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ABSTRACT. – Letp ∈ ]0,1/2] and assign to the integers random variables{ωx}, taking only
the two values 1 andp, which serve as an environment. This environment defines a random walk
{Xn} which, when atx, moves one step to the right with probabilityωx , and one step to the
left with probability 1− ωx . In particular, at the nodes, i.e., at the locationsx with ωx = 1, no
backtrack is possible. We will assume that the speedvα of the random walk is positive. We then
investigate, forv < vα , the decay of the probabilitiesPω[Xn/n� v] (for fixed environment) and
P[Xn/n� v] (averaged over the environment). These probabilities decay subexponentially and
there is a wide range of possible normalizations, depending on the distribution of the lengths of
the intervals without nodes. We show that in fact only the behaviour of the length of the largest
interval without nodes (contained in[0, n]) matters. 2002 Éditions scientifiques et médicales
Elsevier SAS
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RÉSUMÉ. – Soitp ∈ ]0,1/2] et soit(ωx)x∈Z une suite de variables prenant les deux valeurs 1 et
p, utilisée comme environnement. Dans cet environnement, on définit une marche aléatoire, qui
va dex àx+1 avec probabilitéωx , et dex àx−1 avec probabilité 1−ωx . Quandx est un noeud
(un point oùωx = 1), la marche après avoir dépasséx ne peut plus jamais revenir enx− 1. Nous
faisons l’hypothèse que cette marche a une vitesse strictement positive, que nous notonsva . Nous
étudions, pourv < va , la décroissance des probabilitésPω[Xn/n� v] (pour un environnement
fixé) et P[Xn/n � v] (moyennée sur les environnements). Ces probabilités décroissent sous-
exponentiellement et la normalisation dépend de la loi des longueurs des intervalles sans noeuds.
Plus précisément, nous montrons que c’est seulement l’intervalle sans noeuds le plus long qui
compte. 2002 Éditions scientifiques et médicales Elsevier SAS
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1. Introduction and statement of results

We will consider the following particular case of a one-dimensional random walk in
random environment (RWRE). We first choose the environment, placing one-way nodes
at certain random locations. The random walk in this environment is a nearest-neighbour
random walk which is forced to go right at the nodes and has fixed (deterministic)
probabilities to jump right or left on the intervals without nodes. Letp ∈ ]0, 1

2] and
� := {1,p}Z. We denote the elements of� by ω= (ωx)x∈Z. The sequence(ωx)x∈Z will
serve as an environment. We assume that the distributionα of (ωx)x∈Z is stationary and
ergodic with respect to the shift transformation. Letα be the conditional distribution of
α, given thatω0 = 1, i.e.,α := α(· | ω0 = 1). Let �1(ω), �2(ω), . . . be the lengths of the
successive intervals without nodes, i.e.,

�1(ω) := inf{i � 1: ωi = 1}, (1)

�1(ω) := inf{i � 1: ω�1+···+�k−1+i = 1}, k � 2. (2)

Then the random variables�1, �2, . . . form a stationary, ergodic sequence underα. For
every fixedω let X = (Xn)n�0 be the Markov chain onZ starting atX0 = 0, with
transition probabilities

Pω(Xn+1 = y |Xn = x)=

ωx if y = x + 1,
1−ωx if y = x − 1,
0 otherwise.

(3)

We will denote the distribution of(Xn), givenω (or, equivalently, given�1, �2, . . .), with
Pω, and the joint distribution of(ω, (Xn)) underα × Pω with P. The process(Xn) was
introduced in [13], in the case whereα is a product measure, and studied further in [2],
in the case where�1, �2, . . . are i.i.d. random variables. Limit laws for the distribution of
Xn, suitably normalized, were investigated in [13] and in [2]. Let

τ�1 := inf{j : Xj = �1} (4)

and

τ�k+1 := inf{j > τ�1 + · · · + τ�k : Xj = �1 + · · ·+ �k+1} − (τ�1 + · · · + τ�k ), k � 2. (5)

Under appropriate assumptions, the random walk is moving to the right with a positive
speed, see [1] and [2].

LEMMA 1. – With

vα := E[�1]
E[τ�1]

, (6)

wherevα = 0 if E[τ�1] = ∞, we have

Xn

n
−→
n→∞ vα P-a.s., (7)
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i.e.,Xn/n→ vα Pω-a.s., forα-a.a.ω.

