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ABSTRACT

Network automation has long been a goal in the networking research community, with promises
such as avoiding misconfiguration, automatically optimizing network performance, or dynam-
ically reacting to changes in demand or network failures. In this Habilitation thesis we inves-
tigate data-driven methods for addressing such networking challenges. We present both the-
oretical results based on mathematical frameworks, as well as more practical results based on
real implementations and measurements on testbeds.

The main contribution of this research work is a data-driven approach based on graph
transformation and graph neural networks (GNNs). This approach stems from our finding
that various challenges found in networking research can be modeled as graphs, a key data
structure for representing network topologies, their properties and their configuration. Using
this natural way of representing data and by adding expert knowledge, we build on the recent
works from the machine learning (ML) community on GNNs to make efficient and accurate
predictions about the problem to be solved.

We demonstrate in this Habilitation thesis that this approach can be applied to a variety
of networking challenges, from formal analysis of networks, to design of network protocols.
We first investigate network calculus (NC), a mathematical framework for computing bounds
on end-to-end latencies. We propose the first applications of ML and GNN to NC analysis. One
finding of our research is to illustrate that getting the tightest bound from NC often requires
expert knowledge about the methods applied, as well as large computational costs. With our
work, we alleviate those needs by using a data-driven approach and contribute two novel NC
approaches based on GNNs: DeepTMA and DeepFP. We show that ML has its place inside NC,
opening up the door to formally-verified tight bounds at a low computational cost.

We also demonstrate other applications of GNNs to networking challenges in this Habil-
itation thesis. We contribute one of the first works applying GNNs to the performance eval-
uation of elastic and inelastic flows, predicting flow bandwidth and packet latency. We show
that GNNs can provide accurate and efficient predictions of flow performance, providing a fast
tool for what-if analysis. We also contribute a novel method taking advantage of the message
passing principle of GNNs for building network protocols. We illustrate that routing protocols
can easily be trained for, requiring no expert knowledge on network protocol design. Finally,
we contribute an application of GNNs to the analysis of Multiprotocol Label Switching (MPLS)
networks and configurations. We show that our graph transformation is able to handle more
advanced concepts such as MPLS forwarding rules and configuration.

Finally, we explore how lessons learned from data-driven approaches and their models can
be included in the networks themselves. We focus on P4, a promising solution for including
such advanced functionalities in the dataplane on various hardware platforms, as well as Vec-
tor Packet Processing (VPP), a software router based on recent developments for efficient soft-
ware packet processing. We contribute an evaluation of P4 in an industrial context, showing
that P4 could be used for implementing industrial protocols. We also show that P4 can easily be
extended to include advanced functionalities such as secure and fast hash functions. Our per-
formance evaluations showed promising results, achieving 10 Gbit/s line-rate in some cases.
With VPP we also show that ML can be directly included in the dataplane to provide advanced
online optimization of the packet processing pipeline.
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1. INTRODUCTION
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1.1 Research overview in scope of the Habilitation

Building upon recent advances in self-driving cars and similar trends towards more automa-
tion in other domains, Feamster and Rexford [54] recently proposed the concept of self-driving
network. The idea of a network with automation stems from the growing challenges faced by
network design and management, which need to cope and optimize for different goals such
as performance, availability, resilience to attack, ubiquitous access, and scale. The current ap-
proaches to those different goals is to develop locally-optimized solutions, namely solutions
which are only applicable for a specific use-case and which cannot be easily ported to other
use-cases.

The proposed approach for a self-driving network from [54] is to have a method which
should take as input a high-level goal related to performance or security for example and
jointly derive (i) the metrics and measurements that the network should collect; (ii) the infer-
ences that should be performed; (iii) the decisions that the network should ultimately execute.
There are currently no general solution for implementing such a self-driving network.

Machine learning (ML) has often been cited as a central solution to self-driving networks.
In this work, we propose to use graph neural networks (GNNs) - a specific neural network (NN)
architecture able to process graphs later detailed in Section 2.2 - as a key element towards
achieving this goal of self-driving network. GNNs have been shown to generalize to a large
variety of domains, including chemistry, physics, electronics, and networking. Graphs offer
an efficient data structure for representing elements in a network, their relationships and in-
teractions, and their configuration. Our approach - later explained in Section 2.4 - is based
on tailored graphs transformations and modeling in combination with GNNs. We apply our
approach to different challenges in networking.

First, we use GNNs to address the challenge of providing and speeding up performance
guarantees in networks using network calculus (NC). As illustrated in Figure 1.1, current state-
of-the-art NC methods generally sacrifice computational effort (and hence time spent for com-
puting) for improvement bounds tightness. Numerical evaluations show that even on moder-
ately sized networks with around 1000 flows - a size comparable to some industrial networks
- some analyses take multiple days to compute bounds. Such computation time is often not
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acceptable, especially with the advent of technologies such as Audio-Video Bridging (AVB) or
Time-Sensitive Networking (TSN), where NC has become a major tool for the industrial deploy-
ment of such networks.

Computation effort

Network delay
analysis methods ‘
‘ Contributions
. Ideal

Tightness

Fig. 1.1: Relationship between tightness and execution time in delay analyses

Our contributions open up a new branch of NC analyses achieving tightness close to the
best state-of-the-art methods, but at a low computational cost, as illustrated in Figure 1.1.
Compared to other delay analysis methods (e.g. schedulability analysis, model checking), most
of them also suffer a similar trend where gains in tightness are usually paid with long com-
putations. Overall, our contributions in NC will help optimize network usage and avoid over-
allocation of resources when designing a network with guarantees. This is important in many
industrial networks - such as avionic networks - where over-allocation of resources lead to
overall inefficiencies such as too much weight and a reduction in fuel efficiency.

We also evaluate other areas where our GNN-based approach can be used. A promising area
is network protocol design, where intensive engineering time is required in order to achieve
specific behavior from distributed algorithms and protocols. We contribute a novel applica-
tion of GNNs for the design of routing protocol, a famous challenge for distributed decisions
in a network. In the scope of self-driving networks, our contribution is a first step towards
machine-designed network protocols, avoiding most of the manual work required in protocol
design.

P4-14 Barefoot Tofino
CUDA OpenFlow Caffee PyTorch
Active Networks { Torch scikit-learn SDN VPP r CNTK
[ Smart Packets [ RCP { SR-IOV [ NFV TensorFlow [ Tofino v2
T “a
199: 2000 { 2005 ‘ 2010 { 2015 { { 2020
High Perf. Router DPDK P4-16 ClickNF
Legend: NetFPGA-1G
o SwitchWare NetFPGA-10G BESS
Network Harware Ethane
Network Software SmartNIC { DPDK 2.0
Machine Learning Open vSwitch NetFPGA-SUME

Fig. 1.2: Evolution of tools, software and hardware acceleration related to networking and ma-
chine learning in the last 25 years

In parallel to this concept of self-driving network, various advances have also been made on
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processing speed in both the networking and machine learning fields in the last two decades, as
illustrated in Figure 1.2. Combining advanced algorithms with efficient hardware acceleration
is nowadays possible, providing advanced features for packet processing.

As illustrated earlier in Figures 1.2 and 1.3, various advances were made in the area of fast
packet processing, bringing effective solutions with ease-of-use and programming flexibility.
With our works, we explore how this trend relates to real-world problems such as industrial
networks with needs for specific protocols and performance. We show that these new plat-
forms can implement advanced security features at line-rate, and also execute ML inference to
optimize Central Processing Unit (CPU) usage.

Flexibility / Ease-of-use

Software

w/o optimization Software

w/ kernel
bypass
C Subset
w/ NPUs
P4

Performance

VHDL
w/ FPGAs

ASICs

Fig. 1.3: Relationship between performance and ease-of-use of different dataplane technolo-
gies currently available

Overall, this thesis contributes an efficient graph-based paradigm for reasoning about net-
working challenges. We show that this paradigm is versatile and applicable in various domains,
from network verification, to performance evaluation, and network protocol design. We also
illustrate how advanced algorithms can be implemented in the dataplane, enabling sophisti-
cated features to be run in networks, an essential step towards self-driven networks.

1.2 Research objectives and expected benefits

The general goal of this work is to develop the model paradigms and technological bricks nec-
essary for achieving self-driving networks, with a focus on networks designed with the goal of
performance optimization and availability.

This work is structured around the two following research objectives:

01: Develop more generic and more efficient performance evaluation models

Early research on performance evaluation had the goal of creating clean, closed-form math-
ematical models of individual protocols, applications, and systems. While those models pro-
duced accurate results in various areas such as prediction of Transmission Control Protocol
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(TCP) bandwidth [140], closed-form analysis can quickly become too complicated once the dif-
ferent parameters and configuration options of the protocol have to taken into account.

Due to the multiple-feedback loops present at different layers of the protocol stack, an-
other challenge is interoperability between mathematical models. An example would be the
challenge of taking wireless transmission channel models into account when studying higher
layer protocols. Another challenge to face is to keep up with the current pace of new protocols
proposals, their different implementations and different configuration parameters.

A data-driven approach might be a solution to those challenges, with the use of repeatable
measurements, in conjunction with learning algorithms and representations of communica-
tion networks which are generic enough to accommodate a wide range of network protocols
and architectures.

02: Include lessons learned from data in network architectures and protocols

Current network protocols are mainly based on hard-coded rules which were optimized for spe-
cific use-cases in mind. An example of such practice is congestion control, where a common
approach has been to design algorithms which are optimized to certain network conditions
(eg. data-centers with low latency, satellite communication with high latency). Recent contri-
butions such as the work from Dong et al. with Performance-oriented Congestion Control (PCC)
in [50], or the work from Winstein and Balakrishnan with RemyCC in [189], have shown more
goal and data-oriented approaches to congestion control.

Based on foundations from the previous research objective, the models developed should
serve as a basis for designing network architectures, managing networks, and guiding network
protocol designs.

The overall approach taken for the Habilitation work is illustrated in Figure 1.4.

Use-cases Formulation Data Collection Data Processing
Network architecture, —> Traffic traces, performance [ Features extraction,
protocols, expected benefits logs, in-band telemetry, ... representation as graph, ...
Deployement Inference and Evaluation Modelisation
Integration in switching [<—| Integration in network < Neural network with
devices and protocol stacks design and pr‘OtOCOlS Ofﬂine or Online training

Fig. 1.4: Overview of the approach taken for the Habilitation work

1.3 Contributions and document structure

The rest of this thesis is structured into five chapter: Background, Tight and efficient bounds
in network calculus with fast heuristics, Application of graph-based deep learning methods for
computer networks, Hardware and software for efficient packet processing, and Conclusion.

Chapter 2 provides an overview over the three main aspects addressed in this thesis, namely
NC in Section 2.1, GNNs in Section 2.2 and P4 in Section 2.3. In this chapter, we also detail the



1.3. Contributions and document structure 5

key contribution of this thesis, namely the application of graph models to networking chal-
lenges in Section 2.4. This key contribution is a generalization and unification of the concepts
contributed in our works: [60, 68, 69, 61, 62, 70, 64, 65, 75]

In Chapter 3, we detail our contributions in the domain of NC, where extensions of NC are
proposed, as well as the first applications of GNNs to NC. Our contributions are:

- In[19, 20] and Section 3.3.1 we extend NC’s network analyses to the analysis of multicast
flows. We show that using a naive approach to multicast flows leads to loose delay bound.
Our contribution enables the application of well-known principles from NC such as Pay
Burst Only Once (PBOO) and Pay Multiplexing Only Once (PMOO) to multicast flows.

- In[21] and Section 3.3.2, we propose flow detouring in NC, an extension of the work from
Bondorf [18] which adds pessimism in the network model in order to gain tightness. Our
contribution stems from the realization that the PMOO property is mostly valuable on
networks where flows share a large number of servers. By virtually adding servers on
the cross-flows’ path, i.e. adding pessimism in the network, we show that delay bounds
can be reduced.

- In [69] and Section 3.4 we contribute the first work applying GNNs to NC. We show that
GNNs are an efficient heuristic of NC, which is used for predicting the delay bounds from
various NC analyzes. Since those predictions are not formally valid, we also illustrate
how they are still valuable at deciding which NC analysis will produce the tightest bound
given a network.

- In[62, 64, 65] and Section 3.4.2 we built on the success from [69] and propose DeepTMA.
DeepTMA is a novel approach integrating predictions from a GNN more tightly in the
Tandem Matching Analysis (TMA) from Bondorf et al. [24], a state-of-the-art NC analysis
achieve good tightness. We illustrate that TMA’s exhaustive search for the best tandem
decomposition can be avoided by using a GNN for predicting the most promising decom-
position. Via numerical evaluation, we show that DeepTMA is able to achieve tightness
close the one from TMA but with a computational effort orders of magnitude smaller.

- In[75] and Section 3.4.3 we build on the success and findings of DeepTMA and propose a
DeepFP, another application of GNNs to NC. DeepFP is an approach for scaling Flow Pro-
longation (FP)’s property of NC from [18], which also suffers from an computationally ex-
pensive exhaustive search. DeepFP predicts the best prolongations to use, short-cutting
the exhaustive search. As with DeepTMA, we show via numerical evaluation that DeepFP
is able achieve good tightness at a small computational effort compared to FP.

In Chapter 4, we explore application of GNNs to networking challenges outside of NC. Our
contributions are:

- In [60, 61] and Section 4.3 we contribute one of the first applications of GNNs to net-
working challenges. Our proposal, called DeepComNet, applies GNNs to the challenge of
performance evaluation of flows. We show that the bandwidth of elastic flows and the
end-to-end latency of flows with constant rate can be predicted. DeepComNet can be
used as a what-if analysis tool for fast network design and evaluation.
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- In [68] and Section 4.4 we contribute an application of GNNs to the task of network pro-
tocol generation. We show that one of key concepts behind GNNs - message passing -
can be directly mapped to packets and routers, effectively using computer networks as
a distributed GNN. We illustrate that this concept can be applied to packet routing.

- In [70] and Section 4.5 we contribute DeepMPLS, an application of GNNs for the verifi-
cation and synthesis of Multiprotocol Label Switching (MPLS) configurations. We show
that MPLS configuration can be mapped to graphs, which are then used for predicting if
the MPLS configuration satisfies some properties such as not containing any loops.

In Chapter 5, we explore how advanced functionalities may be brought to the dataplane
via P4 or software-based solutions with kernel bypass. Our contributions are:

- In[73, 71, 155] and Section 5.3 we evaluate P4 in an industrial environment both from a
functional perspective and a performance perspective. We show that P4 is almost suffi-
cient enough to implement Avionics Full DupleX Switched Ethernet (AFDX), an Ethernet-
based network protocol specific to avionics. In our performance evaluation, we show
that commodity hardware can be used and is sufficient for processing 10 Gbit/s traffic.

- In [157] and Section 5.4 we explore the use of hash functions if P4 on various hardware
platforms: CPU, Network Processing Unit (NPU) and Field Programmable Gate Array
(FPGA). We illustrate on these three different platform how hash functions can be ef-
ficient implemented and do a performance evaluation. Such extension of P4 is relevant
for security-oriented applications, or simply for constructing more advanced data struc-
tures than the ones already provided by P4.

- In [139] and Section 5.5 we contribute an approach for using ML inference in the dat-
aplane for more efficient packet processing in software routers. We illustrate that by
having a dynamic batching allocation in Vector Packet Processing (VPP), CPU time can
be saved. This illustrates that ML inference is possible in the dataplane, a step towards
more intelligent networks.

Finally, Chapter 6 concludes this thesis by summarizing the contributions and discussing
future work and open research directions.

All the articles presented in this work can be found in Appendix A. Besides the technical
contributions presented here, open datasets and tools were also contributed and listed in Ap-
pendix B. Apart from the content of this manuscript, other research works related to network
design, network operation, or network performance were also performed. The full list of works
can be found in Appendix A.4.

1.4 Remarks about this document

The various abbreviations and notations used throughout this thesis are listed in Appendix C.
The digital version of this document also contains clickable links which are marked in gray (e.g.
https://example.com). Some notes regarding the origin of the content of this thesis appear
in the text in the following form:

Note This is a note
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2.2 Graphneuralnetworks . .......................... 10
2.3 P4: An approach for efficient packet processing devices . . . ... ... 12
2.4 Data Driven Methods for Networking . ... ............... 13

We introduce in this chapter key technical concepts which will be used through this Habil-
itation thesis. Additional background and related work will also be provided in the subsequent
chapters.

2.1 Deterministic network calculus

Deterministic network calculus (DNC) - or often simply called network calculus (NC) - is a
mathematical framework for analyzing performance guarantees of traffic flows in queuing
networks. This formalism was initially developed in the early 1990’s by Cruz [43, 44], with the
so-called (o, p)-calculus. Its current predominant application is computer networks. We will
describe here some of the main mathematical results of this framework, and make a parallel
with its current application in Ethernet networks. For a more thorough description of NC, we
refer to the books from Chang [40], from Le Boudec and Thiran [114], or from Bouillard et al.
[30].

In this framework, flows are described as their cumulative arrival of data per unit of time.
This is modeled by a non-decreasing function of time (noted ¢) into the set of monotonically-
increasing and strictly positive functions F, more formally defined as:

F={f:Rt = RTVO<t<s:f(t) < f(s), f(0) =0} (2.1)

This function is called its cumulative arrival function. A flow with cumulative arrival function R,
or more simply a flow R, is said to be (o, p)-upper constrained if ([40, Definition 1.1.1]):

R(t) — R(s) < p-(t—s)+o, forall0 < s < t, with p, o constant values. (2.2)

In Equation (2.2), o is called the burstiness parameter, and p the upper bound on the long-term
average rate of the traffic flow. This curve is illustrated in Figure 2.1 with the gray curve. In
a real network, a flow can be forced to follow a prescribed (o, p) constraint using a so-called
shaper.

More generally, a flow R is said to have a deterministic arrival curve o € F if its cumulative
arrival function R satisfies for all s and ¢ such that for all 0 < s < ¢ ([114, Definition 1.2.1]):

R(t) — R(s) < a(t —s) (2.3)
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In non-mathematical words, it defines the worst-case behavior of a flow by a well-known func-
tion.

Network elements representing queues or switches, often called servers in NC terms, impose
a service curve 8 € F on an input flow R, such that the output flow R* is defined by ([114,
Definition 1.3.1]):
R*(t) > inf {R(t—s)+ 8(s)} (2.4)
0<s<t

The operation on the right hand-side of the inequality is known as the min-plus convolution,
and is part of the min-plus algebra used in NC. The min-plus convolution is noted as ®, such
that R*(t) > (R®[3)(t) ([114, Definition 3.1.10]). The second operation of the min-plus algebra
is the deconvolution, noted @, which is defined as ([114, Definition 3.1.13]):

(fogl) = %grs{f(t +8) —g(s)} (2.5)

In case of an Ethernet interface with link speed C' and delay 6, the service curve 3 can be
expressed as:
B(t) = C[t — 8], where [z]T = max(0, z) (2.6)

This particular affine curve is called a rate-latency service curve, and it is illustrated in Fig-
ure 2.1 with the black curve.

data
A
vla B B(t)
h(a, B)
time=

Fig. 2.1: Latency (h(«, 3)) and buffer (v(«, 8)) bounds in DNC

Using this formalism, two performance bounds can be derived, as presented in Figure 2.1:

The backlog bound or queue size bound, which corresponds to the maximal vertical devia-
tion between the arrival and service curve v(a, ), or in mathematical terms ([114, The-
orem 1.4.1)):

R(t) — R*(t) < sup{a(s) — B(s)} = (« @ B)(0) = v(e, B) (2.7)

s>0

The delay bound which corresponds to the maximal horizontal deviation between the arrival
and service curves h(«, 3), or in mathematical terms ([114, Theorem 1.4.2]):

R*(t) — R*(t — s) < sup {inf{a(t) < B(t+ s)}} = h(a, B) (2.8)

t>0 (520

One strong property of NC is the so-called concatenation, where a large network of servers
can be simplified to a single server using the min-plus convolution. A simple example is a flow
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traversing two servers with respective service curves 81 and [3;. It can be shown (see [114,
Theorem 1.4.6]) that this is equivalent to a flow traversing a single server with service curve
Bc = B1 ® B2, and the resulting bounds will be tighter than an analysis done with 8; and S
separately.

Given a strict service curve that guarantees a minimum output of 3 if data is present at a
server, we can also lower bound the service left-over for a specific flow:

Theorem 2.1 (Left-over service curve). Consider a server s that offers a strict service curve 3. Let
s be crossed by flows fo and f1, with arrival curves oy, respectively 1. Then the worst-case residual
resource share under arbitrary multiplexing of f1 at s is:

/81.0.f1 _ /B o ag

with (8 © a)(d) = sup{(5 — a)(u) | 0 < u < d} denoting the non-decreasing upper closure of
(8 —a)(d).

Regarding packet scheduling, NC can be used on networks with various algorithms such as
priority-based scheduler (see the book from Le Boudec and Thiran [114, Chapters 2.4, 6 and 7])
or fair queuing (see the work from Stiliadis and Varma in [166]).

One of the pitfalls of NC is its looseness, which is generally attributed to a loose handling
of flow multiplexing. Various methods have been proposed to address this issue, such as the
Pay Burst Only Once (PBOO) (see book from Le Boudec and Thiran [114]) and Pay Multiplexing Only
Once (PMO0O) (see work from Schmitt et al. [153]).

We present here some details on the most notables analysis from the literature using those
properties. Using the definitions and theorems presented above, the end-to-end performances
of flows interacting on a network of servers can be computed. We call the analyzed flow flow of
interest (foi).

Total Flow Analysis (TFA) [114]

The TFA first computes per-server delay bounds. Each one holds for the sum of all the
traffic arriving to a server, i.e., these bounds are independent of the foi. The flow’s end-
to-end delay bound is derived by summing up the individual server delay bounds on
its path. The TFA’s server-isolating approach constitutes a direct application of Equa-
tions (2.7) and (2.8); it is known to be inferior to the following analyses [114, 154].

Separate Flow Analysis (SFA) [114]

The SFA is a direct application of other theorems: first compute the left-over service
of each server on the foi’s path using Theorem 2.1, then concatenate them and finally
derive the end-to-end delay bound using Equations (2.7) and (2.8). Deriving the end-to-
end delay bound using only one service curve will consider the burst term of the foi only
once, using the PBOO property.

Pay Multiplexing Only Once (PM0O) [154]

The PMOO analysis first convolves the tandem of servers before subtracting the cross-
traffic. Using this order, the bursts of the cross-traffic appear only a single time com-
pared to the SFA analysis where the bursts are included at each server. Therefore, mul-
tiplexing with cross-traffic is only paid for once. However, [153] showed that the PMOO
method does not necessarily outperform the SFA.
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A numerical analysis and comparison of those different methods is performed later in
Chapter 3. Additional network analyses from the state of the art are also reviewed in Chap-
ter 3.

We note that due to the way flows are modeled, elastic protocols such as Transmission Con-
trol Protocol (TCP) are hard in practice to use with this framework. Various propositions were
made regarding using NC on feedback-based protocols such as TCP, such as for the instance
the works from Chang [39], from Baccelli and Hong [9], or from Agrawal et al. [3]. We note that
those previous work are either limited to the study of a single flow, or use an idealized version
of TCP.

Details about how NC can be applied to Ethernet networks and how it has been used during
the development of the A380 in the early 2000’s are presented by Grieu [79]. This work has led
to the definition of the Avionics Full DupleX Switched Ethernet (AFDX) standard [2].

Various tools are available for the performance evaluation of network with NC, open-source
ones such as the NCorg Network Calculator from Bondorf and Schmitt [22], the DISCO Network
Calculator from Schmitt and Zdarsky [152], CyNC from Schioler et al. [150], COINC from Bouil-
lard et al. [28], or NC-maude from Boyer [32]; or closed-source and commercial ones targeted at
the industry (e.g. [131, 35, 103]). A recent survey of NC tools and their application to real-time
systems was recently published by Zhou et al. [200].

2.2 Graph neural networks

In this section, we detail the neural network (NN) architecture used for training NNs on graphs,
namely the family of architectures initially proposed by Gori et al. [77], Scarselli et al. [148] and
based on graph neural networks (GNNs).

Let G = (V, &) be an undirected graph with nodes v € V and edges (v,u) € £. Let
i, € R"and o, € R™ represent respectively the input features (e.g. node type, service or
arrival curve parameters) and output values for node v (e.g. decision for the NC analysis). The
concept behind GNNs is called message passing, where so-called hidden representations of nodes
h, € R” are iteratively passed between neighboring nodes. Those hidden representations
are propagated throughout the graph using multiple iterations until a fixed point is found or
after a fixed number of iterations. The final hidden representation is then used for predicting
properties about nodes. This concept can be formalized as:

) = aggr ({hg_l) ) u € NBR(U)}) (2.9)
0, = out (hz(fﬁoo)> (2.10)
h{(=0 = init (i,) (2.11)

with h") representing the hidden representation of node v at iteration ¢, aggr a function which
aggregates the set of hidden representations of the neighboring nodes NBRr(v) of v, out a func-
tion transforming the final hidden representation to the target values, and init a function for
initializing the hidden representations based on the input features.

The concrete implementations of the aggr and out functions are feed-forward neural net-
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works (FFNNs), with the addition that aggr is the sum of per-edge terms [148], such that:

= oo ({Winin ) = 1| 30w @212)

uENBR (v

with f a FFNN. For init, a one-layer FFNN is used to fit the input features to the dimensions of
the hidden representations.

Gated graph neural networks (GGNNs) were recently proposed by Li et al. [119] as an exten-
sion of GNNs to improve their training. This extension implements f using the Gated Recurrent
Unit (GRU) memory unit from Cho et al. [42] and unrolls Equation (2.9) for a fixed number of
iterations. This simple transformation allows for commonly found architectures and training
algorithms for standard FFNNs as applied in computer vision or natural language processing.
The neural network architecture is illustrated in Figure 2.2.

(0) (T)
h Gated h) Feed-Forward 01
— | : Recurrent Lol Neural -
h ’(1 0) Unit h I(IT) Network 0,

(1)
hl

A
hy’

Fig. 2.2: Overview of GGNN architecture

Formally, the propagation of the hidden representations among neighboring nodes for one
time-step is formulated as:

x® = HE-DA 1+ b, (2.13)
20 = o (W.zl + U.HD 4 b,) (2.14)
rD =¢ (WT:c(t) +UHY 4 bT) (2.15)
H® = tanh (Wa:(t) +U (r(t) © H(H)) - b) (2.16)
H® = (1 - z(t)) ©oHY 420 o HO (2.17)

where o(z) = 1/(1 + e~ %) is the logistic sigmoid function and © is the element-wise matrix
multiplication. W,, W,, W and U, U, U are trainable weight matrices, and b,, b,,b,, b
are trainable bias vectors. A € RIVI*Vlis the graph adjacency matrix, determining the edges
in the graph G.

Equation (2.13) corresponds to one time-step of the propagation of the hidden represen-
tation of neighboring nodes to node v, as formulated previously for GNNs in Equations (2.9)
and (2.12). Equations (2.14) to (2.17) correspond to the mathematical formulation of a GRU
cell [42], with Equation (2.14) representing the GRU reset gate vector, Equation (2.15) the GRU
update gate vector, and Equation (2.17) the GRU output. In order to propagate the hidden rep-
resentations throughout the complete graph, a fixed number of iterations of Equations (2.14)
to (2.17) are performed. This extension has been shown to outperform standard GNN which
require to run the iteration until a fixed point is found.
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Additionally, this NN architecture can be extended with an attention mechanism similar to
the one proposed by Velickovié et al. [182]. Thus, the GNN can give preference to some neigh-
bors over other ones via a trained function. For each edge (v, u) in the graph, we define a

weight parameter pz(}% depending on the concatenation of hg,t) and hg ),
=0 (Wa {hit)7 th)} + ba) (2.18)
with trainable weights W, and bias parameters b,. Equation (2.12) can then be rewritten as

Bl = 3 A0 (nI7Y). (219)

UENBR(v)

GNNs attracted lots of work in the machine learning (ML) community. For a good overview
over some recent improvements and an attempt at a general unification of those improve-
ments, we refer to the work from Battaglia et al. [12]. Various implementations were also open-
sources, such as the works from Fey and Lenssen [55], from Wang et al. [185], and from Grat-
tarola and Alippi [78].

2.3 P4: An approach for efficient packet processing devices

In conjunction with the current trend towards softwarization of functionalities in the field of
communication networks with the advent of Software Defined Networking (SDN) and related
technologies, a recent development from Bosshart et al. [27] called P4 - Programming Protocol-
Independent Packet Processor - proposes a flexible way to specify packet processing devices.
A full review on dataplane programmability is provided later in Section 5.2.

The main promises of the P4 programming language and toolchain are:

1. A simple specification of packet processing pipelines using a high-level Domain Specific
Language (DSL), requiring no expert knowledge about the final hardware. This DSL was
specially designed to be expressive enough for the various actions necessary in network
protocols, while restrictive enough to enable simple compilation to various dedicated
target hardware. Sample snippets of P4 descriptions for standard Ethernet and 1Pv4
routing are given in Listings 2.1 and 2.2. The complete specification of the P4 language
is available on the P4 website [170, 171] and also reviewed by Budiu and Dodd [38].

2. Compilation of specification for different hardware targets, ranging from hardware so-
lutions such as Field Programmable Gate Arrays (FPGAs) or Network Processing Units
(NPUs), to finally purely software solutions targeting multi-core and many-core proces-
sors;

3. Reconfigurability in order to modify the behavior of packet-processing devices in the

field;

4. Possibility to test packet processing pipelines using well-known network emulation tools
such as mininet [112] and ability to emulate complete network architectures.
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This approach is also in line with model driven engineering, where high level descriptions of
systems are used in order to formally verify various properties of systems.

Currently, two different P4 standards are evolving in parallel: P4, 4, which is the original P4
and subject of this paper, and P44, a major redesign of the language with an object oriented
approach.

Listing 2.1: Example of Ethernet frame format definition in P4

header_type ethernet_t {

fields {
dstAddr . 48;
srcAddr 1 48;
etherType : 16;
)

}

Listing 2.2: Example of IPv4 packet routing in P4

action route_ipv4(dst_port, dst_mac, src_mac, vid) {
modify_field(standard_metadata.egress_spec, dst_port);
modify_field(ethernet.dst_addr, dst_mac);
modify_field(ethernet.src_addr, src_mac);
modify_field(vlan_tag.vid, vid);
add_to_field(ipv4.ttl, -1);

P4 uses a generic packet processing pipeline as a basis called abstract forwarding model. This
model applied to a switch is illustrated here in Figure 2.3. Packets are first parsed according to
customizable frame format definitions.

Metadata Traffic Manager Metadata
5| X
@ || g Queuing,
2 & g g _____ g Replication, g g _____ g
o |6 o Scheduling o || o

Fig. 2.3: P4 Abstract Forwarding Model of a switch

sasredacy
ss2137

Based on the fields and associated values of the protocols, so-called match+action tables are
used in order to process packets. Available actions include packet modification (changing field
value, adding or removing headers), replication (for broadcast or multicast), dropping packets
or triggering of flow control (namely update of action tables such as counters or policers).
Those match+action tables are conceptually similar to the ones used in OpenFlow switches.

2.4 Data Driven Methods for Networking

We present in this section one of the key contributions of this Habilitation. With [60], we in-
troduced one of the first GNN application to the field of networking and framework on how
to model networking problems and topologies using graphs. This early work - presented later
in Section 4.3 - has lead to various other publications with applications in different fields of
networking as presented in Chapters 3 and 4.
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When applying ML, one of the keys to successful and accurate predictions is to have a tai-
lored data-structure for inputs representing the problem being solved, as-well-as a ML algo-
rithm able to make use of this structure. In image processing for example, a stepping stone
contribution from Le Cun et al. [115, 116] was to apply convolutional neural networks (CNNs), a
NN architecture able to process images as tiles, i.e. taking advantage of pixels and their neigh-
bors in a hierarchical way in 2-dimensional matrices.

In the case of computer networks, there is a need for an efficient data-structure able to
accurately represent topologies, flows and their properties. While there has been attempts at
using traditional FFNN and CNN at networking problems (with some successes), those architec-
tures and data-structures are not tailored for representing data links and their relationships.
We propose to use (undirected) graphs and GNNs for this task, since they are a natural data-
structure and NN architecture for representing and processing network topologies. Adding
and processing information such as flows can be easily performed using dedicated nodes with
edges connecting the flows to their path, as illustrated in Figure 2.4.

Flow

o

(a) Physical network

Interface

(b) Graph encoding

Fig. 2.4: Overview of graph transformation process
Overall, our process for solving networking tasks using GNNs is split into different steps:

Graph tranformation In this first step, the information required for solving the network
problem is represented as a graph. This includes representing relevant elements from
a network topology such as switches or routers, their internal queues, network flows,
and their configuration. As shown later in Section 4.5 with Multiprotocol Label Switch-
ing (MPLS), even advanced network protocol configuration can be included in the graph.
This task usually requires expert knowledge about the problem in order to build a rele-
vant graph and correctly link knowledge in the graph.

GNN training Once the graph transformation is properly defined, GNN training on the graphs
is performed. In this step, the networking problem is mapped onto a ML task on the
graph, namely classification or regression on specific nodes or edges in the graph. For
example, in case of performance evaluation of flows (as done in [60] and Section 4.3)
where numerical performance indicators of flows need to be produced, regression is per-
formed on flow nodes. ML expertise is required for this step, since a GNN needs to be
trained, either following a supervised approach as done in all works presented in Chap-
ters 3 and 4, or alternate methods (e.g. reinforcement learning). This requires defining
proper datasets and training algorithms.

Inference and action In this last step, inference is performed using the trained GNN and the
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predictions are included back in the networking problem. We illustrate for example in
Section 3.4 how predictions are fed back to formal methods, or in Section 4.4 how it
can be used to generate network protocols. Inclusion into a SDN controller can also be
envisioned, where GNNs may be used for dynamically controlling certain aspects such
as Traffic Engineering (TE) in a network.

We will illustrate in Chapters 3 and 4 different applications of this data-driven approach
for networking, from formal analysis of networks to design of network protocols.
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3.1 Introduction

We introduced deterministic network calculus (DNC) in Section 2.1 as a formal method of choice
for validating networks. In the last few years, this method has gained lots of attention in the
scope of Ethernet networks, first with Avionics Full DupleX Switched Ethernet (AFDX) in the
early 2000 (e.g. works from Grieu [79], Frances et al. [57], Boyer and Fraboul [33], Adnan et al. [1]),
and now with Audio-Video Bridging (AVB) and Time-Sensitive Networking (TSN), with various
works modeling AVB’s and TSN’s flows and schedulers (e.g. works from Queck [143], De Azua
and Boyer [48], Le Boudec [113], Daigmorte et al. [45], Zhao et al. [198, 199], Mohammadpour
et al. [135], Maile et al. [124]).

DNC as a research topic can be split into various sub-topics. The first sub-topic is con-
cerned with correctly modeling flows and schedulers according to their specifications, namely
deriving correct arrival and service curves. The second sub-topic is more concerned with the
analysis of the server graph, namely improving the methods such as Total Flow Analysis (TFA),
Separate Flow Analysis (SFA) or Pay Multiplexing Only Once (PMOO), which are (for the most
part) agnostic to the characteristics of the arrival or service curves. In both cases, most of re-
search is done on getting the tightest bound possible, i.e. the closest bound to the worst-case
delay.
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In the scope of this chapter, we focus on the second sub-topic. Gains in the analysis side of
DNC can be directly beneficial to a large variety of use-cases since they are agnostic to the type
of arrival or service curves, while dedicated works on arrival or service curves have a more
limited scope. We look into DNC’s analyses and explore how to extend them to multicast flows
in Section 3.3.1, make them tighter with a counter-intuitive property in Section 3.3.2, or make
them faster with minimal loss on tightness with deep learning in Section 3.4.

3.2 Related work

3.2.1 Flow Prolongation

An approach to overcome one of PMOO’s looseness in some networks was recently presented by
Bondorf [18] with the Flow Prolongation (FP) feature. It actively converts the network model
given to the network calculus (NC) analysis to a more pessimistic one that circumvents limita-
tions of the NC analysis capabilities.

FP is conceptually straight-forward: assume cross-flows take more hops than they actu-
ally do. Take the sample tandem in Figure 3.1a, where bounding the arrivals of data flows f;
and f5 is required at their first location of interference with the flow of interest (foi), server
s9. Assuming arbitrary multiplexing, Bondorf and Schmitt [23] showed that the PMOO analysis
suffers from the segregation effect, both flows assume to only receive service after the respec-
tive other flow was forwarded by server s; - an unattainable pessimistic forwarding scenario
in the analysis-internal view on the network. FP tries to steer the analysis such that it does not
have to apply this pessimism by prolonging flows inside the analysis: the dashed lines in Fig-
ure 3.1b depict potential prolongations of the two flows’ paths. Each prolongation alternative
that matches their sinks will allow for their aggregate treatment at s;, mitigating the problem.
Yet, this adds interference to the foi.

f ﬁ( > ,/,(' ~ R
fi 5 S S fi 5 S s3 g
1 2 53 1 2 A 53

</ ~—" — </ N— >

foi foi

(a) Example tandem network (b) Potential FP alternatives

Fig. 3.1: lllustration of the FP feature of NC

Therefore, we search for the best prolongation alternative trading off both aspects. Unfor-
tunately, finding the best prolongation alternative is prone to a combinatorial explosion. On
each tandem of length n with m cross-flows, there are O(n™) alternatives to prolong flows.
Even with a deep understanding of the NC analysis applied to reduce FP alternatives it could
not be made to scale to larger models [18]. Nonetheless FP is a powerful feature to add to a NC
analysis, it was even adopted in the stochastic network calculus (SNC) by Nikolaus and Schmitt
[138].

We will show in Section 3.4.3 that the exhaustive search of FP can be avoided, leading to
tight bounds at low computational effort.
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3.2.2 Tandem Matching Analysis

Another approach to overcome the looseness of SFA and PMOO is the so-called Tandem Match-
ing Analysis (TMA) which was recently proposed by Bondorf et al. [24]. The central idea behind
TMA is that NC’s concatenation property can be interpreted as a network transformation rule,
which can be selectively applied at different points in a network. The central means of trans-
forming tandems is cutting:

Definition 3.1 (Cutting NC Tandems). Givenatandem T = (Vn¢, Enc, F) and a NC analysis A,
a cut marks edge e € Enc such that A will analyze T as a sequence of sub-tandems (T;, T,) where
7, holds all the model information to the left of e and T, that to the right of e. A cutting (also called
combination of cuts) is a set of cuts on 7.

Visually, the analyses implementing Pay Burst Only Once (PBOO) and PMOO proceed as
depicted in Figure 3.2b and 3.2c:

All Cuts (Figure 3.2b): SFA cuts every edge in the NC model along with the flows crossing
it (except the foi f1). The resulting sub-tandems are demarcated with (-) and consist of single
servers. For the cut flows, their arrivals at the subsequent server need to be bounded (we
denoted the respective location with f/). Such a flow’s bound consists of its initial - given
burstiness - bound plus the worst-case increase due to having crossed the previous servers.

No Cuts (Figure 3.2c): Without cuts, the entire tandem is analyzed at once. Mitigating the
need for deriving bounds on flow arrivals in the network allows for achieving the PMOO prop-
erty in addition to PBOO.
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(d) Example of alternative reductions

Fig. 3.2: lllustration of reduction rules applied by TMA when analyzing f;

TMA extends these two rules and explores alternative reductions, as illustrated in Fig-
ure 3.2d. In concrete terms, TMA performs an exhaustive search over all combinations of the
reduction rules above, an keeps the combination leading to the tightest delay bound. Thus, the
best reduction rules for a given flow can be found.

While TMA provides good tightness, this comes at a computational cost. The amount of
alternatives on a single tandem of n servers is 2. TMA provides a recursive algorithm whose
execution time can exceed several hours, e.g., when analyzing networks with >1000 servers and
four times as many flows [24].
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We will show in Section 3.4.2 that the exhaustive search of TMA can be avoided, leading to
tight bounds at low computational effort.

3.2.3 NC Combined with other methodologies

The (min,+)-algebraic NC provides deterministic modeling and analysis techniques. It has seen
various efforts to extend NC’s capabilities. For instance, the underlying (min,+) algebra can
be exchanged for (min,x) for fading channel analysis as shown by Al-Zubaidy et al. [4], or for
(max,+) to better fit discrete event systems as shown by Liebeherr [120]. Moreover, Boyer and
Roux [34] developed a common model for NC and event stream theory has been, and Lampka
etal.[107] showed that state-based system modeling can be integrated by pairing NC with timed
automata.

NC has been used by Thiele et al. [174] to describe component models commonly found
in real-time systems. Delay bounds can then be derived from a combination of component
characteristics and the network calculus model. For example, knowledge about the busy period
of a greedy processing component has been used to speed up NC computations by Guan and Yi
[80] and Lampka et al. [108, 109].

An optimization formulation called Unique Linear Program (ULP) was proposed by Bouil-
lard et al. [29], which formulate the NC model as a series for linear programs (LPs) which com-
putes tight bounds in networks without assumptions on the multiplexing of flows. It first de-
rives the dependencies between busy periods of servers in order to partially order the mutual
impact of flows. The tight analysis requires to expand this order to all compatible total or-
ders. There are several algorithms to solve this challenge. As shown by Bondorf et al. [24], the
resulting amount of total orders and therefore LPs to solve can quickly becoming prohibitive.
Bouillard et al. [29] proposed a heuristic that skips the expansion step and still derives valid
bounds. Its computational demand was numerically evaluated by Bondorf et al. [24].

3.2.4 Related approaches

The Trajectory Approach (TA) is an adaptation to the study of network delays of the holis-
tic approach from Tindell and Clark [176]. It was originally developed to give bounds on the
scheduling of tasks on a processor. The approach was initially proposed by Migge [132] and
later extended to First In First Out (FIFO) systems by Martin and Minet [127]. Bauer et al. [13]
applied TA to the study of avionic networks with multicast flows.

The Forward End-To-End Delay Approach (FA) has been proposed more recently by Kemayo
etal. [101]. It addresses the shortcomings of the TA. Similarly to the TA, FA is also an adaptation
of the holistic approach to the case of FIFO networks. [101] and [102] applied the FA to the
performance evaluation of avionic networks with multicast flows.

3.3 Extending network calculus analyses for tighter bounds

In this section we focus on two extensions of algebraic NC for enabling tighter bounds. We
first focus in Section 3.3.1 on bringing the analysis of multicast flows to NC. Then we look at a
counter-intuitive network transformation in Section 3.3.2, which despite adding pessimism in
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the network model, enables tighter bounds.

3.3.1 Multicast flow analyses in DNC

Note This section is based on [19], published in Proceedings of the 10th International Con-
ference on Performance Evaluation Methodologies and Tools, 2016, and [20], published in Sys-
tems Modeling: Methodologies and Tools, 2019. The complete works are in Appendices A.1.1
and A.1.2.

An important property of industrial networks is that communications are usually based on
the multicast paradigm, where packets being sent by one sender are duplicated by switching
elements in the network and received by multiple receivers. Using DNC on such multicast
protocols requires some adaptations, since this method is restricted to the analysis of unicast
communications.

Previous attempts for using DNC to analyze multicast communications only circumvented
its current restriction. They do not provide a solution to overcome this limitation. Those ap-
proaches cannot benefit from all DNC capabilities to provide accurate end-to-end guarantees
and networks designed based on them will be over-dimensioned.

This open issue of multicast flow analysis with DNC is addressed in this section and detailed
in [19, 20]. Two approaches were contributed that turn out to be steps generalizing existing
analyses. The first one, Explicit Intermediate Bounds (EIB), is an approach where multicast
flows are cut into sequences of unicast sub-flows. End-to-end performance bounds are then
derived from sub-flow results. It does not require a transformation of the network, however,
it amends a step to the analysis. Our second generalization, finally leads to a DNC multicast
Feed-Forward Analysis (mcastFFA). Neither transforming the network nor cutting any flows
is required. Therefore, more accurate bounds can be obtained since existing DNC principles
can be applied in order to reduce effects such as flow multiplexing or burstiness. Those two
approaches are illustrated in Figure 3.4, where the network with 1 unicast and 2 multicast flows
depicted in Figure 3.3a is studied.

A first naive approach to circumvent this issue is to transform a multicast flow to a set
of unicast flows. Each trajectory will become one independent unicast flow, as illustrated in
Figure 3.3b. The foremost problem of this approach is its overly pessimistic assumption about
resource demand of multicast flows. On common sub-paths of a multicast flows’ trajectories,
i.e., the servers before a fork, multiple unicast flows compete for resources.

In the case of TFA, Grieu [79] proposed a procedure to apply the TFA in the analysis of
multicast flows, illustrated in Figure 3.3c. Flows are cut between all servers, the arrivals are
aggregated and a server-local delay bound is computed. In a second step, the server delay
bounds on the trajectory of interest are summed up. While this method is less pessimistic than
the first naive one, it does not benefit from NC’s PBOO or PMOO properties.

Proposed approaches

The EIB analysis is the generalization of the multicast TFA analysis, illustrated in Figure 3.4a.
We adapt the model such that we can analyze it with traditional NC tools, by cutting multicast
flows after forking locations only; not after every server. These are the locations of explicit
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Fig. 3.3: Example network and naive multicast analyses

intermediate bounds The traditional SFA and PMOO analyses can then be applied on those
sub-flows.

We note that the concept behind EIB of cutting a tandem in a series of sub-tandems and
sub-flows shares some similarities with TMA introduced in Section 3.2.2 and Definition 3.1.
While the goal of cutting differs between EIB and TMA, both methods share the same idea of
network transformation rule.

For our second approach, whereas the EIB required to explicitly consider each location a
multicast flow forks, the mcastFFA implicitly restricts the analysis to the trajectory relevant
for the analysis. This is illustrated in Figures 3.4b and 3.4c. This step may constitute consider-
able effort in large networks, but is based on a backtracking of dependencies to alleviate this
effort. Dependencies of a flow on others are derived by traversing the network in the oppo-
site direction of links. The entire Feed-Forward Analysis (FFA) starts this procedure with the
flow of interest. Our mcastFFA will iterate over all n trajectory of interest and execute separate
analyses. Multicast cross-flows are traversed backwards, too, such that their fork locations do
not enforce to cut the tandem to analyze; the relevant trajectory of the cross-flow is known
and can be treated similar to a unicast cross-flow. NC’s PBOO or PMOO properties can thus be
used.
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(a) EIB: multicast flows are cut (b) Multicast FFA to trajectory (c) Multicast FFA to trajectory
into unicast sub-flows i fE

Fig. 3.4: Contributed multicast analyses of flows

Numerical evaluation

For the numerical evaluation of the proposed approaches, we focus on the industrial network,
illustrated in Figure 3.5a with two multicast flows (v9 and vg). Numerical results on the end-
to-end delay bounds of the different flows are shown in Figure 3.5b.

Key observations w.r.t. the performance of DNC analyses confirm our theoretical evalu-
ations. mcastFFA with PMOO produces gains of and 13.08 % compared to the multicast TFA.
mcastFFA produces more accurate bounds than the EIB analysis, since it can operate on longer
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tandems.

We also observe that mcastFFA results are never inferior to TA or FA introduced earlier in
Section 3.2. Moreover, cases of equal results often coincide with the simplistic ones where even
mutlicast TFA is competitive.

From [102] | u. trans. EIB mcastFFA
Flow TA FA PMOO TFA SFA PMOO SFA PMOO
Y (59 Vo, 03 v 142 192| 142 | 182 182 142 | 182 122
X <:> vasy | 122 122 | 142|122 122 122 | 122 122
vais, | 142 192 | 142 | 182 182 162 | 182 142
v3 66 56| 56 56 56 56 | 56 56
v Tt O LI T 56 66| 56 56 56 56 | 56 56
N (o7, Ty U6, V7,09 106 106 | 96 9% 96 9% | 96 96
% v6 142 192 | 142 182 182 142 | 182 122
- @ vy - 152 | 142 | 142 142 142 | 142 132
s 92 122 102 | 112 112 102 | 112 92
v, v - 162 142 | 152 152 142 | 152 132
" 5y L’QKSD e 1 ZQ(S“) 92 122 102 1?2 1?2 102 1?2 Zz
N N 9(552)
(a) Evaluated AFDX network (b) Delay bounds (in ys, least bounds in bold)

Fig. 3.5: AFDX network evaluation of [102], extended with DNC’s EIB and mcastFFA delay
bounds.

Conclusion

In [19] and [20], we tackled the problem of analyzing multicast flows with DNC, a framework
initially tailored to the analysis of unicast flows. Previous approaches for tried to adjust to
this restriction by, e.g., pessimistic re-modeling of the network, but this ultimately leads to
inaccurate performance bounds.

With our two contributions, the EIB analysis and the mcastFFA, we took two crucial steps
to achieve a true DNC analysis of multicast flows. In theoretical and numerical evaluations we
showed in [19] and [20] that we contributed a single best DNC analysis for multicast flows. Our
contribution has the flexibility to be combined with any DNC tandem analysis and improve-
ment thereof, such as FIFO multiplexing service analysis, or packetization.

3.3.2 Flow detouring

Note This section is based on [21], published in IFIP Networking 2020, 2020. The complete
work is in Appendix A.1.3.

We introduce virtual cross-flow detouring as an addition to existing NC analyses in [21].
Detouring defines a new degree of freedom in the search for the best trade-off between length
of analyzed tandems and flow aggregation. The main idea is that, if a cross-flow is detoured
over (parts of) another flow’s path, both can be treated by the analysis algorithm as an aggre-
gate on a longer tandem. This principle is illustrated in Figure 3.6, where zf, is detoured over
s01. Despite the additional load at servers to be detoured over, this approach attains improved,
valid delay bounds under certain conditions.
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The addition of pessimism is not an entirely novel idea, and can be seen as a generalization
of the FP property introduced in Section 3.2.1. Both detouring and FP aim at maximizing the
use of the PMOO aggregation property of NC and thus tightening bounds.

Detouring creates a new trade-off that can beat the standard Pay Multiplexing Only Once
Analysis (PMOOA) strategy. The longer tandem will be able to hold more data in transit (added
pessimism), and the issues of PMOOA prevent introduction of dangerous optimism by making
it lack the ability to distribute load in a better way than on the original tandem. In summary, it
is key to virtually detour a flow over its cross-flows such that the PMOO property has an impact.
Then, the analysis of a more pessimistic setting can indeed result in better output bounds

(a) Original network from [25]  (b) After detouring of flow zf,

Fig. 3.6: Cross-flow detouring known to benefit from a longer tandem analysis of zf;

In larger networks with flows taking different paths, there may be several virtual detour-
ing alternatives in order to allow for the PMOO principle’s application to different sets of their
cross-flows - the amount of alternatives certainly increases with the network size. This creates
potential for a combinatorial explosion, a common problem already identified for FP in Sec-
tion 3.2.1 and TMA in Section 3.2.2. To overcome this issue, a simple heuristic was proposed,
which simply checks all in-links and detour over the one that has the most flows on it.

Numerical evaluation

We compare in this section the resulting end-to-end delays produced by PMOOA+Detouring
and compare them against TMA and SFA. We aim to derive the best delay bound for every
flow. There are no semantics assigned; the flow with the best improvement could be the most
important one.

We first evaluate how many flows have their end-to-end delay bound matched or reduced
with the use of detouring, compared to the other analyses:

delayPMOOA-l—Detouring < delayX (3-1)

Results are presented in Figure 3.7. PMOOA+Detouring is able to match or improve delay
bounds of TMA for at least 53.0 % of the analyzed flows - this lowest value is obtained in the
largest network. In contrast to PMOOA without Detouring, which matches at most 26.7 % of
the analyzed flows compared in the largest network, the addition of detouring is beneficial. As
expected, the use of detouring has thus almost no impact on the existing relation to SFA and
ULP delay bounds [24].
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Fig. 3.7: Delay bound improvements over other network analyses

Conclusion

We show that virtual flow detouring is a powerful extension to the PMOOA. Resulting delay
bounds are matching or even outperforming the state-of-the-art analyses that are considerably
more involved such as TMA. Our contribution is based on the counter-intuitive idea of adding
pessimism to the model, a generalization of the FP property. Due to a previously frowned upon
characteristic of PMOOA, we can compute better delay bounds nonetheless.

3.4 Graph-based deep learning for speeding up formal
verification

We noted in Sections 2.1, 3.2 and 3.3 that while some analysis methods provide impressive
improvements regarding bound tightness, this gain in tightness is paid with a non-negligible
cost in terms of execution time. To overcome this issue, we introduce in this section a powerful
heuristic based on graph neural network (GNN). We follow the main concept introduced in
Section 2.4. We show different use-cases of how this heuristic can be tailored to overcome
pitfalls of some analyses, leading to fast and tight analyses.

We note that while the heuristics proposed here might not always give the best answer,
they are integrated in the various NC analyses in such a way that the bounds produced are still
formally valid. This is an important aspect of NC, since its strength is to produce formally valid
bounds.

Including machine learning (ML) in formal methods is nothing new, as shown by the recent
surveys from Amrani et al. [5] and Wang et al. [184]. Specifically for GNNs, they were used for
prediction of satisfiability of Boolean satisfiability problem (SAT) by Selsam et al. [158], or basic
logical reasoning tasks and program verification by Li et al. [119].

3.4.1 A heuristic for different NC analyses

Note This section is based on [69], published in Proceedings of the 2018 International Workshop
on Network Calculus and Applications, 2018. The complete work is in Appendix A.1.4.
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We reviewed in Sections 2.1 and 3.2 various DNC analyses, and noted, either via references
to prior art or via numerical evaluations, that no single analysis outperforms all the others w.r.t.
tightness depending on the network which is studied. This leads to a state where practitioners
of DNC are left at their own judgment when deciding which analysis and NC properties to use
when analyzing a given network in order to have a tight bound.

To illustrate this state of NC, we evaluate and compare TFA, SFA and PMOO, with different
arrival bounding methods on a dataset of randomly generated networks in Figure 3.8. Addi-
tionally to the main analysis, different arrival bounding methods are also evaluated. We refer
to the work from Bondorf and Schmitt [22] for a complete explanations of those arrival bound-
ing methods.

(a) (b) (c)
TFA + PMOO-PF-AB 4 | 0.8% | 48.4%
TFA + PMOO-AB 1 | 0.8% | 18.3%
~  TFA+PBOO-PH-AB |0.8% | 18.3%
S TFA+PBOO-PF-AB- |08% | 64.1%
% SFA + PMOO-PF-AB - [ 19.2% | 1]08% 1L - ‘
g SFA + PMOO-AB - [ G 53 6% 4 ]0.8% R T et
-2 srA + PBOO-PH-AB 4 [N 522 |1 0.8% 4 I
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é PMOO + PMOO-PF-AB -+ [ 37.1% {1 15.8% A
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Percent of flows where Percent of flows where Relative difference
the method is best the method is worst compared to best method

Fig. 3.8: Evaluation and comparison of the different network analysis methods against differ-
ent metrics. (a) Ratio of flows where a given method produces the tightest bound
compared to the other methods, (b) respectively the worst bound. (c) Relative differ-
ence between delay bound of a given method and the best method when the given
method does not provide the best bound.

Figure 3.8 confirms that no single analysis is best, meaning that some level of expertise is
required to understand which analysis to use given a network. To alleviate this requirement,
we propose a simple algorithm illustrated in Algorithm 3.1. The goal is to appropriately select
the best analysis method before doing the bound analysis via the select_netcalc_method function.
We propose to use a GNN for performing this task.

Algorithm 3.1 Adaptive network analysis

for all flow of interest F in network A/ do
netcalc_method < select_netcalc_method (N, F)
bound z <+ netcalc_method(N, F)

end for

Graph transformation

In order to apply the concepts described in Section 2.2 to network calculus analysis and ulti-
mately have an efficient select_netcalc_method function, we model the feed-forward server graph
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and the flows crossing it into undirected graphs. Each server is represented as a node in the
graph, with edges corresponding to the connections between servers. Each flow is represented
as a node with edges connecting it to the path of traversed servers. Since the order of the
servers which is traversed by a flow plays a large influence in network calculus, so-called path
ordering nodes are added on the edges between the flow node and the server nodes. Figure 3.9b
illustrates this graph encoding with the network from Section 3.4.1.

~__Path

f
A ) = == G

(a) Example network

(b) Graph representation

Fig. 3.9: Transformation from network calculus server graph to unidirected graph
Each node in the graph has the following input features:

- For server S, we use the parameters of its rate-latency curve: is = [rates, latencyg];
- For flow F, we use the parameters of its token bucket curve: ir = [rate r, burst r|;

- For a path ordering node O, a categorical encoding of the hop index is used as input
feature. We use standard one-hot encoding, namely ip is a vector with a one at the hop
index, and zeros otherwise (e.g.: in Figure 3.9b, we have ig_sl = [1,0,0], iél_SQ -

[0,1,0], i3 = [0,0,1]).

For the output prediction of each node representing a flow F, we wish to have a vector of
end-to-end latency bound for the 12 methods presented earlier, namely:

or = [delayBound'y", delayBound'y?, ..., delayBound'z*?]

with m,, the different NC analysis methods. Similar output vectors may be used for the servers’
backlog bound.

By this method, the GNN is an efficient approximation of the delay bounds of the different
methods. By sorting the predicted delay bounds and taking the one resulting in the minimum,
we build the select_netcalc_method function.

Numerical evaluation

We first assess in this section the precision of the predicted end-to-end latency bounds. Fig-
ure 3.10 illustrates the absolute relative difference between the predicted end-to-end delay
bounds (i.e. the vector ox) and the bound given by the analytical method (named here ground
truth). The overall median value is 2.5 %, with larger errors in case of predicting the output of
PMOO.
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Fig. 3.10: Precision of the predicted end-to-end latency bound

Based on those results, we evaluate in Figure 3.11 the ability of Algorithm 3.1 to produce
the tightest per-flow end-to-end delay bound. Different strategies are evaluated: the ML-based
ones using the GNN, random choices, or simply taking the best method overall. The machine
learning based strategies outperform all the other strategies in Figure 3.11, with the ability to
produce the tightest result for 88 % of the studied flows for the ML top 2 strategy, outperforming
all the other evaluated strategies.

ML top 2 88.1%
PMOO and SFA - 83.2% |
ML top 1 76.6% |
Per-topo best - 71.2%)
Global top 2 1 61.6%|
Global top 1 1 52.1%
Weighted random 44.2% |

Fully random 29.4%
0% 25% 50% 75%
Coverage ratio compared to
optimal selection method

Strategy

Fig. 3.11: Ability of a selection method to produce the tightest end-to-end delay bound

Conclusion

We contributed a novel heuristic for DNC using graph-based deep learning. Our approach is
based on the application of GNN and a mapping from feed-forward server graphs and the flows
crossing them to graphs which can be used for training a neural network. We showed via a nu-
merical evaluation that our approach is able to reach good accuracy and predict which network
analysis will produce the tightest bounds. Additional results in [68] show that this heuristic can
be used at a small computational cost compared to traditional network analyzes.
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3.4.2 Predicting best tandem decompositions with DeepTMA

Note This section is based on [62] published in Proceedings of the 38th IEEE International
Conference on Computer Communications, 2019, [64] published in Proceedings of the 25th IEEE
Symposium on Computers and Communications, 2020, and [65] published in IEEE Transactions on
Network Science and Engineering, 2021. The complete works are in Appendices A.1.5 to A.1.7.

With our review of Tandem Matching Analysis (TMA) [24] in Section 3.2.2, we identified
its major pitfall: in order to find the best tandem decomposition, TMA needs to evaluate all
possible tandem decompositions via an exhaustive search. On a single tandem with n servers,
this amounts to a total of 2"~! potential decompositions to explore, leading to hours of com-
putations on larger networks [24].

We propose in [62, 64, 65] and in this section to avoid this exhaustive search by applying the
lessons learned from [69] and Section 3.4.1, namely: use a GNN to predict the most promising
tandem decomposition(s), and perform the TMA only on this subset of decompositions. Our
approach - called DeepTMA - achieve considerably faster execution times than TMA without
considerably compromising on delay bound tightness.

The main intuition is to transform the NC server graph and flows into an undirected graph.
This graph representation is then used as input for a neural network architecture able to pro-
cess general graphs, which will then predict the tandem decomposition resulting in the best
residual service curves. Our approach is illustrated in Figure 3.12. Since the delay bounds are
still computed using the formal network calculus analysis, they inherit their provable correct-

ness.
Network Calculus End-to-End
TMA Analysis Latencies

)

Network of servers Cuts Recommendation K
and flows | Training

Graph Transformation Points

and Neural Network

Fig. 3.12: Overview of DeepTMA and its integration within NC

Graph transformation

We model NC’s directed network as an undirected graph, following a similar process than in
[69] and Section 3.4.1. Figure 3.13b illustrates this graph encoding on the network from Fig-
ure 3.13a.

We start with the graph transformation explained in Section 3.4.1, namely each server and
each flow is represented as a node in the graph. A flow’s path is represented using edges, with
the path ordering nodes explained in Section 3.4.1. This path property is especially important
in the TMA since the order, and hence position of cuts, has a large impact on dependency
structures. In order to represent the TMA cuts introduced by Definition 3.1 in Section 3.2.2,
each potential cut between pairs of servers on the path traversed by the flow is represented as
an additional node. This cut node is connected via edges to the flow and to the pair of servers it
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Fig. 3.13: DeepTMA graph transformation

is associated to. We use the same node features introduced in Section 3.4.1 for the server, flow
and path ordering nodes. Neither cut nodes nor edges have input features.

Based on this description of the server graph, the problem of choosing the best tandem
decomposition to give to the NC analysis is formulated as a classification problem. Each cut
node has to be classified in two classes: perform a cut between the pair of servers it is connected
to or not: [cut, cut]. The overall prediction to be fed back, i.e., the selection of one out of TMA’s
potential decompositions for a given foi’s path, is defined by the set of all cut classifications
for this path.

Numerical evaluation

Figures 3.14 and 3.15 illustrate benchmarking results of DeepTMA. We compare against TMA
and the established SFA and PMOO heuristics of NC. These heuristics greedily decide on a single
contention model, ignoring arrival and service curves.

To evaluate the delay bound tightness, we use the relative error to TMA:

TMA
foi (3-2)

heuristic
foi

delay

— delay

TMA
foi

delay

relative errorgy; =

A value of relative errorgy; close to zero indicates that the heuristic produced a tight result
compared to the exhaustive search. Larger values indicate that the heuristic chose a tandem
decomposition.

All heuristics outperform a consistent worst choice of contention models as shown in Fig-
ure 3.14. DeepTMA-derived delay bounds are tightest among these heuristics, deviating from
TMA by no more than 6 % in our experiments from [62].

In terms of execution time, DeepTMA is minimally slower than PMOO but faster than SFA
and TMA, as illustrated in Figure 3.15. Moreover, recent work from Scheffler et al. [149] showed
that the TMA cannot be parallelized easily and a speedup of only one order of magnitude was
observed.

We also compared DeepTMA against various heuristics in [62] and [65]. In Figure 3.16, we
compare our GNN heuristic against a random heuristic. This heuristic randomly samples a
small part of TMA’s search space per tandem in the analysis, with the n in RND,, represent-
ing the size of the sample. DeepTMA is able to achieve much better results than this random
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Fig. 3.14: Comparison of DeepTMA to existing NC heuristics with respect to relative error
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Fig. 3.15: Comparison of DeepTMA to existing NC heuristics with respect to execution time

heuristic in Figure 3.16. We also compared DeepTMA against NC-based heuristics in [62] and
simpler ML-based heuristics in [65]. Our numerical evaluation show that DeepTMA is consis-
tently better than all the heuristics which were evaluated.

Conclusion

We contribute in [62, 64, 65] a new framework that deeply combines network calculus and deep
learning for producing tight and efficient bounds. It solves the main bottleneck of the existing
TMA, namely its exponential execution time growth with network size, by using predictions
for effectively selecting the contention models in the network calculus analysis.

Via a numerical evaluation, we show that our heuristic is accurate and produces end-to-
end bounds which are almost as tight as TMA. DeepTMA is as fast as or faster than previously
widespread methods - namely SFA and PMOO - even when analyzing larger networks with up
to 14504 flows in [65], and with a gain in tightness exceeding 50 % in some cases.
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Fig. 3.16: Relative error of DeepTMA against a random heuristic

3.4.3 Predicting best flow prolongations with DeepFP

Note This section is based on [75], published in Proceedings of the 27th IEEE Real-Time and
Embedded Technology and Applications Symposium, 2021.

With our review of Flow Prolongation (FP) [18] in Section 3.2.1, we identified a second net-
work analysis method from the NC literature with good tightness but suffering from poor scal-
ability due to its reliance on an exhaustive search. On a single tandem with n servers and m
cross-flows, the analysis time of FP grows in O(n™) potential flow prolongations to explore.

We propose here DeepFP, a method for avoiding FP’s exhaustive and bringing efficient FP
to NC based on the lessons learned from Sections 3.4.1 and 3.4.2. Overall, the main concept
behind DeepFP is similar to DeepTMA. To overcome exhaustive searches in the algebraic FP NC
analysis, we use the prediction of a GNN to restrict it to a small subset of best potential flow
prolongations. This concept is illustrated in Figure 3.17.

Original network

fp
f1 &f_“- Q
w '-v-‘
foi |

Graph transf. + GNN
v

Original network

/ Exhaustive search \
) . ) . Prediction
FP Alternative 1 FP Alternative n f2

fol

NC Analy 515 NC Analys1s NC Analy51s
de/ay1 de/ay n DeepFP
delay'™® = min(delay,, ..., delay,) delay

(a) Original FP analysis with O(n™) analyses ®) EZ?IPFP with one predic-

Fig. 3.17: Overview of FP and DeepFP

By demonstrating that we can make the FP analysis scale this way, we also reveal that its
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impact on the derived delay bound is very sensitive to the network model’s assumptions. The
foremost contribution of DeepFP in [75] is the FP analysis of FIFO networks. Under this as-
sumption and applying the state-of-the-art algebraic Least Upper Delay Bound (LUDB) analy-
sis [15, 17] and its tool Delay Bound Rating AlgoritHm (DEBORAH) [16], we derive entirely new
conditions for beneficial flow prolongations, train the GNN and acquire significantly improved
delay bounds.

Graph transformation

We follow a similar graph transformation than in Sections 3.4.1 and 3.4.2, as illustrated and ap-
plied in Figure 3.18b on the network from Figure 3.18a. Each server and each flow is represented
as a node in the graph, with the features already introduced in Section 3.4.1. Flows’ path are
encoded using edges in the graph. Additionally, the foi receives an extra feature representing
the fact that it is the analyzed flow.

Compared to the original DeepTMA graph model, we simplify one aspect: we do not include
path ordering nodes that tell us the order of servers on a crossed tandem. DeepTMA was shown
to benefit only marginally from the effort to incorporate this additional information [64] and
we confirmed the same behavior in preliminary DeepFP numerical evaluations.

To represent the flow prolongations, prolongation nodes (Psij ) connecting the cross-flows to
their potential prolongation sinks are added to the graph. Those nodes contain the hop count
according to the foi’s path as main feature - this is sufficient to later feed the prolongation into
the NC analysis, path ordering nodes are not required for this step either.

The last server of a cross-flow’s unprolonged path is also represented as a node (s3 for f1
and s, for f, in Figure 3.18b). Those nodes represent the choice to not prolong a flow.

Prolong?

(a) Example network

(b) Graph representation

Fig. 3.18: DeepFP graph transformation

Numerical evaluation

We compare DeepFP against PMOO-FPg,; and DEBORAH-FP;;, modified analyses where the FP
property is only applied to the foi and not the also in the different recursions required during
the NC analysis.

To quantitatively evaluate the performance of our approach, we use the relative gap be-
tween the delay bound given by PMOO-FPg,; and DEBORAH-FPg,; and the delay bound given by
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a heuristic, incl. the non-FP original analysis:

heuristic FPgy

pp _ delaygit™t — delayg,

foi = o (33)

delay bound gap delay
foi

A value of delay bound gapfy; close to zero indicates that the heuristic produced a tight re-
sult compared to the exhaustive search. Larger values indicate that the heuristic chose a bad
prolongation, i.e. the bound is loose.

The results are shown in Figure 3.19. First to note is that FP does not have a significant
impact in PMOO - we confirm the finding of Bondorf [18] in a larger evaluation by observing
an average gap between PMOO-FPy,; and PMOO of just 3.7 %. Neither the random heuristic nor
DeepFP can thus achieve a considerable delay bound improvement, although the predictions
taken are very accurate.
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Fig. 3.19: Average delay bound gap of heuristics against PMOO-FP;,; and DEBORAH-FPy;

For DEBORAH-FP, we can report a completely different picture. Having brought the FP
property to the DEBORAH analysis had a huge impact on the delay bound tightness. We see that
an average gap of 60.75 % between DEBORAH and DEBORAH-FPy,; analysis results was opened
when adding the exhaustive FPy; feature. Moreover, reducing the effort by random selection of
prolongation alternatives did not perform well, even RND1¢ leaves an average gap of 11.68 %. On
the other hand, DeepFP closes this gap successfully. Even the version with a single prediction
pushes the gap down to 2.57 % such that an increase of proposed prolongation alternatives does
not have a big impact anymore.

To evaluate the scalability of our approach with respect to the network size, we also eval-
uated DeepFP on networks with a larger number of servers (up to 16) and flows (up to 256).
Numerical results are summarized in Figure 3.20. As in Equation (3.3), we define the delay
bound gap to PMOO and DEBORAH (i.e. the analyses without the FP property) as:

heuristic

foi (3. 4)

non-FP
foi

delay — delay

non-FP __
foi -

delay bound gap

non-FP
foi

delay

For the PMOO analysis, the random heuristic results in a negative delay bound gap in average,
namely the resulting delay bounds are worse than by simply using the standard PMOO analysis,
even for the larger values of k = 32. Despite this, DeepFP is able to achieve an average gain in
tightness of 1.06 % for PMOO. For the DEBORAH analysis, the random heuristic results in a gain
in tightness of only 0.25 %, where DeepFP is able to achieve a gain of 13.74 %.
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Fig. 3.20: Average delay bound gap of DeepFP to standard PMOO and DEBORAH on the larger
networks

We first illustrate the average relative execution time of the FP analyses against the non-FP
analysis in Figure 3.21, namely:

FEzxecution time FP

(3.5)

FEzxecution time non-FP

This measure helps us understand the cost of using FP. In average, DeepFP with Graphic Pro-
cessing Unit (GPU) acceleration is approximately an order of magnitude faster than PMOO-
FPs;, and almost three orders of magnitude faster than DEBORAH-FPg,;. Taking into account
the tightness of the method illustrated earlier in Figure 3.19, those results show that DeepFP is
able to achieve a good balance between tightness and computational cost.

DeepFP (GPU)
DeepFP, (GPU)
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Fig. 3.21: Average relative execution time of different analyses

Conclusion

With DeepFP, we introduced an approach for making the NC analysis feature FP scale. FP can be
paired with either of the two predominant flow multiplexing assumptions, arbitrary or FIFO,
and we show that it is most impactful when bounding the flow of interest’s delay.

Our results are especially relevant to any system designed around FIFO-multiplexing and
-forwarding of data. Most notable are Ethernet-based networks like AFDX, AVB or TSN. Even
though they follow the "FIFO per priority queue" design, their NC model is essentially a FIFO
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system model, as illustrated for example by Boyer and Fraboul [33]. Our results can be com-
bined with existing works on service modeling of the specific schedulers used in those systems.

When scaling to larger networks, where the existing PMOO-FP was known to struggle with
computational effort, DeepFP still works. Without considerable loss of prediction accuracy
we gain delay bound tightness of 1.06 % compared to standard PMOO, and 13.7 % compared to
DEBORAH.

3.5 Conclusion on network calculus improvements

We contributed in this chapter various works and improvements on the analysis methods of
DNC. One conclusion from our review of the literature on DNC is that while various analysis
methods have been proposed, there is no clear winner on which one is the best in all possible
scenarios and networks. With all these methods there is also a strong correlation between
gains in tightness and execution time as illustrated earlier in Figure 1.1.

This means that a practitioner of DNC has to use expert knowledge in order to decide which
method is the most appropriate given a network to analyze. One major contribution presented
in Section 3.4 is the introduction of a fast and efficient heuristic for DNC based on GNN to alle-
viate the need for this expert knowledge. With our heuristic, we are the first ones to contribute
tight and efficient methods. Our methods are both competitive in terms of computational ef-
forts with early works in DNC such as SFA and PMOOA, and competitive in terms of tightness
with more recent and involved methods such as TMA and FP.

With our works, we also contributed openly accessible NC-specific datasets (see Appendix B).
This is also an important step for the NC community, since there is currently a lack of common
datasets for evaluating and comparing the results of analyses.

Finally, our works also illustrates that data-driven methods open the door to an ideal fast
and tight method as illustrated in Section 3.4. Our GNN-based approach may also be extended
to adjacent problems such as DNC-based network optimization or network design. An example
of this is that our research on GNN and NC sparked interest in the NC community, as illustrated
by the work from Mai and Navet in [122] and [123], which looked at applications of GNNs for
the configuration of TSN networks.
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4.1 Introduction

In Section 2.4 we introduced a novel concept for solving some issues in networking, namely
use graph transformations in combination with graph neural networks (GNNs) for leveraging
patterns in network problems and follow a data-driven approach for addressing them. While
related machine learning (ML) approaches have been used in various works, they usually re-
quire fine tuning and expert knowledge for designing input features. Traditional approaches
may also not cope with network of various sizes, an aspect easily handled using GNNs.

While we investigated in Chapter 3 - and more specifically Section 3.4 - how it can be ap-
plied to deterministic network calculus (DNC), we explore in this chapter other areas where
GNNs are relevant: (i) performance evaluation in Section 4.3, (ii) network protocol design in
Section 4.4, and (iii) validation and synthesis of network configuration in Section 4.5.

This chapter helps strengthening the versatility of our approach. We illustrate that by cor-
rectly incorporating knowledge and relationship about the tackled problem in the data graph,
GNNs can address a large variety of tasks.

4.2 Related work

ML as attracted a lot of attention in the networking community in the last years, as shown in
recent surveys from Wang et al. [186], Usama et al. [179], Xie et al. [192], and Zhang et al. [197].
We review here specific works related to the problems addressed in this chapter.



38 4, Application of graph-based deep learning methods for computer networks

4.2.1 ML for performance evaluation

ML is increasingly been used for performance modeling. For instance, Tian and Liu [175] ap-
plied the Support Vector Regression (SVR) model of Transmission Control Protocol (TCP) band-
width prediction application from Mirza et al. [133] to improve Quality-of-Service (QoS) of me-
dia streaming over Hypertext Transfer Protocol (HTTP). Tariq et al. [169] proposed What-If Sce-
nario Evaluator (WISE), a framework for evaluating architecture changes in communication
networks using Causal Bayesian Networks (CBN). Hours et al. [86] used Bayesian causal infer-
ence for modeling the bandwidth of TCP flows.

Graph models has also recently attracted various works. In the scope of wireless networks,
GNNs were used by Lee et al. [117] for link scheduling, Shen et al. [161] for interference channel
power control, and Nakashima et al. [137] for wireless channel allocation.

4.2.2 ML for routing

The question of distributed routing protocols based on machine learning has already attracted
various researchers. Early work on this topic include Q-Routing from Boyan and Littman [31],
COllective INtelligence (COIN) from Wolpert et al. [190], or distributed Gradient Ascent Policy Search
(GAPS) from Peshkin and Savova [141]. Their general approach is to use multi-agent reinforce-
ment learning in combination with a network-wide utility function. More recently, Valadarsky
etal. [180] also proposed to use reinforcement learning, with the goal of using past traffic matri-
ces in order to guide route calculations. Compared to those works, we use here semi-supervised
learning in order to more easily specify the routing policy which is expected. Previous work
also often predetermined or constrained the specification and format of the communication,
whereas our approach leaves the content or format of the exchanged information as a param-
eter to be learned. Our work also evaluates key aspects of routing protocols, namely resilience
against packet loss and inclusion of network dynamics.

A supervised learning approach was recently proposed by Mao et al. [125] using Supervised
Deep Belief Architectures, with a focus on speed of route computation. Compared to their
approach, our method can be applied to a wider range of network topologies since it is inde-
pendent of the underlying structure of the topology.

