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 Preface 

 This  dissertation  results  from  two  research  projects  that  I  conducted  at  the  Institute  of  Computational  Biology 
 (ICB)  at  the  Helmholtz  Research  Center  in  Munich  (HMGU).  It  entails  the  entire  biological  and  methodological 
 context  to  understand  the  projects  better.  In  the  following  two  paragraphs,  I  give  individual  project  overviews, 
 highlight my contributions, and acknowledge the important work of my collaborators. 

 Transcriptional Pausing Project [1]: 
 In  this  project,  I  contributed  to  improving  our  understanding  of  trans-regulatory  factors  implicated  in  the 
 transcriptional  pausing  of  the  Polymerase  II  that  underlies  the  transcription  of  mammalian  protein-coding  genes. 
 I  performed  all  computational  analyses  in  this  project.  The  project  is  based  on  the  integration  of  large-scale 
 genomic  data  sets  of  genomic  and  transcriptomic  binding  events  as  well  as  gene  annotation  and  sequence 
 composition  features  as  context  for  a  machine  learning  task  to  extract  patterns  of  trans-regulation  modulating  the 
 productivity  of  the  Polymerase  II.  Our  results  provide  the  first  comprehensive  characterization  of 
 trans-regulators  underlying  transcriptional  pausing  enabling  a  systematic  and  targeted  investigation  thereof  by 
 providing  specific  factors  for  experimental  manipulation.  This  project  is  presented  in  Chapter  3,  and  the 
 corresponding  manuscript  is  currently  (May  2022)  under  review  in  Nucleic  Acid  Research  and  also  available  on 
 bioRxiv:  Akcan  and  Heinig.  ‘Predictive  Model  of  Transcriptional  Elongation  Control  Identifies 
 Trans-Regulatory  Factors  from  Chromatin  Signatures,  Toray  Akcan,  Matthias  Heinig’  BioRxiv  (2022).  The 
 related  chapter  includes  all  parts  of  it,  including  figures,  essentially  replicating  the  manuscript.  I  want  to  express 
 my  gratitude  to  Dr.  Heinig,  who  provided  me  the  opportunity  to  conduct  this  research  which  earned  me  first 
 authorship for this important work, for which I am very grateful. 

 Coronary Artery Disease Epistasis Project [2]: 
 In  my  second  project,  I  contributed  to  further  our  knowledge  of  genetic  interactions  as  additional  drivers  of 
 Coronary  Artery  Disease  (CAD).  This  project  was  a  collaborative  effort  between  the  Institute  of  Computational 
 Biology  (ICB)  at  the  Helmholtz  Zentrum  München,  the  German  Heart  Center  in  Munich  led  by  Prof.  Heribert 
 Schunkert  and  Prof.  Johan  LM  Björkegren  at  the  Department  of  Genetics  and  Genomic  Sciences,  Icahn  Institute 
 for  Genomics  and  Multiscale  Biology,  Icahn  School  of  Medicine  at  Mount  Sinai,  NY,  USA,  and  the  Karolinska 
 Institutet,  Sweden.  The  aim  was  to  identify  and  characterize  trans  genetic  interactions  underlying  Coronary 
 Artery  Disease.  I  performed  all  computational  analyses  in  this  project.  It  is  based  on  integrating  large-scale 
 genotype,  phenotype,  and  gene  expression  data  for  CAD.  Developing  a  filter-based  permutation  testing 
 approach  coupled  with  linear  modeling  and  subsequent  genotype-combination-dependent  differential  gene 
 expression  analyses,  enabled  us  to  identify  upstream  trans-genetic  regulatory  interactions  with  downstream 
 regulatory  roles  on  trans-target  genes.  Our  results  provide  specific  interacting  genetic  loci  and  allele 
 combinations  as  well  as  downstream  trans  target  genes  as  specific  experimental  endpoints  for  a  systematic 
 experimental  manipulation  to  further  characterize  the  effects  of  genetic  interaction  that  contribute  to  the  disease 
 etiology  of  CAD.  I  am  very  grateful  to  Prof.  Schunkert,  and  Prof.  Björkegren  for  having  had  access  to  the 
 underlying  data  sets  to  perform  respective  analyses,  without  which  this  work  would  not  have  been  possible.  This 
 project  is  presented  in  Chapter  4  with  the  corresponding  manuscript  currently  (June  2022)  in  preparation.  The 
 related  chapter  includes  all  parts  of  it,  including  figures,  essentially  replicating  the  manuscript.  I  want  to 
 especially  thank  Dr.  Heinig,  who  initiated  me  into  this  collaboration  and  allowed  me  to  conduct  such  exciting 
 research, which earned me first authorship for this vital work, for which I am very grateful. 
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 Abstract 

 Advancements  in  the  digitalization  of  our  societies  greatly  affect  healthcare  and  science,  enabling  the 
 investigation  of  biological  phenomena  at  much  greater  speed  and  precision.  In  fact,  contemporaneous 
 developments  of  high-throughput  assays  that  produce  massive  amounts  of  complex  biological  data,  also  known 
 as  multi-omics  data,  strictly  require  data-driven  approaches  that  have  the  capacity  to  cope  with  the  quantity, 
 quality,  complexity,  and  interconnectivity  of  such  data  types.  Artificial  intelligence  and  machine  learning  have 
 intrinsic  properties  that  harbor  these  potentials  and  can  overcome  these  barriers.  As  such  it  has  become  an 
 essential tool in computational biology. 

 Likewise,  we  conducted  machine  learning-driven  research  of  large-scale  biological  multi-omic  data  types  that 
 aimed  to  address  major  challenges  in  the  biological  domain  of  gene  regulation,  specifically  from  the  perspective 
 of  trans-regulatory  molecular  mechanisms.  As  opposed  to  cis-regulatory  elements  that  regulate  a  limited  number 
 of  proximal  targets  that  lie  in  the  vicinity  of  the  regulators,  trans-regulatory  factors  act  on  genes  that  are  distal 
 and  lie  far  away  from  the  regulatory  elements.  As  such,  trans-regulators  are  not  constrained  in  their  function  by 
 their  localization  and  may  act  on  any  distal  genomic  element  thereby  potentially  occupying  roles  as  key  master 
 regulators.  This  highlights  the  importance  of  trans-regulation  and  indicates  that  for  a  holistic  understanding  of 
 gene  transcription  and  gene  regulation  beyond  gene-proximal  cis-regulatory  elements,  a  comprehensive 
 characterization  of  gene-distal  trans-regulatory  molecular  mechanisms  and  implicated  factors  is  indispensable. 
 Trans-regulatory  mechanisms  are  characterized  by  interactions  of  molecules  that  can  be  ascribed  to  different 
 pools  of  biological  entities  with  specific  characteristics.  For  instance,  interactions  between  genome-associated 
 elements,  like  DNA-binding  transcription  factors,  and  transcriptome-associated  elements,  like  splicing  factors. 
 Due  to  this  multi-modal  nature  of  trans-regulation,  elaborate  multi-omic  data  integration  and  analysis  strategies, 
 as  it  is  enabled  by  machine  learning,  are  required.  In  this  context,  we  conducted  machine  learning-driven 
 analyses  of  various  multi-omic  data  types  contributing  to  this  area  of  research  about  trans-regulatory  molecular 
 mechanisms  of  gene  regulation  by  focusing  specifically  on  1)  the  identification  of  novel  trans-regulatory 
 elements  modulating  the  promoter-proximal  pausing  of  the  Polymerase  II  (Pol  II)  during  the  transcription  of 
 mammalian  protein-coding  genes  and  2)  the  identification  of  trans  genetic  interactions  as  upstream 
 trans-regulators of downstream trans target genes that underlie Coronary Artery Disease (CAD). 

 The  transcription  of  genes  is  characterized  by  regulated  transcriptional  arrests  of  the  Pol  II,  called  transcriptional 
 pauses.  Transcriptional  pause  regulatory  elements  entail  cis-  and  trans-acting  factors  like  DNA  sequence  motifs 
 and  transcription  factor  bindings  that  control  Pol  II  pausing  during  the  transcription  of  mammalian 
 protein-coding  genes.  A  special  case  of  transcriptional  pausing  is  promoter-proximal  Pol  II  pausing.  It  represents 
 a  key  rate-limiting  step  to  gene  expression  and  is  recognized  as  a  hallmark  of  protein-coding  genes.  Despite  its 
 important  role  in  gene  transcription,  we  still  lack  quantitative  descriptions  of  implicated  regulatory  elements. 
 Predictive  models  could  have  the  potential  to  identify  previously  unknown  pause  regulatory  elements  and  reveal 
 their  relative  importance.  We  addressed  this  gap  with  an  Extreme  Gradient  Boosting  Tree  regression  model  that 
 accurately  predicts  (Pearson's  rho  0.83,  R  2  0.68)  the  degree  of  promoter-proximal  Pol  II  pausing  and  explains 
 almost  up  to  70%  of  the  observed  variance.  This  was  accomplished  by  engineering  features  of  genome  and 
 transcriptome  protein  binding  maps  from  large-scale  Chromatin  immunoprecipitation  sequencing  data 
 (CHIP-seq)  and  enhanced  Cross-linking  immunoprecipitation  sequencing  data  (eCLIP-seq)  to  reveal  potential 
 novel  trans-acting  protein  factors.  Additional  features  of  gene  annotation  and  sequence  compositions  served  to 
 capture  potential  novel  pause  regulatory  elements  that  are  intrinsic  (cis-acting)  to  the  genes.  Pol  II  productivity, 
 as  the  target  in  our  models,  was  quantified  using  Global-Run-On-sequencing  (GRO-seq)  data.  By  validating  the 
 obtained  model  on  an  independent  cell  line  we  demonstrated  the  generalizability  and  cell  line  agnostic  character 
 of  the  model.  An  array  of  models  based  on  sets  of  proteins  with  specific  molecular  functional  backgrounds 
 further  confirmed  the  strong  interconnected  nature  of  the  transcriptional  pause  mechanism  with  other  RNA 
 regulatory  processes  like  for  example  splicing.  By  harnessing  the  model  feature  contributions  we  quantified  and 
 elucidated  the  relative  importance  of  individual  factors  which  enabled  us  to  systematically  identify  previously 
 unknown regulators of pausing with high predictive value. In addition, we identified nine previously unknown 
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 7SK  non-coding-RNA  interacting  RNA-binding  proteins  predictive  of  pausing,  further  strengthening  and 
 elucidating  the  role  of  the  7SK  pause  mediator  complex  and  implicated  factors  in  transcriptional  pausing.  To 
 conclude,  our  results  provide  specific  proteins  predictive  of  transcriptional  pausing  for  experimental 
 manipulation,  for  instance  with  gene  knockdown  experiments,  to  evaluate  their  downstream  effects  on  pausing 
 and gene expression at large. 

 In  the  second  project,  we  applied  statistical  inference  techniques  to  genetic  data  of  patients  with  Coronary 
 Artery  Disease  (CAD),  a  major  cause  of  death  worldwide  both  in  developed  and  developing  countries.  Despite 
 numerous  case-control,  epidemiological,  quantitative  trait  loci,  and  genome-wide  association  studies, 
 mechanistic  details  for  CAD  still  remain  to  be  understood.  Particularly  we  lack  investigations  into  genetic 
 interactions  (epistasis)  which  have  profound  impacts  on  many  quantitative  traits  not  only  in  humans  but  also  in 
 bacteria  and  other  higher-order  model  organisms.  We  addressed  this  gap  with  a  filter-based  permutation  testing 
 approach  coupled  with  linear  modeling,  identifying  n=4  interacting  SNP  pairs  through  the  evaluation  of 
 differential  SNP  correlations  between  CAD  cases  and  controls  in  a  large  cohort  of  >35k  samples  (UK  Biobank) 
 and  validating  the  SNP  interactions  by  modeling  the  disease  label  (case-control  status)  dependent  on  individual 
 interacting  SNP  pairs  as  multiplicative  terms  in  logistic  regression  models.  For  the  first  time,  we  were  also  able 
 to  replicate  the  genetic  interactions  with  analogous  models  in  an  independent  aggregate  cohort  of  11 
 genome-wide  case-control  studies  with  >35k  samples.  Subsequently,  we  evaluated  the  downstream  effects  of 
 these  trans  epistatic  interactions  on  the  transcriptional  output  of  trans  target  genes.  This  was  achieved  by 
 integrating  genotype  and  gene  expression  data  for  multiple  tissues  from  the  STARNET  study  and  GTEx  v8 
 project  and  modeling  tissue-specific  individual  gene  expressions  by  each  possible  genotype-combination  of  an 
 interacting  SNP  pair  as  a  multiplicative  term  in  linear  regression  models.  Permutation  testing  allowed  us  to 
 further  rule  out  trans  differential  gene  expression  results  that  were  most  likely  due  to  chance.  In  total,  we 
 identified  n=1142  epistatically  driven  differentially  expressed  trans  target  genes  in  the  STARNET  cohort  that 
 could  be  replicated  (FDR  <5%)  in  the  independent  GTEx  v8  cohort.  Few  (n=6)  of  the  trans  targets  were  in 
 addition  differentially  expressed  in  dependence  of  the  same  interacting  genetic  variants  in  the  same  genotype 
 combination  at  those  variants,  and  showed  the  same  direction  of  effect.  Strikingly,  n=2  genes  were  also 
 differentially  expressed  in  the  same  tissue  type,  representing  highly  confident  results  of  tissue-specific 
 trans-epistatically  dysregulated  trans  target  genes.  Many  of  these  trans  target  genes  are  strongly  associated  with 
 cardiovascular  events.  In  this  context,  our  results  support  the  hypothesis  that  combinatorial  differential  gene 
 regulation  could  explain  the  epistatic  consequences  and  provide  for  the  first  time  specific  interacting  genetic  loci 
 and  genotype  combinations  as  well  as  downstream  trans  target  genes  as  specific  experimental  target  points  for  a 
 systematic experimental investigation of the downstream effects of genetic interactions underlying CAD. 

 Our  studies  focused  on  transcriptional  regulation,  specifically  advancing  our  understanding  of  trans-regulatory 
 molecular  mechanisms.  We  demonstrated  how  machine  learning  coupled  with  the  integration  of  multi-omic 
 data,  like  genotype,  phenotype,  gene  expression,  or  protein  binding  data,  can  systematically  identify 
 trans-regulatory  factors,  trans  interacting  genetic  variants  and  trans  epistatically  regulated  trans  target  genes.  On 
 the  one  hand,  these  enabled  us  to  improve  our  understanding  of  the  transcriptional  regulation  of  protein-coding 
 genes  by  deciphering  the  underlying  trans-regulatory  mechanisms  and  revealing  trans-regulatory  factors 
 involved  in  the  critical  early  steps  of  transcription.  On  the  other  hand,  we  were  able  to  illustrate  the  importance 
 of  trans  genetic  interactions  in  disease,  revealing  epistatically  dysregulated  trans-target  disease  genes.  In  large, 
 our  projects  provide  a  systematic  investigation  of  trans-regulatory  molecular  mechanisms  providing  specific 
 experimental endpoints for a targeted investigation of implicated factors and the regulatory processes at large. 
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 Kurzfassung 

 Fortschritte  bei  der  Digitalisierung  unserer  Gesellschaften  wirken  sich  stark  auf  das  Gesundheitswesen  und  die 
 Wissenschaft  aus  und  ermöglichen  die  Untersuchung  biologischer  Phänomene  mit  viel  größerer 
 Geschwindigkeit  und  Präzision.  Tatsächlich  erfordern  Hochdurchsatz-Assays,  welche  große  Mengen  komplexer 
 biologischer  Daten  produzieren  (Multi-Omic  Daten),  datengesteuerte  Ansätze,  die  in  der  Lage  sind,  mit  der 
 Quantität,  Qualität,  Komplexität  und  Interkonnektivität  der  Daten  zurechtzukommen.  Künstliche  Intelligenz  und 
 maschinelles  Lernen  besitzen  Eigenschaften,  die  diese  Potenziale  bergen  und  diese  Barrieren  überwinden 
 können. Als solches haben sie eine wesentliche Rolle in der Computerbiologie eingenommen. 

 Auch  wir  haben  maschinellem  Lernen  genutzt  um  Forschung  an  groß  angelegten  biologischen 
 Multi-Omic-Datentypen  durchzuführen.  Unser  Fokus  lag  auf  dem  Bereich  der  Genregulation,  insbesondere 
 transregulatorischer  molekularer  Mechanismen.  Im  Gegensatz  zu  cis-regulatorischen  Faktoren,  die  eine 
 begrenzte  Anzahl  proximaler  Ziele  (z.B.  Gene)  regulieren,  die  in  der  Nähe  der  Regulatoren  liegen,  wirken 
 transregulatorische  Faktoren  auf  Ziele,  die  distal  und  weit  entfernt  von  den  regulierten  Elementen  liegen.  Als 
 solche  sind  Trans-Regulatoren  im  Gegensatz  zu  Cis-Regulatoren  in  ihrer  Funktion  nicht  durch  ihre 
 Lokalisierung  eingeschränkt  und  können  auf  jedes  distale  genomische  Element  einwirken,  wodurch  sie 
 möglicherweise  eine  Rolle  als  Hauptregulatoren  einnehmen.  Dies  unterstreicht  die  Bedeutung  der 
 Transregulation  und  weist  darauf  hin,  dass  für  ein  ganzheitliches  Verständnis  der  Gentranskription  und 
 Genregulation  über  Gen-proximale  cis-regulatorische  Faktoren  hinaus  eine  umfassende  Charakterisierung 
 Gen-distaler  transregulatorischer  molekularer  Mechanismen  und  beteiligter  Faktoren  unerlässlich  ist. 
 Transregulationsmechanismen  sind  durch  Wechselwirkungen  von  Molekülen  gekennzeichnet,  die  bestimmten 
 Pools  biologischer  Einheiten  mit  spezifischen  Eigenschaften  zugeordnet  werden  können.  Beispielsweise 
 Wechselwirkungen  zwischen  Genom-assoziierten  Elementen  wie  DNA-bindenden  Transkriptionsfaktoren  und 
 Transkriptom-assoziierten  Elementen  wie  Spleißfaktoren.  Aufgrund  dieser  multimodalen  Eigenschaften  der 
 Transregulierung  sind  aufwändige  Multi-Omic-Datenintegrations-  und  Analysestrategien  erforderlich,  wie  sie 
 durch  maschinelles  Lernen  ermöglicht  werden.  In  diesem  Zusammenhang  haben  wir  auf  maschinellem  Lernen 
 basierende  Analysen  verschiedener  Multi-Omic-Datentypen  durchgeführt,  die  zu  diesem  Forschungsgebiet  über 
 transregulatorische  molekulare  Mechanismen  der  Genregulation  beitragen,  indem  wir  uns  speziell  auf  1)  die 
 Identifizierung  neuer  transregulatorischer  Elemente  konzentrieren,  die  die  promotor-proximale  Pausierung  der 
 Polymerase  II  (Pol  II)  während  der  Transkription  von  menschlichen  protein-kodierenden  Genen  und  2)  die 
 Identifizierung  transgenetischer  Interaktionen  als  vorgeschaltete  Transregulatoren  von  nachgeschalteten 
 Transzielgenen, die der koronaren Herzkrankheit (KHK) zugrunde liegen, fokussierten. 

 Die  Transkription  von  Genen  ist  durch  regulierte  Transkriptionspausen  der  Polymerase  II  gekennzeichnet. 
 Regulatorische  Elemente  der  transkriptionellen  Pausierung  umfassen  cis-  und  trans-regulatorische  Faktoren  wie 
 DNA  Sequenzmotive  und  Transkriptionsfaktorbindungen,  welche  die  Pausierung  der  Polymerase  II  während  der 
 Transkription  von  proteinkodierenden  Genen  in  Säugetieren  modulieren.  Ein  Sonderfall  der  transkriptionellen 
 Pausierung  ist  die  promotor-proximale  Pausierung  der  Polymerase  II,  welches  den  Durchsatz  der  Genexpression 
 kennzeichnend  limitert.  Damit  stellt  die  transkriptionelle  Pausierung  einen  essentiellen  Mechanismus  zur 
 Regulation  der  Transkription  dar,  welches  jedem  proteinkodierenden  Gen  unterliegt.  Jedoch  fehlt  uns  eine 
 umfassende  quantitative  Beschreibung  aller  beteiligten  regulatorischen  Faktoren.  Vorhersagemethoden  aus  dem 
 Bereich  des  maschinellen  Lernens  bergen  das  Potential  bisher  unbekannte  regulatorische  Elemente  ausfindig  zu 
 machen  und  deren  relativen  Beiträge  zur  transkriptionellen  Regulation  aufzudecken.  Wir  nutzten  dieses 
 Potential  aus,  indem  wir  ein  Extreme  Gradient  Boosting  Tree  Regressionsmodell  trainierten,  welches  den  Grad 
 der  promotor-proximalen  Pausierung  der  Polymerase  II  akkurat  (pearson’s  rho  0.83,  R  2  0.68)  vorhersagen 
 konnte.  Dies  konnte  durch  die  Erschließung  von  Genattributen  über  genomische  und  transkriptomische 
 Proteinbindungen  an  Gensequenzen  mithilfe  von  umfangreichen  Chromatin  Immunoprecipitation  Sequencing 
 (CHIP-seq)  Daten  und  enhanced  Cross-linking  Immunoprecipitation  Sequencing  (eCLIP-seq)  Daten  zur 
 Eingabe  in  das  Vorhersagemodell  ermöglicht  werden.  Genannotations-  und  sequenzattribute,  als  zusätzliche 
 prädiktive Attribute, dienten dazu potentiel neue intrinsische cis-agierende regulatorische Elemente zu ermitteln. 
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 Die  Integration  von  Global-run-on-sequencing  (GRO-seq)  Daten  ermöglichte  die  Quantifizierung  der 
 transkriptionellen  Produktivität  der  Polymerase  II  und  ermöglichte  die  Anwendung  von  Vorhersagemethoden 
 indem  es  als  Zielvariable  in  die  Modelle  einging.  Durch  die  erfolgreiche  Validierung  des  Modells  auf  Daten 
 einer  unabhängigen  Zelllinie  konnten  wir  die  Verallgemeinerbarkeit  des  Modells  und  der  darunter  liegenden 
 Modellattribute  demonstrieren.  Vorkenntnisse  über  molekulare  Funktionen  integrierter  Faktoren  konnten  die 
 starke  Verflechtung  des  Mechanismus  der  transkriptionellen  Pausierung  mit  anderen  RNA-regulatorischen 
 Prozessen  wie  zum  Beispiel  dem  alternativen  Spleißen  bestätigen.  Mithilfe  der  Modellstruktur  zugrunde 
 liegenden  Merkmalsbeiträge  konnten  wir  die  relative  Wichtigkeit  einzelner  Faktoren  aufklären  und 
 quantifizieren,  was  uns  ermöglichte  bisher  unbekannte  Regulatoren  mit  hohen  Vorhersagepotentialen 
 systematisch  zu  ermitteln.  Darüber  hinaus  identifizierten  wir  neun  zuvor  unbekannte  7SK-ncRNA 
 interagierende  RNA-bindende  Proteine,  welche  die  Rolle  des  7SK-Komplexes  in  der  transkriptionellen 
 Pausierung  weiter  verstärkte.  Unsere  Ergebnisse  ermöglichen  eine  systematische  und  gezielte  Untersuchung  der 
 transkriptionellen  Pausierung,  indem  sie  spezifische  Faktoren  für  die  experimentelle  Manipulation  bereitstellen, 
 beispielsweise  für  Knockdown-Experimente,  um  ihre  Auswirkungen  auf  das  transkiprionelle  Pausieren  und  die 
 Genexpression im Allgemeinen zu bewerten. 

 Im  zweiten  Projekt  wandten  wir  statistische  Inferenztechniken  auf  genetische  Daten  von  Patienten  mit  koronarer 
 Herzkrankheit  (KHK)  an,  einer  der  häufigsten  Todesursachen  weltweit  sowohl  in  Industrie-  als  auch  in 
 Entwicklungsländern.  Trotz  zahlreicher  Studien  müssen  mechanistische  Details  der  KHK  noch  verstanden 
 werden.  Insbesondere  fehlt  uns  die  Untersuchung  genetischer  Wechselwirkungen  (Epistasen),  welche 
 tiefgreifende  Auswirkungen  auf  viele  quantitative  Merkmale  nicht  nur  beim  Menschen,  sondern  auch  bei 
 Bakterien  und  anderen  Modellorganismen  höherer  Ordnung  haben.  Wir  konnten  diese  Lücke  mit  einem 
 filter-basierten  Permutationstestansatz  in  Verbindung  mit  linearen  Modellen  zur  Validierung  schließen  und 
 identifizierten  n  =  4  interagierende  SNP-Paare  durch  die  Evaluation  von  differentiellen  SNP-Korrelationen 
 zwischen  KHK-Fällen  und  Kontrollen  in  einer  großen  Kohorte  von  >  35.000  Proben  (UK  Biobank).  Zudem 
 konnten  wir  zum  ersten  Mal  die  genetischen  Interaktionen  in  einer  unabhängigen  Kohorte  von  11  aggregierten 
 genomweiten  Fall-Kontroll-Studien  mit  ebenfalls  >35.000  Proben  und  analogen  Modellen  replizieren. 
 Anschließenden  führten  wir  genotypkombinationsabhängige  differenzielle  trans  Genexpressionsanalysen  durch, 
 um  die  nachgeschalteten  Effekte  der  interagierenden  SNP-Paaren  auf  die  Transkription  von  trans  Zielgenen  zu 
 bewerten.  Dafür  integrierten  wir  genotypische  und  phänotypische  Daten  für  mehrere  Gewebe  aus  der  STARNET 
 Studie  und  dem  GTEx  v8  Projekt  und  modellierten  gewebespezifische  individuelle  Genexpressionen  in 
 Abhängigkeit  von  jeder  möglichen  Genotypkombination  eines  interagierenden  SNP-Paares  als  multiplikativen 
 Term  in  linearen  Regressionsmodellen.  Permutationstests,  bei  denen  die  beobachtete  Verteilung  von 
 Genexpressionen  in  einer  bestimmten  Genotypkombination  eines  interagierenden  SNP-Paares  mit  der 
 erwarteten  Verteilung  von  Genexpressionen  in  derselben  Genotypkombination  desselben  SNP-Paares  auf  der 
 Grundlage  permutierter  Daten  verglichen  wurde,  ermöglichten  uns  Genexpressionsergebnisse,  die  mit  hoher 
 Wahrscheinlichkeit  auf  Zufall  zurückzuführen  sind,  auszuschließen.  Dabei  identifizierten  wir  in  der 
 STARNET-Kohorte  n=1142  epistatisch  gesteuerte  differentiell  exprimierte  trans-Zielgene,  die  in  der 
 unabhängigen  GTEx  v8  Kohorte  repliziert  werden  konnten  (FDR  <5  %).  Wenige  (n=6)  der  trans-Zielgene 
 wurden  zusätzlich  in  Abhängigkeit  derselben  interagierenden  genetischen  Varianten  in  derselben 
 Genotypkombination  bei  diesen  Varianten  differentiell  exprimiert  und  zeigten  dieselbe  Wirkungsrichtung. 
 Bemerkenswerterweise  wurden  auch  n=2  Gene  im  selben  Gewebetyp  unterschiedlich  exprimiert,  was  sehr 
 zuverlässige  Ergebnisse  von  gewebespezifischen  trans-epistatisch  fehlregulierten  trans-Zielgenen  darstellt.  Viele 
 dieser  trans-Zielgene  sind  stark  mit  kardiovaskulären  Ereignissen  assoziiert.  In  diesem  Zusammenhang 
 unterstützen  unsere  Ergebnisse  die  Hypothese,  dass  kombinatorische  differentielle  Genregulation  die 
 epistatischen  Folgen  erklären  könnte  und  liefern  erstmals  spezifisch  interagierende  genetische  Loci  und 
 Genotypkombinationen  sowie  nachgeschaltete  trans-Zielgene  als  spezifische  experimentelle  Angriffspunkte  für 
 eine  systematische  experimentelle  Untersuchung  liefern  könnten  die  nachgelagerten  Wirkungen  genetischer 
 Wechselwirkungen, die KHK zugrunde liegen. 

 Unsere  Studien  konzentrierten  sich  auf  die  transkriptionelle  Regulation  und  im  Speziellen  auf 
 transregulatorische molekularen Mechanismen. Wir haben gezeigt, wie maschinelles Lernen in Verbindung mit 
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 Multi-Omic-Datensätzen  wie  Genotyp,  Phänotyp,  Genexpression  oder  Proteinbindungsdaten  transregulatorische 
 Faktoren,  trans-interagierende  genetische  Varianten  und  trans-epistatisch  regulierte  trans-Zielgene  systematisch 
 identifizieren  kann.  Einerseits  ermöglichten  uns  diese,  unser  Verständnis  der  transkriptionellen  Regulation 
 proteinkodierender  Gene  zu  verbessern,  indem  wir  die  zugrunde  liegenden  transregulatorischen  Mechanismen 
 entschlüsselten  und  transregulatorische  Faktoren  aufdeckten,  die  an  den  kritischen  frühen  Schritten  der 
 Transkription  beteiligt  sind.  Andererseits  konnten  wir  die  Bedeutung  transgenetischer  Interaktionen  bei 
 Krankheiten  veranschaulichen,  indem  wir  epistatisch  fehlregulierte  Krankheitszielgene  in  trans  aufdeckten.  Im 
 Großen  und  Ganzen  bieten  unsere  Projekte  eine  systematische  Untersuchung  transregulatorischer  molekularer 
 Mechanismen,  die  spezifische  experimentelle  Endpunkte  für  eine  gezielte  Untersuchung  der  beteiligten 
 Faktoren und der regulatorischen Prozesse im Allgemeinen liefern. 
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 1. Introduction 

 1.1. Thesis Aims 

 This  thesis  covers  two  biological  research  projects  concerned  with  1)  the  identification  of  novel  trans-regulatory 
 factors  modulating  the  promoter-proximal  pausing  of  the  Polymerase  II  during  the  transcription  of  mammalian 
 protein-coding  genes  and  2)  the  identification  of  trans  genetic  interactions  as  upstream  trans-regulators  of 
 downstream  trans  target  genes  that  underlie  Coronary  Artery  Disease.  In  large,  both  projects  aimed  to  improve 
 our  understanding  of  gene  regulatory  molecular  mechanisms,  specifically  from  the  perspective  of 
 trans-regulatory  factors.  Trans-regulatory  factors  interact  with  cis-regulatory  elements  to  control  for  gene 
 expression.  However,  in  contrast  to  cis-regulatory  elements,  trans-regulatory  factors  perform  functions  that  are 
 not  constrained  by  their  localization.  They  may  act  on  any  distal  genomic  element  and  function  as  master 
 regulators,  as  shown  for  many  transcription  factors  that  confer  trans-regulatory  effects  through  binding  to 
 cis-regulatory  transcription  factor  binding  sites  (1,  2)  .  This  highlights  the  importance  of  trans-regulatory 
 mechanisms  and  implicated  factors  for  a  holistic  understanding  of  gene  regulation.  Moreover,  trans-regulation  is 
 characterized  by  interactions  of  different  types  of  molecules  such  as  proteins,  DNA  and  RNA.  This 
 multifactorial  complex  nature  of  trans-regulatory  mechanisms  requires  multifarious  large-scale  multi-omic  data 
 sets  to  accurately  capture  the  genomic  context  of  trans-regulation.  Machine  learning-driven  analysis  of  such 
 multi-omic  data  sets  enabled  us  to  draw  conclusions  about  the  initial  biological  research  questions  and  enlarge 
 our  understanding  of  trans-regulatory  molecular  mechanisms  underlying  gene  regulation  from  two  different 
 perspectives.  In  the  following  two  paragraphs,  we  provide  a  brief  overview  of  these  two  aspects  of 
 trans-regulation from the perspective of each project. 

 In  our  first  project,  we  aimed  to  extend  our  knowledge  about  the  role  of  trans-regulatory  proteins  in  the  context 
 of  transcriptional  pausing  as  a  key  determinant  of  gene  transcription.  The  transcription  of  genes  is  driven  by 
 internal  and  external  stimuli  that  modulate  the  cell’s  behavior  to  continuously  adapt  itself  to  these  changing 
 environmental  conditions  in  order  to  sustain  cell  homeostasis  for  proper  cell  functioning  (1,  2).  This  adaptive 
 process  is  tightly  regulated  by  the  coordinated  interplay  of  chromatin  and  transcription  factors  (TFs)  (3). 
 Initially,  a  pre-initiation  complex  (PIC)  of  transcription  factors  assembles  to  enable  the  synthesis  of  a  short 
 nascent  RNA  fragment  by  the  polymerase.  The  polymerase  then  pauses  and  requires  other  regulatory  signals  to 
 either  enter  productive  elongation  or  terminate  transcription  prematurely  (6).  This  is  called  promoter-proximal 
 pausing  of  the  polymerase  (3)  .  The  transcriptional  pause  rates  and  durations  affect  RNA  burst  production 
 (transcription  in  short  bursts)  and  transcriptional  as  well  as  translational  noise  (for  reasons  yet  unknown), 
 collectively  modulating  mean  RNA  and  protein  levels,  representing  a  key  determinant  to  transcriptional  output 
 in  large  (4)  .  Thus,  i  (3)  represents  a  critical  early  regulatory  step  in  the  maturation  of  full-length  transcripts  as  it 
 limits  the  transcriptional  throughput  per  unit  of  time  (7,  8).  Moreover,  it  is  observed  across  the  whole  spectrum 
 of  gene  expression  levels,  ranging  from  highly  active  to  largely  silenced  genes  (23)  as  well  as  across  different 
 life  forms  ranging  from  bacteria  (244)  to  mammals  (245,  246).  It  is  therefore  considered  a  hallmark  of  genes, 
 highlighting  the  ubiquitous  importance  of  the  transcriptional  pause  mechanism.  Hence,  for  a  holistic 
 understanding  of  protein  biogenesis  and  ultimately  cell  functioning  understanding  of  this  regulatory  layer  poses 
 an  important  challenge.  As  a  result  of  higher  transcriptional  initiation  rates  compared  to  productive  elongation 
 or  premature  termination  rates  (9,  10),  paused  RNA  polymerases  accumulate  at  the  promoter  site.  This 
 accumulation  can  be  seen  in  assays  that  capture  nascent  RNA  fragments,  such  as  global  run-on  sequencing 
 (GRO-seq)  (11).  Based  on  GRO-seq  data,  transcription  initiation  and  productive  elongation  events  can  be 
 related  to  each  other  with  the  pausing  index  (PI),  also  known  as  the  traveling  ratio  (TR)  (12–14).  It  is  defined  as 
 the  ratio  of  GRO-seq  reads  in  a  window  around  the  promoter  compared  to  the  rest  of  the  gene  body,  and  as  such, 
 quantifies  the  equilibrium  between  transcription  initiation  and  productive  elongation.  This,  in  turn,  enables  us  to 
 contrast  these  two  states  of  the  polymerase  and  investigate  the  associated  genomic  contexts  to  elucidate  the 
 underlying  process,  in  particular,  identify  novel  regulators  of  transcriptional  pausing.  Transcriptional  pause 
 regulatory  factors  entail  cis-  and  trans-acting  factors  that  either  promote  pausing  or  elongation  (16).  These  have 
 also  led  to  the  concepts  of  ‘intrinsic’  and  ‘regulated’  pausing.  For  instance,  trans-acting  regulatory  transcription 
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 factors  like  DSIF,  NELF,  or  P-TEFb  and  intrinsic  cis-acting  elements  in  the  DNA/RNA  sequences  like  specific 
 promoter  sequence  compositions,  GC-content,  or  transcription  factor  binding  motifs  and  degree  of  binding  motif 
 conservation  fine-tune  and  regulate  pausing.  Because  transcriptional  pausing  is  a  convoluted  process  that 
 emerges  in  conjunction  with  other  RNA  regulatory  processes  like  for  instance  splicing  (75)  or  transcription 
 termination  (77),  further  layers  of  complexity  arise.  However,  we  still  lack  quantitative  descriptions  of 
 associated  factors  and  processes  with  the  potential  to  reveal  their  relative  importance,  identify  previously 
 unknown  regulators  of  pausing,  and  elucidate  their  roles  in  other  RNA  regulatory  processes.  Hence,  we  aimed  to 
 reduce  this  gap  by  building  machine  learning  models  based  on  large-scale  genome  and  transcriptome  binding 
 maps,  gene  annotation,  and  sequence  composition  features,  systematically  identifying  previously  known  and 
 novel  cis-  and  trans-acting  regulators  of  pausing.  By  integrating  data  capturing  protein-RNA  interactions,  we 
 further  identify  novel  7SK  pause  mediator  binding  proteins  and  show  their  predictive  values.  We  further 
 strengthen  the  interconnection  of  the  transcriptional  pause  process  with  other  RNA  regulatory  events  by 
 integrating  prior  knowledge  of  implicated  factors  and  quantifying  their  relative  importance.  The  related  project 
 is  covered  in  Chapter  3.  Predictive  model  of  transcriptional  elongation  control  identifies  trans-regulatory  factors 
 from chromatin signatures  . 

 In  our  second  project,  we  aimed  to  enlarge  our  knowledge  about  the  genetic  basis  of  Coronary  Artery  Disease 
 (CAD)  (5)  ,  especially  trans-acting  genetic  interactions.  CAD  is  a  cardiovascular,  inflammatory  disease  that 
 arises  through  occlusions  of  the  coronary  arteries  with  plaque.  Research  has  revealed  general  environmental  risk 
 factors  like  stress,  nutrition,  and  smoking.  Epidemiological  investigations  (6–9)  have  led  to  the  discovery  of 
 many  other  risk  factors,  including  diabetes,  hypertension,  and  hyperlipidemia.  Similarly,  genetic  risk  factors 
 have  been  identified  through  case-control  (10–14)  ,  quantitative  trait  loci  (15–17)  as  well  as  genome-wide 
 association  studies  (17–28)  .  It  has  been  established  to  be  a  complex  trait  (29,  30)  with  many  disease-associated 
 genetic  variants  with  small  effect  sizes  spread  across  the  genome  that  can  be  linked  to  many  genes  which  do  not 
 necessarily  have  a  clear  connection  to  the  underlying  disease  phenotype.  Despite  a  plethora  of  genetic 
 association  studies  the  genetic  basis  of  CAD  still  needs  to  be  accurately  mapped,  as  previously  identified 
 additive  effects  and  associated  variants  can  not  explain  all  of  the  heritability  of  the  CAD  phenotype  (‘missing 
 heritability’  problem  (31,  32)  )  which  is  estimated  to  be  around  40-60%  (33)  .  Even  polygenic  risk  scores  can 
 only  explain  up  to  4%  of  the  variance  in  the  heritability  in  an  independent  test  population  (34)  .  This  suggests 
 that  the  remaining  proportion  of  the  heritability  could  be  explained  by  interactions  between  genetic  or  genetic 
 and  environmental  factors.  Genetic  interactions  also  called  epistasis  (154),  occur  when  a  genetic  variation's 
 effect  depends  on  the  presence  or  absence  of  another  genetic  variation.  Such  genetic  interactions  have  been 
 successfully  identified  through  systematic  screens  in  yeast,  nematodes,  and  flies  affecting  fitness  and 
 quantitative  traits  (155),  even  in  humans  (35–37)  .  Genetic  interactions  underlying  CAD  have  also  been 
 identified  (29–31)  but  remain  scarce  and  lack  replication.  The  reasons  lie  in  the  large  sample  sizes  required  for 
 accurate  parameter  estimates  of  parametric  statistical  methods  like  in  logistic  regression,  the  statistical  limits 
 that  arise  when  controlling  for  false  positives,  the  computational  limits  when  considering  high  order-genetic 
 interactions,  and  the  lack  of  additional  data  for  proper  replication  in  independent  cohorts.  Yet,  for  a  holistic 
 understanding  of  the  genetic  basis  of  CAD  and  complex  traits  at  large,  the  identification  of  epistatic  interactions 
 is  indispensable.  Thus  we  aimed  to  address  this  gap  with  a  filter-based  permutation  testing  approach  coupled 
 with  linear  modeling  to  identify  novel  trans  genetic  interactions  and  reveal  their  downstream  effects  on  the 
 expression  levels  of  trans  target  genes.  The  related  project  is  covered  in  Chapter  4.  Trans-epistasis  underlying 
 Coronary Artery Disease confers differential disease risk and perturbs gene expressions in trans  . 

 1.2. Thesis Overview 

 In  the  remainder  of  this  introductory  chapter  we  provide  a  general  biological  introduction  to  DNA  as  a  carrier  of 
 biological  information  (  Section  1.3.1.  DNA  -  The  Blueprint  for  Life  )  and  focus  on  the  transcriptional  cycle  of 
 genes  (  Sections  1.3.2.  Promoter  Access  -  1.3.6.  Model  of  Gene  Transcription  ).  We  continue  with  the  central 
 mechanism  of  transcriptional  pausing  as  a  rate-limiting  regulatory  step  of  the  transcription  of  genes  (  Sections 
 1.3.7.  Transcriptional  Pausing  -  1.3.8.  Transcriptional  Pause  Regulatory  Elements  ),  laying  the  foundation  for  our 
 first project covered in  Chapter 3. Chromatin Signatures  and their Role in Transcriptional Elongation Control  . 
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 We  proceed  with  genetics  and  genetic  variation  as  a  source  of  phenotypic  variation  underlying  complex  diseases 
 (  Section  1.4.1.  Genetic  Variation  ),  introduce  studies  that  systematically  identify  disease-associated  variants 
 (  Section  1.4.2.  Genome-Wide  Association  Studies  (GWAS)  )  and  follow  up  with  a  discussion  on  how  a  similar 
 methodology  can  be  applied  to  any  intermediate  molecular  phenotype  to  reveal  their  molecular  consequences 
 (  Section  1.4.3.  Quantitative  Trait  Loci  (eQTL)  Studies  ).  Polygenic  risk  scores  as  additive  proxies  quantifying 
 disease  risk  based  on  the  total  number  of  risk  alleles  that  an  individual  carries  are  then  introduced  (  Section  1.4.4. 
 Polygenic  Risk  Scores  (PRSs)  ),  motivating  the  discussion  on  epistatic  interactions  as  additional  drivers  of 
 complex  diseases  and  existing  methods  for  their  identification  (  Section  1.4.5.  Genetic  Interactions  (Epistasis)  ). 
 Finally,  an  overview  of  Coronary  Artery  Disease  as  a  complex  trait  (  Section  1.4.6.  Coronary  Artery  Disease 
 (CAD)  )  provides  the  disease  background  in  which  we  seek  to  identify  epistatic  interaction  covered  in  Chapter  4. 
 Trans-epistasis  underlying  Coronary  Artery  Disease  confers  differential  disease  risk  and  perturbs  gene 
 expressions in trans  . 

 We  conclude  Chapter  1.  Introduction  in  section  1.5.  Machine  Learning  &  Statistical  Inference  informing  about 
 the  global  industrial  changes  resulting  from  the  digitalization  and  employment  of  artificial  intelligence  systems. 
 We  then  touch  upon  the  general  design  principles  of  building  such  machine  learning  models,  mention  the  most 
 commonly  utilized  systems  and  point  to  their  importance  in  research  and  large  parts  of  our  digitally  driven 
 world. 

 In  Chapter  2.  Materials  &  Methods  section  2.1.  Omics  ,  we  provide  brief  descriptions  of  biochemical  assays 
 designed  for  probing  biological  entities  of  various  types,  producing  massive  amounts  of  biological  data.  We  then 
 introduce  the  computational  approaches  that  are  employed  to  analyze  such  data  (  Section  2.2.  Statistical 
 Inference  ),  starting  from  basic  measures  to  describe  data  (  Section  2.2.1.  Estimates  of  Location,  Variability,  and 
 Association  )  to  quantify  the  uncertainty  in  obtained  measurements  (  Section  2.2.2.  Variance  of  Estimates  )  to 
 formulating  hypothesis  tests  (  Section  2.2.3.  Hypothesis  Tests  ),  followed  by  the  most  established  hypothesis 
 testing  methods  for  group  comparisons  of  discrete  and  continuous  data  (  Sections  2.2.4.  The  Fisher’s  Exact  Test 
 &  The  Chi-Square  Test  -  2.2.5.  The  T-test  ),  providing  the  basis  for  permutation  testing  as  a  means  to  perform  an 
 arbitrary  statistical  test  for  multiple  group  comparisons  (  Section  2.2.6.  Permutation  Tests  ).  Lastly,  we  discuss 
 properly  evaluating  a  series  of  statistical  tests  by  introducing  the  multiple  hypothesis  testing  burden  and 
 presenting ways to overcome it (  Section 2.2.7. The  Multiple Testing Burden  ). 

 In  section  Section  2.3.  Machine  Learning  we  focus  on  the  technical  aspects  of  supervised  machine  learning 
 models,  starting  from  linear  and  logistic  regression  (  Section  2.3.1.  Linear  Models  )  followed  by  tree-based 
 models  (  Section  2.3.2.  Tree  Models  )  comprising  simple  decision  trees  (  Section  2.3.2.1.  The  Decision  Tree 
 Model  ),  random  forests  (  Section  2.3.2.2.  The  Random  Forest  Model  )  and  finally  to  the  most  powerful 
 descendant,  the  Extreme  Gradient  Boosting  Tree  model  (  Section  2.3.2.3.  The  Extreme  Gradient  Boosting 
 Regression  Tree  Model  (XGB)  ).  An  overview  of  common  procedures  and  concepts  to  build  and  analyze 
 machine  learning  models  (  Sections  2.3.3.  Feature  Scoring  -  2.3.7.  Regularization  )  then  concludes  the  machine 
 learning methods section  2.3. Supervised Machine Learning  . 

 We  then  follow  up  with  the  two  projects  forming  the  foundation  of  this  dissertation  (  Chapters  3.  Predictive 
 model  of  transcriptional  elongation  control  identifies  trans-regulatory  factors  from  chromatin  signatures  &  4. 
 Trans-epistasis  underlying  Coronary  Artery  Disease  confers  differential  disease  risk  and  perturbs  gene 
 expressions  in  trans  ).  In  our  first  project  (  Chapter  3.  Predictive  model  of  transcriptional  elongation  control 
 identifies  trans-regulatory  factors  from  chromatin  signatures  ;  ‘Transcriptional  Pausing’),  we  investigate  the  role 
 of  DNA  and  RNA-associated  proteins  as  well  as  gene  annotation  and  sequence  composition  features  in 
 modulating  polymerase  II  promoter-proximal  pausing  as  a  key  determinant  of  transcriptional  output  of 
 protein-coding  genes.  We  first  detail  the  methods  (  Section  3.1.  Materials  &  Methods  )  used  to  acquire  the 
 transcriptional  context  of  gene  transcription  (  Sections  3.1.1.  Integration  of  Transcript  Annotations  (GENCODE) 
 -  3.1.3.  Integration  of  Transcription  Start  Site  Annotations  (CAGE)  )  and  associated  factors  (  Sections  3.1.5. 
 Integration  of  Genomic  Transcription  Factor  Binding  Sites  (CHIP-seq)  -  3.1.7.  Targeting  the  7SK  non-coding 
 RNA  )  as  well  as  quantify  Polymerase  II  pause  states  (  Section  3.1.4.  Quantification  of  Promoter-Proximal  Pol  II 
 Pausing  (GRO-seq)  )  and  show  how  to  integrate  this  information  into  a  machine  learning  task  with  gradient 
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 boosting  tree  regressors  (  Sections  3.1.8.  Model  Feature  Engineering  -  3.1.11.  Feature  Scoring  &  Interpretation  ). 
 We  then  describe  the  results  of  our  project  (  Section  3.2.  Results  ),  evaluating  the  model  performances  (  Sections 
 3.2.1.  Predictive  Models  of  Transcriptional  Pausing  ).  Finally,  we  assess  the  predictive  power  of  functional 
 associations  of  implicated  factors  (  Sections  3.2.2.  Linking  Transcriptional  Regulatory  Steps  with  Transcriptional 
 Pausing  )  and  provide  novel  modulators  of  transcriptional  pausing  (  Section  3.2.3.  Modulators  of  Transcriptional 
 Pausing  ).  In  this  project,  we  extend  our  knowledge  of  polymerase  II  transcriptional  pausing  by  providing 
 evidence  of  its  interdependence  with  other  RNA  regulatory  processes  like,  for  instance,  splicing  and,  more 
 importantly,  providing  a  set  of  specific  highly  predictive  proteins  that  act  as  additional  trans-regulatory  factors 
 of transcriptional pausing. 

 In  our  second  project  (  Chapter  4.  Trans-epistasis  underlying  Coronary  Artery  Disease  confers  differential 
 disease  risk  and  perturbs  gene  expressions  in  trans  ;  ‘CAD  Epistasis’),  we  identify  genetic  interactions 
 underlying  CAD  and  assess  their  potential  downstream  effects  on  the  expression  of  trans  target  genes.  We  first 
 cover  the  methodological  background  (  Section  4.1.  Materials  &  Methods  )  starting  from  the  integration  of 
 relevant  omic  data  types  (  Sections  4.1.1.  Integration  of  Genotype  and  Phenotype  Data  &  Section  4.1.2. 
 Integration  of  Quantitative  Trait  Loci  for  Coronary  Artery  Disease  ),  to  the  identification  and  replication  of 
 genetic  interactions  (  Sections  4.1.3.  Identification  of  Candidate  Epistatic  Interactions  &  Section  4.1.4. 
 Discovery  and  Replication  of  Epistatic  Interactions  ).  In  a  subsequent  step,  we  prepare  for  differential  gene 
 expression  analyses  (  Section  4.1.5.  Integration  of  Gene  Expression  Data  )  and  provide  the  methodology  to 
 conduct  these  analyses  (  Section  4.1.3.  Identification  of  Candidate  Epistatic  Interactions  ).  We  then  characterize 
 the  identified  SNP  interactions  in  more  detail  (  Section  4.2.1.  Identification  of  Trans  Epistasis  in  CAD  )  and 
 identify  SNP  interaction-dependent  differentially  dysregulated  trans  target  genes  as  potential  drivers  of  CAD 
 (  Section  4.2.2.  Association  of  Gene  Expression  with  interacting  SNPs  ).  In  this  project,  we  improve  upon  the 
 discovery  of  epistasis  in  CAD  and  provide  specific  genetic  interactions  and  genotype  combinations  conferring 
 differential  risk  for  CAD.  We  also  provide  specific  trans  target  genes  that  are  differentially  regulated  in 
 dependence  of  these  interacting  SNPs,  providing  targets  for  investigating  the  gene  expression  effects  of  genetic 
 variation on the level of specific genotype combinations. 

 In  the  last  chapter  of  this  thesis  (  Chapter  5.  Summary  &  Outlook  ),  we  review  and  discuss  our  results  and  put  our 
 findings into perspective with the current literature and future developments in the field of genomics. 

 1.3. Gene Transcription & Regulation 

 In  the  following  subsections,  we  like  to  give  an  overview  of  DNA  as  a  carrier  of  biological  information  (  Section 
 1.3.1.  DNA  -  The  Blueprint  for  Life  )  and  introduce  the  transcriptional  cycle  of  genes,  ranging  from  promoter 
 recognition  to  initiation,  elongation  and  transcription  termination  (  Sections  1.3.2.  Promoter  Access  -  1.3.6. 
 Model  of  Gene  Transcription  ).  An  outline  of  the  mechanism  of  transcriptional  pausing  underlying  this 
 transcriptional  process  (  Sections  1.3.7.  Transcriptional  Pausing  -  1.3.8.  Transcriptional  Pause  Regulatory 
 Elements  )  then  lays  the  foundation  for  our  first  project  in  Chapter  3.  Predictive  model  of  transcriptional 
 elongation control identifies trans-regulatory factors from chromatin signatures 

 1.3.1. DNA - The Blueprint for Life 
 DNA  (38,  39)  (desoxyribonucleic  acid),  also  called  the  genome,  is  the  building  block  for  life  on  earth.  The  DNA 
 is  constituted  of  two  polynucleotide  chains  that  coil  around  each  other  to  form  a  double-helical 
 three-dimensional  structure  (double  helix)  that  arises  through  successive  Watson-Crick  (38)  base  pairings  of  the 
 four  nucleotide  bases  adenine,  cytosine,  guanine,  and  thymine,  covalently  linked  to  a  phosphodiester  backbone. 
 These  nucleotides  are  commonly  represented  in  a  four-letter  code  of  A  (adenine),  C  (cytosine),  T  (thymine),  and 
 G  (guanine).  The  DNA  double-strand  forms  through  complementary  base-pairing  interactions  of  these 
 nucleotides,  i.e.,  ‘A’  pairs  with  ‘T’  and  ‘C’  pairs  with  ‘G’.  The  resulting  double  helix  further  winds  itself  in 
 spools  around  nucleosomes  (40–42)  composed  of  eight  protein  complexes  collectively  called  histones.  This 
 spooling  of  the  DNA  is  responsible  for  the  efficient  packing  and  condensation  of  the  DNA  within  the  cell.  It 
 further  fosters  the  prevention  of  DNA  damage  and  is  a  major  determinant  of  DNA  replication  and  the  expression 
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 of  information  encoded  in  the  DNA.  This  three-dimensional  structure,  called  chromatin  (43)  ,  folds  through 
 successively  higher-order  structures  to  form  so-called  chromosomes.  Depending  on  the  species,  different 
 numbers  of  chromosomes  may  be  present  in  their  cells,  while  diploid  organisms  share  the  property  that  they 
 possess  two  copies  of  each  of  their  chromosomes.  Each  healthy  human  cell  contains  23  pairs  of  chromosomes, 
 46  in  total.  These  chromosomes  harbor  regions  of  DNA  stretches  of  particular  interest,  called  genes  (44,  45)  . 
 Variations  of  genes,  called  alleles,  are  associated  with  observable  and  measurable  traits  called  phenotypes  (46)  . 
 For  instance,  anthropometric  characteristics  in  humans  like  the  eye  or  hair  color  or  their  height,  but  also  disease 
 phenotypes  like  for  instance  Coronary  Artery  Disease  (5)  ,  Type  II  Diabetes  (47)  or  cancer  (48)  ,  just  to  name  a 
 few.  Genes  can  encode  proteins  and,  when  expressed  (decoded),  form  the  building  blocks  of  diverse 
 biomolecules  that  sustain  cellular  productivity.  Genes  can  encode  for  multiple  versions  of  themselves,  that  arise 
 from multiple alternative transcription start sites  (49)  . 

