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Abstract

The quest for animal-like performance in robots has driven the integration of elastic elements
in their drive trains, sparking a revolution in robot design. Elastic robots can store and release
potential energy, providing distinct advantages over traditional robots, such as enhanced safety in
human-robot interaction, resilience to mechanical shocks, improved energy efficiency in cyclic
tasks, and dynamic motion capabilities. Exploiting their full potential, however, necessitates
novel control methods. This thesis advances the field of nonlinear control for underactuated
systems and utilizes the results to push the boundaries of motion and interaction performance
of elastic robots. Through real-life experiments and applications, the proposed controllers
demonstrate that compliant robots hold promise as groundbreaking robotic technology.

To achieve these objectives, we first derive a simultaneous phase space and input trans-
formation that enables a specific class of underactuated Lagrangian systems to be treated as
if fully actuated. These systems can be represented as the interconnection of actuated and
underactuated subsystems, with the kinetic energy of each subsystem depending only on its
own velocity. Elastic robots are typical representatives. We refer to the transformed system as
quasi-fully actuated due to weak constraints on the new inputs. Fundamental aspects of the
transforming equations are 1) the same Lagrangian function characterizes both the original and
transformed systems, 2) the transformed system establishes a passive mapping between inputs
and outputs, and 3) the solutions of both systems are in a one-to-one correspondence, describing
the same physical reality. This correspondence allows us to study and control the behavior of
the quasi-fully actuated system instead of the underactuated one. Thus, this approach unifies the
control design for rigid and elastic joint robots, enabling the direct application of control results
inherited from the fully-actuated case while ensuring closed-loop system stability and passivity.
Unlike existing methods, the quasi-full actuation concept does not rely on inner control loops
or the neglect and cancellation of dynamics. Notably, as joint stiffness values approach infinity,
the control equivalent of a rigid robot is recovered.

Building upon the quasi-full actuation concept, we extend energy-based control schemes
such as energy shaping and damping injection, Euler-Lagrange controllers, and impedance
control. Moreover, we introduce Elastic Structure Preserving (ESP) control, a passivity-based
control scheme designed for robots with elastic or viscoelastic joints, guided by the principle of
“do as little as possible”. The underlying hope is that reducing the system shaping, i.e., having
a closed-loop dynamics match in some way the robot’s intrinsic structure, will award high
performance with little control effort. By minimizing the system shaping, we obtain low-gain
designs, which are favorable concerning robustness and facilitate the emergence of natural
motions. A comparison with state-of-the-art controllers highlights the minimalistic nature of
ESP control. Additionally, we present a synthesis method, based on purely geometric arguments,
for achieving time-optimal rest-to-rest motions of an elastic joint with bounded input.

Finally, we showcase the remarkable performance and robustness of the proposed ESP
controllers on DLR David, an anthropomorphic robot implemented with variable impedance
actuators. Experimental evidence reveals that ESP designs enable safe and compliant interaction
with the environment and rigid-robot-level accuracy in free motion. Additionally, we introduce a
control framework that allows DLR David to perform commercially relevant tasks, such as pick
and place, teleoperation, hammer drilling into a concrete block, and unloading a dishwasher.
The successful execution of these tasks provides compelling evidence that compliant robots
have a promising future in commercial applications.
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Introduction 1
A Brief History of Compliant Robots

The word “robot” was first used in 1920 in the science fiction play R.U.R.
(Rossum’s Universal Robots) by the Czech writer Karel Čapek about artificial
men—designed to perform unpleasant work—that rebel against their human
masters. Robots left fiction and emerged as a tool for production and manufac-
turing in an industrial environment in the early 1960s. An entire industry was
spawned. Initially, these machines were bulky, heavy, and posed a potential
risk to the human workforce and, thus, were usually fenced or placed in isola-
tion from humans. Over the last decades, we have seen significant advances
in the field of robotics and an ever-increasing surge of its economic potential.
With technological advancements and robots becoming more intelligent, new
fields of application arise and become economically viable that go beyond
the idea of having robots just performing unpleasant tasks. Nowadays, robots
are used in many fields, from heavy-duty robots working on assembly lines to
lightweight robots in a medical environment and to large-scale manipulators in
space. Until recently, a common line of thought in the design phase of robots
has been that structural flexibility is to be considered a parasitic effect that
must be avoided since it introduces unwanted oscillatory dynamics into the
system. However, it was clear that human-friendly robots had to look very
different than industrial robots. For a robot that interacts with a human the
most critical design concern is safety. Positioning accuracy and speed in task
execution come in second. The growing interest in application fields such as
service robotics, health care and space robotics sparked the development of
a new generation of robots: lightweight manipulators with a load to weight
ratio comparable to that of human arms [6]. Such manipulators are required to [6]: Albu-Schäffer et al. (2007), “A Unified

Passivity-based control framework for posi-
tion, torque and impedance control of flexi-
ble joint robots”

perform compliant interactions when in contact with an unknown environment
while guaranteeing safe interaction with humans [3, 184]. Popular represen-

[3]: Alami et al. (2006), “Safe and depend-
able physical human-robot interaction in
anthropic domains: State of the art and chal-
lenges”
[184]: Tonietti et al. (2005), “Design and
control of a variable stiffness actuator for
safe and fast physical Human/Robot inter-
action”

tatives are: LWR III by DLR [66], WAM® Arm by Barrett Technology and

[66]: Hirzinger et al. (2002), “DLR’s torque-
controlled light weight robot III-are we
reaching the technological limits now?”

MIT, LBR iiwa by KUKA.
A major challenge inherent to the control design for a lightweight robot

is the flexibility introduced into robot joints. Consequently, the system is un-
deractuated since the number of degrees of freedom is twice the number of
actuators, and the matching property between control actions and outputs is
lost (noncollocation problem). The situation became worse with the advent
of robots with series elastic actuators (SEA) [153]; or variable impedance

[153]: Pratt et al. (1995), “Series elastic ac-
tuators”

actuators (VIA) [190]. In these robots, one deliberately incorporates highly

[190]: Vanderborght et al. (2013), “Variable
impedance actuators: A review”

compliant elements into the drive train with a stiffness low enough to exploit
these elements as energy storage. This radical paradigm shift in robot design
fundamentally increases the mechanical robustness of a robot since the elastic
elements low-pass filter impact forces and thereby protect the drive trains. To
emphasize this point, let us imagine a rigid joint robot that collides at high
speeds with a stiff object. In such a scenario, the impact induces energy too
fast for an active controller to prevent damage to the robot’s structure and
drive trains [54]. Systems with sufficient joint compliance, on the other hand, [54]: Grebenstein et al. (2011), “The DLR

hand arm system”guarantee enough reaction time to avoid structural damage. Some systems are
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even designed to be passively safe—requiring no impact reaction strategies at
all. Throughout this work, these kinds of systems are referred to as articulated
soft robots (ASRs). Some popular representatives of this class are: Waseda
Wendy [121] and its successor TwendyOne [78], the anthropomorphic upper[121]: Morita et al. (1999), “Development

of human symbiotic robot: WENDY”
[78]: Iwata et al. (2009), “Design of human
symbiotic robot TWENDY-ONE”

body DLR David [54], the manipulators ANYpulator [16], Festo BionicSof-

[54]: Grebenstein et al. (2011), “The DLR
hand arm system”
[16]: Bodie et al. (2016), “ANYpulator: De-
sign and control of a safe robotic arm”

tArm, the legged systems COMAN [122], ANYmal [74], Robonaut 2 [38],

[122]: Moro et al. (2011), “A human-like
walking for the COmpliant huMANoid CO-
MAN based on CoM trajectory reconstruc-
tion from kinematic Motion Primitives”
[74]: Hutter et al. (2016), “Anymal-a highly
mobile and dynamic quadrupedal robot”
[38]: Diftler et al. (2011), “Robonaut 2 -
The first humanoid robot in space”

Salto-1P [58].

[58]: Haldane et al. (2017), “Repetitive
extreme-acceleration (14-g) spatial jump-
ing with Salto-1P”

Soft robots (SRs) and the subclass of ASRs represent one of the most
significant evolutions in robotics in recent times. The growing interest in SRs
arises from the unique advantages offered compared to rigidly built robots.
Based on rigid mechanisms, traditional industrial robots are fast and precise
machines that excel at producing manufactured goods at an incredible through-
put. Soft robots cannot compete in this field. The development of SRs instead
aims at designing robots destined for safe human-robot interaction (HRI)
while simultaneously aiming for motion and robustness capabilities matching
biological systems. In summary, the key motivations driving the develop-
ment of ASRs are: safety concerning HRI, mechanical robustness against
harsh impacts in unpredictable environments, enhanced dynamic performance
and energy efficiency in cyclic tasks, dedicated force/torque sensors become
superfluous.

New Technologies bring new Challenges

Naturally, a paradigm shift in technology introduces new challenges. The
introduction of a compliant physical structure enables the embodiment of
safe and natural behaviors into a robotic system. There is, however, no free
lunch.

Compared to rigid robots, we can expect the following drawbacks: (1) the
mechanical bandwidth is reduced, (2) higher system complexity, (3) full-state
feedback requires additional sensors1, (4) an increased number of motors,1: A compliant joint requires at least two

position sensors. A VIA requires usually
three position sensors. gearboxes, bearings etc. is required in the case of VIA-based systems, (5)

achieving good motion tracking accuracy is challenging, (6) the underactu-
ated nature and intrinsic oscillatory dynamics necessitate advanced control
concepts. While points (1) to (4) are limitations imposed by physics or the
nature of an ASR, issues (5) to (6) can actually be resolved by good control
engineering.

The challenges associated with underactuation and unwanted vibrations
arising from parasitic elasticities had to be faced already with the advent of
lightweight robots. The high interest of the robotics and control community in
such systems triggered the development of new control concepts. Spong [170][170]: Spong (1990), “Control of flexible

joint robots: A survey” and Ozgoli [143] provide excellent overviews of the advances in this field.
[143]: Ozgoli et al. (2006), “A survey on
the control of flexible joint robots” It is, however, important to understand that the challenges concerning the

control of ASRs are quite different in some aspects compared to lightweight
robots. The joint stiffness of ASRs is lower compared to lightweight robots by
more than one magnitude. To put things into perspective, the joint stiffness of
a classical industrial robot is around 1 × 106 Nm rad−1 [9, 40]

[9]: Alici et al. (2005), “Enhanced stiffness
modeling, identification and characteriza-
tion for robot manipulators”
[40]: Dumas et al. (2011), “Joint stiffness
identification of six-revolute industrial se-
rial robots”

. In a LWR III
the mechanical flexibility originates predominantly from the harmonic drive
gearboxes and the force/torque sensors resulting in joint stiffness values around
1 × 104 to 2 × 104 Nm rad−1. The most powerful VIAs in DLR David’s arms
have stiffness range from 50 to 850Nm rad−1 [194]

[194]: Wolf et al. (2011), “The DLR FSJ:
Energy based design of a variable stiffness
joint” . Distal joints located in
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the wrist and fingers feature even lower joint stiffness values in the range of
0.5 to 125Nm rad−1 [47]

[47]: Friedl et al. (2011), “Wrist and fore-
arm rotation of the DLR hand arm system:
Mechanical design, shape analysis and ex-
perimental validation”

and 0.3 to 17Nm rad−1 [46]

[46]: Friedl et al. (2011), “FAS A flexible
antagonistic spring element for a high per-
formance over”

, respectively.

Control of Compliant Robots

Against the backdrop of an ever-increasing surge of the economical potential,
the development of robot manipulators with challenging nonlinear dynamics
has fueled research in nonlinear control theory. This renewed research led to the
development of fundamental control concepts such as computed torque control
[187]

[187]: Uebel et al. (1992), “Improved com-
puted torque control for industrial robots”

, energy shaping control [178]

[178]: Takegaki et al. (1981), “A new feed-
back method for dynamic control of manip-
ulators”

, impedance control [68] [68]: Hogan (1985), “Impedance con-
trol: An approach to manipulation: Part
I—Theory”

, operational space
control [97]

[97]: Khatib (1987), “A unified approach for
motion and force control of robot manipu-
lators: The operational space formulation”

, passivity-based control (PBC) [6, 98, 144, 165]

[6]: Albu-Schäffer et al. (2007), “A Unified
Passivity-based control framework for posi-
tion, torque and impedance control of flexi-
ble joint robots”
[98]: Koditschek (1984), “Natural motion
for robot arms”
[144]: Paden et al. (1988), “Globally asymp-
totically stable "PD+" controller for robot
manipulators”
[165]: Slotine et al. (1988), “Adaptive ma-
nipulator control: A case study”

. It is worth noting
that these control strategies were developed for manipulators whose dynamics
are modeled by the rigid body equations of motion of open kinematic chains,
and rely on the powerful controllability properties of a rigid robot. Further, the
equations of motion for a rigid robot (RR) can be linearized and decoupled
by static nonlinear state feedback (often called computed torque).

It turned out that strategies that assume a rigid model for the manipula-
tor are limited in their performance on real robots since the assumption of
perfect rigidity is never truly satisfied. Elasticity in the drive train results in
weakly damped oscillatory modes, which impose bandwidth limitations on
any control algorithms designed on the assumption of perfect rigidity [168]

[168]: Spong (1987), “Modeling and con-
trol of elastic joint robots”

and may, in fact, cause stability issues for feedback controllers that neglect
joint elasticity [177]

[177]: Sweet et al. (1984), “Re-definition of
the robot motion control problem: Effects
of plant dynamics, drive system constraints,
and user requirements”

. The joints experience the highest stress, and the resulting
elastic deformation of the joints has a higher significance for control design
than do the actual bending modes of the links, which can be of significantly
higher frequency than the resonant modes of the joints [177]. This insight set
the focus of the control community on flexible joint robots (FJRs) that are
composed of a chain of rigid links interconnected by elastic joints.

Starting in the 1980s, many attempts have been made to address the afore-
mentioned issues [143, 170]

[143]: Ozgoli et al. (2006), “A survey on
the control of flexible joint robots”
[170]: Spong (1990), “Control of flexible
joint robots: A survey”. For a general FJR model, the necessary and

sufficient conditions for static feedback linearizability are not satisfied [23] [23]: Cesareo et al. (1984), “On the control-
lability properties of elastic robots”

and, thus, no direct analogue of computed torque [13] exists. De Luca [30, [13]: Bejczy (1974), Robot arm dynamics
and control31], however showed that FJR are linearizable by dynamic feedback. In an
[30]: De Luca et al. (1995), “Robots with
elastic joints are linearizable via dynamic
feedback”
[31]: De Luca et al. (1998), “A general al-
gorithm for dynamic feedback linearization
of robots with elastic joints”

attempt to make the complexity of the highly nonlinear dynamic model of
an elastic joint robot more tractable, Marino and Nicosia [110] exploited its

[110]: Marino et al. (1985), “Singular per-
turbation techniques in the adaptive control
of elastic robots”

two-time scale property. It turned out that this property allows a reformulation
of the dynamic model as a singularly perturbed system, where the rigid-body
dynamics constitutes the “slow” dynamics and the torque dynamics the “fast”
dynamics. Several researchers used the singular perturbation formulation to-
gether with composite feedback control [43, 50, 110, 162]. The theoretical

[43]: Ficola et al. (1983), “A singular per-
turbation approach to the control of elastic
robots”
[50]: Ghorbel et al. (2000), “Integral mani-
folds of singularly perturbed Systems with
application to rigid-link flexible-joint multi-
body systems”
[110]: Marino et al. (1985), “Singular per-
turbation techniques in the adaptive control
of elastic robots”
[162]: Siciliano et al. (1988), “A singu-
lar perturbation approach to control of
lightweight flexible manipulators”

justification arises from Tychonov’s theorem [95]. However, it is important to

[95]: Khalil (2001), Nonlinear Systems

understand that the two-time-scale argument is based on the vague assumption
that the joint stiffness values are “very large” [110]. Clearly, in the case of
ASRs, this assumption is expected to be infringed.

In 1987, Spong [168] introduced the highly influential reduced model of a
FJR. Throughout this work, the model proposed in [168] will also be referred
to as the Spong model. It assumes that the angular part of the kinetic energy of
each rotor is mainly due to its own rotation and, thus, neglects gyroscopic terms.
A structural property of the Spong model that is highly relevant for control
purposes is decomposability into the feedback interconnection of two passive
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subsystems that represent the rigid body and actuator dynamics. This property
is crucial for the developments presented in this work and discussed in detail in
Chapter 5. In instances where the joint flexibility is caused by parasitic effects
like the gear elasticity or the compliance of a joint torque sensor, the joint
stiffness is usually relatively high, and thus the rigid body part gives a good
approximation of the dominating dynamics. Consequently, several control
approaches for FJRs started with a control law for the rigid body dynamics and
used it as the desired torque to be controlled with the elastic actuator dynamics
[107, 139]

[107]: Loria et al. (1995), “On tracking con-
trol of rigid and flexible joints robots”
[139]: Ott et al. (2003), “Decoupling based
Cartesian impedance control of flexible
joint robots”

. Inverse dynamics-based control [31][31]: De Luca et al. (1998), “A general al-
gorithm for dynamic feedback linearization
of robots with elastic joints”

instead allows designing a
controller directly for the full flexible robot model without designing first a
rigid body controller in an intermediate step. In both cases, the closed-loop
system can be rendered stable but will have a significantly different structure
than the original open-loop behavior. The works [6, 32, 33, 140] started the[6]: Albu-Schäffer et al. (2007), “A Unified

Passivity-based control framework for posi-
tion, torque and impedance control of flexi-
ble joint robots”
[32]: De Luca et al. (2011), “A PD-type reg-
ulator with exact gravity cancellation for
robots with flexible joints”
[33]: De Luca et al. (2010), “Dynamic grav-
ity cancellation in robots with flexible trans-
missions”
[140]: Ott (2008), Cartesian Impedance
Control of Redundant and Flexible-Joint
Robots

development of passivity-based control approaches for elastic joint robots that
aim at preserving the intrinsic compliant dynamics. Aiming at a compliance
controller, the schemes in [6, 140] utilized a physical interpretation of joint
torque feedback as the scaling of motor inertia and implemented the desired
compliance on the motor side. While this showed good performance on robots
with rather stiff joints, as the DLR light-weight robots [67], it turned out

[67]: Hirzinger et al. (2001), “On a new
generation of torque controlled light-weight
robots”

that vibration damping on the motor side in combination with joint torque
feedback to scale the motor inertia was not sufficient for highly elastic robots.
This observation motivated a series of control developments that culminated
in the formulation of the elastic structure-preserving (ESP) [86] and elastic

[86]: Keppler et al. (2018), “Elastic struc-
ture preserving (ESP) control for compli-
antly actuated robots”

structure-preserving impedance (ESPi) control schemes [92], which use an

[92]: Keppler et al. (2018), “Elastic struc-
ture preserving impedance (ESPi) control
for compliantly actuated robots”

idea that is similar to the one presented in [32, 33]. The latter two use the
equivalence principle to derive control laws that combine cancellation of
gravity effects with motor-side PD terms to achieve set-point regulation. It is
interesting to note that using the developed concept of quasi-full actuation
to cancel the effect of gravity on an ASR produces exactly the controllers
reported in [32, 33].

Goal of this Thesis

The objective of this work is twofold. On the one hand, it aims to advance the
field of nonlinear control of underactuated systems, and on the other hand, it
aims to demonstrate that ASRs can indeed be considered a viable alternative
to classic rigid robots.

The dynamic control of underactuated systems is still an open problem in
control. There are still very few general principles for the control of underac-
tuated systems. The crux is that many exciting problems in robotics belong
to this class (soft robots, object manipulation, aerial, aquatic, fossorial, and
terrestrial locomotion). This work aims at developing a methodology that
unifies the control design for fully actuated systems and a class of underacted
Euler-Lagrange systems, where the following properties characterize the latter:
decomposability into a feedback interconnection of two passive subsystems
such that one subsystem has one control input per degree of freedom, whereas
the other subsystem is entirely free from input forces. Concerning this work,
it is worth remarking that most articulated soft robots can be represented in
this way. A unified treatment is meant in the following sense: having seen
significant advances in nonlinear control of fully actuated systems in the past
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decades, this work aims to provide a bridge that allows the direct transfer from
this rich pool of knowledge to solve underactuated problems.

Given the complex nonlinear and underactuated dynamics of ASRs—
paired with a low output control bandwidth—it turned out that designing a
control framework that is not only theoretically sound but also delivers in
regard to the following points is a highly challenging endeavor:

(G1) Sufficient performance and robustness in challenging environments
(G2) Safe handling of impacts
(G3) Safe physical human-robot interactions
(G4) Adjustable interaction behavior
(G5) Intuitive closed-loop dynamics

This work aims to develop a control framework that delivers on all these
points.

Experience in the lab repeatedly revealed that control approaches that
modify (override/shape) the intrinsic rigid robot dynamics to a significant
extent tend to show unstable behavior on actual hardware. The higher the joint
compliance, the lower the mechanical bandwidth, and the more pronounced
this issue becomes. This observation initiated the design of a physically mo-
tivated control framework that aims at achieving natural motions, with the
hope that minimizing the system shaping, and having a closed-loop dynamics
match in some way the intrinsic structure of the robot will award high and
robust performance with little control effort.

The results of this endeavor are reported in this work.

Contributions of this Thesis

The major contributions of this work can be summarized as:
• A novel methodology that allows the unified treatment of fully actuated

systems and a class of Euler-Lagrange systems. It is demonstrated that
by applying a set of coordinate and input transforming equations, the
latter can be treated as if fully actuated. Since the new inputs obey
some smoothness and weak feedback constraints the term quasi-full
actuation is coined (Chapter 4 and 5). This equivalent system dynamics
formulation literally establishes a bridge that enables the direct transfer
from the rich pool of classical control methods to solve underactuated
problems. It is worth remarking that this transfer is not limited to the
control design phase, but extends to techniques used for passivity and
Lyapunov-based stability arguments.

• Extensions to fundamental energy-based control methods that were
designed for fully actuated system to a class of underactuated Euler-
Lagrange systems (Chapter 6), namely: 1) Energy shaping and damping
injection, 2) Euler-Lagrange controllers.

• Development of novel passivity-based control schemes tailored for
articulated soft robots that aim at natural motions through minimizing
the system shaping (Chapter 7). These schemes are summarized under
the name Elastic Structure Preserving (ESP) control, and can be applied
to systems with elastic and visco-elastic actuation elements to achieve
globally asymptotic motion tracking. The user can directly specify a
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desired damping or impedance behavior in terms of the link or end-
effector velocities. It is worth noting that the closed-loop stiffness can
be increased above the intrinsic one while retaining an output strictly
passive closed loop.

• Extensive experimental evaluation demonstrating that the ESP schemes
deliver on the design objectives, (G1)–(G5), set above (Chapter 11).
All ESP designs exhibit a physically intuitive closed loop which allows
the operator to anticipate the interaction behavior of the robot with its
environment. Moreover, all gains have a direct physical interpretation
as springs, dampers or inertia shaping factors, which is of immense
value during the controller tuning and commissioning stage.

• A performance analysis of articulated soft robots by virtue of the devel-
oped theory on quasi-full actuation.

• Introduction of enhanced link-side damping designs based on dynamics
extensions that minimize the actuator torque requirements in situations
where a robot is subject to impacts. A desirable side effect is the reduc-
tion of sensor noise sensitivity compared to design with a fully damped
closed loop.

• A comparison of the proposed ESP control schemes with state of the
art motion tracking controllers.

• A complete synthesis method for time-optimal rest-to-rest motions of an
elastic joint system with bounded torque input. The solution is provided
in closed form by following purely geometric arguments, and verifies
the standard optimality conditions. Further, we introduce the concept
of natural motions which are time-optimal solutions to the rest-to-rest
motion problem. These are the only rest-to-rest solutions where the
minimum-time performance of an elastic joint system matches that of a
rigid joint. The insight obtained from the natural motion analysis, can
be exploited to optimize the design of an elastic robot joint.

• Designing a software infrastructure for a compliant anthropomorphic
robot (DLR David) that integrates the control techniques presented in
this work to equip the robotic system with the necessary skills to perform
complex tasks (Chapter 12) including pick and place, teleoperation, and
drill-hammering into a block of concrete.

• The experimental results on DLR David demonstrate that articulated
soft robots are ripe for the transfer into the commercially space. The ESP
schemes are basically tuning knob free and produce a physically intuitive
closed loop, which significantly simplifies and accelerates controller
commissioning making them an attractive choice for commercial usage.

• This work hopefully spark appreciation of physical intuition and geo-
metric insight for control design.

Figure 1.1: DLR David: An articulated soft
robot.

Concerning the first point, it is worth remarking that decoupling-based
methods allow the adoption of rigid robot controllers to articulated robots as
well. These, however, rely on canceling dynamics terms to transform the robot
model into a triangular form. A key novelty of the presented methodology is
the fact that it enables the adoption without pre-shaping the robot dynamics.
The input and coordinate transformations that produces a quasi-fully actuated
system representation do not shape the plant dynamics itself just like a standard
coordinate transformation. Another important aspect of the new methodology
is the fact that in the limiting case of the joint stiffness value approaching
infinity, the rigid robot controller is re-obtained, which is not the case for
decoupling-based methods.
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Thesis Overview

The content of this work is organized in the following way. The relation
between the chapters and possible routes of reading are shown in Fig. 1.2.
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Figure 1.2: Relation between the chapters.

Chapter 2 covers basic results of analytical mechanics which are required
to follow the material treated in this work. The Euler-Lagrange equations
are derived from D’Alembert’s Principle, and their properties most relevant
for the developments in this work are presented. Finally, the implications of
underactuation with regard to control design are briefly discussed.

Chapter 3 treats the modeling of articulated soft robots on the basis of the
anthropomorphic robot DLR David, which is driven by variable impedance
actuators in all its joints. Most of the experimental evaluation is performed on
this hardware.

Chapter 4 guides the reader through the intuition and thinking that lead to
the development of the novel concept of quasi-full actuation on the basis of a
single elastic joint. The dynamic behavior of the quasi-fully actuated system
under feedback control is discussed, and a geometric interpretation of the new
coordinates is provided. Finally, a Lagrangian view of articulated soft robots is
presented. The established picture serves as inspiration for the developments
in Chapter 5.

Chapter 5 contains the central theoretical contribution of this work. All
successive developments build on the results developed here. It generalizes
the concept of quasi-full actuation presented in Chapter 4 to a class of under-
actuated Euler-Lagrange systems. An Euler-Lagrange structure preserving
input and coordinate transformation is derived that enables a class of underac-
tuated Euler-Lagrange systems to be treated as if fully actuated. Finally, the
smoothness and feedback constraints on the inputs of the quasi-fully actuated
system are discussed and physically motivated.

Chapter 6 reports extensions to two fundamental passivity based control
methodologies that were originally design for fully actuated systems to a class
of underactuated Euler-Lagrange systems: (1) The energy shaping and damp-
ing injection technique, (2) the methodology of Euler-Lagrange controllers.
Finally, the adoption of impedance control techniques through the quasi-full
actuated system representation is demonstrated.

Chapter 7 applies the concept of quasi-full actuation to ASRs to derive
several Elastic Structure-Preserving (ESP) control schemes in a unifying way.
These concepts are based on the the idea of preserving the system structure
and minimizing the system shaping. Proofs for the passivity and stability
results are presented at the end of this chapter. Extensive experimental results
demonstrating the remarkable performance of the ESP controllers in challeng-
ing practical environment are reported in Chapter 11 and 12. Chapter 7 also
applies the concept of quasi-full actuation to extend the ESP control concept
to articulated soft robots with visco-elastic joints, which results in a dynamic
state transformation.

Chapter 8 compares several design techniques that guarantee global asymp-
totic motion tracking for flexible joint robots with the ESP and ESPi designs
reported in Chapter 7

Chapter 9 exploits the quasi-fully actuated representation of a SEA-based
robot to analyze its performance limits. It discusses the challenges associated
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with link-damping injection and the underlying reasons. Based on these in-
sights, enhanced damping designs are derived that significantly reduce the
actuator torque requirements at the moment of an impact. A positive side
effect is the reduction of link position sensor noise amplification.

Chapter 10 presents a complete synthesis method for time-optimal rest-
to-rest motions of an elastic joint system with bounded torque input. The
solution is provided in closed form by following purely geometric arguments,
and verifies the standard optimality conditions. Further, we introduced the
concept of natural motions which are time-optimal solutions to the RTR
motion problem. These are the only RTR solutions where the minimum-time
performance of an elastic joint system matches that of a rigid joint. The insight
obtained from the natural motion analysis, can be exploited to optimize the
design of an elastic robot joint.

Chapter 11 reports extensive evaluations of the presented control tech-
niques in simulation and on hardware. The focus is set on the experimental
evaluation of the ESP control schemes. The results demonstrate the remarkable
robustness and performance of this design technique.

Chapter 12 presents a variety of applications in which the ESP control
framework is used to facilitate motions on the anthropomorphic robot DLR
David. These applications demonstrate that the ESP schemes can be used as
the core motion control architecture in the software ecosystem of a compliant
robot to execute advanced manipulation tasks.

Chapter A introduces a geometric interpretation of the transforming equa-
tions that produce the quasi-fully actuated representation for systems where
the elastic potential function assumes a quadratic form.

Chapter 13 eventually summarizes and concludes the results of this work.
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The theoretical development of the laws of motion of bodies is a problem of
such interest and importance, that it has engaged the attention of all the most
eminent mathematicians, since the invention of dynamics as a mathematical
science by Galileo, and especially since the wonderful extension which was
given to that science by Newton. Among the successors of those illustrious

men, Lagrange has perhaps done more than any other analyst, to give extent
and harmony to such deductive researches, by showing that the most varied

consequences respecting the motions of systems of bodies may be derived
from one radical formula; the beauty of the method so suiting the dignity of

the results, as to make of his great work a kind of scientific poem. [59]

– William Rowan Hamilton, 1834

This chapter provides a brief overview of analytical mechanics that should
be sufficient to understand the material treated in this thesis. Most results are
presented without proof, and proofs are only added when providing partic-
ular insights. The style of presenting this material is greatly inspired by the
wonderful book [103] by Lanczos. The details on the ideas touched here, are
covered in, e.g., [1, 10, 52, 103, 181].

2.1 Generalized Coordinates

In the analytical formulation of mechanics the concept of coordinates play a
central role. All the calculations are done in terms of some abstract quantities.
In order to make use of the modern mathematical machinery we require the
physical world to be translated into the realm of mathematics. We perform
this translation with the help of coordinates. The coordinates establish a one-
to-one correspondence between the position of points in space and numbers.
Setting up three perpendicular axis and introducing three Cartesian coordinates
𝑥, 𝑦, 𝑧 (as proposed by Descartes in 1637) is but one way of establishing such
correspondence. We may equally well introduce polar coordinates 𝑟, 𝜃, 𝜑 as
indicated in Fig. 2.1. Analytical mechanics requires a generalization of the
coordinate concept. It turns out that any set of parameters which can uniquely
characterize the position of a mechanical system may be chosen as a suitable
set of coordinates.

𝑧

𝑥

𝑦

𝜑

𝜃

𝑟

𝑂

𝑃

(𝑥, 𝑦, 𝑧) Cartesian
(𝑟, 𝜑, 𝑧) Spherical

Figure 2.1: Conversion between Cartesian
(𝑥, 𝑦, 𝑧) and spherical (𝑟, 𝜃, 𝜑) coordinates
in three dimensions.Assume that we have a system of 𝑁 free particles. In this case, the config-

uration of the entire system can be uniquely described with the rectangular
coordinates of these particles Note that we require three coordinates for

each free particle.
𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 𝑖 = 1,…𝑁. (2.1)

The configuration is described equally well, if we express the coordinates
𝑥𝑖, 𝑦𝑖, 𝑧𝑖 in terms of some other quantities

𝑞𝑖, 𝑖 = 1,…3𝑁, (2.2)
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that are in a one-to-one correspondence to the original coordinates. We call this
procedure a coordinate transformation. In general, the transforming equations
appear as

𝑥1 = 𝑓1(𝑞1, 𝑞2,… , 𝑞3𝑁 , ),
⋮

𝑧𝑁 = 𝑓3𝑁 (𝑞1, 𝑞2,… , 𝑞3𝑁 ).
(2.3)

In words, the rectangular particle coordinates are expressed as functions of the
3𝑁 independent parameters 𝑞𝑖. The variational treatment of mechanics allows
great freedom in choosing appropriate coordinates for our problem. Choosing a
set of coordinates that “fits” the mechanical problem can significantly simplify
the problem. For example, the solutions to the Kepler problem [84, 85]—that[84]: Kepler (1621), Epitome Astronomiae

Copernicanae
[85]: Kepler (1609), Astronomia Nova

arises in orbital mechanics from predicting the orbits of two orbital bodies
in a binary system—may be derived more easily by expressing the kinetic
and potential energies in terms of the center of mass position and relative
distance instead of relying on rectangular coordinates. In [87], we exploited[87]: Keppler et al. (2020), “On time-

optimal control of elastic joints under input
constraints” this fact, together with system inherent symmetries, to derive a geometrical

method to tackle time-optimal control problems for flexible joints. However,
choosing the “right” coordinates requires insightful thinking, but it is time
well spent. It is hard to underestimate the value of the freedom of choosing an
arbitrary set of coordinates when applying variational methods. The theme
of choosing coordinates that “suit” the problem permeates the entire work.
In Chapter 4 and 5, we present a control methodology that evolves around
introducing virtual coordinates to facilitate an intuitive treatment of some
underactuated systems.

In some cases the Lagrangian might be independent of some coordinate.
Such coordinate is referred to as cyclic or ignorable. These coordinates play a
fundamental role in physics. Whenever we identify a cyclic coordinate, we
know that its associated conjugate momentum is a constant of motion. In
general, invariance of the Lagrangian under a symmetry transformation gives
rise to a conserved quantity as point out in Noether’s Thoerem[128].[128]: Noethers (1918), “Invariante varia-

tionsprobleme”

2.1.1 Kinematic Constraints

The advantage of generalized coordinates becomes even more apparent when
dealing with mechanical systems that are subject to kinematic constraints,
which are mathematical relations between coordinates that express the fact
that a system is restrained in its motion. One type of constraint system will be
of particular interest in this work, the rigid bodies, where the constraints on
the motions of the particles keep their relative distances unchanged. Another
important example is the mathematical pendulum as shown in Fig. 2.2, which
shares the same dynamics as a revolute joint in robotics.

(𝑥, 𝑦)

𝑞

Figure 2.2: A mathematical pendulum.

The position of the point mass can be described with two coordinates 𝑥, 𝑦.
The mass is connected with a massless rod to a pivot. Thus, it stays at a fixed
distance from its center of rotation. This implies the condition

𝑥2 + 𝑦2 = 𝑙2. (2.4)
As a consequence, we cannot choose the rectangular coordinates indepen-
dently of each other. We could designate one master coordinate and determine
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the other dependent coordinate via (2.4). However, this works only locally.
Physically speaking; it is obvious that if we are given the 𝑥 position of the
point mass, we can always find two valid 𝑦 positions—and vice-versa—that
don’t violate the kinematic constraint. Further, there would be no physical
justification to pick one coordinate as the master coordinate over the other.
From the physical point of view, it would be more natural to choose the angular
position of the rod as a coordinate to describe the mass position. In this case,
the two rectangular coordinates would be expressible as a function of this
angle. This angle serves as a so-called generalized coordinate. Let us consider
a mechanical system of 𝑁 particles that is subject to 𝑚 independent kinematic
constraints. The number of total coordinates required to describe the system
configuration is reduced by the number of independent kinematic constraints.
The configuration of the entire system can be uniquely described with

𝑛 = 3𝑁 − 𝑚 (2.5)
parameters

𝑞𝑖, 𝑖 = 1,… , 𝑛. (2.6)
Analogous to (2.3), we may express the rectangular coordinates of all the
particles (2.1) as functions of the quantities (2.2):

𝑥1 = 𝑓1(𝑞1, 𝑞2,… , 𝑞𝑛)
⋮

𝑧𝑁 = 𝑓3𝑁 (𝑞1, 𝑞2,… , 𝑞𝑛).
(2.7)

The number 𝑛 is system inherent and is the minimum number of coordinates
required to uniquely characterize the configuration of a mechanical system.
Hence, we refer to such a system as having 𝑛 degrees of freedom. Further, we
coin the 𝑛 parameters (2.6) as the generalized coordinates. Albeit having great
freedom in choosing the functions (2.7), we require them to be single valued,
finite, continuous and differentiable functions of the 𝑞𝑖. Further, the Jacobian
of a given combination of 𝑛 such functions shall be different from zero.1 1: More precisely: det𝐷𝒇 ≠ 0 for all valid

combinations of the parameters (2.6).

Holonomic and non-holonomic systems

We started our considerations with a system of𝑁 particles. It is often necessary
to take into account constraints that limit the motion of particles. A rigid body
is a classic example; the constraints on the motions of the particles keep
their relative distances unchanged. Other examples can be easily envisioned.
A particle moving along the surface of a table is constrained in its motion.
Whenever the motion of the C-point in its 3𝑁 dimensional configuration space
is restricted, and if the kinematical constraints can be expressed by equations
of the form

𝜑𝑖(𝑥1,… , 𝑧𝑁 , 𝑡), 𝑖 = 1,… , 𝑚 < 3𝑁 (2.8)
with 𝜑𝑖 are assumed to be differentiable functions of their arguments, then the
constraints are said to be holonomic. Often it is more convenient to formulate
equations of constraints directly in terms of configuration variables than in
terms of positions coordinates of particles. This should become clear from the
example below. A constraint that cannot be expressed in the form (2.8) are
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referred to a non-holonomic constraints. Consider for example a constraint
equation containing velocities

𝑓𝑖(𝑥1,… , 𝑧𝑁 , 𝑥̇1,… , 𝑧̇𝑁 , 𝑡), 𝑖 = 1,… , 𝑚 < 3𝑁 (2.9)
that cannot be brought into the form (2.8) through integration. Unilateral
constraints given expressions containing inequalities is another example. Char-
acteristic for a holonomic system with 𝑛 degrees of freedom is that it can be
described by an equal number of 𝑛 generalized coordinates.

If there are 𝑚 holonomic constraints in the form (2.8), we can always
use these equations to eliminate 𝑚 of the 3𝑁 coordinates, and the system
is said to have 𝑛 = 3𝑁 − 𝑚 degrees of freedom. This elimination process
of dependent coordinates can also be attacked differently. By introducing
independent variables 𝑞1,… , 𝑞𝑛 and expressing them in terms of the the old
coordinates 𝑥1,… , 𝑧𝑁 through equations of the form

𝑥1 =𝑓1(𝑞1,… , 𝑞𝑛, 𝑡)
⋮

𝑧𝑁 =𝑓3𝑁 (𝑞1,… , 𝑞𝑛, 𝑡),
(2.10)

that contain the constraints implicitly. This is the standard procedure for
modeling the kinematics of rigid robots. For each of the 𝑛 joints, we introduce
one configuration variable 𝑞𝑖, 𝑖 = 𝑞1,… , 𝑞𝑛. As it will turn out, the situation
becomes slightly more complex when dealing with articulated soft robots
since each joint has multiple degrees of freedom.

𝑥

𝑦

𝑧

𝑂 𝑃

𝑄

r

r
Figure 2.3: A rolling ball as an example for
a non-holonomic system.

A popular example of a non-holonomic system is that of an rolling ball on a
table without slipping. Since its center is at a constant height above the table its
degrees of freedom are reduced from six to five (two rectangular coordinates
𝑥, 𝑦, three angles 𝛼, 𝛽, 𝛾). However, if the ball is confined to rolling motions,
i.e., no sliding or spinning about its vertical axis, it can only move in two
independent directions. The point of contact is always at rest momentarily, and
its instantaneous axis of rotations has to go through that point and lie within the
plane of the table. This constraint on the instantaneous axis of rotation reduces
the number of degrees of freedom from five to two. One could imagine that it
would be possible to describe the three angles as a function of the rectangular
coordinates. However, this is not the case. This can be demonstrated with
the following thought experiment (adopted from [181]). Place the ball at 𝑂[181]: Taylor (2005), Classical Mechanics
such that the red arrow aligns with the 𝑧 axis. Then, roll the ball along the
𝑥 axis for a distance equal to the balls circumference 𝑟, to a point 𝑃 , where
the red arrows aligns again with the 𝑧 axis. Repeat the procedure in the 𝑦
direction to a point 𝑄, where the red arrow arrow will be once again aligned
with the 𝑧 axis. Now roll it back along the hypotenuse of the triangle 𝑂𝑃𝑄
to its starting location. Since the final path is of length √

2𝑟, the red will not
end up aligned with the 𝑧 axis. The (𝑥, 𝑦) position of the ball has returned its
initial value, but it now has a different orientation. Clearly, the two coordinates
(𝑥, 𝑦) are not sufficient to uniquely specify the balls configuration. In fact, it
requires three additional coordinates to specify the orientation. Clearly, it is
a non-holonomic system. In the words of [111], we may think intuitively of[111]: Mason (2001), Mechanics of robotic

manipulation holonomic and non-holonomic constraints as follows:
• A holonomic constraint is a constraint on configuration: it says there are

places you cannot go. That is a reduction in degrees freedoms. That’s
(usually) bad.
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• A non-holonomic constraint is a constraint on velocity: there are direc-
tions you cannot go. But you can still get wherever you want. That’s
(usually) good!

Rheonomic and Scleronomic Systems

The time 𝑡 is the most characteristic variable in dynamics. We are interested
how a systems evolves over time and study the causes of those changes. The
coordinates that describe these changes are functions of the time. A decisive
question in the analytical treatment of mechanics is the question whether the
time appears explicitly in the kinetic or potential energies. Consider a 3D
mathematical pendulum whose rod length is continuously changing with time.
This implies a condition of the form

𝜑(𝑥, 𝑦, 𝑧, 𝑡) = 0, (2.11)
with (𝑥, 𝑦, 𝑧) denoting the position of the point mass similarly too planar case
in Fig. 2.2. We see that the equation of constraint contain the time as an
explicit variable. Constraints are classified according to whether the constraint
equations, (2.8), contain the time explicitly (rheonomous), or not explicitly
(scleronomous). Sometimes rheonomous coordinates are called forced since
the explicit time dependence usually arises from a forced motion.2 If a system 2: Such situations arise frequently in con-

trol problems. In the field of ASR control,
we frequently encounter the case that the
motor position or velocity is assumed as
the control input. In other words, it is as-
sumed that the motor control bandwidth is
fast enough such that a desired motion can
be directly imposed.

is subject to rheonomic constraints, the elimination of these conditions by a
proper choice of curvilinear coordinates will have the consequence that the
transforming equations will be of the form (2.10) containing the time explicitly.
A similar situation arises even without time-dependent kinematical conditions,
if the coordinates chosen belong to a reference system which is in motion [103,
p. 32]. Such a scenario is encountered Chapter A, where the new coordinates
that belong to a non-inertial. In Chapter 5, we will face implicit coordinate
transformating equations containing the time explicitly.

Rheonomic constraints can be treated with the tools of analytical mechan-
ics, however certain characteristics are lost which only hold for scleronomic
systems. Differentiating (2.10) with respect to time yields

𝑥̇1 =
𝜕𝑓1
𝜕𝑞1

𝑞̇1 +…+
𝜕𝑓1
𝜕𝑞𝑛

𝑞̇𝑛 +
𝜕𝑓1
𝜕𝑡

⋮

𝑧̇𝑁 =
𝜕𝑓3𝑁
𝜕𝑞1

𝑞̇1 +…+
𝜕𝑓3𝑁
𝜕𝑞𝑛

𝑞̇𝑛 +
𝜕𝑓3𝑁
𝜕𝑡

.

(2.12)

If we substitute (2.12) in the kinetic energy expression for a system of particles,
it is evident that it no longer appears as a purely quadratic form of the general-
ized velocities 𝑞̇𝑖. Additional terms which are linear in velocities are obtained,
and others that are independent of the velocities altogether. Substituting (2.10)
in the definition of the potential energy, it is clear that it will come out as
explicitly time dependent. The fundamental difference between a scleronomic
and a rheonomic system is that in scleronomic system the total energy (sum
of potential and kinetic energy) is conserved over time. Rheonomic systems
on the contrary do not satisfy such a conservation law.
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2.2 The Configuration Space

The concept of configuration space equips us with a powerful geometric
picture. This picture will serve as a great aide in developing the concept of
quasi-full actuation in Chapter 5. We may think of the three numbers 𝑥, 𝑦, 𝑧
as defining a point in a three-dimensional space. Analogously, we may think
of the 𝑛 numbers 𝑞1, 𝑞2,… , 𝑞𝑛, as the rectangular coordinates of a point 𝑃 in
a 𝑛-dimensional space. Further, we can associate the equations

𝑥 =𝑥(𝑡),
𝑦 =𝑦(𝑡),
𝑧 =𝑧(𝑡),

(2.13)

with the geometric idea of a (parameterized) curve and the motion of a point
along that curve with the time as parameter determining its current location.
Likewise, we can take on the same view regarding the equations

𝑞1 =𝑞1(𝑡),
𝑞2 =𝑞2(𝑡),

⋮

𝑞𝑛 =𝑞𝑛(𝑡).

(2.14)

These equations represent the solution of a dynamical system. In the connected
geometrical picture, we may think of (2.14) as defining a parameterized curve
in a 𝑛 dimensional space with a point 𝑃 moving along that curve. At any instant
in time, the location of such point 𝑃 uniquely specifies that configuration of a
given system.3 No matter how complicated the mechanical system, we can3: Take note that the states of motion, eg.

velocities/momenta are not part of the con-
figuration space. This is in contrast to the
phase space, where we also take the states
of motion into account.

always associate its time-evolution with the motion of a single point in a
sufficiently high dimensional space, called the configuration space or in short
form C-space, as sketched in Fig. 2.4. For instance, let us consider a double
pendulum as shown in Fig. 2.5. Every possible configuration can be uniquely
described by two angles 𝑞1 and 𝑞2. Thus, we can correlate its motion with
the motion of a point in a two-dimensional configuration space. For the sake
of brevity, we shall adopt the following terms from [103]: the location of a[103]: Lanczos (2020), The Variational

Principles of Mechanics mechanical system in the configuration space is referred to as C-point, and
the curve traced out by that point during the motion will be referred to as the
C-curve.

𝑛 quantities

𝑛 dimensional
configuration
space 𝑃

𝑞1
ℝ

𝑞𝑛

⋮
ℝ

Figure 2.4: Configuration space: a single
point 𝑃 of the configuration space represent
the configuration of an entire physical sys-
tem (adapted from [146, p. 177]).

2.2.1 A Topological Point of View

So far our considerations where based on the geometry of an Euclidean space
of 𝑛 dimensions. As it turns out, a more fitting geometric picture can be
obtained when switching from analytical geometry to Riemannian geometry
(which is a branch of differential geometry).4 It is important to point out that for4: Roughly speaking: Euclidean geometry

deals with flat space equipped with a metric,
whereas Riemannian geometry deals with
curved space equipped with a metric. Never-
theless, Riemannian geometry assumes that
curved space resembles Euclidean space at
each point infinitesimally (i. e., in the first
order approximation).

the developments in this work our rudimentary picture founded on Euclidean
space will serve us well enough. To keep the presentation of results easily, we
shall refrain from adopting the language of differential geometry. However,
I’m firmly convinced that future generalization would profit from adopting the
view of differential geometry. Thus, a brief outlook into the topological point
of view on the configuration space is provided in the following. A detailed
treatment on the connection between mechanics and differential geometry can,
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𝑞1

𝑞2
𝑞2

𝑞1 𝑡

Physical space Configuration space

path of the C-point on a torus
Figure 2.5: Configuration space of a double pendulum.

e.g., be found in [108]
[108]: Lützen (1995), “Interactions between
mechanics and differential geometry in the
19th century”, where the author approaches the topic from a historical

point of view.

Lets us try to obtain a more appropriate picture of the geometrical nature of
the configuration space on the basis of the double pendulum. The configuration
of the first link is given by the displacement angle 𝑞1 so that the circle𝑆1 can be
associated with the space of all possible configurations. The configuration of
the second link is described by the displacement angle 𝑞2. Since both links can
move independently from each other the space of all possible configurations is
given by the Cartesian product of two circles 𝑆1×𝑆1, which is homeomorphic
to the torus. This image allows us to rethink our picture of a double pendulum
in motion. Instead of imagining two links, subject to kinematic constraints,
rotating in physical space, we can associate its the time evolution with the
motion of a point on a torus. Every point (𝑞1, 𝑞2) on the torus represents a
configuration of the double pendulum so that any trajectory of the double
pendulum correlates to a C-curve on the torus. The torus emerges as the
natural geometric structure of a double pendulum representing the space
of all admissible configurations that satisfy the kinematic constraints. This
structural insight provides a first glimpse into why geometry is an intrinsic part
of mechanics and why it might be wise to respect it. In terms of differential
geometry, we would think of the configuration space as a manifold5. The 5: Loosely speaking, we can thing of a man-

ifold as the space where all the configura-
tion variables live.motivation for the geometric treatment of mechanics is well summarized in

the following quote by [105]
[105]: Lessig (2012), “A Primer on geomet-
ric mechanics”

.

“Next to the intuitive appeal, a second characteristic of geometric
mechanics is its emphasis on mathematical and physical structure.
While Newtonian mechanics is highly descriptive, making it easy
to learn and to carry out computations, it does not reveal structure.
In geometric mechanics, in contrast, computations are structural
arguments which provide insight into the fabric they represent,
and this structural insight explains much of the vigor of geometric
mechanics.”

For an introduction into the geometry of physics, the interested reader is
referred to [45]

[45]: Frankel (2003), The Geometry of
Physics: An Introduction

. A detailed mathematical exposition of this matter is presented
in [1]

[1]: Abraham et al. (2008), Foundations of
Mechanics

.
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2.3 Coordinate Transformations

We are free to choose a set of 𝑛 generalized coordinates
𝑞1, 𝑞2,… , 𝑞𝑛 (2.15)

as long as they uniquely characterize the system. This arbitrariness of coordi-
nates implies that we are free to change from one set of generalized coordinates
to another set of 𝑛 quantities

𝑞1, 𝑞2,… , 𝑞𝑛 (2.16)
as generalized coordinates. However, there must exist a functional relation
between these two sets of coordinates of the form:

𝑞1 =𝑓1(𝑞1, 𝑞2,… , 𝑞𝑛, 𝑡),
⋮

𝑞𝑛 =𝑓𝑛(𝑞1, 𝑞2,… , 𝑞𝑛, 𝑡).
(2.17)

The functions 𝑓1, 𝑓2,… , 𝑓𝑛 must be single valued, finite, continuous and
differentiable functions of the coordinates 𝑞𝑘 with an invertible Jacobian.
Strictly speaking, we are interested in functions 𝒇 ∶ 𝑈 → 𝑉 , where 𝑈 and 𝑉
are open subsets of ℝ𝑛 that satisfy

• Function 𝒇 is bijective6. This implies that its inverse 𝒇−1 ∶ 𝑉 → 𝑈6: I.e., onto and one-to-one.
exists.

• Both 𝒇 and 𝒇−1 are of class 1.
A function 𝒇 that satisfies these conditions can be thought of defining a
change of coordinates. We will rely on the inverse function theorem to identify
these functions. Let us consider a transformation in two dimensional space,
which allows us to connect an intuitive geometrical picture with this concept.
Assume that the quantities 𝑞1, 𝑞2 are plotted as rectangular coordinates of a two-
dimensional space and we do so equally for the quantities 𝑞1, 𝑞2. This allows
us to draw the following pair of pictures: (1) a collection of lines/curves in the
(𝑞1, 𝑞2) plane, (2) the image of these lines/curves under the transformation 𝒇 .
For example, let us consider the mapping

𝑓1(𝑞1, 𝑞2) =𝑞22 − 𝑞
2
1 , (2.18)

𝑓2(𝑞1, 𝑞2) =𝑞1𝑞2. (2.19)
Figure 2.6 (left) shows the preimage (a Cartesian grid) and Figure 2.6 (right)
shows the image of this grid under 𝒇 .

𝒇

𝒇−1

𝑃

𝑃

Figure 2.6: A grid in the (𝑞1, 𝑞2) plane is
transformed under 𝒇 into the (𝑞1, 𝑞2) plane. Differentiation of (2.17) yields

𝑑𝑞1 =
𝜕𝑓1
𝜕𝑞1

𝑑𝑞1 +…+
𝜕𝑓1
𝜕𝑞𝑛

𝑑𝑞𝑛 +
𝜕𝑓1
𝜕𝑡
𝑑𝑡,

⋮

𝑑𝑞𝑛 =
𝜕𝑓𝑛
𝜕𝑞1

𝑑𝑞1 +…+
𝜕𝑓𝑛
𝜕𝑞𝑛

𝑑𝑞𝑛 +
𝜕𝑓𝑛
𝜕𝑡
𝑑𝑡.

(2.20)

The equations (2.20) are always linear in the velocities. This fact will prove
extremely helpful in Chapter 4 since it greatly simplifies expressing the new
velocities 𝑞𝑖 in terms of the old velocities 𝑞𝑖.
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When thinking of a coordinate transformations in a 𝑛 dimensional space it
can be easier to think in terms of how individual points in space are mapped.
To a single point 𝑃 of the 𝑞-space corresponds a single point 𝑃 of the 𝑞-space.
This mapping has several important characteristics besides the requirement of
defining a one-to-one correspondence.

• The neighborhood of 𝑃 is mapped on the neighborhood of 𝑃 .
• In general, straight lines in the 𝑞-space are no longer straight lines in

the 𝑞-space.
• In an infinitesimal region around 𝑃 straight lines are mapped on straight

lines. Parallel lines remain parallel lines, although lengths and angles
are not preserved.

• A parallelepiped in the infinitesimal neighborhood of 𝑃 is mapped on
an parallelepiped in the neighborhood of 𝑃 . The determinant of the
Jacobian of 𝒇 encodes the ratio of the volume of the new parallelepiped
to the volume of the original one.

2.4 Variational Principles of Mechanics

In this work, the Euler-Lagrange equations play a fundamental role for de-
scribing the dynamics of a system. To motivate this variational principle based
approach of mechanics, we start with the principle of virtual work, and then
derive the Euler-Lagrange equations from the D’Alembert’s Principle. The
section concludes with a brief out view on generalizations of the Lagrangian
formalism.

2.4.1 Principle of Virtual Work

A fundamental variational principles in mechanics is the principle of virtual
work. A mechanical system is in equilibrium if, and only if, the total virtual
work of the impressed forces is zero for any virtual displacement, that is,
for any infinitesimal variation of the configuration which is in compliance
with the given kinematic constraints. Lagrange presented the virtual work
principle in a more efficient form in 1768. With his introduction of generalized
coordinates, we can dispense the forces of constraints by limiting the virtual
displacements to those that are in harmony with the given constraints. In
cases where the impressed force is of monogenic nature, i.e. derivable from a
single scalar function—the potential energy—the virtual work is equal to the
variation of the potential energy. It is well known that a mechanical system
with holonomic and scleronomic constrains, and potential energy  is in a
state of equilibrium if the value of the potential energy is stationary with
respect to all kinematically permissible variations

𝛿 = 0. (2.21)

2.4.2 D’Alembert’s Principle

Building on previous work by Bernoulli, in 1743, d’Alembert published his
Traité de Dynamique where he extended the principle of virtual work to solve
various problems in dynamics [26]. By augmenting the impressed forces with
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the new “force of inertia" he was able to extent the applicability of the principle
of virtual work from statics to dynamics. d’Alembert’s principle states that
“the total virtual work, 𝛿𝑤, of the effective force, i.e. the sum of impressed
and inertial forces, is zero for all reversible variations which satisfy the given
kinematic constraints" [103, p. 90]. Suppose, we have a system of 𝑁 particles.
Let 𝒓𝑖 be the radius vector, 𝛿𝒓𝑖 the corresponding virtual displacement, 𝑭 𝑎𝑖the total impressed force7, and 𝒑𝑖 the linear momentum associated with the7: The expression impressed and applied

force will be used synonymously through-
out this work. 𝑖th particle. Further, let us assume that the net virtual work of the forces of

constraint vanishes. Then d’Alembert’s principle states
𝛿𝑤 ≡

∑

𝑖

(

𝑭 𝑎𝑖 − 𝒑̇𝑖
)

⋅ 𝛿𝒓𝑖 = 0. (2.22)

Hence, by introducing the fictitious force of inertia −𝒑̇𝑖 on particle 𝑖 for
each particle 𝑖, (2.22) expresses a balance of forces and we reformulated a
problem of dynamics as problem of statics. We can translate this principle
into an elegant expression involving virtual displacements of generalized
coordinates. Moving from a system of particles to a system of 𝑛 rigid bodies
with 𝑛 independent generalized coordinates (𝑞1,… , 𝑞𝑛), this translation starts
with the transforming equations

𝒓𝑖 = 𝒓𝑖(𝑞1, 𝑞2,… , 𝑞𝑛, 𝑡). (2.23)
The radial coordinates of the particles are no longer all independent, since
they are connected through forces of constraint. These forces keep the parti-
cles together. In our case, these constraint forces impose 3𝑁 − 𝑛 holonomic
constraints on the system of particles, which reduce the number of degrees
of freedom from 3𝑁 to 𝑛. Through the introduction of generalized coordi-
nates, it is easy rotate and translate rigid bodies merely in such ways that the
inner constrained forces, which define the rigid body, do not come into action.
Because of this reason, in the variational treatment of mechanics the forces
of constraint can be neglected, and only the work of the impressed forces
needs to be considered. Any virtual displacement 𝛿𝑞𝑖 applied to the system
is by definition, in harmony with the kinematic constraints, which allows the
action of the constraint to be neglected. This idea is captured in the following
postulate which is of central importance in analytical mechanics.88: For the special case of rigid bodies, this

condition can be derived from Newton’s
third law. The net virtual work of the forces of constraint is zero for any virtual

displacement which is in harmony with the given kinematic constraints.

In order to continue the translation from 𝒓𝑖 to 𝑞𝑖, we make the following
observations. The velocities of the particles can by expressed by

𝒗𝑖 =
d
d𝑡
𝒓𝑖 =

∑

𝑘

𝜕𝒓𝑖
𝜕𝑞𝑘

𝑞̇𝑘 +
𝜕𝒓𝑖
𝜕𝑡
. (2.24)

Further, the virtual displacement 𝛿𝒓𝑖 and 𝛿𝑞𝑖 are related by

𝛿𝒓𝑖 =
∑

𝑗

𝜕𝒓𝑖
𝜕𝑞𝑗

𝛿𝑞𝑗 . (2.25)
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Thus, in terms of the generalized coordinates, the virtual work of the 𝑭 𝑎𝑖becomes
∑

𝑖
𝑭 𝑎𝑖 ⋅ 𝛿𝒓𝑖 =

∑

𝑖,𝑗
𝑭 𝑎𝑖 ⋅

𝜕𝒓𝑖
𝜕𝑞𝑗

𝛿𝑞𝑗 =
∑

𝑗
𝑗𝛿𝑞𝑗 , (2.26)

where the

𝑗 ≜
∑

𝑖
𝑭 𝑎𝑖 ⋅

𝜕𝒓𝑖
𝜕𝑞𝑗

(2.27)

are called the components of the generalized force. The other term involved
in (2.22) can be written as

∑

𝑖
𝒑̇𝑖 ⋅ 𝛿𝒓𝑖 =

∑

𝑖
𝑚𝑖𝒓̈𝑖 ⋅ 𝛿𝒓𝑖 =

∑

𝑖,𝑗
𝑚𝑖𝒓̈𝑖 ⋅

𝜕𝒓𝑖
𝜕𝑞𝑗

𝛿𝑞𝑗 . (2.28)

Using the product rule, we observe that
∑

𝑖
𝑚𝑖𝒓̈𝑖 ⋅

𝜕𝒓𝑖
𝜕𝑞𝑗

=
∑

𝑖

[

d
d𝑡

(

𝑚𝑖𝒓̇𝑖 ⋅
𝜕𝒓𝑖
𝜕𝑞𝑗

)

− 𝑚𝑖𝒓̇𝑖 ⋅
d
d𝑡

(

𝜕𝒓𝑖
𝜕𝑞𝑗

)]

. (2.29)

In the last term of (2.29), we can interchange the order of differentiation
d
d𝑡

(

𝜕𝒓𝑖
𝜕𝑞𝑗

)

=
∑

𝑘

𝜕2𝒓𝑖
𝜕𝑞𝑘𝜕𝑞𝑗

𝑞̇𝑘 +
𝜕2𝒓𝑖
𝜕𝑡𝜕𝑞𝑗

=
𝜕𝒗𝑖
𝜕𝑞𝑗

, (2.30)

where the last equality follows from (2.24). Further, observe from (2.24) that
𝜕𝒗𝑖
𝜕𝑞̇𝑗

=
𝜕𝒓𝑖
𝜕𝑞𝑗

. (2.31)

Substituting (2.30) and (2.31) in (2.29) yields
∑

𝑖
𝑚𝑖𝒓̈𝑖 ⋅

𝜕𝒗𝑖
𝜕𝑞̇𝑗

=
∑

𝑖

[

d
d𝑡

(

𝑚𝑖𝒗𝑖 ⋅
𝜕𝒗𝑖
𝜕𝑞̇𝑗

)

− 𝑚𝑖𝒗𝑖 ⋅
(

𝜕𝒗𝑖
𝜕𝑞𝑗

)]

. (2.32)

Introducing the kinetic energy  ≜ 1
2
∑

𝑖 𝑚𝑖𝒗𝑖 ⋅ 𝒗𝑖 the sum above can be
rewritten as

∑

𝑖,𝑗
𝑚𝑖𝒓̈𝑖 ⋅

𝜕𝒗𝑖
𝜕𝑞̇𝑗

=
∑

𝑖

[ d
d𝑡

(

𝜕
𝜕𝑞̇𝑗

)

− 𝜕
𝜕𝑞𝑗

]

. (2.33)

Substituting (2.26), (2.27) and (2.33) in (2.22), then d’Alembert’s principle
becomes

∑

𝑗

{

d
d𝑡

(

𝜕
𝜕𝑞̇𝑗

)

− 𝜕
𝜕𝑞𝑗

−𝑗
}

𝛿𝑞𝑗 = 0. (2.34)

Sine we assumed that the coordinates 𝑞𝑗 are independent, any virtual displace-
ment 𝛿𝑞𝑗 is then independent of 𝛿𝑞𝑘, and we can conclude that (2.34) can only
hold if each of the coefficients of vanishes:

d
d𝑡

(

𝜕
𝜕𝑞̇𝑗

)

− 𝜕
𝜕𝑞𝑗

= 𝑗 , 𝑗 = 1,… , 𝑛. (2.35)
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Suppose, we can split the applied forces into forces that are derivable from a
potential function  and externally applied forces 𝑭 ′

𝑖 such that

𝑭 (𝑎)
𝑖 = −𝜕

𝜕𝑞𝑖
+ 𝑭 ′

𝑖. (2.36)

Using (2.26) it follows that

𝑗 =
∑

𝑖

[

− 𝜕
𝜕𝑞𝑖

𝜕𝒓𝑖
𝜕𝑞𝑗

+ 𝑭 ′
𝑖
𝜕𝒓𝑖
𝜕𝑞𝑗

]

, (2.37)

where the first term on the RHS can be identified as the partial derivative of a
potential function (𝒓1,… , 𝒓𝑁 , 𝑡) with respect to 𝑞𝑗 . Introducing

𝑗 ≜ − 𝜕
𝜕𝑞𝑗

+′
𝑗 , (2.38)

with ′
𝑗 ≜ 𝑭

′
𝑖
𝜕𝒓𝑖
𝜕𝑞𝑗

, we can rewrite (2.35) asNote that the equations of motions (2.39)
are not restricted to conservative systems.

d
d𝑡

(

𝜕
𝜕𝑞̇𝑗

)

− 𝜕
𝜕𝑞𝑗

= − 𝜕
𝜕𝑞𝑗

+′
𝑗 . (2.39)

or defining a new function, the Lagrangian
 ≜  −  , (2.40)

as
d
d𝑡

(

𝜕
𝜕𝑞̇𝑗

)

− 𝜕
𝜕𝑞𝑗

= ′
𝑗 , 𝑗 = 1,… , 𝑛, (2.41)

and we have obtained the “Lagrange’s equations”.9 Since these equations9: A detailed derivation can be found in
[52, p. 17 ff]. can be obtained equivalently from a variational principle (as pointed out in

Section 10), they are also referred to as “Euler-Lagrange’s equation”.
Whenever the generalized forces are derivable from a (generalized) poten-

tial function (𝒒, 𝒒̇) according to

𝑗 =
d
d𝑡
𝜕
𝜕𝑞̇𝑗

− 𝜕
𝜕𝑞𝑗

, (2.42)

we can write Lagrange’s equations in the form
d
d𝑡
𝜕
𝜕𝑞̇𝑗

− 𝜕
𝜕𝑞𝑗

= d
d𝑡
𝜕
𝜕𝑞̇𝑗

− 𝜕
𝜕𝑞𝑗

. (2.43)

The 𝑛 quantities on the LHS can be interpreted as the 𝑛 components of the force
of inertia, the 𝑛 quantities on the RHS can be identified as the components
of the moving force or potential force. Thus, we can think of (2.43) as the
balance between two forces.

Generators of Motion

Above, we have defined the Lagrangian as  =  −  . However, for a given
set of equations of motions, there is no unique choice of Lagrangian such that
the Lagrangian equations (2.41) produce the equations of motion. It is easy to
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make up alternative Lagrangians. Suppose that (𝒒, 𝒒̇, 𝑡) is a Lagrangian that
leads to the equations of motion and 𝐹 (𝒒, 𝑡) is any differentiable function of
the generalized coordinates and time, then the Lagrangian

̃(𝒒, 𝒒̇, 𝑡) = (𝒒, 𝒒̇, 𝑡) + 𝑑𝐹
𝑑𝑡

(2.44)

leads to the same equations of motion. In conclusion, constructing a La-
grangian as in (2.40) always provides a “valid” Lagrangian, but it does not
produce the only valid Lagrangian. There are systems which can can be treated
by the Lagrangian method, but for which the Lagrangian is not just the excess
of kinetic over potential energy. A charged particle in an electric field, electro-
mechanical systems or non-conservative mechanical systems are just a few
systems that are often treated with a Lagrangian that does not equal  −  .
The interested reader can consult, e.g, [52, 61, 63]. Naturally, the question
arises: what is the definition of the Lagrangian? Throughout this work, we
shall use the definition from [181, p. 272] below.

Definition 2.4.1 (The Lagrangian) For a given system with generalized
coordinates 𝒒 = (𝑞1,… , 𝑞𝑛), a Lagrangian  is a function
(𝑞1,… , 𝑞𝑛, 𝑞̇1,… , 𝑞̇𝑛, 𝑡) of the coordinates and velocities, such that the
correct equations of motion for the system are the Lagrangian equations
(2.41).

In other words, given some system, then a Lagrangian is any function  that
generates the corresponding Lagrange’s equations of motion. Calculating the
Hamiltonian, using the usual definition of  as the Legendre transformation
of , then it corresponds to the total energy of the system

 =
∑

𝑖
𝑞̇𝑖
𝜕
𝜕𝑞̇𝑖

−  =  +  (2.45)

if the Lagrangian is defined as in (2.40). In Chapter 5, we face a scenario
where the Lagrangian equates to the excess of some virtual kinetic over some
virtual potential energy, but nevertheless produces the equations of motions.
The corresponding Hamiltonian, however, does not equate to the total energy
of the system. In cases where the Lagrangian is not of the form (2.40), or the
Hamiltonian is not equal to the total energy, these scalar quantities are often
referred to as mathematical Lagrangians (Hamiltonians) or merely generators
of the motion in physics [37]. This notion is adopted throughout this work.

2.4.3 Hamilton’s Principle

In the previous subsection, we derived Lagrange’s equations starting from
d’Alembert’s principle which makes independent statements at each instant of
time during the motion of a system. This principle operates on the instanta-
neous state of a system and infinitesimal virtual displacements; it requires the
vanishing of the virtual work at any time. It it possible to derive Lagrange’s
equations from a principle of very different nature that considers the entire
motion of a system between a given initial point 𝑃1 at a time 𝑡1 and a given
end-point 𝑃2 at a time 𝑡2. We can think of this principle working as follows.
Unknowing which path is taken by the system, let us start by connecting the
two points 𝑃1 and 𝑃2 by any tentative path. All that we require is that our
tentative motion starts at time 𝑡1 and ends at time 𝑡2. Next, we compute the
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kinetic energy at every moment on the path and subtract the potential energy,
and integrate it over the time during the entire path. This time integral is called
action and has a definite value for our tentative path and any other tentative
path that connects 𝑃1 and 𝑃2. For any such conceivable motion it is assumed
that the path is transversed in an equal amount of time. We can imagine trying
out all possible path and with each path, we associate a certain number, the ac-
tion. For some paths it will come out bigger and for some smaller. Hamilton’s
principle tells us, out of all the possible paths by with the C-point could travel
from point 𝑃1 to 𝑃2, it will actually travel along that path for which the value
of action assumes its smallest10 value. For monogenic systems, Hamilton’s10: More precisely, Hamilton’s principle

tells us that the action has a stationary value
for the actual path of motion. principle can be stated as [52, p.34]:

The motion of the system from time 𝑡1 to time 𝑡2 is such that the line
integral (called the action),

𝐼 = ∫

𝑡2

𝑡1
 𝑑𝑡, (2.46)

where  =  −  , has a stationary value for the actual path of the motion.

𝑡

𝑞2

𝑞1

𝑃1

𝑃2

true path

paths not
taken

Figure 2.7: As the system evolves, its C-
point traces a path through the configuration
space. Of all possible paths between two
points, the actual path taken has a stationary
action.

We can imagine that all possible paths have been tried and for each tentative
path the action has a definite value, c.f. Fig. 2.7. Hamilton’s principle asserts
that for the actual path chosen by nature, the value of this integral is stationary.
The meaning attached to “stationary value” of a line integral is that the integral
along a given path has the same value within first-order infinitesimals as that
along all neighboring paths (i.e., those that differ from it by infinitesimal
displacements). In summary, Hamilton’s states that the motion of a mechanical
system is such that the integral 𝐼 becomes stationary for prescribed initial and
final configurations

𝛿𝐼 = 𝛿 ∫

𝑡2

𝑡1
(𝒒, 𝒒̇, 𝑡) 𝑑𝑡 = 0. (2.47)

It can be shown that Hamilton’s principle and d’Alembert’s principle are math-
ematical equivalent for any system that is subject to holonomic constraints and
monogenic impressed forces [103, p.114]. D’Alembert’s principle, however, is
more general since it can equally well be applied to non-holonomic systems.

Calculus of Variations

Hamilton’s principle is a necessary and sufficient condition for Lagrange’s
equations (2.41). The techniques of the calculus of variation allows us to
demonstrate that Lagrange’s equations indeed follow from Hamilton’s princi-
ple. We are interested in the following variational problem. Let 𝑓 (𝑥, 𝑦1,… , 𝑦𝑛, 𝑦′1,… , 𝑦′𝑛)be a function with continuous first and second (partial) derivatives with respect
to all its arguments, which depends on 𝑛 continuously differentiable functions
𝑦1(𝑥),… , 𝑦2(𝑥) that satisfy the boundary conditions

𝑦𝑖(𝑥1) = 𝑎𝑖, 𝑦𝑖(𝑥2) = 𝑏𝑖, 𝑖 = 1,… , 𝑛. (2.48)
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Then, what are the necessary conditions for an extremum of a functional of
form

𝐽 [𝑦1,… , 𝑦2] = ∫

𝑥2

𝑥1
𝑓 (𝑥, 𝑦1,… , 𝑦𝑛, 𝑦

′
1,… , 𝑦′𝑛) 𝑑𝑥. (2.49)

From the geometric point of view, we are searching for an extremum of the
functional (2.49) that is defined on the set of smooth curves joining two
fixed points in a (𝑛 + 1)-dimensional Euclidean space. The solution to this
optimization problem is summarized in the following theorem.

Theorem 2.4.1 (Euler-Lagrange equations [49]) A necessary condition for
the curve

𝑦𝑖 = 𝑦𝑖(𝑥), 𝑖 = 1,… , 𝑛

to be an extremal of the functional (2.49) is that the functions 𝑦𝑖(𝑥) satisfy
the -Lagrange equations

𝜕𝑓
𝜕𝑦𝑖

− 𝑑
𝑑𝑥

𝜕𝑓
𝜕𝑦′𝑖

= 0, 𝑖 = 1,… , 𝑛

Applying the EL equations to the integral in Hamilton’s principle with the
transformations

𝑥→ 𝑡
𝑦𝑖 → 𝑞𝑖

𝑓 (𝑦𝑖, 𝑦̇𝑖, 𝑡) → (𝑞𝑖, 𝑞̇𝑖, 𝑡).

we obtain the Lagrange equations of motion
d
d𝑡
𝜕
𝜕𝑞̇𝑖

− 𝜕
𝜕𝑞𝑖

= 0, 𝑖 = 1,… , 𝑛

for non-monogenic systems with holonomic constraints. Further generaliza-
tions of the variational problem (2.49) are possible. The functional 𝑓 a can be
dependent on higher order derivatives 𝑦′, 𝑦(2),… , 𝑦(𝑛), see [61]

∫

𝑥2

𝑥1
𝑓
(

𝑥, 𝑦1,… , 𝑦𝑛, 𝑦
′
1,… , 𝑦(𝑛)1 ,… , 𝑦(𝑛)𝑛

)

𝑑𝑥,

or even on multiple parameters 𝑥𝑗 , see [49] for details.

2.5 The Lagrange’s Equations

In his monumental treatise on analytical mechanics (Mécanique Analytique,
[101]), Lagrange reduced the theory and art of solving mechanics problems [101]: Lagrange (1853), Mécanique Analy-

tiqueinto general formula [101]. By introducing a scalar quantity expressing the
excess of kinetic over potential energy, we can obtain the EL equations (2.41)
by applying the principle of stationary action. This section reports fundamental
properties of these equations that are crucial for the developments in this work.
We will focus our attention on systems for which the following properties
and assumptions hold. Consider a 𝑛 degrees of freedom system with the
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generalized coordinates 𝒒 ∈ ℝ𝑛 and applied external forces  ∈ ℝ𝑛 that is
described by the Lagrange’s equations

d
d𝑡
𝜕
𝜕𝑞̇𝑖

− 𝜕
𝜕𝑞𝑖

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
inertial

= d
d𝑡
𝜕
𝜕𝑞̇𝑖

− 𝜕
𝜕𝑞𝑖

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
monogenic

+ 𝑖
⏟⏟⏟

non-monogenic

, (2.50)

where the kinetic energy is assumed to be of quadratic form.

Assumption 2.5.1 The kinetic energy is assumed to be a quadratic form

 (𝒒, 𝒒̇) = 1
2
∑

𝑖,𝑗
𝑚𝑖𝑗(𝒒)𝑞̇𝑖𝑞̇𝑗 =

1
2
𝒒̇T(𝒒)𝒒̇, (2.51)

where the (generalized) inertia matrix  is symmetric and positive definite
for any 𝒒 ∈ ℝ𝑛.

We will face two kind of generalized forces throughout this work: monogenic
forces that are arise from a potential function  and the non-monogenic forces.
The latter can be further classified into three types: (1) the control actions 𝒖,
(2) forces that are due to the system’s interaction with the environment ′ and
(3) dissipative forces 𝑑 .11 In summary, we have that11: Note that the control force can be cho-

sen such that it is derivable from a potential,
however, in general this will not be the case
in this work. The same is true for the dissi-
pative forces, which may, e.g., be obtained
from a Rayleigh potential function.

 ≜ 𝒖 +′ +𝑑 . (2.52)

2.5.1 The Force of Inertia

For any system satisfying Assumption 2.5.1, the components of the force of
inertia

⋆𝑖 ≜ −
{

d
d𝑡
𝜕
𝜕𝑞̇𝑖

− 𝜕
𝜕𝑞𝑖

}

, (2.53)

can be derived as follows. Knowing that
d
d𝑡
𝜕
𝜕𝑞̇𝑖

=
∑

𝑗

[

𝑚𝑖𝑗𝑞𝑗 +
d
d𝑡
𝑚𝑖𝑗 𝑞̇𝑗

]

=
∑

𝑗
𝑚𝑖𝑗𝑞𝑗 +

∑

𝑘,𝑗

𝜕𝑚𝑖𝑗
𝜕𝑞𝑖

𝑞̇𝑘𝑞̇𝑗
(2.54)

and
𝜕
𝜕𝑞𝑖

= 1
2
∑

𝑘,𝑗

𝜕𝑚𝑘𝑗
𝜕𝑞𝑖

𝑞̇𝑘𝑞̇𝑗 , (2.55)

we can apply these changes to (2.53):

⋆𝑖 = −

{

∑

𝑗
𝑚𝑖𝑗𝑞𝑗 +

∑

𝑘,𝑗

[𝜕𝑚𝑖𝑗
𝜕𝑞𝑘

𝑞̇𝑘𝑞̇𝑗 −
1
2
𝜕𝑚𝑘𝑗
𝜕𝑞𝑖

𝑞̇𝑘𝑞̇𝑗

]

}

(2.56)

By exchanging indices and interchanging the order of summation it follows
that1212: Note that

∑

𝑘,𝑗
𝜕𝑚𝑖𝑗
𝜕𝑞𝑘

=
∑

𝑗,𝑘
𝜕𝑚𝑖𝑘
𝜕𝑞𝑗

=
∑

𝑘,𝑗
𝜕𝑚𝑖𝑘
𝜕𝑞𝑗

.
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∑

𝑘,𝑗

𝜕𝑚𝑖𝑗
𝜕𝑞𝑘

𝑞̇𝑘𝑞̇𝑗 =
1
2
∑

𝑘,𝑗

[𝜕𝑚𝑖𝑗
𝜕𝑞𝑘

+
𝜕𝑚𝑖𝑘
𝜕𝑞𝑗

]

𝑞̇𝑘𝑞̇𝑗 . (2.57)

Making the substitution (2.56) and (2.57), we get

⋆𝑖 = −
{

∑

𝑗
𝑚𝑖𝑗(𝒒)𝑞𝑗 +

∑

𝑘,𝑗
𝑐𝑘𝑗𝑖(𝒒)𝑞̇𝑘𝑞̇𝑗

}

, (2.58)

where

𝑐𝑘𝑖𝑗 =
1
2

[𝜕𝑚𝑖𝑗
𝜕𝑞𝑘

+
𝜕𝑚𝑖𝑘
𝜕𝑞𝑗

−
𝜕𝑚𝑘𝑗
𝜕𝑞𝑖

]

(2.59)

are the so called Christoffel symbols of the first kind. Note that for a fixed 𝑖,
we have that 𝑐𝑘𝑗𝑖 = 𝑐𝑖𝑗𝑘 [171, p. 207]. In equation (2.58), we can identify two
type of terms. The first involves the second time derivative of the generalized
coordinates. The second are quadratic in the generalized velocities with the
coefficient potentially depending on 𝒒. The latter are further classified into
two types. Terms involving 𝑞2𝑖 , i.e. 𝑘 = 𝑗, constitute the centrifugal forces,
whiles those involving 𝑞𝑖𝑞𝑗 , 𝑘 ≠ 𝑗, constitute the Coriolis forces. It is common
to introduce the matrix (𝒒, 𝒒̇) whose components are defined as

𝑐𝑖𝑗 =
∑

𝑘
𝑐𝑘𝑖𝑗(𝒒)𝑞̇𝑘, (2.60)

which is called the Coriolis/centrifugal matrix in robotics literature. Using
this factorization of the Coriolis/centripetal matrix, allows us to rewrite the
force of inertia in matrix form:

⋆ = −
[

(𝒒)𝒒̈ + (𝒒, 𝒒̇)𝒒̇
]

. (2.61)
For any system whose kinetic energy can be written in terms of the quadratic
form (2.51), we can apply this factorization. The inertia matrix and the Cori-
olis/centrifugal matrix satisfy the so-called skew-symmetry property, which
shall be of central importance for the control developments in later chap-
ters.

Lemma 2.5.1 The matrix  in (2.61) satisfies

𝒒̇T(̇ − 2
)

𝒒̇ = 0, ∀𝒒̇ ∈ ℝ𝑛. (2.62)
Let the 𝑖𝑗th entries of matrix (𝒒, 𝒒̇), (2.60), be defined via the Christoffel
symbols of the first kind as in (2.59), then the matrix

̇ − 2(𝒒, 𝒒̇), ∀𝒒, 𝒒̇ ∈ ℝ𝑛. (2.63)
is skew-symmetric. Notice that the skew-symmetry property (2.63) is equiv-
alent to

̇(𝒒) = (𝒒, 𝒒̇) + T(𝒒, 𝒒̇). (2.64)

A proof is presented in [131].

Remark 2.5.1 Note that (2.62) is always true no matter how (𝒒, 𝒒̇) is
factorized. This property follows directly from the law of conservation of
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energy. However, (2.63) only holds for the factorization applied above, see
[131] for details.

2.5.2 Non-Conservative Systems

Unfortunately it is difficult to account for input or dissipative forces in the
Lagrange-Hamiltonian variational formulation. In the presence of friction
forces or time-dependent input forces, the virtual work of the forces of con-
straint no longer vanishes. This, however, is a central postulate regarding the
treatment of dynamics via d’Alembert’s principle. Since the Hamiltonian prin-
ciple is just an alternative mathematical formulation of d’Alembert’s principle,
troubles are evident.

For some of the systems in this work, the Lagrange formalism can be
extended to include explicitly time-dependent potential functions and have
no relation to the physical energy. Let us consider the following types of non-
monogenic forces: the control force 𝒖 and disturbance force ′ (independent of
generalized coordinates and velocities), and Rayleigh dissipation. The former
two can be incorporated in a non-conservative potential function

𝑛𝑐(𝒒, 𝑡) = −
(

𝒖 +′)T 𝒒, (2.65)
and the latter can be incorporated in a non-conservative kinetic energy, which
is the Rayleigh dissipation function

𝑛𝑐(𝒒̇) = ∫

𝑡

0
 (𝒒̇)𝑑𝑡. (2.66)

Then, replacing in (2.41) by the non-conservative Lagrangian [133, p. 489]
𝑛𝑐 = (𝒒, 𝒒̇) + 𝑛𝑐(𝒒̇) − 𝑛𝑐(𝒒, 𝑡), (2.67)

produces the desired Lagrange’s equations of motion
d
d𝑡
𝜕
𝜕𝑞̇𝑖

− 𝜕
𝜕𝑞𝑖

= 𝑢𝑖 +′
𝑖 −

𝜕 (𝒒̇)
𝜕𝑞̇𝑖

, 𝑖 = 1,… , 𝑛. (2.68)

2.5.3 Equilibrium and Stability Conditions

For a system subject to non-monogenic forces, the condition of equilibrium
requires that the potential energy is stationary with respect to all kinematically
permissible variations, i.e.,

𝛿 = 𝜕
𝜕𝒒
𝛿𝒒 = 0. (2.69)

Since the 𝒒’s are independent coordinates it must be that
𝜕
𝜕𝑞𝑖

= 0, 𝑖 = 1,… , 𝑛. (2.70)

There is a crucial connection between the notion of equilibrium and the
concept of stability. Joseph Lagrange stated already in 1788 that a conservative
mechanical system is stable if the potential energy  assumes a minimum
in this position. This result was later proven by Dirichlet [117, p. 76] and is[117]: Merkin (1997), Introduction to the

Theory of Stability
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now known as the Lagrange-Dirichlet theorem. The following proposition
summarizes conditions for the global asymptotic stability (GAS) of fully
damped13 EL systems. 13: The damping due to dissipative forces

and represented by the symmetric coeffi-
cient matrix 𝑣 is said to be full or perva-
sive if the quadratic form −𝒒̇T𝑣𝒒̇ is neg-
ative definite and does not vanish for any
non-trivial solution 𝒒(𝑡), 𝑡 > 0 of the EL
equations (2.41) [157].

Proposition 2.5.2 (GAS with full damping [133, p. 28]) Let the equilibrium
of a fully damped unforced EL system, i.e., with ′ = 0, be (𝒒, 𝒒̇) = (𝒒∗, 𝟎),
where 𝒒∗ is the solution of

𝜕(𝒒)
𝜕𝒒

= 𝟎.

The equilibrium is stable if 𝒒∗ is a strict local minimum of the potential
energy function (𝒒), which is such that

• 𝜕
𝜕𝒒 (𝒒) = 𝟎 ⇐⇒ 𝒒 = 𝟎,

• 𝜕2
𝜕𝒒2 (𝒒

∗) > 𝜖, 𝑰 > 0, for all 𝒒 ∈ ℝ𝑛.

Furthermore, if (𝒒) assumes a unique strict and global minimum at 𝒒∗,
then this equilibrium is GAS.

The proof can be established by invoking, e.g., La-Salle’s or Krasovskii’s
Theorem (see Theorems C.1.3 and C.1.1 in Appendix C). An alternative proof
that underscores the role of passivity and detectability is provided in [133,
p. 28].

Remark 2.5.2 By dropping the condition of  being radially unbounded,
we can conclude only local asymptotic stability. In that case, the proof
of Proposition 2.5.2 can be established invoking Barbashin’s Theorem
(see Theorem C.1.2 in Appendix C). Such an equilibrium condition can
be interesting when it comes to ASRs featuring elastic elements with a
flattening force-deflection profile, or when it comes to designing impedance
controllers with saturation functions; see, e.g., [44] [44]: Folkertsma et al. (2017), Energy in

Robotics
.

Given a block diagonal structure of the inertia matrix, the GAS of an unique
equilibrium point can be ensured even when the system is partially damped.
The conditions are summarized below.

Proposition 2.5.3 (GAS with partial damping [133, p. 29]) Consider an
unforced underdamped EL system (2.50) with a coordinate partition into
undamped and damped coordinates: The motivation for subindices (.)𝑝 and (.)𝑐 ,

which suggest plant and controller, becomes
clear in Section 6.3.

𝒒𝑝 ≜
[

𝑰𝑛𝑝 𝟎
]

𝒒, 𝒒𝑐 ≜
[

𝟎 𝑰𝑛𝑐
]

𝒒, 𝑛 = 𝑛𝑝 + 𝑛𝑐 . (2.71)

The equilibrium (𝒒, 𝒒̇) = (𝒒𝑑 , 𝟎) is GAS if the potential energy function is
proper and has a global and unique minimum at 𝒒 = 𝒒𝑑 , and if

(i) (𝒒) ≜ diag
(

𝑴𝑝(𝒒𝑝),𝑴 𝑐(𝒒𝑐)
)

, where
𝑴𝑝(𝒒𝑝) ∈ ℝ𝑛𝑝×𝑛𝑝 and 𝑴 𝑐(𝒒𝑐) ∈ ℝ𝑛𝑐×𝑛𝑐 ;

(ii) 𝒒̇T 𝜕 (𝒒̇)
𝜕𝒒̇ ≥ 𝛼||𝒒̇𝑐||2 for some 𝛼 > 0;

(iii) For each 𝒒𝑐 , the function 𝜕(𝒒)
𝜕𝒒𝑐

= 𝟎 has only isolated zeros in 𝒒𝑝.
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2.5.4 Passivity and Interconnection Properties

The notion of passivity plays a fundamental role in this work. To understand
passivity, we must introduce two functions: the supply rate (the rate at which
a system exchanges energy) and the storage function (a measure for the energy
stored in a system). In a passive system the increase in stored energy is at
most equal to the energy supplied. A formal definition of passivity is given in
Definition C.3.2 in Appendix C. A well known result concerning the passivity
of EL systems (2.41) is summarized below.

Proposition 2.5.4 (Passivity of EL systems [133, p. 20]) The EL system
(2.50) with ′ = 𝑑 = 𝟎 defines a passive operator Σ ∶ 𝒖 → 𝒒̇ with storage
function the systems total energy (𝒒, 𝒒̇). That is


(

𝒒(𝑡1), 𝒒̇(𝑡1)
)

≤ 
(

𝒒(𝑡0), 𝒒̇(𝑡0)
)

+ ∫

𝑡1

𝑡0
𝒖T𝒒̇𝑑𝑡 (2.72)

for all 𝑡1 > 𝑡0 and all bounded 𝒖. Further, this property is strengthened to
output strict passivity (OSP) if the system is fully damped.

This, together with the fact that passivity is invariant under feedback intercon-
nection, lead to the idea of looking for passivity based controllers among the
class of EL systems [134, 138]. Defining the control interconnection via the
potential forces preserves the EL structure and—importantly—the behavior
of the resulting EL system can be obtain by simply adding up the kinetic and
potential energies of the plant and controller. This idea is summarized in the
proposition below.

Proposition 2.5.5 (Interconnected EL Systems [133, p. 27]) Consider two
EL systems

Σ𝑝 ∶
{

𝑝(𝒒𝑝, 𝒒̇𝑝),𝑝(𝒒𝑝),𝑝(𝒒̇𝑝)
}

; Σ𝑐 ∶
{

𝑐(𝒒𝑐 , 𝒒̇𝑐),𝑐(𝒒),𝑐(𝒒̇𝑐)
}

with the generalized coordinates 𝒒𝑝 ∈ ℝ𝑛𝑝 , 𝒒𝑐 ∈ ℝ𝑛2 and 𝒒 ≜ [𝒒T
𝑝 , 𝒒

T
𝑐 ]

T,
respectively, (notice that the potential energy of Σ𝑐 depends on 𝒒𝑝). Inter-
connect the systems via:

𝒖 = −
𝜕𝑐(𝒒)
𝜕𝒒𝑝

,

where 𝒖 ∈ ℝ𝑛𝑝 is the input of the subsystem Σ𝑝. See Fig. 2.8. Under these
conditions, the closed-loop system is an EL systemΣ ∶ { (𝒒, 𝒒̇),(𝒒), (𝒒̇)},
with the EL parameters:

 (𝒒, 𝒒̇) =𝑐(𝒒𝑐 , 𝒒̇𝑐) + 𝑝(𝒒𝑝, 𝒒̇𝑝),
(𝒒) =𝑐(𝒒𝑐 , 𝒒𝑝) + 𝑝(𝒒𝑝),

 =𝑐(𝒒̇𝑐) + 𝑝(𝒒̇𝑝).

𝒒𝑝

Σ𝑝

Σ𝑐

− 𝜕𝑐
𝜕𝒒𝑝

(𝒒)

Figure 2.8: Feedback interconnection of
two EL systems.

2.5.5 Transformations of Lagrangians

The Lagrange’s equations of motion have the remarkable property that the
form of the equations remains invariant with respect to transformations of
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the generalized coordinates. Due to the importance of this result, we shall
prove it. Understanding the proof is important to apprehend the scope of
this statement. In particular, it facilitates understanding to which class of
transforming equations this statement applies.

Corollary 2.5.6 (Invariance of the Euler-Lagrange equations) Let 𝑞1,… , 𝑞𝑛
be a set of independent generalized coordinates for a monogenic system of
𝑛 degrees of freedom, with a Lagrangian (𝒒, 𝒒̇, 𝑡). Suppose, we transform
to another set of generalized coordinates 𝒒̄ = (𝑞1,… , 𝑞𝑛) by means of 𝑛
transforming equations:

𝑞𝑖 = 𝑞𝑖(𝒒̄, 𝑡), 𝑖 = 1,… , 𝑛. (2.73)
Then, the EL equations are invariant under such transformation. If the
Lagrangian function is expressed as a function of (𝑞𝑗 , ̇̄𝑞𝑗 , 𝑡) through the
transforming equations, then  satisfies:

d
d𝑡
𝜕
𝜕 ̇̄𝑞𝑗

− 𝜕
𝜕𝑞𝑗

=
∑

𝑖

[

𝑖
𝜕𝑞𝑖
𝜕𝑞𝑗

]

. (2.74)

Proof. First, note that deriving (2.73) with respect to time yields

𝑞̇𝑖 =
𝑑𝑞𝑖
𝑑𝑡

=
∑

𝑗

𝜕𝑞𝑖
𝜕𝑞𝑗

̇̄𝑞𝑗 +
𝜕𝑞𝑖
𝜕𝑡
. (2.75)

and that14 14: Since 𝑡 is an independent variable we
have that 𝜕𝜕𝑡 𝜕𝑡

𝜕𝑞𝑖
= 0.

d
d𝑡

(

𝜕
𝜕 ̇̄𝑞𝑗

)

= d
d𝑡

∑

𝑖

[

𝜕
𝜕𝑞𝑖

𝜕𝑞𝑖
𝜕 ̇̄𝑞𝑗

+ 𝜕
𝜕𝑞̇𝑖

𝜕𝑞̇𝑖
𝜕 ̇̄𝑞𝑗

]

, (2.76)

𝜕
𝜕𝑞𝑗

=
∑

𝑖

[

𝜕
𝜕𝑞𝑖

𝜕𝑞𝑖
𝜕𝑞𝑗

+ 𝜕
𝜕𝑞̇𝑖

𝜕𝑞̇𝑖
𝜕𝑞𝑗

]

. (2.77)

Knowing that
𝜕𝑞𝑖
𝜕 ̇̄𝑞𝑖

=0, (2.78)

𝑑𝑞𝑖 =
∑

𝑗

𝜕𝑞𝑖
𝜕𝑞𝑗

𝑑𝑞𝑗 +
𝜕𝑞𝑖
𝜕𝑡
𝑑𝑡, (2.79)

𝑑𝑞𝑖
𝑑𝑡

=
∑

𝑗

𝜕𝑞𝑖
𝜕𝑞𝑗

𝑑𝑞𝑗
𝑑𝑡

+
𝜕𝑞𝑖
𝜕𝑡
, (2.80)

𝑞̇𝑖 =
∑

𝑗

𝜕𝑞𝑖
𝜕𝑞𝑗

̇̄𝑞𝑗 +
𝜕𝑞𝑖
𝜕𝑡
, (2.81)

𝜕𝑞̇𝑖
𝜕 ̇̄𝑞𝑗

=
𝜕𝑞𝑖
𝜕𝑞𝑗

, (2.82)

we can apply these changes to (2.76) and obtain:

d
d𝑡

(

𝜕
𝜕 ̇̄𝑞𝑗

)

= d
d𝑡

∑

𝑖

[

𝜕
𝜕𝑞̇𝑖

𝜕𝑞𝑖
𝜕𝑞𝑗

]

=
∑

𝑖

[

d
d𝑡

(

𝜕
𝜕𝑞̇𝑖

)

𝜕𝑞𝑖
𝜕𝑞𝑗

+ 𝜕
𝜕𝑞̇𝑖

d
d𝑡

(

𝜕𝑞𝑖
𝜕𝑞𝑗

)]

(2.83)
Given that  satisfies the EL equations for the set of coordinates 𝒒, we know
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that
d
d𝑡

(

𝜕
𝜕𝑞̇𝑖

)

= 𝜕
𝜕𝑞𝑖

+𝑖. (2.84)

Using the symmetry of second derivatives (Schwarz’s theorem), we may write:
d
d𝑡

(

𝜕𝑞𝑖
𝜕𝑞𝑗

)

=
∑

𝑘

[

𝜕
𝜕𝑞𝑘

(

𝜕𝑞𝑖
𝜕𝑞𝑗

)

𝑑𝑞𝑘
𝑑𝑡

+ 𝜕
𝜕𝑡

(

𝜕𝑞𝑖
𝜕𝑞𝑗

)]

=
∑

𝑘

[

𝜕
𝜕𝑞𝑗

(

𝜕𝑞𝑖
𝜕𝑞𝑘

)

̇̄𝑞𝑘 +
𝜕
𝜕𝑞𝑗

(

𝜕𝑞𝑖
𝜕𝑡

)]

= 𝜕
𝜕𝑞𝑗

∑

𝑘

[(

𝜕𝑞𝑖
𝜕𝑞𝑘

)

̇̄𝑞𝑘 +
(

𝜕𝑞𝑘
𝜕𝑡

)]

=
𝜕𝑞̇𝑖
𝜕𝑞𝑗

.

(2.85)

Equations (2.84) and (2.85) allows us to rewrite (2.83) as

d
d𝑡

(

𝜕
𝜕 ̇̄𝑞𝑗

)

=
∑

𝑖

[(

𝜕
𝜕𝑞𝑖

+𝑖
)

𝜕𝑞𝑖
𝜕𝑞𝑗

+ 𝜕
𝜕𝑞̇𝑖

(

𝜕𝑞̇𝑖
𝜕𝑞𝑗

)]

(2.86)

=
∑

𝑖

[(

𝜕
𝜕𝑞𝑖

)

𝜕𝑞𝑖
𝜕𝑞𝑗

+ 𝜕
𝜕𝑞̇𝑖

(

𝜕𝑞̇𝑖
𝜕𝑞𝑗

)]

+
∑

𝑖

[

𝑖
𝜕𝑞𝑖
𝜕𝑞𝑗

]

. (2.87)

Now making the substitutions (2.77) and (2.86) results in:

d
d𝑡

(

𝜕
𝜕 ̇̄𝑞𝑗

)

− 𝜕
𝜕𝑞𝑗

=
∑

𝑖

[

𝑖
𝜕𝑞𝑖
𝜕𝑞𝑗

]

, (2.88)

which proofs that Lagrange’s equations are invariant to a point transformation
of the form (2.73). ■

Let us denote the components of the transformed generalized external force
by

̄𝑖 =
∑

𝑖

[

𝑖
𝜕𝑞𝑖
𝜕𝑞𝑗

]

. (2.89)

Knowing that
𝜕𝒒
𝜕𝒒̄

= 𝑱−1, (2.90)

we can use (2.89) and (2.90) to establish the following relationship between
the generalized external forces

̄ = 𝑱−T, (2.91)
where  and ̄ are both column vectors.

Outlook

In Chapter 5, we will face transformations of the form
𝑞𝑖 = 𝑞𝑖(𝑞, ̇̄𝑞, 𝑡), 𝑖 = 1,… , 𝑛, (2.92)
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that do not qualify as point transformations, and it is important to understand
that in such case the proof above fails to hold. In particular, (2.78) already
fails to hold.

2.5.6 Transforming Inertial and Potential Forces

In the following, let us analyze how the inertial and potential forces transform
under a point transformation

𝒒̄ = 𝒉(𝒒); ̇̄𝒒 = 𝑱 (𝒒)𝒒̇. (2.93)
The relationship between the inertia matrices  and ̄ that are associated
with the coordinates 𝒒 and 𝒒̄, respectively, can be established by exploiting
the scalar invariance of the Lagrangian15 [42] from which follows for the 15: The Lagrangian behaves like a scalar

under a point transformation. In other
words, the Lagrangian changes its func-
tional dependence on the coordinates, its
value in a given point, however, remains
unchanged.

kinetic energy that
1
2 𝒒̇

T𝒒̇ = ̇̄𝒒T𝑱−T𝑱−1 ̇̄𝒒 = 1
2
̇̄𝒒T̄ ̇̄𝒒, (2.94)

where
̄ = 𝑱−T𝑱−1. (2.95)

Using the notation introduced above, the force of inertia associated with the
𝒒’s is given by

⋆ = d
d𝑡

[

𝜕
𝜕𝒒̇

]T
−
[

𝜕
𝜕𝒒

]T
= 𝒒̈ + 𝝂(𝒒, 𝒒̇), (2.96)

where 𝝂 denotes the Coriolis and centrifugal forces. As pointed out in Corol-
lary 2.5.6, the EL equations transform under (2.93) as

d
d𝑡

[

𝜕
𝜕𝒒̇

]T
−
[

𝜕
𝜕𝒒

]T
= 

(2.93)
←←←←←←←←←←←←←←←←←←←←←→

d
d𝑡

[

𝜕
𝜕 ̇̄𝒒

]T
−
[

𝜕
𝜕𝒒̄

]T
= ̄, (2.97)

where ̄ = 𝑱−T, and the associated force of inertia is

̄⋆ = d
d𝑡

[

𝜕
𝜕 ̇̄𝒒

]T
−
[

𝜕
𝜕𝒒̄

]T
. (2.98)

Using the expression for the kinetic energy (2.94), and observing that16 16: The first relation is often exploited in
modern derivations of Lagrange’s equa-
tions of motion. A proof is reported in Ap-
pendix D.2.𝜕

𝜕𝑞𝑖

(𝑑𝑞𝑗
𝑑𝑡

)

= d
d𝑡

(𝜕𝑞𝑗
𝜕𝑞𝑖

)

, (2.99)
𝜕
𝜕𝑞𝑖

=
∑

𝑗

(

𝜕
𝜕𝑞𝑗

𝜕𝑞𝑗
𝜕𝑞𝑖

+ 𝜕
𝜕𝑞̇𝑗

𝜕𝑞̇𝑗
𝜕𝑞𝑖

)

=
∑

𝑗

(

𝜕
𝜕𝑞𝑗

𝜕𝑞𝑗
𝜕𝑞𝑖

+ 𝜕
𝜕𝑞̇𝑗

d
d𝑡
𝜕𝑞𝑗
𝜕𝑞𝑖

)

=
[

𝜕
𝜕𝑞1

⋯ 𝜕
𝜕𝑞𝑛

]

⋅

⎡

⎢

⎢

⎢

⎣

𝜕𝑞1
𝜕𝑞𝑖
⋮
𝜕𝑞𝑛
𝜕𝑞𝑖

⎤

⎥

⎥

⎥

⎦

+
[

𝜕
𝜕𝑞̇1

⋯ 𝜕
𝜕𝑞̇𝑛

]

⋅
d
d𝑡

⎡

⎢

⎢

⎢

⎣

𝜕𝑞1
𝜕𝑞𝑖
⋮
𝜕𝑞𝑛
𝜕𝑞𝑖

⎤

⎥

⎥

⎥

⎦

,

(2.100)
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we can rewrite the components of ̄⋆ as
d
d𝑡

(

𝜕
𝜕 ̇̄𝒒

)

=
(

𝑱̇−T𝑱−1 + 𝑱−T̇𝑱−1 + 𝑱−T𝑱̇−1
)

̇̄𝒒 + ̄ ̈̄𝒒

=
(

𝑱̇−T + 𝑱−T̇ − ̄𝑱̇
)

𝒒̇ + ̄ ̈̄𝒒,
(2.101)

𝜕
𝜕𝒒̄

=
[

𝜕
𝜕𝑞1

⋯ 𝜕
𝜕𝑞𝑛

]

⋅

⎡

⎢

⎢

⎢

⎣

𝜕𝑞1
𝜕𝑞1

⋯ 𝜕𝑞1
𝜕𝑞𝑛

⋮ ⋮
𝜕𝑞𝑛
𝜕𝑞1

⋯ 𝜕𝑞𝑛
𝜕𝑞𝑛

⎤

⎥

⎥

⎥

⎦

+
[

𝜕
𝜕𝑞̇1

⋯ 𝜕
𝜕𝑞̇𝑛

]

⋅
d
d𝑡

⎡

⎢

⎢

⎢

⎣

𝜕𝑞1
𝜕𝑞1

⋯ 𝜕𝑞1
𝜕𝑞𝑛

⋮ ⋮
𝜕𝑞𝑛
𝜕𝑞1

⋯ 𝜕𝑞𝑛
𝜕𝑞𝑛

⎤

⎥

⎥

⎥

⎦

=𝜕
𝜕𝒒
𝑱−1 + 𝜕

𝜕𝒒̇
𝑱̇−1.

(2.102)
Making the substitution (2.94) and (2.96), it follows that

𝝂 = ̇𝒒̇ −
[

𝜕
𝜕𝒒

]T
. (2.103)

Denoting the Coriolis and centrifugal force associated with the 𝒒̄’s by

𝝂̄ = d
d𝑡

[

𝜕
𝜕 ̇̄𝒒

]T
−
[

𝜕
𝜕𝒒̄

]T
− ̄ ̈̄𝒒, (2.104)

and comparing with (2.103), we get under consideration of (2.101) and (2.102)
that1717: Note that̄𝑱̇ 𝒒̇ = −𝑱−T𝑱̇−1 ̇̄𝒒. This

identity is frequently used throughout this
work. 𝝂̄ = 𝑱−T𝝂 − ̄𝑱̇ 𝒒̇. (2.105)

Using (2.98), (2.104) and (2.105), we get for the transformed force of inertia
̄⋆ = ̄

( ̈̄𝒒 − 𝑱̇ 𝒒̇
)

+ 𝑱−T𝝂. (2.106)
As expected, 𝒗 transforms covariantly under a change of basis. The same is
true for the potential force

𝜕
𝜕𝒒̄

= 𝜕
𝜕𝒒

𝜕𝒒
𝜕𝒒̄

= 𝜕
𝜕𝒒
𝑱−1. (2.107)

Combining (2.105)–(2.107), we can rewrite the transformed EL equations
(2.97) in vector form as

d
d𝑡

[

𝜕
𝜕 ̇̄𝒒

]T
−
[

𝜕
𝜕𝒒̄

]T
= d
d𝑡

[

𝜕
𝜕 ̇̄𝒒

]T
−
[

𝜕
𝜕𝒒̄

]T
+
[

𝜕
𝜕𝒒̄

]T

=̄
( ̈̄𝒒 − 𝑱̇ 𝒒̇

)

+ 𝑱−T
(

𝝂 +
[

𝜕
𝜕𝒒

]T)

=̄ ̈̄𝒒 + 𝝂̄ + 𝑱−T
[

𝜕
𝜕𝒒

]T
= ̄.

