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Abstract. In the study of large deviations for random walks in random environment, a key
distinction has emerged between quenched asymptotics, conditional on the environment, and
annealed asymptotics, obtained from averaging over environments. In this paper we consider
a simple random walk {Xn} on a Galton–Watson tree T, i.e., on the family tree arising from
a supercritical branching process. Denote by |Xn| the distance between the node Xn and the
root of T. Our main result is the almost sure equality of the large deviation rate function for
|Xn|/n under the “quenched measure” (conditional upon T), and the rate function for the
same ratio under the “annealed measure” (averaging on T according to the Galton–Watson
distribution). This equality hinges on a concentration of measure phenomenon for the mo-
mentum of the walk. (The momentum at level n, for a specific tree T, is the average, over
random walk paths, of the forward drift at the hitting point of that level). This concentration,
or certainty, is a consequence of the uncertainty in the location of the hitting point. We also
obtain similar results when {Xn} is a λ-biased walk on a Galton–Watson tree, even though in
that case there is no known formula for the asymptotic speed. Our arguments rely at several
points on a “ubiquity” lemma for Galton–Watson trees, due to Grimmett and Kesten (1984).

1. Introduction

In the last decade, asymptotics for large-deviation probabilities involving one-di-
mensional, nearest-neighbor random walk in random environment (RWRE) have
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been determined quite precisely; see [6, 2, 4, 14, 13, 1], and [5] for an overview.
Striking partial results were obtained by Sznitman and Zerner [19, 21, 16, 17] in
the more difficult setting of multidimensional RWRE.

From these studies, a key distinction has emerged between quenched asympt-
otics (conditional on a typical environment), first considered by Greven and den
Hollander [6], and annealed asymptotics (averaged over environments), first con-
sidered in [2]. In one dimension, Comets, Gantert and Zeitouni [1] showed that the
quenched and annealed rate functions typically differ when the annealed rate func-
tion is nonzero. In Z

d for d > 1, the situation is less clear, and much is unknown:
while there exist events for which quenched and annealed exponential asymptotics
differ, it is tempting to conjecture that for d large enough there are other events
for which the quenched and annealed rate functions are non zero and coincide.
This conjecture is related to the corresponding conjectures for the case of random
potential, see the discussion in [18, Page 326].

In this paper we consider this question when the random environment consists
of a Galton–Watson tree, i.e., the family tree arising from a supercritical Galton–
Watson branching process. Since the growth of these trees is exponential, this can
be viewed as an infinite dimensional setting, but the lack of cycles makes it more
tractable than a random environment in Z

d for d > 1. Our main result is the equal-
ity of quenched and annealed rate functions for random walk on Galton–Watson
trees; this can be viewed as a strong averaging present in almost every Galton–
Watson tree. This equality hinges on a concentration of measure phenomenon for
the momentum of the walk. (The momentum at level n, for a specific tree T, is the
average, over random walk paths, of the forward drift [deg(v) − 1]/[deg(v) + 1]
at the hitting point v of that level). This concentration, or certainty, is a conse-
quence of the uncertainty in the location of the hitting point; more details are given
below.

A crucial technical tool in our proofs is Lemma 2.2, a variant of an important,
but little-known “ubiquity” lemma due to Grimmett and Kesten [7]. This lemma
asserts, roughly speaking, that any tree property which is sufficiently likely under
the Galton–Watson measure, is almost surely satisfied by the subtrees determined
by a positive fraction of the vertices, along any ray emanating from the root.

In the analysis of RWRE in Z
d , neutral pockets often play a key role, see, e.g.,

[17]. For simple random walk on Galton–Watson trees, this role is played by pipes,
relatively long paths in the tree where each vertex has precisely one child.

We start with a branching process which defines an infinite Galton–Watson tree.
LetZ be an integer-valued random variable, withpk = P(Z = k), k = 0, 1, 2, . . . .
We always assume that p0 = 0 and

m : =
∞∑
k=1

kpk > 1 .

Define dmin = min{k : pk > 0} ≥ 1. Starting from the first ancestor (called the
root, and denoted o), we consider a supercritical branching process where particles
independently produce children, such that the number of children has the law of
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Z. We draw edges between parents and their children. This defines the measure
GW(dω) on rooted Galton-Watson trees.

Let T denote the ensemble of all rooted trees with no leaves, i.e., with at least
one child for each vertex. For any T ∈ T and any vertex j ∈ T, we let |j | denote
the distance from the root (i.e., the number of edges on the unique path r(j) con-
necting the root to j ). Let kj denote the number of children of a vertex j ∈ T. We
letDn(T) denote the vertices at the n-th generation, i.e. at distance n from the root.
For any vertex j ∈ Dn(T), n > 0, we let j∗ denote the parent of j , i.e. the vertex
r(j)∩Dn−1(T). The children of a vertex j ∈ Dn(T) are those vertices inDn+1(T)
connected to j . We often write Dn instead of Dn(T) if it is clear from the context
which tree T we mean. More definitions and notations related to T are introduced
in Section 2.

Our main object of interest in this paper are λ-biased random walks on the
Galton–Watson tree, defined as follows. Given ω, the λ-biased random walk {Xn}
taking values in the vertices of ω, with distribution Pλ,ω, is the Markov chain with
X0 = o and, with j1, . . . , jk , denoting the children of j ,

Pλ,ω

(
Xn+1 = j∗|Xn = j

)
= λ

λ+ k , j = o ,

Pλ,ω

(
Xn+1 = ji |Xn = j

)
= 1

λ+ k , j = o, i = 1, 2, . . . , k.

Pλ,ω

(
Xn+1 = ji |Xn = j

)
= 1

k
, j = o, i = 1, 2, . . . , k .

(we refer to [11] for the ergodic theory of such walks). We call the law Pλ,ω the
quenched law. We also let

Pλ(·) :=
∫
Pλ,ω(·)GW(dω) (1.1)

and call the resulting measure on the process {Xn} the annealed law.
It was shown in [11, Theorem 3.1] that if 0 < λ < m, then

lim
n→∞

|Xn|
n

= vλ > 0 , Pλ − a.s. , (1.2)

where vλ depends only on λ and on the distribution of Z. An explicit evalua-
tion of vλ is not available in general, except in the case λ = 1 < m, where
v1 =
∑
k pk(k − 1)/(k + 1), see [10, Theorem 3.2]. If λ ≥ m, then {Xn} is

recurrent Pλ- a.s. (see [9, Theorem 4.2]), and of course vλ = 0.
Our main results, concerning decay rates for the probability of atypical behav-

ior of the random walk, follow. Note that the exponential decay rates under the
annealed law and the quenched law, coincide.

Theorem 1.1. (Speedup probabilities – exponential decay). Assume m < ∞.
Let λ ≥ 0. Then, there exists a continuous, convex, strictly increasing function
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Iλ : [vλ, 1] �→ R+, with Iλ(vλ) = 0 and

Iλ(1) = − log
∞∑
k=1

k

k + λpk , (1.3)

satisfying, for b > a, a ∈ (vλ, 1],

lim
n→∞

1

n
logPλ,ω

( |Xn|
n

∈ [a, b)

)
= lim

n→∞
1

n
logPλ

( |Xn|
n

∈ [a, b)

)
= −Iλ(a) , GW − a.s.

The situation is similar with respect to slowdown probabilities, except that the rate
of decay need not be exponential in all cases.

Theorem 1.2. (Slowdown probabilities – exponential decay). Assume λ < m <

∞ and either dmin ≥ 2 or λ ≥ 1. Then, there exists a convex, decreasing function
Iλ : [0, vλ] �→ R+, with Iλ(vλ) = 0, satisfying, for 0 ≤ b < a < vλ,

lim
n→∞

1

n
logPλ,ω

( |Xn|
n

∈ [b, a)

)
= lim

n→∞
1

n
logPλ

( |Xn|
n

∈ [b, a)

)
= −Iλ(a) , GW − a.s. (1.4)

Further, if λ ≥ dmin then Iλ : [0, vλ] �→ 0, whereas if λ < dmin then Iλ is strictly
decreasing on [0, vλ]. Finally, if dmin ≥ 2 and λ < dmin then

Iλ(0) := lim
a↓0

Iλ(a) = H

(
1

2

∣∣∣∣ dmin

dmin + λ
)
, (1.5)

where H(s|t) := s log s
t
+ (1− s) log 1−s

1−t .

Recalling that vλ = 0 for λ ≥ m, one has by combining Theorems 1.1 and 1.2 that

Corollary 1.1. (Large deviation principle). Assumem <∞ and either dmin ≥ 2
or λ ≥ 1. Then, the random variables |Xn|/n satisfy, under both Pλ and Pλ,ω, the
large deviation principle on [0, 1] with speed n and the same (convex) continuous,
rate function Iλ(·).

We pause now to explain in more detail the “uncertainty” mentioned in the
title. Consider the first time Tn that the walk hits Dn and its location XTn at that
time. Conditioning on XTn , and even on all vertices of the tree up to level n, kXTn
is distributed according to {pk}. Thus, certainty in the position of the walk yields
uncertainty on its expected drift, that is on the “momentum” of the walk. Our work
can be seen as a converse to this statement: the growth of the tree provides a large
uncertainty in the value ofXTn , even when conditioning on the tree up to level n and
on Tn being atypical. (A precise quantification of this uncertainty is contained in
Propositions 4.1 and 5.1 below). This uncertainty then leads to concentration, and
hence certainty, for the expected momentum of the walk at time Tn. This certainty
is at the heart of the equality between the quenched and annealed asymptotics.
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Returning to our results, it is evident from the statement of Theorem 1.2 that
slowdown probabilities may decay slower than exponential. We present below only
a partial analysis of that case, pertaining to dmin = λ. While we show that in this
case, the quenched and annealed subexponential decay rates are of the same order,
we cannot show they are actually equal. See Section 7 for comments on the case
dmin = λ.

Theorem 1.3. (Slowdown probabilities – subexponential regime). Assume
dmin = λ < m <∞ and 0 ≤ b < a < vλ.
(i). If dmin = 1 then there exist finite constants C1, C2 > 0 such that

−C1 ≤ lim inf
n→∞

logPλ,ω
( |Xn|

n
∈ (b, a)

)
n1/3

≤ lim sup
n→∞

logPλ,ω
( |Xn|

n
∈ (b, a)

)
n1/3

≤ −C2 , GW − a.s.

(ii). If dmin > 1 then there exist finite constants C1, C2 > 0 such that

−C1 ≤ lim inf
n→∞

logPλ,ω
( |Xn|

n
∈ (b, a)

)
n/(log n)2

≤ lim sup
n→∞

logPλ,ω
( |Xn|

n
∈ (b, a)

)
n/(log n)2

≤ −C2 , GW − a.s.

Both parts of the theorem apply with Pλ,ω replaced by Pλ.

A comparison with the subexponential slowdown regime for RWRE in Z
d is

again in order: for d = 1, quenched and annealed estimates differ sharply, see
the review in [5]. In higher dimensions, Sznitman [17] shows that for a class of
transient walks (“neutral or biased to the right”), the quenched slowdown proba-
bilities are of order exp(−Cn/(log n)2/d) whereas the annealed ones are of order
exp(−Cnd/(d+2)).

The structure of the article is as follows: we present some auxiliary lemmas
in Section 2. The computation of the extreme large deviations (corresponding to
speeds 0 and 1), and the proof that quenched and annealed asymptotics coincide
in this extreme case, are provided in Section 3. Reading this section is an oppor-
tunity to appreciate our use of uncertainty in a situation where it is not hidden by
technicalities. The speedup estimate Theorem 1.1 is proved in Section 4, while
the slowdown Theorem 1.2 is proved in Section 5. The subexponential rates for
slowdown contained in Theorem 1.3 are discussed in Section 6. Finally, Section 7
presents additional comments and open problems.

2. Generalities and auxiliary results

We begin with a useful, well known general lemma relating quenched and annealed
rates of decay.
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Lemma 2.1. Let (!,F, P ) be a probability space, and let (E, E) be a Polish space
equipped with the Borel σ -field. For each ω ∈ ! let Pω be a measure on E, such
that the map ω �→ Pω(A) ∈ [0, 1] is measurable for each A ∈ E . For any An ∈ E ,
both

lim sup
n→∞

1

n
log
∫
Pω(An)P (dω) ≥ lim sup

n→∞
1

n
logPω(An), P − a.s.

and

lim inf
n→∞

1

n
log
∫
Pω(An)P (dω) ≥ lim inf

n→∞
1

n
logPω(An), P − a.s.

Next, we introduce several notations in T . For T ∈ T and any vertex j ∈ Dn(T),
we let Tj denote the subtree rooted at j consisting of all descendants of j in T. For
j ∈ D1(T), we let TRj denote the subtree T \Tj (TRj consists of the root if the root

has only one child). Finally, for j ∈ Dn(T) and l an ancestor of j , we let lj denote
the unique child of l which is an ancestor of j .

Recall o denotes the root. We consider functions assigning to a tree and a vertex
on the first level of the tree the value 0 or 1. A functionA : T ×D1(T) �→ {0, 1} is
calledR-defined if, for j ∈ D1(T), it holds thatA(T, j) is measurable with respect
to the σ -field generated by TRj , and A(T, j) = 0 if ko = 1.

A key technical tool which enters in different places in our arguments is the
following variant of a lemma contained in [7].

Lemma 2.2. For any R-defined A(·, ·) consider the random variables

NA
n (j) =

∣∣∣{l : l is an ancestor of j such that A(ωl, lj ) = 1}
∣∣∣ ,

where j ∈ Dn(ω). Assume that m <∞ and

EGW

 ∑
j∈D1(ω)

1{A(ω,j)=0}

 < 1 .

Then, there exists a β > 0 such that

lim sup
n→∞

1

n
logGW

(
min
j∈Dn

NA
n (j)

n
< β

)
< 0 , (2.1)

which implies also that

lim inf
n→∞ min

j∈Dn
NA
n (j)

n
≥ β , GW − a.s. (2.2)
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Proof of Lemma 2.2. Define ζn =
∑
j∈Dn e

−θNAn (j). Let Fn := σ(∪ni=0Di).
Then,

EGW(ζn)

= EGW

 ∑
v∈Dn−1

e−θN
A
n−1(v) · EGW

 ∑
j∈D1(ω

v)

1{A(ωv,j)=0} + 1{A(ωv,j)=1}e−θ


:= c(θ)EGW(ζn−1) (2.3)

where

c(θ) = EGW

 ∑
j∈D1(ω)

1{A(ω,j)=0} + 1{A(ω,j)=1}e−θ
 = EGW(ζ1) (2.4)

We have c(θ) < ∞ due to our assumption m < ∞. For any θ > 0, Markov’s
inequality implies

GW

(
min
v∈Dn

NA
n (v) ≤ βn

)
≤ eβθnEGW

∑
v∈Dn

e−θN
A
n (v)


= en[βθ+log c(θ)] := enα(θ) .

Since for β = 0, limθ→∞ α(θ) < 0, it follows that for some β0 > 0, there still
exists a θ such that α(θ) < 0, proving (2.1). Then, the Borel–Cantelli lemma
completes the proof of (2.2).

