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Abstract

Road crashes result each year in a loss of millions of lives across the world. Understanding
factors impacting these crashes is therefore crucial to reduce and even prevent road fatalities,
and is in line with the European Union‘s long-term vision to move as close as possible
to zero fatalities, also known as “Vision Zero”. Previous research has helped group crash
factors between vehicle, environment, and driver-related factors, the latter often thought
to be the leading cause behind road crashes. Better understanding the way people drive
would be key in predicting, but also mitigating road accidents. As crashes are rare events,
surrogate safety measures can instead be evaluated, to assess safety performance. Still, such
assessments require sufficient data collection, based on different conditions, considering
individual characteristics, and depending on the research questions of interest. Conducting
studies focusing on the collection of driving behavior data has therefore become of high
interest.

Owing to technological advances, in-vehicle sensors are becoming more accessible, and
can provide driving-related data with a high level of accuracy. Studies usually deploy such
sensors and include driving simulator studies, in which specific risk scenarios are investigated,
that might not be feasible in real road conditions, and more recently naturalistic driving
studies (NDS), which tend collect data in a less obtrusive manner, and for longer study
periods; yet they are more challenging to administer. Data collected within these studies
come from various sources, including vehicle data, questionnaire data, but also a variety of
devices, including visual tracking, wearables collecting biometric data, etc. However, such
data collection is often associated with major challenges, including the heterogeneity of data,
but also its size, and nature, i.e., sensitive personal data. It becomes therefore imperative to
develop a framework that tackles such challenges and that provides the necessary steps from
data collection to behavioral modeling.

This dissertation contributes to the field of driving behavior modeling by developing
an enriched multi-source data collection framework for driving behavior modeling. A
data-knowledge-information cycle is first developed, after an extensive literature review
of data collection studies, including both analytics and fusion components. Further, a
review of previous NDS studies has led to the development of standard protocols for data
handling, including protocols for data collection, preparation, storage, and legal and ethical
considerations. Based on such learnings, a multi-modal cross-country case study in which
these protocols are applied is demonstrated, including both driving simulators and NDS.
After presenting the data collection framework for the entire study, this dissertation collects
data within a car driving simulator experiment organized in Germany, to investigate risk
factors of vulnerable road user collisions and tailgating, under different conditions, such as
distraction and the presence of an advanced warning-monitoring system. The collected data
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Abstract

for 60 participants included driving simulator data, eye tracking data, and questionnaire data.
The data has then been analyzed, using first inferential statistics, and then panel regression

models. Further, the acceptance of drivers for the system experienced has been assessed and
represented in terms of the renowned technology acceptance model. Results have shown that
indeed the intervention systems have improved driving performance in the safety-critical
events, while distraction on the other hand has deteriorated it, and that visual tracking can
provide meaningful insights for distraction assessment. Moreover, drivers‘ demographics
and perceptions have also proved to be significant in the explanatory driving performance
models. The advanced warning-monitoring system were highly accepted by participants,
with perceived ease of use and perceived usefulness identified as key factors in representing
it. In assessing the transferability of this model across modes, similar findings were shared
with other road modes, notably with truck drivers. The different study findings have paved
the way to the successful development of a data collection framework, allowing the extraction
of meaningful information, that can be also transferable. In particular, the findings of this
study will allow the further refinement of the presented technology, but will also provide
useful insights on the possibility to transfer knowledge, across modes, and even from the
simulator environment to the real-road experiments.
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Zusammenfassung

Durch Verkehrsunfälle verlieren jedes Jahr Millionen von Menschen auf der ganzen Welt ihr
Leben. Deshalb ist das Verständnis der Faktoren, die sich auf diese Unfälle auswirken, von
entscheidender Bedeutung, um die Zahl der Verkehrstoten zu verringern und sogar zu verhin-
dern. Dies steht im Einklang mit der langfristigen Vision der Europäischen Union, die darauf
abzielt, die Zahl der Verkehrstoten so gering wie möglich zu halten, auch bekannt als “Vision
Zero”. Frühere Studien haben dazu beigetragen, die Unfallfaktoren in fahrzeug-, umwelt- und
fahrerbezogene Faktoren aufzuteilen, wobei die letzteren häufig als Hauptursache für Ver-
kehrsunfälle angesehen werden. Ein besseres Verständnis des Fahrverhaltens der Menschen
wäre der Schlüssel zur Prognose von Verkehrsunfällen, aber auch zu deren Minderung. Da
Unfälle seltene Ereignisse sind, können stattdessen Ersatz-Sicherheitsmaßnahmen bewertet
werden, um die Sicherheitsleistung zu beurteilen. Solche Bewertungen erfordern jedoch eine
ausreichende Datenerfassung unter verschiedenen Bedingungen, unter Berücksichtigung
individueller Merkmale und in Abhängigkeit von den Forschungsfragen, die von Interesse
sind. Die Durchführung von Studien, die sich auf die Erfassung von Fahrverhaltensdaten
konzentrieren, ist daher von großem Interesse.

Durch den technologischen Fortschritt werden Sensoren im Fahrzeug immer leichter zu-
gänglich und können fahrbezogene Daten mit einem hohen Genauigkeitsgrad liefern. Zu den
Studien, in denen solche Geräte in der Regel eingesetzt werden, gehören Fahrsimulatorstudien,
in denen spezifische Risikoszenarien untersucht werden, die unter echten Straßenbedingungen
möglicherweise nicht durchführbar sind, und in letzter Zeit auch naturalistische Fahrstudien
(NDS), bei denen Daten in der Regel auf weniger aufdringliche Weise und über längere
Untersuchungszeiträume erhoben werden, die jedoch schwieriger zu verwalten sind. Die
im Rahmen dieser Studien erfassten Daten stammen aus verschiedenen Quellen, darunter
Fahrzeugdaten, Fragebogendaten, aber auch eine Vielzahl von Geräten, darunter Blickerfas-
sung, Wearables, die biometrische Daten erfassen, usw. Eine solche Datenerfassung ist jedoch
oft mit großen Herausforderungen verbunden, darunter die Heterogenität der Daten, aber
auch ihr Umfang und ihre Art, d. h. vertrauliche persönliche Daten. Es ist daher zwingend
erforderlich, einen Framework zu entwickeln, der solche Herausforderungen angeht und die
notwendigen Schritte von der Datenerhebung bis zur Verhaltensmodellierung bereitstellt.

Diese Dissertation leistet einen Beitrag zu diesem Forschungsgebiet, indem sie einen angerei-
cherten und aus verschiedenen Quellen stammenden Framework zur Datenerfassung für die
Modellierung des Fahrverhaltens entwickelt. Zunächst wird ein Daten-Wissens-Informations-
Zyklus entwickelt, nachdem eine ausführliche Literaturrecherche zu Datenerhebunsstudien
durchgeführt wurde, die sowohl analytische als auch fusionierende Komponenten enthalten.
Darüber hinaus hat eine Analyse früherer naturalistischer Fahrstudien zur Entwicklung von
Standardprotokollen für die Datenverarbeitung geführt, einschließlich Protokollen für die Da-
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Zusammenfassung

tenerfassung, -aufbereitung und -speicherung sowie für rechtliche und ethische Überlegungen.
Basierend auf diesen Erkenntnissen wird eine multimodale, länderübergreifende Fallstudie
demonstriert, in der diese Protokolle angewandt werden und die sowohl Fahrsimulatoren
als auch NDS umfasst. Nach der Darstellung des Frameworks für die Datenerfassung für
die gesamte Studie werden in dieser Dissertation Daten im Rahmen eines in Deutschland
durchgeführten Fahrsimulatorexperiments erhoben, um die Risikofaktoren für gefährdete
Verkehrsteilnehmer und das Auffahren auf den Verkehr unter verschiedenen Bedingungen,
wie z. B. Ablenkung und das Anliegen eines fortschrittlichen Warnüberwachungssystems, zu
untersuchen. Die für 60 Teilnehmer erfassten Daten umfassten Fahrsimulatordaten, Blickbe-
wegungsdaten und Fragebogendaten.

Die Daten wurden zunächst mit Hilfe von Inferenzstatistiken und dann mit Panelmodellen
analysiert. Darüber hinaus wurde die Akzeptanz der Fahrer für das erlebte System bewertet
und in Form des bekannten Technologieakzeptanzmodells dargestellt. Ergebnisse haben
gezeigt, dass die Interventionssysteme tatsächlich die Fahrleistung bei sicherheitskritischen
Ereignissen verbessert haben, während die Ablenkung diese verschlechtert hat, und dass die
visuelle Verfolgung aussagekräftige Erkenntnisse für die Bewertung der Ablenkung liefern
kann. Darüber hinaus haben sich auch die demografischen Daten und die Wahrnehmung
der Fahrer in den Erklärungsmodellen für die Fahrleistung als signifikant erwiesen. Das
fortschrittliche Warn- und Überwachungssystem wurde von den Teilnehmern stark akzeptiert,
wobei die wahrgenommene Benutzerfreundlichkeit und der wahrgenommene Nutzen als
Schlüsselfaktoren für die Akzeptanz des Systems genannt wurden. Bei der Bewertung der
Übertragbarkeit dieses Modells auf andere Verkehrsträger wurden ähnliche Ergebnisse auch
bei anderen Verkehrsträgern, insbesondere bei Lkw-Fahrern, festgestellt. Die verschiedenen
Studienergebnisse haben den Weg für die erfolgreiche Entwicklung eines Frameworks zur
Datenerfassung geebnet, das die Ermittlung aussagekräftiger Informationen ermöglicht,
die auch übertragbar sind. Die Ergebnisse dieser Studie werden insbesondere die weitere
Verfeinerung der vorgestellten Technologie ermöglichen, aber auch nützliche Erkenntnisse
über die Möglichkeit des verkehrsträgerübergreifenden Wissenstransfers und sogar des
Übertragens von der Simulatorumgebung auf reale Straßenversuche liefern.
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1. Introduction

This introductory chapter of the dissertation introduces the motivation for the work
(Section 1.1), followed by a state–of–the–art of driving behavior studies (Section 1.2),
including risk factors and conditions (Section 1.2.1) and data collection studies (Section
1.2.2). After that, the thesis objectives are presented (Section 1.3), followed by the thesis
contributions (Section 1.4), both methodological and practical. Finally, the thesis outline
(Section 1.5) is presented.

1.1. Motivation

Road crashes take millions of lives across the world every year and as a result, understanding
factors contributing to these crashes has been at the forefront of road safety research. These
factors may arise from distinct sources of risk such as vehicle factors, environmental factors,
and behavioral (driver-related) factors (Afghari et al., 2018). Among these, human factors have
been shown to be the primary cause of crashes (Afghari, 2019), paving the way to modeling
driving behavior. Furthermore, the last decades have witnessed unprecedented technological
advances, which have had implications on different industries, including the mobility and
transportation sector. Progresses in information and communications technology (ICT) have
been manifested in different domains, such as automation, efficiency, etc. This provides an
unparalleled opportunity to work towards eliminating road fatalities; in the European Union,
this is also known as “Vision Zero".

A starting point would therefore be to better understand driving behavior, as it has been
demonstrated to be a primary cause of crashes (Afghari, 2019), but also to have a better grasp
on how technology can be used for the purpose of preventing, or at least reducing (the impact
of) unsafe driving. One way could be for example the use of advanced systems to help drivers
in their driving (advanced driver–assistance system, often abbreviated as ADAS), and warn
them whenever boundaries of potential crashes are too close; a very well–known example for
this is be the “Forward Collision Warning", also known as FCW.

In studying the impact of such (warning) systems on driving behavior, studies generally
tend to focus on changes in behavior based on specific parameters, often neglecting to put
together the different aspects that can influence behavior, including, but not limited to human
factors, or different conditions drivers might be exposed to while driving. A motivation
would therefore be to better understand driving behavior, but also have an approach to
integrate different parameters, including individual-specific parameters, in a way to have a
comprehensive and holistic view of driving behavior for different safety–critical situations.

In reaching this objective, experiments for the collection of data can be designed to help
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answer specific research questions. For instance, driving simulator studies could be developed
to simulate the driving environment and research safety-critical scenarios that would be
impossible to investigate in real road conditions. On-road experiments or driving tests can
also be conducted to offer a more realistic driving environment; this includes field operational
tests, where road tests are administered at specific road sections, in a rather more confined
environment, and more recently through naturalistic driving studies (NDS).

It is therefore crucial to first highlight risk factors of interest, in order to later look at ways
to mitigate them, after which an overview over the commonly deployed behavioral studies
(above–mentioned) can help highlight the most common experiments but also data collection
tools that can be used to collect the needed data to help answer the most prominent research
questions. This state–of–the–art overview would help us highlight the thesis objectives, based
on which the methodology and the rest of the work is developed.

The remainder of this chapter is organized as follows: Section 1.2 first presents an overview
on human factors in road safety, highlighting a selection of risk factors and conditions
(Section 1.2.1). Then, a survey of commonly used data collection studies is given (Section
1.2.2). Section 1.3 then defines the thesis objectives, which are directly formulated based on
the gaps highlighted from the literature. Section 1.4 then formulates the contributions made
in this work, which are grouped under two main categories: methodological contributions
and practical contributions. Finally, an outline for the rest of the dissertation is presented
(Section 1.5).

1.2. Driving behavior: state–of–the–art

Various risk factors push drivers closer to the boundaries of “unsafe" driving; on the other
hand, various safety outcomes or objectives can improve driving safety, including but not
limited to driver fitness, speed management, vehicle control, or adequately sharing the road
with others. Moreover, some conditions can further aggravate such risk factors; for instance,
fatigue and distraction are areas directly impacting driving fitness. Fortunately, specific
warnings can be designed to help mitigate certain risks, such as tailgating, or VRU collisions;
these are often part of existing ADAS.

1.2.1. Risk factors and conditions

A variety of risky situations exist that render driving unsafe; this includes VRU interactions,
tailgating, illegal overtaking, over–speeding, but also driver mental state. Below, an overview
on a few of them is given.

1. VRU interactions/collisions is a major road safety concern. VRUs, such as pedestrians,
motor/pedal cyclists, and e-scooter riders, are more endangered in traffic, since they
have no protection to safeguard them in case of collision. Accordingly, scenarios involv-
ing VRUs are often designed in driving simulator environments. Studies investigating
pedestrian-vehicle crashes often trigger crossings at intersections and mid-block crossing
areas (Chrysler, Ahmad, and Schwarz, 2015; Oza, Q. Wu, and Mourant, 2005), also in
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combination with distraction and other conditions, such as different visibility factors or
roadside environments and speed (Oza, Q. Wu, and Mourant, 2005; Chrysler, Ahmad,
and Schwarz, 2015).

2. Tailgating, a leading cause of rear–end collisions, occurs when a driver drives too
close behind another vehicle, without leaving sufficient time and space to avoid a crash.
Tailgating is often provoked by traffic conditions, the behavior of other drivers, time
pressure, driver impatience or anger, and is reflected in unsafe driving maneuvers. To
better understand or mitigate tailgating, investigating driver aggressiveness can be of
interest, which can be done for example by simulating a set of frustrating events in
different conditions (Abou-Zeid, Kaysi, and Al-Naghi, 2011). Moreover, studying the
impact of warnings, such as FCW, in assisting drivers in risky situations, can also be of
help in mitigating tailgating (Koustanaï et al., 2012).

3. Illegal overtaking is another factor of interest, where control strategies and drivers’
decision-making can be investigated (Gray and Regan, 2005). Moreover, traffic density
(Farah, 2011; Yang et al., 2018) and geometric conditions (Farah, 2011) can be simulated
to understand their impact on right and left lane changes and overtaking maneuvers.

