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Abstract: Suppose that the integers are assigned i.i.d. random variablég(taking
values in the unit interval), which serve as an environment. This environment defines
a random walk X, } (called a RWRE) which, when at, moves one step to the right
with probabilityw,., and one step to the left with probability-1w,. Solomon (1975)
determined the almost-sure asymptotic speetrate of escape) of a RWRE. Greven
and den Hollander (1994) have proved a large deviation principl& fgi, conditional

upon the environment, with deterministic rate function. For certain environment distri-
butions where the drifts2, — 1 can take both positive and negative values, their rate
function vanishes on an interval,(®,). We find the rate of decay on this interval and
prove it is a stretched exponential of appropriate exponent, that is the absolute value of
the log of the probability that the empirical mea®, /n is smaller than, v € (0, v,),
behaves roughly like a fractional powerof The annealed estimates of Dembo, Peres
and Zeitouni (1996) play a crucial role in the proof. We also deal with the case of positive
and zero drifts, and prove there a quenched decay of the form-exp(logn)?).

1. Introduction

In this paper, we continue the study, initiated in [4] and [2], of tail estimates for a
nearest-neighbor random walk @nwith site-dependent transition probabilities.

Let w = (wz)zecz be an i.i.d. collection of (Ol)-valued random variables, with
marginal distributior For every fixedv, let X = (X,,),,>0 be the Markov chain of&
starting atXy = 0 (unless explicitly stated otherwise), and with transition probabilities
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w, Ify=zx+1
Po(Xpu=y|Xp=2)=q l—w, ify=a—-1. Q)
0 otherwise

The symbolP,, denotes the measure on path space given the environmeartd is
referred to as the “quenched" setting. The procégs.) is an example of aandom
walk in random environme{RWRE), andX has the lawP = [ oZ(dw)P,, referred
to as the “annealed” law. When no confusion arises, weRugkso to denote the law
of (X,w). We use in various places, when confusion does not oéetio, denote the
probability of events constructed from random variables unrelated to the RWRE.

For a discussion of the different regimes that the RWREexhibits, we refer to the
introduction in [2].

Abbreviatep = p(z,w) = (1 - w,)/w, and(f) = [ f(w)a?(dw) for any function
f of the environment. Lepn,ax denote the maximum of over the closed support af,
and letpn,in denote the corresponding minimum. We will be interested here in the case
(p) < 1 andpmax > 1, in which case (cf. [7]) the RWRE is transient aRda.s.,

lim n™1X, = v, = .
n—o00 1+ <p>

@

Tall estimates forX,, /n have been derived for the quenched setting in [4]. In particular,
it was shown there thaB-a.s, the random variables,, /n satisfy with respect t®,,,

a large deviation principle of speedand explicit, deterministic, rate functiof(v),
defined as follows (see [4, Theorem 2 and Corollary 1]). fetw), > 0 denote the
continued fraction function

_ 1] _ pOw)]  p(w)
er(1+p(0,w)) er(1+p(l,w)) e

f(r,w)

and letA(r) = exp(log f(r,w)) . Letr(v) = 0 forv < v,, and forv € (v,, 1], letr(v)
be the unique solution of the equation® = —\’(r)/A(r). Then,

—r() —vlogA(r(v)), v e][0,1]
I(v) = I(-v) +v(logp), ve€[-1,0]
00, v [-1,1].

Furthermore/(v) = 0 forv € [0, v,] and is strictly positive elsewhere.

Our goal in this paper is to study in greater detail the regime (0, v,) under
P.. In the annealed setting, i.e., when one is interestd{ Xy, < nv), v € (0,v,),
sub—exponential rates of decay were derived in [2]. We summarize now the main results
of [2] relevant to us. Recall (cf. [2]) that whefp) < 1, there exists a unique > 1

satisfying(p®) = 1.

Theorem 1 (see [2]).Letv € (0, v,).
(a) Positive and negative drifts. Suppose that < 1 andpmax > 1. Then,

lim logP(X,, <nv)/logn=1-—s.

