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Abstract— In this letter, we investigate the problem of
actuator scheduling for networked control systems. Given
a stochastic linear system with a number of actuators, we
consider the case that one actuator is activated at each
time. This problem is combinatorial in nature and NP hard
to solve. We propose a convex relaxation to the actuator
scheduling problem, and use its solution as a reference
to design an algorithm for solving the original scheduling
problem. Using dynamic programming arguments, we pro-
vide a suboptimality bound of our proposed algorithm. Fur-
thermore, we show that our framework can be extended to
incorporate multiple actuator scheduling at each time and
actuation costs. A simulation example is provided, which
shows that our proposed method outperforms a random
selection approach and a greedy selection approach.

Index Terms— Actuator scheduling, LQG control.

I. INTRODUCTION

IN recent years, networked control systems (NCSs) have
gained much interest in the controls community due to

the advancements in communication architecture, computer
technology, and network infrastructure that enable efficient
distributed sensing, estimation, and control [1]–[3]. Due to
potential constraints on the communication and computation
resources of NCSs, sensor scheduling and actuator scheduling
are two important and challenging problems, and efficient
algorithms are sought for solving them.

The majority of the existing work focuses on sensor
scheduling problems and their variants. Several approaches
(e.g., stochastic selection [4], search tree pruning [5], greedy
selection [6], semidefinite programming based trajectory track-
ing [7]) have been proposed to solve such problems. In
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contrast, the actuator scheduling problem has received much
lesser attention. While sensor scheduling problems focus on
minimizing (a function of) the estimation error, the actuator
scheduling directly affects the controllability and stability of
the system as well as the control performance. Therefore,
a significant portion of the work on actuator scheduling
focuses on studying the effects of actuator scheduling on the
controllability and stability of the systems, e.g., [8]–[12] and
others. It is shown in [8]–[10] that several classes of energy
related metrics associated with the controllability Gramian
have a structural property (modularity) that allows for an
approximation guarantee by using a simple greedy heuristic.
These problems are further investigated in [11], where a frame-
work of sparse actuator schedule design was developed that
guarantees performance bounds for a class of controllability
metrics. Except [12], these works assume a time invariant
scheduling problem, which is likely to be suboptimal and may
impose restrictions on controllability for large systems. [12]
uses a round robin scheme for selecting the actuators and
show that local stability is attained if the switching between
the actuators is fast enough. The efficacy of time-varying
scheduling over time-invariant ones for interconnected systems
is also demonstrated in [13]. However, how to find the optimal
time-varying schedules remains unanswered.

The efficacy of the abovementioned controllers on a system
with different performance criteria (e.g., quadratic cost) is
unknown and likely to be suboptimal since these works solely
focus on the controllability/stability aspect. In contrast to
those works, a few existing works [14]–[16] consider a linear-
quadratic optimal control problem for actuator scheduling.
However, the focus on these works is to decide at each time
whether to activate the only actuator available or not.

Motivated by the above, in this letter we study the actuator
scheduling problem for a finite horizon linear-quadratic control
system with a number of actuators. We consider the case that
a nonempty subset of the actuators is active at each time. The
performance of the actuator schedule is measured by a finite
horizon quadratic cost function of the system state and control
plus the cost of using each actuator (representing e.g., energy
consumption). This problem is combinatorial in nature and is
NP-hard in general. Due to space limitations, we first restrict
ourselves to the case that only one actuator is activated at each
time and that all actuators have equal actuation costs. We then
provide discussions and simulation results on the general cases
that multiple actuators are activated at each time and that the
actuators have different actuation costs.



The main contributions of this letter are the following: (i)
We propose a convex relaxation to the actuator scheduling
problem, and use its solution as a ‘reference’ to design an algo-
rithm for solving the original NP-hard scheduling problem. (ii)
We provide a suboptimality bound for the proposed algorithm.
(iii) We further show that our results can be extended to the
cases with multiple actuator scheduling and actuation costs.

The outline of this letter is as follows: In Section II, we
formulate the actuator scheduling problem, which is solved in
Section III. In Section IV, we provide discussions on multiple
actuator scheduling and actuation costs. Simulation results are
provided in Section V. Section VI concludes this letter.

