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Abstract

We consider reversible diffusions in random environmert prove the Einstein relation for
this model. It says that the derivative at 0 of the effectieuity under an additional local drift
equals the diffusivity of the model without drift. The Eiast relation is conjectured to hold
for a variety of models but it is proved insofar only in paunter cases. Our proof makes use of
homogenization arguments, the Girsanov transform, andfiriereent of the regeneration times
introduced in [25].

1 Introduction

The present paper deals with diffusions in a random statyagravironment, a model for the dynamics
of particles in a disordered medium at thermal equilibridiis subject has been the object of intense
research over the past thirty years. In spite of many recexgresses, see [27] for instance, many
questions regarding the long time behavior of these presessich as laws of large numbers or central
limit theorems, are still challenging open problems.

We shall only be concerned with reversible dynamics. In¢bistext the idea of the environment
seen from the particle, as discussed in [13] or [4], provag®werful tool to adapt the 'corrector
approach’ from homogenization theory and eventually piavariance principles. One then shows
that the trajectory of a particle evolving in such an envingmt, in a large time scale, behaves like
a Brownian motion with mean square displacement propatitmtime, the proportionality being
expressed by the asymptotic covariancefbective diffusivitynatrix Z. A good understanding &t
is thus of primary interest.

From reversibility follows a variational formula for thefettive diffusivity, see [18] and [12] for
the discrete and continuous cases, respectively. ManysanarPDE or theoretical physics address
the question of estimating the effective diffusivity. S&@ ¢r [8] for instance. Here we provide a
completely different interpretation &f as the so-callechobility.
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In the series of papers A. Einstein devoted to Brownian nmagiothe beginning of past century,
see [5], along with the diffusivity matrix, the great phyistantroduced another important quantity
called themobility. The mobility measures the response of the diffusing dartaca constant exterior
force. Let us consider the perturbed process obtained bgsing a constant drift of strengthin
some fixed direction. One would expect the perturbed pracesatisfy a law of large numbers with
effective drift{(A). The mobility can then be interpreted as the derivativé(af) asA tends to O.
Einstein claimed that the mobility and the diffusivity of arpcle coincide.

This 'diffusivity vs mobility’ relation played a central le in Einstein’s theory of molecular dif-
fusivity because it was amenable to experimental veribicatiand eventually lead to evidences that
matter is molecular. Since then, Einstein’s relation oplethe way to important developments both
in experimental physics, with J. Perrin’s Nobel prize, amebiretical physics, with connections to the
Fluctuation Dissipation Theorem or the Green-Kubo retatiduthors in these fields usually assume
the Einstein relation, on the basis on heuristics, withaibhdp actually able to prove it, see [8] for
instance. Indeed, only very few rigorous papers investitfae mathematical contents of the Einstein
relation and finding a general strategy for proving it reredimn open mathematical problem for
years. Note that the mere existence of the mobility i.e. #itethat/(A) has a derivative at =0 is
far from obvious.

In the case of periodic environments the Einstein relatiam loe easily checked by direct com-
putations which are mostly reduced to differentiating tkeetyrbed cell problem on the torus. More
generally, if the process of the environment seen from thiegie has a spectral gap, the Einstein
relation can be proved by perturbation theory, see [16].

The first consistent mathematical approach to the Einsgdation for random environments was
attempted by J. Lebowitz and H. Rost in [19]. These authas #voided the difficulty of proving
the existence of the mobility by considering exterior fagenose strength vanishes as time goes to
infinity in such a way that the perturbed process still hasndt lon the diffusive scale. The mobility
is then defined as the asymptotic mean displacement of thielpano derivative is involved and
this weak form of the Einstein relation does not tell us amgrabout the effective drift induced by
a constant exterior force. On the other hand, in this weaien the Einstein relation holds in the
general ergodic reversible case. We shall discuss the Liesb&a@st theory in more details later, see
the end of section 2.4.

More recently, in [15], T. Komorowski and S. Olla proved thiegtein relation for random walks
with random conductances in dimension higher than 3 andtiwitlextra restriction that conductances
are only allowed to take two different positive values. Tlagproach, whoich is an adaptation of [21]
to the RWRE case, is quite different from ours and it is naaicheow it can be adapted to more general
models, as for instance random walks on percolation clsissee [2] and [26].

In the present paper, we shall prove the Einstein relatiorsyonmetric diffusions driven by a
random environment with bounded potential and short rangelations. A more detailed definition
of the model and precise assumptions are given in part 2. sssigsed above, the invariance principle,
and therefore the existence of the diffusivity, were alyekdown for such models in the eighties.
The law of large numbers for the perturbed dynamics, i.eekigtence of (A ), is ensured by a more
general theorem of L. Shen in [25] on renewal propertiesiftedrdiffusions in random environments.
The key issue in proving the Einstein relation is then to shwat/(A ) has a derivative &t = 0 and
to identify this derivative with the effective diffusivityf the non-perturbed diffusion. To this end we
compute the mean position of the perturbed diffusion on thieal scaleA?t = 1. This is indeed the
scale on which the diffusive and drift components of they&ed dynamics equilibrate. Thus we



obtain two different expressions for the mean displacermetdérms of either the diffusivity matrix
>, see equation (3.1), or in terms &fA ), see (5.1). Identifying both expressions gives the Einstei
relation.

The proofs combine different ingredients: homogenizatimpuments and Girsanov transforms,
- see Section 3 - PDE estimates and a-priori bounds on hititimgs for perturbed diffusions - see
Section 4 - and renewal arguments - see Section 5. All thegedrents had already appeared in the
literature but, in order to treat the critical scalé = 1, we had to refine many arguments and often
introduce alternative strategies as, for instance, wigtrégeneration times in Section 5.

In Sections 2 - 6, we focus only on smooth environments whildwa us to use stochastic dif-
ferential equations. In Section 7, we relax this smooth@sssimption and treat the case of (still
bounded) but only measurable environments, relying orcBliet form theory.

One might hope that our approach could be adapted to applyhey smodels of diffusions or
random walks in random environments.

2 Model and statement of the theorem

2.1 Diffusions in a random environment

We shall be dealing with diffusion processesifiwhose generators are of the form

ZLOf(x) = %esz(x)div(esza‘*’ﬂf)(x), (2.1)

wherea® andV® are realizations of a random environment with finite rangdegfendence.

More precisely, our assumptions are as follows.

Let (Q,«7,Q) be a probability space equipped with a group actiofRBfthat we denote with
(X, w) — X.c0. We also assume that the m@gpw) — X.w is (%4 x <7, o/ )-measurable, wher&y is
the Borelo-field onRY.

Assumption 1: the action(x, w) — X.w preserves the measugeand is ergodic.
LetV be a measurable real-valued function®@mnd leto be a measurable function dhtaking
its values in the set of redlx d symmetric matrices. Define

VP (x) =V(x.w), 0°X) = o(x.w).
We also introduce the notation
1.
a® = (g%)? andb® = Edlva‘*’ —a®0ve.

Observe that botlr® andb® are then stationary fields i.&®(x) = o(x.w) andb®(x) = b(x.w)
for some functiongr andb.

Assumption 2: for any environmento, the functionsx — V®(x) andx — o (x) are smooth. To
avoid triviality, we also assume that at least one of thenotonstant.

Assumption 3:V is bounded and® is uniformly elliptic, namely there exists a constanguch that,
for all w, x andy,

Kly]? < [o®(X)y]? < kty?. (2.2)
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For a Borel subsef c RY, we define thes-field
HE =0{V(Xw),0(Xw) : xe F}

and we assume the following independence condition:

Assumption 4: there existsR such that for any Borel subsdtsandG such thad(F,G) > R (where
d(F,G) =inf{|x—y| : x€ F,y € G} is the distance betwedhandG) then

¢ and. 7/ are independent (2.3)

Let (W :t > 0) be a Brownian motion defined on some probability spg#e.#,P). We denote
expectation with respect t by E. By diffusion in the environmeri we mean the solution of the
stochastic differential equation

dX2(t) = b?(XL(t)) dt+ 0®(X2(t)) dW; XL (0) = x. (2.4)

ThenX¥ is indeed the Markov process generated by the oper#&tdrin equation (2.1). We shall
denote withP® the law ofX® on the path spadg(R,,RY). It is usually referred to as thguenched
law of the diffusion in a random environment. We will also deke so-callednnealedaw:

BAfA] = [ dQ(e) [ dRE(w)La(w,w). (2.5)

for any measurable subs&t= Q x C(R,,RY).

Expectation with respect 8* will be denoted withE® and expectation with respect By will
be denoted withiy.

We use the notatioK (t) for the coordinate process on path spa¢g , ,RY).

2.2 Effective diffusivity
Definition 2.1 LetZX be the effective diffusivity matrix defined by

e-Ze::tirrmflEo[(e-X(t))z], (2.6)

where e is any vector iR and x y denotes the scalar product of the two vectors x and y.

The fact that the limit in (2.6) exists is (almost) a consemacof the Central Limit Theorem for
the procesX underPy. More is actually known:X satisfies a full invariance principle. Namely:
for almost any realization of the environmest the laws of the sequence of rescaled processes
(XE(t) = eX(t/€?); t > 0) underP¥ weakly converge as goes to 0 to the law of a Brownian motion
with covariance matriX. References on this Theorem include [4], [13], [17], [22B]among others.
The convergence of the variance of the processitexplicitly stated in [4] formula (2.44).

