Self-similarity of Brownian motion and a large deviation principle for random fields on a binary tree

Nina Gantert
ETH Mathematikdepartement, CH-8092 ETH Zürich, Switzerland

Received September 17, 1991; in revised form June 30, 1993

Abstract

Summary. Using self-similarity of Brownian motion and its representation as a product measure on a binary tree, we construct a random sequence of probability measures which converges to the distribution of the Brownian bridge. We establish a large deviation principle for random fields on a binary tree. This leads to a class of probability measures with a certain self-similarity property. The same construction can be carried out for $C[0,1]$-valued processes and we can describe, for instance, a $C[0,1]$-valued Ornstein-Uhlenbeck process as a large deviation of Brownian sheet.

Mathematics Subject Classifications (1991): 60F10, 60J65

Introduction

Self-similarity of Brownian motion induces a certain ergodic behaviour of the Brownian bridge. We investigate large deviations of this ergodic behaviour. Let $C[0,1]_{0,0}$ be the space of all functions X in $C[0,1]$ with $X(0)=X(1)=0$ and P the distribution of the Brownian bridge. We define mappings T_{0}, T_{1} of $C[0,1]_{0,0}$ on itself which describe rescalings of the left and the right half of the function $X:\left(T_{0} X\right)_{t}=\sqrt{2}\left(X_{t / 2}-t X_{1 / 2}\right),\left(T_{1} X\right)_{t}=\sqrt{2}\left(X_{(t+1 / / 2}-(1-t) X_{1 / 2}\right)$, respectively. Due to the self-similarity of Brownian motion, P is invariant and, in fact, even ergodic under T_{0} and T_{1}.

For each function $\omega \in C[0,1]_{0,0}$ and each $\theta \in\{0,1\}^{\mathbb{N}}$, we now construct a sequence of probability distributions $R_{n, \theta}(\omega)$ on $C[0,1]_{0,0}: R_{n, \theta}(\omega)$ $=(1 / n) \sum_{k=0}^{n-1} \delta_{T_{\theta_{k}} \cdots T_{\theta_{0} \omega}}$, where δ_{ω} denotes Dirac measure on ω. This means that in each step we choose, according to θ, the left or the right half of the function ω and rescale it. $R_{n, 6}(\omega)$ is the empirical distribution corresponding to this sequence of functions. Let $\theta_{1}, \theta_{2}, \ldots$ be independent coin tossings under $\hat{\lambda}$. We can show that $R_{n, \theta}(\omega)$ converges to P for P-a.e. ω and λ-a.e. all θ. This ergodic behaviour of the Brownian bridge P says that we can reconstruct P with an "infinitesimal" piece of a single "typical" trajectory around a "typical" point of the unit interval [0, 1], if we identify λ with Lebesgue measure.

We get another description of T_{0} and T_{1} using the Lévy Ciesielski construction of the Brownian bridge: each function in $C[0,1]_{0.0}$ can be written as a superposition of the Schauder functions $e_{n, k}, k=1,2, \ldots, 2^{n-1}, n=1,2, \ldots$:
$X(t)=\sum_{n=1}^{\infty} \sum_{k=1}^{2^{n-1}} Y_{n, k}(X) e_{n, k}(t), 0 \leqq t \leqq 1$. This defines a mapping of $C[0,1]_{0,0}$ into \mathbb{R}^{I}, where $I:=\left\{(n, k) \mid k=1,2, \ldots, 2^{n-1}, n=1,2, \ldots\right\}$ has the structure of a binary tree. T_{0} and T_{1}, interpreted as mappings of \mathbb{R}^{I} into \mathbb{R}^{I}, correspond to shifts of the tree to the left and to the right, respectively. P corresponds to the product measure on \mathbb{R}^{I} with marginal distribution $N(0,1)$, i.e. the random variables $Y_{n, k}, k=1,2, \ldots 2^{n-1}, n=1,2, \ldots$ are independent with distribution $N(0,1)$ under P. Similar representations of stochastic processes as tree-indexed random variables have been investigated recently in the context of wavelet transforms, see [2].

We now look at large deviations of the convergence of $R_{n, \theta}$ to P. Note that $R_{n, \theta}$ would not correspond, on the lattice \mathbb{Z}^{d}, to the usual empirical field, but rather to the empirical distribution of a sequence of configurations we get shifting along the path of a (transient) random walk on the lattice. The same model has been considered independently by Ben Arous and Tamura. They get, for each fixed θ, a large deviation principle for the distributions of $R_{n, \theta}$, where the rate function depends on θ. We are interested in "uniform" bounds; in particular, we want to look at probability measures on the tree which are invariant under all shifts, not only for a fixed θ. We prove that the finite-dimensional marginals of $R_{n, \theta}$ satisfy a large deviation principle and characterize the rate function as a "mean entropy" (Theorem 4.1). Minimizing this rate function leads to the class of self-similar probability measures, defined by invariance under T_{0} and T_{1}. Such a self-similar probability distribution on \mathbb{R}^{I} can be identified, under certain conditions, with a probability distribution on $C[0,1]_{0,0}$. We investigate some properties of the corresponding "self-similar" stochastic processes.

More generally, we may replace \mathbb{R} with a Polish space S and P with a product measure on S^{I}. If we set $S=C[0,1]$ (see Sect. 5), the product measure on S^{I} with Wiener measure as one-dimensional marginal can be identified with the distribution of Brownian sheet. We can describe then, for instance, a $C[0,1]$-valued Ornstein-Uhlenbeck process as a large deviation of Brownian sheet.

1 Lévy representation of functions in $\mathrm{C}[0,1]_{0}$ as elements of $\mathbb{R}^{I_{0}}$

We consider the following representation of functions in $C[0,1]_{0}$ which is the space of all functions X in $C[0,1]$ with $X(0)=0$. Let the Haar functions $\varphi_{0}, \varphi_{n, k}$, $k=1,2, \ldots, 2^{n-1}, n=1,2, \ldots$ be defined as

$$
\varphi_{0}(t)=1 \quad 0 \leqq t \leqq 1
$$

and

$$
\varphi_{n, k}(t)= \begin{cases}2^{(n-1) / 2} & (k-1) / 2^{n-1} \leqq t<(k-1 / 2) / 2^{n-1} \\ -2^{(n-1) / 2} & (k-1 / 2) / 2^{n-1} \leqq t<k / 2^{n-1} \\ 0 & \text { else. }\end{cases}
$$

Then $\left\{\varphi_{0}, \varphi_{n, k}, k=1,2, \ldots, 2^{n-1}, n=1,2, \ldots\right\}$ forms a complete, orthonormal system in $L^{2}[0,1]$. It is the oldest example of an orthonormal wavelet basis with
"mother wavelet" $\varphi_{1,1}$ (see, for instance, [4]). We won't represent X as a superposition of $\varphi_{0}, \varphi_{n, k}, k=1,2, \ldots, 2^{n-1}, n=1,2, \ldots$, (wavelet transform), but as a superposition of the related Schauder functions $e_{0}, e_{n, k}, k=1,2, \ldots, 2^{n-1}$, $n=1,2, \ldots$, defined as follows

$$
e_{0}(t)=t, \quad e_{n, k}(t)=\int_{0}^{t} \varphi_{n, k}(s) d s, \quad 0 \leqq t \leqq 1, \quad k=1,2, \ldots, 2^{n-1}, n=1,2, \ldots
$$