Notation: We denote the set of real numbers and positive
real numbers by R and R+, respectively. The set of n
dimensional vectors over R is denoted by Rn and the set of real
n×m matrices by Rn×m. The identity matrix is denoted by I .
For a given matrix A, its transpose and inverse (if exists) are
denoted by A⊤ and A−1, respectively. For a symmetric matrix
P , we denote P ≻ 0 (P ⪰ 0) if it is positive definite (positive
semidefinite). The trace of a square matrix A is denoted by
tr(A) and the Frobenious norm by ∥A∥F . We use E[x] to
denote the expectation of a random variable x.

II. PROBLEM FORMULATION

We consider a system with N actuators of the form

xt+1 = Atxt +
∑

j∈σt
Bt(j)ut(j) + wt, (1)

where At ∈ Rn×n, Bt(j) ∈ Rn×mj , σt ⊆ N := {1, 2, . . . , N}
the set of selected actuators, xt ∈ Rn the state, ut(j) ∈ Rmj

the input from the j-th actuator, and wt ∈ Rn an independent
sequence of Gaussian random variables with wt ∼ N (0,Wt).
The initial state is x0 ∼ N (0,W−1) and it is independent of
wt for all t. The matrix Bt(j) describes how the control input,
ut(j), of the j-th actuator enters the system at the time t. The
mapping σ : [0, T − 1]→ 2N is called the scheduling function
that determines which actuators are active at any time.

We consider the actuator scheduling problem that at each
time only Nt(1 ≤ Nt ≤ N) out of the N actuators are used
to control the system (1) at time t. Consider a standard finite
horizon quadratic control cost function

Jc = E
[∑T−1

t=0

(
x⊤
t Qtxt +

∑
j∈σt

ut(j)
⊤Rt(j)ut(j)

)
+ x⊤

TQTxT

]
, (2)

where QT , Qt, Rt(j) ≻ 0 for all t. In addition, consider also
an actuation cost function Ja =

∑T−1
t=0

∑
j∈σt

ct(j), where
ct(j) ∈ R+ is the cost of using actuator j at time t. Note that
ct(i) and ct(j) are in general different for i ̸= j and i, j ∈ N,
which can be due to the fact that different actuators may have
different energy consumption or resource usage. The objective
of the actuator scheduling problem is then to find an actuator
schedule that minimize the joint cost J = Jc + Ja.

Due to space limitations, in the sequel we will restrict
ourselves to the case that Nt = 1 and ct(j) = ct for all j and t.
In other words, we consider the case that exactly one out of
the N actuators is used at each time and that each actuator has
the same actuation cost. The assumption ct(j) = ct leads to

Ja being independent of the actuator schedule and therefore,
minimizing J is equivalent to minimizing Jc. The discussions
on the cases with multiple actuators and actuation costs will
be provided afterwards in Section IV.

We assume that perfect state measurement is available to
the controllers. The information available at the controller at
time t is denoted by It, with It = It−1

⋃
{xt} for all t ≥ 1

and I0 = {x0}. For any given schedule σ, the controller for
the j-th actuator at time t is ut(j) = −Lt(j, σ)xt, and the
cost associated to this schedule σ is

Jc(σ) =
∑T

t=0 tr(Kt(σ)Wt−1),

where Lt(j, σ) and Kt(σ) satisfy the following equations

Lt(j, σ) = St(j, σ)
−1Bt(j)

⊤
Kt+1(σ)At, (3)

St(j, σ) := Bt(j)
⊤
Kt+1(σ)Bt(j) +Rt(j) (4)

Kt(σ) = Qt +A⊤
t Kt+1(σ)At− (5)

A⊤
t Kt+1(σ)Bt(σt)St(σt)

−1Bt(σt)
⊤
Kt+1(σ)At

KT (σ) := KT = QT .

Notice that, for any t ≤ T − 1, the matrix Kt(σ) depends
on the actuator schedule for the interval [t, T − 1]. Thus, the
gains Lt(j, σ) associated with the j-th actuator depends on
the future schedule for the time interval [t + 1, T − 1] and
actuator j through Bt(j) and Rt(j).

