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Abstract. We consider biased random walk among iid, uniformly elliptic conductances on Z
d , and investigate the monotonicity

of the velocity as a function of the bias. It is not hard to see that if the bias is large enough, the velocity is increasing as a function
of the bias. Our main result is that if the disorder is small, i.e. all the conductances are close enough to each other, the velocity is
always strictly increasing as a function of the bias, see Theorem 1.1. A crucial ingredient of the proof is a formula for the derivative
of the velocity, which can be written as a covariance, see Theorem 1.3: it follows along the lines of the proof of the Einstein relation
in (Ann. Probab. 45 (4) (2017) 2533–2567). On the other hand, we give a counterexample showing that for iid, uniformly elliptic
conductances, the velocity is not always increasing as a function of the bias. More precisely, if d = 2 and if the conductances take
the values 1 (with probability p) and κ (with probability 1 − p) and p is close enough to 1 and κ small enough, the velocity is not
increasing as a function of the bias, see Theorem 1.2.

Résumé. Nous étudions des marches aléatoires biaisées dans un milieu aléatoire donné par des poids iid sur les arêtes de Z
d .

Les poids sont bornés au-dessus et ils ont une borne inférieure qui est strictement positive. Nous nous intéressons pour la vitesse
de la marche en fonction du bias. Un argument connu donne que, pour des biais suffisamment grands, la vitesse est une fonction
croissante du biais. Notre résultat principal dit que si le désordre est petit, ce qui veut dire que les poids sont proches les uns
aux autres, la vitesse est une fonction croissante du bias, voir Théorème 1.1. Un ingrédient crucial de la preuve est une formule
pour la dérivée de la vitesse : cette dérivée peut etre écrit comme une covariance, voir Théorème 1.3. La preuve de Théorème 1.3
suis les arguments de la preuve de la relation d’Einstein dans (Ann. Probab. 45 (4) (2017) 2533–2567). Par contre, nous donnons
un exemple montrant que pour des poids iid prenant les valeurs 1 (avec probabilité p) et κ (avec probabilité 1 − p), si p est
suffisamment proche de 1 et κ est suffisamment petit, la vitesse n’est pas une fonction croissante du bias, voir Théorème 1.2.
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1. Introduction

As a model for transport in an inhomogeneous medium, one may consider a biased random walk on a supercritical
percolation cluster. The model goes back, to our best knowledge, to Mustansir Barma and Deepak Dhar, see [2] and
[8]. They conjecured the following picture for the velocity (in the direction of the bias) as a function of the bias. The
velocity is increasing for small values of the bias, then it is decreasing to 0 and remains 0 for large values of the bias,
see Figure 2 below. Here, the zero velocity regime is due to “traps” in the environment which slow down the random
walk. It was proved by [19] and by [5] that the velocity is indeed zero if the bias is large enough, while it is strictly
positive for small values of the bias. Later, Alexander Fribergh and Alan Hammond were able to show that there is a
sharp transition, i.e. there is a critical value of the bias such that the velocity is zero if the bias is larger, and strictly
positive if the bias is smaller than the critical value, see [11].

http://www.imstat.org/aihp
http://www.imstat.org/aihp
https://doi.org/10.1214/18-AIHP901
mailto:noam.berger@tum.de
mailto:nina.gantert@ma.tum.de
mailto:j.h.nagel@tue.nl


The speed of biased random walk among random conductances 863

Fig. 1. Speed of biased simple random walk.

Fig. 2. Conjectured speed of biased random walk on percolation clusters.

Fig. 3. Conjectured speed of biased random walk under the assumptions of Theorem 1.2.

The velocity of biased random walk among iid, uniformly elliptic conductances is always strictly positive, this was
proved by Lian Shen in [18]. A criterion for ballisticity in the elliptic, but not uniformly elliptic case can be found
in [10]. It is interesting to ask about monotonicity in the uniformly elliptic case. In the following, v1(λ) denotes the
component of the velocity in the direction of the bias, precise definitions are below. In the homogeneous medium
(i.e. if the conductances are constant), the velocity can be computed and the picture is as in Figure 1. For the biased
random walk on a (supercritical) percolation cluster, the conjectured picture is as in Figure 2. Now, in our case of iid,
uniformly elliptic conductances, the picture should be “in between” the other two cases. If the conductances are close
enough to each other, we show that the speed is increasing, hence the picture is as in Figure 1. Under the assumptions
of Theorem 1.2, we show that the speed is not increasing and Figure 3 is the simplest picture which agrees with our
results. However, we only prove parts of this picture: we know that for λ → ∞, the velocity is increasing and goes to
1, see Fact 2 below, and we show that the velocity is not increasing for all values of the bias, see Theorem 1.2.

Finally, let us mention some results for biased random walks on supercritical Galton–Watson trees with a bias
pointing away from the root. This model can be seen as a “toy model” for the percolation case, when the lattice is
replaced by a tree. For biased random walks on (supercritical) Galton–Watson trees with leaves, the velocity shows
the same regimes as for biased random walks on percolation clusters: it is zero if the bias is larger than a critical
value, while it is strictly positive if the bias is less (or equal) than the critical value. This transition was proved by [16]
and the critical value has an explicit description, see [16]. In particular, if the tree has leaves, the velocity can not be
an increasing function of the bias. For biased random walks on supercritical Galton–Watson trees without leaves the
velocity is conjectured to be increasing, but despite recent progress, see [1,4], this conjecture is still open.

Let us now give more precise statements and a description of our results. For two neighboring vertices x and y in
Z

d with d ≥ 2, assign to the edge between x and y a nonnegative conductance ω(x, y). The random walk among the
conductances ω starting at x0 and with bias λ ≥ 0 (in direction e1 = (1,0,0, . . . ,0)) is then the Markov chain (Xn)n≥0
with law P

x0
ω,λ, defined by the transition probabilities

P
x0
ω,λ(Xn+1 = y|Xn = x) = ω(x, y)eλ(y−x)·e1∑

z∼x ω(x, z)eλ(z−x)·e1
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for x ∼ y. (Here we write x ∼ y if x, y are neigboring vertices, and we write w · z for the scalar product of two vectors
w,z ∈ R

d .) The corresponding expectation is written as E
x0
ω,λ. The Markov chain (Xn)n≥0 is reversible with respect

to the measure

π(x) =
∑
z∼x

ω(x, z)eλ(x+z)·e1 . (1.1)

When the collection of conductances ω is random with law P , we call (Xn)n≥0 random walk among random con-
ductances and P

x0
ω,λ the quenched law. Px0

λ = ∫ P
x0
ω,λ(·)P (dω) is called the annealed law and we write E

x0
λ for the

corresponding expectation. If x0 = 0 we omit the superscripts. In this paper we study properties of the limiting veloc-
ity

v(λ) = lim
n→∞

Xn

n
. (1.2)

Frequently, we focus on the speed in direction e1 and set v1(λ) = v(λ) · e1. In particular, we are interested in the
monotonicty of v1 as a function of the bias λ. Although increasing λ increases the local drift to the right at every
point, it is not clear at all that this results in a higher effective velocity. As mentioned above, this conclusion is known
to be false for a biased random walk on a percolation cluster, which corresponds to conductances ω(x, y) ∈ {0,1}. As
shown by [11], the speed is positive for λ smaller than some critical value λc > 0, but increasing the bias further will
give zero speed. If we assume the conductances to be uniformly elliptic, that is, there exists a δ ∈ (0,1) such that

1 − δ ≤ ω(x, y) ≤ 1 + δ, (1.3)

then [18] showed that the limit in (1.2) exists Pλ almost surely, does not depend on ω, and there is no zero speed
regime: v1(λ) > 0 for all λ > 0. From now on, we assume

Assumption (A). The conductances are iid and uniformly elliptic, i.e. they satisfy (1.3).