3. Extreme exponential rates — proofs of (1.3) and (1.5)

As a warm-up for the proofs of Theorems 1.1 and 1.2, and to exhibit some of the
ideas which occur there, we begin by proving (1.3) and (1.5).
Proof of (1.3). We let Fn = σ(∪ni=0Di). Then,

Pλ(|Xn| = n) = Pλ(|Xn−1| = n− 1)Pλ(|Xn| = n

∣∣∣ |Xn−1| = n− 1)

= Pλ(|Xn−1| = n− 1)
∞∑
k=1

k

k + λpk =
( ∞∑
k=1

k

k + λpk
)n

where the last equality is obtained by iterations, and this shows that

lim
n→∞

1

n
logPλ(|Xn| = n) = log

∞∑
k=1

k

k + λpk .
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It thus remains to compute the limit of n−1 logPλ,ω(|Xn| = n). We have

Pλ,ω(|Xn| = n) = Pλ,ω(|Xn−1| = n− 1)
∑

j∈Dn−1

an,j
kj

kj + λ
=: Pλ,ω(|Xn−1| = n− 1)Zn (3.1)

where
an,j := Pλ,ω

(
Xn−1 = j

∣∣∣ |Xn−1| = n− 1
)
.

Note that kj /(kj + λ), j ∈ Dn−1, are i.i.d. under GW and independent of Fn−1

whereas {an,j }j∈Dn−1 , are Fn−1-measurable and
∑
j∈Dn−1

an,j = 1. We have

EGW(Zn) =
∞∑
k=1

k

k + λpk (3.2)

and we will show that Zn concentrates at its expectation.
(i) Assume first that dmin > 1, then it holds that Pλ,ω(|Xn−1| = n− 1) ≥ (2/(2+
λ))n−1 , and therefore

an,j = Pλ,ω(Xn−1 = j)

Pλ,ω(|Xn−1| = n− 1)
≤
(

1
2+λ
)n−1

(
2

2+λ
)n−1

=
(

1

2

)n−1

.

We have EGW(Zn|Fn−1) = EGW(Zn), hence Var GW(Zn) = EGW(Var GW
(Zn|Fn−1)). But

Var GW(Zn|Fn−1) ≤
(

max
j∈Dn−1

an,j

) ∑
j∈Dn−1

an,j Var GW

(
kj

kj + λ
)

≤
(

1

2

)n−1

Var GW

(
kj

kj + λ
)
.

By Chebychev’s inequality and the Borel–Cantelli lemma it follows that for any
δ > 0 and GW-a.e. ω there exists n0 = n0(δ, ω) finite, such that

|Zn − EGW(Zn)| ≤ δ for n ≥ n0 .

Together with (3.1) and (3.2), this proves that for GW-a.e. ω,

lim
n→∞

1

n
logPλ,ω(|Xn| = n) = log

∞∑
k=1

k

k + λpk .

(ii) Assume that p1 > 0. Let b(j) be the number of vertices on the path from 0 to
j which have at least two children, and

Nn := min
j∈Dn

b(j) .
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An application of Lemma 2.2 (taking there A(ω, j) = 1{ko≥2}) yields that there is
β0 > 0 such that for GW-a.e. ω, lim infn→∞Nn/n ≥ β0. Now,

Pλ,ω(|Xn−1| = n− 1) ≥
(

1

1+ λ
)n−1

and, as before, for n > n1(ω) for some n1(ω) which is finite GW-a.s.,

an,j = Pλ,ω(Xn−1 = j)

Pλ,ω(|Xn−1| = n− 1)
≤
(

1
2+λ
)Nn−1
(

1
1+λ
)n−1−Nn−1

(
1

1+λ
)n−1

≤
(

1+ λ
2+ λ
)Nn−1

≤
(

1+ λ
2+ λ
)(n−1)β0

,

and we proceed as in case (i).

Proof of (1.5). By Lemma 2.1, it is enough to provide a lower bound for the
quenched probabilities and an upper bound for the corresponding annealed proba-
bilities.
(i) We have, by coupling,

Pλ(|Xn| ≤ nε) ≤ Pλ,ωmin(|Xn| ≤ nε) (3.3)

where ωmin denotes the dmin-ary rooted tree, that is, with each vertex having dmin

children. Fix p ∈ (0, 1), and let SR,pn denote the (biased) reflected random walk on

Z+ withP(SR,pn+1 = x+1|SR,pn = x) = p+(1−p)1{x=0}. We usePSRWR(p) to de-

note the law of SR,pn . For Y1, Y2, . . . , i.i.d. withP(Yi = 1) = p = 1−P(Yi = −1)
and Spn := ∑n

i=1 Yi , S0 = 0, we denote the distribution of the biased simple ran-
dom walk {Spn } as PSRW(p). Then, under Pλ,ωmin , the random variable |Xn| has the

same distribution as SR,pn for p := dmin/(dmin+λ). By Cramér’s Theorem (see [3,
Theorem 2.2.3]), when dmin > λ, that is p > 1/2 and ε is small enough,

lim sup
n→∞

1

n
logP(SR,pn ≤ nε) ≤ lim sup

n→∞
1

n
logP(Spn ≤ nε) ≤ −H

(
ε + 1

2

∣∣∣p)
(3.4)

Together with (3.3) and the continuity of H(·|p), this implies

lim sup
ε→0

lim sup
n→∞

1

n
logPλ (|Xn| ≤ nε) ≤ −H

(
1

2

∣∣∣p) (3.5)

(ii) Turning to a lower bound for the quenched probabilities, in case dmin ≥ 2, fix
C < 1/(log dmin) with bn := �log n�3 and hn denoting the even integer nearest to
C log log n. We call a tree T ∈ T n-slow if there exists a vertex j ∈ Dbn(T) such
that:
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H1. The finite subtree consisting of the first hn levels of Tj , denoted T̂jn, is a finite
rooted dmin-ary tree.

H2. All ancestors l of j satisfy kl ≤ e(log n)4 .
We next check that the assumption m < ∞ implies that there exists an n0(ω)

such that GW-a.e. ω is n-slow for all n > n0(ω). Indeed, for a fixed vertex l,

GW(kl ≥ e(log n)4) ≤ me−(log n)4 .

Consider the subtree 4n of ω obtained by removing, for each vertex j ∈ Di(ω),
i ≤ bn, all children (and their descendants) except for the first dmin. Then,

GW

(
max

l∈Di(4n),i=1,...,bn
kl ≥ e(log n)4

)
≤ me−(log n)4(dmin)

bn+1 ,

whereas, for n large enough,

GW(  ∃j ∈ Dbn(4n) satisfying H1) ≤
(

1− (pdmin)
d
hn
min

)dbnmin ≤ e−n .

Therefore, for n large enough,

GW(ω is not n-slow) ≤ GW(4n is not n-slow) ≤ e−n + e−(log n)3 ,

and the Borel–Cantelli lemma completes the claim.
Let now ω be n-slow. Then, with j ∈ Dbn(ω) as in the definition of n-slow,

and kn = hn/2+ bn, we have for all t > kn,

Pλ,ω(Tbn+hn ≥ t) ≥ Pλ,ω
(
Xkn ∈ Dhn/2(ω̂jn), X5 ∈ ω̂jn, 5 = kn + 1, . . . , t

)
≥ (e(log n)4 + λ)−bnphn/2P(tn > t) (3.6)

where p = dmin/(dmin + λ) > 1/2 and

tn := inf

{
j > 0 : |Spj | =

hn

2

}
denotes the exit time of SRW(p) from the interval

(
−hn

2 ,
hn
2

)
. We have, with

At := {tn ≥ t},

lim inf
t→∞ t−1 logPSRW(p)(At ) ≥ lim inf

t→∞ t−1 logP
SRW
(

1
2

)(At )−H
(

1

2

∣∣∣p) (3.7)

as a consequence of the following standard argument: Let P,Q be probability dis-
tributions, {Ft } an increasing sequence of σ -fields such that Q � P on Ft , and
{At } a sequence of Ft -measurable events such that Q(At) > 0. We have

logP(At ) ≥ logQ(At)− 1

Q(At)

∫
At

log
dQ

dP

∣∣∣∣Ft

dQ .
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We conclude, provided that t−1 log dQ
dP
|Ft

converges to some constant h(Q|P)
uniformly on At , that

lim inf
t→∞ t−1 logP(At ) ≥ lim inf

t→∞ t−1 logQ(At)− h(Q|P) .

Recall [15, Page 243], that

h2
nt
−1 logP

SRW
(

1
2

)(At )→−π
2

2
(3.8)

as n, t → ∞, provided h2
n/t → 0. GW-a.a. ω are n-slow for all large n, hence

applying (3.6), (3.7) and (3.8) for t = n, imply that for any ε > 0,

lim inf
n→∞

1

n
logPλ,ω(|Xn| ≤ nε) ≥ lim inf

n→∞
1

n
logPλ,ω(Tεn ≥ n) ≥ −H

(
1

2

∣∣∣p) ,
(3.9)

which together with (3.5) and Lemma 2.1 completes the proof of (1.5).

4. Proof of Theorem 1.1

As mentioned in the introduction, our main tool is the analysis of the hitting times
Tn. It turns out also that a crucial ingredient is the fact that the exponential rate
of decay of atypical behavior of Tn is not changed significantly when one also
asks that the walk does not return to the root. This latter fact is of course easier to
demonstrate in the case of speed-up considered here.

Throughout the proof, we use j to denote a vertex of the rooted Galton–Watson
tree ω. Let ωj denote the subtree of ω consisting of j and its descendants, and let
ωj denote the graph consisting of ωj and an additional edge connecting j to itself.
We start a λ-biased simple random walk on ωj , and denote its law by Pλ,ω,j (here,
at the root j , we have

Pλ,ω,j

(
X1 = j |X0 = j

)
= λ

(kj + λ) (4.1)

where kj is the number of children of j ). Note that we have now two different
measures Pλ,ω and Pλ,ω,o for λ-biased random walks on ω, which differ only at
visits in o. Define for j ∈ ω the hitting time T̃m(j) of level m in ωj and the time
τj ∈ {1, . . . ,∞} of first return to the root of ωj of a walk started at the root of ωj .
As in (1.1) let

Pλ,o :=
∫
Pλ,ω,o(·)GW(dω)

Then, for any 9 > 0 and α > 1,

Pλ,ω

(
Tn+9 ≤ α(n+9)

)
≥ Pλ,ω(Tn ≤ αn)e9Zn (4.2)
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where

Zn :=
∑
j∈Dn

(
p(9, j)/e9

)
a(n, j)

a(n, j) := Pλ,ω
(
XTn = j |Tn ≤ αn

)
p(9, j) := Pλ,ω

(
T̃9(j) ≤ α9, τj > T̃9(j)|XTn = j, Tn ≤ αn

)
e9 := Eλ (p(9, j)) ,

and because of the Markov property,

p(9, j) = Pλ,ω,j
(
T̃9(j) ≤ α9, τj > T̃9(j)

)
.

Note that
e9 = Eλ (p(9, j)) = Pλ,o(T9 ≤ α9, τo > T9) ,

is independent of j , where τo denote the time of first return to the root. Moreover,
the event {τo > T9, T9 ≤ α9} contains the event of the random walk taking its
first 9 steps down from the root, an event whose probability is at least (λ+ 1)−9

for any Galton–Watson tree with p0 = 0. Thus, e9 ≥ (λ + 1)−9 for all 9. Re-
call that E(Zn) = 1 by the independence of p(9, j) and a(n, j). Moreover, the
random variables p(9, j)/e9 are i.i.d. (but of law depending upon 9), whereas∑
j∈Dn a(n, j) = 1 for all n. Let Gn be the σ -field generated by {a(n, j) : j ∈ Dn}.
For a ray r emanating from the root, let

Nn(r) =
{

# of vertices on r
⋂
{
n⋃
k=1

Dk} with more than one child

}

Applying Lemma 2.2 for A(ω, j) = 1{ko≥2} we see that there exists a β0 > 0 such
that

lim inf
n→∞ inf

r
{Nn(r)/n} > β0 , GW − a.s. (4.3)

Fix c > 1/β0 and let An = {ω : maxj∈Dn a(n, j) ≤ c/n} which is measurable on
Gn. Then, for all θ > 0, δ > 0, n,

Pλ(Zn ≤ δ,An) ≤ eθδEλ
(
e−θZn1An

)
= eθδEλ

(
1An

Eλ(e
−θZn |Gn)

)
= eθδEλ

(
1An

e
∑
j∈Dn φ9(θa(n,j))

)
where

φ9(η) := logEλ
(
e−ηp(9,j)/e9

)
≤ log
(

1−(1+λ)−9+(1+λ)−9e−η(1+λ)9
)

:=ψ(η)

since 0 ≤ p(9, j)/e9 ≤ (1+λ)9,Eλ(p(9, j)/e9) = 1, and we used the inequal-
ity e−ab ≤ 1− b+ be−a for b ≤ 1 with a = η(1+λ)9 and b = p(9, j)/(e9(1+
λ)9). Hence,

Pλ(Zn ≤ δ,An) ≤ eθδeJn(θ,c)
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where

Jn(θ, c) = sup
( ∞∑
j=1

ψ(ηj ) : 0 ≤ ηj ≤ θc

n
,

∞∑
j=1

ηj = θ
)
.

Note that η �→ ψ(η) is convex, hence Jn(θ, c), being the supremum of a convex
function of {ηj }, subject to a convex constraint set, is obtained at one of the extremal
points of the constraint set. Thus, Jn(θ, c) = (n/c)ψ(θc/n), and optimizing over
θ ≥ 0 yields

Pλ(Zn ≤ δ,An) ≤ exp(−n
c
H(δ(1+ λ)−9|(1+ λ)−9)) .

We have the following proposition, whose proof is deferred.

Proposition 4.1. (Uncertainty estimate). Let

Bk =
⋂
n≥k

An = {ω : max
j∈Dn
n≥k

a(n, j)n ≤ c} .

Then,

GW

( ∞⋃
k=1

Bk

)
= 1 .

Since, for every k,

∞∑
n=1

Pλ(Zn ≤ δ, Bk) ≤ k +
∞∑
n=1

Pλ(Zn ≤ δ,An) <∞ ,

Proposition 4.1 and the Borel–Cantelli lemma imply that for any fixed 9 and δ,
1 ≤ 9 < ∞, δ ∈ (0, 1), and a.e. ω, there exists an n0(ω) < ∞ such that Zn ≥ δ

for any n ≥ n0(ω).
Note that Pλ,ω(Tn ≤ αn) ≥ Pλ,ω(Tn = n) ≥ (1+ λ)−n > 0. Hence, for all ω

and n ≥ n0(ω), writing n = N9+ n1, n1 ∈ [n0, n0 +9) and N integer, we have
by iterating (4.2)

Pλ,ω(Tn ≤ αn) ≥ Pλ,ω(Tn1 ≤ αn1)e
N
9

N−1∏
i=0

Zn1+i9

≥ Pλ,ω(Tn1 ≤ αn1)(δe9)
N

Hence,

1

n
logPλ,ω(Tn ≤ αn) ≥ 1

N9+ n1
logPλ,ω(Tn1 ≤ αn1)+ 1

9+ n1/N
log(δe9)

≥ 1

N9+ n1
log((1+ λ)−n1)+ 1

9+ n1/N
log(δe9)
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Taking n→∞ (hence N →∞), fixing 9 ∈ [1,∞) we thus get for all δ ∈ (0, 1)
that GW-a.s.,

lim inf
n→∞

1

n
logPλ,ω(Tn ≤ αn) ≥ 1

9
log(δe9) .