The challenge of training agents to communicate and realize a common goal has attracted
work in other domains. Foerster et al. [56] applied Deep Distributed Recurrent Q-Networks (DDRQN)
for solving logic riddles. Sukhbaatar et al. [167] proposed a deep neural network architec-
ture called CommNet for developing communication between agents on the task of multi-turn
games, traffic junction or logic riddles. In both approaches, no constraint on communication
structure is enforced as a broadcast channel is used.

4.2.3 ML for network protocols

Additionally to the proposal for bringing ML to routing protocols, ML was also used in other
various areas of network protocols. We review here some of the works addressing some chal-
lenges in network protocol design and functions with data-driven approaches.

In the scope of congestion control, various works were performed to improve the band-
width utilization while reducing latency. Winstein and Balakrishnan [189] introduced RemyCC,
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one of the early work on data-driven approach to congestion control. Neural network (NN)-
based congestion control were investigated by various works, such as Muses from Wang et al.
[187], Performance-oriented Congestion Control (PCC) Vivace from Dong et al. [51], and Indigo
from Jay et al. [93, 94].

Finally for adaptive video streaming, solutions to optimize users’ Quality-of-Experience
(QoE) based on adaptive bitrate were also proposed. Mao et al. [126] used reinforcement learn-
ing to dynamically adapt video bitrate. More recently, Yan et al. [194] proposed Fugu for adap-
tive bitrate, based on a hybrid model predictive control (MPC) and NN approach.

4.3 Graph models for performance evaluation with DeepComNet

Note This section is based on [60] published in Proceedings of the 11th International Confer-
ence on Performance Evaluation Methodologies and Tools, 2017, and [61] published in Perfor-
mance Evaluation, 2019. The complete works are in Appendices A.2.1 and A.2.2.

Network and traffic models are important tools in order to predict how a given network
architecture will behave. This is an important task for architecture design and QoS in an in-
creasing number of applications. Different techniques have been developed for this purpose,
such as mathematical modeling, simulations or measurements. While those techniques are
usually accurate, they often require precise measurements of key performance indicators such
as round-trip time (RTT) or loss probability, and are often tailored to specific parts or flavors
of the studied network protocols. Early ML-based models for performance evaluation such as
[133, 175, 169, 86] - while producing good accuracy - still require the same features such as RTT
or loss probability.

Our main contribution in [60, 61] is a performance model which only uses the studied net-
work topology and flows description as input in order to predict bandwidth utilizations and
latencies of flows interacting on this network. For this purpose, we apply the concepts intro-
duced in Section 2.4. The intuition behind our approach is to map network topologies and
flows to graphs, and then train GNNs on those graphs. This enables us to avoid the task of en-
gineering high-level protocol-specific input features such as RTT, which usually require expect
knowledge on the network protocol which is modeled.

Graph transformation

The main intuition for our graph transformation is to use the queuing network as modeling
graph, with additional nodes representing the flows in this network. An illustration of this
queuing network is given in Figure 4.1b, which is the queuing representation of the example
network illustrated in Figure 4.1a with one switch or router interconnecting three PCs with
three flows.

If the studied protocols are bidirectional, i.e. packets are sent in both directions between the
sender and received, both directions need to be included during the graph transformation. This
is relevant in protocols with acknowledgment packets such as TCP for example. An illustration
of those additional queues is given in Figure 4.2.

Based on this queue network, the graph transformation is as follows. Nodes in the graph
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Fig. 4.1: DeepComNet graph transformation
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Fig. 4.2: DeepComNet graph transformation for TCP

correspond to the queues traversed by the flows in the network topology as well as specific
nodes representing the flows. For the node features [,, a vector encoding the node type (i.e.
if a node represents a flow or a queue) with one-hot encoding is used. Namely [, is a vector
with two values, with [1, 0] is for queue nodes, and [0, 1]7 for flow nodes. For simplification
purpose, we assume here that every PCs and switches or routers to have the same behavior
and all links in the topology to have the same capacity and latency. Additional features for
distinguishing between different behaviors or node types may be used in case different con-
figurations, types or link capacities are used.

Edges connect the queues which are used by the flows according to the physical topology
of the network. Additionally, edges between the flows and their traversed queues are used in
order to model which path is traversed by the flows. Figures 4.1c and 4.2b are examples of our
graph transformation applied to the topologies from Figures 4.1a and 4.2a respectively.

For each flow node in graph, the ML task is then to predict the performance indicator which
is required. In the case of latency or bandwidth prediction, this becomes a regression task. A
supervised approach is used for training the GNN.

Numerical evaluation

For the numerical evaluation of our approach in [61], we focused on two use-cases. First we
evaluate the capabilities of our approach at predicting the steady-state bandwidth of TCP flows
sharing different bottlenecks. For building our dataset, the ns2 simulator was used with the
Reno TCP flavor [91] on daisy-chain topologies with randomly assigned number of nodes and
flows.
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Secondly, we evaluate the capabilities of our approach at predicting the end-to-end laten-
cies of User Datagram Protocol (UDP) flows with constant bitrates sharing different bottle-
necks. We follow the same approach as for the previous use-case, namely multiple random
topologies with UDP flows are generated and evaluated using simulations.

Results are presented in Figure 4.3. Various GNN models were used, based on the gated
graph neural network (GGNN) model from Li et al. [119] and presented in Section 2.2. We evalu-
ated different variants for replacing The Gated Recurrent Unit (GRU) cell present in the GGNN
model, namely using a Recurrent Neural Network (RNN) [144, 188] and a Long Short-Term
Memory (LSTM) [85]. For the TCP use-case, we also additionally evaluated a SVR model similar
to the one from [134] using the RTT and loss probability as input, and a feed-forward neural
network (FFNN) model using the same input features as the SVR.

The median relative absolute error of 11.6 % for the SVR model, which confirms the 10 %
median relative error from Misra et al. [134]. The FFNN provides better results, with a median
relative error of 3.5 %. Those values are used as a baseline for comparison purposes.

Regarding the GGNN models, all architectures evaluated here are able to predict the TCP
bandwidths with a median relative error below 1%, outperforming the values from the SVR
by one order of magnitude, and also outperforming the FFNN using high-level input features.
This highlights our main motivation for using GGNNG.

Regarding UDP latencies, we are also able to reach a median relative error below 1 %. The
LSTM-based GGNN architectures provide better results on the TCP use-case, while the GRU-
based ones are more suited to the UDP use-case. We note that using stacked memory cells for
the GGNN enables better accuracy for the TCP use-case, while not providing better results in
the UDP use-case.
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Fig. 4.3: Comparison of the evaluated machine learning methods according to the relative er-
ror. Bars represent respectively the 25, 50 and 75 percentiles.

Conclusion

In [60, 61], we contributed one of first models applying GNNs to the performance evaluation
in networking. Overall, our results and additional results in [60, 61] illustrate that GNNs can
efficiently predict key performances of flows in networks based only a representation of the
network topology. Similar GNN-based models were later used for similar performance evalua-
tion, such as the work from Rusek et al. in [145], from Andreoletti et al. [7] and from Suzuki et al.
[168].
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4.4 Graph models for generating network protocols

Note This section is based on [68] published in Proceedings of the 2018 SIGCOMM Workshop on
Big Data Analytics and Machine Learning for Data Communication Networks, 2018. The complete
work is in Appendix A.2.4.

We propose in this section and [68] to investigate the question of automatic network proto-
col design using recent methods from deep learning. Our contribution is a novel approach for
training a network of independent agents such that they cooperatively exchange information
and solve a common goal in a fully distributed manner without central control. We address
more specifically the question of distributed routing protocols. From a network protocol per-
spective, the routing agents should autonomously develop a network protocol akin to Routing
Information Protocol (RIP) or Open Shortest Path First (OSPF), i.e. exchange topology informa-
tion and perform local path computations based on the exchanged information. Traditional
properties from routing protocols are also considered, namely handling topology changes and
packet losses.

With our approach we also contribute a novel extension of GNNs, which we name Graph-
Query Neural Network (GQNN). We evaluate our approach on various topologies from real net-
works from Knight et al. [104] and show that our approach leads to the creation of communica-
tion protocols able to exchange data about topology information as well as topology changes.

We are interested in training NNs on two important aspects of network protocols. The
first one is the protocol itself, namely how to distribute topology information among different
nodes. The second one is how to compute routes given a topology and link weights. We will
follow the approach from Section 2.4, namely transform network topologies and the attributes
specific to routing into graph, and process them using a GNN architecture.

Graph transformation

The main intuition behind the input feature modeling is to use the topology as input graph
G, with additional nodes representing the network interfaces as illustrated in Figure 4.4. In
order to enforce communication between nodes according to the physical network topology,
no additional edge is added to the graph. As for traditional routing protocols, each router in
the topology is assigned an integer identifier, noted R;. Nodes representing routers in the
graph use this identifier encoded as a one-hot vector for their initial representation i,. Nodes
representing interfaces use a weight parameter (e.g. based on the link bandwidth) for i,,.

Destination

Router '
Router Active nodes
Interface :
(a) Example network (b) Graph representation (c) Graph representation

Fig. 4.4: Routing graph transformation
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Graph-Query Neural Network (GQNN)

As opposed to all the other works using GNNs presented in Chapters 3 and 4 which used a
fairly unmodified GGNN architecture, we extended the GGNN with a mechanism for querying
specific information for a prediction, namely a route given a destination address. Our aim is
to bring a mechanism akin to the Scaled Dot-Product Attention from Vaswani et al. [181] to our
architecture.

We explore here the local computation of the routing table based on the topology infor-
mation which was distributed by the different nodes in the graph. Given a destination router
identifier R, each router must locally decide which output interface should be used. Based on
the graph transformation from the previous section and a given algorithm for path calculation
for supervised learning, this is modeled by labeling the interfaces with o; = [1] if they are used
for transmitting packets to router R, and [0] otherwise, as illustrated in Figure 4.4c.

Our new GGNN architecture is illustrated in Figure 4.5. The hidden node representations
h" correspond to the messages which are transferred between nodes. Once the message pass-

)

ing is finished, each node in the graph has a local representation of the network topology hi".
For determining which interface to use for a given destination router R, each router applies
the following procedure on each of its interface nodes:

qa = Q (Rq) query vector computation (4.1)
oy, =g (qd ©) hg,T)> output label as in Equation (2.10) (4.2)

with Q(-) and g(-) FFNNG.
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Fig. 4.5: Proposed Graph-Query Neural Network (GQNN) architecture

Numerical evaluation

For our numerical evaluation, we train our GNNs to follow two different algorithms for route
calculation: shortest path and max-min routing. For shortest path routing, the GNN is trained
against path calculations based on Dijkstra’s algorithm, where each link is associated with a
weight. For max-min fair routing [136], we aim at maximizing the minimum allocated band-
width between all possible source-destination pairs in the network. Such routing strategy
should lead to network topologies with less link overload than shortest path routing.

We evaluated our approach on real network topologies from the Internet Topology Zoo [104].
Since routing protocols are designed to run continuously and handle topology changes, we
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define here two phases of the protocol: cold-start when the routing protocol is first initialized
on the active routers, and warm-start when a node fails or a new node joins a network where
the routing protocol already ran for some iterations.

Figure 4.6 illustrates the accuracy of the computed routes according to the two use-cases
and the two phases. For a given topology, we define the accuracy as 1 if the route for a given
destination is correct for all routers in the topology, and 0 otherwise. In average, accuracies
of 98 %, respectively 95 %, could be reached for shortest path routing, respectively min-max
routing. The learned protocol is able to better predict shortest path routing, where a perfect
accuracy is reached for than 50 % of the evaluated topologies.

Cold start Warm start
1.00 1 )
Routing type
0754 — Max-min
--- Shortest path
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Cumulative distribution
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Fig. 4.6: Overview over the accuracy of the predicted routes

To assess the convergence time of the developed protocols, we evaluate the accuracy of the
routing at different iterations of the fixed point evaluation of the GNN in cold-start and warm-
start phases. The numerical results are presented in Figure 4.7. In case of topology changes
(i.e. warm start), better accuracies are reached faster as routes only need partial reconfigura-
tion. This shows that the protocol is indeed able to efficiently cope with and react to topology
changes.
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Fig. 4.7: Accuracy according to the iterations of the protocols. Areas indicate the 25 % and 75 %
percentiles.
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Conclusion

We contributed in this section a novel approach for automatic network protocol design using
graph-based deep learning. Our method is based on our proposed extension of GNNs called
Graph-Query Neural Network (GQNN) and a mapping from network topologies to graphs with
special nodes representing network interfaces.

Shortest path and max-min routing were evaluated as routing strategies. In our numeri-
cal evaluation, we showed that our approach is able to reach good accuracies. We illustrated
that specific properties of network protocols such as resilience to packet loss can be explicitly
included in the learned protocols by training the neural network with appropriate dropout.

Our work has inspired others to explore the network protocol design using GNNs, as shown
by the work from Xiao et al. [191] and from Sawada et al. [147].

4.5 Graph models for reasoning about network protocols

Note This section is based on [70] published in IFIP Networking 2019, 2019. The complete
work is in Appendix A.2.3.

Automated approaches can greatly improve the trustworthiness of networks and hence
reliability, by allowing to test a large number of network configuration for their policy com-
pliance. Yet, many network verification tools still require a super-polynomial runtime to test
basic connectivity properties, such as for example the works from Kazemian et al. [100] with
Header Space Analysis (HSA), Anderson et al. [6] with NetKAT, or from Jensen et al. [95] with
P-Rex. Testing whether network configurations are policy compliant even under failures, in-
troduces another combinatorial complexity.

Schmid and Srba [151] recently showed that for the widely deployed Multiprotocol Label
Switching (MPLS) networks, a polynomial-time “what-if analysis” is possible: an automata-
theoretic approach, leveraging a connection to prefix rewriting systems, can be used to test im-
portant properties such as connectivity (can two endpoints reach each other?), loop-freedom
(may packets be forwarded in circles?) or waypoint enforcement (is traffic always going through
the firewall?), even under failures.

While this is promising, the runtime in practice is still relatively high (in the order of an
hour even for relatively small yet complex networks). The approach from Schmid and Srba
requires the construction of a large pushdown automaton (PDA), based on the network con-
figuration, the routing tables, as well as the query. The PDA is then solved using reachability
analysis.

In [70] we proposed to ask the question whether it is possible to build upon these recent
results while exploiting opportunities for speeding up verification as well as to support an
automated fixing of configurations. This is challenging also because unlike other networks,
MPLS supports arbitrary (and in principle unbounded) header sizes: additional labels are for
example pushed to route around railed links.

Our work is motivated by the goal to predict and fix properties according to a natural reg-
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ular query language [95]. A (reachability) query is of the form
<a> b <c> k

where the regular expression a describes the (potentially infinite) set of allowed initial label-
stack headers, the regular expression b describes the set of allowed routing traces through the
network, and the regular expression ¢ describes the set of label-stack headers at the end of the
trace. Finally, & is a number specifying the maximum allowed number of failed links.

In our work, we contribute a novel approach to speed up verification and synthesis of the
policy-compliance of network configurations. At the heart of our our tool, DeepMPLS, lies
a new application of GNNs. Leveraging deep learning, DeepMPLS allows to predict counter
examples (i.e., “proofs” or witness traces) to specific network properties (or queries), which
can be verified fast. In fact, we show that DeepMPLS’s probabilistic approach may even be used
for synthesis: it has the potential to predict which MPLS rules should be added, in order to re-
establish certain properties. The tool may hence overcome the need to perform more rigorous
and time-consuming analyses in many scenarios.

Graph transformation

Our approach follows the idea introduced in Section 2.4 and the lessons learned in Sections 3.4
and 4.3. We model MPLS networks and the regular query language from P-Rex [95] as graph,
and via the use of GNNs, predict various properties about the network.

The transformation process we propose in this paper is illustrated in Figures 4.8 to 4.10,
where the MPLS network depicted in Figure 4.8a is transformed into a graph.

We first map the physical network topology to graph nodes as illustrated in Figure 4.8. Each
router v € V in the network is represented as a node. Each network interface i € Ii* U I9% is
also represented as a node, connected via an edge to its router. Links are represented as edges
connecting the two corresponding network interfaces.

Router

Interface
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(a) Example network

(b) Graph representation

Fig. 4.8: DeepMPLS graph transformation

As presented in Figures 4.9a and 4.9b, the MPLS configuration of each router is also encoded
as nodes and edges in the graph. Each MPLS label [ € L is represented as a node. The routing
table of each router 7, : I, x L — (27»XOP")" is represented as a set of rules. Each rule is
represented as a node in the graph, connected the nodes representing its input interface i € I
as well as its input label I € L. The actions o € Op associated to a rule are also represented
as nodes, connected via edges in case multiple actions are to be performed for a given rule as
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illustrated in Figure 4.9b. MPLS actions with label parameters such as swap or push are con-
nected to their respective label node. The last action associated to a rule is connected to its
output interface.

Input label Action Label for Swap

Input
interface

QOutput
interface

(b) Rule with multiple actions

(a) Forward rule encoding

Fig. 4.9: DeepMPLS graph transformation of MPLS forwarding rules

Queries are also encoded as nodes in the graph as illustrated in Figure 4.10. We follow an
approach inspired by the McNaughton-Yamada-Thompson algorithm [128] which transforms a
regular expression into an equivalent nondeterministic finite automaton. The different sym-
bols of the regular expression of a query are represented as nodes, with edges representing
their relationships. In case a symbol corresponds to a MPLS label or a router in the network,
we reuse the node which was already defined in the graph. Wildcard symbols are represented
as special nodes in the graph as illustrated in Figure 4.10a. Relationship between symbols such
as combinations (e.g. a1 + a2) are represented using edges in the query representation, as
illustrated in Figure 4.10b.
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(b) More complex query encoding

(a) simple query encoding
Fig. 4.10: DeepMPLS graph transformation of MPLS forwarding rules
Each node in the graph may have input features describing characteristics of the node. In

our case, nodes are mainly represented by their type, encoded as categorical value. We define
the 12 following types for the nodes:

- Elements of the network topology: Router, Interface;

- Elements of the MPLS configuration: Rule, Label, Push Action, Swap Action, Pop Action;
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- Elements of the query and the regular expression: Query, Label Wildcard, Label Dot, Router
Dot, Router Wildcard.

Depending on the task to perform, a classification task is then used on specific nodes or
edges in the graph.

Numerical evaluation

We evaluate here the training of DeepMPLS for the Satisfiability task, namely prediction of the
satisfiability of a query given an topology and MPLS configuration. Figure 4.11 illustrates the
accuracy of DeepMPLS during training according to the number of training iterations, on both
the training and the test dataset. Each training iteration corresponds to 16 analyzed topolo-
gies and queries from the training dataset, i.e. their representations as graphs. After 2500
training iterations, DeepMPLS reaches the accuracy of the baseline on the test dataset, before
converging after around 25 000 training iterations.
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Fig. 4.11: Training of DeepMPLS for prediction of query satisfiability and comparison against
baseline

In order to understand the practical applicability of DeepMPLS, we evaluate in this section
its execution time in different settings. Since the neural network can be evaluated on either
Central Processing Unit (CPU) or Graphic Processing Unit (GPU), we evaluated DeepMPLS on
both platforms. Figure 4.12 illustrates the different execution times and compares DeepMPLS
against P-Rex [95].

For the three different evaluations, we note a linear relationship between size of the push-
down automaton - and hence size of the analyzed graph - and the execution time. DeepMPLS is
one order of magnitude faster than P-Rex when running on CPU, and two order of magnitudes
faster on GPU, mainly due to the better ability of GPUs of parallelizing the numerical operations
used in neural networks. Those figures illustrate that DeepMPLS show promising applicability
due to fast computation times.

Conclusion

In [70] and this section, we showed that deep learning can not only be used for faster verifi-
cation of the policy-compliance of MPLS configurations, but even has the potential to provide
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Fig. 4.12: Execution time of DeepMPLS on CPU and GPU compared against P-Rex for the Satis-
fiability task

efficient synthesis, automatically re-establishing certain network properties.

In general, we understand our work as a first step and believe that our work opens several
interesting directions for future work. In particular, we believe that our approach can be re-
fined and optimized further, to provide an even better performance. Furthermore, it will be
interesting to investigate the synthesis of full MPLS configurations

Our work has inspired others to explore the verification of protocol and configuration using
GNNs, as shown by the work from Bahnasy et al. [10] which looked at verification of Border
Gateway Protocol (BGP) configurations using a similar approach than the one presented here.

4.6 Conclusion on machine learning methods for computer
networks

We contributed in this chapter applications of GNNs and the concept introduced in Section 2.4
to various problems in networking: performance evaluation, routing and configuration verifi-
cation and partial synthesis.

Additionally to our contributions in this chapter and in Chapter 3 and our review of GNNs in
networking in Section 4.2, we showed that GNNs are a powerful and efficient method for solving
some challenges in networking outside of network calculus (NC). This is especially relevant in
challenges requiring a global view of the network topology.
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5.1 Introduction

We contributed in Chapters 3 and 4 various analytical methods for doing performance eval-
uation or inference about network properties using data-driven methods. One outcome for
using those tools is offline what-if analysis, where assumptions and behavior of networks can
easily be checked by network engineers. Another outcome would be to introduce those func-
tions into the network itself and perform online changes, meaning having parts of the network
dynamically reacting to changes (e.g. link failure, as illustrated in Section 4.4).

For these online evaluation, some functionalities would need to be directly performed in-
side the network (e.g. accurate packet monitoring), with what is known as in-network computing.
In-network computing has demonstrated superior performance (e.g. NetCache from Jin et al.
[96], or Netchain Jin et al. [97]) and it is also power efficient (e.g. work from Tokusashi et al.
[178]). As contributed in Section 5.5 and also reviewed in Section 5.2.3, it is even possible with
today’s hardware to perform machine learning (ML) inference in the dataplane.

In this chapter we illustrate our contributions on P4, one of most recent solution for ad-
vanced dataplanes. We review how it may be used in an industrial environment, and also il-
lustrate how advanced data-structures and security functionalities can be added to these data-
planes. We also evaluate an application of ML for automatically adapting the batching strategy
of Vector Packet Processing (VPP) based on random forests.
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5.2 Related work

We review in this section various related work on advanced dataplane, their technologies, and
their applications.

5.2.1 Advanced programmable dataplanes

Approaches towards a top-down description of data-plane in a high-level programming lan-
guage have been proposed since the late 1990s and early 2000nd. Kohler et al. [105] proposed
Click, one of the early solutions which enables flexible packet processing in software, but with
the drawback of difficulty regarding compilation to dedicated hardware.

More recently with the increasing use of Field Programmable Gate Arrays (FPGAs) for packet
processing, Brebner and Jiang [36] proposed the PX programming language with a compiler
targeting FPGAs. Dedicated hardware for packet processing such as Network Processing Units
(NPUs) [76] or Reconfigurable Match Table (RMT) [26] have also been proposed. Song [165]
proposed Protocol-Oblivious Forwarding (POF), which defines an Flow Instruction Set which is
used for processing packets. Part of these work lead to the advent of P4 by Bosshart et al. [27]
- already discussed in Section 2.3 - which attracted a lot of work for advanced dataplanes.

Regarding purely software-based packet processing on commodity multi-core processors,
various works have been performed on the performance of such platforms. Dobrescu et al.
[49] evaluated the predictability of Central Processing Unit (CPU)-based platform. They evalu-
ated how contention for shared hardware resources such as caches can be taken into account
for improving performance predictability, an important aspect in case of safety critical appli-
cations. Emmerich et al. [53] benchmarked various Linux-based software stacks for software-
based packet processing and identified various bottlenecks responsible for poor performance.

Finally, Broadcom proposed the Software Development Kit Logical Table (SDKLT) and open
sourced the Network Programming Language (NPL) specification [37] in 2019, currently tar-
geting Broadcom Application-Specific Integrated Circuits (ASICs). NPL addresses similar goals
than P4, with a similar match+action tables architectures. NPL is accompanied by a compiler
suite and programs can be targeted to different architectures.

5.2.2 In-network functions

Based on the advances in dataplane programmability from P4, various works were done on
adding functions in the network. Dang et al. [46, 47] brought the Paxos consensus protocol [110]
to P4. Katta et al. [99] and Miao et al. [130] both used P4 for performing in-network load balanc-
ing. Tokusashi et al. [177] investigated key-value stores in P4 based on a FPGA implementation.

Various works focused on advanced network statistics. Huang et al. [87] introduced Sketch-
Learn, a novel sketch-based measurement framework that resolves resource conflicts by learn-
ing their statistical properties to eliminate conflicting traffic components. Yang et al. [195] also
proposed a similar sketch-based mechanism to perform statistical analysis on traffic. Ben-
Basat et al. [14] proposed PRECISION, an algorithm that uses Probabilistic Recirculation to find
top flows on a programmable switch. Chen et al. [41] proposed ConQuest, a compact data struc-
ture that identifies the flows making a significant contribution to the queue.
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Finally, various proposals were made for advanced packet scheduling using P4. Sivaraman
etal. [164] introduced the push-in first-out queue (PIFO) data-structure, and showed that it can
be used for a wide variety of scheduling algorithms. More recently, Sharma et al. [159] proposed
a way to achieve fair-queuing using P4.

5.2.3 In-network machine learning

Additionally to the advanced function previously reviewed, some recent works also focused on
performing in-network ML inference. The first steps toward in-network inference were works
from Siracusano and Bifulco [162] and from Sanvito et al. [146], which discussed the implemen-
tation of binary neural networks (BNNs) within programmable network devices using mostly
P4 primitives.

Subsequent works focused on using additional hardware or P4 externals to provide in-
network inference. Xiong and Zilberman [193] implemented traditional ML algorithms such as
decision tree, Support Vector Machine (SVM), naive Bayes and K-means in P4, and performed
an evaluation on a FPGA as-well-as on P4’s reference software implementation. Li et al. [118]
proposed an implementation of reinforced learning within a switch, but used a bespoke accel-
eration module. Neural networks (NNs) implementations were also proposed for NPUs, such
as the works from Langlet [111] and from Siracusano et al. [163].

All these works illustrate that in-network ML inference is feasible, which could lead to in-
teresting new applications of ML for network functionalities.

5.3 Modular packet processing for fast prototyping

Note This section is based on [73] published in Proceedings of the 6th International Workshop
on Aircraft System Technologies, 2017, [71] published in Proceedings of the 9th European Congress
Embedded Real Time Software and Systems, 2018. This work was also presented in [155] in 5th
P4 Workshop, 2018. The complete works are in Appendices A.3.2 to A.3.4.

We look in this section and in [73, 71, 155] at recent developments in advanced programmable
dataplanes from the perspective of the avionic industry, with a focus on Avionics Full DupleX
Switched Ethernet (AFDX) as a case-study.

Our main contribution is an analysis of those new solutions in the scope of aeronautical ap-
plications in terms of offered features and performance. We first investigate their applicability
from a functional point of view and identify missing features of the current approaches. In a
second step, we do a performance analysis using measurements on three different target hard-
ware and investigate if those new developments and platform are sufficient for aeronautical
applications from a performance point of view.

P4 as a fast prototyping platform

Distributed embedded electronic applications have become the norm in a large part of the aero-
nautical industry. Due to hard real-time and strict safety constraints associated with aircraft,
specific equipment are generally designed and built in order to fulfill those constraints. When
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such equipment are not available off-the-shelves, costly and time consuming developments
have to be undertaken. A prevailing solution commonly used to address this issue is to employ
FPGAs since they offer high customizability with high performance at moderate costs. A main
drawback of FPGAs is that they require a high level of expertise and long development times
to produce efficient and bug-free devices.

P4 promises various properties (listed earlier in Section 2.3) which make it attractive for
the aeronautical industry. The main advantage of P4 is the decorrelation between the behavior
of a packet processing device and the hardware which is used. It means that engineers are not
tied to a specific set of network protocols implemented by hardware vendors, and that protocol
development can be decorrelated from hardware development.

A second advantage of P4 is the simplicity and constraints put on the abstract forward-
ing model. Since P4 forbids dynamic memory allocation and iterations with unknown counts
- unlike more generic programming languages such as C - formal derivations of worst-case
execution time and resource usage of a P4 program are fairly straightforward. This means
that per-packet latency, memory footprint and maximum throughput of a packet-processing
pipeline can be determined at compile time, a feature highly desirable in the avionic industry
for certification.

Finally, regarding the features supported by P4 in terms of packet processing actions, it
covers most of the use-cases relevant for network protocols used by the aeronautical industry.
Some specific mechanisms for Quality-of-Service (QoS) are missing, such as packet scheduling,
but some proposals have been made to overcome this issue, such as the work from Sivaraman
etal. [164].

Additionally, we also investigated an implementation of AFDX in [71], and showed that a
simplified AFDX switch can be implemented using P4..

Numerical evaluation

Additionally to our assessment from a functional perspective, we also evaluate performance
aspects of P4 in [73, 71]. The three following platforms were used for our evaluation:

CPU For this platform, we used the Translator for P4 Switches (T4P4S) [106, 183] platform,
a P4 compiler which generates platform-independent C code which can be linked with
additional libraries, in our case Intel’s Dataplane Development Kit (DPDK). This platform
is illustrated in Figure 5.1a, where the kernel bypass is illustrated, enabling us to perform
faster packet processing.

NPU A 10 Gbit/s Netronome Flow Processor (NFP)-4000 Agilio SmartNIC [89] is used for this
platform. The NFP-4000 is a NPU that relies on a 32 bit many-core architecture with
up to 60 freely programmable flow processing cores. For this platform, our evaluation
is limited to the case where packet processing is still performed on CPU via the DPDK
framework, meaning that additional delay is required to transfer packets between the
NPU and CPU. As a benchmark we also implemented a simpler packet forwarder on the
NPU which bypasses the CPU.

FPGA The FPGA target is based on the Xilinx Zynq-7035 multiprocessor system on a chip (MP-
SoC). As illustrated in Figure 5.1b, the main part of the firmware is an Ethernet switch
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with optional Time-Sensitive Networking (TSN) features. The switch is connected to
the external 10GBASE-R ports, as well as to internal virtual network interface cards con-
nected to the CPU. The packet processing and forwarding is performed completely by the
switch core within the programming logic without any involvement of the internal CPU,
allowing maximum throughput and minimum latency. For this evaluation, we wrote our
own simplified P4 to VHSIC Hardware Description Language (VHDL) compiler.

We note that since the time of our evaluation, various commercial and open-source solu-
tions have been proposed for compiling P4 to FPGA platforms (such as PA—FPGA [88] used later
in Section 5.4).
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Fig. 5.1: Overview of the different platforms used for benchmarking

Figure 5.2 presents the packet processing latency as a function of the time between two
frames (or framegap). We notice that for framegaps larger than 1 ps the processing latency
is of 24 uis for packet sizes of 1518 B for the software-based and network processor platforms.
Since both approaches require copies of the frames from the network cards to the CPU, similar
latencies are expected. For framegaps smaller than 1 ps the processing latency of the software-
based platform increases up to 1 ms depending on the packet size. The packet processing is
not able to keep up with the incoming rate and packets are buffered leading to the increased
latency.

We note that while the software platform does not provide us deterministic guarantees
required for safety applications, such a platform might be interesting for functional testing or
in services with short life-cycles and no hard real-time guarantees needed. Typical services
such as passenger connectivity could fit these requirements, since on-board passenger devices
have a fast update rate, with changing needs and protocols.

The network processor platform without CPU is able to better cope with the more intensive
traffic, which can be explained by the fact that the processing is completely performed by the
NPU, without CPU involvement or the need to copy packets.

The FPGA-based platform produces the best latencies, with values around 1.2 ps without
buffering (i.e. for large framegaps). Once the internal bandwidth limit is hit, packets are
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Fig. 5.2: Packet processing latency as a function of the time between two frames

buffered at ingress and eventually dropped. The latencies up to 15.8 is observed in this region
of small framegaps correspond to the capacity of the ingress buffers, which are much smaller
compared to the software/network processor implementations and thus leading to smaller
latencies in these situations, but potentially more packet losses during short, intense traffic
bursts.

Conclusion

We showed here and in [73, 71] that P4’s high flexibility in combination with simple building
block enables a formal analysis make it an attractive platform for some network protocols used
in aeronautical use-cases. While some features such as definition of advanced egress packet
scheduling and methods for time-based or time-triggered protocols are still lacking for more
advanced network protocols, recent additions to the language in P45 and the Portable Switch
Architecture (PSA) make it an attractive platform. A case study of implementing AFDX was also
performed in order to demonstrate that aeronautical protocols may be implemented using P4.

5.4 Advanced secure hashes for in-network packet processing

Note This section is based on [157] published in Proceedings of the 2nd P4 Workshop in Europe,
2019. The complete work is in Appendix A.3.1.
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We show in this section and in [157] that advanced packet processing functions can be effi-
ciently implemented in network switches and router. To enable authentication and resilience,
we make the case for extending P4 targets with cryptographic hash functions. Hash-based
data structures like hash tables, bloom filters, or count-min sketches often serve as a basis for
efficiently tracking flows.

We propose an extension of the P4 PSA for cryptographic hashes and discuss our prototype
implementations for three different P4 target platforms: CPU, NPU, and FPGA. While P4 does
not directly offer primitives for working with data structures such as hash tables or Bloom
filters, P4 primitives can be used in combination with our contributions via P4 externs and P4
registers to emulate those data structures. Each platform has its own way how P4 externs can

be added.

For our evaluation, we focused on two types of hash functions. First, we evaluated the
Secure Hash Algorithm (SHA) family of hash functions, which are strong candidates regard-
ing cryptographic features and security. Due to the use of relatively small messages in packet
processing, the choice of a hash function for efficient processing is not straightforward. In
this case, the SHA-based hash functions are not well suited since were not designed with good
performance for small inputs. Hence, we also focused on the SipHash family of hash functions
from Aumasson and Bernstein [8] used in various programming languages and software, a hash
function designed for good performance for small inputs.

CPU We extended here the T4P4S platform, already used in Section 5.3. As T4P4S only supports
the TCP/IP checksum calculation as hash algorithm, we extended it with open-source
implementations of SipHash and HMAC-SHA. Our measurements were performed on a
server equipped with an Intel Xeon CPU E5-2620 v3 (Broadwell) at 2.40 GHz with an Intel
X540 network card supporting 10 Gbit/s Ethernet.

NPU As in Section 5.3, Netronome’s NFP-4000 Agilio SmartNIC is used here. Compared to Sec-
tion 5.3, we bypass the CPU to perform the P4 packet processing only on the NPU via
Netronome’s P4 compiler. The SmartNIC allows implementing P4 externs in Micro-C, a
variation of C used to program the processing cores. Externs are inlined into the com-
piled P4 program. We implemented the SipHash-2-4 function in Micro-C, calculating a
hash for the payload of the Ethernet frame.

FPGA Our work on the FPGA platform is based around the NetFPGA SUME board from Zilber-
man et al. [201] and the P4A—FPGA from Ibanez et al. [88]. Open-source SipHash and SHA3
IP cores were integrated into our prototype design. Our initial evaluation showe that a
seamless integration as P4 externs via interfaces defined by the P4A—FPGA implementa-
tion was not possible. Hence, we decided to change the P4 switch model of the P4A—FPGA
design to integrate the hash calculation in the egress path after the synthesized P4 pro-
gram as illustrated in Figure 5.3.

Numerical evaluation

For our numerical evaluations, our measurement setup consists of two servers connected via
a 10 Gbit/s Ethernet link. One server acts as a load generator and sends packets to the device
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under test, which runs a layer 2 forwarding P4 program that additionally calculates hashes
based on the complete Ethernet frames.

Results for maximum throughput are presented in Figure 5.4. Independent of packet size,
all three platforms reach 10 Gbit/s in the baseline scenario, with the exception for minimum-
sized packets on the CPU target only achieving 95.03 %. Adding the calculation of hashes re-
duces the maximum performance such that no platform can reach line rate for packets with
minimum size. In our evaluation, the best results are achieved by the NPU for packet smaller
than 900B. For larger packets, slower shared Random Access Memory (RAM) has to be ac-
cessed, causing a sharp drop in throughput. For the FPGA, while our prototype is limited to
open-source hash implementations, we note that higher throughput could be achieved with
commercial IP cores.
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Fig. 5.4: Throughput achieved on the different platforms

Figure 5.5a shows our latency measurements for the NetFPGA SUME. As expected, latency
increases linearly with packet size with slight discontinuities due to the block-based hash cal-
culation. We found that for each packet size the measured values do not differ by more than
100 ns.

The NPU demonstrates stable behavior below 10 ps with no outliers for the baseline sce-
nario, as illustrated in Figure 5.5b. Performing the SipHash-2-4 operation shifts the latency
distribution to the right up to 30 ps and increases the long tail. For the CPU platform, overall
the latency is between 10 pis and 80 s, however, outliers, which regularly occur when using
DPDK.

Conclusion

Our works revealed two insights about the current use of hash functions in P4 applications.
First, a prevalent use of Cyclic Redundancy Check (CRC), making applications vulnerable to
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potential attacks targeting hash collisions. Second, protocols and applications requiring cryp-
tographic hashes for authentication or integrity cannot be described using P4. Therefore, the
implementation of cryptographic hash functions would increase the applicability of P4 to a
wider range of use cases.

Our measurements show hashing performance to be highly target, algorithm, and use case
specific. Therefore, we cannot recommend a one-size-fits-all solution. We rather suggest that
P4 targets should implement hash functions - operating on header and payload data - from a
family of algorithms, which should be recommended by the P4 specification. These recommen-
dations should include cryptographic hashes and take into account the unique characteristics
of platforms such as CPU, NPU, FPGA, or even future dedicated ASICs.

5.5 Adaptive ML-based batching for fast software routers

Note This section is based on [139] published in Proceedings of the 7th IEEE International
Conference on Network Softwarization, 2021. The complete work is in Appendix A.3.5.

We show in this section and in [139] that ML inference can be efficiently implemented in
software routers for dynamically adapting its behavior.

Modern tools for software packet processing, incorporate many optimizations such as pro-
cessing packets in batches and adopting a kernel-bypass approach to access the Network In-
terface Cards (NICs) with pure user-space drivers and minimize the interference of low-level
system calls by the operating system. This strategy is implemented in VPP for example, a
high speed packet processor originally developed by Cisco and recently released as an open-
source [142].

In particular, batching is usually adopted in conjunction with a busy polling behavior: the
CPU continuously performs a loop to verify if any packet is received at the NIC, then it uses a
minimalist batch creation algorithm to process a full batch of packets (as opposed to per-packet
processing) and it repeats the loop at the end of the processing. Batching and busy polling are
very effective in high-load scenarios, where the cost of interrupt handling per packet could
lead to a saturation of the CPU.
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While the maximum batch size is fixed (usually between 32 and 512), the actual size of the
batches depends on the number of packets waiting in the NIC’s input queues. On the other
hand, the actual batch size also affects the efficiency of the processing, with small batches
requiring more clock cycles per packet compared to large batches. This causes a feedback loop,
where oscillating batch size can be observed in scenarios where the input load does not fully
saturate the CPU.

We contribute in [139] an ML-based solution to dynamically allocate batch sizes depending
on the traffic condition instead of the classical busy polling approaches. It was already shown
(e.g. by Miao et al. [129]) that such adaptive batching methodology is beneficial to software
routers.

Our architecture is illustrated in Figure 5.6. Our modified software router consists of two
parallel components: the software router, and the ML process. Every time the dpdk-input
node submits a batch of packets to the processing graph, it also communicates the batch size
to the ML process. The ML algorithm then runs its predictions and returns the new, updated
action instructions which are in turn read by VPP. For the communication between the two
processes we adopt non-blocking I/0 in order to keep high throughput performance.

The ML process uses a list of the last batch sizes as input for its actions. As output, the ML
process infers a sleep duration, which will temporarily pause the VPP process. This frees the
CPU from busy polling the NIC queues, hence saves the CPU for other resources.
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Fig. 5.6: Testbed used for our experimental evaluation, which includes the traffic generator,
the device under test and the Al components

Numerical evaluation

We numerically evaluate in here the different components of our architecture. We also illus-
trate the impact that our machine-learning based software router has on the overall perfor-
mance. As presented in Figure 5.6, our testbed is composed of VPP and the ML process run
on the device-under-test, while load scenarios are performed by the load generator running
MoonGen from Emmerich et al. [52]. The traffic generated by MoonGen consists of 64 B packets
sent at different constant rates.
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Stage of Integration ‘ Throughput Ratio

Unmodified VPP | 14.15Mpps  100%

Logging only | 13.95Mpps 99%

Logging + Exporting | 13.94 Mpps 99 %

...+ Exporting + Ranger load | 11.57 Mpps 82%
...+ Final trained forest | 12.26 Mpps 87 %

Tab. 5.1: Maximum throughput at different stages integration.

Table 5.1 summarizes the impact of data collection and processing on VPP’s throughput.
Running VPP while logging all batch sizes into the shared memory, results in a maximum
throughput of 99 %. Running ranger for a single prediction, meaning exporting the ring buffer
only once to ranger, results in a similar throughput performance of 99 %. When running the
ring buffer export and prediction in an endless loop, VPP’s throughput drops to 11.57 Mpps
which corresponds to 82 % of the performance of unmodified VPP.

Finally, we evaluate our architecture by measuring the CPU utilization in different scenar-
ios and comparing it to an unmodified VPP. Results are presented in Figure 5.7. Our ML process
updating the optimization instructions on CPU2 constantly utilizes about 98 %. The worker
thread of VPP on CPU1 shows a different behavior when using our approach. When offered no
load, the sleep time is set to 30 by the forest. This results in a utilization of only around 20 %
on CPU1. When offered more load (1000 Mbit/s around time 20s in Figure 5.7), the sleep time
drops and CPU1 raises to 45 % load to process the packets. From offering 1200 Mbit/s of load
onward (at time 31's in Figure 5.7), VPP’s worker thread starts hitting the upper limit of avail-
able cycles of CPU1. At a throughput of 12.26 Mpps the maximum performance of the system
is finally found.

CPU1 usage [%] CPU2 usage [%] —— usleep [us] ——
T T T T T

& ) T TS TIUSETVINE A S SISV i
g 80 1
> 60 g
& 40 .
° L 4
g 20
E O C 1 1 1 1 1 1

0 10 20 30 40 50 60
&
S 100F T T T T T .
©
= 50 4
c
s ot : : : . . .

0 10 20 30 40 50 60
‘o
& T T T T T
E 10F E
] 1E E
o
< 0.1 ¢ E
(=)}
(3) 0.01 1 I I
= 0 10 20 30 40 50 60
= Time [s]

Fig. 5.7: A comparison under the same load scenario. Unmodified: CPU1: VPP worker, CPU2:
nothing. Modified: CPU1: VPP worker, CPU2: ranger.
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Conclusion

We contributed in this section an approach for including ML inference in the dataplane. We
showed that the CPU utilization of VPP could be reduced in low load scenarios using random
forests for finding optimization parameters at runtime. Regardless of the added complexity,
the throughput performance in high load situations is reduced by only 13 %. Although a sep-
arate core is fully utilized by the ranger thread, we illustrate that the same core can be used
to save CPU time off VPP worker threads on multiple cores. Our work illustrate that more ad-
vanced packet processing is possible with today’s advanced hardware and software.

5.6 Conclusion on efficient packet processing

We contributed in this chapter a functional and performance evaluation of P4, a P4 extension
for facilitating advanced data-structures and security functionalities, as well as an extension
of VPP to include a ML-based adaptive batching mechanism.

We showed that P4 is flexible and can be used in an industrial environment with industry-
specific network protocols. With our performance evaluations, we showed that advanced packet
processing - either based on software solutions such as DPDK, or hardware-accelerated solu-
tions such as NPUs or FPGAs - can come with a 10 Gbit/s on commodity hardware. P4 is also
flexible enough to enable additional functionalities, as reviewed in Section 5.2 and evaluated
in Section 5.4. In Section 5.5 we also showed that ML can be directly included in the dataplane
to provide advanced optimization.

Overall, our contributions and related work illustrate that more advanced packet process-
ing is possible with today’s advanced software and hardware, even including ML inference
in the dataplane. This current state of networking is encouraging for the adoption of more
advanced packet processing based on in-network processing and accurate per-packet perfor-
mance measurement. A good example of this is P4’s In-Band Network Telemetry (INT) [172],
which provides a standardized way of doing fine measurements and reporting them in stan-
dardized way [173]. Such features has even lead to advanced analytic software, such as Intel’s
Deep Insight Network Analytics Software [90], which enables real-time per-packet visibility
with advanced monitoring and analysis of packet drops.



6. CONCLUSION

6.1 Summary and conclusions

In this Habilitation thesis we have studied and contributed data-driven methods for network-
ing challenges. We presented both theoretical results based on mathematical frameworks, as
well as more practical results based on real implementations and measurements on testbeds.

The main contribution of this research work was a data-driven approach based on graph
transformation and graph neural networks (GNNs). This approach, introduced in Section 2.4
and illustrated in Figure 6.1, stemmed from our finding that various challenges found in net-
working research can be modeled as graph, a key data structure for representing network
topologies, flows, their properties such as configuration, and also their relationships. Using
this natural way of representing data and by adding expert knowledge, we built on the recent
works from the machine learning (ML) community on GNNs to make efficient and accurate
predictions about the problem to be solved.

—0O—0
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Computer network Graph model with Neural network able
with switches and flows additional nodes for flows to process graph structures

Fig. 6.1: Graph approach proposed in this Habilitation thesis

We demonstrated in Chapters 3 and 4 that this approach can be applied to a variety of
networking challenges, from formal analysis of networks, to design of network protocols.

In the field of network calculus (NC), we contributed in Section 3.4 and [69, 62, 64, 65, 75]
the first applications of ML and GNN to NC analysis. One finding of our research was to illus-
trate that getting the tightest bound from NC requires expert knowledge since various analyses
may be applied, each performing at its best on specific networks, and each coming at a given
computational cost. With our work, we alleviated this need for expert knowledge by using a
data-driven approach. We showed with DeepTMA and DeepFP in [62, 75] that ML has its place
inside NC, opening up the door to formally-verified tight bounds competitive with state of the
methods, but at a low computational cost. Our contributions in this field is illustrated in Fig-
ure 6.2.

In Chapter 3, we also contributed two extensions of NC. We showed in Section 3.3.1 how to
use NC with multicast flows, enabling the key properties of NC - namely Pay Burst Only Once
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Fig. 6.2: Relationship between tightness and execution time of the different deterministic net-
work calculus (DNC) analyses

(PBOO) and Pay Multiplexing Only Once (PMOO) - to be applied end-to-end on multicast flows.
We also contributed in Section 3.3.2 the detouring concept, an approach which adds pessimism
in the network in order to empower PMOO on longer tandem:s.

In Chapter 4 we demonstrated other applications of GNNs to networking challenges. With
[60, 61] in Section 4.3, we contributed one of the first works applying GNNs to the performance
evaluation of elastic and inelastic flows, predicting flow bandwidth and packet latency. We
showed that GNNs can provide accurate and efficient predictions of flow performance, provid-
ing a fast tool for what-if analysis. With [68] in Section 4.4, we contributed a novel method
taking advantage of the message passing principle of GNNs for building network protocols.
We showed that routing protocols can easily be trained for, requiring no expert knowledge on
network protocol design. Finally, with [70] in Section 4.5, we contributed an application of
GNNs to the analysis of Multiprotocol Label Switching (MPLS) networks and configurations.
We showed that our graph transformation is able to handle more advanced concepts such as
MPLS forwarding rules and configuration.

Finally, in Chapter 5 we explored how lessons learned from data-driven approaches and
their models may be included in the networks themselves. We focused on two packet process-
ing platforms. First we work on P4, a promising solution for including such advanced function-
alities in the dataplane on various hardware platforms such as Central Processing Units (CPUs),
Network Processing Units (NPUs), Field Programmable Gate Arrays (FPGAs) or even dedicated
Application-Specific Integrated Circuits (ASICs). We contributed in [73, 71] and Section 5.3
an evaluation of P4 in an industrial context, showing that P4 could be used for implement-
ing an Avionics Full DupleX Switched Ethernet (AFDX)-like protocol. We also showed in [157]
and Section 5.4 that P4 can easily be extended to include advanced functionalities such as se-
cure and fast hash functions. Our performance evaluations showed promising results, achiev-
ing 10 Gbit/s line-rate in some cases. Secondly we work in Vector Packet Processing (VPP), a
software router based on recent advances on software-based packet processing. We also con-
tributed in [139] and Section 5.5 an approach for using ML inference in the dataplane for more
efficient packet processing. We illustrate that by having a dynamic batching allocation, CPU
time can be saved.

Overall, our contributions showed that a data-driven approach for networking is highly
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relevant. By combining the correct data structure with the proper data processing algorithms
- i.e. graphs and GNNs - we showed that some networking challenges can be solved at a low
computational cost. As mentioned in the different conclusions of Chapters 3 and 4, our work
inspired others to also apply GNNs and similar architectures to similar networking challenges
(i.e. NC and performance evaluation) and also more diverse challenges (e.g. wireless networks
or Border Gateway Protocol (BGP)). This shows that our approach has been validated by others
and is also highly versatile.

6.2 Future research directions

Several open research questions are still open. We already mentioned throughout this Habil-
itation thesis and our works various improvements and possible extensions of the developed
methods which could be addressed. We focus in the rest of this section on broader open re-
search questions.

Improved graph transformations and GNNs models

We showed in our various works that the approach presented in Section 2.4 is efficient. Yet,
we mainly focused on the same graph transformation and the same GNN architecture based
around the gated graph neural network (GGNN) from Li et al. [119]. While working on improve-
ments of DeepTMA and DeepFP, numerical evaluations showed that some graph nodes and their
features were less important than others on the outcome of the prediction. We showed for ex-
ample in [75] that some type of nodes could entirely be dropped without deeply affecting the
accuracy of the GNN. This means that there is space for optimization with our various graph
transformations, potentially making them lighter for faster processing, or more descriptive for
better accuracy.

Similarly, since our first use of GGNNs in [60], various improvements in the ML community
have been made on GNNs. While our early benchmarks showed only minimal gains of chang-
ing the GNN architecture, it is worthwhile to further investigate this. Other aspects of our
ML pipeline could be improved, such as better dataset generation or better hyper parameter
tuning.

Deeper integration between formal methods and GNNs

Following on the successes of DeepTMA and DeepFP, we believe that there is still some gains
to be made in NC by integrating GNNs more deeply in the network analysis. With our works
on Tandem Matching Analysis (TMA), Flow Prolongation (FP) or detouring, we illustrated that
there are still various ways to achieve tightness in NC, each with their own way at achieving this
goal. A unified solution taking advantage of these with GNNs predictions could be explored.

There are also some aspects of NC which we did not explore. We focused on blind-scheduling
and First In First Out (FIFO) scheduling, but other mechanisms could be evaluated. Other types
of flows - such as flows with circular dependencies - or more advanced arrival and service
curves may also be addressed. Finally, the methods we developed may also be applied in other
parts of NC, such as stochastic network calculus (SNC).
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Network optimization and configuration synthesis

We illustrated in Section 3.4 that GNNs can be used to avoid computationally expensive ex-
haustive searches, coming up with the optimized solution at almost no computational cost.
The same concepts may also be applied to more traditional network optimization problems,
which are often NP hard due to their combinatorial aspect. Examples include flow routing,
virtual network function (VNF) placement, or network design.

We also explored in Section 4.5 how to apply GNNs to network configuration. Manual net-
work configuration is still a common practice nowadays, leading sometimes to misconfigura-
tions and network failures. Automation of formally correct synthesis of configurations would
be an essential tool, where GNNs may help speeding up part of the process.

Automatic network protocol design

We contributed in Section 4.4 an approach for applying GNNs to the task of routing network
protocols generation. While we focused on routing in wired networks, the same approach
should also be applicable to routing in wireless networks. Due to the one-to-many commu-
nication scheme of wireless networks, some adjustments of the network representations and
use of hypergraphs would be required.

Adjacent to that, other aspects of protocol design would be required for a deployment in a
real network. Investigation about methods to achieve guarantees about the generated proto-
col would be needed. A promising approach to this challenge would be to investigate hybrid
protocols, where parts of the new protocol would be designed by more traditional tools and
network experts, while other parts would be generated by ML.

Fast and flexible packet processing in the dataplane

Novel approaches for packet processing have been proposed in the last years for offering more
flexibility and performance to network engineers. These approaches follow the trend of bring-
ing more software in the network, a trend first started with Software Defined Networking (SDN)
for the control plane, now also being pushed for the data plane. As we illustrated in Chapter 5,
these novel platforms are efficient and can process packets at line rate.

Since the publication of our investigations, various other hardware platforms were also
proposed on the market (e.g. Intel’s Tofino). Investigation of the performance and flexibility of
these platforms would shed some light on the potential of these new technologies. Addition-
ally, as recently showed by [58], work is still needed to remove limitations of these platforms
towards their large scale deployment.

Application to other areas of networking

Finally, we focused in this Habilitation thesis on a few network challenges and research areas:
deterministic network calculus (DNC), performance evaluation, MPLS configurations, and net-
work routing. We believe that our approach is applicable to other areas of networking where
graphs are the correct data structure to work with. As mentioned throughout this thesis, our
work inspired other to also use GNNs, showing that it is a versatile tool.
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A.1 Tight and efficient bounds in network calculus with fast
heuristics

A.1.1 Generalizing Network Calculus Analysis to Derive Performance
Guarantees for Multicast Flows
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tion Methodologies and Tools, 2016 [19].
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ABSTRACT

Guaranteeing performance bounds of data flows is an essen-
tial part of network engineering and certification of networks
with real-time constraints. A prevalent analytical method
to derive guarantees for end-to-end delay and buffer size is
Deterministic Network Calculus (DNC). Due to the DNC
system model, one decisive restriction is that only unicast
flows can be analyzed. Previous attempts to analyze net-
works with multicast flows circumvented this restriction in-
stead of overcoming it. E.g., they replaced the system model
with an overly-pessimistic one that consists of unicast flows
only. Such approaches impair modeling accuracy and thus
inevitably result in inaccurate performance bounds.

In this paper, we approach the problem of multicast flows
differently. We start from existing DNC analyses and gener-
alize them to handle multicast flows. We contribute a novel
analysis procedure that leaves the network model unaltered,
preserves its accuracy, allows for DNC principles such as pay
multiplexing only once, and therefore derives more accurate
performance bounds than existing approaches.

CCS Concepts

eNetworks — Network performance evaluation; Net-
work performance analysis; Network performance modeling;
eComputing methodologies — Symbolic and alge-
braic algorithms; Symbolic calculus algorithms;

Keywords

Delay bounds, deterministic network calculus, feed-forward
networks, multicast flows

1. INTRODUCTION

Distributed embedded electronic applications communi-
cating via packet networks have become the norm in various
industries such as automotive, avionic or automation. In
such industrial applications, real-time constraints on packet
delay and jitter are usually required in order to ensure the
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specified processes behavior. Due to certification of systems
as well as reliability demands, formal methods are applied to
validate these timing constraints. They allow for hard guar-
antees via upper bounds. While different analytical methods
have been proposed in the literature, Deterministic Network
Calculus (DNC) established itself as common tool to ana-
lyze asynchronous communications in packet networks. A
concrete example of this is Avionic Full-Duplex Ethernet
(AFDX), a communication technology based on Ethernet
and already deployed in avionic systems. Network calculus
has proven a key tool for the certification of the deterministic
property of the networks used for fly-by-wire [10].

An important property of those industrial networks is
that communications are usually based on the multicast
paradigm, where packets being sent by one sender are dupli-
cated by switching elements in the network and received by
multiple receivers. Using DNC on such multicast protocols
requires some adaptations, since this method is restricted to
the analysis of unicast communications. As detailed later,
in Section 3, previous attempts for using DNC to analyze
multicast communications only circumvented its current re-
striction. They do not provide a solution to overcome this
limitation. Those approaches cannot benefit from all DNC
capabilities to provide accurate end-to-end guarantees and
networks designed based on them will be over-dimensioned.

We address the open issue of multicast flow analysis with
DNC. We contribute two approaches that turn out to be
steps generalizing existing analyses. The first one, Explicit
Intermediate Bounds (EIB), is an approach where multicast
flows are cut into sequences of unicast sub-flows. End-to-end
performance bounds are then derived from sub-flow results.
It does not require a transformation of the network, however,
it amends a step to the analysis. Our second generalization
finally leads to a DNC multicast feed-forward analysis. Nei-
ther transforming the network nor cutting any flows is re-
quired. Therefore, more accurate bounds are obtained since
existing DNC principles can be applied in order to reduce
effects such as flow multiplexing or burstiness. We numeri-
cally evaluate our proposed methods on two AFDX networks
given in the literature and show that our DNC results are
on par with other analytical methods or outperform them.

This paper is organized as follows: Section 2 gives a brief
background on deterministic network calculus and we de-
rive the foundation for our generalizations. In Section 3,
we present related work on multicast flow analysis. Sec-
tions 4 and 5 contribute generalizations of DNC analyses
for the study of multicast flow guarantees. We evaluate our
approaches in Section 6 and Section 7 concludes the paper.
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2. NETWORK CALCULUS BACKGROUND

‘We present in this section a brief overview of deterministic
network calculus. For a more in-depth description, we refer
the reader to [9] and [14].

2.1 Flow and Server Modeling

In network calculus, flows correspond to unidirectional
and unicast communications between two servers. They are
modeled as functions of their cumulative arrival of data.
More formally, those functions belong to the following set
Fo of non-negative, wide-sens increasing functions:

Fo={f:R—=R"| f(0)=0,Y0< s <t: f(s) < f(t)}

In order to compute bounds on the flows, we are interested
in the functions A(t) corresponding to the data arriving in
a given server s at time ¢, and A’(¢t) the amount of data
processed by the server at time ¢. Using this formalism, the
following delay definition can then be derived:

DEFINITION 1 (FLOW DELAY). Assume a flow with in-
put A and crosses a server s and results in the output A’.
The (virtual) delay for a data unit arriving at time t is

D(t)=inf{r >0 | A(t) < A'(t+7)}

Instead of directly working with A, network calculus makes
use of the concept of arrival curves, which is a function
bounding the maximal arrivals of a flow:

DEFINITION 2 (ARRIVAL CURVE). Given a flow with in-
put A, a function o € Fo is an arrival curve for A iff

At) — A(s) < a(t —s),Vt,5,0<s<t

DEFINITION 3 (SERVICE CURVE). If the service provided
by a server s for a given input A results in an output A’,
then s offers a service curve B € Fo iff

A() > inf {A(t—s)+B(s)} Wt

2.2 (min, +) Algebra

Network calculus was formalized as a (min, +)-algebraic
framework in [9, 14], enabling an easier description of oper-
ations on flow and server descriptions.

DEFINITION 4  ((min, +) OPERATIONS). The (min, +) con-
volution and deconvolution of two functions f,g € Fo are
defined as:

Convolution: (f ® g)(t) = ogfgt{f(t —s)+g(s)}

Deconvolution: (f @ g)(t) = igg{f(t +5) —g(s)}

Using those (min, +) operations, one can rewrite the pre-
vious definitions as A’ > A® 8 and A @ a > A.

Moreover, (min,+) convolution allows DNC to concate-
nate the service of consecutive servers (1,...,n), so-called
tandems, into a single service curve:

THEOREM 1 (CONCATENATION OF SERVERS). Consider
a single flow f crossing a tandem of servers si,...,sn where
each server s; offers a service curve B;. The overall service
curve for f is their concatenation by convolution:

i=1

Given a strict service curve that guarantees a minimum
output of g if data is present at a server, we lower bound
the service left-over for a specific flow:

THEOREM 2  (LEFT-OVER SERVICE CURVE). Consider a
server s that offers a strict service curve 3. Let s be crossed
by flows fo and f1, with arrival curves ag, respectively ay.
Then the worst-case residual resource share under arbitrary
multiplexing of f1 at s is:

ﬁ1~0~f1 _ ﬂ o ao

with (86 a)(d) = sup{(8 — a)(u) | 0 < u < d} denoting the
non-decreasing upper closure of (8 — «)(d).

Last, we use these curves to derive performance bounds.

THEOREM 3  (PERFORMANCE BOUNDS [14]). Consider a
flow f with arrival curve « traversing a server s with a ser-
vice curve 3. The following bounds can be derived:

Backlog: Q(t) < sup{a(s) ~ B(s)} = (« @ H)(0)

Delay: D(t) <inf{d >0 | (a ® 8)(—d) < 0}
Output: o/ (d) = (e @ B)(d)
with o being an output arrival curve for A’.

2.3 Network Analysis

Using the definitions and theorems presented above, the
end-to-end performances of flows interacting on a network
of servers can be computed. We call the analyzed flow flow
of interest, abbreviated foi.

2.3.1 Tandems of Servers

The foi’s path defines the sequence (tandem) of servers
that defines its end-to-end delay. For bounding this delay,
different methods have been proposed in the literature.

Total Flow Analysis (TFA) [14].

The TFA first computes per-server delay bounds. Each
one holds for the sum of all the traffic arriving to a server,
i.e., these bounds are independent of the foi. The flow’s end-
to-end delay bound is derived by summing up the individual
server delay bounds on its path. The TFA’s server-isolating
approach constitutes a direct application of Theorem 3; it is
known to be inferior to the following analyses [14, 18].

Separated Flow Analysis (SFA) [14].

The SFA is a direct application of other theorems: first
compute the left-over service of each server on the foi’s path
using Theorem 2, then concatenate them using Theorem 1
and finally derive the end-to-end delay bound using Theo-
rem 3. Deriving the end-to-end delay bound using only one
service curve will consider the burst term of the foi only
once, a property called Pay Burst Only Once (PBOO).

Pay Multiplexing Only Once (PMOO) [18].

The PMOO analysis first convolves the tandem of servers
before subtracting the cross-traffic. Using this order, the
bursts of the cross-traffic appear only a single time compared
to the SFA analysis where the bursts are included at each
server. Therefore, multiplexing with cross-traffic is only paid
for once. However, [17] showed that the PMOO method does
not necessarily outperform the SFA.
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2.3.2 Feed-forward Networks

For more involved feed-forward networks, a procedure to
combine tandem analyses to a network analysis exists. In
order to integrate the analysis of multicast flows into DNC,
we derive this procedure in great detail. Here, we contribute
the following result: a precise structure of the steps taken by
any DNC network analysis. The well-elaborated structure
we establish in this section, also serves us to judge and com-
pare different approaches to aiming for performance bounds
in feed-forward networks with multicast flows.

In previous work, two basic steps of the analysis have al-
ready been identified [5]: 1) cross-traffic arrival bounding
and 2) flow of interest performance bounding. They are tai-
lored to a compositional unicast flow analysis. We call it the
unicastFFA and derive its steps in unprecedented detail:

unicastFFA Step 1: Cross-traffic Arrival Bounding. The
first unicastFFA step abstracts from the feed-forward net-
work to the foi’s path — a tandem of servers that can be
analyzed with one of the existing procedures. In detail, this
step proceeds as follows:

(i) Starting at the locations of interference with the foi,
cross-flows are backtracked to their sources. This pro-
cedure derives the dependencies between the foi, its
cross-flows, their cross-flows, etc., in a recursive fash-
ion. A new instance of this sub-step is started for any
cross-flow of the current cross-flow under considera-
tion. Due to the network’s feed-forward property, the
recursion is guaranteed to terminate.

(ii) Next, the dependencies are converted into equations,
i.e., a sequence of algebraic operations for each location
of interference with the foi. They capture the worst-
case transformation of flow arrivals towards foi.

(iii) Finally, the equations are solved to obtain the bounds
on cross-traffic arrivals.

After these substeps, all cross-flows’ arrivals are bounded
with arrival curves (arrival bounds).

unicastFFA Step 2: foi Performance Bounding. Given
the cross-traffic arrival bounds from step 1, step 2 does not
need to consider the part of the network traversed by these
flows nor the potentially complex interference patterns they
are subject to. The foi’s end-to-end delay bound in the feed-
forward network is derived with a tandem analysis.

Note, that this step provides information required in the
previous one. It defines the flow of interest and thus its
cross-flows as well as their locations of interference used in
step 1(i). This step is strongly based on the tandem analysis
that, in turn, is derived from the aim to analyze a unicast
flow from end to end. It is not directly applicable to the
analysis of multicast flows and thus needs generalization.

2.4 Multicast Flows

As defined at the beginning of this section, flows and net-
work analysis in network calculus have been mostly focused
on the modeling of unidirectional and unicast communica-
tions. Such a model is not directly applicable to multicast
network protocols, where packets are duplicated at certain
points of the network in order to provide one-to-many com-
munications as illustrated in Figure 1.
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Figure 1: Multicast networks.

We define the following terms for describing parts of a
multicast flow:

DEFINITION 5 (TRAJECTORY AND FORK). A trajectory
of a given source-sink pair corresponds to the equivalent uni-
cast flow going from the source to the sink. A fork corre-
sponds to a server where packets are duplicated.

In the following, we will provide an illustration as well as
a running example. They are meant to serve two distinct
purposes: On the one hand, we depict the basic idea behind
the approaches to handle multicast flows with the minimal
network of Figure la. Additionally, we will analyze the net-
work of Figure 1b with the given approach. Analyzing flow
f2 makes this network minimal w.r.t. covering all effects
relevant to DNC and multicast flows: There one multicast
flow in each step of the analysis, cross-traffic arrival bound-
ing (f1) as well as flow of interest analysis (f2). Moreover,
a unicast flow is present and this network allows us to ob-
serve the impact of different flow analyses described earlier
in Section 2.3.1 (TFA, SFA with the PBOO effect, PMOO).

3. RELATED WORK

In this related work section, we provide two DNC ap-
proaches to the analysis of multicast flows. For both, we
focus on how these approaches enable the unicastFFA of the
previous section to analyze networks with multicast flows.

unicastFFA Transformation: A Set of Unicast Flows

A first approach to circumvent this issue is to transform a
multicast flow to a set of unicast flows. It was mentioned as
a possibility to cope with multicast flows in [6]. Each trajec-
tory will become one independent unicast flow, as illustrated
in our two sample networks (Figures 2a and 2b).

From a procedural point of view, the unicast transforma-
tion does not integrate into the unicastFFA. It only enables
for using it by a preceding step that transforms the network.
This step is static, i.e., it does not consider the unicastFFA’s
information like the flow(s) that are under analysis.

The foremost problem of this approach is its overly pes-
simistic assumption about resource demand of multicast flows.
On common sub-paths of a multicast flows’ trajectories, i.e.,
the servers before a fork, multiple unicast flows compete for
resources. The unicastFFA thus models the worst case with
mutual interference between these flows that are not present
in the original network model.

On the other hand, this approach allows for the PBOO
and the PMOO principle in the unicastFFA.

Multicast TFA

Grieu [11] proposes a procedure to apply the TFA presented
in Section 2.3.1 in the analysis of multicast flows. It is tai-
lored to the TFA and shares its inherent isolation of servers.
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(a) unicastFFA trans-

formation illustration. (b) unicastFFA transformation

applied to the running example.
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(d) Multicast TFA applied to the
running example.

(c) Multicast TFA
illustration.

Figure 2: Existing DNC approaches to the multicast analysis applied to the networks presented in Figure 1.

Thus, it does not integrate into the unicastFFA for deriv-
ing delay bounds. Figures 2c and 2d depict this procedure
on the illustration and the running example, respectively.
Flows are cut between all servers, the arrivals are aggre-
gated and a server-local delay bound is computed. In a
second step, the server delay bounds on the trajectory of
interest are summed up. As this last step is similar to the
unicastFFA step 1, it inherits its decisive TFA shortcomings.
ILe., neither the PMOO nor the PBOO principle are imple-
mented and the delay bounds are known to be inaccurate.

Related Approaches

The existing DNC approaches both have significant draw-
backs. Therefore, the literature created novel multicast anal-
yses based on the DNC system description.

The Trajectory Approach (TA) is an adaptation to the
study of network delays of the holistic approach [19]. It
was originally developed to give bounds on the scheduling of
tasks on a processor. The approach was initially proposed in
[16] and later extended to FIFO systems in [15]. [1] applied
TA to the study of avionic networks with multicast flows
and showed, via numerical evaluations, that it outperforms
the multicast TFA.

The Forward End-To-End Delay Approach (FA) has been
proposed more recently in [13]. It addresses the shortcom-
ings of the TA. Similarly to the TA, FA is also an adaptation
of the holistic approach to the case of FIFO networks. [13]
and [12] applied the FA to the performance evaluation of
avionic networks with multicast flows and showed that this
approach outperforms the multicast TFA as well.

Although FA sets its focus on the end-to-end analysis —
similar to the DNC tandem analyses — neither FA nor TA
have been benchmarked against a modern DNC that imple-
ments PBOO or PMOO. This can be attributed to the lack
of such an analysis for multicast flows. In this paper, we will
generalize multicast TFA as well as the unicastFFA in order
to provide such DNC solutions and benchmarking results.

4. EXPLICIT INTERMEDIATE BOUNDS

Explicit Intermediate Bounds (EIB) analysis is the gener-
alization of the multicast TFA analysis. We do not create
an entirely new analysis (unlike TA and FA) but adapt the
model such that we can analyze it with our NC tools. EIB
combines the strengths of the two related approaches from
above. Like the TFA, it follows the foi’s trajectory of interest
without additional cross-traffic assumptions. Moreover, it
proceeds in tandems like the set of unicast flows. Therefore,
it can benefit from both the PBOO and the PMOO principle
on these tandems — unlike the server-local approach respon-
sible for TFA’s general inferiority w.r.t. delay bounds.

ss s ff
s .

0
S1 fl 52

0
R

Figure 3: Application of the EIB analysis to the studied
scenario: multicast flows are cut into unicast sub-flows.

We achieve this by an approach consisting of two parts:

1. A static, preceding step takes the network description
and transforms it for analysis. In contrast to the mul-
ticast TFA, we cut multicast flows after forking lo-
cations only; not after every server. These are the
locations of explicit intermediate bounds. In our illus-
trative example, the result is equal to the multicast
TFA (Figure 2c). However, we transform the network
into tandems that are crossed by parts of the multi-
cast flows. This is revealed by our running example.
For instance, compare the tandems (1, 2) and (3,4) of
multicast TFA (Figure 2d) with EIB (Figure 3).

2. The locations of cuts is static, i.e., only defined by the
network, not the foi. The EIB analysis can be viewed
to create a global worst case for all flows, independent
of the foi. Afterwards it runs a unicastFFA in its sec-
ond part.

These two steps are, however, not as separated as in the
literature’s multicast TFA. We integrate the EIB idea into
the unicastFFA is as follows:

e Step 1: An adaptation of the cross-traffic arrival bound-
ing is required at the locations of explicit intermedi-
ate bounds. Previously, tandems for analysis were de-
fined by the common path of flow aggregates [6]. Using
EIB, we have an additional restriction for the tandem
lengths as we derive the output bound at the server
a multicast flow forks. I.e., when the backtracking
reaches such a server, the search for a tandem to op-
erate on terminates. A new instance of unicastFFA
step 1 is started with this server being the last one for
the next tandem in the analysis.

e Step 2: The flow of interest analysis actually becomes
a “trajectory of interest” analysis. Yet, for multicast
flows it is not able to analyze the trajectory in an
end-to-end fashion with a single left-over service curve.
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A multicast flow’s entire trajectory will consist of at
least two tandems as it has at least one fork location
to cut at. Thus, the PMOO principle cannot be im-
plemented entirely; similar to the FIFO multiplexing
tandem analysis LUDB [2].

We call this integrated procedure EIB unicastFFA; the
name emphasizes the application of this specific way to ob-
tain results with the EIB idea. Regarding the results them-
selves, EIB unicastFFA and EIB are synonymous as both of
the above procedures yield the same performance bounds.

Analysis of the Running Example

As mentioned above, the difference between multicast TFA
and EIB unicastFFA becomes apparent in more involved
networks. We derive the left-over service curves for multicast
flow f2 of our running example (Figure 3) to depict the new
analysis. We follow the EIB unicastFFA procedure that does
not reveal a preceding EIB step.

EIB unicastFFA step 1. Bounding the delay of fa requires
to bound the interference of multicast cross-flow fi. The
first location of interference with f> is at s5 where we need
to backtrack f{. EIB enforces a cut after f,’s fork at server
B 0
s2 that we need to consider. We get agl = agl, i.e., the
backtracking is stopped there. In a second instance of EIB
unicastFFA step 1, f{ is backtracked in order to derive its
explicit intermediate bound at the output of sz / at the
input of server ss:
B 0 Lo. fO
off = o]
In contrast to the multicast TFA, we can benefit from ei-

0
ther SFA/PBOO or PMOO in the derivation of ﬂif;;l . The
according derivation that applies both alternatives is called

aggregate arrival bounding, aggrAB, [6]:
ot @61?,'{)9 = (af57 %) ((ﬁl 6af3> ® (52 eag“)))
A (ocf? @ ((ﬂl ® B2) 90/3))

where ozgs corresponds to the arrival bound of f3 at s».

At the second location of interference between fi and fs,
server s4, we need to backtrack trajectory fi{*. This yields

A B
Ozﬁl = aél @ B3

0 Lo.fY 0 Lo.fY
= (oefl @ﬂu,;}l) 0B =l o (5(1;)1 ®53)

l.o.flA
(1,2,3)
due to the cut enforced by EIB. In general, this prevents the
implementing of the PMOO principle.

Note, that we cannot derive a left-over service curve 3

EIB unicastFFA step 2. Next, we bound the delay of tra-
jectory fs'. Again, it cannot be done with a single, PMOO
left-over service curve due to EIB’s cut between s5 and sg.
In this case, the cut means SFA is the only analysis option:

Lo.f3!

Lo.fgt  _
IB 2 - /B<5,4>

(cut enforced by EIB, no single-tandem analysis)
Lo.f3 Lo.f3
Bs 7 @By

(,35 © ag‘B) ® (,34 e aﬁ‘A>

where ang and ozfq have been derived in EIB unicastFFA
step 1, the cross-traffic arrival bounding.

In the analysis of fa, the delay bound for trajectory f&
remains to be bounded. Again, we need to derive the accord-
ing left-over service curve that illustrates the proceedings of
EIB unicastFFA:

Lo.f¥

lLo.fB _
B 2 = B(S,ﬁ)

(cut enforced by EIB, no single-tandem analysis)
l.o.sz l.o.sz
= B; ® Bg
B B
= (ﬂsea§1 ) ® (ﬁseaél )

Most notably, f£ sees multi-hop interference by f£ but the
left-over service curve derivation cannot make use of the
PMOO principle. EIB inhibits an end-to-end analysis in
this unicastFFA step 2, only SFA/PBOO can be applied

Theoretical Evaluation

We conclude this section by a theoretical evaluation of the
EIB approach against the previous DNC approaches:

e Relation to multicast TFA:

The integration into the unicastFFA constitutes a gen-
eralization of the multicast TFA. On every tandem to
analyze in either of the two unicastFFA steps, we can
apply the TFA depicted in Section 2.3. Then, an addi-
tional intermediate step that separates the individual
servers is executed and the per-server results are com-
posed to the respective tandem result. The multicast
TFA delay bounds cannot outperform those of EIB
with either SFA or PMOO analysis on all tandems.

Relation to unicastFFA transformation:

In contrast to this section’s EIB, the unicastFFA trans-
formation allows for a single end-to-end left-over ser-
vice curve for every trajectory of interest. I.e., it can
fully benefit from the PMOO principle. However, the
cuts enforced by EIB can also have a positive effect.
They break the ®’s commutativity, allowing to better
exploit service rates on the tandem. This is a variant
of the problem shown in [17], but with a handicapped
PMOO. None of the alternatives is strictly superior.

5. A MULTICAST FEED-FORWARD
ANALYSIS PROCEDURE

In this section, we generalize the unicastFFA presented
in Section 2.3.2 to networks with multicast flows. We call
this generalized method multicast Feed-Forward Analysis, or
mcastFFA. This allows us to make use of the knowledge
only available in the unicastFFA itself. In contrast to the
existing DNC approaches and the EIB analysis, no network
transformation is amended to the analysis. We do not cre-
ate a network-wide worst-cast setting for all flows before
executing the unicastFFA. Instead, our generalization solely
constructs a single flow of interest’s worst case during anal-
ysis — a less pessimistic setting than the network-wide one
for all flows at once. With this approach, the mcastFFA
analysis obtains best results by exploiting the PMOO and
PBOO principles to a larger extent than the EIB.

Figure 4a illustrates the basic idea behind our solution:
If we analyze this multicast flow’s trajectory crossing sa,
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(a) mcastFFA illustration.

S5

(b) Running example, trajectory f3'.

5% fT

(c) Running example, trajectory f£.

