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Abstract

We study the voter model with both positive and negative bonds on a general locally finite connected infinite graph. W
various results concerning ergodicity of the process.
 2004 Elsevier SAS. All rights reserved.

Résumé

Nous considérons un graphe connexe, de degré localement fini, où chaque arête a un signe positif (“arête votan
signe négatif (“arête anti-votante”). Pour le modèle du votant correspondant a cette configuration, nous obtenons de
d‘ergodicité.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Thevoter modelis one of the standard models in the subject of interacting particle systems. See the bo
and [5] which give accounts of this subject and in particular study the voter model.
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We first describe the voter model on a general locally finite, connected graphG = (V ,E). (It is always assume
that our graphs have no self-loops or double edges.) This will be a continuous time Markov process{ηt }t�0 on the
state spaceX := {0,1}V . (Of course an initial state or initial distribution must be specified.) A typical configura
in X will be denoted byη := {η(x)}x∈V whereη(x) ∈ {0,1} for eachx. V represents the various agents and a 0
represent two possibleopinions; η(x) is the opinion of agentx. In the standard voter model, each agentx waits an
exponential time with parameter 1, chooses a neighbor at random and at that time, the state ofx becomes that of th
chosen neighbor. This is only an informal (infinitesimal) description of the process. It can be made rigorou
operator theory (see [5]) or, more simply, via the so-calledgraphical representationwhich uses an infinite family o
independent Poisson processes (see [2]). We say that a configuration is afixed stateif it is an absorbing state for th
process, or, in other words, if the Dirac measure on this configuration is a stationary distribution. It is obvio
the all 0 and all 1 configurations, to be denoted by0 and1 from now on, are the only fixed states, giving us m
than one stationary distribution (the point masses at these two configurations) for the underlying voter sy
is known (see [5]) that for thed-dimensional integer lattice, ford = 1,2, the only stationary distributions are the
(plus their convex combinations) while ford � 3, there are other, so-called nontrivial, stationary distributio
These results are intimately connected to the fact that simple random walk onZ

d is transient if and only ifd � 3.
More generally, these arguments give that for the voter model on a general graph, there are nontrivial s
distributions (i.e., ones which are not convex combinations ofδ0 andδ1) if and only if the probability that two
independent random walkers starting at distinct locations on the graph never meet is strictly positive. (By a
walk on the graph, we mean the Markov chain onV which waits an exponential amount of time with paramete
and then moves to a neighbor chosen at random.) We will describe the relationship between the voter m
random walk in Section 2.

We point out that there are recurrent graphs (meaning graphs for which simple random walk on them is re
for which the probability that two independent random walkers never meet is strictly positive; an example
a graph is the “fishbone graph” which is the 2-dimensional lattice with all horizontal edges not sitting onx-
axis removed (see [3]). See also [4] for an earlier example of an irreducible symmetric recurrent Marko
for which two independent copies don’t meet with positive probability. On the other hand, for transient
of bounded degree, it is always the case that the probability that two independent random walkers neve
strictly positive. (In fact, for graphs of bounded degree, random walk is transient if and only if the expected n
of times that two independent random walkers meet is finite.)

We now give a variant of the voter model for which we investigate the question of ergodicity of the proce
call that a Markov process, which has a unique stationary distribution such that for each initial state the dist
at timet converges weakly to this stationary distribution is calledergodic.

Consider a graphG = (V ,E) where some of the edges ofE are (deterministically) declared “positive” and t
others are declared “negative”. We will call this asigned graph. The “voter model on the signed-graphG” will also
be a continuous time Markov process on the state spaceX := {0,1}V . It is defined exactly as the voter model wi
one important difference. When a vertexx is updating, if it chooses the neighbory, then the state ofx becomes the
state ofy if the edge between them is positive but becomes the opposite state ofy if this edge is negative. If all o
the edges are declared to be negative, then this Markov process is called theanti-voter model. The anti-voter mode
on finite graphs was investigated by Donnelly and Welsh in [1]. The same model on infinite graphs was stu
Matloff in [6] and [7]. Here the random walkers are taken to be a more general Markov chain. The case wh
edges ofZd are chosen to be positive or negative in a random i.i.d. manner was studied by Saada in [8].

As soon as there is at least one negative edge, it is clear that0 and1 are no longer fixed states. However, th
still may be other fixed states. For the following definition, recall that a cycle in a graph is calledsimpleif it does
not contain any vertex twice, except the first and last.

Definition 1.1.A simple cycle in a signed graph isunsatisfiedif the number of negative edges in it is odd.
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The following first proposition is very easy but characterizes those signed graphs for which the voter mo
a fixed state.

Proposition 1.1.The voter model on the signed graphG has a fixed state if and only if there are no unsatisfi
cycles. In this case, there are precisely two fixed states.(This certainly implies non-uniqueness of the station
distribution.)

We now restrict ourselves in the future to signed graphs which contain at least one unsatisfied cycle.
see later that this in itself is certainly not sufficient to insure uniqueness of the stationary distribution.

Our first theorem studies the question of ergodicity of the voter model on a signed,recurrentgraph. By a simple
random walk on a signed graph, we mean a simple random walk on the graph where we ignore the sta
edges.

Theorem 1.1.Consider a signed graphG which contains at least one unsatisfied cycle and for which sim
random walk onG is recurrent. Then the corresponding voter model on the signed graphG is ergodic.