Hence, with 9→∞ we have that GW-a.s.,

lim inf
n→∞

1

n
logPλ,ω(Tn ≤ αn) ≥ lim sup

9→∞
1

9
log e9

= lim sup
9→∞

1

9
logPλ,o(T9 ≤ α9, τo > T9)

≥ lim sup
9→∞

1

9
logPλ(T9 ≤ α9, τo > T9) , (4.4)

where the last inequality holds since

Pλ,ω,o(Tn ≤ αn, τo > Tn) = ko

λ+ ko
Pλ,ω (Tn ≤ αn, τo > Tn)

≥ 1

λ+ 1
Pλ,ω (Tn ≤ αn, τo > Tn)

and hence

Pλ,o(Tn ≤ αn, τo > Tn) ≥ 1

λ+ 1
Pλ (Tn ≤ αn, τo > Tn) .

We next show that for any ω, all n and α

Pλ,ω(Tn ≤ αn) ≤ αnPλ,ω(Tn ≤ αn, τo > Tn) . (4.5)

out of which we have that for all 9,α,

Pλ(T9 ≤ α9, τo > T9) ≥ 1

α9
Pλ(T9 ≤ α9) (4.6)

(in fact, whenever λ < dmin, the factor 1/α9 in the right hand side of (4.6) can be
replaced by a constant, but we will not need it here).

Indeed, let

Ak = {Tn ≤ αn, last visit to the root before time Tn is at time k} .
Then, A0 = {Tn ≤ αn, τo > Tn} while

{Tn ≤ αn} =
[αn]−1⋃
k=0

Ak .

But,
Pλ,ω(Ak) ≤ Pλ,ω(Tn ≤ αn− k, τo > Tn) ≤ Pλ,ω(A0) ,
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implying that

Pλ,ω(Tn ≤ αn) ≤ αnPλ,ω(A0) ,

and hence (4.5) and (4.6). Next, (4.6) implies that

lim sup
9→∞

1

9
logPλ(T9 ≤ α9, τo > T9) = lim sup

9→∞
1

9
logPλ(T9 ≤ α9)

Recall (4.4) and conclude that GW-a.s.,

lim inf
n→∞

1

n
logPλ,ω(Tn ≤ αn) ≥ lim sup

n→∞
1

n
logPλ(Tn ≤ αn) .

Together with Lemma 2.1 and (4.5), this proves that GW-a.s.,

−J<λ (α) := lim
n→∞

1

n
logPλ,ω(Tn ≤ αn) = lim

n→∞
1

n
logPλ(Tn ≤ αn, τo > Tn)

= lim
n→∞

1

n
logPλ(Tn ≤ αn) . (4.7)

Note that since for θ ∈ (0, 1) and α = θγ1 + (1− θ)γ2,

Pλ,ω(Tn ≤ αn, τo > Tn) ≥ Pλ,ω(Tθn ≤ θγ1n, τo > Tn, Tn ≤ αn)
≥
∑
j∈Dθn

Pλ,ω(Tθn ≤ θγ1n,XTθn = j, τo > Tθn)

Pλ,ω,j (T̃(1−θ)n(j) ≤ (1− θ)γ2n, τj > T̃(1−θ)n(j)) ,

it follows, taking expectations and using independence, that

J<λ (α) ≤ θJ<λ (γ1)+ (1− θ)J<λ (γ2) ,

i.e. J<λ (·) is convex. We prove below the

Proposition 4.2. (Exponential decay). J<λ (x) > 0 for x < 1/vλ.

Recall that |Xn|/n→ vλ a.s. Obviously, Tn →∞, hence n/Tn = |XTn |/Tn → vλ
as well. Thus, by (4.7), J<λ (x) = 0 for all x > 1/vλ. It follows from Proposition
4.2 and the convexity of J<λ (·) that J<λ is strictly decreasing on [1, 1/vλ]. We now
have

lim sup
n→∞

1

n
logPλ,ω

( |Xn|
n

∈ [a, b)

)
≤ lim sup

n→∞
1

n
logPλ,ω(Tna ≤ n)

= a lim sup
n→∞

1

na
logPλ,ω

(
Tna ≤ na

a

)
= −aJ<λ

(
1

a

)
(4.8)
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while, for b > a and a ∈ (vλ, 1], there exists ε > 0 small enough, such that

lim inf
n→∞

1

n
logPλ,ω

( |Xn|
n

∈ [a, b)

)
≥ lim inf

n→∞
1

n
logPλ,ω

(
T�n(a+ε)�

n
∈ (1, 1+ ε]

)
≥ lim inf

n→∞
1

n
log
[
Pλ,ω(T�n(a+ε)� ≤ n(1+ ε))− Pλ,ω(T�n(a+ε)� ≤ n)

]
= −(a + ε)J<λ

(
1+ ε
a + ε
)

(4.9)

where the last equality is due to the fact that J<λ is strictly decreasing and a > vλ.
Hence, taking the limit as ε→ 0, we conclude from (4.8) and the above that

lim
n→∞

1

n
logPλ,ω

( |Xn|
n

∈ [a, b)

)
= −aJ<λ

(
1

a

)
:= −Iλ(a) . (4.10)

The convexity and strict monotonicity of Iλ follow from the corresponding prop-
erties of J<λ .

We show below that for some c(ε) →ε→0 0, any ω ∈ T , n′ ≤ (1 + ε)n and
j ∈ Dn(ω),

Pλ,ω(Xn′ = j) ≤ Pλ,ω(Xn = j)ec(ε)n . (4.11)

Summing over j ∈ Dn(ω) and n′ then leads to

Pλ,ω(|Xn(1+ε)| ≥ n) ≤
n(1+ε)∑
n′=n

Pλ,ω(|Xn′ | = n) ≤ 2nεPλ,ω(|Xn| = n)ec(ε)n .

Considering the scaled logarithmic limits of both sides, it follows from (4.10) that

−(1+ ε)Iλ( 1

1+ ε ) ≤ −Iλ(1)+ c(ε) ,

so taking ε → 0 we see that the convex function Iλ : [0, vλ] �→ R+ is lower
semi-continuous at x = 1, hence continuous on [vλ, 1]. Turning to prove (4.11),
fix ω ∈ T , ε > 0, n′ ≤ (1 + ε)n and the ray r emanating from the root such that
j ∈ Dn(ω) is in r . To any path of the λ-biased random walk for which Xn′ = j ,

there corresponds a vector l of (even) integers lt ≥ 2 with
∑k
t=1 lt = n′ − n, and

a vector u of integers 0 ≤ u1 ≤ u2 ≤ . . . ≤ uk ≤ n, such that upon reaching the
unique vertex vt ∈ r∩Dut (at its ut+

∑
s<t ls step), the path makes an excursion of

length lt within the subtree ωvt ending with its first return to vt (in case ut+1 = ut
the next such excursion shall be in the same subtree, and so on). Decomposing the
event {Xn′ = j} according to the value of the pair (l,u), it is not hard to verify that

Pλ,ω(Xn′ = j) =
∑
(l,u)

Pλ,ω(Xn = j)

k∏
t=1

Pλ,ω,vt ( τvt = lt )

≤ Pλ,ω(Xn = j)|{(l,u)}| . (4.12)
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By a similar decomposition of the event {Sn′ = n} for SRW on Z, starting at S0 = 0,
we see that the pairs (l,u)map to disjoint collections of SRW’s path of length n′, all
of which start at 0 and terminate at n. For each n′ ∈ [n, (1+ ε)n] the total number
of such path is

2n
′
PSRW(1/2)(Sn′ = n) ≤ ec(ε)n ,

where c(ε) := (1+ ε)(H(1|1/2)−H(1/(1+ ε)|1/2)). Consequently, the number
of possible choices of (l,u) is also at most exp(c(ε)n), with (4.12) thus leading to
(4.11).

To show that

lim
n→∞

1

n
logPλ

( |Xn|
n

∈ [a, b)

)
= −Iλ(a) ,

we follow the same argument as in (4.8) and (4.9) but with Pλ(·) replacing Pλ,ω(·)
everywhere.

This completes the proof of Theorem 1.1, except for the proofs of the uncertainty
estimate (Proposition 4.1) and the exponential decay (Proposition 4.2).

We next establish the uncertainty estimate.

Proof of Proposition 4.1. In view of (4.3), it suffices to show that for any j ∈ Dn,
GW-a.e. ω, and all n, one has that a(n, j) ≤ 1/Nn(r) for the ray r(j) connecting
the root to j . Toward this end, fix v a branch point, that is, a vertex with kv ≥ 2,
on r(j) and let u = r(j) ∩ D|v|+1 denote the child of v on the ray r(j). Let
4v = {descendants of v}\{descendants of u}. We show below the

Lemma 4.1.

Pλ,ω(XTn = j, Tn ≤ αn) ≤ Pλ,ω(XTn ∈ 4v, Tn ≤ αn) .

Equipped with Lemma 4.1, note that, using the fact that 4v ∩4v′ = ∅ for v = v′
in the set Br(r(j)) of branch points on the ray r(j),

Pλ,ω(Tn ≤ αn) ≥
∑

v∈Br(r(j))
Pλ,ω(XTn ∈ 4v, Tn ≤ αn)

≥ Nn(r(j))Pλ,ω(XTn = j, Tn ≤ αn) ,

implying that a(n, j) = Pλ,ω(XTn = j |Tn ≤ αn) ≤ 1/Nn(r(j)), as claimed.

Proof of Lemma 4.1. Let M̃t (v) denote the number of visits to a vertex v before
time t , and write Mn(v) = M̃Tn(v). We prove below that for any k ≥ 1,

Pλ,ω(XTn = j,Mn(v) = k, Tn ≤ αn) ≤ Pλ,ω(XTn ∈ 4v, Tn ≤ αn,Mn(v) = k)

(4.13)
out of which Lemma 4.1 follows readily.
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The proof of (4.13) is obtained by constructing a coupling between two copies

X
(1)· , X

(2)· of the random walk on the treeω, with associated (T (i)n , M̃
(i)
t ,M

(i)
n ), i =

1, 2, such that each copy has the same law as Pλ,ω(·), and such that{
X
(1)

T
(1)
n

= j,M(1)
n (v) = k, T (1)n ≤ αn

}
⊂
{
X
(2)

T
(2)
n

∈ 4v,M(2)
n (v) = k, T (2)n ≤ αn

}
(4.14)

which then proves (4.13).
We thus proceed to the description of our coupling, which depends on ω, on j ,

k and on v. Fix a deterministic permutation π of the (at least 2) children of v, which

has no fixed points (i.e. in particular π(u) = u). Further, define θ(i)k = min{t :

M̃
(i)
t (v) = k}.

1. Let X(1)· evolve according to the law Pλ,ω.

2. Let X(2)t = X
(1)
t for all t ≤ T

(1)
n ∧ θ(1)k . Note that therefore, T (1)n ∧ θ(1)k =

T
(2)
n ∧ θ(2)k .

3. If M(1)
n (v) < k then we let X(2)t = X

(1)
t for all t .

4. We consider in all steps below only the caseM(1)
n (v) ≥ k, which implies θ(1)k <

T
(1)
n . In this case we have θ(1)k = θ

(2)
k := θk . Then, define

X
(2)

θ
(1)
k +1

=
{
X
(1)
θk+1, if |X(1)θk+1| < |v|

π(X
(1)
θk+1), otherwise .

5. If X(1)θk+1 = u then {X(2)θk+1+t }t≥1 is drawn independently according to Pλ,ω.

6. Define the stopping time τ := T
(1)
n ∧ θ(1)k+1. We construct below a random time

τ ′ ≤ τ and the path {X(2)t }τ
′
t=θk+2. Then, for t > τ ′, we let {X(2)t } proceed

according to Pλ,ω, independently of {X(1)· }.
7. We are thus left with the definition of the crucial part of our coupling, name-

ly the definition of the random time τ ′ and the coupling of {X(2)t }τ
′
t=θk+2 to

{X(1)t }τt=θk+2. With a (serious) abuse of terminology, we denote by “Loops”
anything branching out of the ray r = r(j).

(I) We shall “stop the clock” of X(2)· for all the time units which X(1)· spends
in the Loops, till either one of the following happens:

(a) X(1)· returns to v.

(b) X(1)· hits Dn (exceed T (1)n ) (in both these cases, X(2)· continues inde-
pendently with law Pλ,ω(·), see step 6 above).

(c) X(2)· hits Dn (reach T (2)n ) – after which X(2)· continues according to

Pλ,ω, independently of X(1)· .

(II) The moves of X(1)· along the ray r (ignoring the steps into the Loops) are

as in λ-biased random walk, that is probability of going up the ray = λ
λ+1 ,
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probability of going down the ray = 1
λ+1 . Suppose at time s we have X(2)·

somewhere in ωπ(u) andX(1)· just made a move on the ray r . We then make

a local move of X(2)· according to the Pλ,ω law in such a way that X(2)·
moves up (towards the root) only if X(1)· moved up. Since p0 = 0 we have

that Pω(X
(2)· should move up | position of X(2)· ) ≤ λ

λ+1 regardless of the

position of X(2)· . This implies that such a coupling is always possible.

Note also that if {M(1)
n (v) = k,X

(1)

T
(1)
n

= j} then X(1)· does not hit v for (k + 1)-st

time or Dn during a move in the “Loops” before T (1)n . Our coupling guarantees

that thus from the k-th visit to v (followed by a move to u) of X(1)· to T (1)n , X(2)·
is in ωπ(u) (the subtree rooted at π(u)), with |X(2)t | ≥ |r(X(1)t )|, where r(X(1)t ) is

the ancestor of X(1)t on the ray r with largest distance from the root. It follows that

upon this event, T (2)n ≤ T
(1)
n and X(2)· hits level n at one of the vertices in ωπ(u),

that is, part of4v . This completes the proof of (4.14), and hence of Lemma 4.1.

We turn now to establish the exponential decay Proposition 4.2.

Proof of Proposition 4.2. We divide the proof into the study of different cases:
i) λ > m > 1. Due to (4.6), it clearly suffices to show that

lim sup
n→∞

1

n
logPλ(τo ≥ Tn) < 0 . (4.15)

Toward this end, define, for a vertex j ∈ Dn, the hitting time Tj = min{n : Xn = j}
(possibly, Tj = ∞). We then have

Pλ,ω(τo > Tn) ≤
∑
j∈Dn

Pλ,ω(τo > Tj ) .