S5

Figure 4: Application of mcastFFA. The dashed lines depict parts of flows that are not considered in the current analysis.

the other trajectory crossing ss becomes irrelevant for the
delay bound computation. We neither need to add an entire
cross-flow for it nor do we require the output bound from
s1. Thus, mcastFFA can treat the multicast trajectory (or
unicast flow) of interest in an end-to-end fashion and apply,
for instance, the PMOO principle.

The main challenge of this approach is to reduce the net-
work to relevant servers as well as (partial) flows and multi-
cast flow trajectories. This may constitute considerable ef-
fort in large networks. Therefore, we present a solution that
generalizes the unicastFFA analysis in order to gain from
its efficiency [3]. Le., deriving the sub-network relevant to
a specific foi is part of the analysis proceedings, not cov-
ered by a separate step. Our mcastFFA solution is mainly
based on the newly derived sub-step 1(i) of the unicastFFA:
backtracking of dependencies.

In this step, dependencies of a flow on others are de-
rived by traversing the network in the opposite direction
of links [5]. The entire unicastFFA starts this procedure
with the flow of interest. Our mcastFFA will iterate over all
n trajectory of interest and execute separate analyses. In
case of a unicast flow, we get n = 1; for multicast flows n
equals the amount of trajectories (source/sink-pairs). Mul-
ticast cross-flows are traversed backwards, too, such that
their fork locations do not enforce to cut the tandem to an-
alyze; the relevant trajectory of the cross-flow is known and
can be treated similar to a unicast cross-flow. Namely, the
mcastFFA is a generalization of the known unicastFFA and
thus it operates on longer tandems than EIB.

Whereas the EIB required to explicitly consider each loca-
tion a multicast flow forks, the mcastFFA implicitly restricts
the analysis to the trajectory relevant for the analysis. Af-
ter the backtracking, we know the entire sub-network whose
servers and (partial) flows appear in the analysis equation
of unicastFFA step 1(ii). Le., we rely on the detailed under-
standing of unicastFFA that we derived in Section 2.3.2.

Analysis of the Running Example

We will derive the left-over service curves for f2’s trajecto-
ries in order to compare them against the EIB unicastFFA.
For brevity, we restrict the depiction to fs''s cross-traffic ar-
rival bounding (mcastFFA step 1, Figure 4b) and f2’s delay
bounding (mcastFFA step 2, Figure 4c). These derivations
depict the crucial improvement of mcastFFA’s proceedings
in both of the analysis steps. They point out the reduction
of the network and the increased tandem lengths.

mcastFFA step 1. We consider f3'’s cross-traffic arrival
bounding. Backtracking will be “local” to a single trajectory
of a multicast cross-flow. In our example, we finally have es-

tablished the possibility to apply the PMOO-principle when
computing fi*’s aggregate arrival bound aggrAB at server s,

A
[6]. See af ! in the follwoing left-over service curve deriva-
tion we require to bound cross-traffic arrivals:

lLo. Lo.f3*
ot = g

(only single-hop interference so cutting is fine)

Lo.f4 Lo.f4!
= B5Of2 ®640f2

P 7
= (559% )® (B4@a4 )
0 Lo. f{*
(10 (o o)) & (0 (o 0 215)
A
A cut of ﬁ<1 213 into ﬁlf;)l ® ﬂl ot was needed in the EIB
analysis, meaning that PMOO could not be implemented.

This advantage is also depicted in Figure 4b where fi
retains its multicast shape in the mcastFFA’s point of view.

mcastFFA step 2. For the second trajectory of fz, f2, our

mcastFFA derives 8° ;g ,6’1506f>2 . Again, we are not en-
forced to cut this trajectory’s path (see Figure 4c) and in

contrast to EIB we can apply alternative tandem analyses:

e SFA/PBOO:
o.fB I-O-fB
,61 fa — ﬁ<5,6>2

(cut enforced by SFA, no single-tandem analysis)
_ ﬁé.o.fQB ®ﬁ(13.0.f23
= (Bseagf) ® (6sea§13)
(65 e ( h @6‘°f1)) ® (ﬂse (a @511‘3{; ))

Note, that the actual trajectory of the cross-flow, fi
or f, was automatically chosen correctly by the back-
tracking. Moreover, note the contrast to EIB: We can
derive le ’s arrivals at sg with an end-to-end left-over
service curve that, in turn, can make use of aggrAB.

e PMOO:
B o B
ﬂl.o.f2 _ 51516f>2
(there is no enforced cut)
= (Bs®Pe) Ol
(85 @ Bs) & (o 0 B4

where ﬁzf'zfgl can be computed either applying the left-
over service curve derivation of SFA/PBOO or PMOO.
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From [13] | u. trans. EIB mcastFFA
Flow | Ta  FA | PMOO' | TFA® SFA PMOO | SFA PMOO
82 82 82 82 82 82 | 82 82
72 72 72 72 T2 72| 72 72
Va(ss) | 82 82 92 82 82 82| 82 82
vsis,) | 82 112 | 92 102 102 92 |102 82
82 112 92 102 102 92 | 102 82
- 112 92 102 102 92 | 102 92
72 82 72 82 82 72 82 72

(a) AFDX network.

(b) Delay bounds (values given in us, least bounds in bold).

Figure 5: Simple AFDX network evaluation of [13], extended with DNC’s EIB and mcastFFA delay bounds.

This derivation is illustrated in Figure 4c. Compared to
Figure 3, we indeed notice the longer tandem for the second
trajectory of fa.

Theoretical Evaluation

We conclude this section by a theoretical evaluation of mcast-
FFA against the related DNC approaches:

e Relation to unicastFFA (Section 2.8.2):
The mcastFFA is a generalization of the unicastFFA.
Analysis of unicast flows in either of the two steps re-
mains unaffected (see f3 in the running example).

o Relation to unicastFFA transformation (Section 3):
Like the unicastFFA transformation, the mcastFFA is
able to derive a PMOO end-to-end left-over service
curve. However, it does so without the additional
cross-traffic assumptions introduced by the unicast-
FFA transformation. I.e., there are less cross-flows to
consider in the analysis, left-over service curves will be
larger and delay bounds will be smaller. Thus, mcast-
FFA outperforms unicastFFA transformation.

e Relation to EIB unicastFFA:

In comparison to EIB, we gained the ability to oper-
ate on end-to-end tandems. This constitutes increased
flexibility to cut this tandem during the analysis: Our
mecastFFA is compatible with SFA/PBOO, PMOO,
aggrAB, or [3] for best attainable left-over service curves.
This best solution to cut a tandem and combine sub-
tandem results might coincide with EIB’s enforced al-
ternative, i.e., mcastFFA is indeed a generalization of
EIB unicastFFA.

Before evaluating our contributions, let us briefly clar-
ify their impact on the server backlog bound @ presented
in Theorem 3. Deriving these bounds requires the arrival
bounds of all flows at a server. L.e., in the DNC analysis pro-
cedures, (EIB) unicastFFA and mcastFFA, step 1 is crucial
for the result accuracy; step 2 is not required. As shown with
the running example, we improved of cross-traffic arrival
bounding in case there are multicast flows present. Thus,
backlog bounds are also improved by our contribution.

6. NUMERICAL EVALUATION

‘We have shown in Sections 4 and 5 that our proposed ap-
proaches are superior to the previous network calculus ones,
presented as related work in Section 3. We investigate now
in this section the gains in terms of accuracy of end-to-end

delay bounds via a numerical evaluation. We study the two
AFDX networks presented in [13] and [12]. This allows us
to benchmark our proposed approaches with the TA and
FA since numerical results are given in the literature. Note,
that [12] extends the TA and FA by a grouping property that
accounts for serialization of packetized flows when crossing
links. We leave its implementation in the generalized DNC
solutions, based on [8], to future work and restrict our com-
parison to the non-serialized results. This also allows us to
use the range of established SFA/PBOO and PMOO g
derivations implemented in the DiscoDNC tool [4] as well as
the aggrAB arrival bounding. IL.e., we inherit the DiscoDNC
assumptions of a fluid model and curves that can be decom-
posed into a set of either token buckets or rate latencies.
The first network, illustrated in Figure 5a, is a simple
AFDX scenario with only one multicast flow (v3) and a sim-
ple flow interference pattern. The second network, illus-
trated in Figure 6a, is a more complex AFDX scenario with
two multicast flows (v2 and vg). Numerical results on the
end-to-end delay bounds of the different flows are shown in
Figures 5b and 6b, respectively. Key observations w.r.t. the
performance of DNC analyses confirm our conjectures:

e mcastFFA with PMOO produces gains of 8.74% and
13.08% respectively compared to the multicast TFA.

e mcastFFA produces more accurate bounds than the
EIB analysis, since it can operate on longer tandems.

e For some flows, all results are equal. These are sim-
plistic cases that become less in the larger network.

Next, we compare mcastFFA to TA and FA. We observe
that mcastFFA results are never inferior to these contenders.
Moreover, cases of equal results often coincide with the sim-
plistic ones where even mutlicast TFA is competitive. This
is especially visible in the second scenario with less com-
petitive TA and FA bounds. A maximum gain of 5.86%
compared to TA and 18.58% compared to FA is achieved
in this small AFDX scenario. AFDX networks as deployed
in existing Airbus aircraft are already far bigger and more
involved than the ones of Figures 5a and 6a. They consist
of ~1000 multicast flows (virtual links, VLs) that have an
average of ~6.5 trajectories per VL. Therefore, the improve-
ments we achieve with DNC’s PMOO in conjunction with
mcastFFA is expected to be considerably larger in practice.

lunicastFFA transformation approach with the stated
PMOO end-to-end left-over service curve derivation.
2Remember, that EIB with TFA corresponds to the multi-
cast TFA analysis presented as related work in Section 3.
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From [12] | u. trans. EIB mcastFFA
Flow TA  FA | PMOO' | TFA® SFA PMOO | SFA PMOO
U1 142 192 142 182 182 142 | 182 122
V2(8,) 122 122 142 122 122 122 | 122 122
Va(sy,) | 142 192 142 182 182 162 | 182 142
V3 66 56 56 56 56 56 56 56
V4 56 66 56 56 56 56 56 56
Vs 106 106 96 96 96 96 96 96
Ve 142 192 142 182 182 142 | 182 122
v7 - 152 142 142 142 142 | 142 132
Vs 92 122 102 112 112 102 | 112 92
V9 (S41) - 162 142 152 152 142 | 152 132
V9 (S40) 92 122 102 112 112 102 | 112 92

(b) Delay bounds (values given in us, least bounds in bold).

Figure 6: More complex AFDX network evaluation of [12], extended with DNC’s EIB and mcastFFA delay bounds.

7. CONCLUSION

In this paper, we tackled the problem of analyzing mul-
ticast flows with deterministic network calculus. DNC was
tailored to the analysis of unicast flows — a property that
was assumed to invariantly hold. Therefore, previous ap-
proaches for the DNC analysis of multicast flows tried to
adjust to this restriction by, e.g., pessimistic re-modeling of
the network. This lead to inaccurate performance bounds
and the development of alternative, non-DNC analyses to
derive multicast flow guarantees. In contrast, we general-
ized DNC unicast feed-forward analysis to a multicast one.

We took two crucial steps to achieve this, both consti-
tuting an analysis approach of their own: the EIB analysis
and the mcastFFA. In theoretical and numerical evaluations
we showed that this paper contributes a single best DNC
analysis for multicast flows, the mcastFFA. Not only does
it outperform any other DNC approach, the evaluation of
AFDX scenarios from the literature also shows that DNC
achieves at least the results of competing analyses (Trajec-
tory Approach and Forward Analysis). Moreover, the pre-
sented mcastFFA has the flexibility to be combined with
any DNC tandem analysis and improvement thereof. For
instance, (7], [3], FIFO multiplexing service analysis [2] or
packetization [8] can tighten guarantees in AFDX networks.
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Chapter 10

Deterministic Network Calculus Analysis of
Multicast Flows*

Steffen Bondorf' and Fabien Geyer*

Abstract Guaranteeing performance bounds of data flows is an essential part of net-
work engineering and certification of networks with real-time constraints. A preva-
lent analytical method to derive guarantees for end-to-end delay and buffer size is
Deterministic Network Calculus (DNC). Due to the DNC system model, one de-
cisive restriction is that only unicast flows can be analyzed. Previous attempts to
analyze networks with multicast flows circumvented this restriction instead of over-
coming it. E.g., they replaced the system model with an overly-pessimistic one that
consists of unicast flows only. Such approaches impair modeling accuracy and thus
inevitably result in inaccurate performance bounds.

In this chapter, we approach the problem of multicast flows differently. We start
from the existing DNC analysis procedure, the unicast feed-forward analysis, and
generalize it to a multicast feed-forward analysis. To that end, we contribute a novel
analysis procedure that leaves the network model containing multicast flows un-
changed, preserves its accuracy, allows for DNC principles such as pay multiplexing
only once, and therefore derives more accurate performance bounds than existing
approaches.
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10.1 Introduction

Distributed embedded electronic applications communicating via packet networks
have become the norm in various industries such as automotive, avionic or automa-
tion. In such industrial applications, real-time constraints on packet delay and jit-
ter are usually required in order to ensure the specified processes behavior. Due
to certification of systems as well as reliability demands, formal methods are ap-
plied to validate these timing constraints. They allow for hard guarantees via upper
bounds. While different analytical methods have been proposed in the literature,
Deterministic Network Calculus (DNC) established itself as common method to
analyze asynchronous communications in packet networks. A concrete example of
this is Avionic Full-Duplex Ethernet (AFDX), a communication technology based
on Ethernet and already deployed in avionic systems. Network calculus has proven
to be a key method for the certification of deterministic properties of networks used
for fly-by-wire [15].

An important property of those industrial networks is that communications are
usually based on the multicast paradigm, where packets being sent by one sender
are duplicated by switching elements in the network and received by multiple re-
ceivers. Using DNC on such multicast protocols requires some adaptations, since
this method is restricted to the analysis of unicast communications. As detailed later,
in Section 10.3, previous attempts for using DNC to analyze multicast communica-
tions only circumvented its current restriction. They do not provide a solution to
overcome this limitation and cannot benefit from all DNC capabilities to provide
accurate end-to-end guarantees.

We address the open issue of multicast flow analysis with DNC. We contribute
an approach generalizing the known unicast feed-forward analysis (unicastFFA) —
the DNC multicast feed-forward analysis (mcastFFA). Compared to existing ap-
proaches, more accurate bounds are obtained since advanced DNC principles can
be applied in order to reduce, for instance, overly pessimistic assumptions on flow
multiplexing. We numerically evaluate our proposed methods on two AFDX net-
works and show that our DNC results are on par with other analytical methods or
outperform them.

This chapter is organized as follows: Section 10.2 presents background on DNC
modeling and unicast analysis. In Section 10.3, we present related work on multi-
cast flow performance analysis. Section 10.4 contributes a generalization of DNC
unicastFFA for the study of multicast flow guarantees. We evaluate our approach in
Section 10.5. Section 10.6 concludes the chapter and provides an outlook.

10.2 Deterministic Network Calculus Background

Deterministic Network Calculus models resources as bounding functions and pro-
vides (min,+)-algebraic operations to derive performance bounds from these. We



82

A. Publications

10 Deterministic Network Calculus Evaluation of Multicast Flows

provide the basic theory applied in this chapter. For a comprehensive description,
we refer the reader to [14] and [10]. Bounding functions cumulatively model arrivals
or service in interval time. These belong to the set .%, of non-negative, wide-sens
increasing functions:

Fo={fR=>RY|f(0)=0,Y0<s<t:f(s) < f(t)}

DNC makes use of the concept of arrival curves, which is a function bounding
the maximal arrivals of a flow:
Definition 1 (Arrival curve). Given a flow with input A, a function o € % is an
arrival curve for A iff

A(t)—A(s) < a(t—s),Vt,5,0<s<t

Minimum service is bounded in a similar way. It is based on the relation between

data input and output.

Definition 2 (Service curve). If the service provided by a server s for a given input
A results in an output A’, then s offers a service curve f§ € % iff

Alt) = olnf {A(t—s)+B(s)},ve

The DNC analysis relies on two basic (min,+)-algebraic operations:

Definition 3 ((min,+) operations). The (min,+) convolution and deconvolution
of two functions f, g € % are defined as:

Convolution: (f®g)(t) = Oi<I;£t{f(l —s)+g(s)}

Deconvolution: (f @ g)(t) = sup{f(t+s) —g(s)}
s>0

Using these operations, the above definitions translate to A® o > A and A’ >
A ® B. Moreover, these operations are used to derive performance bounds.

Theorem 1 (Performance bounds [10]). Consider a flow f with arrival curve o
traversing a server s with a service curve 3. The following bounds can be derived:

Backlog: Q(t) < S'ilg{a(“) —B(u)} = (@ p)(0)
Delay: D(t) <inf{d > 0| (@ B)(—d) <0}
Output: &' (d) = (@ B)(d)

with &' being an output arrival curve for A'.

In advanced network analysis, two further operations are relevant:

Theorem 2 (Concatenation of servers). Consider a single flow f crossing a tan-
dem of servers sy, ...,s, where each server s; offers a service curve B;. The overall
service curve for f is their concatenation by convolution:
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i=1

Given a strict service curve that guarantees a minimum output of f§ if data is
present at a server, we lower bound the service left-over for a specific flow:

Theorem 3 (Left-over service curve). Consider a server s that offers a strict ser-
vice curve 3. Let s be crossed by flows fy and fy, with arrival curves ay, respectively
a1. Then the worst-case residual resource share under arbitrary multiplexing of fi
at s is:

Bt =Boay

with (B & a)(d) =sup{(B — at)(u) | 0 < u < d} denoting the non-decreasing upper
closure of (B — a)(d).

10.2.1 Network Analysis

Using the definitions and theorems presented above, the end-to-end performances
of flows interacting on a network of servers can be computed. We call the analyzed
flow flow of interest, abbreviated foi.

10.2.1.1 Tandems of Servers

The foi’s path defines the sequence (tandem) of servers that defines its end-to-end
delay. The literature proposes different methods to bound this delay.

Total Flow Analysis (TFA) [10]

The TFA first computes per-server delay bounds. Each one holds for the sum of
all the traffic arriving to a server, i.e., these bounds are independent of the foi. The
flow’s end-to-end delay bound is derived by summing up the individual server delay
bounds on its path. The TFA’s server-isolating approach constitutes a direct appli-
cation of Theorem 1; it is known to be inferior to the following analyses [10, 23].

Separated Flow Analysis (SFA) [10]

The SFA is a direct application of other theorems: first compute the left-over service
of each server on the foi’s path using Theorem 3, then concatenate them using The-
orem 2 and finally derive the end-to-end delay bound using Theorem 1. Deriving the
end-to-end delay bound using only one service curve will consider the burst term of
the foi only once, a property called Pay Burst Only Once (PBOO).

Pay Multiplexing Only Once (PMOQOO) [23]
The PMOO analysis first convolves the tandem of servers before subtracting the
cross-traffic. Using this order, the bursts of the cross-traffic appear only a single time
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compared to the SFA analysis where the bursts are included at each server. There-
fore, multiplexing with cross-traffic is only paid for once. However, [22] showed
that the PMOO method does not necessarily outperform the SFA.

10.2.1.2 Feed-forward Networks

For more complex feed-forward networks, a procedure to combine tandem analyses
to a network analysis exists, the unicastFFA. In order to integrate the analysis of
multicast flows into DNC, we outline here the structured steps taken by any DNC
feed-forward analysis. This structure also serves us to judge and compare different
approaches that aim for accurate performance bounds on multicast flows. In previ-
ous work, two basic steps of the analysis have already been identified [7]:

unicastFFA Step 1: Cross-traffic Arrival Bounding

The first unicastFFA step abstracts from the feed-forward network to the foi’s path —
a tandem of servers that can be analyzed with one of the existing procedures. In de-
tail, this step proceeds as follows:

(i) Starting at the locations of interference with the foi, cross-flows are backtracked
to their sources. This procedure derives the dependencies between the foi, its
cross-flows, their cross-flows, etc., in a recursive fashion. A new instance of this
sub-step is started for any cross-flow of the current cross-flow under considera-
tion. Due to the network’s feed-forward property, the recursion is guaranteed to
terminate.

(i) Next, the dependencies are converted into equations, i.e., a sequence of alge-
braic operations for each location of interference with the foi. They capture the
worst-case transformation of flow arrivals towards foi.

(iii) Finally, the equations are solved to obtain the bounds on cross-traffic arrivals.

After these substeps, all cross-flows’ arrivals are bounded with arrival curves (ar-
rival bounds).

unicastFFA Step 2: foi Performance Bounding

Given the cross-traffic arrival bounds from step 1, step 2 does not need to con-
sider the part of the network traversed by these flows nor the potentially complex
interference patterns they are subject to. The foi’s end-to-end delay bound in the
feed-forward network is derived with a tandem analysis.

Note, that this step provides information required in the previous one. It defines
the flow of interest and thus its cross-flows as well as their locations of interference
used in step 1(i). This step is strongly based on the tandem analysis that, in turn, is
derived with the goal to analyze a unicast flow from end to end. It is not directly
applicable to the analysis of multicast flows and thus needs generalization.
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Fig. 10.1: Running example.

10.2.2 Multicast Flows

As mentioned above, flow and network analysis in network calculus have been
mostly focused on the modeling of unidirectional and unicast communications. Such
a model is not directly applicable to multicast network protocols, where packets are
duplicated at certain points of the network in order to provide one-to-many commu-
nications as illustrated in Figure 10.1. We define the following terms for describing
parts of a multicast flow:

Definition 4 (Trajectory and Fork). A trajectory of a given source-sink pair cor-
responds to the equivalent unicast flow going from the source to the sink. A fork
corresponds to a server where packets are duplicated.

In the following, we will analyze the network of Figure 10.1 with the given ap-
proach. We focus here on the analysis of f,, which covers all effects relevant to
DNC and multicast flows: There is one multicast flow in each step of the unicast-
FFA, cross-traffic arrival bounding (f;) as well as flow of interest analysis (f3).
Moreover, a unicast flow is present and this network allows us to observe direct ap-
plication of the different DNC methods described in Section 10.2.1.1, namely TFA,
SFA (PBOO effect), and PMOO.

10.3 Related Work

We present three DNC approaches to analyze multicast flows. We focus on how
these approaches enable the unicastFFA of the previous section to analyze networks
with multicast flows. This work reveals that neither of these approaches constitutes
a multicast feed-forward analysis.

unicastFFA Transformation: A Set of Unicast Flows
A first approach to circumvent the issues arising from multicast flows. Each trajec-
tory will become one independent unicast flow, as illustrated in our sample network
(Figure 10.2a) and mentioned in [8].

From a procedural point of view, the unicast transformation does not integrate
into the unicastFFA. It only enables for using it by a preceding step that transforms
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Fig. 10.2: Existing DNC approaches to the multicast analysis applied to the network
presented in Figure 10.1.

the network. This step is static, i.e., it does not consider the unicastFFA’s information
like the flow(s) that are under analysis.

The foremost problem of this approach is its overly pessimistic assumption about
resource demand of multicast flows. On common sub-paths of a multicast flows’ tra-
jectories, i.e., the servers before a fork, multiple unicast flows compete for resources.
The unicastFFA thus models the worst case with mutual interference between these
flows that are not present in the original network model. On the other hand, this
approach allows for the PBOO and the PMOO principle in the unicastFFA.

Multicast TFA

Grieu [16] proposes a procedure to apply the TFA presented in Section 10.2.1.1
in the analysis of multicast flows. It is tailored to the TFA and shares its inherent
isolation of servers. Thus, it does not integrate into the unicastFFA for deriving de-
lay bounds. Figure 10.2b depicts this procedure on the running example network.
Flows are cut between all servers, the arrivals are aggregated and a server-local de-
lay bound is computed. In a second step, the server delay bounds on the trajectory
of interest are summed up. As this last step is similar to the unicastFFA step 1, it
inherits its decisive TFA shortcomings. I.e., neither the PMOO nor the PBOO prin-
ciple are implemented and the delay bounds are known to be inaccurate.

Explicit Intermediate Bounds (EIB)

An extension of multicast TFA is presented in [4]. The authors propose a different
step preceding the unicastFFA analysis. Instead of a per-server delay analysis, it an-
alyzes the tandems of servers between a multicast flow’s forks. L.e., a multicast flow
is transformed into a set of sub-trajectories. These can then be analyzed individu-
ally by computing the left-over service curve on this tandem of servers. Thus, the
PBOO as well as the PMOO principle can be applied. In a second step, the analyzed
flow’s output bounds from all sub-trajectories are derived using their left-over ser-
vice curves. They are explicitly used as arrival curves after the fork locations at the
end of sub-trajectories. Therefore, the approach called Explicit Intermediate Bounds
(EIB). Figure 10.3 illustrates the EIB’s sub-trajectory approach. Note, that the ap-
proach cannot implement the PBOO or the PMOO principle on an entire trajectory,
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Fig. 10.3: Application of EIB: multicast flows are cut into unicast sub-trajectories.

even though the foi’s left-over service curves will be convolved to attain a valid
end-to-end left-over service curve for a trajectory. Moreover note, that deriving the
left-over service curves required for EIB will itself result in an EIB analysis.

Non-Network Calculus Approaches

Current DNC approaches have significant drawbacks such that competing multicast
analyses that build on the same modeling as DNC have been proposed.

The Trajectory Approach (TA) is an adaptation to the study of network delays
of the holistic approach [24]. It was originally developed to give bounds on the
scheduling of tasks on a processor. The approach was initially proposed in [21]
and later extended to FIFO systems in [20]. [2] applied TA to the study of avionic
networks with multicast flows and showed, via numerical evaluations, that it outper-
forms the multicast TFA.

The Forward End-To-End Delay Approach (FA) has been proposed more recently
in [18]. It addresses the shortcomings of the TA. Similarly to the TA, FA is also an
adaptation of the holistic approach to the case of FIFO networks. [18] applied the FA
to the performance evaluation of avionic networks with multicast flows and showed
that this approach outperforms the multicast TFA as well.

Although FA sets its focus on the end-to-end analysis — similar to the DNC tan-
dem analyses — neither FA nor TA have been benchmarked against a modern DNC
that implements PBOO or PMOO. This can be attributed to the lack of such an anal-
ysis for multicast flows. We will provide such benchmarking results in Section 10.5.

10.4 A Multicast Feed-forward Analysis Procedure

In this section, we generalize the unicastFFA presented in Section 10.2.1.2 to
networks with multicast flows. We call this generalized method multicast Feed-
Forward Analysis, or mcastFFA. This allows us to make use of the knowledge only
available in the unicastFFA itself. In contrast to the existing DNC approaches and
the EIB analysis, no network transformation is amended to the analysis. We do not
create a network-wide worst-cast setting for all flows before executing the feed-
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(a) Running example, trajectory ff. (b) Running example, trajectory ff .

Fig. 10.4: Application of mcastFFA. The dashed lines depict parts of flows that are
not considered in the current analysis.

forward analysis. Instead, our generalization solely constructs a single flow of inter-
est’s worst case during analysis — a less pessimistic setting than the static approaches
constructing network-wide one for all flows simultaneously. With our approach, the
mcastFFA analysis obtains best results by exploiting the PMOO principle end-to-
end.

Figure 10.4b illustrates the basic idea behind our solution: If we analyze this mul-
ticast flow’s trajectory crossing ss, the other trajectory crossing s3 becomes irrele-
vant for the delay bound computation. We neither need to add an entire cross-flow
for it nor do we require the output bound from s; and s,. Thus, mcastFFA can treat
the multicast trajectories (or unicast flows) of interest in an end-to-end fashion.

The main challenge of this approach is to reduce the network to relevant servers
as well as (partial) flows and multicast flow trajectories. This may constitute con-
siderable effort in large networks. Therefore, we present a solution that generalizes
the unicastFFA analysis in order to gain from its efficiency [5]. L.e., deriving the
sub-network relevant to a specific foi is integral part of the analysis proceedings.

Our mcastFFA solution is mainly based on unicastFFA sub-step 1(i): backtrack-
ing of dependencies. Dependencies of flows on others are identified by traversing
the network in the opposite direction of links [7]. The entire unicastFFA starts this
procedure with the flow of interest. Our mcastFFA will iterate over all n trajec-
tory of interest and execute separate analyses. In case of a unicast flow, we get
n = 1; for multicast flows n equals the amount of trajectories. Multicast cross-flows
are traversed backwards, too, such that their fork locations do not enforce to cut
the tandem to analyze; the relevant trajectory of the cross-flow is known and can
be treated similar to a unicast cross-flow. The mcastFFA is a generalization of the
known unicastFFA. It implicitly restricts the analysis to the trajectory relevant for
the analysis. After the backtracking, we know the entire sub-network whose servers
and (partial) flows appear in the analysis equation of unicastFFA step 1(ii).

Analysis of the Running Example

We will derive the left-over service curves for f>’s trajectories in order to compare
them against the EIB unicastFFA. For brevity, we restrict the depiction to f5'’s cross-
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traffic arrival bounding (mcastFFA step 1, Figure 10.4a) and f5’s delay bounding
(mcastFFA step 2, Figure 10.4b). These derivations depict the crucial improvement
of mcastFFA’s proceedings in both of the analysis steps. They point out the reduc-
tion of the network and the increased tandem lengths.

mcastFFA step 1

We consider f5’s cross-traffic arrival bounding. Backtracking will be “local” to a
single trajectory of a multicast cross-flow. In our example, we finally have estab-
lished the possibility to apply the PMOO-principle when computing fi'’s aggregate

A
arrival bound aggrAB at server s4 [8]. See Oc;(‘ in the following left-over service
curve derivation we require to bound cross-traffic arrivals:

lLo.fd _ l.o.ff‘ . . . .
prer = [3<5 » (only single-hop interference so cutting is fine)

= plofi g pioft <Bsea5f18> ® (&eaﬁ)
= (Bse (e opl)) e (ﬁ4e <a LT ))

A cut of B 12 > into Blof '® ﬁ3 off was needed in the EIB analysis, meaning that

PMOO could not be 1mp1emented
This advantage is also depicted in Figure 10.4a where f| retains its multicast
shape in the mcastFFA’s point of view.

mcastFFA step 2
Lo.f%

For the second trajectory of f5, sz , our mcastFFA derives ﬁl-OAff =Bise 56) Again,
we are not enforced to cut this trajectory’s path (see Figure 10.4b) and in contrast to
EIB we can apply alternative tandem analyses:

B
PBOO: Blof? = [32506};2 (cut enforced by SFA, no single-tandem analysis)

B B
g op = (odl)o (poal)

- (o (i omi)) s (e (woni)))

Note, that the actual trajectory of the cross-flow, fi or ff’ , was automatically chosen
correctly by the backtracking. Moreover, note the contrast to EIB: We can derive
f1’s arrivals at s¢ with an end-to-end left-over service curve that, in turn, can make
use of aggrAB.
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B
PMOO: Blo-s P = [3;506];2 (there is no enforced cut)

= (Bs@ps)cod = (Bs@po)© (Oéfl @ﬁ(lfij;)

where [32102];‘ can be computed either by applying the left-over service curve deriva-
tion of SFA/PBOO or PMOO. This derivation is illustrated in Figure 10.4b.

Theoretical Evaluation

We conclude this section by a theoretical evaluation of mcastFFA against the related
DNC approaches:

e Relation to unicastFFA (Section 10.2.1.2): The mcastFFA is a generalization
of the unicastFFA. Analysis of unicast flows in either of the two steps remains
unaffected (see f3 in the running example).

e Relation to unicastFFA transformation (Section 10.3): Like the unicastFFA
transformation, the mcastFFA is able to derive a PMOO end-to-end left-over
service curve. However, it does so without the additional cross-traffic assump-
tions introduced by the unicastFFA transformation. ILe., there are less cross-
flows to consider in the analysis, left-over service curves will be larger and
delay bounds will be smaller. Thus, mcastFFA outperforms unicastFFA trans-
formation.

e Relation to EIB unicastFFA: In comparison to EIB, we gained the ability to op-
erate on end-to-end tandems. This constitutes increased flexibility to cut this
tandem during the analysis: Our mcastFFA is compatible with SFA/PBOO,
PMOO, aggrAB, or [5] for best attainable left-over service curves. This best
solution to cut a tandem and combine sub-tandem results might coincide with
EIB’s enforced alternative, i.e., mcastFFA is indeed a generalization of EIB
unicastFFA.

Before evaluating our contributions, let us briefly clarify their impact on the
server backlog bound Q presented in Theorem 1. Deriving these bounds requires
the arrival bounds of all flows at a server. Le., in the DNC analysis procedures,
(EIB) unicastFFA and mcastFFA, step 1 is crucial for the result accuracy; step 2
is not required. As shown with the running example, we improved the cross-traffic
arrival bounding in case there are multicast flows present. Thus, backlog bounds are
also improved by our contribution.

10.5 Numerical evaluation

In our numerical evaluation, we investigate achieved gains in terms of accuracy of
end-to-end delay bounds. To that end, we provide two different comparisons. First,
we benchmark our multicast feed-forward analysis (mcastFFA) against the related
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approaches presented in Section 10.3. For our second set of results, a larger network
evaluation, we implemented EIB and mcastFFA in the DiscoDNC tool [6].

10.5.1 Comparison to (Non-)Network Calculus Approaches

We study the AFDX network presented in [18]. This allows us to benchmark our
proposed approach against the TA and FA since their numerical results are given in
the literature. We note that we benchmark against the numerical results of TA and
FA without the grouping properties extension since established DNC analyses do not
yet take this property into account by default. The grouping property accounts for
serialization of packetized flows when crossing links. We leave its implementation
in the generalized DNC solutions, potentially based on [16, 13], to future work and
restrict our comparison to the non-serialized results. Also, we use a fluid model
for our evaluations. To achieve the best comparison possible with the related work
on TA and FA, we also model store-and-forward behavior. This is achieved by an
additional latency at every server that delays packet forwarding by the time required
for full reception of a package of maximum size, max(pkg_size)/R. Using their
parameters defining service and arrivals, this enables us to confirm the DNC delay
bounds® given in [18].

[18] [u. trans. EIB mcastFFA
Flow | TA FA|PMOO* |[TFAS SFA PMOO|SFA PMOO

vi [142192] 142 | 182 182 142|182 122
vy (122122 142 | 122122 122122 122
vasa[142 192| 142 | 182182 162(182 142
LI 66 56| 56 56 56 56| 56 56
o vr v R 56 66| 56 56 56 56| 56 56
@ vs  [106106] 96 | 96 96 96| %6 96

vs 0o ve (142 192| 142 | 182 182 142|182 122
W vy S152| 142 | 142 142 142]142 132
vg 1 92 122| 102 | 112112 102|112 92

v Ug Vg V8
4 - 162 142 152 152 142[152 132

Vg VU

ES3 @ 4,[}08 V9(S41)
: Vo, | 92 122| 102 112 112 102|112 92
(a) AFDX Network.

(b) Delay bounds (values given in us, best in bold).

Fig. 10.5: AFDX network evaluation of [18], extended with DNC’s EIB and mcast-
FFA.

Our comparison focuses on mcastFFA with PMOO, TA and FA delay bounds.
We observe (see Figure 10.5) that mcastFFA at least matches the bounds of the other

4 unicastFFA transformation approach with the stated PMOO end-to-end left-over service curve

derivation.
5 Remember, that EIB with TFA corresponds to the multicast TFA analysis presented as related
work in Section 10.3.
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methods compared here. A maximum gain of 5.86% compared to TA and 18.58%
compared to FA is achieved in this small AFDX scenario.
Key observations w.r.t. the performance of DNC analyses confirm our theory:

o mcastFFA with PMOO shows expected gains compared to the multicast TFAS.

e EIB with PMOO does not make full use of the PMOO principle end-to-end on
trajectories and thus is outperformed by mcastFFA with PMOO in most cases.

e For some trajectories of multicast flows, even TFA results are equal. Then, flow
interference is non-existent. These cases do not occur in realistic networks.

10.5.2 An Industry-scale AFDX Data Network

In order to evaluate our method on a realistic use-case found in industrial applica-
tions, we evaluate an AFDX data network. We aim to confirm our hypothesis that
the mcastFFA will have a more pronounced advantage over other approaches® in
larger networks. To that end, we implemented EIB and mcastFFA in the DiscoDNC
tool. We also extended the DiscoDNC by an AFDX topology generator following
recommendation from [12] and with network parameters according to an Airbus
A350 presented in [17]. This also allows us to provide the entire range of DNC
analysis configurations pairing EIB or mcastFFA with TFA as well as SFA/PBOO
or PMOO B'° computations. For brevity of presentation, we focus on the most rel-
evant of these combinations, EIB with SFA, EIB with PMOO and mcastFFA with
PMOO. All results were computed using aggrAB arrival bounding [8]. Note, that
this is not a restriction. Using segregated arrival bounding [11] or tandem matching
arrival bounding [5] or any combination thereof is possible as well.

The network we generated according to these size parameters resulted in 650
multicast flows with 1112 trajectories in total. In order to compare the gains of
mcastFFA PMOO against the other EIB methods, we used the relative difference,
namely: (adE8 — dpcasil'FAY JEIB The empirical cumulative distribution (ECDF)
over the studied A350-like network is illustrated on Figure 10.6. Key observations
are unaffected: the mcastFFA procedure derives more accurate bounds than EIB.
On average, mcastFFA PMOO produces a reduction of 8% of the bound compared
to EIB SFA and 6% compared to EIB PMOO. We also observed reduction of up
to 25% for some flows. These observations confirm our hypothesis that mcastFFA’s
potential advantage over other DNC approaches increases with the network size.

We also observe EIB SFA delay bounds that undercut the mcastFFA PMOO
(see positive ECDF values for the negative x-axis in Figure 10.6). The situation
stems from a well-known phenomenon that allows SFA to theoretically outperform
PMOO by an arbitrarily large margin [22]. However, the mcastFFA can be paired
with any tandem analysis able to compute output bounds. Doing so with the Tandem
Matching Analysis (TMA) proposed in [5] creates a single-best algebraic analysis
for arbitrary multiplexing.

6 Due to a lack of software tools, TA and FA are not included.
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Fig. 10.6: ECDF of the relative difference between mcastFFA and the EIB methods

10.6 Conclusion and Outlook

In this chapter, we tackled the problem of analyzing multicast flows with deter-
ministic network calculus. DNC was previously tailored to the analysis of unicast
flows — a property which was assumed to invariantly hold. Therefore, previous ap-
proaches for the DNC analysis of multicast flows tried to adjust to this restriction by,
e.g., pessimistic re-modeling of the network. This leads to inaccurate performance
bounds and the development of alternative, non-DNC analyses to derive multicast
flow guarantees. In contrast, we generalized DNC unicast feed-forward analysis to
a multicast one.

In theoretical and numerical evaluations we showed that our contribution results
in a single best DNC analysis for multicast flows, the mcastFFA with PMOO. Not
only does it outperform any other DNC approach, the evaluation of an AFDX sce-
nario from the literature also shows that DNC achieves at least the results of com-
petitors (Trajectory Approach and Forward Analysis), even outperforming them in
a considerable amount of cases.

Existing AFDX networks as deployed in existing Airbus aircraft such as the
A380 are larger and more complex than the ones presented in this evaluation [25].
They consist of ~1000 multicast flows (virtual links, VLs) that have an average of
~6.5 trajectories per VL [1]. Therefore, the improvements we achieve with DNC’s
PMOQO in conjunction with mcastFFA is expected to be even larger in practice.

Moreover, the presented mcastFFA has the flexibility to be combined with any
DNC tandem analysis and improvement thereof. For instance, [9], [5], FIFO multi-
plexing service analysis [3] or packetization [13] can tighten guarantees and restric-
tion to finite domains can accelerate the analysis [19].

Acknowledgments The authors would like to thank Bruno Oliveira Cattelan for
his work on implementing the explicit intermediate bounds analysis and the multi-
cast feed-forward analysis in the Disco Deterministic Network Calculator.
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Abstract—Deterministic Network Calculus (DNC) is commonly
used to compute bounds on the worst-case communication
delay in data networks. It provides various analyses to derive
these bounds from a model, giving different tradeoffs between
accuracy and analysis efficiency. Improving the tradeoff led to
increasingly complex algorithms. We set out to design a novel
DNC algorithm that is of low complexity while still providing
competitive delay bounds. To achieve this goal, we make use
of the insight that added pessimism in the model can alleviate
more severe limitations of the DNC analysis. To that end, we
introduce the concept of virtual cross-flow detouring where data
flows are assumed to cross additional servers. Ultimately, we
provide a heuristic that is simple, fast and high-quality. We show
in numerical evaluations that our detouring not only provides
a competitive alternative, it also outperforms current algebraic
algorithms’ delay bounds for >50% of analyzed flows.

I. INTRODUCTION

The correctness of many safety-critical applications is based
upon formally verifying upper bounds on the end-to-end
delay of data communication. They ensure proper functionality
of the system. Deterministic Network Calculus (DNC) is
a mathematical framework that has been applied for this
verification in a wide variety of applications such as virtual
machine placement in data-centers [1], in aerospace for the
certification of fly-by-wire avionics [2], or admission control in
self-modeling sensor networks [3]. To achieve valid bounds in
the DNC framework, the analysis computing them adds some
pessimism along the way. This may lead to over-provisioning
of network resources and should thus be minimized. There
have been efforts to extend the DNC with new results accord-
ingly [4, 5, 6, 7] as well as efforts to recombine existing results
to mitigate addition of pessimism [8, 6, 7]. Both of these
streams of improvements have resulted in ever more com-
plex algorithms; the tradeoff between complexity and quality
became an active research topic in DNC. E.g., this tradeoff
was improved by technical advances [9, 10], using machine
learning in heuristics [11, 12], or recombination with other
known results [13, 14]. In this paper, we will present a novel
result called virtual cross-flow detouring, in short detouring.
We integrate detouring into DNC to create a low-complexity
analysis algorithm. The result of this integration is not only
a considerably less complex and faster to execute heuristic.

Its delay bounds also achieve a high level of quality, even |

ISBN 978-3-903176-28-7 ©2020 IFIP

Fabien Geyer
Technical University of Munich | Airbus CRT
Munich, Germany

exceeding those of the currently best fast analysis algorithm
in the majority of our samples.

The DNC framework consists of two parts: modeling and
analysis. A minimal DNC model provides the network topol-
ogy and functions that either bound resource availability or
demand at queueing locations (service curves and arrival
curves). A DNC analysis has the objective to derive a bound on
a specific flow’s end-to-end delay when crossing the modeled
network. The complexity in computing accurate delay bounds
arises from the following characteristics of a minimal model:
e Arrival curves are provided per-flow at network entrance.
e Service curves bound the aggregate forwarding capability.
Yet, the DNC analysis aims to compute per-flow delay bounds.

In this paper, we propose virtual cross-flow detouring as an
addition to existing analyses. Detouring defines a new degree
of freedom in the search for the best tradeoff between length
of analyzed server sequences (tandems) and flow aggregation.
The main idea is that, if a cross-flow is detoured over (parts
of) another flow’s path, both can be treated by the analysis
algorithm as an aggregate on a longer tandem. Despite the
additional load at servers to be detoured over, this approach
attains improved, valid delay bounds under certain conditions.

The addition of pessimism is not an entirely novel idea, a
proof of concept that is considerably more restrictive than our
detouring was presented in [15, 16]. This work proposed to
prolong flows over the end of their respective paths, not to add
servers at any location. The proposed exhaustive prolongation
algorithm has two main characteristics: it is nearly infeasible to
execute and the improvements to delay bounds are negligible.
Secondly, focusing on longer tandems was also attempted
in the recent literature [7]. While this can indeed lead to
improved delay bounds, it becomes forbiddingly complex and
infeasible to execute, too. We provide the first algorithm that
makes ideas from both these concepts feasible to execute,
even in combination, and without the use of techniques that
do not allow for traceability of the solution process like
optimization [5, 17] or machine learning [18, 11]. Despite the
necessary measures to reduce computational complexity of the
proposed algorithm, we observed that more than 50 % of delay
bounds improved in every single network we analyzed (taken
from [6]). Execution times increased by 42.6 % when adding
detouring to a known DNC analysis, yet, creating a heuristic
that is vastly faster than other similarly accurate analyses.

© IFIP, 2020. This is the author’s version of the work. It is posted here by permission of IFIP for your personal use.
Not for redistribution. The definitive version will be published in IFIP Networking 2020.
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The paper is structured as follows: Section II presents the
DNC background. In Section III, we provide the virtual cross-
flow detouring idea and a heuristic. Section IV benchmarks
against existing analyses before Section V draws conclusions.

II. DETERMINISTIC NETWORK CALCULUS BACKGROUND

An extensive treatment of DNC can be found in [19, 20].
For brevity, we only presents the required background to
understand virtual cross-flow detouring. DNC builds non-
negative, wide-sense increasing functions that are used to
lower bound resource availability guarantees (service curve 3)
or upper bound demand (arrival curve «), both in interval time.
We abbreviate affine arrival curves (so-called token buckets)
as o = Y p(t) = {rt + b} - 1450 and affine service curves
(so-called rate latencies) as 8 = frr(t) = R-max{0,T —t}.

We assume three further properties that are not explicitly
modeled by these curves:

e order of data within a flow will not change (FIFO per flow),
e no knowledge about flow multiplexing in a server’s queue
is present (blind multiplexing of flows),

e multiplexing with cross-flows impacts the analyzed flow
once per shared path (Pay Multiplexing Only Once, PMOO).

Hence, it is beneficial to analyze a flow over a long sequence
of servers to capture the effect of the PMOO property. The
work of [4] proposed an analysis implementing the PMOO
property under the first two assumptions, known as PMOO
Analysis (PMOOA). In this work, we extensively apply the
following computation. It lower bounds the minimum residual
service on a sequence of servers.

Theorem 1: The affine PMOOA left-over service curve
g = Brio 1o for an analyzed flow of interest (foi) on a
tandem of servers 7 is computed as

Rl.o. — /\ (Rs _ Z Tf>
seT (fEs)\foi

_ 2 (FeT\o o+ ey (Ts 2o (fes)\oi r

Lo.
T Rlo.

) +Y T,
se€T

where A is the minimum, s € 7 is a server on tandem 7,
feTisaflowon T, and f € s is a flow at server s.

For the computation of a single server’s 8>, we usually
abbreviate the computation with the binary operator © to S«
The two major known issues of Theorem 1 are:

1) Cross-flow bursts are served with the foi path’s minimum
left-over service rate R, i.e., with the minimum across the
entire tandem. Thus, "° cannot benefit from increased service
curves for individual servers on the tandem [5].

2) Arrival curves are required per set of cross-flows sharing
one subpath of the foi path. This is known as segregation [7].

A recent, very accurate analysis called Tandem Match-
ing (TMA, [6]) proposed an exhaustive search among all
possible tradeoffs between these two aspects. Thus, TMA
applies PMOOA left-over service computations. Large anal-
ysis complexity stems from finding the best tandems (tandem
matching), not Theorem 1. Recently, it was proposed to replace
the exhaustive search with machine learning predictions [11].

X1 s xfi
™\ PMOOA’s view
a (57) @ — ) ﬁ:
foi —~———="—"= foi
S1®52Q583

Potential equivalences due to ®’s commutativity:

X1 X1
, 51 52 @ . ST 52 53
foi foi

Figure 1: Potentially equivalent networks for a PMOOA due
to commutativity of the DNC convolution ®.

The intuition behind PMOOA is simple: convolve the
tandem of servers into a single system before subtracting
the interfering arrivals. While this implements the PMOO
principle, the underlying convolution causes issue 1. Con-
volution is commutative and therefore multiplexing cannot
be localized to exactly the server where it occurs. In this
paper, we look at PMOOA’s issue 1 from a different angle:
In Figure 1 we might be able to detour cross-flow zf; over
server s; or ss without incurring a penalty for this added
pessimism of distributing server resources among more flows.
The conditions for such a PMOOA-equivalence (four equal
B in Figure 1 by Theorem 1) of the tandems are: all curves
are affine with T, = Ts3 =0, R, > Rs,, Rs, > Rs,.

III. VIRTUAL CROSS-FLOW DETOURING

Detouring is a simple extension of the DNC analysis that
adds servers to cross-flows’ paths (see Figure 2). Similar to
improved speed of existing servers (issue 1), adding servers
cannot improve the result of Theorem 1. Yet, it can have
a positive impact by allowing the analysis to derive better
network-internal arrival curves — output bounds derived as
a @ [ where @ is the min-plus deconvolution [19]. We use
output bounds to get the arrivals of cross-flows at a location
where these flows interfere with a different, analyzed flow.

A. Detouring at the Front

In Figure 2, we are interested in a bound on the output after
the 2-server tandems. We aggregate flows as much as possible
and with o @ 8, © By = a @ (Bx ® By) ([19]1 Thm 3.1.12),
the computation can progress server by server without losing
the PMOO-benefits when convolving their service curves first.
In Figure 2a, the output of server s; is bounded by

!
sy = Vpt1 pr1 @ BR¢11T¢1 = Vrf1bfipr Ty
and the output bound of server so, the final result, is
’ _
(as," + as,) @ Bs, = 71 P2 bFL4bf2 4rf1 (Tyy +Ts, ) +rf2 T,y -

For this flow detouring at the front (Detgoy) version in
Figure 2b, we assume both flows already multiplexed in

fi @ - 7?>—' j:j

(a) Original network

RO

(b) Flow detouring at the front

Figure 2: Adding servers at the front of a flow’s path.
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s1’s queue and therefore we compute the output bound for
the aggregate of both flows. In general, aggregation benefits
the DNC analysis for this reason, yet, as we will see, flow
detouring at the front introduces pessimism that outweighs the
aggregation benefits in the output bound computation, too:

aDtion’ = oy o A Yt ) @ BR,, T,
= (Wripn @ Br, 1) T (e pre @ Br,, 1)
= Vphphigefi,, T Vef2 b2 e f2 Ty,
Note, that we applied distributivity of @ over + for rate-

latency service and token-bucket arrivals [3]. This is not
necessary at this point but it results in two separate output
bound computations, nicely illustrating the increase of fo’s
maximum burstiness arriving at s, by 7/2T}. The disadvantage
is carried over to the output of server s, of Figure 2b:

Detfront’ _ - Detfront
asg ont _asl ont ®552
('erl b1 T + Vrs2 bf24rf2 Ty ) @ BRSZ Tsy
Vrf1 pf14rh1 (Tay +Ts;) + VY, t2 bF2rfz (T, +T52)

We have seen that flow detouring at the front will result in
worse bounds — even if flows can be aggregated for output
bounding. Next we show how flow detouring at the front can
lead to better bounds nonetheless.

B. Detouring of Cross-traffic: Improving Bounds Nonetheless

In this section, we demonstrate that detouring over a server
added to the middle of a flow’s path can improve delay
bounds derived by DNC despite the problems illustrated in
the underlying detouring at the front.

We investigate the network shown in Figure 3a [7]. The

output of cross-flows xf; and zf, after server sy needs to be
bounded. Current DNC alternatives at s, are
e Maximize aggregation. This enforces a hop-by-hop analysis
due to the fork above sy and zf; cannot benefit from PMOOA
when subtracting the impact of zf; on the tandem sg1, So.
o Maximize tandem length. This strategy allows for implemen-
tation of the PMOO principle, yet, it requires to segregate xf;
and zf,. Le., these flows are analyzed individually and assume
mutually exclusive worst-case system behavior at sg.

With the PMOOA (Theorem 1) and virtual flow detouring
in the analysis, we can benefit from the PMOO principle when
subtracting cross-flow xf; and from aggregating xf; and xf,
(see Figure 3b). Detouring is paid for by a different penalty
(cf. Detgone in Section III-A), creating a new tradeoff that can
beat the two existing strategies. The longer tandem will be
able to hold more data in transit (added pessimism), and the
issues of PMOOA prevent introduction of dangerous optimism
by making it lack the ability to distribute load in a better way
than on the original tandem. In summary, it is key to virtually
detour a flow over its cross-flows such that the PMOOA has
an impact. Then, the analysis of a more pessimistic setting
can indeed result in better output bounds as we illustrate on
Figure 3b next. For readability, we skip the s and f labels.

1) Detouring P8 = oy, purine poeowrine arrivals at sy

’yDetouring = ((a2 @ Boz2) + 1) @ ((Bo1 ® Po) © a3)

(a) Original network

(b) Network after detouring

Figure 3: Cross-flow detouring in the network [7] known to
benefit from a longer tandem analysis of xf;.

= ((/YTQJ)Z @ BRUQsTOZ) + ’yTl,bl)
®((BR01,T01 ® ﬁRoyTO) S ’\/7‘3163)
(7T27b2+7‘2T02 + ’YT1,b1) © (6R01/\R0,T01+T0 © ’Ym,bs)

Tritra,bi+ba+raTos © B(RUL/\RU)*M «,T[u+T[]+7b?;JI3A(;%1)tIZ)

with pPetouring — oy 4 py and
bDelouring = by + by + r2Th2
bs +73(To1 + To))
Tt Tt —_—
+(r1 +72) ( o1 + To + (Rot A Bo) — 15
= by + b2 +1r2T02
b3 + r3(To1 + Tt
+7r2T01 + (r1 +72)To + 1701 + (r1 + 7”2)%
From the literature, we get two further valid bounds for the
arrival of xf, + zf, at s1, derived as follows:
2) Aggregate Arrival Bounding’s %8 [8] in Figure 3a

AggrAB

Y Yri+ra, bi+ba+r1To1+r2To2

b3 +r3Toy b3 +r3(To1+T)
+r1 W+(T1+T2) (ﬂnLW

3) Segregated Arrival Bounding’s 5™ [7] in Figure 3a

SegrAB

Y Yri+ra, bitbatriTor+raToo+(r1+r2)To

by+b3+7r3T01 +(ra+73)To
(Ro1—r3)A(Rg—12—73)

by +b3+(r1473)TH
Ro2A(Rg—7r1—73)

+r1 +7r2

We see that all three alternatives compute the same arrival rate
at sy, 1 + o9, and that there are common terms in the arrival
burstiness, by + by + 71191 + 12102 + (11 + 12)To. We assume
a network with homogeneous rates Ry = Ryp1 = Ro2 =: R,
r1 =19 = r3 =: r and compare the remaining burst terms.

° ,yDetouring < ,yAggrAB:

bg + T‘(T()l + TQ)

rTor + 2r—————2 <
R—r
b3 =+ T’Tgl b3 =+ T‘(T()l + To)
2
" R—r e R—r

<~ T()l(R — 27“) < bs

° ,yDetoun‘ng < ,ySegrAB:

b3 + T(T()l + To) <

rTo1 + 2r
R—1r
rbg + bd + TTOI + 2TTO bl + b3 + QTTO
R—-2r R—2r

= (R—T)T01—2TTO<b1—|—b2
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Figure 4: Delay bound improvements.

In [7], parameters were fixed to show S°€"AB < ,AeerAB,
latencies are 0, b; = b = 0. With the former, virtual detouring
will attain better results. Adding the latter, its results will
equal the SegrAB. The remaining parameters are constant. In
a homogeneous network modeled with affine curves, detouring
can theoretically outperform the AggrAB and SegrAB output
bounding strategies by an arbitrarily large margin.

C. Application to Large Feedforward Networks

In Figure 3, there is only a single sensible detouring alter-
native. In larger networks with flows taking different paths,
there may be several virtual detouring alternatives in order
to allow for the PMOO principle’s application to different
sets of their cross-flows — the amount of alternatives certainly
increases with the network size. This creates potential for a
combinatorial explosion. Therefore, we will provide a simple
yet effective heuristic to select one single detouring path.

From TMA [6] we learn the reason for effort in the DNC
analysis: The analysis is executed with recursive backtrack-
ing [8], starting from the foi and backtracking over cross-
flows. Bounds on arrivals of these cross-flows are not known
before the backtracking terminated and results for the piled
up recursion levels are computed. During backtracking, these
still missing results are yet required to find the best bound
computation for a recursion level. Thus, the exhaustive search
keeps all alternatives alive until all information is known.

From DeepTMA [11] we learn that we need a non-
exhaustive heuristic. Our detouring heuristic only operates on
the invariant data available at any location in the network:
service curves and the sole presence of flows (without arrival
curves / output bounds). The former is not of much use without
arrival curves and thus, we use the latter. We interpret presence
of flows as potential for cross-flow aggregation and additional
servers to detoured over. The decision on detouring can be
easily done server-by-server, embedded into the backtracking:
At any server, simply check all in-links and detour over the one
that has the most flows on it. If there are multiple alternatives,
randomly choose one of them. Note, that the random choice we
opted for in our heuristic negatively impacts reproducibility of
our evaluation results. But any other tie-breaker would increase
the complexity of the detouring heuristic. We terminate the
detouring-path search when one of these conditions is met:
i) there is no cross-flow or analyzed flow left to prolong over
ii) bounds become infinite (long-term service < arrivals).

T T T T
20 60 100 140 180 220 260 300 500
Network size

Figure 5: Strict delay bound reductions.

I L L
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Total execution time (s)

20 60

Figure 6: Execution times.

IV. NUMERICAL EVALUATION

A. Evaluation Setup

For benchmarks, we compute delay bounds in the networks
from [6]' (20 to 500 devices, 152 to 7504 flows). We mainly
compare PMOOA with detouring (PMOOA+Detouring), the
Tandem Matching Analysis (TMA) [6] paired with the Burst
Cap (BC) [13] mechanism and the optimization-based ULP
analysis [17]. The basis for our PMOOA+Detouring imple-
mentation is the open-source NetCal DNC v2.6 [217%.

B. Improvement over Other Analyses

We compare in this section the resulting end-to-end delays
produced by PMOOA+Detouring and compare them against
TMA and SFA [19, 20]. We aim to derive the best delay bound
for every flow. There are no semantics assigned; the flow with
the best improvement could be the most important one.

We first evaluate how many flows have their end-to-end
delay bound matched or reduced with the use of detouring,
compared to the other analyses:

delayPMOOAJrDemm-mg < delay x

Results are presented in Figure 4. PMOOA+Detouring is able
to match or improve delay bounds of TMA for at least 53.0 %
of the analyzed flows — this lowest value is obtained in the
largest network. In contrast to PMOOA without Detouring,
which matches at most 26.7 % of the analyzed flows compared
in the largest network, the addition of detouring is beneficial.
As expected, the use of detouring has thus almost no impact
on the existing relation to SFA and ULP delay bounds [6].

As a second metric, we evaluate how many flows have their
end-to-end delay bound strictly reduced, namely we use a strict
inequality compared to before:

delay pr1ooa+ Detouring < delay x

Results are presented in Figure 5. As expected, PMOOA does
not produce tighter bounds than TMA. Using detouring results
in strictly tighter bounds for more than 51.4 % of the analyzed
flows, meaning that our approach is able to outperform the
tightness of TMA for more than half of the evaluated flows.
Compared to ULP, no strict improvement is achieved, again
an expected result for the same reasons as above.

! Available at: https://github.com/NetCal/DNC_experiments
2 Available at: https://github.com/NetCal/DNC
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C. Relative Change

We illustrated that our heuristic can match or even outper-
form PMOOA and TMA+BC. As PMOOA+Detouring com-
petes with segregate arrival bounding of [7] (SegrPMOO), we
benchmark against the results available for TMA+SegrPMOO.
We compare delay bounds with the relative change metric:

RelativeChange,, = (delay poyouring — delay,,) /delay,

Results are presented in Figure 7 for the only two networks
from the dataset that can be analyzed with TMA+SegrPMOO.

(a) Network with 20 devices

s (b) Network with 40 devices

£ 100 | = 11004 -
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é l i\ ——TMA+SegrPMOO
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Relative change(%) Relative change (%)

Figure 7: Relative change of PMOOA+Detouring compared to
TMA+SegrPMOO, PMOOA and ULP.

As illustrated in Figure 7a, detouring can result in the
reduction of end-to-end delay bounds of up to 1 % compared to
PMOOA, or up to 0.5 % compared to TMA+SegrPMOO. This
effect is less visible in Figure 7b, but detouring still results in
0.2 % in the best case.

D. Execution Time

In order to illustrate the impact of PMOOA+Detouring’s
small complexity, we compare the execution time of our
heuristic with other analyses. We benchmark the different
analyses by measuring the execution time per network, i.e.
the overall elapsed wall clock time of an analysis for all the
flows in a network size. Execution times presented here do not
include the time to model a network or derive the server graph
or adding the flows. These are not in focus of this work and
they are the shared prerequisite for all the evaluated analyses.

Results are presented in Figure 6. All execution times were
measured on the same machine with an Intel Xeon CPU E5420
at 2.50 GHz. For DeepTMA, no GPU acceleration was used.
For ULP, CPLEX was used for solving the linear program.

PMOOA+Detouring takes advantage of the efficiency of
PMOOA and outperforms all other analyses by at least two
orders of magnitude, except pure PMOOA of course. On
average, the addition of detouring (with a PMOOA on the
detour) resulted in an increase of only 42.6% in average,
indicating that detours are rather short. Those results illustrate
that the computational cost of using detouring is negligible
compared to the gains in tightness illustrated earlier.

V. CONCLUSION

In this paper, we contribute virtual cross-flow detouring
(detouring) to deterministic network calculus. We show that
it is a powerful extension to the PMOOA analysis, resulting
in delay bounds matching or even outperforming the state-
of-the-art analyses that are considerably more involved. Our

contribution is based on the counter-intuitive idea of adding
pessimism to the model. Due to a previously frowned upon
characteristic of PMOOA, we can compute better delay bounds
nonetheless.

Our evaluation shows that detouring is able to outperform
the previously best analyses, in particular TMA. Delay bounds
of more than 50 % of the analyzed flows improved compared to
TMA. This is achieved by only a small addition to PMOOA’s
execution time of 42.6 % on average. That makes our proposed
heuristic not only comparable with TMA w.r.t. the computed
delay bounds but also faster by two orders of magnitude.
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The Case for a Network Calculus Heuristic:
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Abstract—Deterministic network calculus offers a framework
for providing guaranteed bounds on end-to-end delay and buffer
usage in computer networks. Various network analysis methods
have been proposed in order to reduce the impact of burstiness
or multiplexing and provide tight performance bounds. Yet,
the choice of which analysis method to use given a network
to analyze is not straightforward as it has been shown in the
literature that corner cases exist leading to poor tightness. We
propose in this paper to take a new look at this question using
insights from data and confirm that there is no clear winner
when deciding which method to use. Based on those first results,
we make the case for a network calculus heuristic in order to
predict the bounds produced by a given network analysis method.
Our main contribution is a heuristic based on graph-based deep
learning, which is able to directly process networks of servers and
flows. Via a numerical evaluation, we show that our proposed
heuristic is able to accurately predict which analysis method will
produce the tightest delay bound. We also demonstrate that the
computational cost of our heuristic makes it of practical use,
with average runtimes one or two order of magnitude faster
than traditional analysis methods.

I. INTRODUCTION

Performance guarantees are an essential part of network
architecture and design in real-time networks such as safety
critical systems [1]. In the case of large Ethernet networks,
deterministic network calculus (DNC) [2] has been success-
fully used as a mathematical framework for validating and
guaranteeing end-to-end delay requirements and buffer sizes.
An important aspect of such framework is to achieve good
tightness, namely minimizing the gap due to the pessimism
of a method and the real worst-case. Various network analysis
methods have been investigated in the literature to address this,
by either focusing on specific effects such as multiplexing [3]
or using methods based on optimization [4]. Yet, no clear
guideline has been proposed with regards to choosing the
appropriate method given a network to analyze.

To address this question, we propose in this paper to take
a new look at this problem from the perspective of data. In
a first step, we confirm previous results on corner cases of
network analyses by evaluating them on randomly generated
feed-forward networks. Based on those findings, we propose a
heuristic for network calculus analyses using a neural network
able to process graphs in order to predict the end-to-end
latency bound of a given analysis method. Our heuristic is
based on a transformation from the feed-forward server graph
and the flows crossing it to a general graph which can then

Georg Carle
Technical University of Munich (TUM)
D-85748 Garching b. Miinchen, Germany
Email: carle@net.in.tum.de

be analyzed using recent techniques from neural networks
focused on graph analysis.

We demonstrate via a numerical evaluation that our trained
neural network is able to predict end-to-end latency bounds
with a relative median error of 2.5 %. While the predictions
of the neural network cannot be directly used for giving
performance guarantees, we show that such heuristic can be
used for deciding which network analysis method to apply
given a network and a flow of interest. Compared to a strategy
of using only one analysis method, using our heuristic as a
selection of which method to use leads to a relative reduction
of the end-to-end delay bound of 12.79 % in average. Finally,
we also evaluate the runtime of our heuristic and show that
it is one order of magnitude faster than a standard network
analysis method, highlighting its usability in practice.

The rest of this paper is organized as follows. We first
give an overview of network calculus in Section II and
investigate the state of the different network analysis methods
using numerical evaluations. We present in Section III our
heuristic based on graph-based deep learning. In Section 1V,
we numerically evaluate our approach and show an application
of our heuristic. Related research studies are presented in
Section V. Finally, Section VI concludes our work.

II. DETERMINISTIC NETWORK CALCULUS

We present in this section a brief overview over determinis-
tic network calculus and a numerical evaluation of its different
network analysis methods. In DNC, a flow corresponds to
unidirectional communications between a source and a desti-
nation, modeled as a function of its cumulative arrival of data.
In order to compute bounds on flows, we are interested in the
functions A(t) corresponding to the data arriving in a given
server s at time ¢, and A’(t) the amount of data processed by
the server at time ¢. Using this formalism, the following delay
definition can then be derived:

Definition 1 (Flow delay): Assume a flow with input A and
crosses a server s and results in the output A’. The (virtual)
delay for a data unit arriving until time ¢ is

D@#)=inf{r >0 | A(t) < A'(t+7)}

Instead of directly working with A, DNC makes use of the
concept of arrival curves, which is a function bounding the
maximal arrivals of a flow:
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Definition 2 (Arrival curve): Given a flow with input A, a
function «v is an arrival curve for A iff

A(t) — A(s) < a(t —s),Vt,s,0< s <t

Definition 3 (Service curve): If the service provided by a
server s for a given input A results in an output A’, then s
offers a service curve (3 iff

A2 inf {At=5)+B(s)}. vt

A. (min, +) Algebra

DNC was formalized as a (min, +)-algebraic framework
in [5, 2], enabling an easier description of operations on
flow and server descriptions. The (min,+) convolution and
deconvolution of two functions f, g are defined as:

Convolution: (f ® g)(t) = O%I;fgt{f(t —5)+g(s)}

Deconvolution: (f @ g)(t) = S};Ig{f(t +5) —g(s)}

Using those (min, +) operations, one can rewrite the pre-
vious definitions as A’ > A® 3 and A ® a > A. Moreover,
(min, +) convolution allows DNC to concatenate the service
of consecutive servers (1,...,n) into a single service curve.

B. Network analysis methods

We review here the most common network analysis methods
from DNC. We refer to [6] for a more in-depth review of
the different methods proposed in the literature. We call the
analyzed flow flow of interest, abbreviated here foi. The foi’s
path defines the sequence of servers that defines its end-to-end
delay. Different methods have been proposed in the literature
for bounding this end-to-end delay.

1) Total Flow Analysis (TFA) [2]: The TFA first computes
per-server delay bounds. Each one holds for the sum of all the
traffic arriving to a server. The flow’s end-to-end delay bound
is derived by summing up the individual server delay bounds
on its path.

2) Separated Flow Analysis (SFA) [2]: The SFA is a
direct application of other theorems: first compute the left-
over service of each server on the foi’s path, then concatenate
them and finally derive the end-to-end delay bound. Deriving
the end-to-end delay bound using only one service curve will
consider the burst term of the foi only once, a property called
Pay Burst Only Once (PBOO).

3) Pay Multiplexing Only Once (PMOO) [3]: The PMOO
analysis first convolves the tandem of servers before subtract-
ing the cross-traffic. Using this order, the bursts of the cross-
traffic appear only a single time compared to the SFA analysis
where the bursts are included at each server. Therefore, mul-
tiplexing with cross-traffic is only paid for once.

4) Arrival bounding methods: For more involved feed-
forward networks, a procedure to combine tandem analyses
with a network analysis have been proposed. [7] established
two basic steps of the analysis: /) cross-traffic arrival bounding
and 2) flow of interest performance bounding. For the cross-
traffic arrival bounding, the flows interfering with the foi

are backtracked to their sources to derives the dependencies
between the foi and its cross-flows in a recursive fashion. The
PBOO and PMOO properties can then also be applied on the
cross-traffic as shown in [8, 7].

C. Numerical comparison between methods

From the description of the different methods previously
presented, the most promising method for producing a tight
bound is PMOO. However, it was demonstrated in [9] that
PMOO does not necessarily outperform SFA. These problems
all aggravate in the analysis of entire networks, where accu-
rately bounding cross-traffic is important.

In order to better understand the differences between the
different network analysis methods previously described, we
propose in this section to numerically investigate the bounds
produced by each method on a dataset of 44 044 topologies'.
Our methodology for evaluating the methods is as follows.
We generated random feed-forward networks as illustrated in
Figure 1, where up to 10 servers are connected in a daisy
chain manner. For each server, a rate-latency curve is used
with the rate and latency sampled from a uniform distribution.
Up to 40 flows are then randomly generated with random
sources and destination servers, with a token bucket arrival
curve with the rate and burst sampled from a uniform distri-
bution. Each topology is then evaluated using DiscoDNC [8]
(version 2.4.0) using TFA, SFA and PMOO, with different
arrival bounding methods. The arrival bounding methods
are labeled as: PMOO-AB for ArrivalBoundMethod.PM0OO
in DiscoDNC, PMOO-PF-AB for PER_FLOW_PMO0, PBOO-
PF-AB for PBOO_CONCATENATION, and PBOO-PH-AB for
PBOO_PER_HOP. We refer to [8] for a complete explanations
of those arrival bounding methods. The topologies are built
such that they satisfy the feed-forward property, i.e., there are
no cyclic dependencies between the flows. For our evaluation,
we focus in this paper on end-to-end delay bounds.

f
N C)=C) =)

Figure 1: Example feed-forward network

The numerical results and comparison between analysis
methods is presented in Figure 2. We first compare in Fig-
ure 2(a) and (b) the flows’ end-to-end delay bounds against the
best and worst delay bounds produced by the other methods.
As expected, PMOO produces the tightest delay bounds for
around 70 % of the analyzed flows, SFA for 54 %, and TFA
for 1%. Those numerical results are in line with [9, 7].
Surprisingly, we notice that PMOO produces the worst delay
bounds in around 11% of the studied flows, highlighting
and confirming the existence of corner-cases. We also notice
that the cross-traffic arrival bounding method has a noticeable
influence on tightness.

Based on those results, we investigate in Figure 2(c) how
much tightness is lost in case the network analysis does not

! Available here: https://github.com/fabgeyer/dataset-itc30nc
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(a) (b) (c) (d)
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Figure 2: Evaluation and comparison of the different network analysis methods against different metrics. (a) Ratio of flows
where a given method produces the tightest bound compared to the other methods, (b) respectively the worst bound. (c) Relative
difference between delay bound of a given method and the best method when the given method does not provide the best
bound. (d) Ratio of networks where a given method is able to produce the tightest bounds for all the flows of the topology.

produce the tightest bound. For each flow F where a given
method M did not produce the tightest bound, we use the
relative difference to numerically assess this lost tightness:

M : m
D% —min,, D7

Relative Difference(F, M) = (D

min,, D2
with DY the end-to-end delay bound of flow F with analysis
method M.

Finally, we evaluate the ability of a network analysis method
to produce the tightest bounds for all flows in a given network
topology. To numerically assess this notion, we define the
coverage per topology for a given method as the ratio of
number of flows where the method produced the tightest
bounds divided by the total number of flows in the topology.
Results are presented in Figure 2(d). Although the results
are in line with the numerical results from Figure 2(a) and
(b), we notice that given a network topology, using a single
network analysis method will not produce the tightest bounds
for all flows in the topology. This finding motivates an adaptive
analysis for a given topology, where different network analysis
methods would be used depending on the flow of interest.

III. DNC HEURISTIC USING NEURAL NETWORKS

We introduce in this section a heuristic based on the concept
of Graph Neural Network introduced in [10, 11]. The main
intuition behind our approach is to map network topologies
and flows to graphs. Those graph representations are then
used as input for a neural network architecture able to process
general graphs.

A. Presentation

Let G = (V,€) be an undirected graph with nodes v € V
and edges e € £. Let i,, and o, represent respectively the input
features and target values of node v. The concept behind Graph
Neural Networks is called message passing, where hidden rep-
resentations of nodes are based on the hidden representations

of their neighboring nodes. Those hidden representations are
propagated through the graph using multiple iterations until a
fixed point is found. The final hidden representation is then
used for predicting a property about the node. This concept
can be expressed as:

n = f ({hgj—n ‘ ue NBR(U)}) )
0, = g (h{™>)) 3)
h(=0 = init (i,) “

with hgt) representing the hidden representation of node v at
time ¢, f(-) a function which aggregates the different hidden
representations, NBR(v) the set of neighboring nodes of v, g(+)
a function for transforming the final hidden representation to
the target values, and nit(-) a function for initializing the
hidden representations based on the input features.

The concrete implementation of the f(-) and g(-) functions
are feed-forward neural networks with the special case that
f(+) in Equation (2) is the sum of per-edge terms (as recom-
mended by [11]) such that:

. —1 - _
= f({aGon) = X @) o
uENBR(v)
with f*(-) a feed-forward neural network. For init(-), the
initial features are usually zero-padded to fit the dimensions

of the hidden representations.

B. Extensions

We give in this section a brief overview of the extensions
to GNNs which were used in this paper.

1) Gated Graph Neural Network: In order to improve the
training of Graph Neural Networks, Li et al. [12] proposed
Gated Graph Neural Networks (GG-NNs). This extension
implements the function f(-) using a memory unit called
Gated Recurrent Unit (GRU) [13] and unrolls Equation (2)



A.1. Tight and efficient bounds in network calculus with fast heuristics

105

for a fixed number of iterations. The propagation of hidden
representations among neighboring nodes for one time-step is
formulated as:

x® =HDA + b, (6)
2 = (sz(t) +UHD 4+ bz) %)
) =g (WT:N) +UHD br) 8)

H® = tanh (Wm(f) +U (r(t) ® H<H>) + b) )

HO® — (1 _ z(t)) OHED 420 o H® (10)
where o(z) = 1/(1 + e ) is the logistic sigmoid
function and © the element-wise matrix multiplication.
{W.,W,,W} and {U,,U,,U} are trainable weights ma-
trices, and {b,, b, b, b} are trainable biases vectors. A €
RIVIXIVI is the graph adjacency matrix. Equation (6) corre-
sponds to the aggregation of messages from adjacent nodes as
in Equation (5). Equations (7) to (10) correspond respectively
to the reset gate, the update gate, the candidate output, and
the output vector of a standard GRU cell [13].

2) Edge attention: A recent advance in neural networks has
been the concept of attention, which provides the ability to a
neural network to focus on a subset of its inputs. For the scope
of GNNs, we introduce here so-called edge attention, namely
we wish to give the ability to each node to focus only on a
subset of its neighborhood. Formally, let aEi{u) € [0, 1] be the
attention between node v and u. Equation (5) is then extended:

B = > e, (nEY) an
uwENBR(v)
ol = 1 () ®

C. Application to deterministic network calculus

In order to apply the concepts described in Sections III-A
and III-B to network calculus analysis, we model the feed-
forward server graph and the flows crossing it into graphs.
Each servers is represented as a node in the graph, with edges
corresponding to the connections between servers. Each flow
is represented as a node with edges connecting it to the path
of traversed servers. Since the order of the servers which is
traversed by a flow plays a large influence in network calculus,
so-called path ordering nodes are added on the edges between
the flow node and the server nodes. Figure 3 illustrates this
graph encoding with the network from Figure 1.

__ Path

[« ordering

Figure 3: Graph encoding of the example topology. Square
nodes represent additional nodes encoding path ordering.

Each node in the graph has the following input features:

« For server S, we use the parameters of its rate-latency
service curve: is = [rates, latencyg);

o For flow F, we use the parameters of its token bucket
arrival curve: i = [ratez, burst z|;

o For a path ordering node O, a categorical encoding of
the hop index is used as input feature. We use standard
one-hot encoding, namely ip is a vector with a one at the
hop index, and zeros otherwise (e.g.: in Figure 3, we have
i7" =[1,0,0], i 7** = [0,1,0], i 7** = [0,0, 1))

For the output prediction of each node representing a flow

F, we wish to have a vector of end-to-end latency bound
for the 12 methods evaluated in Section II-C, namely: or =
[DF, D72, ..., D2*?]. Similar output vectors may be used
for the servers’ backlog bound.