(2.108)

This form of the EL equations is used for developing the motion tracking
controllers reported in Chapter 7.
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2.5.7 Transforming the Inertia and Coriolis/Centrifugal
Matrices

In the following, it will be shown that a point transformation preserves the fun-
damental properties of the inertia and Coriolis/centrifugal matrices reported in
Assumption 2.5.1 and Lemma 2.5.1. Considering (2.105) and the identity

̄𝑱̇ 𝒒̇ = 𝑱−T𝑱̇−1 ̇̄𝒒, (2.109)
a natural choice for the transformed Coriolis and centrifugal matrix is

̄ = 𝑱−T(𝑱̇−1 + 𝑱−1), (2.110)
where  is defined as in Section 2.5.1. The matrix ̄ in (2.110) is of the form
commonly used in task space control, c.f. [97]. The following two lemmas
summarize properties of the transformed matrices that are crucial for later
control developments in this work.

Lemma 2.5.7 The matrix ̄ is symmetric and positive definite for all
𝒒̄ ∈ ℝ𝑛.

Exploiting the properties of congruence transformations the proof is straight-
forward.

Lemma 2.5.8 No matter how  is defined in (2.110), it is always true that

̇̄𝒒T(̇ − 2̄
) ̇̄𝒒 = 𝟎, ∀ ̇̄𝒒 ∈ ℝ𝑛. (2.111)

If  is defined using the Christoffel symbols, (2.60), then the matrix

̇ − 2̄ (2.112)
is skew-symmetric for any 𝒒̄, ̇̄𝒒 ∈ ℝ𝑛. Notice that the skew-symmetry prop-
erty of (2.112) is equivalent to

̇ = ̄ + ̄T. (2.113)

Proof. Let us start with proofing the first statement. Introducing

𝑾 = 𝑱̇−T𝑱−1 − 𝑱−T𝑱̇−1, (2.114)
we know that

𝑾 = −𝑾 T (2.115)
̇ =𝑱̇−T𝑱−1 + 𝑱−T̇𝑱−1 + 𝑱−T𝑱̇−1, (2.116)
̄ =𝑱−T(𝑱̇−1 + 𝑱−1), (2.117)

̄T =
(

𝑱̇−T + 𝑱−TT)𝑱−1, (2.118)
and from Lemma 2.5.1 that

𝒒̇T(̇ − 2)𝒒̇ =𝟎, ∀𝒒̇ ∈ ℝ𝑛. (2.119)
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Using (2.115)–(2.119), we conclude that
̇̄𝒒T(̇ − 2̄

) ̇̄𝒒 = ̇̄𝒒T𝑱−T(̇ − 2
)

𝑱−1 ̇̄𝒒 + ̇̄𝒒T𝑾 ̇̄𝒒 = 0, ∀ ̇̄𝒒 ∈ ℝ𝑛. (2.120)
If  is defined using the Christoffel symbols, it follows from Lemma 2.5.1
that

̇ =  + T. (2.121)
Using (2.116)–(2.118) and (2.121), we have that

̇ − ̄ − ̄T = 𝑱−T(̇ −  − T)𝑱−1 = 𝟎, (2.122)
which confirms the second argument and completes the proof. ■

2.6 Underactuation

This chapter provides a short introduction into what defines an underactuated
robot and highlights the main challenges when it comes to control of these
systems. An excellent introductory source of information on the characteris-
tics and control of underactuation systems are the course notes [182]. Many[182]: Tedrake (2020), “Online notes for

MAT237: Multivariable calculus, 2018-9” definitions in this chapter are based on these notes.
According to Newton’s law of motion the dynamics equations of a me-

chanical system are inherently second order and, in general, of the form:
𝒒̈ = 𝒇 (𝒒, 𝒒̇, 𝒖, 𝑡), (2.123)

where 𝒒 ∈ ℝ𝑛 is the position state vector, 𝒖 ∈ ℝ𝑚 is the control input vector
and 𝑡 is time. Exploiting the positive definiteness of the inertia matrix, we
may always rewrite the EL (2.41) in the form above. The natural question may
arise whether we can command accelerations in arbitrary directions and of
arbitrary magnitude. Based on this system intrinsic property, we distinguish
two classes of systems.

Definition 2.6.1 (Underactuation [182]) A system of the form (2.123) is
said to be fully actuated in a given configuration (𝒒, 𝒒̇) and for a given
point in time 𝑡 if we are able to command an instantaneous acceleration of
arbitrary amplitude in an arbitrary direction, i.e. for every 𝒒̈, we are able
to find an input 𝒖 that results in the desired acceleration. Otherwise system
(2.123) is said to be underactuated in (𝒒, 𝒒̇) and for time 𝑡.

Remark 2.6.1 The Definition 2.6.1 easily transfers to Euler-Lagrange sys-
tems. Throughout this work, we shall consider only systems with a positive
definite generalized inertia matrix. Considering the EL equations (2.54)
and the definition of the non-monogenic forces (2.56) it is straightforward
to see that (2.54) is fully actuated if and only if the numbers of inputs and
degrees of freedom are equal.

As a direct consequence of this definition; an underactuated system cannot
follow arbitrary commanded trajectories. One of the trivial, but in practice
quite common cases where it is straightforward to see that a system is under-
actuated, is for the case dim(𝒖) < dim(𝒒), i.e., the number of inputs is less
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than the number of degrees of freedom. A broad class of robotic systems are
affine in the control input:

𝒒̈ = 𝒇 1(𝒒, 𝒒̇, 𝑡) + 𝒇 2(𝒒, 𝒒̇, 𝑡)𝒖. (2.124)
For this class, we have that if

rank (𝒇 2(𝒒, 𝒒̇, 𝑡)
)

< dim(𝒒), (2.125)

Rotor LinkInput

Figure 2.9: A Series Elastic Actuator.

then the system is underactuated. In this text, we are primarily interested in
articulated soft robots which are “by design" underactuated. Series elastic
actuators are the most basic example of an articulated soft robot. These systems
have twice the number of degrees of freedom than control inputs and, thus,
are trivially underactuated. For more advanced mechanical realizations, such
as a bidirectional antagonistic variable stiffness joint, the situation is similar.
We have three degrees of freedom per joint but only two actuators. Apart
from a lack of inputs, there are other forms of underactuation. Input and state
constraint can significantly complicate control design and can be a cause
of underactuation. With regard to our general definition of underactuation
it is easy to see that input constraints may render a system underactuated.
The motor torque available in a robot joint is limited and intuition suggests
that this limits the achievable link acceleration. Regarding state constraints,
we have to differ between the holonomic and non-holonomic constraints.
Holonomic constraints reduce the configuration space dimensionality. Non-
holonomic constraints, however, do not reduce the possible configurations of
a robot but impose limitations on how these configurations can be reached.
Classical examples are wheeled or fixed-wing robots. Clearly, such systems
cannot be accelerated in an arbitrary direction and, thus, are underactuated. In
practice, we may encounter systems that are “almost always” fully actuated
with the condition of full actuation only being violated at isolated points in
the configuration space. A classical example is that of a manipulator under
control by end effector forces, which is fully actuated away from joint limits
or kinematic singularities. In this work, such systems will be referred to as
fully actuated.

Remark 2.6.2 It is worth noting that whether a system is underactuated
may depend on its current state, the time and the choice of coordinates (see
manipulator example).

Remark 2.6.3 It is important not to confuse the concept of underactuation
with controllability or feedback linearizability. An underactuated system can
be controllable (e.g., an inverted pendulum on a cart away from the horizon-
tal [75] [75]: Ibáñez et al. (2005), “Lyapunov-based

controller for the inverted pendulum cart
system”

). Moreover, an underactuated system can be feedback linearizable
(e.g., a robot with SEA).

We adopt the definition by Ortega introduced in [133]: [133]: Ortega (1998), Passivity-Based Con-
trol of Euler-Lagrange Systems: Mechani-
cal, Electrical, and Electromechanical Ap-
plicationsDefinition 2.6.2 (Underactuated EL systems) An EL system is fully actuated

if it has equal number of degrees of freedom than available control inputs
(that is if 𝑛 = 𝑛𝑎, e.g. if  = 𝑰𝑛). Otherwise, if 𝑛𝑎 < 𝑛, we say that
the system is underactuated. In the latter case, 𝒒 can be partitioned into
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actuated:

𝒒𝑎 ≜ 𝒒 (2.126)
and non-actuated components:

𝒒𝑢 ≜ ⊥𝒒, (2.127)
where ⊥ denotes the orthogonal complement of  .

2.6.1 Control Challenges

Assume that we know the full model of the input affine system (2.124), i.e.
𝒇 1 and 𝒇 2 are known. Further, let 𝒇 2 be of full rank. In this case, we could
apply the following feedback control:

𝒖 = 𝒇−1
2 (𝒒, 𝒒̇, 𝑡)

(

𝒖̄ − 𝒇 1(𝒒, 𝒒̇, 𝑡)
)

, (2.128)
where 𝒖̄ is our new control input which results in a linear, second-order dy-
namics

𝒒̈ = 𝒖̄. (2.129)
We say that system (2.124) is “feedback equivalent” to (2.129). By using
(2.128), we can reduce the control problem of any fully actuated system to
the problem of controlling a linear, decoupled, second-order system. Under-
actuated systems, however, are not feedback equivalent to (2.129). Thus, the
control design for underactuated systems, in particular of nonlinear ones, is
more challenging.

2.6.2 Underactuation in Robotics

We find underactuation in many interesting robotics problems. Soft robots,
legged robots18 and most swimming and flying robots are underactuated.18: As long as the robot is not firmly fixed

to the ground. Even robotic manipulation is an underactuated problem in many situations. In
general, rigid robots have one actuator for each joint. However, for any rigid
object the robot manipulates that is not firmly attached to the robot, we have
to add six degrees of freedom, resulting in underactuation. For (continuously)
deformable objects, the situation becomes even worse.

2.7 Summary

In this chapter, basic concepts of analytical mechanics such as generalized
coordinates, configuration space, variational principles have been covered that
are essential for the developments in this work. Since transformations play a
central role in this work, the transforming properties of the Euler-Lagrange
equations have been revisited. A particularly important idea is the invariance
of Euler-Lagrange equations under point transformations.
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The design of articulated soft robots is inspired by the vertebrate part of the
animal kingdom. To approach the performance of animals, elastic elements
are introduced into the drive train to act as energy storage elements. In contrast
to soft robots, the soft elements of ASRs, with either constant or variable
impedance [73]

[73]: Huang et al. (2020), “Dynamic simu-
lation of articulated soft robots”

, are concentrated in the joints and interconnect the rigid body
segments. In this work, DLR David serves as an exemplary ASR platform to
demonstrate the performance and practical viability of the proposed control
framework. It is important to point out that the presented controllers are
formulated in a general form and, thus, applicable to a wide variety of ASRs
and not just DLR David.

3.1 DLR David: A Compliant Anthropomorphic
Humanoid

David (formally Hand Arm System) is an anthropomorphic robot system
implemented with variable impedance actuators (VIA) in all its joints, which
has been developed at the German Aerospace Center (DLR). The robot was
first presented in public in 2010. Its design is based on the following objectives:
approach human capabilities with regard to robustness, dynamic performance,
and dexterity [54]. The system has roughly the size, shape, and weight of
an adult human. In total, it features 41 degrees of freedom, 76 brushless DC
motors, 165 position sensors. The actuation is realized through three different
types of VIAs as shown in Fig. 3.1:

• Floating Spring Joint (FSJ) [194]
• Bidirectional-Antagonist Variable Stiffness Actuator (BAVS) [47, 148]
• Antagonistic Actuator (AA) [55]

The main difference between the first and latter two designs is the relative
dimensioning of the motors. The FSJ features a main motor to adjust the joint
torque and a smaller motor to adjust the physical joint stiffness. This allows
for a clear differentiation between joint torque and joint stiffness adjustment.
However, a drawback is that the second motor cannot support the main motor
in holding a load. The latter two designs, on the contrary, have two motors of
equal size that can share the load. This comes at the cost that the joint stiffness
adjustment cannot be separated from the joint torque control. As shown below
for the FSJ, the dynamics model can be simplified by assuming the adjuster
motor coordinate as a kinematic input. A more detailed introduction of the
different joint types can be found in the works listed above.

The actuator performance characteristics of DLR David are summarized
in Table 3.1. Note that the maximal joint torque can always be reached with
the minimal stiffness setting and vice-versa.
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Figure 3.1: (a) DLR David. (b) The first four arm joints, namely the elbow and the three shoulder joints, are implemented by Floating Spring
Joints (FSJ) [194]. A simplified working scheme is shown. (d) The joint stiffness for various stiffness adjuster positions 𝜎 = [ 0, 2.5, 5.0, 7.5, 10 ]
deg. (c) The under arm rotation is realized by a Bidirectional Antagonistic Variable Stiffness (BAVS) joint [47]. (e) The corresponding joint
stiffness behaviors resulting from different levels of co-contraction of the springs 𝜎 = [ 0, 2.5, 5.0, 7.5, 10 ] deg.
Table 3.1: Joint performance parameters of DLR David.

Joint Arm Forearm Wrist Fingers (AA)
(FSJ) (BAVS) (BAVS) MCP PIP DIP

Max. motor velocity [◦ s−1] 530 960 560 600 960 1280
Max. joint torque [Nm] 59–67 3.2–7.6 8 2.73 1.57 0.93
Max. energy storage [J] 5.3 - - - - -
Max. stiffn. [Nm rad−1] 826 84 60 0.3 - -
Min. stiffn. [Nm rad−1] 52.4 10 0.5 17 - -
Max. deflection [deg] 15 15 21.5 30 - -
Reflected motor inertia [kgm2] 0.3117 3.68e-3 4.6e-3 - - -
Gear ratios 81 100 100 100 - -
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3.1.1 The Floating Spring Joint

The first four arm joints, namely the elbow and the three shoulder joints, are
implemented by FSJs. Each FSJ is a highly integrated joint module including
the main and adjuster motor, sensors, springs, harmonic drive, joint bearings
and electronics. Throughout this work, the following coordinate notation is
used for FSJs:

𝑞𝑢𝑖… 𝑖th link coordinate
𝑞𝑎𝑖… 𝑖th motor coordinate
𝜎𝑖… 𝑖th stiffness adjuster coordinate
𝜑𝑖 = 𝑞𝑎𝑖 − 𝑞𝑢𝑖… 𝑖th joint deflection coordinate

Adjuster

𝑞𝑢

2𝜎

𝜎

𝜑

Adjuster

External
forces

Figure 3.2: The FSJ mechanism. (top) Min-
imal stiffness setting (𝜎 = 0 deg). (bottom)
The joint pretension (𝜎 > 0 deg) increases
the joint stiffness.

Let us use the Lagrangian formalism to obtain the dynamics of a single
FSJ in absence of gravity. Its kinetic energy is [149]

 = 1
2

(

𝐽𝑎𝑞̇
2
𝑎 + 𝐽𝜎 𝜎̇

2 + 𝐽𝑢𝑞̇2𝑢
)

, (3.1)

where 𝐽𝑎 is the combined rotor and wave generator inertia reflected to the link
side, 𝐽𝜎 is the reflected inertia of the adjuster mechanism and 𝐽𝑢 is the link
inertia. The potential energy is solely determined by the energy of the linear
spring that pushes the two cam discs together, c.f. Fig. 3.2,

 = 1
2
𝑘
[

𝑓 (𝜑 + 𝜎) + 𝑓 (−𝜑 − 𝜎)
]2
, (3.2)

with 𝑘 representing the spring stiffness. The function 𝑓 describes the geometry
of the cam disc path, see Fig. 3.2. Introducing the auxiliary variables 𝑥 =
−𝑥̃ = 𝜑 + 𝜎 and observing that

𝜕𝑥
𝜕𝑞𝑢

= − 𝜕𝑥̃
𝜕𝑞𝑢

=
𝜕𝜑
𝜕𝑞𝑢

= −1, (3.3)
𝜕𝑥
𝜕𝑞𝑎

= − 𝜕𝑥̃
𝜕𝑞𝑎

=
𝜕𝜑
𝜕𝑞𝑎

= 1, (3.4)
𝜕𝑥
𝜕𝜎

= − 𝜕𝑥̃
𝜕𝜎

= 1, (3.5)

we obtain for the generalized elastic forces
𝜕
𝜕𝑞𝑢

= − 𝑘
[

𝑓 (𝑥) + 𝑓 (𝑥̃)
]

[

𝜕𝑓
𝜕𝑥̃

(𝑥̃) −
𝜕𝑓
𝜕𝑥

(𝑥)
]

(3.6)
𝜕
𝜕𝑞𝑎

= − 𝑘
[

𝑓 (𝑥) + 𝑓 (𝑥̃)
]

[

𝜕𝑓
𝜕𝑥

(𝑥) −
𝜕𝑓
𝜕𝑥̃

(𝑥̃)
]

(3.7)
𝜕
𝜕𝜎

= − 𝑘
[

𝑓 (𝑥) + 𝑓 (𝑥̃)
]

[

𝜕𝑓
𝜕𝑥

(𝑥) −
𝜕𝑓
𝜕𝑥̃

(𝑥̃)
]

. (3.8)

Let us further introduce the generalized forces

𝜓(𝜑, 𝜎) ≜ − 𝜕
𝜕𝑞𝑢

. (3.9)

Considering the symmetry of 𝜓 with respect to the origin, i.e.
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Figure 3.3: Floating spring joint compo-
nents.

𝜓(𝜑, 𝜎) = −𝜓(−𝜑,−𝜎), we note that
𝜕
𝜕𝑞𝑎

(𝜑, 𝜎) = 𝜕
𝜕𝑞𝑢

(−𝜑,−𝜎) = 𝜓(𝜑, 𝜎). (3.10)

Using (3.3)–(3.10) allows us to write the Euler-Lagrange equations of an FSJ
as

⎡

⎢

⎢

⎣

𝐽𝑢 0 0
0 𝐽𝑎 0
0 0 𝐽𝜎

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑞𝑢
𝑞𝑎
𝜎̈

⎤

⎥

⎥

⎦

−
⎡

⎢

⎢

⎣

𝜓(𝜑, 𝜎)
−𝜓(𝜑, 𝜎)
−𝜓(𝜑, 𝜎)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑢
𝑎
𝜎

⎤

⎥

⎥

⎦

, (3.11)

with the applied forces 𝑢, 𝑎 = ′
𝑎 + 𝑢𝑎 and 𝜎 = ′

𝜎 + 𝑢𝜎 , where 𝑢𝑎 and
𝑢𝜎 are the torque control inputs to the main and adjuster motors, and ′

𝑎,
′
𝜎denoting external forces. It is common to neglect the dynamics of the adjuster

motor and assume the adjuster coordinate 𝜎𝑖 as kinematic control input [8].[8]: Albu-Schäffer et al. (2010), “Dynamic
modelling and control of variable stiffness
actuators” This assumption is justified if the adjuster moves slowly such that inertial

forces can be neglected and neither the motor velocity or torque limits are
violated. For the the scenarios considered in this work, this assumption is met.
This allows for a further simplification of the dynamics model to

[

𝐽𝑢 0
0 𝐽𝑎

] [

𝑞𝑢
𝑞𝑎

]

−
[

𝜓(𝜑, 𝜎)
−𝜓(𝜑, 𝜎)

]

=
[

𝑢
𝑎

]

. (3.12)

The resulting dynamics assumes the structure of the well known flexible joint
model. This model was used for the control implementation on DLR David
reported in Chapter 11. The torque and stiffness characteristics of the FSJ are
reported in Fig. 3.1(b,d). Note that the joint stiffness increases progressively
with increasing joint torque. The stiffness adjuster input 𝜎 allows a variation of
the stiffness characteristics (with increasing values of 𝜎 representing increasing
join stiffness settings). For the experiments, we shall keep the stiffness setup at
a constant setting. In such scenarios, the joint torque can be written as function
of the joint deflection only. With some abuse of notation, we may write the
simplified FSJ model as:

[

𝐽𝑢 0
0 𝐽𝑎

] [

𝑞𝑢
𝑞𝑎

]

−
[

𝜓(𝜑)
−𝜓(𝜑)

]

=
[

𝑢
𝑎

]

. (3.13)

3.1.2 The Bidirectional Antagonistic Variable Stiffness Joint

The working principle of a BAVS joint is similar to that of an antagonistic
actuator: co-contracting the springs changes the joint stiffness, while a syn-
chronized motion changes the net joint torque. The main differences between
the antagonist and BAVS joint principle is that in the latter setup each motor
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can apply torques in both directions (“push” and “pull"). Throughout this
work, the following notation is used for BAVS joints.

• 𝑞𝑢𝑖… 𝑖th link coordinate
• 𝑞𝑎1𝑖… 1st motor coordinate of the 𝑖th joint
• 𝑞𝑎2𝑖… 2nd motor coordinate of the 𝑖th joint
• 𝜑1𝑖… 1st deflection coordinate of the 𝑖th joint
• 𝜑2𝑖… 2nd deflection coordinate of the 𝑖th joint

The basic working principle of a BAVS joint is shown in Fig. 3.1(c). Each
motor is coupled by a nonlinear elastic element to the link. Let 𝑖 be the
potential energy of the 𝑖th joint. Introducing

𝜓𝑖 ≜ − 𝜕
𝜕𝑞𝑢𝑖

, (3.14)

𝜓𝑎1𝑖 ≜
𝜕
𝜕𝑞𝑎1𝑖

, (3.15)

𝜓𝑎2𝑖 ≜
𝜕
𝜕𝑞𝑎2𝑖

, (3.16)

and the deflection coordinates 𝜑1𝑖 ≜ 𝑞𝑢𝑖 − 𝑞𝑎1𝑖 and 𝜑2𝑖 ≜ 𝑞𝑢𝑖 − 𝑞𝑎2𝑖 allows us
to write Euler-Lagrange equations for a BAVS joint as:

⎡

⎢

⎢

⎣

𝐽𝑢𝑖 0 0
0 𝐽𝑎1𝑖 0
0 0 𝐽𝑎2𝑖

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑞𝑢𝑖
𝑞𝑎1𝑖
𝑞𝑎2𝑖

⎤

⎥

⎥

⎦

−
⎡

⎢

⎢

⎣

𝜓(𝑞𝑢𝑖, 𝜑1𝑖, 𝜑2𝑖)
𝜓𝑎1𝑖(𝜑𝑎1𝑖)
𝜓𝑎2𝑖(𝜑𝑎2𝑖)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑢𝑖
𝑎1𝑖
𝑎2𝑖

⎤

⎥

⎥

⎦

. (3.17)

For some BAVS joint implementations, e.g. the underarm of DLR David, the
potential function 𝑖 of the 𝑖th joint can be decomposed in the form:

𝑖 = 1𝑖(𝑞𝑢𝑖 − 𝑞𝑎1𝑖) +2𝑖(𝑞𝑢𝑖 − 𝑞𝑎2𝑖), (3.18)
where 𝑗𝑖, 𝑗 = 1, 2, denotes the potential energy of the elastic element that
couples the 𝑗th motor of the 𝑖th joint to the 𝑖th link. Given a symmetric motor
inertias setup, i.e. 𝐽𝑎1𝑖 = 𝐽𝑎2𝑖 = 𝐽𝑎 (as used in DLR David), we can rewrite

⎡

⎢

⎢

⎣

𝐽𝑢𝑖 0 0
0 𝐽𝑎 0
0 0 𝐽𝑎

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑞𝑢𝑖
𝑞𝑎1𝑖
𝑞𝑎2𝑖

⎤

⎥

⎥

⎦

−
⎡

⎢

⎢

⎣

𝜓1𝑖(𝜑1𝑖) + 𝜓2𝑖(𝜑2𝑖)
𝜓1𝑖(𝜑1𝑖)
𝜓2𝑖(𝜑2𝑖)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑢
𝑎1
𝑎2

⎤

⎥

⎥

⎦

. (3.19)

The torque and stiffness characteristics of the BAVS actuator are reported in
Fig. 3.1(b,d). Analogous to the FSJ case, the joint stiffness increases progres-
sively with increasing joint torque.

3.2 Modeling of Articulated Soft Robots

An articulated soft robot can be modeled as an underactuated EL system.
Let 𝒒 ≜

[

𝒒T
𝑢 , 𝒒

T
𝑎
]T be the vector of generalized coordinates with 𝒒𝑢 and 𝒒𝑎

denoting the unactuated link and actuated motor coordinates, respectively. The
control inputs are the motor torques at the rotors 𝒖𝑎 ∈ ℝ𝑛𝑎 . Assuming that the
rotors can be modeled by uniform cylinders, the gravitational potential energy
becomes independent of the motor positions. Further, let 𝑩 be a constant
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diagonal matrix representing the actuator inertias reflected to the link side. In
this case, the kinetic and potential energies of an ASR are

 (𝒒𝑢, 𝒒̇) ≜
1
2
𝒒̇T(𝒒𝑢)𝒒̇, (𝒒) ≜ 𝑔(𝒒𝑢) + 𝑒(𝒒), (3.20)

where  ∈ ℝ𝑛 is the inertia matrix of the form11: More details on the structure of the iner-
tia matrix can be found in [183].

(𝒒𝑢) ≜
[

𝑴(𝒒𝑢) 𝑺(𝒒𝑢)
𝑺T(𝒒𝑢) 𝑩

]

, (3.21)

that satisfies (𝒒𝑢) = T(𝒒𝑢) > 0, submatrix 𝑴 can be conceived as the
“rigid robot" inertia matrix and the functions 𝑔 and 𝑒 denote the potential
energies due to the gravitational field and the elastic elements. The resulting
EL equations are
[

𝑴(𝒒𝑢) 𝑺(𝒒𝑢)
𝑺T(𝒒𝑢) 𝑩

] [

𝒒̈𝑢
𝒒̈𝑎

]

+
[

𝑪11(𝒒𝑢, 𝒒̇𝑢) 𝑪12(𝒒𝑢, 𝒒̇𝑢)
𝑪21(𝒒𝑢, 𝒒̇𝑢) 𝟎

] [

𝒒̇𝑢
𝒒̇𝑎

]

+ 𝜕
𝜕𝒒

= 𝒖 +,

(3.22)
where control vector is partitioned as 𝒖 = [𝟎, 𝒖T

𝑎 ]
T ∈ ℝ𝑛 and the Coriolis/cen-

trifugal matrix defined as reported in Section 2.5. We observe that the motor
and link dynamics interact via three type of forces: 1) inertial coupling, 2)
Coriolis forces 3) forces transmitted through the elastic elements. The primer
two are reflected by the presence of the off-diagonal terms in the inertia and
Coriolis/centrifugal matrices.

For many ASRs, the elastic forces are more dominant than the inertial ones.
Based on this observation, Spong proposed in [168] the following simplifying[168]: Spong (1987), “Modeling and con-

trol of elastic joint robots” assumptions:

(A1) The kinetic energy of each rotor is due only to its own rotation. Equiv-
alently, the motion of each rotor is a pure rotation with respect to an
inertial frame.

(A2) The rotors/gear inertia is symmetric with respect to the rotor’s axis of
rotations. Thus, the gravitational potential of the system is independent
of the rotor orientation.

These two assumptions are well justified for DLR David due to the high gear
ratios, see also [54]. Under (A1) and (A2), the expression of the kinetic energy
(3.20) simplifies to

 = 1
2

(

𝒒̇T
𝑢𝑴𝒒̇𝑢 + 𝒒̇T

𝑎𝑩𝒒̇𝑎
)

, (3.23)

and the corresponding EL equations are given by
[

𝑴(𝒒𝑢) 𝟎
𝟎 𝑩

] [

𝒒̈𝑢
𝒒̈𝑎

]

+
[

𝑪11(𝒒𝑢, 𝒒̇𝑢) 𝟎
𝟎 𝟎

] [

𝒒̇𝑢
𝒒̇𝑎

]

+ 𝜕
𝜕𝒒

= 𝒖 +,

(𝒒𝑢)𝒒̈ + (𝒒𝑢, 𝒒̇𝑢)𝒒̇ +
𝜕
𝜕𝒒

= 𝒖 +,
(3.24)

with the degenerated inertia and Coriolis/centrifugal matrices compared to
(3.22).
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3.2.1 Some considerations from the control viewpoint

The inertially decoupled model (3.24) assumes the structure of a flexible joint
robot, which has been extensively studied in literature [143, 168]. The main [143]: Ozgoli et al. (2006), “A survey on

the control of flexible joint robots”
[168]: Spong (1987), “Modeling and con-
trol of elastic joint robots”

differences are: (1) the elastic potential energy is not necessarily a quadratic
form, (2) the number of of actuated coordinates is greater than or equal to
the number of unactuated coordinates, i.e. 𝑛𝑎 ≥ 𝑛𝑢. From the control point
of view, the main advantage of the model reduction proposed by Spong lies
arguably in the fact that the model (3.24) is feedback linearizable [168]. The
“full” model, by contrast, is only dynamic feedback linearizable [31]. Many [31]: De Luca et al. (1998), “A general al-

gorithm for dynamic feedback linearization
of robots with elastic joints”ASR designs can be described by a dynamics model that neglects inertial

couplings between the motor and link dynamics, see, e.g. [41, 189] for further [41]: Eiberger et al. (2010), “On joint design
with intrinsic variable compliance: Deriva-
tion of the DLR QA-joint”
[189]: Van Ham et al. (2007), “MACCEPA,
the mechanically adjustable compliance
and controllable equilibrium position actu-
ator: Design and implementation in a biped
robot”

examples.

Further effects

Deriving a model for a mechanical system is always a process of abstraction
and simplification. In this process, it is critical to identify and model the
dynamic effects which are dominant. The implementation of harmonic drives
into the actuation units introduces significant friction [186]. The friction in a [186]: Tuttle (1992), “Understanding and

modeling the behavior of a harmonic drive
gear transmission”harmonic drive is highly nonlinear and constituted by four main components:

1) Coulomb friction, 2) velocity-dependent friction, 3) position-dependent
friction, and 4) friction from resonance vibration [185]. To ensure that the [185]: Tuttle et al. (1996), “A nonlinear

model of a harmonic drive gear transmis-
sion”model (3.24) matches the actual system reasonably well, all the controllers

developed for DLR David in Chapter 7 are implemented together with a
friction compensation algorithm. This ensures, that the motor-side friction
can be neglected during the control design.

Control bandwidth

On DLR David, the torque controller runs at 3 kHz, whereas the underlying
current controller runs at 100 kHz [79]. This two-time-scale behavior allows [79]: Jörg et al. (2011), “The computing

and communication architecture of the DLR
hand arm system”for a cascaded current and torque controller design. Throughout this work, we

will consider the actuators as ideal torque sources.

3.2.2 Euler-Lagrange equations

It is well known that systems described by Euler-Lagrange Equations (EL)
posses nice passivity properties that follow directly from energy flow consid-
erations; see, e.g., [191]. In particular, elastic joint robots define a passive [191]: van Schaft (2017), L2-Gain and Pas-

sivity Techniques in Nonlinear Controloperator from applied actuator torques to motor shaft velocities, though it is not
passive with respect to the link velocities. Using the kinetic and potential en-
ergy functions of an ASR it is straightforward to formulate its Euler-Lagrange
equations

d
d𝑡

(

𝜕
𝜕𝒒̇

(𝒒, 𝒒̇)
)

− 𝜕
𝜕𝒒

(𝒒, 𝒒̇) =  = 𝒖 − 𝜕
𝜕𝒒̇

(𝒒̇) +′, (3.25)

where 𝒒 ∈ ℝ𝑛 denote the generalized coordinates, (𝒒, 𝒒̇) ≜  (𝒒, 𝒒̇) − (𝒒)
is the Lagrangian with  and  representing the kinetic and potential energies,
respectively. We consider three types of external forces: control actions ,
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interaction of the system with its environment ′ ∈ ℝ𝑛 and dissipation. The
control 𝒖𝑎 ∈ ℝ𝑛𝑎 enters linearly via 𝒖 ∈ ℝ𝑛, where  ∈ ℝ𝑛×𝑛𝑎 denotes
a constant input matrix. In some cases the Lagrangian can be adopted toA mnemonic: throughout this work index 𝑎

stands for “actuated” and index 𝑢 for “un-
actuated". E.g. 𝑛𝑎 denotes the number of
actuated coordinates.

take non-conservative dissipative forces into account. This is in particular the
case when the dissipative forces are of the form − 𝜕

𝜕𝒒̇ (𝒒̇), where  (𝒒̇) is the
Rayleigh dissipation function which by definition satisfies

𝒒̇T 𝜕
𝜕𝒒̇

≥ 0 ∀𝒒̇ ∈ ℝ𝑛.

In this case a non-conservative Lagrangian nc can be formulates that incor-
porates dissipation

nc ≜  + ∫

𝑡

0
 (𝒒̇)𝑑𝑡

Applying Hamiltonian’s principle to this new Lagrangian nc yields (3.25),
see [133] for details. In summary, we can characterize the EL equations (3.25)
by the EL parameters { (𝒒, 𝒒̇),(𝒒), (𝒒̇), ,′}. Occasionally, we shall
make use of the fact that the LHS of the EL equations (3.25) can be rewritten
equivalently in matrix form as:

(𝒒)𝒒̈ + (𝒒, 𝒒̇)𝒒̇ + 𝜕
𝜕𝒒

+ 𝜕
𝜕𝒒̇

(𝒒̇) = , (3.26)

with the potential forces 𝜕
𝜕𝒒 (𝒒) constituted by generalized elastic and gravity

forces.



THE MAIN CONTRIBUTIONS





From Underactuation to
Quasi-Full Actuation 4

4.1 A Structure Preserving Input
and Coordinate Transforma-
tion . . . . . . . . . . . . . . . . . 51

4.1.1 A Rigid Joint . . . . . . . . . . . 51
4.1.2 An Elastic Joint . . . . . . . . . . 53
4.2 Energy-Shaping Control . . . . 57
4.2.1 Simulation . . . . . . . . . . . . . 58
4.3 Dynamics of the QFA System . 59
4.4 The Virtual Coordinates: A

Geometric Interpretation . . . . 60
4.5 Extending the Idea of Quasi-

Full Actuation . . . . . . . . . . 63
4.5.1 Nonlinear Springs . . . . . . . . 63
4.5.2 BAVS . . . . . . . . . . . . . . . 65
4.6 Spong Model Revisited . . . . . 68
4.7 Summary . . . . . . . . . . . . . 71

A new idea comes suddenly and in a rather intuitive way. But intuition is
nothing but the outcome of earlier intellectual experience.

– Albert Einstein

This chapter guides the reader through the intuition and physical reasoning
that lead to the development of the novel concept of quasi full actuation (QFA)
on the basis of simple examples. We start with some physical observations for
a series elastic actuator that result in the derivation of input and coordinate
transforming equations that allow such system to be treated as if fully actuated.
Section 4.1 extends this idea to multi-articulated compliant joints.

In the sense of Tao [180], this chapter should be viewed as the “pre-
rigorous” stage building intuition, which is followed by an abstract “rigorous”
stage in Chapter 5 generalizing the presented concepts to a class of Euler-
Lagrange.

4.1 A Structure Preserving Input and Coordinate
Transformation

The proposed approach has strong connections to passivity-based control
methods [133, 191], which exploit the robot’s intrinsic physical structure. This [133]: Ortega (1998), Passivity-Based Con-

trol of Euler-Lagrange Systems: Mechani-
cal, Electrical, and Electromechanical Ap-
plications
[191]: van Schaft (2017), L2-Gain and Pas-
sivity Techniques in Nonlinear Control

lies at the core of our idea: exploiting the physical structure of a soft robot to
transform it into an easier manageable (controllable) form. This transformation
is led by energy considerations. Before continuing, let us recap properties of
Euler-Lagrange systems that will be relevant for the following developments.
The equilibria of an EL system are determined by the critical points of its
potential function. Importantly, given that the potential function has a global
and unique minimum, the equilibrium of the EL system is unique and globally
stable (as pointed out in Proposition 2.5.2). If suitable1 damping is present 1: In this chapter, we consider only the case

of fully damped closed loops, which is a
sufficient but not necessary condition. For
certain inertia matrices partial damping is
sufficient [152]. A special case is treated in
Proposition 2.5.2.

in the system, this equilibrium is asymptotically stable (see again Proposi-
tion 2.5.3). These two fundamental properties were first exploited in [178].

[178]: Takegaki et al. (1981), “A new feed-
back method for dynamic control of manip-
ulators”

Takegaki and Arimoto translated the problem of point regulation of robots
into a problem of shaping its potential energy and injecting damping. It can be
interpreted as a two-stage approach. First, the potential energy is modified such
that the system has a global and unique minimum at the desired equilibrium
configuration. Second, the Rayleigh dissipation function is modified to ensure
asymptotic convergence.

4.1.1 A Rigid Joint

Let us revise the energy shaping concept from Takegaki and Arimoto [178]
on the basis of a single robot joint as shown in Fig. 4.1.
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Without loss of generality, consider the joint to be represented by a pendu-
lum, constituted by a point mass 𝑚 on a massless link of unit length, that is
driven by an external torque 𝑢. Let 𝑞 be a generalized coordinate representing
the link position. The total energy of the system is

 = 1
2𝑚𝑞̇

2

⏟⏟⏟
 (𝑞,𝑞̇)

+𝑚𝑔0(1 − cos 𝑞)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

(𝑞)

, (4.1)

where 𝑔0 denotes the standard acceleration due to gravity. Let 𝑔(𝑞) denote the
gravitational force derived from the gravitational potential , i.e. 𝑔(𝑞) ≜ 𝜕

𝜕𝑞 (𝑞),then the corresponding Euler-Lagrange equations are
𝑚𝑞 + 𝑔(𝑞) = 𝑢. (4.2)

𝑞

𝑚𝑔0

𝑚

𝑢

Figure 4.1: A rigid joint with control input
𝑢 represent a mathematical pendulum. The
point mass 𝑚 on a massless rod reflects the
link inertia.

Suppose that we want to asymptotically stabilize the joint at a constant
equilibrium (𝑞, 𝑞̇) = (𝑞∗, 0), where 𝑞∗ is the desired equilibrium link position.
Then we can do so by modifying the potential energy and Rayleigh function of
the system accordingly, while leaving the kinetic energy unchanged. Knowing
that a minimum of the potential energy corresponds to a stable equilibrium
point, it is clear that the resulting potential function ∗ should have a minimum
at 𝑞 = 𝑞∗. A basic candidate satisfying this condition is

∗ = 1
2𝑘𝑝𝑞

2, (4.3)

where 𝑞 ≜ 𝑞 − 𝑞∗ and 𝑘𝑝 > 0. In order to render the equilibrium point at-
tractive, we can choose a Rayleigh dissipation function of the form 𝑑(𝑞̇) =
1
2𝑘𝑣𝑞̇

2, 𝑘𝑣 > 0. That is, we aim for an EL system characterized by { (𝑞, 𝑞̇),∗(𝑞)
and ∗}. The corresponding total energy is given by the Hamiltonian

∗ = 1
2𝑚𝑞̇

2

⏟⏟⏟
 (𝑞,𝑞̇)

+ 1
2𝑘𝑝𝑞

2

⏟⏟⏟
∗(𝑞)

. (4.4)

Fig. 4.2 shows a visual representation of a system determined by 𝑑 and
∗.

𝑞∗
𝑘𝑝

𝑘𝑣

𝑞

𝑚

Figure 4.2: A single joint under PD plus
gravity cancellation control.

We can easily find a control input for system (4.2) such that its potential
function turns into the desired one. It is straightforward to see that

𝑢𝑃𝐷 = −
𝜕𝑉𝑐
𝜕𝑞

(𝑞)
⏟⏟⏟

energy shaping

−
𝜕𝑑
𝜕𝑞̇

(𝑞̇)
⏟⏟⏟

damping injection

= 𝑔(𝑞) − 𝑘𝑝𝑞 − 𝑘𝑣𝑞̇. (4.5)

with the controller potential function
𝑐(𝑞) ≜ ∗(𝑞) − (𝑞), (4.6)

produces the desired result. Equation (4.5) represents the popular PD plus
gravity cancellation control law. In addition to full-state measurement, the
application of this method requires the system to be fully actuated. Applying
control input (4.5) to system (4.2), we eventually get the closed-loop model

𝑚𝑞 + 𝑘𝑣𝑞̇ + 𝑘𝑝𝑞 = 0, (4.7)
as visualized in Fig. 4.2. Clearly, the total energy of the closed loop is given
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𝑞𝑢

𝜑

𝑚𝑔 𝑘

𝑞𝑎

𝑚

𝑏 𝑢𝑎

output
link

input
link

Figure 4.3: An elastic joint represented by
two mathematical pendulums. The point
masses 𝑚 and 𝑏 on massless rods encode
the link and reflected motor inertias, respec-
tively. The control input 𝑢𝑎 acts on the input
link.

by the desired Hamiltonian 𝑑 in (4.4).

4.1.2 An Elastic Joint

How can we transfer this idea to a series elastic actuator? We start with
some initial observations for a single flexible robot joint as shown in Fig. 4.3.
Representing the motor inertia by another mathematical pendulum, we can
visualize a SEA as indicated in 4.3. To distinguish the two pendulums, we
refer to them as output link and input link. The value of Fig. 4.3 manifests in
the fact that it equips us with a simple and intuitive physical picture for all
the considerations that are about to come. The unactuated link and actuated
motor positions are denoted by 𝑞𝑢 and 𝑞𝑎, respectively, where the former is
the (noncollocated) output. The link and motor inertias are encoded by the
point masses 𝑚 and 𝑏 on massless links. Again, without loss of generality, we
consider links of unit length. We define the joint deflection as

𝜑 ≜ 𝑞𝑎 − 𝑞𝑢, (4.8)
and the joint stiffness by 𝑘. External forces are represented by the vector
′ =

[

′
𝑢,

′
𝑎
]T. The total energy of the system is

(𝑞𝑢, 𝑞𝑎, 𝑞̇𝑢, 𝑞̇𝑎) =
1
2

(

𝑚𝑞̇2𝑢 + 𝑏𝑞̇
2
𝑎
)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
 (𝑞̇𝑢,𝑞̇𝑎)

+ 1
2𝑘(𝑞𝑎 − 𝑞𝑢)

2 + 𝑚𝑔(1 − cos 𝑞𝑢)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(𝑞𝑢,𝑞𝑎)

,
(4.9)

where  is the sum of the elastic and gravity potential energies 𝑒 and 𝑔 .
The corresponding Euler-Lagrange equations are

Σ∶
[

𝑚 0
0 𝑏

] [

𝑞𝑢
𝑞𝑎

]

+
[

𝑘 −𝑘
−𝑘 𝑘

] [

𝑞𝑢
𝑞𝑎

]

+
[

𝑔(𝑞𝑢)
0

]

=
[

0
𝑢𝑎

]

. (4.10)

Let us continue with some basic physical considerations. Imagine that we had
a control input 𝑢̄𝑢 that acts directly on the link of system (4.10). This would
trivialize the energy shaping and damping injection procedure. However, we
only have “indirect” control of the link via the generalized elastic force arising
from the potential field 𝑒

𝜓(𝜑) =
𝜕𝑒(𝜑)
𝜕𝜑

= 𝑘𝜑. (4.11)



54 4 From Underactuation to Quasi-Full Actuation

Figure 4.4: State transformations for linear
springs: deflection states

𝜑

𝜑̄

𝜑 − 𝜑̄

𝑒(𝜑). . . elastic potential energy (actual)

Δ𝜓
Δ𝜑 = 𝑘

𝑢̄𝑢

𝜓(𝜑)

generalized forces

deflections

𝑒(𝜑̄). . . elastic potential energy (virtual)

𝜓(𝜑̄)

We can now express the error between the actual and desired link-side force—
analogously to (4.11)—in terms of a generalized force

𝜓(𝜑̄) ≜ 𝜓(𝜑) − 𝑢̄𝑢, (4.12)
where 𝜑̄ represents a virtual joint deflection encoding the force error, as

visualized in Fig. 4.4. This is the fundamental idea underlying this work;
we encode the force error by a virtual joint deflection. The central theme of
duality is well established in physics and mathematics. In mechanics, many
terms are associated into pairs called duals, e.g., force (stress) and deformation
(strain) [21]. Here, we introduce a duality between between the force error
and a virtual deflection. Using the definition (4.11), we can rewrite (4.12)

𝜑̄ = 𝜑 − 𝑘−1𝑢̄𝑢. (4.13)

Remark 4.1.1 In (4.12) we are not limited to choosing the same potential
function, 𝑒, for encoding the force error. However, in this work, our goal
is to transform the underactuated dynamics into a quasi-fully actuated form
while preserving the system structure. For this reason, we choose again
potential function 𝑒.

Introducing new motor coordinates 𝑞𝑎 ≜ 𝜑̄ + 𝑞𝑢, in analogous form to (4.8),
we can re-formulate (4.13) in terms of motor coordinates

𝑞𝑎 = 𝑞𝑎 − 𝑘−1𝑢̄𝑢. (4.14)
Geometrically, the new motor state is formed by shifting the original motor
position. The magnitude of the shift is directly proportional to the desired
torque 𝑢̄𝑢 with the joint compliance 𝑘−1 being the coefficient of proportionality.
Noting that (4.14) has the same form as (4.13), it is clear that Fig. 4.4 serves
as visualization of (4.14) as well (simply replace the deflection with the
corresponding motor coordinates). Inspired by [86], we use the transforming
equations (4.14), to perform a change of coordinates (𝑞𝑢, 𝑞𝑎) → (𝑞𝑢, 𝑞𝑎) for
system (4.10). Inserting

[

𝑞𝑢
𝑞𝑎

]

=
[

1 0
0 1

] [

𝑞𝑢
𝑞𝑎

]

+
[

0
𝑘−1𝑢̄𝑢

]

(4.15)
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𝑞𝑢
𝑚𝑔 𝑘

𝜑𝑐 = 𝑘−1𝑢̄𝑢

𝑞𝑎

𝑢̄𝑎
𝑢̄𝑢

𝜑̄

𝑏

𝑏

𝑚 Virtual
link

Output
link

𝑞𝑎

Input
link

Figure 4.5: A series elastic actuator in its
quasi-fully actuated representation.

into (4.10) yields
[

𝑚 0
0 𝑏

] [

𝑞𝑢
̈̄𝑞𝑎

]

+
[

𝑘 −𝑘
−𝑘 𝑘

] [

𝑞𝑢
𝑞𝑎

]

+
[

𝑔(𝑞𝑢)
0

]

=
[

𝑢̄𝑢
𝑢𝑎

]

−
[

0
𝛾

]

+′ (4.16)

with 𝛾 ≜ 𝑏𝑘−1 ̈̄𝑢𝑢 + 𝑢̄𝑢. Applying the input transformation
𝑢𝑎 = 𝛾 + 𝑢̄𝑎, (4.17)

to (4.16), we obtain the “quasi-fully actuated” form

Σ̄∶
[

𝑚 0
0 𝑏

] [

𝑞𝑢
̈̄𝑞𝑎

]

+
[

𝑘 −𝑘
−𝑘 𝑘

] [

𝑞𝑢
𝑞𝑎

]

+
[

𝑔(𝑞𝑢)
0

]

=
[

𝑢̄𝑢
𝑢̄𝑎

]

+′. (4.18)

Strikingly, by considering 𝑞𝑢 and 𝑞𝑎 as generalized coordinates, the trans-
formed system (4.18) is an EL system with total energy

(𝑞𝑢, 𝑞𝑎, 𝑞̇𝑢, ̇̄𝑞𝑎) =
1
2

(

𝑚𝑞̇2𝑢 + 𝑏 ̇̄𝑞
2
𝑎
)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
 (𝑞̇𝑢, ̇̄𝑞𝑎)

+ 1
2𝑘

(

𝑞𝑎 − 𝑞𝑢
)2 + 𝑔(𝑞𝑢)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(𝑞𝑢,𝑞𝑎)

,

which is visualized in Fig. 4.5. As indicated in Fig. 4.5, the only differ-
ence between the dynamics formulation Σ and Σ̄ is the relative shift of
the virtual and actual motor positions for 𝑢̄𝑢 ≠ 0. The EL parameters are
{

 (𝑞̇𝑢, ̇̄𝑞𝑎),(𝑞𝑢, 𝑞𝑎), 0,1
} with an identity input matrix 1 ≜ 𝑰 ∈ ℝ2 and

the new control vector 𝒖̄ ≜ [𝑢̄𝑢, 𝑢̄𝑎]T. Thus, we have transformed the feedback
stabilization problem of an underactuated EL system into the feedback sta-
bilization problem of a quasi-fully-actuated EL system. Notice that only the
input matrix has changed with all other EL parameters being the same. In
particular, Σ and Σ̄ are characterized by the same kinetic and potential energy
functions. Consequently, the passivity properties are preserved. System Σ1
defines an output strictly passive (OSP) map ′ → [𝑞̇𝑢 ̇̄𝑞𝑎]T. This can be easily
shown with  as storage function.

It is important to point out that our new link-side control input 𝑢̄𝑢 obeys
some restrictions. From the input transformation (4.17), as visualized in the
block-diagram of Fig. 4.6, we know that it must be at least twice differentiable
with respect to time.

𝑢

𝑢̄𝑢

𝑢̄𝑎

d2
d𝑡2

𝑏
𝑘

rigid robot path

Figure 4.6: Input transformation.
In addition, we must ensure that (4.12) defines a diffeomorphism between

the original deflection state 𝜑 and the new deflection state 𝜑̄. In order to
simplify the analysis, we assume that 𝑢̄𝑢 is solely a function of 𝑞𝑢, 𝑞̇𝑢 and 𝑡.
Further, we assume that 𝑢̄𝑢 is a bounded function for bounded 𝑞𝑢, 𝑞̇𝑢 and for
any 𝑡 ∈ [0,∞). As we will see in the next step, these constraints pose no
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obstruction to our goal of adopting the energy shaping technique to solve the
regulation problem.

Remark 4.1.2 Note for the special case 𝑢̄𝑢 = 0, system Σ and Σ̄ are
equivalent, since from (4.14) it follows that 𝑞𝑎 = 𝑞𝑎. In other words, as long
as we do not pick a control law for 𝑢̄𝑢 the process so far did not change the
intrinsic system dynamics at all. Thus, we may conceive (4.17) as a pure
input transformation. Only in the second stage, when we design 𝑢̄𝑢 and 𝑢̄𝑎,
we will actually shape the system dynamics.

Considering the quasi-fully actuated system, we could now proceed with ap-
plying classical energy shaping and damping injection techniques that have
been developed for fully actuated system’s such as [178], [98], [136], [164]
etc.. However, we want to exploit the duality of the force error and the new
deflection state that we introduced in (4.13). Thus, we perform a change of
coordinates from the virtual motor space into the virtual deflection space.
This has several advantages. First, 𝜑̄ is directly proportional to the force error.
Second, it allows us to exploit the central force field character of the elastic
potential [87] to simplify any analysis further down the road. As demonstrated[87]: Keppler et al. (2020), “On time-

optimal control of elastic joints under input
constraints” below, this allows separating the potential forces into rigid body and elastic

potential forces. This point is absolutely critical for analyzing and controlling
the robot arm with respect to the dynamic behavior of its end effector (the
unified force and motion control problem in task space). We treat this prob-
lem in Chapter 7. Let us continue with applying a coordinate transformation
(𝑞𝑢, 𝑞𝑎) → (𝑞𝑢, 𝜑̄) with

[

𝑞𝑢
𝜑̄

]

= 𝑻 2

[

𝑞𝑢
𝑞𝑎

]

, 𝑻 2 ≜
[

1 0
−1 1

]

(4.19)

to system (4.18). Then, the Hamiltonian of Σ̄ transforms to
(𝑞𝑢, 𝑞𝑢 + 𝜑̄, 𝑞̇𝑢, 𝑞̇𝑢 + ̇̄𝜑) =
1
2

(

𝑚𝑞̇2𝑢 + 𝑏(𝑞̇𝑢 + ̇̄𝜑)2
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
 (𝑞̇𝑢,𝑞̇𝑢+ ̇̄𝜑)

+ 1
2𝑘𝜑̄

2

⏟⏟⏟
𝑒(𝜑̄)

+𝑔(𝑞𝑢). (4.20)

We can think of this transformation as a separation of the generalized coor-
dinates into rigid, 𝑞𝑢, and elastic coordinates, 𝜑̄. We observe that the total
potential energy is given by the superposition of a purely rigid and purely
elastic potential. The EL parameters expressed in the new coordinates are
{

 (𝑞̇𝑢, 𝑞̇𝑢 + ̇̄𝜑),(𝑞𝑢, 𝑞𝑢 + 𝜑̄), 0,2
}. It is important to remark that only the

input matrix has changed to 2 ≜ 𝑻 −T
2 1 =

[ 1 1
0 1

]. By applying Hamilton’s
principle to (4.20), we obtain the EL equations

d
d𝑡

(

𝜕
𝜕𝑞̇𝑢

)

= − 𝑔(𝑞𝑢) +
2
∑

𝑖∈{𝑢,𝑎}

(

𝑢̄𝑖 +′
𝑖
)

, (4.21)

d
d𝑡

(

𝜕
𝜕 ̇̄𝜑

)

= − 𝑘𝜑̄ + 𝑢̄𝑎 +′
𝑎 (4.22)

When performing a change of coordinates the virtual work of the generalized
forces must be conserved which gives us the last four terms in (4.21). Since
the equilibrium of the subsystem (4.21) is independent of (𝑞𝑎, ̇̄𝑞𝑎), it is clear
that in order to (asymptotically) stabilize the output at a desired position, it
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is sufficient to choose a controller 𝑢̄𝑢 with feedback of 𝑞𝑢, 𝑞̇𝑢 only. Physically
speaking, the LHS of (4.21) describes the rate of change of the generalized
momentum (also called canonical momentum) associated with 𝑞𝑢. Note that
we could easily cancel the effect of the gravity field by choosing our rigid input
𝑢̄𝑢 accordingly. In this case, the potential function would be independent of
the output 𝑞𝑢 which would trivializes the energy shaping part of the controller
design. In fact, this cancellation would render the output coordinate 𝑞𝑢 into
a cyclic coordinate [52]. Hence its associated conjugate momentum would
be conserved and thus become a constant of motion in absence of external
forces. In this case (4.21) would describe the motion of the center of mass
(𝑞𝑐), since the LHS describes the rate of change of the generalized momentum
associated with the center of mass position. The second EL equation, (4.22),
describes the relative motion of the two generalized inertias. We can rewrite
(4.21) and (4.22) as

Σ3 ∶
[

𝑚 + 𝑏 𝑏
𝑏 𝑏

] [

𝑞𝑢
̈̄𝜑

]

+
[

0 0
0 𝑘

] [

𝑞𝑢
𝜑̄

]

+
[

𝑔(𝑞𝑢)
0

]

= 2
(

𝒖̄ +′) . (4.23)

This matrix form can also be obtained straightforwardly by applying the coor-
dinate transformation (4.19) directly to dynamics equations (4.23).

Remark 4.1.3 The implementation of input transformation (4.17) requires
the signal ̈̄𝑢𝑢, which can be computed without differentiation if 𝑢̄𝑢 contains
feedback of only 𝑞𝑢 and 𝑞̇𝑢. This is a fundamental property of the Spong
model [168], which is lost in the complete model [126]. To implement the
control law (4.17) plus (4.24) requires only position and velocity measure-
ments. However, the fidelity of the model-based calculation of the output
acceleration and jerk relies on the availability of an estimation of the ex-
ternal forces and their time derivatives. See Appendix B.2 for a detailed
discussion.

4.2 Energy Shaping Control for Series Elastic
Joints

We are now in a position where we can adopt the energy shaping technique
in a direct manner. Since the noncollocated output is now quasi actuated,
we can easily shift the equilibrium of the EL system. We aim for a unique
equilibrium at 𝑞𝑢 = 𝑞∗. To this end, we span a virtual spring from the link to
its desired position. In addition, we cancel the effect of the gravity field such
that the potential energy has a unique minimum at (𝑞𝑢, 𝜑̄) = (𝑞∗, 0). To render
this equilibrium attractive we attach a damper to each inertia. The resulting
behavior is visualized in Fig. (4.7). This behavior is achieved with the control
input

[

𝑢̄𝑢
𝑢̄𝑎

]

=
[

𝑢𝑃𝐷
−𝑘𝑣𝑎 ̇̄𝑞𝑎

]

(4.24)

We observe that the first input in (4.24) is simply the rigid joint control law
(4.5) (obviously, written in terms of the link coordinate 𝑞𝑢. The second input
is used to render the system fully damped. This will be the general pattern for
the ASR impedance controllers presented in Chapter 7.
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Figure 4.7: A single elastic joint under
adopted PD plus gravity cancellation con-
trol.
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Why does the approach above work? Let us re-derive the controller (4.24),
by directly applying the energy shaping machinery, as introduced in [178].
To this end, we express our desired damping behavior in terms of a Rayleigh
function.

𝑑 = 1
2

[

𝑞̇𝑢
̇̄𝑞𝑎

]T
𝑣

[

𝑞̇𝑢
̇̄𝑞𝑎

]

= 1
2

[

𝑞̇𝑢
̇̄𝜑

]T
𝑻 −T
2 𝑣𝑻 −1

2

[

𝑞̇𝑢
̇̄𝜑

]

(4.25)

with the positive gain matrix 𝑣 ≜ diag
(

𝑘𝑣𝑢, 𝑘𝑣𝑎
). It is important to note that

2 = 𝑻 −T
2 . The desired closed-loop potential energy is given by∗ = 𝑒(𝜑̄)+

1
2𝑘𝑝𝑞

2. Our goal is to find a control input 𝒖̄ such that the closed-loop system
is characterized by the EL parameters { (𝑞̇𝑢, ̇̄𝑞𝑎),∗(𝑞𝑢, 𝑞𝑎),𝑑(𝑞̇𝑢, ̇̄𝑞𝑎)

}. To
this end, we choose our input for (4.23) as [178]

2𝒖̄ = −

[ 𝜕
𝜕𝑞𝑢
𝜕
𝜕𝜑̄

]

𝑐(𝑞𝑢) −

[ 𝜕
𝜕𝑞̇𝑢
𝜕
𝜕 ̇̄𝜑

]

𝑑(𝑞̇𝑢, ̇̄𝜑) ≡ (4.26)

𝒖̄ = −

[ 𝜕𝑐
𝜕𝑞𝑢

(𝑞𝑢)
0

]

−𝑣𝑻 −1
2

[

𝑞̇𝑢
̇̄𝜑

]

=
[

𝑢𝑃𝐷
−𝑘𝑣𝑎 ̇̄𝑞𝑎

]

. (4.27)

The potential function 𝑐 of the controller is defined as in (4.6). The equiva-
lence of (4.26) and (4.27) is due to the fact that we may pre-multiply the LHS
and RHS with the inverse of the input matrix −1

2 since it has full rank. The
Hamiltonian of the closed-loop system is given by

𝑐𝑙 =  (𝑞̇𝑢, 𝑞̇𝑢 + ̇̄𝜑) + 𝑒(𝜑̄) +
1
2𝑘𝑝𝑞

2, (4.28)
where the latter two terms constitute the desired closed-loop potential en-
ergy.

4.2.1 Simulation

In this section, we analyze the closed-loop behaviors of the rigid and flexible
joint systems that are illustrated in Fig. 4.2 and Fig. 4.7. That is, we consider
system (4.2) under control of (4.5) and system (4.10) under control of (4.24).
Further, the motor inertia 𝑏 is shaped to 𝑏∗ = 𝛼𝑏, with 𝛼 representing the motor
inertia shaping factor. The system and control parameters are summarized in
Table 4.1. The damping parameters are calculated as follows: 𝑘𝑣𝑢 = 2𝜉

√

𝑚𝑘𝑝
and 𝑘𝑣𝑎 = 2𝜉

√

𝑏∗ 𝑘. Choosing 𝜉 = 0.7 ensures a nice convergence behavior.
Both systems are initially at rest with the initial configuration 𝑞𝑢 = 𝜑 = 0.
The desired output position is 𝑞∗ = 0.1 rad. Fig. 4.8 and Fig. 4.11 show the
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𝑚 𝑏 𝑘 𝑘𝑝𝑢 𝑘𝑣𝑢 𝑘𝑣𝑎 𝜉 𝛼

1 0.2 100 200 19.8 1.98 0.7 0.1
1 0.2 100 200 19.8 6.26 0.7 1
1 0.2 100 200 19.8 19.8 0.7 10

Table 4.1: System and control parameters

No Motor Inertia Shaping Motor Inertia Reduction (1/10)Motor Inertia Increase (10)

Sta
tes

[ra
d]

En
erg

ies
[J]

0 0.25 0.5
Time [s]

0 0.25 0.5
Time [s] 0 0.25 0.5

time [s]

0.2

0.1

0

-0.1

-0.2
3

2

1

0
0 0.5 1

Time [s]

cl
e(𝜑̄)
e(𝜑)
pd+

𝑞
𝜑̄

𝜑
𝑞pd+

Figure 4.8: Step response of the closed-loop systems illustrated in Fig. 4.2 and Fig. 4.7. The plots illustrate the effect of motor inertia shaping. As
anticipated, the link converges to its desired position 𝑞∗ and 𝜑̄ converges to zero. The limit value of 𝜑 is given by the static equilibrium condition
such that the spring torque balances the pull of gravity on the link.

step-responses for different motor inertia values that are due to motor inertia
shaping, cf. Table 4.1.

Remark 4.2.1 It makes no difference whether we shape the motor inertia
first and then apply the input and state transformation on the shaped system,
or, whether we apply the input and coordinate transformation first and then
shape the motor inertia utilizing the new motor-side input.

4.3 Dynamics of the QFA System

Note that the points discussed in this section generalize to the multi-joint
case which is treated in Chapter 7. However, most aspects of the presented
framework can be introduced more intuitively on the basis of a single joint
since it provides us with a simple picture of the closed-loop dynamics.

A fundamental aspect of the proposed concept is that it enables damping
and stiffness behaviors to be specified directly in terms of the noncollocated
output (rigid coordinates). This in turn, allows for an easy adjustment of the
output convergence behavior. The tuning reduces to selecting the link-side
stiffness and the damping factors. The benefits of controller gains that come
with a physical intuition cannot be overestimated for the commissioning and
tuning stage of a controller. This intuition is of particular importance when
designing controllers for the safe interaction between robots and humans.
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It is crucial to understand the effect of the motor inertias on the convergence
behavior of the closed-loop system in Fig. 4.7. Physical intuition suggest that
reducing motor inertias results in faster motor dynamics and thus smaller
springs deflections, 𝝋̄ during transient. Considering 𝜑̄’s dual nature to the
joint torque error, c.f. (4.12), we conclude that the lower the motor inertia the
closer the actual joint torque, 𝜓(𝜑) approximates the desired joint torque 𝑢̄𝑢.
This intuition is supported by the simulations results in Fig. 4.8. Notice the
increasing convergence rate of 𝜑̄ from left to right. Naturally, this behavior is
also reflected in the decay rate of the potential energy 𝑒(𝜑̄), (4.20). In other
words, for small motor inertia values, the virtual input 𝑢̄𝑢 dominates the elastic
torque, 𝜓(𝜑̄), such that the dynamic behavior of the flexible joint approaches
that of its corresponding rigid joint. This tendency is clearly visible in Fig. 4.8.
Notice that not only the variations of 𝑞 and 𝑞PD+ approach each other, but
other also the variations of the closed-loop energies of the rigid and elastic
joints PD+, (4.4), and cl, (4.28). In practice, we obviously face limitations
regarding to what degree the motor inertia can be lowered, since the control
inputs must respect the limits imposed by the respective hardware.

Considering the theoretical limit case of the motor inertia approaching zero,
we observe that the last term of the input transformation (4.17) approaches
zero. Thus, in the limit case 𝐵 → 0, the control input (4.17) approaches the
rigid joint control law. Interestingly, we observe the same tendency for the
limit case 𝑘→ ∞. In conclusion, for the limit cases 𝑘→ ∞ and/or 𝑏→ 0, that
would reduce the flexible joint model to the rigid one, the control input (4.17)
also reduces to the rigid joint equivalent. The closed-loop behavior in the
“almost rigid” case is an important aspect. Clearly, we do want to avoid high-
gain designs where the loop gains grow unbounded with increasing stiffness.
See [19] for an interesting and detailed discussion.

As a final remark, it is worth noting that the change of coordinates, (4.12),
and inputs, (4.17), by itself does not alter the dynamics of the plant. These
two transforming equations “merely” allow us to rewrite the system dynamics
of underactuated ASRs in a more tractable form by making the transformed
dynamics behave as if fully actuated. Only at the moment of picking a control
law for the virtual inputs, the system is actually modified.

4.4 The Virtual Coordinates: A Geometric
Interpretation

The coordinate transformation (4.36) allows for an elegant geometric interpre-
tation based on the Lagrangian picture of mechanics. Using Fig. 4.3, let us
determine the configuration space associated with a series elastic actuator. The
configuration of the first pendulum (representing the link inertia) is given by
the displacement angle 𝑞𝑢 so that the circle 𝑆1 can be associated with the space
of all possible configurations. Let the configuration of the second pendulum
(representing the motor inertia) be described by the deflection angle 𝜑. We see
from the elastic potential energy function 𝑒, (4.20), that the number of encir-
clements matter. Moreover precisely, 𝜑 can grow unbounded continuously in
positive and negative direction suggesting that we view the joint deflection
as point on the real number line. Since both links can move independently
from each other, the space of all possible configurations is given by product
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𝑡

(

𝜑(𝑡), 𝜑𝑐 (𝑡), 𝜑̄(𝑡)
)

𝜑

𝜑𝑐

𝜑̄

𝜑̄ = 0
𝑡0

𝜑, 𝜑̄ = 0

𝑃

𝑃

𝑡0

𝑡1

𝑡1

𝜑𝑐

𝜑̄ = 𝑐𝑜
𝑛𝑠𝑡.

Hyperplane defined by the
input transformation

𝑞 𝑢
,𝑞
𝑢
=
𝑐𝑜
𝑛𝑠
𝑡.

Figure 4.10: (left) Time evolution of the C-points associated with Σ and Σ̄ through the configuration space. (right) Alternative geometric
interpretation of the coordinate transformation (4.12) as defining a hyperplane in 3D space.

ℝ × 𝑆1, which is homeomorphic to an cylinder of infinite length, as pointed
out in Fig. 4.9.

𝑞𝑢

(𝑞𝑢, 𝜑)

(𝑞𝑢, 𝜑̄)

(𝑞𝑢, 𝜑)

(𝑞𝑢, 𝜑̄)

𝜑

𝜑̄

ℝ × 𝑆1

ℝ

𝑆1

Figure 4.9: Configuration space of a SEA.

Considering that Σ and Σ̄ share the same Lagrangian function, we conclude
that the configuration space must be ℝ×𝑆1 for both systems. This information
allows for an elegant geometric interpretation of the coordinate transformation
(4.13). Introducing 𝜑𝑐 ≜ 𝑢̄𝑢∕𝑘 (see also Fig. 4.5), allows rewriting (4.17) as

𝜑 − 𝜑̄ − 𝜑𝑐 = 0. (4.29)
Let the points 𝑃 and 𝑃 represent the configuration of Σ and Σ̄ in ℝ×𝑆1. Then,
according to (4.29), the trajectories of 𝑃 and 𝑃 are shifted by 𝜑𝑐 in a direction
parallel to the axis of the cylinder, as indicated in Fig. 4.9.

Observing that (4.29) defines a hyperplane in ℝ3 going through the ori-
gin as shown in Fig. 4.10, allows for different interpretation. Geometrically
speaking, as Σ and Σ̄ evolve in time, the triplet (𝜑(𝑡), 𝜑̄(𝑡), 𝜑𝑐(𝑡)

) traces out a
path on that hyperplane. Hence, all solutions of (4.23) evolve on that plane.
In general, we wish to design controllers such that the input force error 𝜑̄
vanishes for 𝑡 → ∞. In other words, we wish to render the line 𝜑 − 𝜑𝑐 = 0
(blue) on the hyperplane (4.29) attractive for Σ̄. In the Lagrangian picture, this
means rendering the subspace {0} × 𝑆1 attractive. The controller introduced
above achieves this goal as the simulation results in Fig. 4.10 clearly show.
Note, that the form of the hyperplane (4.29) is invariant to system parameter
variations and applies to any SEA with a linear spring. Projecting this hyper-
plane into the 𝜑𝑐 , 𝜑-plane allows the evolution of the deflection coordinates
to be visualized in a 2D plot. The corresponding isolines are straight since the
curvature of the hyperplane is by definition zero at every point. Due to the
scaling of the input axis, these isolines are parallel to 𝜑 = 𝜑𝑐 line. Fig. 4.11
shows the time evolution of the point (𝜑(𝑡), 𝜑̄(𝑡), 𝜑𝑐(𝑡)

) for the simulation
experiments reported above.

Projecting this hyperplane into the 𝜑𝑐 , 𝜑-plane allows the evolution of the
deflection coordinates to be visualized in a 2D plot, see Fig. (4.11). These
isolines are straight since the curvature of the hyperplane is by definition zero
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Figure 4.11: A projection of the hyperplane
in Fig. 4.10 (right) into the (𝜑,𝜑𝑐 )-plane
with the gray lines representing its contour
lines. The black curves represent the time
evolution of the point (𝜑,𝜑𝑐 , 𝜑̄) for each of
the three simulation experiments shown in
Fig. 4.8. As the origin of (𝜑̄, 𝑞) is globally
asymptotically stable, the systems tends to
the one-dimensional subspace given by the
line 𝜑−𝜑𝑐 = 0, which is dual to tending to
a zero torque error. The effect of scaling the
motor inertia on the rate of convergence is
clearly visible. The lower the motor inertia,
the faster the convergence to the line 𝜑 −
𝜑𝑐 = 0.
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at every point. Due to the scaling of the input axis, these isolines are parallel
to the line 𝜑 − 𝑢̄𝑢∕𝑘 = 0.
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4.5 Extending the Idea of Quasi-Full Actuation

This section sketches out how the QFA concept can be extended to a joint
with a nonlinear spring and a multi-articulated joint. Its purpose is mostly to
deepen the intuition of the QFA idea and the type of underactuated systems
considered throughout this work in order to facilitate understanding of the
generalizations of the QFA concept that are developed in the next Chapter.

4.5.1 Nonlinear Springs

Let us assume that the total energy of the system is given by
(𝑞𝑢, 𝑞𝑎, 𝑞̇𝑢, 𝑞̇𝑎) =  (𝑞̇𝑢, 𝑞̇𝑎) + 𝑒(𝑞𝑎 − 𝑞𝑢) + 𝑔(𝑞𝑢), (4.30)

𝑞𝑢

𝜑

𝑚𝑔 𝜓(𝜑)
𝑞𝑎

𝑚
𝑏 𝑢𝑎

Figure 4.12: An elastic joint with a nonlin-
ear elastic element.

with the kinetic energy  and the gravity potential energy 𝑔 defined as in
(4.9). The EL parameters are {

 (𝑞̇𝑢, 𝑞̇𝑎),(𝑞𝑢, 𝑞𝑎), 0,
} with  ≜

[ 0 0
0 1

],
input vector 𝒖 = [0, 𝑢𝑎]T and  being the sum of the elastic potential and
gravity potential. Applying the EL equations yields the model

Σ𝑞𝑎 ∶
[

𝑚 0
0 𝑏

] [

𝑞𝑢
𝑞𝑎

]

+
[

−𝜓(𝑞𝑎 − 𝑞𝑢)
𝜓(𝑞𝑎 − 𝑞𝑢)

]

+
[

𝑔(𝑞𝑢)
0

]

=
[

0
𝑢𝑎

]

. (4.31)

with the generalized elastic force originating from the elastic potential

𝜓(𝜑) =
𝜕𝑒(𝜑)
𝜕𝜑

. (4.32)

Applying the coordinate transformation [

𝑞𝑢, 𝑞𝑎
]

→
[

𝑞𝑢, 𝜑
] with

[

𝑞𝑢
𝜑

]

= 𝑻 2

[

𝑞𝑢
𝑞𝑎

]

, 𝑻 2 ≜
[

1 0
−1 1

]

(4.33)

transforms the Hamiltonian (4.30) to
(𝑞𝑢, 𝑞𝑢 + 𝜑, 𝑞̇𝑢, 𝑞̇𝑢 + 𝜑̇) =  (𝑞̇𝑢, 𝑞̇𝑢 + 𝜑̇) + 𝑒(𝜑) + 𝑔(𝑞𝑢). (4.34)

Similar to the case in Section 4.1, we can think of this transformation as a
separation of the generalized coordinates into rigid and elastic coordinates.
The EL parameters are {

 (𝑞̇𝑢, 𝑞̇𝑢 + 𝜑̇),(𝑞𝑢, 𝑞𝑢 + 𝜑), 0,𝜑
} with an input

matrix 𝜑 ≜
[ 0 1
0 1

]. The corresponding EL equations are:

Σ𝜑 ∶
[

𝑚 + 𝑏 𝑏
𝑏 𝑏

] [

𝑞𝑢
𝜑̈

]

+
[

−𝜓(𝜑)
𝜓(𝜑)

]

+
[

𝑔(𝑞𝑢)
0

]

=
[

𝑢𝑎
𝑢𝑎

]

. (4.35)

Again, let 𝑢̄𝑢 be the desired link side force. Then, we can express the er-
ror between the actual elastic force, 𝜓(𝜑), and the desired link-side force—
analogously to (4.11)—in terms of a generalized elastic forces

𝜓(𝜑̄) =
𝜕𝑒(𝜑̄)
𝜕𝜑̄

≜ 𝜓(𝜑) − 𝑢̄𝑢, (4.36)

where 𝜑̄ represents a virtual joint deflection that encodes the force error, and
thus will also be referred to as deflection error. This equation has the same
structure as (4.12), however, with the difference being that 𝑒 is no longer
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Figure 4.13: Geometric connection be-
tween the two deflection coordinates and
the desired link-side force. The shaded ar-
eas represent the stored elastic potential en-
ergies. 𝜑∗ can be conceived as desired joint
deflection, where the actual joint torque,
𝜓(𝜑), would match the desired torque, 𝑢̄𝑢.

𝜑

𝜑̄

𝜑∗

(𝜑). . . elastic potential energy (open-loop)

𝜕𝜓
𝜕𝜑 ≜ 𝜅(𝜑)

𝜓(𝜑)

forces

deflections

(𝜑̄). . . elastic potential energy (closed-loop)

𝜓(𝜑̄) = 𝜓(𝜑) − 𝑢̄𝑢

𝑢̄𝑢

𝜓

Figure 4.14: Examples of torque character-
istics that satisfy and violate the assumption
on the elastic potential energy. Only the first
function represents a diffeomorphism.

𝜏𝑖(𝜑𝑖)

Valid torque profile

𝜏𝑖(𝜑𝑖)𝜏𝑖(𝜑𝑖)

Invalid torque profile

𝜑𝑖 𝜑𝑖𝜑𝑖

Not
differentiable

Not
bijective

necessarily a quadratic potential function. We must, however, be careful since
not any arbitrary potential function 𝑒 allows this encoding. It is crucial to
ensure that the mapping from the force error to the deflection error is bijective.
In fact, this mapping must be a 𝐶𝑘, 𝑘 ≥ 2, diffeomorphism, c.f. 4.14. In
Chapter 5, we will rely on the implicit function theorem to formulate rigorous
conditions on the potential function 𝑒 that guarantee that (4.36), generalized
to a multi-DoF system, defines a change of coordinates. For the single joint
case, the conditions on 𝑒 become intuitively clear when connecting a geo-
metrical picture with the mapping between the force error and the deflection
error, as shown in Fig. 4.13. Geometrically, the new deflection state is formed
by shifting the original deflection state. The magnitude of the shift correlates
with the magnitude of the desired torque 𝑢̄𝑢.2 It is straightforward to see that2: Notice that the magnitude of the deflec-

tion shift is no longer directly proportional
to the magnitude of the desired torque as in
the linear spring case.

if 𝜓 has a strictly positive slope, i.e.,

𝜅(𝜑) ≜ 𝜕𝜓
𝜕𝜑

(𝜑) > 0, (4.37)

then this mapping is bijective. We conclude that if the potential function 𝑒 of
a given soft joint satisfies (4.37), we can apply the concept of the simultaneous
input and state transformation, introduced in Section 4.1, allowing us to treat
the joint as quasi-fully actuated. Note that (4.36) no longer defines a hyperplane.
The motion of the point (𝜑, 𝜑̄, 𝑢̄𝑢) now evolves on a hypersurface in 3D space
as illustrated in Fig. 4.15.

𝑢̄𝑢

𝜑

𝜑̄

t

𝜑̄ = 0

𝑢̄𝑢 = 0

Figure 4.15: Geometric interpretation of
the coordinate transforming equation (4.36),
which defines a hypersurface in 3D space.

Since (4.36) defines a change of coordinates, given an input 𝑢̄𝑢, we can find
for any𝜑 a unique 𝜑̄ and vice versa. This allows us to rewrite the joint dynamics
(4.31) in terms of deflection coordinates. Deriving (4.36) with respect to time,
we obtain:

𝜅(𝜑̄) ̇̄𝜑 = 𝜅(𝜑)𝜑̇ − ̇̄𝑢𝑢, (4.38)
It is worth noting that the velocities always appear linearly in the transforming
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equations considered in this work. Deriving (4.36) twice with respect to time,
we see that the same is true for the accelerations:

𝜅(𝜑̄) ̈̄𝜑 + 𝜅̇(𝜑̄) ̇̄𝜑 = 𝜅(𝜑)𝜑̈ + 𝜅̇(𝜑)𝜑̇ − ̈̄𝑢𝑢. (4.39)
The three transforming equations (4.36), (4.38), (4.39) allow us to rewrite
the joint dynamics in terms of the deflection error. In other words, (4.36)
qualifies as defining a change of coordinates. After applying this change of
coordinates, (𝑞𝑢, 𝜑) → (𝑞𝑢, 𝜑̄), it is possible to find a input transformation of
the form 𝑢 = 𝑢(𝑢̄𝑢, 𝑢̄𝑎, ̇̄𝑢𝑢, ̈̄𝑢𝑢, 𝑞, 𝑞̇) to obtain the QFA form of Σ:

Σ𝜑̄ ∶
[

𝑚 + 𝑏 𝑏
𝑏 𝑏

] [

𝑞𝑢
̈̄𝜑

]

+
[

−𝜓(𝜑̄)
𝜓(𝜑̄)

]

+
[

𝑔(𝑞𝑢)
0

]

=
[

𝑢̄𝑢 + 𝑢̄𝑎
𝑢̄𝑎

]

. (4.40)

𝑞𝑢
𝑚𝑔0 𝜓(𝜑̄)

𝑞𝑎

𝑢̄𝑎𝑢̄𝑢

𝑚
𝑏

𝜑̄

Figure 4.16: The quasi-fully actuated sys-
tem with the new inputs 𝑢̄𝑢 and 𝑢̄𝑎.

The general procedure is similar to the one presented in Section 4.1:
substitute (4.36), (4.38), (4.39) into (4.35) and compare the resulting dynamics
equations with the desired dynamics (4.40). Then choose the control input
𝑢𝑎 accordingly to achieve equivalence. A proof detailing the single steps is
not presented here as it follows directly from Theorem 5.3.6 developed in
Chapter 5.

4.5.2 Bidirectional Antagonistic Variable Stiffness Joint

Let us consider a bidirectional antagonistic variable stiffness (BAVS) joint of
the form

Σ∶
⎡

⎢

⎢

⎣

𝑚 0 0
0 𝑏 0
0 0 𝑏

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑞𝑢
𝑞𝑎1
𝑞𝑎2

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝜓1(𝑞𝑢, 𝑞𝑎) + 𝜓2(𝑞𝑢, 𝑞𝑎)
𝜓1(𝑞𝑢, 𝑞𝑎)
𝜓2(𝑞𝑢, 𝑞𝑎)

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝑔(𝑞𝑢)
0
0

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
𝑢𝑎1
𝑢𝑎2

⎤

⎥

⎥

⎦

,

(4.41)
as illustrated in Fig. 4.17 with its QFA representation

Σ̄∶
⎡

⎢

⎢

⎣

𝑚 0 0
0 𝑏 0
0 0 𝑏

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑞𝑢
̈̄𝑞𝑎,1
̈̄𝑞𝑎,2

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝜓1(𝑞𝑢, 𝑞𝑎) + 𝜓2(𝑞𝑢, 𝑞𝑎)
𝜓1(𝑞𝑢, 𝑞𝑎)
𝜓2(𝑞𝑢, 𝑞𝑎)

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝑔(𝑞𝑢)
0
0

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑢̄𝑢
𝑢̄𝑎1
𝑢̄𝑎2

⎤

⎥

⎥

⎦

.

(4.42)

We need to consider an even more general case where 𝜓1 is not the same
on the motor and link dynamics. See for example BAVS in DLR David.

Change of coordinates:
𝜓1(𝑞𝑢, 𝑞𝑎) + 𝜓2(𝑞𝑢, 𝑞𝑎) = 𝜓1(𝑞𝑢, 𝑞𝑎) + 𝜓2(𝑞𝑢, 𝑞𝑎) − 𝑢̄𝑢. (4.43)

Since we have only one equation, (4.43), for two unknowns (𝑞𝑎1, 𝑞𝑎2), we must
impose one additional constraint, e.g.:

𝜓𝑐(𝑞𝑢, 𝑞𝑎1, 𝑞𝑎2, 𝑞𝑎1, 𝑞𝑎2) = 0. (4.44)
The constraint equation has to be chosen such that the resulting set of equations
/eqref–/eqref satisfies the condition of the implicit function theorem and, thus,
guaranteeing a unique solution for (𝑞𝑎1, 𝑞𝑎2).
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𝑞𝑢
𝑚𝑔

𝑞𝑎2

𝑚

𝑏 𝑢𝑎1

𝑢𝑎2

𝑏

𝑞𝑎1

𝑞𝑢
𝑚𝑔 𝑘

𝑞𝑎1

𝑚

𝑏 𝑢̄𝑎1

𝑢̄𝑎2

𝑘

𝑏

𝑞𝑎2

𝑢̄𝑢

Quasi-full
actuation

𝑘

𝑘

Figure 4.17: A BAVS joint in its original and quasi-fully actuated form. For each input link, one virtual link is introduced.

A Basic Example: Linear Bidirectional Antagonistic Joint

For simplicity, let us consider the case of a bidirectional antagonistic joint
with linear3 spring characteristics as shown in Fig. 4.17. The equations of3: In general, BAVS rely on nonlinear

spring characteristics to achieve a variable
joint stiffness [14, 195]. However, for the
sake of simplicity, linear characteristics are
assumed.

motion are:
⎡

⎢

⎢

⎣

𝑚 0 0
0 𝑏 0
0 0 𝑏

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑞𝑢
𝑞𝑎1
𝑞𝑎2

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝑘(𝑞𝑢 − 𝑞𝑎1) + 𝑘(𝑞𝑢 − 𝑞𝑎2)
−𝑘(𝑞𝑢 − 𝑞𝑎1)
−𝑘(𝑞𝑢 − 𝑞𝑎2)

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝑔(𝑞𝑢)
0
0

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
𝑢1
𝑢𝑎

⎤

⎥

⎥

⎦

. (4.45)

and the corresponding QFA form is given by
⎡

⎢

⎢

⎣

𝑚 0 0
0 𝑏 0
0 0 𝑏

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

̈̄𝑞𝑢
̈̄𝑞𝑎1
̈̄𝑞𝑎2

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝑘(𝑞𝑢 − 𝑞𝑎1) + 𝑘(𝑞𝑢 − 𝑞𝑎2)
−𝑘(𝑞𝑢 − 𝑞𝑎1)
−𝑘(𝑞𝑢 − 𝑞𝑎2)

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝑔(𝑞𝑢)
0
0

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑢̄𝑢
𝑢̄𝑎1
𝑢̄𝑎2

⎤

⎥

⎥

⎦

, (4.46)

and the required the coordinate transformation (4.43) is:
𝑘(𝑞𝑎1 − 𝑞𝑢) + 𝑘(𝑞𝑎2 − 𝑞𝑢) = 𝑘(𝑞𝑎1 − 𝑞𝑢) + 𝑘(𝑞𝑎2 − 𝑞𝑢) − 𝑢̄𝑢, (4.47)

which can be further reduced to:
𝑞𝑎1 + 𝑞𝑎2 = 𝑞𝑎1 + 𝑞𝑎2 − 𝑢̄𝑢∕𝑘. (4.48)

With (4.48), we have one equation for two unknowns, (𝑞𝑎1, 𝑞𝑎2). Thus an
additional constraint equation is required to obtain a system of equations that
uniquely defines (𝑞𝑎1, 𝑞𝑎2) as a function of (𝑞𝑎1, 𝑞𝑎2). Formal conditions are
stated by the inverse and implicit function theorems, respectively. Regarding
our simple example, it is straightforward to see that

𝑞𝑎1 − 𝑞𝑎2 = 𝑞𝑎1 − 𝑞𝑎2 (4.49)
is a valid constraint equation candidate. Combining (4.48) and (4.49), we
obtain

[

1 1
1 −1

] [

𝑞𝑎1
𝑞𝑎2

]

=
[

1 1
1 −1

] [

𝑞𝑎1
𝑞𝑎2

]

−
[

𝑢̄𝑢∕𝑘
0

]

. (4.50)
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Solving (4.50) for the virtual motor coordinates yields
[

𝑞𝑎1
𝑞𝑎2

]

=
[

𝑞𝑎1
𝑞𝑎2

]

− 1
2𝑘

[

𝑢̄𝑢
𝑢̄𝑢

]

, (4.51)

Substituting (4.45) and (4.51) results in
⎡

⎢

⎢

⎣

𝑚 0 0
0 𝑏 0
0 0 𝑏

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑞𝑢
𝑞𝑎1
𝑞𝑎2

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝑘(𝑞𝑢 − 𝑞𝑎1) + 𝑘(𝑞𝑢 − 𝑞𝑎2)
−𝑘(𝑞𝑢 − 𝑞𝑎1)
−𝑘(𝑞𝑢 − 𝑞𝑎2)

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝑔(𝑞𝑢)
0
0

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
𝑢1
𝑢𝑎

⎤

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎣

−𝑢̄𝑢
1
2

(

𝑏∕𝑘 ̈̄𝑢𝑢 + 𝑢̄𝑢
)

1
2

(

𝑏∕𝑘 ̈̄𝑢𝑢 + 𝑢̄𝑢
)

⎤

⎥

⎥

⎥

⎦

.

(4.52)

Choosing the input transformation4: 4: As expected from the symmetric nature
of the BAVS joint, the link-side torque 𝑢̄𝑢
is split in equal parts to the two motors,
cf. (4.17).𝑢𝑖 =

1
2

(

𝑏∕𝑘 ̈̄𝑢𝑢 + 𝑢̄𝑢
)

+ 𝑢̄𝑎𝑖, (4.53)
and making the substitutions (4.52) and (4.53), we obtain the quasi-fully
actuated form (4.46), which can be written in matrix form as follows:

 ̈̄𝒒 +𝒒̄ + 𝒈(𝑞𝑢) = 𝒖̄. (4.54)

with 𝒒̄ ≜
[

𝑞𝑢, 𝑞𝑎1, 𝑞𝑎2
]T and

 ≜
⎡

⎢

⎢

⎣

𝑚 0 0
0 𝑏 0
0 0 𝑏

⎤

⎥

⎥

⎦

,  ≜
⎡

⎢

⎢

⎣

2𝑘 −𝑘 −𝑘
−𝑘 𝑘 0
−𝑘 0 𝑘

⎤

⎥

⎥

⎦

, 𝒈(𝑞𝑢) ≜
⎡

⎢

⎢

⎣

𝑔(𝑞𝑢)
0
0

⎤

⎥

⎥

⎦

.

In order to asymptotically stabilize the system at a desired link position 𝑞∗𝑢in absence of external forces, we can choose, e.g., a simple PD plus gravity
cancellation controller:

𝑢̄𝑢 = − 𝑘𝑣𝑢𝑞̇𝑢 − 𝑘𝑝𝑢𝑞𝑢 + 𝑔(𝑞𝑢) (4.55)
𝑢̄𝑎1 = − 𝑘𝑣𝑎1 ̇̄𝑞𝑎1 (4.56)
𝑢̄𝑎2 = − 𝑘𝑣𝑎2 ̇̄𝑞𝑎2, (4.57)

with all gains being positive constants and 𝑞𝑢 ≜ 𝑞𝑢 − 𝑞∗𝑢 denoting the output
error. The resulting closed-loop dynamics can be written as

 ̈̄𝒒 +𝑣 ̇̄𝒒 +𝒒̄ +𝑝𝒒̃ = 𝟎, (4.58)

where 𝒒̃ ≜ 𝒒̄ − 𝒒∗, 𝒒∗ ≜
[

𝑞∗𝑢 , 𝑞
∗
𝑢 , 𝑞

∗
𝑢
]T and 𝑝 ≜ diag(𝑘𝑝𝑢, 0, 0). It is straight-

forward to verify that (4.58) has a unique equilibrium at 𝒒̃ = 𝟎. Note that 𝑣
is a positive definite matrix. By rewriting (4.58) in terms of error coordinates,
the equilibrium is shifted to the origin.

 ̈̃𝒒 +𝑣 ̇̃𝒒 +
(

 +𝑝
)

𝒒̃ +𝒒∗ = 𝟎, (4.59)
Using the total energy of the closed-loop dynamics (4.59)

 = 1
2

( ̇̄𝒒T ̇̄𝒒 + 𝒒̄T𝒒̄ + 𝒒̃T𝑝𝒒̃
)

= 1
2

( ̇̃𝒒T ̇̃𝒒 + (𝒒̃ + 𝒒∗)T(𝒒̃ + 𝒒∗) + 𝒒̃T𝑝𝒒̃
)

,
(4.60)
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which is a positive and radially unbounded function of (𝒒̃, ̇̃𝒒), as Lyapunov
function candidate, we can proof global asymptotic stability of the origin
𝒒̃ = 𝟎. The time derivative of (4.60), along the solutions of (4.59), is:

̇ = − ̇̄𝒒T𝑣 ̇̄𝒒. (4.61)
Invoking La’Salles invariance theorem completes the proof. Since the two
sets of motor coordinates, (𝑞𝑎1, 𝑞𝑎2) and (𝑞𝑎1, 𝑞𝑎2), are in a one-to-one corre-
spondence, the boundedness of the link position and virtual motor coordinates
implies boundedness of the original motor coordinates. Evaluating the trans-
forming equations,(4.51), at the equilibrium point 𝒒̃ = 𝟎, we obtain:

[

𝑞𝑎1
𝑞𝑎2

]

=
[

𝑞∗𝑢
𝑞∗𝑢

]

+ 1
2𝑘

[

𝑔(𝑞∗𝑢 )
𝑔(𝑞∗𝑢 )

]

, (4.62)

which denotes the equilibrium point for the motor positions for 𝑡 → ∞. In the
presence of external forces ′ ∈ ℝ3 on the RHS of (4.45), the energy rate of
change (4.61) becomes:

̇ = − ̇̄𝒒T𝑣 ̇̄𝒒 − ̇̄𝒒T′. (4.63)
Thus, using  as storage function, we can conclude passivity of the closed-
loop system with respect to the power port ̇̄𝒒T′. Further, the closed-loop
system can be represented as the negative feedback interconnection of passive
subsystems analogously to a SEA joint.

Remark 4.5.1 Due to the symmetric nature of the considered BAVS joint
and the particular constraint choice, (4.49), we have at equilibrium that
𝑞𝑎1 − 𝑞𝑎2 = 0. One of the interesting features of a BAVS joint is the ability
to modify the intrinsic stiffness behavior by modulating the pretension of
the internal springs, see, e.g., the BAVS actuator of DLR David introduced
in Section 3.1.2. In contrast to the simplified example above, this requires
in general at least one spring with nonlinear characteristics. In this case,
it is possible to design a controller that achieves simultaneous link-side
regulation and internal joint stiffness adjustment. By adding a repelling
spring between the virtual motor inertias [115][115]: Mengacci et al. (2021), “Elastic

Structure Preserving control for compliant
robots driven by agonistic-antagonistic ac-
tuators (ESPaa)”

or applying a constant torque
offset [114]

[114]: Meng et al. (2021), “Elastic struc-
ture preserving impedance control of bidi-
rectional antagonistic variable stiffness ac-
tuation”

, we can achieve a desired pretension and, thus, a desired stiffness
behavior. Since the constraint equation 𝑞𝑎1 − 𝑞𝑎2 = 𝑞𝑎1 − 𝑞𝑎2 guarantees
that the pretension on the real and virtual system are equal. Thus, achieving
a desired pretension on the real system can be simplified to designing a
controller for that virtual system that achieves said pretension.

4.6 Revisiting the Spong Model

To goal of this section is to offer a physical interpretation for the model
reduction proposed by Spong in [168], and to connect geometrical pictures in[168]: Spong (1987), “Modeling and con-

trol of elastic joint robots” increasing levels of abstraction with it. The Lagrangian view introduced in the
following is fundamental for an intuitive understanding of the developments
in Chapter 5.

First, let us review the model assumptions.
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Assumption 4.6.1 (Spong’s model [168]) The system satisfies

(A1) The kinetic energy of the rotor is due mainly to its own rotation.

In practice, this assumption includes the usual neglecting of motor gyro-
scopic effects for high-gear actuators [168] and inertial couplings appear-
ing in VIA mechanisms [8] [8]: Albu-Schäffer et al. (2010), “Dynamic

modelling and control of variable stiffness
actuators”

. We further assume.

(A2) The rotor and gear inertias are symmetric about the rotor’s axis of
rotation such that the gravitational potential and the center of mass
position of the system are independent of the angular positions of the
rotors.

In essence, the reduction due to Spong assumes that the kinetic energies
of the actuated bodies (motors) are due only to their own spinning. This
assumption translates into the fact that the resulting dynamics model has no
inertial coupling between the motors and links and leads to a block-diagonal
generalized inertia matrix. The motions of the motors and links are only
coupled via the forces that are transmitted through the elastic drive train
elements. This simplification allows us develop the following geometric view
that helps us understanding the dynamics of an articulated soft robot.

(Step 1a) Add each motor mass and inertia to the link it is attached to.
(Step 1b) Calculate the link-side inertia matrix containing these additional

inertias and masses.
(Step 1c) The inertia matrix containing the rotor inertias reflected through

the gear box is diagonal and constant.
(Step 1d) Since the kinetic energy of each rotor is solely dependent on its

own velocity it is invariant to translations. Hence, we can place
this rotating inertia anywhere in space. The force transmitted
from the rotor to the corresponding link is solely determined by
their relative angular position.

(Step 2) The motor dynamics may be equivalently represented through
𝑛 mathematical pendulums of unit length with point mass val-
ues equal in number to the corresponding motor inertias. These
pendulums will also be referred to as virtual links.

(Step 3) We can think of the motion of an ASR in terms of the motions of
two separate subsystems with the transmission of forces solely
facilitated through elastic elements.

It is clear that this procedure is generalizable to multi-articulated systems as in-
dicated by Fig. 4.18 (bottom). For each actuator, we introduce a virtual link that
is interconnected to its corresponding rigid-body link via an elastic element.
This process is shown for a biantagonistic joints in Fig. 4.18 (bottom).

Let us establish a Lagrangian picture of this abstraction process. Let 
denote the configuration space, that is the space of all possible configurations.
Then each point in  encodes a single spatial configuration of the system. Thus,
we can represent a system evolving in time by the motion of a single point 𝑃
through . The principle of stationary action tells us that the path taken by
𝑃 through  between times 𝑡0 and 𝑡1 and two fixed points in  is the one for
which the action is stationary. Knowing that we can decompose ASRs into an
actuated Σ𝑎 and unactuated subsystem Σ𝑢 (as pointed out in Chapter 5), we
can formulate a different picture. Instead of thinking in terms of a single point
𝑃 moving through , we can think of two points 𝑃𝑢 and 𝑃𝑎—representing
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Figure 4.19: Lagrangian picture of the
Spong model.

the configurations of Σ𝑢 and Σ𝑎—moving through the subspaces 𝑢 and 𝑎 of
.

The shape of this potential field—and consequently the magnitude and
direction of the arising coupling force—is dictated by the relative position of
Σ𝑢 and Σ𝑎. Consequently, the only option to impose a desired motion on the
unactuated subsystem Σ𝑢 is to adjust the variation of the coupling force by
adjusting the motion of the actuated subsystem accordingly through the input
force 𝒖𝑎, as indicated in Fig. 4.19 (left).

Chapter 5, which generalizes the concept of quasi-full actuation, shows
that it is can be rewarding to adopt this Lagrangian view.

4.7 Summary

Based on a simultaneous change of coordinates (𝒒 → 𝒒̄) and inputs (𝒖→ 𝒖̄),
this chapter presented a methodology that enables a compliant joint to be
treated as if fully actuated. The transformation preserves entirely the La-
grangian structure of the system. Since the virtual inputs on the unactuated
subsystem must obey some smoothness and feedback constraints, the trans-
formed system is referred to as quasi-fully actuated. Intuitively, we may think
of the virtual coordinates, 𝒒̄, as encoding the error between the desired and
actual link-side control force.

From the control point view, the structural properties of the transformed
system that are most notable for control are:

• For each degree of freedom there is one virtual input
• The QFA system (4.18) defines a passive map 𝒖̄→ ̇̄𝒒 with the Hamilto-

nian associated with Σ̄ as storage function.
The QFA formulation significantly simplifies the control design for elastic
joints since it enables the adoption of classical rigid joint controllers and the
associated stability arguments. Such adoption is demonstrated exemplary on
the basis of energy shaping and damping injection control in Chapter 6. It is
worth recalling that an elastic joint defines a passive operator from applied
actuator torques to motor shaft velocities, though it is not passive with respect
to the link velocities. The lack of passivity from the input to the output position
complicates the design of passivity-based controllers. Considering the second
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point above, it is clear that this issue is resolved in the quasi-fully actuated
representation of a compliant joint.
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All generalizations,
with the possible exception of this one,

are false.

– Kurt Gödel

This chapter contains the central theoretical contribution of this work. The
results serve as basis for several later developments. Chapter 4 introduced a
transformation allowing compliant joints to be treated as quasi-fully actuated.
This chapter treats the generalization of this novel idea to a class of underac-
tuated EL systems that is specified in Section 5.1. The input and coordinate
transformations (ICT) that produce the quasi-fully actuated representation
of an Euler-Lagrange system entirely preserve its structure. The procedure
is summarized in a “cook recipe” in Fig. 5.1. Before starting with the main
developments, we shall provide some arguments for choosing a variational
principle based formulation and why I deem the act of generalization of im-
portance in a field related to mathematics. Although the presented results
allow for a rich geometrical interpretation, in an attempt to make them easier
accessible, differential geometry methods are avoided whenever possible.

GENERAL PROCEDURE

Transform system into its QFA form

𝑛𝑢 = 𝑛𝑎 𝑛𝑎 > 𝑛𝑢 𝑛𝑎 < 𝑛𝑢

Theorem 5.3.6 Theorem 5.4.2 future work

ICT ICT

Check assumptions

Stabilize the transformed system

- Assumption 5.1.1 (Lagrangian)
- Assumption 5.1.2 (Potential energy)

𝑛𝑢… Number of unactuated outputs
𝑛𝑎… Number of inputs

Choose
𝑛𝑎 − 𝑛𝑢constraint
equations

Choose
𝑛𝑎primary
outputs

ICT
(5.82), (5.94)(5.36), (5.57)

Figure 5.1: Stabilization through the QFA
formulation.

Reasons for a Variational Principle-Based Formulation

Many underactuated systems found in engineering, and ASRs in particular, are
nonlinear by nature and, thus, can exhibit extremely complex behaviors. In this
regard, the quest for an universal control framework that covers underactuated
nonlinear systems in all their facets is likely a hopeless endeavor, and we
must specialize the class of systems under consideration. This work focuses
on systems where Hamilton’s principle can be used to obtain the equations
of motion. Hamilton’s principle states that the path actually followed by a
physical system is that for which the action is stationary. In other words, the
action satisfies a variational principle. The solution to this variational problem
are the Euler-Lagrange equations. For this reason, systems for which the
equations of motion can be obtained from the principle of stationary action
shall be referred to as Euler-Lagrange (EL) systems.

The choice for a variational principle based modeling method is motivated
due to the following reasons:

• The form of the developed transforming equations and control laws are
invariant with regard to the choice of coordinates.

• EL systems cover a big class of contemporary robot systems.
• The modeling is fundamentally linked to the energy of a system.
• We often get a storage or Lyapunov function for “free” using the Hamil-

tonian associated with an EL system.
• By thinking in terms of energies and flow thereof, we observe that the

systems under consideration can be represented as the interconnections
of simpler subsystems.

• System symmetries are easily revealed and can potentially be exploited.
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Why Aim for a Generalization?

Generalization proved to be paramount in the evolution of mathematics andMan muss immer generalisieren.
— C.G.J. Jacobi can be defined as “looking for the bigger picture” [179]

[179]: Tall (2011), “Looking for the bigger
picture”

. Specific results may
be useful in themselves, however, characteristically mathematical results are
of general nature. When developing a mathematical framework, we can think
of going through three phases [62]

[62]: Hashemia et al. (2013), “Generaliza-
tion in the learning of mathematics”

: (1) specialization, (2) conjecturing, (3)
generalization. Phase one consists of solving specific cases. Once we identify
connections between specific problems and sense an underlying pattern, even
if we cannot articulate it, conjecturing starts. The next main stage is gener-
alization. Based on our experience and intuition obtained from working on
specific examples, we formulate a general concept and work on a proof. The
same can be said about control theory which can be understood as an applied
branch of mathematics.

In this sense, Chapter 4 reports the specialization phase. A novel idea
was developed and applied to very specific and basic problems. Section 5.2
introduces the central idea underlying all developments in this chapter and
represents the conjecturing phase. The generalization phase culminates in
the formulation of Theorem 5.3.6 and 5.4.2. The former theorem is actually
contained in the latter. However, since the proof of Theorem 5.4.2 is somewhat
intricate, it will be rewarding to proof Theorem 5.3.6 first and use it as stepping
stone for deriving the latter.

Generalizations that go beyond the presented results, likely require going
through the three phases again. In this regard, particular attention should be
devoted to finding simple examples that allow a weakening of the assumptions
considered in this chapter.

5.1 A Class of Euler-Lagrange Systems

This section specifies the class of underactuated EL systems treated in this
chapter. Let 𝒒 = (𝑞1,… , 𝑞𝑛) be a set of generalized coordinates for a system
with a Lagrangian  and 𝑛 degrees of freedom that is subject to 𝑛 generalized
external forces  = (1,… ,𝑛) such that

Σ∶ d
d𝑡
𝜕
𝜕𝒒̇

− 𝜕
𝜕𝒒

= . (5.1)

Two types of external forces will be considered1: the control actions, 𝒖, and1: In general, it is possible to extend the
theorems presented in this chapter to dy-
namic systems which are subject to dissipa-
tive forces. However, in order to keep things
simple and to keep the focus on the central
idea, only conservative systems are consid-
ered in the following.

external forces, ′, arising from the system’s interaction the environment such
that

 = ′ + 𝒖. (5.2)
Let 𝑛𝑢 and 𝑛𝑎 = 𝑛−𝑛𝑢 be the numbers of unactuated and actuated coordinates,
respectively. According to Definition 2.6.1 in Section 2.6, a set of coordi-
nates is called unactuated if the associated accelerations cannot be changed
instantaneously to an arbitrary value through an appropriate control action. In
contrast, we consider a coordinate to be actuated if the associated acceleration
can be instantly assigned to an arbitrary value through the control inputs.
Obviously, if we ask for arbitrary instantaneous changes of acceleration, it
must be assumed that no bounds on the control signals exist.
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Notation: Coordinates, Forces and Subindices

Boldface variables such as 𝒒, 𝒒̄ represent a set of 𝑛 generalized coordinates,
e.g. 𝒒 = (𝑞1,… , 𝑞𝑛), 𝒒̇, ̇̄𝒒 represent the corresponding sets of generalized
velocities, and , ̄ denote the 𝑛 generalized external forces. The following
indices are used consistently throughout this work:

(.)𝑢… unactuated,
(.)𝑎… actuated.