As we will see, the proof of this result becomes simpler if we assume the stronger fact that two indep
random walkers onG meet with probability 1.

We now are left with the case of a transient signed graph with at least one unsatisfied cycle. We are
to give a complete characterization for when there is uniqueness of the stationary distribution (as we w
to do in the recurrent case) but we nonetheless have some results. The first is an easy sufficient con
non-uniqueness of the stationary distribution.

Proposition 1.2.Assume that there exists a subsetW of V such that the induced subgraph onW contains no
unsatisfied cycles and that there existsx ∈ W such that the event that random walk starting fromx stays inW

forever has positive probability. Then there is more than one stationary distribution for the corresponding
model.

Proposition 1.2 has the following immediate corollary.

Corollary 1.1. If G is a transient signed graph with a finite number of negative edges, then there is more th
stationary distribution for the corresponding voter model.

Definition 1.2. If G = (V ,E) is a graph, a subsetZ of V is said to beunavoidableif simple random walk starting
from anypoint hitsZ eventually with probability one.

Note that in this case, we necessarily hitZ infinitely often.

Theorem 1.2.Let G = (V ,E) be a signed graph of bounded degree. Assume that for somek, the set of vertices
which are part of some unsatisfied cycle of length at mostk is unavoidable. Then the corresponding voter mode
ergodic.

We will show how from this one obtains the following result, which was proved by Saada in [8].

Corollary 1.2. Consider the standard graphZd . Declare each edge to be positive with probabilityp ∈ (0,1)

independently(and negative otherwise). Then, with probability1, the corresponding voter model is ergodic.
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Remark 1.1.Note however, that on a general signed graph the fact that simple random walk runs through in
many unsatisfied cycles is not necessary for ergodicity of the corresponding voter model. This will be sh
Section 8.

In Section 2, we give the quick proof of Proposition 1.1. In Section 3, we explain the connection, men
earlier, between the voter model and simple random walk as well as derive two lemmas. In Section 4,
and prove a key proposition, Proposition 4.1, which states that for recurrent graphs with an unsatisfied c
one-dimensional marginals converge to1

2δ0 + 1
2δ1. In Section 5, we give the easier proof of Theorem 1.1 un

the stronger assumption that two independent random walkers meet with probability 1; this uses Propos
In Section 6, we prove a result, Theorem 6.1, which is valid for all graphs and may be of independent int
simply states that ergodicity of the process follows from the assumption that starting from any initial configu
all of the one-dimensional marginals approach1

2δ0 + 1
2δ1. Combined with Proposition 4.1, this will complete t

proof of Theorem 1.1.
In Section 7, we move to the transient case and prove Proposition 1.2, Theorem 1.2 and Corollary

Section 8 we give an example that justifies Remark 1.1. Section 9 contains some open problems.

2. Easy characterization of fixed states

In this section, we give the easy proof of Proposition 1.1.

Proof of Proposition 1.1. It is obvious that if there exists an unsatisfied cycle, then there is no fixed state
versely, assume that there is no unsatisfied cycle. We will first construct a partitionV1,V2 of V such that an edg
is negative if and only if it is an edge fromV1 to V2. (This is similar to the fact that a graph is bipartite if and o
if there are no cycles of odd length.) To do this, take an arbitrary vertexv and place it inV1. Now for any vertexw
different fromv, placew in V1 if there is a simple path fromv to w which has an even number of negative edg
otherwise, placew in V2. The key observation is that if there are no unsatisfied simple cycles, then there
be both a simple path fromv to w which has an even number of negative edges and also a simple path frov to
w which has an odd number of negative edges. (Otherwise, there would be a possibly non-simple cycle fv to
itself which has an odd number of negative edges from which one could obtain a simple cycle with an odd
of negative edges by “loop removal”.) Hence the partition intoV1 andV2 is well defined. It is then trivial to chec
that the partition{V1,V2} is independent of the vertexv initially chosen, that there cannot be negative edges w
V1 or within V2 and that any edge connecting a vertex inV1 and a vertex inV2 must be negative.

Now that we have this partition, letη be the configuration which is 1 onV1 and 0 onV2. It is immediate thatη
is a fixed state. In addition, we can reverse 1 and 0 obtaining another fixed state. It is also easy to see that
the only two fixed states; this follows from the uniqueness of the partition{V1,V2}. �

3. Preliminary results

We first describe the duality relationship between the voter model and random walks mentioned in the in
tion.

Forx ∈ V , let (Xx
t )t�0 be a continuous time random walk onG starting fromx and letP x be the correspondin

probability measure on path space. (This simply means that the walker waits an exponential time with para
and then chooses a neighbor in the graph at random to move to.) We sometimes write(Xt )t�0 if we don’t specify
the starting point of the random walk. IfA is a subset ofV , by a system of independentcoalescingrandom walkers
starting inA, we mean a process(Xx

t )t�0,x∈A corresponding to the walkers starting at the different locationsA
moving independently but when two walkers meet, they stick together forever.
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We will use the following fact about the voter model, for which we refer to [2, Chapter 2] or [5, p.
A configurationηt of the voter model at afixedtime t can be constructed from the initial configurationη0 in the
following way using our system of independent coalescing random walks starting from all locations ofV . Given
(Xx

t )t�0,x∈V , we letη̃t (x) = η0(y) if Xx
t = y andXx crossed an even number of negative edges during the int

[0, t] andη̃t (x) = 1− η0(y) if Xx
t = y andXx crossed an odd number of negative edges during the interval[0, t].