IV. NUMERICAL EVALUATION

We evaluate in this section the accuracy of the proposed
heuristic as introduced in Section III-C.

A. Evaluation as latency bound heuristic

We first assess in this section the precision of the predicted
end-to-end latency bounds. Figure 4 illustrates the absolute
relative difference between the predicted end-to-end delay
bound and the bound given by the analytical method (named
here ground truth). The overall median value is 2.5 %, with
larger errors in case of predicting the output of PMOO.

TFA + PMOO-PF-AB
TFA + PMOO-AB -
< TFA+PBOO-PH-AB
S TEA+PBOO-PF-AB
%  SFA+PMOO-PF-AB4{ — | }———
g SFA+PMOO-AB{ — | |——
‘#3  SFA+PBOO-PH-AB{ — | }—-——
= SFA+ PBOO-PF-AB
S PMOO + PMOO-PF-AB{ — b
< PMOO + PMOO-ABH —| —
PMOO + PBOO-PH-AB4 —] b
PMOO + PBOO-PF-AB4 —] —
0% 5% 10%

Absolute relaﬁve difference between
predicted bound and ground truth

Figure 4: Precision of the predicted end-to-end latency bound

B. Evaluation as a proxy for analysis method selection

Based on the results from Section II-C, we introduce here
an adaptive network analysis method, where a specific network
analysis method is used given a flow of interest. This adaptive
network analysis is illustrated in Algorithm 1.

Algorithm 1 Adaptive network analysis

for all flow of interest F in network N do
netcalc_method < select_netcalc_method(N, F)
bound 7 <+ netcalc_method(N, F)

For the function select_netcalc_method in Algorithm 1, we
define here the following strategies:
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Global top I: we always use the network analysis method

which provided the best median bound in Section II-C (ie.

PMOO with SFA per-hop arrival bounding);

Global top 2: we evaluate the two methods which provided

the best median bounds in Section II-C (ie. PMOO with SFA

per-hop and PMOO global arrival bounding) and select the

method which produced the tightest bound;

e PMOO and SFA: both PMOO and SFA with SFA per-hop
arrival bound are evaluated;

e Per-topo best: we use the method which provided the best
median bound over the flows of the studied topology;

o Fully random: we randomly select among the 12 methods
surveyed here, with the same probability for each method;

o Weighted random: same as in Fully random but with prob-

ability values set according a ranking of the methods;

ML top I: the heuristic from Section III-C is used for

selecting the analysis according to the minimum predicted

end-to-end delay bound;

ML top 2: as in ML top 1, but two analyses are selected

and the one producing the minimal tightest bound is kept.

We first evaluate in Figure 5 the ability of Algorithm 1
to produce the tightest per-flow end-to-end delay bound ac-
cording to the different selection strategies previously listed.
The machine learning based strategies outperform all the other
strategies in Figure 5, with the ability to produce the tightest
result for 88 % of the studied flows for the ML fop 2 strategy,
outperforming all the other evaluated strategies.

ML top 2 - 88.1%|
PMOO and SFA - 83.2%|
B> ML top 1 - 76.6%|
_‘%D Per-topo best - 71.2%|
g Global top 2 - 61.6%|
2 Global top 1 - 52.1%)
Weighted random - 44.2%
Fully random - 29.4%
0% 25% 50% 75%

Coverage ratio compared to
optimal selection method
Figure 5: Ability of a selection method to produce the tightest
end-to-end delay bound.

As in Figure 2(c), we evaluate in Figure 6 how much
tightness is lost in case the produced end-to-end latency bound
is not the tightest. Using the machine learning heuristic, we
still get tight bounds compared to the other approaches listed
earlier. This means that although the heuristic did not result
in selecting the tightest network calculus analysis to use, the
one which was selected produced a bound close to the tightest
one.

Finally we evaluate in Figure 7 the gain in tightness of using
an adaptive network analysis compared to only using a single
analysis for all the evaluated topologies. In average, we see
that we get a relative gain in tightness of around 12.79 % by
using an adaptive network analysis based on machine learning,
close to the optimal 13.03 %.

PMOO and SFA{ |
ML top 21 H»
% ML top 1 4 I
k%) Per-topo best CI:I—
g Global top 2 A m—
0 Global top 1 4 ~|:I:
Weighted random - EI:'—
Fully random - D:li
0% 5% 50% 75%  100%

Absolute relative difference
compared to best method
Figure 6: Relative difference between delay bound of a given
method and the best method when the given method does not
provide the best bound

optimized | ST
PMOO and SFA H 12.98%

. ML top 2 12.84%|
& ML top 1+ 12.79%|
p
g Per-topo best § 6.47%
=
g Global top 21 0.06%

Weighted random - -0.08%

Fully random 4 |-2.05%

0% 5% 10%
Average relative gain

Figure 7: Relative gain in tightness compared to using only
one method for all the evaluated topologies. "Optimized"
corresponds here to the evaluation of the 12 network analyses.

C. Runtime

We evaluate here the runtime of using such heuristic in
order to assess if the heuristic is of practical benefit regarding
computation time. We evaluated the machine learning heuristic
both on GPU (Nvidia GeForce GTX 1080 Ti) and CPU (Intel
Xeon E3-1270). The network calculus analyses were run on
the same CPU. The runtimes discussed here do not include
the computation cost of training the neural network.

We compare in Figure 8 the average runtime per topology
of the machine learning heuristic against the average runtimes
of the different network analyses studied here. Compared to a
single analysis, our heuristic is an order of magnitude faster
on GPU. Compared to the sum of the runtimes of all the
analyses, our heuristic is two orders of magnitude faster on
GPU. This shows that our machine learning heuristic is both
the best performing regarding accuracy as showed in Figures 5
and 7, but can also be used at little computational cost on GPU.

V. RELATED WORK

Identifying corner-cases of network calculus has already
attracted some previous work. Schmitt et al. [9] showed
that PMOO suffers from shortcomings given specific network
configurations, and provided an optimization-based analysis
that implements all three analysis principles at the same time.
However, Kiefer et al. [14] showed that this optimization
method suffers from vast computational effort. Bouillard et al.
proposed in [4] another attempt to solve this challenge is using
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Average runtime per topology (ms)

Figure 8: Average runtimes per topology of the different net-
work analysis and arrival bounding methods, and the machine
learning heuristic.

optimization-based analysis, but it was similarly showed by
Bondorf et al. [15] to become computationally infeasible.

Various proposals have been made in order to make network
calculus more computationally efficient. Luangsomboon et al.
[16] proposed to use GPUs for computing fast convolution
and deconvolution. While this approach provided efficient
operations of the (min,+) algebra, the benefit in the case
of network analysis is still to be determined. Bondorf et al.
[15] recently proposed another approach based on exhaustive
decomposition of network. Numerical evaluation showed that
this method could reach bounds comparable to the ones from
optimization-based methods at lower computational cost.

Neural networks for graphs has recently attracted a larger
interest, and are generally based on the concept of message
passing presented in Section III. They have been used in a
variety of domains such as performance evaluation of networks
with TCP flows [17], routing protocols [18], or basic logical
reasoning tasks and program verification [12].

VI. CONCLUSION

Through a numerical evaluation on randomly generated
networks of various network analysis methods from DNC, we
showed and confirmed the existence of corner-cases, highlight-
ing that the choice of which method to use given a network
and a flow of interest is not trivial. This motivated our case for
having a DNC heuristic able to predict which network analysis
method will produce the tightest bound.

We contributed in this paper a novel heuristic for deter-
ministic network calculus using graph-based deep learning.
Our approach is based on the application of Graph Neural
Networks and a mapping from feed-forward server graphs
and the flows crossing them to graphs which can be used
for training a neural network. We showed via a numerical
evaluation that our approach is able to reach good accuracies
and predict which network analysis will produce the tightest
bounds. Finally, we evaluated the runtime of our heuristic
and showed that it can be used at a small computational cost
compared to traditional network analyzes.
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A.1.5 DeepTMA: Predicting Effective Contention Models for Network Calculus
using Graph Neural Networks
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munications, 2019 [62].



A.1. Tight and efficient bounds in network calculus with fast heuristics

109

DeepTMA: Predicting Effective Contention Models
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Abstract—Network calculus computes end-to-end delay bounds
for individual data flows in networks of aggregate schedulers.
It searches for the best model bounding resource contention
between these flows at each scheduler. Analyzing networks,
this leads to complex dependency structures and finding the
tightest delay bounds becomes a resource intensive task. The
exhaustive search for the best combination of contention models
is known as Tandem Matching Analysis (TMA). The challenge
TMA overcomes is that a contention model in one location of
the network can have huge impact on one in another location.
These locations can, however, be many analysis steps apart from
each other. TMA can derive delay bounds with high degree of
tightness but needs several hours of computations to do so. We
avoid the effort of exhaustive search altogether by predicting
the best contention models for each location in the network.
For effective predictions, our main contribution in this paper
is a novel framework combining graph-based deep learning and
Network Calculus (NC) models. The framework learns from NC,
predicts best NC models and feeds them back to NC. Deriving
a first heuristic from this framework, called DeepTMA, we
achieve provably valid bounds that are very competitive with
TMA. We observe a maximum relative error below 6 %, while
execution times remain nearly constant and outperform TMA in
moderately sized networks by several orders of magnitude.

I. INTRODUCTION
A. Motivation

Deterministic performance bounds have seen many appli-
cations in modern systems and a wide range of network
calculus-based solutions have been proposed. Network Cal-
culus (NC) can be applied to ensure deadlines in networks
for x-by-wire applications [1] as well as SDN-enabled net-
works [2], for safety-critical production systems [3], or both
of these [4]. Moreover, NC solutions have been proposed for
highly dynamic environments. E.g., admission control in self-
modeling sensor networks [5] or systems providing customers
with service level agreements [6] for, among others, storage
access [7]. Other recent examples where dynamic events
may often cause changes are cache networks [8] and cloud
computing [9]. These areas benefit from fast computations
of tight performance bounds. The literature provides one-shot
analyses for topology-agnostic bounds [10] or bounds that hold

* This work was supported by the German-French Academy for the
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Foundation fellowship in the DISCO Labs at TU Kaiserslautern, Germany,
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Figure 1: Dependency cycle defining current NC analyses.

for the specification’s worst case [4]. Yet, these attempts are
ultimately paid for with wasted resources. Our approach does
not compromise on bound quality by providing a fast analysis
that considers all details of the analyzed network.

B. Background

In network calculus, a network needs to be modeled by
servers (e.g. queues or packet schedulers) whose forwarding
capabilities are lower bounded by service curves. These curves
are derived for each server’s respective aggregate scheduler.
Data flows traverse sequences of servers where they compete
for resources with other flows. Multiplexing and reordering in
queues can occur arbitrarily but deterministic bounds can be
computed as data arrivals are bounded by arrival curves. The
arrival curves are, however, only known at a flow’s first server.

Given such a network model, the NC analysis computes a
bound on an individual flow’s end-to-end delay. This flow is
known as flow of interest (foi) and NC must derive a model
for resource contention from this flow’s point of view. NC
offers multiple network analysis methods to derive contention
models that discriminate against the foi. These alternatives are
all proven to result in valid delay bounds for the foi. But there
is not a single-best contention model that can be expressed
with NC, not even on a simple tandem of servers. All the worse
for NC, it needs to bound the impact of all transformations of
all flows’ arrival curves up to the location of contention to rank
the contention models. Curve transformations, in turn, require
to backtrack all flows, either in an aggregate or separated by
worst-case priority assumptions. Different contention models
require different flow aggregation/separation assumptions and
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Figure 2: Comparison of DeepTMA to existing NC heuristics.

the resulting structures expressing dependencies of NC op-
erations become unique. This cycle is shown in Figure 1.
An analysis must execute at least one complete recursion,
terminating upon reaching all backtracked flows’ sources.

It was shown that it is possible to exhaustively derive all
dependency structures and rank each contention model on
each tandem occurring in a network analysis. This is known
as the Tandem Matching Analysis (TMA) [11]. It achieves
high degrees of delay bound tightness by enumerating all
contention models upstream from the foi. Thus, the best model
for a downstream location and flow can be found. In other
words, TMA unwinds all loops that can be taken in the cycle
in Figure 1. This is very costly. The amount of alternative
contention models on a single tandem of n servers is 2("~1),
TMA provides a recursive algorithm whose execution time
can exceed several hours, e.g., when analyzing networks with
>1000 servers and four times as many flows on many-core
platforms that compromise on per-core performance [11].

In this paper, we present the deep-learning assisted TMA,
DeepTMA, that predicts the best contention model with high
efficacy, resulting in a high degree of delay bound tightness
although we only start a single backtracking in Figure 1. Single
backtrackings have been attempted before, yet, we are the
first to achieve considerably faster execution times than TMA
without considerably compromising on delay bound tightness.

C. Contributions

While we focus our evaluations on the novel DeepTMA
heuristic for NC’s tandem matching analysis, we contribute
an entire underlying framework that combines the theories of
NC [12] and a graph-based deep learning, namely Graph Neu-
ral Networks (GNNs) [13], as well as two of their respective
tools [14, 15]. DeepTMA achieves the following properties:

a) Deterministic bounds: We learn from NC and feed
predictions back to NC. We predict the best choices for
decisions made during the NC analyses. NC stays in control
and guarantees provably correct bounds.

Our deep learning framework does not learn to predict a
delay bound but it predicts the most important decisions within
an analysis, the contention models. Compared to directly pre-
dicting a flow’s delay bound, our approach always guarantees
for a valid worst-case bound as we continue to apply the
proven NC operations in their valid orders.

b) Fast execution times and high tightness: Figure 2
shows first benchmarking results of DeepTMA. We compare
against TMA and the established SFA [12] and PMOO [16]
heuristics of NC. These are fast as they greedily decide
on a single contention model, ignoring arrival and service
curves. DeepTMA from our framework is minimally slower
than PMOO but faster than SFA and TMA. Moreover, recent
work [17] showed that the TMA cannot be parallelized easily
and a speedup of only one order of magnitude was observed.
In terms of delay bound tightness (relative error to TMA), all
heuristics outperform a consistent worst choice of contention
models. DeepTMA-derived delay bounds are tightest among
these heuristics, deviating from TMA by no more than 6 % in
our experiments.

DeepTMA efficacy beating SFA and PMOO in the
cost/tightness-tradeoff is necessary, yet, by no means sufficient
to conclude that our deep-learning assisted analysis framework
is the best alternative to create heuristics. SFA and PMOO
were created a decade before TMA, i.e., they never benefited
from advances that resulted in TMA. Therefore, we base
our statement on numerical evaluations benchmarking against
newly contributed non-deep-learning TMA heuristics from the
NC framework.

¢) Train once, apply infinitely often: Naturally, we only
train our machine learning part once before using its predic-
tions in DeepTMA. While we chose a reasonably large range
of parameters for arrival and service curves to learn from, we
restricted our dataset to simple topologies (tandems and sink
trees). The results shown above are achieved by predicting
the best contention model for bounding each flow’s delay in
different, independently created tandems and sink trees.

d) Portability: While we combined two existing tools
whose dependencies must be met, our combination of both
theories enforces no dependencies. It is generally portable to
any platform used in an area mentioned in the beginning.
For instance, Figure 2 shows results for execution on CPU or
GPU. Moreover, efficient deep learning libraries are becoming
increasingly available in a variety of programming languages.

D. Outline

The remainder of the paper is organized as follows: Sec-
tion II presents the NC theory, covering modeling and the
TMA, that we will express as a graph analysis task and
combine with GNNs in Section III. In Section IV we present
the combination of tools and the generation of a dataset to
learn from. Section V provides new NC heuristics in order
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to benchmark DeepTMA against modern non-deep-learning
approaches in Section VI. Section VII presents the related
work on our research direction for network calculus and graph
neural networks before Section VIII concludes our work and
gives an outlook.

II. NETWORK CALCULUS

NC models resource provision and demand with non-
negative, wide-sense increasing functions from the set

Fo={fR=RL| f(0)=0,Vs<t: f(s)<f()},

RZ := [0, +00) U {-+o0}. Functions of Fy are also used for
the bounding curves of NC. Arrival curves upper bound data
arrivals and service curves lower bound forwarding guarantees.

Definition 1 (Arrival Curve): Let the data arrivals of a
flow over time be characterized by function A(t) € Fy, where
t € RY. Then, an arrival curve a(d) € Fy for A(t) must fulfill

VEVd, 0 < d <t : A(t) — A(t — d) < a(d),

i.e., it must bound the flow’s data arrivals in any duration d.

Definition 2 ((Strict) Service Curve): If, during any period
with backlogged data of duration d, a server s with input
function A guarantees an output of at least 3(d) € Fy, then
it is said to offer a (strict) service curve f.

The network calculus was cast in a (min,+)-algebra [12]
with the following operations:

Definition 3 ((min,+) Operations): Network calculus applies
(min, 4)-algebraic operations to compute curve transforma-
tions bounding the worst-case outcome of certain scenarios:
e Flow Aggregation: (a1 + a2)(d) = a1(d) + aa(d)

e Server Crossing: (o @ f3)(d) = sup,>q {a(d 4+ u) — B(u)}
o Residual Service: (8 S a)(d) = supg<y<q {B8(u) — a(w)}
e Server Concat.: (81 ® B2)(d) = info<y<afB1(d—u)+Ba(u)}
where «, a1, o are arrival and (3, 51, B are service curves.

These curve transformations guarantee for deterministic
results. For a network such as the tandem shown in Figure 3,
there are multiple valid orders of operations. Each corresponds
to a model of contention that imposes a dependency structure.
That structure, in turn, defines contention models upstream.

14 P
fy S| Sy S3 S4
) f3

Figure 3: Example tandem network in the NC model.

Definition 4 (Contention Model): The network calculus
contention model for a tandem of servers defines its orders
of operations that provide a residual service guaranteed to a
flow crossing said tandem. Any concatenation of sub-tandem
residual service is a valid contention model for the tandem.

Suppose f3 in Figure 3 is the flow of interest to be ana-

lyzed. Its tandem decompositions are defined by subtandem-
separating cuts located between crossed servers:

all cuts: decomposition into 1-server tandems s3 and s4 or
no cuts: entire 2-server tandem consisting of s3 and s4.
On any tandem, any number and placement of cuts results in
a valid tandem decomposition. Their exhaustive enumeration
is known as Tandem Matching Analysis (TMA) [11]. The
two cases shown here are special. The former corresponds
to the classical Separated Flow Analysis (SFA) [12]. It con-
catenates per-server residual service bounds by computing
(B3 © (3,1 + a3.4)) ® (B2 © 1), where the first index de-
notes server location and the second one of arrival curves
is the flow id. The latter contention model is known as
the Pay Multiplexing Only Once (PMOO) [16] analysis that
computes f3’s residual service for the concatenated tandem:
(B3 ® Ba) ©' {31, 34}. Note the adapted residual service
operation from [11] and the set of separated flows it subtracts.
Next, we need to bound the arrivals of flows to an analyzed
tandem as required for the residual service curve computation
under a specific contention model.

Definition 5 (Dependency Structure): A dependency struc-
ture is a set of sequences that bound arrival curve transforma-
tions up to a tandem of servers.

The dependency structure is subject to the contention
model’s requirements regarding flow aggregation, separation
and duplication. It is created by unwinding the cycle shown
in Figure 1; potentially under contention modeling restrictions
(SFA or PMOO). In our example, SFA can bound f; and f4
aggregately up to ss, i.e., on the tandem of servers s; and s,.
Note, that either of the two decompositions as above can be
best due to the interference of f,. Additionally, SFA needs a
separate arrival curve for f; at s4 — it is not possible to separate
flows after their aggregate crossing of a server was bounded
and we do not assume additional network elements alleviating
this problem like per-flow shapers [12] or interleaved traffic
regulators [18]. PMOO depends on separate bounds for f; and
f4 for the same reason. Both flows cross the s;,s>-tandem and
can thus benefit from either contention model due to f,. Yet,
PMOO does not check the SFA contention model / tandem
decomposition. Last, note that TMA computes results for all
these contention models and dependency structures to find the
best one. Depending on the employed hardware, executing
the TMA can take multiple hours. For example, analyzing a
network with about 1500 servers and four times as many flows
was shown to take close to 2 hours on a compute server [11].
Therefore, we aim to avoid this huge effort with predictions.

III. GRAPH NEURAL NETWORK FOR NC

We develop our DeepTMA heuristic in this section. It
is based on the concept of Graph Neural Network (GNN)
introduced in [13, 19]. The goal of DeepTMA is to predict
the best tandem decompositions, i.e., contention models, to
use in TMA. We define networks to be in the NC modeling
domain and to consist of servers, crossed by flows. We refer
to the model used in GNN as graphs. The main intuition is to
transform the networks into graphs. Those graph representa-
tions are then used as inputs for a neural network architecture
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able to process general graphs, which will then predict the
tandem decomposition resulting in the best residual service
curve. Our approach is illustrated in Figure 4. Since the delay
bounds are still computed using the formal network calculus
analysis, they inherit their provable correctness.

Network Calculus End-to-End
TMA Analysis Latencies
‘ :
Network of servers Cuts Recommendation :
and flows L Training
Graph Transformation Points

and Neural Network

Figure 4: Overview of the proposed approach.

A. Overview of Graph Neural Networks

In this section, we detail the neural network architecture
used for training neural networks on graphs, namely the family
of architectures based on GNNs [13, 19].

Let G = (V,€) be an undirected graph with nodes v € V
and edges (v,u) € &. Let i, and o, represent respectively
the input features and output values for node v. The con-
cept behind GNNs is called message passing, where hidden
representations of nodes h, are iteratively passed between
neighboring nodes. Those hidden representations are propa-
gated throughout the graph using multiple iterations until a
fixed point is found. The final hidden representation is then
used for predicting properties about nodes. This concept can
be formalized as:

hgf) = aggr ({hf}‘” u € NBR(v)}) (1)
0, = out (h(/~)) @)
h(=0 = init (i,) 3)

with hq(f) representing the hidden representation of node v at
time ¢, aggr a function which aggregates the set of hidden
representations of the neighboring nodes NBR(v) of v, out
a function transforming the final hidden representation to the
target values, and nit a function for initializing the hidden
representations based on the input features.

The concrete implementations of the aggr and out functions
are feed-forward neural networks (FFNN), with the addition
that aggr is the sum of per-edge terms [19], such that:

h(" = aggr ({hﬁ,;{l())}) = > f (hff’l)) )

uwENBR(v)

with f a FENN. For init, a one-layer FFNN is used to fit the
input features to the dimensions of the hidden representations.

Gated Graph Neural Networks (GGNN) [20] were recently
proposed as an extension of GNNs to improve their training.
This extension implements f using a memory unit called
Gated Recurrent Unit (GRU) [21] and unrolls Equation (1)
for a fixed number of iterations. This simple transformation

allows for commonly found architectures and training algo-
rithms for standard FFNNs as applied in computer vision or
natural language processing. The neural network architecture
is illustrated in Figure 5.

0
hl

Feed-Forward 01
—|: Recurrent Neural -
h(n()) Unit Network 0,

Figure 5: Gated-graph neural network architecture.

Formally, the propagation of the hidden representations
among neighboring nodes for one time-step is formulated as:

x) =HI"DA + b, )
20 = o (W.a + U.HD 4 b, ) ®)
r® = o (W,a® + UHOD 4 b, ) %)

H® — tanh <W1’(t) +U (r(t) ® H<H>> + b) (8)
H® — (1 _ Z(t)) ©H®D 420 o HO ©)

where o(x) = 1/(1+e~%) is the logistic sigmoid function and
© is the element-wise matrix multiplication. W,, W,., W and
U.,U,, U are trainable weight matrices, and b,, b,., b, b are
trainable bias vectors. A € RIVI*IVI is the graph adjacency
matrix, determining the edges in the graph G.

Equation (5) corresponds to one time-step of the propa-
gation of the hidden representation of neighboring nodes to
node v, as formulated previously for GNNs in Equations (1)
and (4). Equations (6) to (9) correspond to the mathematical
formulation of a GRU cell [21], with Equation (6) representing
the GRU reset gate vector, Equation (7) the GRU update gate
vector, and Equation (9) the GRU output.

In order to propagate the hidden representations throughout
the complete graph, a fixed number of iterations of Equa-
tions (6) to (9) are performed. This extension has been shown
to outperform standard GNN which require to run the iteration
until a fixed point is found.

We also extended our neural network architecture with an
attention mechanism similar to the one proposed in [22]. Thus,
the neural network can give preference to some neighbors over
other ones via a trained function. For each edge (v, u) in the
graph, we define a weight parameter psf,zt depending on the
concatenation of hq(f) and hg):

o = (Wa (B, 00} +b,)

with trainable weights W, and bias parameters b,. Equa-
tion (4) can then be rewritten as

W= YD 0 f (hEY)

uwENBR(v)

(10)

(1)
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B. Application to TMA

In order to apply the concepts described in Section III-A to
a network calculus analysis, we model NC’s network into a
graph. Figure 6 illustrates this graph encoding on the network
from Figure 3.

_ Path
~ ordering

Figure 6: Transformed network of Figure 3 to the graph model.

Each server is represented as a node in the graph, with edges
corresponding to the network’s links. Each flow is represented
as a node in the graph, too. In order to encode the path taken
by a flow in this graph, we use edges to connect the flow
to the servers it traverses. Since those edges do not encode
the order in which those servers are traversed, so-called path
ordering nodes are added to edges between the flow node
and the traversed server nodes. This property is especially
important in the TMA since the order, and hence position of
cuts, has a large impact on dependency structures. In order to
represent these TMA cuts, each potential cut between pairs of
servers on the path traversed by the flow is represented as a
node. This cut node is connected via edges to the flow and to
the pair of servers it is associated to.

In addition to a categorical encoding of the node type (i.e.,
server, flow, path ordering or cut), the input features of each
node in the graph is as follows:

« For each server s, parameters of its service curve (d) =
max {0, rates - d — latency,} are used: [rates, latency]

« For each flow f, parameters of its arrival curve o (d) =
{rates - d+ bursts} ;. gy (e, ay(d) = 0 for d < 0)
are used: [rates, burst |

« For each path ordering p, the hop count is encoded as a
categorical one-hot vector: [hop = 1,..., hop = n]

« Finally, cut nodes do not have input features

Note that in case more complex arrival or service curve shapes
than affine curves [23] are studied, those input features can be
extended to represent the additional curve parameters. Last
note that edges have no features in this graph encoding.
Since the goal of our machine learning approach is to predict
which tandem decomposition will result in the tightest bound,
only the nodes presenting cuts have output features. We encode
this problem as a classification problem, namely each cut node
has to be classified in two classes: perform a cut between
the pair of servers it is connected to or not: [cut, cut]. The
overall prediction to be fed back, i.e., the selection of one out
of TMA'’s potential decompositions for a given foi’s path, is
defined by the set of all cut classifications for this path.

IV. IMPLEMENTATION AND DATASET GENERATION
A. Technical Implementation

We implemented DeepTMA using Tensorflow. For the pur-
pose of computational efficiency, passing of hidden repre-
sentation between neighboring nodes was implemented with
sparse operations using the graph’s adjacency list instead of
the graph’s adjacency matrix requiring dense operations. The
recursion from Equation (1) was unrolled for a fixed number
of iteration according to the diameters of the analyzed graphs.
Table I illustrates the size of the different layers used here.

Layer NN Type Size

init FFNN (21,160) + (160),

Memory unit GRU cell  (320,320). + (320, 160)., + (480),
Edge attention FFNN (320,1)w + (2)p

out hidden layers ~ FFNN 2 x {(160, 160), + (160),}

FFNN
Total:

out final (160,2)w + (2)5

209766 parameters

Table I: Size of the different layers used in the GGNN. Indexes
represent respectively the weights (w) and biases (b) matrices.

We analyzed each network with the DiscoDNC [14] version
2.4. A tandem decomposition is always executed for a flow of
interest. But instead of the residual service curves, we use
the delay bounds for the foi as caused by all decompositions
in order to rank them. This is because the former potentially
faces problems in the case of lost service curve strictness.

B. Dataset Generation

In order to train our neural network architecture, we ran-
domly generated a set of topologies, tandems like in Figure 3
and tree topologies. For each created server, a rate latency
service curve was generated with uniformly random rate and
latency parameters. A random number of flows with random
source and sink servers was added. Note that in our topologies,
there cannot be cyclic dependency between the flows. For
each flow, a token bucket arrival curve was generated with
uniformly random burst and rate parameters. All curve param-
eters were normalized to the (0, 1] interval. In total, 100000
different networks were generated, with a total of more than 2
million flows, and close to 60 million tandem decompositions.
Half of the networks were generated following tandem topolo-
gies, and half following tree topologies. Table II summarizes
different statistics about the generated dataset. The dataset is
available online! to reproduce our learning results.

Parameter | Min Max Mean Median
# of servers 2 41 14.2 12.0
# of flows 1 63 23.0 18.0
# of flows per server 1 44 5.8 4.6
# of tandem combinations 2 113100 596.2 134.0
# of tandem combination per flow 2 32768 259 4.0
# of nodes in analyzed graph 6 717 159.0 127.0

Table II: Statistics about the generated dataset.

'https://github.com/fabgeyer/dataset-infocom2019
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V. TMA HEURISTICS FROM THE NC FRAMEWORK

As we will detail in Section VII, there is no other combi-
nation of NC and deep learning for deterministic performance
analysis. Nor is there any other combination of NC or deep
learning with a third methodology for fast delay bounding.
To benchmark DeepTMA, we present three new heuristics for
the choice of TMA’s tandem decompositions. All are derived
from the NC framework to showcase its potential to find the
tightest end-to-end delay bound without exhaustive analysis.

A. RND: Random Choice of Tandem Decomposition

The simplest heuristic is to select multiple alternative tan-
dem decompositions randomly following a uniform distribu-
tion. Given any m-server tandem, starting with the foi’s path
as shown in Figure 1, RND only selects n’ < 2("~1) decom-
positions. Le., the RND heuristic randomly samples a small
part of TMA’s search space per tandem in the analysis. The
remainder of the analysis follows the standard NC proceeding.

B. PLH: Path Length of Flows up to Location of Interference

Due to the exponential growth of the number of tandem
decompositions, the chance of randomly selecting the tandem
decomposition resulting in the tightest bound decreases expo-
nentially with the number of servers traversed by the foi. In
this second heuristic, we use the intuition that the probability
of a cut depends on the cross-flow at each server and the
fact that the arrival curve of cross-flows depends on the path
traversed. In order to define it, we use h, the number of servers
that each cross-flow crossed before reaching this location,
and empirically fit the probability Pr(cut|hayvg) With hayg the
average of h over all cross-flows. In homogeneous sink-tree
networks, this heuristic can even obtain a precise ranking of
flow arrival curves as well as the relative differences between
them due to the lack of flow demultiplexing [5].

C. HCH: Hop Count Heuristic

This last heuristic is based on the probability of cutting a
tandem according the number of traversed servers as observed
in our data set. In order to correctly parametrize this location,
we empirically fit a distribution Pr(cut|l, p) predicting the best
cut for each path length [ and cut position p. The procedure
for generating a tandem cut is illustrated in Algorithm 1.
As in Section V-A, multiple tandem decompositions may be
generated and evaluated.

Algorithm 1 Decomposition using experimental probability.
Gl [ch e 7Cl] ~ Z/{(O, 1)l
cuts < I (v < [Pr(eut|l,1),...,Pr(cut|l,)])
(I is the indicator function)

VI. NUMERICAL EVALUATION

We evaluate in this section DeepTMA against the heuristics
presented above. Via a numerical evaluation, we illustrate the
tightness and execution time of DeepTMA and highlight its
usability for practical use-cases.
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Figure 7: Accuracy of DeepTMA and the new heuristics.

A. Prediction Accuracy

Since multiple tandem decompositions may be valid and
since we know the tightest bounds from TMA, we define the
accuracy for a given foi and a given method as 1 if the tandem
decomposition predicted by the method resulted in the tightest
delay bound, and O otherwise. We evaluate in Figure 7 the
outcome of the different heuristics evaluated on our dataset.

Figure 7a compares DeepTMA against the RND heuristic
presented in Section V-A, namely random choices of tandem
decomposition. We also evaluate the case where multiple
random tries are evaluated and the one leading to the tightest
delay bound is kept (labeled by the index in the figure). We
note in Figure 7a that DeepTMA achieves average accuracies
larger than 50 % even for flows where the possible number
of tandem decomposition goes up to 32 768. Compared to this
heuristic, DeepTMA achieves much better accuracies for flows
with a larger number of hop.

Figure 7b compares DeepTMA against the PLH heuristic
presented in Section V-B, namely the cross-flow statistics
heuristic. This heuristic achieves better accuracy compared to
the previous one, but it still fails to reach good accuracy for
networks with a large number of cuts.

Finally, Figure 7c compares DeepTMA against the HCH
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Figure 8: Relative error of DeepTMA and the heuristics presented in Section V.

heuristic presented in Section V-C, namely the hop count
statistics heuristic. We notice that this heuristic achieves better
accuracy for networks with a larger number of hops compared
to the two previous heuristics. Nevertheless, DeepTMA still
achieves better results for larger topologies.

Overall, that DeepTMA achieves better prediction accuracy
than the pure NC heuristics. This indicates that the choice
of tandem decomposition is more complex than captured by
indicators such as hop count or cross-flow statistics.

B. Relative Error

While we highlighted in the previous section that the
accuracy of our machine learning approach diminishes as the
number of hops becomes larger, we investigate in this section
the resulting loss of tightness in case a non-optimal tandem
decomposition was selected. In order to quantitatively evaluate
this loss of tightness, we use the relative error, defined as

TMA

heuristic
i foi

foi

delay

delay — delay

TMA
foi

12)

relative errory,; =

Since TMA always produces the tightest delay bound among
the evaluated heuristics, this relative error is always positive.

Figure 8 compares DeepTMA against the other heuristics.
Although the accuracy of DeepTMA dropped to 50 % for
larger networks, the impact of these failures to predict the
optimal decomposition only results in a relative error below
6 %. The results and comparison between DeepTMA and the
other heuristics are in line with those presented in Figure 7.
Only PLHj3, and HCHj3, are able to achieve a relative error
similarly small as DeepTMA, yet, at a much larger computa-
tional cost since 32 different tandem combinations and their
entire dependency structures have to be evaluated every time.

C. Execution Times

In order to understand the practical applicability of our
heuristic, we evaluate in this section its execution time in
different settings. We define and measure the execution time
per network as the total time taken to process /N networks and
all its flows divided by N, without including the startup time
or the time taken for initializing the network data structures.

Since DeepTMA can be executed on either CPU or GPU, we
first compare both platforms and their affinity at parallelization
in Figure 9. A Nvidia GTX 1080 Ti was used for the measure-
ments on GPU, and an Intel Xeon E3-1270 v6 (at 3.80 GHz)
for the ones on CPU. We first notice that the execution time
grows close to linearly with the size of the network, both on
CPU and GPU, which is explained by the iterations of message
passing illustrated in Equation (5) according to the diameter
of the studied graph. Execution on GPU results in faster
computation compared to CPU for networks larger than two
hops, mainly due to the better ability of GPUs of parallelizing
the numerical operations used in neural networks.

Since both platforms offer multiple cores for parallel ex-
ecution of multiple processes, we investigate the effect of
batching, namely analyzing multiple networks in parallel.
Parallelization of the mathematical operations described in
Section III is automatically performed by Tensorflow. We
present in Figure 9 the execution time without any batching
— namely only one network is processed at once — and
with batching, where the heuristic processes 64 networks at
once. On both platforms, batching results in a reduction of
processing time, which is relevant in use-cases where multiple
network configuration have to be processed.

- -- CPU w/o batching - - - GPU w/o batching
—— CPU w/ batching —— GPU w/ batching

40 +

20

GPU|w/ batching

Execution time per network (ms)

2 4 6 8 10 12 14 16
Maximum flow path length in network

Figure 9: Execution time of the cut recommendation part of

DeepTMA, executed on CPU or GPU, without batching or

batch sizes of 64 networks.

In addition, we measured the execution time of TMA using



116

A. Publications

—— DeepTMA (GPU)--- TMA -~ Hy - Hg - Hi,
---DeepTMA (CPU)  H, Hy - Hig

]04é ‘,/':I“M/\
10°
10%

10'

10°

Execution time per network (ms)

2 4 6 8 10 1 14 16
Maximum flow path length in network

Figure 10: Execution times per topology for TMA, DeepTMA

and heuristics H using n tandem decompositions (H,,).

DiscoDNC. The same CPU was used for running DiscoDNC,
with Oracle’s HotSpot JVM version 1.8.

Whereas Figure 9 provides insight on the computational
cost of DeepTMA, Figure 10 compares it to a generalized
version of the heuristics presented in Section V. Since the
selection of tandem decompositions is a fast operation in
all three pure NC heuristics, in particular compared to the
other required operations, we only illustrate the execution
time of a generic heuristic H,, selecting n decompositions per
tandem. As all analyses ultimately use the DiscoDNC for the
derivation of bounds, comparing the average execution times
of H,, and DeepTMA (with batching), we can also judge the
increase of computational effort due to our deep learning-
based predictions. As expected, TMA execution times grow
exponentially and H,, heuristics’ execution times coincide with
TMA as long as their n-value causes an exhaustive search,
too. An entirely CPU-bound DeepTMA analysis is slowest
in very small networks where the exhaustive enumeration of
TMA is easily possible to execute. Starting at a maximum
flow path length of 4, it mostly performs between Hy and
Hg. Yet, we saw in Sections VI-A and VI-B that RND;,
PLH; and HCH;, i € 4,8 are outperformed by DeepTMA.
DeepTMA leveraging GPU technology for predictions only
adds very small execution times to H; while achieving vastly
better bounds. Compared to TMA, we can observe a measured
differences in execution time growing up to four orders of
magnitude.

Last, note the comparison between DeepTMA, TMA, SFA
and PMOO that was already presented in Figure 2 as it
highlights efficiency compared to established NC analyses.

VII. RELATED WORK

A recent survey [24] about existing applications of machine
learning to formal verification shows that this combination
can accelerate formal methods, e.g., theorem proving, model-
checking or SAT-SMT problems. As we show, NC has been
combined with other methods, too. So have GNNs with formal
verification. Yet, we are the first to combine both TMA and
GNN into a framework for deterministic performance analysis.

1) Network Calculus Combined with Other Methodologies:
The (min,+)-algebraic NC provides deterministic modeling

and analysis techniques. It has seen various efforts to extend
NC'’s capabilities. For instance, the underlying (min,+) algebra
can be exchanged for (min,x) for fading channel analysis [25]
or for (max,+) to better fit discrete event systems [26]. More-
over, a common model for NC and event stream theory has
been developed [27] and state-based system modeling can be
integrated by pairing NC with timed automata [28].

NC has been used to describe component models commonly
found in real-time systems [29]. Delay bounds can then be
derived from a combination of component characteristics and
the network calculus model. For example, knowledge about
the busy period of a greedy processing component has been
used to speed up NC computations [30].

An optimization formulation has been derived from the
NC model that computes tight bounds in networks without
assumptions on the multiplexing of flows [31]. It first derives
the dependencies between busy periods of servers in order to
partially order the mutual impact of flows. The tight analysis
requires to expand this order to all compatible total orders.
This is, however, computationally infeasible. A heuristic was
proposed. It uses the initially derived partial order but it, too,
was shown to become computationally infeasible [11].

Recent work uses machine learning to estimate service
curves from measurements [32]. In contrast to our work, this
interfacing via service curves cannot compute provably correct
bounds on the worst-case flow delays due to uncontrollable un-
certainties introduced by measurements and machine learning.

2) Deep Learning for Graphs and Formal Verification:
GNNs were first introduced in [13, 19], a concept subsequently
refined in recent works. GGNNSs [20] extended this architec-
ture with modern practices by using GRU memory units [21].
Message-passing neural network were introduced in [33], with
the goal of unifying various GNN and graph convolutional
concepts. [22] formalized graph attention networks, which
enables to learn edge weights of a node neighborhood.

These concepts were applied to many domains where prob-
lems can be modeled as graphs: chemistry with molecule
analysis [34, 33], jet physics and elementary particles [35],
prediction of satisfiability of SAT problems [36], or basic
logical reasoning tasks and program verification [20]. For
computer networks, they have recently been applied to pre-
diction of delay bounds [37] and performance evaluation of
networks with TCP flows for predicting average flow band-
width [15, 38].

VIII. CONCLUSION

We contribute a new framework that combines network
calculus and deep learning. The first heuristic created with
our framework is the DeepTMA, deep learning-assisted TMA,
a fast network analysis for deterministic end-to-end delay
bounds. It solves the main bottleneck of the existing TMA,
namely its exponential execution time growth with network
size, by using predictions for effectively selecting the con-
tention models in the network calculus analysis. Our work
is based on a transformation of the network of servers and
flows crossing them into a graph which is analyzed using
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Graph Neural Networks. Via a numerical evaluation, we show
that our heuristic is accurate and produces end-to-end bounds
which are almost as tight as TMA. DeepTMA is as fast as
or faster than previously widespread methods — namely SFA
and PMOO - even when analyzing larger networks, but with
a gain in tightness exceeding 50 % in some cases.

Future Work Directions: Our deep-learning assisted NC
framework of Section III is already able to create other
heuristics than DeepTMA. For instance, DeepTMA,, with n
decompositions suggested per tandem or a heuristic predicting
the most computationally efficient decomposition if multiple
ones will provide best results. Moreover, it can be further
optimized by finding the best number of variables for the
graph neural network as well as its bottleneck. Learning from
a dataset including feed-forward networks, more complex
curve shapes than the simple affine ones [23], or from/for
FIFO-multiplexing networks [39] or entirely non-FIFO [40] is
already possible, too.

Secondly, our framework is highly extensible. With some
minor additions, it can predict if an optional feature of the
NC analysis might be beneficial at a certain point. Examples
are the alternative output bound formulation of [41] and
flow prolongation [42]. Exhaustive flow prolongation is only
feasible on single tandems, yet, learning from those can be
sufficient as we show in our paper. Another direction is to
predict a bound on the necessary domain of curves [30, 43].
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A.1.6 On the Robustness of Deep Learning-predicted Contention Models for
Network Calculus

This work was published in Proceedings of the 25th IEEE Symposium on Computers and Communica-
tions, 2020 [64].
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On the Robustness of Deep Learning-predicted
Contention Models for Network Calculus
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Abstract—The network calculus (NC) analysis takes a simple
model consisting of a network of schedulers and data flows
crossing them. A number of analysis “building blocks” can then
be applied to capture the model without imposing pessimistic
assumptions like self-contention on tandems of servers. Yet,
adding pessimism cannot always be avoided. To compute the
best bound on a single flow’s end-to-end delay thus boils down
to finding the least pessimistic contention models for all tandems
of schedulers in the network — and an exhaustive search can easily
become a very resource intensive task. The literature proposes
a promising solution to this dilemma: a heuristic making use of
machine learning (ML) predictions inside the NC analysis.

While results of this work are promising in terms of delay
bound quality and computational effort, there is little to no
insight on when a prediction is made or if the trained machine
can achieve similarly striking results in networks vastly differing
from its training data. In this paper we address these pending
questions. We evaluate the influence of the training data and
its features on accuracy, impact and scalability. Additionally, we
contribute an extension of the method by predicting the best
n contention model alternatives in order to achieve increased
robustness for its application outside the training data. Our
numerical evaluation shows that good accuracy can still be
achieved on large networks although we restrict the training
to networks that are two orders of magnitude smaller.

I. INTRODUCTION

Deterministic bounds on the end-to-end delay are strictly
required in many application areas. Prime examples are data
networks in avonics and the automotive industry that are
shared between multiple distributed x-by-wire applications [1]
as well as safety-critical (factory) systems [2, 3, 4, 5].

Network Calculus (NC) is a versatile framework for the
derivation of such bounds. The NC literature provides model-
ing and analysis tooling such that all steps towards derivation
of delay bounds can be taken. There exist results on system
modeling, ranging from generic behavior like FIFO [6, 7, 8],
non-FIFO [9, 10] or unknown [11] to modern technolo-
gies such as IEEE Audio/Video Bridging (AVB) and Time-
Sensitive Networking (TSN) [12, 13, 14, 15, 5]. Behavior of
such queues, schedulers, shapers etc. are modeled as servers
that, in turn, are connected to form a network, the so-called
server graph [16, 17].

The server graph carries data flows, exactly one of which
will be the designated flow of interest (foi) whose delay
is bounded by the NC analysis. For this network analysis
step, results have been created to capture the modeled system
behavior as closely as possible. For example, on tandems of
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work-conserving servers, neither the worst-case burstiness of
the foi nor its cross-flows should impact the delay bound
computation more than once — i.e., contention for the for-
warding resource should not be assumed more pessimistically
by the analysis than actually modeled by the server graph.
These two core properties of NC are known as pay bursts
only once (PBOO) [11, 6, 18, 19] and pay multiplexing only
once (PMOO) [20, 21], respectively. Other such refinements
try to reduce the amount of mutually exclusive contention as-
sumptions for multiple flows at shared servers (pay segregation
only once, PSOO) [22], paying for multiplexing in ring net-
works less often (pay multiplexing only at convergence points,
PMOC) [23], capping the worst-case burstiness with a server’s
queue length [24] or using an entirely different alternative to
compute bounds on the arrivals of cross-flows [25]. Some of
these results are mutually exclusive, e.g., the different arrival
bounding method is based on violating the PSOO property.

Capturing these restrictions on realistic worst-case con-
tention in the given model of connected servers correctly
does not only help to improve the computed delay bound.
It also allows to rank different networks more accurately by
not discriminating an alternative that features a design element
NC can only consider by pessimistic overapproximation. This
allows NC to be used to compare existing network designs to
newly proposed ones [2]. However, there is not a single-best
NC analysis'. In this paper, we focus on networks where there
is no knowledge about the multiplexing behavior of flows.
This assumption is called arbitrary (or blind) multiplexing.
The best delay bound for a flow crossing a cycle-free network
of arbitrary multiplexing servers is computed by a specific
combination of the properties, the “building blocks”, men-
tioned above. The exhaustive search for this combination has
been improved such that it becomes feasible to execute? but
it still tends to scale superlinearly with the network size [27].
This search-based analysis is called tandem matching analysis
(TMA).

Based on TMA, DeepTMA [28] was recently proposed
to alleviate this search-induced problem. DeepTMA is a
fast heuristic based on deep learning (DL) that replaces the

'In this paper, we restrict our presentation to the algebraic analysis methods.
The optimization analyses in [26, 8] are indeed best w.r.t. to delay bounds
but as shown in [27, 8], they tend to become computationally infeasible.

2Moreover, its delay bounds are very close to the optimization approach
of [26].
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expensive search with a prediction of the best combination
of existing results, i.e., the best contention model. While
DeepTMA showed promising results towards fast and accurate
NC analysis, understanding how predictions are made remains
opaque and does not bring insights in the NC analysis or the
wider applicability of the method. We aim in this paper to
address those drawbacks by evaluating the influence of the
dataset used in the training phase, as well as its features,
on the eventual prediction accuracy. We also contribute an
extension of DeepTMA which is able to generate more than
one contention model prediction, leading to an increase of the
robustness of the method.

We show that DeepTMA is able to cope with scalability,
namely that it can be trained on small networks and being used
on much larger networks with low impact on the accuracy.
Our numerical evaluation illustrates that the relative error of
DeepTMA is still below 1% on average when evaluated on
networks two orders of magnitude larger than the ones used
for training. We also show that training DeepTMA on random
networks leads to good applicability on more specific types of
networks. Additionally, we give insight into the importance of
network features with respect to predicting a contention model.
Overall, we first demonstrate DeepTMA’s robustness regarding
the relation of training set to evaluated network in terms of size
and shape. Finally, we evaluate our extension to DeepTMA
that proposes multiple alternative contention models. Our
evaluation shows that the robustness of DeepTMA can be
increased by generating multiple contention models, leading
to a decrease of the error with a factor 2.

The remainder of the paper is organized as follows: First,
we review related work in Section II. Section III Graph Neural
Networks (GNNs) and their combination with Network Cal-
culus. In Section IV ,we present our extension of DeepTMA
and the generation of a dataset to learn from. A numerical
evaluation of the robustness of DeepTMA is performed in
Section V. Finally Section VI concludes our work and gives
an outlook.

II. RELATED WORK

Research on combining machine learning with formal meth-
ods has been found in a variety of applications, e.g., in theorem
proving, model-checking or in SAT-SMT problems. In the
following, we aim to provide a focused depiction of efforts
that are interesting and related to our work. Namely, the
performance in networks and Graph Neural Networks (GNNs).
A more comprehensive survey on machine learning-assisted
formal methods can be found in [29].

GNNs were first introduced in [30, 31], a concept sub-
sequently refined in recent works. Message-passing neural
network were introduced in [32], with the goal of unifying
various GNN and graph convolutional concepts. [33] formal-
ized graph attention networks, which enables to learn edge
weights of a node neighborhood. Finally, [34] introduced the
graph networks (GN) framework, a unified formalization of
many concepts applied in GNNs.

These concepts were applied to many domains where prob-
lems can be modeled as graphs: chemistry with molecule
analysis [35, 32], solving the traveling salesman problem [36],
prediction of satisfiability of SAT problems [37], or basic
logical reasoning tasks and program verification [38]. For com-
puter networks, they have recently been applied to prediction
of average queuing delay [39] and different non-NC-based
performance evaluations of networks [40, 41, 42]. In the realm
of NC, there is surprisingly little work as of yet. Predating
DeepTMA [28] we base our work on, there is an effort to
predict the delay bound computed by different NC analyses
by using GNNs. Each of these analyses only considers a
pre-defined contention model whenever there are alternatives
for a tandem. The prediction is then used to only execute
the most promising analysis [43]. This was developed into
DeepTMA that can provide multiple predictions per analysis.
Independent efforts aim at predicting delay bounds, too. This
work [44, 45] uses supervised learning and benchmarks the
predictions against a NC-based analysis. Another similar goal
to our work is to provide small yet controllable computation
times to make the proposed analysis fit for application in
design space exploration.

Regarding assessing the robustness of GNNs, [37, 36]
showed that GNNs can be trained on a given set of graphs
while being able to extrapolate on other types or much larger
graphs. Finally, [46] recently proposed an approach to explain
predictions from GNNs, by reducing the input graphs to
subgraphs containing a small subset of nodes which are most
influential for the prediction.

III. BACKGROUND: GRAPH NEURAL NETWORK FOR NC

We give a brief overview of the DeepTMA heuristic in this
section. We refer the reader to [28] for the full formulation
of the method. It is based on the concept of Graph Neural
Network (GNN) introduced in [30, 31]. The goal of DeepTMA
is to predict the best tandem decompositions, i.e., contention
models, to use in TMA. We define networks to be in the NC
modeling domain and to consist of servers, crossed by flows.
We refer to the model used in GNN as graphs. The main
intuition is to transform the networks into graphs. Those graph
representations are then used as inputs for a neural network
architecture able to process general graphs, which will then
predict the tandem decomposition resulting in the best residual
service curve. Our approach is illustrated in Figure 1. Since
the delay bounds are still computed using the formal network
calculus analysis, they inherit their provable correctness.

Network Calculus End-to-End
TMA Analysis Latencies
* :
Network of servers Cuts Recommendation :
and flows L Training
Graph Transformation Points

and Neural Network

Figure 1: Overview of the proposed approach.
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A. Overview of Graph Neural Networks

In this section, we detail the neural network architecture
used for training neural networks on graphs, namely the family
of architectures based on GNNs [30, 31].

Let G = (V,€) be an undirected graph with nodes v € V
and edges (v,u) € &. Let i, and o, represent respectively
the input features and output values for node v. The concept
behind GNNss is called message passing, where hidden states
of nodes h,, (i.e. vectors of real numbers) are iteratively passed
between neighboring nodes.

At each iteration of message passing, each node in the graph
aggregates the hidden states of its neighbors, use this aggregate
to update its own hidden state, and sends the updated state at
the next iteration:

ey
@

with hg,t) representing the hidden state of node v at iteration
t, aggr a function which aggregates the set of hidden states
of the neighboring nodes NBR(v) of v, and 4nit a function
for initializing the hidden states based on the input features.
Those hidden states are propagated throughout the graph using
multiple iterations of Equation (2) until a fixed point is found.
The final hidden state is then used for predicting properties
about nodes:

o, = out (hgf_“’o)> 3

with out a function transforming the final hidden state to the
target values.

In GNNs, the aggregation of hidden states corresponds to
their sum, and the aggr and out functions are feed-forward
neural networks (FENN) such that:

h{*Y = aggr ({hg) ue NBR(U)}) = aggr (ZUENBR(U) hw) 4)

Various extensions of GNNs have been recently proposed
in the literature. We selected Gated Graph Neural Networks
(GGNN) [38] for implementing DeepTMA, extended with an
attention mechanism similar to the one proposed in [33]. This
extension implements aggr using a recurrent unit and unrolls
Equation (2) for a fixed number of iterations. This simple
transformation allows for commonly found architectures and
training algorithms for standard FFNNSs as applied in computer
vision or natural language processing.

In order to propagate the hidden states throughout the
complete graph, a fixed number of iterations are performed.
This extension has been shown to outperform the original
formulation of GNNs which require to run the iteration until
a fixed point is found. We refer to [34] for additional details
on GNNs.

B. Application to TMA

In order to apply the concepts described in Section III-A
to a network calculus analysis, we a simple NC network
(servers and a data flow) into a graph. Figure 2 illustrates
this transformation.

fl St S2 S3

(a)

Figure 2: Graph representation of a sample tandem network.

Each server is represented as a node in the graph, with edges
corresponding to the network’s links. Each flow is represented
as a node. The path taken by a flow in this graph, is encoded
using edges which connect the flow to the servers it traverses.
Since those edges do not encode the order in which those
servers are traversed, so-called path ordering nodes are added
to edges between the flow node and the traversed server nodes.
This property is especially important in the TMA since the
order, and hence position of cuts, has an impact on dependency
structures. In order to represent these TMA cuts, each potential
cut between pairs of servers on the path traversed by the flow
is represented as a node. This cut node is connected via edges
to the flow and to the pair of servers it is associated to.

In addition to a categorical encoding of the node type (i.e.,
server, flow, path ordering or cut), the input features of each
node in the graph need to comprise some NC definitions. A
comprehensive treatment of NC can be found in [11]. TMA
and DeepTMA are described in [27] and [28], respectively. NC
resource models rely on non-negative, wide-sense increasing
functions

Fo={fR=RL| f(0)=0,Vs<t: f(s)<[f(t)},

where RY, := [0, +00) U{+00}. These functions pass through
the origin such that there are no instantaneous data occurrences
in the functions (in absolute time ¢) that cumulatively count
input and output data, A(t) and A’(t). The server graph
crossed by flows, in short network, is annotated with different
NC-functions of Fy; two kinds of so-called curves, each one
bounding a relevant property in interval time.

Definition 1 (Arrival Curve): Let the data arrivals of a
flow over time be characterized by function A(t) € Fo, where
t € RY. An arrival curve a(d) € Fo for A(t) must then fulfill

VEVd, 0 <d <t : A(t) — A(t — d) < a(d),

i.e., it must bound the flow’s data arrivals in any duration d.
Definition 2 (Strict Service Curve): If, during any period
with backlogged data of duration d, a scheduler, queue, etc.
with input function A guarantees an output of at least 5(d) €
Fo, then it is said to offer a strict service curve (.
These are incorporated as follows:

e For each server s, parameters of its rate-
latency service curve are used where f[s(d) =
max {0, rates - d — latency,}: [rates, latency ]

e« For each flow f, parameters of its token

bucket arrival curve are used where oy(d) =
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{rates - d+ bursts} oy (e, ap(d) = 0 for d < O):
[rates, burst 7]
« For each path ordering p, the hop count is encoded as a
categorical one-hot vector: [hop = 1,..., hop = n]
« Finally, cut nodes do not have input features
Note that in case more complex arrival or service curve shapes
than affine curves [47] are studied, those input features can be
extended to represent the additional curve parameters. Last,
note that edges have no features in this graph encoding.
Since the goal of DeepTMA is to predict which tandem
decomposition will result in the tightest bound, only the
nodes presenting cuts have output features. This problem is
formulated as a classification problem, namely each cut node
has to be classified in two classes: perform a cut between
the pair of servers it is connected to or not: [cut, cut]. The
overall prediction to be fed back, i.e., the selection of one out
of TMA’s potential decompositions for a given foi’s path, is
defined by the set of all cut classifications for this path.

IV. INCREASING THE ROBUSTNESS OF DEEPTMA
A. DeepTMA,,: Generate multiple tandem decompositions

Given a foi and a potential cut location, the output of the
neural network is a probability of cutting. This probability is
generated by the neural network using the softmax function
after its last layer. In case a single tandem decomposition
has to be generated, the decision of cutting is made using
a threshold of 50 %.

Those cut probabilities may also be used in order to generate
multiple tandem decompositions as illustrated in Algorithm 1.
In case the number of tandem decompositions is lower than
the number of requested decompositions, we simply return all
combinations of cuts. Otherwise, we sample the distribution
of cuts in order to generate the decompositions. We label this
extension of DeepTMA as DeepTMA,,, with n the number of
tandem decompositions generated.

Algorithm 1 Generation of n tandem decompositions for a
flow traversing L + 1 servers.

if n < L? then return all combinations of cuts
else
for all i := 1 to n do
v [c1y. .. cn] ~ U0, 1)
cuts; + I (v < [Pr(cut?ﬁf), e ,Pr(cutfﬁjg)})
(I is the indicator function)
return {cutsy, ..., cuts, }

B. Dataset generation

In order to train our neural network architecture, we ran-
domly generated a set of topologies according to three differ-
ent random topology generators: a) tandems or daisy-chains,
b) trees and c¢) random server graphs following the G(n,p)
Erd6s—Rényi model [48]. For each created server, a rate
latency service curve was generated with uniformly random
rate and latency parameters. A random number of flows with
random source and sink servers was added. Note that in

our topologies, there cannot be cyclic dependency between
the flows. For each flow, a token bucket arrival curve was
generated with uniformly random burst and rate parameters.
All curve parameters were normalized to the (0, 1] interval.
In total, 172 374 different networks were generated, with a
total of more than 13 million flows, and close to 260 million
tandem decompositions. Half of the networks were used for
training the neural network, while the other half was used for
the evaluation presented later in Section V. Table I summarizes
different statistics about the generated dataset. The dataset
is will be available online to reproduce our learning results.
Note that compared to the original dataset used for training
DeepTMA [28], this dataset contains larger networks.

Parameter ‘ Min Max Mean Median
# of servers 2 41 14.6 12
# of flows 3 203 101.2 100
# of tandem combinations 2 197196 1508.5 384
# of nodes in analyzed graph 10 2093 545.2 504
# of tandem combination per flow 2 65536 19.4 4
# of flows per server 1 173 18.1 10

Table I: Statistics about the randomly generated dataset.

Additionally to this dataset, we also evaluate our approach
on the set of networks used in [27]. Table II summarizes
different statistics about the generated dataset. Compared to
dataset used for training, this additional set of networks up to
two order of magnitude larger in term of number of servers
and flows per network. This property will be used in Section V
in order to evaluate if our approach is able to scale to such
larger networks, both in term of accuracy and execution time.

Parameter \ Min Max Mean Median
# of servers 38 3626 863.0 693
# of flows 152 14504 3452.0 2772
# of tandem combinations 2418 121860 24777.6 18 869
# of nodes in analyzed graph 1358 113162  25137.7 19518
# of tandem combination per flow 2 512 73 8
# of flows per server 1 467 16.4 12

Table II: Statistics about the set of networks from [27].

V. NUMERICAL EVALUATION

We evaluate in this section our extensions of DeepTMA
as well as its robustness and scalability. Via a numerical
evaluation, we illustrate the tightness and execution time of
DeepTMA and highlight its usability for practical use-cases.
Details on the datasets used for this evaluation were presented
in Section I'V-B.

In order to numerically evaluate and compare DeepTMA
against TMA, we selected the relative error metric as our main
metric for the rest of this evaluation. This metric measures the
relative difference of DeepTMA against TMA with respect to
the end-to-end delay bound, and is defined for flow f; as:

RelErrf’_ = (DelayzeepTMA _ Delay}:MA)/Delay}:MA )
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A. Impact of training network sizes on error

Following the previous evaluation, we investigate here the
scalability of DeepTMA by evaluating the impact of the
training dataset on the accuracy of the method. We trained
here two additional instances of the deep-learning part of
DeepTMA. Each has a different restriction on the maximum
amount of flows in the networks to be included in the training
set, namely 50 and 100.

Figure 3 illustrates the error of those additional instances
of DeepTMA compared to the one trained on the full dataset.
There is an evident trend that a smaller training set size as
imposed by our restriction generally leads to an increasing
relative error. However, there is one exception at path length
17. This illustrates that the “quality” of the training set can
be more important than its size. We provide a closer look at
network type and features as potential impact factors for the
training set quality in the Sections V-B and V-C.

@ Full dataset x Networks up to 100 flows 4 Networks up to 50 flows

Relative error to TMA (%)
S
L

T
2 4 6 8 10 12 14 16
Path length of flow

Figure 3: Influence of training size on relative error of
DeepTMA

Similarly, Figure 4 illustrates the impact of training dataset
on the set of networks from [27]. The difference between the
different variants of DeepTMA is minimal except on the large
networks. This indicates that DeepTMA is still able to scale,
even when trained on much smaller networks. Moreover, we
can see small datasets outperforming the full set again in some
cases.

@ Full dataset x Networks up to 100 flows 4 Networks up to 50 flows
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Number of servers in network

Figure 4: Influence of training size on the set of networks from
[27]

B. Influence of network type used for training

We examine in this section the impact of the network types
used for training DeepTMA on its accuracy. As explained in
Section IV-B, three different types of networks were generated,

namely a) tandems, b) trees and c¢) random server graphs based
on the G(n,p) Erdés—Rényi model.

We evaluate the ability of DeepTMA to extrapolate on other
networks by training three different variants for DeepTMA,
each on one type of networks. Results are presented in
Figure 5. Compared DeepTMA trained on the full dataset,
training only on tandem or tree networks leads to good ability
at extrapolating on other types of networks. Surprisingly, tree
network-based training dataset is outperformed by the tandem-
based one that, in turn, is very competitive with the random
server graphs.
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4 Tree networks » Random networks
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Figure 5: Influence of network types used for training on

relative error of DeepTMA

C. Importance of features and locality

In order to better understand the importance of the input
features used in DeepTMA, we assess each feature’s impor-
tance following the permutation-based importance measure
[49, 50]. For each input feature presented in Section III-B,
we randomize it by randomly permuting its values in the
training set, and assess the impact it has on the accuracy of
the predictions. We define the importance metric as:

Importance(Feature) = ‘}—l Yrer (Rchapﬁem'we - Rchapﬁ“”l”m) (6)

with the baseline corresponding to DeepTMA without any
feature permutation. With this evaluation, we assess how much
the GNN model relies on a given feature of interest for making
its prediction.

Features importance are presented in Figure 6(above). The
service rate of the servers in the network have the largest
influence on the final decision of cutting. Such behavior
confirms an existing result of NC, which is known to be
sensitive to service rate. The remaining features appear to
have less importance on the cut prediction. Interesting from
the NC perspective is the observation that the order of servers
(PathOrder) has a percental importance two orders of mag-
nitude lower than the service rate. In combination, these two
features constitute the very reason for TMA (and optimization-
based analyses, see [51]) to outperform the previous NC
analyses.

We also assess the importance of other flows and other
servers on a cut. We perform this by assessing the number
of iterations of message passing (i.e. Equation (2)) and the
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Figure 6: (above) Feature importance for DeepTMA and
(below) impact of number of GNN message passing iterations

impact it has on the relative error. As for feature importance,
we compare the results according to Equation (6). Results are
presented in Figure 6(below). The first 4 loop iterations appear
to have the largest influence on the cut decision, meaning
that the cut decision is mainly based on information from
servers close to the cut. We notice that the importance drops
sharply after 5 iterations, and converges after 15 iterations.
This indicates that servers and flows farther away from the cut
decision are less relevant to the cut decision — an insight to
potential further improvement of DeepTMA’s tradeoff between
computational effort and relative error.

D. Evaluation of DeepTMA,,

We now start focusing on actively improving robustness and
evaluate our extension of DeepTMA defined in Section IV-A.
It enables DeepTMA to generate more than one tandem
decompositions. Results are presented in Figure 7(a), where
the subscript n denotes the number of tandem decompositions
generated by DeepTMA,,. To benchmark DeepTMA,,, we
depict the performance of a random heuristic in Figure 7(b).
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Figure 7: Evaluation of DeepTMA, and random heuristic

As expected, the generation of more than one tandem
decomposition results in a decrease of the error. Already with
DeepTMA,, the error is reduced by a factor of 2 on the larger
networks. This illustrates that the robustness of DeepTMA
can be increased by using Algorithm 1, even at the smallest

additional computational cost of going to DeepTMA,. The
random heuristic performs considerably worse in all aspects
evaluated above.

E. Scalability on large networks

We evaluate in this section the robustness of DeepTMA and
DeepTMA, with respect to scalability. The networks from [27]
are evaluated here, since those networks are almost two orders
of magnitude larger than the networks used for training the
GNN used in DeepTMA, as illustrated in Tables I and II.

Figure 8 illustrates the relative error of DeepTMA and
DeepTMA,, compared to a random heuristic which selects the
tandem decompositions randomly. The family of DeepTMAs
achieve relative errors that are two orders of magnitudes
smaller than the random heuristics, resulting in better end-
to-end delay bound accuracy w.r.t. the exhaustive TMA.

Although DeepTMA wasn’t trained on such large networks,
the relative error still stays below 0.3% even on the larger
networks. DeepTMAg is even able to reach relative errors
below 0.02 %, indicating a good ability to scale.

——RND --- RND, ---RNDy
—— DeepTMA - - - DeepTMA,; - - - - DeepTMA,

RNDg
DeepTMAg

Relative error to TMA (%)

1
38 118 164 282 364 398 512 572 740 646 744 976 882 1124 994 1478 1876 3626

Number of servers in network

Figure 8: Evaluation of DeepTMA, on the set of networks
from [27]

VI. CONCLUSION

We contributed in this paper an extension of DeepTMA
for generating multiple tandem decomposition predictions and
a comprehensive assessment of its robustness in term of
scalability and impact of training data on its accuracy. We
also provided some insights on which feature is important for
making a prediction.

Via a numerical evaluation we showed that DeepTMA can
be trained on small networks and still provide good accuracy
on much larger networks, up to two order of magnitude larger
in term of number of servers and flows. We also showed
that the network type used for training can have a large
impact on the accuracy of the prediction made by the GNN.
Nevertheless, we showed that training DeepTMA on randomly
generated networks can still lead to good accuracy, suggesting
that tailoring the training data to more realistic use-cases might
not be necessary for application on real networks.

Those new results indicate that DeepTMA is able to gener-
alize tandem decomposition rules from small random networks
which can also be applied on larger networks, at a low
execution time cost. Finally we also proposed an extension
of DeepTMA which is able to generate multiple predictions,
decreasing the prediction error by a factor of two.
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Graph-Based Deep Learning for Fast and Tight
Network Calculus Analyses

Fabien Geyer

Abstract—Network Calculus (NC) computes end-to-end delay
bounds for individual data flows in networks of aggregate
schedulers. It searches for the best model bounding resource
contention between these flows at each scheduler. The literature
proposes different analyses to consider realistic behavior of
networked system such as multiplexing, and contention between
flows in consecutive queues even though there is no knowledge on
the multiplexing discipline employed by the crossed systems
(arbitrary multiplexing property). Bounding delays in entire
feed-forward networks needs to keep track of such behavior.
Moreover, not a single of the existing fast NC heuristics that are
based on an algebraic analysis is strictly best. An exhaustive
search for the best combination of analyses, i.e., contention
modeling, was proposed with the Tandem Matching Analysis
(TMA). Additional measures made it scale best among the NC
analyses, yet bounding delays may still require several hours of
computation time. In this paper, we demonstrate the ability to
couple graph-based neural networks with NC by extending TMA
with a prediction mechanism replacing the exhaustive search. We
propose a framework that learns from NC’s TMA, predicts best
contention models, and feeds them back to TMA where the
according NC computations are executed. We achieve provably
valid bounds that are very competitive with the exhaustive TMA.
We observe a maximum relative error to TMA below 12 %, while
execution times remain nearly constant, and outperform TMA in
differently sized networks by several orders of magnitude.

Index Terms—Deep Learning, Network Calculus.

1. INTRODUCTION

DETERMINISTIC performance bounds have seen many
applications in modern systems and a wide range of net-
work calculus-based solutions have been proposed. Network
Calculus (NC) can be applied to ensure deadlines in networks
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for x-by-wire applications [1] as well as SDN-enabled net-
works [2], for safety-critical production systems [3], or both
of these [4]. Moreover, NC solutions have been proposed for
highly dynamic environments. E.g., admission control in self-
modeling sensor networks [5] or systems providing customers
with service level agreements [6] for, among others, storage
access [7]. Other recent examples where dynamic events may
often cause changes are cache networks [8] and cloud comput-
ing [9]. These areas benefit from fast computations of tight
performance bounds. The literature provides one-shot analyses
for topology-agnostic bounds [10] or bounds that hold for the
specification’s worst case [4]. Yet, these attempts are ulti-
mately paid for with wasted resources. Our approach aims for
highest quality of bounds as well as providing a fast analysis
that considers all details of the analyzed network.'

A. Problem Overview

In network calculus, a network needs to be modeled by
servers (e.g., queues or packet schedulers) whose forwarding
capabilities for can be lower bounded. They guarantee an out-
put for their aggregate input of data. Individual data flows tra-
verse sequences of servers where they compete for the
forwarding resources with other flows. We do not assume any
knowledge about the way data of distinct flows is multiplexed
into shared queues at common servers. In NC, this is called
arbitrary (or blind) multiplexing. We only assume that the
FIFO order of data within individual flows is retained when
being multiplexed and forwarded. The data put into a network
by a flow is upper bounded in the NC model. This model ena-
bles NC to compute deterministic delay bounds.

The NC analysis will compute a bound on an individual
flow’s end-to-end delay based on such a model. The analyzed
flow is commonly known as flow of interest (foi). Under the
assumption that no knowledge about the multiplexing of flows
is available, the NC analysis must find an internal model of
flow contention that

1) bounds the realistic system’s worst-case behavior in the

foi’s point of view without adding too much pessimism
and

2) can be solved with the capabilities of the available NC

analyses.
The set of available analyses has been steadily extended in
order to capture different features of the modeled network

U A first version of this work was presented at the 2019 IEEE International
Conference on Computer Communications INFOCOM) [11]
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for tightening the derived delay bounds [12}-{15]. These alter-
natives are all proven to result in valid delay bounds for the
foi. But among the analyses that can be derived in an alge-
braic fashion, there is not a single-best one that expresses the
realistic worst-case contention model without adding pessi-
mism in some other regard, not even on a tandem of two
servers crossed by two flows [16]. Most importantly for our
work, we inherit the restriction to a specific shape of curves
bounding arrivals and forwarding from [15]: arrivals must be
upper-bounded by the minimum of several token-bucket
constraints and forwarding service must be lower-bounded
by the maximum of several rate-latency constraints. This is,
however, a constraint commonly found in a multitude of
other NC analyses, too [16]-[18].

All the worse for NC, such an algebraic analysis needs to
bound the impact of resource contention by transforming the
flows’ bounding curves between their respective source to the
location of contention with the analyzed foi. Curve transfor-
mations thus require to backtrack all cross-flows, either in
aggregate or separated by worst-case priority assumptions.
Different contention models require different flow aggrega-
tion/separation assumptions and the resulting structures
expressing dependencies of algebraic NC operations become
unique. L.e., they all need to be computed.

It was shown that it is possible to exhaustively derive all
dependency structures and rank each contention model on
each tandem occurring in a network analysis. This is known as
the Tandem Matching Analysis (TMA) [19]. It achieves high
degrees of delay bound tightness by enumerating all conten-
tion models upstream from the foi. Thus, the best model for a
downstream location and flow can be found. TMA provides a
recursive algorithm whose execution time can exceed several
hours, e.g., when analyzing networks with >1000 servers and
four times as many flows.

In this article, we present the deep-learning assisted TMA,
DeepTMA, that predicts the best contention model with high
efficacy, resulting in a high degree of delay bound tightness.
Single backtrackings have been attempted before [14], [15],
yet, we are the first to achieve considerably faster execution
times than TMA without considerably compromising on delay
bound tightness.

B. Contributions

While we focus our evaluations on the novel DeepTMA
heuristic for NC’s TMA, we contribute an entire underlying
framework that combines the theories of NC [14] and a graph-
based deep learning, namely Graph Neural Networks
(GNNs) [20], as well as two of their tools [21], [22]. We
assume here feed-forward networks with rate-latency and
arbitrary-multiplexing servers, and rate-latency constrained
flows, but our approach may be extend to more complex use-
cases. DeepTMA achieves the following properties:

Deterministic bounds: We learn from NC and feed predic-
tions back to NC. We predict the best choices for decisions
made during the TMA analyses. NC stays in control and guar-
antees provably correct bounds.

Our framework does not learn to predict a delay bound but
it predicts the most important decisions within the TMA anal-
ysis, the contention models. Compared to directly predicting a
flow’s delay bound, our approach always guarantees for a
valid worst-case bound as we continue to apply the proven
NC operations in their valid orders.

Fast execution times and high tightness: Recent work [23]
about the benefit of technical upscaling showed that TMA can-
not be parallelized easily and a speedup of only one order of
magnitude was observed. We provide an advancement that
improves the execution times of the analysis by multiple order
of magnitude.

Limited impact of mismatches between training and
application: Naturally, we only train our machine learning
part once before using its predictions in DeepTMA. While
we chose a reasonably large range of parameters for the
involved curve descriptions to learn from, our dataset needs
to be restricted in some dimensions. Immediately noticeable
is the type of network topologies. We use tandem, sink-tree
and random networks for training. An evalutation of the
original DeepTMA’s performance when applied to other
topologies is presented in [24], with a short excerpt in this
article.

During the NC network analysis, only one delay bound will
be computed — the one for the analyzed flow. The remaining
computational effort stems from so-called arrival bounding,
the computation of bounds on flow (aggregate) arrivals inside
the network. The original DeepTMA was only trained for and
applied to minimizing the one delay bound. In this article, we
provide an evolution of DeepTMA for arrival bounding while
preventing the instantiation and integration of a second, differ-
ently trained neural network.

C. Outline

The remainder of the article is organized as follows:
Section II presents the related work on our research direction
for network calculus and graph neural networks. Section III
presents the theory behind our approach in more detail and
Section IV presents our theoretical contribution on combining
both areas. In Section V we present the combination of tools
as well as the generation of a dataset to learn from. Section VI
provides new machine learning-based NC heuristics to bench-
mark DeepTMA against. These numerical benchmarks are
presented in Section VII, followed by observations about the
deep learning-based NC heuristics in Section VIII. Section IX
concludes our work.

II. RELATED WORK

A recent survey [25] about existing applications of machine
learning to formal verification shows that this combination
can accelerate formal methods, e.g., theorem proving, model-
checking, Boolean satisfiability problems (SAT) or satisfiabil-
ity modulo theories (SMT) problems. As we show, NC has
been combined with other methods, too. So have GNNs with
formal verification. Yet, we are the first to combine both TMA
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and GNN into a framework for deterministic performance
analysis.

A. NC Combined With Other Methodologies

The (min,+)-algebraic NC provides deterministic modeling
and analysis techniques. It has seen various efforts to extend
NC’s capabilities. For instance, the underlying (min,+) algebra
can be exchanged for (min,x) for fading channel analysis [26]
or for (max,+) to better fit discrete event systems [27]. More-
over, a common model for NC and event stream theory has
been developed [28] and state-based system modeling can be
integrated by pairing NC with timed automata [29].

Stochastic extensions to NC were proposed early to deal
with, e.g., traffic arrivals following a distribution that cannot
be bounded deterministically by an arrival curve. For instance,
Boole or martingale inequalities can be applied [30]-[32].
This branch of NC was also extended to include statistics and
statistical uncertainty to obtain stochastic results [33], [34].