Note that (1.3) is equivalent to the usual uniform ellipticity saying that the conductances are bounded above and
bounded away from 0: we may multiply all the conductances by a constant factor, resulting in the same transition
probabilities.

Fact 1. limλ→∞ v1(λ) = 1.

Fact 2. There exists a λc = λc(δ) such that v1 is strictly increasing on [λc,∞).

Fact 1 follows from a coupling with a random walk in a homogeneous environment, as

Pω,λ(Xn+1 = x + e1|Xn = x) ≥ eλ

(2d − 1) 1+δ
1−δ

+ eλ
, (1.4)

which goes to 1 as λ → ∞. Fact 2 was proven by [4] for the biased random walk on a Galton–Watson tree without
leaves (where an upper bound for λc can be explicitly computed), the same arguments yield the analogous result for
the conductance model, when the conductances are bounded away from 0 and ∞. A sketch of the proof will be given
in Section 2. We remark that λc(δ) may be chosen decreasing in δ.

Our first main result shows that in the low disorder regime, when δ is close to 0, v1 is increasing on [0,∞). That
is, in the low disorder regime, Fact 2 holds with λc = 0.

Theorem 1.1. Assume (A). There exists a δ0 ∈ (0,1), such that if 1 − δ0 ≤ ω(x, y) ≤ 1 + δ0 whenever x ∼ y, then v1
is strictly increasing.

On the other hand, outside the low disorder regime, there is in general no monotonicity, in particular, uniform
ellipticity of the conductances does not imply monotonicity of the speed.
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Theorem 1.2. Assume (A) and d = 2. Define the environment law by

P
(
ω(0, e) = 1

)= p = 1 − P
(
ω(0, e) = κ

)
for p ∈ (0,1) and κ > 0. Then, for p close enough to 1 and κ close enough to 0, there exist λ1 < λ2 such that

v1(λ1) > v1(λ2).

To prove Theorem 1.1, we show that the derivative of the speed is strictly positive, where the derivative can be
expressed as the covariance of two processes. For this, we define

Mn = Xn −
n−1∑
k=0

E
Xk

ω,λ[X1 − X0], (1.5)

Nn = Xn − nv(λ). (1.6)

We show in Proposition 3.1 below that under Pλ, the 2d-dimensional process 1√
n
(Mn,Nn) converges in distribution

to a Gaussian limit (M,N).

Theorem 1.3. Assume (A). For any λ > 0, v is differentiable at λ with

v′(λ) = Covλ(M,N)e1.

Remark 1.1. The statement in Theorem 1.3 is true for λ = 0 as well – this is the Einstein relation proved in [12]. In
particular, λ → v1(λ) is a continuous function. The continuity of v1 may seem obvious, but to our best knowledge, it
has not been proved for a biased random walk on a percolation cluster.

2. A general coupling

After a suitable enlargement of our probability space, let U0,U1, . . . be a sequence of independent random variables
with a uniform distribution on [0,1], independent of ω. Let us denote the joint law of the Uk and ω by P, with
expectation E. We will construct a coupling of quenched laws for different environments and different values of the
bias, letting Uk determine the movement at time k. Given an environment ω and λ ≥ 0, define

pω,λ(x, e) = Pω,λ(X1 = x + e|X0 = x)

and, with ek = −e2d+1−k for d + 1 ≤ k ≤ 2d , let qω,λ(x,0) = 0 and for 1 ≤ k ≤ 2d ,

qω,λ(x, k) =
k∑

j=1

pω,λ(x, ej ).

Now, given two environments ω1 and ω2 and biases λ1 and λ2 we can define processes X
(ω1,λ1)
n and X

(ω2,λ2)
n by

setting

X
(ωi,λi )
n+1 − X(ωi,λi )

n = ek iff qωi,λi
(Xn, k − 1) < Un ≤ qωi,λi

(Xn, k)

for i = 1,2. Then the marginal of (X
(ωi,λi )
n )n is the original quenched law Pωi,λi

. In the one-dimensional case this

coupling also shows the monotonicity of the speed for any ellipticity constant, since then λ1 ≤ λ2 implies X
(ω,λ1)
n ≤

X
(ω,λ2)
n . To give a short justification of Fact 2, we additionally introduce for λs > 0 the one-dimensional process

Yn =
n−1∑
k=0

(
2 · 1
{
Uk ≤ eλs

eλs + (2d − 1)β

}
− 1

)
,
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where β = 1+δ
1−δ

. Assume λs > logβ + log(2d − 1), then Yn is a simple random walk with drift to the right. From the

lower bound (1.4), we see that if Yn moves to the right and λs < λi , then X
(ωi,λi )
n moves to the right. This allows us to

consider so-called super-regeneration times τk, k ≥ 1 (introduced by [3]) where τ1 is the infimum over all times n ≥ 1
with

max
k<n−1

Yk < Yn−1 < Yn < min
k>n

Yk,

and inductively τn+1 = τ1 ◦ θτn + τn (here θk denotes the time shift, i.e. θk(Yn)n≥0 = (Yk+n)n≥0). Since the increments
of Yn are a lower bound for the increments of X

(ωi,λi )
n in direction e1, τ1 is a regeneration time for the process

Xn = X
(ωi,λi )
n , provided λi > λs . More precisely,

max
k<τn−1

Xk · e1 < Xτn−1 · e1 < Xτn · e1 < min
k>τn

Xk · e1.

Unlike in [4], we require an additional step to the right in order to decouple the environment seen by the random
walker. By classical arguments, the sequence (X

(ω,λ)
τk

− X
(ω,λ)
τk−1 , τk − τk−1)k≥2 is an iid sequence under P, and the

marginal is equal to the distribution of (Xτ1 , τ1), conditioned on the event R = {Yn > 0 for all n ≥ 1}. Moreover,

v(λ) = E[X(ω,λ)
τ1 |R]

E[τ1|R]
for any λ > λs . Fact 2 follows then if we can show for λs large enough and λ > λs ,

E
[(

X(ω,λ+ε)
τ1

− X(ω,λ)
τ1

) · e1|R
]
> 0 (2.1)

for any ε > 0. Following the arguments of [4], this is implied by the following observations:

• When Yn moves to the right, both X
(ω,λ)
n and X

(ω,λ+ε)
n move to the right.

• When Yn moves to the left for the first time, then(
X(ω,λ+ε)

n − X(ω,λ)
n

) · e1 ≥ 0

and, given that Yn moves to the left for the first time at time n, we have with positive probability(
X(ω,λ+ε)

n − X(ω,λ)
n

) · e1 > 0. (2.2)

In fact, given that X
(ω,λ+ε)
n and X

(ω,λ)
n are at x at time n − 1 and decouple at time n for the first time, (2.2) occurs

with probability

qω,λ+ε(x,1) − qω,λ(x,1) + qω,λ+ε(x,2d − 1) − qω,λ(x,2d − 1)∑2d−1
k=1 |qω,λ+ε(x, k) − qω,λ(x, k)| ≥ c(δ)

2d − 1
. (2.3)

To see the lower bound in (2.3), note that qω,λ+ε(x,2d − 1) − qω,λ(x,2d − 1) ≥ 0. Further, recalling (1.1), a small
calculation shows that π(λ)π(λ + ε)(qω,λ+ε(x,1) − qω,λ(x,1)) ≥ c1(δ)e

λε, and π(λ)π(λ + ε)|qω,λ+ε(x, k) −
qω,λ(x, k)| ≤ c2(δ)e

λε for all k, resulting in (2.3).
• When until time τ1 the process Yn took k steps to the left, the increments of X

(ω,λ)
n and X

(ω,λ+ε)
n could differ at

most k times.
• When until time n the increments of X

(ω,λ)
n and X

(ω,λ+ε)
n were different exactly k times, then(

X(ω,λ+ε)
τ1

− X(ω,λ)
τ1

) · e1 > −2(k − 1).

