important stepping stone to this end.

Finally, it should be noted that the present study was
purposefully designed to study the effects of size-extensivity in
the limit of large size differences between training and test
molecules. In practice, we expect that the systematic errors in
the extensive models could be mitigated by including a limited
number of larger molecules in the training set.
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Table S1: MBTR-specific hyperparameters setting for Many-Body Tensor Representation
(MBTR)

k-body Geometry Grid Weighting
Function Min Max n σ Function Scale Cutoff

k=1 Atomic number 0 10 100 0.1 -
k=2 Inverse distance 0 1 100 0.1 Exponential 0.5 1e-3

Table S2: Optimized hyperparameters for three Kernel methods for different training set
size

MBTR
Normalization Kernel Training

Target HAC RMSD
(kcal/mol) σ log2λ

iMBTR Gaussian AE/N

7 3.14 1.884 -18.641
6 3.87 2.679 -16.409
5 6.41 3.634 -15.632
4 11.63 8.674 -14.196

MBTR Linear AE

7 4.09 - -1.093
6 3.98 - -2.915
5 19.49 - -0.956
4 6.312 - -57.365

MBTR Gaussian AE

7 2.304 217.959 -19.094
6 3.323 357.352 -20.348
5 16.313 392.877 -16.209
4 10.827 393.283 -17.537

Figure S1: Histogram of heavy atom distribution in QM9 and OE62 dataset
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How Robust are Modern Graph Neural Network Potentials in Long and Hot
Molecular Dynamics Simulations?

Sina Stocker,1, 2, a) Johannes Gasteiger,2, a) Florian Becker,2 Stephan Günnemann,2 and Johannes T. Margraf1, b)
1)Fritz-Haber-Institute of the Max-Planck-Society, Germany
2)Technical University of Munich, Germany

(Dated: 21 March 2022)

Graph neural networks (GNNs) have emerged as a powerful machine learning approach for
the prediction of molecular properties. In particular, recently proposed advanced GNN mod-
els promise quantum chemical accuracy at a fraction of the computational cost. While
the capabilities of such advanced GNNs have been extensively demonstrated on benchmark
datasets, there have been few applications in real atomistic simulations. Here, we therefore
put the robustness of GNN interatomic potentials to the test, using the recently proposed
GemNet architecture as an example. Models are trained on the QM7-x database of organic
molecules and used to perform extensive MD simulations. We find that low test set errors are
not sufficient for obtaining stable dynamics and that severe pathologies sometimes only be-
come apparent after hundreds of ps of dynamics. Nonetheless, highly stable and transferable
GemNet potentials can be obtained with sufficiently large training sets.

Atomistic simulations are an invaluable tool for gaining
mechanistic and structural insight into chemical systems,
including solid materials1, interfaces2,3, liquids4 or even
complex biological systems like the SARS-CoV-2 virus5.
They are also becoming increasingly important in the de-
sign of new materials and drugs6,7. In many ways, the
prototypical atomistic simulation is a Molecular Dynam-
ics (MD) trajectory, which propagates the atomic coordi-
nates of a system in time, starting from some initial con-
ditions. MD simulations are extremely common, both
by themselves and as part of more elaborate sampling
procedures like parallel tempering or metadynamics.

In principle, highly accurate MD trajectories can be
obtained from electronic structure methods like density
functional theory (DFT). Unfortunately, such ab initio
MD (AIMD) simulations require the (approximate) solu-
tion of the electronic Schrödinger equation at every time
step. This makes them very expensive from a compu-
tational perspective and ultimately limits the applicabil-
ity of AIMD to a few hundreds of atoms and relatively
short (i.e ps) timescales. For many scientific questions,
simulations of much larger systems, longer timescales or
(usually) both are required. To this end, empirical inter-
atomic potentials are typically used. These provide an
analytical expression for high-dimensional potential en-
ergy surfaces which can be evaluated in a small fraction
of the time required for a DFT calculation. This gain in
efficiency invariably comes at the expense of a decrease
in accuracy and/or transferability, however.

