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Abstract

We study the voter model with both positive and negative bonds on a general locally finite connected infinite graph. We obtain
various results concerning ergodicity of the process.
0 2004 Elsevier SAS. All rights reserved.

Résumé

Nous considérons un graphe connexe, de degré localement fini, ou chaque aréte a un signe positif (“aréte votante”) ou un
signe négatif (“aréte anti-votante”). Pour le modéle du votant correspondant a cette configuration, nous obtenons des résultats
d‘ergodicité.
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1. Introduction

The voter modeis one of the standard models in the subject of interacting particle systems. See the books [2]
and [5] which give accounts of this subject and in particular study the voter model.
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We first describe the voter model on a general locally finite, connected grapkV, E). (It is always assumed
that our graphs have no self-loops or double edges.) This will be a continuous time Markov frpkesson the
state spacd := {0, 1}". (Of course an initial state or initial distribution must be specified.) A typical configuration
in X will be denoted by := {n(x)}.cv Wheren(x) € {0, 1} for eachx. V represents the various agentsand a 0 or 1
represent two possiblapinions n(x) is the opinion of agent. In the standard voter model, each agemtaits an
exponential time with parameter 1, chooses a neighbor at random and at that time, thexsketeashes that of the
chosen neighbor. This is only an informal (infinitesimal) description of the process. It can be made rigorous using
operator theory (see [5]) or, more simply, via the so-cajebhical representatiowhich uses an infinite family of
independent Poisson processes (see [2]). We say that a configuratioes statef it is an absorbing state for the
process, or, in other words, if the Dirac measure on this configuration is a stationary distribution. It is obvious that
the all 0 and all 1 configurations, to be denoteddogndl from now on, are the only fixed states, giving us more
than one stationary distribution (the point masses at these two configurations) for the underlying voter system. It
is known (see [5]) that for thé-dimensional integer lattice, fat = 1, 2, the only stationary distributions are these
(plus their convex combinations) while far> 3, there are other, so-called nontrivial, stationary distributions.
These results are intimately connected to the fact that simple random wélk isrtransient if and only it/ > 3.

More generally, these arguments give that for the voter model on a general graph, there are nontrivial stationary
distributions (i.e., ones which are not convex combination&zadnd é7) if and only if the probability that two
independent random walkers starting at distinct locations on the graph never meet is strictly positive. (By a random
walk on the graph, we mean the Markov chainonvhich waits an exponential amount of time with parameter 1

and then moves to a neighbor chosen at random.) We will describe the relationship between the voter model and
random walk in Section 2.

We point out that there are recurrent graphs (meaning graphs for which simple random walk on them is recurrent)
for which the probability that two independent random walkers never meet is strictly positive; an example of such
a graph is the “fishbone graph” which is the 2-dimensional lattice with all horizontal edges not sitting.on the
axis removed (see [3]). See also [4] for an earlier example of an irreducible symmetric recurrent Markov chain
for which two independent copies don’t meet with positive probability. On the other hand, for transient graphs
of bounded degree, it is always the case that the probability that two independent random walkers never meet is
strictly positive. (In fact, for graphs of bounded degree, random walk is transient if and only if the expected number
of times that two independent random walkers meet is finite.)

We now give a variant of the voter model for which we investigate the question of ergodicity of the process. Re-
call that a Markov process, which has a unique stationary distribution such that for each initial state the distribution
at timer converges weakly to this stationary distribution is calieglodic

Consider a grapliy = (V, E) where some of the edges Bfare (deterministically) declared “positive” and the
others are declared “negative”. We will call thisigned graphThe “voter model on the signed-gragi will also
be a continuous time Markov process on the state sfaee(0, 1}". It is defined exactly as the voter model with
one important difference. When a verteis updating, if it chooses the neighbprthen the state of becomes the
state ofy if the edge between them is positive but becomes the opposite staiétbis edge is negative. If all of
the edges are declared to be negative, then this Markov process is cabeditheter modelThe anti-voter model
on finite graphs was investigated by Donnelly and Welsh in [1]. The same model on infinite graphs was studied by
Matloff in [6] and [7]. Here the random walkers are taken to be a more general Markov chain. The case where the
edges ofZ¢ are chosen to be positive or negative in a random i.i.d. manner was studied by Saada in [8].

As soon as there is at least one negative edge, it is clead twad1 are no longer fixed states. However, there
still may be other fixed states. For the following definition, recall that a cycle in a graph is satipteif it does
not contain any vertex twice, except the first and last.

Definition 1.1. A simple cycle in a signed graph issatisfiedf the number of negative edges in it is odd.
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The following first proposition is very easy but characterizes those signed graphs for which the voter model has
a fixed state.