• Let Dk be the event that until time τ1, Yn did k steps to the left and for some n ≤ τ1, X
(ω,λ+ε)
n − X

(ω,λ)
n �= 0. Then

E
[(

X(ω,λ+ε)
τ1

− X(ω,λ)
τ1

) · e1|R
]≥ (2d − 1)−1

P(D1|R) −
∑
k≥2

2(k − 1)P(Dk|R). (2.4)
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For λs large enough, the right hand side of (2.4) is positive, which follows analogously to the proof in [4] of
positivity of display (4.1) therein.

3. Differentiating the speed

Theorem 1.3 is a consequence of the two following results. For simplicity, we will omit integer parts.

Theorem 3.1. Let λ0 > 0, α > 1 and tλ = α · (λ − λ0)
−2, then

lim
λ→λ0

1
tλ
Eλ[Xtλ ] − v(λ0)

λ − λ0
= Covλ0(M,N) · e1.

Theorem 3.2. Let tλ be as in Theorem 3.1. There exists a C > 0, such that for any α > 1,

lim sup
λ→λ0

∣∣∣∣ 1
tλ
Eλ[Xtλ ] − v(λ)

λ − λ0

∣∣∣∣≤ C√
α

.

3.1. Regeneration times

The proof of Theorem 3.1 and Theorem 3.2 relies on a regeneration structure for the process (Xn)n, which decomposes
the trajectory into 1-dependent increments with good moment bounds. For h ∈ R, we let

Hh = {x ∈ Z
d |x · e1 = �h}

denote the hyperplane with first coordinate �h and

Th = inf{n ≥ 0|Xn ∈Hh}
be the first hitting time of Hh. The regeneration times τk , k ≥ 1 are then hitting times TmL/λ, after which the random
walk never visits H(m−1)L/λ again and the displacement XTmL/λ

− XT(m−1)L/λ
can be decoupled from the environment

in {x ∈ Z
d |x · e1 ≤ �h}. The detailed construction of the sequence (τk)k can be found in [12], for the sake of brevity

we only summarize here the consequences in the following lemma. We remark that the moment bounds are stated in
[12] only for λ ∈ (0, λu) for some small λu > 0, but the proof works actually for any bounded, positive λ.

Remark 3.1. Note that the (τk)k are not the same as the super-regeneration times in Section 2 (which were also
denoted by (τk)k) but in order to be consistent with [3] and [12], we keep this notation.

Lemma 3.1. Under Pλ, the sequence(
(Xk+1 − Xk)τn≤k<τn+1 , τn+1 − τn

)
n≥1

is a stationary 1-dependent sequence. Moreover, for any λ1 > 0 there are constants c,C > 0, such that for all λ ∈
(0, λ1] we have

Eλ

[
exp
(
cλ2τ1
)]≤ C, Eλ

[
exp
(
cλ2(τ2 − τ1)

)]≤ C (3.1)

and

Eλ

[
exp
(
cλ‖Xτ1‖

)]≤ C, Eλ

[
exp
(
cλ‖Xτ2 − Xτ1‖

)]≤ C.

We also have a lower bound for the inter-regeneration time (see (21) in [12]), where for any λ1 > 0 there is a
constant c > 0, such that

Eλ

[
λ2(τ2 − τ1)

]≥ c (3.2)
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for all λ ∈ (0, λ1]. If (1.3) is satisfied with δ ≤ 1
2 , c and C in Lemma 3.1 and in (3.2) can be chosen only depending

on the dimension. As a consequence of Lemma 3.1 and the law of large numbers, we get the following expression for
the speed,

v(λ) = Eλ[Xτ2 − Xτ1]
Eλ[τ2 − τ1] , (3.3)

see Corollary 16 in [12].
Using the exponential moment estimates on the regeneration times, it follows that in order to study the convergence

in distribution of 1√
n
(Mn,Nn), it suffices to consider

1√
τn

(Mτn,Nτn).

To this subsequence, we may apply the functional central limit theorem for sums of 1-dependent random variables,
see [6] to obtain the following result.

Proposition 3.1. For any λ > 0, the process ( 1√
n
(M�tn,N�tn); t ≥ 0) converges in distribution under Pλ to a 2d-

dimensional Brownian motion (M̂t , N̂t ). We write M for M̂1 and N for N̂1.

Lemma 3.2. For any p ∈ N and λ1 > 0 there exists a Cp > 0 depending only on p, λ1, the dimension d , and the
ellipticity constant δ, such that for any 0 < λ < λ1,

Eλ

[
max

0≤k≤n/λ2
‖λXk‖p

]
≤ Cpnp.

Proof. The lemma follows from the proof of Lemma 8 in [12], noting that the constant Cp there can be chosen
depending only on p, an upper bound for λ, the dimension d , and the ellipticity constant δ. �

3.2. Proof of Theorem 3.1

The arguments in this section are inspired by [15] where a weak form of the Einstein relation was proved for a large
class of models. Let us abbreviate λ̄ = λ − λ0 and begin by writing, with t = tλ = α/λ̄2,

1
t
Eλ[Xt ] − v(λ0)

λ − λ0
= Eλ

[
λ̄

α

(
Xt − t · v(λ0)

)]= Eλ0

[
λ̄

α

(
Xt − t · v(λ0)

) dPω,λ

dPω,λ0

(Xs;0 ≤ s ≤ t)

]
(3.4)

as an expectation with respect to the reference measure Pλ0 . For a nearest-neighbor path (x1, . . . , xm), we have

dPω,λ

dPω,λ0

(x1, . . . , xm) =
m∏

k=1

pω,λ(xk−1, xk − xk−1)

pω,λ0(xk−1, xk − xk−1)
=

m∏
k=1

eλ̄(xk−xk−1)·e1

∑
|e|=1 eλ0e·e1ω(xk−1, xk−1 + e)∑
|e|=1 eλe·e1ω(xk−1, xk−1 + e)

.