To bridge this gap between computational cost and ac-
curacy, machine learned interatomic potentials have re-
cently gained popularity in computational chemistry8–11

and materials science12–14. In particular, a range of neu-
ral network15–17 and kernel based potentials18,19 have
been developed and applied to a wide variety of chemical
systems. While somewhat more expensive than classical
force fields, these potentials are able to predict energies

a)The first two authors contributed equally
b)Electronic mail: margarf@fhi.mpg.de

and forces with DFT accuracy and have thus become an
important part of the toolbox of computational chem-
istry.

One of the most recent additions to this family of
methods are potentials based on graph neural net-
works (GNNs), such as SchNet, DimeNet, GemNet and
NequIP.20–31 Here, much progress towards ever more ac-
curate and expressive potentials has been made, e.g. by
using equivariant formulations or embedding atom pairs
and triplets. While such efforts naturally focus on es-
tablished benchmark databases like QM932,33, MD1734

or OC2035, comparatively little research has been con-
ducted to show the applicability of such advanced GNN
potentials in real atomistic simulations. A notable excep-
tion to this is a recent paper of Batzner and coworkers22,
which demonstrated that potentials based on the equiv-
ariant NequIP architecture could be used in stable and
accurate MD simulations, when trained on AIMD data
for the respective system.

In this contribution, we aim to provide an in-depth
exploration of the robustness of state-of-the-art GNN
potentials based on the GemNet architecture21 in MD
simulations. To this end, we ran a total of 245 ns of
dynamics (around 500 million timesteps) across a wide
range of temperatures and organic molecules. By check-
ing samples from these large ensembles with DFT refer-
ence calculations, the extrapolative capabilities of these
potentials in configuration and chemical space was tested
simultaneously. Furthermore, the impact of training set
size on the robustness of the potentials was explored.

GNNs treat chemical systems as graphs, with nodes
representing atoms and edges representing interactions
between atom pairs. While traditional chemical graph
representations usually equate edges with covalent bonds,
GNNs assume edges between all atoms within a given
cutoff. All potentials discussed in the following are
based on the geometric message passing neural network
(GemNet)21, which shows excellent performances on es-
tablished benchmark data sets like MD17 and OC20 as
well as QM7-x (see Fig. 1). GemNet embeds both the
atoms and the interatomic edges via high-dimensional
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FIG. 1: Learning curves. (a) Mean absolute errors
(MAEs) of atomization energies (AE) and (b) forces (F)

against the number of training configurations. MAEs
are calculated for a test set consisting of 10,100 random

configurations from the QM7-x database.

vectors. Both kinds of embeddings are then updated in
multiple layers using learnable weight matrices and by
passing messages between the edges and atoms within
a given cutoff distance. GemNet leverages the full geo-
metric information for this: The interatomic distances,
the angles between neighboring edges, and the dihedral
angles defined via triplets of edges. From the learned em-
beddings, energy contributions for each atom and layer
are obtained, which are subsequently summed up to cal-
culate the total energy of the system. The whole model is
continuously differentiable, which allows calculating the
forces via Fi = − ∂

∂xi
E. As for all GNNs, the use of

a finite cutoff and per-atom energy contributions makes
the predictions size-extensive and the computational cost
scale linearly with the number of atoms.

Herein, we trained several GemNet potentials on differ-
ent subsets of the recently published QM7-x database.36

This dataset consists of around 4.2 million configurations
sampled from small organic molecules consisting of up to
seven non-hydrogen atoms (i.e. C, O, N, S, Cl), with 4-
23 atoms in total. Importantly, QM7-x covers both equi-
librium and non-equilibrium structures. Starting from
6,950 structural formulas, it contains around 41,500 equi-
librium structures (including stereoisomers and conform-
ers) and 100 additional non-equilibrium structures for
each equilibrium geometry. The latter were generated by
applying linear combinations of normal mode displace-
ments to each configurations, thus approximately mim-
icking molecular dynamics within the harmonic approxi-
mation. For each configuration, total energies and forces
at the hybrid DFT (PBE0)37 level with a many-body dis-
persion correction (MBD)38 are provided, computed with
tightly converged numerical atom-centered basis sets and

integration grids39,40 (see Ref. [36] for full details).
GemNet potentials were trained on atomization ener-