Proposition 1.1.The voter model on the signed graphhas a fixed state if and only if there are no unsatisfied
cycles. In this case, there are precisely two fixed stdfdss certainly implies non-uniqueness of the stationary
distribution)

We now restrict ourselves in the future to signed graphs which contain at least one unsatisfied cycle. We will
see later that this in itself is certainly not sufficient to insure uniqueness of the stationary distribution.

Ouir first theorem studies the question of ergodicity of the voter model on a sigedientgraph. By a simple
random walk on a signed graph, we mean a simple random walk on the graph where we ignore the state of the
edges.

Theorem 1.1.Consider a signed graplis which contains at least one unsatisfied cycle and for which simple
random walk onG is recurrent. Then the corresponding voter model on the signed gtajsrergodic.

As we will see, the proof of this result becomes simpler if we assume the stronger fact that two independent
random walkers oG meet with probability 1.

We now are left with the case of a transient signed graph with at least one unsatisfied cycle. We are not able
to give a complete characterization for when there is uniqueness of the stationary distribution (as we were able
to do in the recurrent case) but we nonetheless have some results. The first is an easy sufficient condition for
non-uniqueness of the stationary distribution.

Proposition 1.2. Assume that there exists a sub®étof V such that the induced subgraph &% contains no
unsatisfied cycles and that there existe W such that the event that random walk starting franstays inW
forever has positive probability. Then there is more than one stationary distribution for the corresponding voter
model.

Proposition 1.2 has the following immediate corollary.

Corollary 1.1. If G is a transient signed graph with a finite number of negative edges, then there is more than one
stationary distribution for the corresponding voter model.

Definition 1.2.If G = (V, E) is a graph, a subsét of V is said to baunavoidabléf simple random walk starting
from anypoint hits Z eventually with probability one.

Note that in this case, we necessarily Aitnfinitely often.
Theorem 1.2.Let G = (V, E) be a signed graph of bounded degree. Assume that for §othe set of vertices
which are part of some unsatisfied cycle of length at rhéstunavoidable. Then the corresponding voter model is
ergodic.

We will show how from this one obtains the following result, which was proved by Saada in [8].

Corollary 1.2. Consider the standard grapf?. Declare each edge to be positive with probabilitye (0, 1)
independentlyand negative otherwi3eThen, with probabilityl, the corresponding voter model is ergodic.
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Remark 1.1.Note however, that on a general signed graph the fact that simple random walk runs through infinitely
many unsatisfied cycles is not necessary for ergodicity of the corresponding voter model. This will be shown in
Section 8.

In Section 2, we give the quick proof of Proposition 1.1. In Section 3, we explain the connection, mentioned
earlier, between the voter model and simple random walk as well as derive two lemmas. In Section 4, we state
and prove a key proposition, Proposition 4.1, which states that for recurrent graphs with an unsatisfied cycle, the
one-dimensional marginals convergelzt&) + %81. In Section 5, we give the easier proof of Theorem 1.1 under
the stronger assumption that two independent random walkers meet with probability 1; this uses Proposition 4.1.
In Section 6, we prove a result, Theorem 6.1, which is valid for all graphs and may be of independent interest. It
simply states that ergodicity of the process follows from the assumption that starting from any initial configuration,
all of the one-dimensional marginals approa}z‘]@ + %81. Combined with Proposition 4.1, this will complete the
proof of Theorem 1.1.

In Section 7, we move to the transient case and prove Proposition 1.2, Theorem 1.2 and Corollary 1.2. In
Section 8 we give an example that justifies Remark 1.1. Section 9 contains some open problems.

2. Easy characterization of fixed states
In this section, we give the easy proof of Proposition 1.1.

Proof of Proposition 1.1. It is obvious that if there exists an unsatisfied cycle, then there is no fixed state. Con-
versely, assume that there is no unsatisfied cycle. We will first construct a paWiitidh of V such that an edge
is negative if and only if it is an edge froiy to V. (This is similar to the fact that a graph is bipartite if and only
if there are no cycles of odd length.) To do this, take an arbitrary vertamd place it inV;. Now for any vertexw
different fromu, placew in V1 if there is a simple path from to w which has an even number of negative edges;
otherwise, placev in V,. The key observation is that if there are no unsatisfied simple cycles, then there cannot
be both a simple path fromto w which has an even number of negative edges and also a simple path foom
w which has an odd number of negative edges. (Otherwise, there would be a possibly non-simple cycl®ofrom
itself which has an odd number of negative edges from which one could obtain a simple cycle with an odd number
of negative edges by “loop removal”.) Hence the partition ivitaand v is well defined. It is then trivial to check
that the partitior{ V1, V»} is independent of the vertexinitially chosen, that there cannot be negative edges within
V1 or within V, and that any edge connecting a verteXinand a vertex ir¥> must be negative.