(b) Positive and zero drifts. Suppose tial < 1 but pmax = 1 anda(1/2) > 0. Then,
with ¢ = 3| 710990/2)12/3 gnq ¢, = | ml0gle)) |2/3)
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v L. 1
—C(1- )3 < lim in —

(o3

logP(X,, < nv)

. 1
< lim sup —=log P(X,, < nv) < —Cp(1 — %)1/3. ()
n «

n— o0

Maybe surprisingly, it turns out that the annealed estimates are key to understanding
the quenched asymptotics. The next theorems are our main results. They quantify the
fact that the annealed probabilities of large deviations are of bigger order than their
guenched counterparts, due to the possibility of rare fluctuations in the environment
which may slow down the RWRE.

Theorem 2 (Positive and negative drifts).Suppose thatp) < 1, pmax > 1, and let
v € (0,v,). Then, forP-a.a.w, the following statements hold:

1. Foranyd > 0,
qurlsolip gy log P, (X,, < nv) = —o0. (4)
2. Forany$ > 0,
o 1
Furthermore,
. 1
lim sup —— - log P,, (X;, < nv) =0. (6)
n— 00 n-— /S

One should compare the rate of decay obtained in Theorem 2 with the annealed
polynomial rate of decay (see TheorenPL)X,, < nv) ~ nl=.
As in [2], tail estimates are different when the drift cannot be negative:

Theorem 3 (Positive and zero drifts). Suppose that(p) < 1, pmax = 1, and
a({1/2}) > 0. Then, forP-a.a.w, and forv € (0, v,),

2
— -2 < liminf (logn)®
’Ua n—o0 n

(logn)?
n

logP,(X,, < nv)

< limsup

n—oo

l0gP. (X, < o) < —e(1— =), (D)

Here,c; = |rloga({1/2})|?/8 andc;, = |7 log(p)|?/24%.

Again, the rate in Theorem 3 should be compared with the annealed rate (cf. Theo-
rem 1)P(X,, < nv) ~ exp(=C,;n'/3).

Remarks. 1. As in [2], we have not covered the case(pf < 1, pmax = 1, while
a({1/2}) = 0. The tail estimates in the annealed case were conjectured in [2, p. 681]
to be of the form exp{D;n?), i = 1,2, for somes € (1/3, 1) determined by the
tails of a(-) near ¥2. The same proof as in Theorem 3 then shows that the upper
quenched estimates in Theorem 3 become-edp(/(logn)?), withy =1/5 — 1.
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2. In the setting of Theorem 2, we conjecture that actually
. 1 _
“ﬂl'gof =y log P, (X, < nv) = —o0.
In fact, the derivation of the lower bound in (6) hints at such a limit. In the setting
of Theorem 3, we conjecture, as in [2], that the lower bound is sharp, that is

jim (09)°

n— oo n

logP,,(X,, < nv) = —er(1— ).
Va

In fact, it was shown recently (see [6]) that the lower bound is sharp in the annealed
setting, that is one may replacg in the right hand side of (3) bg';. This however
does not suffice for closing the gap in our Theorem 3, see the comment following
the proof of the theorem.

3. Inthe setting of Theorem 2, it is natural to attempt to improve on (4), (5) by allowing
ford,, —n o 0. Such improvementis possible ifin Theorem 1.1 of [2], one refines
the convergence, that is one proves bounds of the form

lim supg,n®~P(X, < nv) < co

n—oo

for appropriateg,, —, . 0 sub—polynomially , which is possible albeit tedious.
It seems however impossible by this way to completely close the gap between the
upper and lower bounds exhibited in (4) and (5).

We conclude this introduction with two technical lemmas, borrowed from [2], whose
proof follows readily from the explicit computations for inhomogeneous random walk
of [1, pp. 66-71]. LetX,, denote a RWRE and leX,, denote a RWRE withy = 1. Let

T =min{n: X, =k}, let R, = k=1 3% log p(i), and letLo = max,>o{— X, }.
Lemma 1 ([2], Lemma 2.1). For all n, k,

Pu(i > n) > (1 — e~ ¢y,
Lemma 2 ([2], Lemma 2.2). For anyk > 1,

()"

P(Lo > k) < -0

2. Proofs

Proof of Theorem 2Since the lower bound of Theorem 2 is relatively simple, and the

key ideas are already explained in [2], we postpone the discussion of it and begin by
providing a sketch of the proof of the upper bound leading to (4), that is, with

T, =inf{t: Xy =n}, (8)

we will explain why

lim ; logP, (Tn > n/v) = —o0.

n—oo nlfl/S*‘;
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The required upper bound follows readily.