By coupling with simple random walk, and the well known formula for exit prob-
abilities of the latter from a strip, we get that

Pλ,ω(τo > Tj ) ≤ PSRW( 1
1+λ )

(Tn < τo) = λ− 1

λn − 1
≤ 1

λn−1
,

and hence Pλ,ω(τo > Tn) ≤ λ|Dn|λ−n. Integrating with respect toGW we get that
Pλ(τo > Tn) ≤ λ(m/λ)n, implying (4.15).
ii) λ = m: a “bare-hands” proof may be constructed using Lemma 2.2 applied to
points with large expected return time. Instead, fixing α <∞, we remark that [20,
Theorem 1] implies that for GW-a.a. ω,

lim inf
n→∞ n−1 logPλ,ω(Tn+1 ≤ αn+ 1) < 0 (4.16)

(which is all we need, by (4.7)). Indeed, note that Xn is a random walk on the
weighted graph ω ∈ T with the weight λ−5 for each edge connecting D5−1(ω) to
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D5(ω), 5 = 1, 2, . . .. Let z denote the setDn+1 of all vertices of distance n+1 from
o, noting that then Tn+1 = Toz. Following [20], let the weight of a collection of ver-
tices be the sum of weights over all incident edges, so in particular, wo = λ−1|D1|
and wz = λ−(n+1)|Dn+1| + λ−(n+2)|Dn+2|. Set gn(ω) > 1 to be the (unique)
solution of (g − 1)2gn−2 = 2wz/wo. Since λ = m it follows that gn(ω) → 1 as
n→∞ for GW-a.a. ω. So, for all n large enough, α < (gn + 1)/(gn − 1) and by
[20, Theorem 1(a)],

1

n
logPλ,ω(Tn+1 ≤ αn+1) ≤ −αH

(α + 1

2α

∣∣∣ gn

1+ gn
)
−→
n→∞−αH

(α + 1

2α

∣∣∣1
2

)
< 0.

iii) In the case λ < m, an essential role is played by regeneration points. These
will be useful also in the case of slowdown, c.f. the proof of Lemma 5. Given a
path X0, X1, . . ., call n > 0 a regeneration time if Xn = Xk for all k < n and
Xk = Xn−1 for all k > n. Call n > 0 a level regeneration time if |Xn| = |Xk|
for all k < n and |Xk| = |Xn−1| for all k > n. It is proved in [11] that whenever
λ < m then there are Pλ-a.s. infinitely many regeneration times η1, η2, . . ., such
that {ηn+1 − ηn}n≥1 and {|Xηn+1 | − |Xηn |}n≥1 are i.i.d. sequences, and

Eλ(η2 − η1) <∞ (4.17)

and

lim
n→∞

|Xn|
n

= Eλ(|Xη2 | − |Xη1 |)
Eλ(η2 − η1)

, Pλ − a.s. (4.18)

Let r1, r2, . . . denote successive level regeneration times. We prove below the fol-
lowing tail estimates for level regeneration points and level regeneration times.

Lemma 4.2. i) If λ < m then there is a θ > 0 such that

Eλ

(
eθ(|Xr2 |−|Xr1 |)

)
<∞ , Eλ

(
eθ |Xr1 |
)
<∞ . (4.19)

ii) If further λ < dmin then in addition there exists a θ > 0 such that

Eλ

(
eθ(r2−r1)

)
<∞ , Eλ

(
eθr1
)
<∞ . (4.20)

Rerunning the argument in [11, Proposition 3.4], one concludes that there are Pλ-
a.s. infinitely many level regeneration times r1, r2, . . ., such that {rn+1−rn}n≥1 and
{|Xrn+1 |−|Xrn |}n≥1 are i.i.d. sequences. Further, by (4.18), |Xrn |/rn →n→∞ vλ >

0, Pλ-a.s. Using (4.19) and the independence of the increments |Xri+1 |− |Xri |, this
forces that lim supn→∞ rn/n <∞, Pλ-a.s., which then implies

Eλ(r2 − r1) <∞ (4.21)

and

lim
n→∞

|Xn|
n

= Eλ(|Xr2 | − |Xr1 |)
Eλ(r2 − r1) , Pλ − a.s. (4.22)
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Due to (4.22) and xvλ < 1, one can find a c > 0 such that Eλ(|Xr2 | − |Xr1 |) <
1/c while Eλ(r2 − r1) > x/c. Then,

Pλ(Tn ≤ xn) ≤ Pλ(there are at most cn level regeneration times before Tn)

+Pλ
 cn∑
j=1

(rj+1 − rj ) ≤ xn


≤ Pλ
 cn∑
j=1

(|Xrj+1 | − |Xrj |)+ |Xr1 | ≥ n


+Pλ
 1

cn

cn∑
j=1

(rj+1 − rj ) ≤ x

c

 . (4.23)

Using (4.21), (4.19) and our choice of c > 0, we conclude that both terms in the
last inequality decay exponentially, and the proof of Proposition 4.2 is completed.

The next lemma simplifies the proof of Lemma 4.2 as well as the upper bounds
in Theorem 1.3, by showing that whenever λ < m, the upper tails of |Xr2 | − |Xr1 |
and of r2 − r1 are dominated by those of |Xr1 | and r1, respectively.

Lemma 4.3. If λ < m, then there exists Cλ <∞ such that for any x ≥ 1, t ≥ 1,

Pλ(|Xr2 | − |Xr1 | = x, r2 − r1 = t) ≤ CλPλ(|Xr1 | = x, r1 = t) (4.24)

Proof of Lemma 4.3. For k = 2, . . . and 5 ≤ k − 1, we let

A5,k := {∃s ∈ (T5, Tk) : Xs ∈ D5−1} .

Then, fixing t ≥ x ≥ 1, and using the strong Markov property at Tk in the second
equality,

Pλ,ω
(|Xr2 | − |Xr1 | = x, r2 − r1 = t

)
=

∞∑
k=1

∑
v∈Dk

Pλ,ω

(
k−1⋂
5=1

A5,k;XTk = v; |Xs | ≥ k for s > Tk;

|Xt+Tk | − |XTk | = x, r2 = t + Tk
)

=
∞∑
k=1

∑
v∈Dk

Pλ,ω

(
k−1⋂
5=1

A5,k;XTk = v

)
Pλ,ω,v
(
τ ∗v = ∞, |Xt | = x, r1 = t

)
,

where the stopping time τ ∗v := min{t > 0 : Xt−1 = v,Xt = v} denotes the first
visit of the edge connecting v to itself that is added to ωv in the definition of the
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measure Pλ,ω,v . Consequently,

Pλ
(|Xr2 | − |Xr1 | = x, r2 − r1 = t

)
=

∞∑
k=1

Eλ

(
Eλ

( ∑
v∈Dk

Pλ,ω

(
k−1⋂
5=1

A5,k;XTk = v

)

Pλ,ω,v
(
τ ∗v = ∞, |Xt | = x, r1 = t

) ∣∣∣Fk))

=
∞∑
k=1

Eλ

Pλ,o(τ ∗o = ∞, |Xt | = x, r1 = t)
∑
v∈Dk

Pλ,ω

(
k−1⋂
5=1

A5,k;XTk = v

)
= Pλ,o(τ

∗
o = ∞, |Xr1 | = x, r1 = t)

∞∑
k=1

Pλ

(
k−1⋂
5=1

A5,k

)
.

Summing over t ≥ x ≥ 1, we get that

1 = Pλ,o(τ
∗
o = ∞)

∞∑
k=1

Pλ

(
k−1⋂
5=1

A5,k

)
,

which substituting in the above yields the identity

Pλ
(|Xr2 | − |Xr1 | = x, r2 − r1 = t

) = Pλ,o
(|Xr1 | = x, r1 = t, τ ∗o = ∞

)
Pλ,o(τ ∗o = ∞)

(4.25)
The inequality

Pλ,o
(|Xr1 | = x, r1 = t, τ ∗o = ∞

) ≤ Pλ(|Xr1 | = x, r1 = t) (4.26)

is evident by noting that the sub-probability measure Pλ,ω,o(·, τ ∗o = ∞) is domi-
nated by the probability measure Pλ,ω(·) (they differ only at steps of the random
walk taken at the origin and there the latter measure dominates the former on the
event τ ∗o = ∞). Finally, note that Cλ = 1/Pλ,o(τ ∗o = ∞) < ∞ by transience of
the λ-biased random walk whenever λ < m, hence (4.24) follows by combining
(4.25) and (4.26).

Proof of Lemma 4.2. We begin by considering the easier case λ < dmin, and prov-
ing then (4.20), which implies of course (4.19) for this case. Couple |Xn| with a
reflected biased random walk Sn of law P

SRWR(
dmin
dmin+λ )

, such that each regeneration

time of Sn is also a level regeneration time of Xn, see [12] for this construction
when λ = 1, or [2] for a similar coupling in the case of one dimensional RWRE.
Since the regeneration times of Sn possess exponential tails, see e.g. [2, Pg. 680]
(covering also the first regeneration time r1, whose law is typically different than
that of r2 − r1), we are done.
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We consider next the proof of (4.19), using a pathwise decomposition of the
path {Xt }r1t=0 due to H. Kesten (see [8] and [12], [19] for similar constructions). We
prove below that for some c > 0 and all 5 > 3,

eq − ninanew1Pλ(|Xr1 | > 5) ≤ e−c5 . (4.27)

Recall the inequality (4.24), by which such exponential tail estimate then applies
to |Xr2 | − |Xr1 | as well.

We describe next the path decomposition alluded to above, by defining a ran-
dom variable K and an increasing sequence of random variables {si}∞i=0 (called
for i ≤ K ladder times) as follows. Fix s0 = 0. If τ̃0 := τo = ∞ then K = 0
and si = ∞ for i > 0. Otherwise, let M0 := max{|Xn| : 0 ≤ n ≤ τ̃0} and
s1 = min{n : |Xn| > M0}. We proceed recursively: denote by τ̃i the time of first
return of the walk to level |Xsi |−1 (possibly infinite). Then, if τ̃i = ∞ thenK = i

and sn = ∞ for all n > i. Otherwise, Mi := max{|Xn| : 0 ≤ n ≤ τ̃i} and
si+1 = min{n : |Xn| > Mi}. Note that sK = r1 ifK > 0 and r1 = 1 ifK = 0, and
further the times si are stopping times. Therefore, for 5 > 1,

Pλ(|Xr1 | > 5) = Pλ(|XsK | > 5) (4.28)

= Pλ

(
K∑
i=1

(|Xsi | − |Xsi−1 |) > 5

)

=
∞∑
k=1

Pλ

(
k∑
i=1

(|Xsi | − |Xsi−1 |) > 5, τ̃i <∞, i = 1, . . . , k − 1, τ̃k = ∞
)
.

The interest in the definition of the ladder times are their independence properties.
To describe them, let {(Ai, Bi)} denote a sequence of independent random vectors
taking values in N× {0, 1}, such that for any set C,

Pλ(|Xs2 | − |Xs1 | ∈ C, τ̃1 <∞)=P(Ai ∈ C,Bi=1), Pλ(τ̃1=∞)=P(Bi=0) .

We now have the following lemma.

Lemma 4.4. For any k ≥ 1 and sets Ci ,

Pλ({|Xsi | − |Xsi−1 | ∈ Ci}ki=1, {τ̃i <∞}k−1
i=0 , τ̃k = ∞)

= Pλ(|Xs1 | ∈ C1, τ̃0 <∞)
k∏
i=2

P(Ai ∈ Ci, Bi = 1)Pλ(τ̃1 = ∞) .

Proof of Lemma 4.4. Note first that we can also start at a vertex different from the
root: in this case, we modify τ̃0 := inf{j : |Xj | = |X0| − 1}.

Fix ω, k ≥ 1 and sets Ci , i = 1, . . . , k of positive integers. For any fixed path
ν = {vn} on ω, such that vn and vn+1 are connected by an edge, one may define
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the stopping times τ̃i (ν) and ladder times si(ν). We denote by Vi the set of path ν
for which si(ν) < ∞. For any fixed ν ∈ Vk , due to the Markov property and the
fact that the si are stopping times, we have that

Pλ,ω(τ̃k = ∞, Xn = vn, n = 0, . . . , sk)

= P
vsk
λ,ω(τ̃0 = ∞)Pλ,ω(Xn = vn, n = 0, . . . , sk) ,

where P
vsk
λ,ω is the law of the λ-biased random walk on the (original) tree ω, start-

ed at vsk . Thus, for any vector 4 = (θ1, . . . , θk) of positive integers, and any
v ∈ D∑k

n=1 θn
,

Pλ,ω(τ̃k = ∞, sk <∞, Xsk = v, |Xsn | − |Xsn−1 | = θn, n = 1, . . . , k)

= Pvλ,ω(τ̃0 = ∞)Pλ,ω(sk <∞, Xsk =v, |Xsn | − |Xsn−1 |=θn, n=1, . . . , k) .

(4.29)

The probabilities in (4.29) depend on disjoint parts of ω (one determined by the
subtree ωv , while the other determined by ω truncated at level |v|). We note that

Eλ
(
Pvλ,ω(τ̃0 = ∞)

) = Pλ(τ̃1 = ∞),

is independent of v (recall that |v| ≥ 1). Hence, summing (4.29) over v and the
relevant values of4, then taking the expectation with respect to ω, we deduce that

Pλ(τ̃k = ∞, sk <∞, |Xsi | − |Xsi−1 | ∈ Ci, i = 1, . . . , k)

= Pλ(τ̃1 = ∞)Pλ(sk <∞, |Xsi | − |Xsi−1 | ∈ Ci, i = 1, . . . , k) .

Similarly, one checks that for ν ∈ Vi−1 and any set C of positive integers,

Pλ,ω(|Xsi | − |Xsi−1 | ∈ C, τ̃i−1 <∞, Xn = vn, n = 0, . . . , si−1)

= P
vsi−1
λ,ω (|Xs1 | ∈ C, τ̃0 <∞)Pλ,ω(Xn = vn, n = 0, . . . , si−1) ,

so for any 4 = (θ1, . . . , θi−1) and v ∈ D∑i−1
n=1 θn

,

Pλ,ω(|Xsi | − |Xsi−1 | ∈ C, τ̃i−1 <∞, Xsi−1 = v,

|Xsn | − |Xsn−1 | = θn, n = 1, . . . , i − 1)

= Pvλ,ω(|Xs1 | ∈ C, τ̃0 <∞)Pλ,ω(si−1 <∞, Xsi−1 = v,

|Xsn | − |Xsn−1 | = θn, n = 1, . . . , i − 1) .

The latter two probabilities depend on disjoint parts ofω, whereas |v| ≥ 1, implying
that

Eλ
(
Pvλ,ω(|Xs1 | ∈ C, τ̃0 <∞)

) = Pλ(|Xs2 | − |Xs1 | ∈ C, τ̃1 <∞)
= P(Ai ∈ C,Bi = 1)
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is independent of v. Recall that a.s. {si < ∞} = {τ̃i−1 < ∞}. Consequently,
summing over v and 4, then taking expectation with respect to ω, we deduce that

Pλ(si <∞, |Xsn | − |Xsn−1 | ∈ Cn, n = 1, . . . , i)

= P(Ai ∈ Ci, Bi = 1)Pλ(si−1 <∞, |Xsn | − |Xsn−1 | ∈ Cn, n = 1, . . . , i − 1) .

