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Abstract  

First-time-right printing is needed for extensive industrialization of Wire Arc Additive Manufacturing. However, due to process instabilities 

defects can occur even if suitable process parameter were chosen, resulting in production scrap due to an insufficient part quality. In this paper, 

we propose a smart manufacturing system which enables the compensation of previously created defects by means of a Digital Twin. We predict 

the future position of the welding torch, analyze its spatial context and adapt the process parameter if needed accordingly to compensate defects. 

Using this approach, a fault-tolerant manufacturing process is enabled, resulting in a first-time-right process. 
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1. Introduction 

In aerospace industry, large-scale metal parts are commonly 

manufactured by milling, resulting in a buy-to-fly-ratio of up to 

10 and thus in a waste of resources. By means of additive 

manufacturing (AM), this ratio can be decreased and near net 

shape parts can be produced. Wire Arc Additive Manufacturing 

(WAAM) is an AM technology which is capable of printing 

such large-scale metal parts while at the same time being cost 

effective. The process is based on a wire as feedstock and an 

electric arc as heat source. The material is deposited along a 

multi-axes toolpath to create the final part. 

To industrialize Wire Arc Additive Manufacturing 

(WAAM), first-time-right printing must be achieved. However, 

currently, it is needed to optimize process parameters in a trial-

and-error approach for every part [1]. If a new part with 

complex geometry is printed, several iterations are needed first. 

Additionally, along the process, uncertainties are present. Due 

to changing environmental and thermal conditions or pollutions 

in the feedstock material, the substrate or the inert gas flow, a 

defect could occur, resulting in production scrap and high costs. 

To handle these defects, a fault-tolerant process must be 

created. Therefore, the system must be aware of the 

manufacturing context to adapt process parameters accordingly 

in an autonomous fashion.  

In this paper such a smart manufacturing system is 

presented. It is capable of predicting future steps in the 

manufacturing process, of analyzing the spatial context of the 

predicted positions and of adapting process parameters 

accordingly to compensate already existing defects or to avoid 

follow-up defects. Hereby, a fault-tolerant process is created, 

enabling first-time-right printing even in case of uncertainties. 

The remainder of the paper is structured as follows. In 

chapter 2, the background and related work is presented. 

Chapter 3 is dedicated to the methods and the setup of the 

system. The smart manufacturing system is presented and the 

use of the digital twin for the prescriptive analytics is shown. In 

chapter 4, the results are presented and discussed. Finally, 

chapter 5 concludes the paper and proposes future directions of 

research. 
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2. Related Work and Background 

WAAM is a manufacturing process which is based on arc 

welding. Thus, common defects in WAAM can also be found 

in welding, such as porosity, cracks, lack of fusion, burn 

trough, discontinuity, slag inclusions, humping effect and 

oxidation [2, 3, 4, 5].  

These defects can be detected by using a process monitoring 

setup to analyze the current process state. For instance, Xu et 

al. proposed a monitoring setup based on several sensors to 

obtain information about the process quality [6]. Chen et al. 

investigated multisensory information fusion in welding [7]. 

Zhao et al used a combination of spectrum and vision to 

monitor the WAAM process [8].  

In WAAM, the creation of defects depends not only on the 

current choice of process parameters but also on the 

surrounding. Certain defects can propagate over several layers 

[9]. For instance, oxidation defects result in slag and lack of 

fusion in the subsequent layer. Lack of fusion causes an 

interruption in the heat transfer which could result in a burn 

through due to a heat accumulation in the following layer. 

Discontinuities might be created due to a humping effect and 

could propagate over several layers. 

In order to analyze the surrounding, Reisch et al. proposed 

a method for providing spatial context [10]. It’s using an Octree 
in order to create a digital representation of the part. According 

to the definition of Kritzinger et al. [11] this can be regarded as 

a Digital Shadow as the digital representation mirrors the 

physical world but doesn’t interact with it. A Digital Twin 
instead uses a bidirectional communication channel to adapt 

the real world according to the optimization objective. A 

Digital Twin is usually focusing on models and data, while the 

cyber physical system provides actors and sensors as backbone 

to interact with the real world [12, 13]. By combining both, a 

smart manufacturing system can be created which is one of the 

main objectives of Industry 4.0 [14].   