Now that we have this partition, lgtbe the configuration which is 1 ov, and 0 onVs. It is immediate thay
is a fixed state. In addition, we can reverse 1 and 0 obtaining another fixed state. It is also easy to see that these ar
the only two fixed states; this follows from the uniqueness of the partfionV.}. O

3. Preliminary results

We first describe the duality relationship between the voter model and random walks mentioned in the introduc-
tion.

Forx e V, let(X;),>0 be a continuous time random walk éhstarting fromx and letP* be the corresponding
probability measure on path space. (This simply means that the walker waits an exponential time with parameter 1
and then chooses a neighbor in the graph at random to move to.) We sometimewyritg if we don't specify
the starting point of the random walk. Af is a subset o/, by a system of independeralescingandom walkers
starting inA, we mean a procesX; );>0,xc4 corresponding to the walkers starting at the different locations in
moving independently but when two walkers meet, they stick together forever.
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We will use the following fact about the voter model, for which we refer to [2, Chapter 2] or [5, p. 245].
A configurationn; of the voter model at &ixedtime ¢ can be constructed from the initial configuratiggnin the
following way using our system of independent coalescing random walks starting from all locatign$sofen
(X)) i>0,xev, We leti; (x) = no(y) if X =y andX* crossed an even number of negative edges during the interval
[0, 1] and7n,(x) =1 — no(y) if X; =y andX* crossed an odd number of negative edges during the intgxval
Then, foreacht, (7j;(x), x € V) has the same distribution as the voter model at tinstarted at time 0 from the
initial configurationng. Intuitively, the random walk describes the backtracking of opinidfjs= y means that
the opinion ofx at timer comes from the opinion of at time 0. The fact that this is true for the ordinary voter
model can be found in the references mentioned above, but the argument immediately applies to the mixed bond
case. Note, importantly, that this construction is valid for fixglolut if 71 # 72, then{(7j,, (x), 71,(x))}xev doesnot
have the same distribution as the voter model at tilmgs,), that is,{(1; (x), 1, (x))}rev. However, the equality
of the distributions at a fixed time will allow us to prove statements concerning the limiting behavior of the voter
model.

We will now need the following technical lemma. For an evBriaind a random variable, we write P(B | t)
for E(Ip | 7). If we have a family of event§B; }; >0 andr is a nonnegative random variable, we wiltg, ; for the
event{w | w € Br(w)+4+}-

Lemma 3.1.Let (B;);»0 be a family of events anda constant.
(i) Assume that, for each> 0, there is a random variable, such that0 < 7, < o0, a.s. and
forall#>0, |P(By4l7)—c|<e as. (3.1)

ThenP(B;) — c ast — oo.
(ii) Assume that there is a random variafflesuch thatd < T < oo, a.s. and a functiog such that

Jim P(Bry, 1 T)=g(T), as. (3.2)

Then0 < ¢g(T) <la.s.andP(B;) — E(g(T)) ast — oo.

Proof. (i) Fix ¢ < ¢. Choose large enough such thd(z, > 1) < e. We have

P(B;) = E(Ip, I{z,<ty) + E(I I{z.>1))- (3.3)
Considering the conditional expectation of the first term on the r.h.s. of (3.3), we have, due to (3.1),
I{t£<t}(c —¢) < E(IB,I{rg<t} | 7o) < I{rg<t}(c + ). (34)

Since the second term on the r.h.s. of (3.3) satidfig, I;-,>}) < ¢, the claim follows from (3.3) and (3.4), after
taking expectations in (3.4).
(ii) After some reflection, it is clear that

lim P(Br4, | T)=¢g(T), a.s.
—00

is equivalent to
lim P(B, | T)=g(T), a.s.
—00

Now simply apply the bounded convergence theorem.

4. Recurrence implies convergence of the one-dimensional marginals

In this section, we prove that under the assumptions of recurrence and the existence of an unsatisfied cycle, the
one-dimensional marginals converge%ﬁb + %81. This is stated in the following proposition and is a key step
towards proving Theorem 6.1.
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Proposition 4.1. Assume that simple random walk 6his recurrent and that there is an unsatisfied cycleiin
Then, for allx € V and all initial configurationsyo,

. 1
tl_l)ngO P(r/t(x) = 1) = > (4.1)

The proof of Proposition 4.1 will use the following lemma. Before stating this, we introduce some notation.
Given a set which is a finite union of time intervals, 18, be the event that during the time det X,) transverses
an odd number of negative edges. Abbrevigtg, by V;.

Lemma 4.1.Assume that simple random walk 6his recurrent and that there is an unsatisfied cycl&inFix a
vertexv on this cycle. Then, for eache V, there exists an increasing sequence of stopping tifipesuch that
T < oo, forall m, T, - oo asm — oo, X, = v, for all m, P*-a.s. and

PX(Vp, | Tw) =20 = in Lo(PY). (4.2)

m—0o0 2
For the proof of this lemma, we first need the following two lemmas.

