Probability Theory and Related Fields © Springer-Verlag 1994

Self-similarity of Brownian motion and a large deviation principle for random fields on a binary tree

Nina Gantert

ETH Mathematikdepartement, CH-8092 ETH Zürich, Switzerland

Received September 17, 1991; in revised form June 30, 1993

Summary. Using self-similarity of Brownian motion and its representation as a product measure on a binary tree, we construct a random sequence of probability measures which converges to the distribution of the Brownian bridge. We establish a large deviation principle for random fields on a binary tree. This leads to a class of probability measures with a certain self-similarity property. The same construction can be carried out for C[0, 1]-valued processes and we can describe, for instance, a C[0, 1]-valued Ornstein–Uhlenbeck process as a large deviation of Brownian sheet.

Mathematics Subject Classifications (1991): 60F10, 60J65

Introduction

Self-similarity of Brownian motion induces a certain ergodic behaviour of the Brownian bridge. We investigate large deviations of this ergodic behaviour. Let $C[0,1]_{0,0}$ be the space of all functions X in C[0,1] with X(0) = X(1) = 0 and P the distribution of the Brownian bridge. We define mappings T_0 , T_1 of $C[0,1]_{0,0}$ on itself which describe rescalings of the left and the right half of the function $X:(T_0X)_t = \sqrt{2}(X_{t/2} - tX_{1/2}), (T_1X)_t = \sqrt{2}(X_{(t+1)/2} - (1-t)X_{1/2})$, respectively. Due to the self-similarity of Brownian motion, P is invariant and, in fact, even ergodic under T_0 and T_1 .

For each function $\omega \in C[0, 1]_{0,0}$ and each $\theta \in \{0, 1\}^{\mathbb{N}}$, we now construct a sequence of probability distributions $R_{n,\theta}(\omega)$ on $C[0, 1]_{0,0}: R_{n,\theta}(\omega)$ $= (1/n) \sum_{k=0}^{n-1} \delta_{T_{\theta_k}} \cdots T_{\theta_0} \omega$, where δ_{ω} denotes Dirac measure on ω . This means that in each step we choose, according to θ , the left or the right half of the function ω and rescale it. $R_{n,\theta}(\omega)$ is the empirical distribution corresponding to this sequence of functions. Let $\theta_1, \theta_2, \ldots$ be independent coin tossings under λ . We can show that $R_{n,\theta}(\omega)$ converges to P for P-a.e. ω and λ -a.e. all θ . This ergodic behaviour of the Brownian bridge P says that we can reconstruct P with an "infinitesimal" piece of a single "typical" trajectory around a "typical" point of the unit interval [0, 1], if we identify λ with Lebesgue measure. We get another description of T_0 and T_1 using the Lévy-Ciesielski construction of the Brownian bridge: each function in $C[0,1]_{0,0}$ can be written as a superposition of the Schauder functions $e_{n,k}$, $k = 1, 2, ..., 2^{n-1}$, n = 1, 2, ...:

 $X(t) = \sum_{n=1}^{\infty} \sum_{k=1}^{2^{n-1}} Y_{n,k}(X) e_{n,k}(t), 0 \leq t \leq 1$. This defines a mapping of $C[0,1]_{0,0}$ into \mathbb{R}^{I} , where $I := \{(n,k) | k = 1, 2, \dots, 2^{n-1}, n = 1, 2, \dots\}$ has the structure of a binary tree. T_0 and T_1 , interpreted as mappings of \mathbb{R}^{I} into \mathbb{R}^{I} , correspond to shifts of the tree to the left and to the right, respectively. *P* corresponds to the product measure on \mathbb{R}^{I} with marginal distribution N(0,1), i.e. the random variables $Y_{n,k}$, $k = 1, 2, \dots 2^{n-1}$, $n = 1, 2, \dots$ are independent with distribution N(0, 1) under *P*. Similar representations of stochastic processes as tree-indexed random variables have been investigated recently in the context of wavelet transforms, see [2].

We now look at large deviations of the convergence of $R_{n,\theta}$ to P. Note that $R_{n,\theta}$ would not correspond, on the lattice \mathbb{Z}^d , to the usual empirical field, but rather to the empirical distribution of a sequence of configurations we get shifting along the path of a (transient) random walk on the lattice. The same model has been considered independently by Ben Arous and Tamura. They get, for each fixed θ , a large deviation principle for the distributions of $R_{n,\theta}$, where the rate function depends on θ . We are interested in "uniform" bounds; in particular, we want to look at probability measures on the tree which are invariant under all shifts, not only for a fixed θ . We prove that the finite-dimensional marginals of $R_{n,\theta}$ satisfy a large deviation principle and characterize the rate function as a "mean entropy" (Theorem 4.1). Minimizing this rate function leads to the class of self-similar probability distribution on \mathbb{R}^1 can be identified, under certain conditions, with a probability distribution on $C[0, 1]_{0,0}$. We investigate some properties of the corresponding "self-similar" stochastic processes.

More generally, we may replace \mathbb{R} with a Polish space S and P with a product measure on S^{I} . If we set S = C[0, 1] (see Sect. 5), the product measure on S^{I} with Wiener measure as one-dimensional marginal can be identified with the distribution of Brownian sheet. We can describe then, for instance, a C[0, 1]-valued Ornstein–Uhlenbeck process as a large deviation of Brownian sheet.

1 Lévy representation of functions in $C[0,1]_0$ as elements of \mathbb{R}^{I_0}

We consider the following representation of functions in $C[0,1]_0$ which is the space of all functions X in C[0,1] with X(0) = 0. Let the Haar functions φ_0 , $\varphi_{n,k}$, $k = 1, 2, \ldots, 2^{n-1}$, $n = 1, 2, \ldots$ be defined as

$$\varphi_0(t) = 1 \quad 0 \leq t \leq 1$$

$$\varphi_{n,k}(t) = \begin{cases} 2^{(n-1)/2} & (k-1)/2^{n-1} \leq t < (k-1/2)/2^{n-1} \\ -2^{(n-1)/2} & (k-1/2)/2^{n-1} \leq t < k/2^{n-1} \\ 0 & \text{else.} \end{cases}$$

Then $\{\varphi_0, \varphi_{n,k}, k = 1, 2, \dots, 2^{n-1}, n = 1, 2, \dots\}$ forms a complete, orthonormal system in $L^2[0, 1]$. It is the oldest example of an orthonormal wavelet basis with