Now write in the denominator eλe·e1 = eλ̄e·e1eλ0e·e1 and expand the first exponential ez = 1 + z + z2/2 + r1(z) with
|r1(z)| ≤ |z|3 for |z| ≤ 1 to get

dPω,λ

dPω,λ0

(x1, . . . , xm)

= exp

{
λ̄xm · e1 −

m∑
k=1

log

(
1 + λ̄dω,λ0(xk−1) + 1

2
λ̄2d

(2)
ω,λ0

(xk−1) + r1(λ̄)

)}
,
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where we wrote

dω,λ0(x) =
∑

|e|=1 ω(x, x + e)eλ0e·e1e · e1∑
|e|=1 ω(x, x + e)eλ0e·e1

= Ex
ω,λ0

[
(X1 − X0) · e1

]
for the local drift in direction e1 and

d
(2)
ω,λ0

(x) =
∑

|e|=1 ω(x, x + e)eλ0e·e1(e · e1)
2∑

|e|=1 ω(x, x + e)eλ0e·e1
= Ex

ω,λ0

[(
(X1 − X0) · e1

)2]
for the expected squared displacement. Expanding the logarithm as log(1 + z) = z − z2/2 + r2(z) with |r2(z)| ≤ |z|3
for |z| ≤ 1/2, we obtain

exp

{
λ̄xm · e1 −

m∑
k=1

(
λ̄dω,λ0(xk−1) + λ̄2

2

(
d

(2)
ω,λ0

(xk−1) − dω,λ0(xk−1)
2)+ h(λ̄)

)}
,

where the function h satisfies |h(z)| ≤ c|z|3 if |z| ≤ 1/2. If we set now m = t = α/λ̄2, this yields

Gω,λ0(λ̄, t) := dPω,λ

dPω,λ0

(Xk;0 ≤ k ≤ t)

= exp

{
λ̄

(
Xα/λ̄2 · e1 −

α/λ̄2∑
k=1

dω,λ0(Xk−1)

)
− λ̄2

2

α/λ̄2∑
k=1

(
d

(2)
ω,λ0

(Xk−1) − dω,λ0(Xk−1)
2)+ o(1)

}
. (3.5)

By Proposition 3.1, λ̄(Xα/λ̄2 · e1 −∑α/λ̄2

k=1 dω,λ0(Xk−1)) converges in distribution to M̂α · e1. To infer the convergence
of the complete expression for the density and to obtain convergence of the expectations in (3.4), we next show
Lp-boundedness of the density for λ̄ small enough.

Recall Gω,λ0(λ̄, t) in (3.5), and let p ≥ 1. Then

p logGω,λ0(λ̄, t) = pλ̄Xt · e1 − p

t∑
k=1

log

( ∑
|e|=1 ω(Xk−1,Xk−1 + e)eλe·e1∑
|e|=1 ω(Xk−1,Xk−1 + e)eλ0e·e1

)

= pλ̄Xt · e1 −
t∑

k=1

log

(∑
|e|=1 ω(Xk−1,Xk−1 + e)e(λ0+pλ̄)e·e1∑

|e|=1 ω(Xk−1,Xk−1 + e)eλ0e·e1

)
+ Rω,λ0(λ̄, t)

= logGω,λ0(pλ̄, t) + Rω,λ0(λ̄, t),

with a remainder term

Rω,λ0(λ̄, t) =
t∑

k=1

log

(∑
|e|=1 ω(Xk−1,Xk−1 + e)e(λ0+pλ̄)e·e1∑

|e|=1 ω(Xk−1,Xk−1 + e)eλ0e·e1

)
− p log

( ∑
|e|=1 ω(Xk−1,Xk−1 + e)eλe·e1∑
|e|=1 ω(Xk−1,Xk−1 + e)eλ0e·e1

)
.

After expanding the exponential and then the logarithm as for (3.5), we get

Rω,λ0(λ̄, t) =
t∑

k=1

(
pλ̄dω,λ0(Xk−1) + 1

2
p2λ̄2(d(2)

ω,λ0
(Xk−1) − dω,λ0(Xk−1)

2)+ o
(
p2λ̄2))

− p

(
λ̄dω,λ0(Xk−1) + 1

2
λ̄2(d(2)

ω,λ0
(Xk−1) − dω,λ0(Xk−1)

2)+ o
(
λ̄2))

≤ (p2 − p
)
α + o(1) ≤ p2α + 1



870 N. Berger, N. Gantert and J. Nagel

for |λ̄| smaller than some η > 0. For such a choice of λ,

Eλ0

[
Gω,λ0(λ̄, t)p

]≤ Eλ0

[
Gω,λ0(pλ̄, t)

]
ep2α+1 = ep2α+1. (3.6)

Consequently, (Gω,λ0(λ̄, t))|λ̄|≤η is uniformly bounded in Lp(Pλ0). Since this implies convergence of expectations,
we get for the density (3.5)

dPω,λ

dPω,λ0

(Xk;0 ≤ k ≤ t)
d−−−→

λ̄→0
exp

{
M̂α · e1 − 1

2
Eλ0

[
(M̂α · e1)

2]}
under Pλ0 . By Proposition 3.1, we have also the weak convergence of the product

λ̄

α

(
Xt − t · v(λ0)

) dPω,λ

dPω,λ0

(Xs;0 ≤ s ≤ t)
d−−−→

λ̄→0

1

α
N̂α exp

{
M̂α · e1 − 1

2
Eλ0

[
(M̂α · e1)

2]}.
Moreover, this product is by Lemma 3.2 and the calculations above bounded in L2(Pλ0). In particular, it is uniformly
integrable and so the expectations converge as well,

Eλ

[
λ̄

α

(
Xt − t · v(λ0)

)]−−−→
λ̄→0

1

α
Eλ0

[
N̂α exp

{
M̂α · e1 − 1

2
Eλ0

[
(M̂α · e1)

2]}].
By Girsanov’s theorem, the limit is equal to the covariance Covλ0(M,N)e1 (recalling M = M̂1,N = N̂1). �

3.3. Proof of Theorem 3.2

Define γn = Eλ[τn] and for t > 0 fixed, let n ≥ 0 be such that γn ≤ t < γn+1. Then∥∥∥∥1

t
Eλ[Xt ] − 1

γn

Eλ[Xγn]
∥∥∥∥≤ 1

t

∥∥Eλ[Xt ] −Eλ[Xγn ]
∥∥+Eλ

[‖Xγn‖
]∣∣∣∣1t − 1

γn

∣∣∣∣
≤ γn+1 − γn

γn

+ γn

t − γn

tγn

≤ 2
γn+1 − γn

γn

≤ c

n
,

by the moment bounds of Lemma 3.2. Next, using the 1-dependence of (τk − τk−1)k≥1 we have,

1

γn

∥∥Eλ[Xγn] −Eλ[Xτn ]
∥∥≤ 1

γn

Eλ

[
(τn − γn)

2]1/2

≤ 1

γn

Eλ

[(
n∑

k=1

(τk − τk−1) − (γk − γk−1)

)2]1/2

≤ C

√
n

γn

≤ C√
n
.

By the law of large numbers and stationarity of the inter-regeneration times, the speed is given by

v(λ) = Eλ[Xτ2 − Xτ1]
Eλ[τ2 − τ1] = Eλ[Xτn − Xτ1]

Eλ[τn − τ1] = Eλ[Xτn] −Eλ[Xτ1 ]
γn − γ1

such that we have∥∥∥∥Eλ[Xτn]
γn

− v(λ)‖ ≤ ∥∥Eλ[Xτn ]
∥∥∣∣∣∣ 1

γn

− 1

γn − γ1

∣∣∣∣+ 1

γn − γ1

∥∥Eλ[Xτ1]
∥∥≤ γn

γ1

γn(γn − γ1)
+ γ1

γn − γ1
≤ C

n
.
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Putting the above estimates together, we get∥∥∥∥1

t
Eλ[Xt ] − v(λ)

∥∥∥∥≤ C√
n
. (3.7)

Recall that we set λ̄ = λ − λ0 and t = α/λ̄2. Hence t < γn+1 ≤ cn, implying

1√
n

≤ c√
t

= cλ̄√
α

.