Then, foreacht , (η̃t (x), x ∈ V ) has the same distribution as the voter model at timet , started at time 0 from th
initial configurationη0. Intuitively, the random walk describes the backtracking of opinions:Xx

t = y means tha
the opinion ofx at time t comes from the opinion ofy at time 0. The fact that this is true for the ordinary vo
model can be found in the references mentioned above, but the argument immediately applies to the mix
case. Note, importantly, that this construction is valid for fixedt , but if t1 �= t2, then{(η̃t1(x), η̃t2(x))}x∈V doesnot
have the same distribution as the voter model at times(t1, t2), that is,{(ηt1(x), ηt2(x))}x∈V . However, the equality
of the distributions at a fixed time will allow us to prove statements concerning the limiting behavior of the
model.

We will now need the following technical lemma. For an eventB and a random variableτ , we writeP(B | τ)

for E(IB | τ). If we have a family of events{Bt }t�0 andτ is a nonnegative random variable, we writeBτ+t for the
event{ω | ω ∈ Bτ(ω)+t }.

Lemma 3.1.Let (Bt )t�0 be a family of events andc a constant.
(i) Assume that, for eachε > 0, there is a random variableτε such that0< τε < ∞, a.s. and

for all t � 0,
∣∣P(Bτε+t | τε) − c

∣∣ � ε a.s. (3.1)

ThenP(Bt ) → c as t → ∞.
(ii) Assume that there is a random variableT such that0< T < ∞, a.s. and a functiong such that

lim
t→∞P(BT +t | T ) = g(T ), a.s. (3.2)

Then0� g(T ) � 1 a.s. andP(Bt ) → E(g(T )) as t → ∞.

Proof. (i) Fix ε < c. Chooset large enough such thatP(τε � t) � ε. We have

P(Bt ) = E(IBt I{τε<t}) + E(IBt I{τε�t}). (3.3)

Considering the conditional expectation of the first term on the r.h.s. of (3.3), we have, due to (3.1),

I{τε<t}(c − ε) � E(IBt I{τε<t} | τε) � I{τε<t}(c + ε). (3.4)

Since the second term on the r.h.s. of (3.3) satisfiesE(IBt I{τε�t}) � ε, the claim follows from (3.3) and (3.4), afte
taking expectations in (3.4).

(ii) After some reflection, it is clear that

lim
t→∞P(BT +t | T ) = g(T ), a.s.

is equivalent to

lim
t→∞P(Bt | T ) = g(T ), a.s.

Now simply apply the bounded convergence theorem.�

4. Recurrence implies convergence of the one-dimensional marginals

In this section, we prove that under the assumptions of recurrence and the existence of an unsatisfied
one-dimensional marginals converge to1

2δ0 + 1
2δ1. This is stated in the following proposition and is a key s

towards proving Theorem 6.1.
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Proposition 4.1.Assume that simple random walk onG is recurrent and that there is an unsatisfied cycle inG.
Then, for allx ∈ V and all initial configurationsη0,

lim
t→∞P

(
ηt (x) = 1

) = 1

2
. (4.1)

The proof of Proposition 4.1 will use the following lemma. Before stating this, we introduce some no
Given a setI which is a finite union of time intervals, letVI be the event that during the time setI , (Xt ) transverses
an odd number of negative edges. AbbreviateV[0,t] by Vt .

Lemma 4.1.Assume that simple random walk onG is recurrent and that there is an unsatisfied cycle inG. Fix a
vertexv on this cycle. Then, for eachx ∈ V , there exists an increasing sequence of stopping timesTm such that
Tm < ∞, for all m, Tm → ∞ asm → ∞, XTm = v, for all m, P x -a.s. and

P x(VTm | Tm) −→
m→∞

1

2
in L∞(P x). (4.2)

For the proof of this lemma, we first need the following two lemmas.

Lemma 4.2.LetB1,B2, . . . be independent events such that
∑

i P (Bi) = ∞ and
∑

i P (Bc
i ) = ∞. Then

lim
n→∞P

(
n∑

i=1

IBi
is even

)
= 1

2
.

Proof. Let Yn be the indicator of the event{∑n
i=1 IBi

is even}. Then the sequence(Yn)n=1,2,... is a time-
inhomogeneous Markov chain with values in{0,1} and transition probabilitiesP(Yn+1 = 1 | Yn = 0) = P(Bn+1),
P(Yn+1 = 1 | Yn = 1) = 1 − P(Bn+1). The claim now follows from the convergence theorem for tim
inhomogeneous Markov chains, see for instance [9, Theorem 4.4.1].�

The following is a trivial lemma, whose proof is immediate.

Lemma 4.3.If U1 andU2 are independent nonnegative integer valued random variables such that|P(U1 is odd)−
1/2| � ε, then|P(U1 + U2 is odd) − 1/2| � ε.

