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Abstract— In autonomous driving, it is essential to be able to
avoid any type of collision with the environment by appropriate
control. Therefore, the distance between vehicle and obstacles
needs to be sufficiently large, providing a norm constraint e.g.
for optimal control of the vehicle. In general, future positions
of dynamic obstacles are highly uncertain and thus predictions
are e.g. made using a stochastic model of the obstacle dynamics.
We propose an application-independent framework that extends
Linear Model Predictive Control to minimize the probability of
norm constraint violation in the prediction horizon. Thus, for
the autonomous driving application, the probability of collision
is minimized. In contrast to Robust Model Predictive Control
approaches, the proposed approach can deal with unexpected
behavior of the obstacle without loss of feasibility.The applica-
bility of the method is demonstrated in simulation of a vehicle
that is successfully avoiding a suddenly emerging pedestrian.

I. INTRODUCTION

Control applications like autonomous driving [1] and
human-robot collaboration [2] have gained in importance
over the last decade. In both applications, a collision between
a human and a machine is a threat to the human and must
be avoided. Therefore, in this paper, a control approach
is proposed that allows to avoid collisions of a controlled
system with dynamic obstacles and determines a dynamically
feasible maneuver around the obstacle, e.g., avoiding a
collision of a car with a pedestrian.

Collision avoidance is commonly included as constraint
to the control problem and an established control method
to handle constraints is Model Predictive Control (MPC)
[3], [4]. MPC repeatedly solves constrained optimal control
problems on a short prediction horizon to find suitable
control inputs for the overall horizon. For collision avoidance
problems, it is essential that each of the constrained optimal
control problems is feasible, otherwise, a collision due to
loss of control is possible. Therefore, recursive feasibility is
a necessary and essential property of MPC in particular for
collision avoidance, see [5], [6].

To account for uncertainties that e.g. come from highly
uncertain predictions of obstacle behavior, MPC is extended
to Robust Model Predictive Control (RMPC). RMPC in
particular enables constraint admissibility despite of distur-
bances. The tube-based RMPC method in [7] uses tightened
constraints such that even a worst-case realization of a
bounded disturbance does not result in constraint violation.
A disadvantage is that constraint tightening is performed
offline and thus it is difficult to include constraints that
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change over time. Furthermore, the necessary safety margin
leads to a conservative controller. In contrast, Stochastic
Model Predictive Control (SMPC) enables less conservative
controls despite of disturbances accepting a small risk of
constraint violation and assuming that stochastic properties
of the disturbances are known [8], [9]. A drawback of
SMPC is that recursive feasibility is difficult to address. For
example, the SMPC algorithm in [10] is provably recursively
feasible for bounded disturbances. Though also here, an
offline computation of tightened constraints is necessary. In
the SMPC method presented in [11], recursive feasibility
is guaranteed by providing a backup strategy, but only
one specific application, autonomous driving, is addressed.
Another way is is to replace the hard constraints by soft
constraints when the current state is infeasible [3].

All SMPC approaches allow for a non-zero constraint
violation probability. Though in many applications, it would
be more beneficial to choose a control with almost zero or
zero constraint violation probability as long as it exists. For
example in autonomous driving, a vehicle may overtake with
small distance accepting a small probability of collision or
it may also overtake with slightly more distance resulting in
a negligibly small probability of collision. Therefore, in [12]
a method is introduced that first determines a set of inputs
for the controlled system that leads to minimal probability
of collision, and then applies the MPC optimization with
this input set as a constraint. This method is referred to as
Constraint Violation Probability Minimization (CVPM) and
it uses the assumptions that the support of the disturbance
is bounded and collision avoidance is modeled as a norm
constraint. An advantage when comparing to RMPC methods
is that it is not required to precompute tightened constraints
and thus this approach e.g. allows for varying support of the
disturbances over time without affecting recursive feasibility.
However, in [12], the probability of constraint violation is
evaluated only on a very short horizon of length 1. As
a consequence, systems with complex dynamics start to
oscillate or are not manageable at all.

Therefore, in this paper, the CVPM approach of [12] is
extended to consider the minimization of the probabilistic
norm constraint for a larger sub-horizon within the MPC
prediction horizon. The CVPM method is designed such that
recursive feasibility is always fulfilled and we will show that
the origin is stabilized. Similar to [12], we assume that the
controlled system is linear, the cost is quadratic, and the only
uncertainty is in the position of the obstacle.