The invariance principle also has a PDE counterpart in texhimogenization theory, see for
instance the book [12]. The generator of the proé&ssnderP? is the rescaled elliptic operator with
rapidly oscillating coefficients L L

w/* w/ *
2° <3)A+ Zeb <8)D'
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Its limit, in the sense of homogenization theory, is thepéilli operator with constant coefficient
1
—div(zZ[
2 ( ) Y

wherezZ is the same matrix as in (2.6).

The effective diffusivityZ is a symmetric matrix. As a consequence of Assumption 1 oodécg
ity, 2 is deterministic (i.eX does not depend om). Furthermore, due to the ellipticity Assumption
3, Z is also known to be positive definite.

In general, there is no simple expressiorkoh terms ofo or V. (For instancey is by no means
the average of?!) The proof of the homogenization theorem actually proside expression & as
a function of the solution of a Poisson equation - the scedalbrrector approachSince the operator
£? s self-adjoint with respect to the measare¥“¥dx, there is also a variational formulation of
the Poisson equation and therefore a variational formula ftself. We will not need it in this paper.
Our main Theorem actually gives a quite different interatien of~ as themobilityof X%, see below.

2.3 Perturbed diffusions

We shall now consider perturbations of the procéssbtained by inserting a local drift in equation
(2.4).
_ We use the following notation. L&y be a non-zero vector witfe;| = 1 andA > 0. We define
A to be the vectod = Ae;. We think ofe; as being fixed whilé\ is due to tend to 0. We assume
throughout the whole paper that< 1.

Let us consider the perturbed stochastic differential egoa

dX)@(t) = b?(X} (1)) dt+ a®(X} (1)) A dt+ o (X} (1)) dW; X} @(0) = x. (2.7)
The procesS}(Q"" is now a Markov process with generator
PAOf(x) = %eszm div(e?“a®0f)(x) + a®(x)A - Of(X)
- %esz(x) div(e " a® Of)(x), (2.8)

whereVA:@(x) = V@(x) — A - x. We shall use the notatid®*® for the law ofX;"®, E}* for the
corresponding expectation as wellBsandE} for the annealed probability and expectation defined
analogously to (2.5).

Our model is a special case of diffusions with drifts consdeby L. Shen in [25] for which
the author proved a law of large numbers: for almost any envirentew, the ratioX(t)/t has an
almost sure limit undePé"*’, say/(A). The convergence also holds irt(P}). Moreover/(A)
is deterministic anc\ -¢(A) > 0. Note that the proof strongly relies on the independenopgity
Assumption 4. We thus define the effective velocity:

Definition 2.2 LetA > 0. Let/(A) be the effective drift vector defined by

() = Jim TEX(0). (2.9)

By conventiorf(0) = 0.



2.4 The Einstein relation

Our main result is the following theorem.

Theorem 2.3 The functiom — ¢(A) has a derivative ah = 0 which satisfies

1
lim =¢(\) =Xe. 2.10
lim ~ (A)=Ze (2.10)

This justifies the following definition.
Definition 2.4 Call mobility in the direction gthe derivative af = 0 of the velocity g- /(A ).

Theorem 2.3 and Definition 2.4 can be compared with the maintref [19] where the mobility
is defined as the mean position of the procé&sinderP§. The authors prove that, @astends to O,
the law ofX® underP§ converges to the law of Brownian motion with dnfgiven byv = >e;. These
results are consequences of the invariance principle ubgland do not require any information on
the asymptotic behaviour of the process uﬁ%lfor a fixedA (and indeed the law of large numbers
of L. Shen was not known at the time [19] was written).

3 Girsanov transforms

The aim of this section is to establish Proposition 3.1 belbwthis part of the paper we only use
Assumptions 1, 2, 3.

Proposition 3.1 Leta > 1. Then

: X(t
lim E} [—( )} —Je. (3.1)

A—0t——4oo;A2t=a t

Also
max|X(s)|?

- Al os<t

sup limsup Eg 5> < oo, (3.2)
a>1)—0:t—+40;A%t=a A<t

Remark 3.2 Observe that (3.2) directly follows from Lemma 4.5 in the sextion of the paper.

Proof of Proposition 3.1 in the case¥ 0

We first prove Proposition 3.1 in the case there is no potargiave start assuming th&t= 0.

We use Girsanov transforms pretty much as in [19] i.e. thdi@kexpression of the Radon-
Nikodym derivative oP{)\"*’ with respect tdPy’.

Let us first recall Girsanov transforms, see [24], chaptdt. et X = (Xy,...,Xq) andY =
(Y1,...,Yq) be solutions of stochastic differential equations of thenfo

dX(t) = b(X(t)) dt+ o (X(t)) dW; X(0) = x,



and
dY(t) =c(Y(t))dt+o(Y(t))dW; Y(0) = x

where(W : t > 0) is a Brownian motion and the coefficierdsb andc are subject to smoothness and
ellipticity assumptions as in Assumptions 2 and 3. P&tandPY be the laws of the process¥sand

Y on the path spadg(R,,RY). Let.7 = o{X(s); s<t} be the filtration generated by the coordinate
process up to timé. Then the restriction oPY to .% is absolutely continuous with respect to the
restriction ofPX to . and the Radon-Nikodym derivative is given by the Girsanawida:

E[F(Y((0,1)))] = E[F(X([0,1])) O=2M0)],

for any timet, for any bounded continuous functi&honC([0,t],RY) and whereM is the martingale

= [ oix(s)-awe

0= [ lox(s)Pas
and@(x) = 0~1(x)(c(x) — b(x)).

In the next discussion we use the expression “Brownian matith covariances? and driftc” to
denote any process whose law is the same as the laaMif+ ct; t > 0).

If we chooseo andc constant anth = 0 above, thelY is a Brownian motion with covarianas?
and driftc and(X, M) is a centered Brownian motion (in dimensidr- 1) whose covariance satisfies
the following: the covariance of is 02; E[M(t)X(t)] = ct. Thus the Girsanov formula then has the
following corollary: letY be a Brownian motion with covariance matdX and driftc, then

(M) is its bracket

E[F(Y([0.]))] = E[F (X([0.1))) O], (33)
for any timet, for any bounded continuous functi®honC([0,t],RY) and for any random proces
such thatX, M) is a centered Brownian motioX, has covariance? and the covariance ot andM
iSE[M(t)X(t)] = ct.

Applying the Girsanov formula to the proces3€8 andX*:©, we get that, for any,
- 2 —
E[F (" “([0.1]))] = E[F (X§(0,t])) ® 2 ®10), (34)
whereB is the martingale t
B(t) = [ 0“(X§(9)) ev-dve
and(B) is its bracket

/ |0°(X$(s)) e1|?ds.

In particular, in the rangﬁzt = a, we have

EIF (9((0.]))] = E[F(X@((0,1])) B~ B1G2)).

We shall need the following easy statement:
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Lemma 3.3 Forall o > 1andu > 1, we have

~ a 2 a
limsup E [e"AB(ﬂ)Hé(BMAz)} < 0o, (3.5)
A—0t——+o0;A2t=a

uniformly in .

Proof of (3.5) _
Assumption 3 on the ellipticity ci® implies that(B)(t) < k ~'t. Therefore

and (3.5) is thus proved. _ [ |

Next we apply a (joint) invariance principle for the proc€s§”®, B¢) whereX;”©(t) = eX(t/€?)
andBE(t) = eB(t/£?).

Let us recall some of the ideas of [13] and [4].

The process of the environment seen from the parti@e(t) = X§°(t).w);t > 0) is a Markov
process under the annealed law, with valueQinlt is not difficult to check that the measuggis
invariant, ergodic and reversible for this process (RdballVV = 0 for now!).

Given the state of the environment at times 0 &rshyw(0) andw(t), one retrieves the position
of the particle itself by solving the equatiarw(0) = w(t). Note that Assumptions 1 (eith¥ror a
is not constant) and 4 (independence property) imply theetikannot be more than one solution. It
also follows from the equalityX$’(t) — X5°(s)).w(s) = w(t) thatX{’(t) is an antisymmetric additive
functional of the procese)(-). (Antisymmetric means that reversing time amounts to cimanthe
signofX§’.)

The proces8 is also an additive functional @b(-) since it can be written as the difference

B0 B9 = e ) X§(9) - [ e B0 du
= e 00 - XE(9) - [ e blow)du,

see (2.4).

Sufficient conditions for invariance principles for addagtifunctionals of reversible Markov pro-
cesses that can be appliedd§ or B are given in [13] and [4]. They yield a joint invariance priple
for (X5"¢,BE).

In order to compute the covariance matrix note gft) is antisymmetric whereak e; - b(w(s))ds
is a symmetric functional of the environment. Thus they atkagonal under the annealed measure.
Therefore

JEBOXE 010 [ Elen X8 0) X 0]d.

and thus the asymptotic covarianceXyf’ (1) and BE(1) coincides with the asymptotic covariance
of X5”¥(1) andey - X, ¢(1) and equalse;.



Applying first the Girsanov formula and then the invarianoegple, we get that, for ang > 0,
asA — 0 andt — o with A%t = a, we have

AN w
/E{F(axé’ (%s);ogsglﬂd@
B A O AB(:%) % (B)()
_ /E{F(GXO(AZS),Ogsgl)e }d@
_)E[F (%N” 0<S§1) e\/EZ(l)‘%E(Z(l)Z)y (3.6)

whereF is a bounded continuous functional @0, 1], RY) and(N, Z) is a centered Brownian motion
of dimensiord + 1 with N havingZ as covariance matrix, af€{Z(t)N(t)] = Zejt. We refer to Lemma
3.3 for the full justification of the passing to the limit in.63. Using now formula (3.3), we have:

1 a 2 1
—_N(s5);0<s<1])eVZL-3BZWI| —E |F ([ —=N(s)+Ze;s;0<s<1]].
ElF( _aN(s),O_s_ )e 2 = (8)+2es;0<s<

We thus conclude that

E) [F (%X(%s);ogsg 1)} :/E

1
E|F| —=N(s)+Zgs;0<s<1)|,
)
i.e., whend?t = a, the law of((At) ~1X(ts); 0 < s< 1) underP} converges to the law Q%N(s) +
>e5;0<s<1).

