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We consider a biased random walk Xn on a Galton–Watson tree with
leaves in the sub-ballistic regime. We prove that there exists an explicit con-
stant γ = γ (β) ∈ (0,1), depending on the bias β, such that |Xn| is of or-
der nγ . Denoting �n the hitting time of level n, we prove that �n/n1/γ is
tight. Moreover, we show that �n/n1/γ does not converge in law (at least
for large values of β). We prove that along the sequences nλ(k) = �λβγ k�,
�n/n1/γ converges to certain infinitely divisible laws. Key tools for the proof
are the classical Harris decomposition for Galton–Watson trees, a new vari-
ant of regeneration times and the careful analysis of triangular arrays of i.i.d.
heavy-tailed random variables.

1. Introduction and statement of the results. Consider a supercritical
Galton–Watson branching process with generating function f(z) = ∑

k≥0 pkz
k ,

that is, the offspring of all individuals are i.i.d. copies of Z, where P[Z = k] = pk .
We assume that the tree is supercritical and has leaves, that is, m := E[Z] = f ′(1) ∈
(1,∞) and p0 > 0. We denote by q ∈ (0,1) the extinction probability, which is
characterized by f(q) = q . Starting from a single progenitor called root and de-
noted by 0, this process yields a random tree T . We will always condition on the
event of nonextinction, so that T is an infinite random tree. We denote (�,P)

the associated probability space: P is the law of the original tree, conditioned on
nonextinction. For a vertex u ∈ T , we denote by |u| = d(0, u) the distance of u to
the root.

For ω ∈ �, on the infinite Galton–Watson tree T (ω), we consider the β-biased
random walk as in [16]. More precisely, we define, for β > 1, a Markov chain
(Xn)n∈N on the vertices of T , such that if u �= 0 and u has k children v1, . . . , vk

and parent ←−u , then:

(1) P [Xn+1 = ←−u |Xn = u] = 1
1+βk

,

(2) P [Xn+1 = vi |Xn = u] = β
1+βk

, for 1 ≤ i ≤ k,
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and from 0 all transitions to its children are equally likely. This is a reversible
Markov chain, and as such, can be described as an electrical network with conduc-
tances c(←−x , x) := β |x|−1 on every edge of the tree (see [17] for background on
electrical networks).

We always take X0 = 0, that is, we start the walk from the root of the tree. We
denote by P ω[·] the law of (Xn)n=0,1,2,... and we define the averaged law as the
semidirect product P = P × P ω.

Many interesting facts are known about this walk (see [16]). As one might ex-
pect, it is transient. It is known that P-a.s., |Xn|/n converges to a deterministic
limit v. Moreover, the random walk is ballistic, that is, its limiting velocity v > 0,
if and only if β < βc = 1/f ′(q). In the sub-ballistic regime, that is, if β ≥ βc, we
have v = 0. The reason for the sub-ballistic regime is that the walk loses time in
traps of the tree, from where it cannot go to infinity without having to go for a long
time against the drift which keeps it into the trap. The hypothesis p0 > 0 is crucial
for this to happen.

As in all sub-ballistic models, a natural question comes up: what is the typical
distance of the walker from the root after n steps? This is the question we address
in this paper. We always assume that

E[Z2] < ∞
and

β > 1/f ′(q),

recalling that 1/f ′(q) > 1. We introduce the exponent

γ := − ln f ′(q)

lnβ
= lnβc

lnβ
< 1(1.1)

so that βγ = 1/f ′(q).
Let �n be the hitting time of the nth level:

�n = inf{i ≥ 0 : |Xi | = n}.

THEOREM 1.1. (i) The laws of (�n/n1/γ )n≥0 under P are tight.
(ii) The laws of (|Xn|/nγ )n≥0 under P are tight.

(iii) We have

lim
n→∞

ln |Xn|
lnn

= γ, P-a.s.(1.2)

Of course, this raises the question of convergence in distribution of the sequence
(�n/n1/γ )n≥0. The next theorem gives a negative answer.

THEOREM 1.2. For β large enough, the sequence (�n/n1/γ )n≥0 does not
converge in distribution.
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However, we can establish convergence in distribution along certain subse-
quences.

THEOREM 1.3. For any λ > 0, denoting nλ(k) = �λf ′(q)−k�, we have

�nλ(k)

nλ(k)1/γ

d→ Yλ,

where the random variable Yλ has an infinitely divisible law μλ.

We now describe the limit laws μλ. For some constants ρ and Ca [the constant
ρ is defined in (2.2), the constant Ca in Lemma 6.1], we have

Yλ = (ρCaλ)1/γ Ỹ(ρCaλ)1/γ ,

where

Ỹλ has the law I(dλ,0, Lλ).

The infinitely divisible law I(dλ,0, Lλ) is given by its Lévy representation
(see [19], page 32). More precisely, the characteristic function of I(dλ,0, Lλ) can
be written in the form

E[eitỸλ] =
∫

eitxI(dλ,0, Lλ)(dx)

= exp
(
idλt +

∫ ∞
0

(
eitx − 1 − itx

1 + x2

)
dLλ(x)

)
,

where dλ is a real constant and Lλ a real function which is nondecreasing on the
interval (0,∞) and satisfies Lλ(x) → 0 for x → ∞ and

∫ a
0 x2 dLλ(x) < ∞ for

every a > 0. Comparing to the general representation formula in [19], page 32, we
here have that the Gaussian part vanishes and Lλ(x) = 0 for x < 0. The function
Lλ is called the Lévy spectral function. Note that Lλ is not a Lévy–Khintchine
spectral function.

In order to describe Lλ, define the random variable

Z∞ = S∞
1 − β−1

Bin(W∞,p∞)∑
i=1

ei ,(1.3)

where p∞ = 1 − β−1 is the escape probability of a β-biased random walk on N.
Further, the random variables ei in (1.3) are i.i.d. exponential random variables
of parameter 1 and the nonnegative random variables (ei ), W∞ and S∞ in (1.3)
are independent. The random variables S∞ and W∞ will be described in (3.6) and
Proposition 6.1, respectively. The random variable Bin(W∞,p∞) has a Binomial
law with parameters W∞ and p∞. Now, denoting by F∞(x) = P[Z∞ > x] the tail
function of Z∞, we have:
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THEOREM 1.4. For all λ > 0, the following statements hold:

(i) The Lévy spectral function L1 is given as follows:

L1(x) =
⎧⎨⎩

0, if x < 0,
−(1 − β−γ )

∑
k∈Z

βγkF∞(xβk), if x > 0.

In particular, L1(x) = βγ L1(βx).
(ii) For all x ∈ R, Lλ(x) = λγ L1(λx). In particular, Lβj (x) = L1(x), for all

integers j .
(iii) dλ is given by

dλ = λ1+γ (1 − β−γ )
∑
k∈Z

β(1+γ )kE

[ Z∞
(λβk)2 + Z 2∞

]
.

(iv) Lλ is absolutely continuous.
(v) The following bounds hold:

1

βγ
E[Z γ∞] 1

xγ
≤ −L1(x) ≤ E[Z γ∞] 1

xγ
.(1.4)

(vi) The measure μλ is absolutely continuous with respect to Lebesgue mea-
sure and has a moment of order α if and only if α < γ .

(vii) When β is large enough, xγ Lλ(x) is not a constant.
(viii) The random variable Z∞ has an atom at 0 and a smooth density ψ on

(0,∞). Further, Z∞ has finite expectation.

REMARK 1.1. We believe that Theorem 1.2 holds true for all values β > βc.
The proof would amount to showing that the function xγ L1(x), with L1(x) given
in Theorem 1.4, is not a constant.

Next we explain briefly, using a toy example, the reason for the nonconvergence
of (�n/n1/γ )n≥0 and the convergence of subsequences in Theorems 1.2 and 1.3.
The reasons lie in the classical theory of sums of i.i.d. random variables. Consider a
sequence of i.i.d. random variables Gi , geometrically distributed with parameter a.
Let

Sn =
n∑

i=1

βGi .

It is easy to see, using classical results about triangular arrays of i.i.d. random
variables (cf. [19]), that for α = − log(1−a)

logβ
and nλ(k) = β−αk , the distributions of

1

nλ(k)1/α
Snλ(k) converge to an infinitely divisible law
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(see Theorem 10.1 for a more general result). But obviously here Sn/n1/α cannot
converge in law, if α < 2, because one easily checks that the distribution of βG1

does not belong to the domain of attraction of any stable law. This is the basis of
our belief that Theorem 1.2 should be valid for any β > βc.

We now discuss the motivation for this work. If one considers a biased random
walk on a supercritical percolation cluster on Z

d (introduced by [8]), it is known
that, at low bias, the random walk is ballistic (i.e., has a positive velocity) and has
Gaussian fluctuations; see [6] and [21]. It is also known that, at strong bias, the
random walk is sub-ballistic (i.e., the velocity vanishes). It should be noted that, in
contrast to the Galton–Watson tree, the existence of a critical value separating the
two regimes is not established for supercritical percolation clusters. The behavior
of the (law of) the random walk in the sub-ballistic regime is a very interesting
open problem. It was noted in [22] that the behavior of the random walk in this
regime is reminiscent of trap models introduced by Bouchaud (see [4] and [7]).
Our work indeed substantiates this analogy in the simpler case of supercritical
random trees. We show that most of the time spent by the random walk before
reaching level n is spent in deep traps. These trapping times are roughly inde-
pendent and are heavy-tailed. However, their distribution does not belong to the
domain of attraction of a stable law, which explains the nonconvergence result in
Theorem 1.2.

We note that it is possible to obtain convergence results to stable laws if one gets
rid of the inherent lattice structure. One way to do this is to randomize the bias β .
This is the approach of the forthcoming papers [2, 3].

For other recent interesting works about random walks on trees, we refer to [1,
13] and [18].

There is also an analogy with the one-dimensional random walk in an i.i.d.
random environment (RWRE). This model also shows a ballistic and a sub-ballistic
regime, explicitly known in terms of the parameters of the model. We refer to [25]
for a survey. In the sub-ballistic regime, it was shown in [14] that depending on a
certain parameter κ ∈ (0,1], and under a nonlattice assumption, Xn

nκ converges to a

functional of a stable law, if κ < 1, and Xn

n/ lnn
converges to a functional of a stable

law, if κ = 1. Recently, using a precise description of the environment, [10] and
[9] refined this last theorem by describing all the parameters of the stable law, in
the case κ < 1.

Our method has some similarity to the one used in [9]. In comparison to [9],
an additional difficulty arises from the fact the traps met depend not only on the
environment but also on the walk. Moreover, one has to take into account the num-
ber of times the walker enters a trap, which is a complicated matter because of
the inhomogeneity of the tree. This major technical difficulty can be overcome by
decomposing the tree and the walk into independent parts, which we do using a
new variant of regeneration times.

The paper is organized as follows: in Sections 2 and 3, we explain how to de-
compose the tree and the walk. In Section 4, we give a sketch of the proof of
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Theorem 1.3. Sections 5–9 prepare the proof of Theorem 1.3 and explain why
the hitting time of level n is comparable to a sum of i.i.d. random variables. Sec-
tion 10 is self-contained and its main result, Theorem 10.1, is a classical limit
theorem for sums of i.i.d. random variables which is tailored for our situation. In
Section 11, we finally give the proofs of the results. In Section 11.1, we apply
Theorem 10.1 to prove Theorem 1.3. Section 11.2 is devoted to the proof of The-
orem 1.2, Section 11.3 gives the proof of Theorem 1.1 and Section 11.4 the proof
of Theorem 1.4.

Let us give some conventions about notation. The parameters β and (pk)k≥0
will remain fixed so we will usually not point out that constants depend on them.
Most constants will be denoted c or C and their value may change from line to line
to ease notation. Specific constants will have a subscript as, for example, Ca . We
will always denote by G(a) a geometric random variable of parameter a, with law
given by P [Ga ≥ k] = (1 − a)k−1 for k ≥ 1.

2. Constructing the environment and the walk in the appropriate way. In
order to understand properly the way the walk is slowed down, we need to decom-
pose the tree; see Figure 1. Set

g(s) = f((1 − q)s + q) − q

1 − q
and h(s) = f(qs)

q
.(2.1)

It is known (see [15]) that a f-Galton–Watson tree (with p0 > 0) can be gener-
ated by:

(i) growing a g-Galton–Watson tree Tg called the backbone, where all vertices
have an infinite line of descent,

FIG. 1. The Galton–Watson tree is decomposed into the backbone (solid lines) and the traps
(dashed lines).
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(ii) attaching on each vertex x of Tg a random number Nx of h-Galton–Watson
trees, acting as traps in the environment T ,

where Nx has a distribution depending only on degTg
(x) and given Tg and Nx the

traps are i.i.d., see [15] for details.
We will refer to any vertex at distance exactly one of the backbone as a bud.

It is important to consider the backbone together with the buds to understand the
number of visits to traps.

It will be convenient to consider the attached Galton–Watson trees together with
the edge which connects them to the backbone. We define a trap to be a graph
(x ∪ V, [x, y] ∪ E), where x is a vertex of the backbone, y is a bud adjacent to x

and V (resp., E) are the vertices (resp., edges) of the descendants of y. The traps
can themselves be decomposed in a portion of Z called the spine, to which smaller
trees called subtraps are added: this construction is presented in detail in Section 3.

Let us now construct the random walk. We need to consider the walk on the
backbone and on the buds, to this end we introduce:

(1) σ0 = σ ′
0 = 0,

(2) σn+1 = inf{i > σn|Xi−1,Xi ∈ backbone},
(3) σ ′

n+1 = inf{i > σ ′
n|Xi−1,Xi ∈ backbone ∪ buds},

and we define Yn = Xσn the embedded walk on the backbone, respectively, Y ′
n =

Xσ ′
n

the embedded walk on the backbone and the buds.
Moreover define �Y

n = card{i ≥ 0 :σi ≤ �n} the time spent on the backbone to
reach level n and similarly �Y ′

n = card{i ≥ 0 :σ ′
i ≤ �n}.

Denote, for a set A in the tree, T +
A = min{n ≥ 1|Xn ∈ A}, T +

y := T +
{y}, TA :=

min{n ≥ 0|Xn ∈ A} and Ty := T{y}.
Note that the process (Yn)n≥0 is a Markov chain on the backbone, which is

independent of the traps and the time spent in the traps. Here one has to be aware
that visits to root do not count as “time spent in a trap,” precise definitions will
follow below. Hence, in order to generate Yn we use a sequence of i.i.d. random
variables Ui uniformly distributed on [0,1]. If Yj = w with Z∗

1 children on the
backbone, then:

(1) Yi+1 = ←−w , if Ui ∈ [0, 1
Z∗

1β+1 ],
(2) Yi+1 = the j th-child of w, if Ui ∈ [1 − jβ

Z∗
1β+1 ,1 − (j−1)β

Z∗
1β+1 ].

For background on regeneration times we refer to [23] or [25]. In the case of a
β-biased random walk Ỹn on Z, a time t is a regeneration time if

Ỹt > max
s<t

Ỹs and Ỹt < min
s>t

Ỹs .

DEFINITION 2.1. A time t is a super-regeneration time for Yn, if t is a regen-
eration time for the corresponding β-biased random walk Ỹn on Z defined by:
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(i) Ỹ0 = 0,
(ii) Ỹn+1 = Ỹn − 1, if Un ∈ [0, 1

β+1 ],
(iii) Ỹn+1 = Ỹn + 1 otherwise.

We denote t-SR the event that t is a super-regeneration time for Yn.
It is obvious that a super-regeneration time for Yn is a regeneration time for Yn

in the usual sense (the converse is false).
The walk can then be decomposed between the successive super-regeneration

times:

(i) τ0 = 0,
(ii) τi+1 = inf{j ≥ τi : j -SR}.

Since the regeneration times of a β-biased random walk on Z have some expo-
nential moments, there exists a > 1 such that E[aτ2−τ1] < ∞ and E[aτ1] < ∞.

REMARK 2.1. The advantage of super-regeneration times compared to clas-
sical regeneration times is that the presence of a super-regeneration time does not
depend on the environment, but only the on the sequence (Ui)i≥0.