Following this notation, it is convenient to partition the sets of generalized
coordinates and forces into subsets with 𝑛𝑢 and 𝑛𝑎 elements, respectively,

𝒒 =
(

𝒒𝑢, 𝒒𝑎
)

,  =
(

𝑢,𝑎
)

, 𝒖 =
(

𝟎, 𝒖𝑎
) and ′ =

(

′
𝑢,

′
𝑎
)

,
𝒒̄ =

(

𝒒̄𝑢, 𝒒̄𝑎
)

, ̄ =
(

̄𝑢, ̄𝑎
)

, 𝒖̄ =
(

𝒖̄𝑢, 𝒖̄𝑎
) and ̄′ =

(

̄′
𝑢, ̄

′
𝑎
)

.

For the considerations of this chapter, it is helpful to split the EL equations
(5.1) into unactuated and actuated subsystems

Σ𝑢 ∶
d
d𝑡
𝜕
𝜕𝑞̇𝑖

− 𝜕
𝜕𝑞𝑖

= ′
𝑖, 𝑖 = 1,… , 𝑛𝑢 (5.3)

Σ𝑎 ∶
d
d𝑡
𝜕
𝜕𝑞̇𝑖

− 𝜕
𝜕𝑞𝑖

= ′
𝑖 + 𝑢𝑖, 𝑖 = 𝑛𝑢 + 1,… , 𝑛. (5.4)

In practice, we can assign underactuated EL systems usually to one of the
following three categories:

• Class 1: equal number of inputs and unactuated coordinates
• Class 2: more inputs than unactuated coordinates (multi-articulation)
• Class 3: less inputs than unactuated coordinates

This work focuses on Class 1 and 2 systems for which the Lagrangian can be
decomposed as follows.

Assumption 5.1.1 The Lagrangian of (5.1) can be decomposed in the form

 (𝒒, 𝒒̇) = 𝑢
(

𝒒𝑢, 𝒒̇𝑢
)

+ 𝑎
(

𝒒, 𝒒̇𝑎
)

, (5.5)
with the sub-Lagrangians of the form

𝑢 =𝑢(𝒒𝑢, 𝒒̇𝑢) − 𝑢(𝒒𝑢), (5.6)
𝑎 =𝑎(𝒒𝑎, 𝒒̇𝑎) − 𝑎(𝒒). (5.7)

The matrix 𝜕2
𝜕𝒒̇2 is invertible.2 2: This is called the Hessian condition.

Since the Lagrange’s equations are of sec-
ond order, it must be satisfied to ensure that
the system’s acceleration can be calculated
from its state, as discussed in [80, p. 69].
For dealing with systems that violate this
condition (in the Hamiltonian formalism)
see [39].

The Hamiltonians

𝑢 =
∑

𝑖
𝑞̇𝑖
𝜕𝑢
𝜕𝑞̇𝑖

− 𝑢, 𝑖 = 1,… , 𝑛𝑢 (5.8)

𝑎 =
∑

𝑖
𝑞̇𝑖
𝜕𝑎
𝜕𝑞̇𝑖

− 𝑎, 𝑖 = 𝑛𝑢 + 1,… , 𝑛 (5.9)

are bounded from below.

This assumption is central for all derivations in this chapter. It is satisfied by
EL systems with a positive definite and block-diagonal generalized inertia
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matrix. We can think of Assumption 5.1.1 as expressing the fact that Σ is
constituted by two subsystems Σ𝑢 and Σ𝑎 with the kinetic energies of each
subsystem being only due to its own velocity. Both subsystems only interact
via a coupling force originating from the potential field  . We will sharpen
this point of view below in Proposition 5.1.1.

Remark 5.1.1 For some systems, Assumption 5.1.1 introduces ambiguity
in terms of what part of the potential energy is assigned to which sub-
Lagrangian. Clearly, the equations of motion are independent of the choice
made. It is important to underline that the extended phase space transfor-
mation, introduced in this chapter, is also invariant to the particular choice
being made in this regard. Without loss of generality, let us assume that
 is a superposition of multiple potential functions. Then, according to
Assumption 5.1.2, we have the following rules for splitting  into 𝑢 and
𝑎:

• Any potential function that is a function of the configuration, 𝒒, must
be assigned to 𝑎.

• Any potential function that is only a function of the actuated coordi-
nates, 𝒒𝑎, must be assigned to 𝑎.

• Any potential function that is only a function of the unactuated states,
𝒒𝑢, can be assigned to either 𝑢 or 𝑎.

The following properties follow from Assumption 5.1.1 immediately.

Property 1. Considering Assumption 5.1.1, Schur’s determinant identity33: See Theorem D.3.2 in Appendix D.
asserts that the matrices

𝜕2𝑘
𝜕𝒒̇2𝑘

, 𝑘 = (𝑢, 𝑎), (5.10)

are invertible.

Property 2. From Assumption 5.1.1, it follows that the subsystem coupling
forces are comprised of potential forces only, that is

𝝍 =
𝜕𝑎
𝜕𝒒𝑢

= − 𝜕
𝜕𝒒𝑢

. (5.11)

Let us further assume the following.

Assumption 5.1.2 The potential energy function  is of class 𝑘, 𝑘 ≥ 3.
Moreover, for 𝑛𝑢 = 𝑛𝑎 (monoarticulation) at least one of the following two
conditions is satisfied44: Suppose that 𝜎𝑚(𝜕𝒒𝑎𝝍) ≥ 𝑘. Then, not-

ing that ‖𝑼𝒙‖2 = ‖𝒙‖2 for an unitary
matrix 𝑼 , we can this property and sin-
gular value decomposition to show that
‖𝜕𝒒𝑎𝝍 ̇̄𝒒𝑎‖ ≥ 𝑘‖ ̇̄𝒒𝑎‖.

(i) |𝜕𝒒𝑎𝝍(𝒒)| > 0, ∀𝒒 ∈ ℝ𝑛,
‖𝒒̇𝑎‖ → ∞ implies |𝜕𝒒𝑎𝝍(𝒒)𝒒̇𝑎| → ∞, ∀𝒒 ∈ ℝ𝑛,
‖𝒒𝑎‖ → ∞ implies ‖𝝍(𝒒)‖ → ∞, ∀𝒒𝑢 ∈ ℝ𝑛𝑢

(ii) |𝜕𝒒𝑎𝝍(𝒒)| ≥ 𝑐 > 0,∀𝒒 ∈ ℝ𝑛,

for some positive constant 𝑐.

From Assumption 5.1.2, we can immediately derive the following statements
which shall prove useful for proofing Lemma 5.3.1 and 5.4.1 below.



5.1 A Class of Euler-Lagrange Systems 77

Property 3. For the case 𝑛𝑢 = 𝑛𝑎, Assumption 5.1.2 implies the following:
(P1) ‖𝒒̇𝑎‖ → ∞ implies |𝜕𝒒𝑎𝝍(𝒒)𝒒̇𝑎| → ∞, ∀𝒒 ∈ ℝ𝑛,

Moreover, let 𝑐 be some positive constant, then depending on whether (i) or
(ii) holds, we either have that
(P2) det{𝜕𝒒𝑎𝝍(𝒒)} ≠ 0,∀𝒒 ∈ ℝ𝑛,

or
(P3) | det{𝜕𝒒𝑎𝝍(𝒒)}| ≥ 𝜎𝑚{𝜕𝒒𝑎𝝍(𝒒)}

𝑛𝑢 = 𝑐 > 0,∀𝒒 ∈ ℝ𝑛.

Proof of (P1). For any unitary matrix 𝑼 , we have that ‖𝑼𝒙‖ = ‖𝒙‖. Thus,
we can show that for some matrix 𝑨 with 𝜎𝑚(𝑨) > 0 it follows that ‖𝑨‖ ≥
𝜎𝑚(𝑨)‖𝒙‖, which can be shown exploiting the spectral norm property ‖𝑨‖2 =
√

𝜆𝑚(𝑨∗𝑨) = 𝜎𝑚(𝑨). Using this property, then (𝑃 1) follows trivially. ■

Proof of (P2) and (P3). Knowing that for some 𝑛 × 𝑛 square matrix 𝑨 that
| det(𝑨)| =

∏𝑛
𝑖 𝜎𝑖(𝑨) the properties (P2) and (P3) follow immediately. ■

Remark 5.1.2 The corresponding conditions for the multiarticulation case
(𝑛𝑎 > 𝑛𝑢) are summarized in Assumption 5.4.2.

Since all further developments rely on this fundamental assumption, let us
try to obtain an intuitive understanding. Suppose that Assumption 5.1.1 is
satisfied, then the EL system (5.1) can be decomposed into two interconnected
passive subsystems. This important property is summarized in the following
proposition.5 5: Notice that the storage functions in

Proposition 5.1.1 are given by 𝑢 and 𝑎,
whereas in Proposition 2.10 in [133, p. 25]
the Lagrangians 𝑢 and 𝑎 were used in-
stead. Without further assumptions, the lat-
ter choice can be problematic since a stor-
age function is required by definition to be
bounded from below.

Proposition 5.1.1 (Passive subsystem decomposition [133, p. 25]) Assume
that the Lagrangian (5.1) can be decomposed in the form (5.5). Then the EL
system (5.1) can be represented as the negative feedback interconnection of
two passive subsystems as indicated by Fig. 5.2

Σ𝑢 ∶
(

𝝍 +𝑢
)

→ 𝒒̇𝑢, (5.12)
Σ𝑎 ∶

[

𝑎
−𝒒̇𝑢

]

→

[

𝒒̇𝑎
𝝍

]

, (5.13)

with storage functions (5.8) and (5.9), respectively, where

𝝍 ≜
𝜕𝑎
𝜕𝒒𝑢

(𝒒, 𝒒̇𝑎), (5.14)

is the subsystem coupling signal.

𝑞̇𝑢Σ𝑢

𝑞̇𝑎

+
+

Σ𝑎 𝑎

𝑢

−

𝝍

Figure 5.2: Passive decomposition of an
EL system.

With the insight from Proposition 5.1.1, it is clear that Assumption 5.1.2 poses
a condition on the partial derivative of the coupling signal. Since 𝝍 has the
dimension of a generalized force, the partial Jacobian 𝜕𝑞𝑎𝝍 denotes the partial
stiffness matrix of the coupling forces. Loosely speaking, we can think of
condition (ii) in Assumption 5.1.2 as some form of “controllability” condi-
tion. Appendix B provides a geometric interpretation of Assumption 5.1.2 by
revealing its connection to the conditions for differential flatness of (5.1). At
this point it should be clear why the exact procedure of splitting  into 𝑢 and
𝑎 is of no concern. Independent of the choice that we make in this regard (in
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compliance with Assumption 5.1.1), the subsystem coupling force remains
invariant.

Notation: [.]𝑞 vs. [.]𝑞

The considerations of this chapter involve going from one set of generalized
coordinates 𝒒 to a new set 𝒒̄ by transformation equations of the form
𝑞𝑖 = 𝑞𝑖(𝒒, 𝒒̇, 𝑡) and ̇̄𝑞𝑖 = ̇̄𝑞𝑖(𝒒, 𝒒̇, 𝑡). We shall use the following notation
convention to improve the readability of the text. The subindices [.]𝑞 and
[.]𝑞 indicate that the term in brackets is a function that is evaluated in
terms of the (𝒒, 𝒒̇)’s and (𝒒̄, ̇̄𝒒)’s, respectively. For example, given some
Lagrangian function ∶ ℝ𝑛 ×ℝ𝑛 ×ℝ+ → ℝ𝑛, we have that:

[


]

𝑞 ≜ (𝒒, 𝒒̇, 𝑡);
[


]

𝑞 ≜ (𝒒̄, ̇̄𝒒, 𝑡).

It is important to notice that [.]𝑞 does not indicate that the expression
[.] is evaluated in terms of the 𝒒̄′𝑠 through the transforming equations,
indeed we have in general that []𝑞 ≠

[


]

𝑞 = 
(

𝒒(𝒒̄), 𝒒̇(𝒒̄), 𝑡
). The same

notation rules are applied to partial derivatives of a function
[

𝜕
𝜕𝒒̄

]

𝑞
≜ 𝜕
𝜕𝒒̄

[


]

𝑞 =
𝜕
𝜕𝒒̄

[


(

𝒒̄, ̇̄𝒒
)]

, (5.15)
[

𝜕
𝜕𝒒

]

𝑞
≜ 𝜕
𝜕𝒒

[


]

𝑞 =
𝜕
𝜕𝒒

[


(

𝒒̄(𝒒, 𝑡), ̇̄𝒒(𝒒, 𝒒̇, 𝑡)
)]

. (5.16)

In situations where the meaning of the partial derivatives is clear from the
context, the brackets are occasionally omitted. In cases where no brackets
are used, the terms are to be evaluated in standard fashion, i.e:

𝜕
𝜕𝒒

=
[

𝜕
𝜕𝒒

]

𝑞
, 𝜕

𝜕𝒒̄
=
[

𝜕
𝜕𝒒̄

]

𝑞
. (5.17)

5.2 A Thought Experiment

D’Alembert’s principle states that “the total virtual work of the effective force,
i.e. the sum of impressed and inertial forces, is zero for all reversible variations
which satisfy the given kinematical constraints” [103]. Let us consider a system[103]: Lanczos (2020), The Variational

Principles of Mechanics Σ of 𝑛 rigid bodies with 𝑛 independent generalized coordinates (𝑞1,… , 𝑞𝑛).
Transforming d’Alembert’s principle into an expression involving generalized
coordinates, it can be formulated as follows:

𝛿𝑊 =
𝑛
∑

𝑖

(

⋆𝑖 +𝑖
)

𝛿𝑞𝑖 = 0, (5.18)

where 𝑊 denotes the work, ⋆ the force of inertia, and  the sum of the im-
pressed forces. Any virtual displacement 𝛿𝑞𝑖 is independent of 𝛿𝑞𝑘 (𝑖 ≠ 𝑘), and
thus, for (5.18) to hold requires the vanishing of all the individual coefficients,
that is

⋆𝑖 +𝑖 = 0, 𝑖 = 1,… , 𝑛. (5.19)
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This equation can be interpreted as follows; a mechanical system moves in
a way such that the force of inertia, arising from the motion, balances the
resultant of the impressed forces. This balance holds at any point in time as the
C-point 𝑃 of the system traces out a curve in its n-dimensional configuration
space, as visualized in Fig. 5.3. A similar balance of forces can be established
in the analytical treatment [52, p. 20]:

d
d𝑡
𝜕
𝜕𝑞̇𝑖

− 𝜕
𝜕𝑞𝑖

= 𝑖 𝑖 = 1,… , 𝑛 (5.20)
𝑡



⋆
Σ

Figure 5.3: Geometrical picture: the C-
point of system Σ traces out a curve in
its 𝑛 dimensional configuration space. This
curve is determined by the balance of the
inertial and moving force.

where the two terms on the left hand side can be identified with −⋆𝑖 . For
the case considered in this chapter, where the generalized forces are derivable
from a single scalar potential function  , these equations take on the form

Σ𝑢 ∶
d
d𝑡
𝜕𝑢
𝜕𝒒̇𝑢

−
𝜕𝑢
𝜕𝒒𝑢

= − 𝜕
𝜕𝒒𝑢

, (5.21)

Σ𝑎 ∶
d
d𝑡
𝜕𝑎
𝜕𝒒̇𝑎

−
𝜕𝑎
𝜕𝒒𝑎

= − 𝜕
𝜕𝒒𝑎

+ 𝒖𝑎(𝑡). (5.22)

where Σ𝑢 and Σ𝑎 can be interpreted as unactuated and actuated subsystems of
Σ. For simplicity, the generalized external forces are neglected and the case
𝑛𝑢 = 𝑛𝑎 is assumed. The quantities on the LHS are the generalized inertial
forces, and the quantities on the RHS can be interpreted as the moving forces
[103].

Let us establish a Lagrangian picture of the subsystem decomposition
(5.21)–(5.22). Let  denote the configuration space, that is the space of all
possible configurations. Then each point in  encodes a single spatial configu-
ration of the system. Thus, we can represent a system evolving in time by the
motion of a single point 𝑃 through . The principle of stationary action tells
us that the path taken by 𝑃 through  between times 𝑡0 and 𝑡1 and two fixed
points in  is the one for which the action is stationary. Knowing that we can
decompose Σ into an actuated and unactuated subsystem, we can formulate
a different picture. Instead of thinking in terms of a single point 𝑃 moving
through , we can think of two points 𝑃𝑢 and 𝑃𝑎—representing the configura-
tions of Σ𝑢 and Σ𝑎—moving through two distinct subspaces of . The only
source of interaction between both subsystems are the forces arising from the
potential field  that permeates . Figure 5.4 connects a geometric picture
with our observations so far. Considering that  is a function of 𝒒, it is clear
that the moving force experienced by Σ𝑢 (𝜕𝒒𝑢) is not only dependent on its
own position, but also on that of Σ𝑎, and vice versa. The only option to impose
a desired motion on the unactuated subsystem Σ𝑢 is by adjusting the motion
of the actuated subsystem through the input force 𝒖𝑎 for ultimately achieving
the appropriate variation of the coupling force. Intuitively, by adjusting the
trajectory of 𝑃𝑎 through 𝒖𝑎, we can “steer” the point 𝑃𝑢 in its subspace 𝑢,
as indicated in Fig. 5.5. A naturally arising question: given some sufficiently
smooth trajectory 𝒒∗𝑢(𝑡)∶ [𝑡0, 𝑡1] → ℝ𝑛𝑢 for Σ𝑢 does there exist a trajectory
𝒒∗𝑎(𝑡)∶ [𝑡0, 𝑡1] → ℝ𝑛𝑎 for Σ𝑎 facilitating this motion. If such a trajectory for Σ𝑎
existed, we would also want to know whether it was unique. 6 In the following, 6: It turns out that this is indeed the case

for 𝑛𝑢 = 𝑛𝑎 = 𝑛∕2. The fact that the input
force can be written in terms of the 𝒒𝑢 (out-
puts), and their time derivatives, is closely
connected with the concept of differential
flatness. A more detailed discussion of this
connection is provided in Section B.1 of
Appendix B.

we are interested in a different but closely related question.
According to d’Alembert’s principle, any two sets of forces are dynam-

ically equivalent if they do the same virtual work. Exploiting this fact, we
can decompose the moving force arising from the potential field  into an
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Figure 5.4: Time evolution of a trajectory
started at the point (𝒒(𝑡0)), governed by
the Lagrangian , is transformed according
to (5.25). The time evolution of the trans-
formed trajectory is governed by the same
Hamiltonian. It is worth noting that all sub-
systems move through the same potential
field  . It is just that subsystem Σ̄𝑎 moves
along a C-curve that is “shifted” compared
to the Σ𝑎 C-curve, where Σ𝑢 and Σ̄𝑢 move
along the “same” curves. The relative posi-
tion of both subsystems dictates the magni-
tude and direction of the coupling force. In
the new representation, the coupling force
𝜕𝑞𝑢 encodes the error between the desired
moving force and the actual moving force
on Σ̄𝑢.



𝑡0

𝑡1



𝑃𝑢, 𝑃𝑢

Subspace 𝑎

𝑃𝑎
𝑃𝑎

𝒒(𝑡0)

𝒒(𝑡1)

𝒒𝑎(𝑡0)

𝒒𝑎(𝑡1)
𝒒̄𝑎(𝑡1)

𝒒̄𝑎(𝑡0)

𝒒̄(𝑡0)

𝒒̄(𝑡1)

𝒒𝑢(𝑡0), 𝒒̄𝑢(𝑡0)

𝒒𝑢(𝑡1), 𝒒̄𝑢(𝑡1)

𝑃 𝑃

Subspace 
𝑢

undesired and desired component
−𝜕𝒒𝑢(𝒒) = undesired moving force + desired moving force. (5.23)

The fact that the two sides of (5.23) are dynamically equivalent with regard
to the motion of subsystem Σ𝑢 invites for the following thought experiment.
Suppose that 𝒖̄𝑢 encodes the desired moving force on Σ𝑢. Let us start with
the following question: given some evolution of the moving force 𝜕𝒒𝑢 on
Σ𝑢 does there exist an imaginary trajectory 𝒒̄𝑎(𝑡) for Σ𝑎, which is possibly
different from the actual one 𝒒𝑎, such that at all times

− 𝜕
𝜕𝒒𝑢

(𝒒𝑢, 𝒒̄𝑎) = undesired moving force. (5.24)

If such a trajectory 𝒒̄𝑎 for Σ𝑎 existed, we would also want to know whether it
was unique. In other words, and in harmony with the idea in Chapter 4, we ask
whether the coupling force error (undesired moving force) can be encoded
through a new set of generalized coordinates that describe the position of the
(shifted) unactuated subsystem Σ̄𝑎, as indicate in Fig. 5.5, such that

− 𝜕
𝜕𝒒𝑢

(𝒒𝑢, 𝒒̄𝑎) = − 𝜕
𝜕𝒒𝑢

(𝒒𝑢, 𝒒𝑎) − 𝒖̄𝑢. (5.25)

Section 5.3 below answers this question affirmatively, and establishes sufficient
conditions on the signal 𝒖̄𝑢 such that (5.25) univocally defines a trajectory
𝒒̄𝑎(𝑡). In conclusion, balancing the inertial force on Σ𝑢, c.f (5.21), with the
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Coupling
force

(1)

(2)

(1) Desired component
(2) Undesired component

𝜕𝒒𝑢𝜕𝒒𝑎

⋆𝑢

⋆𝑎

𝒖𝑎

Σ𝑎
Σ𝑎 Σ̄𝑎

Σ𝑢

Coupling
force

𝜕𝒒̄𝑢

𝜕𝒒̄𝑎

̄⋆𝑢

̄⋆𝑎

𝒖̄𝑎
𝒖̄𝑢

Σ̄𝑢

t t ttt

Figure 5.5: Balance of inertial and impressed forces. (Right) The actuated system Σ is shifted from its actual trajectory 𝒒𝑎 to a virtual trajectory
𝒒̄𝑎(𝑡) so that the virtual coupling force 𝜕𝒒𝑢(𝒒𝑢, 𝒒̄𝑎) encodes the undesired component of the actual coupling force 𝜕𝒒𝑢(𝒒𝑢, 𝒒𝑎).

impressed forces on the RHS of (5.23) such that

Σ̄𝑢 ∶
d
d𝑡
𝜕𝑢
𝜕𝒒̇𝑢

−
𝜕𝑢
𝜕𝒒𝑢

= − 𝜕
𝜕𝒒𝑢

+ 𝒖̄𝑢(𝑡), (5.26)

then Σ̄𝑢 will follow the “same” trajectory as Σ𝑢. Noticing the resemblance
of (5.21) and (5.26), suggests the following. Given that we can choose an
arbitrary smooth variation for 𝒖̄𝑢(𝑡), we may treat the impressed force as a
control input on Σ̄𝑢. This makes Σ̄𝑢 appear as if fully actuated.

The catch is, we started our thought experiment with a system constituted
by two subsystems,Σ𝑢 andΣ𝑎. Clearly, we derived an equivalent representation
for the former only and we must extend our considerations to include the latter.
Proposition 5.1.1 motivates us to aim for a dynamics of the form

Σ̄𝑎 ∶
d
d𝑡
𝜕𝑎
𝜕 ̇̄𝒒𝑎

−
𝜕𝑎
𝜕𝒒̄𝑎

= − 𝜕
𝜕𝒒̄𝑎

+ 𝒖̄𝑎(𝑡). (5.27)

such that Σ̄𝑢 and Σ̄𝑎 can be interpreted as the feedback interconnection of
two passive EL subsystems, with Σ̄𝑎 being subject to the control forces 𝒖̄𝑎.
In Section 5.3 it is shown, that is indeed possible to find some control signal
𝒖𝑎 such that Σ𝑎 assumes the desired dynamics Σ̄𝑎. Given that we can choose
arbitrary smooth variations 𝒖̄𝑢(𝑡) and 𝒖̄𝑎(𝑡), we may treat these impressed
forces as control inputs on Σ̄𝑢 and Σ̄𝑎. This makes Σ̄𝑢 appear as if fully actuated.
Remarkably, the Lagrangian with the new EL equations is still the old one.

The presented idea is formalized in Section 5.3, which culminates in the
formulation of Theorem 5.3.6. Section 5.4 reports a further generalization to
the case, where the sub-configuration space of Σ𝑎 has more dimensions than
the sub-configuration space of Σ𝑢. Interestingly, this dimension imbalance
implies the loss of differential flatness when considering 𝒒𝑢 as the outputs,
which introduces new challenges as the assumption above on the unique
existence of a 𝒒̄𝑎(𝑡) trajectory matching some variation of 𝒖̄𝑢 is violated. A
solution to this case is summarized in Theorem 5.4.2.

5.3 Mono-Articulated Systems

The goal of this section is to put the idea from Section 5.2, of transforming an
underactuated EL system into its QFA form, on a firm mathematical footing.
In the following, we treat systems satisfying Assumption 5.1.1 and 5.1.2 and
having an equal number of unactuated and actuated coordinates. The main
result is summarized below in Theorem 5.3.6.
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5.3.1 A Nonpoint Transformation

We recall that the subsystem coupling force is of the form

𝝍 ∶
{

ℝ𝑛 → ℝ𝑛𝑢

𝒒 → −𝜕𝒒𝑢(𝒒)
. (5.28)

Inspired by the force decomposition (5.25), let us consider a change of co-
ordinates from one set of coordinates 𝒒 to a new set 𝒒̄ by a simultaneous
(time-dependent) transformation of the generalized coordinates and velocities
of the form 7:7: Throughout this text, we shall often

make use of (5.29a) and (5.29c) to rewrite
(5.29b) as 𝝍(𝒒) = 𝝍(𝒒̄) + 𝒖̄𝑢(𝒒̄𝑢, ̇̄𝒒𝑢, 𝑡) 𝒒̄𝑢 = 𝒒𝑢, (5.29a)

𝝍(𝒒̄) = 𝝍(𝒒) − 𝒖̄𝑢(𝒒𝑢, 𝒒̇𝑢, 𝑡), (5.29b)
̇̄𝒒𝑢 = 𝒒̇𝑢, (5.29c)

𝝍̇(𝒒̄) = 𝝍̇(𝒒) − ̇̄𝒖𝑢(𝒒𝑢, 𝒒̇𝑢, 𝑡), (5.29d)
𝑡 = 𝑡. (5.29e)

where the mapping 𝒖̄𝑢 ∶ ℝ𝑛𝑢 × ℝ𝑛𝑢 × ℝ → ℝ𝑛𝑢 is of class 𝑘, 𝑘 ≥ 2 and
satisfying the following.

Assumption 5.3.1 For any bounded 𝒙, 𝒚 ∈ ℝ𝑛𝑢 , there exists a positive
constant 𝑐, independent of 𝑡 ∈ ℝ, such that ‖𝒖̄𝑢(𝒙, 𝒚, 𝑡)‖ ≤ 𝑐.

In harmony with our thought experiment in Section 5.2; c.f. (5.25)–(5.23), we
can interpret (5.29b) as follows; the excess of the moving force 𝝍(𝒒) over the
desired one 𝒖̄𝑢 (RHS) is encoded in terms of the moving force 𝝍(𝒒̄), which
acts on the virtual unactuated subsystem Σ̄𝑢 (LHS), as indicated in Fig. 5.5.
This interpretation will become clear below. Knowing from (5.3) that

𝒒̈𝑢 =
[

𝜕2𝑢
𝜕𝒒̇2𝑢

]−1{ 𝜕
𝜕𝒒𝑢

−
[

𝜕2𝑢
𝜕𝒒𝑢𝜕𝒒̇𝑢

]

𝒒̇𝑢 +′
𝑢

}

, (5.30)

and according to the chain rule that

̇̄𝒖𝑢 =
𝜕𝒖̄𝑢
𝜕𝒒𝑢

𝒒̇𝑢 +
𝜕𝒖̄𝑢
𝜕𝒒̇𝑢

𝒒̈𝑢 +
𝜕𝒖̄𝑢
𝜕𝑡
, (5.31)

we can express ̇̄𝒖𝑢 in terms of only the generalized positions, velocities, external
forces (𝒒𝑢, 𝒒̇𝑢,′

𝑢) and time 𝑡 by making the substitution (5.30) and (5.31)

̇̄𝒖(𝒒𝑢, 𝒒̇𝑢, 𝑡) =
𝜕𝒖̄𝑢
𝜕𝒒𝑢

𝒒̇𝑢 +
𝜕𝒖̄𝑢
𝜕𝒒̇𝑢

[

𝜕2𝑢
𝜕𝒒̇2𝑢

]−1{ 𝜕
𝜕𝒒𝑢

−
[

𝜕2𝑢
𝜕𝒒𝑢𝜕𝒒̇𝑢

]

𝒒̇𝑢 +′
𝑢

}

+
𝜕𝒖̄𝑢
𝜕𝑡

≜ 𝜹(𝒒, 𝒒̇𝑢, 𝑡,′
𝑢)

(5.32)
such that (5.29d) can rewritten as

𝝍̇(𝒒̄) = 𝝍̇(𝒒) − 𝜹(𝒒, 𝒒̇𝑢, 𝑡,′
𝑢). (5.33)

From (5.33), it is clear that the external force ′
𝑢 acting on the unactuated sub-

system enters the transforming equation (5.29d) through (5.32). In the follow-
ing, we will show that (5.29) defines a coordinate transformation (𝒒, 𝒒̇) → (𝒒̄, ̇̄𝒒).
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To this end, we shall proceed in two steps: 1) rewrite the RHS of (5.29d) in
terms of only the generalized coordinates and velocities 𝒒, 𝒒̇ and time 𝑡 using
(5.33), 2) show the existence of a diffeomorphism between the extended phase
spaces of the original and virtual systems, as summarized in Lemmma 5.3.1.
To rewrite the transforming equations (5.29) in compact form, it is convenient
to introduce the mappings:

𝜶∶

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ℝ𝑛 ×ℝ𝑛 ×ℝ → ℝ2𝑛+1

(𝒒, 𝒒̇, 𝑡) →

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝒒𝑢
𝝍(𝒒)
𝒒̇𝑢
𝝍̇(𝒒)
𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

𝜷 ∶

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ℝ𝑛 ×ℝ𝑛 ×ℝ → ℝ2𝑛+1

(𝒒, 𝒒̇, 𝑡) →

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝒒𝑢
𝝍(𝒒) − 𝒖̄(𝒒𝑢, 𝒒̇𝑢, 𝑡)

𝒒̇𝑢
𝝍̇(𝒒) − 𝜹(𝒒, 𝒒̇𝑢, 𝑡,′

𝑢)
𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

𝛾 ∶

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ℝ𝑛 ×ℝ𝑛 ×ℝ → ℝ2𝑛+1

(𝒒, 𝒒̇, 𝑡) →

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝒒𝑢
𝝍(𝒒) + 𝒖̄(𝒒𝑢, 𝒒̇𝑢, 𝑡)

𝒒̇𝑢
𝝍̇(𝒒) + 𝜹(𝒒, 𝒒̇𝑢, 𝑡,′

𝑢)
𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Let
𝒙 = (𝒒, 𝒒̇, 𝑡) ∈ 𝑋, where 𝑋 = ℝ𝑛 ×ℝ𝑛 ×ℝ,
𝒙̄ = (𝒒̄, ̇̄𝒒, 𝑡) ∈ 𝑋̄, where 𝑋̄ = ℝ𝑛 ×ℝ𝑛 ×ℝ,

then using the definitions above, we can rewrite (5.29a)–(5.29e) as
𝜷(𝒙) = 𝜶(𝒙̄), (5.34)

or, by making use of the equivalence (𝒒𝑢, 𝒒̇𝑢) = (𝒒̄𝑢, ̇̄𝒒𝑢), as
𝜶(𝒙) = 𝜸(𝒙̄). (5.35)

We are now in a position to formulate the main results of this section.

Lemma 5.3.1 (A one-to-one correspondence) The mapping

𝝅 ∶
{

𝑿 → 𝑿̄
𝒙 → 𝜶−1◦𝜷(𝒙) , (5.36)
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Figure 5.6: Extended state space trans-
formation: the diffeomorphism 𝝅 defining
the one-to-one correspondence between the
sets𝑋 and 𝑋̄ is a composition of diffeomor-
phisms.

𝑋 𝑋̄

𝜷

𝒙

𝜸

𝝅 = 𝜶−1◦𝜷

𝜶

𝜶

𝝅−1 = 𝜷−1◦𝜶

𝜶−1◦𝜸

𝜸−1◦𝜶

𝝅(𝒙)

𝜷−1 𝜶−1

𝜸−1𝜶−1

is a 1 diffeomorphism, and thus defines a change of coordinates

𝑞𝑖 =𝑞𝑖(𝒒, 𝒒̇, 𝑡), 𝑖 = 1,… , 𝑛
̇̄𝑞𝑖 = ̇̄𝑞𝑖(𝒒, 𝒒̇, 𝑡), 𝑖 = 1,… , 𝑛

(5.37)

with |𝐷𝝅(𝒙)| = |𝐷𝜶(𝒙̄)|−1|𝐷𝜶(𝒙)|.88: This determinant can be interpreted

The proof of Lemma 5.3.1 relies on the following global inverse function
theorems that go back to Hadamard [56], and a standard property of proper[56]: Hadamard (1906), “Sur les transfor-

mations ponctuelles” functions summarized in Lemma 5.3.2. The cases where either condition (i)
or (ii) of Assumption 5.1.2 hold will be treated independently. The connections
between the central mappings are sketched in Fig. 5.6.

Lemma 5.3.2 (DeMarco [35]) A continuous function 𝒇 ∶ ℝ𝑛 → ℝ𝑛 is
proper if and only if it is coercive, namely ‖𝒇 (𝒙)‖ → ∞, as ‖𝒙‖ → ∞.

Theorem 5.3.3 (Gordon [53]) A 1 map 𝒇 ∶ ℝ𝑛 → ℝ𝑛 is a 1 diffeomor-
phism if and only if 𝒇 is proper and the Jacobian determinant 𝐷𝒇 never
vanishes.

Theorem 5.3.4 (Miller [119], Ortega [130]) Assume that 𝒇 ∶ ℝ𝑛 → ℝ𝑛 is
continuously differentiable on ℝ𝑛 and that ‖𝐷𝒇 (𝒙)−1‖ ≤ 𝑐 for all 𝒙 ∈ ℝ𝑛.
Then 𝒇 is a homeomorphism of ℝ𝑛 onto ℝ𝑛 .

The following properties of diffeomorphism are repeatably exploited in the
proof of Lemma 5.3.1.

• Let 𝒇 ∶ 𝐴→ 𝐵 and 𝒈∶ 𝐵 → 𝐶 be diffeomorphisms, then
𝒈◦𝒇 ∶ 𝐴 → 𝐶 is a diffeomorphism [82, p. 301].[82]: Kass et al. (2011), Geometrical Foun-

dations of Asymptotic Inference • Let 𝐴 be open in ℝ𝑛 and 𝒇 ∶ 𝐴 → ℝ𝑛 be a diffeomorphism. Then 𝒇−1

is a diffeomorphism from 𝒇 (𝐴) onto 𝐴 [82, p. 300].
• Let the 𝑘 map 𝒇 ∶ ℝ𝑛 → ℝ𝑛 be a global homeomorphism, then 𝒇 is a

global 𝑘 diffeomorphism by the usual local inverse function theorem.

Finally, the following result will be used to verify the critical inverse Jacobian
condition in Theorem 5.3.4.
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Lemma 5.3.5 Let 𝑨 in ℂ𝑛×𝑛 be nonsingular. By [160] [160]: Yi-Sheng et al. (1997), “A note on a
lower bound for the smallest singular value”

, we have

It is worth remarking that the result by Yi-
Sheng [160] is a minor modification of The-
orem 1 by Hong [71].

‖𝑨‖2 ≥ 𝜎𝑚(𝑨) ≥
1
|𝑨|

(

𝑛
𝑛 − 1

)(𝑛−1)∕2
. (5.38)

Proof of Lemma 5.3.1 using Theorem 5.3.3. The following proof considers
the case where condition (i) in Assumption 5.1.2 is satisfied. The proof consists
of three steps: 1) show that 𝜶 and 𝜷 are diffeomorphisms using Theorem 5.3.3.
2) conclude that the composition 𝝅 is a diffeomorphism, 3) establish lower
bound for |𝝅|.9 Note that from the properties of the potential function  9: Note that for the case where condition

(ii) in Assumption 5.1.2 is satisfied the
proof of step 1) is trivial invoking Theo-
rem 5.3.4.

follows that 𝜶 and 𝜷 are continuously differentiable; thus also compositions
of these two functions.
Step 1: Assumption 5.1.2 with condition (i) implies that 𝜶 is a coercive map;
thus, according to Lemma 5.3.2, it is proper. Invoking Theorem 5.3.3 and
further knowing that the determinant of 𝜶 never vanishes since |𝐷𝜶| =
|

𝜕𝝍
𝜕𝒒𝑎

|

2, as detailed below in (5.39), we conclude that 𝜶 is a diffeomorphism.
Considering that 𝜶 is proper and that 𝒖̄𝑢 satisfies Assumption 5.3.1, it is
clear that 𝜷 is also a proper map satisfying Theorem 5.3.3. Since 𝜶 is a
diffeomorphism it implies that 𝜶−1 is a diffeomorphism [82, p. 301]. [82]: Kass et al. (2011), Geometrical Foun-

dations of Asymptotic InferenceStep 2: Given that the composition of diffeomorphisms is a diffeomorphism
[82, p. 300], we conclude that 𝒇 = 𝜶−1◦𝜷 is a diffeomorphism.
Step 3: An argument is provided in the proof below, see (5.45). ■

Proof of Lemma 5.3.1 using Theorem 5.3.4. The following proof considers
the case where condition (ii) in Assumption 5.1.2 is satisfied and consists of
three steps: 1) show that 𝜶 and 𝜷 are diffeomorphisms using Theorem 5.3.4, 2)
conclude that the composition 𝝅 is a diffeomorphism, 3) establish the desired
expression for |𝐷𝝅|.
Step 1: Knowing that

𝐷𝜶(𝒙) =
𝜕𝛼𝑖
𝜕𝑥𝑗

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝒒𝑢
𝜕𝒒𝑢

𝜕𝒒𝑢
𝜕𝒒𝑎

𝜕𝒒𝑢
𝜕𝒒̇𝑢

𝜕𝒒𝑢
𝜕𝒒̇𝑎

𝜕𝒒𝑢
𝜕𝑡

𝜕𝝍
𝜕𝒒𝑢

𝜕𝝍
𝜕𝒒𝑎

𝜕𝝍
𝜕𝒒̇𝑢

𝜕𝝍
𝜕𝒒̇𝑎

𝜕𝝍
𝜕𝑡

𝜕𝒒̇𝑢
𝜕𝒒𝑢

𝜕𝒒̇𝑢
𝜕𝒒𝑎

𝜕𝒒̇𝑢
𝜕𝒒̇𝑢

𝜕𝒒̇𝑢
𝜕𝒒̇𝑎

𝜕𝒒̇𝑢
𝜕𝑡

𝜕𝝍̇
𝜕𝒒𝑢

𝜕𝝍̇
𝜕𝒒𝑎

𝜕𝝍̇
𝜕𝒒̇𝑢

𝜕𝝍̇
𝜕𝒒̇𝑎

𝜕𝝍̇
𝜕𝑡

𝜕𝑡
𝜕𝒒𝑢

𝜕𝑡
𝜕𝒒𝑎

𝜕𝑡
𝜕𝒒̇𝑢

𝜕𝑡
𝜕𝒒̇𝑢

𝜕𝑡
𝜕𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

considering that 𝜕𝝍̇
𝜕𝒒̇𝑘

= 𝜕𝝍
𝜕𝒒𝑘

, 𝑘 = 𝑢, 𝑎, due to the velocity-independence of 𝝍
and using Schur’s determinant identity10, we get 10: See Theorem D.3.2 in Appendix D.

|𝐷𝜶(𝒙)| =

|

|

|

|

|

|

|

|

𝑰 𝟎 𝟎
𝜕𝝍
𝜕𝒒𝑢

𝜕𝝍
𝜕𝒒𝑎

𝟎
𝟎 𝟎 1

|

|

|

|

|

|

|

|

|

|

|

|

|

𝑰 𝟎
𝜕𝝍
𝜕𝒒𝑢

𝜕𝝍
𝜕𝒒𝑎

|

|

|

|

|

=
|

|

|

|

|

𝑰 𝟎
𝜕𝝍
𝜕𝒒𝑢

𝜕𝝍
𝜕𝒒𝑎

|

|

|

|

|

2

=
|

|

|

|

𝜕𝝍
𝜕𝒒𝑎

|

|

|

|

2
, (5.39)

where the last equality can be shown through repeated cofactor expansion
along the first row. Proceeding analogously to the steps above, and further



86 5 Generalizing the Concept of Quasi-Full Actuation

considering that 𝜕𝒒̇𝑎𝜹 = 𝟎, we obtain

𝐷𝜷(𝒙) =
𝜕𝛽𝑖
𝜕𝑥𝑗

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝒒𝑢
𝜕𝒒𝑢

𝜕𝒒𝑢
𝜕𝒒𝑎

𝜕𝒒𝑢
𝜕𝒒̇𝑢

𝜕𝒒𝑢
𝜕𝒒̇𝑎

𝜕𝒒𝑢
𝜕𝑡

𝜕𝒒𝑢 (𝝍 − 𝒖̄𝑢)
𝜕𝝍
𝜕𝒒𝑎

𝜕𝒒̇𝑢 (𝝍 − 𝒖̄𝑢)
𝜕𝝍
𝜕𝒒̇𝑎

𝜕𝑡(𝝍 − 𝒖̄𝑢)

𝜕𝒒̇𝑢
𝜕𝒒𝑢

𝜕𝒒̇𝑢
𝜕𝒒𝑎

𝜕𝒒̇𝑢
𝜕𝒒̇𝑢

𝜕𝒒̇𝑢
𝜕𝒒̇𝑎

𝜕𝒒̇𝑢
𝜕𝑡

𝜕𝒒𝑢 (𝝍̇ − 𝜹) 𝜕𝒒𝑎 (𝝍̇ − 𝜹) 𝜕𝒒̇𝑢 (𝝍̇ − 𝜹) 𝜕𝒒̇𝑎 (𝝍̇ − 𝜹) 𝜕𝑡(𝝍̇ − 𝜹)
𝜕𝑡
𝜕𝒒𝑢

𝜕𝑡
𝜕𝒒𝑎

𝜕𝑡
𝜕𝒒̇𝑢

𝜕𝑡
𝜕𝒒̇𝑎

𝜕𝑡
𝜕𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

and1111: A detailed argument of this step is pro-
vided Appendix B.3.

|𝐷𝜷(𝒙)| =
|

|

|

|

|

|

𝜕𝝍
𝜕𝒒𝑎

𝜕𝑡(𝝍̇ − 𝜹)
𝟎 1

|

|

|

|

|

|

|

|

|

|

|

|

|

|

𝑰 𝟎 𝟎
𝜕𝒒𝑢 (𝝍 − 𝒖̄𝑢)

𝜕𝝍
𝜕𝒒𝑎

𝟎
𝟎 𝟎 1

|

|

|

|

|

|

|

|

=
|

|

|

|

𝜕𝝍
𝜕𝒒𝑎

|

|

|

|

2
. (5.40)

Considering condition (ii) of Assumption 5.1.2, we know that
|𝐷𝜶(𝒙)| ≥ 𝑐2 > 0, and |𝐷𝜷(𝒙)| ≥ 𝑐2 > 0, ∀𝒙 ∈ 𝑋. (5.41)

To show that ‖𝐷𝜶−1
‖ is bounded from above it is sufficient to show that

𝜎𝑚(𝐷𝜶)−1 ≤ 𝑘 < ∞.12 To this end, let us establish a lower bound for the12: Note that ‖𝑨‖ = 𝜎𝑀 (𝑨) implies that
‖𝑨−1

‖ ≤ 𝜎𝑚(𝑨)−1. smallest singular values using Lemma 5.3.5 and (5.41)

𝜎𝑚(𝐷𝜶) > |𝐷𝜶|
(

𝑛 − 1
𝑛

)(𝑛−1)∕2
≥ 𝑐2

√

𝑒
. (5.42)

A proof for the last inequality is provided below. Considering (5.41) and (5.42),
and knowing that 𝑐 ≠ 0 and 𝜎𝑚(𝐷𝜶) ≠ 0, we conclude the desired result

𝜎𝑚(𝐷𝜶)−1 ≤
√

𝑒
𝑐2
. (5.43)

We leave it to the reader to verify that inequality (5.43) equally holds for
𝜎𝑚(𝐷𝜷)−1.

In summary, 𝜶 and 𝜷 satisfy the desired conditions of Theorem 5.3.4,
which concludes the proof that 𝜶 and 𝜷 are diffeomorphisms.
Step 2: Given that the composition of diffeomorphisms is a diffeomorphism
[82, p. 300], we conclude that 𝝅 = 𝜶−1◦𝜷 is a diffeomorphism.[82]: Kass et al. (2011), Geometrical Foun-

dations of Asymptotic Inference Step 3: The result above and the chain rule tell us that the composition 𝝅 is
differentiable on 𝑋, and that the Jacobian matrices corresponding to 𝝅,𝜶 and
𝜷 are related as follows

𝐷𝝅(𝒙) = 𝐷𝜶−1(𝜷(𝒙)
)

𝐷𝜷(𝒙). (5.44)
According to the inverse function theorem 𝐷𝜶−1(𝜷(𝒙)

)

= 𝐷𝜶(𝒙̄)−1 and we
conclude from (5.44) that1313: Recall that for some invertible matrix

𝑨, we have that |𝑨−1
| = |𝑨|−1.

|𝐷𝝅(𝒙)| = |𝐷𝜶(𝒙̄)|−1 |𝐷𝜷(𝒙)| = |𝐷𝜶(𝒙̄)|−1|𝐷𝜶(𝒙)|, (5.45)
which completes the proof. ■
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Supplementary Limit Analysis for Proof of Lemma 5.3.1

This section establishes the lower bound for the function

𝜌(𝑛) =
(

𝑛 − 1
𝑛

)
𝑛−1
2
, 𝑛 ∈ ℕ>0, (5.46)

that was considered in (5.42) without proof; see Fig. 5.7 for a graphical rep-
resentation. We shall proceed in three steps: 1) proof that 𝜌(𝑛) is a strictly
monotonously decreasing function on the intervalℝ>0, 2) show that lim

𝑛→∞
𝜌(𝑛) =

𝑒−1∕2, 3) conclude that 𝜌(𝑛) ≥ 𝑒−1∕2, 𝑛 ∈ ℕ>0.
0 1 2 3 4 5 6 7 8 9 10

1
√

𝑒

𝜎(𝑛), 𝑛 ∈ ℝ>0

𝜎(𝑛), 𝑛 ∈ ℕ>0

1

Figure 5.7: Evaluation of 𝜎(𝑛).

Step 1: The derivative of (5.46) is

𝜌′(𝑛) = 1
2𝑛

(

𝑛 − 1
𝑛

)
𝑛−1
2
[

𝑛 log
(

𝑛 − 1
𝑛

)

+ 1
]

. (5.47)

It is easy to see that the sign of 𝜌′ equals the sign of the last term inside the [.]
brackets for all 𝑛 ∈ ℕ. Observing that

𝑑
𝑑𝑥

[

𝑥 log
(

𝑥 − 1
𝑥

)]

= 1
𝑥 − 1

+ log
(

𝑥 − 1
𝑥

)

(5.48)

is strictly greater zero for 𝑥 > 1, and that A proof for this limit is shown below in
Step 2.

lim
𝑥→∞

𝑥 log
(

𝑥 − 1
𝑥

)

= −1. (5.49)

The first equality is trivially satisfied, and the latter follows immediately from
the inequality14 14: Note that 𝑒 is the unique real number

satisfying (1 + 1∕𝑥)𝑥 < 𝑒 < (1 + 1∕𝑥)𝑥+1
for all positive 𝑥.[

𝑥 − 1
𝑥

]𝑥
=
[

1 − 1
𝑥

]𝑥
≤
[

1 + 1
𝑥

]𝑥
< 𝑒, 𝑥 ∈ ℝ.

We conclude that the sign-determining term in (5.47) is strictly negative; thus
𝜎(𝑛) is strictly monotonously decreasing. Moreover since ℕ>0 is a subset
of ℝ>0, 𝜎 evaluated on the interval ℕ>0 must also be strictly monotonously
decreasing.

Step 2: Making use of the following limit laws

lim
𝑥→𝑎

𝑏𝑓 (𝑥) = 𝑏 lim
𝑥→𝑎

𝑓 (𝑥), exponential law for limits (EL),

lim
𝑥→𝑎

𝑓 (𝑥)
𝑔(𝑥)

=
lim
𝑥→𝑎

𝑓 (𝑥)

lim
𝑥→𝑎

𝑔(𝑥)
for lim

𝑥→𝑎
𝑔(𝑥) ≠ 0, quotient law for limits (QL),

lim
𝑥→𝑎

𝑓 (𝑥)𝑛 =
[

lim
𝑥→𝑎

𝑓 (𝑥)
]𝑛
, power law for limits (PL),

lim
𝑥→𝑎

[

𝑓 (𝑥)𝑔(𝑥)
]

= lim
𝑥→𝑎

𝑓 (𝑥) ⋅ lim
𝑥→𝑎

𝑔(𝑥), product law for limits (ML),
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we get

lim
𝑛→∞

𝜌(𝑛)
QL
=

lim
𝑛→∞

(

𝑛−1
𝑛

)𝑛∕2

lim
𝑛→∞

(

𝑛−1
𝑛

)1∕2
PL
=

lim
𝑛→∞

(

𝑛−1
𝑛

)𝑛∕2

[

lim
𝑛→∞

(

𝑛−1
𝑛

)]1∕2

= lim
𝑛→∞

(𝑛 − 1
𝑛

)𝑛∕2
= lim
𝑛→∞

{

exp
[

log
(𝑛 − 1

𝑛

)𝑛∕2]}

= lim
𝑛→∞

{

exp
[𝑛
2
log

(𝑛 − 1
𝑛

)]} EL
= exp

{

lim
𝑛→∞

[𝑛
2
log

(𝑛 − 1
𝑛

)]}

ML
= exp

⎧

⎪

⎨

⎪

⎩

1
2

lim
𝑛→∞

log
(

𝑛−1
𝑛

)

1
𝑛

⎫

⎪

⎬

⎪

⎭

.

Knowing that

lim
𝑛→∞

log 𝑛 − 1
𝑛

= 0; lim
𝑛→∞

1
𝑛
= 0,

we can apply L’Hopital’s rule such that

lim
𝑛→∞

log
(

𝑛−1
𝑛

)

1
𝑛

= lim
𝑛→∞

𝑛
𝑛−1

𝑛−(𝑛−1)
𝑛2

− 1
𝑛2

= lim
𝑛→∞

1
𝑛(𝑛−1)

− 1
𝑛2

= lim
𝑛→∞

𝑛
1 − 𝑛

= −1.

Combing the results above, we eventually get

lim
𝑛→∞

𝜌(𝑛) = 1
√

𝑒
.

Step 3: Considering the results above, we conclude that
𝜌 ∶ ℕ>0 → (𝑒−1∕2, 1]. (5.50)

Remark 5.3.1 From (5.36), we see that the computation of the mapping
𝝅−1 ∶ 𝑋̄ → 𝑋 requires knowledge of the inverse 𝜷−1. However, considering
(5.35) and the existence of 𝜶−1, it is clear that we can establish a mapping
from the elements of 𝑋̄ to the unique elements of 𝑋 through

𝒙 = 𝜶−1◦𝜸(𝒙̄). (5.51)
Proceeding mutatis mutandis to the proof of Lemma 5.3.1, it is straight-
forward to show that (5.51) is a 1 diffeomorphism. Thus, using (5.51)
instead of 𝒙 = 𝝅−1(𝒙̄), we can avoid the computation of 𝜷−1 and limit
the computational effort to the calculation of only 𝜶−1 for establishing a
mapping from 𝑋̄ to 𝑋.
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5.3.2 Main Result

The following Theorem formalizes the idea presented in the thought experi-
ment of Section 5.2. It is convenient to introduce the “partial” Jacobians

𝑿(𝒒) ≜
𝜕2𝑎
𝜕𝒒2𝑢

(𝒒); 𝒀 (𝒒) ≜
𝜕2𝑎
𝜕𝒒𝑎𝜕𝒒𝑢

(𝒒). (5.52)

and the auxiliary functions

𝑨(𝒒, 𝒒̄) ≜
[

𝒀
]−1
𝑞
[

𝒀
]

𝑞 , (5.53)

𝑹(𝒒, 𝒒̄) ≜

[

𝜕2𝑎
𝜕 ̇̄𝒒2𝑎

]

𝑞

𝑨−1(𝒒, 𝒒̄)

[

𝜕2𝑎
𝜕𝒒̇2𝑎

]−1

𝑞

, (5.54)

𝝁1(𝒒, 𝒒̄, 𝒒̇𝑢,′
𝑢, 𝑡) ≜

[

𝒀
]−1
𝑞

{(

[

𝑿
]

𝑞 −
[

𝑿
]

𝑞

)

̇̄𝒒𝑢 + ̇̄𝒖𝑢
}

, (5.55)

𝝁2(𝒒, 𝒒̄, 𝒒̇, ̇̄𝒒,′
𝑢, ̇

′
𝑢, 𝑡) ≜

[

𝜕2𝑎
𝜕𝒒̇2𝑎

]

𝑞

(

𝑨̇ ̇̄𝒒𝑎 + 𝝁̇1
)

+
[

𝜕2𝑎
𝜕𝒒𝑎𝜕𝒒̇𝑎

]

𝑞
𝒒̇𝑎. (5.56)

Theorem 5.3.6 (Quasi-Full Actuation—Monoarticulation) Suppose that the
Euler-Lagrange system (5.1) satisfies Assumption 5.1.1 and 5.1.2, and let
𝑛𝑢 = 𝑛𝑎. Consider the phase space transformation (𝒒, 𝒒̇, 𝑡) → (𝒒̄, ̇̄𝒒, 𝑡) de-
fined by the diffeomorphism 𝝅 in (5.36), with 𝒖̄𝑢 satisfying Assumption 5.3.1,
and the following change of control inputs 𝒖→ 𝒖̄

𝒖𝑎 =𝑹−1
{[

𝜕𝑎
𝜕𝒒̄𝑎

]

𝑞
−
[

𝜕2𝑎
𝜕𝒒̄𝑎𝜕 ̇̄𝒒𝑎

]

𝑞

̇̄𝒒𝑎 + 𝒖̄𝑎
}

+ 𝝁2 −
[

𝜕𝑎
𝜕𝒒𝑎

]

𝑞
, (5.57)

then the equations of motion (5.1) in the new sets of generalized coordinates
and inputs are of the Lagrangian form

Σ̄∶ d
d𝑡

[

𝜕
𝜕 ̇̄𝒒

]

𝑞
−
[

𝜕
𝜕𝒒̄

]

𝑞
= ̄, (5.58)

where ̄ = 𝑐𝑜𝑙
(

𝒖̄𝑢 +′
𝑢, 𝒖̄𝑎 +𝑹′

𝑎
)

.

𝒒̇
(𝒒, 𝒒̇)



ICT (5.29), (5.57)

̇̄𝒒̄
(𝒒̄, ̇̄𝒒)

Figure 5.8: The transformation fully pre-
serves the EL structure.



̄

𝑅

𝒖𝑎

𝒖̄𝑎 𝒖̄𝑢+
+

+

+
+

′
𝑎 ′

𝑢

+

Figure 5.9: Relation between the general-
ized external forces.

Proof. The proof is based on two central arguments. First, Lemma 5.3.1 tells
us that the mapping 𝝅, (5.36), is a diffeomorphism between the two sets
of generalized coordinates and velocities (𝒒, 𝒒̇, 𝑡) and (𝒒̄, ̇̄𝒒, 𝑡) including the
time. Second, we will show that applying simultaneously the transformations
𝒙̄ = 𝝅(𝒙) and (5.57) to the EL equations (5.1) produces the desired EL
equations (5.58).

For ease of reference the central transforming equations (5.29b) and
(5.29d) are repeated:

[

𝜕𝑎
𝜕𝒒𝑢

]

𝑞
=

[

𝜕𝑎
𝜕𝒒̄𝑢

]

𝑞
+ 𝒖̄𝑢, (5.59)

d
d𝑡

[

𝜕𝑎
𝜕𝒒𝑢

]

𝑞
= d

d𝑡

[

𝜕𝑎
𝜕𝒒̄𝑢

]

𝑞
+ ̇̄𝒖𝑢. (5.60)
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Equation (5.60) gives us an explicit relation between the generalized velocities
𝒒̇𝑎 and ̇̄𝒒𝑎. From Assumption 5.1.1, it follows that

d
d𝑡

[

𝜕𝑎
𝜕𝒒𝑢

]

𝑞
=

[

𝜕2𝑎
𝜕𝒒2𝑢

]

𝑞

𝒒̇𝑢 +
[

𝜕2𝑎
𝜕𝒒𝑎𝜕𝒒𝑢

]

𝑞
𝒒̇𝑎, (5.61)

d
d𝑡

[

𝜕𝑎
𝜕𝒒̄𝑢

]

𝑞
=

[

𝜕2𝑎
𝜕𝒒̄2𝑢

]

𝑞

̇̄𝒒𝑢 +
[

𝜕2𝑎
𝜕𝒒̄𝑎𝜕𝒒̄𝑢

]

𝑞
̇̄𝒒𝑎. (5.62)

Using (5.52) and making the substitutions (5.60)–(5.62), we obtain
𝒀 (𝒒)𝒒̇𝑎 = 𝒀 (𝒒̄) ̇̄𝒒𝑎 +

[

𝑿(𝒒̄) −𝑿(𝒒)
] ̇̄𝒒𝑢 + ̇̄𝒖𝑢 (5.63)

Using the definitions (5.53) and (5.55), and exploiting Assumption (5.1.2),
we can rewrite (5.63) as

𝒒̇𝑎 = 𝑨 ̇̄𝒒𝑎 + 𝝁1, (5.64)
which reveals the linear dependence of the velocities 𝒒̇𝑎 and ̇̄𝒒𝑎. We can now
use (5.36) and (5.64) to transform the EL equations (5.1) into the desired form
(5.58). Splitting (5.1) into its components, we get:

d
d𝑡

[

𝜕𝑢
𝜕𝒒̇𝑢

]

𝑞
−
[

𝜕𝑢
𝜕𝒒𝑢

]

𝑞
−
[

𝜕𝑎
𝜕𝒒𝑢

]

𝑞
= 𝑢, (5.65)

d
d𝑡

[

𝜕𝑎
𝜕𝒒̇𝑎

]

𝑞
−
[

𝜕𝑎
𝜕𝒒𝑎

]

𝑞
= 𝑎. (5.66)

Knowing that the sub-Lagrangian𝑢 in (5.65) is a function of only the 𝒒𝑢’s and
𝒒̇𝑢’s, and considering that 𝒒𝑢 ≡ 𝒒̄𝑢 according to (5.36), it follows immediately

d
d𝑡

[

𝜕𝑢
𝜕𝒒̇𝑢

]

𝑞
−
[

𝜕𝑢
𝜕𝒒𝑢

]

𝑞
≡ d

d𝑡

[

𝜕𝑢
𝜕 ̇̄𝒒𝑢

]

𝑞
−
[

𝜕𝑢
𝜕𝒒̄𝑢

]

𝑞
. (5.67)

Making the substitutions (5.67), (5.59) and (5.65) gives the important result
d
d𝑡

[

𝜕𝑢
𝜕𝒒̇𝑢

]

𝑞
−
[

𝜕𝑢
𝜕𝒒𝑢

]

𝑞
−
[

𝜕𝑎
𝜕𝒒̄𝑢

]

𝑞
= 𝒖̄𝑢 +𝑢 = ̄𝑢, (5.68)

Considering that

d
d𝑡

[

𝜕𝑎
𝜕𝒒̇𝑎

]

𝑞
=

[

𝜕2𝑎
𝜕𝒒̇2𝑎

]

𝑞

𝒒̈𝑎 +
[

𝜕2𝑎
𝜕𝒒𝑎𝜕𝒒̇𝑎

]

𝑞
𝒒̇𝑎, (5.69)

we can make the substitution (5.64) and (5.69) and obtain:

d
d𝑡

[

𝜕𝑎
𝜕𝒒̇𝑎

]

𝑞
=

[

𝜕2𝑎
𝜕𝒒̇2𝑎

]

𝑞

d
d𝑡

(

𝑨 ̇̄𝒒𝑎 + 𝝁1
)

+
[

𝜕2𝑎
𝜕𝒒𝑎𝜕𝒒̇𝑎

]

𝑞

(

𝑨 ̇̄𝒒𝑎 + 𝝁1
)

=

[

𝜕2𝑎
𝜕𝒒̇2𝑎

]

𝑎

𝑨 ̈̄𝒒𝑎 + 𝝁2,

(5.70)

where the last equality is due to (5.64) and the definition of 𝝁2 in (5.56). Notice
that we can always rewrite the functions 𝑨,𝝁1,𝝁2 as functions of time 𝑡 and
the original coordinates 𝒒 only by applying the diffeomorphism sin (5.36).
Inserting (5.70) into (5.66) and pre-multiplying both sides with 𝑹 from the
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left, we obtain after rearranging terms:
[

𝜕2𝑎
𝜕 ̇̄𝒒2𝑎

]

𝑞

̈̄𝒒𝑎 = 𝑹
(

𝑎 +
[

𝜕𝑎
𝜕𝒒𝑎

]

𝑎
− 𝝁2

)

. (5.71)

Finally, introducing

𝑎 = ′
𝑎 −

[

𝜕𝑎
𝜕𝒒𝑎

]

𝑞
+ 𝝁2 +𝑹−1

(

[

𝜕𝑎
𝜕𝒒̄𝑎

]

𝑞
−
[

𝜕2𝑎
𝜕𝒒̄𝑎𝜕 ̇̄𝒒𝑎

]

𝑞

̇̄𝒒𝑎 + 𝒖̄𝑎

)

,

(5.72)
and making the substitutions (5.71) and (5.72) gives:

[

𝜕2𝑎
𝜕 ̇̄𝒒2𝑎

]

𝑞

̈̄𝒒𝑎 +
[

𝜕2𝑎
𝜕𝒒̄𝑎𝜕 ̇̄𝒒𝑎

]

𝑞

̇̄𝒒𝑎 −
[

𝜕𝑎
𝜕𝒒̄𝑎

]

𝑞
= 𝒖̄𝑎 +𝑹′

𝑎 = ̄𝑎. (5.73)

Considering that (5.69) holds equally when written in terms of the 𝒒̄’s, we
can use this fact to rewrite (5.73) in the desired form

d
d𝑡

[

𝜕𝑎
𝜕 ̇̄𝒒𝑎

]

𝑞
−
[

𝜕𝑎
𝜕𝒒̄𝑎

]

𝑞
= ̄𝑎. (5.74)

It is clear that (5.68) and (5.74) constitute the EL equations
d
d𝑡

[

𝜕
𝜕 ̇̄𝒒

]

𝑞
−
[

𝜕
𝜕𝒒̄

]

𝑞
= ̄, (5.75)

which completes the proof. ■

Following the geometrical interpretation of the thought experiment in Sec-
tion 5.2, we may think of the first 𝑛𝑢 transforming equations (5.36) as defining
the trajectory 𝒒̄𝑎 of the shifted subsystem Σ̄𝑎 such that the virtual subsystem
coupling forces 𝜕𝑎

𝜕𝒒𝑢
(𝒒̄) encodes the difference of the actual 𝜕𝑎𝜕𝒒𝑢

(𝒒) and desired
moving force 𝒖̄𝑢 acting on Σ𝑢.

5.4 Multi-Articulated Systems

Let us extend the results from Section 5.3 to the case where the number
of actuated coordinates is strictly greater than the number of unactuated
coordinates, i.e., 𝑛𝑎 > 𝑛𝑢.

5.4.1 A Nonpoint Transformation

In the multiarticulation case (𝑛𝑎 > 𝑛𝑢), the equations (5.29) no longer define
a change of coordinates since we have 2𝑛𝑢 equations for 𝑛 = 𝑛𝑢 + 𝑛𝑎 un-
knowns. We can remedy this issue by introducing an additional 𝑚 = 𝑛𝑎 − 𝑛𝑢
constraint equations.15 For the further analysis, it is convenient to introduce 15: As an alternative to introducing 𝑚 con-

straint equations, we could also impose the
equivalence 𝑞𝑎𝑖 = 𝑞𝑎𝑖 for 𝑚 different coor-
dinates. This case is not treated in this work
and will be subject to future investigations.
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the mappings

𝝍 ′ ∶

⎧

⎪

⎨

⎪

⎩

ℝ𝑛 → ℝ𝑛𝑢+𝑚

𝒒 →

[

𝝍(𝒒)
𝒉(𝒒)

]

, (5.76)

𝒖̄′ ∶
⎧

⎪

⎨

⎪

⎩

ℝ𝑛𝑢 ×ℝ𝑛𝑢 ×ℝ → ℝ𝑛𝑢+𝑚

(𝒒𝑢, 𝒒̇𝑢, 𝑡) →

[

𝒖̄𝑢(𝒒𝑢, 𝒒̇𝑢, 𝑡)
𝒗𝑢(𝒒𝑢, 𝒒̇𝑢, 𝑡)

]

. (5.77)

where the mappings 𝒖̄𝑢, 𝒗𝑢 and 𝒉 are such that the compositions 𝒖̄′ and 𝝍 ′ are
of class 𝑝, 𝑝 ≥ 2, and satisfy the following.

Assumption 5.4.1 For any bounded 𝒙, 𝒚 ∈ ℝ𝑛𝑢 , there exists a positive
constant 𝑐, independent of 𝑡 ∈ ℝ, such that ‖𝒖̄′𝑢(𝒙, 𝒚, 𝑡)‖ ≤ 𝑐.

Assumption 5.4.2 The 𝑘, 𝑘 ≥ 3, potential energy function  and the 𝑙,
𝑙 ≥ 2, mapping 𝒉∶ ℝ𝑛 → ℝ𝑛𝑢+𝑚 are such that for 𝑛𝑎 > 𝑛𝑢 at least one of
the following two conditions is satisfied

(i) |𝜕𝒒𝑎𝝍
′(𝒒)| > 0 and ‖𝒒𝑎‖ → ∞ implies |𝝍 ′(𝒒)| → ∞, (necessary)

(ii) |[𝜕𝒒𝑎𝝍
′(𝒒)]−1| ≤ 𝑐 <∞ and 𝝍 ′(𝟎) = 𝟎, (sufficient)

for some positive constant 𝑐.

Then, analogously to the monoarticulated case, we can define a phase space
transformation (𝒒, 𝒒̇, 𝑡) → (𝒒̄, ̇̄𝒒, 𝑡) by the following set of 2𝑛+1 equations:

𝒒̄𝑢 = 𝒒𝑢, (5.78a)
𝝍 ′(𝒒̄) = 𝝍 ′(𝒒) − 𝒖̄′𝑢(𝒒𝑢, 𝒒̇𝑢, 𝑡), (5.78b)

̇̄𝒒𝑢 = 𝒒̇𝑢, (5.78c)
𝝍̇ ′(𝒒̄) = 𝝍̇ ′(𝒒) − ̇̄𝒖′𝑢(𝒒𝑢, 𝒒̇𝑢, 𝑡), (5.78d)

𝑡 = 𝑡. (5.78e)
Note that (5.78b) and (5.78d) implicitly define the new positions and velocities
𝒒̄𝑎 and ̇̄𝒒𝑎. Following the procedure in Section 5.3, we can express ̇̄𝒖′𝑢 in terms
of only the generalized positions and velocities (𝒒𝑢, 𝒒̇𝑢) and time 𝑡 by making
use of (5.30). Knowing that

̇̄𝒖′𝑢 =
𝜕𝒖̄′𝑢
𝜕𝒒𝑢

𝒒̇𝑢 +
𝜕𝒖̄′𝑢
𝜕𝒒̇𝑢

𝒒̈𝑢 +
𝜕𝒖̄′𝑢
𝜕𝑡
, (5.79)

we can make the substitution (5.30) and (5.79) to obtain

̇̄𝒖′𝑢 =
𝜕𝒖̄′𝑢
𝜕𝒒𝑢

𝒒̇𝑢 +
𝜕𝒖̄′𝑢
𝜕𝒒̇𝑢

[

𝜕2𝑢
𝜕𝒒̇2𝑢

]−1{ 𝜕
𝜕𝒒𝑢

−
[

𝜕2𝑢
𝜕𝒒𝑢𝜕𝒒̇𝑢

]

𝒒̇𝑢 +′
𝑢

}

+
𝜕𝒖̄′𝑢
𝜕𝑡

≜ 𝜹′(𝒒, 𝒒̇𝑢,′
𝑢, 𝑡)

(5.80)

such that (5.78b) can be rewritten as
𝝍̇ ′(𝒒̄) = 𝝍̇ ′(𝒒) − 𝜹′(𝒒, 𝒒̇𝑢,′

𝑢, 𝑡). (5.81)
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𝑋 𝑋̄

𝜷′

𝒙

𝜸′

𝝅′ = (𝜶′)−1◦𝜷′

𝜶′

𝜶′

(𝝅′)−1 = (𝜷′)−1◦𝜶′

(𝜶′)−1◦𝜸′

(𝜸′)−1◦𝜶′

𝝅′(𝒙)

Figure 5.10: Extended state space transfor-
mation: the diffeomorphism 𝝅, which is a
composition of diffeomorphisms, defines
the one-to-one correspondence between the
sets 𝑋 and 𝑋̄. Treating time as another co-
ordinate, we can interpret 𝝅 as defining a
volume-preserving transformation of the ex-
tended phase space. In the extended state
space, the time coordinate is related to the
new independent variable through the iden-
tity phase.

To rewrite the transforming equations (5.78a)–(5.78e) in compact form, it is
convenient to introduce the mappings:

𝜶′ ∶

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ℝ𝑛 ×ℝ𝑛 ×ℝ → ℝ2𝑛+1

(𝒒, 𝒒̇, 𝑡) →

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝒒𝑢
𝝍 ′(𝒒)
𝒒̇𝑢
𝝍̇ ′(𝒒)
𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

𝜷′ ∶

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ℝ𝑛 ×ℝ𝑛 ×ℝ → ℝ2𝑛+1

(𝒒, 𝒒̇, 𝑡) →

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝒒𝑢
𝝍 ′(𝒒) − 𝒖̄(𝒒𝑢, 𝒒̇𝑢, 𝑡)

𝒒̇𝑢
𝝍̇ ′(𝒒) − 𝜹′(𝒒, 𝒒̇𝑢,′

𝑢, 𝑡)
𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

𝛾 ′ ∶

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ℝ𝑛 ×ℝ𝑛 ×ℝ → ℝ2𝑛+1

(𝒒, 𝒒̇, 𝑡) →

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝒒𝑢
𝝍 ′(𝒒) + 𝒖̄′(𝒒𝑢, 𝒒̇𝑢, 𝑡)

𝒒̇𝑢
𝝍̇ ′(𝒒) + 𝜹′(𝒒, 𝒒̇𝑢,′

𝑢, 𝑡)
𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Then, we can define a diffeomorphism between the two sets of generalized
coordinates and velocities as follows.

Lemma 5.4.1 (A one-to-one correspondence) The mapping

𝝅′ ∶
{

𝑿 → 𝑿̄
𝒙 → (𝜶′)−1◦𝜷′(𝒙) , (5.82)
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is a 1 diffeomorphism, and thus defines a change of coordinates

𝑞𝑖 =𝑞𝑖(𝒒, 𝒒̇, 𝑡),
̇̄𝑞𝑖 = ̇̄𝑞𝑖(𝒒, 𝒒̇, 𝑡),

(5.83)

with |𝐷𝝅′(𝒙)| = |𝐷𝜶′(𝒙̄)|−1|𝐷𝜶′(𝒙)|.

Assumption 5.4.2 is unique to the multiarticulation case and will be central
to the proof of Lemma 5.4.1. Considering its central role let us verify the
existence of functions 𝒉 and 𝝂𝑢 satisfying Assumption 5.4.2 before continuing
with the actual proof. We shall rely on a proof by example. To this end, without
loss of generality, let us consider

𝜈𝑢𝑖 = 0, and ℎ𝑖 =
{

0 for 𝑖 = 1,… , 𝑛𝑢,
𝑞𝑎𝑖 for 𝑖 = 𝑛𝑛𝑢+1,… , 𝑛𝑎,

. (5.84)

The following arguments follow directly from the properties of potential
function  summarized in Assumption 5.1.2. Given that all singular values of
𝜕𝒒𝑎𝝍(𝒒) are strictly positive, we conclude that 𝑠 has full row rank.16 Hence,16: Note that given some (complex) ma-

trix 𝑨, then rank (𝑨) = rank (𝑼Σ𝑽 ∗) =
rank (Σ). by reordering of the 𝑞𝑎𝑖 and thus of the 𝑞𝑎𝑖, we can always obtain a partitioning

of 𝜕𝑞𝑎𝝍 such that the left 𝑛𝑢 × 𝑛𝑢 submatrix
[

𝜕𝝍
𝜕𝑞𝑎1

𝜕𝝍
𝜕𝑞𝑎𝑛𝑢

𝜕𝝍
𝜕𝑞𝑎𝑛𝑢+1

𝜕𝝍
𝜕𝑞𝑎𝑛𝑎

]

(5.85)
[

𝜕𝝍
𝜕𝑞𝑎1

… 𝜕𝝍
𝜕𝑞𝑎𝑛𝑢

𝜕𝝍
𝜕𝑞𝑎𝑛𝑢+1

… 𝜕𝝍
𝜕𝑞𝑎𝑛𝑎

]

(5.86)

is invertible. In this case, we get for 𝜕𝒒𝑎𝝍 ′

⎡

⎢

⎢

⎣

𝜕𝝍
𝜕𝑞𝑎1

⋯ 𝜕𝝍
𝜕𝑞𝑎𝑛𝑢

𝜕𝝍
𝜕𝑞𝑎𝑛𝑢+1

⋯ 𝜕𝝍
𝜕𝑞𝑎𝑛𝑎

𝟎 𝑰

⎤

⎥

⎥

⎦

. (5.87)

Considering Schur’s determinant identity, it is clear that 𝜕𝑞𝑎𝝍 ′ is full rank as
desired. Moreover, its determinant is |𝜕𝑞𝑎𝝍|, and thus similar to the monoar-
ticulation case. Follow analogously the steps of proof of Property 3, it is
straightforward to show that choice of ℎ𝑖 and 𝜈𝑖, as in (5.84), always satisfies
Assumption 5.4.2.

Remark 5.4.1 This particular choice of results in a set of constraint equa-
tions that considers only a subset of generalized coordinates, and is by
no means the most appropriate for every system. In fact, making the sub-
stitution (5.78b) and (5.84) yields 𝑞𝑎𝑘 = 𝑞𝑎𝑘, 𝑘 = 𝑛𝑢 + 1,… , 𝑛𝑎. In most
scenarios there is no physical justification for this unequal treatment of
the actuated coordinates. The example above shall only serve as a proof
that there always exist constraint equations such that Lemma 5.4.1 holds.
A “smart” choice for the constraint equations, however, requires physical
insight into the structure of the considered system. For example, in [60, 115,
151]

[60]: Harder et al. (2022), “Simultaneous
motion tracking and joint stiffness control of
bidirectional antagonistic variable-stiffness
actuators”
[115]: Mengacci et al. (2021), “Elastic
Structure Preserving control for compliant
robots driven by agonistic-antagonistic ac-
tuators (ESPaa)”
[151]: Pollayil et al. (2021), “Elastic struc-
ture preserving impedance controlfor non-
linearly coupled tendon-driven systems”

, we introduce physically motivated constraint equations tailored to
elastic tendon-driven fingers and bi-antagonistic variable stiffness actuators,
respectively. In the former and latter case, the introduced constraint equa-
tions translate into the joint pretensions of the original and virtual system
being equal. In [114]

[114]: Meng et al. (2021), “Elastic struc-
ture preserving impedance control of bidi-
rectional antagonistic variable stiffness ac-
tuation” , we choose pure kinematic constraints that aim at

simplifying the solving of the coordinate transformation.
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Proof of Lemma 5.4.1 using Theorem 5.3.4. We can proceed analogously to
the proof of Lemma 5.3.1 and shall focus on the case where condition (ii) in
Assumption 5.1.2 is satisfied only. The proof consists of three steps: 1) show
that 𝜶′ and 𝜷′ are diffeomorphisms using Theorem 5.3.4, 2) conclude that the
composition 𝝅′ is a diffeomorphism, 3) establish the desired expression for
|𝐷𝝅′|.
Step 1: Knowing that

𝐷𝜶′(𝒙) =
𝜕𝛼′𝑖
𝜕𝑥𝑗

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝒒𝑢
𝜕𝒒𝑢

𝜕𝒒𝑢
𝜕𝒒𝑎

𝜕𝒒𝑢
𝜕𝒒̇𝑢

𝜕𝒒𝑢
𝜕𝒒̇𝑎

𝜕𝒒𝑢
𝜕𝑡

𝜕𝝍 ′

𝜕𝒒𝑢
𝜕𝝍 ′

𝜕𝒒𝑎
𝜕𝝍 ′

𝜕𝒒̇𝑢
𝜕𝝍 ′

𝜕𝒒̇𝑎
𝜕𝝍 ′

𝜕𝑡
𝜕𝒒̇𝑢
𝜕𝒒𝑢

𝜕𝒒̇𝑢
𝜕𝒒𝑎

𝜕𝒒̇𝑢
𝜕𝒒̇𝑢

𝜕𝒒̇𝑢
𝜕𝒒̇𝑎

𝜕𝒒̇𝑢
𝜕𝑡

𝜕𝝍̇ ′

𝜕𝒒𝑢
𝜕𝝍̇ ′

𝜕𝒒𝑎
𝜕𝝍̇ ′

𝜕𝒒̇𝑢
𝜕𝝍̇ ′

𝜕𝒒̇𝑎
𝜕𝝍̇ ′

𝜕𝑡
𝜕𝑡
𝜕𝒒𝑢

𝜕𝑡
𝜕𝒒𝑎

𝜕𝑡
𝜕𝒒̇𝑢

𝜕𝑡
𝜕𝒒̇𝑢

𝜕𝑡
𝜕𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

considering that 𝜕𝝍̇ ′

𝜕𝒒̇𝑘
= 𝜕𝝍 ′

𝜕𝒒𝑘
, 𝑘 = 𝑢, 𝑎, and using Schur’s determinant identity17, 17: See Theorem D.3.2 in Appendix D.

we get

|𝐷𝜶(𝒙)| =

|

|

|

|

|

|

|

|

𝑰 𝟎 𝟎
𝜕𝝍 ′

𝜕𝒒𝑢
𝜕𝝍 ′

𝜕𝒒𝑎
𝟎

𝟎 𝟎 1

|

|

|

|

|

|

|

|

|

|

|

|

|

|

𝑰 𝟎
𝜕𝝍 ′

𝜕𝒒𝑢
𝜕𝝍 ′

𝜕𝒒𝑎

|

|

|

|

|

|

=
|

|

|

|

|

|

𝑰 𝟎
𝜕𝝍 ′

𝜕𝒒𝑢
𝜕𝝍 ′

𝜕𝒒𝑎

|

|

|

|

|

|

2

=
|

|

|

|

𝜕𝝍 ′

𝜕𝒒𝑎

|

|

|

|

2
, (5.88)

where the last equality can be shown through repeated cofactor expansion
along the first row. Proceeding analogously to the steps above, and further
considering that 𝜕𝒒̇𝑎𝜹′ = 𝟎, we obtain

𝐷𝜷′(𝒙) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝒒𝑢
𝜕𝒒𝑢

𝜕𝒒𝑢
𝜕𝒒𝑎

𝜕𝒒𝑢
𝜕𝒒̇𝑢

𝜕𝒒𝑢
𝜕𝒒̇𝑎

𝜕𝒒𝑢
𝜕𝑡

𝜕𝒒𝑢 (𝝍
′ − 𝒖̄′𝑢)

𝜕𝝍 ′

𝜕𝒒𝑎
𝜕𝒒̇𝑢 (𝝍

′ − 𝒖̄′𝑢)
𝜕𝝍 ′

𝜕𝒒̇𝑎
𝜕𝑡(𝝍 ′ − 𝒖̄′𝑢)

𝜕𝒒̇𝑢
𝜕𝒒𝑢

𝜕𝒒̇𝑢
𝜕𝒒𝑎

𝜕𝒒̇𝑢
𝜕𝒒̇𝑢

𝜕𝒒̇𝑢
𝜕𝒒̇𝑎

𝜕𝒒̇𝑢
𝜕𝑡

𝜕𝒒𝑢 (𝝍̇
′ − 𝜹′) 𝜕𝒒𝑎 (𝝍̇

′ − 𝜹′) 𝜕𝒒̇𝑢 (𝝍̇
′ − 𝜹′) 𝜕𝒒̇𝑎 (𝝍̇

′ − 𝜹′) 𝜕𝑡(𝝍̇ − 𝜹)
𝜕𝑡
𝜕𝒒𝑢

𝜕𝑡
𝜕𝒒𝑎

𝜕𝑡
𝜕𝒒̇𝑢

𝜕𝑡
𝜕𝒒̇𝑎

𝜕𝑡
𝜕𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

and eventually conclude that18 18: Note that we can proceed analogously
to the argument in Appendix B.3.

|𝐷𝜷′(𝒙)| =
|

|

|

|

|

|

𝜕𝝍 ′

𝜕𝒒𝑎
𝜕𝑡(𝝍̇ ′ − 𝜹′)

𝟎 1

|

|

|

|

|

|

|

|

|

|

|

|

|

|

𝑰 𝟎 𝟎
𝜕𝒒𝑢 (𝝍

′ − 𝒖̄′𝑢)
𝜕𝝍 ′

𝜕𝒒𝑎
𝟎

𝟎 𝟎 1

|

|

|

|

|

|

|

|

=
|

|

|

|

𝜕𝝍 ′

𝜕𝒒𝑎

|

|

|

|

2
. (5.89)

Considering condition (ii) of Assumption 5.1.2, we know that
|𝐷𝜶′(𝒙)| ≥ 𝑐2 > 0, and |𝐷𝜷′(𝒙)| ≥ 𝑐2 > 0, ∀𝒙 ∈ 𝑋. (5.90)

We leave it to the reader to verify that𝜶′ and 𝜷′ satisfy the desired conditions of
Theorem 5.3.4, which concludes the proof that 𝜶′ and 𝜷′ are diffeomorphisms.
Step 2: Given that the composition of diffeomorphisms is a diffeomorphism
[82, p. 300], we conclude that 𝝅′ = (𝜶′)−1◦𝜷′ is a diffeomorphism. [82]: Kass et al. (2011), Geometrical Foun-

dations of Asymptotic InferenceStep 3: The result above and the chain rule tell us that the composition 𝝅′,
(5.36), is differentiable on 𝑋, and that the Jacobian matrices corresponding to
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𝝅′,𝜶′ and 𝜷′ are related as follows
𝐷𝝅′(𝒙) = 𝐷

[

(𝜶′)−1
](

𝜷′(𝒙)
)

⋅𝐷𝜷′(𝒙). (5.91)
Knowing from the inverse function theorem that𝐷[

(𝜶′)−1
](

𝜷′(𝒙)
)

= 𝐷𝜶′(𝒙̄)−1,
we conclude from (5.91) that1919: Recall that |𝑨𝑩| = |𝑨||𝑩| and for

some invertible matrix 𝑨, we have that
|𝑨−1

| = |𝑨|−1.
|𝐷𝝅′(𝒙)| = |𝐷𝜶′(𝒙̄)|−1 |𝐷𝜷′(𝒙)| = |𝐷𝜶′(𝒙̄)|−1|𝐷𝜶′(𝒙)|, (5.92)

which completes the proof. ■

5.4.2 Main Result

The following Theorem extends the concept of quasi-full actuation, presented
in Section Section 5.3, to the multiarticulation case. It is convenient to intro-
duce the “partial” Jacobians and the auxiliary functions

𝑿′(𝒒) ≜
𝜕𝝍 ′

𝜕𝒒𝑢
(𝒒); 𝒀 ′(𝒒) ≜

𝜕𝝍 ′

𝜕𝒒𝑎
(𝒒), (5.93a)

𝑨′(𝒒, 𝒒̄) ≜
[

𝒀 ′]−1
𝑞
[

𝒀 ′]
𝑞 , (5.93b)

𝑹′(𝒒, 𝒒̄) ≜

[

𝜕2𝑎
𝜕 ̇̄𝒒2𝑎

]

𝑞

(𝑨′)−1(𝒒, 𝒒̄)

[

𝜕2𝑎
𝜕𝒒̇2𝑎

]−1

𝑞

, (5.93c)

𝝁′1(𝒒, 𝒒̄, 𝒒̇𝑢,
′
𝑢, 𝑡) ≜

[

𝒀 ′]−1
𝑞

{(

[

𝑿′]

𝑞 −
[

𝑿′]

𝑞

)

̇̄𝒒𝑢 + ̇̄𝒖𝑢
}

, (5.93d)

𝝁′2(𝒒, 𝒒̄, 𝒒̇, ̇̄𝒒,
′
𝑢, ̇

′
𝑢, 𝑡) ≜

[

𝜕2𝑎
𝜕𝒒̇2𝑎

]

𝑞

(

𝑨̇′ ̇̄𝒒𝑎 + 𝝁̇′1
)

+
[

𝜕2𝑎
𝜕𝒒𝑎𝜕𝒒̇𝑎

]

𝑞
𝒒̇𝑎.

(5.93e)

Theorem 5.4.2 (Quasi-Full Actuation—Multiarticulation) Suppose that
the Euler-Lagrange system (5.1) satisfies Assumption 5.1.1 and 5.4.2 and
𝑛𝑎 > 𝑛𝑢. Consider the phase space transformation (𝒒, 𝒒̇, 𝑡) → (𝒒̄, ̇̄𝒒, 𝑡) de-
fined by the diffeomorphism 𝝅 in (5.82), with 𝒖̄𝑢 satisfying Assumption 5.4.1,
and the following change of control inputs 𝒖→ 𝒖̄

𝒖𝑎 = (𝑹′)−1
{[

𝜕𝑎
𝜕𝒒̄𝑎

]

𝑞
−
[

𝜕2𝑎
𝜕𝒒̄𝑎𝜕 ̇̄𝒒𝑎

]

𝑞
̇̄𝒒𝑎 + 𝒖̄′𝑎

}

+ 𝝁′2 −
[

𝜕𝑎
𝜕𝒒𝑎

]

𝑞
, (5.94)

then the equations of motion (5.1) in the new sets of coordinates and inputs
are in the Lagrangian form

Σ̄∶ d
d𝑡

[

𝜕
𝜕 ̇̄𝒒

]

𝑞
−
[

𝜕
𝜕𝒒̄

]

𝑞
= ̄, (5.95)

where ̄ = 𝑐𝑜𝑙(𝒖̄𝑢 +′
𝑢, 𝒖̄𝑎 +𝑹

′′
𝑎).

Proof. For ease of reference, the transforming equation (5.78b) is repeated
𝜕𝑎
𝜕𝒒𝑢

=
𝜕𝑎
𝜕𝒒̄𝑢

+ 𝒖̄𝑢(𝒒𝑢, 𝒒̇𝑢, 𝑡). (5.96)
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From Assumption 5.1.1, we know that
𝜕𝒒̇𝑢 = 𝜕𝒒̇𝑢𝑢, (5.97)
𝜕𝒒̇𝑎 = 𝜕𝒒̇𝑎𝑎, (5.98)
𝜕𝒒𝑎 = 𝜕𝒒𝑎𝑎. (5.99)

and according to (5.78a), which implies that 𝒒𝑢 = 𝒒̄𝑢, we further know that
d
d𝑡

[

𝜕𝑢
𝜕𝒒̇𝑢

]

𝑞
−
[

𝜕𝑢
𝜕𝒒𝑢

]

𝑞
= d

d𝑡

[

𝜕𝑢
𝜕 ̇̄𝒒𝑢

]

𝑞
−
[

𝜕𝑢
𝜕𝒒̄𝑢

]

𝑞
, (5.100)

Considering (5.97)–(5.100) it is evident that the EL equations of the unactuated
subsystem, (5.1), can be written as

d
d𝑡

[

𝜕𝑢
𝜕 ̇̄𝒒𝑢

]

𝑞
−
[

𝜕𝑢
𝜕𝒒̄𝑢

]

𝑞
−
[

𝜕𝑎
𝜕𝒒̄𝑢

]

𝑞
= ̄𝑢. (5.101)

Recalling that ̄𝑢 = ′
𝑢 + 𝒖̄𝑢, we see that (5.101) represent the first 𝑛𝑢 equa-

tions of the desired EL equations (5.95). Let us continue with expanding the
transforming equations (5.78e) as

𝜕𝝍 ′

𝜕𝒒𝑢
𝒒̇𝑢 +

𝜕𝝍 ′

𝜕𝒒𝑎
𝒒̇𝑎 =

𝜕𝝍 ′

𝜕𝒒̄𝑢
̇̄𝒒𝑢 +

𝜕𝝍 ′

𝜕𝒒̄𝑎
̇̄𝒒𝑎 + ̇̄𝒖′𝑢(𝒒𝑢, 𝒒̇𝑢, 𝑡). (5.102)

Using (5.93a)–(5.93d), we can solve (5.102) for 𝒒̇𝑎:
𝒒̇𝑎 = 𝑨′(𝒒, 𝒒̇𝑢, 𝑡) ̇̄𝒒𝑎 + 𝝁′1 (5.103)

Further knowing that
d
d𝑡
𝜕𝑎
𝜕𝒒̇𝑎

=
𝜕2𝑎
𝜕𝒒̇2𝑎

𝒒̈𝑎 +
𝜕2𝑎
𝜕𝒒𝑎𝜕𝒒̇𝑎

𝒒̇𝑎, (5.104)

we can make the substitutions (5.103) and (5.104) to obtain
d
d𝑡
𝜕𝑎
𝜕𝒒̇𝑎

=
[

𝜕2𝑎
𝜕𝒒̇2𝑎

]

𝑞

{

𝑨′ ̈̄𝒒𝑎 + 𝑨̇
′ ̇̄𝒒𝑎 + 𝝁̇′1

}

+
𝜕2𝑎
𝜕𝒒𝑎𝜕𝒒̇𝑎

{

𝑨′ ̇̄𝒒𝑎 + 𝝁′1
}

.

(5.105)
Next, using (5.93e) and (5.105), we can rewrite (5.104) as

d
d𝑡

[

𝜕𝑎
𝜕𝒒̇𝑎

]

=
[

𝜕2𝑎
𝜕𝒒̇2𝑎

]

𝑞
𝑨′ ̈̄𝒒𝑎 + 𝝁2. (5.106)

Inserting (5.106) into (5.1) and multiplying both sides with 𝑹′ from the left,
we obtain after rearranging some terms

[

𝜕2𝑎
𝜕 ̇̄𝒒2𝑎

]

𝑞
̈̄𝒒𝑎 = 𝑹′

{[

𝜕𝑎
𝜕𝒒𝑎

]

𝑞
− 𝝁′2 +𝑎

}

. (5.107)

Finally, applying the input transformation (5.94) to (5.107) gives
[

𝜕2𝑎
𝜕 ̇̄𝒒2𝑎

]

𝑞
̈̄𝒒𝑎 +

[

𝜕2𝑎
𝜕 ̇̄𝒒𝑎𝜕𝒒̄𝑎

]

𝑞
̇̄𝒒𝑎 −

[

𝜕𝑎
𝜕𝒒̄𝑎

]

𝑞
= 𝒖̄𝑎 +𝑹′′

𝑎. (5.108)

Considering that (5.104) must equally hold when written in terms of the 𝒒̄′𝑠,
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we conclude that (5.108) is equivalent to the desired result
d
d𝑡

[

𝜕2𝑎
𝜕 ̇̄𝒒2𝑎

]

𝑞
−
[

𝜕𝑎
𝜕𝒒̄𝑎

]

𝑞
= ̄𝑎. (5.109)

Considering (5.97)–(5.98), it is clear that (5.101) and (5.109) constitute the
EL equations

d
d𝑡

[

𝜕
𝜕 ̇̄𝒒

]

𝑞
−
[

𝜕
𝜕𝒒̄

]

𝑞
= ̄, (5.110)

which completes the proof. ■

Choosing the Constraint Equations: An Example

Consider an EL system with 𝑛𝑢 unactuated coordinates 𝒒𝑢 and 2𝑛𝑢 actuated co-
ordinates 𝒒𝑎, with the latter being split into two subsets of each 𝑛𝑢 coordinates
such that 𝒒𝑎 = (𝒒𝑎1, 𝒒𝑎2). Suppose that the Lagrangian can be decomposed in
the form2020: Practical cases where such decomposi-

tion can be found include (bi-)antagonistic
variable stiffness joints; see, e.g., 3.1.2. (𝒒, 𝒒̇) = 𝑢(𝒒𝑢, 𝒒̇𝑢) + 𝑎1(𝒒𝑢, 𝒒𝑎1, 𝒒̇𝑎1) + 𝑎2(𝒒𝑢, 𝒒𝑎2, 𝒒̇𝑎2), (5.111)

where 𝒒 = (𝒒𝑢, 𝒒𝑎), and the subsystem coupling forces

𝝍1 =
𝜕𝑎1
𝜕𝒒𝑢

; 𝝍2 =
𝜕𝑎2
𝜕𝒒𝑢

, (5.112)

satisfy
|

|

|

|

|

𝜕𝝍1
𝜕𝒒𝑎1

−1|
|

|

|

|

≥ 𝑐1 > 1,
|

|

|

|

|

𝜕𝝍2
𝜕𝒒𝑎2

−1|
|

|

|

|

≥ 𝑐2 > 0. (5.113)

Then, we can choose
𝒉∶ 𝒒 → 𝝍1(𝒒) − 𝝍2(𝒒), (5.114)
𝒗𝑢 ∶ (𝒒𝑢, 𝒒̇𝑢, 𝑡) → 𝟎, (5.115)

such that 𝝍 ′, as in (5.76), satisfies condition (ii) of Assumption 5.4.2, which
is straightforward to show. Knowing from (5.111) and (5.112) that

𝝍 ′ =
[

𝝍
𝒉

]

=
[

𝝍1 + 𝝍2
𝝍1 − 𝝍2

]

, (5.116)

we get for the partial Jacobian

𝜕𝝍 ′(𝒒)
𝜕𝒒𝑎

=
⎡

⎢

⎢

⎣

𝜕𝝍1
𝜕𝒒𝑎1

𝜕𝝍2
𝜕𝒒𝑎2

𝜕𝝍1
𝜕𝒒𝑎1

− 𝜕𝝍2
𝜕𝒒𝑎2

⎤

⎥

⎥

⎦

(5.117)

and its associated determinant using Schur’s determinant identity
|

|

|

|

𝜕𝝍 ′(𝒒)
𝜕𝒒𝑎

|

|

|

|

=
|

|

|

|

𝜕𝝍1
𝜕𝒒𝑎1

|

|

|

|

|

|

|

|

−
𝜕𝝍2
𝜕𝒒𝑎2

−
𝜕𝝍1
𝜕𝒒𝑎1

[

𝜕𝝍1
𝜕𝒒𝑎1

]−1 𝜕𝝍2
𝜕𝒒𝑎2

|

|

|

|

(5.118)
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such that
|

|

|

|

𝜕𝝍 ′(𝒒)
𝜕𝒒𝑎

|

|

|

|

≥ 2𝑛𝑢𝑐1𝑐2 > 0, for 𝑛𝑢 even (5.119)
|

|

|

|

𝜕𝝍 ′(𝒒)
𝜕𝒒𝑎

|

|

|

|

≤ −2𝑛𝑢𝑐1𝑐2 < 0, for 𝑛𝑢 uneven (5.120)

as desired. The constraint equations of (5.78b), for the considered 𝒉 and 𝒗𝑢 in
(5.114)–(5.115), evaluate to 𝒉(𝒒) = 𝒉(𝒒̄), and can be interpreted as demanding
that the internal actuator pretension of the open (real) and closed loop (virtual)
system to be equal. Constraint equations of this form were used in the work
[115] for extending the ESP control concept to bidirectional antagonistic [115]: Mengacci et al. (2021), “Elastic

Structure Preserving control for compliant
robots driven by agonistic-antagonistic ac-
tuators (ESPaa)”

variable stiffness actuators [148]. It is worth remarking that the constraint

[148]: Petit et al. (2010), “Bidirectional an-
tagonistic variable stiffness actuation: Anal-
ysis, design & implementation”

equations introduced above are all but one possible choice. In general, a “smart”
choice for the constraint equations requires physical insight insight into the
structure of the considered system. For example, an alternative choice for
𝒉, that aims at simplifying the solving of the transforming equations for the
unknown 𝒒̄𝑎’s, can be found in [114]. [114]: Meng et al. (2021), “Elastic struc-

ture preserving impedance control of bidi-
rectional antagonistic variable stiffness ac-
tuation”

5.5 Passivity of the Transformed System

The QFA formulation is the basis for many control developments in this work.
This section summarizes the properties of the transformed systems Σ̄, (5.58)
and (5.95), that are key to these developments. For simplicity, we shall focus
on the case of monoarticualted systems.

5.5.1 Passive Subsystem Decomposition

Since the transforming equations (5.78) and (5.94) fully preserve the EL
structure of Σ, the passive subsystem decomposition property (c.f. Proposi-
tion 5.1.1) is preserved as well. The transformed system Σ̄, (5.95), has the
following important property.

𝒒̇𝑢Σ𝑢

𝒒̇𝑎

+
+

−
Σ𝑎 𝑎

𝑢

ICT (5.78), (5.94)

𝝍(𝒒)

̇̄𝒒𝑢Σ̄𝑢

̇̄𝒒𝑎

+
+

−
Σ̄𝑎 ̄𝑎

̄𝑢

𝝍(𝒒̄)

Figure 5.11: Analogous to the original sys-
tem, the QFA form can be represented as
the feedback interconnection of an EL sys-
tem.

Corollary 5.5.1 (QFA: Passive Subsystem Decomposition) Suppose that
the Euler Lagrange system Σ, (5.1), satisfies the conditions of Theorem 5.3.6.
Then, it can be represented as the negative feedback interconnection of the
two passive subsystems Σ𝑢 and Σ𝑎, as pointed out in Proposition 5.1.1 and
shown in Fig. 5.11. Further, the same feedback decomposition holds for the
associated QFA system Σ̄, (5.95),

Σ̄𝑢 ∶
(

𝝍 + ̄𝑢
)

→ ̇̄𝒒𝑢 (5.121)
Σ̄𝑎 ∶

[

̄𝑎
− ̇̄𝒒𝑢

]

→

[ ̇̄𝒒𝑎
𝝍

]

(5.122)

with storage functions 𝑢(𝒒̄𝑢, ̇̄𝒒𝑢) and 𝑎(𝒒̄, ̇̄𝒒𝑎), respectively, where

𝝍(𝒒̄) =
𝜕𝑎
𝜕𝒒̄𝑢

(𝒒̄)
𝜕𝑎
𝜕𝒒̄𝑢

(𝒒̄) (5.123)

is the subsystem coupling signal.
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Proof. Using Assumption 5.1.1, let us split the EL equations (5.95) associated
with Σ̄ into the EL equations of the subsystems Σ̄𝑢 and Σ̄𝑎

Σ̄𝑢 ∶
d
d𝑡
𝜕𝑢
𝜕 ̇̄𝑞𝑢𝑖

− 𝜕
𝜕𝑞𝑢𝑖

(

𝑢 + 𝑎
)

= 𝑢𝑖, 𝑖 = 1,… , 𝑛𝑢, (5.124)

Σ̄𝑎 ∶
d
d𝑡
𝜕𝑎
𝜕 ̇̄𝑞𝑎𝑗

−
𝜕𝑎
𝜕𝑞𝑎𝑗

= 𝑎𝑗 , 𝑗 = 1,… , 𝑛𝑎. (5.125)

The total time derivative of 𝑢 is
d
d𝑡
𝑢 =

∑

𝑖

[

𝜕𝑢
𝜕 ̇̄𝑞𝑢𝑖

̈̄𝑞𝑢𝑖 +
𝜕𝑢
𝜕𝑞𝑢𝑖

̇̄𝑞𝑢𝑖 +
𝜕𝑢
𝜕𝑡

]

. (5.126)

Making use of (5.124), and the time-independence of 𝑢, we can rewrite
(5.126) as

d
d𝑡
𝑢 =

∑

𝑖

[{

d
d𝑡
𝜕𝑢
𝜕 ̇̄𝑞𝑢𝑖

−
𝜕𝑎
𝜕𝑞𝑢𝑖

−𝑢𝑖
}

̇̄𝑞𝑢𝑖 +
𝜕𝑢
𝜕 ̇̄𝑞𝑢𝑖

̈̄𝑞𝑢𝑖

]

(5.127)

It follows that
d
d𝑡

∑

𝑖

[

𝜕𝑢
𝜕 ̇̄𝑞𝑢𝑖

̇̄𝑞𝑢𝑖 − 𝑢
]

=
∑

𝑖

[

𝑢𝑖 +
𝜕𝑎
𝜕𝑞𝑢𝑖

]

̇̄𝑞𝑢𝑖 (5.128)

Identifying the LHS above with d
d𝑡𝑢, where 𝑢 ≜

∑

𝑖
𝜕𝑢
𝜕 ̇̄𝑞𝑢𝑖

̇̄𝑞𝑢𝑖−𝑢, we obtain

d
d𝑡
𝑢 =

∑

𝑖

[

𝑢𝑖 +
𝜕𝑎
𝜕𝑞𝑢𝑖

]

̇̄𝑞𝑢𝑖. (5.129)

From (5.129) follows that Σ𝑢 defines a passive operator 𝑢 + 𝝍 → ̇̄𝒒𝑢. Let us
proceed analogous to the procedure above for subsystem Σ̄𝑎. Knowing that

d
d𝑡
𝑎 =

∑

𝑗

[

𝜕𝑎
𝜕 ̇̄𝑞𝑎𝑗

̈̄𝑞𝑎𝑗 +
𝜕𝑎
𝜕𝑞𝑎𝑗

̇̄𝑞𝑎𝑗

]

+
𝜕𝑎
𝜕𝑡

+
∑

𝑖

𝜕𝑎
𝜕𝑞𝑢𝑖

̇̄𝑞𝑢𝑖, (5.130)

we can make use of (5.125) and the time-independence of𝑎 to rewrite (5.130)
d
d𝑡
𝑎 =

∑

𝑗

[

𝜕𝑎
𝜕 ̇̄𝑞𝑎𝑖

̈̄𝑞𝑎𝑖 +
{

d
d𝑡
𝜕𝑎
𝜕 ̇̄𝑞𝑎𝑗

−𝑎𝑗
}

̇̄𝑞𝑎𝑗

]

+
∑

𝑖

𝜕𝑎
𝜕𝑞𝑢𝑖

̇̄𝑞𝑢𝑖. (5.131)

Introducing 𝑎 ≜
∑

𝑗
𝜕𝑎
𝜕 ̇̄𝑞𝑎𝑗

̇̄𝑞𝑎𝑗 − 𝑎, it follows that

d
d𝑡
𝑎 =

∑

𝑗
𝑎𝑗 ̇̄𝑞𝑎𝑗 −

∑

𝑖

𝜕𝑎
𝜕𝑞𝑢𝑖

̇̄𝑞𝑢𝑖, (5.132)

and we conclude that Σ𝑎 defines a passive operator (𝑎,𝝍) → ( ̇̄𝒒𝑎,− ̇̄𝒒𝑢).
Considering (5.129) and (5.132), it is clear that Σ can be represented as the
negative feedback interconnection of the two passive subsystems Σ̄𝑢 and
Σ𝑎. ■

5.5.2 Collocation of Input and Output

Let us consider the Euler Lagrange system Σ in (5.1). Suppose that the position
of the underactuated subsystem 𝒒𝑢 is the output. Then, it is clear that the
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mapping from associated velocities 𝒒̇𝑢 to the inputs 𝒖𝑎 is not passive; see, e.g.,
[168]. This form of non-collocation of input and output impedes the direct [168]: Spong (1987), “Modeling and con-

trol of elastic joint robots”application of passivity-based control laws in many cases and complicates the
control problem. Crucially, the passive mapping between input and output is
recovered in the QFA representation. Indeed, the transformed systems defines
a passive mapping 𝒖̄ → ̇̄𝒒. This result is summarized in Corollary 6.1.2 in
Chapter 6.