To finish the proof of the Proposition, we need a priori bouodghe moments ofX(t)| under
P}. We shall prove in Lemma 4.5 that

maxix(s)P
limsup  E5® = R
A—=0t—+00:A2t=a APtP ’

uniformly in w and for allp > 1 and alla > 1. Therefore

maxX(s)?
limsup B} | = | <o, a7
A—=0t—4o:A2t=q APtP

forall p> 1 and alla > 1 and we observe that (3.7) together with the convergenckeofaiv of
((At)~IX(ts); 0 < s< 1) underP} to the law of(-LN(s) +Zess; 0 < s< 1) implies (3.1) and (3.2).

Ja
Indeed we have
max| X ( )|

s<t a 2
— __ —max —S
A2t2 s<1 |a (/\2 )
and therefore, with the notation above,
mgx\x(s)\z
oA E | max > 92
0 2212 - { |\/— (s)+Zes| ,
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where we used the functiof(w(s);0 <s<1) = m<alx|w(s)|2 and inequality (3.7) to justify the
s<
passing to the limit. Finally it is easy to check that

SupE N(s) +Zes?| < w.

max
a>1 | \/_
This last line ends the justification of (3.2). Equation §3slproved the same way using now the
functionF (w(s); 0 <s<1)=w(1).
The proof of Proposition 3.1 is now complete in the cdse 0. [ |
Proof of Proposition 3.1 in the case¥ 0

We do not assume anymore that= 0.
DefineY® andY?:© to be the solutions of the stochastic differential equation

dY©(t) = e V0 Wpe(y@(t)) dt+e VYD) g9 (YO (1)) dW; Y(0) =0, (38)
and
dyh o) = e VoA at)) di+ e Y D)% (vA (1)) A dt
e VIO oy A @)y dw; YA 9(0) = 0, (3.9)

so that the generators ¥f° andY*:© are the operators

}div(e‘sza“’Df)(x),

MPT(X) = 5

and
OF(x) = %e?\*div(e—z"“"awmf)(x),

whereVA:@(x) = V@(x) — A - .

Note that these operators are of the same for&sand.Z*© with V© being replaced by 0 and
a® being replaced by exp-2v®)a®. Thus we may apply the results obtained in the special case of
a vanishing potential to the proces¥#$andY*:©, in particularY® satisfies the invariance principle
with some asymptotic diffusivity¥ andY?- @ satisfies:

YA o(t)
At

lim / E
A—=0it—+40:A%t=a.JQ

]d@:ZYel, (3.10)

and
max|Y?- @ (s)|2

sup limsup El =t 55 }d@ < 00, (3.11)
a>1) 0 t—4o0: A 2t=a 7/ Q At

-/ L Ve gg_ / LV (r9.0) g
0 0

10
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ThenX& has the same law as the time changed pro¢&gsA®) —1). Similarly, if we let
o) = [fe 2 S g
0

thenX?"® has the same law as the time changed proe&s¥((A*@)-1),
From Assumption 3, we know th&tis bounded and therefore

AO(t) > o, (3.12)

for some constart < 1. Observe that (3.2) immediately follows from (3.12) and (3.

Proof of (3.1)
v=/d@(w)e @

Let
The ergodic theorem for the proceg¥.w implies thatA®(t) /t almost surely converges o We
need a similar statement fa¢ ©:

Lemma 3.4 For fixeda > 0 and any positive), we haveQ-a.s.

A)\w
e

-0, (3.13)

VS

forA —0,t— 40, A%t =qa

Proof of Lemma 3.4
Use the Girsanov formula (3.4) to see that

P‘AAw —y‘>n]_E{1()Aw —y)>nef\B 2>(t)].

The convergence in (3.13) then follows from Holder’s inakify, the bound in Lemma 3.3 and the
fact thatP[| —y|>n]—0. n
Back to the proof of (3.1), we start with the equality

) {xm} B /Q - [YW(AW)*@))] 40,

At At
kE

- max  [YA@(s) YA @(t/y)]

We have

At

YA @AM @) L(t)) YA @(t/y)
At ]dQ_/QE[ ]d@’

|s—t/yi<nt

< fe e
-rggXIY“’(SN
S: C _

+ | E|FE ) )ty > ny |4

= |+l
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(cis the same constant as in (3.12). Note thaty.)
By the Markov property, we have

max [YA ©(s)|

| <2/ [s<2”t ]d@.

Now (3.11) implies that, if we lek tend to 0 and then tend to O, then the contribution of | vanishes.
Holder’s inequality, (3.11) again and Lemma 3.4 imply tHat anyn > 0, then Il also converges to
0 ast tends to+. We conclude that

o o
A—05t—+o0;A%t=a /Q

At At
and, using (3.10),

lim Eé{@} _lsve

A—0;t—=+o0o;A2t=a At y

The last piece of information missing is the equality= yZ. It comes as follows: sincéffY‘”(t)

converges in law to a Gaussian random variable with coveeiah and sincetlA‘”(t) almost surely
converges toy then L. XO‘*’( ) =1 Y‘*’((A‘*’) L(t)) converges in law to a Gaussian random variable

with covariances = %,ZY. n

4 A priori estimates

In this section, we prove some a priori estimates on exitdithat quantify the fact that the process
X% @ s transient in the directiog;.

For a given realization of the environment, the local driftte procesX® equalsh®(X“(t)). Its
mean under the annealed law vanishes. The driXbf° has an extra® (X" ©(t )))\ term. Since,
by Assumption 3 (uniform ellipticity), we hava - a®(x)e; > K |e1|? # 0 for anyw andx, one would
expectX"v‘” to be transient in the directiag®, and this turns out to be the case, but we also need more
guantitative statements on the tendency of the diffusiagoton the directiore;.

Roughly speaking, we may think ef - X* “(t) as the sum of a centered term of ordér and
a drift term of orderAt. Thus the shortest scale on which we may hope the drift terdoinate
is A%t > 1 or, in terms of space scalg]. > 1. Up to the value of the constarks, ko, ¢ andC, our
estimates in Lemma 4.1 and Lemma 4.2 are therefore optimal.

In the following Lemmata, inequalities (4.1) and (4.2) hoilge for any environmenw satisfying
Assumptions 2 and 3. Assumptions 1 and 4 are not relevanisséction.

We useT. = inf{t : e;- X(t) = L} to denote the hitting time of the hyperplafe: e; -x = L},
LeR.

Lemma 4.1 There exists constants> 0 and k1 > 0 that depend on the dimension, the ellipticity
constant and the [’ bound onV such that for all LA < 1 and for any environmerb,

P ©[T | < oo <ce kAL, (4.1)
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Lemma 4.2 There exists constants C argl> 0 that depend on the dimension, the ellipticity constant
k and the I bound on V such that for all LA < 1,t > 0 and for any environmenb,

PO[T. > 1] < Ce kAL (4.2)

Proof of Lemma 4.1
Letu(X) = Uy ¢ (X) := P;\"*’[TL < T_L]. Then,u solves the elliptic boundary value problem

LMOux) =0, —L<e-x<L, (4.3)
where the generata?} © was defined in (2.8), with boundary values
ux)=0ife-x=—-Landu(x)=1ife-x=L. (4.4
We first need the following Lemma, whose proof is deferred.

Lemma 4.3 Assumel = 1 and u is the solution of the boundary value problem aboven;Ttieder
Assumption 3, there existg & 0 depending only or and on the dimension, such that for alb.Lg
and all w,

u(x) > 2

3 for all x with e; - x=0. (4.5)

Let X(t) = AX (%) ,t>0. Then,(X(t));=0 is a Markov process with generator

LHOf(x) = %eZVwWM div(e” XM a®(x/A) OF)(X) + a®(x/A ey - OF(x)

(The advantage qﬁ(t))tzo is that we scaled away the drift and we will be able to apply . 3).
Let us consider exit times fdX(t))t>o.