The remainder of this paper is structured as follows:
Section II provides the problem statement. In Section III



the proposed method is presented. Recursive feasibility and
stability are investigated in Section IV. Simulation results are
given in Section V and a discussion in Section VI. Section
VII concludes the paper.

II. PROBLEM SETUP

First, we define the dynamics of the controlled system
and the obstacle. Then, a brief overview of the underlying
MPC method is given. The section concludes with a formal
problem statement.

A. System Dynamics

The proposed method utilizes two models. The first is a
deterministic linear discrete-time model for the controlled
system. The second is a model of the obstacle that includes
uncertainty. The controlled system is represented by

xk+1 = Axk +Buk (1a)
yk = Cxk (1b)

with time instance k, states xk ∈ Rn, control input uk ∈
Rm, output yk ∈ Rq , and matrices A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rq×n. The inputs are constraint to be within the input
set uk ∈ U and the states must be within the state set xk ∈ X
for all k. Both sets are convex and contain at least the origin.
The input set is assumed to be compact and the state set is
closed. The obstacle is modeled by the uncertain discrete-
time dynamics

yr,k+1 = yr,k + ur,k +wk, (2)

where the output yr,k+1 depends on the previous output
yr,k ∈ Rq , a deterministic, known input ur,k ∈ Rq , and
a stochastic disturbance wk ∈ Rq . Each disturbance is
an independent realization of a random variable Wk. It
is assumed to have zero-mean and a radially decreasing
probability density function. Furthermore, the support of the
random variable is assumed to be bounded:

wk ∈ {w | ‖w‖2 ≤ wmax} (3)

Here ‖·‖2 denotes the Euclidean norm. The dynamics in
(2) is referred to as obstacle model since the approach is
motivated by obstacle avoidance applications. However, the
method is presented independent of any application and yr,k
can be used to represent a state-space region that has to be
avoided.

B. Model Predictive Control

The proposed CVPM method builds up on a standard MPC
method, that is introduced in the following. MPC finds a
control input for (1). Based on the current state, the MPC
method optimizes the next N inputs, resulting in an optimal
state trajectory in terms of the objective function. The first
input of the determined input sequence is applied to the
system and the process is repeated with the resulting state
of the system in the following time step. The initial state of
each iteration is denoted as x0, which is possible because

the system is time-invariant. The optimal input minimizes
the cost function

VN (x0,U) =

N−1∑
j=0

l(xj ,uj) + Vt(xN ), (4)

where N is the prediction horizon. The stage cost is chosen
as l(xj ,uj) = x>j Qxj + u

>
j Ruj and the terminal cost as

Vt(xN ) = x>NQtxN . The index k is used for the ongoing
time instance in which the control method is applied and the
index j is used to denote the prediction time step. Our goal
is to solve a regulation problem, i.e., the stabilization of the
origin. The input sequence is

U =
[
u0
> u1

> . . . uN−1
>]> , (5)

and contains all inputs within the prediction horizon. The
terminal set Xf is a constraint for the last predicted state xN

and the set of admissible input sequences

Ux0 = {U | ∀j ∈ Z0:N−1 : xN ∈ Xf,xj ∈ X ,uj ∈ U} (6)

contains all input sequences that are feasible for the opti-
mization. The set Za:b denotes the closed interval of integers
between a and b.

Note that the admissible input set Ux0
is a convex set since

all input and state sets are convex and all relations between
the variables are linear. Therefore, the optimization problem
that is solved at each time instance is

U∗ = argmin
U

VN (x0,U) (7a)

s.t. xj+1 = Axj +Buj , j ∈ Z0:N−1 (7b)
U ∈ Ux0

. (7c)

The first input u0
∗ of the optimal input sequence U∗ is

then applied to the system and the process is repeated. The
MPC method with the optimal control problem (7) is the
underlying method of the CVPM approach, introduced in
this work. The following assumptions are made:

Assumption 1 (Terminal Set): The terminal set Xf is a
control invariant set and it holds that Xf ⊆ X .

Assumption 2 (Lyapunov Function): The optimal cost
function VN (x0,U

∗) is a Lyapunov function for the set of
feasible initial states

X0 = {x | Ux0
(x) 6= ∅} . (8)

With Assumption 1, the MPC method is recursively feasible
[4] and Assumption 2 guarantees in addition stability [5].