4. Driver mental state is an important consideration and potential source of emerging risk,
including attention, distraction, fatigue, and sleepiness, emotions and stress (S. Kaiser
et al., 2020).

a) Distraction refers to the driver’s temporary diversion of attention from the task
of safe driving to the secondary task(s) that is (are) not related to driving, which
can originate from in-vehicle or external sources, engaging drivers (Amini et al.,
2021): 1) visually: tasks that take drivers’ eyes off the road, 2) auditorily: drivers’
attention diverted by noises and sounds, 3) physically: tasks requiring drivers’ to
remove their hands from the steering wheel, and 4) cognitively: tasks that take
drivers’ focus and attention off while driving. Amongst various existing sources
of distraction, mobile phone use is associated with the highest risk. Texting and
driving, a form of mobile phone distraction, refers to the act of any kind of mobile
phone use while driving, which can engage drivers visually, auditorily, physically,
and cognitively. Drivers who text while driving are more prone to be involved in a
safety-critical event (World Health Organization, 2011). However, understanding
the relationship between mobile phone use and crash risk is not a trivial task,
mostly as it is challenging to investigate in real road conditions; it is therefore often
investigated in a confined simulator environment. Previous research estimated
from between two to nine times higher crash risk for drivers engaged in mobile
phone related distraction than non-distracted (Thomas A Dingus et al., 2016a;
Sheila G Klauer et al., 2014; World Health Organization, 2011). Experiments
designed to study distraction often “artificially" impose distractors, by creating
tasks that engage drivers visually, and cognitively, while driving (Dumitru et al.,
2018; Oviedo-Trespalacios et al., 2018; Choudhary and Velaga, 2019).
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b) Fatigue is associated with monotony and can be evident following a long monotonous
drive. It can be indicated by the number of hours driven, under the assumption that
long and monotonous driving may induce fatigue directly, or indirectly through
sleepiness. It can be investigated within a driving simulator environment, or in
real conditions. Past studies have shown that participants in driving simulators are
usually fatigued after 20 to 90 minutes of monotonous driving (Desai et al., 2007;
Merat and A. H. Jamson, 2013; Philip et al., 2005; Rossi, Gastaldi, and Gecchele,
2011; Saxby et al., 2007; Ting et al., 2008; Chunlin Zhao et al., 2012).

1.2.2. Data collection studies

1. Driving simulator studies are generally popular in investigating the impact of im-
posed conditions on specific driving behavior indicators or parameters. A variety of
driving simulators exist in the market, including static fixed based and dynamic (or
moving/motion) simulators. A main advantage of conducting simulator experiments,
as compared to real–road studies, is the much cheaper costs, but also the ability to
investigate in a controlled environment risky situations that would not be possible to
investigate otherwise.

Driving simulator research includes studies investigating the impact on driving of
different conditions, including but not limited to distracted driving (Oviedo-Trespalacios
et al., 2018; Oviedo-Trespalacios et al., 2018; Choudhary and Velaga, 2019), driving
under the influence of alcohol (Weiler et al., 2000; Mets et al., 2011; Vollrath and Fischer,
2017; Fares et al., 2022), drugs (Weiler et al., 2000; Fares et al., 2022), or even caffeine,
often as a countermeasure to sleep deprivation (De Valck and Cluydts, 2001; Brice and
Smith, 2001; Biggs et al., 2007).

Weather conditions are also of interest and can be investigated in a driving simulator
environment. Different weather situations (i.e., clear day, moderate rain, moderate
rain-fog) can have varying impacts on driver workload (Billot, El Faouzi, and De Vuyst,
2009), and therefore driving behavior and safety; the worse the weather conditions,
the higher the driver workload. Adverse weather conditions (i.e., rain, snow, heavy
dense fog), have also been proven (within a simulator context) to worsen car-following
performance (C. Chen et al., 2019).

Beyond investigating the influence of such factors or conditions, driving simulators
have been used in combination with other devices or features, such as visual tracking or
even specific ADAS features, with the aim of testing the effectiveness or even acceptance
of such systems. Previous studies have used ADAS in a driving simulator context in
order to improve the system based on the assessed acceptance of drivers’ perceptions.
Hegeman et al. (2007) designed a driving simulator study to assess the acceptance of
an overtaking assistant design in a driving simulator experiment. Results from this
study proved that according to the performance of the overtaking maneuvers, it is
possible to design a standardized overtaking assistant. Similarly, Driel, Hoedemaeker,
and Arem (2007) conducted a study in order to assess congestion assistant, within a
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driving simulator context, based on which some system refinements were suggested.

Due to a relatively easier scenario design, as compared to real life, a previous study
(Rossi, Gastaldi, Biondi, et al., 2020) tested a lateral control ADAS, which informed the
drivers whether the vehicle was correctly positioned inside the lane or not, with the
use of two visual and one auditory stimuli. The ADAS were tested on three different
groups, with different configurations: with no exposure to the ADAS, with exposure but
without instructions, with exposure and with instructions. Findings suggested that the
group receiving instructions and reading the information booklet was able to improve
more and faster their lateral control, which highlights the importance of instructing
drivers on the warning system in improving its acceptability.

Finally, driving simulator studies are suitable to understand the impact of human factors
or individual–specific differences on driving behavior, including socio–demographics,
such as the impact of gender (Ridel et al., 2022), age (focusing mostly on teenage drivers
such as in Miani et al. (2022), Sutherland et al. (2022), and Eren and Gauld (2022), or
health status, such as diabetes (Ridel et al., 2022), Parkinson’s disease (Uc, 2022), or
Multiple sclerosis (Krasniuk et al., 2022). Human factors may also include social aspects
such as social pressure resulting from the presence of other passengers (Ouimet et al.,
2013; Sutherland et al., 2022), or styles and skills, which may also depend on cultural
aspects (W. Wang et al., 2019; Miller, Chapman, and Sheppard, 2021) or personality
traits (Zicat et al., 2018; Tement et al., 2022).

2. Naturalistic driving studies have recently gained attention as a way to collect driving
data in an “natural” unobtrusive way in which participants drive as they “normally”
do, without being asked to drive specific roads, or change their driving patterns. This
is usually achieved by instrumenting participants’ vehicles in an unobtrusive way and
collecting driving data over long periods of time. With advances in technology and
sensory equipment, NDS are increasing in popularity, but also in challenges. Driving for
longer periods of time inevitably leads to large amounts of data, and therefore creates
challenges in terms of data management, data sharing, and data handling in general.

3. Visual tracking can be defined as the process of monitoring eye movements to assess
where an individual is gazing at and associated information like the object of interest
the subject is looking at and the gaze duration (Franchak, 2020). To understand the role
of eye trackers in studying driver distraction, we must first understand the eye-mind
hypothesis. It states that what the eyes fixate on and what the mind processes occur
simultaneously (Just and Carpenter, 1980). Cognitive processes are generally indicated
by eye movements. Hence, tracking eye movements can lead to inferences on different
cognitive processes occurring in the brain (Tobii Pro AB, 2020). The usage of visual
tracking has evolved to become a popular mean to collect information based on driver
eye movements, which can then infer distraction, and can be used both in simulator
and real road conditions.

Visual tracking allows to extract an array of eye tracking metrics. According to Papan-
toniou, Papadimitriou, and George Yannis (2017), fixation is the most important eye
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tracking parameter used to identify cognitive distraction. This was based on a synthesis
of over forty driving simulator studies involving the investigation of distraction on the
driving performance. A comprehensive literature review of over twenty-two visual
tracking studies (Sharafi, Soh, and Guéhéneuc, 2015) revealed that eye tracking metrics
used for the purpose of analysis can be divided into two main categories: the metrics
based on the number of fixations (count), and those based on duration.

The former category measures gaze behaviour depending on the number of fixations on
a specified area of interest (AOI). Gaze metrics based on the duration of fixations gave a
measure of the time required to analyze a stimulus (Goldberg and Kotval, 1999). The
most commonly used variables under this category included average fixation duration
(AFD), ratio of on-target to all-target fixation time, total fixation time, average duration
of relevant fixations and normalized rate of relevant fixations (Goldberg and Kotval,
1999; Bednarik and Tukiainen, 2005; Jeanmart et al., 2009; T. Busjahn, Schulte, and
A. Busjahn, 2011; Sharif, Falcone, and Maletic, 2012; Bednarik, 2012; Binkley et al., 2013;
Petrusel and Mendling, 2013; T. Busjahn, Bednarik, and Schulte, 2014; Ali et al., 2015).
In such studies, it was imperative to study both categories because a particular area of
interest may have a low count but a high duration and vice versa (Sharafi, Soh, and
Guéhéneuc, 2015).

1.3. Thesis objectives

A main motivation for road safety research is to reduce and even eliminate crashes. In simple
words, there is a need identify risky situations, so that we can mitigate them by introducing
adequate countermeasures, such as personalized warning systems, among others. Driving
behavior has been in general explained by one or more factors pertaining to the individual,
the environment, and/or the vehicle. Various risk factors have been identified in previous
studies (See Section 1.2.1), including but not limited to, VRU interactions, tailgating, etc., but
also conditions like fatigue, distraction, adverse weather conditions. However, research has
also shown that human factors are the leading cause of crashes Afghari (2019). An increasing
interest therefore arises to better understand individual-specific factors, including drivers’
demographics, attitudes, and perceptions, their impact on driving performance, but also
driver and human response and feedback to assistance systems, which are normally designed
to help mitigate driving risks. It becomes therefore crucial to design experiments that would
help us obtain a better insight on driving behavior; this includes, but is not limited to driving
simulator, naturalistic driving, and visual tracking studies (See Section 1.2.2). As research
tends to analyze and assess the different risk factors and data collection studies separately,
there is a gap in understanding these aspects together, as part of one large scale-study.

For instance, driving simulators can be used first to test the effectiveness of specific systems,
before they are deployed in real road conditions. Driving simulator studies are of course
cheaper and easier to conduct than naturalistic driving studies, and often allow to test safety-
critical situations that would not be possible in real road conditions; however, they might
lack realism or come with limitations, such as simulator sickness. On the other hand, while
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naturalistic driving studies are more realistic, they are much more complex and expensive
to design and manage, and come with challenges, such as resulting in huge datasets, but
also collecting personal and possibly sensitive data, which would need specialized handling
protocols; the latter also applies to simulator studies.

There is a lack of studies combining both simulator and on-road studies, where learnings
from the former can be implemented in the latter. Moreover, there is a need to develop a
framework to guide the creation of useful knowledge necessary to improve our understanding
of driving behavior, starting from the initial data collection stages; a holistic approach is also
needed to develop the above-mentioned data handling protocols. Finally, it is essential to
put together the data collected from different sources (including vehicle, environment, and
driver data), which often come in different forms (time-series, questionnaires, etc.), to answer
the needed research questions. Accordingly, the thesis objectives have been formulated as
follows:

1. Developing a data–knowledge–information cycle for driving behavior modeling, en-
compassing all the necessary steps from data collection to information extraction and
analysis, and possibly knowledge transfer.

2. Drafting protocols for the handling of data resulting from driving behavior, in particular
naturalistic driving experiments.

3. Designing suitable experiments to study relevant research questions:

a) Including different methods (simulator, naturalistic driving) and deploying differ-
ent data collection devices (e.g., warning systems, visual tracking, etc.).

b) Focusing on risk factors of interest (e.g., VRU interactions, tailgating, etc.).

c) Focusing on conditions of interest (e.g., distraction), and their impact on safety-
critical situations.

4. Assessing the results of collected data in terms of:

a) Integrating the different data sources (e.g., subjective, objective, qualitative, quanti-
tative) to model driving behavior in safety-critical situations.

b) Assessing the impact of human factors on driving behavior (including attitudes
and perceptions, but also individual-specific factors).

c) Assessing the impact of ADAS on driving behavior.

d) Assessing the impact of distraction on driving behavior.

e) Assessing drivers’ acceptance of warning-monitoring systems in different situa-
tions.

5. Discussing the possibility of findings transferability across modes and between simulator
and naturalistic experiments.
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1.4. Thesis contributions

In answering the research objectives, and closing the identified gaps, this dissertation would
have various contributions, which are either methodological or practical, as follows.

1.4.1. Methodological contributions

This dissertation would first close a research gap by providing a comprehensive data–
knowledge information cycle for driving behavior modeling, including the different steps
from data collection, to making this data useful for analysis; this first contribution is openly
available in Al Haddad and Antoniou (2022). Moreover, a protocol for the handling of this
collected data is drafted in this dissertation, including protocols for data collection, prepa-
ration, storage, and legal and ethical considerations. Furthermore, a comprehensive and
experimental guideline for data collection for modeling driving behavior in both a driving
simulator and real–road conditions is outline, including the use of various data collection
devices, including but not limited to custom–designed advanced–driving assistance system,
eye tracking glasses, a driving simulator, and a variety of in–vehicle sensors. Finally, and
as part of the data–information–knowledge cycle, this work provides insights on how to
transfer findings from one mode to another; the latter is available in Al Haddad, Abouelela,
Graham Hancox, et al. (2022).

1.4.2. Practical contributions

Practical contributions of this work are first the design of an experimental protocol for driving
simulator and naturalistic driving studies for different modes, including data handling
protocols for the adequate data use of personal data that results from these experiments.
In particular, this dissertation contributes to the design of a driving simulator experiment,
for assessing the impact of a custom–designed warning–monitoring system on various
safety–critical events (namely VRU interactions and tailgating), and of distraction on such
safety–critical events, including the collection of data from different sources (notably a driving
simulator, questionnaires, eye tracking glasses, and a wearable collecting biometric data).
Besides the design of the experiment, a practical contribution is the actual collection of this
comprehensive dataset for 60 participants, including driving and eye tracking data that are
equivalent to 60 hours of driving (roughly).

Results of this study practically give insights on the impact of interventions on safety–
critical events, including VRU interactions and tailgating, but also of distraction on the
above safety–critical events. Moreover, the impact of distraction on those events has been
assessed, by means of (but not limited to) eye tracking glasses; this allowed us to highlight
the usefulness of visual tracking for monitoring and behavioral analyses. Further, human
factor impacts have been assessed, including the influence of socio–demographics on driving
behavior, but also the impact of perceptions and attitudes towards driving. Notably, the
use of technology acceptance model for representing drivers’ acceptance of ADAS in the
context of driving simulators has been validated, but also extended to other modes (beyond
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cars). The latter has highlighted the possibility of transferability of findings across modes: in
this case from car to truck (and partially to tram) driving simulator(s), which can pave the
way to understanding the extent to which findings can also be transferred from simulator to
real–road conditions.

1.5. Thesis outline

The dissertation is structured as follows.
Chapter 2: Driving Behavior Data Handling. This chapter provides a detailed review on

data handling for driving behavior, structured between Section 2.1 (a comprehensive review
leading to the development of a data–knowledge–information cycle) and Section 2.2 (a review
of data handling practices followed in previous projects, allowing the extraction of lessons
learned and the development of adequate data handling protocols for NDS).

Chapter 3: Methodology. This chapter presents the overall dissertation methods, including
best practices for experimental design (Section 3.1), analysis methods (Section 3.2), and
technology acceptance assessment (Section 3.3).

Chapter 4: Experimental Set–up. This chapter presents the experimental set–up (the
i–DREAMS case study), based on which the methodology will be applied, and which is the
basis for the experimental design, data collection, and analysis. In particular, this chapter will
first present the context for the experiments in Section 4.1, after which the developed data
handling within the context of this case study will be detailed (Section 4.2), followed by the
driving simulator experimental design (Section 4.3) and the naturalistic driving experimental
aspects (Section 4.4); the different experimental approaches are based on the guidelines
detailed in Chapter 3.

Chapter 5: Data Collection and Analysis. This chapter presents the data collection and
analysis efforts made for this dissertation, including the practical aspects of the experimental
design for the data collected in Germany (Section 5.1), followed by a summary of the data
collected (Section 5.2), processed (Section 5.3), and analyzed (Section 5.4).

Chapter 6: Modeling Results. This chapter presents the model results based on the data
collected and analyzed in Chapter 5, taking into account the insights revealed by the initial
data analysis. In particular, a special focus is given on modeling drivers’ perceptions and
acceptance of the experienced system (Section 6.1), after which the different datasets resulting
from the data collected in this work are integrated; for the latter, the integrated datasets are
used to develop panel regression models to better capture the individual differences between
participants (Section 6.2).

Chapter 7: Discussion and Conclusion. This chapter first discusses (in Section 7.1) the
main results obtained in Chapter 6, focusing on findings from the technology acceptance
model, the developed panel regression models, and the potential transferability of findings
across modes. Then, this chapter highlights the contributions of this dissertation (Section 7.2),
summarizing the main findings from the different chapters. Finally, the chapter presents the
limitations, but also highlights the opportunities for future work, building on findings from
this dissertation (Section 7.3).
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2. Driving Behavior Data Handling

This chapter presents the results of an extensive literature review on driving behavior
data handling and is structured in two parts as follows: Section 2.1, a review leading to
the development of a data–knowledge information cycle for driving behavior modeling,
and presented in Al Haddad and Antoniou (2022), and Section 2.2, focusing on data
handling in naturalistic driving studies, presented in Al Haddad, Alam, et al. (n.d.).

