
TUM School of Computation,
Information and Technology
Technische Universität München

Unsupervised Anomaly Detection and Localization
for Visual Quality Inspection

Paul Bergmann

Vollständiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universität München zur Erlangung des akademischen
Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:
Prof. Dr. Stephan Günnemann

Prüfende der Dissertation:
1. Hon.-Prof. Dr. Carsten Steger
2. Prof. Dr.-Ing. Bodo Rosenhahn,

Leibniz Universität Hannover

Die Dissertation wurde am 24.06.2022 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 19.09.2022 angenommen.

Abstract

Anomaly detection refers to the identification of data samples that deviate from a con-
cept of normality. The reliable detection of anomalies is of great importance in many
application areas, such as medical imaging, autonomous driving, or the automated de-
tection of defects in industrial manufacturing processes. In this thesis, we focus on the
latter. The early identification of product errors can reduce costs, improve quality, and
prevent safety risks.

We develop computer vision methods for the robust detection and precise localization
of anomalous structures. The presented algorithms are based on unsupervised deep
learning techniques that are trained exclusively on anomaly-free samples. Due to the
lack of suitable benchmark datasets, we additionally introduce several new datasets and
performance metrics that facilitate a thorough evaluation of anomaly detection models.

We begin with an investigation of autoencoders that compute anomaly scores by per-
pixel comparisons between an input and a reconstructed image. We show that there are
cases in which they perform poorly even if the reconstruction is only slightly inaccurate.
We then develop a new autoencoder variant that instead employs a perceptual error
function based on the structural similarity index. In our experiments, it significantly
improves over autoencoders that rely on pixelwise residuals. Furthermore, we identify a
need for larger anomaly detection datasets.

We then present MVTec AD, a comprehensive real-world dataset for unsupervised
anomaly detection in industrial inspection scenarios. We conduct an extensive bench-
mark of prior art in anomaly detection on this dataset and find that there is considerable
room for improvement. Next, we develop a new anomaly detection framework based on
Student–Teacher learning that leverages descriptors obtained from pretrained neural
networks for anomaly detection. Our experiments show that it substantially improves
over existing methods.

Subsequently, we focus on the detection of anomalies that violate logical constraints
of the anomaly-free training data, such as missing object parts or permissible objects oc-
curring in invalid locations. We introduce the MVTec LOCO AD dataset, which reveals
that existing methods do not perform well in the detection of such logical anomalies.
Therefore, we extend our Student–Teacher framework by a global network branch that
captures the underlying logical constraints of the anomaly-free training data. Our new
method sets a new state of the art in the detection of logical anomalies.

Finally, we tackle the problem of geometric anomaly detection in three-dimensional
data. We introduce MVTec 3D-AD, the first comprehensive dataset for this task. We
then adapt our Student–Teacher framework to three dimensions and present 3D-ST,
an unsupervised method for 3D anomaly detection in point cloud data. It performs
significantly better than existing 3D anomaly detection approaches.

iii

Zusammenfassung

Anomalieerkennung bezieht sich auf die Identifizierung von Daten, die von einem Nor-
malzustand abweichen. Die zuverlässige Erkennung von Anomalien ist in vielen Anwen-
dungsbereichen von großer Bedeutung, wie zum Beispiel in der medizinischen Bildge-
bung, beim autonomen Fahren, oder bei der automatischen Erkennung von Defekten in
industriellen Fertigungsprozessen. In dieser Arbeit konzentrieren wir uns auf Letzteres.
Die frühzeitige Erkennung von Produktfehlern kann Kosten senken, die Produktqualität
verbessern und Sicherheitsrisiken vorbeugen.

Wir entwickeln Bildverarbeitungsmethoden zur robusten Erkennung und präzisen
Lokalisierung von anomalen Strukturen. Die vorgestellten Algorithmen basieren auf
unüberwachten Deep-Learning-Verfahren, die ausschließlich auf anomaliefreien Daten
trainiert werden. Aufgrund des Mangels an geeigneten Benchmark-Datensätzen stellen
wir zusätzlich mehrere neue Datensätze und Evaluationsmetriken vor, die eine um-
fassende Auswertung von Modellen zur Anomalieerkennung ermöglichen.

Wir beginnen mit einer Untersuchung von Autoencodern, die Anomaliewerte durch
pixelweise Vergleiche zwischen einem Eingabebild und einem rekonstruierten Bild berech-
nen. Wir zeigen, dass bereits geringfügige Ungenauigkeiten in der Rekonstruktion zu
schlechten Erkennungsraten führen können. Daraufhin entwickeln wir eine neue Art
von Autoencodern, die Anomaliewerte basierend auf einem visuellen Ähnlichkeitsmaß,
dem Structural Similarity Index, berechnet. Unsere Experimente zeigen eine deutliche
Verbesserung gegenüber Autoencodern, die auf pixelweisen Fehlerfunktionen basieren.
Außerdem stellen wir einen Bedarf an größeren Forschungsdatensätzen für die Erkennung
von Anomalien fest.

Deshalb stellen wir MVTec AD vor, einen umfangreichen Datensatz für die Erken-
nung von Anomalien in industriellen Inspektionsszenarien. Wir führen einen Vergleich
bestehender Methoden zur Anomalieerkennung auf diesem Datensatz durch und stellen
erhebliches Verbesserungspotential fest. Anschließend entwickeln wir ein neues Ver-
fahren basierend auf einem Student–Teacher Ansatz. Dieses verwendet Deskriptoren,
die aus vortrainierten neuronalen Netzwerken extrahiert werden. Unsere Experimente
zeigen signifikante Verbesserungen in der Erkennungsleistung im Vergleich zu bestehen-
den Methoden.

Anschließend konzentrieren wir uns auf die Erkennung von Anomalien, die bestimmte
logische Bedingungen der anomaliefreien Trainingsdaten verletzen, zum Beispiel fehlende
Objektteile oder das Auftreten anomaliefreier Objekte an ungültigen Stellen. Wir stellen
den MVTec LOCO AD Datensatz vor, der deutlich macht, dass bestehende Methoden
oft Probleme bei der Erkennung derartiger Anomalien haben. Daher erweitern wir un-
sere Student–Teacher Methode um einen globalen Netzwerkzweig, welcher die logischen
Zusammenhänge der anomaliefreien Trainingsdaten erfasst. Unsere neue Methode zeigt

v

Zusammenfassung

deutliche Verbesserungen hinsichtlich der Erkennung von logischen Anomalien gegenüber
bestehenden Verfahren.

Abschließend befassen wir uns mit der Erkennung geometrischer Anomalien in dreidi-
mensionalen Daten. Wir stellen MVTec 3D-AD vor, den ersten umfassenden Datensatz
für diese Anwendung. Anschließend adaptieren wir unsere Student–Teacher Methode
auf dreidimensionale Daten und präsentieren 3D–ST, eine unüberwachte Methode zur
Erkennung von geometrischen Anomalien in 3D Punktwolken. Unsere Methode erreicht
Erkennungsraten, die deutlich über denen bestehender Methoden liegen.

vi

Acknowledgements

During the last few years, I had the great privilege to work with many outstanding
people to whom I am deeply indebted. First and foremost, I would like to thank my
academic advisor Prof. Carsten Steger, for giving me the opportunity to write this thesis
and his continuous support and guidance. I would further like to thank Prof. Rosenhahn
and Prof. Günnemann for reviewing this dissertation and completing my examination
committee.

Furthermore, I would like to thank all former and current members of the MVTec
research department, namely Kilian Batzner, Dr. Tobias Böttger, Dr. Bertram Drost,
Prof. Carsten Steger, Michael Fauser, Dr. Patrick Follmann, Dr. Markus Glitzner, Lars
Heckler, Philipp Härtinger, Rebecca König, Jan-Hendrik Neudeck, Dr. David Sattlegger,
and Prof. Markus Ulrich. Thank you for inspiring discussions and for creating a stimu-
lating work environment. I couldn’t have wished for better colleagues.

I would like to give special thanks to the entire Anomaly Detection Team at MVTec.
Thank you Kilian – I still don’t know how you managed to turn countless hours in the lab
acquiring dataset images into a fun time. Thank you Micha, for always keeping a clear
head, for your attention to detail, and the best code reviews I have ever received. David,
for our paper writing sessions and for being an amazing mentor. And Carsten, for sharing
your immense machine vision knowledge with me. Thank you all for accompanying me
on my anomaly detection journey from start to finish.

I would also like to thank my students. Sindy, Maximilian, Peter, Martin, and Xin, it
was a pleasure working with all of you and I have learned at least as much from you as
I hope you have learned from me.

Finally, I would like to thank my parents, on whose shoulders I stand. My sisters, Lisa
and Meike, for always being there for me. My friends, for being awesome. And Shuying,
for your unconditional love and support and for always being by my side. This would
not have been possible without all of you.

vii

Contents

Abstract iii

Zusammenfassung v

Acknowledgements vii

Contents ix

1 Introduction 1
1.1 Deep Learning for Anomaly Detection . 1

1.2 Supervised and Unsupervised Methods . 3

1.3 Different Characteristics of Anomalies . 4

1.4 Research Question . 5

1.5 Outline, Contributions, and Publications 6

2 Foundations 11
2.1 Unsupervised Anomaly Detection in Image Data 11

2.2 Evaluation of Anomaly Detection Algorithms 13

2.2.1 Anomaly Localization Metrics . 14

2.2.2 Anomaly Classification Metrics . 17

2.3 Fundamental Concepts in Deep Learning 17

2.4 Base Architectures for Unsupervised Anomaly Detection 22

2.4.1 Convolutional Autoencoders . 23

2.4.2 Generative Adversarial Networks 25

2.4.3 Feature Distribution Models . 26

2.4.4 Methods Not Based on Neural Networks 29

3 Structural Similarity Autoencoder 31
3.1 Introduction . 31

3.2 Methodology . 33

3.2.1 Autoencoders for Unsupervised Anomaly Detection 33

3.2.2 Structural Similarity . 35

3.3 Experiments . 37

3.3.1 Datasets . 37

3.3.2 Training and Evaluation Protocol 39

3.3.3 Results . 40

3.4 Conclusion . 41

ix

CONTENTS

4 The MVTec Anomaly Detection Dataset 43
4.1 Introduction . 43

4.2 Existing Datasets for Anomaly Detection 45

4.2.1 Classification of Anomalous Images 45

4.2.2 Localization of Anomalous Regions 46

4.3 Description of the Dataset . 47

4.4 Performance Metrics . 49

4.5 Threshold Selection . 50

4.6 Benchmark . 51

4.6.1 Training and Evaluation Protocol 52

4.6.2 Anomaly Localization Results . 54

4.6.3 Anomaly Classification Results . 59

4.6.4 Threshold Estimation Techniques 60

4.6.5 Time and Memory Consumption 61

4.7 Conclusion . 62

5 Student–Teacher Anomaly Detection 65
5.1 Introduction . 65

5.2 Related Work . 67

5.2.1 Anomaly Detection using Pretrained Networks 67

5.2.2 Open-Set Recognition with Uncertainty Estimates 68

5.3 Student–Teacher Anomaly Detection . 68

5.3.1 Learning Local Patch Descriptors 69

5.3.2 Ensemble of Student Networks for Deep Anomaly Detection 71

5.3.3 Multi-Scale Anomaly Detection . 73

5.4 Experiments . 74

5.4.1 MNIST and CIFAR-10 . 75

5.4.2 MVTec Anomaly Detection Dataset 76

5.5 Conclusion . 81

6 Logical Constraints in Unsupervised Anomaly Detection 83
6.1 Introduction . 83

6.2 Datasets for Unsupervised Anomaly Detection 86

6.3 The Logical Constraints Anomaly Detection Dataset 87

6.3.1 Description of the Dataset . 87

6.3.2 Annotations and Labeling Policies 88

6.3.3 The Saturated Per-Region Overlap (sPRO) 89

6.3.4 Selection of Saturation Thresholds 90

6.4 Benchmark . 91

6.4.1 Dataset Augmentation . 92

6.4.2 Experiment Setup . 92

6.4.3 Experiment Results . 94

6.5 Conclusion . 97

x

CONTENTS

7 Global Context Anomaly Detection 99
7.1 Introduction . 99
7.2 Description of Our Method . 100
7.3 Experiments on the MVTec LOCO AD Dataset 105

7.3.1 Training and Evaluation Protocol 105
7.3.2 Experiment Results . 106
7.3.3 Ablation Studies . 108

7.4 Experiments on the MVTec AD Dataset 113
7.5 Conclusion . 116

8 Unsupervised Detection of Geometric Anomalies in 3D Data 117
8.1 Different Representations of 3D Data . 117
8.2 Performance Evaluation for 3D Anomaly Detection 120
8.3 Deep Learning Models for 3D Anomaly Detection 122

9 The MVTec 3D Anomaly Detection Dataset 123
9.1 Introduction . 123
9.2 Description of the Dataset . 125

9.2.1 Data Acquisition and Preprocessing 127
9.2.2 Ground-Truth Annotations . 127
9.2.3 Performance Evaluation . 128

9.3 Benchmark . 129
9.3.1 Training and Evaluation Protocol 129
9.3.2 Experiment Results . 131

9.4 Conclusion . 136

10 Deep Geometric Descriptors for 3D Anomaly Detection 137
10.1 Introduction . 137
10.2 Learning Deep 3D Descriptors . 139
10.3 Student-Teacher Anomaly Detection in Point Clouds 139

10.3.1 Self-Supervised Learning of Dense Local Geometric Descriptors . . 140
10.3.2 Matching Geometric Features for 3D Anomaly Detection 143

10.4 Experiments . 144
10.4.1 Experiment Setup . 144
10.4.2 Experiment Results . 145
10.4.3 Ablation Studies . 146

10.5 Conclusion . 150

11 Conclusion 151
11.1 Summary . 151
11.2 Future Research . 152

Bibliography 155

xi

1 Introduction

Anomalies are patterns in data that differ from a concept of normality. Finding anoma-
lies is important, as their existence may indicate a faulty system or the occurence of an
unexpected external event that requires attention. In research, the anomaly detection
problem is studied from various viewpoints and application areas, such as network in-
trusion detection [Khraisat et al., 2019], credit card fraud detection [Shirodkar et al.,
2020], finding abnormalities in healthcare diagnosis records [Fernando et al., 2021], or
predictive maintanence of mechanical systems [Theissler et al., 2021]. In science in gen-
eral, the detection of anomalous events that contradict existing models may lead to new
insights and advances in human knowledge itself [Mehrotra et al., 2017].

Another area of research where anomaly detection is highly relevant is computer vision.
Here, anomalies occur as deviations from normal data acquired from visual sensors, such
as cameras. There are many real-world computer vision problems that benefit from
reliable anomaly detection systems. In medical imaging, for example, anomalies may
manifest themselves as diseases in brain scans that should be brought to the attention of
a medical expert. In autonomous driving, anomalies can take the form of obstacles on the
road that need to be detected by an on-board camera system to ensure road traffic safety.
A third example are automated visual inspection scenarios, where anomalies can occur
in the form of defects in manufactured products in a production line. Figure 1.1 shows
example images from computer vision datasets in each of these three areas, namely
the MVTec Anomaly Detection dataset [Bergmann et al., 2019a, 2021] for industrial
inspection, the Fishyscapes dataset [Blum et al., 2019] for autonomous driving, and
the BRATS dataset [Menze et al., 2015] for medical imaging. The MVTec Anomaly
Detection dataset is described in detail in Chapter 4. In this thesis, we study the
anomaly detection problem from a computer vision perspective.

1.1 Deep Learning for Anomaly Detection

One approach to identify anomalies in an image is to manually specify criteria for normal-
ity. In a production line, for example, one could implement an algorithm that measures
the diameter of a manufactured object in an image and specify a tolerance interval in
which the diameter of the object may vary. When a production error occurs and an ob-
ject with a diameter that lies outside the specified range is produced, it is marked as an
anomaly. While this approach may work for certain problems, it has several drawbacks.
First, it requires significant domain knowledge of the investigated problem. Designing
features that can reliably discriminate between anomaly-free and anomalous data points
is a complex task. Second, this approach does not generalize well. When a different
object needs to be inspected, this might require a system designer to come up with an

1

1 Introduction

Figure 1.1: Examples for application areas of anomaly detection in computer vision. The first
row shows example images of anomaly detection datasets from different domains.
The second row highlights anomalous regions in red. Images are taken from the
MVTec Anomaly Detection dataset [Bergmann et al., 2021] for industrial inspec-
tion, the Fishyscapes dataset [Blum et al., 2019] for autonomous driving, and the
BRATS dataset [Menze et al., 2015] for medical imaging.

entirely new set of features. Third, even if one can specify and measure criteria for
normality, a simple comparison to a specified range of allowed feature values might be
insufficient and more complex approaches are needed. Finally, such manual approaches
often require an a priori definiton of all possible anomalies. Unexpected anomalies that
were not explicitly programmed may not be found.

To circumvent these problems, anomaly detection can be tackled in a data-driven way
using machine learning. Instead of having to manually design criteria that distinguish
between anomalous and anomaly-free samples, these models can ideally learn them from
a representative set of images. Examples for frequently used models include Support
Vector Machines (SVM) [Schölkopf et al., 2001, Li et al., 2003], K-Nearest Neighbor
Classifiers (KNN) [Knorr et al., 2000, Ying et al., 2021], or Decision Trees [Reif et al.,
2008, Buschjager et al., 2022]. While they often work well on low-dimensional data, their
performance degrades when processing high-dimensional inputs such as natural images.
Again, one solution to this problem is to train these approaches on handcrafted lower-
dimensional representations extracted from the high-dimensional inputs, which comes
with the same drawbacks that were discussed above.

More recently, the field of deep learning has brought forward powerful techniques for
solving computer vision problems. In image classification [He et al., 2016, Tan and Le,
2019], semantic segmentation [Ronneberger et al., 2015, Jégou et al., 2017], or object
detection [Lin et al., 2017, Ren et al., 2017], for instance, deep learning models have
demonstrated impressive performance on high-dimensional data. They employ multi-
layer neural networks whose parameters are adjusted to minimize a target loss function
by performing backpropagation and gradient descent optimization. Instead of relying
on handcrafted descriptors, these models learn task-specific features directly from the

2

1.2 Supervised and Unsupervised Methods

Figure 1.2: Illustration of the anomaly detection problem from both a supervised and an unsu-
pervised perspective. In the supervised setting, anomaly-free as well as anomalous
data is required for model training. In the unsupervised case, models are trained
only on anomaly-free data.

high-dimensional input data. This also makes deep learning an attractive approach for
anomaly detection. Instead of having to explicitly design descriptors and criteria that
indicate normality, deep learning provides means to learn both directly from data.

1.2 Supervised and Unsupervised Methods

In machine learning, a fundamental distinction is made between supervised and unsuper-
vised methods. The former make use of annotations that provide additional information
about the dataset samples, such as class labels. Given a set of anomaly-free as well
as anomalous data points, a supervised approach could fit a discriminative model that
can separate the two classes. Supervised methods rely on the availability of anomalous
training samples as well as accurate annotations. In particular, the training samples
ideally capture the full range of conceivable anomalies. Unfortunately, achieving this
tends to be difficult since the nature of anomalies that may occur in practice is often
unknown. Furthermore, some anomalies may occur so rarely that it is practically impos-
sible to collect any training samples for them. Another reason is that obtaining precise
annotations can be a tedious and costly task.

A schematic illustration of the supervised setting of the anomaly detection problem
is given in Figure 1.2(a). A set of training data points that contains both anomalous
and anomaly-free data is used to create a supervised classifier that produces a decision
boundary that separates the two classes. During inference, the model attempts to clas-
sify unseen test samples. While in this example some of them are correctly classified,
its decision boundary is not discriminative enough to separate all anomalies from the
anomaly-free test data. This is because some of the anomalous test samples significantly
differ from the examples present in the training set.

Alternatively, anomaly detection can be addressed in an unsupervised setting. Unsu-
pervised models are trained exclusively on the provided data without the need for addi-
tional annotations. In particular, we want to build anomaly detection models that do not

3

1 Introduction

rely on the availability of anomalous training samples. They are trained only on a dataset
of anomaly-free data points and can detect anomalous inputs during inference. Unsuper-
vised models for anomaly detection ideally create a tight decision boundary around the
anomaly-free training samples, implicitly labeling everything else as anomalous. This
is illustrated in Figure 1.2(b). An unsupervised model was fitted to the anomaly-free
samples of the same dataset used in the supervised case. In contast to the supervised
setting, the unsupervised model now handles all anomalous test inputs correctly. This
is because it creates a decision boundary that surrounds the set of anomaly-free samples
in the feature space. While the creation of such a decision boundary seems straight-
forward in this two-dimensional example, it becomes increasingly challenging when the
dimensionality of the input data grows and the pairwise distances between all samples
converge to the same value [Kriegel et al., 2009, Xia et al., 2015]. This effect is par-
ticularly problematic for computer vision datasets, where input samples often contain
thousands of input dimensions.

1.3 Different Characteristics of Anomalies

Depending on the application under consideration, the types of anomalies that are of
interest can differ significantly. For instance, one might want to create a model that
treats images of a certain semantic class as the concept of normality. An example of
this is illustrated in Figure 1.3(a). Here, image samples that show a picture of a dog
are treated as anomaly-free. When images of a different object class occur, for example,
an image of a cat or a tennis ball, these should be identified as anomalous inputs. Such
problems tend to exhibit a large intra-class variance. The semantic concept of a dog,
for example, can be present in images that are visually very different from each other.
Hence, anomalies also need to significantly deviate from the training data manifold such
that they can be realiably recognized. Furthermore, it is common that anomalies make
up almost the entire image. Therefore, one is often less interested in the localization
of the anomaly within the image, but rather in the separation between anomalous and
anomaly-free samples.

In other applications, anomalies may occur only as subtle deviations from the anomaly-
free training data. In these cases, the intra-class variance within the training set is often
limited such that a distinction between anomalous and anomaly-free samples is still
possible. An example from the industrial inspection domain is shown in Figure 1.3(b),
where images of a hazelnut are inspected. Compared to images of dogs observed in
the wild, the hazelnuts do not differ too much from each other. However, in this case,
anomalies do not occur as entirely different object classes, but in the form of subtle
defects, such as holes or scratches on the surface of the nuts. The defects occur in
small, confined regions within the input image, while the rest of the image is considered
as anomaly-free. In these applications, it is often desirable to precisely localize the
anomalous region within the input image, in addition to making an image-level decision
as to whether an anomaly is present or not. The localization provides a visual explanation
for why a dataset sample is considered anomalous, which can increase the confidence in

4

1.4 Research Question

Figure 1.3: The characteristics of anomalies that are of interest may vary depending on the
application under consideration. For example, anomalies can occur as entirely new
semantic concepts (a). They may also appear as locally confined regions that differ
only slightly from the anomaly-free training data (b). The latter allows for the pixel-
precise localization of the anomalous regions. Images are taken from the ImageNet
dataset [Krizhevsky et al., 2012] (left) and the MVTec AD dataset [Bergmann et al.,
2021] (right).

the algorithm being used and may be helpful to determine the original cause of the
deviation. Furthermore, the localization result may be used to compute features for
additional processing steps, e.g., by measuring the geometric properties of a defect.

1.4 Research Question

In this thesis, we study the anomaly detection problem in the unsupervised setting.
This is motivated by the fact that in many real-world applications anomalous samples
are not available for training. In the past, efforts were made to develop new methods
and datasets for this task in one-class or multi-class classification scenarios [An and Cho,
2015, Andrews et al., 2016, Chalapathy et al., 2018, Masana et al., 2018, Roitberg et al.,
2019, Ruff et al., 2018, Burlina et al., 2019]. Here, it is assumed that anomalies manifest
themselves in the form of images of an entirely different class and a binary image-level
decision whether an image is anomalous or not is sufficient. Curiously, we find that little
work has been directed towards the development of methods that can localize anomalous
regions that only differ in a subtle way from the anomaly-free training data. However,
such methods are of great importance in many practical applications, for instance, in
industrial inspection. In this thesis, we make progress in this area. In particular, the
underlying research question of this thesis is:

Can we create new computer vision models for unsupervised anomaly
detection that accurately localize anomalous regions and improve

significantly upon existing approaches?

To study this question, we concentrate on industrial inspection scenarios as they con-
stitute an ideal use-case for the field of unsupervised anomaly detection. This is because:

5

1 Introduction

� It is difficult to cover the entirety of possible anomalies with labeled examples,
since defects in manufactured products can manifest themselves in very different
ways. Furthermore, anomalous training data is often unavailable due to the low
error rate of modern production lines.

� The acquisition and annotation of anomalous samples to train supervised anomaly
detection models is expensive and unsupervised models can provide a less cost
intensive alternative.

� Anomalies often occur in small, confined regions and a precise localization of the
defects within the image is desirable.

To cope with the high dimensionality of data obtained from modern computer vision
sensors and to circumvent the need for manual feature engineering, we leverage models
based on recent advances in deep learning.

1.5 Outline, Contributions, and Publications

The material presented in this thesis is the result of a series of research projects con-
ducted over the past years. Most of these resulted in publications in peer-reviewed
scientific conferences or journals and several chapters contain material from these pub-
lished articles. The following provides a brief summary of the content of each chapter.
The respective publications that the individual chapters are based on are also listed.

Chapter 2: Foundations. This chapter briefly summarizes the theoretical prerequisites
on which the subsequent parts of this thesis are based. In particular, it formally defines
the unsupervised anomaly detection problem and introduces popular base architectures
for building anomaly detection systems, such as convolutional autoencoders or generative
adversarial networks. We further give a brief introduction to frequently used terminology
in deep learning.

Chapter 3: Structural Similarity Autoencoder. Convolutional autoencoders are a pop-
ular base architecture for anomaly detection models. Existing approaches typically com-
pare an input image to a reconstructed image by pixelwise error measures. As a result,
they are sensitive to slight inaccuracies in the reconstruction. In this chapter, we improve
the performance of these methods by using a perceptual loss function based on the struc-
tural similarity index (SSIM). In contrast to pixelwise measures, our SSIM-Autoencoder
examines inter-dependencies between local image regions.

Paul Bergmann, Sindy Löwe, Michael Fauser, David Sattlegger, Carsten Steger:
Improving Unsupervised Defect Segmentation by Applying Struc-
tural Similarity to Autoencoders; in: Proceedings of the 14th International
Joint Conference on Computer Vision, Imaging and Computer Graphics The-
ory and Applications (VISIGRAPP), Volume 5: VISAPP, 372-380, 2019, DOI:
10.5220/0007364503720380.

6

1.5 Outline, Contributions, and Publications

Chapter 4: The MVTec Anomaly Detection Dataset. Research in the field of anomaly
detection and localization requires suitable data to create and evaluate models. Unfor-
tunately, no comprehensive dataset for this task existed prior to this research project.
To fill this gap, we created the MVTec Anomaly Detection dataset (MVTec AD). It is
inspired by industrial manufacturing scenarios and contains over 5000 high-resolution
images of 15 object categories. For each category, it provides anomaly-free images for
model training as well as test images that contain various types of anomalies, such as
scratches or dents on manufactured products. Additionally, we conducted a benchmark
of existing methods for unsupervised anomaly detection. Our benchmark indicates a
large room for improvement.

Paul Bergmann, Michael Fauser, David Sattlegger, Carsten Steger: MVTec
AD — A Comprehensive Real-World Dataset for Unsuper-
vised Anomaly Detection; in: IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 9584-9592, 2019, DOI:
10.1109/CVPR.2019.00982.

Paul Bergmann, Kilian Batzner, Michael Fauser, David Sattlegger, Carsten
Steger: The MVTec Anomaly Detection Dataset: A Comprehen-
sive Real-World Dataset for Unsupervised Anomaly Detection;
in: International Journal of Computer Vision 129(4):1038-1059, 2021, DOI:
10.1007/s11263-020-01400-4.

Chapter 5: Student–Teacher Anomaly Detection. Modeling the distribution of de-
scriptors of pretrained networks has proven to be a powerful technique for anomaly
detection. However, many existing methods require patch-based evaluations that result
in very slow inference times. In addition, they use shallow machine learning models that
may prevent them to make use of all available training data, which affects their perfor-
mance. In this chapter, we introduce a new method for anomaly detection that uses
features of pretrained networks. Specifically, we develop a Student–Teacher framework
that makes use of all available training features and efficiently computes anomaly scores
with a single forward pass. At the time of publication, our method set a new state of
the art on the MVTec Anomaly Detection dataset.

Paul Bergmann, Michael Fauser, David Sattlegger, Carsten Steger: Unin-
formed Students: Student–Teacher Anomaly Detection with Dis-
criminative Latent Embeddings; in: IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 4183-4192, 2020, DOI:
10.1109/CVPR42600.2020.00424.

Chapter 6: Logical Constraints in Anomaly Detection. Anomalies can take very
different forms and a dataset should ideally contain representative examples for all of
them. We found that existing datasets, including MVTec AD, focus predominantly on
local structural anomalies, such as scratches or dents in manufactured products. They

7

1 Introduction

lack anomalies that violate logical constraints of the training data, e.g., permissible
objects being present in invalid locations. In this chapter, we present MVTec LOCO, a
new dataset that captures both types of anomalies. A benchmark of existing methods
reveals considerable room for improvement in the detection of logical anomalies.

Chapter 7: Global Context Anomaly Detection. Building on our findings in Chapter
6, we introduce a new method for unsupervised anomaly detection that significantly
improves the joint detection of structural and logical anomalies. In particular, we extend
our Student–Teacher method from Chapter 5 by a global network branch that captures
long-range dependencies of the anomaly-free training data. The content of Chapter 6
and Chapter 7 is based on the publication:

Paul Bergmann, Kilian Batzner, Michael Fauser, David Sattlegger, Carsten
Steger: Beyond Dents and Scratches: Logical Constraints in Unsuper-
vised Anomaly Detection and Localization; in: International Journal of
Computer Vision 130(4):947-969, 2022, DOI: 10.1007/s11263-022-01578-9.

Chapter 8: Unsupervised Detection of Geometric Anomalies in 3D Data. The fo-
cus of Chapters 2 through 7 is on the detection of anomalies in two-dimensional color
or grayscale images. In the remaining parts of this thesis, we shift our focus to the
detection of geometric anomalies in data obtained from industrial 3D sensors. This
chapter provides a brief introduction to the technical prerequesites for detecting anoma-
lies in three-dimensional data. In particular, we discuss common data representations,
describe an evaluation protocol for 3D anomaly detection, and review related literature.

Chapter 9: The MVTec 3D-AD Dataset for 3D Anomaly Detection. Significant
advances were made in many areas of 3D computer vision, such as point cloud registra-
tion, 3D classification, 3D semantic segmentation, and rigid pose estimation. However,
very little attention is paid to the problem of anomaly detection in the 3D domain. We
attribute this to the lack of existing datasets for this task. Therefore, we introduce the
MVTec 3D Anomaly Detection dataset, the first comprehensive dataset for unsupervised
3D anomaly detection. A benchmark of existing methods for this task shows that there
is still considerable room for improvement.

Paul Bergmann, Xin Jin, David Sattlegger, Carsten Steger: The MVTec 3D-
AD Dataset for Unsupervised 3D Anomaly Detection and Localiza-
tion; in: Proceedings of the 17th International Joint Conference on Computer
Vision, Imaging and Computer Graphics Theory and Applications - Volume 5:
VISAPP, 202-213, 2022, DOI: 10.5220/0010865000003124.

Chapter 10: Deep Geometric Descriptors for 3D Anomaly Detection. In order to
improve upon existing approaches for 3D anomaly detection, we extend our Student–
Teacher method from Chapter 5 to the 3D domain. In particular, we describe how to

8

1.5 Outline, Contributions, and Publications

design expressive teacher networks for 3D point clouds that extract deep local geomet-
ric descriptors. We introduce a new self-supervised pretraining strategy that does not
require any annotations. Our method sets a new state of the art on the MVTec 3D-AD
dataset.

Chapter 11: Conclusion. We conclude the thesis by discussing open research questions
and possible extensions to this work.

9

2 Foundations

In this chapter, we formally introduce the problem of unsupervised anomaly detection
and review some base architectures that are frequently used to build computer vision
models for this task. Additionally, a brief overview of fundamental concepts in deep
learning is given. For more thorough introductions to machine learning, deep learning,
and computer vision, the reader may refer to the standard literature by Bishop [2006],
Goodfellow et al. [2016], Steger et al. [2018], and Szeliski [2011].

An overview of the mathematical notation used throughout this thesis is listed in
Table 2.1. For some of the formulas, more details are provided in the following parts of
this chapter.

2.1 Unsupervised Anomaly Detection in Image Data

We begin by defining the unsupervised anomaly detection problem when applied to
image data. An image I : D → RC is a function that assigns a real-valued vector to
each pixel in the image domain D = {0, . . . ,H−1}×{0, . . . ,W −1}. The height, width,
and the number of channels of the image are denoted by H ∈ N+, W ∈ N+, and C ∈
N+, respectively. Commonly used image formats are single-channel grayscale images,
3-channel RGB color images, or multi-channel images obtained from multispectral or
hyperspectral cameras.

The task is to create a model on a training set of exclusively anomaly-free images
Dtrain ⊆ I. Here, I denotes the space of images that is the set of all functions I : D →
RC . During inference, the model should be able to detect anomalies in images of a test
set Dtest ⊆ I. In addition to the training and test datasets, a validation set Dval ⊆ I is
often used to determine hyperparameters during model training. Like the training set, it
only contains anomaly-free samples. It is assumed that all images in the three datasets
exhibit the same domain and number of channels. If the images of an application exhibit
different spatial dimensions, they can all be scaled to the same width and height before
passing them to an anomaly detection model.

Anomalies may occur as any deviation from the training data distribution. However,
since we focus on industrial inspection scenarios, we are typically concerned with the
unsupervised detection of various types of defects in manufactured products. When we
are interested in the accurate localization of anomalous regions in test images, we refer
to this task as anomaly localization. In contrast, we refer to the problem of making a
binary decision between anomaly-free and anomalous images as anomaly classification.
In this thesis, we are interested in methods that can perform both tasks simultaneously.

To localize anomalies, a model must assign a real-valued anomaly score to each pixel
location p ∈ D in the form of an anomaly map A : D → R. Larger values of A(p) indicate

11

2 Foundations

Sets and Spaces
N Set of non-negative integers.
N+ Set of positive integers.
R Set of real numbers.
S1 ⊆ S2 S1 is a subset of S2.
S1 × S2 Cartesian product of two sets.
|S| Cardinality of a set.
{a, b, c} Set of three elements.
{1, 2, . . . , n} Set of integers from 1 through n.
[a, b) The real interval including a and excluding b.

Numbers and Arrays
x ∈ R A scalar.
x ∈ Rd A column vector of dimension d.
A ∈ Rh×w A matrix with h rows and w columns.
Ai,j The element of the matrix A at index i, j.
xT , AT The transpose of x and A, respectively.

Functions
f : X → Y Function f with domain X and range Y .
fθ Function f depending on parameters θ.

The parameters θ are omitted when it serves readability.
f ◦ g Composition of functions f after g.
L(θ) : Rd → R Loss function with respect to parameters θ.
∇θL(θ) Gradient of a loss function with respect to its parameters θ.

Distributions and Probability Theory
x A vector-valued random variable.
Pr(x) Probability distribution of x.
Pr(x|y) Conditional probability of x given y.
N (x;µ,Σ) Gaussian normal distribution with mean µ and covariance matrix Σ.
KL(Pr(x),Pr(y)) KL-divergence between two probability distributions.

Table 2.1: Overview of the mathematical notation used throughout this thesis.

12

2.2 Evaluation of Anomaly Detection Algorithms

Figure 2.1: Overview of the anomaly detection problem applied to image data. (a) A model
is trained on a set of exclusively anomaly-free training and validation images. (b)
During inference, the model must assign an anomaly score to each pixel in the
images of the test set. The resulting anomaly maps may be used to derive image-
level anomaly scores for anomaly classification.

that a pixel is believed more likely to be part of an anomaly. To make a binary decision
whether a pixel contains an anomaly or not, the anomaly scores must be compared to a
threshold t ∈ R. If a score exceeds the threshold, i.e., A(p) > t, the pixel p is classified
as anomalous. For image-level classification, the pixelwise values of A can be aggregated
to derive a single anomaly score, for example, by calculating the mean 1

|D|
∑
p∈D A(p)

or the maximum maxp∈D A(p). Again, comparing the image-level score to a threshold
can be used for making a binary decision if a dataset sample should be considered as
anomalous or anomaly-free.

A graphical illustration of the anomaly detection problem on image data is given in
Figure 2.1. The training and validation sets contain images of defect-free hazelnuts that
are used to create a machine learning model. During inference, the model encounters
images of anomaly-free nuts as well as images that exhbit various defects, such as the
hole in the surface of a nut. For each image, it produces pixel-accurate anomaly scores
as well as a classification decision.

2.2 Evaluation of Anomaly Detection Algorithms

Next, we describe how to evaluate the performance of anomaly detection algorithms.
We discuss metrics that assess the anomaly localization performance as well as metrics
for anomaly classification. While annotations are not required to train unsupervised
anomaly detection models, ground truth information must be available to assess their
performance on the test set. For each test image in Dtest, we require a pixel-precise
ground truth map G : D → {0, 1}. For each pixel, it indicates whether an anomaly is
present, G(p) = 1, or not, G(p) = 0.

13

2 Foundations

2.2.1 Anomaly Localization Metrics

Pixel-Level Metrics

Evaluating the performance of anomaly localization algorithms on a per-pixel level treats
the classification outcome of each pixel as equally important. A pixel can be classified
as either a true positive (TP), false positive (FP), true negative (TN), or false negative
(FN). A decision is made by comparing the anomaly score of each pixel to the threshold
t, and then comparing the classification outcome to the respective ground truth label.
For instance, if a pixel is believed to contain an anomaly, i.e., A(p) > t, and it is also
labeled as anomalous, i.e., G(p) = 1, it is classified as a true positive. For each of the
four cases the total number of pixels on the test dataset Dtest is computed as:

TP =

|Dtest|∑
i=1

∣∣ {p | Gi(p) = 1} ∩ {p | Ai(p) > t}
∣∣, (2.1)

FP =

|Dtest|∑
i=1

∣∣ {p | Gi(p) = 0} ∩ {p | Ai(p) > t}
∣∣, (2.2)

TN =

|Dtest|∑
i=1

∣∣ {p | Gi(p) = 0} ∩ {p | Ai(p) ≤ t}
∣∣, (2.3)

FN =

|Dtest|∑
i=1

∣∣ {p | Gi(p) = 1} ∩ {p | Ai(p) ≤ t}
∣∣, (2.4)

where p ∈ D and Ai and Gi correspond to the anomaly map and ground truth of the test
image with index i ∈ {1, . . . , |Dtest|}, respectively. Figure 2.2 shows a schematic illustra-
tion of these four pixel-level classification results. Anomaly scores are first thresholded
to obtain binary predictions. A comparison to the corresponding ground truth then
yields the pixelwise classification results.

Based on these absolute measures, which depend on the total number of pixels in the
dataset, relative scores such as the per-pixel false positive rate (FPR), true positive rate
(TPR), and precision (PRC) can be derived:

FPR =
FP

FP + TN
, (2.5)

TPR =
TP

TP + FN
, (2.6)

PRC =
TP

TP + FP
. (2.7)

Apart from these three widely used metrics, another common measure to benchmark
segmentation algorithms is the intersection over union (IoU), computed on two sets of
pixels. In the context of anomaly localization, one considers the set of all anomalous
predictions Pano and the set of all ground truth pixels that are labeled as anomalous
Gano, i.e.,

14

2.2 Evaluation of Anomaly Detection Algorithms

0 1 2 3 4 5 6 7 8

Anomaly Score

0 1 2 3 4 5 6 7 8

Anomaly Score

... ...

Figure 2.2: Obtaining a classification result for each image pixel. Anomaly scores are first
converted into binary predictions by applying a threshold operation. A pixelwise
comparison to the ground truth then yields the classification results. These can be
used to compute performance metrics, such as the TPR, FPR, PRC, IoU, or PRO.

Pano =

|Dtest|⋃
i=1

{(i,p) | p ∈ D and Ai(p) > t}, (2.8)

Gano =

|Dtest|⋃
i=1

{(i,p) | p ∈ D and Gi(p) = 1}. (2.9)

Analogous to the relative measures above, the IoU for the class ‘anomalous’ can also
be expressed in terms of absolute pixel classification measures:

IoU =
|Pano ∩Gano|
|Pano ∪Gano|

=
TP

TP + FP + FN
. (2.10)

All of these measures have the advantage that they are straightforward and efficient to
compute. However, treating each pixel as entirely independent introduces a bias towards
large anomalous regions. Detecting a single anomaly with a large area can make up for
the failure to detect numerous smaller ones. Therefore, one often considers metrics that
are computed with respect to connected anomalous regions within the ground truth.

Region-Level Metrics

Instead of treating every pixel independently, region-level metrics average the perfor-
mance over each connected component of the ground truth. This is especially useful
if the detection of relatively smaller anomalies is considered equally important to the
detection of relatively larger ones. This may be the case in practical applications, de-
pending on the dataset under consideration. Here, we propose the per-region overlap
(PRO) metric as an example for a region-level metric.

First, for each test image the ground truth is decomposed into its connected com-
ponents. A connected component K ⊆ D is a subset of the image domain in which
all pixels are labeled anomalous and that are in the immediate vicinity of each other.

15

2 Foundations

In particular, we follow the definition of connected components given by Steger et al.
[2018, Chapter 3.4.2.] and use a 4-connectivity. Let Ci,j = {(i,p) | p ∈ Kj} denote the
set of pixels classified as anomalous for a connected component Kj ⊆ D in the ground
truth image with index i and Pano denote the set of pixels predicted as anomalous for a
threshold t. The per-region overlap can then be computed as

PRO =
1

k

|Dtest|∑
i=1

ki∑
j=1

|Pano ∩ Ci,j |
|Ci,j |

, (2.11)

where ki denotes the number of ground truth components for a single test image and
k =

∑
i ki is the total number of components in Dtest. The PRO metric is closely related

to the TPR. The important difference is that the PRO metric averages the TPR over
each ground truth region instead of averaging over all image pixels. Note that it is not
straightforward to adapt other per-pixel measures such as the PRC or the IoU to the
per-region case. This is caused by the fact that they make use of the FPR, and false
positives cannot be readily attributed to any specific ground truth region.

To illustrate the difference between the PRO metric and the pixelwise measures, Fig-
ure 2.2 shows specific values for the above performance metrics computed on a simple
toy example. The ground truth contains two anomalous connected components. The
thresholded prediction, however, only detects one of them. The PRO metric reflects
this and reports a localization accuracy of 1/2. Since the TPR, PRC, and IoU do not
operate on a region-level and hence are biased towards the detection of larger connected
components, they all report values larger than 1/2.

Threshold-Independent Metrics

All of the above metrics depend on the previous selection of a suitable threshold t, which
is a challenging problem in practice. If a suboptimal threshold is selected, the metrics
may give a skewed picture of the performance of a method. Furthermore, the desired
threshold can depend on the requirements of the specific application under consideration.
For instance, if a certain false positive rate is acceptable in practice, this allows the
selection of smaller thresholds which can increase the number of true positives.

To decouple the performance evaluation from the choice of any particular threshold, it
is common to compute the above metrics at multiple distinct thresholds. Furthermore,
it is often desirable to compare two metrics simultaneously since, for example, a high
TPR is only useful if the corresponding FPR is low. A way to achieve this is to plot
two metrics against each other and compute the area under the resulting curve. A well-
known example is the receiver operator characteristic (ROC), which plots the FPR versus
the TPR. Another frequently used measure is the precision–recall curve (PR), which
plots the true positive rate (recall) versus the precision. In this thesis, we additionally
investigate the PRO curve, which plots the FPR versus the PRO, as well as the IoU
curve, which shows the FPR versus the IoU.

16

2.3 Fundamental Concepts in Deep Learning

2.2.2 Anomaly Classification Metrics

Performance metrics for anomaly classification measure how well a method separates
anomalous from anomaly-free test samples based on their image-level scores. As for
the pixel-level metrics, a dataset sample can be either classified as a true positive, false
positive, true negative, or false negative. Given an anomaly score ai ∈ R for each image
in the test set, adapting the definition of these four classification results from pixel- to
sample-level is straightforward. The anomaly score of each test sample is compared to
a classification threshold tc ∈ R. If ai > tc and any pixel in the ground truth of the
respective sample is labeled as anomalous, it is classified as a true positive. The total
number of true positive samples can be computed as:

TP =
∣∣∣|Dtest|⋃
i=1

{i | ∃p ∈ D : Gi(p) = 1 and ai > tc}
∣∣∣. (2.12)

The total number of false positives, true negatives, and false negatives can be computed
analogously. From these absolute values, relative measures such as the TPR and FPR
can be derived. As for anomaly localization, it is common to evaluate them for multiple
thresholds and compute the area under the ROC or PR curve as performance measures.