To complete the proof of Lemma 4.4, simply iterate the last identity for i = k, . . . , 2.

Further, for 5 > 3,

Pλ,ω(|Xs1 | > 5, τo <∞)
=
∑

j∈D1(ω)

Pλ,ω(X1 = j, |Xs1 | > 5, τo <∞)

≤
∑

j∈D1(ω)

Pλ,ω(X1 = j)P
j
λ,ω (∃ excursion from j of depth 5−1 at least before returning to j )

Averaging and using independence, one concludes that

Pλ(|Xs1 | > 5, τo <∞) ≤ Pλ(|Xs2 | − |Xs1 | > 5− 1, τ̃1 <∞) . (4.30)

Combining (4.30), Lemma 4.4 and (4.28), to prove (??) it is therefore enough
to check that the distance between consecutive ladder points possesses exponential
tails. To this end,

P(Ai ≥ t, Bi = 1) = Pλ(|Xs2 | − |Xs1 | ≥ t, τ̃1 <∞)
= Pλ(M1 −M0 ≥ t, τ̃1 <∞) ≤ Pλ(M0 ≥ t, τo <∞) .

Moreover,

Pλ(M0 ≥ t, τo <∞) ≤ Pλ(|Xm| = t, |Xn| = 0 for some n > m ≥ t) . (4.31)

Recall the notations before Lemma 2.2 and define now, for j ∈ D1(ω) and δ > 0,

A(ω, j) = 1{ko≥2}1{P
λ,ωR

j
(τo=∞)≥δ} .

Note that GW(A(ω, j))→δ→0 (1− p1) and that A(ω, j) is R-defined. A vertex
j ∈ Dn(ω) is called β-successful if there exist at least βn vertices vi on the ray

connecting o and j satisfying A(ωvi , vji ) = 1. Note that upon first visiting such
vi , with probability of at least δ(kvi − 1)/(kvi + λ) ≥ δ/(2+ λ) the random walk
never returns to the ray connecting o and j . Define the event

Bn(δ, β) = {some j ∈ Dn(ω) is not β-successful } .
Then, for any ω /∈ Bt(δ, β), by independence,

Pλ,ω(|Xm| = t, |Xn| = 0 for some n > m ≥ t) ≤ (1− δ/(2+ λ))βt .
For δ small enough, Lemma 2.2 implies the existence of a β > 0 such that
GW(Bt(δ, β)) decays exponentially in t , completing the proof of exponential decay
of the right hand side of (4.31).
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5. Proof of Theorem 1.2

Consider first the case dmin ≥ 2 and λ < dmin. It turns out it is easier to first treat a
somewhat restricted event. Recall the time of first return to the root

τo = inf{t ≥ 1 : Xt = o}
(possibly, τo = ∞) and the measures Pλ,ω,j , Pλ,ω,o. We will now run an argument
similar to the one in the proof of Theorem 1.1. Write, as in (4.2),

Pλ,ω

(
τo > Tn+9 ≥ α(n+9)

)
≥ Pλ,ω(τo > Tn ≥ αn)ê9Ẑn (5.1)

where

Ẑn :=
∑
j∈Dn

(
p̂(9, j)/ê9

)
â(n, j)

â(n, j) := Pλ,ω
(
XTn = j |τo > Tn ≥ αn

)
p̂(9, j) := Pλ,ω,j

(
τj > T̃9(j) ≥ α9

)
ê9 := Eλ(p̂(9, j)) ,

Our main technical tool, replacing Proposition 4.1, is the following uniform bound
on the conditional exit measure of λ-biased random walks on T . The proof is
deferred to the end of this section. Recall the definition of n-slow trees presented
in the proof of (1.5), and the fact proved there that

GW

(⋃
M

{ω is 5-slow for every 5 ≥ M}
)
= 1 . (5.2)

Proposition 5.1 (Uncertainty estimate). Assume dmin ≥ 2 and dmin > λ. Then
there exists a constant90 = 90(M, dmin) and c = c(dmin) > 0 such that if ω ∈ T
is l-slow (with respect to dmin) for every l ≥ M and min(kj : j ∈ ω) ≥ dmin then,
for all n > 90,

max
j∈Dn(ω)

Pλ,ω
(
XTn = j |τo > Tn ≥ αn

) ≤ e−cn .
Fix M and 9 > 90(M, dmin). Note that ê9 = Pλ,o(τo > T9 ≥ α9) is

independent of j . Moreover, the event {τo > T9 ≥ α9} contains the event of the
random walk taking its first two steps down from the root and then spending α9−2
time units oscillating between D2(ω) and D1(ω), an event of positive probability.

Thus, ê9 > 0 for all9 large enough. Denote Ân = {ω : maxj∈Dn â(n, j) ≤ e−cn},
(here, c is as in Proposition 4.1), and use (5.2) to conclude that

Pλ

 ∞⋃
k=1

⋂
n≥k

Ân

 = 1 .
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Let Ĝn be the σ -field generated by {â(n, j) : j ∈ Dn}. We then have for all θ > 0,
δ > 0, n,

Pλ(Ẑn ≤ δ, Ân) ≤ eθδEλ
(
e−θẐn1Ân

)
= eθδEλ

(
1Ân

E(e−θẐn |Ĝn)
)

= eθδEλ

(
1Ân

e
∑
j∈Dn φ̂9(θâ(n,j))

)
where

φ̂9(η) := logEλ(e
−ηp̂(9,j)/ê9) ≤ log

(
1− ê9 + ê9e−η/ê9

)
.

Proceeding as in the proof of Theorem 1.1, we conclude that for any 9 > 90 and

δ ∈ (0, 1) there exists an n2(ω) such that Ẑn ≥ δ for all n > n2(ω). This yields,
iterating (5.1) and taking first n→∞ and then9→∞, c.f. the proof of Theorem
1.1, that

lim inf
n→∞

1

n
logPλ,ω(Tn ≥ αn) ≥ lim inf

n→∞
1

n
logPλ,ω(τo > Tn ≥ αn)

≥ lim sup
9→∞

1

9
logPλ,o(τo > T9 ≥ α9) GW − a.s.

≥ lim sup
9→∞

1

9
logPλ(τo > T9 ≥ α9) .

Hence, applying Lemma 2.1, we conclude that

lim inf
n→∞

1

n
logPλ,ω(Tn ≥ αn) ≥ lim

n→∞
1

n
logPλ,ω(τo > Tn ≥ αn)

= lim
n→∞

1

n
logPλ(τo > Tn ≥ αn) , GW − a.s. .

We later prove the following lemma.

Lemma 5.1. Assume m < ∞ and λ < dmin. Then, for any ε > 0, there exists a
k = k(ε) and a constant cε < ∞ such that for all n > k, and any non-random
Bn ⊆ {1, . . . , bn},

Pλ(Tn ∈ Bn) ≤ cε(1+ ε)bnPλ(Tn ∈ Bn, τo > Tn) .

It implies that for any b <∞,

lim sup
n→∞

1

n
logPλ(bn ≥ Tn ≥ αn) ≤ lim

n→∞
1

n
logPλ(τo > Tn ≥ αn) .

By the coupling argument of (3.3) and (3.4), we know that

Pλ(Tn > bn) ≤ Pλ,ωmin(Tn > bn) ≤ P
(
S
R,p
bn ≤ n

)
≤ P (Spbn ≤ n) ,
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for p := dmin/(dmin + λ) < 1/2, so that

lim
b→∞

lim sup
n→∞

1

n
logPλ(Tn > bn) = −∞.

Consequently, considering b→∞, we see that

lim
n→∞

1

n
logPλ(Tn ≥ αn) = lim

n→∞
1

n
logPλ(τo > Tn ≥ αn)

= lim
n→∞

1

n
logPλ,ω(τo > Tn ≥ αn)

≤ lim inf
n→∞

1

n
logPλ,ω(Tn ≥ αn), GW − a.s. .

An application of Lemma 2.1 now yields

−J>λ (α) := lim
n→∞

1

n
logPλ (Tn ≥ αn) = lim

n→∞
1

n
logPλ,ω(Tn ≥ αn) , GW−a.s.

(5.3)
As in the case of Theorem 1.1, one easily checks that J>λ (·) is convex, with J>λ (x) =
0 when x < 1/vλ. Similarly, we again have exponential decay, as following.

Proposition 5.2 (Exponential decay). If λ < dmin then J>λ (x) > 0 for x > 1/vλ,

Note that for all l ≥ 0, v ∈ Dan(ω) and GW-a.a. ω,

Pvλ,ω(|Xl | ≤ an) ≤ Pλ,ωmin(|Xl | ≤ an
∣∣ |X0| = an) ≤ e−lH( 1

2 |p) ,

where p := dmin/(dmin + λ) (c.f. the coupling leading to (3.3) and the derivation
of (3.4)). Consequently,

Pλ,ω(|Xn| ≤ an) =
n∑

k=an

∑
v∈Dan(ω)

Pλ,ω(XTan = v, Tan = k)P vλ,ω(|Xn−k| ≤ an)

≤
n∑

k=an
Pλ,ω(Tan ≥ k)e−(n−k)H( 1

2 |p) .

Considering the expectation with respect to ω, we thus have by (5.3) that for any
δ > 0 and all n ≥ n0(δ),

Pλ(|Xn| ≤ an) ≤ n sup
0≤x≤1

{
Pλ(Tan ≥ xn) exp(−n(1− x)H(1

2
|p))
}

≤ n exp
[
− n( inf

0≤x≤1
{aJ>λ ((x − δ)/a)+ (1− x)H(

1

2
|p)} − δ)

]
.

Comparing (3.9) and (5.3) we see that H( 1
2 |p) ≥ εJ>λ (1/ε) for all ε > 0. Thus,

taking ε → 0 followed by δ → 0, the convexity of J>λ (·) and its continuity at
1/a > 1/vλ imply that,

lim sup
n→∞

1

n
logPλ(|Xn| ≤ an) ≤ −aJ>λ (1/a) . (5.4)
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Note next that for any 0 ≤ b < a < vλ, there exists ε > 0 small enough, such that

lim inf
n→∞

1

n
logPλ,ω

( |Xn|
n

∈ [b, a)

)
≥ lim inf

n→∞
1

n
log
[
Pλ,ω(T�n(a−ε)� > n(1− ε))− Pλ,ω(T�n(a−ε)� ≥ n)

]
= −(a − ε)J>λ

(
1− ε
a − ε
)

(5.5)

where the last equality is due to the fact that J>λ is strictly increasing on (1/vλ,∞).
Taking the limit as ε → 0, we have from (5.4), (5.5) and Lemma 2.1 that (1.4)
holds for the convex, strictly decreasing Iλ(a) := aJ>λ (1/a) > 0. This concludes
the proof of Theorem 1.2 in the case dmin ≥ 2, λ < dmin, modulo the proof of
Propositions 5.1, 5.2 and Lemma 5.1.

It thus remains only to treat the casem > λ ≥ dmin. Fix 0 < a < vλ and ε > 0
such that a − ε > 0 and a + ε < vλ. Note that there exists a d0 with λ < d0 <∞
and pd0 > 0; in particular, λ-biased walk on the rooted tree with d0 children at each
vertex is transient. Fix C := 4/ log(d0dmin) and define hn to be the even integer
nearest to C log log n. Define next an n-trap as a (finite) rooted tree ω̄n of depth
hn such that the vertices in the first hn/2 levels (including the root) possess each
d0 children and the vertices at levels hn/2, . . . , hn − 1 possess each dmin children.
Note that an n-trap hasLn = (d0dmin)

hn/2 leaves, where our choice ofC guarantees
thatLn = O((log n)2). Let n1 be the even integer nearest to (1−a/vλ)n and define
the event

Cn := {τo > Thn = n1} .
By coupling with a biased random walk on [0, . . . , hn − 1] with positive drift (on
[0, . . . , hn/2 − 1]) and negative (or neutral) drift (on [hn/2, . . . , hn − 1]), one
checks that

lim sup
n→∞

1

n
logPλ,ω̄n(Cn) = 0 . (5.6)

In similarity with the definition of an n-slow tree in Section 3, a tree T ∈ T is
called n-traplike if there exists a vertex j ∈ Dbn(T) (for bn = �log n�3) such that:
H1. The finite subtree consisting of the first hn levels of Tj is an n-trap.

H2. All ancestors l of j satisfy kl ≤ e(log n)4 .
Exactly as in the case of n-slow trees, it is easy to check that for GW -a.e. ω

there exists an n0(ω) such that ω is n-traplike for each n > n0(ω). By symmetry,
upon hitting an n-trap at some j ∈ Dbn(ω) and conditional upon the event Cn for
this n-trap, the hitting measure of Dhn(ω

j ) is uniform. Let n′ := n − n1 − bn,
noting that for all n > n0(ω),

Pλ,ω

(|Xn|
n
∈(a − ε, a+ε)

)
≥ Pλ,ω

({Xn} hits an n-trap at j ∈Dbn(ω) in bn steps
)
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·Pλ,ω̄n(Cn)L−1
n

∑
v∈Dhn(ωj )

Pλ,ωv
(
n−1|Xn′ | ∈ (a − ε, a + ε), τo = ∞

)
≥(e(log n)4+λ)−bnPλ,ω̄n(Cn)L−1

n

∑
v∈Dhn(ωj )

Wv , (5.7)

where the Ln random variables

Wv := Pλ,ωv
(
n−1|Xn′ | ∈ (a − ε, a + ε), τo = ∞

)
are independent of each other and of identical distribution. Since n′/n→ a/vλ as
n→∞, it follows from (1.2) that then E(Wv)→ Pλ(τo = ∞). The transience of
{Xn} implies that q := Pλ(τo = ∞) > 0, so applying Cramér’s Theorem for the
i.i.d. Wv ∈ [0, 1], we see that

lim sup
n→∞

1

Ln
logPλ(L

−1
n

∑
v∈Dhn(ωj )

Wv ≤ q/2) < 0 .

Since Ln = O((log n)2), it follows by the Borel-Cantelli lemma that there exists
a finite n′0(ω) > n0(ω) such that L−1

n

∑
v∈Dhn(ωj ) Wv > q/2 for all n ≥ n′0(ω).

Consequently, by (5.6) and (5.7), one obtains that

lim inf
n→∞

1

n
logPλ,ω

( |Xn|
n

∈ (a − ε, a + ε)
)
= 0 GW − a.s.

The proof is then completed by an application of Lemma 2.1.

Remark. Applying an argument similar to that of (5.7), this time with n′ = an −
hn − bn and

Wv := Pλ,ωv
(
vλTn′/n

′ ∈ (1− ε, 1+ ε), τo = ∞
)
,

one shows that if m > λ ≥ dmin, then for any 0 < a < vλ,

lim inf
n→∞

1

n
logPλ,ω

(
Tan

n
∈ (1− 2ε, 1+ 2ε)

)
= 0 GW − a.s.

We move on to establish the uncertainty estimate.