2.1. Data–knowledge information cycle

Naturalistic driving studies and field operational trials are used to collect meaningful data
on drivers’ interactions in real–world conditions. On the other hand, information extraction
methods allow to predict or mimic driving behavior, by using a set of statistical learning
methods. In simple words, the way to understand drivers’ needs and wants can be represented
in a data–information cycle, starting from data collection, and ending with information
extraction. The section below will present findings that were presented in Al Haddad and
Antoniou (2022), focusing on the data collection part. In this paper, a thorough review was
conducted with following keywords: “data collection”, “information extraction”, “AVs”, while
keeping the focus on driving behavior. The resulting review led to a screening of about 161
papers, out of which about 30 were selected for a detailed analysis. In this dissertation, we will
focus on part of the findings presented in Al Haddad and Antoniou (2022), pertaining to data
collection, but also on the insights obtained from that study, as the part regarding automation
and autonomous vehicles (presented in the above–mentioned paper) is not relevant for this
dissertation.

The analysis included an investigation of the methods and equipment used for data
collection, the features collected, and the size and frequency of the data, along with the
main problems associated with the different sensory equipment1. This paved the way to the
development of a framework for data analytics and fusion, which allows the use of highly
heterogeneous data to reach the defined objectives; in this dissertation for instance, modeling
driving behavior and understanding the acceptance of advanced warning–monitoring systems
across various modes, or the transferability of such findings across modes2.

1Compared to the published study, we will omit the detailed analysis on the information extraction coming
from studies on “autonomous vehicles", as they are irrelevant for this dissertation.

2Compared to the original published study, we will only discuss road–related studies, and will not focus on
other transport sectors such as maritime, and air transport, as they are irrelevant for this dissertation.
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2.1.1. Background, objectives, and contributions

With improved technology and advances in big data analytics, it is now possible to obtain
data from different sensors and sources, and merge it in such a way that it is useful for
analysis. This is usually the case of naturalistic driving studies, where driving data is
collected by means of a set of sensors, often resulting in thousands of driving hours and
millions of kilometers of continuous driving (Knoefel et al., 2018a; Antin et al., 2019). This
of course leads to many challenges, such as data heterogeneity, quality (Yadawadkar et al.,
2018; Wijnands et al., 2019), and abundance (Simons-Morton et al., 2015; Blanco et al., 2016;
Antin et al., 2019; Lex Fridman et al., 2019), etc. In an attempt to understand the process
of driving behavior modeling and technology acceptance, one should consider the different
steps starting from the proper data collection, and ending with the analytics and fusion of
heterogeneous data, which would then allow the extraction of the required knowledge. An
analysis of the literature shows that there is a gap in representing these different steps as part
of a data–information–knowledge cycle, which would encompass the various aspects starting
from data and ending with the knowledge.

The main objective here, and as elaborated in Al Haddad and Antoniou (2022), is to better
represent this data–knowledge cycle, through a thorough literature review, which aims to
give insights into its different components, including the analytics and fusion frameworks,
which could be transferable to different modes and research objectives. To the best of our
knowledge, this has not been done before, as previous studies focused on specific aspects of
data collection or information extraction, separately.

When planning for a new research project, in which data has not already been collected, or
in which data is not derived from a previous project, there is a need to start from the first
step of acquiring data through an inevitable data collection scheme, followed by many key
components such as processing data or storing it, after which knowledge can be generated.
Previous research in this area has focused on either data collection, or knowledge extraction,
separately, but rarely, if ever, both aspects were mentioned and discussed together. Having
this overview would be crucial as it could help better planning for this cycle in which data is
first collected, and then useful knowledge for modeling driving behavior could be generated.
This is important from a policy point of view since it would allow to have this entire overview
and help to better plan new projects, by considering the different challenges that pertain to
different components of this cycle. New type of generated knowledge could for instance be
the different driving styles, or driving maneuvers, resulting from in-vehicle data collection,
or even user acceptance on ADAS, based on questionnaires or interviews, etc. Different
challenges identified from previous research could pave the way to a better planning for
future research. Data collection for instance is often associated with challenges pertaining to
data processing, data quality, data privacy, or other external considerations. Putting these
challenges in one framework would help drafting a checklist that can be used before planning
for future research on driving behavior modeling.

The contribution of this review would then consist of this holistic framework of analytics
and fusion, which can be extended depending on the research question. In essence, the
objectives and findings of this work could be structured along following research questions:
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1. How is driving behavior data collected?

2. How is knowledge extracted to model driving behavior?

3. How can a data–knowledge cycle be represented to include various aspects of analytics
and fusion for driving behavior modeling?

2.1.2. Methodology

In this section, the methodology followed in this particular study is presented in detail. To
answer the research questions defined in Section 2.1, an extensive review has been conducted,
which will be reported following some common key items from the PRISMA guidelines
(Moher et al., 2010), such as the eligibility criteria, information sources, search strategy, etc.,
study selection. A collection of relevant literature was done by searching in Scopus, Google
Scholar and IEEE Xplore, with an aim to collect studies focusing on in–vehicle data collection
and information extraction. Therefore, to answer the defined research questions, following
keywords were used in the different search engines: “data collection”, “information extraction”
(to get insights on data collection), “autonomous vehicles”, but also “autonomous driving”
(to get insights on driving behavior for highly automated vehicles). Particularly, different
combinations of these keywords were entered in the search engines, namely “autonomous
vehicles" AND “data collection", “autonomous vehicles" AND “information extraction"; the
search was also done using “autonomous driving" in place of “autonomous vehicles"3. As
mentioned in Section 2.1.1, partial results presented in this paper will be elaborated in this
dissertation, mostly for driving behavioral modeling, but not the ones focusing on AVs.

The search was completed by September 2020, and included literature in English, focusing
on transportation topics. Additionally, about five references in the literature were included,
following “backwards snowballing”. A total of 161 studies were eventually collected, covering
road transportation, which were first classified by mode (passenger cars, buses, trucks, bikes,
or not specified, usually referring to studies collecting and describing highway environments
without being specific to a mode.), and level of automation4 (conventional vehicles, and
automated vehicles such as semi–autonomous, fully–autonomous). Upon initial screening,
various topics were identified, based on which a classification was made, according to the
following categories: “data collection”, “driving behavior”, “Naturalistic Driving Studies
(NDS)”, “statistical analysis”, and “big data".

Initial screening was made by reading the abstract first, then scanning the contents, and
finally going more in depth into the paper when otherwise unclear. Mode classification
was important to see the most dominant modes across these studies. The other categories
were useful to highlight the fields of contribution made by each paper. “Data collection"
referred to studies where procedures of the experiments were described, along with the

3While “autonomous vehicles" as a term could refer to highly automated vehicles, it might be the case that some
studies were missed for not using the term “automated vehicles", which can be a limitation of the keywords
search.

4As mentioned before, this is not of interest for this dissertation, but will still be kept in the table, to remain
faithful to the published journal paper Al Haddad and Antoniou (2022).
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devices and sensors used, size of data, and aspects of data handling. “Driving behavior"
referred to all studies whose aim were to classify different driving styles or traits that helped
better understand driving characteristics. “Naturalistic driving studies" were ones where the
main data was part of an NDS, as described by the authors themselves. Further, "statistical
analysis" referred to studies where statistical models were elaborated to extract information
and features, useful generally to model driving behavior. Finally, “big data" referred to
studies focusing on big data tools and methods for modeling, processing, analyzing and
visualizing transport and mobility.

From an initial screening of abstracts, it was obvious that most papers could either answer
the first research question (on the collection of driving behavior data), or the second (on
knowledge extraction for modeling driving behavior). Furthermore, we did not find any
contribution which holistically elaborated on the different steps going from data collection
(and challenges faced) to information extraction (based on that same collected dataset). We
therefore split the initially collected papers in two subsections, one for data collection (mostly
found in papers addressing conventional vehicles), and the other for information extraction
(in which we focused on findings in papers tackling AVs). The aim was to eventually combine
findings from each of these sub–sections in order to answer the third research question, which
would then be a bridge between both, and a transition to future research on AV behavioral
modeling.

A full list of the primarily selected papers is partially presented in Table 2.1. Finally, these
papers were screened, and a subset of 27 studies were selected5, to be analyzed in further
detail. These were studies that fit best the scope of the research objective: modeling driving
behavior by looking at data collection aspects, and information extraction. This means the
primary focus was given on driving behavior as a common interest factor. For example,
some studies were removed as they were not concerned with driving behavior; this includes
studies on image classification and vehicle detection (Ghandour, Krayem, and Gizzini, 2019),
work zone sign detection (Seo, Wettergreen, and W. Zhang, 2012), traffic sign estimation (Vu
et al., 2013), text recognition (Balaji, Kumar, and Sujatha, 2017), road investigation under
weather conditions (Cheng, Z. Wang, and Zheng, 2017), driver and vehicle recognition (Mo,
Gao, and Q. Zhao, 2017). Moreover, studies which presented the same or similar outcomes
from the same authors, describing the same projects, were removed from the final selection.
The selected papers were finally presented in Table 2.2, and elaborated in Section 2.1.3. The
presented methodology is summarized in Figure 2.1; in this figure, the dashed rectangle
represents the focus of this dissertation, as compared to the initial figure and methodology
that was part of Al Haddad and Antoniou (2022).

5Table 2.1 only presents 20 out of these studies, which were studies for conventional vehicles, as AV studies
were out of the scope of this dissertation.
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• Autonomous vehicles
• Autonomous driving
• Data collection
• Information extraction

Conventional
(selected papers)

Conventional
(initial screening)Classification by 

level of autonomy 

Keyword
selection

Does the paper 
fit the scope?

AV
(initial screening)

• Passenger cars, buses, trucks, bikes, not specified 
• Data collection
• Driving behavior
• Naturalistic driving studies
• Statistical analysis
• Big data

AV
(selected papers)

Classification 
by mode and 

topic

162 papers

130 papers 31 papers

20 papers 7 papers

Figure 2.1.: Methodology for paper selection (own illustration, adapted from Al Haddad and
Antoniou (2022); the dashed rectangle represents the papers discussed in this dissertation.)
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Table 2.1.: Initial set of screened papers (conventional vehicles); source: Al Haddad and Antoniou (2022)

Study Cars Buses Bikes
Not
specified

Data
collection

Driving
behavior

NDS
Statistical
analysis

Big data

Jacob and Rabha (2018) • •
Yan et al. (2019) • •
Morgenstern, Schott, and Krems (2020) and Patil, Adornato, and Filipi (2009) • •
Bosi et al. (2019) • •
Ehsani et al. (2020), Itkonen, Lehtone, and Selpi (2020), Koppel et al. (2020), Kovaceva, Isaksson-Hellman, and
Murgovski (2020), R. Li et al. (2020), Petzoldt (2020), Yasmin, Hu, and Luo (2020), Ding et al. (2019), Muronga and
Ruxwana (2017), Thomas A. Dingus et al. (2016b), T. Dingus et al. (2006), Simmons, Hicks, and Cair (2016), Bruce
Wallace, Puli, et al. (2016), Tivesten and Dozza (2015), Fitch et al. (2014), Montgomery, Kusano, and Gabler (2014), Tian
et al. (2014), Tivesten and Dozz (2014), Wege, Wil, and Victor (2013), Myers, Trang, and Crizzle (2011), Adornato et al.
(2009), Sheila G. Klauer, Thomas A. Dingus, et al. (2006), and Sayer, Devonshire, and Flannagan (2005)

• • •

Y. Wang and Ho (2018) • • •
K.-F. Wu and P. P. Jovanis (2013), K.-F. Wu and P. P. Jovanis (2012), Y. Liang, J. D. Lee, and Yekhshatyan (2012), and
P. P. Jovanis et al. (2011)

• • •

Samiee et al. (2014) • • •
Antin et al. (2019), Barnard et al. (2016), Blatt et al. (2015), Simons-Morton et al. (2015), Sheila G. Klauer, F. Guo, et al.
(2014), Ott et al. (2012), and Neale et al. (2005)

• • • •

Ma et al. (2021), Xia et al. (2018), and Warren, Lipkowitz, and Sokolov (2019) • • • •
Das, Khan, and Ahmed (2020), X. Liang (2020), S. Li et al. (2020), Rasch et al. (2020), Alekseenko et al. (2019), Arvin,
Kamrani, and Khattak (2019), Hochin, Shinohara, and Nishizaki (2019), Kuo et al. (2019), G. Li et al. (2019), Thapa et al.
(2019), G. Wang, P. Sun, and Y. Zhang (2019), Yadawadkar et al. (2018), Precht, Keinath, and Krems (2017), Carney et al.
(2015), F. Guo, Fang, and Antin (2015), Hallmark et al. (2015), Victor, Dozza, et al. (2015), Foss (2014), Jonasson and
Rootzén (2014), Bagdadi (2013), F. Guo and Fang (2013), Valero-Mora et al. (2013), Ahlstrom et al. (2012), J. D. Davis
et al. (2012), F. Guo, Sheila G. Klauer, et al. (2010), Shankar et al. (2008), and Q. Lin et al. (2008)

• • • •

Dawson (2019) and Bruce Wallace, Knoefel, et al. (2017) • • • •
Chun et al. (2019) • • • •
Barbier et al. (2019), Chhabra, Verma, and Rama Krishna (2019), and Yadawadkar et al. (2018) • • • • •
Rosales et al. (2017) • • • • •
Lex Fridman et al. (2019) • • • • • •
Blanco et al. (2016) • • • •
Barnard et al. (2016), Soccolich et al. (2013), and Hickman and Hanowski (2012) • • •
Aihara, Bin, and Imura (2019) and Barr et al. (2011) • • • •
Dozza, Piccinini, and Werneke (2016), Dozza and Werneke (2014), and Espié et al. (2013) • • • •
Kovaceva, Nero, et al. (2019) • • • •
Bachechi and Po (2019), Fan et al. (2019), S. Kaur, Singh, and D. Kaur (2019), Piedad et al. (2019), Pop and Prostean
(2019), S. Zhao et al. (2019), Abodo et al. (2018), Bellini et al. (2018), Kaushik, Wood, and Gonder (2018), Mo, Gao, and
Q. Zhao (2017), Al-Najada and Mahgoub (2017), and McLaughlin, J. M. Hankey, and Thomas A. Dingus (2008)

• •

Fernandez-Rojas et al. (2019), Xiaodan Liu and C. Li (2019), Moharm et al. (2019), Pucci and Vecchio (2019), Zhu
et al. (2019), Figueiras et al. (2018), Gohar, Muzammal, and A. U. Rahman (2018), M. Park, Koo, and Kim (2018),
Torre-Bastida et al. (2018), and Schatzinger and Lim (2017)

• •

Kaushik, Wood, and Gonder (2018) • • •
Mishra et al. (2020), Sangster, Rakha, and Du (2013), and S. E. Lee, Olsen, and Wierwille (2004) • • •
J. Guo et al. (2018) and Chunqing Zhao et al. (2017) • • •
F. Guo (2019) and McLaughlin, J. M. Hankey, and Thomas A. Dingus (2008) • • •
Guan et al. (2019), Guleng et al. (2019), Kang, Kwon, and S. H. Park (2019), Nallaperuma et al. (2019), Serok et al.
(2019), Sivasankaran and Balasubramanian (2019), and J. Zhang et al. (2019)

• • •

Knoefel et al. (2018a) • • • •
C. Sun et al. (2018) and Vu et al. (2013) • • • •
Zhou et al. (2019) • • • •
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2.1.3. Literature findings

Data collection

In this section, the main review findings on data collection are presented, with an aim to
answer the first research question on how driving behavior data is collected. These are based
on the selected studies from the initial set of screened papers, where in–vehicle data was
collected. Particularly, highlights are provided for used methods and equipment, features
collected, and size and frequency of data. Studies selected for analysis are presented in details
in Table 2.2 and are the ones mostly focusing on data collection processes aiming at driving
behavior investigation6.

Methods and equipment

As previously mentioned, studies focusing on in–vehicle data collection, for the purpose of
driving behavior analysis, are mostly field test trials, or naturalistic driving studies. The
latter are studies where data is collected unobtrusively, by instrumenting drivers’ vehicles
and monitoring their behavior, including the collection of “baseline data", reflecting their
“normal driving" (Carsten, Kircher, and S. Jamson, 2013). The aim is to investigate associations
between different variables, but also to extract risk factors in safety–critical events, and classify
drivers according to different profiles. Such studies cover usually road transportation modes,
particularly passenger car vehicles. In a simplified manner, the collected data covers different
components, which are presented here under: vehicle data, environment and context data,
and driver data.