5.6 Further Generalizations

This sections sketches two generalizations of Theorem 5.3.6: 1) a relaxation
of the feedback condition on the virtual inputs in Assumption 5.3.1 and 2) a
more general coordinate transformation that yields a QFA representation with
a Lagrangian different from the original one.

5.6.1 Relaxing the Feedback Condition on the Virtual Input

In order to reduce the complexity of the proofs concerning Theorem 5.3.6
and Theorem 5.4.2, it was assumed that 𝒖̄𝑢 contains feedback of only the
position and velocity of subsystem Σ𝑢. It is important to understand that this
is no necessary condition, and that we can allow 𝒖̄𝑢 to contain position and
velocity feedback of the entire system Σ̄, i.e., (𝒒̄, ̇̄𝒒), under the conditions
sketched below. Revisiting the proofs of Theorem 5.3.6 and Theorems 5.4.2,
we see that the argument for the one-to-one correspond is based on the global
inverse function theorems in Theorem 5.3.3 and 5.3.4. In summary, we are
free to choose 𝒖̄𝑢 as long as the transforming equations (5.29a)–(5.29e) and
(5.78a)–(5.78e) respectively establish a one-to-one correspond between the
𝒒’s and 𝒒̄’s.

5.6.2 A Shaped and Time-Dependent Lagrangian

The transformation procedure introduced in this chapter does not require
the QFA representation Σ̄ to be characterized by the same Lagrangian as
the original system Σ. We may think of many practical scenarios where it is
desirable to shape the Lagrangian of the original system. A popular application
of such technique would be the modification of the interaction behavior of an
system by shaping its potential energy function. Moreover, for solving motion
tracking problems it can be helpful to aim for an explicitly time-dependent
potential energy function, as demonstrated in Chapter 7 for ASRs. In this
section, we shall focus on the monoarticulation case. Now, let us replace the
𝑛𝑢 transforming equations in (5.29b) and (5.29d) with

[

𝜕̄𝑎
𝜕𝒒̄𝑢

]

𝑞
=
[

𝜕𝑎
𝜕𝒒𝑢

]

𝑞
− 𝒖̄𝑢(𝒒𝑢, 𝒒̇𝑢, 𝑡), (5.133)

and the time derivative of (5.133), where the Lagrangian ̄ is such that it be
decomposed, similar to the original one, of the form

̄(𝒒̄, ̇̄𝒒, 𝑡) = 𝑢(𝒒̄𝑢, ̇̄𝒒𝑢) + ̄𝑎(𝒒̄, ̇̄𝒒𝑎, 𝑡), (5.134)
̄𝑎(𝒒̄, ̇̄𝒒𝑎, 𝑡) = ̄𝑎(𝒒̄𝑎, ̇̄𝒒𝑎) + ̄(𝒒̄, 𝑡). (5.135)
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Note that  and ̄ differ in terms of the sub-Lagrangian associated with the
actuated subsystem, while the kinetic energy function connected with the
unactuated subsystem is preserved. Suppose that the new potential function
shares the properties of the original one, as summarized in Assumption 5.1.2.
Then, the updated transforming equations define a phase space transformation,
and, we can find an input transformation, similar to the one in Section 5.3,
such that the Lagrange’s equations (5.1) are transformed as follows:

(

d
d𝑡

𝜕
𝜕𝒒̇

− 𝜕
𝜕𝒒

)

(𝒒, 𝒒̇, 𝑡) +
ICT
←←←←←←←←←←←←←←←→

(

d
d𝑡

𝜕
𝜕 ̇̄𝒒

− 𝜕
𝜕𝒒̄

)

̄(𝒒̄, ̇̄𝒒) + ̄,

Remark 5.6.1 The additional freedom in modifying the potential energy
allows for greater freedom in designing the motion and/or interaction be-
havior of Σ. Further, by replacing the kinetic energy function 𝑎 with ̄𝑎,
we have greater freedom in shaping the transient behavior of Σ. The lat-
ter point is exploited for the design of the so-called ESP+ controllers in
Section 7. It is important to point out that shaping the system’s natural
behavior to a significant extent usually comes at the price of increased
actuator requirements and reduced closed-loop robustness. The possibility
to achieve a time-dependent potential energy function is exploited in Sec-
tion 7; we demonstrate that the motion tracking problem for ASRs can be
solved elegantly by aiming for a transformed transformed (QFA) system
that is characterized by an explicitly time-dependent potential function that
gives rise to an explicitly time-dependent subsystem coupling force. The
time variation of this coupling force can then be chosen to facilitate the
nominal motion of the unactuated subsystems Σ̄𝑢. Finally, the additional
virtual input on Σ̄𝑢 can be used to render the desired trajectory attractive.

Main Result

In the following, we consider EL systems of the form (5.1) satisfying Assump-
tion 5.1.1 and Assumption 5.1.2 with 𝑛𝑢 = 𝑛𝑎.21 The goal of this section is to21: Note that the result below is easily

modified to consider the multiarticulation
case (𝑛𝑎 > 𝑛𝑢) using the techniques from
Section 5.4.

consider coordinate transforming equations of the form22

22: For the derivations below, we shall
repeatably make use of the fact that
(5.136b) can be written equivalently as
[

𝜕𝑎
𝜕𝒒𝑢

]

𝑞
=
[

𝜕̄𝑎
𝜕𝒒̄𝑢

]

𝑞
+ 𝒖̄𝑢(𝒒̄𝑢, ̇̄𝒒𝑢, 𝑡).

𝒒̄𝑢 = 𝒒𝑢, (5.136a)
[

𝜕̄𝑎
𝜕𝒒̄𝑢

]

𝑞
=
[

𝜕𝑎
𝜕𝒒𝑢

]

𝑞
− 𝒖̄𝑢(𝒒𝑢, 𝒒̇𝑢, 𝑡), (5.136b)

̇̄𝒒𝑢 = 𝒒̇𝑢, (5.136c)
d
d𝑡

[

𝜕̄𝑎
𝜕𝒒̄𝑢

]

𝑞
= d

d𝑡

[

𝜕𝑎
𝜕𝒒𝑢

]

𝑞
− ̇̄𝒖𝑢(𝒒𝑢, 𝒒̇𝑢, 𝑡), (5.136d)

𝑡 = 𝑡, (5.136e)
where the mapping 𝒖̄𝑢 is of class 𝑘, 𝑘 ≥ 2, and satisfies Assumption 5.3.1.
The Lagrangian ̄, as defined in (5.134)–(5.135), and the associated potential
function ̄ are assumed to satisfy Assumption 5.1.1 and Assumption 5.1.2,
respectively.
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It is convenient to introduce the definitions

𝑿̄(𝒒0) =
𝜕2̄𝑎
𝜕𝒒2𝑢

(𝒒0); 𝒀̄ (𝒒0) =
𝜕2̄𝑎
𝜕𝒒̄𝑎𝜕𝒒̄𝑢

(𝒒0). (5.137)

Next, the following assumptions guarantees a one-to-one correspondence
between 𝒒’s and 𝒒̄’s.

Assumption 5.6.1 The Lagrangian ̄𝑎 is such that the matrices
[

𝒀̄
]

𝑞 and
[

𝜕2̄𝑎
𝜕 ̇̄𝒒2𝑎

]

𝑞
are full rank for any 𝒒̄, ̇̄𝒒 ∈ ℝ𝑛 and 𝑡 ∈ ℝ+.

The proof that (5.136) defines a unique change of coordinates can be estab-
lished proceeding mutatis mutandis to the proof of Theorem 5.3.6 by invoking
the implicit function theorem. This suggest the following result

Theorem 5.6.1 (QFA: Modified Lagrangian) Suppose that the EL system
(5.1) satisfies Assumption 5.1.1 and Assumption 5.6.1. Then, there exists an
input transformation, see (5.155) below, such that the EL equations (5.1)
transform under the coordinate transformation (5.136) to

d
d𝑡

[

𝜕̄
𝜕 ̇̄𝒒

]

𝑞
−
[

𝜕̄
𝜕𝒒̄

]

𝑞
= ̄. (5.138)

Proof. Knowing that
[

𝜕𝑎
𝜕𝒒𝑢

]

𝑞
=
[

𝜕
𝜕𝒒𝑢

]

𝑞
, (5.139)

[

𝜕̄𝑎
𝜕𝒒̄𝑢

]

𝑞
=
[

𝜕̄
𝜕𝒒̄𝑢

]

𝑞
, (5.140)

we can expand (5.136d) to
[

𝑿
]

𝑞 𝒒̇𝑢 +
[

𝒀
]

𝑞 𝒒̇𝑎 =
[

𝑿̄
]

𝑞
̇̄𝒒𝑢 +

[

𝒀̄
]

𝑞
̇̄𝒒𝑎 +

𝜕
𝜕𝑡

[

𝜕̄
𝜕𝒒̄𝑢

]T

𝑞
+ ̇̄𝒖𝑢. (5.141)

Let us introduce
𝑨̄ =

[

𝒀
]−1
𝑞
[

𝒀̄
]

𝑞 , (5.142)

𝝁̄1 =
[

𝒀
]−1
𝑞

{

(

[

𝑿̄
]

𝑞 −
[

𝑿
]

𝑞

)

̇̄𝒒𝑢 + ̇̄𝒖𝑢 +
𝜕
𝜕𝑡

[

𝜕̄
𝜕𝒒̄𝑢

]T}
, (5.143)

𝝁̄2 =
[

𝜕2𝑎
𝜕𝒒̇2𝑎

]

( ̇̄𝑨 ̇̄𝒒𝑎 + ̇̄𝝁1
)

+
[

𝜕2𝑎
𝜕𝒒𝑎𝜕𝒒̇𝑎

]

𝑞

(

𝑨̄ ̇̄𝒒𝑎 + 𝝁̄1
)

, (5.144)

then, we can rewrite (5.141) compactly as
𝒒̇𝑎 = 𝑨̄ ̇̄𝒒𝑎 + 𝝁̄1. (5.145)

Next, using (5.136) and (5.145), we can apply a phase space transformation
(𝒒, 𝒒̇, 𝑡) → (𝒒̄, ̇̄𝒒, 𝑡) to the EL equations (5.1). Splitting (5.1) into the sub-
dynamics (5.65) and (5.66), and applying the transforming equations (5.136)



104 5 Generalizing the Concept of Quasi-Full Actuation

to (5.65), we get

d
d𝑡

[

𝜕𝑢
𝜕 ̇̄𝒒𝑢

]T

𝑞
−
[

𝜕𝑢
𝜕𝒒̄𝑢

]T

𝑞
−
[

𝜕̄𝑎
𝜕𝒒̄𝑢

]T

𝑞
= 𝑢 + 𝒖̄𝑢. (5.146)

Further knowing that
d
d𝑡

[

𝜕𝑎
𝜕𝒒̇𝑎

]

𝑞
=
[

𝜕2𝑎
𝜕𝒒̇2𝑎

]

𝑞
𝒒̈𝑎 +

[

𝜕2𝑎
𝜕𝒒𝑎𝜕𝒒̇𝑎

]

𝑞
𝒒̇𝑎, (5.147)

we can make the substitutions (5.144), (5.145) and (5.147) to obtain
d
d𝑡

[

𝜕𝑎
𝜕𝒒̇𝑎

]

𝑞
=
[

𝜕2𝑎
𝜕𝒒̇2𝑎

]

𝑞
𝑨̄ ̈̄𝒒𝑎 + 𝝁̄2. (5.148)

Inserting (5.148) in (5.66) and pre-multiplying both sides with

𝑹̄ =
[

𝜕2̄𝑎
𝜕 ̇̄𝒒2𝑎

]

𝑞
𝑨̄−1

[

𝜕2𝑎
𝜕𝒒̇2𝑎

]−1

𝑞
, (5.149)

gives
[

𝜕2̄𝑎
𝜕 ̇̄𝒒2𝑎

]

𝑞
̈̄𝒒𝑎 = 𝑹̄

{[

𝜕𝑎
𝜕𝒒𝑎

]T

𝑞
− 𝝁̄2 +𝑎

}

. (5.150)

Finally, introducing
̄′
𝑎 =𝑹̄′

𝑎, (5.151)
̄𝑎 =𝒖̄𝑎 + ̄′

𝑎, (5.152)
̄′ =

(

′
𝑢, ̄

′
𝑎
)

, (5.153)
̄ =𝒖̄ + ̄′, (5.154)

and applying the input transformation

𝒖𝑎 = 𝝁̄2 −
[

𝜕𝑎
𝜕𝒒𝑎

]

𝑞
+ 𝑹̄−1

{[

𝜕̄𝑎
𝜕𝒒̄𝑎

]

𝑞
−
[

𝜕2̄𝑎
𝜕𝒒̄𝑎𝜕 ̇̄𝒒𝑎

]

𝑞
̇̄𝒒𝑎 + 𝒖̄𝑎

}

, (5.155)

to (5.150) yields
[

𝜕2̄𝑎
𝜕 ̇̄𝒒2𝑎

]

𝑞
̈̄𝒒𝑎 +

[

𝜕2̄𝑎
𝜕𝒒̄𝑎𝜕 ̇̄𝒒𝑎

]

𝑞
̇̄𝒒𝑎 −

[

𝜕̄𝑎
𝜕𝒒̄𝑎

]

𝑞
= ̄𝑎. (5.156)

Noticing that the set of equations (5.146) and (5.156) is equivalent to the
desired EL equations (5.138) concludes the proof. ■

Remark 5.6.2 Comparing (5.155) with (5.57) and (5.94), reveals the struc-
tural similarity between all input transformations. The former differs from
the latter only in the presence of an additional time-derivative term in the
definition of 𝝁1.
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5.7 On the Phase Space Transformation

This sections discusses the proposed coordinate transformations from the
viewpoint of classical mechanics. First, we shall assume an absence of gener-
alized external forces. In the Lagrangian formulation of mechanics one set of
coordinate 𝒒 is naturally transformed to a new set 𝒒̄ by transforming equations
of the form

𝑞𝑖 = 𝑞𝑖(𝒒, 𝑡), 𝑖 = 1,… , 𝑛. (5.157)
For example, the change from polar to Cartesian coordinates has the general
form (5.157). Such transformations are known as point transformations since
the configuration space is mapped onto itself.

The transformation defined by (5.29a)–(5.29e) is of a different kind; it must
be understood as a simultaneous transformation of generalized coordinates
and velocities, and, in absence of external generalized forces, has the general
form

𝑞𝑖 = 𝑞𝑖(𝒒, 𝒒̇, 𝑡), (5.158)
̇̄𝑞𝑖 = ̇̄𝑞𝑖(𝒒, 𝒒̇, 𝑡), (5.159)

with ̇̄𝑞𝑖 =
d
d𝑡 𝑞𝑖 and ̇̄𝑞𝑖 = 𝑑𝑡∕ ̇̄𝑞𝑖. Crucially, the new coordinates are defined

not only in terms of the original coordinates but also in terms of the original
velocities. Equations (5.157) may be interpreted as defining a point transfor-
mation of configuration space. Analogously, we may think of (5.29a)–(5.29e)
as defining a point transformation of phase space. The proposed transforma-
tion must not be confused with point transformations of phase space in the
Hamiltonian formulation, where the concept of coordinate transformations
is naturally extended to include simultaneous transformations of the inde-
pendent coordinates and momenta 𝒒,𝒑 to a new set 𝒒̄, 𝒑̄ through canonical
transformations [52] of the form A canonical transformation is a change of

canonical coordinates (𝒒,𝒑, 𝑡) → (𝒒̄, 𝒑̄, 𝑡)
that preserves the form of Hamilton’s equa-
tions.
[52]: Goldstein et al. (2001), Classical Me-
chanics

𝑝̄𝑖 = 𝑝̄𝑖(𝒒,𝒑, 𝑡), 𝑖 = 1,… , 𝑛, (5.160)
𝑞𝑖 = 𝑞𝑖(𝒒,𝒑, 𝑡), 𝑖 = 1,… , 𝑛. (5.161)

At this point is unclear whether the proposed transformations can be considered
as a canonical transformation for ′ = 𝟎.

We recall that in the presence of generalized external forces 𝑢, these
forces enter the velocity transforming equation such that

̇̄𝑞𝑖 = ̇̄𝑞𝑖(𝒒, 𝒒̇, 𝑡,𝑢). (5.162)
Clear, by assuming 𝑢 as a function of 𝒒, 𝒒̇, 𝑡, we can avoid this issue. The
author is not aware of transforming equation of the form (5.162) in the liter-
ature of classical mechanics or physics. Consequently, it is unclear how the
proposed transformations, which include in addition to a change of general-
ized coordinates a change of generalized external forces (′, 𝒖) → (̄′, 𝒖̄),
can be interpreted from the viewpoint of classical mechanics. It is worth re-
marking that generalized external forces are rarely considered in the classical
Lagrangian (Hamiltonian) formulation. Chapter A reports a first attempt to
connect the theoretical developments of this chapter with “standard” methods
of classical mechanics. For a system satisfying the Spong model, it is shown
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that the QFA representation arises naturally by describing the motion of the
actuated subsystem from a non-inertial reference frame.

Finally, we are interested whether the new coordinates 𝒒̄ are well-behaved.
For simplicity, let us focus on the monoarticulation case. We recall that the
considered phase space transformation is defined by the diffeomorphism 𝝅, and
that the connected Jacobian determinant is given by |𝐷𝝅(𝒙)| = |𝐷𝜶(𝒙̄)|−1|𝐷𝜶(𝒙)|,
as pointed out in Lemma 5.3.1. Knowing that 𝒖̄ ≡ 𝟎 implies 𝒒 ≡ 𝒒̄ (and
′ ≡ ̄′), it is evident that the extended phase space volume is preserved
in this case, as the Jacobian 𝐷𝝅(𝒙) degenerates to the identity matrix. Note
that the absolute value of the Jacobian determinant at 𝒙 gives us the factor by
which the function 𝝅 expands or shrinks the extended phase space volume near
𝒙 [176].23 This motivates the following hypothesis: the scaling of extended[176]: Sussman et al. (2015), Structure and

Interpretation of Classical Mechanics
23: This must not be confused with Li-
ouville’s tehorem which states that phase-
space volume is preserved by the phase
space flow.

phase space volume elements in 𝑋 is relate to the difference in the origin
distance of the two subsystems Σ𝑎 and Σ̄𝑎, i.e., ‖𝒒𝑎 − 𝒒̄𝑎‖.

5.7.1 Some Energy Considerations

In Section 5.4, it has been shown that Σ in (5.1) and Σ̄ in (5.95) are equivalent
representations of any EL system satisfying the conditions of Theorem 5.4.2.
Both sets of EL equations are characterized by the same . However, depend-
ing on the representation the Lagrangian is either evaluated in terms of the 𝒒’s
or in terms of the 𝒒̄’s. As indicated above, the proposed coordinate transforma-
tions do not qualify as “classical” point [103] or canonical transformation [52],[103]: Lanczos (2020), The Variational

Principles of Mechanics
[52]: Goldstein et al. (2001), Classical Me-
chanics

as encountered in the Lagrangian or Hamiltonian formulation of mechanics.
Thus, there is no reason to think a priori that the principle of scalar invariance
[42] holds for the Lagrangian/Hamiltonian. Consequently, we cannot expect[42]: Ferrario et al. (2008), “Transformation

properties of the Lagrange function” the Lagrangians/Hamiltonians connected with the systems Σ and Σ̄ to evaluate
to the same values for 𝒖̄𝑢 ≠ 𝟎. Indeed, we see that the difference

(𝒒, 𝒒̇) − (𝒒̄, ̇̄𝒒) = 𝑎(𝒒, 𝒒̇𝑎) − 𝑎(𝒒̄, ̇̄𝒒𝑎) ≠ 0, (5.163)
is nonzero in general, where (𝒒̄, ̇̄𝒒) should obviously be evaluated by means
of the transforming equations. Computing the Hamiltonian, using the usual
definition of  as the Legendre transformation of , i.e.

 =
∑

𝑖
𝑞̇𝑖
𝜕
𝜕𝑞̇𝑖

−  =  +  , (5.164)

then it corresponds to the total energy24 of the system, and it is clear that the24: The exact conditions when this is the
case are reported in [181]. Within the scope
of this work, we can safely assume that these
conditions are met since it is assumed that
the relation between the 𝒒’s and the Carte-
sian coordinates of the particles constituting
the rigid bodies are time-independent.

original system Σ and the transformed system Σ̄ share the same Hamiltonian.
However, we have in general that

Δ = (𝒒, 𝒒̇) −(𝒒̄, ̇̄𝒒) ≠ 0 (5.165)
with the energy discrepancy Δ satisfying according to Assumption 5.1.1

Δ = (𝒒, 𝒒̇) + (𝒒) −  (𝒒̄, ̇̄𝒒) − (𝒒̄)
=𝑎(𝒒, 𝒒̇𝑎) − 𝑎(𝒒̄, ̇̄𝒒𝑎) + (𝒒) − (𝒒̄),

(5.166)

where (𝒒̄, ̇̄𝒒) should be evaluated by means of the coordinate transforming
equations. Clearly, Δ is identically zero if 𝒖̄𝑢 = 𝟎 and ̇̄𝒖𝑢 = 𝟎. In this case,
the coordinate transformation degenerates to (𝒒, 𝒒̇) = (𝒒̄, ̇̄𝒒). Note that this
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is not the only case where Δ = 0. In fact, it is easy to see that there are
infinitely many choices for non-zero 𝒖̄𝑢 and ̇̄𝒖𝑢 such that Δ = 0.

In conclusion, the Lagrangian and Hamiltonian associated with Σ̄ have no
relation to “real” energies. Regarding the QFA formulation, we must treat 
() as a mathematical Lagrangian (Hamiltonian) or generator of the motion in
the sense of [37]. The concept of the Lagrangian (Hamiltonian) as a generator [37]: Dekker (1981), “Classical and quan-

tum mechanics of the damped harmonic os-
cillator”of motion is commonly found e.g, in the context of quantum mechanics [37].

The work [63] treats extensively a range of applications of the Lagrange [63]: Havas (1957), “The range of applica-
tion of the lagrange formalism — I”formalism that goes beyond the case where the Lagrangian is just the excess

of kinetic over potential energy. Given a second order system, Havas discusses
the necessary and sufficient conditions for the existence of a Lagrangian such
that the corresponding EL equations produce the equations of motions. In
future work, it seems worth to investigate whether the theory presented in this
chapter can be connected with the theory on higher order Lagrangians 25 for 25: Suppose that 𝒖̄𝑢 contains feedback of

the velocities ̇̄𝒒𝑢, then we have the interest-
ing case that, when expressing (𝒒̄, ̇̄𝒒) in
terms of the 𝒒 coordinates through the trans-
forming equations, the resulting Lagrangian
 would be a function of the link accelera-
tions ̈̄𝒒𝑢.

classical mechanics; see generally [61].

[61]: Harmanni (2016), “Higher Order La-
grangians for classical mechanics and scalar
fields”
Note that avoiding the “model-based” com-
putation of 𝒒̈𝑢, as disscussed in Section B.2
in Appendix B, results in a coordinate trans-
formation of the form ̇̄𝑞𝑖 = ̇̄𝑞𝑖(𝒒, 𝒒̇, 𝒒̈, 𝑡.
Now, expressing (𝒒̄, ̇̄𝒒) in terms of the
𝒒 coordinates through the transforming
equations yields a Lagrangian of the form
(𝒒̄, ̇̄𝒒, ̈̄𝒒, 𝑡). For Lagrangians of this form,
the necessary conditions for a stationary
value of the action are provided by the
“extended” Euler-Lagrange equations [49].
It it appears worth investigating whether
the concept of quasi-full actuation can be
treated in this framework.

5.8 Conclusions

Let us summarize the results obtained in this chapter. Guided by a brief
thought experiment and physical considerations, an alternative dynamics
representation for a class of underactuated EL systems was derived. Applying
the coordinate and input transformations (5.94) and (5.78) to the EL equations
(5.1), i.e.,

Σ∶ d
d𝑡
𝜕
𝜕𝒒̇

(𝒒, 𝒒̇) − 𝜕
𝜕𝒒

(𝒒, 𝒒̇) = ,

results in the equivalent EL equations

Σ̄∶ d
d𝑡
𝜕
𝜕 ̇̄𝒒

(𝒒̄, ̇̄𝒒) − 𝜕
𝜕𝒒̄

(𝒒̄, ̇̄𝒒) = ̄,

with ̄ containing the transformed disturbance forces ̄′ and the virtual control
inputs 𝒖̄. The structural properties of the transformed system that are most
notable for control are:

• The proposed transformation entirely preserves the structure of the EL
equations. Moreover, the Lagrangian associated with the new equations
is still the original one.26 26: Of course, this is not necessarily the

case for the generalizations reported in Sec-
tion 4.5.• For each degree of freedom there is a virtual input.

• The QFA system (4.18) defines a passive mapping 𝒖̄ → ̇̄𝒒. Thus, the
familiar collocation between input and output variables is “restored”,
which simplifies the design of control laws. Notably, the interaction port
of the unactuated subsystem is preserved, i.e., 𝒒̇T

𝑢
′
𝑢 = ̇̄𝒒T

𝑢 ̄
′
𝑢.• System Σ̄ can be represented as the negative feedback interconnection

of two passive subsystems.
• Considering that 𝒖̄ ≡ 𝟎 implies that 𝒒 ≡ 𝒒̄ and 𝒖 ≡ 𝟎, it is clear that

the proposed transformation itself does alter the plant dynamics. Only
at the moment of making a choice for the virtual control inputs, we
actually modify the system dynamics.27 27: This central property is lost for the gen-

eralizations discussed in 4.5.
Since the virtual inputs on the unactuated subsystem Σ̄𝑢 cannot be chosen
fully independently, the transformed system is being referred to as quasi-fully
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actuated. Of course, at heart the system remains underactuated as no transfor-
mation can change this fundamental physical property. On the first sight, this
property is concealed in the QFA formulation. However, the underactuation
manifests in the smoothness condition on the virtual input 𝒖̄𝑢 and the fact
that we can not realize arbitrary feedback laws. In particular, the smoothness
constraint expresses the fact that we cannot command an instantaneous accel-
eration of arbitrary direction and amplitude—which is the defining property
of underactuated systems as pointed out in Section 2.6. Yet, as long as the
control input satisfies the imposed restrictions, we can treat the transformed
system as fully actuated and, theoretically, we may command any sufficiently
smooth configuration space trajectory.2828: More precisely, the desired trajectory

must be four times continuously differen-
tiable.

Is the New Representation Worth the Effort?

The movements associated with the proposed virtual motor coordinates elude
direct observation, the forces associated with the virtual inputs elude direct
measurements. Their introduction, however, enables rewriting the EL dynam-
ics in an easier tractable form. Easier tractable in the sense, that from the
control point of view it is fundamentally easier to cope with a fully actuated
than an underactuated system. In this regard, we should think of the virtual
coordinates and inputs simply as a tool simplifying the control design for the
considered class of underactuated systems.

A key aspect of the transforming equations is that the original and trans-
formed systems are characterized by the same Lagrangian (Hamiltonian)
function. This aspect facilitates intuitive and physically motivated design ap-
proaches. Since Σ and Σ̄ share the same Lagrangian function, both systems
also share exactly the same physical properties. The “picture” that we have of
Σ’s dynamic behavior can be immediately transferred to Σ̄, we only have to
imagine some additional input forces at hand. This property invites control
approaches that shape the natural dynamics to a minimal extend. Using the
virtual inputs, we can “add” to Σ̄ whatever is “missing” in Σ. Following na-
ture’s principle of least action, we may refer to this design philosophy as: Do
as little as possible. A control design for articulated soft robots following this
line of thought is presented in Chapter 7.2929: Loosely speaking, in its most basic iter-

ation the control objectives are: 1) achieve
pervasive damping, 2) remove gravity’s in-
fluence on the links and 3) stabilize the de-
sired equilibrium configuration.



Energy-Based Control of
Underactuated Euler-Lagrange

Systems 6
6.1 Energy Exchange with the

Physical World . . . . . . . . . 111
6.1.1 Systems with a Block Diagonal

Inertia Matrix . . . . . . . . . . 113
6.2 Energy Shaping and Damp-

ing Injection Control: An
Extension . . . . . . . . . . . . 114

6.2.1 Possible Generalizations . . . . 117
6.2.2 Discussion . . . . . . . . . . . . 118
6.3 Euler-Lagrange Controllers:

An Extension . . . . . . . . . . 118
6.3.1 Passivity Analysis . . . . . . . 120
6.3.2 Discussion . . . . . . . . . . . . 121
6.4 Shaping the Interaction with

the Physical World . . . . . . . 122
6.5 Choosing the “Right” Set

of Coordinates (Task Space
Formulation) . . . . . . . . . . 125

6.6 Conclusions . . . . . . . . . . . 127

There is a fact, or if you wish, a law, governing natural phenomena that are
known to date. There is no known exception to this law–it is exact so far we

know. The law is called conservation of energy; it states that there is a
certain quantity, which we call energy that does not change in manifold

changes which nature undergoes. That is a most abstract idea, because it is a
mathematical principle; it says that there is a numerical quantity, which does
not change when something happens. It is not a description of a mechanism,

or anything concrete; it is just a strange fact that we can calculate some
number, and when we finish watching nature go through her tricks and

calculate the number again, it is the same.

—Richard P. Feynman

The safe and controlled interaction of a robotic system with its environment
plays an ever-increasing role. At its most fundamental level, this physical inter-
action is dictated by the exchange of energy. Putting energy and the exchange
of energy at the center of the thought process facilitates the design of control
strategies that govern the interaction of a robot with its environment. More
importantly, it leads to more insightful and physically intuitive concepts than
purely signal-driven design concepts [166, 174]. Some popular representa- [166]: Slotine (1989), “Putting Physics

Back in Control”
[174]: Stramigioli (2015), “Energy-Aware
Robotics”

tives of this paradigm/school of thought are: (a) energy shaping and damping
injection [178], (b) Euler-Lagrange controllers [133], (c) impedance control

[178]: Takegaki et al. (1981), “A new feed-
back method for dynamic control of manip-
ulators”
[133]: Ortega (1998), Passivity-Based Con-
trol of Euler-Lagrange Systems: Mechani-
cal, Electrical, and Electromechanical Ap-
plications

[68–70], (d) interconnection and damping assignment passivity-based control

[68]: Hogan (1985), “Impedance con-
trol: An approach to manipulation: Part
I—Theory”
[69]: Hogan (1985), “Impedance con-
trol: An approach to manipulation: Part
II—Implementation”
[70]: Hogan (1985), “Impedance con-
trol: An approach to manipulation: Part
III—Applications”

(IDA-PBC) [132, 136]. The concepts (b) and (d) can be summarized under the

[132]: Ortega et al. (2002), “Stabilization
of a class of underactuated mechanical sys-
tems via interconnection and damping as-
signment”
[136]: Ortega et al. (2002), “Interconnec-
tion and damping assignment passivity-
based control of port-controlled Hamilto-
nian systems”

general idea of control by interconnection; see [135] for an in-depth treatment.

[135]: Ortega et al. (2008), “Control by in-
terconnection and standard passivity-based
control of port-Hamiltonian systems”

As pointed out by Hogan [68–70], classic position and force control are inade-
quate for physical interaction tasks since they are insufficient to control the
work exchanged between a manipulator and its environment. In contrast, the
energy-based techniques (a-d) are excellent candidates when interaction with
the physical world is at the center. They enable modulating and controlling the
dynamic behavior of the robot while simultaneously commanding a desired
position.

Energy-based control concepts that exhibit a physically intuitive closed
loop enable the operator to anticipate the interaction behavior of the robot
with the environment (i.e., another physical system). Loosely speaking, the
interaction between two physical systems that are visualizable in terms of
real physical elements is fundamentally easier to comprehend and anticipate
than the interaction between a set of (partial) differential equations and the
environment. In addition, having a physical intuitive closed-loop behavior
provides—to some extent—a feeling for the extent of system shaping imposed
by a particular control design. This enables the operator to provide an ad-hoc
estimate of the maximal achievable gains. This fact can hardly be overesti-
mated when it comes to the commissioning stage since physical intuition is of
immense value for tuning a controller. Without a doubt, extensive hands-on
experience regarding robot control design will foster appreciation of these
aspects. In the words of Hogan [68]: “no controller can make the manipulator
appear to the environment as anything other than a physical system”. From
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this point of view, it seems obvious to make the manipulator appear to the
environment as a physical system that we can actually “understand” in its
interaction behavior. The combination of these positive aspects makes energy-
based methods an appealing choice for interaction control. To be clear; when
dealing with a robot moving freely in space or a robot that operates in a pre-
dictable environment (e.g., manipulators in automotive manufacturing that are
caged away from humans), the above arguments lose much of their appeal, and
standard position or force control techniques are acceptable options in many
situations. The limitations of these classic control methodologies primarily
arise when a robot operates in an unpredictable, and thus to some degree
non-modellable, environment. This chapter considers the class of EL systems
specified in Chapter 5, and it is assumed that the non-actuated subsystem Σ𝑢
is the primary agent that interacts with the environment. Controlling the work
exchanged between Σ𝑢 and its environment while simultaneously regulating it
to a desired position, will be our primary concern in the following. See Fig. 6.1
for an overview of the energy flows governing the interaction behavior.

𝒖𝑎
𝒒̇𝑎

𝝍
𝒒̇𝑢

Σ

′
𝑢𝒒̇𝑢′

𝑎𝒒̇𝑎

Σ𝑎 Σ𝑢

Environment

Source

supplied
power

internal
energy flow

Figure 6.1: Energy flows. Note that the
physical power port of the unactuated sub-
system is preserved, i.e., 𝒒̇T

𝑢
′
𝑢 = ̇̄𝒒T

𝑢
′
𝑢.

With the advent of articulated soft robots [54, 74, 153, 190]

[54]: Grebenstein et al. (2011), “The DLR
hand arm system”
[74]: Hutter et al. (2016), “Anymal-a highly
mobile and dynamic quadrupedal robot”
[153]: Pratt et al. (1995), “Series elastic ac-
tuators”
[190]: Vanderborght et al. (2013), “Variable
impedance actuators: A review”

, the situation
changed fundamentally when it comes to interaction control. In these systems,
one deliberately incorporates highly compliant elements into the drive train
with a stiffness that is low enough such that these elements can be exploited
as energy storage [17]. By nature, these systems are underactuated, which is[17]: Braun et al. (2011), “Exploiting vari-

able stiffness in explosive movement tasks” a structural obstacle that impedes the direct adoption of classic rigid robot
impedance control. The control concepts developed in this chapter are not
limited in their scope of application to ASRs, but applicable to all EL systems
satisfying considered assumptions. However, since this work is primarily
concerned with the application of the presented concepts to ASRs, several
control aspects are discussed in the “language” of soft robots. The sets of
unactuated generalized coordinates 𝒒𝑢 and 𝒒̄𝑢 will be synonymously referred to
as link coordinates, and the sets of actuated generalized coordinates 𝒒𝑎 and 𝒒̄𝑎
will be referred to as (virtual) motor coordinates, respectively. Correspondingly,
the subsystems Σ𝑢 and Σ̄𝑢 encode the rigid body dynamics of an ASR, and
the subsystems Σ𝑎 and Σ̄𝑎 encode the (virtual) motor dynamics.

In principle, energy-based techniques such as (a) and (b) can be directly
applied to underactuated systems. However, for such systems, we face clear
limitations regarding the achievable closed-loop potential energy. In particu-
lar, the achievable closed-loop stiffness and damping behavior are severely
limited, which impairs the ability to shape the interaction behavior [133].
This chapter introduces extensions to the two methodologies (a) and (b) that
relax these limitations. The results are summarized in Proposition 6.2.1 and
Proposition 6.3.1. Furthermore, an extension of impedance control (c) to a
class of underactuated EL systems is presented in Proposition 6.4.1. The most
significant limitation with the presented extensions is the necessity of the
virtual input to be twice differentiable with respect to time, which translates
into a smoothness constraint on the achievable link-side potential energy and
damping functions. However, as argued in Section 5.8, this limitation arises
naturally from the physical limitations of an underactuated robot and is not
inherent to the presented concepts. A unique feature of the presented exten-
sions of (a) and (c) is that they enable the closed-loop dynamics to be rendered
fully damped by specifying a desired damping behavior directly in terms
of the non-actuated output coordinates. This is in strong contrast to state of
the art approaches [2, 6, 7, 133, 141, 178, 183]

[2]: Ailon et al. (1993), “An observer-based
set-point controller for robot manipulators
with flexible joints”
[6]: Albu-Schäffer et al. (2007), “A Unified
Passivity-based control framework for posi-
tion, torque and impedance control of flexi-
ble joint robots”
[7]: Albu-Schäffer et al. (2012), “Construc-
tive energy shaping control for a class of
Euler-Lagrange Systems”
[133]: Ortega (1998), Passivity-Based Con-
trol of Euler-Lagrange Systems: Mechani-
cal, Electrical, and Electromechanical Ap-
plications
[141]: Ott et al. (2004), “A passivity based
cartesian impedance controller for flexible
joint robots-part I: Torque feedback and
gravity compensation”
[178]: Takegaki et al. (1981), “A new feed-
back method for dynamic control of manip-
ulators”
[183]: Tomei (1991), “A simple PD con-
troller for robots with elastic joints”

. Injecting damping on the
non-actuated outputs, however, is critical for highly compliant systems due to
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the intrinsic oscillatory nature of their dynamics [89, 102] as demonstrated [89]: Keppler et al. (2016), “A passivity-
based approach for trajectory tracking and
link-side damping of compliantly actuated
robots”
[102]: Lakatos et al. (2014), “Nonlinear os-
cillations for cyclic movements in human
and robotic arms”

in https://www.youtube.com/watch?v=PATvv47QfQs. Note that in
certain scenarios indirect damping of the links can be sufficient if the energy
dissipation propagates efficiently through the closed-system to the unactuated
subsystem Σ̄𝑢, see for example the developments Section 9.

The main contribution of this chapter is the development of a series of
globally asymptotically stable feedback passivity-based regulation controllers
for a class of underactuated EL systems (see Chapter 5.1). Central to all
developments is the link-side power port (𝒖̄𝑢, ̇̄𝒒𝑢) that has been established
through the QFA formulation in Chapter 5, and the passivity properties of the
quasi-fully actuated EL system (as will be pointed out in Corollary 6.1.2).

The energy based control developments of this chapter are guided by the
three design principles summarized in Fig. 6.2. The main results of this chapter
are listed below:

• Corollary 6.1.2 reveals a crucial passivity property of the QFA system.
• Proposition 6.2.1 reports an extension of the energy shaping and damp-

ing injection concept.
• Proposition 6.3.1 reports an extension of Euler Lagrange controllers.
• Proposition 6.4.1 reports an extension of the impedance control concept.

Passivity-
Based
Design

Intuitive
Closed
Loop

Minimize
System
Shaping

Figure 6.2: Guiding design principles.

Remark 6.0.1 The works [4, 7] [4]: Albu-Schäffer et al. (2005), “Construc-
tive energy shaping based impedance con-
trol for a class of underactuated Euler-
Lagrange systems”
[7]: Albu-Schäffer et al. (2012), “Construc-
tive energy shaping control for a class of
Euler-Lagrange Systems”

, which solve the regulation problem for a
similar class of EL systems as introduced in Chapter 5 by energy shaping
and damping injection, are most closely related to impedance controller pre-
sented in this chapter. Compared to [7], the presented approach: 1) requires
significantly weaker assumptions on potential function connected with the
Lagrange equations; in particular, the existence of the constants 𝛼1, 𝛼2 and
𝛼4 associated with the inequalities (7) and (8) in [7] are not required, 2) the
damping injection and potential energy shaping is not limited by relying on
only collocated feedback (motor positions and velocities); instead, direct
link-side potential shaping and damping injection is possible, 3) explicitly
time-dependent forces can be added to the link dynamics; enables, e.g., the
implementation of (asymptotically stable) task-space motion tracking, as
demonstrated in [91] [91]: Keppler et al. (2021), “Analyzing the

performance limits of articulated soft robots
based on the ESPi framework: Applications
to damping and impedance control”

. 4) using Theorem 5.4.2 allows the consideration of
multiarticulated systems.

6.1 Energy Exchange with the Physical World

This section reports several important properties of EL systems that are fun-
damental for the control developments in this chapter. The energy a system
exchanges with its environment will play a pivotal role and can be analyzed by
taking the time derivative of its total energy. Using the notion of passivity, see
Definition C.3.2 in Appendix C, we can establish the following key statement
concerning the energy balance of EL systems.

Proposition 6.1.1 (Passivity of EL Systems) Let (𝒒, 𝒒̇) be a Lagrangian
of the EL system (5.1), and assume that the Hamiltonian  =

∑

𝑖 𝑞̇𝑖
𝜕
𝜕𝑞̇𝑖

−
is bounded from below. Then (5.1) is a passive system with respect to the

https://www.youtube.com/watch?v=PATvv47QfQs
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supply rate, T𝒒̇, and  as storage function. The energy balance


(

𝒒(𝑡1), 𝒒̇(𝑡1)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
stored energy

= 
(

𝒒(𝑡0), 𝒒̇(𝑡0)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
initial energy

+∫

𝑡1

𝑡0

∑

𝑖
𝑖𝑞̇𝑖𝑑𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
supplied energy

, (6.1)

holds for any 𝑡1 ≥ 𝑡0 and any bounded . The statement can be strengthened
to output strict passivity (OSP) if the system is fully damped. Suppose the
generalized forces can be decomposed as  = 𝑟−𝑑 , with the dissipation
forces, 𝑑 , satisfying

∑

𝑖𝑑 𝑞̇𝑖 ≥
∑

𝑖 𝛼𝑖𝑞̇
2
𝑖 , 𝛼𝑖 > 0, then the energy balance


(

𝒒(𝑡1), 𝒒̇(𝑡1)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
stored energy

≤ 
(

𝒒(𝑡0), 𝒒̇(𝑡0)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
initial energy

+∫

𝑡1

𝑡0

∑

𝑖

(

𝑟𝑖 𝑞̇𝑖 − 𝛼𝑖𝑞̇
2
𝑖
)

𝑞̇𝑖𝑑𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
supplied/dissipated energy

, (6.2)

holds for any 𝑡1 ≥ 𝑡0 and any bounded .

Proof. The total time derivative of  is
𝑑
𝑑𝑡

=
∑

𝑖

[ 𝜕
𝜕𝑞𝑖

𝜕𝑞𝑖
𝜕𝑡

+ 𝜕
𝜕𝑞̇𝑖

𝑑𝑞̇𝑖
𝑑𝑡

]

+ 𝜕
𝜕𝑡
. (6.3)

Making use of the EL equations (5.1)
𝜕
𝜕𝑞𝑖

= d
d𝑡
𝜕
𝜕𝑞̇𝑖

−𝑖,

and the time-independence of , we can rewrite (6.3) as
𝑑
𝑑𝑡

=
∑

𝑖

[

d
d𝑡
𝜕
𝜕𝑞̇𝑖

−𝑖
]

𝑞̇𝑖 +
∑

𝑗

𝜕
𝜕𝑞̇𝑖

𝑑𝑞̇𝑖
𝑑𝑡

(6.4)

or
𝑑
𝑑𝑡

=
∑

𝑖

d
d𝑡

[

𝑞̇𝑖
𝜕
𝜕𝑞̇𝑖

]

−
∑

𝑖
𝑖𝑞̇𝑖. (6.5)

It follows that
d
d𝑡

∑

𝑖

[

𝑞̇𝑖
𝜕
𝜕𝑞̇𝑖

− 
]

=
∑

𝑖
𝑖𝑞̇𝑖. (6.6)

Identifying the LHS of (6.6) with d
d𝑡, and integrating (6.6) from 𝑡0 to 𝑡1

establishes the energy balance


(

𝒒(𝑡1), 𝒒̇(𝑡1)
)

−
(

𝒒(𝑡0), 𝒒̇(𝑡0)
)

= ∫

𝑡1

𝑡0

∑

𝑖
𝑖𝑞̇𝑖𝑑𝑡. (6.7)

which completes the first part of the proof. If the EL system (5.1) is fully
damped, then the supply rate on the RHS of (6.7) can be expanded to

∫

𝑡1

𝑡0

∑

𝑖

(

𝑟𝑖 𝑞̇𝑖 −𝑑𝑖 𝑞̇𝑖
)

𝑑𝑡 ≤ ∫

𝑡1

𝑡0

∑

𝑖

(

𝑟𝑖 𝑞̇𝑖 − 𝛼𝑖𝑞̇
2
𝑖
)

𝑑𝑡, (6.8)

and output strict passivity follows immediately after making the substitutions
(6.7) and (6.8). ■
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Environment

𝒖𝑎
𝒒̇𝑎

𝝍
𝒒̇𝑢

System: Σ
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̇̄𝒒𝑢
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̇̄𝒒𝑢

System: Σ̄

′
𝑢

̇̄𝒒𝑢̄′
𝑎
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Ctrl
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Σ̄𝑢

Σ𝑢

ICT

Figure 6.3: Comparing the internal and ex-
ternal power flows of the EL system Σ and
its associated QFA form Σ̄.

6.1.1 Systems with a Block Diagonal Inertia Matrix

Let us apply the result above to the class of EL systems specified in Section 5.1.
Then, we obtain for system Σ, (5.1), the energy balance:


(

𝒒(𝑇 ), 𝒒̇(𝑇 )
)

= 
(

𝒒(0), 𝒒̇(0)
)

+

∫

𝑇

0

(

𝒒̇T
𝑢

′
𝑢 + 𝒒̇

T
𝑎

′
𝑎
)

𝑑𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
natural exchange

+∫

𝑇

0
𝒒̇T
𝑎𝒖𝑎𝑑𝑡

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
supplied

. (6.9)

Proceeding mutatis mutandis for the virtual system Σ̄, we get the following
fundamental property of the QFA formulation.

Corollary 6.1.2 (Passivity of QFA EL Systems) Let (𝒒̄, ̇̄𝒒) be the La-
grangian of the QFA system Σ̄, (5.95), associated with the EL system Σ.
Suppose that the Hamiltonian

[


]

𝑞 =
∑

𝑖 ̇̄𝑞𝑖
[

𝜕
𝜕 ̇̄𝑞𝑖

]

𝑞
−
[


]

𝑞 is bounded from

below, then Σ̄ is passive with respect to the supply rate, ̄T ̇̄𝒒, and  as
storage function. The energy balance (as visualized in Fig. 6.3)


(

𝒒̄(𝑇 ), ̇̄𝒒(𝑇 )
)

= 
(

𝒒̄(0), ̇̄𝒒(0)
)

+

∫

𝑇

0

( ̇̄𝒒T
𝑢

′
𝑢 + ̇̄𝒒T

𝑎̄
′
𝑎
)

𝑑𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
natural exchange

+∫

𝑇

0

( ̇̄𝒒T
𝑢 𝒖̄𝑢 + ̇̄𝒒T

𝑎 𝒖̄𝑎
)

𝑑𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
supplied

. (6.10)

holds for any 𝑡1 ≥ 𝑡0 and any bounded ̄. The statement can be strength-
ened to output strict passivity (OSP) if the system is fully damped, c.f.
Proposition 6.1.1.

This result follows directly from Proposition 6.1.1. In each of the energy
balances (6.9) and (6.10), we can identify two types of power flows. The first
two terms on the RHS of (6.9) and (6.10) represent the respective system’s
natural exchange of energy with the environment. The remaining terms on the
RHS represent the artificial supply rate imposed by a particular controller. All
power flows are visualized in Fig. 6.3. Even though the Hamiltonian , in
general, does not evaluate to the same values for Σ and Σ̄ as pointed out in
Section 5.5, we can conclude that  qualifies as a storage function for either



114 6 Energy-Based Control of Underactuated Euler-Lagrange Systems

system. Corollary 6.1.2 asserts that Σ̄ is passive according to Definition C.3.2
in Appendix C since it is dissipative with respect to the supply rate ̄T ̇̄𝒒.
A critical aspect of transforming equations (ICT) is the fact that the power
port 𝒒̇T

𝑢𝑢 is preserved since 𝒒𝑢 ≡ 𝒒̄𝑢 and 𝑢 ≡ ̄𝑢. Comparing (6.9) and
(6.10) reveals that this power port appears in both energy balances. For ASRs,
this port uniquely determines the interaction behavior of the robot with its
environment and, thus, it will be at the center of our attention in Chapter 7. In
the following, it will be assumed that the non-actuated subsystem Σ𝑢 is the
primary agent interacting with the environment. Thus, when it comes to the
work exchanged with the environment, we shall focus on the port (𝒒̄𝑢,′

𝑢).

6.2 Energy Shaping and Damping Injection
Control: An Extension

This section introduces an extension of the energy shaping and damping injec-
tion concept from Takegaki and Arimoto [178] to the class of underactuated
EL systems specified in Section 5.1. The two-stage character is preserved.
First, the potential energy is modified such that the system has a global and
unique minimum at the desired equilibrium configuration. Second, damping
is injected to ensure asymptotic convergence. Starting with the transformed
system Σ̄𝑢, we can make use of the virtual input vector 𝑢̄ to adopt the idea of
Takegaki and Arimoto. The resulting controller is summarized in the proposi-
tion below.

𝒒̄, ̇̄𝒒

Σ̄

(6.11)
𝒖̄

Environment
̄′ ̇̄𝒒

passive system
Σ̃

𝒒̄∗𝑢

Figure 6.4: Feedback system resulting from
the energy shaping and damping injection
extension procedure.

Proposition 6.2.1 (Energy Shaping and Damping Injection) Suppose the
EL system Σ, (5.1) satisfies the conditions of Theorem 5.4.2. Let the virtual
control inputs, (5.94), be given by:

𝒖̄ = −
𝜕𝑐
𝜕𝒒̄

(𝒒̄) −𝑣 ̇̄𝒒, (6.11)

and let 𝑐 be a potential function of class 𝑘, 𝑘 ≥ 3. Further, let us assume
the following:

(i) 𝑐(𝒒̄) ≜ 𝑐𝑢(𝒒̄𝑢) + 𝑐𝑎(𝒒̄𝑎),
(ii) ∗(𝒒̄) ≜  + 𝑐 has a unique global minimum at 𝒒̄ = 𝒒̄∗ (constant)

and is radially unbounded with respect to the error 𝒒̃ = 𝒒̄ − 𝒒̄∗,
(iii) 𝑣 ≜ diag(𝑲𝑣𝑢,𝑲𝑣𝑎) is symmetric, positive definite with𝑲𝑣𝑢 ∈ ℝ𝑛𝑢×𝑛𝑢

and 𝑲𝑣𝑎 ∈ ℝ𝑛𝑎×𝑛𝑎 .

Then, in absence of external forces, i.e. ′ = 𝟎, the equilibrium (𝒒̄, ̇̄𝒒) =
(𝒒̄∗, 𝟎) of the QFA system Σ̄ is globally asymptotically stable. The cor-
responding globally asymptotic equilibrium of Σ is given according to
Lemma 5.4.1.

Proof. Conditions (i) and (ii) guarantee that condition (i) of Theorem 5.4.2 is
satisfied. Suppose that condition (ii) of Theorem 5.4.2 is satisfied as well. The
proof concludes with an argument that this assumption was indeed justified.
In this case, Theorem 5.4.2 asserts that we can transform the EL system Σ
into its QFA form Σ̄. Applying the control input (6.11) to Σ̄, (5.95), we get
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the following equations of motion:

Σ∗ ∶ d
d𝑡
𝜕
𝜕 ̇̄𝒒

− 𝜕
𝜕𝒒̄

= 𝒖̄ +′ − 𝜕
𝜕𝒒̄

= −𝜕
∗

𝜕𝒒̄
−𝑣 ̇̄𝒒 +′, (6.12)

with the potential function turning out to be the desired one, ∗. Introducing
the Lagrangian ∗ =  − ∗ and the generalized force ∗ ≜ ′ −𝑣 ̇̄𝒒, we
can rewrite (6.12) as

Σ∗ ∶ d
d𝑡
𝜕∗

𝜕 ̇̄𝒒
− 𝜕∗

𝜕𝒒̄
= ∗. (6.13)

When studying the stability of an EL system with a Lagrangian that does not
explicitly depend on time, it is convenient to assume that at the equilibrium
position is located at the origin. This can be assumed without loss of generality
since it is sufficient to place the coordinate origin at this position. Suppose
that 𝒒̄∗ ≠ 𝟎, then we can transform to another set of generalized coordinates
𝒒̃ via the transforming equations

𝒒̄ = 𝒒̄(𝒒̃) = 𝒒̃ + 𝒒̄∗, (6.14)
such that, according to Corollary 2.5.6 EL equations (6.13), become

d
d𝑡
𝜕∗

𝜕 ̇̃𝒒
− 𝜕∗

𝜕𝒒̃
= ∗, (6.15)

where the Lagrangian is expressed as a function of (𝒒̃, ̇̃𝒒) through the trans-
forming equations, (6.14), and its time derivatives, i.e., ∗ = ∗(𝒒̄(𝒒̃), ̇̄𝒒( ̇̃𝒒)

).
Introducing a new Lagrangian function

̃
(

𝒒̃, ̇̃𝒒
)

≜ ∗(𝒒̄(𝒒̃), ̇̄𝒒( ̇̃𝒒)
)

, (6.16)
constituted by the kinetic energy ̃ ≜ 

(

𝒒̄(𝒒̃), ̇̄𝒒( ̇̃𝒒)
) and potential energy

̃ ≜ ∗(𝒒̄(𝒒̃)
), and making the substitution (6.15) and (6.16), we get

Σ̃∶ d
d𝑡
𝜕̃
𝜕 ̇̃𝒒

− 𝜕̃
𝜕𝒒̃

= ∗. (6.17)

As desired, the transformed system has an unique equilibrium at the origin,
which follows directly from condition (ii) and (6.14). Further, ̃ is radially
unbounded w.r.t. 𝒒̃. Since there is a one-to-one correspondence between the
solutions of (6.13) and (6.17), we can study the behavior of (6.17) instead.
Proceeding analogous to the proof of Proposition 6.1.1, it is clear that

𝑑̃
𝑑𝑡

= … =
∑

𝑖

d
d𝑡

[

̇̃𝑞𝑖
𝜕̃
𝜕 ̇̃𝑞𝑖

]

+
∑

𝑖
∗
𝑖
̇̃𝑞𝑖, (6.18)

or after rearranging terms
d
d𝑡

∑

𝑖

[

𝑞̇𝑖
𝜕̃
𝜕𝑞̇𝑖

− ̃
]

=
∑

𝑖
∗
𝑖
̇̃𝑞𝑖. (6.19)

Introducing the Hamiltonian ̃ =
∑

𝑖 ̇̃𝑞𝑖
𝜕̃
𝜕 ̇̃𝑞𝑖

− ̃, we can rewrite (6.19) as

̇̃ = − ̇̃𝒒T𝑣 ̇̃𝒒 + ̇̃𝒒T′. (6.20)
We are now in position to establish GAS of the origin (𝒒̄, ̇̄𝒒) = 𝟎 of Σ̃,
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for ′ = 𝟎, by invoking Krasovskii’s Theorem (C.1.3). Since ̃ is con-
tinuously differentiable, radially unbounded w.r.t (𝒒̃, ̇̃𝒒) and positive definite
it qualifies as Lyapunov function 𝑉 . The radial unboundedness of ̃ fol-
lows from condition (ii) and the fact that ̃ (𝒒̃, ̇̃𝒒) → ∞ as ||𝒒̇|| → ∞. To
find 𝑆 =

{

(𝒒̃, ̇̃𝒒) ∈ ℝ2𝑛
|𝑉̇ = 0

}, note that 𝑉̇ = 0 ⇐⇒ ̇̃𝒒 = 𝟎, and thus
𝑆 =

{

(𝒒̃, ̇̃𝒒) ∈ ℝ2𝑛
|
̇̃𝒒 = 𝟎

}. Let (𝒒̃(𝑡), ̇̃𝒒(𝑡) = 𝟎) be a solution that belongs to
𝑆, then

̇̃𝒒 ⇐⇒ ̈̃𝒒 = 𝟎
(2.57)
⇐⇒

d
d𝑡
𝜕̃
𝜕 ̇̃𝒒

− 𝜕̃
𝜕𝒒̃

= 𝟎
(6.17)
⇐⇒

d
d𝑡
𝜕̃
𝜕 ̇̃𝒒

− 𝜕̃
𝜕𝒒̃

= 𝟎 ⇐⇒
𝜕̃
𝜕𝒒̃

= 𝟎.

(6.21)
The last implication is due to Assumption 5.1.1. In conclusion, the only so-
lution (

𝒒̄(𝑡), ̇̄𝒒(𝑡) = 𝟎
) that can stay identically in 𝑆 is defined by 𝜕̃

𝜕𝒒̃ = 𝟎
which has the unique solution 𝒒̃ = 𝟎. Therefore, the origin of (6.17) is GAS,
which again, implies GAS of the equilibrium, 𝒒̄ = 𝒒̄∗, of (6.13). To complete
the proof, we have yet to show that condition (ii) of Theorem 5.4.2 is indeed
satisfied during the transient. GAS implies that for any bounded initial state
the solution (

𝒒̄(𝑡), ̇̄𝒒(𝑡)
) remains bounded. Since 𝒖̄𝑢, (6.11), is a 𝑘−1, 𝑘 ≥ 3,

function of (𝒒̄(𝑡), ̇̄𝒒(𝑡)) by assumption, it follows that ̇̄𝒖𝑢, ̈̄𝒖𝑢 are continuous
functions. Considering that ̇̄𝒖𝑢, ̈̄𝒖𝑢 can be written as functions of the bounded
solution (

𝒒̄(𝑡), ̇̄𝒒(𝑡)
), as pointed out in Section B.2 in Appendix B, we can

conclude that ̇̄𝒖𝑢, ̈̄𝒖𝑢 remain bounded. This guarantees that condition (ii) of The-
orem 5.4.2 is satisfied. It remains to be shown that the solution (

𝒒𝑎(𝑡), 𝒒̇𝑎(𝑡)
)

of subsystem Σ𝑎 remains bounded. Considering that the solutions of Σ and
Σ̄ are in a one-to-one correspondence through the transforming equations,
and further considering the continuity of the transforming equations implies
boundedness of the Σ𝑎 solution. ■

Despite the conditions stated in Proposition 6.2.1 regarding the closed-
loop potential function ∗, we have great freedom in shaping the transient and
interaction behaviors of Σ̄𝑢 and Σ̄𝑎. Let us decompose the potential function:

(𝒒̄) = 1(𝒒̄) + 2(𝒒̄𝑢) + 3(𝒒̄𝑎). (6.22)
Proposition 6.2.1 allows arbitrary shaping or canceling of the potential fields
2 and 3, more importantly, we can add arbitrary smooth potential fields that
exclusively interact with either Σ̄𝑢 or Σ̄𝑎. Only when it comes to shaping the
potential function 1, we have to make sure that the final potential function,
∗, complies with the conditions of Proposition 6.2.1. From the robustness
point of view, it is favorable to superimpose physical with artificial (controller)
potential fields rather than replacing physical potential fields with a desired
one, since the latter operation can be expected to be susceptible to model
uncertainties. Furthermore, it is widely believed that dominating instead of
canceling nonlinear terms enhances robustness of the closed-loop system
vis-avis parametric uncertainties [133]. In this regard, the following potential[133]: Ortega (1998), Passivity-Based Con-

trol of Euler-Lagrange Systems: Mechani-
cal, Electrical, and Electromechanical Ap-
plications

function candidate, which is adapted from [178], is particularly interesting

[178]: Takegaki et al. (1981), “A new feed-
back method for dynamic control of manip-
ulators”

∗(𝒒̄) = (𝒒̄) − (𝒒̄∗) −
[

𝜕
𝜕𝒒̄

]

(𝒒̄ − 𝒒̄∗) + 1
2 𝒒̃

T𝒒̃, (6.23)

where a  is a suitable block-diagonal, symmetric and positive definite matrix.
This potential function is realized by linear position feedback plus constant
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bias, that is

𝒖̄ = 𝜕
𝜕𝒒̄

(𝒒̄∗) −(𝒒̄ − 𝒒̄∗). (6.24)

Although 𝒖̄ takes on a simple form, the actual control input 𝒖, (5.94), is in
general a highly nonlinear state feedback control law. Note that the last term in
(6.23) can easily be replaced by a more general potential function that is radi-
ally unbounded w.r.t 𝒒̄ − 𝒒̄∗, sufficiently smooth and satisfies condition (i).

6.2.1 Possible Generalizations

Condition (i) of Proposition 6.2.1 imposes limitations on the desired potential
function ∗. Choosing a desired potential ∗ =  − 1 would violate con-
dition (i) above. From the physical point of view this seems intuitive. After
all, the interaction between the subsystems Σ̄𝑢 and Σ̄𝑎 is solely dictated by the
force arising from the potential field 1. If it was possible to completely cancel
this potential field, it would be possible to fully decouple the two subsystems.
Obviously, this is physically impossible. It is, however, possible to modify the
potential field 1. Below, we sketch two ways for achieving this goal that are
in harmony with the framework presented in Chapter 5.

First, we can use Theorem 5.6.1 to consider transforming equations that
yield a QFA system that is characterized by a new Lagrangian ̃

̃ =  (𝒒̄, ̇̄𝒒) − ̃(𝒒̄). (6.25)
By choosing a potential function ̃ different from the intrinsic one,  , allows
us to impose a new interaction behavior between Σ̄𝑎 and Σ̄𝑢, and consequently
with respect to the environment. Such alternative approach would shift the
potential energy shaping part to the stage at which the coordinate transforming
equations are formulated. In essence, the first 𝑛𝑢 equations of (5.36), i.e.,

𝜕
𝜕𝒒𝑢

= 𝜕
𝜕𝒒̄

+ 𝒖̄𝑢, (6.26)

are replaced with
𝜕
𝜕𝒒𝑢

= 𝜕̃
𝜕𝒒̄𝑢

+ 𝒖̄𝑢. (6.27)

In other words, the potential energy shaping is directly incorporated into the
ICT equations as discussed in Section 5.6.

Second, we could extend Proposition 6.2.1 to allow for increased freedom
in choosing 𝑐 . In particular, Assumption (i) of Proposition 6.2.1 can be
replaced with the more general assumption that

𝜕2
𝜕𝒒̄𝑎𝜕𝒒̄𝑢

(𝒒̄) +
𝜕2𝑐
𝜕𝒒̄𝑎𝜕𝒒̄𝑢

(𝒒̄),

is non-singular at any position of the configuration space, which guarantees
that the resulting coordinate transforming equations have (locally) a unique
solution. A global statement requires that the matrix above satisfies conditions
as stated in Assumption 5.1.2. Notice that such extension Proposition 6.2.1,
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would result in 𝒖̄𝑢 of (6.11) containing feedback of 𝒒̄𝑎 which is not within the
scope of the central theorems presented in Chapter 5.

6.2.2 Discussion

The energy shaping and damping injection concept [178] was introduced[178]: Takegaki et al. (1981), “A new feed-
back method for dynamic control of manip-
ulators” for fully actuated systems. Proposition 6.2.1 can be considered as an exten-

sion of this concept to the class of underactuated EL systems specified in
Section 5.1. Compared to the original method, the new scheme introduces
Condition (i) and (iii) in Proposition 6.2.1, which imposes limitations on the
achievable closed-loop potential energy function and damping behavior. It
is worth investigation whether this limitation connected with the presented
framework, or whether this limitation arise from the physical properties of
the considered class of EL system. Clearly, the potential energy function of
such systems cannot be arbitrarily modified through control. For example,
it is physically impossible to cancel the subsystem coupling potential since
this would imply a vanishing of the subsystem coupling force between Σ𝑢 and
Σ𝑎. This becomes immediately clear from (5.29b); substituting 𝒖̄𝑢 = 𝜕𝑎

𝜕𝒒̄𝑢
(𝒒̄)

gives 𝜕𝑎
𝜕𝒒𝑢

(𝒒) = 𝟎. Conditions (i) and (iii) of Proposition 6.2.1, however, are
stronger than necessary and possible relaxations are discussed above. In sum-
mary, Proposition 6.2.1, allows specifying a closed-loop potential energy and
a damping behavior directly in terms of the non-collocated link-velocities
(outputs). The resulting feedback system is shown in Fig. 6.4.

6.3 Euler-Lagrange Controllers: An Extension

The previous section revealed that damping injection on subsystem Σ𝑢 relies
on the jerk 𝒒(3)𝑢 . Even though these signals can be computed via the system
model (as pointed out in Section B.2 of Appendix B), it is often not a desirable
procedure since it is prone to model uncertainties. Further, if Σ𝑢 is subject to
harsh impacts direct damping injection on Σ̄𝑢 can easily cause input saturation.
Chapter B.2 reveals the underlying physical reasons and discusses the general
issues connected with the reliance on jerk signals in a feedback loop.

This section presents an energy-based approach that obviates the need
of jerk signals. The availability of the link-side interconnection port (𝒒̇𝑢, 𝒖̄𝑢)
on the QFA form introduced in Chapter 5, motivates the adoption of Euler
Lagrange controllers to the QFA system Σ̄. Motivated by the availability of
the link-side interconnection port (𝒒̇𝑢, 𝒖̄1), an extension of Euler-Lagrange
controllers is developed in the following. The development of EL controllers
was motivated by the following two observations. First, passivity is invari-
ant under feedback interconnection (as pointed out in Proposition C.3.1 in
Appendix C.3). Second, choosing PBC among the class of EL systems, one
can define a feedback interconnection that preserves the EL structure—and,
importantly—the new Lagrangian and storage functions are obtained by sim-
ply adding up the corresponding functions of the plant and the controller (as
pointed out in Proposition 2.5.5). The following proposition can be considered
as an extension of Proposition 3.6 from [133]

[133]: Ortega (1998), Passivity-Based Con-
trol of Euler-Lagrange Systems: Mechani-
cal, Electrical, and Electromechanical Ap-
plications

.
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Proposition 6.3.1 (Euler-Lagrange Controller) Consider an EL system (5.1),
in absence of external forces, i.e. ′ = 𝟎, that satisfies the conditions of
5.4.2. Let the virtual control input be an EL controller:

𝒖̄ = −
𝜕𝑐
𝜕𝒒̄

(𝒒𝑐 , 𝒒̄), (6.28)

with the Lagrangian 𝑐(𝒒̄, 𝒒𝑐 , 𝒒̇𝑐) and the controller dynamics:

Σ𝑐 ∶ 𝑴 𝑐(𝒒𝑐)𝒒̈𝑐 + 𝑪𝑐(𝒒𝑐 , 𝒒̇𝑐)𝒒̇𝑐 +
𝜕𝑐(𝒒𝑐 , 𝒒̄)

𝜕𝒒𝑐
+
𝜕𝑐(𝒒̇𝑐)
𝜕𝒒̇𝑐

= 𝟎, (6.29)

with the controller coordinates 𝒒𝑐 ∈ ℝ𝑛𝑐 . Further, assume that the potential
energy function 𝑐(𝒒𝑐 , 𝒒̄) and dissipation function 𝑐(𝒒̇𝑐) are at least twice
continuously differentiable. Let 𝒒∗𝑢 be the constant desired value of Σ𝑢.
Then, the closed-loop system is GAS at an equilibrium 𝒒̂ = (𝒒̄∗, 𝒒∗𝑐 ), such
that 𝒒∗𝑢 = [𝑰𝑛𝑢 , 𝟎𝑛𝑎+𝑛𝑐 ]𝒒̂ with the partitioning 𝒒̄∗ ≜

[

𝒒∗𝑢 , 𝒒
∗
𝑣
]

, and the EL
controller (6.28) solves the state feedback global stabilization problem
above, if

(i) (Energy shaping) ̃ ≜  + 𝑐 , with 𝑐(𝒒𝑐 , 𝒒̄) ≜ 𝑐1(𝒒𝑐 , 𝒒̄𝑢) +
𝑐2(𝒒𝑐 , 𝒒̄𝑎), is proper and has a global and unique minimum at
𝒒̄ = 𝒒̄∗

(ii) (Damping injection) 𝑐(𝒒̇𝑐) satisfies:

𝒒̇T
𝑐
𝜕𝑐
𝜕𝒒̇𝑐

(𝒒̇𝑐) ≥ 𝛼||𝒒̇𝑐||2,

for some 𝛼 > 0.
(iii) (Dissipation propagation) For each trajectory such that 𝒒𝑐 ≡ const.

and 𝜕𝑐
𝜕𝒒𝑐

(𝒒𝑐 , 𝒒̄) = 𝟎, we have that 𝒒̄ ≡ const..

Proof. The proof is based on Proposition 2.5.3 and Proposition 2.5.5. Con-
dition (i) above guarantees that condition (i) of Theorem 5.4.2 is satisfied.
Suppose that condition (iii) of Theorem 5.4.2 is satisfied. The proof concludes
with a statement that this assumption was indeed justified. Then, Theorem 5.4.2
asserts that we can transform the EL system Σ into its QFA form Σ̄, (5.95).
Input (6.28) interconnects the two EL systems Σ̄ and Σ𝑐 such that the resulting
closed-loop system is again an EL system (as pointed out in Proposition 2.5.5)
with the Lagrangian

̃(𝒒̄, 𝒒𝑐 , ̇̄𝒒, 𝒒̇𝑐) = (𝒒̄, ̇̄𝒒) + 𝑐(𝒒̄, 𝒒𝑐 , 𝒒̇𝑐), (6.30)
and with the kinetic and potential energy functions

̃ ≜  (𝒒̄, ̇̄𝒒) + 𝑐(𝒒𝑐 , 𝒒̇𝑐); ̃ ≜ (𝒒̄) + 𝑐(𝒒̄, 𝒒𝑐). (6.31)
The generalized inertia matrix associated with ̃ is block diagonal (c.f. Propo-
sition 5.1.1) and satisfies condition (i) of Proposition 2.5.3. Observing that
condition (iii) above implies that ̇̄𝒒 ≠ 𝟎 and 𝜕

𝜕𝒒𝑐
(𝒒, 𝒒̄) = 𝟎 cannot occur si-

multaneously, we can conclude that condition (iii) of Proposition 2.5.3 is
satisfied. The boundedness of 𝒖̄𝑢 up to its second time derivative and bound-
edness of the solutions (𝒒𝑎(𝑡), 𝒒̇𝑎(𝑡)

) of Σ𝑎 can be shown analog to the proof
of Proposition 6.2.1, which completes the proof. ■
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6.3.1 Passivity Analysis

In the following, it will be shown that the closed-loop system obtained from
the control law (6.28) can be represented by three passive subsystems in
feedback interconnection. The closed-loop dynamics are given by the EL
equations associated with the Lagrangian ̃, (6.30). Exploiting the fact that ̃
is composed of two sub-Lagrangians, we can split the associated Hamiltonian
as follows

̃ =
𝑛
∑

𝑖
𝑞̇𝑖
𝜕̃
𝜕𝑞̇𝑖

+
𝑛𝑐
∑

𝑗
𝑞̇𝑐𝑗

𝜕̃
𝜕𝑞̇𝑐𝑗

− ̃ =
𝑛
∑

𝑖
𝑞̇𝑖
𝜕
𝜕𝑞̇𝑖

− 

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟


+
𝑛𝑐
∑

𝑗
𝑞̇𝑐𝑗

𝜕𝑐
𝜕𝑞̇𝑐𝑗

− 𝑐

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑐

,

(6.32)
where and𝑐 are the Hamiltonians of the EL systemsΣ andΣ𝑐 , respectively.
The corresponding EL equations of these subsystems are

Σ̄∶ d
d𝑡
𝜕
𝜕 ̇̄𝑞𝑖

− 𝜕
𝜕𝑞𝑖

= −𝜕
𝜕𝑞

+ ̄, 𝑖 = 1,… , 𝑛 (6.33)

Σ𝑐 ∶
d
d𝑡
𝜕𝑐
𝜕𝑞̇𝑐𝑗

−
𝜕𝑐
𝜕𝑞𝑐𝑗

= 𝑐𝑗 , 𝑗 = 1,… , 𝑛𝑐 (6.34)

with 𝑐𝑗 = − 𝜕𝑐𝑗
𝜕𝑞̇𝑐𝑗

. Using (6.28) and (6.31), we can rewrite (6.33)–(6.34)

Σ̄∶ d
d𝑡
𝜕̃
𝜕 ̇̄𝑞𝑖

− 𝜕̃
𝜕𝑞𝑖

= −𝜕̃
𝜕𝑞

+ ̄, (6.35)

Σ𝑐 ∶
d
d𝑡

𝜕̃
𝜕𝑞̇𝑐𝑗

− 𝜕̃
𝜕𝑞𝑐𝑗

= − 𝜕̃
𝜕𝑞𝑐𝑗

+ ̄. (6.36)

From Corollary (5.5.1), we know that
d
d𝑡

(

𝒒̄, ̇̄𝒒
)

=
(

𝑢̄𝑖 + ̄′
𝑖
) ̇̄𝑞𝑖. (6.37)

For the controller subsystem Σ𝑐 , we have that
d
d𝑡
𝑐 =

∑

𝑗

[

𝜕𝑐
𝜕𝑞̇𝑐𝑗

𝑞𝑐𝑗 +
𝜕𝑐
𝜕𝑞𝑐𝑗

𝑞̇𝑐𝑗 +
𝜕𝑐
𝜕𝑡

]

+
∑

𝑖

𝜕𝑐
𝜕𝑞𝑖

̇̄𝑞𝑖 (6.38)

Making use of the EL equations (6.34) and the time-invariance of 𝑐 , we can
rewrite (6.38) as

d
d𝑡
𝑐 =

∑

𝑗

{[

d
d𝑡
𝜕𝑐
𝜕𝑞̇𝑐𝑗

−𝑐𝑗
]

𝑞̇𝑐𝑗 +
𝜕𝑐
𝜕𝑞̇𝑐𝑗

𝑞𝑐𝑗

}

+
∑

𝑖

𝜕𝑐
𝜕𝑞𝑖

̇̄𝑞𝑖, (6.39)

or
d
d𝑡
𝑐 =

∑

𝑗

d
d𝑡

[

𝜕𝑐
𝜕𝑞̇𝑐𝑗

𝑞̇𝑐𝑗

]

−
∑

𝑗
𝑐𝑗 𝑞̇𝑐𝑗 +

∑

𝑖

𝜕𝑐
𝜕𝑞𝑖

̇̄𝑞𝑖. (6.40)

It follows that
d
d𝑡

[

∑

𝑗

𝜕𝑐
𝜕𝑞̇𝑐𝑗

− 𝑐
]

=
∑

𝑗
𝑐𝑗 𝑞̇𝑐𝑗 −

𝜕𝑐
𝜕𝑞𝑖

̇̄𝑞𝑖. (6.41)
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Σ̄

Σ𝑐

Environment
′

̇̄𝒒

passive
system

𝒖̄ (6.28)

ext,1

𝒒̇𝑢

Σ𝑣

Σ𝑐

Σ𝑐

Σ𝑞
ext,2

𝒒𝑢

Σ𝑢𝑡

Environment

Σ𝑐

Σ̄𝑢

Σ̄𝑎

Environment

+
+

−

̇̄𝒒𝑎

̇̄𝒒

𝒖̄𝑢

̄′

̄′
𝑎

𝝍̄ 𝜕𝑎
𝜕𝒒̄𝑢

𝒖̄𝑎

̄𝑢

𝒖̄ 𝜕𝑐
𝜕𝒒̄

̄′
𝑢

̇̄𝒒𝑢

̄𝑎
+
+

Figure 6.5: (Left): Feedback interconnection of two passive EL systems, Σ̄ and Σ𝑐 . (Right): Subsystem Σ̄ can be represented as the negative
feedback interconnection of the two passive EL subsystems, Σ̄𝑢 and Σ̄𝑎.

Identifying the LHS with d
d𝑡𝑐 establishes the second energy balance equa-

tion
d
d𝑡
𝑐 =

∑

𝑗
T
𝑐𝑗 𝑞̇𝑐𝑗 −

∑

𝑖

𝜕𝑐
𝜕𝑞𝑖

̇̄𝑞𝑖. (6.42)

From Corollary 5.5.1, and the energy balances (6.37) and (6.42) it is clear that
the closed-loop system ̃̄Σ can be represented as the feedback interconnection
of the three passive subsystems Σ𝑢,Σ𝑎 and Σ𝑐 as depicted in Fig. 6.5 (right).

6.3.2 Discussion

Input (6.28) establishes a feedback interaction between the plant EL system Σ̄,
(5.95), and the controller EL system, (6.29). The dynamic extension injects
damping through 𝑐(𝒒̇𝑐), while 𝑐(𝒒𝑐 , 𝒒̇𝑐) and 𝑐(𝒒𝑐 , 𝒒̄) shape the systems
Lagrangian. The resulting EL closed-loop system is shown in Fig. 6.5, where
the virtual dynamics of the plant define the operator Σ̄∶ 𝒖̄ → 𝒒̄, and the
passive operator Σ𝑐 ∶ 𝒒̄ → 𝒖̄ is determined by (6.28)–(6.29). In contrast, in
the original formulation of EL controllers [137], the feedback interconnection [137]: Ortega et al. (1994), “On passivity-

based output feedback global stabilization
of Euler-Lagrange systems”between plant Σ and controller

Σ𝑐 ∶ 𝑴 𝑐(𝒒𝑐)𝒒̈𝑐 + 𝑪𝑐(𝒒𝑐 , 𝒒̇𝑐)𝒒̇𝑐 +
𝜕𝑐(𝒒𝑐 , 𝒒𝑎)

𝜕𝒒𝑐
+
𝜕𝑐(𝒒̇𝑐)
𝜕𝒒̇𝑐

= 𝟎, (6.43)
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is established by

𝒖 = −
𝜕𝑐(𝒒𝑐 , 𝒒𝑎)

𝜕𝒒𝑎
. (6.44)

A crucial difference to the proposed scheme is that the controller potential
energy in (6.43) depends on only the collocated coordinates 𝒒𝑎. In this way,
only 𝒒𝑎 enters into the controller via the term 𝜕𝒒𝑎𝑐 . This restriction on the
potential energy of the controller imposes clear limitations on the achievable
desired Lagrangian functions. Proposition 6.3.1 removes this restriction. In
(6.28), we see that the entire set of coordinates 𝒒̄ enters the controller via the
term 𝜕𝒒̄𝑐 . Inspecting the controller dynamics (6.29), we further observe that
the potential energy of the controller depends on the noncollacated outputs 𝒒𝑢,
providing fundamentally more freedom in modifying the potential energy, and
thus the interaction behavior, of the EL plant. Although Theorem 3.1 in [137]
is more limited in its scope of shaping the potential energy compared to the
proposed extension reported in Proposition 6.3.1, it should be remarked, that
the former result applies to a more general class of EL systems. In particular
Assumption 5.1.1 is not required.

6.4 Shaping the Interaction with the Physical
World

This section reports an adoption of classic impedance control to the class
of underactuated EL systems specified in Chapter 5. The developments are
based on the seminal works [68–70]

[68]: Hogan (1985), “Impedance con-
trol: An approach to manipulation: Part
I—Theory”
[69]: Hogan (1985), “Impedance con-
trol: An approach to manipulation: Part
II—Implementation”
[70]: Hogan (1985), “Impedance con-
trol: An approach to manipulation: Part
III—Applications” by Hogan that established the concept of

impedance control. Since there are fundamental physical reasons to refrain
from shaping the inertia of the non-actuated subsystem1, the focus is set on1: Discussing the underlying reasons would

go beyond the focus of this work. Loosely
speaking, such an approach would require
feedback of ′

𝑢 up to it’s second time deriva-
tive. For the same reasons as discussed in
Chapter 9, such feedback is likely to cause
input saturation at the moment of hard im-
pacts.

the special case where the inertial properties are preserved. This special case
of impedance control is also known as compliance control.

Let us start with the static analysis of system Σ̄. The potential energy 
is a function only of position and the Lagrangian does not include the time
explicitly. The system is said to be in equilibrium when the generalized forces
acting on the system vanish, i.e.

(

𝜕
𝜕𝒒̄

)

0
+ 𝒖̄ + ̄′ = 𝟎. (6.45)

Suppose that 𝑢̄𝑖 = 0. Let 𝒒̄0 be the solution to
(

𝜕
𝜕𝒒̄

)

0
= ̄′, (6.46)

then, the potential energy has an extremum at this equilibrium configuration.
The stiffness matrix of system Σ̄ describes the change of the external force ̄′

with the change of the position in the configuration space. By deriving (6.46)
with respect to 𝒒̄, we obtain

𝜕2
𝜕𝒒̄2

= 𝜕̄′

𝜕𝒒̄
, (6.47)

where the familiar Hessian on the LHS is the stiffness matrix. It is important
to underline that (6.47) applies only locally for infinitesimal displacement
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from the equilibrium 𝒒̄0. Further, the form of the stiffness matrix depends
on the choice of the generalized coordinates. Sometimes the stiffness matrix
is used to describe the interaction behavior of a system, however, due to its
local nature it allows only relating an infinitesimal deflection with an external
force. In this section, we are rather interested in the global relation between a
system’s deflection from the equilibrium and an external force. Let us sharpen
this objective. Suppose that we have a system with a unique equilibrium in
absence of external forces. Now given some external force ′

𝑢 on Σ𝑢, we
would like to know whether the system Σ assumes a new unique equilibrium
position. If such equilibrium position existed for any ′

𝑢, we would also want
to know how it is related to the magnitude and direction of ′

𝑢. The proposition
developed in this section allows imposing such a relation on the considered
systems.

Let us decompose the potential energy function as
 = 1(𝒒̄𝑢) + 2(𝒒̄) + 3(𝒒̄𝑎). (6.48)

Considering an ASR as exemplary system, then 1 would encode the gravity
potential acting on the rigid body dynamics and possibly elastic elements
that couple the links, 2 would gives rise to the potential force that couples
the subsystems Σ̄𝑢 and Σ̄𝑎, and 3 would, e.g. encode elastic coupling on the
motor side. In order to simplify the analysis in the following, let us make the
following assumption.

Assumption 6.4.1 Let 𝑛𝑢 = 𝑛𝑎 and the potential function 2 satisfies

𝜕2
𝜕𝒒̄𝑎

= 𝟎 ⇐⇒
𝜕2
𝜕𝒒̄𝑢

= 𝟎 ⇐⇒ 𝒒̄𝑢 = 𝒒̄𝑎,

2(𝒒̄) > 𝟎 for 𝒒̄𝑢 ≠ 𝒒̄𝑎,
𝒒̄𝑢 = 𝒒̄𝑎 ⇐⇒ 2(𝒒̄) = 𝟎,

In other words, we assume that the vanishing of the coupling force acting on
subsystem Σ̄𝑎 implies the vanishing of the coupling force acting on subsystem
Σ̄𝑢. In this case, a natural choice for a controller achieving a compliant behavior
on subsystem Σ̄𝑢, and thus on Σ̄𝑢, is summarized in the following proposition.
In essence, the effects of 1 and 3 are canceled, and a spring behavior is
added on Σ̄𝑢.

Proposition 6.4.1 (Impedance control) Let Σ be an EL system satisfying
Assumption 5.1.1 and 5.1.2. Then, in absence of external forces, i.e. ′ = 𝟎,
the controller

𝒖̄ = −𝑣 ̇̄𝒒 −𝑝(𝒒̄ − 𝒒̄∗) +
𝜕1
𝜕𝒒̄𝑢

+
𝜕3
𝜕𝒒̄𝑎

, (6.49)

with 𝑣 > 0 ∈ ℝ𝑛 and 𝑝 = diag(𝑲𝑝𝑢, 𝟎𝑛𝑎 ),𝑲𝑝𝑢 > 0 renders the equilib-
rium (𝒒̄, ̇̄𝒒) = (𝒒̄∗, 𝟎) globally asymptotically stable. In the presence of a con-
stant external force ′ =

(

′
𝑢, 𝟎

)

, the shifted equilibrium (𝒒̄, ̇̄𝒒) = (𝒒̄0, 𝟎),
𝒒̄0 = (𝒒̄0𝑢, 𝒒̄

0
𝑢), is globally asymptotically stable, where 𝒒̄0𝑢 is the solution to

𝑝𝑢(𝒒̄𝑢 − 𝒒̄∗𝑢) = ′
𝑢. (6.50)
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Proof. The following proof is based on LaSalle’s Theorem (see Theorem C.1.1
in Appendix C). In order to invoke this theorem, we must first construct the
compact and positively invariant set Ω. We shall follow the common procedure
(see, e.g., [95, p. 128]) of constructing the function 𝑉 (𝒙) such that it itself
guarantees the existence of a set Ω}. If Ω𝑐 =

{

𝒙 ∈ ℝ2𝑛
|𝑉 (𝒙) ≤ 𝑐

} is
bounded and 𝑉̇ (𝒙) ≤ 0 in Ω𝑐 , then we can take Ω = Ω𝑐 . When 𝑉 (𝒙) is
positive definite, then Ω𝑐 is bounded and for sufficiently small 𝑐 > 0. Let us
derive a Hamiltonian ̃ exhibiting these features such that it qualifies as the
function 𝑉 . To this end, we will apply the change of coordinates

𝒒̃ = 𝒒̄ − 𝒒∗. (6.51)
to shift the minimum of the closed-loop potential energy to the origin (analo-
gous to the proof of Proposition 6.2.1). Considering the decomposition of the
potential energy of Σ̄ in (6.48), we can write the dynamics of Σ̄ under (6.49)
as

Σ∗ ∶ d
d𝑡
𝜕
𝜕 ̇̄𝒒

− 𝜕
𝜕𝒒̄

= −
𝜕2
𝜕𝒒̄

−𝑝(𝒒̄ − 𝒒̄∗) −𝑣 ̇̄𝒒 + ̄′. (6.52)

Introducing the generalized force ̄∗ ≜ ̄′ −𝑣 ̇̄𝒒, and the functions

𝑝 ≜
1
2
(

𝒒̄ − 𝒒̄∗
)T𝑝

(

𝒒̄ − 𝒒̄∗
)

, (6.53)
∗(𝒒̄) ≜ (𝒒̄, ̇̄𝒒) − ∗(𝒒̄) (6.54)
∗(𝒒̄) ≜2(𝒒̄) + 𝑝(𝒒̄𝑢), (6.55)

we can rewrite (6.52) as

Σ∗ ∶ d
d𝑡
𝜕∗

𝜕 ̇̄𝒒
− 𝜕∗

𝜕𝒒̄
= ̄∗. (6.56)

Applying the point transformation (6.51) to (6.56), we obtain:

Σ∗ ∶ d
d𝑡
𝜕∗

𝜕 ̇̃𝒒
− 𝜕∗

𝜕𝒒̃
= ̄∗, (6.57)

where the Lagrangian is expressed as a function of (𝒒̃, ̇̃𝒒) through the trans-
forming equations (6.51). As desired, the transformed system, (6.57), has an
unique equilibrium point at the origin. Introducing

̃
(

𝒒̃, ̇̃𝒒
)

= ̃
(

𝒒̃, ̇̃𝒒
)

− ̃
(

𝒒̃
)

≜ 
(

𝒒̄(𝒒̃), ̇̄𝒒(𝒒̃)
)

− ∗(𝒒̄(𝒒̃)
)

, (6.58)
we can rewrite the closed-loop dynamics as

Σ̃∶ d
d𝑡
𝜕̃
𝜕 ̇̃𝒒

− 𝜕̃
𝜕𝒒̃

= ̄∗, (6.59)

with the associated Hamiltonian ̃ =
∑

𝑖 ̇̃𝑞𝑖
𝜕̃
𝜕 ̇̃𝑞𝑖

− ̃. From Assumption 5.1.1
and the fact that ∗(𝒒̄(𝟎)

)

= 0 is a unique minimum follows that ̃ is positive
definite. Further, we have that

d
d𝑡
̃ = ̇̃𝒒T̄∗ = ̇̃𝒒T(̄′ −𝑣 ̇̃𝒒

)

. (6.60)

Hence, ̃ qualifies as the function 𝑉 . Let us take 𝑉 = ̃ and verify that
the conditions of LaSalle’s theorem are satisfied for the case ′ = 𝟎. The
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positive definiteness of 𝑉 w.r.t. (𝒒̃, ̇̃𝒒) guarantees the existence of a bounded
set Ω𝑐 =

{

(𝒒̃, ̇̃𝒒) ∈ ℝ2𝑛
|𝑉 (𝒒̃, ̇̃𝒒) ≤ 𝑐

} and we have that 𝑉̇ (𝒒̃, ̇̃𝒒) ≤ 0 in Ω𝑐 .
Thus, taking Ω = Ω𝑐 ensures that the first condition of LaSalle’s theorem is
met. To find 𝑆 =

{

(𝒒̃, ̇̃𝒒) ∈ ℝ2𝑛
|𝑉̇ (𝒒̃, ̇̃𝒒) = 0

}, note that 𝑉̇ = 0 ⇐⇒ ̇̃𝒒 = 𝟎.
Hence, 𝑆 =

{

(𝒒̃, ̇̃𝒒) ∈ ℝ2𝑛
|
̇̃𝒒 = 0

}. To determine the largest invariant set, 𝑀 ,
in 𝑆, let (𝒒̃(𝑡), ̇̃𝒒(𝑡)) be a solution that belongs identically to 𝑆:

̇̃𝒒(𝑡) ≡ 𝟎 ⇐⇒ ̈̃𝒒(𝑡) ≡ 𝟎 ⇐⇒
d
d𝑡
𝜕̃
𝜕 ̇̃𝒒

− 𝜕̃
𝜕𝒒̃

≡ 𝟎 ⇐⇒
𝜕∗

𝜕𝒒̃
≡ 𝟎 ⇐⇒ 𝒒̃ ≡ 𝟎,

(6.61)
where the last implication is due to Assumption 6.4.1. Hence the only solution
that can stay identically in 𝑆 is the trivial solution (𝒒̃, ̇̃𝒒) = (𝟎, 𝟎) and, thus,
the origin is asymptotically stable. Since the generalized coordinates 𝒒̃ and 𝒒̄
are in a one-to-one correspondence, we can conclude GAS of the equilibrium
point 𝒒̄ = 𝒒̄∗. Moreover, since the generalized coordinates 𝒒 and 𝒒̄, are in a
one-to-one correspondence (as pointed out in Lemma 5.3.1 and 5.4.1), we
can conclude GAS of the corresponding equilibrium point for Σ, which is
implicitly defined through the coordinate transforming equations, as shown in
Lemma 5.3.1 and 5.4.1. See proof of Proposition 6.2.1 for detailed argument
concerning the latter statement. This completes the proof of the first statement.

In the presence of a constant external force ̄′ =
(

̄′
𝑢, 𝟎

), the equilibrium
condition for the closed-loop system (6.59) is

𝜕∗

𝜕𝒒̄
= ̄′ ⇐⇒

𝜕∗

𝜕𝒒̄𝑎
= 𝟎 ⇐⇒ 𝒒̄𝑢 = 𝒒̄𝑎 ⇐⇒ 𝑝𝑢(𝒒̄𝑢 − 𝒒̄∗𝑢) = ′

𝑢 (6.62)

Applying the point transformation to (6.56)
𝒒̄𝑢 =𝒒̃𝑢 + 𝒒̄∗𝑢 +−1

𝑝𝑢
′
𝑢, (6.63)

𝒒̄𝑎 =𝒒̃𝑎 + 𝒒̄∗𝑎, (6.64)
shifts the coordinate origin such that at the equilibrium position 𝒒̃ = 𝟎. We
can now proceed mutatis mutandis to the stability argument above and show
global asymptotic stability of the new equilibrium point uniquely defined
by (6.62). How to complete the remaining proof is reported step-by-step in
Appendix B.

■

6.5 Choosing the “Right” Set of Coordinates
(Task Space Formulation)

For the design and analysis of control schemes it can be advantageous to
formulate the system dynamics in terms of generalized coordinates different
from 𝒒̄ [97]. Let 𝒙 = (𝑥1,… , 𝑥𝑛) be a set of generalized coordinates such that
we can express the 𝒒̄’s in terms of the 𝒙̄’s via the transforming equations

𝒒̄ = 𝒒̄(𝒙̄), (6.65)
which are assumed to be sufficiently smooth. Further, suppose that the virtual
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Figure 6.6: Canonical and non-canonical
transformations.
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𝑥 = 𝑱 (𝒒)−T′

displacements are related by the Jacobian 𝑱 (𝒒̄) in the form
𝛿𝒙̄ = 𝑱 (𝒒̄)𝛿𝒒̄, (6.66)

so that, using the invertibility of 𝑱 ,

𝛿𝑞𝑖 =
∑

𝑗

𝜕𝑞𝑖
𝜕𝑥̄𝑗

𝛿𝑥̄𝑗 =
∑

𝑗

(

𝑱−1)
𝑖𝑗𝛿𝑥̄𝑗 . (6.67)

Considering Corollary 2.5.6, the EL equations of Σ̄ transform under (6.65)
to

d
d𝑡
𝜕
𝜕 ̇̄𝑥𝑗

− 𝜕
𝜕𝑥̄𝑗

=
∑

𝑖

[

̄𝑖
𝜕𝑞𝑖
𝜕𝑥̄𝑗

]

. (6.68)

Introducing 𝒗̄ = 𝑱−T𝒖̄ and ̄𝑥 = 𝑱−T̄′, and using (6.67), we observe that
∑

𝑖

[

̄𝑖
𝜕𝑞𝑖
𝜕𝑥̄𝑗

]

= 𝑱−T̄ = 𝒗 + ̄𝑥, (6.69)

which allows us to rewrite (6.68) in vector form as

Σ̄𝑥 ∶
d
d𝑡

[

𝜕
𝜕 ̇̄𝒙

]T
−
[

𝜕
𝜕𝒙̄

]T
= 𝑱−T̄ = 𝒗 + ̄𝑥. (6.70)

Considering that both input signals 𝒖̄ and 𝒗̄, and both sets of coordinates 𝒒̄ and
𝒙̄ are in a one-to-one correspondence, and given that (6.70) are just regular
EL equations, the control developments in this chapter can be equally applied
considering the transformed system Σ̄𝑥 instead of Σ̄.

In some scenarios, it can be advantageous to transform from the 𝒒’s to some
new coordinates 𝒙’s first, and then apply the input and coordinate transforming
equations that produce the QFA form. This route will be exploited in Chapter 7
to solve the end effector motion tracking problem for ASR. The solution relies
on transforming the dynamics from the link and motor positions space to the
task and joint deflection space first, before transforming the model into its
QFA form.
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6.6 Conclusions

This chapter reported the adoption of popular energy-based control designs
through the QFA representation of the plant. The resulting designs share
the following characteristics: a physically intuitive and passive closed-loop
dynamics, aiming at minimizing the shaping of the plant dynamics.

The energy shaping and damping injection scheme by [178]

[178]: Takegaki et al. (1981), “A new feed-
back method for dynamic control of manip-
ulators”

was originally
designed for fully actuated systems, and the adoption through the QFA repre-
sentation allowed extending its range of application to a class of underactuated
EL systems. This comes at the price of new constraints on the achievable
potential functions and damping behavior (see also the discussion in Sec-
tion 6.2.2). It is worth remarking that Proposition 6.2.1 can be considered as
extension of Proposition 3.1 in [133]

[133]: Ortega (1998), Passivity-Based Con-
trol of Euler-Lagrange Systems: Mechani-
cal, Electrical, and Electromechanical Ap-
plications

, which summarizes the results on energy
shaping and damping injection by [178].

Furthermore, an extension to the EL controllers proposed by [137] was [137]: Ortega et al. (1994), “On passivity-
based output feedback global stabilization
of Euler-Lagrange systems”presented. The new approach allows more freedom in specifying the potential

energy of the controller. It should be remarked, however, that Theorem 3.1 in
[137] applies to a more general class of EL systems compared to the proposed
extension in Proposition 6.3.1. In particular Assumption 5.1.1 and 5.1.2 are
not required in the original formulation.

An interesting aspect of the presented concepts is the fact they impose no
limitations on the controller gains. In particular, the closed-loop stiffness of an
ASR can be increased above the system’s intrinsic stiffness, as demonstrated
in Experiment 3 reported in Chapter 11. In practice, however, limits are to be
faced due to finite actuation forces, signal delays, sensor quantization, non-
modeled dynamics, and so forth. The performance limits imposed by bounds
on the available actuator torques are discussed in Chapter 9 on the basis of an
ASR implemented with SEAs.
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To understand is to know what to do.

— Ludwig Wittgenstein

The desire for robust and high performance from ASR spurred the development
of the Elastic Structure Preserving (ESP) control framework. The procedure
stabilizes ASRs while shaping the intrinsic dynamics only to a minimal extent.
In particular, ESP-based designs preserve the EL structure of the plant. The
ESP control concept was first introduced in [89] and inspired a series of follow-
up developments [60, 77, 86, 89–91, 94, 114, 115]

[60]: Harder et al. (2022), “Simultaneous
motion tracking and joint stiffness control of
bidirectional antagonistic variable-stiffness
actuators”
[77]: Iskandar et al. (2020), “Joint-level con-
trol of the DLR lightweight robot SARA”
[86]: Keppler et al. (2018), “Elastic struc-
ture preserving (ESP) control for compli-
antly actuated robots”
[89]: Keppler et al. (2016), “A passivity-
based approach for trajectory tracking and
link-side damping of compliantly actuated
robots”
[90]: Keppler et al. (2016), “A passivity-
based controller for motion tracking and
damping assignment for compliantly actu-
ated robots”
[91]: Keppler et al. (2021), “Analyzing the
performance limits of articulated soft robots
based on the ESPi framework: Applications
to damping and impedance control”
[94]: Keppler et al. (2018), “Visco-elastic
structure preserving impedance (VESPi)
control for compliantly actuated robots”
[114]: Meng et al. (2021), “Elastic struc-
ture preserving impedance control of bidi-
rectional antagonistic variable stiffness ac-
tuation”
[115]: Mengacci et al. (2021), “Elastic
Structure Preserving control for compliant
robots driven by agonistic-antagonistic ac-
tuators (ESPaa)”

. This chapter demonstrates
the application of the QFA formulation from Chapter 5 to re-derive the ESP
controllers [86, 89–91, 94] in a unifying way. Using Theorem 5.6.1, is will be
shown that the aforementioned control designs can be obtained by adjusting
only the actuated subsystem Lagrangian of the QFA system.

The chapter is organized as follows. We start with a brief recapitulation
of the considered ASR model. Section 7.2 presents solutions to the joint/task
space set-point regulation and motion tracking problems for monoarticular
ASRs; the latter is solved by adopting rigid body controllers (namely, the
Slotine & Li and PD+ controllers) through the QFA formulation. Section 7.3
reports the application of the ESP concept to multiarticular ASRs. Section 7.4
applies the ESP design idea to robots with visco-elastic actuators. The proofs
of the main stability and passivity results are presented in Section 7.5. Experi-
ments highlighting the performance and viability of the presented concepts
are reported in Chapter 11.

7.1 Recent Developments

To put the developments of this chapter into perspective, the following section
summarizes recent ESP control developments and discusses the underlying
motivations. An in-depth comparison with state of the art concepts is provided
in Chapter 8. In order to increase the mechanical robustness against impacts
and unknown contact forces, robot design has evolved from rigid toward
compliant actuators. While mechanical compliance provides many benefits it
also comes at a price:

(C1) The plant dynamics is underactuated as the number of dimensions of
the configuration space is greater than the number of dimensions of
the control input space.

(C2) To improve energy storing capabilities and efficiency in general, com-
pliant actuators are often designed such that damping and friction
in parallel to the spring is negligible. The intrinsic oscillatory dy-
namics can be exploited for cyclic tasks like locomotion, hammering,
or drumming, etc. For positioning tasks, however, unwanted oscilla-
tions must be addressed by suitable control to achieve a positioning
performance that can compete with that of a rigid manipulator.
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Moreover, many variable stiffness robots feature nonlinear elasticities. These
issues make control of the link configuration variables a challenging task.

Regulation controllers for the link configuration variables of flexible joint
robots have been proposed in [134, 141, 183, 196]

[134]: Ortega et al. (1995), “A semiglobally
stable output feedback PI2D regulator for
robot manipulators”
[141]: Ott et al. (2004), “A passivity based
cartesian impedance controller for flexible
joint robots-part I: Torque feedback and
gravity compensation”
[183]: Tomei (1991), “A simple PD con-
troller for robots with elastic joints”
[196]: Zollo et al. (2004), “Regulation with
on-line gravity compensation for robots
with elastic joints”

and a generalization to the
case of nonlinear joint elasticities (often appearing in variable stiffness actua-
tors (VSA) [190]

[190]: Vanderborght et al. (2013), “Variable
impedance actuators: A review”

) has been proposed in [7]

[7]: Albu-Schäffer et al. (2012), “Construc-
tive energy shaping control for a class of
Euler-Lagrange Systems”

. The above controllers consider
feedback of only control-input-collocated variables. Therefore, the damp-
ing performance of these approaches is lower compared to the regulation
controllers reported in [5, 147, 158]

[5]: Albu-Schäffer et al. (2001), “A globally
stable state feedback controller for flexible
joint robots”
[147]: Petit et al. (2011), “State feedback
damping control for A multi DOF variable
stiffness robot arm”
[158]: Sardellitti et al. (2013), “Gain
scheduling control for a class of variable
stiffness actuators based on lever mecha-
nisms”

, which feedback also control input non-
collocated variables. While [5] provides a comprehensive stability analysis
for constant controller gains, the closed-loop dynamics of [147] and [158] are
not accompanied by a rigorous stability proof.

Tracking controllers for the link configuration variables of robots with
elastic transmissions are reported in the pioneering works [107, 127, 168]

[107]: Loria et al. (1995), “On tracking con-
trol of rigid and flexible joints robots”
[127]: Nicosia et al. (1993), “Design of
global tracking controllers for flexible-joint
robots”
[168]: Spong (1987), “Modeling and con-
trol of elastic joint robots”

.
Further solutions to the tracking problem have been reported that are based
on cascaded structures [139]

[139]: Ott et al. (2003), “Decoupling based
Cartesian impedance control of flexible
joint robots”

, integrator backstepping [129, 140]

[129]: Oh et al. (1999), “Control of flexible
joint robot system by backstepping design
approach”
[140]: Ott (2008), Cartesian Impedance
Control of Redundant and Flexible-Joint
Robots

extensions
of the well-known controller by Slotine and Weiping [165, 169]

[165]: Slotine et al. (1988), “Adaptive ma-
nipulator control: A case study”
[169]: Spong (1989), “Adaptive control of
flexible joint manipulators”

, feedback
linearization [31, 145, 168]

[31]: De Luca et al. (1998), “A general al-
gorithm for dynamic feedback linearization
of robots with elastic joints”
[145]: Palli et al. (2008), “On the feedback
linearization of robots with variable joint
stiffness”
[168]: Spong (1987), “Modeling and con-
trol of elastic joint robots”

, and integral manifold control [168]. All of the
tracking controllers above, [31, 107, 127, 129, 139, 140, 165, 168], are for-
mulated for linear elasticities with one exception: The method of [145] also
applies to robots with nonlinear elasticities. Most of the tracking controllers
above have been verified only in computer simulations.

Motivation Triggered by the following observations:
(O1) Motor vibration damping, in combination with joint torque feedback,

showed good performance on robots with rather stiff joints [6, 142,
183], but it is not sufficient to achieve well-damped links of highly
elastic ASRs such as DLR David; see also Video 2.

(O2) A lack of robustness intrinsic with schemes based on canceling non-
linearities [19]

[19]: Brogliato et al. (1995), “Global track-
ing controllers for Flexible-joint manipula-
tors: a comparative study”

.
(O3) The higher the joint compliance the lower joint torque control band-

width compared to that of a rigid robot [91, 153]

[91]: Keppler et al. (2021), “Analyzing the
performance limits of articulated soft robots
based on the ESPi framework: Applications
to damping and impedance control”
[153]: Pratt et al. (1995), “Series elastic ac-
tuators”

.
(O4) Singular perturbation-based approaches are theoretically and practi-

cally limited to systems with high joint stiffness values; this renders
them unsuitable for ASRs [6].