To=inf{t e X(t)=L}, T =inf{t:e-X(t)=—L}
and N N
T =inf{t : er- X(t)|=L}.
Then, N
P(’)\"*’[T,L < o] = Péhw[Tf)\L < o]

Hence, it suffices to show that for alll L, , we haveP) “[T_, < o] < ce AL which in turn
is equivalent to
Pé"*’[T,L < o] < ce kit (4.6)

forall A,L,w. LetLo be as in Lemma 4.3. We consider the embedded random walk dedme
follows. Letts := Ty, tipa =inf{t >t : |er- (X(t) — X(tj))| = Lo} andS§ =X%;,i =1,2,..., (and
S = 0). Due to Lemma 4.3 and the strong Markov propertyXft) )i >0, we have

2
P(j\’w[5+1=3+|—0] > 3

13



Hence we can couplE§)i—g.12.... with a standard random walk with driqa_)i:o,l,z,_._ on LoZ with
iid increments, satisfyin@[S+1 =S+ Lo| = % =1-P[S,1 =S —Lg] and the coupling is such that
S > § for all i. Explicit calculation yields
— . 1
P[S > —mLg, Vi|=1— om’
and we obtain

. 1
P “[S > —mlo, Vi] > 1— S
which implies (4.6). [ |

Proof of Lemma 4.2

Inequality (4.2) is equivalent to the following statemamtérms of()N((t))tzo: There exist constants
C andk» > 0 that depend on the dimension, the ellipticity constamind theL* bound onV such
that for allL andt and for any environmernb,

Py [TL > t] < Ce ettt (4.7)

Indeed, note thal,, = AZT,.
TakelLg as in Lemma 4.3. Then Aronson’s estimate (see [1]) yieldsftraall x € M, ;= {x:
—Lo <er-x< Lo},
P “ller-X(1)] > Lo = v>0, (4.8)

wherey only depends ohg, k and the dimension. Indeed, according to [1], the fundanhentation
Z(x,y,t) of the parabolic operator

o —div(a(x)0) —a(x)er - O

(or, equivalently, transition probability density of thercesponding diffusion) satisfies the lower
bound
‘@(vaa l) > keXF(_K|X_Y|2)

with constantk > 0 andK > 0 which only depend or andd. The estimate (4.8) is an immediate
consequence of this lower bound. Due to the Markov propdriXét)):>o, estimate (4.8) implies
that for some constag (which depends only obg, k and the dimension),

~ 1
R [Tty > 0] < 72, (4.9)
15
for all x € My,. Define the stopping timeas follows:
T:=inf{t > 0:|ey- (X(t) —X(0))| = Lo} Ago.
Combining (4.9) with Lemma 4.3, we obtain
~ 3
P [el' X({) =er- X+Lo} =

(with probability at least}g, the layer{y: |e;- y— €1 - x| < Lo} has been left by timep, and with
probability at Ieas%, the exit happens afy: e;-y=e1- X+ Lo}). We consider the embedded
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random walk defined as follows. Lat:=1t,ti,1 =to 6 +t, S =€ - )~((t.) i=1,2,...andS =0.
(Here 6 denotes the shift operator on path space). Hence we caneo@iplo.q 2. with a standard
random walk with drlft(3)|_o7172 onLoZ with i.i.d. increments, satlsfylnB[S+1 =S+Lg =
1-P[S;1 =S —Lo] and the coupllng is such thgt> S for all i. It is straightforward to check that
there are constanits > 0 andc > 0 such that for alh € N andL € R,

P[S) < LLo] < ce ML
We conclude, by comparison, that we have foladl R andn € N
Py “[TiLo > ngo] < Py “[Sh < LLo] < P[S, < LLo] < ce ™ML,

and this implies (4.7). ]

Proof of Lemma 4.3.
Without loss of generality we can assume tWat 0. Indeed, multiplying (4.3) by eXp-2V(x))
and denotin@(x) = exp(—2V ®(x))a®(x) one can rewrite equations (4.3)—(4.4) in the form

div(a(x)Ou) +a(x)e; - Ou=0 inM, (4.10)

u(—L,z) =0, u(L,z) = 1.

with x = (xg,2) andM =M. = {x e RY : —L < x; < L}. Under Assumption 3 the matrix(x) is
symmetric and satisfies the following elliptic estimates

Kly?<axy-y<k 'y?  vxyeR% (4.11)
Therefore, it suffices to prove the following statement.
Lemma 4.4 There is lg = Lo(k,d) such that for all L> Lo, we have
u(0,2) >2/3, zeRIL

Proof of Lemma 4.4
Suppose thai(0,2) < 2/3 for somez € R4-1 and somé.. Without loss of generality we assume that
z= 0. The function % u(x) is a non-negative solution of the equation

div(a(x)O(1—u)) +a(x)e; - 0(1—u) =0,

therefore, by the Harnack inequality (see, for instandg)) [there is a constai@ = C(k, d) such that

1-u(0,2) >C(k,d)(1—u(0)) > =C(k,d),  ze[-1,1]9.

Wl

For allze [—1,1]9 this implies the estimate




N L
< L/ |0u(x1,2)2dx < L / €| 0u(xy, 2)|%dxy, (4.12)
0 —L
where we used Jensen’s inequality for the second inequlitggrating ovef—1,1]9-1, we obtain

L
/ dx, / &1 0u(xq, 2)|2dz> %Cl(K,d), (4.13)
Lyt

with a constan€;(k,d) > 0 which only depends ok andd. For arbitrary set& C N and functions
v(X), we write& (v, G) for the energy off on G:

£(v,G) = / 1a(x)0v(x) - Ov(x) dx.
G
Hence, (4.13) can be rewritten, setti®g = [—L,L] x [—1,1]9"1, as follows:
£(1.Go) > TCi(K.d). (4.14)

(The value ofC; (k, d) changes from equation (4.13) to equation (4.14).) We wik@in upper bound
for &(u,Gp) which contradicts (4.14) whenis too large. We introduce the following subset$bf

Bo=[—e/9 et Mo=[-L L] xBy,

Bj=2Bp=21[-€&/d /%" mj=[-LLxB,

Also, denote

1, if xg > —-L+1,
X+L, if —L<x1<-L+1

0(x) = () = {

and, writing agairx = (xi,2),

[ A-d@ue+di@ax,  ifdi@) <1,
Vit = u(x), otherwise

where _
dj(z) = 2"t te Y distya 1 (2, 0B),  j=0,1,...,2d.

Note thatvj = uiin the domair1j, 1. Sincevp = uondllg, we know that
&(u,Mp) < &(vo,Mp) .

Indeed, the functiona{&(v,Mg) : v € Hl(l'lo),v]m_IO = U‘ano} attains its minimum at the unique
solution of the equation
div(a(x)0v) +a(x)eiv=0 inMo,  V|yn =l .

Clearly, the functioru solves this equation, and the required inequality follows.
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Forx € Mg\ N1 we have
e1a(x)Ovo(X) - Ovp(X)

= e"a(x){(1—do(x))Ou(X) 4 do(x) DU(x) }-{ (1 — do(X)) u(X) 4 do(x) DU(X) }
+2€%a(x) (Odo(X)) (@1X) — u(x)) - { (1~ do(x))DU(X) + do(x)ITTX)}
+€4a(x) (Odo(X)) (1) — (X)) - (Odo(¥)) (@) — u(x))
Using the convexity of the scalar product, this is
< (1—do(x))€%a(x)Du(x) - Du(x) + do(x)€a(x) Odu(x) - Ou(x)
+2€4k~*|0do(¥)] |U(x) — u(x)| (|Du(x)| + |OU(x)])
+ea(x) (Odo(X)) (U(X) — u(x)) - (Bdo(x)) (u(x) — u(x))-

Forx e My, we have
ea(x) Ovp(X) - Dvp(x) = €a(x)0u(x) - Ou(x).

After integrating the former inequality ov€ly \ M, and the latter ovelrl;, and summing up, we get
&(u,Mo) < &(Vo,Mo) < &(u,Mo\ Ma) +&(U,Mo)
axte /[ - u(ol (|0up)]| + 00T o
Mo\M1

+4KLe2/d / €1 (u(x) — u(x))?dx
Mo\My

After simple rearrangements this yields, using Holdereguality,

&(u,My) < &(T, M) + 4k Le 2/d / e (u

Mo\M1
~1,-L/d L 2\ /2 2 ) 1/2
ik te (/ex(u(x)—u(x)) dx) (/eX(|Du(x)| +|0u()2)dx) (4.15)
Mo\My Mo\My

Our next aim is to estimate the integrals on the right-hadd sf the last inequality in terms of the
energies ofi andu.
First, we estimate

/ &((U(X) — u(x))2dx < / & (u(x) — 1)2dx+ / &(1— u(x)2dx
Mo\M1 Mo\My Mo\My

Since(u—1) =0 for x; =L, we have

(u(x) —1) /a (y.z dy <2L/\Du y,2)|4dy,

X1
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where we used Jensen'’s inequality. Multiplying this boup@h and integrating over the sBip\ M1,
we obtain

L
/ &4 (1—u(x))%dx < / eXlZL/\Du(y,z)\zdydx

Mo\My Mo\My X1

/ ZL/Lé’|Du(y,z)|2dydz

Mo\M1 X1
42 / €| Ou(x)|%dx (4.16)
Mo\M1

Similarly, taking into account that£ 1 only forx; < —L + 1, we obtain

IA

IA

/ &1(1— (X)) 2dx < / 1dx< (e—1)29 1 Leld-DL/d _ gie b,
Mo\My Mo\M1N{x;<—L+1}
whereay = (e— 1)29-1. Combining the latter bound with (4.16) yields
/ E1((U(X) —u(x)2dx < age §+4L2 / &1 Tu(x) 2dx
Mo\My Mo\My
< age d 4412 ! / e“a(x)0u(x) - Du(x)dx
) Mo\My
= aqe d -|-4L2K_1E(u, |_|0\ |_|1) (4.17)

In the same way, usin@lu(x)| = 14, <413, for the last integral on the right-hand side of (4.15) we
have

/ &4(|0U(X) |+ |Du(x)[2) dx < age™ 3 + A~E(u, Mo\ My) (4.18)
Mo\My
The following bound for&’(u, M) is straightforward:
£(@Mg) < K‘l/e?‘l|DJ(x)|2dx§ Kk lage t.
Mo
From (4.15), (4.17), (4.18) and the last bound, we derivertbguality
UMy < k lage a4k te 2/ (age d +4L2% 16 (u, Mo\ My))
1/2
+4k " Le~L/d (adeﬁ + 412k 1&(u, Mg\ I'I1)> /
1/2
.(ade*%“*lg(u,no\nl)) /
< Cea(e 841298 (U, Mo\ My)) <Cyale @+ 1% Y98 (u,Mg)) (4.19)