This and the inequality (3.7) implies the estimate of Theorem 3.2. �

4. Monotonicity

4.1. Proof of Theorem 1.1

Let us assume already δ ≤ 1
2 . By Fact 2, it is possible to choose λc < ∞, such that the speed is monotone on [λc,∞),

so it suffices to show (strict) monotonicity of v1 on [0, λc]. We do this by showing that the derivative on this compact
interval is strictly positive. More precisely, we compare v′

1 with v̄′
1, where

v̄1(λ) = eλ − e−λ

eλ + e−λ + 2d − 2

is the speed of the random walk in a homogeneous environment ω̄, where all conductances equal 1. Since v̄′
1 is greater

than some positive ε0 on [0, λc], positivity of v′
1 follows from

sup
λ∈[0,λc]

∣∣v′
1(λ) − v̄′

1(λ)
∣∣< ε0 (4.1)

for δ close enough to 0. In Section 2 we constructed a coupling (X
(ω,λ)
n ,X

(ω̄,λ)
n )n between the random walk in an

original environment ω and a random walk in the homogeneous environment ω̄. To keep the notation simpler, we
denote X

(ω,λ)
n again by Xn and X

(ω̄,λ)
n by X̄n. Furthermore, define analogously to (1.5) and (1.6) the processes M̄n

and N̄n in the homogeneous environment. (Of course, M̄n = N̄n.) The coupling guarantees then

P(Xn − Xn−1 �= X̄n − X̄n−1) ≤ Cδ, (4.2)

so if δ is sufficiently small, the two processes will take the same steps most of the time. By Theorem 1.3 and the
moment bounds in Lemma 3.2, we have

v′
1(λ) − v̄′

1(λ)

= lim
n→∞

1

n

[
Covλ(Mn,Nn)1,1 − Covλ(M̄n, N̄n)1,1

]
= lim

n→∞
1

n

[
Covλ(Mn − M̄n,Nn − N̄n)1,1 + Covλ(Mn − M̄n, N̄n)1,1 + Covλ(M̄n,Nn − N̄n)1,1

]
.

By the Cauchy–Schwarz inequality,

∣∣v′
1(λ) − v̄′

1(λ)
∣∣≤ lim sup

n→∞
1

n

[
Varλ(Mn − M̄n)

1/2
1,1 Varλ(N̄n)

1/2
1,1

]
+ lim sup

n→∞
1

n

[
Varλ(Nn − N̄n)

1/2
1,1

(
Varλ(Mn − M̄n)

1/2
1,1 + Varλ(M̄n)

1/2
1,1

)]
. (4.3)
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We will first show the following bounds (which are in fact actual limits):

lim sup
n→∞

1

n
Varλ(N̄n)1,1 ≤ C (4.4)

lim sup
n→∞

1

n
Varλ(M̄n)1,1 ≤ C (4.5)

lim sup
n→∞

1

n
Varλ(Mn − M̄n)1,1 ≤ Cδ. (4.6)

The first two bounds (4.4) and (4.5) follow since N̄n = M̄n is a process in the homogeneous environment with iid
increments uniformly bounded in λ and δ.

For (4.6), observe that (Mn − M̄n) · e1 is again a martingale with

Eλ

[(
(Mn − M̄n) · e1 − (Mn−1 − M̄n−1) · e1

)2]
≤ 2Eλ

[(
(Xn − Xn−1) · e1 − (X̄n − X̄n−1) · e1

)2]+ 2Eλ

[(
dω,λ(Xn−1) · e1 − dω̄,λ(X̄n−1) · e1

)2]
,

where dω,λ(x) = Ex
ω,λ[X1 − X0]. By (4.2), the first term is of order δ. We have∥∥dω,λ(x) − dω̄,λ(x)

∥∥≤ Cδ, (4.7)

so that the second term is of order at most δ as well. Consequently,

lim sup
n→∞

1

n
Eλ

[(
(Mn − M̄n) · e1

)2]≤ Cδ.

With the bounds (4.4) to (4.6), we may bound (4.3) as∣∣v′
1(λ) − v̄′

1(λ)
∣∣≤ C

√
δ + C lim sup

n→∞
1

n
Varλ(Nn − N̄n)

1/2
1,1 . (4.8)

To bound the remaining variance, we decompose

(Nn − N̄n) · e1 = (Xn − X̄n − n
(
v(λ) − v̄(λ)

)) · e1 = (Mn − M̄n) · e1 + Zn, (4.9)

where

Zn =
n−1∑
k=0

(
dω,λ(Xk) − dω̄,λ(Xk)

) · e1 − (v1(λ) − v̄1(λ)
)
. (4.10)

Note that we obtain from (4.9) and (3.3) that

Eλ[Zτ2 − Zτ1 ] = 0. (4.11)

We already know from (4.6) that the difference of the martingales in (4.9) is nicely bounded, so we just need to bound
(the n → ∞ limit of) Eλ[(Zn)

2]/n. Below we estimate this limit.

lim
n→∞

1

n
Eλ

[
(Zn)

2]= lim
n→∞

Eλ[(Zτn)
2]

Eλ[τn]

= Eλ[(Zτ2 − Zτ1)
2] + 2Eλ[(Zτ3 − Zτ2)(Zτ2 − Zτ1)]

Eλ[τ2 − τ1]

≤ 3
Eλ[(Zτ2 − Zτ1)

2]
Eλ[τ2 − τ1] . (4.12)
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For the first equality, we just notice that the limit does not change when taken along the subsequence of regeneration
times. For the second equality we use the fact that (Zτn − Zτn−1 , τn − τn−1) is a stationary 1-dependent sequence, and
for the inequality we just use Cauchy–Schwartz. Furthermore, let

ξn =
n−1∑
k=0

(
dω,λ(Xk) − dω̄,λ(Xk)

) · e1. (4.13)

Then (4.11) implies that the speed may be written as

v1(λ) − v̄1(λ) = Eλ[ξτ2 − ξτ1]
Eλ[τ2 − τ1] . (4.14)

For the last line in (4.12), we obtain then by Jensen’s inequality

Eλ[(Zτ2 − Zτ1)
2]

Eλ[τ2 − τ1] ≤ 2
Eλ[(ξτ2 − ξτ1)

2]
Eλ[τ2 − τ1] + 2

Eλ[(τ2 − τ1)
2]

Eλ[τ2 − τ1]
(
v1(λ) − v̄1(λ)

)2
= 2

Eλ[(ξτ2 − ξτ1)
2]

Eλ[τ2 − τ1] + 2
Eλ[(τ2 − τ1)

2]
Eλ[τ2 − τ1]

(
Eλ[(ξτ2 − ξτ1)]
Eλ[τ2 − τ1]

)2

≤ 2
Eλ[(ξτ2 − ξτ1)

2]
Eλ[τ2 − τ1]

(
1 + Eλ[(τ2 − τ1)

2]
Eλ[τ2 − τ1]2

)
. (4.15)

From the moment bounds in Lemma 3.1 and (3.2), we conclude the uniform bound

Eλ[(Zτ2 − Zτ1)
2]

Eλ[τ2 − τ1] ≤ Cλ2
Eλ

[
(ξτ2 − ξτ1)

2]. (4.16)

With the estimates (4.12) and (4.16), the inequality (4.8) implies∣∣v′
1(λ) − v̄′

1(λ)
∣∣≤ C

√
δ + CEλ

[
λ2(ξτ2 − ξτ1)

2]1/2
. (4.17)

The uniform bound (4.7) gives

Eλ

[
λ2(ξτ2 − ξτ1)

2]≤ Cδ2
Eλ

[
λ2(τ2 − τ1)

2]≤ C
δ2

λ2
, (4.18)

where we used (3.1) for the last inequality. Of course, this bound blows up near λ = 0, but it shows that for any λ0 > 0,
the right hand side of (4.17) may be bounded uniformly for λ ∈ [λ0, λc] and then

lim
δ→0

sup
λ∈[λ0,λc]

∣∣v′
1(λ) − v̄′

1(λ)
∣∣= 0.