Vehicle data is collected through vehicle instrumentation, including video camera7, and
sensor technology, often integrated in a Data Acquisition System (DAS) in cars (Antin et al.,
2019; Knoefel et al., 2018a; F. Guo, Fang, and Antin, 2015; Simons-Morton et al., 2015; Carney
et al., 2015; Valero-Mora et al., 2013; Myers, Trang, and Crizzle, 2011; Lex Fridman et al., 2019),
trucks (Blanco et al., 2016; Hickman and Hanowski, 2012), and bikes (Dozza, Piccinini, and
Werneke, 2016; Espié et al., 2013). DAS often includes several units, cameras, and sensors like
accelerometers, gyroscope and rate sensors, GPS, radar and radar interface box (Antin et al.,
2019), and an OBD connector to measure on-board-diagnostics of the vehicle; sometimes
audio data is recorded as well (Blanco et al., 2016).

External, context, or environment—related data is supplemental, out–of–vehicle data,
which could include roadway (Victor, Dozza, et al., 2015) and weather information (Carney
et al., 2015; Knoefel et al., 2018a). While weather data can be measured in–vehicle by
meteorological sensors, it can also be referred to as context or external data if obtained from

6In this table, highlights of the papers are presented, including useful findings (+), but also challenges or
limitations (-). These highlights are of course based on a subjective classification by the authors of this paper,
and some challenges (e.g., the huge datasets collected) could be as well considered as great assets and strengths
of the same studies. Finally, distances reported to miles have been converted to kilometers (kms) to keep one
unit system in the table, for comparison and consistency purposes.

7Although video data can record data from the road ahead or the drivers’ faces, etc., this would still be classified
as vehicle data, since the data source is the vehicle itself, as the camera is installed in the vehicle.
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other sources, and later merged to the existing data. This is also the case for instance for
accidents datasets, which can be added a posteriori if obtained from police reports.

Finally, driver data pertains to drivers’ demographics and health conditions, and includes
questionnaires, assessments, or diaries, as often done in bike and truck experiments (Dozza,
Piccinini, and Werneke, 2016), or even post—experiment interviews (Espié et al., 2013).
Additionally, driver data can be collected from mobile phone records, where participants’
mobile phones could be paired with the vehicles (Lex Fridman et al., 2019).

Features collected

Distinct data types are collected from the methods and equipment used, allowing the collection
of different features. Data collected can be classified under vehicle data, environmental or
context data, and driver—related data. Vehicle data is mostly dynamic data (in–vehicle sensor
data and video and images data); these are time–series data including kinematics variables or
driving parameters such as: acceleration, speed, position on the road, distance to other cars,
type of road, radar and GPS and computer data (Knoefel et al., 2018a), yaw rate, network
data (F. Guo, Fang, and Antin, 2015), steering wheel rotation angle, brake pressure [as in the
PROLOGUE project (Valero-Mora et al., 2013)]. Video and image data can be collected from
multiple cameras (forward, and rear windshields) providing images of the drivers’ face, or the
cabin conditions as in Antin et al., 2019. In addition to video data, audio data is sometimes
recorded (Carney et al., 2015). This data category can be considered dynamic, since it is
recorded continuously and collected in real time. Supplemental data includes environmental
and context data like maps, weather, or other data like roadway (workzone), data, or crash
investigation or reports. Mobile phone records can also be used as an additional data source
(Antin et al., 2019). Such data types (weather, roadway databases, etc.), cannot be considered
real–time or continuous in the same manner as in—vehicle data, and therefore will be referred
to as static data in this research. In particular, while map and weather data can be derived
using GPS coordinates and can be registered and updated real–time, they are considered
static in this representation, as usually, and based on previous research, their corresponding
time–series are not usually used real–time for classifying driving behavior. As mentioned
previously, both can be categorized as context data as they are used to enrich the existing
datasets. For instance, weather data can be used as an indication of the task complexity, and
it might be more interesting to know the weather condition, e.g. rainy or sunny, simply for a
longer period of time, for instance a trip duration.

Finally, driver data includes characteristics from surveys, but also assessment or medical
examinations. This data type will also be considered static, since it also does not change in
a continuous real—time manner. For instance, Simons-Morton et al. (2015) administered a
stress inducing test to test drivers’ stress responsivity; while these test results can theoretically
change, these tests and therefore their corresponding data are often collected only once
(or more times) during the experiments and are therefore cross–sectional. Additionally,
biometric data of the driver, such as heart rate data or other physiological measurements, can
be continuously collected (using for instance wearables); this would then be considered as
dynamic and objective data. The presented data (vehicle, environment, and driver) can be
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further classified into objective data (which does not depend on the drivers’ own judgments
and perceptions, but is rather collected through sensors, or other objective assessments), or
subjective data [including self–reported information including participants’ diaries, own
points of views on safety–critical events through interviews or questionnaires, or even expert
assessment of skills, and video coding of events (Hickman and Hanowski, 2012). Based on
the collected data, features can be extracted covering mostly crash and near–crash data (Antin
et al., 2019), and crash risk assessment (Knoefel et al., 2018a). Safety–critical events are often
calculated upon exceeding specific thresholds. For instance abnormal driving is triggered
by high acceleration or other kinematic factors: F. Guo and Fang (2013) recorded 8 seconds
before and 4 seconds after the trigger. In other words, going from the raw collected data,
derived data is often calculated, by using statistical methods to evaluate risk or measurements
of interest. For instance, statistical modeling of collected data can help reducing the data (e.g.
PCA), or assess risk and driver profiles (F. Guo and Fang, 2013).

Other road transport modes collect similar features through comparable data collection
equipment; for example in a truck study, both audio and video data were used, in addition to
actigraphy devices to monitor sleep quantity, since fatigue is often a parameter of interest for
professional drivers and long driving hours (Blanco et al., 2016). For Powered-two wheelers,
participants’ points of view are often of interest. Subjective data is therefore collected by
interviewing participants after the experiments to better understand critical events (Espié
et al., 2013; Dozza, Piccinini, and Werneke, 2016). Also, other modes often collect additional
data that drivers themselves flag in safety-—critical situations, by pushing an incident button
(Blanco et al., 2016; Dozza, Piccinini, and Werneke, 2016). Overall, we can present data on two
axes, to summarize its type and source: the x–axis describes the frequency with which data is
collected (static and/or dynamic), and the y–axis presents whether data is rather “unbiased”
or more subject to personal judgments and perceptions (subjective and/or objective). This
classification, stemming from analyzing previous research, can be useful for representing the
different dimensions of the data and is visualized in Figure 2.2 below.

Size and frequency of data

Field operational tests and NDS often result in up to millions of kilometers of driving data,
covering millions of trips, for an equivalent of hundreds of thousands of hours, which often
translates into several thousands of crash or near—crash events8. As part of the Second
Strategic Highway Research Program (SHRP 2), over 50 million kilometers of continuous
data was collected from over 3500 drivers across the Unites States, an equivalent of over
900,000 hours of in-vehicle time, and 5.5 million trips. The study captured more than 1900
light-vehicle crashes and 6900 near-crashes, an equivalent of five petabytes of data (Antin
et al., 2019). In the Candrive study (Knoefel et al., 2018a), data was collected data from
256 drivers in Ottawa, Canada, monitored for up to five years each, amounting to a total of
more than 15 million kilometers driven, the equivalent of one terabyte of storage data. The

8In this section, the size and frequency of data collected often reflect the data collection effort made within the
NDS based on which the studies/papers were written; in other words, they are not data collected individually
by the authors of the papers presented but belong to larger–scale studies.
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Figure 2.2.: Collected data by source and type (source: Al Haddad and Antoniou (2022))

naturalistic teenage driving study itself collected 18 months of driving data (Simons-Morton
et al., 2015). In the 100–car Naturalistic Driving study (F. Guo and Fang, 2013), data was
collected throughout one year, resulting in three million vehicle kilometers, the equivalent
of 43,000 hours of data. Another study (Q. Lin et al., 2008) collected data from 50 taxis in
urban areas for 10 months using video drive recorders in Beijing, China, collecting a total
number of 2440 of valid events, including 40 accidents. Studies featuring other road vehicles
also collected huge amounts of data. Dozza, Piccinini, and Werneke (2016) collected 1500
kilometers of biking data, including 88 critical events in Sweden in all environments. Hickman
and Hanowski (2012) collected data from 183 commercial truck and bus fleets comprising
13,306 vehicles and included 1085 crashes, 8375 near–crashes, 30,661 crash-relevant conflicts,
and 211,171 baseline events. Blanco et al. (2016) collected more than 14,500 driving hours of
valid truck data from approximately 2,200 driving shifts and 26,000 on-duty hours of daily
activity register data, from more than one million kilometers of driving, an equivalent of eight
terabytes of data storage. Overall, what these numbers can tell us is that collected in–vehicle
data often results in several thousands of hours of driving data, millions of kilometers of data,
and non-negligible storage needs.

However, for the above studies, the ratio of storage (in terabytes) to driving data collected
(in hours) is not constant. This variation is due to the varying sensor frequencies, but also
whether or not video data has been collected. This variation in frequency is a challenge for
data collection and processing; sensors and cameras often collect data and images at different
frequency. For instance, Dozza, Piccinini, and Werneke (2016) collected data continuously
at 100 Hz for all signals, video data at 30 Hz, and GPS data at 10 Hz. Valero-Mora et al.
(2013) (PROLOGUE) also collected vehicle data at 100 Hz, video data at 25 Hz, and eye
tracking data at 60 Hz. In this study, while vehicle data was automatically synchronized, eye
tracking needed to be manually synchronized with vehicle and video data. In the 2BeSafe
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project (Espié et al., 2013), vehicle dynamics were collected at 1000 Hz, while video data was
collected at 12.5 Hz and GPS data at 1 Hz. In SHRP 2 (Antin et al., 2019), video data was
collected at a frequency of 15 Hz and sensor data at 10 Hz. In Candrive (Knoefel et al., 2018a),
GPS and computer data were collected at a frequency above 1 Hz. In Blanco et al. (2016),
accelerometer data was collected at a 10 Hz frequency. This only highlights the need for data
synchronization for subsequent data analysis; for a perfect synchronization of multiple data
streams in post–processing, data has to be timestamped (Lex Fridman et al., 2019).

The main highlights of these studies, as noted in the “Remarks” column of Table 2.2 are:
i) data collection often results in a huge volume of data, which is challenging to manage,
in terms of both time and costs, ii) data quality is of utmost importance, e.g., missing data
can be a challenge in asynchronous data, iii) statistical techniques (data reduction, clustering,
annotation and fusion of spatial and temporal info) can avoid computationally expensive pre–
processing steps, iv) phone sensors can complement traditional data collection techniques, v)
additional driver data (diaries, interviews, and flagged events) can help complement collected
vehicle data and boosts interpretability.
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Table 2.2.: Selected papers focusing on data collection aspects (source: Al Haddad and Antoniou (2022))
Mode

Data collection equipment Features collected
Size/Frequency Remarks

Sensors Cameras GPS Radar OBD Video/Image Vehicle
Kinematics

Subjective
data

Other

Ma et al. (2021) Cars, buses,
trucks

• • •

(+) Objective and subjective factors were considered to analyze
factors contributing to perceptual bias of aggressive driving
(+) Objective factors include penalty points, subjective factors include
self–assessment of aggressive driving

Antin et al., 2019
Cars, SUVs,
pickups, trucks • • • • • • • • •

* Videos: 15 Hz
* Cabin images: 1/10 min
* Time-series: asynchronously
* 51 million kms of driving data: 5 PB of data

(-) Large and complex database

Lex Fridman et al., 2019 Cars • • • • • • • •

*511 000 kms of driving data: 100 000 GB
*7.1 billion video frames
*CAN sensors: 1GHz processor
*Cameras 30 Hz
*Data has to be timestamped to allow
perfect synchronization of multiple
data streams in post-processing

(+) Computer vision–based analysis of human behavior
(+)ADAS functions including ACC, pilot assist, blind spot monitor
(+) Semi–automated annotation
(-) Huge data

Warren, Lipkowitz, and Sokolov, 2019 Cars • • • • • •

(+) Phone sensors can complement traditional data collection techniques
(+) Less costly and time consuming
(+) In-phone sensors
(+) Clustered drivers based on driving behavior:
flag what deviates from the norm

Wijnands et al., 2019 Cars • • • • • * 30 frames per second

(+) Detection approach on a mobile phone
(+) Early fusion of spatial and temporal information
(+) Balance between high prediction accuracy and real time
inference requirements

(+) Avoids computationally expensive pre-processing steps

Knoefel et al., 2018a Cars • • • • • • • *15 million kms: 1 TB data storage
* GPS and computer data:>1Hz

Yadawadkar et al., 2018 Cars • • • • • • •

(+) Identifies driver distraction and drowsiness
(+) Insights into data from collection from DAS to feature extraction
(+)No video data
(-) Data reductionists reviewed coded and evaluated events
(-) Timing of data across variables asynchronous, leading to missing variables
at each collection time point
(-) Missing value replaced by last corresponding known value

Blanco et al., 2016 Trucks • • • • • • • • *1.2 million kms: 8 TB data storage
(+) Additional data from driver incident button, activity registers,
extended medical assessments, and actigraphy or sleep devices
(-) Data volume

Dozza, Piccinini, and Werneke, 2016 E-bikes • • • • • • • • *Sensor data: 100 Hz
*Video data: 30 Hz, GPS data: 10 Hz

(+) Push-buttons for critical events, trip diaries, and post-experiment
interviews help complementing objective data

Carney et al., 2015 Cars • • • • *Videos: 4 Hz
F. Guo, Fang, and Antin, 2015 Cars • • • • •
Simons-Morton et al., 2015 Cars • • • • • • • (-) Data volume

Espié et al., 2013 Powered
two-wheelers

• • • • • • •
*Vehicle dynamics: 1kHz frame rate,
with 4µs time data stamping Video
data: at 12.5 Hz GPS at 1 Hz

(+) Combine subjective data with objective data
(-) Cost

F. Guo and Fang, 2013 Cars • • • • • • •

Valero-Mora et al., 2013 Cars • • • • •

* Vehicle data: 100 Hz;
synchronized automatically
with the video data (25 Hz)
* Eye tracking data: 60 Hz;
needs manual synchronization
with vehicle and video data

(+) Highly instrumented vehicles can complement studies
using a large number of standardized vehicles
(-) Large amounts of data can be challenging to manage

Hickman and Hanowski, 2012 Trucks and buses • • • • • (+) On-board monitoring systems to identify safety-critical events

Ott et al., 2012 Cars • • • (-) Uncontrollable environmental factors may affect the validity
of the road test

Myers, Trang, and Crizzle, 2011 Cars • • • • • •
Q. Lin et al., 2008 Taxis • • • • • • • (+) Investigation of causes of rear-end conflicts

(-) Data volume

Neale et al., 2005 Cars • • • • • • • • * 3.2 million kms
* 43 000 hours of data

(+) Hard drive large enough to store data for several weeks
(+) Independent sensing systems
(+) Detection systems for headway, side obstacle
(+) Incident box for drivers to flag incidents
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2.1.4. Proposed data–information–knowledge framework

Data analytics framework

By looking at different components from the moment data is collected, until it becomes useful
for behavioral modeling, and further assessments, a data analytics framework can be drawn,
and is visualized in Figure 2.39.
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Figure 2.3.: Proposed data analytics framework (source: Al Haddad and Antoniou (2022))

In this framework, the data collection component includes data captured in (in this disser-
tation) in-vehicle experiments, where in-vehicle sensors collect data continuously/real–time
to monitor driving behavior. This can include GPS, cameras, sensors, which often do not
collect data at the same frequency. This would then inevitably include pre–processing of the
data to ensure first that there are no proper communication issues and that signals measure
data correctly, make it available and process it, but also that different sensors are fused
where possible, to ensure timestamped synchronization. In experiments, data often includes
subjective data as well as questionnaires from participants or drivers, which would then have
to be properly linked to the field data; these however are not dynamic in general, or at least
less dynamic, and so they would need to be managed differently.

Data processing includes aspects of data quality, which can be checked through different

9Please note that Figure 2.3 is the original presented in Al Haddad and Antoniou (2022), and therefore, sections
that are mentioned refer to the ones from the original manuscript.
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methods, ranging from filtering, noise cleaning, to manually controlling for consistency in the
collection; for example for eye tracking measurements, synchronization is done with vehicle
and video data.