Before proceeding, to maintain brevity in the subsequent
analysis, we define two matrix valued functions:

gt(j,M) := M

−MBt(j)
(
Bt(j)

⊤MBt(j) +Rt(j)
)−1

Bt(j)
⊤M, (6a)

ht(M) := A⊤
t MAt +Qt, (6b)

for all j ∈ N. By defining a new variable Kt|t+1 and
substituting (6) into (5), we obtain that, for any given σ,

Kt|t+1(σ) := gt(σt,Kt+1(σ)). (7a)
Kt(σ) = ht(Kt|t+1(σ)), KT = QT . (7b)

In what follows, we will suppress the time subscript in σt

to maintain notation brevity. The optimal actuator scheduling
problem that we consider is then formulated as follows.

Problem 1 (Actuator Scheduling Problem): Given system
(1) and N actuators, find a schedule σ : [0, T − 1] → N
that solves the following optimization problem:

min
∑T

t=0 tr(Kt(σ)Wt−1)

subject to Kt|t+1(σ) = gt(σ,Kt+1(σ)),

Kt(σ) = ht(Kt|t+1(σ)), KT = QT

with the variables σ,Kt,Kt|t+1.
Problem 1 is combinatorial in nature and NP-hard in gen-

eral [17]. We now propose an efficient solution to Problem 1
using a convex relaxation.

III. ACTUATOR SCHEDULING WITH SUBOPTIMALITY
GUARANTEES

In this section, we solve Problem 1 and provide a suboptimal
solution that is computationally inexpensive. We will propose



a convex relaxation to the problem (see Problem 3) and
will use the solution of the relaxed problem as a ‘reference’
to find a solution to Problem 1. In Section III-A we will
propose a tracking algorithm that finds a solution which is
‘close’ to the reference solution found from solving the relaxed
convex optimization problem. The suboptimality bound of the
proposed algorithm is discussed using dynamic programming
type arguments in Section III-B.

Before proceeding, we first reformulate Problem 1 into a
form that is easier for the analysis afterwards. According to
(6b) and (7b), we have Kt(σ) = A⊤

t Kt|t+1(σ)At + Qt, t =
0, 1, . . . , T − 1 and KT = QT . Subsequently, we obtain

∑T
t=0 tr(Kt(σ)Wt−1) =

∑T−1
t=0 tr(Kt|t+1(σ)W̄t−1)+ r, (8)

where r =
∑T

t=0 tr(QtWt−1) and W̄t−1 = AtWt−1A
⊤
t . Note

that r is independent of σ,Kt(σ) and Kt|t+1(σ).

Next, we define two matrices Pt and Pt|t+1 as follows

Pt(σ) := K−1
t (σ), Pt|t+1(σ) := K−1

t|t+1(σ).

According to Woodbury matrix equality, we have

Pt|t+1(σ) = Pt+1(σ) +Bt(σ)R
−1
t (σ)B⊤

t (σ). (9)

Using (8) and the new variables Pt|t+1(σ), Pt(σ), Prob-
lem 1 can be rewritten as Problem 2.

Problem 2: Given system (1) with N actuators, find a
schedule σ : [0, T − 1]→ N that solves the following:

min
∑T−1

t=0 tr(Kt|t+1(σ)W̄t−1)

subject to Kt|t+1(σ) = P−1
t|t+1(σ),

Pt|t+1(σ) = Pt+1(σ) +Bt(σ)R
−1
t (σ)B⊤

t (σ),

P−1
t (σ) = ht(Kt|t+1(σ)), PT = Q−1

T

with variables σ,Kt,Kt|t+1, Pt, Pt|t+1.

Note that, although the constraints in Problem 1 and Prob-
lem 2 appear differently, one can in fact verify that these two
problems are equivalent.