Let

ρ := 1− p

p
� 1. (8)

Later, see (45) and (56), we will give an explicit formula forE[τ�1], leading to

1

vα
= −ρ + 1

ρ − 1
+ 1

E[�1]
(
E
[
ρ�1
]− 1

) 2ρ

(ρ − 1)2
if p <

1

2
(9)

and

vα = E[�1]
E[�2

1]
if p= 1

2
. (10)

In particular, ifp < 1
2, vα > 0 if and only if E[ρ�1] < ∞ and, if p = 1

2, vα > 0 if and
only if E[�2

1] < ∞. We will always assume thatvα > 0. Due to (7), for eachv < vα ,
the probabilitiesPω[Xn/n � v] and P[Xn/n � v] go to 0. The goal of this paper is
to investigate the rate of this decay. Forv = 0, one can show thatPω[Xn/n � 0] �
Pω[τ�1 > n] decays exponentially inn, for v < 0, we trivially havePω[Xn/n � v] = 0.
Throughout the paper, we will only consider strictly positive values ofv. In the general
RWRE model,(ωx) is an ergodic sequence of random variables with values in[0,1].
Large deviations for this model were investigated in [8,5,3], see also the survey paper [7].
If ωx >

1
2, for all x, it is known thatvα > 0 and that forv < vα , Pω[Xn/n � v] and

P[Xn/n� v] decay exponentially inn. The exponential rate of decay was identified in
[8] and [3]. In contrast, we treat here an environment with “mixed drifts and positive
speed”. It was shown in [3] that for such environments, under mild assumptions onα,
Pω[Xn/n � v] andP[Xn/n � v] decay subexponentially inn for 0< v < vα . For the
i.i.d. environment case, i.e., ifα is a product measure, subexponential asymptotics were
derived in [5] and [12] for the decay ofP[Xn/n� v], and in [6] and [11], for the decay of
Pω[Xn/n � v]. Strictly speaking, not all the above mentioned results apply in our
situation, since some of them assume that the support of the distribution ofω0

is contained in a compact subset of]0,1[. In this paper, we prove subexponential
asymptotics for the random walk with randomly placed one-way nodes. We show
that under appropriate conditions (see Theorem 1), logPω[Xn/n � v] has “random
fluctuations” and there is no deterministic normalization. The same behaviour is
conjectured for the general RWRE model, see [7]), and was proved for a random walk
with one-way nodes in an i.i.d. environment (see Theorem 9 in [7]). Let

N�(n) := max{j : �1 + · · · + �j � n}, �max(n) := max
1�j�N�(n)

�j (ω), (11)

and

N(n) := min{j : �1 + · · · + �j � n}, �MAX (n) := max
1�j�N(n)

�j (ω). (12)

Let

Tn := inf{j : Xj = n}. (13)
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Throughout the paper,an, bn, cn and dn are positive, increasing functions ofn with
an → ∞, bn → ∞, cn → ∞, dn → ∞ and bn/an → 0, cn/an → 0 anddn/an → 0.
We will further assume thatan is slowly varying, i.e. that for eachk � 1, ank/an → 1 for
n→ ∞. Our main results are the following.

THEOREM 1. – Assume thatp < 1
2 andE[ρ�1]<∞. Assume further thatan, bn and

cn as above exist such that

P
[
�max(n)� an + bn for infinitely manyn

]= 1 (14)

and

P
[
�max(n)� an − cn for infinitely manyn

]= 1. (15)

Then we have, for eachu > 1/vα ,

lim inf
n→∞

ρan

n
logPω[Tn � nu] = −∞ P-a.s., (16)

lim sup
n→∞

ρan

n
logPω[Tn � nu] = 0 P-a.s. (17)

Assume in addition that for allk ∈ N,

lim sup
n→∞

(akn − an) <∞. (18)

Then, for0< v < vα ,

lim inf
n→∞

ρan

n
logPω[Xn � nv] = −∞ P-a.s., (19)

lim sup
n→∞

ρan

n
logPω[Xn � nv] = 0 P-a.s. (20)

Remarks. – 1. In particular, (19) and (20) show that there is no deterministic function
f such that,

−∞< lim inf
n→∞

1

f (n)
logPω[Xn � nv] � lim sup

n→∞
1

f (n)
logPω[Xn � nv]< 0 P-a.s.