Data mining can include methods like classification and clustering, feature extraction
using machine learning methods, pattern recognition, predictive analysis, and visualization
techniques with dashboard-based elements. The idea would then be that once data is made
available, data could be processed in such a way to predict the needs of the drivers accurately
and safely.

The different components presented also need to follow ethical, legal, and privacy standards
of the country where the collection is taking place. Looking at previous studies, we can see
a pattern in data management where ethical and legal considerations are at the backbone
of data collection. Data handling as well, including data storage, and sharing, would need
to follow specific standards; in Europe, this means a compliance with the EU Regulation
2016/679, or the General Data Protection Regulation (GDPR), which came in effect from
25 May 2018 (European Commission, 2018), aiming at protecting personal data. Protocols
of anonymization or pseudonymization of data at the source should therefore be part of
the framework. For instance, for data storage, different techniques exist either involving
private or public storage, depending on the usability and purpose. For instance, personal
and identifiable data should be locally stored (not publicly), for complying with GDPR. Only
pseudonymized data can be associated with the vehicle data and stored in the public storage
(pseudonymized or anonymized, depending on regulations). Similarly, for data sharing
(and eventually maintenance), different access levels may be defined, according to defined
agreements, in order to make different parts of the data accessible to different parties. Specific
processing tasks and their descriptions are suggested and elaborated in Table 2.3.
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Table 2.3.: Suggested data processing tasks (source: Al Haddad and Antoniou (2022))
Data processing task Description

Data quality

Labeling or encoding data from test vehicles
Handling missing data (sensor and communication failure)
Temporal order for time-series: needed to deal with possible network requests from the collection end
to the cloud server that do not arrive in the correct order, or when data is received by the server,
but it’s acknowledgement does not reach the data collection end
Handling the timezone information carefully
Data verification for errors (removing outliers and irrelevant data,
cleaning datasets, rectifying GPS data)
Data loss minimization: to prevent data loss during
the data upload/retrieval procedure, it is important to verify that
data is consistent before deleting it from the vehicle
In case of inconsistency, the vehicle data logger should be checked
to recognize and fix issues as soon as possible

Data format According to the desired format
A description of the data variables should be provided by the
technical partners generating the data and should be sufficient
for future reference

Data reduction

Reducing data volume mostly for video data. Video data may be
pre-processed in a way to reduce data volume without compromising
the quality of the video
Metadata of the videos (event, timestamps, trip info etc.) should
also be attached with each video for ease of future analysis

Data pseudonymization Assigning a unique identifier for each participant to comply with
GDPR, and linking the data from participants to vehicle data

Data fusion framework

While the data analytics framework presented above described data fusion processes, these
were only at sensor levels, as part of pre—processing or processing steps. A major challenge
that has not been addressed is the process of combining heterogeneous data, in a way
to obtain meaningful information, and extract an additional layer of information. When
thinking of data collected within experiments such as NDS or driving simulator studies, the
heterogeneity of data can be translated into elements of driving data, questionnaire data, but
also other contextual data (traffic data, accident data). A combination or fusion of information
is therefore necessary to develop models that can answer the defined research questions, for
instance, ADAS acceptance, and transferability of findings across modes. Data fusion can
therefore be achieved at several levels: at a sensor level, or after the first layer of analytics.

Akbar et al. (2018) developed a methodology with two levels of analytics, where events
were defined from individual data streams in the first level, to probabilistic complex events
after the second level; this can also be referred to as the fusion of these various events, using
Bayesian Networks (BNs). In the first level, events of interest are defined and extracted in real
time, while in the second level, BNs can take uncertainty while detecting complex events. In
particular, the authors of the above–mentioned study (Akbar et al., 2018) used data streams
including traffic, weather, and social media data streams from Madrid, Spain. The approach
used followed a hybrid framework based on complex event processing (CEP) and Bayesian
Networks (BNs) to extract high-level knowledge in the form of probabilistic complex event
(in this case the probability of congestion in real-time). The approach was qualitatively (using
web-interface) and quantitatively (using F-measure) evaluated, resulting in an accuracy of
over 80%. A generalized framework for fusion of different data streams can be adapted from
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Akbar et al. (2018). In this framework, different information sources (such as vehicle data,
traffic data, or survey data) can be used to modify input parameters of well–known driving
behavior models, to then see the impacts (of such changes) on the broader (transport) network
level. In the context of modeling driving behavior data, events can be derived depending on
data streams and objectives. Data fusion can be of interest as an additional component after
the analytics phase (sensor level fusion would already take place in the processing component
of the data analytics). Driving behavior data presented in this section mostly included vehicle
data, survey data, but could eventually include other data types that would enrich the existing
knowledge layer, such as social media data. An inference using an approach similar to the
one presented in Akbar et al. (2018) could be help estimating the probability of AV acceptance,
using pilot vehicle data, enriched by additional data streams (e.g. social media, to infer
general perception towards ADAS for example, and/or questionnaire data).

Transferability across modes

While this study focused on passenger cars for road transportation, the presented frameworks
can possibly be extended to other transportation modes/sectors. Though limited, studies
researching driving behavior in other transportation modes include similar equipment and
collect data that is similar to the one for road transport (as depicted in Figure 2.2). Due to
relatively less research in other modes, it becomes interesting to see whether some knowledge
can be transferred across modes; several opportunities for such transfer have been highlighted
in Papadimitriou et al. (2020). Rail studies for instance also include objective and subjective
data, such as GPS data, surveys (Larue and Wullems, 2019; M. Guo et al., 2016), which can
help evaluating rail driving behavior at crossings, or even video analytics (Zaman, Xiang Liu,
and Z. Zhang, 2018). Such studies also aim to assess risky behavior, or crash or near-crash
data, using advanced analytics algorithms.

Considering the knowledge that could possibly be gained by instrumenting vehicles for
different transport modes, extracted knowledge from each mode could then be combined
to create an overall transferable finding. For instance, in case the research objective is to
develop an index for ADAS acceptance, a first level of analytics could be ADAS acceptance
per transportation mode; a fusion of multiple indices across different modes could result in
an overall ADAS acceptance index. For example, different field experiments or surveys can
give insights into the acceptance for given ADAS in a certain region. Generally, most research
on this topic is done for road–based transportation, in particular cars; this could be however
relevant to other road modes, such as rail, buses, or trucks. While for rail, less interaction
between the operator and vehicles is expected, there still might be some relevant insights
that could be found on the acceptance of automation for these modes. Such insights on the
trust of automation for professional drivers can help transport planners better understand
or assess the acceptance for these modes in different cities or regions. Theoretically then, a
first level of analytics for ADAS acceptance would help assess acceptance across different
transport modes. Taking into account the rich information provided by this first level of
analytics, an overall ADAS index could then be drawn from these different indices found,
highlighting the factors influencing this acceptance for instance, such as trust, or relevant
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demographic variables. This is depicted in Figure 2.4, which was also drawn based on the
principles described in Akbar et al. (2018). While that might have challenges and obvious
limitations (such as the assumptions drawn for such results to hold true; for instance the
need of consistent pilot data), the aim of this example was to rather provide an insight on
how findings of heterogeneous types could and should be exploited; transport modes can
considerably learn from each other mostly in terms of automation and trust (Papadimitriou
et al., 2020).

AV road 
acceptance

AV water 
acceptance

AV rail
acceptance

AV index

Second level of analyticsFirst level of analytics
Road data

Rail data

Maritime data AV water 
acceptance

Aviation data AV aviation 
acceptance

Figure 2.4.: Data fusion framework across different transportation modes (source: Al Haddad
and Antoniou (2022))

2.2. Data handling in NDS

As their name indicate, naturalistic driving studies are conducted in a “natural” unobtrusive
way in which participants (drivers) drive as they “normally” do, without being asked to drive
specific roads, or change their driving patterns. The only difference is that their vehicles
are instrumented with data collection devices. With advances of technology and sensory
equipment, NDS are increasing in popularity, but also in challenges. Driving for longer
periods of time inevitably leads to large amounts of data collected, and therefore creates
challenges in terms of data management, data sharing, and data handling in general. While
previous projects and studies have indeed followed some guidelines in handling data, there
are currently no comprehensive protocols or guidelines for handling data in NDS.

To address this gap, this section aims to contribute to research, and particularly to future
NDS projects, by reviewing previous studies and focusing on relevant aspects of data col-
lection, preparation, storage, as well as other ethical and legal considerations. Based on the
findings and lessons learned, a methodology for data handling can be developed, which,
applied to the relevant case study, can result in the development of suitable data handling
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protocols; such protocols could be dynamic in that they may be updated along the course of
a project, and serve as guidelines or checklists, for quality control, wherein the defined goals
and followed guidelines could be cross-checked for validity purposes.

Several components are crucial for handling data in NDS. The FESTA handbook (FESTA
Handbook 2018) defines the guidelines for data acquisition, including storage and analysis
tools, emphasizing the importance of laws and regulations in such protocols. Based on these
recommendations, the next subsections present findings and lessons learned from previous
projects, focusing on various aspects of data handling, paving the way to the methods
proposed in this section.
The reviewed projects are: 100-Car Naturalistic Driving Study (T. A. Dingus et al., 2006),
SeMiFOT (Victor, Bärgman, et al., 2021), INTERACTION (FOT-Net WIKI, 2015), 2BeSafe (The
University of New South Wales, 2017), OBMS (Federal Motor Carrier Safety Administration,
2021), UDRIVE (2-BE-SAFE, 2012), Canada NDS & Canada Truck NDS (C. Klauer, Pearson,
and J. Hankey, 2018), Track & Know (Track & Know, 2021). For some projects, insights were
provided by personal communication of researchers who previously worked in one of the
projects (for which no or few associated references can be found in the literature).

2.2.1. Data collection

The selected projects cover a wide range of countries, including European countries, the
United States, Canada, Australia, and Israel, and multiple transport modes including passen-
ger cars, trucks, motorcycles, or other modes like scooters, buses, or powered-two-wheelers
(PTW). Onboard data collection units were installed and used in many studies and included
a GPS recorder, accelerometer, camera(s) for road condition and object detection, camera for
driver eye and hand tracking (PROLOGUE, 2011; 2-BE-SAFE, 2012; UDRIVE, 2017; 2-BE-SAFE,
2017; Victor, Bärgman, et al., 2021), CAN access (UDRIVE, 2017; Victor, Bärgman, et al., 2021),
and other sensors like position control (2-BE-SAFE, 2012; 2-BE-SAFE, 2017; Victor, Bärgman,
et al., 2021), alcohol sensors (SHRP 2, 2013), or voice recording sensors activated by incident
push buttons (T. A. Dingus et al., 2006; PROLOGUE, 2011; SHRP 2, 2013; The University of
New South Wales, 2017; C. Klauer, Pearson, and J. Hankey, 2018).
Based on the data sources, data were categorized into two types: in-vehicle data, and sur-
vey data. In-vehicle data are mainly collected from onboard units and include three levels:
driver, vehicle, and context data. Driver data contain drivers’ manoeuvres: pedal positions,
turn signal operation, usage of cruise control, steering wheel rotation angles, and drivers’
face image or video. Vehicle data include distance and headway to the vehicle in front,
acceleration/deceleration in three axes, speed, and total kilometers (km) driven. Context
data comprise natural environment (climate, weather, and noise), artificial environment (line
crossings, lane position, road type, locality, and road geometry), and trip-relevant information
[trip duration, data in calendar, number of passengers, hour-in-day, and points of interest
(POIs)].
On the other hand, survey data are mostly collected from questionnaires and interviews, and
include socio–demographics data (age, gender, occupation, and others), attitudes and psy-
chological characteristics. This kind of data usually contains personal information; therefore,
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it is often sensitive. Sensitive data not only comprises images or videos containing riders’
faces, personal and identifiable information (name, address, vehicle license plate, or any
other identifiable information), but also other sensitive information (including health data
like permanent or temporary driver impairments, crash, and traffic violations history, or cell
phone data).
Video data itself is worth mentioning separately because of its vast size and the need to extract
information from the frames and processing resources needed for it. Reasonable quality
video data rates produces 6-8 megabytes of data per minute which is roughly 20 gigabytes
of data per vehicle per month. Video data typically comprises 80-95% of the total data
collection (Sheila G. Klauer, Perez, and McClafferty, 2011). Previous projects (PROLOGUE,
2011; FOT-Net WIKI, 2015) highlighted the importance of creating a consistent format and
common standards, such as decentralizing data collection, coding, and processing, to make
the data format consistent between project partners. A basic off-the-shelf data acquisition
system (DAS) is therefore recommended (PROLOGUE, 2011). Data collection practices in the
above projects are summarized in Table 2.4 (based on the obtained references).

Table 2.4.: Summary of previous data collection practices (source: own)
Project Mode Size frequency In-vehicle data Survey data Sensitive data

100-car NDS Car 43 hrs of data • • •
SeMiFOT Car, truck 3000 hrs of data • • •
INTERACTION Car 3000 hrs of data • •
2BeSafe Car, truck, PTW • • •
PROLOGUE Car Between 10 and 100 Hz • •
SHRP2 Car 800 TB video data, 100 TB sensor data • • •
SH-NDS Car 10 to 50 Hz • •
ANDS Car 60 TB • • •
OBMS Truck • •
UDRIVE Car, truck, scooter • • •
Canada NDS Car, truck 15 Hz continuous video • • •
Track & Know Car, truck, bus 1TB for one year •

2.2.2. Data preparation

Handling data includes aspects of data preparation. The first step of data preparation is
pre-processing. This step includes different techniques such as resampling for harmonizing
resolution (Victor, Bärgman, et al., 2021) and reformatting paper records (2-BE-SAFE, 2012;
2-BE-SAFE, 2017). The second step enriches the original data by adding new information
(UDRIVE, 2017; Victor, Bärgman, et al., 2021; Track & Know, 2021). Data enrichment can
include map data attributes by map matching (Victor, Bärgman, et al., 2021; UDRIVE, 2017;
Track & Know, 2021), and other attributes such as weather information and POI (Track &
Know, 2021).
Finally, synchronization of data is also necessary, especially for data coming from different
sources; this task can be addressed by a custom-developed software (Victor, Bärgman, et al.,
2021). Moreover, specific synchronization tasks are also required: the trip can be matched to
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a driver (UDRIVE, 2017) by confirming driver ID on the first video frame. A summary of
previous practices is provided in Table 2.5.

Table 2.5.: Summary of previous data preparation practices (source: own)

Project Data pre-processing Data Enrichment Synchronization

100-car NDS • • •
SeMiFOT • • •
2BeSafe •
PROLOGUE •
SHRP2 • • •
UDRIVE • • •
Track & Know •

2.2.3. Data storage

NDS usually require a double storage system comprising local onboard storage and a remote
data storage that gathers all participants’ data. Regarding onboard storage, popular means
include hard drives mounted on an onboard DAS (European Commission, 2017; Dozza,
Bärgman, and J. D. Lee, 2013; K.-F. Wu, Aguero-Valverde, and P. P. Jovanis, 2014), flash
storage such as SD cards that are plugged into the onboard diagnostics interface (OBD II),
and onboard computer (L. Fridman et al., 2019; Knoefel et al., 2018b; B. Wallace et al., 2015).
For instance, Victor, Bärgman, et al. (2021) used hard drives, FOT-Net WIKI (2015) stored
data through onboard Micro-SD interface, and PROLOGUE (2011) organized all operations at
the local level, and there was neither standard storage nor consistent data.

The remote data storage is classified as two types, i.e., offline storage and online storage.
While some projects (2-BE-SAFE, 2012; 2-BE-SAFE, 2017; UDRIVE, 2017; Track & Know, 2021)
used offline storage, e.g., Track & Know (2021) recorded historical GPS data in offline storage,
other projects (PROLOGUE, 2011; FOT-Net WIKI, 2015; UDRIVE, 2017; Victor, Bärgman,
et al., 2021) chose the online storage system; Victor, Bärgman, et al. (2021) established an
Oracle database and a database model inspired by the University of Michigan Transportation
Research Institute. The remote database was arranged as a part of the Chalmers University
computer system. This arrangement was also followed by UDRIVE (2017), together with the
remote access to the data and possibility to analyze and annotate at a central data center.
Following a similar idea, PROLOGUE transferred data from CF-cards to password-protected
file server folders with only assigned scientific staff access.