For $X \in C[0,1]_{0}$, we set

$$
h_{n, k}(X):=X\left((k-1 / 2) / 2^{n-1}\right)-\frac{1}{2}\left(X\left(k / 2^{n-1}\right)+X\left((k-1) / 2^{n-1}\right)\right)
$$

and
$Y_{0}(X)=X(1), Y_{n, k}(X):=2^{(n+1) / 2} \cdot h_{n, k}(X), k=1,2, \ldots, 2^{n-1}, n=1,2, \ldots$
Let $X^{N}(t)=Y_{0}(X) \cdot t+\sum_{n=1}^{N} \sum_{k=1}^{2^{n-1}} Y_{n, k}(X) e_{n, k}(t)$.
We then have
Lemma 1.1 (i) X^{N} is the linear interpolation of X on the N-th dyadic partition of [0,1]. This implies

$$
\lim _{N \rightarrow \infty} \sup _{t \in[0,1]}\left|X^{N}(t)-X(t)\right|=0
$$

(ii) Let $\langle X\rangle_{1}^{2^{N}}:=\sum_{k=1}^{2^{N}}\left(X\left(k / 2^{N}\right)-X\left((k-1) / 2^{N}\right)\right)^{2}$ be the quadratic variation of X on the N-th dyadic partition. We then have

$$
\langle X\rangle_{1}^{2^{N}}=\frac{1}{2^{N}}\left(Y_{0}^{2}+\sum_{n=1}^{N} \sum_{k=1}^{2^{n-1}}\left(Y_{n, k}\right)^{2}\right)
$$

(iii) X is absolutely continuous with $X^{\prime} \in L^{2}[0,1]$, i.e. X is in the Cameron-Martin space H, if and only if $Y_{0}^{2}+\sum_{n=1}^{\infty} \sum_{k=1}^{2^{n-1}}\left(Y_{n, k}\right)^{2}<\infty$. In this case, we have

$$
\|X\|_{H}^{2}=\left\|X^{\prime}\right\|_{L^{2}[0,1]}^{2^{2}}=Y_{0}^{2}+\sum_{n=1}^{\infty} \sum_{k=1}^{2^{n-1}}\left(Y_{n, k}\right)^{2}
$$

Sketch of a proof. (i) follows by induction on N;
(ii) follows by induction on N.
(iii) follows by the representation of X^{\prime} as a Fourier series with respect to the complete orthonormal system of Haar functions.

Probability did not enter until now. Let now P be Wiener measure on $C[0,1]_{0}$.
Theorem 1.2 $Y_{0}, Y_{n, k}, k=1,2, \ldots, 2^{n-1}, n=1,2, \ldots$ are iid random variables with distribution $N(0,1)$ under P.

Sketch of a proof. It is enough to show that $Y_{0}, Y_{n, k}, k=1,2, \ldots, 2^{n-1}$, $n=1,2, \ldots$ are pairwise uncorrelated with distribution $N(0,1)$ under P.

Remark 1.3 Theorem 1.2 leads to an algorithm for the simulation of the Brownian path. The law of large numbers and Lemma 1.1 (ii) imply the following:

Corollary $1.4\langle X\rangle_{1}^{2^{N}}$ converges P-a.s. and in $L^{2}(P)$ to 1 if $N \rightarrow \infty$.
Remark 1.5 This construction of Brownian motion goes back to Lévy and Ciesielski (see [13] for references), it can be carried out for every complete orthonormal system in $L^{2}[0,1]$. Let $\left\{\varphi_{k} \mid k \geqq 1\right\}$ be a complete orthonormal system in $L^{2}[0,1]$.

$$
e_{k}(t):=\int_{0}^{t} \varphi_{k}(s) \mathrm{d} s, \quad 0 \leqq t \leqq 1, \quad k=1,2, \ldots
$$

Let $Y_{k}, k=1,2, \ldots$ be iid with distribution $N(0,1)$ and set

$$
X_{t}:=\sum_{k=1}^{\infty} Y_{k} e_{k}(t) \quad 0 \leqq t \leqq 1
$$

Then $\left(X_{t}\right)_{0 \leq t \leq 1}$ is a Brownian motion (see Itô and Nisio [11] for a proof).
Let $I_{0}:=\left\{0,(n, k), k=1,2, \ldots, 2^{n-1}, n=1,2, \ldots\right\}$. We interpret I_{0} as a binary tree:

Fig. 1

To each function in $C[0,1]_{0}$ corresponds a set of coefficients Y_{0}, $Y_{n, k}, k=1,2, \ldots, 2^{n-1}, n=1,2, \ldots$ according to the mapping from $C[0,1]_{0}$ to $\mathbb{R}^{I_{0}}$ defined in (1.1). The converse, however, is not true: not each element of $\mathbb{R}^{I_{0}}$ is a function in $C[0,1]_{0}$, hence not each probability distribution on $\mathbb{R}^{I_{0}}$ is a probability distribution on $C[0,1]_{0}$.

Lemma 1.6 Let Q be a probability distribution on $\mathbb{R}^{I_{0}}, M_{n}:=\underset{k=1,2, \ldots, 2^{n-1}}{\max }\left|Y_{n, k}\right|$ and X^{N} as in Lemma 1.1. If

$$
\begin{equation*}
\sum_{n=1}^{\infty} Q\left[M_{n}>2^{\alpha n}\right]<\infty \text { for an } \alpha<1 / 2 \tag{1.2}
\end{equation*}
$$

then $Q\left[X^{m}\right.$ converges uniformly $]=1$, i.e. Q is a probability distribution on $C[0,1]_{0}$.

Proof. We equip $C[0,1]_{0}$ with the supremum norm $\|X\|=\sup _{t \in[0,1]}|X(t)|$. It is enough to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} Q\left[\left\|X^{n}-X^{n-1}\right\|>a_{n}\right]<\infty \tag{1.3}
\end{equation*}
$$

for a sequence $\left(a_{n}\right)_{n=1,2}, \ldots \subseteq \mathbb{R}$ with $\sum_{n=1}^{\infty} a_{n}<\infty$.
The Borel-Cantelli lemma then implies that $\left(X^{m}\right)_{m=1,2, \ldots}$ forms Q-a.s. a Cauchy sequence in $C[0,1]_{0}$. To show (1.3), we note that

$$
\begin{equation*}
\left\|X^{n}-X^{n-1}\right\| \leqq M_{n} \cdot 2^{-(n+1) / 2} \tag{1.4}
\end{equation*}
$$

hence

$$
Q\left[\left\|X^{n}-X^{n-1}\right\|>a_{n}\right] \leqq Q\left[M_{n}>2^{(n+1) / 2} a_{n}\right]
$$

If we set

$$
a_{n}=2^{-\beta n-(1 / 2)} \text { with } \beta=(1 / 2)-\alpha>0
$$

and apply (1.2), the claim follows.