Proof of Lemma 4.1. Fix x ∈ V . Let

T̃1 =: inf
{
t � 0: Xt = v,Xs = v for all s ∈ [t + 1, t + 2]}

andA1 = V[T̃1,T̃1+2]. Let

T̃i+1 =: inf
{
t � T̃i + 3: Xt = v,Xs = v for all s ∈ [t + 1, t + 2]}

and Ai+1 = V[T̃i+1,T̃i+1+2]. Note thatP x(T̃i < ∞, i = 1,2, . . .) = 1. We observe that the random variab

{IAi
}∞i=1, {T̃i+1 − T̃i}∞i=1 are independent,{IAi

}∞i=1 are i.i.d. and{T̃i+1 − T̃i}∞i=1 are i.i.d. SinceXt can either sit
still during [T̃i , T̃i + 2] or it can just run one time around the unsatisfied cycle and do nothing else, it is cle
0 < P(Ai) < 1. Let Fm denote theσ -algebra generated by{T̃1, . . . , T̃m}. Let U1(m) be the number of negativ
edges crossed during the time set

⋃m
i=1[T̃i , T̃i + 2] andU2(m) be the number of negative edges crossed during

time set[0, T̃1] ∪ (
⋃m−1

i=1 [T̃i + 2, T̃i+1]). SinceU1(m) is odd if and only if
∑m

i=1 IAi
is odd, Lemma 4.2 (togethe

with the independence mentioned above) implies thatP(U (m) is odd| F ) → 1 in L∞(P x) asm → ∞. We next
1 m 2
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observe that conditioned onFm, U1(m) andU2(m) are independent with respect toP x . SinceVT̃m+2 occurs if and
only if U1(m) + U2(m) is odd, we conclude from Lemma 4.3 that

P x(VT̃m+2 | Fm) −→
m→∞

1

2
in L∞(P x) (4.3)

and hence that

P x(VT̃m+2 | T̃m) −→
m→∞

1

2
in L∞(P x). (4.4)

TakingTm = T̃m + 2, (4.2) follows. �
Proof of Proposition 4.1. Fix x ∈ V . We show that for all initial configurationsη0,

lim
t→∞P

(
η̃t (x) = 1

) = 1

2
. (4.5)

Let v be an arbitrary vertex on some unsatisfied cycle. Next, choose a sequence of stopping times(Tm) as in
Lemma 4.1. Using Lemma 3.1(i), it is enough to show that for eachε > 0, there ism large enough such that for a
initial configurationsη0,

for all t � 0,

∣∣∣∣P (
η̃Tm+t (x) = 1 | Tm

) − 1

2

∣∣∣∣ � ε P x-a.s. (4.6)

We writeVm,t for the eventV[Tm,Tm+t]. RecallVt denotesV[0,t]. Then,

P
(
η̃Tm+t (x) = 1 | Tm

) = P x
(
VTm ∩ ((

Vm,t ∩ {
η0(X

x
Tm+t ) = 1

}) ∪ (
V c

m,t ∩ {
η0(X

x
Tm+t ) = 0

})) | Tm

)
+ P x

(
V c

Tm
∩ ((

Vm,t ∩ {
η0(X

x
Tm+t ) = 0

}) ∪ (
V c

m,t ∩ {
η0(X

x
Tm+t ) = 1

})) | Tm

)
.

SinceXx
Tm

= v, for eachm, we can apply the strong Markov property and conclude that, for eachm, the random
variables(Vm,t ,X

x
Tm+t ) andVTm are conditionally independent w.r.t.P x , givenTm. Since(Vm,t ,X

x
Tm+t ) is also

independent ofTm, we obtain

P
(
η̃Tm+t (x) = 1 | Tm

) = P x(VTm | Tm)P x
((

Vm,t ∩ {
η0(X

x
Tm+t ) = 1

}) ∪ (
V c

m,t ∩ {
η0(X

x
Tm+t ) = 0

}))
+ P x(V c

Tm
| Tm)P x

((
Vm,t ∩ {

η0(X
x
Tm+t ) = 0

}) ∪ (
V c

m,t ∩ {
η0(X

x
Tm+t ) = 1

}))
.

Due to Lemma 4.1,P x(VTm | Tm) and P x(V c
Tm

| Tm) converge to1
2 in L∞(P x) as m → ∞. Since (Vm,t ∩

{η0(X
x
Tm+t ) = 1}) ∪ (V c

m,t ∩ {η0(X
x
Tm+t ) = 0}) and (Vm,t ∩ {η0(X

x
Tm+t ) = 0}) ∪ (V c

m,t ∩ {η0(X
x
Tm+t ) = 1}) are

complementary events, we conclude that (4.6) holds true.�

5. Proof of Theorem 1.1 when two walkers meet

It turns out that the proof of Theorem 1.1 simplifies somewhat if we make the stronger assumption t
independent random walkers meet with probability 1. We give this simplified proof in this section.

Proof of Theorem 1.1 in the case where the probability that two independent random walkers meet is1. Fix
a finite number of locationsx1, x2, . . . , xk in V and consider coalescing simple random walks starting at ver
x1, x2, . . . , xk . Let T be the first time they all meet and letA = A(x1, . . . , xk) be the event that at timeT either all
the walkers crossed an even number of negative edges or that all the walkers crossed an odd number o
edges.