C. Problem Statement and Contribution

In the following, we will again make use of the interpre-
tation that the uncertain system (2) models an obstacle to
the controlled system modeled by (1) and that we have to
avoid collisions. The output of both system represents their
locations and the distance between both must exceed a safety
margin. This results in an additional constraint for the MPC
problem in (7), which is the norm constraint∥∥yj − yr,j

∥∥
2
≥ c (9)



where c is the safety margin. The norm constraint ensures
that no collisions occur in the predictions j ∈ Z1:N . Since
the obstacle is modeled as an uncertain system, the constraint
depends on a random variable. Therefore, it is not possible
to add the norm constraint (9) to the MPC problem (7).
For this purpose, a common method is SMPC with chance
constraints, i.e.,

Pr
(∥∥yj − yr,j

∥∥
2
≤ c
)
≤ βj . (10)

The probability of violation of the constraint in (9) is then
bounded by a user-defined parameter βj . This SMPC ap-
proach allows a certain probability of constraint violation. In
(3), it is assumed that the disturbance is bounded. Therefore,
a violation probability of zero is possible in principle. For
this reason, we will minimize the probability of constraint
violation instead of inserting the chance constraint (10).
Thus, as long as an input exists that provides a zero prob-
ability of violating the norm constraint, a control approach
results that is similar to robust control. If such an input does
not exist, the proposed method finds an input resulting in
the smallest possible probability of constraint violation. The
crucial point is the inclusion of the probability minimization
in the nominal MPC problem. The solution for this issue is
to use a subset of the admissible inputs such that only inputs
are used that minimize the probability of constraint violation.
This subset is determined in Section III.

In order to be able to consider the constraint (9) in the
prediction horizon, an additional horizon N̂ ∈ Z1:N is
introduced for the proposed method. This CVPM horizon
is a design parameter for the controller.

III. METHOD
This section introduces the CVPM method for norm con-

straints in (9) applied for N̂ prediction steps. In Section III-
A, the constraint violation probability is introduced and
in Section III-B the general CVPM method is presented.
Though, the general CVPM method is computationally ex-
pensive due to a non-convex optimization. Therefore in Sec-
tion III-C an approximation for the probability is introduced,
which is used to obtain a computationally feasible solution
in Section III-D.

A. Constraint Violation Probability

In MPC, the dynamics (1) is used to do predictions
for the state trajectory in the prediction horizon N . These
predictions are used to optimize the cost (4) and will now
be used to derive the probability that the norm constraint
is violated. Additionally, for the norm constraint (9), the
prediction of the obstacle outputs yr,j , j ∈ Z1:N̂ is utilized,
which is

yr,j = yr,0 +

j−1∑
i=0

(ur,i +wi) = yr,j +

j−1∑
i=0

wi, (11)

where yr,0 is the measured position at the beginning of the
prediction. It is assumed that the inputs to the obstacle model
ur,i are known. In the following the inputs ur,i are included
in the deterministic part yr,j of the prediction. This allows

any dynamics to be modeled, since only the predicted outputs
are considered.

For the constraint violation probability at the j-th step of
the prediction, given in (10), the abbreviation

pcv,j(x0,u0...uj−1) =

Pr
(∥∥yj(x0,u0...uj−1)− yr,j

∥∥
2
≤ c
) (12)

is used in the remainder of this paper. Since the predicted
output yj of the system depends on all previous inputs
u0, ...,uj−1 and the current state x0, so does the probability
pcv,j . For simplicity, the notation of dependency is omitted
in the following.

If the inequality
∥∥yj − yr,j

∥∥
2
≤ c is true for at least

one j ∈ Z1:N̂ , then the norm constraint is violated within
the CVPM horizon N̂ . The overall probability that at least
one constraint is violated is given as the probability of the
disjunction of all N̂ inequalities and it is upper bounded by
Boole’s inequality, i.e.,

Pr

 N̂∨
j=1

∥∥yj − yr,j

∥∥
2
≤ c

 ≤ N̂∑
j=1

pcv,j . (13)

where the and-operator means that the argument of the
probability is true if at least one inequality is true. Thus, if
the sum of all particular probabilities is zero, no constraint
violation occurs in the CVPM horizon N̂ .