REMARK 2.2. The drawback of super-regeneration times is that the event that
k is a super-regeneration time depends on the random variables (Ui)i≥0 and not
only on the trajectory of the random walk (Yn)n≥0.

Denoting for k ≥ 1, the σ -field

Gk = σ
(
τ1, . . . , τk, (Yn∧τk

)n≥0, {x ∈ T (ω), x is not a descendant of Yτk
}).

We have the following proposition.

PROPOSITION 2.1. For k ≥ 1,

P[(Yτk+n − Yτk
)n≥0 ∈ ·, {x ∈ T (ω), x is a descendant of Yτk

} ∈ ·|Gk]
= P[(Yn)n≥0 ∈ ·, T (ω) ∈ ·|0-SR].

REMARK 2.3. The conditioning 0-SR refers only to the walk on the backbone,
hence it is obvious that the behavior of the walk in the traps and the number of
times the walker enters a trap is independent of that event.

We skip the proof of this proposition since it is standard. A consequence of the
proposition is that the environment and the walk can be subdivided into super-
regeneration blocks which are i.i.d. (except for the first one). As a consequence,
we have that

ρn := card{Y1, . . . , Y�Y
n
}

n
satisfies

(2.2)

ρn → ρ := E[card{Yτ1, . . . , Yτ2−1}]
E[τ2 − τ1] , P-a.s.,
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which is the average number of vertices per level visited by Yn. This quantity is
finite since it is bounded above by than 1/v(β), where v(β) is the speed of |Yn|
which is strictly positive by a comparison to the β-biased random walk on Z.

When applying the previous proposition, it will be convenient to use the time-
shift for the random walk, which we will denote by θ .

3. Constructing a trap. In the decomposition theorem for Galton–Watson
trees, we attach to the vertices of the backbone a (random) number of h-Galton–
Watson trees. We will denote their distribution with Q, hence Q[Z = k] = qk :=
pkq

k−1, where Z denotes the number of children of a given vertex. As stated
before the object, we will denote a trap has an additional edge: to describe a trap
� we take a vertex called root [or root(�) to emphasize the trap], link it to another
vertex [denoted −→root(�)], which is the actual root of a random h-Galton–Watson
tree.

When we use random variables associated to a trap, we refer to the random
part of that trap (the h-Galton–Watson tree). For example, the notation Zn is the
number of children at the generation n with −→root being generation 0. In particular,
we introduce the height of a trap

H = max{n ≥ 0,Zn > 0},(3.1)

and we say a trap has height k if H(�) = k, that is, the distance between −→root and
the bottom point of the trap is k.

This way of denoting the random variables has the advantage that Zn (resp.,
H ) are distributed under Q, as the number of children at generation n (resp., the
height) of an h-Galton–Watson tree.

The biggest traps seen up to level n are of size − lnn/ ln f ′(q), therefore a trap
will be considered big if its height is greater or equal to

hn =
⌈
(1 − ε)

lnn

− ln f ′(q)

⌉
(3.2)

for some ε > 0 which will eventually be chosen small enough. Such a trap will
be called an hn-trap or a big trap. It is in those traps that the walker will spend
the majority of his time and therefore it is important to have a good description of
them.

The traps are (apart from the additional edge) subcritical Galton–Watson trees,
as such, they can be grown from the bottom following a procedure described
in [11], that we recall for completeness. We will denote by δ the starting point
of the procedure, corresponding to the leftmost bottom point of the trap, this last
notation will be kept for the whole paper.

With a slight abuse of notation, we will denote by Q a probability measure on
an enlarged probability space containing the following additional information.
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We denote by (φn+1,ψn+1) with n ≥ 0, a sequence of i.i.d. pairs of random
variables with joint law given by

Q[φn+1 = j,ψn+1 = k] = cnqkQ[Zn = 0]j−1Q[Zn+1 = 0]k−j ,
(3.3)

1 ≤ j ≤ k, k ≥ 1,

where cn = Q[H=n]
Q[H=n+1] .

Set T0 = {δ}. Construct Tn+1, n ≥ 0, inductively as follows:

(1) let the first generation size of Tn+1 be ψn+1,
(2) let Tn be the subtree founded by the φn+1th first generation vertex of Tn+1,
(3) attach independent h-Galton–Watson trees which are conditioned on hav-

ing height strictly less than n to the φn+1 −1 siblings to the left of the distinguished
first generation vertex,

(4) attach independent h-Galton–Watson trees which are conditioned on hav-
ing height strictly less than n + 1 to the ψn+1 − φn+1 siblings to the right of the
distinguished first generation vertex.

Then Tn+1 has the law of an h-Galton–Watson tree conditioned to have height
n + 1 (see [11]).

We denote T the infinite tree asymptotically obtained by this procedure; from
this tree we can obviously recover all Tn. If we pick independently the height
H of an h-Galton–Watson tree and the infinite tree T obtained by the previous
algorithm, then TH has the same law as an h-Galton–Watson tree.

We will call the spine of this Galton–Watson tree the ancestors of δ. If y �= δ

is in the spine, −→y denotes its only child in the spine. We define a subtrap to be a
graph (x ∪ V, [x, y] ∪ E), where x is a vertex of the spine, y is a descendant of x

not on the spine and V (resp., E) are the vertices (resp., edges) of the descendants
of y. The vertex x is called the root of the subtrap, and we denote

Sx the set of all subtraps rooted at x.(3.4)

See Figure 2 for an illustration.
We denote by S

i,j,k
n+1 and �

i,j,k
n+1 with n, i, j ≥ 0 and k = 1,2, two sequences of

independent random variables, which are independent of (φn,ψn)n≥0 and given
by:

(1) S
n+1,j,1
n (resp., S

n,j,2
n ) is the j th subtrap conditioned to have height less

than n added on the left (resp., right) of the (n + 1)th (resp., nth) ancestor of δ,
(2) �

i,j,k
n is the weight of S

i,j,k
n under the invariant measure associated to the

conductances βi+1 between the level i and i + 1, the root of S
i,j,k
n being counted

as level 0.

These random variables describe the subtraps and their weights.
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FIG. 2. The trap is decomposed into the spine (solid lines) and the subtraps (dashed lines).

We denote �
i,j,k
−1 = 0 and

�i(ω) =
φi−1∑
j=1

�
i,j,1
i−1 +

ψi−φi∑
j=1

�
i,j,2
i ,(3.5)

which is the weight of the subtraps added to the ith ancestor of δ.
Due to the next lemma, the random variables �i will be important to describe

the time spent in traps. We recall that a reversible Markov chain can be described
as an electrical network. An electrical network is a connected graph G = (V ,E)

with positive conductances c(e)e∈E on its edges. It defines a Markov chain with
transition probabilities p(x, y) = c([x, y])/∑z : [x,z]∈E c([x, z]), where we denote
[x, y] the edge connecting x and y [and p(x, y) = 0 if there is no such edge].
This Markov chain has π̂(x) = ∑

[x,y]∈E c([x, y]), x ∈ V , as an invariant mea-
sure. If it is positive recurrent, the unique invariant probability measure is given
by π̂(x)/π̂(V ), where π̂(V ) = ∑

y∈V π̂(y). We refer to [17] for background on
electrical networks, and we recall the following lemma.

LEMMA 3.1. Let (G, c(e)e∈E) be a positive recurrent electrical network, x ∈
V and Px the law of the Markov chain started at x. If

∑
z : [x,z]∈E c([x, z]) = 1,

then

Ex[T +
x ] = 2

∑
e∈E

c(e).
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PROOF. The expected number of visits to y before returning to x is π̂(y)/

π̂(x). Hence,

Ex[T +
x ] = π̂(V )

π̂(x)
= π̂(V ),

since π̂(x) = ∑
z : [x,z]∈E c([x, z]) = 1. Then we simply notice that π̂(V ) =

2
∑

e∈E c(e). �

Let us introduce another important random variable

S∞ = 2
∞∑
i=0

β−i (1 + �i),(3.6)

which appears in the statement of Theorem 1.4. It is the mean return time to δ of
the walk on the infinite tree T described in the algorithm following (3.3).

LEMMA 3.2. There exists a constant Cψ depending on (pk)k≥0, such that for
n ≥ 0 and k ≥ 0,

Q[ψn+1 = k] ≤ Cψkqk.

In particular, for another constant C̃ψ , supi∈NEQ[ψi] ≤ C̃ψ < ∞.

PROOF. Recalling (3.3), we get

Q[ψn+1 = k] =
k∑

j=1

Q[φn+1 = j,ψn+1 = k]

= cnqk

k∑
j=1

Q[Zn = 0]j−1Q[Zn+1 = 0]k−j

≤ cnkqk.

It is enough to show that the sequence (cn)n≥0 is bounded from above.
A Galton–Watson tree of height n + 1 can be obtained as root having j children,
one of which produces a Galton–Watson tree of height n, the others having no
children of their own. Thus,

1/cn = Q[H = n + 1]/Q[H = n] ≥ qjq
j−1
0

for any j ≥ 1. We fix j0 ≥ 1 so that qj0 > 0 and we get

Q[ψn+1 = k] ≤ 1

qj0q
j0−1
0

kqk−1,

where we used qk = pkq
k−1 ≤ qk−1. �

Using this lemma, we can get a tail estimate for the height of traps.
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LEMMA 3.3. There exists α > 0 such that

Q[H ≥ n] ∼ αf ′(q)n.

PROOF. It is classical (see [12]) that for any Galton–Watson tree of law Q̃

with EQ̃[Z1] = m < 1 expected number of children, we have

lim
n→∞

Q̃[Zn > 0]
mn

> 0 ⇐⇒ EQ̃[Z1 log+ Z1] < ∞.

The integrability condition is satisfied for Q since qk = pkq
k−1 ≤ qk−1, and the

result follows. �

We also recall the following classical upper bound

Q[H ≥ n] = Q[Zn > 0] = Q[Zn ≥ 1] ≤ EQ[Zn] = f ′(q)n.(3.7)

The following lemma seems obvious, but not standard, so we include its proof
for the convenience of the reader.

LEMMA 3.4. We have for k ≥ 0,

Q[Z1 ≤ k|Zn = 0] ≥ Q[Z1 ≤ k].
In particular EQ[Zi |Zn = 0] ≤ f ′(q)i, for any i ≥ 0 and n ≥ 0.

PROOF. Denoting Dn a geometric random variable of parameter 1 −
Q[Zn−1 = 0] which is independent of Z1, we have Q[Z1 ≤ k|Zn = 0] = Q[Z1 ≤
k|Z1 < Dn]. Then compute

Q[Z1 ≤ k|Z1 < Dn] =
∑k

j=0 Q[Dn > j ]Q[Z1 = j ]∑∞
j=0 Q[Dn > j ]Q[Z1 = j ]

=
(

1 +
∑∞

j=k+1 Q[Dn > j ]Q[Z1 = j ]∑k
j=0 Q[Dn > j ]Q[Z1 = j ]

)−1

,

now use that for all j ′ < k < j we have Q[Dn > j ] ≤ Q[Dn > k] ≤ Q[Dn > j ′],
yielding

Q[Z1 ≤ k|Z1 < Dn] ≥
∑k

j=0 Q[Z1 = j ]∑∞
j=0 Q[Z1 = j ] = Q[Z1 ≤ k].

�

We can now estimate EQ[�i].
LEMMA 3.5. For all i ≥ 0,

EQ[�i] ≤ C̃ψ

1 − (βf ′(q))−1 (f ′(q)β)i .
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PROOF. Using (3.5), Lemmas 3.2 and 3.4, we get

EQ[�i] = EQ[φi − 1]EQ[�i−1] + EQ[ψi − φi]EQ[�i]

≤ EQ[�i] sup
i∈N

EQ[ψi] ≤ C̃ψ

i∑
j=1

f ′(q)jβj ,

and the result follows immediately, since βf ′(q) > 1. �

Finally, we get the following proposition.

PROPOSITION 3.1. We have

EQ[S∞] ≤ 2C̃ψ

1 − (βf ′(q))−1

(
β

β − 1
+ 1

1 − f ′(q)

)
< ∞.

PROOF. Recalling Lemma 3.5, we get

EQ[S∞] ≤ 2
∞∑
i=0

β−iEQ[1 + �i] ≤ 2C̃ψ

1 − (βf ′(q))−1

∞∑
i=0

β−i(1 + (βf ′(q))i
)
< ∞,

the last term being finite since f ′(q) < 1. �

4. Sketch of the proof. In the first step, we show (see Theorem 5.1) that the
time is essentially spent in hn-traps.

Then we show that these hn-traps are far away from each other, and thus the cor-
relation between the time spent in different hn-traps can be neglected. Moreover,
the number of hn-traps met before level n is roughly ρCan

ε . Let

χ0(n) = the time spent in the first hn-trap met,(4.1)

where we point out that there can be several visits to this trap. At this point, we
have reduced our problem to estimating

�n ≈ χ1(n) + · · · + χρCanε (n),

where χi(n) are i.i.d. copies of χ0(n).
Now we decompose the time spent in the first hn-trap according to the number

of excursions in it starting from the root

χ1(n) =
Wn∑
i=1

T
(i)
0 ,

where Wn denotes the number of visits of the trap until time n and T
(i)
0 an i.i.d.

sequence of random variables measuring the time spent during an excursion in a
big trap. It is important to notice that the presence of an hn-trap at a vertex gives
information on the number of traps at this vertex, and thus on the geometry of
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the backbone. So the law of Wn depends on n. Nevertheless, we show that this
dependence can be asymptotically neglected, and that for large n, Wn is close to
some random variable W∞ (Proposition 6.1).

Now we have essentially no more correlations between what happens on the
backbone and on big traps. The only thing left to understand is the time spent
during an excursion in an hn-trap from the root. To simplify if the walker does not
reach the point δ in the trap (this has probability ≈ 1−p∞), the time in the trap can
be neglected. Otherwise, the time spent to go to δ, and to go directly from δ back
to the root of the trap can also be neglected, in other words, only the successive
excursions from δ contribute to the time spent in the trap. This is developed in
Section 8, and we have

χ1(n) ≈
Bin(W∞,p∞)∑

i=1

G(i)−1∑
j=0

T (i,j)
exc ,(4.2)

where T
(i,j)
exc are i.i.d. random variables giving the lengths of the excursions from

δ to δ. Further, G(i) is the number of excursions from δ during the ith excursion in
the trap: it is a geometric random variable with a parameter of order β−H . Since
β−H is very small (H being conditioned to be big), the law of large numbers
should imply that

G(i)−1∑
j=0

T (i,j)
exc ≈ G(i)Eω[T (i,j)

exc
]≈ G(i)S∞,

and also we should have G(i) − 1 ≈ βH ei . This explains why, recalling (1.3),

χ1(n) ≈ βH Z∞.

We are then reduced to considering sums of i.i.d. random variables of the form
Ziβ

Xi with Xi integer-valued. This is investigated in Section 10. We then finish
the proof of Theorem 1.3 in Section 11.

REMARK 4.1. The reasoning fails in the critical case γ = 1, indeed in this
case we have to consider a critical height hn which is smaller. This causes many
problems, in particular in big traps there can be big subtraps and so, for example,
the time to go from the top to the bottom of a trap cannot be neglected anymore.

5. The time is essentially spent in big traps. We recall that hn = �−(1 −
ε) lnn/ ln f ′(q)�. Lemma 3.3 gives the probability that a trap is an hn-trap:

ηn := Q[H ≥ hn] ∼ αf ′(q)hn.(5.1)

For x ∈ backbone, we denote

Lx the set of traps rooted at x(5.2)
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(if x is not in the backbone then Lx = ∅). Let us denote the vertices in big traps
by L(hn) = {y ∈ T (ω) :y is in an hn-trap}.

Our aim in this section is to show the following proposition.

PROPOSITION 5.1. For ε > 0, we have

for all t ≥ 0 P

[∣∣∣∣�n − χ(n)

n1/γ

∣∣∣∣≥ t

]
→ 0,

where

χ(n) = card{1 ≤ i ≤ �n :Xi−1,Xi ∈ L(hn)}(5.3)

is the time spent in big traps up to time �n.