So for any λ0 > 0, we can choose δ = δ(λ0) small enough, so that the speed is monotone on [λ0,∞). It remains to
show that for some ellipticity constant δ > 0, we have monotonicity on the whole range of [0,∞).

Now suppose there are environment measures compatible with our a priori bound δ ≤ 1
2 such that the speed is

not monotone on [0,∞). If there is some δ′ > 0 such that none of these measures satisfies the uniform ellipticity
assumption with δ′, we may just choose δ0 in Theorem 1.1 accordingly to exclude these measures. Otherwise, there
exists a sequence P (n) of environment measures with ellipticity constants δn → 0 and such that the speed is not
monotone. In this case we may find a sequence of λn > 0 with |v′

n,1(λn) − v̄′
n,1(λn)| ≥ ε0, where vn,1 is the first

coordinate of the speed under P (n). By the bounds (4.17) and (4.18), we have necessarily λn → 0 and the left hand
side of (4.18) does not vanish. To complete the proof it remains to show that such a sequence cannot exist. The
following lemma, combined with (4.17), shows indeed that the existence of such a sequence is impossible.
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Lemma 4.1. For any sequence of environment measures P (n) with ellipticity constants δ(n) → 0 and any sequence
λn with λn → 0,

lim
n→∞E

(n)
λn

[
λ2

n(ξτ2 − ξτ1)
2]= 0.

Proof. To simplify notation, let us drop some of the indices n, in particular we write λ for λn. We have for i = 1,2

E
(n)
λ

[
λ2(ξτi

)2]≤ ∞∑
N=1

E
(n)
λ

[
λ2(ξ∗

N/λ2

)21{(N−1)/λ2≤τi<N/λ2}
]

≤
∞∑

N=1

E
(n)
λ

[
λ3|ξ∗

N/λ2 |3
]2/3

P
(n)
λ

(
τi ≥ N/λ2)1/3

,

with

ξ∗
N/λ2 = max

0≤k≤N/λ2
ξk.

By the moment bound for τi ,

E
(n)
λ

[
λ2(ξτi

)2]≤ C

∞∑
N=1

E
(n)
λ

[
λ3
∣∣ξ∗

N/λ2

∣∣3]2/3
e−cN .

Using the decomposition of ξk = (Mk − M̄k) · e1 + (Xk − X̄k) · e1 into a martingale term with bounded increments
and the process Xk , Doob’s inequality and the bound in Lemma 3.2 implies

E
(n)
λ

[
λ4
∣∣ξ∗

N/λ2

∣∣4]≤ CN4, (4.19)

such that by the dominated convergence theorem the assertion of the lemma will follow once we show that for every
N ,

lim
n→∞E

(n)
λ

[
λ3
∣∣ξ∗

N/λ2

∣∣3]= 0.

We write the expectation with respect to the unbiased measure,

E
(n)
λ

[
λ3
∣∣ξ∗

N/λ2

∣∣3]= E
(n)
0

[
λ3
∣∣ξ∗

N/λ2

∣∣3G(ω(n), λ,N/λ2)],
with

G(ω,λ,m) = dPω,λ

dPω,0
(Xk;0 ≤ k ≤ m),

and ω(n) distributed according to P (n). We know that

G
(
ω(n), λ,N/λ2)= exp

(
λMN/λ2 · e1 − 1

2
E

(n)
0

[
(λMN/λ2 · e1)

2]+ o(λ)

)
,

with an error term uniform in δ. Since δ and the distribution of ω(n) is now varying with λ, MN/λ2 is now a triangular
array of martingales. Thanks to the fact that all increments are uniformly (in δ and λ) bounded, the CLT for arrays of
martingales yields

G
(
ω(n), λ,N/λ2) d−−−→

n→∞ eM̂N ·e1− 1
2 E[(M̂N ·e1)

2],
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with M̂N a Gaussian random variable. Again, this convergence is complemented by a good moment bound, see (3.6),

E
(n)
0

[
G
(
ω(n), λ,N/λ2)p]≤ ep2 N

2 +1

for all n and p ≥ 1. Therefore, it suffices to show

λξ∗
N/λ2 −−−→

n→∞ 0 (4.20)

in probability. Until now we tacitly ignored that dω,λ(x) in the definition of ξn = ξn(λ) depends on λ, but by the bound∥∥(dω,λ(x) − dω̄,λ(x)
)− (dω,0(x) − dω̄,0(x)

)∥∥≤ Cδλ

we have

λ
∣∣ξ∗

N/λ2(λ) − ξ∗
N/λ2(0)

∣∣≤ CNδ.

Therefore, it suffices to show that λξ∗
N/λ2(0) goes in probability to zero as n goes to infinity. Recall that since for

λ = 0 the local drift in the environment ω̄ is zero, i.e. dω̄,0(x) = 0,∀x, we get in fact

ξn(0) =
n−1∑
k=0

dω,0(Xk) · e1.

Lemma 4.2 (with L of that lemma set to be N/λ2) below shows that

E
(n)
0

[
ξ∗
N/λ2(0)

2]≤ CNλ−2δ,

so

E
(n)
0

[(
λξ∗

N/λ2(0)
)2]≤ CNδ

which goes to zero as n goes to infinity since then δ = δ(n) → 0. �

The next lemma is now all that is missing. The main idea of its proof originated, to the best of our knowledge, in
[7], and was further developed by [13] (Proposition 3.3) and [14] (Lemma 2.4).

Lemma 4.2. There exists a constant C > 0 depending only on the dimension, such that for all L ≥ 1 and δ ≤ 1
2 , we

have, with dω(·) = dω,0(·),

E0

[
sup

0≤n≤L

∥∥∥∥∥
n−1∑
k=0

dω(Xk)

∥∥∥∥∥
2]

≤ CLδ.

Proof. Recall that the environment measure Q with

dQ

dP
(ω) = Z−1

∑
|e|=1

ω(0, e)

is stationary, reversible and ergodic for the process (ω̂n)n of the environment seen from the particle (see [14] and
[12] for the definition of (ω̂n)n and some properties). If δ ≤ 1

2 , the density satisfies c ≤ | dQ
dP

(ω)| ≤ C with positive
constants c,C depending only on the dimension. Therefore we may consider expectation with respect to Q × Pω ,
which we denote by EQ. Under this measure,

Mn = (Xn − X̄n) − (X0 − X̄0) −
n−1∑
k=0

dω(Xk)
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is a martingale with respect to the filtration Fn = σ({ω̂0, . . . , ω̂n}). Since by time reversal, for any n ≥ 1, the sequence(
(X1 − X0) − (X̄1 − X̄0), . . . , (Xn − Xn−1) − (X̄n − X̄n−1), ω̂0, . . . , ω̂n

)
has the same distribution as(

(X̄n − X̄n−1) − (Xn − Xn−1), . . . , (X̄1 − X̄0) − (X1 − X0), ω̂n, . . . , ω̂0
)

under Q0 × Pω, we have that

M−
n = (XL−n − X̄L−n) − (XL − X̄L) −

n−1∑
k=0

dω(XL−k)

is a martingale with respect to the filtration F−
n = σ({ω̂L, . . . , ω̂L−n}). Noting that

M−
L − M−

L−n = (X0 − X̄0) − (Xn − X̄n) −
n∑

k=1

dω(Xk),

we get

Mn + M−
L − M−

L−n = −2
n−1∑
k=0

dω(Xk) + dω(X0) − dω(Xn).