(O5) Extensive hands-on experience on DLR David indicates that control
approaches changing its dynamics to a “high” degree are prone to
suffer from instability in practice—albeit being theoretically sound.

We initiated a series of control developments [86, 89, 90]—coined Elastic
Structure Preserving (ESP) control. The primary objective was to develop a
control scheme that simultaneously achieves motion tracking and a desired
damping/compliance behavior in terms of the link configuration variables.
Moreover it should be theoretically well founded (uniform global asymptotic
stability), practically feasible and achieving satisfactory performance in prac-
tice. The development was guided by the design principles stated in Chapter 6
(see Fig. 6.2) combined with a fourth design principle: inject link-side damping
to deal with (C2). The design principles, as summarized in Fig. 7.2, originated
from the observations above and reflect the core philosophy of the ESP control
are summarized in Fig. 7.1. Their choice is further motivated below:
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Structure Preservation

Passive Design

Intuitive Closed Loop

Pervasive Damping

ESPControl

P1

P2

P3

P4 Figure 7.1: Design procedure to obtain a
QFA form.

(O1)

(O2)
(P1)

(O3)

(O4)

(O5)

(P2)

(P3)

(P4)

Figure 7.2: Relations between observations
(O1)–(O5) and (P1)–(P4).

(P1) The goal is to achieve natural motions in the sense of [98], with the [98]: Koditschek (1984), “Natural motion
for robot arms”underlying hope that minimizing the system shaping, and having a

closed-loop dynamics match in some way the intrinsic structure of the
robot will award high performance with little control effort. Further,
control designs that minimize the system shaping usually result in
low gain designs, which is favorable with regard to robustness.

(P2) Passivity Based Control (PBC) is a structure preserving design ap-
proach which handles nonlinearities in a natural way. It is known for
originating robust controllers. Moreover, the storage function often
qualifies as Lyapunov function.

(P3) A physically intuitive closed-loop dynamics allows the operator to
anticipate the interaction behavior of the robot with the environment.
This is of immense value during the design and tuning phase. More-
over, control gains that are physically interpretable in terms of springs
of dampers allows taking the limited joint torque control bandwidth
into account during the design stage. Roughly speaking, it can be ex-
pected that imposing a link stiffness significantly above the intrinsic
one requires high control actions.

(P4) The feedback of the control input noncollocated link variables enables
good link-side damping performance. Achieving a closed-loop system
that is output strictly passively (OSP) is desirable from the robustness
point of view, since OSP implies L2-gain stability [188]

[188]: van der Schaft (1999), L2-Gain and
Passivity in Nonlinear Control

.

Recent Developments The ESP concept was first introduced in [89]

[89]: Keppler et al. (2016), “A passivity-
based approach for trajectory tracking and
link-side damping of compliantly actuated
robots”

. The
work [90]

[90]: Keppler et al. (2016), “A passivity-
based controller for motion tracking and
damping assignment for compliantly actu-
ated robots”

extended the concept to avoiding the scaling of the motor inertia
to constant values in the new coordinates, which is a non passive control
action for itself. We refer to this approach as ESP+ control. Both designs
result in a passive closed loop and solve the joint-space global asymptotic
tracking problem. A comparison and an extensive passivity and stability anal-
ysis is reported in [86]

[86]: Keppler et al. (2018), “Elastic struc-
ture preserving (ESP) control for compli-
antly actuated robots”

. In [92]

[92]: Keppler et al. (2018), “Elastic struc-
ture preserving impedance (ESPi) control
for compliantly actuated robots”

, we extended the ESP approach from link side
damping to full Cartesian impedance control (referred to as ESPi control).
The ESP design reported in [77]

[77]: Iskandar et al. (2020), “Joint-level con-
trol of the DLR lightweight robot SARA”

achieves damping in parallel to the joint
spring. The resulting full state feedback controller uses link positions and joint
torques, and the associated time-derivatives, as states to solve the output regu-
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lation problem; thereby, it exploit the high torque sensing resolution of recent
lightweight robots. Later developments [114, 115] treated the application of[114]: Meng et al. (2021), “Elastic struc-

ture preserving impedance control of bidi-
rectional antagonistic variable stiffness ac-
tuation”
[115]: Mengacci et al. (2021), “Elastic
Structure Preserving control for compliant
robots driven by agonistic-antagonistic ac-
tuators (ESPaa)”

the ESP concept to agonistic-antagonistic actuators to solve the global output
regulation problem, while simultaneously allowing to adjust the passive joint
stiffness through co-contraction. The work [151] treats the extension to tendon

[151]: Pollayil et al. (2021), “Elastic struc-
ture preserving impedance controlfor non-
linearly coupled tendon-driven systems”

driven systems and reports novel constraint equations for the coordinates
transformation into virtual coordinates. The design in [60] achieves simulta-

[60]: Harder et al. (2022), “Simultaneous
motion tracking and joint stiffness control of
bidirectional antagonistic variable-stiffness
actuators”

neous motion tracking and joint stiffness control on bidirectional antagonistic
variable-stiffness actuators. Finally, we address robust stabilization of ASRs
by combining ESP and PID control in [88]. A key feature of the controller is
that it combines excellent positioning accuracy in free motion with compli-
ant manipulation in contact with the environment. The experimental results
highlight that elastic robots may achieve a positioning accuracy comparable
to rigid joint robots.

The works most closely related to ESP control are [32, 33, 140]. The[32]: De Luca et al. (2011), “A PD-type reg-
ulator with exact gravity cancellation for
robots with flexible joints”
[33]: De Luca et al. (2010), “Dynamic grav-
ity cancellation in robots with flexible trans-
missions”
[140]: Ott (2008), Cartesian Impedance
Control of Redundant and Flexible-Joint
Robots

former two use the equivalence principle [76] to derive control laws that

[76]: Isidori (1995), Nonlinear Control Sys-
tems

combine gravity cancellation with motor-side PD terms to achieve set-point
regulation. Similarly to the ESP approaches [86, 89, 90], the PD terms are

[86]: Keppler et al. (2018), “Elastic struc-
ture preserving (ESP) control for compli-
antly actuated robots”
[89]: Keppler et al. (2016), “A passivity-
based approach for trajectory tracking and
link-side damping of compliantly actuated
robots”
[90]: Keppler et al. (2016), “A passivity-
based controller for motion tracking and
damping assignment for compliantly actu-
ated robots”

formulated in terms of new motor coordinates that encode the desired link-
side modifications. Interestingly, using the QFA representation of the Spong’s
model to cancel the effect of gravity and add motor-side regulation terms
produces controllers equal to [32, 33] and (7.98)–(7.100) in [140]. The works
[6, 142] report passivity based control designs that aim at preserving the

[6]: Albu-Schäffer et al. (2007), “A Unified
Passivity-based control framework for posi-
tion, torque and impedance control of flexi-
ble joint robots”
[142]: Ott et al. (2008), “On the passivity-
based impedance control of flexible joint
robots”

intrinsic compliant dynamics. However, in contrast to the ESP concept, these
designs do now allow for direct link-side damping and exact cancellation of
gravity.

In the following, we shall use the following abbreviations:
• ESP: inject link-side damping to suppress link vibrations away from the

reference trajectory.
• ESPi: impose a link compliance behavior to adjust the interaction be-

havior and the convergence rate towards the reference trajectory.

7.1.1 Model Recapitulation

For ease of reference, we recall from (3.24) in Chapter 3 that the simplified
model of an 𝑛-link ASR is determined by its kinetic and potential energies

 (𝒒, 𝒒̇) = 1
2 𝒒̇

T𝒒̇, (7.1)
(𝒒) =𝑔(𝒒𝑢) + 𝑒(𝒒), (7.2)

with
(𝒒𝑢) = diag

(

𝑴(𝒒𝑢),𝑩
)

. (7.3)
The associated EL equations are

Σ∶ (𝒒𝑢)𝒒̈ + (𝒒𝑢, 𝒒̇𝑢)𝒒̇𝑢 +
[

𝜕
𝜕𝒒

]T
= 𝒖 +′. (7.4)

For the developments of this chapter, we shall assume that the elastic potential
function 𝑒 satisfies Assumption 5.1.2 such that (7.4) can be transformed



7.2 Monoarticular Articulated Soft Robots 133

into its QFA form. The following structural properties regarding the QFA
representation of (7.4) are most relevant for the control developments of the
present chapter:

Property 4. Suppose that 𝒖̄𝑢 satisfies the conditions of either Theorem 5.3.6,
5.4.2, or 5.6.1. Then, we can treat the QFA representation of (7.4) as if there
is an independent control input for each degree of freedom.

Property 5. The QFA representation of (7.4) defines a passive mapping
𝒖̄ → ̇̄𝒒 between the virtual input forces and the link velocities.

Property 6. The matrix ̇(𝒒̄)−2(𝒒̄, ̇̄𝒒) is skew symmetric for any 𝒒, 𝒒̇ ∈ ℝ𝑛.

In addition to Assumption 5.1.1 the following is assumed for the inertia
matrix.

Assumption 7.1.1 The maximum singular value of  is bounded.

Task Coordinates

The goal of Cartesian impedance control is to establish a desired relationship
between the motion of the robot’s end effector and the external forces. Let
𝒙 = 𝑥1,… , 𝑥𝑛𝑢 be a set of independent task coordinates for a non-redundant
robot. Suppose that we can transform from the link configuration coordinates
𝒒 = 𝑞1,… , 𝑞𝑛𝑢 to the task coordinates by means of transforming equations of
the form

𝑥𝑢𝑖 = ℎ𝑢𝑖(𝒒𝑢), 𝑖 = 1,… , 𝑛𝑢. (7.5)
It is always assumed that we can transform back from the 𝒙𝑢 to the 𝒒𝑢. Invert-
ibility of the functions ℎ𝑖 means that the Jacobian of the transformation

𝑱 𝑢(𝒒𝑢) =
𝜕𝒙𝑢
𝜕𝒒𝑢

, (7.6)

is nonsingular. Assume further that the ℎ𝑖 are at least three times contin-
uously differentiable functions, because link jerks will lead to third order
derivatives. In conclusion, by employing appropriate singularity avoidance
strategies, we can use 𝒒𝑢 and 𝒙𝑢 as equivalent representations of the link-side
configuration.

7.2 Monoarticular Articulated Soft Robots

This section focuses on ASRs driven by monoarticular actuators, i.e. where
each motor drives a single link such that we have an equal number of actuated
and unactuated coordinates (𝑛𝑢 = 𝑛𝑎 = 𝑛∕2). Let us assume that the potential
energy of an ASR is given by

(𝒒) = 𝑔(𝒒𝑢) + 𝑒(𝝋) = 𝑔(𝒒𝑢) +
∑

𝑖
𝑒𝑖(𝜑𝑖), 𝑖 = 1,… 𝑛, (7.7)
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Figure 7.3: A valid generalized elastic force
deflection profile.

𝜕𝑒𝑖
𝜕𝜑̄𝑖

𝜑̄𝑖

𝜕𝑒𝑖
𝜕𝜑̄𝑖

where 𝜑𝑖 is the 𝑖th component of the vector of joint deflections
𝝋 ≜ 𝒒𝑎 − 𝒒𝑢. (7.8)

The functions 𝑔 and 𝑒 denote the potential energies due to the gravitational
and elastic forces, with the component 𝑒𝑖 being the elastic potential energy
of the 𝑖th joint, which satisfies the two assumptions below.

Assumption 7.2.1 The elastic potential functions 𝑒𝑖(𝜑) ∈ 𝑘, 𝑘 ≥ 3, are
strongly convex, radially unbounded, and positive definite for all 𝜑𝑖 ∈ ℝ𝑛,
i.e. 𝑖(𝜑𝑖) = 0 ⇐⇒ 𝜑𝑖 = 0.

Assumption 7.2.2 The components 𝜓𝑖 of the generalized elastic force 𝝍
are determined by

𝜓𝑖(𝜑𝑖) =
𝜕𝑒𝑖
𝜕𝜑𝑖

. (7.9)

The strong convexity of 𝑒𝑖 ensures the existence of constants 𝑐𝑖 > 0 such
that

𝜕2𝑒𝑖
𝜕𝜑2

𝑖

=
𝜕𝜓𝑖
𝜕𝜑𝑖

> 𝑐𝑖, 𝑖 = 1,… 𝑛∕2. (7.10)

In other words, 𝜓𝑖 is strictly monotonic increasing in its argument with a slope
strictly greater than zero as visualized in Fig. 7.3. We conclude that 𝜓𝑖 is
a 𝑘−1, 𝑘 ≥ 3, diffeomorphism from the the set of joint deflections to the
generalized elastic forces. Considering Assumption 7.2.2, we observe that the
generalized elastic forces in (7.4) are of the form

𝜕𝑒
𝜕𝒒

=
[

𝜕𝑒
𝜕𝒒𝑢

,
𝜕𝑒
𝜕𝒒𝑎

]

=
[

−
𝜕𝑒
𝜕𝝋

,
𝜕𝑒
𝜕𝝋

]

=
[

𝝍(𝝋),−𝝍(𝝋)
]

, (7.11)
𝜕𝑔
𝜕𝒒

=
[𝜕𝑔
𝜕𝒒𝑢

, 𝟎
]

. (7.12)

Introducing

𝚿(𝝋) =
[

𝜕𝑒
𝜕𝒒

]T
, 𝒈(𝒒𝑢) =

[𝜕𝑔
𝜕𝒒

]T
, (7.13)

we can rewrite (7.4) as
Σ∶ (𝒒𝑢)𝒒̈ + (𝒒𝑢, 𝒒̇𝑢) + 𝒈(𝒒𝑢) +𝚿(𝝋) = 𝒖. (7.14)



7.2 Monoarticular Articulated Soft Robots 135

7.2.1 A Quasi-Fully Actuated Representation

Let us use Theorem 5.3.6 to transform the ASR model defined above into its
equivalent QFA form. First, however, we have to check whether the model
satisfies Assumption 5.1.1 and 5.1.2. From (7.1)–(7.3), we see that the former
one is trivially satisfied. Knowing that

𝜕𝝋
𝜕𝒒𝑎

= −
𝜕𝝋
𝜕𝒒𝑢

= 𝑰 , (7.15)
𝜕𝑒
𝜕𝒒𝑢

=
𝜕𝑒
𝜕𝝋

𝜕𝝋
𝜕𝒒𝑢

= −
𝜕𝑒
𝜕𝝋

, (7.16)
𝜕𝑎
𝜕𝒒𝑢

= − 𝜕
𝜕𝒒𝑢

= − 𝜕
𝜕𝒒𝑢

(

𝑔 + 𝑒
)

= −
𝜕𝑔
𝜕𝒒𝑢

+
𝜕𝑒
𝜕𝝋

, (7.17)
𝜕2𝑎
𝜕𝒒𝑎𝜕𝒒𝑢

= 𝜕
𝜕𝒒𝑎

𝜕𝑒
𝜕𝝋

=
𝜕2𝑒
𝜕𝝋2

𝜕𝝋
𝜕𝒒𝑎

=
𝜕2𝑒
𝜕𝝋2

(7.18)

and using (7.7), it follows that
𝜕2𝑎
𝜕𝒒𝑎𝜕𝒒𝑢

= diag

(

𝜕2𝑒1
𝜕𝜑2

1

,… ,
𝜕2𝑒𝑛
𝜕𝜑2

𝑛

)

. (7.19)

From (7.10) and (7.19), we can conclude that Assumption 5.1.2 is satisfied
as well. Since the conditions of Theorem 5.3.6 are met, we can proceed with
applying the coordinate and input transformations (5.29) and (5.57) to obtain
the QFA representation of (7.4):

Σ̄∶ d
d𝑡
𝜕
𝜕 ̇̄𝒒

− 𝜕
𝜕𝒒̄

= ̄, (7.20)

or equivalently in matrix form

Σ̄∶ (𝒒̄𝑢) ̈̄𝒒 + (𝒒̄𝑢, ̇̄𝒒𝑢) +
[

𝜕
𝜕𝒒̄

]T
= ̄, (7.21)

with ̄ = 𝒖̄ + ̄′. Introducing
𝝋̄ = 𝒒̄𝑎 − 𝒒̄𝑢, (7.22)

and using (7.17), we get for the transforming equations (5.29a)–(5.29b)
[

𝜕𝑒
𝜕𝝋

]

𝑞
−
[

𝜕𝑒
𝜕𝝋̄

]

𝑞
− 𝒖̄𝑢 =𝟎, (7.23)

𝒒𝑢 − 𝒒̄𝑢 =𝟎. (7.24)
Using (7.9), (7.23) can be written compactly as

𝝍(𝝋) = 𝝍(𝝋̄) + 𝒖̄𝑢. (7.25)
Evaluating the definitions (5.52), (5.53)–(5.56), we get

𝜕𝑎
𝜕𝒒𝑎

= −
𝜕𝑒
𝜕𝝋

𝜕𝝋
𝜕𝒒𝑎

= −
𝜕𝑒
𝜕𝝋

, (7.26)
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𝑿 = −
𝜕2𝑔
𝜕𝒒2𝑢

−
𝜕2𝑒
𝜕𝝋2

, (7.27)

𝒀 =
𝜕2𝑒
𝜕𝝋2

, (7.28)

𝑨 =
[

𝜕2𝑒
𝜕𝝋2

]−1

𝑞

[

𝜕2𝑒
𝜕𝝋̄2

]

𝑞
, (7.29)

𝑹 =𝑨−1, (7.30)

𝝁1 =
(

𝑰 −𝑨
) ̇̄𝒒𝑢 +

[

𝜕2𝑒
𝜕𝝋2

]−1

𝑞
̇̄𝒖𝑢, (7.31)

𝝁𝑎 =𝑩
(

𝑨̇ ̇̄𝒒𝑎 + 𝝁̇1
)

. (7.32)
Deriving (7.23)–(7.24) with respect to time gives a relation between the two
sets of velocities

𝒒̇ =
[

𝑨 𝟎
𝟎 𝑰

]

̇̄𝒒 +
[

𝝁1
𝟎

]

. (7.33)

Using (7.9) and (7.26)–(7.32), the input transforming equations, (5.57), eval-
uate to

𝒖𝑎 =𝝁𝑎 + 𝝍(𝝋) +𝑨
[

𝒖̄𝑎 − 𝝍(𝝋̄)
]

. (7.34)
Theorem 5.3.6 guarantees that we can always express the 𝒒̄’s in terms of the
𝒒̄’s. Thus, we may equivalently express the 𝝋̄’s in terms of the 𝝋’s such that

𝑨(𝝋, 𝝋̄) = 𝑨
(

𝝋, 𝝋̄(𝝋)
)

. (7.35)
Using (7.25), (7.33), (7.32) and (7.35), we can write the input transforma-
tion, (7.34), purely in terms of the measurable coordinates, 𝒒, and the virtual
inputs

𝒖 =𝑩
{

𝑨̇
[

𝑨−1(𝒒̇𝑎 − 𝝁1)
]

+ 𝝁̇1
}

+ (𝑰 −𝑨)𝝍(𝝋) +𝑨
[

𝒖̄𝑎 + 𝒖̄𝑢
]

. (7.36)

The transforming process is summarized in Fig. 7.4.

The Special Case of Linear Springs

For monoarticular ASRs with linear elastic elements the transforming equa-
tions simplify significantly. Let 𝑘𝑖 > 0 be the joint stiffness of the 𝑖th joint.
Then, the elastic potential energy and its associated forces are given by

𝑲 =diag(𝑘1,… , 𝑘𝑛𝑢 ), (7.37)
𝑒 =

1
2𝝋

T𝑲𝝋, (7.38)
𝝍 =𝑲𝝋. (7.39)

The coordinate and input transforming equations (7.23) and (7.36) simplify
to

𝒒𝑎 =𝒒̄𝑎 +𝑲−1𝒖̄𝑢, (7.40)
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Figure 7.4: Open loop: through the input and coordinate transforming equations (ICT), the ASR can be treated as quasi-fully actuated. Closed-loop:
the QFA form enables a straightforward adoption of rigid joint controllers.
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and
𝒖 = 𝑩𝑲−1 ̈̄𝒖𝑢 + 𝒖̄𝑢 + 𝒖̄𝑎. (7.41)

Task Space Formulation

An elegant solution to the task space regulation and motion tracking problems
can be found by introducing a point transformation for the QFA model (7.20)
that separates the moving forces into rigid robot (gravitational) and elastic
forces. Let us switch from the generalized link and motor coordinates, 𝒒̄, to
the new set of coordinates

𝒙̄ = (𝒙̄𝑢, 𝒙̄𝑎) = (𝑥̄1,… , 𝑥̄𝑛∕2, 𝑥̄𝑛∕2+1,… , 𝑥̄𝑛) (7.42)
where 𝒙̄𝑢 and 𝒙̄𝑎 denote the task and virtual joint deflections coordinates,
respectively, such that

𝒙̄𝑢 = 𝒉𝑢(𝒒̄𝑢), 𝒙̄𝑎 = 𝝋̄ = 𝒒̄𝑎 − 𝒒̄𝑢. (7.43)
Applying (7.43) to the potential energy  , (7.7),


(

𝒒̄(𝒙̄)
)

= 𝑒(𝒙̄𝑎) + 𝑔
(

𝒉−1𝑢 (𝒙̄𝑢)
)

, (7.44)
we see the desired separation into rigid robot (gravitational) and elastic po-
tential energies. Moreover, the transformed elastic potential function 𝑒 has
the crucial properties that it has a unique minimum at 𝒙̄𝑎 = 𝟎, which is conve-
nient for applying classic stability results, since they are usually concerned
with the stabilization of the origin. Considering the invertibility of 𝑱 𝑢 and
observing that 𝜕𝒙𝑢∕𝜕𝒒𝑢 = 𝜕𝒙̄𝑢∕𝜕𝒒̄𝑢, it is easy to see that the Jacobian of the
transformation (7.43),

𝑱 = 𝜕𝒙̄
𝜕𝒒̄

=
[

𝑱 𝑢 𝟎
−𝑰 𝑰

]

, (7.45)

is non singular. From the properties of task space coordinates reported in
Section 7.1.1, we can further conclude the existence of the inverse coordinate
transformation. Applying the point transformation (7.43) to Σ̄, (7.20), give (as
pointed out in Section 6.5)

Σ̄𝑥 ∶
d
d𝑡
𝜕
𝜕 ̇̄𝒙

− 𝜕
𝜕𝒙̄

= ̄𝑥, (7.46)

or—equivalently—using the transformation rules from Section 2.5.6

Σ̄𝑥 ∶ 𝑥 ̈̄𝒙 + 𝑥 ̇̄𝒙 + 𝑱−T
[

𝜕
𝜕𝒒̄

]T
= ̄𝑥, (7.47)

where all terms are according to the definitions in Section 6.5

𝑥 =
[

𝑱−T(𝒒𝑢)
[

𝑴(𝒒𝑢) + 𝑩
]

𝑱−1(𝒒𝑢) 𝑱−T(𝒒𝑢)𝑩
𝑩𝑱−1(𝒒𝑢) 𝑩

]

(7.48)

𝑥 =

[

𝑱−T
𝑢 (𝒒𝑢)

[

𝑴(𝒒𝑢) + 𝑩
] ̇𝑱 𝑢

−1(𝒒𝑢) + 𝑱−T
𝑢 (𝒒𝑢)𝑪(𝒒𝑢, 𝒒̇𝑢)𝑱−1

𝑢 (𝒒𝑢) 𝟎
𝑩 ̇𝑱 𝑢

−1 𝟎

]

.

(7.49)
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In these expressions, we can identify the transformed rigid robot inertia and
Coriolis/centrifugal matrices

𝑴𝑥 =𝑱−T
𝑢 (𝒒𝑢)𝑴(𝒒𝑢)𝑱−1

𝑢 (7.50)
𝑪𝑥 =𝑱−T(𝒒𝑢)𝑴(𝒒𝑢) ̇𝑱 𝑢

−1(𝒒𝑢) + 𝑱−T
𝑢 (𝒒𝑢)𝑪(𝒒𝑢, 𝒒̇𝑢)𝑱−1

𝑢 (𝒒𝑢). (7.51)
For the covariantly transforming generalized forces, we get

𝑱−T
[

𝜕
𝜕𝒒̄

]T
=
[

𝑱−T
𝑢 𝑱−T

𝑢
𝟎 𝑰

] [

𝜕
𝜕𝒒̄

]T
=
⎡

⎢

⎢

⎣

𝑱−T
𝑢

𝜕𝑔
𝜕𝒒̄𝑢

𝜕𝑒
𝜕𝝋̄

⎤

⎥

⎥

⎦

(7.52)

̄𝑥 =𝑱−T̄. (7.53)
From (7.52), we see that the potential forces are indeed split as desired. For
later developments, it is convenient to introduce symbols for the components
of (7.53)

𝒗 =𝑱−T𝒖̄, ̄′
𝑥 = 𝑱

−T̄′. (7.54)
such that ̄𝑥 = 𝒗 + ̄′

𝑥.

7.2.2 Joint Space Regulation

Suppose that the control objective is to stabilize the considered ASR model at a
constant equilibrium such that the outputs 𝒒𝑢 approach a constant desired value
𝒒∗𝑢 for 𝑡 → ∞. Let solve this problem using Proposition 6.2.1. Knowing that a
minimum of the potential energy corresponds to a stable equilibrium point,
let us choose a closed-loop potential energy function ∗ with a unique global
minimum at the desired position. In the following, two natural candidates are
presented. First, we can cancel the effect of the gravity potential 𝑔(𝒒̄𝑢) and
replace it with a radially unbounded potential function in 𝒒̄𝑢 that has a unique
minimum at 𝒒∗𝑢 . Second, we can dominate the effect of the gravity potential
[178, 183]. It is widely believed that dominating instead of canceling nonlinear [178]: Takegaki et al. (1981), “A new feed-

back method for dynamic control of manip-
ulators”
[183]: Tomei (1991), “A simple PD con-
troller for robots with elastic joints”

terms enhances robustness of the system vis-à-vis uncertainties [133].

[133]: Ortega (1998), Passivity-Based Con-
trol of Euler-Lagrange Systems: Mechani-
cal, Electrical, and Electromechanical Ap-
plications

Let 𝒒̃ = 𝒒̄ − 𝒒̄∗, with 𝒒∗ = (𝒒∗𝑢 , 𝒒
∗
𝑎) and 𝒒∗𝑢 = 𝒒∗𝑎, be the control error.

Then, a desired potential energy function for the first option may be of the
form

∗(𝒒̄) = 𝑒(𝒒̄𝑎 − 𝒒̄𝑢) +
1
2 𝒒̃

T𝑝𝒒̃, (7.55)

where 𝑝 = T
𝑝 = diag(𝑲𝑝𝑢,𝑲𝑝𝑎) ≻ 0. It is straightforward to see that ∗

has an unique global minimum at 𝒒̃ = 𝟎 and that it is radially unbounded
with respect to 𝒒̃. Hence, ∗ satisfies condition (ii) of Proposition 6.2.1. To
render the equilibrium asymptotically stable, let us inject pervasive damping.
Choosing the controller

𝒖̄ = −
[

𝜕
𝜕𝒒̄

{

∗(𝒒̄) − (𝒒̄)
}

]T
−𝑣 ̇̄𝒒 = 𝒈(𝒒𝑢) −𝑝𝒒̃ −𝑣 ̇̄𝒒, (7.56)

where 𝑣 = diag(𝑲𝑣𝑢,𝑲𝑣𝑎) ≻ 0, renders the equilibrium point 𝒒̃ = 𝟎 globally
asymptotic stability, which follows directly from invoking Proposition 6.2.1.
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Regarding the second option, we can choose a desired potential energy
function of the form [88][88]: Keppler et al. (2022), “From underac-

tuation to quasi-full actuation: Aiming at a
unifying control framework for articulated
soft robots” ∗ = (𝒒̄) − (𝒒∗) −

[

𝜕
𝜕𝒒̄

(𝒒∗)
]

(𝒒̄ − 𝒒∗) + 1
2 𝒒̃

T𝑃 𝒒̃, (7.57)

where 𝑝 is a positive definite and symmetric matrix that can be chosen such
that ∗ becomes a strictly convex function and has a global unique mini-
mum ∗(𝒒̄) = 0 at 𝒒̃ = 𝟎. The proof of this statement can be found in [178].[178]: Takegaki et al. (1981), “A new feed-

back method for dynamic control of manip-
ulators” Combining (7.56) with (7.57) globally asymptotically stabilizes the equilib-

rium point 𝒒̃ = 𝟎, which follows directly from invoking Proposition 6.2.1.
It is straightforward to verify that the resulting control signal satisfies the
conditions of Theorem 5.3.6.

7.2.3 Task Space Regulation

Consider the problem of stabilizing an ASR at a constant equilibrium such
that the outputs 𝒙𝑢 approach a constant desired value 𝒙∗𝑢 for 𝑡 → ∞. Knowing
that a minimum of the potential energy corresponds to a stable equilibrium
point, let us choose a closed-loop potential energy function ∗ that has a
unique global minimum at the desired position. To solve this problem, we
shall make use of Theorem 6.2.1 and the transformation properties of the
EL equations reported in Section 6.5. An elegant solution can be found by
switching from the generalized link and motor coordinates, 𝒒̄, to the set of
coordinates 𝒙̄ = (𝒙̄𝑢, 𝒙̄𝑎), with 𝒙̄𝑢, 𝒙̄𝑎 ∈ ℝ𝑛𝑢 , where 𝒙̄𝑢 denotes the end effector
position and the 𝒙̄𝑎 the virtual joint deflections such that

𝒙̄ = 𝒙̄(𝒒̄) =
[

𝒉𝑢(𝒒̄𝑢)
𝒒̄𝑎 − 𝒒̄𝑢

]

, (7.58)

where 𝒉𝑢 is the forwards kinematic mapping (7.5). This transformation step
separates the potential forces into rigid robot (gravitational) and elastic forces.
Moreover, the transformed elastic potential function 𝑒 has the crucial prop-
erty that it has a unique minimum at 𝒙̄𝑎 = 𝟎, which is convenient for the
application of classic stability results, since they are usually concerned with
the stabilization of the origin.

Considering the invertibility of𝑱 𝑢 and observing that 𝜕𝒙𝑢∕𝜕𝒒𝑢 = 𝜕𝒙̄𝑢∕𝜕𝒒̄𝑢,
it is easy to see that the Jacobian of the transformation (7.58),

𝑱 (𝒒̄) = 𝜕𝒙̄
𝜕𝒒̄

=
[

𝑱 𝑢 𝟎
−𝑰 𝑰

]

, (7.59)

is non singular. Making use of the inverse coordinate transformation, we get

𝒒̄ = 𝒒̄(𝒙̄) =
[

𝒉−1𝑢 (𝒒̄𝑢)
𝒉−1𝑢 (𝒒̄𝑢) + 𝒙̄𝑎

]

. (7.60)

As pointed out in Section 2.5.5, applying such transformation to Σ̄, (7.20), we
get

Σ̄𝑥 ∶
d
d𝑡
𝜕
𝜕 ̇̄𝒙

− 𝜕
𝜕𝒙̄

= 𝒗 + ̄′
𝑥, (7.61)
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where
𝒗 = 𝑱−T𝒖̄, ′

𝑥 = 𝑱
−T′. (7.62)

For the potential energy

(

𝒒̄(𝒙̄)
)

= 𝑒(𝒙̄𝑎) + 𝑔
(

𝒉−1𝑢 (𝒙̄𝑢)
)

, (7.63)
we have the desired separation into rigid robot (gravitational) and elastic
potential energies. Following the idea of minimizing the system shaping, and
preserving the system structure, (P4), the separation of the potential energies
allows us to identify moving forces that we want to preserve, namely the
subsystem coupling forces 𝜕𝑒

𝜕𝝋̄ , and those, we want to cancel or dominate,
that is to say the gravitational forces 𝜕𝑔

𝜕𝒒̄ that would cause a divergence of
the links from the desired equilibrium. Implementing this idea and opting for
the cancellation of the gravitational forces, a natural choice for the desired
potential energy is

∗(𝒒̄(𝒙̄)
)

= 𝑒(𝒙̄𝑎) +
1
2 (𝒙̄𝑢 − 𝒙

∗
𝑢)

T𝑝(𝒙̄𝑢 − 𝒙∗𝑢). (7.64)

where 𝑝 = T
𝑝 ≻ 0. Comparing (7.63) and (7.64), it is clear that only the

influence of gravity is canceled. By adding a positive definite quadratic form
in the output error, we obtain a potential function that has a unique and global
minimum at 𝒙̄ = (𝒙∗𝑢 , 𝟎). To render the equilibrium asymptotically stable, let
us inject damping characterized by the Rayleigh dissipation function

𝑅 = 1
2

(

̇̄𝒙T
𝑢𝑲𝑣𝑢 ̇̄𝒙𝑢 + ̇̄𝒒T

𝑎𝑲𝑣𝑎 ̇̄𝒒𝑎
)

; 𝑲𝑣𝑢,𝑲𝑣𝑎 ≻ 0 (7.65)

It is worth remarking that (7.61) obtained by a series of transformation from
the plant model (3.22) which did not modify its dynamics. Following Proposi-
tion 6.2.1, let us now shape the system behavior

𝒗 = −
[

𝜕𝑐
𝜕𝒙̄

+
𝜕𝑅
𝜕 ̇̄𝒙

]T
= −

[

𝜕𝑐
𝜕𝒙̄

]T
−𝑣 ̇̄𝒙, (7.66)

to achieve our control objective. Recall that 𝑐 = ∗ −  . The damping
matrix, 𝑣, associated with the Rayleigh dissipation function (7.65) can be
obtained easily by applying the congruence transformation connected with
the coordinate transformation (𝒙̄𝑢, 𝒒̄𝑎) → (𝒙̄) to the quadratic form (7.65), we
get

𝑣 =
[

𝑲𝑣𝑢 + 𝑱−T
𝑢 𝑲𝑣𝑎𝑱−1

𝑢 𝑱−T𝑲𝑣𝑎
𝑲𝑣𝑎𝑱−1

𝑢 𝑲𝑣𝑎

]

≻ 0. (7.67)

satisfying 𝑅 = 1
2
̇̄𝒙T𝑣 ̇̄𝒙. It remains to be shown that the resulting control

input 𝒖̄ satisfies the conditions of Theorem 5.3.6. Considering that
𝑐 =

1
2 (𝒙̄𝑢 − 𝒙

∗
𝑢)

T𝑝(𝒙̄𝑢 − 𝒙∗𝑢) − 𝑔
(

𝒉−1𝑢 (𝒙̄𝑢)
)

, (7.68)
𝜕𝒒̄𝑢
𝜕𝒒̄𝑢

=
𝜕𝒉−1𝑢
𝜕𝒒̄𝑢

=
𝜕𝒉−1𝑢
𝜕𝒙̄𝑢

𝜕𝒙̄𝑢
𝜕𝒒̄𝑢

=
𝜕𝒉−1𝑢
𝜕𝒙̄𝑢

𝑱 𝑢 = 𝑰 ⇐⇒
𝜕𝒉−1𝑢
𝜕𝒙̄𝑢

= 𝑱−1
𝑢 , (7.69)

𝜕𝑐
𝜕𝒙̄𝑢

=𝑲𝑝𝑢(𝒙̄𝑢 − 𝒙∗𝑢) −
[ 𝜕𝑔
𝜕𝒉−1𝑢

𝜕𝒉−1𝑢
𝜕𝒙̄𝑢

]T
= 𝑲𝑝𝑢(𝒙̄𝑢 − 𝒙∗𝑢) − 𝑱

−T
𝑢

[𝜕𝑔
𝜕𝒒̄𝑢

]T
,

(7.70)
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and from the transforming rule of external forces, (2.91), that
𝒖̄ = 𝑱T𝒗, (7.71)

then making the substitution (7.66) and (7.71), gives

𝒖̄𝑢 =
[𝜕𝑔
𝜕𝒒̄𝑢

]T
− 𝑱T

𝑢
{

𝑲𝑝𝑢(𝒙̄𝑢 − 𝒙∗𝑢) +𝑲𝑣𝑢 ̇̄𝒙𝑢
}

, (7.72)
𝒖̄𝑎 = −𝑲𝑣𝑎 ̇̄𝒒𝑎. (7.73)

From (7.72) and (7.73), it is evident that the conditions on the virtual inputs
in Theorem 5.3.6 are satisfied. Thus, we may invoke Proposition 6.2.1 to
conclude asymptotic stability 𝒙̄ = (𝒙∗𝑢 , 𝟎) in the absence of external forces, i.e.
′ = 𝟎. Notice that 𝒖̄𝑢 is simply a PD plus gravity cancellation controller for
rigid robots that is formulated in task coordinates, while 𝒖̄𝑎 ensures pervasive
damping.

Dominating but Canceling Gravity Terms

Analogous to the joint-space controller in Section 7.2.2, we can dominate but
cancel the gravitational forces. The separation of the potential energies into
rigid robot and elastic ones in (7.63), simplifies the adoption of the gravity
domination controller [178]. Choosing the desired potential energy function[178]: Takegaki et al. (1981), “A new feed-

back method for dynamic control of manip-
ulators”

∗(𝒙̄) = (𝒙̄) − (𝒙∗) −
[

𝜕
𝜕𝒙̄

(𝒙∗)
]

(𝒙̄ − 𝒙∗) + 1
2 𝒙̃

T
𝑢𝑝𝒙̃𝑢, (7.74)

gives the desired result. Proposition 6.2.1 guarantees asymptotic stability of
the equilibrium 𝒙̄ = (𝒙∗𝑢 , 𝟎).

7.2.4 Joint Space Motion Tracking

This section presents a series of control methods, namely ESP, ESP+, ESPi
and ESPi+ control, to solve the motion tracking problem for monoarticular
ASRs, while simultaneously allowing to

• ESP: inject link-side damping to suppress link vibrations away from the
reference trajectory

• ESPi: inject a link compliance behavior to adjust the interaction behavior
and the convergence rate towards the reference trajectory.

Uniform global asymptotic stability is shown by invoking a theorem by Ma-
trosov. These approaches were first introduced in [86, 89, 90][86]: Keppler et al. (2018), “Elastic struc-

ture preserving (ESP) control for compli-
antly actuated robots”
[89]: Keppler et al. (2016), “A passivity-
based approach for trajectory tracking and
link-side damping of compliantly actuated
robots”
[90]: Keppler et al. (2016), “A passivity-
based controller for motion tracking and
damping assignment for compliantly actu-
ated robots”

. The central idea
is to preserve the inertial properties and the elastic structure of the original
plant dynamics, hence the name Elastic Structure Preserving (ESP) control.
Compared to ESP control, ESP+ control aims at further minimizing the dy-
namics shaping on the motor side. This is done by avoiding the scaling of the
motor inertia to constant values in the new coordinates, which is a non-passive
control action for itself. In the following, these controllers are re-derived in
an unifying form through Theorem 5.6.1. This theorem allows us to transform
the time-independent (autonomous) Lagrangian associated with the open-loop
system, , to a time-dependent (non-autonomous) Lagrangian, ̄, that en-
codes the structure of the desired closed-loop dynamics. The time-dependency



7.2 Monoarticular Articulated Soft Robots 143

of the Lagrangian ̄ enters through the time-dependency of the potential
function that gives rise to the subsystem coupling force. The explicit time-
dependency of the coupling force is crucial for solving the motion tracking
problem. Throughout this section, we assume the following.

Assumption 7.2.3 The desired trajectory 𝒒∗𝑢(𝑡) is bounded and four times
continuously differentiable.

The tracking error is denoted by
𝒒̃ = (𝒒̃𝑢, 𝒒̃𝑎); 𝒒̃𝑢 = 𝒒̄𝑢 − 𝒒∗𝑢(𝑡); 𝒒̃𝑎 = 𝒒̄𝑎. (7.75)

ESP/ESPi Control: Joint Space Formulation

The results presented below are based on [86]. Following the design principles [86]: Keppler et al. (2018), “Elastic struc-
ture preserving (ESP) control for compli-
antly actuated robots”in Fig. 7.1, and inspired by the work [144], which reports an extension of the
[144]: Paden et al. (1988), “Globally asymp-
totically stable "PD+" controller for robot
manipulators”

“natural motion" concept [98] to the motion tracking case, we aim for a PD+

[98]: Koditschek (1984), “Natural motion
for robot arms”

like error dynamics which has been proposed in [86]

[86]: Keppler et al. (2018), “Elastic struc-
ture preserving (ESP) control for compli-
antly actuated robots”

(𝒒𝑢) ̈̃𝒒 +
[

(𝒒𝑢, 𝒒̇𝑢) +𝑣
] ̇̃𝒒 +𝑝𝒒̃ = 𝚿(𝒒̄𝑎 − 𝒒̃𝑢) + ̄, (7.76)

with 𝑝 = diag(𝑲𝑝𝑢,𝑲𝑝𝑎) and 𝑣 = diag(𝑲𝑣𝑢,𝑲𝑣𝑎) ≻ 0, where1

1: Note that it is also possible to choose
both 𝑲𝑝𝑎,𝑲𝑝𝑢 ≻ 0. This would result in
a closed-loop dynamics that resembles the
classical PD+ dynamics even closer.

𝑲𝑝𝑎 =𝑲T
𝑝𝑎 ≻ 0, 𝑲𝑝𝑢 = 𝟎, for 𝐸𝑆𝑃 ,

𝑲𝑝𝑢 =𝑲T
𝑝𝑢 ≻ 0, 𝑲𝑝𝑎 = 𝟎, for 𝐸𝑆𝑃 𝑖. (7.77)

The form of the transformed external force ̄ is yet to be determined. The
central difference compared to the error dynamics in [144] is the additional [144]: Paden et al. (1988), “Globally asymp-

totically stable "PD+" controller for robot
manipulators”term 𝝍(𝝋̄). Note that (7.76) matches the open loop system, (7.14), closely.

The modifications are: 1) the gravity terms are canceled, 2) PD terms are
added, 3) pseudo-feedforward terms are added. The modifications 1) and 2)
follow closely the idea of natural motion control, whereas 3) is mandatory to
achieve global asymptotic motion tracking.

Let us derive a control input that achieves equivalence of (7.14) and (7.76).
To this end, let us start with transforming (7.14) into the QFA form

Σ̄∶  ̈̄𝒒 +  ̇̄𝒒 + 𝒈(𝒒𝑢) −𝚿(𝒒̄𝑎 − 𝒒̃𝑢) = 𝒖̄ + ̄′ (7.78)
Notice the explicit time dependency of the subsystem coupling force𝝍 through
𝒒̃𝑢. Introducing

𝝋̄ =𝒒̄𝑎 − 𝒒̃𝑢 = 𝒒̄𝑎 − [𝒒̄𝑢 − 𝒒∗𝑢(𝑡)], (7.79)
̄(𝒒̄, 𝑡) =̄𝑒

(

𝒒̄𝑎 − [𝒒̄𝑢 − 𝒒∗𝑢(𝑡)]
)

+ 𝑔(𝒒̄𝑢), (7.80)
̄𝑎(𝒒̄, ̇̄𝒒, 𝑡) =𝑎(𝒒̄𝑎, ̇̄𝒒𝑎) + ̄(𝒒̄, 𝑡), (7.81)

we observe that
𝜕̄𝑒
𝜕𝝋̄

=𝝍T(𝝋̄), (7.82)
𝜕̄𝑎
𝜕𝒒̄𝑢

= − 𝜕̄
𝜕𝒒̄𝑢

= −
𝜕̄𝑒
𝜕𝝋̄

𝜕𝝋̄
𝜕𝒒̄𝑢

−
𝜕𝑔
𝜕𝒒̄𝑢

=
[

𝝍(𝝋̄) − 𝒈(𝒒̄𝑢)
]T (7.83)
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Figure 7.5: Closed loops: the QFA form
enables a straightforward adoption of rigid
joint controllers.

𝑞𝑎𝑖 𝑞𝑢𝑖𝑖th rotor 𝑖th link

𝜓𝑖(𝑞𝑎𝑖 − 𝑞𝑢𝑖)

𝑞𝑎𝑖 𝑞𝑢𝑖𝑖th rotor 𝑖th link

𝜓𝑖(𝑞𝑎𝑖 − 𝑞𝑢𝑖)
𝑢𝑎𝑖

a)

c)

𝑞𝑎𝑖 𝑞𝑢𝑖𝑖th rotor 𝑖th link

𝜓𝑖(𝑞𝑎𝑖 − 𝑞𝑢𝑖)

b)

ESPi Control:
link-side compliance & tracking

Original Joint Dynamics:
monoarticular

ESP Control:
link-side compliance & tracking

𝑞∗𝑢𝑖

𝑞𝑎𝑖… motor coord. 𝑞𝑢𝑖… link coord. 𝑞∗𝑢𝑖… desired link position
𝑞𝑎𝑖… virtual motor coord. 𝑞𝑢𝑖 ≜ 𝑞𝑢𝑖 − 𝑞∗𝑢𝑖(𝑡)… tracking error𝑞𝑢𝑖… link coord.

Seeing that (7.83) produces the potential forces in (7.78), and knowing from
Section 2.5.1 that the force of inertia in (7.14) is uniquely determined by the
kinetic energy function  , we conclude that the forces of inertia in (7.14) and
(7.78) are determined by the same kinetic energy function,  , such that

d
d𝑡

[

𝜕
𝜕 ̇̄𝒒

]T
−
[

𝜕
𝜕𝒒̄

]T
= (𝒒̄𝑢) ̈̄𝒒 + (𝒒̄𝑢, ̇̄𝒒𝑢) ̇̄𝒒. (7.84)

Considering (7.83) and (7.84), it is clear that (7.78) are the EL equations
associated with the Lagrangian

̄ = 𝑢 + ̄𝑎. (7.85)
and the generalized external forces 𝒖̄ and ̄′. Since

𝜕2̄𝑎
𝜕 ̇̄𝒒2𝑎

=
𝜕2𝑎
𝜕 ̇̄𝒒2𝑎

= 𝑩 ≻ 0, (7.86)
[

𝒀
]−1
𝑞 =

[

𝜕2̄𝑎
𝜕𝒒̄𝑎𝜕𝒒̄𝑢

]

= 𝜕
𝜕𝒒̄𝑎

𝝍(𝝋̄) =
𝜕𝝍
𝜕𝝋

=
𝜕2̄𝑒
𝜕𝝋̄2

≻ 0, (7.87)

it follows that the Lagrangian ̄ satisfies the conditions of Theorem 5.6.1.
Thus, applying the input and coordinate transforming equations (5.155) and
(5.136) to (7.14), we obtain (7.76). The transformed external force evaluate
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according to (5.153) to
̄′ = diag

(

𝑰 , 𝑹̄
)

′. (7.88)
Using (7.79), the coordinate transforming equations (5.136) evaluate to

𝝍(𝝋) = 𝝍(𝝋̄) + 𝒖̄𝑢, (7.89)
and the components of the input transformation (5.155) are

𝑨̄ =
[

𝒀
]−1
𝑞
[

𝒀̄
]

𝑞 , (7.90)
𝑹̄ =𝑨̄−1, (7.91)

𝝁̄1 =(𝑰 − 𝑨̄) ̇̃𝒒𝑢 + 𝒒̇∗𝑢 +
[

𝜕2𝑒
𝜕𝝋̄2

]−1

𝑞
̇̄𝒖𝑢, (7.92)

𝝁̄2 =𝑩
(

𝑨̄ ̇̄𝒒𝑎 + ̇̄𝝁1
)

, (7.93)
After some tedious manipulations, the input transformation (5.155) can be
written as

𝒖𝑎 = 𝝁̄2 + 𝝍(𝝋) + 𝑨̄
−1[𝒖̄𝑎 − 𝝍(𝝋̄)

]

. (7.94)
A detailed derivation of (7.94) is provided in Appendix B.6. Comparing (7.94)
with (7.94), we see that only the “pseudo” Jacobian was replaced by the new
one 𝑨̄. Denoting the PD+ controller proposed in [144] by [144]: Paden et al. (1988), “Globally asymp-

totically stable "PD+" controller for robot
manipulators”𝒖PD+ =𝑴(𝒒̄𝑢)𝒒̈∗𝑢 + 𝑪(𝒒̄𝑢, ̇̄𝒒𝑢)𝒒̇

∗
𝑢 + 𝒈𝑢(𝒒̄𝑢) −𝑲𝑣𝑢 ̇̃𝒒𝑢 −𝑲𝑝𝑢𝒒̃𝑢, (7.95)

we can achieve equivalence of (7.76) and (7.78) with
𝒖̄𝑢 =𝒖̄PD+, (7.96)
𝒖̄𝑎 =𝑩 ̈̄𝒒𝑎 −𝑲𝑣𝑎 ̇̄𝒒𝑎 −𝑲𝑝𝑎𝒒̄𝑎. (7.97)

Notice that depending whether the ESP or ESPi controller shall be imple-
mented, the position gains have to be set according to (7.77). The final con-
troller constituted by (7.77) and (7.94)–(7.97) is the ESP controller introduced
in [86], c.f. (46) therein. The ESP controller only injects damping on the sub- [86]: Keppler et al. (2018), “Elastic struc-

ture preserving (ESP) control for compli-
antly actuated robots”system Σ̄𝑢 and cancels the effect of gravity. The ESPi controller on the other

hands, enables imposing a desired compliance behavior, characterized by𝑲𝑝𝑢
and 𝑲𝑣𝑢, on Σ𝑢, while also canceling the effect of gravity. The ESPi variant
solving the joint-space motion tracking problem has not been published yet.
Both controllers achieve GAS of the equilibrium point (𝒒̃, ̇̃𝒒) = 𝟎.

Including Motor Inertia Shaping Scaling the motor inertia to lower values
[6] can improve control performance since it also scales down–by an equal
factor–disturbances on the actuated subsystem such as friction. Let us replace
the inertia matrix and the kinetic energy function in (7.81) with

𝑩̄ =𝛼𝑩; 𝛼 ∈ ℝ+ ⧵ {0}, (7.98)
̄𝑎 =̄𝑎(𝒒̄𝑎, ̇̄𝒒𝑎) =

1
2
̇̄𝒒T̄ ̇̄𝒒. (7.99)
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such that the inertia matrix of the total system is given by
̄ =diag

(

𝑴 , 𝑩̄
)

. (7.100)
It is straightforward to show that the new Lagrangian

̄ = 𝑢 + ̄𝑎, (7.101)
with ̄𝑎 = ̄𝑎 − ̄ satisfies the conditions of Theorem 5.6.1, and the QFA
representation associated with (7.101) is given by the EL equations

̄ ̈̄𝒒 + ̄ ̇̄𝒒 + 𝒈(𝒒̄𝑢) = 𝝍(𝒒̄𝑎 − 𝒒̃𝑢) + 𝒖̄ + ̄′. (7.102)
In conclusion, we can encode the process of shaping the motor inertia [6][6]: Albu-Schäffer et al. (2007), “A Unified

Passivity-based control framework for posi-
tion, torque and impedance control of flexi-
ble joint robots”

directly in the formulation the desired subsystem Lagrangian ̄𝑎. In contrast
to the non-shaping case above, instead of (7.91), we have that

𝑹̄ =𝑩̄𝑨̄−1𝑩−1 = 𝛼𝑨̄−1, (7.103)
and the input transformation (5.155) evaluates to

𝒖𝑎 = 𝝁̄2 + 𝝍(𝝋) +
1
𝛼 𝑨̄

[

𝒖̄𝑎 − 𝝍(𝝋̄)
]

. (7.104)
Comparing (7.94) with (7.104), we see that the process of motor inertia shap-
ing scales the last last feedback term by a factor of 1∕𝛼. Modifying (7.97) to
consider the shaped motor inertia

𝒖̄𝑎 = 𝑩̄ ̈̄𝒒𝑎 −𝑲𝑣𝑎 ̇̄𝒒𝑎 −𝑲𝑝𝑎𝒒̄𝑎. (7.105)
in the feedforward term, and applying (7.96) and (7.105) to (7.102), we obtain
the desired reference dynamics

̄(𝒒𝑢) ̈̃𝒒 +
[

̄(𝒒𝑢, 𝒒̇𝑢) +𝑣
] ̇̃𝒒 +𝑝𝒒̃ −𝚿(𝒒̄𝑎 − 𝒒̃𝑢) = ̄′, (7.106)

where ̄′ are the transform external forces of the form (7.88) with (7.103). The
following proposition summarizes the main results of this section.

Proposition 7.2.1 (ESP/ESPi control—joint-space motion tracking) Con-
sider the system (7.14) in closed-loop with the controller (7.95),(7.96),
(7.104) and (7.105). Then

(i) for ′ = 𝟎, the equilibrium point (𝒒̃, ̇̃𝒒) = 𝟎 of the closed-loop
dynamics, (7.106), is globally uniformly asymptotically stable;

(ii) system (7.106) defines an OSP map ̄′ → ̇̃𝒒, with the transformed
external force ̄′ according to (7.88) with (7.103).

Notice that the closed-loop systems (7.76) and (7.106) are equivalent for 𝛼 = 1.
Thus, Proposition 7.2.1 also holds for (7.76).

Considering that the closed loop dynamics (7.106) is a special case of the
closed loop dyanmics considered in Proposition 7.2.3 (reported later) only a
proof for the latter proposition provided.
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ESP+ Control—Joint-Space Motion Tracking

The results presented in this section were first presented in [86, 90]. The ESP+ [86]: Keppler et al. (2018), “Elastic struc-
ture preserving (ESP) control for compli-
antly actuated robots”
[90]: Keppler et al. (2016), “A passivity-
based controller for motion tracking and
damping assignment for compliantly actu-
ated robots”

control concept extends the idea of the minimalistic ESP feedback control
formulated above. The idea is to avoid scaling the motor inertias to constant
values after being transformed into the 𝒒̄ space. Considering the transforming
rules of a point transformation nevertheless, it appears natural to aim for a
closed-loop system that is characterized by the inertia matrix

̄ = −T−1 = diag
(

𝑴(𝒒̄𝑢), 𝑨̄
T𝑩𝑨̄

)

, (7.107)
where  can be identified as a “pseudo” Jacobian. In order to preserve the criti-
cal skew-symmetry property reported in Lemma 2.5.8, we know that according
to the rules of a point transformation the transformed Coriolis/centrifugal
matrix must satisfy, c.f. (2.110),

̄ = −T(̇−1 + −1). (7.108)
This aspect is critical for the stability proof of Proposition 7.2.3 in Sec-
tion 7.5.

Lemma 7.2.2 (Skew-symmetry property of the ESP+ error dynamics)
Consider the matrices (7.107) and (7.108), then ̇−2̄ is skew symmetric.
Further, ̄ is symmetric and positive definite.

Proof. Introducing

𝑩̄ = 𝑨̄T𝑩𝑨̄−1; 𝑪̄𝑎 = 𝑨̄
T𝑩 ̇̄𝑨, (7.109)

such that
̄ = diag

(

𝑴 , 𝑩̄
)

; ̄ = diag(𝑪 , 𝑪̄𝑎), (7.110)
we observe that

𝑩 = 𝑩T ⇐⇒ ̇̄𝑩 = ̇̄𝑨T𝑩𝑨̄ + 𝑨̄T𝑩 ̇̄𝑨 = 𝑪̄T
𝑎 + 𝑪̄𝑎, (7.111)

Using (7.111), we can show the skew symmetry of ̇̄𝑩 − 2𝑪̄𝑎

̇̄𝑩 − 2𝑪̄𝑎 = 𝑪̄
T
𝑎 − 𝑪̄𝑎 =

(

− 𝑪̄T
𝑎 + 𝑪̄𝑎

)T = −
(

𝑪̄T
𝑎 − 𝑪̄𝑎

)T. (7.112)
From Property 6 and (7.120), it follows immediately that ̇ − 2̄ is skew
symmetric. Since  and ̄ are related via a congruence transformation,
(7.107), the positive definiteness and symmetry of  is preserved. Former
can be shown establishing a lower bound for the eigenvalues of 𝑩̄ and .
Concerning the rigid robot inertia matrix  this is true by Assumption 5.1.1.
Knowing that 𝑩 and 𝑨 are Hermitian and non-negative, we can write 𝑩̄ as
the product of two positive definite Hermitian matrices and repetitively apply
Lemma D.3.3 in Appendix D to obtain

𝜆̄(𝑩̄) = 𝜆̄
([

𝑨̄T𝑩1∕2][𝑩1∕2𝑨̄
])

≥
[

𝜆̄
(

𝑨̄T𝑩1∕2)
]2

≥
[

𝜆̄(𝑨̄)𝜆̄(𝑩1∕2)
]2
> 0.

(7.113)
■
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As pointed out in Section 2.5.5, see also (2.91), the generalized external
forces transform covariantly under a point transformation. Motivated by the
observations so far, let us aim for an error dynamics of the form (first proposed
in [86, 90])[86]: Keppler et al. (2018), “Elastic struc-

ture preserving (ESP) control for compli-
antly actuated robots”
[90]: Keppler et al. (2016), “A passivity-
based controller for motion tracking and
damping assignment for compliantly actu-
ated robots”

̄(𝒒𝑢) ̈̃𝒒 +
[

̄(𝒒𝑢, 𝒒̇𝑢) +𝑣
] ̇̃𝒒 +𝑝𝒒̃ − 𝝍(𝒒̄𝑎 − 𝒒̃𝑢) = ̄′, (7.114)

with 𝑝 = diag(𝟎,𝑲𝑝𝑎),𝑲𝑝𝑎 ≻ 0 and 𝑣 = diag(𝑲𝑣𝑢,𝑲𝑣𝑎) ≻ 0, and the
transformed external force

̄′ = −T′. (7.115)
Introducing the Lagrangian

(7.116)
̄𝑎 =̄𝑎(𝒒̄𝑎, ̇̄𝒒𝑎) =

1
2
̇̄𝒒𝑎𝑩̄ ̇̄𝒒𝑎, (7.117)

̄𝑎 =̄𝑎 − ̄ , (7.118)
̄ =𝑢 + ̄𝑎, (7.119)

with ̄ defined as in (7.80), and ̄𝑎 satisfying Assumption 5.6.1, we can apply
the coordinate and input transforming equations (5.136) and (5.155), together
with 𝒖̄𝑢 and 𝒖̄𝑎 as defined in (7.96) and (7.97), to achieve equivalence of (7.14)
and (7.114). The input transformation evaluates to

𝒖𝑎 = 𝑩𝝁̇1 + 𝝍(𝝋) + 𝑨̄
−T(𝒖̄𝑎 − 𝝍(𝝋̄)

) (7.120)
The resulting input signal 𝒖𝑎 is equal to the one presented in [86, 90]. Com-[86]: Keppler et al. (2018), “Elastic struc-

ture preserving (ESP) control for compli-
antly actuated robots”
[90]: Keppler et al. (2016), “A passivity-
based controller for motion tracking and
damping assignment for compliantly actu-
ated robots”

paring (7.120) with the previous input transformations (7.34), (7.94), and
(7.104), we see that the compensation term 𝑩𝑨̄ ̇̄𝒒𝑎 is missing in the latter
one, which confirms our objective for ESP+ control of shaping the motor
dynamics less compared to the original ESP formulation. Further notice that
the closed-loop EL equations (7.76), (7.106) and (7.114) only differ in their
formulation of 𝑎. The following proposition summarizes the main results of
this section.

Proposition 7.2.3 (ESP+/ESPi+ control—joint-space motion tracking)
Consider the system (7.14) in closed-loop with the controller (7.95),(7.96),
(7.104) and (7.105). Then

(i) for ′ = 𝟎, the equilibrium point (𝒒̃, ̇̃𝒒) = 𝟎 of the closed-loop
dynamics, (7.106), is globally uniformly asymptotically stable;

(ii) system (7.106) defines an OSP map ̄′ → ̇̃𝒒, with the transformed
external force ̄′ according to (7.88).

A proof for statement (i) is provided in Section 7.5, and statement (ii) is treated
below. Notice that the ESP closed-loop dynamics (7.106) can be considered
as a special case of the ESP+ control related closed-loop dynamics (7.114)
with constant motor inertia 𝑩̄ = 𝛼𝑩 and 𝑪̄𝑎 = 𝟎.

Passivity Analysis In the following, a proof of Statement (ii) of Proposi-
tion 7.2.1 is presented. Further, it will be shown that the closed-loop system
(7.114) can be represented as the negative feedback interconnection of two
subsystems Σ̄𝑢 (constituted by the link inertias) and Σ̄𝑎 (constituted by the
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Σ̄𝑢

Σ̄𝑎

𝝍

′
𝑢

̇̃𝒒𝑢+

−
̇̃𝒒𝑎 ′

𝑎

Environment

+

Figure 7.6: Representation of the closed-
loop dynamics as the negative feedback in-
terconnection of two passive subsystems.

rotor inertias). Introducing the subsystem storage functions
𝑆𝑢(𝒒̃𝑢, ̇̃𝒒𝑢, 𝑡) =

1
2
̇̃𝒒T
𝑢𝑴 ̇̃𝒒𝑢, (7.121)

𝑆𝑎(𝒒̃, ̇̃𝒒𝑎, 𝑡) =
1
2

( ̇̄𝒒T
𝑎 𝑩̄ ̇̄𝒒𝑎 + 𝒒̄

T
𝑎𝑲𝑝𝑎𝒒̄𝑎

)

+ 𝑒(𝒒̄𝑎 − 𝒒̃𝑢), (7.122)
and using Property 6, we get for their time derivatives along the solutions of
(7.114):2 2: In the following, the argument of the

virtual generalized elastic force,𝝍(𝒒̄𝑎−𝒒̃𝑢),
is dropped.𝑆̇𝑢 = − ̇̃𝒒T

𝑢𝑲𝑣𝑢 ̇̃𝒒𝑢 + ̇̃𝒒T
𝑢𝝍 + ̇̃𝒒T

𝑢 ̄
′
𝑢, (7.123)

𝑆̇𝑎 = − ̇̄𝒒T
𝑎𝑲𝑣𝑎 ̇̄𝒒𝑎 − ̇̃𝒒T

𝑢𝝍 + ̇̄𝒒T
𝑎

′
𝑎. (7.124)

We can identify three terms in (7.123). The first one represents the energy
dissipation due to the damping assignment on the link side. The latter two terms
are interconnection ports. As visualized in Fig. 7.6, the port ̇̃𝒒T

𝑢𝝍 interconnects
the subsystems Σ̄𝑢 and Σ̄𝑎, and the port ̇̃𝒒T

𝑢 ̄𝑢 represents the energy exchange
between the links and the environment. The first term on the RHS of (7.124)
can be identified with actuator-side dissipation. As expected, the subsystem
interconnection port appears again in (7.124). We conclude that the closed-
loop system can be represented as the negative feedback interconnection of
two passive subsystems, as shown Fig. 7.6,

Σ̄𝑢 ∶
(

𝝍 +′
𝑢) → ̇̃𝒒𝑢, (7.125)

Σ̄𝑎 ∶
[

′
𝑎

− ̇̄𝒒𝑎

]

→

[ ̇̃𝒒𝑢
𝝍

]

. (7.126)

The analysis so far motivates the introduction of the storage function
𝑆 = 𝑆𝑢 + 𝑆𝑎. (7.127)

Considering (7.123) and (7.124), we get for its time derivative
𝑆̇ = − ̇̃𝒒T

𝑢𝑲𝑣𝑢 ̇̃𝒒𝑢 − ̇̄𝒒T
𝑎𝑲𝑣𝑎 ̇̄𝒒𝑎 + ̇̃𝒒T̄′ ≤ ̇̃𝒒T̄′, (7.128)

which completes the proof of Statement (ii) of Proposition 7.2.1.

Remark 7.2.1 From (7.123) it is clear that motions associated with the
virtual motors may exchange energy with the environment via the port
𝒒̇T
𝑣2. A closer look on the natural power ports, 𝒒̇T

𝑎𝑎 and 𝒒̇T
𝑣𝑎, reveals

that these power flows are connected to the motions of the reflected motor
inertias. Considering that these mechanical elements are encapsulated in
housings and thus shielded from the environment, we conclude that ′

𝑎,and consequently ̄′
𝑎, essentially comprise friction related forces only. In
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order to achieve satisfactory performance in practice, it is advisable to com-
pensate friction forces with appropriate observers, e.g. [34][34]: De Luca et al. (2006), “Collision de-

tection and safe reaction with the DLR-III
lightweight manipulator arm”

. This point is
of particular importance for schemes that shape the intrinsic dynamics to a
minimal extend (such as ESP control) and, thus, result in low gain designs.
If friction is not compensated, then static friction translates into significant
steady-state errors. After this compensation step, we may conclude that
all practically meaningful interactions with the environment occur via the
mechanical link-side interaction port.
Note that for the regulation case, i.e. 𝒒∗𝑢 = 𝑐𝑜𝑛𝑠𝑡., Proposition 7.2.3 states:
the closed-loop system (7.106) defines a passive map 𝑢 → ̇̄𝒒𝑢. Never-
theless, in practice situations may arise where passivity with respect to
the power port ( ̇̃𝒒𝑢,𝑢) will be of importance. More specifically, there
exist situations where the environment or the interacting object moves syn-
chronously to the link reference trajectory. One such scenario would be
object manipulation on a conveyor belt. In that case, the proposed tracking
controlled robot would passively interact with the object.

Remark 7.2.2 It is worth remarking that the ESP+ design can be easily
combined with motor inertia shaping by modifying the motor inertia matrix
in the formulation of the kinetic energy 𝑎 in (7.117) accordingly. See also
[86] for a strategy not relying on the QFA representation as intermediary
step.

7.2.5 Task Space Motion Tracking

For solving the task space motion tracking problem, we shall proceed similarly
to the joint space motion tracking problem reported in Section 7.2.4. Let us
start with some observations that will simplify attacking the problem.

Recall that for solving the joint space motion tracking problem, we relied
on Theorem 5.6.1 to transform the open-loop system (7.14), characterized by a
time-independent (autonomous) Lagrangian function, (𝒒, 𝒒̇), into a QFA rep-
resentation characterized by a time-dependent (non-autonomous) Lagrangian
function ̄(𝒒̄, ̇̄𝒒, 𝑡), with the time-dependency entering through the formulation
of a time-dependent potential function ̄𝑒 to facilitate motion tracking of Σ̄𝑢.
An explicitly time-dependent Lagrangian is usually cumbersome to work with
when designing a stabilizing controller (e.g. conservation laws no longer apply
[52]). In particular, it can be challenging to find a Lyapunov function for a[52]: Goldstein et al. (2001), Classical Me-

chanics system with a time-independent elastic potential function. This inconvenience
can be resolved by introducing an appropriate change of coordinates. The idea
behind such a transformation is captured by the remark below.

Remark 7.2.3 An essential technique for solving difficult problems in
Hamiltonian and Lagrangian mechanics is deriving invariants for non-
autonomous systems through time-dependent canonical transformations
[175][175]: Struckmeier et al. (2002), “Canoni-

cal transformations and exact invariants for
time-dependent Hamiltonian systems”

. For example, applying the time-dependent point transformation

𝝋̄ = 𝒒̄𝑎 −
[

𝒒̄𝑢 − 𝒒̄∗𝑢(𝑡)
] (7.129)

would transform the time-dependent, (non-autonomous) Lagrangian ̄ in
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(7.85), to a time-independent, (autonomous) Lagrangian, since
̄𝑒(𝒒̃, 𝑡) = 𝑒

(

𝒒̄𝑎 −
[

𝒒̄𝑢 − 𝒒̄∗𝑢(𝑡)
])

= 𝑒(𝝋̄). (7.130)
In conclusion, by introducing appropriate coordinates, we can avoid intro-
ducing a time-dependent potential energy for solving the motion tracking
problem.

Following the idea in Remark 7.2.3, we can solve the tracking problem without
introducing a time-dependent potential function by applying the change of
coordinates (7.43), which is repeated for ease of reference,

𝒙̄ =(𝒙̄𝑢, 𝒙̄𝑎); 𝒙̄𝑢 = 𝒉𝑢(𝒒̄𝑢); 𝒙̄𝑎 = 𝒒̄𝑎 − 𝒒̄𝑢, (7.131)
𝑱 =

[

𝑱 𝑢 𝟎
−𝑰 𝑰

]

, (7.132)
̇̄𝒙 =𝑱 (𝒒̄) ̇̄𝒒, (7.133)

to (7.14). The resulting EL equations are (7.46). Let
𝒙∗(𝑡) =

(

𝒙∗𝑢(𝑡),𝒙
∗
𝑎(𝑡)

)

=
(

𝑥∗𝑢1(𝑡),… , 𝑥∗𝑢𝑛𝑢 (𝑡), 0,… , 0
)

, (7.134)
𝒙̃ =

(

𝒙̃𝑢, 𝒙̃𝑎
)

= 𝒙 − 𝒙∗(𝑡), (7.135)
denote the desired trajectory and the tracking error of the QFA system Σ̄𝑥
which satisfies the following.

Assumption 7.2.4 The desired trajectory 𝒙∗𝑢(𝑡) is bounded up to it fourth
order time derivative.

Moreover, it is convenient to introduce the following relations
̇̄𝒒𝑎 = ̇̄𝒙𝑎 + 𝑱−1

𝑢
̇̄𝒙𝑢, (7.136)

̇̄𝒒∗𝑎(𝑡) = 𝒙̇
∗
𝑎(𝑡) + 𝑱

−1
𝑢 𝒙̇

∗
𝑢(𝑡) = 𝑱

−1
𝑢 𝒙̇

∗
𝑢(𝑡), (7.137)

̇̃𝒒𝑎 = ̇̄𝒒𝑎 − ̇̄𝒒∗𝑎 = ̇̄𝒒𝑎 − 𝑱−1
𝑢 𝒙̇

∗
𝑢(𝑡). (7.138)

Before formulating the error dynamics, we shall specify the desired damping
behavior.

Damping Injection

Suppose that we want to inject damping on the rigid body and motor dynamics
such that the dissipation function is given by

𝐷 = 1
2

( ̇̄𝒙T
𝑢𝑲𝑣𝑢 ̇̄𝒙𝑢 + ̇̄𝒒T

𝑎𝑲𝑣𝑎 ̇̄𝒒𝑎
)

; 𝑲𝑣𝑢,𝑲𝑣𝑎 ≻ 0. (7.139)
The first term represents the energy dissipation of rigid body subsystem as
a function of its task space velocity, and the latter term describes the energy
loss rate of the motor dynamics in terms of the virtual motor velocities. In
order to inject damping according to the dissipation function (7.139), let us
establish the damping matrix associated with the 𝒙̄ coordinates. Using the
Jacobians (7.6) and (7.132) associated with the change of coordinates (7.5)
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and (7.131), we get
𝐷 = 1

2
̇̄𝒒Tdiag(𝑱T

𝑢 , 𝑰)diag(𝑲𝑣𝑢,𝑲𝑣𝑎)diag(𝑱 𝑢, 𝑰) ̇̄𝒒 (7.140)
= 1

2
̇̄𝒙T𝑱−Tdiag(𝑱T

𝑢𝑲𝑣𝑢𝑱 𝑢,𝑲𝑣𝑎)𝑱−1 ̇̄𝒙 (7.141)
which reveals that the quested damping matrix is of the form

𝑣 = 𝑱−T
[

𝑱T
𝑢𝑲𝑣𝑢𝑱 𝑢 𝟎

𝟎 𝑲𝑣𝑎

]

𝑱−1. (7.142)

Since 𝑣 is related via congruence transformation to the positive definite
matrix associated with the quadratic form (7.139), it is positive definite.

ESPi Control: Task Space Formulation

Similar to the joint space case, we aim for a PD+ like error dynamics

𝑥 ̈̃𝒙 +
(

𝑥 +𝑣
) ̇̃𝒙 +𝑝𝒙̃ + 𝑱−T

[

𝜕𝑒
𝜕𝒒̄

]T
= ′

𝑥, (7.143)

as indicated in Fig. 7.7 with 𝑣 as defined in (7.139) and
𝑝 = diag(𝑲𝑝𝑢, 𝟎), 𝑲𝑝𝑢 ≻ 0. (7.144)

Equivalence of (7.46) and (7.143) is achieved by the control signals

𝒖̄𝑢 =𝑱T
𝑢
(

𝑴𝑥𝒙̈∗𝑢 + 𝑪𝑥𝒙̇
∗
𝑢 −𝑲𝑣𝑢 ̇̃𝒙𝑢 −𝑲𝑝𝑢𝒙̃𝑢

)

+
𝜕𝑔
𝜕𝒒̄𝑢

, (7.145)
𝒖̄𝑎 =𝑩 ̈̄𝒒∗𝑎 −𝑲𝑣𝑎 ̇̃𝒒𝑎. (7.146)

System (7.143) defines an OSP operator ̄′ → ̇̃𝒙, which can be shown with
the storage function

pd+ = 1
2

( ̇̃𝒙T𝑥 ̇̃𝒙 + 𝒙̃T𝑝𝒙̃
)

+ 𝑒(𝝋̄). (7.147)
The proof is straightforward. Knowing that 𝑥 and 𝑥 satisfy Property 2.5.8,
differentiating (7.147) with respect to time along the solutions of (7.143)
gives

̇pd+ = − ̇̃𝒙T𝑣 ̇̃𝒙 + ̇̃𝒙T̄′
𝑥. (7.148)

Note that 𝒖̄𝑢 is equal to the PD+ control signal solving the tracking problem for
the rigid-joint robot case. Control input 𝒖̄𝑎 has a clear physical interpretation.
The vector ̈̄𝒒∗𝑎 represents the desired task accelerations expressed in joint space.
Thus, the first term in 𝒖̄𝑎 can be identified as the feedforward term ensuring that
the motor inertias accelerate synchronously with the link inertias. The second
term adds damping to eliminate any error between the actual and desired motor
velocities. In summary, we simply set 𝒖̄𝑢 equal to the classic PD+ controller.
The second control input 𝒖̄𝑎, implements motor-side feedforward forces and
injects additional damping to render the closed-loop system fully damped. The
following proposition reports the most general passivity and stability result
concerning motion tracking via the ESP concept. The following proposition
summarizes the main results of this section.
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ESPi Control:
Task space compliance & tracking

𝒙∗𝑢
𝒙̄𝑢

𝑥̄𝑎1𝑡

𝑥̄𝑎2

𝑥̄𝑎𝑛

Figure 7.7: ESPi closed-loop dynamics for
the task space motion tracking problem.

Proposition 7.2.4 (Task-space tracking via ESP/ESPi control) Consider
the QFA representation (7.46) of (7.14) in closed-loop with the controller
(7.34), (7.145) and (7.146). Then

(i) for ′ = 𝟎, the equilibrium point (𝒙̃, ̇̃𝒙) = 𝟎 of the closed-loop
dynamics, (7.106), is uniformly asymptotically stable;

(ii) system (7.106) defines an OSP map ̄′
𝑥 → ̇̃𝒙.

A proof is provided in Section 7.5. Notice that the control law above can be
easily extended to include motor inertia shaping following the procedure in
Section 7.2.4, and using Theorem 5.6.1 with input transformation (7.104)
instead of the one associated with Theorem 5.3.6, (7.34). Proposition 7.2.4
equally holds in that case. The proof only needs to be adjusted to account for
the shaped motor inertia matrix in the formulation of the Lyapunov function
(and storage function).

Adopting the Slotine and Li Controller

Motivated by [165], let us introduce the error signal [165]: Slotine et al. (1988), “Adaptive ma-
nipulator control: A case study”

𝒔 = ̇̃𝒙 + 𝚲𝒙̃, (7.149)
with

𝒙̃ =𝒙 − 𝒙∗(𝑡), (7.150)
𝒙∗ =

(

𝒙∗𝑢(𝑡), 𝟎
)

, (7.151)
and aim for a closed-loop dynamics of the form3 3: A similar closed-loop dynamics is re-

ported in [133, p. 103], which treats the
joint-space motion tracking case.

𝑥𝒔̇ +
(

𝑥 +𝑣
)

𝒔 + 𝑱−T
[

𝜕𝑒
𝜕𝒒̄

]T

𝑞
= ̄′ +𝚿, (7.152)

with 𝑣 = T
𝑣 ≻ 0 as defined in (7.142) and

𝚲 =diag(𝚲𝑢,𝚲𝑎) ≻ 0. (7.153)
The key observation here is that (7.152) defines an OSP operator 𝚿+ ̄′ → 𝒔
[22] with the storage function [22]: Byrnes et al. (1991), “Passivity, feed-

back equivalence, and the global stabiliza-
tion of minimum phase nonlinear systems”
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𝑠 =
1
2𝒔

T𝑥𝒔 + 𝑒(𝝋̄). (7.154)
The difference to the fully-actuated case is the presence of the subsystem
coupling potential energy 𝑒, which can be shaped (as pointed out in Theo-
rem 5.6.1), but not entirely canceled. Calculating the time derivative of (7.154)
along the solutions of (7.152) yields

̇𝑠 = −𝒔T𝑣𝒔 − 𝝋̄T𝚲𝑎𝑱−T
[

𝜕𝑒
𝜕𝒒̄

]T
+ 𝒔T(𝚿 + ̄′). (7.155)

Consequently, for 𝚿 = 𝟎, we have 𝒔 ∈ 2, c.f. [133]. Introducing the reference[133]: Ortega (1998), Passivity-Based Con-
trol of Euler-Lagrange Systems: Mechani-
cal, Electrical, and Electromechanical Ap-
plications

positions and velocities
𝒙̇𝑟 =𝒙̇∗ − 𝚲𝒙̃, (7.156)

a straightforward calculation shows that (7.46) and (7.152) are equivalent if

𝚿 = 𝑱−T𝒖̄ −
(

𝑥𝒙̈𝑟 + 𝑥𝒙̇𝑟 + 𝑱−T
[𝜕𝑔
𝜕𝒒̄

]T
−𝑣𝒔

)

. (7.157)

In order to adopt the core idea behind the strict Lyapunov function presented
in [170], which relies on diagonal gain matrices, we assume diagonal𝑲𝑣𝑢 and[170]: Spong (1990), “Control of flexible

joint robots: A survey” 𝑲𝑣𝑎. The control signal setting 𝚿 = 𝟎

𝒖̄ = 𝑱T(𝑥𝒙̈𝑟 + 𝑥𝒙̇𝑟 −𝑣𝒔
)

+
[𝜕𝑔
𝜕𝒒̄

]T
(7.158)

achieves the desired motion tracking behavior. Let us proceed verifying if
the input signal 𝒖̄𝑢 satisfies the conditions of Theorem 5.3.6. Knowing that
𝒒̇𝑎 = 𝑱−1

𝑢 𝒙̇𝑢 + 𝒙̇𝑎, it is natural to introduce the motor reference velocities
𝒒̇𝑟𝑎 = 𝑱

−1
𝑢 𝒙̇

𝑟
𝑢 + 𝒙̇

𝑟
𝑎. (7.159)

Using (7.159), we observe that

𝑩𝑱−1
𝑢 𝒙̇

𝑟
𝑢 + 𝑩̇ ̇𝑱 𝑢

−1𝒙̇𝑟𝑢 =𝑩
d
d𝑡
(

𝑱−1
𝑢 𝒙̇

𝑟
𝑢
)

, (7.160)
𝑩 d
d𝑡
(

𝑱−1
𝑢 𝒙̇

𝑟
𝑢
)

+ 𝑩𝒙̈𝑟𝑎 =𝑩𝒒̈
𝑟
𝑎. (7.161)

Using the notation from 7.2.1, it is convenient to denote the Slotine and Li
controller [165] that solves the motion tracking problem for rigid robots by[165]: Slotine et al. (1988), “Adaptive ma-

nipulator control: A case study”
𝒖𝑟 = 𝑱T(𝑴𝑥𝒙̈𝑟𝑢 + 𝑪𝑥𝒙̇

𝑟
𝑢 −𝑲𝑣𝑢𝒔𝑢

)

+ 𝒈(𝒒𝑢). (7.162)
Then, considering (7.159)–(7.161) and the partitioning 𝒙̇𝑟 = (𝒙̇𝑟𝑢, 𝒙̇

𝑟
𝑎),

𝒙̇𝑟𝑢, 𝒙̇
𝑟
𝑎 ∈ ℝ𝑛𝑢 , we can write the components of 𝒖̄ as

𝒖̄𝑢 =𝒖̄𝑟, (7.163)
𝒖̄𝑎 =𝑩𝒙̈𝑟𝑎 −𝑲𝑣𝑎

(

𝑱−1𝒔𝑢 + 𝒔𝑎
)

. (7.164)
Since 𝒖̄𝑢 is only a function of the position and velocity of subsystem Σ𝑢, it is
clear that 𝒖̄𝑢 satisfies the conditions of Theorem 5.3.6. The main result of this
section is summarized in the following Proposition 7.2.5
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Proposition 7.2.5 (Task-space tracking via Slotine & Li Controller) Con-
sider the system (7.14) in closed-loop with the controller (7.34), (7.158).
Then, the closed-loop system constituted by (7.149) and (7.152), with 𝚿 = 𝟎,

(i) has the trivial equilibrium (𝒙̃, 𝒔) = 𝟎 for ′ = 𝟎, which is asymptoti-
cally stable;

(ii) system (7.143) defines an OSP map ̄′ → 𝒔.

7.3 Multiarticular Articulated Soft Robots

This section studies the application of the QFA transformation, introduced in
Chapter 5, to multiarticulated ASRs implemented with bi-antagonistic stiffness
variation arrangements. Experimental results concerning the application of
ESP control to BAVS actuators (of DLR David) are reported in Chapter 11.

7.3.1 Joint Space Regulation

Consider the set of coordinates
𝒒 =(𝒒𝑢, 𝒒𝑎) = (𝑞𝑢1,… , 𝑞𝑢𝑛𝑢 , 𝑞𝑎11,… , 𝑞𝑎1𝑛𝑢 , 𝑞𝑎21,… , 𝑞𝑎2𝑛𝑢 ) (7.165)

with an obvious partitioning 𝒒𝑎 = (𝒒𝑎1, 𝒒𝑎2), where 𝒒𝑢 and 𝒒𝑎 represent
the link and motor configuration variables. Suppose that there is no iner-
tial coupling between the actuated and unactuated subsystems such that the
Lagrangian is of the form:4 4: In other words, the system satisfies the

Assumption 4.6.1.
 =𝑢(𝒒𝑢, 𝒒̇𝑢) + 𝑎(𝒒, 𝒒̇𝑎), (7.166)
 =𝑔(𝒒𝑢) + 𝑒(𝒒), (7.167)
 =𝑢(𝒒𝑢, 𝒒̇𝑢) + 𝑎(𝒒𝑎, 𝒒̇𝑎), (7.168)
𝑢 =

1
2 𝒒̇

T
𝑢𝑴𝒒̇𝑢, 𝑎 =

1
2 𝒒̇

T
𝑎𝑩𝒒̇𝑎, (7.169)

where 𝑴 denotes the rigid robot inertia matrix, and 𝑩 is a diagonal matrix
containing the reflected motor inertias. Let us further assume the following
for the elastic potential energy.

Assumption 7.3.1 Let 𝑞𝑢𝑖, 𝑞𝑎1𝑖, 𝑞𝑎2𝑖 be the coordinates associated with the
𝑖th joint as depicted in Fig. 7.8, and let the elastic potential energy be given
by the radially unbounded functions

𝑒𝑗(𝒒𝑎𝑗 − 𝒒𝑢) =
𝑛𝑢
∑

𝑖
𝑒𝑗𝑖(𝑞𝑎𝑗𝑖 − 𝑞𝑢𝑖), 𝑗 ∈ (1, 2) (7.170)

𝑒(𝒒) =𝑒1 + 𝑒2. (7.171)
Denoting the joint deflections by 𝜑𝑗 = 𝑞𝑎𝑗𝑖 − 𝑞𝑢𝑖, we further assume that

𝜓𝑗𝑖(𝜑𝑗𝑖) =
𝜕𝑒𝑗
𝜕𝜑𝑗𝑖

(7.172)
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Figure 7.8: A multi-articulated ASR.
M

M

M

M

Lin
k 1

Link 2

Link 𝑛

𝑞𝑎21

𝑞𝑎22

𝑞𝑎11

𝑞𝑎12

𝑞𝑢𝑛

𝑞𝑢2

𝑞𝑢1

are strictly monotonic increasing functions and that

rank
(

𝜕2𝑒𝑗
𝜕𝑞2𝑎𝑗

)

= 𝑛𝑢, 𝑗 ∈ (1, 2). (7.173)

It is clear that (7.166) satisfies Assumption 5.1.1 and 5.1.2, and we conclude
that the conditions of Theorem 5.4.2 are satisfied. In fact, an ASRs, as defined
above, belongs to the special case of multi-articulated systems discussed in
Section 5.4.2. Choosing

𝒉(𝒒) = 𝝍1(𝒒𝑢, 𝒒𝑎1) − 𝝍2(𝒒𝑢, 𝒒𝑎2), and 𝝂𝑢 = 𝟎, (7.174)
guarantees that Assumption 5.4.2 is satisfied. Consequently, we can apply
Theorem 5.3.6 to transform the system into its QFA form

d
d𝑡
𝜕
𝜕𝒒̇

− 𝜕
𝜕𝒒

= 
ICT

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→(5.78),(5.94)
d
d𝑡
𝜕
𝜕 ̇̄𝒒

− 𝜕
𝜕𝒒̄

= ̄. (7.175)

Continuing with (7.175), we can apply any of the controllers introduced in
Chapter 6 to solve the output regulation problem. However, it might be de-
sirable to regulate not only the output 𝒒𝑢 to its desired position 𝒒∗𝑢 , but to
achieve also a desired joint stiffness pretension at equilibrium. Controllers
achieving such behavior are reported in [114, 115]. Let use derive a controller[114]: Meng et al. (2021), “Elastic struc-

ture preserving impedance control of bidi-
rectional antagonistic variable stiffness ac-
tuation”
[115]: Mengacci et al. (2021), “Elastic
Structure Preserving control for compliant
robots driven by agonistic-antagonistic ac-
tuators (ESPaa)”

combining the constraint equations (7.174) with an actuator-side offset torque
(as reported in [114]) to achieve a desired pretension level.5 The resulting

5: For a symmetric joint arrangement, i.e.
𝜓1𝑖 = 𝜓2𝑖, the constraint equations (7.174)
are equal to the ones proposed in [115].

controller enables the following:

(i) Regulate the links to a desired position, s.t. (𝒒𝑢, 𝒒̇𝑢) → (𝒒∗𝑢 , 𝟎) for
𝑡→ ∞,

(ii) Impose a desired link-side compliance behavior,
(iii) Achieve a desired passive link stiffness6 for 𝑡 → ∞.

6: With link stiffness, we refer to the Hes-
sian matrix associated with 𝑒 for fixed mo-
tor positions.
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Let 𝑲𝑝𝑢,𝑲𝑣𝑢,𝑲𝑣𝑎 be constant matrices, then control objectives (i) and (ii)
can be solved with the following controller

𝒖̄𝑢 = −
𝜕𝑔
𝜕𝒒𝑢

−𝑲𝑣𝑢𝒒̇𝑢 −𝑲𝑝𝑢𝒒̃𝑢, (7.176)
𝒖̄𝑎𝑗 = −𝑲𝑣𝑎𝑗 ̇̄𝒒𝑎𝑗 . (7.177)

Applying (7.176)–(7.177) to the EL system (7.166)–(7.169) shifts the equi-
librium to the desired position and renders the system fully damped. The
potential energy function of the system is modified to

∗(𝒒̄) =  − 𝑔 +
1
2 𝒒̃

T
𝑢𝑲𝑝𝑢𝒒̃𝑢. (7.178)

Using Proposition 6.4.1, we can show that in absence of external forces the
equilibrium (𝒒̄, ̇̄𝒒) = (𝒒∗, 𝟎) is globally asymptotically stable.

Regarding control objective (iii), we conclude from
𝜕2𝑒
𝜕𝑞2𝑢𝑖

=
𝜕𝜓
𝜕𝜑1𝑖

(𝜑1𝑖) +
𝜕𝜓
𝜕𝜑1𝑖

(𝜑2𝑖) (7.179)

and Assumption 7.3.1 that increasing joint deflection values 𝜑𝑖𝑗 result in
increasing link stiffness values. The effect of increasing the link stiffness
without shifting the equilibrium position of the link is commonly referred to
as co-contraction. Let us exploit this effect to achieve a desired (passive) link
stiffness modifying (7.177) to include a constant offset torque 𝝉0 such that

𝒖̄𝑎𝑗 = (−1)𝛿2𝑗𝝉0 −𝑲𝑣𝑎𝑗 ̇̄𝒒𝑎𝑗 , (7.180)
where 𝛿 is the Kronecker delta. Applying the controller (7.176) and (7.180)
to the EL system (7.166)–(7.169) results in a closed-loop system with the
following equilibrium conditions in absence of external forces

𝜕∗

𝜕𝒒̄𝑢
=𝟎, (7.181)

𝜕∗

𝜕𝒒̄𝑎𝑗
=(−1)𝛿2𝑗𝝉0. (7.182)

Considering
𝜕∗

𝜕𝒒̄𝑢
= −

∑

𝑗

𝜕𝑒𝑗
𝜕𝝋̄𝑗

+
[

𝑲𝑝𝑢𝒒̃𝑢
]T, (7.183)

𝜕∗

𝜕𝒒̄𝑎𝑗
=
𝜕𝑒
𝜕𝝋̄𝑗

, (7.184)

we can rewrite the equilibrium conditions (7.181) and (7.182) as
𝜕𝑒
𝜕𝝋̄𝑗

=(−1)𝛿2𝑗𝝉0, (7.185)
[

𝑲𝑝𝑢𝒒̃𝑢
]T =𝟎, (7.186)

which implies that 𝒒̃𝑢 = 𝟎 at equilibrium. Moreover, knowing that the compo-
nents of 𝜕𝑒

𝜕𝜑𝑗𝑖
are strictly monotonic increasing functions of the 𝜑̄𝑗𝑖, it is clear
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that the system of 𝑛 equations
𝜓1𝑖(𝜑̄1𝑖) = 𝜏0𝑖 , 𝜓2𝑖(𝜑̄2𝑖) = −𝜏0𝑖 (7.187)

uniquely determines the 𝑛 equilibrium joint deflections 𝜑0
𝑗𝑖, see also Fig. 7.9

for a visual argument.

𝜑𝑗𝑖𝜑̄0
𝑗𝑖

𝜓𝑗𝑖

𝜕2𝑒𝑗
𝜕𝜑̄2𝑗𝑖

(𝜑𝑗𝑖)

1
2
𝜕𝑔
𝜕𝑞𝑢𝑖

(𝒒0𝑢)

𝜑𝑗𝑖𝜑̄0
𝑗𝑖

𝜏0𝑖

𝜓𝑗𝑖(𝜑0
𝑗𝑖)

𝜓𝑗𝑖(𝜑̄0
𝑗𝑖)

Link stiffness

Figure 7.9: Exemplary torque and stiffness
profiles.

Relation (7.192) tells us the connection between the offset force and the
joint deflections at equilibrium. Let use this information to impose a desired
passive link stiffness through an appropriate choice of 𝝉0. The connection
between the 𝜑𝑗𝑖 and 𝜑̄𝑗𝑖 is given by the coordinate transforming equations
(5.78). Evaluating (5.29b), under the constraint equations (7.174), gives

𝜓1𝑖(𝜑1𝑖) + 𝜓2𝑖(𝜑2𝑖) =𝜓1𝑖(𝜑̄1𝑖) + 𝜓2𝑖(𝜑̄2𝑖) + 𝑢̄𝑢𝑖, (7.188)
𝜓1𝑖(𝜑1𝑖) − 𝜓2𝑖(𝜑2𝑖) =𝜓1𝑖(𝜑̄1𝑖) − 𝜓2𝑖(𝜑̄2𝑖). (7.189)

Noticing from (7.176) that at equilibrium, we have that 𝑢̄𝑖 = 𝜕𝑔
𝜕𝑞𝑢𝑖

(𝒒0𝑢), such
that (7.188)–(7.189), evaluated at the equilibrium, can be rewritten as

𝜓1𝑖(𝜑0
1𝑖) =𝜓1𝑖(𝜑̄0

1𝑖) +
1
2

𝜕𝑔
𝜕𝑞𝑢𝑖

(𝒒0𝑢), (7.190)

𝜓2𝑖(𝜑0
2𝑖) =𝜓2𝑖(𝜑̄0

2𝑖) +
1
2

𝜕𝑔
𝜕𝑞𝑢𝑖

(𝒒0𝑢), (7.191)

revealing the desired connection between 𝜑0
𝑗𝑖 and 𝜑̄0

𝑗𝑖, as indicated in Fig. 7.9.
Knowing that (7.192) must hold at equilibrium, we can rewrite (7.190)–(7.191)
as a relation between the 𝜑0

1𝑖 and 𝜏0𝑖 . Knowing that the equilibrium deflections
𝜑0
𝑖𝑗 determine the corresponding link stiffness values according to (7.179), we

can adjust the 𝜏0𝑖 to a achieve desired stiffness values.
From Fig. 7.9, it is also clear that we can achieve a desired joint co-

contraction by specifying an appropriate 𝑢̄𝑗𝑖. The equilibrium state is given
by

𝑞𝑢𝑖 = 0; 𝜑̄𝑗𝑖 = 𝜑̄0
𝑗𝑖. (7.192)

To show global asymptotic stability of (7.192), we can follow mutatis mutandi
the proof of Proposition 6.4.1.

7.4 Visco-Elastic Actuators

This section reports extensions of the ESP design idea to a robot with visco-
elastic actuators. We shall refer to the proposed designs as visco-elastic struc-
ture perserving (VESP) control. Despite their similarity in the physical struc-
ture, SEA and visco-elastic actuators have different control properties. Con-
sidering the link side position as an output, the SEA dynamics has a relative
degree of 4, while it is at most 3 for a visco-elastic joint [29]. Applying the[29]: De Luca et al. (2005), “On the control

of robots with visco-elastic joints” ESP control concept to a visco-elastic actuator leads, in general, to dynamic
state feedback. However, we show that if the generalized elastic force is a
linear function of the spring deflections, motion tracking of the link side vari-
ables is achievable without dynamic feedback. Similarly to SEA robots, a
practical advantage of highly compliant visco-elastically actuated systems
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is the mechanical robustness against external impacts, since the system’s in-
herent visco-elastic elements in the power-train act as a low-pass filter on
external forces. Thus, at the moment of impact, the system does not suffer
from bandwidth limitations of any real controller implementation.

Section 7.4.1 introduces the model under consideration and the corre-
sponding QFA form. Section 7.4.2 reports solutions to joint space motion
tracking problem. Experimental evaluation of this new approach on a visco-
elastic robot joint is reported in Chapter 11. The desired trajectory is assumed
to satisfy the following.

Assumption 7.4.1 The desired link trajectory 𝒒∗𝑢(𝑡) is bounded and at least
three times continuously differentiable.

7.4.1 Model and Quasi-Fully Actuated Representation

Using the set of coordinates introduced in Section 7.2.1,
𝒒 = (𝒒𝑢, 𝒒𝑎) = (𝑞𝑢1,… , 𝑞𝑢𝑛𝑢 , 𝑞𝑎1,… , 𝑞𝑎𝑛𝑢 ), (7.193)

and the axillary variables
𝝋 = 𝒒𝑎 − 𝒒𝑢, (7.194)

let us consider the following model of an ASR with visco-elastic joints
Σ∶ (𝒒𝑢)𝒒̈ + (𝒒𝑢, 𝒒̇𝑢) + 𝒈(𝒒𝑢) + 𝒉(𝝋, 𝝋̇, 𝑡) = 𝒖. (7.195)

Note that compared to the ASR model (7.14), the subsystem coupling force
contains a viscous damping term of the form

𝒉(𝝋, 𝝋̇, 𝑡) =
[

−𝑫(𝑡)𝝋̇
𝑫(𝑡)𝝋̇

]

, (7.196)
(7.197)

where𝑫(𝑡) ∈ ℝ𝑛𝑢×𝑛𝑢 , is a diagonal, positive definite matrix which is assumed
to be adjustable and thus explicitly time-dependent. In the following, it will
be assumed that 𝑫̇(𝑡) exists and that it is bounded. Using

𝝉(𝝋, 𝝋̇, 𝑡) =𝝍(𝝋) +𝑫(𝑡)𝝋̇, (7.198)
we can split (7.195) into

Σ𝑢 ∶ 𝑴(𝒒𝑢)𝒒̈𝑢 + 𝑪(𝒒𝑢, 𝒒̇𝑢)𝒒̇𝑢 + 𝒈(𝒒𝑢) −𝚿(𝝋) − 𝒉(𝝋̇, 𝑡) = 𝑢, (7.199)
Σ𝑎 ∶ 𝑩𝒒̈𝑎 + 𝝉(𝝋, 𝝋̇, 𝑡) = 𝑎. (7.200)

Consider the new set of coordinates
𝒒̄ = (𝒒̄𝑢, 𝒒̄𝑎) = (𝑞𝑢1,… , 𝑞𝑢𝑛𝑢 , 𝑞𝑎1,… , 𝑞𝑎𝑛𝑢 ), (7.201)

and auxiliary variables
𝝋̄ = 𝒒̄𝑎 − 𝒒̄𝑢, (7.202)
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with 𝒒𝑢 ≡ 𝒒̄𝑢. Now, let us aim for the following QFA representation of
(7.193)

(𝒒̄𝑢) ̈̄𝒒 + (𝒒̄𝑢, ̇̄𝒒) + 𝒈(𝒒̄𝑢) +𝚿(𝝋̄) = ̄, (7.203)
with

̄ = ′ + 𝒖̄ =
[

′
𝑢

′
𝑎

]

+
[

𝒖̄𝑢
𝒖̄𝑎

]

, (7.204)

where 𝒖̄𝑢 is assumed to be a sufficiently smooth function of 𝒒𝑢, 𝒒̇𝑢 and 𝑡.
Splitting the dynamics (7.203)

Σ̄𝑢 ∶ 𝑴(𝒒̄𝑢) ̈̄𝒒𝑢 + 𝑪(𝒒̄𝑢, ̇̄𝒒𝑢) ̇̄𝒒𝑢 + 𝒈(𝒒̄𝑢) + 𝝉(𝝋̄, ̇̄𝝋, 𝑡) = ̄𝑢 (7.205)
Σ̄𝑎 ∶ 𝑩 ̈̄𝒒𝑎 + 𝝉(𝝋̄, ̇̄𝝋, 𝑡) = ̄𝑎 (7.206)

and demanding equivalence of theΣ𝑢 and Σ̄𝑢 dynamics, we get from comparing
(7.199) and (7.205) that

𝝉(𝝋, 𝝋̇, 𝑡) = 𝝉(𝝋̄, ̇̄𝝋, 𝑡) + 𝒖̄𝑢. (7.207)
Since 𝑫 > 0, we can rewrite (7.207) as

𝒒̇𝑎 = ̇̄𝒒𝑎 + 𝝁1,

𝝁1 =𝑫−1[𝝍(𝝋̄) − 𝝍(𝝋) + 𝒖̄𝑢
]

.
(7.208)

Next, deriving (7.208) with respect to time, we obtain

𝒒̈𝑎 = ̈̄𝒒𝑎 +
d
d𝑡
𝑫−1[𝝍(𝝋̄) − 𝝍(𝝋) + 𝒖̄𝑢

]

. (7.209)

In general, the differential relation, (7.208), between the original and virtual
coordinates cannot be solved in closed-form. In the following, whenever the
knowledge of 𝒒̄𝑎 is required, we assume it to be computed by numerical
integration of (7.208). Eventually, applying the coordinate transformation
(7.207) to (7.200) and making the substitutions (7.207)–(7.209) in (7.200),
we obtain

𝑩
[ ̈̄𝒒𝑎 + 𝝁̇1

]

+ 𝝉(𝝋̄, ̇̄𝝋, 𝑡) + 𝒖̄𝑢 = +′
𝑎 + 𝒖𝑎, (7.210)

and choosing the input transformation
𝒖𝑎 = 𝑩𝝁̇1 + 𝒖̄𝑢 + 𝒖̄𝑎 (7.211)

we get the desired result (7.205)–(7.206)

7.4.2 Joint Space Motion Tracking

The results presented in this section are based on [94]. It is convenient to
denote the tracking error

𝒒̃ = (𝒒̃𝑢, 𝒒̃𝑎); 𝒒̃𝑢 = 𝒒𝑢 − 𝒒∗𝑢(𝑡); 𝒒̃𝑎 = 𝒒̄𝑎, (7.212)
and introduce the additional set of variables

𝝋̄ = 𝒒̄𝑎 − 𝒒̃𝑢. (7.213)
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Joint Dynamics:
QFA form

𝑢̄𝑢𝑖
𝑞𝑎𝑖 𝑞𝑢𝑖

𝑖th rotor 𝑖th link
𝜏𝑖(𝜑̄𝑖, ̇̄𝜑𝑖, 𝑡)

b)

Joint Dynamics:
Monoarticular

𝑢̄𝑎𝑖

𝑞𝑎𝑖 𝑞𝑢𝑖

𝑖th rotor 𝑖th link
𝜏𝑖(𝜑𝑖, 𝜑̇𝑖, 𝑡)

a)

𝑢𝑎𝑖

Figure 7.10: The QFA form associated with
a visco-elastic joint.

𝑞𝑎𝑖 𝑞𝑢𝑖

𝑖th rotor 𝑖th link
𝜏𝑖(𝜑̄𝑖, ̇̄𝜑𝑖, 𝑡)

ESPi Control:
Link-side compliance & tracking

Figure 7.11: Closed-loop: the QFA form
enables a straightforward adoption of rigid
joint controllers.

Note that for the motion tracking case, we consider virtual deflections as
defined in (7.213), which are different from the previous definition in (7.202).
Following the design principles in Fig. 7.1, and inspired by the PD+ error
dynamics, let us aim for the error dynamics

(𝒒𝑢) ̈̃𝒒 + (𝒒𝑢, 𝒒̇𝑢) ̇̃𝒒 +(𝑡, 𝝋̄) +𝑣 ̇̃𝒒 +𝑝𝒒̃ = ′, (7.214)
with 𝑣 = diag(𝑲𝑣𝑢, 𝟎),𝑝 = diag(𝑲𝑝𝑢, 𝟎) ∈ ℝ𝑛×𝑛, where 𝑲𝑣𝑢,𝑲𝑝𝑢 are
constant, symmetric and positive definite matrices. A graphical representation
of (7.214) is given in Fig. 7.11. Splitting (7.214) into
Σ̄𝑢 ∶ 𝑴(𝒒̄𝑢) ̈̃𝒒𝑢 +

[

𝑪(𝒒̄𝑢, ̇̄𝒒𝑢) +𝑲𝑣𝑢
] ̇̃𝒒𝑢 + 𝝉(𝝋̄, ̇̄𝝋, 𝑡) +𝑲𝑝𝑢𝒒̃𝑢 = ̄𝑢 (7.215)

Σ̄𝑎 ∶ 𝑩 ̈̃𝒒𝑎 + 𝝉(𝝋̄, ̇̄𝝋, 𝑡) = ̄𝑎 (7.216)
and considering that 𝒒𝑢 ≡ 𝒒̄𝑢, it is clear that equivalence of the subsystem
dynamics (7.199) and (7.215) is given if

𝝉(𝝋, 𝝋̇, 𝑡) = 𝝉(𝝋̄, ̇̄𝝋, 𝑡) + 𝒖̄𝑢, (7.217)
𝒖̄𝑢 =𝑴𝒒̇∗𝑢 + 𝑪𝒒̇

∗
𝑢 + 𝒈𝑢(𝒒𝑢) −𝑲𝑣𝑢 ̇̃𝒒𝑢 −𝑲𝑝𝑢𝒒̃𝑢. (7.218)

Solving (7.217) for the new velocities ̇̄𝒒𝑎, we get
𝒒̇𝑎 = ̇̄𝒒𝑎 + 𝝁1, (7.219)
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with
𝝁1 =𝒒̇∗𝑢 +𝑫

−1[𝝍(𝝋̄) − 𝝍(𝝋) + 𝒖̄𝑢
]

. (7.220)
Finally, making the substitutions (7.200), (7.217) and (7.219), we get

𝑩( ̈̄𝒒𝑎 + 𝝁̇1) + 𝝉(𝝋̄, ̇̄𝝋, 𝑡) + 𝒖̄𝑢 = 𝒖𝑎, (7.221)
and choosing the control law

𝒖𝑎 = 𝑩𝝁̇1 + 𝒖̄𝑢, (7.222)
gives the desired result (7.216).