Define:

(i) A1(n) = {�Y
n ≤ C1n},

(ii) A2(n) = {card
⋃�Y

n

i=1 LYi
≤ C2n},

(iii) A3(n) = {max�∈LYi
,i≤�Y

n
card{0 ≤ i ≤ �Y

n :Yi ∈ �,Xσi+1 ∈ �} ≤ C3 lnn},
(iv) A(n) = A1(n) ∩ A2(n) ∩ A3(n).

The following lemma tells us that typically the walk spends less than C1n time
units before reaching level n, sees less than C2n traps and enters each trap at most
C3 lnn times.

LEMMA 5.1. For appropriate constants C1, C2 and C3, we have

P[A1(n)c] = o(n−2) and P[A(n)c] → 0.

PROOF. By a comparison to the β-biased random walk on Z, standard large
deviations estimates yields

P[A1(n)c] = o(n−2)

for C1 large enough.
On A1(n), the number of different vertices visited by (Yi)i≥0 up to time �Y

n

is at most C1n. The descendants at each new vertex are drawn independently of
the preceding vertices. Moreover, at each vertex the mean number of traps is at
most the mean number of children, thus E[cardL0] ≤ m/(1 − q). The law of large
numbers yields for C2 > C1m/(1 − q) that

P[A2(n)c] ≤ P

[
C1n∑
i=0

cardL
(i)
0 > C2n

]
+ P[A1(n)c] → 0,

where cardL
(i)
0 are i.i.d. random variables with the law of cardL0. This yields the

second part.
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For A3(n), we want, given a vertex x in the backbone and any � ∈ Lx to give
an upper bound on the number of transitions from x to y, where y is the bud
associated to �. Let z be an offspring of x in the backbone. Then, at each visit to x,
either the walker does not visit y or z, or it has probability 1/2 to visit y first (or z

first). Hence:

(i) the number of transitions from x to y before reaching z is dominated by a
geometric random variable of parameter 1/2,

(ii) the number of transitions from x to z is dominated by a geometric random
variable of parameter p∞, since the escape probability from z is at least p∞.

Consequently the number of transitions from x to y is dominated by a geometric
random variable of parameter p∞/2. Thus,

P[A3(n)c ∩ A2(n)] ≤ C2nP[G(p∞/2) ≥ C3 lnn]
≤ CnC3 ln(1−p∞/2)+1,

and if we take C3 large enough we get the result. �

PROOF OF PROPOSITION 5.1. Now we can start proving Proposition 5.1. De-
compose �n into

�n = �Y
n + χ(n) + ∑

�∈⋃�Y
n

i=0 LYi
\L(hn)

N(�),(5.4)

where N(�) = card{1 ≤ i ≤ �n :Xi−1 ∈ �,Xi ∈ �}.
The distribution of N(�) conditioned on the backbone, the buds and (Y ′

i )i≤�Y ′
n

,

the walk on the backbone and the buds, is
∑E�

i=1 R
(i)
� . Here we denoted E� the

number of visits to � and R
(i)
� is the return time during the ith excursion from the

top of �. These quantities are considered for traps �, conditioned to have height at
most hn.

Obviously, we get from (5.4) that

�n ≥ χ(n).(5.5)

From (5.4), we get for t > 0,

P

[
�n − χ(n)

n1/γ
> t

]
≤ P[A(n)c] + P

[
C1n +

C2n∑
i=0

C3 lnn∑
j=0

R
(i)
� ≥ tn1/γ

]
(5.6)

≤ o(1) + P

[
C2n∑
i=0

C3 lnn∑
j=0

R
(i)
� ≥ t

2
n1/γ

]
,

where we used Lemma 5.1.
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Chebyshev’s inequality yields

P

[
C2n∑
i=0

C3 lnn∑
j=0

R
(i)
� ≥ t

2
n1/γ

]
≤ 2

tn1/γ
E

[
C2n∑
i=0

C3 lnn∑
j=0

R
(i)
�

]

≤ 2C2C3n
1−1/γ lnn

t
E
[
R

(1)
1

]
.

Using Lemmas 3.4 and 3.1, we have

E
[
R

(1)
1

]= EQ
[
Eω

root[T +
root]|H < hn

]= 2
hn−1∑
i=0

βiEQ[Zn|H < hn]

≤ 2
hn−1∑
i=0

(βf ′(q))i ≤ Cn(1−ε)(−1+1/γ ).

Plugging this into the previous inequality, we get for any ε > 0 and t > 0

P

[
C2n∑
i=0

C3 lnn∑
j=0

R
(i)
� ≥ t

2
n1/γ

]
= o(1),

thus recalling (5.6) and (5.5) we have proved Proposition 5.1. �

6. Number of visits to a big trap. We denote Kx = max�∈Lx H(�), the height
of the biggest trap rooted at x for x ∈ backbone, where we recall that H denotes
the height of the trap from the bud and not from the root.

LEMMA 6.1. We have

P[K0 ≥ hn] ∼ Caf ′(q)hn,

where Ca = αq
m−f ′(q)

1−q
, recalling Lemma 3.3 for the definition of α.

PROOF. We denote Z the number of children of the root and Z∗ the number of
children with an infinite line of descent. Let P be the law of a f-Galton–Watson tree
which is not conditioned on nonextinction and E the corresponding expectation.
Recall (5.1) and let H(i), i = 1,2, . . . , be i.i.d. random variables which have the
law of the height of an h-Galton–Watson tree, and are independent of Z − Z∗.
Then

P[K0 ≥ hn] = P
[

max
i=1,...,Z−Z∗ H(i) ≥ hn

]
= 1 − E[(1 − ηn)

Z−Z∗
(1 − 1{Z∗ = 0})]

1 − q
,

where the indicator function comes from the conditioning on nonextinction, which
corresponds to Z∗ �= 0.
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Hence,

P[K0 ≥ hn] = 1 − E[(1 − ηn)
Z−Z∗] − E[(1 − ηn)

Z−Z∗
0Z∗]

1 − q
,

and using E[sZ−Z∗
tZ

∗] = f(sq + t (1 − q)) (see [15]) we get

P[K0 ≥ hn] = 1 − f((1 − ηn)q + 1 − q) − f((1 − ηn)q)

1 − q
.

Now, using (5.1) and the expansion f(z−x) = f(z)−f ′(z)x+o(x) for z ∈ {q,1},
we get the result. �

Define the first time when we meet the root of an hn-trap using the clock of Yn,

K(n) = inf{i ≥ 0|KYi
≥ hn}.(6.1)

We also define �(n) to be an hn-trap rooted at YK(n), if there are several pos-
sibilities we choose one trap according to some predetermined order. We denote
b(n) the associated bud.

We describe, on the event 0-SR, the number of visits to �(n), by the following
random variable:

Wn = card
{
i :Xi = YK(n),Xi+1 = b(n)

}
,(6.2)

where ω is chosen under the law P[·] and Xn under P ω
0 [·|0-SR]. We will need the

following bounds for the random variables (Wn)n≥1.

LEMMA 6.2. We have Wn � G(p∞/3) for n ∈ N, that is, the random vari-
ables Wn are stochastically dominated by a geometric random variable with para-
meter p∞/3.

PROOF. For n ∈ N, starting from any point x of the backbone, the walker has
probability at least 1/3 to go to an offspring y of x on the backbone before going
to b(n) or ←−x . But the first hitting time of y has probability at least p∞ to be a
super-regeneration time. The result follows as in the proof of Lemma 5.1. �

PROPOSITION 6.1. There exists a random variable W∞ such that

Wn
d→ W∞,

where we recall that for the law of Wn, ω is chosen under the law P[·] and Xn

under P ω
0 [·|0-SR].

REMARK 6.1. It follows from Lemma 6.2 that W∞ � G(p∞/3).
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Fix n ∈ N
∗ and set m ≥ n. We aim at comparing the law of Wm with that of

Wn and to do that we want to study the behavior of the random walk starting from
the last super-regeneration time before an hn-trap (resp., hm-trap) is seen. This
motivates the definition of the last super-regeneration time seen before time n,

�(n) := max{0 ≤ i ≤ n : i-SR}.
For our purpose it is convenient to introduce a modified version of Wm, which

will coincide with high probability with it. For m ≥ n, recall that θ denotes the
time-shift for the walk and set

K(m,n) = inf
{
j ≥ 0 :KYj

≥ hm,�(m) ◦ θ�(j) = �(n) ◦ θ�(j)

}
,

the first time the walker meets a hm-trap which is the first hn-trap of the current
regeneration block and we denote by b(m,n) the associated bud. Set

Wm,n = card
{
i :Xi = YK(m,n),Xi+1 = b(m,n)

}
,

where ω is chosen under the law P[·] and (Ui)i≤K(m,n) under P ω
0 [·|0-SR].

LEMMA 6.3. For m ≥ n, we have that

Wm,n
d= Wn.

PROOF. To reach a vertex where an hm-trap is rooted, the walker has to reach a
vertex where an hn-trap is rooted. Two cases can occur: either the first hn-trap met
is also a hm-trap or it is not. In the former case, which has probability ηm/ηn > 0,
since the height of the first hn-trap met is independent of the sequence (Ui)i≤K(n),
the random variables Wm,n and Wn coincide. In the latter case, by its definition,
K(m,n) cannot occur before the next super-regeneration time, hence K(m,n) ≥
τ1 ◦ θK(n). In this case Wm,n = Wm,n ◦ θK(n) and then by Proposition 2.1,

Wm,n ◦ θτ1◦θK(n)

d= Wm,n,

and Wm,n ◦ θτ1◦θK(n)
is independent of (Ui)i≤τ1◦θK(n)−1.

The scenario repeats itself until the hn-trap reached is in fact a hm-trap, the
number of attempts necessary to reach this hm-trap is a geometric random variable
of parameter ηm/ηn which is independent of the (Ui)’s.

This means that there is a family (W
(i)
n )i≥1 of i.i.d. random variables with the

same law as Wn such that

Wm,n = W(G)
n ,

where G is a geometric random variable independent of the (W
(i)
n )i≥1. Then, note

that we have

Wm,n = W(G)
n

d= Wn. �
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Now we need to show that Wm,n and Wm coincide with high probability, so we
introduce the event

Am,n = {
�(m) = �(n) ◦ θ�(K(m))

}
on which clearly Wm,n and Wm are equal.

LEMMA 6.4.

sup
m≥n

P[Ac
m,n|0-SR] → 0 for n → ∞.(6.3)

PROOF. Let us denote, recalling (5.2),

V i
j =

{
card

τ1⋃
k=0

{� ∈ LYk
, � is a hj -trap} = i

}
and

V
i,+
j =

{
card

τ1⋃
k=0

{� ∈ LYk
, � is a hj -trap} ≥ i

}
.

Then we have

P[Ac
m,n|0-SR] ≤ P[V 2,+

n |V 1,+
m ,0-SR].(6.4)

Let us denote card Trap the number of traps seen before τ1,

card Trap = card

{
� :� ∈

τ1⋃
i=0

LYi

}
,

and its generating function by

ϕ(s) := E[scard Trap|0-SR].
The probability of Am,n can be estimated with the following lemma, whose

proof is deferred.

LEMMA 6.5. We have

∀m ≥ n P[V 2,+
n |V 1,+

m ,0-SR] ≤ ϕ′(1) − ϕ′(1 − ηn).

Now we have E[card Trap |0-SR] ≤ E[τ1|0-SR]E[cardL0] < ∞ because of Re-
mark 2.1 and hence ϕ′ is continuous at 1, and (6.3) follows from (6.4). �

Applying Lemmas 6.5, 6.3 and (6.3) we get

P[Wm ≥ y|0-SR] = P[Am,n,Wm,n ≥ y|0-SR] + o(m,n)

= P[Wm,n ≥ y|0-SR] + o(m,n)

= P[Wn ≥ y|0-SR] + o(m,n),
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where supm≥n o(m,n) → 0 as n goes to infinity.
The law of a random variable W∞ can be defined as a limit of the laws of some

subsequence of (Wm), since the family (Wm)m≥0 is tight by Lemma 6.2. Then
taking m to infinity along this subsequence in the preceding equation yields

∀t > 0 P[W∞ ≤ t |0-SR] = P[Wn ≤ t |0-SR] + o(1).

This proves Proposition 6.1.
It remains to show Lemma 6.5.

PROOF. Note that for i ≥ 1,

P[V i
n |V 1,+

m ,0-SR] = P[V i
n |0-SR]

P[V 1,+
m |0-SR]P[V 1,+

m |V i
n,0-SR]

≤ P[V i
n |0-SR]

P[V 1,+
m |0-SR] iQ[H ≥ hm|H ≥ hn]

(6.5)

= i
P[V i

n |0-SR]
ηn

ηm

P[V 1,+
m |0-SR]

≤ i
P[V i

n |0-SR]
ηn

.

Then we have∑
i≥2

iP[V i
n |0-SR] =∑

i≥2

∑
j≥i

P[card Trap = j |0-SR]i
(

j

i

)
ηi

n(1 − ηn)
j−i

= ∑
j≥0

jP[card Trap = j |0-SR]
j∑

i=2

(
j − 1
i − 1

)
ηi

n(1 − ηn)
j−i

= ηn

∑
j≥0

jP[card Trap = j |0-SR]
j−1∑
i=1

(
j − 1

i

)
ηi

n(1 − ηn)
(j−1)−i

= ηn

∑
j≥0

jP[card Trap = j |0-SR](1 − (1 − ηn)
j−1)

= ηn

(
ϕ′(1) − ϕ′(1 − ηn)

)
.

Inserting this in (6.5) we get

P[V 2,+
n |V 1,+

m ,0-SR] =
∞∑
i=2

P[V i
n |V 1,+

m ,0-SR]

≤ 1

ηn

∑
i≥2

iP[V i
n |0-SR] = ϕ′(1) − ϕ′(1 − ηn),
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which concludes the proof of Lemma 6.5. �

We will need the following lower bound for the random variable W∞.

LEMMA 6.6. There exists a constant cW > 0 depending only on (pi)i≥0, such
that

P[W∞ ≥ 1] ≥ cW .

PROOF. By Proposition 6.1, it is enough to show the lower bound for all Wn.
First let us notice that

P[Wn ≥ 1|0-SR] ≥ E

[(
1

Z(K(n)) + 1

)2

p∞
]

(6.6)

≥ (
1 − f ′(q)

)
E

[
1

(Z(K(n)) + 1)2

]
,

where Z(K(n)) is the number of offspring of YK(n). To show (6.6), note that the
particle has probability at least β/(βZ(K(n)) + 1) ≥ 1/(Z(K(n)) + 1) of going
from YK(n) to b(n) and when it comes back to YK(n) again there is probability at
least 1/(Z(K(n))+ 1) to go from YK(n) to one of its descendants on the backbone
and then there is a probability of at least p∞ that a super-regeneration occurs. The
event we just described is in {Wn ≥ 1}∩ {0-SR}. For the second inequality in (6.6),
use β > βc = f ′(q)−1 hence p∞ = 1 − β−1 ≥ 1 − f ′(q).

Now, we notice that the law of the Z(K(n)) is that of Z1 conditioned on the
event {an hn-trap is rooted at 0}. Denote j0 the smallest index such that j0 > 1 and
pj0 > 0 (which exists since m > 1) and Z∗

1 the number of descendants of 0 with
an infinite line of descent. All Z1 − Z∗

1 traps rooted at 0 have, independently of
each other, probability ηn of being hn-traps, so that

P[Z(K(n)) = j0] = P[Z1 = j0|an hn-trap is rooted at 0]
= P[Z1 = j0,Bin(Z1 − Z∗

1 , ηn) ≥ 1]
P[an hn-trap is rooted at 0]

≥ ηnP[Z1 = j0,Z1 − Z∗
1 ≥ 1]

P[an hn-trap is rooted at 0] .

Further, since P [Bin(Z1 − Z∗
1 , ηn) ≥ 1] ≤ Z1ηn, we have

P[an hn-trap is rooted at 0] ≤
∞∑

j=0

P[Z1 − Z∗
1 = j ]jηn ≤ mηn.

Putting these equations together, we get that

P[Z(K(n)) = j0] ≥ P[Z1 = j0,Z1 − Z∗
1 ≥ 1]

m
.