Lemma 4.2.Let By, Bz, ... be independent events such that P(B;) = oo and ) ; P(Bf) =oc. Then

lim P ( Z I, is even)

i=1

Proof. Let Y, be the indicator of the even{y 7 ; I, isever}. Then the sequencé,),=12 . is a time-
inhomogeneous Markov chain with values{( 1} and transition probabilitie® (Y,+1 =1|Y, =0) = P(Bu+1),
P(Yy41=1|Y, =1 =1— P(B,+1).- The claim now follows from the convergence theorem for time-
inhomogeneous Markov chains, see for instance [9, Theorem 4.411].

The following is a trivial lemma, whose proof is immediate.

Lemma 4.3.If U1 andU> are independent nonnegative integer valued random variables such{i@t is odd) —
1/2| < e, then|P (U1 + Uz is odd — 1/2| < &.

Proof of Lemma 4.1. Fix x € V. Let

ﬁ::inf{tgo: X, =v,X;=vforallse[r+11+2]}
andA] = ViF, Fta Let

Tiyr=inflr >Ti +3: X, =v, X, =vforalls e[r+ 1,7+ 2]}

and A; 1 = Viz Ty T2l Note that Px(T <o00,i =12,...) =1. We observe that the random variables
{I1a: )24, {T,+1 - T}O"1 are independent/4,; }7°, are i.i.d. and{TlH — T}"o1 are i.i.d. SinceX, can either sit

still during [7;, 7; + 2] or it can just run one time around the unsatisfied cycle and do nothing else, it is clear that
0< P(A;) < 1. Let F, denote they—al~ge£)ra generated by, ..., T,,}. Let U1(m) be the number of negative
edges crossed during the time Eg‘!,tl[T,, T; + 2] andU»(m) be the number of negative edges crossed during the
time set[0, T1] U (U l[T + 2, T,+1]) SinceU1(m) is odd if and only ify ;" IA,- is odd, Lemma 4.2 (together
with the independence mentioned above) implies th@f; (m) is odd| F,,) — 7 in L°(P*) asm — oco. We next
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observe that conditioned of,,, U1(m) andU»(m) are independent with respectd . SinceV;mJr2 occurs if and
only if U1(m) + Ua(m) is odd, we conclude from Lemma 4.3 that

1 .
P)‘(Vfer2 | Fin) oo 5 in L°°(P%) (4.3)
and hence that
~ 1 .
PY(Vi, 121 Tn) poo 5 INL(PY). (4.4)

TakingT,, = T,y + 2, (4.2) follows. O
Proof of Proposition 4.1. Fix x € V. We show that for all initial configurationg,
. 1
lim P (x)=1)==. (4.5)
[—>0o0

2

Let v be an arbitrary vertex on some unsatisfied cycle. Next, choose a sequence of stoppin@Limas in
Lemma 4.1. Using Lemma 3.1(i), it is enough to show that for easl0, there isn large enough such that for all
initial configurationsyo,
1
forallr >0, |P(f7,4+:(x)=1|Tn) — 5 <e Pf-as. (4.6)

We write V,, ; for the event|z,, 1., ++. RecallV; denotesVio ). Then,

P (i, +¢(0) = 1| Ty) = P* (Vg 0 (Vi N {m0(X5, 4 ) =1}) U (VS N {no(X3 ) =0})) | T)
+ P (VE, O (Vi 0 {no(X,, 1) =0} U (Vi 0 {no(XF, 1) = 1})) | Ton).

SinceX’}m = v, for eachm, we can apply the strong Markov property and conclude that, for @at¢he random
variables(V,, ;, X);MH) and vz, are conditionally independent w.re*, givenT,,. Since(Vy, ;, X ) is also
independent of;,,, we obtain

P(fig,+:(x) = 1| Tw) = P* (Vg | Tn) P* (Vi 0 {m0(X5, ) =1}) U (Vs N {no(XF, ,,) =0}))
+ PV I T P (Vi 0 {no(XT,, 1) =0} U (Vi 0 {no(X7,, ) = 1}))-

m

X
T+t

Due to Lemma 4.1P*(Vy, | T,,) and PX(VTCW | T,,) converge to% in L>®°(P*) asm — oo. Since (V,,; N
o(X3, 1) =1 U (Vs N {no(X3, ) =0} and (Vi N {no(X3, ,,) =0D U VS, N{no(X3, ) =1}) are
complementary events, we conclude that (4.6) holds true.

5. Proof of Theorem 1.1 when two walkers meet

It turns out that the proof of Theorem 1.1 simplifies somewhat if we make the stronger assumption that two
independent random walkers meet with probability 1. We give this simplified proof in this section.