 Strikingly,  multicellular  organisms  carry  the  same  DNA  sequence  in  all  of  their  cells,  yet  these  cells  differ  in 
 their  form  and  function.  Hence,  cellular  mechanisms  that  control  the  use  of  the  DNA,  in  particular  the  genes, 
 must  exist,  i.e.,  the  cell  must  have  a  mechanism  in  place  to  use  only  subsets  of  all  available  genes  for  specific 
 cell  types  to  exist  (50)  .  So-called  transcription  factors  (TFs)  play  an  integral  role  in  this  cell-type-specific 
 selective  expression  of  genes  (51–53)  .  These  TFs  selectively  bind  to  different  parts  of  the  regulome  to  activate 
 or  inactivate  the  expression  of  a  subset  of  genes  depending  on  internal  and  external  (environmental)  factors  to 
 change  cellular  behavior  as  an  adaptation  process  to  changing  requirements.  However,  the  presence  of  these  TF 
 binding  sites  alone  is  not  sufficient  to  explain  cell-type-specific  gene  expression  but  rather  also  depends  on  the 
 accessibility  of  the  binding  sites  for  a  TF  to  bind  at  all  (54)  .  This  accessibility  of  genomic  regions,  particularly 
 binding  sites  of  transcription  factors,  is  modulated  through  the  alteration  of  the  histones  around  which  the  DNA 
 is  wound.  Histones  have  protein  ’tails’  that  are  subject  to  modification  which  alters  the  compaction  of  the  DNA 
 at  altered  sites  (55)  .  Depending  on  the  type  of  alteration  the  DNA  may  be  packed  densely,  called 
 heter  ochromatin,  or  loosely,  called  euchromatin.  Euchromatin  enables  accessibility  of  gene  regulatory  genomic 
 DNA  to  transcription  factors  that  regulate  gene  expression  (56)  .  More  importantly,  the  emergence  of  different 
 cell  types  is  a  consequence  of  the  different  accessibility  of  binding  sites  for  transcription  factors  generated 
 during  the  differentiation  of  cells  from  common  progenitor  cells.  At  specific  transition  points  into  specific  cell 
 lineages  where  different  cell  types  are  formed  from  a  common  progenitor  cell,  DNA  compaction  at  cell-type 
 specifying  sites  is  altered  so  that  different  sets  of  genes  can  be  expressed  that  are  specific  to  the  cell  type  to  be 
 generated.  This  differential  compaction/decompaction  of  DNA  is  itself  regulated  by  specific  transcription 
 factors,  called  chromatin  remodelers.  They  locate  inaccessible  chromatin  and  open  up  these  regions  to  allow  the 
 binding  of  other  transcription  factors  that  regulate  the  expression  of  cell  type-specific  genes  or  vice  versa.  As 
 mentioned  earlier,  this  differential  compaction  of  DNA  and  subsequent  alteration  of  the  gene  expression 
 program  not  only  occurs  at  the  transition  points  of  cell  differentiation  but  also  within  a  specific  cell  type  to  adapt 
 to  new  requirements  induced  by  different  stimuli  like  changes  in  the  temperature,  pressure  or  simply  nutrient 
 availability and many more  (57)  . 

 We  can  further  differentiate  between  silencing  (repressing)  and  activating  transcription  factors  or  regulatory 
 binding  sites,  referring  to  their  inherent  function  of  either  inactivating  or  activating  gene  expression  (52,  58)  . 
 Regarding  regulatory  binding  sites,  we  further  distinguish  between  cis-acting  promoter-proximal  and  gene  distal 
 sites.  Enhancers  and  silencers  may  be  in  close  proximity  to  each  other  and  may  differ  only  in  the  transcription 
 factors  bindings  at  those  sites.  Another  regulatory  layer  represents  non-coding  RNAs,  i.e.,  RNAs  that  do  not 
 encode  for  a  protein  that  arises  from  non-protein-coding  regions  which  make  up  most  of  the  genome  (59,  60)  . 
 They  include  for  instance  well  established  classes  of  RNAs  such  as  transfer  RNAs  (tRNAs)  and  ribosomal 
 RNAs  (rRNAs)  with  significant  roles  in  the  final  step  of  gene  expression  (translation),  small  nuclear  RNAs 
 involved  in  alternative  processing  of  protein-coding  mRNAs  (alternative  splicing),  and  small  nucleolar  RNAs 
 mainly  involved  in  the  modification  of  small  RNAs  like  ribosomal  and  transfer  RNAs.  Many  other  non-coding 
 RNA  biotypes  (long  non-coding  RNAs,  piwi-associated  RNAs,  endogenous  short-interfering  RNAs, 
 microRNAs,  etc.)  additionally  play  key  roles  as  regulators  of  gene  expression  and  epigenetic  control  of 
 chromatin,  promoter-specific  gene  regulation,  mRNA  stability  and  many  more.  Their  specific  roles  and  function 
 within  the  cell  are  yet  to  be  established  further,  and  it  remains  an  active  area  of  research.  Still,  they  undoubtedly 
 represent functional elements with the potential to regulate gene expression in addition to transcription factors. 
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 To  conclude  and  summarize,  a  simplified  model  of  protein  biosynthesis  (see  Fig.  1.1)  through  the  transcription 
 of  a  protein-coding  gene  first  involves  the  alteration  of  the  DNA  architecture  by  chromatin  remodeling  events 
 (61)  . 

 Figure 1.1:  Conceptual figure of a simplified model  of protein biosynthesis. Created with  BioRender.com  . 

 The  decompaction  of  densely  packed  DNA  for  DNA  accessibility  is  achieved  by  histone  modifications  deployed 
 by  chromatin  remodelers  at  sites  proximal  or  even  distal  (e.g.  at  trans  enhancers)  to  genes.  Subsequent  binding 
 of  transcription  factors  at  regulatory  sequences  then  promotes  the  expression  of  the  target  gene  by  recruiting 
 additional  transcription  initiation  factors  that  assemble  at  the  transcription  initiation  site  near  the  transcription 
 start  site  of  genes  (promoters)  (62)  .  Once  all  necessary  associations  between  transcription  factors  and  regulatory 
 regions,  as  well  as  protein  interactions  and  protein  modifications  of  implicated  factors,  have  been  established, 
 the  transcription  of  the  gene’s  sequence  by  the  so-called  Polymerase  can  start  (transcription  elongation). 
 Initially,  the  polymerase  pauses  at  the  promoter  site  (promoter-proximal  transcriptional  pausing)  (3,  63)  until  the 
 aforementioned  associations  have  been  established  to  start  transcription  eventually.  Transcription  starts  at  the 
 transcription  start  site  (TSS)  of  the  gene,  where  the  polymerase  reads  the  DNA  to  produce  the  corresponding 
 nascent  (newly  synthesized)  RNA  by  successively  extending  it  with  nucleotides  until  it  reaches  a  DNA  encoded 
 termination  signal  upon  which  it  terminates  transcription  (64,  65)  .  This  process  is  discontinuous  like  in  the  case 
 of  promoter-proximal  pausing  in  which  transcriptional  pause  events  occur  in  gene  body  regions  which  in  turn 
 provide  opportunities  for  other  factors  to  associate  with  the  transcribing  polymerase  complex  (elongation 
 complex)  for  co-transcriptional  nascent  RNA  processing  events  for  example  5’  capping  or  splicing.  Once  the 
 transcription  of  the  gene  has  been  completed  the  process  is  terminated  (transcription  termination)  (66)  with  the 
 support  of  specific  termination  factors  and  the  resulting  transcript  is  then  further  processed.  It  then  is,  for 
 instance,  subjected  to  post-transcriptional  splicing  events  (67)  to  yield  alternative  variants  of  the  transcript  or 
 polyadenylation  (68)  to  enable  the  exportation  of  the  transcript  to  other  cellular  compartments  and  to  confer 
 transcript  stability.  Eventually,  the  transcripts  will  be  translated,  i.e.  processed  to  yield  proteins  (69,  70)  .  Specific 
 translation  complexes  called  ribosomes  (71)  associate  with  non-coding  tRNAs  and  rRNAs  that  are  responsible 
 for  their  processing  to  yield  an  amino  acid  sequence  by  decoding  the  RNA  sequence  according  to  the  amino  acid 
 code  which  maps  three  successive  nucleotides  to  one  of  22  amino  acids  (translation).  The  resulting  amino  acid 
 polymer  then  collapses  into  a  specific  three-dimensional  structure  (protein  folding)  (72)  with  the  help  of 
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 chaperones  to  yield  a  functional  protein  biomolecule  that  performs  its  own  function  within  the  cell  and 
 contributes to cell homogeneity, productivity, and integrity. 

 We  have  seen  that  for  the  development  of  a  multicellular  organism,  specific  genes  have  to  be  expressed  in 
 distinct  cells  to  establish  different  cell  types  which  perform  distinct  functions  in  the  organism.  This  requires  an 
 elaborate  regulatory  program  to  express  cell-type-specific  genes.  This  occurs  at  large  during  the  transcription  of 
 genes,  therefore  understanding  the  regulation  of  gene  expression  requires  in-depth  knowledge  of  the 
 mechanisms  of  gene  transcription.  In  our  first  project,  we  sought  to  extend  our  knowledge  about  gene 
 transcription  specifically  from  the  perspective  of  the  promoter-proximal  pausing  of  the  polymerase  II  as  a  key 
 rate-limiting  step  to  gene  expression.  To  continue,  we  focus  on  the  biological  background  of  the  transcriptional 
 cycle  of  genes  and  transcriptional  pausing  specifically  to  lay  the  foundation  for  our  first  project  in  Chapter  3. 
 Chromatin Signatures and their Role in Transcriptional Elongation Control  . 

 1.3.2. Promoter Access 
 The  transcription  of  genes  is  conducted  by  RNA  polymerases  (73)  .  There  are  three  distinct  polymerases 
 transcribing  three  different  classes  of  genes  (74)  .  The  RNA  polymerase  I  (Pol  I)  produces  ribosomal  RNAs, 
 RNA  polymerase  II  (Pol  II)  produces  messenger  RNAs  and  other  non-protein-coding  RNAs,  and  RNA 
 polymerase  III  (Pol  III)  synthesizes  transfer  RNAs  and  the  small  ribosomal  RNAs.  These  polymerases  differ  in 
 the  mechanisms  of  transcriptional  regulation  and  associated  factors,  however,  there  exists  an  underlying  theme 
 in  which  the  RNA  polymerases  recognize  the  promoter  region  at  the  beginning  of  a  gene  to  initiate  transcription 
 followed  by  the  opening  of  the  DNA  double-strand  and  polymerase  escape  from  the  promoter  to  start 
 synthesizing  RNA.  In  the  following,  we  will  exclusively  focus  on  the  Polymerase  II,  because  of  its  critical  role 
 in  transcribing  protein-coding  genes  which  are  the  main  building  workhorses  of  the  cell,  but  because  of  existing 
 biochemical protocols that capture its productivity during the transcriptional cycle. 

 Prior  to  transcription  initiation,  the  polymerase  needs  promoter  access  (75)  which  at  heterochromatic  DNA 
 regions  harboring  genes  is  inhibited  by  the  3D  chromatin  structure  that  winds  and  condenses  the  DNA  in  those 
 regions.  We  have  seen  that  DNA  condensation  is  driven  by  nucleosomes  (review  Section  1.3.1.  DNA  -  The 
 Blueprint  for  Life  ).  Therefore  specific  chromatin  remodelers  need  to  remove  or  shift  the  nucleosomes  at  genes 
 to  be  transcribed  so  that  transcription  factors  can  gain  access  to  the  gene’s  DNA  sequence.  Different  genes  have 
 different  promoter  characteristics,  some  of  which  can  impair  nucleosome  assembly.  As  an  example  promoters 
 which  contain  CpG  islands  are  often  found  at  housekeeping  genes  and  facilitate  polymerase  access  (76,  77)  .  On 
 the  other  hand,  promoters  containing  TATA-boxes  upstream  of  the  transcription  start  site  are  often  found  in 
 genes  that  are  cell-type  specific  (78)  .  Taken  together,  chromatin  opening  is  regulated  differently  for  distinct 
 classes  of  promoters.  This  promoter  opening  is  performed  by  transcription  factors  of  which  about  1600  are 
 known  (51)  .  Most  of  these  factors  bind  free  DNA  (79)  and  only  a  minority  of  factors,  also  known  as  pioneering 
 factors,  can  bind  nucleosomal  DNA  and  open  up  chromatin  locally  to  enable  transcription  (80)  .  These  include, 
 for  example,  histone  acetyltransferases  or  entire  complexes  of  chromatin  remodelers  (75,  81,  82)  .  Transcription 
 factors  also  bind  distal  transcriptional  regulatory  elements,  like  enhancers  or  silencers,  to  modulate  transcription 
 (83,  84)  .  They  generally  contain  multiple  binding  sites  so  that  entire  collections  of  transcription  factors  can  bind 
 cooperatively,  influencing  each  other  (85)  .  Gene  distal  enhancers  influence  the  transcription  of  genes  by  DNA 
 looping  structures,  i.e.,  the  chromatin  architecture,  which  enable  enhancers  to  communicate  with  the  promoters 
 of  genes.  These  chromatin  architectures  within  which  enhancers  usually  operate  are  also  known  as  topologically 
 associated  domains  (TADs)  (86)  .  Once  promoter  access  has  been  cleared  and  the  promoter  primed  for 
 transcription, the polymerase can initiate transcription. 

 1.3.3. Transcription Initiation 
 Because  polymerases  cannot  recognize  promoters  by  themselves,  transcription  initiation  factors  are  required  to 
 recognize  and  bind  conserved  DNA  sequence  elements  in  promoters,  forming  a  bridge  between  the  polymerase 
 and  the  promoter.  This  assembly  of  transcription  factors  at  the  promoter  site,  and  the  polymerase  is  called  the 
 pre-initiation  complex  (PIC).  The  PIC  (87)  consists  of  factors  TFIIA,  TFIIB,  TFIID,  TFIIE,  TFIIF,  TFIIH, 
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 RNAPII,  and  Mediator.  Pol  II  and  the  TFIID  make  extensive  contacts  with  DNA  that  extend  ∼40  bp  on  either 
 side  of  the  TSS.  The  TATA-box  binding  protein  TBP  binds  upstream  DNA  (from  the  TSS),  recognizes  and  binds 
 the  promoter,  and  assembles  with  TFIIB,  which  recruits  the  Pol  II-TFIIF  complex.  TFIIB  thus  acts  as  a  bridge 
 between  the  promoter  and  the  polymerase  and  stimulates  the  transcription  of  an  initial  RNA  fragment.  Though 
 the  mechanism  of  promoter  recognition  for  promoters  with  conserved  DNA  sequence  elements  has  been 
 elucidated  quite  well,  we  still  lack  a  comprehensive  understanding  of  promoter  recognition  of  promoters  without 
 such  conserved  DNA  sequence  elements.  It  is  postulated  that  the  initiation  factors  may  recognize  the  +1 
 nucleosome  or  sense  physical  properties  like  the  bendability  of  promoter  DNA  (88)  .  However,  further  research 
 has  to  be  conducted  to  establish  a  comprehensive  understanding  of  promoter  recognition.  This,  in  addition,  is 
 complicated because PICs themselves can differ between promoters. 

 The  PIC’s  main  function  beyond  promoter  recognition  is  to  open  DNA  which  generally  requires  a  DNA 
 translocase  called  XBP,  a  subunit  of  TFIIH,  which  binds  downstream  of  Pol  II  (89)  .  It  unwinds  DNA  in  an 
 ATP-dependent  manner  and  propels  it  into  the  active  center  of  the  polymerase,  potentially  enabling  it  to  start 
 transcription  (51).  The  polymerase  harbors  a  large  subunit,  Rpb1,  which  contains  a  repetitive  amino  acid 
 sequence  of  Y-S-P-T-S-P-S,  with  52  repeats  in  mammals,  also  known  as  the  polymerase  tail  or  C-terminal 
 domain  (90)  .  This  tail  is  subject  to  post-translational  modifications,  specifically  phosphorylations,  which  play 
 important  roles  in  controlling  and  enabling  Pol  II-mediated  transcription  (91)  .  In  general,  dynamic  CTD 
 phosphorylation  enables  stage-appropriate  interactions  of  the  polymerase  with  factors  associated  with 
 transcription  initiation,  elongation,  termination,  and  transcript  processing.  The  CTD  is  largely  unphosphorylated 
 during  initiation,  allowing  interactions  of  the  unmodified  CTD  with  the  regulatory  co-activator  complex 
 Mediator,  which  contacts  Pol  II  and  the  initiation  factors  TFIIB  and  TFIIH.  It  then  modulates  the 
 phosphorylation  of  the  CTD  of  Pol  II  by  the  TFIIH  kinase  subunit  CDK7  (91)  ,  which  enables  the  polymerase  to 
 overcome  the  tight  contacts  with  promoter  DNA  and  escape  from  the  promoter.  Capping  of  the  newly 
 synthesized nascent RNA fragment enables the transition into its elongating phase of nascent RNA synthesis. 

 1.3.4. Transcription Elongation 
 Once  the  RNA  has  grown  to  a  critical  length  during  the  transcription  initiation  phase,  the  5’  end  of  the  nascent 
 RNA  is  capped  to  protect  the  transcript  from  cleavage  (92)  .  Subsequently,  an  elongation  complex  (EC)  forms 
 that  processively  extends  the  nascent  RNA  (93)  .  A  nucleotide  is  added  by  the  closing  of  the  polymerase's  active 
 sites  and  the  subsequent  catalysis  of  forming  a  phosphodiester  bond  (93)  .  During  the  nucleotide  addition  cycle, 
 i.e.,  the  elongation  of  the  nascent  RNA,  certain  DNA  sequences  can  interrupt  the  cycle  and  lead  to  so-called 
 transcriptional  pausing  (94)  .  Pol  II  often  pauses  about  25-50  base  pairs  downstream  of  the  transcription  start  site 
 (94)  ,  called  promoter-proximal  pausing.  During  such  pauses,  the  DNA-RNA  hybrid  is  tilted,  preventing 
 nucleotide  addition  and  pause  escape  (95)  .  These  transcriptional  pause  states  can  lead  to  polymerase 
 backtracking,  arrest,  or  even  premature  transcription  termination  (94)  .  These  paused  states  are  further  stabilized 
 by  DSIF,  which  binds  around  the  exit  channel  of  RNA  and  DNA  (96)  ,  and  NELF,  which  binds  the  funnel  at  the 
 opposite  site  of  Pol  II  (95)  .  NELF  impairs  the  binding  of  TFIIS  to  the  funnel  (95,  97,  98)  .  TFIIS  can  rescue 
 paused  polymerase  by  binding  to  the  funnel  and  aligning  the  tilted  DNA-RNA  hybrid  with  the  active  site  (99, 
 100)  but  is  inactivated  by  NELF  to  suppress  pause  release.  The  release  of  the  paused  polymerase  in  these  gene 
 bodies  requires  the  kinase  CDK9  (101)  ,  a  subunit  of  the  positive  transcription  elongation  factor  b  (P-TEFb), 
 which  phosphorylates  DSIF,  NELF,  and  the  CTD  of  Pol  II,  triggering  the  formation  of  an  activated  elongation 
 complex. 

 Transcriptional  pausing  is  a  key  rate-limiting  step  to  gene  expression  as  it  limits  the  frequency  of  transcription 
 initiation  and  the  rate  of  transcription  elongation  regulating  the  amount  of  synthesized  RNA  per  unit  of  time. 
 Divers'  kinds  of  pausing  factors  enhance  or  suppress  transcriptional  pause  states.  For  instance,  the  MYC 
 oncogenic  transcription  factor  can  promote  transcriptional  pause  release  (102)  ,  or  BRD4  (103)  can  bind  distal 
 enhancers  and  recruit  P-TEFb,  promoting  pause  release.  We  will  look  into  transcriptional  pausing  in  more  detail 
 in  a  later  section  (  Section  1.3.7.  Transcriptional  Pausing  )  and  first  want  to  conclude  the  transcriptional  cycle  of 
 genes by introducing the mechanism of transcription termination. 
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 1.3.5. Transcription Termination 

 Termination  of  transcription  (reviewed  in  (66)  )  of  protein-coding  genes  involves  the  dissociation  of  the  nascent 
 RNA  from  the  polymerase  and  the  polymerase  from  the  DNA.  It  influences  the  stability  and  cellular  localization 
 and  thus  determines  the  functional  role  of  transcribed  RNAs.  Different  pathways  target  coding  mRNA  or 
 non-coding  RNAs  selected  by  a  combination  of  distinct  termination  signals  on  the  nascent  RNA  and  the  specific 
 phosphorylation  patterns  of  the  CTD  of  Pol  II.  Transcription  termination  requires  the  cleavage  and 
 polyadenylation  specificity  factor  CPSF,  cleavage  stimulatory  factor  (CstF),  and  cleavage  factor  I  (CFI)  and 
 CFII.  It  further  requires  the  polyadenylation  of  the  transcript,  i.e.  the  addition  of  poly-A  tail  of  approximately 
 200  adenosines  to  the  3’  end,  and  the  terminator  sequence  (AAUAAA)  encoded  within  the  RNA  transcript 
 itself  (except  histone  genes).  The  cleavage  of  the  nascent  transcript  occurs  18-30  nucleotides  downstream  of  the 
 terminator  signal  by  the  CPSF  component  CPSF73.  However,  the  mechanistic  details  of  transcription 
 termination remain enigmatic and require more in-depth research. 

 1.3.6. Model of Gene Transcription 

 To  recap,  for  transcription  to  happen,  different  sets  of  factors  are  required  in  each  phase  of  the  transcriptional 
 cycle  covered  in  the  previous  subsections.  The  initiation  phase  relies  on  factors  that  remodel  the  chromatin 
 architecture  for  promotor  opening  and  factors  that  recognize  and  bind  the  promoter  and  the  polymerase.  The 
 transitioning  into  the  elongation  phase  then  requires  factors  that  recognize,  bind,  and  phosphorylate  the  CTD  of 
 the  polymerase.  The  elongation  phase  requires  factors  that  extend  and  co-transcriptionally  process  the  nascent 
 RNA  (e.g.,  splicing,  3’  end  processing)  and  factors  that  rescue  the  polymerase  from  transcriptional  pause  states. 
 The  termination  phase  relies  on  factors  that  process  the  nascent  transcript  post-transcriptionally  (e.g., 
 poly-adenylation)  to  invoke  transcript  release  from  the  polymerase  and  transcript  export  from  the  nucleus  for 
 downstream transcript processing events. 

 A  major  question  arises,  how  such  a  large  number  of  factors  are  coordinated,  delivered,  and  in  particular,  kept 
 separate  between  the  phases  of  the  transcriptional  cycle.  Microscopy  experiments  suggest  this  process  takes 
 place  in  so-called  nuclear  hubs  or  static  transcription  factories,  also  known  as  foci  or  transcriptional 
 condensates.  It  has  been  suggested  that  these  condensates  form  liquid-liquid  phase  separation  containing  the 
 necessary  transcription  factors  to  concentrate  and  localize  proteins.  A  simplified  hypothetical  model  for  the 
 organization  of  Pol  II  transcription  has  been  suggested  in  which  promoter  condensates  (initiation  phase)  contain 
 promoter-associated  transcription  and  initiation  factors,  co-activators,  and  unphosphorylated  Pol  II.  In  contrast, 
 gene-body  condensates  (elongation  phase)  contain  phosphorylated  Pol  II,  nascent  RNA,  elongation  factors, 
 RNA  processing  factors,  and  elongation-specific  co-activators.  Each  condensate  is  suggested  to  support  high 
 rates  of  the  underlying  phases,  i.e.,  initiation  or  elongation.  Because  of  the  different  chemical  makeup  of  each 
 condensate,  associated  factors  could  be  kept  separate  from  each  other.  To  summarize,  the  model  postulates  that 
 transcription  factors  recruit  co-factors  and  Pol  II  and  promote  the  formation  of  a  promoter  condensate,  enabling 
 PIC  assembly,  transcription  initiation,  RNA  synthesis,  and  Pol  II  CTD  phosphorylation.  The  subsequent 
 formation  of  a  gene-body  condensate  supports  elongation  and  co-transcriptional  RNA  processing.  Once  the 
 transcript  has  been  fully  synthesized,  dephosphorylation  of  the  polymerase  CTD  leads  to  the  dissociation  of  Pol 
 II  from  the  gene  body  condensate  to  eventually  reinitiate  transcription  by  reassociation  with  the  promoter 
 condensate. 

 After  having  established  an  overview  of  the  transcriptional  cycle  of  genes,  we  want  to  dive  deeper  into  the 
 intricacies  of  observed  transcriptional  pause  states  of  Polymerase  II.  This  will  form  the  basis  for  the  analyses 
 conducted  in  Chapter  3.  Predictive  model  of  transcriptional  elongation  control  identifies  trans-regulatory  factors 
 from chromatin signatures  . 
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 1.3.7. Transcriptional Pausing 

 As  we  have  seen  in  the  previous  sections,  transcription  is  a  discontinuous  process  marked  by  transcriptional 
 arrests  of  the  Pol  II,  called  transcriptional  pauses.  It  is  considered  a  universal  hallmark  of  Pol  II.  It  is  observed 
 not  only  at  protein-coding  genes  but  also  at  transcribed  enhancers,  upstream  antisense  RNAs,  and  long 
 non-coding  RNAs.  It  is  observed  at  genes  across  the  whole  spectrum  of  gene  expression  levels,  from  highly 
 active  genes  to  those  which  only  show  very  little  activity,  while  it  is  infrequently  found  in  genes  that  are  not 
 expressed.  It  is  therefore  considered  a  regulatory  layer  to  tune  gene  expression  levels,  rather  than  acting  as  an 
 ‘on-off’  switch,  with  the  potential  to  reactivate  paused  genes  later.  In  fact,  transcriptional  pausing  is  enriched  at 
 genes  where  small  gene  expression  changes  have  profound  effects,  such  as  on  signaling  molecules,  kinases, 
 receptors,  and  transcription  factors.  It  is  thus  suggested  that  potentiation  and  plasticity  of  gene  expression  by 
 transcriptional  pausing  is  critical  during  development.  Therefore,  understanding  this  regulatory  layer  is 
 necessary  for  a  holistic  understanding  of  protein  biogenesis  and  non-coding  RNA  species,  and,  ultimately,  cell 
 functioning. 

 The  development  of  a  plethora  of  assays,  for  instance,  global-run-on  sequencing  (GRO-seq)  (104)  or 
 precision-run-on-sequencing  (PRO-seq)  (105)  monitoring  Pol  II  distribution  and  dynamics,  have  greatly 
 improved  our  understanding  of  polymerase  II  pausing.  Early  investigation  revealed  high  densities  of  Pol  II  near 
 many  promoters  at  about  25-50bp  downstream  of  the  TSS,  referred  to  as  promoter-proximal  pausing,  indicating 
 that  it  goes  through  a  rate-limiting  step  before  being  released  into  the  gene  body  for  productive  transcript 
 elongation.  Therefore  promoter-proximal  pause  release  is  a  key  determinant  of  gene  expression  with  an 
 underlying mechanism of great interest. 

 1.3.8. Transcriptional Pause Regulatory Elements 

 Because  trans-acting  factors  like  DSIF,  NELF,  or  P-TEFb  can  fine-tune  and  regulate  promoter-proximal 
 pausing,  this  step  has  been  called  ‘regulated  pausing’.  On  the  other  hand,  pausing  due  to  cis-acting  DNA  or 
 RNA  sequence  features  or  universal  barriers  like  nucleosomes  has  been  called  ‘intrinsic  pausing’.  In  the 
 following, we first want to dive more into the details of the cis-acting factor’s roles in intrinsic pausing. 

 Cis-acting factors of transcriptional pausing 

 The  interaction  of  transcription  factors  with  DNA  or  RNA  is  primarily  driven  by  DNA/RNA  encoded  sequence 
 properties.  Many  factors  bind  specific  DNA  sequences  with  high  affinity.  These  sequence  elements,  therefore, 
 modulate  the  activity  of  the  corresponding  factors.  Likewise,  transcriptional  pausing  is  also  a  function  of 
 sequence  elements  directing  the  binding  of  trans-acting  factors  which  has  an  effect  on  the  transcriptional  activity 
 of  the  polymerase.  For  instance,  specific  binding  motifs  at  promoter  sites  that  influence  promoter  opening  and 
 PIC  formation  positively  correlate  with  the  transcriptional  pause  states  of  the  Pol  II.  Because  of  DNA  sequence 
 variation  at  these  sequence  elements,  the  binding  affinities  of  associated  factors  differ  from  gene  to  gene.  This 
 has  been  shown  for  promoter  sites  with  motifs  that  strongly  agree  with  the  consensus  sequences  for  specific 
 binding  sites,  which  also  show  a  positive  correlation  with  pausing  levels.  Moreover,  strong  promoter  motifs  can 
 retain  PIC  components  even  after  promoter  escape  of  the  polymerase,  which  enables  the  PIC  to  recruit  new 
 polymerases  maintaining  high  occupancy  of  the  pause  site  at  the  promoter.  Besides  motif  structures,  the  relative 
 positions of these sequence elements from the TSS also affect pausing. 

 Regarding  specific  sequence  properties,  it  has  been  observed  that  a  high  G/C  content  of  the  RNA/DNA  hybrid 
 during  transcript  elongation  presents  an  obstacle  to  the  forward  movement  of  the  Polymerase.  This,  in  turn, 
 renders  the  Polymerase  susceptible  to  backtracking,  which  dislodges  the  3′  end  of  the  nascent  RNA  from  the 
 catalytic  site  which  in  turn  can  lead  to  a  transcriptional  arrest  or  premature  transcription  termination.  In  this 
 context, it has been shown that CpG island promoters, which have a GC skew, strongly correlate with pausing. 

 Another  observation  has  been  made  that  the  nontemplate  DNA  strand  upstream  of  paused  Pol  II  has  the 
 potential  to  form  structures  called  G  quadruplexes,  a  stable  secondary  structure  held  together  by  G-G  base  pairs. 
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 These  structures  pose  an  obstacle  to  reannealing  the  non-template  strand  with  the  template  strand  after 
 transcription,  which  has  been  suggested  to  potentially  enable  the  formation  of  R-loops  between  nascent  RNA 
 and the DNA template. Such R-loop formations are observed at promoter sites and impact genome stability. 

 Although  DNA/RNA  sequence  elements  of  promoters  and,  in  general,  gene  bodies  or  even  cis-regulatory  sites 
 present  opportunities  to  regulate  transcriptional  pausing,  they  cannot  explain  the  longevity  of  paused  Pol  II. 
 Therefore  sequence  properties  play  important  roles  in  transcriptional  pause  states,  yet  trans-acting  transcription 
 factors ultimately regulate the productivity of the polymerase. 

 In  contrast  to  intrinsic  pausing,  regulated  pausing  is  governed  by  trans-acting  factors  like,  for  example,  NELF  or 
 PTEFb.  In  the  following,  we  want  to  cover  such  instances  further  and  provide  insights  into  trans-regulatory 
 factors implicated in transcriptional elongation control. 

 Trans-acting factors of transcriptional pausing 

 We  have  seen  that  NELF  occupies  the  binding  site  of  TFIIS,  thereby  maintaining  transcriptional  pause  states  as 
 it  inhibits  binding  of  TFIIS,  which  would  otherwise  induce  pause-release.  In  this  setting,  pause-release  requires 
 the  kinase  activity  of  P-TEFb.  P-TEFb  phosphorylates  many  factors,  including  DSIF  and  NELF,  which  have 
 been  shown  to  be  necessary  to  overcome  DSIF/NELF-mediated  inhibition  of  early  elongation.  In  fact, 
 biochemical  experiments  have  shown  that  the  inhibition  of  P-TEFb  activity  leads  to  Pol  II  pausing  at  nearly  all 
 mRNA  promoters.  P-TEFb  is  typically  (>75%)  found  as  part  of  larger  complexes  like  the  SEC  or  7SK 
 non-coding  RNA  complex.  Components  of  the  SEC  interact  with  Mediator,  which  recruits  P-TEFb  for  pause 
 release  at  sites  occupied  by  Meditator.  7SK  complex  bound  P-TEFb  is  inactive  and  requires  its  dissociation  from 
 the  inhibitory  7SK  complex.  The  7SK  complex  includes  the  most  abundantly  expressed  non-coding  RNA  7SK 
 and  is  bound  by  MeCPE,  LARP7,  and  HEXIM  proteins.  Many  cellular  stresses  and  signaling  pathways  can 
 liberate  P-TEFb  from  7SK,  enabling  large-scale  activation  of  gene  expression.  A  well-known  factor  that 
 liberates  P-TEFb  from  7SK  is  the  bromodomain-containing  protein  Brd4,  whose  CTD  can  bind  P-TEFb  to 
 stimulate  PTEFb  kinase  activity  for  targeted  gene  activation.  Other  transcriptional  pause  regulatory  factors  like 
 SUPT6H,  SUPT16H,  MYC,  TAF1,  TBP,  or  PAF1  exist,  with  their  specific  functions  and  roles  in  transcriptional 
 pausing  yet  to  be  illuminated  through  different  experimental  techniques.  Briefly,  SUPT6H  is  a  transcriptional 
 enhancer  (106)  .  SUPT16H  is  a  component  of  the  FACT  complex,  which  is  a  histone  chaperone  that  both 
 destabilizes  and  restores  nucleosomal  structures  and  facilitates  the  passage  of  Pol  II  during  transcription  (107, 
 108)  .  MYC  regulates  transcriptional  pause  release  (102)  ,  TAF1  and  TBP  associate  with  each  other  and  enable 
 promoter-proximal  pausing  of  the  Pol  II  (87)  ,  and  PAF1  acts  as  an  additional  regulator  of  transcriptional  pausing 
 (109)  . 

 Beyond  cis-  and  trans-acting  pause  regulatory  elements,  nascent  RNA  regulatory  events  like,  for  instance, 
 co-transcriptional  splicing  or  polyadenylation  during  transcription  termination  have  substantial  effects  on  the 
 pausing  of  the  polymerase.  In  the  following,  we  briefly  cover  such  interconnected  events  with  the  transcriptional 
 pausing mechanism. 

 Transcriptional regulatory processes connected to transcriptional pausing 

 Beside  cis-  and  trans-acting  pause  regulatory  elements,  transcriptional  pausing  is  further  modulated  by  the 
 interconnection  with  other  pre-,  co-,  or  post-transcriptional  regulatory  processes  like  chromatin  remodeling, 
 splicing, or RNA processing. 

 The  chromatin  architecture  is  defined  by  the  positioning  of  nucleosomes,  the  posttranslational  modification  of 
 their  histones,  and  ultimately,  the  DNA  wrapped  around  them.  It  is  modulated  by  chromatin  remodelers  and 
 tightly  linked  to  transcription  initiation,  elongation  as  well  as  co-transcriptional  splicing  (81,  110–112)  .  The 
 r  egulation  of  Pol  II  pausing  at  promoter-proximal  nucleosomes  by  chromatin  remodelers  like,  for  instance,  Chd1 
 (113)  has also been established. 
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 Co-transcriptional  splicing  is  strongly  dependent  on  the  availability  of  nascent  RNA,  which  in  turn  is  a  function 
 of  Pol  II  pausing.  Therefore  splicing  is  intricately  connected  to  transcriptional  pausing  of  the  polymerase.  To 
 this  end,  active  spliceosomes  are  complexed  to  the  Pol  II  S5P  CTD  during  elongation  and  co-transcriptional 
 splicing  (114)  ,  and  transcription  kinetics  strongly  impact  splicing  decisions.  Slow  Pol  II  elongation  rates  allow 
 more  spliceosome  assembly  time  and  favor  splicing.  Moreover,  it  has  been  shown  that  the  recruitment  of 
 P-TEFb  and  Pol  II  elongation  is  impaired  by  the  inhibition  of  the  spliceosomal  U2  snRNP  function  (115)  .  This 
 indicates  that  the  release  of  paused  Pol  II  requires  the  formation  of  functional  spliceosomes.  This  also  suggested 
 the presence of positive feedback from the splicing machinery to the transcription machinery. 

 Transcriptional  pausing  is  also  connected  to  transcription  termination  (116,  117)  .  It  has  been  suggested  that  it 
 results  from  the  simultaneous  interaction  of  the  CPSF  complex  with  the  polyadenylation  signal  and  the  body  of 
 the  polymerase.  It  has  also  been  correlated  to  the  formation  of  RNA-DNA  hybrids  (R-loops)  when  the  nascent 
 transcript  anneals  to  the  template  strand  leading  to  transcriptional  pause  states.  However,  the  mechanistic  details 
 remain to be understood. 

 1.4. Genetic Variation & Complex Disease 

 In  the  following  subsections,  we  lay  the  foundation  for  genetic  variation  analyses  conducted  in  the  context  of 
 Coronary  Artery  Disease  (CAD)  as  a  complex  trait,  covered  later  in  Chapter  4.  Trans-epistasis  underlying 
 Coronary  Artery  Disease  confers  differential  disease  risk  and  perturbs  gene  expressions  in  trans  .  Complex  trait 
 outcomes  (CT)  can  be  seen  as  a  function  of  five  components,  namely  additive  genetic  effects  (A),  allele 
 dominance  effects  (D),  genetic  interaction  effects  (I),  environmental  effects  (E),  and  the  effects  resulting  from 
 interactions between genetic and environmental factors (EI): 

 𝐶𝑇    =     𝐴    +     𝐷    +     𝐼    +     𝐸    +     𝐸𝐼     (1) 

 Examples  of  additive  genetic  effects  (A)  are  the  consequences  of  single  genetic  variations  (Single  Nucleotide 
 Polymorphisms  (118)  )  or  the  additive  effects  of  an  entire  collection  of  SNPs  as  quantified  by  Polygenic  Risk 
 Scores  (PRS  (119)  ).  Allele  dominance  effects  (D)  refer  to  masked  effects  of  an  allele  by  the  presence  of  another 
 allele  of  the  same  gene.  Genetic  interaction  effects  (I)  refer  to  the  observed  joint  (multiplicative)  effects  of 
 variants  that  the  additive  genetic  effects  of  the  individual  variants  do  not  account  for.  Interactions  may  also  arise 
 with  the  environment  (EI),  with  the  potential  to  inform  about  disease-relevant  environmental  exposures.  Lastly, 
 the  phenotype  is  also  influenced  by  environmental  effects  (E)  only,  for  instance,  harmful  environments  with 
 exposure  to  radioactive  radiation.  Therefore,  the  characterization  of  complex  traits  requires  accurate 
 quantification of these sources of potentially causal factors underlying a complex trait. 

 In  the  following,  we  first  introduce  genetic  variation  (  Section  1.4.1.  Genetic  Variation  )  and  present  the  so-called 
 Genome-wide  Association  Studies  (GWAS)  that  examine  the  additive  genetic  effects  (component  A)  of  SNPs  on 
 disease  across  the  genome  (  Section  1.4.2.  Genome-Wide  Association  Studies  (GWAS)  ).  We  then  show  how 
 these  genetic  variants  can  also  be  linked  to  intermediate  molecular  traits  with  Quantitative  Trait  Loci  (QTL) 
 studies  (  Section  1.4.3.  Quantitative  Trait  Loci  (QTL)  Studies  ).  We  proceed  with  an  introduction  to  Polygenic 
 Risk  Scores  (PRSs)  (  Section  1.4.4.  Polygenic  Risk  Scores  (PRSs)  )  as  an  additional  approach  to  explain  complex 
 trait  outcomes  with  the  additive  genetic  effects  (component  A)  of  entire  collections  of  genetic  variants.  PRSs 
 seek  to  overcome  the  limitations  of  GWA  studies  that  try  to  explain  complex  diseases  with  only  single 
 independent  associations  of  genetic  variations.  Beyond  the  additive  effects  of  genetic  variants  collectively 
 captured  by  Polygenic  Risk  Scores,  genetic  interactions  (Epistasis)  represent  another  source  of  genetic 
 variability  with  multiplicative  effects  (component  I)  that  PRSs  do  not  capture.  Many  computational  approaches 
 have  been  developed  for  their  identification,  discussed  in  Section  1.4.5.  Genetic  Interactions  (Epistasis)  .  Finally, 
 we  introduce  Coronary  Artery  Disease  as  a  complex  trait  and  briefly  discuss  previous  efforts  to  identify  epistatic 
 interactions underlying CAD (  Section 1.4.6. Coronary  Artery Disease (CAD)  ). 
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 1.4.1. Genetic Variation 
 As  we  have  seen  earlier  (review  Section  1.3.1.  DNA  -  The  Blueprint  for  Life  ),  diploid  (120)  organisms  have 
 duplicated  chromosomes  and  thus  possess  duplicates  of  each  gene.  Alternative  forms  of  a  gene  arise  through 
 changes  in  the  DNA  sequence  of  a  particular  gene,  referred  to  as  alleles.  We  call  an  organism  homozygous  with 
 respect  to  a  gene  if  both  of  its  alleles  are  identical  in  their  DNA  sequence,  else  heterozygous.  Differences  in 
 genes  and  corresponding  alleles  may  result  in  observable  phenotypic  differences  through  the  alteration  of 
 cellular  programs  driven  by  altered  protein  structures  and  interactions  resulting  from  the  changes  in  the 
 corresponding  genes.  Phenotypic  differences  also  include  diseases  (30,  121–124)  .  These  differences  occur 
 through  changes  in  the  DNA  sequence  (125,  126)  ,  either  at  a  single  nucleotide  base,  called  single  nucleotide 
 polymorphisms  (SNPs)  or  in  longer  stretches  of  deletions  or  insertions  of  the  sequence.  These  changes  arise 
 from  three  main  sources,  namely,  genetic  mutation,  recombination,  and  gene  flow  events  (127)  .  Mutations  may 
 naturally  occur  through  environmental  influences,  e.g.,  exposition  to  radioactive  materials  (128)  .  Genetic 
 variation  is  due  to  genetic  recombination  events  that  arise  when  homologous  regions  of  paired  chromosomes 
 recombine  (cross-over)  during  the  Prophase  I  and  Metaphase  I  during  meiosis  division  (129)  .  Gene  flow  occurs 
 when  genetic  material  is  transferred  from  one  population  to  another  through  migration  events  (130)  .  Alterations 
 of  the  genetic  makeup  of  genes  due  to  these  sources  of  variation  may  significantly  alter  an  organism's 
 phenotypic  traits  leading  to  differential  fitness  of  that  organism.  Somatic  mutations  occur  in  non-reproductive 
 cells  (germ  line  cells)  and  can  cause  phenotypic  traits  (131,  132)  ,  however,  in  contrast  to  germline  mutations 
 they  are  not  hereditary.  These  DNA  alterations  are  not  limited  to  genes  and  may  occur  at  gene  regulatory  sites 
 (133–135)  that influence the expression of genes  (136–138)  ,  collectively called the regulome. 

 We  have  seen  that  the  genome  is  an  organism's  DNA  sequence  that  encodes  the  rules  that  make  up  the  organism 
 (review  Section  1.3.1.  DNA  -  The  Blueprint  for  Life  ).  About  99%  of  the  genomes  of  unrelated  individuals  are 
 identical,  and  the  remaining  1%  difference  is,  beyond  environmental  factors,  the  reason  why  people  in  this 
 world  look  significantly  different.  The  1%  difference  is  called  ‘genetic  variation’  and  forms  the  foundation  of 
 evolution  (125)  .  Some  variations  may  not  show  noticeable  effects  (neutral  evolution),  some  may  lead  to  clearly 
 observable  differences  like  skin  and  hair  colors,  and  others  may  cause  rare  Mendelian  or  common  complex 
 diseases  (139)  .  Genetic  variations  are  of  different  types  ranging  from  single  nucleotide  variations  to  changes  in 
 the  number  of  entire  chromosome  sets.  These  differences  are  relative  to  the  reference  genome  sequenced  in  the 
 Human  Genome  Project  (140,  141)  .  They  can  occur  anywhere  in  the  genome  and  may  affect  the  structure  or  the 
 expression  of  genes  and  ultimately  their  function  if  they  occur  at  the  sequences  encoding  genes  or  factors  that 
 regulate  genes  or  simply  regions  that  have  gene  regulatory  functions  like,  for  example,  promoters  or  enhancers. 
 These  differences  in  the  expression  of  genes  or  their  structural  properties  resulting  from  genetic  variations  may 
 have  a  profound  impact  on  the  organism  since  they  disrupt  the  sequences  that  encode  proteins  that  perform  all 
 cellular  functions.  Thus  understanding  genetic  variation  is  necessary  to  understand  phenotypic  differences  and 
 disease.  Although  experimental  studies  can  provide  reliable  insights  into  their  effects  and  consequences  on  the 
 organism,  the  huge  number  of  variants  and  variant  types  does  not  allow  extensive  and  exhaustive  experimental 
 investigations.  The  sequencing  of  human  genomes  has  revealed,  on  average,  about  4  million  genetic  variants  in 
 any  given  individual  (139)  .  Genetic  disease  association  tests  are  conducted  to  narrow  down  a  subset  of  variants 
 to  focus  on.  These  models  focus  on  the  most  common  (90%)  type  of  genetic  variation  known  as  single 
 nucleotide  polymorphism  (SNPs)  (118)  ,  i.e.,  the  difference  in  a  single  nucleotide.  In  the  following  section,  we 
 will  introduce  the  methodology  behind  identifying  and  quantifying  the  effects  of  single  nucleotide 
 polymorphisms using quantitative trait loci (QTL) studies. 

 1.4.2. Genome-Wide Association Studies (GWAS) 
 In  the  previous  section,  we  have  seen  that  single  nucleotide  polymorphisms  can  lead  to  monogenic  Mendelian  or 
 polygenic  complex  diseases.  Understanding  the  link  between  genetic  variation  and  disease  is  thus  a  central  goal 
 of  genetics.  As  we  have  seen  (review  Section  1.4.  Genetic  Variation  &  Complex  Disease  ),  complex  trait 
 phenotypes  are  a  function  of  multiple  components,  ranging  from  additive  genetic  effects,  allele  dominance 
 effects,  genetic  interaction  effects,  environmental  effects,  and  the  effects  resulting  from  interactions  between 
 genetic  and  environmental  factors.  Genome-Wide-Association  Studies  (GWAS)  (142)  are  a  prime  example  of  a 
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 systematic  assessment  of  the  individual  population-level  additive  genetic  effects  of  millions  of  SNPs  in  multiple 
 diseases. 

 A  genome-wide  association  study  (GWAS)  (142)  tests  potential  relationships  between  diverse  kinds  of 
 phenotypes  (continuous,  discrete,  binary)  and  genotypes  (SNPs).  These  include  disease  phenotypes  like,  for 
 example,  coronary  artery  disease,  breast  cancer,  depression,  multiple  sclerosis,  or  phenotypes  for  traits  like 
 blood  pressure  or  BMI.  Over  5.700  GWA  studies  have  been  conducted  for  more  than  3.300  traits.  Such  studies 
 are  conducted  through  univariate  linear  modeling  (see  Section  2.3.1.  Linear  Models  )  of  the  trait  of  interest  in 
 dependence  of  the  genotypes  along  with  potential  confounding  variables  such  as  population  structure,  age,  or 
 sex.  In  the  case  of  quantitative  phenotypes,  linear  regression  (see  Section  2.3.1.1.  Linear  Regression  )  is  applied. 
 In  contrast,  with  categorical  phenotypes,  for  instance,  breast  cancer  status,  logistic  regression  models  (see 
 Section  2.3.1.2.  Logistic  Regression  )  are  applied,  which  generalize  linear  regression  models  to  binary  traits.  The 
 genotype  is  treated  as  the  independent  (predictor)  and  the  phenotype  as  the  dependent  variable  (target). 
 Genotypes  are  typically  encoded  as  {0,1,2}  where  0  and  2  represent  homozygous  genotypes  for  the  reference  or 
 alternative  alleles  and  1  represents  the  heterozygous  genotypes.  Thus,  it  quantifies  how  often  an  allele  of  interest 
 at  a  genetic  variant  is  observed  in  a  sample.  This  allows  encoding  of  genetic  variation  and  contrasting  groups  of 
 samples  based  on  their  allele  carrier  status  for  estimating  the  genetic  additive  effects  of  individual  alleles  on  the 
 phenotype  of  interest.  The  resulting  test  statistics,  i.e.,  odds  ratios  from  the  logistic  models  or  beta  regression 
 coefficients  from  the  linear  regression  models  along  with  p-values,  are  used  to  quantify  the  magnitude  of  the 
 genetic  associations  with  the  disease  outcome.  Currently  (Sept.  2021),  there  are  4321  studies  in  which  millions 
 of genotypes are independently tested for association with the trait of interest. 

 However,  genome-wide  significance  (  GWS  )  (143)  is  a  specific  threshold  (  )  to  determine  the α   =  5  𝑒  10 − 8 

 statistical  significance  of  reported  association  s.  So  only  if  a  p  -value  for  the  genotype  from  a  logistic  or  linear 
 regression  model  is  found  to  be  lower  than  this  threshold  will  the  null  hypothesis  of  no  association  be  rejected, 
 and  the  SNP  will  be  reported  as  a  genome-wide  significant  GWAS  hit.  The  GWS  is  based  on  performing  a 
 Bonferroni  correction  (see  Section  2.2.7.  The  Multiple  Testing  Burden  )  for  all  the  independent  common  SNPs  (  ~ 

 )  across  the  human  genome  .  At  an  alpha  level  of  a  Bonferroni  correction  would  yield  this  new  10  6 α =  0 .  05    

 significance  threshold  of  .  Controlling  for  false  positives  through  a  more  stringent  p-value α =  0 . 05 

 10  6 =  5  𝑒  10 − 8 

 threshold,  as  is  the  case  with  the  GWS,  is  necessary  due  to  the  high  number  of  genetic  associations  tested 
 simultaneously  (multiple  testing  burden).  Otherwise,  the  probability  of  falsely  rejecting  the  null  hypothesis  of  no 
 genetic  trait  association  increases  substantially.  Replication  analysis  with  independent  cohorts  is  an  established 
 routine to limit the discovery of false positives as well. 

 GWAS  hits  that  pass  genome-wide  association  can  then  be  investigated  downstream.  For  instance,  hits  in 
 protein-coding  regions  of  the  genome  can  highlight  potential  drug  targets.  Generally,  the  biological 
 interpretation  of  these  genetic  loci  and  their  functional  impact  and  meaning  in  disease  is  difficult.  Especially  the 
 interpretation  of  the  association  of  multiple  SNPs  underlying  a  specific  phenotype,  in  contrast  to  Mendelian 
 diseases,  is  an  arduous  process.  In  addition  to  single-locus  trait  associations,  associations  of  entire  blocks  of 
 SNPs  with  many  highly  correlated  SNPs  can  be  linked  with  traits  of  interest,  which  further  complicate  pinning 
 down  specific  disease-causing  variants  (144)  due  to  their  high  intercorrelation.  More  strikingly,  a  significant 
 proportion  (approx.  90%)  of  GWAS  hits  are  found  in  non-coding  parts  of  the  genome  and  far  away  from  any 
 protein-coding  region  (145)  ,  substantially  complicating  the  interpretation  of  the  specific  mechanistic 
 consequences  of  such  disease-associated  variants.  Therefore,  after  having  identified  millions  of  potentially 
 causal  variants  underlying  a  wide  range  of  disease  phenotypes,  the  focus  now  has  shifted  to  obtaining 
 mechanistic  explanations  like  the  molecular  and  cellular  consequences  of  these  (146)  .  These  are  called 
 Quantitative Trait Locus (QTL) studies,  covered in the following section 
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 1.4.3. Quantitative Trait Loci (eQTL) Studies 

 As  mentioned  earlier  (review  Section  1.3.1.  DNA  -  The  Blueprint  for  Life  &  1.4.1.  Genetic  Variation  ),  genetic 
 variation  can  cause  clear,  measurable  phenotypic  changes  (called  quantitative  and  qualitative  traits)  as  is  the 
 case  with,  e.g.,  monogenic  Mendelian  diseases  like  sickle-cell  anemia  or  complex  polygenic  traits  like  for 
 instance  in  CAD  .  Because  approximately  90%  of  the  GWAS  hits  are  found  in  non-coding  parts  of  the  genome 
 (145)  the  focus  now  has  shifted  to  obtaining  mechanistic  explanations  like  the  molecular  and  cellular 
 consequences  of  these  (146)  .  Variants  in  non-coding  parts  of  the  genome,  that  do  not  perturb  protein-coding 
 sequences,  may,  for  instance,  affect  gene  regulatory  elements  that,  in  turn,  can  propagate  the  effects  to  the 
 transcriptional  landscape  of  genes  through  differential  binding  (affinities)  of  gene  regulatory  factors  that  bind  to 
 the  altered  regulatory  elements.  This  is  crucial  in  developing  therapeutic  strategies  to  combat  the  disease  (121)  . 
 To  this  end,  Quantitative  Trait  Loci  mapping  (QTL  mapping)  (147)  is  conducted  where,  beyond  population-level 
 phenotypes  of  common  complex  diseases,  intermediate  molecular  phenotypes  like  differential  gene  expression, 
 DNA  methylation,  or  protein  abundances  are  investigated  in  dependence  of  genetic  variation.  The  loci  that  are 
 associated  with  a  phenotype  are  then  called  QTLs.  QTLs  are  usually  identified  by  linear  modeling  of  phenotypes 
 in  dependence  of  genotype  structures  and,  if  available  additional  covariates  like,  for  example,  sex  or  age.  Many 
 QTL  analyses  have  been  conducted  ranging  from  molecular  readouts  such  as  gene  readouts  (eQTLs)  (148)  , 
 protein  abundance  (pQTLs)  (149)  ,  and  DNA  methylations  (meQTLs)  (150)  or  histone  modifications  (hQTLs) 
 (151)  .  The  standard  genotype  encoding  is  in  the  allele  dosage  format  (factor  variable  that  specifies  the  number 
 of  the  allele  of  interest  observed  at  each  gene  copy)  or  dominant  factor  encoding  (two  indicator  variables  that 
 each  specify  the  number  of  observed  dominant  alleles).  We  further  distinguish  between  cis-  and  trans-acting 
 QTLs,  a  distinction  between  loci  that  are  proximal  (typically  ≤  1Mbp)  to  the  target  molecular  readout  (cis-QTL) 
 and  trans-QTLs  which  reside  far  away  from  the  molecular  readout  (either  >  1Mbp  or  even  on  a  different 
 chromosome).  Among  these  QTL  analysis  types,  the  eQTL  analyses  gained  much  attention,  as  genes  that  are 
 linked  to  genetic  variation  represent  attractive  therapeutic  targets  that  can  be  easier  studied  with  experimental 
 approaches.  Cis-eQTLs  are  hypothesized  to  alter  the  chromatin  structure  or  the  transcription  factor  binding  sites 
 of  gene  regulatory  elements  to  mediate  the  gene  expression  locally  (152)  .  In  contrast,  trans-eQTLs  are  thought  to 
 mediate  gene  expression  by  altering  intermediate  regulatory  elements  or  factors  (153)  .  Disease-associated  genes 
 could be identified by overlapping GWAS hits with eQTLs that might reveal the gene a variant is linked to. 