B. General CVPM Method

The aim of the proposed method is to determine the input
set Ucvpm ⊆ Ux0

in each iteration of the controller such
that the constraint violation probability pcv,j is as small as
possible for all j ∈ Z1:N̂ . The set of admissible inputs Ux0

in
the optimization (7) is then replaced by the CVPM set Ucvpm.
For this purpose, three different cases are distinguished.
These cases are a generalization of the case analysis of [12].
For case 1, all input sequences of the admissible input set Ux0

allow for zero probability of constraint violation pcv,j for all
prediction steps within the horizon N̂ . In collision avoidance
application, CVPM applies this case if the distance between
the obstacle and the vehicle is large enough. Case 2 is when
there is at least one time step in the CVPM horizon where
a constraint violation probability of zero is not achievable
for the input sequences of the admissible input set Ux0

. All
remaining situations belong to case 3, i.e., there exists an
input sequence U ∈ Ux0 such that a constraint violation
probability pcv,j of zero is feasible for all j ∈ Z1:N̂ . The
input sequence set Ucvpm is derived differently in each case,
as described in the following.
Case 1 - Constraint Admissibility Guarantee: The probability
of constraint violation is zero in each time step within
the horizon N̂ , independent of the choice of the input
sequence U , i.e.,

∀U ∈ Ux0 , j ∈ Z1:N̂ : pcv,j = 0. (14)

Therefore, every input sequence U ∈ Ux0
is a valid se-

quence, from which it follows that Ucvpm = Ux0
.



Case 2 - Constraint Admissibility Impossible: There is no
input sequence in Ux0 such that the norm constraint is
satisfied in presence of uncertainty for all steps within the
horizon N̂ , i.e.,

∀U ∈ Ux0 : ∃j ∈ Z1:N̂ : pcv,j > 0. (15)

Since it is impossible to find an input that guarantees
pcv,j = 0 for all j ∈ Z1:N̂ , we propose to minimize the upper
bound (13) of the probability that the constraint is violated
within the CVPM horizon N̂ . The CVPM set Ucvpm obtains
the input sequence U∗ that minimizes (13), i.e.,

Ucvpm =
{
U∗

∣∣∣ U∗ = argminU∈Ux0

∑N̂
j=1 pcv,j

}
. (16)

The solution of (16) is not unique because, on one hand, the
sum of probabilities is non-convex and, on the other hand, in
the case N̂ < N the inputs uj with j > N̂ have no influence
on the objective function in (16) and are thus still free.
Case 3 - Constraint Admissibility Possible: In this case,
there exist inputs such that constraint admissibility can be
guaranteed under uncertainties, i.e., a constraint violation
probability of zero is feasible in each predicted time step.
This is the case if

∃U ∈ Ux0 : ∀j ∈ Z1:N̂ : pcv,j = 0. (17)

The CVPM set then contains all input sequences that allow
for zero constraint violation probability, i.e.,

Ucvpm = Ux0 ∩
{
U
∣∣ ∀j ∈ Z1:N̂ : pcv,j = 0

}
. (18)

Note that conditions (14), (15) and (17) are difficult
to evaluate, since the probability pcv,j is non-convex with
respect to the inputs. Therefore, in the next section, the
probability (12) is replaced by a convex approximation and
thus the case decision becomes computationally simpler.

C. Approximation of Constraint Violation Probability

The constraint violation probability pcv,j is the probability
that the distance between the obstacle and controlled system
is smaller than the safety distance c. It can be upper bounded
by applying the reverse triangle inequality on (9) yielding the
lower bound of the norm constraint∥∥yj − yr,j

∥∥
2
≥
∥∥yj − yr,j

∥∥
2
−

∥∥∥∥∥
j−1∑
i=0

wi

∥∥∥∥∥
2

. (19)

Therefore, the probability (12) is upper bounded by

pcv,j ≤ Pr

(∥∥∥∥∥
j−1∑
i=0

wi

∥∥∥∥∥
2

≥
∥∥yj − yr,j

∥∥
2
− c

)
. (20)

The bound (20) of the constraint violation probabil-
ity depends on the deterministic norm

∥∥yj − yr,j

∥∥
2
. If∥∥yj − yr,j

∥∥
2

increases, then pcv,j decreases. Vividly, for the
vehicle application, the larger the distance to the obstacle,
the smaller the probability of collision. This allows to replace
the minimization of the constraint violation probability pcv,j
with a maximization of the auxiliary function

h : R≥0 → R≥0, (21)

which is scalar, twice differentiable and strictly monotoni-
cally increasing. The deterministic distance is applied as the
argument of the auxiliary function h, i.e.,

h
(∥∥yj − yr,j

∥∥
2

)
(22)

and it increases with an increase of the norm. Since pcv,j
is decreasing with an increasing norm

∥∥yj − yr,j

∥∥
2
, small

values of the auxiliary function h refer to a high con-
straint violation probability and vice versa. Therefore, in
the following, we use a maximization of (22) instead of the
minimization of the violation probability pcv,j . A convenient
choice of the auxiliary function is h(x) = x2 since it
simplifies (22) to an inner product.