The last equation and (6.6) yield a lower bound for P[W∞ ≥ 1] which depends
only on (pk)k≥0. �
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7. The time spent in different traps is asymptotically independent. In or-
der to show the asymptotic independence of the time spent in different big traps we
shall use super-regeneration times. First, we show that the probability that there is
an hn-trap in the first super-regeneration block goes to 0 for n → ∞.

Define:

(i) B1(n) = {∀i ∈ [1, n], card{Yτi
, . . . , Yτi+1} ≤ nε},

(ii) B2(n) = {∀i ∈ [0, τ1], cardLYi
≤ n2ε},

(iii) B3(n) = {∀i ∈ [0, τ1],∀� ∈ LYi
, � is not an hn-trap},

(iv) B4(n) = {∀i ∈ [2, n], card{j : j ∈ [τi, τi+1],LYj
contains an hn-trap} ≤ 1},

(v) B(n) = B1(n) ∩ B2(n) ∩ B3(n) ∩ B4(n).

LEMMA 7.1. For ε < 1/4, we have

P[B1(n)c] = o(n−2) and P[B(n)c] → 0.

PROOF. Since τ2 − τ1 (resp., τ1) has some positive exponential moments and
B1(n)c ⊆⋃n

i=1{τi+1 − τi ≥ nε},
P[B1(n)c] = o(n−2).

Using the fact that the number of traps at different vertices has the same law,

P[B2(n)c] ≤ P[B1(n)c] + nεP[cardL0 ≥ n2ε] ≤ o(1) + n−ε m
1 − q

= o(1),

where we used Chebyshev’s inequality and E[cardL0] ≤ E[Z1] ≤ m/(1 − q).
Then we have

P[B3(n)c] ≤ P[B2(n)c] + n3εηn = o(1),

yielding the result using (5.1), since ε < 1/4.
Finally, up to time n we have at most n super-regeneration blocks, on B1(n)

they contain at most nε visited vertices. But the probability that among the nε first
visited vertices after a super-regeneration time, two of them are adjacent to a big
trap is bounded above by n2εP[K0 ≥ hn]2 (here we implicitly used Remark 2.1).
Hence, we get

P[B4(n)c] ≤ P[B1(n)c] + nn2ε(Cnε−1)2 = O(n4ε−1),

yielding the result for ε < 1/4. �

We define R(n) = card{Y1, . . . , Y�Y
n
} and ln the number of vertices where an

hn-trap is rooted:

ln = card{i ∈ [0,�Y
n ] :LYi

contains an hn-trap}.(7.1)
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Recall (2.2) and define

C1(n) = {(1 − n−1/4)ρn ≤ R(n) ≤ (1 + n−1/4)ρn},(7.2)

C2(n) = {(1 − n−ε/4)ρCanf ′(q)hn ≤ ln ≤ (1 + n−ε/4)ρCanf ′(q)hn},(7.3)

C3(n) = {∀1 ≤ i ≤ �Y
n , card{� ∈ LYi

:� is an hn-trap} ≤ 1
}

(7.4)

and C(n) = C1(n) ∩ C2(n) ∩ C3(n).

LEMMA 7.2. For ε < 1/4, we have

P[C(n)c] → 0.

PROOF. First, we notice that for i ≥ 0 and with the convention τ0 := 0 we
have

Zi := card{Yτi+1, . . . , Yτi+1} � G(i)(p∞),

where the geometric random variables G(i) are i.i.d. Indeed, at each new vertex
visited we have probability at least p∞ to have a super-regeneration time. Let us
denote by n0 the smallest integer such that �Y

n ≤ τn0 , which satisfies n0 ≤ n since
|Xτi+1 | − |Xτi

| ≥ 1.

Now, since the random variables Zi are i.i.d. and
∑n0−1

i=1 Zi ≤ card{Y1, . . . ,

Y�Y
n
} ≤∑n0

i=1 Zi , we have

P

[∣∣∣∣card{Y1, . . . , Y�Y
n
}

n
− ρ

∣∣∣∣≥ n−1/4
]

≤ n1/2 Var
(card{Y1, . . . , Y�Y

n
}

n

)

= n1/2
(

E

[(card{Y1, . . . , Y�Y
n
}

n

)2]
− E

[card{Y1, . . . , Y�Y
n
}

n

]2)

≤ n−3/2

(
E

[(
n0∑
i=1

Zi

)2]
− E

[
n0−1∑
i=1

Zi

]2)

≤ n−1/2(E[G(p∞)2] + E[G(p∞)]2),
yielding P[C1(n)c] → 0.

On C1(n) we know that there are R(n) ∈ [ρn(1 − n−1/4), ρn(1 + n−1/4)] ver-
tices where we have independent trials to have hn-traps. Hence ln has the law
Bin(R(n),P[K0 ≥ hn]), where the success probability satisfies P[K0 ≥ hn] ≤
Cnε−1 has asymptotics given by Lemma 6.1. Now, standard estimates for Bino-
mial distributions imply that P[C2(n)c ∩ C1(n)] → 0.

On C2(n), there are at most Cnε vertices where (at least) one hn-trap can be
rooted, we only need to prove that, with probability going to 1, those vertices do
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not contain more than two hn-traps. Using the same reasoning as in Lemma 6.5,
we get

P[0 has at least two hn-traps|0 has at least one hn-trap,0-SR]
≤ f ′(1) − f ′(1 − ηn) ≤ Cηn,

where we used that E[Z2] < ∞, which implies that f ′′(1) < ∞.
The result follows from the fact that ηn = o(n−ε) for ε < 1/4. �

Let us denote, recalling (3.1),

D(n) =
{

max
�∈⋃

i=0,...,�Y
n

LYi

H(�) ≤ 2 lnn

− ln f ′(q)

}
.

LEMMA 7.3. We have

P[D(n)c] → 0.

PROOF. Due to (3.7), we know that Q[H ≥ 2 lnn
− ln f ′(q)

] ≤ n−2, so using Lem-
ma 5.1

P[D(n)c] ≤ P[A2(n)c] + P[A2(n) ∩ D(n)c] ≤ o(1) + C2n
−1 = o(1),

which concludes the proof. �

On B(n) there is no big trap in the first super-regeneration block, on B(n)∩C(n)

all big traps are met in distinct super-regeneration blocks and C2(n) tells us the
asymptotic number of such blocks. Moreover on D(n), we know that to cross
level n on a trap, it has to be rooted after level n − (−2 lnn/ ln f ′(q)). Hence using
Lemmas 7.1, 7.2, 7.3, Proposition 2.1 and Remark 2.3, we get:

PROPOSITION 7.1. Let χi(n), i ≥ 1, be i.i.d. copies of χ0(n), see (4.1), and
ñ = n − (−2 lnn/ ln f ′(q)). Then we have

o1(n) +
(1−ñ−ε/4)ρnCañf ′(q)hñ∑

i=1

χi(n) ≤ χ(n) ≤
(1+n−ε/4)ρnCanf ′(q)hn∑

i=1

χi(n) + o2(n),

where limn→∞ o1(n) = limn→∞ o2(n) = 0.

In light of Proposition 5.1, our problem reduces to understanding the conver-
gence in law of a sum of i.i.d. random variables. The aim of the next section is
to reduce χ1(n) to a specific type of random variable for which limit laws can be
derived (see Section 10).
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8. The time is spent at the bottom of the traps. We denote by �j (n) the j th
hn-trap seen by the walker, and by δj (n) [resp., rootj (n), bj (n)] the leftmost bot-
tom point (the root, the bud) of �j (n). Further, χj (n) denotes the time spent in the
j th hn-trap met. Then, χi(n), i ≥ 1, are i.i.d. copies of χ0(n) as in Proposition 7.1.

We want to show that the time spent in the big traps is essentially spent at the
bottom of them, that is, during excursions from the the bottom leftmost point δ. In
order to prove our claim, we introduce

χ∗
j (n) = card

{
k ≥ 0 :Xk ∈ �j (n), k ≥ Tδj (n), Tδj (n) ◦ θk < ∞}

,

the time spent during excursions from the bottom in the j th hn-trap met. It is
obvious that

χj (n) ≥ χ∗
j (n).

We prove the following proposition.

PROPOSITION 8.1. For ε < 1/4, we have, recalling (7.1),

for all t > 0 P

[
1

n1/γ

∣∣∣∣∣
ln∑

j=1

(
χj (n) − χ∗

j (n)
)∣∣∣∣∣≥ t

]
→ 0.

In order to prove the preceding proposition, we mainly need to understand χ1(n)

and χ∗
1 (n). Note that χ1(n) is a sum of Wn successive i.i.d. times spent in �1(n)

and χ∗
1 (n) is a sum of Wn successive i.i.d. times spent during excursions from the

bottom of �1(n). We can rewrite the proposition as follows:

for all t > 0 P

[
1

n1/γ

∣∣∣∣∣
ln∑

i=1

W
(i)
n∑

j=1

(
T

j
rooti (n) − T

∗,j
rooti (n)

)∣∣∣∣∣≥ t

]
→ 0,(8.1)

where

T
j

rooti (n) = card
{
k ≥ 0 :Xk ∈ �i(n),

card{k̃ ≤ k :Xk̃+1 = bi(n),Xk̃ = rooti (n)} = j
}

and

T
∗,j
rooti (n) = card

{
k ≥ 0 :Xk ∈ �i(n),

card{k̃ ≤ k :Xk̃+1 = bi (n),Xk̃ = rooti (n)} = j,

k ≥ Tδj (n), Tδj (n) ◦ θk < ∞}
,

and (W
(i)
n ), i ≥ 1, are i.i.d. copies of Wn.

Consequently, in this section, we mainly investigate the walk on a big trap,
which is a random walk in a finite random environment. Recall that root is the ver-
tex YK(n) on the backbone where �(n) is attached. Moreover, set Qn[·] = Q[·|H ≥
hn], EQn

[·] = EQ[·|H ≥ hn], Eω[·] := Eω
root[·] and EQn

[·] = EQn
[Eω[·]].
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REMARK 8.1. To ease notation, we add to all these probability spaces an inde-
pendent random variable Wn whose law is given by (6.2), under the law P[·|0-SR]
for n ∈ N ∪ {∞}.

We will extensively use the description of Section 3, in particular we recall that
a trap is composed of root which is linked by an edge to an h-Galton–Watson tree.

We want to specify what �(n) looks like. Denoting

h+
n =

⌈
(1 + ε) lnn

− ln f ′(q)

⌉
,

consider:

(i) Ã1(n) = {H ≤ h+
n },

(ii) Ã2(n) = {there are fewer than nε subtraps},
(iii) Ã3(n) = {all subtraps of �(n) have height ≤ hn},
(iv) Ã(n) = Ã1(n) ∩ Ã2(n) ∩ Ã3(n).

LEMMA 8.1. For ε < 1/4, we have

Qn[Ã(n)c] = o(n−ε).

PROOF. First,

Qn[Ã1(n)c] ≤ Q[H ≥ h+
n ]

Q[H ≥ hn] ≤ Cn−2ε = o(n−ε).

Furthermore using Lemmas 3.2, 3.4 and (3.7), we get

Qn[Ã2(n)c] ≤ Qn[Ã1(n)c]
+ Qn[Ã1(n), there are nε/h+

n subtraps on a vertex of the spine]
≤ o(n−ε) + h+

n Cψ

nε

h+
n

qnε/h+
n

= o(n−ε).

Finally,

Qn[Ã3(n)c] ≤ Qn[Ã2(n)c]
+ Qn[Ã2(n), there exists a subtrap of height ≥ hn]

≤ o(n−ε) + nεηn

= o(n−ε),

where we used (5.1) and ε < 1/4. �
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Using Chebyshev’s inequality we get, recalling (7.3),

P

[
1

n1/γ

∣∣∣∣∣
ln∑

i=1

W
(i)
n∑

j=1

(
T

j
rooti (n) − T

∗,j
rooti (n)

)∣∣∣∣∣≥ t

]

≤ 1

tn1/γ
E

[
1{C2(n)}1{Ã(n)}

l(n)∑
i=1

W
(i)
n∑

j=1

(
T

j
rooti (n) − T

∗,j
rooti (n)

)]

+ P[C2(n)c] + Qn[Ã(n)c]
≤ P[C2(n)c] + Qn[Ã(n)c]

+ 2ρCacβnε

tn1/γ
E
[
1{Ã(n)}(T 1

root1(n) − T
∗,1
root1(n)

)]
,

where cβ = E[G(p∞/3)], implying E[W(j)
n ] ≤ cβ . Hence using Lemmas 8.1

and 7.2, with

an := P

[
1

n1/γ

∣∣∣∣∣
ln∑

i=1

W
(i)
n∑

j=1

(
T

j
rooti (n) − T

∗,j
rooti (n)

)∣∣∣∣∣≥ t

]

and

bn := C

t
nε−1/γ EQn

[
1{Ã(n)}(T 1

root1(n) − T
∗,1
root1(n)

)]
,

we have

lim sup
n→∞

(an − bn) ≤ 0.(8.2)

We have to estimate this last expectation. Consider an hn-trap. Each time the
walker enters the hn-trap two cases can occur: either the walker will reach δ, or he
will not reach δ before he comes back to root. In the former case, T +

root −T
∗,+
root is the

time spent going from root to δ for the first time plus the time coming back from δ

to root for the last time (starting from δ and going back to root without returning
to δ). In the latter case, T +

root − T
∗,+
root equals T +

root. This yields the following upper
bound

E[1{Ã(n)}(T +
root − T

∗,+
root )]

≤ EQn

[
1{Ã(n)}Eω

root[1{Ã(n)}T +
δ |T +

δ < T +
root]

]
(8.3)

+ EQn

[
1{Ã(n)}Eω

δ [T +
root|T +

root < T +
δ ]]

+ EQn

[
1{Ã(n)}Eω

root[T +
root|T +

root < T +
δ ]].

To tackle the conditionings that appear, we shall use h-processes; see [9] and
[25] for further references. For a given environment ω let us denote hω the fol-
lowing function on the trap: hω(z) = P ω

z [T +
root < T +

δ ], with hω(root) = 1 and
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hω(δ) = 0. Then we have the following formula for the transition probabilities
of the conditioned Markov chain:

P ω
y [X1 = z|T +

root < Tδ] = hω(z)

hω(y)
P ω

y [X1 = z](8.4)

for y, z in the trap. Due to the Markov property, hω is harmonic except on δ and
root. It can be computed easily here (note that this is a one-dimensional calculation
involving only the spine):

hω(y) = hω(y ∧ δ) = β−d(root,y∧δ) 1 − β−(H+1−d(root,y∧δ))

1 − β−(H+1)
.

In particular, comparing the walk conditioned on the event {T +
δ > T +

root} to the
original walk, we have the following:

(1) the walk remains unchanged on the subtraps,
(2) for y on the spine and z a descendant of y not on the spine, we have

P ω
y [X1 = ←−y |T +

root < Tδ] > P ω
y [X1 = z|T +

root < Tδ],
(3) for y /∈ {δ, root} on the spine, we have

P ω
y [X1 = ←−y |T +

root < Tδ] > βP ω
y [X1 = −→y |T +

root < Tδ].
The points (2) and (3) state, respectively, that the conditioned walk is more

likely to go toward root than to go to a given vertex of a subtrap and that restricted
to the spine the conditioned walk is more than β-drifted toward root.

LEMMA 8.2. For z ∈ {δ, root}, we have

EQn

[
1{Ã(n)}Eω

z [T +
root|T +

root < T +
δ ]]≤ C(lnn)n(1−ε)(1/γ−1)+ε.