We will show that no matter what the initial configurationη0 is,

lim P
(
η (x ) = 1, i = 1, . . . , k

) = P(A)
. (5.1)
t→∞ t i
2
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Since this doesn’t depend on the initial configuration and a probability measureµ on {0,1}V is determined by the
probability it gives to having 1’s at any finite number of specified locations, this clearly implies ergodicity
process. Instead of (5.1), we will show

lim
t→∞P

(
η̃t (xi) = 1, i = 1, . . . , k

) = P(A)

2
. (5.2)

Denote byXT the location of the coalesced walkers at timeT , i.e.XT = X
xi

T , 1� i � k. Let A+ = A+(x1, . . . , xk)

be the event that at timeT all the walkers crossed an even number of negative edges andA− = A−(x1, . . . , xk) be
the event that at timeT all the walkers crossed an odd number of negative edges. Of course,A is the disjoint union
of A+ andA−. Then, fort � 0,

P
(
η̃T +t (xi) = 1, i = 1, . . . , k | T )
= P(A+ | T )

∫
x∈V

P
(
η̃t (x) = 1

)
µ+(dx) + P(A− | T )

∫
x∈V

P
(
η̃t (x) = 0

)
µ−(dx),

whereµ+ is the conditional distribution ofXT , givenT and conditioned onA+, andµ− is the conditional dis-
tribution of XT , givenT and conditioned onA−. Due to Proposition 4.1 and the bounded convergence theo
both

∫
x∈V

P (η̃t (x) = 1)µ+(dx) and
∫
x∈V

P (η̃t (x) = 0)µ−(dx) (which are measurable functions ofT sinceµ+
andµ− are) converge to12 a.s. ast → ∞, resulting in

P
(
η̃T +t (xi) = 1, i = 1, . . . , k | T ) −→

t→∞
1

2
P(A+ | T ) + 1

2
P(A− | T ) = 1

2
P(A | T ), a.s.

and (5.2) follows by Lemma 3.1(ii). �

6. A general characterization of ergodicity and Theorem 1.1

In this section, we prove a result (applicable to both recurrent and transient graphs) which states th
sure uniqueness of the stationary distribution, it suffices to look at convergence for the one-dimensional m
distributions. This is stated in the following Theorem 6.1. Observe that Theorem 1.1 follows immediatel
Theorem 6.1 together with Proposition 4.1.

Theorem 6.1.Consider a signed graphG. The corresponding voter model is ergodic if and only if for allx ∈ V

and all initial configurationsη0,

lim
t→∞P

(
ηt (x) = 1

) = 1

2
. (6.1)

Proof. The “only if” part follows easily from symmetry.
For the “if” direction, fix a finite number of locationsx1, x2, . . . , xk in V . Define a (random) equivalence relati

on {x1, x2, . . . , xk} by stipulating thatxi ∼ xj if the random walkers, started fromxi andxj , eventually coalesce
Each equivalence class containing at least two elements has a (random) coalescence time, which is the
such that all the walkers in the class have coalesced. (This is not a stopping time.) LetA� = A�(x1, . . . , xk) be the
event that there are� equivalence classes and that in each equivalence class containing at least two elemen
all the walkers crossed an even number of negative edges or they crossed an odd number of negative ed
respective coalescence time of the equivalence class. We will show that no matter what the initial configurη0
is,

lim
t→∞P

(
ηt (xi) = 1, i = 1, . . . , k

) =
k∑

P(A�)

(
1

2

)�

. (6.2)

�=1
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Since this doesn’t depend on the initial configuration and a probability measureµ on {0,1}V is determined by the
probability it gives to having 1’s at any finite number of specified locations, this clearly implies ergodicity.

We have to decompose according to all possible cases for coalescence and non-coalescence. By alexicograph-
ically ordered partition(l.o.p.) of {1, . . . , k}, we mean an ordered partition(I1, . . . , I�) of {1, . . . , k} such that
the smallest elements of(I1, . . . , I�) are in increasing order. (Obviously, there is exactly one ordering of any
tition which is lexicographically ordered.) For an l.o.p.(I1, . . . , I�) of {1, . . . , k}, let DI1,...,I�

denote the even
that the equivalence classes of the above equivalence relation (where we identify{x1, . . . , xk} with {1, . . . , k}) are
{I1, . . . , I�}, and letD̃I1,...,I�

:= DI1,...,I�
∩ A�. It suffices to show that for each such l.o.p.(I1, . . . , I�),

lim
t→∞P

({
η̃t (xi) = 1, i = 1, . . . , k

} ∩ DI1,...,I�

) =
(

1

2

)�

P (D̃I1,...,I�
). (6.3)

We will need the following lemma which we prove afterwards.

Lemma 6.1.For x1, . . . , xm ∈ V with xi �= xj for i �= j , assume that the event that for all1 � i < j � m and
all positive t , X

xi
t �= X

xj

t has positive probability.(Since the walkers are coalescing, this simply means tha
two ever meet.) Let νx1,...,xm be the conditional distribution of(Xx1

t , . . . ,X
xm
t )t�0 given this event. Letνs

x1,...,xm

be the conditional distribution of(Xx1
t , . . . ,X

xm
t )t�0 obtained by conditioning on the event that for all1 � i <

j � m, X
xi
s �= X

xj
s (and hence that no two have met by times) and then letting the walkers after times, evolve

independently without coalescing. Then

lim
s→∞dT V (νs

x1,...,xm
, νx1,...,xm) = 0, (6.4)

wheredT V (·, ·) denotes the total variation distance.