 1.4.4. Polygenic Risk Scores (PRSs) 

 A  major  drawback  of  GWA  studies  is  that  only  single  loci  are  probed  for  their  association  with  complex 
 diseases,  which  in  turn  are  multifactorial  with  interactions  of  multiple  genes  and  environmental  factors  as 
 opposed  to  monogenic  mendelian  diseases  where  only  the  disruption  of  one  gene  is  responsible  for  the  disease 
 phenotype  (154)  .  So-called  Polygenic  Risk  Scores  (PRSs)  (119)  have  been  developed  to  quantify  an  individual's 
 genetic  risk  conferred  by  an  accumulation  of  many  genetic  variants  (SNPs)  of  small  effects  summarizing  it  into 
 a  single  variable  to  overcome  this  limitation.  The  aggregation  serves  as  a  proxy  for  overall  disease  risk,  some 
 genetic  variants  conferring  high  risk  and  being  rare  and  others  conferring  small  risk  but  being  common.  Thereby 
 polygenic  risk  scores  enabled  the  identification  of  larger  fractions  of  the  population,  as  opposed  to  rare 
 monogenic  mutations,  at  comparable  or  greater  disease  risk  (34)  .  A  major  advantage  of  PRSs  is  that  they  can  be 
 calculated  for  many  diseases  simultaneously  based  on  data  from  a  single  genotyping  array  as  opposed  to 
 monogenic  diseases  where  the  sequencing  of  specific  genes  and  subsequent  careful  interpretation  of  the 
 functional effects of mutations found is necessary. 

 Determining  a  person’s  susceptibility  to  diseases  with  PRSs  allows  physicians  to  monitor  and  treat  affected 
 people  much  earlier  with  preventive  approaches  that  could  improve  outcomes  and  overcome  disease 
 predispositions  early  on.  It  will  also  enable  the  characterization  of  diseases  more  holistically  if  data  is  collected 
 over  several  years  when  the  disease  has  not  fully  developed  in  the  person  to  acquire  information  about  the 
 individual  developmental  stages  of  the  disease.  Besides  benefits  for  scientific  and  clinical  use,  PRSs  can 
 encourage  people  to  adopt  a  different,  more  healthy  lifestyle  or  to  change  their  life  goals  as  time  becomes  scarce 
 with lethal predisposition where cure or treatment is unavailable. 

 15 

https://paperpile.com/c/0Jy8h3/2QAK
https://paperpile.com/c/0Jy8h3/fmPv
https://paperpile.com/c/0Jy8h3/NY5D
https://paperpile.com/c/0Jy8h3/bXjc
https://paperpile.com/c/0Jy8h3/Qt0B
https://paperpile.com/c/0Jy8h3/ODcU
https://paperpile.com/c/0Jy8h3/BmYi
https://paperpile.com/c/0Jy8h3/ZEnG
https://paperpile.com/c/0Jy8h3/ZbOW
https://paperpile.com/c/0Jy8h3/Hzsr
https://paperpile.com/c/0Jy8h3/6ruj
https://paperpile.com/c/0Jy8h3/6PB7
https://paperpile.com/c/0Jy8h3/DfY1


 Therefore  PRSs  have  gained  great  attention  over  the  last  years  focusing  on  a  wide  range  of  phenotypes  (155)  . 
 Typically,  polygenic  risk  scores  are  calculated  (156)  as  the  (weighted)  sum  of  such  trait-associated  risk  alleles, 
 giving  an  individual's  estimated  genetic  predisposition  for  a  given  trait.  Weights  for  the  individual  alleles  can  be 
 directly  obtained  from  the  genetic  association  studies  (157,  158)  ,  e.g.,  the  beta-coefficient  or  odds  ratios  of  the 
 linear  models  in  a  GWAS  for  a  trait  or  weights  from  custom  multivariate  models.  Alternatively,  non-weighted 
 approaches  also  exist,  in  which  only  the  number  of  trait-associated  alleles  is  summed  up.  Many  disease 
 conditions  involve  environmental,  and  lifestyle  factors,  and  combining  PRSs  with  other  known  risk  factors  can 
 further  improve  risk  prediction.  A  major  advantage  of  polygenic  risk  scores  is  that  they  inherently  factor  in  the 
 effect  of  co-occurring  SNPs,  e.g.,  the  polygenic  risk  score  will  reflect  the  additive  effect  of  multiple  SNPs  in 
 carriers.  If,  for  example,  the  co-occurrence  of  two  or  more  alleles  in  a  carrier  increases  the  disease  risk,  then  it 
 will  be  reflected  in  the  distribution  of  the  disease's  polygenic  risk  score-dependent  prevalence.  However, 
 polygenic  risk  scores  are  unable  to  account  for  non-additive  genetic  interactions.  Such  SNP  interactions  are 
 difficult  to  find  and  complicate  the  establishment  of  the  genetic  basis  of  many  complex  traits  since  the  effects  of 
 many  QTLs  might  be  obscured  by  interactions  with  other  loci.  Therefore,  although  polygenic  risk  scores  are 
 instrumental  to  quantifying  disease  risk  in  dependence  of  the  number  of  disease  risk  alleles,  they  do  not  allow 
 identifying  specific  disease  risk  allele  interactions.  This  minor  distinction  is  important  to  accurately  elucidate  the 
 genetic  disease  basis  and  pinpoint  the  causal  disease  factors.  Such  SNP  interactions  are  identified  in  so-called 
 epistasis discovery analyses  (159)  . 

 1.4.5. Genetic Interactions (Epistasis) 

 Although  polygenic  risk  scores  capture  the  cumulative  effect  of  individual  genetic  variants,  they  do  not  account 
 for  genetic  interaction  effects.  Genetic  interactions,  called  epistasis  (160)  ,  occur  if  the  effect  of  a  variant  that  is 
 affecting  a  complex  trait  depends  on  the  genotype  of  another  trait  affecting  variant,  i.e.  when  the  effect  of  a 
 genetic  variation  depends  on  the  presence  or  absence  of  another  genetic  variation.  Systematic  screens  for  genetic 
 interactions  in  yeast,  nematodes,  and  flies  affecting  fitness  and  quantitative  traits  have  revealed  the  importance 
 of  epistasis  (161)  .  Pervasive  epistasis  has  also  been  shown  by  transferring  whole  genomic  fragments  like  entire 
 chromosomes  or  smaller  sequence  intervals  between  two  inbred  strains  (162)  .  Due  to  these  observations,  it  is 
 reasonable  to  assume  the  existence  of  epistasis  in  humans  too.  The  scientific  community  largely  dismissed  this 
 as  most  genetic  variation  in  complex  traits  is  additive  (163)  .  However,  these  additive  effects  and  associated 
 variants  can  not  explain  all  of  the  heritability  of  phenotypes  (31,  32)  .  This  has  been  termed  the  ‘missing 
 heritability  problem’.  Thus  for  a  holistic  understanding  of  the  genetic  basis  of  complex  traits,  the  identification 
 of  epistatic  interactions  is  indispensable.  Genetic  interactions  in  humans  with  large  effect  sizes  in  complex  traits 
 have  been  identified,  but  remain  relatively  scarce  (35–37,  164–168)  .  For  instance,  a  recent  study  shows  that 
 genetic  interactions  or  interactions  between  genetic  and  environmental  factors  modify  the  effect  sizes  of  causal 
 variants  in  human  complex  traits  (169)  .  This  again  highlights  the  importance  of  genetic  interaction  and  the 
 limitations  of  single-locus-trait  association  analyses.  However,  detecting  epistasis  in  humans  is  generally 
 difficult  because  large  sample  sizes  are  required  for  accurate  parameter  estimates  of  parametric  statistical 
 methods  like  in  logistic  regressions.  Frequentist  approaches  based  on  the  statistical  assessments  of  the 
 significance  of  genetic  interactions  require  the  investigators  to  balance  the  false  positive  and  false  negative  rates, 
 ultimately  reducing  the  power  of  the  methods  as  stringent  significance  thresholds  are  applied.  Lastly, 
 computational limits are reached due to the exponential growth of the search space of possible SNP interactions. 

 There  are  different  forms  of  epistasis.  For  instance,  the  effect  of  a  disease-associated  variant  might  be  concealed 
 by  another  co-occurring  variant  in  healthy  samples  (positive  epistasis).  On  the  other  hand,  the  effect  of  a  variant 
 could  also  be  enhanced  by  other  variants  (negative  epistasis).  Other  reasons  for  differential  disease  risk  of 
 individuals  with  the  same  mutational  backgrounds  are  environmental  factors  and  risk  factors  like,  for  example, 
 diet  or  smoking.  Beyond  positive  and  negative  epistatic  interactions,  epistasis  can  be  classified  depending  on  the 
 strength  of  the  variant  effect,  called  magnitude  epistasis,  or  the  direction  of  effect,  called  sign  epistasis.  A 
 distinction  can  also  be  made  on  whether  the  interaction  is  measured  in  a  specific  genetic  context  compared  to 
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 the  average  genetic  context  across  a  set  of  different  genetic  contexts,  also  called  background-relative  epistasis 
 and background-averaged epistasis, respectively. 

 Lastly,  we  distinguish  between  interactions  that  involve  two  (pairwise  epistasis)  or  more  (higher-order  epistasis) 
 mutations.  The  identification  of  higher-order  epistasis  is  an  analytically  challenging  problem.  An  exhaustive 
 screening  for  higher-order  epistasis  is  impractical  at  a  genome-wide  scale  at  present,  simply  due  to  the  sheer 

 unmanageable  amount  of  potential  SNP  interactions  to  consider,  i.e.,  already  possible  SNP  interactions  when  𝑛  2 

 only  considering  pairwise  interactions.  In  general,  the  problem  grows  exponentially  with  the  interaction ( 𝑛  𝑥 )
 order  ,  i.e.,  with  n  =  1  million  SNPs,  which  is  approximately  the  number  of  independent  SNPs  (170)  ,  we  have  𝑥 

 to  test  pairwise,  3-way,  4-way,  5-way  interactions,  and  so  on.  Not  only  computational  1  𝑒  12  1  𝑒  18  1  𝑒  24  1  𝑒  30    
 limits  but  also  statistical  limits  are  reached  by  this  huge  search  space.  Although  epistasis  detection  for  2-way  or 
 3-way  interactions  can  now  be  calculated  with  GPU  accelerated  computational  approaches  (171)  ,  the  effort  to 
 balance  the  false-positive  and  the  false-negative  rate  with  multiple  testing  correction  procedures  limit  the 
 discovery  of  interactions  simply  as  a  result  of  applying  too  stringent  significance  thresholds.  Moreover,  even 
 though  the  number  of  SNPs  may  be  huge,  they  might  have  very  low  minor  allele  frequencies  (MAFs), 
 additionally  leading  to  sparse  data  sets,  i.e.,  to  be  able  to  observe  rare  genotype  combinations  requires  a  big 
 sample size. 

 Beyond  experimental  approaches,  (e.g.  recessive  epistasis-driven  coat  color  variation  in  mice  (159)  )  major 
 computational  efforts  have  been  undertaken  to  identify  epistatic  interactions  (172)  ,  ranging  from  exhaustive 
 methods  like  multifactor  dimensionality  reduction  (173)  ,  likelihood  ratio-based  tests  (174)  ,  receiver  operating 
 characteristic  curve  analysis  (175)  or  non-exhaustive  methods  like  random  forests  (176,  177)  or  Bayesian 
 networks  (178)  and  combinatorial  optimization  approaches  like  ant  colony  optimization  (179)  and 
 computational evolution systems  (180)  but also simply  linear models  (181)  . 

 As  an  example,  Boolean  operation-based  testing  and  screening  (BOOST)  (174)  runs  an  exhaustive  analysis  of 
 all  potential  pairwise  SNP  interactions  by  building  an  additive  logistic  regression  model  of  the  individual  SNPs 
 (main  effects  model)  and  a  full  model  additionally  incorporating  an  interaction  effect  (multiplicative  term  in  the 
 model)  of  the  SNPs.  The  test  statistic  for  the  interaction  effects  is  then  defined  as  the  difference  of  the  maximum 
 log-likelihoods.  Another  approach  is  called  genome-wide  interaction  search  (GWIS)  (175)  to  detect  pairwise 
 SNP  interactions  based  on  building  classification  models  and  evaluating  their  respective  ROC  curves,  i.e.,  an 
 additive  model  for  each  of  the  two  SNPs  taken  individually  and  one  multiplicative  model  for  the  SNP  pair.  The 
 SNP  pair  is  said  to  have  better  prediction  power  over  the  individual  SNPs  if  the  ROC  curve  of  the  SNP  pair 
 associated  model  lies  over  the  two  ROC  curves  of  the  individual  models.  To  test  the  significance  of  the 
 prediction  power,  authors  developed  a  model-free  hypothesis  test,  called  the  difference  in  sensitivity  and 
 specificity  (DSS),  in  which  they  quantify  the  gain  in  sensitivity  and  specificity  of  a  ROC  curve  over  another. 
 The  BOOST  and  GWIS  approaches  are  restricted  to  detecting  pairwise  interacting  SNP.  Methods  exist  to 
 overcome  this  limitation,  for  instance,  with  an  exhaustive  search  for  higher-order  epistasis.  One  such  method  is 
 Multifactor  Dimensionality  Reduction  (MDR)  (173)  which  takes  a  different  approach  in  that  it  is  model-free  and 
 non-parametric.  It  is  based  on  comparing  the  observed  case-control  counts  in  certain  genotype  combinations 
 with  contingency  tables  and  ranking  genotype  combinations  based  on  the  observed  degree  of  sample  count 
 differences.  However,  although  exhaustive  methods  allow  for  identifying  higher-order  SNP  interactions,  they 
 can  not  be  scaled  to  a  genome-wide  analysis  and  have  to  be  constrained  to  smaller  SNP  sets  (several  hundred). 
 This  can  be  done  through  a  series  of  preselections  that  reduce  the  entire  SNP  set  to  a  manageable  size  for 
 exhaustive higher-order genetic interaction analysis. 

 An  example  is  to  conduct  a  single  SNP  analysis  to  keep  only  SNPs  with  significant  marginal  effects  (e.g.  in  a 
 logistic  regression  model)  and  then  test  the  SNP  combination  effects  for  the  remaining  marker  subset  (182)  .  This 
 approach  is  biased  since  SNP  interactions  with  no  individual  marginal  effects  are  not  considered,  yet  it  allows 
 for  an  exhaustive  screening.  Another  filtering  strategy  is  called  Regressional  ReliefF  (Relief)  (183)  .  The  Relief 
 algorithm  essentially  calculates  the  proximity  between  individuals  based  on  genome-wide  genetic  similarity  and 
 subsequently  weights  the  genetic  variants  based  on  how  well  individuals  proximal  to  each  other  are  separated 
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 based  on  their  genotypes.  The  Relief  method  is  prevalent,  and  many  other  Relief-based  derivatives  have  been 
 implemented,  for  example,  Relieved-F  (184)  ,  TuRF  (185)  ,  Evaporating  Cooling  Relief  (186)  ,  ReliefMSS  (187)  , 
 and many more. 

 Another  approach  is  to  filter  based  on  data  integration  techniques,  i.e.  selecting  SNP  sets  that  are  relevant  to  the 
 phenotype  of  interest  (188–190)  e.g.  GWAS  trait-associated  SNPs,  or  to  narrow  down  to  a  reduced  list  of  SNPs 
 located  in  genes  that  encode  for  proteins  involved  in  relevant  interactions  that  one  is  interested  in,  e.g.  by 
 querying  protein-protein  interaction  databases  like  IntAct  (191)  ,  BioGRID  (192)  ,  STRING  (193)  or  ChEMBL 
 (194)  .  On  the  other  hand,  one  could  also  follow  a  pathway-driven  approach  by  selecting  pathways  of  interest 
 and  mapping  SNP  to  the  genes  involved  in  selected  pathways.  Public  databases  like  KEGG  Pathway  (195)  , 
 Reactome  (196)  ,  or  BioCarta  (196,  197)  can  be  mined  for  these  pathways.  However,  such  data-integration 
 techniques  are  biased  since  they  are  incomplete,  i.e.,  some  pathways  or  gene  interactions  are  more  studied  than 
 others, so SNPs in well-studied branches will be given more weight. 

 Identifying  epistatic  interactions  is  an  ongoing  effort,  and  as  time  progresses,  we  will  most  likely  see  further 
 algorithmic  and  computational  advancements.  For  discussions  and  reviews  of  other  established  methods,  we 
 encourage  the  reader  to  investigate  the  following  resources  (172,  196–200)  .  In  the  following  section,  we 
 additionally  want  to  give  a  brief  overview  of  Coronary  Artery  Disease  (CAD)  to  introduce  the  complex  trait  of 
 interest  for  identifying  epistatic  interactions  presented  in  our  second  project  in  Chapter  4.  Trans-epistasis 
 underlying  Coronary  Artery  Disease  confers  differential  disease  risk  and  perturbs  gene  expressions  in  trans  .  It  is 
 based  on  the  evaluation  of  LD  differences  of  SNP  pairs  between  CAD  cases  and  controls.  This  has  recently  been 
 suggested  as  a  means  to  rank  pairs  of  loci  for  epistasis  testing  (20).  However,  it  was  not  yet  applied  to  study 
 CAD. 

 1.4.6. Coronary Artery Disease (CAD) 

 Coronary  Artery  Disease  (CAD)  or  Coronary  Heart  Disease  (CHD)  (reviewed  in  (5)  )  is  a  complex  trait  and  a 
 leading  cause  of  death  in  both  developed  and  developing  countries.  It  is  a  cardiovascular  atherosclerotic 
 inflammatory  disease  that  is  caused  by  occlusions  of  the  coronary  arteries.  The  disruption  of  the  endothelial 
 function  of  the  arterial  walls  as  a  result  of  the  accumulation  of  lipoprotein  droplets  in  the  intima  of  the  coronary 
 vessels  leads  to  atherosclerosis.  These  lipoproteins  are  bound  by  water-insoluble  lipids  that  foster  their 
 circulation  in  the  bloodstream.  In  high  concentrations,  low-density  lipoproteins  (LDL)  may  permeate  the 
 disrupted  endothelium  and  undergo  oxidation  which  in  turn  attracts  leukocytes  that,  as  a  result,  lead  to  the 
 formation  of  foamy  cells,  visual  as  the  earliest  forms  of  atherosclerotic  lesions.  These  lesions  then  attract 
 smooth  muscle  cells  (SMCs),  which  in  turn  trigger  the  proliferation  and  production  of  a  large  volume  of 
 extracellular  matrix  with  collagen  and  proteoglycans  that  lead  to  the  formation  of  fibrous  plaque,  i.e., 
 atherosclerotic  plaque.  This  plaque  encroaches  the  lumen  of  the  coronary  vessel  and  is  calcified  by  new  small 
 blood  vessels.  The  resulting  final  plaque  with  an  enriched  lipid-core  and  necrotic  material  is  highly 
 thrombogenic  and  poses  a  risk  to  the  host.  In  addition,  the  proteoglycans  prolong  the  existence  of  lipoproteins  in 
 the  intima  by  binding  them,  and  modifications  of  the  lipoproteins  further  propagate  inflammatory  responses.  In 
 response  to  these  inflammatory  signals,  matrix  metalloproteinases  are  then  secreted,  modulating  various 
 vascular  cell  functions.  Among  these  are,  for  instance,  proliferation,  cell  death,  new  vessel  formation,  and 
 destruction  of  the  extracellular  matrix  of  arteries  or  myocardium.  The  formation  of  atherosclerotic  plaque  due  to 
 this  cellular  reaction  chain  leads  to  the  obstruction  of  the  blood  flow  and  an  unmet  oxygen  supply.  This,  in  turn, 
 leads  to  the  well-known  symptoms  of  CAD  such  as  substernal  discomfort,  heaviness,  or  a  pressure-like  feeling 
 which may radiate to other bodily places. 

 Beyond  environmental  factors  like  geographical  locations,  ethnicity,  gender,  and  insights  from  epidemiological 
 investigations  that  have  led  to  the  discovery  of  many  risk  factors,  including  smoking,  diabetes,  hypertension, 
 and  hyperlipidemia,  genetic  risk  factors  have  been  identified  that  drive  the  CAD  phenotype.  Several 
 case-control  (10–14)  ,  epidemiological  (6–9)  ,  quantitative  trait  loci  (15–17)  as  well  as  genome-wide  case-control 
 association  studies  (17–28)  ,  and  investigations  into  epistatic  interactions  (201–203)  through  computational 
 approaches  (reviewed  in  (204)  )  have  been  conducted.  Genome-wide  association  studies  (GWAS)  uncovered  321 
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 CAD-associated  variants  since  2007  (18,  205)  .  In  particular,  it  has  been  found  that  the  heritability  of  CAD  risk 
 increases  with  the  number  of  affected  relatives  and  onset  at  a  young  age.  Mendelian  disorders  like  familial 
 hypercholesterolemia,  a  single  gene  disorder  caused  by  mutations  in  the  LDL  receptor  genes  (LDLR),  are  also 
 associated  with  the  pathogenesis  of  CAD.  Understanding  the  LDL  cholesterol  metabolism  greatly  improved  the 
 understanding  of  the  molecular  basis  of  CAD.  GWAS  studies  have  revealed  specific  markers  that  robustly 
 associate  with  CAD,  some  of  which  are  contained  in  coding  sequences  of  two  cyclin-dependent  kinases 
 (CDKN2A,  CDKN2B)  associated  with  the  regulation  of  the  cell  cycle  and  suggested  to  have  a  role  in 
 transforming  growth  factor  β  (TGF-β)-induced  growth  inhibition  which  itself  is  involved  in  the  pathogenesis  of 
 CAD.  By  investigating  tissues  affected  by  atherosclerosis,  an  antisense  noncoding  RNA  in  the  INK4  locus 
 (ANRIL)  of  unknown  function  has  been  identified,  and  alterations  of  expressions  of  these  CAD-associated 
 factors  (CDKN2A,  CDKN2B,  ANRIL)  have  led  to  further  insights  into  their  roles  in  the  CAD.  Yet,  a 
 comprehensive  understanding  of  these  and  other  factors  in  the  advancement  of  CAD  is  still  unknown. 
 Case-control  association  studies  have  been  carried  out  to  identify  differentially  expressed  genes,  which  led  to  the 
 discovery  of  many  differentially  expressed  genes  that  have  been  categorized  with  positional  cloning  (206)  as 
 disease-causing,  susceptibility,  or  disease-linked  genes.  Disease-causing  genes  have  high  predictive  power  and 
 are  directly  responsible  for  the  development  of  CAD,  and  can  be  readily  used  for  genetic  testing.  Susceptibility 
 genes  are  associated  with  increased  or  decreased  risk  for  CAD  and  show  genetic  variation  in  CAD  individuals. 
 Disease-linked  genes,  as  identified  by  genomic  and  proteomic  approaches,  serve  as  biomarkers  and  show 
 differential expression patterns linked to CAD and myocardial infarction. 

 These  efforts  have  led  to  the  successful  development  of  various  therapeutic  approaches  that  have  greatly 
 improved  the  health  of  affected  individuals.  For  example,  during  a  heart  attack  in  percutaneous  coronary 
 intervention,  a  blocked  artery  is  enlarged  with  a  tiny  balloon  to  reduce  the  damage  to  the  heart,  and  a  small  wire 
 mesh  tube  (stent)  is  inserted  permanently  to  keep  the  artery  open,  greatly  decreasing  the  chance  of  artery 
 contraction.  Another  approach  is  to  treat  individuals  using  recombinant  fibroblast  growth  factor  2  (FGF2), 
 which  can  stimulate  the  growth  and  migration  of  cell  types  promoting  vascular  tree  branching  and  augmenting 
 the  coronary  flow.  A  common  strategy  is  treating  with  antiplatelet  agents  that  decrease  platelet  aggregation  and 
 prevent  thrombus  formation.  Commonly  used  antiplatelet  agents  include  aspirin,  sulfinpyrazone,  and 
 nonsteroidal  anti-inflammatory  agents.  Several  other  therapeutic  agents,  such  as  β-blockers,  nitrates  in  the  form 
 of sublingual nitroglycerin, or calcium antagonists, have also been successfully used. 

 1.5. Machine Learning & Statistical Inference 

 Sophisticated  Artificial  Intelligence  (AI)  or  Machine  Learning  (ML)  systems  (207–209)  augment  human 
 intelligence  and  perception  and  automate  tasks,  transforming  entire  industries  (209)  .  AI  and  ML  refer  to  the 
 field  of  study  of  algorithms  with  the  ability  to  learn  to  perform  tasks  without  being  explicitly  programmed  to  do 
 so,  i.e.,  they  are  trained  to  learn  patterns  in  historical  data  to  make  predictions  without  being  given  the 
 underlying  patterns  on  how  to  do  so.  Data  is  the  essential  ingredient  to  AI/ML  systems  that  contains  a  picture  of 
 an  aspect  of  the  real  world.  AI/ML  systems  aim  to  learn  this  picture  that  approximates  real-world  events  and 
 ultimately  learn  a  representation  of  that  world.  They  can  be  applied  in  any  sector  that  produces  sufficient 
 amounts of high-quality data. 

 The  underlying  principle  to  then  create  such  systems  (207)  is  always  the  same  and  consists  of  1)  an  object  of 
 interest  that  we  are  trying  to  predict  2)  historical  data  that  relates  to  the  object  of  interest  3)  an  AI/ML  model 
 that  learns  the  relationship  between  the  historical  data  with  the  object  of  interest  underlying  the  data.  An  object 
 of  interest  might  be  an  individual's  disease  status  (e.g.  binary  indicator  variable  for  a  disease).  Historical  data 
 might  be  their  genetic  background.  A  model  then  maps  the  genetic  background  to  the  cancer  status  by  learning 
 the  underlying  patterns  in  the  historical  data  that  determine  the  disease  status.  For  a  model  to  learn  such  a 
 relationship,  the  data  must  contain  a  systematic  pattern  that  allows  for  this,  i.e.,  the  object  of  interest  (also  called 
 the  target  variable)  needs  to  be  correlated  with  the  factors  (also  called  input  variables,  predictors,  or  features) 
 that  influence  it  by  a  systematic  pattern  (Fig.  1.2  A).  Selecting  the  best  combination  of  features  the  model  should 
 pay  attention  to  and  with  which  it  should  try  to  predict  the  target  is  called  feature  engineering  and  selection  (Fig. 
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 1.2  B).  Learning  the  systematic  patterns  through  a  mathematical  mapping  of  the  pre-selected  features  to  the 
 targets  is  also  called  model  training  (Fig.  1.2  C).  Ideally,  a  model  is  provided  with  features  strongly  correlated 
 with  the  target.  The  process  of  evaluating  the  model  performance  in  how  well  it  makes  predictions  is  referred  to 
 as  validation  and  testing  (Fig.  1.2  D).  Lastly,  investigation  of  the  prediction  contributions  of  individual  model 
 features  then  serves  to  understand  the  model  behavior  and  its  predictions  in  terms  of  its  predictors.  This  is  called 
 feature interpretation (Fig.1.2 E). 

 Figure 1.2:  Conceptual figure illustrating the general  principle of training and evaluating a machine learning 
 algorithm. 

 Ideally,  a  model  trained  on  some  data  should  be  able  to  make  accurate  predictions  on  completely  unseen  new 
 data,  i.e.,  it  should  generalize  well,  which  is  a  sign  that  it  truly  has  learned  some  generally  applicable  rules  by 
 which the data follows and real-world scenarios can be modeled with. 

 We  mainly  distinguish  between  supervised  ,  unsupervised,  and  reinforcement  learning  models  (207,  210)  . 
 Supervised  machine  learning  models  operate  on  datasets  that  include  features  and  known  outputs  as  opposed  to 
 unsupervised  models,  which  refer  to  models  that  learn  patterns  in  the  data  where  an  outcome  of  interest  is 
 unknown.  So,  in  contrast  to  supervised  learning,  where  a  target  is  predicted  from  a  set  of  predictor  variables, 
 unsupervised  methods  also  build  models  of  the  data  but  do  not  distinguish  between  targets  and  predictors  but 
 rather  capture  general  global  patterns  that  underlie  the  data  (e.g.,  cluster  analysis  (211)  ).  Supervised  learning 
 models  can  be  further  subdivided  into  classification  and  regression  models  in  which  either  a  class  membership 
 or  a  real-valued  number  is  predicted,  respectively.  For  instance,  with  a  classification  model,  we  could  predict  the 
 disease  status  (e.g.,  a  binary  indicator  variable  for  a  disease)  of  individuals  (classification)  or  predict  the  quantity 
 of  a  biomarker  that  is  a  proxy  for  a  disease  (regression).  Reinforcement  learning  takes  an  entirely  different 
 approach  than  supervised  and  unsupervised  models  in  that  it  does  not  consider  labeled  or  unlabeled  data.  Not 
 even  data  itself  is  necessary  but  rather  an  environment  in  which  the  model  can  evolve  through  a  series  of 
 simulations.  Given  a  reward,  a  reinforcement  model  tries  to  maximize  its  reward  through  trial  and  error.  This  is 
 very  much  like  raising  a  child  in  which  feedback  from  the  parents  guides  the  child's  behavior  for  it  to  behave 
 optimally in its environment. 

 Many  model  classes  (207)  differ  in  how  they  approach  learning  patterns  in  an  unsupervised,  supervised,  or 
 reinforced  way,  and  it  depends  on  the  specific  use  case  to  decide  what  type  of  model  should  or  could  be  applied. 
 Factors  influencing  this  decision  are  whether  we  are  faced  with  labeled,  unlabeled  data  or  an  entire  environment 
 that  determines  if  supervised,  unsupervised,  or  reinforcement  models  are  needed.  The  type  of  data,  whether  it  is 
 categorical  or  continuous,  especially  the  target  in  supervised  models,  determines  whether  we  have  to  build 
 classification  or  regression  models.  The  type  of  relationship  between  predictors  and  targets  is  also  important.  If 
 the  target  is  likely  to  be  a  linear  combination  of  its  predictors,  then  linear  models  are  appropriate.  However,  if 
 we  suspect  many  non-linearities  and  interactions  among  predictors,  more  complex  models  like  tree  models  are 
 needed.  The  number  of  features  and  samples  (data  points)  is  yet  another  point  to  consider.  With  large  data  sets 
 (hundreds  of  thousands),  especially  samples,  neural  network  architectures  are  suitable  as  these  can  handle  large 
 volumes  of  data  and  complex  patterns.  On  the  other  hand,  if  the  number  of  observations  is  very  low  then 
 complex  models  are  not  suitable.  Another  example  is  prior  knowledge  about  coefficients  and  their 
 characteristics  (value  range,  non-zero,  etc.)  which  may  guide  the  investigator  to  Bayesian  approaches,  for 
 instance,  Bayesian  Regression  Analysis  (212)  .  For  instance,  prior  knowledge  about  the  general  sparsity  of  a 
 model  or  about  specific  effect  sizes  of  certain  independent  variables  could  be  accounted  for  by  incorporating  this 
 knowledge into the model-building process in terms of additional hyperparameters. 
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 By  far,  the  most  widely  used  are  linear  models  (213,  214)  describing  a  response  variable  in  terms  of  a  linear 
 combination  of  (multiple)  predictor  variables  ,  i.e.,  the  weighted  sum  of  the  predictors.  The  choice  of  the  linear 
 model  type  depends  on  the  response  type.  In  terms  of  a  continuous  response  variable,  linear  and  logistic 
 regression  models  (214)  are  applied  in  the  case  of  categorical  responses.  Though  the  response  is  modeled  by  the 
 linear  additive  combination  of  the  predictors,  the  predictors  can  be  power  terms  or  other  nonlinear 
 transformations  of  the  original  predictors.  Linear  models  are  fast  to  implement,  intuitive  and  easy  to  interpret, 
 applicable  to  many  problems,  and  computationally  inexpensive.  On  the  other  hand,  they  perform  poorly  in 
 complex processes with non-linear relationships of the predictor variables. 

 Tree-based  (215)  models  are  a  very  popular  way  to  account  for  interaction  effects  between  predictor  variables 
 and  non-linear  dependencies  of  the  response.  They  are  based  on  decision  or  regression  trees,  hierarchically 
 ordered  if-then-else  rules.  They  consist  of  many  splitting  points  (called  nodes)  which  evaluate  a  condition  on 
 specific  predictors  by  which  individual  observations  can  be  classified  or  grouped  into  similar  groups.  A  decision 
 tree  is  rather  weak  and  tends  to  overfit,  which  is  why  it  is  usually  used  in  ensemble  learning,  where  the 
 predictions  of  multiple  models  are  aggregated  for  a  final  prediction  outcome.  Random  forests  (216)  are  an 
 ensemble  extension  of  decision  trees.  It  consists  of  many  decision  trees  (sub-models),  called  a  random  forest, 
 over  which  the  predictions  of  individual  trees  are  aggregated  (bagging).  It  is  a  strong  and  widely  used  model, 
 very  intuitive,  and  able  to  model  non-linear  relationships.  However,  if  not  tuned  well,  they  tend  to  overfit. 
 Extensions  of  random  forests  also  exist,  incorporating  the  idea  of  gradient  boosting  where  a  series  of  models  are 
 fit,  in  which  each  successive  model  seeks  to  minimize  the  error  of  the  previous  model.  Extreme  gradient 
 boosting  trees  (217)  is  a  prime  example  of  this  approach.  These  are  highly  complex  models  and  must  be  tuned 
 well,  as  overfitting  might  occur  easily.  Even  though  tree  models  perform  very  well  in  settings  with  non-linear 
 relationships  between  predictors,  it  is  sometimes  more  beneficial  to  use  even  more  complex  models.  Especially 
 with  massive  data  with  hundreds  of  thousands  or  millions  of  predictors  or  with  certain  data  types  like  images  or 
 sound, neural networks are more applicable. 

 Neural  networks  (218–220)  are  models  that  loosely  mimic  the  biological  brain’s  network  function.  It  consists  of 
 a  series  of  interconnected  neurons  (nodes)  arranged  in  layers.  Usually,  neural  networks  have  at  least  three  layers, 
 namely  the  input  layer  where  the  data  is  fed  into,  the  output  layer  where  the  result  or  the  prediction  of  the 
 network  is  propagated,  and  at  least  one  layer  in  between  the  two,  i.e.,  the  hidden  layer  in  which  the  inputs  are 
 transformed  and  processed.  A  neural  network  with  multiple  hidden  layers  is  called  a  deep  neural  network,  and 
 the  training  procedure  is  called  deep  learning.  The  network  transmits  signals  (activations)  through  these  layers 
 of  neurons  from  neuron  to  neuron  as  a  result  of  a  mathematical  operation  that  connects  them.  The  successive 
 activation  of  each  neuron  then  results  in  a  prediction  at  the  final  output  layer  of  the  network.  Neural  networks 
 are  extremely  versatile  and  can  be  used  for  large  data  sets  with  complex  non-linear  patterns  for  regression  and 
 (multiclass) classification. 

 Artificial  intelligence  systems  can  be  used  to  create  value  across  many  industries  (207)  .  AI  has  also  transformed 
 the  health  industry  and  science  in  general  (221)  ,  opening  up  new  avenues  for  drug  development,  patient 
 monitoring,  automated  diagnosis,  personalized  medicine,  and  the  analysis  of  DNA.  Likewise,  we  have 
 conducted  machine  learning-driven  analysis  of  large-scale  biological  data  sets  and  built  Extreme  Gradient 
 Boosting  Tree  Regressors  to  predict  transcriptional  pause  states  of  genes  (see  Section  3.1.10.  Model  Training  ), 
 logistic  regression  models  to  predict  the  binary  disease  status  of  Coronary  Artery  Disease  patients  from 
 large-scale  genotypic  data  (see  Section  4.1.3.  Identification  of  Candidate  Epistatic  Interactions  )  as  well  as  linear 
 regression  models  to  predict  gene  expressions  from  genotype  data  (see  Section  4.1.6.  Identification  of  Epistatic 
 Effects  on  Gene  Expression  in  Trans  ).  With  this  section,  we  conclude  the  introductory  chapter  that  lays  the 
 foundation  for  gene  transcription  and  transcriptional  pausing,  genetic  variation,  interactions,  complex  diseases, 
 and  machine  learning  systems  to  be  used  in  those  contexts.  In  the  following  chapter,  we  want  to  continue  with 
 the necessary data types and methods underlying our projects. 
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 2. Materials & Methods 

 This  chapter  covers  the  necessary  data  types  and  sets  utilized  in  our  projects  (  Section  2.1.  Omics  )  and  introduces 
 the  computational  methodologies  of  harnessing  these  data  sets  to  be  able  to  answer  our  projects'  biological 
 questions.  First  statistical  methods  are  covered  (  Section  2.2.  Statistical  Inference  ),  including  basic  measures  to 
 describe  data  (  Section  2.2.1.  Estimates  of  Location,  Variability,  and  Association  )  and  quantify  the  uncertainty  in 
 obtained  measurements  (  Section  2.2.2.  Variance  of  Estimates  ).  An  introduction  to  hypothesis  testing  follows 
 (  Section  2.2.3.  Hypothesis  Tests  ),  along  with  specific  established  methods  for  group  comparisons  for  discrete 
 and  continuous  data  (  Sections  2.2.4.  The  Fisher’s  Exact  Test  &  The  Chi-Square  Test  -  2.2.5.  The  T-test  ).  These 
 lay  the  foundation  for  permutation  testing  as  a  means  to  conduct  group  comparisons  with  arbitrary  test  statistics 
 (  Section  2.2.6.  Permutation  Tests  ).  A  discussion  on  properly  evaluating  a  series  of  statistical  tests  by  introducing 
 the  multiple  testing  burden  and  how  to  overcome  it  (  Section  2.2.7.  The  Multiple  Testing  Burden  )  then  concludes 
 the  statistical  section.  What  follows  are  machine  learning  models  of  supervised  nature  (  Section  2.3.  Supervised 
 Machine  Learning  ),  focusing  on  linear  and  logistic  regression  models  (  Section  2.3.1.  Linear  Models  )  at  first, 
 followed  by  tree-based  models  (  Section  2.3.2.  Tree  Models  ).  Lastly,  concepts  to  build  and  analyze  such  models 
 are presented (  Sections 2.3.3. Feature Scoring  -  2.3.7.  Regularization  ). 

 2.1. Omics 

 Various  biochemical  techniques  and  protocols  enable  the  measurement  and  quantification  of  different  kinds  of 
 biological  entities  in  the  cell.  These  biological  data  sets  form  the  basis  for  conducting  analyses  and  studying 
 biological  processes  of  interest  and  are  referred  to  as  omics  (222)  .  An  entire  collection  of  specific  entities  of  the 
 same  type,  such  as  transcripts  and  proteins,  is  referred  to  with  the  “-ome”  suffix.  For  example,  the  entire  set  of 
 transcripts  is  referred  to  as  the  transcriptome,  the  entire  set  of  metabolites  as  the  metabolome,  the  set  of  proteins 
 as  the  proteome,  and  so  forth.  Identifying,  quantifying,  and  characterizing  all  biological  entities  involved  in 
 cellular  processes  lie  at  the  heart  of  omics  sciences.  High  throughput  sequencing  (HTS)  technologies  (223)  were 
 a  key  driver  of  omic  sciences  as  they  enabled  the  sequencing  of  hundreds  of  millions  of  DNA  molecules  in 
 parallel,  providing  large  data  sets  with  the  potential  to  obtain  more  comprehensive  insights  about  the  cellular 
 realm.  For  instance,  HTS  technologies  enabled  whole-exome  sequencing  (WES)  which  can  be  harnessed  to 
 identify  novel  variants  that  may  underlie  cardiovascular  disorders,  RNA  sequencing  (RNA-seq)  to  compare  the 
 transcriptome  between  patient  groups,  Chromatin  immunoprecipitation  sequencing  (ChIP-seq)  to  identify 
 protein-DNA  interaction  or  ribosome  sequencing  (Ribo-seq)  to  capture  actively  translated  mRNA  transcripts. 
 Many  more  HTS  coupled  biochemical  protocols  exist  and  are  further  developed,  providing  more  insights  into 
 cellular  entities  and  mechanisms.  The  next  section  briefly  introduces  the  sequencing  methodology  as  an  integral 
 part of omic data sets thereafter. 

 2.1.1. Next-Generation Sequencing 
 Next-generation  sequencing  (NGS)  (reviewed  in  (224,  225)  )  is  a  DNA  sequencing  technology  that  is  used  to 
 determine  the  DNA  sequence  of  a  DNA  biosample.  It  is  an  HTS  technology  that  works  massively  parallel  and 
 has  revolutionized  genomic  research  since  an  entire  human  genome  can  be  sequenced  within  a  single  day  with 
 scalable  costs.  Available  NGS  platforms  (reviewed  in  (226)  ),  for  example,  from  companies  Illumina,  Roche,  or 
 Thermo  Fischer,  apply  different  approaches  to  achieve  high-throughput  sequencing  with  differences  in  sequence 
 quality,  quantity,  and  choice  of  application.  However,  the  general  approach  is  to  extract  genomic  DNA  from  bio 
 samples,  fragment  DNA  for  library  preparation,  ligate  adapters  to  the  DNA  fragments,  and  amplify  and 
 sequence  the  fragments,  to  yield  nucleotide  base  call  intensities.  After  sequencing,  a  series  of  computational 
 steps  are  performed,  ranging  from  the  removal  of  sequencing  adapters  (e.g.,  with  Trimmomatic  (227)  ),  and  poor 
 quality  reads  (e.g.,  with  FastQC  (228)  )  to  the  alignment  to  the  reference  genome  (e.g.,  with  BWA  (229)  , 
 Bowtie2  (230)  or  the  STAR  aligner  (231)  ).  In  the  following,  we  briefly  describe  some  of  the  HTS-driven  omic 
 data types used in the analyses throughout the dissertation underlying the data sets. 
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 2.1.2. RNA-Sequencing 
 RNA-sequencing  (RNA-seq)  (232)  is  a  transcriptome-wide  technique  to  quantify  the  cellular  content  of  RNAs. 
 A  major  application  of  RNA-seq  data  is  differential  gene  expression  analysis,  i.e.,  to  discover  quantitative 
 changes  in  expression  levels  between  experimental  groups.  Moreover,  it  allows  for  identifying  alternative 
 transcripts  or  post-transcriptional  modifications  that  occur  during  mRNA  processing,  such  as  polyadenylation  or 
 5’  capping.  The  RNA-seq  protocol  begins  with  RNA  extraction  and  depletion  of  ribosomal  RNA  or  enrichment 
 of  mRNA,  followed  by  copy  DNA  (cDNA)  synthesis  through  reverse  transcription  and  subsequent  high 
 throughput  sequencing.  Obtained  reads  are  then  aligned  and  quantified  for  downstream  analyses.  Gene 
 annotations  help  us  to  associate  the  read  fragments  with  gene  regions  of  interest,  quantify  the  mapped  reads  and 
 use  it  as  a  proxy  for  the  expression  levels  of  the  gene  they  mapped  to.  Differences  in  gene  length  and  in  total 
 sequencing  output  per  experiment  are  expected  to  lead  to  systematic  differences  in  read  counts.  A  common 
 normalization  procedure  is  to  calculate  the  fragments  of  reads  that  map  per  kilobase  of  gene  sequence  per 
 million  sequenced  reads  (FPKM  values)  (233)  in  order  to  make  gene  expression  levels  comparable  across 
 different genes and experiments. 

 2.1.3. Cap Analysis Gene Expression (CAGE) 
 Similar  to  RNA-seq,  Cap  Analysis  of  Gene  Expression  (CAGE)  (234,  235)  is  a  transcriptome  profiling 
 technique  that,  in  contrast  to  RNA-seq,  produces  snapshots  of  the  5′  ends  of  messenger  RNAs  (sets  of  short 
 nucleotide  sequences  called  ‘tags’)  and  its  counts.  As  opposed  to  RNA-seq,  it  identifies  transcriptional  start  sites 
 (TSSs)  and  the  corresponding  promoter  regions  of  genes.  It  enables  the  investigation  of  gene  regulation  on  a 
 TSS  level  as  it  accurately  distinguishes  between  multiple  alternative  promoters  with  the  respective  alternative 
 transcripts  (234)  .  It  also  allows  the  investigation  of  the  transcription  initiation  frequency  of  specific  transcription 
 start  sites  at  single  base-pair  resolution  across  the  genome  (234,  236)  .CAGE  data  is  also  very  valuable  in 
 validating  RNA-seq-based  gene  expression  levels  to  increase  the  confidence  in  expressed  transcripts  as  it  also 
 informs  about  individual  alternative  transcript  expression  levels.  Briefly,  CAGE  targets  the  cap  of  Pol  II 
 transcripts  to  pull  down  the  5’-complete  cDNAs,  which  are  reversely  transcribed  from  the  captured  transcripts. 
 Massive  parallel  sequencing  of  these  5’  ends  of  cDNAs  and  analysis  of  the  sequenced  tags  provides  counts  of 
 transcription  start  sites  and  transcript  quantifications  on  a  genome-wide  scale,  thereby  providing  an  effective 
 genome-wide  transcriptional  profiling  technique  as  an  alternative  to  microarray  or  RNA-seq  data.  To  make  tag 
 counts  comparable  among  experiments  they  are  normalized  to  the  number  of  raw  sequences  that  were  read  (Tags 
 per  Million  (TPM))  which  gives  the  expected  count  for  a  particular  tag  if  we  had  sequenced  one  million  raw 
 CAGE tags. 

 2.1.4. Global-Run-On-Sequencing (GRO-seq) 
 As  opposed  to  RNA-seq,  which  quantifies  the  total  cellular  content  of  RNAs,  Global-run-on-sequencing 
 (GRO-seq)  (237)  quantifies  all  initiated  (nascent)  transcripts  that  are  being  newly  synthesized  by  the  engaged 
 polymerases.  This,  in  particular,  is  useful  for  annotating  and  quantifying  short-lived  RNA  molecules  or 
 assessing  the  polymerase's  productivity.  This  is  accomplished  by  arresting  ongoing  transcription,  e.g.,  through 
 cold  temperatures,  introducing  brominated  nucleotides  (BrdU),  and  preventing  de  novo  assembly  of  the 
 pre-initiation  complex  with  an  anionic  detergent  like  sarkosyl  and  thereby  avoiding  re-initiation  of  new 
 polymerase.  Transcription  is  then  resumed,  and  already  initiated  polymerases  will  integrate  the  brominated 
 nucleotides,  and  the  nascent  RNA  molecules  can  be  affinity  purified  with  antibodies  against  bromodeoxyuridine 
 (anti-BrdU).  Extracted  RNA  fragments  are  then  subjected  to  high  throughput  sequencing  and  subsequent 
 mapping  and  quantification  with  computational  pipelines.  The  output  is  similar  to  those  from  RNA-seq 
 experiments  with  the  exception  that  it  captures  all  nascent  RNA.  Quantification  of  these  nascent  transcripts  is 
 analogous  to  the  approaches  conducted  on  RNA-seq  experiment  outputs.  However,  the  raw  nascent  RNA  read 
 counts  can  also  be  used  as  they  inform  about  the  productivity  of  the  polymerase  and  about  sites  of  active 
 transcription.  An  advantage  of  GRO-seq  over  RNA-seq  is  the  possibility  to  contrast  the  transcriptional  events  of 
 initiation  to  elongation  by  measuring  the  relative  ratio  of  GRO-seq  reads  that  map  near  the  promoter  site  to  the 
 reads  that  map  into  the  gene  body.  In  fact,  this  forms  the  basis  of  our  machine  learning  regression  task  in  our 
 first  project  in  which  we  predict  this  ratio,  also  called  the  Pausing  Index  or  Traveling  Ratio,  from  large-scale 
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 genomic  and  transcriptomics  protein  binding  maps  as  well  as  gene  sequence  composition  feature  (see  Section 
 3.2.1. Predictive Models of Transcriptional Pausing  ). 

 2.1.5. Chromatin Immunoprecipitation-Sequencing (CHIP-seq) 

 Chromatin  immunoprecipitation  followed  by  high-throughput  sequencing  (ChIP-seq)  (238)  is  a  genome-wide  in 
 vivo  assay  to  identify  and  selectively  enrich  DNA  sequences  bound  by  proteins  such  as  transcription  factors  and 
 in  general  chromatin-associated  factors.  During  CHIP-seq,  DNA  is  cross-linked  to  a  protein  complex  of  interest 
 using  formaldehyde,  and  the  bound  DNA  sequences  are  then  fragmented,  and  protein-specific  antibodies  are 
 used  to  immunoprecipitate  the  protein-DNA  complex.  Subsequent  sequencing  of  the  bound  DNA  fragment 
 allows  for  identifying  and  quantifying  binding  sites  of  the  immunoprecipitated  protein.  Sequenced  fragments  are 
 then  mapped  to  the  genome  in  a  computational  pipeline.  Aligned  reads  are  asymmetrically  centered  around  the 
 binding  site,  with  read  densities  on  the  positive  and  negative  strand.  These  represent  candidate  binding  sites, 
 however,  because  reads  from  a  ChIP-seq  experiment  are  a  mixture  of  enriched  signal  reads  but  also  a  large 
 number  of  background  noise  reads  from  non-specific  (background)  regions  throughout  the  genome  (239) 
 regions  with  high  read  densities  may  not  correspond  to  the  enriched  signal  reads.  To  account  for  these  and  other 
 unknown  biases,  a  matching  control  sample  with  non-specific  antibodies  can  be  generated  against  which  the 
 original  samples  can  be  statistically  compared  to  determine  sites  of  enriched  signal  reads  (240)  .  This  procedure 
 is  called  peak  calling  (214)  and  is  usually  conducted  with  statistical  methods  (e.g.,  MACS2  (241)  ).  ENCODE 
 has  a  uniformly  processing  pipeline  following  strict  quality  standards  (242)  that  produces  versioned  data  in  high 
 quality,  in  many  instances  available  in  multiple  formats  with  extensive  documentation  and  a  user-friendly 
 interface. 

 2.1.6. Enhanced Cross-linking Immunoprecipitation-Sequencing (eCLIP-seq) 
 In  contrast  to  CHIP-seq,  enhanced  Cross-linking  immunoprecipitation  followed  by  high-throughput  sequencing 
 (eCLIP-seq)  (243)  is  used  for  the  identification  of  transcriptome-wide  protein-RNA  interactions.  eCLIP 
 provides  another  important  view  on  how  proteins  interact  with  RNA  to  regulate  gene  expression  .  As  opposed  to 
 crosslinking  with  formaldehyde,  as  with  CHIP-seq,  protein-RNA  interactions  are  covalently  linked  using 
 ultraviolet  light  (UV).  After  cell  lysation,  the  bound  RNA  fragments  are  fragmented  with  an  RNAse,  and 
 protein-specific  antibodies  are  then  used  to  immunoprecipitate  the  protein-RNA  complex.  Sequencing  of  the 
 bound  RNA  fragment  then  allows  for  identifying  binding  sites  of  the  immunoprecipitated  protein.  The 
 sequenced  fragments  are  then  mapped  to  the  genome  in  a  computational  pipeline,  and  specific  protein  binding 
 sites  are  identified  with  peak  calling  procedures  (e.g.  PureCLIP  (244)  )  and  statistical  methods,  similar  to 
 ChIP-seq  experiments  (see  the  previous  section).  An  adapted  background  control  normalization  procedure  is 
 applied  to  account  for  unknown,  but  also  known  biases  like  the  dependence  of  the  background  on  gene 
 expression levels or varying protein sizes that have selective RNA targets  (245)  . 