Therefore,

EQ

[
sup

0≤n≤L

∥∥∥∥∥
n−1∑
k=0

dω(Xk)

∥∥∥∥∥
2]

≤ 1

4
EQ

[
sup

0≤n≤L

∥∥Mn + M−
L − M−

L−n − dω(X0) + dω(Xn)
∥∥2].

The lemma follows then from Doob’s inequality, since |dω(x)| ≤ Cδ and

EQ

[‖ML‖2]+EQ

[∥∥M−
L

∥∥2]≤ CLδ. �

4.2. Proof of Theorem 1.2

The proof follows the arguments of [5], where the speed of biased random walk on a percolation cluster is studied.
Note that the environment measure with

P
(
ω(0, e) = 1

)= p = 1 − P
(
ω(0, e) = κ

)
generates a percolation graph consisting of the edges with conductance 1, connected by κ-edges. So if p > 1

2 and κ

small enough, we would expect the random walk to behave like the random walk on the percolation cluster for most
times, with short excursions along κ-edges. In analogy with the percolation case, we say in this section that an edge
{x, y} is open if ω(x, y) = 1 and (infinite) cluster will mean the (infinite) cluster connected by open edges.

We choose a bias λ1, such that the random walk on the percolation cluster has a positive speed and show

v1(λ1) ≥ c0 (4.21)

for a positive c0 independent of κ . On the other hand, for a larger bias λ2, chosen such that the random walk on the
percolation cluster has zero speed, we show

v1(λ2) ≤ c0/2 (4.22)

for κ sufficiently small. The combination of these two bounds yields the statement of Theorem 1.2.



The speed of biased random walk among random conductances 877

4.2.1. A lower bound for v1(λ1)

Denote the infinite cluster connected by open edges by I .

Definition 4.1. A point x ∈ Z
2 is good, if there exists an infinite path x = x0, x1, x2, . . . such that for all k ≥ 1

(i) |(xk − xk−1) · e2| = 1 and (xk − xk−1) · e1 = 1,
(ii) the edges {xk−1, xk−1 + e1}, {xk−1 + e1, xk} are open.

Let J be the set of good vertices. We say a vertex x is bad, if x ∈ I and x is not good. Connected components of
I \ J are called traps. For a vertex x, let T (x) be the trap containing x (being empty if x is good). The length of the
trap of x is

L(x) = sup
{
(y − z) · e1 : y, z ∈ T (x)

}
and the width is

W(x) = sup
{
(y − z) · e2 : y, z ∈ T (x)

}
.

If T (x) is empty, then we take L(x) = W(x) = 0. The following estimate is Lemma 1 in [5].

Lemma 4.3. For every p ∈ ( 1
2 ,1) there exists α = α(p) such that P(L(0) ≥ n) ≤ αn and P(W(0) ≥ n) ≤ αn for

every n. Further, limp→1 α(p) = 0.

Let H(n) be the σ -algebra generated by the history of the random walk until time n, i.e., H(n) =
σ({X0 = 0,X1,X2, . . . ,Xn}). Let P

H(n)
ω,λ be the conditional distribution of Pω,λ given H(n), and P

H(n)
λ be the condi-

tional distribution of Pλ given H(n). Define τn(h) = min{i > n : Xi · e1 = h}. The following estimate is essential in
the proof of the lower bound.

Lemma 4.4. There exists D′ = D′(λ) such that for every � ≥ 1 and for every configuration ω such that x is a good
point,

P
H(n)
ω,λ

(
τn(x · e1 − �) ≤ τn(x · e1 + �/3)|Xn = x

)
< D′e−λ�/3.

Proof. Consider the box B = x + [−�, �/3] × [−eλ�, eλ�] with right face B+ = x + {�/3} × [−eλ�, eλ�]. From the
general theory of electrical networks, see [9] or [17], we have the inequality

P
H(n)
ω,λ

(
τn(x · e1 − �) ≤ τn(x · e1 + �/3)|Xn = x

)≤ Cx,∂B\B+

Cx,B+
,

where Cx,A denoted the effective conductance between a point x and a set A (see also Fact 2 in [5]). The conductance
Cx,B+ is bounded from below by the conductance of a good path from x to B+, which is at least D1e

λ2x·e1 for some
D1 = D1(λ). Furthermore, we have the upper bound

Cx,∂B\B+ ≤ Cx,∂B− + Cx,∂B1 + Cx,∂B2 ,

where

B− = x + {−�} × [−eλ�, eλ�
]
,

B1 = x + [−�, �/3] × {−eλ�
}
,

B2 = x + [−�, �/3] × {eλ�
}
.
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The effective conductance Cx,∂B− is bounded from above by the sum of the edge weights between z and z + e1, for
z ∈ B−. But for every such z, the weight is

ω(z, z + e1)e
λ(2z·e1+1) ≤ eλ(2x·e1−2�+1).

There are at most 2eλ� + 1 such edges. Therefore Cx,∂B− ≤ D2e
λ(2x·e1−�) for some D2 = D2(λ). Finally, the Nash–

Williams inequality gives

Cx,Bi
≤ e−λ�

x·e1+�/3∑
i=x·e1−�

e2λ(i+1) ≤ D3e
λ(2x·e1−�/3)

for some D3 = D3(λ). Combining the bounds for the effective conductances, we get the desired bound for the exit
probability. �

Let G(x) be the event that x is a good point. We call a time point n a fresh epoch, if (Xn −Xk) · e1 > 0 for all k < n

and let F(n) be the event that n is a fresh epoch. From the bound in Lemma 4.4, we get the following inequalities
(Lemma 3 and Lemma 4 in [5]). In the following, take p so close to 1 that α(p) in Lemma 4.3 is less than 1. Then
there exists a constant D = D(λ,p) such that

P
H(n)
λ

(
there is an m ≥ n such that (Xm − Xn) · e1 ≤ −�|F(n),G(Xn)

)≤ De−λ
√

�/D, Pλ-a.s. (4.23)

Let τ ′
n(h) be the first fresh epoch later than n, such that the random walk hits a good point whose first coordinate is

larger or equal to h. Then, there exists a constant K = K(λ,p) such that for any � ≥ 1

P
H(n)
λ

(
τ(Xn · e1 − �) < τ ′

n(Xn · e1 + �/6)
∣∣G(Xn), max

0≤i≤n
(Xi − Xn) · e1 <

√
�
)

≤ Ke−λ
√

�/K, (4.24)

Pλ-almost surely. In particular,

P
H(n)
λ

(
τ(Xn · e1 − �) < τ ′

n(Xn · e1 + �/6)|F(n),G(Xn)
)≤ Ke−λ

√
�/K, (4.25)

Pλ-almost surely. From these bounds, the following lower bound for the speed is proven. Note that the constant is
independent of κ .

Lemma 4.5. For λ sufficiently small, there exists a constant C = C(p) such that

Pλ

(
Xn · e1 < Cn1/10)≤ Cn−2.