We now letT be the last time a coalescence occurs. (Note thatT is of course not a stopping time.) Usin
Lemma 3.1(ii), (6.3) follows if we show that for each l.o.p.(I1, . . . , I�),

lim
t→∞P

({
η̃T +t (xi) = 1, i = 1, . . . , k

} ∩ DI1,...,I�
| T ) =

(
1

2

)�

P (D̃I1,...,I�
| T ). (6.5)

Next for an l.o.p.(I1, . . . , I�) and(a1, . . . , a�) ∈ {0,1}�, let D̃
a1...,a�

I1,...,I�
be the subevent of̃DI1,...,I�

where for each
j ∈ {1, . . . , �}, the walkers with starting points inIj transversed(mod 2) aj negative bonds during[0, T ] (recall
that we are identifying(x1, . . . , xk) with (1, . . . , k)). Now,

P
({

η̃T +t (xi) = 1, i = 1, . . . , k
} ∩ DI1,...,I�

| T )
=

∑
(a1,...,a�)∈{0,1}�

P
(
D̃

a1,...,a�

I1,...,I�
| T )

×
∑

(y1,...,y�)∈V �,yi �=yj

νy1,...,y�

[
η0(X

yi
t ) = 1− ai for i = 1, . . . , �

]
Q

a1,...,a�

T ,I1,...,I�
(y1, . . . , y�),

whereQ
a1,...,a�

T ,I1,...,I�
({y1, . . . , y�}) is the conditional probability givenT andD̃

a1,...,a�

I1,...,I�
that at timeT , the positions of

the walkers with starting points inI1, . . . , I� arey1, . . . , y�. We claim that for all(y1, . . . , y�) ∈ V �, yi �= yj for
i �= j , and all(a1, . . . , a�) ∈ {0,1}�

lim
t→∞νy1,...,y�

[
η0(X

yi
t ) = ai for i = 1, . . . , �

] =
(

1

2

)�

(6.6)

from which (6.5) follows from the bounded convergence theorem. To establish this claim, fix such a(y1, . . . , y�) ∈
V �, yi �= yj for i �= j , and a(a1, . . . , a�) ∈ {0,1}�, let ε > 0 and choose by Lemma 6.1 ans so that

d (νs , ν ) < ε. (6.7)
T V y1,...,y� y1,...,y�
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For (b1, . . . , b�) ∈ {0,1}�, let E(b1, . . . , b�) be the event that for eachi ∈ {1, . . . , �}, Xyi transversed(mod2) bi

negative bonds during[0, s].
Now for t > s,

νs
y1,...,y�

[
η0(X

yi
t ) = ai for i = 1, . . . , �

]
=

∑
(b1,...,b�)∈{0,1}�

νs
y1,...,y�

(
E(b1, . . . , b�)

)

×
∑

(z1,...,z�)∈V �,zi �=zj

�∏
i=1

P
[
η0(X

zi
t−s) = ai1bi=0 + (1− ai)1bi=1

]
Rb1...,b�

s,y1,...,y�

(
(z1, . . . , z�)

)
,

whereR
b1...,b�
s,y1,...,y�

is the distribution of the positions at times of the� random walkers starting aty1, . . . , y�, condi-
tioned on not having met by times and conditioned on the eventE(b1, . . . , b�). By (6.1), for all(z1, . . . , z�) ∈ V �,
zi �= zj for i �= j , (a1, . . . , a�) ∈ {0,1}� and (b1, . . . , b�) ∈ {0,1}�, the above integrand

∏�
i=1 P [η0(X

zi
t−s) =

ai1bi=0 + (1 − ai)1bi=1] approaches(1
2)� as t → ∞. By the bounded convergence theorem,νs

y1,...,y�
[η0(X

yi
t ) =

ai for i = 1, . . . , �] also approaches(1
2)� ast → ∞. By (6.7),νy1,...,y�

[η(X
yi
t ) = ai for i = 1, . . . , �] has a lim inf

and a lim sup ast → ∞ each withinε of (1
2)�. As ε > 0 is arbitrary, this proves (6.6).�

Proof of Lemma 6.1. Let µs
x1,...,xm

be the conditional distribution of(Xx1
t , . . . ,X

xm
t )t�0, conditioned on the even

that for all 1� i < j � m and all positivet � s, X
xi
t �= X

xj

t . We show that bothdT V (µs
x1,...,xm

, νx1,...,xm) and
dT V (νs

x1,...,xm
,µs

x1,...,xm
) approach 0 ass → ∞. The first follows from the easy abstract fact that if(Ω,F ,P ) is an

arbitrary probability space,Bs is a decreasing sequence of events (ass → ∞) with P(
⋂

s�0 Bs) > 0, then

lim
s→∞dT V

(
P(· | Bs),P

(
· |

⋂
s

Bs

))
= 0.

Here

Bs := {no two of the walkers coalesce by times}.
For the second, we note that with

As := {at least two of the walkers coalesce after times}
we have that

lim
s→∞P(As | Bs) = 0

since P(As) approaches 0 ass → ∞ and P(Bs) does not approach 0 ass → ∞ and then observe tha
dT V (νs

x1,...,xm
,µs

x1,...,xm
) approaching 0 follows immediately from this.�

7. The transient case

In this section we prove Proposition 1.2, Theorem 1.2 and Corollary 1.2.