2.3 Fundamental Concepts in Deep Learning

Neural networks have emerged as a powerful tool for a variety of computer vision tasks,
including anomaly detection. There exists a lot of literature on this topic and a compre-
hensive overview of deep learning theory is well beyond the scope of this thesis. For an
introduction, the reader may refer to Goodfellow et al. [2016]. Here, we restrict ourselves
to a brief summary of core concepts and an explanation of terminology that is frequently
used in the following chapters.

Neural Networks

On an abstract level, a neural network can be written as a function fθ : X → Y that
processes some input sample x ∈ X and produces a corresponding output, given a vector
of model parameters θ ∈ Rm. For instance, the domain X may be selected as a the space
of d-dimensional vectors Rd. Other input domains are also possible, e.g., the space of
images I. The entries of θ are also known as the weights of the model. The range
Y depends on the task that the neural network is supposed to solve. When applied
to classification, for example, it may output a distributon over class probabilities. For
readability, we often omit the parameter vector in the notation and write f(x). The
function f is typically realized as a composition of n sequential operations:

f = fn ◦ fn−1 ◦ . . . f2 ◦ f1. (2.13)

17

2 Foundations

Each of the functions fi is called a layer of the neural network. The number of layers
is referred to as its depth. Neural networks with a large number of layers are termed
deep neural networks (DNNs).

Network Optimization

Given a set of inputs Dtrain = {x1,x2, . . . } ⊆ X and corresponding target values yi ∈ Y ,
the goal during network optimization is to determine parameters θ such that for each
input, the output of the network closely matches the assigned target value. Optimizing
the parameters of a network is also referred to as the training of a neural network. Hence,
Dtrain is also called the training dataset. After training, fθ should ideally generalize to
new, unseen samples of a test dataset Dtest ⊆ X.

A network is trained by adjusting its parameters to minimize a predefined loss function
L(θ) : Rm → R. It computes a real-valued score that reflects how accurate the current
parameters transform input samples to their respective target values. A common way
to define the loss is to specify a function r : Y × Y → R that computes a residual
between the desired output of each dataset sample and the actual output produced by
the network. The loss over the entire training dataset can then be computed as:

L(θ) =
1

|Dtrain|

|Dtrain|∑
i=1

r(fθ(xi),yi). (2.14)

For convenience, we may also write this expression as L(fθ) or L(f). In practice,
the loss function is highly task-specific. In regression problems, for example, a popular
choice for the residual r is the Lp-distance between the prediction and the target value,
where p ≥ 1. For a vector x with elements xi, the Lp-norm is defined as:

‖x‖p =
(∑

i

|xi|p
) 1

p
.

During training, the model parameters can be iteratively adjusted by performing gra-
dient descent, i.e., by computing the gradient of the loss function on a set of input
samples with respect to the model parameters. The parameters are updated along the
negative direction of the gradient:

θk+1 = θk − λ∇θL(θ). (2.15)

Here, θk denote the model parameters at step k ∈ N of the optimization process.
At the start of the optimization, the weights θ0 need to be initialized appropriately.
A straightforward strategy is to sample random weights from a predefined probability
distribution. A second option is to use the weights of a network that was previously
trained on a different dataset as a starting point for the optimization. This technique is
also known as transfer learning. It may reduce training time and the number of dataset
samples required for successful optimization [Zhuang et al., 2021]. The parameter λ ∈ R+

is known as the learning rate and operates as a scaling factor. An appropriate choice

18

2.3 Fundamental Concepts in Deep Learning

of λ is highly important. If chosen too large, this often leads to unstable trainings or
divergence. If chosen too small, it may take a long time until convergence, i.e., until a
chosen termination criterion is reached.

Since the function fθ is a composition of a series of other functions, the gradient of
the loss can be computed with the backpropagation algorithm [Rumelhart et al., 1986]
that computes derivatives by multiple applications of the chain rule. This computation
is often referred to as performing a backward pass within the neural network since the
gradient computation starts at the output layer of the network and ends at its input
layer. This is in contrast to the forward pass, which describes the computation of an
output value for a corresponding input sample.

Computing the gradient over the entire training dataset becomes computationally
expensive when Dtrain contains a large number of samples, which is common in deep
learning applications. Hence, the gradient is usually only approximated by computing
the loss function on a subset of the training samples {xk1 ,xk2 . . . ,xkB} ⊆ Dtrain that is
randomly drawn without replacement:

θk+1 = θk − λ∇θ
1

B

B∑
i=1

r(fθ(xki),yki). (2.16)

This approach is also known as stochastic gradient descent (SGD). The selected subset
of training samples used for gradient computation is called a training batch or minibatch
with batch size B ∈ N+. Interestingly, using stochastic updates was empirically shown to
generalize better to samples of the test set compared to computing the gradient jointly on
all dataset samples in some deep learning applications [Xie et al., 2021]. Training batches
are drawn until all samples of Dtrain were iterated. Iterating the training dataset once
is also known as running a training epoch. Typically, a network is trained for multiple
epochs until the training loss converges.

Many extensions and variations of the stochastic gradient descent method have been
proposed for optimizing deep learning models. A typical goal of these is to improve
the convergence rate or the training stability. For instance, SGD can be extended by a
momentum term [Polyak, 1964], which keeps track of a moving average of previous model
updates. In each iteration, the final model update is then a linear combination of the
moving average and the new update direction, which results in more robust gradients.
Other popular optimization techniques do not use a fixed learning rate, but dynamically
adapt λ in each training iteration. Examples for such optimization methods are AdaGrad
[Duchi et al., 2011] or the Adam optimizer [Kingma and Ba, 2015].

Model Selection

Once the training is completed, one may ask which of the parameter vectors θk should
be used when deploying the network in a practical application. An obvious choice is to
use the parameters of the very last iteration or those that yielded the lowest training
error during the optimization procedure. However, low training errors do not necessarily
correspond to a good performance on the test dataset. Since DNNs often contain millions

19

2 Foundations

of model parameters and are expressive enough to closely approximate very complex
functions, they may overfit the training data by memorization of the correct output for
each training sample. This results in low training errors, but poor generalization of the
model to unseen data. Therefore, it is typically of interest to select model parameters
that are likely to generalize well to Dtest. To determine such a model, a common strategy
is to regularly evaluate the loss function on a set of validation samples Dval during
training. The samples in Dval are independent of those in the training set and can be
used to judge how well the current model transfers to unseen samples. Once the training
has finished, the model parameters that yield the lowest validation error can be selected
as the final model.

Network Regularization

To discourage a model from overfitting, a regularization term can be added to the loss
function. These terms do not contribute directly to the particular task the network is
supposed to solve. Instead, they specify solutions in the parameter space that are more
desireable than others. One common regularization technique is L2-regularization. It
penalizes solutions in which the parameter vector θ exhibits a large L2-norm. This is
achieved by adding the term

Ω(θ) = αθTθ (2.17)

to the original loss function of the network. The variable α ∈ [0,∞) is a scaling factor
that controls the strength of the regularization. A similar effect is achieved by a technique
called weight decay [Krogh and Hertz, 1991]. It reduces the parameter norm explicitly
by multiplying the weights with a constant factor before applying the gradient update.
A different method that may prevent a model from overfitting is by adding artificial
noise, for example, through dropout layers [Srivastava et al., 2014]. During training,
these layers randomly set entries of their input array to zero according to a predefined
dropout probability.

Convolution Layers

When applying DNNs to images, it is popular to process the input data with a series of
convolution layers. Convolving an image with a kernel yields a two-dimensional array
of scalar values, which we call a feature map. In practice, a convolution layer computes
multiple feature maps by applying different filter kernels. The weights of the kernels
constitute learnable parameters of the layer. A scalar bias term is added to the result
of each convolution, which is also included in the layer’s parameter vector.

Neural networks that use convolution layers as key building blocks are termed convo-
lutional neural networks (CNNs). Note that in practical implementations, convolution
filters are often replaced by cross-correlations, which are convolutions with a flipped ker-
nel. The success of using convolutions in deep learning has several reasons. For example,
they can be effectively parallelized and hence efficiently computed on modern graphical
processing units (GPUs). Furthermore, the same filter kernel is typically applied to

20

2.3 Fundamental Concepts in Deep Learning

Figure 2.3: Examples for different activation functions.

the entire input array by evaluating locally strided windows. This is known as weight
sharing. It limits the number of parameters that must be learned for each convolution,
effectively reduces the training time of the deep learning model, improves the training
stability, and adds equivariance to translations with respect to the input image.

Since a convolution cannot be computed at pixel locations where the kernel leaves
the input array, the input may be artificially extended by applying a padding operation.
A popular padding technique is zero padding, which extends the input by a border of
zero-valued entries.

There exist many extensions and variations to standard convolution layers. For in-
stance, the distance between spatial locations where the convolution kernel is applied
can be increased. This is known as a strided convolution. It can be used to effectively
downsample an input with respect to its spatial dimensions. In dilated convolutions [Yu
and Koltun, 2016], the filter kernel is spatially extended without increasing the number
of kernel parameters to capture a larger area of the input array in each output feature.

Activation Layers

Convolutions are linear operations. This implies that processing an image with a series
of convolution layers does not enable them to approximate complex, nonlinear functions.
Therefore, convolution layers are often followed by activation layers that introduce non-
linear operations into the network. Typically, these are one dimensional functions that
are applied to each element of the input array independently. Many different nonlinear-
ities have been proposed to be used in CNNs [Nair and Hinton, 2010, Hendrycks and
Gimpel, 2016]. Figure 2.3 gives an overview of activations that are frequently used in
this thesis. The first is a sigmoid activation function that produces values in the interval
(0, 1), which is useful to model outputs that resemble probabilities. A second popular
activation function is the Rectified Linear Unit, or ReLU. It corresponds to the identity
function for positive input values. Otherwise, the output is set to 0. A modification to
this is the Leaky ReLU activation, which instead scales negative inputs with a constant
scalar factor α ∈ [0,∞).

21

2 Foundations

Vanishing Gradients

To model complex functions, neural networks often require a very large number of layers.
Unfortunately, as the number of layers in a network grows, its optimization becomes
increasingly challenging. In particular, it was shown that the gradient norm in deep
networks may attain very small values, which leads to long training times. This problem
of vanishing gradients may even prevent a network from learning anything meaningful at
all [Hochreiter et al., 2001]. It can be addressed by using residual layers [He et al., 2016,
Veit et al., 2016], which add shortcut connections to a network. They transform their
input by any differentiable function and add the original input back to the transformed
output. A second technique to stabilize the training and counter vanishing gradients
is to use normalization layers such as batch normalization [Ioffe and Szegedy, 2015] or
instance normalization [Ulyanov et al., 2017]. They enforce their output features to
follow a certain predefined distribution, e.g., a Gaussian normal distribution.

Upsampling Layers

Sometimes it is desirable to design networks that generate an image or a high-dimensional
feature map from a low-dimensional representation. In such cases, transposed convolu-
tion or zooming layers may be used to upsample an array with respect to its spatial
dimensions. Similar to the convolution operation, transposed convolutions contain a set
of learnable parameters, i.e., an upsampling kernel. In contrast, zooming layers perform
a parameter-free operation based on interpolation algorithms such as nearest neighbor
or bilinear interpolation.

Data Augmentation

To prevent DNNs from overfitting and to improve their generalization capabilities, it is
common to train them on a large amount of data. For example, the ImageNet dataset
[Krizhevsky et al., 2012] provides more than one million samples to create classification
models. If such a large number of dataset samples is not available, additional training
samples can be created by applying transformations to the original input images. This
process of creating a larger dataset from a smaller one is known as data augmentation. An
image sample can be augmented by applying color transformations, such as a random re-
scaling of its RGB channels. Another possibility is to apply geometric transformations,
such as a random rotation or translation of the pixel coordinates.

2.4 Base Architectures for Unsupervised Anomaly Detection

The landscape of methods for unsupervised anomaly detection is diverse and many
approaches have been suggested to tackle the problem. Pimentel et al. [2014] and Ehret
et al. [2019] give a comprehensive review of existing work. The following provides a brief
overview of network architectures that are frequently used to build computer vision
models for unsupervised anomaly detection. We further discuss some existing anomaly
detection methods that build on these base architectures.

22

2.4 Base Architectures for Unsupervised Anomaly Detection

0 1 2 3 4 5 6 7 8

Anomaly Score

Figure 2.4: Illustration of how an autoencoder can be used for unsupervised anomaly detec-
tion. (a) The autoencoder is trained on anomaly-free data only, computing a loss
between the training samples and the respective reconstructions. (b) During infer-
ence, anomaly scores are derived by a pixelwise comparison between the input and
the reconstruction.

2.4.1 Convolutional Autoencoders

Autoencoders (AE) [Masci et al., 2011] are a class of neural networks that attempt to
learn a compact representation of their inputs by reconstructing dataset samples through
a bottleneck. They consist of two subnetworks, namely an encoder and a decoder.
The encoder receives an image and projects it to a low-dimensional latent variable.
The decoder then transforms this variable back into an image by applying upsampling
operations. For optimization, the network is trained with reconstruction losses. A
popular choice is to compute the pixelwise L2-distance between the inputs and the
reconstructed images.

Autoencoders can be trained without any annotations. This makes them popular base
architectures for unsupervised anomaly detection methods [Sakurada and Yairi, 2014].
An example is shown in Figure 2.4. In the top subfigure, an autoencoder is trained
on a dataset of exclusively anomaly-free images of a bottle mouth. The autoencoder

23

2 Foundations

manages to reconstruct the input image quite accurately, despite producing a slightly
blurry reconstruction due to the limited capacity of the bottleneck. The bottom subfigure
illustrates the output of the trained autoencoder when processing an anomalous test
image. In this case, the glass of the bottle mouth is damaged. Since the autoencoder
has not observed anomalous samples during training, it fails to reproduce the defect.
Instead, it produces an image of an anomaly-free bottle. A direct comparison of the
input and the reconstructed image reveals the area where the anomaly occurs.

In practice, the particular choice of the latent dimension can have a significant impact
on the anomaly detection performance. If chosen too small, the latent space may not
be expressive enough to model all variations of the training dataset, which leads to
inaccurate reconstructions. If chosen too large, the model may learn to copy the input
data into the latent variable, which would allow it to reconstruct defects on anomalous
test images as well.

Various extensions to standard autoencoders exist. Variational autoencoders (VAEs)
[Kingma and Welling, 2014] encourage their latent samples to follow a certain prior
distribution. This is achieved by making the encoder output the parameters of the
posterior distribution of the latent samples given an input image. A similarity measure
between the encoder distribution and the prior is then added to the reconstruction loss.
During inference, this extension allows to generate new images by randomly drawing
samples from the prior and passing them through the decoder network.

VAEs have been frequently employed for unsupervised anomaly detection. An and
Cho [2015] define a reconstruction probability for every image pixel by drawing multiple
samples from the estimated encoding distribution and measuring the variability of the
decoded outputs. Soukup and Pinetz [2018] disregard the trained decoder entirely and
instead compute a KL-divergence as an anomaly measure between the prior and the
distribution produced by the encoder. This is based on the assumption that anomalous
inputs will cause distributions that are very different from those of the prior. Since this
approach yields a single anomaly score for an input sample, it cannot be directly applied
to anomaly localization. Instead, if an anomaly score needs to be computed for ev-
ery input pixel, computationally expensive patch-based evaluations must be performed.
Similarly, Vasilev et al. [2020] define multiple anomaly measures, either by purely consid-
ering latent space behavior or by combining these measures with per-pixel comparisons
between the input and the reconstruction. They also compute a single scalar value as
an anomaly score.

Autoencoders tend to produce blurry and inaccurate reconstructions [Bergmann et al.,
2019b]. This may lead to an increase in false positives when applied to anomaly detection.
They might also learn to copy parts of the input data, which would allow them to
reconstruct anomalous features during inference. To discourage this behavior, Gong
et al. [2019] propose to extend autoencoders with an integrated memory module. Their
MemAE selects numerous latent features during training that need to be reused for
reconstruction during inference. Building on this idea, Park et al. [2020] introduce
MNAD, a method for unsupervised anomaly localization that uses a memory augmented
autoencoder instead of a standard one.

24

2.4 Base Architectures for Unsupervised Anomaly Detection

2.4.2 Generative Adversarial Networks

Generative adversarial networks (GANs) [Goodfellow et al., 2014] consist of a generator
and a discriminator network. As suggested by their name, they are a class of deep
generative models that are trained with an adversarial loss function. The task of the
generator Gen : Rd → I is to produce realistic images that ressemble those of the
training set. As input, it processes a low-dimensional vector z ∼ N (0,1) that is drawn
from a standard normal distribution. The discriminator Dis : I → [0, 1] attempts to
distinguish between the images produced by the generator and the real dataset samples.
Its output is interpreted as the probability that the processed input image is real. When
trained successfully, the generator produces images that are indistinguishable from real
dataset samples. New samples can be created by drawing latent samples from the normal
distribution and passing them through the generator. The loss functions of the two
networks can be written as:

L(Dis) =
1

B

B∑
i=1

log(Dis(Ii)) + log(1−Dis(Gen(zi))), (2.18)

L(Gen) =
1

B

B∑
i=1

−log(1−Dis(Gen(zi))). (2.19)

Note that the loss of the generator is just the negative loss of the discriminator where
the first term was dropped since the parameters of the generator do not depend on it.
The discriminator is encouraged to output values close to 1 for real and values close to
0 for generated images. Conversely, the generator is encouraged to produce images for
which the discriminator assigns a high probability for them to be real.

A popular method that uses GANs for anomaly detection is AnoGAN, originally
introduced by Schlegl et al. [2017]. In a first step, a generator and discriminator are
trained on anomaly-free data. Afterwards, the generator is able to produce new images
that resemble the samples of the training set. To detect anomalies in a test image J ,
the latent space of the generator is searched for a vector z∗ that reproduces the image
as closely as possible:

z∗ = arg min
z

||J −Gen(z)||22. (2.20)

In practice, the sample z∗ is obtained by generating a random latent vector that is
iteratively updated using gradient descent. The reconstruction error between the input
and the generated sample serves as a loss function. Once converged, anomaly scores
can be derived by a pixelwise comparison of the input to the reconstruction. The entire
process is summarized in Figure 2.5, where the training and inference process of AnoGAN
is illustrated on images of a bottle mouth.

Compared to autoencoders, GANs tend to produce sharper reconstructions, which
may benefit the anomaly detection performance. However, their training can also be
more difficult due to the use of an adversarial loss function [Arjovsky and Bottou, 2017].

25

2 Foundations

0 1 2 3 4 5 6 7 8

Anomaly Score

Figure 2.5: Illustration of how a GAN can be used for unsupervised anomaly detection. (a) The
GAN is trained on anomaly-free data only. A generator tries to produce samples
that the discriminator cannot distinguish from real dataset samples. (b) During
inference, the latent space of the generator is searched for a sample that produces
an image that closely matches the input image. Anomaly scores are computed by
a pixelwise comparison between the input and the generated image.

They are also prone to run into mode collapse, i.e., there is no guarantee that al modes
of the distribution of non-defective images are captured by the model. Furthermore,
GANs lack an encoder network that determines the latent sample for a corresponding
input image. This makes the inference process of AnoGAN computationally expensive,
since many iterations of gradient descent need to be performed for each test sample.

To mitigate these issues, Schlegl et al. [2019] introduce f-AnoGAN. It uses a more
recent GAN architecture called Wasserstein GAN with Gradient Penalty (WGAN-GP)
[Gulrajani et al., 2017], which improves the training stability. They further add an
encoder network that is trained to determine z∗ for a given input image with a single
forward pass. This encoder is trained separately after the GAN training has finished.
Similarly, Zenati et al. [2018] propose to use bidirectional GANs [Donahue et al., 2017]
to add the missing encoder network for faster inference.

2.4.3 Feature Distribution Models

The methods based on autoencoders or GANs described above are trained using only the
anomaly-free training data. A different line of work additionally transfers the knowledge
of networks trained on large scale and publicly available datasets for different computer

26

2.4 Base Architectures for Unsupervised Anomaly Detection

Figure 2.6: Features extracted from a ResNet-18 that was pretrained on the ImageNet dataset.
The receptive field of the features is additionally visualized in yellow. The size of
the receptive field grows with deeper network layers.

vision tasks. Examples for such datasets are ImageNet [Krizhevsky et al., 2012] for
image classification or MS COCO [Lin et al., 2014] for object detection. Once trained,
these models can serve as generic feature extractors that produce powerful descriptors
that may be used in an anomaly detection system.

Figure 2.6 shows several feature maps extracted from an image of a defective hazelnut
when passing it through a ResNet-18 classifier [He et al., 2016] pretrained on ImageNet.
ResNet-18 is a popular network architecture used to address image classification prob-
lems. Although in principle the network produces a set of feature maps after each layer,
here we only show the output of four different layers for simplicity. Since ResNet-18
downsamples the input data to a low-dimensional vector, the spatial dimension of the
intermediate feature maps decreases with deeper layers. Simultaneously, the number of
extracted feature channels increases. Each entry in a feature map describes the content
of a local region within the input image. This region is referred to as the receptive field.
Its size can be determined by computing the set of all pixels that can potentially influ-
ence the value of a feature. Typically, the receptive field grows continuously with deeper
layers. This effect is also illustrated in Figure 2.6. Descriptors of early layers are only
affected by a small region of the input. The receptive field grows significantly for deeper
layers. At some point, it covers the entire input image.

To give an example of how features of pretrained networks may be used for unsuper-
vised anomaly detection, we briefly discuss a method originally presented by Napoletano
et al. [2018], named the CNN Feature Dictionary. As feature extractor, it uses a ResNet-
18 pretrained for image classification. It maps an input image to a 512-dimensional
feature vector. The training of the anomaly detection model is performed by cropping a
large number of image patches from the anomaly-free training data at random locations.
The patches are zoomed to the input size of the feature extractor and their respective

27

2 Foundations

Figure 2.7: Illustration of how feature extractors of pretrained networks can be used for un-
supervised anomaly detection. (a) Randomly sampled patches of an anomaly-free
image are passed through the feature extractor to compute deep descriptors. The
feature distribution is modeled with a machine learning model. (b) During infer-
ence, image patches that cover anomalous regions produce descriptors that signifi-
cantly deviate from the anomaly-free ones.

feature vectors are computed. The dimension of the vectors is reduced by applying
Principal Component Analysis (PCA) [Hadsell et al., 2006]. In a last step, a K-Means
classifier [Lloyd, 1982] is fitted to the extracted data to model the distribution of the
anomaly-free descriptors. An overview of this training process is shown in Figure 2.7(a).

During inference, the general idea is that anomaly-free patches will produce descriptors
that follow the distribution of the ones from the training data. Patches that contain
anomalies, on the other hand, are likely to result in features that have not been observed
so far. Hence, they are expected to be far from the cluster centers learned by the K-Means
algorithm. An anomaly score for a patch can be derived by computing the minimum
distance between its respective descriptor and all cluster centers. To obtain a spatially
resolved anomaly map, many patches of a test image need to be evaluated, which is
computationally expensive. Figure 2.7(b) gives an overview of the inference phase. Note
that the K-Means classifier used in the CNN Feature Dictionary can be easily replaced
by other distribution models, such as KNN classifiers [Fix and Hodges, 1989], One-
Class Support Vector Machines (OC-SVM) [Schölkopf et al., 2001], or Gaussian Mixture
Models (GMM) [Yu et al., 2012].

28

2.4 Base Architectures for Unsupervised Anomaly Detection

In Chapter 4, we demonstrate that anomaly detection methods that leverage features
of pretrained networks tend to perform better than autoencoder- or GAN-based methods
that are trained from scratch. In Chapter 5, we build on this finding and present a
Student–Teacher framework for anomaly detection that leverages a pretrained teacher
network that outputs descriptors in the form of entire feature maps. Each descriptor
captures the content of a local region within the input image. For anomaly detection,
an ensemble of student networks is trained on anomaly-free images to reproduce the
descriptors of the pretrained teacher. During inference, anomalies are detected where
the students fail to correctly predict the output of the teacher. Compared to the CNN
Feature Dictionary that requires patch-based evaluations and a random subsampling of
training descriptors, our method computes pixel-precise anomaly scores with a single
forward pass and makes use of all available training features. Closely following this idea,
Salehi et al. [2021] build on this work and train student networks to match feature maps
of a single teacher at multiple resolutions.

Numerous other methods have been introduced that transfer descriptors extracted
from pretrained networks to the anomaly detection task. Sabokrou et al. [2018] model
the distribution of features from the first layers of a pretrained AlexNet with a unimodal
Gaussian distribution. The fully convolutional architecture of the employed network
allows for efficient feature extraction during training and inference. However, the use of
pooling layers rapidly downsamples the input image and leads to a loss in resolution of the
output anomaly map. Furthermore, it is challenging for unimodal Gaussian distributions
to capture highly complex feature distributions.

Cohen and Hoshen [2020] introduce the SPADE method. They process a given test
image by a pretrained network to extract a single feature vector. Then, a subset of
the anomaly-free training images is selected. An image is included in the subset if it
produces a descriptor that is similar to the one of the test image. Afterwards, spatially
resolved feature maps are extracted from all images in the selected subset as well as
for the test image under consideration. Anomaly scores are derived by calculating the
minimum distance between the anomaly-free features and the test features in each pixel
of the feature map.

Other approaches attempt to model the feature distribution with deep normalizing
flows [Rudolph et al., 2021, 2022]. In particular, Marchal et al. [2020] show that using
these high-capacity deep learning approaches can improve the performance over shallow
distribution models.

2.4.4 Methods Not Based on Neural Networks

There are methods that do not make use of deep learning techniques at all. Instead,
they operate directly on the raw pixel values of the input images or compute handcrafted
features. An example of such a method is the Variation Model [Steger et al., 2018,
Chapter 3.4.1.4]. It assumes a geometric alignment of an inspected object throughout
the dataset images. It then computes the pixelwise means and standard deviations over
all pixels of the training dataset. For images with a single channel this can be written
as:

29

2 Foundations

µ(p) =
1

|Dtrain|

|Dtrain|∑
i=1

Ii(p), (2.21)

σ(p) =

√√√√ 1

|Dtrain|

|Dtrain|∑
i=1

(Ii(p)− µ(p))2. (2.22)

Here, p denotes the image coordinate under consideration. If the variations of the
training set are extremely small, the standard deviation is often clipped to a predefined
value a ∈ (0,∞), i.e., by computing max(σ(p), a).

During inference, the pixel values of a test image J are compared against the statistics
of the training set using a Mahalanobis distance. An anomaly score for each pixel can
be calculated as follows:

A(p) =
J(p)− µ(p)

σ(p)
. (2.23)

If an image contains multiple channels, a Variation Model can be constructed for each
of the channels separately. The anomaly scores of the different channels can be combined
using an appropriate aggregation function, e.g., by taking the mean or the maximum
value over all channels.

A second example for a method that does not rely on deep learning is presented by
Böttger and Ulrich [2016]. They extract hand-crafted feature descriptors from defect-free
texture images in a compressed-sensing framework. Similar to the CNN Feature Dictio-
nary, the feature vectors describe the content of local patch regions within the training
images. The distribution of the training descriptors is then modeled by a Gaussian Mix-
ture Model. During inference, anomalies are detected by evaluating the log-likelihood
of the GMM on descriptors extracted from the test images. Low likelihoods indicate
anomalous features. To obtain a spatially resolved anomaly map, a patch-sized window
is slid across the input image and a likelihood is computed for each pixel. Since this
approach was specifically introduced for the inspection of textured surfaces, we refer to
this approach as the Texture Inspection Model.

30

3 Structural Similarity Autoencoder

Convolutional autoencoders have emerged as popular methods for unsupervised anomaly
detection on image data. As described in the previous chapter, it is common to obtain
anomaly scores by per-pixel comparisons between their input and reconstructed images.
In this chapter, we show that this tends to produce many false positives in locations where
the reconstruction is only slightly inaccurate, e.g., due to small localization imprecisions
of edges. Furthermore, this way of computing anomaly scores performs poorly in the
detection of salient differences between the input and reconstructed images when the
respective pixels’ intensity values are roughly consistent. This prevents such per-pixel
measures from localizing anomalies that differ predominantly in structure rather than
pixel intensity.

To alleviate these problems, we propose to compute anomaly scores using the struc-
tural similarity metric (SSIM) [Wang et al., 2004]. It is a distance measure designed
to model a perceptual similarity that is less sensitive to edge alignment and gives im-
portance to salient differences between the input and reconstruction. Our experiments
on two real-world datasets show that our SSIM-Autoencoder significantly improves the
anomaly localization accuracy over recent approaches for unsupervised anomaly detec-
tion that use per-pixel reconstruction error metrics. The content of this chapter is based
on the publication Improving Unsupervised Defect Segmentation by Applying Structural
Similarity to Autoencoders [Bergmann et al., 2019b].

3.1 Introduction

Autoencoders attempt to reconstruct their inputs in the presence of certain constraints,
such as a bottleneck, and thereby manage to capture the essence of high-dimensional
data in a lower-dimensional space. It is assumed that the model is unable to reproduce
anomalies in the test data that deviate from the training data manifold. As a result,
large reconstruction errors indicate anomalies. A brief overview of anomaly detection
methods based on autoencoders is given in Section 2.4.1. All of them compute per-
pixel errors between the input and the reconstructed images based on an Lp-distance.
Baur et al. [2019] add an additional adversarial loss to enhance the visual quality of the
reconstructed images. However, during inference, they still compute anomaly scores by
a direct comparison of pixel intensities.

In this chapter, we discuss problems that arise when computing anomaly scores by
such direct comparisons of individual pixel values. In particular, this approach performs
poorly in the detection of defects that arise as structural alterations of the defect-free
material where the individual pixel intensity values do not differ significantly. Further-
more, it tends to produce many false positive predictions, even if the reconstructed

31

3 Structural Similarity Autoencoder

Figure 3.1: An anomalous image of nanofibrous materials is reconstructed by an autoencoder
optimizing either the commonly used pixelwise L2-distance or a perceptual similar-
ity metric based on structural similarity (SSIM). Even though an L2-Autoencoder
fails to properly reconstruct the defects, a per-pixel comparison of the original input
and reconstruction does not yield significant residuals that would allow for a suc-
cessful defect segmentation. The anomaly map using SSIM puts more importance
on the visually salient changes made by the autoencoder, enabling for an accurate
segmentation of the defects.

images visually differ only slightly from the respective input images. This is because
large reconstruction errors may arise already if the reconstruction is shifted by only a
few pixels with respect to the original input.

The structural similarity index, on the other hand, computes a similarity measure
by comparing local patch regions. Hence, it is less sensitive to small reconstruction
inaccuracies. Furthermore, it computes three different statistical measures that model
perceptual differences in luminance, contrast, and structure. This allows for the detection
of salient differences between the input and the reconstruction in situations where per-
pixel error functions yield low residuals. Snell et al. [2017] show that SSIM and the closely
related multi-scale version MS-SSIM [Wang et al., 2003] can be used as differentiable
loss functions to generate more realistic images in deep learning architectures for tasks
such as super resolution. This motivates us to examine its usefulness for the detection
of anomalies in an autoencoding framework.

In our experiments on two real-world industrial inspection datasets, switching from
per-pixel to perceptual losses yields significant gains in performance. We reach a per-
formance that is on par with other recent approaches for unsupervised anomaly de-
tection that rely on additional model priors such as pretrained networks. Figure 3.1
demonstrates the advantage of perceptual loss functions over a per-pixel L2-loss on the
NanoTWICE dataset of nanofibrous materials [Carrera et al., 2017]. While both au-
toencoders alter the reconstruction in defective regions, only the anomaly map of the
SSIM-autoencoder allows a segmentation of these areas.

32

3.2 Methodology

3.2 Methodology

A brief introduction to autoencoders is given in Section 2.4.1. Here, we further detail
their training and evaluation protocols when applied to anomaly detection problems.
We then describe more sophisticated autoencoder variants, i.e., variational and feature
matching autoencoders. Finally, we describe the SSIM metric and discuss its advantages
over pixelwise error functions.

3.2.1 Autoencoders for Unsupervised Anomaly Detection

Autoencoders attempt to reconstruct an input image I : D → RC through a bottleneck,
effectively projecting the input image into a lower-dimensional space, called latent space.
An autoencoder consists of an encoder function, i.e., Enc : I → Rd and a decoder
function, i.e., Dec : Rd → I, where d denotes the dimensionality of the latent space.
Choosing d� C ×H ×W prevents the architecture from simply copying its input and
forces the encoder to extract meaningful features from the input patches that facilitate
an accurate reconstruction by the decoder. The overall process can be summarized as

Î = Dec(Enc(I)) = Dec(z) , (3.1)

where z is the latent vector and Î the reconstruction of the input. In our experiments,
the functions Enc and Dec are parameterized by CNNs. Strided convolutions are used
to downsample the input feature maps in the encoder and to upsample them in the
decoder. Autoencoders can be employed for unsupervised anomaly detection by training
them exclusively on anomaly-free image data. During testing, the autoencoder will fail
to reconstruct anomalous regions that have not been observed during training, which can
thus be segmented by comparing the original input to the reconstruction and computing
an anomaly map A : D → R.

L2-Autoencoder

To force the autoencoder to reconstruct its input, a loss function must be defined that
guides it towards this behavior. For simplicity and computational speed, one often
chooses a per-pixel error measure as the loss function, such as the squared L2-norm:

LL2(Enc,Dec) =
1

B

B∑
i=1

‖Ii − Îi‖22, (3.2)

where B ∈ N+ denotes the number of samples in a training batch. To obtain an anomaly
map AL2 during evaluation for a test image J , the per-pixel L2-distance of J and Ĵ is
computed:

AL2(p) = ‖J(p)− Ĵ(p)‖22. (3.3)

33

3 Structural Similarity Autoencoder

Variational Autoencoder

Various extensions to the deterministic autoencoder framework exist. VAEs [Kingma
and Welling, 2014] impose constraints on the latent variables to follow a certain prior
distribution Pr(z). For simplicity, the distribution is typically chosen to be a unit-
variance Gaussian. This turns the entire framework into a probabilistic model that
enables efficient posterior inference and allows to generate new data from the training
manifold by sampling from the latent distribution. The approximation to the posterior
distribution Pr(z|I) that is obtained by encoding an input image can be used to define
further anomaly measures. One option is to compute a distance between the two dis-
tributions, such as the KL-divergence KL(Pr(z|I)||Pr(z)), and indicate anomalies for
large deviations from the prior Pr(z) [Soukup and Pinetz, 2018]. However, to use this
approach for the pixel-accurate localization of anomalies, a separate forward pass for
each pixel of the input image would have to be performed. A second approach for utiliz-
ing the posterior that yields a spatial anomaly map is to decode multiple latent samples
z1, z2, . . . drawn from Pr(z|I) and to evaluate the per-pixel reconstruction probability
Pr(I|z1, z2, . . .) as an anomaly score [An and Cho, 2015].

Feature Matching Autoencoder

Another extension to standard autoencoders was proposed by Dosovitskiy and Brox
[2016]. It increases the quality of the produced reconstructions by extracting features
from both the input image I and its reconstruction Î and enforcing them to be equal.
Consider F : I → Rf to be a feature extractor that obtains an f -dimensional feature
vector from an input image. Then, a regularizer can be added to the loss function of the
autoencoder, yielding the loss of the feature matching autoencoder (FM-AE):

LFM(Enc,Dec) = LL2(Enc,Dec) +
λ

B

B∑
i=1

‖F (Ii)− F (Îi)‖22 . (3.4)

Here, λ ∈ (0,∞) denotes the weighting factor between the two loss terms. F can be
parameterized using the first layers of a CNN pretrained on an image classification task.
During evaluation, an anomaly map is obtained by comparing the per-pixel L2-distance
of I and Î. The hope is that sharper, more realistic reconstructions will lead to better
anomaly maps compared to a standard L2-Autoencoder.

SSIM-Autoencoder

We show that employing more elaborate architectures such as VAEs or FM-AEs does not
yield satisfactory improvements of the anomaly maps over deterministic L2-Autoencoders
in the unsupervised anomaly detection task. They are all based on per-pixel evaluation
metrics that assume an unrealistic independence between neighboring pixels. Therefore,
they fail to detect structural differences between the inputs and their reconstructions.
By adapting the loss and evaluation functions to capture local inter-dependencies be-
tween image regions, we are able to significantly improve upon all the aforementioned

34

3.2 Methodology

Figure 3.2: Different responsibilities of the three similarity functions employed by SSIM. Ex-
ample patches P and Q differ in either luminance, contrast, or structure. SSIM is
able to distinguish between these three cases, assigning close to minimum similarity
values to one of the comparison functions l(P,Q), c(P,Q), or s(P,Q), respectively.
An L2-comparison of these patches yields a constant per-pixel residual value of 0.25
for each of the three cases.

architectures. In the following section, we specifically motivate the use of the structural
similarity metric as both the loss function and the evaluation metric for autoencoders
to obtain an anomaly map.

3.2.2 Structural Similarity

The SSIM index [Wang et al., 2004] defines a distance measure between two image
patches P : D̃ → R and Q : D̃ → R. Each patch contains a single image channel and
their domain is defined as D̃ = {0, . . . ,K − 1} × {0, . . . ,K − 1} where K ∈ N+ denotes
the patch size. SSIM takes into account the patches’ similarity in luminance l(P,Q),
contrast c(P,Q), and structure s(P,Q):

SSIM(P,Q) = l(P,Q)αc(P,Q)βs(P,Q)γ , (3.5)

where α, β, γ ∈ R are user-defined constants to weight the three terms. The luminance
measure l(P,Q) is estimated by comparing the patches’ mean intensities µP and µQ. The
contrast measure c(P,Q) is a function of the patch variances σ2P and σ2Q. The structure
measure s(P,Q) takes into account the covariance σPQ of the two patches. The three

35

3 Structural Similarity Autoencoder

Figure 3.3: A toy example illustrating the advantages of SSIM over the L2-distance for the
segmentation of defects. (a) 128× 128 checkerboard pattern with gray strokes and
dots that simulate defects. Output reconstruction Î of the input image I by an L2-
Autoencoder trained on defect-free checkerboard patterns. The defects have been
removed by the autoencoder. (b) L2-anomaly map. (c) Residuals for luminance
l, contrast c, structure s, and their pointwise product that yields the final SSIM
anomaly map. In contrast to the L2-anomaly map, SSIM gives more importance
to the visually more salient disturbances than to the slight inaccuracies around
reconstructed edges.

measures are defined as:

l(P,Q) =
2µPµQ + c1
µ2P + µ2Q + c1

, (3.6)

c(P,Q) =
2σPσQ + c2
σ2P + σ2Q + c2

, (3.7)

s(P,Q) =
2σPQ + c2

2σPσQ + c2
. (3.8)

The constants c1 ∈ (0,∞) and c2 ∈ (0,∞) ensure numerical stability. In our experiments,
we set them to c1 = 0.01 and c2 = 0.03. By substituting (3.6)–(3.8) into (3.5) and setting
α = β = γ = 1, the SSIM is given by

SSIM(P,Q) =
(2µPµQ + c1)(2σPQ + c2)

(µ2P + µ2Q + c1)(σ2P + σ2Q + c2)
. (3.9)

It holds that SSIM(P,Q) ∈ [−1, 1]. In particular, SSIM(P,Q) = 1 if and only if P and Q
are identical [Wang et al., 2004]. Figure 3.2 shows the different perceptions of the three
similarity functions that form the SSIM index. Each of the patch pairs P and Q has a
constant L2-residual of 0.25 per-pixel and hence assigns relatively low anomaly scores to
each of the three cases. SSIM on the other hand is sensitive to variations in the patches’
mean, variance, and covariance in its respective anomaly map and assigns low similarity
to each of the patch pairs in one of the comparison functions.

To compute the structural similarity between an entire image I and its reconstruction
Î, one slides a K×K window across the image and computes a SSIM value at each pixel
location. Since Equation (3.9) is differentiable, it can be employed as a loss function in
deep learning architectures that are optimized using gradient descent.

Figure 3.3 illustrates the advantages of SSIM over per-pixel error functions such as L2

for localizing anomalies. After training an L2-Autoencoder on defect-free checkerboard

36

3.3 Experiments

Figure 3.4: Example images from the contributed texture dataset of two woven fabrics. For
each texture, the left sample shows an anomaly-free image without any defect that
can be used for training. The right images show examples of anomalous textures.
Their respective ground truth annotations are visualized in red.

patterns of various scales and orientations, we apply it to an image that contains gray
strokes and dots that simulate defects. Figure 3.3(a) shows the input image and its
corresponding reconstruction produced by the autoencoder, which removes the defects
from the input image. The two remaining subfigures display the anomaly maps when
evaluating the reconstruction error with a per-pixel L2-comparison or SSIM. For the
latter, the luminance, contrast, and structure maps are also shown. For the L2-distance,
both the defects and the inaccuracies in the reconstruction of the edges are weighted
equally in the anomaly map, which makes them indistinguishable. Since SSIM computes
three different statistical features for image comparison and operates on local patch
regions, it is less sensitive to small localization inaccuracies in the reconstruction. In
addition, it detects defects that manifest themselves in a change of structure rather than
large differences in pixel intensity. For the defects added in this particular toy example,
the contrast function yields the largest residuals.

3.3 Experiments

3.3.1 Datasets

At the time of conducting this research project, there was a significant shortage of
datasets for unsupervised anomaly localization in industrial scenarios. One of the few
datasets available was the NanoTWICE dataset for the inspection of nanofibrous ma-
terials presented by Carrera et al. [2017]. It contains five defect-free grayscale images
of size 1024× 700 for training and validation and 40 defective images for evaluation. A
sample image of this dataset is shown in Figure 3.1.

37

3 Structural Similarity Autoencoder

Layer Output Size Parameters
Kernel Stride Padding

Input 128x128x1
Conv1 64x64x32 4x4 2 1
Conv2 32x32x32 4x4 2 1
Conv3 32x32x32 3x3 1 1
Conv4 16x16x64 4x4 2 1
Conv5 16x16x64 3x3 1 1
Conv6 8x8x128 4x4 2 1
Conv7 8x8x64 3x3 1 1
Conv8 8x8x32 3x3 1 1
Conv9 1x1xd 8x8 1 0

Table 3.1: General outline of our autoencoder architecture. The depicted values correspond
to the structure of the encoder. The decoder is built as a reversed version of this.
Leaky rectified linear units with slope 0.2 are applied as activation functions after
each layer except for the output layers of both the encoder and the decoder, in which
linear activation functions are used.

Figure 3.5: Qualitative comparison between reconstructions, anomaly maps, and segmentation
results of an L2-Autoencoder and an SSIM-Autoencoder on two datasets of woven
fabric textures. The ground truth regions containing defects are outlined in red
while green areas mark the segmentation result of the respective method.

For a more comprehensive assessment of the performance of our SSIM-Autoencoder,
we contribute a novel dataset of two woven fabric textures, which is available to the
public.1 We provide 100 defect-free images per texture for training and validation and
50 images that contain various defects such as cuts, roughened areas, and contaminations
on the fabric. Pixel-accurate ground truth annotations for all defects are also provided.
All images are of size 512 × 512 pixels and were acquired as single-channel grayscale
images. Examples of defective and defect-free textures are shown in Figure 3.4.

1http://www.mvtec.com/company/research/publications.

38

http://www.mvtec.com/company/research/publications

3.3 Experiments

Figure 3.6: Resulting ROC curves of the proposed SSIM-Autoencoder (red line) on the evalu-
ated datasets of nanofibrous materials and the two texture datasets in comparison
with other autoencoding architectures that use per-pixel loss functions (green, or-
ange, and blue lines). Corresponding AUC values are given in the legend.

3.3.2 Training and Evaluation Protocol

For all datasets, we train the autoencoders with their respective losses and evaluation
metrics, as described in Section 3.2.1. Each architecture is trained on 10 000 defect-free
patches of size 128× 128, randomly cropped from the given training images. To capture
a more global context of the textures, we down-scaled the images to size 256×256 before
cropping. Each network is trained for 200 epochs using the ADAM [Kingma and Ba,
2015] optimizer with an initial learning rate of 2× 10−4, a weight decay set to 10−5, and
a batch size of B = 64. The exact parametrization of the autoencoder network shared
by all tested architectures is given in Table 3.1. The latent space dimension for our
experiments is set to d = 100 on the texture images and to d = 500 for the nanofibres due
to their higher structural complexity. For the VAE, we decode six latent samples from
the approximate posterior distribution Pr(z|I) to evaluate the reconstruction probability
for each pixel. The feature matching autoencoder is regularized with the first three
convolutional layers of an AlexNet [Russakovsky et al., 2015] pretrained on ImageNet
[Krizhevsky et al., 2012] and a weight factor of λ = 1. For SSIM, the window size is set
to K = 11 unless mentioned otherwise.