gies (AE) and forces (F) simultaneously. Since forces
are ultimately the driver of MD simulations and contain
more fine-grained information than energies, forces were
weighted more strongly in our fits, so that the AE only
contributes 0.1% to the loss function (see SI for details).
This essentially follows the philosophy of gradient do-
main machine learning,34,41 which exclusively uses forces.
However, we do include a small AE contribution to the
loss, as energy differences across chemical space cannot
be learned effectively from forces alone.42 For training,
the QM7-x dataset was randomly split into a test set of
10,100 configurations, training sets of 3.2k, 32k, 320k and
3.2Mio configurations and corresponding validation sets
of 800, 8k, 80k and 800k configurations (the latter being
used for hyperparameter selection, see SI). In the interest
of simplification, we will denote models trained on small
(3.2k and 32k) and large (320k and 3.2Mio) training sets
as ’sparse’ and ’exhaustive’ models respectively.

In Fig. 1, the corresponding learning curves for AE
and F are shown. The force curve shows a roughly lin-
ear decrease on the log-log scale between 3.2k and 320k
training configurations but levels off between 320k and
3.2Mio configurations. This indicates that the more ex-
haustive models approach the intrinsic accuracy that is
possible given the precision of the data and limitations of
the models themselves (e.g. due to the cutoffs employed).
Due to the lower weighting of energies in the loss the AE
curve is somewhat more noisy but follows the same trend.

To put this performance into perspective, the most
exhaustive GemNet model yields a force MAE of
0.0043 eV Å−1, which can be compared with an
MAE of 0.015 eV Å−1 for the recently developed
SpookyNet23 architecture (in this case trained on 4.2Mio
molecules). In addition, GemNet outperforms SchNet28

and DimNet++25 on QM7-x for nearly all points of the
learning curve (with the only exception being the AE er-
ror of the 32k model). Importantly, the energy errors
are very low (0.01 eV = 0.23 kcal mol−1) despite the
low weighting of AEs in the loss. It is furthermore no-
table that even the model trained on 3.2k configurations
displays quite good performance with MAEs of around
0.035 eV Å−1 and 0.05 eV (≈ 1 kcal mol−1).

To explore the robustness of the GemNet potentials
within the scope of their training set, constant temper-
ature MD simulations were performed for 20 representa-
tive molecules from QM7-x (see FIG. 2a). Here, care was
taken to include all atom types in the dataset. For each
molecule, 1 ns trajectories were generated with a 0.5 fs
timestep at three different temperatures (300 K, 600 K
and 1200 K), using all models presented in the learning
curve (see SI for details on the MD simulations). The
rationale for using these temperatures is that they lead
to increasingly extensive exploration of phase space. In-
deed, it is not uncommon to use high temperature dy-
namics for this purpose, e.g. in replica exchange MD.43

From each trajectory, 72 configuration were uniformly
sampled and the corresponding energies and forces com-
puted with identical DFT settings to the ones used for
the QM7-x set.

Figures 2b and 2c show the AE and F MAEs for these
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FIG. 2: Robustness of GemNet potentials in molecular dynamics (MD). (a) Representative molecules from
QM7-x used in the MD tests. (b), (c) Mean absolute errors (MAEs) on atomization energy (AE) and force (F)

predictions as a function of training set size and temperature. Opaque lines and symbols represent the average MAE
over all molecules in (a). Transparent lines and symbols represent the MAE of one specific molecule. (d) Percentage
of converged DFT calculations for configurations generated with different potentials and temperatures. (e) AE error

as a function of simulation time for a 1 ns MD trajectory at 600 K, using a potential trained with 3.2k
configurations. This sub-panel shows a drastic deterioration in energy predictions after around 700 ps, when the

molecule dissociates into fragments that cannot be accurately described by the model.

samples as a function of temperature and training set
size. Here, opaque symbols and lines represent MAEs
averaged over 20 different trajectories corresponding to a
given model and temperature. Transparent symbols and
lines illustrate the MAEs for each trajectory individu-
ally, to provide some insight into the spread of MAEs
for different molecules (see SI for additional illustrations
of the respective error distributions). Overall, we find
quite consistent trends for both AE and F predictions.
Whereas the exhaustive models (320k and 3.2Mio) only
display a very slight increase of the MAEs with temper-
ature, the errors of the sparse models (3.2k and 32k)
increase dramatically. This is expected, as higher tem-
perature MD simulations more extensively explore the
phase space and consequently move away from the train-
ing configurations.