When transferring data from onboard storage to remote storage, two major methods have
been used. First, data can be transferred to the remote storage manually. In the Canadian
NDS (Candrive study), participants met regularly with the study team to move data into the
remote data storage and empty the onboard storage media in the Candrive study (B. Wallace
et al., 2015). In UDRIVE, the process of transferring data meant scanning QR codes on the
vehicle, data logger, and hard drive, ensuring correct data matching. Hard drives were sent
from project partners across Europe to a data storage in France for collation and further
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processing (UDRIVE, 2017).
Another way to transfer data is through wireless networks such as Bluetooth, WLAN, and

cell network transmission (PROLOGUE, 2011; 2-BE-SAFE, 2012; 2-BE-SAFE, 2017; Victor,
Bärgman, et al., 2021). For example, Victor, Bärgman, et al. (2021) uploaded summary/status
information via wireless 3G/GPRS, while 2-BE-SAFE (2012) transferred data from all the part-
ners to a single server using a File Transfer Protocol. The video was also stored individually
to extract individual frames on a timestamp basis (synchronized with the database data).

To meet the data query’s needs, selecting the remote database’s storage architecture, or
software technologies, also differs between the projects. Key features comprise processing
speed, file servers that deliver data to researchers’ computers, and servers’ links. A summary
of data storage practices in the above projects is summarized in Table 2.6.

Table 2.6.: Summary of previous data storage practices (source: own)

Project On-board storage Offline storage Online storage

100-car NDS • •
SeMiFOT • •
INTERACTION • • •
2BeSafe • •
PROLOGUE • •
SHRP2 • • •
UDRIVE • •
Track & Know •

2.2.4. Legal and ethical considerations

Besides data collection, storage, and access, legal and ethical considerations are crucial for
successful NDS experiments, and for their viability in the first place. This section presents
practices that were conducted in previous projects, focusing on data sharing, data protection,
and data maintenance after the project lifetime, along with ethical and legal considerations,
where applicable. In general, the naturalistic driving study project activities conform to
national and international laws. In European projects, particular attention is paid to the EU
Regulation 2016/679, or GDPR, which came in effect from 25 May 2018 (European Parliament
and Council of European Union, Regulation, 2016). In addition, project partners usually
have their own ethical committees (based on external experts) looking after ethical issues in
relation with conducting the experiments (Track & Know, 2021).

Practical implementation strategies have been followed in different projects and are pre-
sented in this section. Video data, geo–data, and questionnaires data, all contain personal
data and are subject to the European Directives (T. A. Dingus et al., 2006). Pseudonymiza-
tion/anonymization of data is usually done to protect participants’ anonymity before trans-
ferring the data to the common server – that is when drivers’ name and other identifiable
information (e.g., address) are separated from the data and replaced with a unique identi-
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fier(2-BE-SAFE, 2012; SHRP 2, 2013; 2-BE-SAFE, 2017; Track & Know, 2021).
Project partners are responsible for managing participants’ confidentiality and for retaining

the ability to identify participants if required and only the project leader may have access
to this relevant information (2-BE-SAFE, 2012; 2-BE-SAFE, 2017; Track & Know, 2021). In
addition, the first and last minute of each journey may be deleted so that participants cannot
be identified by the data alone (UDRIVE, 2017). While this procedure implies some data loss,
it ensures that participants’ home addresses (among others) are not identifiable.

Once the collected data are copied to an external platform, the on-board data may be
deleted from the experimental vehicle’s hard drive (T. A. Dingus et al., 2006). All personal
data may be destroyed once they are no longer needed for analysis. Alternatively, the data
may be destroyed at the end of the study period at the latest (2-BE-SAFE, 2012; 2-BE-SAFE,
2017). Non-personal data may be kept beyond the period of the study if they are of value to
partner institutions in further work and if it is agreed that the data could be held. In such
cases, the data may be made available to all partners, who shared equal intellectual property
rights, regardless of the nationality of the source data (2-BE-SAFE, 2012; 2-BE-SAFE, 2017).
The data collected within the project may be available for further research after the project
for partners and for third parties, with certain limitations to adhere to the privacy of the
participants (UDRIVE, 2017).

In NDS, legal, ethical, and logistical issues could arise if participants drive their equipped
cars to another country for any reasons such as holidays (UDRIVE, 2017). This may ultimately
lead to the loss of big portions of the data due to complications with the equipment when
crossing borders. In addition, if the driver in question is not a participant, but someone
who drives this vehicle incidentally, the trip should be deleted to protect the privacy of
non-participants (UDRIVE, 2017). Overall, a data protection officer (DPO) must ensure that
data collection and processing within the scope of the project, are carried out according to
the international and national legislations (Track & Know, 2021). A summary of legal and
ethical considerations in previous NDS projects is presented in Table 2.7.

Table 2.7.: Summary of previous legal and ethical considerations (source: own)

Project Legal protocols Anonymization Disclosure permission Access restriction

100-car NDS • • • •
SeMiFOT • •
2BeSafe • • •
SHRP2 • • • •
ANDS • • •
UDRIVE • • •
Track & Know • • • •

2.2.5. Lessons learned and proposed solutions

In this section, data handling aspects for selected projects have been reviewed, focusing on:
data collection, data preparation, data storage, and legal and ethical issues related to NDS
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data. The lessons learned from these projects are summarized along the following main
points:

Data Collection. A basic, relatively simple, and cheap off-the-shelf data acquisition system
(e.g., accelerometer) provides very useful data for many research questions. However, the
reliability and validity of the identified safety–related events (e.g., false alarms, missed events)
must be carefully checked. For projects that are implemented in multiple countries, data
should be collected using a common DAS for all partners and following the same protocols
and standards. In addition, it is more practical to employ only certain vehicle types for data
collection as the collected data may differ for different vehicle models and the respective
sensor setup. This also reduces the burden of installation and de–installation of sensors in
each vehicle. Finally, it is recommended to centralize the responsibilities in terms of coding,
processing, and analyses, in order to create a consistent dataset.

Data Preparation. Prior to storage, the collected data should be pre–processed so that
the stored data is well–structured for analysis without further complexities for different
partners involved in the project. This includes data quality procedures (data cleaning, missing
data, inconsistent data, erroneous data due to calibration issues), but also already at this
stage, data pseudonymization; this includes for instance dealing with geo–data, to not hinder
participants’ privacy. Data (vehicle and survey data) need to be pseudonymized before being
uploaded to the online storage server. Moreover, questionnaire and survey data, need to be
uniformly re-coded. Also, advanced video processing techniques can increase the efficiency of
data storage since video data result in most of the collected data’s volume within naturalistic
driving studies. Finally, the collected data may be enriched by external data sources such
as digital maps, roadway engineering attributes, traffic characteristics, climatic data, and
questionnaires.

Data Storage. Two types of storage can be of use: on-board storage and remote storage
(online and offline). Manual transmission of vehicle data from local devices should be avoided
(e.g., hard drives, USB drivers, or SD cards) since it imposes extra burden on participants,
resulting in the reluctance to participate and in data loss (very obtrusive method, which
reminds participants of the nature of the experiments). Instead, data should be transferred
automatically for example using wireless networks, such as Bluetooth, WLAN, or cell network
transmission. For files that still need manual extraction and/or transfer (e.g., questionnaire
data), the hard copy of the data should be stored after transforming it to the electronic version.

Data should be stored in open formats so that all project partners can have access to the
data. More importantly, the data should be well defined and understandable; this is in general
achieved through a clear data management plan, which defines datasets, variables within
each dataset, and the partner (party) generating each dataset. Furthermore, video files should
be stored separately but linked with the rest of the data so that they can be retrieved in
synchronization with the database. A systematic back-up scheme is also required to prevent
loss of data. The backup strategy should be based on “acceptable downtime” and would
depend on the time it would take to recover data and on the acceptable amount of lost data.

Finally, the processing speed and the connection to database servers are important data
storage architecture considerations to be aware of. The data could be stored in an open
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standard file format such as JSON, but could be converted to other standard formats if
required, since converter libraries exist in all popular programming languages.

Legal and ethical considerations. As a general guideline, national and international data
protection regulations (e.g., European-GDPR) should be adopted for protecting personal data
in naturalistic driving studies. A few legal and ethical considerations are as follows:

1. The consent of participants is needed for collecting, storing, and using or processing
their data.

2. Sharing the data to third parties requires the consent of involved partners and can only
be granted upon approval of relevant committees (ethical committee, DPO).

3. Data should be pseudonymized before being shared and uploaded to a common central
server. The link between the unique identifier and participants’ personal information
should only be available to the partners collecting that data in the first place and would
need to be stored separately from the rest of the data.

4. The first and the last minute(s) of driving in each trip may be deleted to avoid any
possible relation with sensitive information such as destinations with religious or
political implications. Additional examples of sensitive information are elaborated by
the European Commission (2019).

5. Careful consideration must be given to regulations across all possible countries of
involvement as driving may occur across multiple countries. This includes cases in
which the driver in question is not a participant, but someone who drives the vehicle
occasionally, who have not given his or her consent to having his or her data collected.

6. Protocols must be defined for treating personal and sensitive data after the NDS end
(beyond the project timeline).

Existing Gaps and Proposed Solutions

While valuable insights have been gathered through the analysis of previous NDS, an
identified gap has been identified; namely, the lack of comprehensive guidelines for data
handling that can be made accessible for different partners involved in similar studies. This
means, there is a need to map out these lessons learned into standard protocols which could
serve as a blueprint of methods to be followed in the implementation of data handling for
similar (NDS) studies. A framework for data handling should therefore be developed aiming
at drawing methods based on the findings and lessons learned from previous projects.
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This chapter presents the methods used for the completion of the doctoral work reflected
in this dissertation and is structured across three main sections. In the first one (Section
3.1), experimental design methods are given, including considerations for driving simu-
lator studies (Section 3.1.1) and field trials (Section 3.1.2). The second section presents
analysis methods (Section 3.2), including an overview on factor analysis (Section 3.2.1),
discrete choice models (Section 3.2.2), and panel data models (Section 3.2.3). Finally,
the third section presents tools for understanding and modeling technology acceptance
(Section 3.3)

3.1. Experimental design

3.1.1. Driving simulator experimental design

Designing driving simulator experiments is time–consuming and requires preparation. It is
therefore crucial to keep in mind design principles before any experimental design, which
can be drawn from the experience of previous research and recommendations. In the below
paragraphs, an overview of design principles for driving simulator experiments is given,
based on the guidelines from Fisher et al. (2011), and as described in Fran Pilkington-Cheney
et al. (2020). Considerations for the experimental design can be summarized as follows:

1. Definition of outcomes, predictors and hypothesis. These are defined depending on
the research question, along with a set of hypotheses. The outcomes in a driving simu-
lator experiment may be categorical (abnormal/normal driving, warning/no warning)
or continuous (e.g. headway distance, speed, acceleration, deceleration). Moreover,
outcomes can be objective or subjective (as was indicated in Figure 2.2). Predictors, on
the other hand, may be individual-specific characteristics (e.g. demographics, attitudes,
etc.) or may be experimental factors (e.g. road layout, environmental conditions, and
interventions). Whether a factor is an outcome, or a predictor highly depends on the
research questions and objectives of the experiment. Therefore, it is essential to define
certain hypotheses that link the outcomes and predictors with each other. The study
hypothesis is usually formulated in terms of a null hypothesis (H0) and an alternative
hypothesis (H1) and the aim is to reject that null hypothesis using the data collected
within the driving simulator experiments.

2. Sample size and power. Sample size is directly related to the statistical power of
the experiment, that is, how strongly the null hypothesis can be rejected assuming
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that the alternative hypothesis is true (X. Wang and Fu, 2019). This depends on the
hypothesis and in turn on the type of the statistical test being used. The statistical power
calculations, however, are more complicated (Dupont and Plummer Jr, 1990) and depend
on three general aspects of the experiment: sample information (mean and standard
deviation and common statistical tests, such as t-tests, Chi-square tests), sample size
and the required statistical significance. Calculating the sample size therefore requires
setting up the other two aspects and so selecting a sample size could be an iterative
process where the starting point could be based on historical normative values, studies
from other participant populations, and small pilot studies.

3. Full/fractional factorial design. Factorial experiments, in contrast to one-factor-at-a-
time (OFAT) experiments, aim to investigate the relationship between one (or more)
outcomes with multiple predictors (factors) at the same time. More efficient than OFAT
designs, factorial designs can investigate the differential effects of one predictor across
different levels of other predictors. Moreover, factorial designs investigate the effects of
multiple factors with no additional costs, leading to conclusions across wider range of
experimental conditions.

A full factorial design includes all combinations of predictors at their discrete possible
values or "levels". As expected, the size of full factorial design experiments increases
exponentially with a high number of predictors which makes the experiment impractical
and cumbersome. Among all combinations of a full factorial design, many are redundant
and may not add new information to the experiment. An alternative design is a fractional
factorial design (Box and Hunter, 1961; Fisher et al., 2011), taking into account only a
part (fraction) of all combinations of predictors at their levels in the full factorial design.
Combinations that can be included in the fractional factorial design should be balanced
and orthogonal (Mukerjee, 1980; Kacker, Lagergren, and Filliben, 1991). In other words,
observations in the sample should be evenly distributed (balanced) across combinations
and the effects of any factor should balance out (sum to zero) across the effects of the
other factors (orthogonal).

However, it is important to note that there may be more than one orthogonal combina-
tion. The number of generators (effects or interactions that are not orthogonal) is set by
the designer and is usually based on special requirements of the study (e.g. limitation
of resources or sample size).

4. Within-participant or between-participant design. Another important consideration
when designing driving simulator experiments is to define whether one participant
drives different conditions (e.g. with and without warnings) and the outcome variables
are compared within participants, or all participants are split randomly and some
participants drive one condition (e.g. with warning) and the rest of the participants
drive another condition (e.g. without warning) and the outcome variables are compared
between participants (Fisher et al., 2011). The former design is referred to as within-
participant and the latter design as between-participant. The main advantage of the
within-participant design over the between-participant design is that it has a high
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statistical power because each participant serves as their own control. The statistical
power for within-participant designs are high enough even if the entire sample is not
used. However, the within-participant design has a few disadvantages over the between-
participant design:

• Some variables are, by definition, within-participant; e.g. gender. It may also not be
practical or ethical to change the levels of a variable (e.g. weight) for a participant
during the experiment.

• It may be subject to contamination (e.g. carryover effects, learning effect) which
can influence the conclusions.

• It is often more difficult to implement because external devices should be mounted
and dismounted from the simulator during the same drive.

5. Assignment of scenarios to drives. A driving simulator experiment often consists of
various scenarios, each of which can have different outcomes, predictors, and hypotheses.
Therefore, knowing whether to allocate each scenario to a distinct drive, or multiple
scenarios within the same drive, is essential. It can create a trade–off between efficiency
and practical difficulty of the experiments. Having one scenario in one drive is simpler
to implement, and reduces the likelihood of contamination and learning effects. On
the other hand, having multiple scenarios in one drive is more efficient, may reduce
the overall number of trials, particularly in big studies, and can increase the within-
participant variability and consequently the statistical power of the study. Therefore,
there is no rule of thumb for choosing whether to include single or multiple scenarios
in one drive. A pilot study may be helpful in making this decision.

6. Order of drives and learning effects. The order of scenarios and events must be
randomized among the participants and during the trials. These are two important
concerns that should be accounted for in experimental design. Order effect results
from changing the order of events and scenarios among participants (Shaughnessy,
E. B. Zechmeister, and J. S. Zechmeister, 2000). These are especially important in within-
participant designs where participants drive all conditions. Learning effect, on the other
hand, is referred to as the change in driving behavior (or improvement) resulting from
repeating the same event/scenario in the trial (Fisher et al., 2011). Therefore (because of
both effects), the order of drives should be random across participants and across time.
Participants should be assigned with an identification number and selected based on a
randomized selection of those numbers. Similarly, the drives with different scenarios
should be randomized in terms of the time of implementation; otherwise, the results
may be biased. However, randomizing all the scenario drives completed by a participant
may not be possible without baseline data from that participant.