NC has been used to describe component models commonly
found in real-time systems [35]. Delay bounds can then be
derived from a combination of component characteristics and
the network calculus model. For example, knowledge about
the busy period of a greedy processing component has been
used to speed up NC computations [36]-[38].

An optimization formulation has been derived from the NC
model that computes tight bounds in networks without
assumptions on the multiplexing of flows [17]. It first derives
the dependencies between busy periods of servers in order to
partially order the mutual impact of flows. The tight analysis
requires to expand this order to all compatible total orders.
There are several algorithms to solve this challenge. As shown
in [19], the resulting amount of total orders and therefore lin-
ear programs (LP) to solve can quickly becoming prohibitive.
[17] proposes a heuristic that skips the expansion step and still
derives valid bounds. Its computational demand was numeri-
cally evaluated in [19].

Recent works use machine learning to estimate service
curves from measurements [39] or to derive traffic characteris-
tics for performing dynamic resource provisioning [40]. In
contrast to our work, this interfacing via service curves cannot
compute provably correct bounds on the worst-case flow
delays due to uncontrollable uncertainties introduced by meas-
urements and machine learning.

B. Deep Learning for Graphs and Formal Verification

GNNs were first introduced in [20], [41], a concept subse-
quently refined in recent works. Gated Graph Neural Networks
(GGNNSs) [42] extended this architecture with modern practi-
ces by using Gated Recurrent Unit (GRU) memory units [43].
Message-passing neural network were introduced in [44], with
the goal of unifying various GNN and graph convolutional
concepts. [45] formalized graph attention networks, which
enables to learn edge weights of a node neighborhood.
Finally, [46] introduced the graph networks (GN) framework,
a unified formalization of many concepts applied in GNN3s.

These concepts were applied to many domains where prob-
lems can be modeled as graphs: chemistry with molecule anal-
ysis [44], [47], solving the traveling salesman problem [48],
prediction of satisfiability of SAT problems [49], or basic
logical reasoning tasks and program verification [42].
For computer networks, they have recently been applied to
prediction of average queuing delay [50] and different non-
NC-based performance evaluations of networks [22], [51]-
[53]. In the realm of NC, there is surprisingly little work as of
yet. Predating DeepTMA [11] we base our work on, there is
an effort to predict the delay bound computed by different NC
analyses by using GNNs. Each of these analyses only consid-
ers a pre-defined contention model whenever there are alterna-
tives for a tandem. The prediction is then used to only execute
the most promising analysis [54].

III. BACKGROUND
A. Overview of Graph Neural Networks

In this section, we detail the neural network architecture
used for training neural networks on graphs, namely the fam-
ily of architectures based on GNNs [20], [41].

Let G = (V,€) be an undirected graph with nodes v € V
and edges (v,u) € €. Let i, € R" and o, € R™ represent
respectively the input features (e.g. node type, service or
arrival curve parameters) and output values for node v (e.g.
decision for the NC analysis). The concept behind GNNs is
called message passing, where so-called hidden representa-
tions of nodes h, € R¥ are iteratively passed between neigh-
boring nodes. Those hidden representations are propagated
throughout the graph using multiple iterations until a fixed
point is found or after a fixed number of iterations. The final
hidden representation is then used for predicting properties
about nodes. This concept can be formalized as:

h,ff) = aggr({hffﬁl) | ue NBR(U)}) (1)
0, = out (h(UHOO)> )
w0 = init(i,) A3)

with hff) representing the hidden representation of node v at
iteration ¢, aggr a function which aggregates the set of hidden
representations of the neighboring nodes NBR(v) of v, out a
function transforming the final hidden representation to the
target values, and init a function for initializing the hidden
representations based on the input features.

The concrete implementations of the aggr and out functions
are feed-forward neural networks (FFNN), with the addition
that aggr is the sum of per-edge terms [41], such that:

ol <o £ )

with f a FENN. For init, a one-layer FENN is used to fit the
input features to the dimensions of the hidden representations.
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Fig. 1. Gated Graph Neural Network architecture.

Gated Graph Neural Networks (GGNN) [42] were recently
proposed as an extension of GNNs to improve their training.
This extension implements f using a memory unit called
Gated Recurrent Unit (GRU) [43] and unrolls Equation 1 for a
fixed number of iterations. This simple transformation allows
for commonly found architectures and training algorithms for
standard FFNNs as applied in computer vision or natural lan-
guage processing. The neural network architecture is illus-
trated in Figure 1.

Formally, the propagation of the hidden representations
HY among neighboring nodes for one time-step is formulated
as:

HO = [, h)] )
X —HIDA + b, (6)
20 — U(sz(t> L UHTY 4 bz) (7)
) = O’(W,.I(t) +UHY ¢ b'f') ®)

HY — tanh (ww + U(rm ® H<H>) + b) o)

HO — (1 _ z<f>) OH 4200 o AV (10)
where o(z) =1/(1+e) is the logistic sigmoid function
and © is the element-wise matrix multiplication. W,, W,, W
and U,, U, U are trainable weight matrices, and b,,b,,b.,b
are trainable bias vectors. A € RV is the adjacency
matrix, determining the edges in the graph G.

Equation 6 corresponds to one time-step of the propagation
of the hidden representation of neighboring nodes to node v,
as formulated previously for GNNs in Equations 1 and 4.
Equations 7 to 10 correspond to the mathematical formulation
of a GRU cell [43], with Equation 7 representing the GRU
reset gate vector, Equation 8 the GRU update gate vector, and
Equation 10 the GRU output.

In order to propagate the hidden representations throughout
the complete graph, a fixed number of iterations of Equations 7
to 10 are performed. This extension has been shown to outper-
form standard GNN which require to run the recursion until a
fixed point is found.

We also extended our neural network architecture with an
edge attention mechanism similar to the one proposed in [45].
Thus, the neural network can give preference to some neigh-
bors over other ones via a trained function. For each edge
(v, u) in the graph, we define a weight parameter pgt 31 depend-
ing on the concatenation of hg) and hfj):

fa A
fl S1 Sp 53 S4 g

f f3

Fig. 2. Server Graph Model in NC.

ol =0 (Wa{hw ’ hfll)} + b“)

with trainable weights W, and bias parameters b,. Equation 4
can then be rewritten as

WO = (R,

uENBR(v)

an

(12)

B. Network Calculus

The NC model of a network is a directed graph called server
graph Gyo = (Vne, Ene, F) with servers s € Vye, edges
(v,u) € Enc and data flows f € F. Servers represent the for-
warding locations in a network, e.g., queues or packet schedu-
lers. They guarantee a lower bound on data forwarding and
thus an output quantity given an input quantity of data. Flows
travel along directed edges, crossing servers and demanding
their forwarding service. L.e., they define the input quantity of
servers. NC models this with an upper bound on the flow’s
data arrivals valid in any duration of time. Figure 2 shows a
server graph, a tandem.

Definition 1 (Tandem of Servers): A server graph 7 =
(Vne, Ene, F) is called a tandem if the following properties
hold: |Enc| = |Vne| — 1. For any server s € Ve, let in(s) be
the amount of directed edges ending in server s and out(s) be
the amount of edges starting in s. On a tandem, it holds
Vs € Ve | max(in(s)) = min(1, max(out(s))) = 1.

In this paper, we put some additional assumptions on the
NC model:

e There cannot be cyclic dependencies between flows.
This is achieved by a restriction to feed-forward net-
works such as the tandem network of Figure 2. Any net-
work can be converted to a feed-forward one [55].

e When multiple flows multiplex at a server, e.g., fi, fo
and fy at sy in Figure 2, we do not know the resulting
order of their data. This is called arbitrary multiplexing.

e However, we assume that the order of data within a sin-
gle flow will not change by multiplexing or forwarding.

e Flows are routed along point-to-point paths.

e The NC curves that bound data arrivals and forwarding
capabilities are restricted to certain shapes: the mini-
mum over multiple token buckets (like IntServ’s
TSPEC) and the maximum over multiple rate latencies,
respectively. Details can be found in [16]-[18].

A network calculus analysis takes such a model as the input
and computes a bound on a specific flow’s end-to-end delay —
as close to the realistic worst case as possible — with the least
computational effort possible. The analyzed flow is called
flow of interest (foi) and the set of tandem analyses has been
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Fig. 3. Reduction rules in the NC analysis.

steadily extended in order to improve tightness of the foi’s
delay bound. Two leaps have been taken by incorporating the
Pay Bursts Only Once (PBOO) [14] and the Pay Multiplexing
Only Once (PMOO) [15] properties into the NC analysis.
Both mitigate previously added pessimism not found in a real-
istic system but required by the analysis. PBOO prevents the
bound on the foi’s worst-case burstiness to appear multiple
times in the analysis as if it built up at every server — an unre-
alistic contention model. PMOO extends this to the burstiness
of cross-traffic present on consecutive servers on the foi’s
path. In NC’s interpretation as term rewriting [56], these two
analyses are reduction rules. Their central means of transform-
ing tandems is cutting.

Definition 2 (Cutting NC Tandems): Given a tandem 7 =
(VnesEne, F) and a NC analysis A, a cut marks edge e €
Enc such that A will analyze 7 as a sequence of sub-tandems
(7,,7,) where 7, holds all the model information to the left
of e and 7, that to the right of e. A cutting (also called combi-
nation of cuts) is a set of cuts on 7.

Visually, the analyses implementing PBOO (Seperate Flow
Analysis, SFA [14]) and PMOO (PMOQO analysis, PMOOA [15])
proceed as depicted in Figure 3 a and 3 b:

All Cuts (Figure 3 a): SFA cuts every edge in the NC
model along with the flows crossing it (except the foi f;). The
resulting sub-tandems are demarcated with (-) and consist of
single servers. For the cut flows, their arrivals at the subse-
quent server need to be bounded (we denoted the respective
location with f7). Such a flow’s bound consists of its initial —
given burstiness — bound plus the worst-case increase due to
having crossed the previous servers.

No Cuts (Figure 3 b): Without cuts, the entire tandem is
analyzed at once. Mitigating the need for deriving bounds on
flow arrivals in the network allows for achieving the PMOO
property in addition to PBOO. For details on how to imple-
ment a no-cuts analysis, we refer the reader to [15].

The two reduction rules are part of the algebraic NC analy-
sis branch. It was discovered that the algebraic analysis pays
for its ability to apply the no-cuts reduction with the loss of
server order information. As a consequence, neither of the
reduction rules are generally resulting in a tighter delay bound
than the other one. Therefore, the optimization-based NC anal-
ysis branch was proposed [16]. Later, a tight optimization

Fig. 4. Some additional reduction rules applied by TMA.
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Fig. 5. Overview of the proposed approach.

analysis was developed [17], along with a heuristic that prom-
ises better scalability with increasing network size. In [19], it
was shown that said heuristic may not scale well and that it is
rivaled by algebraic NC in terms of delay bound tightness,
too. The so-called Tandem Matching Analysis (TMA) we
base our work on partially overcomes the computational effort
challenges imposed by the exhaustive search over all combi-
nations of the reduction rules above. See Figure 4 for two
alternative rules to all cuts and no cuts. With DeepTMA, we
make the approach scale even better by predicting the best tan-
dem matching, i.e., combination of cuts, instead of exhaus-
tively searching for it.

IV. GRAPH NEURAL NETWORK FOR NC

We develop our DeepTMA heuristic in this section. It is
based on the concept of GNN introduced in earlier. The goal
of DeepTMA is to predict the best tandem decompositions,
i.e., combinations of cuts, to use in TMA. For simplicity, we
refer to NC server graphs as networks and to the graph model
used in GNN as graphs.

The main intuition is to transform the NC server graph and
flows into an undirected graph. This graph representation is
then used as input for a neural network architecture able to
process general graphs, which will then predict the tandem
decomposition resulting in the best residual service curves.
Our approach is illustrated in Figure 5. Since the delay bounds
are still computed using the formal network calculus analysis,
they inherit their provable correctness.

A. Application to TMA

In order to apply the concepts described in Section III-A to
a network calculus analysis, we model NC’s directed network
as an undirected graph. Figure 6 illustrates this graph encoding
on the network from Figure 2.
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Fig. 6. Transformed network of Figure 2 to the graph model.

Each server is represented as a node in the graph, with
edges corresponding to the network’s links. Each flow is rep-
resented as a node in the graph, too. In order to encode the
path taken by a flow in this graph, we use edges to connect the
flow to the servers it traverses. Since those edges do not
encode the order in which those servers are traversed,
so-called path ordering nodes containing the hop count as fea-
ture are added to edges between the flow node and the tra-
versed server nodes. This property is especially important in
the TMA since the order, and hence position of cuts, has a
large impact on dependency structures.

In order to represent these TMA cuts, each potential cut
between pairs of servers on the path traversed by the flow is
represented as a node. This cut node is connected via edges to
the flow and to the pair of servers it is associated to.

In addition to a categorical encoding of the node type (i.e.,
server, flow, path ordering or cut), the input features of each
node in the graph are as follows:

e For each server s, parameters of its rate-latency service
curve B,(d) = max{0,rates - d — latency,} are used:
[rates, latency,]

e For each flow f, parameters of its token-bucket arrival
curve ap(d) = {ratey - d + bursts},. o (e, ap(d) =
0 for d < 0) are used: [ratey, bursty]

e For each path ordering p, the hop count is encoded as an
integer: PathOrder

e Finally, neither cut nodes nor edges have input features

Equation 13 illustrates the matrix encoding of part of the
graph from Figure 6.
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curves for arrival constraints is not a restriction of our Deep-
TMA analysis. It is trivial to extend input features to the larger
set of curve parameters required to model the curve shapes
mentioned in Section III-B.

Based on this description of the server graph, the problem of
choosing the best tandem decomposition to give to the NC
analysis is formulated as a classification problem. Namely
each cut node has to be classified in two classes: perform a cut
between the pair of servers it is connected to or not: [cut, cut].
The binary cross-entropy loss function is used during training
for this classification problem. The other nodes of the graph
are masked from the loss function.

The overall prediction to be fed back, i.e., the selection of
one out of TMA’s potential decompositions for a given foi’s
path, is defined by the set of all cut classifications for this
path. The prediction of the best decomposition for a given tan-
dem, starting with the foi’s path, is done by iterating over all
potential cuts and selecting the ones which have been classi-
fied as cutting points for said tandem.

B. Best Contention Models Across the Entire Analysis

Figures 3 and 4 in Section III-B already show the need for
arrival bounding on the foi’s path — see flow labels f! and f7.
Moreover, our sample tandem assumes that bounds on flow
arrivals are known when entering the tandem. This need not
be the case in a feed-forward network where cross-flows tra-
versed multiple servers before interfering with the flow of
interest. Therefore cross-flow arrivals are required to be com-
puted here, too. Bounding the arrivals of cross-traffic becomes
a resource intensive, recursive procedure [S], [57]. It starts
with the foi and it only terminates in feed-forward networks
when all cross-flows are backtracked to their sources. The pro-
cedure is visualized in Figure 7.

Applying the exhaustive TMA in every recursion level (i.e.,
every cycle in Figure 7) yields large computational demands.
Given a tandem of length n servers, TMA tests all 20"~1) com-
binations of cuts. Visually, TMA unwinds all loops and
branches (see dashed line) that can be taken in the cycle. On
the other hand, the minimum-cost NC analysis can be obtained
by unwinding only the bare minimum of loops: do not take
optional branches by choosing a single contention model like
PBOO (SFA) or PMOO do. With DeepTMA, we create an
alternative heuristic that is not deciding on the cut
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Fig. 8. Comparison of arrival bounding (AB) methods on the dataset con-

structed in Section V-A.

combination in a static way. Instead, our GNN uses a range of
input features to predict the best cut combination.

The original DeepTMA of [11] was designed to predict the
best cuts for a tandem of servers, subject to minimizing the ana-
lyzed flow’s delay bound. However, the delay bound is only
computed in the very first iteration of Figure 7’s loop (after
“Start: Flow of interest’s path”). As seen above, any subse-
quent iteration will be part of the arrival bounding of cross
flows. In this article, we evolve DeepTMA to also provide
delay-bound-minimizing cut combinations for the bounding
cross-traffic arrivals. Our delay-bound-based approach has the
advantage of not instantiating, training and integrating a second
GNN for the purpose of arrival bounding. Figure 8 shows that
our approach is indeed superior in the vast amount of cases and
we will apply this DeepTMA-based arrival bounding in all our
evaluations.

V. IMPLEMENTATION AND DATASET GENERATION

We implemented DeepTMA and the graph neural network
architecture using PyTorch [58]. The recursion from
Equation 1 was dynamically unrolled for a fixed number of
iteration according to the diameters of the analyzed graphs.
Table I illustrates the size of the different layers used here.

We analyzed each network with the NetworkCalculus.org
Deterministic Network Calculator (NCorg DNC),? version 2.6.0
and perform the exhaustive TMA analysis to generate the best
cuts combinations. A tandem decomposition is always executed
for a flow of interest. But instead of the residual service curves,
we use the delay bounds for the foi as caused by all decomposi-
tions in order to rank them. This is because the former potentially
faces problems in the case of lost service curve strictness.

A. Dataset Generation

In order to train our neural network architecture, we follow
a traditional supervised learning approach. We randomly gen-
erated a set of random topologies according to three different
random topology generators:
(1) tandems or daisy-chains like in Figure 2,
(2) trees and
(3) random server graphs following the Erdo Rényi
model [59], then made feed-forward with the Turn Pro-
hibition algorithm [55].

2 Formerly known as DiscoDNC [21] see networkcalculus.org/dnc

TABLE I
SIZE OF THE LAYERS USED IN THE GGNN. INDEXES REPRESENT RESPEC-
TIVELY THE WEIGHTS (w) AND BIASES (b) MATRICES

Layer NN Type Size
init FENN (21,160)w + (160)4
Memory unit GRU cell (320, 320),, + (320, 160),, + (480),
Edge attention FFNN (320, 1)w + (2)p
out hidden layers ~ FFNN 2 x {(160,160) + (160)}
out final FFENN (160,2)w + (2)p
Total: 209764 parameters
TABLE I
STATISTICS ABOUT THE GENERATED DATASET
Parameter | Min Max Mean Median
# of servers 2 41 14.6 12
# of flows 3 203 101.2 100
# of tandem combinations 2 197196 1508.5 384
# of nodes in analyzed graph 10 2093 5452 504
# of tandem combination per flow 2 65536 19.4 4
# of flows per server 1 173 18.1 10

For each created server, a rate latency service curve was
generated with rate and latency parameters taken from a
uniform distribution. A random number of flows with
random source and sink servers was added. For each
flow, a token bucket arrival curve was generated with
burst and rate parameters taken from a uniform distribu-
tion. All curve parameters were normalized to the (0,1]
interval.

In total, 172374 different networks were generated, with
a total of more than 13 million flows, and close to 260 mil-
lion tandem decompositions. Half of the networks were
used for training the neural network, while the other half
was used for the evaluation presented later in Section VII.
Table II summarizes different statistics about the generated
dataset. The dataset is available online® to reproduce our
learning results.

VI. OTHER TMA HEURISTICS

To benchmark DeepTMA, we present three additional heu-
ristics for the choice of TMA’s tandem decompositions. Com-
pared to the GNN-based proposal, those heuristics are based
on simpler algorithms.

A. RND: Random Choice of Tandem Decomposition

The simplest heuristic is to randomly select multiple alter-
native tandem decompositions, where each decomposition has
the same probability of being chosen. Given any n-server tan-
dem, starting with the foi’s path as shown in Figure 7, RND
only selects n’ < 2("~1) decompositions. Le., the RND heuris-
tic randomly samples a small part of TMA’s search space per
tandem in the analysis. The remainder of the analysis follows
the standard NC proceeding.

3https://github.com/fabgeyer/dataset-deeptma-
extension
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Algorithm 1: Generation of n tandem decompositions for a
flow traversing L + 1 servers.

ifn < 2 then
return all combinations of cuts
else
for alli:=1tondo
v ety .. en] ~U0,1)F
cuts; — I(v < [Pr(cut§YY), ...
(T is the indicator function)
endfor
return {cutsy, ..., cuts, }
end if

B. Simplified Machine Learning Heuristics

While DeepTMA is based on an approach which uses the
complete information about the server graph, we propose here
a simpler machine-learning approach which uses a simplified
view of the server graph and its features. As for DeepTMA,
this heuristic uses machine learning algorithms in order to
classify each cut in the same two classes, namely decide to
perform a cut between a pair of servers or not.

This simplified approach only uses a local view of the net-
work, i.e. parameters of the pair of servers between which the
cut is located, named here source and sink. For each cut in the
network, we define a feature vector comprised of the follow-
ing values:

e FlowArrival{Rate, Burst}: the parameters of the token
bucket arrival curve of the foi;

e FlowPathLen: the path length of the foi;

e CutOrder: the index of the cut in the path of the foi;

o {Source,Sink}Service{Rate,Latency}: the parameters of
the rate-latency service curves of the pair of servers;

o {Source,Sink}SumArrival{Rate,Burst}: the sum of the
parameters of the arrival curves of the flows traversing
each server of the pair;

e SourceNFlows and SinkNFlows: the number of flows at
each server of the pair.

While this simplified view of the server graph performs
worse than the one used DeepTMA - as show later in
Section VII — our main motivations for this simplified
approach are simplicity and explainability of the model. Fea-
ture importance [60], [61] is more easily performed on such
simplified feature vector than on the GNN model, as illus-
trated later in Section VIII.

Using those feature vectors, we propose here two heuristics,
one based on feed-forward neural network, and one based on
random forests. Since the output of both heuristics is a proba-
bility of making a cut, multiple tandem decompositions can be
generated using the approach presented later in Section VI-C
and Algorithm 1.

1) FFNN: Feed-Forward Neural Network Heuristic: This
heuristic uses a standard multi-layer feed-forward neural net-
work to classify the cuts using the simplified feature vector
presented earlier. The size and number of hidden layers of
the FFNN is detailed in Table III. We use standard training

TABLE III
SIZE OF THE LAYERS USED IN THE FFNN. INDEXES REPRESENT RESPECTIVELY
THE WEIGHTS (w) AND BIASES (b) MATRICES

Layer Size

input (10,64)w + (64)p

hidden layers 2 x {(64,64), + (64)p}

out final (64,2)w + (2)p

Total: 9154 parameters
—— DeepTMA - - - PMOO SFA
& 100 .
3 PMOO
< ’
= , .
= . I
8 R AN It dooyer
§ 50 /;” “:*-4‘_:_—<***"A—>"/ TSFAT
b} Lo
2 17 JRuE DeepTMA
9] i
P~ 0 T T T T T T T T
2 4 6 8 10 12 14 16

Path length of flow

Fig. 9. Relative error of DeepTMA and existing NC heuristics.

method based on gradient descent to train the neural
network. As for DeepTMA, our implementation is based on
PyTorch [58].

2) RFC: Random Forest Classifier Heuristic: This heuris-
tic uses random forests [60] to classify the cuts using the sim-
plified feature vector presented earlier. Our implementation of
this heuristic is based on scikit-learn [62].

C. Generating Multiple Decompositions

Given a foi and a cut, the output of the machine learning-
based heuristics presented earlier is a probability of cutting.
This probability is generated by the neural networks using the
softmax function after the last layer. In case a single tandem
decomposition has to be generated, the decision of cutting or
not is made using a threshold of 50%.

The cut probabilities may also be used in order to generate
multiple tandem decompositions as illustrated in Algorithm 1.
In case the number of tandem decompositions is lower than the
number of requested decompositions, we simply return all
combinations of cuts. Otherwise, we sample the distribution of
cuts in order to generate the decompositions. In Section VII,
we label those extended heuristics using n as subscript, with n
the number of decompositions.

VII. NUMERICAL BENCHMARKS

We evaluate in this section DeepTMA against classical NC
analyses, TMA, and the heuristics presented above. Via a
numerical evaluation, we illustrate the tightness and execution
time, and highlight the usability for practical use-cases.

Unless specified otherwise, all the evaluations presented in this
section were performed on the dataset described in Section V-A.
In order to perform the evaluation, the dataset was split in two
parts: one part was used for training the machine learning-based
heuristics, while the second part was used to perform the numeri-
cal evaluations presented in this section. Additionally, DeepTMA
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Fig. 10. Relative error of DeepTMA and the heuristics presented in Section VI.

TABLE IV
STATISTICS ABOUT THE SET OF NETWORKS FROM [19]
Parameter \ Min Max Mean Median
# of servers 38 3626 863.0 693
# of flows 152 14504 3452.0 2772
# of tandem combinations 2418 121860 24777.6 18869
# of nodes in analyzed graph 1358 113162  25137.7 19518
# of tandem combination per flow 2 512 7.3 8
# of flows per server 1 467 16.4 12

was also evaluated on the set of network from [19] in Section VII-
B, and on the set of networks from [11] in Section VII-D.

A. Relative Error

We investigate in this section the resulting loss of tightness in
case a non-optimal tandem decomposition was selected by a
given heuristic. In order to quantitatively evaluate this loss of
tightness compared to TMA, we use the relative error, defined as:

RelErry; = (delayh?‘"’i“ﬁ“ — delaerl-\'IA) / delayTMA

foi foi foi (14)

Classical NC Analyses: Figure 9 illustrates the relative
error of DeepTMA against classical NC analyses. DeepTMA-
derived delay bounds are tightest among these heuristics, devi-
ating from TMA by no more than 12% in our experiments in
the worst-case.

DeepTMA efficacy beating SFA and PMOO in the cost/
tightness-tradeoff is necessary, yet, by no means sufficient to
conclude that our deep-learning assisted analysis framework
is the best alternative to create heuristics. SFA and PMOO
were created a decade before TMA, i.e., they never benefited
from advances that resulted in TMA. Therefore, we base our
statement on numerical benchmarks against newly contributed
ML-based heuristics for TMA.

New Heuristics: Figure 10 compares DeepTMA against
the other heuristics introduced in Section VI. Only FFNNg and
RFCg are able to achieve a relative error similarly small as
DeepTMA on the larger networks, yet, at a much larger compu-
tational cost since 8 different tandem combinations and their
entire dependency structures have to be evaluated every time.

B. Scalability and Robustness on Larger Networks

Additionally to the dataset which was presented in
Section V-A, we also evaluate our approach on the set of net-
works used in [19]. No additional training of the GNN is per-
formed on this additional dataset. Table IV summarizes
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Fig. 12.  Evolution of the relative error during training.

different statistics about this additional dataset. Compared to
dataset used for training, this additional set of networks is up
to two order of magnitude larger in term of number of servers
and flows per network. We evaluate here if our approach is
able to scale to such larger networks in terms of tightness.

Figure 11 illustrates the relative error of DeepTMA com-
pared to a random heuristic which selects the tandem decom-
positions randomly. DeepTMA achieves relative errors that
are two orders of magnitudes smaller than the random heuris-
tics, resulting in better end-to-end delay bound accuracy w.r.t.
the exhaustive TMA. Although DeepTMA was not trained on
such large networks, the relative error still stays below .3%
even on the larger networks. Those results highlight that
DeepTMA is indeed able to scale to networks much larger
than to those it was initially trained for.

Additional results regarding robustness of DeepTMA with
respect to scalability on larger networks can also be found
in [24].

C. Training Time

We illustrate in Figure 12 the evolution of the relative
error during the training phase of the GNN. As noted in
Section V-A, this training was done 86187 topologies.
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Comparing DeepTMA to existing NC heuristics on the dataset
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Fig. 14. Execution time of the cut recommendation part of DeepTMA, exe-
cuted on CPU or GPU, without batching or batch sizes of 64 networks on the
dataset from [11].

Training duration was measured while training was done
using a Nvidia GTX 1080 Ti GPU.

D. Execution Times

In order to understand the practical applicability of our heu-
ristic, we evaluate in this section its execution time in different
settings. We define and measure the execution time per net-
work as the total time taken to process N networks and all its
flows divided by NN, without including the startup time or the
time taken for initializing the network data structures.

Classical NC Analyses: Figure 13 shows benchmarking
results of DeepTMA against the classical analysis in NC. We
compare against TMA and the established SFA [14] and
PMOO [15] heuristics of NC. These are fast as they greedily
decide on a single contention model, ignoring arrival and ser-
vice curves. DeepTMA from our framework is minimally
slower than PMOO but faster than SFA and TMA. This
implies two things: first, the overhead of querying for predic-
tions is not necessarily large and secondly, the contention
model tends be closer to PMOO than to SFA, consisting of
tandems of multiple servers.

TMA: Since DeepTMA can be executed on either CPU or
GPU, we first compare both platforms and their affinity at par-
allelization in Figure 14. A Nvidia GTX 1080 Ti was used for
the measurements on GPU, and an Intel Xeon E3-1270 v6 (at
3.80 GHz) for the ones on CPU. We first notice that the execu-
tion time grows close to linearly with the size of the network,
both on CPU and GPU, which is explained by the iterations of

—— DeepTMA (GPU) - - - TMA Hy Hg - Hazp
- - DeepTMA (CPU) H; Hy Hie

T T T T T T
2 4 6 8 10 12 14 16
Maximum flow path length in network

Execution time per network (ms)

Fig. 15. Execution times per topology for TMA, DeepTMA and H,, heuris-
tics on the dataset from [11].
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Fig. 16. Memory usage of the GNN and the TMA NC analysis on the dataset
from [11].

message passing illustrated in Equation 6 according to the
diameter of the studied graph. Execution on GPU results in
faster computation compared to CPU for networks larger than
two hops, mainly due to the better ability of GPUs of parallel-
izing the numerical operations used in neural networks.

Since both platforms offer multiple cores for parallel execu-
tion of multiple processes, we investigate the effect of batch-
ing, namely analyzing multiple networks in parallel.
Parallelization of the mathematical operations described in
Section IV is automatically performed by PyTorch. We pres-
ent in Figure 14 the execution time without any batching —
namely only one network is processed at once — and with
batching, where the heuristic processes 64 networks at once.
On both platforms, batching results in a reduction of process-
ing time, which is relevant in use-cases where multiple net-
work configuration have to be processed.

In addition, we measured the execution time of TMA using
the NCorg DNC [21]. The same CPU was used for running
NCorg DNC, with Oracle’s HotSpot JVM version 1.8.

Whereas Figure 14 provides insight on the computational
cost of DeepTMA, Figure 15 compares it to a generalized ver-
sion of the heuristics presented in Section VI. Since the selec-
tion of tandem decompositions is a fast operation in all three
pure NC heuristics, in particular compared to the other
required operations, we only illustrate the execution time of a
generic heuristic H,, selecting n decompositions per tandem.
As all analyses ultimately use the NCorg DNC for the deriva-
tion of bounds, comparing the average execution times of H,,
and DeepTMA (with batching), we can also judge the increase
of computational effort due to our deep learning-based predic-
tions. As expected, TMA execution times grow exponentially
and H,, heuristics’ execution times coincide with TMA as
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Fig. 17. Sensitivity analysis of the TMA cut choices.

long as their m-value causes an exhaustive search, too. An
entirely CPU-bound DeepTMA analysis is slowest in very
small networks where the exhaustive enumeration of TMA is
easily possible to execute. Starting at a maximum flow path
length of 4, it mostly performs between Hy and Hg. Yet, we
saw in Section VII-A that RND; 7 € 4,8 is outperformed by
DeepTMA. DeepTMA leveraging GPU technology for predic-
tions only adds very small execution times to H; while achiev-
ing vastly better bounds. Compared to TMA, we can observe a
measured differences in execution time growing up to four
orders of magnitude.

E. Memory Footprint

We evaluate in Figure 16 the memory footprint of the clas-
sical TMA against the GNN heuristic. Compared to the classi-
cal NC analysis, the GNN requires almost an order of
magnitude less memory, even on the larger networks with up
to 14504 flows. In summary, those results and the results from
Section VII-D illustrate that DeepTMA requires only a frac-
tion of the computing and memory resources of the classical
analysis, with only a minor drop in tightness.

VIII. INSIGHTS INTO LEARNING APPROACHES

In order to better understand the importance of the input
features used in DeepTMA and the two other machine
learning-based heuristics proposed in this article, we perform
in this section a sensitivity analysis of TMA and assess Deep-
TMA'’s features’ importance.

A. Sensitivity Analysis

We perform here a sensitivity analysis of TMA’s cut
choices in order to better understand which parameters influ-
ence the choice of best cuts. To numerically evaluate the sen-
sitivity, we randomly modify the service and arrival curve
parameters poriginas Of our evaluation networks with a relative
scale s according to the following uniform distribution:

Pnew ™~ u (pm"igmal ( 1— 5) ) poriginal ( 1 + S)) ( 1 5)

We then compare the share of flows where best cuts have
changed due to the random change of curves parameters.
Results are presented in Figure 17.

Feature importance (%)

Fig. 18. Feature importance according to feature permutation method for
DeepTMA.

The service rate parameter influences the most the choice of
cuts, where even minimal changes result in different choices.
Arrival curve parameters also impact also TMA’s analysis,
but with less magnitude than the service rate. Finally, the ser-
vice latency has almost no influence on the choice of cuts,
where even large changes of its value result in less than 1% of
changed choices.

These observations can be explained by the fundamental
impact a cut in TMA has on the composition of sub-tandem
residual service that is composed to an end-to-end guaranteed
service for the foi. On any tandem, forwarding is lower bounded
by the minimum residual rate over all servers. Separating a sub-
set of faster or slower servers by cutting can therefore easily
enable to make use of larger residual service on separated sub-
tandems, in particular when bounding cross-flow arrivals. The
service latency, in contrast, is an additive factor in the residual
forwarding service computation, making it considerably less
impactful. Cutting a link traversed by a cross-flow means com-
puting an arrival curve for said flow at this location, an output
bound after having traversed the previous sub-tandem. These
output bounds consist of the original burstiness and a burstiness
increase due to queueing. Thus, a significant change in the burst-
iness increase is required to change the choice of cut set. This is
less likely to be achieved by solely modifying original arrival
curves’ rate or burstiness parameters.

B. Feature Importance

We use the permutation-based importance measure [60],
[61] in order to assess each feature’s importance of Deep-
TMA. For each input feature presented in Sections IV-A and
VI-B, we randomize it by randomly permuting its values in
the training set, and assess the impact it has on the relative
error of the predictions. We define the importance metric as:

1 . .
Importance(Feature) = — Z (RelErrff‘"’“" - RelErrﬁ““l”w)

|‘7:‘ fi€eF
(16)

with the baseline corresponding to the method without any
feature permutation. With this evaluation, we assess how
much the GNN model relies on a given feature of interest for
making its prediction.

DeepTMA’s features importance are presented in Figure 18.
The service rate of the servers in the network have the largest
impact on the final decision of cutting. The remaining features
appear to have less importance on the cut prediction, with
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Fig. 20. Feature importance according to feature permutation method for the
FENN heuristic.

almost no importance for the service latency. These results
confirm the findings presented in Figure 17, showing that the
GNN matches TMA’s sensitivity. Figure 18 also highlights
that the arrival rate is of considerably larger importance than
the arrival burstiness whereas the sensitivity analysis showed
slightly more impact of a changing burstiness. The importance
of the arrival rates is natural to NC with arbitrary multiplex-
ing: the derived worst-case assumption is that the flow of
interest is served with the residual forwarding capabilities and
the according service curve’s latency increases fast with
increasing utilization. Thus, the (cross-traffic) arrival rates
must be an important feature.

Interesting from the NC perspective is the observation that
the order of servers (PathOrder) has a percental importance
two orders of magnitude lower than the service rate. In combi-
nation, these two features constitute the very reason for TMA
(and optimization-based analyses, see [16]) to outperform the
previous NC analyses.

We also assess the importance of other flows and other servers
on a cut. We perform this by assessing the number of iterations
of message passing (i.e. Equation 1) and the impact it has on the
relative error. As for feature importance, we compare the results
according to Equation 16. Results are presented in Figure 19.
The first 4 loop iterations appear to have the largest impact on
the cut decision, meaning that the cut decision is mainly based
on information from servers close to the cut. We notice that the
importance drops sharply after 5 iterations, and converges after
15 iterations. This indicates that servers and flows farther away
from the cut decision are less relevant to the cut decision — an
insight to potential further improvement of DeepTMA’s tradeoff
between computational effort and relative error.

We evaluate also the features importance of the FFNN heu-
ristic in Figure 20. Overall, those results confirm the ones
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SourceSumArrivalBurst .
SinkSumArrivalBurst
SourceSumArrivalRate
SinkSumArrivalRate
SourceNFlows —
SourceServiceLatency
SinkServiceLatency
SinkNFlows
FlowPathLen
FlowArrivalRate @
FlowArrivalBurst | @
CutOrder - @

T T T T T
5 10 15 20 25
Feature importance (%)

Fig. 21. Feature importance according to feature permutation method for the
random forests classifier.

presented for DeepTMA, namely that the service rate of the
servers have the largest impact on the cutting decision. Inter-
estingly, the impact of the other flows is more related to the
aggregated arrival burst (SourceSumArrivalBurst and SinkSu-
mArrivalBurst) than the aggregated arrival rate compared to
DeepTMA. Finally, as for DeepTMA, the position of the cut
in the path of the flow is not relevant.

Finally, we also evaluate the features importance of the RFC
heuristic in Figure 21. The results for the RFC heuristic are in line
with the ones from DeepTMA and exhibit as similar ranking than
for the FFNN. Overall, Figures 18, 20, and 21 confirm existing
results of the NC analysis presented in Section VIII-A, namely its
sensitivity to service rate and the importance of other flows.

IX. CONCLUSION

We contribute a new framework that combines network cal-
culus and deep learning. The first heuristic created with our
framework is the DeepTMA, deep learning-assisted TMA, a
fast network analysis for deterministic end-to-end delay
bounds. It solves the main bottleneck of the existing TMA,
namely its exponential execution time growth with network
size, by using predictions for effectively selecting the conten-
tion models in the network calculus analysis.

Via a numerical evaluation, we show that our heuristic is
accurate and produces end-to-end delay bounds which are
almost as tight as TMA, with an execution time several orders
of magnitude smaller than TMA and a memory footprint an
order of magnitude smaller. DeepTMA is as fast as or faster
than previously widespread methods — namely SFA and
PMOO - even when analyzing larger networks, but with a
gain in tightness exceeding 50% in some cases. Numerical
evaluations on large networks with up to 14000 flows also
illustrate that our approach is able to scale despite having
being trained on much smaller networks.

Our work is based on a transformation of the network of
servers and flows crossing them into a graph which is analyzed
using Graph Neural Networks. Our method outperforms sim-
pler ML-based methods, justifying the use of a more complex
machine learning method. Finally some insights into the learn-
ing is also given via an evaluation of feature importance, con-
firming existing results of NC.
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Tightening Network Calculus Delay Bounds by
Predicting Flow Prolongations in the FIFO Analysis
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Abstract—Network calculus offers the means to compute
worst-case traversal times based on interpreting a system as a
queueing network. A major strength of network calculus is its
strict separation of modeling and analysis frameworks. That is, a
model is purely descriptive and can be put into multiple different
analyses to derive a data flow’s worst-case traversal time bound.
One of the recent results in this category is the so-called flow
prolongation. Flow prolongation actively manipulates the internal
model of the analysis by virtually extending the path of flows,
i.e., by deliberately creating a more pessimistic setting of resource
contention between flows. It was shown that flow prolongation
can theoretically decrease worst-case traversal time bounds under
certain assumptions. Yet, due to its exhaustive search, it was also
shown that flow prolongation does not scale and it might not
even have an impact in larger queueing networks. In this paper
we introduce DeepFP, an approach to make the analysis scale
by predicting flow prolongations using a graph neural network.
In our evaluation, we show that DeepFP can improve results in
networks of FIFO queues considerably, where the delay bound
can be reduced by 13.7 % in large FIFO networks at negligible
additional cost on the execution time of the analysis.

I. INTRODUCTION

Nowadays, many newly developed networked systems aim
to provide some kind of performance guarantee — prime
examples are those in the automotive and avionics sector [1] as
well as factory automation [2]. Applications in these domains
that rely on network performance care about one important
property: the worst-case traversal time, i.e., the end-to-end
delay, of data communication. Safety-critical applications that
are crucial for the entire system’s certification even need to
show guaranteed upper bounds on the end-to-end delay.

Network Calculus (NC) offers a framework for this purpose.
It consists of two parts: modeling and analysis. For best results,
i.e., tight delay bounds, both should be developed in lockstep
to prevent mismatches in their capabilities. Unfortunately,
this has not always been the case and the analysis needs to
catch up. Some easy to model network characteristics such
as multicast flows [3] or ring topologies [4, 5] have only
seen more detailed treatment recently. Thanks to the analysis’
independence of the descriptive model, other characteristics
also found their way into the analysis. Most prominent are the
properties Pay Bursts Only Once (PBOO) [6] and Pay Multi-
plexing Only Once (PMOO) [7] that prevent the analysis from
assuming data flows to exhibit stop-and-go behavior and/or
overtake each other multiple times when crossing a sequence
of servers (so-called tandems). In general, improvements to the
NC tandem analysis tried to remove pessimistic assumptions

Alexander Schefflert
tAirbus Central R&T

Steffen Bondorf*

iFaculty of Mathematics, Center of Computer Science
Ruhr University Bochum, Germany

Original network
f fy
fl

Original network
N
=D
A2\
w T TN >
foi |

Graph transf. + GNN
v

/ Exhaustive search \

FP Alternative 1 0 FP Alternative n 0 Prediction

f

5 2 5 ) s 5 2 I %3 4
foi | foi '

[ NC Analysis } [ NC Analysis }

/ delay, |
., delay,) (b) delayDeepFP

delay 1\
(@) delay™ = min(delay, ..

Figure 1: Comparison between the (a) original FP [11] with
O(n™) NC analyses and (b) our DeepFP with one prediction.

from its internal model in order to improve the derived delay
bounds for the original, user-provided model. Unfortunately,
this also lead to the situation that none of the fast, algebraic
NC analyses is strictly best. A search for the most suitable
analysis is often advised [8, 9, 10]. Novel analysis features
try to narrow down the amount of potentially best analyses.
An entirely different approach was recently presented with
the Flow Prolongation (FP) feature [11]. It actively converts
the network model given to the NC analysis to a more
pessimistic one that circumvents limitations of the NC analysis
capabilities. The analysis derives algebraic NC terms bounding
a flow’s delay. The amount of terms grows exponentially with
the network size and none of them computes the tightest bound
for all data flow descriptions. All need to be derived and
solved [9]. The analysis has to compute a multitude of valid
delay bounds to find the minimum among them. FP not only
increases the amount of algebraic terms (and thus bounds), it
also complicates the prediction of a term’s added pessimism.
FP is conceptually straight-forward: assume cross-flows take
more hops than they actually do. Nonetheless FP is a powerful
feature to add to a NC analysis, it was even adopted in
the Stochastic Network Calculus [12]. Unfortunately, finding
the best prolongation alternative is prone to a combinatorial
explosion. On each tandem of length n with m cross-flows,
there are O(n™) alternatives to prolong flows. Even with a
deep understanding of the NC analysis applied to reduce FP
alternatives it could not be made to scale to larger models [11].
A novel approach to overcome exhaustive searches in the
algebraic NC analysis was recently proposed: Graph Neural
Network (GNN) predictions for NC term creation. This can
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be used to make the NC analysis scale by restricting the
exhaustive search to few alternatives [13, 14]. We base our
contribution on this work, presenting DeepFP illustrated in
Figure 1.

By demonstrating that we can make the FP analysis scale
this way, we also reveal that its impact on the derived delay
bound is very sensitive to the network model’s assumptions.
The foremost contribution of this paper is the FP analysis of
FIFO networks. Under this assumption and applying the state-
of-the-art algebraic Least Upper Delay Bound (LUDB) anal-
ysis [15, 16], we derive entirely new conditions for beneficial
flow prolongations, train the GNN and acquire significantly
improved delay bounds.

Our results can be applied to any system designed around
FIFO-multiplexing and -forwarding of data. Most notable are
Ethernet-based networks like Avionics Full-DupleX Ethernet
(AFDX) or IEEE Time-Sentitive Networking (TSN). Even
though they follow the "FIFO per priority queue" design, their
NC model is essentially a FIFO system model. Our results can
be combined with existing works on service modeling of the
specific schedulers used in those systems.

This paper is organized as follows: Section II presents
the related work and Section III gives an overview on NC
analyses. In Section IV, we show how FP can improve bounds
in FIFO multiplexing networks as well as the challenge it
imposes. Section V provides the DeepFP method to make FP
applicable to a wide range of networks. Section VI evaluates
DeepFP and Section VII concludes the paper.

II. RELATED WORK

NC and RTC: Network Calculus takes a purely descriptive
model of a network of queueing locations and data flows (see
Appendix A). The NC analysis then computes a bound on
the worst-case delay for a certain flow, the flow of interest
(foi) (see Appendix B). A variant of NC that focuses on
(embedded) real-time systems is the so-called Real-Time Cal-
culus (RTC) [17]. Equivalence between the slightly differing
resource descriptions has been proven in [18]. What remains
is the difference in modeling of the “network” and the analysis
thereof. RTC models networks of components such as the
Greedy Processing Component (GPC) [19, 20]. Each com-
ponent represents a macro, i.e., a fixed sequence of algebraic
NC operations to apply to its input. Thus, the model already
encodes the analysis. Moreover, this component modeling
mostly restricts the analysis to strict priority multiplexing, yet,
efforts to incorporate advanced properties such as PBOO and
PMOO can be found in the literature [21, 22]. We, in contrast,
aim for a model-independent improvement of the automatic
derivation of a valid order of NC operations — the process
called NC analysis — for networks of FIFO multiplexing
systems. First results on this topic in NC [6, 23] were refined
to the LUDB analysis [15, 16]. Later works entirely replace
the algebraic NC analysis with an optimization one [24, 25], a
mixed integer linear programming formulation that introduces
forbiddingly large computational effort. Current efforts try to
improve it by trading off delay bound tightness [26].

Flow Prolongation (FP): We pair FP with LUDB’s DEB-
ORAH tool to counteract its main tightness-compromising
problem, thus considerably improving delay bounds. There
has been one previous mention of FP in FIFO networks:
[15] briefly shares the observation that, if prolonged, a cross-
flow can be aggregated with the foi — independent of the
LUDB problem we tackle. This can be combined with our
contribution. We leave its investigation to future work.

Prolonging at the front may also be possible, but only in
the arbitrary multiplexing PMOO analysis [27].

Graph Neural Networks: GNNs were first introduced in [28,
29] and [30] presents a framework that formalizes many
concepts applied in GNNs in a unified way. GNNs were
already proposed as an efficient method for speeding up
exhaustive searches or similar NP-hard problems such as the
traveling salesman problem [31]. A recent survey [32] about
existing applications of machine learning to formal verification
shows that this combination can accelerate formal methods,
e.g., theorem proving, model-checking, Boolean satisfiability
(SAT) or satisfiability modulo theories (SMT) problems.

For computer networks, they have recently been applied to
prediction of average queuing delay [33] and different non-
NC performance evaluations of networks [34, 35, 36, 37]. [38]
recently used GNNs for predicting the feasibility of scheduling
configurations in Ethernet networks.

NC and GNN: DeepTMA was proposed in [13, 39] as a
framework where GNNs were used for predicting the best
contention model to use whenever there are alternatives for a
tandem. DeepFP and DeepTMA are closely related: both meth-
ods use a graph transformation and a GNN to replace a com-
putationally expensive exhaustive search. While DeepTMA
targeted the Tandem Matching Analysis (TMA) [9], DeepFP
focuses on FP and therefore we need to design a different
graph transformation to connect NC and the GNN. Moreover,
DeepTMA was shown to scale to large networks with up to
14 000 flows [39] in follow-up improvements of the method.

III. NETWORK CALCULUS ANALYSES

The main objective of NC is to derive a bound on the flow
of interst’s (foi’s) end-to-end delay, subject to interference and
queuing. The resulting order of data in a shared queue when
two different flows multiplex is a main concern of the NC
analysis. NC generally differentiates between no assumption
at all, so-called arbitrary multiplexing, and FIFO multiplexing.
Given curves 8 lower bounding available forwarding service
and « upper bounding arriving data (see Appendix A), NC
can compute lower bounds on a foi’s residual service.

Theorem 1 (Residual Service Curve): Consider a server s
that offers a strict service curve 3. Assume flows f; and fs
with arrival curves «; and ao, respectively, traverse the server.
We can compute the service curve for guaranteed residual
service for fi, subject to multiplexing of flows at s, as

B = [B(t) — az(t)]" =: B S 0 M
for arbitrary multiplexing and as

BHt,0) = [Bt)—azx(t—0)]" 1m0y =t BSpa2,Y0 > 0 (2)
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for FIFO multiplexing [40, Theorem 4]. 1(congition} denotes
the indicator function (1 if the condition is true, O otherwise)
and [g(z)]" = supg<,<, g(2) is the non-decreasing closure of
function g(x) defined on positive real values.

In a FIFO multiplexing server, the residual service depends
on the flow of interest (f; in Theorem 1). Yet, it is desired
to be computed seemingly independent of it as with arbitrary
multiplexing. 6 encodes the FIFO worst cases for any foi. It
thus defines an infinite set of (valid) residual service curves.

A. PMOO, the Analysis for Arbitrary Multiplexing

An important discovery in the evolution of analysis capa-
bilities was that, even assuming arbitrary multiplexing, cross-
flows’ worst-case burstiness need not be assumed to fully
collide with the foi at each server. This is known as Pay
Multiplexing Only Once (PMOO) [7]. To achieve this, the
proposed PMOO analysis computes a residual service curve
for an entire tandem of servers.

The PMOO analysis has a disadvantage when analyzing
feed-forward networks. To handle demultiplexing on the foi’s
path, cross-flows interfering on different foi-subpaths need to
be analyzed in a demultiplexed fashion in the entire feed-
forward analysis. At shared servers before the foi’s path, that
creates mutually exclusive worst-case assumptions [41]. For an
example, see Figure 2 where at server s; each cross-flow, f;
and fo, would compute a residual service curve to demultiplex
from the other.

B. DEBORAH, the Analysis Tool for FIFO Multiplexing

For the analysis of FIFO multiplexing tandems, there are

two challenges:

a) implementing the PMOO principle and

b) finding the best setting for the free 6 parameter in the
residual service curve computation.

The Least Upper Delay Bound (LUDB) analysis [42, 15, 16]
tackles both. As its name suggests, b) is achieved by finding
the smallest among many alternative delay bounds (similar to
Figure 1(a)). To do so, LUDB converts the problem of setting
all @ in the algebraic NC term into several linear programs.
This conversion strictly requires the modeling curves to be
affine, a restriction we inherit in this paper.

The more important part for our flow prolongation is the
current solution to challenge a). LUDB does not necessarily
achieve a full implementation of the PMOO principle. It
is very susceptible to the nesting of flows on the analyzed
tandem. In general, a tandem is called nested if any two
flows have disjunct paths or one flow is completely included
in the path of the other flow. For example, in Figure 2(a),
fo is completely included in the path of f; but neither are
completely included in the foi’s path. If flows form a non-
nested interference pattern as f; and f, in Figure 3(a), then
LUDB needs to cut the tandem into a sequence of sub-
tandems, each with a nested interference pattern. At these cuts,
a tighness-reducing computation to bound the arrivals of cross-
flows needs to be executed. It adds the cross-flow burstiness
to all sub-tandem residual service curve computations and

Figure 2: (a) Example tandem network shown in Figure 1 and
(b) indication of all its potential flow prolongation alternatives

PMOO is not achieved. Therefore, we aim at reducing the
amount of cuts.

Last, the DEBORAH tool has been developed to implement
LUDB [43] for tandem networks only. We extended it to
analyze feed-forward networks in our numerical evaluations.

C. Flow Prolongation

Flow Prolongation was designed as an add-on feature to
mitigate the PMOO analysis’s problem described above [11].
FP is, however, a generic approach that is independent of any
multiplexing assumption. More formally, it is defined by:

Corollary 1 (Delay Increase due to FP): Assume a tandem
T defined by the foi’s path. Let the foi be f; and let there
be cross-flows on 7. A prolongation of cross-flows to create
tandem 7gp increases the end-to-end delay of f; on Tpp.

Proof 1: Wlog assume a single cross-flow fs to be pro-
longed over one additional server s where f; is present, too.
Compared to 7, s in Tgp multiplexes incoming data of fy with
data of f; in its queue. s either forwards this data of fs after
f1, causing no increase of f1’s delay on Tgp, or it forwards at
least parts of the data of f; before f;, causing an additional
queuing delay to f;.

Corollary 1 shows that FP is a conservative transformation
adding pessimism to the network model that increases the foi’s
delay. For delay bounds, it holds that:

Corollary 2 (FP Delay Bound Validity): Assume a tandem
T defined by the flow of interest’s path. Let Tpp be derived
from 7 by flow prolongation. Then, the bound on the foi’s
worst-case delay in Tgp is a bound on the foi’s delay on 7.

Proof 2: Per Corollary 1, we know that the foi’s end-to-end
delay will not decrease by FP. Thus, the tight delay bound in
Trp will exceed the tight delay bound on 7" and any potentially
untight bound derived for Tgp bounds the foi’s delay on 7.

Take the sample tandem in Figure 2(a), where bounding
the arrivals of data flows f; and f; is required at their first
location of interference with the foi, server s;. Assuming
arbitrary multiplexing, the PMOO analysis suffers from the
segregation effect [41], both flows assume to only receive
service after the respective other flow was forwarded by server
s1 — an unattainable pessimistic forwarding scenario in the
analysis-internal view on the network. FP tries to steer the
analysis such that it does not have to apply this pessimism
by prolonging flows inside the analysis: the dashed lines in
Figure 2(b), depict potential prolongations of the two flows’
paths. Each prolongation alternative that matches their sinks
will allow for their aggregate treatment at s;, mitigating the
problem. Yet, this adds interference to the foi. Therefore, we
search for the best prolongation alternative trading off both
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Figure 3: (a) Tandem network and (b) its prolonged version

aspects. This search approach does not scale, neither are there
hopes that PMOO delay bounds improve much [11].

IV. FLOW PROLONGATION IN THE NC FIFO ANALYSES

In this Section, we address the question of how flow
prolongation can improve the NC-derived worst-case delay
bound for a flow of interest in the FIFO analysis.

In the PMOO analysis, demultiplexing is the dominant
problem that causes a loss of tightness. While the problem
of demultiplexing applies to the LUDB analysis for FIFO
networks, too, it suffers from yet another and more impactful
problem that we address with flow prolongation: the lack of the
PMOO property. To implement the property, an analysis needs
to first create an end-to-end view on a tandem. LUDB, and
thus the DEBORAH tool, cannot achieve this for non-nested
interference patterns (see Figure 3(a)). It can only analyze
nested tandems in a PMOO fashion where cross-flow paths
do not overlap.

To apply LUDB nonetheless, the tandem is cut into a
sequence of sub-tandems with nested interference patterns. In
Figure 3, the tandem can be cut before or after server so. Either
alternative has the very same drawback: a cross-flow is cut,
too, and to get it onto the subsequent sub-tandem, an explicit
bound on its arrivals has to be computed. This is achieved
with the deconvolution @ (see Appendix B) or Theorem 2 in
Section IV-A, adding the cross-flow’s original burst term to
the analysis once more — PMOO is not achieved. Let server
s; provide service 3; and let flow f; put o; data into the
network. The respective (min,plus)-analysis terms using © as
derived by DEBORAH which bound the foi’s delay are:

h(agoi, (8190 01) @ (((B2©0 (1@ (810 i) ® B3) ©p 2))
3
for the cut left of so and for the cut right to it:

h(agoi, ((B1 ® (B2 © a2)) ©p 1)
®(03 S0 (2 @ (B2 6 ((aroi + 1) @ £1))))). 4)

Curves and binary (min,plus)-operations are defined in Ap-
pendix A. For this example, it is already sufficient to note that
every occurrence of the deconvolution @ reduces the tightness
of the computed delay bound.

In this paper, we devise an alternative strategy to create a
tandem with nested interference only and thus less cuts, less
occurrences of @ and more PMOO property implementation:
flow prolongation. By prolonging cross-flow f; in this small
sample tandem by another hop, we create the one shown
in Figure 3(b). Without overlapping interference, the foi’s
DEBORAH-derived delay bound becomes:

h(oi + a1, f1 @ (B2 ® B3) O az)) ®)
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Figure 4: Delay bound improvements by using FP in the
DEBORAH analysis of the network in Figure 3

By its lack of deconvolutions, i.e., single appearances of each
involved flow’s arrival curve, the term clearly shows that
the PMOO principle is implemented. Yet, at the expense of
aggregating the foi with its cross-flow f;'. We have tested
this new instantiation of flow prolongation to improve the
DEBORAH-derived LUDB bounds for different curve settings
in the network shown in Figure 3. Service curves were set to
Br=30,7 and arrival curves to Vr=1£,0.1 where u denotes the
utilization % at the server that always sees three flows, sa, and
varying latencies. Note, that our setting guarantees for finite
delay bounds. Figure 4 shows the results.

FP for the DEBORAH analysis, henceforth called
DEBORAH-FP, is a very promising approach to implement the
PMOO property in the algebraic NC analysis. Its application
vastly differs from the PMOO analysis in arbitrary multiplex-
ing. Put simple, the necessary preconditions for FP to have a
positive impact on each analysis are as follows:

o For the PMOO analysis, prolong cross-flows that start at

the same server to the same last server.

o For the DEBORAH analysis, prolong cross-flows that

start at different servers to the same last server.

A. DEBORAH in feed-forward FIFO networks

For the analysis of feed-forward FIFO networks, we inte-
grated DEBORAH into the NetworkCalculus.org Determinis-
tic Network Calculator (NCorg DNC) [44] as its feed-forward
analysis already provides the required decomposition of the
network into a sequence of tandems [45]. Second, LUDB only
computes delay bounds but we can use DEBORAH for bound-
ing arrivals of cross-traffic by using the following theorem, an
alternative to the deconvolution-based computation:

Theorem 2 (Output From Delay [46]): Consider a tandem
of servers 7 that offers a service curve 5. Assume flow f with
arrival curve « traverses 7, experiencing a delay bounded by
d. Then o/(t) = a(t + d) bounds the output of f from 7.

The impact of our contribution does not rely on this
rather inaccurate bounding technique. We put flow prolonged

'DEBORAH can only work with a single flow (aggregate) per distinct path
on the tandem. Input to DEBORAH needs to be formatted accordingly. In case
a cross-flow has the same path as the foi we thus get an aggregate delay bound
instead of computing a residual service curve for the foi — an alternative
derivation of a valid upper delay bound that now implements PMOO, too.
Either is subject to overly pessimistic interference assumptions.
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tandems into the DEBORAH tool that applies a more re-
fined computation internally if the tandem is non-nested. Yet,
DEBORAH does not expose this computation to the user.

A recent overview on further NC tools can be found in [47].
We also investigated another tool® for the analysis of FIFO
networks, which uses a linear program (LP) to compute the
delay bound. Our evaluations showed that it scaled insuffi-
ciently for inclusion in our numerical evaluation, even on small
networks with 20 flows, mainly due to the large number of LP
constraints generated, confirming previous results [9].

B. The Challenge to Apply Flow Prolongation

As mentioned in Section I and illustrated in Figures 1(a)
and 2, on each tandem of length n with m cross-flows, FP
may explore O(n™) prolongation alternatives. It was shown
for arbitrary multiplexing that exhaustive FP analysis does not
scale in feed-forward networks [11]. Due to their similarity,
the scaling problem also holds when applying DEBORAH-FP.

1) Restricting the Application of FP: The most straight-
forward trade-off between delay bound tightness and compu-
tational complexity is, of course, to restrict the use of FP inside
the NC analysis. We deviate from an exhaustive use of FP on
every tandem to a selective use where it has the most impact
on the delay bound. It turned out that this is achieved by
only applying FP to the analysis of the foi, not for bounding
the arrivals of its cross-flows. This creates the FPy,; variants
PMOO-FPs,; and DEBORAH-FPy,;. Figure 5 illustrates the
delay bound gap between PMOO-FP and PMOO-FPy,;, and
between DEBORAH-FP and DEBORAH-FPx,;, namely:

FPpoi
foi

delay

FP

— delayg; ©)

FP
foi

del
delay bound gap = ey

For more than 99 % of the studied flows, the delay bound is
unchanged. On average, the relative error is only of 0.58 % for
PMOO and 1.18 % for DEBORAH. Those values illustrate that
the loss of tightness of using FPy,; instead of FP is minimal.

100
99.8 1

g 99.6
99.4
99.2
99

CDF (%

- - - PMOO-FPy,;
—— DEBORAH-FPy,;

T T T T T T
6 8 10 12 14 16
Delay bound gap to exhaustive FP analysis (%)

Figure 5: Delay bound gap of FPg,; analyses based on the
evaluation dataset presented in Section V-D

In order to see the impact on the execution time of running
flow prolongations only on the foi’s analysis, Figure 6 illus-
trates the relative execution time of FP against FPg;, namely:

Ezecution time FP

Q)

Relative execution time =
Ezecution time FPjo;

Zhttps://github.com/annebouillard/NetCalBounds based on [24, 25]

PMOO-FPy,; is 1.3 times faster than PMOO-FP in average,
while there is almost no difference in execution time between
DEBORAH-FP and DEBORAH-FPy,;.
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Figure 6: Relative execution time of a flow’s analysis based
on the evaluation dataset presented in Section V-D

2) PMOO-FP’s explored alternatives: We can reasonably
reduce the use of FP to a single tandem. On this tandem,
the amount of prolongation alternatives to explore can be
further reduced. In practice, not all cross-flows go over only
the first server such that they can also be prolonged to any
following one. Moreover, PMOO-FP already cuts out all those
alternatives that cannot impact the analysis by circumventing
the need to carry over demultiplexing — as described in the
necessary FP precondition above. Similarly, we improved
DEBORAH-FP to not prolong if there is no potential to
convert a non-nested interference pattern to a nested one.
Still, the amount of prolongation alternatives for the dataset
evaluated in this paper is forbiddingly large, see Figure 7.
Note for a large number of cross-flows, networks may have
been excluded from this preliminary evaluation due to a 1
hour deadline set for computing data. As expected, we get an
exponential scaling between the number of cross-flows and the
number of explored alternatives.

PMOO-FPy; DEBORAH-FPy,;

—— Experiment data X
10* 4 - - - Fit: 1.45m 7

# of explored alternatives

7 ” —— Experiment data
1 - -~ Fit: 1.46™

T T T T T T
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Number of cross-flows Number of cross-flows

Figure 7: Relation between the number of cross-flows and the
number of explored prolongation alternatives by PMOO-FPx,;
and DEBORAH-FPx,;

Overall, we need a better way to find the best prolongation
alternative that improves the delay bound to be derived. In
this paper, we propose DeepFP that can be trained on either a
PMOO-FPs,; or a DEBORAH-FP;,; dataset to predict the best
alternative(s). We show that DeepFP makes the FP feature
scale, that PMOO-FPy,; provides only minor improvements
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over PMOO and that, in contrast, FP has a considerable impact
on the LUDB analysis when coupled with its implementation,
DEBORAH, to DEBORAH-FP;;.

V. EFFECTIVE FP PREDICTIONS WITH A GNN

We make the FP analysis scale with GNN predictions and
show that the impact vastly depends on the multiplexing
assumption. We develop our universal DeepFP heuristic in this
section, based in part on the work proposed in DeepTMA [13,
14]. As illustrated in Figure 1 and Algorithm 1, the main
intuition behind DeepFP is to avoid the exhaustive search
for the best prolongation by limiting it to a few alternatives.
The heuristic’s task is then only to predict the best flow
prolongations, which are then fed to the NC analysis. This
ensures that the bounds provided are formally valid.

Algorithm 1 DeepFP analysis of network A/ and flow fi;

G := graphTransformation(\V, f,;) — see Algorithm 2
prolongations := GNN(G) — see Section V-A

N, := networkWithFlowProlongations(N, prolongations)
return Network Calculus analysis of AV}, and fr

For DeepFP, we used a Graph Neural Network (GNN) as
heuristic, since it was shown in DeepTMA to be a fast and
efficient method. We define networks to be in the NC modeling
domain and to consist of servers, crossed by flows. We refer to
the model used in GNN as graphs. Our heuristic transforms the
networks into graphs, which are processed by the GNN. The
output of the GNN is then fed to PMOO-FPs,; or DEBORAH-
FPy,;, which finally performs the NC analysis on the subset of
combinations suggested by the GNN.

A. Graph Neural Networks

As for DeepTMA, we use the framework of GNNs in-
troduced in [28, 29]. They are a special class of neural
networks for processing graphs and predict values for nodes or
edges depending on the connections between nodes and their
properties. The idea behind GNNs is called message passing,
where so-called messages — i.e., vectors of numbers h, € R* —
are iteratively updated and passed between neighboring nodes.
Those messages are propagated throughout the graph using
multiple iterations. We refer to [48] for a formalization of
many concepts recently developed around GNNs.

As with DeepTMA, we selected Gated Graph Neural Net-
works (GGNN) [49] for our model, with the addition of edge
attention. For the edge attention mechanism, we selected an
approach similar to [50], where each edge (u,v) in the input
graph is weighted with a parameter \(, ., € (0,1), such that:

AL, = o (PENN ({B0,n0})) ®)

with FFNN a feed-forward neural network hq(f) representing
the message from node v at iteration ¢, o the sigmoid function,

and {-,-} the concatenation. In summary, the hidden node
update function becomes:

h() = GRU | h{~Y, Y~

uENBR(v

(t=1)p (t—1
Ny BT
)

with NBR(v) of v the set of neighbors of node v, and GRU
a Gated Recurrent Unit (GRU) [51].

B. Model transformation

Since we work with a machine learning method, we need
an efficient data structure for describing a NC network which
can be processed by a neural network. We chose undirected
graphs, as they are a natural structure for describes networks
and flows. Due to their dynamic sizes, networks of any sizes
may be analyzed using our method.

Prolong?

Figure 8: Graph encoding of the network from Figure 2(a)

We follow Algorithm 2 for this graph transformation, also
illustrated and applied in Figure 8 on the network from
Figure 2(a). Each server is represented as a node in the graph,
with edges corresponding to the network’s links. The features
of a server node are its service curve parameters, namely its
rate and latency. Each flow is represented as a node in the
graph, too. The features of a flow node are its arrival curve
parameters, namely its rate and burst. Additionally, the foi
receives an extra feature representing the fact that it is the
analyzed flow.

Algorithm 2 Graph transformation of network N for flow f;

G := empty undirected graph
for all server s; in network N do G.addNode(s;)
for all link (s;, s;) in network A/ do G.addEdge(s;, s;)
for all flow f; in network A do
G.addNode(f;)
for all server s; in f;.path() do G.addEdge(f;, s;)
for all flow f; in network N excluding fr,; do
for all server s; in fr;.path() do
if prolongation P;7 of flow f; to s; is valid then
g .addNodc(P;: )
G.addEdges(( f;, P;j), (P, 7))
return G

To encode the path taken by a flow in this graph, we use
edges to connect the flow to the servers it traverses. Compared
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to the original DeepTMA graph model from [13], we simplify
one aspect: we do not include path ordering nodes that tell
us the order of servers on a crossed tandem. DeepTMA was
shown to benefit only marginally from the effort to incorporate
this additional information [14] and we confirmed the same
behavior in preliminary DeepFP numerical evaluations.

To represent the flow prolongations, prolongation nodes
(P;Lj) connecting the cross-flows to their potential prolonga-
tion sinks are added to the graph. Those nodes contain the
hop count according to the foi’s path as main feature — this is
sufficient to later feed the prolongation into the NC analysis,
path ordering nodes are not required for this step either.

The last server of a cross-flow’s unprolonged path is also
represented as a node (s3 for fi; and s, for f5 in Figure 8).
Those nodes represent the choice to not prolong a flow.

Based on this graph representation, we define two classifi-
cation problems for the neural network. The first one is decide
if it is worthwhile to apply the prolongation algorithm or not.
For this, we use a binary classification of the foi node.

The second classification problem is to decide where to
prolong the flows if necessary, by applying a binary classi-
fication on the prolongation nodes. Namely for each cross-
flow f and each potential sink s, the neural network assigns a
score Py ; between 0 and 1 to the corresponding prolongation
node. For each flow, the prolongation node with the highest
score decides which sink to use for prolonging the flow.
As illustrated in Figure 1(b), those predictions are then fed
to PMOO-FPg,; or DEBORAH-FPy;, which finally performs
the NC analysis. Since the GNN might also choose not to
prolong, the standard PMOO or DEBORAH analyses are only
performed if explicitly requested by the GNN.

C. Implementation

We implemented the GNN used in DeepFP using Py-
Torch [52] and pytorch-geometric [53]. Optimal parameters for
the neural network size and the parameters for training were
found using hyper-parameter optimization. Table I illustrates
the size of the GNN used for the evaluation in Section VI.

Layer NN Type Size
init FFNN (11,96)w + (96),
Memory unit GRU cell  (96,96)w + 2 x {(288,96)w + (96)p}
Edge attention FFNN (192, 96)w + (96); + (192,96)w + (1)p
out hidden layers ~ FFNN 2 x {(96,96)w + (96)p }
out final layer 1 FFNN (96,1)w + (1)
out final layer 2 FFNN (96,1)w + (1)p
Total: 104455 parameters

Table I: Size of the GNN used in Section VI. Indexes represent
respectively the weights (w) and biases (b) matrices

D. Dataset generation

To train our neural network architecture using a supervised
learning method, we generated a set of random tandem topolo-
gies (as to check the FP preconditions of Section IV). For
each created server, a rate-latency service curve was generated
with uniformly random rate and latency parameters. A random

number of flows was generated with random source and
sink servers. For each flow, a token-bucket arrival curve was
generated with uniformly random burst and rate parameters.
All curve parameters were normalized to the (0, 1] interval.

For each generated topology, the NCorg DNC v2.6.1 [44]
is then used for analyzing each flow and record the different
iterations of PMOO-FPg,; and DEBORAH-FPy,;. Namely we
extract the combinations of flow prolongations which resulted
in the lowest end-to-end delay during the exhaustive search.
Each analysis is run with a maximum deadline of 1 hour.

We extended the NCorg DNC tool to integrate the DEB-
ORAH tool. For our evaluations, we run DEBORAH in so-
called STA mode (Single Tandem Analysis) [16] instead of
the default MSA (Multiple Sub-tandem Analysis). The MSA
mode computes per-sub-tandem delay bounds and adds them
up. In this mode, DEBORAH cannot be used to implement
the PMOO principle, not even the PBOO one. Yet, STA
has a worse execution time since more variables have to be
optimized simultaneously.

Since PMOO-FPy,; and DEBORAH-FPy,; may not bring any
benefits compared to PMOO or DEBORAH, either due to
no alternatives for prolonging flows or no end-to-end delay
improvement by any alternative, we restrict the dataset to
networks and flows where FP is applicable (i.e., flows with
prolongation options). Table II contains statistics about the
generated dataset. In total approximately 54 000 flows were
generated and evaluated for the training dataset, and 10 000 for
the numerical evaluation presented in Section VI. The dataset
is available online® to reproduce our learning results.

Parameter Min Max Mean
# of servers 4 10 7.8
# of flows 5 35 245
# of cross-flows 1 21 4.1
# of prolong. comb. (PMOO-FPy;) 2 4024 16.8
# of prolong. comb. (DEBORAH-FPy;) 2 131072 247.1
Flow path length 3 9 4.1
Number of nodes in graph 11 128 433

Table II: Statistics about the generated dataset

E. Neural network training

We use standard gradient descent techniques to train our
GNN, using the binary cross-entropy loss function, namely
the optimization goal is to minimize:

ZOSS(T! P) = ng}‘,se.s‘f (Tf,s 10g Pf.,s + (1 - Tf,s) 10g<1 - Pf.s))
(10)
with T’; representing the target score for the prolongation, with
1 if it is selected for prolongation and 0 otherwise.

We follow a standard supervised learning approach for train-
ing the neural network. Since the choice of flow prolongations
may have multiple equally-optimal solutions, the choice of
which target solution to provide as training data for the neural
network is not obvious. In other words, the target vector T’ g
in Equation (10) has to be defined according to a single

3https://github.com/fabgeyer/dataset-rtas2021
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solution, but multiple equally good solutions are available.
In our experiments, training the GNN on a single solution
resulted in poor convergence of the model.

To provide target vectors which enable the neural network
to be trained efficiently, we use here a concept inspired by
hindsight loss [54, 55]. We dynamically find the correct target
vector 7' which is the closest to the predicted score by the
neural network and use it in the loss function. The loss
function introduced in Equation (10) becomes:

L = min loss(T, P)

ETopt

an

where 7, is the set of flow prolongation choices leading to
an optimal solution.

Since we address two FP instantiations that are even orthog-
onal as seen in their preconditions to have a positive impact,
we define two versions of DeepFP as PMOO-DeepFPy,; and
DEBORAH-DeepFPy,;. The same graph representation and
features are used regardless of the NC analyses, but two
different training processes and resulting trained weights of
the GNN are produced.

F. Flow prolongation choices

To improve the outcome of a DeepFP analysis at a small
computational cost, we propose here to use the prediction
vector of the GNN to generate multiple flow prolongation
combinations. Those combinations are then analyzed using the
NCorg DNC and the combination leading to the lowest end-
to-end delay is kept. We name this extension DeepFPj, where
k corresponds to the number of combinations generated.

First, we consider the prediction vector of the GNN as a
vector of probabilities of where to prolong flows. A categorical
distribution parameterized by those probabilities is generated
for each cross-flow and used to generate the k£ combinations.

This first version of DeepFP;, does not make use of the ex-
pert knowledge mentioned in Section IV-B2, where some com-
binations are excluded from PMOO-FPy,;’s and DEBORAH-
FPr,;i’s exhaustive searches since they are known to be of lower
quality than other combinations. In other words, the GNN can
choose a combination of flow prolongations which might not
have been explored by PMOO-FPg,;’s or DEBORAH-FPyy;’s
exhaustive search. This reflects the generally observed wish
to apply machine learning to a dataset without becoming an
expert in the domain and without tailoring the dataset to learn
from accordingly.

Last, we describe a second extension of DeepFP, called
DeepFP* which is able to use this expert knowledge. In
order to avoid selecting those excluded combinations, we
define a matrix of explored combinations C containing
their target vectors, with dimensions (# of combinations,
# of prolongation nodes). Using the prediction vector Pj g
from the GNN, we compute a vector containing a score for
each combination:

(12)

To generate k£ combinations, we select the top-k combinations
having the best scores in the CombinationScores vector.

CombinationScores = C X [Pfiask ~~~Pf]._,sl]T

We numerically evaluate later in Sections VI-B and VI-D
the impact of DeepFP* in terms of tightness and additional
execution time of enumerating the combinations used by
PMOO-FPg,; and DEBORAH-FPx,;.

VI. NUMERICAL EVALUATION

Our numerical evaluation aims to answer two questions:

1) How much delay bound improvement can FP achieve?
2) How well does the GNN predict the FP alternative?

As FP does not scale well and we therefore proposed DeepFP
in the first place, both aspects are naturally intertwined.

In the following, we show details about DeepFP perfor-
mance in terms of tightness as well as execution time. Im-
provements in both will directly be applicable to and have an
impact on any real-world application of the NC methodology.
In order to illustrate the benefits of DeepFP, we also do a
comparison against a heuristic which randomly selects one
or multiple prolongation alternatives — a low-effort, non-
expert alternative to add FP to an analysis. We label this
heuristic as RNDy, in this section, with k being the number of
random alternatives evaluated. At first, we use DeepFP without
the extension using additional expert knowledge described in
Section V-F. All evaluations presented here were done with
the evaluation dataset described in Section V-D, except for
Section VI-C which used larger networks.

A. Accuracy and delay bound gap

To quantitatively evaluate the performance of our approach,
we use the relative gap between the delay bound given by
PMOO-FPy,; and DEBORAH-FPy,; and the delay bound given
by a heuristic, incl. the non-FP original analysis:

FProi
foi ( 1 3)

heuristic

foi — delay

dclayg"‘“

P delay

foi —

delay bound gap

A value of delay bound gapg close to zero indicates that the
heuristic produced a tight result compared to the exhaustive
search. Larger values indicate that the heuristic chose a bad
prolongation, i.e. the bound is loose.

The results are shown in Figure 9. First to note is that FP
does not have a significant impact in PMOO — we confirm the
finding of [11] in a larger evaluation by observing an average
gap between PMOO-FPs,; and PMOO of just 3.7 %. Neither
the random heuristic nor DeepFP can thus achieve a consider-
able delay bound improvement, although the predictions taken
are very accurate.