Notably, the 3.2k model already displays a very large
AE error of more than 10 eV at 300 K. The MD error
is thus orders of magnitude larger than the test set er-
ror, even though these configurations should arguably fall
within the scope of the training set. This mainly stems
from the fact that the trajectories for certain molecules
lead to completely unphysical configurations, for which
the potential then displays extremely large errors. Such

unphysical configurations also commonly lead to conver-
gence issues in the reference DFT calculations. To quan-
tify this, the percentage of converged DFT calculations
for configurations obtained with a given potential and
simulation temperature is shown in Fig. 2d. We find that
all DFT calculations converge for the 320k and 3.2Mio
potentials, while the sparse models generate increasingly
unphysical configurations with rising temperature. This
is particularly evident for the 3.2k model at 1200 K,
where only about half of the DFT calculations converge.

The marked discrepancy between the test set and MD
performance of the 3.2k model underscores the limita-
tions of using test configurations that are not generated
by the potential itself. For a ML model to be useful in
atomistic simulations, it is not sufficient to show that it
provides accurate fits for physically reasonable configura-
tions. It is equally important that the model avoids un-
physical configurations in its own simulations. Note that
testing this requires sufficiently long trajectories. This is
illustrated for a representative example in Fig. 2e. Here,
the error of the 3.2k model is actually quite low for the
first 700 ps of the simulation after which it rises sharply
to more than 20 eV due to an unphysical bond dissocia-
tion event. This behaviour can be understood as a kind
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FIG. 3: Out-of-sample validation of the GemNet potential trained on 3.2Mio configurations. (a) Kernel
density estimates of atomization energy (AE) error distributions for four out-of-sample molecules (A=Paracetamol:
red, B=4H-Furo[2,3-c]pyrrol-6-amin: black, C=Histidin: grey and D=Ser-Trp-Leu-tripeptide: orange), obtained at
1200 K using the 3.2Mio potential. (b) Kernel density estimates of the corresponding force (F) error distributions.

of ’hole’ in the potential energy surface of the model.
This hole can be rather small, but once the simulation
reaches such a configuration the trajectory is completely
unreasonable. The ’robustness’ of a ML potential can
thus be understood as a measure of how frequent and
how large such holes in the potential energy surface are.
Ultimately this can only be quantified by performing MD
simulations with the corresponding potential.

It should be stressed that this notion of robustness
is not necessarily correlated with the test MAE, despite
the fact that the robust GemNet models also display
much lower MAEs. Indeed, the robustness of traditional
bio-organic forcefileds with fixed topologies is very high.
However, in this case robustness is gained at the expense
of model flexibility. The challenge for ML potentials is
that they must be robust without sacrificing flexibility.
Our tests show that this is not trivial. On a more positive
note, we do find that GemNet potentials with sufficiently
large training sets are very robust across the phase space
of the QM7-x dataset and beyond.

Another way to illustrate this is to consider the per-
formance of the 3.2k model for a trajectory generated
with the 3.2Mio potential in comparison with its own
trajectory. Specifically this means that we generate two
independent trajectories with the 3.2k and 3.2Mio model
and evaluate MAEs of the 3.2k model for configurations
drawn from each trajectory. Taking the molecule in
Fig. 2e at 1200 K, the F MAE of the 3.2k potential is
6.8 eV Å−1 for the 3.2k trajectory but only 0.16 eV Å−1

when it is evaluated on the 3.2Mio trajectory. Again, the
sparse model performs quite well for the physically rea-
sonable configurations generated with the 3.2Mio model.
The problem only becomes apparent when testing the
sparse model on its own trajectory.

Having established the robustness of the exhaustive

models within the scope of QM7-x, we now turn to the
simultaneous exploration in chemical and configuration
space. To this end, we consider four molecules consisting
of 9-29 heavy atoms (i.e. which are significantly larger
than the training molecules). Again, 1 ns MD trajectories
were generated with the 3.2Mio potential at 1200 K. Fig-
ure 3 shows the corresponding AE and F error distribu-
tions. Strikingly, the AE errors are systematically more
positive than the DFT reference energies, most promi-
nently for the large Ser-Trp-Leu tripeptide. Here, the
mean AE is shifted by 0.47 eV with respect to the refer-
ence, which is substantial when compared to an MAE of
0.0284 eV at 1200 K in Fig. 2b.