2 Construction of a random sequence of probability distributions which converges to the distribution of the Brownian bridge

Let P be the distribution of the Brownian bridge. Then $Y_{0}=0 P$-a.s. and $Y_{n, k}$, $k=1,2, \ldots, 2^{n-1}, n=1,2, \ldots$ are iid random variables under P with distribution $N(0,1)$. We set

$$
I:=\left\{(n, k) \mid k=1,2, \ldots, 2^{n-1}, n=1,2, \ldots\right\}
$$

and

$$
\Omega=C[0,1]_{0,0}:=\{X \in C[0,1] \mid X(1)=X(0)=0\}, \quad X_{t}(\omega):=\omega(t)
$$

We then have $\Omega=C[0,1]_{0, o} \subseteq \mathbb{R}^{I}$. We denote the set of all probability distributions on Ω by $\mathscr{M}_{1}(\Omega)$.

We consider the mapping $T_{0}: \Omega \rightarrow \Omega$, defined as

$$
\left(T_{0} X\right)_{t}=\sqrt{2}\left(X_{t / 2}-t X_{1 / 2}\right) \quad 0 \leqq t \leqq
$$

T_{0} corresponds to a shift to the left of the tree, i.e. $Y_{n, k}\left(T_{0} \omega\right)=Y_{n+1, k}(\omega)$. In the same way, we define $T_{1}: \Omega \rightarrow \Omega$ as

$$
\left(T_{1} X\right)_{t}:=\sqrt{2}\left(X_{(t+1) / 2}-(1-t) X_{1 / 2}\right) \quad 0 \leqq t \leqq 1
$$

T_{1} corresponds to a shift to the right of the tree, i.e. $Y_{n, k}\left(T_{1} \omega\right)=Y_{n+1,2^{n-1}+k}(\omega)$. P is invariant under T_{0} and under T_{1}.

We now consider the bigger space $\bar{\Omega}$, defined as

$$
\begin{aligned}
& \bar{\Omega}=\Omega \times\{0,1\}^{\mathbb{N}} \\
& \bar{\omega}=(\omega, \theta) \quad \theta \in\{0,1\}^{\mathrm{N}} \\
& \bar{P}:=P \times \lambda,
\end{aligned}
$$

where λ denotes product measure on $\{0,1\}^{\mathbb{N}}$ with $\lambda\left[\theta_{i}=0\right]=\lambda\left[\theta_{i}=1\right]=1 / 2$. Let the shift \bar{T} on $\bar{\Omega}$ be defined as

$$
\begin{gathered}
\bar{T}: \bar{\Omega} \rightarrow \bar{\Omega} \\
\left(\omega,\left(\theta_{1}, \theta_{2}, \ldots\right)\right) \rightarrow\left(T_{\theta_{1}} \omega,\left(\theta_{2}, \theta_{3}, \ldots\right)\right)
\end{gathered}
$$

\bar{P} is invariant under \bar{T}. We can even show:
Theorem 2.1 \bar{P} is ergodic with respect to \bar{T}.
Proof. Let $\overline{\mathscr{F}}^{*}:=\bigcap_{n} \sigma\left(\left\{\bar{T}^{m}, m>n\right\}\right)$ be the tail-field on $\bar{\Omega}$. \bar{P} is a product measure on $\bar{\Omega}$, hence Kolmogorovs 0 -1-law is satisfied:

$$
\bar{P}[\bar{A}]=0 \text { or } \bar{P}[\bar{A}]=1 \quad \text { if } \quad \bar{A} \in \overline{\mathscr{F}}^{*} .
$$

The σ-field $\bar{S}:=\left\{\bar{A} \mid \bar{T}^{-1} \bar{A}=\bar{A}\right\}$, generated by the shift-invariant sets, is contained in $\overline{\mathscr{F}}^{*}$, hence we have $\bar{P}[\bar{A}]=0$ or $\bar{P}[\bar{A}]=1$, if $\bar{A} \in \bar{S}$, i.e. \bar{P} is ergodic under \bar{T}.
Let $\delta_{\bar{T}^{k} \bar{\omega}}$ denote Dirac measure on $\bar{T}^{k} \bar{\omega}$ and define the probability distribution $\bar{R}_{n}(\bar{\omega})$ by $\bar{R}_{n}(\bar{\omega}):=(1 / n) \sum_{k=1}^{n} \delta_{\overline{\mathbf{T}}^{k-1} \bar{\omega}}$ (where \bar{T}^{0} denotes the identity). Let $R_{n, \theta}(\omega)$ denote the marginal distribution of $\bar{R}_{n}(\bar{\omega})$ on Ω for fixed θ :

$$
R_{n, \theta}(\omega)=\frac{1}{n} \sum_{k=1}^{n} \delta_{\left(T_{\theta}\right)^{k-1}}^{\omega}
$$

where

$$
\begin{aligned}
& \left(T_{\theta}\right)^{k} \omega=T_{\theta_{k}} \circ \cdots \circ T_{\theta_{1}} \omega, \quad k \geqq 1 \\
& \left(T_{\theta}\right)^{0} \omega=\omega
\end{aligned}
$$

For each $\theta \in\{0,1\}^{\mathrm{N}}, R_{n, \theta}$ is a random variable with values in $\mathscr{A}_{1}(\Omega)$.
Theorem 2.2 For λ-a.e. θ and P-a.e. $\omega, R_{n, \theta}(\omega)$ converges weakly to P.
Proof. Let $f: \bar{\Omega} \rightarrow \mathbb{R}$ be measurable and bounded. With Birkhoffs ergodic theorem we get from Theorem 2.1:

$$
\frac{1}{n} \sum_{k=0}^{n-1} f_{0} \bar{T}^{k} \xrightarrow[n \rightarrow \infty]{ } \int f d \bar{P} \quad \bar{P}-\text { a.s. }
$$

i.e.

$$
\int f d R_{n, \theta}(\omega) \rightarrow \int f d \bar{P} \text { for } \lambda \text {-a.e. } \theta \text { and } P \text {-a.e. } \omega .
$$

Since the set of all bounded, continuous functions on $\bar{\Omega}$ is countably generated, this implies

$$
R_{n, \theta} \xrightarrow{\mathrm{w}} P \quad \text { for } \quad \lambda \text {-a.e. } \theta \text { and } P \text {-a.e. } \omega .
$$

Remark 2.3 In fact, $\left(R_{n, \theta}\right)$ converges weakly to P for each $\theta \in\{0,1\}^{\mathrm{N}}$ (this was shown by Ben Arous and Tamura in an unpublished paper).

Remark 2.4 Theorem 2.2 says that we can reconstruct Wiener measure with an "infinitesimal piece" of a single "typical" path around a "typical" point of the unit
interval. This property characterizes fractals: the information about a fractal object is contained in a arbitrary small part of the object. Of course, we are dealing with random fractals: the invariance of \bar{P} under \bar{T} corresponds to a "self-similarity in distribution": $\left(\sqrt{2}\left(X_{t / 2}-t X_{1 / 2}\right)\right)_{0 \leqq t \leqq 1}$ and $\left(\sqrt{2}\left(X_{(t+1) / 2}-(1-t) X_{1 / 2}\right)\right)_{0 \leqq t \leqq 1}$ have the same distribution under P as $\left(X_{t}\right)_{0 \leqq t \leqq 1}$. We get a deterministic fractal, if we set, for instance, all the coefficients $Y_{n, k}, k=1,2 \ldots, 2^{n-1}, n=1,2, \ldots$ to the value 1 , see Sect. 5, Example 5.3.