For DEBORAH-FP, we can report a completely different
picture. Having brought the FP property to the DEBORAH
analysis had a huge impact on the delay bound tightness. We
see that an average gap of 60.75 % between DEBORAH and
DEBORAH-FP;,; analysis results was opened when adding
the exhaustive FPy,; feature. Moreover, reducing the effort by
random selection of prolongation alternatives did not perform
well, even RND4 leaves an average gap of 11.68 %. On the
other hand, our DeepFP closes this gap successfully. Even the
version with a single prediction pushes the gap down to 2.57 %
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Figure 9: Average delay bound gap of heuristics against
PMOO-FPg,; and DEBORAH-FPx;

such that an increase of proposed prolongation alternatives
does not have a big impact anymore.

More detailed results are presented in Figure 10, where we
illustrate the delay bound gap of DeepFP, the random heuristic
and standard PMOO or DEBORAH analyses, confirming our
findings that DEBORAH-FPg,; is a big improvement over
DEBORAH and DeepFP is the key to its efficient application.

100 ~
80 - E
= 60 B
Py ‘
8 4041}/ — DeepFP— RND R
---RND, ----RND,
20 4 RNDs ----RNDjq 4
-=--PMOO - DEBORAH
0 - T T T T f T T T T
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Delay gap to PMOO-FPy,; delay (%) Delay gap to DEBORAH-FPy,; delay (%)

Figure 10: Delay bound gap of heuristics against PMOO-FPy,;
and DEBORAH-FPx,;

The accuracy of DeepFP is shown in Figure 11. For each
analyzed flow in the test dataset, the method is accurate if the
computed end-to-end delay bound is equal to the best end-to-
end delay bound computed by PMOO-FPs,; or DEBORAH-
FPri. In average, DeepFP is able to predict the correct pro-
longation for 69.6 % of the flows for PMOO-FPy,; and 60.9 %
for DEBORAH-FPy,;. Generating multiple combinations as
introduced in Section V-F increases the accuracy to 75.3 %
and 64.3 % respectively for k = 4. In comparison, the random
heuristic with one choice achieves only 14.5% and 8.7 %
respective accuracy. DeepFP is making more reasonable, more
accurate predictions.

B. Impact of additional expert knowledge for DeepFP*

We introduced DeepFP* in Section V-F, an extension of
DeepFP making additional use of expert knowledge to ex-
plicitly filter out prolongation combinations which are known
to be of lower quality. We numerically compare DeepFP and
DeepFP* in Figures 12 and 13. As expected, DeepFP* is
able to achieve a better accuracy for both PMOO-FPy, and
DEBORAH-FPy,;. Nevertheless, while the delay bound gap
of DeepFP* to the exhaustive search of DEBORAH-FPy,; is
indeed reduced compared to DeepFP, DeepFP achieves better

T T T T T
0 20 40 60 0 20 40 60
Accuracy wrt PMOO-FPy,; (%) Accuracy wrt DEBORAH-FPr; (%)

Figure 11: Accuracy of DeepFP, the random heuristic, and the
non-FP analyses

Parameter Min Max Mean
# of servers 2 16 8.7
# of flows 5 254 162.3
Flow path length 1 16 32

Table III: Statistics about the larger generated dataset

results than DeepFP* for PMOO-FPy,;. This means that the
expert knowledge of reducing the state of possible solutions
might not be necessary.

DeepFP*
DeepFP*,
DeepFP*y

DeepFP

DeepFP;

DeepFP4

65.48%
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Figure 12: Accuracy of DeepFP* and DeepFP
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DeepFPy
DeepFP,
DeepFP
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Figure 13: Average delay bound gap of DeepFP* and DeepFP

The additional computational cost of using DeepFP* will
be evaluated later in Figure 17.

C. Scalability on larger networks

To evaluate the scalability of our approach with respect
to the network size, we also evaluated DeepFP on networks
with a larger number of servers and flows. The same random
network generator as for the training dataset is used, but the
number of servers and flows is scaled to larger values. Statis-
tics about this additional dataset are presented in Table III. The
training data used for the GNN is unchanged, namely we still
restrict it to the smaller networks introduced in Section V-D
and Table II.
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The results of the exhaustive PMOO-FPy,; and DEBORAH-
FP;,; are not available here due to their too long execution
time, taking multiple days per network to compute in some
cases. Instead, we use here the standard PMOO and DEB-
ORAH analyses in order to evaluate the gain in tightness of
using DeepFP. As in Equation (13), we define the delay bound
gap to PMOO and DEBORAH (i.e. the analyses without the
FP property) as:

non-FP

non-FP __ delayfoi
foi -

heuristic

— delaygy; (14)

delayponFP

delay bound gap

A large positive value of delay bound gapis™ indicates that

the heuristic with the FP property gained tightness over the
standard PMOO or DEBORAH analysis. In the opposite, a
negative value indicates that the bound is less tight.

Numerical results are summarized in Figure 14. For the
PMOO analysis, the random heuristic results in a negative
delay bound gap in average, namely the resulting delay bounds
are worse than by simply using the standard PMOO analysis,
even for the larger values of k = 32. Despite this, DeepFP
is able to achieve an average gain in tightness of 1.06 % for
PMOO. For the DEBORAH analysis, the random heuristic
results in a gain in tightness of only 0.25 %, where DeepFP is
able to achieve a gain of 13.74 %.
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DeepFP; B 1.07% E
DeepFP + Jo.68% A
RND3; B -3.55% - I 4529
RNDj¢ B -+37% - B 3 549%
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Figure 14: Average delay bound gap of DeepFP to standard
PMOO and DEBORAH on the larger networks

Overall, these results illustrate that a simple random choice
is not sufficient to improve tightness using flow prolongations.
DeepFP is able to accurately choose flow prolongations result-
ing in a gain in tightness, even on larger networks than the
ones it is was trained on.

D. Execution time

To understand the practical applicability of our heuristic, we
evaluate in this section its execution time in different settings.
We define and measure the execution time per network as the
total time taken to analyze all its flows, without including the
startup time or the time taken for initializing the network data
structures. The execution times were measured on a server
with dual AMD EPYC 7542 CPU. The GNN was executed
using GPU acceleration with a Nvidia GTX 1080 Ti, while
the NC analysis is still executed on CPU. No batching was
used, i.e. the GNN analyzes one network at a time.

We first illustrate the average relative execution time of the
FP analyses against the non-FP analysis in Figure 15, namely:

FExecution time F'P

Ezecution time non-FP (15)
This measure helps us understand the cost of using FP. In
average, DeepFP with GPU acceleration is approximately an
order of magnitude faster than PMOO-FPx,;, and almost three
orders of magnitude faster than DEBORAH-FP;,;. Taking
into account the tightness of the method illustrated earlier in
Figure 9, those results show that DeepFP is able to achieve a
good balance between tightness and computational cost.
DeepFP without GPU acceleration is approximately an
order of magnitude faster than DEBORAH-FPy,;, making it
still an appealing solution despite it’s slower execution time.
In the case of PMOO-FPy,, DeepFP is actually slower than
the exhaustive analysis.

DeepFP (GPU)
DeepFP, (GPU)
DeepFP4 (GPU)

DeepFP (CPU)
DeepFP> (CPU)
DeepFPy (CPU)

RND

RND;

RND4

RNDg

RND¢
Exhaustive FP
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Runtime ratio vs. PMOO  Runtime ratio vs. DEBORAH

Figure 15: Average relative execution time of different analy-
ses

Second, we evaluate the execution time of the GNN in
comparison to the total execution time of the analysis. We
use the following measure:

Ezecution time GNN
Total execution time (GNN + NC)

(16)

Results are presented in Figure 16. When taking advantage
of the GPU acceleration, the GNN prediction takes 17.2 % in
average of the analysis for PMOO-DeepFPy, and 2.46 % in
average for DEBORAH-DeepFPx,;.

Without GPU acceleration, the GNN prediction takes 91.4 %
in average of the analysis for PMOO-DeepFPs,;, and 64.3 %
in average for DEBORAH-DeepFPy,;. From Figures 9 and 16,
we conclude that DeepFP is mostly attractive in case GPU
acceleration is used for the GNN. Despite this drawback, we
note that various techniques may be used to speed-up neural
network inference on CPU, such as by reducing the size of
the GNN, or using mixed-precision floats.

Finally, we evaluate the execution time of the additional
enumeration of prolongation combinations used by DeepFP*.
As for the GNN part, we use the following measure:

Ezecution time Enum.
Total execution time (Enum. + GNN + NC')

a7
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Figure 16: Relative execution time of the GNN for DeepFP

Results are presented in Figure 17. In average, the enumeration
of prolongation combinations takes 7.22% of the execu-
tion time for PMOO-DeepFP*, and 4.17 % for DEBORAH-
DeepFP*. This illustrates that the gains in tightness of
DeepFP* can be achieved at a small computational cost.
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Figure 17: Relative execution time of the GNN for DeepFP

E. Feature importance and sensitivity analysis

We perform here a sensitivity analysis of the choices of
flows prolongation of PMOO-FPg,; and DEBORAH-FPy,; to
better understand which parameters influence the decision
for the best combination. To numerically evaluate this, we
randomly modify the curve parameters p,igina With a relative
scale € according to the following uniform distribution:

(18)

Pnew ™~ u (poriginal(l - E)vporiginal(l + 6))

We then compare the share of flows where the best combina-
tion of flows prolongation have changed due to the random
change of curves parameters.

Results are presented in Figure 18. We note that the server’s
rate has the largest impact on the choice of flows prolongation.
Arrival curve parameters also impact also the flows prolonga-
tions, but with less magnitude than the service rate. Finally,
the service latency has almost no influence on the choice of
prolongations, where even large changes of its value result
in less than a 1% change for arbitrary multiplexing, or no
changes at all for DEBORAH-FPy,;. The service latency, in
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Figure 18: Sensitivity analysis of the NC analyses

contrast, is an additive factor in the residual forwarding service
computation, making it considerably less impactful.

We use the permutation-based importance measure [56, 57]
in order to assess each feature’s importance for DeepFP. For
each input feature presented in Section V-C, we randomize
it by randomly permuting its values in the evaluation set, and
assess the impact it has on the relative error of the predictions.
We define the feature importance as:

Baseline

Feature
i foi

foi

Baseline

with delay bound gapg,; corresponding to the delay
bound gap of DeepFP without column permutation.

Results are presented in Figure 19. As expected from the
sensitivity analysis, the server rate is the feature having the
largest impact on the prediction of the GNN. The other features
have almost two orders of magnitude less importance.

delay bound gap — delay bound gap (19)

PMOO-DeepFPr; DEBORAH-DeepFPr;

Flow rate
Server latency
Flow burst
Hop count
Server rate
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Figure 19: Feature importance of DeepFP

VII. CONCLUSION

We introduced DeepFP in this paper, an approach for
making the NC analysis feature Flow Prolongation scale.
FP can be paired with either of the two predominant flow
multiplexing assumptions, arbitrary or FIFO, and we show
that it is most impactful when bounding the flow of interest’s
delay (compared to bounding cross-flow arrivals). As each
multiplexing assumption’s analysis must be trained differently,
we devise two analyses: PMOO-FPy; for arbitrary multi-
plexing and DEBORAH-FPy,; for FIFO multiplexing. The
latter is based on the novel insight that FP can improve the
implementation of the PMOO property in the current LUDB
FIFO analysis and thus its tool DEBORAH. Our numerical
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results show considerably tighter delay bounds of this state-
of-the-art algebraic NC FIFO analysis, the average gap to
the classic non-FP delay bound rises to 60.75 % — yet at the
expense of computational effort. DeepFP predictions solve this
problem. We achieve an average accuracy of 69.6 % (PMOO-
DeepFPy,i) and 60.9 % (DEBORAH-DeepFP;,;), resulting in
an average relative gap to PMOO-FPy,; of only 1.17 %, and
of only 2.57 % to the exhaustive DEBORAH-FPy; in our first
dataset. When scaling to larger networks, where the existing
PMOO-FP was known to struggle with computational effort,
DeepFP still works. Without considerable loss of prediction
accuracy we gain delay bound tightness of 1.06 % compared
to standard PMOO, and 13.7 % compared to DEBORAH. In
conclusion, we show that FP can considerably tighten NC
delay bounds derived for FIFO multiplexing networks and that
the proposed GNN-based DeepFP allows to apply it to larger
networks.

APPENDIX

NETWORK CALCULUS BACKGROUND [6, 58]

A. Network Calculus System Model

NC models a network as a directed graph of connected
queueing locations, the so called server graph. A server offers a
resource, in communication networks forwarding of data, and
a buffer to queue incoming demand, the data. Data is put into
the network by flows. We assume unicast flows with a single
source server and a single sink server as well as a fixed route
between them. Flows’ forwarding demand is characterized by
functions cumulatively counting their data,

Fo={f:Rt = RT|f(0)=0, Vs <t : f(t)>f(s)}.
(20)

Let functions A(t) € F, denote a flow’s data put into a
server and let A’(t) € F; be the flow’s data put out of, both
in the time interval [0,¢). We require the input/output relation
to preserve causality by Vi € RT : A(t) > A'(¢).

NC refines this model to one that uses bounding functions.
These univariate functions (called curves) are defined indepen-
dent of the start of observation, solely based on the duration of
the interval of observation. By convention, let curves be in Fy
that simply extends the definition of F;” by ¥t < 0: f(¢)=0.

Definition 1 (Arrival Curve): Given a flow with input
function A, a function o € Fy is an arrival curve for A iff

VO<d<t:A()— At —d) <a(d). 21

Opposite to data arrivals, the forwarding service offered by
some system S is modeled with a lower bounding curve. S can
be a single server as above or — after applying transformations
from Appendix B — a combination of multiple servers.

Definition 2 (Service Curve): If the service by system S for
a given input A results in an output A’, then S offers a service
curve 3 € Fy iff

Vit A(t) > Oglifgt{A(t —d)+ B(d)}. (22)

Definition 3 (Strict Service Curve): System S offers a strict
service curve [ to a flow if, during any busy period of duration
d, the output of the flow is at least equal to 3(d) € Fy.

In this paper, we restrict the set of curves to affine curves
(the only type that can be used with the LUDB analysis). These
curves are suitable to model token-bucket shaped data flows
Yrp: RT = R |7, (0)= 0, dzovnb(d) =b+r-d, rb>0,
where b bounds the worst-case burstiness and 7 the arrival
rate. Secondly, rate-latency service can be modeled by affine
curves Bgr : RT — RT | Brr (d) = max{0,R- (d — T)},
T >0, R > 0 where T" upper bounds the service latency and
R lower bounds the forwarding rate.

B. Algebraic Network Calculus Analysis

The NC analysis aims to derive a bound on the worst-
case delay that a specific flow of interest (foi) experiences
on its path. Service curves on that path are shared by all
flows crossing the respective server yet an arrival curve is
only known at the respective flow’s source server. To derive
the foi’s end-to-end delay bound from such a model, the NC
analysis relies on (min,plus)-algebraic curve manipulations.

Definition 4 (NC Operations): The (min,plus)-algebraic
aggregation, convolution and deconvolution of two functions
f,g € Fo are defined as

aggregation: (f + g) (d) = f (d) + g (d), @3)
comvolution: (f © g) (d) = inf._{f(d ~u) + g(u)}, 24)

deconvolution: (f @ g) (d) =sup {f(d+ u) — g(u)}. (25)
u>0

Aggregation of arrival curves creates a single arrival curve
for their multiplex. With convolution, a tandem of servers can
be treated as a single system providing a single service curve.
Deconvolution allows to compute an arrival curve bound on
a flow’s (or flow aggregate’s) A’(t) after crossing a system.
Delay and backlog can be bounded as follows:

Theorem 3 (Performance Bounds): Consider a system S
that offers a service curve . Assume a flow f with arrival
curve « traverses the system. Then we obtain the following
performance bounds for f:

backlog: Vt € RT: B(t) < (a @ ) (0) (26)
delay: Vt € RT: D (t) <inf{d>0] (a @ f)(—d) <0}
=: (o, B) (27

When bounding the residual service for a flow of interest
(Theorem 1), there are some subtleties to note: the requirement
on the service curve § to be strict strongly depends on the
assumed multiplexing behavior. Arbitrary multiplexing needs
it, FIFO does not [6]. Moreover, the arbitrary multiplexing
residual service curve is not strict. In general, arbitrary multi-
plexing results are bounding those of any other multiplexing
assumption. Compared to FIFO, we see that the residual
service curves are equal for § = 0, but for any 6 > 0, the FIFO
multiplexing can potentially give considerably more residual
forwarding service.
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ABSTRACT

Understanding the performance of network protocols and com-
munication networks generally relies on expert knowledge and
understanding of the different elements of a network, their configu-
ration and the overall architecture and topology. Machine learning
is often proposed as a tool to help modeling complex protocols. One
drawback of this method is that high-level features are generally
used — which require expert knowledge on the network protocols
to be chosen, correctly engineered, and measured - and the ap-
proaches are generally limited to a given network topology.

In this paper, we propose a methodology to address the challenge
of working with machine learning by using lower-level features,
namely only a description of the network architecture. Our main
contribution is an approach for applying deep learning on network
topologies via the use of Graph Gated Neural Networks, a special-
ized recurrent neural network for graphs. Our approach enables
us to make performance predictions based only on a graph-based
representation of network topologies. We apply our approach to the
task of predicting the throughput of TCP flows. We evaluate three
different traffic models: large file transfers, small file transfers, and
a combination of small and large file transfers. Numerical results
show that our approach is able to learn the throughput performance
of TCP flows with good accuracies larger than 90%, even on larger
topologies.
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1 INTRODUCTION

Understanding network performance is an important task for ar-
chitecture design and Quality-of-Service in an increasing number
of applications. Traffic engineering aims at bringing an answer
to this need in order to avoid congestion and optimize network
topologies to support an increasing number of applications. Net-
work and traffic models are an important tool in order to predict
how a given network architecture will behave. Different techniques
have been developed for this purpose, such as mathematical mod-
eling, simulations or measurements. While those techniques are
usually accurate, they often require precise measurements of key
performance indicators such as round-trip time or loss probability
in order to be applied and generate realistic performance predic-
tions. However, limited access to instrumentation of real networks
make this measurement acquisition usually difficult.

One growing approach to tackle the challenge of performance
modeling has been the use of machine learning. For instance, Tian
and Liu applied in [27] the SVR-based (Support Vector Regres-
sion) TCP bandwidth prediction application from [19] to improve
Quality-of-Service of media streaming over HTTP. Tariq et al. re-
cently proposed WISE in [26], a framework for evaluating architec-
ture changes in communication networks using Causal Bayesian
Networks (CBNs). While those techniques and applications have
been proven successful, they require high-level features about the
studied network protocols and the trained models are often limited
to a given network topology.

Our main contribution in this work is an approach for applying
deep learning on a low-level graph-based representation of network
topologies in order to predict network and protocol performance
using only topology information as input. We propose to use Gated
Graph Neural Networks (GG-NNs) [17] as a basis for our deep learn-
ing architecture. GG-NNss are a recently developed neural network
architecture working on graph-structured inputs. The intuition
behind our approach is to map network topologies and flows to
graphs, and then train GG-NNs on those graphs. This enables us
to avoid the task of engineering high-level protocol-specific input
features such as round-trip time or drop probability, which usually
require expect knowledge on the network protocol which is mod-
eled. Another contribution in this work is the extension of GG-NNs
with an alternative memory cell called LSTM (Long Short Term
Memory) [13], which shows better performance than the initial
architecture from [17].

As a concrete application of our approach, we address the task
of performance evaluation of TCP flows, with the goal of predicting
the average throughput of each flow in a given topology. We eval-
uate our approach against three types of traffic models: large file
transfers, small file transfers, and a combination of small and large
file transfers. As shown in previous studies about TCP, the average
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throughput of TCP flows depends on various parameters such as the
TCP version, the configuration of the TCP stack, round-trip times
or drop probabilities. We show through a numerical evaluation
that our approach is able to predict the average throughput of TCP
flows without having direct access to those parameters, but only a
low-level graph-based representation of the network topology and
its flows. The results of our approach are also compared against a
simpler recurrent neural network architecture.

This work is structured as follows. In Section 2, we present simi-
lar research studies. We describe in Sections 3 and 4 our modeling
approach and the neural network architecture used here, with an
introduction on Graph Neural Networks and Graph Gated Neural
Networks, followed by the application of those concepts to network
topologies and flows. We numerically evaluate our approach in
Section 5 with the prediction of average flow throughput on three
different use-cases. Finally, Section 6 concludes our work.

2 RELATED WORK

On the challenge of predicting the performance of TCP flows, ana-
lytical models have been proposed since the late 1990s. Mathis et al.,
and subsequently Padhye et al., modeled the throughput of a single
flow using TCP Reno in [18] and [20] as a function of round-trip
time, drop probability and some configuration parameters of TCP.
This work was then extended by Cardwell et al. in [5] to take into
account the slow-start phase of TCP. While those models address
the mathematical modeling of a single flow, the interaction between
multiple flows on a given topology is of greater interest for the
problem addressed in this paper. Firoiu et al. proposed in [7] to
reuse the results from [20] to achieve this. Those analytical models
give great insights in the performance of TCP, but they usually
suffer from poor applicability in real-world use-cases due to newer
versions of TCP, simplifications of the mathematical model, or lack
of modeling of non-intuitive behavior of TCP such as ACK com-
pression or TCP Incast. Some later works have partially addressed
those shortcomings, such as the work from Velho et al. in [29] and
Geyer et al. in [8].

Adjacent to the mathematical modeling of TCP flows, machine
learning methods were also applied to this problem, although less
frequently than in other domains such as network intrusion de-
tection. Mirza et al. used Support Vector Regression (SVR) in [19]
using input features such as transfer duration of files over TCP and
active measurements in order to measure queuing latency, loss prob-
ability and available bandwidth. Hours et al. used Causal Bayesian
Networks (CBNs) in [14] to predict the throughput distribution of
TCP flows, using similar features than [19]. Both works showed
promising results regarding applicability to real-world use-cases,
but are mainly specific to a given network topology or the studied
protocol.

Various methods have been proposed for applying machine learn-
ing to graphs-based structures, either based on a spectral or spatial
approach. Spectral approaches [4, 12] are usually based on the
Graph Laplacian, an analogue to the Discrete Fourier Transform,
which transforms graph signals to a spectral domain. The main
limitation of those approaches is that their requires the input graph
samples to be homogeneous.

Fabien Geyer

Spatial approaches do not require a homogeneous graph struc-
ture, meaning that they can be applied to a broader range of prob-
lems. Gori et al. proposed in [10, 23] the Graph Neural Networks
(GNN ) architecture, which propagates hidden representations of
nodes to its adjacent nodes until a fixed point is reached. GNNs
were applied on different tasks such as object localization, ranking
of web pages, document mining, or prediction of graph properties
[22]. This neural network architecture was subsequently refined
in different works. Li et al. proposed an extension of GNNs in [16]
through application of more modern practice of neural networks,
namely by using Gated Recurrent Units (GRU) [6]. GG-NNs were
applied to basic logical reasoning tasks and program verification
in [16]. Relational Graph Convolutional Networks (R-GCNs) were
recently proposed by Schlichtkrull et al. in [24], where hidden state
information is also propagated across edges of the graph via con-
volutions, while taking into account the type and direction of an
edge.

More general neural network architectures such as the Differen-
tiable Neural Computer from Graves et al. in [11] were also applied
to graph-based problems such as shortest path finding.

To the best of our knowledge, this is the first work on applying
graph-based neural networks to the performance evaluation of
network topologies and network protocols.

3 NEURAL NETWORKS FOR GRAPHS

The main intuition behind our approach is to map network topolo-
gies to graphs, with additional nodes for representing flows and
additional edges for the path followed by the flows. Those graph
representations are then used as input for a neural network archi-
tecture able to process general graphs.

In this section, we review the neural network architecture used
for this purpose, namely Graph Neural Networks (GNNs) [10, 23]
and one of its recent extension, Gated Graph Neural Networks
(GG-NNis) [17]. We also introduce notation and concepts that will
be used throughout this paper. The transformation between net-
work topology and its graph representation will be detailed later in
Section 4.

GNNs and GG-NNGs are a general neural network architecture
able to process graph structures as input. They are an extension of
recursive neural networks which work by assigning hidden states
to each node in a graph based on the hidden states of adjacent nodes.
For the purpose of this work, our description of GNNs and GG-NNs
is limited to undirected graphs. The concepts presented here can
also be applied to directed graph, as presented in the original works
on GNNs and GG-NNss [10, 17, 23].

Let G = (V, &) be a graph with nodes v € V and edges e € &.
Edges can be represented as pairs of nodes, such that e = (v,v’) €
V X V. The hidden representation for node v is denoted by the
vector hy, € R?. Nodes may also have features I, € {1,...,Lq}
for each node v, and edges also I, € {1,...,Lg} for each edge e.
Let NBR(v) denote the set of neighboring nodes of v.

3.1 Graph Neural Networks

In Graph Neural Networks (GNNs), each hidden representation
h, of a node v is based on the hidden state of its neighboring
nodes. The following propagation model is used for expressing this
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relationship:
) = f* (zv, INBR(0): hg;&)) 1)

An example application of Equation (1) is given in Figure 1.

- (ll,lz,h(t 1))

1 =f
®/@ n) = f* (z b, Is, Iy, b ”,h“*”,hg‘*“)
B = (1 I, Iy, ), B 1))
B = £ (koo b o, 1 0 )
(b)

Figure 1: (a) Example graph. Edge colors denote edge types.
(b) Application of Equation (1) to the graph.

As a concrete implementation, [23] recommends to decompose
f*(-) as the sum of per-edge terms such that:

B = > f (o

v’ ENBR

l(vv)’ = 1)) )

with f(-) a linear function of h,, or a feed-forward neural network.
For example, f(-) can be formulated as a linear function:

£ (1o o oo B ) = Aot b I g pllenlirdsn) (3)
with A and b learnable weight and bias parameters. The hidden
node representations are propagated throughout the graph until a
fixed point is reached. As explained in [23], it implies that f(-) has
the property that a fixed point for Equation (2) can be reached.

Once a fixed point h;, has been reached, a second model is then
used to compute the output label o,, for each node v € V

oy =9g (h‘U’ lv) (4)

Practically, g(-) is implemented using a feed-forward neural net-
work. The neural network architecture is differentiable from end-
to-end, so that all parameters can be learned using gradient-based
optimization.

Learning of the parameters of f(-) and g(-) is done via the Almeida-
Pineda algorithm [3, 21] which works by running the propagation
of the hidden representation to convergence, and then computing
gradients based upon the converged solution.

3.2 Gated Graph Neural Networks

Gated Graph Neural Networks (GG-NNs) [17] are an recent exten-
sion of GNNs using more recent neural network techniques, based
on Gated Recurrent Units (GRU) [6]. In GG-NNs, each node aggre-
gates the hidden representations it receives from all adjacent nodes,
and uses that to update its own hidden representation using a GRU
cell. More specifically, the propagation of the hidden representa-
tions among neighboring nodes for one time-step is formulated
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as:
alf) = Ay [B{7V - hiy |1)] +bg 6)
z“)—a(w a? yunt- 1)+b) ©)
r(t) =0 (W u( )4 U, h(t V4 ) 7)
th) = tanh (Wa(vt) +U (rg) o th‘”) + b) (8)
by = (1-25)) onf™ +2D oh®) ©

where o(x) = 1/(1+e™%) is the logistic sigmoid function and © is the
element-wise matrix multiplication. {W, W,, W} and {U;, U,, U}
are learnable weights matrices, and {bg,b,,b;,b} are learnable
biases vectors. A € RIVIXIV! is a matrix determining how nodes in
the graph G communicate with each other, as illustrated in Figure 2.

o o R o
R o™ o
S RT™ O

?9@6
elelele

(a)
(b)

Figure 2: (a) Example graph. Edge colors denote edge types.
(b) One time-step unrolling of Equations (5) to (9). (c) Matrix
A corresponding to the graph. Parameters o and f encode
the edge type.

Equation (5) corresponds to one time-step of the propagation
of the hidden representation of neighboring nodes to node v, as
formulated previously for Graph Neural Networks in Equations (1)
and (2). Equations (6) to (9) correspond to the mathematical formu-
lation of a GRU cell, with Equation (6) representing the GRU reset
gate vector, Equation (7) the GRU update gate vector, and Equa-
tion (9) the GRU output vector. The initial hidden representation
hg?) is based on the node’s feature vector [, padded with zeros
according to the dimensions of the hidden representation.

The output vector oy, for each node v is computed as in Equa-
tion (4) using a feed-forward neural network. The overall architec-
ture of the GG-NN is summarized in Figure 3.

Learning of the weight matrices and bias vectors is performed
using back-propagation through time in order to compute gradients,
namely using standard gradient-based optimization algorithms such
as RMSProp [28] or Adam [15].

3.3 GG-LSTM-NN: Extension of Graph Gated
Neural Networks with LSTM
We propose in this section a new class of Graph Gated Neural Net-

works called GG-LSTM-NN based on the Long Short-Term Memory
(LSTM) cell [13]. This neural network architecture is a variant of the
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Figure 3: Representation of a Gated Graph Neural Network.

Graph Gated Neural Network architecture where the GRU memory
cell is replaced with a LSTM cell. The overall architecture of the
GG-LSTM-NN is similar to the GG-NN illustrated in Figure 3.

Similarly to Equations (5) to (9), the propagation of the hidden
representations among neighboring nodes for one time-step in a
GG-LSTM-NN is formulated as:

T
all) = Ay [B VWD) 4, (10)
i) = o (Wil + Ul ™ + ;) (11)
£ = o (Wyay) +UphS™ + by ) (12)
o) = o (Woal) + Uphll ™ +b,) (13)
gg) = tanh (Wga(vt) + Ugh(vt_l) + bg) (14)
= ol 1+ gl ol (15)
th) = tanh (cg)) 0] o(vt) (16)

with {Wj, ...} and {Uj, ...} learnable weight matrices, and {b;, . ..}
learnable bias vectors.

Equation (10) is the propagation of the hidden representations
among neighbors, as in Equation (5). Equations (11) to (13) corre-
spond respectively to the input, forget and output gates of the LSTM
cell. Equation (14) is a candidate hidden representation, with an
initial value c(I?) set to zero. Equation (15) is the internal memory
of the LSTM cell.

Our motivation for proposing this new neural network archi-
tecture is motivated by better numerical performance than the
GRU-based GG-NN presented in Section 3.2, as shown in the nu-
merical evaluation in Section 5.

4 APPLICATION TO PERFORMANCE
EVALUATIONS OF NETWORKS

We describe in this section the application of the deep learning
architectures presented earlier to the performance evaluation of
network topologies and network protocols. In other words, our goal
is to represent network topologies and their flows as graphs which
can be passed as input to a GG-NN. Compared to other works on
the application of machine learning to performance evaluation, the
main contribution is that this graph representation is a low-level
input feature. This means that specific high-level features of the
studied network protocol are not required and the trained machine
learning algorithm is not restricted to a specific topology.

Fabien Geyer

4.1 Input features definition

The main intuition behind the input feature modeling for the GG-
NN is to use the queuing network as input graph G, with additional
nodes representing the flows in this network. An illustration of
this queuing network is given in Figure 5, which is the queuing
representation of the example network illustrated in Figure 4 with
one switch or router interconnecting three PCs with three flows.
Note that we illustrate on Figure 5 only the forward path of the
flows. Figure 5 may also be extended to include the queues taken
by the acknowledgement packets used by the flows if necessary,
such as TCP ACK packets for example.

o
52
Fi i F
:@:::::Z:::%’l ’
g i
PR

Figure 5: Associated queuing network of Figure 4 (here with
only the forward path of each flow).

Regarding the constructed graph G = {V, &}, the nodes V
correspond to the queues traversed by the flows in the network
topology as well as specific nodes representing the flows. For the
node features [, a vector encoding the node type (i.e. if a node
represents a flow or a queue) with one-hot encoding is used. Namely
I, is a vector with two values, with [1,0]7 is for queue nodes,
and [0, 1]7 for flow nodes. Note that for simplification purpose,
we assume here that every PCs and switches or routers to have
the same behavior and all links in the topology to have the same
capacity and latency. Additional features for distinguishing between
different behaviors or node types may be used in case different
configurations, types or link capacities are used. An example of
such node-specific feature is given later in Sections 5.3 and 5.4.

Edges connect the queues which are used by the flows according
to the physical topology of the network. In order to encode flow
routing in the graph, edges between the nodes representing flows
and their traversed queues are used. Figure 6 is an example of
such graph modeling applied to the topology presented in Figure 4.
A labeling of the edge type may be used in order to distinguish
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between queues representing the forward path of flows and the
path used for acknowledgement packets, as illustrated in Figure 2.

Figure 6: Graph representing the queuing network from Fig-
ure 5.

We note that the graph and feature representations described
here are independent of any studied network protocols.

4.2 Task-specific modeling

For the scope of this work, we focus on the challenge of evaluating
the performance of TCP flows, namely predicting their average
throughput. As shown in previous works on TCP Reno such as [18],
the average throughput of a TCP flow can be modeled as:

C

RTT\p

with RTT the round-trip time and p the probability of packet loss on
the flow’s path, and C a constant value depending on a configuration
of the TCP stack. In the case of small file transfers, additional
parameters such as file size distributions are also important.

This is an interesting problem since TCP adapts its throughput
according to the perceived level of congestion in the network or
other factors depending on the version of TCP which is used. Since
the flows also contribute themselves to the overall congestion in
the network, the sharing of bandwidth at a given bottleneck is not
trivial to predict.

Based on this task description, the output vector o, of node v
will then be the average throughput of the TCP flow for nodes
representing flows. Practical experimentations showed that using
discretized values across N bins provided better accuracy than
using continuous values for modeling the throughputs. Hence the
regression task essentially becomes a classification task.

The neural network is then trained against a log softmax cross
entropy loss function, as usually done in classification tasks:

a7

N
Ly =-yp + logz et (18)
i=1

where y,, corresponds to the index of the binned average through-
put value, and 0,,:; to the i-th element of the output vector o,,.

5 NUMERICAL EVALUATION

We present in this section a numerical evaluation of the concepts
presented in Sections 3 and 4. We focus here on the evaluation of
Ethernet networks with 100 Mbit/s links. The evaluated topologies
and flows are randomly generated as follows using [9]. A random

VALUETOOLS 2017, Dec. 5-7, 2017, Venice, Italy

number of Ethernet switches is first selected using a uniform distri-
bution and connected in according to a daisy chain as illustrated
in Figure 7. A random number of nodes is then generated using a
uniform distribution and connected to a randomly selected Ethernet
switch. For each node, a TCP flow is generated with a randomly
selected destination among the other nodes.

| PC | | pC |

Figure 7: Daisy chain topology used for the numerical eval-
uation.

In order to build our datasets for learning, each random topology
is evaluated using the ns-2 simulator [1] until the steady-state of
the flows throughput is reached. The defaults parameters of ns-2
for the TCP stack are used, meaning that TCP Reno is used as a
congestion control algorithm. The results of the simulations is used
as a basis for the learning process of the neural network.

We evaluate our approach against three different traffic use-cases,
namely:

(1) Infinite flows, where clients always have data to send, with
results presented in Section 5.2;

(2) Finite flows, where clients follow an ON/OFF loop behavior
where a random amount of data is sent, followed by a random
idle time, with results presented in Section 5.3;

(3) A combination of the two previous traffic models, with re-
sults presented in Section 5.4.

5.1 Implementation

The GG-NN architectures presented in Sections 3.2 and 3.3 was
implemented using Tensorflow [2]. The recurrent part of the GG-
NN and GG-LSTM-NN were respectively implemented according to
Equations (5) to (9) and Equations (10) to (16). The function ¢(:) in
Equation (4) was implemented using a feed-forward neural network
with two dense layers. Additional dropout layers [25] between each
time-step of the GG-NN were added in order to avoid over-fitting.

For each studied use-case, the model was trained multiple times
using the parameters listed in Table 1 and different seeds for the
random number generators. Randomization of the node indexes was
also performed for each mini-batch. The neural network producing
the best result was then selected for the numerical results presented
in the rest of this section.

As a comparison basis, we also evaluated a simple version of
Graph Neural Network from section 3.1, using a simple Recurrent
Neural Network (RNN) architecture similar. The hidden node rep-
resentation is driven by:

2] gy (19)

0 _ (t-1)
al —A(U)[hl 8 e

h{") = tanh (Wag” +untD 4 b) (20)
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Parameter Value

Learning algorithm RMSProp [28]
Size of hidden representation 64

Learning rate 1074
Mini-batch size 32
Training iterations 20000

Table 1: Parameters used for the training phase of the neural
networks.

with W and U learnable weight matrices, and b a learnable bias
vector.

Each set of simulations was split into training and test datasets.
The training dataset was used for training the neural network, while
the test dataset was used for evaluating the prediction performances
of the neural network.

5.2 Evaluation on infinite TCP flows

In this first use-case, we assume an infinite traffic model for TCP
flows. This model illustrates the case of large file transfers over
TCP. Multiple sets of simulations were generated, with different
parameters regarding the size of the network, namely the maximum
number of switches used for the line topology presented in Figure 7
and the maximum number of flows. Statistics about the dataset
with the largest topologies are given in Table 2.

Property Mean Min. Max. Std.dev.
Number of flows 16.38 2 30 8.21
Number of queues  35.54 4 66 16.75

Number of edges ~ 250.47 20 596 133.10

Table 2: Parameters of the dataset with the largest network
topologies.

Numerical results of the average accuracy of the predictions of
the trained neural network are presented on Figure 8. As mentioned
in Section 4.2, the output vector corresponds to a discretized value
of the average throughput of the evaluated TCP flows. The accuracy
is hence defined as the correct prediction from the neural network
of the bins associated to the average throughputs.

We notice in Figure 8 that the GG-NN described in Section 3.2 -
labeled GG-GRU-NN in the plot - is able to reach accuracies higher
than 85 %, even on topologies with a larger number of flows and
number of hops. On small topologies, the neural network is able
to reach accuracies higher than 95 %. We notice that the average
prediction accuracy decreases slightly with the complexity of the
network, namely according to the number of hops traversed by the
TCP flows and overall number of flows in the network.

The results of the GG-LSTM-NN architecture, our proposition
for a modification of the GG-NN architecture, performs better than
the original GG-NN architecture, with overall accuracies higher
than 90 %. Finally, as a comparison, the RNN architecture from
Equation (20) is only able to reach accuracies higher than 90 %,
even on the smaller topologies.

Fabien Geyer

Those numerical results motivates our choice of the GG-LSTM-
NN architecture over the original GG-NN and RNN architectures
for our application.
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Figure 8: Average prediction accuracy on topologies with
infinite TCP flows. Each data point correspond to another
dataset where the neural networks were trained and evalu-
ated.

5.3 Evaluation on finite TCP flows

In this second use-case, we assume an ON/OFF traffic model for
TCP flows, where clients repeatedly send a random amount of data
followed by a random idle period. It represents the case of small
file transfers over TCP. This traffic model is illustrated in Figure 9
where three flows are sharing the same link. We restrict here the
line topology to a maximum of two switches.

An exponential distribution is used for file sizes, where each
flow is randomly assigned a different mean value between 1 MB
and 5 MB for the file size distribution. Similarly, an exponential
distribution is used for idle periods, with a mean value of 1 for all
flows. The feature vector [, is extended here to take into account
the mean of the file size distribution, using one-hot encoding.

Numerical results are presented in Figure 10. Despite less accu-
rate predictions compared to Figure 8, we notice that the neural
networks are still able to learn the bandwidth sharing of the ON/OFF
flows and use the file size distributions. As in the previous results,
the GG-LSTM-NN architecture outperforms the GRU-based GG-NN
architecture.

In order to illustrate the impact of file size distribution on the
prediction accuracy, we also trained the neural network without
this information. Results are presented in Figure 11. As expected,
the prediction accuracy decreases, showing that the network was
able to use the file size distribution previously in Figure 10.
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Figure 9: Illustration of the bandwidth sharing of three
ON/OFF TCP flows using the same bottleneck. Each data
point correspond to another dataset where the neural net-
works were trained and evaluated.
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Figure 10: Average prediction accuracy on topologies with
finite ON/OFF TCP flows. Each data point correspond to an-
other dataset where the neural networks were trained and
evaluated.
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Figure 11: Average prediction accuracy on topologies with fi-
nite ON/OFF TCP flows, where the neural network is trained
without information on the file size distributions.

5.4 Evaluation on combined infinite and
ON/OFF TCP flows

In this third use-case, we assume a combination of both previous
traffic models on the same network, where some flows are infinite
and some flows are finite. This combined traffic model is often
referred as "mice and elephants" in the literature. The same parame-
ters as in Section 5.3 were used for the file size distributions and
idle time distributions. Topologies were generated such that 1/6
of the flows were infinite flows, and the rest finite ON/OFF flows
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as presented in Figure 9. We also restrict here the line topology to
a maximum of two switches.

Numerical results are presented in Figure 12. We notice here
similar results than in Figure 10. The neural networks are able
to predict the average throughputs, although with less accuracy
compared to the two previous use-cases.
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Figure 12: Average prediction accuracy on topologies with a
combination of finite and infinite TCP flows.

5.5 Interpreting GG-NNs

An important subject when working with neural network is the
interpretability of the learned weights. We propose here to visu-
alize Equation (5) as t increases, namely visualize how the hidden
representation of a node evolves at different time-steps. This is
illustrated in Figure 13 on a sample network with 4 flows and 10
queues.
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Figure 13: Visualization of the hidden representations’ prop-

agation. The color of each cell corresponds to }. hg) —hg_l)
for each node v in the graph.

We observe that a fixed point for Equation (5) is indeed reached
since there is almost no difference between h(v[) and hgfl) in the
last time-steps for all nodes. It is interesting to notice that the fixed
point for each queue is reached at different time-steps, meaning
that some queues (eg. node 13 or 14) have a larger impact on flow
performance than other queues (eg. node 5 or 6).

6 CONCLUSION

We presented in this paper a novel approach for the performance
evaluation of network topologies and flows by using graph-based
deep learning. Our approach is based on the use of a modified Gated
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Graph Neural Networks called GG-LSTM-NN and a low-level graph-
based representation of queues and flows in network topologies.
Compared to other approaches using machine learning for perfor-
mance evaluation of computer networks, the trained model is not
specific to a given topology and high-level input features requiring
more advanced knowledge on the studied protocol are not required.

We applied our approach to the performance evaluation of TCP
flows with the task of predicting the average throughput for each
flow. This is an interesting task since the throughput of TCP flows
is dependent on the network architecture and network conditions
(i.e. congestion and delays). Different traffic models for the flows
were evaluated: large file transfers, small file transfers, and a combi-
nation of large and small file transfers. We showed via a numerical
evaluation that our approach is able to reach good accuracies, even
on large network topologies with multiple hops. We compared the
chosen neural network architecture against a simpler recurrent
neural network architecture, motivating our choice for GG-NNs. Fi-
nally we also visualized the internal working of the neural network
in order to give some insights on which queues have an influence
on protocol performances.

Since the network topology is directly taken as input of the neu-
ral network, applications such as network planning and architecture
optimization may benefit from the method developed in this paper.
As our approach is not specific to the performance evaluation of
TCP flows, future work may include evaluations and extensions of
our approach to other congestion control algorithms, performance
measure such as latency or other network protocols.
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A.2.2 DeepComNet: Performance Evaluation of Network Topologies using
Graph-Based Deep Learning

This work was published in Performance Evaluation, 2019 [61].
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Ne{work performance evaluation proposed as a tool to help modeling such complex systems. One drawback of this method
Graph neural network is that high-level features are generally used - which require full understanding of the
Deep learning network protocols to be chosen, correctly engineered, and measured - and the approaches

are generally limited to a given network topology.

In this article, we present DeepComNet, an approach to address the challenges of
working with machine learning by using lower-level features, namely only a description
of the network architecture. Our main contribution is a method for applying deep learning
on network topologies via the use of Graph Gated Neural Networks, a specialized recurrent
neural network for graphs. Our approach enables us to make performance predictions
based only on a graph-based representation of network topologies. To evaluate the po-
tential of DeepComNet, we apply our approach to the tasks of predicting the throughput of
TCP flows and the end-to-end latencies of UDP flows. In both cases, the same base model
is used. Numerical results show that our approach is able to learn and predict performance
properties of TCP and UDP flows with a median absolute relative error smaller than 1%,
outperforming related methods from the literature by one order of magnitude.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Understanding network performance is an important task for architecture design and Quality-of-Service in an increasing
number of applications. Traffic engineering aims at bringing an answer to this need in order to provide better services,
avoid congestion, and optimize network topologies to support an increasing number of applications. Models for network
and traffic are an important tool in order to predict how a given network architecture will behave. Different techniques have
been proposed, such as mathematical modeling, simulations or measurements in real networks. While these techniques
can achieve accurate results, they often require precise measurements of key performance indicators such as round-trip
time or loss probability in order to be applied and generate realistic performance predictions. However, limited access to
instrumentation of real networks makes this measurement acquisition usually difficult.

An approach to tackle the challenges of performance modeling is a more data-driven way, where measurements are
used in parallel with machine learning to produce realistic performance predictions. For instance, Tian and Liu [1] applied
the SVR-based (Support Vector Regression) TCP bandwidth prediction application from [2] to improve Quality-of-Service
of media streaming over HTTP. Tariq et al. [3] recently proposed WISE, a framework for evaluating architecture changes
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Fig. 1. Illustration of the two different steps of our approach DeepComNet.

in communication networks using Causal Bayesian Networks (CBNs). While these techniques and applications have been
proven successful, high-level features about the studied network protocols are required, and the trained models are often
limited to a given network topology.

Our main contribution in this work is DeepComNet, an approach combining formal modeling of network topologies and
flows traversing them as graphs with deep learning methods tailored for training and inference on graph structures. This
approach is illustrated in Fig. 1 with its two main steps: we first model computer networks as graph structures, and then
process those graphs using neural networks. We propose to use Gated Graph Neural Networks (GGNNs) [4] as a basis for our
deep learning architecture, a recent extension of Graph Neural Networks (GNNs) [5,6]. By directly training the underlying
machine learning algorithm on the network structure, we avoid the task of engineering high-level protocol-specific input
features such as round-trip time or drop probability, which usually require expert knowledge on the network protocol which
is modeled. We demonstrate in this paper this modeling as graph is independent of a given network architecture or network
protocol, providing a wide range of applicability compared to other methods.

As concrete applications of our approach, we address the two following tasks. First, we are interested in the performance
evaluation of TCP flows, with the goal of predicting the average throughput of each flow in a given topology. Secondly, we
look at the performance evaluation of UDP flows and the prediction of end-to-end latencies (average and quantile value).
We use the same model for both tasks, highlighting the general applicability of our approach and potential for application
to other use-cases for performance evaluation of network topologies and protocols.

We show through a numerical evaluation that our approach is able to predict the performance of TCP and UDP flows
by only using this low-level graph-based representation of the network topology and its flows. Overall, the predictions of
bandwidths and end-to-end latencies have a median absolute relative error smaller than 1%. The results for the TCP dataset
are also compared against two approaches using high-level input features (round-trip time and loss probability), namely
Support Vector Regression (SVR) as used in [1,2] and a standard feed-forward neural network. Compared to both approaches,
our method achieves better accuracy, with a median relative error one order of magnitude lower compared to SVR.

We alsoillustrate the scalability of our approach in terms of execution time by numerically evaluating our implementation
of GNN. Our measurements illustrate that our implementation scales quadratically with the number of edges, and linearly
with the number of nodes. We show that our approach is able to process graphs with up to 1000 nodes and 150 000 edges
with a prediction time below 200 us. Finally we illustrate a method for visualizing the learned model in order to apply it to
more general questions such as root-cause analysis or bottleneck identification.

This work is structured as follows. In Section 2, we present similar research studies. We describe in Sections 3 and 4
our modeling approach and the neural network architecture used here, with an introduction to Graph Neural Networks
and Gated Graph Neural Networks, followed by the application of those concepts to network topologies and flows. We
numerically evaluate our approach in Section 5 with the prediction of performance of TCP and UDP flows, compare against
two other machine learning approaches, and evaluate our approach in terms of scalability. Section 6 gives some insights on
interpreting the learned weights of the neural network. Finally, Section 7 concludes our work.

2. Related work

As shown in a recent survey by Fadlullah et al. [7], machine learning has been used for computer networks for various
applications such as traffic classification, flow prediction, and mobility prediction. It has also been applied in the area of
performance evaluation of communication networks. Mirza et al. [2] used Support Vector Regression (SVR) using input
features such as transfer duration of files over TCP and active measurements in order to measure queuing latency, loss
probability and available bandwidth. Tariq et al. [3] proposed WISE to study application performance using Causal Bayesian
Networks (CBNs) in order to answer “what-if” questions. Hours et al. [8] also used CBNs to predict the throughput distribution
of TCP flows, using similar features as in [2]. While these works proved to deliver accurate results, they are essentially based
on high-level engineered features dependent on the studied protocol and those models are not easily transferable to other
protocols. In case of TCP flows, these high level features usually include round-trip time and packet loss - following well
known mathematical models such as [9] - which also often require active measurement. By having a simple process for
abstracting the network topology as graph without such high-level feature, the approach we propose in this article does not
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require such expert knowledge or hand engineered features and is better suited to be used on multiple use-cases or multiple
network protocols. Our approach is also able to reason about performance evaluation at network level and not at individual
node level.

Various methods have been proposed for applying machine learning to graphs-based structures, either based on a spectral
or spatial approach. Spectral approaches [10,11] are usually based on the Graph Laplacian, an analogous method to the
Discrete Fourier Transform, which transforms graph signals to a spectral domain. The main limitation of these approaches
is that the input graph samples are required to be homogeneous. Concretely this means that only a fixed subset of network
types may be analyzed and multiple machine learning models may be required in case multiple network types are required.

Spatial approaches do not require a homogeneous graph structure, meaning that they can be applied to a broader
range of problems. Gori et al. proposed in [5,6] the Graph Neural Networks (GNNs) architecture, which propagates hidden
representations of nodes to its adjacent nodes until a fixed point is reached. GNNs were applied on different tasks such as
object localization, ranking of web pages, document mining, or prediction of graph properties [12]. This neural network
architecture was subsequently refined in different works. Li et al. [4] proposed Gated Graph Neural Networks (GGNNs), an
extension of GNNs with application of more modern practice of neural networks, namely by using Gated Recurrent Units
(GRU) [13]. GNNs were evaluated against basic logical reasoning tasks and program verification in [4] and shown to be as-
good-as or better than previous state of the art methods. Related approaches were proposed by Kipf and Welling [14] with
Graph Convolutional Networks (GCN) and later extended by Schlichtkrull et al. [15] with Relational Graph Convolutional
Networks (R-GCNs). GCN also use hidden node state information propagated across edges of the graph via convolutions,
while taking into account the type and direction of an edge. Finally, Battaglia et al. [16] recently introduced the graph
networks (GN) framework with the goal of providing a unified formalization of many concepts applied in GNNs and
extensions of GNNs.

Those methods have been used in a variety of applications related to the study of data which can be modeled as graphs.
Grover and Leskovec [17] applied it to link prediction and classification in social networks, protein interactions and natural
language processing. Marcheggiani and Titov [ 18] studied semantic role labeling in natural language processing. Gilmer et al.
[19] used GNNs for the prediction of chemical properties of molecules. Allamanis et al. [20] performed source code analysis
by modeling source code and interaction between program variables as graphs, in order to predict variable naming. Selsam
et al. [21] modeled the interaction between variables in boolean satisfiability problems (SAT) as graphs, with the goal of
predicting their satisfiability. In all those applications, the results of graph-based deep learning were similar to or better
than previously existing machine learning approaches.

On the challenge of predicting the performance of TCP flows, analytical models have been proposed since the late 1990s.
Mathis et al. [22], and subsequently Padhye et al. [9], modeled the throughput of a single flow using TCP Reno as a function
of round-trip time, drop probability and some configuration parameters of TCP. This work was then extended by Cardwell
et al. [23] to take into account the slow-start phase of TCP. While these models address the mathematical modeling of a
single flow, the interaction between multiple flows on a given topology is of greater interest for the problem addressed in
this paper. Firoiu et al. [24] proposed to reuse the results from [9] to analyze complete topologies. Those analytical models
give great insights in the performance of TCP, but they usually suffer from poor applicability to real-world use-cases due
to newer versions of TCP, simplifications of the mathematical model, or lack of modeling of non-intuitive behavior of TCP
such as ACK compression or TCP Incast. Some later works have partially addressed those shortcomings, such as the work
from Velho et al. [25] and Geyer et al. [26].

This article is an extension of our previous work [27], which applied GGNNs to the performance evaluation of TCP
flows. In this article, we propose more advanced GGNNs architectures, provide an extended numerical evaluation with the
performance of both TCP and UDP flows, compare against two other machine learning approaches using high-level features,
and provide a discussion regarding scalability.

3. Neural networks for graph analysis

The main intuition behind our approach is to represent network topologies as graphs with additional nodes for modeling
flows and additional edges for the paths followed by the flows. These graph representations are then used as input for a
neural network architecture able to process general graphs. The transformation between a given network topology and its
graph representation will be detailed later in Section 4.

In this section, we review the neural network architecture used for training neural networks on graphs, namely Graph
Neural Networks (GNNs) [5,6] and one of its recent extension, Gated Graph Neural Networks (GGNNs) [4]. We also introduce
notation and concepts that will be used throughout this article. Alternate approaches for applying neural networks to graphs
were presented in Section 2.

GNNs and GGNNs are a general neural network architecture able to process graph structures as input. They are an
extension of recursive neural networks which work by assigning hidden states to each node in a graph based on the hidden
states of adjacent nodes. For the purpose of this work, our description of GNNs and GGNNs is limited to undirected graphs. The
concepts presented here can also be applied to directed graph, as presented in the original works on GNNs and GGNNs [4-6].

Let G = (V, &) be an undirected graph with nodes v € V and edges e € &£. Edges can be represented as pairs of nodes,
such that e = (v, v') € V x V. The hidden representation for node v is denoted by the vector h, € R*. Nodes may also have
features I, for each node v, and edges also [, = [, ) for each edge e = (v, v'). Let NBR(v) denote the set of neighboring nodes
of v.
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Fig. 2. (a) Example graph. Edge colors denote edge types. (b) One step of the propagation of hidden node representation. (c) Application of Eq. (1) to the
graph.

3.1. Graph neural networks

In Graph Neural Networks (GNNs), each hidden representation h, of a node v is based on the hidden state of its
neighboring nodes NBR(v). The following propagation model is used for expressing this relationship:

hg)f) = f* (lv, lNBR h]\isl:i)) (1)

An illustrative application of Eq. (1) is given in Fig. 2.
As a concrete implementation, [6] recommends to decompose f*(-) as the sum of per-edge terms such that:

h® — Zf(v,l M, ) (2)

v/ €NBR

with f(+) a linear function of h,, or a feed-forward neural network. For example, f(-) can be formulated as a linear function:
(bbb, B ) = WA e TG ) (3)

with W and b learnable weight and bias parameters. The hidden node representations are propagated throughout the graph
until a fixed point is reached. As explained in [6], it implies that f(-) has the property that a fixed point for Eq. (2) can be
reached.

Once a fixed point h, has been reached, a second model is then used to compute the output vector oy for each node v € Vv
such that:

oy =g (hvs lv) (4)

Practically, g(-) is implemented using a feed-forward neural network [6]. The neural network architecture is differentiable
from end-to-end, so that all parameters can be learned using standard techniques for neural networks based on gradient-
based optimization.

Due to the required fixed-point iterations, training of the parameters of f(-) and g(-) of the GNN is done via the Almeida-
Pineda algorithm [28,29] which works by running the propagation of the hidden representation to convergence, and then
computing gradients based upon the converged solution.

3.2. Gated graph neural networks

Lietal. [4] recently introduced Gated Graph Neural Networks (GGNNs) as an extension of GNNs using more recent neural
network techniques, based on Gated Recurrent Units (GRU) [13]. GRUs are special types of neural network blocks with an
internal memory. Such blocks are generally used to process time-dependent inputs such as audio or written words, which
can be mathematically simplified as:

output® = function (input®, output*~") (5)

In GGNNs, each node aggregates the hidden representations it receives from all adjacent nodes as in Eq. (2), and uses that
to update its own hidden representation using a GRU cell. More specifically, the propagation of the hidden representations
among neighboring nodes for one time-step is formulated as:

T
a = A, [h(f’” . hj@j”] + by 6)

Z(t) -0 (W a(t) +U, h(t—l) +h, ) (7)
t) = o (Wal +Uh( " + by) (8)
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Fig. 3. Representation of a Gated Graph Neural Network.
h{” = tanh (Wa® + U (1) © k) + b) 9)
h = (1-2Y) oh!~" + 2" o h)’ (10)

where o(x) = 1/(1 + e™*) is the logistic sigmoid function and © is the element-wise matrix multiplication. {W,, W,, W}
and {U,, U,, U} are learnable weights matrices, and {b,, b, b,, b} are learnable biases vectors. A € RV*IVI is the graph
adjacency matrix, determining how nodes in the graph ¢ communicate with each other.

Eq. (6) corresponds to one time-step of the propagation of the hidden representation of neighboring nodes to node v,
as formulated previously for Graph Neural Networks in Eqs. (1) and (2). Egs. (7)-(10) correspond to the mathematical
formulation of a GRU cell, with Eq. (7) representing the GRU reset gate vector, Eq. (8) the GRU update gate vector, and
Eq. (10) the GRU output vector as described in Eq. (5). The initial hidden representation h{?) is based on the node’s feature
vector [, padded with zeros according to the dimensions of the hidden representation.

The output vector o, for each node v is computed as in Eq. (4) using a feed-forward neural network. The overall
architecture of the GGNN is illustrated and summarized in Fig. 3.

While with GNNs the node propagation loop is performed until a fixed-point is reached, a fixed number of iterations is
used in GGNNs. This process enables the use of traditional gradient-based training methods used for feed-forward neural
networks such as RMSProp [30]. Since hidden representations are propagated iteratively to node neighbors at each iteration,
the number of iterations necessary for achieving good accuracy depends mainly on the path length between relevant nodes
in the analyzed graph. In the example in Fig. 2, if the output vector of node 1 depends on the input features of node 4, at least
two iterations of the propagation loop are required, since the hidden representation of node 4 is first propagated to node 2
in the first iteration, before reaching node 1 in the second iteration.

While the number of iterations is highly dependent on application, we propose here two simple heuristics for choosing
the number of iterations. The first heuristic is to use the diameter d of the studied graph, namely the greatest distance
between any pair of nodes, which ensures that each node receives at least once the propagated hidden representation of all
other nodes in the graph. The second heuristic is to use 2 x d, which ensures that the hidden representations between any
pairs of nodes in the studied graph could be propagated in both directions. Numerical evaluations in Section 5.7 illustrate
the influence of the number of iteration on the accuracy.

3.3. GGNN-LSTM: Extension of gated graph neural networks with LSTM

In our approach we use an extension of Gated Graph Neural Networks - called here GGNN-LSTM - based on the Long
Short-Term Memory (LSTM) cell [31]. This neural network architecture is based on the Gated Graph Neural Network
architecture where the GRU memory cell is replaced with a LSTM cell. The overall architecture of the GGNN-LSTM is similar
to the GGNN illustrated in Fig. 3.

Similarly to Egs. (6)-(10), the propagation of the hidden representations among neighboring nodes for one time-step in
a GGNN-LSTM is formulated as:

T
a0 = Ay [0 m V] by (11)

v

il = o (Wal) + U~ + b)) (12)
£ = o (Wral” + Ush( ™) + by) (13)
0l = o (W,al? + Uph! " + by) (14)
gl = tanh (Wzal) + Ugh{'~" + by) (15)
) = =D o ) 4 gt o i (16)
h{" = tanh (V) @ o (17)

with {W;, ...} and {U;, ...} learnable weight matrices, and {b;, . ..} learnable bias vectors.
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Eq. (11) is the propagation of the hidden representations among neighbors, as in Eq. (6). Eqs. (12)-(14) correspond
respectively to the input, forget and output gates of the LSTM cell. Eq. (15) is a candidate hidden representation, with an
initial value c/? set to zero. Eq. (16) is the internal memory of the LSTM cell.

Our rationale for using this alternate neural network architecture is motivated by better accuracy than the GGNN based
on GRU presented in Section 3.2, as shown in the numerical evaluation in Section 5 for the TCP task.

3.4. Stacked gated graph neural networks

Since the neural network architectures introduced earlier are based on a special variant of recurrent neural networks,
advances made for standard RNNs may also be applied here. For this purpose, we make use of stacked RNNs as proposed
by Pascanu et al. [32], and illustrated in the following equation:

h(r;l) =r (A, h(tfl:l)’ h(t;lfl)) (]8)

where h*:! corresponds to the hidden representation at timestep t and layer I, and r a function describing the recurrent unit,
i.e. Egs. (6)-(10) for the GRU or Eqgs. (12)-(14) for the LSTM unit.

3.4.1. Edge attention

A recent advance in neural networks has been the concept of attention, which provides the ability to a neural network to
focus on a subset of its inputs. This mechanism has been used in a variety of applications such as computer vision or natural
language processing (e.g. [33]). For the scope of GNNs, we introduce here so-called edge attention, namely we wish to give
the ability to each node to focus only on a subset of its neighborhood. Formally, let agau) € [0, 1] be the attention between
node v and u. Eq. (2) is then extended as:

(t) * -
W)= ) a0 (19)
ueNBR(v)
=i (00, ) (20)

We decompose fy(-) as two feed-forward neural networks and use an element-wise matrix multiplication to compute a
modified adjacency matrix. -
To make the computation of agtv),u) for all edges more efficient, we use the modified adjacency matrix A®) defined as:

A = A © softmax (fA1 HY o f, (H(”)> 1)
with fa, (-) and fa, (-) feed-forward neural networks, and softmax the normalized exponential function such that:
o
softmax(X); = ﬁ;xi (22)

4. Application to performance evaluations of networks

We describe in this section the application of the deep learning architectures presented earlier to the performance
evaluation of network topologies and network protocols. In other words, our goal is to represent network topologies and
the flows traversing them as graphs which can be passed as inputs to a GGNN. Compared to other works on the application
of machine learning to performance evaluation, the main contribution is that this graph representation is a low-level input
feature. This means that specific high-level features of the studied network protocol are not required and the trained machine
learning algorithm is not restricted to a specific topology.

The main intuition behind the input feature modeling for the GGNN is to use the network of queues as input graph g,
with additional nodes representing the flows in this network. An illustration of this network of queues is given in Fig. 4b,
which is the representation of the different queues in the example network depicted in Fig. 4a. Note that we represent on
Fig. 4b only the forward path of the flows. Fig. 4b may also be extended to include the queues taken by the acknowledgment
packets used by the flows if necessary, such as TCP ACK packets for example as explained later in Section 5.2.

We formally define here the transformation between an input computer network and the undirected graph G = (V, &)
which will be analyzed by the GGNN. Fig. 4c is an application of this transformation applied to the network presented in
Fig. 4a.

We focus in this article on the study of simple Ethernet networks, where computers are connected via simple store-
and-forward switches and exchanging data via flows. We assume that each flow in the network is unidirectional, with a
single source and a single destination. Each flow f is represented as a node vy in the graph G. As illustrated in Section 5.2,
bidirectional flows such as TCP flows may still be analyzed by using two unidirectional flows, modeled in G by two nodes
connected by an edge.

We assume here that the routing in the studied network is static, namely that the path taken by a flow is fixed. Each
queue traversed by a flow in the network is represented as a node v, in the graph g. For simplifications purpose we only
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Fig. 4. Graph encoding of an example network topology with three flows.

consider the queues present in the network interfaces and not other queues which may be present in operating systems. We
model network interfaces using a simple drop-tail queue. In case of Ethernet switches, multiple nodes are used since multiple
interfaces are present. Queues are connected by edges according to the physical topology of the studied network. Let Qs be
the set of queues traversed by flow f. In order to encode the path taken by a flow, edges connect the node representing the
flow vy with the nodes representing the traversed queues {v4|q € Qs}.

Each node v in the graph G is characterized by its input features [,, encoding parameters relevant to the studied network
protocol. In the simple case illustrated here, we only encode the node type - i.e. if a node represents a flow or a queue - using
one-hot encoding. Namely I, is a vector with two values, with [1, 0] is for queue nodes, and [0, 1]” for flow nodes.

Each node v in the graph G is also characterized by its output features o, corresponding to the values which are predicted.
In this article, we study in Section 5 the case where the output vector o, of each flow f corresponds to a bandwidth or an
end-to-end latency. Since we do not make prediction on queues here, their corresponding nodes have no output vector. This
is implemented by using a masked loss function for training the neural network, which only take into account the output
vectors of flows.

Note that for simplification purpose, we limited this section - and description of transformation between network and
graph - to the case where all nodes in the network have the same behavior and that all links in the topology have the same
capacity and latency. Additional features for distinguishing between different behaviors or node types (e.g. link capacity,
different vendors, operating system) may easily be added in case differences between nodes are present and relevant to
the prediction, such as different configurations, types or link capacities. In this case, [, is extended with additional values
representing those differences and encoded using standard practices for feature encoding in machine learning. Example
of such scenario where each node has a unique attribute is given later in Section 5 where flow rates and packet sizes are
additionally encoded in [,.

We note that this network transformation process may easily be extended to more complex architectures and more
refined models of queues, such as having network interfaces using multiple queues and a packet scheduler, or modeling
more precisely network switches using additional queues depending on the internal architecture of switches. Since standard
packet processing pipelines can easily be represented as graphs, additional nodes and edges representing more complex
pipelines may be added in the graph.

Compared to more traditional approaches as in [2,3,8], we note that the graph and feature representations described here
are independent of any studied network protocols or specific metrics (e.g. bandwidth, latency, etc.).

5. Numerical evaluation

In this section, we evaluate Graph Neural Networks in the context of our approach described in Sections 3 and 4 on
two representative use-cases: prediction of the average steady-state bandwidth of TCP flows and prediction of end-to-end
latencies of UDP flows.

5.1. Implementation

For both use-cases, the same implementation, parameters and learning algorithm for the neural network were used. The
GGNN architectures presented in Sections 3.2 and 3.3 were implemented using Tensorflow [34] and trained using a Nvidia
GeForce GTX 1080Ti GPU. The recurrent part of the GGNN and GGNN-LSTM were respectively implemented according to
Eqgs. (6)-(10) and Eqgs. (11)-(17). The function g(-) in Eq. (4) was implemented using a feed-forward neural network with two
dense layers. Additional dropout layers [35] were added according to standard practices for recurrent neural networks [36]
in order to avoid over-fitting.

For each studied use-case, the model was trained multiple times using the parameters listed in Table 1. The learning
rate used for training the models was optimized following standard practices based on Bayesian optimization. The learned
weights producing the best result is then selected for the numerical results presented in the rest of this section. All GNN
models evaluated here were trained for the same number of iterations.
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Table 1

Parameters used for the training phase of the neural networks.
Parameter Value
Size of hidden representation h, 96
Number of loops unrolling 12
Training algorithm RMSProp [30]
Mini-batch size 64
Number of training iterations 20000

Fig. 5. Daisy chain topology used for the numerical evaluation.

The following Graph Neural Network architectures were evaluated:

e GGNN-GRU: A Gated Graph Neural Network using a GRU memory unit as presented in Section 3.2,

e GGNN-LSTM: A Gated Graph Neural Network using a LSTM memory unit as presented in Section 3.3,

e GNN-RNN: A simplified implementation of Graph Neural Network as described in Section 3.1 using a simple Recurrent
Neural Network (RNN) architecture, where the hidden node representation is computed as:

T
a0 = A [ @
h{" = tanh (Wa® + Uh{" + b) (24)
with W and U learnable weight matrices, and b a learnable bias vector.
o GNN-RNN? and GNN-RNN? as stacked versions of GNN-RNN following Section 3.4, with respectively 2 and 3 stacks, as

indicating by the exponent in the architecture label.

In order to compare our approach with other machine learning approaches, we evaluate also the following additional
models:

e SVR: Support Vector Regression for the TCP bandwidth predictions using measured round-trip time and loss probability
as input features. This model is comparable to one proposed by Mirza et al. [2]. We note that the use of such model
requires active measurement in the network. The implementation of SVR from scikit-learn [37] was used for the
evaluation.

e FFNN: A feed-forward neural network with three dense layers for the TCP bandwidth predictions using the same
features as the SVR model.

5.2. Use-case: prediction of average TCP flow bandwidths

In this first use-case, we evaluate the capabilities of our approach at predicting the steady-state bandwidth of TCP flows
sharing different bottlenecks.

For the generation of the topologies, a random number of Ethernet switches is first selected using the discrete uniform
distribution ¢/(1, 6) and connected according to a daisy chain as illustrated in Fig. 5. A random number of nodes is then
generated using the discrete uniform distribution ¢/(2, 32) and connected to a randomly selected Ethernet switch. For each
node, a TCP flow is generated with a randomly selected destination among the other nodes. The default parameters of ns-2
for the TCP stack are used, meaning that TCP Reno is used as a congestion control algorithm. The results of the simulations
are used as a basis for the learning process of the neural network.

Since the performance of TCP flows is highly dependent on the congestion experienced by TCP acknowledgments, we
extend our approach from Section 4 to also include TCP ACKs in the input graph representation. Fig. 6 represents the graph
encoding which has been used for this task on a simple topology. We follow the method explained in Section 4, where
each queue in the network is represented by a node. Each TCP flows is encoded as two nodes in the graph: one node for
representing the data sub-flow and one node for the acknowledgment sub-flow, both connected by an edge. Each node i in the
graph has a feature vector encoding node type as a one-hot vector:
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Fig. 6. Graph encoding used for the TCP prediction task.

e [1,0,0]" for nodes representing queues,
e [0, 1, 0] for TCP data nodes,
e [0, 0, 1]7 for TCP acknowledgment nodes.

The output vector y; of each node representing a TCP data sub-flow is a single value corresponding to the normalized steady-
state bandwidth. The output vector of the other nodes is masked in the loss function.

As shown in previous studies about TCP [9,24], the average throughput of TCP flows depends on various parameters such
as the TCP congestion control algorithm, the configuration of the TCP stack, round-trip times or drop probabilities, as well
as the interaction between flows. The graph encoding used here offers a more low-level representation.

The neural network is trained against a mean-square loss function such that the following function is minimized:

1
D wi—o) (25)

|ﬂOWS| icflows

5.3. Use-case: prediction of UDP flows end-to-end latencies

In this second use-case, we evaluate the capabilities of our approach at predicting the end-to-end latencies of UDP flows
sharing different bottlenecks. We follow the same approach as for the previous use-case, namely multiple random topologies
with UDP flows are generated and evaluated using simulations. The same daisy-chain topology presented in Fig. 5 is used
here.

Each UDP flow i generates unidirectional traffic from a given pair of source S; and destination D;, with constant rate r;,
using packets of random size taken from a uniform distribution from 10 to m; Bytes. The parameters S;, D;, r; and m; are
randomly generated for each UDP flow. For this use-case we focus on the prediction of the average and 95% quantile of the
end-to-end delay for each flow in a given topology.

Regarding the graph encoding, we follow the approach illustrated in Section 4 with Fig. 4 since flows are unidirectional.
As for the TCP use-case, the feature vector of each node i encodes the node type as a one-hot value and the traffic parameters:

e [1,0, 7, m;]" for nodes representing flows, with 7; and m1; the normalized versions of r; and m;
e [0, 1,0, 0]" for nodes representing queues

The output vectory; of each node representing a UDP flow corresponds to the normalized end-to-end latency. As for the TCP
use-case, we use Eq. (25) as loss function, where the output vector of the non-flow nodes are masked.

5.4. Prediction accuracy

In order to evaluate the accuracy of the different models presented here, we evaluate the predictions using the relative
absolute error and residual metrics:
o
Relative absolute error: M (26)
yi
Residual: y; — o; (27)

with y; and o; respectively measurements from the simulations, and predicted values.

Fig. 7 illustrates the distributions of relative error of the different neural network architectures for the datasets previously
described.

We first focus our interpretation of Fig. 7 on the TCP use-case with machine learning models using high-level features
(round-trip time and loss probability), namely SVR and FFNN. The median relative absolute error of 11.6% for the SVR model
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is in line with the results from [2], which reported a 10% median relative error. The feed-forward neural network provides
better results, with a median relative error of 3.5%. Those values will be used as a baseline for comparison purposes.

Regarding the GGNN models, all architectures evaluated here are able to predict the TCP bandwidths with a median
relative error below 1%, outperforming the values from the SVR by one order of magnitude, and also outperforming the
feed-forward neural network using high-level input features. This highlights our main motivation for using GGNNs.

Regarding UDP latencies, we are also able to reach a median relative error below 1%. The GGNN-LSTM architectures
provide better results on the TCP use-case, while the GRU-based ones are more suited to the UDP use-case. We note that
using stacked memory cells for the GGNN enables better accuracy for the TCP use-case, while not providing better results in
the UDP use-case.

Compared to the more simpler GNN-RNN architecture, we notice that we reach better accuracy using a GRU or a LSTM
memory cell, even in case of memory stacks. This motivates our choice of using more recent graph-based neural network
architectures from [4] compared to the earlier results from [5,6].

In order to better understand the difference between both GRU- and LSTM-based architectures, we investigate the average
residual as illustrated in Fig. 8.

For both use-cases we notice similar values for normalized values below 0.5, where both architecture result in similar
residual. In the TCP use-case, both architectures provide similar results across the range of measured values, with a tendency
for the GRU-based architecture to underestimate bandwidths, while the GGNN-based one overestimates bandwidths. A
similar behavior is exhibited for the UDP use-case.
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Fig. 9. Evaluation of the precision of the architectures against their number of variables.

5.5. Influence of model size

An important factor when comparing machine learning models and neural network architectures is their number of
variables according to their precision, as illustrated in Fig. 9. For the SVR model, we quantify the number of variables as
the size of the support vectors. For the neural network architectures, the number of variables presented in here are based
on the same size for the hidden node representation (as highlighted in Table 1). Since model size directly correlates with
training time and evaluation time, an ideal model would be in the bottom left part of Fig. 9, meaning it would provide the
best accuracy with the lowest possible number of variables.

The difference between SVR and GGNN is also noticeable here, since both types of models use a similar number of
variables, but with large differences in relative error. Fig. 9 illustrates also the motivation for using GGNNs with memory
cells as the GGNN-GRU and GGNN-LSTM architectures outperform the other methods.

We also notice that although the GNN-RNN? and GGNN-GRU architectures have similar number of variables, the GGNN-
GRU architecture outperforms the GNN-RNN? one, motiving our choice of more advanced graph-based neural network
architecture.

5.6. Influence of graph size

We investigate in this section the relationship between size of the network topology and the precision of the model.
Fig. 10 illustrates the influence of input graph size against the relative error. While some correlation between graph size
and relative error are visible in Fig. 10, it is dependent on which dataset is investigated. We note that for the TCP use-case,
increase in graph sizes result in an increase in the relative error. In the UDP use-case, the relationship between graph size
and relative error is reversed.

5.7. Influence of number of unrolled loops

We noted in Section 3.2 that GGNNs are unrolled a fixed number of iterations T compared to GNNs. Fig. 11 illustrates
the influence of T against the relative error, where the illustrated GGNNs were trained with different values for T. Since
increasing T also has an impact on training and evaluation time, a trade-off between accuracy and speed has to be established
when designing the graph neural network’s architecture and choosing its hyper-parameters. Increasing T improves the
prediction accuracy in both use-cases for the studied architectures, with smaller effect for T larger than 12, motivating our
choice of T = 12 as presented in Table 1.

We notice that the UDP use-case highlights a larger difference between both architectures, where larger values of T for
the GGNN-GRU provide only minimal impact on the prediction accuracy. This can be explained by the fact that end-to-end
latencies depend more on local queuing effects than topology-wide ones. This is opposed to the performance of TCP flows,
where the interaction between flows on a larger scale across the topology have larger impact than local effects.

5.8. Execution time

In order to understand the scalability of our model presented in Section 3, we evaluate in this section our implementation
in terms of execution time. Since our datasets with TCP or UDP flows contain mainly small networks, we evaluated our
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implementation against randomly generated graphs. We followed the Erd6s—-Rényi model [38] for generating random graph
with a randomly selected number of nodes |V| following the uniform distribution 2/(2, 1000) and a random number of edges
|| following the uniform distribution &/ (N — 1, D|V|(|V| — 1)/2) with D the graph density parameter. The average graph
density for both datasets used in Sections 5.2 and 5.3 was approximately 0.2.