Based on such a smart manufacturing system, prescriptive 

analytics can be achieved [15]. Instead of analyzing only what 

happened (descriptive) and why it happened (diagnostic), 

prescriptive analytics builds on top of the question what will 

happen (predictive) to decide on what to do (prescriptive). 

3. Methods 

In the following, first the smart manufacturing system which 

was used for the prescriptive analytics is presented. Afterwards 

the steps to conduct the process parameter adaptions are 

described. Finally, a test methodology is presented.  

3.1. Smart Manufacturing system for WAAM 

The smart manufacturing system consists of seven parts as 

shown in Figure 1. The kinematic setup is based on a six-axes 

robot (1) with a two-axes tilt-turntable (2). The welding process 

is enabled by a welding source (3). The WAAM process is 

monitored by a sensor setup (4) including voltage and current 

sensor, welding camera, spectrometer, structural acoustic 

sensor, microphone, and gas flow sensor. For further details on 

the monitoring setup, the reader is referred to a previous 

publication of the authors [4]. The kinematic as well as the 

welding equipment is controlled by a numerical controller (5), 

which is connected to an edge device (6). The edge device is 

handling the data from the sensors and analyzes them. 

Additionally, it provides a live stream enriched with 

information about the process to the machine operator or the 

quality engineer via a human-machine-interface (HMI) (7). 

The edge-device is connected to the control, the sensors and the 

HMI using OPC UA and industrial ethernet protocols. 

Additionally, a data bus based on MQTT is set up in order to 

enable 1-to-n connections within a micro service software 

architecture. A connection to the internet is enabled to allow 

remote access to the machine and to a digital twin which is 

created on the edge device in process.  

The digital twin consists of five main modules: 

1. System adaptors enable the data exchange with external 

entities such as sensors, actuators, other edge devices or 

controls.  

2. Process monitoring services analyze the incoming data 

and the current digital representation to enrich the data 

with semantic information about the process and the 

part. For instance, anomalies are detected, and defects 

are classified. 

3. The Digital Shadow obtains a digital representation of 

the part and the process. The part representation is 

based on an Octree as introduced in the background 

chapter. It enables the search for spatial context. 

4. The process adaption services decide on when and how 

to adapt the manufacturing system in order to ensure a 

secure manufacturing process which results in high 

quality of the final part.  

Figure 1 Scheme of the smart manufacturing system for WAAM. 

It includes a robot (1), a tilt-turn table (2), a welding source (3), 

a sensor setup for monitoring (4), a control unit (5), an edge 

device (6) and a human-machine-interface (7) 
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5. Visualization services provide the machine operator 

and quality engineer with relevant information about 

the process to enable human-machine interactions.  

The Digital Twin is based on a bidirectional communication 

with the physical manufacturing system.  

3.2. Prescriptive Analytics 

Using the Digital Twin, a prescriptive analytics approach is 

followed in order to adapt the process parameters if necessary. 

Hereby, defects can be compensated, and follow-up defects can 

be avoided.  

Along the manufacturing process, the sensor data is 

analyzed and synchronized with the tool center point (TCP) 

position. The obtained information is stored in the part 

representation of the Digital Shadow using spatial indexing. In 

this study, especially the defect type and the anomaly score are 

of interest. The latter one is computed using the neural network 

for anomaly detection proposed in [10] and will be referred to 

as Anomaly Score (AS). The AS is normalized between 0 for 

0% and 1 for 100% defect probability respectively. In our 

study, the defect classification is conducted based on the AS. If 

the AS exceeds a certain threshold TD, the datapoint is marked 

as defect.  

During an active print, a look-ahead method predicts the 

TCP position which will be reached within a certain prediction 

time. Using the predicted TCP position, its spatial context is 

analyzed to obtain information about defective areas in the 

proximity. In case of adjacent defects, a countermeasure is 

initiated.  

A detailed view on the TCP position prediction, the spatial 

context analysis and the data driven decision making is 

presented below.  

3.2.1. Prediction of TCP position 

The prediction of the TCP position enables the system to 

evaluate what comes next in the process as shown in Figure 2. 

Based on the current TCP position 𝑥0 in the process, the current 

welding velocity vector 𝑣𝑇𝐶𝑃  and the prediction time 𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛, an approximation of the future TCP position 𝑥𝑝𝑟𝑒𝑑 

is computed using interpolation: 

 𝑥𝑝𝑟𝑒𝑑 = 𝑥0 + 𝑣𝑇𝐶𝑃 ⋅ 𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛    (1) 

In case of short prediction times and straight tool paths, this 

results in a sufficient positional accuracy of the prediction. 