 2.1.7. Genotyping 
 The  genomes  of  different  individuals  are  not  identical.  They  vary  on  average  by  1%  (125)  .  The  most  common 
 type  of  genetic  variation  is  called  a  single  nucleotide  polymorphism  (SNPs)  (118)  or  point  mutation,  a  single 
 base  pair  variation  in  the  genome.  In  order  to  be  able  to  associate  variants  with  phenotypes,  it  is  crucial  first  to 
 localize  these  variants.  Genotyping  (246)  describes  the  processes  to  capture  known  variants  identified  through  a 
 systematic  comparison  of  the  reference  genome  against  the  genomes  of  additional  sequenced  samples  and 
 measure  them.  A  prime  example  is  the  HapMap  project  which  first  identified  all  variants  with  a  minor  allele 
 frequency  (MAF)  >  0.05  and  genotyped  a  common  SNP  every  five  kilobases  along  the  genome  (247)  . 
 Genotyping  methods  differ  in  the  number  of  identifiable  SNPs,  technical  specifications,  and  the  analysis  cost 
 (reviewed  in  (226,  248,  249)  ).  For  instance,  in  hybridization-based  SNP  arrays,  hundreds  of  thousands  to 
 millions  of  allele-specific  short  DNA  molecules  (oligonucleotide  probes)  are  designed  for  all  SNPs  of  interest, 
 for  instance,  SNPs  a  priori  known  to  be  associated  with  diseases  or  specific  traits.  These  oligos  contain  the 
 reference  and  the  alternative  allele  and  are  hybridized  with  fluorescently  labeled  DNA  fragments  extracted  from 
 a  specific  biosample  of  interest,  e.g.,  a  specific  tissue.  Once  hybridization  of  the  DNA  fragments  with  an 
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 oligonucleotide  with  a  specific  allele  occurs,  fluorescent  light  is  emitted,  which  signifies  the  presence  of  the 
 allele  in  the  DNA  fragment.  This,  in  turn,  enables  the  determination  of  the  genotype  of  the  sample  of  interest  by 
 measuring  the  light  intensities  of  hybridization  events  for  each  allele,  which  is  called  genotype  calling.  Although 
 all  variants  could  be  identified,  including  deletions  and  insertions  (INDELs),  structural  variants  (SVs),  or  copy 
 number  variants  (CNVs),  as  is  the  case  with  whole-genome  sequencing  (WGS),  pre-selection  is  usually  applied 
 to  reduce  the  financial  burden.  A  great  reduction  in  financial  costs  is  achieved  in  whole-exome  sequencing 
 (WES)  (250)  ,  where  the  focus  lies  only  on  protein-coding  regions  (exome)  of  the  genome  (about  3%).  However, 
 although  most  Mendelian  diseases  are  caused  by  mutations  found  within  the  exome  (251)  ,  it  misses  genetic 
 variation  in  non-coding  regions,  especially  at  gene  regulatory  sites  with  potential  significant  genetic 
 implications.  Alternatively,  the  HapMap  project  has  demonstrated  that  it  is  sufficient  to  genotype  a  common 
 SNP  every  five  kilobases  as  one  in  five  SNPs  has  20  or  more  perfect  proxies,  and  three  in  five  have  five  or  more 
 (International  HapMap  Consortium  2005),  such  that  almost  all  genetic  variation  can  be  captured  with  proxies  in 
 high  linkage  disequilibrium  reducing  the  financial  burden  substantially  and  effectively  enabling  cost-efficient 
 genome-wide  association  studies.  However,  with  an  ongoing  reduction  in  sequencing  costs,  we  can  expect  this 
 picture  to  change  with  an  increased  rate  of  sequencing  whole  genomes  opening  up  new  avenues  to  investigate 
 genetic  variation  in  greater  depth  and  breadth.  Still,  because  usually  only  a  fraction  of  all  possible  SNPs  are 
 captured  through  the  pre-selection  of  loci  of  interest  or  genomic  regions,  additional  genotype  imputation 
 methods  are  applied  to  increase  the  power  of  genotyping  studies,  essentially  estimating  the  most  probable 
 haplotypes  (252)  and  thereby  the  genotypes  for  untyped  variants  based  on  prior  knowledge  of  genome  structures 
 and recombination events (reviewed in  (253–255)  ). 
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 2.2. Statistical Inference 

 In  the  following,  we  want  to  provide  a  few  fundamental  concepts  to  obtain  descriptions  of  data  (  Section  2.2.1. 
 Estimates  of  Location,  Variability,  and  Association  &  2.2.2.  Variance  of  Estimates  )  and  the  methodology  for 
 hypothesis  tests,  along  with  a  few  established  statistical  tests  for  group  comparison  (  Sections  2.2.4.  The  Fisher’s 
 Exact  Test  &  The  Chi-Square  Test  -  2.2.5.  The  T-test  ).  These  lay  the  necessary  background  for  the  statistical 
 procedure  for  group  comparison  with  arbitrary  test  statistics  (  Sections  2.2.6.  Permutation  Tests  )  covered 
 thereafter.  A  discussion  on  how  to  perform  a  large  number  of  statistical  tests  (  Section  2.2.7.  The  Multiple 
 Testing Burden  ) then concludes the statistical section. 

 2.2.1. Estimates of Location, Variability, and Association 
 At  the  heart  of  statistical  analyses  is  the  goal  of  designing  experiments  around  some  subject  and  analyzing  the 
 observational  data,  trying  to  infer  properties  of  a  population  or  process  beyond  the  existing  data.  This  is 
 achieved  by  testing  hypotheses  and  deriving  estimates  from  a  subsample  of  the  population  to  derive  such 
 properties.  This  includes  basic  descriptions  of  the  data  in  terms  of  statistical  measures  that  summarize  the 
 behavior of the data and, ultimately, the underlying subject matter 

 Random Variable 
 In  our  digitally-driven  world  data  comes  in  different  types  and  forms  like  sensor  measurements,  texts,  and 
 images,  questionnaires,  and  many  more.  In  the  previous  section  (review  Section  2.1.  Omics  ),  we  have 
 specifically  seen  examples  of  experimental  assays  that  generate  massive  amounts  of  biological  data.  This  data 
 has  a  generating  process  (a  real-world  phenomenon)  attached  to  it  in  which  the  data  points  follow  a  specific 
 probability  distribution  that,  in  turn,  is  governed  by  the  natural  laws  underlying  the  phenomenon.  Investigating 
 these  distributions  allows  us  to  derive  conclusions  about  the  underlying  data-generating  process  and  the 
 biological  phenomenon  at  large.  For  instance,  an  experiment  might  aim  to  assess  the  prevalence  of  CAD  patients 
 in  a  certain  subpopulation  and  thus  randomly  sample  a  subset  of  people  from  that  subpopulation  and  annotate 
 whether  the  individual  has  CAD  or  not  for  each  sample.  A  'random  variable'  is  the  conceptual  entity  that  holds 
 the  numeric  outcomes  resulting  from  random  processes  (256)  ,  in  our  example,  the  annotations  whether  a 
 randomly  drawn  sample  has  CAD  or  not.  The  associated  probability  distribution  (and  density)  function(s)  assign 
 a  specific  probability  to  each  observed  value  of  the  random  variable  (256)  .  Established  knowledge  about 
 specific  characteristics  of  the  random  variable’s  underlying  probability  distributions  then  enables  us  to 
 understand  the  associated  phenomena  in  great  detail.  For  instance,  one  might  draw  conclusions  about  the 
 population-level prevalence of CAD based on the observed prevalence in a representative cohort. 

 Generally  speaking,  a  random  variable  is  a  numerical  collection  of  the  outcomes  of  a  statistical  experiment  or 
 the  data  points  obtained  by  some  measuring  instrument.  A  random  variable  may  hold  numeric  or  categorical 
 results  depending  on  the  experiment.  In  the  case  of  numerical  data  points,  we  further  distinguish  between 
 discrete  and  continuous  data,  which  refer  to  data  of  only  integer  values  such  as  count  data  (e.g.,  number  of  CAD 
 risk-alleles  carried)  and  to  values  in  a  continuous  numeric  scale  (e.g.,  gene  expression  levels),  respectively.  On 
 the  other  hand,  categorical  data  takes  on  only  a  specific  set  of  values  and  is  categorized  into  nominal  and  ordinal 
 data.  Nominal  data  is  descriptive  and  non-numeric  (e.g.,  a  list  of  gene  biotypes).  Ordinal  data  is  like  nominal 
 data  but  with  an  intrinsic  order  to  the  elements  (e.g.,  a  list  of  gene  biotypes  ordered  by  degree  of  sequence 
 conservation across species). 

 For  data  analysis  and  predictive  modeling,  these  data  types  help  determine  the  methods  to  visually  display  the 
 data,  analyze  the  data,  determine  the  statistical  or  predictive  models  that  could  be  applied,  and,  especially, 
 characterize  the  underlying  data  generating  process  by  investigating  the  probability  distributions  underlying 
 these  processes.  To  conclude,  random  variables  are  the  essential  logical  entities  that  enable  the  investigation  of 
 data  at  all.  In  the  following,  we  want  to  cover  the  essential  descriptive  estimates  of  such  random  variables 
 briefly. 
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 Central Tendency 
 Let  be  a  random  variable  with  continuous  or  count  data  with  a  finite  number  of  distinct  values,  e.g.  gene  𝑋 
 expression  levels  of  a  biomarker  for  a  disease,  then  a  basic  approach  to  get  an  overview  of  the  variable  is  to  get 
 a  typical  value  that  the  variable  represents,  i.e.,  an  estimate  of  where  most  of  the  entries  in  are  located,  the  𝑋 
 central  tendency  or  location.  The  most  basic  estimate  of  this  location  is  the  mean  or  the  average  value  of  the 
 random variable  . It is defined as  𝑋 

 ,  𝑀𝑒𝑎𝑛    ( 𝑋 )   =     𝑋 ‾ =  𝑖 = 1 

 𝑛 

∑  𝑥 
 𝑖 

 𝑛 
 (2) 

 where  is  the  total  number  of  data  points  in  .  So  the  mean  of  is  essentially  the  sum  of  all  values  divided  by  𝑛  𝑋  𝑋 
 the  number  of  values  in  .  In  our  previous  example,  the  mean  would  represent  the  average  expression  of  the  𝑋 
 biomarker  that  informs  about  the  disease.  This  biomarker's  mean  expression  levels  can  then  be  systematically 
 compared  against  the  same  marker's  expression  levels  in  groups  of  samples  with  different  therapeutic  treatments 
 to  evaluate  the  average  change  in  biomarker  expression  levels  in  dependence  of  different  therapeutic  treatments 
 that enable the assessment of the treatment effects of the therapeutics administered to better combat the disease. 

 The  mean  is  sensitive  to  extreme  values  (outliers)  as  the  mean  is  shifted  towards  these  values.  A  more  robust 
 estimate  of  the  central  tendency  of  a  random  variable  is  to  calculate  its  median  .  It  is  the  middle  number  of  the 
 sorted  values  of  the  variable  .  In  the  case  of  an  even  number  of  values,  the  middle  value  is  the  average  of  the  𝑋 
 two values that divide the sorted data into its upper and lower halves. The median is formally defined as 

 ,  if n is even  𝑀𝑒𝑑𝑖𝑎𝑛    ( 𝑋 )   =     𝑋 [  𝑛 
 2 ]

 (3.1) 

 ,  if n is odd,  𝑀𝑒𝑑𝑖𝑎𝑛    ( 𝑋 )   =
    𝑋 [  𝑛 − 1 
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 where  is the total number of values in  .  𝑛  𝑋 

 Variance 
 Beside  the  central  tendency  of  values  in  one  is  often  interested  in  whether  the  values  are  tightly  clustered  or  𝑋 
 spread  out,  known  as  the  variability  of  .  Estimates  of  variation  are  based  on  the  differences  in  the  observed  𝑋 
 data  from  the  estimate  of  their  central  value.  The  most  widely  used  estimate  for  the  variability  of  a  random 
 variable  is known as the variance, given by  𝑋 

 𝑉𝑎𝑟 ( 𝑋 ) =     𝑠  2 =  𝑖 = 1 
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 Because the variance is not on the same scale as the original data due to the square term, the standard deviation 
 overcomes this limitation and is used more often. It is the square root of the variance: 

 𝑆𝐷 ( 𝑋 ) =     𝑠 =  𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒  (5) 

 To  continue  our  example,  in  addition  to  comparing  mean  expression  levels,  the  variance  of  expression  levels  of 
 genes  of  interest  between  groups  of  samples  with  different  backgrounds  (e.g.,  diseased  and  healthy;  groups  of 
 samples  treated  with  different  medications)  could  be  compared.  Jointly  considering  the  mean  and  the  variance  of 
 gene  expression  levels  allows  us  to  better  assess  differences  in  group  means,  as  these  might  just  arise  out  of 
 natural  variance  that  underlies  the  measurements.  The  T-test  is  an  example  of  a  statistical  test  that  performs  a 
 comparison of group means taking into account the variability of the means (see  Section 2.2.5. The T-test  ). 

 Another  approach  to  investigating  the  spread  of  data  is  based  on  the  percentiles  of  the  data.  In  contrast  to  the 
 variance  and  standard  deviation,  which  give  a  point  estimate  of  the  dispersion,  percentiles  report  the  fraction  of 
 values  that  lie  within  a  specific  range,  i.e.,  the  -th  percentile  is  a  value  such  where  at  least  percent  of  the  𝑝  𝑝 
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 values  in  take  on  this  value  or  less  and  at  least  percent  of  the  values  take  on  this  value  or  more.  For  𝑋     100 −  𝑝 
 instance,  to  retrieve  the  50-th  percentile,  the  data  is  first  sorted,  and  starting  from  the  smallest  value,  we  proceed 
 50%  of  the  way  to  the  largest  value  and  report  that  value  as  the  50-th  percentile  below  which  50%  of  data  points 
 lie. The 50th percentile is also the median, as discussed earlier. 

 Correlation & Covariance 
 Given  two  random  variables  and  ,  one  is  often  interested  in  the  relationship  between  the  two  variables.  If  𝑋     𝑌 
 large  values  of  correspond  to  large  values  of  ,  or  vice  versa,  or  if  even,  large  values  of  correspond  to  low  𝑋     𝑌  𝑋    
 values  of  and  vice  versa,  then  we  say  that  the  variables  and  are  linearly  correlated.  Covariance  and  𝑌     𝑋  𝑌 
 correlation  are  two  concepts  that  both  assess  this  relationship  between  variables  (256)  .  The  covariance  is  a 
 quantitative  measure  of  the  extent  to  which  the  deviation  of  one  variable  from  its  mean  matches  the  deviation  of 
 the other from its mean, i.e. the joint variability of two random variables: 

 ,  𝐶𝑜𝑣    ( 𝑋 ,  𝑌 )   =  𝑖 = 1 
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 The  overall  magnitude  of  the  covariance  can  be  quantified  with  the  correlation  between  two  random  variables. 
 The  widely  used  correlation  coefficient  (rho)  developed  by  Pearson  (257)  can  be  employed.  It  is  the  product  of 
 the  deviations  from  the  mean  of  each  variable  divided  by  the  product  of  the  standard  deviations  of  each  variable. 
 It is a generalization of the variance to two random variables and is linked to the covariance: 

 , ρ   ( 𝑋 ,  𝑌 )   =  𝐶𝑜𝑣 ( 𝑋 ,    𝑌 )
 𝑠 

 𝑥 
 𝑠 
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 where  and  are  the  standard  deviations  of  variables  X  and  Y,  respectively.  The  correlation  coefficient  always  𝑠 
 𝑥 

 𝑠 
 𝑦 

 lies  within  the  range  [-1;1]  with  negative  coefficients  describing  inverse  relationships.  There  are  other 
 correlation  coefficients,  for  instance,  Spearman’s  p  (258)  or  Kendall’s  tau  (259)  ,  and  are  based  on  the  ranks  of 
 the  data  values.  In  contrast  to  Pearson's  correlation  coefficient,  which  quantifies  the  linear  relationship  of  the 
 variables  with  constant  value  changes,  rank-based  correlation  coefficients  quantify  monotonic  relationships 
 where the values increase or decrease at a non-constant rate. 

 Correlation  is  an  essential  concept  to  identify  variables  that  co-vary.  For  instance,  entire  gene-correlation 
 networks  can  be  built  to  identify  and  link  genes  that  show  similar  gene  expression  profiles  to  built 
 gene-co-expression  networks  (260–262)  .  Based  on  this,  entire  modules  of  associated  genes  with  shared  or 
 similar  functions  could  be  inferred,  or  networks  of  diseased  and  healthy  samples  could  be  compared  to  identify 
 disease network modules with associated genes  (263,  264)  . 

 2.2.2. Variance of Estimates 
 At  the  heart  of  statistical  inference  lies  the  goal  of  understanding  some  property  of  a  whole  population. 
 However,  usually,  a  statistic  (estimate),  such  as  the  mean,  is  calculated  on  a  sample  (subset)  of  the  population 
 (superset)  rather  than  the  whole  population  itself  because  of  reasons  ranging  from  financial  limitations  to 
 infeasibility  concerns  or  time  constraints.  Then  conclusions  are  made  about  the  whole  population  regarding  the 
 property  that  was  estimated  based  on  the  sample.  Because  the  sample  cannot  fully  represent  the  whole 
 population,  uncertainty  exists  in  the  estimate  and  the  conclusions,  i.e.,  it  might  be  in  error  and  could  be  different 
 if  we  draw  a  different  sample  from  the  population.  Therefore  we  are  always  interested  in  how  much  different  it 
 might  be  from  the  true  population  parameter,  also  called  the  sampling  variability  .  The  standard  error  (SE)  can 
 be used as a metric to quantify this variability in the sampling distribution for a statistic, for instance, the mean: 

 ,  𝑆𝐸    =     𝑠 
 𝑛 

    (8) 

 where  is  the  standard  deviation  of  the  sample  values.  As  the  sample  size  increases  the  estimate  of  the  error  𝑠    
 decreases,  as  we  become  more  and  more  accurate  since  we  consider  a  larger  portion  of  the  population.  However, 
 as  mentioned  earlier,  taking  resamples  from  the  population  is  not  always  possible,  which  is  why  bootstrap 

 28 

https://paperpile.com/c/0Jy8h3/zEEV
https://paperpile.com/c/0Jy8h3/mQ8E
https://paperpile.com/c/0Jy8h3/1Sz0
https://paperpile.com/c/0Jy8h3/ANt2
https://paperpile.com/c/0Jy8h3/4tO8+VHPv+u9f0
https://paperpile.com/c/0Jy8h3/Qb5o+yToq


 resampling  (265)  is  introduced  to  quantify  the  variability  of  any  test  statistic.  One  simply  draws  additional 
 samples  with  replacement  from  the  initial  sample  (bootstrap  resampling)  instead  of  the  larger  population  and 
 recalculates  the  statistic  for  each  resulting  subsample.  Conceptually,  we  are  replicating  the  original  sample  many 
 (thousands  or  millions)  of  times  which  embodies  the  underlying  patterns  of  the  original  sample.  Given  an  initial 
 sample of a population, the procedure is as follows: 

 1.  Draw n samples with replacement from the initial sample (called a resample) 
 2.  Calculate any test statistic for that resample and record it 
 3.  Repeat steps 1-2 many times 
 4.  Calculate the standard deviation of recorded test statistics and, based on that, the standard error 

 The  number  of  bootstrap  iterations  in  step  3  is  set  arbitrarily  and  usually  lies  in  the  range  of  thousands  or 
 millions. The more iterations we make the more accurate will be the estimate of the variability of our statistics. 

 Instead  of  giving  a  point  estimate  of  the  variability  of  the  test  statistics,  as  is  done  with  the  standard  error,  we 
 can  give  a  range  in  which  the  test  statistics  will  fall,  called  the  confidence  interval  .  So  instead  of  performing  the 
 calculations  in  step  4  we  trim  of  the  lower  and  upper  part  of  the  distribution  of  the  test  statistics  and  report  𝑥  % 
 the  trim  points  between  which  the  test  statistics  should  lie  of  the  time  if  a  similar  bootstrapping  100 −  𝑥  % 
 procedure  is  followed.  For  instance,  the  confidence  interval  for  the  mean  gene  expression  levels  of  90%  𝑚 
 resamples  from  a  bootstrap  resampling  procedure  can  be  obtained  by  trimming [( 100 −  90 ) /2 ] %    =     5% 
 from  either  end  of  the  test  statistic  distribution.  This  could  be  done  by  calculating  the  percentiles  of  the  test 
 statistics  distribution  and  reporting  the  5th-  and  95th-percentile  points  as  the  confidence  interval  boundaries  and 
 removing test statistics that lie below and above those boundaries, respectively. 

 Bootstrap  resampling  is  also  applied  in  permutation  testing  covered  later  in  Section  2.2.6.  Permutation  Tests  as 
 well  as  in  tree-based  machine  learning  models  in  Section  2.3.2.  Tree  Models  ,  and  are  generally  used  to  obtain 
 confidence  intervals  for  diverse  kinds  of  statistical  tests,  for  example,  the  tests  covered  in  Sections  2.2.4.  The 
 Fisher’s Exact Test & The Chi-Square Test  -  2.2.5.  The T-test  . 

 2.2.3. Hypothesis Tests 
 A  major  goal  in  statistics  is  to  design  experiments  around  some  subject  to  confirm  or  reject  a  hypothesis  about 
 the  subject.  This  is  done  with  so-called  hypothesis  tests  .  To  provide  an  intuition  for  hypothesis  testing,  we  will 
 consider  a  commonly  observed  scenario  when  analyzing  data  and  comparing  groups  of  data.  This  differs  from 
 investigating  single  variables  with  descriptive  metrics  as  shown  in  Section  2.2.1.  Estimates  of  Location, 
 Variability,  and  Association  .  Most  often,  the  goal  is  to  compare  two  (or  multiple  groups)  with  different 
 characteristics  against  each  other.  In  Section  2.2.1.  Estimates  of  Location,  Variability  and  Association  we  have 
 seen  how  groups  of  samples  could  be  compared  based  on  the  mean  of  some  property  of  the  samples,  e.g. 
 comparing  the  expression  levels  of  a  biomarker  for  a  disease  between  healthy  and  diseased  samples.  However, 
 how  can  we  know  that  an  observed  difference  in  the  expression  levels  of  that  biomarker  between  the  groups  did 
 not  arise  out  of  pure  chance?  What  if  the  biomarker  has  no  effect,  and  we  observe  this  difference  simply 
 resulting  from  our  sampling  procedure?  What  if  we  had  an  infinite  number  of  samples?  Would  the  trend  still  be 
 visible?  To  answer  these  questions,  we  need  a  negative  control  group  and  formally  assess  the  hypothesis  that 
 there is no difference between groups of samples with different backgrounds. 

 To  begin,  we  will  construct  a  simplified  two-group  example  of  this  instance  to  derive  a  general  algorithmic 
 procedure  to  formally  perform  multiple  group  comparisons  to  assess  the  likelihood  of  observed  group 
 differences  with  respect  to  some  property  thereof.  Let  an  A/B  test  describe  an  experiment  where  two  groups  (A 
 and  B)  are  compared  to  each  other  in  which  one  of  the  groups  is  exposed  to  some  specific  treatment  (treatment 
 group)  and  the  other  not  (control  group).  The  goal  is  to  establish  that  the  treatment  truly  changes  some 
 properties  of  the  exposed  group  compared  to  the  non-exposed  group.  For  instance,  we  are  interested  in  the 
 effects  of  the  treatment  of  Coronary  Artery  Disease  patients  with  acetylsalicylic  acid.  We  want  to  test  whether 
 medication  with  acetylsalicylic  acid  lowers  the  rate  of  heart  attacks.  For  that  purpose,  we  could  form  two  groups 
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 (A  and  B)  of  randomly  selected  CAD  patients,  treat  group  B  with  the  new  drug,  and  leave  group  A  untreated  as 
 the  control.  We  then  count  how  many  heart  attacks  occurred  for  each  group.  This  can  be  summarized  in  a  2  𝑥  2 
 contingency table as follows: 

 Control  (Group A)  Treatment  (Group B) 

 No-Heart Attack  𝑎  𝑏 

 Heart Attack  𝑐  𝑑 

 Table 2.1:  Toy example of a 2x2 contingency table  for hypothesis testing. 

 Variables  ,  ,  and  represent  the  table  counts  of  observations  for  each  combination  of  the  groups  and  heart  𝑎  𝑏  𝑐  𝑑 
 attack  status.  We  are  interested  in  whether  we  observe  fewer  heart  attacks  under  treatment  as  compared  to  the 
 control,  which  is  the  same  as  asking  whether  the  ratio  of  (the  odds  of  no  heart  attack  to  heart  attack  under  no  𝑎 

 𝑏 

 treatment)  is  significantly  different  from  the  ratio  (the  odds  of  no  heart  attack  to  heart  attack  under  treatment).  𝑏 
 𝑑 

 The  ratio  should  be  more  or  less  equal  if  the  treatment  has  no  effect.  However,  if  the  treatment  is  effective,  it 
 should  lead  to  fewer  heart  attacks  in  the  treatment  group  such  that  the  ratios  should  differ  substantially.  Any 
 differences  between  the  groups  (control  and  treatment  or  A  and  B)  are  either  due  to  1)  the  effect  of  the  treatment 
 or  2)  simply  random  chance  and  the  luck  of  the  draw  in  which  subjects  are  assigned  to  each  of  the  group's  A  and 
 B  which  lead  to  such  a  difference.  Hypothesis  tests  help  to  learn  to  make  this  distinction  whether  random  chance 
 might be responsible for an observed effect. 

 We  distinguish  between  the  null  hypothesis  ,  i.e.,  the  hypothesis  that  chance  is  to  blame  and  in  reality,  there  is  no 
 difference  between  the  odds  in  the  two  groups,  and  the  alternative  hypothesis  ,  i.e.,  the  counterpoint  to  the  null 
 hypothesis  that  chance  is  likely  not  to  blame  and  in  reality  there  is  a  difference  between  the  two  groups.  We 
 further  distinguish  between  the  two  cases  of  one-way-tests  which  count  chance  results  in  only  one  direction,  and 
 two-way-tests  which  count  chance  results  in  two  directions.  To  continue  the  above  example,  we  assume  that  the 
 heart  attack  rate  is  low  in  treatment  group  B  and  high  in  the  control  group  A.  Therefore,  we  assume  that  the 
 distribution  of  these  measurements  (heart  attack  or  not)  is  different  between  the  groups  treated  differently.  As 
 mentioned  earlier,  this  difference  is  either  true  and  has  a  biological  explanation  (here  the  molecular  effects  of 
 acetylsalicylic  acid)  or  just  arose  due  to  chance  because  of  the  assignment  of  the  patients  into  those  groups.  A 
 hypothesis  test  tests  exactly  this,  whether  random  chance  is  a  reasonable  explanation  for  the  observed  difference 
 in  the  measurements  between  the  groups  or  that  the  difference  is  more  than  what  chance  might  produce.  Our 
 hypothesis test could be formulated as follows: 

 Null Hypothesis (H0)              :  The odds of  a  heart attack  in the treated group is  equal  as in  the control group 
 Alternative Hypothesis (H1)  :  The odds of a  heart  attack  in the treated group is  higher  than in the  control group 

 So  the  hypothesis  test  consists  of  a  null  hypothesis  (H0)  ,  which  makes  a  statement  that  there  is  no  difference  to 
 be  observed,  and  the  alternative  hypothesis  (H1)  that  there  is  a  difference  between  the  groups.  In  this  specific 
 example,  we  state  that  the  treated  group  will  have  fewer  heart  attack  rates,  which  corresponds  to  a  one-way  test. 
 If  we  had  only  stated  that  the  heart  attack  rates  would  differ  or  not  without  giving  a  direction,  it  would 
 correspond to a two-way-test because we did not care about the direction, whether it is higher or lower. 

 In  the  following  two  sections,  we  want  to  briefly  cover  three  popular  statistical  tests  to  assess  the  probability  of 
 the  observed  data  under  the  null  hypothesis,  called  the  Fisher’s  Exact  Test,  and  an  analogous  test  called  the 
 Chi-Square  test,  both  used  to  investigate  contingency  tables  as  illustrated  earlier  as  well  the  T-Test  to  compare 
 group  means.  In  general,  we  will  accept  the  null  hypothesis,  if  the  probability  of  the  observed  data  (or  the 
 derived  test  statistic)  under  the  null  hypothesis  is  large  enough.  In  other  words,  if  the  observed  data  is  explained 
 well  enough  by  the  model  specified  under  the  null  hypothesis.  It  is  common  practice  to  use  a  significance  level 
 of 5% to decide whether to accept or reject the null hypothesis. 
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 2.2.4. The Fisher’s Exact Test & The Chi-Square Test 
 For  the  special  case  of  comparing  count  data  between  two  groups  with  respect  to  some  variable,  as  shown  earlier 
 with  the  2x2  contingency  table  of  treatment  against  heart  attack  rate,  statistician  Fisher  has  developed  a 
 procedure  where  all  the  possible  permutations  of  two  groups  along  with  respective  frequencies  of  cell  counts  are 
 enumerated  to  determine  exactly  how  extreme  the  original  observed  result  is.  It  is  based  on  the  observation  that 
 the  table  counts  are  hypergeometrically  distributed.  Because  all  permutations  are  considered,  it  is  called  an  exact 
 test,  i.e.,  Fisher’s  exact  test  (for  details,  see  (266)  ).  As  compared  to  the  Fishers’  Exact  test,  which  is  usually 
 applied  to  2x2  contingency  tables  and  contingency  tables  with  low  cell  counts  (n<5),  the  Chi-Square  test  (for 
 details,  see  (267)  )  is  a  computationally  feasible  generalization  to  test  the  independence  among  variables  in 
 contingency tables with arbitrary numbers of columns and rows, i.e., r x c contingency tables. 

 These  tests  additionally  serve  to  conveniently  test  for  enrichments  of  specific  biological  entities  in  groups  of 
 data,  for  example,  done  in  Section  3.2.2.  Linking  Transcriptional  Regulatory  Steps  with  Transcriptional  Pausing 
 where  we  test  whether  splicing  factors  are  enriched  in  genomic  and  transcriptomic  intron  regions  associated 
 with transcriptional pausing as compared to a background set of all observed intronic regions. 

 2.2.5. The T-test 
 In  the  case  of  continuous  data  for  comparing  groups,  a  computationally  feasible  approach  exists,  called  the 
 Student’s  T-test  (268)  .  Variations  of  the  t-test  exist  in  which  we  either  compare  1)  the  means  for  two  groups  2) 
 compare  the  means  of  the  same  groups  at  different  time  points,  and  3)  compare  the  mean  of  a  group  to  a  known 
 mean  prior.  These  correspond  to  the  null  hypothesis  (H0)  that  the  differences  between  the  means  of  the  groups 
 (or  a  group  mean  and  a  prior  mean  in  case  3)  )  are  zero.  As  discussed  earlier  in  hypothesis  tests,  we  can  further 
 distinguish  between  a  one-way  and  a  two-way  t-test,  i.e.,  consider  the  direction  in  which  the  means  differ 
 between  the  groups,  which  is  also  true  for  the  t-test.  The  t-test  assumes  that  1)  the  groups  are  independent  2) 
 they  are  approximately  normally  distributed,  and  3)  they  have  a  similar  variance.  The  t-test  then  calculates  the 
 so-called  t-statistic,  the  number  of  standard  deviations  from  the  mean  in  a  t-distribution.  The  t-distribution  is  the 
 reference  distribution  of  the  null  hypothesis  to  which  the  observed  t-statistics  are  thus  compared.  The 
 t-distribution  is  a  type  of  normal  distribution  used  for  smaller  sample  sizes,  where  the  variance  in  the  data  is 
 unknown.  It  is  a  good  approximation  to  the  permutation  distribution  of  the  null  hypothesis  and  thus  saves 
 computational resources and time. The t-statistics  is given by  𝑡 

 ,  𝑡    =     |  𝑋 ‾− 𝑌 ‾ | 

 𝑠 
 𝑥 

 2 

 𝑛 
 𝑥 

+
 𝑠 

 𝑦 
 2 

 𝑛 
 𝑦 

 (9) 

 where  and  are  the  group  means,  and  the  standard  deviations  of  each  group  and  ,  the  group  sizes  𝑋 ‾  𝑌 ‾  𝑠 
 𝑥 

 𝑠 
 𝑦 
    𝑛 

 𝑥 
 𝑛 

 𝑦 

 of  groups  and  ,  respectively.  Given  the  t-score  we  can  lookup  in  a  t-distribution  table  to  decide  whether  we  𝑋  𝑌 

 reject  the  null  hypothesis  of  no  significant  difference  in  means  and  .  For  that,  we  identify  the  degrees  of  𝑋 ‾  𝑌 ‾
 freedom,  i.e.,  the  number  of  variables  that  are  free  to  vary,  set  the  threshold  commonly  ,  and  find α α =  0 .  05 
 the  critical  value  in  the  t-distribution  table  with  these  parameters  and  reject  the  null  hypothesis  if  our  t  value  is 
 greater than the critical value. 

 Several  analogous  tests  exist  for  comparing  multiple  groups  with  continuous  measurements.  For  instance, 
 Analysis  of  Variance  (ANOVA)  (269)  is  used  to  compare  more  than  two  groups  with  respect  to  one  variable, 
 Multiple  Analysis  of  Variances  (MANOVA)  (270)  is  used  to  compare  more  than  two  groups  with  respect  to 
 multiple  variables,  Analysis  of  Covariances  (ANCOVA)  (271)  is  used  to  compare  more  than  two  groups  with 
 respect  to  one  variable  while  controlling  for  other  variables  (covariates)  and  Multiple  Analysis  of  Covariances 
 (MANCOVA)  (272)  is  used  to  compare  more  than  two  groups  with  respect  to  multiple  variables  while 
 controlling for covariates. 
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 2.2.6. Permutation Tests 
 Permutation  testing  is  an  algorithmic  procedure  to  formally  perform  multiple  group  comparisons  to  assess  the 
 likelihood  of  observed  group  differences  concerning  some  property.  In  contrast  to  the  asymptotic  tests 
 introduced  in  the  previous  two  sections,  permutation  tests  can  be  applied  to  multiple  groups,  any  test-.statistic, 
 and  fine-tuned  to  adjust  the  accuracy  of  the  estimates.  In  permutation  tests,  all  possible  values  of  a  test  statistic 
 under  all  possible  rearrangements  of  observed  data  points  are  calculated  to  obtain  a  test  statistic  distribution 
 under  the  null  hypothesis  H0.  The  permutation  distribution  of  the  test  statistic  can  then  be  used  to  evaluate  a 
 hypothesis test and determine whether an observed effect is likely due to chance. 

 To  formally  generalize,  in  a  permutation  testing  procedure,  we  essentially  shuffle  the  results  from  original 
 groups,  generate  data  of  the  same  size  as  the  original  groups  from  the  shuffled  data,  and  observe  how  often  we 
 get  a  difference  in  the  test  statistic  that  is  at  least  as  extreme  as  the  observed  test  statistic  from  the  original 
 non-shuffled  data.  The  shuffling  of  the  groups  and  subsequent  resampling  from  it  essentially  represents  the 
 null-hypothesis  H0  of  both  groups  being  equivalent.  The  general  permutation  procedure  for  a  set  of  groups  (A, 
 B, C, D ...) to compare is as follows: 

 1.  Aggregate and shuffle the data points from all groups into a single data set 
 2.  Draw bootstrap resamples from the combined data with the same sizes as the original groups 
 3.  Calculate the test statistic of interest for the bootstrap resample groups and record the test statistic 
 4.  Repeat steps 1-3 multiple times to yield a permutation distribution of the test statistic 
 5.  Calculate  the  proportion  of  permutation  test  statistics  being  more  extreme  than  the  observed  test 

 statistics of the unshuffled data 

 Intuitively,  if  the  observed  test  statistics  are  not  much  different  from  the  permuted  test  statistics,  then  the 
 observed  test  statistics  are  in  the  range  of  what  chance  might  produce  because  we  have  randomly  shuffled  the 
 data  prior  to  calculating  the  permutation  test  statistics.  Calculating  how  often  the  permutation  statistics  are 
 greater  than  the  observed  statistics  provides  us  with  a  probability  of  randomly  observing  a  result  as  extreme  as 
 the  observed  because  we  have  randomly  shuffled  the  data.  This  probability  is  also  called  the  p-value  .  Given  the 

 -values,  we  could  filter  for  observations  whose  results  are  unlikely  to  have  resulted  due  to  chance  (probability  𝑝 
 equals  )  by  setting  a  threshold  for  the  -value,  usually  0.05.  So  for  test  statistics  with  p-values  lower  than  this  𝑝  𝑝 
 threshold,  also  called  the  alpha  level  ,  we  conclude  that  chance  is  unlikely  to  have  produced  the  statistics  and  call 
 these results statistically significant and the individual results  significant  hits  . 

 In  step  4  the  number  of  iterations  is  set  arbitrarily  but  usually  lies  within  the  range  of  thousands  or  millions, 
 depending  on  the  computational  resources  and  time  available.  The  more  iterations  we  conduct,  the  more  precise 
 the  distribution  of  the  permuted  test  statistic  will  be,  and  the  more  accurate  will  be  the  -values.  Ideally,  we  𝑝 
 should  perform  an  exhaustive  permutation  test  in  which  we  build  the  distribution  of  the  permuted  test  statistics 
 for  all  possible  ways  of  shuffling  and  dividing  the  data.  However,  in  step  2  we  cannot  perform  bootstrap 
 resampling  as  it  is  resampling  with  replacement  leading  to  an  infinite  number  of  samples  that  can  be  drawn. 
 Instead,  one  could  simply  resample  without  replacement.  This  would  result  in  a  so-called  exact  test  as  it 
 guarantees that the null model will not yield significant test results more than the alpha level of the test. 

 This  procedure  lays  the  methodological  foundation  for  identifying  genetic  interactions  in  Section  4.1.3. 
 Identification  of  Candidate  Epistatic  Interactions  where  we  apply  a  permutation  testing  approach  to  investigate 
 whether the observed difference of SNP interactions between cases and controls is likely due to chance. 

 2.2.7. The Multiple Testing Burden 
 Multiple  testing  refers  to  the  simultaneous  testing  of  multiple  hypotheses  (273)  .  The  problem  with  multiple 
 testing  is  that  with  an  increasing  number  of  tests,  the  probability  that  we  obtain  statistically  significant  hits 
 increases,  although  chance  is  to  blame.  So  we  reject  the  true  null  hypotheses  although  the  effect  is  due  to 
 chance,  yet  we  declare  it  otherwise.  This  is  also  called  the  Type  I  error,  mistakenly  concluding  that  a  random 
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 effect  is  statistically  significant.  On  the  other  hand,  mistakenly  concluding  that  a  true  effect  is  due  to  chance  is 
 called a Type II error. 

 For  instance,  suppose  we  conduct  tests  at  the  alpha  level  then  the  probability  that  we  have  𝑛 =  100 α =  0 .  05 
 at least one significant result is given by 

          𝑃 ( 𝑎𝑡     𝑙𝑒𝑎𝑠𝑡     𝑜𝑛𝑒     𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 )   =  1 −  𝑃 ( 𝑛𝑜𝑛𝑒     𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 )    (10.1) 

=  1 − ( 1 − α)  𝑛  (10.2) 

=  1 − ( 1 −  0 .  05 )  100     (10.3) 

=  0 .  994     (10.4) 

 Therefore  it  is  almost  guaranteed  that  we  observe  at  least  one  significant  result  although  in  reality  none  of  the 
 tests  are  significant.  In  order  to  control  for  the  overall  Type  I  error  rate,  also  known  as  the  family-wise  error  rate 
 (FWER)  (265)  ,  different  p-value  adjustment  methods  have  been  developed.  One  conservative  way  to  adjust  for 
 the  number  of  tests  is  by  simply  dividing  the  alpha  level  by  the  number  of  tests.  So  we  would  reject  the  null 
 hypothesis  if  the  p-value  is  less  than  .  This  is  also  called  the  Bonferroni  Correction  method  (274)  . α

 𝑛 =  0 .  0005 

 To  repeat our example with p-value adjustment we get 

       𝑃 ( 𝑎𝑡     𝑙𝑒𝑎𝑠𝑡     𝑜𝑛𝑒     𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 )   =  1 −  𝑃 ( 𝑛𝑜𝑛𝑒     𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 )    (11.1) 

=  1 − ( 1 − α
 𝑛 )

 𝑛     (11.2) 

=  1 − ( 1 −  0 .  0005 )  100        (11.3) 

=  0 .  048     (11.4) 

 So the portability of observing at least one significant hit by chance has dropped to only nearly 0.05. 

 In  contrast  to  the  Bonferroni  correction  method,  which  controls  the  probability  of  obtaining  a  single 
 false-positive  result,  the  most  commonly  applied  method  to  control  for  Type  I  errors  is  to  control  the  false 
 discovery  rate  (FDR)  (275,  276)  .  The  FDR  controls  the  fraction  of  false-positive  findings  over  the  total  number 
 of  positive  test  results.  The  so-called  q-value  is  an  estimate  of  the  false  discovery  rate  from  the  p-values  from 
 the multiple tests and defined as 

 𝑞 
 𝑖 

=
 𝑝 

 𝑖 
 𝑁 

 𝑖 
 (12) 

 where  is  the  i-th  p-value  from  the  increasingly  ordered  list  of  p-values,  the  index  of  the  -th  p-value  and  𝑝 
 𝑖 

 𝑖  𝑖  𝑁 

 the  number  of  statistical  tests  conducted.  Because  is  the  probability  of  accepting  a  false  result  by  chance  and  𝑝 
 𝑖 

 N  the  number  of  tests,  their  product  is  the  expected  number  of  false  tests.  The  denominator  is  the  number  of 
 results  we  actually  accept  at  the  i-th  p-value  threshold.  Therefore  the  q-value  is  the  number  of  expected  false 
 positives  based  on  the  p-values  divided  by  the  total  number  of  positives  accepted  at  the  same  p-values. 
 However,  because  the  q-values  are  not  a  monotonic  function  of  the  p-values,  lower  p-values  could  result  in 
 higher  q-values.  A  small  adjustment  to  enforce  monotonicity  is  performed,  in  which  the  q-values  are  simply 
 replaced with the lowest value among all lower-rank q-values. 
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 2.3. Supervised Machine Learning 

 Supervised  machine  learning  models  (review  Section  1.5.  Machine  Learning  &  Statistical  Inference)  operate  on 
 datasets  that  include  inputs,  called  features  ,  and  known  outputs,  called  targets  ,  which  allow  the  models  to  learn 
 patterns  and  relationships  in  the  data  to  predict  the  targets  from  the  features.  Supervised  learning  models  can  be 
 subdivided  into  classification  and  regression  models,  in  which  either  a  class  membership  or  a  real-valued 
 number  is  predicted,  respectively.  For  instance,  with  a  classification  model,  we  could  predict  patients'  disease 
 state  (yes  or  no)  or  predict  the  quantity  of  a  biomarker  as  a  proxy  for  a  disease  (regression).  In  the  following 
 sections,  some  of  the  most  widely  used  classification  and  regression  models  are  introduced  that  are  also 
 employed  in  our  projects  covered  later.  We  cover  linear  regression  and  classification  models  (  Section  2.3.1. 
 Linear  Models  )  as  well  as  three  variations  of  tree-based  models  (  Section  2.3.2.  Tree  Models  ).  An  overview  of 
 common  procedures  and  concepts  to  build  and  analyze  such  models  (  Sections  2.3.3.  Feature  Scoring  &  2.3.7. 
 Regularization  ) concludes the section on supervised  machine learning. 

 2.3.1. Linear Models 

 2.3.1.1. Linear Regression 

 A  common  goal  in  machine  learning,  as  well  as  in  statistics,  is  the  characterization  of  the  relationship  between  a 
 random  variable  and  another  continuous  random  variable  ,  and  even  predict  given  .  Linear  regression  𝑋  𝑌  𝑌  𝑋 

 (214)  is  a  supervised  machine  learning  method  that  assumes  a  linear  relationship  between  a  variable  and  ,  𝑋  𝑌 

 essentially fitting a straight line to the data, given by 

 𝑌    =     𝑏 
 𝑜 

+  𝑏 
 1 
 𝑋 +  𝑒  (13) 

 The  variable  is  referred  to  as  the  predictor  (independent)  variable,  as  the  predicted  target  (response;  𝑋  𝑌 

 dependent)  variable,  as  the  error  term,  as  the  intercept  (or  constant)  and  as  the  slope  for  ,  both  referred  𝑒  𝑏 
 𝑜 

 𝑏 
 1 

 𝑋 

 to  as  the  coefficients  of  the  model.  Unless  there  is  a  deterministic  relationship,  not  all  the  points  will  fall  on  the 
 line,  so  there  is  an  inherent  error  when  approximating  the  underlying  trend,  called  the  prediction  (residual)  error, 
 i.e.  the  difference  of  each  point  to  the  regression  line,  hence  the  error  term  .  The  fitted  values  of  a  model  are  𝑒 

 given by 

 𝑌 
 𝑖 
      =     𝑏 

 𝑜 
+  𝑏 

 1 
 𝑋 

    𝑖 
 (14) 

 Throughout  this  section,  variables  with  a  hat-symbol  denote  predicted  or  estimated  variables  as  opposed  to 

 known  variables  without  the  hat-symbol.  The  residual  errors  of  the  model  are  given  by  the  difference  of  𝑒 
 𝑖 

 observed (  ) and predicted (  ) values, i.e.  𝑌  𝑌 

 𝑒 
 𝑖 

=  𝑌 
 𝑖 

−  𝑌 
 𝑖 

 (15) 

 The  regression  model  tries  to  find  the  best  coefficient  and  to  predict  from  which  corresponds  to  fitting  𝑏 
 0 

 𝑏 
 1 

 𝑌 
 𝑖 

 𝑋 
 𝑖 

 a  line  to  the  data  by  minimizing  the  distance  of  the  line  to  each  point,  i.e.  minimizing  the  total  error.  This  is 

 accomplished  by  minimizing  a  cost  function  given  by  the  sum  of  squared  residual  errors  ,  also  known  as  the  𝑒 
 𝑖 

 residual sum of squares (RSS), defined as 

 𝑅𝑆𝑆    =
 𝑖 = 1 

 𝑛 

∑ ( 𝑌 
 𝑖 

−  𝑏 
 0 

−  𝑏 
 1 

 𝑋 
 𝑖 
)

 2 
   =       

 𝑖 = 1 

 𝑛 

∑ ( 𝑌 
 𝑖 

−  𝑌 
 𝑖 
)

 2 
=

 𝑖 = 1 

 𝑛 

∑  𝑒 
 𝑖 

       2  (16) 
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 The  coefficients  and  are  the  values  that  minimize  the  RSS.  Minimizing  the  RSS  is  also  termed  least  𝑏 
 0 

 𝑏 
 𝑖 

 squares  regression,  ordinary  least  squares  (OLS)  regression,  or  simple  linear  regression.  In  this  model,  for  each 

 unit  increase  in  the  response  will  increase  by  .  The  ordinary  least  square  estimate  is  the  same  as  the  𝑋  𝑌  𝑏 
 1 

 Maximum Likelihood Estimate (MLE) under a Gaussian model  (277)  . 

 Usually,  multiple  predictors  are  available,  and  the  regression  equation  is  simply  extended  to  accommodate  these 

 additional  variables  where  the  relationship  between  each  coefficient  and  variables  is  linear.  This  is  called  𝑏 
 𝑗 

 𝑋 
 𝑗 

 multiple linear regression (MLR). The fitted values are thus given by 

 𝑌 
 𝑖 
   =     𝑏 

 𝑜 
+  𝑏 

 1 
 𝑋 

 1 ,    𝑖 
+     𝑏 

 2 
 𝑋 

 2 ,    𝑖 
+    ...    +  𝑏 

 𝑗 
 𝑋 

 𝑗 ,    𝑖 
,     (17) 

 where  indexes  the  -th  coefficient  and  variable  and  the  -th  observation.  The  interpretation  of  the  coefficients  𝑗  𝑗  𝑖  𝑖 

 is  analogous  to  the  simple  linear  regression,  so  changes  by  the  coefficients  for  each  unit  change  in  𝑌  𝑏 
 𝑗 

 𝑋 
 𝑗 

 assuming  all  other  variables  for  remain  the  same.  As  opposed  to  the  simple  linear  regression  where  we  𝑋 
 𝑘 

 𝑘 ≠  𝑗    

 minimize  the  RSS,  in  multiple  linear  regression,  we  can,  among  other  metrics,  minimize  the  root  mean  squared 
 error (RMSE) which measures the overall accuracy of the model  (278)  . 

 A  convenient  property  of  linear  regression  is  that  an  analytical  solution  exists  to  minimize  the  cost  function.  It  is 
 equivalent to the maximum likelihood estimate of Gaussian Linear Models  (277)  and given by 

 ,  𝑏 = ( 𝑋  𝑇  𝑋 )− 1  𝑋  𝑇  𝑦  (18) 

 where  and  represent the vectors of coefficients and targets, respectively.  𝑏  𝑦 

 A  widely  used  and  very  intuitive  metric  to  assess  the  model  performance  of  regression  models  in  general,  thus 

 also  linear  regression,  is  the  coefficient  of  determination,  also  known  as  the  R-squared  statistic  or  .  It  𝑅  2 

 quantifies the proportion of variance explained by the model. The formula is given by 

 ,     𝑅  2 =  1 −     𝑖 

 𝑛 

∑( 𝑌 
 𝑖 
− 𝑌 

 𝑖 
) 2 

 𝑖 

 𝑛 

∑( 𝑌 
 𝑖 
− 𝑌 ) 2 

 (19) 

 where  denotes  the  mean  of  the  predicted  values.  The  closer  the  is  to  1,  the  better  the  prediction  𝑦  𝑅  2 

 performance. 

 Linear  regression  is  useful  since  a  linear  combination  of  variables  can  model  many  phenomena.  Moreover,  it  is 
 fast,  scalable,  easy  to  interpret,  and,  more  importantly,  has  great  explanatory  power  despite  its  simplicity.  In  the 
 following  section,  we  want  to  introduce  another  linear  model  called  logistic  regression  in  which,  in  contrast  to 
 linear models with continuous outcomes, binary outcomes are predicted. 

 2.3.1.2. Logistic Regression 

 Logistic  regression  (214)  predicts  a  binary  outcome  (e.g.  0/1;  yes/no;  diseased/healthy)  as  opposed  to  linear 
 regression,  where  the  outcome  is  continuous.  This  is  also  called  a  classification  problem.  Usually,  the  class  of 
 interest  is  encoded  ‘1’  and  the  common  class  as  ‘0’.  Logistic  regression  is  very  similar  to  MLR  covered  in  the 
 last  section  except  for  the  difference  in  the  response  and  the  interpretation  of  the  coefficients.  The  response  can 
 first be thought of as the probability that the class label will be 1. This would yield the following equation 
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 𝑝    =     𝑏 
 𝑜 

+  𝑏 
 1 
 𝑋 

 1 
+     𝑏 

 2 
 𝑋 

 2 
+    ...    +  𝑏 

 𝑗 
 𝑋 

 𝑗 
 (20) 

 However,  because  is  not  guaranteed  to  stay  in  the  range  [0;1],  which  is  a  necessity  for  probabilities,  it  is  𝑝 
 modeled  by  applying  the  logistic  function  to  the  predictors  to  ensure  this  property.  The  logistic  function  is  a 
 sigmoid function  that takes any  real  input and outputs  a value between zero and one and is defined as 

 𝑆 ( 𝑥 )   =     1 

 1 + 𝑒 − 𝑥    =     𝑒  𝑥 

 1 + 𝑒  𝑥 
 (21) 

 Hence the  probability that the class label will be  1  is given by 

 𝑝    =  𝑒 
( 𝑏 

 𝑜 
+ 𝑏 

 1 
 𝑋 

 1 
+    𝑏 

 2 
 𝑋 

 2 
+   ...   +    𝑏 

 𝑗 
 𝑋 

 𝑗 
)

 1 + 𝑒 
( 𝑏 

 𝑜 
+ 𝑏 

 1 
 𝑋 

 1 
+    𝑏 

 2 
 𝑋 

 2 
+   ...   + 𝑏 

 𝑗 
 𝑋 

 𝑗 
)    

 (22) 

 Then the probability that the class label will be 0 is given by 

 1 −  𝑝    =  1 + 𝑒 
( 𝑏 

 𝑜 
+ 𝑏 

 1 
 𝑋 

 1 
+    𝑏 

 2 
 𝑋 

 2 
+   ...   + 𝑏 

 𝑗 
 𝑋 

 𝑗 
)

− 𝑒 
( 𝑏 

 𝑜 
+ 𝑏 

 1 
 𝑋 

 1 
+    𝑏 

 2 
 𝑋 

 2 
+   ...   + 𝑏 

 𝑗 
 𝑋 

 𝑗 
)

 1 + 𝑒 
( 𝑏 

 𝑜 
+ 𝑏 

 1 
 𝑋 

 1 
+    𝑏 

 2 
 𝑋 

 2 
+   ...   + 𝑏 

 𝑗 
 𝑋 

 𝑗 
)    

 (23.1) 

=  1 

 1 + 𝑒 
( 𝑏 

 𝑜 
+ 𝑏 

 1 
 𝑋 

 1 
+    𝑏 

 2 
 𝑋 

 2 
+   ...   + 𝑏 

 𝑗 
 𝑋 

 𝑗 
)

 (23.2) 

 To  get  the  exponential  expression  out  of  the  denominator,  odds  instead  of  probabilities  are  considered.  Odds  are 
 simply  the  ratio  of  ‘successes’  to  ‘non-successes’,  both  denoted  as  1s  and  0s,  respectively.  Therefore  the  odds  of 
 observing the class label of interest (  ) is given by  𝑌 =  1 

    𝑂𝑑𝑑𝑠 ( 𝑌 =  1 )   =  𝑝 
 1 − 𝑝    ,  (24) 

 Therefore we get 

 𝑝 
 1 − 𝑝    =  𝑒 

( 𝑏 
 𝑜 
+ 𝑏 

 1 
 𝑋 

 1 
+    𝑏 

 2 
 𝑋 

 2 
+   ...   + 𝑏 

 𝑗 
 𝑋 

 𝑗 
)

 1 + 𝑒 
( 𝑏 

 𝑜 
+ 𝑏 

 1 
 𝑋 

 1 
+    𝑏 

 2 
 𝑋 

 2 
+   ...   + 𝑏 

 𝑗 
 𝑋 

 𝑗 
)    *     1 + 𝑒 

( 𝑏 
 𝑜 
+ 𝑏 

 1 
 𝑋 

 1 
+    𝑏 

 2 
 𝑋 

 2 
+   ...   + 𝑏 

 𝑗 
 𝑋 

 𝑗 
)

 1    
 (25.1) 

=  𝑒 
 𝑏 

 𝑜 
+ 𝑏 

 1 
 𝑋 

 1 
+    𝑏 

 2 
 𝑋 

 2 
+   ...   + 𝑏 

 𝑗 
 𝑋 

 𝑗  (25.2) 

 To remove the exponential expression we apply the log-function to both sides of the equation and get 

 𝑙𝑜𝑔 (  𝑝 
 1 − 𝑝 )   =     𝑏 

 𝑜 
+  𝑏 

 1 
 𝑋 

 1 
+     𝑏 

 2 
 𝑋 

 2 
+    ...    +  𝑏 

 𝑗 
 𝑋 

 𝑗 
 (26) 

 We  thus  have  expressed  the  log  of  the  odds  of  observing  the  class  label  of  1  as  a  linear  combination  of  our 
 predictors. To obtain probabilities from the log odds we apply the logistic function given by 

 𝑃 ( 𝑌 =  1 )   =  1 

 1 + 𝑒 − 𝑙𝑜𝑔 ( 𝑂𝑑𝑑𝑠 ( 𝑌 = 1 )))
 (28) 

 We  thereby  obtain  a  linear  model  to  predict  the  probability  of  observing  the  class  label  1.  To  actually  classify 
 samples  as  1s  and  0s  we  apply  a  cutoff  rule.  Usually,  a  probability  cutoff  of  0.5  is  chosen,  so  samples  with  a 
 predicted probability  are classified as 1s and  as 0s. ≥  0 .  5 <  0 .  5 
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 The  coefficients  in  the  logistic  regression  model  give  the  log  of  the  odds  ratio  for  variable  .  Consider  a  𝑏 
 𝑖 
    𝑋 

 𝑖 

 single binary explanatory variable  , then the associated coefficient  is defined as:  𝑋 
 1 

 𝑏 
 1 

 𝑙𝑜𝑔 ( 𝑂𝑑𝑑𝑠     𝑅𝑎𝑡𝑖𝑜 )   =     𝑙𝑜𝑔 (  𝑜𝑑𝑑𝑠 ( 𝑌 =    1     |     𝑋    =    1 )
 𝑜𝑑𝑑𝑠 ( 𝑌 =    1|     𝑋 = 0 ) )    (29.1) 

=  𝑙𝑜𝑔 ( 𝑜𝑑𝑑𝑠 ( 𝑌    =     1     |     𝑋 =  1 ))   −     𝑙𝑜𝑔 ( 𝑜𝑑𝑑𝑠 ( 𝑌 =  1     |     𝑋 =  0 ))  (29.2) 

=  𝑏 
 0 
   +     𝑏 

 1 
*  1 +    ...    +     𝑏 

 𝑛 
 𝑋 

 𝑛 
− ( 𝑏 

 0 
+  𝑏 

 1 
*  0 +    ...    +     𝑏 

 𝑛 
 𝑋 

 𝑛 
)    (29.3) 

=  𝑏 
 1 

 (29.4) 

 So  it  gives  the  log  of  the  odds  ratio  that  when  versus  the  odds  that  when  ,  when  all  𝑌 =  1  𝑋 =  1  𝑌 =  1  𝑋 =  0 
 other  variables  are  held  constant.  For  instance,  if  the  odds  ratio  equals  2,  then  the  odds  that  Y  =  1  are  twice  as 

 high  when  X  =  1  as  opposed  to  X  =  0.  Because  the  coefficients  are  the  log  of  the  odds  ratios  we  can  𝑏 
 𝑖 
   

 exponentiate  the  coefficients  to  get  the  odds  ratios,  which  are  more  readily  interpretable.  For  continuous 
 variables, the interpretation is analogous and gives the change in the odds ratio for a unit change in  .  𝑋 

 In  simple  linear  regression  (review  Section  2.3.1.1.  Linear  Regression  )  we  considered  the  RSS  as  our  cost 
 function to penalize model fits. In logistic regression we consider the logistic loss cost (LLC) function given by 

 ,  𝐿𝐿𝐶    =  1 
 𝑚 

 𝑖 = 1 

 𝑚 

∑ −  𝑌 
 𝑖 
 𝑙𝑜𝑔 ( 𝑌 

 𝑖 
) + ( 1 −  𝑌 

 𝑖 
) 𝑙𝑜𝑔 ( 1 −  𝑌 

 𝑖 
)  (30) 

 where  is  the  number  of  samples,  the  true  class  label,  and  the  predicted  class  label.  Intuitively,  the  logistic  𝑚     𝑌 
 𝑖 

 𝑌 
 𝑖 

 loss  penalizes  more  predicting  1  when  the  actual  class  label  is  0  or  when  predicting  0  when  the  class  label  is 
 actually  1.  An  analytical  solution  does  not  exist  for  the  maximum  likelihood  estimator  of  the  logistic  model 
 (277)  which  is  why  numerical  optimization  methods  like,  for  instance,  gradient  descent  (279)  or  Newton’s 
 method  (280)  have to be used to train the model. 