Proof of Proposition 5.1. Fix ε > 0 and a tree ω that is 5-slow (with respect to
dmin) for all 5 ≥ M . Let p = dmin/(dmin + λ) > 1/2 and ξ5 = b5 + h5. It follows
from the construction of (3.6)–(3.8) that for some 5 = 5(M, ε) and all n ≥ n0(5),

Pλ,ω(τo ∧ Tξ5 > αn− n+ ξ5) ≥ exp(−n((α − 1)H(
1

2
|p)+ ε)) .

With v = Xαn−n+ξ5 we note that

Pλ,ω(τo > Tn ≥ αn|τo∧Tξ5 > αn−n+ξ5) ≥ inf
v∈ω,0<|v|<ξ5

Pλ,ω,v(τv = ∞) (5.8)
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and since min(kj : j ∈ ω) ≥ dmin > λ, the infimum in (5.8) is at least
Pλ,ωmin,o(τo = ∞) ≥ exp(−εn) for all n ≥ n1(ε). Consequently, for all n ≥
n0 ∨ n1,

Pλ,ω(τo > Tn ≥ αn) ≥ exp(−n((α − 1)H(
1

2
|p)+ 2ε)). (5.9)

To compute an upper bound on Pλ,ω(τo > Tn ≥ αn,XTn = j), mark a subtree
ωmin ⊂ ω rooted at o such that each vertex has dmin children and j ∈ ωmin (we
enumerate the children of vertices v ∈ ω in such a way that if v ∈ ωmin then

{vi}dmin
i=1 are all in ωmin). Extend ωmin to a (dmin + 1)-regular tree denoted ω̄min by

attaching to the root o, using one edge, a copy of ωmin, denoted ω′min (we denote
the root of ω′min by o′). We pick in ω′min an arbitrary ray r ′ emanating from o′. The
relations between generations in ω̄min are now defined with respect to r ′: For each
5 ∈ ωmin \o (or 5 ∈ ω′min \ r ′), the parent 5∗ of 5 is the parent in ωmin (respectively,
ω′min), and a similar definition applies to the children of 5. For 5 = o we have
5∗ = o′ whereas the children of o are its children in ωmin. For 5 ∈ r ′ of distance |5|
from o′, we have 5∗ as the unique vertex in r ′ at distance |5| + 1 from o′, while the
children of such 5 are its children in ω′min \ r ′ together with the unique vertex in r ′

at distance |5|−1 from o′ (o, in case 5 = o′). Note that each vertex in ω̄min has now
dmin children (each identified with an integer 1, . . . , dmin) and one parent. Let {Spn }
denote the biased simple random walk on the integers, for p = dmin/(dmin + λ)
as above. We now introduce the (modified) λ-biased random walk Zn on ω̄min as
the Markov chain, starting at o, which at time 1 jumps to one of its children with
equal probability and thereafter jumps to its parent with probability (1 − p) and
to any one of its dmin children with probability p/dmin. Assigning negative levels
to the vertices on r ′, starting at o′ being in level −1, it follows that the sequence
of levels {|Zn|} has the law of {Spn } conditional upon Sp1 = 1. We construct below
a coupling between the λ-biased random walk Xn on ω and Zn on ω̄min in such a
way that until the first time of return of Xt to o, at times in which Xt is on the ray
r = r(j) connecting o and j , we have that Zt is either on r with |Zt | ≤ |Xt | or on
r ′. Assuming such a coupling, for any integer t ≥ αn, it follows by the symmetry
of Zt with respect to vertices at the same level in ωmin, that

Pλ,ω(τo > Tn= t, XTn=j) ≤
n∑
k=0

Pλ,ω̄min(|Zt | = k, Zt ∈ r(j))+Pλ,ω̄min(Zt ∈ r ′)

≤
n∑
k=0

(dmin)
−kP (Spt = k)+ P(Spt < 0)

≤
(t+n)/2∑
i=t/2

(
t

i

)
(dmin)

−(2i−t)pi(1− p)t−i + e−tH( 1
2 |p)

≤ 2t (p(1− p))t/2(1+ (dminλ)
−n/2)+ e−tH( 1

2 |p)
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where in the last inequality we use the identityp/(1−p) = dmin/λ and the estimate

(t+n)/2∑
i=t/2

(
t

i

)
≤ 2t .

With 2
√
p(1− p) = exp(−H(1/2|p)), we thus conclude, summing over t ≥ αn

and using also (5.9), that for some c <∞ and all n > n0 ∨ n1

Pλ,ω(τo > Tn ≥ αn,XTn = j)

Pλ,ω(τo > Tn ≥ αn) ≤ ce2nεe−nH(1/2|p)(2+ (dminλ)
−n/2) .

The claim of the lemma follows since exp(−H(1/2|p))/√dminλ = 2/(dmin+λ) <
1 due to our assumption dmin ≥ 2. It thus only remains to construct the coupling
announced before. We construct Zn out of the walk Xn in the following way:
If X1 ∈ ωmin then Z1 = X1 (this is possible because 1/dmin ≥ 1/ko). Then,
whenever Xt+1 = (Xt )

∗ then Zt+1 = Z∗t whereas whenever Xt = 5 ∈ r \ o and
Xt+1 = 5i ∈ r then Zt+1 = (Zt )i . Otherwise, one chooses Zt+1 in such a way to
possess the correct transition probabilities (this coupling is always possible, up to
the first return ofXt to o, because 1/(λ+dmin) ≥ 1/(λ+ kXt )). We now claim that
whenever t < τo andXt is on r , then Zt is either on r ′ or on r with |Zt | ≤ |Xt |. To
see this, let n1 be the first time in which Xt leaves r and m1 the first time of return
to r . Then,Xn1−1 = Xm1 , and hence the number of steps thatX has traveled down
ω is equal to the number of steps it has traveled up. Since Zn travels with Xn up to
n1−1, and each up step ofX is an up step ofZ, we conclude thatZm1 is aboveXm1

on the infinite (directed) ray r ∪ r ′. The same arguments apply for later excursions
of Xn from the ray r , with the only difference that Z already starts above X.

Proof of Proposition 5. The proof of exponential decay for slowdown probabilities
in case λ < dmin uses a decomposition similar to (4.23). Fix c > 0 and ε > 0 such
thatEλ(|Xr2 |− |Xr1 |) > 1/c andEλ(r2− r1) < (x−ε)/c (which is possible since
xvλ > 1). Note that

{Tn ≥ xn} ⊆ {rcn+1 ≥ xn}
⋃
{|Xrcn+1 | ≤ n} .

Hence,

Pλ(Tn ≥ xn) ≤ Pλ
 cn∑
j=1

(|Xrj+1 | − |Xrj |) ≤ n


+Pλ
 cn∑
j=1

(rj+1 − rj ) ≥ (x − ε)n
+ Pλ (r1 ≥ εn) , (5.10)

and the conclusion follows from (4.19) and (4.20).
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The following auxiliary lemma, is needed for the proof of Lemma 5.1.

Lemma 5.2. Let ωmin denote the rooted dmin-ary tree. Then, there exist δ =
δk →k→∞ 0, and ck <∞, such that, for all 5 of the same parity as k,

Pλ,ωmin

(
|X5| ≤ k

)
≤ ck(1+ δk)5Pλ,ωmin

(
|X5| = k, 1 ≤ |Xi | ≤ k − 1, i = 1, . . . , 5− 1

)
= ck(1+ δk)5Pλ,ωmin

(
τo > Tk = 5

)
.

Proof of Lemma 5.2. Using the notations introduced in the proof of (1.5), recall
that the law of {|Xn|} under Pλ,ωmin(·) is the same as that of the (biased) reflected

random walk {SR,pn } for p := dmin/(dmin+λ) > 1/2. Bounding the latter in terms
of the biased simple random walk {Spn }, it thus suffices to show that

P(S
p
5 ≤ k) ≤ ck(1+ δk)5P (Sp5 = k, 1 ≤ Spi ≤ k − 1, i = 1, . . . , 5− 1).

To this end, let

Sk,5 =
{
{si}5i=0 : |si+1 − si | = 1, s0 = 0, s5 ≤ k

}
,

S+k,5=
{
{si}5i=0 : |si+1 − si |=1, s0 = 0, k − 1 ≥ si > 0 for i > 0, s5 = k

}
⊂Sk,5

Define N+ = {i : si+1 − si > 0}. Note that |N+| ≤ 5
2 + k

2 on {si} ∈ Sk,5, while

|N+| = 5
2 + k

2 ≥ 5
2 whenever {si} ∈ S+k,5. Consequently,

P(S
p
5 ≤ k) =

∑
{si }∈Sk,5

p|N
+|(1− p)5−|N+| ≤ ck(p(1− p))5/2|Sk,5| (5.11)

where ck = (p/(1− p))k/2, while, similarly,

P(S
p
5 = k, 1 ≤ Spi ≤ k − 1, i = 1, . . . , 5− 1) =

∑
{si }∈S+k,5

p|N
+|(1− p)5−|N+|

≥ (p(1− p))5/2|S+k,5| . (5.12)

Taking into account that

|S+k,5| = 25P
SRW
(

1
2

)(0 < Si < k, i = 1, . . . , 5− 1, S5 = k) ,

we find that

lim
k→∞

lim inf
5→∞,(5=k)mod2

1

5
log |S+k,5| = lim

k→∞

(
log 2− π2

2k2

)
= log 2 ,

while |Sk,5| ≤ 25, which together with (5.11) and (5.12) completes the proof of
Lemma 5.2.
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Proof of Lemma 5.1. Fix ε > 0 and choose k = k(ε) according to Lemma 5.2
such that δk ≤ ε. Then, for n > k, decomposing the path {Xt : 0 ≤ t ≤ Tn}
according to the value 5 of max{t ≤ Tn : |Xt | = k} and v = X5, it follows that,

Pλ,ω(Tn ∈ Bn) =
∑

(5=k)mod 2

∑
v∈Dk(ω)

Pλ,ω(Tn ∈ Bn, Tn > 5,X5 = v,

|Xi | > k, i = 5+ 1, . . . , Tn)

=
∑

(5=k)mod 2,5<bn

∑
v∈Dk(ω)

Pλ,ω(X5 = v, Tn > 5)Ŵv , (5.13)

where the random variables

Ŵv := Pλ,ω,v(T̃n−k(v) ∈ Bn − 5, τv > T̃n−k(v)),

are identically distributed and independent of Fk = σ(∪ki=0Di). Coupling {Xn}
with the λ-biased random walk on ωmin, we have that

sup
v∈Dk(ω)

Pλ,ω(X5 = v, Tn > 5) ≤ Pλ,ω(|X5| ≤ k) ≤ Pλ,ωmin(|X5| ≤ k) . (5.14)

Combining (5.13), (5.14) and Lemma 5.2 we obtain that

Pλ,ω(Tn ∈ Bn) ≤ ck(1+ ε)bn
∑

(5=k)mod 2

Pλ,ωmin(τo > Tk = 5)
∑

v∈Dk(ω)
Ŵv (5.15)

(recall that 0 ≤ δk ≤ ε). Let Tk denote the set of rooted trees with each vertex in
first k levels having dmin children. Note that |Dk(ω)| = (dmin)

k for ω ∈ Tk , and by
symmetry, the decomposition (5.13) yields,

1{ω∈Tk}
∑

(5=k)mod 2

Pλ,ωmin(τo > Tk = 5)(dmin)
−k ∑

v∈Dk(ω)
Ŵv

= 1{ω∈Tk}
∑

(5=k)mod 2

Pλ,ω(τo > Tk = 5, |Xj | > k, j = 5+ 1, . . . , Tn, Tn ∈ Bn)

≤ Pλ,ω(Tn ∈ Bn, τo > Tn) . (5.16)

Note that EGW(|Dk|) = mk and that the i.i.d. random variables {Ŵv} are inde-
pendent of 1{ω∈Tk} and of |Dk(ω)|. Hence, taking expectations in (5.15) results
with

Pλ(Tn ∈ Bn) ≤ ck(1+ ε)bnmk
∑

(5=k)mod 2

Pλ,ωmin(τo > Tk = 5)Eλ(Ŵv) ,

while taking expectations in (5.16) gives,

GW(Tk)
∑

(5=k)mod 2

Pλ,ωmin(τo > Tk = 5)Eλ(Ŵv) ≤ Pλ(Tn ∈ Bn, τo > Tn) .
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Consequently,

Pλ(Tn ∈ Bn) ≤ ckm
k

GW(Tk) (1+ ε)
bnPλ(Tn ∈ Bn, τo > Tn) ,

The conclusion of the lemma follows by noting that ckmk/GW(Tk) <∞ is inde-
pendent of n.

6. Proof of Theorem 1.3

We can modify Lemma 2.1 to get, for a function ϕ(n) with ϕ(n)/ log n→∞,

lim sup
n→∞

1

ϕ(n)
logPλ,ω(An) ≤ lim sup

n→∞
1

ϕ(n)
logPλ(An) (6.1)

and

lim inf
n→∞

1

ϕ(n)
logPλ,ω(An) ≤ lim inf

n→∞
1

ϕ(n)
logPλ(An) . (6.2)

Taking hereafter λ = dmin < m as in the statement of Theorem 1.3, it is therefore
enough to provide lower bounds for the quenched probabilities and upper bounds
for the corresponding annealed probabilities.

In particular, to prove part (i) of the theorem, it is thus enough to prove that for
0 < δ < v < v1 and c1 = (3/2)(π | logp1|)2/3,

lim inf
n→∞

1

n1/3
logP1,ω

(
v − δ ≤ |Xn|

n
≤ v
)
≥ −c1

(
1− v

v1

)1/3

, (6.3)

whereas for some c2 > 0,

lim sup
n→∞

1

n1/3
logP1

( |Xn|
n

≤ v
)
≤ −c2

(
1− v

v1

)1/3

. (6.4)

We have, with ε < δ/4, that

P1,ω

(
v − δ ≤ |Xn|

n
≤ v
)
≥ P1,ω

(
v − 4ε ≤ |Xn|

n
≤ v
)

≥ P1,ω
(
n(1+ ε) ≥ Tn(v−2ε) ≥ n(1− ε)

)
(6.5)

Considering ε → 0 and n′ = n(v − 2ε) we see that to prove (6.3), it suffices to
show that for β > u > 1/v1, we have

lim inf
n→∞

1

n1/3
logP1,ω (βn ≥ Tn ≥ un) ≥ −c1

(
u− 1

v1

)1/3

. (6.6)

Similarly, since {|Xxn| ≤ n}whenever {Tn ≥ xn}, we get (6.4) as soon as we show
that for some c2 > 0 and all x > 1/v1,

lim sup
n→∞

1

n1/3
logP1 (Tn ≥ xn) ≤ −c2

(
x − 1

v1

)1/3

. (6.7)
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In an analogous manner, part (ii) of Theorem 1.3 is proved by showing that for
c1 = (π log dmin)

2/2 and all β > u > 1/vλ, we have

lim inf
n→∞

(log n)2

n
logPλ,ω (βn ≥ Tn ≥ un) ≥ −c1

(
u− 1

vλ

)
(6.8)

whereas for some c2 > 0 and all x > 1/vλ,

lim sup
n→∞

(log n)2

n
logPλ (Tn ≥ xn) ≤ −c2

(
x − 1

vλ

)
. (6.9)

In proving (6.6)–(6.9) we let HITjλ,ω(x) := P
j
λ,ω(XT|x| = x) denote the probability

that the λ-biased random walk on the tree ω hits the |x|-th level at x, starting at
X0 = j , where |j | ≤ |x| and HITλ,ω(x) := HITo

λ,ω(x).