(21)
2. We conjecture that (18) is always satisfied under the previous assumptions of

Theorem 1 (note that they imply (36) below!), but we were not able to show this.

THEOREM 2. – Assume thatp = 1
2 andE[�γ1 ]<∞ for someγ > 2. Assume that for

an anddn,

lim
n→∞

�max(n)

an
= 1 P-a.s. (22)

and

P
[
�max(n)� an + dn for infinitely manyn

]= 0. (23)
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Then we have, for eachu > 1/vα ,

lim
n→∞

a2
n

n
logPω[Tn � nu] = −π2

8

(
u− 1

vα

)
P-a.s. (24)

and, for0< v < vα ,

lim
n→∞

a2
n

n
logPω[Xn � nv] = −π2

8

(
1− v

vα

)
P-a.s. (25)

The following theorem gives statements for the decay ofP[Tn � nu] andP[Xn � nv].
It is a general fact that the decay of these averaged probabilities is either slower or the
same than for fixed environment.

THEOREM 3. – Assume that�1, �2, . . . are i.i.d.,p < 1/2 andE[ρ3�1]<∞. Assume
ϕ(n) is an increasing, slowly varying function such thatϕ(n) → ∞ and for some
continuous functionκ(·) > 0,

lim
n→∞

1

ϕ(n)
logP

[
�max(n)� t logn

]= −κ(t) ∀t. (26)

Then we have, for eachu > 1/vα ,

lim
n→∞

1

ϕ(n)
logP[Tn � nu] = −κ

(
1

logρ

)
, (27)

and, for0< v < vα ,

lim
n→∞

1

ϕ(n)
logP[Xn � nv] = −κ

(
1

logρ

)
. (28)

Remark. – Our proof of Theorem 3 requires that�1, �2, . . . are i.i.d. We don’t know if
this assumption is necessary for (27) and (28) to hold.

The main ingredients of our proofs are exit time asymptotics for the intervals without
nodes, combined with the ergodic theorem applied to the environment sequence.

2. Proofs

Sketch of the proof of Lemma 1. –It is well-known that

lim
n→∞

Xn

n
=
(

lim
n→∞

Tn

n

)−1

P-a.s. (29)

where both sides equal 0 ifTn/n→ ∞, see [13]. We will show that

Tn

n
−→
n→∞

E[τ�1]
E[�1] P-a.s. (30)



6 N. GANTERT / Ann. I. H. Poincaré – PR 38 (2002) 1–16

First note that due to the ergodic theorem,

N�(n)

n
−→
n→∞

1

E[�1] and
N(n)

n
−→
n→∞

1

E[�1] P-a.s. (31)

Further, the ergodic theorem implies that

1

n

n∑
j=1

τ�j −→
n→∞ E[τ�1] P-a.s. (32)

But
N�(n)∑
j=1

τ�j � Tn �
N(n)∑
j=1

τ�j ,

hence

N�(n)

n

1

N�(n)

N�(n)∑
j=1

τ�j � Tn

n
� N(n)

n

1

N(n)

N(n)∑
j=1

τ�j , (33)

and (30) follows. ✷
We note for further reference thatE[�1]<∞ implies

�MAX (n)

n
−→
n→∞ 0 P-a.s. (34)

To show (34), note that�MAX (n) � max1�j�n �j , and �1, �2, . . . are positive random
variables with the same distribution andE[�1]<∞. Let c > 0. Then,

∞∑
j=1

P[�j � cj ] =
∞∑
j=1

P[�1 � cj ] = E
[
�1

c

]
<∞ (35)

and the Borel–Cantelli lemma implies thatP[�j � cj for infinitely manyj ] = 0. We
conclude that alsoP[max1�j�n �j � cn for infinitely manyn] = 0. We also note that
under the hypothesis of Theorem 1, we have

lim sup
n→∞

an

logn
<∞. (36)

To prove (36), taking into account (14), it is enough to show that, for somec > 0,

P
[
�max(n)� c logn for infinitely manyn

]= 0. (37)

But

P
[
�max(n)� c logn

]
� nP[�1 � c logn] � nE

[
ρ�1
]
ρ−c logn = n1−c logρE

[
ρ�1
]