Proof of Theorem 1.1 in the case where the probability that two independent random walkers meet s Fix

a finite number of locations;, x2, ..., x; in V and consider coalescing simple random walks starting at vertices

X1, X2, ..., x;. Let T be the first time they all meet and lat= A(x1, ..., x;) be the event that at timg either all

the walkers crossed an even number of negative edges or that all the walkers crossed an odd number of negative

edges.
We will show that no matter what the initial configuratiggis,
: . _PA)
Il_l)ngOP(nt(x,')_l, 1_1,...,k)_T. (5.2)
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Since this doesn’t depend on the initial configuration and a probability measomg0, 1}" is determined by the
probability it gives to having 1's at any finite number of specified locations, this clearly implies ergodicity of the
process. Instead of (5.1), we will show
. - . P(A)

tl_l)ngoP(n,(xi)—l, 1—1,...,k)—T. (5.2
Denote byXr the location of the coalesced walkers at tithd.e. X7 = X’}", 1<i<k.LetAT =A% (x1,...,x0)
be the event that at timE all the walkers crossed an even number of negative edgegd ard A~ (x1, ..., x;) be
the event that at tim& all the walkers crossed an odd number of negative edges. Of couiséhe disjoint union
of AT andA~. Then, forr > 0,

P(iir4(xi)=1,i=1,...,k|T)

=P(AT|T) f P(il:(x) =1) u*(dx) + P(A™ | T) / P (i1 (x) = 0) ™ (dx),
xeV xeV
whereu* is the conditional distribution ok 7, givenT and conditioned om*, and .~ is the conditional dis-
tribution of X, givenT and conditioned oM ~. Due to Proposition 4.1 and the bounded convergence theorem,
both [, P(il:(x) =) uT(dx) and [, _,, P(7};(x) = 0) ™ (dx) (which are measurable functions Bfsince. ™
andu ™ are) converge t(% a.s. ag — oo, resulting in
1 1 1
P(ire(xi)=1i=1,...,k|T) 5% EP(A+ | T)+ EP(A_ |T) = EP(A |T), a.s.

t—0o0

and (5.2) follows by Lemma 3.1(ii). O

6. A general characterization of ergodicity and Theorem 1.1

In this section, we prove a result (applicable to both recurrent and transient graphs) which states that to in-
sure unigueness of the stationary distribution, it suffices to look at convergence for the one-dimensional marginal
distributions. This is stated in the following Theorem 6.1. Observe that Theorem 1.1 follows immediately from
Theorem 6.1 together with Proposition 4.1.

Theorem 6.1.Consider a signed graplty. The corresponding voter model is ergodic if and only if forxalt V
and all initial configurationsjo,

. 1

lim P (x) =1) = > (6.1)

Proof. The “only if” part follows easily from symmetry.
For the “if” direction, fix a finite number of locationg, xo, ..., x; in V. Define a (random) equivalence relation
on {x1, x2, ..., x¢} by stipulating that;; ~ x; if the random walkers, started from andx;, eventually coalesce.
Each equivalence class containing at least two elements has a (random) coalescence time, which is the first time
such that all the walkers in the class have coalesced. (This is not a stopping timé,)+et,(x1, ..., xx) be the
event that there areequivalence classes and that in each equivalence class containing at least two elements, either
all the walkers crossed an even number of negative edges or they crossed an odd number of negative edges at th
respective coalescence time of the equivalence class. We will show that no matter what the initial configgiration
is,
k 1 Vi
lim P (i, (xi) = 1, z=1,...,k)=£21P<Ae>(§) : (6.2)
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Since this doesn’t depend on the initial configuration and a probability measomg0, 1}" is determined by the
probability it gives to having 1's at any finite number of specified locations, this clearly implies ergodicity.

We have to decompose according to all possible cases for coalescence and non-coalescdrgeEdgyash-
ically ordered partition(l.o.p.) of {1, ..., k}, we mean an ordered partitiaiy, ..., Iy) of {1,...,k} such that
the smallest elements 6fy, ..., I;) are in increasing order. (Obviously, there is exactly one ordering of any par-
tition which is lexicographically ordered.) For an l.o@, ..., I;) of {1,...,k}, let Dy, ., denote the event
that the equivalence classes of the above equivalence relation (where we i¢lentify, x;} with {1, ..., k}) are
{I1, ..., I;},and IetD,1 1, == Dy,....1, N Ay. It suffices to show that for each such L.o(p,, ..., I;),

..........

. 1\¢ ~
t'_')”goP({m(xz)—l i=1....k}NDy,  1)= (§> P(Dyy,...1,)- (6.3)
We will need the following lemma which we prove afterwards.