Proposition 7.4.1 (Joint-Space Tracking via ESPi Control) Consider the
system (7.195) in closed-loop with the controller (7.222). Then (7.214)
defines an output strictly passive operator ′ → ̇̃𝒒. In absence of external
forces ′, the equilibrium point 𝒒̃ = 𝟎 is uniformly stable. Further, the
velocities ̇̃𝒒 converge to zero as 𝑡 → ∞.

The proof follows from Proposition 7.4.3 observing that the closed-loop dy-
namics (7.214) can be considered as a special case of (7.230)–(7.231) with
𝑫̄ = 𝑫,𝑲𝑣𝑎 = 𝟎. Since Proposition 7.4.1 considers the case of nonlinear
springs, the storage function (7.247), containing 𝑒, has to be modified ac-
cordingly.

A Simplified Control Law (Part I)

Looking at control law (7.222) the question that may arise whether we can
achieve a closed-loop behavior that is similar to (7.214), but without the
requiring explicit knowledge of the new motor states 𝒒̄𝑎, ̇̄𝒒𝑎. From the imple-
mentation point of view, this would no longer require numerical integration
of the coordinate transformation (7.219) to obtain 𝒒̄𝑎. Considering systems
with a subsystem coupling force is of the form

𝝉(𝝋, 𝝋̇, 𝑡) = 𝑫(𝑡)𝝋̇ +𝑲𝝋, (7.223)
where𝑲 ∈ ℝ𝑛𝑢 is a diagonal, constant and positive definite matrix containing
the joint stiffness values. Knowing that 𝑫̇−1 = −𝑫−1𝑫̇𝑫−1 and observing
that for coupling forces of the form (7.223) the coordinate transformation
(7.217) simplifies to

𝑲(𝒒̄𝑎 − 𝒒𝑎) + 𝒖̄𝑢 = 𝑫(𝑡)[𝒒̇𝑎 − ̇̄𝒒𝑎], (7.224)
we can separate 𝝁̇1 as followsNote that (7.224) allows replacing elastic

forces with damper forces and vice versa.
𝝁̇1 =𝝁2 +𝑲𝑣𝑎 ̇̄𝒒𝑎, (7.225)

with
𝝁2 =𝒒̈∗𝑢 −𝑫

−1 ̇̄𝒖𝑢 − 𝑩−1𝑲𝑣𝑎𝒒̇𝑎, (7.226)
𝑲𝑣𝑎 =𝑩𝑫−1[𝑫̇ +𝑲

]

, (7.227)
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Figure 7.12: Closed-loop dynamics.

where 𝝁2 is dependent on only the physical coordinates and explicitly on
time

Identifying the last term in (7.225) as a possibly favorable damping term
suggest the following reduced control law

𝒖𝑎 = 𝑩𝝁2 + 𝒖̄𝑢, (7.228)
Considering (7.225) and continuing from (7.221) it is easy to see that applying
control law (7.228) to (7.200) gives

𝑩 ̈̄𝒒𝑎 +𝑲𝑣𝑎 ̇̄𝒒𝑎 + 𝝉(𝝋̄, ̇̄𝝋, 𝑡) = 𝟎. (7.229)
The final closed-loop system is constituted by (7.215) and (7.229). Comparing
the rotor dynamics (7.216) and (7.229), we see that latter contains an addi-
tional (explicitly time-varying) damping term acting on the rotor inertias as
highlighted in Fig. 7.12. Finally, to ensure that 𝑲𝑣𝑎 is positive definite, we
must limit the damping factor rate of change such that 𝑫̇ ≥ −𝑲 . In summary,
we conclude the following.

Proposition 7.4.2 (Simplified Joint-space tracking—restricted damper rate)
Consider the system (7.195), with the subsystem coupling force of the form
(7.223), in closed-loop with the controller (7.228). Suppose that 𝑫̇ ≥ −𝑲 ,
then (7.215) and (7.229) defines an output strictly passive operator ′ → ̇̃𝒒.
In absence of external forces ′, the equilibrium point 𝒒̃ = 𝟎 is uniformly
stable. Further, the velocities ̇̃𝒒 converge to zero as 𝑡→ ∞.

The proof follows from Proposition 7.4.3 observing that the closed-loop dy-
namics (7.214) can be considered as a special case of (7.230)–(7.231) with
𝑫̄ = 𝑫. It it worth remarking that the condition 𝑫̇ ≥ −𝑲 can ensured in
practice by limiting the damper adjustment rate accordingly.

Remark 7.4.1 An interesting aspect of the controller (7.228) is the absence
of new states 𝒒̄𝑎, ̇̄𝒒𝑎 in the control law; this significantly simplifies its im-
plementation. However, they appear in the formulation of the closed-loop
dynamics, and consequently are used for deriving a stability argument (see
proof of Proposition 7.4.3).

A Simplified Control Law (Part II)

This section shows that the restriction on the damper rate 𝑫̇ in control law
(7.222) can be avoided by aiming for a desired closed-loop dynamics with time-
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dependent motor inertias and a subsystem coupling force 𝝉̄ that is different
from the original one 𝝉 and

𝑴(𝒒̄𝑢) ̈̃𝒒𝑢 +
[

𝑪(𝒒̄𝑢, ̇̄𝒒𝑢) +𝑲𝑣𝑢
] ̇̃𝒒𝑢 +𝑲𝑝𝑢𝒒̃𝑢 + 𝝉̄(𝝋̄, ̇̄𝝋, 𝑡) = ̄′

𝑢, (7.230)
𝑩̄(𝑡) ̈̃𝒒𝑎 +

[

𝑪̄(𝑡) + 𝑲̄𝑣𝑎(𝑡)
] ̇̃𝒒𝑎 + 𝝉̄(𝝋̄, ̇̄𝝋, 𝑡) = ̄′

𝑎, (7.231)
with the notation (7.212)–(7.213), 𝝉 defined as in (7.223) and

𝝉̄(𝝋̄, ̇̄𝝋, 𝑡) =𝑫̄(𝑡) ̇̄𝝋 +𝑲𝝋̄, (7.232)
𝑨(𝑡) =𝑫(𝑡)−1𝑫̄(𝑡), (7.233)
𝑲̄𝑣𝑎 =𝑩𝑫−1(𝑫̇𝑨 +𝑲

)

, (7.234)
𝑩̄(𝑡) =𝑨(𝑡)T𝑩𝑨(𝑡), (7.235)
𝑪̄(𝑡) =𝑨(𝑡)T𝑩𝑨̇(𝑡), (7.236)

where 𝑫̄(𝑡) ∈ ℝ𝑛𝑢×𝑛𝑢 is as diagonal and positive definite matrix with a bounded
time derivative ̇̄𝑫(𝑡), and further satisfying

𝑫̇𝑫−1𝑫̄ +𝑲 > 0 (7.237)
It is easy to see that condition (7.237) guarantees positive definiteness of 𝑲𝑣𝑎.
Further, notice thatNote that (7.238) is equivalent to the state-

ment that 𝑩̇ − 2𝑪̄ is a skew-symmetric ma-
trix. ̇̄𝑩 = 𝑪̄ + 𝑪̄T. (7.238)

Next, we can achieve equivalence of (7.199) and (7.230) by modifying the
coordinate transformation (7.217) to

𝝉(𝝋, 𝝋̇, 𝑡) = 𝝉̄(𝝋̄, ̇̄𝝋, 𝑡) + 𝒖̄𝑢, (7.239)
Solving (7.217) for the new velocities ̇̄𝒒𝑎, we get

𝒒̇𝑎 = 𝑨 ̇̄𝒒𝑎 + 𝝁1, (7.240)
where

𝝁̄1 =𝑨𝒒̇∗𝑢 + (𝑰 −𝑨)𝒒̇𝑢 +𝑫−1[𝑲(𝒒̄𝑎 − 𝒒𝑎) + 𝒖̄𝑢
]

, (7.241)
has additional terms compared to (7.220). Next, substituting (7.240) into
(7.200) gives the preliminary dynamics

𝑩𝑨 ̈̄𝒒𝑎 + 𝑩𝑨̇ ̇̄𝒒𝑎 + 𝑩𝝁̇1 + 𝝉(𝝋, 𝝋̇, 𝑡) = 𝒖𝑎. (7.242)
Considering (7.232)–(7.234) and (7.239), we can be decompose the undesired
term 𝝁1 as follows

̇̄𝝁1 =𝝁̄2 + 𝑩−1𝑲̄𝑣𝑎 ̇̄𝒒𝑎,

𝝁̄2 =
d
d𝑡
[

𝑨𝒒̇∗𝑢 − (𝑰 −𝑨)𝒒̇𝑢
]

+𝑫−1[𝑫̇(𝑰 −𝑨)𝒒̇𝑢 + ̇̄𝒖𝑢
]

− 𝑩−1𝑲𝑣𝑎𝒒̇𝑎,

(7.243)

with 𝑲𝑣𝑎 and 𝑲̄𝑣𝑎 defined as above. Now, pre-multiplying (7.242) with 𝑨T,
and using (7.243) to factor out the terms containing 𝒒̄𝑎 and ̇̄𝒒𝑎, we get

𝑩̄ ̈̄𝒒𝑎 +
[

𝑪̄ +𝑨T𝑲𝑣𝑎
] ̇̄𝒒𝑎 = 𝑨T[𝒖𝑎 − 𝑩𝝁̄2 − 𝝉(𝝋, 𝝋̇)

]

. (7.244)
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Now it is easy to see that using (7.217) and applying the following control
input to (7.244)

𝒖𝑎 = 𝑩𝝁̄2 +
[

𝑰 −𝑨−T]𝝉(𝝋, 𝝋̇, 𝑡) +𝑨−T𝒖̄𝑢, (7.245)
achieves the desired equivalence of (7.200) and (7.231). Making the substitu-
tion (7.243) and (7.245) it is clear that the resulting control law is independent
of the virtual coordinates 𝒒̄𝑎 and ̇̄𝒒𝑎. Thus, its implementation does not require
dynamic state feedback.

Remark 7.4.2 Compared to (7.228), the controller (7.245) does not impose
a constraint on the physical damper rate 𝑫̇. In fact, the constraint has been
shifted to the virtual damper rate ̇̄𝑫, c.f. (7.237). However, if 𝑫̇ ≥ −𝑲 ,
then we can set 𝑫̄(𝑡) equal to 𝑫(𝑡), which ensures that the structure of the
subsystem coupling force is preserved, i.e. 𝝉̄ = 𝝉 . Observing that 𝑨 = 𝑰 in
this case, we see that the control law (7.245) significantly simplifies and
feedback of 𝒒̈𝑢 is no longer required. This suggests the following virtual
damper variation

𝑫̄(𝑡) = 𝑫(𝑡), for 𝑫̇ ≥ −𝑲 ;
𝑫̄(𝑡) such that (7.237), otherwise.

It is worth noting that in the first case the control law (7.245) degenerates to
the one in (7.228). Observing that 𝑫̄(𝑡) ≡ 𝑫(𝑡) ⇐⇒ 𝑨 = 𝑰 and𝑲𝑣𝑎 ≡ 𝑲̄𝑣𝑎,
it immediately follows that 𝝁2 ≡ 𝝁̄2 and, thus, equivalence of the control
laws (7.245) and (7.228).

Remark 7.4.3 The rotor dynamics (7.231) shares some similarity with the
rotor dynamics associated with the ESP+ controller, (7.114). In both cases
the “pseudo Jacobian” 𝑨 of the coordinate transforming equations appears
in the congruence transformation of the motor inertia matrix, compare
(7.235) and (7.109).

The central properties of the closed-loop system (7.230)–(7.231) are summa-
rized in the following.

Proposition 7.4.3 (Simplified Joint-space tracking—unrestricted damper
rate) Consider the system (7.195), with the subsystem coupling force of
the form (7.223), in closed-loop with the controller (7.245). Suppose that
(7.237) is satisfied, then (7.230)–(7.231) defines an output strictly passive
operator ′ → ̇̃𝒒. In absence of external forces ′, the equilibrium point
𝒒̃ = 𝟎 is uniformly stable. Further, the velocities ̇̃𝒒 converge to zero as
𝑡 → ∞.

Proof. The physically motivated nature of the closed-loop system (7.230)–
(7.231) suggests the following subsystem storage functions

𝑆𝑢 =
1
2
[ ̇̃𝒒𝑢𝑴 ̇̃𝒒𝑢 + 𝒒̃T

𝑢𝑲𝑝𝑢𝒒̃𝑢
]

, (7.246)
𝑆𝑎 =

1
2
̇̃𝒒T
𝑎 𝑩̄ ̇̃𝒒𝑎 + 𝑒. (7.247)

Computing the time-derivatives of (7.230) and (7.231) along the solutions of
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(7.230)–(7.230) gives
𝑆̇𝑢 = − ̇̃𝒒T

𝑢𝑲𝑣𝑢 ̇̃𝒒𝑢 + ̇̃𝒒T
𝑢
[

𝝉̄(𝝋̄, ̇̄𝝋, 𝑡) + ̄′
𝑢
]

, (7.248)
𝑆̇𝑎 = − ̇̃𝒒T

𝑎𝑲𝑣𝑎 ̇̃𝒒𝑎 − ̇̃𝒒T
𝑎
[

𝝉̄(𝝋̄, ̇̄𝝋, 𝑡) − ̄′
𝑎
]

+ 𝝍T(𝝋̄) ̇̄𝝋, (7.249)
which motivates choosing the storage function

𝑆 = 𝑆𝑢 + 𝑆𝑎. (7.250)
Combining (7.248) and (7.249), we get

𝑆̇ = − ̇̃𝒒T
𝑢𝑲𝑣𝑢 ̇̃𝒒𝑢 − ̇̃𝒒T

𝑎𝑲𝑣𝑎 ̇̃𝒒𝑎 − ̇̄𝝋T𝑫̄ ̇̄𝝋 + ̇̃𝒒T̄′, (7.251)
which shows that (7.230)–(7.231) defines an output strictly passive map ̄′ →
̇̃𝒒𝑢 and completes the first part of the proof. Let us continue with demonstrating
stability in absence of external forces. Knowing that 𝑆 is a positive definite
function of the states 𝒒̃, ̇̃𝒒, and from (7.251) that 𝑆̇ is a negative semi-definite
function, we conclude that 𝑆 qualifies as Lyapunov function, and subsequently
that the closed-loop system is stable. In order to extent the statement to global
uniform stability, we further have to show that 𝑆 is decrescent and radially
unbounded. Former is guaranteed to through the following time-invariant
function that upper bounds 𝑆

𝑆∗ =1
2

[

min
𝒒𝑢∈ℝ𝑛𝑢

𝜆
(

𝑴(𝒒𝑢)
)

||
̇̃𝒒𝑢||2 + min

𝑡∈ℝ+
𝜆
(

𝑩̄(𝑡)
)

||
̇̃𝒒𝑎||2

+ 𝒒̃T
𝑢𝑲𝑝𝑢𝒒̃𝑢

]

+ 𝑒(𝝋̄).
(7.252)

The radial unboundedness of 𝑆 follows directly from the positive definiteness
of 𝑴 , 𝑩̄,𝑲𝑝𝑢 and the properties of 𝑒, c.f. Assumption 7.2.1. Further, the
boundedness of 𝑩̄ is ensured by the boundedness of 𝑫̇ and the positive defi-
niteness of 𝑫. Note that the coordinate transforming equations (7.239) can be
viewed as a stable first-order differential equation in 𝝋

𝝋̇ +𝑫−1(𝑡)𝑲𝝋 = 𝒓; 𝒓 = 𝑫−1(𝑡)
[

𝑫̄(𝑡) ̇̄𝝋 +𝑲𝝋̄ + 𝒖̄𝑢
]

, (7.253)
with 𝒓 as an input. For bounded initial conditions, the boundedness of the input
𝒓 guarantees boundedness of 𝝋̇ and 𝝋. In fact, using 1∕2𝝋T𝑲𝝋 as storage
function, it is easy to see that (7.239) defines an OSP operator 𝒓 → 𝝋 which
implies 2-stability.

Let us continue with showing convergence of the velocity error. First note
that

𝑆̈ = −2
( ̇̃𝒒T

𝑢𝑲𝑣𝑢 ̈̃𝒒𝑢 + ̇̃𝒒T
𝑎𝑲𝑣𝑎 ̈̃𝒒𝑎 + ̇̄𝝋T ̇̄𝑫 ̈̄𝝋

)

− ̇̄𝝋T𝑫̄ ̇̄𝝋. (7.254)
Knowing that 𝒒̃, ̇̃𝒒 are bounded and using the properties of𝑴 , 𝑩̄, we see from
(7.230)–(7.231) that ̈̃𝒒 is bounded as well. Concluding that 𝑆̈ is bounded, we
deduce that 𝑆̇ is uniformly continuous. Considering (7.251) and that 𝑆 has
a finite limit as 𝑡 → ∞, we can invoke Barbalat’s Lemma to complete the
proof. ■
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7.5 Stability and Passivity Proofs

This section reports proofs for the main stability and passivity results of this
chapter. In the following, when talking about the boundedness of vectors and
matrices it is referred to in the sense of bounded Euclidean norms, ||.||, and
bounded eigenvalues, respectively. Let Ω be a domain and 𝐼 a set. Consider a
quadratic matrix 𝑨(𝑡,𝒙), defined for all (𝑡,𝒙) ∈ 𝐼 × Ω, then 𝜆̄(𝑨) and 𝜆̄(𝑨)
denote its minimum and maximum eigenvalue such that

𝜆̄(𝑨(𝑡,𝒙)) ≜ inf
𝑡∈𝐼,𝒙∈Ω

𝜆(𝑨(𝑡,𝒙)), (7.255)
𝜆̄(𝑨(𝑡,𝒙)) ≜ sup

𝑡∈𝐼,𝒙∈Ω
𝜆(𝑨(𝑡,𝒙)). (7.256)

Analogously, 𝜎̄(𝑨) and 𝜎̄(𝑨) denote the minimum and maximum singular
value of 𝑨, respectively.

Remark 7.5.1 In the the closed-loop dynamics reported in this chapter,
the error coordinates 𝒙̃ or 𝒒̃, and joint coordinate 𝒒̄ often appear together in
the same equation for better readability. Notice that it is straightforward to
rewrite the closed-loop dynamics entirely in terms of the error coordinates.
Using (7.75), or (7.135) and (7.5), we either have that

𝑥(𝒒̄𝑢) =𝑥
(

𝒒̃𝑢 + 𝒒∗𝑢(𝑡)
) (7.257)

𝑥(𝒒̄𝑢, ̇̄𝒒𝑢) =𝑥
(

𝒒̃𝑢 + 𝒒∗𝑢(𝑡), ̇̃𝒒𝑢 + 𝒒̇
∗
𝑢(𝑡)

)

. (7.258)
or

𝑥(𝒒̄𝑢) =𝑥
(

𝒉−1𝑢
[

𝒙̃𝑢 + 𝒙∗𝑢(𝑡)
]) (7.259)

𝑥(𝒒̄𝑢, ̇̄𝒒𝑢) =𝑥
(

𝒉−1𝑢
[

𝒙̃𝑢 + 𝒙∗𝑢(𝑡)
]

,𝑱−1
𝑢
[ ̇̃𝒙𝑢 + 𝒙̇∗𝑢(𝑡)

])

. (7.260)
Notice that through the explicit time-dependency of the  and  matrices
the closed-loop dynamics are non-autonomous systems. Throughout the
proofs of this text, we shall keep a “mixed notation” to improve readability.

Proof of Proposition 7.2.1 and Proposition 7.2.3

The following section provides a proof of Proposition 7.2.1 and 7.2.3. Notice
that only the ESP case, that is𝑲𝑝𝑎 ≻ 0,𝑲𝑝𝑢, is considered. The ESP+ case can
be treated proceeding mutatis mutandis to arguments below, and only requires
substituting the potential energy term 𝒒̃T

𝑎𝑲𝑝𝑎𝒒̃𝑎 with 𝒒̃T
𝑢𝑲𝑝𝑢𝒒̃𝑢 in storage

and Lyapunov functions. The following proof evolves around verifying the
conditions of Matrosov’s Theorem. To verify condition (iv), we shall rely
on using Lemma C.1.5. Most of the computations are straight forward, but
tedious at times. This is especially true when it comes to checking condition
(iv.a) of Lemma C.1.5. In general, the proof relies heavily on the application
of the boundedness theorem, Lemma D.3.3 and matrix norm properties.

Matrosov’s Theorem and Lemma D.3.3
by Paden and Panja are reprinted in Ap-
pendix C.

For better readability, we will neglect the arguments of all system matrices
and introduce the state vector 𝒙 = (𝒒̃, ̇̃𝒒) with the components defined as in
(7.75). Let Ω be an open connected region in ℝ2𝑛. Let us consider the storage
function (7.127) as an energy-based and time-variant Lyapunov function
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candidate 𝑉 ∶ [0,∞) × Ω → ℝ

𝑉 (𝑡,𝒙) = 𝑆(𝒒̃, ̇̃𝒒, 𝑡), (7.261)
where the set Ω can be chosen arbitrarily large. Clearly, 𝑉 is lower bounded
since 𝑴 , 𝑩̄,𝑲𝑝𝑎 and the elastic potential 𝑒 are positive definite matrices
and functions, respectively (cf. Prop. 1, Assumption 7.2.1). Thus, V is pos-
itive definite in 𝒙. Later in the text, 𝑉 is required to be at least three times
continuously differentiable. Knowing from (7.128) that

𝑉̇ (𝑡,𝒙) = − ̇̃𝒒T𝑣 ̇̃𝒒, (7.262)
we conclude from the positive definiteness of 𝑣 that 𝑉̇ is negative semi-
definite. Thus, 𝑉 qualifies as a Lyapunov function for the closed-loop system
(7.114).

Ad Condition (i) of Matrosov’s Theorem. Condition (i) of Matrosov’s
Theorem can be satisfied by choosing upper and lower bounds for 𝑉 as fol-
lows

𝛼(𝒙) = 1
2

(

𝜆̄(𝑴)|| ̇̃𝒒𝑢||2 + 𝜆̄(𝑩̄)|| ̇̃𝒒𝑎||2 + 𝜆̄(𝑲𝑝𝑎)||𝒒̃𝑎||2
)

+ 𝑈𝑠(𝒒̃𝑎 − 𝒒̃𝑢)

𝛽(𝒙) = 1
2

(

𝜆̄(𝑴)|| ̇̃𝒒𝑢||2 + 𝜆̄(𝑩̄)|| ̇̃𝒒𝑎||2 + 𝜆̄(𝑲𝑝𝑎)||𝒒̃𝑎||2
)

+ 𝑈𝑠(𝒒̃𝑎 − 𝒒̃𝑢)

and invoking [96, Lemma 4.3], which states that there exist class  functions
𝑎 and 𝑏 such that 𝑎(||𝒙||) ≤ 𝛼(𝒙) and 𝑏(||𝒙||) ≥ 𝛽(𝒙). In fact, 𝑎 and 𝑏 will
be of class ∞, since 𝛼 and 𝛽 are radially unbounded. Note that 𝜆̄(𝑩̄) > 0 is
guaranteed by Lemma 7.2.2.

Lemma 7.5.1 The upper and lower bounds on the Lyapunov function
(7.261), in form of the class K functions 𝑎 and 𝑏, together with the negative
semi-definiteness of 𝑉̇ , imply that the closed-loop system (7.114) is globally,
uniformly stable.

Ad Condition (ii) of Matrosov’s Theorem. In case 𝑲𝑣𝑢 is time-invariant,
we can simply choose 𝑉 ∗(𝒙) = 𝑉̇ (𝑡,𝒙). Otherwise, we can select

𝑉 ∗(𝒙) = −𝜆̄
(

𝑲𝑣𝑢(𝑡, 𝒒̃)
)

||
̇̃𝒒𝑢||2 − ̇̃𝒒T

𝑎𝑲𝑣𝑎 ̇̃𝒒𝑎, (7.263)
which satisfies Condition (ii). We now can deduce the problematic set where
𝑉̇ becomes zero, namely 𝐸 = {𝒙 ∈ Ω ∶ ̇̃𝒒𝑢 = ̇̃𝒒𝑎 = 𝟎}.

Ad Condition (iii) of Matrosov’s Theorem. We denote the function 𝑊 ∶
[0,∞) × Ω → ℝ as

𝑊 (𝑡,𝒙) ≜ 𝑉 (𝑡,𝒙). (7.264)
To ensure that𝑊 satisfies Condition (iii) we have to establish the boundedness
of |𝑊 (𝑡,𝒙)|. From (7.262) we get
𝑊 (𝑡,𝒙) = −

(

2 ̇̃𝒒T
𝑢𝑲𝑣𝑢 ̈̃𝒒𝑢 + ̇̃𝒒T

𝑢 ̇𝑣𝑢 ̇̃𝒒𝑢 + 2 ̇̃𝒒T
𝑎𝑲𝑣𝑎 ̈̃𝒒𝑎 + ̇̃𝒒T

𝑎 𝑲̇𝐷 ̇̃𝒒𝑎
)

. (7.265)
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We restrict Ω to be an arbitrarily large, but bounded set. As such, for any
starting condition 𝒙(𝑡0) ∈ Ω, 𝑡0 ≥ 0, Prop. 7.5.1 implies that 𝒙(𝑡) is bounded
∀𝑡 ∈ [𝑡0,∞). Thus, we can conclude directly that all RHS terms of (7.265),
apart from the one containing ̈̃𝒒𝑢 and ̈̃𝒒𝑎, are bounded.

Next, let us show the boundedness of ̈̃𝒒𝑢 and ̈̃𝒒𝑎. Since 𝑴 is continuously
differentiable and 𝒒𝑢 is bounded, the tensors 𝜕𝑴(𝒒𝑢)

𝜕𝒒𝑢
and 𝜕2𝑴(𝒒𝑢)

𝜕𝒒2𝑢
are bounded.

We can conclude that 𝑴̇(𝒒𝑢) is bounded.7 Due to Assumption 5.1.1, 𝑴−1 7: Notice that boundedness of 𝒙, together
with Assumption 7.2.3, implies bounded-
ness of 𝒒𝑢, 𝒒̇𝑢.

exists and is bounded. This, together with the fact that all terms on the RHS
of the closed-loop link dynamics

𝑴(𝒒𝑢) ̈̃𝒒𝑢 = −
[

𝑪(𝒒𝑢, 𝒒̇𝑢) +𝑲𝑣𝑢(𝑡, 𝒒̃)
] ̇̃𝒒𝑢 + 𝝍(𝒒̃𝑎 − 𝒒̃𝑢), (7.266)

are bounded, implies that ̈̃𝒒𝑢 is bounded.8. Boundedness of 𝒒̈ follows from 8: Note that ||𝑪(𝒒, 𝒒̇)|| ≤ 𝑘𝐶 ||𝒒̇|| for
some positive constant 𝑘𝐶 .Assumption 7.4.1. This again, implies that 𝑴̈(𝒒) is bounded.9 Further, ̈̃𝒒𝑢
9: Which is equivalent to the statement that
𝑪̇ is bounded.is continuous in 𝒒̃𝑢, ̇̃𝒒𝑢, 𝒒̃𝑎 and in 𝑡 through the bounded functions 𝒒∗𝑢(𝑡) and

𝒒̇∗𝑢(𝑡).

The reasoning for the boundedness of ̈̃𝒒𝑎 goes along the same lines as for
̈̃𝒒𝑢. We can write the closed-loop motor dynamics in (7.114) as
𝑩̄(𝑡, 𝒒̃, ̇̃𝒒𝑢) ̈̃𝒒𝑎 = −𝑪̄𝑎(𝑡, 𝒒̃, ̇̃𝒒) ̇̃𝒒𝑎 − 𝝍(𝒒̃𝑎 − 𝒒̃𝑢) −𝑲𝑝𝑎𝒒̃𝑎 −𝑲𝑣𝑎 ̇̃𝒒𝑎 (7.267)

From the analysis so far, we can directly conclude the boundedness of the last
three terms and upper bound the norm10 of 𝑪̄𝑎 10: Any matrix norm can be used here.

||𝑪̄𝑎|| ≤ ||𝑨|| ||𝑩|| ||𝑨̇||. (7.268)
Let us analyze each of the RHS terms. From Assumption 7.2.1 and the im-
plicit function theorem D.1.2 follows the continuity of [𝒀 ]−1𝑞 , ̇[𝒀

]−1
𝑞 ,

[

𝒀
]

𝑞 and
[

𝒀
]

𝑞 in the states, and continuity in the time through the bounded functions
𝒒∗𝑢(𝑡), 𝒒̇

∗
𝑢(𝑡), 𝒒̈

∗
𝑢(𝑡). Due to the boundedness of 𝒙, we know that 𝑨 is bounded

and continuous in time through bounded functions. 𝑩 is bounded by the
assumptions on the model. Knowing that

𝑨̇ = ̇[𝒀
]−1
𝑞
[

𝒀
]

𝑞 +
[

𝒀
]−1
𝑞

̇[𝒀
]

𝑞 , (7.269)

we can also conclude that 𝑨̇ is bounded and continuous in time through
bounded functions. In the end, we can conclude that 𝑪̄𝑎 is continuous in 𝒙, ̈̃𝒒𝑢
and 𝑡 and depends on time through bounded functions 𝒒∗𝑢(𝑡), 𝒒̇∗𝑢(𝑡), 𝒒̈∗𝑢(𝑡).

From Lemma 7.2.2, we know that the inverse of 𝑩̄ exists and that it is
bounded. This allows us to conclude, that ̈̃𝒒𝑎 is bounded, continuous in the
states 𝒙, ̈̃𝒒𝑢 and time 𝑡 through the bounded functions 𝒒∗𝑢(𝑡), 𝒒̇∗𝑢(𝑡), 𝒒̈∗𝑢(𝑡).

Ad Condition (iv) of Matrosov’s Theorem. To show that 𝑊 satisfies
Condition (iv), we invoke Lemma C.1.5 by B. Paden and R. Panja. Above,
we have established that ̈̃𝒒𝑢, ̈̃𝒒𝑎 are continuously in the tracking errors 𝒙 and
depend continuously on time through 𝒒∗𝑢(𝑡), 𝒒̇∗𝑢(𝑡), 𝒒̈∗𝑢(𝑡), which are bounded.
To verify that 𝑊̇ satisfies condition (iv.a) of Lemma C.1.5, we have yet to show
that 𝒒̃(3)𝑢 , 𝒒̃(3)𝑎 are continuous in the tracking errors 𝒙 and depend continuously
on time through a bounded function.
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To show that 𝒒̃(3)𝑢 is bounded, we differentiate the link dynamics of (7.114)
with respect to time and rearrange some terms

𝑴(𝒒𝑢)
d
d𝑡
( ̈̃𝒒𝑢

)

= −𝑴̇(𝒒𝑢) ̈̃𝒒𝑢 − 𝑪(𝒒𝑢, 𝒒̇𝑢) ̈̃𝒒𝑢 − 𝑪̇(𝑡, 𝒒̃, ̇̃𝒒𝑢) ̇̃𝒒𝑢

−𝑣𝑢(𝑡, 𝒒̃) ̈̃𝒒𝑢 − ̇𝑣𝑢(𝑡, 𝒒̃) ̇̃𝒒𝑢 + 𝜿(𝒒̃𝑎 − 𝒒̃)( ̇̃𝒒𝑎 − ̇̃𝒒𝑢).
(7.270)

All RHS terms have been shown to be bounded, continuous with respect to the
tracking error and depend continuously on time through bounded functions.1111: See also Assumption 7.1.1.
As𝑴−1 is bounded, we can conclude that 𝒒̃(3)𝑢 exists and depends continuously
on the tracking error and continuously on time through bounded functions
𝒒∗𝑢(𝑡), 𝒒̇

∗
𝑢(𝑡), 𝒒̈

∗
𝑢(𝑡).

For 𝒒̃(3)𝑎 we can proceed in analogous fashion. Differentiating the motor dy-
namics of the closed-loop system (7.114) with respect to time and rearranging
some terms gives

𝑩̄(𝑡, 𝒒̃, ̇̃𝒒𝑢)
d
d𝑡

( ̈̃𝒒𝑎
)

= − ̇̄𝑩(𝑡, 𝒒̃, ̇̃𝒒𝑢) ̈̃𝒒𝑎 − 𝑪̄𝑎(𝑡, 𝒒̃, ̇̃𝒒) ̈̃𝒒𝑎 − ̇̄𝑪𝑎(𝑡, 𝒒̃, ̇̃𝒒) ̇̃𝒒𝑎

− 𝜿(𝒒̃𝑎 − 𝒒̃)( ̇̃𝒒𝑎 − ̇̃𝒒𝑢) −𝑲𝑣𝑎 ̈̃𝒒𝑎 −𝑲𝑝𝑎 ̇̃𝒒𝑎.
(7.271)

The only terms we still have to analyze are ̇̄𝑩𝑎 and ̇̄𝑪𝑎. We can use the results
from above to argue that 𝑩̇𝜂 = 2𝑨T𝑩𝑨̇ is continuous in the states 𝒙, ̇̃𝒒 and
in time through bounded functions 𝒒∗𝑢(𝑡), 𝒒̈∗𝑢(𝑡), 𝒒̈∗𝑢(𝑡). To obtain an analogous
statement for ̇̄𝑪𝑎 = 𝑨̇

T𝑩𝑨̇ +𝑨T𝑩𝑨̈ we have yet to analyze 𝑨̈. The straight-
forward, but tedious computations, we used to analyze 𝑨̇ can be extended
to show that 𝑨̈ is a continuous function in 𝒙, ̈̃𝒒𝑢, 𝒒̃(3)𝑢 and in time through
bounded functions 𝒒∗𝑢(𝑡),… , 𝑑

3

𝑑𝑡3 𝒒
∗
𝑢(𝑡). To do so, one only has to the take the

continuity and boundedness properties of 𝒒̃(3)𝑢 that we have shown above and
the fact that 𝑈𝑠 ∈ 4 additionally into consideration.

To check condition (iv.b) of Lemma C.1.5, we compute the time derivative
of 𝑊 along the solutions of the closed-loop system (7.114) and evaluate 𝑊̇
on the the critical set 𝐸
𝑊̇ (𝑡,𝒙) = − 2

(

𝝍(𝒒̃𝑎 − 𝒒̃𝑢) +𝑲𝑝𝑎𝒒̃𝑎
)T𝑺

(

𝝍(𝒒̃𝑎 − 𝒒̃𝑢) +𝑲𝑝𝑎𝒒̃𝑎
)

+ 2𝝍T(𝒒̃𝑎 − 𝒒̃𝑢)T𝑸𝝍(𝒒̃𝑎 − 𝒒̃𝑢), ∀𝒙 ∈ 𝐸,
(7.272)

where
𝑸 ≜𝑴−T𝑲𝑣𝑢𝑴−1 = 𝑸T,
𝑺 ≜𝑩−T𝑲𝑣𝑎𝑩−1 = 𝑺T.

Assumption 5.1.1 implies that 𝑴−1 is non-singular, 𝑲𝑣𝑢 is a real-symmetric,
positive definite matrix, hence, Sylvester’s Law of Inertia [118] can be applied[118]: Meyer (2004), Matrix Analysis and

Applied Linear Algebra to show the positive definiteness of 𝑸. Similarly, 𝑺 can be shown to be
positive definite. From the positive definiteness of 𝑸 and 𝑺, follows directly
that 𝑊̇ ≤ 𝟎 ∀(𝑡,𝒙) ∈ [𝑡0,∞) ×𝐸, whereby equality hold if and only if 𝒙 = 𝟎.
Let us define

𝑷 (𝑡,𝒙) ≜
[

𝑸 + 𝑺 𝑺𝑲𝑝𝑎
𝑲T
𝑝𝑎𝑺 𝑲T

𝑝𝑎𝑺𝑲𝑝𝑎

]

∈ ℝ2𝑛×2𝑛,
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with the following Choleski factorization
[

√

𝑸 𝑺1∕2

𝟎 𝑲T
𝑝𝑎𝑺

1∕2

]

. (7.273)

From this follows that 𝑷 is a positive definite matrix which is state- and
explicitly time-dependent.12 This allows us to write the absolute value of 𝑊̇ 12: For real-symmetric matrices 𝑷 , the fol-

lowing statements are equivalent: (1) 𝑷 is
positive definite and (2) 𝑷 = 𝑩𝑩T for some
non-singular 𝑩 [72].

in matrix form

|𝑊̇ (𝑡,𝒙)| = 2
[

𝝍(𝒒̃𝑎 − 𝒒̃𝑢)
𝒒̃𝑎

]T
𝑷
[

𝝍(𝒒̃𝑎 − 𝒒̃𝑢)
𝒒̃𝑎

]

, ∀𝒙 ∈ 𝐸. (7.274)

We denote

𝑊 ∗(𝒙) ≜𝑃̄ ||

[

𝝍(𝒒̃𝑎 − 𝒒̃𝑢)
𝒒̃𝑎

]

||

2, (7.275)

where
𝑃̄ ≜ inf

(𝒙,𝑡)∈𝐸×𝐼

{

𝜆(
√

𝑸), 𝜆̄(𝑲𝑝𝑎)𝜆̄
√

𝑺)
}

> 0,

which allows us to establish the following inequality
|𝑊̇ (𝒙, 𝑡)| ≥𝑊 ∗(𝒙), ∀𝒙 ∈ 𝐸. (7.276)

Clearly, 𝑊 ∗ is a time-invariant, positive definite function of 𝒙. According to
[96, Lemma 4.3] there exists a function 𝛾 of class ∞, such that 𝑊 ∗(𝒙) ≥
𝛾(||𝒙||). This completes the verification of condition 4(b).

From Prop. 7.5.1 we know already that 𝒙 is bounded. This, together with
the continuity of the RHS of (7.266) and (7.267) in 𝒙 and in time through
𝒒∗𝑢(𝑡) and its time-derivatives we can conclude that the RHS of (7.266) and
(7.267) are bounded for all (𝑡,𝒙) ∈ ℝ+ ×Ω for bounded Ω. Moreover,𝑴 and
𝑩̄ are bounded (see Assumption 7.1.1). Thus, 𝒇 , which is implicitly defined in
(7.266)–(7.267), is bounded on ℝ+ × Ω for bounded Ω and the last condition
of Matrosov’s Theorem is fulfilled.

So far all conditions of Matrosov’s Theorem have been shown to be satis-
fied. In addition we can use the first inequality of Condition (i) to determine
the region of attraction. For any initial condition 𝒙0 ∈ ℝ4𝑛 we can find an
appropriate 𝛼 and Ω via Condition (i) such that 𝒙0 is element of 𝑉 −1

𝑡,𝛼 . Thus,
according to Matrosov’s Theorem, the origin (𝒒̃, ̇̃𝒒) = 𝟎 is an uniformly
globally asymptotically stable equilibrium point of the closed-loop system
(7.114). ■

7.5.1 Proof of Proposition 7.2.4

The proof relies on Theorem C.1.4 by Matrosov and Lemma C.1.5 by Paden
and Panja. This technique was first reported in [144] for a fully actuated [144]: Paden et al. (1988), “Globally asymp-

totically stable "PD+" controller for robot
manipulators”robot. The storage function (7.147) will be used as Lyapunov function. In [86],

we reported the application of Matrosov’s theorem to solve the joint space
motion tracking problem for ASRs. Here, we highlight only the key steps and
adjustments required compared to [86], respectively the proof in Section 7.5.
The main challenge lies in verifying Condition (iv) of Theorem C.1.4. Thus,
Condition (i) is at the center of focus in the proof below.
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Proof. Let us consider the storage function in (7.147) as a Lyapunov function
candidate  ∶

(

[0,∞) × Ω
)

→ ℝ, and the error vector 𝒆 =
[

𝒙̃T, ̇̃𝒙T]T. For
now, Ω ca be chosen arbitrarily large. Setting ′ = 𝟎, then evaluating the time
derivative of  along the solutions of (7.143) gives, c.f. (7.148),

̇ = − ̇̃𝒙T𝑣 ̇̃𝒙, (7.277)
which is a negative semi-definite function of the states. Thus,  qualifies as
Lyapunov function. Let us continue with verify Condition (i) of Matrosov’s by
establish upper and lower bounds on  through functions of class . Taking
into account Remark 7.5.1, consider the state-dependent bounding functions

𝛼(𝒆) = 1
2

[

inf
𝑡∈𝐼,𝒆∈Ω

𝜆
{

𝑥
(

𝒙̃ + 𝒙∗(𝑡)
)}

||
̇̃𝒙||2 + inf 𝜆

{

𝑲𝑝𝑢
}

||𝒙̃𝑢||2
]

+ 𝑒(𝒙̄𝑎),

(7.278)
𝛽(𝒆) = 1

2

[

sup
𝑡∈𝐼,𝒆∈Ω

𝜆
{

𝑥
(

𝒙̃ + 𝒙∗(𝑡)
)}

||
̇̃𝒙||2 + sup 𝜆

{

𝑲𝑝𝑢
}

||𝒙̃𝑢||2
]

+ 𝑒(𝒙̄𝑎),

(7.279)
where inf 𝜆(.) and sup 𝜆(.) denote the minimal and maximal eigenvalues of (.).
Invoking Lemma 4.3 in [95], we can conclude the existence of class  function
𝑎 and 𝑏 such that 𝑎(||𝒙̃||) ≤ 𝛼(𝒆) and 𝑏(||𝒆||) ≥ 𝛽(𝒆). In fact, 𝑎 and 𝑏 are of
class ∞ since 𝛼 and 𝛽 are radially unbounded. This allows us to conclude
uniform stability of the origin of system (7.143) and that Condition (i) of
Matrosov’s theorem is satisfied.

The central idea of Matrosov’s theorem relies on the appealing usage of
bounded auxiliary function that ensures that the system cannot get stuck in
the problematic set, 𝐸 =

{

𝒆 ∈ Ω∶ ̇̃𝒙 = 𝟎
}, where the time derivative of the

Lyapunov function is zero. Consider the auxiliary function𝑊 ∶ [0,∞)×Ω →
ℝ

𝑊 (𝑡, 𝒆) = ̈, (7.280)
and restrict Ω to be an arbitrarily large, but bounded set. Exploiting the fact
that the origin is stable, and applying the same arguments as reported in [86],
see also Section 7.5, we can show that (iii) is satisfied. Consider that

𝒙̃𝑎 =𝒙̄𝑎 = 𝒒̄𝑎 − 𝒒̄𝑢, (7.281)

𝑱−T
[

𝜕𝑒
𝜕𝒒̄

]T
=

[

𝟎
𝜕𝑒
𝜕𝒙̄𝑎

]

=

[

𝟎
𝜕𝑒
𝜕𝒙̃𝑎

]

, (7.282)

𝝍(𝒙̃𝑎) =
𝜕𝑒
𝜕𝒙̃𝑎

(𝒙̃𝑎), (7.283)

so that computing the time derivative of 𝑊 along the solutions of (7.143),
and evaluating the result on the critical set 𝐸 gives

𝑊̇ (𝑡, 𝒆) = −
[

𝒙̃𝑢
𝝍(𝒙̃𝑎)

]T
𝑷 (𝑡, 𝒆)

[

𝒙̃𝑢
𝝍(𝒙̃𝑎)

]

, with (7.284)
𝑷 (𝑡, 𝒙̃𝑢) =diag(𝑲T

𝑝𝑢, 𝑰)
−T
𝑥 𝑣−1

𝑥 diag(𝑲𝑝𝑢, 𝑰). (7.285)
The positive definiteness of 𝑥,𝑣,𝑲𝑝𝑢 and the symmetry of 𝑥,𝑲𝑝𝑢
implies that 𝑷 is a positive definite matrix, which is state and explicitly time-
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dependent. Introducing

𝑊 ∗(𝒆) = inf
𝑡∈𝐼,𝒆∈Ω

𝜆
(

𝑷 (𝑡, 𝒙̃𝑢)
)

||

[

𝒙̃𝑢
𝝍(𝒙̃𝑎)

]

||

2, (7.286)

which is a positive definite function of the states, allows us to establish the
inequality

|𝑊 (𝑡, 𝒆)| ≥ 𝑊 ∗(𝒆), ∀𝒆 ∈ 𝐸. (7.287)
Lemma 4.3 in [96], guarantees the existence of a class ∞ function 𝜸 such
that 𝑊 ∗(𝒆) ≥ 𝜸

(

||𝒆||
). Putting everything together, we conclude that

|𝑊̇ (𝒆)| ≥ 𝜸(||𝒆||),∀𝒆 ∈ 𝐸 and 𝑡 ∈ [0,∞). (7.288)
We can conclude that condition (iv.b) of Lemma C.1.5 is satisfied, and invoke
this lemma to show that the critical Condition (iv) of Matrosov’s Theorem is
satisfied. The fulfillment of Condition (v) can be shown in a straightforward
manner, e.g. as pointed out in [92]. This completes the proof. ■

7.5.2 Proof of Proposition 7.2.5

The closed-loop dynamics (7.149)–(7.152) closely resembles the one of the
rigid robot case [167]. The crucial difference is the presence of the generalized
elastic force. Due to the conservative nature of this force, we can adapt the
techniques proposed in [170] by including the potential energy function 𝑒 in
the Lyapunov function. A similar approach is applied in the work [133], which
considers linear elastic elements and joint space motion tracking though.

Proof. The proof relies on Lyapunov’s direct method. Let us consider the
Lyapunov function candidate

 = 1
2𝒔

T𝑥𝒔 + 𝒙̃T
𝑢𝚲𝑢𝑣𝑢𝒙̃𝑢 + 𝑒(𝒙̃𝑎). (7.289)

which contains a positive definite quadratic form in 𝒙̃𝑢 compared to the storage
function (7.154). The positive definiteness of this term follows directly from
the fact that 𝚲𝑢 and 𝚲𝑢 are diagonal and positive definite. This ensures that
(7.289) qualifies as Lyapunov function candidate since it is a globally positive
function [57]. In the following, we shall repetitively make use of the fact that
𝑲𝑣𝑢,𝑲𝑣𝑎,𝚲𝑢,𝚲𝑎 are diagonal matrices without explicitly mentioning. Using
the skew-symmetry from Lemma 2.5.8, we obtain for the time derivative of
(7.289) along the solutions of (7.149)–(7.152)

̇ = −𝒔T𝑣𝒔 − 𝒙̃T
𝑎𝚲𝑎𝝍(𝒙̃𝑎) + 2𝒙̃T

𝑢𝚲𝑢𝑣𝑎 ̇̃𝒙𝑢. (7.290)
With an obvious partitioning 𝒔 = (𝒔𝑢, 𝒔𝑎), and using the definition of 𝑣 in
(7.142), we can rewrite the first term in (7.290) as

𝒔T𝑣𝒔 =
[

𝑱−1
𝑢 𝒔𝑢

𝑱−1
𝑢 𝒔𝑢 + 𝒔𝑎

]T [

𝑱T
𝑢𝑲𝑣𝑢𝑱 𝑢 𝟎

𝟎 𝑲𝑣𝑎

] [

𝑱−1
𝑢 𝒔𝑢

𝑱−1
𝑢 𝒔𝑢 + 𝒔𝑎

]

, (7.291)
= − ̇̃𝒙T

𝑢𝑲𝑣𝑢 ̇̃𝒙𝑢 − 𝒙̃𝑢𝚲𝑢𝑲𝑣𝑢𝚲𝑢 + 2𝒙̃T
𝑢𝚲𝑢𝑲𝑣𝑢 ̇̃𝒙𝑢 (7.292)

+
(

𝑱−1
𝑢 𝒔𝑢 + 𝒔𝑎)

T𝑲𝑣𝑎
(

𝑱−1𝒔𝑢 + 𝒔𝑎). (7.293)
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Making the substitution (7.290) and (7.291) gives
̇ = − ̇̃𝒙T

𝑢𝑲𝑣𝑢 ̇̃𝒙𝑢 − 𝒙̃T
𝑢𝚲𝑢𝑲𝑣𝑢𝚲𝑢𝒙̃𝑢 − 𝒙̃T

𝑎𝚲𝑎𝝍(𝒙̃𝑎) (7.294)
−
(

𝑱−1
𝑢 𝒔𝑢 + 𝒔𝑎)

T𝑲𝑣𝑎
(

𝑱−1𝒔𝑢 + 𝒔𝑎). (7.295)
It follows from (7.294) and Assumption 7.2.2 that ̇ is a globally negative
definite function of the states, (𝒙̃, ̇̃𝒙), which assures global asymptotic stability.
To guarantee uniform stability, it needs to be shown that 𝑉 is also decrescent,
that is, bounded from above by a class  function with the norm of the states as
argument. Considering Property 2.5.7 and (7.259), introducing the bounding
function
𝑉 ≤ 1

2 inf
𝑡∈𝐼,𝒙̃∈ℝ𝑛

𝜆{𝑥}||𝒔||2 + inf 𝜆{𝚲𝑢𝑲𝑣𝑢}||𝒙̃𝑢||2 + 𝑒(𝒙̃𝑎), (7.296)

and invoking Lemma 4.3 from [96], we can guarantee the existence of the
desired bounding class  function, which completes the proof.

■

7.6 Conclusions

This chapter considered the application of the QFA formulation from Chapter 5
to re-derive the ESP controllers [86, 89–91, 94, 114, 115]

[86]: Keppler et al. (2018), “Elastic struc-
ture preserving (ESP) control for compli-
antly actuated robots”
[89]: Keppler et al. (2016), “A passivity-
based approach for trajectory tracking and
link-side damping of compliantly actuated
robots”
[90]: Keppler et al. (2016), “A passivity-
based controller for motion tracking and
damping assignment for compliantly actu-
ated robots”
[91]: Keppler et al. (2021), “Analyzing the
performance limits of articulated soft robots
based on the ESPi framework: Applications
to damping and impedance control”
[94]: Keppler et al. (2018), “Visco-elastic
structure preserving impedance (VESPi)
control for compliantly actuated robots”
[114]: Meng et al. (2021), “Elastic struc-
ture preserving impedance control of bidi-
rectional antagonistic variable stiffness ac-
tuation”
[115]: Mengacci et al. (2021), “Elastic
Structure Preserving control for compliant
robots driven by agonistic-antagonistic ac-
tuators (ESPaa)”

in a unifying way.
Using Theorem 5.6.1, it has been be shown that the different formulations can
be obtained by adjusting only the actuated subsystem Lagrangian of the QFA
system.

Moreover, an extension of the ESP concept to ASRs with visco-elastic
joints has been reported. The presence of damping in visco-elastic joints has
the important consequence that, in general, the virtual motor coordinates
cannot be computed through algebraic operations since they are related to
the original coordinate in terms of differential equations. Consequently, the
controller is a dynamic state feedback, in contrast to static state feedback
for purely elastic ASRs. It has been shown, however, that by modifying the
controller, we can avoid dynamic state feedback by accepting an additional
(time-dependent) motor-side damping term. It is worth remarking that the
statements of Proposition 7.4.1, 7.4.2 and 7.4.3 can be strengthened to uniform
GAS of the equilibrium point (𝒒̃𝑢, ̇̃𝒒𝑢) = (𝟎, 𝟎) using techniques for the proofs
of Proposition 7.2.1 and 7.2.3.

All ESP designs have in common that the closed-dynamics are character-
ized by EL equations, which allowed formulating energy-based Lyapunov and
storage functions. Figure 7.13 compares the closed-loop dynamics resulting
from applying ESP/ESPi control and PD control to a compliant manipulator
for the regulation case. In particular, it highlights the physically intuitive nature
of the resulting designs.

Extensive experimental evaluation of the ESP concept on the anthropomor-
phic humanoid DLR David is reported in Chapter 11. Moreover, Chapter 12
discusses the integration of ESP designs into a higher-level control frame-
work, and presents several applications. Figure 7.13 compares the closed-loop
dynamics resulting from applying ESP, ESPi and PD control to a compliant
manipulator for the regulation case.
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Figure 7.13: ESP, ESPi and PD control closed-loop behavior for a compliant manipulator (regulation case).
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Theories of the known, which are described by different physical ideas may be
equivalent in all their predictions and are hence scientifically

indistinguishable. However, they are not psychologically identical when
trying to move from that base into the unknown. For different views suggest

different kinds of modifications which might be made and hence are not
equivalent in the hypotheses one generates from them in ones attempt to

understand what is not yet understood.

– Richard P. Feynman

Several controller design techniques addressing the problem of global
trajectory tracking of nonlinear systems have been reported that can be applied
to flexible joint robots (FJRs). Popular representatives are decoupling-based
schemes, backstepping-based schemes and passivity-based schemes. Naturally,
the question arises how these schemes compare with regard to performance and
robustness. This is still an open research problem. The work [20] investigates [20]: Brogliato et al. (1998), “Experimen-

tal comparison of nonlinear controllers for
flexible joint manipulators”the connection between the three aforementioned control schemes as applied

to FJRs, and analyzes the performance with regard to the following parameters:
continuity vis-à-vis the joint stiffness, availability of adaptive implementations
when the robot parameters are unknown, and robustness to “energy-preserving”
(i.e. passive) unmodeled effects. This section extends this analysis by including
two ESP-based designs and the decoupling-based controller reported in [140]. [140]: Ott (2008), Cartesian Impedance

Control of Redundant and Flexible-Joint
Robots

The ESP-based controllers under consideration have been first reported in [86]
[86]: Keppler et al. (2018), “Elastic struc-
ture preserving (ESP) control for compli-
antly actuated robots”

and [92], and are investigated for the SEA case.

[92]: Keppler et al. (2018), “Elastic struc-
ture preserving impedance (ESPi) control
for compliantly actuated robots”

8.1 Control Schemes

This chapter considers the Spong model [168] with the elastic potential energy [168]: Spong (1987), “Modeling and con-
trol of elastic joint robots”𝑒 =

1
2 (𝒒𝑎 − 𝒒𝑢)

T𝑲(𝒒𝑎 − 𝒒𝑢), where 𝑲 is a diagonal positive definite matrix.
Let 𝒒∗𝑢 be the desired output (link) trajectory. In the following, the subscripts
𝑢 and 𝑎 indicate link-side and motor-side quantities, and the superscript (.)∗
indicates desired trajectories. To allow for a comparison with the results in
[19], we shall rewrite the control laws with a unifying notation: [19]: Brogliato et al. (1995), “Global track-

ing controllers for Flexible-joint manipula-
tors: a comparative study”𝒒 = (𝒒𝑢, 𝒒𝑎) = (𝑞1,… , 𝑞𝑛𝑢 , 𝑞𝑛𝑢+1,… , 𝑞𝑛), (8.1)

𝒒∗ = (𝒒∗𝑢 , 𝒒
∗
𝑎) = (𝑞∗1 ,… , 𝑞∗𝑛𝑢 , 𝑞

∗
𝑛𝑢+1

,… , 𝑞∗𝑛 ), (8.2)
𝒒̃ = (𝒒̃𝑢, 𝒒̃𝑎) = 𝒒 − 𝒒∗, (8.3)
𝒔 = (𝒔𝑢, 𝒔𝑎) = ̇̃𝒒 + 𝚲𝒒̃, (8.4)
𝚲 = diag(𝚲𝑢,𝚲𝑎) > 0 and diagonal, (8.5)

where desired motor position signal 𝒒∗𝑎 can be interpreted as follows. The
rational by Brogliato was to make 𝒒𝑎 converge to some function 𝒒∗𝑎, that if
applied as input to the link dynamics, will drive 𝒒𝑢 towards 𝒒∗𝑢 . In the following,
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𝒖𝑟 denotes the control law for the rigid robot dynamics (i.e., the unactuated
subsystem Σ𝑢). That is for the considered controllers, we have:

𝒖𝑟 =
⎧

⎪

⎨

⎪

⎩

𝑴𝒒̈∗𝑢 + 𝑪𝒒̇
∗
𝑢 + 𝒈(𝒒𝑢) −𝑲𝑣𝑢𝒔𝑢, for Controller 2–5

𝑴𝒒̈∗𝑢 + 𝑪𝒒̇
∗
𝑢 + 𝒈(𝒒𝑢) −𝑲𝑣𝑢 ̇̃𝒒𝑢, for Controller 6

𝑴𝒒̈∗𝑢 + 𝑪𝒒̇
∗
𝑢 + 𝒈(𝒒𝑢) −𝑲𝑣𝑢 ̇̃𝒒𝑢 −𝑲𝑝𝑢𝒒̃𝑢, for Controller 1, 7

(8.6)

with 𝑲𝑝𝑢,𝑲𝑣𝑢 > 0. Considering the Spong model for ASR, and using the
notation (8.6), we can summarize the controllers from [20], the decoupling-
based controller from [140] and the ESP controllers from [86] and [92] in a
unified form:

Controller 1: Decoupling-based control [140][140]: Ott (2008), Cartesian Impedance
Control of Redundant and Flexible-Joint
Robots 𝒖𝑎 =𝑩

[

𝒒̈∗𝑎 −𝑲𝑣 ̇̃𝒒𝑎 −𝑲𝑝𝒒̃𝑎
]

+𝑲(𝒒∗𝑎 − 𝒒𝑢)

𝒒∗𝑎 =𝑲
−1𝒖𝑟 + 𝒒𝑢

(8.7)

Controller 2: Decoupling-based control [19][19]: Brogliato et al. (1995), “Global track-
ing controllers for Flexible-joint manipula-
tors: a comparative study”

, with 𝑲1,𝑲2 > 0

𝒖𝑎 =𝑩𝒒̈∗𝑎 −𝑲2 ̇̃𝒒𝑎 −𝑲1𝒒̃𝑎 +𝑲(𝒒𝑎 − 𝒒𝑢)

𝒒∗𝑎 =𝑲
−1𝒖𝑟 + 𝒒𝑢

(8.8)

Controller 3: Backstepping-based control [19]
𝒖𝑎 =𝑩

[

𝒒̈∗𝑎 − 2 ̇̃𝒒𝑎 − 2𝒒̃𝑎 −𝑲(𝒔̇𝑢 + 𝒔𝑢)
]

+𝑲(𝒒𝑎 − 𝒒𝑢)

𝒒∗𝑎 =𝑲
−1𝒖𝑟 + 𝒒𝑢

𝒔𝑢 = ̇̃𝒒𝑢 + 𝚲𝑢𝒒̃𝑢

(8.9)

Controller 4: Robustified backstepping-based control [19]
𝒖𝑎 =𝑩

[

𝒒̈∗𝑎 − 2 ̇̃𝒒𝑎 − 2𝒒̃𝑎 − (𝒔̇𝑢 + 𝒔𝑢)
]

+𝑲(𝒒𝑎 − 𝒒𝑢)

𝒒∗𝑎 =𝑲
−1𝒖𝑟 + 𝒒𝑢

𝒔𝑢 = ̇̃𝒒𝑢 + 𝚲𝑎𝒒̃𝑢

(8.10)

Controller 5: Passivity-based control [19]
𝒖𝑎 =𝑩

(

𝒒̈∗𝑎 − 𝚲𝑎 ̇̃𝒒𝑎
)

+𝑲(𝒒∗𝑎 − 𝒒
∗
𝑢) −𝑲𝑎𝒔𝑎

𝒒∗𝑎 =𝑲
−1𝒖𝑟 + 𝒒∗𝑢

𝒔𝑎 = ̇̃𝒒𝑎 + 𝚲𝑎𝒒̃𝑎

(8.11)

Controller 6: ESP-based control [86][86]: Keppler et al. (2018), “Elastic struc-
ture preserving (ESP) control for compli-
antly actuated robots” 𝒖𝑎 =𝑩𝒒̈∗𝑎 +𝑲𝒒

∗
𝑎 −𝑲𝑣𝑎 ̇̃𝒒𝑎 −𝑲𝑝𝑎𝒒̃𝑎

𝒒∗𝑎 =𝑲
−1𝒖𝑟 + 𝒒∗𝑢

(8.12)

Controller 7: ESPi-based control [92][92]: Keppler et al. (2018), “Elastic struc-
ture preserving impedance (ESPi) control
for compliantly actuated robots” 𝒖𝑎 =𝑩𝒒̈∗𝑎 +𝑲𝒒

∗
𝑎 −𝑲𝑣𝑎 ̇̃𝒒𝑎

𝒒∗𝑎 =𝑲
−1𝒖𝑟 + 𝒒∗𝑢

(8.13)

The controllers under investigation originated from the following design
techniques:

• Stabilization of cascaded nonlinear system [159]
[159]: Seibert et al. (1990), “Global stabi-
lization of nonlinear cascade systems” for Controller 1–2.
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• Backstepping [81] for Controller 3–4. [81]: Kanellakopoulos et al. (1991), “Sys-
tematic design of adaptive controllers for
feedback linearizable systems”• Passivity-based methods [165, 178] for Controller 5–7.
[165]: Slotine et al. (1988), “Adaptive ma-
nipulator control: A case study”
[178]: Takegaki et al. (1981), “A new feed-
back method for dynamic control of manip-
ulators”

The theoretical aspects of the controllers are not recalled. The interested reader
is referred to the cited works.

Remark 8.1.1 It is worth mentioning that the follow-up work [20]
[20]: Brogliato et al. (1998), “Experimen-
tal comparison of nonlinear controllers for
flexible joint manipulators”

of [19]

[19]: Brogliato et al. (1995), “Global track-
ing controllers for Flexible-joint manipula-
tors: a comparative study”

includes also singular perturbation-based designs [51, 169]

[51]: Ghorbel et al. (1989), “Adaptive con-
trol of flexible-joint manipulators”
[169]: Spong (1989), “Adaptive control of
flexible joint manipulators”

that exploit the
two-time scale behavior in systems with relatively large joint stiffness. In this
work, however, we are primarily interested in systems that have deliberately
incorporated highly elastic elements into the drive train with a stiffness low
enough to exploit these elements as energy storage. Clearly, for these kind
of systems the two-time scale assumption of singular perturbation-based
design does not hold and are not included in the comparison.

Comparing (8.6)–(8.13), we can make the following observations:

• All controllers require state feedback, i.e. measurement of 𝒒 and 𝒒̇, and
knowledge of the model parameters.

• Controllers 2–4 compensate the joint torques𝑲(𝒒𝑎−𝒒𝑢). The absence of
this drawback in the passivity-based designs is noteworthy. Controller 1
is unique in this regard as it compensates 𝑲(𝒒∗𝑎 − 𝒒𝑢).• All controllers use the rigid robot control signal 𝒖𝑟 to formulate a desired
motor trajectory 𝒒∗𝑎; we see that Controller 6 uses the most minimalist
one.

• Controller 1–4 require feedback of the output 𝒒𝑢 to formulate the desired
motor trajectory 𝒒∗𝑎. This results in dynamics cancellation of the form
𝑩𝒒̈𝑢, which is undesirable from the robustness point of view. On the
other hand, Controller 5–7: require only the desired output trajectory
𝒒∗𝑢 for formulating 𝒒∗𝑎.

• Controller 6 stands out by the absence of feeding into the loop the output
error signal 𝒒̃𝑢.

• Controller 7 stands out by the absence of feeding into the loop the motor
error signal 𝒒̃𝑎.

• Outview: The input signals of Controller 6–7 can be physically inter-
preted as representing the dynamics of a driven spring-mass-damper
system, as pointed out in Chapter A. This geometrical point of view
reveals ways for avoiding the feedback necessity of the link jerk signals.

• As 𝑲 grows unbounded, the Controller 5–7 converge to the rigid robot
controller. This is not the case for the Controller 1–4 due to the partial
motor dynamics cancellation via the term 𝑩𝒒̈𝑢. Moreover, Controller 3
becomes a high-gain design because of the term 𝑲(𝒔̇𝑢 + 𝒔𝑢).

• While all controllers require feedback of the acceleration and link jerk
signals1, they do so for two fundamentally different reasons: 1) partial 1: We recall that 𝒒(3)𝑢 can computed without

numerical differentiation, as discussed in
Section B.2 in Appendix B)cancellation of the motor dynamics, 2) gravity compensation, 3) add

energy dissipation term. Note that only Controller 1–4 require operation
1). It is commonly expected that designs that refrain from dynamics
cancellation yield more robust designs. On the contrary, operation 3)
can be expected to have a stabilizing effect. Moreover, operation 3)
produces an OSP closed loop for Controller 5–7; since OSP implies
L2-gain stability [188] this can be considered a desirable operation from [188]: van der Schaft (1999), L2-Gain and

Passivity in Nonlinear Controlthe robustness point of view.
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Based on the observations above, we conclude that the ESP-based controllers
are most closely related to the passivity-based approach by [19].

8.1.1 Closed-Loop Passivity

Let us analyze the possibility of representing the closed-loops as two pas-
sive operators interconnected in negative feedback. The closed loops of Con-
troller 2–5 can be interpreted as the interconnection of passive subsystems as
demonstrated in [19]. In [140] it has been shown that Controller 1 defines a
passive map ′

𝑢 → 𝒒̇𝑢. An interpretation of this scheme as an interconnection
of passive subsystems is not provided. For the sake of briefness, only the
passivity properties of the passivity-based Controller 5 [19] are recalled and
compared to ESP-based controllers since these are most closely related. The
closed-loop equations associated with Controller 5 are

𝚲 =diag(𝚲𝑢,𝚲𝑎),
𝟎 =𝒔̇ +

(

 +𝑲𝑣
)

𝒔 +𝒒̃,
̇̃𝒒 =𝒔 + 𝚲𝒒̃.

(8.14)

This error dynamics and can be represented as the negative feedback intercon-
nection of the following two passive subsystems (as shown in Fig. 8.1)

𝒔
1

2

′

−𝝉

−

Figure 8.1: Passive subsystem decomposi-
tion of the closed loop resulting from the
Slotine and Li controller.

𝝉 =
[

𝝍T,−𝝍T], (8.15)
Σ𝑢 ∶ 𝒔 →

(

𝝉 +′), (8.16)
Σ𝑎 ∶ 𝒔 → −𝝉 , (8.17)

with storage functions
1 =

1
2𝒔

Tdiag(𝑴 ,𝑩)𝒔, (8.18)
2 =

1
2 𝒒̃

T𝒒̃. (8.19)

The following analysis is easier to appreciate if we first recall the passive
subsystem decomposition property of flexible joint manipulators. We extend
the analysis in [19] by considering link and motor-side disturbance forces
′
𝑢 and ′

𝑎. According to Proposition 6.1.1, a flexible joint robot satisfying
Spong’s model can be represented as the negative feedback interconnection
of two passive subsystems as show in Fig. 8.2

𝒔
Σ𝑢

Σ𝑎 𝑎

′

−𝝍

𝒒̇𝑎

−

Figure 8.2: Passive subsystem decomposi-
tion of an SEA-based manipulator.

Σ𝑢 ∶
(

𝝍 +′
𝑢
)

→ 𝒒̇𝑢, (8.20)
Σ𝑎 ∶

[

−𝝍
𝑎

]

→

[

𝒒̇𝑢
𝒒̇𝑎

]

, (8.21)

where the function 𝝍 ∶ ℝ𝑛 → ℝ𝑛

𝝍 = 𝑲(𝒒𝑎 − 𝒒𝑢), (8.22)
denotes the subsystem coupling signal, and 𝑎 = ′

𝑎 + 𝒖𝑎. The structure
of the closed-loop dynamics resulting from applying the ESP-based Con-
troller 6 and 7 mirrors that of the open-loop dynamics. Naturally, the open
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loop passivity properties are reflected in the closed-loop system. Knowing
that applying

𝒖̄𝑢 =𝒖𝑟 +𝑲𝒒∗𝑢 = 𝑲𝒒
∗
𝑎, (8.23)

to QFA Spong model (9.3) achieves the desired ESP/ESPi control error dy-
namics (see also Fig. 7.5), and observing that the coordinate transformation
(9.5) can be written as

𝒒̄𝑎 =𝒒𝑎 −𝑲−1𝒖̄𝑢 = 𝒒𝑎 − 𝒒∗𝑎 = 𝒒̃𝑎, (8.24)
we see that the virtual motor coordinates can be interpreted as the motor
position errors. As pointed out in Proposition 7.2.3, the closed-loop system
associated with an ESP-based joint space motion tracking controller can be rep-
resented as the negative feedback interconnection of two passive subsystems
(as shown in Fig. 8.3)

̇̃𝒒𝑢Σ̄𝑢

Σ̄𝑎 ′
𝑎

′
𝑢

−𝝍

−

̇̃𝒒𝑎

Figure 8.3: Passive subsystem decomposi-
tion of an ESP-based closed loop.

Σ̄𝑢 ∶
(

𝝍 +′
𝑢
)

→ ̇̃𝒒𝑢, (8.25)
Σ̄𝑎 ∶

[

−𝝍
′
𝑎

]

→

[ ̇̃𝒒𝑢
̇̃𝒒𝑎

]

, (8.26)

with the subsystem coupling signal evaluating for the considered model (9.2)
to

𝝍 = 𝑲(𝒒̃𝑎 − 𝒒̃𝑢). (8.27)
Comparing Fig. 8.2 and Fig. 8.3, we observe that ESP-based designs have
the remarkable property of preserving the passive subsystem interconnec-
tion structure of the open-loop system. Moreover, for ESP-based designs the
Hamiltonian of the plant can be usually extended by the energy storing ele-
ments added through control to obtain an appropriate storage function, see
also Chapter 7. It is worth noting that this property of ESP-based concepts
hold for any design choice for the virtual inputs 𝒖̄𝑢 and, thus, also holds for
the dynamic extension-based designs proposed in Chapter 9.

The backstepping-based schemes do possess some closed-loop passivity
properties, however, as pointed out in [19], they are formulated in terms of
transformed coordinates. We observe from (8.16) that the same is true for the
Slotine and Li controller, which defines a passive map 𝒔 → ′

𝑢. In contrast,
the closed loops associated with Controller 1, 7 and 8 define a passive map
′
𝑢 → ̇̃𝒒𝑢 in terms of the output (error) coordinates. In fact, Controller 7 and 8

define a passive map ′ → ̇̃𝒒.

8.2 Conclusions

This section extends the comparison of nonlinear controllers for flexible joint
manipulators [19, 20] by including two ESP-based designs and a decoupling
scheme [140]. Most importantly, it was shown that ESP-based closed loops
preserve the passive subsystem decomposition property of the open loop.
Further, it was demonstrated that when the joint stiffness grows unbounded
(i.e., the rigid robot model is retrieved), an ESP-based scheme converges to
the rigid control law.
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It is hard to draw a definite conclusion about the performance and robust-
ness of the different controllers from the theoretical observations made in this
chapter. It is widely believed that passivity-based designs that incorporate
the physical structure of the system and avoid cancellation of nonlineari-
ties yield robust designs. In this regard, we can expect passivity-based ESP
schemes to have particularly favorable robustness properties. This intuition
is strongly confirmed by the experimental results reported in Chapter 11 and
Chapter 12. However, while confirmed by numerous experiments—to the best
of the author’s knowledge—this robustness hypothesis has not been proven
yet.

The experimental comparison in [20] concluded that it is worth taking
the joint flexibilities into account in control design. This allows achieving
acceptable performance with a fixed set of feedback gains. It is worth noting
that the aforementioned study focused on a manipulator with rather large joint
stiffness values. Considering that the joint stiffness parameters play a crucial
role for the controller performance, and given that articulated soft robots have
a significantly higher joint flexibility compared to the manipulator studied in
[20], it seems worth extending this comparison study to concern highly elastic
manipulators. Furthermore, the work [20] showed that controllers, which seem
very close to each other, either by their design approach or by their final form,
can yield very different results when applied to actual hardware. In this regard,
and considering that the ESP scheme has been derived specifically with highly
compliant systems in mind, future studies should also concern ESP-based
designs.
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Today’s scientists have substituted mathematics for experiments,
and they wander off through equation after equation,

and eventually build a structure which has no relation to reality.

– Nikola Tesla

In situations of harsh impacts, damping injection directly on the link
of an articulated soft robot is challenging and usually requires high actuator
torques at the moment of impact. This chapter discusses the underlying reasons
and analyzes the performance limitations arising in the implementation of
basic impedance elements, such as springs and dampers, through the QFA
representation of Spong’s model [168]

[168]: Spong (1987), “Modeling and con-
trol of elastic joint robots”

. Using the insights obtained, we present
a method for designing impedance controllers with a damping layout based on
dynamic extensions. Inspired by the design of shock absorbers and the muscle-
tendon model, the presented damping layout requires substantially smaller
actuator torques in situations where the robot is subject to harsh impacts. The
implementation is facilitated through the virtual inputs of the QFA model and
results in a physically intuitive impedance design. The resulting closed-loop
system can be interpreted as an interconnection of passive Euler Lagrange
systems, which again, yields a passive system. The design’s passive nature
ensures stability in the free motion case and enables the robot to interact
robustly and safely with its environment. We focus on robotic systems with no
inertial coupling between the motor and link dynamics. Experimental results,
obtained with the presented design on a dedicated series elastic actuator
(SEA) test bed, are reported and discussed. A majority of this chapter has
been published already in [91]. [91]: Keppler et al. (2021), “Analyzing the

performance limits of articulated soft robots
based on the ESPi framework: Applications
to damping and impedance control”

9.1 Motivation

Chapter 5 introduced the concept of quasi-full actuation that enables the direct
adoption of impedance control techniques to underactuated articulated soft
robots [54, 74, 153, 190]. The availability of a virtual link-side control input [54]: Grebenstein et al. (2011), “The DLR

hand arm system”
[74]: Hutter et al. (2016), “Anymal-a highly
mobile and dynamic quadrupedal robot”
[153]: Pratt et al. (1995), “Series elastic ac-
tuators”
[190]: Vanderborght et al. (2013), “Variable
impedance actuators: A review”

fueled the development of the ESP scheme in Chapter 7. All the ESP con-
trollers presented achieve a pervasively closed loop through link-side damping
injection, which results in a well-damped disturbance rejection behavior, as
highlighted by experimental results reported in [86, 92] and shown in Video 2

[86]: Keppler et al. (2018), “Elastic struc-
ture preserving (ESP) control for compli-
antly actuated robots”
[92]: Keppler et al. (2018), “Elastic struc-
ture preserving impedance (ESPi) control
for compliantly actuated robots”

(Section 12.6).
Situations may arise, however, where an ASR is subject to hard and/or

fast impacts, and in these scenarios, the implementation of a damping term
directly on the link can be challenging since the actuators easily run into
torque saturations at the moment of impact. Motivated by this observation,
we analyze the performance limits of ASRs concerning the implementation
of basic impedance elements such as springs and dampers through the ESPi
framework. Using the insights gained, we present enhanced damping designs,
based on dynamic extensions, which significantly reduce the risk of input
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saturation in the moment of a harsh impact. The inspiration for these damp-
ing designs was drawn from shock absorbers and the muscle-tendon system,
which are required to showcase a smooth force variation at the moment of
impact. Dynamic extension is a familiar concept in control. In [83, 137, 173][83]: Kelly (1993), “A simple set-point

robot controller by using only position mea-
surements”
[137]: Ortega et al. (1994), “On passivity-
based output feedback global stabilization
of Euler-Lagrange systems”
[173]: Stramigioli (1996), “Creating artifi-
cial damping by means of damping injec-
tion”

dynamic extensions were used to create artificial damping without the need
for velocity measurements. Further, [137, 173] report elegant solutions to deal

[137]: Ortega et al. (1994), “On passivity-
based output feedback global stabilization
of Euler-Lagrange systems”
[173]: Stramigioli (1996), “Creating artifi-
cial damping by means of damping injec-
tion”

with actuator torque limits. However, such dynamic extensions have not yet
been used in the context of enhancing the damping behavior of an ASR. The
gain design required for our purpose is diametrical to what is recommended
in [44, 173]. Roughly speaking, in [137, 173], and for the implementation

[44]: Folkertsma et al. (2017), Energy in
Robotics
[173]: Stramigioli (1996), “Creating artifi-
cial damping by means of damping injec-
tion”
[137]: Ortega et al. (1994), “On passivity-
based output feedback global stabilization
of Euler-Lagrange systems”
[173]: Stramigioli (1996), “Creating artifi-
cial damping by means of damping injec-
tion”

of “dirty derivatives” (filtered derivatives) [83], the spring that decouples the

[83]: Kelly (1993), “A simple set-point
robot controller by using only position mea-
surements”

damper is usually chosen as stiff as possible. However, for reducing the control
effort during impacts the opposite is favorable as argued in this paper. The
work [107] reports a tracking controller for ASRs using a filtered derivative

[107]: Loria et al. (1995), “On tracking con-
trol of rigid and flexible joints robots”

to avoid feedback of the link jerk signals. In contrast to [107], the proposed

[107]: Loria et al. (1995), “On tracking con-
trol of rigid and flexible joints robots”

controllers preserve the intrinsic system structure and result in a physically
intuitive closed-loop behavior. In fact, the resulting closed-loop systems can
be interpreted as the negative feedback interconnection of two passive Euler
Lagrange systems, which again, results in a passive system.

A physically motivated design allows the operator to anticipate the robot’s
interaction behavior with the environment (another physical system). Loosely
speaking, the interaction between two physical systems visualizable in terms
of real mechanical elements is easier to comprehend and anticipate than
the interaction between a set of differential equations and the environment.
This fact can hardly be overestimated when it comes to the commissioning
stage since physical intuition is of immense value for tuning the controller.
In addition, having a physically intuitive closed-loop behavior provides—
to some extent—a feeling for the extent of system shaping imposed by a
particular controller choice. The presented concept imposes no limitations
on the achievable closed-loop stiffness and, in particular, it can be increased
above the system’s intrinsic stiffness. However, on a real system with motor
saturation, limits obviously exist.

This chapter is organized as follows. In Section 9.2, we establish a link-side
interconnection port. Section 9.3 discusses the challenges of link-side damping
injection. In Section 9.4, we analyze the performance limits of ASRs based
on the ESPi framework. Based on the insights, enhanced damping designs are
presented in Section 9.5. A presentation and discussion of experimental results
that have been obtained on a SEA test bed are reported in Chapter 11.

9.1.1 Model Assumptions

Let us again consider the Spong model introduced in [168], where the angular[168]: Spong (1987), “Modeling and con-
trol of elastic joint robots” part of the kinetic energy of each rotor is considered due only to its own rotation.

In order to simplify the analysis, we shall focus on systems characterized by
positive definite elastic potential functions of the form

𝑒 =
1
2
𝒒T𝒒;  =

[

𝑲 −𝑲
−𝑲 𝑲

]

, (9.1)
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where 𝑲 = diag(𝑘1,… , 𝑘𝑛) is a constant diagonal matrix containing the joint
stiffness values, such that the equations of motion (7.4) reduce to

Σ∶ (𝒒𝑢)𝒒̈ + (𝒒𝑢, 𝒒̇𝑢)𝒒̇ +𝒒 + 𝒈(𝒒𝑢) = 𝒖 +′. (9.2)
As we will see shortly, Σ defines a passive operator from the applied actuator
torques to motor shaft velocities, though it is not passive from the applied
actuator torques to the link velocities.

9.2 Shaping the Interaction with the Physical
World

Using the results from Chapter 5, we can use Theorem 5.3.6 to established a
link-side interconnection port by transforming (9.2) into its QFA form

Σ𝑞 ∶ (𝒒̄𝑢) ̈̄𝒒 + (𝒒̄𝑢, ̇̄𝒒𝑢) ̇̄𝒒 +𝒒̄ +𝑮(𝒒̄𝑢) = 𝒖̄ +′, (9.3)
with the input and coordinate transforming equations (9.5) and (9.6) evaluating
to

𝒒𝑢 =𝒒̄𝑢, (9.4)
𝒒𝑎 =𝒒̄𝑎 +𝑲−1𝒖̄𝑢, (9.5)
𝒖 =𝑩𝑲−1 ̈̄𝒖𝑢 + 𝒖̄𝑢 + 𝒖̄𝑎, (9.6)

and  = ′. In this chapter, we will study the implementation of impedance
control through this interconnection port. Intuitively, we can think of the
virtual motor coordinates 𝒒̄𝑎 being formed by shifting the original motor
coordinates 𝒒𝑎. The magnitude of this shift is directly proportional to the input
𝒖̄𝑢 with the factor of proportionality being the joint compliance 𝑲−1. Note
that (9.5)–(9.6) comprise 𝑛 independent1 scalar equations each since, both 1: Independent in the sense that each of

the 𝑛 scalar state and input transformation
equations can be solved separately.the stiffness and motor inertia matrix are diagonal. The following assumption

guarantees that the input conditions of Theorem 5.3.6 are satisfied.

Assumption 9.2.1 The inputs 𝑢̄𝑢𝑖 are sufficiently smooth such that ̇̄𝑢𝑢𝑖, ̈̄𝑢𝑢𝑖
exist, and contain feedback of 𝒒̄𝑢, ̇̄𝒒𝑢 and 𝑡 only.

Remark 9.2.1 The smoothness constraint on the virtual input defined in
Assumption 9.2.1 is not specific to the ESPi framework. Indeed, it is a
manifestation of the physical fact that the link-side torque bandwidth of
ASRs is fundamentally reduced compared to directly actuated systems.

A closer examination of the input transformation (9.6) reveals an interesting
connection to the natural frequencies of the individual mass-spring systems
which are constituted by the motor inertias and joint springs

𝜔𝑛𝑖 ≜
√

𝑘𝑖∕𝑏𝑖. (9.7)
Introducing

𝛀−2 = 𝑩𝑲−1 = diag(𝜔−2
𝑛1 ,… , 𝜔−2

𝑛𝑛 ), (9.8)
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allows us to rewrite the input transformation (9.6) as
𝒖 = 𝛀−2 ̈̄𝒖𝑢 + 𝒖̄𝑢 + 𝒖̄𝑎. (9.9)

The input transformation (9.6) has important implications for the design of
elastic robots, since it reveals the fundamental connection between the system’s
inherent natural eigenfrequencies𝜔𝑖 and the achievable link-side torque control
bandwidth. This matter is discussed in detail in Section 9.4.

The interaction of an ASR with its environment is characterized by the
way energy is exchanged. This energy exchange can be computed by taking
the time derivative of the robot’s Hamiltonian . Recalling Proposition 6.1.1,
we have for Σ

̇(𝒒, 𝒒̇) = 𝒒̇T (

𝒖 +′) (9.10)
and time integration from 0 to 𝑇 establishes the key energy balance equation


(

𝒒(𝑇 ), 𝒒̇(𝑇 )
)

−
(

𝒒(0), 𝒒̇(0)
)

=

∫

𝑇

0

(

𝒒̇T
𝑢

′
𝑢
)

𝑑𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
natural exchange

+∫

𝑇

0

(

𝒒̇T
𝑎

′
𝑎
)

𝑑𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
friction losses

+∫

𝑇

0
𝒒̇T
𝑎𝒖𝑎𝑑𝑡

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
supplied

. (9.11)

Considering Corollary 6.1.2, we have for the QFA model
̇(𝒒̄, ̇̄𝒒) = ̇̄𝒒T (

𝒖̄ +′) , (9.12)
and after time integration


(

𝒒̄(𝑇 ), ̇̄𝒒(𝑇 )
)

−
(

𝒒̄(0), ̇̄𝒒(0)
)

=

∫

𝑇

0

( ̇̄𝒒T
𝑢

′
𝑢
)

𝑑𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
natural exchange

+∫

𝑇

0

( ̇̄𝒒T
𝑎

′
𝑎
)

𝑑𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
indeterminate

+∫

𝑇

0

( ̇̄𝒒T
𝑢 𝒖̄𝑢 + ̇̄𝒒T

𝑎 𝒖̄𝑎
)

𝑑𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
supplied

. (9.13)

In either case, we can identify three types of power flows, see also Fig. 9.1.
The first terms on the RHS of (9.11) and (9.13) denote the respective sys-
tem’s natural exchange of energy with its environment. The third term on the
RHS represents the artificial supply rate imposed by a particular controller.
The second term in (9.11) mostly comprises friction losses, and thus can be
considered as strengthening the passivity of Σ, whereas the second term in
(9.13) is indeterminate in the sense that it can either add or remove energy
from the system. When it comes to ASR, we are interested primarily in the
energy exchange via the port (𝒒̇′𝑢,𝑢) since this port’s behavior dictates the
interaction behavior with the environment. Unfortunately, our control input
is non-collocated with the output 𝒒𝑢, which complicates shaping this port
behavior. However, observing the equivalence of the power flows (𝒒̇′𝑢,𝑢) and
( ̇̄𝒒′𝑢, ̄𝑢) of Σ and Σ̄, it is clear that we simplify this task by using controllable
port ( ̇̄𝒒′, ̄) of the QFA system Σ̄ instead.

Remark 9.2.2 In practice ASR, motions associated with the motor-side in-
ertias exchange energy with the environment as well (via the port ( ̇̄𝒒𝑎,′

𝑎)).However, a closer look reveals that their influence on the interaction behav-
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𝒖𝑎
𝒒̇𝑎

System: Σ

′
𝑢𝒒̇𝑢

Motors𝑍𝑎𝑖 𝑍𝑢𝑖
𝒖̄𝑎
̇̄𝒒𝑎

𝒖̄𝑢
̇̄𝒒𝑢

System: Σ̄

̄′
𝑢

̇̄𝒒𝑢
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𝝍

𝒒̇𝑢

𝝍
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interaction
port

interaction
port

(9.6) Motors

Figure 9.1: Energy flows of the original,
Σ, and transformed system, Σ̄, which are
equivalent representations of the same sys-
tem. The control signal 𝒖𝑎 on Σ realizes the
interconnection of the virtual system Σ̄ with
the impedances 𝑍𝑎𝑖 and 𝑍𝑢𝑖.

ior is negligible, since all parts constituting the reflected motor inertias are
encapsulated in housings and thus shielded from the environment. As such,
we can think of ′

𝑎 essentially comprising friction related forces only. From
the practical performance point of view, however, it is clearly advisable to
compensate friction forces with e.g appropriate observers [34] [34]: De Luca et al. (2006), “Collision de-

tection and safe reaction with the DLR-III
lightweight manipulator arm”

. After this
step, we may assume that all practically meaningful interactions with the
environment occur via the mechanical link-side interaction port. For this
reason, we shall assume that 𝑎 = 𝟎 in the following.

Remark 9.2.3 Calculating the Hamiltonian, using the definition of  as
the Legendre transformation of , then it corresponds to the total energy
of the system  =

∑

𝑖 𝑞̇𝑖
𝜕
𝜕𝑞̇𝑖

−  =  +  . Comparing (9.2) and (9.3), it
is clear that systems Σ𝑞 and Σ𝑞 are characterized by the same Lagrangian
and Hamiltonian functions. However, as pointed out in Section 5.7.1, it is
worth remarking that in general the Hamiltonian function does not evaluate
to the same values for Σ and Σ̄

(𝒒, 𝒒̇) =(𝒒̄, ̇̄𝒒) + Δ, (9.14)
Δ ≜ 1

2

[

𝒒̇T
𝑎𝑩𝒒̇𝑎 − ̇̄𝒒T

𝑎𝑩 ̇̄𝒒𝑎 + 𝑒(𝒒𝑎 − 𝒒𝑢) − 𝑒(𝒒̄𝑎 − 𝒒𝑢)
]

. (9.15)

From (9.11) it is clear that Hamiltonian  suits as a storage function for
showing that Σ𝑞 defines a passive operator (𝒖̄ + ′) → ̇̄𝒒. The fact that the
port (𝒒̇𝑢,′

𝑢) is preserved under the transformations (9.5)–(9.6) is key for the
developments in this chapter. Using this interconnection port to interconnect
impedance elements allows us to shape the interaction behavior of an ASR.
Throughout this chapter, 𝑍𝑢𝑖 and 𝑍𝑎𝑖 denote impedances interconnected with
the 𝑖th link and virtual motor, respectively, c.f. Fig. 9.1. The control structure
that results from such interconnections is shown in Fig. 9.2.

An important aspect of impedance control is the superposition princi-
ple, which facilitates the understanding of complex interconnected systems.
As highlighted by Hogan in [68]: if the dynamics is dissected into a set of [68]: Hogan (1985), “Impedance con-

trol: An approach to manipulation: Part
I—Theory”component impedances, these may be reassembled by simple addition even

when the behavior of any or all of the components is nonlinear (known as
the superposition principle for impedances). The underlying reason being
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Figure 9.2: Block diagram of the input
transformation. The resulting control in-
put 𝒖𝑎 realizes the interconnection of the
impedance elements, 𝑍𝑢𝑖 and 𝑍𝑎𝑖 with the
transformed system Σ̄.

𝒖𝑎𝒖̄𝑢

𝒖̄𝑎

𝒒̇𝑢

−

+

d2
d𝑡2

Σ𝑍𝑢𝑖

𝑍𝑎𝑖

𝒒̇𝑎

𝛀−2

rigid robot path

𝑲−1d
d𝑡

̇̄𝒒𝑎

that an environment acting as an admittance sums the forces applied to it
and determines its motions in response. Thus, the environment also sums any
impedances connected to it.

9.3 Challenges of Link-Side Damping Injection

This section discusses the challenges regarding link-side damping injection on
ASR, which has been identified as a desirable design objective in Section 7.1.
Based on the insights obtained, we formulate enhanced damping designs
in Section 9.4. The challenges arise from the fact that implementation of a
damping term, that acts directly on a link, requires feedback of the link jerks.
This fact is easily revealed within the ESPi control framework. We can use
input 𝒖̄𝑢 to interconnect a viscous damper with each link

𝑢̄𝑢𝑖 = −𝑑𝑞𝑖𝑞̇𝑢𝑖, (9.16)
where 𝑑𝑞𝑖 is the damping coefficient for the 𝑖th link. Making the substitu-
tions (5.57) and (9.16), it is clear that the implementation requires feedback
of the jerk signals 𝑞(3)𝑢𝑖 . A fundamental property of the model (9.2) is that
these quantities can be derived from the dynamics equations without numeri-
cal differentiation, see Appendix. However, (B.11) reveals that the link jerk
magnitudes are related to the rate of change of the external forces 1 and,
in fact, grow unbounded for impact forces approaching a step-like variation.
As a consequence, the feedback of jerk signals can potentially lead to input
saturation during harsh impacts with the environment. Notice that deactivation
of active damping during impacts is no viable option, as it would require
non-smooth joint torque variations which are physically impossible. Unless
the system is at rest, such switching would cause a non-smooth variation of 𝒖̄𝑢,
which would violate Assumption 9.2.1. What defines a harsh impact? Let us
assume a sine-like force excitation of constant amplitude 𝐴 and frequency 𝜔
on the 𝑖th joint of the form 𝑢𝑖(𝑡) = 𝐴 sin(𝜔𝑡), then the magnitude of ̇𝑢𝑖 rises
linearly with 𝜔. Hence, for the limit case 𝜔→ ∞, we have ̇𝑢𝑖 → ∞ and, thus,
𝑞(3)𝑢𝑖 → ∞. In conclusion, in impact situations where the impact force signal
contains substantial high frequency content, the implementation of direct link
damping requires large actuator torques. Note that jerk signals are contained
in the feedback terms ̈̄𝑢𝑢𝑖 which are scaled with 𝜔−2

𝑛𝑖 . We conclude, the softer
the joint, the harder the challenge of direct damping injection on the links. In
practice, the “harshness” of an impact depends significantly on the relative
speed and hardness of the collision partners.

It is important to notice that the challenge regarding link-side damping
injection does not arise from limitations of the ESPi framework, we used for
analysis here. In fact, these limitations are a manifestation of the mechanical
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bandwidth limitation of an elastic joint [153]. To support this statement, let [153]: Pratt et al. (1995), “Series elastic ac-
tuators”us consider one of the most straightforward ways to implement a link-side

damping term of the form (9.16). Implementation with a classic joint torque
tracking controller2 [140] 2: Considering 𝒖̄𝑢 as the desired joint

torque, the controller achieves global
asymptotic convergence 𝝍 → 𝒖̄𝑢 for 𝑡 →
∞.
[140]: Ott (2008), Cartesian Impedance
Control of Redundant and Flexible-Joint
Robots

𝒖 =𝛀2 ̈̄𝒖𝑢 + 𝒖̄𝑢 −𝛀2 (𝑫𝑒𝒆̇ +𝑲𝑒𝒆
)

+ 𝑩𝒒̈, (9.17)
𝒆 ≜𝝍 − 𝒖̄𝑢, (9.18)

reveals the feedback necessity of the link jerks through the same term, 𝛀−2 ̈̄𝒖𝑢,
as the damping implementation via (5.57). We conclude that in order to reduce
the actuator torque requirements in situations of harsh impacts, we have to
avoid link jerk signals in the feedback path.

Remark 9.3.1 Notice that deactivation of active damping during impacts
is no viable option. Unless the system is at rest, such switching would cause
a non-smooth variation of 𝒖̄𝑢, which would violate Assumption 9.2.1. If
link-side damping is injected via a joint torque tracking approach [140] [140]: Ott (2008), Cartesian Impedance

Control of Redundant and Flexible-Joint
Robots

,
such switching would require non-smooth joint torque variations which are
physically impossible.

9.4 Performance Limitations

Let us analyze the actuator torques required for interconnecting basic link
impedances through the link-side port established above. The insights ob-
tained are crucial for the layout of the enhanced damping designs presented in
Section 9.5. Since the transformation equations (9.5) and (9.6) are constituted
by 𝑛 independent scalar equations, the performance analysis for a multi-joint
manipulator can be conducted by analyzing each joint individually. Setting
𝒖̄2 = 𝟎 and performing a Laplace transform on the input transformation (5.57)
yields:

𝑈𝑖 = 𝑈̄𝑖 +
(

𝜔−1
𝑛𝑖 𝑠

)2 𝑈̄𝑖, (9.19)
which expresses the 𝑖th motor torque in terms of the 𝑖th link-side input. The
first, 𝑈̄𝑖, is the torque transmitted through the elastic element to the link. The
second, (𝜔−1

𝑛𝑖 𝑠
)2 𝑈̄𝑖, is the torque required to accelerate the motor’s mass so as

to track the deformation of the elastic element [153]. Only the latter is unique [153]: Pratt et al. (1995), “Series elastic ac-
tuators”to elastic robots.

Ignoring motor velocity saturation, we can compute performance limits
by imposing a symmetric bound on the magnitude of each actuator torque
|𝑢𝑖| ≤ 𝑢𝑚𝑎𝑥,𝑖. Introducing

𝐺ESP,𝑖(𝑠) ≜
𝑈𝑖(𝑠)
𝑈̄𝑖(𝑠)

= 1 + (𝜔−1
𝑛𝑖 𝑠)

2, (9.20)

which maps link-side torques to actuator torques, substituting 𝑠 = 𝑗𝜔 and
analyzing its magnitude over𝜔, provides valuable insight into the performance
characteristics of an elastic joint, see Fig. 9.3 (top). Interestingly, the important
performance characteristic 𝐺ESP,𝑖 is independent of the link inertias or masses.
Suppose, we want to interconnect a link impedance 𝑍𝑢𝑖 = 𝑈̄𝑖∕𝑉𝑖 with the 𝑖th
link. Assuming that the environment acts as an admittance and imposes a link
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velocity 𝑉𝑖 on the 𝑖th joint, then the corresponding control effort is determined
by:

𝑈𝑖(𝑠)
𝑉𝑖(𝑠)

= 𝐺ESP,𝑖(𝑠)𝑍𝑢𝑖(𝑠). (9.21)

In comparison, the control effort for the rigid robot counterpart3, to inter-3: When speaking of the rigid robot coun-
terpart, we refer to the limit case where the
joint stiffness values approach infinity. connect a link impedance 𝑍𝑢𝑖, is simply given by 𝑍𝑢𝑖 itself. Comparing

(9.21) with 𝑍𝑢𝑖 allows for the following conclusion. In the frequency range
0 < 𝜔 <

√

2𝜔𝑛, where |𝐺ESP| < 1, the elastic system is superior to the rigid
counterpart, in the sense that it requires less control effort to interconnect a
link impedance 𝑍𝑢𝑖 = 𝑈̄𝑖∕𝑉𝑖 on the 𝑖th link. This property is independent of
the particular link impedance choice. This important fact becomes clear con-
sidering that the multiplication of two transfer functions, c.f. (9.21), translates
into an addition of their magnitudes responses. A closer inspection of 𝐺ESP
reveals that the superiority of the elastic system is maximal for imposed link
velocities with a frequency of 𝜔 = 𝜔𝑛. For 𝜔 >

√

2𝜔𝑛, the slope of |𝐺ESP|
is 40 db/decade and, thus, the elastic system becomes vastly inferior in this
frequency range. It is for this reason, that in order to maximize the operational
frequency range of an elastic system, it is paramount to minimize the ampli-
tude of 𝑍𝑢𝑖 beyond √

2𝜔𝑛. This aspect is particularly important whenever the
environmental admittance imposes velocities with a high frequency content
on the 𝑖th link.

It is important to underline that the performance analysis results obtained
via the ESPi transformation are of general nature and not specific to this partic-
ular framework. The 40 dB rise, in the red zone of Fig. 9.3, is a manifestation
of the fact that the joint elasticity acts as a low-pass filter on the actuator
output, as highlighted by Pratt in his fundamental work on SEA [153].[153]: Pratt et al. (1995), “Series elastic ac-

tuators”

9.4.1 Implementing Basic Impedance Elements

Let us compute the control effort required to interconnect linear spring and
damper elements to obtain further insights into the performance limits of an
ASR. For the 𝑖th motor inertia and joint stiffness, we assume the test bed
parameters reported in Table 11.6. Suppose, we want to interconnect a spring
element, with spring constant 𝑘𝑞𝑖, with the 𝑖th link, then 𝑢̄1,𝑖 = −𝑘𝑞𝑖𝑞𝑢𝑖 and for
the 𝑖th link impedance, we have 𝑍𝑢𝑖 = 𝑘𝑞𝑖∕𝑠. The corresponding frequency
responses of 𝐺ESP,𝑖𝑍𝑢𝑖 and 𝑍𝑢𝑖 are reported in Fig. 9.3 (mid) for the stiffness
values 𝑘𝑞𝑖 =

{

𝑘𝑖∕2, 𝑘𝑖, 2𝑘𝑖
}. Doubling/halving the stiffness 𝑘𝑞𝑖 translates

into rising/lowering the magnitude of 𝐺ESP,𝑖𝑍𝑢𝑖 by 6 dB as indicated by the
dashed lines. This becomes immediately clear by inspecting the transfer func-
tion. When implementing an additional damper 𝑑𝑞,𝑖 = 2𝜉𝑞

√

𝑘𝑖𝑏𝑖, where 𝜉𝑞
denotes the damping ratio, then, according to the superposition principle,
we can simply add up the individual impedances s.t. 𝑍𝑢𝑖 = 𝑘𝑞𝑖∕𝑠 + 𝑑𝑞,𝑖. The
resulting frequency responses of 𝐺ESP,𝑖𝑍𝑢𝑖 and 𝑍𝑢𝑖 are reported in Fig. 9.3,
with 𝜉𝑞 = 0.7 and 𝑘𝑞𝑖 =

{

𝑘𝑖∕2, 𝑘𝑖, 2𝑘𝑖
} as above. Clearly, the actuator torque

required to implement an additional link-side damper is significantly increased
compared to a pure spring implementation in the high frequency regime,
where the damper dominates over the spring. Again, the dashed lines indicate
a doubling/halving of the imposed stiffness 𝑘𝑞𝑖 (the damping factors change
accordingly). Inspecting the transfer functions𝐺ESP,𝑖𝑍𝑢𝑖 and𝑍𝑢𝑖, it is straight-
forward to verify that doubling/halving the stiffness 𝑘𝑞𝑖 moves the magnitude
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Figure 9.3: (a) 𝐺ESP maps the link-side
torques to the actuator torques. (b)–(c) Fre-
quency responses of the control effort trans-
fer functions 𝐺ESP𝑍𝑢𝑖 and 𝑍𝑢𝑖, which map
the 𝑖th link velocity to the 𝑖th control torque
in case of an ASR and rigid robot case,
respectively. (b) Implementation of a lin-
ear spring. (c) Implementation of a linear
spring and damper.

plots up/down by 6 dB in the low frequency domain (spring-like behavior)
and up/down by ±3 dB in the high frequency domain (damper-like behavior),
c.f. Figure 9.3.

9.5 Improved Disturbance Rejection via Dynamic
Extensions

Building on the insights of the previous two sections, we can formulate damp-
ing designs that reduce the control effort in case of an environmental distur-
bance with high frequency content. Inspired by the design of shock absorbers
and considering the observations above, it appears natural to decouple the
damper element with a spring-like element to low-pass filter shock loads,
thereby greatly reducing the peaks of the interconnection torques 𝑢̄𝑖 at the mo-
ment of impact, see Fig. 9.4 for examples. In fact, choosing a link impedance
𝑍𝑢𝑖 with such a decoupled damper reduces the slope of |𝐺ESP,𝑖𝑍𝑢𝑖| from
40 dB∕dec to 20 dB∕dec in the high frequency regime 𝜔 > √

2𝜔𝑛𝑖, c.f. Fig-
ure 9.3 (mid) with Figure 9.3 (bottom). This is a direct consequence of the fact
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Figure 9.4: Mechanical impedance candi-
dates with enhanced damping properties.
For Variant 1, the PD element is decoupled
via an additional elastic element. In Variant
2, the additional (small) mass guarantees
that the dynamic extension represents an ac-
tual physical system. Variants 3–4 differ in
the sense that only the damper is decoupled
via an additional elastic element, thus, the
stiffness is uniquely determined by 𝑘𝑢 anal-
ogous to 𝑘ref of the reference impedance
𝑍𝑢0. 𝑞𝑢 𝑞𝑎 𝑞∗𝑢

𝑘𝑐

𝑍𝑢1 ∶

𝑍𝑢2 ∶

𝑍𝑢3 ∶

𝑍𝑢4 ∶

𝑘p,ref

𝑘v,ref

𝑍𝑢0 ∶

𝑘𝑝𝑢

𝑘𝑣𝑢

𝑘𝑝𝑢

𝑘𝑣𝑢

𝑘𝑝𝑢

𝑘𝑣𝑢
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𝑚̄
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that the interconnection of such elements, via input 𝑢̄1,𝑖, no longer requires ve-
locity feedback. Consequently, the implementation of (5.57) no longer requires
the critical jerk signals. Impedance elements 𝑍𝑢1 to 𝑍𝑢4 have in common that
the damper is decoupled via a spring element (orange), which results in a dy-
namics extension with one (Variants 1 & 3) or two additional states (Variants
2 & 4). Importantly, interconnecting these elements via (5.57) results in a
closed-loop system that can be interpreted as an interconnection of passive
Euler Lagrange systems, which again, yields a passive system, see [133]

[133]: Ortega (1998), Passivity-Based Con-
trol of Euler-Lagrange Systems: Mechani-
cal, Electrical, and Electromechanical Ap-
plications

for
details.

The dynamic extension 𝑍𝑢3 can be interpreted as the mechanical real-
ization of the popular “dirty derivatives” filter [83]

[83]: Kelly (1993), “A simple set-point
robot controller by using only position mea-
surements”

, 𝑍𝑢2 has been initially
introduced in [137, 173]

[137]: Ortega et al. (1994), “On passivity-
based output feedback global stabilization
of Euler-Lagrange systems”
[173]: Stramigioli (1996), “Creating artifi-
cial damping by means of damping injec-
tion” and 𝑍𝑢1 can be conceived as Hill’s muscle model

[64]. However, the motivations for these dynamic extensions were different,[64]: Hill (1938), “The heat of shortening
and the dynamic constants of muscle” and thus the recommended gain layouts differ. In case of the dirty derivative

filter, the gain 𝑘𝑐 is usually chosen as high as possible with the intention of
approximating the real velocities reasonably well. In [44, 173] the gains are[44]: Folkertsma et al. (2017), Energy in

Robotics
[173]: Stramigioli (1996), “Creating artifi-
cial damping by means of damping injec-
tion”

chosen s.t. 𝑘𝑐 >> 𝑘𝑞 and 𝑚̄ << 𝑚, where 𝑚 is the link inertia, based on the
intuitive reasoning that in this case the two masses tend to become one and
the “felt” stiffness will become 𝑘𝑞 [113, 173]. In other words, the impedance

[113]: Melchiorri et al. (1999), “Using
damping injection and passivity in robotic
manipulation”
[173]: Stramigioli (1996), “Creating artifi-
cial damping by means of damping injec-
tion”

behavior 𝑍𝑢,2 can be well approximated by the black spring/damper part in
Fig. 9.4. When it comes to reducing the actuator torque magnitudes in the
moment of a harsh impact, a diametrical layout is desirable. Physical intuition
suggests: the lower the coupling stiffness 𝑘𝑐 the lower the required actuator
torque magnitude.
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9.5.1 Interpretation as Euler-Lagrange Controllers

Interpreting the dynamic extensions in Fig. 9.4 as EL systems, it is clear that
the controllers achieving the interconnection with Σ̄ belong to the class of EL
controllers.