"mother wavelet" $\varphi_{1,1}$ (see, for instance, [4]). We won't represent X as a superposition of φ_0 , $\varphi_{n,k}$, $k = 1, 2, ..., 2^{n-1}$, n = 1, 2, ..., (wavelet transform), but as a superposition of the related Schauder functions e_0 , $e_{n,k}$, $k = 1, 2, ..., 2^{n-1}$, n = 1, 2, ..., defined as follows

$$e_0(t) = t$$
, $e_{n,k}(t) = \int_0^t \varphi_{n,k}(s) ds$, $0 \le t \le 1$, $k = 1, 2, ..., 2^{n-1}$, $n = 1, 2, ...$

For $X \in C[0, 1]_0$, we set

$$h_{n,k}(X) := X\left(\frac{(k-1/2)}{2^{n-1}} - \frac{1}{2}\left(\frac{X(k/2^{n-1})}{k} + \frac{X(k-1)}{2^{n-1}}\right)\right)$$

and

$$Y_0(X) = X(1), \ Y_{n,k}(X) := 2^{(n+1)/2} \cdot h_{n,k}(X), \ k = 1, 2, \dots, 2^{n-1}, \ n = 1, 2, \dots$$
(1.1)
Let $X^N(t) = Y_0(X) \cdot t + \sum_{n=1}^N \sum_{k=1}^{2^{n-1}} Y_{n,k}(X) e_{n,k}(t)$.

We then have

Lemma 1.1 (i) X^N is the linear interpolation of X on the N-th dyadic partition of [0, 1]. This implies

$$\lim_{N \to \infty} \sup_{t \in [0,1]} |X^{N}(t) - X(t)| = 0.$$

(ii) Let $\langle X \rangle_1^{2^N} := \sum_{k=1}^{2^N} (X(k/2^N) - X((k-1)/2^N))^2$ be the quadratic variation of X on the N-th dyadic partition. We then have

$$\langle X \rangle_1^{2^N} = \frac{1}{2^N} \left(Y_0^2 + \sum_{n=1}^N \sum_{k=1}^{2^{n-1}} (Y_{n,k})^2 \right).$$

(iii) X is absolutely continuous with $X' \in L^2[0, 1]$, i.e. X is in the Cameron–Martin space H, if and only if $Y_0^2 + \sum_{n=1}^{\infty} \sum_{k=1}^{2^{n-1}} (Y_{n,k})^2 < \infty$. In this case, we have

$$||X||_{H}^{2} = ||X'||_{L^{2}[0,1]}^{2} = Y_{0}^{2} + \sum_{n=1}^{\infty} \sum_{k=1}^{2^{n-1}} (Y_{n,k})^{2}.$$

Sketch of a proof. (i) follows by induction on N;

(ii) follows by induction on N.

(iii) follows by the representation of X' as a Fourier series with respect to the complete orthonormal system of Haar functions. \Box

Probability did not enter until now. Let now P be Wiener measure on $C[0,1]_0$.

Theorem 1.2 $Y_0, Y_{n,k}, k = 1, 2, ..., 2^{n-1}, n = 1, 2, ... are iid random variables with distribution <math>N(0, 1)$ under P.

Sketch of a proof. It is enough to show that $Y_0, Y_{n,k}, k = 1, 2, ..., 2^{n-1}$, n = 1, 2, ..., are pairwise uncorrelated with distribution <math>N(0, 1) under P. \Box

Remark 1.3 Theorem 1.2 leads to an algorithm for the simulation of the Brownian path. The law of large numbers and Lemma 1.1(ii) imply the following:

Corollary 1.4 $\langle X \rangle_1^{2^N}$ converges P-a.s. and in $L^2(P)$ to 1 if $N \to \infty$.

Remark 1.5 This construction of Brownian motion goes back to Lévy and Ciesielski (see [13] for references), it can be carried out for every complete orthonormal system in $L^2[0, 1]$. Let $\{\varphi_k | k \ge 1\}$ be a complete orthonormal system in $L^2[0, 1]$.

$$e_k(t) := \int_0^t \varphi_k(s) ds, \quad 0 \le t \le 1, \quad k = 1, 2, \dots$$

Let Y_k , k = 1, 2, ... be iid with distribution N(0, 1) and set

$$X_t := \sum_{k=1}^{\infty} Y_k e_k(t) \quad 0 \le t \le 1$$

Then $(X_t)_{0 \le t \le 1}$ is a Brownian motion (see Itô and Nisio [11] for a proof).

Let $I_0 := \{0, (n, k), k = 1, 2, \dots, 2^{n-1}, n = 1, 2, \dots\}$. We interpret I_0 as a binary tree:

Fig. 1

To each function in $C[0,1]_0$ corresponds a set of coefficients Y_0 , $Y_{n,k}, k = 1, 2, \ldots, 2^{n-1}, n = 1, 2, \ldots$ according to the mapping from $C[0,1]_0$ to \mathbb{R}^{I_0} defined in (1.1). The converse, however, is not true: not each element of \mathbb{R}^{I_0} is a function in $C[0,1]_0$, hence not each probability distribution on \mathbb{R}^{I_0} is a probability distribution on $C[0,1]_0$.

Lemma 1.6 Let Q be a probability distribution on \mathbb{R}^{I_0} , $M_n := \max_{k=1,2,\ldots,2^{n-1}} |Y_{n,k}|$ and X^N as in Lemma 1.1. If

$$\sum_{n=1}^{\infty} Q[M_n > 2^{\alpha n}] < \infty \text{ for an } \alpha < 1/2$$
(1.2)

then $Q[X^m \text{ converges uniformly}] = 1$, i.e. Q is a probability distribution on $C[0, 1]_0$.

Proof. We equip $C[0,1]_0$ with the supremum norm $||X|| = \sup_{t \in [0,1]} |X(t)|$. It is enough to show that

$$\sum_{n=1}^{\infty} Q[\|X^n - X^{n-1}\| > a_n] < \infty$$
(1.3)

for a sequence $(a_n)_{n=1, 2, \ldots} \subseteq \mathbb{R}$ with $\sum_{n=1}^{\infty} a_n < \infty$.