Remark 2.5 Let $Q \in \mathscr{A}_{1}(\Omega)$ and let $\bar{Q}:=Q \times \hat{\lambda}$. Then $Q \ll P$ implies $\bar{Q}<\bar{P}$, hence $R_{n, \theta}(\omega) \rightarrow P \bar{Q}$-a.s., i.e. for λ-a.e. θ, Q-a.e. ω. This means Q cannot be reconstructed in this way, but we get P from a path which is "typical" for Q. The intuition behind this is the following: the drift of Q with respect to P is lost because of the iterated rescaling, see also Lemma 1.1 (iii).

3 Generalization to probability distributions on S^{I}

Let S be a Polish space. We may now replace \mathbb{R} with S and consider $\Omega=S^{3}$. Let μ be a probability distribution on S and $P=\prod_{i \in I} \mu$ be the corresponding product measure on S^{I}.

We define $T_{0}, T_{1}, \bar{\Omega}, \bar{P}, \bar{T}, \bar{R}_{n}$ and $R_{n, \theta}$ as in Sect. 2. We equip S^{I} with the product topology and $\mathscr{M}_{1}\left(S^{I}\right)$, the set of probability distributions on S^{I}, with the topology of weak convergence. We then get, in the same way as Theorem 2.2:

Theorem 3.1 For 之-a.e. θ and P-a.e. $\omega, R_{n, \theta}(\omega)$ converges to $P\left(\operatorname{in}_{1} \mathcal{M}_{1}\left(S^{I}\right)\right.$).
Definition 3.2 We call Q stationary or self-similar, if Q is invariant under T_{0} and under T_{1}. Let \mathscr{M}_{1}^{s} denote the set of all stationary probability distributions on Ω. We call $Q \in \mathscr{A}_{1}^{s}$ ergodic, if $\bar{Q}:=Q \times \lambda$ is ergodic on $\bar{\Omega}$ with respect to \bar{T}.

Remark 3.3 If Q is ergodic, $R_{n, \theta}(\omega)$ converges to Q for Q-a.e. ω and λ-a.e. θ.

4 Large deviations

In the following we investigate large deviations of the convergence of $R_{n, \theta}$ to P in Theorem 3.1. Note that $R_{n, \theta}$ would not correspond, on the lattice \mathbb{Z}^{d}, to the usual empirical field, but rather to the empirical distribution of a sequence of configurations we get shifting along the path of a (transient) random walk on the lattice (see also Remark 4.8). Ben Arous and Tamura got, for each fixed θ, a large deviation principle for the distributions of $R_{n, \theta}$, where the rate function depends heavily on θ (see [3]). We are interested in estimates which do not depend on θ. In particular, our rate function will be finite only on probability distributions which are stationary, i.e. invariant under all shifts T_{θ}. There is, however, no large deviation principle holding "uniformly" in θ : we can get the bounds in Theorem 4.1 only for λ-a.e. θ. To understand why, look at the following example:

Let $I=\mathbb{R}$ and $A:=\left\{Q \mid Q\left[Y_{2,2}>Y_{1,1}\right]=1\right\}$. If we shift only to the left, i.e. take $\theta=(0,0,0, \ldots)$, we have $P\left[R_{n, \theta} \in A\right]=P\left[Y_{2,2}>Y_{1,1}\right]^{n}$, hence $(1 / n) \log P\left[R_{n, \theta} \in A\right]=\log P\left[Y_{2,2}>Y_{1,1}\right]$. If we shift only to the right, i.e. take $\theta=(1,1,1, \ldots)$, we get $P\left[R_{n, \theta} \in A\right]=P\left[Y_{1,1}<Y_{2,2}<Y_{3,4}<\ldots<Y_{n, 2^{n-1}}\right]$, hence $(1 / n) \log P\left[R_{n, \theta} \in A\right] \rightarrow-\infty$.

Also, there is no "global" rate function concentrated on $\mathscr{M}_{1}^{s}(\Omega)$. This will follow from Theorem 4.1. We give an illustrative example:

Let $I=\mathbb{R}$ and $P=\prod_{i \in I} N(0,1)$ as in Sect. 2. Consider $A_{m}:\left\{Q \mid E_{Q}\left[Y_{m, 1}\right]=\right.$ $\left.E_{Q}\left[Y_{m, 2}\right]=\ldots=E_{Q}\left[Y_{m, 2^{m-1}}\right] \geqq b\right\} \quad(m=1,2, \ldots$,$) where b>0$. Since P is a product measure, we have, for all θ,

$$
P\left[R_{n, \theta} \in A_{m}\right]=P\left[\bar{Y}_{n} \geqq b\right]^{2^{m-1}},
$$

where \bar{Y}_{n} is the arithmetic mean of $Y_{1,1}, Y_{2,1}, Y_{3,1}, \ldots, Y_{n, 1}$. So we get

$$
\lim _{n} \frac{1}{n} \log P\left[R_{n, \theta} \in A_{m}\right]=-2^{m-1} \lambda(b)
$$

for all θ, where $\lambda(x)=x^{2} / 2$ is the rate function for the large deviations of the arithmetic mean of iid random variables with distribution $N(0,1)$. On the other hand, $A_{m} \cap \mathscr{M}_{1}^{s}(\Omega)=A_{1} \cap \mathscr{M}_{1}^{s}(\Omega)$ for each m.

We establish a principle of large deviations for the finite-dimensional marginal distributions of $R_{n, \theta}$ on $S^{J}(J \subseteq I, J$ finite) under P. Recall P is, in this section, a product measure on S^{I}. Let us begin with some notation: we denote the mapping of the index set I on itself, which corresponds to T_{0}, again by T_{0}, i.e. $T_{0}(n, k)=(n+1, k)$ and, in the same way, $T_{1}(n, k)=\left(n+1,2^{n-1}+k\right)$ $\left(k=1,2, \ldots, 2^{n-1}, n=1,2, \ldots\right)$. Let $J \subseteq I$ and let $T_{\theta_{0}}$ denote the identity. Let $F_{k}(\theta, J):=\bigcup_{\ell=0}^{k-1} T_{\theta_{\ell}} \circ \cdots \circ T_{\theta_{0}} J$ be the set of coordinates, generated by J after $k-1$ shifts according to $\theta,(k \geqq 1), F_{0}(J):=J$. Let $\mathscr{F}_{k}(\theta, J):=\sigma\left(\left\{Y_{i} \mid i \in F_{k}(\theta, J)\right\}\right)$ be the corresponding σ-field. We write $\left(T_{\theta}\right)^{\ell}$ instead of $T_{\theta_{\ell}} \circ \cdots \circ T_{\theta_{0}}$, hence $F_{k}(\theta, J)=\bigcup_{\ell=0}^{k-1}\left(T_{\theta}\right)^{\ell} J,(k \geqq 1)$. Let $\mathscr{M}_{1}\left(S^{I}\right)$ denote the set of all probability distributions on S^{I} as before. We now consider subsets A_{J} of $\mathscr{M}_{1}\left(S^{I}\right)$, which are characterized in the following way: let $J \subseteq I, J$ finite, $B_{J} \subseteq \mathscr{M}_{1}\left(S^{J}\right)$ measurable and