The evaluation is performed by striding over the test images and reconstructing image
patches of size 128 × 128 using the trained autoencoder and computing its respective
anomaly map. In principle, it would be possible to set the horizontal and vertical stride to
128. However, at different spatial locations, the autoencoder produces slightly different
reconstructions of the same data, which leads to some striding artifacts. Therefore,
we decreased the stride to 30 pixels and averaged the reconstructed pixel values. The
resulting anomaly maps are thresholded to obtain candidate regions where a defect might
be present. An opening with a circular structuring element of diameter 4 is applied as
a morphological post-processing to delete outlier regions that are only a few pixels wide
[Steger et al., 2018]. We compute the area under the receiver operating characteristic
(AU-ROC) as the evaluation metric. The true positive rate is defined as the ratio of

39

3 Structural Similarity Autoencoder

pixels correctly classified as defect across the entire dataset. The false positive rate is
the ratio of pixels misclassified as defect.

3.3.3 Results

Figure 3.5 shows a qualitative comparison between the performance of the L2- and the
SSIM-Autoencoder on images of the two texture datasets. Although both architectures
remove the defect in the reconstruction, only the SSIM anomaly map reveals the de-
fects and provides an accurate segmentation result. The same can be observed for the
NanoTWICE dataset, as shown in Figure 3.1.

We confirm this qualitative behavior by numerical results. Figure 3.6 compares the
ROC curves and their respective AUC values of our approach using SSIM to the per-
pixel architectures. The anomaly localization performance of the latter is often only
marginally better than classifying each pixel randomly. For the VAE, we found that
the reconstructions obtained by different latent samples from the posterior does not
vary greatly. Thus, it could not improve on the deterministic framework. Employing
feature matching only improved the segmentation result for the dataset of nanofibrous
materials, while not yielding a benefit for the two texture datasets. Using SSIM as the
loss and evaluation metric outperforms all other tested architectures significantly. By
merely changing the loss function, the achieved AUC improves from 0.688 to 0.966 on
the dataset of nanofibrous materials, which is comparable to the numbers reported by
Napoletano et al. [2018], where values of up to 0.974 are reported. In contrast to this
method, autoencoders do not rely on any model priors such as handcrafted features or
pretrained networks. For the two texture datasets, similar gains in performance are
observed.

Since the dataset of nanofibrous materials contains defects of various sizes and smaller
sized defects contribute less to the overall true positive rate when weighting all pixel
equally, we further evaluated the overlap of each detected anomaly region with the
ground truth for this dataset and report the p-quantiles for p ∈ {25%, 50%, 75%} in
Figure 3.7. For false positive rates as low as 5%, more than 50% of the defects have
an overlap with the ground truth that is larger than 91%. This outperforms the results
achieved by [Napoletano et al., 2018], who report a minimal overlap of 85% in this
setting.

We further tested the sensitivity of the SSIM-Autoencoder to different hyperparameter
settings. We varied the latent space dimension d, SSIM window sizeK, and the size of the
patches that the autoencoder was trained on. Table 3.2 shows that SSIM is insensitive
to different hyperparameter settings once the latent space dimension is chosen to be
sufficiently large. Using the optimal setup of d = 500, k = 11, and patch size 128× 128,
a forward pass through our architecture takes 2.23 ms on a Tesla V100 GPU. Patch-by-
patch evaluation of an entire image of the NanoTWICE dataset takes 3.61 s on average,
which is significantly faster than the runtimes reported by [Napoletano et al., 2018].
Their approach requires between 15 s and 55 s to process a single input image.

Figure 3.8 depicts qualitative advantages that employing a perceptual error metric
has over per-pixel distances such as L2. It displays two defective images from one of

40

3.4 Conclusion

Figure 3.7: Per-region overlap for individual defects between our segmentation and the ground
truth for different false positive rates using an SSIM-Autoencoder on the dataset
of nanofibrous materials.

Latent
dimension

AUC
SSIM

window size
AUC Patch size AUC

50 0.848 3 0.889
100 0.935 7 0.965 32 0.949
200 0.961 11 0.966 64 0.959
500 0.966 15 0.960 128 0.966
1000 0.962 19 0.952

Table 3.2: Area under the ROC curve (AUC) on NanoTWICE for varying hyperparameters
in the SSIM-Autoencoder architecture. Different settings do not significantly alter
defect segmentation performance.

the texture datasets, where the top image contains a high-contrast defect of metal pins
which contaminate the fabric. The bottom image shows a low-contrast structural defect
where the fabric was cut open. While the L2-norm has problems to detect the low-
contrast defect, it easily segments the metal pins due to their large absolute distance
in gray values with respect to the background. However, misalignments in edge regions
still lead to large residuals in non-defective regions as well, which would make these thin
defects hard to segment in practice. SSIM robustly segments both defect types due to its
simultaneous focus on luminance, contrast, and structural information and insensitivity
to edge alignment due to its patch-by-patch comparisons.

3.4 Conclusion

In this chapter, we demonstrated the advantage of perceptual loss functions over com-
monly used per-pixel residuals in autoencoding architectures when used for unsupervised
anomaly segmentation tasks. Per-pixel losses fail to capture inter-dependencies between
local image regions and therefore are of limited use when defects manifest themselves
in structural alterations of the defect-free material where pixel intensity values do not
differ significantly. We further show that employing probabilistic per-pixel error metrics

41

3 Structural Similarity Autoencoder

Figure 3.8: In the first row, the metal pins have a large difference in gray values in comparison
to the defect-free background material. Therefore, they can be detected by both
the L2 and the SSIM error metric. The defect shown in the second row, however,
differs from the texture more in terms of structure than in absolute gray values. As
a consequence, a per-pixel distance metric fails to segment the defect while SSIM
yields a good segmentation result.

obtained by VAEs or sharpening reconstructions by feature matching regularization tech-
niques do not improve the segmentation result since they do not address the problems
that arise from treating pixels as mutually independent.

SSIM, on the other hand, is less sensitive to small inaccuracies of edge locations due
to its comparison of local patch regions and takes into account three different statistical
measures: luminance, contrast, and structure. We demonstrate that switching from per-
pixel loss functions to an error metric based on structural similarity yields significant
improvements by evaluating on a challenging real-world dataset of nanofibrous materials
and a contributed dataset of two woven fabric materials which we make publicly available.
Employing SSIM often achieves an enhancement from almost unusable segmentations to
results that are on par with other recent approaches for unsupervised anomaly detection
which additionally rely on image priors such as pre-trained networks.

Although our experiments showed that using SSIM can significantly improve the
anomaly localization performance of autoencoding architectures in some applications,
there is still considerable room for future research. There are still anomalies that our
method cannot localize, which requires the continued development of new, improved
anomaly detection approaches. We have also found that there is a lack of datasets for
anomaly detection. While our new texture dataset is a first step in addressing this gap,
it covers only a small portion of the multitude of potential applications that arise in
industrial inspection scenarios. Therefore, in the next chapter, we present a much more
comprehensive dataset.

42

4 The MVTec Anomaly Detection Dataset

The development of methods for unsupervised anomaly detection requires data on which
to train and evaluate new approaches and ideas. In this chapter, we introduce the MVTec
Anomaly Detection (MVTec AD) dataset containing 5354 high-resolution color images
of different object and texture categories. It contains normal, i.e., defect-free images
intended for training and images with anomalies intended for testing. The anomalies
manifest themselves in the form of over 70 different types of defects such as scratches,
dents, contaminations, and various structural changes. In addition, we provide pixel-
precise ground truth annotations for all anomalies. We conduct a thorough evaluation of
recent unsupervised anomaly detection methods based on deep architectures such as con-
volutional autoencoders, generative adversarial networks, and feature descriptors using
pretrained convolutional neural networks, as well as classical computer vision methods.
This benchmark indicates that methods that leverage descriptors of pretrained networks
perform best, but all evaluated models leave considerable room for improvement. The
content of this chapter is based on two publications: MVTec AD - A Comprehensive Real-
World Dataset for Unsupervised Anomaly Detection [Bergmann et al., 2019a] and The
MVTec Anomaly Detection Dataset: A Comprehensive Real-World Dataset for Unsu-
pervised Anomaly Detection [Bergmann et al., 2021]. The latter is a significant extension
of the first article.

4.1 Introduction

In many areas of computer vision, large-scale datasets have led to incredible advances
during the last few years. Consider how closely intertwined the development of new
classification methods is with the introduction of datasets such as MNIST [LeCun et al.,
1998], CIFAR10 [Krizhevsky and Hinton, 2009], or ImageNet [Krizhevsky et al., 2012].
For the task of unsupervised anomaly detection, we find that there is a lack of com-
prehensive, large-scale, high-resolution datasets. To fill this gap and to spark further
research in the development of new methods in this area, we introduce the MVTec
Anomaly Detection (MVTec AD or MAD for short) dataset1 that facilitates a thorough
evaluation of such methods. Some example images are shown in Figure 4.1. We identify
industrial inspection tasks as an ideal and challenging real-world use case. Defect-free
images of objects or textures are used to train a model that must determine whether an
anomaly is present during test time. Unsupervised methods play a significant role here
since it is often unknown beforehand which types of defects might occur during manu-
facturing. In addition, industrial processes are highly optimized to minimize the number

1https://www.mvtec.com/company/research/datasets.

43

https://www.mvtec.com/company/research/datasets

4 The MVTec Anomaly Detection Dataset

Figure 4.1: Two objects (hazelnut and metal nut) and one texture (carpet) from the MVTec
Anomaly Detection dataset. For each of them, one defect-free image and two images
that contain anomalies are displayed. Anomalous regions are highlighted in close-up
figures together with their pixel-precise ground truth labels. The dataset contains
objects and textures from several domains and covers various anomalies that differ
in attributes such as size, color, and structure.

of defective samples. Therefore, only a very limited amount of images with defects is
available, in contrast to a vast amount of defect-free samples that can be used for train-
ing. Ideally, methods should provide a pixel-accurate localization of anomalous regions.
All this makes industrial inspection tasks perfect benchmarks for unsupervised anomaly
detection methods that work on natural images. Our main contributions presented in
this chapter are:

� We introduce a comprehensive dataset for the task of unsupervised anomaly de-
tection in natural image data. It mimics real-world industrial inspection scenarios
and consists of 5354 high-resolution images of five unique textures and ten unique
objects from different domains. There are 73 different types of anomalies in the
form of defects or structural deviations in the objects or textures. For each defect
image, we provide pixel-accurate ground truth regions (1888 in total) that allow
to evaluate methods for both anomaly classification and localization.

� We conduct a thorough evaluation of recent methods for unsupervised anomaly
detection on the dataset. We show that the evaluated methods do not perform
equally well across object and defect categories. On average, methods that leverage
descriptors of pretrained networks perform best, but all evaluated methods leave
considerable room for improvement.

44

4.2 Existing Datasets for Anomaly Detection

� We provide a thorough discussion on various evaluation metrics and threshold
estimation techniques for unsupervised anomaly localization and highlight their
advantages and shortcomings. Our evaluations demonstrate the importance of
selecting suitable metrics and show that threshold selection is a highly challenging
task in practice. In addition, we include a discussion about the runtime and
memory consumption of the evaluated methods. These are important criteria
for the applicability of the benchmarked methods in real-world scenarios such as
automated inspection tasks.

4.2 Existing Datasets for Anomaly Detection

We give a brief overview of datasets that are commonly used for anomaly detection in
natural images and demonstrate the need for our new dataset. We distinguish between
datasets that are designed for making a binary decision between anomalous and anomaly-
free images and datasets that allow for the localization of anomalous regions.

4.2.1 Classification of Anomalous Images

When evaluating methods for anomaly detection in multi-class classification scenarios,
a common practice is to adapt existing classification datasets for which class labels are
already available. The most prominent examples are MNIST, CIFAR10, and ImageNet.
A popular approach is to select an arbitrary subset of classes, re-label them as anomalies,
and train an anomaly detection system solely on the remaining inlier classes [An and
Cho, 2015, Chalapathy et al., 2018, Ruff et al., 2018, Burlina et al., 2019]. During the
testing phase, it is checked whether the trained model is able to correctly predict that
a test sample belongs to one of the inlier classes. An alternative approach is to train a
classifier on all classes of a single dataset, e.g., MNIST, and use images of an entirely
different dataset, e.g., notMNIST2, as outliers. While these approaches immediately
provide a large amount of data for training and testing, the anomalous samples differ
significantly from the samples drawn from the training distribution. Therefore, when
performing evaluations on such datasets, it is unclear how a proposed method would
generalize to data where anomalies manifest themselves in less significant deviations
from the training data manifold.

For this purpose, Saleh et al. [2013] propose a dataset that contains six categories of
abnormally shaped objects, such as oddly shaped cars, airplanes, and boats, obtained
from internet search engines, that should be distinguished from regular samples of the
same class in the PASCAL VOC dataset [Everingham et al., 2015]. While this data
might be closer to the training data manifold, the decision is again based on entire
images rather than finding the parts of the images that make them novel or anomalous.

2http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html

45

http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html

4 The MVTec Anomaly Detection Dataset

4.2.2 Localization of Anomalous Regions

For the evaluation of methods that segment anomalies in images, only few datasets are
available to the public. Many of them are limited to the inspection of textured surfaces or
focus on anomaly detection in multi-class semantic segmentation scenarios. The research
community lacks comprehensive datasets that allow for the segmentation of anomalous
regions in natural images where the anomalies manifest themselves in subtle deviations
from the training data.

Carrera et al. [2017] provide NanoTWICE,3 a dataset of 45 grayscale images that
show a nanofibrous material acquired by a scanning electron microscope. Five defect-
free images can be used for training. The remaining 40 images contain anomalous regions
in the form of specks of dust or flattened areas. Since the dataset only provides a single
kind of texture, it is unclear how well algorithms that are evaluated on this dataset
generalize to other textures of different domains.

A dataset that is specifically designed for optical inspection of textured surfaces is
proposed by Wieler and Hahn [2007]. They provide ten classes of artificially generated
grayscale textures with defects weakly annotated in the form of ellipses. Each class
comprises 1000 defect-free texture patches for training and 150 defective patches for
testing. The annotations, however, are coarse and since the textures were generated by
very similar texture models, the variance in appearance between the different textures
is insignificant. Furthermore, artificially generated datasets can only be seen as an
approximation to the real world.

Huang et al. [2018] introduce a surface inspection dataset of magnetic tiles. It contains
1344 grayscale images of a single texture. Each image is either anomaly-free or contains
one of five different surface defects, such as cracks or uneven areas. For each defective
image, pixel-precise ground-truth labels are provided. Similarly, Song and Yan [2013]
introduce a database of 1800 grayscale images of a single steel surface. It contains six
different defect types, such as scratches or surface crazings. Each defect is coarsely
annotated with a bounding box.

Blum et al. [2019] introduce Fishyscapes, a dataset intended to benchmark semantic
segmentation algorithms with respect to their ability to detect out-of-distribution inputs.
They artificially inserted images of novel objects into images of the Cityscapes dataset
[Cordts et al., 2016], for which pixel-precise annotations are available. The task is then
to train a model for semantic segmentation while at the same time being able to identify
certain objects as novelties by leveraging the model’s per-pixel uncertainties. In contrast
to their dataset, we focus on the one-class setting, where dataset images only show a
single object and no training annotations are available. Furthermore, our anomalies
manifest themselves in subtle deviations from the input images rather than showing
entirely different object classes.

The CAOS (Combined Anomalous Object Segmentation) benchmark introduced by
Hendrycks et al. [2019] provides two datasets similar to Fishyscapes. It consists of the
StreetHazards and BDD-Anomaly datasets. StreetHazards contains artificially rendered
driving scenes with inserted foreign objects. BDD-Anomaly also consists of driving

3http://www.mi.imati.cnr.it/ettore/NanoTWICE/

46

http://www.mi.imati.cnr.it/ettore/NanoTWICE/

4.3 Description of the Dataset

Figure 4.2: Example images for all five textures and ten object categories of the MVTec
Anomaly Detection dataset. For each category, an anomaly-free as well as an
anomalous example is shown. The top row shows the entire input image. The
bottom row gives a close-up view. For anomalous images, the close-up highlights
the anomalous regions.

scenes and was derived from the BDD100K dataset [Yu et al., 2020] by selecting two
classes as anomalous and removing images containing these classes from the training and
validation sets. As in the case of Fishyscapes, the CAOS datasets are geared towards a
multi-class setting.

4.3 Description of the Dataset

The MVTec Anomaly Detection dataset comprises 15 categories with 3629 images for
training and 1725 images for testing. The training set contains only images without
defects. The test set contains both: images containing various types of defects and
defect-free images. Table 4.1 gives an overview for each object category. Some example
images for every category together with an example defect are shown in Figure 4.2.
Five categories cover different types of regular (carpet, grid) or random (leather, tile,
wood) textures, while the remaining ten categories represent various types of objects.
Some of these objects are rigid with a fixed appearance (bottle, metal nut), while others
are deformable (cable) or include natural variations (hazelnut). A subset of objects
was acquired in a roughly aligned pose (e.g., toothbrush, capsule, and pill) while others

47

4 The MVTec Anomaly Detection Dataset

Category # Train
Test
(good)

Test
(defective)

Defect
types

Defect
regions

Image
side length

Grayscale

T
ex

tu
re

s

Carpet 280 28 89 5 97 1024
Grid 264 21 57 5 170 1024 3

Leather 245 32 92 5 99 1024
Tile 230 33 84 5 86 840

Wood 247 19 60 5 168 1024

O
b

je
ct

s

Bottle 209 20 63 3 68 900
Cable 224 58 92 8 151 1024

Capsule 219 23 109 5 114 1000
Hazelnut 391 40 70 4 136 1024
Metal nut 220 22 93 4 132 700

Pill 267 26 141 7 245 800
Screw 320 41 119 5 135 1024 3

Toothbrush 60 12 30 1 66 1024
Transistor 213 60 40 4 44 1024

Zipper 240 32 119 7 177 1024 3

Total 3629 467 1258 73 1888 - -

Table 4.1: Statistical overview of the MVTec AD dataset. For each category, the number of
training and test images is given together with additional information about the
defects present in the respective test images.

were placed in front of the camera with a random rotation (e.g., metal nut, screw, and
hazelnut). The test images of anomalous samples contain a variety of defects, such as
defects on the objects’ surface (e.g., scratches, dents), structural anomalies like distorted
object parts, or defects that manifest themselves by the absence of certain object parts.
In total, 73 different defect types are present, on average five per category. The defects
were manually generated with the aim to produce realistic anomalies as they would occur
in real-world industrial inspection scenarios. They greatly vary in size, as shown in a
box-and-whisker plot [Tukey, 1977] in Figure 4.3.

All images were acquired using a 2048 × 2048 pixel high-resolution industrial RGB
sensor in combination with two bilateral telecentric lenses [Steger et al., 2018, Chapter
2.2.4.2] with magnification factors of 1:5 and 1:1, respectively. Afterwards, the images
were cropped to a suitable output size. All image resolutions are in the range between 700
× 700 and 1024 × 1024 pixels. Each dataset image shows a unique physical sample. We
did not augment images by taking multiple pictures of the same object in different poses.
Since grayscale images are also common in industrial inspection, three object categories
(grid, screw, and zipper) are made available solely as single-channel images. The images
were acquired under controlled illumination conditions. For some object classes, however,
the illumination was altered intentionally to increase variability. We provide pixel-precise
ground truth labels for each defective image region. In total, the dataset contains 1888
anomalous regions. All regions were carefully annotated and reviewed multiple times.
During the acquisition of the dataset, we generated defects that are confined to local
regions, which facilitated a precise labeling of each anomaly. Additionally, pixels on the
border of anomalies or lying in ambiguous regions were preferably labelled as anomalous.
For locally deformed objects, annotations were created on the deformed area as well as
in the region where the deformed object part is expected to be located. Some defects
manifest themselves as missing parts. In these cases, we annotated the expected location

48

4.4 Performance Metrics

Figure 4.3: Size of anomalies for all textures (green) and objects (blue) in the dataset on a
logarithmic scale visualized as a box-and-whisker plot with outliers. Defect areas
are reported as the number of pixels within a connected component relative to the
total number of pixels within an image. Anomalies vary greatly in size for each
dataset category.

of the part as anomalous. Some examples of labels for selected anomalous images are
displayed in Figures 4.1 and 4.7.

4.4 Performance Metrics

Assessing the performance of anomaly detection algorithms is challenging. A variety of
different metrics are available and each comes with its own advantages and disadvantages.
In Section 2.2, we give an overview of the most commonly used performance measures.
Threshold independent metrics such as the AU-ROC or the AU-PRO are particularly
popular, since determining a suitable threshold is often difficult in practice. Considering
these measures for anomaly localization, it is important to note that the test split of
our dataset is highly imbalanced in the sense that the number of anomalous pixels is
significantly smaller than the number of anomaly-free ones. Only 2.7% of all pixels in
the test set are labeled as anomalous. Therefore, thresholds that yield a large FPR result
in segmentation results that are no longer meaningful. This is especially the case for
industrial applications. There, large false positive rates would lead to a large amount
of defect-free parts being wrongly rejected. An example is shown in Figure 4.4, where
segmentation results are given for multiple thresholds as a contour plot. The thresholds
were selected such that they result in different false positive rates on the input image,
ranging from 1%, for which the defect is well detected, to 100%, where the entire image
is segmented as anomalous. For FPRs as low as 30% the segmentation result is already
degenerated. Therefore, we include metrics in our evaluations that compute the area
under the curves only up to a certain false positive rate. To ensure that the maximum
attainable values of this performance measure is equal to 1, we normalize the resulting

49

4 The MVTec Anomaly Detection Dataset

0

5

10

15

20

25

30

A
no

m
al

y
Sc

or
e

0 5 10 15 20 25 30

Anomaly Score

0.01
0.03
0.1
0.3
0.5
1.0

Figure 4.4: Example anomaly map for an anomalous input image of class metal nut. Binary
segmentation results for multiple thresholds are shown as a contour plot. The
thresholds are selected such that a certain false positive rate is achieved on the
input image. Due to the large class-imbalance between anomalous and anomaly-
free pixels, only results at relatively low FPR yield a satisfactory segmentation of
the color defect.

area. Since the PR curve does not use the FPR in its computation, we always evaluate
its entire area.

4.5 Threshold Selection

Evaluating anomaly localization algorithms using threshold-independent metrics such as
measuring the area under a curve entirely circumvents the need for picking a suitable
threshold. However, when employing an algorithm in practice, one must ultimately
decide on a threshold value to determine whether a part is classified as defective or not.
This is a challenging problem due to the lack of anomalous samples during training time.
Even if a small number of anomalous samples was available for threshold estimation, we
still consider it preferable to estimate a threshold solely on anomaly-free data. This is
because there is no guarantee that the provided samples cover the entire range of possible
anomalies and the estimated threshold might perform poorly for other, unknown, types.
Instead, we want to find a threshold that separates the distribution of anomaly-free
data from the rest of the entire data manifold such that even subtle deviations can be
detected.

In this chapter, we consider three threshold estimation techniques for anomaly local-
ization where the thresholds are estimated solely on a set of anomaly-free validation
images Dval prior to testing. In our experiments, we evaluated how well each technique
transfers from the validation to the test set and which performance is ultimately achieved
when selecting these particular thresholds.

Maximum Threshold: In theory, a method should classify all pixels of the validation
images as anomaly-free. To achieve this, one can simply select the threshold to equal the
maximum value of all occurring anomaly scores on the validation set. In practice, this

50

4.6 Benchmark

is often a highly conservative estimate since already a single outlier pixel with a large
anomaly score can lead to thresholds that do not perform well on the test set.

p-Quantile Threshold: To make the estimation more robust against outliers, one can
compute a threshold taking the entire distribution of validation anomaly scores into
account and allowing for a certain amount of outlier pixels. Here, we investigate the
p-quantile, which selects a threshold such that a percentage p of validation pixels is
classified as anomaly-free.

k-Sigma Threshold: A third approach is to first compute the mean µ and standard
deviation σ over all anomaly scores of the validation set, and then define a threshold
to be t = µ + kσ. This additionally takes the spread of the distribution of anomaly
scores into account. If this distribution can be assumed to perfectly follow a Gaussian
distribution, k can also be chosen to achieve a certain false positive rate on the validation
set. However, since in practice this might not be the case, the false positive rate on the
validation set may differ.

Max-Area Threshold: All estimators discussed so far compute thresholds simply on the
one-dimensional distribution of validation anomaly scores and do not take the spatial
location of image pixels into account. In particular, they are insensitive to the size
of false positive regions, as many small regions are treated equally to a single larger
one. In applications where only anomalies of a certain minimum size are expected, one
can leverage this information to filter such small false positive regions and determine
a threshold by permitting connected components on the validation images that do not
exceed a predefined maximum permissible area. This ensures that an anomaly detector
that classifies connected components as anomalous based on their area would not detect
a single defect on the validation images.

4.6 Benchmark

We conduct a thorough evaluation of recent methods for unsupervised anomaly local-
ization on our dataset. It is intended to serve as a baseline for future methods. In
particular, we include a standard L2-Autoencoder as well as the SSIM-Autoencoder in-
troduced in Chapter 3. We further evaluate f-AnoGAN [Schlegl et al., 2019] and the
CNN Feature Dictionary [Napoletano et al., 2018] as representatives of methods based
on GANs and pretrained CNNs, respectively. We also consider two traditional methods
for our benchmark. The first is the GMM-based Texture Inspection model presented by
Böttger and Ulrich [2016]. While their algorithm was originally intended to be applied
to images of regular textures, it can also be applied to the objects of our dataset. The
second method is the Variation Model [Steger et al., 2018, Chapter 3.4.1.4]. A brief
discussion of all evaluated methods can be found in Section 2.4.

We then discuss the strengths and weaknesses of each method on the various objects
and textures of the dataset. We show that, while each method can detect anomalies of

51

4 The MVTec Anomaly Detection Dataset

certain types, none of the evaluated methods excels on the entire dataset. We find that
the CNN Feature Dictionary which leverages features of a pretrained network tends to
perform better than other approaches. However, all methods leave room for improve-
ment.

We assess the effect of different performance metrics on the evaluation result and
compare different threshold estimation techniques. Furthermore, we provide information
on inference time and memory consumption for each evaluated method.

4.6.1 Training and Evaluation Protocol

The following paragraphs list the training and evaluation protocols for each method. For
each dataset category, we randomly split 10% of the anomaly-free training images into
a validation set. The same validation set was used for all evaluated methods.

Fast AnoGAN: For the evaluation of fast AnoGAN (f-AnoGAN), we use the publicly
available implementation by the original authors.4 The GAN’s latent space dimension is
set to 128 and generated images are of size 64 × 64 pixels, which results in a relatively
stable training for all categories of the dataset. GAN training is conducted for 100
epochs using the Adam optimizer with an initial learning rate of 10−4 and a batch
size of 64. The encoder network for fast inference is trained for 50 000 iterations with
an initial learning rate of 5 × 10−5 and batch size of 64. Since the implementation of
fast AnoGAN only operates on single-channel images, all input images are converted to
grayscale beforehand.

Anomaly maps are obtained by a per-pixel L2-comparison of the input image with the
generated output. For all evaluated dataset categories, training, validation and testing
images are zoomed to size 256 × 256 pixels. 50 000 training patches of size 64 × 64 pixels
are randomly cropped from the training images. During testing, a patchwise evaluation
is performed with a horizontal and vertical stride of 64 pixels.

L2- and SSIM-Autoencoder: For the evaluation of the L2- and SSIM-Autoencoder,
we build on the same network architecture that was described in Chapter 3. It recon-
structs patches of size 128 × 128, employing either a per-pixel L2-loss or a loss based
on the structural similarity index (SSIM). Here, we extend the architecture by an ad-
ditional convolution layer to process images at resolution 256 × 256. We find an SSIM
window size of 11 × 11 pixels to work well in our experiments. The latent space di-
mension is chosen to be 128. Larger latent space dimensions do not yield significant
improvements in reconstruction quality while lower dimensions lead to degenerate re-
constructions. Training is run for 100 epochs using the Adam optimizer with an initial
learning rate of 2× 10−4 and a batch size of 128.

For each dataset category, 10 000 training samples are augmented from the train split
of the original dataset. For textures, randomly sampled patches are cropped evenly
across the training images. For objects, we apply a random translation and rotation to

4https://github.com/tSchlegl/f-AnoGAN

52

https://github.com/tSchlegl/f-AnoGAN

4.6 Benchmark

the entire input image and zoom the result to match the autoencoder’s input resolution.
Additional mirroring is applied where the object permits it.

For the dataset objects, anomaly maps are generated by passing an image through
the autoencoder and comparing the reconstruction with its respective input using either
per-pixel L2-comparisons or SSIM. For textures, we reconstruct patches at a stride of
64 pixels and average the resulting anomaly maps. Since SSIM does not operate on
color images, for the training and evaluation of the SSIM-Autoencoder all images are
converted to grayscale.

Feature Dictionary: We use our own implementation of the CNN Feature Dictionary
proposed by [Napoletano et al., 2018], which extracts features from the 512-dimensional
average pooling layer of a ResNet-18 pretrained on ImageNet. Principal Component
Analysis (PCA) is performed on the extracted features to explain 95% of the variance.
K-means is run with 50 cluster centers and the nearest descriptor to each center is stored
as a dictionary vector. We extract 100 000 patches of size 128 × 128 for both the textures
and objects. All images are evaluated at their original resolution. A stride of 8 pixels is
chosen to create a spatially resolved anomaly map. For grayscale images, the channels
are triplicated for feature extraction since the used ResNet-18 operates on three-channel
input images.

GMM-Based Texture Inspection Model: For the Texture Inspection Model by Böttger
and Ulrich [2016], an optimized implementation is available in the HALCON machine
vision library.5 Images are converted to grayscale, zoomed to an input size of 400 × 400
pixels, and a four-layer image pyramid is constructed for training and evaluation. On
each pyramid level, a separate GMM with dense covariance matrix is trained. The patch
size of examined texture regions on each pyramid level is set to 7 × 7 pixels. We use
a maximum of 50 randomly selected images from the original training set for training
the Texture Inspection Model. Anomaly maps for each pyramid level are obtained
by evaluating the negative log-likelihood for each image pixel using the corresponding
trained GMM. We normalize the anomaly scores of each level such that the mean score
is equal to 0 and their standard deviation equal to 1 on the validation set. The different
levels are then combined to a single anomaly map by averaging the four normalized
anomaly scores per pixel position.

Variation Model: To create the Variation Model [Steger et al., 2018, Chapter 3.4.1.4],
we use all available training images of each dataset category in their original size and
calculate the mean and standard deviation at each pixel location. This works best if the
images show aligned objects. Since this is not always the case, we implemented a specific
alignment procedure for our experiments on the following six dataset categories. Bottle
and metal nut are aligned using shape-based matching [Steger, 2001, 2002], grid and
transistor using template matching with normalized cross-correlation as the similarity
measure [Steger et al., 2018, Chapter 3.11.1.2]. Capsule and screw are segmented via

5https://www.mvtec.com/products/halcon

53

https://www.mvtec.com/products/halcon

4 The MVTec Anomaly Detection Dataset

Category f-AnoGAN
Feature

Dictionary
L2-

Autoencoder
SSIM-

Autoencoder
Texture

Inspection
Variation

Model

Carpet 0.253 0.895 0.306 0.392 0.855 0.165

Grid 0.626 0.757 0.798 0.847 0.857 0.545

Leather 0.584 0.819 0.519 0.389 0.981 0.394

Tile 0.252 0.873 0.251 0.166 0.472 0.425

Wood 0.517 0.778 0.520 0.530 0.827 0.455

Bottle 0.440 0.906 0.567 0.703 0.636 0.659

Cable 0.428 0.815 0.507 0.368 0.597 0.405

Capsule 0.447 0.791 0.771 0.830 0.834 0.802

Hazelnut 0.872 0.913 0.922 0.897 0.958 0.849

Metal nut 0.482 0.701 0.607 0.501 0.384 0.562

Pill 0.700 0.872 0.847 0.803 0.606 0.834

Screw 0.808 0.725 0.864 0.875 0.864 0.701

Toothbrush 0.809 0.718 0.891 0.841 0.786 0.774

Transistor 0.494 0.590 0.657 0.602 0.542 0.554

Zipper 0.202 0.897 0.457 0.515 0.923 0.221

Mean 0.528 0.803 0.632 0.617 0.741 0.556

Table 4.2: Normalized area under the PRO curve up to an average false positive rate per-pixel
of 30% for each dataset category.

thresholding and then aligned by using a rigid transformation which is determined by
geometric features of the segmented region.

The anomaly map for a test image is obtained as follows. We define the value of each
pixel in the anomaly map by calculating the distance from the gray value of the corre-
sponding test pixel to the trained mean value and divide this distance by a multiple of
the trained standard deviation. For multichannel images, this process is done separately
for each channel and we obtain an overall anomaly map as the pixelwise maximum of
all the channels’ individual maps. Note that when a spatial transformation is applied to
input images during inference, some input pixels might not overlap with the mean and
deviation images. For such pixels, no meaningful anomaly score can be computed. In
our evaluation, we set the anomaly score for such pixels to the minimum attainable value
of 0. As for the GMM-based Texture Inspection, we use the optimized implementation
of the HALCON machine vision library.

4.6.2 Anomaly Localization Results

We begin by comparing the performance of all methods for different threshold inde-
pendent evaluation metrics, followed by an analysis of each method individually. The
computation of curve areas that involve the false positive rate is performed up to an
FPR of 0.3 if not mentioned otherwise.

Table 4.2 shows the area under the PRO curve for each method and dataset category.
The CNN Feature Dictionary, which leverages pretrained feature extractors, has the best
mean performance averaged over all dataset categories. The generative deep learning
methods that are trained from scratch perform significantly worse, often only performing
on par or inferior to the more traditional approaches, i.e., the Variation Model and the

54

4.6 Benchmark

0.00 0.05 0.10 0.15 0.20 0.25 0.30
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
er

R
eg

io
n

O
ve

rl
ap

PRO Curve - Bottle

f-AnoGAN

Feature Dictionary

L2 Autoencoder

SSIM Autoencoder

Texture Inspection

Variation Model

0.00 0.05 0.10 0.15 0.20 0.25 0.30
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
er

R
eg

io
n

O
ve

rl
ap

PRO Curve - Cable

f-AnoGAN

Feature Dictionary

L2 Autoencoder

SSIM Autoencoder

Texture Inspection

Variation Model

0.00 0.05 0.10 0.15 0.20 0.25 0.30
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
er

R
eg

io
n

O
ve

rl
ap

PRO Curve - Capsule

f-AnoGAN

Feature Dictionary

L2 Autoencoder

SSIM Autoencoder

Texture Inspection

Variation Model

0.00 0.05 0.10 0.15 0.20 0.25 0.30
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
er

R
eg

io
n

O
ve

rl
ap

PRO Curve - Carpet

f-AnoGAN

Feature Dictionary

L2 Autoencoder

SSIM Autoencoder

Texture Inspection

Variation Model

0.00 0.05 0.10 0.15 0.20 0.25 0.30
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
er

R
eg

io
n

O
ve

rl
ap

PRO Curve - Grid

f-AnoGAN

Feature Dictionary

L2 Autoencoder

SSIM Autoencoder

Texture Inspection

Variation Model

0.00 0.05 0.10 0.15 0.20 0.25 0.30
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
er

R
eg

io
n

O
ve

rl
ap

PRO Curve - Hazelnut

f-AnoGAN

Feature Dictionary

L2 Autoencoder

SSIM Autoencoder

Texture Inspection

Variation Model

0.00 0.05 0.10 0.15 0.20 0.25 0.30
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
er

R
eg

io
n

O
ve

rl
ap

PRO Curve - Leather

f-AnoGAN

Feature Dictionary

L2 Autoencoder

SSIM Autoencoder

Texture Inspection

Variation Model

0.00 0.05 0.10 0.15 0.20 0.25 0.30
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
er

R
eg

io
n

O
ve

rl
ap

PRO Curve - Metal nut

f-AnoGAN

Feature Dictionary

L2 Autoencoder

SSIM Autoencoder

Texture Inspection

Variation Model

0.00 0.05 0.10 0.15 0.20 0.25 0.30
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
er

R
eg

io
n

O
ve

rl
ap

PRO Curve - Pill

f-AnoGAN

Feature Dictionary

L2 Autoencoder

SSIM Autoencoder

Texture Inspection

Variation Model

0.00 0.05 0.10 0.15 0.20 0.25 0.30
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
er

R
eg

io
n

O
ve

rl
ap

PRO Curve - Screw

f-AnoGAN

Feature Dictionary

L2 Autoencoder

SSIM Autoencoder

Texture Inspection

Variation Model

0.00 0.05 0.10 0.15 0.20 0.25 0.30
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
er

R
eg

io
n

O
ve

rl
ap

PRO Curve - Tile

f-AnoGAN

Feature Dictionary

L2 Autoencoder

SSIM Autoencoder

Texture Inspection

Variation Model

0.00 0.05 0.10 0.15 0.20 0.25 0.30
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
er

R
eg

io
n

O
ve

rl
ap

PRO Curve - Toothbrush

f-AnoGAN

Feature Dictionary

L2 Autoencoder

SSIM Autoencoder

Texture Inspection

Variation Model

0.00 0.05 0.10 0.15 0.20 0.25 0.30
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
er

R
eg

io
n

O
ve

rl
ap

PRO Curve - Transistor

f-AnoGAN

Feature Dictionary

L2 Autoencoder

SSIM Autoencoder

Texture Inspection

Variation Model

0.00 0.05 0.10 0.15 0.20 0.25 0.30
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
P
er

R
eg

io
n

O
ve

rl
ap

PRO Curve - Wood

f-AnoGAN

Feature Dictionary

L2 Autoencoder

SSIM Autoencoder

Texture Inspection

Variation Model

0.00 0.05 0.10 0.15 0.20 0.25 0.30
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
er

R
eg

io
n

O
ve

rl
ap

PRO Curve - Zipper

f-AnoGAN

Feature Dictionary

L2 Autoencoder

SSIM Autoencoder

Texture Inspection

Variation Model

Figure 4.5: PRO curves for each dataset category and all evaluated methods. The per-region
overlap (y-axis) is plotted against false positive rates up to 30% (x-axis).

55

4 The MVTec Anomaly Detection Dataset

Metric f-AnoGAN
Feature

Dictionary
L2-

Autoencoder
SSIM-

Autoencoder
Texture

Inspection
Variation

Model

AU-PR 0.136 (6) 0.466 (1) 0.241 (3) 0.148 (5) 0.299 (2) 0.234 (4)

AU-ROC 0.472 (6) 0.836 (1) 0.590 (3) 0.584 (4) 0.656 (2) 0.526 (5)

AU-PRO 0.528 (6) 0.803 (1) 0.632 (3) 0.617 (4) 0.741 (2) 0.556 (5)

AU-IoU 0.073 (6) 0.168 (1) 0.099 (3) 0.091 (5) 0.100 (2) 0.095 (4)

AU-PRO0.01 0.113 (5) 0.201 (3) 0.218 (2) 0.075 (6) 0.263 (1) 0.197 (4)

AU-PRO0.05 0.249 (6) 0.459 (2) 0.372 (3) 0.279 (5) 0.488 (1) 0.328 (4)

AU-PRO1.00 0.784 (6) 0.931 (1) 0.838 (4) 0.840 (3) 0.890 (2) 0.796 (5)

Table 4.3: Comparison of threshold independent performance metrics. For each metric and
evaluated method, the normalized area under the curve is computed and averaged
across all dataset categories. The ranking of each method with respect to the eval-
uated metric is given in brackets. For the ROC, PRO and IoU curves, the area is
computed up to an FPR of 30%. The AU-PRO metric is additionally reported for
varying integration limits.

GMM-based Texture Inspection. On this dataset, the average performance of the SSIM-
Autoencoder is slightly below that of the L2-Autoencoder. This is likely because the
SSIM-Autoencoder does not leverage color information and operates on grayscale images
only. For each object and method, the corresponding PRO curves are given in Figure 4.5.

Table 4.3 assesses the influence of different performance metrics on the evaluation
result. The mean area under the ROC, PRO, PR, and IoU curves are given for each
evaluated method. Areas are averaged over all dataset categories. Additionally, the area
under the PRO curve is computed up to three different integration limits: 0.01, 0.05,
and 1.0. For each method, its ranking with respect to the current metric and all other
methods is given in brackets. When integrating up to a false positive rate of 30% (first
four rows), the rankings produced by the investigated metrics are fairly consistent and
the CNN Feature Dictionary performs best. f-AnoGAN performs worst for all evaluated
metrics. When varying the integration limit of the false positive rate for the AU-PRO
metric (last three rows), the ranking of some methods changes significantly. For example,
when evaluating the full area under the PRO curve, the CNN Feature Dictionary ranks
first, while it ranks only third place if the area is computed only up to an FPR of
1%. This highlights that the choice of the integration limit is important for metrics
that involve the false positive rate and one must select it carefully depending on the
requirements of the application. For tasks where low false positive rates are crucial,
sufficiently small integration limits may be preferred over larger ones.

Table 4.3 further shows that when decreasing the integration limit of the FPR, the
area under the PRO curve drops for all methods by more than a factor of 3. This shows
that many methods only manage to detect anomalies when at the same time a significant
amount of false positive pixels are allowed in the segmentation result. This might limit
the applicability of these methods in practice, as illustrated in Figure 4.4. Figure 4.6
shows example curves for all evaluated metrics for the dataset category zipper. For this
object, defect sizes do not vary as much as for other dataset categories (Figure 4.3), and
hence the ROC and PRO curves are similar. The PR curve shows that the precision

56

4.6 Benchmark

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Precision Recall Curve - Zipper

f-AnoGAN

Feature Dictionary

L2 Autoencoder

SSIM Autoencoder

Texture Inspection

Variation Model

0.00 0.05 0.10 0.15 0.20 0.25 0.30
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
er

R
eg

io
n

O
ve

rl
ap

PRO Curve - Zipper

f-AnoGAN

Feature Dictionary

L2 Autoencoder

SSIM Autoencoder

Texture Inspection

Variation Model

0.00 0.05 0.10 0.15 0.20 0.25 0.30
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P
os

it
iv

e
R

at
e

ROC Curve - Zipper

f-AnoGAN

Feature Dictionary

L2 Autoencoder

SSIM Autoencoder

Texture Inspection

Variation Model

0.00 0.05 0.10 0.15 0.20 0.25 0.30
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

In
te

rs
ec

ti
on

ov
er

U
n
io

n

IoU Curve - Zipper

f-AnoGAN

Feature Dictionary

L2 Autoencoder

SSIM Autoencoder

Texture Inspection

Variation Model

Figure 4.6: Comparison of performance curves for the dataset category zipper.

of all methods except the Texture Inspection Model is smaller than 0.5 for most recall
values. This indicates that these methods predict more false positive pixels than true
positives for any threshold. Compared to the precision, the IoU additionally takes the
false negative predictions into account. Therefore, the IoU is bounded by the maximum
attained precision value and methods with low overall precision also yield low IoU values
for any threshold. For large false positive rates, the IoU converges towards the ratio of
the number of ground truth anomalous pixels divided by the total number of pixels in
the evaluated dataset.

Figure 4.7 shows an example for each method where anomaly detection worked well,
i.e., the thresholded anomaly map substantially overlaps with the ground-truth (left
column) and where each method produced an unsatisfactory result (right column).
Anomaly scores were thresholded such that an average FPR of 0.01 across the entire
test set is achieved. Based on the selected images, we now discuss individual properties
of each evaluated method when applied to our dataset.

57

4 The MVTec Anomaly Detection Dataset

Figure 4.7: Qualitative results for each evaluated method. The left column shows examples
where each method worked well. A failure case is shown in the right column.
Thresholds were selected such that a false positive rate of 0.01 is achieved on the
test set of an evaluated category.

f-AnoGAN: The f-AnoGAN method computes anomaly scores based on per-pixel com-
parisons between its input and reconstruction. Due to the increased contrast between
the screw and the background, it manages to segment the tip of the screw. Because
of imperfect reconstructions, however, the method also yields numerous false positives
around the objects’ edges and around regions where strong reflections are present. It
entirely fails to detect the structural anomaly on the carpet since a removal of the defect
by reconstruction does not result in an image substantially different from the input.