The Borel-Cantelli lemma then implies that $(X^m)_{m=1,2,...}$ forms Q-a.s. a Cauchy sequence in $C[0,1]_0$. To show (1.3), we note that

$$\|X^{n} - X^{n-1}\| \leq M_{n} \cdot 2^{-(n+1)/2} , \qquad (1.4)$$

hence

$$Q[||X^n - X^{n-1}|| > a_n] \leq Q[M_n > 2^{(n+1)/2}a_n].$$

If we set

$$a_n = 2^{-\beta n - (1/2)}$$
 with $\beta = (1/2) - \alpha > 0$

and apply (1.2), the claim follows. \Box

2 Construction of a random sequence of probability distributions which converges to the distribution of the Brownian bridge

Let P be the distribution of the Brownian bridge. Then $Y_0 = 0$ P-a.s. and $Y_{n,k}$, $k = 1, 2, \ldots, 2^{n-1}$, $n = 1, 2, \ldots$ are iid random variables under P with distribution N(0, 1). We set

$$I := \{ (n,k) | k = 1, 2, \dots, 2^{n-1}, n = 1, 2, \dots \}$$

and

$$\Omega = C[0,1]_{0,0} := \{ X \in C[0,1] | X(1) = X(0) = 0 \}, \quad X_t(\omega) := \omega(t) .$$

We then have $\Omega = C[0,1]_{0,0} \subseteq \mathbb{R}^{I}$. We denote the set of all probability distributions on Ω by $\mathcal{M}_{1}(\Omega)$.

We consider the mapping $T_0: \Omega \to \Omega$, defined as

$$(T_0 X)_t = \sqrt{2}(X_{t/2} - tX_{1/2}) \quad 0 \le t \le 1.$$

 T_0 corresponds to a shift to the left of the tree, i.e. $Y_{n,k}(T_0\omega) = Y_{n+1,k}(\omega)$. In the same way, we define $T_1: \Omega \to \Omega$ as

$$(T_1X)_t := \sqrt{2(X_{(t+1)/2} - (1-t)X_{1/2})} \quad 0 \le t \le 1.$$

 T_1 corresponds to a shift to the right of the tree, i.e. $Y_{n,k}(T_1\omega) = Y_{n+1,2^{n-1}+k}(\omega)$. *P* is invariant under T_0 and under T_1 .

We now consider the bigger space $\overline{\Omega}$, defined as

$$\begin{split} &\bar{\Omega} = \Omega \times \{0,1\}^{\mathbb{N}} \\ &\bar{\omega} = (\omega,\theta) \quad \theta \in \{0,1\}^{\mathbb{N}} \\ &\bar{P} := P \times \lambda \;, \end{split}$$

where λ denotes product measure on $\{0, 1\}^{\mathbb{N}}$ with $\lambda [\theta_i = 0] = \lambda [\theta_i = 1] = 1/2$. Let the shift \overline{T} on $\overline{\Omega}$ be defined as

$$\overline{T}:\overline{\Omega}\to\overline{\Omega}$$
$$(\omega,(\theta_1,\theta_2,\ldots))\to(T_{\theta_1}\,\omega,(\theta_2,\theta_3,\ldots)).$$

 \overline{P} is invariant under \overline{T} . We can even show:

Theorem 2.1 \overline{P} is ergodic with respect to \overline{T} .

Proof. Let $\overline{\mathscr{F}}^* := \bigcap_n \sigma(\{\overline{T}^m, m > n\})$ be the tail-field on $\overline{\Omega}$. \overline{P} is a product measure on $\overline{\Omega}$, hence Kolmogorovs 0-1-law is satisfied:

$$\overline{P}[\overline{A}] = 0 \text{ or } \overline{P}[\overline{A}] = 1 \text{ if } \overline{A} \in \mathscr{F}^*.$$

The σ -field $\overline{S} := \{\overline{A} | \overline{T}^{-1}\overline{A} = \overline{A}\}$, generated by the shift-invariant sets, is contained in $\overline{\mathscr{F}}^*$, hence we have $\overline{P}[\overline{A}] = 0$ or $\overline{P}[\overline{A}] = 1$, if $\overline{A} \in \overline{S}$, i.e. \overline{P} is ergodic under \overline{T} . \Box Let δ denote Dirac measure on $\overline{T}^k \overline{\alpha}$ and define the probability distribution

Let $\delta_{\overline{T}^k \bar{\omega}}$ denote Dirac measure on $\overline{T}^k \bar{\omega}$ and define the probability distribution $\overline{R}_n(\bar{\omega})$ by $\overline{R}_n(\bar{\omega}) := (1/n) \sum_{k=1}^n \delta_{\overline{T}^{k-1} \bar{\omega}}$ (where \overline{T}^0 denotes the identity). Let $R_{n,\theta}(\omega)$ denote the marginal distribution of $\overline{R}_n(\bar{\omega})$ on Ω for fixed θ :

$$R_{n,\theta}(\omega) = \frac{1}{n} \sum_{k=1}^{n} \delta_{(T_{\theta})^{k-1} \omega}$$

where

$$(T_{\theta})^{k}\omega = T_{\theta_{k}} \circ \cdots \circ T_{\theta_{1}}\omega, \quad k \ge 1,$$

$$(T_{\theta})^{0}\omega = \omega.$$

For each $\theta \in \{0,1\}^{\mathbb{N}}$, $R_{n,\theta}$ is a random variable with values in $\mathcal{M}_1(\Omega)$.

Theorem 2.2 For λ -a.e. θ and P-a.e. ω , $R_{n,\theta}(\omega)$ converges weakly to P.

Proof. Let $f: \overline{\Omega} \to \mathbb{R}$ be measurable and bounded. With Birkhoffs ergodic theorem we get from Theorem 2.1:

$$\frac{1}{n}\sum_{k=0}^{n-1}f_{\circ}\,\overline{T^{k}}_{n\to\infty} \to \int f\,d\bar{P}\quad \bar{P}-\text{a.s.}\;,$$

i.e.

$$\int f dR_{n,\theta}(\omega) \rightarrow \int f d\overline{P}$$
 for λ -a.e. θ and P -a.e. ω

Since the set of all bounded, continuous functions on $\overline{\Omega}$ is countably generated, this implies

$$R_{n,\theta} \xrightarrow{w} P$$
 for λ -a.e. θ and P -a.e. ω .

Remark 2.3 In fact, $(R_{n,\theta})$ converges weakly to *P* for each $\theta \in \{0,1\}^{\mathbb{N}}$ (this was shown by Ben Arous and Tamura in an unpublished paper).