PROOF. First, let us show that the walk cannot visit too often a vertex of the
spine. Indeed let y be a vertex of the spine, using fact (3), we have P ω

y [T +
y >

T +
root|T +

root < Tδ] ≥ p∞. Hence, the random variable N(y) = card{n ≤ T +
root :Xn =

y} with (Xn) conditioned on {T +
root < Tδ} is stochastically dominated by G(p∞),

a geometric random variable with parameter p∞.
Furthermore, we cannot visit often a given subtrap s(y) ∈ Sy [recall (3.4)]. In-

deed, if we denote the number of visits to s(y) by N(s(y)) = card{n ≤ T +
root :Xn =

y,Xn+1 ∈ s(y)}, using fact (2) and a reasoning similar to the one for the asymp-
totics on A3(n) in Lemma 5.1 we have that N(s(y)) with (Xn) conditioned on
{T +

root < Tδ} is stochastically dominated by G(p∞/2).
Let us now consider the following decomposition:

T +
root = Tspine + ∑

s∈subtraps

N(s)∑
j=1

Rj
s ,
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where Tspine = card{n ≤ T +
root :Xn is in the spine} = ∑

x∈spine N(x) and R
j
s is the

time spent in the subtrap s during the j th excursion in it. Moreover, on Ã(n), the
law of any subtrap s is that of a Galton–Watson tree conditioned to have height
strictly less than i + 1 for some i ≤ hn. Then Lemma 3.1 implies that for such a
subtrap, Eω[Rj

s ] has the same law as 2�
i,1,1
i+1 which satisfies using Lemma 3.4 that

EQn
[�i

j ] ≤ C(βf ′(q))i . Moreover, on Ã(n), there are at most h+
n vertices in the

spine and at most nε subtraps, hence

EQn

[
1{Ã(n)}Eω

δ [T +
root|T +

root < T +
δ ]]

≤ h+
n E[G(p∞)] + h+

n nεE[G(p∞/2)]C(βf ′(q))hn,

and using (βf ′(q))hn ≤ Cn(1−ε)(1/γ−1) we get

EQn

[
1{Ã(n)}Eω

δ [T +
root|T +

root < T +
δ ]]≤ C(lnn)n(1−ε)(1/γ−1)+ε. �

The previous proof is mainly based on the three statements preceding the state-
ment of Lemma 8.2. Similarly, one can show the following lemma.

LEMMA 8.3. For z ∈ {δ, root}, we have

EQn

[
1{Ã(n)}Eω

z [T +
δ |T +

δ < T +
root]

]≤ C(lnn)n(1−ε)(1/γ−1)+ε.

PROOF. To apply the same methods as in the proof of Lemma 8.2, we only
need that the h-process corresponding to the conditioning on the event {T +

δ <

T +
root} satisfies that:

(1) the walk remains unchanged on the subtraps,
(2) for y on the spine and z a descendant of y not on the spine, we have

P ω
y [X1 = −→y |T +

δ < T +
root] > P ω

y [X1 = z|T +
δ < T +

root],
(3) for y �= {δ, root} on the spine, we have P ω

y [X1 = −→y |T +
δ < T +

root] >

βP ω
y [X1 = ←−y |T +

δ < T +
root].

This immediately follows from the computation of the function ĥω, given by
ĥω(z) = P ω

z [T +
δ < T +

root], with ĥω(root) = 0 and ĥω(δ) = 1. A computation gives

ĥω(y) = ĥω(d(y ∧ δ, δ)
)= βH+1 − βd(y∧δ,δ)

βH+1 − 1
.(8.5) �

From (8.3), Lemmas 8.3 and 8.2, we deduce that

E[1{Ã(n)}(T +
root − T

∗,+
root )] ≤ C(lnn)n(1−ε)(1/γ−1)+ε.(8.6)

Now using (8.6) and (8.2) we prove (8.1), more precisely

for all t > 0 P

[∣∣∣∣
∑ln

i=1 χj (n) − χ∗
j (n)

n1/γ

∣∣∣∣≥ t

]
≤ o(1) + C(lnn)n2ε−1−ε(1/γ−1),

and thus Proposition 8.1 follows for ε < 1/4.
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9. Analysis of the time spent in big traps. Let us denote Qn := Q[·|H = h0
n]

where

h0
n = �lnn/− ln f ′(q)�.

Note that

p1(H) := P ω
δ [T +

δ < T +
root] = 1 − β−1

1 − β−(H+1)
,(9.1)

where we recall that the distance between root and δ is 1 + H . Moreover, let us
denote

p2(H) := P ω
δ [T +

root < T +
δ ] = 1 − β−1

βH − β−1 .(9.2)

We have the following decomposition:

χ∗
1 (n) =

Bin(Wn,p1(H))∑
i=1

G(p2(H))(i)−1∑
j=1

T (i,j)
exc ,(9.3)

where T
(i,j)
exc is the time spent during the j th excursion in the ith trap, which is

distributed under Qn as T +
δ under P ω

δ [·|T +
δ < T +

root] with ω chosen according to

Qn, for all (i, j). The T
(i,j)
exc are independent with respect to P ω and for i1 �= i2

(T
(i1,j)

exc )j≥1 and (T
(i2,j)

exc )j≥1 are independent with respect to Qn. For k ∈ Z and n

large enough, let Z k
n be a random variable with the law of χ∗

1 (n)/βH under Qn+k

and Z k
n be a random variable with the law of χ∗

1 (n)/βH under Qn+k . Furthermore,

we define Z∞ := S∞
1−β−1

∑Bin(W∞,p∞)
i=1 ei [see (1.3)] where (ei )i≥1 is a family of

i.i.d. exponential random variables of parameter 1, chosen independently of the
(independent) random variables S∞ and W∞. Our aim is to show the following
proposition.

PROPOSITION 9.1. We have

Z k
n

d→ Z∞.

Moreover there exists a random variable Zsup such that

E[Z 1−ε
sup ] < ∞ for any ε > 0

and

for n ∈ N and k > −n Z k
n � Zsup.
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PROOF. Let us start by proving the convergence in law. The decomposition
(9.3) for χ∗

1 (n) can be rewritten using (9.2),

χ∗
1 (n) = βH

Bin(Wn,p1(H))∑
i=1

1 − β−H−1

1 − β−1

βH − 1

βH − β−1

p2(H)

1 − p2(H)

(9.4)

×
G(p2(H))(i)−1∑

j=1

T (i,j)
exc ,

which yields an explicit expression of Z k
n . We point out that E[G(p2(H)) − 1] =

(1 − p2(H))/p2(H). The convergence in law is due to the following facts (more
precise statements follow below):

(1) For H large,

(1 − β−H−1)(βH − 1)

(1 − β−1)(βH − β−1)
≈ 1

1 − β−1 .

(2) By the law of large numbers, we can expect

G(p2(H))(i)−1∑
j=1

T (i,j)
exc ≈ (

G(p2(H))(i) − 1
)
Eω

δ [Texc].

(3) Since p2(H) is small, (G(p2(H))(i) − 1)/E[G(p2(H))(i) − 1] ≈ ei .
(4) Eω

δ [T (1,1)
exc ] ≈ S∞ for H large enough.

(5) Bin(Wn,p1(H)) ≈ Bin(W∞,p∞) since Wn
d→ W∞ by Proposition 6.1 and

p1(H) → p∞ as H goes to infinity.

Fact (1) is easily obtained, since for ξ > 0

Qn

[
(1 − ξ)

1

1 − β−1 ≤ 1 − β−H+1

1 − β−1

βH − 1

βH − β−1 ≤ 1

1 − β−1

]
= 1(9.5)

for n large enough.
We start by computations with the measure Qn and we will be able to come

back to Qn+k .
For (2) and (4), we need to understand P ω

δ [·|T +
δ < T +

root] and to this end we will
consider the h-process associated with this conditioning. Recall the function ĥω

given as ĥω(z) = P ω
z [Tδ < Troot], with ĥω(δ) = 1 and ĥω(root) = 0, see (8.5).

We shall enumerate the vertices of the backbone from 0 to H + 1, starting from
δ up to root. With these new notations, formula (8.5) becomes

ĥω(y) = ĥω(y ∧ δ) = βH+1 − βy∧δ

βH+1 − 1
,(9.6)
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where y ∧ δ is identified to its number which is d(y ∧ δ, δ) as it is a vertex of the
backbone.

The transition probabilities are then given as in (8.4). Obviously, they arise from
conductances, we may take:

(i) ĉ(0,1) = 1,

(ii) ĉ(i, i + 1) = ĉ(i − 1, i)
P ω

i [X1=i+1|T +
δ <T +

root]
P ω

i [X1=i−1|T +
δ <T +

root] , for 1 ≤ i ≤ H ,

(iii) ĉ(i, z) = ĉ(i, i − 1)
P ω

i [X1=z|T +
δ <T +

root]
P ω

i [X1=i−1|T +
δ <T +

root] , for i �= 0 on the spine and z one of

its descendants which is not on the spine,
(iv) ĉ(y, z) = βĉ(←−y , y) for any vertex y not on the spine and z one of its

descendants.

We can easily deduce from this that for y �= root in the trap and denoting z0 =
δ, . . . , zn = y the geodesic path from δ to y:

ĉ(zn−1, y) =
n−1∏
j=1

P ω
zj

[X1 = zj+1|T +
δ < T +

root]
P ω

zj
[X1 = zj−1|T +

δ < T +
root]

,

which gives using (9.6) that

ĉ(i, i + 1) = β−i ĥ(i + 1)ĥ(i)

ĥ(1)ĥ(0)
= β−i (1 − βi−H)(1 − βi−(H+1))

(1 − β−H)(1 − β−(H+1))
.(9.7)

For a vertex z not on the spine, we have

ĉ(z,←−z ) = βd(←−z ,z∧δ) ĥ(z ∧ δ)

ĥ(z ∧ δ − 1)
c(z ∧ δ, z ∧ δ − 1)

(9.8)

= βd(←−z ,z∧δ) 1 − βz∧δ−(H+1)

1 − βz∧δ−1−(H+1)
c(z ∧ δ, z ∧ δ − 1).

Together with Lemma 3.1, this yields, with Texc a generic random variable with
the law of T

(1,1)
exc ,

Eω
δ [Texc] = 2

H−1∑
i=0

β−i (1 − βi−H)(1 − βi−(H+1))

(1 − β−H )(1 − β−(H+1))

(9.9)

×
(

1 + 1 − βi−(H+1)

1 − β(i−1)−(H+1)
�i(ω)

)
,

where �i was defined in (3.5).
We see that the random variable S∞ is the limit of the last quantity as H goes

to infinity. More precisely, using (9.9) we have 0 ≤ S∞ − Eω
δ [Texc] and for n large

enough such that

for all k ≤ hn/2
(1 − βk−hn)(1 − βk−(hn+1))

(1 − β−hn)(1 − β−(hn+1))
≥ 1 − 2βhn,
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we get

S∞ − Eω
δ [Texc] ≤ 2

(hn/2∑
i=0

β−i

(
1 − (1 − βi−H)(1 − βi−(H+1))

(1 − β−H)(1 − β−(H+1))

)
(1 + �i)

)

+ 2

( ∞∑
i=hn/2+1

β−i (1 + �i)

)

≤ 4β−hn/2

(hn/2∑
i=0

β−i (1 + �i)

)
+ 2

( ∞∑
i=hn/2+1

β−i(1 + �i)

)
.

Hence, since S∞ ≥ 1 and using Chebyshev’s inequality, we get

Qn

[
(1 − ξ)S∞ < Eω

δ [Texc] < S∞
]

≥ 1 − Qn

[
S∞ − Eω

δ [Texc] ≥ ξ
]

(9.10)

≥ 1 − 1

ξ
β−hn/2 10

1 − β−1 sup
i≥0

EQ[1 + �i]

= 1 + o(1),

where we used Lemma 3.5 and the fact that ε < 1/4, this proves (4).
In order to prove (2), we have to bound Eω

δ [T 2
1 ] from above. This is not possible

for all ω, but we consider the event

A4(n) = {
Eω

δ [T 2
1 ] ≤ n(1−2ε)/γ }

and show that it satisfies the following lemma.

LEMMA 9.1. For 0 < ε < min(1/3,2γ /3), we have

Qn[A4(n)c] → 0.

PROOF. In this proof we denote for y in the trap, N(y) the number of visits to
y during an excursion from δ, which is distributed as card{0 ≤ n ≤ T +

δ :Xn = y}
under P ω

δ [·|T +
δ < T +

root]. We have, using the Minkowski inequality,

Eω
δ [T 2

exc] = Eω
δ

[( ∑
y∈trap

N(y)

)2]

≤ ∑
y,z∈trap

Eω
δ [N(y)2]1/2Eω

δ [N(z)2]1/2

=
( ∑

y∈trap
Eω

δ [N(y)2]1/2
)2

.
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Now fix y in the trap, denote q1 = P ω
δ [T +

y < T +
δ |T +

δ < T +
root] and q2 =

P ω
y [T +

δ < T +
y |T +

δ < T +
root]. Then we have

∀k ≥ 1 P ω
δ [N(y) = k] = q1(1 − q2)

k−1q2.

Hence,

Eω
δ [N(y)2] = ∑

n≥1

n2q1(1 − q2)
n−1q2 = q1

2 − q2

q2
2

≤ 2q1

q2
2

.

Then by reversibility of the walk, if π̂ is the invariant measure associated with
the conductances ĉ, we get q1 = π̂(δ)q1 = π̂ (y)q2. This yields

Eω
δ [N(y)2] ≤ 2π̂(y)

q2
.(9.11)

Furthermore, we have

q2 ≥ (
1/
(
Z1(y)β + 1

))
p∞β−d(δ,δ∧y)/2.(9.12)

Indeed suppose that y is not on the spine, otherwise the bound is simple. Starting
from y, we reach the ancestor of y with probability at least (1/(Z1(y)β + 1)) then
the walker has probability at least β−d(y,y∧δ) to reach y ∧ δ before y, next he has
probability at least 1/2 to go to

−−→
y ∧ δ before going to z, where z is the first vertex

on the geodesic path from y∧δ to y. Finally, from
−−→
y ∧ δ, the walker has probability

at least p∞ to go to δ before coming back to
−−→
y ∧ δ.

We denote by π the invariant measure associated with the β-biased random
walk (i.e., not conditioned on T +

δ < T +
root), normalized so as to have π(δ) = 1.

Then we have:

(1) for any y in the trap, π̂(y) ≤ π(y) because of (9.7) and (9.8),
(2) and by definition of the invariant measure (Z1(y)β+1)βd(δ,δ∧y)−d(y,δ∧y) =

π(y).

Now plugging (2) in (9.12) yields a lower bound on q2 which can be used to-
gether with (1) in (9.11) to get

Eω
δ [N(y)2] ≤ Cβd(δ,δ∧y)π(y)2

and

Eω
δ [T 2

exc]1/2 ≤ C
∑

y∈trap
βd(δ,δ∧y)/2π(y).
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As a consequence, with Ã(n) as in Lemma 8.1 we get

EQn
[1{Ã(n)}Eω

δ [T 2
exc]1/2] ≤ CEQn

[
1{Ã(n)}

h+
n∑

i=0

β−i/2�i

]

≤ C

h+
n∑

i=0

(β1/2f ′(q))i

≤ C max(1, (β1/2f ′(q))h
+
n ),

where we used Lemmas 3.1 and 3.4 for the first inequality.
Since (β1/2f ′(q))h

+
n = n(1+ε)(1/2γ−1), we get by Chebyshev’s inequality that

Qn

[
1{Ã(n)}Eω

δ [T 2
exc]1/2 ≥ n(1−2ε)/(2γ )]≤ 1

n(1−2ε)/(2γ )
EQn

[1{Ã(n)}Eω
δ [T 2

1 ]1/2]
≤ C max

(
n−(1−2ε)/(2γ ), n3ε/(2γ )−1−ε).

The conditions on ε ensure that this last term goes to 0 for n → ∞. Hence,

P[Ã(n) ∩ A4(n)c] → 0

and the result follows using Lemma 8.1. �

We now turn to the study of

p2(H)

1 − p2(H)

G(p2(H))−1∑
i=1

T (i)
exc.

Consider the random variable

Ng =
⌊ −1

ln(1 − p2(H))
e
⌋
,(9.13)

where e is an exponential random variable of parameter 1. A simple computation
shows that Ng has the law of G(p2(H)) − 1.