7. Simulation sickness and duration of drives. Simulation sickness is the ill feeling,
reported in both fixed and motion-based driving simulators (M. Draper et al., 1997;
Ehrlich, 1997; M. H. Draper et al., 2001). Simulation sickness can result in severe
symptoms including eye strain, headache, nausea, and vomiting, and can influence
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driving behavior and performance, therefore invalidating some results. Participants may
lose their motivation and ability to concentrate, avoid tasks that are found disturbing,
or even modify their behavior to reduce sickness symptoms. To mitigate it, it is
recommended that scenarios have minimal rapid change in direction and acceleration.
Wider curves and fewer roadside objects may also help reducing simulator sickness
among participants. The total duration of the simulation should not exceed two hours
and the duration of each drive should not exceed one hour, with shorter drives for more
demanding scenarios. Although there are no set of rules for drive duration, the general
practice is to set it between 5 and 25 minutes, with a break of 10 minutes in between. It
has been shown that simulator sickness increases with the drive duration in one trial but
decreases with successive trials in multiple sessions (Kennedy, Stanney, and Dunlap,
2000). Designing a few practice drives prior to the main drive may help reduce the
simulator sickness effect; however, these can result in learning effects. Overall, a higher
fidelity of the driving simulator to the real–world environment contributes substantially
to the mitigation of simulator sickness. The latter has also been shown to correlate with
individual characteristics (including health status); therefore, screening participants
during the trials can help avoid sickness for individuals who are particularly susceptible
to it, including those with fatigue or sleep loss, upset stomach, head colds, ear infections,
ear blockages, pregnancy, upper respiratory illness, or those or who have recently taken
medications or alcohol.

8. Confounding effects and effect modification. A confounding effect in a driving
simulator experiment is referred to as the circumstances in which the association
between an outcome and a predictor is due to a third external factor, the confounder.
For example, the association between abnormal driving and lane deviation may be
primarily due to long driving hours. Characteristics for a variable to be considered a
confounder has been defined in Fisher et al. (2011). Neglecting confounding can result
in incorrect sources of predictors, and perhaps more importantly, not being able to
replicate the findings. Thus, it may be more helpful to hypothesize a few confounders
and effect modifiers, and to test these effects during the experiments. Nevertheless,
confounding effects and effect modification may be addressed in the analysis phase, if
they cannot be addressed in the design phase.

3.1.2. Considerations for field trials

When planning for naturalistic driving experiments, it is important to consider learnings from
previous studies and projects. Chapter 2 previously highlighted learnings for developing
a data—knowledge cycle for driving behavior modeling, with a particular focus on data
handling for naturalistic driving experiments. Further, the FESTA handbook (FESTA Handbook
2018) highlights several aspects to consider when planning field trials. Based on those, and
considering an experiment that is to be conducted in various countries, covering different
modes of transport, a set of guidelines can be developed (also presented in Fran Pilkington-
Cheney et al. (2020)), that can be summarized as follows (and in no particular order):
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1. Plan of approach. Developing checklists alongside detailed plans can help in avoiding
delays and saving resources. A pilot plan would aim at describing all procedures,
necessary forms, participant-related and vehicle-related documents, instruction manuals
and guidelines to instrument vehicles, contact participants, etc. Before the start of the
actual field trials, the pilot plan can be adjusted in case any issues were encountered
during the pilot phase.

2. Participant recruitment. The recruitment process takes a long time and therefore should
be well–planned, for it to be successful. Recruitment should start early on, to allow
time to meet adequate numbers and to provide more time in case of delays. It is also
recommended that all procedures, and needed documents are ready and translated
into the local language of the field trial location before starting the recruitment process;
these steps can avoid delays that can lead to participant dropouts.

A screening questionnaire can ensure that the defined participant selection criteria are
met. For instance, participants should be selected so that they are within a maximum
one-hour travel radius from the field trial base. For larger distances, it becomes quite
cumbersome to solve technical problems concerning the data collection system. Barriers
to participation can include the duration of the trial experiment (several months)
followed by the fear that participants’ vehicles might be damaged due to the installation
of the equipment. This can be overcome by selecting sufficient and efficient recruitment
channels and being transparent about the field trial, which can make people more
receptive to participate.

3. For professional drives. The participant recruitment for professional drivers can
be difficult because there are different stakeholders involved that need to agree to
participate. The main contact person of the fleet, the company management, the union
and the professional driver themselves have to agree to join the field trial. Unions
should be approached from the start and should be informed about all aspects of the
field trial to avoid delays; unions need to approve changes in the worker’s working
environment (such the installation of monitoring equipment). It is recommended that
fleet owners inform the field trial responsible about their driving schedules so that it is
known when a driver change takes place. This will also help with driver identification.

To encourage participation, the value of safe driving conditions and contribution to safe
traffic, positive company image, etc., can be an incentive for companies to participate.

Finally, questionnaires need to be adjusted for professional drivers as their driving
experience and behavior differs significantly from non-professional drivers. Professional
drivers might be more willing to participate if they also receive an incentive. However,
this is something that the fleet manager should decide.

4. Participant dropout and incentives. To avoid dropouts, it is important to keep partici-
pants well-informed about the field trials and stress that their contribution is important;
being transparent about the study conditions should already start during recruitment
and participant briefing. Moreover, it is essential to comply with the starting and end
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dates communicated to participants. This can be done by developing a realistic and
detailed plan of action for the experiment. By means of this plan of action, all necessary
steps and issues prior to and during the experiment are identified with the aim of
avoiding delays that can result in participant dropouts. It is also important to create a
reserve pool of participants during the recruitment process; these participants can then
easily replace the initial participants that may drop out during the experiment.

In defining the right incentive strategy for field trials, several aspects should be consid-
ered. First, the incentive strategy (amount, type of payment and payment periods) must
be specified in the participant agreement/consent form to avoid discussion afterwards.
The incentive needs to be high enough; otherwise, if the incentive is not high enough,
for instance if the (monetary) benefit is not in line (lower than) with the duration of the
experiment, it will not motivate potential participants. Incremental incentive payments
are recommended to reduce the dropout rate and encourage participants to be commit-
ted to stay in the trials until completion. A dropout budget could be implemented to
recruit back-up participants during all field trial stages. This dropout budget ensures
that participation can still be appealing to the back-up participants even if they enrol in
the later stages of the trials.

The incentives need to be managed locally by the responsible field trial partners as legal
aspects for receiving incentives may differ across countries. For example, depending on
national legislation (income tax regulations), it might be necessary to pay the incentive
by vouchers. Participants should be informed in advance if the received incentives
need to be reported in their income tax declaration. This should be mentioned in the
participant agreement/consent form.

5. Vehicle instrumentation. Certain aspects should also be considered regarding the
equipment that will be installed in the vehicles. Essentially, all equipment should be
checked before installation; spare parts should be available in case of equipment failure.
Finally, the planning and organization of equipment installation should be carefully
considered, ensuring that there is enough personnel to handle the vehicles and that a
limited number of vehicles are installed/de–installed at once, to help with installers’
coping capacity.

6. Participant handling. A good participant handling and support is essential to avoid
dropouts. A clear procedure should be in place to handle participant complaints. For
this, a helpline by means of having a dedicated e-mail address and/or telephone number
will be developed. This helpline should be monitored regularly so that participant issues
and complaints can be dealt with as soon as possible (e.g., within two working days).
Furthermore, researchers can be assigned to exclusively deal with solving participant
issues. The assigned person can differ according to the specific issues (general issue,
ethical/legal issue, problems with the data collection equipment etc.). Moreover, it
is important to maintain informal contacts with participants. In case of suspected
failure in data logging, participants can be contacted to check if the equipment still
works. Participants should be instructed to contact the researchers in case of specific
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circumstances such as damage to the vehicle or equipment, not using the vehicle for
long time due to illness or holidays, change in driving patterns due to job change, etc.

7. Ethical and legal issues. Issues that should be considered are the approval of the com-
petent national authorities for data protection (when necessary/applicable). Participant
consent forms are essential as they detail the conditions of the experiments, notably
the part regarding the data collection, use, and processing. For instance, a passage can
detail that the data of participants who have not signed the participant consent form
(i.e., second driver of a vehicle) would not be collected during the study.

Insurance, for instance is one issue that should be carefully considered: an insurance for
the equipment, for the installation, but also an insurance to cover third party liability,
and to compensate participants for damages caused to their vehicles by the installed
equipment, or a potential claim that participants might make against researchers in case
of an accident (blaming the experiments as a reason for their accident).

3.2. Analysis methods

3.2.1. Factor analysis

Factor analysis is a statistical method that aims to describe a set of observed variables in terms
of a lower number of latent (unobserved) factors, by looking at their maximum common
variability and the proportion of the overall dataset variance they explain. In transportation
data analysis, this method has been used to reduce the number of variables (Washington,
Karlaftis, and Mannering, 2010).

There are two types of factor analysis: the Exploratory Factor Analysis (EFA) and the
Confirmatory Factor Analysis (CFA). The former is a subset of structural equation modeling
and aims, as its name indicates, to explore latent factors behind the observed variables, to
better reveal the structure and patterns of the data. The latter goes from an already existing
theory and hypothesis on the structure and aims at verifying it. In the following part, the
focus is rather on EFA as an exploratory approach, as it can be more useful in revealing latent
constructs behind a set of statements and attitudes, often resulting from questionnaire data.

For a given observation and a set of p random observable variables, x1,...,xp with means
µ1,...,µp respectively, the latent unobserved factors F1,...,Fk can be found by solving the set of
linear equations:

xi − µi = li1F1 + likFk + ϵi (3.1)

where,

• lij is constant representing the factor loading of factor j in variable i

• i ∈ 1,...,p

• j ∈ 1,... ,k
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• k is the number of unobserved or latent factors in the factor analysis

• k < p

• ϵi is the random error term associated with xi, with mean zero and finite variance

In matrix notation, this equation is expressed as follows:

(X − µ)p×1 = Lp×kFk×1 + ϵp×1 (3.2)

For n observations, the above matrix notation is translated to the below, where Lp×k is constant
across all observations:

(X − µ)p×n = Lp×kFk×n + ϵp×n (3.3)

The solution for these equations would give the factor and loading matrices F and L, respec-
tively. As there are p + k unknown but only p equations, some restrictions are needed. In an
orthogonal model, the factors and their loading are unique, and the following assumptions
are satisfied:

• F and ϵ are independent

• E(F) = 0

• COV(F) = I, the identity matrix

• COV(ϵ) = Ψ, the diagonal matrix

EFA has been used in several studies focusing on public transit user satisfaction (Tyrinopoulos
and Antoniou, 2008), vehicle sharing adoption (Efthymiou, Antoniou, and Waddell, 2013)
or technology acceptance for several concepts including e-commerce and e-shopping (Ahn,
Ryu, and Han, 2004; Shih, 2004). It is often used in combination with other statistical models
like behavioral modeling, or structural equation modeling (Van der Heijden, 2004). A study
on the adoption of vehicle sharing system used factor analysis to extract the perceived car
and bike ownership characteristics in order to better understand latent correlation between
them. The reduced number of variables helped build ordered logit models to better predict
vehicle-sharing adoption (Efthymiou, Antoniou, and Waddell, 2013).

EFA consists of several essential steps. First, the factors extraction method is chosen. After
that, the preferred number of factors to be retained is determined according to different
methods. Then, a rotation method is chosen and applied to allow a better visualization of the
retained factors. Factor loadings are thereafter extracted for each factor. Finally, factor scores
are computed from the obtained loads (Costello and Osborne, 2005).

The most common extraction method is the maximum likelihood estimation (MLE) which
assumes that the data is relatively normally distributed (Costello and Osborne, 2005). Oth-
erwise, principle axis factors is recommended. However, MLE is overall better as it doesn’t
inflate the results since it still explains the shared variance, whereas the principle axis factors
method assigns all communalities as one. The recommended number of factors usually
follows the Kaiser-Guttman criterion which retains the variables with an eigenvalue greater
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than one (H. F. Kaiser, 1960). Other methods include the scree test, Velicer’s MAP criteria,
and the parallel analysis method (Velicer and Jackson, 1990; Hayton, Allen, and Scarpello,
2004; Costello and Osborne, 2005). The former is usually preferred as it is available in most
software packages.

The rotation method depends on the factors’ correlation. If the factors are not correlated,
orthogonal methods are applied; most commonly varimax is utilized. Otherwise, oblique
methods are used, the most common one being oblimin. There are also other rotation methods
beyond those listed above, and the package GPArotation in R offers many options for that
(Bernaards and Jennrich, 2005). After rotation, factor loadings are obtained. These indicate
the loading or weight of each variable in a specific factor. A high factor loading means that
the variable highly explains the variance in the extracted factor. The variables that do not or
poorly load in all the factors are considered less important in explaining the overall variance
of the variables and are not retained as explanatory factors in the dataset’s architecture.
Finally, factor scores are computed, taking into account the factor loadings calculated, by
computing for example a weighted average of these.

3.2.2. Discrete choice models

Discrete choice modeling is a widely used method in revealing user preferences for a given
choice and uses the principle of utility maximization. This means that each individual is
assumed to choose the alternative having the highest utility, which in turn is based on
attributes related to the alternative and the decision–maker (Ben-Akiva, Lerman, and Lerman,
1985).

For a an alternative i and an individual q, the utility is a combination of a systematic
element Viq and a random component ϵiq (Louviere, Hensher, and Swait, 2000), as shown in
Equation 3.4 below:

Uiq = Viq + ϵiq (3.4)

where,

• Uiq is the utility of alternative i for individual q

• Viq is the systematic component of alternative i for individual q

• ϵiq is the random error component associated with Viq

Viq is a combination of components exclusively associated with the attributes of the alternative
(varying for the same individual across different alternatives), of the decision-maker (constant
for the same individual across different alternatives), and the interactions between attributes
of the alternative and characteristics of the decision-maker. The systematic component Viq
also includes an alternative-specific constant for the given alternative i (Koppelman and Bhat,
2006).
For a given utility, the alternative-specific constant (ASC) captures the effect of factors that
are not part of the model. By adding this constant, the unobserved or remaining error term
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is bound to a mean of zero (Train, 2009). As only the differences in utility matters, one
alternative can be normalized to zero by setting its ASC to zero. Therefore, for i alternatives,
the model can at most have i-1 ASCs. Viq can be written in terms of its explanatory observed
variables or attributes (Ortuzar and Willumsen, 2011), as follows:

Viq = β1iX1iq + β2iX2iq + · · ·+ βkiXkiq (3.5)

where,

• β1i, β2i, · · · βki are the unknown parameters to be estimated, that are constant for the
individual but may vary across alternatives.

• X1iq, X2iq, · · · Xkiq are the k independent variables including all attributes of alternative
i for individual q: decision-maker and alternative related.

Individual q will choose alternative i over j if and only if the utility of i is greater than that of
j; in other terms, if Uiq > Ujq.

This leads to the following equations (Louviere, Hensher, and Swait, 2000):

Viq + ϵiq > Vjq + ϵjq (3.6)

Viq − Vjq > ϵjq − ϵiq (3.7)

The difference between the error terms cannot be calculated, but rather the probability that
Viq −Vjq is greater than that of ϵjq - ϵiq (Louviere, Hensher, and Swait, 2000). A random utility
model is therefore generated due to the random error term, which is assumed to follow a
given probability distribution. In other terms, the probability Piq that individual q chooses
alternative i is as follows (Ben-Akiva, Lerman, and Lerman, 1985):

Piq = P(Uiq ≥ Ujq) (3.8)

Considering a specific probability distribution for the error term, the equation above can be
solved and the β coefficients can be estimated using MLE (Ben-Akiva, Lerman, and Lerman,
1985).

Note: To add a qualitative independent variable, it is important to set one of the levels of this
variable as a base case, and thereafter add the other levels as binary variables (0 or 1). Therefore, for
k levels of a given attribute, at most k-1 binary variables can be added to the model; otherwise, the
variables would be redundant.

Depending on the probability distribution of the error term, there are different types of
discrete choice models (Ben-Akiva, Lerman, and Lerman, 1985). A common assumption that
the error term is normally distributed (Koppelman and Bhat, 2006) leads to the formulation
of probit models. However since they can be difficult to solve, logit models based on a logistic
distribution of the error term are more commonly used. Logistic regression models are
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commonly used in regression analysis, where independent variables are explored in terms of
their relation to the dependent variables they explain (Hosmer Jr, Lemeshow, and Sturdivant,
2013). In logit models, the discrete outcome variable is binary and the resulting model is
called binary logit model. Several other models following logistic regression are used in
practice, and explained in the following section.