We will omit subsequences, etc. in this sketch, and thus the reader interested in a
complete proof should take the next few paragraphs with somewhat of a grain of salt. The
precise statement of the required estimate is contained in the statement of Proposition
1.

Divide the interval [Qnv] into blocks of size roughly: = &, = n%/**. Let X*
denote the RWRE startedatand define

TO =inf{t >0: X}F=(@+1)k}, =0 +1,.... 9)

By slight abuse of notation, we continue to WBgfor the quenched law of theX*}.
By using the annealed bounds of [2], see Theorem 1, one know®that> k/v) ~
k'=* . Hence, taking appropriate subsequences, one applies a Borel-Cantelli argument
to control the probability, conditioned on the environment, of the time spentin each such
block being large, i.e., one exhibits a uniform estimatEPQ(ﬂ“,?) > k/v), cf. Lemma
5.

The next step involves a decoupling argument. Let

Tk =inf{t>0: X* = (i +1)kor X* = (i — 1k}. (10)

Then, using Lemma 2, and the Borel-Cantelli lemma, one shows that for all relevant
blocks, that isi = +1, £2, ..., £n/k, P,(T\) # %) is small enough. Therefore, we

can consider the random vanabﬁg instead off (", which have the advantage that their
dependence on the environment is well localized. This allows us to obtain (cf. Lemma 7)

a uniform bound on the tails dfm for all relevants.
The final step involves est|mating how many of #hblocks will be traversed from
right to left before the RWRE hits the point. This is done by constructing a simple

random walk (SRW); whose probability of jump to the left dominates (7 # T\

for all relevanti. The analysis of this SRW will allow us to claim (cf. Lemma 9) that

the number of visits to &-block after entering its right neighbor is negligible. Thus, the

original question on the tall af, is replaced by a question on the sum of (dominated by

i.i.d.) random varlabIeTk , Which is resolved by means of the tail estimates obtained
in the second step.

A slight complication is presented by the need to work with subsequences in order
to apply the Borel-Cantelli lemma at various places. Going from subsequences to the
originaln sequence is achieved by means of monotonicity arguments.

Turning now to the complete proof, we first note that it is actually enough to prove
a weaker statement. Fére (0,1 — 1/s), letC,, = n% and letn; = [j?/°]. Recall that
7, =inf{t : X; =n},and lety := v~ > v;1. The key to the upper bound is the
following proposition, whose proof is postponed.

Proposition 1.

lim

jHOO

Chn,
1 1/ logP, (Tn_] > nju) = —00. (11)

Assuming the proposition holds true, let us show how to complete the proof of the upper
(G+1°+1

bound (4). Note that, fof large,n;.+1/n; < 2 1 =

—— 1. Letj, be such that
nj, <n <mn,,,. Then, for any,
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P. (Tn > n,u) <P, (Tnjml > nj, u) =P, (Tnjml > Njoa ,u(")) ,

Whereu(n) = %
njn+1 .
Let V be large such that int x il > Lo, and consider only: > N. One

In+
concludes from Proposition 1 that for éllb 0,Pas,
. 1
limsup ——— log P, (7, > nu) = —c0. (12)
n—oo nl—;+(5

To prove (4), lety < v/ < v, and defineL"*"l = max{[nv'] — X["*1; k > 0}. Then,
Po(Xy < n0) < Py(Mnwy > 1) + P (L™ > [n0'] — nv) . (13)

By Lemma 2,
P > [0f] — o) = EPL(E™) > [0'] — ) < W

Hence, one may find some> 0,0 > 0 such that
PP, (L™ > [nv'] — nv) > e ™) < e 0"
Applying now the Borel-Cantelli lemma, one concludes tat.s.,

lim sup1 logP,, (L1 > [nv'] — nv) < —e < 0. (14)
n

(4) follows from (13), (14) and (12).