Feature Dictionary: The CNN Feature Dictionary was originally designed to model
the distribution of repetitive texture patches. However, it also yields promising results
for anomaly localization on objects when anomalies manifest themselves in features
that deviate strongly from the local descriptors of the training data manifold. For
example, the small crack on the capsule is well detected. However, since the method

58

4.6 Benchmark

randomly subsamples training patches, it yields increased anomaly scores in regions
that are underrepresented in the training set, e.g., on the imprint on the left half of
the capsule. Additionally, due to the limited capacity of K-Means, the training feature
distribution is often insufficiently well approximated. The method does not capture the
global context of an object. Hence, it fails to detect the anomaly on the cable cross
section, where the inner insulation on the bottom left shows the wrong color, as it is
brown instead of blue.

L2- and SSIM-Autoencoder: Both autoencoders rely on accurate reconstruction of
their inputs for precise anomaly detection. However, they often fail to reconstruct small
details and produce blurry images. Therefore, they tend to yield increased anomaly
scores in regions that are challenging to reconstruct accurately, as can be observed on
the object boundaries of the hazelnut and the bristles of the toothbrush. Like for f-
AnoGAN, the L2-Autoencoder’s per-pixel comparisons result in unsatisfactory anomaly
localization performance when the gray-value difference is small between the input and
reconstruction, as is the case for the transparent color defect on the tile. Since the SSIM-
Autoencoder only operates on grayscale images, it often fails to detect color defects
entirely, such as the red color stroke on the leather texture.

GMM-Based Texture Inspection Model: HALCON’s Texture Inspection models the
distribution of gray-values within local image patches using a GMM. It performs well
on uniform texture patterns, for example, those that are present in the dataset category
leather. Since it only operates on grayscale images, it often fails to detect color defects
such as the one on the pill. Because the boundaries of objects are underrepresented in
the training data, it often yields increased anomaly scores in these areas.

Variation Model: For the evaluation of the Variation Model, prior object alignment
is performed where possible. It performs well for rigid objects such as the metal nut,
which allows for a precise alignment. Due to the applied transformation, not every single
input image pixel overlaps with the mean and deviation image. For these background
pixels, no meaningful anomaly score can be computed. For dataset categories where
an alignment is not possible, e.g., carpet, this method fails entirely. Due to the high
variance of the gray values in the training images, the model assigns high likelihoods to
almost every gray value.

4.6.3 Anomaly Classification Results

In addition to the localization of anomalous regions, it is also of interest how well each
method can separate between anomalous and anomaly-free data samples. To compute
a single anomaly score from an anomaly map, we select its maximum value. We then
compute the area under the ROC curve for each method and dataset category. The
results are listed in Table 4.4. They are very similar to the results obtained for anomaly
localization. Again, the CNN Feature Dictionary yields the overall best performance
with a ROC-AUC of 0.8. The more traditional methods, i.e., the Variation Model and

59

4 The MVTec Anomaly Detection Dataset

Category f-AnoGAN
Feature

Dictionary
L2-

Autoencoder
SSIM-

Autoencoder
Texture

Inspection
Variation

Model

Carpet 0.506 0.865 0.554 0.459 0.917 0.175

Grid 0.896 0.855 0.940 0.796 0.980 0.980

Leather 0.814 0.773 0.881 0.565 0.990 0.870

Tile 0.845 0.996 0.627 0.470 0.925 0.651

Wood 0.891 0.909 0.766 0.666 0.917 0.840

Bottle 0.839 0.980 0.962 0.483 0.906 0.874

Cable 0.506 0.814 0.541 0.626 0.439 0.583

Capsule 0.494 0.709 0.774 0.601 0.552 0.783

Hazelnut 0.946 0.818 0.956 0.695 0.963 0.703

Metal nut 0.404 0.941 0.610 0.680 0.419 0.753

Pill 0.571 0.778 0.700 0.610 0.601 0.686

Screw 0.785 0.437 0.736 0.673 0.645 0.727

Toothbrush 0.536 0.733 0.961 0.822 0.844 0.888

Transistor 0.712 0.673 0.718 0.624 0.419 0.829

Zipper 0.557 0.705 0.739 0.745 0.936 0.604

Mean 0.687 0.800 0.764 0.634 0.764 0.731

Table 4.4: Area under the ROC curve for classification for each dataset category.

the Texture Inspection Model, perform better than the majority of generative deep
learning models.

4.6.4 Threshold Estimation Techniques

In Section 4.5, we discussed various techniques to estimate thresholds purely on a vali-
dation set of anomaly-free images. To assess their performance in practice, we computed
thresholds on three different categories of the dataset: bottle, pill, and wood. The Maxi-
mum threshold simply selects the maximum anomaly score of all validation pixels. For
the p-Quantile threshold, we used p = 0.99, which means that one percent of all val-
idation pixels will be marked as anomalous by each method. We selected a k-Sigma
threshold such that under the assumption of normally distributed anomaly scores, also
a quantile of 0.99 is reached. We additionally investigated a Max-Area threshold that
allows connected components of anomalous pixels with an area smaller than 0.1% of the
area of the entire input image.

Figure 4.8 marks the FPR and PRO values achieved when applying the different
thresholds. For each dataset category, the three best performing methods in terms of AU-
PRO are displayed. Since the Maximum threshold does not allow a single false positive
pixel on the entire validation set, it is the most conservative threshold estimator among
the evaluated ones, yielding the lowest false positive rates on the test set. However, in
some cases, it entirely fails to produce any true positives as well, due to outliers on the
validation set.

All other threshold estimation techniques allow a certain amount of false positives
on the validation set. Hence, they also yield increased false positive rates on the test
set. Both the p-Quantile and k-Sigma thresholds attempt to fix the false positive rate
at one percent. However, due to the inaccurate segmentations of each method, the

60

4.6 Benchmark

0.00 0.05 0.10 0.15 0.20 0.25 0.30
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
er

R
eg

io
n

O
ve

rl
ap

PRO Curve - Pill

Feature Dictionary

L2 Autoencoder

Variation Model

Max.

Quant. 0.99

Mean Std at Q 0.99

Max. Area 0.001

0.00 0.05 0.10 0.15 0.20 0.25 0.30
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
er

R
eg

io
n

O
ve

rl
ap

PRO Curve - Wood

Texture Inspection

Feature Dictionary

SSIM Autoencoder

Max.

Quant. 0.99

Mean Std at Q 0.99

Max. Area 0.001

0.00 0.05 0.10 0.15 0.20 0.25 0.30
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

P
er

R
eg

io
n

O
ve

rl
ap

PRO Curve - Bottle

Feature Dictionary

SSIM Autoencoder

Variation Model

Max.

Quant. 0.99

Mean Std at Q 0.99

Max. Area 0.001

Figure 4.8: Performance of different threshold estimates in terms of FPR and PRO on three
different dataset categories. For each category, the three top performing methods
are displayed. Thresholds are computed on a validation set of anomaly-free images.

application of each threshold results in a significantly higher FPR. Furthermore, the
marker locations of the two thresholds are often very different for the same anomaly
detection method, which indicates that the assumption of normally distributed anomaly
scores does often not hold in practice. For many of the evaluated methods, the Max-Area
threshold is only slightly less conservative than picking the maximum of all anomaly
scores. This indicates that already only a slight decrease of the Maximum threshold
results in connected components of false positives that one might deem large enough to
classify them as anomalies in practice.

Our results show that selecting a suitable threshold for anomaly localization purely
on anomaly-free validation images is a highly challenging problem in practice. The
same estimator might yield very different results depending on the anomaly detection
method and dataset under consideration. For applications that require very low false
positive rates, one is at risk of picking too conservative thresholds that fail to detect
any anomalies. On the other hand, allowing for too many false positives quickly yields
segmentation results that are no longer useful in practice as well.

4.6.5 Time and Memory Consumption

The runtime and required memory of a method during inference are important criteria
for its applicability in real-world scenarios. However, since both greatly depend on
implementation-specific details, measuring them accurately is challenging. For example,
the amount of memory used by deep learning methods can often be greatly reduced
when freeing intermediate feature maps during a forward pass. The execution time of
an algorithm is directly affected by the specific libraries being used and the amount
of exploited potential for parallelization. Hence, we do not provide exact numbers for
inference time and memory consumption but rather point out qualitative differences
between the evaluated methods.

61

4 The MVTec Anomaly Detection Dataset

Method #Parameters

f-AnoGAN 24.57 M
Feature Dictionary 11.46 M
L2-Autoencoder 1.20 M
SSIM-Autoencoder 1.20 M

Table 4.5: Approximate number of model parameters of each evaluated deep learning method
in millions.

As can be expected, methods performing multiple forward passes through a network
have the highest inference times. A particularly extreme example is the CNN Feature
Dictionary, which requires several seconds to process a single image. This is due to the
patchwise evaluation and the fact that only a single anomaly score is produced for each
patch. It is possible to reduce the time by using a larger stride for the patches at the
cost of coarser anomaly maps. Methods that require only a single model evaluation per
image and run entirely on the GPU, such as the autoencoders evaluated on the objects
of the dataset, allow for much faster inference times in the range of a few milliseconds.
However, when performing strided evaluations on the textures, multiple forward passes
become necessary and their runtime increases to several hundreds of milliseconds. The
same is true for f-AnoGAN. For the more traditional methods, i.e., the Variation Model
and the Texture Inspection Model, we use optimized implementations of the HALCON
machine vision library that entirely run on the CPU and achieve runtimes in the range
of tens and hundreds of milliseconds, respectively.

To facilitate a relative comparison of the amount of memory required to perform
inference in deep learning models, one commonly reports the total number of model
parameters as a lower bound. The number of parameters for each model evaluated in
this chapter is given in Table 4.5. Since the Variation Model and the Texture Inspection
Model are not based on deep learning and work in an entirely different way, simply
counting the number of model parameters and comparing them to the deep learning
approaches is not advisable. The Variation Model, for example, stores two model pa-
rameters for each image pixel and thus, the total number of parameters is in the same
range as one of the evaluated deep learning models. However, the Variation Model does
not need to allocate any additional memory and one can still expect the deep learning
approaches to consume a lot more memory during inference due to their intermediate
computation of high-dimensional feature maps.

4.7 Conclusion

In this chapter, we introduced the MVTec Anomaly Detection dataset, a new dataset
for unsupervised anomaly detection that is based on real-world industrial inspection sce-
narios. The dataset provides the possibility to evaluate unsupervised anomaly detection
methods on various texture and object classes with different types of anomalies. Because
pixel-precise ground truth labels for anomalous regions in the images are provided, it

62

4.7 Conclusion

is possible to evaluate anomaly detection methods for both image-level classification as
well as pixel-level segmentation.

We have thoroughly evaluated several methods based on deep learning as well as
two classical methods for anomaly detection on our dataset. Our results show that
discriminative approaches that leverage descriptors of pretrained networks tend to per-
form better than methods that learn feature representations from scratch solely on the
anomaly-free training data. We have provided information on inference time as well as
memory consumption for each evaluated method.

Furthermore, we have discussed properties of common evaluation metrics and thresh-
old estimation techniques for anomaly localization and have highlighted their advan-
tages and shortcomings. We have shown that determining suitable thresholds solely on
anomaly-free data is a challenging problem because the performance of each estimator
highly varies for different dataset categories and evaluated methods.

63

5 Student–Teacher Anomaly Detection

In the experiments of the previous chapter, we found that descriptors extracted from
pretrained CNNs perform well when applied to unsupervised anomaly detection. How-
ever, methods such as the CNN Feature Dictionary rely on patch-based evaluations that
result in coarse anomaly maps and slow inference times. In this chapter, we introduce
a Student–Teacher framework that detects and precisely localizes anomalous regions in
high-resolution images with a single forward pass.

Student networks are trained to regress the output of a descriptive teacher network
that was pretrained on a large dataset of patches from natural images. This circumvents
the need for prior data annotation. Anomalies are detected where the outputs of the
student networks differ from that of the teacher network. This happens when they fail to
generalize outside the manifold of anomaly-free training data. The intrinsic uncertainty
in the student networks is used as an additional scoring function that indicates anomalies.
We compare our method to a number of existing deep learning methods for unsupervised
anomaly detection. Our experiments demonstrate significant improvements on a number
of real-world datasets, including the MVTec Anomaly Detection dataset.

The content of this chapter is based on the publication Uninformed Students: Student–
Teacher Anomaly Detection with Discriminative Latent Embeddings [Bergmann et al.,
2020].

5.1 Introduction

The performance of many supervised computer vision algorithms is improved by transfer
learning, i.e., by using discriminative embeddings from pretrained networks [Kornblith
et al., 2019, Sun et al., 2019]. For unsupervised anomaly detection, such approaches are
not thoroughly explored. Recent work suggests that these feature spaces generalize well
for anomaly detection and even simple baselines outperform generative deep learning
approaches [Burlina et al., 2019, Perera and Patel, 2019]. However, the performance
of existing methods on large high-resolution image datasets is hampered by the use
of shallow machine learning pipelines that require a dimensionality reduction of the
used feature space. Moreover, they rely on heavy training data subsampling since their
capacity does not suffice to model highly complex data distributions with a large number
of training samples.

We propose to circumvent these limitations of shallow models by implicitly modeling
the distribution of training features with a Student–Teacher approach. This leverages
the high capacity of deep neural networks and frames anomaly detection as a feature
regression problem. Given a descriptive feature extractor pretrained on a large dataset
of patches from natural images (the teacher), we train an ensemble of student networks

65

5 Student–Teacher Anomaly Detection

Figure 5.1: Qualitative results of our Student–Teacher method on the MVTec Anomaly Detec-
tion dataset. Top row: Input images containing defects. Center row: Ground
truth regions of defects in red. Bottom row: Anomaly scores for each image pixel
predicted by our algorithm.

on anomaly-free training data to mimic the teacher’s output. During inference, the
students’ predictive uncertainty together with their regression error with respect to the
teacher are combined to yield dense anomaly scores for each input pixel. Our intuition is
that students will generalize poorly outside the manifold of anomaly-free training data
and start to make wrong predictions. Figure 5.1 shows qualitative results of our method
when applied to images selected from the MVTec Anomaly Detection dataset introduced
in the previous chapter. A schematic overview of the entire anomaly detection process
is given in Figure 5.2. Our main contributions are:

� We propose a novel Student–Teacher framework for unsupervised anomaly detec-
tion. Local descriptors from a pretrained teacher network serve as surrogate labels
for an ensemble of students. Our model can be trained end-to-end on large unla-
beled image datasets and make use of all available training data.

� We introduce scoring functions based on the students’ predictive variance and
regression error to obtain dense anomaly maps for the localization of anomalous
regions in natural images. We describe how to extend our approach to detect
anomalies at multiple scales by adapting the students’ and teacher’s receptive
fields.

� We compare our method to a number of shallow machine learning classifiers and
deep generative models that are fitted directly to the teacher’s feature distribution
on three different computer vision datasets. We also compare it to recently intro-
duced deep learning methods for unsupervised anomaly detection. At the time of
publication, our method achieved state-of-the-art performance.

66

5.2 Related Work

Figure 5.2: Schematic overview of our approach. Input images are fed through a teacher net-
work that densely extracts features for local image regions. An ensemble of M
student networks is trained to regress the output of the teacher on anomaly-free
data. During inference, the students will yield increased regression errors e and
predictive variances v in pixels for which the receptive field covers anomalous re-
gions. Anomaly maps generated with different receptive fields can be combined for
anomaly localization at multiple scales.

5.2 Related Work

5.2.1 Anomaly Detection using Pretrained Networks

Promising results have been achieved by transferring discriminative embedding vectors of
pretrained networks to the task of anomaly detection by fitting shallow machine learning
models to the features of anomaly-free training data. For a brief introduction to such
methods, we refer to Section 2.4.3.

Andrews et al. [2016] use activations from different layers of a pretrained VGG network
and model the anomaly-free training distribution with a ν-SVM. However, they only
apply their method to image classification and do not consider the segmentation of
anomalous regions. Similar experiments have been performed by Burlina et al. [2019].
They report superior performance of discriminative embeddings compared to feature
spaces obtained from generative models.

Nazare et al. [2018] investigate the performance of different off-the-shelf feature ex-
tractors pretrained on an image classification task for the segmentation of anomalies in
surveillance videos. Their approach trains a 1-Nearest-Neighbor (1-NN) classifier on em-
bedding vectors extracted from a large number of anomaly-free training patches. Prior
to the training of the shallow classifier, the dimensionality of the network’s activations
is reduced using Principal Component Analysis (PCA). To obtain a spatial anomaly
map during inference, the classifier must be evaluated for a large number of overlapping
patches, which quickly becomes a performance bottleneck and results in rather coarse
anomaly maps. Similarly, Napoletano et al. [2018] extract activations from a pretrained
ResNet-18 for a large number of cropped training patches and model their distribution
using K-Means clustering after prior dimensionality reduction with PCA. They also
perform strided evaluation of test images during inference. Both approaches sample
training patches from the input images and therefore do not make use of all possible

67

5 Student–Teacher Anomaly Detection

training features. This is necessary since, in their framework, feature extraction is com-
putationally expensive due to the use of very deep networks that output only a single
descriptor per patch. Furthermore, since shallow models are employed for learning the
feature distribution of anomaly-free patches, the available training information must be
strongly reduced.

To circumvent the need for cropping patches and to speed up feature extraction,
Sabokrou et al. [2018] extract descriptors from early feature maps of a pretrained AlexNet
in a fully convolutional fashion and fit a unimodal Gaussian distribution to all available
training vectors of anomaly-free images. Even though feature extraction is achieved more
efficiently in their framework, pooling layers lead to a downsampling of the input image.
This strongly decreases the resolution of the final anomaly map, especially when using
descriptive features of deeper network layers with larger receptive fields. In addition,
unimodal Gaussian distributions will fail to model the training feature distribution as
soon as the problem complexity rises.

5.2.2 Open-Set Recognition with Uncertainty Estimates

Our work draws some inspiration from the recent success of open-set recognition in super-
vised settings such as image classification or semantic segmentation, where uncertainty
estimates of deep neural networks have been exploited to detect out-of-distribution in-
puts using MC Dropout [Kendall and Gal, 2017] or deep ensembles [Lakshminarayanan
et al., 2017]. Seeböck et al. [2020] demonstrate that uncertainties from segmentation
networks trained with MC Dropout can be used to detect anomalies in retinal OCT
images. Beluch et al. [2018] show that the variance of network ensembles trained on an
image classification task serves as an effective acquisition function for active learning.
Inputs that appear anomalous to the current model are added to the training set to
quickly enhance its performance.

Such algorithms, however, demand prior labeling of images by domain experts for
a supervised task, which is not always possible or desirable. In our work, we utilize
feature vectors of pretrained networks as surrogate labels for the training of an ensemble
of student networks. The predictive variance together with the regression error of the
ensemble’s output mixture distribution is then used as a scoring function to segment
anomalous regions in test images.

5.3 Student–Teacher Anomaly Detection

This section describes the core principles of our proposed method. Given a training
dataset Dtrain of anomaly-free images, our goal is to create an ensemble of student net-
works Si that can later detect anomalies in test images. This means that they can assign
a score to each pixel indicating how much it deviates from the training data manifold.
For this, the student models are trained against regression targets obtained from a de-
scriptive teacher network T pretrained on a large dataset of natural images. After the
training, anomaly scores can be derived for each image pixel from the students’ regres-
sion error and predictive variance. Given an input image I : D → RC with domain D

68

5.3 Student–Teacher Anomaly Detection

Figure 5.3: Pretraining of the teacher network T̂ to output descriptive embedding vectors for
patch-sized inputs. The knowledge of a powerful but computationally inefficient
network F is distilled into T̂ by decoding the latent vectors to match the descriptors
of F . We also experiment with embeddings obtained using self-supervised metric
learning techniques based on triplet learning. Information within each feature di-
mension is maximized by decorrelating the feature dimensions within a minibatch.

and number of channels C, each student Si in the ensemble outputs a feature map that
contains a d-dimensional descriptor for each image pixel p ∈ D. By design, we limit
the students’ receptive field, such that each descriptor describes a square local image
region Pp within I centered at p. The teacher T has the same network architecture as
the student networks. However, it remains constant and extracts descriptive embedding
vectors for each pixel of the input image I that serve as deterministic regression targets
during student training.

5.3.1 Learning Local Patch Descriptors

We begin by describing how to efficiently construct a descriptive teacher network T
using metric learning and knowledge distillation techniques. In many existing works
for anomaly detection with pretrained networks, feature extractors only output single
feature vectors for patch-sized inputs or spatially heavily downsampled feature maps
[Napoletano et al., 2018, Sabokrou et al., 2018]. In contrast, our teacher network T
efficiently outputs descriptors for every possible square of a fixed side length within
the input image. T is obtained by first training a network T̂ to embed patch-sized
images P : D̃ → RC into a metric space of dimension d using only convolution and
max-pooling layers. The domain of each patch is D̃ = {0, . . . , p − 1} × {0, . . . , p − 1},
where p ∈ N+ denotes the patch size. Fast dense local feature extraction for an entire
input image can then be achieved by a deterministic network transformation of T̂ to
T as described in [Bailer et al., 2017]. This yields significant speedups compared to
previously introduced methods that perform patch-based strided evaluations. To let
T̂ output semantically strong descriptors, we investigate both self-supervised metric
learning techniques as well as distilling knowledge from a descriptive but computationally
inefficient pretrained network. A large number of training patches P can be obtained
by random crops from any image database. Here, we use ImageNet [Krizhevsky et al.,
2012].

69

5 Student–Teacher Anomaly Detection

Knowledge Distillation. Patch descriptors obtained from deep layers of CNNs trained
on image classification tasks perform well for anomaly detection when modeling their
distribution with shallow machine learning models [Napoletano et al., 2018, Nazare et al.,
2018]. However, the architectures of such CNNs are usually highly complex and compu-
tationally inefficient for the extraction of local patch descriptors. Therefore, we distill
the knowledge of a powerful pretrained network F into T̂ by matching the output of F
with a decoded version of the descriptor obtained from T̂ :

Lk(T̂) =
1

B̂

B̂∑
i=1

||U(T̂ (Pi))− F (Pi)||22. (5.1)

Here, U denotes a fully connected decoder network that upsamples the d-dimensional
output of T̂ to the output dimension of the pretrained network’s descriptor. The variable
B̂ refers to the batch size used to pretrain the teacher network.

Metric Learning. If for some reason pretrained networks are unavailable, one can also
learn local image descriptors in a fully self-supervised way [Danon et al., 2019]. Here, we
investigate the performance of discriminative embeddings obtained using triplet learning.
For every randomly cropped patch P , a triplet of patches (P, P+, P−) is augmented.
Positive patches P+ are obtained by small random translations around P , changes in
image luminance, and the addition of Gaussian noise. The negative patch P− is created
by a random crop from a randomly selected different image. In-triplet hard negative
mining with anchor swap [Vassileios Balntas and Mikolajczyk, 2016] is used as a loss
function for learning an embedding sensitive to the L2-metric:

Lm(T̂) =
1

B̂

B̂∑
i=1

max{0, δ + δ+i − δ
−
i }. (5.2)

Here, δ ∈ (0,∞) denotes the margin parameter and in-triplet distances δ+ and δ− are
defined as:

δ+i = ||T̂ (Pi)− T̂ (P+
i)||22, (5.3)

δ−i = min{||T̂ (Pi)− T̂ (P−i)||22, ||T̂ (P+
i)− T̂ (P−i)||22}. (5.4)

Descriptor Compactness. As proposed by Tian et al. [2017], we minimize the correla-
tion between descriptors within one minibatch of inputs P to increase the descriptors’
compactness and remove unnecessary redundancy:

Lc(T̂) =
∑
k 6=l

C2
k,l, (5.5)

where Ck,l denotes the entries of the correlation matrix computed over all descriptors

T̂ (P) in the current minibatch. The final training loss for T̂ is then given as

L(T̂) = λkLk(T̂) + λmLm(T̂) + λcLc(T̂), (5.6)

where λk, λm, λc ∈ [0,∞) are weighting factors for the individual loss terms. Figure 5.3
summarizes the entire learning process for the teacher’s discriminative embedding.

70

5.3 Student–Teacher Anomaly Detection

5.3.2 Ensemble of Student Networks for Deep Anomaly Detection

Next, we describe how to train student networks Si to predict the teacher’s output on
anomaly-free training data. We then derive anomaly scores from the students’ predictive
uncertainty and regression error during inference. First, the vector of component wise
means µ ∈ Rd and standard deviations σ ∈ Rd over all training descriptors is computed
for data normalization. Descriptors are extracted by applying T to each image in the
dataset Dtrain. We then train an ensemble of M ≥ 1 randomly initialized student
networks Si, i ∈ {1, . . . ,M} that possess the identical network architecture as the teacher
T . For an input image I, each student outputs its predictive distribution over the space
of possible regression targets for each local image region Pp centered around the pixel p.
Note that the students’ architecture allows us to obtain dense predictions for each image
pixel with only a single forward pass, without having to actually crop the patches Pp. The
students’ output vectors are modeled as a Gaussian distribution Pr(y|Pp) = N (y;µSi

p , s)

with constant covariance s ∈ R, where µSi
p denotes the prediction made by Si for the

pixel p. Let ỹp denote the teacher’s respective descriptor that is to be predicted by
the students. The log-likelihood training criterion for each student network and a single
dataset sample then simplifies to the squared L2-distance in feature space:

E(I) =
1

|D|
∑
p∈D
||µSi

p − (ỹp − µ)diag(σ)−1||22, (5.7)

where diag(σ)−1 denotes the inverse of the diagonal matrix filled with the values in σ.
The training loss over the dataset samples in a minibatch of B elements can then be
written as L(Si) = 1

B

∑B
j=1E(Ij).

Scoring Functions for Anomaly Detection. Having trained each student to conver-
gence, a mixture of Gaussians can be obtained at each image pixel by equally weighting
the ensemble’s predictive distributions. From it, measures of anomaly can be obtained
in two ways: First, we propose to compute the regression error of the mixture’s mean
µp with respect to the teacher’s surrogate label:

ep = ||µp − (ỹp − µ)diag(σ)−1||22 (5.8)

=
∣∣∣∣∣∣ 1

M

M∑
i=1

µSi
p − (ỹp − µ)diag(σ)−1

∣∣∣∣∣∣2
2
. (5.9)

The intuition behind this score is that the student networks will fail to regress the
teacher’s output within anomalous regions during inference since the corresponding de-
scriptors have not been observed during training. Note that ep can be computed even if
M = 1, where only a single student is trained.

As a second measure of anomaly, we compute for each pixel the predictive uncertainty
of the Gaussian mixture as defined by Kendall and Gal [2017], assuming that the student
networks generalize similarly for anomaly-free regions and differently in regions that

71

5 Student–Teacher Anomaly Detection

Layer Output Size Parameters
Kernel Stride

p
=

17

Input 17× 17× 3
Conv1 12× 12× 128 5× 5 1
Conv2 8× 8× 256 5× 5 1
Conv3 4× 4× 256 5× 5 1
Conv4 1× 1× 128 4× 4 1
Decode 1× 1× 512 1× 1 1

p
=

33

Input 33× 33× 3
Conv1 29× 29× 128 3× 3 1
MaxPool 14× 14× 128 2× 2 2
Conv2 10× 10× 256 5× 5 1
MaxPool 5× 5× 256 2× 2 2
Conv3 4× 4× 256 2× 2 1
Conv4 1× 1× 128 4× 4 1
Decode 1× 1× 512 1× 1 1

p
=

6
5

Input 65× 65× 3
Conv1 61× 61× 128 5× 5 1
MaxPool 30× 30× 128 2× 2 2
Conv2 26× 26× 128 5× 5 1
MaxPool 13× 13× 128 2× 2 1
Conv3 9× 9× 128 5× 5 1
MaxPool 4× 4× 128 2× 2 2
Conv4 1× 1× 256 4× 4 1
Conv5 1× 1× 128 1× 1 1
Decode 1× 1× 512 1× 1 1

Table 5.1: General outline of our network architecture for training teachers T̂ with different
receptive field sizes p ∈ {17, 33, 65}. Leaky rectified linear units with slope 0.05 are
applied as activation functions after each convolution layer.

contain novel information unseen during training:

vp =
1

M

M∑
i=1

||µSi
p ||22 − ||µp||22. (5.10)

To combine the two scores, we compute the means eµ, vµ and standard deviations eσ, vσ
of all ep and vp, respectively, over a validation set of anomaly-free images. Summation
of the normalized scores then yields the final anomaly score:

ẽp + ṽp =
ep − eµ
eσ

+
vp − vµ
vσ

. (5.11)

Figure 5.4 illustrates the basic principles of our anomaly detection method on the
MNIST dataset, where images with label 0 were treated as the normal class and all
other classes were treated as anomalous. Since the images of this dataset are very small,
we extracted a single feature vector for each image using T̂ and trained an ensemble

72

5.3 Student–Teacher Anomaly Detection

Figure 5.4: Embedding vectors visualized for ten samples of the MNIST dataset. Larger circles
around the students’ mean predictions indicate increased predictive variance. Being
only trained on a single class of training images, the students manage to accurately
regress the features solely for this class (green). They yield large regression errors
and predictive uncertainties for images of other classes (red). Anomaly scores for
the entire dataset are displayed in the bottom histogram.

of M = 5 patch-sized students to regress the teacher’s output. This results in a single
anomaly score for each input image. Feature descriptors were embedded into 2D using
Multidimensional Scaling [Borg and Groenen, 2003] to preserve their relative distances.

5.3.3 Multi-Scale Anomaly Detection

If an anomaly only covers a small part of the teacher’s receptive field of size p, the
extracted feature vector predominantly describes anomaly-free traits of the local image
region. Consequently, the descriptor can be predicted well by the students and anomaly
detection performance will decrease. One could tackle this problem by downsampling
the input image. This would, however, lead to an undesirable loss in resolution of the
output anomaly map.

Our framework allows for explicit control over the size of the students’ and teacher’s
receptive field p. Therefore, we can detect anomalies at various scales by training multiple
student–teacher ensemble pairs with varying values of p. At each scale, an anomaly
map with the same size as the input image is computed. Given L ensemble pairs with

different receptive fields, the normalized anomaly scores ẽ
(l)
p and ṽ

(l)
p of each scale l can

73

5 Student–Teacher Anomaly Detection

Method MNIST CIFAR-10
OCGAN 0.9750 0.6566

1-NN 0.9753 0.8189
KMeans 0.9457 0.7592
OC-SVM 0.9463 0.7388
L2-AE 0.9832 0.7898
VAE 0.9535 0.7502

Lk Lm Lc

Ours 3 3 0.9935 0.8196
Ours 3 3 3 0.9926 0.8035
Ours 3 3 0.9935 0.7940
Ours 3 0.9917 0.8021

Table 5.2: Results on MNIST and CIFAR-10. For each method, the average area under the
ROC curve is given, computed across each dataset category. For our algorithm, we
evaluate teacher networks trained with different loss functions. 3 corresponds to
setting the respective loss weight to 1, otherwise it is set to 0.

be combined by simple averaging:

1

L

L∑
l=1

(
ẽ
(l)
p + ṽ

(l)
p

)
. (5.12)

5.4 Experiments

To demonstrate the effectiveness of our approach, an extensive evaluation on a number
of datasets is performed. We measure the performance of our Student–Teacher frame-
work against existing pipelines that use shallow machine learning algorithms to model
the feature distribution of pretrained networks. To do so, we compare to a K-Means
classifier, a One-Class SVM (OC-SVM), and a 1-NN classifier. They are fitted to the
distribution of the teacher’s descriptors after prior dimensionality reduction using PCA
[Hadsell et al., 2006]. We also experiment with deterministic and variational autoen-
coders as deep distribution models over the teacher’s discriminative embedding. The
L2 reconstruction error and reconstruction probability [An and Cho, 2015] are used as
the anomaly score, respectively. We further compare our method to recently introduced
generative and discriminative deep learning anomaly detection models and report im-
proved performance. We want to stress that the teacher has not observed images of the
evaluated datasets during pretraining to avoid an unfair bias.

As a first experiment, we perform an ablation study to find suitable hyperparameters.
Our algorithm is applied to a one-class classification setting on the MNIST [LeCun et al.,
1998] and CIFAR-10 [Krizhevsky and Hinton, 2009] datasets. We then evaluate on the
much more challenging MVTec Anomaly Detection (MVTec AD) dataset introduced in
the previous chapter. To highlight the benefit of our multi-scale approach, an additional
ablation study is performed on MVTec AD, which investigates the impact of different
receptive fields on the anomaly detection performance.

74

5.4 Experiments

For our experiments, we use identical network architectures for the student and teacher
networks, with receptive field sizes p ∈ {17, 33, 65}. All architectures are simple CNNs
with only convolutional and max-pooling layers, using leaky rectified linear units with
slope 5× 10−3 as activation function. Table 5.1 shows the specific architectures used in
our experiments.

For the pretraining of the teacher networks T̂ , triplets augmented from the ImageNet
dataset are used. Images are zoomed to equal width and height sampled from {4p, 4p+
1, . . . , 16p} and a patch of side length p is cropped at a random location. A positive
patch P+ for each triplet is then constructed by randomly translating the crop location
within the interval {−p−1

4 , . . . , p−14 }. Gaussian noise with standard deviation 0.1 is
added to P+. All images within a triplet are randomly converted to grayscale with a
probability of 0.1. For knowledge distillation, we extract 512-dimensional feature vectors
from the fully connected layer of a ResNet-18 that was pretrained for classification on
the ImageNet dataset. For the triplet loss, the margin parameter is chosen as δ = 1. For
network optimization, we use the Adam optimizer [Kingma and Ba, 2015] with an initial
learning rate of 2× 10−4, a weight decay of 10−5, and a batch size of 64. Each teacher
network outputs descriptors of dimension d = 128 and is trained for 5× 104 iterations.

5.4.1 MNIST and CIFAR-10

Before considering the problem of anomaly localization, we evaluate our method on the
MNIST and CIFAR-10 datasets, adapted for one-class classification. Five students are
trained on only a single class of the dataset, while during inference images of the other
classes must be detected as anomalous. Each image is zoomed to the students’ and
teacher’s input size p and a single feature vector is extracted by passing it through the
patch-sized networks T̂ and Ŝi. We examine different teacher networks by varying the
weights λk, λm, λc in the teacher’s loss function L(T̂). The patch size for the experiments
in this subsection is set to p = 33. As a measure of anomaly detection performance, the
area under the ROC curve is evaluated.

Shallow and deep distributions models are trained on the teacher’s descriptors of all
available in-distribution samples. For the deterministic L2-Autoencoder (L2-AE) and
the variational autoencoder (VAE), we use a fully connected encoder architecture of
shape 128–64–32–10 with leaky rectified linear units of slope 5 × 10−3. The decoder is
constructed in a manner symmetric to the encoder. Both autoencoders are trained for
100 epochs at an initial learning rate of 10−2 using the Adam optimizer and a batch
size of 64. A weight decay rate of 10−5 is applied for regularization. To evaluate the
reconstruction probability of the VAE, five independent forward passes are performed for
each feature vector. For the One-Class SVM (OC-SVM), a radial basis function kernel
is used. K-Means is trained with 10 cluster centers and the distance to the single closest
cluster center is evaluated as the anomaly score for each input sample. For 1-NN, the
feature vectors of all available training samples are stored and tested during inference.
For all shallow machine learning models, the dimensionality of the teacher descriptors is
reduced using PCA, retaining 95% of the variance. We additionally report numbers for

75

5 Student–Teacher Anomaly Detection

OCGAN [Perera et al., 2019], a recently proposed generative model directly trained on
the input images.

Table 5.2 shows our results. Our approach outperforms the other methods for a variety
of hyperparameter settings. Distilling the knowledge of the pretrained ResNet-18 into
the teacher’s descriptor yields slightly better performance than training the teacher in
a fully self-supervised way using triplet learning. Reducing descriptor redundancy by
minimizing the correlation matrix yields improved results. On average, shallow models
and autoencoders fitted to our teacher’s feature distribution outperform OCGAN but
do not reach the performance of our approach. Since for 1-NN, every single training
vector can be stored, it performs exceptionally well on these small datasets. On average,
however, our method still performs better than all evaluated approaches.

5.4.2 MVTec Anomaly Detection Dataset

For all our experiments on MVTec AD, input images are zoomed to W = H = 256 pixels.
We train on anomaly-free images for 100 epochs with batch size 1. This is equivalent to
training on a large number of patches per batch due to the limited size of the networks’
receptive field. We use Adam with initial learning rate 10−4 and weight decay 10−5.
Teacher networks were trained with λk = λc = 1 and λm = 0, as this configuration
performed best on MNIST and CIFAR-10. Ensembles contain M = 3 students trained
on three different patches sizes p ∈ {17, 33, 65}.

We first compare the performance of our Student–Teacher model against the methods
evaluated in the previous chapter. The anomaly localization performance is measured by
the area under the PRO curve up to an integration limit of 0.3 is listed in Table 5.3. On
average, our method performs significantly better than all other evaluated approaches.
It also outperforms all other methods on the majority of dataset categories. Similar
results are obtained when evaluating the anomaly classification performance, i.e., the
ability of each method of making a binary decision between anomalous and anomaly-free
samples. Table 5.4 lists the respective areas under the ROC curve. Again, our Student–
Teacher method yields an average performance that is substantially above those of the
other approaches. Regarding the 15 indivual dataset categories, it obtains the highest
AU-ROC value on 11 of them. Figure 5.5 displays additional qualitative results of our
method.

Other Feature Distribution Models. We further compare the performance of our
method to other distribution models fitted to the feature space of our teacher network.
We choose the same hyperparameters as for the experiments on the MNIST and CIFAR
experiments. To train shallow classifiers on the teacher’s output descriptors, a subset
of 5000 feature vectors is randomly sampled from the teacher’s feature maps. Their
dimension is then reduced by PCA, retaining 95% of the variance. For comparability,
we train each algorithm with a single receptive field of size p = 65.

Table 5.5 shows our results. Our method consistently outperforms all other evaluated
algorithms for almost every dataset category. The shallow machine learning algorithms
fitted directly to the teacher’s descriptors after applying PCA do not manage to perform

76

5.4 Experiments

Category
Ours

Multi-Scale
f-AnoGAN

Feature
Dictionary

L2-
Autoencoder

SSIM-
Autoencoder

Texture
Inspection

Variation
Model

Carpet 0.879 0.253 0.895 0.306 0.392 0.855 0.165

Grid 0.952 0.626 0.757 0.798 0.847 0.857 0.545

Leather 0.945 0.584 0.819 0.519 0.389 0.981 0.394

Tile 0.946 0.252 0.873 0.251 0.166 0.472 0.425

Wood 0.911 0.517 0.778 0.520 0.530 0.827 0.455

Bottle 0.931 0.440 0.906 0.567 0.703 0.636 0.659

Cable 0.818 0.428 0.815 0.507 0.368 0.597 0.405

Capsule 0.968 0.447 0.791 0.771 0.830 0.834 0.802

Hazelnut 0.965 0.872 0.913 0.922 0.897 0.958 0.849

Metal nut 0.942 0.482 0.701 0.607 0.501 0.384 0.562

Pill 0.961 0.700 0.872 0.847 0.803 0.606 0.834

Screw 0.942 0.808 0.725 0.864 0.875 0.864 0.701

Toothbrush 0.933 0.809 0.718 0.891 0.841 0.786 0.774

Transistor 0.666 0.494 0.590 0.657 0.602 0.542 0.554

Zipper 0.951 0.202 0.897 0.457 0.515 0.923 0.221

Mean 0.914 0.528 0.803 0.632 0.617 0.741 0.556

Table 5.3: Normalized area under the PRO curve up to an average false positive rate per-pixel
of 30% for each dataset category.

Category
Ours

Multi-Scale
f-AnoGAN

Feature
Dictionary

L2-
Autoencoder

SSIM-
Autoencoder

Texture
Inspection

Variation
Model

Carpet 0.953 0.506 0.865 0.554 0.459 0.917 0.175

Grid 0.981 0.896 0.855 0.940 0.796 0.980 0.980

Leather 0.947 0.814 0.773 0.881 0.565 0.990 0.870

Tile 0.999 0.845 0.996 0.627 0.470 0.925 0.651

Wood 0.991 0.891 0.909 0.766 0.666 0.917 0.840

Bottle 0.990 0.839 0.980 0.962 0.483 0.906 0.874

Cable 0.787 0.506 0.814 0.541 0.626 0.439 0.583

Capsule 0.925 0.494 0.709 0.774 0.601 0.552 0.783

Hazelnut 0.991 0.946 0.818 0.956 0.695 0.963 0.703

Metal nut 0.891 0.404 0.941 0.610 0.680 0.419 0.753

Pill 0.922 0.571 0.778 0.700 0.610 0.601 0.686

Screw 0.860 0.785 0.437 0.736 0.673 0.645 0.727

Toothbrush 1.000 0.536 0.733 0.961 0.822 0.844 0.888

Transistor 0.794 0.712 0.673 0.718 0.624 0.419 0.829

Zipper 0.944 0.557 0.705 0.739 0.745 0.936 0.604

Mean 0.932 0.687 0.800 0.764 0.634 0.764 0.731

Table 5.4: Area under the ROC curve for anomaly classification for each dataset category.

77

5 Student–Teacher Anomaly Detection

Figure 5.5: Qualitative results of our Student–Teacher method on selected textures (left) and
objects (right) of the MVTec Anomaly Detection dataset. Our algorithm performs
robustly across various defect categories, such as color defects, contaminations, and
structural anomalies. Top row: Input images containing defects. Center row:
Ground truth regions of defects in red. Bottom row: Anomaly scores for each
image pixel predicted by our algorithm.

78

5.4 Experiments

Category
Ours
p = 65

1-NN OC-SVM K-Means
L2-

Autoencoder
Variational

Autoencoder

Carpet 0.695 0.512 0.355 0.253 0.456 0.501

Grid 0.819 0.228 0.125 0.107 0.582 0.224

Leather 0.819 0.446 0.306 0.308 0.819 0.635

Tile 0.912 0.882 0.722 0.779 0.897 0.870

Wood 0.725 0.502 0.336 0.441 0.727 0.628

Bottle 0.918 0.898 0.850 0.495 0.910 0.897

Cable 0.865 0.806 0.431 0.513 0.825 0.654

Capsule 0.916 0.631 0.554 0.387 0.862 0.526

Hazelnut 0.937 0.861 0.616 0.698 0.917 0.878

Metal nut 0.895 0.705 0.319 0.351 0.830 0.576

Pill 0.935 0.725 0.544 0.514 0.893 0.769

Screw 0.928 0.604 0.644 0.550 0.754 0.559

Toothbrush 0.863 0.675 0.538 0.337 0.822 0.693

Transistor 0.701 0.680 0.496 0.399 0.728 0.626

Zipper 0.933 0.512 0.355 0.253 0.839 0.549

Mean 0.857 0.640 0.479 0.423 0.790 0.639

Table 5.5: Comparison of the anomaly localization performance of different feature distribution
models. The area under the PRO curve up to an average false positive rate per-pixel
of 30% for each dataset category is used as a performance measure.

satisfactorily for most of the dataset categories. This shows that their capacity does
not suffice to accurately model the large number of available training samples. As
was the case in our previous experiment on MNIST and CIFAR-10, 1-NN yields the
best results amongst the shallow models. Utilizing a large number of training features
together with deterministic autoencoders increases the performance, but still does not
match the performance of our approach. Interestingly, the shallow methods fitted to the
discriminative embedding of the teacher yield similar performance to current generative
methods for anomaly localization such as f-AnoGAN and the SSIM-Autoencoder. This
indicates that there is indeed a gap between methods that learn representations for
anomaly detection from scratch and methods that leverage discriminative embeddings
as prior knowledge.

Anomaly Detection on Multiple Scales. Table 5.6 shows the performance of our al-
gorithm for different receptive field sizes p ∈ {17, 33, 65} and when combining multiple
scales. For some objects, such as bottle and cable, larger receptive fields yield better
results. For others, such as wood and toothbrush, the inverse behavior can be observed.
Combining multiple scales enhances the performance for many of the dataset categories
and yields the best overall performance. A qualitative example highlighting the benefit
of our multi-scale anomaly localization is visualized in Figure 5.6.