Let us now estimate the energifu, Mo). To this end we denotd(r,x) = x+ [—r,r]9, and notice that,
by the standard elliptic estimates (see [10]),

10Ul L2((1,9nm) < Calk, d)[[Ull 2 2xnm) < Ca(k,d)
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with a constanC;(k,d) which depends only or and the dimension. This implies the bound
£(u,Mo) < Ca(k,d)e-ed"Id — cy(k, d)el2d-DL/d,

Together with (4.19) this gives

&(u,My) < Cs(k,d)L%e2d-2L/d, (4.20)
In exactly the same way as (4.19), we obtain (fér> Cs(k, d))

£(u,My) < Cs(k,d) (L2 -/IE(u,My) + e d) < Cs(k, d)Le2I-31L/d.
Iterating this procedured2times we finally get
&(u,Mag) < Cs(k,d) (LY 2e7/d 4 ed) < Cs(k, d)L4e /9,
If L is sufficiently large, then this estimate implies the bound
&(u,Myg) < e/, (4.21)

Clearly, for all sufficiently large. we have[—L, L] x [-1,+1]9"1 C M4, and (4.21) contradicts the
lower bound (4.14). We conclude that theré gssuch that for alL > Lo, we have

2
u02 >3,  Vze RI-1,
Our arguments also ensure that the condtgmtepends only or andd. This completes the prooa

Lemma 4.5 For any p> 1 there exists a constantg@hat depends only on p, the dimension, the
ellipticity constantk and the I bound on V, such that for ah < 1 and t> 1/A? and for any
environmentw,

E)* [ max|X(s)[P] < CoAPtP. (4.22)

0<s<t

Proof
First assume that = 0. Letting)?(t) =AX (#) ,t >0, we reduce (4.22) to the following in-
equality: for allt > 1 and for allA <1,

Ey [ max|X(s)|P] < CotP. (4.23)

DenoteT, = inf{s>0 : |X(s)| =r}.
We now rely on Aronson’s lower bound for the Green functidix, y, t) of the parabolic problem

20U —div(a(x)OU) —a(x)e;-0OU =0, U }‘X‘:l =0.
According to [1], Theorems 8 and 9, fox 1 andx with x| < 1/2 we have
G (x,y,t) > kt” 2 exp(—K|x—y[*/t)
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with constantk > 0 andK > 0 which only depend or andd. This implies the bound
P “M>1>8>0

which, in turn, yields B
E)“le ] <1-g (4.24)
for somegp > 0 which only depends ok andd.
We have °
Aw v —1pA, W F
E) X P:/ PIpt @I <t]dr =
o " [max|X(s)|P] = | proT R [Tr <t]dr
:/ pr"*lP(?"*’[ejr Ze‘]drget/ prp’lEé’“’[e’ff]dr
0 0

Considering the inequality

Y

fr Zf1+f109f1+f1091-2+.“+:|:10eﬂr,u

by the Markov property and (4.24), for alK 1 we have

E)*“ max|X(s)[P] < e‘/ prp‘lE{)\’“’[e‘ﬁ]dr < e/ prP~1(1—g)"ldr < C(p, k,d).
0 0

0<s<t

Using Jensen’s inequality and the Markov property againafid > 1 we obtain

A, v3 Pl <
B[ max|[X(s)|P] <

< E)"“[( max|X(s)| + max |X(s) = X(1)|+...+ max [X(s) - X([t]))"]

0<s<1 1<s<2 [t]<s<t

< (t+1)p*1(E6\"”[ max |X(s)|P] +EY [ max|X(s) — X(1)|P]

0<s<1 1<s<2

+ ...+Eé"‘*’[ max \X(S)—X(Ump})

|t] <s<t

<C(p,k,d)(t+1)P <Ci(p,,d)tP.

Recalling the definition oK, we see that this is equivalent to (4.22). Hence the procdiispiete in
the cas&/ = 0.

To extend the statement to the case 0, we use the time change arguments from the last part of
the proof of Proposition 3.1. We observe that as invthe 0 case, the proce¥®d© satisfies estimate
(4.22), and due to (3.12), a similar bound also holds for tieegssx?©. This completes the proof
of the Lemma. ]

Lemma 4.5 implies the following bound on the effective drift

[£(A)] < CoA. (4.25)
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5 Renewal structure

As already mentioned in the introductio,satisfies a Law of Large Numbers und#y. The next
Proposition is a quantitative version of this convergence.

Proposition 5.1

lim limsup
O=F® ) 50t t0:A2t=a

E} {%)} —@‘:o. (5.1)

The proof of Proposition 5.1 is based on a renewal argumeateMrecisely, (5.1) follows if we
can construct a renewal structure such that the intervald®st two successive renewal times is of
order 1/A2,

Our definition of regeneration times is a variant of that i&][@here the construction depends on
A, whereas in [25] was fixed.

We shall also heavily rely on the PDE estimates proved in tBeipus section of the paper.

The first issue we have to address is to check that the appdesetoped in [25] applies to our
model and does yield the Law of Large Numbers. Besides in tbeff Proposition 5.1 we need
sharp estimates on the regeneration times.

5.1 Construction of regeneration times

We recall thatd is chosen small enough. In particular, we assume%thaimuch larger than the range
Rin Assumption 4. We shall also need a constantl chosen so thate <! < % wherec andk; are
the constants appearing in Lemma 4.1.

We setR(A) = /'\— We now follow the construction of [25], replacim)in his construction with
R(A). For details of this construction, proofs (and for pictyrege refer to [25]. We first have to
enlarge the probability space by adding an auxiliary seqe€¥i)x>o of i.i.d. Bernoulli random
variables. Denot®g(x) the ball with centex and radiusR. LetU* := Bgg))(X+5R(A)ey1), B :=
Br)(X+9R(A)e1), and let

Texitux = inf{s>0:X(s) ¢ U} (5.2)

be the exit time fronU*. We consider the corresponding transition denpity, ux(s,X,y) which is
defined byP)(\"*’[X(s) € G, Texitux > 8§ = [ Pa wux(S X, y)dy, for all open set& C U*. We will need
G

the following bound for this transition density.

Lemma 5.2 There is somé > 0 (depending on Vg and d) such that

Pr.oux(1/AZxy) > ,forallx e RY ye BXandA < 1. (5.3)

Br)|

Proof

Again we begin with the casé = 0. After rescaling /A2 —t, (x/A,y/A) — (x,y) the required
bound is an immediate consequence of Theorems 8,9 in [1].

If V #£ 0, then the desired lower bound is an immediate consequéice fmllowing statement:
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Lemma 5.3 Let a functionp(x) and a symmetric matriaij (x) } satisfy the estimates
%Spﬁ%il, %Igagjfll, x>0,
and denote by &t, x,y) a solution to the following parabolic problem

P(X)AGa(t,x,y) —divy (a(x)0xGa(t,X,y)) =0,

(5.4)
GB’ O, GB(O7X7y) = 6(X_y>

XcdB

with B being an open ball centered at the origin, and . Then for any ball B such thatBy C B,
the following inequality holds
Gg(1,x,0) >C for x € By, (5.5)

with a constant C which only depends end, B and B.

As inthe cas® = 0 the estimate (5.3) can be obtained from (5.5) by scafing — t, (x/A,y/A) —
(X,Y)-
Proof of Lemma 5.3Enlarging if necessary the b we assume without loss of generality, tBgt

contains the origin.
Consider an auxiliary spectral problemBn

—div(a(x)OW(x)) = p(x)v¥(x), W,z =0.

By means of the minimax principle one can check that the paleigenvalue/; satisfies the estimate
0 < v1 < Cy. The principal eigenfunctio¥; is known to be positive iB. Assuming the normalization

/Wl(x)dx: 1,
B
by the Harnack inequality and Holder continuity arguméeése [10]) we conclude that
qu(X) < C2 in B7 LP].(X) > C3 in BO7 (56)

where the constar@@; andC, depend only one, d andB, andCs also depends oBy. Clearly, the
functione™V1'W; (x) solves problem (5.4) with the initial conditidH;. Therefore,

e /2 (x) = [ Ga(1/2.0y)Wa(y)dy

Making use of (5.6) and the upper bound farwe derive the inequality

/ Gg(1/2,0,y)dy> Cq.
B

Considering the symmetry of the operator with respect towlkehted measur@dx, we have
p(X)Gg(t,Xx,y) = p(y)Gg(t,Y,X). It readily follows from the results of [11] that the funati®(1/2,y,0)
satisfies the upper bourtgs(1/2,y,0) < Cs in B with a constan€s which only depends or andd.
Consequently, there is a smaller bjl centered at the origif3; C B, such that

Gg(1/2,y,0)dy> Cy4/2,
B1
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the radius oB; depends only oB, kK andd. This yields

yeB;

Without loss of generality we suppose tiBatC B;.

According to [11, Theorem 1-5], the functiddg(1,y,0) satisfies the following version of the
Harnack inequality irB;:

inf Gg(1,y,0) > C7(s¢,d) supGg(1/2,y,0).
yeBy yeB,

This estimate combined with (5.7) yields (5.5). This congsehe proof of Lemmata 5.3 and 5.4.

Due to (5.3), we can give the following coupling constructidet (.#1);>0 be the filtration gen-
erated by(X(t))t>0 and-m = o(Yo, ..., Ym).
We denoted?) the rescaled shift operator defined by

O ((X(8)s20) = (X(A "?mM+5))ss0.