(38)

and we see that, forc > 2/ logρ, (37) follows with the Borel–Cantelli lemma.
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Proof of Theorem 1. –The proof of (17) is the same as the proof of Theorem 9 in
[7]. We will first give an estimate for the exit time of an interval without node. LetPx
be the distribution of the random walk(Xj), started atx ∈ {0,1, . . . , �}, with ω0 = 1,
ω1 = ω2 = · · · = ω�−1 = p, let τ � := inf{j : Xj = �} and τ 0 := inf{j : Xj = 0}. Then,
with ρ defined in (8),

P1(τ 0 < τ�)= ρ� − ρ

ρ� − 1
� ρ�−1 − 1

ρ�−1
and P1(τ � � n)� P1(τ 0 < τ�)

n �
(

1− 1

ρ�−1

)n
.

(39)

We give a lower bound onPω[Tn � nu] by simply picking the largest interval without
nodes.

Pω[Tn � nu] � P1
[
τ �max(n) � [nu]]� (

1− 1

ρ�max(n)−1

)[nu]
�
(

1− 1

ρ�max(n)−1

)nu
(40)

where[nu] denotes the integer part ofnu. We choose a (random) subsequence(nk) such
thatnk → ∞ for k → ∞ and

�max(nk)� ank + bnk

for all k. Then, due to (40), for eachε > 0,

logPω[Tnk � nku] � log
(

1− 1

ρ�max(nk)−1

)nku
� −nkuρ−(ank+bnk )(1+ ε) P-a.s. (41)

for k large enough. Hence

lim
k→∞

ρank

nk
logPω[Tnk � nku] = 0 P-a.s.

and (17) follows. To show (16), we first prove the following formula for the exit time of
a random walk with reflection at 0.

LEMMA 2. – Letω0 = 1, ω1 = ω2 = · · · = ω�−1 = p < 1
2, X0 = 0, τ � := inf{j : Xj =

�} andg(�) := g(λ, �)=E0[exp(λτ �)]. Let

η1 = η1(λ)= 1

2p

(
e−λ +

√
e−2λ − 4pq

)
, (42)

η2 = η2(λ)= 1

2p

(
e−λ −

√
e−2λ − 4pq

)
(43)

with q := 1− p, and

λcrit := λcrit(�)= sup
{
λ > 0: e−2λ > 4pq,η�2

(
eλη1 − 1

)
> η�1

(
eλη2 − 1

)}
.
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Then, for0� λ < λcrit, we have

g(�)= eλ(η1 − η2)

η�2(eλη1 − 1)− η�1(eλη2 − 1)
. (44)

As a consequence, we have

E0[τ �] = d

dλ
g(�)|λ=0 = −�ρ + 1

ρ − 1
+ (ρ� − 1

) 2ρ

(ρ − 1)2
. (45)

Proof. –See [7], proof of Lemma 6.

Remark. – We note for further reference that, usingE0[(τ �)m] = dm

dλm g(�)|λ=0, m =
1,2, . . ., one can check thatE[(τ�1)

2]<∞ if and only if E[ρ2�1]<∞ and

E
[
(τ�1)

3]<∞ if and only if E
[
ρ3�1

]
<∞. (46)

As usual, we start the proof of the upper bound with Chebyshev’s inequality. FixC > 0
and letλn = Cρ−an . We will specify a subsequence(ñk) such that

Pω[Tñk � ñku] � Eω

[
eλñk Tñk

]
e−λñk ñku �

N(ñk)∏
j=1

g
(
�j(ω)

)
e−λñk ñku P-a.s. (47)

We can assume w.l.o.g. that (15) still holds true if we replace�max(n) with �MAX (n).
Define the (random) subsequence(ñk) such that̃nk → ∞ and

�MAX (ñk)� añk − cñk P-a.s. (48)

We have to show that, fork large enough,λñk < λcrit is satisfied for our choice ofλn
and for all intervals along our subsequence. It suffices to show that forη1 = η1(λñk ) and
η2 = η2(λñk ), (

η1

η2

)�MAX (ñk )(
eλñk η2 − 1

)−→
k→∞ 0 P-a.s. (49)

We follow the proof of (62) in [7], and then, taking logarithms in (47), we proceed
exactly as in the proof of (78) in [7], except that that there the explicit values ofE[�1]
andE[ρ�1] were plugged in, and instead of (78) in [7], we end up with the statement
that,P-a.s.,

lim inf
n→∞

ρan

n
logPω[Tn � nu]