Since the propagation of hidden node representations defined in Egs. (2) and (6) may either be implemented in Tensorflow
using dense matrix multiplication, or using sparse operations as noted by Allamanis et al. [20], we evaluated a dense and
a sparse version of our model. According to the mathematical operations illustrated in Section 3 the runtime of one loop
unrolling of the GNN correspond to the sum of the following terms:

e Per-node operations, namely Eqs. (7)-(10) for the GGNN-GRU, which scale linearly in execution time with the number

of nodes, namely O (|V|);

e The propagation of hidden node representations defined in Eqs. (2) and (6):

- scaling linearly with the number of edges with sparse operations, namely O (|€]), i.e. O (D|V|2) following that the

max (|£]) = D|v|(|v] — 1)/2,

- scaling according to the multiplication of the hidden node representations with the graph adjacency matrix of
size |V| x |V| with dense operations, namely © (#|A|*) with # the size of hidden representation.
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Those operations are performed multiple times according to the number of loop unrolling, as discussed in Sections 3.2 and
5.7. In summary, our implementations should scale in execution time quadratically with the number of nodes in the graph,
and linearly with the number of edges.

Numerical results are presented in Figs. 12 and 13 for our two different implementations and three values for the
maximal graph density. The execution time measurements were measured on a server equipped with an Intel Xeon CPU
E5-2620 v4 at 2.10 GHz and a Nvidia GeForce GTX 1080Ti. Batching of graphs was used to take advantage of parallelization.
Those measurements validate the theoretical results presented earlier and illustrate the difference between the two
implementations. As expected, the implementation using sparse operations performs faster for small graph densities while
the implementation using dense operations performs the same regardless of graph density.

Those numerical results illustrate also applicability in practical use-cases since the execution time for prediction is below
200 us even for graphs with 1000 nodes and 150 000 edges. This small execution time enable fast operation in real networks,
where the predictions may be used to dynamically configure computer networks.

Finally, while we illustrated in Figs. 12 and 13 the execution time for making a prediction on a given graph, our approach
may still be limited by the size of the required dataset for larger networks in the training phase. Depending on the task which
needs to be predicted, larger datasets may be required on larger graphs, since those larger cases may exhibit more complex
behaviors. In the two use-case described in Sections 5.2 and 5.3, larger networks and larger number of flows will result in
edge cases for the performance, namely low bandwidth for the TCP use-case and high latencies for the UDP one. Since those
performance are inherently limited by link speed and maximum buffer sizes of the underlying topology in those edge cases,
training and prediction on larger networks should still possible with moderate dataset sizes.
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Fig. 14. Influence of nodes, other flows, and flow acknowledgments on the flows’ performance.

6. Interpreting GNNs

An important subject when working with neural network is the interpretability of the learned model and its associated
weights. A method often used for this purpose in computer vision is feature visualization using optimization [39], where
inputs are optimized such that a specific output feature is maximized.

In our case, we are interested in visualizing the interaction between selected flows and the traversed queues. Once the
parameters of the graph neural network learned, we replace the adjacency A with a modified matrix A such that

A=A0o (B+B') (28)

with B € RIVXVI 3 learnable matrix. B + BT ensures that A is a symmetrical matrix. For a given flow f, we then minimize
the following loss function:

1 ~
(v — o)’ + Ve > A (29)
ij

Fig. 14 illustrates the result of this optimization on a small topology with four TCP flows. We optimized B for each flow
in the topology using gradient based optimization. The results are then aggregated according to the nodes in the network
topology instead of the respective edges. The influence matrix corresponds to the aggregated value of B.

As expected, bottlenecks and flows sharing the same bottleneck have an influence on each other, as shown for instance
on the influence from SW; and Fy on Fs. Nodes having no influence on the performance of flows can also be found, as
illustrated here by SW; having no influence on F;. Using this visualization method, root-cause analysis of poor performance
and bottleneck identification may be performed.

7. Conclusion

We presented in this article DeepComNet, a novel approach for the performance evaluation of network topologies and
flows based on graph-based deep learning. Our approach is based on the use of Gated Graph Neural Networks and a low-
level graph-based representation of queues and flows in network topologies. Compared to other approaches using machine
learning for performance evaluation of computer networks, the trained model is not specific to a given topology and high-
level input features requiring more advanced knowledge on the studied protocol are not required.

We applied our approach to the performance evaluation of the bandwidth TCP flows and the performance evaluation
of end-to-end latencies of UDP flows For both tasks, taking into account the topology in the performance evaluation is
important: the throughput of TCP flows is dependent on the network architecture and network conditions (i.e. congestion
and delays), and the end-to-end latencies depend on local queuing effects across the different queues from the topology.
We showed via a numerical evaluation that our approach is able to reach good accuracies, with a median absolute relative
error below 1%, even on large network topologies with multiple hops. We compared the chosen neural network architecture
against two other approaches based on machine learning using high-level input features, and showed that our method
outperforms those approaches by as much as one order of magnitude. Different types of GGNNs and configuration parameters
were evaluated in order to understand which GGNN architecture produces the best results according to the studied network
protocol. Finally we also gave some insights into the interpretation of the neural network in order to see which nodes in a
given topology have an influence on protocol performances.

Since the network topology is directly taken as input of the neural network, applications such as network planning and
architecture optimization may benefit from the method developed in this article. Future work may include further study of
end-to-end protocols performance as well as optimization techniques based on this method.
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DeepMPLS: Fast Analysis of MPLS
Configurations Using Deep Learning

Fabien Geyer
Technical University of Munich & Airbus CRT, Germany

Abstract—With the increasing complexity of communication
networks and the resulting threat of disruptions of mission
critical services due to manual misconfiguration, automated ver-
ification is becoming a key element in today’s network operation.
In particular, it has recently been shown that a polynomial-
time, automated verification of the policy-compliance of network
configurations is possible for the important class of MPLS
networks, even under failures. However, this approach, while
providing polynomial runtimes, is still fairly slow in practice
and only allows to detect but not fix configurations.

This paper proposes a novel approach to speed up the analysis
of network properties as well as to suggest configuration changes
in case a network property is not satisfied. More specifically, our
solution, DeepMPLS, allows to predict if a network property is
satisfiable, and if not, aims to present a counter example. We
also show that DeepMPLS may be used to propose new prefix-
rewriting rules in the MPLS configuration in order to make it
satisfiable. DeepMPLS can hence be used for fast predictions,
before more rigorous analyses are performed.

DeepMPLS is based on a new extension of graph-based neu-
ral networks. Our prototype implementation, using Tensorflow,
achieves low execution times and high accuracies in real-world
network topologies.

I. INTRODUCTION

As communication networks are increasingly used for crit-
ical services such as health monitoring, power grid manage-
ment, or disaster response [1], their uninterrupted availability
is more important than ever before. However, the increasing
dependability requirements stand in stark contrast to today’s
manual approach to operate networks with often very complex
configurations.

Automated approaches can greatly improve the trustwor-
thiness of networks and hence reliability, by allowing to
test a large number of network configuration for their pol-
icy compliance. Yet, many network verification tools still
require a super-polynomial runtime to test basic connectivity
properties [2, 3, 4]. Testing whether network configurations
are policy compliant even under failures, introduces another
combinatorial complexity.

It was recently shown that for the widely deployed MPLS
networks, a polynomial-time “what-if analysis” is possible [5]:
an automata-theoretic approach, leveraging a connection to
prefix rewriting systems, can be used to test important prop-
erties such as connectivity (can two endpoints reach each
other?), loop-freedom (may packets be forwarded in circles?)
or waypoint enforcement (is traffic always going through the

ISBN 978-3-903176-08-9 ©2019 IFIP

Stefan Schmid
Faculty of Computer Science, University of Vienna, Austria

firewall?), even under failures. While this is promising, the
runtime in practice is still relatively high (in the order of
an hour even for relatively small yet complex networks):
essentially, the approach in [5] requires the construction of
a large pushdown automaton (PDA), based on the network
configuration, the routing tables, as well as the query; the PDA
is then solved using reachability analysis. While PDA is still
polynomial in size, it can quickly grow to millions of nodes
and transitions in realistic networks, for which reachability
has to be solved for each query. Furthermore, the approach
can only be used to verify properties, but not to repair
configurations, e.g., to re-establish invariants.

This paper is motivated by the question whether it is
possible to build upon these recent results while exploiting
opportunities for speeding up verification as well as to support
an automated fixing of configurations. This is challenging also
because unlike other networks, MPLS supports arbitrary (and
in principle unbounded) header sizes: additional labels are for
example pushed to route around railed links. Our work is also
motivated by a novel approach which seems to fit the specific
problem particularly well: Graph Neural Networks [6, 7] have
already been applied successfully in many contexts, including
molecule analysis [8, 9] or jet physics [10], but despite being
a natural choice for our problem, its potential is largely
unexplored.

A. Our Contributions

This paper presents a novel approach to speed up veri-
fication and synthesis of the policy-compliance of network
configurations. At the heart of our our tool, DeepMPLS, lies
a new extension of graph-based neural networks: leveraging
deep learning, DeepMPLS allows to predict counter examples
(i.e., “proofs” or witness traces) to specific network properties
(or queries), which can be verified fast. In fact, in this
paper we show that DeepMPLS’s probabilistic approach may
even be used for synthesis: it has the potential to predict
which MPLS rules should be added, in order to re-establish
certain properties. The tool may hence overcome the need to
perform more rigorous and time-consuming analyses in many
scenarios.

Our experiments, using our TensorFlow prototype imple-
mentation, show promising results: on real network topologies,
DeepMPLS can achieve a high degree of accuracy with fast
execution time.
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As a contribution to the research community and in order to
ease future research, our dataset and experimental data used
in this paper is also available online.

B. Scope and State-of-the-Art

We are concerned with the correct, i.e., policy-compliant
configuration of widely deployed MPLS networks. In par-
ticular, we are interested in predicting and fixing properties
of MPLS networks which are described as a regular query
language, as it is also used in the state-of-the-art P-Rex tool [4]
motivating our paper. To this end, a formal model for MPLS
networks is required. Before we sketch the model (see [4] for
more details), we briefly review some basic concepts of MPLS
networks.

In a nutshell, MPLS networks operate between Layer 2
and Layer 3 and rely on tunnels across a transport medium.
Forwarding decisions are based on the top-of-stack label: an
MPLS node (i.e., a.k.a. label switch router a.k.a. transit router)
uses the top label of the label stack included in the packet
header, to determine the next hop on a Label Switched Path
(LSP). On this occasion, the old label can be replaced with
a new label before the packet is routed forward. An MPLS
node serving as label edge router acts as the entry and exit
point for the network: a label edge router pushes an MPLS
label onto an incoming packet resp. pops it from an outgoing
packet.

More specifically, upon receiving a packet and depending
on the content of the top of the stack label, an MPLS node
performs a swap, push or pop operation on the packet label
stack: In a swap operation the label is swapped with a new
label, and the packet is forwarded along the path associated
with the new label; in a push operation a new label is pushed
on top of the existing label, encapsulating the packet in another
layer of MPLS and introducing hierarchical routing; and in a
pop operation the label is removed from the packet. If the
popped label was the last on the stack, the packet leaves the
MPLS tunnel.

In order to deal with failures, MPLS includes a local
protection mechanism allowing to protect a label switched path
by a backup path. This mechanism is based on the recursive
pushing of labels, i.e., tunnels, around a failed link.

Our work is motivated by the goal to predict and fix
properties according to a natural regular query language [4]. A
(reachability) query is of the foorm < a > b < c¢> k where
the regular expression a describes the (potentially infinite) set
of allowed initial label-stack headers, the regular expression
b describes the set of allowed routing traces through the
network, and the regular expression c describes the set of label-
stack headers at the end of the trace. Finally, k is a number
specifying the maximum allowed number of failed links.

This query needs to be answered for a given MPLS
network whose configuration can be described as a tuple
N = (V,I,L,E,7): V is the set of routers, I the set of
all interfaces in the network connected by links F, L the
set of label stack symbols and 7 the routing table (including
conditional failover rules).

P-Rex allows to answer the following question in polyno-
mial time: is there a set of failed links F with |[F| < k
for a given network configuration N = (V,I,L, E,T) such
that there results a route (i.e., trace) satisfying the regular
expression?

Towards this goal, P-Rex automatically collects the current
routing tables, and given them as well as the network and
the query, constructs a pushdown automaton (PDA) on which
reachability analysis is performed using the Moped tool. More
specifically, the initial header and final header regular expres-
sions of the query are first converted to a Nondeterministic
Finite Automaton (NFA) and then to a Pushdown Automaton
(PDA). The path query is converted to an NFA, which is
used to augment the PDA constructed based on the network
model. The three PDAs are combined into a single PDA which
simulates the automata running in lockstep and can then be
queried.

P-Rex then not only provides a yes or no answer, but
also a witness, if it exists. Furthermore, P-Rex additional
optimizations such as “top of stack reduction”, reducing the
number of transitions in the PDA.

Thus, the challenge considered in this paper is to not only
reduce the runtime further (which keeping the support for
arbitrary header sizes and multiple link failures), using a novel
methodology, but also to again “synthesize” a witness for each
query. In particular, we would like to improve the runtime for
“hard queries”: to this end, we propose a methodology which
considers the size of the PDA as a measure of complexity

C. Organization

The remainder of this paper is organized as follows. In
Section II, we present our approach and solution in detail.
Section III describes the dataset used for training and evaluat-
ing our approach, and Section IV reports on our experimental
results. After reviewing related work in Section V, we con-
clude our work in Section VI and discuss future work.

II. DEEPMPLS BASED ON GRAPH NEURAL NETWORK

This section presents our approach, DeepMPLS, supporting
the fast testing and synthesis of MPLS network configura-
tions. The main idea behind DeepMPLS is to map network
topologies to graphs, which can then be processed using neural
networks. Our graph representation has nodes representing
routers, physical interfaces of routers and additional nodes
used for describing MPLS configurations and queries. Edges
between the nodes represent physical links in the topology,
as well as the interactions between a MPLS configuration
and elements of the network topology. Those graphs are then
used as input for a neural network architecture able to process
general graphs.

Compared to other representations used in machine learning
which require to summarize properties of a topology in a
vector of fixed size, our approach is not limited by the size of
the topology or its configuration. This means that an accurate
description of the complete topology and its configuration can
be passed to the neural network.
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A. Leveraging Graph Neural Networks

The neural network architecture used by DeepMPLS is
based on an extension of Graph Neural Networks [6, 7]. In the
following, let G = (V,€) be an undirected graph with nodes
v € V and edges e € £. Let i, and o, represent respectively
the input features and target values of node v.

Graph Neural Networks rely on a message passing concept:

n = g ({hg—U ’ ue NBR(U)}) )
o, =g (n{=>) @)
thzO) = init (iy) 3)

with hg,t) corresponding to the hidden representation of node
v at time ¢, f(-) a function which aggregates the hidden
representations, NBR(v) the set of neighboring nodes of v,
g(+) a function transforming the final hidden representation to
the target values, and inst(-) an initialization function for the
hidden representations.

The concrete formulations of the aggr and out functions
are feed-forward neural networks (FFNN), with the addition
that aggr is the sum of per-edge terms [7], such that:

Y = aggr ({Bin}) = > F(00Y) @
uENBR(v)
with f a FFENN. init is modeled as a one-layer FFNN which
produces a vector respecting the dimensions of the hidden
representations.

Gated Graph Neural Networks (GGNN) [11] were recently
proposed as an extension of GNNs to improve their training.
This extension implements f using a memory unit called
Gated Recurrent Unit (GRU) [12] and unrolls Equation (1) for
a fixed number of iterations. This simple transformation allows
for commonly found architectures and training algorithms for
standard FFNNs as applied in computer vision or natural
language processing.

Formally, the propagation of the hidden representations
among neighboring nodes for one time-step is formulated as:

x® =HVA +b, 3)
20 =g (Wza:(t> FUHED ¢ bz> ©6)
=g (Wr.r(t) +UHED ¢ br> )

H® = tanh (Wmm +U (r@) ® H(t‘1)> + b) ®)
HO — (1 _ z(t)> OHED 420 o HO ©)

where o(x) = 1/(14¢e7%) is the logistic sigmoid function and
® is the element-wise matrix multiplication. W,, W,., W and
U,,U,, U are trainable weight matrices, and b,, b,., b, b are
trainable bias vectors. A € RIVIXIVI is the graph adjacency
matrix, determining the edges in the graph G.

Equation (5) corresponds to one time-step of the propa-
gation of the hidden representation of neighboring nodes to
node v, as formulated previously for GNNs in Equations (1)
and (4). Equations (6) to (9) correspond to the mathematical

formulation of a GRU cell [12], with Equation (6) representing
the GRU reset gate vector, Equation (7) the GRU update gate
vector, and Equation (9) the GRU output.

B. Application to MPLS Network Analysis

In order to tailor the above concepts to MPLS network
verification and synthesis, we need a transformation of net-
work topology and MPLS configuration to a graph. The
transformation process we propose in this paper is illustrated in
Figures 1 to 4, where the MPLS network depicted in Figure 1
is transformed into a graph.

50 D 51

1

60/51 5

c 61/51

Figure 1: Example MPLS network. In case the link between
v and v fails, a backup tunnel (vq, vs, v4) has is used around
the failed link.

&

Each router v € V' in the network is represented as a node
in the graph G. Each network interface i € I" U I9“* is also
represented as a node, connected via an edge to its router.
Links in the topology F are represented as edges connecting
the two corresponding network interfaces.

As presented in Figures 2 and 3, the MPLS configuration of
each router is also encoded as nodes and edges in the graph.
Each MPLS label [ € L is represented as a node. The routing
table of each router 7, : I, x L — (27+*9P")" is represented as
a set of rules. Each rule is represented as a node in the graph,
connected the nodes representing its input interface ¢ € I as
well as its input label [ € L. The actions o € Op associated
to a rule are also represented as nodes, connected via edges
in case multiple actions are to be performed for a given rule
as illustrated in Figure 3. MPLS actions with label parameters
such as swap or push are connected to their respective label
node. The last action associated to a rule is connected to its
output interface.

Queries are also encoded as nodes in the graph as illustrated
in Figure 4. In this paper, we will assume the same notation
as [4] for specifying queries, namely the regular expressions
which are defined over an alphabet ¥ and use the abstract
syntax

az=s8]|.]["81,...,8) | a1 +az | araz | a*
where
s is a symbol from X,
. is a wildcard for any symbol from 3,
["s1,..., 8] stands for any symbol s € X \ {s1,...,5,},
a1 + ag is the choice between a; and as,

aiao is the concatenation of a; and ao, and
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Action

Input label Label for Swap

Output
interface

nput
inte%ce

Figure 2: Encoding of network topology and a MPLS rule for
vy as graph.

Input label

Figure 3: Encoding of network topology and a second MPLS
rule for vy as graph.

a* is the concatenation of 0 or more occurrences

of a.

The set of all regular expressions over ¥ is denoted by
Reg(X) and we assume a standard definition of the language
Lang(a) C ¥* that is described by a regular expression a.

We follow an approach inspired by the McNaughton-
Yamada-Thompson algorithm [13] which transforms a regular
expression into an equivalent nondeterministic finite automa-
ton. The different symbols of the regular expression of a
query are represented as nodes, with edges representing their
relationships. In case a symbol corresponds to a MPLS label or
a router in the network, we reuse the node which was already
defined in the graph. Wildcard symbols are represented as
special nodes in the graph as illustrated in Figure 4.

Initial label Final label

5] @—1=

Figure 4: Encoding of network and query as graph.

Relationship between symbols such as combinations (a; +
az) are represented using edges in the query representation, as
illustrated in Figure 5.

Final label

Figure 5: Encoding of more complex query as graph.

Each node in the graph may have input features describing
characteristics of the node. In our case, nodes are mainly
represented by their type, encoded as categorical value. We
define the 12 following types for the nodes:

o Elements of the network topology: Router, Interface;

o Elements of the MPLS configuration: Rule, Label, Push

Action, Swap Action, Pop Action;
« Elements of the query and the regular expression: Query,
Label Wildcard, Label Dot, Router Dot, Router Wildcard.

Additionally to the type, the node representing a query has
an additional input feature corresponding to the k parameter.
Edges in the graph have no input features and represent only
the relationship between nodes.

For training of the graph neural network, we use different
output features depending on the prediction which is required.
We define the three following prediction tasks:

Satisfiability Heuristic for verifying if a query is satisfiable.

Routing trace Heuristic for generating a trace of routers
which match a satisfiable query.

Partial synthesis Synthesis of an MPLS configuration in or-
der to satisfy a query.

Example queries for those three tasks are detailed later in

Section III.

For the Satisfiability task, a classification task is defined
where the query node is classified in two categories (true or
false) in case the query is satisfiable or not. The training is
done using a softmax cross entropy loss on the query node.

Similarly, for the Routing trace task, router nodes are
classified in two classes, namely if the router is part of the trace
or not. Since we are interested in the per-topology prediction,
namely correctly classifying the router nodes in the graph, the
training is done using a graph-wide sigmoid cross entropy loss.

Finally for the Partial synthesis task, missing rule and action
nodes are added in the graph with the goal of connecting them
via edges to the appropriate router, label and interfaces in
order to satisfy a query. This case is an edge prediction task.
Predicted edges in the graph are then used for reconstructing
the MPLS prefix-rewriting rules. A similar loss function than
for the Routing trace task is used here.

C. Complexity Analysis

In order to understand the scalability of the model presented
in Section II-A, we evaluate the complexity of the algorithm.
According to the mathematical operations illustrated earlier,
the runtime of one loop unrolling of the GNN corresponds to
the sum of the following terms:

o Per-node operations, namely Equations (6) to (9), which

scales linearly in execution time with the number of
nodes, namely O(|V|);
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o The propagation of hidden node representations defined
in Equations (1) and (5), which scales linearly with the
number of edges, namely O(|&]) if sparse operations are
used (i.e. using the graph’s adjacency list), or quadrat-
ically to the number of nodes if the graph’s adjacency
matrix is used instead O(|V|?).

In order to achieve good accuracy, the recursion from Equa-
tion (1) is unrolled for a fixed number of iterations according
to D, the diameter of the analyzed graph. In total, the runtime
complexity is summarized as: O (D(|€] + |V])).

III. METHODOLOGY AND DATASET GENERATION

In order to train our neural network architecture, we used the
Topology Zoo [14] — a collection of over 250 networks used
in real-file — as a basis for generating network topologies.
Each network topology was either taken as is or randomly
modified, either by removing a router, or by adding a router
and connecting it to a set of randomly chosen routers.

Based on those network topologies, MPLS configurations
were generated for each network topology. With a given
probability, MPLS tunnels were constructed between randomly
selected pairs of routers in the network using dedicated MPLS
labels. Additionally to the tunnel corresponding to the shortest
path in the topology, a random number of additional backup
tunnels were also generated following different paths in the
network when possible. MPLS label stacking was used in
for those backup tunnels, following common practice for
automatic fail-over.

For generating queries, we randomly generate regular ex-
pressions as follows, with /; representing the input label, [, to
output label, r; the input router, r, the output router, and k
the maximum allowed number of failed links:

o < Iy >r; <l, >k is satisfied if a packet with label [;,
crosses router r;, and exists with label /,;

o <l >1r;Fr, <l, > kissatisfied if a packet with label
l; entering at router r;, traverses an unknown number of
other routers, and exists from router r, with label [,;

o <y >.."r, <l, >k is satisfied if a packet with label
l; enters the network, traverses at least one router, and
exists from router r, with label [,;

o < >y Fr, <l, >k is satisfied if there is a path
from router r; to 7, where the output label is /,;

o <l >mr;Fr, <.*> kissatisfied if a packet with label
l; entering at router r;, traverses the network, reaches
router r, with label [,.

Those queries, inspired by the ones presented in [4], mainly
focusing on reachability.

Routers and labels are either select randomly in the set of
available routers V' and labels L — resulting in most cases
in non-satisfiable queries — or they are selected such that
the query is satisfiable. In order to generate those satisfiable
queries, we construct a so-called MPLS traversal graph for
each network topology. In such a directed tree, each node
is a tuple of the form (input label, router, output label(s))
corresponding to the result of the MPLS routing table of each

router in the topology. Based on those MPLS traversal graphs,
satisfiable queries can be generated by randomly selecting a
node in the graph and traversing it randomly. Finally the k&
parameter of the query is generated randomly following a
discrete uniform distribution.

The satisfiability of each generated query is tested using
P-Rex [4], which relies on the construction of a push-down
automaton based on the query as well as the network. Con-
cretely, P-Rex generates one big pushdown automaton (PDA)
based on the regular expressions of the initial header and final
header defined by the query (which are first converted to non-
deterministic finite automata) as well as the nondeterministic
finite automata describing the path query.

Typically, the larger the PDA, the higher is the runtime
of reachability analysis, and accordingly, in our methodology
in the following, we will interpret the size of the PDA as
a measure of complexity. Accordingly, for each evaluation
of P-Rex, the size of the generated push-down automaton
is recorded and will serve as a numerical measure of the
complexity of the query in Section IV.

P-Rex can directly be used for defining the required outputs
of the Satisfiability and Trace tasks. For the Partial synthesis
task, we first randomly generate a satisfiable query and ran-
domly remove a maximum of two MPLS prefix-rewriting rules
such that the query is not satisfiable anymore. The rules which
trigger the loss of satisfiability are the rules that DeepMPLS
has to predict.

In total, more than 90.000 topologies and queries were
generated. Table I summarizes different statistics about the
generated dataset. The dataset is available online' to reproduce
the results.

Parameter ‘ Min Max Mean Median
# of routers 3 30 10.6 10
# MPLS labels 8 689 2253 174
# MPLS rules 8 795 3195 248
Size of push-down automaton 17 37006 5441.2 2692
# of nodes in analyzed graph 36 2333 914.4 713
# of edges in analyzed graph 48 4000 16154 1261

Table I: Statistics about the generated dataset.

IV. EVALUATION

We evaluate in this section DeepMPLS on the three pre-
diction tasks described in Section II-B against our dataset
of topologies and queries. Following current best practices
for machine learning, the dataset was randomly split in two
parts: training (80 % of the topologies) and test (20 % of the
topologies). The neural network was trained on the training
dataset, while the evaluation and metric figures reported later
in this section were computed using the test dataset. Due to
the lack of availability of other topologies and their MPLS
configuration, no validation dataset was used.

Via a numerical evaluation, we illustrate the accuracy
and execution time of DeepMPLS and highlight its usability

'https://github.com/fabgeyer/dataset-networking2019
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for practical use-cases. The performances are also compared
against a simpler heuristic based on a random walk in the
MPLS network, and random prediction of MPLS rules to add
to the configuration.

A. Technical Implementation

We implemented DeepMPLS using TensorFlow. For the
purpose of computational efficiency, sparse operations are
used for passing of hidden representation between neighboring
nodes. Table II illustrates the size of the different layers of the
neural network used for the numerical evaluation.

The recursion from Equation (1) was unrolled for a fixed
number of iteration according to the diameter of the analyzed
graphs. A detailed evaluation of the importance of this number
of iterations will be performed in Section IV-F.

Layer NN Type Size
init FFNN (14,80)w + (80)
Memory unit GRU cell (160, 160). + (160, 80)., + (240)p
Edge attention FFNN (160,1)w + (1)
out hidden layers ~ FFNN 2 x {(80,80)« + (80),}
out final FFNN (80,2)w + (2)p
Total: 53 124 parameters

Table II: Size of the different layers used in the GGNN.
Indexes represent respectively the weights (w) and biases (b)
matrices.

B. Random Walk Baseline

In order to have a baseline for evaluating the accuracy of
the predictions of the neural network for the Satisfiability and
Trace tasks, we introduce here a simple heuristic based on
random walks in the MPLS network.

This heuristic selects a starting router and label in the
topology according to the first elements of the query, and
traverses the network according to the MPLS prefix-rewriting
rules until the destination specified by the query is reached.
In case multiple rules apply to a given input label, a random
rule is selected and its prefix-rewriting actions are applied. If
the random walk was not successful, another random walk is
performed until a maximum number of walks of 10 is reached.

Since our dataset also contains queries which do not explic-
itly specify the starting label or starting node, as explained in
Section III, a random starting point in the network is selected
which matches the explicit parts of the query in those cases.

On the generated dataset, this heuristic was able to predict
the satisfiability of a query with an accuracy of 79.2%. As
illustrated later in Figure 8, this accuracy decreases with the
complexity of the query.

C. Neural Network Training

We first evaluate the training of DeepMPLS for the Satisfi-
ability task, namely prediction of the satisfiability of a query
given an topology and MPLS configuration. Figure 6 illustrates
the accuracy of DeepMPLS during training according to the
number of training iterations, on both the training and the

test dataset. Each training iteration corresponds to 16 ana-
lyzed topologies and queries from the training dataset, i.e.
their representations as graphs. After 2500 training iterations,
DeepMPLS reaches the accuracy of the baseline on the test
dataset, before converging after around 25000 training itera-
tions.
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Figure 6: Training of DeepMPLS for prediction of query
satisfiability and comparison against baseline.

Based on this first training, we retrain the same neural
network and same set of weights for the Routing trace task,
namely prediction of the routing trace of a query in case a
query is satisfiable. This technique, also known as knowledge
transfer, is often used in deep learning in order to accelerate
training.

Figure 7 illustrates the accuracy of DeepMPLS on this
second task according to the number of training iterations.
Since the neural network was already pre-trained on the first
task, this second training requires fewer iterations in order to
reach good prediction accuracy. Less than 1000 iterations are
required before convergence of the accuracy.
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Training iterations (X 10%)

Figure 7: Training of DeepMPLS for trace generation using
pre-trained weights.

The same approach of knowledge transfer was used for
training DeepMPLS against the Partial Synthesis task, result-
ing in faster training convergence, with a training curve similar
to the one illustrated in Figure 7.

D. Model Performance

We next assess the performance of DeepMPLS in the three
different tasks presented in Section II-B.
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1) Satisfiability task: We evaluate here the performance of
DeepMPLS at predicting if a query is satisfiable or not. We
use the prediction accuracy, precision and recall as metrics for
evaluating the model.

Figures 8 and 9 illustrate the accuracies, precision and recall
of DeepMPLS and the baseline. In average, DeepMPLS is able
to predict the satisfiability of a query with an accuracy of
95.4 %, a precision of 97.9 %, and a recall of 89.2 %. While
the performance of the baseline drops with the size of the
push-down automaton, DeepMPLS still performs well on those
more complex cases.
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Figure 8: Accuracy of DeepMPLS and baseline against size
of push-down automaton. Bands indicate the variance of the
accuracy according to the push-down automaton sizes.
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Figure 9: Precision and recall of DeepMPLS and baseline
against size of push-down automaton.

2) Routing trace task: We evaluate here the performance
of DeepMPLS at predicting the routing trace if a query is
satisfiable. DeepMPLS was able to classify the routers with an
overall accuracy of 92.8% and a precision of 91.5%. If we
redefine the accuracy as the correct prediction of all routers
in a given topology, this per-topology accuracy of DeepMPLS
is of 68.2% in average.

Figure 10 illustrates this per-topology accuracy, with the
detail of true positives and true negative. DeepMPLS has good
performance for the true negatives with an average of 99.4 %,
while it reaches only a average of 85.6 % for the true positives.
This means that routers in the true routing trace are sometimes
missing in the prediction, but routers absent from the true
routing trace are rarely selected (i.e. low false negative rate).

3) Partial synthesis task: Finally, we evaluate here the
accuracy of for the Partial synthesis task, namely predicting

ECDF
o
3
|

—— True positive
True negative

T T T T T T T T T T T
o 1 2 3 4 5 6 1 & 9 10
Number of incorrect router in trace
Figure 10: Per-topology accuracy of DeepMPLS with details
on true and false positives.

which additional rules needs to be installed in a network
in order to satisfy a query. Since the baseline described in
Section IV-B cannot be applied here, we define a new one for
this task. This new baseline randomly selects the requested
number of edges in the DeepMPLS graph model following a
simple random sampling without replacement.

Figure 11 illustrates the detailed per-topology accuracy of
DeepMPLS and the baseline. In average, DeepMPLS is able
to predict the correct edges with an accuracy of 45.9 %, while
the random baseline predicts them with an average accuracy
of only 0.1 %.
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Figure 11: Per-topology accuracy of DeepMPLS and baseline.

E. Execution Time

In order to understand the practical applicability of
DeepMPLS, we evaluate in this section its execution time in
different settings. This part is a complement to the complexity
analysis presented in Section II-C. We define and measure the
execution time per network as the total time taken to process
the network and a satisfiability query, without including the
startup time or the time taken for initializing the network data
structures.

Since the neural network can be evaluated on either CPU or
GPU, we evaluated DeepMPLS on both platforms. A Nvidia
GTX 1080 Ti was used for the measurements on GPU, and
an Intel Xeon Gold 6130 CPU was used for the ones on CPU.
The same CPU was used for the execution time measurement
of P-Rex.

Figure 12 illustrates the different execution times and
compares DeepMPLS against P-Rex. For the three different
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evaluations, we note a linear relationship between size of the
push-down automaton — and hence size of the analyzed graph —
and the execution time. DeepMPLS is one order of magnitude
faster than P-Rex when running on CPU, and two order of
magnitudes faster on GPU, mainly due to the better ability
of GPUs of parallelizing the numerical operations used in
neural networks. Those figures illustrate that DeepMPLS show
promising applicability due to fast computation times.
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Figure 12: Execution time of DeepMPLS on CPU and GPU
compared against P-Rex for the Satisfiability task.

F. Impact of Number of Iterations

We described in Section II-A that the GNN requires multiple
evaluations of the recurrence defined in Equation (5) in order
to propagate the hidden representations across multiple hops.
We evaluate in this section the relationship between the num-
ber of iterations and the prediction accuracy of DeepMPLS.

Numerical results are illustrated in Figure 13 for the Sat-
isfiability task. As the number of iterations increases, the
prediction accuracy also increases. Convergence is reached
after approximately 16 iterations. Since this parameter directly
influences the execution time of DeepMPLS, a proper value
has to be chosen in order to have a good trade-off between
accuracy and computational complexity.

1

0.8 1

Accuracy
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T T T T T T
5 10 15 20 25 30 35
Number of iterations of the recurrence
Figure 13: Impact of the number of iterations of Equation (5)
on the prediction accuracy of the Satisfiability task.

V. RELATED WORK

Motivated by the problems arising from the complexity
of manual network operations especially under link fail-
ures [15, 16], much progress has been made over the last
years towards more automated network operation and verifi-
cation [2, 17, 18, 19, 3, 20, 21]. Existing network verification

tools are typically fed with some model or configuration of
the control plane and/or the data plane, and some query. While
some tools are specific to a certain protocol, e.g., BGP [22],
others are generic [3]. A well-known tool is NetKAT [2] which
supports static verification of reachability, loop-freedom or
waypoint enforcement, of the network configuration. Other
well-known tools include HSA [3] (which is based on a
geometric model from the packet headers ignoring protocol-
specific meanings), VeriFlow [20] (acting as a layer between
the network and an SDN controller), or Anteater [18] (based
on a SAT solver).

In contrast to these works, we in this paper focus on
MPLS networks, which are in wide use [23]. In particular,
we are motivated by a recent line of research which showed
that MPLS networks can be verified in polynomial-time,
using a connection to prefix rewriting systems and automata
theory [5]. The resulting tool, P-Rex [4], relies on a natural
query language based on regular expressions which we also
adopt in this paper. However, while efficient in theory and
much faster than state-of-the-art tools in practice, especially
under multiple link failures, P-Rex still requires an hour or
more to test complex but relatively small networks.

We in this paper presented a first study of the feasibility
of using deep learning to support faster answers to MPLS
queries, as well as to synthesize configurations: an emerging
topic [24, 25, 15, 26, 27, 28, 29] which to the best of our
knowledge however has not yet been studied in the context of
MPLS networks so far.

While our methodology is novel in this context, Graph
Neural Networks have been around for quite some time [6, 7],
and have also been extended to Gated Graph Neural Networks
in [11], by using GRU memory units [12]. Message-passing
neural networks were introduced in [9], with the goal of
unifying various GNN and graph convolutional concepts.
Velickovi¢ et al. [30] formalized graph attention networks,
which enable to learn edge weights of a node neighborhood.
Finally, [31] introduced the graph networks (GN) framework,
a unified formalization of many concepts applied in GNNs.
While existing applications are broad, including chemistry
with molecule analysis [8, 9], jet physics and elementary
particles [10], prediction of satisfiability of SAT problems [32],
or basic logical reasoning tasks and program verification [11],
only recently, first applications in networking have emerged,
e.g., in the context of network calculus [33, 34], queuing
theory [35], protocol generation [36], or the performance
evaluation of networks with TCP flows for predicting average
flow bandwidth [37].

VI. CONCLUSION

This paper showed that deep learning can not only be used
for a faster verification of the policy-compliance of MPLS
configurations, but even has the potential to provide efficient
synthesis, automatically re-establishing certain network prop-
erties. To achieve this, DeepMPLS relies on a novel extension
of graph-based neural networks. Our prototype implementation
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shows promising results, in terms of runtime and accuracy, in
realistic scenarios.

In general, we understand our paper as a first step and
believe that our work opens several interesting directions for
future work. In particular, we believe that our approach can
be refined and optimized further, to provide an even better
performance. Furthermore, it will be interesting to investigate
the synthesis of full MPLS configurations based on reinforce-
ment learning, or to test and generalize our approach for other
configurations, e.g., based on Segment Routing.

In order to facilitate future research in this area and build
upon our work, as well as to ensure reproducibility, we made
the generated experimental data available online.
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ABSTRACT

Automated network control and management has been a long stand-
ing target of network protocols. We address in this paper the ques-
tion of automated protocol design, where distributed networked
nodes have to cooperate to achieve a common goal without a pri-
ori knowledge on which information to exchange or the network
topology. While reinforcement learning has often been proposed
for this task, we propose here to apply recent methods from semi-
supervised deep neural networks which are focused on graphs. Our
main contribution is an approach for applying graph-based deep
learning on distributed routing protocols via a novel neural net-
work architecture named Graph-Query Neural Network. We apply
our approach to the tasks of shortest path and max-min routing.
We evaluate the learned protocols in cold-start and also in case
of topology changes. Numerical results show that our approach is
able to automatically develop efficient routing protocols for those
two use-cases with accuracies larger than 95 %. We also show that
specific properties of network protocols, such as resilience to packet
loss, can be explicitly included in the learned protocol.
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1 INTRODUCTION

The current improvements in computational power in packet pro-
cessing devices and the ability to instrument always more mea-
surements about network performance and behavior have resulted
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in the emergence of a new paradigm in networking, namely data-
driven networks and data-driven protocols [6, 12]. This new paradigm
aims at bringing lessons learned from measurements and data in
protocol behavior and design. A concrete application is the concept
of self-driving network proposed by Feamster and Rexford [6], where
network control is tightly coupled with measurements and perfor-
mance objectives. In this context, machine learning has often been
proposed and applied to various tasks such as routing [3, 25, 28],
computing resource management [16] or packet scheduling [4].

We propose in this paper to investigate the question of auto-
matic network protocol design using recent methods from semi-
supervised deep learning. Our contribution is a novel approach
for training a network of independent agents such that they co-
operatively exchange information and solve a common goal in a
fully distributed manner without central control. We address more
specifically the question of distributed routing protocols. From a net-
work protocol perspective, the routing agents should autonomously
develop a network protocol akin to RIP or OSPF, i.e. exchange topol-
ogy information and perform local path computations based on
the exchanged information. Traditional properties from routing
protocols are also considered, namely handling topology changes
and packet losses.

Our approach is based on a novel extension of Graph Neural
Network (GNN) [10, 21], which we name here Graph-Query Neu-
ral Network (GQNN). GNNs are neural network architectures able
to process graphs as input using the concept of message passing
between nodes in the graph. We evaluate our approach on various
topologies from real networks [13] and show that our approach
leads to the creation of communication protocols able to exchange
data about topology information as well as topology changes. Using
two different path calculation strategies — namely shortest path
routing and max-min fair routing — we show that various routing
objectives can be achieved using the same neural network architec-
ture. The results of our approach are also compared against bounds
on information propagation in topologies and we show that the
routing protocols are efficient in term of number of iterations nec-
essary to reach convergence. We also demonstrate that resilience
to packet loss can be explicitly trained for.

This work is structured as follows. We describe in Sections 2
and 3 our modeling approach and the neural network architecture,
with an introduction on Graph Neural Networks and Graph Gated
Neural Networks, followed by the application of those concepts to
network topologies and distributed routing protocols. We numer-
ically evaluate our approach in Section 4 with the evaluation on
real network topologies. In Section 5, we present similar research
studies. Finally, Section 6 concludes our work.
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2 NEURAL NETWORKS FOR GRAPHS

The main intuition behind our approach is to map network topolo-
gies to graphs, with nodes representing routers and additional
nodes for each physical interface of the router. Those graph repre-
sentations are then used as input for a neural network architecture
able to process general graphs. The transformation from a network
topology to its graph representation is presented in Section 3.

In this section, we detail the neural network architecture used
for learning on graphs, namely the family of architectures based
on Graph Neural Networks [10, 21], and introduce a new extension
of this architecture.

Let G = (V, &) be an undirected graph with nodes v € V and
edges e € &E. Let i, and 0y, represent respectively the input features
and target values of node v. The concept behind Graph Neural
Networks is called message passing, where hidden representations of
nodes are based on the hidden representations of their neighboring
nodes. Those hidden representations are propagated through the
graph using multiple iterations until a fixed point is found. The
final hidden representation is then used for predicting properties
about nodes. This concept can be expressed as:

o ermol)
0y =¢g (h(thOO)) @
w0 = init (i) ®

with hg) representing the hidden representation of node v at time
t, f(-) a function which aggregates the different hidden representa-
tions, NBR(v) the set of neighboring nodes of v, g(-) a function for
transforming the final hidden representation to the target values,
and init(-) a function for initializing the hidden representations
based on the input features.

The concrete implementations of the f(-) and g(-) functions are
feed-forward neural networks, with the special case that f(-) in
Equation (1) is the sum of per-edge terms (as recommended by [21])
such that:

W= (tol) = X ()@

u€NBR(v)

with f*(-) a feed-forward neural network. For init(-), the initial
node features are used and zero-padded to fit the dimensions of the
hidden representations.

In [10, 21], training the neural network architecture, namely the
parameters of f(-), g(-) and h(-), is done via the Almeida-Pineda
algorithm [2, 20] which works by running the propagation of the
hidden representation to convergence, and then computing gradi-
ents based upon the converged solution.

2.1 Extensions of Graph Neural Networks

Various extensions of GNNs have been proposed in the literature in
recent years in order to improve accuracy and applicability. Those
extensions build on the principle of message passing with more
recent development from deep learning. We give here an overview
over the extensions which were used for the final architecture used
in this paper. For easier notation, we define H(®) as the vector of all

hidden representations at iteration t: [h(lt) . .h(ltq)’l]'
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2.1.1 Gated Graph Neural Network. In order to improve the
training of Graph Neural Networks, Li et al. proposed Gated Graph
Neural Networks (GG-NNs) in [14]. This extension implements the
function f(-) using a memory unit called Gated Recurrent Unit
(GRU) [5] and unrolls Equation (1) for a fixed number of iterations.

Formally, the propagation of the hidden representations among
neighboring nodes for one time-step is formulated as:

x =H DA + b, )
D =0c (wzx“) +UHED 4 bz) ©)
=g (w,x“) +UHCD 4 b,) @)
H® = tanh (Wx(t) +U (r(t) [0} H(t_l)) + b) (8)
H® = (1 —z(’)) oHD 4+, o AWV )

where o(x) = 1/(1+e™¥) is the logistic sigmoid function and © is the
element-wise matrix multiplication. {W,, W,, W} and {U;, U,, U}
are trainable weight matrices, and {bg, by, bz, b} are trainable bias
vectors. A € RIVIXIV s the graph adjacency matrix, determining
how nodes in the graph G communicate with each other.

2.1.2  Edge attention. A recent advance in neural networks has
been the concept of attention, which provides the ability to a neural
network to focus on a subset of its inputs. This mechanism has
been used in a variety of applications such as computer vision or
natural language processing (eg. [26]). For the scope of GNNs, we
introduce here so-called edge attention, namely we wish to give the
ability to each node to focus only on a subset of its neighborhood.

E;) w € [0, 1] be the attention between node v and u.

Equation (4) is then extended as:

Formally, let a

W= D e, () (10
u€NBR(v)
=) w

(2)
(v,u)
use the modified adjacency matrix A defined as:

To make the computation of a for all edges more efficient, we

AW — A (ol (fA1 (H(t))T O fa, (H(t>)) (12)

with f4, () and f4,(-) feed-forward neural networks. Similar con-
cepts of edge attention have already been proposed in the literature
with various implementations (eg. [11, 27]).

3 APPLICATION TO ROUTING

We describe in this section the application of the graph-based deep
learning architectures presented in Section 2 to the task of dis-
tributed routing protocols. We are interested in training neural
networks on two important aspects of those network protocols.
The first one is the network protocol itself, namely how to distrib-
ute topology information among different nodes, and the second
one is how to compute routes given a topology and link weights.
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3.1 Graph representation

For the first aspect, we wish to train routing agents such that they
autonomously exchange data about a given topology without explic-
itly specifying which information about the topology to transmit.
Based on this exchanged information, the routing agent can popu-
late routing tables. In comparison to traditional distributed routing
protocols, we essentially wish to train neural networks to trans-
mit information akin to link-state updates (as used in OSPF for
example) or router distances (as used in RIP for example). As for
standard routing protocols, the learned protocol should also deal
with changes in the topology (i.e. link failure, node addition).

The main intuition behind the input feature modeling is to use
the topology as input graph G, with additional nodes representing
the network interfaces as illustrated in Figures 1a and 1b. In order
to enforce communication between nodes according to the physical
network topology, no additional edge is added to the graph. As
for traditional routing protocols, each router in the topology is
assigned an integer identifier, noted R;. Nodes representing routers
in the graph use this identifier encoded as a one-hot vector for
their initial representation i, . Nodes representing interfaces use a
weight parameter (eg. based on the link bandwidth) for i,,.

Destination

Router .
Active nodes

Router Interface

@) (b) (©)

Figure 1: (a) Example network topology. (b) Its associated
graph used for training. (c) The output feature of the inter-
faces according to a selected destination.

3.2 Graph Query Neural Networks

We are interested in this section in the local computation of the
routing table based on the topology information which was dis-
tributed by the different nodes in the graph. Given a destination
router identifier Ry, each router must locally decide which output
interface should be used. Based on the graph representation from
the previous section and a given algorithm for path calculation,
this is modeled by labeling the interfaces with o; = [1] if they are
used for transmitting packets to router Ry, and [0] otherwise, as
illustrated in Figure 1c.

In order to build a routing protocol with local path computa-
tion, we introduce here a new extension to GNNs, called Graph
Query Neural Network (GQNN). The neural network architecture is
illustrated in Figure 2. The hidden node representations hg) corre-
spond to the messages which are transfered between nodes. Once
the message passing is finished, each node in the graph has a lo-

cal representation of the network topology hg). For determining
which interface to use for a given destination router R, each router
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applies the following procedure on each of its interface nodes:
94 = Q(Rg)
T
0Oy :9(qdoh(v ))

with Q(-) and ¢(-) feed-forward neural networks.

query vector computation (13)
output label as in Equation (2)  (14)
Distributed message passing Local routing table lookup

© o)
h'I h1

Feed-Forward 01
— | ' | —3*| Recurrent : Neural ke
hi,o) h(nT> Network on

®
h]
A®
Y

Figure 2: Overview of the Graph Query Neural Network ar-
chitecture used in this paper

3.3 Learned routing strategies

For the scope of this paper, we evaluate two algorithms for route
calculation: shortest path and max-min routing.

In the case of shortest path routing, the neural network is trained
against path calculations based on Dijkstra’s algorithm, where each
link is associated with a weight. In case multiple shortest paths are
available, we need to discriminate between them in order to have
stable routing strategies for easier training of the neural network.
This is performed by using the router identifiers as discriminant
between paths.

In the case of max-min fair routing [18], we aim at maximizing
the minimum allocated bandwidth between all possible source-
destination pairs in the network. Such routing strategy should lead
to network topologies with less link overload than shortest path
routing. For our evaluations, we assign an equal demand for all pos-
sible source-destination pairs. The route computation is done using
linear programing. As for shortest path routing, we also give prior-
ity to paths which minimize the identifiers of the traversed routers.
This is performed by defining multiple objectives and solving them
in a hierarchical way.

3.4 Packetlosses and topology changes

An important requirement of routing protocols is the ability to cope
with packet losses and dynamic topology changes. In the case of
packet losses, various strategies have been used in existing routing
protocols: either leverage transport protocols (e.g. BGP over TCP),
or design an own transport layer (e.g. OSPF). For this paper, we are
interested in designing network protocols which do not leverage
other transport protocol functionalities.

In order to train the neural network to handle packets loss, the
adjacency matrix A is randomly modified during training such
that some edges are temporarily disabled according to a Bernoulli
distribution with parameter p. We implemented this by using a
dropout layer [23] in the neural network architecture without the
traditional normalization factor used in standard dropout:

AW =1(t)0 A with r(t) ~ Bernoulli(p), Vt € [0,T]  (15)
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Since routing protocols are designed to run continuously and
handle topology changes, we define here two phases of the protocol:
cold-start when the routing protocol is first initialized on the active
routers, and warm-start when a node fails or a new node joins a
network where the routing protocol already ran for some itera-
tions. More formally, we define graphs pairs {G1 = (V1,&1),G2 =
(V,, E2)} such that some routers are added or removed between
G1 and G2. The neural network is first trained on G1, and the final
hidden representations from this first phase are then reused as
initial hidden representations for the second training phase on G
for the nodes which did not change between G; and Ga:

Yo e { M N}, hfg? = hg;z (16)

3.5 Implementation in routers

Regarding implementation of the resulting network protocol in real
routers, each router has an internal subgraph, with one central node
representing the router connected to multiple nodes representing
its interfaces. Each router then periodically broadcasts its hidden
interface representations to its neighboring routers, and recomputes
its routing table based on the received messages.

4 NUMERICAL EVALUATION

We evaluate in this section the approach presented in Sections 2
and 3 on real network topologies from the Internet Topology Zoo [13],
which is a collection of topologies from Internet providers around
the world. We selected topologies such that the number of nodes is
limited to 20 and the maximum hop count between any two nodes
in the network is less than 10.

In order to generate more topologies for training our neural
network, each topology is modified by either randomly adding a
router and connecting it randomly to other routers, or randomly
deleting one router in the topology. Router identifiers are randomly
assigned to the routers as described in Section 3. Random router
failure or addition are generated as described in Section 3. This
resulted in a dataset with 40 000 graphs in total.

The two routing algorithms presented in Section 3.3 are then
applied on each generated topology to build the datasets used for
this evaluation.

4.1 Implementation

The GG-NN architecture presented in Sections 2 and 3.2 was im-
plemented using Tensorflow [1] and trained using Nvidia GPUs.
Additional dropout layers [23] were added according to standard
practices for neural network and recurrent neural networks [22] in
order to avoid over-fitting. Hidden node representations were cho-
sen with a size of 160. The same parameters were used for training
the neural network for both routing use-cases.

4.2 Accuracy

We evaluate in Figure 3 the accuracy of the computed routes accord-
ing to the two use-cases and routing phases. For a given topology,
we define the accuracy as 1 if the route for a given destination is
correct for all routers in the topology, and 0 otherwise. The learned
protocol is better able to predict shortest path routing, where a per-
fect accuracy is reached for than 50 % of the evaluated topologies.
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In average, accuracies of 98 %, respectively 95 %, could be reached
for shortest path routing, respectively min-max routing.

Cold start Warm start

| Routing type
— Max-min
--- Shortest path

Cumulative distribution

07 08 09 10 07 08 09 10
Average accuracy after fixed number of iterations

Figure 3: Overview over the accuracy of the predicted routes

4.3 Convergence time

In order to assess the convergence time of the developed protocols,
we first evaluate the accuracy of the routing at different iterations of
the fixed point evaluation presented in Equation (1) in cold-start and
warm-start phases. The numerical results are presented in Figure 4.
In case of topology changes (ie. warm start), better accuracies are
reached faster as routes only need partial reconfiguration. This
shows that the protocol is indeed able to efficiently cope with and
react to topology changes.

Max-min Shortest path
1.04
B AhdasAAT *
]
5 0s-
2 0
9]
<
&
G 0.6 Phase
154 ~e- Cold start
< -A- Warm start
0.4+

0 5 ]‘() ]‘5 0 5 10 15
Number of iterations of the algorithm

Figure 4: Accuracy according to the iterations of the proto-
cols. Areas indicate the 25 and 75 percentile.

We then evaluate the developed protocols against minimum
bounds of the number of iterations required to achieve convergence
in the computed routes. According to the message passing principles
described in Section 2, each node broadcasts learned information
at each iteration of the routing protocol to its neighbors. In order
to achieve a correct computation of the routes, each node needs to
have received at least some piece of information from all the other
nodes in the topology. Hence, the minimum number of iterations
corresponds to the diameter d of the graph of the network topology.
We call this minimum bound the one-way bound. In case any pair
of nodes in the topology needs to have exchanged information in
both directions, the minimum number of iterations needed is 2d,
called here both-way bound.

We define T as the iteration when convergence occurs, i.e. the
time when the computed routes for each node in the topology are
stable. Figure 5 compares T¢ against the two bounds previously
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defined, namely for each graph we compute T — d and T¢ — 2d.
Negative values indicate that the learned protocol converged faster
than the theoretical bound.

1.00 .
Routing type
0754 — Max-min
— Shortest path Q
< 0.504 . a.
ks Theoretical protocol 8
5 -
E 0.254 — Both-ways
E --- One-way
a ot
B e —— e w-
2 1.00
=
E
0.754
g s
3 g
O 0504 3
o
g
0.254
0.00

20 -10 0
Convergence difference vs. theoretical protocol

Figure 5: Evaluation of cold-start and warm-start conver-
gence time of the learned protocols against theoretical
bounds. Negative values indicate fast convergence.

4.4 Resilience to packet loss

We described in Section 3.4 that a crucial property of routing pro-
tocol is resilience to packets loss. Figure 6 illustrates the accuracy
of the protocols in case of different packet loss probabilities in the
network. We also compare in Figure 6 two different variants for
training the neural network, namely explicit or unspecific training
for handling packet loss. Both variants of the protocol are run for
the same number of iterations. Explicit training for packet loss was
done by using a dropout layer as described in Equation (15).

We notice a clear difference between the two training variants.
By explicitly training for packet loss, the learned protocol is able to
reach better accuracy in case of packet loss.

4.5 Visualization

In order to better understand the working of the generated routing
protocol, we propose in this section to visualize information prop-
agation in a topology. Figure 7 illustrates the accuracy of a given
route on a small topology at different iterations of the protocol.
Such visualization can be used to determine protocol convergence
for the different interfaces in the network.

5 RELATED WORK

The question of distributed routing protocols based on machine
learning has already attracted various researchers. Early work on
this topic include Q-Routing from Boyan and Littman [3], COllective
INtelligence (COIN) from Wolpert et al. [28], or distributed Gradient
Ascent Policy Search (GAPS) from Peshkin and Savova [19]. Their
general approach is to use multi-agent reinforcement learning in
combination with a network-wide utility function. More recently,
Valadarsky et al. [25] also proposed to use reinforcement learning,
with the goal of using past traffic matrices in order to guide route cal-
culations. Compared to those works, we use here semi-supervised
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Figure 6: Accuracy of the protocols in case of packet loss in
the network with explicit or unspecific training for packet
loss. Areas indicate the 25 and 75 percentile.
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Figure 7: Visualization of the protocol evolution on a small
network topology. Each network interface is queried for
node 5. Node 6 is first offline and started at iteration 20.

learning in order to more easily specify the routing policy which is
expected. Previous work also often predetermined or constrained
the specification and format of the communication, whereas our
approach leaves the content or format of the exchanged informa-
tion as a parameter to be learned. Our work also evaluates key
aspects of routing protocols, namely resilience against packet loss
and inclusion of network dynamics.

A supervised learning approach was recently proposed by Mao
et al. [15] using Supervised Deep Belief Architectures, with a focus
on speed of route computation. Compared to their approach, our
method can be applied to a wider range of network topologies since
it is independent of the underlying structure of the topology.

The challenge of training agents to communicate and realize a
common goal has attracted work in other domains. Foerster et al. [7]
applied Deep Distributed Recurrent Q-Networks (DDRQN) for solving
logic riddles. Sukhbaatar et al. [24] proposed a deep neural network
architecture called CommNet for developing communication be-
tween agents on the task of multi-turn games, traffic junction or
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logic riddles. In both approaches, no constraint on communication
structure is enforced as a broadcast channel is used.

Neural networks for graphs have recently attracted a larger in-
terest, and are generally based on the concept of message passing
presented in Section 2. In the context of communication networks,
they have successfully been applied to performance evaluation of
TCP flows in [8]. The model presented here is based on [8] with
novel extensions for edge attention, query as presented in Sec-
tion 3.2, and support training for topology changes. They have also
been used in a variety of other domains such as basic logical reason-
ing tasks and program verification [14], semantic role labeling in
natural language processing [17], prediction of chemical properties
of molecules [9]. To the best of our knowledge, this is the first work
applying GNNss to distributed routing protocols.

6 CONCLUSION

We contributed in this paper a novel approach for automatic net-
work protocol design using graph-based deep learning. Our method
is based on an extension of Graph Neural Networks called Graph
Query Neural Network and a mapping from network topologies to
graphs with special nodes representing network interfaces.

We applied our approach to distributed routing protocols, where
routing nodes need to exchange information about the network
topology in order to reach efficient routes without specifying which
information to exchange. Shortest path and max-min routing were
evaluated as routing strategies. In our numerical evaluation, we
showed that our approach is able to reach good accuracies. We
illustrated that specific properties of network protocols such as
resilience to packet loss can be explicitly included in the learned
protocols by training the neural network with appropriate dropout.

As our approach is not specific to routing protocols, future work
may include evaluations and extensions of our approach to other
network protocols and applications.
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A.3.1 Cryptographic Hashing in P4 Data Planes

This work was published in Proceedings of the 2nd P4 Workshop in Europe, 2019 [157].
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Abstract—P4 introduces a standardized, universal way for
data plane programming. Secure and resilient communication
typically involves the processing of payload data and specialized
cryptographic hash functions. We observe that current P4 targets
lack the support for both. Therefore, applications and protocols,
which require message authentication codes or hashing structures
that are resilient against attacks such as denial-of-service, cannot
be implemented.

To enable authentication and resilience, we make the case
for extending P4 targets with cryptographic hash functions. We
propose an extension of the P4 Portable Switch Architecture for
cryptographic hashes and discuss our prototype implementations
for three different P4 target platforms: CPU, NPU, and FPGA.
To assess the practical applicability, we conduct a performance
evaluation and analyze the resource consumption. Our proto-
type implementations show that cryptographic hashing can be
integrated efficiently. We cannot identify a single hash function
delivering satisfying performance on all investigated platforms.
Therefore, we recommend a set of hash functions to optimize
target-specific performance.

Index Terms—Hash function, Data Plane Programming, Per-
formance Evaluation, P4

I. INTRODUCTION

The rise of paradigms like P4 [1] for programming high-
speed packet processing platforms has enabled a shift of
networking applications to the data plane. Examples of such
applications include heavy-hitter detection [2], [3] and in-
network caching for distributed services [4]. Looking at im-
plementations of those applications, hash-based data structures
like hash tables, bloom filters, or count—min sketches often
serve as a basis for efficiently tracking flows. Currently, P4
only supports few algorithms for hash functions, based on
cyclic redundancy check (CRC) or checksum calculations
commonly used in network protocols (e.g., IP, TCP check-
sums), which can operate on the header fields of a packet.

To address more secure and advanced applications in the
data plane, a wider set of hash functions with cryptographic
properties may be beneficial. Two classes of applications can
benefit: First, resilience to hash collisions can be improved
for hash-based data structures. High susceptibility to hash
collisions can create attack vectors, leading to poor resource
usage or denial of services [5]. Second, integrity protection,
which is typically implemented using hash-based message au-
thentication codes (HMAC) for instance for digital signatures
or challenge-response protocols. These are essential for secure

communication not only on the Internet but also in industrial
networks.

We argue for the benefits of including cryptographic hash
functions in P4 platforms. We present our prototype imple-
mentations for three different P4 targets: the t4pds software
platform, the Netronome Agilio NFP-4000 Smart NIC, and the
NetFPGA SUME. Using measurements we discuss the impacts
on performance and resource consumption of cryptographic
hash implementations for these devices.

The rest of this paper is organized as follows: First, we
review related work in Section II. We argue for the inclu-
sion of cryptographic hash functions in programmable packet
processing platforms in Section III. In Section IV we discuss
our approaches to extend three different P4 targets with the
functionality to calculate cryptographic hashes over packet
data. We conduct an evaluation of our prototype implemen-
tations focusing on performance metrics as well as resource
consumption in Section V. Section VII concludes our work.

II. RELATED WORK

Various work already evaluated the suitability of hash al-
gorithms for network packets. Molina et al. [6] and Henke
et al. [7] evaluate several different functions, with a fo-
cus on packet sampling. Both works highlight that CRC32
is not recommended due to its linear dependency between
hash input and hash value, making it vulnerable to bias
and security attacks. They recommend BOB [8] as hash
algorithm in non-adversarial scenarios due to its performance
and avalanche properties. Regarding hardware implementation
of non-cryptographic hash algorithms for networking applica-
tions, Hua et al. [9] evaluated 18 different functions. They
propose a family of hash functions achieving good properties
in terms of hashing at a reduced cost regarding hardware
footprint and cost per cycle.

Use of hash functions for networking applications imple-
mented in the P4 data plane can be found in various work.
Ghasemi et al. [10] investigate performance diagnostic of
TCP with Dapper using standard 5-tuple hashes. Zaoxing
et al. [2] propose UnivMon for network flow monitoring
based on a sketch data structure where multiple pairwise-
independent hash functions are used. Cidon et al. [11] propose
AppSwitch, a cache for key-value storage using hashes of
keys. Sivaraman et al. [3] introduce HashPipe, a heavy-hitter
detection using a pipeline of hash tables, which retain counters

978-1-7281-4387-3/19/$31.00 © 2019 IEEE
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for heavy flows while being memory efficient. Finally, Kucera
et al. [12] also address heavy-hitter detection using Elastic
Trie, a novel trie-based data structure. The mentioned works
either do not detail the hash algorithm used, or make use of
CRC32 as hash function, making them potentially vulnerable
to security attacks. Only Ghasemi et al. [10] explicitly describe
the strategy used to deal with hash collisions. They use a hash
chaining technique combining the hashed value and the TCP
sequence numbers.

The IEEE 802.1AE (MACsec) standard provides data con-
fidentiality and integrity through a security tag and a message
authentication code (MAC) on the data link layer. These prop-
erties are especially interesting for industrial use cases, includ-
ing automotive [13], [14] and aeronautical applications [15].
Hauser et al. [16] propose P4A-MACsec for the automation of
MACsec deployment by shifting the MACsec implementation
entirely to the data plane of P4 targets. They implement
prototypes for the BMv2 model and the NetFPGA, but the
solution for the latter was not feasible due to the same prob-
lems regarding externs we encountered (see Section IV-C).
Hauser et al. [17] propose a similar approach for IPsec,
but their prototype implementation for the NetFPGA has the
same restrictions. For the ASIC prototype, all cryptographic
processing is performed by a CPU-based controller, as the
ASIC neither offers cryptographic algorithms nor adding them
as externs. This limits performance and functionality [17].

III. MOTIVATION

Hash functions play a key role in various network applica-
tions being fundamental for modern network communication.
As more and more functionality is being moved to pro-
grammable data planes, supporting hash functions with strong
cryptographic properties will be a key enabler for various
networking use cases.

A. Working with hashes in P4

The Portable Switch Architecture of P4, supports five
different functions, which may serve as hash functions: four
variants of CRC and the 16 bit one’s complement used for IP,
TCP, and UDP checksum calculation. While these may serve
as a good hash function in networking applications [18], they
do not provide cryptographic properties.

In P46, hash algorithms can be accessed via standard
function calls of external libraries, so-called externs. For
instance, the P4 switch model vimodel .p4 external library
offers the generic hash function. Its parameters include the
hash algorithm to use, as well as a list of parsed header or
metadata fields to be used as input. The P4 target platform
may support additional hashing algorithms as externs.

While P4 does not directly offer primitives for working
with data structures such as hash tables or Bloom filters, P4
primitives can be used in combination with P4 registers to
emulate those data structures.

B. Applications with security properties

Various attacks have been proposed on poorly implemented
hash-based data structures. For instance, hash tables can de-
generate to linked lists with maliciously chosen input, leading
to high CPU usage in network security monitors [19]. It is
therefore recommended to either use cryptographically-strong
random number generators or keyed pseudo-random functions
instead of CRC [19], [20].

Due to the use of relatively small messages in packet
processing, the choice of a hash function for efficient pro-
cessing is not straightforward. While the SHA-2 family of
hash functions is a strong candidate regarding cryptographic
features and security, these functions were not designed with
good performance for small inputs. Popular candidates are the
SipHash family of hash functions used in various programming
languages and software [21], or the BLAKE2 family [22], both
designed for good performance for small inputs.

Cryptographic hash algorithms are found in various net-
work protocols with different uses [23]. Extending P4 and
its hardware platforms with cryptographic algorithms enables
offloading of secure applications to the data plane. A use case
of interest are MACs, where packet content is checked for
data integrity and authenticity. Hash-based MACs (HMACs)
are often used for this and can be found in various protocols
such as IPsec, TLS or IEEE 802.1AE (MACsec).

Digital signatures or challenge-response protocols, using
token or cookie mechanisms, are used to either prove the
possession of an authentication token or to encode state
that is being exchanged. One such example are TCP SYN
cookies [24], which are calculated for each incoming TCP
SYN packet during an ongoing attack and, therefore, have to
be efficiently generated and verified.

IV. HASHING EXTERN IMPLEMENTATION

We have extended three different P4 target platforms with
externs calculating cryptographic hashes. Each platform has
its own way how P4 externs can be added.

A. CPU: t4p4s

tdp4s [25] is a P4 compiler, which generates platform-
independent C code. Target-specific code can be linked with
additional libraries, in our case the Dataplane Development
Kit (DPDK version 17.08). This allows the P4 program to be
executed in user space on a CPU-based software system. We
use the name t4p4s synonymously for both the P4,4 compiler
and the DPDK-based P4 target.

As t4pds only supports the TCP/IP checksum calculation
as hash algorithm, we extended it with an SSE4.2-accelerated
non-cryptographic CRC32 function. Furthermore, we added
the following open-source implementations of (pseudo-) cryp-
tographic hash functions as P4 externs: the original version
of SipHash-2-4 [21]; Polyl305-AES [26] based on [27]; the
original verion of BLAKE2b [22]; and HMAC-SHA256 and
HMAC-SHA512 based on OpenSSl (v1.1.0). The output length
in bit of each of the hash functions is listed in Table I. We
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Figure 1: Integration of hash calculation and insertion

refer to related work regarding their cryptographic properties
and cryptanalysis.

B. NPU: NFP-4000 SmartNIC

The 10G Netronome Flow Processor (NFP)-4000 Agilio
SmartNIC [28] is a Network Processing Unit (NPU) that
relies on a 32 bit many-core architecture with up to 60 freely
programmable flow processing cores. A P4 compiler is offered
by Netronome, which compiles P4 code for the NPU (SDK
v6.0.4). While none of the supported hash functions has
cryptographic properties, the SmartNIC allows implementing
P4 externs in Micro-C, a variation of C used to program the
processing cores. Externs are inlined into the compiled P4
program. In addition to the existing P4 hashes for CRC32
and Checksum, we have implemented the SipHash-2-4 func-
tion in Micro-C, calculating a hash for the payload of the
Ethernet frame. The NFP-4000 features a hardware crypto
security accelerator supporting SHA1 and SHA2, however, the
accelerator was not available on our NPU, therefore we opted
for the CPU-optimized SipHash instead.

C. FPGA: NetFPGA SUME

P4->NetFPGA [29] provides an open-source hardware
design for the NetFPGA SUME board, which instantiates
P4,¢ programs compiled via Xilinx SDNet (we used version
2018.1). We selected the open-source RTL implementations
of a SipHash-2-4" (64bit output) and a SHA3-512> (512bit
output) IP core for integration into our prototype design.

Integrating the hash IP cores seamlessly as P4 externs
via interfaces defined by the P4->NetFPGA implementation
is not possible. The current design does not implement a
streaming interface for extern data in- and output, where data
is fragmented into multiple subsequent words. In- and output
data is passed among the P4 program and externs as a single
data word via a fixed number of parallel wires, requiring
thousands of wires for maximum-sized Ethernet frames. We
found that the current version of the SDNet compiler is only
able to handle input widths of up to approx. 600 B. However,
even for an input width of 64 B we were unable to obtain
timing closure due to resource congestion.

As an alternative, we have changed the P4 switch model of
the P4->NetFPGA design by integrating the hash calculation
in the egress path after the synthesized P4 program (Figure 1).
Per-packet metadata written by the P4 program instructs
the hash module whether and where to insert the hash. As
hashes are calculated after packets traverse the P4 program,
packet modifications or forwarding decisions relying on hash

ISipHash TP Core: https://github.com/secworks/siphash
2SHA3-512 (KECCAK) IP Core: https://github.com/freecores/sha3

calculations cannot be implemented in P4. Relocating the hash
IP core into the ingress path would allow hashes to be passed
to the P4 program via metadata. Another alternative is to
further enhance the P4 switch model of the P4->NetFPGA
by placing a second P4 pipeline after the hashing module.
Finally, our implementation would benefit from a traffic
manager to selectively steer traffic around the IP core to avoid
blocking of packets, which do not require hash calculation.

D. Limitations

Our extern implementations for the NFP-4000 and Net-
FPGA SUME do not use key material or an HMAC scheme
required to generate a message authentication code, but only
calculate a single cryptographic hash. This is done for sim-
plicity and to focus on evaluating the performance of the basic
cryptographic operation, which could be applied for use cases
other than HMAC calculations. However, this functionality
could be added, for instance by providing the key material
as part of P4 metadata on a per-packet basis.

V. PROTOTYPE EVALUATION

Our measurement setup consists of two servers connected
via a 10Gbit/s Ethernet link. One server acts as a load
generator and sends packets to the device under test (DuT),
which runs an L2 forwarding P4 program that additionally
calculates hashes based on the complete Ethernet frames. The
server acting as the DuT is equipped with an Intel Xeon
CPU ES5-2620 v3 (Broadwell) at 2.40 GHz and either an Intel
X540 network card, Netronome NFP-4000 SmartNIC, or the
NetFPGA SUME. For measurements performed for the CPU
target, all traffic is pinned to one CPU core.

A. Metrics for hash functions

Several metrics depending on the requirements of the ap-
plication and capabilities of the (hardware) platform are of
relevance when choosing a hash function. In high-performance
applications, the performance of the hash function in terms of
latency and processing time (e.g. clock cycles) is an important
characteristic. When implementing the hash function, its mem-
ory footprint and, when implemented in hardware, resources
of the hardware required, e.g. logic elements and registers for
an FPGA, have to be considered.

Cryptographic properties of a hash function may be limited
to a defined length (5-tuple vs. payload) and/or type of input
data (entropy of passwords vs. random data). Furthermore,
the function’s collision resistance has to be taken into con-
sideration. Finally, different applications may have different
constraints regarding the length of the produced output hash.
While a short HMAC included in an Ethernet frame causes
only minor packet overhead, it can negatively impact its
effectiveness.

B. Hash function micro-benchmarks

CPU system We investigate the individual latency of the
hash algorithm implementations. Each hash function was
executed multiple times for input data lengths ranging from
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Hash Cycles  Fixed cycles Cycles Output Hash Block Size Cycles Fixed Cycles Clock
algorithm per B per packet for 64B | length (bit) algorithm in B per Block per Packet Frequency
CRC32 0.32 0.00 10.79 32 SHA3-512 72 12 10 165 MHz
Checksum 0.44 0.00 30.06 16 SipHash-2-4 8 3 8 200 MHz
SipHash-2-4 1.06 56.40 121.10 64 . .

Poly1305-AES 169 8371 170.38 128 Table II: Hash function latency on FPGA DuT
BLAKE2b 3.14 35.85 232.77 8-512
HMAC-SHAS12 3.70 1454.51 1578.14 512 .
HMAC-SHA256 5.57 959.69 1462.13 256 = 240 N
2z | i
Table I: Hash function latency on CPU DuT fzo 3
3 20 -
=25 |
& 3, SHA3-512 (165 MHz) — SipHash-2-4 (200 MHz)
2B to 1500 B on the CPU DuT. For each run, we counted the 064 300 600 900 1,200 1,518

number of CPU cycles using the timestamp counter (TSC).
To model the latency behavior of each hash function, we then
performed a linear regression based on the input data lengths
and the number of cycles consumed by each algorithm.

The number of fixed CPU cycles per packet reported in
Table I highlights that some algorithms are better suited to
process small input data such as network packets than others.
Especially when comparing HMAC-SHA256 and HMAC-
SHAS512 to the other cryptographic functions, an increase
of per-packet fixed cycles by a factor of up to 40 can be
seen. To process 14.88 Mpps for 10GbE with 64 B packets on
a single CPU core clocked at 2.40 GHz, the processing for
each packet must be completed in 161 CPU cycles. Only the
non- or pseudo-cryptographic functions not using an HMAC
mode satisfy this requirement. SipHash-2-4 shows the most
promising results, being optimized for hashing on 64 bit CPU
architectures.

FPGA We evaluate the hash IP cores in our NetFPGA
SUME implementation through RTL simulations. Table II and
Figure 2 present observed latency and throughput. SHA3-
512 hash values are calculated on 72 B data blocks, SipHash-
2-4 operates on smaller 8 B blocks. If the input data must
be padded to fill the content of the last block, calculation
efficiency (i.e. B/clock cycle) decreases and throughput drops.
However, this is barely visible for SipHash-2-4 calculation
due to the small block size. While the theoretical maximum
throughput of the SHA3-512 IP core is 48 bit/clock cycle for
infinitely long input data, we observe a maximum rate of
46.14 bit/clock cycle for packets between 64B and 1518 B.
The maximum throughput of the SipHash-2-4 IP core for these
packet lengths is 21.02 bit/clock cycle, falling slightly below
the theoretical maximum of 21.33 bit/clock cycle. Although
the throughput of the SHA3-512 calculation is significantly
higher, we were unable to operate the integrated IP core at
clock frequencies exceeding 165 MHz. While the SipHash-2-
4 logic can be operated at 200 MHz, matching the frequency
of the P4->NetFPGA pipeline, we had to place the SHA3-512
IP core in a separate clock domain.

C. Hashing complete packets

For the use case of communication integrity and authen-
tication, we evaluate the hashing of complete packets. For
each platform, we perform a baseline measurement, where the

Packet Size [B]

Figure 2: Throughput of hashing FPGA IP cores

P4 program is a simple L2 forwarder without performing any
hashing operations.

Throughput Results for maximum throughput are presented
in Table III. Independent of packet size, all three platforms
reach 10Gbit/s in the baseline scenario, with the exception
for minimum-sized packets on the CPU target. Adding the
calculation of hashes reduces the maximum performance such
that no platform can reach line rate for packets with minimum
size. In our evaluation, the best results are achieved by the
Netronome card. Experiments with Checksum and CRC32 as
hash algorithms showed that the card can hash packets at
line rate regardless of packet size (not shown in Table III).
Using SipHash-2-4 about 75 % of line rate for minimum-sized
packets can be achieved. Despite high throughput for packet
sizes up to 900B, performance degrades rapidly for larger
packets. This behavior can be explained by the SmartNIC’s
RAM architecture [30]. Our experiments showed that buffers
residing in a fast memory region are only used for packets
smaller than 900 B for payload processing. For larger packets,
slower shared RAM has to be accessed, causing a drop in
throughput to approx. 1076% line rate.