Remark 2.4 Theorem 2.2 says that we can reconstruct Wiener measure with an "infinitesimal piece" of a single "typical" path around a "typical" point of the unit

interval. This property characterizes fractals: the information about a fractal object is contained in a arbitrary small part of the object. Of course, we are dealing with random fractals: the invariance of \overline{P} under \overline{T} corresponds to a "self-similarity in distribution": $(\sqrt{2}(X_{t/2} - tX_{1/2}))_{0 \le t \le 1}$ and $(\sqrt{2}(X_{(t+1)/2} - (1-t)X_{1/2}))_{0 \le t \le 1})$ have the same distribution under P as $(X_t)_{0 \le t \le 1}$. We get a deterministic fractal, if we set, for instance, all the coefficients $Y_{n,k}$, $k = 1, 2, \ldots, 2^{n-1}$, $n = 1, 2, \ldots$ to the value 1, see Sect. 5, Example 5.3.

Remark 2.5 Let $Q \in \mathcal{M}_1(\Omega)$ and let $\overline{Q} := Q \times \lambda$. Then $Q \ll P$ implies $\overline{Q} \ll \overline{P}$, hence $R_{n,\theta}(\omega) \to P \overline{Q}$ -a.s., i.e. for λ -a.e. θ , Q-a.e. ω . This means Q cannot be reconstructed in this way, but we get P from a path which is "typical" for Q. The intuition behind this is the following: the drift of Q with respect to P is lost because of the iterated rescaling, see also Lemma 1.1 (iii).

3 Generalization to probability distributions on S^{I}

Let S be a Polish space. We may now replace \mathbb{R} with S and consider $\Omega = S^{I}$. Let μ be a probability distribution on S and $P = \prod_{i \in I} \mu$ be the corresponding product measure on S^{I} .

We define $T_0, T_1, \overline{\Omega}, \overline{P}, \overline{T}, \overline{R}_n$ and $R_{n,\theta}$ as in Sect. 2. We equip S^I with the product topology and $\mathcal{M}_1(S^I)$, the set of probability distributions on S^I , with the topology of weak convergence. We then get, in the same way as Theorem 2.2:

Theorem 3.1 For λ -a.e. θ and P-a.e. ω , $R_{n,\theta}(\omega)$ converges to P (in $\mathcal{M}_1(S^I)$).

Definition 3.2 We call Q stationary or self-similar, if Q is invariant under T_0 and under T_1 . Let \mathscr{M}_1^s denote the set of all stationary probability distributions on Ω . We call $Q \in \mathscr{M}_1^s$ ergodic, if $\overline{Q} := Q \times \lambda$ is ergodic on $\overline{\Omega}$ with respect to \overline{T} .

Remark 3.3 If Q is ergodic, $R_{n,\theta}(\omega)$ converges to Q for Q-a.e. ω and λ -a.e. θ .

4 Large deviations

In the following we investigate large deviations of the convergence of $R_{n,\theta}$ to P in Theorem 3.1. Note that $R_{n,\theta}$ would not correspond, on the lattice \mathbb{Z}^d , to the usual empirical field, but rather to the empirical distribution of a sequence of configurations we get shifting along the path of a (transient) random walk on the lattice (see also Remark 4.8). Ben Arous and Tamura got, for each fixed θ , a large deviation principle for the distributions of $R_{n,\theta}$, where the rate function depends heavily on θ (see [3]). We are interested in estimates which do not depend on θ . In particular, our rate function will be finite only on probability distributions which are stationary, i.e. invariant under all shifts T_{θ} . There is, however, no large deviation principle holding "uniformly" in θ : we can get the bounds in Theorem 4.1 only for λ -a.e. θ . To understand why, look at the following example:

Let $I = \mathbb{R}$ and $A := \{Q | Q [Y_{2,2} > Y_{1,1}] = 1\}$. If we shift only to the left, i.e. take $\theta = (0, 0, 0, ...)$, we have $P[R_{n,\theta} \in A] = P[Y_{2,2} > Y_{1,1}]^n$, hence $(1/n) \log P[R_{n,\theta} \in A] = \log P[Y_{2,2} > Y_{1,1}]$. If we shift only to the right, i.e. take $\theta = (1, 1, 1, ...)$, we get $P[R_{n,\theta} \in A] = P[Y_{1,1} < Y_{2,2} < Y_{3,4} < ... < Y_{n,2^{n-1}}]$, hence $(1/n) \log P[R_{n,\theta} \in A] \to -\infty$. Also, there is no "global" rate function concentrated on $\mathcal{M}_{1}^{s}(\Omega)$. This will follow from Theorem 4.1. We give an illustrative example:

Let $I = \mathbb{R}$ and $P = \prod_{i \in I} N(0, 1)$ as in Sect. 2. Consider $A_m : \{Q | E_Q[Y_{m, 1}] = E_Q[Y_{m, 2}] = \ldots = E_Q[Y_{m, 2^{m-1}}] \ge b\}$ $(m = 1, 2, \ldots,)$ where b > 0. Since P is a product measure, we have, for all θ ,

$$P[R_{n,\theta} \in A_m] = P[\bar{Y}_n \ge b]^{2^{m-1}}$$

where \overline{Y}_n is the arithmetic mean of $Y_{1,1}, Y_{2,1}, Y_{3,1}, \ldots, Y_{n,1}$. So we get

$$\lim_{n} \frac{1}{n} \log P[R_{n,\theta} \in A_m] = -2^{m-1} \lambda(b)$$

for all θ , where $\lambda(x) = x^2/2$ is the rate function for the large deviations of the arithmetic mean of iid random variables with distribution N(0, 1). On the other hand, $A_m \cap \mathcal{M}_1^s(\Omega) = A_1 \cap \mathcal{M}_1^s(\Omega)$ for each m.

We establish a principle of large deviations for the finite-dimensional marginal distributions of $R_{n,\theta}$ on S^J ($J \subseteq I, J$ finite) under P. Recall P is, in this section, a product measure on S^J . Let us begin with some notation: we denote the mapping of the index set I on itself, which corresponds to T_0 , again by T_0 , i.e. $T_0(n,k) = (n + 1,k)$ and, in the same way, $T_1(n,k) = (n + 1,2^{n-1} + k)$ ($k = 1,2,\ldots,2^{n-1}, n = 1,2,\ldots$). Let $J \subseteq I$ and let T_{θ_0} denote the identity. Let $F_k(\theta, J) := \bigcup_{\ell=0}^{k-1} T_{\theta_\ell} \circ \cdots \circ T_{\theta_0} J$ be the set of coordinates, generated by J after k-1 shifts according to $\theta, (k \ge 1), F_0(J) := J$. Let $\mathscr{F}_k(\theta, J) := \sigma(\{Y_i | i \in F_k(\theta, J)\})$ be the corresponding σ -field. We write $(T_{\theta})^{\ell}$ instead of $T_{\theta_\ell} \circ \cdots \circ T_{\theta_0}$, hence $F_k(\theta, J) = \bigcup_{\ell=0}^{k-1} (T_{\theta})^{\ell} J$, $(k \ge 1)$. Let $\mathscr{M}_1(S^I)$ denote the set of all probability distributions on S^I as before. We now consider subsets A_J of $\mathscr{M}_1(S^I)$ measurable and

$$A_J := \{ Q | Q |_{\mathscr{F}_0(J)} \in B_J \}$$

$$(4.1)$$

i.e. if Q is in A_J or not depends only on the finite-dimensional marginal of Q on $\mathscr{F}_0(J)$. We then have: A_J is open in $\mathscr{M}_1(\Omega) \Leftrightarrow B_J$ is open in $\mathscr{M}_1(S^J)$. Let the relative entropy $H(Q|P)|_{\mathscr{F}}$ of Q with respect to P on the σ -field \mathscr{F} be