However, in case of complex path patterns and dynamic TCP 

movements, it would result in severely wrong approximations 

of the future TCP position. For that reason, the machine code 

is considered during the prediction. Based on the current 

position, the closest point in the machine code is selected. This 

can be done for instance by comparing the real toolpath to the 

planned one using dynamic time warping which is an algorithm 

to compare sequences of values with different length [16]. It is 

recommended to interpolate between the single points in the 

machine code toolpath beforehand to obtain a higher positional 

accuracy in finding the correct point in the machine code. 

Using this point, the subsequent machine code lines are 

evaluated in order to predict the future TCP position based on 

the prediction time. The prediction time must cover the 

latencies for data processing and transfer as well as the reaction 

time tSystem of the system. 

3.2.2. Spatial context query 

In WAAM, the process is not only affected by the point 

below the current TCP but also by the surrounding. Thus, the 

spatial context of the predicted TCP position 𝑥𝑝𝑟𝑒𝑑 is evaluated 

in order to detect defective points in the proximity as visualized 

in Figure 2. The Digital Shadow is queried using a geometrical 

form which defines the spatial relevancy. This geometrical 

form can be for instance a double-ellipsoid to model the weld 

bead geometry or - in a simpler version - a sphere.  

To ensure that all datapoints of the underlying layer are 

included in the spatial context, the dimension of the 

geometrical form must extend over the layer height h which is 

defined in the tool path. Additionally, to take the discretization 

of the positional data into account, the sample rate f and the 

welding velocity must be considered. The size of a sphere as 

spatially relevant context is defined by the radius R, which is 

calculated by means of the following equation: R  =  𝑘  ⋅ √h2  +   (vCTP2 𝑓 )2
  (2) 

Figure 2 Scenario for the prescriptive process parameter adaption. 

Around the predicted TCP position xpred, the spatial context is 

analyzed to obtain information whether a process adaption must 

take place. 
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The factor k depicts a security factor in the order of 1.05 

which ensures a slightly bigger radius than the minimum usable 

value. For the use of double-ellipsoids in the scope of spatial 

context queries, the interested reader is referred to [10]. 

As result of the spatial context query, all datapoints located 

within the spatially relevant area around 𝑥𝑝𝑟𝑒𝑑 are retrieved. 

Every datapoint includes not only the positions of the voxel but 

also information about corresponding anomaly scores or defect 

types.  

3.2.3. Data-driven decision making 

The system decides on a suitable process parameter to adapt 

and to which extent the adaption should take place. To ensure 

an informed decision making, the obtained datapoints are 

analyzed as the adaption depends on information about the 

severity of the defect, the relative location of defective voxels 

to the future TCP position and the defect type. The sample 

implementation tested in this study focuses on the 

compensation of discontinuities in the weld track as shown in 

Figure 4. 

If no defect is apparent, no parameter adaption takes place, 

and the process goes on as planned. If there is a defect, the 

datapoints are analyzed more in detail. On the one hand, a low 

TD value increases the controller’s sensitivity, in the worst case 

resulting in undesired compensations due to false positives. On 

the other hand, a desensitized controller is not capable of 

recognizing defects thus allowing discontinuities to propagate 

over several layers. 

Defective datapoints can be located either directly below the 

future TCP position (directly affected) or with an offset 

(indirectly affected) as shown in Figure 3. According to the 

position of the defective datapoint, we can derive two 

compensation strategies. Underlying discontinuities are to be 

remedied through the variation of welding velocity. By 

reducing this parameter, a higher deposition rate can be 

achieved locally thus closing the gap formed in the work piece. 

Similarly, a wider weld track aims for the compensation of 

discontinuities parallel to the current tool path. This can be 

accomplished by increasing the wire-feed rate during the 

process.  

The severity of the defect is obtained by computing the 

mean AS of the directly affected and the indirectly affected 

datapoints. Depending on the obtained value, the parameter is 

adjusted proportionally.  

The chosen parameter adaption is initiated in the correct 

moment. It is important to consider the latencies and the 

reaction time tSystem of the system. Ideally, the parameters are 

adapted at the beginning of the defective zone in order to fill 

the material gap of the discontinuity. 