As an example, let us treat the interconnection of 𝑍𝑢2-elements with each
link of the QFA system (9.3). The controller dynamics associated with 𝑍𝑢2 of
the 𝑖th link is

Σ𝑐 ∶ 𝑚̄𝑖𝑞𝑐𝑖 + 𝑘𝑣𝑢𝑖𝑞̇𝑐𝑖 + 𝑘𝑐𝑖(𝑞𝑐𝑖 − 𝑞𝑢𝑖) + 𝑘𝑝𝑢𝑖(𝑞𝑐𝑖 + 𝑞∗𝑢𝑖) = 0, (9.22)
with the controller Lagrangian

𝑐 = 𝑐 − 𝑐 ; (9.23)
being composed of

𝑐 =
𝑛𝑢
∑

𝑖

1
2 𝑚̄𝑖𝑞̇

2
𝑐𝑖, (9.24)

𝑐 =
𝑛𝑢
∑

𝑖

1
2

[

𝑘𝑐𝑖(𝑞𝑐𝑖 − 𝑞𝑢𝑖) + 𝑘𝑝𝑢(𝑞𝑐𝑖 − 𝑞∗𝑢𝑖)
]

. (9.25)

Let (𝒒̄, ̇̄𝒒) be the Lagrangian of the plant in its QFA form. Then, following
Proposition 2.5.5, the feedback interconnection between the QFA model, (9.3),
and controller, (9.22) is established by

𝒖̄ = −
𝜕𝑐
𝜕𝒒̄

. (9.26)

and according to Proposition 2.5.5 the resulting closed-loop system is an EL
system with the Lagrangian

𝑐𝑙(𝒒̄, 𝒒𝑐 , ̇̄𝒒, 𝒒̇𝑐) = (𝒒̄, ̇̄𝒒) + 𝑐(𝒒̄, 𝒒𝑐 , ̇̄𝒒, 𝒒̇𝑐). (9.27)

9.5.2 Parameter Optimization

In [192], we propose a H∞ based optimization procedure for the gain layout [192]: Wandinger (2020), “Enhancing clas-
sical impedance control concepts while
ensuring transferability to flexible joint
robots”

of the dynamic extensions shown in Fig. 9.4 with respect to the following
three objectives:

• minimize the actuator force magnitudes during impacts by minimizing
the the 𝐻∞ norm of the disturbance transfer function from 𝑢 to 𝑢𝑎,

• minimize the 𝐻∞ norm of noise transfer function from 𝑞𝑢 to 𝑢𝑎,
• the magnitude of the resulting manipulator impedance, 1∕𝑉 , which

defines the interaction behavior, must lie withing an epsilon band of
the reference impedance 𝑍𝑢0. For the results in Fig. 11.19 and the
experiments reported in Chapter 11 (see also Fig. 11.21) the band was
chosen to be ±6 dB.

Figure 11.19 compares the frequency responses of the link-side impedance
candidates from Fig. 9.4 for two different layout approaches. Figure 11.19 (top)
reports the parameter layout according to the suggestion by [173]

[173]: Stramigioli (1996), “Creating artifi-
cial damping by means of damping injec-
tion”

, and Fig-
ure 11.19 (bottom) reports the parameters layout based on the optimization
procedure reported in [192]

[192]: Wandinger (2020), “Enhancing clas-
sical impedance control concepts while
ensuring transferability to flexible joint
robots”. From Fig. 9.3, we know that the interconnection
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Figure 9.5: Frequency responses of the link-
side impedance candidates. (top) Parameter
layout according to the suggestions by [173].
(bottom) Optimized parameters.
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of an link-side impedance𝑍𝑢𝑖 with high magnitudes |𝑍𝑢𝑖| for 𝜔 > 𝜔𝑛 requires
high actuation torques. In harmony with these insights, the optimization shifts
the cutoff frequencies of the impedance candidates towards 𝜔𝑛.

9.6 Conclusions

Using the ESPi control framework for ASRs, we analyzed the performance
limits arising in the implementation of link-side impedance elements and
discussed the challenges concerning link-side damping injection in impact
scenarios. These challenges are fundamentally linked to the feedback necessity
of the link jerks. Based on the insights obtained, we presented impedance con-
trollers with an enhanced damping design that is based on dynamic extensions.
These impedance controllers require fundamentally smaller actuator torques
at the moment of impact. The experimental results reported in Chapter 11 con-
firm this favorable behavior compared to classical impedance controllers with
a direct damping implementation (see also Video 5 in 12.6). As demonstrated
on a dedicated test bed, the new impedance designs combine this advantage
with the set-point regulation performance of classical impedance controllers.
Since the presented impedance controllers are implemented using the idea
of quasi-full actuation, the system’s intrinsic structure is preserved and the
resulting closed-loop dynamics are passive and physically intuitive. In fact, the
reported dynamic extensions can be interpreted as Euler-Lagrange controllers,
which allows applying the results from Section 6.3 to show GAS and passivity
of the resulting closed loop.
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Nature uses as little as possible of anything.

— Johannes Kepler

This chapter presents a complete synthesis method for time-optimal rest-
to-rest motions of an elastic joint system with bounded torque input. An
equivalence with the two-body problem in classical mechanics is highlighted,
allowing to introduce a change of coordinates that reduces the problem to a
pair of decoupled one-body problems. In place of the original coupled fourth-
order dynamics, the motion of two equivalent masses has to be synchronized
in separate phase spaces. The solution is provided in closed form by following
purely geometric arguments, and verifies the standard optimality conditions.
The obtained control is a bang-bang policy with either one or three switchings,
depending on the dynamic parameters and the required displacement. One-
switching solutions are called natural motions for the system: given a set
of dynamic parameters, they cover the displacement space in a sparse way.
Natural motions are the only instances when minimum-time solutions for the
elastic and the equivalent rigid joint system match, whereas the rigid system
is faster for all other optimal rest-to-rest motions. The results of this chapter
have been first published in [87]. [87]: Keppler et al. (2020), “On time-

optimal control of elastic joints under input
constraints”

10.1 Motivation

For many robotic applications, fast motion along a given path is crucial. It
requires the exploitation of the maximal allowable actuator torques. Therefore,
it is natural to aim at time-optimal solutions along a predefined path. The
minimum-time optimization problem for rigid manipulators was treated first
in [15, 161]. These methods rely on projecting the robot dynamics on the [15]: Bobrow et al. (1985), “Time-optimal

control of robotic manipulators along spec-
ified paths”
[161]: Shin et al. (1985), “Minimum-time
control of robotic manipulators with geo-
metric path constraints”

predefined path. Using the parametric position and velocity along the path
allows an elegant treatment of the problem in the phase plane. Unfortunately,
these algorithms cannot be applied in the presence of elastic joints. Other
methods have been proposed to solve the time-optimal control problem for
robots with (linear or nonlinear) flexible joints. In [18], a constrained optimal [18]: Braun et al. (2013), “Robots driven by

compliant actuators: Optimal control under
actuation constraints”control problem is formulated to obtain an optimal motor trajectory. The

problem of reaching a desired state in minimum time for visco-elastic joints
under limited deflection has been treated in [109]. However, in order to simplify [109]: Mansfeld et al. (2014), “Reaching

desired states time-optimally from equilib-
rium and vice versa for visco-elastic joint
robots with limited elastic deflection”

the analysis, these works contemplate a simplified model by considering the
motors as ideal velocity sources. The time-optimal control problem for the
complete elastic joint model was addressed also in [27], but only in a numerical [27]: Dahl (1992), “Path constrained robot

control”way.

In this chapter, we consider a system of two masses 𝑚 and 𝑏 connected by
an elastic joint of stiffness 𝑘, as shown in Fig. 10.1 (top). The corresponding
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Figure 10.1: The proposed change of co-
ordinates reduces the two-body problem in
eqs. (10.1–10.2) to a pair of one-body prob-
lems. With this transformation, the control
input will act on both masses, although in a
scaled fashion in one case.

𝑏 𝑚
𝑢

𝑘

𝑞𝜃

𝜇𝑘

𝜑

𝑢 𝜈𝑢

𝑟

𝑀

change of coordinates: (10.7)

dynamic model is
𝑚𝑞 + 𝑘(𝑞 − 𝜃) = 0 (10.1)
𝑏𝜃̈ + 𝑘(𝜃 − 𝑞) = 𝑢, (10.2)

where 𝜃 and 𝑞 are the positions of the two masses, relative to some inertial
reference frame, and 𝑢 is the control input force. We assume a symmetric
bound on the input

|𝑢| ≤ 𝑢̂. (10.3)
Note that this model (with masses in translation) is equivalent to that of a
robot joint (with rigid bodies in rotation), where the control torque 𝑢 acts on
the motor inertia 𝑏, driving the link inertia 𝑚 through an elastic transmission
of finite stiffness 𝑘. In this case, 𝜃 and 𝑞 are the motor and link position,
respectively.

We will present a new method that simplifies the generation and analysis
of optimal bang-bang control policies for the elastic system (10.1–10.2) under
the input bound (10.3). Time-optimal rest-to-rest (RTR) solutions are derived
in closed form by means of pure geometric considerations, providing thus
valuable insight into the RTR motion problem. With respect to existing works,
our method does not suffer from numerical robustness issues nor does it require
an offline processing/optimization phase.

At its core, our method relies on exploiting translational and time symme-
tries of the elastic system. In particular, we showcase the equivalence between
the motion of the elastic system and the two-body problem in classical me-
chanics, introducing thus a change of coordinates that reduces the two-body
problem to a pair of decoupled one-body problems. In contrast to a two-body
problem in classical mechanics, additional external forces are exerted on each
mass. These forces are directly related to our control input. This approach
allows to extend the idea of phase-plane based optimization [15, 161] to the
presence of elastic joints. However, instead of working with the projected dy-
namics in a single phase-space diagram, we face the problem of synchronizing
the motion of two bodies in two separate phase planes. In this framework, we
derive conditions under which the elastic joint system achieves time-optimal
motion for a RTR problem in a total time equal to that of a rigid joint (i.e.,
when 𝑘 → ∞). Further, in all other situations the optimal solution for the
elastic case will be slower than that of the rigid case. As a result, an elastic
joint matches the performance of a rigid system only in special cases that we
define as natural motions. Interestingly enough, this analysis may be used also
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to optimize the mechanical design of an elastic transmission.
The rest of the chapter is organized as follows. In Section 10.2, we in-

troduce the change of coordinates that decouples the dynamics of the elastic
joint system. Section 10.3 presents the concept of natural motions, and the
associated bang-bang solution to the minimum time problem with a single
control switch. In Section 10.4, we generalize the solution to a generic RTR
motion, synthesizing the time-optimal bang-bang policy with three control
switchings. Numerical results are reported in Section 10.5.

10.2 Equivalence Transformation

In classical mechanics, the two-body problem predicts the motion of two
masses, each exerting a force on the other. One of the prominent examples is
the gravitational case, also known as Kepler problem [84, 85], which arises in [84]: Kepler (1621), Epitome Astronomiae

Copernicanae
[85]: Kepler (1609), Astronomia Nova

orbital mechanics for predicting the orbits of two bodies in a binary system1.
1: In the simplest case, each of the two bod-
ies exert a conservative, central force on the
other, with no other external force being
present.

This problem can be treated in an elegant fashion by reducing it to a pair of
one-body problems. Substituting Newton’s law of universal gravitation [125]

[125]: Newton (1687), Philosophiae Natu-
ralis Principia Mathematica

with Hooke’s law, we can treat the elastic joint system (10.1–10.2) as a two-
body problem that evolves in one dimension, allowing to apply the techniques
that simplified the analysis of the Kepler problem.

In our elastic system, each body exerts a conservative central force on
the other (Figure 10.1). In addition, one of the two bodies is subject to an
external force which represents our control input. The force of interaction is
the elastic force 𝑘(𝑞𝑎 − 𝑞𝑢). This suggests that we may conveniently use the
relative position as one of the generalized coordinates

𝜑 ≜ 𝑞𝑎 − 𝑞𝑢, (10.4)
letting the potential energy of the system take the simple form

 = 1
2𝑘

(

𝑞𝑎 − 𝑞𝑢
)2 = 1

2𝑘𝜑
2. (10.5)

A good choice for the second generalized coordinate turns out to be the position
of the center of mass (CoM) of the system.

𝑟 ≜
𝑚𝑞𝑢 + 𝑏𝑞𝑎

𝑀
, (10.6)

where 𝑀 ≜ 𝑚 + 𝑏 is the total mass of the two bodies. The original set of
coordinates is related to the introduced one by the inverse transformation

𝑞𝑢 = 𝑟 − 𝑏
𝑀
𝜑; 𝑞𝑎 = 𝑟 + 𝑚

𝑀
𝜑. (10.7)

Thus, we can rewrite the kinetic energy of the system as
 = 1

2

(

𝑚𝑞̇2𝑢 + 𝑏𝑞̇
2
𝑎
)

= 1
2

(

𝑀𝑟̇2 + 𝜇𝜑̇2) , (10.8)

with the reduced mass 𝜇 ≜ 𝑚𝑏
𝑚+𝑏 < min(𝑚, 𝑏), see also [181]. The kinetic [181]: Taylor (2005), Classical Mechanics

energy of the system is thus equal to that of two virtual particles, one of total
mass 𝑀 moving with the speed of the CoM, and the other of reduced mass
𝜇 moving with the speed of the relative position. The total energy of the
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system,
 = 1

2𝑀𝑟̇2 + 1
2

(

𝜇𝜑̇2 + 𝑘𝜑2) ≜ com +rel, (10.9)
shows the decoupled nature of the two one-body problems. This structure
significantly simplifies matters. The equations of motion in the new coordinates
are in fact

𝑀𝑟̈ =𝑢, (rigid) (10.10)
𝜇𝜑̈ + 𝑘𝜑 =𝜈𝑢, (flexible) (10.11)

with the dimensionless parameter 𝜈 ≜ 𝑚∕𝑀 . As predicted (see also the bottom
of Figure 10.1), equation (10.10) is precisely that of a free floating particle
of mass 𝑀 driven by 𝑢, while (10.11) represents a mass 𝜇 oscillating about a
fixed center while subject to the external force 𝑢 scaled by the constant factor
𝜈. We note also that, given a constant input, the elastic joint system is invariant
to time reversal, i.e., under the operation 𝑇 ∶ 𝑡 → −𝑡. Intuitively speaking,
this is due to the conservation of entropy. This property will turn out to be
extremely useful later in this chapter.

10.2.1 Solution of the Decoupled Systems

Since we are interested in bang-bang control policies, we assume that 𝑢 is
piece-wise constant. In this case, the solution to the equation of motion (10.10)
is trivial

𝑟(𝑡) = 𝑢
2𝑀

𝑡2 + 𝐶1𝑡 + 𝐶2, (10.12)

with 𝐶1 being the initial velocity and 𝐶2 being the initial position. Since we
are interested in RTR motions we can assume, without loss of generality2,2: We can always choose the inertial frame

so that 𝑟(𝑡)|𝑡=0 = 0. that 𝐶1 = 0 and 𝐶2 = 0. The general solution of (10.11) is
𝜑(𝑡) = 𝐴 cos(𝜔𝑡 + 𝛿) + 𝑢̄, (10.13)

with oscillation amplitude 𝐴, angular frequency 𝜔 ≜
√

𝑘∕𝜇, phase shift 𝛿,
and static response

𝑢̄ ≜ 𝜈𝑢∕𝑘. (10.14)
The amplitude and phase shift depend on the initial conditions. The corre-
sponding velocity is given by

𝜑̇(𝑡) = −𝐴𝜔 sin(𝜔𝑡 + 𝛿). (10.15)

We can represent the phase space trajectory of system (10.11) in a useful
way by moving into the complex plane. To this end, we express (10.13) and
(10.15) in terms of complex exponentials. The system state will be a single
point in the complex plane, i.e., the complex plane serves as phase plane. To
this end, let

𝑧(𝑡) ≜ 𝑢̄ + 𝜑(𝑡) + 𝑖𝜑̇(𝑡) = 𝑢̄ + 𝐴1𝑒
𝑖(𝜔𝑡+𝛿) + 𝐴2𝑒

−𝑖(𝜔𝑡+𝛿), (10.16)

with 𝐴1 ≜
𝐴
2 (1 −𝜔) and 𝐴2 ≜

𝐴
2 (1 +𝜔). As the reduced mass oscillates back
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𝑢̄
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ℜ𝑧̃ = 𝐴 cos(𝜏 + 𝛿)
ℑ𝑧̃ = −𝐴 sin(𝜏 + 𝛿)

𝑧̃

auxiliary circle

orbit

Figure 10.2: The position (𝜑, 𝑖𝜑′) of the
normalized system is given by the complex
pointer𝐴𝑒𝑖(𝜏+𝛿) whose origin is offset along
the real axis by 𝑢̄. As the reduced mass os-
cillates back and forth, this point moves in
clockwise orientation on an inscribed circle
with radius 𝐴 that is centered at 𝑢̄. The el-
liptic orbit of the reduced mass (𝜑, 𝜑̇) can
be obtained by scaling the imaginary part
of 𝑧̃, i. e. 𝜑′, by 𝜔.

and forth, point 𝑧 moves on an ellipse centered at 𝑢̄ in clockwise orientation.
This result is illustrated in Figure 10.2. The exact shape will become clear in
a moment.

Observe that the state trajectory becomes particularly simple for 𝜔 = 1,
when the ellipse in the phase plane degenerates to a circle. Exploiting this fact
to simplify matters, we rewrite (10.13)–(10.15) in terms of the scaled time

𝜏 = 𝜔𝑡, (10.17)
that we shall refer to as natural time (which is system specific, as the scaling
factor is its angular frequency). Using the chain rule 𝑑(⋅)∕𝑑𝑡 = 𝜔𝑑(⋅)∕𝑑𝜏, we
have

𝜑(𝑡) = 𝜑(𝜏∕𝜔), (10.18a)
𝜑̇(𝑡) = 𝜔𝜑′(𝜏∕𝜔), (10.18b)

with the natural time as parameter, and having denoted by (⋅)′ ≜ 𝑑(⋅)∕𝑑𝜏 the
new differential operator. We note that (𝜑,𝜑′) are equivalent to the analytical
solution of a clamped spring-mass system with natural frequency 𝜔 = 1. The
scaled trajectory

𝑧̃(𝜏) = 𝑢̄ + 𝜑(𝜏) + 𝑖𝜑′(𝜏) = 𝑢̄ + 𝐴𝑒𝑖(𝜏+𝛿), (10.19)
then corresponds to the solution of a spring-mass system with a unitary angular
frequency. Thus, a phase plane trajectory 𝑧 can be obtained from the trajectory
𝑧̃ by scaling the imaginary part of 𝑧̃ by the constant factor 𝜔.

If we know the trajectory 𝑧̃(𝜏∕𝜔) in the complex plane, we obtain 𝑧(𝑡) by
stretching (𝜔 > 1) or squeezing (𝜔 < 1) the imaginary part of 𝑧̃ by the angular
frequency factor. It is straightforward to see that 𝑧̃ defines a point that moves
in the clockwise direction on a circle centered at 𝑢̄ and having radius𝐴. Hence,
𝑧 will trace an ellipse centered at 𝑢̄, with axes parallel to the coordinate axes,
semi-major axis (𝜔 > 1) of length 𝜔𝐴 and semi-minor axis of length 𝐴.

Note finally that the natural time 𝜏, with 𝛿 as an offset, corresponds to
the polar angular coordinate of 𝑧̃, but not to the polar angular coordinate of
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𝑧. However, the parameter pair 𝜏 and 𝛿 can be interpreted as the eccentric
anomaly [36] of a point 𝑧 that moves on an elliptic orbit, a popular concept in[36]: De Ruiter et al. (2012), Spacecraft

Dynamics and Control: An Introduction astronomy. The geometric meaning of the eccentric anomaly becomes clear
in the point construction method of an ellipse by La Hire. Given a trajectory
𝑧̃(𝜏∕𝜔), this construction method allows to derive the corresponding trajectory
𝑧(𝑡), and vice versa, in a purely geometric way, see Figure 10.2.

10.3 Natural Motions

We preliminarily recap the rest-to-rest motion in minimum time of the total
mass 𝑀 made by the two individual masses 𝑚 and 𝑏 connected by a rigid
joint (𝑘→ ∞). We then transfer these insights to the case of an elastic joint
and introduce the concept of natural motions. When a natural motion applies,
this associated rest-to-rest command is time optimal. Further, natural motions
are the only cases when an elastic joint matches the fastest RTR motion
performance of a rigid joint.

10.3.1 Rigid Joint Case

Consider (10.10) as the dynamics of the rigid joint case. The minimum time
control problem to displace by a desired amount 𝑟𝑓 the total mass 𝑀 from
rest to rest, under the constraint (10.3), reduces to a minimum time problem
for a double integrator with constant bounds on the acceleration input 𝑟̈. From
(10.3), the upper and lower bounds for the acceleration are 𝑟̈max = 𝑢̂∕𝑀 and
𝑟̈min = −𝑢̂∕𝑀 . Throughout this paper we assume, w.l.o.g, that 𝑟𝑓 > 0.3 The3: The solutions for 𝑟𝑓 < 0 are simply ob-

tained by inverting the input signs. solution to the optimal control problem is a bang-bang input [11]. Due to the
[11]: Athans et al. (2006), Optimal Control:
An Introduction to the Theory and Its Appli-
cations

symmetry of the constraints (10.3) and the time symmetry of (10.10) under
constant inputs, the rest-to-rest solution will also be symmetric with respect
to time and has the form

𝑟̈ =

{

𝑟̈max, for 0 ≤ 𝑡 ≤ 𝑡𝑠
𝑟̈min, for 𝑡𝑠 < 𝑡 ≤ 𝑡𝑓 ,

(10.20)

where 𝑡𝑓 denotes the final time and 𝑡𝑠 ≜ 𝑡𝑓∕2 the instant of command switch-
ing. Obviously, this corresponds to the control law

𝑢 =

{

𝑢̂, for 0 ≤ 𝑡 ≤ 𝑡𝑠
−𝑢̂, for 𝑡𝑠 < 𝑡 ≤ 𝑡𝑓 ,

(10.21)

which yields the system response

𝑟(𝑡) =

{

𝑢̂
2𝑀 𝑡

2, for 0 ≤ 𝑡 ≤ 𝑡𝑠
− 𝑢̂

2𝑀 (𝑡2 − 4𝑡𝑠𝑡 + 2𝑡2𝑠), for 𝑡𝑠 < 𝑡 ≤ 𝑡𝑓
(10.22)

and

𝑟̇(𝑡) =

{

𝑢̂
𝑀 𝑡, for 0 ≤ 𝑡 ≤ 𝑡𝑠

− 𝑢̂
𝑀 (𝑡 − 2𝑡𝑠), for 𝑡𝑠 < 𝑡 ≤ 𝑡𝑓 .

(10.23)

The response to a bang-bang input (10.21) is shown in Fig. 10.3.
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Figure 10.3: A typical time-optimal RTR
motion profile for a rigid joint. We have
points and lines of symmetry. The total area
under the velocity profile is equal to the total
displacement 𝑟𝑓 > 0. The CoM trajectory
of an elastic joint has the same form for the
natural motion case.

10.3.2 Elastic Joint Case

We know that the class of bang-bang inputs (10.21) solve the time-optimal
control problem in the rigid joint case. We are interested in whether such
solutions exist and are optimal also for the elastic case, when the task is to
move the entire system (10.10)–(10.11) from rest to rest, with initial and final
positions

𝑟(𝑡) =

{

0, for 𝑡 = 0
𝑟𝑓 > 0, for 𝑡 = 𝑡𝑓

, 𝜑(𝑡) =

{

0, for 𝑡 = 0
0, for 𝑡 = 𝑡𝑓 .

(10.24)

The result for the rigid case allows to conclude that a bang-bang input yields
the time-optimal rest-to-rest motion for the CoM of the flexible joint system.
The solution is equivalent to the one shown in Fig. 10.3. However, since we
are interested in moving the entire system from rest to rest (and with zero final
deformation), we have to ensure that our control input induces a synchronized
motion for the CoM and the reduced mass 𝜇. The acceleration of the reduced
mass subject to the bang-bang input (10.21) is

𝜑̈(𝑡) = 𝜔2𝜑′′(𝜏∕𝜔) =

{

𝑓 (𝜑, 𝑢̂), for 0 ≤ 𝑡 ≤ 𝑡𝑠
𝑓 (𝜑,−𝑢̂), for 𝑡𝑠 ≤ 𝑡 ≤ 𝑡𝑓

(10.25)

where 𝑓 (𝜑, 𝑢) ≜ 𝜇−1 (𝜈𝑢 − 𝑘𝜑). In order to simplify the notation, let ℎ(𝜑, 𝑢) ≜
𝜔−2𝑓 (𝜑, 𝑢) such that 𝜑′′(𝜏∕𝜔) = ℎ(𝜑, 𝑢). Also, denote for compactness
𝑢̄max ≜ 𝜈𝑢̂∕𝑘.

As we prove below, there exist indeed bang-bang inputs of the form (10.21)
that yield synchronized RTR motions satisfying the boundary conditions
(10.24). The most intuitive approach to find the switching position is to build
the switching curve in the (𝜑, 𝑖𝜑′) phase plane. We start with maximum
acceleration and solve 𝜑′′ = 𝑓 (𝜑, 𝑢̂) forward in time from the initial point
𝜑 = 𝜑′ = 0. From (10.19), we know that for a constant input 𝑢 all solutions
are circles centered at 𝑢̄ which are traced in the clockwise direction. As such,
a system that starts from the origin, under 𝑢 = 𝑢̂, moves clockwise on the orbit
𝑜+ with radius 𝐴 = 𝑢̄max. This behavior is shown in Fig. 10.4, as well as on
the left in Fig. 10.6 (where the natural time 𝜏 corresponds to the blue angle
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Figure 10.4: A natural motion trajectory of
the reduced mass with one switching event.
The orbit 𝑜+ (𝑜−) is the locus of all points
(𝜑,𝜑′) which can be transferred to the ori-
gin by the control 𝑢 = 𝑢̂ (𝑢 = −𝑢̂).
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that is being covered).
Next, we solve 𝜑′′ = 𝑓 (𝜑,−𝑢̂) backward in time from the final point

𝜑 = 𝜑′ = 0, yielding the circular orbit 𝑜−. Since system (10.10–10.11)
under a constant input is invariant to time reversal, forward and backward
integration are equivalent operations when starting from a given system state.
Therefore, we don’t need to solve the system dynamics backwards in time:
due to the control policy (10.21), forward and backward trajectories are just
mirror images with respect to the imaginary axis.

We note also that the two trajectories are tangent at the origin of the phase
plane. Since no other point of tangency or intersection exists, transfer between
the two orbits may occur only at the origin. The phase plane trajectory that
emerges from solving 𝜑′′ = ℎ(𝜑,−𝑢̂) backwards in time from 𝜑 = 𝜑′ = 0 is
the switching curve for this scenario. The optimal control policy is to apply
maximum acceleration 𝜑′′ = ℎ(𝜑, 𝑢̂) until the trajectory intersects the origin,
and then switch to maximum deceleration 𝜑′′ = ℎ(𝜑,−𝑢̂).

The acceleration and deceleration phases are in the time intervals 0 < 𝜏 ≤
2𝜋 and 2𝜋 < 𝜏 ≤ 4𝜋, respectively. Hence, we spend half of the time applying
𝑢 = 𝑢̂ and the remaining half applying 𝑢 = −𝑢̂. Since this strategy is time
optimal for the RTR motion of the CoM, we conclude that this control policy
moves the entire system (10.10)–(10.11) from rest to rest in a time-optimal
way4.4: Recall that we have two decoupled sys-

tems. As such, the minimum possible time
for moving both systems synchronously has
to be greater or equal to the minimum times
for moving the individual systems.

We can immediately see that there exists an infinite number of such so-
lutions. In fact, we may cover 𝑛 orbits with maximum acceleration and 𝑛
orbits with maximum deceleration. We refer to all these instances as natural



10.3 Natural Motions 203

𝑧(𝑡)

Re

𝜑′

−𝑢̄max 𝑢̄max

𝜑′

𝑢̄max𝜏 − 𝜏𝑠

𝜑̇

𝜑̈ = 𝑓 (𝜑, 𝑢̂)

Maximum
Acceleration

Maximum
Deceleration
𝜑̈ = 𝑓 (𝜑,−𝑢̂)

𝑧(𝑡)

𝑧̃(𝜏)

switching
point #1

Center of
Rotation

Center of
Rotation

Im

Re

Im

𝐴

𝑢̄max

PHASE #1 PHASE #2

𝜑

𝑧̃(𝜏)

𝜑

𝜑̇ = 𝜔𝜑′

𝑢 = 𝑢̂ for 0 ≤ 𝜏 ≤ 𝜏𝑠 𝑢 = −𝑢̂ for 𝜏 > 𝜏𝑠

𝜏 𝜏𝑠

𝑜1
𝜑′′ = ℎ(𝜑, 𝑢̂)

𝑜1

Maximum
Deceleration
𝜑′′ = 𝑓 (𝜑,−𝑢̂)

−𝑢̄max

𝑜2

𝑧̃2(𝜏) = −𝑢̄max + 𝐴𝑒𝑖(𝜏+𝛿)

𝑧̃1(𝜏) = 𝑢̄max
(

1 − 𝑒𝑖𝜏
)

Figure 10.6: Geometry of the phase-space trajectories for multiple switching incidents.

motions. All natural RTR motions of system (10.1–10.2) emerge from the
control policy

𝑢 =

{

𝑢̂, for 0 ≤ 𝜏 ≤ 𝜏𝑠,𝑛
−𝑢̂, for 𝜏𝑠,𝑛 < 𝜏 ≤ 𝜏𝑓,𝑛,

(10.26)

with 𝜏𝑓,𝑛 = 4𝑛𝜋 and 𝜏𝑠,𝑛 = 𝜏𝑓,𝑛∕2, for 𝑛 ∈ ℕ. Furthermore, each natural
motion is a time-optimal solution to a specific RTR motion problem for the
elastic joint system.

The velocity profile of the CoM mass subject to the control (10.26) is
piece-wise linear, as shown in Fig. 10.5. The geometric relation between the
CoM velocity 𝑟′ and the corresponding final positions 𝑟𝑓 is given by

𝑟𝑓 = ∫

𝑡𝑓

0
𝑟̇ 𝑑𝑡 = ∫

𝜏𝑓

0
𝑟′ 𝑑𝜏. (10.27)

Thus, the final position 𝑟𝑓,𝑛 is equal to the area under the corresponding
velocity profile in Fig. 10.5. From (10.23), we know that the peak velocity
at the switching point 𝑛 is given by 𝑟̇(𝑡𝑠,𝑛) = (𝑢̂∕𝑀)(𝜏𝑠,𝑛∕𝜔). Applying basic
geometry allows to determine the final reached position as5 5: Note that we cover half of the distance

in half of the time.

𝑟𝑓,𝑛 =
𝑢̂
𝑀

(𝜏𝑠,𝑛
𝜔

)2
= 𝑢̂
𝑀

(2𝑛𝜋
𝜔

)2
. (10.28)

Indeed, the achievable final positions are countable and do not cover the entire
set ℝ+. We may only reach (infinitely many) discrete points for a given set of
system parameters. In the following section, we present the class of bang-bang
solutions that allows to cover the entire set of real numbers.
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Figure 10.7: Typical CoM velocity profiles
for the three-switchings solution. By purely
geometrical reasoning we may conclude
that the CoM velocity assumes negative val-
ues if and only if 𝛼1 < 𝜋∕2.
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10.4 Reaching any Distance

In this section, we synthesize a three-switching bang-bang control strategy
that achieves RTR motions in minimum time for arbitrary final positions .

10.4.1 The Synchronization Problem

By introducing three switching points, we will show that one can reach any
desired position for the CoM as well. Again, we synchronize the motion of
the CoM with the motion of the reduced mass so that the boundary conditions
(10.24) are all satisfied. From the time-symmetry of the dynamics, we observe
that any time-optimal control strategy must be symmetric with respect to
the half motion time. Thus, we only consider three-switching strategies that
satisfy this condition. Therefore, a policy including three control switches (for
𝑟𝑓 > 0) must be of the form

𝑢 = 3

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢̂, for 0 ≤ 𝜏 ≤ 𝛼1
−𝑢̂, for 𝛼1 < 𝜏 ≤ 𝛼1 + 𝛼2
𝑢̂, for 𝛼1 + 𝛼2 < 𝜏 ≤ 𝛼1 + 2𝛼2

−𝑢̂, for 𝛼1 + 2𝛼2 < 𝜏 ≤ 2
(

𝛼1 + 𝛼2
)

.

(10.29)

When applying an input torque 𝑢̂ to system (10.10)–(10.11), and starting from
the origin, we know that the resulting trajectory for 𝑧̃ is a circular orbit 𝑜1
centered at 𝑢̄max —see the left side of Figure 10.6. Switching to an input −𝑢̂
after some time 𝜏𝑠1,𝑛 transfers 𝑧̃ to a circular orbit 𝑜2 with its center at −𝑢̄max.
The continuity of the solution (𝜑,𝜑′) implies that these two circular orbits
intersect at the switching time 𝜏𝑠. This uniquely defines the radius of orbit 𝑜2.
At the time-point of switching, the amplitude 𝐴 in (10.19) assumes the radius
of 𝑜2. In a switching event, we can think of an amplitude 𝐴 and angular offset
𝛿 adaptation such that continuity of the solution for (𝜑,𝜑′) is ensured. This
construction is illustrated on the right side of Figure 10.6. We remark that a
continuous solution in (𝜑,𝜑′) implies a continuous solution in (𝜑, 𝜑̇). Also,
since we require the CoM to complete the motion at rest, the total intervals of
maximum acceleration and of maximum deceleration must be equal. This is
visualized in Figure 10.7.

We are now in the position to derive a control policy with three switches
that allows us to achieve any final rest position for the CoM, while simulta-
neously moving the reduced mass from rest to rest. We shall build the phase
plane trajectory of the reduced mass that corresponds to a three-switching
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Figure 10.8: A symmetric three-switchings
trajectory for the reduced mass. Note that
it is possible to cover the maximum accel-
eration orbit 𝑜1 multiple times before trans-
ferring to orbit 𝑜2. However, symmetry de-
mands that for 𝑛 maximum acceleration cy-
cles on orbit 𝑜1 we enter 𝑛 maximum decel-
eration cycles on orbit 𝑜4.

control policy, as shown in Figure 10.7. A typical trajectory of this type is
shown in Figure 10.8.

The first two phases of maximum and minimum acceleration yield orbit
𝑜1 and the transfer to orbit 𝑜2. The time spent on orbit 𝑜1 corresponds to the
polar angle 𝛼1. The actual time span is related to the scaled one by the relation
𝑡 = 𝜔−1𝜏. In a similar way, the polar angle 𝛼2 corresponds to the time spent
on the deceleration orbit 𝑜2. Imagine now to perform the same procedure of
trajectory construction backward in time. We know that our final position
shall be the origin. Thus, we start by integrating 𝜑′′ = 𝑓 (𝜑,−𝑢̂) backward
in time from the origin of the phase plane, which yields orbit 𝑜4. After some
time 𝛼1, we switch to full acceleration and obtain orbit 𝑜3. We observe that by
choosing 𝛼1 and then 𝛼2 wisely, we will have the second command switching
exactly where the orbits 𝑜2 and 𝑜3 intersect for the first time. Recall now that
forward and backward integration for our system are equivalent operations.
Thus, the forward and backward trajectories, due to the above control policy,
must be mirror images with respect to the imaginary axis. This implies that
the switching must happen where the phase plane trajectory intersects the
imaginary axis (i.e., when 𝜑 = 0).

We conclude that this geometric construction yields cyclic trajectories for
the reduced mass, moving it from rest to rest. Further, due to our assumptions
above, the same control policy yields also rest-to-rest motions for the CoM.
We show next that we can reach any distance (in particular, between two
natural motions) by adjusting the value of 𝛼1.

10.4.2 Solution by Phase Space Geometry

Let us start with some geometric observations. Clearly, the radius of the first
orbit 𝑜1 is 𝑅1 = 𝑢̄max. The relation between the first switching angle 𝛼1 and
the radius of the second orbit 𝑜2, as shown in Figure 10.9, is given by

𝑅2 = 𝑢̄max
√

5 − 4 cos(𝛼1). (10.30)
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Figure 10.9: Geometric derivation of the
dependence of 𝛼2 on 𝛼1.
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We simplify the derivation of the angle 𝛼2 by introducing two intermediary
angles 𝛽1 and 𝛽2, which are defined in Figure 10.9. For these two angles we
can derive the following relations

𝛽1 = arcsin
(

𝑅1
𝑅2

sin(𝛼1)
)

= arcsin

(

sin(𝛼1)
√

5 − 4 cos(𝛼1)

)

𝛽2 = arccos
(

𝑢̂
𝑅2

)

= arccos

(

1
√

5 − 4 cos(𝛼1)

)

.

Note that both intermediary angles are solely a function of the first switching
time point 𝛼1. In turn, this implies that 𝛼2 is a function of 𝛼1. We have

𝛼2 = 𝛽1 + 𝛽2, (10.31)
which is zero if and only if 𝛼1 = 2𝜋𝑛, as expected. Recall that the final position
is given by (10.27). The integral corresponds to the area under the curves in
Figure 10.7 on the right. This area can be derived through purely geometric
reasoning, and is equal to

𝑟𝑓 (𝛼1) =
𝑢̂

𝑀𝜔2

(

2𝛼21 −
(

𝛼1 − 𝛼2
)2
)

. (10.32)

The corresponding natural time required to reach 𝑟𝑓 > 0 is
𝜏𝑓 (𝛼1) = 2

(

𝛼1 + 𝛼2
)

. (10.33)
Is it easy to verify that, for the degenerate case of 𝛼2 = 0, we obtain just one
of the natural motion solutions (10.28).

Finally, Figure 10.10 shows the mapping between the final (natural) mo-
tion time 𝜏𝑓 and the desired motion displacement 𝑟𝑓 > 0, as a result of
relations (10.31) to (10.33). One can immediately see that, for all but the
natural motion cases, the minimum time needed for a RTR motion realizing a
desired displacement 𝑟𝑓 of the CoM is always larger in the flexible case in
comparison to the rigid case. Importantly, the differences tend to vanish for
longer displacements (as well as for increasing values of the joint stiffness 𝑘).
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Figure 10.10: A comparison of the three-
switching control policy, including natural
motion solutions, versus the time-optimal
RTR solutions for a rigid joint. Note, the
natural motion solutions of a flexible joint
match the time-optimal solutions for a rigid
joint. Otherwise, a flexible joint is always
inferior for RTR motions. However, for mo-
tions that take longer than 4𝜋 this mismatch,
in relation to the total time 𝜏𝑓 , becomes neg-
ligible.

10.4.3 Optimality Result

We conclude this section with the following proposition.

Proposition 10.4.1 Given the initial and desired final positions of the
form (10.24) for system (10.1–10.2), the three-switching bang-bang control
policy (10.29) provides the time-optimal solution for rest-to-rest motions.
If the final position satisfies condition (10.28), the control policy (10.29)
degenerates to a single switching bang-bang input which results in a natural
motion.

We sketch here the verification of the time-optimality of the three-
switching strategy, based on a procedure that uses Pontryagin’s minimum
principle [11]. For our linear, single-input, time-invariant, and controllable [11]: Athans et al. (2006), Optimal Control:

An Introduction to the Theory and Its Appli-
cations

system, we deal with a normal time-optimal problem, and therefore singular
arcs in the optimal solution can be ruled out. Pontryagin’s minimum principle
provides then the optimal control as a piece-wise constant function of time,
which is always in saturation (i.e., bang-bang) except in isolated instants of
switching. The sign of the control law 𝑢∗(𝑡) is determined by the sign of the
switching function 𝑠(𝑡), which in our case depends on the evolution of two
components of the optimal costate vector 𝝀(𝑡) ∈ ℝ4. We impose then equal-
ity to zero of the Hamiltonian (𝑡) at the initial and final times, 𝑡 = 0 and
𝑡 = 𝑡𝑓 , using the known boundary conditions of the problem, the optimal
values of our control profile, 𝑢∗(0) and 𝑢∗(𝑡𝑓 ), and the final time 𝑡𝑓 obtained
from our geometric approach. Similarly, we impose in two out of the three
instants of control switching, namely 𝑡1 = 𝛼1∕𝜔 and 𝑡2 = 𝑡𝑓∕2 (both obtained
from our geometric computations), the vanishing of the switching function,
𝑠(𝑡1) = 𝑠(𝑡2) = 0. In this way, we set up a well-defined linear system of
equations that allows us to determine the four initial costate values, i.e., 𝜆𝑖(0),
𝑖 = 1,… , 4. With these, we integrate forward the necessary conditions of
optimality and obtain analytically the unique expression of the optimal costate
𝝀∗(𝑡) and of the associated switching function 𝑠∗(𝑡). We verify then that the
crossing of zero of this function occurs only at the switching instants of our
control policy and that the sign of 𝑠∗(𝑡) elsewhere is always opposite to the
sign of our 𝑢∗(𝑡). Moreover, using forward integration of the state equations
driven by our optimal control, we obtained also the optimal state evolution
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𝒙∗(𝑡). With all these values plugged into the Hamiltonian, we finally verify that
(𝑡) = 0 at any time 𝑡 ∈ [0, 𝑡𝑓 ]. Therefore, our solution satisfies the minimum
principle of Pontryagin and the necessary conditions of optimality.

10.5 Numerical results

As reference motions, we have considered the three examples presented by
Dahl in [27]. The parameters of the considered two-mass system are 𝑚 = 𝑏 =[27]: Dahl (1992), “Path constrained robot

control” 0.5 [kg], whereas the bound on the input force is 𝑢̂ = 1 [N]. The results are
summarized in Table 10.1. We refer to the three sets of system parameters (for
different values of the stiffness 𝑘) as Case 1 to Case 3.

Our geometric control policy (10.29) yields exactly the same solutions
presented by [27]. It important to remark that those optimal solutions were[27]: Dahl (1992), “Path constrained robot

control” obtained through numerical optimization. In contrast, we provide a closed-
form solution to the problem.
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Figure 10.11: (left) The first natural motion for Case 1: 𝑟𝑓 = 𝜋2 m, 𝜏𝑓 = 4𝜋 rad. (right) Three-switchings solution for Case 2: 𝑟𝑓 = 2 m,
𝜏𝑓 = 5.86𝜋 rad.

In Fig. 10.11 (left), we show the time-optimal bang-bang control for the
first natural motion in Case 1 (𝑘 = 1 Nm−1). The final position, as given
by (10.28) with 𝑛 = 1, is 𝑟𝑓 = 𝜋2. In the top part, we have plotted also the
optimal switching function.

Figure 10.11 (right) shows the time-optimal control law with three switch-
ings, the optimal switching function, and the two state velocities that result

Table 10.1: Three time-optimal motions. 𝑘 𝜔 𝛼1 𝛼2 𝑟𝑓 𝜏𝑓 𝑡𝑓[N/m] [rad/s] [rad] [rad] [m] [rad] [s]
1 2 2.032 1.528 2 2.27𝜋 3.56

10 6.325 7.653 1.558 2 5.86𝜋 2.91
100 20 26.803 1.567 2 18.08𝜋 2.84
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from control policy (10.29) in Case 2 (𝑘 = 10 Nm−1). The zero crossings
of the switching function match the switching instants of our control policy
(10.29). This confirms the conclusion about the achieved time-optimality with
our geometric approach.

10.6 Conclusion

In this chapter, we highlighted the connection between a two-mass system with
an elastic joint and the two-body problem in classical mechanics. Based on this
insight, we introduced a change of coordinates that decouples the complete
dynamics into a pair of single-body problems. This simplification allowed
us to apply pure geometrical reasoning to generate and analyze minimum-
time bang-bang solutions to the rest-to-rest (RTR) motion problem under
actuator torque bounds. All solutions are provided in closed form. Further, we
introduced the concept of natural motions which are time-optimal solutions
to the RTR motion problem. These are the only RTR solutions where the
minimum-time performance of an elastic joint system matches that of a rigid
joint.

The insight obtained from the natural motion analysis, can be exploited
to optimize the design of an elastic robot joint. In fact, it is desirable that the
natural motion of an elastic joint matches its nominal motion. Only in this case,
the RTR motion in the elastic case can reach the motion time performance of
a rigid joint. Our framework can be easily extended to account for limitations
on joint deflections and motor velocities. The natural motion concept could
be extended to include periodic motions, like in pick-and-place robotic tasks.
These issues will be the subject of future investigations.
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It doesn’t matter how beautiful your theory is, it doesn’t matter how smart
you are. If it doesn’t agree with experiment, it’s wrong.

— Richard P. Feynman

This chapter reports simulation and experimental validation of the different
ESP controllers presented in Chapter 7, 9 and Appendix A. The various
experiments emphasize the remarkable damping performance and robustness
of the proposed ESP concept. We will study the performance of the proposed
controllers on two different systems. The first is a dedicated SEA testbed, and
the second, DLR David [54]

[54]: Grebenstein et al. (2011), “The DLR
hand arm system”

is an ASR. Note that the applicability of the
developed controller is not limited to these two systems, but rather extends to
all systems satisfying the central model assumptions in Chapter 5.

Hardware Setup Critical system parameters of DLR David and the SEA
testbed are summarized in Table 11.1. For either system, we employed a
fourth-order derivative filter with a cut-off frequency of 80Hz to obtain ve-
locity signals. For compensating motor-side friction and estimating link-side
disturbances, we used the momentum observer [34]

[34]: De Luca et al. (2006), “Collision de-
tection and safe reaction with the DLR-III
lightweight manipulator arm”

. For all simulations and
experiments the link acceleration and possibly jerk signals are computed via
the method reported in Section B.2 in Appendix B if not explicitly stated
otherwise as for some cases in Experiment 5. Furthermore, we followed the
damping design reported in [86]

[86]: Keppler et al. (2018), “Elastic struc-
ture preserving (ESP) control for compli-
antly actuated robots”

and 𝝃𝑢 and 𝝃𝑎 refer to the link- and motor-side
modal damping factors.

DLR David [54], as shown in Fig. 3.1, is an ASR implemented with
variable impedance actuators (VSAs) in all its joints. For the experiments,
we considered the first four or five main axes, namely the elbow, the three
shoulder joints, which are implemented with FSJs [194]

[194]: Wolf et al. (2011), “The DLR FSJ:
Energy based design of a variable stiffness
joint”

and the underarm
rotation, which is realized by a bidirectional antagonistic variable stiffness

𝑞𝑢1
𝑞𝑢2

𝑞𝑢3

𝑥𝑢2

𝑥𝑢1

𝑥𝑢3

𝑞𝑢4

𝑞𝑢5 Figure 11.1: DLR David: A soft robot with
variable stiffness actuators [54].
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Table 11.1: System and control parameters David Testbed
Link inertia n.a. 1 kgm2

Motor inertia 0.3117 kgm2 0.6 kgm2

Joint stiffness 52.4–826Nm rad−1 362Nm rad−1
Actuator limits ±67Nm ±100Nm
Link sensor resolution 16 bit / 271◦ 23 bit / revolution
Controller rate 3000Hz 3000Hz

(BAVS) joint [47]
[47]: Friedl et al. (2011), “Wrist and fore-
arm rotation of the DLR hand arm system:
Mechanical design, shape analysis and ex-
perimental validation”

. The applied stiffness settings, indicated by the variables 𝜎𝑖,
correspond to the stiffness profiles shown in Fig. 3.1. More technical details
on David are reported in Section 3.1.

The SEA testbed is constituted by a LWR III motor unit and elastic ele-
ments from DLR C-Runner, and moves in the horizontal plane, is depicted
in Fig. 11.2. See [91]

[91]: Keppler et al. (2021), “Analyzing the
performance limits of articulated soft robots
based on the ESPi framework: Applications
to damping and impedance control”

for details. This basic setup is intended to demonstrate
what control performance can be achieved in a scenario where the dynamics
of the actual hardware matches the considered model closely.

Impactor

Lin
k

Endstop

Figure 11.2: Series elastic actuator testbed
with impactor.

Overview The chapter is structured as follows. Section 11.1, 11.2, and 11.3
evaluate the ESP schemes reported in Chapter 7 on DLR David. Experi-
ment 1 and 2 highlight the motion tracking performance and robustness,
whereas Experiment 3 and 4 evaluate joint and task space impedance control
implementations. Section 11.4 reports experimental evaluation of the dynamic
extensions proposed in Chapter 9 on the SEA testbed. Section 11.7 compares
the adoption of the PD+ and Slotine & Li controllers through the QFA formula-
tion and presents a Monet-Carlo based robustness analysis [154]. Section 11.8

[154]: Ray et al. (1993), “A Monte Carlo
approach to the analysis of control system
robustness”

reports a gain analysis that compares ESP control in full state feedback (FSF)
form with feedback-linearization-based FSF control. Section 11.9 analyzes
the stead-state error resulting from parameter uncertainties for regular and
dynamic extension based ESP schemes; see also Chapter 9.

11.1 Experiment 1: Motion Tracking

The first experiment evaluates the motion tracking performance of the ESP and
ESP+ controllers reported in Section 7.2.4 in free motion (Case 1) and during
disturbances (Case 2). Note that the controllers developed in Section 7.2.4
consider a monoarticular ASR. However, by exploiting the symmetric setup
of the BAVS actuator in the fifth axis of DLR David, it is possible to treat
this joint as if monoarticular by “combining” the two motor inertias and
elastic elements.1 The controller settings for the subsequent experiment are1: Note that recent ESP control develop-

ments in [60, 114, 151] not longer require
such symmetry assumption. summarized in Table 11.2. For the design of the damping matrices, 𝑲𝑣𝑢

and 𝑲𝑣𝑎, the modal-damping-based reported in [86] was applied with the
damping factors reported in Table 11.2. The controller gains were manually
tuned such that the control input obeyed the maximal motor torques of 65 Nm
for the FSJ and 4 Nm for the BAVS joint. The joint pretension was set to
𝜎𝑖 = 5 deg, 𝑖 = 1,… , 4, for the FSJ and to middle stiffness setting for the
BAVS joint. Due to some technical sensor issues regarding the second joint,
the corresponding control inputs show significantly increased noise levels.
No friction compensation was active during the experiments. Consequently,
viscous friction deteriorates the transient tracking performance and static
friction leads to nonzero steady-state errors. In particular the harmonic drives
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Link-side Motor-side
Stiffness [Nm rad−1] - 𝑲𝑝𝑎 = diag(1000, 900, 750, 750, 750)
Damping 𝜉𝑢𝑖 = 0.5 𝜉𝑎𝑖 = 0.7

Motor friction compensation no
Motor inertia shaping no

Table 11.2: Experiment 1. ESP/ESP+ con-
troller settings.

are significantly affected by friction. For low stiffness values, 𝑲𝑝𝑎, static
friction such as stiction significantly impacts the steady-state error. Position
sensor uncertainties result in elastic torque uncertainties causing imperfect
motion tracking and steady-state errors.

11.1.1 Case 1: Free Motion

Figure 11.3 shows the tracking performance in the absence of disturbances.
The commanded link trajectories are shown in the top row as dashed lines with
peak link velocities of max(𝒒̇𝑢) = (218, 79, 117, 128, 329) deg/s. As expected,
the magnitude of the tracking error correlates with the link velocities. The
underlying reasons are discussed in the beginning of this chapter. Video 1 and
Video 2 in Section 12.6.1 show experiments of the considered case.

11.1.2 Case 2: Disturbance Rejection

Figure 11.5 demonstrates the performance of the ESP/ESP+ controllers to
reject disturbances while the system moves along a commanded trajectory. In
the highlighted area, external forces are imposed on the system through the
interaction with a human subject. During the motion the robot is pushed in the
direction opposite to the nominal motion. The experimental setup is shown
in Fig. 11.4. The magnitudes of disturbance forces roughly correlate with
the peaks in corresponding joint torque plots. From the results in Fig. 11.5,
we see that the ESP/ESP+ controllers show remarkable disturbance rejection
performances even when the system is in motion. Within approximately 0.3 s
the disturbance are rejected and the robot returns to the commanded trajectory.
From joint torque plots in Fig. 11.5, it clear that the ESP+ shows slightly less
overshooting. Video 1 and Video 2 in Section 12.6.1 show experiments of the
considered case.



214 11 Evaluation

Figure 11.3: Experiment 1, Case 1. Track-
ing performance of the EPS/ESP+ con-
trollers in free motion.
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11.2 Experiment 2: Disturbance Rejection

The following experiment compares the disturbance rejection performance of
ESP/ESP+ joint space motion tracking controllers introduced in Section 7.2.4
on DLR David. The corresponding closed-loop dynamics are stated in Propo-
sition 7.2.1 and 7.2.3, respectively. Considering that both controllers achieve
globally asymptotic motion tracking, the same behavior is to be expected in
the nominal motion tracking case (any given link trajectory uniquely defines
the required variation of the input forces). For this reason, the subsequent
experiment compares the disturbance rejection behavior for constant setpoints,
where ESP and ESP+ controllers are expected produce different results. A
motor PD controller serves as reference. Figure 11.6 shows the experimental
setup with the 3 kg medicine ball attached with a rope to the ceiling. During
each run it is released such that it impacts, in a reproducible manner, with the
arm of DLR David, which is commanded to hold its pre-impact position.

Figure 11.6: Series elastic actuator testbed
with impactor.

In order to analyze the effect of the intrinsic joint stiffness setting on the
disturbance rejection behavior, the experimented has been performed for the
minimum (𝜎𝑖 = 0), medium (𝜎𝑖 = 5 deg) and highest (𝜎𝑖 = 10 deg) stiffness
setting. The joint characteristics corresponding with these settings are given by
the outer, center and inner curves of Fig. 3.1(d–e). The results of this impact
experiment are summarized in Fig. 11.7 and 11.8. Clearly, the convergence rate
increases with increasing joint stiffness settings. Considering the visualization
of the closed-loop dynamics in Fig. 7.5 this behavior becomes intuitively clear.
The resulting closed-loop stiffness is determined by the series interconnection
of the controller springs (𝑲𝑝𝑎) with the intrinsic elastic elements. Conse-
quently, the higher the stiffness setting, the higher the closed-loop stiffness.
Moreover, considering the modal damping layout, the damping parameters
increase online with increasing joint stiffness values; thus stiffness settings are
expected to result in higher convergence rates. However, due to the nonlinear
and load-dependent stiffness of the elastic elements, the differences in the
convergence rates are smaller than one might expect. Observing Fig. 11.8, we
see that for example joint 4, which faces the highest external load, reaches high
stiffness values for all experiments irrespectively of the stiffness setting. The
results for the PD controller [183] highlight the system’s intrinsic oscillatory[183]: Tomei (1991), “A simple PD con-

troller for robots with elastic joints” nature and the need for elaborate damping control concepts.
It is worth remarking that for the softest stiffness setting the control inputs

for the ESP/ESP+ controllers were saturated for an extended period. Despite
these input saturations, the stability of the closed-loop system is not impaired.
Further, both controllers show impressive damping and disturbance rejection
performances in spite of these saturations. This is one of the impressive
features of ESP/ESP+ control. The same controller gains have been used for
all stiffness settings in order to show how the ESP/ESP+ perform over a vast
joint stiffness range (approximately on order of magnitude variation) with equal
gains. Notice that the ESP controller suffers less from sensor noise compared to
the ESP+ controller. However, at the moment of impact and shortly thereafter,
the ESP+ controller commands lower actuator torques. In addition, the EPS+

Table 11.3: ESP and ESP+ control param-
eters for Experiment 3. Joint stiffness in Nm rad−1 Pretension

𝑞𝑢1 𝑞𝑢2 𝑞𝑢3 𝑞𝑢4 𝑞𝑢5 𝜉𝑢 𝜉𝑎 𝛽 𝜎𝑖=1…4

1000 900 750 750 750 0.5 0.7 1 5
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controller shows slightly less overshooting. In conclusion, despite the joint
stiffness values varying over a vast range, the ESP and ESP+ controllers
perform excellently without gain adaption. Video 2 in Section 12.6.1 shows
the considered impact experiment.

11.3 Experiment 3: Impedance Control

Experiment 3 evaluates the performance of the joint and task space impedance
controllers (ESPi) reported Section 7.2.4 and 7.2.5. The controllers and asso-
ciated closed-loop dynamics are summarized in Proposition 7.2.1 and 7.2.4,
respectively. The commanded stiffness values, damping parameters and motor
inertia shaping factors are reported in Table 11.4 (Case 1 and 2) and Table 11.5
(Case 3 and 4). For the damping design the method from [86] is applied re-
sulting in a damping matrix that adapts online to the robot’s varying joint
stiffness values and inertia matrix. Throughout all experiments the motor
inertia was scaled down by a factor of 𝛼 = 0.3. The forces exerted on the
robot’s TCP were estimated by a momentum observer [34]. The estimated[34]: De Luca et al. (2006), “Collision de-

tection and safe reaction with the DLR-III
lightweight manipulator arm” forces ′

𝑥𝑢 and torques ′
𝑢 were used for validation purposes only, and we

filtered these signals with a Butterworth filter with a −3 dB cut-off frequency
at 10 Hz. Video 4 linked in Section 12.6 demonstrates the performance of
ESPi control on DLR David.

Table 11.4: Experiment 3, Case 1 and 4.
ESPi control parameters. Joint stiffness in Nm rad−1 Pretension

𝑞𝑢1 𝑞𝑢2 𝑞𝑢3 𝑞𝑢4 𝜉𝑢 𝜉𝑎 𝛽 𝜎𝑖=1…4

Case 1 1000 500 150 50 0.1 0.05 0.3 5
Case 4 800 800 800 800 0.6 0.05 0.3 5
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Stiffness in Nm−1 Pretension
𝑥𝑢1 𝑥𝑢2 𝑥𝑢3 𝜉𝑢 𝜉𝑎 𝛽 𝜎𝑖=1…4

Case 2 0 60 3000 0 0 0.3 5
Case 3 1500 600 1500 0.6 0.05 0.3 5
Case 3 1500 600 1500 0 0.05 0.3 5

Table 11.5: ESPi control parameters for
Case 2 and 3 of Experiment 3.
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11.3.1 Case 1: Joint Space Interaction Behavior

During the experiment a human user applies forces on the end effector by
pushing and pulling on the robot’s hand. The time variation of the interaction
forces are reported in Fig. 11.9. Figure 11.10 reports the torque-deflection
relation for the first four joints together with the desired steady-state behavior
(dashed line). We can see that the results closely approximate the desired
steady-state behavior. It should be remarked that the implemented closed-
loop behavior is that of an impedance (relating forces with velocities). The
dashed line only represent the desired dynamic behavior in the quasi-static
case. During motions, the interaction behavior of the end effectorector is
dictated by an interplay of inertial, elastic and damping forces resulting in an
ellipse shaped force-deflection characteristics. Deviations from the nominal
closed-loop behavior result from model errors, sensor inaccuracies, joint
torque errors, uncompensated link-side and motor-side friction, inaccuracies
in the estimation of the external disturbances etc. Figure 11.11 shows the
local joint stiffness values of the physical springs, i.e., 𝜕2𝑒𝜕𝝋2 . For comparison,
the commanded link-side stiffness values 𝑲𝑣𝑢 are shown as well. For this
particular experiment, the commanded—and achieved link-side stiffnesses
(c.f. Fig. 11.10)—are up to 5 times higher than the physical joint stiffnesses.

11.3.2 Case 2: Task Space Interaction Behavior

Case 2 analyzes the interaction behavior of the Cartesian ESPi controller. A
human user applies forces on the end effectorector by pushing and pulling
on the robot’s hand. The forces exerted on the robot’s TCP are reported in
Fig. 11.12. The raw and (offline) filtered values are given. The corresponding
end effectorector deflections are shown in Fig. 11.13. Figure 11.14 reports
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Figure 11.10: Experiment 3 (Case 1): Link
deflections for the first four joints. The
dashed lines represent the desired quasi-
static behavior.
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the force-position relation for the 𝑦- and 𝑧-direction together with the desired
steady-state behavior (dashed line). We can see that the results closely ap-
proximate the desired steady-state behavior. It should be remarked that the
implemented closed-loop behavior is that of an impedance (relating forces
with velocities). The dashed line only represent the desired dynamic behavior
in the quasi-static case. During motions, the interaction behavior of the end
effector is dictated by an interplay of inertial, elastic and damping forces
resulting in an ellipse shaped force-deflection characteristics. Deviations from
the nominal closed-loop behavior result from model errors, sensor inaccu-
racies, joint torque errors, uncompensated link-side and motor-side friction,
inaccuracies in the estimation of the external disturbances etc. Notice from
Fig. 11.12 that the static error of the external force observer is up to 8 N.

11.3.3 Case 3: Disturbance Rejection Behavior

In Case 3, we study the disturbance rejection performance for two different end
effector damping settings (𝜉𝑢 = 0 and 𝜉𝑢 = 0), and compare the results with
the behavior of the PD controller proposed by Tomei [183]. The end effector[183]: Tomei (1991), “A simple PD con-

troller for robots with elastic joints” is manually deflected from its equilibrium position and then quickly released.
The results are reported in Fig. 11.15, with the release times being indicated
by dotted lines. For the well-damped case the deflection of approximately
9 cm is rejected within 0.28 s with basically no overshooting. In the absence
of link-side damping, we observe an oscillatory behavior as expected. Notice
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that some damping is injected through the presence of the damping terms on
the virtual motors (𝜉 = 0.05) resulting in a gradual decay of the motion. The
results for the PD controller [183] emphasize the system’s intrinsic oscillatory
nature and the need for elaborate damping control concepts.

11.3.4 Case 4: Input Saturation

Case 4 analyzes the robustness of the ESPi control with regard to input sat-
uration. The controller gains are given in the Table 11.4 and the results are
reported in Fig. 11.16. The experiment shows that a satisfactory link conver-
gence behavior can be achieved in spite of input saturation—highlighting also
the robustness of the ESPi controller.
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Figure 11.16: Experiment 3, Case 2: The
ESPi controller shows satisfactory perfor-
mance and remains stable even in case of
control input saturations.
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11.4 Experiment 4: Dynamics Extensions

A dedicated single joint setup has been used to compare the performance
of the enhanced damping design 𝑍𝑢2 to the “standard” approach 𝑍𝑢0, c.f.
Fig. 9.4. For ease of reference, the considered closed-loop dynamics are vi-
sualized in Fig. 11.18. Figure 11.17 shows the setup, which consists of a
DLR LWR III [66] motor unit in series with a compliant element from DLR [66]: Hirzinger et al. (2002), “DLR’s torque-

controlled light weight robot III-are we
reaching the technological limits now?”C-Runner [106] and a horizontally moving link. The system’s dynamics is
[106]: Loeffl et al. (2016), “The DLR C-
runner: Concept, design and experiments”

that of a single elastic joint with a linear spring. To evaluate the closed-loop
interaction behavior, the link is equipped with a force sensor (ME KD40s).
The link and motor positions are measured with an optical Heidenhain rotary
encoder (ECN1023 with 23 bit resolution) and the default LWR III motor
sensor. Velocity signals were computed with a standard fourth-order derivative
filter with a cut-off frequency of 80Hz. Link acceleration and jerk signals
were computed as discussed in the Appendix. The test bed parameters are
summarized in Table 11.6 and the controller parameters are reported in Ta-
ble 11.8. The virtual motor was interconnected with a damper, 𝑢̄𝑎 = −𝑘𝑣𝑎𝑞̇𝑣,
with 𝑘𝑣𝑎 = 2𝜉𝑎

√

𝑏𝑘. A factor of 𝛼 = 1∕5 in Table 11.8 indicates a reduction
of the motor inertia to one fifth of its original value. The motor inertia shap-
ing employed is elaborated in [86]. The dynamic extension parameters were [86]: Keppler et al. (2018), “Elastic struc-

ture preserving (ESP) control for compli-
antly actuated robots”computed with the optimization procedure presented in [192].2 The results
[192]: Wandinger (2020), “Enhancing clas-
sical impedance control concepts while
ensuring transferability to flexible joint
robots”
2: Please see Section 9.5.2 in Appendix B
for additional information.

obtained, c.f. Table 11.8, minimize the H∞ norm of the disturbance transfer
function 𝑈∕′

𝑢 under the following constraint: the manipulator impedance,
′
𝑢∕𝑉 , must approximate the reference manipulator impedance defined by the

mass-spring-damper system𝑍ref = 𝑚𝑠+𝑑ref+𝑘ref∕𝑠with a maximal deviation
of ±6 dB, where 𝑚 is the link inertia, 𝑑ref = 2𝜉𝑎

√

𝑏𝑘ref, 𝑘ref =200Nm rad−1.
The link impedance obtained from this optimization is plotted in Fig. 11.19
and the parameters are reported in Table 11.8. For comparison, 𝑍∗

𝑢2 with the
mass and stiffness ratios 𝑚∕𝑚𝑐 = 10 and 𝑘∕𝑘𝑐 = 10 used by [173] is plotted [173]: Stramigioli (1996), “Creating artifi-

cial damping by means of damping injec-
tion”as well. Clearly, the optimization results deviate from the recommendation

𝑚 >> 𝑚̄ and 𝑘 >> 𝑘𝑐 [173]. The reason for this deviation is intuitive, fol-
lowing the arguments from Section 9.5, we know that in order to reduce the
control effort the link impedance should fall after √2𝜔𝑛. The reason why
it does not drop immediately after √2𝜔𝑛 is due to the constraint that the
resulting closed-loop behavior must approximate the reference manipulator
impedance within ±6 dB.

Impact mechanism
and force sensor

Figure 11.17: Experiment 4. Setup.
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ESP2 Control: Link-side compliance via dynamic extension
tracking

𝑞𝑐

𝑞𝑢𝑖 ≜ 𝑞𝑢𝑖 − 𝑞∗𝑢𝑖(𝑡)… tracking error𝑞𝑎𝑖… virtual motor coord. 𝑞∗𝑢𝑖… desired link position𝑞𝑢𝑖… link coord.

𝑞𝑎 𝑞𝑢

𝑘𝑣𝑢

𝑘ref

𝑘𝑣𝑢

𝑘𝑝𝑢𝑘𝑝𝑐𝑘𝑣𝑎

𝑘𝑣𝑎

rotor link

𝑘(𝑞𝑎 − 𝑞𝑢)

ESPref Control: Link-side compliance

Figure 11.18: Considered closed-loop dynamics.

Table 11.6: System and control parameters System parameters Force sensor/control parameters
Link inertia 1 kgm2 Sensor accuracy 0.1%
Motor inertia 0.6 kgm2 Sensor range ±500N
Joint stiffness 374Nm rad−1 Sensor sample rate 375Hz
Actuator limits ±100Nm Controller sample rate 3000Hz

Figure 11.19: Frequency responses of the
link-side impedance candidates. Frequency [rad/s]
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Table 11.7: Experiment 4. Controller con-
figurations Con- Link Motor 𝛼 𝑘ref 𝑘𝑢 𝑘𝑐 𝜉𝑢 𝜉𝑎 𝑚̄

troller Impedance [Nm rad−1] [kg]
ESPref 𝑍𝑢0 𝑍𝑣 1 200 - - 0.7 0.3 -
ESP∗

ref 𝑍𝑢0 𝑍𝑣 1/5 200 - - 0.7 0.3 -
ESP2 𝑍𝑢2 𝑍𝑣 1 - 273 745 0.7 0.3 0.39
ESP∗

2 𝑍𝑢2 𝑍𝑣 1/5 - 273 745 0.7 0.3 0.39
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(9.6) Motors

Figure 11.20: The structure of the original
and the transformed system. The controller
interconnected with the physical system, re-
alizes the interconnected link- and motor-
side impedances on the virtual system.

In the following, three types of experiments are presented. The first one is
concerned with the identification of the closed-loop manipulator impedance,
′
𝑢∕𝑉 , and the control effort transfer functions 𝑈∕𝑉 and 𝑈∕′

𝑢, cf. (9.21).
The second one refers to the set-point regulation performance of the control
loops. The last one illustrates the performance of the schemes in a basic
manipulation task.

Remark 11.4.1 It is worth remarking that motor friction compensation is of
particular importance for control designs that shape the intrinsic dynamics
to a minimal extend and thus resulting in low gain results. If friction wasn’t
compensated, then static friction would translate into significant steady-
state errors. For this reasons all experiments reported in the following have
been performed with motor-side friction compensation.

11.4.1 Case 1: Identification of Interaction Behavior

In this test, a 4 kg impactor generated a impulse-like excitation of the link,
which was followed by a frequency analysis to obtain the frequency re-
sponses of the manipulator impedance ′

𝑢∕𝑉 , and the control efforts 𝑈∕𝑉
and 𝑈∕′

𝑢, see Fig. 11.21 from top to bottom. Clearly, the resulting manipu-
lator impedances for ESP2 and ESP∗

2 satisfy the tuning goal of lying within
a ±6 dB band (green) of the reference impedance 𝑍ref (dashed grey curve).
Figure 11.21 further reveals the increase in control effort due to motor inertia
shaping.

The effect of the dynamic extension in reducing the control effort in case
of high frequency disturbances is clearly visible in the critical frequency
range (𝜔 >√

2𝜔𝑛). As predicted by the performance analysis in Section 9.4,
for controllers with a direct damping injection, ESPref and ESP∗

ref, |𝑈∕𝑉 |

exhibits a slope of 40 dB∕dec, whereas for controllers with indirect damping
injection, ESP2 and ESP∗

2, |𝑈∕𝑉 | exhibits a slope of 20 dB∕dec, see Fig. 11.21
(mid). To check whether these results transfer to the case of external forces
′
𝑢 as disturbance input, we identified the frequency response that relates

external forces to the control effort, 𝑈∕′
𝑢, see Fig. 11.21 (bottom). Again, the

structural difference between a direct damper and a dynamically decoupled
damper implementation is clearly visible past 𝜔 =

√

2𝜔𝑛.
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Figure 11.21: Experiment 4, Case 1. From
top to bottom: frequency response of the
manipulator impedance ′

𝑢∕𝑉 , the control
efforts 𝑈∕𝑉 and 𝑈∕′

𝑢.
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11.4.2 Case 2: Set-Point Regulation

This experiment is concerned with the analysis of the step response behavior
and the results are reported in Fig. 11.22. The new controllers were evaluated
without (blue curve) and with motor inertia shaping (red curve). To elim-
inate the (slight) overshooting of ESP2 and ESP∗

2, we increased the motor
damping ratio to 𝜉𝑎 = 0.4 for this experiment. The performance of the motor
PD controller demonstrates the necessity for link-side damping for a system
with low intrinsic damping. The marginal steady state error is mostly due to
Coulomb friction acting on the link and the elastic mechanism. The slight
asymmetry of the steady state error suggests a minor sensor calibration in-
accuracy and/or some hysteresis effect. The reduction of the motor inertia
reduces the overshooting as physical intuition suggests. Even though link
kinetic energy is dissipated only indirectly in the dynamic extension case
(underdamped closed-loop system), satisfactory point regulation behaviors
can be achieved.

11.4.3 Case 3: A Simple Manipulation Task

Figure 11.23 reports an experiment involving the interaction of the link with the
environment. The desired motion 𝑞∗𝑢 (𝑡) follows a sinusoidal trajectory, leading
to an unplanned contact with an obstacle. To analyze the worst case contact
impact scenario, the link was commanded to impact with a rigid obstacle (end
stop). Thus, both impact partners had negligible intrinsic damping properties.
The course of the real link position indicates that a transition from a free-space
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Figure 11.22: Experiment 4, Case 2. Set-
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Figure 11.23: Experiment 4, Case 3. (top)
desired and real position of the link. (mid)
real total energy and virtual closed-loop en-
ergy. (bottom) measured and estimated ex-
ternal torques ′

𝑢 and ̂𝑢, respectively.

motion to a contact does not cause any stability issue. The energy is properly
dissipated and the system is stable in free motion and passive during the entire
motion. The total energy of the physical and the virtual (closed-loop) system
is reported in Fig. 11.23, cf. 𝑞 and 𝑞 . In the latter case, the total energy can
be considered as a storage function for the respective closed-loop system and
was obtained by summing up all kinetic and potential energies of the virtual
system.

Remark 11.4.2 In general, no force sensors are implemented in ASRs and
in order to reflect a realistic scenario, we used a momentum based observer
[34] [34]: De Luca et al. (2006), “Collision de-

tection and safe reaction with the DLR-III
lightweight manipulator arm”

instead to estimate the external force to compute link acceleration and
jerk signals, via (B.10) and (B.11) for Case 3. The sensor was only used to
report the interaction force.
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Table 11.8: Experiment 5. Controller con-
figurations Con- Link Motor 𝛼 𝑘ref 𝑘𝑢 𝑘𝑐 𝜉𝑢 𝜉𝑎 𝑚̄

troller Impedance [Nm rad−1] [kg]
ESPref 𝑍𝑢0 𝑍𝑣 1 200 - - 0.7 0.3 -
ESPref 𝑍𝑢0 𝑍𝑣 1/5 200 - - 0.7 0.3 -
ESP2 𝑍𝑢2 𝑍𝑣 1 - 273 745 0.7 0.3 0.39
ESP2 𝑍𝑢2 𝑍𝑣 1/5 - 273 745 0.7 0.3 0.39

Table 11.9: Experiment 5. Observer param-
eters Observer Gain 𝑆1 𝑆2 𝑇1 𝑇2[Hz] [Hz2] [Hz2] [Hz] [Hz]

Momentum observer: friction 150 - - - -
Momentum observer: input 1000 - - - -
Sliding mode observer: input - 100 1000 16 2000

11.5 Experiment 5: A Momentum-based Input
Observer

Based on the theoretical results reported in Section A, we compare three
different implementations of the input transforming equations (A.14):

• Direct implementation of the control input 𝑢𝑎𝑖 via (A.2).
• Estimating 𝑢𝑎𝑖 through a momentum observer [34].[34]: De Luca et al. (2006), “Collision de-

tection and safe reaction with the DLR-III
lightweight manipulator arm” • Estimating 𝑢𝑎𝑖 through a sliding mode observer [48].
[48]: Garofalo et al. (2019), “Sliding mode
momentum observers for estimation of ex-
ternal torques and joint acceleration”

The dedicated single joint setup introduced in Section 11.4 has been used to
compare the performance of the ESPref and ESP2 closed-loop dynamics, see
also Fig. 11.18. These controllers are implemented through the different input
transformation implementations above. The employed testbed is shown in
Fig. 11.2 and its parameters are summarized in Table 11.6. The gains for the
controllers, friction and input observers are summarized in Table 11.8 and
Table 11.9, respectively.
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Figure 11.24: Experiment 5. Direct implementation of the input transformation versus an observer-based estimation of the control input.
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11.6 Actual versus Nominal Behavior

Deviations from the nominal closed-loop behavior commonly result from
model errors, sensor inaccuracies, joint torque errors, uncompensated link-
side and motor-side friction, inaccuracies in the estimation of the external
disturbances, round-trip delay in the feedback loop etc.

• Model errors: the plant model used for the control design is always just
an approximation of the actual physical system with varying degrees
of accuracy. Concerning the employed Spong model the following
prominent effects are neglected: 1) non-modeled dynamics such as
structural elasticities of the links, sensor mountings, gears, 2) parameter
inaccuracies, 3) round-trip delay in the feedback loop.

• Feedforward terms: Parameter uncertainties regarding the mass (Cori-
olis/centrifugal matrices) play a role for trajectories with high link-side
accelerations (velocities).

• Friction: Static friction affects the steady-state positioning accuracy,
dynamic (viscous) friction deteriorates the tracking performance during
high-velocity motions.

• External force estimation: Estimation errors cause inaccuracies in the
computation of the link acceleration and jerk signals, as pointed out in
Section B.2. It is worth noting that this issue is completely resolved for
the control design proposed in Chapter A.

• Motor inertia shaping: It is easy to see that motor inertia scaling also
scales—by the same factor—disturbance forces acting on the motor
dynamics. However, there is a downside with motor inertia shaping.
As pointed out later in Section 11.9, inaccuracies in the joint torque
measurements/estimations cause steady-state errors.

11.7 Simulation 1: Adoption of Rigid Robot
Controllers

This section reports simulation results verifying the stability and performance
characteristics of two passivity-based rigid robot controllers adapted through
the QFA formulation: 1) Slotine & Li controller[165], 2) PD+ control [98,[165]: Slotine et al. (1988), “Adaptive ma-

nipulator control: A case study” 144]. The considered control laws are (7.145)–(7.146) and (7.158) with the
[98]: Koditschek (1984), “Natural motion
for robot arms”
[144]: Paden et al. (1988), “Globally asymp-
totically stable "PD+" controller for robot
manipulators”

input transformation (7.34) in Section 7.2.5. We consider a 2R manipula-
tor composed of two identical links that is carrying a load, as indicated in
Fig. 11.25 (left). At each joint, a series elastic actuator (SEA) is mounted with
a torque characteristics modeled by a third-order polynomial

𝜓𝑖(𝜑) ≜ 𝑎𝑖,1𝜑 + 𝑎𝑖,2𝜑3, (11.1)
with coefficients 𝑎𝑖,1 = 200 N rad−1, 𝑎𝑖,2 = 2000 N rad−3. The parameters
are chosen such that the resulting torque characteristics resemble roughly the
one of the floating spring joint (FSJ) featured in the DLR Hand Arm System
introduced in [54]. The mechanical properties of the robot are summarized in[54]: Grebenstein et al. (2011), “The DLR

hand arm system” Table 11.10. The motor inertia of each SEA is denoted by 𝑏. At each link of
length 𝑙 a mass 𝑚 is located at the center. In addition, an external load of mass
𝑚load is located at the tip (TCP) of the distal link. A maximal motor torque of
𝑢𝑖 ≤ 60 N m was assumed for each SEA, which is approximately three times
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𝑚 [kg] 𝑚load [kg] 𝑏 [kg m−2] 𝑙 [m]
1 1 0.2 0.5

Table 11.10: Parameters of the considered
compliant planar two-link robot.

Link-side gains Motor-side gains
PD+ 𝑲𝑝𝑢 = diag(500, 500) -

𝑲𝑣𝑢 = diag(47.5, 37.5) 𝑲𝑣𝑎 = diag(5, 5)

Slotine & Li 𝚲𝑢 = diag(15, 15) 𝚲𝑎 = diag(10, 10)
𝑲𝑣𝑢 = diag(15, 15) 𝑲𝑣𝑎 = diag(10, 10)

Table 11.11: Control parameters.

the maximum torque required for the nominal motion. The manually tuned
controller gains are summarized in Table 11.11. In order to make the results
comparable, a maximal motor torque 𝑢𝑎𝑖 ≤ 60 Nm was assumed.

The robot’s TCP is required to move back and forth along a straight
trajectory starting at (𝑥, 𝑦) = (0, 0.3)m and ending at (𝑥, 𝑦) = (0.2, 0.7)m
with a frequency of one cycle per second. The parameterization of the desired
trajectory 𝒙𝑑 is

𝑥∗𝑖 = 𝐴𝑖 sin
(

𝜔𝑡 + 𝑝𝑖
)

+ 𝑐𝑖, (11.2)
with 𝜔 = 2𝜋 rad s−1, 𝐴1 = 0.1 m, 𝐴2 = 0.2 m, 𝑝1 = 𝑝2 = 3𝜋∕2, 𝑐1 = 0.1 m
and 𝑐2 = 0.5 m. Two cases are considered:

Case 1: For evaluating the nominal performance it is assumed that all
model parameters are exactly known.

Case 2: For analyzing the robustness against parameter uncertainties a
Monte-Carlo analysis is performed.

For the subsequent simulations it is assumed that all required position and
velocity measurements are available. Notice that despite “perfect” position
and velocity signals the computations of the link acceleration and jerk signals
are deteriorated in Case 2 due to parameter uncertainties.

𝑞𝑢1

𝑞𝑢2

𝑚

𝑚

𝑙

𝑙∕2

𝑚load
𝑥2

𝑥1

𝒙∗

𝑥2

𝑥1

𝑡0

𝑡𝑓

𝒙 (Slotine & Li)
𝒙 (PD+)

0 0.3 m

Figure 11.25: (left) Robot model consid-
ered for simulation. A compliant two-link
planar robot with nonlinear joint springs car-
rying a load. (right) The desired trajectory
(blue), and the actual TCP trajectories for
PD+ (solid) and Slotine & Li (dashed) con-
trollers are shown. Starting with the initial
configuration, the robot poses are shown in
0.25 s intervals (PD+).
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Figure 11.26: Each of the transforming
equations (7.25) defines a hypersurface
whose shape is uniquely determined by the
joint torque functions 𝜏𝑖. Its contour lines
are projected on the bottom. In contrast
to joints with linear springs, these are no
longer straight lines, cf. Fig. 4.11. In order
to draw the time trajectories of two con-
figuration points on one hypersurface, we
assumed w.l.o.g that 𝜓1 = 𝜓2, c.f. (11.1).
The trajectories shown are exemplary mo-
tions of a two-link planar manipulator under
adopted PD+ control, see Chapter 7.
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11.7.1 Case 1: Nominal Performance

At each run the robot is initialized (at time 𝑡 = 𝑡0) with the configuration
(𝑞𝑢1, 𝑞𝑢2) = (𝑞𝑎1, 𝑞𝑎2) = (−𝜋∕3, 6𝜋∕11) rad. Fig. 11.27 summarizes the simu-
lation results for the PD+ (Slotine & Li) controller plotted in solid (dashed)
lines. Fig. 11.27 (e) shows the evolution of the actual and virtual joint deflec-
tions on the hyperplane denoted by (7.25), where the contour lines 𝑢̄𝑢𝑖 = 𝑐𝑜𝑛𝑠𝑡.
are projected projected into the (𝜑𝑖, 𝜑̄𝑖)-plane, c.f. Fig. 11.26. Notice that the
robot system is initialized with zero joint deflections (𝝋 = 𝟎) and thus zero
elastic torques (𝝍 = 𝟎), which is no static equilibrium state since gravity is
not compensated by the elastic elements. The initial states are marked with
an “x”. Interestingly, since the PD+ and Slotine & Li controller initiate with
different input values 𝒖̄𝑢, we have differing initial deflection errors 𝝋̃.

Notice from Fig. 11.27 (d) that the PD+ and Slotine & Li controllers
initiate with differing virtual input values 𝑢̄𝑢𝑖, and thus differing initial de-
flection errors 𝝋̃ which implies that the virtual subsystems Σ̄𝑎 also initiate
at different locations. As anticipated from our stability analysis the subset
{

𝜑̄𝑖 ∈ ℝ | 𝜑̄𝑖 = 0
} is attractive. As such, for 𝑡 → ∞, the point defined by the

triplet (𝜑𝑖, 𝜑̄𝑖, 𝑢̄𝑖) slides along a one-dimensional submanifold on the hyper-
plane defined by (7.25). We observe that the Slotine & Li controller starts with
slightly lower deflection errors and shows a smoother convergence behavior.
This is a general trend we observed in simulations. Fig. 11.27 (a-d) shows the
tracking errors and control input as well as the system energies for the two
controllers. As anticipated from Proposition 7.2.4 and 7.2.5, the control errors
converge to zero, see Fig. 11.27 (a).

Both controllers inject similar levels of energy into the system and show
comparable convergence rates. The total physical energy of the robot is denoted
by 𝑝ℎ𝑦, see Fig. 11.27 (b). The closed-loop storage functions (7.147) and
(7.154) are denoted by pd+ and 𝑠, respectively. Interestingly, albeit the
control input 𝒖𝑎 varying similarly with time, the (virtual) inputs 𝒖̄𝑢 and 𝒖̄𝑎
to the quasi-fully actuated systems show quite a different behavior during
convergence, cf. Fig. 11.27 (c) and Fig. 11.27 (d).
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11.7.2 Case 2: Monte-Carlo Analysis

In order to analyze the robustness of the adopted controllers against model
parameter uncertainties, we performed a Monte Carlo simulation. The load
mass 𝑚load, the motor inertia values, and the torque profile parameters 𝛼𝑖,1
and 𝛼𝑖,2 of the robot were randomly sampled in an interval of ±20% around
the nominal values given above. We repeated the random sampling 100 times
and analyzed the control performance of the PD+ and Slotine & Li controllers
each time. The robot was commanded to follow the same desired trajectory as
above, see (11.2), and starts from the same initial configuration. All results
are combined in Fig. 11.27 (f-g) showing: (f) the tracking performance, and
(g) the control inputs. The Slotine & Li controllers appears to have a slightly
better tracking performance. However, on average, both controllers result in
a root mean square error for 𝒙̃ of 0.03 m. In both cases, the control input
magnitudes deviate only slightly from the nominal ones.

11.7.3 Discussion

It is very difficult to derive a definite conclusion about performance differ-
ences of different controllers. The original rigid robot controllers are both
passivity-based designs and derived from fundamental energy-based consider-
ations, yielding designs with enhanced robustness properties that do not need
cancellation of nonlinearities [98, 164]. The simulation results demonstrate [98]: Koditschek (1984), “Natural motion

for robot arms”
[164]: Slotine (1988), “Putting physics in
control-the example of robotics”

that rigid robot controllers that are expected to show a similar performance on
rigid robots also show a similar performance when adopted through the QFA
formulation. From the practical point of view, it seems worth mentioning that
the PD+ controller allows for non-diagonal gain matrices, and thus, permit-
ting modal decomposition based damping designs that adapt the gain layout
online to the varying robot inertia and joint stiffnesses, see [86] for details. In [86]: Keppler et al. (2018), “Elastic struc-

ture preserving (ESP) control for compli-
antly actuated robots”both cases, no lower or upper bounds on the controller gains are imposed. In

particular, the link-side stiffness that characterizes the interaction of the robot
with environment can be increased above the intrinsic stiffness of the robot.
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Figure 11.27: Simulation 1. (a-d) Adopted PD+ (blue lines) and Slotine & Li (red lines) control. (a) TCP tracking error (cf. Fig. 11.25 (right)).
(b) Physical energies 𝑝ℎ𝑦 and storage functions (7.147) and (7.154), respectively, (c). Control inputs acting on the actual robot. (d) Inputs acting
on the quasi-fully actuated system (note the scaling of the time axis for better readability), cf. Fig. 7.4 (right) for input definitions. (e) Actual and
virtual joint deflections for PD+ (solid) and Slotine & Li (dashed) controllers. The contour lines of the link-side input 𝑢̄1,𝑖 as a function of the joint
deflections 𝜑𝑖 and 𝜑̄𝑖, defined via the state transformation (7.25), are shown in black. (f-g) Monte Carlo simulation: (f) tracking performance, (g)
control inputs.
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11.8 Simulation 2: ESP Control vs. Feedback
Linearization

This section reports a gain analysis comparing ESP control in full state feed-
back (FSF) form with feedback-linearization-based FSF control. This analysis
considers DLR David as an exemplary system. Its inertia is highly config-
uration dependent and varies significantly throughout its workspace. Let us
consider the first five joints of the right arm. The first joint faces an inertia,𝑀 ,
that depends on the configuration of the distal joints as visualized in Fig. 11.29,
and ranges from 𝑚𝑚𝑖𝑛 = 0.01 kg m2 (left pose) to 𝑚𝑚𝑎𝑥 = 1.1 kg m2 (right
pose).

𝑞𝑢

𝜑

𝑚𝑔 𝑘

𝑞𝑎

𝑚

𝑏 𝑢𝑎

output
link

input
link

Figure 11.28: An elastic joint with control
input 𝑢𝑎.

Similarly, depending on the stiffness setting 𝜎 and the external load, the
stiffness 𝑘 of the first joint (cf. Fig. 11.29) varies between 𝑘𝑚𝑖𝑛 = 40 Nm rad-1
and 𝑘𝑚𝑎𝑥 = 900 Nm rad-1. The subsequent analysis considers a single robotic
joint as shown in Fig. 11.28. The corresponding model is given by (4.10)

𝑚𝑞𝑢 + 𝑘(𝑞𝑢 − 𝑞𝑎) =0, (11.3)
𝑏𝑞𝑎 + 𝑘(𝑞𝑎 − 𝑞𝑎) =𝑢. (11.4)

Suppose that the link inertia and joint stiffness can take a range of values:
𝑚 ∈ [𝑚𝑚𝑖𝑛, 𝑚𝑚𝑎𝑥] and 𝑘 ∈ [𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥], as it would be the case for the first
axis of DLR David. As discussed in Section 4.1, the coordinate and input
transformations (4.14) and (4.17) allow rewriting the considered model, (4.10),
in its QFA representation and are repeated below for convenience

𝑞𝑎 =𝑞𝑎 + 𝑘−1𝑢̄𝑢, (11.5)
𝑢𝑎 =𝑏𝑘−1 ̈̄𝑢𝑢 + 𝑢̄𝑢 + 𝑢̄𝑎. (11.6)

For the gravity-free regulation case, we can write the ESP controller [86] [86]: Keppler et al. (2018), “Elastic struc-
ture preserving (ESP) control for compli-
antly actuated robots”𝑢̄𝑢 = −𝑘𝑣𝑢𝑞̇𝑢, 𝑢̄𝑎 = −𝑘𝑣𝑎 ̇̄𝑞𝑎 − 𝑘𝑝𝑎𝑞𝑎 (11.7)

in full state feedback (FSF) form with state vector 𝒙 = [𝑞𝑢 𝑞̇𝑢 𝑞𝑢 𝑞(3)𝑢 ].
Considering that we can use the link dynamics (11.3) to express 𝑞𝑎 in terms
of 𝑞𝑢 and 𝑞𝑢, we can substitute the resulting relation in (11.5) to obtain 𝑞𝑎 in
terms of only 𝑞𝑢 and its time-derivatives

𝑞𝑎 = 𝑘−1𝑚𝑞𝑢 + 𝑘−1𝑘𝑣𝑢𝑞̇𝑢 + 𝑞𝑢. (11.8)

𝑞𝑢1 𝑞𝑢1

Figure 11.29: The minimum and maximum
inertia configurations with respect to the
first joint of the DLR Hand Arm System are
shown.
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Making the substitution (11.6), (11.7) and (11.8) gives the ESP controller
in full state feedback form. Without loss of generality, let us assume that
𝑞∗𝑎 = 𝑞∗𝑢 = 0, and choose the damping coefficients as: 𝐷 = 2𝜉𝑢

√

𝑚𝑘, and
𝑘𝑣𝑎 = 2𝜉𝑎

√

𝑏𝑘𝑝𝑎, with 𝜉𝑢 = 𝜉𝑎 = 0.7, resulting in the FSF ESP controller

𝑢𝑎 = −𝒌𝑑𝒙, (11.9)
where 𝒌𝑑 is the gain matrix with the following components

𝑘𝑑1 =𝑘𝑝𝑎, (11.10)
𝑘𝑑2 =2𝜉𝑢

√

𝑚𝑘
(

1 +
𝑘𝑝𝑎
𝑘

)

+ 2𝜉𝑎
√

𝑏𝑘, (11.11)

𝑘𝑑3 =4
𝜉𝑎𝜉𝑢
𝑘

√

𝑚𝑘
√

𝑏𝑘𝑝𝑎 +
𝑘𝑝𝑎
𝑘
𝑚, (11.12)

𝑘𝑑4 =2𝜉𝑢
𝑏
𝑘

√

𝑚𝑘 + 2𝑚
𝑘
𝜉𝑎
√

𝑏𝑘𝑝𝑎. (11.13)

Let us now derive a feedback-linearization-based FSF controller for the elastic
joint. Solving the motor dynamics (11.4) with respect to 𝜃̈ and substituting
it in the second time derivative of the link dynamics (11.3), we can re-write
system (11.4)–(11.3) as a 4th order system

𝑞(4)𝑢 = 𝑘
𝑏𝑚
𝑢𝑎 − 𝑘

(1
𝑏
+ 1
𝑚

)

𝑞𝑢. (11.14)

In order to input-state linearize the system, let us choose the control input33: To assure controllability, we must have
that 𝑘 > 0 and 𝑏𝑚 <∞.

𝑢𝑓 = 𝑏𝑚
𝑘
𝑣 + (𝑏 + 𝑚)𝑞, (11.15)

such that making the substitution 𝑢𝑓 and 𝑢𝑎 results in the linear controllability
canonical form

𝒙̇ =
[

𝟎3×1 𝑰3×3
0 𝟎1×3

]

𝒙 +
[

𝟎3×1
1

]

𝑣, (11.16)

where 𝒙 denotes the new state vector and 𝑣 the new control input. Choosing
full state feedback control

𝑣 = −𝒌𝒙, (11.17)
with 𝒌 = [ 𝑘1 𝑘2 𝑘3 𝑘4 ], and making the substitution (11.17) and (11.15) gives
the final controller

𝑢𝑓 = −𝒌𝑓𝒙 = −𝑏𝑚
𝑘

[

𝑘1 𝑘2 𝑘3 −
𝑘
𝑏𝑚 (𝑏 + 𝑚) 𝑘4

]

𝒙, (11.18)

with 𝒌𝑓 = [ 𝑘𝑓1 𝑘
𝑓
2 𝑘

𝑓
3 𝑘

𝑓
4 ]. Now let us choose 𝑘1,… , 𝑘4 such that 𝑘𝑑𝑖 = 𝑘𝑓𝑖 for

the case that the link inertia and joint stiffness assume the reference values:
𝑚𝑟𝑒𝑓 = 0.1 kg m2 and 𝑘𝑟𝑒𝑓 = 200 Nm / rad, that is 𝑘1 = 𝑘𝑝𝑎𝑘𝑟𝑒𝑓∕(𝑏𝑚𝑟𝑒𝑓 ) etc.
The reference values are chosen such that they are located magnitude-wise
in the center of their respective range. Consequently, for the reference case
𝑚 = 𝑚𝑟𝑒𝑓 and 𝑘 = 𝑘𝑟𝑒𝑓 , both controllers are identical, and thus achieve the
same closed-loop behavior. Starting from this reference point we are now
interested in how the gains 𝒌𝑑 and 𝒌𝑓 change if the link inertia and joint
stiffness deviate from their respective reference values. Figure 11.30 shows
the results of this analysis. The white spheres mark the reference cases, where
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and𝒌𝑓 as a function of the link inertia𝑚 and
joint stiffness 𝑘. The feedback linearization
gains 𝒌𝑓 vary significantly stronger with
changing inertia and stiffness values com-
pared to the ESP gains 𝒌𝑑 . Reprinted from
[86].

𝑚 and 𝑘 assume their reference values and 𝒌𝑑 and 𝒌𝑓 coincide. Clearly, the
elements of 𝒌𝑓 vary significantly stronger than those of 𝒌𝑑 . This has several
theoretical and practical implications. Compared to feedback linearization,
ESP control is less susceptible to input saturation and shows less sensor noise
amplification. Moreover, from experience we know that gains on 𝑞𝑢 and 𝑞̇𝑢 as
high as 5 × 104 Nm∕rad and 3 × 103 Nm∕rad, respectively, are not realizable
on the Hand Arm System. It is also clear that uncertainties in 𝑘 and 𝑚 have
a much larger impact on the gains for feedback linearization than for ESP
control. These findings allow the conclusion that ESP control shapes the plant
dynamics significantly less than feedback linearization.
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Figure 11.31: Simulation 2. The gains 𝒌𝑑
and 𝒌𝑓 as a function of the link inertia 𝑚
and joint stiffness 𝑘, respectively. The plots
show planar, vertical cuts of Fig. 11.30 that
run parallel to the𝑚 and 𝑘 axis, respectively,
and intersect the reference point. Reprinted
from [86].
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11.9 Simulation 3: Steady-State Error Analysis

This section reports a Monte Carlo simulation [154] to evaluate the robustness[154]: Ray et al. (1993), “A Monte Carlo
approach to the analysis of control system
robustness” of the control designs reported in Chapter 9 with respect to parameter uncer-

tainties and analyzes the resulting stead-state errors. The results have been
first published in [91]. We simulated a single joint with the same parameters[91]: Keppler et al. (2021), “Analyzing the

performance limits of articulated soft robots
based on the ESPi framework: Applications
to damping and impedance control”

reported in Table 11.6 and considered the same scenario as reported in Case 2
of Experiment 5, with the addition of a step-like force disturbance of −11Nm
at 𝑡 = 2 s. A uniform probability density function models the parameter un-
certainties, with variations between ±5% of the nominal values for the link
and motor inertias, 𝑚 and 𝑏, and ±10% for the joint stiffness 𝑘, which is a
very pessimistic uncertainty set, c.f. [154]. The control parameters were set as[154]: Ray et al. (1993), “A Monte Carlo

approach to the analysis of control system
robustness” reported in Table 11.8 (Chapter 9), with only 𝜉𝑞 changed to 1 since the lack of

link-side friction in the simulation necessitates a higher damping ratio to avoid
overshooting. The result of 500 runs is plotted in Fig. 11.32. Analyzing the
equilibrium conditions for the nominal case, we have that 𝑞𝑢 − 𝑞∗𝑢 = 𝑢∕𝑘𝑟,
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where 𝑘𝑟 is the resultant closed-loop stiffness, i.e.

𝑘𝑟 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑘ref for ESPref
(

1
𝑘𝑢

+ 1
𝑘𝑐

)−1 for ESP1–2
𝑘𝑢 for ESP3–4

(11.19)

𝑘ref for ESPref,
( 1
𝑘𝑢

+ 1
𝑘𝑐

)−1 for ESP1–2, and 𝑘𝑢 for ESP3–4. Let us assume the
model parameters are not known exactly, and let 𝑚̂, 𝑏̂ and 𝑘̂ be the estimates
of 𝑚, 𝑏 and 𝑘 used for the controller implementation. Introducing 𝛽 ≜ 𝑘̂∕𝑘
and analyzing the equilibrium conditions gives the following relation for the
deviation of the equilibrium position from the nominal one:

𝑒 =
𝑢
𝑘𝑟

(

1 − 𝛼
)(

1 − 𝛽
)

, (11.20)

which matches the result from the Monte-Carlo simulation, c.f. Fig. 11.32.
Evaluating (11.20) for the worst case scenario of 𝛽 = 1.1 and 𝛽 = 0.9 gives
steady-state errors of 4 × 10−3 rad and −4.9 × 10−3 rad. From (11.20), we
observe that 𝑒 is non-zero only if 𝛼 ≠ 1 and 𝛽 ≠ 1. Uncertainties in either 𝑚
or 𝑏 have no influence on the equilibrium position. The arguments above are
no substitute for an in-depth robustness analysis of the proposed designs, and
further investigations regarding the stability of an 𝑛 degree of freedom ASR
in the presence of parameter uncertainties are required in future work.

From the input transformation (4.17) it is clear that model uncertainties in
𝑩 and𝑲 affect only the “dynamic” part, 𝑩𝑲−1 ̈̄𝒖𝑢, of the input transformation.
Uncertainties in the rigid-body (link) parameters enter the input transforma-
tion (4.17) only through the model-based computation of 𝒒̈ for ESP1–4, and
additionally 𝒒(3) for ESPref; see Section B.2 in Appendix C.1. Thus, if 𝒒̈ was
obtained via an acceleration sensor the implementation of ESP1–4 would be
completely unaffected from model uncertainties concerning the rigid-body
dynamics. The implementation of motor inertia shaping (see [86]) requires [86]: Keppler et al. (2018), “Elastic struc-

ture preserving (ESP) control for compli-
antly actuated robots”feedback of the joint torques 𝑲(𝜽 − 𝒒). As a consequence, parameter errors

associated with 𝑲 affect the equilibrium behavior. This intuition is confirmed
by (11.20) and the bottom plots of Fig. 11.32.
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Today’s scientists have substituted mathematics for experiments, and they
wander off through equation after equation, and eventually build a structure

which has no relation to reality.

– Nikola Tesla

This chapter presents a variety of applications in which the ESP control
framework is used to facilitate motions on the anthropomorphic robot DLR
David. These applications demonstrate that using the ESP concept to imple-
ment the joint control for a compliant robot enables the execution of advanced
manipulation tasks. Realizing these demos was a team effort by many people
involved in the development, maintenance and operation of David. Special
credit goes to Martin Pfanne who’s contributions were key for realizing many
of the demonstrations. Figure 12.3 gives an overview of the control architec-
ture for David which has been developed in the course of this work; with ESP
control at its center. Please note that most figures are collectively provided at
the end of this chapter.

12.1 Human-Robot Interaction

The task-space ESPi controller reported in Section 7.2.5 enables modulating
the robot’s interaction behavior in an intuitive manner. To match the task
requirements, we can directly specify the end effector compliance in terms of
stiffness and damping parameters. For example, in typical service or medical
robot scenarios, we can command very soft behaviors, whereas in a shared
workspace cobot scenario, we can increase the robot’s stiffness even above
the intrinsic one to facilitate high precision manipulation.

The passive ESP control guarantees safe interaction between humans
and robots. As pointed out in Chapter 7, the closed-loop system is output
strictly passive with the power port constituted by the link velocities and
disturbances. Consequently, during an interaction, the energy increase of the
system is at most the energy injected by the interacting agent. In absence of
external contacts, the closed-loop energy is steadily decreasing. In the hand-
shake scenario shown in Fig. 12.1, the energy injection is determined by the
power port constituted by the wrench (force, torque) applied to the robot’s
hand and the resulting twist (linear and angular velocity). When it comes
to human robot interaction, safety is a critical concern. From the control
point of view, a key aspect with regard to safety is the robustness of the
controller. Knowing that OSP implies L2-gain stability [191], we can expect [191]: van Schaft (2017), L2-Gain and Pas-

sivity Techniques in Nonlinear Controlfavorable robustness properties of an OSP ESP controller. The experiments in
Section 11.2 confirm this intuition, highlighting the ESP concept’s robustness
concerning input saturation, disturbances (friction, impacts, human-robot
interaction), and model uncertainties.

While keeping harm away from the human is a primary concern when
endowing a robot with dexterous physical motion capabilities, we must not
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Actual
trajectory

Desired
trajectory

Figure 12.1: Natural and safe human-robot interaction facilitated through ESP control.

neglect teaching the robot to protect itself from damage. A broken robot neither
can be deemed safe nor useful. The physical joint compliance significantly
increases the mechanical robustness of an ASR; however, it can still break by
overloading its elastic elements or by running into its endstops. For this reason,
the ESP controller is integrated into an overarching control architecture that
makes use of the robot’s perception capabilities to avoid such a damaging
scenario. An overview of David’s high-level control architecture, with a fo-
cus on the damage avoidance logic, is shown in Fig. 12.2. The safety block
in Fig. 12.3 can override the nominal control input by switching to a joint
protection controller. We use the momentum observer proposed in [34] for[34]: De Luca et al. (2006), “Collision de-

tection and safe reaction with the DLR-III
lightweight manipulator arm” collision detection and external wrench estimation. If an unplanned contact

exerts a wrench that surpasses a specified threshold, a “safety controller” is
activated. Usually, we employ a zero-gravity or motor PD controller for this
role. By setting all position gains to zero, the ESP controllers degenerate to
pure gravity compensation controllers (c.f. [32, 33]) with damping injection.[32]: De Luca et al. (2011), “A PD-type reg-

ulator with exact gravity cancellation for
robots with flexible joints”
[33]: De Luca et al. (2010), “Dynamic grav-
ity cancellation in robots with flexible trans-
missions”

Latter ensures the dissipation of all kinetic energy post an impact. Considering
that any state with 𝒒̇ = 𝟎 is an equilibrium point of the closed-loop system, the
human can easily push the robot arm away post collision; see also Video 12.6.1
for a demonstration. Thus, the robot cannot possibly clamp a human, or any
object (even in case of a power failure; due to the intrinsic joint compliance
the robot can always be pushed away). A joint protection controller is activated
if contact with an endstop or overloading of an elastic element is imminent.
If any link moves within a threshold band of the endstop it is being pushed
away by the controller. In case the elastic energy of any joint approaches its
maximal allowable value, the controller aims to keep the energy below this
threshold. The object tracking and in-hand localization algorithms, which are
essential for many applications, are based on the works [25, 150, 172]

[25]: Chalon et al. (2013), “Online in-hand
object localization”
[150]: Pfanne et al. (2018), “Fusing Joint
Measurements and Visual Features for In-
Hand Object Pose Estimation”
[172]: Stoiber et al. (2020), “A sparse gaus-
sian approach to region-based 6dof object
tracking”

.
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Figure 12.2: Safety logic for David.