Let us denote Vt(σ) := Bt(σ)R
−1
t (σ)B⊤

t (σ) and the set
Vt := {Bt(j)Rt(j)

−1
Bt(j)

⊤
: j ∈ N}. Therefore, we

may rewrite the constraints in Problem 2 to be Kt|t+1 =

P−1
t|t+1, Pt|t+1 = Pt+1 + Vt, Vt ∈ Vt, Pt =

(
ht(Kt|t+1)

)−1
,

and PT = Q−1
T . We have suppressed the arguments σ in

the variables to maintain notational brevity. We can further
relax the constraints in Problem 2 to their equivalent matrix
inequality Kt|t+1 ⪰ P−1

t|t+1, and Pt ⪯ (ht(Kt|t+1))
−1. Using

Schur complement, one may write Kt|t+1 ⪰ P−1
t|t+1 as the

Linear matrix inequality
[
Kt|t+1 I

I Pt|t+1

]
⪰ 0. Similarly,

using the definition of ht(·) from (6b), the Woodbury ma-
trix inverse identity, and Schur complement, we obtain the
following problem from Problem 2.

Problem 3: Given Vt := {Bt(j)Rt(j)
−1

Bt(j)
⊤

: j ∈ N},

solve the following optimization problem

min
∑T−1

t=0 tr(Kt|t+1W̄t−1)

subject to Pt|t+1 = Pt+1 + Vt, Vt ∈ Vt, PT = Q−1
T ,[

Kt|t+1 I
I Pt|t+1

]
⪰ 0,[

Q−1
t − Pt Q−1

t A⊤
t

AtQ
−1
t Pt|t+1 +AtQ

−1
t A⊤

t

]
⪰ 0

with variables Kt|t+1, Pt|t+1, Pt, and Vt.
Notice that the constraint Vt ∈ Vt is sufficient to enforce the
scheduling constraint σ : [0, T − 1]→ N.

While Problem 3 is a relaxation of Problem 2, we now show
a key result that an optimal solution to Problem 3 is also an
optimal solution to Problem 2.

Theorem 1: An optimal solution of the relaxed problem
(Problem 3) is also an optimal solution of the original problem
(Problem 2), and vice-versa.

Proof: The proof of this theorem is along the lines of [7,
Theorem 1]. First, note that, due to the relaxations, any feasible
solution of Problem 2 is a feasible solution for Problem 3, and
hence the optimal solution of Problem 2 is a feasible solution
for Problem 3. The theorem is proved once we show that for
every feasible solution of Problem 3 there exists a feasible
solution for Problem 2 that produces the same, if not a smaller,
objective value.

In order to show that, let the tuple {Kt|t+1, Pt|t+1, Pt}
denote a feasible solution of Problem 3. Let us construct a
new tuple {K̄t|t+1, P̄t|t+1, P̄t} as follows

P̄t|t+1 = P̄t+1 + V̄t, P̄t =
(
ht(K̄t|t+1)

)−1

V̄t = Pt|t+1 − Pt+1, K̄t|t+1 = P̄−1
t|t+1, P̄T = PT .

(10)

It then follows from (10) that P̄t|t+1 ⪰ Pt|t+1, K̄t|t+1 ⪯
Kt|t+1 and P̄t+1 ⪰ Pt+1 for all t. Note also that the
matrix V̄t in (10) satisfies V̄t ∈ Vt. Since the tuple
{K̄t|t+1, P̄t|t+1, P̄t} satisfies all the constraints of Problem 2,
this implies that it is a feasible solution of Problem 2. Next,
note that K̄t|t+1 ⪯ Kt|t+1 for all t, this then implies that∑T−1

t=0 tr(K̄t|t+1W̄t−1) ⪯
∑T−1

t=0 tr(Kt|t+1W̄t−1). Therefore,
for any feasible solution of Problem 3 we can construct a
feasible solution for Problem 2 that produces the same, if not
less, cost. This completes the proof.

Remark 2: Theorem 1 shows that the LMI-based relax-
ations introduced in Problem 3 do not affect the optimality,
since an optimal solution to the relaxed problem is also optimal
for the original problem. This is a key advantage of this
approach, as the LMI-based relaxations retain the optimality.
Moreover, since Problem 3 is a mixed integer semidefinite
program, one may attempt to directly solve it using available
numerical techniques [18].