Proof of (6.6) and (6.8). The finite dmin-ary rooted tree of b levels, is called a
dmin-pipe of length b. We say that x ∈ ω starts a dmin-pipe of length b if the first b
levels of ωx are a dmin-pipe of length b. Fixing ε > 0, a pipe of length b starting at
x ∈ ω with |x| ≤ (n− b) is called n-good pipe if its leftmost leaf y satisfies

Pλ,ω,y(τy = ∞, |n−1T̃n−|y|(y)− 1

vλ
| < ε) > ε (6.10)

The next lemma is key to the proof of both (6.6) and (6.8).

Lemma 6.1. Assume 1 ≤ λ = dmin < m < ∞. Fix 0 < ε < Pλ,o(τo = ∞) and
integers bn → ∞ satisfying n−1bn → 0. Let q̃n = GW(o starts a dmin-pipe of
length bn). For p > 1, set kn = n1/p and assume (kn)−1 log q̃n → 0. Define

Hn(ω) := Pλ,ω(Tkn ≤ εn,XTkn starts an n− good pipe of length bn)

Then, there exists η = η(ε) > 0 such that for GW-a.a. ω and for all except finitely
many n,

Hn(ω) ≥ ηq̃n (6.11)

Proof of Lemma 6.1. Fix ε, bn and kn as in the statement of the lemma. In case
λ = 1 it follows from [10, Theorem 9.8] that for some positive constant d ′, for the
sets

Gn := {x ∈ Dkn : HITλ,ω(x) ≤ e−knd ′ } , (6.12)

we have for GW-a.a. ω,

HITλ,ω(Gn) =
∑
x∈Gn

HITλ,ω(x) −→
n→∞1 (6.13)

In case of λ = dmin > 1, evenGn = Dkn shall do, since then for all j, x ∈ ω, such
that |x| = |j | + 5

HITjλ,ω(x) ≤ (dmin)
−5 (6.14)
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(Indeed, mark a dmin-ary subtree ωmin ⊂ ω rooted at o such that j, x ∈ ωmin.
Recording only the part of the path of {Xn} within ωmin results with a λ-biased
random walk {Zt } on the latter subtree. The hitting measure of D|x|(ωmin) by {Zt }
is uniform on the descendents of the last common ancestor of x and j in ω, and
there are at least (dmin)

5 of these. If XT|x| = x then necessarily {Zt } hitD|x|(ωmin)

for the first time also at the vertex x. The latter event has probability of at most
(dmin)

−5, yielding the bound of (6.14)).
Define next for each x ∈ Dkn(ω) the random variable

Wx = 1{x starts an n− good pipe of length bn} ,

and the modified hitting measure H̃ITλ,ω(x) := Pλ,ω(XT|x| = x, T|x| ≤ ε|x|p).
Note that

Hn(ω) =
∑

x∈Dkn(ω)
H̃ITλ,ω(x)Wx ≥

∑
x∈Gn

H̃ITλ,ω(x)Wx =: H̃n(ω)

Let Fkn = σ(∪kni=0Di) and

Yn(ω) := Pλ,ω,o

(
τo = ∞, |n−1Tn−kn−bn −

1

vλ
| < ε

)
. (6.15)

The random variables H̃ITλ,ω(x) and 1{x∈Gn} are measurable on Fkn , whereas given

Fkn , {Wx : x ∈ Gn} are independent Bernoulli(qn) random variables, with

qn = q̃nGW({ω : Yn(ω) > ε})
(see (6.10)). Thus,

EGW
(
H̃n(ω)|Fkn

) = qn
∑
x∈Gn

H̃ITλ,ω(x) = qnH̃ITλ,ω(Gn) (6.16)

and

EGW

(
H̃n(ω)

2|Fkn
)
= qn

∑
x∈Gn

H̃ITλ,ω(x)
2


+q2

n

∑
x∈Gn

∑
y∈Gn,y =x

H̃ITλ,ω(x)H̃ITλ,ω(y)


Hence,

VarGW(H̃n(ω)|Fkn) = EGW

(
H̃n(ω)

2|Fkn
)
− [EGW(H̃n(ω)|Fkn)]2

≤ qn
∑
x∈Gn

H̃ITλ,ω(x)
2 ≤ qne−knd ′H̃ITλ,ω(Gn) , (6.17)
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relying upon the definition (6.12) of Gn in the second inequality. We have, using
first (6.16), then (6.17), that

GW
(
{ω : H̃n(ω) <

qn

2
H̃ITλ,ω(Gn)}

∣∣∣Fkn)
≤ GW

(
{ω : |H̃n(ω)− EGW [H̃n(ω)

∣∣Fkn ]| ≥ 1

2
EGW(H̃n(ω)|Fkn)}

∣∣∣Fkn)
≤ 4VarGW

(
H̃n(ω)|Fkn

)
[EGW(H̃n(ω)|Fkn)]2

≤ 4e−knd ′

qnH̃ITλ,ω(Gn)

Recall that n−1(kn + bn) → 0 implying that Pλ,ω,o × GW -a.s. n−1Tn−kn−bn →
1/vλ. Hence, the random variables Yn(ω) ∈ [0, 1] of (6.15) are such thatEGW(Yn)
→ Pλ,o(τo = ∞) > ε. Consequently,

qn ≥ 8ηq̃n

for some η = η(ε) > 0 and all n large enough. Let An = {ω : H̃n(ω) < qn/4} and
Bn = {ω : H̃ITλ,ω(Gn) ≥ 1/2}. Since (kn)−1 log q̃n → 0, we see that

∞∑
n=1

GW(An ∩ Bn) ≤
∞∑
n=1

8e−knd ′

qn
≤

∞∑
n=1

e−knd ′

ηq̃n
<∞ .

With m > λ and n−1kn → 0, it follows from [11, Theorem 3.1] that

HITλ,ω(Gn)− H̃ITλ,ω(Gn) ≤ Pλ,ω(Tkn > εn) −→
n→∞0

for GW-a.a. ω. Consequently, it follows from (6.13) that Bn holds eventually for
GW-a.a. ω, and the claim (6.11) follows by a simple modification of the Borel-
Cantelli lemma.

The lower bounds (6.6) and (6.8) on Pλ,ω(βn ≥ Tn ≥ un) are established by
considering the intersection of the following three events for positive ε < (β−u)/4.

E1: Both Tkn ≤ εn and XTkn starts an n-good pipe of length bn.
E2: Upon Tkn , the random walk Xt stays inside this dmin-pipe for at least (u −

1/v1 + 2ε)n and at most (β − 1/v1 − 2ε)n steps, exiting at its leftmost leaf y
at level |y| = kn + bn.

E3: The random walk Xt proceeds for t ≥ Tkn+bn at the normal speed, such that
Tn − Tkn+bn is at least (1/vλ − ε)n and at most (1/vλ + ε)n.

Observe that
3⋂
i=1

Ei ⊆ {βn ≥ Tn ≥ un} , (6.18)

and the definition (6.10) of an n-good pipe guarantees that Pλ,ω(E3|E2, E1) > ε.
Consequently, we concentrate next on lower bounding

Pλ,ω(E1 ∩ E2) = Pλ,ω(E1)Pλ,ω(E2|E1) = Hn(ω)Pλ,ω(E2|E1) .
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To this end, let tbn = inf{j > 0 : Sj = −1 or Sj = bn}. Clearly, the hitting
measure of each level in ω̄min is uniform. Hence, it follows by the (standard) cou-
pling of λ = dmin-biased random walk on ω̄min and the simple random walk on Z,
that

Pλ,ω(E2|E1) = (dmin)
−bnP

SRW
(

1
2

)((β − 1/v1 − 2ε)n ≥ tbn
≥ (u− 1/v1 + 2ε)n, Stbn = bn) (6.19)

(the factor (dmin)
−bn represents the condition of exit via the leftmost leaf of the

dmin-pipe).
Starting with the case of λ = 1, fix b > 0 and set bn = bn1/3, kn =

√
n both

rounded to the nearest odd integer. Here q̃n = (p1)
bn , all the conditions of Lemma

6.1 are satisfied, so it follows from (6.11) that for GW-a.a. ω,

lim inf
n→∞ n−1/3 logP1,ω(E1) ≥ −b| logp1| . (6.20)

In view of (6.19), it follows by [15, Page 243] and our choice of bn that

lim inf
n→∞ n−1/3 logP1,ω(E2|E1) ≥ − π2

2b2
(u− 1/v1 + 2ε) . (6.21)

Indeed, this is obvious when starting the simple random walk {Sj } at (bn − 1)/2
instead of at 0, while the probability that a simple random walk on Z starting at
0 visits (bn − 1)/2 before −1 and is doing so within b2.5

n steps, is at least 1/bn.
Combining (6.18), (6.20) and (6.21) it follows that for GW-a.a. ω,

lim inf
n→∞ n−1/3 logP1,ω(βn ≥ Tn ≥ un) ≥ −b| logp1| − π2

2b2
(u− 1/v1 + 2ε) .

Optimizing over the constant b, using the fact that ab + c/b2 ≥ 3(a/2)2/3c1/3

(where equality holds for b = (2c/a)1/3), then taking ε→ 0 yields (6.6).
Turning to the case of λ = dmin > 1, fix positive b < 1 − ε and set bn =

b log n/ log dmin, kn = nb+ε both rounded to the nearest odd integer. It is not hard
to check that now

q̃n ≥ exp(−c0n
b)

for some finite c0 and all large enough n. All conditions of Lemma 6.1 are again
satisfied, with (6.11) implying that for GW-a.a. ω,

lim inf
n→∞

(log n)2

n
logP1,ω(E1) = 0 . (6.22)

By the same argument as in the derivation of (6.21) out of (6.19), we have for our
current choice of bn that

lim inf
n→∞

(log n)2

n
logPλ,ω(E2|E1) ≥ −π

2(log dmin)
2

2b2
(u− 1/v1 + 2ε) . (6.23)

Combining (6.18), (6.22) and (6.23), then taking ε ↓ 0 and b ↑ 1, we recover (6.8).
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Proof of (6.7) and (6.9). The key to these upper bounds is the information about
the tail of level regeneration times as summarized in the following lemma.

Lemma 6.2. In case 1 = λ = dmin < m <∞, there exists c > 0 such that for all
t large enough,

P1(r2 − r1 ≥ t) ≤ exp(−ct1/3) , P1(r1 ≥ t) ≤ exp(−ct1/3) , (6.24)

whereas for 1 < λ = dmin < m <∞,

Pλ(r2 − r1 ≥ t) ≤ exp

(
− ct

(log t)2

)
, Pλ(r1 ≥ t) ≤ exp

(
− ct

(log t)2

)
.

(6.25)

Indeed, we use (5.10) for ε = (x−1/vλ)/3 > 0, which is possible in view of (4.22).
By (4.19), the term in (5.10) involving |Xrcn+1 | is of order exp(−Cn). Assuming
Lemma 6.2 holds, the following well known lemma about partial sums of heavy
tailed i.i.d. random variables takes care of the other terms in (5.10), allowing us to
deduce both (6.7) and (6.9). Since we did not find in the literature a proof of Lemma
6.3 under our assumptions, we provide such a proof at the end of this section.

Lemma 6.3. Let Y1, Y2, . . . be an i.i.d. sequence with E(Y 2
1 ) <∞.

(i) If P(Y1 ≥ x) ≤ exp(−cxγ ) for some 0 < γ < 1, c > 0 and all x large enough,
then for all t > E(Y1),

lim sup
n→∞

n−γ logP

1

n

n∑
j=1

Yj ≥ t
 ≤ −c(t − E(Y1))

γ

(ii) If P(Y1 ≥ x) ≤ exp(−cx/(log x)2) for some c > 0 and all x large enough,
then for all t > E(Y1),

lim sup
n→∞

(log n)2

n
logP

1

n

n∑
j=1

Yj ≥ t
 ≤ −c(t − E(Y1))

Proof of Lemma 6.2. Recall that by the inequality (4.24) it suffices to prove (6.24)
and (6.25) for the random variable r1. The tail estimates of (6.24) are derived in
this case in [12, Theorem 2]. Turning thus to prove (6.25) for r1, note first that for
any t, η > 0

Pλ (r1 ≥ t) ≤ Pλ
(
|Xr1 | ≥

ηt

log t

)
+ Pλ
(
|Xt | ≤ ηt

log t

)
(6.26)

It follows from (4.19) that

lim sup
t→∞

log t

t
logPλ

(
|Xr1 | ≥

ηt

log t

)
< 0 . (6.27)

Hence, the tail estimates of (6.25) for r1 are a direct consequence of the Lemma
6.4 below.
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Lemma 6.4. Assume 1 < dmin = λ < m. For some positive constants c0 and η,

Pλ

(
|Xn| ≤ nη

log n

)
≤ exp

(
− c0n

(log n)2

)
.

Proof of Lemma 6.4. We need two auxiliary estimates, whose proofs are deferred.
We split the n-th level of ω into “fair” and “biased” vertices

Dn,fair := {x ∈ Dn : kx = dmin} , Dn,biased := {x ∈ Dn : kx > dmin} ,
claiming next that up to a GW “negligible” set of ω, the hitting measure of “biased"
vertices is large enough.

Lemma 6.5. Assume 1 < dmin = λ. For δ < (1−pdmin) and c > 1+1/(log(1.5)),
define

An := {ω : HITjλ,ω
(
D|j |+5,biased

) ≥ δ for all |j | ≤ n and �(c − 1) log n�
≤ 5 ≤ �c log n�}. (6.28)

Then,
lim sup
n→∞

n−1 logGW(ω /∈ An) < 0 . (6.29)

The next lemma shows that, if d is a large enough constant, then the probability
Pλ,ω that the pathXt meets at least δ log n/2 “biased" vertices during a time interval
[s, s + d(log n)2], is uniformly bounded away from zero for s ≤ n and ω ∈ An.

Lemma 6.6. Assume 1 < dmin = λ. Fix c > 1+1/(log(1.5)) and δ < (1−pdmin).
Define Hs = σ(X0, . . . , Xs) and

Bs,s+9 := |{t : kXt > dmin, s ≤ t < s +9}| .
Then, there exist finite constants d , n0, such that for all n ≥ n0, any s ≤ n and any
ω ∈ An,

Pλ,ω

(
Bs,s+�d(log n)2� ≥ (δ/2) log n

∣∣∣ Hs

)
≥ δ2/8 . (6.30)

We are now ready to prove Lemma 6.4. Fix δ, c as in Lemma 6.5 and d, n0 as in
Lemma 6.6. Set ξ = δ3/(20d), and positive η, θ such that η+ θ < ξ/(2dmin + 1).
Note that for λ = dmin the sequence of random variables

Zt =
t−1∑
s=0

kXs − dmin

kXs + dmin
− |Xt | ,

is a Pλ,ω-Martingale with respect to the filtration Hs . Moreover, Z0 = 0 and the
martingale differences

Zt − Zt−1 =
kXt−1 − dmin

kXt−1 + dmin
+ (|Xt−1| − |Xt |)
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are such that |Zt −Zt−1| ≤ 2. The monotonicity of k �→ (k− dmin)/(k+ dmin) on
Z+ implies that

Zn ≥ 1

2dmin + 1

n−1∑
s=0

1{kXs>dmin} − |Xn| =
1

2dmin + 1
B0,n − |Xn| .