D. Approximating Method of CVPM

In this section, the auxiliary function h, instead of the
constraint violation probability pcv,j , is used to compute the
set Ucvpm. The following Lemma allows to find the value of
the auxiliary function h representing a zero probability.

Lemma 1: For all wi, i ∈ Z0:j−1 in (3) it holds that∥∥yj − yr,j

∥∥
2
≥ c+ jwmax =⇒

∥∥yj − yr,j

∥∥
2
≥ c. (23)

Therefore, if the deterministic norm
∥∥yj − yr,j

∥∥
2

is greater
then c + jwmax, the constraint violation probability is
pcv,j = 0.

Proof: The reverse triangle inequality in (19) yields a
lower bound of the norm (9). A further lower bound is given
by assuming the worst-case disturbance, i.e.,∥∥yj − yr,j

∥∥
2
− jwmax ≥ c. (24)

It follows that the smallest value of
∥∥yj − yr,j

∥∥
2

where (24)
is satisfied is c+ jwmax.
Therefore, for the auxiliary function h, pcv,j = 0 if
h
(∥∥yj − yr,j

∥∥
2

)
≥ hsafe,j with

hsafe,j = h (c+ jwmax) . (25)

Furthermore, the distinction of the cases requires the
minimal and maximal feasible values of (22) with respect
to the admissible inputs, which are

hmin,j = min
U∈Ux0

h
(∥∥yj − yr,j

∥∥
2

)
(26)

and

hmax,j = max
U∈Ux0

h
(∥∥yj − yr,j

∥∥
2

)
, (27)

respectively. Due to the linearity of the model in (1) and
the properties of the norm, (22) is a convex function. The
minimum can be found with a straightforward approach,
because the admissible input set is also convex. However,
the maximization is not a convex optimization. Nevertheless,
a solution of (27) exists due to Bauer’s maximum principle
[13]. From this, it follows that the maximum of the function
must be located at the edges of the constraint set, i.e., on the
boundary of Ux0

. Using the auxiliary variables hsafe,j , hmin,j ,
and hmax,j the cases of Section III-B can be reformulated as
follows:



Case 1 - Constraint Admissibility Guarantee: This case
occurs if all admissible inputs result in pcv,j = 0. This is
equivalent to the fact that all feasible values of (22) exceed
hsafe,j , i.e.,

∀j ∈ Z1:N̂ : hmin,j ≥ hsafe,j . (28)

Therefore, the set Ucvpm = Ux0
is used as a constraint for

the MPC optimization.
Case 2 - Constraint Admissibility Impossible: There is no
input sequence U ∈ Ux0 that guarantees that pcv,j = 0 in
each predicted time step within the horizon N̂ . The case is
applied if

∃j ∈ Z1:N̂ : hmax,j < hsafe,j . (29)

Since large values of (22) refer to a low constraint violation
probability, it is desirable that (22) is as large as possible.
Therefore, the auxiliary function h is used in the optimization
(16), resulting in

U∗ = argmax
U∈Ux0

N̂∑
j=1

h
(∥∥yj − yr,j

∥∥
2

)
(30a)

Ucvpm = {U∗} . (30b)

The optimization in (30) is convex and it yields a approx-
imation of the solution of the optimization in (16).
Case 3 - Constraint Admissibility Possible: In all other cases,
i.e.,

∀j ∈ Z1:N̂ : hmax,j ≥ hsafe,j (31)

it is possible to find input sequences leading to zero con-
straint violation probability. In terms of the function h, all
input sequences are valid that fulfill the condition

h
(∥∥yj − yr,j

∥∥
2

)
≥ hsafe,j (32)

for each j within the horizon N̂ . However, in general, the
set of input sequences fulfilling (32) is non-convex. For an
efficient MPC algorithm, a convex set is needed, therefore, a
linear approximation of (32) is determined. This is achieved
by using a linear subspace that is calculated by the linear
part of a Taylor series of h. The evaluation point is yj = ξj
and it is chosen such that

h
(∥∥ξj − yr,j

∥∥
2

)
= hsafe,j . (33)