$$
\begin{equation*}
A_{J}:=\left\{Q|Q|_{\mathscr{F}_{0}(J)} \in B_{J}\right\} \tag{4.1}
\end{equation*}
$$

i.e. if Q is in A_{J} or not depends only on the finite-dimensional marginal of Q on $\mathscr{F}_{0}(J)$. We then have: A_{J} is open in $\mathscr{M}_{1}(\Omega) \Leftrightarrow B_{J}$ is open in $\mathscr{M}_{1}\left(S^{J}\right)$.
Let the relative entropy $\left.H(Q \mid P)\right|_{\mathscr{F}}$ of Q with respect to P on the σ-field \mathscr{F} be defined as $E_{Q}\left[\left.\log \frac{d Q}{d P}\right|_{\mathscr{F}}\right]$, if $Q \ll P$ on \mathscr{F}, and $=+\infty$ else. Now we can state the following large deviation principle:
Theorem 4.1 Let $J \subseteq I, J$ finite. Then there is a function $I_{J}: \mathscr{M}_{1}(\Omega) \rightarrow[0, \infty]$, such that the following holds for all A_{J} of the form in (4.1):

$$
\begin{gathered}
A_{J} \text { open } \Rightarrow \varlimsup_{n}^{\lim _{n}} \frac{1}{n} \log P\left[R_{n, \theta} \in A_{J}\right] \geqq-\inf _{Q \in A_{J}} I_{J}(Q) \\
A_{J} \text { closed } \Rightarrow \varlimsup_{n}^{\lim _{n}} \frac{1}{n} \log P\left[R_{n, \theta} \in A_{J}\right] \leqq-\inf _{Q \in A_{J}} I_{J}(Q)
\end{gathered}
$$

for λ-a.e. θ. Further, $I_{J}: \mathscr{M}_{1}(\Omega) \rightarrow[0, \infty]$ is lower semicontinuous, $I_{J}(Q)=+\infty$ if $Q \notin \mathscr{M}_{1}^{s}$ and we have for $Q \in \mathscr{M}_{1}^{s}$:

$$
I_{J}(Q)=\left.\lim _{n} \frac{1}{n} \int H(Q \mid P)\right|_{3_{J_{n}}(\theta, J)} \lambda(d \theta)
$$

Proof. We fix J and write $\mathscr{F}_{0}, \mathscr{F}_{n}(\theta), A$ instead of $\mathscr{F}_{0}(\theta, J), \mathscr{F}_{n}(\theta, J), A_{J}$. The basic idea of the proof is to represent $\left.R_{n, \theta}\right|_{\mathscr{F}_{0}}$ as the empirical distribution of a Markov chain of order m. We will give an explicit proof of the lower bound and refer to a general theorem in the proof of the upper bound.

First we investigate the behaviour of the Radon-Nikodym derivatives of Q with respect to P on the σ-fields $\mathscr{F}_{n}(\theta)$: in fact, we need to know only the growths of the relative entropies $\left.H(Q \mid P)\right|_{\mathscr{F}_{n}(\theta)}$ of Q with respect to P on the σ-fields $\mathscr{F}_{n}(\theta)$.

Theorem 4.2 For each $Q \in \mathscr{M}_{1}^{s},\left.(1 / n) H(Q \mid P)\right|_{\mathscr{F}_{n}(\theta)}$ converges to $I_{J}(Q)$ for λ-a.e. θ, where

$$
I_{J}(Q)=\left.\lim _{n} \frac{1}{n} \int H(Q \mid P)\right|_{\mathscr{F}_{n}(\theta)} \lambda(d \theta) \in[0, \infty]
$$

Further, $I_{J}(\cdot)$ is lower semicontinuous and affine.
Remark 4.3 If Q is ergodic, we have for λ-a.e. $\theta:\left.(1 / n) \log \frac{d Q}{d P}\right|_{\mathscr{F}_{n}(\theta)} \operatorname{converges} Q$-a.s. to $I_{J}(Q)$.

Proof of Theorem 4.2 Let $\bar{Q}=Q \times \lambda, \bar{P}=P \times 2$. We make use of a theorem of A. Barron .

Theorem 4.4 Let $\left(X_{n}\right)_{n=1,2}, \ldots$ be a stationary process with values in a Standard Borel space E. Let Q be the distribution of $\left(X_{n}\right)$, and $P \in \mathscr{M}_{1}\left(E^{\mathbb{N}}\right)$ be a "reference measure": P is stationary and Markov of order m (i.e. $P\left[A \mid X_{n-1}, \ldots, X_{1}\right]=$ $P\left[A \mid X_{n-1}, \ldots, X_{n-m}\right]$ for all $\sigma\left(X_{n}, X_{n+1}, \ldots\right)$ measurable sets A and $\left.n>m\right)$. Define the σ-fields $A_{n}:=\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right)$. Then the specific relative entropy $h(Q \mid P)$ of Q with respect to P exists:

$$
h(Q \mid P)=\left.\lim _{n} \frac{1}{n} H(Q \mid P)\right|_{\mathscr{l}_{n}} \in[0, \infty]
$$

See Barron [1, Theorem 1] for the proof.
Note that $\left.H(Q \mid P)\right|_{\mathscr{A}_{n}}$ is increasing, so $h(Q \mid P)=\infty$ if there is an n such that $\left.H(Q \mid P)\right|_{\mathscr{A}_{n}}=\infty$.

We apply Theorem 4.4 with $\bar{Q}, \bar{P}, E:=\left\{\left(Y_{1}, \ldots Y_{\ell}\right) \mid Y_{i} \in S\right\} \times\{0,1\}$, where $(1,2, \ldots, \ell)$ is an enumeration of J.
$\left.\widetilde{\bar{P}}\right|_{\sigma\left(J, T_{g} J, T_{t}^{2} J, \ldots\right) \times \mathscr{R}}$ can be identified with a stationary measure, Markov of order m on $E^{\mathbb{N}}$, where X_{n} consists of the ℓ-tuple of random variables $Y_{i}, i \in T_{\theta}^{n-1} J$ and θ_{n}.

$$
\begin{equation*}
m:=\max \{n \mid \exists k \text { with }(n, k) \in J\}-1 \tag{4.2}
\end{equation*}
$$

(Since the sets $T_{\theta}^{n} J, n=1,2, \ldots$ are not disjoint in general, $\left.\bar{P}\right|_{\sigma\left(J, r_{\theta} J, T_{\theta}^{2} J, \ldots\right) \times \mathscr{g}}$ is in general not a product measure on $E^{\mathbb{N}}$). In the same way, we can identify a stationary and ergodic \bar{Q} with a stationary and ergodic probability distribution on $E^{\mathbb{N}}$, respectively. Hence we get from Theorem 4.4

$$
\exists \bar{I}_{J}(\bar{Q})=\left.\lim _{n} \frac{1}{n} H(\bar{Q} \mid \bar{P})\right|_{\sigma\left(X_{1}, \ldots, x_{n}\right)}
$$

If we set $I_{J}(Q):=\overline{I_{J}}(\bar{Q})$, we get

$$
\begin{equation*}
I_{J}(Q)=\left.\lim _{n} \frac{1}{n} \int H(Q \mid P)\right|_{\mathscr{F}_{n}(\theta)} \lambda(d \theta) \tag{4.3}
\end{equation*}
$$

It remains to show that I_{J} is lower semicontinuous and affine; for this, we refer to [9].