Failure Cases. Figure 5.7 shows examples where our method fails to localize anomalies.
In particular, our method may fail to detect very small and subtle defects, such as the
scratch on the surface of the pill. This is because in such cases, the teacher network
does not produce descriptors that differ substantially from the ones of the anomaly-

79

5 Student–Teacher Anomaly Detection

Figure 5.6: Anomaly detection at multiple scales: The architecture with receptive field of size
p = 17 manages to accurately segment the small scratch on the capsule (top row).
However, defects at a larger scale such as the missing imprint (bottom row) become
problematic. For increasingly larger receptive fields, the segmentation performance
for the larger anomaly increases while it decreases for the smaller one. Our multi-
scale architecture mitigates this problem by combining multiple receptive fields.

Category p = 17 p = 33 p = 65 Multi-Scale

Carpet 0.795 0.893 0.695 0.879

Grid 0.920 0.949 0.819 0.952

Leather 0.935 0.956 0.819 0.945

Tile 0.936 0.950 0.912 0.946

Wood 0.943 0.929 0.725 0.911

Bottle 0.814 0.890 0.918 0.931

Cable 0.671 0.764 0.865 0.818

Capsule 0.935 0.963 0.916 0.968

Hazelnut 0.971 0.965 0.937 0.965

Metal nut 0.891 0.928 0.895 0.942

Pill 0.931 0.959 0.935 0.961

Screw 0.915 0.937 0.928 0.942

Toothbrush 0.946 0.944 0.863 0.933

Transistor 0.540 0.611 0.701 0.666

Zipper 0.848 0.942 0.933 0.951

Mean 0.866 0.900 0.857 0.914

Table 5.6: Performance of our algorithm on the MVTec AD dataset for different receptive field
sizes p. Combining anomaly scores across multiple receptive fields shows increased
performance for many of the dataset’s categories. We report the normalized area
under the PRO curve up to an average false-positive rate of 30%.

80

5.5 Conclusion

Figure 5.7: Examples of failure cases of our Student–Teacher method. Our method tends to fail
on samples with very subtle anomalies, such as the scratch on the pill. Furthermore,
violations of logical constraints are problematic, e.g., the missing transistor or the
misplaced wire in the cable.

free training data. Furthermore, our method often does not perform well when defects
manifest themselved in the form of violations of logical constraints, such as missing
objects or objects being placed in invalid locations. Examples for such anomalies are the
missing transistor or the cable, where a yellow wire was replaced by a blue one. Since our
method is by design restricted to the analysis of local receptive fields, it produces low
anomaly scores for the background patches of the transistor, as well as patches showing
a blue wire, since both have appeared in the anomaly-free training set.

5.5 Conclusion

In this chapter, we have introduced a novel framework for the challenging problem of
unsupervised anomaly detection in natural images. Anomaly scores are derived from
the predictive variance and regression error of an ensemble of student networks, trained
against embedding vectors from a descriptive teacher network. Ensemble training can be
performed end-to-end and purely on anomaly-free training data without requiring prior
data annotation. Our approach can be easily extended to detect anomalies at multiple
scales. We demonstrate improvements over recent methods on a number of real-world
computer vision datasets for anomaly classification and localization.

Our Student–Teacher method constitutes a significant step forward in the development
of methods for unsupervised anomaly detection in 2D images. However, we also found
that it may fail to detect anomalies that violate long-range dependencies of the anomaly-
free training data. One reason for this is because our method is designed to inspect a
large number of local receptive fields independent from each other. In the following two
chapters, we address this particular problem in greater detail and propose a possible
solution.

81

6 Logical Constraints in Unsupervised
Anomaly Detection

Anomalies manifest themselves in very different ways and an ideal benchmark dataset
should contain representative examples for all of them. We find that existing datasets,
including our MVTec AD dataset from Chapter 4, are biased towards local structural
anomalies such as scratches, dents, or contaminations. In particular, they lack anomalies
in the form of violations of logical constraints, e.g., permissible objects occurring in
invalid locations. In this chapter, we contribute a new dataset based on industrial
inspection scenarios that evenly covers both types of anomalies. We provide pixel-
precise ground truth data for each anomalous region and define a generalized evaluation
metric that addresses localization ambiguities that can arise for logical anomalies. An
initial benchmark on our new dataset reveals that existing approaches tend to be biased
towards the detection of one of the two types of anomalies. Furthermore, all methods
show considerable room for improvement in the detection of logical anomalies.

The content of this chapter is based on the publication titled Beyond Dents and
Scratches: Logical Constraints in Unsupervised Anomaly Detection and Localization
[Bergmann et al., 2022a].

6.1 Introduction

Deviations from the anomaly-free training data can appear in a variety of ways. On the
one hand, entirely new local structures may occur that are not present during training.
On the other hand, an image can also be considered anomalous if certain underlying
logical or geometrical constraints of the training data are violated. To illustrate the
difference between these two, we created a synthetic toy dataset. All anomaly-free
images display exactly one black circle at a random location on a flat white background.
We introduced two different types of anomalies. The first one is a simple color variation.
The second type of anomaly is characterized by the fact that there are two black circles
in a single image instead of one.

Numerous existing unsupervised anomaly detection methods model the distribution
of local features extracted from pretrained networks. They excel at the detection of
anomalies such as the color defect in our toy dataset. They are, however, inherently
limited to the information inside the receptive field of their descriptors. This makes
it difficult to detect anomalies that violate long-range dependencies. In Figure 6.1,
we demonstrate this by considering three test images of our toy dataset, one of which
is anomaly-free, one shows a color defect, and one contains an additional circle. The
center row shows anomaly maps calculated by our Student–Teacher method presented

83

6 Logical Constraints in Unsupervised Anomaly Detection

0 1 2 3 4 5 6 7 8

Anomaly Score

Figure 6.1: Qualitative results of the Student–Teacher (S–T) method and a variational autoen-
coder (VAE) on a simple toy dataset. Anomaly maps are shown for an anomaly-
free image, an image containing a structural anomaly (a color defect), and a logical
anomaly (two circles being present instead of one). S–T inspects local image regions
and therefore only detects the color defect. The VAE captures the global context
of images in its bottleneck. It finds both anomalies, but also produces many false
positives due to slight inaccuracies in the reconstructions.

in the previous chapter. It clearly identifies and localizes the color defect. The two
circles, however, are not predicted as anomalous because each individual circle does
not constitute an anomaly and the receptive field of the method is not large enough to
understand the long-range relationships in the image.

Methods that are based on generative models such as Variational Autoencoders (VAEs)
[An and Cho, 2015, Vasilev et al., 2020] or Generative Adversarial Networks (GANs)
[Goodfellow et al., 2014, Schlegl et al., 2017] have the potential to capture information
from the entire image [Liu et al., 2020]. Consequently, they are potentially able to detect
anomalies such as the extra black circle in our toy dataset. However, they also tend to
produce blurry and inaccurate reconstructions, which leads to an increase in false posi-
tives, and are often outperformed by the local methods mentioned above. The bottom
row of Figure 6.1 shows anomaly maps calculated by a VAE on our toy dataset. This
method accomplishes to identify the two circles as anomalous but produces many false
positives in the anomaly-free test image.

84

6.1 Introduction

Motivated by these observations, we classify an anomaly as either a structural anomaly
or a logical anomaly and demonstrate that existing methods indeed perform very differ-
ently on these two classes. We define structural anomalies as new visual structures that
occur in locally confined regions and that do not exist in the anomaly-free data. Logi-
cal anomalies, on the other hand, violate underlying logical constraints in the data and
potentially require a method to capture long-range dependencies. In our toy example,
we would classify the color defect as a structural anomaly since the yellow color adds
a local structure that has never been observed during training. The additional circle
in the top right corner of Figure 6.1 does not introduce any new local structure. The
anomaly manifests itself through the violation of the logical constraint that there should
always be exactly one circle in the image. Hence, we classify it as a logical anomaly.
Note that it is not always straightforward to make a clear distinction between structural
and logical anomalies and corner cases may exist.

Existing datasets [Song and Yan, 2013, Carrera et al., 2017, Huang et al., 2018,
Bergmann et al., 2021] identify the task of visual inspection of industrially manufac-
tured products as a typical real-world example for unsupervised anomaly detection. All
of them focus on the detection of structural anomalies and therefore favor methods that
perform well on this type of anomaly. Logical anomalies, however, do occur in manu-
facturing processes, e.g., as an incorrect wiring of a circuit, a shift in the fill level of a
vial, or the absence of an essential component. The development of methods that are
capable of detecting logical anomalies is hindered by the availability of suitable data.
This creates the need for a dataset that takes both structural and logical anomalies into
account with equal importance. We intend to alleviate this need by introducing a new
dataset that is also inspired by industrial inspection scenarios but balances the number
of logical and structural anomalies.

In summary, our key contributions in this chapter are:

� We introduce a new dataset for the evaluation of unsupervised anomaly detection
algorithms that covers both structural and logical anomalies. It contains 3644
images of five distinct object categories inspired by real-world industrial inspection
scenarios. Structural anomalies occur as scratches, dents, or contaminations in the
manufactured products. Logical anomalies violate underlying constraints, e.g., a
permissible object being present in an invalid location or a required object not
being present at all.

� To compare the performance of different methods on our dataset, a suitable per-
formance measure is needed. We find that commonly used metrics are not directly
applicable to assess the capability of methods to detect logical anomalies. To this
end, we introduce a performance metric that takes the different modalities of the
defects present in our dataset into account. This performance measure is a gener-
alization of the PRO metric, an established performance measure for unsupervised
anomaly detection.

� We conduct an initial benchmark on our new dataset. The results show that
existing anomaly detection methods tend to be biased towards the detection of

85

6 Logical Constraints in Unsupervised Anomaly Detection

Category #Train # Val
Test
(good)

Test
(structural)

Test
(logical)

Defect
types

Image
width

Image
height

Breakfast Box 351 62 102 90 83 22 1600 1280
Screw Bag 360 60 122 82 137 20 1600 1100
Pushpins 372 69 138 81 91 8 1700 1000

Splicing Connectors 354 59 119 85 108 21 1700 850
Juice Bottle 335 54 94 94 142 18 800 1600

Total 1772 304 575 432 561 89 - -

Table 6.1: Statistical overview of the MVTec LOCO AD dataset. For each category, the number
of training, validation, and test images is given. Test images are split into anomaly-
free images and images that contain structural or logical anomalies. Additionally,
the number of different defect types and the image size is reported for each category.

one of the two types of anomalies and that there is particularly large room for
improvement in the detection of logical anomalies.

6.2 Datasets for Unsupervised Anomaly Detection

The availability of challenging datasets such as ImageNet [Krizhevsky et al., 2012], MS-
COCO [Lin et al., 2014], or Cityscapes [Cordts et al., 2016] has largely contributed to
recent successes in various fields of computer vision. In Chapter 4, we showed that for
the task of unsupervised anomaly localization comparatively few datasets exist. Here,
we show that all of them are primarily designed for the detection of what we refer to as
structural anomalies.

Huang et al. [2018] introduce a surface inspection dataset of magnetic tiles. It contains
1344 grayscale images of a single texture. Test images contain various structural anoma-
lies such as cracks or uneven areas. Similarly, Carrera et al. [2017] present NanoTWICE,
a dataset of 45 grayscale images of a nanofibrous material acquired by a scanning elec-
tron microscope. Anomalies occur in the form of flattened areas or specks of dust. Both
datasets only provide textured images, which require a method to focus on local repeti-
tive patterns. Hence, these datasets are inherently unsuited for assessing the ability of
a method to capture long-range dependencies and logical constraints.

The Fishyscapes dataset [Blum et al., 2019] is intended to assess the anomaly detection
performance of semantic segmentation algorithms for autonomous driving. The task is
to train a supervised model on the Cityscapes dataset and, during inference, to localize
anomalous objects that were inserted artificially into the test images. The anomalies
only consist of objects not present in the training set. This enables their detection based
on local, patch-based visual features.

Our MVTec Anomaly Detection dataset presented in Chapter 4 contains 73 types of
anomalies, such as contaminations or scratches on manufactured products. The vast
majority of anomalies in the dataset matches our definition of structural anomalies.
Hence, an evaluation on this dataset alone does not give sufficient insight into how well
a method detects logical anomalies.

86

6.3 The Logical Constraints Anomaly Detection Dataset

Figure 6.2: Example images of the MVTec LOCO AD dataset for each of the five dataset
categories. Each category contains anomaly-free train, validation, and test images.
Additional test images contain various structural and logical anomalies. Pixel-
precise ground truth annotations are provided for all anomalies.

6.3 The Logical Constraints Anomaly Detection Dataset

To compare the ability of anomaly detection methods to understand logical constraints,
we need suitable datasets. As discussed above, few datasets exist for unsupervised
anomaly detection in general. Industrial inspection scenarios have been identified as a
prime example for unsupervised anomaly detection tasks. This is underlined by the fact
that the majority of the existing datasets [Song and Yan, 2013, Carrera et al., 2017,
Bergmann et al., 2019b, Huang et al., 2018, Bergmann et al., 2019a] are inspired by such
applications.

None of them, however, set an explicit focus on the joint detection of structural and
logical anomalies. To this end, we introduce the MVTec Logical Costraints Anomaly
Detection (MVTec LOCO AD) dataset.1

6.3.1 Description of the Dataset

MVTec LOCO AD consists of five object categories from industrial inspection scenarios.
We provide a total of 1772 images for training, 304 for validation, and 1568 for testing.
Figure 6.2 shows example images for each of the dataset categories. The training sets

1https://www.mvtec.com/company/research/datasets/mvtec-loco

87

https://www.mvtec.com/company/research/datasets/mvtec-loco

6 Logical Constraints in Unsupervised Anomaly Detection

consists of only anomaly-free images. Machine learning methods typically require data
for validating their performance during training or for adjusting hyperparameters. To
ensure that the choice of the validation data does not add a bias to evaluations and
benchmarks, we define a specific validation set. Like the training images, the validation
images are free of any anomalies. The test set contains anomaly-free images and images
with various types of logical and structural anomalies. All three sets are independent of
each other in the sense that they consist of images of distinct physical objects and that
there is no overlap between them. An overview of the image statistics of our dataset
is shown in Table 6.1, including the number and size of training, validation, and test
images as well as the number of different defect types for each category.

Each dataset category possesses certain logical constraints that need to be fulfilled.
Anomaly-free images of the category breakfast box always contain exactly two tangerines
and one nectarine that are always located on the left-hand side of the box. Furthermore,
the ratio and relative position of the cereals and the mix of banana chips and almonds
on the right-hand side are fixed. A screw bag contains exactly two washers, two nuts,
one long screw, and one short screw. Each compartment of the box of pushpins contains
exactly one pushpin. Exactly two splicing connectors with the same number of cable
clamps are linked by exactly one cable. In addition, the number of clamps has a one-
to-one correspondence to the color of the cable and the cable has to terminate in the
same relative position on its two ends such that the whole construction exhibits a mirror
symmetry. Each juice bottle is filled with one of three differently colored liquids and
carries exactly two labels. The first label is attached to the center of the bottle and
displays an icon that determines the type of liquid. The second is attached to the lower
part of the bottle with the text ”100% Juice” written on it. The fill level is the same for
each bottle. Violations to any of these constraints constitute logical anomalies.

The third row of Figure 6.2 shows examples of logical defects, which manifest them-
selves in the following ways. The breakfast box contains too many banana chips and
almonds. The screw bag contains two long screws and lacks a short one. One compart-
ment of the box of pushpins does not contain any pushpin. For the splicing connectors,
we show three different types of defects. On the left, the two splicing connectors do not
have the same number of clamps, in the center, the color of the cable does not match
the number of clamps and, on the right, the cable terminates in different positions. We
also present three different types of defects for the juice bottle. On the left, the icon
does not match the type of juice. In the middle, the icon is slightly misplaced. Finally,
on the right the fill level of the bottle is too high.

The center row of Figure 6.2 depicts examples of structural anomalies. They manifest
themselves as a damaged tangerine, a broken screw, a bent pushpin, a corrupt insulation
of a cable, and a contamination inside a juice bottle.

6.3.2 Annotations and Labeling Policies

For all anomalies present in the dataset, we provide pixel-precise ground-truth anno-
tations. Structural anomalies are typically straightforward to annotate. Each pixel of
an anomalous image that introduces a local visual structure that is not present in the

88

6.3 The Logical Constraints Anomaly Detection Dataset

anomaly-free images is marked as anomalous. In the example of the damaged tangerine
in Figure 6.2, all pixels that fall into the damaged region are annotated. Labeling logical
defects, however, proves to be a challenging task. As an example, Figure 6.2 depicts a
pushpin missing in one of the compartments. Consider two methods, one that marks
the whole compartment as anomalous, while the other one only marks a region with the
size and shape of a pushpin inside the compartment. In this case, one would probably
consider both methods as equally successful.

Our labeling policy and the newly introduced evaluation metric take such ambiguities
into account. In our dataset, the union of all areas of the image that could potentially
be the cause for the anomaly is labeled as anomalous. However, to achieve a perfect
score, a method is not necessarily required to predict the whole ground truth area as
anomalous.

To reflect this, we introduce a generalization of the per-region overlap. To calculate the
PRO metric, real-valued anomaly scores are thresholded to obtain a binary prediction for
each pixel in the test set. Then, the percentage of correctly predicted pixels is computed
for each annotated defect region in the ground-truth. The average over all defects yields
the final PRO value. Recall that PRO is very similar to computing the average true
positive rate (TPR) over all pixels. The advantage of PRO is that it weights defect
regions of different size as equally important.

In our dataset, we do not necessarily require a method to segment all pixels of an
annotated area. Continuing the example of the missing pushpin, it is sufficient for a
method to segment an area the size of one pushpin within the empty compartment.
To meet this requirement, we propose a generalized version of the PRO metric that
saturates once the overlap with the ground truth exceeds a certain saturation threshold.

6.3.3 The Saturated Per-Region Overlap (sPRO)

Let Ci,j = {(i,p) | p ∈ Kj} denote the set of pixels classified as anomalous for a
connected component Kj ⊆ D in the ground truth image with index i and let si,j be
corresponding saturation thresholds such that 0 < si,j ≤ |Ci,j |. For a set Pano of pixels in
the dataset that are predicted as anomalous, we define the saturated per-region overlap
(sPRO) as

sPRO =
1

k

|Dtest|∑
i=1

ki∑
j=1

min

(
|Ci,j ∩ Pano|

si,j
, 1

)
, (6.1)

where ki denotes the number of ground truth components for a single test image and
k =

∑
i ki is the total number of components in Dtest. Note that this is indeed a

generalization of the PRO metric because sPRO = PRO if si,j = |Ci,j | for all (i, j).
An illustrative example of the sPRO metric with a single ground-truth region is shown
in Figure 6.3. Here, one pushpin is missing in one of the box compartments. The
annotated area comprises the entire compartment while the saturation threshold s is
set to the predetermined size of a single pushpin, which is much smaller. Hence, all

89

6 Logical Constraints in Unsupervised Anomaly Detection

Figure 6.3: Schematic illustration of the introduced sPRO evaluation metric. For an annotated
ground truth component, a saturation threshold s is selected. Once the overlap
of the predicted region with the ground truth exceeds s, we consider the anomaly
segmentation task solved.

predictions P for which the overlap with the ground truth exceeds s fully solve the
segmentation task.

Similar to the TPR and PRO, sPRO does not take false positive predictions into
account. Hence, we report its value together with the associated false positive rate
(FPR). False positive predictions are defined as all pixels that are predicted as anomalous
but are not covered by any annotated region. To obtain evaluation results that are
independent of the binarization value used to turn real-valued anomaly scores into binary
predictions, we make use of the sPRO curve. It is created analogously to the common
PRO or ROC curves by computing the sPRO value for various binarization thresholds
and plotting them against the corresponding FPR value. As our main performance
measure, we compute the area under the sPRO curve up to a limited false positive rate
and normalize it to obtain a score between 0 and 1. This is motivated by the fact that
anomaly segmentation results at large false positive rates are no longer meaningful. They
should, therefore, be excluded from the computation of a performance measure such as
the area under the sPRO curve.

6.3.4 Selection of Saturation Thresholds

We selected suitable saturation thresholds for each of the 89 individual defect types
that occur in our dataset and provide them alongside with our dataset. The following
paragraphs provide further details on our labeling process and the selection of saturation
thresholds for various types of anomalies.

Structural anomalies: For structural anomalies, the entire annotated area should be
segmented. We therefore set s = |C|, which yields the original PRO metric. An example

90

6.4 Benchmark

is the broken screw in the second row of Figure 6.2, for which the entire broken area
should be segmented as anomalous.

Missing objects: For missing objects, we annotated the entire area in which the
object could potentially occur. The corresponding saturation threshold is chosen to be
equal to the area of the missing object. We determined the distribution of the area of
an object in our dataset by manually annotating numerous instances of the same object.
We then selected a value for s from the lower end of this distribution. In the bottom
row of Figure 6.2, a pushpin is missing in one of the compartments. Since pushpins can
potentially occur at every location in the compartment, its entire area is annotated. The
corresponding saturation threshold is set to the size of a single pushpin.

Additional objects: Some test images contain too many instances of an object. In
such cases, all instances of the object are annotated. The saturation threshold is set to
the area of the extraneous objects. An example is shown in the second row of Figure 6.5,
where an additional cable is present between the two splicing connectors. Since it is
not clear which of the two cables represents the anomaly, we annotate both of them.
The corresponding saturation threshold is set to the area of one cable, i.e., half of the
annotated region. On the one hand, this allows a method to obtain a perfect score even
if it only marks one of the two cables as an anomaly. On the other hand, a method
which marks both of them is not penalized.

Violation of other logical constraints: Besides the presence of additional or the
absence of required objects, our MVTec LOCO AD dataset contains various test images
that violate a different form of logical constraints. One example is shown in the last row
of Figure 6.2, where the juice bottle filled with orange juice carries the label of the cherry
juice. Both the orange juice and the label with the cherry are present in the training
set. The logical anomaly arises due to the erroneous combination of the two in the same
image. One could either mark the area filled with juice or the cherry as anomalous.
Hence, our annotation is given by the union of the two regions. Since the segmentation
of the cherry within the image is sufficient to solve the anomaly localization task, s is
selected as the area of the cherry.

6.4 Benchmark

We conduct an initial benchmark of established methods for anomaly localization on
our MVTec LOCO AD dataset. In particular, we evaluate a deterministic autoencoder
(AE), a variational autoencoder (VAE), and the memory-guided autoencoder (MNAD).
All autoencoders localize anomalies by an L2-comparison of the input with its recon-
struction. We further evaluated f-AnoGAN as a representative for GAN-based methods.
For methods that leverage features of pretrained networks, we evaluated SPADE as well
as the Student–Teacher anomaly detection model. As an additional baseline, we in-

91

6 Logical Constraints in Unsupervised Anomaly Detection

Category
Vertical

flip
Horizontal

flip
Random
rotation

Color
jitter

Breakfast Box 3 3
Screw Bag 3 3 3 3
Pushpins 3 3 3 3

Splicing Connectors 3 3 3 3
Juice Bottle 3 3

Table 6.2: Overview of the dataset augmentation techniques applied during training to each of
the object categories present in our dataset.

cluded the Variation Model. For a brief description of the evaluated methods, we refer
to Section 2.4.

6.4.1 Dataset Augmentation

To facilitate the training of data-hungry deep learning models, we designed the acquisi-
tion of our dataset in a way that permits an easy augmentation of the images. In our
experiments, we used the following image augmentations:

� Vertical flip with probability 1
2 .

� Horizontal flip with probability 1
2 .

� Random rotation by up to 3◦ around the center of the image.

� Random jitter of brightness, contrast, and saturation of the image.

Not all of these augmentations are suited for every type of object in our dataset. We
provide an overview of the augmentations applied to each object in Table 6.2. The
augmented datasets were used for all three autoencoders and f-AnoGAN. SPADE, the
Student–Teacher model, and the Variation Model did not require augmented data.

6.4.2 Experiment Setup

Here, we give detailed information on the training and evaluation for each method.

Deterministic and Variational Autoencoders: For both autoencoders, we use the
base architecture as listed in Table 6.3. For the VAE, the last convolution layer of the
encoder is duplicated to estimate the variance. We trained for 500 epochs using Adam
with an initial learning rate of 10−4, a weight decay of 10−5, and a batch size of 16.
During inference, anomaly scores are derived by a pixelwise comparison of the input
images and their reconstructions.

f-AnoGAN: We used the publicly available implementation from the original au-
thors.2 As required by their method, we zoomed all images to size 64 × 64 pixels
and converted them to grayscale prior to training and evaluation.

2https://github.com/tSchlegl/f-AnoGAN

92

https://github.com/tSchlegl/f-AnoGAN

6.4 Benchmark

Layer Output Size Parameters
Kernel Stride Padding

Input 256x256x3
Conv1 128x128x32 4x4 2 1
Conv2 64x64x32 4x4 2 1
Conv3 32x32x64 4x4 2 1
Conv4 16x16x64 4x4 2 1
Conv5 8x8x64 4x4 2 1
Conv9 1x1x32 8x8 1 0

Table 6.3: General outline of the autoencoder architecture. The depicted values correspond to
the structure of the encoder. The decoder is built as a reversed version of this. Batch
normalization and leaky rectified linear units with slope 0.05 are applied after each
layer except for the output layers of both the encoder and the decoder.

For the training of the GAN, the dimension of the latent space was set to 128. The
optimization was done using Adam with an initial learning rate of 10−4, no weight
decay, and a batch size of 64. The GAN was trained for 100 epochs. After each training
iteration of the generator, the discriminator was trained for 5 iterations.

The training of the encoder network was performed with an initial learning rate of
5× 10−5, no weight decay, and a batch size of 64 and runs for 5× 104 iterations. During
inference, anomaly scores are derived by a pixelwise comparison between the input and
the reconstructed image.

MNAD: We used the publicly available implementation from the original authors3

with a small modification. Instead of predicting a future video frame, we implemented
the reconstruction of the original input images. The memory module was initialized
with 10 memory items of dimension 512. The output dimension of the image encoder
was set to 32. For optimization, we used Adam with an initial learning rate of 2× 10−5,
no weight decay, and a batch size of 4. The weights for feature compactness and feature
separateness were set to λc = λs = 10−1. The training was run for 500 epochs in
reconstruction mode on images of size 256 × 256 pixels.

SPADE: We used our own implementation of the SPADE method. As a feature
extractor, we used a Wide ResNet50-2 pretrained on ImageNet. The images were zoomed
to a size of 224 × 224. For feature extraction, we used the last convolution layers of
the first, second, and third block of the network. For the image-level nearest-neighbor
computation, we used K = 50 nearest neighbors. On the pixel-level we used κ = 1
nearest neighbors. The resulting anomaly maps were smoothed using a Gaussian filter
with σ = 4.

Student–Teacher: We used our own implementation of the Student–Teacher method.
All images were zoomed to a size of 256× 256 pixels prior to training and evaluation. The
student networks were trained with 3 different receptive fields of sizes p ∈ {17, 33, 65}
3https://github.com/cvlab-yonsei/MNAD

93

https://github.com/cvlab-yonsei/MNAD

6 Logical Constraints in Unsupervised Anomaly Detection

Method Breakfast Box Screw Bag Pushpins Splicing Connectors Juice Bottle Mean

VM 0.168 0.253 0.254 0.125 0.325 0.225
f-AnoGAN 0.223 0.348 0.336 0.195 0.569 0.334
MNAD 0.080 0.344 0.357 0.442 0.472 0.339
AE 0.189 0.289 0.327 0.479 0.605 0.378
VAE 0.165 0.302 0.311 0.496 0.636 0.382
SPADE 0.372 0.331 0.234 0.516 0.804 0.451
S–T 0.496 0.602 0.523 0.698 0.811 0.626

Table 6.4: Quantitative results on the MVTec LOCO AD dataset. The normalized area under
the sPRO curve up to an average false positive rate per pixel of 5% is computed
separately for the structural and logical anomalies. The table reports the mean of
both values. The best-performing method is highlighted in boldface.

pixels. For each receptive field, we used an ensemble of 3 students, which resulted in a
total of 9 trained models per object category. For optimization, we used Adam with an
initial learning rate of 10−4, weight decay of 10−5, and a batch size of 1. As anomaly
score, we evaluated the predictive variance of the student networks and their regression
errors with respect to the pretrained teacher network.

Variation Model: The Variation Model calculates the mean and standard deviation
at each pixel location over the entire training set of each object in our dataset. This
works best if the images show aligned objects. In the MVTec LOCO AD dataset, the
breakfast boxes are already aligned. We aligned the pushpins and juice bottles using
shape-based matching [Steger, 2001, 2002]. The screw bags and splicing connectors were
not transformed at all for our experiments.

The pixels of the anomaly map show the absolute difference of the test image to the
mean of the training images in multiples of the standard deviation of the training images.
This is done separately for each channel and we obtained the overall anomaly map as
the average over all channels. If a spatial transformation is applied during inference,
some pixels might not overlap with the mean and deviation images. For such pixels,
no meaningful anomaly score can be computed and we therefore set it to the minimum
attainable value of 0.

6.4.3 Experiment Results

To assess the difference in performance between the detection of structural and logical
anomalies, we split the test set into two subsets. Each subset exclusively contains de-
fective test images with structural or logical anomalies, respectively. The anomaly-free
test images are included in both sets. For each subset, we computed the area under the
sPRO curve up to a false positive rate of 0.05. The joint localization performance for
both types of anomalies was measured by the average of the two individual areas.

Table 6.4 shows the results of all evaluated methods for each of the five dataset cat-
egories. Similar to the results on the MVTec AD dataset in Chapter 4, the methods
based on pretrained features, i.e., SPADE and our Student–Teacher method, perform
better than the methods trained from scratch. The latter achieves the best performance

94

6.4 Benchmark

Figure 6.4: Difference in anomaly localization performance for both structural and logical
anomalies on the MVTec LOCO AD dataset.

on all of the five dataset categories. However, all methods leave considerable room for
future improvement.

Figure 6.4 displays the performance of each method when structural or logical anoma-
lies are treated separately. All evaluated methods show a bias towards the detection
of one type of anomaly. Our Student–Teacher method, for example, exhibits a strong
bias towards the detection of structural anomalies. Regarding the detection of logical
anomalies, it is no longer the best-performing method and its localization accuracy is
comparable to generative models such as the AE, VAE, and f-AnoGAN.

Very similar results are obtained when assessing the anomaly classification perfor-
mance of each method on our new dataset, as shown in Figure 6.6. We derive image-
level anomaly scores for each evaluated method by computing the maximum anomaly
score over all pixels in a given anomaly map. We then report the area under the ROC
curve for each dataset category, again separating logical and structural anomalies. The
Student–Teacher method performs best in the detection of structural anomalies. How-
ever, its performance on the logical ones is significantly lower. The other methods show a
relatively balanced classification performance between logical and structural anomalies.

Figure 6.5 provides additional qualitative results for all evaluated methods. Anomaly
images are shown for four test images of our MVTec LOCO AD dataset. Two of them
contain structural anomalies, i.e., the flipped splicing connector and the contamination
in the juice bottle. The other two contain logical anomalies, i.e., the additional red cable
between the two splicing connectors and the banana logo on the bottle filled with orange
juice.

While the Student–Teacher approach detected the structural anomalies reliably, it
failed to detect the logical anomalies due to its limited receptive field. The SPADE
method, on the other hand, failed to detect the flipped splicing connector, while it man-
aged to localize the remaining three anomalies. The deterministic and the variational
autoencoder both yielded large residuals in the parts of the images that are challenging to
reconstruct, e.g., on the cables between the two splicing connectors. While the memory
module in MNAD reduced the number of false positive predictions and improved upon
the basic autoencoders in the detection of structural anomalies, it failed to detect the

95

6 Logical Constraints in Unsupervised Anomaly Detection

0 1 2 3 4 5 6 7 8

Anomaly Score

Figure 6.5: Qualitative results for each evaluated method on our MVTec LOCO AD dataset.
The first and third row contain examples of structural anomalies, i.e. the flipped
connector and the contamination in the juice bottle. The second and third row
contain examples of logical anomalies, i.e., a second cable being present between
the two connectors and the banana label on the bottle filled with orange juice.

96

6.5 Conclusion

Figure 6.6: Image-level classification results on the presented MVTec LOCO dataset (top) and
the MVTec AD dataset (bottom).

logical anomalies. Similar to the deterministic and variation autoencoders, f-AnoGAN
yielded numerous false positive predictions in areas that are difficult to accurately recon-
struct. The Variation Model requires a pixel-precise alignment of the inspected objects.
Since this is not possible for the splicing connectors, it did not perform well for this
dataset category. For the juice bottle, it managed to detect parts of the structural
anomaly.

6.5 Conclusion

This chapter is based on the observation that anomalies in natural images can manifest
themselves in many different ways. We defined two categories of anomalies, which we
call structural and logical anomalies. Previous work predominantly concentrated on the
development of datasets and methods for the detection of structural ones. We therefore
created a new dataset for the unsupervised localization of anomalies that focuses on the
detection of both structural and logical anomalies. Pixel-precise ground truth annota-
tions are provided for each anomalous test image. Furthermore, we introduced a new
performance metric that takes the different modalities of the two anomaly types into
account.

We conducted an initial benchmark of existing methods for unsupervised anomaly
detection on our new dataset. Our results showed that existing methods tend to be
biased towards the detection of one of the two types of anomalies and that there remains
considerable room for improvement, especially for the detection of logical anomalies. In
the following chapter, we will introduce a new method that performs significantly better
in the joint detection of structural and logical anomalies.

97

7 Global Context Anomaly Detection

In this chapter, we introduce Global Context Anomaly Detection (GCAD), a new
method for the unsupervised localization of anomalies that sets a new state of the art
in the joint detection of structural and logical anomalies. It consists of a local and
a global network branch. The local branch is based on our Student–Teacher method.
It inspects confined regions independent of their spatial locations in the input image
and is primarily responsible for the detection of entirely new local structures. The
global branch learns a globally consistent representation of the training data through
a bottleneck that enables the detection of violations of long-range dependencies, a key
characteristic of many logical anomalies. Extensive evaluations on MVTec LOCO and
MVTec AD show the superiority of our approach in the detection of logical anomalies,
as well as in the combined localization of both anomaly types.

The content of this chapter is based on the publication titled Beyond Dents and
Scratches: Logical Constraints in Unsupervised Anomaly Detection and Localization
[Bergmann et al., 2022a].

7.1 Introduction

The results from the previous chapter indicate that while our Student–Teacher method
performs well in the detection of structural anomalies, it is by design limited to the
inspection of locally confined regions of the anomaly-free training data. This makes it
inherently unsuited to detect violations of long-range dependencies that extend beyond
its receptive field. Competing methods based on generative models, such as convolu-
tional autoencoders or GANs, have the potential to capture these global constraints in
their low-dimensional latent variable. However, their performance is limited by their
tendency to produce inaccurate reconstructions. In this chapter, we contribute a new
method for the unsupervised pixel-precise localization of anomalies that combines the
strengths of compression-based models and methods based on local features extracted
from pretrained networks. This enables us to improve the joint detection of structural
and logical anomalies compared to prior art.

Our method consists of a local and a global network branch, each of which we show
to be primarily responsible for the detection of structural and logical anomalies, respec-
tively. The local branch is based on the Student–Teacher framework from Chapter 5,
which was the best performing method in the detection of structural anomalies in our
initial benchmark on the MVTec LOCO dataset.

The global branch intends to overcome the difficulty to capture the entire context of
an input image. Similar to autoencoders, it consists of a global feature encoder network

99

7 Global Context Anomaly Detection

0

2

4

6

8

10

12

A
no

m
al

y
Sc

or
e

0

1

2

3

4

5

6

7

8

A
no

m
al

y
Sc

or
e

0 1 2 3 4 5 6 7 8

Anomaly Score

Figure 7.1: Qualitative results of our GCAD method on two samples of the MVTec LOCO
dataset. The top and bottom rows show an example of a structural and a logical
anomaly, respectively. Our proposed method successfully localizes the anomaly in
both images.

that produces a globally consistent representation of the training data through a low-
dimensional bottleneck. Simultaneously, a high-capacity regression network attempts to
reproduce this feature encoding, while disregarding any underlying global constraints.
During inference, deviations between the two networks indicate anomalies. Instead of
evaluating per-pixel reconstruction errors within the global feature encoder directly,
shifting the anomaly score computation to a learned feature space facilitates the accurate
matching of higher-dimensional features through a low-dimensional bottleneck, which
greatly reduces the number of false positives.

Extensive evaluations against state-of-the-art methods show the superiority of our
approach in the detection of logical anomalies, as well as in the combined localization
of both anomaly types. Figure 7.1 shows an illustrative example of our new method
applied to samples from the MVTec LOCO dataset.

7.2 Description of Our Method

Given a training dataset Dtrain of anomaly-free images, our goal is to localize anomalies
in test images Dtest by assigning a real-valued anomaly score to each image pixel. All
images I : D → RC possess the same domain D and the same number of channels
C. Our method consists of two main branches, one of which is primarily responsible
for the localization of structural anomalies and the other one for the localization of
logical anomalies. The following paragraphs give details about the two branches and
highlight the characteristics that enable them to detect the two different anomaly types.
A schematic overview of our approach is given in Figure 7.2.

100

7.2 Description of Our Method

Figure 7.2: Schematic overview of our approach. A global feature encoder Eglo is trained
against descriptors from a pretrained local feature encoder Eloc through a bot-
tleneck to capture the global context of the anomaly-free training data. Each
encoder is assigned a high-capacity regression network Rglo and Rloc, respectively,
that matches the output of its respective feature encoder. The joint training of Eglo

and Rglo facilitates the accurate matching of higher-dimensional features through
a low-dimensional bottleneck.

Local Model Branch. Our first branch is motivated by the recent success of anomaly
detection methods that model the distribution of local features extracted from pretrained
CNNs. Such methods achieve state-of-the-art performance on established anomaly lo-
calization benchmarks, in which the majority of anomalies match our definition of struc-
tural anomalies. In particular, we base this branch of our model on the Student–Teacher
method. Since this method computes anomaly scores for locally confined image regions
independent of their spatial position in the input image, we refer to this branch as the
local branch of our model.

It consists of an encoder network Eloc which is pretrained on a large number of image
patches cropped from the ImageNet dataset. During pretraining, Eloc is encouraged to
extract expressive descriptors for local image patches via knowledge distillation from a
pretrained classification network. In particular, we employ the same feature extractor
as used in our Student–Teacher method, which distills the knowledge of a ResNet-18
[He et al., 2016] classifier trained on ImageNet into a dense patch descriptor network
via fast dense feature extraction [Bailer et al., 2017]. A detailed description of the
network architecture of Eloc and the pretraining protocol on ImageNet can be found
in Chapter 5. After pretraining, the weights of Eloc remain fixed when optimizing our
anomaly detection model. Formally, Eloc produces a descriptor of dimension dloc at each
pixel location, i.e., Eloc(I) ∈ RH×W×dloc . Each feature describes a local patch of size

101

7 Global Context Anomaly Detection

p × p within the original input image. This is achieved by choosing an architecture for
Eloc with a limited receptive field.

The local branch additionally contains a regression network Rloc that is initialized
with random weights and is trained to match the output of Eloc on the anomaly-free
training data. It outputs a feature map of a shape identical to the one produced by Eloc,
i.e., Rloc(I) ∈ Rdloc×h×w. We use a high-capacity network with skip connections for this
task and minimize the squared L2-norm:

Lloc(Rloc) =
1

B

B∑
i=1

‖Eloc(Ii)−Rloc(Ii)‖22 . (7.1)

Here, B denotes the size of the current minibatch. If, during inference, an image
contains novel local structures that have not been observed during training and that fall
within the receptive field of the pretrained feature extractor, Eloc will produce novel local
descriptors with which Rloc is unfamiliar. This leads to large regression errors. Hence,
we expect the local branch of our model to perform well in the detection of structural
anomalies.

Global Model Branch. Eloc inspects only a limited receptive field of size p × p pixels
and, in particular, does not encode the positional composition of the extracted training
features. Hence, our local branch is inherently ill-suited for the detection of anomalies
that violate long-range dependencies, which is characteristic for many logical anomalies
such as missing or additional objects in the input image. To compensate for this, we add
a second branch to our model that analyzes the global context of the entire input image.
Therefore, we refer to this branch as the global branch of our model. Its design is inspired
by the observation in the previous chapter that methods that compress the input data
to a low-dimensional bottleneck possess the ability to capture logical constraints and fail
to reproduce input images that violate them.

Our global branch consists of two networks, Eglo and Rglo. The first is an encoder
network that produces a descriptor of dimension dglo at each pixel location, Eglo(I) ∈
RH×W×dglo . Similar to an autoencoder, Eglo is encouraged to produce feature maps that
are globally consistent with the training data. To this end, Eglo produces its encoding
over a low-dimensional bottleneck of dimension g. Contrary to autoencoders, Eglo does
not reconstruct the input image. It is trained by distilling the knowledge of the local
feature encoder Eloc into the global branch. To let the descriptors of Eglo match the
output dimension of Eloc, we introduce an upsampling network U that performs a series
of 1×1 convolutions. For training, we minimize

Lkd(Eglo, U) =
1

B

B∑
i=1

‖Eloc(Ii)− U(Eglo(Ii))‖22 . (7.2)

In principle, anomaly scores could be computed by comparing the features of Eloc di-
rectly to those of U ◦Eglo. However, our ablation studies show that the high-dimensional
and detailed feature maps of Eloc can only be approximately reproduced by Eglo due to

102

7.2 Description of Our Method

0

5

10

15

20

A
no

m
al

y
Sc

or
e

0

5

10

15

20

25

A
no

m
al

y
Sc

or
e

Figure 7.3: Visualization of anomaly maps Aloc and Aglo for a structural and a logical anomaly.
The damaged label in the left column is an example of a structural anomaly. The
local branch is able to detect this type of anomaly while the global one does not
contribute much information. In the right column, a wrong fill level constitutes a
logical anomaly. The local branch is not able to detect this because no new local
structure is present in the image. Since the global branch takes the entire image
content into account, it is able to successfully segment the anomalous region.

its low-dimensional bottleneck. A direct comparison would lead to many false positives
in the anomaly images due to inaccurate feature reconstructions. To circumvent this
problem, the second network of the global branch, Rglo, is trained to match the output
of Eglo using the loss term

Lglo(Eglo, Rglo) =
1

B

B∑
i=1

‖Eglo(Ii)−Rglo(Ii)‖22 . (7.3)

Rglo is intended to accurately transform local image regions into the corresponding
feature vectors without taking into account the underlying logical constraints of the
training data. To make this possible, Rglo does not contain any bottleneck and is designed
as a high-capacity network with skip connections.

The difference in architecture between Eglo and Rglo is crucial to our method. The high
capacity of Rglo allows it to accurately reproduce the features of Eglo, which reduces the
number of false positive detections compared to the reconstruction error between Eglo

and U ◦Eglo. The skip connections enable Rglo to solve the regression task without cap-
turing the global context of the training data. Thus, the outputs of Eglo and Rglo differ
for anomalous test images that violate global constraints. This allows the localization
of logical anomalies that require the analysis of long-range dependencies.

Combination of the Two Branches. We train the whole model end-to-end using the
sum of the individual loss terms normalized by the respective depth of the matched

103

7 Global Context Anomaly Detection

features, i.e.,

L(Rloc, Rglo, Eglo, U) = 1
dloc
Lkd(Eglo, U)

+ 1
dglo
Lglo(Eglo, Rglo)

+ 1
dloc
Lloc(Rloc).

(7.4)

Due to the joint optimization of Lkd and Lglo, the global feature encoder is encour-
aged to learn meaningful descriptors for the training data and simultaneously output
a representation that can be easily matched by the feature regression network. Com-
puting residuals in a learned feature space facilitates the accurate matching of higher-
dimensional features through a low-dimensional bottleneck.

Scoring Functions for Anomaly Localization. During inference, pixelwise anomaly
scores for a test image J : D → RC can be computed by comparing the features of
the image encoder networks to the features of the respective regression network, i.e., by
computing Aloc = ||Eloc(J) − Rloc(J)||22 and Aglo = ||Eglo(J) − Rglo(J)||22, respectively.
Here, the norm is taken over the respective feature dimension, i.e., dloc and dglo. Large
regression errors indicate anomalous pixels. Aloc is mainly responsible for detecting
structural anomalies, while Aglo enables the network to detect logical anomalies, as
illustrated in Figure 7.3. Since the weights of both Eglo and Rglo are randomly initialized,
there exists no training incentive for the two networks to behave differently for structural
anomalies. Our experiments show that the global branch is indeed mainly responsible
for the detection of logical anomalies, while the local branch performs much better at
the detection of structural anomalies.