Let

hξj = ∇yj
h
(∥∥yj − yr,j

∥∥
2

)∣∣∣
yj=ξj

(34)

be the gradient of (22) at the point ξj , then the linear
constraint at the j-th prediction step is

h>ξj (yj − ξj) ≥ 0. (35)

From (35) it follows that for each predicted time step within
the horizon N̂ a particular linear constraint exists. The
input sequence must fulfill each constraint, therefore, the

intersection of the linear constraints and the admissible input
set is the CVPM set

Ucvpm = Ux0
∩

U
∣∣∣∣∣∣
⋂

j∈Z1:N̂

h>ξj (yj − ξj) ≥ 0

 . (36)

The choice of the evaluation point ξj is not unique; It is
subject only to condition (33). Therefore, a suitable choice
for the evaluation point is

ξj = (c+ jwmax)
y0 − yr,j∥∥y0 − yr,j

∥∥
2

+ yr,j , (37)

which is a point that is located between the current position
of the controlled system y0 and the known position of the
obstacle, such that (33) holds.

Remark 1: Since the set in (36) is an intersection of
several sets, it is possible that Ucvpm = ∅. In this case, the
set Ucvpm must be determined with the procedure of case 2.

For the problems in Section III-B and Section III-D, we
obtain the optimization

U∗ = argmin
U

VN (x0,U) (38a)

s.t. xj+1 = Axj +Buj , j ∈ Z0:N−1 (38b)
U ∈ Ucvpm ⊆ Ux0

, (38c)

where VN is defined as in (4). Therefore, only those input se-
quences are allowed that have a minimal constraint violation
probability.

IV. PROPERTIES OF CVPM
In the following, we investigate recursive feasibility and

stability.

A. Recursive Feasibility
Definition 1 (Recursive feasibility [14]): A control law

µ(x) is recursively feasible in A ⊆ X if for all x ∈ A
admissible inputs exist, i.e., Ux0

6= ∅, andAx+Bµ(x) ∈ A.
We can show, that the CVPM approach is recursively feasible
if the underlying MPC is recursively feasible.

Lemma 2: The underlying MPC problem (7) is recur-
sively feasible if Assumption 1 holds.

Proof: See [4, Theorem 13.1].
Moreover, [4] points out that the recursive feasibility is given
for all input sequences U as long as they are feasible,
i.e. U ∈ Ux0

. The CVPM method uses inputs from the
CVPM set Ucvpm ⊆ Ux0

leading to the following theorem
for recursive feasibility.

Theorem 1: The approximation method from Section III-
D is recursively feasible if Ux0

is a non-empty set.
Proof: First, we will show that Ucvpm is always non-

empty and Ucvpm ⊆ Ux0
. In case 1, Ucvpm is equal to Ux0

.
In case 2, the only element of Ucvpm is selected from Ux0

by optimization. If case 3 leads to an empty set, based on
Remark 1 case 2 is applied, otherwise Ucvpm results from an
intersection with Ux0

.
For that reason Ucvpm contains at least one element if

Ux0 is non-empty. Since only input sequences from the
admissible input set Ux0 are used, i.e., Ucvpm ⊆ Ux0 , the
method remains recursively feasible due to Lemma 2.



B. Stability
Unlike recursive feasibility, stability cannot be shown in

every situation because stability is only meaningful if the
path to reach the origin is feasible. Since the priority is to
avoid collision with an obstacle, the state cannot converge
to the origin if it is occupied by the obstacle. Thus, we will
only provide a stability of the origin for the case where the
obstacle does not restrict the mobility of the system, which
arises when the obstacle is far enough away from the system
and the origin.

Assumption 3: For a k0 <∞, there exists an input se-
quence U such that for all time instances k ≥ k0 it holds
that pcv,j = 0 for all j ∈ Z1:N̂ and for the position of the
obstacle it holds that

∥∥yr,k

∥∥
2
> ‖yk‖2 + c+ N̂wmax.

This assumption holds if the obstacle is sufficiently far
away from the origin. The stability of the origin in CVPM
is mainly based on the stability properties of the underlying
MPC. First, the stability of the general method from Sec-
tion III-B is shown and afterward the reasoning is also used
for the approximation method in Section III-D.

Theorem 2: If Assumptions 2 and 3 hold, the proposed
CVPM method from Section III-B stabilizes the origin from
time instance k0 on.