Hence, applying the Azuma-Hoeffding inequality we see that

Pλ,ω

(
B0,n ≥ ξn

log n
, |Xn| ≤ ηn

log n

)
≤ Pλ,ω

(
Zn ≥ θn

log n

)
≤ e−θ2n/(8(log n)2) ,

(6.31)
for every n and ω ∈ T such that min(kv : v ∈ ω) ≥ dmin.

Set 9n = �d(log n)2� and bn = �n/9n�. Define the random variables Yi,n =
B(i−1)9n,i9n/((δ/2) log n), i = 1, . . . , bn. Fixing ω ∈ An, it follows from (6.30)
that for n ≥ n0, any i ≤ bn and φ > 0,

Eλ,ω

(
e−φYi,n

∣∣∣ H(i−1)9n

)
≤ 1− (1− e−φ)Pλ,ω

(
Yi,n ≥ 1

∣∣∣ H(i−1)9n

)
≤ 1− (1− e−φ)δ2/8 := M(φ). (6.32)

Recall that ξ = δ3/(20d) and Yi,n is measurable on Hi9n . Taking φ > 0 for which

eφδ
2/10M(φ) = ζ < 1 (such φ exists sinceM(·) is the moment generating function

of Bernoulli(δ2/8) random variables), and combining (6.32) with Chebychev’s
inequality, we see that for all ω ∈ An, n ≥ n0,

Pλ,ω

(
B0,n ≤ ξn

log n

)
≤ Pλ,ω

(
bn∑
i=1

Yi,n ≤ (δ2/10)bn

)

≤ eφ(δ2/10)bnEλ,ω

(
exp(−φ

bn∑
i=1

Yi,n)

)
≤ ζ bn . (6.33)

To complete the proof of Lemma 6.4, observe that

Pλ

(
|Xn| ≤ nη

log n

)
≤ GW(ω /∈ An)+ sup

ω
Pλ,ω

(
B0,n ≥ ξn

log n
, |Xn| ≤ ηn

log n

)
+ sup
ω∈An

Pλ,ω

(
B0,n ≤ ξn

log n

)
and combine (6.29), (6.31) and (6.33).

Proof of Lemma 6.5. Set γ5 = (1.5)5. Since HITjλ,ω(Dk,biased) = 1 − HITjλ,ω
(Dk,fair), it suffices to show that,

lim sup
5→∞

1

γ5
log sup

|j |
GW
(

HITjλ,ω
(
D|j |+5,fair

) ≥ 1− δ
)

≤ pdmin − (1− δ) := −2ξ < 0 . (6.34)



Large deviations for random walks on Galton–Watson trees 283

Indeed, using (6.34) and union bounds, for all n ≥ n0,

GW (ω /∈ An)≤GW(|Dn|≥(m+1)n)+(m+1)n(log n) exp
(
−ξ(1.5)(c−1) log n

)
≤
(

m

m+ 1

)n
+ (m+ 1)n(log n) exp

(
−ξn(c−1) log(1.5)

)
and since (c − 1) log(1.5) > 1, it follows immediately that (6.29) is satisfied.
Turning to prove (6.34), suppose Z =∑x hxIx where {Ix} are i.i.d. Bernoulli(p)
random variables and the non-random hx ∈ [0, θ ] are such that

∑
x hx = 1. Then,

for any γ > 0,

logE(eγZ) =
∑
x

log(1+ p(eγhx − 1)) ≤
∑
x

p(eγhx − 1)

≤
∑
x

phxθ
−1(eγ θ − 1) = pθ−1(eγ θ − 1) , (6.35)

where we used the inequality log(1 + z) ≤ z and the monotonicity of f (y) :=
(ey − 1)/y on [0,∞).

Note that the non-negative hx := HITjλ,ω(x), x ∈ D|j |+5 are measurable with

respect to F|j |+5, such that
∑
x∈D|j |+5 hx = 1 and by (6.14) we know that hx ≤

2−5 := θ5. Moreover, Ix := 1{kx=dmin}, x ∈ D|j |+5 are i.i.d. Bernoulli(pdmin )
random variables that are independent of F|j |+5. Hence, applying (6.35) for γ5 =
(1.5)5 and

Z5 := HITjλ,ω
(
D|j |+5,fair

) = ∑
x∈D|j |+5

HITjλ,ω(x)1{kx=dmin}

with respect to the conditional law GW(·|F|j |+5), we see that

EGW

(
e
γ5HITjλ,ω(D|j |+5,fair)

)
= EGW

(
EGW

(
e
γ5HITjλ,ω(D|j |+5,fair)

∣∣∣ F|j |+5))
≤ epdminγ5f (γ5θ5) .

Since f (γ5θ5)→ 1, we now get (6.34) by applying Chebychev’s inequality.

Proof of Lemma 6.6. We first show that there exist finite constants θ and 50, such
that if 5 ≥ 50 then

P
j
λ,ω

(
T|j |+5 ≥ θ52

)
≤ δ2/8 , (6.36)

for all j ∈ ω and all ω ∈ T for which min(kv : v ∈ ω) ≥ dmin. Indeed, for such
ω, the probability in (6.36) is maximal if ω = ωmin, the dmin-ary rooted tree. By
coupling with a reflected simple random walk on Z+, we thus see that

P
j
λ,ω

(
T|j |+5 ≥ θ52

)
≤ P

SRWR
(

1
2

) (τ|j |+5 ≥ θ52
∣∣∣ S0 = |j |

)
≤ P

SRW
(

1
2

) (τ5 ≥ θ52
)
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where τ5 := inf{i : Si = 5}. By Donsker’s invariance principle, with {Wt } a
standard Brownian motion,

lim
5→∞

P
SRW
(

1
2

) (τ5 ≥ θ52
)
= P

(
sup
t≤θ

Wt ≤ 1

)
.

Thus, (6.36) follows by taking θ = θ(δ) < ∞ such that P(supt≤θ Wt ≤ 1) <

δ2/10.
Now set n0 such that c log n0 > 50 and d > 2θc2. For any n ≥ n0 let 5n :=

�c log n� > 50 and 9n := �d(log n)2�. Fixing such n, note that by the Markov
property of {Xt }, for all j ∈ ω,

Pλ,ω

(
Bs,s+9n ≥ (δ/2) log n

∣∣∣ Hs , Xs = j
)

= P
j
λ,ω

(
B0,9n ≥ (δ/2) log n

)
≥ P jλ,ω

(
BT5n ≥ (δ/2) log n

)
− P jλ,ω(T|j |+5n ≥ 9n), (6.37)

where
BT5n = |{i : kXT|j |+i > dmin, 5n − log n+ 1 ≤ i ≤ 5n}| .

Fixing s ≤ n (hence |j | ≤ s ≤ n) and ω ∈ An, it follows from (6.28) that

E
j
λ,ω(B

T
5n
) =

5n∑
i=5n−log n+1

HITjλ,ω
(
D|j |+i,biased

) ≥ δ log n,

and as BT5n ∈ [0, log n], using the inequality

P

(
Y ≥ E(Y )

2

)
≥ 1

4

E(Y )2

E(Y 2)

we see that

P
j
λ,ω

(
BT5n ≥ (δ/2) log n

)
≥ δ2/4 .

Recall that 9n ≥ θ52
n, hence together with (6.36) and (6.37), this completes the

proof of (6.30).

Proof of Lemma 6.3. It is clearly enough to prove the lemma under the extra
assumption E(Y1) = 0, which we make in the sequel. (i) Fix ε > 0 and θ =
(c − ε)tγ−1. Then,

P

(
n∑
i=1

Yi ≥ nt
)
≤ nP (Y1 ≥ nt)+ P

(
n∑
i=1

Yi ≥ nt;Yi < nt, i = 1, . . . , n

)
≤ n exp(−c(nt)γ )+ e−θnγ tO(θ)n , (6.38)
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where
O(θ) = E

(
eθY1n

γ−1
1{Y1<nt}

)
.

We now prove a bound onO(θ). Using E(Y1) = 0 and the bound eu ≤ 1+ u+ u2

valid for all u < 1, we have that for some C > 0 independent of n,

E
(
eθY1n

γ−1
1{Y1<n

1−γ /θ}
)
≤ 1+ θnγ−1E(Y11{Y1<n

1−γ /θ})+ θ2n2γ−2E(Y 2
1 )

≤ 1+ θ2n2γ−2E(Y 2
1 ) ≤ exp(Cθ2n2γ−2/2) .

On the other hand, for all n large enough,

E
(
eθY1n

γ−1
1{nt≥Y1≥n1−γ /θ}

)
≤
∫ nt
n1−γ /θ

exp(θunγ−1 − cuγ )du

≤
∫ nt
n1−γ /θ

e−εu
γ

du ≤ e−εnγ (1−γ )/2θγ .

Combining the above, we get O(θ) ≤ eCn2γ−2θ2
, and hence, substituting in (6.38),

we obtain, for all n large enough,

P

(
n∑
i=1

Yi ≥ nt
)
≤ n exp(−c(nt)γ )+ e−(c−2ε)(nt)γ .

ε > 0 being arbitrary, this completes the proof of part (i).
(ii) Fix L(n) = c/(log n)2, and write

P

(
n∑
i=1

Yi ≥ nt
)
≤ nP (Y1 ≥ nt)+ e−θnL(n)t (Ō(θ))n ,

now with θ = (1− ε) and

Ō(θ) = E(eθL(n)Y1 1{Y1≤nt})

≤ E(eθL(n)Y1 1{Y1<1/θL(n)})+ E(eθL(n)Y1 1{1/(L(n))2≥Y1≥1/θL(n)})

+E(eθL(n)Y1 1{nt≥Y1≥1/(L(n))2})

:= Ō1(θ)+ Ō2(θ)+ Ō3(θ) .

Exactly as in part (i), there exists a constantC such that Ō1(θ) ≤ eCθ2(L(n))2 , while
for all n large enough,

Ō2(θ) ≤
∫ 1/(L(n))2

1/θL(n)
e[θL(n)−L(u)]udu ≤

∫ 1/(L(n))2

1/θL(n)
e−cε(log log n)−2u/20du

≤ e−(log n)3/2 ,

and

Ō3(θ) ≤ 2

εL(n)
e−ε/(2L(n)) .

Combining the above yields the claim.
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7. Remarks and open problems

1. Of course, we expect Theorem 1.2 to be true even when dmin = 1 and λ < 1,
as soon as m > 1. All that is missing here is an uncertainty estimate, similar
to that of Proposition 5. We note that we can show that (1.5) continues to hold
true in this situation.

2. We have stated our main results in terms of the position of the random walk.
However, the key to the proofs is the analysis of the hitting times Tn = inf{t :
Xt ∈ Dn}. In particular, it follows immediately from our proof that

Corollary 7.1. (Large deviation principle – hitting times). Assumem <∞
and either dmin ≥ 2 or λ ≥ 1. The random variables Tn/n satisfy, under both
Pλ andPλ,ω, the large deviation principle on [1,∞)with speed n and the same
continuous, convex rate function Jλ(·), where Jλ(x) = xIλ(1/x).

Another immediate corollary concerns the Lyapounov exponents associated
with the hitting times Tn.

Corollary 7.2. (Lyapounov exponents). Under the assumptions of Corollary
7.1 there exists a deterministic, finite constant γc ≥ 0 such that for any γ < γc,

µλ(γ ) := lim
n→∞

1

n
logEλ
(
eγTn
)
= lim
n→∞

1

n
logEλ,ω

(
eγTn
)
<∞, GW−a.s.,

whereas for γ > γc both limits in the definition above are infinite, GW -a.s.

The quantity µλ(γ ) is called the Lyapounov exponent associated with {Xn}.
For background on Lyapounov exponents in the context of RWRE, see [17],
[21]. The interest in Corollary 7.2 is that it demonstrates the equality of the
quenched and annealed Lyapounov exponents.

3. Recall that one may construct an extension of the measure GW on rooted trees
to a measure AGW on infinite trees (see [11] for the details). One construction
of AGW starts with a Galton-Watson tree and the “leftmost" vertex v in Dn,
renaming it as 0 while renaming Dm, m ≥ n as D̃m−n, and then taking weak
limits, resulting with a measure on infinite trees with a special ray 0 ↔ −∞
marked. One can check that Theorem 1.1, Corollary 1.1, and Theorem 1.2
remain valid when using the measure AGW instead of GW.

4. Still considering the measure AGW on infinite trees, quenched and annealed
behavior are different when we consider negative speed, i.e. move along the
negative ray. Let T−n := inf{j : Xj = −n} be the first hitting time of the
vertex −n on the ray 0 ↔ −∞. Define

γλ := sup
{
t : Eλ
(
etT−11{T−1<∞}

)
<∞
}

and introduce

γλ(ω) := sup
{
t : Eλ,ω

(
etT−11{T−1<∞}

)
<∞
}
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One can then prove that γλ(ω) = γλ, AGW-a.s., and if Var (Z) > 0 then for
t < γλ,

lim
n→∞

1

n
logEλ,ω

(
etT−n1{T−n<∞}

)
< lim

n→∞
1

n
logEλ
(
etT−n1{T−n<∞}

)
<∞,

AGW − a.s.

A discussion of this result in the context of one dimensional random walks in
random environment with holding times will appear elsewhere.

5. For Pλ,ω(·) we find in part (i) of Theorem 1.3 that C1 = 3
2 (π | logp1|)2/3(1−

a/v1)
1/3. We conjecture that this is indeed the GW-a.s. limit of

−n−1/3 logPλ,ω(n
−1|Xn| ∈ (b, a)).

Similarly, in part (ii) we find thatC1 = 1
2 (π log dmin)

2(1−a/vλ) and conjecture
that this is then the GW-a.s. limit of

−(log n)2n−1 logPλ,ω(n
−1|Xn| ∈ (b, a)).

Proving such statements seems related to the coarse graining analysis in [14].
6. The subexponential regime when dmin = λ is not well understood. We call

asymptotics as in part (i) of Theorem 1.3 (with possibly 1/3 replaced by another
constant α ∈ (0, 1)) stretched exponential. Using the techniques in this paper
one can show that when 1 < dmin < λ < m <∞, the quenched and annealed
slowdown probabilities have stretched exponential upper and lower bounds,
however we cannot compute the exponent α, nor show it is the same for the
upper and lower bounds or that it is the same in the quenched and annealed
situations. When 1 = dmin < λ < m < ∞, the quenched and annealed
slowdown asymptotics differ (quenched is stretched exponential; annealed is
polynomial) but this is an artifact related to the special structure near the root:
under AGW, both possess stretched exponential upper and lower bounds.
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