To obtain an anomaly map for the entire model, we calculate Aloc and Aglo for all
images in the validation set after training the model. We then compute the respective
means, µloc and µglo, and standard deviations, σloc and σglo, of all resulting scores.
During inference, we normalize the individual anomaly maps and define the combined
anomaly map by A = Aloc−µloc

σloc
+

Aglo−µglo
σglo

. Note that the validation set of our dataset

only contains anomaly-free images. Here, we use the corresponding anomaly images only
to adjust the scale of anomaly scores of the two network branches.

Anomaly Detection on Multiple Scales. The choice of the receptive field p for Eloc

can have a significant impact on the anomaly localization performance, especially when
anomalies vary greatly in size. To be less dependent on the particular choice of the
receptive field, we train multiple models with varying values of p. The anomaly maps
of the models are combined by computing their pixelwise average. Let P be the set of
all evaluated receptive fields and A(p) be the anomaly map obtained from a model with
receptive field p ∈ P . The maps of different receptive fields are combined by computing
1
|P |
∑

p∈P A
(p).

104

7.3 Experiments on the MVTec LOCO AD Dataset

1 1 conv

256 256 dglo

4 4 upconv4 4 conv

256 256 3 256 256 32

4 4 upconv4 4 conv

u1 1 conv128 128 32

4 4 upconv4 4 conv

v1 1 conv64 64 32

4 4 upconv4 4 conv

w1 1 conv32 32 64

4 4 upconv4 4 conv

x1 1 conv16 16 64

8 8 upconv8 8 conv

y1 1 conv8 8 64

g

Figure 7.4: Architecture of Eglo with a g-dimensional bottleneck. Transposed convolutions are
denoted by “upconv.” All 4×4 convolutions use a stride of 2 and are followed by
a Leaky ReLU activation. The 1×1 convolutions in the skip connections have the
same number of feature maps in their output as in their input. Their outputs are
scaled by the respective skip weight. Then, they are added element wise to the
output of the corresponding transposed convolution.

7.3 Experiments on the MVTec LOCO AD Dataset

Here, we give detailed information on the training and evaluation of our GCAD method
on the MVTec LOCO AD dataset. We then compare its performance to the methods
benchmarked in the previous chapter.

7.3.1 Training and Evaluation Protocol

All input images were zoomed to H = W = 256 pixels. For optimization, we used Adam
[Kingma and Ba, 2015] with an initial learning rate of 10−4 and a weight decay of 10−5.
We trained our method on the augmented training images for 500 epochs, following the
same augmentation strategy as described in the previous chapter. Eglo outputs feature
maps of depth dglo = 10 and the capacity of its global context vector was set to g = 32.
For Eloc, we used the same network architecture and training protocol as in our Student–
Teacher method described in Chapter 5. Its feature vectors are of depth dloc = 128. We
trained our method using two receptive fields of sizes p ∈ {17, 33} and combined their
outputs for multi-scale anomaly detection.

105

7 Global Context Anomaly Detection

Figure 7.4 shows the architecture of the global feature encoder Eglo. We initialized the
five skip weights u, v, w, x, and y with a value of 1 prior to training. Then, we linearly
decreased the skip weights after each epoch, starting with the upper levels. After 100
epochs, all skip weights were set to a value of 0, meaning that information could only
flow through the g-dimensional bottleneck. We empirically observed that progressively
fading out the weights of the skip connections facilitated the optimization, yielding lower
values of Lkd on the training and validation set.

The dglo-dimensional features output by Eglo are transformed into dloc-dimensional
features by an upsampling network U . It consists of three 1×1 convolutions with non-
linearities in between. The output of U is matched with the descriptors given by the
pretrained network Eloc. Finally, the two regression networks Rloc and Rglo follow a
U-Net architecture [Ronneberger et al., 2015]. We use a publicly accessible implemen-
tation1 with five downsampling blocks, five upsampling blocks, and a latent dimension
of size 16 × 16 ×1024.

Prior to training, we normalize the features of the pretrained network Eloc. For each
of the dloc feature dimensions, we compute the mean and the standard deviation of all
descriptors on the training dataset. We then update the weights in the final layer of Eloc

to output normalized features.

For the first 50 epochs, we only trained the global feature encoder Eglo, the upsampling
network U , and the local regression network Rloc. In the remaining 450 epochs, the global
regression network Rglo was optimized as well.

7.3.2 Experiment Results

Table 7.1 shows the anomaly localization performance of all evaluated methods on our
dataset for each dataset category. Our method consistently outperforms all other eval-
uated methods for all but one of the dataset categories. The top chart in Figure 7.5
displays the localization performance of all methods when structural or logical anomalies
are treated separately. Unlike most other methods, GCAD does not show a bias towards
the detection of one type of anomaly. Our method significantly outperforms all other
approaches in the detection of logical anomalies, while maintaining a high performance
at the detection of structural anomalies. In particular, our method performs best when
considering the average performance for both anomaly types. Qualitative results of our
method for structural and logical anomalies are shown in Figure 7.6 and Figure 7.7.

The bottom bar chart in Figure 7.5 shows the results when considering the task of
anomaly classification. We derive image-level anomaly scores by finding the maximum
anomaly score over all pixels in a given anomaly map and compute the area under the
ROC curve. Similar to our experiments on anomaly localization, our GCAD method
performs significantly better than all other evaluated methods in the detection of logical
and the joint detection of structural and logical anomalies.

Figure 7.8 shows some failure cases of our method. GCAD may fail when anomalies
are very small in size, e.g., for the broken pushpin in the top left compartment. It

1https://github.com/jvanvugt/pytorch-unet

106

https://github.com/jvanvugt/pytorch-unet

7.3 Experiments on the MVTec LOCO AD Dataset

Method Breakfast Box Screw Bag Pushpins Splicing Connectors Juice Bottle Mean

VM 0.168 0.253 0.254 0.125 0.325 0.225
f-AnoGAN 0.223 0.348 0.336 0.195 0.569 0.334
MNAD 0.080 0.344 0.357 0.442 0.472 0.339
AE 0.189 0.289 0.327 0.479 0.605 0.378
VAE 0.165 0.302 0.311 0.496 0.636 0.382
SPADE 0.372 0.331 0.234 0.516 0.804 0.451
S–T 0.496 0.602 0.523 0.698 0.811 0.626
GCAD 0.502 0.558 0.739 0.798 0.910 0.701

Table 7.1: Quantitative results on the MVTec LOCO AD dataset. The normalized area under
the sPRO curve up to an average false positive rate per pixel of 5% is computed
separately for the structural and logical anomalies. The table reports the mean of
both values. The best-performing method is highlighted in boldface.

Figure 7.5: Difference in anomaly detection performance for both structural and logical anoma-
lies on the MVTec LOCO AD dataset. The top chart shows the performance for
anomaly localization measured by the area under the sPRO curve. The bottom
chart shows the performance for anomaly classification in terms of the area under
the ROC curve.

107

7 Global Context Anomaly Detection

Figure 7.6: Qualitative results of our method on the MVTec LOCO AD dataset for both struc-
tural and logical anomalies. The damaged tangerine, the blue pushpin, and the
broken connector are structural anomalies. The wrong ratio of cereals and banana
chips in the breakfast box, the additional yellow pushpin, and the missing cable
between the two connectors constitute logical anomalies.

can also fail to capture very challenging logical constraints, such as enforcing a fixed
number of objects that can potentially appear almost anywhere in the input image.
The second row of Figure 7.8 depicts such an example in which the screw bag contains
an additional washer. We show a third failure case of our method in which anomalies
manifest themselves in very subtle and intricate differences compared to the anomaly-
free images. In the last row of Figure 7.8, no almonds are mixed into the banana chips
in the bottom right compartment.

7.3.3 Ablation Studies

To assess the sensitivity of our method with respect to the chosen hyperparameters, we
performed various ablation studies. The results are shown in Figure 7.9.

Global Context Dimension. We begin by analyzing the impact of the global context
dimension g of the global feature encoder Eglo. When the dimension of the latent space
was too small, Eglo struggled to output meaningful feature maps and the anomaly de-
tection performance declined for both types of anomalies. When the global context
dimension was increased, the overall detection performance was not affected substan-
tially. However, we observed a slight decline in the detection of logical anomalies, while
the localization of structural anomalies improved. The increased capacity of Eglo led to
fewer false positives in the global anomaly detection branch while, at the same time, Eglo

captured the global context of the data less reliably. This is due to the fact that choosing
a latent dimension that is too large allows the global feature encoder to copy parts of
its input directly into the latent representation. This phenomenon can also be observed
in other bottleneck architectures, such as autoencoders. While the mean performance

108

7.3 Experiments on the MVTec LOCO AD Dataset

Figure 7.7: Qualitative results for each evaluated method on our MVTec LOCO AD dataset.
The first and third row contain examples of structural anomalies, i.e. the flipped
connector and the contamination in the juice bottle. The second and third row
contain examples of logical anomalies, i.e., a second cable being present between
the two connectors and the banana label on the bottle filled with orange juice.

109

7 Global Context Anomaly Detection

Figure 7.8: Qualitative examples for which our GCAD method fails to localize anomalies.

Figure 7.9: Performance of our algorithm when varying different hyperparameters during train-
ing or evaluation.

is slightly better for g = 64, the best balance between the detection of structural and
logical anomalies is achieved for g = 32.

Receptive Field. We also assessed the performance of our proposed method with re-
spect to the size of the receptive field of the local feature encoder Eloc. Figure 7.9 shows
the difference in performance when evaluating our approach for single receptive fields of
sizes 17, 33, and 65, as well as when combining the anomaly images of multiple receptive
fields together. Our method yielded a similar mean performance for receptive fields of
size 17 and 33, while the performance dropped for very large values of p. When com-
bining multiple receptive fields together, the performance for both structural and logical
anomaly detection could be enhanced.

Model Branch. Figure 7.9 also evaluates the responsibility of the different branches
of our method with respect to the anomaly localization performance. We compared the

110

7.3 Experiments on the MVTec LOCO AD Dataset

Figure 7.10: Qualitative examples for which the local branch works better in the detection of
a logical anomaly than the global branch and vice versa. In the top row, the
global branch produces more false positive predictions than the local branch in
the detection of the two pushpins. In the bottom row, the local branch fails to
localize the contamination in the breakfast box.

performance of the local anomaly maps Aloc to that of the global anomaly maps Aglo and
found that, indeed, Aloc performed much better in the detection of structural anomalies.
While our local branch is similar to the Student–Teacher approach, we do not train a
computationally expensive ensemble to additionally evaluate the intrinsic uncertainty of
Rloc. This comes at a small cost of structural anomaly detection performance. Aglo, on
the other hand, yielded a better performance on the logical anomalies. Combining Aloc

and Aglo improved the performance for both structural and logical anomalies.

This indicates that some of the logical anomalies are better detected by the local
branch and some structural ones by the global branch. We illustrate this in Figure 7.10.
Certain logical anomalies can be detected by the local branch, e.g., two pushpins being
present in a single compartment, since both pushpins fall into the receptive field of the
local feature extractor Eloc. The global branch also detects this anomaly. However, it
also tends to produce more false positive predictions than the local branch since it has to
reconstruct the entire input image over a low dimensional bottleneck. In this case, the
global branch benefits from the performance of the local branch on this logical anomaly.
There also exist cases in which the global branch contributes to a better detection of
structural anomalies. In the bottom row of Figure 7.10, a piece of a tangerine is present
as a contamination in the breakfast box. Since the texture of the contamination matches
that of a tangerine, the local branch does not detect this anomaly. The global branch,
however, analyzes the entire image context and can encode that there are already two
tangerines present in the input image. Therefore, it manages to localize this structural
anomaly.

Feature Regression vs. Reconstruction. Next, we compare using Rglo for the detection
of logical anomalies to simply evaluating the reconstruction error of the global feature

111

7 Global Context Anomaly Detection

Figure 7.11: The left barplot examines the impact of the output dimension of Eglo on the
anomaly localization performance. The plot on the right shows the difference in
performance for different knowledge distillation targets.

encoder Eglo with respect to the pretrained features after upsampling. Figure 7.9 shows
that evaluating the reconstruction error performed significantly worse than our feature
regression approach. This is because the reconstruction of 128-dimensional pretrained
features through a small bottleneck is challenging and leads to many false positives. Our
approach circumvents this problem by shifting the feature matching task to a lower-
dimensional, learned feature space.

Descriptor Dimension of Eglo. We investigate the impact of the output dimension dglo
of the global feature encoder Eglo on the anomaly detection performance. The plot on
the left-hand side of Figure 7.11 indicates that our method performed well for various
values of dglo and is not highly sensitive to this parameter.

Knowledge Distillation. Finally, we assess the benefit of distilling knowledge of pre-
trained descriptors into the global branch of our method. For comparison, we distilled
knowledge from the original input images by changing Lkd to

Lkd(Eglo, U) =
1

B

B∑
i=1

‖Ii − U(Eglo(Ii))‖22 . (7.5)

The plot on the right-hand side of Figure 7.11 shows that the distillation of features
from pretrained networks into Eglo greatly enhanced the anomaly localization perfor-
mance for both structural and logical anomalies.

Variation of the Integration Limit. We further investigate the performance of our
method when computing the sPRO metric up to various integration limits. The results
are listed in Table 7.2. Our GCAD method yields the overall best performance, indepen-
dent of the particular chosen integration limit. While the performance of each method

112

7.4 Experiments on the MVTec AD Dataset

Method AU-sPRO0.01 AU-sPRO0.05 AU-sPRO0.10 AU-sPRO0.30 AU-sPRO1.00

VM 0.086 0.225 0.314 0.493 0.740
f-AnoGAN 0.152 0.334 0.442 0.624 0.827
MNAD 0.176 0.339 0.447 0.643 0.853
AE 0.166 0.378 0.499 0.699 0.882
VAE 0.162 0.382 0.506 0.705 0.884
SPADE 0.225 0.451 0.587 0.790 0.927
S–T 0.402 0.626 0.717 0.836 0.937
GCAD (Ours) 0.462 0.701 0.787 0.891 0.962

Table 7.2: Area under the sPRO curve for different integration limits.

seemingly increases with larger limits, we would like to stress that results at large false
positive rates are often not meaningful in practice, as already motivated in Chapter 4.
Therefore, we recommend to evaluate the performance on our MVTec LOCO dataset at
integration limits no larger than 0.3.

Variation of Saturation Thresholds. In this paragraph, we analyze the sensitivity of
the sPRO metric with respect to the manually selected saturation thresholds. We eval-
uated each method in our benchmark ten times with thresholds sampled uniformly from
an interval ranging from 0.5 to 1.5 times the original threshold. In case of defects for
which the saturation threshold was chosen to be equal to the annotated area, we did
not vary the threshold. The ranking of the evaluated methods was stable across all ten
runs, with the exception of two runs in which two methods switched between the sixth
and seventh rank.

7.4 Experiments on the MVTec AD Dataset

In addition to the ones on our MVTec LOCO AD dataset, we performed experiments
on MVTec AD. We split all test images of the dataset into two subsets. The first
contains only images with defects that match our definition of structural anomalies.
The second comprises all images that contain at least one logical anomaly. Of the 1258
anomalous test images, we identified 37 to contain defects that match our definition of
logical anomalies. We list them in Table 7.3. For each of the logical anomalies, the
saturation threshold for the sPRO metric was chosen to be the whole area of the ground
truth label. We performed a separate evaluation of each method on structural and logical
anomalies, respectively. For all methods, we used the same hyperparameters as on the
MVTec LOCO AD dataset. The data augmentation strategies for each evaluated object
are listed in Table 7.4.

The top bar chart in Figure 7.12 shows the anomaly localization performance of
each evaluated method on MVTec AD. The results are similar to the ones on the
MVTec LOCO AD dataset. Our method outperformed all other methods at the com-
bined detection of structural and logical anomalies. The Student–Teacher approach
performed slightly better at the detection of structural anomalies. However, its per-
formance dropped significantly for the logical anomalies in the dataset. As for MVTec
LOCO, we also compute the AU-ROC values for the image-level classification task on

113

7 Global Context Anomaly Detection

Category Defect Name # Images Image IDs

cable
cable swap 12 all images
combined 3 {5, 7, 9}

capsule faulty imprint 2 {4, 5}

transistor
cut lead 10 all images

misplaced 10 all images

Table 7.3: Images of the MVTec AD dataset that match our description of logical anomalies.

Category
Vertical

flip
Horizontal

flip
Random
rotation

Color
jitter

Bottle 3 3 3 3

Cable 3 3

Capsule 3 3

Carpet 3 3 3 3

Grid 3 3 3 3

Hazelnut 3 3 3 3

Leather 3 3 3 3

Metal Nut 3 3

Pill 3 3

Screw 3 3 3 3

Tile 3 3 3 3

Toothbrush 3 3 3

Transistor 3 3 3

Wood 3 3 3 3

Zipper 3 3 3 3

Table 7.4: Overview of the dataset augmentation techniques applied during training to each of
the object categories present in the MVTec AD dataset.

the MVTec AD dataset. The results are shown in the bottom bar chart in Figure 7.12.
While our proposed method performs slightly worse in the detection of structural anoma-
lies than the Student–Teacher method and SPADE, it excels in the classification of the
logical anomalies on this dataset.

Figure 7.13 shows qualitative results for all evaluated methods on the object categories
transistor and cable. The first and third row contain examples of structural anomalies,
i.e., a damaged transistor surface and bent wires in a cable cross section. The other
two show examples of logical anomalies. In the second row, the transistor is entirely
missing. In the fourth row, the top yellow cable has been replaced by a blue one. Our
method reliably detects all four defects. The Student–Teacher model performs well on
the structural anomalies but entirely fails to localize the logical anomalies due to its
limited receptive field. The SPADE method manages to detect the missing transistor
and performs well on the structural anomalies, but has difficulties to localize the more
subtle logical anomaly in the image of the cable. All methods based on autoencoders
tend to yield increased anomaly scores on the structural anomalies. However, they also
produce many false positives in areas that are difficult to accurately reconstruct, i.e.,
the reflections on the wires of the cable. Both the VAE and the deterministic AE show
a tendency to detect both of the logical anomalies. This is not the case for MNAD, for
which the high-capacity memory module allows to reconstruct the areas that contain

114

7.4 Experiments on the MVTec AD Dataset

Figure 7.12: Difference in anomaly detection performance for both structural and logical
anomalies on the MVTec AD dataset. The top chart shows the area under the
sPRO curve for anomaly localization. The bottom chart shows the area under the
ROC curve for anomaly classification.

Figure 7.13: Qualitative results for each evaluated method on the MVTec AD dataset. The
first and third row contain examples of structural anomalies, i.e., the damaged
transistor and the bent wires in the cable cross section. The second and fourth
row contain examples of logical anomalies, i.e., the transistor being entirely missing
and a blue cable being present instead of a yellow one.

115

7 Global Context Anomaly Detection

logical anomalies. Similarly to the autoencoders, f-AnoGAN yields many false positives
on areas that are challenging to reconstruct. For the missing transistor, however, it
manages to capture the logical constraint that a transistor should always be present.
The Variation Model manages to detect parts of the damaged transistor as well as its
absence. It also yields increased anomaly scores on the bent wires. However, it fails to
localize the logical anomaly on the cable.

7.5 Conclusion

In this chapter, we developed Global Context Anomaly Detection, a new method that
permits the joint localization of both structural and logical anomalies. It consists of two
branches, each of which is primarily intended for the detection of structural and logical
anomalies, respectively. The first branch is inspired by our Student–Teacher framework
that performs well in the detection of structural anomalies. The second branch learns
an embedding of the anomaly-free training data that captures its underlying logical
constraints. This is achieved by compressing the input images via a low-dimensional
bottleneck.

We performed extensive experiments on the MVTec LOCO and the MVTec AD
dataset. Our approach sets a new state of the art in the joint detection of structural
and logical anomalies.

116

8 Unsupervised Detection of Geometric
Anomalies in 3D Data

In the previous chapters, we studied anomaly detection from a two-dimensional perspec-
tive. In particular, we presented datasets that contain, and methods that process images
obtained from color or grayscale cameras. These sensors are frequently used in many
real-world applications, since they tend to be affordable and user-friendly. However,
certain applications require entirely different sensors in an anomaly detection system.

Hyperspectral cameras, for example, can reveal anomalies in agricultural [Adão et al.,
2017] or medical [Lu and Fei, 2014] inspection tasks that manifest themselves through
deviations in the spectral signature of a material. Another example are 3D sensors
that provide accurate geometric information about a captured scene. They allow for
the detection of geometric anomalies that may not be perceivable in the flat projection
of a 2D camera. There exists a range of different types of 3D sensors. Time-of-Flight
sensors recover 3D information by measuring the time delay between the emission of
a light ray and its detection. One particular instance of such sensors are LIDARS,
which often occur in autonomous driving applications [Behley et al., 2019]. Another
example are X-ray Computed Tomography (CT) sensors that are frequently employed
in medical imaging [Jnawali et al., 2018] or airport security applications [Flitton et al.,
2015]. A third example are structured light sensors that project a light pattern into the
scene that is recorded with a standard 2D camera. Depth information can be recovered
through triangulation. Such cameras have found their way, for instance, into industrial
manufacturing pipelines [Drost et al., 2017].

While for 2D images, the anomaly detection problem has received increased attention
over recent years from the research community, it is still relatively unexplored when
applied to 3D data. In the remaining parts of this thesis, we tackle this problem and
introduce a new dataset as well as a new method for the unsupervised detection of
geometric anomalies. In this chapter, we briefly discuss the technical prerequisites to
conduct anomaly detection in three dimensions. We explain the role of different data
representations, such as depth images, voxel grids, and point clouds. We then show how
our previous evaluation protocol of the anomaly detection problem for 2D images can
be adapted to the 3D domain. Finally, we give a brief overview of existing literature.

8.1 Different Representations of 3D Data

Depending on the type of 3D sensor, the data format in which geometric information
is generated may differ. In the following, we discuss several frequently returned data
formats, namely XYZ and depth images, voxel grids, and point clouds.

117

8 Unsupervised Detection of Geometric Anomalies in 3D Data

Representation as XYZ or Depth Images

An XYZ image represents geometric information as a three-channel image on a two-
dimensional grid. Each pixel in the image maps to a single 3D coordinate, where each of
the three coordinates is stored in one of the image channels, respectively. The coordinates
are typically expressed with respect to the local coordinate system of the 3D sensor.
Formally, we write an XYZ image as a function I : D → R3 that maps from a two-
dimensional pixel domain D = {0, 1, . . . ,H − 1} × {0, 1, . . . ,W − 1} to a 3D coordinate
x ∈ R3. Here, H and W denote the width and the height of the image, respectively.

In practice, it may happen that a sensor fails to recover the 3D information at some
of the image pixels. In such cases, it is common to assign a placeholder value, such as
the zero vector (0, 0, 0)T . It may be tempting to simply ignore these invalid values when
processing XYZ images with an anomaly detection model. However, the underlying
cause of the failed reconstruction may be the occurrence of an anomaly in the captured
scene. Hence, it is important to treat all pixels within an XYZ image equally, regardless
of whether they contain valid or invalid 3D information.

An example XYZ image is displayed in the top row of Figure 8.1. It describes the 3D
surface of a cookie. The sample is taken from the MVTec 3D Anomaly Detection dataset
[Bergmann et al., 2022b], which we present in detail in Chapter 9. White areas indicate
invalid pixels for which no geometric information is available. The figure additionally
shows RGB color values that directly correspond to each 3D point. If color information
is provided by a 3D sensor, it can be used as an additional input feature.

If the intrinsic parameters of the sensor are known and a camera projection center
exists, the x and y coordinates of a 3D point can be recovered by constructing a ray
that runs through the camera center and the corresponding pixel in the XYZ image.
Intersecting this ray with a plane that is parallel to the x and y axis and at distance
z from the camera center yields the full 3D information. Therefore, it is common to
simplify an XYZ image by only storing its z-channel, i.e., by writing it as I : D → R.
Such images are referred to as depth images.

Representation as Voxel Grids

XYZ and depth images both have the disadvantage that they cannot represent 3D points
that are occluded by points that are relatively closer to the camera center. To circumvent
this limitation, geometric information can be represented as a three-dimensional volume
that is partitioned into a regularly spaced grid of small volume elements. A single volume
element is referred to as a voxel, and the entire grid is called a voxel grid. Each voxel
indicates whether the volume in 3D space that it represents is occupied or not. Hence,
a voxel grid can be written as a function V : D → {0, 1}, where the domain of the grid
is defined as D = {0, 1, . . . ,W − 1} × {0, 1, . . . ,H − 1} × {0, 1, . . . , L− 1}. Here, W , H,
and L denote the width, height, and number of layers of the grid, respectively.

Again, in some cases it may be desirable to attach additional information such as color
values to each voxel element. This can be achieved by directly storing the respective
information inside the voxel grid. Each voxel then maps to a multidimensional vector,

118

8.1 Different Representations of 3D Data

Figure 8.1: Visualization of frequently used data formats to represent geometric data. An
anomaly-free sample taken from the category cookie of the MVTec 3D-AD dataset
is displayed as an XYZ image, a Voxel Grid, and a Point Cloud. The corresponding
color information is displayed as an additional attribute attached to each 3D point.

i.e., V : D → Rd. In this case, a suitable placeholder value must be defined that identifies
empty voxel elements.

Continuing the example of the cookie, its voxelized representation is shown in the
second row of Figure 8.1. Each dimension of the grid is divided into W = H = L = 128
voxel elements. The left image shows the binary voxel grid, while the right additionally
displays color information attached to the voxel elements.

Representation as Point Clouds

Note that in the voxelized representation of the cookie, the majority of voxel elements
are empty and, therefore, not displayed. Since an empty cell consumes just as much
memory as an occupied one, voxel grids tend to be inefficient when used to represent
scenes that lead to sparsely populated grids, such as surface data. In such cases, a
possibility to represent the data more compactly is through point clouds.

119

8 Unsupervised Detection of Geometric Anomalies in 3D Data

A point cloud P = {x1,x2, . . . } is an unordered set of 3D points xi ∈ R3. In contrast
to depth images or voxel grids, the points in P do not lie on a regular grid. Hence,
they can accurately model different areas of 3D space with varying degrees of density.
Since empty space is modeled implicitly through the absence of points, point clouds are
particularly memory efficient when representing sparse scenes. However, algorithms that
process point clouds directly need to be carefully designed such that, ideally, they are
invariant to the order in which the points are presented to the model. Furthermore,
point clouds do not provide an explicit definition of what constitutes neighboring points
that could be used to process them directly with convolution layers.

For point clouds, additional input features such as color vectors can be stored in a
separate set {c1, c2, . . . }, where each element ci ∈ Rd corresponds to a multidimensional
vector that stores the attribute values attached to each point in P . The third row in
Figure 8.1 shows a visualization of a cookie in point cloud format. The left image displays
each 3D coordinate in gray, while the right image shows the same point cloud with its
additional RGB vectors.

8.2 Performance Evaluation for 3D Anomaly Detection

Given a dataset of anomaly-free training samples Dtrain obtained from a 3D sensor, the
task is to train a model that, during inference, can detect anomalous samples in a test
dataset Dtest and precisely localize anomalous geometric structures within them. In
Section 2.1, we defined an evaluation protocol for the anomaly detection problem when
applied to two-dimensional color or grayscale images. We now discuss the changes that
need to be made to this protocol when considering 3D data instead.

Anomaly Classification

Regarding anomaly classification, the problem remains to assign a single anomaly score
to each sample in the test dataset Dtest. This is independent of the particular data
format in which the 3D data is represented in. Hence, the same performance measures
as for the 2D case can be used to assess the anomaly classification performance. In
particular, we will report the area under the ROC curve.

Anomaly Localization

To define a protocol that evaluates a models ability to localize anomalous geometric
structures, it is necessary to make assumptions about the particular format the 3D data
is represented in. If the samples of an anomaly detection dataset are given as XYZ
images, it is straightforward to adapt the evaluation protocol used for color or grayscale
images as described in Section 2.1. In particular, a method must assign an anomaly
score to each pixel of the XYZ images in the test set. Corresponding ground truth maps
that indicate whether a pixel, i.e., a 3D point, is considered anomalous or not can then
be used to compute established evaluation metrics for anomaly localization, such as the
area under the PRO curve. Note that representing 3D data as XYZ images allows to

120

8.2 Performance Evaluation for 3D Anomaly Detection

Figure 8.2: Evaluation of methods that process point clouds or voxel grids on anomaly detection
datasets that contain XYZ images. Anomaly scores are projected into the image
plane by using the sensor’s internal camera parameters. If multiple anomaly scores
are assigned to the same pixel, the maximum over all scores is selected.

annotate invalid pixels as anomalous. This is an important property, since anomalies
may also manifest themselves through the absence of points in a scene.

Evaluating the anomaly localization performance on voxel or point cloud data requires
different evaluation protocols. For voxel grids, one option is to provide voxel-precise
ground truth volumes that indicate whether a voxel element contains an anomaly or
not. Unfortunately, compared to the annotation of anomalies in XYZ image data, an-
notating anomalies in 3D voxel grids is complicated and time consuming. In particular,
when anomalies manifest themselves through the absence of certain geometries, the an-
notation must accurately model the missing three-dimensional structure. Similarly, a
direct evaluation of anomaly localization algorithms on point cloud data requires the
creation of annotations that mark certain continuous parts in 3D space as anomalous.

To reduce the complexity to create accurate ground truth annotations, we focus on
anomaly detection datasets that contain XYZ images throughout the remaining parts of
this thesis. Once an anomaly score is assigned to each pixel within the XYZ images of
the test set, we can compute the same performance metrics as as described in Section 2.1
to assess the anomaly localization performance. For methods that process and assign
anomaly scores to XYZ images directly, applying this evaluation protocol is straightfor-
ward. To evaluate approaches that operate on point clouds or voxel grids instead, the
XYZ images of a dataset first need to be converted to the respective data format. The
resulting anomaly scores then need to be projected into the plane of the input image
through the internal parameters of the camera. This process is illustrated in Figure 8.2.
If a method produces anomaly scores as a set of unordered 3D points, the anomaly scores
can be directly assigned to the image pixels that these points are projected to. If a pixel
is assigned multiple scores, the maximum value is selected. Similarly, if a model assigns
anomaly scores to individual voxel elements, the eight corners of each voxel can be pro-
jected to their respective image coordinates. Each pixel within the resulting region is
assigned the respective anomaly score.

121

8 Unsupervised Detection of Geometric Anomalies in 3D Data

8.3 Deep Learning Models for 3D Anomaly Detection

The design of any anomaly detection system significantly depends on the format of the
input data. Here, we briefly discuss how the different forms of 3D data can be processed
with deep learning models and give an overview of existing models for the unsupervised
detection of anomalies in 3D data.

Like color or grayscale images, XYZ and depth images can be processed with 2D
convolution layers. This makes it possible to adapt some of the previously discussed
anomaly detection methods to these data formats, such as convolutional autoencoders
or f-AnoGAN. Note however, that it is not straightforward to transfer the methods that
leverage descriptors from pretrained networks to find anomalies in XYZ images, since
they rely on domain-specific pretrainings.

Compared to XYZ and depth images, voxel grids exhibit an additional spatial di-
mension. To process them with convolution layers, the convolution kernels need to be
extended by adding a third dimension [Maturana and Scherer, 2015]. Then, the regular
grid structure of the voxel grid makes it possible to design CNNs whose architecture
highly resembles those of networks that operate on 2D image grids.

Designing deep learning models that process point clouds comes with two key chal-
lenges. First, the input points are not stored on a regular grid and the immediate
neighborhood of each point is not explicitly defined. This prevents points clouds to be
transformed with 2D or 3D convolution layers directly. To address this problem, it is
possible to obtain local neighborhoods by computing sets of neighboring points for each
input point through the k-nearest neighbor algorithm [Hu et al., 2020]. The resulting
graph structure can then be used to process the point cloud, for example, with graph
convolution layers [Zhang et al., 2019]. Second, a model that processes point clouds
should ideally be invariant with respect to the order the input points are presented to
the network. This is because changing the order of the input points does not affect
the geometric structure that they represent. To achieve this, deep learning models that
process point clouds commonly use permutation-invariant operations such as computing
the maximum or the average value over a set of feature vectors [Charles et al., 2017].
For a comprehensive overview of existing techniques to process point clouds with deep
learning models, we refer to Bello et al. [2020].

There exist only very few methods that were explicitly introduced for the task of
unsupervised 3D anomaly detection. Previous work stems from the medical domain and
operates on voxel data. Simarro Viana et al. [2021] introduce an extension of f-AnoGAN
to voxel grids. As for the 2D case, a GAN is trained to generate voxel grids that mimic the
training distribution using 3D convolutions. Subsequently, an encoder network is trained
that maps input samples to the corresponding latent samples of the generator. During
inference, anomaly scores are derived for each voxel element by comparing the input
voxels to the reconstructed ones. Similarly, Bengs et al. [2021] present an autoencoder-
based method that also operates on voxel data. A variational autoencoder is trained to
reconstruct voxel grids through a low-dimensional latent variable. Anomaly scores are
again derived by a per-voxel comparison of the input to its reconstruction.

122

9 The MVTec 3D Anomaly Detection
Dataset

In the previous chapter, we found that there exist only very few methods that tackle
the 3D anomaly detection problem. We believe that an important reason for this is
the lack of publicly available datasets that can be used to develop new approaches
and ideas. In this chapter, we introduce the first comprehensive 3D dataset for the
task of unsupervised anomaly detection and localization. It is inspired by real-world
visual inspection scenarios in which a model has to detect various types of geometric
defects on manufactured products, even if it is trained only on anomaly-free data. We
employed a high-resolution industrial 3D sensor to acquire depth scans of 10 different
object categories. For all object categories, we present a training and validation set, each
of which solely consists of scans of anomaly-free samples. The corresponding test sets
contain samples showing various defects such as scratches, dents, holes, contaminations,
or deformations. Precise ground-truth annotations are provided for every anomalous
test sample. An initial benchmark of 3D anomaly detection methods on our dataset
indicates a considerable room for improvement.

The content of this chapter is based on the publication titled The MVTec 3D-AD
Dataset for Unsupervised 3D Anomaly Detection and Localization [Bergmann et al.,
2022b], which was recognized with the Best Industrial Paper Award at the 17th Interna-
tional Joint Conference on Computer Vision, Imaging and Computer Graphics Theory
and Applications (VISAPP).

9.1 Introduction

The increased availability and precision of modern 3D sensors has led to significant
advances in the field of 3D computer vision. The research community has used these
devices to create datasets for a wide variety of real-world problems, such as point cloud
registration [Zeng et al., 2017], classification [Wu et al., 2015], 3D semantic segmentation
[Chang et al., 2015, Dai et al., 2017], 3D object detection [Armeni et al., 2016], and rigid
pose estimation [Drost et al., 2017, Hodaň et al., 2020]. The development of new and
improved algorithms relies on the availability of such high-quality datasets.

Regarding anomaly detection in two-dimensional image data, numerous synthetic and
real-world benchmark datasets exist. They cover various domains, e.g., autonomous
driving [Blum et al., 2019], video anomaly detection [Li et al., 2013, Lu et al., 2013,
Sultani et al., 2018], or industrial inspection scenarios [Huang et al., 2018, Bergmann
et al., 2019a, 2021, Carrera et al., 2017, Song and Yan, 2013]. These datasets have led

123

9 The MVTec 3D Anomaly Detection Dataset

Figure 9.1: Two samples representing the category potato of our new dataset. The sample on
the left is anomaly-free while the one on the right contains a nail stuck through the
surface of the potato. We depict the point clouds overlaid with the associated color
values. For the anomalous sample, we additionally display the annotated ground
truth.

to the development of numerous methods that are intended to operate on 2D color or
grayscale images.

At the time of conducting this research project, there was no comprehensive 3D dataset
designed explicitly for the unsupervised detection and localization of anomalies. Existing
methods for this problem are evaluated on two medical benchmarks that were originally
introduced for the supervised detection of diseases in brain magnetic resonance (MR)
scans. Menze et al. [2015], Bakas et al. [2017], and Baid et al. [2021] present the mul-
timodal brain tumor image segmentation benchmark (BRATS). It consists of 65 multi-
contrast MR scans of glioma patients. Each sample is provided as a dense voxel grid
and tumors were annotated by radiologists in each image slice of the scan. Similarly,
Liew et al. [2018] provide the Anatomical Tracings of Lesions After Stroke (ATLAS)
dataset. It consists of 304 MR scans with corresponding ground truth annotations of
brain lesions. Both these datasets provide 3D information by stacking multiple grayscale
images to form a dense voxel grid.

To fill this gap and spark further interest in the development of new methods, we
introduce a real-world dataset for the task of unsupervised 3D anomaly detection and
localization. Given a set of exclusively anomaly-free 3D scans of an object, the task
is to detect and localize various types of anomalies. Figure 9.1 shows two prototypical
samples of our new dataset. Like the datasets introduced in the previous chapters, it is
inspired by industrial inspection scenarios. Our main contributions are as follows:

� We introduce the first comprehensive dataset for unsupervised anomaly detection
and localization in three-dimensional data. It consists of 4147 high-resolution 3D
point cloud scans from 10 real-world object categories. While the training and
validation sets only contain anomaly-free data, the samples in the test set contain
various types of anomalies. Precise ground truth annotations are provided for each
anomaly.1

1The dataset is publicly available at https://www.mvtec.com/company/research/datasets.

124

https://www.mvtec.com/company/research/datasets

9.2 Description of the Dataset

Figure 9.2: Examples for all 10 dataset categories of the MVTec 3D-AD dataset. For each
category, the left column shows an anomaly-free point cloud with RGB values
projected onto it. The second column shows a close-up view of an anomalous test
sample. Anomalous points are highlighted in the third column in red. Note that
the background planes were removed for better visibility.

� We evaluate current methods that were specifically designed for unsupervised 3D
anomaly localization. Our initial benchmark reveals that existing methods do
not perform well on our dataset and that there is considerable room for future
improvement.

9.2 Description of the Dataset

The MVTec 3D-AD dataset consists of 4147 scans acquired by a high-resolution indus-
trial 3D sensor. For each of the 10 object categories, a set of anomaly-free scans is
provided for model training and validation. The test set contains both, anomaly-free
scans as well as object samples that contain various types of structural anomalies, such

125

9 The MVTec 3D Anomaly Detection Dataset

Category # Train # Val
Test
(good)

Test
(anomalous)

Defect
types

Annotated
regions

Image size
(width × height)

bagel 244 22 22 88 4 112 800 × 800
cable gland 223 23 21 87 4 90 400 × 400

carrot 286 29 27 132 5 159 800 × 800
cookie 210 22 28 103 4 128 500 × 500
dowel 288 34 26 104 4 131 400 × 400
foam 236 27 20 80 4 115 900 × 900
peach 361 42 26 106 5 131 600 × 600
potato 300 33 22 92 4 115 800 × 800
rope 298 33 32 69 3 72 900 × 400
tire 210 29 25 87 4 95 600 × 800

total 2656 294 249 948 41 1148

Table 9.1: Statistical overview of the MVTec 3D-AD dataset. For each category, we list the
number of training, validation, and test images. Test images are split into anomaly-
free images and images containing anomalies. We report the number of different
defect types, the number of annotated regions, and the size of the XYZ images for
each category.

Figure 9.3: Visualization of the provided data for one anomalous test sample of the dataset
category peach. In addition to three images that encode the 3D coordinates of the
object, RGB information as well as a pixel-precise ground-truth image are provided.

as scratches, dents, or contaminations. The defects were devised and fabricated as they
would occur in real-world inspection scenarios.

Five of the object categories in our dataset exhibit considerable natural variations from
sample to sample. These are bagel, carrot, cookie, peach, and potato. Three more objects,
foam, rope, and tire, have a standardized appearance but can be easily deformed. The
two remaining objects, cable gland and dowel, are rigid. In principle, inspecting the last
two could be achieved by comparing an object’s geometry to a CAD model. However,
unsupervised methods should be able to detect anomalies on all kinds of objects and the
creation of a CAD model might not always be desirable or practical in a real application.
An example point cloud for each dataset category is shown in Figure 9.2. The figure also
displays some anomalies together with the corresponding ground truth annotations. The
images of the bagel and the cookie show cracks in the objects. The surfaces of the cable
gland and the dowel exhibit geometrical deformations. There is a hole in the carrot and
some contaminations on the peach and the rope. Parts of the foam, the potato, and the
tire are cut off. These are prototypical examples of the 41 types of anomalies present in
our dataset. More statistics on the dataset are listed in Table 9.1.

126

9.2 Description of the Dataset

9.2.1 Data Acquisition and Preprocessing

All dataset scans were acquired with a Zivid One+ Medium,2 an industrial sensor that
records high-resolution 3D scans using structured light. The data is provided by the
sensor as a three-channel XYZ image with a resolution of 1920×1200 pixels. The channels
represent the x, y, and z coordinates with respect to the local camera coordinate frame.
The (x, y, z) values of the image provide a one-to-one mapping to the corresponding point
cloud. In addition, the sensor acquires complementary RGB values for each (x, y, z)
pixel. It was statically mounted to view all objects of each individual category from the
same angle. We performed a calibration of the internal camera parameters that allows
to project 3D points into the respective pixel coordinates [Steger et al., 2018]. The scene
was illuminated by an indirect and diffuse light source.

For each dataset category, we specified a fixed rectangular domain and cropped the
original XYZ and RGB images to reduce the amount of background pixels in the sam-
ples. The acquisition setup as well as the preprocessing are very similar to real-world
applications where an object is usually located in a defined position and the illumina-
tion is chosen to best suit the task. In addition, our setup enables and simplifies data
augmentation. All objects were recorded on a dark background and the preprocessing
leaves a sufficient margin around the objects to allow for the application of various data
augmentation techniques, such as crops, translations, or rotations. This enables the use
of our dataset for the training of data-hungry deep learning methods, as demonstrated
by our experiments in Section 9.3.

Figure 9.3 shows the data provided for the anomalous test sample of the peach dis-
played in Figure 9.2. The image is of size 600×600 pixels, cropped from the original
sensor scan. The first three images visualize the x, y, and z coordinates of the dataset
sample, respectively. White pixels mark areas where the sensor did not return any 3D in-
formation due to, e.g., occlusions, reflections, or sensor inaccuracies. The corresponding
RGB and ground truth annotation images are also displayed.

9.2.2 Ground-Truth Annotations

We provide precise ground-truth annotations for each anomalous sample in the test set.
Anomalies were annotated in the 3D point clouds. Since there is a one-to-one mapping
of the 3D points to their respective pixel locations in the XYZ image, we make the
annotations available as two-dimensional regions. This procedure allows us to addition-
ally label invalid sensor pixels and thus annotate anomalies that manifest themselves
through the absence of points. For example, an anomaly might lead to a failure of 3D
reconstruction and therefore yield invalid pixels in the 3D image. Furthermore, if an
anomaly is visible in the RGB image and its corresponding color pixels are not already
included in the ground truth label, we append these pixels to the annotation.

An example ground truth mask is shown in Figure 9.3, where a contamination is
present on the peach. In Figure 9.2, further annotations are visualized when projected
to the valid 3D points of a scene. The size of the individual connected components of the

2https://www.zivid.com/zivid-one-plus-medium-3d-camera

127

https://www.zivid.com/zivid-one-plus-medium-3d-camera

9 The MVTec 3D Anomaly Detection Dataset

Figure 9.4: Size of anomalies for all objects in the dataset visualized as a box-and-whisker
plot. Defect areas are reported as the total number of pixels within an annotated
connected component. Anomalies vary greatly in size for each dataset category.

anomalies present in the test set varies greatly, from a few hundred to several thousand
pixels. Figure 9.4 visualizes their distribution as a box-and-whisker plot with outliers
on a logarithmic scale [Tukey, 1977].

9.2.3 Performance Evaluation

To assess the anomaly localization performance of a method on our dataset, we require
it to output a real-valued anomaly score for each (x, y, z) pixel of the test set. In
contrast to only assigning anomaly scores to all valid 3D points of the test samples, this
allows the detection of anomalies that manifest themselves through invalid sensor pixels
or missing 3D structures. These anomaly scores are converted to binary predictions
using a threshold. We then compute the per-region overlap (PRO) metric, which is
defined as the average relative overlap of the binary prediction with each connected
component of the ground truth. This process is repeated for multiple thresholds and a
curve is constructed by plotting the resulting PRO values against the corresponding false
positive rates. The final performance measure is computed by integrating this curve up
to a limited false positive rate and normalizing the resulting area to the interval [0, 1].
For a more thorough definition of the PRO metric, we refer to Section 2.2.