 2.3.2. Tree Models 
 Tree  models,  also  called  Classification  and  Regression  Trees  (CART)  (215)  ,  or  simply  decision  trees,  are  a 
 highly  popular,  effective,  and  efficient  class  of  machine  learning  models  for  regression  and  classification  tasks. 
 Especially  their  powerful  descendants,  random  forests  and  boosted  trees  are  among  the  most  widely  used 
 models  for  predictive  modeling.  They  are  straightforward  to  interpret,  as  they  are  based  on  building  a  series  of 
 if-then-else  rules,  fast  and  highly  scalable  as  well  as  competitive  relative  to  the  most  advanced  methods  like 
 neural  networks.  We  used  a  variation  of  decision  trees,  called  Extreme  Gradient  boosting  trees  (XGB),  in  our 
 second  project  (  Chapter  3.  Predictive  model  of  transcriptional  elongation  control  identifies  trans-regulatory 
 factors  from  chromatin  signatures  )  for  predicting  the  transcriptional  pause  state  of  genes.  We  thus  want  to 
 introduce  in  the  following  sections  the  underlying  methodology  of  tree-based  models.  We  first  cover  the  basic 
 idea  of  building  decision  trees  (  Section  2.3.2.1.  The  Decision  Tree  Model  )  and  introduce  a  powerful  extension 
 of  these,  called  random  forests,  in  Section  2.3.2.2.  The  Random  Forest  Model  and  conclude  this  section  with  one 
 of  the  most  advanced  tree-based  models,  the  Extreme  Gradient  boosting  Trees,  in  Section  2.3.2.3.  The  Extreme 
 Gradient Boosting Regression Tree Model (XGB)  . 

 2.3.2.1. The Decision Tree Model 

 Tree  models  are  very  powerful,  popular,  easy  to  interpret,  scalable  and  fast.  In  contrast  to  linear  models,  they 
 have  the  power  to  identify  hidden  patterns  that  correspond  to  variable  interactions  without  explicitly  modeling 
 these  interactions  during  the  modeling  phase.  Trees  are  a  series  of  if-then-else  rules  imposed  by  the  predictors 
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 that  partition  the  data  set  into  smaller  subsets  of  homogenous  samples.  A  recursive  partitioning  algorithm 
 constructs the trees. 

 Given  a  target  variable  and  a  set  of  predictor  variables  for  ,  a  partition  of  samples,  the  𝑌  𝑃  𝑋 
 𝑖 

 𝑖    =     1 ,    ...    ,     𝑃  𝐴 

 recursive  partitioning  algorithm  will  find  the  best  way  to  partition  into  two  subpartitions  and  ,  according  𝐴  𝐴 
 1 

 𝐴 
 2 

 to the following procedure: 

 1.  For each predictor variable  𝑋 
 𝑖 
   

 a.  For each value  of  𝑣 
 𝑖 

 𝑋 
 𝑖 

 i.  Split  the  samples  in  A  with  values  <=  as  one  partition  (  )  and  the  remaining  𝑋 
 𝑖 

 𝑣 
 𝑖 

 𝐴 
 1 

 samples where  as the second partition (  )  𝑋 
 𝑖 
   >  𝑣 

 𝑖 
 𝐴 

 2 

 ii.  Measure the homogeneity of the samples in each of the subpartitions 
 b.  Select the value  that produces maximum within-partition homogeneity of samples  𝑣 

 𝑖 

 2.  Select  the  variable  and  the  split  value  that  produces  maximum  within-partition  homogeneity  of  𝑋 
 𝑖 
    𝑣 

 𝑖 

 samples 

 The  recursive  nature  arises  when  we  first  initialize  partition  A  with  the  entire  dataset  at  hand,  apply  the 
 partitioning  algorithm  to  split  A  into  subpartitions  and  and  repeat  partitioning  on  each  of  the  subpartitions  𝐴 

 1 
 𝐴 

 2 

 and  and  all  resulting  subpartitions  until  no  further  partition  can  be  made  that  sufficiently  improves  the  𝐴 
 1 

 𝐴 
 2 

 homogeneities of the partitions. 

 Different  metrics  exist  to  measure  partition  homogeneity  and  their  use  cases  differ  in  dependence  of  the  type  of 
 the  target  variable.  We  will  focus  on  the  metrics  of  a  2-class  classification  problem  where  the  response  is  binary, 
 but  generalization  to  multi-class  problems  also  exists.  Usually,  the  Gini  Impurity  (GI)  or  Entropy  of  Information 
 (EI) are used  (281)  . The GI of a partition  is defined as  𝐴 

 ,  𝐺𝐼 ( 𝐴 ) =  𝑝 ( 1 −  𝑝 )  (31) 

 where  gives the proportion of misclassified samples in the partition.  𝑝 

 The EI of a partition is given by 

 𝐸𝐼 ( 𝐴 ) =    −  𝑝     𝑙𝑜  𝑔 
 2 
( 𝑝 ) − ( 1 −  𝑝 )    𝑙𝑜  𝑔 

 2 
( 1 −  𝑝 )  (32) 

 During  the  partitioning  of  the  data  any  such  metric  is  used  and  a  weighted  (by  the  number  of  samples  in  the 
 partition)  average  is  calculated  and  whichever  partition  yields  the  lowest  impurity  score  is  then  selected  along 
 with the split variable  and split value  which correspond to a learned rule.  𝑋 

 𝑗    
 𝑣 

 𝑗 

 Predicting  a  continuous  variable  is  analogous  except  that  the  scoring  metric  is  the  root  mean  squared  error 
 within the partition, given by 

 ,  𝑅𝑀𝑆𝐸    =     𝑖 

 𝑛 

∑( 𝑌 
 𝑖 
− 𝑌 

 𝑖 
)  2 

 𝑛 

 (33) 

 where  n  is  the  number  of  samples,  the  true  outcome  and  the  predicted  outcome.  The  predicted  value  for  𝑌 
 𝑖 

 𝑌 
 𝑖 

 𝑌 
 𝑖 

 a sample  is the average true outcome  of a partition X that contains sample  .  𝑖  𝑌 
 𝑋 

 𝑖 
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 Due  to  the  inherent  nature  of  the  recursive  partitioning,  the  algorithm  terminates  when  there  is  no  partitioning 
 possible  anymore.  This  is  when  each  sample  forms  its  own  partition  (fully  grown  tree),  which  corresponds  to  an 
 overfitted  model.  In  this  setting,  there  exists  a  definite  path  from  the  root  of  the  tree  to  reach  each  sample,  also 
 called  leaves,  that  results  in  perfect  prediction  of  the  target  values.  This  results  in  an  accuracy  of  the  100% 
 model  as  the  model  shifted  from  learning  general  rules  that  identify  reliable  relationships  in  the  data  to  learning 
 specific  rules  that  only  apply  to  specific  observations.  These  specific  rules  thus  represent  noise  in  the  data.  To 
 overcome  this  problem,  the  tree  growth  process,  i.e.,  the  recursive  partitioning,  is  terminated  at  an  earlier  stage 
 when  certain  tree  growth  conditions  are  met.  In  fact,  the  goal  is  to  stop  the  tree  from  growing  at  a  stage  that  will 
 generalize  well  to  new  data.  A  common  way  to  accomplish  this  is  to  avoid  splitting  a  partition  if  the  resulting 
 subpartitions  are  too  small,  i.e.,  specifying  a  minimum  partition  leaf  size.  Another  way  is  to  stop  partitioning  if 
 the  resulting  subpartitions  do  not  significantly  increase  the  homogeneity  or  decrease  the  impurity.  Finding  the 
 optimal  parameter  settings  is  exploratory  work  and  an  instance  of  a  bias-variance  tradeoff  (discussed  later  in 
 Section  2.3.4.  The  Bias-Variance  Tradeoff  ).  Usually,  it  is  done  in  combination  with  cross-validation  (discussed 
 later  in  Section  2.3.5.  Cross  Validation  )  and  regularization  (discussed  later  in  Section  2.3.7.  Regularization  )  and 
 is called hyperparameter tuning (discussed later in  Section 2.3.6. Hyperparameter Tuning  ). 

 Regarding  prediction,  harnessing  the  prediction  power  of  multiple  trees  is  often  superior  to  only  a  single 
 decision  tree.  Random  forests  are  extensions  of  the  simple  decision  tree  algorithm,  which  tries  to  harness  the 
 power  of  multiple  trees  based  on  a  random  subset  of  data  and  variables.  In  the  following,  we  want  to  introduce 
 random  forest  to  provide  an  intuition  for  gradient  boosting  trees  covered  in  the  section  thereafter  (  Section 
 2.3.2.3. The Extreme Gradient Boosting Regression Tree Model (XGB)  ). 

 2.3.2.2. The Random Forest Model 

 Random  forests  (216)  are  based  on  the  idea  of  ensemble  learning  in  which  the  average  or  the  majority  vote  of 
 multiple  models  trained  on  the  same  data  (Bagging  (282)  ),  often  outperform  a  single  model.  The  random  forest 
 model  uses  bagging,  i.e.  bootstrap  aggregation,  and  bootstrap  sampling  (review  Section  2.2.2.  Variance  of 
 Estimates  ) the predictors in each step. A random forest  is built according to the following procedure: 

 1.  Take a bootstrap subsample from the sample space (called the “bag”) 
 2.  Take a bootstrap subsample p from the predictor space P 
 3.  Apply  recursive  partitioning  as  discussed  earlier  (review  Section  2.3.2.1.  The  Decision  Tree  Model  ) 

 with the randomly selected subset of predictors p until tree growth conditions are met 
 4.  Repeat steps 1-3 multiple times, resulting in multiple trees (collectively called a random forest) 

 A  rule  of  thumb  to  set  is  to  choose  predictors  where  is  the  total  number  of  available  predictors.  The  𝑝     𝑃  𝑃 
 individual  tree  performances  are  given  by  the  out-of-bag  (OOB)  prediction  performances,  i.e.  when  predicting 
 the  samples  that  were  left  out  (not  contained  in  the  ‘bag’)  during  bootstrap  sampling  (Step  1)  with  the  grown 
 tree.  Once  training  is  complete,  predictions  for  unseen  samples  can  be  made  by  averaging  the  predictions  from 
 all the individual regression trees or by taking the majority vote in the case of a classification task. 

 Predictors  are  scored  according  to  variable  importance  measures.  One  way  to  judge  the  importance  of  a 
 predictor  is  by  randomly  permuting  the  predictor,  thus  removing  any  predictive  power  of  that  variable,  and  then 
 quantifying  the  decrease  in  model  accuracy  on  the  OOB  data,  which  is  effectively  a  cross-validated  estimate.  On 
 the  other  hand,  one  can  measure  the  mean  decrease  in  the  Gini  Impurity  score  for  all  of  the  nodes  that  were  split 
 on  a  specific  variable  which  measures  how  much  the  purity  of  nodes  is  improved  by  including  the  variable. 
 However,  this  way  of  quantifying  variable  importance  is  inferior  to  the  former,  as  it  is  based  on  the  training  data 
 compared to the accuracy based on the OOB data. 

 Random  forest  models  also  require  hyperparameter  optimization.  Among  others,  important  parameters  to  avoid 
 overfitting  are  the  minimum  number  of  samples  for  terminal  nodes,  the  maximum  number  of  nodes  in  the  tree, 
 the depth of the trees, and the number of trees to grow (Step 4). 
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 2.3.2.3. The Extreme Gradient Boosting Regression Tree Model (XGB) 
 Extreme  Gradient  Boosting  (XGB)  Tree  models  (217)  apply  gradient  boosting  to  decision  trees.  Gradient 
 Boosting  (283)  is  based  on  the  idea  that  an  ensemble  of  multiple  weak  learners  can  generate  a  single  strong 
 learner  while  allowing  the  optimization  of  an  arbitrary  differentiable  loss  function.  In  the  context  of  tree  models, 
 the  weak  learners  correspond  to  individual  decision  trees.  Specifically,  in  gradient  boosting  trees,  a  series  of 
 decision  tree  models  (like  in  random  forests  (216)  )  are  trained  sequentially  (in  contrast  to  parallelly  in  random 
 forests),  where  each  successive  decision  tree  seeks  to  minimize  the  error  of  the  previous  decision  tree  (boosting 
 in  contrast  to  bagging  (282)  as  in  random  forests).  The  combination  of  each  previous  and  successive  model  is 
 expected  to  perform  better  than  either  model  alone  since  each  successive  model  overcomes  the  shortcomings  of 
 the combined boosted ensemble of all previous models. To formalize, the model can be represented as: 

 ,  𝑦 
 𝑖 
      =    

 𝑘 = 1 

 𝐾 

∑  𝑓 
 𝑘 
( 𝑥 

 𝑖 
),     𝑓 

 𝑘 
   ∈     𝐹  (34) 

 where  is  the  number  of  trees,  is  a  function  in  the  functional  space  ,  and  is  the  set  of  all  possible  trees  𝐾  𝑓 
 𝑘 

 𝐹  𝐹 

 and  the  -th sample  . The objective function  to assess the goodness of model fits is given by  𝑥 
 𝑖 

 𝑖 

 ,  𝑜𝑏𝑗 (θ)   =    
 𝑖 = 1 

 𝑛 

∑  𝑙 ( 𝑦 
 𝑖 
,     𝑦 

 𝑖 

( 𝑡 )
) +

 𝑡 = 1 

 𝑇 

∑  𝑤 ( 𝑓 
 𝑡 
)  (35) 

 where  is  the  number  of  samples,  is  the  number  of  trees,  the  true  target  values,  the  predicted  target  𝑛  𝑇  𝑦 
 𝑖 

 𝑦 
 𝑖 

 values,  a  loss  function  (e.g.  logistic  loss,  squared  error  loss)  and  the  complexity  of  the  tree  defined  in  𝑙  𝑤 ( 𝑓 
 𝑡 
)  𝑓 

 𝑡 

 detail  later.  In  order  to  optimize  the  objective  function,  we  have  to  build  optimal  trees  that  produces  minimal  𝑓 
 𝑡 

 prediction  error.  However,  constructing  all  possible  trees  is  computationally  too  expensive  and  a  simplified 
 additive  approach  is  followed  to  select  locally  optimal  trees,  i.e.  new  trees  are  added  sequentially.  This  is  in 

 contrast  to  the  random  forest  model  where  trees  are  trained  parallelly.  Predictions  of  the  t-th  iteration  (  )  can  𝑦 
 𝑖 

( 𝑡 )

 be formulated as: 

 𝑦 
 𝑖 

( 0 )
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 … 

 𝑦 
 𝑖 

( 𝑡 )
   =

 𝑡 = 1 

 𝑇 

∑  𝑓 
 𝑡 
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 𝑖 
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 𝑖 
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 𝑡 
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 𝑖 
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 A  tree  structure  is  added  if  it  optimizes  the  objective  function.  However,  the  cost  functions  in  XGB  are  𝑓 
 𝑡 

 approximated  by  a  Taylor  series  (284)  of  order  two  to  improve  upon  the  computational  complexity.  This 
 approximation  is  necessary  to  scale  XGB  to  a  large  dataset  with  many  features.  The  approximation  of  order  two 
 is  sufficient  as  we  seek  new  parameters  in  the  neighborhood  of  the  starting  points.  In  the  general  case,  for  an 
 arbitrary loss function our optimization goal for the new tree at step t is defined as: 
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 𝑖 = 1 

 𝑛 

∑ [ 𝑔 
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 where  and  are defined as  𝑔 
 𝑖 

 ℎ 
 𝑖 

 𝑔 
 𝑖 
   =    ∂

 𝑦 
 𝑖 

( 𝑡 − 1 )    𝑙 ( 𝑦 
 𝑖 
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 𝑖 
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 𝑖 

( 𝑡 − 1 )
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 Because the objective function only depends on  and  XGBoost can support custom loss functions.  The  𝑔 
 𝑖 

 ℎ 
 𝑖 

 complexity of a tree  is defined as  𝑤 ( 𝑓 )

 𝑤 ( 𝑓 )   = γ 𝐿 +  1 
 2 λ

 𝑗 = 1 

 𝐿 

∑  𝑤 
 𝑗 
 2       

 (40) 

 where  is the vector of scores on leaves,  a  mapping function that assigns each data point to the corresponding  𝑤  𝑞 
 leaf,  is the number of leaves and  ,  regularization  parameters subject to hyperparameter tuning.  𝐿 γ λ
 Considering this the objective value of the t-th tree is defined as: 

 𝑜𝑏𝑗 ( 𝑡 )   =       −  1 
 2 

 𝑗 = 1 

 𝐿 

∑
 𝐺 

 𝑗 
 2 

 𝐻 
 𝑗 
+λ + γ 𝐿  (41) 

 where  and  while  which  is  the  set  of  indices  of  data  points  assigned  𝐺 
 𝑗 

=
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 𝑖 
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 𝑖 
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 to  the  j-th  leaf.  Given  the  objective  function,  we  can  learn  trees,  however,  enumerating  all  possible  trees  is 
 computationally  infeasible.  Thus  instead  of  evaluating  all  possible  trees,  we  can  build  trees  in  a  stepwise 
 fashion,  and  optimize  one  level  of  the  tree  at  a  time.  Specifically,  we  split  a  leaf  into  two  leaves  and  calculate  it's 
 Gain, defined as 

 𝐺𝑎𝑖𝑛 =  1 
 2 [

 𝐺 
 𝐿 

 2 

 𝐻 
 𝐿 
+λ +

 𝐺 
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 2 
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 𝑅 

+λ −
( 𝐺 

 𝐿 
+ 𝐺 

 𝑅 
) 2 

 𝐻 
 𝐿 
+ 𝐻 

 𝑅 
+λ ] − γ  (42) 

 where  subscripts  and  index  the  left  and  right  leaves,  respectively.  This  basically  represents  the  score  on  the  𝐿  𝑅 
 new  left  leaf,  the  score  on  the  new  right  leaf,  the  score  on  the  original  leaf,  and  the  regularization  on  the 
 additional leaf. 

 Extreme  Gradient  boosting  trees  are  very  powerful,  able  to  compete  with  neural  networks,  fast,  scalable  as  well 
 as  flexible,  and  applicable  to  regression  and  (multi-class)  classification  tasks  (217,  285,  286)  .  However,  they  are 
 also  subject  to  overfitting  very  easily  but  have  many  hyperparameters  to  adjust  their  behavior  and  overcome  this 
 issue.  For  instance,  to  avoid  overfitting,  in  each  tree,  the  difference  between  the  tree  gain  (after  adding  a  split 
 node)  and  a  predefined  hyperparameter  gamma  can  be  calculated  and  if  the  difference  is  negative  the  branch  can 
 be  removed.  A  root  node  will  never  be  removed  if  its  branches  are  not  removed.  Other  key  determinants  of 
 overfitting  are  the  tree  depth,  the  minimum  number  of  observations  in  terminal  leaf  nodes,  or  the  number  of 
 successive trees to be grown. 

 In  our  first  project  about  the  transcriptional  pausing  of  the  Polymerase  II  we  have  harnessed  the  predictive 
 power  of  XGB  models  to  predict  the  degree  to  which  a  gene  is  paused  based  on  features  extracted  from 
 large-scale  genomic  data  sets  (  Section  3.1.10.  Model  Training  ).  With  this  section,  we  want  to  conclude  the 
 algorithmic  introduction  of  supervised  machine  learning  models  used  in  our  research  projects  and  proceed  to 
 briefly  cover  basic  concepts  to  consider  when  building  supervised  machine  learning  models  in  general.  We  will 
 start off by discussing the process of interpreting a model and its predictors, called feature interpretation. 
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 2.3.3. Feature Scoring 
 A  key  step  after  having  built  a  machine  learning  model  of  any  type  is  to  investigate  the  contributions  (feature 
 importances)  of  predictors  (features)  to  the  model  predictions.  This  process  is  called  feature  interpretation  (287) 
 since  we  are  trying  to  understand  and  interpret  the  features  the  model  has  chosen  to  make  its  predictions.  Feature 
 importances  measure  the  degree  to  which  a  model  relies  on  a  particular  feature  to  make  its  predictions.  The 
 general  idea  is  that  the  more  a  model’s  prediction  performance  depends  on  a  specific  feature,  the  more 
 predictions  will  change  as  a  function  of  perturbing  that  feature.  Depending  on  the  model  type,  the  feature 
 interpretation approach will vary substantially. 

 The  best  way  to  interpret  a  model  is  to  use  models  which  are  interpretable  out  of  the  box  (in  contrast  to 
 black-box  models)  like,  for  instance,  linear  or  logistic  regression  models,  simple  tree-based  models,  or  Naive 
 Bayes,  just  to  name  a  few.  For  example,  in  simple  linear  regression,  we  investigate  the  beta  coefficients  of  the 
 features  to  assess  their  direction  of  effect  and  effect  sizes  or  the  odds  ratios  of  features  in  logistic  regression 
 models.  In  a  random  forest  model,  there  are  no  beta  coefficients,  and  we  can  use  the  Gini  Impurity  score  for  all 
 of  the  nodes  that  were  split  on  a  specific  variable  to  assess  the  variable’s  split  performance  and  thereby  its 
 predictive  power.  Simple  models  that  are  interpretable  out  of  the  box  are  often  preferred  over  complex  ones  for 
 their  ease  of  interpretation  despite  lower  accuracy.  However,  the  growing  availability  of  big  data  increasingly 
 requires  complex  models.  This,  in  turn,  necessitates  a  trade-off  between  accuracy  and  interpretability  of  a 
 model’s  output  or  elaborate  feature  interpretation  methods.  A  pproaches  exist  like  building  surrogate  models  in 
 which  interpretable  models  are  trained  on  the  same  data  as  the  complex  black  box  model  but  trained  to  predict 
 the  predictions  of  the  black-box  model.  This  essentially  provides  an  interpretable  model  that  can  explain  the 
 predictions  of  a  more  complex  model.  Analogous  to  this  idea,  local  surrogate  models  can  be  trained  as  well.  For 
 instance,  Local  Interpretable  Model-agnostic  Explanations  (LIME)  (288)  builds  local  surrogate  models  to 
 explain  why  single  predictions  were  made  in  contrast  to  a  global  surrogate  model  in  which  a  collective  set  of 
 predictions are explained. 

 A  relatively  new  framework  for  interpreting  model  predictions  used  in  our  first  project  with  tree-based  models  is 
 SHapley  Additive  exPlanations  (SHAP)  (289)  .  In  contrast  to  other  approaches  like  LIME,  SHAP  has  been 
 justified  as  the  only  consistent  additive  feature  attribution  approach  with  several  unique  properties  which  agree 
 with  human  intuition.  It  is  based  on  game  theory  and  combines  ideas  from  several  established  methods,  and  can 
 explain  the  output  of  any  machine  learning  model.  SHAP  transfers  game-theoretic  concepts  to  machine  learning 
 and  asks  the  following  question:  Let  M  be  a  set  of  arbitrary  entities,  C  the  coalition  (the  set)  of  all  entities  with 

 and  a  (coalition)  value  V  cooperatively  produced  by  these  members  ,  then,  how  much  does  𝑚 ∈     𝑀  𝑚    ∈     𝐶 
 each  individual  member  of  the  coalition  C,  that  collaboratively  produces  a  value  V,  contribute  to  that  final  𝑚 
 value  V?  In  the  context  of  machine  learning  this  translates  to  asking  how  much  each  feature  value  of  each 
 individual  sample  contributed  to  the  prediction  V  of  the  sample  target  value  compared  to  the  average  of  the 
 target.  For  instance,  suppose  we  have  trained  a  machine  learning  model  that  predicts  gene  expressions  based  on 
 three  gene  sequence  composition  features,  the  gene  length,  the  number  of  exons,  and  the  number  of  transcription 
 start  sites  for  a  gene.  For  a  gene  of  interest  with  the  following  feature  values,  gene  length  =  1000,  number  of 
 exons  =  5,  and  number  of  transcription  start  sites  =  2.  Given  a  gene  expression  level  of  10  FPKM,  the  question 
 is,  how  much  does  each  of  these  feature  values  of  gene  x  contribute  to  the  final  prediction  of  the  expression 
 level of 10 FPKM of gene x, compared to the average expression level that we observe across all genes? 

 The  most  naive  solution  is  to  attribute  a  value  of  to  each  member  in  C,  assuming  equal  contributions  of  each  1 
 |  𝐶  | 

 individual  member  (feature  value).  However,  in  the  case  of  coalition  member  interactions  (feature  interactions), 
 this  does  not  lead  to  fair  attributions,  as  certain  coalition  permutations  can  cause  coalition  members  to  contribute 
 more  than  the  sum  of  their  parts.  The  so-called  Shapley  value  can  be  computed  for  each  coalition  member  to 
 overcome  this  limitation.  It  quantifies  the  marginal  contribution  of  a  member  over  all  possible  permutations  of 
 the  coalition,  i.e.,  all  possible  (membership)  subsets  of  the  coalition  C.  This  can  be  accomplished  by 
 enumerating  all  possible  coalitions  (a  subset  of  feature  values  for  a  specific  sample)  with  and  without  a  specific 
 member  (feature  value)  and  calculating  the  difference  in  the  produced  value  V  (target  prediction  for  the  sample) 
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 between  these  sets,  i.e.,  a  coalition  containing  a  member  against  a  coalition  that  does  not  contain  that  specific 
 member.  This  yields  the  marginal  contribution  of  that  specific  member  in  that  specific  coalition  where  it  was 
 contained.  The  overall  marginal  contribution  of  that  specific  member  can  be  obtained  by  averaging  all  the 
 differences  we  get  by  comparing  all  coalitions  with  and  without  that  specific  member.  This  is  repeated  for  each 
 coalition  member  to  arrive  at  a  vector  of  SHAP  values,  representing  all  marginal  contributions  of  all  members 
 over all possible permutations of coalitions. This can be formulated as 

ϕ
 𝑖 
   =     1 

 𝑛    
∀ 𝑆    ⊆    𝐶     \    { 𝑖 }   

 𝑁 

∑  𝑛 − 1 
 |  𝑆  | ( )− 1    ( 𝑣 ( 𝑆 ∪ { 𝑖 })   −     𝑣 ( 𝑆 )),  (43) 

 where  is  the  SHAP  value  for  member  (a  feature  value),  the  total  number  of  members,  N  the  total  number ϕ
 𝑖 
    𝑖  𝑛 

 of  possible  subsets  ,  a  function  that  maps  a  set  of  members  (binary  indicator  vector  where  1  𝑆    ⊆     𝐶     \    { 𝑖 }  𝑣 ( 𝑥 )
 denotes  ‘present’  and  0  denotes  ‘missing’)  to  their  respective  cumulative  contribution  V  to  the  target  prediction 
 which  in  turn  is  weighted  by  the  number  of  possible  coalitions  of  size  |  to  adjust  for  differential  coalition  𝑆  |     \    { 𝑖 }
 contributions  due  to  differential  coalition  sizes.  The  formula  can  be  interpreted  as  the  mean  marginal 
 contribution  of  member  to  each  possible  coalitions  excluding  member  ,  weighted  by  the  individual  coalition  𝑖  𝑆  𝑖 
 sizes  and  normalized  by  the  total  number  of  members.  These  Shapley  values  enable  the  calculation  of  the  total 
 contributions  of  specific  coalition  sets.  Let  be  a  binary  indicator  vector  that  specifies  the  members  (features  𝑠  ' 
 values) to be considered. The total value of that coalition is given by 

 𝑔 ( 𝑠  ' )   =    ϕ
 𝑜    

 𝑖 = 1 

 |  𝑠  '| 

∑    ϕ
 𝑖 
 𝑠  ' 

 𝑖  (44) 

 However,  calculating  the  SHAP  values  for  all  possible  coalitions  by  reevaluating  the  model  is  NP-hard  since  the 
 permutation  space  increases  exponentially  such  that  this  approach  becomes  computationally  infeasible  with 
 large  data  sets  with  hundreds  of  thousands  of  features.  Therefore,  the  authors  propose  Kernel  SHAP  as  an 
 approximation  to  the  calculation  of  the  SHAP  values  (289)  .  The  idea  is  to  pass  samples  with  omitted  features 
 through  the  trained  model  instead  of  retraining  the  model  with  omitted  features.  This  way,  the  model  does  not 
 need  to  be  retrained.  However,  the  trained  model  cannot  make  predictions  on  samples  with  omitted  features  that 
 were  originally  included  in  the  training  phase  of  the  model.  A  solution  to  circumvent  this  problem  is  to  replace 
 the  values  of  the  features  that  will  be  omitted  with  the  mean  of  those  features  over  all  samples,  random  numbers 
 or  sampling  values  from  the  data  at  random  while  fixing  the  original  values  of  features  that  are  not  omitted. 
 These  synthetic  samples  simulate  the  missingness  of  features  and  can  approximate  the  Shapley  values 
 (contributions)  of  features  that  were  omitted  by  simply  taking  the  average  over  all  model  outputs  of  the  synthetic 
 samples.  Through  a  specific  weighting  of  these  model  outputs  of  a  specific  feature  permutation  (synthetic 
 sample)  based  on  the  total  number  of  features  in  the  model,  the  number  of  coalitions  with  the  same  number  of 
 features  as  this  particular  sample,  and  the  number  of  features  included  and  excluded  in  this  sample’s 
 permutation,  it  is  guaranteed  that  the  resulting  value  is  equivalent  to  the  Shapley  value  (see  (289)  for  proof). ϕ

 This can be formulated as the following loss function that needs to be minimized 

 𝐿 ( 𝑓 ,     𝑔 ,    π)   =    
 𝑠    ∈    𝑆 
∑ ( 𝑓 ( ℎ ( 𝑠 )) −     𝑔 ( 𝑠 )) 2 *    π

 𝑠  (45) 

 where  is  a  binary  indicator  vector  specifying  the  features  to  include  in  a  specific  coalition  (feature  subset),  𝑠  𝑓 
 the  machine  learning  model,  a  mapping  function  that  returns  a  vector  of  feature  values  where  features  that  ℎ ( 𝑥 )
 are  not  indicated  by  are  replaced,  for  instance,  by  the  mean  of  these  features,  a  linear  model  containing  the  𝑥  𝑔 
 coefficients (shapley values  ) and finally  the kernel  defined as ϕ

 𝑖 
   π

π
 𝑠 

=  𝑛 − 1 
 𝑛 

 |  𝑠  | ( )  |  𝑠  | * ( 𝑛 −  |  𝑠  | )   
 (46) 

 where  is  the  total  number  of  features,  thereby  essentially  weighting  by  the  total  number  of  features  in  the  𝑛 
 model,  the  number  of  coalitions  with  the  same  number  of  features  as  this  particular  sample  and  the  number  of 
 features  included  and  excluded  in  this  sample’s  permutation.  This  problem  corresponds  to  a  weighted  multiple 
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 linear  regression  problem  and  can  be  solved  in  polynomial  time  complexity,  enabling  the  application  of  Shapley 
 Explanations  to  large-scale  data  sets  with  many  features.  Fitting  the  kernel  weighted  linear  model  across  all  data 
 points then allows to attribute the marginal feature contributions. 

 There  are  other  forms  of  SHAP  like  TreeShap  (286)  for  tree-based  models  or  DeepShap  (290)  for  neural 
 network  architectures  that  make  model-specific  optimizations  to  optimize  the  time  complexity  further.  However, 
 Kernel Shap is universal and can be applied to any machine learning model, as we have done in our tree models. 

 Shapley  values  have  several  desirable  properties.  For  instance,  as  compared  to  LIME  (introduced  at  the 
 beginning  of  the  section),  Shapley  values  fairly  distribute  model  contributions  among  the  feature  values  of  the 
 samples  (called  Efficiency  Property).  Because  SHAP  values  are  additive  and  are  calculated  per  sample  and 
 feature  value  providing  high  prediction  transparency,  they  also  provide  a  full  explanation,  i.e.,  the  sum  of  the 
 Shapley  values  of  a  sample  corresponds  to  the  predicted  target  of  that  sample.  This  is  in  contrast  to  many 
 common  feature  importance  metrics  that  average  the  contributions  of  the  features  over  the  samples,  which 
 reduce  the  interpretability  of  the  models.  With  the  additive  property  of  SHAP,  for  instance,  samples  could  be 
 clustered  by  their  Shapley  values  to  obtain  sets  of  samples  that  are  similarly  influenced  by  the  same  features  and 
 feature  values.  Alternatively,  one  could  cluster  the  features  by  their  Shapley  values  to  obtain  sets  of  features  that 
 contribute similarly. 

 2.3.4. The Bias-Variance Tradeoff 
 The  bias-variance  tradeoff  (291)  refers  to  finding  the  model  parameter  settings  at  which  a  model  generalizes 

 well  beyond  the  training  data.  The  bias  is  the  difference  between  the  expected  value  of  an  estimator  and  the  𝑓       
 true  function  that  we  want  to  estimate.  The  variance  is  the  difference  between  the  expected  value  of  the  𝑓    
 squared  estimator  minus  the  squared  expectation  of  the  estimator.  The  bias  component  quantifies  the  average 
 accuracy  of  the  model  across  different  possible  training  sets,  while  the  variance  component  quantifies  the 
 model's  sensitivity  to  small  changes  in  the  training  set.  Let  be  the  training  data  𝐷    =    {( 𝑥 

 1 
,     𝑦 

 1 
),       .    .    .    ,    ( 𝑥 

 𝑛 
,     𝑦 

 𝑛 
)}

 set  for  the  machine  learning  task,  where  are  the  training  instances  (samples)  and  real  valued  targets  𝑥 
 𝑖 
    𝑦 

 𝑖 
   

 associated  with  each  via  ,  where  is  noise  with  zero  mean  and  variance  .  A  machine  𝑥 
 𝑖 

 𝑦    =     𝑓 ( 𝑥 )   +    ϵ ϵ   σ 2 

 learning  model  then  finds  a  function  that  approximates  the  true  function  by  learning  patterns  𝑓    ( 𝑥 )    𝑓 ( 𝑥 )   
 underlying  the  training  instances  of  the  training  data  by  minimizing  the  loss  function,  defined  as  the ( 𝑥 

 𝑖 
,     𝑦 

 𝑖 
)  𝐷 

 squared  difference  between  predicted  and  actual  outcomes,  i.e.  .  The  expected  value  of  the ( 𝑓 ( 𝑥 )   −     𝑓 ( 𝑥 )) 2 

 loss  function  with  respect  to  unseen  samples  (different  instances  of  training  data  sets  from  the  population)  can 
 be  decomposed  into  its  bias-variance  components  (265)  to  understand  better  and  adjust  the  performance  of  the 

 underlying  learning  algorithm.  For  notational  convenience,  let  and  ,  𝑓    ( 𝑥 )   =  𝑓     𝑦    =     𝑓 ( 𝑥 )   +    ϵ   =     𝑓 + ϵ   
 then the bias-variance decomposition for the squared error loss is as follows: 

 𝐸 [( 𝑦    −     𝑓 ) 2 ] =    ( 𝑓 −  𝐸 [ 𝑓 ]) 2 +     𝑉𝑎𝑟    [ϵ]   +     𝑉𝑎𝑟 [ 𝑓 ]    (47) 

=     𝐵𝑖𝑎𝑠 [ 𝑓 ] 2    +    σ 2 +     𝑉𝑎𝑟 [ 𝑓 ]  (48) 

 This  shows  that  the  squared  error  loss  is  composed  of  three  main  components,  the  bias,  the  variance,  and  the 
 noise.  The  error  term  (noise)  is  intrinsic  to  the  measurements  and  thus  irreducible.  Similar  to  the  𝑦 

 𝑖 ,,

 bias-variance  decomposition  of  the  squared  error  loss  of  regression  models,  the  0/1  loss  of  classification  models 
 can be decomposed into its bias-variance components  (292)  as well. 
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 The  bias  and  variance  components  allow  us  to  assess  the  generalizability  of  a  model,  i.e.,  whether  it  is 
 overfitting  or  underfitting.  Overfitting  refers  to  the  phenomenon  where  a  model  has,  in  addition  to  real  and 
 general  relationships  and  patterns  in  the  data,  learned  the  noise  in  the  data  (  high  variance).  Underfitting  is  the 
 opposite  case,  where  a  model  learns  too  little,  i.e.,  it  has  not  learned  any  useful  pattern  underlying  the  data  that 
 could  be  used  to  explain  new  unseen  data  (high  bias).  For  instance,  a  fully  grown  (maximal  tree  depth)  decision 
 tree  in  which  the  model  has  learned  each  individual  sample  instead  of  the  patterns  underlying  the  samples  is  said 
 to  have  high  variance  because  it  can  make  accurate  predictions  across  all  samples  in  the  training  data  set. 
 However,  it  is  highly  biased  towards  the  training  dataset  and  may  not  generalize  well  to  new  unseen  data 
 instances.  Thus,  the  model  has  to  be  trained  so  that  it  generalizes  well  to  unseen  data  by  properly  balancing  the 
 model's  bias  and  variance  components.  For  instance,  simplifying  a  model  by  training  on  a  reduced  feature  set 
 obtained,  for  example,  through  feature  selection  procedures,  can  decrease  the  variance  of  the  model. 
 Analogously,  adding  features  introduces  variance  but  decreases  the  bias.  Alternatively,  increasing  the  number  of 
 training  instances  can  decrease  variance.  In  general,  adjusting  the  bias-variance  tradeoff  can  be  achieved  in 
 terms  of  how  the  model  is  trained  with  respect  to  the  data  (see  the  following  section)  and  the  model  parameter 
 settings (see  Section 2.3.6. Hyperparameter Tuning  ). 

 2.3.5. Cross Validation 
 To  increase  the  confidence  of  trained  models  and  the  patterns  learned  from  the  data,  any  machine  learning  model 
 should  be  tested  (validated)  on  how  they  perform  on  independent  data  they  never  were  exposed  to.  For  model 
 validation,  some  portion  of  the  original  full  data  is  usually  set  aside  (hold-out  test  data  set),  then  a  model  is 
 trained  on  the  other  part  and  subsequently  validated  on  the  hold-out  test  data  set.  However,  there  is  still  some 
 uncertainty  about  the  hold-out  test  data  set,  e.g.,  one  could  have  randomly  chosen  the  samples  that  are  easier  to 
 predict  simply  by  chance.  Thereby  the  model  would  perform  quite  well  on  this  hold-out  set,  yet  if  confronted 
 with  another  data  set,  it  might  perform  much  worse.  The  idea  of  cross-validation  (293)  mitigates  this  problem  by 
 introducing  a  series  of  hold-out  data  sets,  called  folds,  to  validate  on  (called  k-fold-cross-validation).  Let  be  𝑘 
 the number of folds, then the procedure for  -cross-validation  is as follow:  𝑘 

 1.  Split the original data into k equal parts 
 2.  Set one part (  ) of the original full data set  aside, called the holdout test dataset or fold  1/  𝑘 
 3.  Train a model on the remaining part of the original dataset, called the training set 
 4.  Measure  the  performance  of  the  model  on  the  holdout  test  data  set  and  keep  track  of  model 

 performance metrics 
 5.  Replace  the  holdout  test  dataset  and  set  aside  another  holdout  test  dataset  that  does  not  contain  1/  𝑘  1/  𝑘 

 any datapoint from the previous holdout test datasets 
 6.  Repeat steps 2-4 either  times or until every sample  has been used in a holdout data portion  𝑘 
 7.  Finally average the model performances over all holdout-data sets 

 Because  the  optimal  value  for  is  unknown,  it  can  be  included  in  the  hyperparameter  estimation  procedure  𝑘 
 (discussed  in  the  next  section).  However,  tuning  the  fold  parameter  (  )  is  computationally  expensive.  Thus,  𝑘 
 usually  5-  or  10-fold  cross-validation  is  performed,  in  which  either  20%  or  10%  of  the  original  full  data  is  used 
 to test the model. 

 2.3.6. Hyperparameter Tuning 
 Many  machine  learning  models  have  an  array  of  parameters  to  be  set  that  are  not  learned  during  the  model's 
 training  (hyperparameters)  and  instead  have  to  be  inferred  by  evaluating  the  models  with  different  parameter 
 settings.  Finding  the  optimal  parameters  is  called  hyperparameter  tuning  or  optimization  (294)  . 
 Hyperparameters  control  the  model's  behavior  and  allow  the  investigator  to  balance  the  bias-variance  tradeoff 
 (review  Section  2.3.4.  The  Bias-Variance  Tradeoff  ).  However,  the  exact  values  to  be  used  are  not  known.  The 
 idea  is  simple,  for  a  set  of  different  hyperparameter  combinations,  one  takes  the  one  that  performs  the  best  on 
 the  data.  Instead  of  taking  the  hyperparameter  combination  that  performs  best  on  the  full  data  set,  one  takes  the 
 parameter  combination  in  which  the  model  yields  the  lowest  overall  error  as  computed  by  averaging  the  errors 
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 from  each  cross-validation  fold  (review  Section  2.3.5.  Cross  Validation  ).  The  model  is  cross-validated  multiple 
 times  with  different  hyperparameter  settings,  and  the  settings  that  yield  the  best  overall  cross-validation  runs  are 
 retained to obtain globally optimal hyperparameters. 

 However,  although  the  model  is  evaluated  on  holdout  test  data  sets  (the  k  folds),  its  hyperparameters  are 
 adjusted  according  to  the  fold  performances,  i.e.  the  hyperparameters  might  fit  the  k  folds  better  than  a 
 completely  unseen  dataset  that  was  not  even  included  during  the  k-fold-cross-validation  simply  because  it’s 
 parameters  were  tuned  according  to  the  distribution  the  k  folds.  Hence  it  is  advisable  to  either  set  aside  yet 
 another  test  data  set  before  conducting  hyperparameter  tuning  with  k-fold  cross-validation  or  just  perform  k-fold 
 cross  validation  but  validate  the  final  model  with  the  best  k-fold  cross-validation  hyperparameter  settings  on  a 
 completely  independent  dataset  from  another  source  not  used  during  cross-validation.  Usually,  the  latter  is 
 unavailable,  so  one  could,  for  instance,  set  aside  of  the  original  data  set,  perform  hyperparameter  tuning  30% 
 with  k-fold  cross-validation  on  the  remaining  data  set,  and  validate  the  model  with  the  best  parameters  on  the 

 holdout  test  data  set.  This  ensures  an  unbiased  estimate  of  the  model  performance  on  the  unseen  data  set  as  30% 
 well as its parameters. 

 2.3.7. Regularization 
 Regularization  (295)  during  model  training  is  an  additional  means  to  adjust  the  bias-variance  tradeoff.  It  allows 
 us  to  avoid  overfitting,  obtain  sparse  models  to  alleviate  model  interpretation,  and  to  overcome  multicollinearity 
 of  input  features  (independent  variables).  Multicollinearity  describes  the  situation  in  which  one  or  more 
 independent  variables  can  be  expressed  as  a  linear  combination  of  other  independent  variables  leading  to  a  large 
 variance  of  estimated  coefficients  and  non-interpretable  models  .  Non-linear  models  like  tree  models  are  not 
 sensitive  to  multicollinearity  but  still  suffer  from  overfitting  or  large  feature  spaces  such  that  regularization  can 
 be a powerful tool to overcome these problems. 

 Regularization  works  by  adding  a  penalty  term  to  the  cost  function  of  a  machine  learning  model.  Therefore, 
 depending  on  the  model  and  thus  the  cost  function  used,  the  regularization  procedure  changes  accordingly.  The 
 most  common  regularization  techniques  (295)  for  linear  models  are  L1  regularization,  L2  regularization,  and  the 
 combination  of  both  L1  and  L2  regularization  (296)  ,  referred  to  as  lasso  regression,  ridge  regression  and  elastic 
 net  regularized  regression,  respectively.  Ridge  regression  penalizes  the  sum  of  squared  coefficients  and  shrinks 
 the  coefficients  (reducing  bias).  In  contrast,  lasso  regression  enforces  the  sum  of  the  absolute  coefficients  to  be 
 less  than  a  constant  value,  forcing  some  of  the  coefficients  to  be  zero  (reducing  variance).  Lasso  is  suitable  when 
 there  are  small  numbers  of  significant  coefficients  with  others  close  to  zero,  i.e.,  when  only  a  small  subset  of 
 coefficients  influences  the  response.  Hence,  lasso  regularization  leads  to  sparse  significant  coefficients 
 alleviating  feature  selection  and  interpretation.  On  the  other  hand,  ridge  regularization  is  suitable  when  there  are 
 many  coefficients,  especially  correlated  predictors,  with  about  the  same  effect  size,  i.e.,  when  most  predictors 
 influence  the  response.  However,  an  elastic  net  provides  the  benefits  of  both  L1  and  L2  regularization, 
 essentially  performing  feature  elimination  from  Lasso  and  feature  coefficient  reduction  via  Ridge  to  improve 
 model predictions. 
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 3.  Predictive  model  of  transcriptional  elongation  control  identifies 
 trans-regulatory factors from chromatin signatures 
 This  chapter  covers  our  first  project  that  is  concerned  with  the  identification  of  novel  trans-regulatory  factors 
 modulating  the  promoter-proximal  pausing  of  the  Polymerase  II  during  the  transcription  of  mammalian 
 protein-coding  genes  (review  Section  1.1.  Thesis  Aims  and  Section  1.3.  Gene  Transcription  &  Regulation  ).  The 
 contents  are  entirely  based  on  my  manuscript  currently  (May  2022)  under  review  in  Nucleic  Acid  Research  and 
 also  available  on  bioRxiv:  Akcan  and  Heinig.  ‘Predictive  Model  of  Transcriptional  Elongation  Control  Identifies 
 Trans-Regulatory  Factors  from  Chromatin  Signatures,  Toray  Akcan,  Matthias  Heinig’  BioRxiv  (2022).  The 
 referenced  supplementary  tables  are  not  included  in  this  dissertation  and  can  be  found  in  the  supplementary 
 materials section of the publication. 

 To  briefly  recap  our  aims,  the  cell  continuously  adapts  to  changing  environmental  conditions  to  sustain  cell 
 homeostasis  for  proper  cell  functioning  (1,  2).  It  achieves  this  through  the  modulation  of  the  transcription  of 
 genes  dependent  on  internal  and  external  stimuli.  At  first,  the  polymerase  synthesizes  a  short  nascent  RNA 
 fragment  once  the  pre-initiation  complex  (PIC)  assembles  at  the  promoter  site.  This  is  followed  by  the  pausing 
 of  the  polymerase  and  requires  other  regulatory  signals  for  it  to  either  enter  productive  elongation  or  terminate 
 transcription  prematurely  (6).  This  represents  a  rate-limiting  and  regulatory  step  that  renders  gene  transcription  a 
 discontinuous  process  (297)  .  The  limitation  on  the  transcriptional  throughput  per  unit  of  time  represents  a 
 critical  early  regulatory  step  in  the  maturation  of  full-length  transcripts  (7,  8).  Hence,  understanding  this 
 regulatory  layer  is  indispensable  for  a  holistic  understanding  of  protein  biogenesis.  Transcriptional  pause 
 regulatory  factors  entail  cis-  and  trans-acting  factors,  either  promoting  transcriptional  pause  or  elongation  states 
 (16).  However,  we  still  lack  quantitative  descriptions  of  the  relative  importance  of  associated  factors  and 
 processes.  Likewise,  we  lack  systematic  approaches  to  identify  previously  unknown  regulators  of  pausing  and 
 elucidate  their  roles  in  other  RNA  regulatory  processes.  Hence,  we  aimed  to  reduce  these  gaps  by  identifying 
 novel  cis-  and  especially  trans-regulatory  factors  and  elucidating  their  functional  backgrounds  and  relative 
 importance. 

 This  project  is  based  on  integrating  large-scale  genomic  data  sets  for  feature  engineering  purposes  as  inputs  for  a 
 machine  learning  task  to  learn  genomic  features  to  distinguish  between  the  Polymerase  II  transcriptional  pause 
 and elongation states (Fig. 3.1). 

 Figure 3.1  :  High-level overview of the transcriptional  pausing workflow pipeline. 

 For  this  purpose,  we  captured  the  genomic  and  transcriptomic  context  of  gene  transcription  by  integrating 
 large-scale  data  sets  of  CHIP-seq  and  eCLIP-seq  experiments  from  ENCODE,  providing  elaborate  protein 
 binding  maps  that  enable  the  investigation  of  genomic  binding  events  with  the  potential  to  reveal  novel 
 trans-regulatory  factors.  On  the  other  hand,  the  extraction  of  DNA  sequence  features  from  gene  annotations 
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 from  GENCODE  served  to  identify  potential  novel  intrinsic  cis-regulatory  elements  of  pausing.  The  integration 
 of  GRO-seq  data  enabled  us  to  capture  the  productivity  of  the  polymerase  and  contrast  states  of 
 promoter-proximal  pausing  and  transcriptional  elongation.  By  harnessing  the  power  of  predictive  models  by 
 integrating  the  transcriptional  context  in  the  form  of  machine  learning  features  into  an  Extreme  Gradient 
 Boosting  Tree  regression  model  to  learn  this  contrast,  we  demonstrated  the  predictive  value  of  obtained  features 
 and  underlying  cis-  and  trans-acting  regulatory  elements.  The  investigation  of  the  underlying  model  structure  in 
 terms  of  feature  contributions  then  allowed  us  to  discern  factors  with  high  model  impacts  and  propose  novel 
 regulators  of  transcriptional  pausing.  The  integration  of  prior  knowledge  about  molecular  functions  of 
 incorporated  factors  further  enabled  us  to  confirm  the  strong  interconnection  of  the  transcriptional  pause 
 mechanism  with  other  RNA  regulatory  processes,  especially  splicing.  In  addition,  the  identification  of 
 previously  unknown  7SK  ncRNA  interacting  RNA-binding  proteins  and  demonstrated  predictive  values  in 
 obtained  models  of  pausing  further  strengthened  the  role  of  the  7SK  pause  mediator  complex  in  the 
 transcriptional pause mechanism. 

 In  the  following  section,  we  will  first  provide  the  methodological  background  of  described  analyses  (  Section 
 3.1.  Materials  &  Methods  )  and  then  focus  on  the  results  in  more  detail  (  Section  3.2.  Results  )  and  conclude  the 
 chapter with a discussion on the obtained results (  Section 3.3. Discussion  ). 