Let the relative entropy $H(Q|P)|_{\mathscr{F}}$ of Q with respect to P on the σ -field \mathscr{F} be defined as $E_Q\left[\log \frac{dQ}{dP}\Big|_{\mathscr{F}}\right]$, if $Q \ll P$ on \mathscr{F} , and $= +\infty$ else. Now we can state the following large deviation principle:

Theorem 4.1 Let $J \subseteq I$, J finite. Then there is a function $I_J: \mathcal{M}_1(\Omega) \to [0, \infty]$, such that the following holds for all A_J of the form in (4.1):

$$A_{J} \text{ open } \Rightarrow \overline{\lim_{n}} \frac{1}{n} \log P[R_{n,\theta} \in A_{J}] \ge -\inf_{Q \in A_{J}} I_{J}(Q)$$
$$A_{J} \text{ closed } \Rightarrow \overline{\lim_{n}} \frac{1}{n} \log P[R_{n,\theta} \in A_{J}] \le -\inf_{Q \in A_{J}} I_{J}(Q)$$

for λ -a.e. θ . Further, $I_J : \mathcal{M}_1(\Omega) \to [0, \infty]$ is lower semicontinuous, $I_J(Q) = +\infty$ if $Q \notin \mathcal{M}_1^s$ and we have for $Q \in \mathcal{M}_1^s$:

$$I_J(Q) = \lim_n \frac{1}{n} \int H(Q|P)|_{\mathscr{F}_n(\theta,J)} \lambda(d\theta) .$$

Self-similarity of Brownian motion

Proof. We fix J and write \mathscr{F}_0 , $\mathscr{F}_n(\theta)$, A instead of $\mathscr{F}_0(\theta, J)$, $\mathscr{F}_n(\theta, J)$, A_J . The basic idea of the proof is to represent $R_{n,\theta}|_{\mathscr{F}_0}$ as the empirical distribution of a Markov chain of order m. We will give an explicit proof of the lower bound and refer to a general theorem in the proof of the upper bound.

First we investigate the behaviour of the Radon–Nikodym derivatives of Q with respect to P on the σ -fields $\mathscr{F}_n(\theta)$: in fact, we need to know only the growths of the relative entropies $H(Q|P)|_{\mathscr{F}_n(\theta)}$ of Q with respect to P on the σ -fields $\mathscr{F}_n(\theta)$.

Theorem 4.2 For each $Q \in \mathcal{M}_{1}^{s}$, $(1/n) H(Q|P)|_{\mathscr{F}_{n}(\theta)}$ converges to $I_{J}(Q)$ for λ -a.e. θ , where

$$I_J(Q) = \lim_n \frac{1}{n} \int H(Q|P)|_{\mathscr{F}_n(\theta)} \lambda(d\theta) \in [0, \infty]$$

Further, $I_J(\cdot)$ is lower semicontinuous and affine.

Remark 4.3 If Q is ergodic, we have for λ -a.e. θ : $(1/n)\log \frac{dQ}{dP}\Big|_{\mathscr{F}_n(\theta)}$ converges Q-a.s. to $I_I(Q)$.

Proof of Theorem 4.2 Let $\overline{Q} = Q \times \lambda$, $\overline{P} = P \times \lambda$. We make use of a theorem of A. Barron.

Theorem 4.4 Let $(X_n)_{n=1,2}, \ldots$ be a stationary process with values in a Standard Borel space E. Let Q be the distribution of (X_n) , and $P \in \mathcal{M}_1(\mathbb{E}^{\mathbb{N}})$ be a "reference measure": P is stationary and Markov of order m (i.e. $P[A|X_{n-1}, \ldots, X_1] =$ $P[A|X_{n-1}, \ldots, X_{n-m}]$ for all $\sigma(X_n, X_{n+1}, \ldots)$ measurable sets A and n > m). Define the σ -fields $A_n := \sigma(X_1, X_2, \ldots, X_n)$. Then the specific relative entropy h(Q|P) of Q with respect to P exists:

$$h(Q|P) = \lim_{n} \frac{1}{n} H(Q|P)|_{\mathscr{A}_{n}} \in [0, \infty] .$$

See Barron [1, Theorem 1] for the proof.

Note that $H(Q|P)|_{\mathscr{A}_n}$ is increasing, so $h(Q|P) = \infty$ if there is an *n* such that $H(Q|P)|_{\mathscr{A}_n} = \infty$.

We apply Theorem 4.4 with \overline{Q} , \overline{P} , $E := \{(Y_1, \ldots, Y_\ell) | Y_i \in S\} \times \{0, 1\}$, where $(1, 2, \ldots, \ell)$ is an enumeration of J.

 $\overline{P}|_{\sigma(J, T_{\theta}J, T_{\theta}^2J, \ldots) \times \mathscr{B}}$ can be identified with a stationary measure, Markov of order *m* on $E^{\mathbb{N}}$, where X_n consists of the ℓ -tuple of random variables $Y_i, i \in T_{\theta}^{n-1}J$ and θ_n .

$$m := \max\{n | \exists k \text{ with } (n, k) \in J\} - 1.$$
 (4.2)

(Since the sets $T_{\theta}^{n}J$, n = 1, 2, ... are not disjoint in general, $\bar{P}|_{\sigma(J, T_{\theta}J, T_{\theta}^{2}J, ...)\times \mathscr{B}}$ is in general not a product measure on $E^{\mathbb{N}}$). In the same way, we can identify a stationary and ergodic \bar{Q} with a stationary and ergodic probability distribution on $E^{\mathbb{N}}$, respectively. Hence we get from Theorem 4.4

$$\exists \bar{I}_J(\bar{Q}) = \lim_n \frac{1}{n} H(\bar{Q}|\bar{P})|_{\sigma(X_1,\ldots,X_n)}.$$

If we set $I_J(Q) := \overline{I_J}(\overline{Q})$, we get

$$I_J(Q) = \lim_n \frac{1}{n} \int H(Q|P)|_{\mathscr{F}_n(\theta)} \lambda(d\theta) .$$
(4.3)

It remains to show that I_J is lower semicontinuous and affine; for this, we refer to [9]. \Box

Remark 4.5 $Q \in \mathcal{M}_1^s$ and $I_J(Q) = 0$ imply Q = P.