As mentioned before, the proof of the lower bounds (5) and (6) follows the ideas of
[2] (see in particular Remark 4, p. 682). Indeed, it is already explained there why, for
anyd > 0,

. 1 X, _
liminf m |Og Pw (7 < ’U) =0.

In order to see the refined estimate in (6) , we recall the following notations from [2]. Let
m+k

Re(m) = % Y logp(i). Definery = inf {t : X{ = k+x} and7} = inf {t: X, =
i=m+1

k + x}, whereX is the RWRE withu(z) = 1, initiated atz. It follows from Lemma 1
that

Pu(hia 2 1) 2 Pu(Tha 2 n) > (1 e, (15)
Forn=1,2,..., define
Mn(x) = T<m2¥+n kRk(m)
EZxz+n—m
In particular, it follows from (15) that for any > 0 and! = [n/c],
Puriiy > n) > Pu(iity > n) > (1— e 20)" (16)

We recall the following exceedence bounds, due to Iglehart. For this version, see [5],
Theorem A.
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Lemma 3. There exist constant&;, K>, such that for any € R,
o ogl
eXp(leeXp(—sz)> < Illmmf P(Ml(x)— — < )

< IimsupP(Ml(x)— I—gl < )

l—o0
< exp(—Kz exp (—Sz)).
A corollary of Lemma 3 and (16) (taking = e?) is the following:

Lemma 4. For anyy > O there exists a&, > 0 such that, for any’ < v,,

1-1/s

lim inf P(P (Tnory = 1) > € uw/)“*) >cy

n—oo
and the convergence is uniform:in

Equipped with Lemma 4, we have completed all the preliminaries required for prov-
ing (6). Indeed, fixy > 0, and letn;, = 22°. Note that

log P, (X, < mngv)
1-1/s
Ny,
lOg Pw(T[elkv] > nk)
1—1/8
k:
logP, ( nkv]_nk | = N)
l 1/s
k:
lo gP (T[nkv’] > ﬂk)
l 1/s n,
T,

<
lim sup logP, (X, < nv)

n— 00 nlfl/s

> limsup
k—oo

v

lim sup
k—o0

v

limsu
k:—>oop

\%

limsu
k—»oop

wherev’ = v — ¢ for arbitrarye. By Lemma 4, and the Borel-Cantelli lemma, for any
z >0,

Wl-1/s

"k
Pw( [nkv,] > ’I’Lk) > e z

infinitely often. The conclusion follows by taking— oo. This completes the proof of
Theorem 2, except that we still have to show Proposition 1.

Cn nl/s
Proof of Proposition 1Letk = k; = 1J . for some 1> ¢ > 0. ForX? the RWRE
started atr, recall that

Tlgi):inf{t>01Xtik:(i"‘l)k’}a 1=0, +£1,....

By slight abuse of notation, we continue to Wgfor the quenched law of theX}.
Finally, letb,, = C,;° andI; = {— {Z—ﬂ —1,---, [Z—JJ} + 1}. Fix o/ > p.
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Lemma 5. For P — a.e.w, there exists alp(w) such that for allj > Jp(w), and all

iGIj,
T
P, (k;j >u’> < by,

J

Proof of Lemma 5By Chebycheff’s bound,

P <Pw(1];’£? > M/) > bnj> <
j

<

N

(1)
()

1
bn,

1 1—s+o(1)
b,
where the last inequality follows from Theorem 1(a), aft) —, O.

Hence,

P(P T by f ;) <3[]. L s
w| =7 . forsomei € I, | < [7} L st
(kj > i) > b, €4 kil by '
3 4

SG—o=0) = j2s—o)=0)’
J

<
n

and the conclusion follows from the Borel-Cantelli lemma. O

Let0< 6 < —'%42) 40 = c=0n** Cu ‘and recall that

15 )
T =inf {t > 0: Xi* = (i + )k or X;* = (i — 1)k}.
Lemma 6. For P —a.ew, there is aJi(w) s.t. for all j > J1(w),
P. (Tg]) 7T, somei Ij> <d .
Proof of Lemma 6Again, we use the Chebycheff bound:
(0 (i) . ) 0
P(Pu(Ty, 7Ty, , some i€ l;) >d,
1 3nj —(0) (0)
<7 P(Tkj ;ZTk,j)
1 30 (pb

< . .