Next, note that Problem 3 is convex if Vt is a convex set
for all t. When Vt is not convex, one could take the convex
hull of the set Vt to make Problem 3 convex. In our case,
since Vt is a collection of N matrices {Vt(1), . . . , Vt(N)}
where Vt(j) = Bt(j)Rt(j)

−1
Bt(j)

⊤ for all t, we replace the
constraint Vt ∈ Vt with the constraints Vt =

∑N
i=1 θ

i
tVt(i),



θit ∈ [0, 1] and
∑N

i=1 θ
i
t = 1. In this case, Problem 3 can be

further simplified to Problem 4.
Problem 4:

min
∑T−1

t=0 tr(Kt|t+1W̄t−1)

subject to Pt|t+1 = Pt+1 +
∑N

i=1 θ
i
tVt(i), PT = Q−1

T ,∑N
i=1 θ

i
t = 1, 0 ≤ θit ≤ 1,

[
Kt|t+1 I

I Pt|t+1

]
⪰ 0,[

Q−1
t − Pt Q−1

t A⊤
t

AtQ
−1
t Pt|t+1 +AtQ

−1
t A⊤

t

]
⪰ 0,

with variables θit,Kt|t+1, Pt|t+1, Pt.
At this point we have a convex optimization problem

(semidefinite program) in Problem 4 which is much easier to
solve compared to the mixed integer semidefinite program in
Problem 3. If the optimal θjt is binary-valued then the optimal
schedule to Problem 1 is found by setting σt = j such that
θjt = 1. However, in general the optimal θjt are not binary-
valued and we need to design an algorithm to find a schedule σ
from the solution to Problem 4.

Remark 3: At first glance, it may seem that selecting the
actuator with the maximum value of θit at each time will lead
to the smallest value of tr(Kt|t+1W̄t−1). However, it is not
necessarily the case (see simulation in Section V). In the next
section we propose a more efficient algorithm and discuss its
suboptimality bound.

A. Actuator Scheduling Algorithm

By solving the convex relaxation in Problem 4, we obtain
{{θit

o}i∈N}T−1
t=0 , or equivalently V o

t =
∑N

i=1 θ
i
t
o
V i
t and the as-

sociated Ko
t|t+1, P o

t|t+1 and P o
t . In this section, we propose an

algorithm that uses this solution of Problem 4 as a reference to
obtain a suboptimal solution for Problem 1. The corresponding
algorithm is presented in Algorithm 1. Note that this algorithm
depends linearly on the number of the actuators.

Algorithm 1 takes the solution {Ko
t|t+1}

T−1
t=0 obtained from

solving Problem 4 as an initial guess, and initializes the
terminal condition KT at QT . The algorithm produces a
trajectory {Kt|t+1}T−1

t=0 that is close to the reference tra-
jectory {Ko

t|t+1}
T−1
t=0 in Frobenius norm. The reasoning

behind the construction of Algorithm 1 is to keep the ma-
trices Kt|t+1(σ) close to Ko

t|t+1, and subsequently, to keep∑T−1
t=0 tr(Kt|t+1(σ)W̄t−1) close to

∑T−1
t=0 tr(Ko

t|t+1W̄t−1),
since

∑T−1
t=0 tr(Ko

t|t+1W̄t−1) is the lowest one that could
possibly be achieved given the set of actuators. The algorithm
can be regarded as a trajectory-tracking problem in the space
of positive definite matrices where {Ko

t|t+1}t≥0 serves as the
reference trajectory.