� lim sup
k→∞

ρañk

ñk
logPω[Tñk � ñku]

� − C

q − p
−C

1

E[�1]
2qp

(q − p)2
+C

1

E[�1]
2qp

(q − p)2
E
[
ρ�1
]−Cu

= C

(
−ρ + 1

ρ − 1
− 1

E[�1]
2ρ

(ρ − 1)2
+ 1

E[�1]E
[
ρ�1
] 2ρ

(ρ − 1)2

)
−Cu
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= C

(
1

vα
− u

)
= −C

(
u− 1

vα

)
. (50)

(16) now follows sinceC > 0 was arbitrary. ✷
The statements for(Xn) follow from the statements for(Tn) by renewal duality. More

precisely, we have

LEMMA 3. – Under the assumptions of Theorems1, 2or 3, the following holds true.
For P-a.a.ω, there is, for eachε > 0, n0(ω) such that forn� n0(ω),

Pω

[
Tn � [nu]]� Pω[X[nu] � n] � Pω

[
T[n(1+ε)] � [nu]]. (51)

Proof. –The first inequality in (51) is obvious. To show the second inequality, note
that

Pω[X[nu] � n] − Pω

[
T[n(1+ε)] � [nu]]

�
[nu]∑

j=[n(1+ε)]
Pω[T[n(1+ε)] = j, X[nu] � n]

� [nu]Pω

[∃j,m such thatXj = [
n(1+ ε)

]
, Xj+m � n

]
� [nu]I{�MAX ([n(1+ε)])�[nε]}
= 0. (52)

for n large enough, since�MAX (n)/n→ 0 P-a.s. due to (34). ✷
To prove (20), letε > 0 andu= ε+ 1/v > 1/vα . We have

0� lim sup
n→∞

ρan

n
logPω[Xn � nv]

� lim sup
n→∞

ρa[nu]

[nu] logPω

[
X[nu] � [nu]v]

� lim sup
n→∞

ρa[nu]

[nu] logPω[X[nu] � n]

� lim sup
n→∞

ρa[nu]

[nu]
n

ρan

ρan

n
logPω[Tn � nu]

� − lim inf
n→∞

ρa[nu]

[nu]
n

ρan

−ρan
n

logPω[Tn � nu]

� lim sup
n→∞

(
ρa[nu]

[nu]
n

ρan

)(− lim inf
n→∞

−ρan
n

logPω[Tn � nu])
� lim sup

n→∞

(
ρa[nu]

[nu]
n

ρan

)
lim sup
n→∞

ρan

n
logPω[Tn � nu]

� 0, (53)

where the last inequality follows since lim supn→∞
ρan

n
logPω[Tn � nu] = 0 due to

Lemma 3 and lim supn→∞(
ρ
a[nu]
[nu]

n
ρan
) <∞ due to (18). The proof of (19) is similar.✷

Proof of Theorem 2. –We have the following analogue of Lemma 2.
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LEMMA 4. – Let � ∈ N, ω0 = 1, ω1 = ω2 = · · · = ω�−1 = 1
2 , X0 = 0, τ � :=

inf{j : Xj = �} and g̃(�) := g̃(�, λ)=E0[exp(λτ �)]. Let

λ̃crit := λ̃crit(�)= − log
(

cos
π

2�

)
. (54)

Then, for0� λ < λ̃crit, we have

g̃(�)= 1

cos(�arccos e−λ)
. (55)

Proof. –Let ωi = 1
2, −�+ 1 � i � �− 1 andτ̃� := inf{j : |Xj | = �}. Thenτ̃� has the

same distribution asτ �. Let g̃x(�) := Ex[exp(λτ̃�)]. We haveg̃�(�) = g̃−�(�) = 1 and
g̃x(�)= 1

2eλ(g̃x−1(�)+ g̃x+1(�)), −�+ 1 � x � �− 1. Solving this differential equation
with boundary condition yields̃gx(�)= cos(cλx)/cos(cλ�), with cλ = arccos(exp(−λ)),
and, settingx = 0, (55) follows. ✷

Remark. – Similarly, we getEx[τ̃�] = �2 − x2. In particular,E0[τ̃�1] = Eω[τ�1] = �2
1

and this implies

E[τ�1] = E
[
�2

1

]
. (56)

We will also use the following exit time asymptotics for simple random walk.