Remark 4.5 $Q \in \mathscr{M}_{1}^{s}$ and $I_{J}(Q)=0$ imply $Q=P$.

The next step in the proof of the lower bound is to show that the set of ergodic probability distributions is dense in \mathscr{M}_{1}^{s}.

Lemma 4.6 Let $Q \in \mathscr{M}^{s}$. Then there is a sequence of ergodic probability distributions
$\left(Q_{n}\right)_{n=1,2, \ldots}$ such that $Q_{n} \xrightarrow{\mathrm{w}} Q$, and $I_{J}\left(Q_{n}\right) \rightarrow I_{J}(Q)$ for $n \rightarrow \infty$.

The proof is similar to the proof of Lemma 4.8 in Föllmer [7].
Note that Theorem 4.2, Lemma 4.6 and Remark 3.3 can be used to prove the lower bound with a standard argument (see [5, p. 76]).

For each $\theta, R_{n, \theta} \mid \mathscr{F}_{0}$ is the n-th empirical distribution of a Markov chain of order m. This chain is, in the terminology of Deuschel et al. [6] R-mixing with $M=1$ if $R \geqq m$ (see (4.2)), since $\sigma\left(\left\{T_{\theta^{k} \omega}, 0 \leqq k \leqq r\right\}\right)$ and $\sigma\left(\left\{T_{\theta^{k} \omega}, k \geqq r+m\right\}\right.$) are independent. A general theorem about uniform large deviations (see [6, p. 91]) implies, together with the contraction principle, that for each θ, the distributions of $\left.R_{n, \theta}\right|_{\mathscr{F}_{0}}, \quad n \geqq 1$, satisfy a large deviation principle with rate function $h_{\theta},{ }_{J}: \mathscr{M}_{1}\left(\mathscr{F}_{0}\right) \rightarrow[0, \infty]$ and $h_{\theta}, J_{j}(v)=\inf \left\{I_{\theta}, J(Q)\left|Q \in \mathscr{M}_{1}^{s}(\theta), Q\right|_{\mathscr{F}_{0}}=v\right\}$ with $I_{\theta, J}(Q)=\left.\lim _{n}(1 / n) H(Q \mid P)\right|_{\mathscr{F}_{n}(\theta)}$. (Here, $\mathscr{M}_{1}^{s}(\theta)$ denotes the set of probability distributions which are invariant under T_{θ}). It remains to identify this rate function with the rate function in Theorem 4.1. Theorem 4.2 implies that for λ-a.e. $\theta, \inf \left\{I_{\theta, J}(Q)\left|Q \in \mathscr{M}_{1}^{s}(\theta), Q\right| \mathscr{F}_{0}=v\right\}=\inf \left\{I_{\theta}, J(Q)\left|Q \in \mathscr{M}_{1}^{s}, Q\right|_{\mathscr{F}_{0}}=v\right\}$ and $\left.\lim _{n}(1 / n) H(Q \mid P)\right|_{\mathscr{F}_{n}(\theta)}=I_{J}(Q)$, so $I_{\theta}, J(Q)=I_{J}(Q)$ for λ-a.e. θ.

Note that for each $L \geqq 0,\left\{\left.Q\right|_{\mathscr{F}_{0}} \mid I_{j}(Q) \leqq L\right\}$ is a compact subset of $\mathscr{A}_{1}\left(S^{J}, \mathscr{F}_{0}\right)$, but $\left\{Q \mid I_{J}(Q) \leqq L\right\}$ is in general not compact in $\mathscr{M}_{1}(\Omega)$.

Of course, the arguments in [6] are much more general than our situation requires. For a direct proof of Theorem 4.1, we refer to [9].

Theorem 4.1 says that we have to minimize the rate functional I_{J} over the set of probability distributions $\mathscr{M}_{1}^{s}\left(S^{I}\right)$. It is therefore natural to ask about the properties of probability distributions in $\mathscr{M}_{1}^{s}\left(S^{I}\right)$. We omitted Y_{0}, but we can extend any stationary measure on S^{I} to a stationary measure on $S^{I_{0}}$. Let $P=\prod_{i \in I_{0}} \mu \in \mathscr{M}_{1}^{s}\left(S^{I o}\right)$ denote a product measure and consider $\mathscr{M}_{1}^{s}=\mathscr{M}_{1}^{s}\left(S^{I o}\right)$. Probability distributions in \mathscr{M}_{1}^{s} are typically singular with respect to P. More precisely, $Q \in \mathscr{M}_{1}^{s}, Q \ll P \Rightarrow Q=P$. In particular, $Q \in \mathscr{M}_{1}^{s}$ has infinite relative entropy with respect to P, if $Q \neq P$. We can show, though, that a specific relative entropy with respect to P exists for each $Q \in \mathscr{M}_{1}^{s}$. Consider the σ-fields $\mathscr{F}_{2^{n}}=\sigma\left(\left\{Y_{0}, Y_{m, k} \mid m \leqq n\right\}\right)$.

Lemma 4.7 Every $Q \in \mathscr{M}_{1}^{s}$ has a specific relative entropy $h(Q \mid P)$ with respect to P :

$$
\begin{aligned}
h(Q \mid P) & =\left.\lim _{n} \frac{1}{2^{n}} H(Q \mid P)\right|_{\mathscr{F}_{2^{n}}} \\
& =\left.\sup _{n} \frac{1}{2^{n}} H(Q \mid P)\right|_{\mathscr{F}_{2^{n}}} \in[0, \infty] .
\end{aligned}
$$

In particular: $Q \in \mathscr{M}_{1}^{s}, h(Q \mid P)=0 \Rightarrow Q=P$.
Further, $h(\cdot \mid P)$ is affine on $\mathscr{H}_{1}^{s}(\Omega)$.
Sketch of a proof. Let \mathscr{V} be the set containing all subsets of I_{0}. Then the function $f: \mathscr{V} \rightarrow \mathbb{R}, \quad f(V)=\left.H(Q \mid P)\right|_{\sigma\left(\left\{Y_{i} \mid i \in V\right\}\right)}$ is a superadditive set function, i.e. $f(V \cup W) \geqq f(V)+f(W)$ for disjoint sets $V, W \in \mathscr{F}$. Here we made use of the product structure of P. The rest of the proof is left to the reader (see also Georgii, [10, Chap. 15, Sect. 2], for a general argument).

Remark 4.8 Look at

$$
R_{n}(\omega):=\frac{1}{2^{n}} \sum_{\theta \in\{0,1\}^{n}} \sum_{k=1}^{n} \delta_{\left(T_{\theta}\right)^{k} \omega} .
$$

$R_{n}(\omega)$ is the analogon to the usual empirical field on the tree. Then the same arguments as in the proof of Theorem 2.2 show that $R_{n}(\omega) \rightarrow P$ for P-a.e. ω. The distributions of $R_{n}, n \geqq 1$, satisfy a large deviation principle with good rate function I where $I(Q)=h(Q \mid P)$ for $Q \in \mathscr{M}_{1}^{s}, I(Q)=+\infty$ else. We don't give a proof here, since it consists merely in carrying over arguments in [6] or [8] from the lattice to the tree structure. (The arguments in [6] or [8] can here be simplified of course, since we treat the particularly nice case of a product measure P.)