The next step in the proof of the lower bound is to show that the set of ergodic probability distributions is dense in \mathcal{M}_{1}^{s} .

Lemma 4.6 Let $Q \in \mathcal{M}_1^s$. Then there is a sequence of ergodic probability distributions $(Q_n)_{n=1,2,\ldots}$ such that $Q_n \xrightarrow{w} Q$, and $I_J(Q_n) \to I_J(Q)$ for $n \to \infty$.

The proof is similar to the proof of Lemma 4.8 in Föllmer [7].

Note that Theorem 4.2, Lemma 4.6 and Remark 3.3 can be used to prove the lower bound with a standard argument (see [5, p. 76]).

For each θ , $R_{n,\theta}|_{\mathscr{F}_0}$ is the *n*-th empirical distribution of a Markov chain of order *m*. This chain is, in the terminology of Deuschel et al. [6] *R*-mixing with M = 1 if $R \ge m$ (see (4.2)), since $\sigma(\{T_{\theta^k\omega}, 0 \le k \le r\})$ and $\sigma(\{T_{\theta^k\omega}, k \ge r + m\})$ are independent. A general theorem about uniform large deviations (see [6, p. 91]) implies, together with the contraction principle, that for each θ , the distributions of $R_{n,\theta}|_{\mathscr{F}_0}$, $n \ge 1$, satisfy a large deviation principle with rate function $h_{\theta,J}:\mathcal{M}_1(\mathscr{F}_0) \to [0, \infty]$ and $h_{\theta,J}(v) = \inf\{I_{\theta,J}(Q)|Q \in \mathcal{M}_1^s(\theta), Q|_{\mathscr{F}_0} = v\}$ with $I_{\theta,J}(Q) = \lim_n (1/n) H(Q|P)|_{\mathscr{F}_n(\theta)}$. (Here, $\mathcal{M}_1^s(\theta)$ denotes the set of probability distributions which are invariant under T_{θ}). It remains to identify this rate function with the rate function in Theorem 4.1. Theorem 4.2 implies that for λ -a.e. θ , $\inf\{I_{\theta,J}(Q)|Q \in \mathcal{M}_1^s(\theta), Q|_{\mathscr{F}_0} = v\} = \inf\{I_{\theta,J}(Q)|Q \in \mathcal{M}_1^s, Q|_{\mathscr{F}_0} = v\}$ and $\lim_n (1/n) H(Q|P)|_{\mathscr{F}_n(\theta)} = I_J(Q)$, so $I_{\theta,J}(Q) = I_J(Q)$ for λ -a.e. θ . \Box

Note that for each $L \ge 0$, $\{Q|_{\mathscr{F}_0} | I_J(Q) \le L\}$ is a compact subset of $\mathscr{M}_1(S^J, \mathscr{F}_0)$, but $\{Q|I_J(Q) \le L\}$ is in general not compact in $\mathscr{M}_1(\Omega)$.

Of course, the arguments in [6] are much more general than our situation requires. For a direct proof of Theorem 4.1, we refer to [9].

Theorem 4.1 says that we have to minimize the rate functional I_J over the set of probability distributions $\mathcal{M}_1^s(S^I)$. It is therefore natural to ask about the properties of probability distributions in $\mathcal{M}_1^s(S^I)$. We omitted Y_0 , but we can extend any stationary measure on S^I to a stationary measure on S^{I_0} . Let $P = \prod_{i \in I_0} \mu \in \mathcal{M}_1^s(S^{I_0})$ denote a product measure and consider $\mathcal{M}_1^s = \mathcal{M}_1^s(S^{I_0})$. Probability distributions in \mathcal{M}_1^s are typically singular with respect to P. More precisely, $Q \in \mathcal{M}_1^s$, $Q \ll P \Rightarrow Q = P$. In particular, $Q \in \mathcal{M}_1^s$ has infinite relative entropy with respect to P exists for each $Q \in \mathcal{M}_1^s$. Consider the σ -fields $\mathcal{F}_{2^n} = \sigma(\{Y_0, Y_{m,k} | m \leq n\})$.

Lemma 4.7 Every $Q \in \mathcal{M}_1^s$ has a specific relative entropy h(Q|P) with respect to P:

$$h(Q|P) = \lim_{n} \frac{1}{2^{n}} H(Q|P)|_{\mathscr{F}_{2^{n}}}$$
$$= \sup_{n} \frac{1}{2^{n}} H(Q|P)|_{\mathscr{F}_{2^{n}}} \in [0, \infty] .$$

In particular: $Q \in \mathcal{M}_{1}^{s}$, $h(Q|P) = 0 \Rightarrow Q = P$. Further, $h(\cdot|P)$ is affine on $\mathcal{M}_{1}^{s}(\Omega)$.

Sketch of a proof. Let \mathscr{V} be the set containing all subsets of I_0 . Then the function $f: \mathscr{V} \to \mathbb{R}, f(V) = H(Q|P)|_{\sigma(\{Y_i | i \in V\})}$ is a superadditive set function, i.e. $f(V \cup W) \ge f(V) + f(W)$ for disjoint sets $V, W \in \mathscr{V}$. Here we made use of the product structure of P. The rest of the proof is left to the reader (see also Georgii, [10, Chap. 15, Sect. 2], for a general argument).

Remark 4.8 Look at

$$R_n(\omega) := \frac{1}{2^n} \sum_{\theta \in \{0, 1\}^n} \sum_{k=1}^n \delta_{(T_\theta)^k \omega} .$$

 $R_n(\omega)$ is the analogon to the usual empirical field on the tree. Then the same arguments as in the proof of Theorem 2.2 show that $R_n(\omega) \to P$ for *P*-a.e. ω . The distributions of R_n , $n \ge 1$, satisfy a large deviation principle with good rate function *I* where I(Q) = h(Q|P) for $Q \in \mathcal{M}_1^s$, $I(Q) = +\infty$ else. We don't give a proof here, since it consists merely in carrying over arguments in [6] or [8] from the lattice to the tree structure. (The arguments in [6] or [8] can here be simplified of course, since we treat the particularly nice case of a product measure *P*.)