2 el (24))

where the second inequality follows from Lemma 2. The conclusion follows from the
Borel-Cantellilemma. [

We actually need to iterate the estimates of Lemma 5.
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Lemma 7. For P-a.ew, forall j > Jo(w), and eachi € I;, and forx > 1,

(0

Py
kj

> M/x S (an] )[:c/2]\/1.

Proof of Lemma 7For 1 < z < 4, the claim follows from Lemma 5. Assume thus that
x > 4. Then,

() (0
Ty, / Ty, /

P >y SPw( > u(x — 2),
kj kj

(= Dkj < X @oger < 0+ D5,
min{t : ¢t > [1/k;(z — 2)]+ 2, XI5 = G + Dk, } > x,/kj) .
Hence, by the Markov property,

T T
Pw( J>/L£E>§Pw ki]>;u(l*2)
J

kj
X sup P, (inf {t: X{=0G+21k;} > Zu’kj)
(i—1)k; <y<(i+1)k;
T o
< Pw( k; > ' (x — 2)) Py, (T,ﬁ? + T,g’j—l) > 2#%‘)

(9

Tk‘j /
kj

[P (T > 1k ) + P (TS > 'y )|
T

k;

< 2an Pw > ,u/(x - 2) )

where the last inequality is a consequence of Lemma 5. The lemma follows by induction.
O

We need one more preliminary computation related to the bounds in Lemma 7. Let
{z{)}, i=1,2, ... denote a sequence of i.i.d. positive random variables, with

z{) , A% , [o/2]V1
Pl ) =0, P2E > s :<2b7,,j) Cor>1
k; k;

Lemma 8. Forany A > 0, and anyz > O,
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z? ,

E (exp (A#)) <MW 4 g
J

whereg; —=. 0.

J—0

Proof of Lemma 8.

E (exp ()\Zkz(;?>)

o 7Y logu
P 2> —— ) du
LG
logu

fe%s) — | V1
< () 4 / (b)) [ZW(l +E)} du
e’ (L+e)

’
e)\l‘« (1+e) 4 9j

whereg; —z 0. O

J—=R

In order to control the number of repetitions of visitsite-blocks, we introduce an
auxiliary random walk. Lef;, ¢ = 0,1, ..., denote a simple random walk wify = 0
and

P(Sua=Si+ 1] $i)=1-P(Su=5 - 1‘ Si)=1-d.

1 1
SetMnj - an]

Lemma 9. For 6 as in Lemma 6, and large enough,
. n; Oc
: = | == < —n: .
P(lnf {t: S {kj}}>Mn]) exp( 5 nj>

Proof of Lemma 9.

P (inf{t: Sy = [%]} S Mn].) < P(Sz[\fnjl - k?\} >
! nj J n;

S
_ P( Ml _ E) < 2o M, (-2,
M,,

where the last inequality is a consequence of Gnégrtheorem (cf. [3]), and the fact
thatd? < e. Here,

1—z T
hn(l—x)=(1—x)log( +zlog - .
17dg) &
Usingh,(1—z) > —2 — zlogd?, we get
S[Mn,-] 2M,,, /e +eM,  logd? 0,
P I <l—e) <2emilCe M TR < e 20, O

We are now ready to prove (11). Note that, forjalt Jo(w), and alli € I;, we may,
due to Lemma 7, constru@Z,(c?} and {TSJ)_} on the same probability space such that
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P, (Z(i_) > T(i)_ Vie I») = 1. Fixu, < ¢/ < pande > 0 small enough. Recalling

that, undeP,,, thei( ) are independent, we obtain, wifls; } defined before Lemma 9,
andj large enough

Pu(Tn, > njp) < P(inf {t: S, = {%H > Mnj) +P(A§f 7 > nju)
J =1
<Mz o)