These shift operato), mc N, are extended in the obvious wadf, ((X(S))s>0, (Yk)k=0) = ((X(A ~2m+
$))s>0, (Ymk)i-0)-

Proposition 5.4 There exists, for every, w and x, a probability measur& ' on the enlarged
probability space such that, with from (5.3),

(i) The law of (X (t))i>0 underB?is B'?, and the sequend®y)k>o is a sequence of i.i.d. Bernoulli
variables with success probabiliﬁ/underﬁ)é\’“’.

(ii) Under I3)2\"”, (Yn)n=m is independent of?) -2,,, X .“m_1, and conditioned 00% ) 2, X .%m, X o Gr’r‘]
has the same law as X und@i‘(’;’,zmwm, whereP};” denotes the conditioned I “[-|Yo = y], (for

y€{0,1}).
(iii) P};“-almost surely, Xt) € UX for t € [0, A~ and the distribution of XA ~2) underP; is the
uniform distribution on B.

We refer to [25] for the proof.

We will now introduce random timels, € A ~2Z* for which Y2y, = 1 and for which the process
(e1- X(t))r>0 essentially reaches a local maximum (within a variatioR@¥)). The first regeneration
time 11 will be the first timeN, +A 2,k > 1 such thate; - X(t))i>0 never goes belowe; - X (N +
A~2) —R(A) afterNg+ A 2. In order to define\y, we will first consider stopping times, € A —2Z*
which are essentially the times whég - X(t))¢>0 reaches local maxima (also within a variation of
R(2)). Then,Ny will be the firstN with Y, 5, = 1.

Let

M(t) :=sup{er- (X(s) —X(0)):0<s<t} (5.8)

Fora > 0, define the stopping tim&4 (a),k > 1, as follows. Recall thaf, = inf{t : e1- X(t) =L},
and define

Ala) - Ao -
Vo (@) i=Th-1a, Vira(@):=T,

MV @1,)+R() K21 (5.9)

23



here and later ofir], stands for the mifn € A =2Z : r < n}. Then

~ : R(A
N7 (a) :=infq V2 ()], 1 k>0, sup ’el- (X(s) —X(VQ(a)))’ < % . (5.10)
se[V¢ (a).[V¢ (@)11]
Niya(8) = Ng (BAR(A)) 0 By o + NG (8), k=1, (5.11)
N2 (a) = inf {NQ (8) k> 1Yo () = 1} , (5.12)

(we will see later thafN (a) < , for all k). The random times 2N} (a) are integer-valued and
sup er- (X(s) —X(Né(a))) < R(A). We next define random timé&}, J; andR; as follows.

s<N} (a)

Rl :=[3]y =S +Do8),, (5.13)

S =N}BARA) +A2 3 =S +T )00 heg)

A28

where
D:= I_T—R()\)-I)\ . (514)

Now we proceed recursively:
NE 1= RE+NT (@) 0 By with = A (M(RY) — 1~ (X(RE) ~X(0) +R(A))  (5.15)
and
Sﬁﬂ = NI?+1+)‘ 2, ‘]Ii‘+1 = $2+1+TR()\) © ;232+17 Rﬁﬂ = Uli‘ﬂh = S:<\+1+ Do 9?2$é+1'

Note that for allk, the. 7t x .%)2p), - stopping times\ 2N}, A2S} andA?R} are integer-valued (the
value+ is possible). By definition, we have? <N} <S} <J} <R} <N} < <3 <R} <
N2 ... < 0. The first regeneration timg is defined as

1 :=inf{S:F <o, R =} <. (5.16)

By definition, A%t is integer-valued and; > 2A 2 (sinceN; > A~2). We see that on the event
T1 < o it holds

er-X(s)<er-X(i—A2)+RA) <er-X(11) —7RA), fors<1—A"2 P}?_as,

see also Proposition 5.4, i.€X(S))s<r, -2 remains in the halfspacg € RI: e -z<e; - X(11)—
7R(A)}. On the other hand, since the procéss X(t))i>0 never goes below; - X(11) — R(A) after
11, B} ?-a.s.,(X (1) )t> 7, remains in the halfspadg e R : ;- 2> e - X(11) — R(A)}.

In [25], it is proved thatr; < o if and only if the process is transient in directien More
precisely, define the annealed law

PAIA] = / dQ(w) / AP (W) La(w,W). (5.17)
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Proposition 5.5 The following statements are equivalent:
(i) 11 < 0, P}-a.s.

(ii) e1- X(t) — o0, P}-a.s.

(iii) PA[D = ] > 0.

For the proof, we refer to [25], Lemma 2.3 and Proposition Rater on we will need stronger results
than those of Proposition 5.5 involving sharp boundspasA — O.

We setrg = 0 for convenience. The next theorem (Theorem 2.5 in [25Bgthe renewal structure
which is crucial to establish (for fixed values of the Law of Large Numbers and the Central Limit
Theorem.

Theorem 5.6 Assume thatr; < ©, P3-a.s. Then, under the measu?%, the random variables
Z = (X((tk+1) A (Tipr — A 72)) = X(T) )0, X (Tk1) — X(Tk), Tey1 — Tk) .k > O are independent.
Furthermore, the random variableg & > 1, are i.i.d. underIP’é and have the same law ag dnder
PA[-|D = o).

Note that the renewal structure is proved for the trajeckatyveen the times, and i, 1 — A 2,
but we have a good control over the trajectory between thestig.1 — A2 and 1,1 : since
Yi2g,,—1 = 1, thenX(s) € UXTk+1*1/A2, for all s € [t 1 — A 2, Txyq), i.€. the trajectory remains in
a ball of radius R(A).

Let

K=inf{k>1: < andR} =w}. (5.18)

Thenty = §}. The pointsX(S}), X(S}), ... areladder pointsof the process. The idea of such
a decomposition of the path goes back to [14] and was firsetugifective for multi-dimensional
random walks in random environments in [28].

Lemma 5.7 The following statements hold:

(i) S} is P)-almost surely finite and, for all k,)Ss P-almost surely finite on the evend R < oo.
(i) 1 is I@é almost surely finite for all k> 1.
(iiiy BA[1 < oo for all k > 1.

Proof Part (i). Due to Lemma 4.2\/k)‘ (a) < oo, I@Q -a.s for allk and allx. We have (as in Lemma
5.2 this is a consequence of the Aronson-Nash lower bourrdfiédoGreen function of a parabolic
equation)

PRSP R(A) ~
inf inf infP}“ | max |e;-X(s)| < ——2| =8 >0, 5.19

A<ixeRd @ % sgl/AZ'el (9= 2 (5.19)
and this implies thaﬁli‘ (a) < oo forall a, k, I@Q-a.s for allx. Due to Proposition 5.4, we conclude that
N{ (a) < o for all a, k, P} -a.s for allx.

Part (ii). It follows from Lemma 4.1 that under proper chouwfel in the definition ofR(A), the
following bound holds

PAK =1 =P[R =] >1—ce ! > =, (5.20)

NI =
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Lemma 4.1 and the Markov property applied at ti&j@l also imply that

~ 1
PG[RQ+1:°°|RQ < oo > >
Thus we get that R
Py[K > k] < 27k+1 (5.21)

and R
Py K = 00] =0.

Together with part (i), this implies part (ii).
We now turn to part (iii). The next lemma gives a bound for guedf the random variable;, which
will be sufficient to guarantee that has finite expectation und@é.
Lemma 5.8 There exist constantg c- 0 and ¢ > 0 such that

forall A <landt>0, PA[1i>A 2] <cae % (5.22)
The same tail bound holds for the differencgs; — 1 for all k > 1:

forall A <landt>0, P}[T1—Tc>A 2] <cae . (5.23)

Proof of Lemma 5.8It suffices to show (5.22). Then, (5.23) follows since

~

Py Tiir— T > A 2] =P)[11> A %t|D = oo

(see Theorem 5.6) an@g\) [D = oo] > % see (5.20). To show (5.22), we claim that the following
stronger statement holds: There exist constefits 0 andcs > 0 such that for alh <1,t > 0 and
all w,

P91 > A% < cge %t (5.24)

Since one can follow the proof of Corollary 4.10 in [25], wegbnly a sketch of the proof of (5.24).
Step 1(corresponds to Proposition 4.7 in [25]). Recall (5.8). fEhexists a constamg > 0 such that

sgpégw [exp(csAer - M(T_ga))) LT gy < ®)] < 0. (5.25)

Proof of (5.25): Due to Lemma 4.5 “[Ae; - M(T_gr)) > t, T_rr) < ©] < ce ¥l and this
implies (5.25).
Step 2Follow the proof of Theorem 4.9 in [25] to obtain that ther@isonstantg > 0 such that for
allA <1,
SUPES " [exp(CA ey - Xy, )] < oo. (5.26)
w

Step 3Taket > % andu = %t whereks is the constant from Lemma 4.2. Then,

Pt = A2 <R “Im> A e Xy <A 'u—3R()]+ Ry “er-Xn > A~ u—3R()].
(5.27)
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Due to Step 2, the second term on the r.h.s. of (5.2%) & " for somec; > 0. Turning to the first
termin (5.27), note that since
supe; - (Xs— Xr;) < 3R(A),

s<mq
X X PA, W -2 -1 P)\,w
see the definition df * andB* before (5.2) Py ™ [11 > A ~t,€1- X, <A 7"u—3R(A)] < (Ty-14>
A?t] < Ce KU where the last inequality comes from Lemma 4.2. ]

As mentloned before, the regeneration structure impli@sveof large numbers for fixed.