 3.1. Materials & Methods 

 This  project  heavily  draws  upon  publicly  available  datasets  provided  by  the  Encyclopedia  of  DNA  Elements 
 (ENCODE)  Consortium  (298,  299)  and  the  GENCODE  (300)  project,  generating  large-scale  genomic  data  sets 
 or annotations based on biochemical protocols. 

 The  ENCODE  Consortium  is  an  international  collaborative  effort  to  build  a  comprehensive  list  of  functional 
 elements  in  the  human  genome.  ENCODE  employs  a  broad  array  of  different  kinds  of  assays  and  methods  to 
 identify  such  functional  elements.  This  is  accomplished  by  sequencing  a  diverse  range  of  RNA  sources  by 
 developing  bioinformatics  methods  and  human  curation.  ENCODE  applies  high-quality  standards,  both  when 
 generating  data  and  processing  data.  Invaluable  data  resources  are  provided,  ranging  from  3D  chromatin 
 structure  to  chromatin  accessibility,  chromatin  interactions  and  methylation,  RNA  quantifications,  and 
 transcription  factor  bindings.  More  importantly,  these  data  sets  are  generated  for  a  broad  range  of  diverse  cell 
 types,  enabling  us  to  investigate  inter-cell  type  differences.  We  made  use  of  resources  from  ENCODE  of 
 large-scale  transcription  factor  binding  maps  and  RNA  quantifications  for  two  different  cell  lines  to  build 
 features for predictive models applied in this first project about transcriptional pausing. 

 The  GENCODE  project  (300)  was  formed  as  part  of  the  pilot  phase  of  the  ENCODE  project  to  identify  all 
 protein-coding  genes  within  the  ENCODE  regions  and  aim  to  build  an  encyclopedia  of  genes  and  gene  variants 
 including  protein-coding  and  non-coding  genes,  pseudogenes,  small  and  long  non-coding  RNA  genes,  and  many 
 others.  Its  current  release  (Release  36,  December  2020)  includes  60660  genes  and  232117  transcripts.  This 
 release  also  utilizes  the  latest  GRCh38  human  reference  genome  assembly.  GENCODE  provides  an  invaluable 
 resource  for  investigating  gene  and  gene  variants  on  a  sequence  and  expression  levels.  We  used  the  GENCODE 
 gene  annotation  data  sets  to  obtain  annotations  of  protein-coding  and  non-coding  genes  for  downstream  analyses 
 in our projects. 

 As  invaluable  resources  for  computational  biologists,  we  harnessed  multiple  data  sets  from  both  sources  in  our 
 project, as introduced in the following subsections. 

 3.1.1. Integration of Transcript Annotations (GENCODE) 
 For  feature  engineering  purposes  as  predictors  in  our  machine  learning  models,  we  crafted  gene-centric  features 
 of  protein  binding  events  and  annotations  for  protein-coding  and  non-coding  genes  with  gene  annotations 
 obtained  from  the  GENCODE  (300)  database  for  the  hg19  (GrCH37)  genome  build.  To  increase  the  confidence 
 of  obtained  transcripts  (N=81745  transcripts  of  20167  genes),  only  those  which  were  also  supported  by  RefSeq 
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 (301)  annotations  were  considered  (N=30186  of  18889  genes).  To  capture  interpretable  binding  sites  derived 
 from  CHIP-seq  and  eCLIP-seq  datasets  (  Sections  3.1.5.  Integration  of  Genomic  Transcription  Factor  Binding 
 Sites  (CHIP-seq)  &  3.1.6.  Integration  of  Transcriptomic  Transcription  Factor  Binding  Sites  (eCLIP-seq)  )  we 
 obtained  5-prime,  intronic,  coding  exonic,  and  3-prime  genomic  regions  for  each  of  those  transcripts.  The 
 transcripts  were  further  annotated  with  their  respective  gene  symbols  from  HUGO  gene  nomenclatures  (HGNC) 
 (302)  from GENCODE. 

 A  set  of  non-coding  transcripts  annotated  as  one  of  miscRNA  ,  miRNA  ,  snoRNA  ,  snRNA  and  lincRNA 
 representing  miscellaneous,  micro,  small  nucleolar,  small  nuclear  and  long  intervening  RNA  biotypes, 
 respectively,  was  obtained  through  the  appropriate  filtering  of  the  GENCODE  annotation  set.  Analogous  to  the 
 protein-coding  transcripts,  the  non-coding  transcripts  and  their  5-prime,  intronic,  exonic,  and  3-prime  genomic 
 regions  served  to  capture  interpretable  binding  sites  derived  from  CHIP-seq  and  eCLIP-seq  datasets.  In  addition, 
 the  non-coding  transcripts  were  used  in  downstream  analyses  in  the  context  of  the  7SK  non-coding  RNA  (see 
 7SK non-coding RNA  ). 

 3.1.2. Integration of Transcript Quantifications (RNA-seq) 

 To  only  consider  expressed  transcripts,  pre-processed  transcript  quantifications  from  total  RNA-seq  (review 
 Section  2.1.2.  RNA-Sequencing  )  experiments  with  two  replicates  each  were  obtained  from  the  ENCODE 
 project  (303,  304)  for  the  K562  and  HepG2  cell  lines  for  the  hg19  (GrCH37)  genome  build.  The  transcript 
 expressions  were  filtered  for  valid  ENSEMBLE  (305)  IDs,  annotations  in  the  aforementioned  GENCODE  and 
 RefSeq  transcript  annotation  set,  and  to  be  expressed  (fragments  per  kilobase  million  (FPKM)  >  0)  in  both  of  the 
 replicates.  The  FPKMs  were  log10-transformed.  These  filtering  steps  lead  to  the  consideration  of  16403  (K562) 
 and  16670  (HepG2)  protein-coding  and  2655  and  1950  non-coding  transcripts  for  the  K562  and  HepG2  cell 
 lines, respectively. 

 3.1.3. Integration of Transcription Start Site Annotations (CAGE) 

 We  further  integrated  Cap-analysis  Gene  Expression  Data  (CAGE)  (306)  (review  Section  2.1.3.  Cap  Analysis 
 Gene  Expression  (CAGE)  )  transcription  start  sites  (TSS)  to  increase  the  confidence  of  previously  captured 
 transcripts.  The  read  counts  of  the  most  correlating  replicates  were  aggregated  per  cell  fraction  and  normalized 
 to  transcripts  per  million  reads  (TPMs).  The  resulting  TSS  were  then  aggregated  to  CAGE  transcription  start  site 
 clusters  (CTSS  cluster)  with  a  parametric  clustering  (307)  approach  with  a  minimum  TPM  threshold  of  0.1  per 
 cluster  while  excluding  singletons  with  TPM  less  than  0.1.  Previously  captured  transcripts  were  further  filtered, 
 retaining  only  transcripts  whose  transcription  start  site  was  also  the  dominant  CAGE  transcription  start  site 
 (CTSS)  in  a  cell-type-specific  CTSS  cluster.  This  led  to  considering  16194  and  16412  protein-coding  transcripts 
 in the K562 and HepG2 cell lines, respectively. 

 3.1.4. Quantification of Promoter-Proximal Pol II Pausing (GRO-seq) 
 To  enable  the  quantification  of  transcriptional  pausing  at  protein-coding  genes  we  integrated 
 Global-Run-On-sequencing  (GRO-seq)  (308)  (review  Section  2.1.4.  Global-Run-On-Sequencing  (GRO-seq)  ). 
 GRO-seq  allows  assessing  Pol  II  productivity  based  on  the  nascent  RNA  fragment  output  during  the 
 transcriptional  cycle.  The  commonly  used  pausing  index  (PI),  also  known  as  the  traveling  ratio  (102,  309)  ), 
 which  is  the  log2  ratio  of  GRO-seq  read  signals  at  the  transcription  start  site  (TSS)  to  the  GRO-seq  read  signals 
 in  the  gene  body,  was  used  as  a  measure  of  pausing.  By  maximizing  the  inverse  correlation  of  the  PI  (Fig.  3.2) 
 with  the  corresponding  transcript  expressions  (Pearson’s  ⍴=-0.68  (K562)  and  ⍴=-0.66  (HepG2))  with  varying 
 TSS window sizes, we were able to improve upon the definition of the PI. 
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 Figure 3.2:  Association of the transcriptional pausing  index with transcript expression levels.  Pausing  indices 
 (x-axis) are inversely correlated with transcript expression levels (FPKMs, y-axis) in the K562 (A) and HepG2 (B) cell 
 line. Pearson’s correlation coefficient rho (⍴) with the associated p-value is depicted in the upper left. 

 This  approach  is  motivated  by  the  fact  that  high  PIs,  representative  of  transcriptional  pausing,  should  result  in 
 low  gene  expression  profiles  and  vice  versa.  This  approach  led  to  a  sharp  TSS  window  size  of  3bp  ranging  1bp 
 up-and  downstream  of  the  TSS,  rendering  the  remainder  of  the  transcripts  as  the  gene  body  windows.  Read 
 lengths  of  30bp  (K562,  GSM1480325  )  and  at  least  25bp  (HepG2,  GSM2428726  )  ensure  that  the  most  frequent 
 Pol  II  pause  site  and  associated  components  (310)  are  covered  by  this  approach.  The  GRO-seq  read  counts 
 within  the  windows  were  then  normalized  by  the  respective  window  size  and  a  pseudo  count  of  1  read  was 
 added  to  each  resulting  window  to  enable  the  log2  transformation  when  building  the  ratio.  For  each  of  the  16194 
 (K562)  and  16412  (HepG2)  expressed  protein-coding  transcripts  we  calculated  the  PI  in  a  strand-specific 
 manner.  Transcripts  that  only  contained  the  DNA  base  letters  (A,T,C,G)  along  the  whole  transcript  were 
 considered,  which  further  led  to  the  exclusion  of  16  and  9  protein-coding  transcripts  in  the  K562  and  HepG2  cell 
 lines,  respectively.  This  filtering  was  necessary  to  ensure  that  we  exclude  erroneously  mapped  reads  to  capture 
 the  full  GRO-seq  read  signals  along  with  the  remaining  transcripts  and  enable  comparable  signal  counts. 
 Because  GRO-seq  signals  can  not  be  uniquely  ascribed  with  overlapping  transcripts,  resulting  in  convoluted  PI 
 signals,  we  only  considered  non-overlapping  transcripts  and  thus  were  left  with  8555  and  8456  protein-coding 
 transcripts in the K562 and HepG2 cell line, respectively (Fig. 3.3). 
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 Figure  3.3:  Distribution  of  pausing  indices.  Histograms  of  the  distribution  of  pausing  indices  (PIs)  in  the  K562  (A)  and 
 HepG2 (B) cell line. Dashed lines indicate the mean pausing indices, the x-axes the PIs and the y-axes the PI counts. 

 3.1.5. Integration of Genomic Transcription Factor Binding Sites (CHIP-seq) 
 Gene-centric  genomic  protein  binding  events  identified  by  chromatin  immunoprecipitation  sequencing 
 (CHIP-seq)  (311)  (review  Section  2.1.5.  Chromatin  Immunoprecipitation-Sequencing  (CHIP-seq)  )  data  served 
 to  engineer  features  of  as  inputs  for  the  machine  learning  models.  Binding  sites  for  DNA  binding  proteins 
 (DBPs)  were  obtained  from  the  ENCODE  project  from  all  available  CHIP-seq  experiments  for  the  K562  and 
 HepG2  cell  lines  for  the  hg19  (GrCH37)  genome  build.  Available  peak-called  data  sets  (bed-files)  were 
 harvested  for  these  binding  sites  while  perturbation  experiments  were  excluded,  and  to  increase  the  confidence 
 in  the  obtained  binding  sites,  only  optimal  irreproducible  discovery  rate  (IDR)  (308,  312)  thresholded  replicated 
 peaks  were  considered  for  downstream  analyses.  Additionally,  untagged  and  newer  versioned  experiments  were 
 prioritized  over  tagged  and  older  versioned  experiments.  This  yielded  5041190  (K562)  and  4138805  (HepG2) 
 genomic  binding  signals  for  309  (K562)  and  211  (HepG2)  factors  (see  Supplementary  Tables  S1  &  S2  for 
 CHIP-seq factors per cell line) and served for feature engineering purposes (see  Feature Engineering  ). 

 3.1.6. Integration of Transcriptomic Transcription Factor Binding Sites (eCLIP-seq) 
 Gene-centric  transcriptomic  protein  binding  events  identified  by  enhanced  cross-linking  immunoprecipitation 
 sequencing  (CHIP-seq)  (311)  (review  Section  2.1.6.  Enhanced  Cross-linking  Immunoprecipitation-Sequencing 
 (eCLIP-seq)  )  data  served  as  additional  features  as  inputs  for  the  machine  learning  models.  All  available 
 processed  eCLIP-seq  experiments  from  the  ENCODE  project  for  the  K562  and  HepG2  cell  lines  for  the  hg19 
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 (GrCH37)  genome  were  harvested  to  obtain  binding  sites  of  RNA-binding  proteins  (RBPs).  Perturbation 
 experiments  were  excluded  and  newer  versioned  experiments  were  prioritized  over  older  ones.  Only  optimal 
 IDR  thresholded  replicated  peaks  were  considered.  We  thereby  obtained  409839  (K562)  and  435015  (HepG2) 
 transcriptomic  binding  signals  for  120  (K562)  and  103  (HepG2)  factors  (see  Supplementary  Table  S2  of 
 eCLIP-seq factors per cell line). 

 3.1.7. Targeting the 7SK non-coding RNA 

 For  identifying  known  and  novel  7SK  non-coding  RNA  (7SK)  binding  proteins,  we  first  filtered  the  GENCODE 
 transcript  annotation  data  set  for  all  7SK  annotated  transcripts.  Pseudo  7SK  transcripts  were  included  if  they 
 were  expressed  at  least  at  the  median  expression  level  of  all  expressed  non-coding  transcripts.  This  ensures  that 
 we  can  capture  factors  binding  pseudo  7SK  transcripts,  which  may,  in  turn,  compete  (313)  for  respective  binding 
 sites  with  factors  that  bind  the  non-pseudo  version.  Factors  with  at  least  one  eCLIP  binding  site  on  any  of  the 
 7SK  transcripts  (see  Supplementary  Tables  S9  &  S10)  corresponded  to  the  set  of  7SK  binding  factors.  This  set 
 of  7SK  binding  factors  was  identified  in  a  cell-type-specific  manner.  Beyond  the  identification  of  7SK  binding 
 proteins, this set assessed their predictive value in the context of transcriptional pausing. 

 3.1.8. Model Feature Engineering 

 As  predictors  for  the  machine  learning  models  in  predicting  the  gene-wise  pausing  index  of  protein-coding 
 genes,  we  have  engineered  features  of  DNA-  and  RNA-binding  events  at  protein-coding  transcripts  and  the 
 closest  non-coding  transcripts  up-  or  downstream  of  the  TSS  of  each  protein-coding  transcript.  We  further 
 engineered  DNA  sequence  and  annotation  features  of  protein-coding  transcripts  to  capture  DNA  sequence 
 effects that might modulate transcriptional pausing. 

 Specifically the following features were created: 

 ●  transcript length 
 ●  strand specification 
 ●  chromosome specification 
 ●  location on the linear genome 
 ●  number of annotated exons 
 ●  average exon width 
 ●  exon density (ratio of the length of the transcript including introns to the number of exons) 
 ●  fraction of exonic sequence (ratio of the length of all exonic sequences to the transcript length) 
 ●  GC content of the whole transcript including introns 
 ●  width of CAGE transcription start site cluster (CTSS) 
 ●  GC content of CTSS 
 ●  distance  to  most  proximal  CpG  island  along  with  information  about  the  CpG  island  (length,  and 

 features  of  the  sequence:  number  of  CpGs,  number  of  C  and  G,  percentage  of  CpG,  percentage  C  or  G, 
 and ratio of observed to expected CpG) 

 ●  binary encoding whether the transcript is a housekeeping gene 
 ●  binary encoding of RBP binding events separately for 5’/3’-UTR, introns and coding exons 
 ●  binary  encoding  of  DBP  binding  events  separately  for  5’/3’-UTR,  introns  and  coding  exons  excluding 

 Pol II bindings as these are expected to be naturally correlated with the prediction target 
 ●  binary  encoding  of  RBP/DBP  binding  events  separately  for  5’/3’-UTR,  introns  and  coding  exons  of  the 

 two  most  TSS  proximal  non-coding  RNAs  excluding  Polymerase  II  bindings  as  these  are  expected  to 
 be naturally correlated with the prediction target 

 CpG  island  annotations  were  obtained  for  the  hg19  genome  build  from  the  UCSC  golden  path 
 (cpgIslandExt.txt.gz).  Housekeeping  gene  annotations  were  taken  from  (314)  .  To  avoid  having  more  features 
 than  samples  (genes)  which  would  lead  to  overfitting,  we  only  considered  the  two  most  proximal  ncRNAs 
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 because  in  combination  with  CHIP-seq  and  eCLIP-seq  signals  on  more  than  two  proximal  ncRNAs,  the  feature 
 space  would  overgrow  the  sample  space.  To  achieve  faster  and  more  accurate  model  convergences,  we  rescaled 
 numeric  features  not  in  the  range  [0:1]  to  that  range.  DNA-  and  RNA-binding  signal  features  were  binary 
 encoded  (binding  (1)  or  non-binding  (0))  (see  Supplementary  Tables  S11  &  S12  for  the  number  of  binding 
 events  per  factor  on  individual  genomic  or  transcriptomic  regions  for  each  cell  line).  See  Fig.  3.4  for  the 
 distributions  of  DNA  sequence  features  in  the  K562  cell  line  (see  Supplementary  Figures  S3.1  for  Fig.  3.4 
 analog for the HepG2 cell line). 

 Figure 3.4:  Distribution of gene annotation and sequence  composition features in the K562 cell line.  Numeric 
 features were rescaled to the range [0;1]. In sub-figures A-C the x-axes show the counts of features, and the y-axes the 
 feature values. In sub-figues D-R the x-axes show the feature values, and the y-axes the counts of features. 

 As  discussed  in  the  next  section,  various  data  matrices  for  a  series  of  regression  tasks  based  on  different  feature 
 sub-spaces based on prior domain knowledge were built with these feature vectors. 
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 3.1.9. Model Feature Engineering based on Prior Knowledge 

 To  characterize  and  quantify  the  relevance  and  importance  of  pre-  co-  or  post-transcriptional  events  in  the 
 context  of  transcriptional  pausing,  we  stratified  the  feature  space  of  protein  binding  events  into  functionally 
 related  sets  of  proteins.  This  was  achieved  through  integrating  Gene  Ontology  (GO)  (315,  316)  annotations 
 which  provide  sets  of  proteins  implicated  in  specific  biological  processes.  We  aimed  at  functional  sets  of 
 proteins  annotated  in  biological  process  (BP)  ontology  terms  in  the  context  of  transcription  ranging  from 
 Chromatin,  Initiation,  Elongation,  Termination,  and  Splicing.  Specifically,  we  considered  the  following  GO 
 terms:  Chromatin  (  chromosome  organization,  GO:0051276  ;  chromatin  organization,  GO:0006325;  chromatin 
 remodeling,  GO:0006338),  Initiation  (  RNA  polymerase  II  preinitiation  complex  assembly,  GO:0051123; 
 transcription  initiation  from  RNA  polymerase  II  promoter,  GO:0006367),  Elongation  (  transcription  elongation 
 from  RNA  polymerase  II  promoter,  GO:0006368),  Termination  (  termination  of  RNA  polymerase  II 
 transcription,  GO:0006369),  Splicing  (  mRNA  splicing  via  spliceosome  GO:0045292;  regulation  of  alternative 
 mRNA  splicing  via  spliceosome,  GO:0000381)  and  Processing  (  mRNA  export  from  nucleus,  GO:0006406; 
 mRNA  3'-end  processing,  GO:0031124).  We  extended  the  Elongation  factors  by  pause  regulatory  factors  from 
 the  literature  (3,  87,  317)  if  not  already  included.  This  pause  regulatory  factor  set  was  comprised  of  the  super 
 elongation  complex  (SEC)  factors  CCNT1,  CCNT2,  ELL,  ELL2,  ELL3,  AFF1,  AFF4,  MLLT1,  MLLT3, 
 established  pausing  factors  NELFA,  NELFB,  NELFCD,  NELFE,  SUPT4H1,  SUPT5H,  SUPT6H,  SUPT16H, 
 BRD4,  MYC,  TAF1,  TBP,  PAF1,  and  CDK9  (P-TEFB),  as  well  as  7SK  ncRNA  pause  mediator  complex 
 binding  factors  LARP7,  HEXIM1,  HEXIM2,  and  MEPCE  (see  also  Supplementary  Table  S13  ).  However,  only 
 n=19  of  all  established  pausing  factors  could  be  considered  since  not  all  were  assayed  in  the  CHIP-seq  and 
 eCLIP-seq  experiments.  Therefore  the  final  Elongation  factor  set  consisted  of  POLR2A,  POLR2B,  POLR2G, 
 POLR2H,  MLLT1,  SUPT5H,  GTF2F1,  BRD4,  WDR43,  NCBP2,  HNRNPU,  LARP7,  MYC,  TAF1,  TBP,  AFF1, 
 EZH2,  PAF1,  and  SSRP1.  However,  Polymerase  associated  factors  (POLR2A,  POLR2B,  POLR2G,  POLR2H) 
 were  excluded  since  these  are  expected  to  affect  pausing  by  definition.  To  quantitatively  assess  the  importance 
 of  unknown  or  less  well-established  7SK  associated  factors  (review  Section  3.1.7.  Targeting  the  7SK 
 non-coding  RNA  or  Supplementary  Table  S4  of  7SK  binding  factors  per  cell  line),  a  set  of  7SK  binding 
 proteins  was  generated  as  well.  To  capture  general  pausing  associated  factors,  we  further  formed  the  union  of 
 the  Elongation  and  7SK  associated  factor  set  (  Elongation+7SK  ).  See  Supplementary  Tables  S14  &  S15  for  a 
 list of factors in each resulting functional factor set per cell line  . 

 Subsequently,  each  factor  set  was  further  stratified  into  sequence-specific  and  non-sequence-specific  binders 
 based  on  annotations  from  The  Molecular  Signatures  Database  (MSigDB)  (318,  319)  ,  a  collection  of  annotated 
 gene  sets,  the  Catalog  of  Inferred  Sequence  Binding  Preferences  (CIS-BP)  (320)  ,  a  library  of  transcription 
 factors  and  their  binding  motifs  and  the  Homo  sapiens  comprehensive  model  collection  (HOCOMOCO)  (321)  ,  a 
 collection  of  transcription  factor  binding  models  for  human  and  mouse  via  large-scale  ChIP-seq  analysis  based 
 on binding motifs (see  Supplementary Tables S16 &  S17  )  . 

 To  arrive  at  different  feature  matrices  based  upon  prior  domain  knowledge,  the  feature  vector  space  of  binding 
 events  was  then  accordingly  grouped  by  these  factor  sets  (see  Supplementary  Table  S18  of  factor  presence  in 
 feature  subspaces).  These  feature  matrices  always  included  DNA  sequence  and  annotation  features  of 
 protein-coding  genes.  We  thereby  obtained  feature  matrices  to  build  an  array  of  predictive  models  based  on 
 features with a defined biological function. 

 We  further  built  100  random  models  randomizing  over  the  number  of  factors,  the  factors  itself  and  their  binding 
 patterns  to  enable  a  baseline  comparison  of  model  performances.  The  binding  patterns  were  randomized 
 according to the observed binding proportions. 

 3.1.10. Model Training 

 Extreme  Gradient  Boosting  Tree  (XGB)  regressors  (review  Section  2.3.2.3.  The  Extreme  Gradient  Boosting 
 Regression  Tree  Model  (XGB)  )  were  trained  to  predict  the  pausing  index  with  each  of  the  subsets  mentioned 
 previously  (review  Section  3.1.9.  Model  Feature  Engineering  based  on  Prior  Knowledge  ).  We  validated  our 
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 models  with  a  5-fold  cross  validation  (review  Section  2.3.5.  Cross  Validation  )  procedure  as  well  as  applied 
 trained  models  to  completely  independent  test  data  sets  from  the  cross  cell  line,  which  provided  us  with  an 
 unbiased  estimate  of  the  model  performances  as  trained  models  have  neither  seen  the  genes  target  distribution 
 nor  the  specific  feature  distributions  of  the  cross  cell  type.  This  was  accomplished  by  reducing  each  feature 
 matrix  to  features  that  are  common  to  both  cell  lines.  We  refer  to  these  as  the  synchronized  models.  In  contrast 
 to  these  models,  the  individual  models  incorporated  all  available  features  specific  to  a  cell  type.  To  enable  a 
 proper  validation  for  individual  models  50%  of  the  available  data  points  were  held  out  prior  to  training  as  an 
 independent  test  data  set.  Although  this  hold  out  test  data  set  is  not  from  an  independent  cell  line  as  is  the  case 
 with  the  synchronized  models,  it  still  provides  an  unbiased  model  performance  estimate  as  trained  models  have 
 also  not  seen  any  of  the  data  points.  R  egression  with  squared  loss  was  chosen  for  the  learning  objective  and  the 
 coefficient  of  determination  (R-squared,  R  2  )  was  used  to  evaluate  trained  models.  See  Supplementary  Table 
 S19  for  hyperparameter  (review  Section  2.3.6.  Hyperparameter  Tuning  )  specification  and  the  zenodo  repository 
 for R-Data structures with all model matrices. 

 3.1.11. Feature Scoring & Interpretation 

 As  a  scoring  metric  for  model  feature  contributions  we  have  used  Shapley  additive  explanations  (SHAP)  (286, 
 289)  (review  Section  2.3.3.  Feature  Scoring  ).  SHAP  has  the  potential  to  explain  the  output  of  any  machine 
 learning  model  and  in  contrast  to  the  well  known  variable  importance  metric  in  tree-based  machine  learning 
 models  it  is  able  to  show  the  positive  or  negative  relationship  for  each  feature  with  the  target.  Additionally,  as 
 opposed  to  most  feature  importance  metrics  which  average  over  all  genes,  SHAP  assigns  each  gene  its  own  set 
 of  SHAP  values  which  greatly  enhances  the  prediction  transparency.  Moreover,  SHAP  values  are  additive  and 
 enable  to  aggregate  over  feature  contributions  of  subsets  of  features.  This  enabled  us  to  capture  contributions  of 
 protein  binding  per  protein  and  group  these  proteins  into  sets  of  positive  and  negative  regulatory  factors.  As  an 
 example  we  obtain  model  contribution  scores  for  genomic  and  transcriptomic  transcription  factor  bindings  on 
 the  5’UTR,  exons,  introns  and  3’UTR  as  identified  by  CHIP-seq  and  eCLIP-seq,  respectively.  We  can  then 
 calculate  total  contributions  of  a  specific  factor  by  aggregating  the  SHAP  scores  per  such  factor  over  each  gene 
 region  (5’UTR,  exons,  introns  and  3’UTR)  on  the  genome  or  transcriptome  which  in  turn  enables  us  to  select 
 factors with high effect sizes to pinpoint specific pause regulatory factors. 

 3.2. Results 

 3.2.1. Predictive Models of Transcriptional Pausing 

 The  turning  point  of  promoter-proximally  paused  Pol  II  (Fig.  3.5A,  promoter-proximally  paused  Pol  II)  into  its 
 productive  form  of  nascent  RNA  synthesis  (Fig.  3.5A,  elongating  Pol  II)  is  a  function  of  trans-regulatory  protein 
 co-factors  as  well  as  cis-regulatory  DNA  and  RNA  sequence  features  (3,  322)  .  We  refer  to  these  cis-  and 
 trans-regulatory factors as chromatin signatures. 
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 Figure  3.5:  Low-level  overview  of  the  transcriptional  pausing  workflow  pipeline.  (A)  Identifying 
 transcriptional  pause  regulatory  factors  by  contrasting  promoter-proximally  paused  Polymerase  II  against  the 
 Polymerase’s  productive  elongation  phase  of  nascent  RNA  synthesis.  (B)  Feature  engineering  (middle,  right) 
 with  large-scale  genomic  data  sets  for  two  different  cell  lines  to  build  the  chromatin  context  of  transcriptional 
 pausing  (A)  based  on  chromatin  signatures  consisting  of  gene-wise  protein  binding  patterns  and  gene 
 annotation  and  sequence  composition  features.  Construction  of  the  prediction  target  (left),  the  pausing  index, 
 by  relating  GRO-seq  read  densities  at  the  TSS  to  GRO-seq  read  densities  in  the  gene  body.  (C)  Predictive 
 modeling  to  forecast  promoter-proximally  paused  Pol  II  with  chromatin  signatures  (B),  followed  by 
 evaluating  prior  knowledge  in  the  context  of  transcriptional  pausing  and  selection  of  factors  as  novel 
 regulators of pausing. 

 To  identify  such  pause  regulatory  cis-  and  trans-acting  factors  we  compiled  large-scale  genomic  and 
 transcriptomic  binding  maps  based  on  ENCODE  data  sets.  Potential  cis-regulatory  elements  were  captured  with 
 gene  annotation  and  sequence  composition  features.  These  chromatin  signatures  then  served  to  follow  a 
 systematic  machine  learning  approach  with  Extreme  Gradient  Boosting  tree  (XGB)  regressors  to  predict  the 
 degree  of  transcriptional  pausing  at  protein-coding  genes  (Fig.  3.5B)  and  subsequently  reveal  explanatory 
 factors (Fig. 3.5C). 

 To  validate  our  models,  we  have  integrated  relevant  data  sets  of  two  different  cell  lines  (K562  and  HepG2).  To 
 facilitate  the  validation  in  independent  cell  lines,  we  obtained  relevant  data  sets  for  two  different  cell  lines 
 (K562  and  HepG2).  The  gene-wise  pausing  index  served  as  the  prediction  target  (review  Section  3.1.4. 
 Quantification  of  Promoter-Proximal  Pol  II  Pausing  (GRO-seq)  )  ;  see  Figure  3.3  for  pausing  index  distributions) 
 It  quantifies  the  degree  to  which  a  gene  is  paused  (high  pausing  index)  or  elongated  (low  pausing  index).  Model 
 features  were  systematically  compiled  through  the  integration  of  genome-wide  CHIP-seq  (review  Section  3.1.5. 
 Integration  of  Genomic  Transcription  Factor  Binding  Sites  (CHIP-seq)  )  and  eCLIP-seq  (review  Section  3.1.6. 
 Integration  of  Transcriptomic  Transcription  Factor  Binding  Sites  (eCLIP-seq)  )  data  from  the  ENCODE  project 
 which  provide  DNA  and  RNA  binding  sites  on  the  genome  and  transcriptome  respectively  (see  Supplementary 
 Tables  S11  &  S12  ).  Gene  annotation  and  sequence  composition  features  were  engineered  based  on  GENCODE 
 transcript  annotations  (review  Section  3.1.8.  Model  Feature  Engineering  ,  see  Figure  3.4  (K562)  and 
 Supplementary  Figure  S3.1  (HepG2)).  To  validate  the  expressions  of  gene  transcripts  and  increase  the 
 confidence  in  transcription  start  sites,  we  further  integrated  CAGE  transcription  start  sites  (review  Section  3.1.3. 
 Integration  of  Transcription  Start  Site  Annotations  (CAGE)  ).  In  total,  we  obtained  2503  features  of  2485  DNA 
 &  RNA  binding  and  18  gene  annotation  features  in  the  K562  cell  line  and  1832  features  of  1814  DNA  &  RNA 
 binding  and  18  gene  annotation  features  in  the  HepG2  cell  line.  Subsequently,  we  trained  an  Extreme  Gradient 
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 Boosting  Tree  regressor  (review  Section  3.1.10.  Model  Training  and  Supplementary  Table  S20  )  to  predict  the 
 pausing  index  of  protein-coding  genes  (n=8426  in  K562),  which  achieved  high  accuracy  and  was  able  to  explain 
 up  to  68%  of  the  observed  variance  (R  2  ~0.68  on  50%  hold-out  test  data  set,  K562)  in  the  pausing  index  (Fig. 
 3.6A). 

 Figure  3.6:  Transcriptional  pausing  model  prediction  performances.  (A)  Scatterplot  of  observed  and 
 predicted  pausing  indices  (log2-scale,  K562).  Predictions  stem  from  a  5-fold  cross-validated  and  regularized 
 XGB  regression  model  applied  to  an  independent  50%  hold-out  test  dataset  from  the  same  cell  line  taken 
 prior  to  model  training.  The  upper  left  shows  Pearson’s  correlation  coefficient  rho  (⍴)  with  the  associated 
 p-value.  The  residual  regression  error  is  colored  in  red  (see  legend  resid  ).  (B)  Scatterplot  of  observed  and 
 predicted  pausing  indices  (log2-scale,  K562).  Predictions  stem  from  a  5-fold  cross-validated  and  regularized 
 XGB  regression  model  applied  to  the  independent  test  dataset  of  the  cross-cell  line  (HepG2).  The  model  was 
 trained  with  features  available  in  both  cell  lines.  The  upper  left  shows  the  Pearson’s  correlation  coefficient 
 rho  (⍴)  with  the  associated  p-value.  The  residual  regression  error  is  colored  in  red  (see  legend  resid  ).  (C) 
 Venn  diagram  of  expressed  transcripts  between  the  two  cell  lines  (K562,  HepG2).  (D)  Scatterplot  of  observed 
 and  predicted  pausing  indices.  Predictions  stem  from  a  5-fold  cross-validated  and  regularized  XGB 
 regression  model  trained  on  each  cell  line  and  applied  to  data  of  genes  exclusively  expressed  in  the  cross-cell 
 line.  The  upper  left  shows  Pearson’s  correlation  coefficient  rho  (⍴)  with  the  associated  p-value.  The  residual 
 regression  error  is  colored  in  red  (see  legend  resid  ).  (E)  Scatterplot  of  observed  pausing  indices  of  each  cell 
 line.  HepG2  specific  transcripts  with  at  least  a  2-fold  higher  pausing  index  than  in  K562  are  colored  green, 
 K562  specific  transcripts  with  at  least  a  2-fold  higher  pausing  index  than  in  HepG2  are  colored  blue,  and 
 transcripts  with  similar  pausing  indices  in  both  cell  lines  (less  than  a  2-fold  change),  thus  not  specific  to  any 
 of  the  cell  lines,  are  colored  in  orange.  The  upper  left  shows  the  Pearson  correlation  coefficients  rho  (⍴)  for 
 each  of  the  subgroups  with  the  associated  p-value.  (F)  Scatterplot  of  differences  of  observed  pausing  indices 
 between  the  cell  lines  against  the  prediction  differences  obtained  from  models  trained  in  each  cell  line  and 
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 applied  to  data  from  the  cross  cell  line.  Differences  are  shown  for  gene  transcripts  identified  in  E),  which 
 showed a 2-fold change between cell lines. Each model was trained on features available in both cell lines. 

 The  model  performance  can  be  evaluated  in  different  validation  settings,  specifically  with  1)  a  model  trained  on 
 one  cell  line  and  applied  to  the  full  data  of  the  other  cell  line  (Fig.  3.6B)  2)  a  model  trained  on  one  cell  line  and 
 applied  to  genes  exclusively  expressed  in  the  other  cell  line  (Fig.  3.6D)  as  well  as  3)  with  a  model  trained  on  one 
 cell  line  and  applied  to  genes  that  are  present  in  both  of  the  cell  lines  that  show  significantly  different  pausing 
 indices  representing  extreme  observation  specific  to  the  other  cell  line  (Fig.  3.6F).  For  model  performances  of  a 
 model  trained  on  the  HepG2  cell  line  and  validated  on  the  K562  cell  line,  see  Supplementary  Figure  S3.2  for 
 figure 3.6 analog for the HepG2 cell line. 

 High  prediction  performance  on  the  independent  cross-cell  type  test  data  set  (Fig.  3.6B,  performance  on  HepG2 
 data  of  K562  model)  in  which  the  model  was  able  to  explain  up  to  53%  of  the  variance  in  the  pausing  signal, 
 demonstrates  the  predictive  power  and  generalizability  of  the  underlying  model  and  features.  The  drop  in  the 
 model  performance  from  an  R  2  of  0.68  (Fig.  3.6A)  to  an  R  2  of  0.53  and  is  likely  caused  by  the  reduced  amount 
 of  available  features  in  the  HepG2  cell  line  (39%  of  all  features  (n=987)  of  n=2503  features  available  in  the 
 K562 cell line). 

 The  observed  performances  in  the  cross-cell  type  prediction  task  (Fig.  3.6B)  may  result  from  1)  the  signal  of 
 ubiquitously  expressed  genes  that  are  similar  between  cell  types,  as  might  be  the  case  with  housekeeping  genes, 
 or  2)  from  general  learned  rules  that  allow  predicting  cell  type-specific  pausing  indices  from  cell  type-specific 
 chromatin  signatures.  To  distinguish  between  the  two  cases,  we  identified  the  sets  of  cell-type  genes  (Fig.  3.6C) 
 and  evaluated  the  performances  of  models  trained  on  one  of  the  cell  lines  to  predict  the  pausing  index  of  genes 
 exclusively  expressed  in  the  other  cell  line  (Fig.  3.6D).  The  K562  model  explained  up  to  57%  (HepG2  model  up 
 to 58%) of the observed variance in the pausing indices in the HepG2 (K562) cell line, respectively. 

 We  additionally  evaluated  the  model's  capability  to  predict  cell  type-specific  distributions  of  differential  (fold 
 change  >=  2)  pausing  indices  (Fig.  3.6E,  blue,  green).  Specifically,  we  evaluated  the  agreement  of  the 
 differences  of  observed  pausing  indices  between  the  cell  lines  against  the  differences  of  predictions  of  the 
 pausing  indices  using  models  trained  in  one  of  the  cell  lines  and  applied  to  data  in  the  other  cell  line  (Fig.  3.6F). 
 There  is  a  substantial  decrease  in  the  model  performances  from  a  correlation  coefficient  of  0.73  for  the 
 prediction  on  the  entire  HepG2  cell  type  data  (Fig  3.6B)  or  0.76  on  HepG2  cell  type-specific  genes  (Fig  3.6D)  to 
 0.24  (Fig.  3.6F,  HepG2  specific  pausing  indices;  green).  Nonetheless,  the  model  maintains  some  predictive 
 power  for  extreme  observation  of  pausing  indices  specific  to  the  cross  cell  type.  This  further  underlines  the 
 model's ability to generalize to other cell lines. 

 Taken  together,  the  model’s  predictive  power  on  the  intra-cell  type  holdout  test  data  sets  (Fig.  3.6A),  the 
 inter-cell  type  test  data  set  (Fig.  3.6B)  as  well  as  its  ability  to  predict  pausing  indices  of  cell  type-specific  genes 
 (Fig.  3.6D)  and  cell  type-specific  differential  pausing  indices  (Fig.  3.6F),  demonstrate  that  the  model  has 
 sufficient  discriminatory  power  to  explain  a  large  fraction  of  the  observed  variance  in  the  pausing  index  and  that 
 it  captured  general  cell-type  independent  rules  of  pausing  regulation.  We  thus  proceeded  with  feature 
 interpretation  and  selection  approaches  to  be  able  to  extract  potentially  novel  regulators  of  transcriptional 
 pausing.  These  downstream  analyses  were  performed  on  data  from  the  K562  cell  line  due  to  the  increased 
 amount of available data points (features). 

 3.2.2. Linking Transcriptional Regulatory Steps with Transcriptional Pausing 

 We  next  aimed  at  a  mechanistic  explanation  of  the  underlying  predictive  features.  For  that  purpose,  we  have 
 used  Shapley  Additive  Explanations  (SHAP)  (286,  323)  as  a  feature  scoring  metric  (see  Materials  &  Methods  ) 
 that  captures  the  directional  contribution  of  each  feature  specifically  for  each  gene  on  the  target  variable.  In 
 dependence  of  the  factor's  relevance  for  pausing  and  their  interaction  with  other  model  features,  a  feature  may 
 positively  (increase)  or  negatively  (decrease)  affect  the  pausing  index  or  exert  no  effect  at  all  (Fig.  3.7A).  The 
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 sum  of  the  individual  effects  then  converge  in  predicted  pausing  indices  representing  the  average  output  whether 
 a gene is paused or not. 

 Due  to  the  intricate  connection  of  transcriptional  pausing  with  other  steps  of  gene  expression  ranging  from 
 chromatin  organization  (324–326)  ,  transcription  initiation  (297,  310,  327)  ,  to  splicing  (328–330)  and 
 post-transcriptional  transcript  processing  (331–333)  ,  we  next  evaluated  factors  associated  with  these  pre-,  co-  or 
 post-transcriptional  events  according  to  their  importances  in  predicting  transcriptional  pausing.  Based  on  Gene 
 Ontology  (GO)  annotations  of  protein  membership  terms  in  biological  processes  we  first  generated  sets  of  of 
 regulators  (see  Methods  and  Supplementary  Tables  S14  &  S15  )  representative  of  major  RNA  processing 
 events  ranging  from  Chromatin  ,  Initiation  ,  Elongation  ,  Splicing  ,  Termination  to  Processing  .  We  extended  the 
 Elongation  factor  by  established  pausing  factors  identified  from  literature.  Due  to  the  pause  regulatory  role  of 
 the  7SK  non-coding  RNA  complex  (7SK)  (334–339)  we  built  a  set  of  factors  that  bind  the  7SK  in  the  eCLIP-seq 
 datasets  (see  Methods  and  Supplementary  Tables  S9  &  S10  for  7SK  binding  factors  per  cell  line)  to  be  able  to 
 evaluate  the  role  of  of  these  binders  in  transcriptional  pausing.  This  set  consisted  of  the  very  well  known  7SK 
 binder  LARP7,  the  pausing  associated  factor  AQR  previously  not  associated  with  the  7SK  as  well  as  the 
 following  factors  not  previously  associated  with  pausing:  SSB  (LARP3),  HNRNPK,  DGCR8,  PCBP1,  ATF, 
 ZNF800,  XRCC6,  NCBP2,  SBDS,  YWHAG,  GRWD1,  ZNF622,  SRSF7,  TARDBP  and  BUD13.  A  general  set 
 of  pause  regulatory  factors  was  further  generated  by  forming  the  union  of  the  Elongation  and  7SK  associated 
 factor  sets  (  Elongation+7SK  ).  All  resulting  sets  of  regulators  were  then  grouped  into  known  sequence-specific 
 and  non-sequence-specific  binders  (see  Supplementary  Tables  S16  &  S17  )  to  be  able  to  assess  the  relevance  of 
 sequence  specific  binding  events.  Subsequently  we  aggregated  model  feature  contributions  (Fig.  3.7A)  per 
 functional process (Fig. 3.7B) over all factors from a specific process. 
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 Figure  3.7:  Interpretation  of  the  transcriptional  pausing  model.  (A)  Distribution  of  SHAP  feature 
 contributions  (y-axis;  only  top  5  individual  features  colored  and  remaining  features  aggregated  in 
 rest_variables  )  on  each  gene  transcript  (x-axis)  with  a  zoom-in  on  a  subset  of  transcripts  for  better  visual 
 investigation  (B)  Absolute  total  factor  class  contributions  based  on  prior  knowledge,  subdivided  by  sequence 
 and  non-sequence  specific  binding  factors.  Class  Processing  refers  to  mRNA  polyadenylation  and  export 
 from  the  nucleus.  (C)  R  2  model  performances  of  individual  models  of  functional  factor  classes  based  on  prior 
 knowledge  evaluated  on  a  50%  holdout  test  data  set  from  the  same  cell  line  (K562)  (D)  Absolute  total  factor 
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 contributions based on their binding modes. 

 This  ranking  (Fig.  3.7B)  revealed  the  high  importance  of  splicing  factors  in  transcriptional  pausing,  followed  by 
 elongation  and  7SK  binding  proteins.  These  findings  strongly  support  the  interconnection  of  co-transcriptional 
 splicing  events  (115,  328,  340)  and  provide  quantitative  measures  about  the  relevance  of  the  newly  identified 
 7SK  binding  proteins  as  transcriptional  pause  regulatory  factors.  On  the  other  hand,  the  Elongation  factor  set  of 
 established pausing factors validated our approach. 

 After  having  quantified  the  relative  importance  of  major  RNA  processing  events  in  the  context  of  transcriptional 
 pausing,  we  asked  how  models  exclusively  trained  on  features  defined  by  the  different  sets  of  regulators  would 
 perform  individually.  As  a  baseline  comparison  of  model  performances,  we  have  also  built  randomized  models 
 with  randomized  input  data  (see  Materials  &  Methods  ).  The  model  performances  (R  2  values)  of  cross-validated 
 models  in  the  K562  cell  line  on  the  independent  50%  holdout  test  data  sets  (see  also  Supplementary  Table  S20 
 for  all  model  results)  for  each  feature  space  is  given  in  figure  3.7C.  Each  feature  space  performs  reasonably  well 
 relative  to  the  number  of  factors  they  incorporate.  For  instance,  the  splicing  factor-based  model  (  Splicing  ) 
 considers  only  n=57  of  all  available  factors  (n=398)  yet  performs  almost  equally  well  as  the  full  model  (  All  ) 
 with  all  n=398  available  factors.  Similarly,  compared  to  the  chromatin-associated  model  Chromatin  with  n  =  38 
 factors,  the  Initiation  model  incorporates  only  about  half  the  number  of  factors  (n=20)  yet  performs  slightly 
 better (R  2  of 0.54 vs. 0.53). 

 Despite  the  low  numbers  of  factors  considered  in  the  7SK  (  7SK.Binding  )  and  established  pausing  factor 
 (  Elongation  )  models,  these  sets  perform  very  well,  which  underlines  the  predictive  value  of  implicated  factors. 
 Their  predictive  power  is  further  demonstrated  by  the  set  of  the  union  of  7SK  and  established  elongation  factors 
 (  Elongation+7SK  )  which  not  only  outperform  (R  2  0.62)  each  individual  factor  set  alone  (  7SK.Binding  :  R  2  0.55, 
 Elongation  :  R  2  0.56)  but  also  perform  almost  equally  well  as  the  full  model  (R  2  0.62  vs.  0.68).  This  finding 
 further  highlights  the  importance  of  identified  novel  7SK  binders  as  potential  pause  regulators.  To  summarize, 
 each  factor  set  shows  high  predictive  power  relative  to  the  number  of  factors  they  consider.  However,  due  to  the 
 different  amount  of  factors  considered  in  each  model,  their  performances  should  not  be  compared  to  each  other. 
 On  the  other  hand,  we  can  conclude  that  their  high  predictive  value  demonstrates  the  intricate  interconnection  of 
 underlying  processes  with  the  transcriptional  pausing  outcome.  Moreover,  the  role  of  the  7SK  ncRNA  with 
 associated  factors  as  a  transcriptional  pause  mediator  complex  is  supported  and  strengthened,  which  allowed  us 
 to  suggest  the  factors  contained  in  the  7SK  factor  set  (  7SK.Binding  )  (see  Supplementary  Tables  S9  &  S10  )  as 
 additional  7SK  ncRNA  binding  proteins  to  be  implicated  in  transcriptional  pause  regulation  based  on  their 
 predictive  value.  The  results  for  the  HepG2  cell  line  are  highly  similar  and  support  the  aforementioned 
 conclusions (see  Supplementary Figure  S3.3)  . 

 In  the  next  step,  we  asked  whether  genomic  or  transcriptomic  binding  events  are  primarily  responsible  for  the 
 observed  predictive  power  of  the  models.  Upon  investigation,  we  could  establish  that  RNA  binding  events  had 
 higher  contributions  than  DNA  binding  events  (Fig.  3.7D).  Interestingly,  splicing  factors  are  enriched  in  RNA 
 intron  binding  sites  (Fisher’s  exact  test,  one-sided  (greater),  p  =  0.034,  odds  ratio  4.45,  confidence  interval 
 [1.11;Inf]  in  K562  and  p=0.032,  odds  ratio  7.1  [1.15;Inf]  in  HepG2)  ,  which  is  the  highest-ranked  functional 
 class (see Fig. 3.8 for K562 and  Supplementary Figure  S3.4  for HepG2 data). 
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 Figure  3.8:  Model  contributions  of  regulatory  processes.  Aggregate  feature  contributions  (x-axis)  of  RNA  intron 
 binding factors by functional classes (y-axis) in the K562 cell line. 

 Lastly,  the  high  contribution  score  of  genomic  binding  events  on  the  5’  region  of  transcripts  (Fig  3.7D, 
 DNA_five_prime)  is  in  accordance  with  observed  genomic  five  prime  modulated  transcriptional  pause  states 
 from the literature  (341)  . 

 Gene  annotation  and  sequence  composition  features  account  for  26%  of  all  feature  contributions  (see 
 Supplementary  Figures  S3.5-3.8  ).  However,  due  to  their  static  nature,  they  cannot  explain  the  variation  of 
 transcriptional  pausing  between  cell  lines,  which  is  why  we  have  focused  the  discussion  on  the  individual 
 proteins and their dynamic binding events. 

 3.2.3. Modulators of Transcriptional Pausing 
 We  next  aimed  to  identify  specific  pause  regulatory  factors  based  on  the  model  feature  contribution  scores  of 
 protein  binding  events.  We  thus  ranked  individual  DNA-  and  RNA-binding  factors  by  aggregating  SHAP 
 feature  contributions  per  factor  over  all  genes  into  a  single  contribution  score  (see  Fig.  3.9  for  K562  and 
 Supplementary Figure S3.9  for HepG2 data) 
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 Figure  3.9:  Individual  model  feature  contributions.  Feature  contribution  (x-axis)  of  the  top  25  features  (y-axis)  from 
 the full (  All)  individual K562 model. 

 Subsequently,  selected  the  minimal  set  of  most  influential  factors  (16  out  of  398)  that  together  account  for  up  to 
 50%  of  all  feature  contributions  (Fig.  3.10A).  In  this  ranking  established  pausing  factors  from  the  literature  (Fig. 
 3.10A,  highlighted  in  red)  ranked  high  among  these  top  influential  factors  and  thus  served  as  a  validation  of  our 
 factor  ranking  approach.  Interestingly,  three  factors  that  are  not  primarily  related  to  pausing  were  ranked  higher 
 than  the  established  pausing  factors.  These  might  represent  novel  pause  regulatory  factors  with  at  least  the  effect 
 size  of  established  pausing  factors.  However,  all  other  lower-ranking  factors  can  be  considered  almost  equally 
 relevant since they have similarly high contributions. 

 Figure  3.10:  Feature  contributions  of  the  minimal  model  of  transcriptional  pausing.  (A)  Factor  contributions  of 
 factors  that  together  make  up  at  least  50%  of  total  model  contributions  (increasingly  ordered).  Established 
 pausing/elongation  factors  are  colored  in  red.  The  bar  fill  colors  indicate  DNA-binding  (DBP;  dark  red),  RNA-binding 
 (RBP; orange), or DNA- and RNA-binding (DBP/RBP; grey) factors.  (B)  Functional associations of identified  factors. 

 Strikingly,  a  model  based  on  binding  features  of  only  these  16  most  influential  factors  (including  gene 
 annotation  and  sequence  composition  features  and  only  the  five  known  pausing  or  7SK-related  factors  AQR, 
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 BRD4,  SUPT5H,  TAF1,  TBP)  achieves  an  R  2  of  0.65  (on  50%  holdout  test  data  set;  see  Figure  3.11  for  K562 
 and  Supplementary  Figure  S3.10  for  HepG2  data  performances  of  minimal  models  per  cell  line)  and  compete 
 with the full model which incorporates all 398 factors and achieves an R  2  of 0.68. 

 Figure 3.11:  Minimal model performance in the K562  cell line.  Observed (x-axis) vs predicted (y-axis)  pausing index 
 of the 16 most influential factor model. 

 This  minimal  model  with  n=16  factors  also  outperforms  the  Elongation+7SK  model  (Fig.  3.7C)  with  n=27 
 factors  (R  2  of  0.65  as  compared  to  an  R  2  of  0.61).  This  indicated  that  the  Elongation+7SK  was  incomplete  and 
 lacked  pausing-related  factors.  Lastly,  The  HepG2-based  minimal  model  with  n=9  factors  consisting  of  the 
 factors  RBFOX2,  AQR,  TAF1,  TBP,  RBM15,  RBM22  KHSRP,  PRPF8  and  YBX3,  are  all  included  in  the 
 minimal model identified in the K562 cell line. 

 Upon  consideration  of  the  functional  background  of  the  most  influential  factor  set  (n=16,  K562)  (Fig.  3.10B)  the 
 interconnected nature of transcriptional pausing with other RNA-processing events becomes further evident. 

 3.2.4. Pausing factors 

 A  few  well-established  pausing  factors  like  TAF1,  TBP,  and  SUPT5H  ranked  high  in  our  models.  Especially 
 TAF1  and  TBP  validate  our  approach  as  these  are  components  of  the  pre-initiation  complex  (PIC)  whose 
 formation  inherently  leads  to  pausing  (87)  .  This,  in  turn,  can  be  regulated  by  other  pausing  factors  like  NELF 
 and  DSIF  (SUPT5H),  which  increase  pausing,  whereas  the  P-TEFb  associates  with  pause  release  and  decreases 
 pausing. 

 3.2.5. Chromatin remodelers 

 EP400  is  a  chromatin  remodeler  that  greatly  impacted  our  model.  It  modulates  chromatin  state  by  nucleosome 
 positioning  and  posttranslational  modifications  of  histones.  The  chromatin  state  is  regulated  by  chromatin 
 remodelers  and  intricately  linked  to  transcription  initiation,  elongation,  and  co-transcriptional  splicing  (81, 
 110–112)  .  Specifically,  EP400  acts  as  a  histone  acetyltransferase  and  deposits  H3.3/H2.AZ  into  promoters  and 
 enhancers  after  PIC  assembly,  thereby  exerting  gene  activating  functions  (342)  .  Moreover,  it  associates  and 
 interacts  with  the  well-known  pausing  factor  MYC  (102,  342,  343)  .  This  association  might  be  a  direct  link  to 
 transcriptional  pausing.  In  fact,  regulation  of  Pol  II  pausing  at  promoter-proximal  nucleosomes  by  chromatin 
 remodelers like for instance,  Chd1  (113)  , are already  established. 