3.3. Test methodology 

The proposed methodology for prescriptive analytics is 

tested by evaluating the compensation success in case of 

discontinuities.  

In total 85 thin walls with 10 layers each were built. In every 

experiment, in the first two layers, a discontinuity was 

artificially induced by severely reducing the wire feed rate in 

the middle of the wall. This resulted in a propagating 

discontinuity as shown in Figure 4.  

Starting from the third layer, the prescriptive controller was 

activated. Hence, defects could only be compensated starting 

from this layer. The effectiveness of the parameters set was 

measured by the number of the layer, in which the discontinuity 

was compensated. This will be referred to as layer of success 

(LoS). The earlier the defect was detected and compensated, 

the higher was the controller’s effectiveness. For proper tuning 

of the controller, ten combinations of TD and tSystem were tested. 

Based on preliminary tests, TD was oscillating within a range 

of 0.30 to 0.35 and tSystem did not exceed 1.5 s. For each 

parameter set, six test geometries were built. For validation 

purposes, 25 walls without prescriptive controller were built. 

4. Results and Discussion 

The results of the tests can be seen in Table 1. Experiments, 

in which the discontinuity was not closed until the 10th layer 

were marked with an LoS of >10, implying total failure in 

compensating the defect.  

The median value for the LoS of each parameter set is listed 

on the right column of the table and is used to rank the overall 

performance of the controllers. 

Figure 3 Positions of defective datapoints. They could be located 

below the tool path (directly affected) or not below the tool path 

(indirectly affected) within the relevant spatial context. 

Figure 4 Sample of a discontinuity which propagated over several 

subsequent layers. The defect was compensated in the 14th layer. 
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First, the robustness of the defect creation is evaluated. In 

72.0% of all experiments without prescriptive process 

parameter adaption, the discontinuity was propagating to a 

layer greater than 10. In 96.0% of all cases, the defect  

 propagated at least until the 8th layer. Thus, the defect 

creation can be regarded as robust.  

Using the prescriptive process parameter adaption, the 

defect propagated to the 10th layer and above in only 6.7% of 

all experiments. In 76.7% of the experiments, the defect was 

compensated in or before the 8th layer.  

When comparing the different control parameter 

combinations, a high value of TD resulted in a worse 

compensation capability. In these cases, the sensitivity of the 

defect detection was reduced, resulting in false negatives in the 

defect detection. Thus, the prescriptive process parameter 

adaption was not initiated, resulting in the high median LoS. 

Instead, a lower TD increased the sensitivity of the defect 

detection, resulting in fewer false negatives. The prescriptive 

controller was compensating the defects accordingly. 

However, in case of a value of TD lower than 0.3, a high number 

of false positives was present. The system was not stable 

anymore as the prescriptive controller interacted with the 

WAAM system permanently.   

 In regard to tSystem, it is all about the right timing. If tSystem is 

set too low, e.g. 0.3 s, the system adapted the velocity too late, 

resulting in a low compensation capability as the material gap 

could not be filled sufficiently. On the contrary, long reaction 

times over 1.5 s resulted in premature parameter adaptions 

resulting in a failure of compensating the defect. As the 

WAAM process is commonly using a welding velocity 

between 300 mm/min and 800 mm/min, a tSystem of 1.0 s results 

in a positional offset of 5.0 mm to 13.3 mm. In case of Titanium 

as feedstock material, the positional offset could be even higher 

due to the higher welding velocities.  

Condensed, the best results were seen with TD = 0.30 and 

tSystem = 1.0 s for the discontinuity defect. The median LoS was 

at 4 and the system was able to compensate a defect even in the 

first possible layer.  

5. Conclusion 

In this paper, a fault-tolerant Wire Arc Additive 

Manufacturing process is enabled by proposing a smart 

manufacturing system which uses a digital twin to avoid and 

compensate defects. The method for prescriptive process 

parameter adaption predicts the future tool center point position 

and analyzes its spatial context. In case of a defect in the 

proximity of the predicted position, the system initiates a 

countermeasure. In 93.4% of all cases, the prescriptive process 

parameter adaption was successful in compensating a 

discontinuity defect. Further research should be conducted 

about several aspects of the present work. For instance, 

precision of the process parameter adaption could be 

optimized, e.g. by including additional sensor values and such 

as a wire stick-out measurement [1]. Furthermore, the method 

could be transferred to additional defect types such as pores, 

oxidation, and form deviation.  
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