Although Algorithm 1 is heuristic in nature, we may use
dynamic programming type arguments to analyze its perfor-
mance. To this end, we denote the value function associated
to Problem 2 as

Ut(K) = min{σ(k)}t
k=0

∑t
k=0 tr(Kk|k+1(σ)W̄k−1), (11)

given Kt+1 = K for some K ≻ 0. Likewise, we denote the
value function associated with Problem 4, which is the SDP

Algorithm 1 Reference Tracking Algorithm

1: Input {Ko
t|t+1}

T−1
t=0 , KT = QT

2: for t = T − 1 : 0 do
3: Mt(i)← gt(i,Kt+1), i ∈ N
4: σt ← argmini ∥Ko

t|t+1 −Mt(i)∥F
5: Kt|t+1 ← gt(σt,Kt+1)
6: Kt ← ht(Kt|t+1)
7: end for
8: Output σ

relaxation of Problem 1, to be

Uo
t (K) = min

{{θi
k}i∈N}t

k=0

∑t
k=0 tr(Kk|k+1(θ)W̄k−1). (12)

It in fact can be shown that

Ut(K) ≤ αt + Uo
t (K

o
t+1) + c1 min

σt

∥Kt|t+1(σ)−Ko
t|t+1∥F ,

where Kt = A⊤
t Kt|t+1At + Qt, c1 := ∥W̄t−1∥F + c∥At∥2F

and αt > 0 depends on t but not K or σ. Thus, optimizing
minσ ∥Kt|t+1(σ)−Ko

t|t+1∥F in Algorithm 1 in fact minimizes
an upper bound of the value function Ut, or equivalently, an
upper bound of

∑T−1
t=0 tr(Kt|t+1W̄t−1). Therefore, in essence,

Algorithm 1 performs an approximate dynamic programming
type optimization by minimizing an upper bound of Ut.

The reader is referred to [19] for detailed derivations.

B. Suboptimality Guarantees

The following theorem provides a suboptimality bound of
Algorithm 1.

Theorem 4: Let σ, σ∗ and θ∗ denote the schedule obtained
from Algorithm 1, the true optimal schedule of Problem 1,
and the solution to Problem 4, respectively. Then, we have∑T

t=0 tr(Kt(σ)Wt−1) ≤
∑T

t=0 tr(Kt(σ
∗)Wt−1) + ϵ, (13)

where

ϵ ≜ ∥W̄t−1∥F
(∑T−1

t=0
λt+1−1
λ−1 βt

+
∑T−1

t=0 ∥Kt|t+1(θ
∗)−Kt|t+1(σ

∗)∥F
) (14)

with λt ≜ ∥At+1∥2∥Ht(σ
∗,Kt+1(θ

∗))∥2, βt ≜
∥gt(σ∗

t ,Kt+1(θ
∗))−Kt|t+1(θ

∗)∥F and

Ht(σ
∗,Kt+1(θ

∗)) ≜ I −Kt+1(θ
∗)Bt(σ

∗)

×
(
Bt(σ

∗)
⊤
Kt+1(θ

∗)Bt(σ
∗) +Rt(σ

∗)
)−1

Bt(σ
∗)

⊤
.

Proof: First, let us recall (8) and we then have∑T
t=0 tr(Kt(σ)Wt−1)−

∑T
t=0 tr(Kt(σ

∗)Wt−1)

=
∑T−1

t=0 tr
((

Kt|t+1(σ)−Kt|t+1(σ
∗)
)
W̄t−1

)
≤
∑T−1

t=0 ∥Kt|t+1(σ)−Kt|t+1(σ
∗)∥F ∥W̄t−1∥F .

Next, for all t, it holds that

∥Kt|t+1(σ)−Kt|t+1(σ
∗)∥F ≤ ∥Kt|t+1(σ)−Kt|t+1(θ

∗)∥F
+ ∥Kt|t+1(θ

∗)−Kt|t+1(σ
∗)∥F , (15)



where Kt|t+1(σ) is the obtained matrix when schedule σ is
used from time T − 1 backwards to t. Similarly, we define
Kt(σ

∗) and Kt(θ
∗). Furthermore, according to the definition

of θ∗, we have Kt|t+1(θ
∗) = Ko

t|t+1. Next, note that, due to
the design of our algorithm (line 4 in Algorithm 1), it holds

∥Kt|t+1(σ)−Kt|t+1(θ
∗)∥F

=min
i
∥gt(i,Kt+1(σ))−Kt|t+1(θ

∗)∥F

≤∥gt(σ∗
t ,Kt+1(σ))−Kt|t+1(θ

∗)∥F
≤∥gt(σ∗

t ,Kt+1(σ))− gt(σ
∗
t ,Kt+1(θ

∗))∥F
+ ∥gt(σ∗

t ,Kt+1(θ
∗))−Kt|t+1(θ

∗)∥F .