Set ξ > 0; we have, using Chebyshev’s inequality,

Qn

[
(1 − ξ)NgE

ω
δ [Texc] ≤

Ng∑
i=1

T (i)
exc ≤ (1 + ξ)NgE

ω
δ [Texc]

]

≥ 1 − Qn

[∣∣∣∣
∑Ng

i=1 T
(i)
exc

Ng

− Eω
δ [Texc]

∣∣∣∣> ξEω
δ [Texc],

Ng �= 0,Eω
δ [T 2

exc] ≤ n(1−2ε)/γ

]
− Qn

[
Eω[T 2

exc] ≥ n(1−2ε)/γ ]− Qn[Ng = 0]
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≥ EQn

[
n(1−2ε)/γ

Ng

1{Ng �= 0} 1

ξ2

]
− Qn

[
Eω[T 2

exc] ≥ n(1−2ε)/γ ]
− Qn[Ng = 0].

We have Qn[Ng = 0] = p2(H) ≤ p2(hn) ≤ Cn−(1−ε)/γ lnn, and hence

EQn

[
1{Ng �= 0}

Ng

]
= E

[
− p2(H)

1 − p2(H)
lnp2(H)

]
≤ Cn−(1−ε)/γ (lnn)2.

Putting together the two previous equations, using Lemma 9.1, we get for ξ < 1

Qn

[
(1 − ξ)NgE

ω
δ [Texc] <

Ng∑
i=1

T (i)
exc < (1 + ξ)NgE

ω
δ [Texc]

]
→ 1.(9.14)

This shows (2). Turning to prove (3), we have

Qn

[
(1 − ξ)

⌊
1

− ln(1 − p2(H))
e
⌋

≤ 1 − p2(H)

p2(H)
e ≤ (1 + ξ)

⌊
1

− ln(1 − p2(H))
e
⌋]

≥ 1 − Qn

[(
1 − p2(H)

p2(H)
− 1 − ξ

− ln(1 − p2(H))

)
e < 1

]

− Qn

[(
1 − p2(H)

p2(H)
− 1 + ξ

− ln(1 − p2(H))

)
e > −2

]
,

furthermore since |1−p
p

− 1
− ln(1−p)

| is bounded on (0, ε1) by a certain M > 0 so
that for n large enough with p2(hn) < ε1, we get

Qn

[
(1 − ξ)

⌊
1

− ln(1 − p2(H))
e
⌋

≤ 1 − p2(H)

p2(H)
e ≤ (1 + ξ)

⌊
1

− ln(1 − p2(H))
e
⌋]

≥ 1 − Qn

[(
ξ

− ln(1 − p2(H))
− M

)
e < 1

]
(9.15)

− Qn

[(
− ξ

− ln(1 − p2(H))
+ M

)
e > −2

]

≥ exp
(
− 2

ξ/(− ln(1 − p2(hn))) − M

)
≥ 1 − (C/ξ)p2(hn),

which shows (3).
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As a consequence of (9.10), (9.14) and (9.15), we see that for all ξ ∈ (0,1),

Qn

[
(1 − ξ)S∞e ≤ p2(H)

1 − p2(H)

Ng∑
i=1

Eω[T (i)
exc
]≤ (1 + ξ)S∞e

]
→ 1(9.16)

for n → ∞. Using (9.2), (9.16) and (9.5) we get

Qn

[
(1 − ξ)

S∞e
1 − β−1 ≤ 1

βH

Ng∑
i=1

Eω[T (i)
exc
]≤ (1 + ξ)

S∞e
1 − β−1

]
→ 1(9.17)

for n → ∞, which sums up (2), (3) and (4). For any k > −n, the equation (9.17)
obviously holds replacing n with n+k, and since Qn[H = �ln(n+k)/ ln f ′(q)�] ≥
ck > 0 (this follows from Lemma 3.3), we have

Qn+k

[
(1 − ξ)

S∞e
1 − β−1 ≤ 1

βH

Ng∑
i=1

Eω[T (i)
exc
]≤ (1 + ξ)

S∞e
1 − β−1

]
→ 1.(9.18)

Only part (5) remains to be shown. Coupling Bin(Wn, p∞) and Bin(Wn,p1(H))

in the standard way,

Qn+k[Bin(Wn,p∞) �= Bin(Wn,p1(H))]
≤ ∑

j≥0

P[Wn = j ]Qn+k[Bin(j,p∞) �= Bin(j,p1(H))]

≤ ∑
j≥0

P[Wn = j ]j (p1(h
0
n+k) − p∞

)
≤ E[Wn](p1(h

0
n+k) − p∞

)
≤ C

(
p1(h

0
n+k) − p∞

)→ 0 for n → ∞,

where C := E[G(p∞/3)] ≥ E[Wn] by Lemma 6.2. Hence,

Qn+k

[
1

βH

Bin(Wn,p1(H))∑
i=1

G(p2(H))−1∑
j=1

T (i,j)
exc ≥ t

]

− Qn+k

[
1

βH

Bin(Wn,p∞)∑
i=1

G(p2(H))−1∑
j=1

T (i,j)
exc ≥ t

]
→ 0.

For ε1 > 0, introduce N(ε1) such that maxn≤∞ P[Wn ≥ N(ε1)] ≤ (1 −
p∞/3)N(ε1) ≤ ε1 and using the independence of Wn (for n ∈ N ∪ {∞}) of the
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trap and the walk on the trap, we get, for any ε1 > 0,∣∣∣∣∣Qn+k

[
1

βH

Bin(Wn,p∞)∑
i=1

G(p2(H))−1∑
j=1

T (i,j)
exc ≥ t

]

− Qn+k

[
1

βH

Bin(W∞,p∞)∑
i=1

G(p2(H))−1∑
j=1

T (i,j)
exc ≥ t

]∣∣∣∣∣
≤
∣∣∣∣∣∑
j≥0

(P[Wn = j ] − P[W∞ = j ])

× Qn+k

[
1

βH

Bin(j,p∞)∑
i=1

G(p2(H))−1∑
j=1

T (i,j)
exc ≥ t

]∣∣∣∣∣
≤
∣∣∣∣∣ ∑
j∈[0,N(ε1)]

(P[Wn = j ] − P[W∞ = j ])

× Qn+k

[
1

βH

Bin(j,p∞)∑
i=1

G(p2(H))−1∑
j=1

T (i,j)
exc ≥ t

]∣∣∣∣∣+ ε1,

and the right-hand side goes to ε1 as n goes to infinity since

max
j≤N(ε1)

|P[Wn = j ] − P[W∞ = j ]| → 0

by Proposition 6.1. So letting ε1 go to 0, we see that

Qn+k

[
1

βH

Bin(Wn,p1(H))∑
i=1

G(p2(H))−1∑
j=1

T (i,j)
exc ≥ t

]
(9.19)

− Qn+k

[
1

βH

Bin(W∞,p∞)∑
i=1

G(p2(H))−1∑
j=1

T (i,j)
exc ≥ t

]
→ 0.

Let us introduce

A(ξ) =
{

for all i ∈ [1,Bin(W∞,p∞)],

1

βH

G(i)(p2(H))−1∑
j=1

T (i,j)
exc ∈

[
(1 − ξ)

S∞
1 − β−1 ei , (1 + ξ)

S∞
1 − β−1 ei

]}
,

where (ei )i≥1 is a sequence of i.i.d. exponential random variables of parameter 1
which satisfy

G(i)(p2(H)) − 1 =
⌊ −1

ln(1 − p2(H))
ei

⌋
.
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We have, denoting o1(1) the left-hand side of (9.19)

Qn+k[A(ξ)] ≥∑
i≥0

P[Bin(W∞,p∞) = i](1 − o1(1)
)i

≥∑
i≥0

P[Bin(W∞,p∞) = i](1 − io1(1)
)

= 1 − E[W∞]o1(1) → 1 for n → ∞.

Hence, for any ξ > 0, we get

Qn+k

[
1

βH

Bin(Wn,p1(H))∑
i=1

G(p2(H))−1∑
j=1

T (i,j)
exc ≥ t

]

− P

[
S∞

1 − β−1

Bin(W∞,p∞)∑
i=1

ei ≥ t

1 + ξ

]
→ 0

and

Qn+k

[
1

βH

Bin(Wn,p1(H))∑
i=1

G(p2(H))−1∑
j=1

T (i,j)
exc ≥ t

]

− P

[
S∞

1 − β−1

Bin(W∞,p∞)∑
i=1

ei ≥ t

1 − ξ

]
→ 0.

Concluding by using the two previous equations with ξ going to 0, we have the
following convergence in law:

Z k
n = 1

βH

Bin(Wn,p1(H))∑
i=1

G(p2(H))−1∑
j=1

T (i,j)
exc

d→ S∞
1 − β−1

Bin(W∞,p∞)∑
i=1

ei ,

where we recall that Z k
n has the law of χ∗

1 (n)/βH under Qn+k and the ei are
i.i.d. exponential random variables of parameter 1. This shows the first part of
Proposition 9.1.

Now let us prove the stochastic domination part. First, notice that

Bin(Wn,p1(H)) � G(p∞/3) and Eω
δ [T1] � T ∞

exc,

where T ∞
exc is distributed as the return time to δ, starting from δ, on an infinite trap.

Hence, for k > −n,

Z k
n � 1

βh0
n+k

G(p∞/3)∑
i=1

G(p2(h
0
n+k))∑

j=1

T ∞,(i,j)
exc ,



BIASED RANDOM WALKS ON TREES 321

where (T
∞,(i,j)
exc )i,j≥1 are i.i.d. copies of T ∞

exc. Now recalling that
∑G(a)

i=1 G(b)(i)

has the same law as G(ab), where all geometric random variables are independent,
and using the fact that

βh0
n+k ≥ cE

[
G
(
p∞p2(h

0
n+k)/3

)]
for some c = c(β) > 0, we get

Z k
n � C

E[G(p∞p2(h
0
n+k)/3)]

G(p∞p2(h
0
n+k)/3)∑

i=1

T ∞,(i)
exc .

Now, we prove the following technical lemma.

LEMMA 9.2. Let (Xi)i≥0 a sequence of i.i.d. nonnegative random variables
such that E[X1] < ∞ and set Yi := (X1 +· · ·+Xi)/i. Then there exists a random
variable Ysup such that

for all i ≥ 0 Yi � Ysup

and E[Y 1−ε
sup ] < ∞ for all ε > 0.

PROOF. Using Chebyshev’s inequality, we get that for any i ≥ 0,

for all t ≥ 0 P [Yi > t] ≤ 1

t
E[X1].

If we choose Ysup such that P [Ysup > t] = min(1,E[X1]/t) for x ≥ 0, then Ysup
stochastically dominates all Yn and has a finite (1− ε)th moment for all ε > 0. �

Now we apply this lemma to the random variables T
∞,(i)
ext which are integrable

under P and we get a certain random variable Tsup. We add to our probability
spaces a copy of Tsup which is independent of all other random variables. Then for
any t ≥ 0,

P[Z k
n ≥ t] ≤ P

[
C

E[G(p∞p2(h
0
n+k)/3)]

G(p∞p2(h
0
n+k)/3)∑

i=1

T ∞,(i)
exc ≥ t

]

≤ ∑
k≥0

P
[
G
(
p∞p2(h

0
n+k)/3

)= k
]

× P

[
C

E[G(p∞p2(h
0
n+k)/3)]

k∑
i=1

T ∞,(i)
exc ≥ x

]

≤ ∑
k≥0

P
[
G
(
p∞p2(h

0
n+k)/3

)= k
]
P

[
C

k

E[G(p∞p2(h
0
n+k)/3)]Tsup ≥ t

]

≤ P

[
C

G(p∞p2(h
0
n+k)/3)

E[G(p∞p2(h
0
n+k)/3)]Tsup ≥ t

]
,
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and since p∞p2(h
0
n+k)/3 < 1/3, we can use the fact that for any a < 1/3 we have

G(a)/E[G(a)] � 3/2e. This shows that

for all n ≥ 0 and k > −n Z k
n � CeTsup,

where e and Tsup are independent, so that the right-hand side has finite (1 − ε)th
moment for all ε > 0. This finishes the proof of the second part in Proposition 9.1.

�

10. Sums of i.i.d. random variables. This section is completely self-
contained and the notation used here are not related to those used previously.

Set β > 1 and let (Xi)i≥0 be a sequence of i.i.d. integer-valued nonnegative
random variables such that

P [X1 ≥ n] ∼ CXβ−γ n(10.1)

for CX ∈ (0,∞) and γ > 0.
Let (X

(l)
i )i≥0 be a sequence of i.i.d. integer-valued nonnegative random vari-

ables with the law of Xi conditioned on Xi ≥ f (l), where f : N → N is such that
l − f (l) → ∞.

Let (Z
(l)
i )i≥0,l≥0 be another sequence of i.i.d. nonnegative random variables and

let Z
(l),(k)
i have the law of Z

(l)
i under P [·|X(l)

i = l + k], if this last probability is

well defined, and as Z
(l),(k)
i = 0 otherwise. Define

for k ∈ Z, l ≥ 0 F
(l)
k (x) := P

[
Z

(l),(k)
i > x

]
.(10.2)

We introduce the following assumptions:

(1) There exists a certain random variable Z∞ such that

for all k ∈ Z and l ≥ 0 Z
(l),(k)
i

d→ Z∞.

(2) There exists a random variable Zsup such that

for all l ≥ 0, k ≥ −(l − f (l)
)

and i ≥ 0 Z
(l),(k)
i � Zsup,

and E[Zγ+ε
sup ] < ∞ for some ε > 0.

Moreover, set

Y
(l)
i = Z

(l)
i βX

(l)
i and S(l)

n =
n∑

i=1

Y
(l)
i ,

and for λ > 0, (λl)l≥0 converging to λ and l ∈ N, define

N
(λ)
l = ⌊

λ
γ
l βγ (l−f (l))⌋,

K
(λ)
l = λβl.

Finally, we denote by F∞(x) = P [Z∞ > x] the tail function of Z∞.
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THEOREM 10.1. Suppose that γ < 1 and assumptions (1) and (2) hold true.
Then we have

for all λ > 0 and (λl)l≥0 going to λ

S
(l)

N
(λ)
l

K
(λ)
l

→ I(dλ,0, Lλ),

where I is an infinitely divisible law. The Lévy spectral function Lλ satisfies

for all λ > 0 and x ∈ R Lλ(x) = λγ L1(λx)(10.3)

and

L1(x) =
⎧⎨⎩

0, if x < 0,
−(1 − β−γ )

∑
k∈Z

βγkF∞(xβk), if x > 0.(10.4)

In particular, I(dλ,0, Lλ) is continuous. Moreover, dλ is given by

dλ = λ1+γ (1 − β−γ )
∑
k∈Z

β(1+γ )kE

[
Z∞

(λβk)2 + Z2∞

]
.(10.5)

The fact that the quantities appearing above are well defined will be established
in the course of the proof.

In order to prove Theorem 10.1, we will apply Theorem 4 in [5], which is itself
a consequence of Theorem IV.6 (page 77) in [19].

THEOREM 10.2. Let n(t) : [0,∞) → N and for each t let {Yk(t) : 1 ≤ k ≤
n(t)} be a sequence of independent identically distributed random variables. As-
sume that for every ε > 0, it is true that

lim
t→∞P [Y1(t) > ε] = 0.(10.6)

Now let L(x) : R \ {0} → R be a Lévy spectral function, d ∈ R and σ > 0. Then
the following statements are equivalent:

(i)

lim
t→∞

n(t)∑
k=1

Yk(t)
d→ Xd,σ,L for t → ∞,

where Xd,σ,L has law I(d, σ, L).
(ii) Define for τ > 0 the random variable Zτ (t) := Y1(t)1{|Y1(t)| ≤ τ }. Then

if x is a continuity point of L,

L(x) =
{

lim
t→∞n(t)P [Y1(t) ≤ x], for x < 0,

− lim
t→∞n(t)P [Y1(t) > x], for x > 0,

σ 2 = lim
τ→0

lim sup
t→∞

(n(t)Var(Zτ (t))),
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and for any τ > 0 which is a continuity point of L(x),

d = lim
n→∞n(t)E[Zτ (t)] +

∫
|x|>τ

x

1 + x2 dL(x) −
∫
τ≥|x|>0

x3

1 + x2 dL(x).

Condition (10.6) is verified in the course of the proof; in our case n(t) goes to
infinity.