LEMMA 5. – In the setting of Lemma4, for � = �(n) increasing with�(n)2/n → 0
andc > 0, we have

lim
n→∞

�(n)2

n
logP0

[
τ �(n) � cn

]= −cπ
2

8
. (57)

The proof of Lemma 5 is standard, using the explicit formula in [14], p. 243.

Proof of (24). –To show the lower bound, one proceeds as in the proof of (17), picking
the largest interval without nodes. More precisely, letmn := inf{j : �j = �max(n)} and
δ > 0. We have

Pω[Tn � nu] � Pω

[
τmn

� n

(
u− 1

vα
+δ

)]
·Pω

[ ∑
1�j�N�(n),j �=mn

τ�j � n

(
1

vα
−δ

)]
. (58)

The second term on the r.h.s. of (58) goes to 1, since due to (31) and (32),

1

n

N�(n)∑
j=1

τ�j −→
n→∞

E[τ�1]
E[�1] = 1

vα
P-a.s. (59)

For the first term on the r.h.s. of (58), (57) yields

�max(n)
2

n
logPω

[
τmn

� n

(
u− 1

vα
+ δ

)]
−→
n→∞ −π2

8

(
u− 1

vα
+ δ

)
P-a.s. (60)
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and since limn→∞ �max(n)/an = 1, P-a.s., the lower bound in (24) follows by letting
δ → 0. To show the upper bound in (24), letδ ∈]0,1[ and

λn := − log
(

cos
π(1− δ)

2(an + dn)

)
.

Due to (55), we have

Pω[Tn � nu] � Eω

[
eλnTn

] · e−λnnu =
N(n)∏
j=1

1

cos(�j arccos e−λn)
· e−λnnu P-a.s. (61)

and, for P-a.a.ω, due to (54) and (23), the r.h.s. is well-defined forn large enough.
Taking logarithms and multiplying witha2

n/n yields

a2
n

n
logPω[Tn � nu] � a2

n

n

N(n)∑
j=1

log
1

cos(�j
π(1−δ)

2(an+dn) )
− a2

nλnu P-a.s. (62)

We check that, w.l.o.g., (23) still holds true if we replace�max(n) with �MAX (n)), and
conclude that

d(δ) := cos
π(1− δ)�MAX (n)

2(an + dn)
> 0 P-a.s.

for n large enough, and the first term on the r.h.s of (62) is well-defined. Note that since
z−2 log(cosz) → −1/2 for z → 0, we have for the second term on the r.h.s of (62),
plugging in the value ofλn,

a2
nλnu= −a2

nu log
(

cos
π(1− δ)

2(an + dn)

)
−→
n→∞

π2

8
u(1− δ)2. (63)

Let γ > 2 be as in Theorem 2. For eachd > 0, there isc = c(d) such that− logx �
1− x + c(1− x)γ/2 for d � x � 1. Since cosx � 1− x2/2, we also have

− log(cosx)� x2

2
+ c

(
x2

2

)γ /2
for d � x � 1. Therefore, forc= c(δ) large enough,

a2
n

n

N(n)∑
j=1

log
1

cos(�j
π(1−δ)

2(an+dn) )
� a2

n

n

N(n)∑
j=1

�2
j

π2(1− δ)2

8(an + dn)2
+ c

a2
n

n

N(n)∑
j=1

�
γ
j

πγ (1− δ)γ

8γ /2(an + dn)γ
. (64)

For the first term on the r.h.s of (64), note that

lim
n→∞

a2
n

n

N(n)∑
j=1

�2
j

π2(1− δ)2

8(an + dn)
2

= π2(1− δ)2

8
lim
n→∞

a2
n

(an + dn)
2

N(n)

n

1

N(n)

N(n)∑
j=1

�2
j

= π2(1− δ)2

8

1

E[�1]E
[
�2

1

]= π2(1− δ)2

8

1

vα
P-a.s. (65)
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where we used (31), the ergodic theorem and the convergence ofdn/an to 0 in
the middle inequality and (10) in the last inequality. The same argument, using the
assumptionE[�γ1 ] < ∞, shows that the second term on the r.h.s of (64) goes to 0. We
proved

lim sup
n→∞

a2
n

n
logPω[Tn � nu] � (1− δ)2

π2

8

(
1

vα
− u

)
P-a.s. (66)

and sinceδ ∈ ]0,1[ was arbitrary, the upper bound in (24) follows by lettingδ → 0. ✷
Proof of Theorem 3. – Lower bound: Let hn be an increasing function. We have