Let us highlight the only change necessary in the proof given in [5]: Therein, the Carne-Varopoulos bound

P x
ω,λ(Xn = y) ≤ 2

√
π(y)

π(x)
exp

(
−d(x, y)2

2n

)
(4.26)

is applied, with π the reversible measure and d(·, ·) the graph distance. On the percolation cluster, it is easy to get a
further upper bound, since in this case,

eλ(2x·e1−1) ≤ π(x) ≤ 4eλ(2x·e1+1),

as every point x in the cluster is the endpoint of an edge with conductance 1. Of course, the upper bound is still valid
in our case, but the lower bound depends on κ if x is surrounded by only κ-edges. To get a lower bound independent
of κ , let J (x) be the connected component of points surrounded by κ-edges. If J (x) is empty, we can proceed as in
the percolation case. Otherwise, let

Tx = inf
{
n ≥ 0 : Xn /∈ J (x)

}
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and define for positive integers dn the events

An = {diam
(
J (z)
)≤ dn for all z − x ∈ [−n,n]2},

then by Lemma 4.3,

P
(
Ac

n

)≤ n2P
(
diam
(
T (0)
)
> dn

)≤ 2n2αdn/2. (4.27)

For an environment ω ∈ An we have then for the hitting probability

P x
ω,λ(Xn = y) ≤

∑
z∈Z2

∑
1≤m≤n

P z
ω,λ(Xn−m = y)P z

ω,λ(Tx = m,XTx = z). (4.28)

On An, there are at most d2
n points z such that the second probability in the sum is nonzero, and for each such z we

have by the Carne-Varopoulos bound

P z
ω,λ(Xn−m = y) ≤ 4eλ((y−z)·e1+1) exp

(
− d(z, y)2

2(n − m)

)
≤ 4eλ((x−y)·e1+dn+1) exp

(
− (d(x, y) − dn)

2

2n

)
.

Let dn = γ log(n) for γ = −8/ log(α), then for all but finitely many n, An occurs. For all ω ∈ An and 1 ≤ i < j ≤ n

we conclude by the union bound

P x
ω,λ

(
Xi · e1 = Xj · e1 but ‖Xi − Xj‖ ≥ n6/10)≤ 4n4d2

neλ(dn+1) exp

(
− (n6/10 − dn)

2

2n

)
≤ exp

(
−1

5
n1/10
)

for n sufficiently large, which yields the necessary estimate in [5].

Lemma 4.6. There exists a constant c = c(λ,p) > 0 such that

Pλ(Xn · e1 ≥ 1 for all n ≥ 1) > c.

Proof. Let �0 = N be a positive integer and �i+1 = 13�i/12 for i ≥ 1. Define recursively the times t0 = N , ti+1 =
τ ′
ti
(Xti · e1 + �i/6) and the events

A0 = {XN = (N,0) and (N,0) is a good point
}

and

Ai = {τ ′
ti
(Xti · e1 + �i/6) < τti (Xti · e1 − �i)

}
.

Then Pλ(A0) = cN > 0 and by (4.25),

Pλ

(
Ac

i

)≤ Ke−λ
√

�i/K .

Therefore,

Pλ

( ∞⋂
i=0

Ai

)
≥ cN

(
1 − Ce−λ

√
N/K
)
,

which is positive for N large enough. When all of the events Ai occur, then ti < ∞ for all i and if m ≥ ti ,

Xm · e1 > Xti · e1 − �i ≥ Xt0 · e1 − �0 + 1

12

i−1∑
j=1

�j ≥ N

12

(
13

12

)i−1

,

which implies in particular Xn · e1 ≥ 1 for all n ≥ 1. �
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We now introduce a regeneration structure, slightly different from the one used to prove Theorem 1.1. Recall that
n is a fresh epoch, if Xn · e1 > Xk · e1 for all k < n. If n is a fresh epoch and additionally, Xn · e1 < Xk · e1 for all
k > n, we call n a regeneration and we denote by Rn the nth regeneration time.

For z ∈ Z
2, let ω+

z = {ωz(x, y) : x ∼ y, x · e1 ≥ z · e1} be the environment to the right of z. The following lemma is
standard in the theory of random walks in random environments, see [20].

Lemma 4.7. The sequence(
(XRn+k − XRn)k≥0,ω

+
Rn

)
n≥1

is stationary and ergodic. Moreover, the distribution of ((XRn+k − XRn)k≥0,ω
+
Rn

) is given by the distribution of

((Xk)k≥0,ω
+
0 ) under Pλ, conditioned on {Xn · e1 ≥ 1 for all n ≥ 1}.

It follows from Lemma 4.7 that v(λ) exists and is nonzero if and only if Eλ[R2 − R1] < ∞ and in this case

v(λ) = Eλ[XR2 − XR1]
Eλ[R2 − R1] . (4.29)

Since (XR2 − XR1) · e1 ≥ 1, the inequality (4.21) follows then from

Eλ[R2 − R1] ≤ C,

with a constant C = C(λ,p) independent of κ . This inequality follows by the same arguments as Lemma 8 in [5],
making use of Lemma 4.4, Lemma 4.5 and Lemma 4.6.

4.2.2. An upper bound for v1(λ2)

The upper bound (4.22) follows from the fact that for small values of κ , the random walk will spend a long time in
dead ends of the percolation cluster. To be more precise, let I (x) be the connected component of x connected by open
edges (i.e., with conductance 1). We call x ∈ Z

2 the beginning of a dead end, if x belongs to the infinite cluster to its
left, but not to the infinite cluster to its right, i.e., I (x)∩ {z : (z − x) · e1 < 0} is infinite but I (x)∩ {z : (z − x) · e1 ≥ 0}
is finite. The dead end starting at x is the finite set I (x) ∩ {z : (z − x) · e1 ≥ 0}. Let A be a dead end starting at the
origin and d(A) = max{z · e1 : z ∈ A} the depth of A. The time spent in A will be denoted by

TA = inf{n ≥ 1 : Xn · e1 ≤ 0}. (4.30)

If there is no dead end at the origin, set A =∅, d(A) = 0 and TA = 0. For an environment ω with ω(x, y) ∈ {κ,1} for
x ∼ y, let ω̄ be the environment obtained from ω by setting κ = 0. We use the coupling introduced in Section 2 and
denote by (X̄n)n the random walk in the environment ω̄. It was shown in [5], that there exists a λu < ∞, such that for
λ > λu, Eλ[T̄A] = ∞, when T̄A is the time X̄n spends in A. In the following, fix such a λ. We claim that

lim
κ→0

Eλ[TA] = ∞. (4.31)

Indeed, as in (4.2),

Pω,λ(Xn − Xn−1 �= X̄n − X̄n−1|Xn−1 = X̄n−1 = x) ≤ Cκ (4.32)

for all n ≥ 1 and x ∈ Z
2. Let

D = inf{n ≥ 1 : Xn − Xn−1 �= X̄n − X̄n−1}.
Since (4.32) holds independent of x, D can be coupled with a geometric distributed random variable G with mean
(Cκ)−1 independent of TA such that D ≥ G. Therefore,

Eλ[TA] ≥ Eλ[T̄A ∧ D] ≥ Eλ[T̄A ∧ G] −−−→
κ→0

Eλ[T̄A] = ∞.
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Next, we define a sequence of ladder times L0,L1, . . . with L0 = 0 and let A0 be the dead end starting at the origin
(possibly empty). Inductively, let Li+1 be the first fresh epoch with XLi+1 · e1 > XLi

· e1 + d(Ai) and let Ai+1 be
the dead end beginning at XLi+1 . Since Xn is transient to the right, there are infinitely many ladder times. Note that
Li+1 − Li ≥ TAi

and the random variables TA1, TA2 , . . . are iid under Pλ and satisfy (4.31). Additionally, the random
variables XLi+1 · e1 − XLi

· e1 = d(Ai) + 1 are iid and have exponential moments (independent of κ) by Lemma 4.3.
This implies for the speed

v1(λ) = lim
n→∞

XLn · e1

Ln

≤ lim
n→∞

∑n
i=0 d(Ai) + 1∑n

i=0 TAi

≤ C

Eλ[TA] .

Letting κ → 0, we obtain (4.22) by (4.31). This completes the proof of Theorem 1.2.
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