Lemma 6.1.For x1,...,x, € V with x; # x; for i # j, assume that the event that for dl<i < j <m and

all positiver, X;' # Xxf has positive probability(Since the walkers are coalescing, this simply means that no
two ever meeY.Let v, _,, be the conditional distribution ofX;*, ..., Xj‘”’)t>0 given this event. Lety,

be the conditional dlstnbution ofX;*, ..., X;™);>0 obtained by conditioning on the event that for &l i <
j<m, XY # X, (and hence that no two have met by tim)eand then letting the walkers after tinye evolve
independently without coalescing. Then

simoo dTV(V;:L ,,,,, Xm? VXL, x,,,) =0, (64)
wheredry (-, -) denotes the total variation distance.

We now letT be the last time a coalescence occurs. (Note Thad of course not a stopping time.) Using
Lemma 3.1(ii), (6.3) follows if we show that for each l.o(@s, ..., Iy),

. . , 1\t ~
t'_')rgop({ﬁr+r(xi)=1, i=1....k}nDy,., 14|T)=<§> P(Dyp,..1, 1 T). (6.5)

Next for an l.o.p.(I1, ..., I;) and(az, ..., ap) € {0, 1}¢, let D“1 “‘ be the subevent aby, . ;, where for each
j {1, ..., ¢}, the walkers with starting points ify transversedmodZ) a; negative bonds duringD, 7] (recall
that we are identifyingx, ..., xx) with (1, ..., k)). Now,

P({irs:(x)=1,i=1,... k}m),l ,,,,, L 1T)

= X PORIFIT

(a,...,ap)€{0,1}¢
x > Vysoye (10X =1—a; fori=1,...,]QF " (v, ..., ye),
(V1s-n YO EVE, yiFy;

where Q7' ({1, ..., y¢}) is the conditional probability givel and 5?112‘ that at timeT', the positions of

the Walkers W|th starting points ify, ..., Iy areys, ..., yo. We claim that for all(y, ..., y¢) € V¢, y; # y; for
i+ j,andall(ay, ..., ar) € {0, 1}¢

_ . , 1\*
tll}ﬂgo Vyt,o v [no(X;”) =qg;fori=1,..., Z] = (—) (6.6)

from which (6.5) follows from the bounded convergence theorem. To establish this claim, fix éuch.a, y) €
Ve yi#yjfori#j,and aas, ..., ar) € {0, 1}, lete > 0 and choose by Lemma 6.1 aso that

dTv(vjl oo Unt Leye) < E. (6.7)

.....
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For (b, ...,by) € {0, 1}¢, let E(b1, ..., by) be the event that for eache {1, ..., ¢}, X* transversedmod 2 b;
negative bonds durin, s].
Now forz > s,

Vo oX)) =aifori=1,....¢]
= > v (B by)

(b1.....b){0,1}¢

¢
x Y [P = aily—o+ A — a1y =1 ] REP | (o 20)).

0oty j=1
»»»» ERY S
(z1,...,20) €V, zi #2;

whereRfyl'j.’?f{w is the distribution of the positions at timseof the ¢ random walkers starting at, . .., y,, condi-
tioned on not having met by timeand conditioned on the eveBt(bx, ..., by). By (6.1), for all(z1, ..., z¢) € V¢,
zi #zj fori #j, (a1,...,a0) € {0,1)¢ and (b1, ..., be) € {0,1)¢, the above integrand[‘_; Plno(X/,) =
ailp—0+ (1 —a;)lp-1] approache$%)z ast — oo. By the bounded convergence theorale,“__’y([no(xi"") =

a;fori=1,...,¢] also approache@)e ast — 00. By (6.7), vy, .y [n(X]") =a; fori =1,...,¢] has a liminf
and a limsup as— oo each withine of (%)‘3. As ¢ > 0 is arbitrary, this proves (6.6).0

,,,,,,,,,,

drv (Vi s M,
arbitrary probability spaceB; is a decreasing sequence of eventss(as co) with P(ﬁs>0 By) > 0, then

gimoodTV(P(' | By), P(- N BS)) =0.

Here
B, := {no two of the walkers coalesce by timg
For the second, we note that with
A, := {at least two of the walkers coalesce after tishe
we have that
lim P(A; | By)=0
§—>00

since P(Ay) approaches 0 as — oo and P(B;) does not approach 0 as— oo and then observe that
dry (v, v, My, x,) @Pproaching O follows immediately from thisO

.....

7. The transient case
In this section we prove Proposition 1.2, Theorem 1.2 and Corollary 1.2.

Proof of Proposition 1.2. First, it is a consequence of the martingale convergence theorem that édsts with
this property, then there exists a vertexuch that a random walker starting from locatipistays inW forever
with probability larger than B4. More precisely, leB be the event thatX;) stays inW forever. LetF; be the
o-field generated by(X;)ogs<:}, t = 0. Let M, := E(Ig | 1), t = 0. Then(M;) is a martingale with respect to
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(F). Due to the martingale convergence theoréfp— I for t — oo, P*-a.s. for allx € V. SinceP*(B) >0

and M; < PX:(B), the claim follows. Next, as in the proof of Proposition 1.1, choose a configuragiam W

such that an edge withiW is negative if and only if thgg values of its endpoints are different. Assumgy) = 1.