We want to stress that, when working with our dataset, we strongly discourage to
calculate the area under the PRO curve up to high false positive rates. We recommend
to select the integration limit no larger than 0.3. This is due to the fact that the
anomalous regions are very small compared to the size of the images. At large false
positive rates, the amount of erroneously segmented pixels would be significantly larger
than the number of actually anomalous pixels. This would lead to segmentation results
that are no longer meaningful in practice.

128

9.3 Benchmark

Our dataset can also be used to assess the performance of algorithms that make a
binary decision for each sample if it contains an anomaly or not. In this case, we report
the area under the ROC curve as a standard classification metric.

9.3 Benchmark

To examine how existing 3D anomaly localization methods perform on our new dataset,
we conducted an initial benchmark. It is intended to serve as a baseline for future
methods. Very few methods have been proposed explicitly for this task and all of them
operate on voxel data. This is mainly due to the fact that these methods are originally
intended to process MR or CT scans that consist of several layers of intensity images. As
representatives from this class of methods, we include Voxel f-AnoGAN [Simarro Viana
et al., 2021] and our own implementation of a convolutional Voxel AE [Bengs et al.,
2021] in our benchmark. Predecessors of these methods were developed for 2D image
data. The main difference between the 2D and 3D methods is the use of 2D convolutions
on images and 3D convolutions on voxel data, respectively. Therefore, these methods
are easily adapted to process depth images and we include them in our benchmark
as well. In addition to these deep learning methods, we evaluate the performance of
variation models [Steger et al., 2018] on voxel data and depth images. They detect
anomalies by calculating the pixel- or voxel wise Mahalanobis distance to the training
data distribution. All evaluated methods can either operate solely on the 3D data or can
additionally process the color information attached to each 3D point. We therefore also
compare the difference in performance when adding color information to the models.

9.3.1 Training and Evaluation Protocol

Data Representation. To represent dataset samples as voxel grids, we first compute a
global 3D bounding box over the entire training set for each dataset category. Then, a
voxel grid is placed at the center of the bounding box. The length of each side of the
grid is is chosen to be equal to the longest side of the bounding box. If only 3D data is
processed, occupied and empty voxels are assigned the values 1 and −1, respectively. If
RGB information is added, empty voxels are assigned the vector (−1,−1,−1). Occupied
voxels are assigned the average RGB value of all points that fall inside the same grid
cell.

For methods that process depth images, invalid pixels are assigned a distance of 0.
If color information is included, the RGB channels are appended to the single-channel
depth image. For both, the voxel grids and depth images, the RGB values are scaled to
the interval [0, 1].

Methods on Voxel Grids. For all voxel-based methods, we use grids of size 64×64×64
voxels. To choose the latent dimension of the compression-based methods, we performed
an ablation study, which is described in Section 9.3.2. Anomaly scores are computed by
a voxel wise comparison of the input with its reconstruction.

129

9 The MVTec 3D Anomaly Detection Dataset

For the implementation of Voxel f-AnoGAN, we use the same network architecture as
proposed by Simarro Viana et al. [2021]. The GAN and the encoder network are both
trained for 50 epochs on the augmented version of our dataset with an initial learning
rate of 0.0002 and a batch size of 2 using the Adam optimizer [Kingma and Ba, 2015].
The weight for the gradient penalty loss of the GAN is set to 10 and one generator
training iteration is performed for every 5 iterations of the discriminator training.

The Voxel Autoencoder consists of an encoder and a decoder network. Their archi-
tecture is the same as the one of the encoder and the generator in Voxel f-AnoGAN,
respectively. We train for 50 epochs on the augmented version of our dataset with a
batch size of 2 using the Adam optimizer with an initial learning rate of 0.0001. The
voxel grids of the samples of our dataset are sparsely populated and the majority of
voxels is empty. We found that this leads to problems when training the Voxel AE if
each voxel is weighted equally in the reconstruction loss. In this case, the model tends
to simply output an empty voxel grid to minimize the reconstruction error. To address
this imbalance, we introduce a loss weight w ∈ (0, 1) that is computed as the fraction of
empty voxels in the training set. During training, the loss at each voxel is then multiplied
by w if the voxel is occupied and by (1− w) otherwise.

For the Voxel Variation Model, we first compute the mean and standard deviation
of the training data at each voxel. During inference, anomaly scores are derived by
computing the voxel wise Mahalanobis distance of each test sample to the training
distribution.

Methods on Depth Images. Our implementations of Depth f-AnoGAN and the Depth
AE both process images at a resolution of 256×256 pixels. Input images are zoomed using
nearest neighbor interpolation for depth, and bilinear interpolation for color images.
Anomaly scores are derived by a per-pixel comparison of the input images and their
reconstructions.

The Depth f-AnoGAN consists of three sub-networks, i.e., an encoder, a discriminator,
and a generator. The architecture of the encoder is given in Table 9.2. It consists of a
stack of 10 convolution blocks that compress an input image of size 256× 256 pixels and
C channels to a d-dimensional latent vector. Each convolution block except the last one
is followed by an instance normalization layer [Ulyanov et al., 2017] and a LeakyReLU
with slope 0.05. The architecture of the discriminator is identical to the one of the
encoder except that d = 1. The generator produces an image of size 256×256 pixels and
C channels from a latent variable with d dimensions. Its architecture is symmetric to the
one in Table 9.2 in the sense that convolutions are replaced by transposed convolution
layers. Both, the GAN and the encoder network, are trained for 50 epochs using a batch
size of 4 and an initial learning rate of 0.0002 using the Adam optimizer.

For the encoder and decoder of the Depth AE, we use the same architecture as for
the encoder and generator of Depth f-AnoGAN, respectively. It is trained for 50 epochs
using the Adam optimizer at a batch size of 32 and an initial learning rate of 0.0001.

The Depth Variation Model processes images with their original resolution and com-
putes the mean and standard deviation over the entire training set at each image pixel.

130

9.3 Benchmark

Layer Output Size Parameters
Kernel Size Stride Padding

Image 256 × 256 × C
conv1 128 × 128 × 32 4 2 1
conv2 64 × 64 × 32 4 2 1
conv3 32 × 32 × 32 4 2 1
conv4 32 × 32 × 32 3 1 1
conv5 16 × 16 × 64 4 2 1
conv6 16 × 16 × 64 3 1 1
conv7 8 × 8 × 128 4 2 1
conv8 8 × 8 × 64 3 1 1
conv9 8 × 8 × 32 3 1 1
conv10 1 × 1 × d 8 1 0

Table 9.2: Encoder architecture of Depth f-AnoGAN and the Depth AE.

Again, anomaly scores are derived by computing the pixel wise Mahalanobis distance
from the training distribution.

Dataset Augmentation. Since the evaluated methods, except for the Variation Models,
require large amounts of training data, we use data augmentation to increase the size
of the training set. For each object category, we first estimate the normal vector of
the background plane, which is constant across samples. We then rotate each dataset
sample around this normal vector by a certain angle and project the resulting points
and corresponding color values into the original 2D image grid using the internal camera
parameters. We augment each training sample 20 times by randomly sampling angles
from the interval [−5◦, 5◦].

Computation of Anomaly Maps. All voxel-based methods compute an anomaly score
for each voxel element. However, comparing their performance on our dataset requires
them to assign an anomaly score to each pixel in the original XYZ images. We therefore
project the anomaly scores to pixel coordinates using the internal camera parameters
of the 3D sensor. For each voxel element, we project all 8 corner points and compute
the convex hull of the resulting projected points. All image pixels within this region
are assigned the respective anomaly score of the voxel element. If a pixel is assigned
multiple anomaly scores, we select their maximum.

Methods on depth images already assign a score to each pixel. The anomaly maps of
Depth f-AnoGAN and the Depth AE are zoomed to the original image size using bilinear
interpolation.

9.3.2 Experiment Results

Table 9.3 lists quantitative results for each evaluated method for the localization of
anomalies. For each dataset category, we report the normalized area under the PRO
curve with an upper integration limit of 0.3. We further report the mean performance
over all categories.

131

9 The MVTec 3D Anomaly Detection Dataset

bagel
cable
gland

carrot cookie dowel foam peach potato rope tire mean

3
D

O
n

ly

V
ox

el

GAN 0.440 0.453 0.825 0.755 0.782 0.378 0.392 0.639 0.775 0.389 0.583
AE 0.260 0.341 0.581 0.351 0.502 0.234 0.351 0.658 0.015 0.185 0.348
VM 0.453 0.343 0.521 0.697 0.680 0.284 0.349 0.634 0.616 0.346 0.492

D
ep

th

GAN 0.111 0.072 0.212 0.174 0.160 0.128 0.003 0.042 0.446 0.075 0.143
AE 0.147 0.069 0.293 0.217 0.207 0.181 0.164 0.066 0.545 0.142 0.203
VM 0.280 0.374 0.243 0.526 0.485 0.314 0.199 0.388 0.543 0.385 0.374

3
D

+
R

G
B

V
ox

el
GAN 0.664 0.620 0.766 0.740 0.783 0.332 0.582 0.790 0.633 0.483 0.639
AE 0.467 0.750 0.808 0.550 0.765 0.473 0.721 0.918 0.019 0.170 0.564
VM 0.510 0.331 0.413 0.715 0.680 0.279 0.300 0.507 0.611 0.366 0.471

D
ep

th

GAN 0.421 0.422 0.778 0.696 0.494 0.252 0.285 0.362 0.402 0.631 0.474
AE 0.432 0.158 0.808 0.491 0.841 0.406 0.262 0.216 0.716 0.478 0.481
VM 0.388 0.321 0.194 0.570 0.408 0.282 0.244 0.349 0.268 0.331 0.335

Table 9.3: Anomaly localization results. The area under the PRO curve is reported for an
integration limit of 0.3 for each evaluated method and dataset category. The best
performing methods are highlighted in boldface.

bagel
cable
gland

carrot cookie dowel foam peach potato rope tire mean

3
D

O
n

ly

V
ox

el

GAN 0.383 0.623 0.474 0.639 0.564 0.409 0.617 0.427 0.663 0.577 0.538
AE 0.693 0.425 0.515 0.790 0.494 0.558 0.537 0.484 0.639 0.583 0.572
VM 0.750 0.747 0.613 0.738 0.823 0.693 0.679 0.652 0.609 0.690 0.699

D
ep

th

GAN 0.530 0.376 0.607 0.603 0.497 0.484 0.595 0.489 0.536 0.521 0.524
AE 0.468 0.731 0.497 0.673 0.534 0.417 0.485 0.549 0.564 0.546 0.546
VM 0.510 0.542 0.469 0.576 0.609 0.699 0.450 0.419 0.668 0.520 0.546

3
D

+
R

G
B

V
ox

el

GAN 0.680 0.324 0.565 0.399 0.497 0.482 0.566 0.579 0.601 0.482 0.517
AE 0.510 0.540 0.384 0.693 0.446 0.632 0.550 0.494 0.721 0.413 0.538
VM 0.553 0.772 0.484 0.701 0.751 0.578 0.480 0.466 0.689 0.611 0.609

D
ep

th

GAN 0.538 0.372 0.580 0.603 0.430 0.534 0.642 0.601 0.443 0.577 0.532
AE 0.648 0.502 0.650 0.488 0.805 0.522 0.712 0.529 0.540 0.552 0.595
VM 0.513 0.551 0.477 0.581 0.617 0.716 0.450 0.421 0.598 0.623 0.555

Table 9.4: Anomaly classification results. We report the area under the ROC curve. The best-
performing methods are highlighted in boldface.

The first six rows in Table 9.3 show the performance of each method when trained
only on the 3D sensor data without providing any color information. In this case, the
Voxel f-AnoGAN performs best on average and on the majority of all dataset categories.
It is followed by the Voxel VM, which shows the best performance on one of the objects.
The Voxel AE performs worse than the other two voxel-based methods. This is because
it tends to produce blurry and inaccurate reconstructions.

On average, each voxel-based method performs better than its depth-based counter-
part. Among all depth-based methods, the Depth Variation Model performs best. We
found that the Depth AE and Depth f-AnoGAN produce many false positives in the
anomaly maps around invalid pixels in the input data.

Figure 9.5 shows corresponding qualitative anomaly localization results. For visualiza-
tion purposes, the predicted anomaly scores were projected onto the input point clouds.
For each dataset sample, the corresponding ground truth is visualized in red. While
most of the methods are able to localize some of the defects in our dataset, they also
yield a large number of false positive predictions, either on the objects’ surfaces, around
the objects’ edges, or in the background. Due to the reconstruction inaccuracies of the
Voxel AE, it can only detect the larger and more salient anomalies in our dataset such
as the one depicted in Figure 9.5.

132

9.3 Benchmark

Figure 9.5: Qualitative anomaly localization results in which each individual method performed
well. The top image visualizes the anomaly scores as an overlay to the input point
cloud. The bottom image shows the corresponding ground-truth annotation in red.
The displayed methods were only trained on the 3D data without adding color
information.

In addition to evaluating each method on 3D data only, we report the performance
of the methods when trained with RGB features at each 3D point. The results are
listed in the bottom six rows of Table 9.3. Adding RGB information improves the
performance of all methods except for the Variation Models. Since the RGB images do
not contain invalid pixels, the Depth AE and Depth f-AnoGAN benefit most from the
color information. Nevertheless, the voxel-based methods still outperform their depth-
based counterparts. Again, Voxel f-AnoGAN shows the best overall performance. For
some object categories, however, the Voxel AE performs better than Voxel f-AnoGAN
when including color information.

We further provide results for the classification of dataset samples as either anoma-
lous or anomaly-free. Since this requires a method to output a single anomaly score for
each dataset sample, we compute the maximum anomaly score of each anomaly map.
As performance measure, we compute the area under the ROC curve. Table 9.4 lists
the results. Here, the Voxel Variation Model achieves the best overall performance.
On average, many of the evaluated methods perform only slightly better than a ran-
dom classifier. This is because they tend to spuriously produce high anomaly scores in
anomaly-free areas as also observed in Figure 9.5.

133

9 The MVTec 3D Anomaly Detection Dataset

Figure 9.6: Dependence of AU-PRO on the integration limit. The results of our benchmark are
reported at a limit of 0.3.

Performance at Different Integration Limits. As discussed in Section 9.2.3, it is im-
portant to select a suitable integration limit to compute the area under the PRO curve.
To illustrate this, Figure 9.6 shows the dependence of the performance of each evalu-
ated method on the integration limit. All methods show a monotonic increase in their
AU-PRO. When integrating to a false positive rate of 1, the Voxel f-AnoGAN and the
Voxel VM surpass an AU-PRO of 0.8, which would suggest that these methods are
close to solving the task. However, evaluating at large integration limits include binary
segmentation masks where the number of false positive predictions is extremely high.
Since the area of the defects present in our dataset is very small compared to the area
of anomaly-free pixels, such segmentation results are no longer meaningful. Therefore,
we selected an integration limit of 0.3 in our evaluation.

Latent Dimensions of Compression-Based Methods. To select suitable latent dimen-
sions for the evaluated compression-based methods, we perform an ablation study. Their
mean performance over all object categories is given in Table 9.5. For the experiments
conducted above, we use the respective latent dimension that yielded the best mean
performance in the ablation study.

Quality of Reconstructions. For the methods based on AEs or GANs, the anomaly
detection performance significantly depends on the quality of their reconstructions. To
get an impression of the reconstruction quality, Figure 9.7 shows two examples for each
evaluated method. To visualize the voxel-based methods, voxel grids are converted to
point clouds by applying a threshold to each cell. A cell is classified as occupied if it

134

9.3 Benchmark

Figure 9.7: Examples of reconstructions for each compression-based method. For voxel-based
methods, inputs and reconstructions are visualized as point clouds. For depth-based
methods, they are shown as depth images.

135

9 The MVTec 3D Anomaly Detection Dataset

Latent Dimension
128 512 2048

Voxel
GAN 0.536 0.583 0.555
AE 0.348 0.269 0.305

Depth
GAN 0.143 0.137 0.135
AE 0.199 0.203 0.199

Table 9.5: Difference in performance when varying the latent dimension of each compression-
based method. We list the area under the PRO curve up to an integration limit of
0.3. The best performing setting is highlighted in boldface.

contains a value of 0.9 or higher. The Voxel AE tends to produce blurry reconstructions
around the objects’ surfaces. The Voxel f-AnoGAN does not have this problem. However,
it sometimes fails to produce parts of the input. For the depth-based methods, inputs
and reconstructions are visualized as depth images. Darker shades of blue indicate points
that are further from the camera center. White points indicate invalid pixels. Both, the
Depth f-AnoGAN and the Depth AE show problems reconstructing noisy areas that
exhibit many invalid pixels.

9.4 Conclusion

We presented a comprehensive 3D dataset for the task of unsupervised detection and
localization of anomalies. The conceptualization and acquisition of the dataset was
inspired by real-world visual inspection tasks. It consists of over 4000 point clouds
depicting instances of ten different object categories. The data was acquired using a
high-resolution structured light 3D sensor. About 1000 samples of the dataset contain
various types of anomalies and we provide precise ground truth annotations for all of
them.

We performed an initial benchmark of the few existing methods showing that there is
significant room for improvement. In particular, the accuracy of the evaluated methods
is insufficient for them to be used in real-world industrial applications.

136

10 Deep Geometric Descriptors for 3D
Anomaly Detection

Our initial benchmark conducted on the MVTec 3D-AD dataset showed that methods
for unsupervised anomaly detection in 3D data leave considerable room for improvement.
In this chapter, we present a new method for the unsupervised detection of geometric
anomalies in high-resolution 3D point clouds that significantly improves the detection
rate compared to existing approaches. In particular, we propose an adaptation of our
Student–Teacher anomaly detection framework to three dimensions. A student net-
work is trained to match the output of a pretrained teacher network on anomaly-free
point clouds. When applied to test data, regression errors between the teacher and the
student allow reliable localization of anomalous structures. To construct an expressive
teacher network that extracts dense local geometric descriptors, we introduce a novel
self-supervised pretraining strategy. The teacher is trained by reconstructing local recep-
tive fields and does not require annotations. Extensive experiments on the MVTec 3D
Anomaly Detection dataset highlight the effectiveness of our approach, which outper-
forms the existing methods by a large margin. Ablation studies show that our approach
meets the requirements of practical applications regarding performance, runtime, and
memory consumption.

10.1 Introduction

In recent years, significant progress has been made in the field of 3D computer vision in
various research areas such as 3D classification, 3D semantic segmentation, and 3D object
recognition. Many new methods build on earlier achievements in their counterparts in
2D, which operate with natural image data. However, the transition from 2D to 3D poses
additional challenges, e.g., the need to deal with unordered point clouds and sensor noise.
This has led to the development of new network architectures and training protocols
specific to three dimensions. In this chapter, we follow the practice in other areas of
computer vision and take inspiration from recent advances in 2D anomaly detection to
devise a powerful 3D method.

More specifically, we build on the success of using descriptors from pretrained neural
networks for unsupervised anomaly detection. A common protocol is to extract these
descriptors as intermediate features from networks trained on the ImageNet [Krizhevsky
et al., 2012] dataset. Models based on pretrained features were shown to perform better
than ones trained with random weight initializations [Burlina et al., 2019, Bergmann
et al., 2020, Cohen and Hoshen, 2020]. In particular, they typically outperform methods
based on convolutional autoencoders or generative adversarial networks.

137

10 Deep Geometric Descriptors for 3D Anomaly Detection

Figure 10.1: Qualitative results of our 3D–ST method on the MVTec 3D Anomaly Detection
dataset. Our method reliably localizes geometric anomalies in test point clouds,
even though it has been trained only on anomaly-free samples. Top row: Anomaly
scores for each 3D point predicted by our algorithm. Bottom row: Ground truth
annotations of anomalous points in red.

So far, there is no established pretraining protocol for unsupervised anomaly detection
in 3D point clouds. Existing work addresses the extraction of local 3D features that
are highly task-specific. For point cloud registration, feature extractors often heavily
downsample the input data or operate only on a small number of input points. This
makes them ill-suited for anomaly localization in 3D. In this work, we develop a novel
approach for pretraining local geometric descriptors that transfer well to this task. We
then use this pretraining strategy to introduce a new method that outperforms existing
approaches in the localization of geometric anomalies in high-resolution 3D point clouds.
In particular, our key contributions are:

• We present 3D Student–Teacher, the first method for unsupervised anomaly de-
tection that operates directly on 3D point clouds. Our method is trained only on
anomaly-free data and it localizes geometric anomalies in high-resolution test sam-
ples with a single forward pass. We propose an adaptation of the well-established
Student–Teacher framework for anomaly detection to three dimensions. A stu-
dent network is trained to match deep local geometric descriptors of a pretrained
teacher network. During inference, anomaly scores are derived from the regression
errors between the student’s predictions and the teacher’s targets. Our method
sets a new state of the art on the MVTec 3D-AD dataset presented in Chapter 9.
It performs significantly better than existing methods which use voxel grids and
depth images.

• We develop a self-supervised training protocol that allows the teacher network
to learn generic local geometric descriptors that transfer well to the 3D anomaly
detection task. The teacher extracts a geometric descriptor for each input point
by aggregating local features within a limited receptive field. A decoder network

138

10.2 Learning Deep 3D Descriptors

is trained to reconstruct the local geometry encoded by the descriptors. Our pre-
training strategy provides explicit control over the receptive field and dense feature
extraction for a large number of input points. This allows us to compute anomaly
scores for high-resolution point clouds without the need for intermediate subsam-
pling.

10.2 Learning Deep 3D Descriptors

To adapt our Student–Teacher method to three dimensional data, a pretrained network
that extracts local geometric features from 3D data is required. Geometric feature
extraction is commonly used in 3D applications such as 3D registration or 3D pose
estimation. The community has recently shifted from designing hand-crafted descriptors
[Tombari et al., 2010, Salti et al., 2014] to learning-based approaches.

One line of work learns low-dimensional descriptors on local 3D patches cropped from
larger input point clouds. In 3DMatch [Zeng et al., 2017] and PPFNet [Deng et al.,
2018b], supervised metric learning is used to learn embeddings from annotated 3D cor-
respondences. PPF-FoldNet [Deng et al., 2018a] pursues an unsupervised strategy where
an autoencoder is trained on point pair features extracted from the local patches. Sim-
ilarly, Kehl et al. [2016] introduce an autoencoder that is trained on patches of RGB-D
images to obtain local features. These methods have the disadvantage that a sepa-
rate patch needs to be cropped and processed for each feature. This quickly becomes
computationally intractable for a large number of points.

To mitigate this problem, recent 3D feature extractors attempt to densely compute
features for high-resolution inputs. Choy et al. [2019] propose FCGF, a fully convolu-
tional approach to local geometric feature extraction for 3D registration. They design
a network with sparse convolutions to efficiently processes high-resolution voxel data.
Given a large number of precisely annotated local correspondences, their approach is
trained using contrastive losses that encourage matching local geometries to be close in
feature space. PointContrast [Xie et al., 2020] learns descriptors for 3D registration in
a self-supervised fashion and does not rely on human annotations. Correspondences are
automatically derived by augmenting a pair of overlapping views from a single 3D scan.
While being computationally efficient, these methods require a prior voxelization that
can lead to discretization inaccuracies. Furthermore, all of the discussed methods are
designed to produce feature spaces that are ideally invariant to 3D rotations of the input
data. In unsupervised anomaly detection, however, anomalies can manifest themselves
precisely through locally rotated geometric structures. Such differences should therefore
be reflected in the extracted feature vectors. This calls for the development of a different
pretraining strategy that is sensitive to local rotations.

10.3 Student-Teacher Anomaly Detection in Point Clouds

In this section, we introduce 3D Student–Teacher (3D-ST), a versatile framework for
the unsupervised detection and localization of geometric anomalies in high-resolution

139

10 Deep Geometric Descriptors for 3D Anomaly Detection

Figure 10.2: (a) Training of our proposed 3D-ST method on anomaly-free point clouds. A
student network S is trained to match the local descriptors of a pretrained teacher
network T . (b) Computation of anomaly scores during inference. Anomaly scores
are derived from the regression error between the student and the teacher network.
Increased regression errors correspond to anomalous 3D points.

3D point clouds. We build on the recent success of leveraging local descriptors from
pretrained networks for anomaly detection and propose an adaptation of the 2D Student–
Teacher method [Bergmann et al., 2020] to 3D data.

Given a training dataset of anomaly-free input point clouds, our goal is to create
a model that can localize anomalous regions in test point clouds, i.e., to assign a real-
valued anomaly score to each point. To achieve this, we design a dense feature extraction
network T , called teacher network, that computes local geometric features for arbitrary
point clouds. For anomaly detection, a student network S is trained on the anomaly-free
point clouds against the descriptors obtained from T . During inference, increased regres-
sion errors between S and T indicate anomalous points. An overview of our approach is
illustrated in Figure 10.2.

To pretrain the teacher, we present a self-supervised protocol. It works on any generic
auxiliary 3D point cloud dataset and requires no human annotations.

10.3.1 Self-Supervised Learning of Dense Local Geometric Descriptors

We begin by describing how to construct a descriptive teacher network T . An overview of
our pretraining protocol is displayed in Figure 10.3. Given an input point cloud P ⊂ R3

containing 3D points, its purpose is to produce a d-dimensional feature vector fx ∈ Rd
for every x ∈ P . The vector fx describes the local geometry around the point x, i.e.,
the geometry within its receptive field.

Local Feature Aggregation. The network architecture of T has two key requirements.
First, it should be able to efficiently process high-resolution point clouds by computing
a feature vector for each input point without downsampling the input data. Second, it
requires explicit control over the receptive field of the feature vectors. In particular, it

140

10.3 Student-Teacher Anomaly Detection in Point Clouds

Figure 10.3: Overview of our proposed self-supervised pretraining strategy. A teacher network
is trained to output local geometric descriptors for each 3D point in the input
sample with a single forward pass. Simultaneously, a decoder network transforms
randomly sampled descriptors of the teacher and attempts to fit the local receptive
field around its respective input point.

has to be possible to efficiently compute all points within the receptive field of an output
descriptor.

To meet these requirements, we construct the k-nearest neighbor graph of the input
point cloud and initialize fx = 0. We then pass the input sample through a series of
residual blocks, where each block updates the feature vector of each 3D point x from
fx ∈ Rd to f̃x ∈ Rd. These blocks are inspired by RandLA-Net [Hu et al., 2020, 2021],
an efficient and lightweight neural architecture for semantic segmentation of large-scale
point clouds. In semantic segmentation tasks, the absolute position of a point is often
related to its class, e.g., in autonomous driving datasets. Here, we want our model to
produce features that describe the local geometry of an object independent of its abso-
lute location. We therefore make the residual blocks translation-invariant by removing
any dependency on absolute coordinates. This significantly increases the performance
when used for anomaly detection as underlined by the results of our experiments in
Section 10.4.

The architecture of our residual blocks is visualized in Figure 10.4(a). The input
features are first passed through a shared MLP, followed by two local feature aggregation
(LFA) blocks. The output features are added to the input after processing both by an
additional shared MLP. The features are transformed by a series of residual blocks
and a final shared MLP with a single hidden layer that maintains the dimension of the
descriptors, i.e., f̃x ∈ Rd.

The purpose of the LFA block is to aggregate the geometric information from the local
vicinity of each input point. To this end, it computes the nearest neighbors knn(x) =
{x1,x2, . . . ,xk} of all x ∈ P and a set of local geometric features G for each point pair
defined by

G(x,xj) = (x− xj)� ‖(x− xj)‖22 where j ∈ {1, . . . , k}. (10.1)

The operator � denotes the concatenation operation and ‖ · ‖22 denotes the L2-norm.
Since G only depends on the difference vectors between neighboring points, our network
is by design invariant to translations of the input data. Our experiments show that this
invariance of our local feature extractor is crucial for anomaly detection performance.

141

10 Deep Geometric Descriptors for 3D Anomaly Detection

...

... ...

... ...

Figure 10.4: Overview of our network architecture. (a) Residual block that performs a series
of local feature aggregation steps to update the feature vectors. (b) The local
feature aggregation block aggregates geometric information of surrounding points.
(c) Visualization of the receptive field of a point x.

Therefore, we make this small but important change to the LFA block. A schematic
description of such a block is given in Figure 10.4(b).

For each LFA block, the set of geometric features G(x,xj) is passed through a shared
MLP producing feature vectors of dimension dLFA. These are concatenated with the
set of input features {fx1 , . . . ,fxk

}. The output feature vector of the LFA block f̃x is
obtained by an average-pooling operation of the concatenated features, yielding a feature
vector of dimension 2dLFA.

Reconstructing Local Receptive Fields. To pretrain T in a self-supervised fashion, we
employ a decoder network that reproduces the local receptive field of a feature vector.
The design of our network architecture allows an efficient computation of all points within
the receptive field R(x) of a point x, i.e., all points that affect the feature vector fx.
Each LFA block depends on the features of the surrounding nearest neighbors knn(x).
Whenever an LFA block is executed, R(x) grows by one hop in the nearest-neighbor
graph. The receptive field can therefore be obtained by iteratively traversing the nearest
neighbor graph:

R(x) =
L⋃
l=0

knnl(x), where knnl(x) =
⋃

y∈knnl−1(x)

knn(y) (10.2)

and knn0 = {x}. L denotes the total number of LFA blocks in the network. Fig-
ure 10.4(c) visualizes this definition of the receptive field.

The decoder Dec : Rd → R3×m upsamples a feature vector to produce m 3D points by
applying an MLP. For pretraining, we extract descriptors from an input point cloud by
passing it through the local feature extractor. We then randomly sample a set of points
Q from the input. For each x ∈ Q, we compute the receptive fields R(x) and pass their
respective feature vectors through the decoder. To train the decoder, we minimize the

142

10.3 Student-Teacher Anomaly Detection in Point Clouds

Chamfer distance [Barrow et al., 1977] between the decoded points and the receptive
fields. Since our network architecture is not aware of the absolute coordinates of x,
we additionally compute the mean x̄ of all x ∈ R(x) and subtract it from each point,
yielding the set R(x) = R(x) − x̄. The loss function for our self-supervised training
procedure can then be written as:

LC(T,Dec) =
1

|Q|
∑
x∈Q

Chamfer(Dec(fx),R(x)). (10.3)

Data Normalization. For our teacher network to be applied to any point cloud not
included in the pretraining dataset, some form of data normalization is required. Since
our network operates on the distance vectors of neighboring points, we choose to nor-
malize the input data with respect to these distances. More specifically, we compute the
average distance between each point and its nearest neighbors over the entire training
set, i.e.,

s =
1

k |P |
∑
x∈P

∑
y∈knn(x)

‖x− y‖22. (10.4)

We then scale the coordinates of each data sample in the pretraining dataset by 1/s.
This allows us to apply the teacher network to arbitrary point cloud datasets, as long
as the same data normalization technique is used.

10.3.2 Matching Geometric Features for 3D Anomaly Detection

Finally, we describe how to employ the pretrained teacher network T to train a student
network S for anomaly detection. Given a dataset of anomaly-free point clouds, we first
calculate the scaling factor s for this dataset as defined in (10.4). The weights of T
remain constant during the entire anomaly detection training. S exhibits the identical
network architecture as T and is initialized with uniformly distributed random weights.
Each training point cloud Pt ⊂ R3 is passed through both networks, T and S, to compute
dense features fTx and fSx for all x ∈ Pt, respectively. The weights of S are optimized
to reproduce the geometric descriptors of T by computing the feature wise L2-distance
as an error function:

E(Pt) =
1

|Pt|
∑
x∈Pt

∥∥fSx − (fTx − µ) diag(σ)−1
∥∥2
2
. (10.5)

The training loss over the dataset samples in a minibatch of B elements can then be
written as LST (S) = 1

B

∑B
j=1E(Pt,j). We transform the teacher features to be centered

around 0 with unit standard deviation. This requires the computation of the component
wise means µ ∈ Rd and standard deviations σ ∈ Rd of all teacher features over the whole
training set. We denote the inverse of the diagonal matrix filled with σ by diag(σ)−1.

During inference, anomaly scores A(x) are derived for each point x ∈ Pi in a test
point cloud Pi ⊂ R3. They are given by the regression errors between the respective
features of the student and the teacher network, i.e.,

A(x) = ‖fSx − (fTx − µ) diag(σ)−1‖22. (10.6)

143

10 Deep Geometric Descriptors for 3D Anomaly Detection

The intuition behind this is that anomalous geometries produce features that the
student network has not observed during training, and is hence unable to reproduce.
Large regression errors indicate anomalous geometries.

10.4 Experiments

10.4.1 Experiment Setup

To demonstrate the effectiveness of our approach, we perform extensive experiments on
the MVTec 3D Anomaly Detection (MVTec 3D-AD) dataset. We benchmark the per-
formance of our 3D-ST method against existing methods for unsupervised 3D anomaly
detection. In particular, we follow the initial benchmark on MVTec 3D-AD from the
previous chapter and compare 3D-ST against the Voxel f-AnoGAN, the Voxel Autoen-
coder, and the Voxel Variation Model. The benchmark also includes their respective
counterparts that process depth images instead of voxel grids by exchanging 3D with 2D
convolutions.

Teacher Pretraining. To pretrain the teacher network (cf. Section 10.3.1), we generate
synthetic 3D scenes using objects of the ModelNet10 dataset [Wu et al., 2015]. It consists
of over 5000 3D models divided into 10 different object categories.

We generate a scene of our pretraining dataset by randomly selecting 10 samples from
ModelNet10 and scaling the longest side of their bounding box to 1. The objects are
rotated around each 3D axis with angles sampled uniformly from the interval [0, 2π].
Each object is placed at a random location sampled uniformly from [−3, 3]3. Point
clouds are created by selecting a fixed number of points from the scene using farthest
point sampling [Moenning and Dodgson, 2003]. The training and validation datasets
consist of 1000 and 50 point clouds, respectively. Our experiments show that using such
a synthetic dataset for pretraining yields local descriptors that are well suited for 3D
anomaly detection. In our ablation studies, we additionally investigate the use of real-
world datasets from different domains for pretraining, namely Semantic KITTI [Geiger
et al., 2012, Behley et al., 2019], MVTec ITODD [Drost et al., 2017], and 3DMatch [Zeng
et al., 2017].

The teacher network T consists of 4 residual blocks and processes n = 64000 input
points. We perform experiments using two different feature dimensions d ∈ {64, 128}.
The shared MLPs in all network blocks are implemented with a single dense layer,
followed by a LeakyReLU activation with a negative slope of 0.2. The input and output
dimensions of each shared MLP are given in Figure 10.4. For local feature aggregation,
a nearest neighbor graph with k = 32 neighbors is constructed. The pretraining runs for
250 epochs using the Adam optimizer with an initial learning rate of 10−3 and a weight
decay of 10−6. At each training step, a single input sample is fed through the teacher
network. To generate reconstructions of local receptive fields, 16 randomly selected
descriptors from the output of T are passed through the decoder network, which is
implemented as an MLP with input dimension d, two hidden layers of dimension 128,
and an output layer that reconstructs m = 1024 points. Each hidden layer is followed

144

10.4 Experiments

bagel
cable
gland

carrot cookie dowel foam peach potato rope tire mean

V
ox

el

GAN 0.440 0.453 0.825 0.755 0.782 0.378 0.392 0.639 0.775 0.389 0.583
AE 0.260 0.341 0.581 0.351 0.502 0.234 0.351 0.658 0.015 0.185 0.348
VM 0.453 0.343 0.521 0.697 0.680 0.284 0.349 0.634 0.616 0.346 0.492

D
ep

th

GAN 0.111 0.072 0.212 0.174 0.160 0.128 0.003 0.042 0.446 0.075 0.143
AE 0.147 0.069 0.293 0.217 0.207 0.181 0.164 0.066 0.545 0.142 0.203
VM 0.280 0.374 0.243 0.526 0.485 0.314 0.199 0.388 0.543 0.385 0.374

P
C

D 3D-ST64 0.939 0.440 0.984 0.904 0.876 0.633 0.937 0.989 0.967 0.507 0.818
3D-ST128 0.950 0.483 0.986 0.921 0.905 0.632 0.945 0.988 0.976 0.542 0.833

Table 10.1: Anomaly localization results for each evaluated method and dataset category. The
area under the PRO curve is reported for an integration limit of 0.3. The best
performing method is highlighted in boldface.

by a LeakyReLU activation with negative slope of 0.05. After the training, we select the
model with the lowest validation error as the teacher network.

Anomaly Detection. The student network S in our 3D-ST method has the same net-
work architecture as the teacher. It is trained for 100 epochs on the anomaly-free training
split of the MVTec 3D-AD dataset. We train with a batch size of B = 1. This is equiv-
alent to processing a large number of local patches per iteration due to the limited
receptive field of the employed networks. We use Adam with an initial learning rate of
10−3 and weight decay 10−5. Each point cloud is reduced to |P | = 64000 input points
using farthest point sampling. For inference, we select the student network with the
lowest validation error.

The evaluation on MVTec 3D-AD requires to predict an anomaly score for each pixel
in the original (x, y, z) images. To do this, we apply harmonic interpolation [Evans,
2010] to the pixels that were not assigned anomaly scores by our method. We follow
the standard evaluation protocol of MVTec 3D-AD and compute the per-region overlap
(PRO) and the corresponding false positive rate for successively increasing anomaly
thresholds. We then report the area under the PRO curve (AU-PRO) integrated up to
a false positive rate of 30%. We normalize the resulting values to the interval [0, 1].

10.4.2 Experiment Results

Table 10.1 shows quantitative results of each evaluated method on every object category
of MVTec 3D-AD for anomaly localization. The top three rows list the performance of
the voxel-based methods. The following three rows list the performance of the respective
methods on 2D depth images. The bottom two rows show the performance of our 3D-
ST method on 3D point cloud data, evaluated for two different descriptor dimensions
d ∈ {64, 128}. Our method performs significantly better than all other methods on
every dataset category. Increasing the descriptor dimension from 64 to 128 yields a
slight overall improvement of 1.5 percentage points.

Table 10.2 lists the performance of each evaluated method for anomaly classification.
We compute a single anomaly score for each dataset sample by taking the maximum over
all anomaly scores. The area under the ROC curve is reported as performance metric.
Our 3D-ST method achieves the best performance on the majority of dataset categories.

145

10 Deep Geometric Descriptors for 3D Anomaly Detection

bagel
cable
gland

carrot cookie dowel foam peach potato rope tire mean

V
ox

el

GAN 0.383 0.623 0.474 0.639 0564 0.409 0.617 0.427 0.663 0.577 0.538
AE 0.693 0.425 0.515 0.790 0.494 0.558 0.537 0.484 0.639 0.583 0.572
VM 0.750 0.747 0.613 0.738 0.823 0.693 0.679 0.652 0.609 0.690 0.699

D
ep

th
GAN 0.530 0.376 0.607 0.603 0.497 0.484 0.595 0.489 0.536 0.521 0.524
AE 0.468 0.731 0.497 0.673 0.534 0.417 0.485 0.549 0.564 0.546 0.546
VM 0.510 0.542 0.469 0.576 0.609 0.699 0.450 0.419 0.668 0.520 0.546

P
C

D 3D-ST64 0.805 0.409 0.809 0.905 0.736 0.588 0.743 0.648 0.978 0.496 0.712
3D-ST128 0.862 0.484 0.832 0.894 0.848 0.663 0.763 0.687 0.958 0.486 0.748

Table 10.2: Anomaly classification results for each evaluated method and dataset category. The
area under the ROC curve is reported. The best performing method is highlighted
in boldface.

Qualitative results of our method are shown in Figure 10.1. 3D-ST manages to localize
anomalies over a range of different object categories, such as the crack in the bagel, the
contamination on the rope and the tire, or the cut in the foam and the potato. Additional
qualitative results are shown in Figure 10.5.

Many anomaly detection applications require particularly low false positive rates. We
therefore report the mean performance of all evaluated methods when varying the inte-
gration limit of the PRO curve in Figure 10.6. Our method outperforms all other evalu-
ated methods for any chosen integration limit. The relative difference in performance is
particularly large for lower integration limits. This makes our approach well-suited for
practical applications.

10.4.3 Ablation Studies

We additionally perform various ablation studies with respect to the key hyperparame-
ters of our proposed method. Figure 10.7 shows the dependency of the mean performance
of our method on the number of input points |P |, the feature dimension d, or the num-
ber of nearest neighbor points k used for local feature aggregation. We additionally
visualize the inference time and the memory consumption of each model during training
and evaluation.1 We find that our method is insensitive to the choice of each hyper-
parameter. In particular, the mean performance of each evaluated model outperforms
the best performing competing model from the baseline experiments by a large margin.
The mean performance of our model grows monotonically with respect to each consid-
ered hyperparameter. It eventually saturates, whereas the inference time and memory
consumption continue to increase super-linearly.

Feature Space of the Teacher Network. We depict the effectiveness of our pretraining
strategy in Figure 10.8. The left bar plot shows the mean performance with respect
to changes in the training strategy of our method. The first bar indicates how the
performance changes when we initialize the teacher’s weights randomly and perform no
pretraining. As expected, the performance drops significantly. The next bar shows the
performance when concatenating the absolute point coordinates of each 3D point to the

1All models were implemented using the PyTorch library [Paszke et al., 2019]. Inference times and
memory consumption were measured on an NVIDIA Tesla V100 GPU.

146

10.4 Experiments

Figure 10.5: Additional qualitative results of our method on the MVTec 3D-AD dataset. Top
row: Anomaly scores for each 3D point predicted by our algorithm. Bottom row:
Ground truth annotations of anomalous points in red.

147

10 Deep Geometric Descriptors for 3D Anomaly Detection

Figure 10.6: Performance of each method with respect to the integration limit. The AU-PRO
at an integration limit of 0.3 is marked by a vertical line. In real-world scenarios,
the performance at lower integration limits is of particular importance.

Figure 10.7: Performance of our method when changing various key hyperparameters, i.e., the
number of input points, the feature dimension, and the number of nearest neigh-
bors used for local feature aggregation.

local feature aggregation function G, as proposed in [Hu et al., 2020]. This no longer
makes our network translation invariant and decreases the performance. This indicates
that translation invariance is indeed important for our network architecture and that
our modification to the local feature aggregation module has a significant impact. The
third bar shows the performance of our method when trying to additionally incorporate
rotation invariance. We achieve this by augmentation of the training data with randomly
sampled rotations such that locally rotated geometries are also considered as anomaly-
free. The performance is still significantly below our method, which indicates that
sensitivity to local rotations is beneficial for 3D anomaly detection.

Pretraining Dataset. In most of our experiments, we use synthetically generated scenes
created from objects from the ModelNet10 dataset as described above. Our pretraining
strategy does not require any human annotations and can operate on arbitrary input

148

10.4 Experiments

Figure 10.8: Sensitivity of our method to changes in the pretraining strategy of the teacher
network. We show the effects of a random teacher initialization, adding abso-
lute point coordinates, and rotation invariant features. We further examine the
influence of different pretraining datasets and feature extractors.

point clouds. We are thus interested in whether the performance varies when using
different pretraining datasets. As first experiment, we randomly select 1000 training
scenes from the Semantic KITTI autonomous driving dataset, which is captured with a
LIDAR sensor. Secondly, we pretrain a teacher on all samples of 3DMatch, an indoor
dataset originally designed for point cloud registration. Finally, we use all samples of the
MVTec ITODD dataset [Drost et al., 2017], an industrial dataset originally designed for
3D pose estimation. The center bar chart in Figure 10.8 shows the mean performance of
our method when using these three datasets for pretraining, compared to our baseline
model. We find that our method does not strongly depend on the specific dataset chosen
for pretraining when using ITODD or 3DMatch. We observe a slight performance gap
for the KITTI dataset, which is likely due to the large domain shift.

Feature Extractor. We additionally test the performance of our method when our
pretrained teacher network is replaced by descriptors obtained from different feature ex-
tractors. In particular, we compare against features obtained from PPFFold-Net [Deng
et al., 2018a] and FCGF [Choy et al., 2019]. For both, we use publicly available pre-
trained models.2 PPF-FoldNet outputs a single 512-dimensional descriptor for patches
cropped from a local neighborhood of 1024 points around each input point. Since it re-
quires patch-based feature extraction, producing descriptors for a large number of input
points becomes prohibitively slow. We therefore only extract 1000 descriptors for each
point cloud with PPF-FoldNet. FCGF outputs 32-dimensionsal descriptors and was pre-
trained in a supervised fashion on the 3DMatch dataset by finding correspondences for
3D registration. Since it requires a prior voxelization of the input data, we select a voxel
size of 3.5 mm and extract descriptors for 64000 points.

We train our student network to match the features extracted from these pretrained
networks instead of our proposed teacher network. The feature dimension of the output
layer of our student network is adapted to match the feature dimension of the descriptors.