Proof: Based on Assumption 3, case 2 is not used
for k ≥ k0, since a constraint violation probability of zero
is always feasible. Furthermore, the path to the origin is
not occupied since the distance between obstacle and origin
is larger than the distance between origin and the worst-
case position of the controlled system at the last predicted
step of the method. Therefore, the MPC optimization is
performed without norm-constraints on the path to the origin
and stability is achieved due to Assumption 2.

The proven stability of the general method allows extend-
ing the reasoning to the approximation method.

Corollary 1: With the approximation method in Sec-
tion III-D, the origin of the controlled system is stable.

Proof: Theorem 2 is based on Assumption 3, which
assumes that from time step k0 on, there exists an input such
that ∀j ∈ Z1:N̂ : pcv,j = 0. This expression is equivalent to

∀j ∈ Z1:N̂ : hmax,j ≥ hsafe,j (39)

due to the choice of hsafe,j . Therefore, only case 1 and 3 are
possible and Theorem 2 also holds for the approximation
method in Section III-D.

V. SIMULATION
In this section, a numerical simulation is presented using

CVPM as a control strategy for obstacle avoidance of an
autonomously driving vehicle. All quantities are given in SI
units and the simulation has been carried out with Matlab.
The model in (1) is a double integrator that represents the
vehicle dynamics. The system matrices are given as

A =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 ,B =


0 0
0 0
T 0
0 T

 ,C =

[
1 0 0 0
0 1 0 0

]
,

(40)

where the sample time is T = 0.1. The model is similar
to the model in [15]. The inputs are the longitudinal and
lateral accelerations of the system. The states x1 and x2
are referred to as the longitudinal and lateral positions,
respectively. The lateral position is limited to 2 ≤ x2 ≤ 8
such that the full vehicle is within the lane, which goes from
0 to 10. The absolute values of the velocities and inputs
are constrained, i.e., |x3| ≤ 20, |x4| ≤ 20, |u1| ≤ 5, and
|u2| ≤ 5. The cost function VN of the optimization (38)
is used here for stabilizing the velocities and the state x2
with Q = diag([0, 1, 1, 1]) and R = diag([0.001, 0.001]).
The terminal cost weighting matrix Qt is determined by
solving the discrete-time algebraic Riccati equation [3] and
the terminal set is chosen control invariant, calculated with
the MPT3 toolbox [16]. Because of the structure of B
and C, the inputs have no direct influence on the out-
puts, i.e., ∂y1

∂u0
= CB = 0. Therefore, with a short CVPM

horizon N̂ = 1, the optimization in (30) is not able to
find a maximum, because the objective does not change
with the optimization variable. The effect of the input u0

only impacts subsequent outputs, i.e., from y2 on. For this
reason, the CVPM horizon is chosen N̂ ≥ 2, making the
single-step approach from [12] not suitable. Here the MPC
horizon and the CVPM horizon are chosen to be equal, i.e.
N = N̂ = 10. The obstacle in this example is a pedestrian
suddenly appearing on the side that wants to cross the
road. Therefore, the input ur,k is assumed to be known and
deviations are modeled with the disturbance wk. The reader
is referred to [17] for the prediction of pedestrian movements.
The support of the probability distribution of the disturbance
is given with wmax = 0.2. The vehicle and the pedestrian are
modeled as circles with radii 2 and 1, respectively. Therefore
a safety distance of c = 3 is chosen. [17]

The arrangement of vehicle and pedestrian is shown in
Fig. 1. The vehicle and the pedestrian are over-approximated
by circles. At the beginning of the simulation, no obstacle is
present. Therefore, case 1 is used, where all inputs of Ux0

are admissible and the standard MPC is applied. The vehicle
is visualized as a blue circle. The direction of the velocity is
visualized with a blue arrow located in the circle. At t = 7.5 s
a pedestrian suddenly appears, represented as a red circle.
The pedestrian is crossing the street, thus its trajectory will
cross the track of the vehicle. Due to the momentum of the
vehicle, an instantaneous change of the direction of driving
is not possible. Therefore, a collision in the predicted steps is
possible, i.e., the collision probability of zero is not feasible.
For this reason, the CVPM method selects case 2, which
applies the input resulting in the smallest collision probability
for all predicted steps. In the figure, the applied acceleration
is shown as a red arrow pointing in the opposite direction.
The vehicle is slowing down and steering away from the
pedestrian. Case 2 is also applied in the next time steps and
the vehicle is avoiding the obstacle. Due to the momentum,
the distance between vehicle and pedestrian decreases at
t = 8.2 s. However, the constraint violation probability of
zero for the next ten prediction steps is again feasible, since
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Fig. 1. Vehicle (blue circle) drives with constant speed, while suddenly a
pedestrian (red circle) appears. The blue arrow shows the direction of the
velocity and the red arrow is the system input, i.e., the acceleration.