Extendng to V arbitrarily. Then it is immediate that starting from the configuratignP (7j; (y) = 1) > 3/4 for alll

t. Using a convergent subsequence of the Cesaro averages startingofgives a stationary distribution with

u(n(y) =1) > 3/4. By symmetry there is a stationary distributi@grsuch thati(n(y) = 1) < 1/4 which implies
non-uniqueness of the stationary distributiom

Proof of Theorem 1.2. In view of Theorem 6.1, it suffices to prove that for ale V and all initial configurations

no, (6.1) holds. We will do this by modifying the proof of Proposition 1.1. We first need the following lemma which
is analogous to Lemma 4.1 and which will be proved afterwards in a similar manner. Recall the definifigns of
V; andV,, ; from Section 4.

Lemma 7.1.Under the assumptions of Theoren?®, there exists, for eaclh € V, an increasing sequence of
stopping timeq;, such thatT;,, < oo, for all m, T,, — co asm — oo, P*-a.s. and
1 .
PV, | T, X1,)) e 5 i L>®(P%). (7.1)
Exactly as in the proof of Proposition 1.1, using Lemma 3.1(i), it is enough to show that foe eabhthere is

m large enough such that for all initial configurations (4.6) holds and to verify this, we prove the stronger fact
that for largem

1
forallr >0, |P(i7,+(x)=1|Twu, X1,) — > <e P*-as. (7.2)
Now this is proved almost as (4.6) was proved. We modify the first displayed equation after (4.6) by replacing all
the conditionings off;,, by conditionings on botlT,, and X7, . The strong Markov property implies that, for each

m, the random variable&V,, ;, X ) and vz, are conditionally independent w.r®*, givenT,, andXr, . We

then obtain

P (iiz, 41 (x) = 1| Ty, X1,,)
= P*(Vz,, | T, X1,) P* ((Vin,e 0 {n0(X7,, 1) = 1}) U (Vs , N {n0(X%, ) = O}) | T, X1,,)

+ P*(Vi | T, X1,) P*((Viwr N {no(X7, 1) =0}) U (Vi N {no(X%, ) =1}) | T, X1,,).

Due to Lemma 7.1P*(Vr, | T, X1,,) and PX(V;m | Tn, X1,) CcOnverge to% in L°(P*) asm — oo, and we
conclude that (7.2) holds true.c

X
Tin+t

Proof of Lemma 7.1. This will be proved by modifying the proof of Lemma 4.1. Chodssuch that the set of
vertices which are part of some unsatisfied cycle of length at mdstunavoidable. Denote this set of vertices

by gG.
Let

ﬁ:: inf{t >0:X,€G, X, =X, foralls € [t+l,t+2]}
andA1 = V7 7,49 Let
Ti+1=:inf{t> T, +3:X,€G, X, =X, forall s [t +1.1+2]}

andA; 1 = V@H’fmiz]. Sincegd is unavoidable, we hava(T,- <00, i =1,2,...) = 1. Denote ther-algebra

generated by71, ..., T, X7, ..., X5, } by Fu. We observe that for every, Ay, ..., A, are conditionally inde-
pendent giverf,,. Observe also that sineg is of bounded degree, if we look at all graphs obtained by choosing a
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v € V and taking the induced subgraph generated by all vertices within distasfag we only get a finite number

of graphs (up to isomorphism). Singg can either sit still duringﬁ, T; + 2] or it can just run one time around an
unsatisfied cycle of length at mastand do nothing else, the above graph property observation implies that there
exists a positive number> 0 such that for allz and for anyi € {1,....m}, P(A; | Fin) €[5, 1-3]. LetUi(m) be

the number of negative edges crossed during the umequm, T + 2] andUz(m) be the number of negative
edges crossed during the time HRtT1] U () YT + 2, Tl+1]). SinceU1(m) is odd if and only if}"" ; 4, is

odd, Lemma 4.2, together with the above, implies thét/1 (m) is odd| F,,) — % in L°(P,) asm — oo. We next
observe that conditioned df,,, Uy (m) andU>(m) are independent with respectfd . SinceV;er2 occurs if and

only if U1(m) + Ua(m) is odd, we conclude from Lemma 4.3 that

P (Vi 1ol Fn) mSoe 5 5 in L%°(P*) (7.3)
from which we can conclude
~ 1 .
PY(Vi o | T X5) oo = 5 i L%°(P*). (7.4)