5 Examples

5.1 Stationary probability distributions on $\mathbb{R}^{I_{0}}$

Let $P=\prod_{i \in I_{0}} N(0,1) \in \mathscr{M}_{1}^{s}\left(\mathbb{R}^{I_{0}}\right)$ denote Wiener measure. Can we identify a selfsimilar probability distribution on $\mathbb{R}^{I_{0}}$ with a probability distribution on $C[0,1]_{0}$? Notice this is not clear a priori. In Lemma 5.1 below we give a condition on Q which guarantees that the support of Q is contained in $C[0,1]_{0}$. Our conjecture is, however, that this holds true for every $Q \in \mathscr{M}_{1}^{s}\left(\mathbb{R}^{I_{o}}\right)$. Because we deal with stationary probability distributions, condition (5.1) below involves only the onedimensional marginal distribution of Q.

Lemma 5.1 Let $Q \in \mathscr{M}_{1}^{s}=\mathscr{M}_{1}^{s}\left(\mathbb{R}^{I_{0}}\right)$ and

$$
\begin{equation*}
\sum_{n=1}^{\infty} 2^{n-1} Q\left[\left|Y_{0}\right| \geqq 2^{\alpha n}\right]<\infty \quad \text { for } \text { an } \alpha<1 / 2 \tag{5.1}
\end{equation*}
$$

Then Q is a probability distribution on $C[0,1]_{0}$.
Proof. We can replace (1.2) in Lemma 1.6 with (5.1):

$$
\begin{aligned}
Q\left[M_{n} \geqq 2^{\alpha n}\right] & \left.\max _{k=1,2, \ldots, 2^{n-2}}\left|Y_{n, k}\right| \geqq 2^{\alpha n}\right]+Q\left[\max _{k=2^{n-2}+1, \ldots, 2^{n-1}}\left|Y_{n, k}\right| \geqq 2^{\alpha n}\right] \\
& =2 Q\left[M_{n-1} \geqq 2^{\alpha n}\right],
\end{aligned}
$$

since Q is stationary. By iteration, we conclude $Q\left[M_{n} \geqq 2^{\alpha n}\right] \leqq 2^{n-1} Q\left[\left|Y_{0}\right| \geqq 2^{\alpha n}\right]$.

Let v be the distribution of Y_{0} under Q. Sufficient for (5.1) to hold is, for instance, $\int|x|^{2+\varepsilon} d \nu<\infty$ for an $\varepsilon>0$ or $\sup _{t \in \mathbb{R}}\left|\frac{d \nu}{d \mu}(t)\right| \leqq C$, where $\mu=N(0,1)$.

If the support of Q is contained in $C[0,1]_{0}$, we get the coordinate process $\left(X_{t}\right)_{0 \leqq t \leqq 1}$ via

$$
\begin{equation*}
X_{t}(\omega)=Y_{0}(\omega) \cdot t+\sum_{n=1}^{\infty} \sum_{k=1}^{2^{n-1}} Y_{n, k}(\omega) e_{n, k}(t) \quad(0 \leqq t \leqq 1) \tag{5.2}
\end{equation*}
$$

as in Sect. 1. In this case, we can write the σ-field $\mathscr{F}_{2^{n}}$ in Lemma 4.7 as $\mathscr{F}_{2^{n}}=\sigma\left(\left\{X_{k \cdot 2^{-n}} \mid k=0,1, \ldots, 2^{n}\right\}\right)$, and we have an interpretation of the specific relative entropy $h(Q \mid P)$ as a limit of entropies on the dyadic partitions of the unit interval.

The simplest case of a stationary probability distribution is, of course, a product measure $Q=\prod_{i \in I_{0}} v$. What can we then say about $\left(X_{t}\right)_{0 \leqq t \leqq 1}$?
Lemma 5.2 Let $Q=\prod_{i \in I_{0}} v$ and assume Q satisfies (5.1).
(i) Let $\int x^{2} d v<\infty$. Then $E_{Q}\left[X_{t} X_{s}\right]=\int x^{2} d v \cdot(t \wedge s)$. Further, $\left(X_{t}\right)_{0 \leqq t \leq 1}$ has quadratic variation $\left\langle X_{t}\right\rangle_{0 \leqq t}$ (along the sequence of dyadic partitions of $[\overline{0}, \overline{1}]$) and

$$
\langle X\rangle_{t}=\left(\int x^{2} d v\right) \cdot t \quad(0 \leqq t \leqq 1), Q \text {-a.s. }
$$

(ii) Let $\int x^{4} d v<\infty$. Then $\left(X_{t}\right)_{0 \leqq t \leqq 1}$ is locally Hölder-continuous with exponent γ, for each $\gamma<1 / 2$.

For the proof, we refer to [9].
In general, $\left(X_{t}\right)_{0 \leqq t \leqq 1}$ is not a Markov process under Q. We can state the following "weakened Markov property": the conditional distribution of $\left\{X_{t} \mid t \in\right](k-1) / 2^{n}$, $k / 2^{n}[\}$, given $\left\{X_{t} \mid t \in\left[0,(k-1) / 2^{n}\right] \cup\left[k / 2^{n}, 1\right]\right\}$, depends only on $X_{(k-1) / 2^{n}}$ and $X_{k / 2^{n}}, k=1,2, \ldots, 2^{n}, n=1,2, \ldots$

Example 5.3 Let $v=N(a, 1)$ and $Q=\prod_{i \in I} v$. Of course, condition (5.1) in Lemma 5.1 is satisfied. Q is the distribution of $\left(B_{t}+a \cdot g(t)\right)_{0 \leqq t \leqq 1}$, where $\left(B_{t}\right)_{0 \leqq t \leqq 1}$ is

Fig. 2
a Brownian bridge and g the self-similar function $g(t)=\sum_{n=1}^{\infty} \sum_{k=1}^{2^{n-1}} e_{n, k}(t)(0 \leqq t \leqq 1)$. g is the profile of the fractal "mount Takagi" (see [14]).

5.2 Brownian sheet and other examples with $S=C[0,1]$

Except Brownian motion (multiplied with constants), real-valued diffusions resp. their bridges are not self-similar in our sense, i.e. invariant under T_{0} and under T_{1}. But if we allow the coefficients $Y_{0}, Y_{n, k}, k=1,2, \ldots, 2^{n-1}, n=1,2, \ldots$ to have values in a function space, we can describe well-known, "smooth" objects like the $C[0,1]$-valued Ornstein-Uhlenbeck process. Take $S=C[0,1]$ and $P^{\infty}=\prod_{i \in I_{0}} P$ $\in \mathscr{M}_{1}^{s}\left(S^{I}\right)$, where P denotes Wiener measure on $C[0,1]$. Set

$$
\begin{equation*}
X(t, \tau)=Y_{0}(\tau) \cdot t+\sum_{n=1}^{\infty} \sum_{k=1}^{2^{n-1}} Y_{n, k}(\tau) e_{n, k}(t) \quad(0 \leqq t, \tau \leqq 1) \tag{5.3}
\end{equation*}
$$