=1

(Z)

o—0eni/2 4 (exp ( > ) ] e—)\'u,(l—s):| M,

,0571]/2 ( A/ +2epu— ,u)+g 67)\;1,(1 a))

M,
< 67967’1]'/2_}_ (67)\5#) nj ;

where Lemma 9 was used in the second inequality and Lemma 8 in the fourth. Since
A > Ois arbitrary, (11) follows. O

Proof of Theorem 3We begin by giving a quick sketch of the lower bound in (7), based
on [2]. By the Erds-Renyi strong law for the longest run of heads, (or the asymptotics
for long rare segments in random walks, see e.g., [3, p. 69]), there is a sefiment
(imin, Zmax), With imin > n(v—¢), imax < nv @andimax—imin = logn/(—loga({1/2}))(1+
o(1)), such that; = 1/2fori € I. Let X,, denote the RWRE started af, + imax) /2-

Let 7 = min{¢ : Xt = imin OF Xt = zmax} Then, T possesses the same law as the
exit time, denoted, of the simple symmetric random walk from the interval{max —
imin)/ 2, (imax — imin)/2]. As before, we let;, = min{¢ : X; = k}. We have,

Pw(Xn < nv) > Pw(Tn(v—a) > nU

“Zp(r > (1 -+ E))

o UOL

= Pw(Tn(v—s) >n

Vo b -+ 52)). 17)

e} [e3%

By Solomon’s law of large numbers, cf. (2),

v —2¢

lim Pw(Tn(v_s) >n
n—oo

)= (18)
By standard eigenvalue estimates for the simple random walk (cf. [8, p. 243]),
2
im (Iog n) .
n—eo (1 — 2)(log(1/2))

Combining (19), (17), and (18), the lower bound in (7) follows.

The proof of the upper bound in (7) follows the proof of part 1 of Theorem 2, except
that there is no need for subsequences here. th; b>wgt=p, andt € (0,1),
definey = tpg + (L — t)p. Fix1/2 > ¢ > 0,6 > 2,b, = -6/ and

log P(7 > n) = —n?/8. (19)
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(logn)*(1 +4)°
C3(i — pa)(1 —€)*’

whereC>, was defined in Theorem 1. We defihg = {— {%} -1, {%} + 1}, and
useT,gi) as in (9). Then, following the outline of the proof of Lemma 5,

k=k(n) =

exp(=Ca(jt — pa)'PkY3(1 — €))

P(P(TY > [ik) > by) < ;
n

(20)

where we have used the bound
P > k) < exp(-kY°Coli — pa) /%),
which follows from Theorem 1 using the inequalities
P > jik) < P(Xpawy < k) < P(Xpang < ([k] + 1)/1)

Thus, by the Borel-Cantelli lemma, fBra.e.w, there exists atNo(w) such that for all
n > No(w), _
P,(T" > ik ,somei € I,,) < b, . (21)

Define T\ as in (10). Set 0< ~ < (1 +6)3|log(p)|/C3(E — pa). With d,, =
exp(—y(logn)?), the Borel-Cantelli lemma yields, as in the proof of Lemma 6, that
for P-a.e.w, there exists a1 (w) such that fom > Ni(w),

P, (T 7T\ somei € I,,) < d,, . (22)

Using (21), one concludes as in Lemma 7 thatPes.e.w, for n > Ny(w), and each
i e I’ny i
P(TY > kjix) < (2bn)=/2V1, (23)
LetZ®" i=12,... denote a sequence of positive, i.i.d random variables with
(4) (4)

P(Z]’; < ,7) =0, P(Zg > ,Ix) = @2b)/AV g > 1

The following lemma takes the place of Lemma 8 in the proof of Theorem 2:

Lemma 10. For eache’ > 0, we have, for\,, = — log(2b,,)/2u(1 +¢€'),
Bexp(\n 2 /k) < M+ g,

whereg,, —= 0 .

n—oo

Proof of Lemma 1(EXxactly as in the course of the proof of Lemma 8,/idarge enough,