This shift can be explained by the absence of attractive
long-range interactions (e.g. dispersion or electrostatics)
in the GemNet potential. While message-passing neu-
ral networks can in principle include information from
beyond their cutoff distance, the QM7-x database ex-
clusively consists of small molecules so that long-range
interactions simply cannot be learned from it. Meth-
ods to include long-range interactions are proposed in
literature23,27,44,45 and could also be applied to the Gem-
Net architecture. Nonetheless, GemNet and DFT en-
ergies are highly correlated (R2 = 0.998, see SI) and
the standard deviation of the AE error distribution is
only 0.045 eV so that the MD trajectory for this system
should still be considered to be of high quality. While
the long-range interactions are thus considerable in mag-
nitude, they do not fluctuate very strongly.46 This is also
the case for the other molecules, which display very nar-
row AE error distributions. Similarly, force component
errors are consistently small, with MAEs between even
0.012 eV Å−1 and 0.036 eV Å−1.

In conclusion, we have explored the robustness of GNN
potentials based on the recent GemNet architecture in
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MD simulations. We find that sufficiently large training
sets are key to obtaining robust GNN potentials and that
a low test set error does not guarantee that stable tra-
jectories can be generated. Interestingly, in some cases
severe instabilities were only discovered after hundreds
of ps of dynamics. The test set error should thus not be
taken at face value as a measure for the error one can
expect in ’real’ applications. Demonstrating ’chemical
accuracy’ on a test set is by itself not enough.

With large enough training sets, the GemNet poten-
tials used herein do display impressive performance, how-
ever. This is demonstrated by applications in high-
temperature MD simulations of systems that are signif-
icantly larger than the training molecules. In this ex-
trapolative regime, errors are mostly systematic and ex-
plainable and no instabilities were observed. Interest-
ingly, no significant improvements in terms of accuracy
or robustness were observed when training on 3.2Mio in-
stead of 320k samples, indicating that all relevant in-
formation about the underlying potential energy surface
can be learned from less than 10% of the dataset. This is
significant because robust ML potentials are often associ-
ated with iterative training procedures. Due to their size
and complexity (the models used herein fit 2.2 million
parameters), GNN models are a priori not ideal for such
settings. Indeed, training times of several GPU weeks are
not unusual, which is clearly impractical in an iterative
workflow. Well curated databases like QM7-x and pow-
erful model architectures like GemNet circumvent this
issue.

As a final point, we note that the potentials discussed
herein (as well as the underlying code) are freely available
at https://www.daml.in.tum.de/gemnet. We recom-
mend the 3.2Mio GemNet potential as a general-purpose
force field for exploring the conformational space of small
to medium organic molecules. Indeed, the accuracy and
the robustness of the 320k and 3.2Mio models is high
enough that they can be considered as a cost effective re-
placement of DFT calculations for this application. It
remains to be seen whether equally accurate and ro-
bust models can be obtained for larger chemical spaces,
broader sections of the periodic table and chemical reac-
tions.
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I. Poltavsky, K. T. Schütt, A. Tkatchenko, and K.-R. Müller,
“Machine learning force fields,” Chem. Rev., vol. 121, no. 16,
pp. 10142–10186, 2021.

9J. A. Keith, V. Vassilev-Galindo, B. Cheng, S. Chmiela,
M. Gastegger, K.-R. Müller, and A. Tkatchenko, “Combining
machine learning and computational chemistry for predictive in-
sights into chemical systems,” Chem. Rev., vol. 121, no. 16,
pp. 9816–9872, 2021.

10J. Xu, X.-M. Cao, and P. Hu, “Accelerating metadynamics-based
free-energy calculations with adaptive machine learning poten-
tials,” J. Chem. Theory Comput., vol. 17, no. 7, pp. 4465–4476,
2021. PMID: 34100605.
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Sauceda, and K.-R. Müller, “Spookynet: Learning force fields
with electronic degrees of freedom and nonlocal effects,” 2021.