Proof of Proposition 1.2. First, it is a consequence of the martingale convergence theorem that if anx exists with
this property, then there exists a vertexy such that a random walker starting from locationy stays inW forever
with probability larger than 3/4. More precisely, letB be the event that(Xt ) stays inW forever. LetFt be the
σ -field generated by{(X ) }, t � 0. Let M := E(I | F ), t � 0. Then(M ) is a martingale with respect t
s 0�s�t t B t t
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(Ft ). Due to the martingale convergence theorem,Mt → IB for t → ∞, P x -a.s. for allx ∈ V . SinceP x(B) > 0
andMt � P Xt (B), the claim follows. Next, as in the proof of Proposition 1.1, choose a configurationη0 on W

such that an edge withinW is negative if and only if theη0 values of its endpoints are different. Assumeη0(y) = 1.
Extendη0 to V arbitrarily. Then it is immediate that starting from the configurationη0, P(η̃t (y) = 1) � 3/4 for all
t . Using a convergent subsequence of the Cesaro averages starting fromη0 gives a stationary distributionµ with
µ(η(y) = 1) � 3/4. By symmetry there is a stationary distributionµ̃ such thatµ̃(η(y) = 1) � 1/4 which implies
non-uniqueness of the stationary distribution.�
Proof of Theorem 1.2. In view of Theorem 6.1, it suffices to prove that for allx ∈ V and all initial configurations
η0, (6.1) holds. We will do this by modifying the proof of Proposition 1.1. We first need the following lemma w
is analogous to Lemma 4.1 and which will be proved afterwards in a similar manner. Recall the definitionsVI ,
Vt andVm,t from Section 4.

Lemma 7.1. Under the assumptions of Theorem1.2, there exists, for eachx ∈ V , an increasing sequence
stopping timesTm such thatTm < ∞, for all m, Tm → ∞ asm → ∞, P x -a.s. and

P x(VTm | Tm,XTm) −→
m→∞

1

2
in L∞(P x). (7.1)

Exactly as in the proof of Proposition 1.1, using Lemma 3.1(i), it is enough to show that for eachε > 0, there is
m large enough such that for all initial configurationsη0, (4.6) holds and to verify this, we prove the stronger f
that for largem

for all t � 0,

∣∣∣∣P (
η̃Tm+t (x) = 1 | Tm,XTm

) − 1

2

∣∣∣∣ � ε P x-a.s. (7.2)

Now this is proved almost as (4.6) was proved. We modify the first displayed equation after (4.6) by repla
the conditionings onTm by conditionings on bothTm andXTm . The strong Markov property implies that, for ea
m, the random variables(Vm,t ,X

x
Tm+t ) andVTm are conditionally independent w.r.t.P x , givenTm andXTm . We

then obtain

P
(
η̃Tm+t (x) = 1 | Tm,XTm

)
= P x(VTm | Tm,XTm)P x

((
Vm,t ∩ {

η0(X
x
Tm+t ) = 1

}) ∪ (
V c

m,t ∩ {
η0(X

x
Tm+t ) = 0

}) | Tm,XTm

)
+ P x(V c

Tm
| Tm,XTm)P x

((
Vm,t ∩ {

η0(X
x
Tm+t ) = 0

}) ∪ (
V c

m,t ∩ {
η0(X

x
Tm+t ) = 1

}) | Tm,XTm

)
.

Due to Lemma 7.1,P x(VTm | Tm,XTm) andP x(V c
Tm

| Tm,XTm) converge to1
2 in L∞(P x) asm → ∞, and we

conclude that (7.2) holds true.�
Proof of Lemma 7.1. This will be proved by modifying the proof of Lemma 4.1. Choosek such that the set o
vertices which are part of some unsatisfied cycle of length at mostk is unavoidable. Denote this set of vertic
by G.

Let

T̃1 =: inf
{
t � 0: Xt ∈ G,Xs = Xt for all s ∈ [t + 1, t + 2]}

andA1 = V[T̃1,T̃1+2]. Let

T̃i+1 =: inf
{
t � T̃i + 3: Xt ∈ G,Xs = Xt for all s ∈ [t + 1, t + 2]}

andAi+1 = V[T̃i+1,T̃i+1+2]. SinceG is unavoidable, we haveP x(T̃i < ∞, i = 1,2, . . .) = 1. Denote theσ -algebra

generated by{T̃1, . . . , T̃m,XT̃1
, . . . ,XT̃m

} by Fm. We observe that for everym, A1, . . . ,Am are conditionally inde-
pendent givenF . Observe also that sinceG is of bounded degree, if we look at all graphs obtained by choos
m
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v ∈ V and taking the induced subgraph generated by all vertices within distancek of v, we only get a finite numbe
of graphs (up to isomorphism). SinceXt can either sit still during[T̃i , T̃i + 2] or it can just run one time around a
unsatisfied cycle of length at mostk and do nothing else, the above graph property observation implies that
exists a positive numberδ > 0 such that for allm and for anyi ∈ {1, . . . ,m}, P(Ai | Fm) ∈ [δ,1− δ]. LetU1(m) be
the number of negative edges crossed during the time set

⋃m
i=1[T̃i , T̃i + 2] andU2(m) be the number of negativ

edges crossed during the time set[0, T̃1] ∪ (
⋃m−1

i=1 [T̃i + 2, T̃i+1]). SinceU1(m) is odd if and only if
∑m

i=1 IAi
is

odd, Lemma 4.2, together with the above, implies thatP(U1(m) is odd| Fm) → 1
2 in L∞(Px) asm → ∞. We next

observe that conditioned onFm, U1(m) andU2(m) are independent with respect toP x . SinceVT̃m+2 occurs if and
only if U1(m) + U2(m) is odd, we conclude from Lemma 4.3 that

P x(VT̃m+2 | Fm) −→
m→∞

1

2
in L∞(P x) (7.3)

from which we can conclude

P x(VT̃m+2 | T̃m,XT̃m
) −→

m→∞
1

2
in L∞(P x). (7.4)