 3.2.6. Transcriptional repressors and activators 

 Among  the  established  pausing  and  chromatin  remodeling  factors,  we  can  find  transcriptional  repressors  and 
 activators like ZFX, JUN, JUND, or RBFOX2. 
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 ZFX  family  members  are  active  in  multiple  types  of  human  tumors,  bind  downstream  from  the  TSS  at  the 
 majority  of  CpG  island  promoters,  regulate  essential  housekeeping  genes  and  exert  a  transcription  activating 
 function  in  general.  They  act  similarly  to  the  MYC  family  of  transcription  factors  characterized  by  their 
 pervasive  binding  at  promoter  sites  and  profound  proliferation  defects  upon  knockdown  (344,  345)  .  MYC  can 
 recruit  P-TEFb  (102,  346)  and  thus  plays  an  essential  role  in  transcriptional  pause  release.  A  similar  connection 
 with  pausing  could  exist  for  ZFX  given  their  similar  functional  behavior.  A  transcriptional  pause  regulatory  role 
 is  further  supported  by  the  observation  that  ZFX  binds  slightly  downstream  from  the  most  frequent  Pol  II  pause 
 site and slightly upstream of the downstream peak of H3K4me3 signal  (344, 345) 

 JUN  and  JUND  are  subcomponents  of  the  activating  protein  1  (AP-1)  (347,  348)  .  AP-1  is  responsible  for  cell 
 proliferation,  neoplastic  transformation,  apoptosis  as  well  as  the  expression  of  immune  mediators.  It  is  targeted 
 and  suppressed  by  the  negative  elongation  factor  NELF  (349)  .  However,  so  far  no  transcriptional  pause 
 regulatory role has been reported yet. 

 RBFOX2  can  act  as  a  regulator  of  alternative  splicing  as  discussed  later,  as  well  as  a  transcriptional  repressor 
 through  the  recruitment  of  the  repressive  polycomb-complex  2  (PRC2)  to  its  site  of  action  (344,  350,  351)  .  It 
 primarily  targets  chromatin-associated  RNA,  especially  promoter-proximal  nascent  RNA  and  might  be  more 
 intricately  linked  to  transcriptional  pausing.  In  fact,  RBFOX2  knockout  cardiomyocytes  show  decreased  pausing 
 indices and coordinated transcriptional pause enhancing roles of RBFOX2 and PRC2 at gene promoters  (351)  . 

 3.2.7. Co-Transcriptional splicing and mRNA regulatory factors 

 The  intricate  connection  of  transcriptional  pausing  to  co-transcriptional  splicing  events  (329,  330,  352,  353)  is 
 supported  by  the  presence  of  several  splicing-associated  factors  (RBFOX2,  PRPF8,  RBM15,  RBM22,  KHSRP, 
 YBX3,  AQR)  among  the  top  regulators.  Co-transcriptional  splicing  of  pre-mRNAs  is  directly  coupled  to  the 
 nascent  RNA  that  forms  during  the  transcriptional  cycle,  which,  in  turn,  is  subject  to  transcriptional  pausing. 
 Thus  transcriptional  pausing  is  a  rate-limiting  step  to  co-transcriptional  splicing.  Indeed  it  has  been  shown  that 
 active  spliceosomes  are  bound  and  complexed  to  the  Pol  II  S5P  C-terminal-domain  during  transcript  elongation 
 as  well  as  co-transcriptional  splicing  (114)  and  that  transcription  kinetics  strongly  impact  splicing  decisions.  For 
 instance,  slow  Pol  II  elongation  rates  buy  time  for  the  spliceosome  to  assemble  and  favor  splicing.  More 
 strikingly,  it  has  been  shown  that  inhibiting  the  spliceosomal  U2  snRNP  function  would  lead  to  Pol  II  pausing  in 
 promoter-proximal  regions,  impairing  the  recruitment  of  P-TEFb,  reducing  the  Pol  II  elongation  velocity  at  the 
 beginning  of  genes  (115)  .  These  observations  point  towards  the  existence  of  positive  feedback  from  the  splicing 
 to  the  transcription  machinery  since  the  release  of  paused  Pol  II  requires  the  formation  of  functional 
 spliceosomes.  To  that  end,  RBFOX2  is  a  well-established  regulator  of  alternative  splicing  (354–356)  with  an 
 essential  role  in  transcriptional  pausing  (351)  .  Similarly,  the  pre-mRNA  splicing  factors  or  spliceosome 
 components  RBM15  (357)  ,  RBM22  (358,  359)  ,  PRPF8  (360)  ,  KHSRP  (361)  and  YBX3  (362)  are  likely  linked 
 to pausing, as is the case for RBFOX2 and splicing in general. 

 AQR  is  an  R-loop  resolution  factor  (363)  .  When  nascent  RNA  anneals  back  to  template  DNA  (364–367)  , 
 R-loops  are  formed,  forming  an  RNA/DNA  hybrid  structure.  They  have  been  suggested  to  likely  be  part  of  the 
 mechanism  for  Pol  II  pausing  (366)  ,  with  the  goal  to  hold  back  Pol  II  elongation  (368)  and  the  DNA  replisome 
 (369)  .  However,  R-loops  may  also  form  as  a  result  of  splicing  defects  which  further  highlights  the  importance  of 
 splicing  events  during  transcriptional  pausing  since  the  lack  of  splicing-dependent  nascent  RNA  processing 
 leads  to  an  increased  formation  of  R-loops  which  would  have  otherwise  be  prevented  through  timely  splicing 
 events. 

 3.2.8. Novel pausing factors 

 ZBTB40  and  SMAD5  have  not  been  previously  associated  with  the  regulation  of  transcriptional  pausing.  Thus, 
 we  suggest  a  novel  link.  ZBTB40  is  a  regulator  of  osteoblast  activity  and  bone  mass  (370)  .  SMAD5  from  the 
 SMAD  family  of  proteins  acts  as  a  signal  transducer.  It  is  activated  in  the  cytoplasm  and  accumulated  in  the 
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 nucleus  where  it  modulates  transcription  and  potentially  exerts  a  pause  regulatory  via  chromatin  remodeling 
 events through the recruitment of a diverse set of coactivators and corepressors  (344, 350)  . 

 3.3. Discussion 

 Promoter-proximal  Pol  II  pause  regulatory  elements  play  an  essential  role  in  transcriptional  regulation.  Their 
 identification  and  characterization  are  crucial  to  deciphering  gene  regulatory  mechanisms  that  maintain  cell 
 homeostasis  and  enable  cell  plasticity.  We  improved  our  understanding  of  pause  regulatory  elements  with 
 machine  learning  models  that  can  predict  the  extent  of  proximal  promoter  pausing  from  large-scale  features  of 
 genomic  and  transcriptomic  protein  binding  maps  and  gene  annotation  and  sequence  composition  features. 
 These  models  provide  novel  insights  into  cis-  and  trans-regulatory  elements  underlying  transcriptional  pausing. 
 In  particular,  our  model  achieved  a  high  prediction  performance  (R  2  ~  0.68  with  n=389,  factors;  R  2  ~  0.65  with 
 only  n=16  factors),  which  is  indicative  of  features  that  can  explain  a  large  part  of  the  variance  observed  in 
 transcriptional  pausing.  The  generalizability  of  the  model  is  demonstrated  by  its  high  prediction  performance  on 
 cross  cell  type-specific  binding  data  (R  2  ~  0.52),  indicative  of  rules  learned  that  are  general  and  cell  type 
 unspecific,  which  is  in  accordance  with  the  observation  that  pausing  of  genes  is  prevalent  across  a  large  fraction 
 of  cell  types  (309)  .  Additional  models  trained  on  subsets  of  proteins  implicated  in  either  chromatin  remodeling, 
 transcription  initiation,  elongation,  splicing,  and  further  downstream  transcript  processing  showed  high 
 predictive  power  and  strongly  supported  the  intricate  connection  of  these  processes  (3,  297,  310,  324,  325,  328, 
 371,  372)  with  transcriptional  pausing.  Strikingly,  splicing  factors  have  the  highest  predictive  power  for  pausing, 
 which  is  in  agreement  with  many  studies  that  propose  and  show  dual  roles  for  individual  proteins  as  is  the  case, 
 for  instance,  with  RBFOX2  (354–356)  ,  SRSF2  (330)  ,  U2AF65  (115)  or  MAGOH  (115)  providing  a  direct 
 causal  link  between  the  two  processes  of  splicing  and  transcriptional  pausing.  A  major  goal  of  our  analysis  was 
 the  identification  of  novel  regulators  of  transcriptional  pausing.  To  that  end,  we  used  two  approaches,  in  which 
 we  first  identified  novel  7SK  binding  RBPs  and  subsequently  showed  their  high  predictive  power  for  pausing. 
 Secondly,  we  investigated  the  feature  contributions  in  our  model  to  extract  protein  factors  with  higher 
 contribution  scores  than  established  pausing  factors.  Many  of  these  factors  like  RBOFX2  (354–356)  ,  AQR 
 (363)  ,  JUN,  and  JUND  (347)  have  been  shown  to  affect  transcriptional  pausing  or  to  be  implicated  in  certain 
 processes  associated  with  pausing.  Thus  these  factors  and  their  functional  background  provide  some  initial 
 mechanistic hypotheses and represent attractive targets for experimental validation. 

 We  have  chosen  to  obtain  and  analyze  data  for  the  HepG2  and  K562  cell  lines  from  the  ENCODE  project.  They 
 have  been  extensively  characterized  with  multiple  types  of  assays.  In  particular,  it  provides  an  unparalleled 
 number  of  genomic  and  transcriptomic  binding  maps  and  thereby  enables  the  identification  of  novel  regulators 
 of  promoter-proximal  pausing.  However,  a  limitation  is  that  not  all  previously  characterized  regulators  of 
 pausing  are  available.  Moreover,  to  quantify  proximal  promoter  pausing,  only  GRO-seq  data  or  similar 
 variations  are  available  for  these  two  cell  lines.  On  the  other  hand,  multi-omics  approaches  like  TT-seq  (373)  or 
 mNET-seq  (297,  374,  375)  estimate  the  kinetic  rates  of  initiation  and  pause  duration  more  accurately  yet  are 
 only  available  for  the  K562  and  Raji  B  cell  lines.  Nonetheless,  these  provide  at  least  ground  for  future  studies  of 
 transcriptional  pausing  with  enhanced  precision.  Once  they  are  available  across  cell  lines,  elaborate  validation 
 procedures  will  also  be  available.  Unfortunately,  these  data  types  are  not  available  for  a  second  ENCODE  cell 
 line  which  would  not  make  cross-validation  possible.  Taken  together,  we  provide  a  framework  to  foster  our 
 understanding  of  transcriptional  regulation  from  the  perspective  of  the  critical  early  steps  in  transcriptional 
 elongation.  At  the  same  time,  we  expect  improvements  with  more  accurate  kinetic  profiling  of  the  polymerase, 
 broader availability of protein binding maps, and improved binding site prediction from DNA sequence alone. 
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 4.  Trans-epistasis  underlying  Coronary  Artery  Disease  confers  differential 
 disease risk and perturbs gene expressions in trans 
 This  chapter  covers  the  contents  of  our  second  research  project  concerned  the  identification  of  trans  genetic 
 interactions  as  upstream  trans-regulators  of  downstream  trans  target  genes  that  underlie  Coronary  Artery 
 Disease  (review  Section  1.1.  Thesis  Aims  ).  The  contents  are  entirely  based  on  my  manuscript  in  preparation 
 (June 2022) and essentially replicate it, including the figures. 

 To  briefly  recap  our  aims,  Coronary  Artery  Disease  (CAD)  is  a  cardiovascular  atherosclerotic  inflammatory 
 disease  characterized  by  occlusions  of  the  coronary  arteries.  It  is  one  of  the  leading  causes  of  death  worldwide 
 (5)  ,  with  environmental  and  genetic  risk  factors  contributing  to  the  disease  etiology  of  CAD  (33,  376–378)  . 
 Genome-wide-association  studies  (GWAS)  (17–28)  identified  numerous  genetic  risk  factors  with  an  overall 
 heritability  of  CAD  estimated  as  40-60%  (33)  ,  of  which  up  to  38%  is  collectively  explained  by  loci  identified 
 through  GWAS  (379)  ,  yet,  only  4%  of  the  variance  is  explained  in  an  independent  test  population  by  additive 
 polygenic  risk  scores  that  incorporate  such  loci  (34)  .  This  indicates  that  multiplicative  effects  between  different 
 genetic  factors  (epistasis)  or  genetic  and  environmental  factors  might  explain  the  remaining  proportion  of 
 heritability  (380)  .  Indeed,  numerous  epistatic  interactions  have  been  already  identified  in  model  organisms  (161, 
 162)  and  even  in  humans  to  modulate  gene  expression  levels  (381,  382)  which  support  the  hypothesis  that 
 epistatic  interactions  may  also  contribute  to  complex  diseases  such  as  CAD.  Because  epistasis  changes  the 
 linkage  disequilibrium  (LD)  between  pairs  of  loci  (383)  ,  differences  in  LD  between  case  and  control  groups  can 
 be  used  as  a  means  to  prioritize  SNP  pairs  for  epistasis  testing  (384)  ,  thereby  reducing  the  set  of  possible  SNP 
 pairs  and  overcoming  the  multiple  testing  burden.  This  approach  is  favored  over  a  previous  approach  on  a  Type 
 2 Diabetes data set  (385)  but has not yet been applied  to study CAD. 

 Therefore,  in  this  project,  we  aimed  to  identify  epistatic  interactions  between  previously  identified  GWAS  loci 
 (379)  for  CAD  by  applying  an  LD  filter  to  avoid  the  multiple  testing  burden.  Our  approach  integrates  two 
 independent  cohorts  to  separate  discovery  and  replication  analysis.  We  preselected  pairs  of  loci  based  on  the  LD 
 difference  between  cases  and  controls  in  the  UK  Biobank  (UKBB)  cohort  and  subsequently  subjected  these 
 pairs  of  loci  to  statistical  testing  for  epistasis  with  a  permutation  testing  procedure  to  nominate  SNP  pairs  for 
 replication  analysis.  Replication  analysis  included  >35.000  case-control  samples,  and  we  were  able  to  identify 
 and  replicate  n=4  interacting  pairs  of  SNPs  for  which  we  further  characterized  their  effects  on  gene  expression 
 through  genotype-combination  dependent  differential  gene  expression  analysis,  which  revealed  n=2 
 differentially  regulated  trans  target  genes  that  could  be  independently  replicated  with  regards  to  the  SNP  pair 
 genotype combination, the direction of effects, and more importantly, in the same or a highly related tissue type. 

 4.1. Materials & Methods 

 This  project  used  multiple  large-scale  data  sets  to  study  Coronary  Artery  Disease.  Genotype  data  from  the  UK 
 Biobank  data  served  to  discover  SNP  interactions.  The  UK  Biobank  (UKBB)  (386)  is  a  large-scale  database  of 
 genetic  and  health  information  from  half  a  million  volunteers  from  the  United  Kingdom  aged  between  40  and  69 
 years.  The  UKBB  is  a  large  and  rich  data  set  providing  data  on  blood,  urine,  and  saliva  samples,  health-related 
 records,  as  well  as  detailed  information  about  people's  lifestyles.  This  allows  linking  lifestyle  factors  with 
 disease  states,  enabling  a  deeper  understanding  of  how  individuals  experience  diseases  and  their  underlying 
 causes.  Moreover,  volunteers  will  be  followed  for  at  least  30  years  after  enrollment,  enabling  disease 
 progression analysis with time-resolved health records. 

 For  validation  purposes,  we  have  integrated  and  aggregated  multiple  data  sets  of  genome-wide  associations 
 studies  for  CAD  namely  from  the  German  Myocardial  Infarction  Family  Studies  (GerMIFS)  I  (387)  ,  II  (388)  ,  III 
 (389)  ,  IV  (379)  ,  V  (390)  ,  VI  (391)  ,  VII  (392)  ,  the  LUdwigshafen  RIsk  and  Cardiovascular  Health  Study 
 (LURIC)  (393)  ,  Cardiogenics  (CG)  (394)  ,  Wellcome  Trust  Case  Control  Consortium  (WTCCC)  (395)  ,  and 
 Myocardial Infarction Genetics Consortium (MIGEN)  (396)  . 
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 To  enable  downstream  differential  gene  expression  analyses,  we  have  integrated  data  from  the  Stockholm-Tartu 
 Atherosclerosis  Reverse  Networks  Engineering  Task  (  STARNET)  study  (397,  398)  ,  which  is  concerned  with  the 
 investigation  of  living  patients  with  cardiovascular  diseases.  Samples  of  multiple  disease-relevant  tissues  have 
 been  taken  during  open  thorax  surgery  of  600  coronary  artery  disease  (CAD)  patients,  including  from  blood, 
 atherosclerotic-lesion-free  internal  mammary  artery  (MAM),  atherosclerotic  aortic  root  (AOR),  subcutaneous  fat 
 (SF),  visceral  abdominal  fat  (VAF),  skeletal  muscle  (SKLM)  and  liver  (LIV).  An  inclusion  criterion  for  the 
 study  was  the  patient's  eligibility  for  coronary  artery  by-pass  graft  (CABG)  surgery,  while  exclusion  criteria 
 were  other  severe  systemic  diseases,  such  as  active  systemic  inflammatory  diseases  or  cancer.  The  study 
 includes  patients  of  Caucasian  origins,  mainly  Northern  European  (Finnish)  descent,  with  31%  being  female.  In 
 addition,  32%  had  diabetes,  75%  had  hypertension,  67%  had  hyperlipidemia,  and  33%  had  myocardial 
 infarction  before  age  60.  The  study  has  566  genotypes  and  3577  RNA-seq  profiles  from  previously  mentioned 
 tissues  for  600  patients.  Genotypes  were  imputed  to  a  total  of  14,098,063  DNA  variant  calls  (6,245,505  with 
 minor  allele  frequency  (MAF)  >5%).  RNA  sequencing  was  performed  with  poly-A  (LIV,  SKLM,  VAF,  SF,  and 
 blood)  and  ribo-zero  (AOR,  MAM)  protocols  with  50-100  bp  read  lengths,  with  single-end  sequencing  and  a 
 read  depth  of  15-30  million  reads.  The  STARNET  study  served  to  identify  genotype-combination-dependent 
 differential gene expression profiles in CAD patients. 

 To  validate  differential  gene  expression  analyses,  we  have  further  integrated  data  from  the  Genotype-Tissue 
 Expression  (GTEx)  project  (399)  .  The  GTEx  project  provides  resources  to  study  human  tissue-specific  gene 
 expression  and  its  relationship  to  genetic  variation.  Genetic  variations  can  be  linked  to  differential  gene 
 expression  patterns  and  identified  as  expression  quantitative  trait  loci  (eQTLs).  GTEx  enables  this  by  collecting 
 multiple  human  tissues  and  quantifying  RNA  types  along  with  dense  genotyping  of  the  individuals  to  assess 
 genetic  variation  within  their  genomes  and  ultimately  link  them  to  gene  expression  patterns.  This  fosters  a 
 comprehensive  understanding  of  the  mechanism  of  gene  regulation  in  dependence  on  genetic  variation,  which 
 then  can  be  used  to  understand  diseases.  In  addition  to  the  publicly  available  RNA-seq  and  genotype  data  sets, 
 their  database  allows  investigators  to  view  and  obtain  precalculated  cis-  and  trans-eQTL  for  all  tissues,  eQTL 
 associated  with  diseases,  allele-specific  expressions  as  well  as  tissue-specific  alternative  splicing  information. 
 The  latest  version  (v8,  2021)  of  GTEx  provides  gene  expression  data  of  17382  samples  from  948  donors  with 
 age  groups  ranging  from  20-70  years  across  54  human  tissues  and  genotype  data  of  15253  samples  from  838 
 donors  also  across  54  tissues.  The  GTEx  cohort  served  to  validate  genotype-combination-dependent  differential 
 gene expression profiles identified in the STARNET cohort. 

 In  the  following  subsections  from  4.1.1.  Integration  of  Genotype  and  Phenotype  Data  to  4.1.6.  Identification  of 
 Epistatic  Effects  on  Gene  Expression  in  Trans  we  will  cover  the  technical  aspects  in  analyzing  these  data  sets  for 
 identifying epistatic interactions underlying Coronary Artery Disease. 

 4.1.1. Integration of Genotype and Phenotype Data 
 For  identifying  potential  SNP  interactions  underlying  CAD,  we  obtained  genotype  data  from  the  UK  Biobank 
 project  (UKBB;  Project  ID  25214;  n=~500,000  samples)  (386)  .  Samples  were  then  filtered  for  phenotypes  of  the 
 circulatory  system  of  ischemic  heart  diseases  with  ICD-10  codes  I20,  I21,  I22,  I23,  I24,  and  I25,  corresponding 
 to  phenotypes  of  u  nstable  angina,  acute  myocardial  infarction,  subsequent  ST  elevation  (STEMI)  and  non-ST 
 elevation  (NSTEMI)  myocardial  infarction,  certain  current  complications  following  ST  elevation  (STEMI)  and 
 non-ST  elevation  (NSTEMI)  myocardial  infarction  (within  the  28  day  period),  other  acute  ischemic  heart 
 diseases  and  chronic  ischemic  heart  disease  ,  respectively.  We  thereby  obtained  36191  diseased  and  451218 
 healthy samples. This cohort served as the discovery data set for potential genetic interactions. 

 As  a  replication  cohort  of  potential  SNP  interaction,  we  aggregated  individual-level  genotypes  of  11  CAD 
 case-control  studies,  namely  the  German  Myocardial  Infarction  Family  Studies  (GerMIFS)  I  (387)  ,  II  (388)  ,  III 
 (389)  ,  IV  (379)  ,  V  (390)  ,  VI  (391)  ,  VII  (392)  ,  the  LUdwigshafen  RIsk  and  Cardiovascular  Health  Study 
 (LURIC)  (393)  ,  Cardiogenics  (CG)  (394)  ,  Wellcome  Trust  Case  Control  Consortium  (WTCCC)  (395)  ,  and 
 Myocardial  Infarction  Genetics  Consortium  (MIGEN)  (396)  .  We  refer  to  this  aggregate  data  set  as  the  GWAS 
 cohort.  It  consists  of  17584  diseased  and  18157  healthy  samples  and  served  as  a  replication/validation  cohort  of 
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 potential  SNP  interactions  identified  in  the  UK  Biobank  cohort.  Expected  genotype  frequencies  calculated  as 
 two  times  the  allele  frequency  based  on  genotype  data  from  the  1000  genomes  project  (400)  served  to  replace 
 missing  genotype  data.  Missing  genotypes  were  imputed  based  on  haplotypes  obtained  from  the  1000  Genomes 
 (400)  data. 

 4.1.2. Integration of Quantitative Trait Loci for Coronary Artery Disease 
 We  have  integrated  CAD-associated  quantitative  trait  loci  (SNPs)  identified  in  a  1000  genomes-based 
 genome-wide  meta-analysis  of  coronary  artery  disease  (379)  to  enable  epistasis  discovery  for  CAD.  This  set 
 consisted  of  n=202  variants,  of  which  n=157  had  a  valid  rs-identifier  and  were  measured  in  the  aforementioned 
 GWAS  cohort.  This  set  of  n=157  CAD-associated  SNPs  (see  Supplementary  Table  4.1  for  SNP  meta-data) 
 served to discover SNP-SNP interactions in the UK Biobank cohort. 

 4.1.3. Identification of Candidate Epistatic Interactions 
 We  identified  SNP  interactions  with  a  randomization  test  based  on  differential  SNP  correlations  between  cases 
 and  controls.  To  ensure  that  the  sample  size-dependent  calculation  of  SNP  correlations  is  not  inflated  in  any  of 
 the  subgroups  of  either  cases  or  controls,  we  downsampled  the  controls  in  the  UKBB  data  set  to  match  the  ratio 
 of  cases  and  controls  observed  in  the  GWAS  data  set.  This  enables  the  comparison  of  SNP  correlation  between 
 cohorts.  We  downsampled  the  majority  class  within  a  cohort  to  obtain  comparable  correlation  coefficients 
 between  cases  and  controls.  Because  correlation  coefficients  might  be  affected  by  differential  CAD  risk  allele 
 counts,  we  stratified  the  samples  into  groups  with  the  same  number  of  risk  alleles.  A  group  size  constraint  of  a 
 minimum  of  n=15  samples  was  chosen,  and  samples  at  the  lower  and  higher  end  of  the  distribution  of  the  risk 
 allele  counts  were  successively  merged  until  the  group  size  constraint  was  met.  Therefore  samples  at  the 
 extremes  of  the  risk  allele  count  distribution  had  to  be  assigned  to  groups  with  differential  amounts  of  risk 
 alleles.  Subsequently,  we  calculated  the  Spearman  SNP  correlations  within  cases  and  controls  separately.  The 
 SNP  correlations  were  then  aggregated  per  SNP  pair,  per  subpopulation  of  cases  and  controls,  and  over  the  risk 
 allele  groups  weighted  by  the  size  of  the  groups.  This  ensures  that  the  calculation  of  SNP  correlations  is  not 
 biased by differential risk allele counts. The following specifies the computations made: 

 ,  where  𝐶 
 𝑖 ,    𝑗 ,    𝑘 

=    
 𝑙 = 1 

 𝑛 

∑
ρ

 𝑖 , 𝑗 , 𝑘 , 𝑙 
    |  𝑚 

 𝑙 
 | 

 𝑁 

 is  the  correlation  of  SNPs  with  in  the  -th  sub-population  with  obtained  𝐶        𝑖 ,     𝑗     𝑖 ≠  𝑗  𝑘  𝑘    ∈    { 𝑐𝑎𝑠𝑒𝑠 ;     𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 }
 through  the  summation  of  Spearman  SNP  correlations  of  groups  of  samples  with  the  same ρ

 𝑖 , 𝑗 , 𝑘 , 𝑙 
 𝑙    ∈    { 1    ..  𝑛 }   

 number  of  risk  alleles,  weighted  by  the  individual  group  sizes  and  normalized  by  the  total  size  of  all  |  𝑚 
 𝑙 
 | 

 subgroups  as  .  𝑛  𝑁 

 A  randomization  test  was  then  performed  in  which  the  absolute  differences  of  squared  SNP  correlations  between 
 cases and controls served as a test statistic, i.e 
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 times,  and  the  empirical  null  distribution  of  the  test  statistic  was  obtained  by  calculating  the  statistic  S  on  the 
 permuted  data.  To  obtain  empirical  p-values  of  observing  a  test  statistic  on  permuted  data  at  least  as  extreme  as 
 the  observed  test  statistics  on  non-permuted  data,  we  compared  the  observed  test  statistic  S  based  on 
 non-permuted  data  against  the  null  distribution  of  the  statistic  S  obtained  by  the  permutation  testing  on  the 
 permuted  data.  Haplotype  effects  and  cis-epistasis  were  avoided  by  only  considering  inter-chromosomal 
 (trans-acting)  SNP  pairs  (n=11447;  see  Supplementary  Table  4.2  for  the  list  of  SNP  pairs).  For  some  SNP 
 pairs,  the  correlation  statistic  could  not  be  calculated  due  to  insufficient  variance  in  an  SNP  genotype  and  thus 
 was  excluded  (n=2252).  Following  the  permutation  test,  we  selected  the  top  1%  SNP  pairs  (n=92:  see 
 Supplementary  Table  4.3  )  with  the  lowest  empirical  p-values  and  subjected  them  to  validation  with  linear 
 models (see  Section 4.1.4. Discovery and Replication  of Epistatic Interactions  ) 
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 4.1.4. Discovery and Replication of Epistatic Interactions 
 To  validate  the  SNP  interactions  (n=92)  identified  in  the  permutation  testing  procedure  (see  Section  4.1.3. 
 Identification  of  Candidate  Epistatic  Interactions  ),  we  performed  logistic  regression  analysis  on  the  UKBB  data 
 set.  The  CAD  case-control  status  as  the  target  variable  was  modeled  in  dependence  of  a  multiplicative  term  for 
 SNP-SNP  genotype  interactions,  the  terms  for  the  genotypes  of  each  of  the  individual  interacting  SNPs  and  sex 
 as an additive covariate: 
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 validated  discovery  SNP-SNP  interactions.  However,  we  further  subjected  this  validated  discovery  set  of 
 SNP-SNP  interactions  identified  in  UKBB  to  replication  in  the  GWAS  cohort.  Replication  was  performed  by 
 testing  the  identical  model  on  the  GWAS  replication  cohort  and  selecting  SNP  pairs  with  nominal  p  <  0.05  and 
 the same direction of effects and similar effect sizes as observed in the UKBB cohort. 

 4.1.5. Integration of Gene Expression Data 
 We  integrated  gene  expression  and  genotype  data  from  the  Stockholm-Tartu  Atherosclerosis  Reverse  Networks 
 Engineering  Task  (  STARNET)  study  (397,  398)  as  well  as  the  Genotype-Tissue  Expression  project  (GTEx 
 v8)  (399)  to  enable  the  investigation  of  the  cis-  and  trans-regulatory  effects  of  the  identified  SNP  interaction  on 
 the  expression  of  genes.  The  STARNET  data  served  as  the  discovery  cohort  and  the  GTEx  data  as  the 
 replication  cohort  of  potential  cis-  or  trans-regulated  genes.  Gene  expression  profiles  were  obtained  for  multiple 
 tissues  (see  Supplementary  Table  4.4  for  the  number  of  genes  and  samples  per  tissue  per  cohort),  and 
 non-coding  RNA  biotypes  were  included.  Gene  read  counts  were  normalized  per  fragment  per  kilobase  per 
 million  (FPKMs),  and  genes  not  expressed  in  more  than  90%  of  the  samples  were  excluded.  The  effect  of  SNPs 
 identified  in  the  interaction  analysis  on  the  closest  gene  at  the  SNP  locus  (cis-eQTL  effects)  was  evaluated  with 
 linear  regression  models,  in  which  the  mapped  genes  normalized  expression  levels  served  as  the  targets  and  the 
 individual SNPs as predictors. 

 4.1.6. Identification of Epistatic Effects on Gene Expression in Trans 
 To  unveil  potential  downstream  epistatic  effects  on  the  transcriptional  landscape  of  genes,  we  evaluated 
 genotype-combination  dependent  differential  gene  expressions  for  all  genes  localized  in  trans  of  each  interacting 
 SNP  pair.  Specifically,  for  each  possible  genotype  combination  at  the  two  SNPs  of  an  interacting  SNP  pair,  we 
 assessed  the  significance  of  the  differences  in  observed  expression  levels  between  samples  that  carry  a  specific 
 genotype  combination  against  samples  that  do  not  carry  the  same  genotype-combination.  Thus,  a  binary  carrier 
 status  variable  served  to  distinguish  between  these  cases,  assigning  a  value  of  one  for  each  sample  carrying  a 
 specific  genotype-combinations  or  zero  otherwise.  We  then  conducted  linear  regression  analysis  in  each  tissue 
 of the STARNET cohort, predicting individual gene expressions from the carrier status: 
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 genotype-combination  between  interacting  SNPs  and  with  .  Differentially  expressed  genes  were  𝑘  𝑖  𝑗  𝑖 ≠  𝑗 
 selected  based  on  whether  the  carrier  status  indicator  variable  showed  a  significant  effect  (  ,  FDR  <  𝐻 

 0 
   : β

 1 
=  0 

 5%)  for  a  given  SNP  pair,  genotype  combination,  and  tissue.  Validation  of  differential  gene  expressions  was 
 conducted  in  the  GTEx  v8  cohort,  performing  the  same  methodology  except  limiting  the  analysis  on  the 
 STARNET  discovery  set  of  differentially  expressed  genes.  The  replication  criterion  was  FDR  <  5%.  Certain 
 genotype  combinations  of  interacting  SNP  pairs  have  relatively  small  allele  frequencies  and  lead  to  small 
 sample  counts,  which  can  inflate  the  test  statistics  of  the  linear  models.  To  bypass  this  risk  imposed  by  these  rare 
 events,  we  determined  the  significance  of  the  regression  coefficients  for  the  carrier  indicator  variable.  This  was 
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 accomplished  with  a  permutation  testing  procedure  comparing  the  absolute  t-statistic  (  )  from  a  two-sided  t-test  𝑇 
 between  samples  with  and  without  a  specific  genotype  combination  against  the  expected  distribution  of  the  test 
 statistic  T.  The  expected  (null)  distribution  of  the  test  statistics  was  obtained  by  permuting  the  assignment  of 

 samples  to  genotypes  times,  inherently  removing  any  relationship  between  gene  expression  levels  and  𝑏 =  1  𝑒  4 

 genotypes,  and  calculating  the  -statistic  b  times  on  the  permuted  data.  Evaluating  how  often  we  observe  a  𝑇 
 permutation  T-statistic  that  is  at  least  as  extreme  as  the  observed  T-statistic  of  the  non-permuted  data  yields  an 
 empirical  p-value  that  allows  us  to  rule  out  individual  differential  trans  gene  expression  results  that  are  likely 
 due to chance (FDR < 5%). 

 4.2. Results 

 4.2.1. Identification of Trans Epistasis in CAD 
 The  integration  of  large-scale  genotype  and  phenotype  data  (review  Section  4.1.1.  Integration  of  Genotype  and 
 Phenotype  Data  )  from  the  UK  Biobank  as  a  discovery  cohort  as  well  as  11  additional  genome-wide  CAD 
 case-control  studies  as  a  replication  cohort  together  with  n=157  quantitative  trait  loci  for  CAD  from  a  large 
 meta-analysis  (379)  (review  Section  4.1.2.  Integration  of  Quantitative  Trait  Loci  for  Coronary  Artery  Disease  ) 
 enabled  the  identification  of  genetic  interactions  underlying  CAD  through  a  filter-based  permutation  testing 
 approach coupled with linear modeling (Fig. 4.1). 

 Figure  4.1:  Discovery  and  replication  analysis  workflow  for  the  identification  of  trans  genetic  interactions 
 underlying Coronary Artery Disease. 

 The  CAD  prevalence  in  the  percentiles  of  a  polygenic  risk  score  based  on  the  number  of  risk  alleles  per  sample 
 (Fig.  4.2  A)  successfully  separates  cases  and  controls  (Fig.  4.2  B)  and  revealed  a  non-linear  increase  in  the 
 disease  prevalence  (Fig.  4.2  C),  indicative  of  multiplicative  effects  in  addition  to  the  additive  genetic  effects, 
 supporting the idea of potential genetic interactions underlying CAD. 
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 Figure  4.2:  The  polygenic  risk  score  for  CAD  (UKBB  cohort).  (A)  Distribution  of  the  polygenic  risk  score 
 distribution  for  CAD,  quantifying  disease  risk  with  the  number  of  CAD  risk  alleles  carried.  (B)  Distribution  of 
 the  polygenic  risk  score  in  cases  and  controls.  (C)  Prevalence  of  CAD  cases  in  the  percentiles  of  the  polygenic 
 risk score.  (D)  Interchromosomal SNP - SNP pair correlations  between cases and controls. 

 An  investigation  into  the  differences  of  linkage  disequilibria  (LD)  of  interchromosomal  SNP  pairs  between 
 cases  and  controls  revealed  differential  SNP  correlation  structures  in  which  the  SNP-SNP  correlations  are 
 globally  highly  similar  (Pearson  correlation  =  0.77),  yet  with  differences  observable  for  individual  SNP  pairs 
 (Fig.  4.2  D)  which  have  the  potential  to  contribute  to  the  disease  etiology  and  further  separate  healthy  from 
 unhealthy  samples.  These  trends  can  also  be  observed  in  the  GWAS  cohort  (see  Supplementary  Figure  4.1 
 A-D  ). 

 SNP  pairs  were  ranked  and  prioritized  based  on  the  statistical  significance  of  these  differences  of  LD 
 correlations  between  cases  and  controls  in  the  UK  Biobank  as  the  discovery  cohort.  The  statistical  significance 
 was  assessed  by  a  randomization  procedure  (review  Section  4.1.3.  Identification  of  Candidate  Epistatic 
 Interactions  ;  Fig.  1  D-F).  The  observed  distribution  of  SNP  correlation  differences  between  cases  and  controls 
 was  compared  against  the  expected  distribution  of  SNP  correlation  differences  between  cases  and  controls  based 
 on  permuted  data.  Subsequently,  we  selected  the  top  1%  (n=92;  see  Supplementary  Table  4.3  )  SNP  pairs  with 
 the  lowest  empirical  p-values  obtained  from  the  permutation  test  to  prioritize  SNP  pairs.  We  then  evaluated  the 
 interaction  effects  of  these  pre-filtered  SNP  pairs  in  multiplicative  terms  in  logistic  regression  models  on  the 
 CAD  case-control  status  (review  Section  4.1.4.  Discovery  and  Replication  of  Epistatic  Interactions  ).  Among 
 these  potential  interactors  the  majority  (98%;  n=90)  showed  significant  interaction  effects  (FDR  <  5%).  These 
 n=90  SNPs  were  further  subjected  to  replication  in  the  GWAS  cohort  (same  direction  of  effect  and  similar  effect 
 size)  with  analogous  models,  which  identified  the  SNP  pairs  rs72685791  -  rs12202017  ,  rs10841443  - 
 rs12899265  ,  rs73222236  -  rs11911017  and  rs4719608  -  rs2487928  with  replicated  interaction  effects  on  CAD 
 (see  Table  4.1  for  meta-information  from  logistic  regressions).  Due  to  the  high  agreement  (100%)  of  effect 
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 directions  and  effect  sizes  (mean  absolute  difference  of  interaction  beta-coefficients  between  the  cohorts  ~  0.01)    
 between  the  cohorts,  as  well  as  the  initial  validation,  approaches  with  permutation  testing  procedures  and  the 
 validation  with  FDR  adjusted  logistic  regression  results,  we  chose  to  not  additionally  control  for  false  positives 
 of interactions identified in the GWAS cohort. 

 SNP 
 Pairs 

 SNP1 
β

 1 

 SNP1 
 𝑠𝑒 

 1 

 SNP1 
 𝑝 

 1 

 SNP2 
β

 2 

 SNP2 
 𝑠𝑒 

 2 

 SNP2 
 𝑝 

 2 

 Int. 
β

 3 

 Int. 
 𝑠𝑒 

 3 

 Int. 
 𝑝 

 3 

 Int. 
 𝑝 

 3 
 ' 

 rs72685791 
 rs12202017 

 0.143 
 (0.147) 

 0.033 
 (0.046) 

 1.4e-5 
 (1.4e-3) 

 0.175 
 (0.170) 

 0.036 
 (0.048) 

 1.2e-6 
 (4.6e-4) 

 -0.073 
 (-0.056) 

 0.021 
 (  0.028) 

 5.9e-4 
 (4.8e-2) 

 2.8e-3 
 - 

 rs73222236 
 rs11911017 

 0.071 
 (0.087) 

 0.013 
 (0.017) 

 1.2e-7 
 (1e-6) 

 0.045 
 (0.112) 

 0.020 
 (0.029) 

 2.3e-3 
 (1.7e-4) 

 -0.068 
 (-0.063) 

 0.020 
 (0.030) 

 8.9e-4 
 (3.3e-2) 

 4.5e-3 
 - 

 rs4719608 
 rs2487928 

 -0.020 
 (-0.027) 

 0.019 
 (0.026) 

 0.299 
 (0.301) 

 0.026 
 (0.016) 

 0.014 
 (0.019) 

 5.6e-2 
 (0.384) 

 0.049 
 (0.053) 

 0.017 
 (0.023) 

 4.7e-3 
 (2e-2) 

 7.4e-3 
 - 

 rs10841443 
 rs12899265 

 0.016 
 (-7.4e-5) 

 0.013 
 (0.018) 

 0.198 
 (0.996) 

 -0.105 
 (-0.085) 

 0.033 
 (0.057) 

 1.8e-3 
 (0.137) 

 0.071 
 (0.101) 

 0.023 
 (0.037) 

 2.1e-3 
 (7.3e-3) 

 2.9e-3 
 - 

 Table  4.1:  Meta-information  of  SNP  interactions  from  logistic  regression  models  for  the  UKBB  data  set. 
 Meta-information  on  the  GWAS  cohort  from  analogous  models  is  given  in  brackets.  Column  “  SNP  Pairs  ”  lists  all  validated 
 and  replicated  interacting  SNP  pairs,  “  ”  the  beta-coefficients  of  each  independent  variable,  “  ”  the  standard  error  of  the β

 𝑖 
 𝑠  𝑒 

 𝑖 

 i-th  -coefficient  estimate  and  “  ”  the  nominal  p-value  of  the  i-th  independent  variable.  “SNP1”  and  “SNP2”  refer  to  the β  𝑝 
 𝑖 

 first  and  second  mentioned  SNP  of  a  SNP  pair  given  in  the  “SNP  Pair”  column  ,  respectively.  Column  “Int.”  refers  to  the 
 interaction  term  of  the  SNPs  given  in  the  “SNP  Pair”  column.  Column  “Int.  ”  gives  the  FDR  adjusted  p-values  (FDR  <  𝑝 

 3 
 ' 

 5%) of the interactions in the UKBB data set. Meta-information about the intercept and the “Sex” covariate is not shown. 

 Literature  research  about  the  individual  interacting  SNPs  (see  Table  4.2  ),  specifically  the  associations  of  the 
 SNP-associated  genes  with  CAD  revealed  multiple  functional  implications.  For  instance,  variations  in 
 GUCY1A1  affect  platelet  aggregation  and  confer  an  increased  risk  for  CAD  (401)  .  Strikingly,  it  is  also 
 associated  with  ischemic  events  after  coronary  intervention  (402)  ,  large  artery  atherosclerotic  stroke  risk  (403) 
 as  well  as  myocardial  infarction  (404)  .  TARID  is  an  antisense  RNA  of  TCF21  and  can  induce  the  expression  of 
 TCF21  by  inducing  the  demethylation  of  the  TCF21  promotor  (405)  .  Interestingly,  it  is  proposed  that  TCF21 
 acts  as  a  master  regulator  of  CAD-associated  genes  (406)  .  Thus  TARID  influences  expression  levels  of  CAD 
 target  genes  through  the  epigenetic  regulation  of  TCF21.  TARID  is  also  involved  in  cell  cycle  pathways 
 associated  with  coronary  artery  disease  and  has  been  shown  to  induce  cell  proliferation  (358).  IGF-1R  is  a 
 receptor  gene  and  binds  IGF-1  with  high  affinity,  which  in  turn  is  strongly  associated  with  cardiovascular  events 
 (407,  408)  and  diseases  (409)  ,  conferring  protective  effects  (410–412)  .  JCAD  (Junctional  protein  associated 
 with  coronary  artery  disease  or  KIAA1462)  is  a  novel  CAD  disease  gene  that  advances  atherosclerotic  plaque 
 formation  (413)  .  ITGB8  has  been  shown  to  be  strongly  associated  with  CAD  severity  in  epicardial  adipose  tissue 
 (414)  and  functions  to  activate  TGF-β.  TGF-β  is  strongly  associated  with  advanced  atherosclerosis  and  CAD  or 
 CVDs  in  large  (415–418)  .  No  evidence  for  a  link  between  MSL2,  LINC00189,  LINC02398,  MACC1,  and  CAD 
 or CVDs exists yet. 
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 SNP  EA  NEA  EAF  p  Loc  Gene  Conseq. 

 rs72685791  G  A  0.176 (UKBB) 
 0.179 (GWAS) 

 7.7e-3 (UKBB) 
 1.2e-3 (GWAS)  4:156620217  GUCY1A1  Intron Variant 

 rs12202017  A  G  0.249 (UKBB) 
 0.228 (GWAS) 

 1.3e-7 (UKBB) 
 2.4e-6(GWAS)  6:134173151  LINC01312; 

 TARID 
 Non Coding Transcript Variant; 
 Intron Variant 

 rs73222236  G  A  0.442 (UKBB) 
 0.427 (GWAS) 

 9.6e-5 (UKBB) 
 5.6e-6 (GWAS)  3:135888642  MSL2  Intron Variant 

 rs11911017  T  G  0.482 (UKBB) 
 0.487 (GWAS) 

 9.2e-1 (UKBB) 
 4.2e-4 (GWAS)  21:30567941  LINC00189 

 BACH1 
 Intron Variant 

 rs10841443  G  C  0.275 (UKBB) 
 0.258 (GWAS) 

 1.4e-4 (UKBB) 
 1.4e-1(GWAS)  12:20220033  LINC02398  Intron Variant 

 rs12899265  C  T  0.490 (UKBB) 
 0.493 (GWAS) 

 3.6e-1 (UKBB) 
 1.6e-2(GWAS)  15:99219598  IGF1R  Intron Variant 

 rs4719608  A  G  0.467 (UKBB) 
 0.455 (GWAS) 

 1.6e-1 (UKBB) 
 1.0e-1(GWAS)  7:20292134  ITGB8; 

 MACC1 
 Upstream Gene Variant 

 rs2487928  A  G  0.400 (UKBB) 
 0.392 (GWAS) 

 1.2e-6 (UKBB) 
 2.0e-3(GWAS)  10:30323892  JCAD  Intron Variant 

 Table  4.2:  Meta-information  about  individual  SNPs  of  interacting  SNP  pairs.  The  column  “  EA”  gives  the  effect  allele, 
 “  NEA”  the  non-effect  allele,  “  EAF”  the  allele  frequency  of  the  effect  allele,  “  p”  the  nominal  p-value  from  a  logistic 
 regression  model  of  the  SNPs  additive  CAD  association,  “  Loc”  the  position  on  the  genome,  “  Gene”  the  associated  gene(s) 
 and “  Conseq”  the consequences of the variants. 

 The  interaction  effects  of  specific  genotype  combinations  of  identified  SNP  pairs  can  be  seen  by  contrasting  the 
 observed  frequencies  of  specific  genotype  combinations  against  expected  genotype  combination  frequency 
 estimates from the logistic regression models for CAD cases (Fig. 4.3). 

 Figure 4.3:  Proportions of CAD cases in each genotype  combination as expected from an additive linear model (no 
 interaction term) against the observed proportion of CAD cases. 
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 For  instance,  the  GG/TT  combination  of  SNP  pair  rs73222236  -  rs11911017  shows  a  clear  difference  between 
 observed  and  expected  case  proportions  in  both  cohorts  and  represents  an  SNP  interaction  as  it  leads  to 
 differential  case  proportions.  Similar  effects  can  be  observed  for  the  remaining  SNP  pairs  (see  Supplementary 
 Figures 4.2-4.4  ). 

 4.2.2. Association of Gene Expression with interacting SNPs 
 Due  to  the  localization  of  the  majority  (87,5%)  of  SNPs  in  non-protein-coding  intronic  sequences  with  the 
 potential  to  alter  gene  regulatory  elements  (GREs)  and  the  expression  of  genes  in  cis  of  the  SNPs,  we 
 hypothesized  that  certain  genotype  combinations  of  interacting  loci  as  identified  earlier  (Table  4.1)  might 
 additionally  influence  the  expression  of  trans  target  genes  through  this  differential  regulation  of  SNP  associated 
 cis  genes.  To  investigate  genotype-combination-dependent  differential  trans  gene  expression  levels,  we 
 integrated  large-scale  gene  expression  and  genotype  data  for  multiple  tissues  from  the  STARNET  study  and  the 
 GTEx project (review  Section 4.1.1. Integration of  Genotype and Phenotype Data  ). 

 The  differential  trans  gene  (>1Mbp)  expression  analysis  was  conducted  within  each  tissue  of  the  STARNET 
 cohort  as  it  consists  of  CAD  cases  only.  We  constructed  linear  regression  models  predicting  gene  expression 
 levels  from  individual  genotype  combinations  of  interacting  SNPs  (review  Table  4.1  )  (see  Section  4.1.  Materials 
 &  Methods  ).  To  overcome  the  risk  of  inflating  test  statistics  resulting  from  low  sample  counts  in  specific 
 genotype  combinations,  we  evaluated  the  statistical  significance  of  the  observed  differential  expression  patterns 
 in  these  rare  combinations.  This  was  achieved  by  comparing  the  observed  distribution  of  gene  expressions  in  a 
 certain  genotype  combination  against  the  expected  distribution  of  gene  expressions  in  the  same  genotype 
 combination  based  on  permuted  data  obtained  from  a  randomization  test.  This  allowed  us  to  further  exclude 
 differential  trans  gene  expression  results  that  are  likely  due  to  chance  (FDR  <  5%),  account  for  outliers,  and 
 identify  n=5766  unique  differentially  expressed  genes  across  all  SNP  pairs  (n=4),  genotype  combinations 
 (n=36),  and  tissues  (n=7)  in  the  STARNET  study.  Following  the  same  methodology,  we  were  able  to  replicate 
 (FDR  <  5%)  n=1142  unique  differential  gene  expressions  in  the  GTEx  cohort.  Among  these,  n=299  unique 
 genes  are  differentially  expressed  in  dependence  of  the  same  SNP  pair  genotype  combination  in  the  GTEx 
 cohort  (see  Supplementary  Table  4.5  for  all  detailed  results).  Moreover,  n=6  genes,  including  two  novel 
 uncharacterized  genes,  are  significantly  differentially  expressed  in  the  same  SNP  pair  genotype  combination 
 with  the  same  direction  of  effects  between  the  cohorts  (see  Supplementary  Table  4.6  for  this  gene  subset  with 
 detailed  results).  Strikingly,  n=2  genes  (SLC25A4  and  IGF2)  were,  in  addition,  differentially  expressed  in  the 
 same  or  a  highly  related  tissue  type  between  the  cohorts,  representing  the  most  consistent  and  confident  result 
 subset. 

 For  instance,  the  interaction  between  the  SNPs  rs73222236  and  rs11911017,  with  cis-genes  MSL2  and 
 LINC000189,  leads  to  differential  expected  and  observed  case  frequencies  in  the  GA/TT  genotype  combination 
 (Fig.  4.3).  The  data  suggest  a  protective  effect  as  fewer  cases  are  observed  under  the  interaction  (“Obs”)  as 
 compared  to  the  additive  model  (“Exp.”)  which  does  not  account  for  the  interaction  effect.  In  this  genotype 
 combination  we  can  observe  the  differential  expression  of  trans  target  gene  SLC25A43,  in  both,  mammary 
 artery  (MAM)  tissue  in  STARNET  (Fig.  4.4B;  beta  =  0.03,  nominal  p  =  8.5e-5  and  FDR  adjusted  p  =  1.4e-2; 
 nominal  permutation  p-value  for  GA/TT  genotype  =  3.6e-2  and  FDR  adjusted  permutation  p  =  3.7e-2)  as  well  as 
 aortic  tissue  in  GTEx  (Fig.  4.4  C,  beta  =  0.01,  nominal  p  =  1.2e-4  and  adjusted  p  =  2.2e-2;  nominal  permutation 
 p-value  for  GA/TT  genotype  =  5e-4  and  FDR  adjusted  permutation  p  =  1e-3).  Both  tissue  types  are  highly 
 related.  The  GTEx  tissue  ‘Artery  -  Aorta’  refers  to  tissue  samples  from  the  ascending  aorta  or  other  thoracic 
 regions, while the ‘Mammary Artery’ refers to samples from the internal thoracic artery. 
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 Figure  4.4:  (A)  Conceptual  figure  of  the  genotype-combination  dependent  differential  trans-gene  expression  analyses. 
 Identified  SNP  pairs  (SNP  1  and  SNP  2)  might  affect  the  expression  of  interacting  genes  in  cis  (eQTL  effects  on  Gene  1 
 and  Gene  2)  which  in  turn  might  co-dysregulate  trans-target  genes  and  propagate  the  genetic  interaction  effect  into  the 
 gene  expression  space.  (B)  Genotype  combination  (GA/TT)  dependent  differential  expression  of  trans  target  gene 
 SLC25A43  of  MSL2  /  LINC000189  associated  interacting  SNPs  (rs73222236  /  rs11911017)  in  ‘MAM’  tissue  in  the 
 STARNET  cohort.  (C)  Genotype  combination  (GA/TT)  dependent  differential  expression  of  trans  target  gene  SLC25A43 
 of  MSL2  /  LINC000189  associated  interacting  SNPs  (rs73222236  /  rs11911017)  in  ‘Artery  -  Aorta’  tissue  in  the  GTEx 
 cohort. 

 The  effects  of  individual  interacting  SNPs  on  genes  in  cis  (<1MB)  were  estimated  with  an  expression 
 quantitative  trait  locus  (eQTL)  analysis,  in  which  cis  gene  expression  levels  were  modeled  in  dependence  of  the 
 individual  SNPs  genotypes  as  predictors  (see  Supplementary  Table  4.7  for  cis-eQTL  results).  The  genetic  loci 
 rs73222236  and  rs11911017  showed  a  significant  association  (alpha  =  0.05;  p  =  1.7e-3  for  MSL2  and  p  =  6e-8 
 for  LINC000189;  Supplementary  Figure  4.5  A-B  )  with  respective  genes  localized  in  cis  in  the  ‘Artery  -  Aorta’ 
 tissue  in  GTEx,  which  firmly  support  the  hypothesis  (Fig.  4.3  A)  of  the  differential  regulation  of  trans  target 
 genes,  in  this  case,  SLC25A43,  in  dependence  of  genotype-dependent  differentially  regulated  upstream  factors, 
 here  MSL2  and  LINC000189,  as  regulatory  factors  modulating  trans  target  genes  and  propagating  the  genetic 
 interaction  effect  in  trans  into  the  transcriptional  landscape.  No  expression  data  for  LINC00189  was  available  in 
 the  STARNET  cohort,  and  no  statistically  significant  cis  effect  of  rs11911017  on  MSL2  could  be  observed  (see 
 Supplementary  Figure  4.5  C  ).  Therefore,  the  mechanistic  details  of  the  trans-regulatory  mechanism  in  the 
 STARNET cohort remain to be understood. 