24J. Gasteiger, J. Groß, and S. Günnemann, “Directional message
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“Fast and uncertainty-aware directional message passing for non-
equilibrium molecules,” in ML for Molecules workshop, NeurIPS,
2020.

26C. W. Park, M. Kornbluth, J. Vandermause, C. Wolverton,
B. Kozinsky, and J. P. Mailoa, “Accurate and scalable multi-
element graph neural network force field and molecular dynamics
with direct force architecture,” 2020.

27O. T. Unke and M. Meuwly, “Physnet: A neural network for
predicting energies, forces, dipole moments, and partial charges,”
J. Chem. Theory Comput., vol. 15, no. 6, pp. 3678–3693, 2019.
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29K. T. Schütt, F. Arbabzadah, S. Chmiela, K. R. Müller, and
A. Tkatchenko, “Quantum-chemical insights from deep tensor
neural networks,” Nat. Commun., vol. 8, no. 1, pp. 13890–13890,
2017.
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Johannes T. Margraf1, b)

1)Fritz Haber Institute of the Max-Plank society, Germany

2)Technical University of Munich, Germany

a)The first two authors contributed equally
b)Electronic mail: margarf@fhi.mpg.de

1



I. COMPUTATIONAL METHODS

A. DFT reference calculations

We use the FHI-aims1 (version 210713) code with the same computational settings as

listed in ref2 to perform reference calculations. DFT energies and forces have been validated

for the 20 molecules illustrated in Fig. 1 of the main text, to ensure that we can reproduce

energies and forces of the reference calculations.

B. GemNet

GNNs for molecules represent them as graphs G = (V , E), where the atoms define the

node set V and the interactions the edge set E . GemNet creates edges for all atom pairs

within a given cutoff of 5 Å. While regular message passing neural networks (MPNNs) only

embed each atom a as ha ∈ RH ,3 GemNet additionally embeds the directed edges between

atoms as m(ba) ∈ RHm . Each directed edge is associated with a direction in 3D space,

pointing from atom b to atom a. These directions allow us to define angles from pairs of

edges and dihedral angles from triplets of edges. Defining a dihedral angle requires four

atoms in total: Two atoms are interacting (a and b) and two atoms define the messages (c

and d). Message passing in GemNet is thus based on quadruplets of atoms.

GemNet transforms the geometric information using a set of radial, circular, and spher-

ical basis functions (RBFs, CBFs, SBFs), which facilitates model accuracy. The distance

between atoms b and a is transformed into e
(ba)
RBF, the angle into e

(cab)
CBF , and the dihedral angle

into e
(cabd)
SBF . Using these vectors the atom and edge embeddings are updated in each layer

via messages passed between neighboring atoms. Note that MPNNs use a fixed number of

message passing steps, with separate learnable parameters in each step. This process starts

with an initial atom embedding h
(0)
a = fzemb(za), based on the atomic number za, and an

initial edge embedding m
(0)
(ba) = femb(h

(0)
b ,h

(0)
a , e

(ba)
RBF). Figure S1 shows the full model archi-

tecture. For more details and the reasoning behind this model see Gasteiger, Becker, and

Günnemann 4 .

We trained the model using AMSGrad6 with weight decay in combination with a linear

learning rate warm-up, exponential decay and decay on plateau. We use the following

2
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FIG. S1. The GemNet architecture4. � denotes the layer’s input, ‖ concatenation, σ a non-

linearity (we use SiLU in this work5), and orange a layer with weights shared across interaction

blocks. Differences between two-hop message passing (Q-MP) and one-hop message passing (T-

MP) are denoted by dashed lines. Numbers next to connecting lines denote embedding sizes.

weighted loss function

LMD(X, z) = (1− ρ)
∣∣∣fθ(X, z)− Ê(X, z)

∣∣∣+
ρ

N

N∑

i=1

√√√√
3∑

α=1

(
−∂fθ(X, z)

∂xiα
− F̂iα(X, z)

)2

(1)

with the atomic coordinates X, the force weighting factor ρ = 0.999, the model fθ, target

energy Ê, target forces F̂ , and N atoms per molecule. The model implementation and

training code is publicly available at https://www.daml.in.tum.de/gemnet.