The NetFPGA SUME platform achieves an almost constant

Algorithm 64B  96B 128B 512B 1024B 1500B
t4pds

Baseline 95.03 100 100 100 100 100

SipHash-2-4 36.09 4601 54.73 100 99.17 100

HMAC-SHA512 847 11.69 1111 2426  31.67  37.80
NFP-4000

Baseline 100 100 100 100 100 100

SipHash-2-4 75.60 80.71 91.61  99.15 10-6 10-6
NetFPGA SUME

Baseline 100 100 100 100 100 100

SipHash-2-4 4200 4218 4229 4256 4261 42.52

SHA3-512 4821 4253 5427 6502 7178  76.00

Table III: Achievable throughput for hashing frames of differ-
ent sizes in percent, relative to 10 GbE line rate
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performance of approx. 42 % line rate using SipHash-2-4.
The SHA3-512 IP core is clocked slower, but its higher per-
cycle throughput results in superior performance for all packet
sizes. It reaches 76 % line rate for 1500 B packets. The non-
monotonic increase of throughput is caused by the block-based
hash calculation. While our prototype is limited to open-source
hash implementations, we note that higher throughput could
be achieved with commercial IP cores.

The worst performance is shown by the CPU target. Com-
pared to the baseline, for SipHash-2-4 the throughput is more
than halved for small packet sizes, roughly matching the
calculated latency shown in Table I. Only for packets larger
than 390B line rate is reached. Due to the large number of
fixed cycles per packet, SHA512 when used in HMAC mode
processes less than 10% line rate for minimum-sized packets
and even for large packets is unable to reach line rate.

Latency Figure 3 shows our latency measurements for the
NetFPGA SUME. As expected, latency increases linearly with
packet size with slight discontinuities due to the block-based
hash calculation. We found that for each packet size the
measured values do not differ by more than 100 ns.

For t4p4s latency is influenced by the packet rate (see
Figure 4, results for HMAC-SHAS512 omitted due to low
maximum packet rates) as packets are sent either when a
burst size of 32 is reached, or after a timeout. This causes
increased latency for packet rates below 0.5 Mpps as the batch
is not filled quickly enough, instead waiting for the timeout.
The latency is independent of the algorithm used, however,
increases with packet size (/) due to the increased serialization
delay: t5(1) = ((I — 64) - bgize)/(ts1060E) in relation to 64 B
packets, with bg,e = 32 and 51060 = 1.25ms. Overall the

Table IV: Resource utilization for the NetFPGA SUME

latency is between 10us and 80us, however, outliers, which
regularly occur when using the DPDK, exist (see Figure 5).

The NPU demonstrates stable behavior below 10 ps with no
outliers for the baseline scenario. Performing the SipHash-2-4
operation shifts the latency distribution to the right up to 30 us
and increases the long tail.

Resource Consumption Packet processing in general is
parallelizable, scaling well using multi-queue NICs and multi-
core CPUs. Thus, the hardware of CPU-based systems can be
tailored to meet an application’s resource requirements.

Apart from the described performance issues, we did not
encounter resource restrictions for the Netronome card as the
P4 program is of small size even when adding the SipHash
implementation. For other applications, the program may be
too large such that the generated firmware image can no longer
be loaded onto the card.

Finally, Table IV lists the resource consumption (LUTs, reg-
isters, BRAM) of the FPGA-based implementations. Adding
hashing functionalities increases resource consumption only
moderately by no more than approx. 2 %.

VI. LIMITATIONS

The performance of the evaluated platforms depends on
the chosen hash function and their implementation. For this
work, we selected open-source implementations, because we
are primarily interested in the general feasibility of using cryp-
tographic hash functions in programmable data planes. While
we have shown that this is possible, more sophisticated hash
function implementations (e.g. commercial FPGA IP cores) in
combination with an optimized integration into the P4 program
(e.g. parallelization, pipelining) could reduce implementation
artifacts, improving the performance and resource utilization,
but would require further monetary costs and engineering
effort.
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VII. CONCLUSION

Our review of the current use of hash functions in P4
applications reveals two insights. First, a prevalent use of CRC,
making applications vulnerable to potential attacks targeting
hash collisions. Second, protocols and applications requiring
cryptographic hashes for authentication or integrity cannot
be described using P4. Therefore, the implementation of
cryptographic hash functions would increase the applicability
of P4 to a wider range of use cases.

We describe prototype implementations integrating crypto-
graphic hashing algorithms in three different P4 target plat-
forms — CPU, NPU, and FPGA. Our analysis shows that the
CPU target is easily extensible, but has the highest worse-
case latency of up to several milliseconds. The tested NPU
offers the highest throughput, but cannot process packets
larger than 900 B efficiently. The FPGA-based target offers
the lowest latency with small variance. However, the hashing
IP core currently cannot be integrated using native P4 features,
limiting the programmability and requiring a change of the P4
switch model.

Our measurements show hashing performance to be highly
target, algorithm, and use case specific. Therefore, we cannot
recommend a one-size-fits-all solution. We rather suggest that
P4 targets should implement hash functions — operating on
header and payload data — from a family of algorithms,
which should be recommended by the P4 specification. These
recommendations should include cryptographic hashes and
take into account the unique characteristics of platforms such
as CPU, NPU, FPGA, or even future ASICs.
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Abstract

Recent developments made in the area of network-specific reconfigurable hardware and asso-
ciated description language — namely the P4 language and its back-ends — promise interesting
features for rapid prototyping of packet processing devices. Due to the need for high flexibility
and increasing trend towards softwarization, such solution is of interest for the aeronautical
industry. Our contributions in this paper are two fold. An analysis of the functionalities of P4
with respect to requirements usually necessary for applications and network protocols in the
aeronautic industry is first performed. In a second step a performance evaluation of an existing
software-based back-end using Intel DPDK is performed and compared to existing hardware
solutions.

1 INTRODUCTION

In the last two decades, distributed embedded electronic applications have become the
norm in a large part of the aeronautical industry. Those applications cover a large set of
functionalities with different requirements, ranging from flight control with hard real-
time and strict safety constraints, to passenger entertainment with less stringent con-
straints. Due to those constraints and safety aspects associated with aircrafts, specific
equipments are generally used in order to fulfill those constraints. When such equip-
ments are not available off-the-shelves, costly and time consuming developments have
to be undertaken. This is especially true in the scope of networking equipments, since
standard off-the-shelves devices for networking usually do not support aeronautical-
specific network protocols or safety-related functionalities.

A prevailing solution used to address this issue is to employ FPGAs (Field Pro-
grammable Gate Arrays) since they offer high customizability with high performance.
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The two main drawbacks of this approach are that current developments using FPGAs
require a high level of expertise and long development times to produce efficient and
bug-free devices. We propose in this paper to look at recent developments made in
the area of network-specific reconfigurable hardware and associated tools, namely P4,
recently proposed by Bosshart et al. in [1], and assess if they are a fit for aeronautical
applications.

Our main contribution in this paper is an analysis of those new solutions in the
scope of aeronautical applications in term of offered features and performance. We
first investigate their applicability from a functional point of view and identify missing
features of the current approaches. Then on a more practical point of view, we do a
performance analysis using measurements on a target hardware and investigate if those
new developments are sufficient for aeronautical applications from a performance point
of view.

This rest of this paper is organized as follows. In Section 2 we present similar
research studies. We then introduce in Section 3 the new advances made regarding
network-specific reconfigurable hardware and their associated tools. In Section 4, we
present its applicability to aeronautical requirements, with a concrete application to
existing aeronautical network protocol and architectures. We do a performance evalua-
tion of a target hardware in Section 5 with results regarding packet processing latency
of frames and resource utilization. Finally, Section 6 concludes our work.

2 RELATED WORK

Approaches towards a top-down description of data-plane in a high-level programming
language have been proposed since the late 1990s and early 2000nd. Kohler et al.
proposed Click in [2] which enables flexible packet processing in software, but with
the drawback of difficulty regarding compilation to dedicated hardware.

More recently with the increasing use of FPGAs (Field Programmable Gate Ar-
ray) for packet processing, Brebner and Jiang proposed the PX programming language
in [3] with a compiler targeting FPGAs. Dedicated hardware for packet processing
such as NPUs (Network Processor Unit) [4] or RMT (Reconfigurable Match Table) [5]
have also been proposed. Song proposed POF (Protocol-Oblivious Forwarding) in [6],
which defines an Flow Instruction Set which is used for processing packets.

Regarding purely software-based packet processing on commodity multi-core
processors, various works have been performed on the performance of such platforms.
Dobrescu et al. evaluated the predictability of such platform in [7]. They evaluated how
contention for shared hardware resources such as caches can be taken into account for
improving performance predictability, an important aspect in case of safety critical ap-
plications. More recently, Emmerich et al. benchmarked various Linux-based software
stacks for software-based packet processing in [8] and identified various bottlenecks
responsible for poor performance.
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3 A NEW APPROACH FOR PACKET PROCESSING DEVICES

3.1 Main promises of P4

In conjunction with the current trend towards softwarization of functionalities in the
field of communication networks with the advent of Software Defined Networking
and related technologies, a recent development called P4 [1] — Programming Protocol-
Independent Packet Processor — proposes a flexible way to specify packet processing
devices. The main promises of the P4 programming language and toolchain are:

1. A simple specification of packet processing pipelines using a high-level Domain
Specific Language (DSL), requiring no expert knowledge about the final hard-
ware. This DSL was specially designed to be expressive enough for the various
actions necessary in network protocols, while restrictive enough to be enable
simple compilation to dedicated target hardware. Examples of P4 descriptions
are given in Listings 1 and 2. The complete specification of the P4 language is
available on the P4 website [9].

2. Compilation of specification for different hardware targets, ranging from FPGAs
(Field Programmable Gate Array) to NPUs (Network Processing Unit) to finally
purely software solutions targeting multi-core and many-core processors;

3. Reconfigurability in order to modify the behavior of packet-processing devices
in the field;

4. Possibility to test packet processing pipelines using well-known network emu-
lation tools such as mininet [10] and ability to emulate complete network archi-
tectures.

This approach is also in line with model driven engineering, where high level descrip-
tions of systems are used in order to formally verify various properties of systems.

Listing 1 — Example of Ethernet frame format definition in P4
header_type ethernet_t {

fields {
dstAddr : 48;
srcAddr : 48;
etherType : 16;
}

¥

Listing 2 — Example of IPv4 packet routing in P4

action route_ipv4(dst_port, dst_mac, src_mac, vid) {
modify_field(standard_metadata.egress_spec, dst_port);
modify_field(ethernet.dst_addr, dst_mac);
modify_field(ethernet.src_addr, src_mac);
modify_field(vlan_tag.vid, vid);
add_to_field(ipv4.ttl, -1);
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3.2 Abstract forwarding model

P4 uses a generic packet processing pipeline as a basis called abstract forwarding
model. This model applied to a switch is illustrated here in Figure 1. Packets are first
parsed according to customizable frame format definitions.

Based on the fields and associated values of the protocols, so-called
match+action tables are used in order to process packets. Available actions include
packet modification (changing filed value, adding or removing headers), replication
(for broadcast or multicast), drop packets, triggering of flow control (namely update of
action tables such as counters or policers). Those match-+action tables are conceptually
similar to the ones used in OpenFlow switches.
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Figure 1 — P4 Abstract Forwarding Model of a switch
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4 APPLICABILITY FOR AERONAUTICAL APPLICATIONS

As illustrated in Section 3, P4 promises various properties which make it attractive for
the aeronautical industry. We investigate in this section the current features of P4 and
their applicability to aeronautical applications.

4.1 The good parts of P4

The main advantage of P4 is the decorrelation between the behavior of a packet pro-
cessing device and the hardware which is used. It means that engineers are not tied to a
specific set of network protocols implemented by hardware vendors. This is especially
relevant in the aeronautical industry since the two following constraints are usually
present: 1) Specific network protocols only used by the aeronautical industry are used
(e.g. ARINC standards); 2) For safety reasons, devices must usually only implement
the required protocols and functionalities, meaning that no additional features should
be implemented or used. Those two constraints usually prevents COTS (Commercial
Off-The-Shelf) devices to be used since they may not support the required protocols,
or implement a larger set of protocols than the ones which are required. With P4, the
usability of COTS devices increases.

The second advantage of P4 is the simplicity and constraints put on the abstract
forwarding model presented earlier in Figure 1. Since P4 forbids dynamic memory
allocation and iterations with unknown counts — unlike more generic programming
languages such as C — formal derivations of worst-case execution time and resource
usage of a P4 program are fairly straightforward. This means that per-packet latency,
memory footprint and maximum throughput of a packet-processing pipeline can be
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determined at compile time. This is again relevant in the aeronautical industry since
constraints on those cost factors are required in real-time applications.

Finally, regarding the features supported by P4 in term of packet processing ac-
tions, it covers most of the use-cases relevant for network protocols used by the aero-
nautical industry. Missing features are listed in the next section.

4.2 Avenues for improvement

While P4 offers a lot of flexibility for expressing packet-processing pipelines, some
features are still missing for more advanced uses needed in avionic applications.

Egress packet scheduling cannot be directly described by P4. While there is some
limited support for defining the priority of a packet in case of targets supporting Strict
Priority Queuing (SPQ), more advanced schedulers such as Weighted Fair Queuing
[11] or Deficit Round Robing [12] cannot be defined or configured via P4. In other
words, the description of more advanced Quality-of-Service architectures which are
envisioned for next-generation aeronautical backbones such as the one presented in
[13] is limited with P4.

Since safety is an important aspect of aeronautical applications, specification and
programing languages need to have defined behavior. In the current specification of
P4 [9], some aspects are incompletely specified, as for instance overflow of integers,
casting between different data types, exception handling, and initial values of table
entries and packet attributes.

Finally, time-based or time-triggered protocols cannot be directly described us-
ing P4 since there are no primitives for describing access to a clocking informa-
tion. This drawback prevents the implementation of time-synchronization protocols
for packet timestamping, or egress scheduling based on time information.

We note that the drawbacks listed here are with respect to the current specifica-
tion of P4 [9] and P4 is under active development and research. For instance, a solution
for the specification of egress packet scheduling has been recently proposed by Sivara-
man et al. in [14]. Similarly, some issues of undefined behaviors have been addressed
in the new version of the P4 specification.

5 PERFORMANCE EVALUATION

5.1 Presentation

We propose in this section to do a performance evaluation of a P4 target proposed by
Laki et al. in [15]. This purely software target was chosen since access to dedicated P4
hardware was not available or possible at the moment of writing. This target is based
on the Intel Data Plane Development Kit framework (DPDK) [16], which is a set of
libraries and drivers for fast packet processing in the Linux userland.

Our measurement setup is presented in Figure 2. Traffic up to 4 Gbit/s is gener-
ated by an Anritsu Network Analyzer MD1230B [17] on four different 1 Gbit/s Ether-
net links. This traffic is then processed and forwarded to the according output port on
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a standard PC equipped with an Intel i7-2600 CPU! with 4 physical cores and an In-
tel 1340 T4 network card?. Regarding software, Ubuntu 16.04 with the default kernel,
DPDK 16.04 and the software presented in [15]3 was used.

Anritsu

P4
Program

Network

Analyzer

Figure 2 — Measurement setup used for the performance evaluation

Regarding the P4 program which was used for making the measurements, we
used here the simple MAC-learning Ethernet switch available as an example with the
code from [15]. This P4 program parses the Ethernet header and decides which output
port should be used based on a learned MAC table. Minor modifications to the code
from [15] were made to add profiling and remove some unnecessary overhead.

5.2 Framerate

Figure 3 presents the framerate achieved by the platform for different packet sizes.
While the platform is able to support most of the load, we notice that as we reach 95 %
to 100 % line load, packet drops start to occur. This means that the P4 switch is almost
able to process the 4 Gbit/s of data sent.
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Figure 3 — Framerate processed by the P4 switch

!Intel i7-2600: https://ark.intel.com/products/52213
%Intel 1340 T4: https://ark.intel.com/products/49186
3P4@ELTE software from [15]: https://github.com/P4ELTE/p4c
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5.3 Packet processing latency

Figure 4 presents the packet processing latency as a function of the time between two
frames (or framegap). We notice that for framegaps larger than 1 s the processing
latency is of 24 us for packet sizes of 1518 B. For framegaps smaller than 1 pus the
processing latency increases up to 1 ms depending on the packet size. This means that
some bottleneck is hit, as already shown before in Figure 3.

A comparison between this value of 24 ys and previous work [18] done on an
industrial AFDX switch and an HP E3800 switch is presented in Table 1.
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Figure 4 — Packet processing latency as a function of the time between two frames

Switch Proc. latency
Rockwell Collins AFDX switch Sus

HP E3800 with hardware switching and without OpenFlow 7.2 us

HP E3800 with hardware switching and OpenFlow 7.7 s

HP E3800 with software switching 613 us (average)
P4 software switch with DPDK from Section 5 24 us

Table 1 — Comparison of packet processing latency of the evaluated P4 switch with numerical
results from [18]

5.4 Profiling

Figure 5 presents the profiling of the P4 program using the operf* statistical profiler
for Linux, namely how much time is spent in each function of the P4 program and the
system. Note that only 2 cores of the CPU are used, explaining the maximum value of
200 %. Three different function groups are presented in Figure 5:

“http://oprofile.sourceforge.net
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e P4 primitives: Parser, Table and Actions, which is the part taking the most re-
sources (up to 70 %);

o DPDK primitives: Ethernet Driver, Ethernet Library and Run Time Environment
(RTE), which take relatively low resources compared to the P4 primitives;

e Other functions: the C standard library (1ibc), Linux kernel, and overhead.

While in the tested setup the P4 program is able to almost fully process the 4 Gbit/s of
traffic as shown in Section 5.2, some work on reducing the P4 resources must be done
in case additional ports would be used.

200 -
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Other: Unknown
Other: Overhead
Other: libc

Other: Kernel

DPDK: RTE

DPDK: Ethernet Library
DPDK: Ethernet Driver
P4: Table

P4: Parser

P4: Action
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Figure 5 — Profiling of the Linux computer with 64 B packet sizes

6 CONCLUSION

We investigated in this paper recent developments made in the area of network-specific
reconfigurable hardware and associated description language, namely the P4 program-
ing language. This new development allows faster development of customized packet
processing devices such as Ethernet switches or routers without the need for a deep
knowledge about the target hardware architecture.

We presented in this paper P4 and its functionalities. We showed that its high
flexibility in combination with simple building block enabling a formal analysis make
it an attractive platform for some network protocols used in aeronautical use-cases.
However, some features such as definition of egress packet scheduling and method
for time-based or time-triggered protocols are still lacking for more advanced network
protocols. Finally, a performance evaluation was carried out on a purely software-based
target with a comparison with an aeronautical and a COTS switch.

Since P4 is still under active development and lacks some important features
mentioned previously, it is not yet ready for production use in aeronautical use-cases.
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Nevertheless, such platform is of high importance in the area of prototyping where
functional validation and some indication about performance evaluation are necessary.
Its simple cost model and associated formal analysis also make it a good target for
future certification of packet processing devices.
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Abstract—Recent developments made in the area of network-
specific reconfigurable hardware and associated description lan-
guage — namely the P4 language and its back-ends — promise
interesting features for rapid prototyping of packet processing
devices. Due to the need for high flexibility and increasing
trend towards softwarization, such solution is of interest for
the aeronautical industry where custom network protocols are
generally used.

Our contributions in this paper are two fold. First, an
analysis of the functionalities of P4 with respect to requirements
usually necessary for applications and network protocols in the
aeronautic industry is performed. In a second step, a perfor-
mance evaluation of three different platforms was done. Those
platforms represent three use-cases: an existing software-based
back-end using Intel DPDK, a hardware network accelerator
based on a network processor unit, and an FPGA-based platform.
Performance of those platforms are compared to existing state-of-
the-art hardware solutions used in by the aeronautical industry.

I. INTRODUCTION

In the last two decades, distributed embedded electronic
applications have become the norm in a large part of the
aeronautical industry. Those applications cover a large set of
functionalities with different requirements, ranging from flight
control with hard real-time and strict safety constraints, to
passenger entertainment with less stringent constraints. Due to
those constraints and safety aspects associated with aircrafts,
specific equipments are generally used in order to fulfill those
constraints. When such equipments are not available off-
the-shelves, costly and time consuming developments have
to be undertaken. This is especially true in the scope of
networking equipments, since standard off-the-shelves devices
for networking usually do not support aeronautical-specific
network protocols or safety-related functionalities.

A prevailing solution commonly used to address this issue
is to employ FPGAs (Field Programmable Gate Arrays) since
they offer high customizability with high performance at
moderate costs. The two main drawbacks of this approach
are that current developments using FPGAs require a high
level of expertise and long development times to produce
efficient and bug-free devices. We propose in this paper to
look at recent developments made in the area of network-
specific reconfigurable hardware and associated tools, namely

“This work was performed while the author was with Airbus Group
Innovations in Munich, Germany.

Max Winkel
Airbus Group Innovations
D-81663 Munich, Germany
Email: max-oliver.winkel@airbus.com

P4 (Programming Protocol-independent Packet Processors),
recently proposed by Bosshart et al. in [1], and assess if they
are a fit for aeronautical applications.

Our main contribution in this paper is an analysis of those
new solutions in the scope of aeronautical applications in terms
of offered features and performance. We first investigate their
applicability from a functional point of view and identify miss-
ing features of the current approaches. We show that its high
flexibility in combination with simple building blocks enabling
a formal analysis make it an attractive platform for some
network protocols used in aeronautical use-cases. However,
some features such as controlling of egress packet scheduling
and methods for time-based or time-triggered protocols for
more advanced network protocols are undefined or vendor-
specific. In order to evaluate P4 in an aeronautical context,
we choose AFDX as a case-study and demonstrate that a
simplified AFDX switch can be implemented using P4.

In a second step, we do a performance analysis using mea-
surements on three different target hardware and investigate
if those new developments and platform are sufficient for
aeronautical applications from a performance point of view.
Our first target is a purely software-based solution using Intel’s
Data Plane Development Kit framework (DPDK) [2], which
is a set of libraries and drivers for fast packet processing in
the Linux userland. Our second target is based around the
Netronome Agilio CX platform, a hardware-based Network
Flow Processor (NFP) which is able to offload most packet
processing functionalities from the CPU. Our third target is
based on a FPGA (Field-Programmable Gate Array), where
packet processing is fully performed in hardware. Measure-
ments done using a network analyzer show that those platforms
are able to achieve packet processing latencies similar to those
of devices used by the aeronautical industry and a commercial-
of-the-shelf (COTS) Ethernet switch.

The rest of this paper is organized as follows. In Sec-
tion II we present similar research studies. We then introduce
in Section III the new advances made regarding network-
specific reconfigurable hardware and their associated tools.
In Section IV, we present its applicability to aeronautical
requirements, with a concrete application to existing aeronau-
tical network protocol and architectures. We do a performance
evaluation of a target hardware in Section V with results
regarding packet processing latency of frames and resource
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utilization. Finally, Section VI concludes our work.

II. RELATED WORK

Approaches towards a top-down description of data-plane in
a high-level programming language have been proposed since
the late 1990s and early 2000nd. Kohler et al. proposed Click
in [3] which enables flexible packet processing in software,
but with the drawback of difficulty regarding compilation to
dedicated hardware.

More recently with the increasing use of FPGAs (Field
Programmable Gate Array) for packet processing, Brebner and
Jiang proposed the PX programming language in [4] with
a compiler targeting FPGAs. Dedicated hardware for packet
processing such as NPUs (Network Processor Unit) [5] or
RMT (Reconfigurable Match Table) [6] have also been pro-
posed. Song proposed POF (Protocol-Oblivious Forwarding)
in [7], which defines an Flow Instruction Set which is used
for processing packets.

Regarding purely software-based packet processing on com-
modity multi-core processors, various works have been per-
formed on the performance of such platforms. Dobrescu et al.
evaluated the predictability of such platform in [8]. They
evaluated how contention for shared hardware resources such
as caches can be taken into account for improving performance
predictability, an important aspect in case of safety critical
applications. More recently, Emmerich et al. benchmarked
various Linux-based software stacks for software-based packet
processing in [9] and identified various bottlenecks responsible
for poor performance.

On the proposition of more advanced networking stacks for
industrial applications, various work have been done in the
scope of Quality-of-Service and auto-configuration. Henneke
et al. provided a survey over the challenges and proposed
solutions on applying Software-Defined Networking (SDN)
paradigms to industrial networks in [10]. Various requirements
such as application-aware QoS, timing performance, monitor-
ing, security, reliability were reviewed, with the conclusion
that experience on applying SDN to existing industrial net-
works is still lacking. Heise et al. proposed to apply SDN
paradigms to avionic networks with real-time guarantees in
[11]. It was showed that deterministic network functionalities
similar to the one commonly found in real-time networks could
be achieved using SDN and OpenFlow. While those works
have shown the possible applicability of SDN to industrial
networks, a P4-based solution as presented in this paper might
be more tailored to embedded applications where simpler
functionalities are required.

III. A NEW APPROACH FOR PACKET PROCESSING DEVICES
A. Main promises of P4

In conjunction with the current trend towards softwarization
of functionalities in the field of communication networks with
the advent of Software Defined Networking and related tech-
nologies, a recent development called P4 [1] — Programming
Protocol-Independent Packet Processor — proposes a flexible

way to specify packet processing devices. The main promises
of the P4 programming language and toolchain are:

1) A simple specification of packet processing pipelines
using a high-level Domain Specific Language (DSL),
requiring no expert knowledge about the final hardware.
This DSL was specially designed to be expressive enough
for the various actions necessary in network protocols,
while restrictive enough to enable simple compilation
to dedicated target hardwares. Sample snippets of P4
descriptions for standard Ethernet and IPv4 routing are
given in Listings 1 and 2. The complete specification of
the P4 language is available on the P4 website [12, 13].

2) Compilation of specification for different hardware tar-
gets, ranging from FPGAs (Field Programmable Gate
Array) to NPUs (Network Processing Unit) to finally
purely software solutions targeting multi-core and many-
core processors, as presented later in Section V;

3) Reconfigurability in order to modify the behavior of
packet-processing devices in the field;

4) Possibility to test packet processing pipelines using well-
known network emulation tools such as mininet [14] and
ability to emulate complete network architectures.

This approach is also in line with model driven engineering,
where high level descriptions of systems are used in order to
formally verify various properties of systems.

Currently, two different P4 standards are evolving in paral-
lel: P414, which is the original P4 and subject of this paper,
and P46, a major redesign of the language with an object
oriented approach. If not stated otherwise, the text refers to
P4,4 only.

Listing 1: Example of Ethernet frame format definition in P4

header_type ethernet_t {
fields {
dstAddr 1 48;
srcAddr 1 48;
etherType : 16;

Listing 2: Example of IPv4 packet routing in P4

action route_ipv4(dst_port, dst_mac, src_mac, vid) {
modify_field(standard_metadata.egress_spec, dst_port);
modify_field(ethernet.dst_addr, dst_mac);
modify_field(ethernet.src_addr, src_mac);
modify_field(vlan_tag.vid, vid);
add_to_field(ipv4.ttl, -1);

B. Abstract forwarding model

P4 uses a generic packet processing pipeline as a basis
called abstract forwarding model. This model applied to a
switch is illustrated here in Figure 1. Packets are first parsed
according to customizable frame format definitions.

Based on the fields and associated values of the protocols,
so-called match+action tables are used in order to process
packets. Available actions include packet modification (chang-
ing field value, adding or removing headers), replication (for
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broadcast or multicast), dropping packets or triggering of flow
control (namely update of action tables such as counters or
policers). Those match+action tables are conceptually similar
to the ones used in OpenFlow switches.

IV. APPLICABILITY FOR AERONAUTICAL APPLICATIONS

As illustrated in Section III, P4 promises various properties
which make it attractive for the aeronautical industry. We
investigate in this section the current features of P4 and their
applicability to aeronautical applications.

A. The good parts of P4

The main advantage of P4 is the decorrelation between the
behavior of a packet processing device and the hardware which
is used. It means that engineers are not tied to a specific set of
network protocols implemented by hardware vendors. This is
especially relevant in the aeronautical industry since the two
following constraints are usually present:

1) Specific network protocols only used by the aeronautical
industry are used (e.g. ARINC standards);

2) For safety reasons, devices must usually only implement
the required protocols and functionalities, meaning that
no additional features should be implemented or used.

Those two constraints usually prevent COTS devices to be
used since they may not support the required protocols, or
implement a larger set of protocols than the ones which are
required. With P4, the usability of COTS devices increases.

The second advantage of P4 is the simplicity and con-
straints put on the abstract forwarding model presented earlier
in Figure 1. Since P4 forbids dynamic memory allocation
and iterations with unknown counts — unlike more generic
programming languages such as C — formal derivations of
worst-case execution time and resource usage of a P4 program
are fairly straightforward. This means that per-packet latency,
memory footprint and maximum throughput of a packet-
processing pipeline can be determined at compile time. This
is again relevant in the aeronautical industry since constraints
on those cost factors are required in real-time applications.
In conjunction with FPGA based platforms for P4 such as
[15], deterministic processing may be achieved in hardware
components.

Finally, regarding the features supported by P4 in terms
of packet processing actions, it covers most of the use-
cases relevant for network protocols used by the aeronautical
industry. Missing features are listed in the next section.

B. Avenues for improvement

While P4 offers a lot of flexibility for expressing packet-
processing pipelines, some features are still missing for more
advanced uses needed in avionic applications.

Egress packet scheduling cannot be directly described by
P4. While there is some limited support for defining the
priority of a packet in case of targets supporting Strict Priority
Queuing (SPQ), more advanced schedulers such as Weighted
Fair Queuing [16] or Deficit Round Robing [17] are not
defined in P4. There are vendor-specific interfaces to control

the scheduling, such as described in Section V-A3. Neverthe-
less, in general, the description of more advanced Quality-of-
Service architectures which are envisioned for next-generation
aeronautical backbones such as the one presented in [18] is
limited with P4.

Since safety is an important aspect of aeronautical appli-
cations, specification and programing languages need to have
defined behavior. In the 2014 specification of P4 [12], some
aspects are incompletely specified, as for instance overflow of
integers, casting between different data types, exception han-
dling, and initial values of table entries and packet attributes.

Finally, time-based or time-triggered protocols cannot be
directly described using P4 since there are no primitives for
describing access to a clocking information. This drawback
prevents the implementation of time-synchronization proto-
cols for packet timestamping, or egress scheduling based
on time information. Such protocols and mechanisms need
to implemented around P4 in a target specific manner and
may eventually be interfaced, for example, by vendor-specific
metadata.

We note that the drawbacks listed here are with respect to
the 2014 specification of P4 [12], being the version which is
supported by the majority of platforms available at the time
of writing. A new version of the language has been published
under the name P44 [13], along with the Portable Switch Ar-
chitecture (PSA) [19] defining a set of standardized common
capabilities of network switches. Issues regarding undefined
behaviors have been addressed in P4;¢. For functionalities
needing timing information, timestamps at ingress and egress
have been added in the Portable Switch Architecture with
a recommendation to use microsecond precision. The use-
cases targeted for this timing information are inband telemetry
for measuring queuing latencies, and checking of timeouts or
keep-alive in network protocols.

Due to the promises of P4 and its applicability to a large
variety of use-cases, improvements have been proposed in
the literature. For instance, a solution for the specification
of egress packet scheduling has been recently proposed by
Sivaraman et al. in [20]. Extensions of P4 switches with other
languages are also being investigated in order to simplify
the addition of functionalities to switches. For example, the
Domino programming language has recently been proposed
by Sivaraman et al. in [21].

C. Case-study: AFDX switching

In order to evaluate the applicability of P4 to aeronautical
use-cases, we propose to apply P4 to the case-study of Avion-
ics Full-Duplex Switched Ethernet (AFDX), an Ethernet-based
protocol for safety-critical applications standardized in ARINC
664 Part 7 [22].

An AFDX network is composed of end-systems and
switches as nodes. End-systems serve as source and destination
nodes in the network, over which applications may send data
according to bandwidth restrictions to avoid overloading. One
fundamental building block of AFDX is the notion of virtual
link (VL), which can be seen as rate-constrained network
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Figure 1: P4 Abstract Forwarding Model of a switch

tunnels. The parameters describing a VL are: the emitter
end-system of this VL, the list of receiving end-systems,
static routes between emitter and receivers, the Bandwidth
Allocation Gap (BAG), as well as minimum and maximum
frame length (S, and s;,4;). The BAG is defined as the
minimum time interval between the first bit of two consecutive
frames from the same VL.

We will focus in the rest of this section on the implemen-
tation of a simplified AFDX switch with P4. Switches must
ensure the following functionalities for each frame entering
the switch:

o Identification of the Virtual Link;

« Frame filtering and policing based on Virtual Link param-

eters: allowed input port, BAG and frame length limits;

o Forwarding of the frame to the correct output ports based

on the Virtual Link routing configuration.

Frames in AFDX are based on the standard Ethernet frame
format. An addressing schema is defined in ARINC 664
Part 7 (Section 3.2.5) in order to encode the Virtual Link
identification number in the last 16 bits of the destination MAC
address. Listing 3 represents how this identifier can be easily
extracted using P4.

Listing 3: Simplified AFDX frame header in P4
header_type afdx_t {

fields {
dstConst 1 32;
dstVlinkID : 16;
srcAddr 1 48;
etherType : 16;
}

}
header afdx_t afdx;

Switch configuration and routes in P4 are saved in so-called
tables. For our case-study, we define a table containing the
allowed input port of each Virtual Link and its output port, as
illustrated in Listing 4. Incoming packets with invalid Virtual
Link identifiers are dropped here.

Listing 4: AFDX forwarding table

table tbl_forward_virtual_link {
reads {
standard_metadata.ingress_port : exact;
afdx.dst_vlink_id 1 exact;
}
actions {
drop;
forward;
}-
size :

}

MAX_VIRTUAL_LINKS;

The P4 function ingress is called for each incoming
frame. Listing 5 describes a simplified ingress function for
AFDX with basic frame integrity checking (with respect to
the ARINC 664 requirements) application of the table from
Listing 4, and policing.

Listing 5: AFDX ingress function

control ingress {
integrity_check();
apply(tbl_forward_virtual_link);
traffic_policing();

}

Regarding policing of AFDX frames, a simple process based
on validating the BAG timing properties and minimum and
maximum frame sizes is described in the ARINC 664 Part
7 standard. While frame sizes validation is possible with P4,
filtering based on the time between frames is not (as mentioned
earlier in Section IV-B). Since from a functional point of view
the goal is to limit the bandwidth of each Virtual Link, the
standard policing mechanisms provided by P4 may be used
as an alternative. Those mechanisms are based on the use of
the two token buckets, as defined in RFC 2698 [23]. Those
meters can be easily created in P4, as illustrated in Listing 6.

Listing 6: Policing based on
meter vlink_bandwidth_bytes {

type 1 bytes;
direct : tbl_forward_virtual link;
result : scheduling_metadata.color_bytes;

}

Finally, the last step is to forward frames to the correct
output ports. This is illustrated in Listing 7 with the use of
multicast by a vendor-specific mechanism.

Listing 7: forwarding

action forward(egress_ports) {
modify_field(standard_metadata.egress_spec,
EGRESS_SPEC_MULTICAST);
modify_field(intrinsic_metadata.egress_port_bitmap,
egress_ports);

We listed here only a subset of the functionalities needed
by an AFDX switch. More advanced features such as of oper-
ational modes, priority-based packet scheduling, and monitor-
ing functionalities based on SNMP can also be implemented
using P4.



222

A. Publications

V. PERFORMANCE EVALUATION
A. Presentation

We propose in this section to do a performance evaluation
of three different P4 targets: software-based, software-based
with hardware acceleration and FPGA-based platform.

1) Software based target: The first target is a purely
software based solution, which has been proposed by Laki
et al. in [24]. This target is based on the Intel Data Plane
Development Kit framework (DPDK) [2], which is a set of
libraries and drivers for fast packet processing in the Linux
userland. As illustrated in Figure 2, DPDK enables developers
to bypass the kernel and process frames directly in user-space.
Standard kernel overheads are avoided using DPDK, namely
system calls, context switching on blocking I/O, data copying
from kernel to user space or interrupt handling in kernel.
Benchmarks have shown that DPDK enables much faster
packet processing, as shown for example in [9]. Predictable
performance without the interference of the Linux scheduler
and other processes may be achieved by pinning the DPDK
process to dedicated CPU cores.

‘ i ‘ User Application
pp 5 Space DPDK Libraries

Y s
Linux Kernel Kermel 3
‘ Network Driver ‘ Space %c’

2
3
Ne

‘ Network Controller ‘ H;:;J;:}; Network Controller

Figure 2: Overview of the DPDK framework

A standard PC equipped with an Intel i7-2600 CPU? with
4 physical cores and an Intel 1340 T4 network card® was
used here. This network card has 4 ports supporting 1 Gbit/s
Ethernet. Regarding software, Ubuntu 16.04 with the default
kernel, DPDK 16.04 and the software presented in [24]* was
used. This software is compiler from P4 to a DPDK-based
application. Minor modifications to the code from [24] were
made to add profiling and remove some unnecessary overhead.

Such a platform might be interesting for functional testing
or in services with short life-cycles and no hard real-time guar-
antees needed. Typical services such as passenger connectivity
could fit these requirements, since on-board passenger devices
have a fast update rate, with changing needs and protocols.

Still, it should be kept in mind, that the performance
analysis of the software target was performed on a PC and
the results are not directly transferable to embedded platforms
with usually very limited resources (CPU processing power,
memory, caches, interface bandwidths). If to be used in field,

2Intel i7-2600: https://ark.intel.com/products/52213
3Intel 1340 T4: https://ark.intel.com/products/49186
4P4@ELTE software from [24]: https://github.com/P4ELTE/pdc

an in-depth performance analysis has to be performed using
the specific hardware and software.

2) Network processor platform: The second target is based
around the Netronome Agilio CX SmartNIC [25], a hardware-
based Network Flow Processor (NFP) which is able to offload
the packet processing from the CPU. Those network cards are
based on the NFP-4xxx silicon, a many-core architecture with
72 programmable cores with 8 threads each, and 2GB DRAM
for lookup and state tables. A proprietary P4 compiler from
Netronome was used for the evaluation.

The cards which were used have two ports supporting
10 Gbit/s Ethernet. In order to provide comparable results with
the previous target with four ports, two cards were used. To
enable communication between the two cards, frames need
to be copied from one card to the other. A simple DPDK
program without any packet processing logic running on the
local CPU of the test platform was used for this purpose.
As illustrated in Figure 3a, frames coming from one NPU
(Network Processing Unit) are first processed on board, then
copied to the main memory for forwarding by the CPU, and
finally copied to the second NPU. In order to minimize the
latency jitter, all packets are always sent to the CPU, even if the
final destination is on the same NPU and could be forwarded
without CPU involvement.

While the Agilio CX SmartNIC requires a server platform
and as such is not suited for the integration into an embedded
environment, the NFP-4xxx silicon on which it is based, might
be. Therefore, to additionally evaluate the performance of
the chip, a second series of measurements was performed
without using the datapath through the CPU, assuming that
the performance of the SmartNIC in this setup is mainly
constrained by the NFP silicon. The packets were directly
forwarded back to back from one physical port to the other,
as illustrated in Figure 3b. To get comparable results, the
same P4 program was used in both cases with different table
configurations programming the destination of each packet.

CPU CPU

(a) With CPU processing (b) Without CPU processing

Figure 3: Data paths used in the network processor platform

3) Prototype FPGA based target: The FPGA target is based
on the Xilinx Zyng-7035 MPSoC [26]. It features a dual
core ARM Cortex-A9 processor system (PS) which is closely
coupled to a programmable logic (PL) based on the Kintex
architecture with 275k logic cells and, in our configuration,
eight high speed serial "GTX" transceivers, able to operate
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at up to 10.3125 GHz bit rate. Five of these transceivers are
used as 10GBASE-R Ethernet ports. The main part of the
firmware is an Ethernet switch with optional TSN (Time
Sensitive Networking) features. The switch is connected to
the external 10GBASE-R ports, as well as to internal virtual
network interface cards (VNIC) connected to the CPU (as
illustrated in Figure 4).

Xilinx Zynq-703s

10G MAC [H 10GBASER |-+~
- 10GBASER -~
- 10GBASER -~
H 10GBASER |-+~

- 10GBASER [+~

10G MAC

P4/TSN
Switch

Virtual NIC

NIC Driver %
Ewitch Driver '7

Figure 4: Overview of the implemented Zynq firmware
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The packet processing and forwarding is performed com-
pletely by the switch core within the PL without any in-
volvement of the PS, allowing maximum throughput and
minimum latency. The architecture of the switch itself is
outlined in Figure 5. The incoming Ethernet packets from
each port (external or internal) are queued to ingress buffers
from which they are multiplexed in a round-robin manner
to the central processing pipeline. There, the MAC header
information are extracted and looked up in hashed content
addressable memories (CAMs) to determine the destination
port(s) and queues. A demultiplexer distributes the packets to
the selected queues and seamlessly duplicates the packets for
multicasting. If the selected queues (implemented as dedicated
block RAMs) are full, the packets may be buffered in external
DDR3 memory.

Each port has 8 egress queues. The order in which the
non-empty queues are selected for transmission is determined
by a combination of strict priority [27, Sec 8.6.8.1], round
robin and the TSN algorithms CBS (Credit Based Shaper)
[27, Sec 8.6.8.2] and TAS (Time Aware Shaper) [28, Sec
8.6.8.4]. The parameters for the different algorithms are run
time configurable per queue. For the following measurements,
only one queue was used per port without any scheduling or
traffic shaping.

In the current implementation, the packet processing logic is
hardcoded in VHDL but is already prepared to be substituted
by P4 generated cores to enable fast and flexible modifications
to the behavior. For that, we are currently aiming at two
very promising approaches. Xilinx has included a P4 com-
piler into its SDNet Development Environment [29] which

translates the P4 description into an IP core which can be
integrated to the FPGA firmware. A drawback might be the
restriction to Xilinx FPGAs. The second approach comes from
Netcope Technologies which offers a P4 to VHDL compiler
[30] together with a suite of networking IP cores. In either
approach, the generated packet processing pipeline has a fixed
function completely described by the P4 program which is a
very important aspect with regard to safety assessment and
certification. Unfortunately, at the time of writing none of
the two approaches were ready for implementation into our
firmware.

It’s further to be noted, that the switch core was origi-
nally designed for a 1Gbit/s switch and therefore currently
has a limited internal bandwidth of around 34 Gbit/s which
obviously is not sufficient to serve five 10 Gbit/s interfaces
at full line rate. It’s therefore possible for the ingress buffers
to overflow causing packets to be dropped at ingress before
processing and before assigning priorities.

B. Measurement setup

Our measurement setup is presented in Figure 6. Traffic was
generated by an Anritsu Network Analyzer MD1230B [31] on
four different Ethernet links, generating traffic for a utilization
from 0% to 100 % (ie. up to 4 Gbit/s for the software based
platform, and 40 Gbit/s for the NPU and FPGA platforms).
This traffic is then processed and forwarded to the according
output ports on the target platform.

Regarding the P4 program which was used for making the
measurements, we used here a simple layer 2 Ethernet switch.
This P4 program parses the Ethernet header and decides which
output port(s) to use based on a learned or statically, run-time
configured MAC address table.

C. Framerate

Figure 7 presents the framerate achieved by the three
platforms for different packet sizes. Note that an ideal platform
would be able to forward 100 % of the workload for the
transmitted framerate presented in Figure 7. For packet sizes
of 64 B, the software-based platform reaches a bottleneck at
around 2.2 Mpps or 1.1 Gbit/s, meaning that it is only able to
process 28 % of the full workload of 4 Gbit/s.

In case of the network processor platform, the bottleneck is
reached at 8.7 Gbit/s with the CPU and 23 Gbit/s without CPU,
meaning it is able to process respectively 21.8 % and 57.5 %
of the full workload of 40 Gbit/s. The difference between the
two measurements is due to the direct forwarding of all packets
without any involvement of the CPU or main memory, which
is also the bottleneck for the software platform.

The FPGA platform is only able to process a maximum
of 5.6Gbit/s with 64 B packet size. Using 1518 B packets,
the maximum throughput of 28 Gbit/s is closer to the internal
bandwidth limit of 34 Gbit/s. In addition to the internal band-
width, overhead in the processing pipeline (mainly waiting
states) limits the throughput of the FPGA target. Again, it’s
to be noted, that the switch in use was originally designed for
1 Gbit/s line rate only and further optimizations are necessary
for this configuration.
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Figure 6: Measurement setup used for the performance eval-
uation. Link speeds were either 1 Gbit/s or 10 Gbit/s

D. Packet processing latency

Figure 8 presents the packet processing latency as a function
of the time between two frames (or framegap). We notice that
for framegaps larger than 1pus the processing latency is of
24 us for packet sizes of 1518 B for the software-based and
network processor platforms. Since both approaches require
copies of the frames from the network cards to the CPU,
similar latencies are expected. For framegaps smaller than 1 ps
the processing latency of the software-based platform increases
up to 1 ms depending on the packet size. The packet processing
is not able to keep up with the incoming rate and packets are
buffered leading to the increased latency. Once the buffers are
full, packets will be dropped, as already shown in Figure 7.

The network processor platform without CPU is able to bet-
ter cope with the more intensive traffic, which can be explained
by the fact that the processing is completely performed by the
NPU, without CPU involvement or the need to copy packets.

The FPGA-based platform produces the best latencies,
with values around 1.2ps without buffering (i.e. for large
framegaps). Once the internal bandwidth limit is hit, packets
are buffered at ingress and eventually dropped. The latencies
up to 15.8us observed in this region of small framegaps
correspond to the capacity of the ingress buffers, which are
much smaller compared to the software/network processor
implementations and thus leading to smaller latencies in these
situations, but potentially more packet losses during short,
intense traffic bursts. However, in network systems with hard
real-time requirements, buffering of packets is unintended in

platforms attractive for use-cases where latency requirements
are less strict.

Switch Proc. latency
Rockwell Collins AFDX switch Sus

HP E3800 without OpenFlow 7.2us

HP E3800 with OpenFlow 7.7 s

HP E3800 with software switching 613 s (avg.)
(Section V-Al) P4 software switch with DPDK 24 ps
(Section V-A2) P4 switch with NPU and CPU 24 us
(Section V-A2) P4 switch with NPU and w/o CPU 5.8 us
(Section V-A3) Switch with FPGA platform 1.2pus

Table I: Comparison of packet processing latency of the
evaluated P4 switch with numerical results from [11]

E. Profiling of software-based target

Software profiling was performed in order to better under-
stand the software-based platform from Section V-A1l. Figure 9
presents the profiling of the P4 program using the operf’
statistical profiler for Linux. This tool enables us to evaluate
how much time is spent in each function of the P4 program and
the system. Note that only 2 cores of the CPU were used for
this measurement, explaining the maximum value of 200 %.
Three different function groups are presented in Figure 9:

o P4 primitives: Parser, Table and Actions, which is the

part taking the most resources (up to 70 %);

o DPDK primitives: Ethernet Driver, Ethernet Library and
Run Time Environment (RTE), which take relatively low
resources compared to the P4 primitives;

o Other functions: the C standard library (libc), Linux
kernel, and overhead.

Shitp://oprofile.sourceforge.net
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Figure 8: Packet processing latency as a function of the time between two frames

While in the tested setup the P4 program is able to almost
fully process the 4 Gbit/s of traffic as shown in Section V-C,
some work on reducing the P4 resources must be done in case
additional ports would be used.
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Figure 9: Profiling of the Linux computer with 64 B packet
sizes

VI. CONCLUSION

We investigated in this paper recent developments made
in the area of network-specific reconfigurable hardware and
associated description language, namely the P4 programing

language. This new development allows faster development
of customized packet processing devices such as Ethernet
switches or routers without the need for a deep knowledge
about the target hardware architecture.

We presented in this paper P4 and its functionalities. We
showed that its high flexibility in combination with simple
building block enabling a formal analysis make it an attractive
platform for some network protocols used in aeronautical use-
cases. While some features such as definition of advanced
egress packet scheduling and methods for time-based or time-
triggered protocols are still lacking for more advanced network
protocols, recent additions to the language in P4,c and the
Portable Switch Architecture make it an attractive platform.
A case study of implementing AFDX was also performed
in order to demonstrate that aeronautical protocols may be
implemented using P4.

A performance evaluation of a simple P4 program was
carried out on three different platforms: purely software-
based target based on Intel DPDK, a hardware network ac-
celerator based on a Network Processor Unit, and a FPGA-
based platform. A comparison with an aeronautical and a
COTS switch showed that while hardware based platform
outperform software-based solutions on processing latencies,
the difference between software and hardware solutions would
be acceptable in some applications.

Since P4 is still under active development, with changes
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adding incompatibility between its different version, it is not
yet ready for production use in aeronautical use-cases with
long lifetimes. Nevertheless, initiatives such as the Portable
Switch Architectures lead the way to standardized capabilities,
meaning more stability in the future. Such platform is of
high importance in the area of prototyping where functional
validation and some indication about performance evaluation
are necessary. Its simple cost model and associated formal
analysis also make it a good target for future certification of
packet processing devices.

Future work will include more in-depth studies of P4 and
its platforms, with possible evaluations and deployment in
services where frequent update is necessary, such as passenger
connectivity. Further, TSN techniques like stream reservation
and bandwidth allocation using the dedicated scheduling al-
gorithms in conjunction with P4 will be investigated. Another
area of interest would be examining methods, models and
associated tools for certification of such approaches.
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A.3.4 Rapid Prototyping of Avionic Applications Using P4

This work was published in 5th P4 Workshop, 2018 [155].
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I. APPLICABILITY FOR AERONAUTICAL APPLICATIONS

The main advantage of P4 is the decorrelation between the behavior
of a packet processing device and the hardware which is used. It
means that engineers are not tied to a specific set of network protocols
implemented by hardware vendors. This is especially relevant in the
aeronautical industry where specific network protocols (e.g. ARINC
standards) are used. Furthermore, devices must exclusively implement
the required protocols and functionalities for safety reasons. Those two
constraints prevent commodity devices to be used since they either
do not support the required protocols, or implement a larger set of
protocols than the ones required. With P4, the usability of commodity
devices increases.

Another advantage of P4 is the simplicity and constraints put on
the abstract forwarding model. Since P4 forbids dynamic memory
allocation and iterations with unknown counts, formal derivations of
worst-case execution time and resource usage of a P4 program are
straightforward already at compile time. This is again relevant in
the aeronautical industry since constraints on those cost factors are
required in real-time applications.

A downside when using P4 for aeronautical applications is that
egress packet scheduling cannot be directly described by P4. This lim-
its the description of more advanced Quality-of-Service architectures
envisioned for next-generation aeronautical backbones [1].

Since safety is an important aspect of aeronautical applications,
specification and programing languages need to have defined behavior.
While this was a problem in the 2014 specification of P4 as some
aspects are incompletely specified (e.g. casting between different data
types, and initial values of table entries and packet attributes) this has
since been solved with P4s.

Finally, time-based or time-triggered protocols cannot be directly
described using P4 since there are no primitives for describing
access to a clocking information, besides timestamps at ingress and
egress in P4js. This drawback prevents the implementation of time-
synchronization protocols for packet timestamping, or egress schedul-
ing based on time information.

II. CASE STUDY

In order to evaluate the applicability of P4 to aeronautical use-
cases, we applied P4 to the case-study of Avionics Full-Duplex
Switched Ethernet (AFDX), an Ethernet-based protocol for safety-
critical applications standardized in ARINC 664 Part 7 [2].

An AFDX network is composed of end-systems and switches as
nodes. End-systems serve as source and destination nodes in the
network, over which applications send data according to bandwidth
restrictions to avoid overloading. One fundamental building block of
AFDX is the notion of virtual links (VL), which can be seen as rate-
constrained network tunnels. The parameters describing a VL are: the
emitter end-system of this VL, the list of receiving end-systems, static
routes between emitter and receivers, the Bandwidth Allocation Gap
(BAG), as well as minimum and maximum frame length. The BAG
is defined as the minimum time interval between the first bit of two
consecutive frames from the same VL.

III. IMPLEMENTATION OVERVIEW

AFDX switches must ensure the following functionalities for each
frame entering the switch: identification of the VL; frame filtering

and policing based on VL parameters (allowed input port, BAG, and
frame length limits); forwarding of the frame to the correct output
ports based on the VL routing configuration.

Frames in AFDX are based on the standard Ethernet frame format.
The VL identification number is encoded in the 16 least significant bits
of the destination MAC address. Switch configuration and routes in P4
are saved in tables. For our case-study, we define a table containing the
allowed input port of each VL and its output port. Incoming packets
with invalid Virtual Link identifiers are dropped here.

Our case-study contains a simplified ingress function for AFDX
with basic frame integrity checking, application of the aforementioned
table, and policing. For the latter, a simple process based on validating
the BAG timing properties and minimum and maximum frame sizes
is described in the ARINC standard. While frame size validation is
possible with P4, filtering based on the time between frames is not.
Since from a functional point of view the goal is to limit the bandwidth
of each VL, the standard policing mechanisms provided by P4 using
meters may be used as an alternative.

Finally, the last step is to forward frames to the correct output ports.
This is done using multicast by a vendor-specific mechanism.

IV. FURTHER ASPECTS

Our implementation is based on P44 as by the time of imple-
mentation more hardware supported this P4 version. We listed here
only a subset of the functionalities needed by an AFDX switch.
More advanced features such as operational modes and monitoring
functionalities based on SNMP can also be implemented using P4. We
performed a performance analysis regarding throughput, latency and
profiling for three P4 targets: An Intel DPDK-based software switch,
a Netronome Agilio CX SmartNIC network processor platform, and a
prototype FPGA-based platform.
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A.3.5 Adaptive Batching for Fast Packet Processing in Software Routers using
Machine Learning

This work was published in Proceedings of the 7th IEEE International Conference on Network Soft-
warization, 2021 [139].
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Abstract—Processing packets in batches is a common technique
in high-speed software routers to improve routing efficiency
and increase throughput. With the growing popularity of novel
paradigms such as Network Function Virtualization, advocating
for the replacement of hardware-based networking modules
towards software-based network functions deployed on com-
modity servers, we observe that batching techniques have been
successfully implemented to reduce the HW/SW performance
gap. As batch creation and management is at the very core of
high-speed packet processors, it provides a significant impact to
the overall packet processing capabilities of the system, affecting
latency, throughput, CPU utilization and power consumption. It
is commonly accepted to adopt a fixed maximum batching size
(usually in the range between 32 and 512) to optimize for the
worst case scenario (i.e. minimume-size packets at full bandwidth
capacity). Such approach may result in a loss of efficiency despite
a 100% utilization of the CPU. In this work we explore the
possibilities of enhancing the runtime batch creation in VPP, a
popular software router based on the Intel DPDK framework.
Instead of relying on the automatic batch creation, we apply
machine learning techniques to optimize the batching size for
lower CPU-time and higher power efficiency in average scenarios,
while maintaining its high performance in the worst case.

I. INTRODUCTION

Software packet processing has become a commonly
adopted alternative to costly, expensive hardware-based pro-
cessing engines [1], [2]. Together with the inherent flexibility
advantages of software-based solutions w.r.t. hardware coun-
terparts, a current trend shows that the performance gap is also
diminishing [3]. As a consequence, several libraries for high-
speed packet processing on pure software such as the Intel’s
DPDK!' or Netmap [4] are being used as building blocks for
a flourishing ecosystem of software middleboxes capable of
performing multi-10-Gbps packet processing on a single CPU
core of commercial off-the-shelf (COTS) servers.

Modern tools for software packet processing, also known
as software routers, incorporate many optimizations such as
processing packets in batches and adopting a kernel-bypass
approach to access the Network Interface Cards (NICs) with
pure user-space drivers and minimize the interference of low-
level system calls by the operating system. In particular,
batching is usually adopted in conjunction with a busy polling
behavior: the CPU continuously performs a loop to verify if
any packet is received at the NIC, then it uses a minimalistic

"https://www.dpdk.org/
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batch creation algorithm to process a full batch of packets (as
opposed to per-packet processing) and it repeats the loop at
the end of the processing. Batching and busy polling are very
effective in high-load scenarios, where the cost of interrupt
handling per packet could saturate the CPU. In particular, it has
been shown that increasing the batch size positively correlates
with a significant improvement in the packet processing rate,
up to a certain saturation threshold [5], [1]. Therefore, the
achievable throughput is maximized at the cost of a 100% CPU
utilization even in the case of low-load scenarios, resulting in
a lot of wasted CPU cycles and high power consumption.

While the maximum batch size is fixed (usually 32 to 512),
the actual size depends on the number of packets waiting in
the NIC’s input queues. But the actual batch size also affects
the processing efficiency, with small batches requiring more
clock cycles per packet than large ones. This causes a feedback
loop, where oscillating batch size can be observed in scenarios
where the input load does not fully saturate the CPU. Such
a batching approach provides opportunities for improvement:
ideally, in a non-saturated regime (i.e., no packet loss) the
CPU can be relieved of some processing if we keep the batch
sizes large enough to maintain the processing efficiency.

In this paper?, we propose an algorithm to dynamically
allocate batch sizes depending on the traffic condition instead
of the classical busy polling approaches. With the help of a
large dataset collected over hours of experiments with a real
packet processing engine, we first develop machine learning
techniques to find the optimal batching size for different load
scenarios. We then deploy our training model within a software
router, and assess the impact of our approach in terms of saved
clock cycles. The remainder of the manuscript is organized
as follows: Section II provides a background on the relevant
architectural aspects of the software router of our choice
(namely, VPP [6]) and the related work. In Section III we
analyze the possible improvements for the batching algorithm
and present our design space. We then evaluate our system in
Section IV and Section V concludes the manuscript.

II. BACKGROUND AND RELATED WORK

In a softwarized network scenario, a software router is a
piece of code running on a general-purpose server which is
responsible for moving packets from one NIC (or more) to
a network application for further processing. Since NICs can
be both physical or virtual, software routers are fundamental
components of virtualized network systems. When a NIC is
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equipped with multiple hardware queues, a software router
process is usually bound to a single queue and executed by a
single CPU, to allow horizontal scalability while, at the same
time, avoiding inter-process interruptions [7]. The majority
of high-speed software routers can be executed within Linux
environments, and make extensive usage of low-level libraries
such as Intel’s DPDK or netmap [4] rather than relying on
the standard libraries for packet processing. Such libraries
are optimized to maximize the computational efficiency of
the packet processing application, and provide the additional
advantage of avoiding the overhead of the Linux kernel [1].

A. Vector packet processing

As a use case for our work, we select Vector Packet
Processing (VPP), a high speed packet processor originally
developed by Cisco and recently released as an open-source
Linux Foundation’s project named FD.io [6]. VPP provides a
rich feature set for a wide range of hardware and architectures,
and adopts most of the popular design choices to improve
the packet processing rate [1]. To improve modularity and
ease of programming, most of VPP’s features are developed
as individual plugins, that are further organized as nodes
in a processing graph, which represents the desired packet
processing applications. When a physical NIC is controlled by
a DPDK driver, the first node accessed upon packet reception
is the dpdk-input node, which is responsible for querying
packets from the NIC via the DPDK library, creating a batch
with the received packets and passing the full batch to the next
node. Subsequent nodes can differ, depending on the required
network stack to be accessed. For example, in the case of
IPv4 packets, a following node may be the ip4-input that
will parse the IPv4 headers, or a ip6-input that will deal
with IPv6 packets. At the end of the processing, a final output
decision is taken at the dpdk-output node which can choose
to forward packets to another physical or virtual NIC.

With the adoption of receive-side scaling (RSS), VPP’s main
thread can distribute the incoming traffic to multiple worker
threads. Each thread then runs its own instance of the process-
ing graph. Worker threads can be conveniently pinned to cores
and assigned a scheduler via VPP’s configuration. This allows
reaching higher throughput when processing multiple traffic
flows. Since we are interested in changing the batch creation
behavior, we focus our investigation on the dpdk-input node.

B. Batch creation and CPU behavior

The unmodified version of dpdk-input implements a busy-
loop which continuously polls new packets from the NIC using
the call rte_eth_rx_burst. If no packets have arrived, it
simply returns to the beginning of the loop, which leads to
the same node being called again. In this way, while the main
thread is busy waiting for new packets, the CPU is continu-
ously utilized at 100%. If a poll detects some packets queued at
the NIC, the DPDK library tries to retrieve as many packets
as possible until the maximum batch size has been reached
(defaults to a value of 256). It is worth noting that when the
DPDK node detects less than 32 packets waiting at the NIC,

T
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Figure 1: Oscillation of batch sizes for a L2 forwarding
function that processes a constant 5 Gbit/s traffic.

the loop returns immediately as the driver assumes that no
more packets will be arriving at the queue. This proves useful
in low-load scenarios, as packets are immediately batched and
submitted into the processing graph to keep latency low.

The size of soon-to-be-processed batches highly affects the
computational efficiency of the underlying CPU. Considering
a constant-bit-rate (CBR) scenario, when a large batch is
received the CPU efficiency is very high [1], and as a result,
the processing time per packet is low. Since the polling loop
can quickly return to retrieve more packets, the next poll
will retrieve less packets because of the constant bit rate. A
smaller batch, will result in a lower efficiency and, therefore,
a higher processing time per packet. This will in turn result
in more packets being queued at the NIC, and another new
poll with a larger batch size. This oscillating behavior can
be observed in Figure 1, which shows the number of packets
in a batch as a function of the time, for an average load of
5 Gbit/s. This behavior leads the CPU to switch between higher
power-consumption condition, back to low-energy consump-
tion. Moreover, batch sizes also have an impact on latencies of
the packets [8]. Keeping in mind that the CPU is continuously
utilized at 100 %, we propose a different approach which tries
to (i) minimize the oscillating behavior, (ii) keep the CPU
efficiency always at its maximum and (iii) release the CPU
occupancy by using an idle state which will free some clock
cycles (that can be used by other concurrent applications).

C. Related work

Optimizations of batching behavior are closely related to
our work: for example, SmartBatching [8] aims at adapting
the batching behavior according to an analytical model derived
from the input load, which improves both CPU behavior and
latency. Similarly, Metronome [9] is an approach to replace the
continuous polling with a sleep and wake intermittent mode
and an optimized CPU sleep function. Analytical modeling
is becoming widely adopted to provide previsions on key
performance metrics such as the packet loss or the expected
batch sizes, as done in [10]. Our work differs from the previous
in that it relies on machine learning to adapt to the incoming
input rate, rather than on analytical modeling. This way, we
can relax the assumptions on the input traffic pattern, as we
just need to train our model with realistic traffic. We rely on
the standard Linux nanosleep without any additional kernel
module. A different approach is adopted by Shenango [11],
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Figure 2: The testbed used for our experimental evaluation,
which includes the MoonGen traffic generator, the device
under test and the Al component.

which divides the available CPU cycles into fine-grain slots,
while a separate orchestrator reallocates the CPU cores and
steers the input traffic depending on latency requirements. Our
method is more flexible in that we do not require a fixed time-
slot for the reallocation of CPU cycles.

III. DESIGN SPACE

As explained in Section II, the batch size used by VPP
depends on the load at the NIC. Although VPP tries to create
maximum-size batches in high-load, it may be beneficial to
find a different value in lower load scenarios. For example
it can be useful to keep batches artificially large while, at
the same time, saving some CPU clock cycles for further
processing. In the scenario depicted in Figure 1 this may help
to reduce the batch size oscillations as well as freeing some
CPU clock cycles which can be used for different processing.
In a virtualized environment, CPU cores may be shared with
other applications. With a tuned value for the batch sizes, the
dpdk-input node could then free the CPU core for other
applications. This can be done with the UNIX nanosleep
syscall. Another simple but effective measure could be to scale
the frequency of the CPU clock in order to reduce the power
consumption and reduce the clock cycles allocated for the
busy-polling. Finally, it can be possible to enable the interrupt
mode for very low load scenarios, though this approach would
require a fine tuning of the switching threshold. Table I sum-
marizes the possible actions. We now show how to estimate
the optimal values for the batch sizes.

A. Decision making via ML

The aforementioned modifications are beneficial only in
certain scenarios. Their usage must be adapted to the current
load situation by a decision maker (DM). This process can be
defined through modeling, which however is prone to errors
as it is hard to create a representation of the system that is
sufficiently detailed to capture the low-level details that are
essential for our processing [10]. As the actions influence
latency, throughput, CPU usage and power consumption, the
decision making process must optimize for all of those.

Additionally, most actions will also affect the subsequent state
of the system, thus incurring in feedback actions and non-
linear effects. We opt for a machine learning solution as an
alternative to classical analytical approaches, as it can be used
to approximate a solution for such a complex problem, without
the necessity of manually modeling and tuning the system
model. The DM uses a list of the last batch sizes as input for
its actions. In combination with the parameters to optimize
for and the possible actions to tune, this results in a problem
of high dimensionality. Our ML decision maker is used to
regularly update the threashold configuration for using actions.

B. Architecture overview

We now describe the proposed architecture, as shown in
Figure 2. The device under test (DUT) consists of two parallel
components: the software router, and the decision maker.
Every time the dpdk-input node submits a batch of packets
to the processing graph, it also communicates the batch size
to the DM. The ML algorithm then runs its predictions and
returns the new, updated action instructions which are in turn
read by VPP. For the IPC communication we adopt non-
blocking I/O in order to keep high throughput performance.

For the DM component, it is essential to use fast ML
techniques, as otherwise the efficiency advantages would be
negated by the resource hungry machine learning component.
We selected random forests and ranger [12], as they are
efficient and easy to integrate in VPP.

In theory, it is possible to alter the state of the system by
adopting a combination of all the actions shown in Table I,
depending on the severity of the impact on the processing. For
example, switching to interrupt mode would reduce the load
on the CPU, at the cost of a severe performance degradation.
However, the base Ranger version comes with a limited
interface with no support for multi-dimensional variables.
Therefore the batch selection must be controlled by a single
variable (and thus, a single action can be used). Although all
the mechanisms shown in Table I are implemented, we focus
here on nanosleep actions controlled by a single integer.

Description  Implemented  Used
release the CPU (nanosleep) v v
delay the polling (rte_delay_us) 4 X
interrupt mode (rte—eth—dev—rx—intr—*) v X
CPU freq hints (rte_power_freq_up) X X

Table I: Proposed actions and their usage by ranger.
* : Implemented, but not functional.

C. Random Forest Training

The ranger API is used for training a forest taking the latest
used batch sizes of VPP as input, and to predict the best time
to nanosleep for. As presented in Figure 2, VPP and ranger run
on the DuT, while load scenarios are performed by the load
generator running MoonGen [13]. White box measurements
like clock cycle counting are conducted on the DuT, and black
box measurements like latency and throughput are collected
by the load generator.
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Method \ msg/s avg (us) min (us) max (us)  std dev (us) Stage of Integration \ Throughput  Ratio
mmap | 867,092 1.103 1.024 5.376 0.178 Unmodified VPP 14.15Mpps 100 %
shm | 726,068 1.377 1.320 1.024 0.334 Logging only 13.95Mpps 99 %
fifo | 76,029 13.037 10.496 27.396 0.751 Logging + Exporting 13.94 Mpps 99 %
pipe 59,972 16.674 14.557 120.320 3.960 ...+ Exporting + Ranger load 11.57 Mpps 82 %
...+ Final trained forest 12.26 Mpps 87 %

Table II: Comparison of IPC with 1000 messages of 4096
bytes each

In order to train the random forest, an iterative process is
used. After each run of the performance measurements, the
success of the forest is evaluated using a reward function. The
reward is then used to refine the prediction values to train for
which combined with the newly collected ranger input batch
sizes make up the new training set. Finally, the next iteration of
the forest can be trained and the next training iteration begins.

We limited our evaluation to six scenarios with different
packet rates: 2, 10, 500, 1000, 5000 and 7500 Mbit/s. Since we
focus on the nanosleep action, we selected low load scenarios
where freeing CPU cores is beneficial, but also included larger
loads to avoid over-fitting.

In each training iteration those six scenarios are run and
used to refine the training set. Finding the correct prediction
results relies on a reward function 7. It weights the average
latency [ in ps, the average throughput ¢ in packets per second
and the CPU cycles c used by VPP as follows:

r(l,t,c) = —0.50 + 76101(1?;

Afterwards the range of the reward is limited to the range
[0,—1] using the expected minimum and maximum reward
values 7,5, = —10 and 7,4, = 120:

pde'uiate(r) =1- ;
|7'7nin - r'maw'

This is the probability with which the latest prediction
Plast should be changed. Next the new prediction result to be
trained for is drawn using a random function with a normal
distribution, p;.s¢ as center and s as standard deviation. It
is based on pjust, Pdeviate and a constant to guarantee the
continued exploration of new values cezpiore = 5:

5
s(pdeviate) =100 * Pdeviate + Cexplore

The more the reward r rises, the smaller becomes pgeyiate
which in turn results in an aggressive reduction of s. Using
that system over many training iterations, the random forest
output is able to converge.

IV. NUMERICAL EVALUATION

We numerically evaluate in this section the different com-
ponents of our architecture. We also illustrate the impact that
our machine-learning based software router has on the overall
performance. Our benchmarks are performed on a server with
an Intel Xeon CPU E31230 at 3.20 GHz.

The traffic generated by MoonGen consists of 64 B packets
since it is most demanding scenario for the software com-
ponent of software routers. Other parameters which were not

Table III: Maximum throughput at different stages integration.

tested, like packet size, can have an impact though as well on
packet processing times and thereby also influence latency.

A. Inter-Process Communication

We evaluate here the solution used for communicating batch
sizes and instructions between VPP and ranger. VPP already
has the elog system?® for in place logging. While small logging
events should be performant, previous works [14] show that
it can significantly impact the performance. Using an open-
source benchmarking suite*, we evaluated alternative IPC
channels (see Table II). Based on those results, we built a
more efficient communication channel using mmap.

Table III summarizes the impact of data collection and
export on VPP’s throughput. Running VPP while logging all
batch sizes into the shared memory, results in a maximum
throughput of 99 %. Running ranger for a single prediction,
meaning exporting the ringbuffer only once to ranger, results
in a similar throughput performance of 99 %. When running
the ringbuffer export and prediction in an endless loop, VPP’s
throughput drops to 11.57 Mpps which corresponds to 82 %
of the performance of unmodified VPP. Compared to other
approaches using elog [14], showing a performance loss of 2
to 3 times, our mmap-based IPC proved to be more efficient.

Scenario \ Pred./s Std. dev.  Batches/Pred.
Random data 22106 168 2.6
Real IPC 712 46 82.3

Table IV: Ranger predictions rate

B. Ranger performance

We evaluate the prediction rate of ranger with the help of
Table 1V, which illustrates how many batches may be pro-
cessed on a fully utilized 10 Gbit/s link per prediction. We first
benchmark ranger with random data and our results showed
22106 predictions/s in average. With real data on the IPC
channel, the performance drops to only 712 predictions/s. The
number of packet batches n, processed between two ranger
predictions can be calculated from the packet throughput ¢,
the average size of a batch vy and the prediction rate p,:
Ny = tr/(vs *pr)

With p, = 22106, we obtain 3 batches per prediction which
is close to optimal. With p, = 712, each prediction will be
used for the next 82 batches. This performance gap could be
improved with an optimized mechanism for the interaction
between the Al and the DUT component.

3https://wiki.fd.io/view/VPP/elog
“https://github.com/goldsborough/ipc-bench
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Figure 3: Convergence of the training in three scenarios.

C. Training

For each load scenario presented in Section III-C, we
evaluated the prediction over the training iterations of the
forest. Figure 3 shows that a convergence cannot be observed.
For the higher loads of 1 Gbit/s and 7.5 Gbit/s, a trend emerges
though: the random forest predicts higher nanosleep times for
smaller load scenarios which is what a human expert would
expect. For the smallest traffic rate used, the training could not
converge. A reason could be that satisfying the reward function
in situations with that little traffic is really hard because the
CPU cycles per packet used by VPP seem to rise non-linearly
for those scenarios. Our experiments show that the nanosleep
time has to be several orders of magnitude higher than 50 ps to
get to a CPU cycle efficiency expected by the reward function.

D. Validation and comparison of the system

Finally, we evaluate our architecture by measuring the
CPU utilization in different scenarios and comparing it to
an unmodified VPP (see Figure 4). Unmodified VPP has
the worker thread running on CPUL. Its utilization is 100 %
regardless of the offered load. The second core runs nothing
and therefore has a utilization of 0 %. Depending on the traffic
its (avg, max) latencies are between (5, 6)us and (12, 65)us.

Modified VPP with ranger updating the optimization in-
structions on CPU2 constantly utilizes about 98 %. The worker
thread of VPP on CPUl now shows a different behavior.
When offered no load, the nanosleep time is set to 30 by
the forest. This results in a utilization of only around 20 %
on CPU1. When offered more load (1000 Mbit/s around time
20s in Figure 4), the nanosleep time drops and CPU1 raises to
45 % load to process the packets. From offering 1200 Mbit/s
of load onward (at time 31 s in Figure 4), VPP’s worker thread
starts hitting the upper limit of available cycles of CPUI.
The latencies range from (12.5, 54)us to (13.4, 101)us. At
a throughput of 12.26 Mpps the maximum performance of the
system is finally found.

V. CONCLUSION

We showed that the CPU utilization of VPP could be
reduced in low load scenarios using random forests for finding
optimization parameters at runtime. Regardless of the added
context switches and complexity, the throughput performance
in high load situations is reduced by only 13 %. Although a
separate core is fully utilized by the ranger thread, future work
could use the same core to save CPU time off VPP worker
threads on multiple cores. Among possible optimizations,

CPU1: VPP [%] CPU2: ranger [%] — usleep [us] ——

100

NBEO®
o33533

-5

°

0.01 I I bk L/ .
20 30 40 50

Time [s]
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Throughput [MPPSIyogified VPP Unmod. VPP

Figure 4: A comparison under the same load scenario. Unmod-
ified: CPU1: VPP worker, CPU2: nothing. Modified: CPU1:
VPP worker, CPU2: ranger.

dynamically reducing ranger’s refresh rate may be a promising
one. Further research is also required for comparative study
and evaluation of the effects on both throughput and latencies
combined, because of the trade-off between CPU efficiency
and processing times. Finally, exploring other random forest
implementations may open possibilities for using more actions,
improving training and implementing online learning to react
to new, unknown traffic patterns.
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AFDX Avionics Full DupleX Switched Ethernet
ASIC Application-Specific Integrated Circuit
AVB Audio-Video Bridging

BGP Border Gateway Protocol

BNN binary neural network

CBN Causal Bayesian Networks

CNN convolutional neural network
CPU Central Processing Unit

CRC Cyclic Redundancy Check
DEBORAH Delay Bound Rating AlgoritHm
DNC deterministic network calculus
DPDK Dataplane Development Kit

DSL Domain Specific Language

EIB Explicit Intermediate Bounds
FA Forward End-To-End Delay Approach
FFA Feed-Forward Analysis

FFNN feed-forward neural network
FIFO First In First Out

foi flow of interest

FP Flow Prolongation

FPGA Field Programmable Gate Array
GGNN gated graph neural network
GNN graph neural network

GPU Graphic Processing Unit

GQNN Graph-Query Neural Network
GRU Gated Recurrent Unit

HSA Header Space Analysis

HTTP Hypertext Transfer Protocol
INT In-Band Network Telemetry

LP linear program

LSTM Long Short-Term Memory
LUDB Least Upper Delay Bound
mcastFFA  multicast Feed-Forward Analysis
ML machine learning

MPC model predictive control

MPLS Multiprotocol Label Switching
NC network calculus

NIC Network Interface Card
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NN
NPU
OSPF
PBOO
PCC
PDA
PMOO
PMOOA
PSA
QoE
QoS
RAM
RIP
RNN
RTT
SAT
SDN
SFA
SHA
SNC
SVM
SVR
T4P4S
TA
TCP
TE
TFA
TMA
TSN
uDP
ULP
VHDL
VNF
VPP

neural network

Network Processing Unit
Open Shortest Path First

Pay Burst Only Once
Performance-oriented Congestion Control
pushdown automaton

Pay Multiplexing Only Once
Pay Multiplexing Only Once Analysis
Portable Switch Architecture
Quality-of-Experience
Quality-of-Service

Random Access Memory
Routing Information Protocol
Recurrent Neural Network
round-trip time

Boolean satisfiability problem
Software Defined Networking
Separate Flow Analysis

Secure Hash Algorithm
stochastic network calculus
Support Vector Machine
Support Vector Regression
Translator for P4 Switches
Trajectory Approach
Transmission Control Protocol
Traffic Engineering

Total Flow Analysis

Tandem Matching Analysis
Time-Sensitive Networking
User Datagram Protocol
Unique Linear Program
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