 The  SNP  interaction  between  rs73222236  and  rs11911017  in  the  GG/TT  genotype-combination  distinctly  leads 
 to  differential  expected  and  observed  case  frequencies  (Fig.  4.2)  with  protective  effects  as  fewer  cases  are 
 observed  under  the  interaction  (“Obs”)  as  compared  to  the  additive  model  (“Exp.”).  It  also  leads  to  the 
 differential  expression  of  trans  target  genes  IGF2,  COL27A1,  and  novel  gene  ENSG00000247679  with 
 consistent  direction  of  effects  (see  Supplementary  Figures  4.6-4.8  ).  For  example,  IGF2  is  differentially 
 regulated  in  the  GG/TT  genotype-combination  in  skeletal  muscle  tissue  in  STARNET  (see  Supplementary 
 Figure  4.6  A  ;  beta  =  0.73,  nominal  p  =  2e-4  and  FDR  adjusted  p  =  4.4e-2;  nominal  permutation  p-value  for 
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 GG/TT  genotype  =  1.5e-3  and  FDR  adjusted  permutation  p  =  9.2e-3)  as  well  as  skeletal  muscle  tissue  in  GTEx 
 (see  Supplementary  Figure  4.6  B  ,  beta  =  0.29,  nominal  p  =  3.2e-5  and  adjusted  p  =  1.4e-3;  nominal 
 permutation p-value for GG/TT genotype = 6.3e-3 and FDR adjusted permutation p = 3.1e-2). 

 Considering  the  SNP  pair  rs72685791  and  rs12202017,  the  AA/GG  genotype-combination  leads  to  differential 
 expected  and  observed  case  frequencies  (see  Supplementary  Figure  4.2  )  as  well  as  the  differential  expression 
 with  consistent  direction  of  effects  of  GH1  and  novel  gene  ENSG00000250613  (see  Supplementary  Figures 
 4.7-4.8  ). 

 Differentially  expressed  trans  target  genes  could  not  be  observed  for  the  SNP  pair  rs4719608  -  rs2487928  and 
 SNP pair rs10841443 - rs12899265. 

 4.3. Discussion 

 Coronary  Artery  Disease  (CAD)  is  one  of  the  major  causes  of  death  worldwide  (5)  .  Many  genetic  association 
 studies  (376,  419,  420)  have  been  conducted,  yet,  research  into  genetic  interactions  (epistasis)  remains  scarce, 
 mainly  due  to  statistical  and  computational  limits  imposed  by  the  problem  complexity.  Hence,  we  improved  our 
 knowledge  of  epistatic  interactions  underlying  CAD  with  a  filter-based  randomization  testing  approach,  which 
 identified  n=4  SNP-SNP  interactions  (review  Table  4.1)  in  the  UK  Biobank  cohort  between  the  genetic  loci 
 rs72685791  &  rs12202017,  rs73222236  &  rs11911017,  rs4719608  &  rs2487928,  and  rs10841443  & 
 rs12899265.  We  validated  the  interactions  in  logistic  regression  models  by  modeling  the  disease  label  in 
 dependence  of  an  interaction  term  between  the  two  loci  of  an  interacting  SNP  pair.  For  the  first  time,  we 
 successfully  replicated  the  interactions  in  an  independent  aggregate  data  set  of  11  large-scale  genome-wide 
 case-control studies  (379, 387–396)  ,  which we refer  to as the GWAS cohort. 

 We  integrated  gene  expression  and  genotype  data  for  multiple  tissues  from  the  STARNET  (397,  398)  study  to 
 evaluate  the  potential  downstream  effects  of  interacting  loci  on  the  differential  expressions  of  genes  in  cis  and 
 trans.  Differentially  expressed  trans  genes  were  identified  through  linear  regression  analysis  in  which  the 
 expression  of  individual  genes  localized  in  trans  of  the  SNP  pairs  was  modeled  in  dependence  of  individual 
 multiplicative  terms  of  the  individual  loci  of  the  interacting  SNP.  Permutation  testing  of  gene  expression 
 patterns  in  each  genotype  combination  allowed  us  to  exclude  results  that  are  likely  due  to  chance.  By  following 
 an  analogous  approach  in  the  GTEx  v8  (399)  cohort,  except  limiting  analysis  on  the  STARNET  discovery  set  of 
 genes,  we  successfully  replicated  the  differential  expressions  of  n=1142  unique  genes.  These  genes  passed  the 
 FDR  threshold  of  <5%  in  the  linear  regression  and  permutation  testing  procedure  in  both  cohorts.  The 
 differential  expressions  of  n=6  genes,  including  two  novel  uncharacterized  genes,  are  observable  in  the  same 
 SNP  pair  genotype  combination  and  show  consistent  direction  of  effects  between  the  cohorts.  This  set  of  genes 
 comprises  SLC25A43,  IGF2,  COL27A1,  GH1,  as  well  as  novel  genes  ENSG00000247679  and 
 ENSG00000213269.  Strikingly,  SLC25A4  and  IGF2  were  additionally  differentially  expressed  in  the  same  or  a 
 highly  related  tissue  type  between  the  cohorts,  representing  the  most  confident  results,  as  they  meet  all 
 replication criteria. 

 Literature  research  about  the  association  of  identified  trans  target  genes  with  CAD  revealed  strong  implications 
 in  cardiovascular  events  and  diseases  (CVD)  in  general.  We  focused  the  literature  research  on  n=6  genes 
 (SLC25A43,  IGF2,  COL27A1,  GH1,  ENSG00000247679,  ENSG00000213269)  as  these  are  differentially 
 expressed  in  dependence  of  the  same  SNP  pair  genotype-combination,  have  consistent  directions  of  effects  and, 
 in  two  cases,  are  observed  in  related  tissue  types.  To  begin  with,  SLC25A43  is  a  nuclear  phosphate  carrier, 
 localized  in  the  inner  membrane  of  the  mitochondrion  and  is  a  member  of  the  solute  carrier  family  25,  the 
 largest  of  all  transporter  families  (SLC  families)  (421,  422)  .  SLC  family  members  (n  >  400)  mediate  solute  (e.g. 
 ions,  nucleotides,  and  sugars)  influx  and  efflux  across  plasma  and  intracellular  membranes,  conducting  essential 
 roles  in  the  localization  of  molecular  substances  required  for  cell  homeostasis  (423)  .  Given  their  essential  role  in 
 mediating  substrate  concentrations  across  cellular  compartments,  they  have  been  recognized  as  important  drug 
 targets  (424,  425)  .  In  fact,  SLC  transporters  have  been  shown  to  contribute  to  many  Mendelian  and  complex 
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 multifactorial  diseases  if  perturbed  (423)  .  For  instance,  genetic  variants  at  solute  carrier  SLC22A3  are 
 associated  with  coronary  heart  disease  (CHD),  hindering  the  inflammatory  response  and  reducing  the  risk  for 
 CHD  (426,  427)  .  Similarly,  the  members  of  the  solute  carrier  family  25  are  responsible  for  a  series  of  diseases 
 (428)  .  Nonetheless,  a  link  to  CAD  does  not  exist  yet.  In  this  context,  our  analysis  proposes  that  SLC25A43,  as  a 
 trans  target  of  rs73222236  and  rs11911017  in  the  GA/TT  genotype  combination,  might  exhibit  protective  effects 
 in  CAD  as  fewer  CAD  cases  are  observed  under  genetic  interaction  (review  Fig.  2).  Additional  CVD-associated 
 solute  carriers  are  among  our  differential  expression  results,  namely  SLC22A20  (429)  ,  SLC23A3  (430)  ,  and 
 SLC24A3  (431)  , and further, underline the importance  of SLC in CAD and CVDs in large. 

 IGF2  (Insulin-like  growth  factor  2)  occupies  important  roles  in  multiple  processes  ranging  from  cell 
 proliferation  and  growth  to  migration  and  differentiation  as  well  as  survival  in  general  (432)  ,  but  more 
 importantly,  together  with  insulin-like-growth  factors 1,  it  is  strongly  associated  with  CVDs  like  heart  failure, 
 cardiac  hypertrophy  and  diabetes  (433,  434)  .  They  even  emerged  as  epigenetic  mediators  thereof  (435)  and,  as 
 demonstrated  in  animal  models  (436)  ,  can  delay  infarction  and  improve  post-infarction  healing.  Specifically  for 
 IGF2,  it  has  been  shown  to  influence  the  size  of  atherosclerotic  lesions  (432,  437)  .  Beyond  cardiac  phenotypes, 
 IGF2  also  occupies  critical  roles  in  developing  various  cancers,  including  breast,  colon,  and  lung  cancer  (432)  , 
 which further underlines the significance of IGF2 in disease. 

 COL27A1,  among  several  other  collagen  genes,  is  strongly  associated  with  spontaneous  coronary  artery 
 dissection  (SCAD).  The  SCAD  phenotype  is  characterized  by  a  tear  inside  a  coronary  artery  that  leads  to  the 
 disruption  of  blood  flow  resulting  in  an  oxygen  deficiency  in  the  heart  muscle,  which  dies  as  a  result  thereof, 
 eventually  leading  to  a  heart  attack  (438)  .  A  heart  attack  resulting  from  SCAD,  due  to  the  tearing  of  the  arteries, 
 differs  from  a  heart  attack  caused  by  stiffening  of  arteries  (CAD).  However,  both  phenotypes  are  strongly 
 related, and our results suggest that COL27A1 might be implicated in the disease etiology of both phenotypes. 

 GH1,  a  pituitary  growth  hormone,  is  differentially  regulated  in  growth  hormone  signaling  pathways  in  a  study 
 that  examined  the  relationship  between  a  genetically  determined  decrease  in  height  and  an  increased  risk  of 
 CAD  (439)  .  Investigations  of  an  Asian  Indian  population  at  high  risk  of  CVD  also  established  the  association 
 between  genetic  variation  in  the  promoter  region  of  GH1  and  its  receptor  with  CAD  and  stature  (440)  .  Likewise, 
 our results support the observation about the association of GH1 with CAD. 

 Evidence  for  the  association  of  novel  genes  ENSG00000247679  and  ENSG00000213269  with  CAD  was  not 
 available.  Their  specific  functions  remain  to  be  understood.  However,  our  results  provide  the  first  indication  of 
 potential novel epistatically trans-regulated factors underlying CAD. 

 Our  analysis  of  trans-epistasis  underlying  Coronary  Artery  Disease  has  certain  limitations  we  would  like  to 
 address.  For  instance,  the  epistatic  interactions  have  relatively  small  effect  sizes  (mean  absolute  beta-coefficient 
 of  0.065  (UKBB)  and  0.068  (GWAS)).  Still,  we  successfully  replicated  the  SNP  interactions  in  an  aggregate 
 cohort  of  11  independent  case-control  studies  with  over  35k  samples  and  a  heterogeneous  European  population 
 background.  The  filter-based  permutation  testing  approach  limits  the  discovery  of  other  epistatic  interactions,  as 
 it  only  selects  the  top  1%  of  trans  SNP  interactions.  Consequently,  we  might  miss  other  causal  pairs  that  are 
 lower  ranked  or  that  interact  in  cis.  However,  we  reach  statistical  limits  without  these  prefilters.  Control  of  false 
 discoveries  (false  positives)  through  p-value  correction  procedures  greatly  restricts  the  discovery  of  true 
 positives.  Regarding  the  genotype  combination  dependent  differential  trans  gene  expression  analysis,  a  major 
 limitation  lies  in  the  smaller  numbers  of  samples  with  certain  genotype  combinations,  particularly  the 
 homozygous  minor  allele  genotypes.  This  limitation  could  be  overcome  to  some  extent  by  applying  a  secondary 
 validation  procedure  based  on  a  t-test  permutation  testing  approach  of  gene  expressions  in  these  genotype 
 combinations.  Replicating  identified  differential  expressions  in  an  independent  cohort  also  greatly  increased  the 
 confidence  in  the  obtained  results.  Nevertheless,  once  broadly  available  for  CAD,  further  validation  of  larger 
 sample  sets  with  specific  genotype  combinations  would  further  increase  the  confidence  in  the  obtained  results. 
 Lastly,  compared  to  the  STARNET  cohort,  which  consisted  solely  of  CAD  cases,  the  GTEx  cohort  comprised 
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 healthy  controls  only.  Thus,  replication  in  another  independent  cohort  other  than  the  STARNET  study  with  CAD 
 cases only would be beneficial. 

 Despite  these  limitations,  we  were  successful  in  identifying,  and  for  the  first  time  also  independently  replicating, 
 trans  epistatic  interactions  for  Coronary  Artery  Disease.  Subsequent  genotype  combination-dependent 
 differential  trans  gene  expression  analyses  provided  strong  evidence  that  combinatorial  gene  regulation  could 
 explain  the  epistatic  consequence.  Nevertheless,  additional  experimental  follow-up  studies  are  required  to 
 confirm  this  regulatory  hypothesis  and  discern  the  specific  functions  of  the  epistatically  dysregulated  trans  target 
 genes.  To  conclude,  our  analyses  equip  us  with  specific  experimental  targets  (interacting  loci,  allele 
 combinations,  and  trans  gene  targets)  for  a  systematic  and  targeted  experimental  manipulation  to  evaluate 
 downstream effects of genetic variation underlying CAD in much greater detail. 

 80 



 5. Summary & Outlook 

 Healthcare  and  science  see  great  benefit  from  the  exponential  increase  in  the  availability  of  big  data  resulting 
 from  the  global  digital  transformation  (207,  209)  .  Developments  in  machine  learning  enable  the  examination 
 and  characterization  of  large-scale  genomic  data  sets  in  a  systematic  and  targeted  way  with  high  precision  (221, 
 223,  441–447)  .  As  such,  machine  learning  has  become  an  essential  instrument  of  computational  biology  that 
 enables  precision  research  on  a  large  scale  (448–450)  .  We  harnessed  these  potentials  by  conducting  machine 
 learning-driven  analysis  of  large-scale  biological  data  sets  for  1)  the  identification  of  novel  trans-regulatory 
 transcription  factors  that  modulate  transcriptional  pausing  of  the  polymerase  II  and  2)  the  identification  of  trans 
 epistatic  interactions  underlying  Coronary  Artery  Disease  (CAD)  and  the  characterization  of  their  potential 
 downstream  transcriptional  effects.  Thus  our  contributions  specifically  advance  our  knowledge  about 
 transcription  and  transcriptional  regulation  (3,  66,  87,  317,  451)  as  well  as  genetic  interactions  (160)  underlying 
 disease,  which  is,  in  large,  achieved  by  modeling  the  respective  biological  contexts  as  inputs  to  machine 
 learning  models  to  discern  and  interpret  the  biological  patterns  that  constitute  each  biological  phenomenon 
 under investigation as summarized in the following two paragraphs. 

 5.1. Towards a comprehensive understanding of transcriptional regulation 

 In  our  first  project,  we  specifically  sought  to  identify  trans-acting  promoter-proximal  Polymerase  II  (Pol  II) 
 pause  regulatory  elements.  They  play  an  essential  role  in  transcriptional  gene  regulatory  programs  and  maintain 
 cell  homeostasis  and  plasticity  by  controlling  the  productivity  of  Polymerase  II.  Their  identification  and 
 characterization  are  thus  crucial  for  a  holistic  understanding  of  gene  transcription.  We  built  the  first 
 comprehensive  interpretable  complex  machine  learning  model  (Extreme  Gradient  Boosting  Tree)  of 
 transcriptional  pausing  and  enabled  the  identification  of  such  novel  trans-acting  factors.  Our  model  accurately 
 predicts  the  extent  of  promoter-proximal  Pol  II  pausing  from  large-scale  features  of  genomic  and  transcriptomic 
 protein  binding  maps  and  gene  annotation  and  sequence  composition  features.  The  model's  generalizability  was 
 demonstrated  through  its  application  to  data  from  an  independent  cell  line.  Harnessing  the  underlying  model 
 contributions,  we  were  able  to  pinpoint  and  rank  specific  transcriptional  pause  regulatory  factors,  many  of  which 
 have  already  been  shown  to  affect  transcriptional  pausing  or  to  be  implicated  in  certain  processes  associated 
 with  pausing.  Additional  models  trained  on  subsets  of  proteins  implicated  in  transcription  and  specific 
 transcription  regulatory  processes  ranging  from  chromatin  remodeling,  transcription  initiation,  elongation, 
 splicing,  and  further  downstream  transcript  processing  enabled  us  to  strengthen  the  connection  of  these 
 processes  with  transcriptional  pausing  additionally.  The  importance  of  the  established  7SK  pause  mediator 
 complex  and  associated  factors  in  transcriptional  pausing  was  further  demonstrated  by  the  predictive  power  of 
 existing  and  novel  7SK  binding  factors  as  identified  from  large-scale  RNA-Protein  interaction  data.  Taken 
 together,  these  trans-acting  pause  regulatory  factors  and  their  functional  backgrounds  provide  initial  mechanistic 
 hypotheses and represent interesting targets for experimental validation. 

 We  have  chosen  to  analyze  data  for  the  HepG2  and  K562  cell  lines  from  the  ENCODE  project,  as  they  have 
 been  extensively  characterized  with  multiple  types  of  essays  and  provide  a  large  number  of  genomic  and 
 transcriptomic  binding  maps  thereby  enabling  the  identification  of  novel  regulators  of  promoter-proximal 
 pausing,  however,  not  all  previously  characterized,  and  most  likely  also  several  unknown  regulators  of  pausing, 
 are  available.  Moreover,  only  GRO-seq  data  with  similar  variations  quantifying  promoter-proximal  pausing  are 
 available  for  these  two  cell  lines.  Multi-omics  approaches  like  TT-seq  (373)  or  mNET-seq  (297,  374,  375) 
 capture  Pol  II  pausing  more  accurately  yet  are  only  available  for  a  limited  number  of  cell  lines  for  which  protein 
 binding  data  is  not  available,  which  prevents  the  identification  of  novel  regulators  of  promoter-proximal  pausing 
 across  cell  types.  However,  they  provide  ground  for  future  studies  of  transcriptional  pausing  with  greater 
 precision  and  will  enable  elaborate  validation  procedures  once  they  are  available  across  multiple  cell  types, 
 which  is  currently  not  the  case  with  the  ENCODE  cell  line,  which  would  make  cross-validation  impossible. 
 Taken  together,  we  established  a  framework  to  extend  our  knowledge  of  transcriptional  regulation  of 
 protein-coding  genes  from  the  perspective  of  promoter-proximal  Polymerase  II  pausing  through  the 
 identification of novel trans-acting transcriptional pause regulatory factors. 
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 We  expect  great  improvements  with  accurate  kinetic  profiling  of  the  polymerase’s  productivity.  ChIP-seq  data, 
 once  available  for  a  broader  range  of  proteins,  will  likely  reveal  yet  other  novel  regulators  of  transcriptional 
 pausing.  Once  broadly  available  across  different  cell  types,  protein  binding  data  can  reveal  potential 
 cell-type-specific  transcriptional  pause  regulators.  Alternatively,  potential  transcriptional  pause  master 
 regulators  could  be  identified  by  integrating  protein  binding  data  from  multiple  cell  types.  However,  probing 
 about  1600  transcription  factors  in  all  cell  lines,  ideally  in  different  conditions,  poses  a  challenge  with  the 
 available  technology  as  of  now.  An  alternative  feasible  solution  is  to  predict  transcription  factor  binding  sites 
 from  ChIP-seq  which  substantially  mitigates  this  problem  (452,  453)  .  Coupled  with  open  chromatin  data  like 
 ATAC-seq  (454)  candidate  active  transcription  factor  binding  sites  can  be  inferred  based  on  conserved 
 transcription  factor  binding  sequences  that  might  be  located  in  those  open  chromatin  regions  (455,  456)  .  Further 
 improvements  in  model  predictions  can  be  expected  with  improved  protein  binding  site  predictions.  With 
 ongoing  advancements  in  genomics  at  large,  we  envision  a  model  that  predicts  transcriptional  pausing  outcomes 
 from DNA sequence alone. 

 5.2.  Enriching  our  understanding  of  genetic  interactions  and  their  role  in  complex 
 disease 

 In  our  second  project,  we  aimed  to  identify  and  characterize  genetic  interactions,  called  epistatic  interactions, 
 underlying  Coronary  Artery  Disease  (CAD),  one  of  the  major  causes  of  death  worldwide.  Despite  numerous 
 studies,  ranging  from  genetic  association  to  case-control  or  epidemiological  studies,  CAD  remains  one  of  the 
 leading  causes  of  death  worldwide  in  both  developed  and  developing  countries.  Particularly  we  lack  studies 
 focusing  on  epistasis  discovery  mainly  due  to  statistical  and  computational  limits  imposed  by  the  intrinsic 
 problem  complexity  given  by  the  exponentially  growing  search  space  in  dependence  of  the  order  of  genetic 
 interaction  considered.  However,  we  able  to  extend  our  knowledge  of  the  effects  of  pairwise  genetic  interactions 
 underlying  CAD  with  a  filter-based  permutation  testing  coupled  with  linear  modeling,  which  enabled  us  to 
 discern  n=4  genetic  interactions  that  confer  differential  disease  risk  in  a  large-cohort  (UK  Biobank)  of  >35k 
 CAD  cases.  For  the  first  time,  we  could  replicate  all  interactions  in  an  independent  aggregate  data  set  of  11 
 large-scale  genome-wide  case-control  studies  (>35k  CAD  cases).  Genotype-combination  dependent  linear 
 regression  analysis  coupled  with  statistical  hypothesis  testing  further  enabled  us  to  elucidate  the  downstream 
 effects  of  interacting  loci  on  the  transcriptional  output  of  genes  in  trans  (>1  Mbp),  identifying  many 
 differentially  expressed  unique  genes  in  a  large-cohort  of  CAD  cases  (STARNET)  that  could  be  replicated  in  an 
 independent  cohort  (GTEx  v8).  Among  this  list  of  genotype-combination  dependent  differentially  regulated 
 trans  target  genes,  we  found  two  genes,  namely  SLC25A43  and  IGF2,  that  could  be  replicated  across  all 
 replication  criteria,  i.e.,  the  same  tissue  type,  genetic  interaction,  genotype  combination  of  the  genetic 
 interaction,  and  direction  of  the  effects  in  the  specific  genotype  combination,  representing  highly  confident  and 
 consistent  results.  Literature  research  of  identified  genes  revealed  strong  implications  in  the  disease  etiology  of 
 CAD.  To  summarize,  for  the  first  time,  we  were  able  to  identify  and  replicate  specific  genetic  interactions  and 
 trans  target  genes  thereof  as  entry  points  for  a  systematic  and  targeted  experimental  investigation  of  epistasis 
 underlying CAD. 

 Nonetheless,  our  analysis  comes  with  a  few  limitations.  For  instance,  the  effect  sizes  of  the  identified  genetic 
 interactions  are  relatively  small,  with  mean  absolute  beta-coefficients  of  0.065  in  UKBB  and  0.068  in  GWAS.  In 
 spite  of  this,  for  the  first  time,  we  were  successful  in  replicating  the  interactions  in  an  independent  large-scale 
 (>35k  samples)  aggregate  cohort  of  11  case-control  studies  and  also,  for  the  first  time,  in  identifying  and 
 replicating  their  downstream  effects  on  the  transcriptional  output  of  trans  target  genes  in  two  additional 
 independent  cohorts.  Another  limitation  lies  in  the  filter-based  permutation  testing  approach,  which  1)  only 
 considers  inter-chromosomal  SNP  pairs  (neglecting  intra-chromosomal  SNP  pairs)  and  2)  only  selects  the  top 
 1%  of  trans  SNP  interactions.  Consequently,  we  might  miss  interacting  SNP  that  lie  on  the  same  chromosome 
 (cis-interacting  loci)  and  other  causal  pairs  that  are  missed  by  the  thresholding  approach.  However,  these 
 prefilters  allow  us  to  circumvent  confusing  haplotype  effects  and  overcome  statistical  limits  in  which  the  control 
 of  false  discoveries  (false  positives)  through  p-value  correction  procedures  like  the  FDR  correction  method 
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 limits  the  discovery  of  true  positives.  The  differential  trans  gene  expression  analysis  shows  a  limitation  in  the 
 low  number  of  individuals  with  certain  genotype  combinations,  particularly  the  homozygous  minor  allele 
 genotypes,  which  require  additional  validation  procedures.  This  limitation  was  alleviated  with  a  randomization 
 test  of  gene  expressions  in  these  rare  genotype  combinations  and  the  replication  analysis  in  an  independent 
 cohort.  Lastly,  because  the  STARNET  cohort  consisted  solely  of  CAD  cases  as  opposed  to  the  GTEx  cohort, 
 which  consisted  solely  of  healthy  controls  replication  analysis  in  yet  another  independent  cohort  other  than  the 
 STARNET  study  with  CAD  cases  only  as  well  would  even  further  increase  the  confidence  in  obtained  results. 
 To  conclude,  despite  these  limitations,  we  were  able  to  identify  and  independently  replicate  trans  epistatic 
 interactions  in  Coronary  Artery  Disease  for  the  first  time.  The  results  of  our  downstream  differential  trans  gene 
 expression  analysis,  dependent  on  the  identified  genetic  interactions,  support  the  hypothesis  that  the 
 combinatorial  gene  regulation  could  explain  the  epistatic  effect.  Nevertheless,  further  experimental  studies  are 
 required  to  confirm  this  regulatory  hypothesis  and  elucidate  the  specific  cellular  functions  of  identified  trans 
 target  genes.  In  this  context,  our  analyses  provide  the  first  entry  points  of  specific  genetic  loci  and  allele 
 combinations  and  trans-regulated  gene  targets  for  such  a  targeted  investigation  of  the  downstream  effects  of 
 genetic variation underlying CAD. 

 We  expect  better  profiling  of  epistatic  interactions  once  bigger  sample  sets  are  broadly  available  (34)  .  Additional 
 cohorts  for  validation  purposes  with  a  broad  range  of  ethnic  backgrounds  would  greatly  increase  the  confidence 
 in  genetic  interaction  analyses  as  it  would  decrease  the  selection  bias  resulting  from  the  overrepresentation  of 
 certain  subpopulations.  This  will  establish  a  generalized  knowledge  of  the  genetic  basis  of  complex  diseases 
 underlying  the  whole  human  population.  Alternatively,  CRISPR-Cas  based  genetic  perturbation  experiments 
 screens  in  human  cell  lines  harbor  great  potential  to  reveal  or  validate  genetic  interactions  (457,  458)  ,  yet  need 
 to be employed in a more systematic manner. 

 5.3. What the future holds 

 Our  work  is  one  of  the  many  demonstrations  of  how  machine  learning  models  coupled  with  large-scale 
 multi-omic  data  integration  can  enable  the  researcher  to  answer  complex  biological  questions  previously  hidden 
 behind  the  mass  and  complexity  of  the  data  points  at  hand.  As  time  progresses,  new  experimental  techniques, 
 especially  assays  that  measure  different  omic  entities  in  parallel  within  the  same  sample  (coupled  assays),  will 
 result  in  an  ever  more  exponential  increase  in  the  volume,  variety,  veracity,  and  complexity  of  biological 
 datasets.  A  prime  example  is  high-throughput  single-cell  sequencing  (459)  and  its  derivatives  like  single-cell 
 ChIP-seq  (460)  ,  single-cell  ATAC-seq  (461)  or  single-cell  HI-C  (462)  ,  just  to  name  a  few.  These  and  similar 
 future  developments  represent  an  overwhelmingly  big  and  important  source  of  biological  information  harboring 
 the  potential  to  significantly  advance  and  revolutionize  healthcare  and  science  (415).  For  instance,  genetic 
 interactions  could  be  investigated  in  single  heart  muscle  cells,  once  available,  as  opposed  to  bulk  measurements 
 from  populations  of  cells  (463,  464)  .  Single-cell  ChIP-seq  enables  the  investigation  of  dynamic  protein  binding 
 events  at  single-cell  resolution  with  the  potential  to  identify  differential  protein  binding  patterns  between  single 
 cells  which  might  give  further  clues  about  the  binding  characteristics  of  transcriptional  regulators  that  were 
 previously  masked  in  bulk  measurements.  More  importantly,  single-cell  ChIP-seq  coupled  with  GRO-seq  or 
 another  similar  polymerase  profiling  technique  will  allow  us  to  study  transcriptional  pausing  in  single  cells  and 
 identify  regulators  of  pausing  by  jointly  comparing  the  protein  binding  patterns  and  the  polymerase’s 
 productivity  between  single  cells  (465)  .  Experimental  techniques  that  assay  DNA-binding  of  multiple  proteins 
 in  single  cells  in  parallel  harbor  the  potential  to  reveal  specific  combinatorial  protein  binding  profiles  to  shed 
 light on regulatory networks of proteins and study the dynamics of these networks between single cells  (460)  . 

 Not  only  experimental  but  also  ongoing  algorithmic  advancements,  especially  in  the  field  of  artificial 
 intelligence  and  machine  learning  (220,  466,  467)  ,  a  decline  in  computational  costs,  and  increased 
 computational  resource  availability  will  provide  the  grounds  to  efficiently  harness  such  data  to  draw  an  ever 
 more  precise  picture  of  our  biological  world  (468–470)  .  Thus  machine  learning  is  an  indispensable  part  of 
 computational  biology  and  is  applied  in  many  research  contexts.  For  instance,  machine  learning  models  can  be 
 used  to  improve  the  annotation  of  the  genome,  i.e.,  they  can  be  trained  to  learn  specific  sequence  elements  of  a 
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 given  type.  The  sequence  composition  features  we  have  engineered  for  our  model  of  transcriptional  pausing  are 
 an  example  of  this.  Similar  approaches  have  been  conducted  across  many  sequence  types  ranging  from 
 promoters  (471)  ,  and  splice  sites  (472)  to  enhancers  (473)  ,  just  to  name  a  few.  These  models  can  be  combined  to 
 obtain  a  comprehensive  system  to  annotate  genomes  (424)  accurately.  Machine  learning  has  also  enabled  the 
 prediction  of  gene  expression  levels  from  DNA  sequence  alone  (474–476)  .  This  is  particularly  encouraging, 
 providing  the  first  indications  that  a  model  of  transcriptional  pausing  based  on  pure  DNA  sequence  alone  is 
 promising.  Many  more  exciting  developments  and  applications  of  machine  learning  models  in  genomics  will 
 continue to greatly improve our understanding of biological phenomena at large  (468)  . 

 Nevertheless,  our  understanding  will  not  only  be  improved  by  the  quantity  of  data  but  also  by  its  quality. 
 Particularly,  improved  sequencing  techniques  will  provide  broader  and  deeper  coverage  of  the  (epi-)  genome 
 with  higher  resolution.  Especially  machine  learning  models  will  greatly  benefit  from  the  increase  in  the 
 signal-to-noise  ratio  reflected  in  improved  prediction  performances.  Similarly,  larger  sample  sizes  will  allow  us 
 to estimate the true effects of many genetic variants with small effect sizes with much greater accuracy. 

 Further  developments  in  the  field  of  multi-omic  data  integration  will  allow  us  to  elucidate  the  relationships 
 between  different  omic  entities  and  open  up  new  avenues  for  holistic  analyses,  which  will  greatly  improve  our 
 systemic  understanding  of  biology  (462,  477,  478)  .  For  instance,  single-cell  assays  jointly  probing  DNA-  and 
 RNA-binding  proteins  will  greatly  improve  our  understanding  of  combinatorial  protein  binding  profiles  of 
 transcriptome  and  genome  binding  interacting  proteins  (460)  .  Coupled  with  gene-expression  data,  these 
 combinatorial  networks  of  genomic  and  transcriptomic  protein  binding  profiles  will  further  highlight  the 
 importance  of  interactions  between  different  omic  entities  necessary  for  proper  gene  regulation  and  maintenance 
 of cellular homeostasis  (479)  . 

 Coupled  with  precision  medicine,  improved  sequencing  technologies  can  revolutionize  our  healthcare  system  as 
 it  will  be  possible  to  collect  and  integrate  high-quality  multi-omic  data  on  an  individual  basis  and  analyze  it  with 
 high  velocity  and  accuracy  by  harnessing  the  power  of  artificial  intelligence  systems.  This  is  already  common 
 practice  for  a  range  of  cancer  types  in  which  the  genetic  makeup  of  genes  is  considered  to  treat  cancer 
 (480–484)  .  For  instance,  during  breast  cancer  treatment,  a  recurrence  score  is  calculated  based  on  the  expression 
 levels  of  16  breast  cancer-related  genes  providing  an  estimate  of  the  9-year  distant  recurrence  risk  and  the 
 likelihood  of  chemotherapy  benefit  on  an  individual  basis  (485)  .  A  similar  approach  has  also  been  applied  to 
 CAD,  in  which  a  polygenic  risk  score  quantifies  the  genetic  variation  of  diseased  patients  to  inform  about  their 
 genetic  risk  (486)  .  However,  further  improvements  that  are  likely  to  be  made  are  required  for  its  application  in  a 
 clinical  setting.  In  general,  personalized  precision  medicine  enables  treatment  decisions  to  be  made  based  on 
 individual  objective  characteristics  as  opposed  to  trends  that  are  observed  across  a  population  of  individuals.  As 
 such,  developments  of  this  and  similar  kind  will  greatly  foster  personalized  medicine  and  improve  patient 
 treatment  and  survival  rates,  as  highly  individualized  treatment  will  be  available,  as  opposed  to  bulk  solutions 
 that cannot address individual concerns. 
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 6.3.  Chromatin  Signatures  and  their  Role  in  Transcriptional  Elongation  Control 
 (Project 1) 

 6.3.1. Supplementary Figures 

 Supplementary  Figure  3.1:  Gene  annotation  and  sequence  composition  features  (HepG2).  See  caption  of 
 main figure 3.4 for more details. 
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 Supplementary  Figure  3.2:  Figure  3.6  analog  for  the  HepG2  cell  line.  See  caption  of  main  figure  3.2  for 
 more details. 
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 Supplementary  Figure  3.3:  Figure  3.7  analog  for  the  HepG2  cell  line.  See  caption  of  main  figure  3.3  for 
 more details. 
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 Supplementary  Figure  3.4:  Feature  contributions  on  RNA  introns  (HepG2  cell  line).  See  caption  of  figure 
 3.8 for more details. 

 Supplementary Figure 3.5: Aggregate feature contributions of gene annotation and sequence composition 
 features (K562).  Distribution of aggregate feature  contributions (x-axis) of gene annotation and sequence 
 composition features (y-axis) in the K562 cell line. 
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 Supplementary Figure 3.6: Aggregate feature contributions of gene annotation and composition features 
 (HepG2).  See caption of supplementary figure 3.9 for  more details. 
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 Supplementary Figure 3.7: Model feature contribution distributions of gene annotation and composition 
 features (K562).  Distribution of feature contributions  (SHAP values, y-axes) in the K562 cell line of gene 
 annotation and sequence composition features values (x-axes). In the “tx.strand” feature, “1” denotes “+” 
 (forward) strand and “2” denotes “-” (reverse strand). 
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 Supplementary Figure 3.8: Model feature contribution distributions of gene annotation and composition 
 features (HepG2).  See caption of supplementary figure  3.11 for more details. 
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 Supplementary Figure 3.9: Feature Contributions (HepG2).  See caption of figure 3.9 for more details. 

 Supplementary  Figure  3.10:  Minimal  model  performance.  Observed  (x-axis)  vs  predicted  (y-axis)  pausing 
 index of the most influential factor model (n=9 factors) in the HepG2 cell line. 
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 6.3.2. Supplementary Tables 
 Please  refer  to  the  supplementary  materials  in  my  corresponding  manuscript  currently  (May  2022)  under  review 
 in  Nucleic  Acid  Research  and  also  available  on  bioRxiv:  Akcan  and  Heinig.  ‘Predictive  Model  of 
 Transcriptional  Elongation  Control  Identifies  Trans-Regulatory  Factors  from  Chromatin  Signatures,  Toray 
 Akcan, Matthias Heinig’  BioRxiv (2022) to access the  supplementary tables mentioned in the following. 

 Supplementary  Table  S3.1  (see  xls  file  sheet  “S1  K562  CHIPseq  Factors”)  :  List  of  DNA  binding  proteins  in 
 the K562 cell line derived from the ENCODE CHIP-seq experiments. 

 Supplementary  Table  S3.2  (see  xls  file  sheet  “S2  HepG2  CHIPseq  Factors”)  :  List  of  DNA  binding  proteins 
 in the HepG2 cell line derived from the ENCODE CHIP-seq experiments. 

 Supplementary  Table  S3.3  (see  xls  file  sheet  “S3  K562  CHIPseq  Accessions”)  :  List  of  accession  numbers  of 
 ENCODE CHIP-seq experiment for the K562 cell line. 

 Supplementary  Table  S3.4  (see  xls  file  sheet  “S4  HepG2  CHIPseq  Accessions”):  List  of  accession  numbers 
 of ENCODE CHIP-seq experiment for the HepG2 cell line. 

 Supplementary  Table  S3.5  (see  xls  file  sheet  “S5  K562  eCLIPseq  Factors”):  List  of  RNA  binding  proteins  in 
 the K562 cell line derived from the ENCODE eCLIP-seq experiments. 

 Supplementary  Table  S3.6  (see  xls  file  sheet  “S6  HepG2  eCLIPseq  Factors”):  List  of  RNA  binding  proteins 
 in the HepG2 cell line derived from the ENCODE eCLIP-seq experiments. 

 Supplementary  Table  S3.7  (see  xls  file  sheet  “S7  K562  eCLIPseq  Accessions”)  :  List  of  accession  numbers 
 of ENCODE eCLIP-seq experiment for the K562 cell line. 

 Supplementary  Table  S3.8  (see  xls  file  sheet  “S8  HepG2  eCLIPseq  Accessions”):  List  of  accession  numbers 
 of ENCODE eCLIP-seq experiment for the HepG2 cell line. 

 Supplementary  Table  S3.9  (see  xls  file  sheet  “S9  K562  7SK  Binding  Factors”):  List  of  RNA  binding 
 proteins  that  bind  the  7SK  ncRNA  in  the  K562  cell  line  as  evidenced  by  eCLIP-seq  binding  signals.  Binding 
 signals  on  pseudo  7SK  ncRNA  transcript  variants  that  are  expressed  above  median  ncRNA  expression  levels 
 were  included  in  the  analyses.  This  was  motivated  by  the  transcripts'  high  mean  pairwise  sequence  similarity 
 (487)  of  0.74  and  high  mean  conservation  score  of  923.58  (PAM250  scoring  matrix)  based  on  a  multiple 
 sequence alignment (ClustalW alignment) of corresponding 7SK transcripts. 

 Supplementary  Table  S3.10  (see  xls  file  sheet  “S10  HepG2  7SK  Binding  Factors”):  List  of  RNA  binding 
 proteins  that  bind  the  7SK  ncRNA  in  the  HepG2  cell  line  as  evidenced  by  eCLIP-seq  binding  signals.  Binding 
 signals  of  pseudo  7SK  ncRNA  transcript  variants  that  are  expressed  above  median  ncRNA  expression  levels 
 were  included.  This  was  motivated  by  the  transcripts'  high  mean  pairwise  sequence  similarity  (487)  of  0.81  and 
 high  mean  conservation  score  of  302.29  (PAM250  scoring  matrix)  based  on  a  multiple  sequence  alignment 
 (ClustalW alignment) of corresponding 7SK transcripts. 

 Supplementary  Table  S3.11  (see  xls  file  sheet  “S11  K562  Factor  Bindings”):  Number  of  genomic  and 
 transcriptomic binding events in the K562 cell line on gene transcript regions per protein. 

 Supplementary  Table  S3.12  (see  xls  file  sheet  “S12  HepG2  Factor  Bindings”):  Number  of  genomic  and 
 transcriptomic binding events in the HepG2 cell line on gene transcript regions per protein. 

 Supplementary  Table  S3.13  (see  xls  file  sheet  “S13  Known  Pausing  Factors”):  List  of  established  pausing 
 factors derived from literature research. 
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 Supplementary  Table  S3.14  (see  xls  file  sheet  "S14  K562  Factors  per  Process"):  List  of  proteins  in  the  K562 
 cell line associated with specific functional processes. 

 Supplementary  Table  S3.15  (see  xls  file  sheet  "S15  HepG2  Factors  per  Process"):  List  of  proteins  in  the 
 HepG2 cell line associated with specific functional processes. 

 Supplementary  Table  S3.16  (see  xls  file  sheet  “S16  K562  Sequence  Specificity”):  An  indicator  matrix 
 (1=’yes’;  0=’no’)  for  the  K562  cell  line  specifying  protein’s  sequence  specificity  (column  SS  ),  non-sequence 
 specificity (column  NSS  ), RNA- (column  RBP  ) or DNA-binding  factor (column DBP). 

 Supplementary  Table  S3.17  (see  xls  file  sheet  “S17  HepG2  Sequence  Specificity”):  An  indicator  matrix 
 (1=’yes’;  0=’no’)  for  the  HepG2  cell  line  specifying  protein’s  sequence  specificity  (column  SS),  non-sequence 
 specificity (column NSS), RNA- (column RBP) or DNA-binding factor (column DBP). 

 Supplementary  Table  S3.18  (see  xls  file  sheet  "S18  Subspace  Factors  Presence"):  An  indicator  matrix  that 
 specifies  if  a  factor  is  contained  in  any  of  the  feature  subspaces,  where  “1”  denotes  present,  “0”  denotes”  not 
 present. 

 Supplementary  Table  S3.19  (see  xls  file  sheet  “S19  Hyperparameters”):  Hyperparameters  specification  of 
 the Extreme Gradient Boosting Tree regression model. 

 Supplementary  Table  S3.20  (see  xls  file  sheet  “S20  All  Model  Results”):  Detailed  model  prediction  results 
 for  each  cell  line  and  each  feature  subspace.  The  column  ‘  subspace’  specifies  the  feature  subspace  the  model 
 was  trained  on.  The  appendix  “  ss  ”  in  feature  subspace  names  indicates  a  model  that  was  trained  on  binding 
 features  of  sequence  specific  proteins,  whereas  “  nss”  indicates  a  model  that  was  trained  on  binding  data  of 
 non-sequence  specific  proteins.  The  model  type  ‘  synchronised.model.matrices’  refers  to  a  model  that  was 
 trained  on  features  observed  in  both  of  the  cell  lines,  as  opposed  to  ‘  individual.model.matrices’  which  refers  to 
 models  that  also  incorporated  features  that  are  exclusive  to  a  cell  line.  The  column  ‘  train.rsqrd’  gives  the  5-fold 
 cross-validation  performance  (R  2  ),  while  the  column  ‘  test.rsqrd’  gives  the  performance  on  a  50%  hold  out  test 
 data  set  taken  prior  to  training.  The  column  ‘  mean.shap’  gives  the  average  feature  contributions  over  all  proteins 
 considered in a model. 

 Supplementary  Table  S3.21  (see  xls  file  sheet  “S21  Data  Accessions”):  List  of  accession  numbers  of  all  data 
 sets. 

 6.3.3. Data & Code Availability 
 The  code  is  available  at  https://github.com/heiniglab/POLII_pausing  and  all  data  as  well  as  results  are  available 
 at  10.5281/zenodo.5236311  .  GRO-seq  data  was  available  under  the  GEO  accessions  GSM1480325  and 
 GSM2428726  for  the  K562  and  HepG2  cell  lines,  respectively.  Transcript  quantifications  from  RNA-seq 
 experiments  (tsv-files)  were  obtained  from  ENCODE  with  the  experiment  number  ENCSR885DVH  and 
 accession  numbers  of  replicated  experiments  ENCFF424CXV  and  ENCFF073NHK  for  the  K562  cell  line,  as 
 well  as  the  experiment  number  ENCSR181ZGR  with  accession  numbers  of  replicated  experiments 
 ENCFF205WUQ  ,  ENCFF915JUZ  for  the  HepG2  cell  line.  CHIP-seq  and  eCLIP-seq  ENCODE  accession 
 numbers  are  listed  in  supplementary  tables  S3  &  S4  and  S7  &  S8,  respectively.  Housekeeping  gene  annotations 
 were  taken  from  (314)  (see  Supplementary  Table  S21;  housekeeping.RDS  in  zenodo  repository).  CpG  island 
 annotations  were  obtained  from  the  UCSC  golden  path  for  the  hg19  genome  build  (cpgIslandExt.txt.gz)  (see 
 Supplementary  Table  S21;  cpg.islands.RDS  in  zenodo  repository).  The  GENCODE  project  (see 
 Supplementary  Table  S21  )  served  to  obtain  gene  annotations,  HGNC  gene  symbols  mappings  and  RefSeq 
 metadata  files.  Preprocessed  CAGE  transcription  start  sites  based  on  ENCODE  data  are  provided  in  the  zenodo 
 repository as an R-data structure (CTSS.RDS). 
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 6.4. Trans Epistasis in Coronary Artery Disease (Project 2) 

 6.4.1. Supplementary Figures 

 Supplementary  Figure  4.1:  The  polygenic  risk  score  (GWAS  cohort).  Please  see  the  caption  of  main  figure  2 
 for more details. 
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 Supplementary  Figure  4.2:  Genotype-combination  dependent  case  frequencies.  Frequencies  (y-axes)  of 
 observed  cases  (“Obs”)  in  specific  genotype  combinations  (columns)  of  SNP  pair  rs72685791  -  rs12202017 
 against  expected  frequencies  of  case  estimates  (“Exp”)  based  on  logistic  regression  models.  Subplot  A  shows 
 the results for UKBB  and subplot B for the GWAS cohort. 
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 Supplementary  Figure  4.3:  Genotype-combination  dependent  case  frequencies.  Frequencies  (y-axes)  of 
 observed  cases  (“Obs”)  in  specific  genotype  combinations  (columns)  of  SNP  pair  rs4719608  -  rs2487928 
 against  expected  frequencies  of  case  estimates  (“Exp”)  based  on  logistic  regression  models.  Subplot  A  shows 
 the results for UKBB  and subplot B for the GWAS cohort. 
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 Supplementary  Figure  4.4:  Genotype-combination  dependent  case  frequencies.  Frequencies  (y-axes)  of 
 observed  cases  (“Obs”)  in  specific  genotype  combinations  (columns)  of  SNP  pair  rs10841443  -  rs12899265 
 against  expected  frequencies  of  case  estimates  (“Exp”)  based  on  logistic  regression  models.  Subplot  A  shows 
 the results for UKBB  and subplot B for the GWAS cohort. 
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 Supplementary  Figure  4.5:  Cis-QTL  analysis  results  for  rs73222236  and  rs11911017.  Expression  profiles 
 (y-axes)  of  cis  (<1Mbp)  genes  MSL2  (A)  and  LINC00189  (B)  in  each  cohort  dependent  on  rs73222236  and 
 rs11911017  genotypes  (x-axes).  LINC00189  is  not  expressed  in  the  STARNET  cohort,  thus  missing  in  subplot 
 A. 

 100 



 Supplementary  Figure  4.6:  Genotype  combination  dependent  differential  expression  of  IGF2.  The  GG/TT 
 genotype  combination  of  SNP  pair  rs73222236  and  rs11911017  (x-axis,  highlighted  in  red)  leads  to  the 
 significant  (alpha=0.05)  differential  expression  (y-axis)  of  trans-target  gene  IGF2  in  skeletal  muscle  (SKLM) 
 tissue in STARNET (A) and skeletal muscle tissue in GTEx (B). 
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 Supplementary  Figure  4.7:  Genotype  combination  dependent  differential  expression  of  COL27A43.  The 
 GG/TT  genotype  combination  of  SNP  pair  rs73222236  and  rs11911017  (x-axis,  highlighted  in  red)  leads  to  the 
 significant  (alpha=0.05)  differential  expression  (y-axis)  of  trans-target  gene  COL27A43  in  visceral  abdominal 
 fat (VAF) tissue in STARNET (A) and skeletal muscle tissue in GTEx (B). 
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 Supplementary  Figure  4.8:  Genotype  combination  dependent  differential  expression  of 
 ENSG00000247679.  The  GG/TT  genotype  combination  of  SNP  pair  rs73222236  and  rs11911017  (x-axis, 
 highlighted  in  red)  leads  to  the  significant  (alpha=0.05)  differential  expression  (y-axis)  of  trans-target  gene 
 ENSG00000247679 in liver (LIV) tissue in STARNET (A) and skeletal muscle tissue in GTEx (B). 
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 Supplementary  Figure  4.9:  Genotype  combination  dependent  differential  expression  of  GH1.  The  AA/GG 
 genotype  combination  of  SNP  pair  rs72685791  and  rs12202017  (x-axis,  highlighted  in  red)  leads  to  the 
 significant  (alpha=0.05)  differential  expression  (y-axis)  of  trans-target  gene  GH1  in  aortic  artery  (AOR)  tissue  in 
 STARNET (A) and adipose visceral (omentum) tissue in GTEx (B). 
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 Supplementary  Figure  4.10:  Genotype  combination  dependent  differential  expression  of 
 ENSG00000213269.  The  AA/GG  genotype  combination  of  SNP  pair  rs72685791  and  rs12202017  (x-axis, 
 highlighted  in  red)  leads  to  the  significant  (alpha=0.05)  differential  expression  (y-axis)  of  trans-target  gene 
 ENSG00000213269 in aortic artery (AOR) tissue in STARNET (A) and liver tissue in GTEx (B). 
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 6.4.2. Supplementary Tables 

 Please  access  the  Zenodo  repository  with  DOI:  10.5281/zenodo.6687913  to  access  the  supplementary  tables 
 mentioned in the following. 

 Supplementary Table 4.1 (see xls file sheet “S1 CAD Risk Loci”):  Metadata of CAD risk loci. 

 Supplementary  Table  4.2  (see  xls  file  sheet  “S2  Interchromosomal  SNP  Pairs”):  List  of  all 
 interchromosomal SNP pairs. 

 Supplementary  Table  4.3  (see  xls  file  sheet  “S3  Top  1%  SNP  Pairs”):  Top  1%  candidate  SNP  interactions 
 derived from the permutation testing of SNP correlation differences between cases and controls. 

 Supplementary  Table  4.4  (see  xls  file  sheet  “S4  Gene  Expression  Metadata”):  Table  of  the  number  of  genes 
 and  samples  per  tissue  in  gene  expression  data  sets  of  the  STARNET  and  GTEx  v8  cohort.  The  STARNET 
 cohort  consisted  of  tissues  from  blood  (Blood),  atherosclerotic-lesion-free  internal  mammary  artery  (MAM), 
 atherosclerotic  aortic  root  (AOR),  subcutaneous  fat  (SF),  visceral  abdominal  fat  (VAF),  skeletal  muscle  (SKLM) 
 and  liver  (LIV).  The  GTEx  cohort  consisted  of  tissues  ‘Adipose-Subcutaneous’,  ‘Adipose-Visceral-Omentum’, 
 ‘Artery-Tibial’,  ‘Artery-Aorta’,  ‘Artery-Coronary’,  ‘Heart_Atrial-Appendage’,  ‘Heart-Left-Ventricle’,  ‘Liver’, 
 ‘Muscle-Skeletal’ and ‘Whole-Blood’. 

 Supplementary  Table  S4.5  (see  xls  file  sheet  “S5  Trans  Analysis  Results”):  Detailed  results  of  the  interacting 
 SNP-pair  associated  genotype-combination  dependent  differential  trans  gene  expression  analyses.  Coulmn 
 ‘cohort’  gives  the  cohort,  ‘snp.pair’  the  rs-identifiers  of  the  interacting  SNP  pairs,  ‘genotype.combination’  the 
 specific  genotype-combination  of  the  interacting  SNP  pairs  under  which  a  trans  gene  is  differentially  expressed, 
 ‘tissue’  the  tissue  in  which  the  gene  is  differentially  expressed,  ‘gene’  the  differentially  expressed  trans  target, 
 ‘beta’  the  effect  size  from  the  linear  regression  model  of  the  genotype-combination  term,  ‘nominal.p’  the 
 nominal p-value of that term and lastly, ‘adj.p’ the adjusted p-value of the same term. 

 Supplementary  Table  S4.6  (see  xls  file  sheet  “S6  Confident  Result  Set”):  See  description  of  supplementary 
 table  4.5,  with  the  exception  that  the  table  only  shows  the  detailed  results  for  the  n=6  most  confident 
 trans-differential expression results. 

 Supplementary  Table  S4.7  (see  xls  file  sheet  “S7  Cis-eQTL  Results”):  Cis-eQTL  results  for  each  cohort 
 (column  “cohort”),  tissue  (column  “tissue”)  and  individuals  SNP  (column  “snp”)  of  interacting  SNP  pairs. 
 Column  “glm.p”  gives  the  p-value  of  the  cis-effect  of  a  loci  on  the  expression  of  a  cis-gene  (<1Mbp;  column 
 “gene”),  whereas  column  “t.test.p”  gives  the  p-value  of  a  t-test  between  homozygous  carriers,  essentially 
 comparing the extremes of the genotype-dependent gene expression distribution. 

 6.4.3. Data & Code Availability 
 The  code  is  available  at  https://github.com/heiniglab/cad_epistasis  .  The  data  from  the  German  Myocardial 
 Infarction  Family  Studies  (GerMIFS)  I  (387)  ,  II  (388)  ,  III  (389)  ,  IV  (379)  ,  V  (390)  ,  VI  (391)  ,  VII  (392)  cannot 
 be  shared  publicly  due  to  ethical  and  confidentiality  reasons  but  can  be  shared  on  reasonable  requests  addressed 
 to  the  corresponding  authors.  Data  from  the  LUdwigshafen  RIsk  and  Cardiovascular  Health  Study  (LURIC) 
 (393)  ,  Cardiogenics  (CG)  (394)  (Dataset  ID:  EGAC00001000088)  ,  Wellcome  Trust  Case  Control  Consortium 
 (WTCCC)  (395)  ,  Myocardial  Infarction  Genetics  Consortium  (MIGEN)  (396)  (dbGaP  accession 
 phs000902.v1.p1)  and  Stockholm-Tartu  Reverse  Network  Engineering  Task  (STARNET)  studies  (397,  398) 
 (dbGaP  accession  phs001203.v1.p1)  were  provided  by  third  parties  by  permission  and  will  be  shared  on  request 
 to  the  corresponding  authors  with  permission  of  the  third  party.  Access  to  the  UK  Biobank  (386)  can  be  requested 
 on  their  website  and  was  granted  under  the  p  roject  ID  25214.  Gene  expression  and  genotype  data  data  from  the 
 Genotype-Tissue Expression (GTEx) project  (399)  were  obtained from the  GTEx  Portal with the project ID  20848. 
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