Eexp(A 20/k) = /Oo P(Zg) > 'OAg“) du
0 n

oo
— log u —
< €>\w# +/ (an) 2k du = eAmu *9n
e

An

where
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00 _ 00
9 :/ 1(09265)/@An k1) gy, :/ w @) qu — 0. (]
eAnit

_ n—aco
eAn i

LetS;,t=0,1,..., denote the simple random walk wiffy = 0 and
P(St+1 =S +1|S;) =1— P(Stx1= 8 — 1|S) = 1 —d,,,

and let B
v = MO8~ pa)(L — 2)?
(logn)3(1 +6)3

Mimicking the proof in Lemma 9, we obtain that

P(inf{t: S; = [n/k]} > M,) < exp(=nbe), (24)

whered = yC3(11 — p1a)(1 — )?/(3(1 +6)%).
Following the proof of Theorem 2, we have

Pyl > np] < P(inf {t DS = {%” > Mn) +P(§: Z0 > n,u)

S e—n@s +P(
. My,
< efnﬁa + (E eXp()\n Z](:)/k> e*)»,tu(lfa))

—nbe —An M, l-e)—p—e
<e n +e n M, (11( )—p—e) ,

where the second inequality is due to (24) and the last due to Lemma 10.
Plug in the definition of\/,, and\,, to get

i g logn? o OB ) — 2P (=) — i ‘)
Im sup—"—log (T > np) < — TR .

Lettinge ande’ — 0 andd — 2, one gets

1 p—p

. (logn)? 31,
IIT_,SOLOJP - logPu(1n > np) < —C5(1 — 1) 2.3 i

1 #H1— 1)
- 3= _ A S
= CZ 233 (/"L /’La) (1_t)'u/+t'u/o( )

where we used the definition gfin the last equality. Optimizing overe (0, 1) yields

(25)

2
imsup 19 togP, (r, > np) < ~C3 5 (u— ol
N 00 n 2.3

1
NZEN

To prove the upper bound in (7), observe thatdfor v' < v,, by the same argument
asin (14),
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2 2
lim supM logP, (& < v) < lim supM logP, (7-[,“,,] > [m/]ll)
n—oo n n n—00 n v
: (log[nv'])? 1
_ St~ N , n=
= I|7rL1Lsolonv (0] logP,, (T[m] > [nv'] U,)
1 1 1\2 1
3 (= _ =N _ -
s Grgt (v’ va)

25 23
2-3 Vg ( Py \/@)
Lettingv’ — v, and using, /(v/v + \/va)? > 1/4, we get
. (logn)? X, 5 1 v\ 2

completing the proof of the upper bound in (7). O

Remark.Even when one uses the results of [6] and repl&aédsy C; in the right hand

side of (26), the behaviour of the exponent in the upper bound is quadratig A (),

which is far from the linear behaviour exhibited by the exponent of the corresponding
lower bound. While the constant in the upper bound can be slightly further improved
(e.g., by using subsequences in the proof), it seems that a new approach is needed to
completely close the gap.

Added in proof
A. Pisztora and T. Povel have recently succeeded in closing the gap mentioned above,
and established that the lower bound in (7) captures the right asymptotic behaviour.

References

[N

. Chung, K.L.:Markov chains with stationary transition probabilitieBerlin: Springer, 1960

2. Dembo, A., Peres, Y., Zeitouni, O.: Tail estimates for one—dimensional random walk in random envi-
ronment. Commun. Math. Phys81, 667-683 (1996)

3. Dembo, A., Zeitouni, O.Large Deviations Techniques and ApplicatioBeston: Jones and Bartlett,
1993

4. Greven, A., den Hollander, F.: Large deviations for a random walk in random environment. Ann. Probab.
22,1381-1428 (1994)

5. Karlin, S., Dembo, A.: Limit distributions of maximal segmental score among Markov dependent partial
sums. Adv. in Appl. Prot24, 113-140 (1992)

6. Pisztora, A., Povel, T., Zeitouni, O.: Precise large deviations estimates for one-dimensional random walk

in random environment. Submitted

Solomon, F.: Random walks in random environment. Ann. Prahdb-31 (1975)

Spitzer, F.Principles of random walkBerlin: Springer, 1976

© ~N

Communicated by Ya. G. Sinai