5 Examples

5.1 Stationary probability distributions on \mathbb{R}^{I_0}

Let $P = \prod_{i \in I_0} N(0, 1) \in \mathcal{M}_1^s(\mathbb{R}^{I_0})$ denote Wiener measure. Can we identify a selfsimilar probability distribution on \mathbb{R}^{I_0} with a probability distribution on $C[0, 1]_0$? Notice this is not clear *a priori*. In Lemma 5.1 below we give a condition on Q which guarantees that the support of Q is contained in $C[0, 1]_0$. Our conjecture is, however, that this holds true for every $Q \in \mathcal{M}_1^s(\mathbb{R}^{I_0})$. Because we deal with stationary probability distributions, condition (5.1) below involves only the onedimensional marginal distribution of Q.

Lemma 5.1 Let $Q \in \mathcal{M}_1^s = \mathcal{M}_1^s (\mathbb{R}^{I_0})$ and

$$\sum_{n=1}^{\infty} 2^{n-1} Q[|Y_0| \ge 2^{\alpha n}] < \infty \quad \text{for an } \alpha < 1/2.$$
(5.1)

Then Q is a probability distribution on $C[0,1]_0$.

Proof. We can replace (1.2) in Lemma 1.6 with (5.1):

$$Q[M_n \ge 2^{\alpha n}] \le Q\left[\max_{k=1,2,\dots,2^{n-2}} |Y_{n,k}| \ge 2^{\alpha n}\right] + Q\left[\max_{k=2^{n-2}+1,\dots,2^{n-1}} |Y_{n,k}| \ge 2^{\alpha n}\right]$$

= 2Q[M_{n-1} \ge 2^{\alpha n}],

since Q is stationary. By iteration, we conclude $Q[M_n \ge 2^{\alpha n}] \le 2^{n-1}Q[|Y_0| \ge 2^{\alpha n}]$.

Let v be the distribution of Y_0 under Q. Sufficient for (5.1) to hold is, for instance, $\int |x|^{2+\varepsilon} dv < \infty$ for an $\varepsilon > 0$ or $\sup_{t \in \mathbb{R}} |\frac{dv}{d\mu}(t)| \leq C$, where $\mu = N(0, 1)$.

If the support of Q is contained in $C[0,1]_0$, we get the coordinate process $(X_t)_{0 \le t \le 1}$ via

$$X_{t}(\omega) = Y_{0}(\omega) \cdot t + \sum_{n=1}^{\infty} \sum_{k=1}^{2^{n-1}} Y_{n,k}(\omega) e_{n,k}(t) \quad (0 \le t \le 1)$$
(5.2)

as in Sect. 1. In this case, we can write the σ -field \mathscr{F}_{2^n} in Lemma 4.7 as $\mathscr{F}_{2^n} = \sigma(\{X_{k \cdot 2^{-n}} | k = 0, 1, ..., 2^n\})$, and we have an interpretation of the specific relative entropy h(Q|P) as a limit of entropies on the dyadic partitions of the unit interval.

The simplest case of a stationary probability distribution is, of course, a product measure $Q = \prod_{i \in I_0} v$. What can we then say about $(X_t)_{0 \le t \le 1}$?

Lemma 5.2 Let $Q = \prod_{i \in I_{\alpha}} v$ and assume Q satisfies (5.1).

(i) Let $\int x^2 dv < \infty$. Then $E_Q[X_t X_s] = \int x^2 dv \cdot (t \wedge s)$. Further, $(X_t)_{0 \le t \le 1}$ has quadratic variation $\langle X_t \rangle_{0 \le t \le 1}$ (along the sequence of dyadic partitions of [0, 1]) and

 $\langle X \rangle_t = (\int x^2 dv) \cdot t \quad (0 \le t \le 1), Q$ -a.s.

(ii) Let $\int x^4 dv < \infty$. Then $(X_t)_{0 \le t \le 1}$ is locally Hölder-continuous with exponent γ , for each $\gamma < 1/2$.

For the proof, we refer to [9].

In general, $(X_t)_{0 \le t \le 1}$ is not a Markov process under Q. We can state the following "weakened Markov property": the conditional distribution of $\{X_t|t \in](k-1)/2^n$, $k/2^n[\}$, given $\{X_t|t \in [0, (k-1)/2^n] \cup [k/2^n, 1]\}$, depends only on $X_{(k-1)/2^n}$ and $X_{k/2^n}$, $k = 1, 2, \ldots, 2^n$, $n = 1, 2, \ldots$

Example 5.3 Let v = N(a, 1) and $Q = \prod_{i \in I} v$. Of course, condition (5.1) in Lemma 5.1 is satisfied. Q is the distribution of $(B_t + a \cdot g(t))_{0 \le t \le 1}$, where $(B_t)_{0 \le t \le 1}$ is

Fig. 2

a Brownian bridge and g the self-similar function $g(t) = \sum_{n=1}^{\infty} \sum_{k=1}^{2^{n-1}} e_{n,k}(t) (0 \le t \le 1).$ g is the profile of the fractal "mount Takagi" (see [14]).

5.2 Brownian sheet and other examples with S = C[0, 1]

Except Brownian motion (multiplied with constants), real-valued diffusions resp. their bridges are not self-similar in our sense, i.e. invariant under T_0 and under T_1 . But if we allow the coefficients Y_0 , $Y_{n,k}$, $k = 1, 2, ..., 2^{n-1}$, n = 1, 2, ... to have values in a function space, we can describe well-known, "smooth" objects like the C[0, 1]-valued Ornstein–Uhlenbeck process. Take S = C[0, 1] and $P^{\infty} = \prod_{i \in I_0} P$ $\in \mathcal{M}_1^s$ (S^{I_0}), where P denotes Wiener measure on C[0, 1]. Set

$$X(t,\tau) = Y_0(\tau) \cdot t + \sum_{n=1}^{\infty} \sum_{k=1}^{2^{n-1}} Y_{n,k}(\tau) e_{n,k}(t) \quad (0 \le t, \tau \le 1) .$$
 (5.3)

 $(X(t, \cdot))_{0 \le t \le 1}$ is then a C[0, 1]-valued Brownian motion under P^{∞} : For t_1, t_2, t_3, t_4 with $0 \le t_1 < t_2 \le t_3 \le t_4 \le 1$ the increments $X(t_2, \cdot) - X(t_1, \cdot)$, $X(t_4, \cdot) - X(t_3, \cdot)$ are independent and $1/(\sqrt{t_2 - t_1})(X(t_2, \cdot) - X(t_1, \cdot))$ has distribution P. In the same way, $(X(\cdot, \tau))_{0 \le \tau \le 1}$ is a C[0, 1]-valued Brownian motion under P^{∞} . We call P^{∞} infinite-dimensional Wiener measure or the distribution of "Brownian sheet". Let us replace P^{∞} with another Gaussian product measure $Q^{\infty} = \prod_{i \in I_0} Q \in \mathcal{M}_S(S^{I_0})$.