2https://github.com/XuyangBai/PPF-FoldNet, https://github.com/chrischoy/FCGF

149

https://github.com/XuyangBai/PPF-FoldNet
https://github.com/chrischoy/FCGF

10 Deep Geometric Descriptors for 3D Anomaly Detection

The results are shown in the right bar plot in Figure 10.8. Transferring the features of
both networks yields better performance than the Voxel GAN, which is the previously
best-performing method that was trained from scratch. This underlines the effectiveness
of using pretrained geometric descriptors for 3D anomaly detection. Both extractors
do not reach the performance of our proposed pretraining strategy that is specifically
designed for the anomaly detection problem.

10.5 Conclusion

We proposed 3D-ST, a new approach to the challenging problem of unsupervised anomaly
detection in 3D point clouds. Our method is trained exclusively on anomaly-free samples.
During inference, it localizes geometric structures that deviate from the ones present in
the training set. In particular, we proposed an adaptation of Student–Teacher anomaly
detection from 2D to 3D. Existing 3D methods are trained from random weight ini-
tializations. In contrast to this, our method leverages the descriptiveness of deep local
geometric features extracted from a pretrained network. To address the lack of pre-
training protocols for 3D anomaly detection, we introduced a self-supervised strategy
based on the reconstruction of local receptive fields. This enables the training of teacher
networks that produce dense local geometric descriptors for arbitrary 3D point clouds.

For anomaly detection, a student network matches the geometric descriptors of the
teacher on anomaly-free data. During inference, anomaly scores are derived for each
3D point by computing the regression error between its associated student and teacher
descriptors. Extensive experiments on the MVTec 3D Anomaly Detection dataset show
that our method outperforms all existing methods by a large margin. We performed
various ablation studies which demonstrate that our method is computationally efficient
and robust to the choice of hyperparameters and pretraining datasets.

150

11 Conclusion

In this thesis, we contributed to the field of unsupervised anomaly detection and local-
ization from a computer vision perspective. We briefly summarize our contributions and
point the reader to possible directions for future research.

11.1 Summary

Anomaly Detection in Color and Grayscale Images

In Chapter 3, we introduced the SSIM-Autoencoder, a new variant of convolutional
autoencoders that computes anomaly scores based on the structural similarity index.
Compared to methods that derive anomaly scores from per-pixel residuals, our approach
is less sensitive to small inaccuracies in the reconstruction and improves the detection
of anomalies that occur as structural differences between the input and reconstructed
images when the respective pixels’ color values are roughly consistent. During the de-
velopment of our new autoencoder, we found that there is a lack of datasets for unsu-
pervised anomaly detection. Therefore, we contributed a texture dataset of two woven
fabric materials to evaluate our approach.

Since this texture dataset it is still relatively small and only covers a single application
scenario, we introduced the MVTec Anomaly Detection dataset (MVTec AD) in Chap-
ter 4. It allows for the evaluation of unsupervised anomaly detection methods on various
texture and object classes with different types of anomalies. An initial benchmark of
existing methods indicated considerable room for improvement.

The comparison of different methods on MVTec AD revealed that descriptors ex-
tracted from pretrained networks work well when transferred to the anomaly detection
problem. Unfortunately, these models often rely on patch-based feature extraction and
shallow machine learning models, which limits their performance. To overcome these
limitations, in Chapter 5, we introduced a framework for unsupervised anomaly de-
tection based on Student–Teacher learning. We designed a pretrained teacher network
that efficiently extracts dense local feature descriptors with a single forward pass. For
anomaly detection, an ensemble of student networks is trained to predict the output
of the teacher network on anomaly-free data. During inference, anomalies are detected
through increased regression errors and predictive variances of the students. The ap-
proach can be easily extended to detect anomalies at multiple scales. Our experiments
show that our method performs significantly better than existing methods on a number
of anomaly detection datasets.

In Chapter 6, we find that existing datasets for unsupervised anomaly detection pre-
dominantly focus on structural anomalies that manifest themselves through novel visual

151

11 Conclusion

structures that occur in locally confined regions, such as scratches, dents, or contam-
inations in manufactured products. This is also the case for our MVTec AD dataset.
However, anomalies may also appear as violations of underlying logical constraints of
the anomaly-free data. Therefore, we created a new dataset that equally focuses on
the detection of both structural and logical anomalies. We further introduced a new
performance metric that takes the different modalities of the two anomaly types into
account. An initial benchmark showed that existing methods do not perform well in the
detection of logical anomalies.

In Chapter 7, we introduced Global Context Anomaly Detection (GCAD), a new
method that allows for the joint localization of both structural and logical anomalies.
It extends our Student–Teacher framework by a global model branch that enables the
detection of logical anomalies. Extensive experiments showed that our approach per-
formed equally well in the detection of structural and logical anomalies and improved
the state of the art in the joint detection of both.

Geometric Anomaly Detection in Three-Dimensional Data

In the remaining parts of the thesis, we shifted our focus to the detection of geometric
anomalies in three-dimensional data. We found that currently, there exist only very few
methods that consider this task. We attribute this to the lack of suitable datasets that
can be used to develop new methods. Therefore, in Chapter 9, we presented the MVTec
3D Anomaly Detection dataset, a comprehensive 3D dataset for the task of unsuper-
vised anomaly detection and localization. It consists of ten different object categories
from industrial manufacturing scenarios, acquired with a high-resolution 3D sensor. It
contains various geometric anomalies that appear in the surface of the inspected objects.
An initial benchmark of existing methods revealed considerable room for improvement.

To improve over existing 3D anomaly detection methods, we extended our Student–
Teacher method to point cloud data in Chapter 10. In particular, we introduced a
self-supervised pretraining protocol to create teacher networks that efficiently extract
local geometric descriptors from any point cloud. For anomaly detection, a student
network matches the geometric descriptors of the teacher on anomaly-free data. During
inference, anomaly scores are derived for each input point by computing the regression
error between its associated student and teacher descriptors. Experiments on the MVTec
3D Anomaly Detection dataset show that our 3D Student–Teacher method performs
better than all existing methods by a large margin. We performed various ablation
studies which demonstrate that our method is computationally efficient and robust to
the choice of hyperparameters and pretraining datasets.

11.2 Future Research

In this thesis, we contributed several new datasets and methods for unsupervised anomaly
detection. While our datasets provide a solid foundation to create and benchmark new
methods, there is still room for the development of new datasets due to the wide variety
of conceivable anomaly detection applications and types of anomalies that may occur in

152

11.2 Future Research

practice. Hence, we encourage researchers to strive for the creation of even more diverse
anomaly detection datasets that challenge existing methods. In particular, it would be
of interest to create datasets that cover data modalities that are entirely different from
those investigated in this thesis. For instance, anomaly detection in data obtained from
hyperspectral cameras or X-Ray sensors is not yet thoroughly explored.

Regarding anomaly detection methods, our approaches achieve detection rates that
make them well-suited to be deployed in many real-world anomaly detection systems.
However, they still do not achieve perfect localization and classification accuracies. Es-
pecially for the detection of logical or particularly subtle anomalies, there is still room
for improvement. The methods developed in this thesis greatly rely on the availability
of descriptors extracted from pretrained neural networks. Therefore, a promising avenue
for future research is the development of new pretraining protocols that lead to better
detection rates or more efficient and lightweight network architectures that reduce the
computational overhead. On the other hand, it would also be interesting to investi-
gate if it is possible to improve the anomaly detection performance of methods that
are trained from scratch to match the performance of methods that employ pretrained
feature extractors. While the former are often straightforward to be transferred to new
input domains, the latter rely on domain-specific pretraining protocols that may not be
available for a particular application domain.

153

Bibliography

T. Adão, J. Hruška, L. Pádua, J. Bessa, E. Peres, R. Morais, and J. J. Sousa. Hyper-
spectral imaging: A review on uav-based sensors, data processing and applications for
agriculture and forestry. Remote Sensing, 9(11), 2017. doi: 10.3390/rs9111110.

J. An and S. Cho. Variational Autoencoder based Anomaly Detection using Reconstruc-
tion Probability. SNU Data Mining Center, Technical Report, 2015.

J. T. Andrews, T. Tanay, E. J. Morton, and L. D. Griffin. Transfer Representation-
Learning for Anomaly Detection. In Anomaly Detection Workshop at the International
Conference on Machine Learning (ICML), 2016.

M. Arjovsky and L. Bottou. Towards Principled Methods for Training Generative Ad-
versarial Networks. International Conference on Learning Representations (ICLR),
2017.

I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis, M. Fischer, and S. Savarese.
3D Semantic Parsing of Large-Scale Indoor Spaces. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1534–1543, 2016. doi: 10.1109/CVPR.
2016.170.

U. Baid et al. The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Seg-
mentation and Radiogenomic Classification. arXiv preprint arXiv:2107.02314, 2021.
doi: 10.48550/arXiv.2107.02314.

C. Bailer, T. A. Habtegebrial, K. Varanasi, and D. Stricker. Fast Dense Feature Ex-
traction with CNNs that have Pooling or Striding Layers. In British Machine Vision
Conference (BMVC), 2017. doi: 10.5244/c.31.101.

S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. S. Kirby, et al. Advancing
the cancer genome atlas glioma MRI collections with expert segmentation labels and
radiomic features. Scientific Data, 4(1), 2017. doi: 10.1038/sdata.2017.117.

H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf. Parametric Correspon-
dence and Chamfer Matching: Two New Techniques for Image Matching. In IJCAI,
pages 659–663, 1977.

C. Baur, B. Wiestler, S. Albarqouni, and N. Navab. Deep autoencoding models for unsu-
pervised anomaly segmentation in brain mr images. In Brainlesion: Glioma, Multiple
Sclerosis, Stroke and Traumatic Brain Injuries, pages 161–169. Springer International
Publishing, 2019. doi: 10.1007/978-3-030-11723-8 16.

155

BIBLIOGRAPHY

J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J. Gall.
SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences.
In IEEE International Conference on Computer Vision (ICCV), pages 9296–9306,
2019. doi: 10.1109/ICCV.2019.00939.

S. A. Bello, S. Yu, C. Wang, J. M. Adam, and J. Li. Review: Deep learning on 3d point
clouds. Remote Sensing, 12(11), 2020. doi: 10.3390/rs12111729.

W. H. Beluch, T. Genewein, A. Nurnberger, and J. M. Kohler. The power of ensembles
for active learning in image classification. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 9368–9377, 2018. doi: 10.1109/CVPR.2018.
00976.

M. Bengs, F. Behrendt, J. Krüger, R. Opfer, and A. Schlaefer. Three-dimensional deep
learning with spatial erasing for unsupervised anomaly segmentation in brain MRI.
International Journal of Computer Assisted Radiology and Surgery, 16, 2021. doi:
10.1007/s11548-021-02451-9.

P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger. MVTec AD — A Comprehensive
Real-World Dataset for Unsupervised Anomaly Detection. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 9584–9592, 2019a. doi:
10.1109/CVPR.2019.00982.

P. Bergmann, S. Löwe, M. Fauser, D. Sattlegger, and C. Steger. Improving Unsupervised
Defect Segmentation by Applying Structural Similarity to Autoencoders. In Proceed-
ings of the 14th International Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications - Volume 5: VISAPP, pages 372–380.
INSTICC, SciTePress, 2019b. doi: 10.5220/0007364503720380.

P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger. Uninformed Students: Student-
Teacher Anomaly Detection With Discriminative Latent Embeddings. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 4182–4191, 2020.
doi: 10.1109/CVPR42600.2020.00424.

P. Bergmann, K. Batzner, M. Fauser, D. Sattlegger, and C. Steger. The MVTec Anomaly
Detection Dataset: A Comprehensive Real-World Dataset for Unsupervised Anomaly
Detection. International Journal of Computer Vision, 129(4):1038–1059, 2021. doi:
10.1007/s11263-020-01400-4.

P. Bergmann, K. Batzner, M. Fauser, D. Sattlegger, and C. Steger. Beyond Dents and
Scratches: Logical Constraints in Unsupervised Anomaly Detection and Localization.
International Journal of Computer Vision, 130(4):947—-969, 2022a. doi: 10.1007/
s11263-022-01578-9.

P. Bergmann, X. Jin, D. Sattlegger, and C. Steger. The MVTec 3D-AD Dataset for
Unsupervised 3D Anomaly Detection and Localization. In Proceedings of the 17th
International Joint Conference on Computer Vision, Imaging and Computer Graphics

156

BIBLIOGRAPHY

Theory and Applications - Volume 5: VISAPP, pages 202–213. INSTICC, SciTePress,
2022b. doi: 10.5220/0010865000003124.

C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag, 2006.

H. Blum, P.-E. Sarlin, J. Nieto, R. Siegwart, and C. Cadena. Fishyscapes: A Bench-
mark for Safe Semantic Segmentation in Autonomous Driving. In IEEE International
Conference on Computer Vision Workshops (ICCVW), pages 2403–2412, 2019. doi:
10.1109/ICCVW.2019.00294.

I. Borg and P. Groenen. Modern multidimensional scaling: Theory and applications.
Journal of Educational Measurement, 40(3):277–280, 2003.

T. Böttger and M. Ulrich. Real-time texture error detection on textured surfaces with
compressed sensing. Pattern Recognition and Image Analysis, 26(1):88–94, 2016. doi:
10.1134/S1054661816010053.

P. Burlina, N. Joshi, and I.-J. Wang. Where’s wally now? deep generative and
discriminative embeddings for novelty detection. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 11499–11508, 2019. doi:
10.1109/CVPR.2019.01177.

S. Buschjager, P.-J. Honysz, and K. Morik. Randomized outlier detection with trees.
International Journal of Data Science and Analytics, 13:1–14, 2022. doi: 10.1007/
s41060-020-00238-w.

D. Carrera, F. Manganini, G. Boracchi, and E. Lanzarone. Defect detection in sem
images of nanofibrous materials. IEEE Transactions on Industrial Informatics, 13(2):
551–561, 2017. doi: 10.1109/TII.2016.2641472.

R. Chalapathy, A. K. Menon, and S. Chawla. Anomaly Detection using One-Class Neural
Networks. arXiv preprint arXiv:1802.06360, 2018. doi: 10.48550/arXiv.1802.06360.

A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese,
M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu. ShapeNet: An Information-Rich
3D Model Repository. arXiv preprint arXiv:1512.03012, 2015. doi: 10.48550/arXiv.
1512.03012.

R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 77–85, 2017. doi: 10.1109/CVPR.2017.16.

C. Choy, J. Park, and V. Koltun. Fully Convolutional Geometric Features. In IEEE
International Conference on Computer Vision (ICCV), pages 8957–8965, 2019. doi:
10.1109/ICCV.2019.00905.

N. Cohen and Y. Hoshen. Sub-image anomaly detection with deep pyramid correspon-
dences. arXiv preprint arXiv:2005.02357v1, 2020. doi: 10.48550/arXiv.2005.02357.

157

BIBLIOGRAPHY

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele. The cityscapes dataset for semantic urban scene understand-
ing. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
3213–3223, 2016. doi: 10.1109/CVPR.2016.350.

A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner. Scan-
Net: Richly-Annotated 3D Reconstructions of Indoor Scenes. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2432–2443, 2017. doi:
10.1109/CVPR.2017.261.

D. Danon, H. Averbuch-Elor, O. Fried, and D. Cohen-Or. Unsupervised natu-
ral image patch learning. Computational Visual Media, 5(3):229–237, 2019. doi:
10.1007/s41095-019-0147-y.

H. Deng, T. Birdal, and S. Ilic. Ppf-foldnet: Unsupervised learning of rotation invariant
3d local descriptors. In European Conference on Computer Vision (ECCV), pages 620–
638. Springer International Publishing, 2018a. doi: 10.1007/978-3-030-01228-1 37.

H. Deng, T. Birdal, and S. Ilic. Ppfnet: Global context aware local features for robust
3d point matching. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 195–205, 2018b. doi: 10.1109/CVPR.2018.00028.

J. Donahue, P. Krähenbühl, and T. Darrell. Adversarial Feature Learning. International
Conference on Learning Representations (ICLR), 2017.

A. Dosovitskiy and T. Brox. Generating Images with Perceptual Similarity Metrics
based on Deep Networks. In Advances in Neural Information Processing Systems,
pages 658–666, 2016.

B. Drost, M. Ulrich, P. Bergmann, P. Härtinger, and C. Steger. Introducing MVTec
ITODD — A Dataset for 3D Object Recognition in Industry. In IEEE International
Conference on Computer Vision Workshops (ICCVW), pages 2200–2208, 2017. doi:
10.1109/ICCVW.2017.257.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159,
2011. doi: 10.5555/1953048.2021068.

T. Ehret, A. Davy, J.-M. Morel, and M. Delbracio. Image Anomalies: A Review and
Synthesis of Detection Methods. Journal of Mathematical Imaging and Vision, 61(5):
710–743, 2019. doi: 10.1007/s10851-019-00885-0.

L. C. Evans. Partial differential equations. American Mathematical Society, 2010.

M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zis-
serman. The pascal visual object classes challenge: A retrospective. International
Journal of Computer Vision, 111(1):98–136, 2015. doi: 10.1007/s11263-014-0733-5.

158

BIBLIOGRAPHY

T. Fernando, H. Gammulle, S. Denman, S. Sridharan, and C. Fookes. Deep learning for
medical anomaly detection – a survey. ACM Computing Surveys, 54(7), 2021. doi:
10.1145/3464423.

E. Fix and J. L. Hodges. Discriminatory analysis. nonparametric discrimination: Con-
sistency properties. International Statistical Review / Revue Internationale de Statis-
tique, 57(3):238–247, 1989. doi: 10.2307/1403797.

G. Flitton, A. Mouton, and T. P. Breckon. Object classification in 3d baggage security
computed tomography imagery using visual codebooks. Pattern Recognition, 48(8):
2489––2499, 2015. doi: 10.1016/j.patcog.2015.02.006.

A. Geiger, P. Lenz, and R. Urtasun. Are we ready for Autonomous Driving? The
KITTI Vision Benchmark Suite. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3354–3361, 2012. doi: 10.1109/CVPR.2012.6248074.

D. Gong, L. Liu, V. Le, B. Saha, M. R. Mansour, S. Venkatesh, and A. Van Den Hengel.
Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for
unsupervised anomaly detection. In IEEE International Conference on Computer
Vision (ICCV), pages 1705–1714, 2019. doi: 10.1109/ICCV.2019.00179.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative Adversarial Nets. In Advances in Neural
Information Processing Systems, pages 2672–2680, 2014.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. doi:
10.1007/s10710-017-9314-z.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved
training of wasserstein gans. In Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant
mapping. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1735–1742, 2006. doi: 10.1109/CVPR.2006.100.

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
770–778, 2016. doi: 10.1109/CVPR.2016.90.

D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016. doi: 10.48550/arXiv.1606.08415.

D. Hendrycks, S. Basart, M. Mazeika, M. Mostajabi, J. Steinhardt, and D. Song. A
Benchmark for Anomaly Segmentation. arXiv preprint arXiv:1911.11132v1, 2019.
doi: 10.48550/arXiv.1911.11132.

159

BIBLIOGRAPHY

S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient flow in recurrent
nets: the difficulty of learning long-term dependencies, chapter 14, pages 237–243.
IEEE Press, 2001. doi: 10.1109/9780470544037.ch14.

T. Hodaň, M. Sundermeyer, B. Drost, Y. Labbé, E. Brachmann, F. Michel, C. Rother,
and J. Matas. BOP Challenge 2020 on 6D Object Localization. European Conference
on Computer Vision Workshops (ECCVW), 2020. doi: 10.1007/978-3-030-66096-3\
39.

Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and A. Markham.
RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 11105–
11114, 2020. doi: 10.1109/CVPR42600.2020.01112.

Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and A. Markham.
Learning Semantic Segmentation of Large-Scale Point Clouds with Random Sampling.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021. doi: 10.1109/
TPAMI.2021.3083288.

Y. Huang, C. Qiu, Y. Guo, X. Wang, and K. Yuan. Surface defect saliency of mag-
netic tile. In 2018 IEEE 14th International Conference on Automation Science and
Engineering (CASE), pages 612–617, 2018. doi: 10.1109/COASE.2018.8560423.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning
(ICML), pages 448––456, 2015.

K. Jnawali, M. R. Arbabshirani, N. Rao, and A. A. Patel. Deep 3D convolution neural
network for CT brain hemorrhage classification. In Medical Imaging 2018: Computer-
Aided Diagnosis, volume 10575 of Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, 2018. doi: 10.1117/12.2293725.

S. Jégou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio. The one hundred
layers tiramisu: Fully convolutional densenets for semantic segmentation. In IEEE
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages
1175–1183, 2017. doi: 10.1109/CVPRW.2017.156.

W. Kehl, F. Milletari, F. Tombari, S. Ilic, and N. Navab. Deep Learning of Local RGB-D
Patches for 3D Object Detection and 6D Pose Estimation. In European Conference on
Computer Vision (ECCV)”, pages 205–220. Springer International Publishing, 2016.
doi: 10.1007/978-3-319-46487-9\ 13.

A. Kendall and Y. Gal. What Uncertainties Do We Need in Bayesian Deep Learning for
Computer Vision? In Advances in Neural Information Processing Systems 30, pages
5574–5584, 2017.

160

BIBLIOGRAPHY

A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman. Survey of intrusion detection
systems: techniques, datasets and challenges. Cybersecurity, 2(1):20, 2019. doi: 10.
1186/s42400-019-0038-7.

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. International
Conference on Learning Representations (ICLR), 2015.

D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. International Confer-
ence on Learning Representations (ICLR), 2014.

E. M. Knorr, R. T. Ng, and V. Tucakov. Distance-based outliers: Algorithms and ap-
plications. The VLDB Journal, 8(3–4):237—-253, 2000. doi: 10.1007/s007780050006.

S. Kornblith, J. Shlens, and Q. V. Le. Do better imagenet models transfer better?
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
2656–2666, 2019. doi: 10.1109/CVPR.2019.00277.

H.-P. Kriegel, P. Kröger, and A. Zimek. Clustering high-dimensional data: A survey
on subspace clustering, pattern-based clustering, and correlation clustering. ACM
Transactions on Knowledge Discovery from Data, 3(1), 2009. doi: 10.1145/1497577.
1497578.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification With Deep Con-
volutional Neural Networks. In Advances in Neural Information Processing Systems,
pages 1097–1105, 2012.

A. Krogh and J. A. Hertz. A simple weight decay can improve generalization. In
Proceedings of the 4th International Conference on Neural Information Processing
Systems, pages 950—-957, San Francisco, CA, USA, 1991. doi: 10.5555/2986916.
2987033.

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and Scalable Predictive
Uncertainty Estimation using Deep Ensembles. In Advances in Neural Information
Processing Systems 30, pages 6402–6413, 2017.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.
1109/5.726791.

K.-L. Li, H.-K. Huang, S.-F. Tian, and W. Xu. Improving one-class svm for anomaly
detection. In Proceedings of the International Conference on Machine Learning and
Cybernetics, volume 5, pages 3077–3081, 2003. doi: 10.1109/ICMLC.2003.1260106.

W.-X. Li, V. Mahadevan, and N. Vasconcelos. Anomaly Detection and Localization in
Crowded Scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 36(1):18–32, 2013. doi: 10.1109/TPAMI.2013.111.

161

BIBLIOGRAPHY

S.-L. Liew, J. M. Anglin, N. W. Banks, et al. A large, open source dataset of stroke
anatomical brain images and manual lesion segmentations. Scientific data, 5:180011,
2018. doi: 10.1038/sdata.2018.11.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick. Microsoft COCO: Common objects in context. In European Conference on
Computer Vision (ECCV), pages 740–755. Springer International Publishing, 2014.
doi: 10.1007/978-3-319-10602-1 48.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object
detection. In IEEE International Conference on Computer Vision (ICCV), pages
2999–3007, 2017. doi: 10.1109/ICCV.2017.324.

W. Liu, R. Li, M. Zheng, S. Karanam, Z. Wu, B. Bhanu, R. J. Radke, and O. Camps.
Towards visually explaining variational autoencoders. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 8639–8648, 2020. doi:
10.1109/CVPR42600.2020.00867.

S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory,
28(2):129–137, 1982. doi: 10.1109/TIT.1982.1056489.

C. Lu, J. Shi, and J. Jia. Abnormal Event Detection at 150 FPS in MATLAB. In IEEE
International Conference on Computer Vision (ICCV), pages 2720–2727, 2013. doi:
10.1109/ICCV.2013.338.

G. Lu and B. Fei. Medical hyperspectral imaging: a review. Journal of Biomedical
Optics, 19(1):1–24, 2014. doi: 10.1117/1.JBO.19.1.010901.

N. Marchal, C. Moraldo, H. Blum, R. Siegwart, C. Cadena, and A. Gawel. Learning
densities in feature space for reliable segmentation of indoor scenes. IEEE Robotics
and Automation Letters, 5(2):1032–1038, 2020. doi: 10.1109/LRA.2020.2967313.

M. Masana, I. Ruiz, J. Serrat, J. van de Weijer, and A. M. López. Metric learning
for novelty and anomaly detection. In British Machine Vision Conference (BMVC).
BMVA Press, 2018.

J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber. Stacked Convolutional Auto-
Encoders for Hierarchical Feature Extraction. In Artificial Neural Networks and
Machine Learning – ICANN 2011, pages 52–59. Springer, 2011. doi: 10.1007/
978-3-642-21735-7.

D. Maturana and S. Scherer. Voxnet: A 3d convolutional neural network for real-time
object recognition. In 2015 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 922–928, 2015. doi: 10.1109/IROS.2015.7353481.

K. G. Mehrotra, C. K. Mohan, and H. Huang. Anomaly Detection Principles and
Algorithms. Springer Publishing Company, Incorporated, 1st edition, 2017. doi:
10.1007/978-3-319-67526-8.

162

BIBLIOGRAPHY

B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, et al. The
Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Transac-
tions on Medical Imaging, 34(10):1993–2024, 2015. doi: 10.1109/TMI.2014.2377694.

C. Moenning and N. A. Dodgson. Fast Marching farthest point sampling. In Eurographics
2003 - Posters. Eurographics Association, 2003. doi: 10.2312/egp.20031024.

V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines.
In International Conference on Machine Learning (ICML), pages 807–814, 2010.

P. Napoletano, F. Piccoli, and R. Schettini. Anomaly Detection in Nanofibrous Materials
by CNN-Based Self-Similarity. Sensors, 18(1):209, 2018. doi: 10.3390/s18010209.

T. S. Nazare, R. F. de Mello, and M. A. Ponti. Are pre-trained cnns good feature extrac-
tors for anomaly detection in surveillance videos? arXiv preprint arXiv:1811.08495,
2018. doi: 10.48550/arXiv.1811.08495.

H. Park, J. Noh, and B. Ham. Learning memory-guided normality for anomaly detection.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
14360–14369, 2020. doi: 10.1109/CVPR42600.2020.01438.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In Advances in Neural
Information Processing Systems, volume 32, 2019.

P. Perera and V. M. Patel. Deep transfer learning for multiple class novelty detection.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
11536–11544, 2019. doi: 10.1109/CVPR.2019.01181.

P. Perera, R. Nallapati, and B. Xiang. Ocgan: One-class novelty detection using gans
with constrained latent representations. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2893–2901, 2019. doi: 10.1109/CVPR.2019.00301.

M. A. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko. A review of novelty
detection. Signal Processing, 99:215–249, 2014. doi: 10.1016/j.sigpro.2013.12.026.

B. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964. doi: 10.1016/
0041-5553(64)90137-5.

M. Reif, M. Goldstein, A. Stahl, and T. M. Breuel. Anomaly detection by combining
decision trees and parametric densities. In 2008 19th International Conference on
Pattern Recognition, pages 1–4, 2008. doi: 10.1109/ICPR.2008.4761796.

S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection
with region proposal networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39(6):1137–1149, 2017. doi: 10.1109/TPAMI.2016.2577031.

163

BIBLIOGRAPHY

A. Roitberg, Z. Al-Halah, and R. Stiefelhagen. Informed democracy: Voting-based nov-
elty detection for action recognition. In British Machine Vision Conference (BMVC).
BMVA Press, 2019.

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Interven-
tion – MICCAI 2015, pages 234–241. Springer International Publishing, 2015. doi:
10.1007/978-3-319-24574-4 28.

M. Rudolph, B. Wandt, and B. Rosenhahn. Same same but differnet: Semi-supervised
defect detection with normalizing flows. In 2021 IEEE Winter Conference on Ap-
plications of Computer Vision (WACV), pages 1906–1915, 2021. doi: 10.1109/
WACV48630.2021.00195.

M. Rudolph, T. Wehrbein, B. Rosenhahn, and B. Wandt. Fully convolutional cross-
scale-flows for image-based defect detection. In 2022 IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV), pages 1829–1838, 2022. doi: 10.1109/
WACV51458.2022.00189.

L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui, A. Binder, E. Müller,
and M. Kloft. Deep One-Class Classification. In International Conference on Machine
Learning (ICML), volume 80 of Proceedings of Machine Learning Research, pages
4393–4402. PMLR, 2018.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-
propagating errors. Nature, 323(6088):533–536, 1986. doi: 10.1038/323533a0.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, 115(3):211–252,
2015. doi: 10.1007/s11263-015-0816-y.

M. Sabokrou, M. Fayyaz, M. Fathy, Z. Moayed, and R. Klette. Deep-anomaly: Fully
convolutional neural network for fast anomaly detection in crowded scenes. Computer
Vision and Image Understanding, 172:88–97, 2018. doi: 10.1016/j.cviu.2018.02.006.

M. Sakurada and T. Yairi. Anomaly detection using autoencoders with nonlinear di-
mensionality reduction. Proceedings of the MLSDA 2014 2nd Workshop on Machine
Learning for Sensory Data Analysis, pages 4—-11. Association for Computing Ma-
chinery, 2014. doi: 10.1145/2689746.2689747.

B. Saleh, A. Farahdi, and A. Elgammal. Object-Centric Anomaly Detection by
Attribute-Based Reasoning. IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 787–794, 2013. doi: 10.1109/CVPR.2013.107.

M. Salehi, N. Sadjadi, S. Baselizadeh, M. H. Rohban, and H. R. Rabiee. Mul-
tiresolution knowledge distillation for anomaly detection. In IEEE Conference on

164

BIBLIOGRAPHY

Computer Vision and Pattern Recognition (CVPR), pages 14897–14907, 2021. doi:
10.1109/CVPR46437.2021.01466.

S. Salti, F. Tombari, and L. Di Stefano. SHOT: Unique signatures of histograms for
surface and texture description. Computer Vision and Image Understanding, 125:
251–264, 2014. doi: 10.1016/j.cviu.2014.04.011.

T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs. Unsu-
pervised Anomaly Detection with Generative Adversarial Networks to Guide Marker
Discovery. In International Conference on Information Processing in Medical Imaging,
pages 146–157. Springer, 2017. doi: 10.1007/978-3-319-59050-9 12.

T. Schlegl, P. Seeböck, S. Waldstein, G. Langs, and U. Schmidt-Erfurth. f-AnoGAN:
Fast Unsupervised Anomaly Detection with Generative Adversarial Networks. Medical
Image Analysis, 54, 2019. doi: 10.1016/j.media.2019.01.010.

B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and R. C. Williamson.
Estimating the support of a high-dimensional distribution. Neural Computing, 13(7):
1443––1471, 2001. doi: 10.1162/089976601750264965.

P. Seeböck, J. I. Orlando, T. Schlegl, S. M. Waldstein, H. Bogunović, S. Klimscha,
G. Langs, and U. Schmidt-Erfurth. Exploiting epistemic uncertainty of anatomy
segmentation for anomaly detection in retinal oct. IEEE Transactions on Medical
Imaging, 39(1):87–98, 2020. doi: 10.1109/TMI.2019.2919951.

N. Shirodkar, P. Mandrekar, R. S. Mandrekar, R. Sakhalkar, K. Chaman Kumar, and
S. Aswale. Credit card fraud detection techniques – a survey. In 2020 Interna-
tional Conference on Emerging Trends in Information Technology and Engineering
(ic-ETITE), pages 1–7, 2020. doi: 10.1109/ic-ETITE47903.2020.112.

J. Simarro Viana, E. de la Rosa, T. Vande Vyvere, D. Robben, D. M. Sima, and
C.-T. P. a. Investigators. Unsupervised 3D Brain Anomaly Detection. In Brainle-
sion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pages 133–142.
Springer International Publishing, 2021. doi: 10.1007/978-3-030-72084-1.

J. Snell, K. Ridgeway, R. Liao, B. D. Roads, M. C. Mozer, and R. S. Zemel. Learning
to generate images with perceptual similarity metrics. In 2017 IEEE International
Conference on Image Processing (ICIP), pages 4277–4281, 2017. doi: 10.1109/ICIP.
2017.8297089.

K. Song and Y. Yan. A noise robust method based on completed local binary patterns
for hot-rolled steel strip surface defects. Applied Surface Science, 285:858–864, 2013.
doi: 10.1016/j.apsusc.2013.09.002.

D. Soukup and T. Pinetz. Reliably Decoding Autoencoders’ Latent Spaces for One-
Class Learning Image Inspection Scenarios. In Austrian Association for Pattern
Recognition Workshop. Verlag der Technischen Universität Graz, 2018. doi: 10.3217/
978-3-85125-603-1-19.

165

BIBLIOGRAPHY

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(56):1929–1958, 2014. doi: 10.5555/2627435.2670313.

C. Steger. Similarity Measures for Occlusion, Clutter, and Illumination Invariant Ob-
ject Recognition. In Pattern Recognition, volume 2191 of Lecture Notes in Computer
Science, pages 148–154. Springer-Verlag, 2001. doi: 10.1007/3-540-45404-7 20.

C. Steger. Occlusion, Clutter, and Illumination Invariant Object Recognition. In Inter-
national Archives of Photogrammetry and Remote Sensing, volume XXXIV, part 3A,
pages 345–350, 2002.

C. Steger, M. Ulrich, and C. Wiedemann. Machine Vision Algorithms and Applications.
Wiley-VCH, Weinheim, 2nd edition, 2018.

W. Sultani, C. Chen, and M. Shah. Real-World Anomaly Detection in Surveillance
Videos. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 6479–6488, 2018. doi: 10.1109/CVPR.2018.00678.

R. Sun, X. Zhu, C. Wu, C. Huang, J. Shi, and L. Ma. Not all areas are equal: Transfer
learning for semantic segmentation via hierarchical region selection. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 4355–4364, 2019.
doi: 10.1109/CVPR.2019.00449.

R. Szeliski. Computer vision algorithms and applications. Springer, London; New York,
2011. doi: 10.1007/978-1-84882-935-0.

M. Tan and Q. Le. EfficientNet: Rethinking model scaling for convolutional neural
networks. In International Conference on Machine Learning (ICML), volume 97,
pages 6105–6114. PMLR, 2019.

A. Theissler, J. Perez-Velazquez, M. Kettelgerdes, and G. Elger. Predictive maintenance
enabled by machine learning: Use cases and challenges in the automotive industry.
Reliability Engineering and System Safety, 215:107864, 2021. doi: 10.1016/j.ress.2021.
107864.

Y. Tian, B. Fan, and F. Wu. L2-net: Deep learning of discriminative patch descriptor
in euclidean space. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 6128–6136, 2017. doi: 10.1109/CVPR.2017.649.

F. Tombari, S. Salti, and L. Di Stefano. Unique Signatures of Histograms for Local Sur-
face Description. In Proceedings of the 11th European Conference on Computer Vision:
Part III, pages 356––369. Springer-Verlag, 2010. doi: 10.1007/978-3-642-15558-1\ 26.

J. W. Tukey. Exploratory data analysis. Addison-Wesley Series in Behavioral Science.
Addison-Wesley, 1977.

166

BIBLIOGRAPHY

D. Ulyanov, A. Vedaldi, and V. Lempitsky. Improved texture networks: Maximizing
quality and diversity in feed-forward stylization and texture synthesis. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 4105–4113, 2017.
doi: 10.1109/CVPR.2017.437.

A. Vasilev, V. Golkov, M. Meissner, I. Lipp, E. Sgarlata, V. Tomassini, D. K. Jones,
and D. Cremers. q-space novelty detection with variational autoencoders. In Compu-
tational Diffusion MRI, pages 113–124. Springer International Publishing, 2020. doi:
10.1007/978-3-030-52893-5 10.

D. P. Vassileios Balntas, Edgar Riba and K. Mikolajczyk. Learning local feature de-
scriptors with triplets and shallow convolutional neural networks. In British Ma-
chine Vision Conference (BMVC), pages 119.1–119.11. BMVA Press, 2016. doi:
10.5244/C.30.119.

A. Veit, M. Wilber, and S. Belongie. Residual networks behave like ensembles of rela-
tively shallow networks. In Proceedings of the 30th International Conference on Neural
Information Processing Systems, pages 550—-558, 2016.

Z. Wang, E. Simoncelli, and A. Bovik. Multiscale structural similarity for image quality
assessment. In The Thrity-Seventh Asilomar Conference on Signals, Systems & Com-
puters, 2003, volume 2, pages 1398–1402, 2003. doi: 10.1109/ACSSC.2003.1292216.

Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE Transactions on Image Processing, 13
(4):600–612, 2004. doi: 10.1109/TIP.2003.819861.

M. Wieler and T. Hahn. Weakly Supervised Learning for Industrial Optical Inspection.
29th Annual Symposium of the German Association for Pattern Recognition, 2007.

Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3D ShapeNets: A
deep representation for volumetric shapes. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1912–1920, 2015. doi: 10.1109/CVPR.2015.
7298801.

S. Xia, Z. Xiong, Y. Luo, WeiXu, and G. Zhang. Effectiveness of the euclidean distance
in high dimensional spaces. Optik, 126(24):5614–5619, 2015. doi: https://doi.org/10.
1016/j.ijleo.2015.09.093.

S. Xie, J. Gu, D. Guo, C. R. Qi, L. Guibas, and O. Litany. Pointcontrast: Unsupervised
pre-training for 3d point cloud understanding. In European Conference on Computer
Vision (ECCV)”, pages 574–591. Springer International Publishing, 2020. doi: 10.
1007/978-3-030-58580-8\ 34.

Z. Xie, I. Sato, and M. Sugiyama. A Diffusion Theory For Deep Learning Dynam-
ics: Stochastic Gradient Descent Exponentially Favors Flat Minima. International
Conference on Learning Representations (ICLR), 2021.

167

BIBLIOGRAPHY

S. Ying, B. Wang, L. Wang, Q. Li, Y. Zhao, J. Shang, H. Huang, G. Cheng, Z. Yang,
and J. Geng. An improved knn-based efficient log anomaly detection method with au-
tomatically labeled samples. ACM Transactions on Knowledge Discovery from Data,
15(3), 2021. doi: 10.1145/3441448.

F. Yu and V. Koltun. Multi-Scale Context Aggregation by Dilated Convolutions. Inter-
national Conference on Learning Representations (ICLR), 2016.

F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and T. Darrell.
Bdd100k: A diverse driving dataset for heterogeneous multitask learning. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2633–2642,
2020. doi: 10.1109/CVPR42600.2020.00271.

G. Yu, G. Sapiro, and S. Mallat. Solving inverse problems with piecewise linear esti-
mators: From gaussian mixture models to structured sparsity. IEEE Transactions on
Image Processing, 21(5):2481–2499, 2012. doi: 10.1109/TIP.2011.2176743.

H. Zenati, C. S. Foo, B. Lecouat, G. Manek, and V. R. Chandrasekhar. Efficient GAN-
Based Anomaly Detection. arXiv preprint arXiv:1802.06222, 2018. doi: 10.48550/
arXiv.1802.06222.

A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, and T. Funkhouser. 3DMatch: Learn-
ing Local Geometric Descriptors from RGB-D Reconstructions. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 199–208, 2017. doi:
10.1109/CVPR.2017.29.

S. Zhang, H. Tong, J. Xu, and R. Maciejewski. Graph convolutional networks: a com-
prehensive review. Computational Social Networks, 6(1):11, 2019. doi: 10.1186/
s40649-019-0069-y.

F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He. A comprehensive
survey on transfer learning. Proceedings of the IEEE, 109(1):43–76, 2021. doi: 10.
1109/JPROC.2020.3004555.

168

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	1 Introduction
	1.1 Deep Learning for Anomaly Detection
	1.2 Supervised and Unsupervised Methods
	1.3 Different Characteristics of Anomalies
	1.4 Research Question
	1.5 Outline, Contributions, and Publications

	2 Foundations
	2.1 Unsupervised Anomaly Detection in Image Data
	2.2 Evaluation of Anomaly Detection Algorithms
	2.2.1 Anomaly Localization Metrics
	2.2.2 Anomaly Classification Metrics

	2.3 Fundamental Concepts in Deep Learning
	2.4 Base Architectures for Unsupervised Anomaly Detection
	2.4.1 Convolutional Autoencoders
	2.4.2 Generative Adversarial Networks
	2.4.3 Feature Distribution Models
	2.4.4 Methods Not Based on Neural Networks

	3 Structural Similarity Autoencoder
	3.1 Introduction
	3.2 Methodology
	3.2.1 Autoencoders for Unsupervised Anomaly Detection
	3.2.2 Structural Similarity

	3.3 Experiments
	3.3.1 Datasets
	3.3.2 Training and Evaluation Protocol
	3.3.3 Results

	3.4 Conclusion

	4 The MVTec Anomaly Detection Dataset
	4.1 Introduction
	4.2 Existing Datasets for Anomaly Detection
	4.2.1 Classification of Anomalous Images
	4.2.2 Localization of Anomalous Regions

	4.3 Description of the Dataset
	4.4 Performance Metrics
	4.5 Threshold Selection
	4.6 Benchmark
	4.6.1 Training and Evaluation Protocol
	4.6.2 Anomaly Localization Results
	4.6.3 Anomaly Classification Results
	4.6.4 Threshold Estimation Techniques
	4.6.5 Time and Memory Consumption

	4.7 Conclusion

	5 Student–Teacher Anomaly Detection
	5.1 Introduction
	5.2 Related Work
	5.2.1 Anomaly Detection using Pretrained Networks
	5.2.2 Open-Set Recognition with Uncertainty Estimates

	5.3 Student–Teacher Anomaly Detection
	5.3.1 Learning Local Patch Descriptors
	5.3.2 Ensemble of Student Networks for Deep Anomaly Detection
	5.3.3 Multi-Scale Anomaly Detection

	5.4 Experiments
	5.4.1 MNIST and CIFAR-10
	5.4.2 MVTec Anomaly Detection Dataset

	5.5 Conclusion

	6 Logical Constraints in Unsupervised Anomaly Detection
	6.1 Introduction
	6.2 Datasets for Unsupervised Anomaly Detection
	6.3 The Logical Constraints Anomaly Detection Dataset
	6.3.1 Description of the Dataset
	6.3.2 Annotations and Labeling Policies
	6.3.3 The Saturated Per-Region Overlap (sPRO)
	6.3.4 Selection of Saturation Thresholds

	6.4 Benchmark
	6.4.1 Dataset Augmentation
	6.4.2 Experiment Setup
	6.4.3 Experiment Results

	6.5 Conclusion

	7 Global Context Anomaly Detection
	7.1 Introduction
	7.2 Description of Our Method
	7.3 Experiments on the MVTec LOCO AD Dataset
	7.3.1 Training and Evaluation Protocol
	7.3.2 Experiment Results
	7.3.3 Ablation Studies

	7.4 Experiments on the MVTec AD Dataset
	7.5 Conclusion

	8 Unsupervised Detection of Geometric Anomalies in 3D Data
	8.1 Different Representations of 3D Data
	8.2 Performance Evaluation for 3D Anomaly Detection
	8.3 Deep Learning Models for 3D Anomaly Detection

	9 The MVTec 3D Anomaly Detection Dataset
	9.1 Introduction
	9.2 Description of the Dataset
	9.2.1 Data Acquisition and Preprocessing
	9.2.2 Ground-Truth Annotations
	9.2.3 Performance Evaluation

	9.3 Benchmark
	9.3.1 Training and Evaluation Protocol
	9.3.2 Experiment Results

	9.4 Conclusion

	10 Deep Geometric Descriptors for 3D Anomaly Detection
	10.1 Introduction
	10.2 Learning Deep 3D Descriptors
	10.3 Student-Teacher Anomaly Detection in Point Clouds
	10.3.1 Self-Supervised Learning of Dense Local Geometric Descriptors
	10.3.2 Matching Geometric Features for 3D Anomaly Detection

	10.4 Experiments
	10.4.1 Experiment Setup
	10.4.2 Experiment Results
	10.4.3 Ablation Studies

	10.5 Conclusion

	11 Conclusion
	11.1 Summary
	11.2 Future Research

	Bibliography