P[Tn � nu] � P
[
�max(n)� hn

]
P1[τhn � nu]. (67)

For the second term on the r.h.s. of (67), we have, using (39),

P1[τhn � nu] �
(

1− 1

ρhn−1

)nu
. (68)

Hence, choosinghn = logn/ logρ,

1

ϕ(n)
logP[Tn � nu] � 1

ϕ(n)
logP

[
�max(n)� logn

logρ

]
+ 1

ϕ(n)
nu log

(
1− ρ

n

)
(69)

and, using (26), (69) implies that

lim inf
n→∞

1

ϕ(n)
logP[Tn � nu] � −κ

(
1

logρ

)
. (70)

Upper bound: Let ε > 0 andhn = hn(ε)= (1− ε) logn/ logρ. We have

P[Tn � nu] � P
[
�MAX (n)� hn

]+ P
[
Tn � nu, �MAX (n) < hn

]
. (71)

We will show that

1

ϕ(n)
logP

[
Tn � nu, �MAX (n) < hn

]−→
n→∞ −∞. (72)

We check that (26) still holds true if we replace�max(n) with �MAX (n). Then, using (26),
we see from (71) and (72) and the continuity ofκ(·) that

lim sup
n→∞

1

ϕ(n)
logP[Tn � nu] � lim

ε→0
lim
n→∞

1

ϕ(n)
logP

[
�MAX (n)� hn(ε)

]
� −κ

(
1

logρ

)
. (73)
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To show (72), letδ > 0 andMδ := (1+ δ)/E[�1] and note that

P
[
Tn � nu, �MAX (n) < hn

]
� P

[
N(n)� [nMδ]]+ P

[ [nMδ ]∑
j=1

τ �j,n � nu

]
, (74)

where�j,n, j ∈ N, are i.i.d. with

P[�j,n = k] = P[�1 = k]
P[�1 � [hn]] for k = 1,2, . . . , [hn]

andτ �j, n , j ∈ N, are i.i.d. The distribution ofτ �j,n , given�j,n, is defined as in Lemma 2.
For the first term on the r.h.s of (74), we have

P
[
N(n)� [nMδ]]= P

[ [nMδ ]−1∑
j=1

�j < n

]
� P

[
1

[nMδ]
[nMδ ]−1∑
j=1

�j <
n

[nMδ]
]
.

Since�j are i.i.d., nonnegative random variables with expectations strictly larger than
1/Mδ , the last term is decaying exponentially inn. In particular, sinceϕ(n)/n→ 0, we
have

1

ϕ(n)
logP

[
N(n)� [nMδ]]−→

n→∞ −∞. (75)

LetC > 0. We can estimate the second term on the r.h.s. of (74) as follows:

P

[ [nMδ ]∑
j=1

τ �j,n � nu

]
� E

[
exp
(
Cϕ(n)

n
τ �1,n

)][nMδ ]
exp
(−Cϕ(n)u). (76)

We will show that

lim sup
n→∞

n

ϕ(n)
logE

[
exp
(
Cϕ(n)

n
τ�1,n

)]
�CE[τ�1]. (77)

Together with (74)–(76), this implies that

lim sup
n→∞

1

ϕ(n)
logP

[
Tn � nu, �MAX (n) < hn

]
� C

(
E[τ�1]Mδ − u

)
. (78)

But, recalling (6), foru > 1/vα we can chooseδ small enough such that the last term is
negative, and sinceC > 0 was arbitrary, this proves (72). It remains to prove (77). Using
the inequalities logx � x − 1 and ex − 1� x + x2ex , we have

n

ϕ(n)
logE

[
exp
(
Cϕ(n)

n
τ�1,n

)]
�CE[τ �1,n] +C2ϕ(n)

n
E
[(
τ �1,n

)2
exp
(
Cϕ(n)

n
τ�1,n

)]
(79)
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�CE[τ �1] +C2ϕ(n)

n
E
[(
τ �1,n

)3]2/3
E
[
exp
(

3Cϕ(n)

n
τ�1,n

)]1/3

. (80)