Lemma 5.4 Let Q be a Gaussian probability distribution on C[0,1] with $E_Q[Y_0(\tau)] = 0$ $(0 \le \tau \le 1)$ and set

$$X(t,\tau) = Y_0(\tau) \cdot t + \sum_{n=1}^{\infty} \sum_{k=1}^{2^{n-1}} Y_{n,k}(\tau) e_{n,k}(t) \quad (0 \le t, \tau \le 1)$$

where $Y_0, Y_{n,k}, k = 1, 2, ..., 2^{n-1}, n = 1, 2, ...$ are independent with distribution Q. We then have

(i) For each $\tau \in [0, 1]$, $(X(t, \tau))_{0 \le t \le 1}$ is a Brownian motion with variance $E_Q[Y_0(\tau)^2]$.

(ii) The C[0,1]-valued process $(X(t, \cdot))_{0 \le t \le 1}$ has independent increments, and $1/(\sqrt{t_2 - t_1})(X(t_2, \cdot) - X(t_1, .))$ has distribution Q ($0 \le t_1 < t_2 \le 1$).

The proof is easy: we refer to [9].

Example 5.5 Let $Q \in \mathcal{M}_1(C[0,1])$ be the distribution of an Ornstein-Uhlenbeck process starting in 0, i.e. the distribution of $(Z_t)_{0 \le t \le 1}$, where (Z_t) solves the stochastic differential equation

$$dZ_t = dW_t - Z_t dt$$

and $(W_u)_{0 \le u \le 1}$ is a Brownian motion under Q. Then the C[0, 1]-valued process $(X(\cdot, \tau))_{0 \le \tau \le 1}$ is a C[0, 1]-valued Ornstein–Uhlenbeck process under Q^{∞} , i.e. $X_{\tau} := X(\cdot, \tau)$ solves the ("infinite-dimensional") stochastic differential equation

$$dX_{\tau} = dW_{\tau} - X_{\tau} d\tau$$

where $W_{\tau} := W(\cdot, \tau)$ is a C[0, 1]-valued Brownian motion under Q^{∞} . We can describe Q^{∞} with Theorem 4.1 as a "large deviation" of P^{∞} , i.e. as the solution of a variational problem where we have to minimize the rate function in Theorem 4.1 over a certain subset of $\mathcal{M}_1(C[0, 1]^{I_0})$. More precisely, set

$$A := \{ \overline{R} \in \mathcal{M}_1(C[0,1]^{I_0}) | \overline{R} |_{\mathcal{F}_0} \in B \}$$

where

$$B := \{ R | \int X_t^2 dR \leq 1 - e^{-t}, 0 \leq t \leq 1 \},\$$

 $B \subseteq \mathcal{M}_1(C[0,1])$. Here A is of the form in (4.1), i.e. $\overline{R} \in A$ iff the one-dimensional marginal distribution of \overline{R} is in B. The rate function $I_J(\cdot)$ is here the specific relative entropy $h(\cdot|P^{\infty})$. Since Q minimizes the relative entropy $H(\cdot|P)$ over B (this is shown in [9]), Q^{∞} minimizes $h(\cdot|P^{\infty})$ over A. In this way, we may see the C[0,1]-valued Ornstein–Uhlenbeck process as a large deviation of Brownian sheet.

Acknowledgement. This work is part of a Ph.D. Thesis written at Bonn University. I would like to thank my adviser, Hans Föllmer, and also Michael Röckner for many helpful discussions.

References

- 1. Barron, A.: The strong ergodic theorem for densities: Generalized Shannon-McMillan-Breiman theorem. Ann. Probab. 13 (4), 1292 (1985)
- 2. Basseville, M. et al: Modeling and estimation of multiresolution stochastic processes. IEEE Trans. Inf. Theory **38** (2), 766 (1992)
- 3. Ben Arous, G.: Private communication
- 4. Daubechies, I.: Ten lectures on wavelets. (CBMS-NSF Reg. Conf. Ser. Appl. Math., vol. 61) Philadelphia: Soc. Ind. Appl. Math. 1992
- 5. Deuschel, J.D., Stroock, D.W.: Large deviations. (Pure Appl. Math., vol. 137) Boston: Academic Press 1989
- Deuschel, J.D., Stroock, D.W., Zessin, H.: Microcanonical distributions for lattice gases. Commun. Math. Phys. 139, 83 (1991)
- Föllmer, H.: Random fields and diffusion processes. In: Hennequin, P.L: (ed.) Ecole d'Eté de Probabilité de Saint-Flour XV-XVIII, 1985–87. (Lect. Notes Math., vol. 1362, pp. 101–203) Berlin Heidelberg New York: Springer 1988
- 8. Föllmer, H., Orey, S.: Large deviations for the empirical field of a Gibbs-measure. Ann. Probab. 16 (3), 961 (1988)
- 9. Gantert, N.: Einige grosse Abweichungen der Brownschen Bewegung. Dissertation Nr. 224. Bonner Schriften (1991)
- Georgii, H.-O.: Gibbs measures and phase transitions. (De Gruyter Stud. Math., Vol. 9) Berlin New York: de Gruyter 1988
- 11. Itô, K., Nisio, M.: On the convergence of sums of independent Banach space valued random variables. In: Itô, K. Selected papers. Berlin Heidelberg New York: Springer 1987
- 12. Liggett, T.M.: Interacting particle systems. (Grundlehren Math. Wiss., Vol. 276) Berlin Heidelberg New York: Springer 1985
- 13. Karatzas, I., Shreve, S.: Brownian motion and stochastic calculus. (Grad. Texts Math.) Berlin Heidelberg New York: Springer 1988
- 14. Peitgen, H.-O., Saupe, D. (eds): The science of fractal images. Berlin Heidelberg New York: Springer 1988