C. Molecular dynamics simulations

All MD simulations discussed in the main text are performed in the NVT ensemble.

MD simulations are propagated via the atomic environment simulation package7 (ase)

in combination with the Langevin thermostat and a custom GemNet calculator. We use a

time step of 0.5 fs and a thermostat friction coefficient of 0.002 to ensure constant average

temperatures of 300 K, 600 K and 1200 K. Mean absolute errors are evaluated for predicted

atomization energies (AE) and force (F) components with the GemNet models and DFT

reference calculations. To this end, 72 snapshots have been uniformly drawn from each MD

3



trajectory, after discarding a equilibration period of 100 ps.

To verify stability of the dynamics in the absence of a thermostat, we performed additional

MD simulations for one molecule in the NVE ensemble using the 3.2Mio model (see Fig. S2).

Here, 1 ns dynamics were performed with the Velocity Verlet algorithm as implemented in

ase. A timestep of 0.5 fs was used and the velocities were initialized with a temperature of

1200 K from the Maxwell-Boltzmann distribution. It can be seen that the total energy is

approximately conserved across the full simulation time. We further verified that the small

fluctuations in the total energy are due to the finite timestep used, by reducing the timestep

to 0.1 fs (see Fig. S3).

FIG. S2. Fluctuation of kinetic, potential and total energies for the shown molecule in the NVE

ensemble. The potential energy calculated as the AE of the system minus the AE of the optimized

geometry is shown in red. The kinetic energy is shown in gray and the total energy (potential

energy + kinetic energy) in black.

FIG. S3. Total energy as a function of simulation time for NVE MD simulations with a timestep

(dt) of 0.1 fs (left) and 0.5 fs (right). Note that the different total energy scales are due to the

independent initialization of both simulations leading to different starting temperatures.
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II. LEARNING CURVE

The learning curves from Fig. 1 of the main text show mean absolute errors on AE and

F as a function of training set size. To this end, a test set of 10,100 configurations was

randomly drawn from the database. Unke and coworkers also use the same test set size in

their studies on QM7-x.8 The remaining data set was partitioned into sets of 4k, 40k, 400k

and 4Mio configurations, while the smaller sets being included in the larger sets. Each of

these sets underwent a further split, with 80% of the structures used for training and the

remaining 20% for validation (i.e. to tune the hyperparameters of the models). In the end

we thus obtain training set sizes of 3.2k, 32k, 320k and 3.2Mio configurations.

III. MOLECULAR DYNAMICS SIMULATIONS IN THE NVT ENSEMBLE

A. Exploration of configuration space

FIG. S4. Error distributions in MD trajectories. Results represented for molecules illustrated in

the main text in Fig. 2a at various temperatures visualized as box plots.(a) AE MAE and (e) F

MAE for the 3.2k model, (b) AE MAE and (f) F MAE for the 32k model, (c) AE MAE and (g)

F MAE for the 320k model, (d) AE MAE and (h) F MAE for the 3.2Mio model. In addition,

individual data points (black circles) are visualized.

As discussed in the main text, we test the robustness of various GemNet potentials by
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running 1 ns MD trajectories for 20 different molecules at 300 K, 600 K and 1200 K in the

NVT ensemble. While Fig. 2 in the main text showcases MAE trends of GemNet models

trained on different training set sizes, here we additionally highlight the spread of mean

absolute errors for both AE and F over the 20 molecules. Corresponding box plots are

shown in Fig. S4.

B. Exploration of configuration and chemical space: Example

Ser-Trp-Leu-tripeptide

FIG. S5. Correlation plots for the large molecule (Ser-Trp-Leu-tripeptide). Left: AE, right: F

components.

Figure S5 shows correlation plots between DFT calculated and GemNet predicted AE

and F components for the Ser-Trp-Leu-tripeptide. We find an AE MAE of 0.47 eV and a

F MAE of 0.02 eV Å−1. The GemNet AEs are consistently shifted towards higher energies

but highly correlated with the DFT reference values (R2 = 0.998). This indicates that the

GemNet error in this extrapolative regime is very systematic.
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