Due to (46) and our assumptionE[ρ3�1]<∞, we have

lim sup
n→∞

E
[(
τ �1,n

)3]� E
[
(τ�1)

3]<∞. (81)

Since�1,n � [hn], we see from (80) that it suffices to show that for eachC > 0,

lim sup
n→∞

E
[
exp
(
Cϕ(n)

n
τ [hn]

)]
<∞. (82)

But now we can use formula (44), plugging in� = �n = [hn] andλ = λn = Cϕ(n)/n.
Analysing the terms in (44), we see thatλn → 0,η2(λn)→ 1 andη1(λn)→ ρ. We show,
with the same reasoning as in the proof of (72) in [7], that

η
hn
2 −→

n→∞ 1 and η
hn
1

(
eλnη2 − 1

)−→
n→∞ 0 (83)

and this proves (82). For the proof of (28) from (27), note thatP[Xn/n � v] is
comparable toP[T[nv] � n] by renewal duality, as in Lemma 3, and use the fact that
ϕ is slowly varying; we refer to [3] for a more precise argument.✷

3. Examples

Example1. – Assume thatα is a product measure, withα1 := α(ω0 = 1) and
α(ω0 = p)= 1 − α1. Then�1, �2, . . . are i.i.d. and�1 has a geometric distribution with
P[�1 = k] = α1(1 − α1)

k−1, k = 1,2, . . . . In this case, (14), (15) and (23) are satisfied
with

an = logn

− log(1− α1)
, bn = log2n

− log(1− α1)
,

cn = log3n

− log(1− α1)
, dn = 2 log2n

− log(1− α1)
, (84)

and we haveρan = n1/s with s := − log(1− α1)/logρ. Here,an is given by the Erd̋os–
Renyi law for longest runs, and (14), (15) and (23) follow from Theorem 2 in [4]. Hence,
if p < 1

2, we have forv < vα ,

lim inf
n→∞

1

n1−1/s
logPω[Xn � nv] = −∞ P-a.s., (85)

lim sup
n→∞

1

n1−1/s
logPω[Xn � nv] = 0 P-a.s. (86)

For the general RWRE in an i.i.d. environment with “mixed drifts and positive speed”,
with s defined by ∫ (

1−ω0

ω0

)s
dα = 1,
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(86) was proved and (85) was conjectured in [6]. Ifp < 1/2 in our example, the
hypotheses of Theorem 3 are satisfied withϕ(n)= logn andκ(t)= −1− t log(1− α1),
and we have

lim
n→∞

1

logn
logP[Xn � nv] = −(s − 1) (87)

wheres = − log(1−α1)/ logρ as above. (87) agrees with Theorem 1.1 in [5]. Forp= 1
2

andα1/2 := (1− α1), Theorem 2 yields that forv < vα ,

lim
n→∞

(logn)2

n
logPω[Xn � nv] = −π2

8
(logα1/2)

2
(

1− v

vα

)
P-a.s. (88)

If �1, �2, . . . are i.i.d. andE[�2
1]<∞, recall the integral criteria for the growth of maxima

of i.i.d. random variables in [9] and [10] to find functionsan, bn, cn anddn such that (14),
(15) and (23) and our assumptions onan are satisfied.

Example2. – Assume that�1, �2, . . . are i.i.d. andP[�1 = k] = cexp(−bkγ ), k =
1,2, . . ., whereγ � 1, b > 0 and

c=
( ∞∑

k=1

exp
(−bkγ ))−1

.

Then (14), (15) and (23) are satisfied with

an =
(

1

b
logn

)1/γ

, bn =
(

1

b
log2n

)1/γ

,

cn =
(

1

b
log3n

)1/γ

, dn =
(

2

b
log2n

)1/γ

. (89)

Note thatγ < 1 would violate our assumptionE[ρ�1]<∞. Hence, forp < 1
2, (19), (20)

and (25) are satisfied withan as above. Ifγ > 1 andp < 1
2, Theorem 3 applies with

ϕ(n)= (logn)γ andκ(t)= btγ , and we have for eachu > 1
vα

,

lim
n→∞

1

(logn)γ
logP[Tn � nu] = − b

(logρ)γ
(90)

and, forv < vα,

lim
n→∞

1

(logn)γ
logP[Xn � nv] = − b

(logρ)γ
. (91)
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