TakingT,, = T,, + 2, (7.1) follows. O

Proof of Corollary 1.2. For d = 2, this follows from Theorem 1.1 since clearly with probability 1, there will

exist some unsatisfied cycle. Rée> 3, this follows, using Theorem 1.2, from the fact that the set of points which
belong to an unsatisfied cycle of length 4 is with probability 1 an unavoidable set. To show this latter féct, let

be the set of vertices which are part of some unsatisfied cycle of length 4 and consider the following inductive
construction of the random walk, together with a declaration of being positive or negativestdrsatof the

edges. Letr € Z¢ be the starting point of the random walk. Choose a cycle of length 4 containiamyd declare,
independently, each of the four edges to be positive (with probahilitgnd negative otherwise. Consider the
stopping timesr; where the random walk visits a vertex for the first time, and; is contained in a cycle of

length 4 whose edges have not been declared yet. Choose arbitrarily (according to a prespecified deterministic
rule) such a cycle of length 4 and declare independently, and independently of everything done before, each of
the four edges to be positive (with probabilj#y and negative otherwise. Théfy, = v; and P*(tr; < oo, Vi) =1

(the latter follows immediately if one considers, e.g., hitting times of spheres around the starting point). The events
{X; €G},i=12,..., are independent an8(X, € G) > 4p3(1 — p) > 0. The Borel-Cantelli lemma implies
that P (X, € G for infinitely manyi) = 1. Finally, Fubini’s theorem implies that a.is an unavoidable set.O

8. An example with few unsatisfied cycles

In this section we will give an example of a signed graph such that the corresponding voter model is ergodic,
but simple random walk almost surely runs around only finitely many unsatisfied cycles.

Example 8.1.The signed grapliy = (V, E) will be the rooted binary tre&, with some additional edges. We will
chooseV to be the vertex set df; which we enumerate by, .,k =1,...,2",n=0,1,2,.... Here the index
stands for the distance of the corresponding vertex to theugotand vertexv, , has childrenv, 1 21 and
vn+1,2¢ (and parents are connected to children by a bond). We will also jx¥tite indicate the height of vertex;
hence forx = v, x we have thafx| = n. Additionally to these edges we have the following edges: Choose a strictly
increasing sequence(n)),cn, of positive integers witla (0) = 0. At distance:(n), n > 1, of the root, connect the

left half of the descendents of a vertex at lewét — 1) to the right half of the descendents of the same vertex by
connecting each of the Paitsa ).k, V(). 20m-an-1-144), k = j29W=a=D=1 4 j’ where 0< j < 2¢0 =D+ 1
iseven and’ =1,2,...,2¢W-e=D-1 with a new edge. On this edge sétdefine signs as follows: The edges
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(Va(n),k> Vamy+1,2k-1), k=1,..., 2¢ are declared to be negative while all other edges (in particular all new edges)
are positive.

Denote byL, the vertices at height(n), i.e. all vertices at distancez(n) from the root. Note that in order for
simple random walk to run through an unsatisfied cycle, there must hesanh that the walker hit&,_; after
having hitL,. Hence by Borel-Cantelli, if (n) goes to infinity sufficiently fast, simple random walk almost surely
will only go through finitely many unsatisfied cycles.

On the other hand one can show, that forvadl V and for all initial configurationgy,

. 1

Jim P (i () =1) = 5
Theorem 6.1 then implies ergodicity. Indeed,fix V and denote byg the smallest such thatx| <« (i) and for
i > ig introduce the stopping time% as the first hitting time foX; of L;, i.e.

Si=inf{r > 0: X7 € L;}.

Next, let

o0
Tip = inf{t: te U{Si + 1), |1X; =X | foralls e [r — 1, t]}
i=ip

and fori > ig let

oo
Tit1 :=infit >T; te U{Si + 1}, 1X; =X forall s e [r — 1,t]}.
i=ig

Using this definition of7; we will verify (7.1). After that, one can proceed by copying the proof of Theorem 1.2
after Lemma 7.1. Far > ig define

T = Sup{t <Ti+1 |X7| = |X§i|}
and form > ig

Fu:=0({Ti, X}, i =io,....,m}U{w, X7, i =io,...,m —1}).

Fori > ig put A; := Vi, 1., ;) With V, defined as in Section 4. Then it is easy to see tha#the =io, ..., m — 1,
are i.i.d. and independent &§,,. HenceP (A; | F.,) = P(A;) € (0, 1). Now following the proof of Lemma 7.1 we
conclude that indeed (7.1) holds true.

9. Open questions

(1) Is the converse of Proposition 1.2 true?

(2) Can we assign positive and negative signs to the edgés®much that the corresponding voter model is
ergodic, but almost surely simple random walk only goes around finitely many unsatisfied cycles?

(3) Is the fact that almost surely simple random walk goes around infinitely many unsatisfied cycles sufficient for
ergodicity of the process?

(4) Does the uniqueness of the stationary distribution imply ergodicity?
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