Proposition 5.9 We have, for each > 0,

X(t) _ B [X(12) = X(1)

lim 7 PA-as. 5.28
t—oo t Eé [TZ o .[1] 0 ( )

As a consequence, R R
E} [X(12) = X(11)] = B [T2— 1] £(M). (5.29)

Proof
Theorem 5.6 implies, with the ergodic Theorem, th&éf [T2 — 11] is finite, then I|m () exists,

IP’A -a.s. and (5.28) holds true. Once again, we refer to [25]Herdetails. |

5.2 Estimates on the regeneration times
We now show that undeﬁ"é, 171 andt, — 11 are of orderA ~2. More precisely,

Lemma 5.10 We have

limsupA*EQ[17] <o and  limsup\*EQ [ (12— 11)?] < . (5.30)
A—0 A—=0

As a consequence,

limsupA?E}[11) <o and limsup\?E)[ 1o — 1] < oo, (5.31)

A—0 A—=0
and
TAT 2
T T

IimsupA/\O[ L <o and IlmsupM <o, (5.32)

A—0 Ef[11)? A0 EJ[T2—T1)?
Proof

Observe that (5.31) directly follows from (5.30) and Hatdenequality.
To deduce (5.32) from (5.30) it suffices to prove a lower boumlﬂé [T1] (orEé [ 12— T1], respec-
tively) of the orderA —2. But note that, since; > Ti/x, we have

AMEY 1] > Py [1a > A > P [T > A7,

We next use the Girsanov formula (3.4):

1

=Y, 22
PS[T'/A =2 :/E[l(TI/)\ ZA_Z)eAB(A%)__ (32) 1dQ.
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Thus the invariance principle implies that this last qugritias a positive limit: namely it con-
verges tcE[1(Ty > 1)eZ*%E(ZZ)] , whereZ is some Gaussian random variable 8n the hitting time
of levell by some Brownian motion. This last expectation cannot bel& Jame argument applies
to 12— 13.

Proof of (5.30): due to (5.22), we ha@%[rf >tA4 = I@é[rl > ViA 2 < cae ®VE In the
same way, due to (5.23), we ha@é[ (h—T1)2>tA 4 < cze~%vE and (5.30) follows. [

We can now show the corresponding bounds for the regenemistances.

Lemma 5.11 We have

limsupA 2B [|X(11)[?] < o (5.33)
A—0
and R
limsupA 2B [|X(12) — X(11)[?] < . (5.34)
A—0

We note for further reference that, as a consequence of)(&r®B(5.34),

(. ~
supgllmsup)\zEé [[X (1) |?] < oo. (5.35)
k A—0
Moreover, note that due to (4.25),
A
Iimsupw( ) < 0o, (5.36)
A—0 A

(This also follows from (5.34) together with (5.29), (5.8a) (5.32)).
Proof of Lemma 5.11To show (5.33), note that

X(11)%1(k < A%11 < k+1)]

M s
=)
(@]

Ej [X(1)?] =

=~

8l

IA
o
&=
o

max |[X(t)|21(k < A?T }
tg(k+1)/)\2| (O] Lk < A1)

max |[X(t)|* PA [A21; > K
z < °Ls<k+1)/ﬂ‘ ()‘D (FpuzK)

2 1/2
5 for s

for some constartdg > 0, where we used (4.22) and (5.22). Now, (5.34) follows frén38), since

il
g ©

=
S

N

A
N
M e TM

1
o

E} [|X(12) = X(12)[?] = Bg [|X(12)[?|D = oo]

(see Theorem 5.6) arfe [D = »] > 1, for all A, see (5.20). m
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5.3 Proof of Proposition 5.1

Let
t
(t):=]=
Eé [Tz — Tl]
We write
X(t) = X(Tn(t)) + (X(t) = X(Tn)) (5.37)
We will show that L “A)
lim limsu —RA[X(1 ———=1=0 5.38
a%+w)\%0;ta+oo;£\)2t:a At o [X( n(t))] A ’ ( )
and that 1
lim limsup | —E} [X(t) = X (o) ':o. (5.39)
A0 ) 50it—+m;A2=q A0 [ "o ]
(5.38) and (5.39) then imply
lim limsup Ef‘) [@} - @‘ =0, (5.40)
=9 ) 505t—+o0; A 2t=a At A
i.e. Proposition 5.1.
To show (5.38), note that (recalling = 0),
- A |14, (W ((A)
A A
)\—tEo [X(Tn))] —T‘ = }\_tEO k;(x(Tk)—X(kal)) T (5.41)

Using formula (5.29) in Proposition 5.9, we rewrite andrestie the r.h.s. of (5.41) as

ﬂﬁé [X(10)] + )\—lt (n(t) — 1) EY [X(12) — X(11)] — E()\_)‘)’

(A (B [r2— 1] t L)
P (e ) )

Due to (5.33), the first term in the right hand side of (5.42)fierdera—! and therefore satisfies
1
At

< | 28 (x(ro)

=19t +

. (5.42)

lim limsup | IAEé [X(11)]| =0.

a=+%) .0 t—4o00:A%t=qa

Now consider the second term in (5.42). From (5.31), we krfmt/ﬁé [To — 1]/t is of ordera 1.

Therefore
_ _ FAlr—1 t
lim limsup ol 2t 1 ~ ~1]-1]=0.
O=F%0) _L0it—+0:A2t=q Eo [TZ — Tl]

We also proved in (5.36) théftg‘—)‘ remains bounded fo¥ tending to 0. Hence we see that the second
term in the right hand side of (5.42) also tends to 0, thusipgpthat (5.38) holds true.
To show (5.39), we need the following lemma, whose proof fered.
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Lemma 5.12 We have, for each > 0,

lim limsup P} [|Te) —t] > €t] =0. (5.43)

O=F0) _L0it—+0:A2t=q

We will split the integration in (5.39) according to the pigoh in the two eventy|7,) —t| > &t}
and{(1—é&)t < 1y < (1+¢)t}. We will show that, for eacls > 0,

1
lim limsup  |-=EQ [(X(t) = X (Tae)L(| Ty — t] > &t) ' =0, (5.44)
a%+°°)\a0;t%+oo;)\2t:a At [ nt nt ]
and that
limlimsup  limsup g —E) [(X(t) = X(Tn)) L((1— &)t < Tngy < (1+ s)t)]’ =0. (5.45)
€20 a4 )\ 505t +00;A2=q At

To show (5.44), we use Holder’s inequality to get that
B3 [(X() — X(Ta) 1| Ty —t] > 1))

1/2 B

< B [[XO) =Xt [*] B 1T —t] = 1] 72

SZ(E6[|X()|}+EA[|XTn ]) IP’)‘UTn —t] > et] Y2,

(for the last inequality, we used the formuta—y)? < 2(x* 4+ y?)). Now, we conclude with (3.2),
(5.35) and Lemma 5.12.
For (5.45), note that

B [(X(0) = X(T) (L~ )t < Ty < (14 £)D)]|

< EA X(u) — X < 2FA X(u) = X((1—e))] .
=0 Lls)thgé(Hs)t' W (S)@ - 0[(1s)tr2l?§)§l+£)t| () =X(( E))@

Using the Markov property, we see that the last term equals

g(A,e,t) :=2E) [max|x( )@

u<2set

Due to (3.2), for eacls,

: ALet
sup limsup g(A, Y < oo,
0e>1) —50:t—+0:A2et=a et

and this proves (5.45).
It remains to prove Lemma 5.12. We first show

Lemma5.13 Forall € > 0,
P} Hrk —KEQ [T2 — 1] | > eKE) [12 — rl]] —0fork— oo, (5.46)
uniformly forA < 1.
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Proof of Lemma 5.13
We have

Py H? —E} 12— Tl]‘ > e [12— Tl]]

1 ~ Tk = 2
< A—E)\ |:(——E)\ T2—T1) :|

1 A =A K SA ’
< _ E n—Ejlt,—11 —i—%(T'—T'l—E T2—T1>

1 =2 =A A =) 2

= = E [T—E To—T }-1— E (r-—r_ —Eq|To—T1 )
27 (1 — To]? ( o |(1—Eg[r2—11]) j_} o |(7i—Ti-1—Eg[r2—1i]

where we used the independence property stated in TheoferBU&. the last term equals

1
kzszﬁé [Tz — T

~

¥ (B (2] - 28 (1) [r2 — ] + B3 (2~ 12)?))

+ = Eg [(Tz—Tl—Eo[Tz—HD ] ,
kZEZEé [Tz — T]_]Z

and we conclude, using Lemma 5.10. [ |
Finally, Lemma 5.12 follows from Lemma 5.13 by takikg- n(t): due to (5.31),

liMg 1o liMSUPR, 0:t 5 40 12t—g N(t) = o and

n(t)Ej[12— 1] _
t

lim limsup
O=F® ) 50t +0:A2t=a

1. (5.47)

To see that (5.47) holds true, note that

t (1_ AR} (12— 1]

2t ) < n(t)@é [T2— 1] <t

and use (5.31). [ |

6 Proof of the Theorem

Combine (5.1) with Proposition 3.1. [ |

7 Extension to measurable coefficients
Here we explain how the approach developed in the previoasdbs of the paper can be extended

to deal with measurable coefficients. Thus the assumptiofesce in this Section arBssumptions
1, 3 and 4that remain unchanged addsumption 2is replaced by the following weaker statement:
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Assumption 2’: for any environment, the functionsx — V®(x) andx — o (x) are measurable.