12.2 Drill-Hammering

In this demonstration, the robot is tasked to use a drill hammer to bore a
hole into a plate of concrete. The setup is shown in Fig. 12.4 a. In order
to succeed, the robot must first pick up and position the vacuum cleaner
and drill hammer on the plate with a certain pretension. Then, by spanning
a virtual spring from the drill tip to a point behind the plate—with the line
connecting both points intersecting the wall perpendicularly—the robot pushes
the running drill hammer through the stone. Moving the equilibrium position
of the virtual spring in front of the plate initiates the drill retraction. The
demonstration ends with the robot returning the vacuum cleaner handle and
the drill hammer to their initial positions. Figure 12.3 shows a high-level
overview of David’s control architecture with a focus on the modules critical
for the drill-hammering demonstration reported in this Section.

The robot is able to track objects using its on-board cameras. The system
is capable of 6-DOF region-based object tracking implemented through an
efficient sparse approach requiring only a monocular RGB camera and the
3D object model [172]. Experiments demonstrating the performance of this [172]: Stoiber et al. (2020), “A sparse gaus-

sian approach to region-based 6dof object
tracking”method can be watched on YouTube.1 A common reality during pick and
1: https://youtu.be/lwhxSRpwn3Y

place operations with a humanoid hand is the relative motion between object
and palm during the grasp acquisition phase resulting in a grasp execution
differently as planned. In order to achieve robust manipulation, this relative
motion has to be observed and take account of during object placement. To
this end, we employ an online in-hand object localization algorithm [25] [25]: Chalon et al. (2013), “Online in-hand

object localization”that exploits the contact sensing capabilities of David to provide an object
pose estimation even when object occlusion is high. As soon as the visual
perpection of the robot’s environment is completed, the control framework

https://youtu.be/lwhxSRpwn3Y


248 12 Applications

enters the planning phase.
A non-collocated integrator activates whenever precise positioning of the

manipulators is required. The integrator is activated multi times throughout
the scene. Basically, whenever there is contact detected and the motion of the
robot is below some threshold. Critical activation are during the following
sequences: (b) placing the hand to grasp the vacuum cleaner, (c)–(d) placing
the hand to grasp the the drill hammer, (e) precise placement of the drill on
the stone plate, (f) returning the vacuum cleaner, (g) placing the drill hammer
on the table.

12.3 Teleoperation

This section reports the teleoperation of David via a human-machine interfaceTeleoperation is concerned with the remote
operation of robotic machines and typically
encountered in research and technical envi-
ronments such as: space and deep sea ex-
ploration, emergency response, law enforce-
ment, handling of radioactive material and
remote surgery.

developed by Kinfinity2. The Kinfinity suit and glove—shown in Fig. 12.5—

2: Kinfinity is a spin-off from the German
Aerospace Center (DLR); for more info visit
https://kinfinity.eu/.

enable programming a robot by demonstration, and teleoperating it from a
distance. The Kinifity motion suite senses the movement of the human operator.
A software algorithm translates this sensor data in real-time into a trajectory
for the robot. Using the motion tracking capabilities of the ESP controller
allows David to mirror the arm motion of the human operator. The mirroring
of the finger motions is realized by the controller presented in [24]. Figure 12.5

[24]: Chalon et al. (2014), “Backstepping
experimentally applied to an antagonisti-
cally driven finger with flexible tendons”

shows three sequential photos from a live demonstration during the Hannover
Messe 2018. A brief demonstration of David being teleoperated via the motion
suite can be found on YouTube; see Video 6 in Section 12.6 for the link.

12.4 Pipette Grasping and Handling

Combining link-side (non-collocated) integral action with ESP control, as
proposed in [93], enables to position the arm of David with a link-side accuracy
of 72 µrad. This is the maximum achievable accuracy, as this value is exactly
the sensor resolution of the link position sensors (16 bit/271◦). In the following
demo, David grasps and operates an adjustable pipette. Especially, the picking
up, positioning over the Petri dish and the returning of the pipette require high
precision. See Video 7 in Section 12.6 for a recorded demonstration.

12.5 Opening and Unloading a Dishwasher

Emptying a dishwasher, as shown in Fig. 12.7, is a complex task that involves
multiple consecutive sub-tasks. From a control perspective, it is essential to
achieve precise positioning of the arm and fingers, while navigating alternating
forceful and delicate interactions with various objects in a robust and compliant
manner. Notably, the initial opening of the dishwasher presents a significant
challenge, as the robot must overcome a substantial force threshold to unlock
the door. This application essentially relies on the controller proposed in [93],
which achieves compliant interaction in contact and remarkable positioning
accuracy in free motion.

https://kinfinity.eu/
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Figure 12.3: Control architecture for David based on ESP control.
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(a)

(c)

(e)

(g)

(d)

(f)

(h)

(b)

Figure 12.4: Drill hammering into concrete with an ASR. (a) Initial configuration. (b) end effector tracking with the head-mounted camera
enables two finger grasp of vacuum cleaner. (c) Placing vacuum cleaner with pretension against the stone plate. Initiate grasping motion for
the right arm. (d) Force controlled closure of the right hand around the drill handle. ESP controller adapts to account for added tool mass. (e)
Positioning drill on stone, pulling the trigger, commanding a set-point behind the plate, initiate drilling, detecting break via external wrench
observer. (f) Shift set-point to a location in front of the plate to initiate extracting the drill. (g) Releasing tool and resetting tool mass adaption.
Returning vacuum cleaner. (h) Releasing vacuum cleaner. Arms returning to the initial configurations.
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Figure 12.5: Teleoperation of an ASR. David mirroring the motion of a human operator wearing a Kinfinity suit and glove.
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(a)

(c)

(e)

(g)

(d)

(f)

(h)

(b)

Figure 12.6: Grasping and operating a pipette with DLR David. (a) Initial configuration. (b) Grasping and picking up the pipette. (c–d) Placing
the pipette over the Petri dishes. (e–h) Returning the pipette to the rack.



12.5 Opening and Unloading a Dishwasher 253

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12.7: Opening and unloading a dishwasher with DLR David. (a–b) The dishwasher is opened by grasping the door handle and pulling it
back and downward around the hinge axis. (c) To fully open the door, the handle is released, and the door is pushed downward using the fingertips.
(d–e) The tray is pulled out of the dishwasher with the fingertips hooked behind the handle. (f–g) Localization and tracking of the desired object,
such as a plate, as well as Davids forearm and wrist, are performed. This enables relative planning and execution of motions between the hand and
the plate. The tracking algorithm is designed to be robust against partial occlusions caused by David’s own fingers. (h) The plate is released and
placed on top of the dishwasher, with contact forces compensated for by the intrinsic and controlled elasticity of the fingers and arm. (i) Closing
the dishwasher and completes the task (partially shown).
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12.6 Multimedia Material

12.6.1 Videos

This work focuses on the fundamental aspects of the presented framework
and how it simplifies the control design for underactuated compliant robots.
However, extensive experimental results on the anthropomorphic DLR Robot
David with Variable Stiffness Actuators (VSA) confirm the practical applica-
bility of the framework. In [86, 90] we introduced a globally asymptotically
stable joint-space motion tracking approach. Motion tracking and impact
experiments can be found here:
� Video 1 (Motion tracking and disturbance rejection):

https://rmc.dlr.de/rm/de/staff/extcms/images/rmc/201
6_ICRA_Keppler.mp4

� Video 2 (Motion tracking and impact experiments):
https://youtu.be/PATvv47QfQs

The robustness of this approach is highlighted in a demo where David drills
into a block of concrete. This task requires both precise positioning of the tool
center point and vibration damping, see:
� Video 3 (Drill hammering):

https://youtu.be/JVdufPRK4NI

In [92], we present an asymptotically stable Cartesian impedance regulation
controller with remarkable stiffness and damping range. Experiments showing
task-space human-robot interaction and disturbance rejection behavior are
shown here:
� Video 4 (Cartesian impedance control and human-robot interaction):

https://youtu.be/sbhiNNIxMNQ

� Video 5 (Enhanced damping designs based on dynamic extensions):
https://youtu.be/O9Cx3H1Jal4

All these passivity-based concepts can be unified and elegantly expressed
in the presented framework. However, importantly, through the presented
adoption of e.g. the PD+ and Slotine and Li controllers we were able achieve
asymptotically stable tasks-space motion tracking. To the best of our knowl-
edge, these are the first PBC approaches that enable task-space motion tracking
for compliant robots with nonlinear spring characteristics. The PD+ adoption
can be considered a tasks-space impedance control with tracking behavior.
It allows to specify a compliant behavior of the robot TCP with respect to a
reference trajectory thereby enabling a compliant and passive interaction with
moving objects.

� Video 6 (Teleoperation via Kinfinity motion suite):
https://youtu.be/KmPZxiUB0Vc

� Video 7 (Advanced manipulation of a pipette):
https://youtu.be/_kj1RgdIkfk

https://rmc.dlr.de/rm/de/staff/extcms/images/rmc/2016_ICRA_Keppler.mp4
https://rmc.dlr.de/rm/de/staff/extcms/images/rmc/2016_ICRA_Keppler.mp4
https://youtu.be/PATvv47QfQs
https://youtu.be/JVdufPRK4NI
https://youtu.be/sbhiNNIxMNQ
https://youtu.be/O9Cx3H1Jal4
https://youtu.be/KmPZxiUB0Vc
https://youtu.be/_kj1RgdIkfk
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12.6.2 Coverage on IEEE Spectrum and News

Video Friday: normal and headliner
• IEEE Video Friday headline:
https://spectrum.ieee.org/automaton/robotics/robotic
s-hardware/video-friday-soft-robot-impedance-control
-autonomous-rescue-drone-robosimian-skating

• IEEE Video Friday:
https://spectrum.ieee.org/video-friday-dogs-that-cod
e-robotic-football-self-driving-bicycle

• ETF Trends:
https://www.etftrends.com/robotics-ai-channel/impedan
ce-control-for-soft-robots/

https://spectrum.ieee.org/automaton/robotics/robotics-hardware/video-friday-soft-robot-impedance-control-autonomous-rescue-drone-robosimian-skating
https://spectrum.ieee.org/automaton/robotics/robotics-hardware/video-friday-soft-robot-impedance-control-autonomous-rescue-drone-robosimian-skating
https://spectrum.ieee.org/automaton/robotics/robotics-hardware/video-friday-soft-robot-impedance-control-autonomous-rescue-drone-robosimian-skating
https://spectrum.ieee.org/video-friday-dogs-that-code-robotic-football-self-driving-bicycle
https://spectrum.ieee.org/video-friday-dogs-that-code-robotic-football-self-driving-bicycle
https://www.etftrends.com/robotics-ai-channel/impedance-control-for-soft-robots/
https://www.etftrends.com/robotics-ai-channel/impedance-control-for-soft-robots/
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This thesis treats the nonlinear control of a class of underactuated Euler-

Lagrange systems. A fundamental property connected with this class of sys-
tems is the decomposability into passive subsystems. A challenge inherent
with the control of underactuated system is the lack of input channels. A
popular representative of this class are articulated soft robots which are in the
focus of this work.

The objective of this work is twofold. On the one hand, it aims to advance
the field of nonlinear control of underactuated systems, and on the other hand,
it aims to demonstrate that ASRs can indeed be considered a viable alternative
to classic rigid robots. Guided by energy considerations and experience in
control application in the lab, the reported developments are tailored for
application on robotic hardware. The physically intuitive closed loops of the
proposed designs enable the operator to anticipate the interaction behavior
of the robot with the environment, i.e., another physical system. Clearly, the
interaction between two physical systems that are visualizable in terms of
real physical elements is fundamentally easier to comprehend and anticipate
than the interaction between a set of (partial) differential equations and the
environment. In addition, having a physical intuitive closed-loop behavior
provides—to some extent—a feeling for the extent of system shaping imposed
by a particular control design. This enables the operator to provide an ad-hoc
estimate of the maximal achievable gains and, thus, expected performance.
This fact can hardly be overestimated when it comes to the commissioning
stage since physical intuiting is of immense value for tuning a controller.

The main theoretical contribution is reported in Chapter 5. In the La-
grangian picture of mechanics, we can represent a system evolving in time by
the motion of a single point 𝑃 through its configuration space . The principle
of stationary action tells us that the path taken by 𝑃 through  between times
𝑡0 and 𝑡1 and two fixed points in  is the one for which the action is stationary.
Guided by this Lagrangian picture of mechanics, this work proposes a new
approach to treat the stabilization of a class of underactuated Euler-Lagrange
systems. A fundamental property connected with this class of systems is the
decomposability into passive subsystems. Exploiting this property, we can
decompose such a system into an actuated Σ𝑎 and unactuated subsystem Σ𝑢.
Instead of thinking in terms of a single point 𝑃 moving through , it is re-
warding to think of two points 𝑃𝑢 and 𝑃𝑎—representing the configurations
of Σ𝑢 and Σ𝑎—moving through two subspace of . The only source of inter-
action is the forces arising from the potential field  that permeates . The
shape of this potential field—and consequently the magnitude and direction
of the arising coupling force—is dictated by the relative position of Σ𝑢 and Σ𝑎.
Consequently, the only option to impose a desired motion on the unactuated
subsystem Σ𝑢 is to adjust the variation of the coupling force by adjusting the
motion of the actuated subsystem through the input force 𝒖𝑎

Using this geometrical view, we introduced a partial change of coordi-
nates (𝑞𝑢𝑖, 𝑞𝑎𝑖) → (𝑞𝑢𝑖, 𝑞𝑎𝑖) with 𝑞𝑢𝑖 ≡ 𝑞𝑢𝑖, and a transformation of the input
forces 𝑢𝑖 → 𝑢̄𝑖, such that EL system Σ is transformed into an equivalent EL
system Σ̄ that can be treated as quasi-fully actuated. Equivalence of Σ and
Σ̄ is to be understood in the sense that the solutions of both systems are in a
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one-to-one correspondence (as pointed out in Lemma 5.4.1) and, thus, both
systems describe the same physical reality. Therefore, instead of studying
and controlling the behavior of Σ, one can equivalently study and control the
behavior of Σ̄. Since the virtual inputs 𝑢̄𝑖 on the unactuated subsystem cannot
be chosen completely freely, the transformed system is being referred to as
quasi-fully actuated. The structural properties of the QFA system that are most
notable from the control point of view are:

• Even though the transformation is a non point transformation, the struc-
ture of the Euler-Lagrange equations is preserved.

• For each degree of freedom there is a virtual input.
• The QFA system (4.18) defines a passive mapping 𝒖̄ → ̇̄𝒒 between the

virtual input forces and the velocities.
The central results of Chapter 5 are summarized in Theo-
rem 5.3.6, 5.4.2 and 5.6.1, and serve as basis for all subsequent chapters, but
Chapter 10.

The equilibria of an EL system are determined by the critical points of its
potential function. If the potential energy is at a local minimum and suitable
damping is present then the associated equilibrium point is asymptotically sta-
ble. These two fundamental properties were first exploited in [178]. Takegaki[178]: Takegaki et al. (1981), “A new feed-

back method for dynamic control of manip-
ulators” and Arimoto translated the dynamic control of manipulators into a problem of

shaping its potential energy and injecting damping. Using the concept of QFA,
Proposition 6.2.1 in Chapter 6 reports an extension to the energy shaping and
damping injection scheme to the class of underactuated EL systems specified
in Chapter 6. Moreover, Proposition 6.3.1 in Chapter 6 proposes an extension
of the concept of EL controllers [133]. Compared to the original scheme, the[133]: Ortega (1998), Passivity-Based Con-

trol of Euler-Lagrange Systems: Mechani-
cal, Electrical, and Electromechanical Ap-
plications

new result allows for more freedom in formulating the controller EL equations
by allowing the associated potential and kinetic energies to be formulated in
terms of non-collocated coordinates. Finally, Chapter 6 treats the adoption of
impedance control [68–70] through the QFA representation of.[68]: Hogan (1985), “Impedance con-

trol: An approach to manipulation: Part
I—Theory”
[69]: Hogan (1985), “Impedance con-
trol: An approach to manipulation: Part
II—Implementation”
[70]: Hogan (1985), “Impedance con-
trol: An approach to manipulation: Part
III—Applications”

Based on the theoretical results in Chapter 5, Chapter 7 developed a
series of passivity-based control schemes tailored for ASRs with elastic or
visco-elastic joints that aim at natural motions by minimizing the systems
shaping. These schemes are collectively referred to as ESP designs and share
the following properties: 1) preservation of the EL structure of the plant, 2)
output strict passivity, 3) intuitive closed-loop behavior, 4) pervasive damping.
The underlying hope is that minimizing the system shaping, and having a
closed-loop dynamics match in some way the intrinsic structure of the robot
will award high performance with little control effort. Further, control designs
that minimize the system shaping usually result in low gain designs, which is
favorable with regard to robustness.

Chapter 8 compares several design techniques that achieve global asymp-
totic motion tracking for SEA-based robots including the ESP designs devel-
oped in Chapter 7.

Chapter 9 exploits the QFA representation of a SEA-based robot to analyze
its performance limits. Moreover, enhanced damping designs are proposed
that significantly reduce the actuator torque requirements at the moment of
an impact compared to classic damping implementations in Chapter 7. In
addition, the sensitivity regarding link position measurement noise is reduced
by 20 dB/dec by avoiding feedback of the link jerk signals. This, however,
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comes at the price of sacrificing the pervasive damping, and thus global output
strict passivity, of the ESP designs in Chapter 7.

Chapter 10 presents a complete synthesis method for time-optimal rest-
to-rest motions of an elastic joint system with bounded torque input. The
solution is provided in closed form by following purely geometric arguments,
and verifies the standard optimality conditions. Further, we introduced the
concept of natural motions which are time-optimal solutions to the RTR
motion problem. These are the only RTR solutions where the minimum-time
performance of an elastic joint system matches that of a rigid joint. In future
works, it is worth investigating how the insights obtained from the natural
motion analysis can be exploited to optimize the design of an elastic robot
joint.

The experiment results in Chapter 11 and 12 highlight the performance of
the proposed ESP concept. Videos of the reported experiments are linked in
Section 12.6. Summarizing the experimental demonstrations, the ESP concept
achieves:

• Dexterous, robust and passive interaction with the (unknown) environ-
ment, as demonstrated in all experiments and videos.

• Excellent link-side damping with minimal over-shooting in motion track-
ing and setpoint regulation; see Experiment 1 and 2 and Video 1 and 2.

• Precise stiffness control in joint and Cartesian space; see Experiment 3
and Video 4.

• The link-side stiffness can be substantially increased over the system’s
natural one, while preserving passivity of the closed loop; see Experi-
ment 3.

• The system remains stable even in the case of control input saturation.
• By setting all gains to zero, the robot can be moved freely in gravity

compensation mode; see Video 4.
• Despite the joint stiffness values varying over a vast range, the ES-

P/ESP+ controllers achieve excellent performance without gain adap-
tion; see Experiment 2.

• A desired link compliance can be imposed without requiring feedback
of link acceleration and jerk signals; see Experiment 5.

In recent years we have seen a surge in the application of robotic manipu-
lators in new areas that require a dynamic interaction with the environment,
e.g., shared work spaces with humans, health care, Industry 4.0. In order to
facilitate these interactions in a safe manner, and to increase the mechanical
robustness of robots against impacts, robot design evolved from rigid toward
compliant actuators, i.e., soft robots. The intrinsic oscillatory dynamics can be
exploited, for cyclic tasks such as locomotion, hammering, or drumming. For
positioning tasks, however, these oscillatory dynamics require elaborate con-
trol concepts [28] to achieve positioning performance that come close to that of [28]: De Luca et al. (2016), “Robots with

Flexible Elements”rigid manipulators. In many cases, ASRs were limited in their performance by
control technology which matured on robotic arms where joint elasticity was
considered a parasitic effect that must be avoided since it introduces unwanted
oscillatory dynamics into the system. The extensive experimental results in
Chapter 11 and the applications in Chapter 12 on the anthropomorphic robot
DLR David demonstrate that these challenges can be overcome.1 1: Contrary to popular believe in the

robotics community, the reported experi-
ments clearly demonstrate that high perfor-
mance and robust designs can be achieved
despite feedback of acceleration and jerk
signals. The author believes that the robust-
ness of a control design equally suffers from
extensive dynamics shaping as from feed-
back of acceleration and jerks signals.

Although many challenges in soft robotics remain ahead, this work ad-
vanced the state of the art by developing control schemes that combine tra-
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jectory tracking in free motion with robust and compliant manipulation in
contact. Experimental evaluations of the proposed ESP concept highlight the
link-side damping performance and demonstrate the robustness in challeng-
ing situations such as hard impacts. “Do as little as possible.” These words
may summarize the ESP design philosophy best. Finally, using the proposed
ESP concept enabled us to demonstrate the practical viability of ASRs in
various real-world scenarios, including pick and place, teleoperation, and
drill-hammering; see videos in Section 12.6. In conclusion, when it comes
to commercial applications, it is safe to say that articulated soft robots can
indeed be considered a viable alternative to classic rigid robots.
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Studying mathematics as symbol manipulation
is like studying music without ever hearing a note. [112, 124]

– Tristan Needham

This chapter considers systems where the elastic potential assumes a
quadratic form. The following discourse has two objectives. First, to facilitate
an intuitive understanding of the system shaping imposed through a partic-
ular design choice for the virtual control inputs, a geometric interpretation
of the input transformation is derived (Section A.1). Second, it reports an
alternative derivation of the QFA representation based on purely geometric
considerations. More precisely, it will be shown that by introducing a non-
inertial reference frame to describe the motions of the actuated subsystem, the
QFA representation emerges naturally (Section A.3). The result shows that
the virtual coordinates are actually observable and measurable quantities.

A.1 Revisiting the Input Transformation

The following text connects a geometrical picture with the input transforming
equations derived in Chapter 5 for the case where the elastic potential function
is a quadratic form.

A.1.1 Series Elastic Actuators

Consider an ASR implemented with SEA satisfying Spong’s model. Chapter 9,
demonstrated that we can bring such a system into a QFA form through the
coordinate and input transforming equations (7.40) and (7.41), which are
repeated for convenience:

𝒒𝑎 =𝒒̄𝑎 +𝑲−1𝒖̄𝑢, (A.1)
𝒖𝑎 =𝑩𝑲−1 ̈̄𝒖𝑢 + 𝒖̄𝑢 + 𝒖̄𝑎, (A.2)

where 𝑩 = diag(𝑏1,… , 𝑏𝑛𝑎 ) and 𝑲 = diag(𝑘1,… , 𝑘𝑛𝑎 ). Introducing the
auxiliary coordinates and forces

𝒓 =𝑲−1𝒖̄𝑢 = (𝑟𝑎1,… , 𝑟𝑛𝑎), (A.3)
𝒖̃ =𝒖𝑎 − 𝒖̄𝑎 =(𝑢̃𝑎1,… , 𝑢̃𝑛𝑎) (A.4)
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and making the substitutions (A.2) and (A.3)–(A.4) yields
𝑩𝒓̈ +𝑲𝒓 = 𝒖̃𝑎. (A.5)

Inspecting the Euler-Lagrange equations (A.5) reveals a striking geometric
interpretation. Consider a system of 𝑛𝑎 independent harmonic oscillators. Let
𝑏𝑖 and 𝑘𝑖 denote the mass and stiffness of the 𝑖th oscillator, and let 𝑟𝑖 denote its
deflection, as sketched in Fig. A.1. Then the corresponding EL equations are
just (A.5). Observing that the components of the virtual control input, 𝑢̄𝑢𝑖, are
in a linear one-to-one correspondence with the deflections 𝑟𝑖 through (A.3),
we conclude that whenever the variation of the 𝑢̄𝑢𝑖 corresponds to an unforced
motion of the associated harmonic oscillator, the control forces, 𝑢̃𝑖, are zero
by definition.
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Figure A.1: Interpreting the time evolution
of each control signal as the evolution of a
driven harmonic oscillator.

We can modify this picture to obtain a direct connection between the
motion of the harmonic oscillators and the actual control forces 𝑢𝑎𝑖. Introduc-
ing

𝒔 = −𝑲−1𝒖̄𝑎 = (𝑠𝑎1,… , 𝑠𝑛𝑎), (A.6)
and making the substitution (A.5) and (A.6), we get

𝑩𝒓̈ +𝑲(𝒓 − 𝒔) = 𝒖𝑎. (A.7)
From (A.7), we see that 𝑠𝑖 determines the equilibrium position and 𝑢𝑎𝑖 the
driving force of the 𝑖th harmonic oscillator. In conclusion, the stronger the 𝑖th
harmonic oscillator deviates from its unforced motion the higher the control
forces 𝑢𝑎𝑖, and the higher the system shaping imposed on the ASR; of course,
given that the magnitudes of the control forces 𝑢𝑎𝑖 qualify as a measure of
system shaping. An alternative measure would be the power injected through
the port (𝑞𝑎𝑖, 𝑢𝑎𝑖). However, analyzing the latter goes beyond the scope of this
work.

𝑟𝑖

𝑠𝑖 𝑏𝑖
𝑢𝑎𝑖

Figure A.2: Interpreting the time evolution
of each control signal as the evolution of a
driven harmonic oscillator.

A.1.2 Linear Elastic Couplings

Consider an ASR with linear elastic coupling, such that the potential energy
𝑒 is a positive definite quadratic form

𝑒 =
1
2

[

𝒒𝑢
𝒒𝑎

]T [

𝑲𝑢 −𝑲𝑢𝑎
−𝑲T

𝑢𝑎 𝑲𝑎

] [

𝒒𝑢
𝒒𝑎

]

. (A.8)

Notice that Assumption 5.1.2 translates into 𝑲𝑢𝑎 ≻ 0. The coordinate and
input transforming equations, (5.29a) and (5.57), evaluate to

𝒒𝑎 =𝒒̄𝑎 +𝑲−1
𝑢𝑎 𝒖̄𝑢, (A.9)

𝒖𝑎 =𝑩𝑲−1
𝑢𝑎
̈̄𝒖𝑢 +𝑲𝑎𝑲−1

𝑢𝑎 𝒖̄𝑢 + 𝒖̄𝑎. (A.10)
Introducing the auxiliary coordinates

𝒓 = 𝑲−1
𝑢𝑎 𝒖̄𝑢, (A.11)

considering (A.4) and the Lagrangian
𝑟 =

1
2

(

𝒓̇T𝑩𝒓̇ + 𝒓T𝑲𝑎𝒓
)

, (A.12)
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we observe that (A.10) are just the EL equations
(

d
d𝑡

𝜕
𝜕𝒓̇

− 𝜕
𝜕𝒓

)

𝑟 = 𝒖̃𝑎, (A.13)

which evaluate to
𝑩𝒓̈ +𝑲𝑎𝒓 = 𝒖̃𝑎. (A.14)

Considering (A.8), we can think of (A.14) as the EL equations associated
with a coupled spring-mass system with 𝑛𝑎 degrees of freedom driven by the
forces 𝑢̃𝑎𝑖, as sketched in Fig. A.3.
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Figure A.3: Interpreting the time evolution
of the control signals as the evolution of a
coupled spring-mass system.

Modifying the Lagrangian to include the control forces 𝒖̄𝑎
∗
𝑟 = 𝑟 + 𝒓T𝒖̄𝑎, (A.15)

we can rewrite the input transforming equations as the EL equations
(

d
d𝑡

𝜕
𝜕𝒓̇

− 𝜕
𝜕𝒓

)

∗
𝑟 = 𝒖𝑎. (A.16)

In summary, imposing the virtual input forces 𝒖̄𝑢 and 𝒖̄𝑎 on Σ̄ translates into
applying on Σ the control force 𝒖𝑎 defined by EL equations (A.16). This
remarkable result allows representing all the ESP schemes for ASRs with
elastic couplings of the form (A.8) in a unified way through the formulation of
a single quantity; the Lagrangian ∗

𝑟 . Notice that the form of the Lagrangian
is invariant.

A.2 A Control Input Observer

This section exploits the mechanical interpretation of the input transforming
equations developed above to reduce the computational effort for implement-
ing these equations. The following discussion considers the case treated in
Section A.1.2.

In practice, a major challenge concerning the implementation of the input
transforming equations (A.10) is the required knowledge of ̈̄𝒖𝑢. For the linear
spring case this fact is immediately clear from (A.2). Let us use the insight
that the transforming equations can be viewed as the EL equations of a driven
spring-mass system to avoid feedback ̈̄𝒖𝑢. The idea is as follows. Considering
(A.12), we can think of (A.13) as a system of point masses driven by the
generalized forces 𝜕𝑟

𝜕𝒓 and 𝒖̃𝑎 = 𝒖𝑎 − 𝒖̄𝑎. Suppose that all but 𝒖𝑎 are known.
Then, using the generalized momentum associated with the EL equations
(A.14)

𝒑 =
𝜕𝑟
𝜕𝒓̇

, (A.17)

we can obtain an estimate of 𝒖𝑎 by employing a momentum-based disturbance
[34, 48]. The implementation of such an observer requires knowledge of
only the generalized momentum and the generalized forces 𝒖̄𝑎 and 𝜕𝑟

𝜕𝒓 . Thus,
implementing an estimate 𝒖̂𝑎 of 𝒖𝑎 instead of 𝒖𝑎 itself no longer requires
feedback of 𝒓̈, and thus ̈̄𝒖𝑢.
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Figure A.4: Using a momentum observer
to reduce the computational effort for im-
plementing the input transformation.
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Combining this observer based approach for estimating 𝒖𝑎 with the dy-
namic extensions proposed in Chapter 9, results in controllers requiring mea-
surements of only the positions and velocities 𝒒, 𝒒̇. This is a significant ad-
vantage, since the model-based computation of 𝒒̈𝑢 (and possibly 𝒒(3)𝑢 ), as
introduced in Appendix B.2, is no longer required. Consequently, estimating
the external forces ′

𝑢 and ̇′
𝑢 becomes superfluous which greatly reduces the

implementation effort of the input transformation. Block diagram in Fig. A.4
shows the implementation of the dynamics extension based designs in Chap-
ter 9. Ironically, we circumvented the observer for ′

𝑢 by introducing an
observer for 𝒖𝑎.

In order to test the applicability of the concept summarized in Fig. A.4,
several experiments have been performed on a SEA testbed. The results re-
ported in Chapter 11 confirm that the presented procedure is a valid strategy
and produces satisfactory results in practice. Apart from the reduced compu-
tational effort, the presented procedure is particularly helpful when feedback
of the acceleration and jerk must be avoided. Consider, for example, robotic
systems with extremely low link inertias such as fingers or lightweight legs.
In such case, the model based computation method reported in Appendix B.2
fails due to badly conditioned inertia matrices.

Remark A.2.1 If the original Lagrangian is not explicitly time-dependent.
Explicit time dependency usually enters the Lagrangian in two ways: 1) if
the system is subject to explicitly time-dependent constraints or 2) time-
dependent forces.

A.3 Are the Virtual Coordinates not so Virtual
After All?

This section introduces an interpretation of the virtual coordinates as non-
inertial coordinates. The following discussion requires a comparison between
reference systems (observers). Let 𝑆 be an inertial reference frame and 𝑆̄ a
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non-inertial frame that is accelerating relative to 𝑆. Let us use the following
convention: all quantities measured from 𝑆̄ will be denoted by the same letters
as the quantities measured in the inertial frame, but with a “bar”. Consider the
motion of two point masses 𝑚 and 𝑏 whose motions are constrained to one
dimension. Let 𝑞𝑢 and 𝑞𝑎 denote their positions relative to 𝑆, and let 𝐹𝑢 and
𝐹𝑎 be the net forces on the masses 𝑚 and 𝑏, respectively.

𝑚𝑞𝑢 =𝐹𝑢, (A.18)
𝑏𝑞𝑎 =𝐹𝑎. (A.19)

Suppose that 𝑆̄ moves with velocity 𝑟̇ and acceleration 𝑟̈ relative to 𝑆. The
position of mass 𝑏 in 𝑆̄ is 𝑞𝑎. Using the velocity addition rules of classical
mechanics, the velocities of mass 𝑏 observed from 𝑆 and 𝑆̄ are related by

𝑞̇𝑎 = ̇̄𝑞𝑎 + 𝑟̇. (A.20)
Differentiating with respect to time, we get

𝑞𝑎 = ̈̄𝑞𝑎 + 𝑟̈. (A.21)
Multiplying both sides of (A.21) with 𝑏 and replacing 𝑏𝑞𝑎 with 𝐹𝑎 gives

𝑏 ̈̄𝑞𝑎 = 𝐹𝑎 − 𝑏𝑟̈. (A.22)
We see that the motion of mass 𝑏 in an accelerating frame follows Newton’s
second law if we add an extra force −𝑏𝑟̈. This additional force is often referred
to as an apparent or fictitious force. It is the same force that pushes us back in
the driver seat when stepping on the gas.

Now suppose that the two masses 𝑚 and 𝑏 are interconnected by a spring
satisfying Hook’s law. Such scenario is indicated in Fig. A.5. Assume that
both masses experience no other impressed force, but the spring force.

𝑘

𝑞𝑢

𝑞𝑎

𝑞𝑎 𝑏

𝑆 𝑆̄

𝑚

Figure A.5: Describing the motions of two
points relative to an inertial reference frame
with origin 𝑂 and relative to an non-inertia
reference frame with origin 𝑂̄ which is in
purely translational motion.

Then according to observer 𝑆 the force acting on mass 𝑚 evaluates to
𝐹𝑢 = 𝑘(𝑞𝑎 − 𝑞𝑢), (A.23)

and according to observer 𝑆̄ the force on mass 𝑏 is
𝐹𝑎 = −𝑘(𝑞𝑎 + 𝑟 − 𝑞𝑢). (A.24)

Knowing that the forces on both ends of a massless spring are equal and in
opposite directions, it follows that

𝐹𝑢 + 𝐹𝑎 = 0. (A.25)
Using (A.23)–(A.25) to replace the impressed forces in (A.18)–(A.19) gives

𝑚𝑞𝑢 = 𝑘(𝑞𝑎 − 𝑞𝑢) + 𝑘𝑟, (A.26)
𝑚 ̈̄𝑞𝑎 = −𝑘(𝑞𝑎 − 𝑞𝑢) − 𝑏𝑟̈ − 𝑘𝑟. (A.27)

Now assume an extra impressed force 𝑢𝑎 acting on mass 𝑏, then its equation
of motion (A.27) becomes

𝑚 ̈̄𝑞𝑎 = − 𝑘(𝑞𝑎 − 𝑞𝑢) − 𝑏𝑟̈ − 𝑘𝑟 + 𝑢𝑎. (A.28)
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Suppose that 𝑢𝑎 is a control force that can be varied freely. Then, we can
cancel the extra forces arising from observing the motion of mass 𝑏 from an
non-inertial frame and add a new control force 𝑢̄𝑎 such that

𝑢𝑎 = 𝑏𝑟̈ + 𝑘𝑟 + 𝑢̄𝑎, (A.29)
and obtain

𝑚 ̈̄𝑞𝑎 = − 𝑘(𝑞𝑎 − 𝑞𝑢) + 𝑢̄𝑎. (A.30)
Observing (A.26) and (A.30), we see that these equations have the form of
Newton’s second law, except for the additional force 𝑘𝑟 in (A.26) and for the
fact that 𝑞𝑎 is measured from a non-inertial frame.

Remark A.3.1 The cancellation of the forces 𝑏𝑟̈ and 𝑘𝑟 through 𝑢𝑎 means
that any non-inertial observer residing with mass 𝑏 will not experience any
apparent forces. Canceling these two forces makes this observer feel the
“same” force as if he was an inertial observer.

It is convenient to denote the extra force on mass 𝑚 by
𝑢̄𝑢 = 𝑘𝑟. (A.31)

Notice that no assumption on the relative motion between 𝑆 and 𝑆̄ has been
made, apart from that 𝑆̄ accelerates relative to𝑆 with acceleration 𝑟̈. Observing
from (A.31) the one-to-one correspondence between the distance of 𝑆 and
𝑆̄ and the force 𝑢̄𝑢, we will define 𝑟̈ as follows. Exploiting this property and
observing from (A.23)–(A.25) that

𝐹𝑢 = 𝑢̄𝑢 + 𝑘(𝑞𝑎 − 𝑞𝑢), (A.32)
let us interpret (A.32) as a decomposition of 𝐹𝑢 into a desired and undesired
component such that

𝑢̄𝑢…desired component of𝐹𝑢
𝑘(𝑞𝑎 − 𝑞𝑢)…undesired compenent of 𝐹𝑢

Suppose that the desired component of 𝐹𝑢 is well defined at any point in time,
then this decomposition fixes the trajectory of 𝑆̄ relative to 𝑆. It is worth
remarking that the force error, 𝑘(𝑞𝑎 − 𝑞𝑢) would naturally tend to zero in
the presence of dissipation, since both masses are rendered attracted by the
spring.

In conclusion, we derived a quasi-fully actuated representation of a SEA
by introducing a non-inertial reference frame 𝑆̄ to describe the motion of
the actuated mass 𝑏. The relative distance between 𝑆 and 𝑆̄ encodes the
undesired component of the elastic force. The input transformation can be
interpreted as cancellation of the apparent forces arising from the introduction
of a non-inertial observer.

A.3.1 A Generalization to 𝑛 Dimensions

For a SEA-based manipulator with 𝑛 degrees of freedom—satisfying Spong’s
model—the motor inertias can be though of as 𝑛∕2 independent point masses
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Figure A.6: Describing the motions of two
points relative to an inertial reference frame
with origin𝑂 and relative to an non-inertial
reference frame with origin 𝑂̄ which is in
purely translational motion.

moving along one dimension each. However, there is a more elegant view
based on geometric/kinematic considerations similar to the one dimensional
case requiring the introduction of only one non-inertial reference frame.

Let us introduce the three kinematical quantities: the radius vector 𝒒𝑎,
the velocity 𝒒̇𝑎 and the acceleration 𝒒̈𝑎 of a moving particle 𝑃𝑎 with mass 𝑏,
measured in an inertial and non-inertial frame 𝑆 and 𝑆̄, respectively. Now,
assume that 𝑆̄ is in purely translational motion. Following Lanczos [103], the [103]: Lanczos (2020), The Variational

Principles of Mechanicstranslational motion of a reference frame can be characterized as follows. The
origin 𝑂̄ of a reference frame 𝑆̄ moves along some given curve ̄, traced out
by the vector 𝒓 originating in the origin 𝑂 of 𝑆, as indicated in Fig. A.6. The
radius vector 𝒒𝑎 measured in 𝑆 and the radius vector 𝒒̄𝑎 measured in 𝑆̄ are in
the following relation to each other

𝒒𝑎 = 𝒓 + 𝒒̄𝑎. (A.33)
Differentiating (A.33) twice with respect to time, we obtain

𝒒̈𝑎 = 𝒓̈ + ̈̄𝒒𝑎. (A.34)
Without loss of generality, let us assume that 𝑩 = diag(𝑏,… , 𝑏)>0.1 Then, 1: The justification is given in Re-

mark A.3.2 below.multiplying both sides with 𝑩 gives
𝑏𝒒̈𝑎 = 𝑏𝒓̈ + 𝑏 ̈̄𝒒𝑎 (A.35)

Similarly to the case above, we see that whenever measurements are made
relative to an non-inertial reference frame 𝑆̄, the force of inertia is composed
of two parts: the relative force of inertia 𝑏 ̈̄𝒒𝑎 and the apparent force 𝑏𝒓̈.

Analogous to the single joint example above, we can now introduce a
spring that connects the particle 𝑃𝑎 with a point 𝑃𝑢 with radius vector 𝒒𝑢, see
also Fig. A.6. According to Hook’s law, the force exerted on 𝑃𝑎 is

𝑭 𝑎 = −𝑲(𝒒𝑎 − 𝒒𝑢), (A.36)
where 𝑲 is some diagonal matrix containing the joint stiffness values. Ac-
cording to D’Alembert’s principle the total virtual work of the impressed
forces, augmented by the inertial forces vanishes for reversible displacements.
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Applying this principle to the mass particle 𝑏 subject to the impressed force
𝑭 𝑎, and considering that the “true” force of inertia and the force of inertia
measured from 𝑆̄ are related via (A.35), we get

𝑏 ̈̄𝒒𝑎 =𝑭 𝑎 − 𝑏𝒓̈, (A.37)
with the impressed force measured from 𝑆̄ evaluating to

𝑭 𝑎 = −𝑲(𝒒̄𝑎 − 𝒒𝑢) −𝑲𝒓. (A.38)
We notice that the motion of our reference system 𝑆̄ creates the forces 𝑏𝒓̈ and
𝑲𝒓. The former is part of the inertia force (often referred to as apparent force)
and the latter is part of the impressed force.

Now, suppose that 𝑃𝑢 is the configuration point of the unactuated sub-
system Σ𝑢 of a SEA manipulator. It is worth remarking, that 𝑭 𝑎 is still well
defined in this case since both radii vectors 𝒒𝑢 and 𝒒𝑎 are elements of the same
𝑛∕2 dimensional vector space. As pointed out in Section 2.5.1, the force of
inertia for Σ𝑢 is

𝑰⋆𝑢 = d
d𝑡
𝜕𝑢
𝜕𝒒̇𝑢

−
𝜕𝑢
𝜕𝒒𝑢

, (A.39)

with the kinetic energy 𝑢 as defined in (3.23). Thus, the equations of motion
are.

𝑰⋆𝑢 = −𝑭 𝑎 (A.40)
Suppose that Σ𝑎 is subject to an additional impressed force 𝒖𝑎 with 𝑛∕2
independent components. This allows canceling the forces arising from the
motion of our reference system 𝑆̄ with

𝒖𝑎 = 𝑏𝒓̈ +𝑲𝒓 + 𝒖̄𝑎, (A.41)
where 𝒖̄𝑎 can be considered as new control force. Introducing 𝑰⋆𝑎 = 𝑏 ̇̄𝒒𝑎 and
𝒖̄𝑢 = 𝑲𝒓, allows summarizing the resulting dynamics as

𝑰⋆𝑢 = 𝑲(𝒒̄𝑎 − 𝒒𝑢) + 𝒖̄𝑢, (A.42)
𝑰⋆𝑎 = −𝑲(𝒒̄𝑎 − 𝒒𝑢) + 𝒖̄𝑎, (A.43)

which is the familiar QFA representation of the original system.

Remark A.3.2 The assumption that 𝑃𝑎 is a particle of mass 𝑏 might appear
difficult to bring in harmony with the observation that the motor inertias
of a SEA manipulator can differ from joint to joint. This issue can be
remedied by scaling the coordinates 𝑞𝑎𝑖 accordingly. In fact, without loss
of generality, we can even assume that 𝑏 = 1. Let the motor inertia matrix
be 𝑩 = diag(𝑏1,… , 𝑏𝑛∕2) > 0, then the 𝑛∕2 generalized coordinates 𝝁2
univocally defined by 𝒒T

𝑎𝑩𝒒𝑎 = 𝝁
T
𝑎𝝁𝑎 have the desired property.
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A.4 Conclusions

This chapter introduced a mechanical interpretation of the input transforming
equations. Based on interpreting these equations as the EL equation of a multi-
dimensional spring mass a system momentum observer was suggested to obtain
an estimate of the actual control. This avoids feedback of the second order
time derivative of the virtual link-side inputs which is required to implement
the input transforming equations.

Moreover, it has been shown that by introducing a non-inertial reference
frame to describe the motions of the non-actuated subsystem, the QFA repre-
sentation emerges naturally (Section A.3). From this point of view, the input
transforming equations can be interpreted as the cancellation of the apparent
forces arising from introducing a non-inertial observer. This result shows
that the virtual coordinates are observable and measurable quantities at least
theoretically.





B
Supplementary Proofs and Arguments

B.1 On the Local Differential Flatness of the
Considered Euler-Lagrange Systems

This section proofs that the class of systems specified in Section 5.1 is locally
differentially flat for the special case 𝑛𝑢 = 𝑛𝑎. This result is summarized in
the corollary below.

Corollary B.1.1 (Local Differential Flatness of EL systems) Consider an
Euler-Lagrange system (5.1) satisfying Assumption 5.1.1 and 5.1.2. Then
for the case 𝑛𝑢 = 𝑛𝑎 it is locally differentially flat.

We recall that a system is differentially flat if there exists a set of outputs
(equal in number to the inputs) such that all states and inputs can be expressed
in terms of these outputs and a finite number of their derivatives. Formally, a
system with states 𝒙 ∈ ℝ𝑛, and inputs 𝒖 ∈ ℝ𝑚, is flat if there exist outputs
𝒚 ∈ ℝ𝑚 of them form [123] [123]: Murray et al. (1995), “Differential

flatness of mechanical control systems: A
catalog of prototype systems”𝒚 =𝒚

(

𝒙, 𝒖, 𝒖̇,… , 𝒖(𝑝)
)

, (B.1)
such that

𝒙 =𝒙
(

𝒚, 𝒚̇,… , 𝒚(𝑝)
)

, (B.2)
𝒖 =𝒖

(

𝒚, 𝒚̇,… , 𝒚(𝑝)
)

. (B.3)

Proof of Corollary B.1.1. Introducing 𝑛𝑢 functions Ψ𝑖(𝒒𝑢, 𝒒̇𝑢, 𝒒̈𝑢, 𝒒𝑎), of
3𝑛𝑢 + 𝑛𝑎 variables, we may write the dynamics of the primary subsystem
(5.1) compactly as

Ψ𝑖(𝒒𝑢, 𝒒̇𝑢, 𝒒̈𝑢, 𝒒𝑎) =
d
d𝑡
𝜕𝑢
𝜕𝑞̇𝑢𝑖

−
𝜕𝑢
𝜕𝑞𝑢𝑖

+ 𝜕
𝜕𝑞𝑢𝑖

= 𝟎, 𝑖 = 1,… , 𝑛𝑢. (B.4)

Considering Assumption 5.1.2, the implicit function theorem assures that
locally, near any point (𝒒0𝑢, 𝒒̇0𝑢, 𝒒̈0𝑢, 𝒒0𝑎

)

∈ ℝ3𝑛𝑢+𝑛𝑎 , we may solve (B.4) for the
𝑞𝑎𝑖 in terms of the 𝑞𝑢𝑖 and their time derivatives

𝑞𝑎𝑖 = ℎ𝑖(𝒒𝑢, 𝒒̇𝑢, 𝒒̈𝑢). (B.5)
Further, the implicit function theorem assures that the functions ℎ𝑖 are two
times continuously differentiable. Hence, we have that

𝑞̇𝑎,𝑖 =
∑

𝑗

[

𝜕ℎ𝑖
𝜕𝑞𝑢,𝑗

𝑞̇𝑢,𝑗 +
𝜕ℎ𝑖
𝜕𝑞̇𝑢,𝑗

𝑞𝑢,𝑗 +
𝜕ℎ𝑖
𝜕𝑞𝑢,𝑗

𝑞(3)𝑢,𝑗

]

(B.6)
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and

𝑞𝑎,𝑖 =
∑

𝑘

∑

𝑗

(

𝜕
𝜕𝑞𝑢,𝑘

[

𝜕ℎ𝑖
𝜕𝑞𝑢,𝑗

]

𝑞̇𝑢,𝑗 𝑞̇𝑢,𝑘 +
𝜕

𝜕𝑞̇𝑢,𝑘

[

𝜕ℎ𝑖
𝜕𝑞𝑢,𝑗

]

𝑞̇𝑢,𝑗𝑞𝑢,𝑘

+ 𝜕
𝜕𝑞𝑢,𝑘

[

𝜕ℎ𝑖
𝜕𝑞𝑢,𝑗

]

𝑞̇𝑢,𝑗𝑞
(3)
𝑢,𝑘 +

𝜕ℎ𝑖
𝜕𝑞𝑢,𝑗

𝑞𝑢,𝑗 +⋯ + 𝜕
𝜕𝑞𝑢,𝑘

[

𝜕ℎ𝑖
𝜕𝑞𝑢,𝑗

]

𝑞(3)𝑢,𝑗𝑞
(3)
𝑢,𝑘

+
𝜕ℎ𝑖
𝜕𝑞𝑢,𝑗

𝑞(4)𝑢,𝑗

)

,

(B.7)
which shows that all states can be expressed in terms of the outputs and
its derivatives. For convenience we repeat the dynamics of the secondary
subsystem

d
d𝑡
𝜕𝑎
𝜕𝑞̇𝑎𝑖

−
𝜕𝑎
𝜕𝑞𝑎𝑖

+ 𝜕
𝜕𝑞𝑎𝑖

= 𝑢𝑎𝑖(𝑡), 𝑖 = 1,… , 𝑛𝑎. (B.8)

Clearly, by making the substitutions (B.5)–(B.7) and (B.8), the input 𝒖𝑎 can
be written in terms of the outputs and its derivatives, which completes the
proof. ■

B.2 On the Acceleration and Jerk Signals of the
Unactuated Subsystem

Many the presented concepts rely on the availability of the acceleration (and
jerk) of the non-actuated subsystem Σ𝑢. This section discusses the drawbacks
and challenges connected with providing these signals. Considering the class
of EL systems specified in Section 5.1, we can split the equations of motions
(5.1) into (5.65) and (5.66). Knowing that

d
d𝑡

[

𝜕𝑢
𝜕𝒒̇𝑢

]

=
[

𝜕2𝑢
𝜕𝒒̇2𝑢

]

𝒒̈𝑢 +
[

𝜕2𝑢
𝜕𝒒𝑢𝜕𝒒̇𝑢

]

𝒒̇𝑢, (B.9)

we can make the substitution (5.65) and (B.9) to obtain

𝒒̈𝑢 =
[

𝜕2𝑢
𝜕𝒒̇2𝑢

]−1
𝜸(𝒒, 𝒒̇),

𝛾 =
{

𝜕𝑢
𝜕𝒒𝑢

+
𝜕𝑎
𝜕𝒒𝑢

−
[

𝜕2𝑢
𝜕𝒒𝑢𝜕𝒒̇𝑢

]

𝒒̇𝑢 +′
𝑢

}

,

(B.10)

where the invertibility of the inertia matrix is ensured by Assumption 5.1.1.
Deriving (B.10) with respect to time gives

𝒒(3)𝑢 =
[

𝜕2𝑢
𝜕𝒒̇2𝑢

]−1
𝜸̇(𝒒, 𝒒̇) + d

d𝑡

[

𝜕2𝑢
𝜕𝒒̇2𝑢

]−1
𝜸(𝒒, 𝒒̇). (B.11)

From (B.10) and (B.11) it is clear that computing the acceleration and jerk
signal requires only knowledge of (𝒒, 𝒒̇) and ′

𝑢.11: Notice that making the substitution
(B.10) and (B.11) removes the accelera-
tion dependency of the RHS expression of
(B.11).

Given that the inertia matrix 𝜕2𝑢∕𝜕𝒒̇2𝑢 is at least twice continuously dif-
ferentiable and given that 𝒒𝑢 is bounded, the tensors 𝐷𝒒𝑢 (𝜕2𝑢∕𝜕𝒒̇2𝑢) and
𝐷2
𝒒𝑢
(𝜕2𝑢∕𝜕𝒒̇2𝑢) are bounded. In addition, the minimum singular value of
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𝜕2𝑢∕𝜕𝒒̇2𝑢 is bounded away from zero. Further, given that the potential en-
ergy (𝒒) is twice continuously differentiable and suppose that 𝑢, ̇𝑢 are
bounded, then 𝒒̈𝑢, 𝒒(3)𝑢 are continuous functions of 𝒒, 𝒒̇ and, according to the
boundedness theorem, bounded for bounded 𝒒, 𝒒̇.

It is worth remarking that 𝒒(3)𝑢 grows unbounded for external disturbance
signals ′

𝑢 approaching a step-like time behavior. More precisely, if ̇𝑢 grows
unbounded so will 𝒒(3)𝑢 . Thus, in situations where Σ𝑢 is subject to harsh impacts
the feedback of the jerk signals easily causes input saturation. This aspect is
of particular importance for robots with low natural frequencies 𝜔𝑖 since the
jerk feedback contained in ̈̄𝒖𝑖 is scaled by 𝜔2

𝑖 . This matter is analyzed in detail
in Chapter 9.

Remark B.2.1 On most robotic systems, only (angular) positions are di-
rectly measured through sensors. Velocity signals are usually computed via
a derivative filters. For DLR David, e.g., we employ a standard fourth order
derivative filter with a cut-off frequency at 80Hz to obtain motor and link
velocity signals. Using these position and velocity signals allows the compu-
tation of the link acceleration and jerk signals via (B.10) and (B.11). At the
DLR, we utilize this method for implementing the ESP controllers [86, 92,
94, 114] [86]: Keppler et al. (2018), “Elastic struc-

ture preserving (ESP) control for compli-
antly actuated robots”
[92]: Keppler et al. (2018), “Elastic struc-
ture preserving impedance (ESPi) control
for compliantly actuated robots”
[94]: Keppler et al. (2018), “Visco-elastic
structure preserving impedance (VESPi)
control for compliantly actuated robots”
[114]: Meng et al. (2021), “Elastic struc-
ture preserving impedance control of bidi-
rectional antagonistic variable stiffness ac-
tuation”

on David, Bert and C-Runner. Concerning the implementation of
ESPi controllers, we improve the fidelity of these calculations by employing
a momentum based observer [34] to estimate the external torques, 𝑢, and
their time-derivatives. This aspect is critical for the following reason. The
equilibrium position of Σ is determined by the interplay of 𝑢 and the im-
plemented link-side stiffness 𝑝𝑢. The implementation of a link-side spring,
however, requires the feedback of the terms 𝑝𝑢𝒒̃ and 𝑝𝑢 ̈̃𝒒. This fact is
particularly obvious for ASRs with linear elastic elements as discussed in
Section B.5. Thus, the fidelity of the link acceleration signals affects the
equilibrium of the closed-loop system.
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𝐷𝜶(𝒙) =
𝜕𝛼𝑖
𝜕𝑥𝑗

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝒒𝑢
𝜕𝒒𝑢

𝜕𝒒𝑢
𝜕𝒒𝑎

𝜕𝒒𝑢
𝜕𝒒̇𝑢

𝜕𝒒𝑢
𝜕𝒒̇𝑎

𝜕𝒒𝑢
𝜕𝑡

𝜕𝝍
𝜕𝒒𝑢

𝜕𝝍
𝜕𝒒𝑎

𝜕𝝍
𝜕𝒒̇𝑢

𝜕𝝍
𝜕𝒒̇𝑎

𝜕𝝍
𝜕𝑡

𝜕𝒒̇𝑢
𝜕𝒒𝑢

𝜕𝒒̇𝑢
𝜕𝒒𝑎

𝜕𝒒̇𝑢
𝜕𝒒̇𝑢

𝜕𝒒̇𝑢
𝜕𝒒̇𝑎

𝜕𝒒̇𝑢
𝜕𝑡

𝜕𝝍̇
𝜕𝒒𝑢

𝜕𝝍̇
𝜕𝒒𝑎

𝜕𝝍̇
𝜕𝒒̇𝑢

𝜕𝝍̇
𝜕𝒒̇𝑎

𝜕𝝍̇
𝜕𝑡

𝜕𝑡
𝜕𝒒𝑢

𝜕𝑡
𝜕𝒒𝑎

𝜕𝑡
𝜕𝒒̇𝑢

𝜕𝑡
𝜕𝒒̇𝑢

𝜕𝑡
𝜕𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

|𝐷𝜶(𝒙)| =

|

|

|

|

|

|

|

|

𝑰 𝟎 𝟎
𝜕𝝍
𝜕𝒒𝑢

𝜕𝝍
𝜕𝒒𝑎

𝟎
𝟎 𝟎 1

|

|

|

|

|

|

|

|

|

|

|

|

|

𝑰 𝟎
𝜕𝝍
𝜕𝒒𝑢

𝜕𝝍
𝜕𝒒𝑎

|

|

|

|

|

=
|

|

|

|

|

𝑰 𝟎
𝜕𝝍
𝜕𝒒𝑎

𝜕𝝍
𝜕𝒒𝑢

|

|

|

|

|

2

=
|

|

|

|

𝜕𝝍
𝜕𝒒𝑎

|

|

|

|

2
(B.12)

where the last equality can be shown through repeated cofactor expansion
along the first row. Proceeding analogously to the steps above, and further
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considering that 𝜕𝒒̇𝑎𝜹 = 𝟎, we obtain

𝐷𝜷(𝒙) =
𝜕𝛽𝑖
𝜕𝑥𝑗

=
[

𝑨 𝑩
𝑪 𝑫

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝒒𝑢
𝜕𝒒𝑢

𝜕𝒒𝑢
𝜕𝒒𝑎

𝜕𝒒𝑢
𝜕𝒒̇𝑢

𝜕𝒒𝑢
𝜕𝒒̇𝑎

𝜕𝒒𝑢
𝜕𝑡

𝜕𝒒𝑢 (𝝍 − 𝒖̄𝑢)
𝜕𝝍
𝜕𝒒𝑎

𝜕𝒒̇𝑢 (𝝍 − 𝒖̄𝑢)
𝜕𝝍
𝜕𝒒̇𝑎

𝜕𝑡(𝝍 − 𝒖̄𝑢)
𝜕𝒒̇𝑢
𝜕𝒒𝑢

𝜕𝒒̇𝑢
𝜕𝒒𝑎

𝜕𝒒̇𝑢
𝜕𝒒̇𝑢

𝜕𝒒̇𝑢
𝜕𝒒̇𝑎

𝜕𝒒̇𝑢
𝜕𝑡

𝜕𝒒𝑢 (𝝍̇ − 𝜹) 𝜕𝒒𝑎 (𝝍̇ − 𝜹) 𝜕𝒒̇𝑢 (𝝍̇ − 𝜹) 𝜕𝒒̇𝑎 (𝝍̇ − 𝜹) 𝜕𝑡(𝝍̇ − 𝜹)
𝜕𝑡
𝜕𝒒𝑢

𝜕𝑡
𝜕𝒒𝑎

𝜕𝑡
𝜕𝒒̇𝑢

𝜕𝑡
𝜕𝒒̇𝑢

𝜕𝑡
𝜕𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑰 𝟎 𝜕𝒒𝑢
𝜕𝒒̇𝑢

𝟎 𝟎

𝜕𝒒𝑢 (𝝍 − 𝒖̄𝑢)
𝜕𝝍
𝜕𝒒𝑎

𝜕𝒒̇𝑢 (𝝍 − 𝒖̄𝑢) 𝟎 𝜕𝑡(𝝍 − 𝒖̄𝑢)

𝟎 𝟎 𝑰 𝟎 𝟎
𝜕𝒒𝑢 (𝝍̇ − 𝜹) 𝜕𝒒𝑎 (𝝍̇ − 𝜹) 𝜕𝒒̇𝑢 (𝝍̇ − 𝜹) 𝜕𝒒̇𝑎 (𝝍̇ − 𝜹) 𝜕𝑡(𝝍̇ − 𝜹)

𝟎 𝟎 𝟎 𝟎 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

According to Schur’s determinant identity, we have that
|𝐷𝜷(𝒙)| = |𝑫| |𝑨 − 𝑩𝑫−1𝑪|,

where

𝑫−1 =
⎡

⎢

⎢

⎣

𝜕𝝍
𝜕𝒒𝑎

−1
− 𝜕𝝍
𝜕𝒒𝑎
𝜕𝑡(𝝍̇ − 𝜹)

𝟎 1

⎤

⎥

⎥

⎦

, (B.13)

Using (B.13), it is straightforward to show that 𝑩𝑫−1𝑪 = 𝟎 such that
|𝐷𝜷(𝒙)| = |𝑫| |𝑨|,

where
|𝑫| = |𝜕𝒒̇𝑎 (𝝍̇ − 𝜹)| |1| = |𝜕𝒒𝑎𝝍|,

and after repeated cofactor expansion along the first row, we get after 𝑛𝑢
steps

|𝜕𝒒̇𝑎 (𝝍̇ − 𝜹)| |1| = |𝜕𝒒𝑎𝝍|.

Repeated cofactor expansion along the first row of the remaining matrix gives
after 𝑛𝑢 steps

|𝑨| =
|

|

|

|

|

|

|

|

𝑰 𝟎 𝟎
𝜕𝒒𝑢 (𝝍 − 𝒖̄𝑢)

𝜕𝝍
𝜕𝒒𝑎

𝟎

𝟎 𝟎 𝑰

|

|

|

|

|

|

|

|

=
|

|

|

|

|

𝑰 𝟎
𝜕𝒒𝑢 (𝝍 − 𝒖̄𝑢)

𝜕𝝍
𝜕𝒒𝑎

|

|

|

|

|

= 1 ⋅… ⋅ 1
⏟⏞⏟⏞⏟

𝑛𝑢

⋅
|

|

|

|

𝜕𝝍
𝜕𝒒𝑎

|

|

|

|

=
|

|

|

|

𝜕𝝍
𝜕𝒒𝑎

|

|

|

|

.

|𝐷𝜷(𝒙)| = |𝑫| |𝑨| =
|

|

|

|

𝜕𝝍
𝜕𝒒𝑎

|

|

|

|

2
. (B.14)
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B.4 Proof ad Impedance Control

The closed-loop dynamics is

Σ∗ ∶ d
d𝑡
𝜕
𝜕 ̇̄𝒒

− 𝜕
𝜕𝒒̄

= −
𝜕2
𝜕𝒒̄

−𝑝(𝒒̄ − 𝒒̄∗) −𝑣 ̇̄𝒒 + ̄′ = −𝜕
∗

𝜕𝒒̄
+ ̄∗

(B.15)
with ∗(𝒒̄) ≜ 2(𝒒̄𝑢 − 𝒒̄𝑎) + 𝑝(𝒒𝑢 − 𝒒∗𝑢), ∗ ≜ −𝑣 ̇̄𝒒 + ̄′. Introducing
∗(𝒒̄, ̇̄𝒒) ≜  (𝒒̄, ̇̄𝒒) − ∗(𝒒̄), we can rewrite

d
d𝑡
𝜕∗

𝜕 ̇̄𝒒
− 𝜕∗

𝜕𝒒̄
= −𝑣 ̇̄𝒒 + ̄′, (B.16)

Using
0(𝒒̄) ≜ ∗(𝒒̄) + 𝒒̄T̄′, (B.17)

then (B.15) becomes
d
d𝑡
𝜕
𝜕 ̇̄𝒒

− 𝜕
𝜕𝒒̄

= −𝜕
0

𝜕𝒒̄
−𝑣 ̇̄𝒒 ≡ d

d𝑡
𝜕0

𝜕 ̇̄𝒒
− 𝜕0

𝜕𝒒̄
= −𝑣 ̇̄𝒒. (B.18)

Let 𝒒̄0 = (𝒒̄0𝑢, 𝒒̄
0
𝑎) be the solution to

𝜕0
𝜕𝒒̄

=
⎡

⎢

⎢

⎣

𝜕0

𝜕𝒒̄𝑢
𝜕0

𝜕𝒒̄𝑎

⎤

⎥

⎥

⎦

=

[ 𝜕∗

𝜕𝒒̄𝑢
− ̄′

𝑢
𝜕∗

𝜕𝒒̄𝑎
− ̄′

𝑎

]

=
⎡

⎢

⎢

⎣

𝜕2
𝜕𝒒̄𝑢

+ 𝜕𝑝
𝜕𝒒̄ −′

𝑢
𝜕2
𝜕𝒒̄𝑎

⎤

⎥

⎥

⎦

= 0. (B.19)

The last 𝑛𝑎 rows of (B.19) imply that
𝜕2
𝜕𝒒̄𝑎

= 𝟎 ⇐⇒
𝜕2
𝜕𝒒̄𝑢

= 𝟎 ⇐⇒
𝜕𝑝
𝜕𝒒̄𝑢

−′
𝑢 = 𝑝𝑢

(

𝒒̄𝑢 − 𝒒̄∗𝑢
)

−′
𝑢

⇐⇒ 𝑝𝑢
(

𝒒̄𝑢 − 𝒒̄∗𝑢
)

= ′
𝑢

⇐⇒ 𝒒̄𝑢 = 𝒒̄∗𝑢 +−1
𝑝𝑢

′
𝑢 = 𝒒̄

0
𝑢 = 𝒒̄

0
𝑎

(B.20)

Introduce deflection from equilibrium position 𝒒̄0

𝒒̃ ≜ 𝒒̄ − 𝒒̄0 (B.21)
and applying (B.21) to (B.18) yields

d
d𝑡
𝜕0

𝜕 ̇̃𝒒
− 𝜕0

𝜕𝒒̃
= −𝑣 ̇̃𝒒, (B.22)

where 0 is evaluated as a function of (𝒒̃, ̇̃𝒒) through (B.8), i.e. 0(𝒒̄(𝒒̃), ̇̄𝒒(𝒒̄)
).

Introducing the Lagrangian function
̃
(

𝒒̃, ̇̃𝒒
)

= ̃ (𝒒̃, ̇̃𝒒) − ̃(𝒒̃) = 0(𝒒̄(𝒒̃), ̇̄𝒒(𝒒̃)
)

, (B.23)
where the new potential function

̃(𝒒̃) = 0(𝒒̄(𝒒̃)
)

= 0(𝒒̃ + 𝒒0), (B.24)
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is positive definite w.r.t. 𝒒̃. Considering Corollary 6.1.2, it is clear that
̃(𝒒̃, ̇̃𝒒) ≜

∑

𝑖 ̇̃𝑞𝑖
𝜕̃
𝜕 ̇̃𝑞𝑖

− ̃ qualifies as the function 𝑉 since

d
d𝑡
̃ = − ̇̃𝒒T𝑣 ̇̃𝒒. (B.25)

B.5 On the Smoothness Condition on the Virtual
Inputs

It is important to notice that the challenge regarding link-side damping in-
jection does not arise from limitations of the ESPi framework, we used for
analysis here. In fact, these limitations are a manifestation of the mechanical
bandwidth limitation of an elastic joint [153]. To support this statement, let
us consider one of the most straightforward ways to implement a link-side
damping term on an flexible joint robot satisfying the Spong model. Let 𝒖̄𝑢 be
the desired elastic joint torque and 𝒆 ≜ 𝝍 − 𝒖̄𝑢 the joint torque error. Then,
choosing 𝒖̄𝑢 = 𝑲𝑣𝑢𝒒̇𝑢 the joint torque tracking controller [140]

𝒖 = 𝛀−2 ̈̄𝒖𝑢 + 𝒖̄𝑢 −𝛀−2 (𝑫𝑒𝒆̇ +𝑲𝑒𝒆
)

+ 𝑩𝒒̈, (B.26)
achieves global asymptotic convergence 𝝍 → 𝒖̄𝑢 for 𝑡 → ∞ and a link-side
damping behavior. Notice that (B.26) reveals the feedback necessity of the
link jerks.2. The joint torque bandwidth limitations of a soft actuators requires2: Interestingly, the jerk signal enters the

controller through the same term, 𝛀−2 ̈̄𝒖𝑢,
as is the case for the ESP based controllers
reported in Chapter 9.

that the desired joint torque is sufficiently smooth such that 𝒖 is bounded,
which is equivalent to requiring that the virtual input 𝒖̄𝑢 and ̈̄𝒖𝑢 are bounded.
In conclusion, the smoothness constraint on the virtual input arises naturally
from the physical limitations of an ASR.

B.6 The Input Transformation for Monoarticular
ASRs

In the following, we shall evaluate the components of the input transformation
(5.155) in detail. Using

[

𝒀
]

𝑞 =
𝜕2𝑎
𝜕𝒒𝑎𝜕𝒒𝑢

= − 𝜕2

𝜕𝒒𝑎𝜕𝒒𝑢

[

𝑔 + 𝑒
]

= − 𝜕
𝜕𝒒𝑎

[

𝜕𝑒
𝜕𝝋

𝜕𝝋
𝜕𝒒𝑢

]

=
𝜕2𝑒
𝜕𝝋2

,

(B.27)
[

𝒀̄
]

𝑞 =
𝜕2̄𝑎
𝜕𝒒̄𝑎𝜕𝒒̄𝑢

= − 𝜕2

𝜕𝒒̄𝑎𝜕𝒒̄𝑢

[

𝑔 + ̄𝑒
]

= − 𝜕
𝜕𝒒̄𝑎

[

𝜕̄𝑒
𝜕𝝋̄

𝜕𝝋̄
𝜕𝒒̄𝑢

]

=
𝜕2̄𝑒
𝜕𝝋̄2

,

(B.28)
[

𝑿
]

𝑞 =
𝜕2𝑎
𝜕𝒒2𝑢

= − 𝜕2

𝜕𝒒2𝑢

[

𝑔 + 𝑒
]

= −
𝜕2𝑔
𝜕𝒒2𝑢

−
𝜕2𝑒
𝜕𝝋2

, (B.29)

[

𝑿̄
]

𝑞 =
𝜕2̄𝑎
𝜕𝒒̄2𝑢

= − 𝜕2

𝜕𝒒̄2𝑢

[

𝑔 + ̄𝑒
]

= −
𝜕2𝑔
𝜕𝒒̄2𝑢

−
𝜕2̄𝑒
𝜕𝝋̄2

, (B.30)
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and
𝜕
𝜕𝑡

[

𝜕̄
𝜕𝒒̄𝑢

]

𝑞
= 𝜕
𝜕𝑡

[

𝜕̄𝑒
𝜕𝝋̄

𝜕𝝋̄
𝜕𝒒̄𝑢

]

= − 𝜕
𝜕𝑡
𝝍
(

𝒒̄𝑎 − 𝒒̄𝑢 + 𝒒∗𝑢(𝑡)
)

=
𝜕𝝍
𝜕𝝋̄

𝜕𝝋̄
𝜕𝑡
,

=
𝜕𝝍
𝜕𝝋̄

𝜕𝝋̄
𝜕𝒒∗𝑢

𝜕𝒒∗𝑢
𝜕𝑡

=
𝜕2𝝍
𝜕𝝋̄2

𝒒̇∗𝑢 =
𝜕2̄𝑒
𝜕𝝋̄2

𝒒̇∗𝑢 ,
[

𝜕2𝑎
𝜕𝒒̇2𝑎

]

𝑞
=𝑩,

[

𝜕2̄𝑎
𝜕 ̇̄𝒒2𝑎

]

𝑞
=𝑩,

[

𝜕2𝑎
𝜕𝒒𝑎𝜕𝒒̇𝑎

]

𝑞
=𝟎,

we get for the components of input transformation (5.155)

𝑹̄ =𝑨̄−1

𝝁̄1 =
[

𝜕2𝑒
𝜕𝝋2

]−1

𝑞

{[

−
𝜕2̄𝑒
𝜕𝝋̄2

+
𝜕2𝑒
𝜕𝝋2

]

̇̄𝒒𝑢 +
𝜕2̄𝑒
𝜕𝝋̄2

𝒒̇∗𝑢 + ̇̄𝒖𝑢
}

=
[

𝜕2𝑒
𝜕𝝋2

]−1

𝑞

{

𝜕2𝑒
𝜕𝝋2

̇̄𝒒𝑢 −
𝜕2̄𝑒
𝜕𝝋̄2

̇̃𝒒𝑢 + ̇̄𝒖𝑢
}

= ̇̄𝒒𝑢 +
[

𝜕2𝑒
𝜕𝝋2

]−1

𝑞

{

̇̄𝒖𝑢 −
𝜕2̄𝑒
𝜕𝝋̄2

̇̄𝒒𝑢
}

=
(

𝑰 − 𝑨̄) ̇̄𝒒𝑢 + 𝒒̇∗𝑢 +
[

𝜕2𝑒
𝜕𝝋2

]−1

𝑞
̇̄𝒖𝑢,

(B.31)

𝝁̄2 =𝑩
(

𝑨̄ ̇̄𝒒𝑎 + 𝝁̇1
)

, (B.32)
where the first equality is due to 𝑩 and 𝑨̄ being diagonal. Knowing that

[

𝜕𝑎
𝜕𝒒𝑎

]

𝑞
= −

[

𝜕𝑎
𝜕𝒒𝑎

]

𝑞
= −

[

𝜕𝑒
𝜕𝝋

𝜕𝝋
𝜕𝒒𝑎

]

𝑞
= −𝝍(𝝋), (B.33)

[

𝜕𝑎
𝜕𝒒̄𝑎

]

𝑞
= −

[

𝜕̄𝑎
𝜕𝒒̄𝑎

]

𝑞
= −

[

𝜕̄𝑒
𝜕𝝋

𝜕𝝋
𝜕𝒒̄𝑎

]

𝑞
= −𝝍(𝝋̄), (B.34)

we obtain for the final control law
𝒖𝑎 = 𝝁̄2 + 𝝍(𝝋) + 𝑹̄

−1[𝒖̄𝑎 − 𝝍(𝝋̄)
]

. (B.35)

B.6.1 Important Relations and Definitions

The original inertia matrix  and Coriolis/centrifugal matrix  transformed
into the deflection space are of the form

𝑧(𝒒𝑢) =
[

𝑴(𝒒𝑢) + 𝑩 𝑩
𝑩 𝑩

]

, 𝑧(𝒒𝑢, 𝒒̇𝑢) =
[

𝑪(𝒒𝑢, 𝒒̇𝑢) 𝟎
𝟎 𝟎

]
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Their transformations into the task space are given by

𝑥 =𝑻 −T
𝑥 𝑻 −T

𝑧

[

𝑴 𝟎
𝟎 𝑩

]

𝑻 −1
𝑧 𝑻

−1
𝑥

=
[

𝑱−T(𝒒𝑢)
(

𝑴(𝒒𝑢) + 𝑩
)

𝑱−1(𝒒𝑢) 𝑱−T(𝒒𝑢)𝑩
𝑩𝑱−1(𝒒𝑢) 𝑩

]

and

𝑥 ≜

[

𝑱−T(𝒒𝑢)
(

𝑴(𝒒𝑢) + 𝑩
)

𝑱̇−1(𝒒𝑢) + 𝑱−T(𝒒𝑢)𝑪(𝒒𝑢, 𝒒̇𝑢)𝑱−1(𝒒𝑢) 𝟎
𝑩𝑱̇−1 𝟎

]

.

In these expressions we can identify the transformed link-side intertia and
Coriolis/centrifugal matrices

𝑱−T(𝒒𝑢)𝑴(𝒒𝑢)𝑱−1(𝒒𝑢) (B.36)
and

𝑱−T(𝒒𝑢)𝑴(𝒒𝑢)𝑱̇
−1(𝒒𝑢) + 𝑱−T(𝒒𝑢)𝑪(𝒒𝑢, 𝒒̇𝑢)𝑱−1(𝒒𝑢). (B.37)

The original and transformed generalized external forces are related as fol-
lows

̄′ =
[

𝑰 𝟎
𝟎 𝑨−1

]

′. (B.38)

Transformation and Input Matrices

𝑻 𝑧 =
[

𝑰 𝟎
−𝑰 𝑰

]

;

𝑻 𝑥 =
[

𝑱 (𝒒𝑢) 𝟎
𝟎 𝑰

]

;

𝑧 =
[

𝟎 𝟎
𝟎 𝑰

]

;

𝑧̃ = 𝑻 −T
𝑧 =

[

𝑰 𝑰
𝟎 𝑰

]

;

𝑥 = 𝑻 −T
𝑥 𝑻 −T

𝑧 =
[

𝑱−T(𝒒𝑢) 𝑱−T(𝒒𝑢)
𝟎 𝑰

]

;

𝑻 −1
𝑧 =

[

𝑰 𝟎
𝑰 𝑰

]

;

𝑻 −1
𝑥 =

[

𝑱−1(𝒒𝑢) 𝟎
𝟎 𝑰

]

;

−1
𝑧̃ =

[

𝑰 −𝑰
𝟎 𝑰

]

;

−1
𝑥 =

[

𝑱T(𝒒𝑢) −𝑰
𝟎 𝑰

]

Gain Matrices

Expression (7.67) can be expanded as

𝑣(𝒒𝑢) =𝑻 −T
𝑥 𝑻 −T

𝑧 𝑻 T
𝑥

[

𝑣,1 𝟎
𝟎 𝑣,2

]

𝑻 𝑥𝑻 −1
𝑧 𝑻

−1
𝑥

=
[

𝑣,1 + 𝑱−T(𝒒𝑢)𝑣,2𝑱−1(𝒒𝑢) 𝑱−T(𝒒𝑢)𝑣,2
𝑣,2𝑱−1(𝒒𝑢) 𝑣,2

]

Note the structural analogy to how the original inertia matrix transforms into
task space, cf. 𝑥. Note that we defined the gain matrix 𝑣,1 for the rigid
coordinates already in task space.
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This chapter reports several fundamental stability and passivity results
that are used in this work. It is important to be familiar with the presented
definitions to follow the material developed in this work.





C
Stability and Passivity Fundamentals

C.1 Stability in the Sense of Lyapunov

This section reports several fundamental results regarding the stability of
equilibrium points which are used throughout this work. In the following,
stability is treated in the sense of Lyapunov. An equilibrium point is considered
stable if all solutions starting in a neighborhood stay nearby. It is considered
asymptotically stable if all solutions starting in a neighborhood not only remain
in a neighborhood, but gravitate to the equilibrium point as time approaches
infinity. These concepts are summarized formally in the definition below.

First, let us consider the autonomous system
𝒙̇ = 𝒇 (𝒙), (C.1)

where 𝑓 ∶ 𝐷 → ℝ𝑛 is a locally Lipschitz map from a domain 𝐷 ⊂ ℝ𝑛 into
ℝ𝑛. The following theorems are stated for the case when the equilibrium point
is at the origin of ℝ𝑛. This is no loss of generality as we can always introduce
a change of coordinates that shifts any equilibrium point to the origin.

It is often difficult and time consuming to find Lyapunov functions with
negative definite time derivatives. The following theorems by J.P La’Salle
[104], E. A. Barbashin [12] and N. N. Krasovski [100] allow to prove asymp- [104]: LaSalle (1960), “Some extensions of

Lyapunov’s second method”
[12]: Barbashin et al. (1961), On stability
of motion in the large
[100]: Krasovskii (1963), “Problems of the
theory of stability of motion”

totic stability, local as well as global, using 𝑉 (𝒙) whose time derivative is
only smaller than or equal to zero. Such a situation is commonly found when
𝑉 is derived from physical energy considerations. The relaxation concerning
the properties 𝑉 is compensated by a new hypothesis, namely that the set 𝐸
where 𝑉̇ (𝒙) = 0 contains no complete trajectory.

Theorem C.1.1 (LaSalle’s Invariance Principle [95, p. 128]) Let Ω ⊂ 𝐷 ⊂
ℝ𝑛 be a compactly positively invariant set with respect to the system dynam-
ics (C.1). Let 𝑉 ∶ 𝐷 → ℝ be a continuously differentiable function such
that 𝑉̇ (𝒙(𝑡)) ≤ 0 in Ω. Let 𝐸 ⊂ Ω be the set of all points where 𝑉̇ (𝒙) = 0.
Let 𝑀 ⊂ 𝐸 be the largest invariant set in 𝐸. Then every solution starting
in Ω approaches 𝑀 as 𝑡→ ∞.

Notice that the inclusion of the sets in LaSalle’s Theorem is: 𝑀 ⊂ 𝐸 ⊂ Ω ⊂
𝐷 ⊂ ℝ𝑛.

Theorem C.1.2 (Barbashin’s Theorem [95, p. 128]) Let 𝒙 = 𝟎 be an equi-
librium point for (C.1). Let 𝑉 ∶ 𝐷 → ℝ be a continuously differentiable
positive definite function on a domain 𝐷 ⊂ ℝ𝑛 containing the origin such
that 𝑉̇ (𝒙(𝑡)) ≤ 0 in 𝐷. Let 𝐸 =

{

𝒙 ∈ 𝐷∶ 𝑉̇ (𝒙) = 0
}

and suppose that no
other solution can stay in 𝐸, other than the trivial solution 𝒙(𝑡) ≡ 𝟎. Then
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the origin is locally asymptotically stable. If, in addition, 𝑉 (𝒙) is radially
unbounded then the origin is globally asymptotically stable.

Theorem C.1.3 (Krasovskii’s Theorem [95, p. 129]) Let 𝒙 = 𝟎 be an equi-
librium point for (C.1). Let 𝑉 ∶ ℝ𝑛 → ℝ be a continuously differentiable
radially unbounded, positive definite function on a domain𝐷 ⊂ ℝ𝑛 contain-
ing the origin such that 𝑉̇ (𝒙(𝑡)) ≤ 0 in 𝐷. Let 𝐸 =

{

𝒙 ∈ ℝ𝑛 ∶ 𝑉̇ (𝒙) = 0
}

and suppose that no other solution can stay in 𝐸, other than the trivial
solution 𝒙(𝑡) ≡ 𝟎. Then the origin is locally asymptotically stable.

Consider the nonautonomous system
𝒙̇ = 𝒇 (𝒙, 𝑡), (C.2)

where 𝒙 ∈ ℝ𝑛, 𝑡 ∈ ℝ is the time and 𝒇 is a continuous function 𝒇 ∶ 𝐼 ×Ω →
ℝ𝑛, where 𝐼 = [𝑡0,∞) for some 𝑡0 ∈ ℝ and Ω is an open connected set in ℝ𝑛,
containing the origin. We assume that 𝒇 (𝑡, 𝟎) = 𝟎 ∀𝑡 ∈ 𝐼 , so that the origin
is an equilibrium point for the differential equation (C.2).

Definition C.1.1 The equilibrium point 𝒙 = 𝟎 of (C.2) is

• stable if, for each 𝜖 > 0 there exists a 𝛿(𝜖, 𝑡0) > 0 such that

‖𝒙(𝑡0)‖ < 𝛿 ⇐⇒ ‖𝒙(𝑡)‖ < 0, for all𝑡 ≥ 𝑡0 ≥ 0. (C.3)
• uniformly stable, if for each 𝜖, there is a 𝛿(𝜖) > 0 such that (C.3) is

satisfied.
• unstable if not stable
• asymptotically stable if is stable and there exists a positive constant
𝑐 = 𝑐(𝑡0) such that 𝒙(𝑡) → 0 as 𝑡 → ∞, for all ‖𝒙(𝑡0)‖ < 𝑐.

• globally uniformly stable if is uniformly stable and there is a positive
constant 𝑐, independent of 𝑡0, such that for all ‖𝒙(𝑡0)‖, 𝒙(𝑡) → 0 for
𝑡 → ∞, uniformly in 𝑡0, that is, for each 𝜂 > 0, there is a 𝑇 = 𝑇 (𝜂) >
0 such that

The following result by Matrosov deals with the general class of nonau-
tonmous systems. The crucial condition that the set 𝐸 where 𝑉̇ (𝒙, 𝑡) = 0
contains no complete semi-trajectory can longer be used [155]. This issue is[155]: Rouche et al. (1977), Stability Theory

by Liapunov’s Direct Method remedied through the introduction of a second auxiliary function defined in
some appropriate neighborhood of 𝑀 and possessing properties guaranteeing
that the solutions cannot stay forever close to 𝐸.

Theorem C.1.4 (Matrosov’s theorem [155, p. 62]) Let there there exist two
1 functions 𝑉 ∶ 𝐼×Ω → ℝ,𝑊 ∶ 𝐼×Ω → ℝ, a 0 function 𝑉 ∗ ∶ Ω → ℝ,
three functions 𝑎, 𝑏, 𝑐 of class  and two constants 𝑆 > 0 and 𝑇 > 0 such
that, for every (𝑡, 𝑥) ∈ 𝐼 × Ω

(i) 𝑎(‖𝒙‖) ≤ 𝑉 (𝑡,𝒙) ≤ 𝑏(‖𝒙‖);
(ii) 𝑉̇ (𝑡,𝒙) ≤ 𝑉 ∗(𝒙) ≤ 0; 𝐸 ≜ {𝒙 ∈ Ω ∶ 𝑉 ∗(𝒙) = 0};

(iii) |𝑊 (𝑡,𝒙)| < 𝑆;
(iv) max(𝑑(𝒙, 𝐸), |𝑊̇ (𝑡,𝒙)|) ≥ 𝑐(‖𝒙‖);
(v) ‖𝒇 (𝑡,𝒙)| < 𝑇 ;
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choosing 𝛼 > 0 such that 𝐵̄𝛼 ⊂ Ω, let us put for every 𝑡 ∈ 𝐼

𝑉 −1
𝑡,𝛼 = 𝒙 ∈ Ω ∶ 𝑉 (𝑡,𝒙) ≤ 𝑎(𝛼). (C.4)

Then

(i) for any 𝑡0 ∈ 𝐼 and any 𝒙0 ∈ 𝑉 −1
𝑡0,𝛼

, any solution 𝒙(𝑡) of (C.2), passing
through (𝒙0, 𝑡0) ∈ 𝐼 × Ω, tends to zero uniformly in 𝑡0 and 𝒙0, as
𝑡→ ∞.

(ii) the origin is uniformly asymptotically stable.

Above, 𝑑(𝒙, 𝐸) denotes the minimum distance of point 𝒙 to set
𝐸, i.e. inf

𝑦∈𝐸
(‖𝒙 − 𝒚‖). In order to facilitate the verification of Matrosov’s con-

dition (iv), we apply the following lemma by Paden and Panja:

Lemma C.1.5 ([144]) Condition (iv) of Matrosov’s theorem is satisfied if
conditions below are satisfied.

(iv.a) 𝑊̇ (𝒙, 𝑡) is continuous in both arguments and depends on time in the
following way. 𝑊̇ (𝒙, 𝑡) = 𝑔(𝒙, 𝛽(𝑡)) where 𝑔 is continuous in both of
its arguments. 𝛽(𝑡) is also continuous and its image lies in a bounded
set 𝐾1. (For simplicity, we assume that 𝑊̇ (𝒙, 𝑡) depends on time
continuously through a bounded function.)

(iv.b) There exists a class  function, 𝑘, such that |𝑊̇ (𝒙, 𝑡)| ≥ 𝑘(‖𝒙‖)∀𝒙 ∈
𝐸 and 𝑡 ≥ 𝑡0.

C.2 Definitions

Definition C.2.1 A continuous function 𝑉 ∶ ℝ𝑛 → ℝ+ is said to be
positive definite if

𝑉 (𝟎) = 0, 𝑉 (𝒙) ≠ 𝟎 for 𝒙 ≠ 𝟎. (C.5)
If 𝑉 satisfies the weaker condition

𝑉 (𝟎) = 0, 𝑉 (𝒙) ≥ 0,∀𝒙 ≠ 𝟎, (C.6)
it is said to be positive semidefinite. A function 𝑉 is said to be
negative definite if−𝑉 is positive definite. A time-varying function 𝑉 ∶ ℝ𝑛×
ℝ+ → ℝ is said to be positive definite if

𝑉 (𝒙, 𝑡) ≥ 𝑊 (𝒙), (C.7)
for some positive definite function 𝑊 ∶ ℝ𝑛 → ℝ+.

Definition C.2.2 A continuous function 𝑉 ∶ ℝ𝑛 ×ℝ+ → ℝ is decrescent if
for some 𝜖 > 0 and some continuous, strictly increasing function 𝛽 ∶ ℝ+ →
ℝ,

𝑉 (𝒙, 𝑡) ≤ 𝛽(||𝒙||), ∀𝒙 ∈ 𝐵𝜖 , ∀𝑡 ≥ 0. (C.8)
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Definition C.2.3 A set 𝑀 ⊂ ℝ𝑛 is said to be:

• an invariant set with respect to (C.2) if:
𝒙(0) ∈𝑀 ⇐⇒ 𝒙(𝑡) ∈𝑀,∀𝑡 ∈ ℜ

• a positively invariant set with respect to (C.2) if:
𝒙(0) ∈𝑀 ⇐⇒ 𝒙(𝑡) ∈𝑀,∀𝑡 ≥ 0

C.3 Passivity

Let us consider state-space systems of the form:

Σ∶

{

𝒙̇ = 𝒇 (𝒙, 𝒚), 𝒖 ∈ 𝑈
𝒚 = 𝒉(𝒙, 𝒖), 𝒚 ∈ 𝑌

(C.9)

with state 𝒙 ∈ ℝ𝑛, and 𝑈 and 𝑌 are space of dimension 𝑚, respectively 𝑝. On
the combined space 𝑈 × 𝑌 of inputs and outputs and consider a function

𝑠∶ 𝑈 × 𝑌 → ℝ, (C.10)
called the supply rate.

Definition C.3.1 (Dissipativity [191, p. 34]) A state space system Σ is said
to be dissipative with respect to the supply rate 𝑠 if there exists a function
𝑆 ∶ 𝑈 → ℝ+, called the storage function, such that for all initial conditions
𝑥(𝑡0) = 𝑥0 ∈ 𝑈 at any time 𝑡0, and for all allowed input functions 𝑢(.) and
all 𝑡1 ≥ 𝑡0 the following inequality holds

𝑆
(

𝑥(𝑡1)
)

≤ 𝑆
(

𝑥(𝑡0)
)

+ ∫

𝑡1

𝑡0
𝑠
(

𝑢(𝑡), 𝑦(𝑡)
) (C.11)

If (C.11) holds with equality for all 𝑥0, 𝑡1 ≥ 𝑡0, and all 𝑢(⋅), then Σ is
conservative with respect to 𝑠.

The dissipative inequality expresses the fact that the stored energy at any point
in time 𝑡1 of Σ is at most equal to the stored energy at any past time 𝑡0, plus
the total supplied energy during the time elapsed.

Definition C.3.2 (Passivity [191, p. 34]) A system Σ with 𝑈 = 𝑌 = ℝ𝑚 is
passive if it is dissipative with respect to the supply rate 𝑠(𝒖, 𝒚) = 𝒖T𝒚. The
system Σ is called input strictly passive if there exists 𝛿 > 0 such that Σ is
dissipative with respect to 𝑠(𝒖, 𝒚) = 𝒖T𝒚 − 𝛿||𝒖||2. The system Σ is output
strictly passive if there exists 𝜖 > 0 such that Σ is dissipative with respect
to 𝑠(𝒖, 𝒚) = 𝒖T𝒚 − 𝜖||𝒚||2. Finally, Σ is lossless if it is conservative with
respect to 𝑠(𝒖, 𝒚) = 𝒖T𝒚.

The following proposition reports a well-known result concerning the
feedback interconnection of two passive subsystems as depicted in Fig. C.1.
Each subsystem Σ𝑘, 𝑘 = 𝑢, 𝑎, is of the form (C.9).

𝒖1 Σ1

Σ2
𝒖𝑎

𝒆1

𝒚2

𝒚1

𝒆𝑎

+

−

+
+

Figure C.1: Feedback interconnection of
passive systems. Proposition C.3.1 (Invariance of passivity [133, p. 479]) Consider the

input-output system depicted in Fig. C.1. If Σ1 and Σ2 are both passive then
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Σ∶ 𝒖 → 𝒚 is also passive. If furthermore they are OSP then Σ∶ 𝒖 → 𝒚
with 𝒖 = (𝒖1, 𝒖2) and 𝒚 = (𝒚1, 𝒚2) is also OSP.

Definition C.3.3 A state-space system Σ with 𝒚 = 𝒉(𝒙) is zero-state observ-
able, if for all initial conditions 𝒙(𝑡0) ∈ ℝ𝑛, we have that 𝒖(𝑡) ≡ 𝟎, 𝒚(𝑡) ≡
𝟎 ⇐⇒ 𝒙(𝑡) ≡ 𝟎 for 𝑡 ≥ 𝑡0. It is zero-state detectable if 𝒖(𝑡) ≡ 𝟎, 𝒚(𝑡) ≡ 𝟎 for
𝑡 ≥ 𝑡0 ⇐⇒ lim𝑡→∞ 𝒙(𝑡) = 𝟎.

Using this definition allows summarizing one of the main results in [65] as [65]: Hill et al. (1976), “The stability of
nonlinear dissipative systems”follows.

Proposition C.3.2 Let Σ be OSP and zero-state observable with a positive
definite storage function, then the origin of the system is asymptotically
stable. Furthermore, suppose the storage function is radially unbounded,
then the origin is globally asymptotically stable.

Theorem C.3.3 (Theorem 2.2.13 of [191, p. 21]) Let Σ be 𝜖-output strictly
passive, then its has 𝐿2-gain ≤ 1

𝜖 .

Definition C.3.4 (𝐿2-gain [191, p. 199]) A state space system Σ has 𝐿2-
gain≤ 𝛾 if it is dissipative with respect to the supply rate 𝑠(𝒖, 𝒚) =
1
2𝛾

2
||𝒖||2 − 1

2 ||𝒚||
2; that is there exists a storage function satisfying

𝑆
(

𝒙(𝑡1)
)

− 𝑆
(

𝒙(𝑡0)
)

≤ 1
2 ∫

𝑡1

𝑡0

(

𝛾2||𝒖(𝑡)||2 − ||𝒚(𝑡)||2
)

𝑑𝑡. (C.12)

One way to interpret OSP and 𝐿2-gain is as follows. An OSP system is a
passive system for which a small amount of positive feedback does not destroy
the passivity property. The actual amount is quantified by the parameter 𝜖 and,
thus, can be interpreted as some measure of robustness. The relation between
𝜖 and the 𝐿2-gain is given by Theorem C.3.3.

Definition C.3.5 (Passive mapping [191]) Consider the set 𝜒 of all measur-
able real valued 𝑛-dimensional functions of time 𝑓 (𝑡)∶ ℝ+ → ℝ𝑛. Introduce
the extended space

𝐿2𝑒 ≜
{

𝒙 ∈ 𝜒||
|∫

𝑇

0
||𝒇 (𝑡)||2𝑑𝑡 <∞,∀𝑇

}

. (C.13)

Define the inner product1 1: If the product < 𝒖(𝑡), 𝒚(𝑡) > has the di-
mension of power, then the inner product
(C.14) denotes the externally supplied en-
ergy during the time interval [0, 𝑇 ].< 𝒖, 𝒚 >𝑇= ∫

𝑇

0
𝒖(𝑡)T𝒚(𝑡)𝑑𝑡. (C.14)

A system Σ∶ 𝐿2𝑒 → 𝐿2𝑒 ∶ 𝒖 → 𝒚 defines a passive map if and only if there
exists some constant 𝛽 > 0 such that

< 𝒖, 𝒚 >𝑇≥ 𝛽, (C.15)
for all 𝑇 ≥ 0.

Note that we can interpret (C.15) as stating that the maximally extractable
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energy is finite. In other words, a system Σ is passive if and only if a finite
amount of energy can be extracted from it.



D
Mathematical Fundamentals

This thesis is written for readers with a basic knowledge of linear algebra,
multivariable calculus, real analysis and differential equations. This appendix,
reports the most important definitions and results that are prerequisites for
reading this work. For details on most of the ideas presented here, the interested
reader can consult [72, 156]

[72]: Horn et al. (2012), Matrix Analysis
[156]: Rudin (1976), Principles of Mathe-
matical Analysis.

D.1 Calculus and Real Analysis

Definition D.1.1 ([193]) Let 𝑈 ⊂ ℝ𝑑 be open, and let 𝑓 ∶ 𝑈 → ℝ𝑛. We
say that 𝑓 is differentiable of class ℂ𝑘 on 𝑈 (or simply that 𝑓 ∈ ℂ𝑘, if the
derivatives 𝑓 ′, 𝑓 ′′,… , 𝑓 (𝑘) exist and are continuous on 𝑈 . The function 𝑓
is said to be class ℂ∞, infinitely differentiable, or smooth if it is ℂ𝑘 for all
𝑘 ≥ 0.

Corollary D.1.1 Let𝑨 be open inℝ𝑛 and 𝒇 ∶ 𝑨→ ℝ𝑛 be a diffeomorphism.
Then 𝒇−1 is a diffeomorphism from 𝒇 (𝑨) onto 𝑨.

The implicit function plays a central role in this work for deriving the concept
of quasi-full actuation.

Theorem D.1.2 (Implicit function theorem [99, p. 43]) Let

Φ(𝑥) = Φ(𝑥1,… , 𝑥𝑁 ) ≡
(

𝜑1(𝑥1,… , 𝑥𝑁 ),… , 𝜑𝑀 (𝑥1,… , 𝑥𝑁 )
)

be a mapping of class 𝐶𝑘, 𝑘 ≥ 1, defined on an open set 𝑈 ⊂ ℝ𝑁 and
taking values in ℝ𝑀 . We assume that 1 ≤𝑀 < 𝑁 . Set 𝑄 = 𝑁 −𝑀 . Let
𝑥0 = (𝑥01,… , 𝑥0𝑁 ) be a fixed point of 𝑈 . Of course we let 𝑥 = (𝑥1,… , 𝑥𝑁 )
be any point of 𝑈 . Set

𝑥𝑎 = (𝑥1,… , 𝑥𝑄) and 𝑥0𝑎 = (𝑥01,… , 𝑥0𝑄). (D.1)
We suppose that

𝜕(𝜑1,… , 𝜑𝑀 )
𝜕(𝑥𝑄+1,… , 𝑥𝑁 )

(𝑥0) ≠ 0. (D.2)

Then there exists a neighborhood 𝑈̃ of 𝑥0, and open set𝑊 ⊂ ℝ𝑄 containing
𝑥0𝑎, and functions 𝑓1,… , 𝑓𝑀 of class 𝐶𝑘 on 𝑊 such that

Φ
(

𝑥1,… , 𝑥𝑄, 𝑓1(𝑥𝑎),… , 𝑓𝑀 (𝑥𝑎)
)

= 0 for every 𝑥𝑎 ∈ 𝑊 . (D.3)
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Furthermore 𝑓1,… , 𝑓𝑀 are the unique functions satisfying

{𝑥 ∈ 𝑈̃ ∶ Φ(𝑥) = 0} =
{𝑥 ∈ 𝑈̃ ∶ 𝑥𝑎 ∈ 𝑊 ,𝑥𝑄+𝑙 = 𝑓𝑙(𝑥𝑎) for 𝑙 = 1,… ,𝑀}.

It is worth remarking that the implicit function theorem is usually formulated
in terms of implicit mappings of class 1. However, for the developments in
Chapter 5 it is crucial to guarantee that whenever a mapping Φ is of class 𝑘,
𝑘 ≥ 2, and satisfies the conditions of the implicit function theorem, then also
the functions 𝑓1,… , 𝑓𝑀 are of class 𝑘, 𝑘 ≥ 2.

D.2 Interchange Property of Partial and Ordinary
Derivatives

The following interchange property of partial and ordinary differentiation is
often used in modern works on Lagrangian mechanics. Let 𝑓 be a function of
the independent scalar variables (𝑞1,… , 𝑞𝑛) such that their time-derivatives
and time, 𝑡,

𝑓 = 𝑓
(

𝑞1,… , 𝑞𝑛, 𝑞̇1,… , 𝑞̇𝑛,… , 𝑞(𝑝)1 ,… , 𝑞(𝑝)𝑛 , 𝑡
)

. (D.4)
Let 𝑞𝑖, 𝑖 = 1,… , 𝑛 denote one the independent variables and 𝑦̇ denote a 𝑘th
time-derivative of 𝑞𝑖, 𝑘 = 0,… , 𝑝 of 𝑞𝑖, then we have that

𝜕
𝜕𝑦̇

(

𝑑𝑓
𝑑𝑡

)

= d
d𝑡

(

𝜕𝑓
𝜕𝑦̇

)

, 𝑦̇ = 𝑞𝑖, (D.5)

and
𝜕
𝜕𝑦̇

(

𝜕𝑓
𝜕𝑡

)

= d
d𝑡

(

𝜕𝑓
𝜕𝑦̇

)

+
𝜕𝑓
𝜕𝑥
, 𝑦̇ ≠ 𝑞𝑖. (D.6)

The following proof is a straightforward extension of the result reported
in [120]. The total derivative of 𝑓 with respect to 𝑡 is

𝑑𝑓
𝑑𝑡

=
𝜕𝑓
𝜕𝑞1

𝑞̇1 +⋯ +
𝜕𝑓
𝜕𝑞𝑛

𝑞̇𝑛 +
𝜕𝑓
𝜕𝑞̇1

𝑞1 +⋯ +
𝜕𝑓

𝜕𝑞(𝑝)𝑛
𝑞(𝑝+1)𝑛 +

𝜕𝑓
𝜕𝑡
, (D.7)

The partial derivative of (D.7) with respect to 𝑦̇ is
𝜕
𝜕𝑦̇

(

𝑑𝑓
𝑑𝑡

)

=
𝜕2𝑓
𝜕𝑦̇𝜕𝑞1

𝑞̇1 +⋯ +
𝜕2𝑓
𝜕𝑦̇𝜕𝑞𝑛

𝑞̇𝑛+

𝜕2𝑓
𝜕𝑦̇𝜕𝑞̇1

𝑞1 +⋯ +
𝜕2𝑓

𝜕𝑦̇𝜕𝑞(𝑝)𝑛
𝑞(𝑝+1)𝑛 +

𝜕2𝑓
𝜕𝑦̇𝜕𝑡

+
𝜕𝑓
𝜕𝑦
,

(D.8)

where the last term vanishes if 𝑦̇ is one of the variables (𝑞1,… , 𝑞𝑛). Con-
sidering that 𝑓 is a function of the variables 𝑞𝑖, their time-derivatives up to
order 𝑝, and 𝑡, its partial derivative is in general also a function of 𝑞𝑖, their
time-derivatives up order 𝑝, and 𝑡, that is

𝜕𝑓
𝜕𝑦̇

=
𝜕𝑓
𝜕𝑦̇

(

𝑞1,… , 𝑞𝑛, 𝑞̇1,… , 𝑞(𝑝−1)𝑛 , 𝑞(𝑝)1 ,… , 𝑞(𝑝)𝑛
)

. (D.9)
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The time-derivative of (D.9) is
d
d𝑡

(

𝜕𝑓
𝜕𝑦̇

)

=
𝜕2𝑓
𝜕𝑞1𝜕𝑦̇

𝑞̇1 +⋯ +
𝜕2𝑓
𝜕𝑞𝑛𝜕𝑦̇

𝑞̇𝑛+ (D.10)
𝜕2𝑓
𝜕𝑞̇1𝜕𝑦̇

𝑞1 +⋯ +
𝜕2𝑓
𝜕𝑞(𝑝)𝜕𝑦̇

𝑞(𝑝+1) +
𝜕2𝑓
𝜕𝑡𝜕𝑦̇

. (D.11)

Considering that mixed partial derivatives are equal, the desired results (D.7)
follows immediately from comparing (D.8) with (D.10), and the special case
(D.5) follows when 𝑦̇ = 𝑞𝑖.

D.3 Linear Algebra

The following theorems by Silvester [163] and Schur [72] about determinants
of block matrices are used frequently throughout the text.

Theorem D.3.1 (Determinants of 2 × 2 block matrices) If 𝑴 =
[

𝑨 𝑩
𝑪 𝑫

]

,

where 𝑨,𝑩,𝑪 ,𝑫 ∈ 𝑛𝐹 𝑛 and 𝑪𝑫 = 𝑫𝑪 , then

det
𝐹
𝑴 = det (𝑨𝑫 − 𝑩𝑪) . (D.12)

Theorem D.3.2 (Schur’s determinant identity) If 𝑴 =
[

𝑨 𝑩
𝑪 𝑫

]

, where

𝑨,𝑩,𝑪 and 𝑫 are matrices of dimension 𝑛 × 𝑛, 𝑛 × 𝑚,𝑚 × 𝑛 and 𝑚 × 𝑚,
respectively. Then, if either 𝑫 or 𝑨 are invertible

det𝑴 = det𝑫 det
(

𝑨 − 𝑩𝑫−1𝑪
)

, (D.13)
and

det𝑴 = det𝑨 det
(

𝑫 − 𝑪𝑨−1𝑩
)

, (D.14)
respectively.

The following determinant properties are frequently used throughout the text
without explicit mentioning:

• |𝑨𝑩| = |𝑨| |𝑩|,
• |𝑨−1

| = |𝑨|−1.
The following Lemma allows under- and overestimating the eigenvalues of

a matrix product based on the eigenvalues of the single matrices.

If 𝑨 and 𝑩 are Hermitian and nonnegative definite matrices of ap-
propriate dimensions, then we can both underestimate and overestimate
eigenvalues of 𝑨𝑩 by using the eigenvalues of 𝑨 and 𝑩

𝜆𝑖(𝑨)𝜆min(𝑩) ≤ 𝜆𝑖(𝑨𝑩) ≤ 𝜆𝑖(𝑨)𝜆max(𝑩). (D.15)
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