It then follows from [19, Lemma 4] and the concavity of
gt(i, ·) that

∥gt(σ∗
t ,Kt+1(σ))− gt(σ

∗
t ,Kt+1(θ

∗))∥F
≤∥Ht(σ

∗
t ,Kt+1(θ

∗))∥2∥At+1∥2

× ∥Kt+1|t+2(σ))−Kt+1|t+2(θ
∗)∥F .

By defining ηt ≜ ∥Kt|t+1(σ) − Kt|t+1(θ
∗)∥F , λt ≜

∥At+1∥2∥Ht(σ
∗
t ,Kt+1(θ

∗))∥2, βt ≜ ∥gt(σ∗
t ,Kt+1(θ

∗)) −
Kt|t+1(θ

∗)∥F , we obtain

ηt ≤ ληt+1 + βt, t = 0, 1, . . . , T − 2, ηT−1 ≤ βT−1, (16)

where λ = maxt λt. This further gives us that ηt ≤∑T−t
i=1 λT−t−iβT−i, for t = 0, 1, . . . , T − 1. It then follows

from (15), (16) and the definition of ηt that∑T−1
t=0 ∥Kt|t+1(σ)−Kt|t+1(σ

∗)∥F
≤
∑T−1

t=0 ηt +
∑T−1

t=0 ∥Kt|t+1(θ
∗)−Kt|t+1(σ

∗)∥F
≤
∑T−1

t=0
λt+1−1
λ−1 βt +

∑T−1
t=0 ∥Kt|t+1(θ

∗)−Kt|t+1(σ
∗)∥F .

This implies that∑T−1
t=0 tr(Kt|t+1(σ)W̄t−1)−

∑T−1
t=0 tr(Kt|t+1(σ

∗)W̄t−1) ≤ ϵ,

where ϵ is given in (14). This completes the proof.
Remark 5: Note that equation (13) in Theorem 4 provides

a suboptimality bound on Algorithm 1. According to the
definition of βt, it can be seen that the value of ϵ depends
on the mismatch between the schedules θ∗ and σ∗. Clearly,
if the solution to Problem 4 is already integer in nature (i.e.,
θ∗t ∈ {0, 1}) for all t, then βt = 0 for all t, and consequently
we obtain ϵ = 0.

IV. DISCUSSION ON MULTIPLE ACTUATOR SCHEDULING
AND ACTUATION COSTS

In this section, we will provide brief discussions on the
cases of multiple actuator scheduling and actuation costs.

1) Multiple Actuator Scheduling: In Section III, we consid-
ered the problem for the case where exactly one actuator is
used at each time. In practice, one may encounter a situation
that multiple actuators (e.g., Nt out of N ) are scheduled at
the same time. Such a problem can be solved in several ways
using our method. Here we discuss two of them.

As a first approach, one may construct
(
N
Nt

)
virtual ac-

tuators, each of these is a group of Nt actuators. Thus,
selecting Nt out of N actuators is equivalent to selecting one
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6
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Fig. 1: Network model for simulation example.

out of these
(
N
Nt

)
virtual actuators. However, complexity of

such an approach grows factorially. A less computationally
expensive approach is to use

∑N
i=1 θ

i
t = Nt in Problem 4,

along with a modification in Algorithm 1, in which case the Nt

actuators that give the smallest values of ∥Ko
t|t+1 −Mt(i)∥F

are the actuators selected at time t. This modification in
Problem 4 does not introduce any extra computational com-
plexity. Computational requirements for Algorithm 1 slightly
increases. However, given the simplicity of Algorithm 1, this
is practically inconsequential.