In such generality, it is not possible to use stochastiedffitial equations to define the processes
X® or X} @ anymore so that our first task is to give an alternative canttm.

In the following discussion we fix an environmemtsatisfyingassumptions 1, 2’, 3and4. The
caser =0 s included.

Let p"v‘*’(t,x, y) be the kernel associated to the operaftt © in equation (2.8), or, in the case

A = 0to the operataZ® in equation (2.1) now understood in weak distributionakseand Ieﬂ'tA’“’
be the corresponding semigroup

T 9f (x) /p“’txy (y)dy.

It follows from Aronson’s estimate (see [1]) and Harnackigquality (see [10]) thaTt)"‘*’ maps
continuous functions vanishing at infinity to continuousdtions vanishing at infinity. For such
functions we also have Iimo'l't)"“’f(x) = f(x) for all x. ThusTt)"“’ is a Feller semigroup and it
follows from [6] Theorem 2.7 that there exists a conseretiunt process with continuous paths
whose semigroup i$2©. We denote its law on path spaGéR, ,RY) with B“ andE;® for the

corresponding expectation. Observe ﬂﬁéﬁ“’[X(O) = x| =1 for all x.

It is proved in [20] Proposition 1 that, for aimost alls, underPs’, the canonical process satisfies
an invariance principle with some effective diffusivity tna Z. It follows from Aronson’s estimate
thatX is also the asymptotic covariance so that Definition 2.1 gioesigh.

On the other hand all statements in Section 4 as well as Lemgna 55ection 5 were proved
underAssumption 2’ only. Thus the construction of regeneration times we gaeiction 5 and all
the upper bounds on are still valid with measurable coefficients. Therefore we that the law of
large numbers is satisfig@d almost surely undel?(’)\"” for all positiveA and Definition 2.2 can still be
used as the definition of the effective drift.

Having defined the effective diffusivity matrix and the efiige drift we claim that the Einstein
relation stated in Theorem 2.3 holds true withsumption 2being replaced byAssumption 2.

The main difficulties in extending the proofs of the previgestions to measurable coefficients
appear in justifying the Girsanov transform and time chaaggiments from Section 3. Following
[20], in order to do it we shall appeal to Dirichlet form thgoas exposed in [9], and related stochastic
calculus for Dirichlet processes. Observe that a directiegapn of Dirichlet form theory a priori
only provides information undd® ® for all w but only for (Lebesgue) almost &l(in fact for quasi
all x but we won't use fine topological notions here) and therefasea consequence of the translation

invariance ofQ, underP(’)\"” for almost allw. Therefore most claims in Sections 3, such as Lemma
3.3 or formula (3.4), should now be understood 'fdralmost allw's’. We let the reader convince
herself that this does not affect the proofs.

We use the notatiop, (x) = & Xfor A >0. LetLZ(pA) be the space of square integrable functions
with respect to the measupg% dx. Define Hl(p)\) to be the space of functions lr?(p)\) whose
gradient is also square integrable with respect to the rme@§l(|x) dx Let

E1O(F, §) /|a X) O (x)[2e~2°® p2(x) dx. (7.1)
Then(&4 @, H1(p$)) is a regular Dirichlet form. We claim that

32



Lemma 7.1 (&® Hy(p?)) is the Dirichlet form of the semigroupT on 12(e? %),

(Note that this fact is already used in [20] but without jfistition.)

Proof

We first observe thaF?-¢ is indeed a strongly continuous symmetric semigroup%ﬂp}\?).
Lett > 0 and define the approximating bilinear forms

EVNO(F f) = %/(f(x) — T (%)) () 2 p2(x) dx. (7.2)
A function f belongs to the domain of the Dirichlet form associated tosgigroupT - if and
only if £44-9(f, ) is bounded irt and the limit ag tends to 0 is then the value of the form, see
Lemma 1.3.4in [9].

A straighforward integration by parts shows thatf asnds to 0, the*-%(f, f) converges to
&1, 1) on theL? domain of the generata?}+®, say2*-©. Since the function — &% 9(f, f)
is decreasing, it implies that
EVMO(F, 1) < E1 (1, 1)

for f € 2}, This inequality extends by density to all functionsHm(pAz). Thus we have proved
that the Dirichlet form of the semigroup’- ¢ is well defined and coincides wit#i*:© on Hl(pf) or,
in other words, that it is an extension of the fo(mAv‘*’,Hl(pf)). But since(&* %, Hi(p3)) is its
own maximal Markovian extension, see Theorem 3.3.1 in [8fhlforms coincide. [
From now on we will drop the superscriptfrom the notation whed = 0. We now consider
properties of the canonical proceXsfor a fixed environmento and undePy for almost every
starting pointx. The functiong(x) = e; - x locally belongs to the domain of the Dirichlet forf°.
From Theorem 5.5.1 in [9] we deduce tleat X(t) — e;- X(0) is a local Dirichlet process und&®
for almost every starting point Thuse; - X(t) —e; - X(0) admits a unique Fukushima decomposition
as the sum of a local martingale, sByand a process of locally vanishing quadratic variatione Th
bracket ofB is given by Theorem 5.5.2 in [9] and satisfies

— t
B)(1)= [ l0°(x(s)erfPds. 73)

By assumption 3 we have(BT) (t) < k~t. Thus we see thatin faBtis a square integrable martingale.

_ 2
By the same argument the exponential local marting##é)—'= (8/(V) is also seen to be a martingale
for all u and one proves as in Lemma 3.3 that

2

E leuwm—%sxw} < DL (7.4)

for every w and almost alk. Note that the translation invariance ©@fthen implies that (7.4) also
holds for almost altv with x = 0.
We now justify the Girsanov formula:

Proposition 7.2 For any environmend, for almost any x, any t and any continuous bounded function
F we have

EMOIF (X(([0.4]))] = ES[F(X([0,1])) B0~ B0)].
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The translation invariance @ then implies that for almost all environments

EJ “[F(X([0,1])))] = EQ[F(X([0,])) B~ % Bt

for any continuous and bounded functibnand we have obtained the almost sure version of the
Girsanov formula (3.4) that is sufficient to proceed throtlghproofs of the previous Sections.

Proof

We would like to invoke Theorem 3.1 of [3] but unfortunatesydoes not belong th? so that
some work is needed.

Let G, be the ball centered at the origin with radiysand let,, be the exit time fronG,.

We shall first prove that

EMOIF(X(0.1]));t < &) = ELF(X([0,1])) € B0~ Z B0 ¢ < 4] (7.5)
Using the bound (7.4), it is then possible togend to infinity and deduce Proposition 7.2 from
(7.5).
Choose a functiom, that coincides withp on Gy, is smooth and has compact support. Mgt
be the martingale part of the proceggX(t)) — ¢h(X(0)) in its Fukushima decomposition unde?,

and letZy(t) 1= €M)~ (M) V),
Define
QM@ (x) 1= EL[F (X () Zn(t)].

ThenQ™**® defines a strongly continuous Markovian semigrouf.8fax). We need the following

Lemma 7.3 The Dirichlet form of the semigroupfd"® acting on 12(e2h(*)-2V“(®dy) is
% / 09(X) O f (x)[2 MR- gy

with domain H(dx).

Proof

The Revuz measure of the positive continuous additive fanat (My) is |J0®(x)¢gh(x)[?dx
which is easily seen to belong to the Hardy class since theigrtaof ¢, is uniformly bounded.
Besides condition (3.8) in [3] is fulfilled whenevElg, is uniformly bounded. Thus Theorem 3.1 of

[3] applies. We get that the quadratic form of the semigr@{ip"® acting onlL2(e~2“®dx) is

2ty = / “(x)0f (x) - 09(x)g(x) & 2/ dx
/ g(x (%) - 3?()0gn(x) e 2 “¥ dx, (7.6)

see formula (3.3) in [3].
We now use the same approximating sequence as in (7.2);ssethalexplanation on page 242 of
[3]. We then know that for all function$, g € Hi(dx)

2u(f,9) =lim = [ (10— Q1 (x)g(x) & V¥ dx.

t—0t
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Applying this formula to the functioge?* and using (7.6), we deduce that the Dirichlet form of the
semigroupQ™*® acting onL2(e24X- M dy) is

fim = [ (709~ Q1) g2 e dx
in

= % / o®(X)0f(x) - 09(x)O(g(x) X)) e M) dx
— /g(x) g@(x)0f (X) - 0°(X) Ogn(x) M2 gy
= %/Uw(x)Df(x)ﬂ‘*’(x)Dg(x) M- gy

|
We can now conclude the proof of Proposition 7.2.

Comparing the expression of the Dirichlet form generated}bﬁ"‘" we just obtained with for-
mula (7.1) for&?-® and observing thagh = ¢ on G, we see that the parts of both these Dirichlet
forms onGy, coincide. ClearlyB andM, also coincide up to timé&,. Thus we obtain (7.5). [ |

Finally we should say a word about the time change argumeatt unsthe proof of Proposition
3.1 in the cas&/ # 0. DefineY* ® to be the Hunt process with Dirichlet forr(néa"v“,Hl(pAz))
with reference measurpf(x)dx Theorem 6.2.1 in [9] implies that the process obtained meti

changingr? @ through the additive functiona-©(t) = 3 e*AZVw(YA’w(S)) dsadmits as Dirichlet form
(849, Hy(p2)) with reference measues 2 X p2 (x)dx = e *~2“(X so that, for almost any initial
pointx, the law ofy?© o (A}-@)~1 coincides withPe ©.

Acknowledgement: we thank J.C. Mourrat for his careful regf a preliminary version of the
paper.
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