the direction of driving has changed. Consequently, case 3 is
applied. The car cannot pass the pedestrian on the left side,
since the pedestrian’s trajectory restricts this position in the
CVPM horizon N̂ . Therefore, the car moves to the right side
to eventually overtake the obstacle after t = 10 s. The input
is then selected to compensate for the lateral position of the
vehicle. The snapshots from Fig. 1 are indicated as black
vertical lines in the simulation results in Fig. 2. The second
and third subplots show the progression of the position from
the vehicle position. The CVPM case used in the respective
simulation step is shown in the fourth subplot. It can be
seen that the inputs saturate when case 2 is used. Note that
obstacle avoidance may not be feasible if for this scenario
only a standard MPC approach is used.

VI. DISCUSSION

The proposed approach is a generalization of the single-
step approach in [12]. Instead of taking into account only
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Fig. 2. Simulation results for the inputs and positions of the controlled
vehicle. The black vertical lines indicate the time where the snapshots from
Fig. 1 are taken. The fourth subplot shows the CVPM cases over time.

the constraint violation probability pcv,1 for the first step in
the prediction horizon, pcv,j for all j ∈ Z1:N̂ is taken into
account. Since the single-step method can only react within
one step, it is applicable only for simple dynamics, e.g., a
single integrator. In contrast, the proposed method is able
to deal with more complex systems and a double integrator
system is used in Section V for demonstration.

The CVPM horizon N̂ is a parameter, which allows to
adjust the conservativeness of the method. A large CVPM
horizon allows to take more predictions of future obstacle
locations into account but predictions far in the future are
also more uncertain. Additionally, in case 3 the approxima-
tions of non-convex constraints (36) is conservative and a
longer horizon adds more conservatism to the method.

In contrast, a small horizon N̂ allows for riskier behavior.
For example, for N̂ < 4 instead of N̂ = 10 in the scenario
of Section V, a collision with the pedestrian occurs, because
a longer horizon would be necessary to change the direction
of the vehicle trajectory due to its momentum. Furthermore,
when choosing N̂ < 3 in this scenario, the vehicle will
overtake the obstacle on the left side and finally collide with
the pedestrian. This is because only a few predictions of the
pedestrian’s behavior are taken into account and passing on



the left appears possible.
Analyzing computational complexity, we find that the

majority of the time is needed for the calculation of (26)
and (27). In both optimizations, the optimization variable
is the input sequence U , thus the time needed for a single
optimization increases as N increases. Therefore, an increas-
ing of N̂ yields a linear increasing in the computation time,
since the optimizations are done N̂ times. In the scenario of
Section V, a single evaluation of the method takes 0.261 s
in average.

Once constraint admissibility is possible (case 3), the
norm constraint (9) is satisfied even under the worst case
disturbances. However, the constraint is not handled robustly,
as in RMPC, because CVPM only considers disturbances
within the CVPM Horizon N̂ . In the subsequent execution
of CVPM, it is possible that the last predicted step has an
unavoidable probability of constraint violation due to the dis-
turbance. Therefore the case where constraint admissibility
is possible (case 3) cannot be applied. However, this does
not lead to a loss of recursive feasibility, since the case
where constraint admissibility is impossible (case 2) is still
applicable in this situation.

However, CVPM is more flexible compared to tube-
based RMPC [3], because tube-based RMPC requires an
offline computation of the constraint tightening. Therefore,
in contrast to CVPM, tube-based RMPC is not able to handle
time-variant constraints.

VII. CONCLUSIONS

In this paper, we propose a multi-step approach for the
CVPM method, extending previous work on MPC with
CVPM. The extended method optimizes the probability of
constraint violation within the next N̂ predicted steps. Since
the constraint violation probabilities from several predicted
time steps are taken into account, a predictive behavior
can be achieved. The advantage of the method is that it is
able to handle unexpected situations, such as a pedestrian
suddenly appearing, as shown in the simulation example.
Therefore, unmodeled situations can be handled and the
method is flexible with respect to changing conditions. A
drawback, however, is that the method is limited to one
type of constraint, namely norm constraints. Investigating a
generalization to a wider class of constraints, e.g., polytopic
constraints, seems promising.
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