$(X(t, \cdot))_{0 \leqq t \leq 1}$ is then a $C[0,1]$-valued Brownian motion under $P^{\infty}:$ For $t_{1}, t_{2}, t_{3}, t_{4}$ with $0 \leqq t_{1}<t_{2} \leqq t_{3} \leqq t_{4} \leqq 1$ the increments $X\left(t_{2}, \cdot\right)-X\left(t_{1}, \cdot\right), X\left(t_{4}, \cdot\right)-$ $X\left(t_{3}, \cdot\right)$ are independent and $1 /\left(\sqrt{t_{2}-t_{1}}\right)\left(X\left(t_{2}, \cdot\right)-X\left(t_{1}, \cdot\right)\right)$ has distribution P. In the same way, $(X(\cdot, \tau))_{0 \leqq \tau \leqq 1}$ is a $C[0,1]$-valued Brownian motion under P^{∞}. We call P^{∞} infinite-dimensional Wiener measure or the distribution of "Brownian sheet". Let us replace P^{∞} with another Gaussian product measure $Q^{\infty}=\prod_{i \in I_{0}} Q \in \mathscr{M}_{S}\left(S^{I_{0}}\right)$.

Lemma 5.4 Let Q be a Gaussian probability distribution on $C[0,1]$ with $E_{Q}\left[Y_{0}(\tau)\right]=0(0 \leqq \tau \leqq 1)$ and set

$$
X(t, \tau)=Y_{0}(\tau) \cdot t+\sum_{n=1}^{\infty} \sum_{k=1}^{2^{n-1}} Y_{n, k}(\tau) e_{n, k}(t) \quad(0 \leqq t, \tau \leqq 1)
$$

where $Y_{0}, Y_{n, k}, k=1,2, \ldots, 2^{n-1}, n=1,2, \ldots$ are independent with distribution Q. We then have
(i) For each $\tau \in[0,1],(X(t, \tau))_{0 \leqq t \leqq 1}$ is a Brownian motion with variance $E_{Q}\left[Y_{0}(\tau)^{2}\right]$.
(ii) The $C[0,1]$-valued process $(X(t, \cdot))_{0 \leqq r \leqq 1}$ has independent increments, and $1 /\left(\sqrt{t_{2}-t_{1}}\right)\left(X\left(t_{2}, \cdot\right)-X\left(t_{1},.\right)\right)$ has distribution $Q\left(0 \leqq t_{1}<t_{2} \leqq 1\right)$.

The proof is easy: we refer to [9].
Example 5.5 Let $Q \in \mathscr{M}_{1}(C[0,1])$ be the distribution of an Ornstein-Uhlenbeck process starting in 0 , i.e. the distribution of $\left(Z_{t}\right)_{0 \leqq t \leqq}$, where $\left(Z_{t}\right)$ solves the stochastic differential equation

$$
d Z_{t}=d W_{t}-Z_{t} d t
$$

and $\left(W_{u}\right)_{0 \leqq u \leqq 1}$ is a Brownian motion under Q. Then the $C[0,1]$-valued process $(X(\cdot, \tau))_{0 \leqq r \leqq 1}$ is a $C[0,1]$-valued Ornstein-Uhlenbeck process under Q^{∞}, i.e. $X_{\tau}:=X(\cdot, \tau)$ solves the ("infinite-dimensional") stochastic differential equation

$$
d X_{\tau}=d W_{\tau}-X_{\tau} d \tau
$$

where $W_{\tau}:=W(\cdot, \tau)$ is a $C[0,1]$-valued Brownian motion under Q^{∞}.
We can describe Q^{∞} with Theorem 4.1 as a "large deviation" of P^{∞}, i.e. as the solution of a variational problem where we have to minimize the rate function in Theorem 4.1 over a certain subset of $\mathscr{M}_{1}\left(C[0,1]^{I o}\right)$. More precisely, set

$$
A:=\left\{\bar{R} \in \mathscr{M}_{1}\left(C[0,1]^{I_{0}}\right)|\bar{R}|_{\mathscr{F}_{0}} \in B\right\}
$$

where

$$
B:=\left\{R \mid \int X_{t}^{2} d R \leqq 1-e^{-t}, 0 \leqq t \leqq 1\right\}
$$

$B \subseteq \mathscr{M}_{1}(C[0,1])$. Here A is of the form in (4.1), i.e. $\bar{R} \in A$ iff the one-dimensional marginal distribution of \bar{R} is in B. The rate function $I_{J}(\cdot)$ is here the specific relative entropy $h\left(\cdot \mid P^{\infty}\right)$. Since Q minimizes the relative entropy $H(\cdot \mid P)$ over B (this is shown in [9]), Q^{∞} minimizes $h\left(\cdot \mid P^{\infty}\right)$ over A. In this way, we may see the $C[0,1]$-valued Ornstein-Uhlenbeck process as a large deviation of Brownian sheet.

Acknowledgement. This work is part of a Ph.D. Thesis written at Bonn University. I would like to thank my adviser, Hans Föllmer, and also Michael Röckner for many helpful discussions.

References

1. Barron, A.: The strong ergodic theorem for densities: Generalized Shannon-McMillanBreiman theorem. Ann. Probab. 13 (4), 1292 (1985)
2. Basseville, M. et al: Modeling and estimation of multiresolution stochastic processes. IEEE Trans. Inf. Theory 38 (2), 766 (1992)
3. Ben Arous, G.: Private communication
4. Daubechies, I.: Ten lectures on wavelets. (CBMS-NSF Reg. Conf. Ser. Appl. Math., vol. 61) Philadelphia: Soc. Ind. Appl. Math. 1992
5. Deuschel, J.D., Stroock, D.W.: Large deviations. (Pure Appl. Math., vol. 137) Boston: Academic Press 1989
6. Deuschel, J.D., Stroock, D.W., Zessin, H.: Microcanonical distributions for lattice gases. Commun. Math. Phys. 139, 83 (1991)
7. Föllmer, H.: Random fields and diffusion processes. In: Hennequin, P.L: (ed.) Ecole d'Eté de Probabilité de Saint-Flour XV-XVIII, 1985-87. (Lect. Notes Math., vol. 1362, pp. 101-203) Berlin Heidelberg New York: Springer 1988
8. Föllmer, H., Orey, S.: Large deviations for the empirical field of a Gibbs-measure. Ann. Probab. 16 (3), 961 (1988)
9. Gantert, N.: Einige grosse Abweichungen der Brownschen Bewegung. Dissertation Nr. 224. Bonner Schriften (1991)
10. Georgii, H.-O.: Gibbs measures and phase transitions. (De Gruyter Stud. Math., Vol. 9) Berlin New York: de Gruyter 1988
11. Itô, K., Nisio, M.: On the convergence of sums of independent Banach space valued random variables. In: Itô, K. Selected papers. Berlin Heidelberg New York: Springer 1987
12. Liggett, T.M.: Interacting particle systems. (Grundlehren Math. Wiss., Vol. 276) Berlin Heidelberg New York: Springer 1985
13. Karatzas, I., Shreve, S.: Brownian motion and stochastic calculus. (Grad. Texts Math.) Berlin Heidelberg New York: Springer 1988
14. Peitgen, H.-O., Saupe, D. (eds): The science of fractal images. Berlin Heidelberg New York: Springer 1988