2) Actuation Costs: The results in Section III are derived
by considering all actuators to have equal actuation costs (i.e.,
ct(i) = ct for all i). One possible way to incorporate the
actuation costs is to include the term

∑T−1
t=0

∑N
i=1 ct(i)θ

i
t

in the objective function of (4). Notice that the term∑T−1
t=0

∑N
i=1 ct(i)θ

i
t is linear in the optimization variable θt,

and hence the convexity of the problem is retained. In the
simulation we adopt this approach to include actuation costs.

V. SIMULATION

We consider a networked system with 6 nodes as shown in
Fig. 1. The i-th node follows the dynamics

xt+1(i) =
∑6

j=1 aijxt(j) + ut(i) + wt(i),

where aij ≥ 0 denotes the weight on the link between nodes
i and j and aii = 1 −

∑6
j=1,j ̸=i aij . If there is no link

present between node i and j, then aij = 0. Each node
has an actuator associated with it through which one can
directly control the state of that node. The overall system state
xt = [xt(1), . . . , xt(6)]

⊤ follows the dynamics

xt+1 = Axt +
∑6

i=1 B(i)ut(i) + wt,

where B(i) ∈ R6 is i-th canonical basis vector in R6 and
wt = [wt(1), . . . , wt(6)]

⊤. We consider a cost function of the
form (2) with Qt = 1

2I,Rt(i) = I for all t ≤ T − 1 and
QT = I . Furthermore, we assume x0 ∼ N (0, 1

2I) and wt ∼
N (0, 1

4I). The actuation costs are ct(i) = 1 for i = 1, . . . , 4,
ct(5) = 1.5, and ct(6) = 2. The costs for ct(5) and ct(6) are
chosen to be higher because the system is fully controllable
only with B(5) and B(6). For a horizon of T = 30, the
schedule obtained from our algorithm is shown in Fig. 2, and
the corresponding optimal cost is 101.0006.

Interestingly, from the solution to Problem 4 shown in
Fig. 3, we notice that the actuator of the 1-st node is hardly
used since the values of θ1t ’s are in orders of magnitude smaller
than that for the rest of the nodes for all t. This is in contrast
with the schedule we found in Fig. 2 where actuator 1 is
scheduled for several time instances (∼ 17% of the time)
by Algorithm 1. Actuator 2 is used the least by Algorithm 1



Fig. 2: The actuator schedules using different methods.

Fig. 3: Optimal θit from Problem 4. For all t, we obtained
θ5t = θ6t , and hence they are not distinguishable in the figure.

Fig. 4: x-axis: Cost (J), y-axis: Percentage of the randomly
generated trials which produced a cost less than or equal to
the value on the x-axis.

in Fig. 2, however, in Fig. 3 we notice that θ2t is not the
least among all θit’s. While one might be tempted to only
use actuators 3 and 4 since the corresponding θit values are
the highest ones in Fig. 3, however, such restriction leads to
a cost of 108.5531, which is higher than what our method
found. This indeed validates our statements in Remark 3.

Next, we compare the performance of our approach with
randomly generated schedules and a greedy selection ap-
proach1. We randomly selected 50,000 schedules and com-
puted the cost corresponding to these schedules. The resulting
cost distribution from the schedules are plotted in Fig. 4 and
the minimum cost out of these 50,000 trials is 102.0693.

Evaluation of the 50,000 random trials took 34.65 seconds
whereas our approach (convex optimization plus trajectory
tracking) took 2.5 seconds, which is an order of magnitude
less time. For the greedy approach, at each time instance we
greedily selected the actuator that provides the minimum cost
for that time stage. This approach is fast (< 1 sec) but the

1Scheduling problems generally has a supermodularity structure which
ensures a level of optimality guarantee for the greedy approach.

performance is the worst (see. Fig. 4).

VI. CONCLUSIONS

In this letter, we have studied the problem of actuator
scheduling for stochastic linear NCSs. In particular, we have
considered the case that only one actuator is active at each
time. We have proposed a convex relaxation and used its
solution as a reference for obtaining a suboptimal tracking
algorithm for solving the actuator scheduling problem. Sub-
optimality guarantees for the proposed algorithm have been
provided using dynamic programming arguments. We have
also discussed the extensions on the cases with multiple
actuator scheduling and actuation costs.
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