10.1. Computation of the Lévy spectral function. Fix λ ∈ [1, β) and assume
that x > 0 is a continuity point of Lλ. We want to show that

− lim
l→∞N

(λ)
l P

[
Y

(l)
1

K
(λ)
l

> x

]
= Lλ(x).(10.7)

The discontinuity points of Lλ are exactly Cλ = {(βkyn)/λ, k ∈ Z, n ∈ N} where
{yn,n ∈ N} are the discontinuity points of F∞ (these sets are possibly empty).

Let us introduce

for k ∈ Z a
(l)
k := P

[
X

(l)
1 ≥ l + k

]
.(10.8)

Since N
(λ)
l ∼ (λβl−f (l))γ , we can write, recalling (10.2),

βγ (l−f (l))P

(
Y

(l)
1

K
(λ)
l

> x

)

= ∑
k∈Z

1
{
k ≥ −(l − f (l)

)}
F

(l)
k (λxβ−k)βγ (l−f (l))(a(l)

k − a
(l)
k+1

)
.

Now recalling (10.1) and (10.8), we see that for l → ∞,

βγ (l−f (l))a
(l)
k → β−γ k(10.9)

using l −f (l) → ∞, the fact that λxβk is a continuity point of F∞ (because x > 0
is a continuity point of Lλ) for any k and assumption (1), we see that for all k ∈ Z

1
{
k ≥ −(l − f (l)

)}
F

(l)
k (λxβ−k)βγ (l−f (l))(a(l)

k − a
(l)
k+1

)
(10.10)

→ F∞(λxβ−k)β−γ k(1 − β−γ ) for l → ∞.

In order to exchange limit and summation, we need to show that the terms of the
sum are dominated by a function which does not depend on l and is summable.
Recalling assumption (2) and using (10.1), we see that βγ (l−f (l))a

(l)
k ≤ C1β

−γ k

and ∑
k∈Z

1
{
k ≥ −(l − f (l)

)}
F

(l)
k (λxβ−k)βγ (l−f (l))(a(l)

k − a
(l)
k+1

)
≤ C

∑
k∈Z

F sup(λxβ−k)β−γ k,



BIASED RANDOM WALKS ON TREES 325

where F sup(x) = P [Zsup > x]. This last sum converges clearly for k → ∞, and to
show that it converges for k → −∞ we simply notice that for any y > 0∑

k>0

E[1{Zsup > yβk}]βγk = E

[ ∑
0<k≤�ln(Zsup/y)/ lnβ�

βγk

]

≤ (1 − β−γ )−1E
[
βγ ln(Zsup/y)/ lnβ]

< ∞,

since we assume that E[Zγ+ε
sup ] < ∞.

Hence, we can exchange limit and sum. Using (10.10) and the fact that l −
f (l) → ∞, we get

− lim
l→∞N

(λ)
l P

[
Y

(l)
1

K
(λ)
l

> x

]
= −λγ (1 − β−γ )

∑
k∈Z

F∞(λxβk)βγ k

and, taking into account (10.3), this proves (10.7).

10.2. Computation of dλ. Fix λ ∈ [1, β). Since the integral
∫ τ

0 x dLλ is well
defined, it suffices to show that for all τ ∈ Cλ, τ > 0

dλ = lim
l→∞

N
(λ)
l

K
(λ)
l

E
[
Y

(l)
1 1

{
Y

(l)
1 < τK

(λ)
l

}]
(10.11)

−
∫ τ

0
x dLλ +

∫ ∞
0

x

1 + x2 dLλ.

First, let us notice that N
(λ)
l /K

(λ)
l ∼ (λβl)γ−1β−γf (l). We introduce

for all u > 0 G
(l)
k (u) = E

[
Z

(l)
1 1

{
Z

(l)
1 ≤ u

}|X(l)
1 = k + l

]
.(10.12)

Considering the first term in (10.11), we compute

β(γ−1)l−γf (l)E
[
Y

(l)
1 1

{
Y

(l)
1 < τλβl}]

= ∑
k∈Z

1
{
k ≥ −(l − f (l)

)}[(
a

(l)
k − a

(l)
k+1

)
βγ (l−f (l))]βkG

(l)
k (τλβ−k).

Using l − f (l) → ∞, (10.9) and assumption (1), we see that for all k ∈ Z and
τ ∈ Cλ,

1
{
k ≥ −(l − f (l)

)}[(
a

(l)
k − a

(l)
k+1

)
βγ (l−f (l))]βkG

(l)
k (τλβ−k)

(10.13)
→ (1 − β−γ )β(1−γ )kG∞(τλβ−k),

where

G∞(x) = E[Z∞1{Z∞ ≤ x}].(10.14)
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Once again we need to show that we can exchange limit and sum, which
amounts to find a summable dominating function which does not depend on l.
Using the fact that for u > 0

G
(l)
k (u) ≤ u and β−(γ−1)kG

(l)
k (uβ−k) ≤ βεku1−γ−εE[Zγ+ε

sup ]
(to see the second inequality, use E[Y1{Y ≤ s}] ≤ saE[Y 1−a1{Y ≤ s}] with a =
1 − γ − ε), we get that∑

k∈Z

1
{
k ≥ −(l − f (l)

)}[(
a

(l)
k − a

(l)
k+1

)
βγ (l−f (l))]βkG

(l)
k (τλβ−k)

≤ C

(
τλ

∑
k≥0

β−γ k + (τλ)1−γ−εE[Zγ+ε
sup ]∑

k<0

βεk

)
< ∞,

due to assumption (2). Hence, recalling (10.13), we get that for τ ∈ Cλ

lim
l→∞

N
(λ)
l

K
(λ)
l

E
[
Y

(l)
1 1

{
Y

(l)
1 < τK

(λ)
l

}]
(10.15)

= λγ−1(1 − β−γ )
∑
k∈Z

βk(γ−1)G∞(τλβk).

Furthermore, recalling (10.3) and (10.4), we get for τ ∈ Cλ∫ τ

0
x dLλ = λγ (1 − β−γ )

∫
x≤τ

x
∑
k∈Z

βγk d(−F∞)(λxβk)

= λγ−1(1 − β−γ )
∑
k∈Z

β(γ−1)k
∫
λxβk≤λτβk

λxβk d(−F∞)(λxβk)

= λγ−1(1 − β−γ )
∑
k∈Z

β(γ−1)kG∞(τλβk),

and this term exactly compensates for (10.15). Hence, we are left to compute in a
similar fashion

dλ =
∫ ∞

0

x

1 + x2 dLλ

= λγ (1 − β−γ )

∫ ∞
0

x

1 + x2

∑
k∈Z

βγk d(−F∞)(λxβk)

= λ1+γ (1 − β−γ )
∑
k∈Z

β(1+γ )k
∫ ∞

0

λxβk

(λβk)2 + (λxβk)2 d(−F∞)(λxβk)

= λ1+γ (1 − β−γ )
∑
k∈Z

β(1+γ )kE

[
Z∞

(λβk)2 + Z2∞

]
.
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This sum is finite since the terms in the sum can be bounded from above by
C1(λ)β−εkE[Zγ+ε

sup ] and C2(λ)βγ k , where C1(λ) = maxx≥0(x
1−γ /(λ2 + x2)) and

C2(λ) = maxx≥0 x/(λ2 + x2). The first upper bound is summable for k → ∞, the
other for k → −∞ and so dλ is well defined.

10.3. Computation of the variance. We show that for any λ ∈ [1, β) we have

σ 2 = lim
τ→0

lim sup
l→∞

N
(λ)
l

(K
(λ)
l )2

Var
(
Y

(l)
1 1

{
Y

(l)
1 ≤ τK

(λ)
l

})= 0.(10.16)

First, using (10.15), let us notice that

lim
l→∞

N
(λ)
l

(K
(λ)
l )2

E
[
Y

(l)
1 1

{
Y

(l)
1 ≤ τK

(λ)
l

}]= 0.(10.17)

Further, we have N
(λ)
l /(K

(λ)
l )2 ∼ (λβl)γ−2β−γf (l). Define

for all u ≥ 0 H
(l)
k (u) = E

[(
Z

(l)
1

)21
{
Z

(l)
1 ≤ u

}|X(l)
1 = k + l

]
.

We compute

β(γ−2)l−γf (l)E
[(

Y
(l)
1

)21
{
Y

(l)
1 < τλβl}]

= ∑
k∈Z

1
{
k ≥ −(l − f (l)

)}
β(γ−2)l−γf (l)β2(k+l)H

(l)
k (τλβ−k)

(
a

(l)
k − a

(l)
k+1

)
.

By (10.1) we have a
(l)
k βγ (l−f (l)) ≤ C1β

−γ k , hence the terms of our sum are

bounded above by C1β
(2−γ )kH

(l)
k (τλβ−k). Note that H

(l)
k (u) ≤ u2, so that

β(2−γ )kH
(l)
k (τλβ−k) ≤ β−γ k(τλ)2,

which gives an upper bound for k ≥ 0. On the other hand, assumption (2) implies
that

β(2−γ )kH
(l)
k (τλβ−k) ≤ βεk(τλ)2−γ−εE[Zγ+ε

sup ].
These inequalities imply that

lim sup
l→∞

N
(λ)
l

(K
(λ)
l )2

Var
(
Y

(l)
1 1

{
Y

(l)
1 ≤ τK

(λ)
l

})≤ C2τ
2−γ−ε,

where C2 is finite and depends on ε and λ. Hence, letting τ go to 0 yields the result,
since in assumption (2) we can assume ε to be as small as we need in particular it
can be chosen such that 2 − γ − ε > 0.

11. Limit theorems.

11.1. Proof of Theorem 1.3 . Assume ε < min(1/4,2γ /3). For λ > 0, we will
study the limit distributions of the hitting time properly renormalized along the
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subsequences defined as follows:

for k ∈ N nλ(k) = �λf ′(q)−k�.
First, recalling (9.3), using Proposition 9.1 and Lemma 3.3, we can apply The-

orem 10.1 to get

for any (λl)l≥0 going to λ
1

λβk

�λγ
nλ(k)β

γ (k−f (k))�∑
i=1

χ∗
i (nλ(k))

d→ Ydλ,0,Lλ,(11.1)

where f (k) := hnλ(k) = �−(1 − ε) ln(nλ(k))/ ln f ′(q)� and Ydλ,0,Lλ is a random
variable whose law I(dλ,0, Lλ) is the infinitely divisible law characterized by
(10.3), (10.4) and (10.5), where Z∞ is given by (1.3).

Using Proposition 8.1, (11.1) still holds if we replace χ∗
i (n) by χi(n).

Recalling Proposition 7.1, we have

�(1+o1(1))λρCaf ′(q)
−(k−hnλ(k))�∑

i=1

χi(nλ(k))

� χnλ(k) �
�(1+o2(1))λρCaf ′(q)

−(k−hnλ(k))�∑
i=1

χi(nλ(k)),

where

1 + o1(1) = (1 − ñ−ε/4)
ρn

ρ

n

λf ′(q)−k

f ′(q)hñ

f ′(q)hn

and

1 + o2(1) = (1 + 2n−ε/4)
ρn

ρ

n

λf ′(q)−k
,

writing n for nλ(k) = �λf ′(q)−k� and ñ = n − (−2 lnn/ ln f ′(q)).
Hence, both sides of the previous equation, properly renormalized, converge in

distribution to the same limit law, implying that (the law of) χ(n) converges to the
same law as well. Recalling (5.3), this yields for any λ > 0

χ(nλ(k))

(ρCanλ(k))1/γ

d→ Yd
(ρCaλ)1/γ ,0,L

(ρCaλ)1/γ
,

where Yd
(ρCaλ)1/γ ,0,L

(ρCaλ)1/γ
is a random variable with law I(d(ρCaλ)1/γ ,0,

L(ρCaλ)1/γ ) and we used that βγ = 1/f ′(q).
Then by Proposition 5.1, we get that

�nλ(k)

(ρCanλ(k))1/γ

d→ Yd
(ρCaλ)1/γ ,0,L

(ρCaλ)1/γ
,

which proves Theorem 1.3.
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We note for further reference that

I(dλ,0, Lλ) is continuous.(11.2)

This follows from Theorem III.2 (page 43) in [19], since, due to (10.4),

lim
x→0

L1(x) = −∞.

11.2. Proof of Theorem 1.2. In order to prove Theorem 1.2, assume that
(�n/n1/γ )n≥0 converges in law. It follows that all subsequential limits are the
same, so that

for all λ ∈ [1, β) and x ∈ R
+ L1(x) = λγ L1(λx).

Plugging in the values λ = β1/3 and x = β−2/3 gives∑
k∈Z

f ′(q)−kP [Z∞ > βk−2/3]
(11.3)

= f ′(q)−1/3
∑
k∈Z

f ′(q)−kP [Z∞ > βk−1/3].

We will show that for β → ∞, the right-hand side and the left-hand side of
(11.3) have different limits. First, for k ≥ 1 using Remark 6.1, we see that

P[Z∞ > βk−1/3] ≤ β1/3−k
E[Z∞] ≤ β1/3−k

E[S∞]E[G(p∞/3)]
(11.4)

= β−(k−1)O(β−1/3)

for β → ∞ where O(β−1/3) = β−2/3
E[S∞]E[G(p∞/3)] does not depend on k

(recall Proposition 3.1 to see that E[S∞] is bounded in β). In the same way,

P[Z∞ > βk−2/3] = β−(k−1)O(β−1/3)(11.5)

for O(·) independent of k ≥ 1.
Hence,

lim
β→∞

∞∑
k=1

f ′(q)−kP [Z∞ > βk−2/3]
(11.6)

= 0 = lim
β→∞

∞∑
k=1

f ′(q)−kP [Z∞ > βk−1/3].

For k ≤ 0, we have

P[Z∞ > βk−1/3] ≤ P[Z∞ > 0] ≤ P[Bin(W∞,p∞) > 0],
further, since S∞ ≥ 1, we see that

on {Z∞ > 0} Z∞ ≥ S∞e1 ≥ e1,
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where e1 is independent of the event {Z∞ > 0} = {Bin(W∞,p∞) > 0}. Hence,

P[Z∞ > βk−1/3] = 1 − P[Z∞ ≤ βk−1/3]
≥ 1 − P[Bin(W∞,p∞) = 0] − P [e1 ≤ β−1/3]
= P[Bin(W∞,p∞) > 0] + o(1)

for β → ∞ and hence

P[Z∞ > βk−1/3] = P[Bin(W∞,p∞) > 0] + o(1),(11.7)

where o(·) does not depend on k.
In the same way,

P[Z∞ > βk−2/3] = P[Bin(W∞,p∞) > 0] + o(1)(11.8)

for β → ∞. Plugging (11.7) and (11.8) in equation (11.3) and taking into account
(11.6), we see that

lim
β→∞

∑
k∈Z

f ′(q)−kP [Z∞ > βk−2/3] = lim
β→∞

1

1 − f ′(q)
P [Bin(W∞,p∞) > 0]

and

lim
β→∞

∑
k∈Z

f ′(q)−kP [Z∞ > βk−1/3] = lim
β→∞

1

1 − f ′(q)
P [Bin(W∞,p∞) > 0].

Hence, we would have

lim
β→∞

1

1 − f ′(q)
P [Bin(W∞,p∞) > 0]

= lim
β→∞ f ′(q)−1/3 1

1 − f ′(q)
P [Bin(W∞,p∞) > 0].

This could only be possible if P [Bin(W∞,p∞) > 0] → 0 for β → ∞, but we
know that

P [Bin(W∞,p∞) > 0] > p∞P[W∞ ≥ 1] > c > 0,

where c does not depend on β , see Lemma 6.6. This proves Theorem 1.2.
In particular, if β is large enough, I(d1,0, L1) is not a stable law and this implies

(vii) in Theorem 1.4.

11.3. Proof of Theorem 1.1. We will show that

lim
M→∞ lim sup

n→∞
P

[
�n

n1/γ
/∈ [1/M,M]

]
= 0.(11.9)

This implies in particular that the family (�n/n1/γ )n≥0 is tight. We will then prove

lim
M→∞ lim sup

n→∞
P

[ |Xn|
nγ

/∈ [1/M,M]
]

= 0,(11.10)
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which implies that the family (|Xn|/nγ )n≥0 is tight. Equation (1.2) will then shown
to be a consequence of (11.9) and (11.10).