TakingTm = T̃m + 2, (7.1) follows. �
Proof of Corollary 1.2. For d = 2, this follows from Theorem 1.1 since clearly with probability 1, there w
exist some unsatisfied cycle. Ford � 3, this follows, using Theorem 1.2, from the fact that the set of points w
belong to an unsatisfied cycle of length 4 is with probability 1 an unavoidable set. To show this latter facG
be the set of vertices which are part of some unsatisfied cycle of length 4 and consider the following in
construction of the random walk, together with a declaration of being positive or negative for asubsetof the
edges. Letx ∈ Z

d be the starting point of the random walk. Choose a cycle of length 4 containingx, and declare
independently, each of the four edges to be positive (with probabilityp) and negative otherwise. Consider t
stopping timesτi where the random walk visits a vertexvi for the first time, andvi is contained in a cycle o
length 4 whose edges have not been declared yet. Choose arbitrarily (according to a prespecified dete
rule) such a cycle of length 4 and declare independently, and independently of everything done before,
the four edges to be positive (with probabilityp) and negative otherwise. ThenXτi

= vi andP x(τi < ∞, ∀i) = 1
(the latter follows immediately if one considers, e.g., hitting times of spheres around the starting point). The
{Xτi

∈ G}, i = 1,2, . . . , are independent andP(Xτi
∈ G) � 4p3(1 − p) > 0. The Borel–Cantelli lemma implie

thatP(Xτi
∈ G for infinitely manyi) = 1. Finally, Fubini’s theorem implies that a.s.G is an unavoidable set.�

8. An example with few unsatisfied cycles

In this section we will give an example of a signed graph such that the corresponding voter model is e
but simple random walk almost surely runs around only finitely many unsatisfied cycles.

Example 8.1.The signed graphG = (V ,E) will be the rooted binary treeT2 with some additional edges. We w
chooseV to be the vertex set ofT2 which we enumerate byvn,k, k = 1, . . . ,2n, n = 0,1,2, . . . . Here the indexn
stands for the distance of the corresponding vertex to the rootv0,1 and vertexvn,k has childrenvn+1,2k−1 and
vn+1,2k (and parents are connected to children by a bond). We will also write|x| to indicate the height of vertexx;
hence forx = vn,k we have that|x| = n. Additionally to these edges we have the following edges: Choose a st
increasing sequence(a(n))n∈N0 of positive integers witha(0) = 0. At distancea(n),n � 1, of the root, connect th
left half of the descendents of a vertex at levela(n − 1) to the right half of the descendents of the same verte
connecting each of the pairs(va(n),k, va(n),2a(n)−a(n−1)−1+k), k = j2a(n)−a(n−1)−1 + j ′, where 0� j � 2a(n−1)+1 − 1
is even andj ′ = 1,2, . . . ,2a(n)−a(n−1)−1 with a new edge. On this edge setE define signs as follows: The edg
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(va(n),k, va(n)+1,2k−1), k = 1, . . . ,2a(n) are declared to be negative while all other edges (in particular all new e
are positive.

Denote byLn the vertices at heighta(n), i.e. all verticesv at distancea(n) from the root. Note that in order fo
simple random walk to run through an unsatisfied cycle, there must be ann such that the walker hitsLn−1 after
having hitLn. Hence by Borel–Cantelli, ifa(n) goes to infinity sufficiently fast, simple random walk almost sur
will only go through finitely many unsatisfied cycles.

On the other hand one can show, that for allx ∈ V and for all initial configurationsη0,

lim
t→∞P

(
ηt (x) = 1

) = 1

2
;

Theorem 6.1 then implies ergodicity. Indeed, fixx ∈ V and denote byi0 the smallesti such that|x| � a(i) and for
i � i0 introduce the stopping timesSi as the first hitting time forXx

t of Li , i.e.

Si := inf{t > 0: Xx
t ∈ Li}.

Next, let

Ti0 := inf

{
t : t ∈

∞⋃
i=i0

{Si + 1}, |Xx
s | = |Xx

t | for all s ∈ [t − 1, t]
}

and fori � i0 let

Ti+1 := inf

{
t > Ti : t ∈

∞⋃
i=i0

{Si + 1}, |Xx
s | = |Xx

t | for all s ∈ [t − 1, t]
}

.

Using this definition ofTi we will verify (7.1). After that, one can proceed by copying the proof of Theorem
after Lemma 7.1. Fori � i0 define

τi := sup
{
t < Ti+1: |Xx

t | = |Xx
Ti

|}
and form � i0

Fm := σ
({Ti,X

x
Ti

, i = i0, . . . ,m} ∪ {τi,X
x
τi
, i = i0, . . . ,m − 1}).

For i � i0 putAi := V[τi ,Ti+1] with V• defined as in Section 4. Then it is easy to see that theAi, i = i0, . . . ,m − 1,
are i.i.d. and independent ofFm. HenceP(Ai | Fm) = P(Ai) ∈ (0,1). Now following the proof of Lemma 7.1 w
conclude that indeed (7.1) holds true.

9. Open questions

(1) Is the converse of Proposition 1.2 true?
(2) Can we assign positive and negative signs to the edges onZ

3 such that the corresponding voter mode
ergodic, but almost surely simple random walk only goes around finitely many unsatisfied cycles?

(3) Is the fact that almost surely simple random walk goes around infinitely many unsatisfied cycles suffic
ergodicity of the process?

(4) Does the uniqueness of the stationary distribution imply ergodicity?
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