To show (11.9), note that for n ∈ [f ′(q)−k, f ′(q)−(k+1))

P

[
�n

n1/γ
/∈ [1/M,M]

]

≤ P

[
�f ′(q)−k

(f ′(q)−kρCa)1/γ
<

M

(f ′(q)ρCa)1/γ

]

+ P

[
�f ′(q)−(k+1)

(f ′(q)k+1ρCa)1/γ
>

1

M(f ′(q)−1ρCa)1/γ

]
.

Using Theorem 1.3, we get

lim sup
n

P

[
�n

n1/γ
/∈ [1/M,M]

]
≤ P

[
Yd

(ρCa)1/γ ,0,L
(ρCa)1/γ

/∈
[

1

M(f ′(q)−1ρCa)1/γ
,

M

(f ′(q)ρCa)1/γ

]]
,

where Yd
(ρCa)1/γ ,0,L

(ρCa)1/γ
is a random variable with law I(d(ρCa)1/γ ,0, L(ρCa)1/γ ).

Here we used that the limiting law I(dx,0, Lx) is continuous, see (11.2), and has
in particular no atom at 0, so we get that

lim
M→∞P

[
Ydx,0,Lx /∈ [1/M,M]]= 0,

which proves (11.9).
Let us prove (11.10). Let n ≥ 0 and write nγ = λ0f ′(q)−i0 for some i0 ∈ N and

λ0 ∈ [1,1/f ′(q)). Let i ∈ N. To control the probability that |Xn| is be much larger
than nγ , note that

P

[ |Xn|
nγ

≥ λ−1
0 f ′(q)−i

]
≤ P

[
��(λ−1

0 f ′(q)−i )(λ0f ′(q)−i0 )� < (λ0f ′(q)−i0)1/γ ]
= P

[ ��f ′(q)−i−i0�
(ρCaf ′(q)−i−i0)1/γ

< (λ0ρCaf ′(q)−i )−1/γ

]
.

Hence, for any ε > 0, and i large enough such that (ρCaf ′(q)−i )−1/γ < ε,

P

[ |Xn|
nγ

≥ f ′(q)−i−1
]

≤ P

[ |Xn|
nγ

≥ λ−1
0 f ′(q)−i

]
≤ P

[ ��f ′(q)−i−i0�
(ρCaf ′(q)−i−i0)1/γ

< ε

]
.

Now, using Theorem 1.3, taking n (i.e., i0) to infinity, we get that for any ε > 0,

for i large enough lim sup
n

P

[ |Xn|
nγ

≥ f ′(q)−i−1
]

≤ P [Yd1,0,L1 ≤ ε],
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using (11.2) and hence

lim sup
M→∞

lim sup
n→∞

P

[ |Xn|
nγ

≥ M

]
≤ lim sup

ε→0
P [Yd1,0,L1 ≤ ε] = 0.(11.11)

Next, we will consider the probability that |Xn| is much smaller than nγ . Let us
denote

Back(n) = max
i<j≤n

(|Xi | − |Xj |),

the maximal backtracking of the random walk. It is easy to see that

Back(n) ≤ max
2≤i≤n

(τi − τi−1) ∨ τ1.

Hence, since τ1 and τ2 − τ1 have exponential moments

P[Back(n) ≥ nγ/2] ≤ Cn exp(−cnγ/2).(11.12)

If the walk is at a level inferior to (1/M)nγ at time n and has not backtracked
more than nγ/2, it has not reached (2/M)nγ . This implies that for all M > 0,

P

[ |Xn|
nγ

< 1/M

]
≤ P[Back(n) ≥ nγ/2] + P

[
��(2/M)nγ �

(ρCa2/M)1/γ n
> (ρCa2/M)1/γ

]
.

Hence, using a reasoning similar to the proof of (11.11), we have

lim
M→∞ lim sup

n→∞
P

[ |Xn|
nγ

< 1/M

]
≤ lim inf

M→∞ P [Yd1,0,L1 ≥ M] = 0.(11.13)

Using (11.11) and (11.13), we get

lim
M→∞ lim sup

n→∞
P

[ |Xn|
nγ

/∈ [1/M,M]
]

= 0,(11.14)

which shows (11.10) in Theorem 1.1.
Let us prove (iii) in Theorem 1.1. We have

P

[
lim

n→∞
ln |Xn|

lnn
�= γ

]
≤ P

[
lim sup
n→∞

ln |Xn|
lnn

> γ

]
+ lim

M→∞ P

[
lim inf
n→∞

|Xn|
nγ

≤ 1

M

]
.

Using Fatou’s lemma,

P

[
lim inf
n→∞

|Xn|
nγ

<
1

M

]
≤ lim inf

n→∞ P

[ |Xn|
nγ

<
1

M

]
,

and taking M to infinity we get

P

[
lim

n→∞
ln |Xn|

lnn
�= γ

]
≤ P

[
lim sup
n→∞

ln |Xn|
lnn

> γ

]
.
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Set ε > 0, we have

P

[
lim sup
n→∞

ln |Xn|
lnn

> (1 + 2ε)γ

]
≤ P

[
lim sup
n→∞

|Xn|
n(1+ε)γ

≥ 1
]

≤ P

[
lim sup
n→∞

supi≤n |Xi |
n(1+ε)γ

≥ 1
]
.

Define

D′(n) =
{

max
�∈∪

i=0,...,�Y
n

LYi

H(�) ≤ 4 lnn

− ln f ′(q)

}
.

Denoting t (n) such that στt(n)
≤ n < στt(n)+1 , we have

for ω ∈ D′(n) |Xστt(n)
| ≤ |Xn| ≤ |Xστt(n)+1

| + 4 lnn

− ln f ′(q)
,(11.15)

and since using B1(n) defined right above Lemma 7.1, we get

for ω ∈ B1(n) |Xστt(n)+1
| ≤ |Xστt(n)

| + nε.(11.16)

We have using Lemma 5.1 and (3.7)

P[D′(n)c] ≤ P[A1(n)c] + P

[
A1(n), card

�Y
n⋃

i=1

LYi
> n2

]

+ P

[
card

�Y
n⋃

i=1

LYi
≤ n2,D′(n)c

]

≤ O(n−2) + P

[
C1n∑
i=0

cardL
(i)
0 > n2

]
+ n2Q

[
H ≥ 4 lnn

− ln f ′(q)

]

≤ O(n−2) + n−4 Var

(
C1n∑
i=0

cardL
(i)
0

)
+ n2n−4 = O(n−2),

where we used that cardL
(i)
0 are i.i.d. random variables which are L2 since they

are stochastically dominated by the number of offspring Z which is L2 by our
assumption.

By Lemma 7.1, the previous estimate and Borel–Cantelli we have ω ∈ B1(n) ∩
D(n) asymptotically, we get, recalling (11.15) and (11.16), that for ε < γ

P

[
lim sup
n→∞

supi≤n |Xi |
n(1+ε)γ

≥ 1
]

≤ P

[
lim inf
n→∞

( |Xστt(n)
|

n(1+ε)γ
+ o(1)

)
≥ 1

]
.
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Since |Xστt(n)
| ≤ |Xn|, we have

P

[
lim

n→∞
supi≤n |Xi |

n(1+ε)γ
≥ 1

]
≤ P

[
lim inf
n→∞

|Xστt(n)
|

n(1+ε)γ
≥ 1

]
≤ lim inf

n→∞ P

[ |Xn|
n(1+ε)γ

≥ 1
]

≤ lim inf
M→∞ lim inf

n→∞ P

[ |Xn|
nγ

≥ M

]
= 0,

where we used Fatou’s lemma and (ii) in Theorem 1.1.
Now since this result is true for all ε > 0 small enough we get

P

[
lim

n→∞
ln |Xn|

lnn
�= γ

]
≤ P

[
lim sup
n→∞

ln |Xn|
lnn

> γ

]
≤ lim inf

ε→0
P

[
lim sup
n→∞

ln |Xn|
lnn

> (1 + 2ε)γ

]
= 0,

which finishes the proof of (1.2).

11.4. Proof of Theorem 1.4. It remains to show (iv), (v), (vi) and (viii) in The-
orem 1.4.

PROOF OF THEOREM 1.4. We start by proving (viii). Recall

Z∞ = S∞
1 − β−1

Bin(W∞,p∞)∑
i=1

ei

and in particular the fact that S∞, W∞ and the i.i.d. exponential random variables
ei are independent. Let S̃∞ = S∞/p∞ and denote its law by ν∞. Further, let αk =
P[Bin(W∞,p∞) = k], k = 0,1,2, . . . . Conditioned on S̃∞ and Bin(W∞,p∞), the
law of Z∞ is a Gamma distribution. More precisely, for any test function ϕ,

E[ϕ(Z∞)] = α0ϕ(0) +
∞∑

k=1

∫ ∞
0

(∫ ∞
0

ϕ(su)e−u uk−1

(k − 1)! du

)
ν∞(ds)αk

= α0ϕ(0) +
∞∑

k=1

∫ ∞
0

(∫ ∞
0

ϕ(v)e−v/s vk−1

(k − 1)!
1

sk
dv

)
ν∞(ds)αk

= α0ϕ(0) +
∫ ∞

0
ϕ(v)

∞∑
k=1

αk

vk−1

(k − 1)!EQ[e−v/S̃∞(S̃∞)−k]dv.
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We point out that, due to Lemma 6.6, we have 0 < α0 < 1. Hence, Z∞ has an
atom of mass α0 at 0 and the conditioned law of Z∞, conditioned on Z∞ > 0, has
the density ψ , where

ψ(v) =
∞∑

k=1

αk

vk−1

(k − 1)!EQ[e−v/S̃∞(S̃∞)−k]

= EQ

[
1

S̃∞
e−v/S̃∞

∞∑
k=1

αk

(k − 1)!
(

v

S̃∞

)k−1
]
.

Using the fact that S∞ ≥ 2 and lim sup 1
k

logαk < 0 (see Lemma 6.2), we see
that ψ is bounded and C∞. Note that since S∞ and W∞ have finite expectation,
Z∞ has also finite expectation and in particular∫ ∞

0
vψ(v) dv < ∞.(11.17)

This shows (viii) in Theorem 1.4. We will later need that∫ ∞
0

v1+γ |ψ ′(v)|dv < ∞.(11.18)

To show (11.18), note that ψ ′(v) equals

EQ

[ −1

(S̃∞)2
e−v/S̃∞

∞∑
k=1

αk

(k − 1)!
(

v

S̃∞

)k−1

+ 1

(S̃∞)2
e−v/S̃∞

∞∑
k=2

αk

(k − 2)!
(

v

S̃∞

)k−2
]
,

which implies, with α := lim sup(α
1/k
k ) < 1,

|ψ ′(v)| ≤ C1EQ

[
1

(S̃∞)2
e−(1−α)v/S̃∞

]
.

But, for δ ∈ (0,1),

EQ

[
1

(S̃∞)2
e−(1−α)v/S̃∞

]

≤ EQ
[
e−(1−α)v/S̃∞1{S̃∞ < v1−δ}]+ EQ

[
1

(S̃∞)2
1{S̃∞ ≥ v1−δ}

]

≤ e−(1−α)vδ + 1

v3−3δ
EQ[S̃∞].

Now, choosing δ small enough such that 3δ + γ < 1 yields (11.18).
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We next show that the function L1 is absolutely continuous. Recalling (i) in
Theorem 1.4 we see that, for x > 0,

−(1 − β−γ )−1L1(x) = ∑
k∈Z

βγkF∞(xβk)

= ∑
k∈Z

βγk
∫ ∞
xβk

ψ(v) dv

=
∫ ∞

0

(∑
k∈Z

βγk1{v ≥ xβk}
)
ψ(v)dv.

Now,

∑
k∈Z

βγk1{v ≥ xβk} = ∑
k≤K(v/x)

βγ k =: g
(

v

x

)
,

where, setting u = v
x

, K(u) = � logu
logβ

�. An easy computation gives

g(u) = βγ (K(u)+1)

βγ − 1
.(11.19)

Hence, for x > 0,

−(1 − β−γ )−1L1(x) =
∫ ∞

0
g

(
v

x

)
ψ(v)dv

(11.20)
= x ·

∫ ∞
0

g(u)ψ(xu)du.

The last formula shows, noting that g(u) is of order uγ for u → ∞ and recalling
(11.17) and (11.18), that L1 is C1 and in particular absolutely continuous. Due to
the scaling relation (ii), the same holds true for Lλ. This shows (iv) in Theorem 1.4.

Due to (11.19), we have

1

βγ − 1
uγ ≤ g(u) ≤ βγ

βγ − 1
uγ .

Plugging this into the first equality in (11.20) yields (1.4). This proves (v) in The-
orem 1.4. To show (vi), we use a result of [24] which says that an infinite divis-
ible law is absolutely continuous if the absolutely continuous component Lac of
its Lévy spectral function satisfies

∫∞
−∞ dLac(x) = ∞, see also [19], page 37. In

our case, this is satisfied since Lac
1 (x) = L1(x) and limx→0 L1(x) = −∞. Further,

the statement about the moments of μλ follows from the corresponding statement
about the moments of Lλ; see [20] or [19], page 36. �
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1–12. MR0254898

[21] SZNITMAN, A.-S. (2003). On the anisotropic walk on the supercritical percolation cluster.
Comm. Math. Phys. 240 123–148. MR2004982

[22] SZNITMAN, A.-S. (2006). Random motions in random media. In Mathematical Statistical
Physics 219–242. Elsevier, Amsterdam. MR2581885

[23] SZNITMAN, A.-S. and ZERNER, M. (1999). A law of large numbers for random walks in
random environment. Ann. Probab. 27 1851–1869. MR1742891

[24] TUCKER, H. G. (1965). On a necessary and sufficient condition that an infinitely divisible
distribution be absolutely continuous. Trans. Amer. Math. Soc. 118 316–330. MR0182061

[25] ZEITOUNI, O. (2004). Random walks in random environment. In Lectures on Probability The-
ory and Statistics. Lecture Notes in Math. 1837 189–312. Springer, Berlin. MR2071631

G. BEN AROUS

A. FRIBERGH

COURANT INSTITUTE OF MATHEMATICAL SCIENCES

NEW YORK UNIVERSITY

NEW YORK, NEW YORK 10012
USA
E-MAIL: benarous@cims.nyu.edu

fribergh@cims.nyu.edu

N. GANTERT

INSTITUT FÜR MATHEMATISCHE STATISTIK

FACHBEREICH MATHEMATIK UND INFORMATIK

UNIVERSITÄT MÜNSTER

EINSTEINSTR. 62
48149 MÜNSTER

GERMANY

E-MAIL: gantert@uni-muenster.de

A. HAMMOND

DEPARTMENT OF STATISTICS

UNIVERSITY OF OXFORD

1 SOUTH PARKS ROAD

OXFORD

UNITED KINGDOM

E-MAIL: hammond@stats.ox.ac.uk

http://www.ams.org/mathscinet-getitem?mr=0388499
http://www.ams.org/mathscinet-getitem?mr=0254898
http://www.ams.org/mathscinet-getitem?mr=2004982
http://www.ams.org/mathscinet-getitem?mr=2581885
http://www.ams.org/mathscinet-getitem?mr=1742891
http://www.ams.org/mathscinet-getitem?mr=0182061
http://www.ams.org/mathscinet-getitem?mr=2071631
mailto:benarous@cims.nyu.edu
mailto:fribergh@cims.nyu.edu
mailto:gantert@uni-muenster.de
mailto:hammond@stats.ox.ac.uk

	Introduction and statement of the results
	Constructing the environment and the walk in the appropriate way
	Constructing a trap
	Sketch of the proof
	The time is essentially spent in big traps
	Number of visits to a big trap
	The time spent in different traps is asymptotically independent
	The time is spent at the bottom of the traps
	Analysis of the time spent in big traps
	Sums of i.i.d. random variables
	Computation of the Levy spectral function
	Computation of dlambda
	Computation of the variance

	Limit theorems
	Proof of Theorem 1.3 
	Proof of Theorem 1.2
	Proof of Theorem 1.1
	Proof of Theorem 1.4

	Acknowledgments
	References
	Author's Addresses