Multinomial Logit Models (MNL):
They are logit models with more than two dependent variables or two unordered outcomes.
The main assumptions followed in this model are the Independence-from-Irrelevant Alter-
natives (IIA) and Independent and Identically Distributed (IID) variables. IIA states that
choosing one alternative over the other does not depend or is not affected by the presence
or absence of other alternatives (Louviere, Hensher, and Swait, 2000). IIA also means that
for different alternatives, the random error terms ϵiq are independent and identically dis-
tributed. Based on the above properties and the extreme value type one (EV1) distribution,
the multinomial logit model is translated to the following (Train, 2009) equation:

Piq =
eVjq

∑J
j=1 eVjq

(3.9)

where,

• Piq is the probability of choosing alternative i by individual q

• Viq is the systematic component of the utility of alternative i for individual q

• Vjq is the systematic component of the utility of alternative j for individual q

Multinomial logit models have been widely used in transportation research. For instance,
MNL models have been used in pedestrian crossing behavioral analysis (Kadali and Vedagiri,
2012) or long ago in passengers’ choices for airports(Ashford and Benchemam, 1987). In air
mobility, MNL models were used to model VTOLs as touristic mobility modes in Sicily, Italy
(Amoroso et al., 2012).

There are however several limitations to the MNL models. Often, their basic assumptions
are violated due to the nature of the dependent variable. For instance, if outcomes are ordered
or in case alternatives share some similarities, other models could be used, such as ordered
or nested models.

Ordered Logit Models (OLM):
They are extensions of the logistic regression models and are applied to more than two
ordered responses or dependent variables (McCullagh, 1980). They are mostly applied in
user preference studies, where respondents are asked to rate their satisfaction in a scaled
outcome, often ranked in a Likert scale (Likert, 1932). OLMs were used to model user
satisfaction of transit systems in Athens, Greece (Tyrinopoulos and Antoniou, 2008), or to
model the adoption of new mobility patterns, such as vehicle-sharing (Efthymiou, Antoniou,
and Waddell, 2013).

For ordered outcomes, OLMs can relax the IIA assumption (Ben-Akiva, Lerman, and
Lerman, 1985). In such models, threshold values, also known as intercepts or cutoff values,
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are estimated between the different ordered outcomes. The order of an observation can be
modeled by defining a latent variable Z, corresponding to the exact unobserved dependent
variable, represented as follows (Washington, Karlaftis, and Mannering, 2010):

Z = βX + ϵ (3.10)

where,

• X is the vector of independent variables

• β is the vector of parameters to estimate

• ϵ is the error term

Although the exact value of Z cannot be determined, an estimate of the categories of responses
is found, based on the observed ordered data y (stated dependent variable):

y = 1 if z ≤ µ0

y = 2 if z ≤ µ0 ≤ µ1

y = 3 if z ≤ µ1 ≤ µ2

y = · · ·
y = I if z ≥ µI−1

where,

• µ are the estimate parameters corresponding to the cutoff or threshold values for the
different ordered outcomes

• I is the highest ordered outcome

OLMs result in estimates for both β and µ parameters. For each individual, the probability of
the I ordered outcomes is estimated assuming specific probability distributions (Washington,
Karlaftis, and Mannering, 2010). For two response levels, the model is simply the binary logit
model (Harrell, 2015).

3.2.3. Panel data models

Panel datasets may have the capacity of capturing individual (or household as individual)
effects, time effects, or the combined effects of both household and time. These effects are
either fixed or random. A fixed–effect model assumes differences in intercepts (constants)
across households or time periods, whereas a random–effect model explores differences in
error variances. The random–effect model estimates variance components for groups and
error, assuming the same intercept and slopes. The difference among groups (household or
time periods) lies in the variance of the error term. A one-way model includes only one set of
dummy variables (e.g., household), while a two way model considers two sets of dummy
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variables (the combined effect of both household and time (H. M. Park, 2015). The fixed
household or time effect model can be formulated as follows:

yit = αi + βxit + eit, where eit ∽ I ID(0, σ2
e ) (3.11)

and,

• yit is the dependent variable (of household i, in time t)

• αi is the household specific constant

• xit is the explanatory variable

• β is the coefficient associated with the explanatory variable

• eit is the error term.

The basic formulation of the model assumes that differences across units can be captured
in differences in the constant term (αi); thus, in the above formula, each αi is an unknown
parameter to be estimated. The model usually refers to the least square dummy variable
model (LSDV). To see the combined effects of both time and household, the LSDV can be
extended to include a time–specific effect as well. One way to formulate the extended model
is simply to add the time effect as follows:

yit = αi + γt + βxit + eit (3.12)

where, γt = time specific constant.

In the case of a fixed–effect model, if we are interested in differences across groups (house-
holds), we can test the hypothesis in such a way that the constant terms are all equal to
zero. This hypothesis can be tested using the F test. If the null hypothesis is rejected, we
may conclude that the fixed group effect model is better than the pooled or ordinary least
square (OLS) model; i.e., there is a variation (a fixed effect) of the dependent variable across
groups (household or time). In other settings, it might be more appropriate to view the
individual–specific constant term (υi) as randomly distributed across cross-sectional units
(Greene, 2000). The random household or time effect model can be then formulated as
follows:

yit = α + βxit + (υi + eit), where eit ∽ I ID(0, σ2
e ) and υi ∽ I ID(0, σ2

υ) (3.13)

3.3. Technology acceptance models

Understanding societal perceptions and user acceptance of a certain technology is always key
before its successful implementation. In understanding or better representing the acceptance
of specific technologies, various models have been used in research; perhaps the most renown
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remains the technology acceptance model (TAM) by F. D. Davis, Bagozzi, and Warshaw
(1989), initially developed to investigate technology use of information systems, particularly
computer technology, in which the correlation between the intention to use and actual usage
was measured. The main aim of the model is to present a framework for modeling users’
acceptance in terms of factors that influence their decisions in using the technology. This
model is based on two main constructs: the perceived usefulness (PU) and the perceived
ease of use (PEU), where PEU reinforces PU. The former is the extent to which the user
believes the technology use would enhance his or her job performance, whereas the latter
is the degree to which using the technology requires effort. Both factors determine the user
attitude towards using the system, which in turn determine the behavioral intention (BI) to
use the system, and then the actual system use. This model also includes external variables,
which affect the defined constructs.

Various versions have been then extended based on this model, among others, TAM2
(Venkatesh and F. D. Davis, 2000), the Unified Theory of Acceptance and Use of Technology
(UTAUT) (Venkatesh, Morris, et al., 2003), and a later revision into TAM3 (Venkatesh and Bala,
2008). As mentioned in Al Haddad, Chaniotakis, et al. (2020), the role of moderating factors
(factors impacting adoption and reducing the limitations of the model’s explanatory power)
has been found crucial (H. Sun and P. Zhang, 2006) in technology acceptance models; for
instance, the moderating effects of gender and self–efficacy in the context of mobile payment
adoption (Riad et al., 2014).

In better understanding vehicle technologies, and as the focus of this dissertation is on
driving behavior modeling, experiments can be conducted, such as driving simulator or
on-road studies, in which the acceptance of modern in–vehicle technologies can be tested,
using the premises of the technology acceptance model. Based on questionnaires, assessment,
but also drivers’ behavior, the acceptance of such systems can be tested. Several hypotheses
can be tested along the lines of the traditional TAM, which are depicted in Figure 3.1, and
denoted as H1, H2, and H3 (hypotheses 1, 2, and 3, respectively).

These hypotheses aim to test the following:

1. H1: BI = f(PU, PEU). This means that the behavioral intention to use the technology (for
instance a certain ADAS) is a function of its perceived usefulness and perceived ease of
use. In particular, for this dissertation, the behavioral intention to use the system refers
to the intention to continue using the in–vehicle system if given the choice.

2. H2: PU = f(PEU, external variables). This means that the system’s perceived usefulness
is a function of its perceived ease of use and of external variables. External variables
here could be gender, other demographics, ADAS use, or other perceptions towards
ADAS and other driving habits or driving history.

3. H3: PEU = f(external variables). This means that the system’s perceived ease of use is a
function of external variables.
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Figure 3.1.: Hypotheses to be tested within the TAM (own illustration, adapted from F. D. Davis,
Bagozzi, and Warshaw (1989))

.
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This chapter presents the experimental set–up followed in this dissertation, including the
context for the experiments’ organization and data collection, the applied data handling
guidelines based on the findings from the previous sections, but also the framework for
the driving simulator and naturalistic driving experiments. It is important to note though
that only part of the experiments described have been executed and organized exclusively
for this dissertation; these are the car driving simulator experiments which are described
in detail in Chapter 5a. Excerpts of this chapter are presented in Al Haddad, Alam, et al.
(n.d.).

aThe rest of the experiments are mentioned as they are organized based on frameworks defined in this
dissertation, although executed outside the scope of this dissertation.

4.1. Context: the i–DREAMS project

4.1.1. Objectives

The i–DREAMS project is an H2020 EU–funded project, which is the backbone of the experi-
ments’ organization and data collection described in this dissertation. The overall objective of
project is to setup a framework for the definition, development, testing and validation of a
context-aware safety envelope for driving (‘Safety Tolerance Zone’), within a smart Driver,
Vehicle & Environment Assessment and Monitoring System (i-DREAMS) (Fran Pilkington-
Cheney et al., 2020). The Safety Tolerance Zone (STZ) has three phases: the normal driving
phase where the crash risk is minimal; the danger phase where the crash risk increases
due to the occurrence of external or within vehicle events; and the avoidable crash phase,
where a crash would occur if no mitigating action is taken by the driver or another road user.
Taking into account driver background factors and real-time risk indicators associated with
the driving performance, as well as the driver state and driving task complexity indicators,
a continuous real-time assessment is made to monitor and determine if a driver is within
acceptable boundaries of safe operation. Moreover, safety-oriented interventions are devel-
oped to inform or warn the driver real-time, in an effective way as well as on an aggregated
level after driving, through an app- and web-based gamified coaching platform. Figure 4.1
summarizes the conceptual framework for the project, which comprises the monitoring phase,
the collection of diverse data (context, operator, vehicle), based on which task complexity and
coping capacity are calculated, leading to an assignment of the situation to the correct STZ,
according to which the appropriate interventions are implemented.

The key output of the project would be an integrated set of monitoring and communication
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Figure 4.1.: Conceptual framework of the i-DREAMS platform (source: the i–DREAMS consor-
tium)

tools for intervention and support, including in-vehicle assistance and feedback and notifi-
cation tools, as well as a gamified platform for self-determined goal setting, working with
incentive schemes, training and community building tools. The different stages of the project
are summarized in Figure 4.2.

4.1.2. Devices and data collected

Various devices based on different technologies were used within the above–described
experiments, resulting in different sets of data. Overall, the technologies were first tested in
the driving simulator, to validate different driving behavior models, but also have first insights
on drivers’ acceptance of the system. Several simulators were used for the simulator trials
including: car simulators in Germany and Greece, large vehicle simulators in Belgium and
Portugal for trucks and buses, and rail simulators in the UK. The exact specifications of these
simulator trials are presented in Graham Hancox, Rachel Talbot, Fran Pilkington-Cheney,
et al. (2020). In particular, for the car driving simulator experiment in Germany (detailed in
Chapter 5 as the data collected during this dissertation), data collection instruments can be
summarized as follows:
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Figure 4.2.: A 5–Country 4–Stage experiment (source: the i–DREAMS consortium)

• Fixed–based driving simulator based on a Peugeot 206, including a dashboard, ad-
justable driver seat, steering wheel, accelerator, brake, and a warning–intervention
system (referred to as the “i–DREAMS system") among other components (https:
//www.drivesimsolutions.com/) and operates on STISIM Drive 3. Three 49” 4K moni-
tors with a 135° field of view are used to simulate the driving environment.

• Mobileye (https://www.mobileye.com/), a context–aware road monitoring system, used
to trigger real-time warnings and measure driving performance parameters. In the
experiments described in the remainder of this thesis, triggered warnings are forward–
collision warning and headway monitoring, pedestrian collision warning, and distrac-
tion warning. An overview of the warnings and their descriptions is provided in Section
4.1.3.

• A wristband– PulseOn wearable (https://pulseon.com/)– to monitor heart rate and
other related variables.

• Eye tracking glasses 1– Tobii Pro Glasses 2 (https://www.tobiipro.com/) – to collect

1This was only used in the driving simulator experiments in Germany.
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eye movement data (useful for assessing distraction). More information on visual
tracking theory and Tobii Pro is given in Appendix A.4.

• Questionnaires: before and after the experiments, to capture participants’ perceptions
of driving and ADAS at different stages. An overview on the different questionnaires is
given in Appendix C.2.

– Recruitment questionnaire: includes age, gender, driving license duration (or year
it was obtained), eyesight information (need for glasses while driving, and eye
surgery history) as it was an important criterion for the use of the eye tracking
glasses.

– Entry questionnaire: includes questions on ADAS availability, ADAS frequency
of use, attitude towards ADAS use, statements on distraction engagement. Most
attitudinal questions were in the form of a 5–point Likert–scale agreement state-
ments, ranging from “strongly disagree" to “strongly agree". Moreover, this part
had questions on history of accident involvement, and fines for traffic offenses.

– Exit questionnaire A: this was filled after completing the first two drives and
included questions on the i-DREAMS system (also five-point Likert scale questions),
mostly based on the study by M. M. Rahman, Strawderman, et al. (2018). Moreover,
questions on the system included an assessment of the system’s clarity, such
as overall clarity, visual clarity, and sound clarity. Open-ended fields were also
provided for participants to further elaborate on their feedback, and on what they
believed could be improved.

– Exit questionnaire B: this was filled at the very end of the experiments, and included
additional open–ended questions about the system’s strengths, and suggestions
for improving it.

For the road experiments, the same technologies are used, with following differences:

• CardioWheel, an embedded system within the steering wheel is used to collect heart
rate data, and the resulting extracted data. CardioWheel is to be used instead of the
wristband for bus, trucks, and rail modes; for instance, ECG values and measures that
are derived from the raw ECG signal, for example, drowsiness scale (KSS scale) are
collected.

• Vehicle data (vehicle dynamics, GPS data, etc.) is collected and fused through a central
communication component: the Gateway2.

• Video data is collected through a dashcam, configured to collect data when specific
thresholds of abnormal driving are met.

2While the Gateway also plays a major role in the driving simulator experiment, fusing the simulator data
with the Mobileye data, for the on-road experiments, its role is even more crucial, as it ensures the entire
communication, data collection and upload.
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• App and platform data, providing scores for the driving performance, but also gamifi-
cations at different stages.

• Questionnaires for the on-road trials are quite similar to the simulator ones; yet, of
course, there are some minor differences between the questionnaires.

4.1.3. Warning systems

The detailed warning list with their specifications is provided in Graham Hancox, Rachel
Talbot, Brown, et al. (2021). Warning monitoring systems are summarized in Figure 4.3.

• Forward collision warning and headway monitoring.

– Stage 0: Vehicle detected ahead.

– Stage 0: Vehicle ahead is too close; time headway is displayed in seconds and only
displayed when lower or equal to 2.5 sec and at speeds above 20 km/h.

– Stage 1: Vehicle ahead is too close; time headway is displayed in seconds (1.3) and
only shown at speeds above 20 km/h. Warning symbols accompanied by auditory
signal.

– Stage 2: Vehicle ahead is too close; time headway is displayed in seconds (0.6) and
only shown at speeds above 20 km/h. Flashing icon, accompanied by auditory
signal.

– Forward collision warning: Avoidable accident ahead. Flashing icon, accompanied
by auditory signal.

• Pedestrian collision warning.

– Stage 1: Pedestrian detected in danger zone.

– Stage 2: Avoidable accident with danger being imminent.Flashing icon, accompa-
nied by auditory signal.

• Lane departure warning.

– Stage 0: lane monitoring unavailable; occurs when no road marking is detected or
when the vehicle speed is below 65 km/hr.

– Stage 0: lane monitoring active and lanes detected.

– Stage 1: lane departure warning. A dotted line appears on the side where the vehi-
cle is leaving the road without using the indicator. Warning symbol accompanied
by auditory signal.

• Distraction warning (based on phone use).

• Speed limit indication and over–speeding warning.

– Stage 0: speed limit is detected (by the camera). Displayed in large for 1 second,
then shown as a small icon on the home screen. The transition from Stage 0 to
Stage 1 is variable and depends on the driver conditions.
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– Stage 1: vehicle speed is above the detected speed limit. Displayed in large for 1
second, then shown as a small icon on the home screen. The transition from Stage
1 to Stage 2 is variable and depends on the driver conditions.

– Stage 2: vehicle speed is dangerously above the speed limit; speed must be reduced
immediately. Displayed as a flashing icon in large for 1.5 seconds, accompanied by
an auditory signal, then shown as a small icon on the home screen.

• Illegal overtaking warning.

– Stage 0: No overtaking sign has been detected. Displayed large for 1 second, then
shown as a small icon.

– Stage 1: An overtaking maneuver in a no–overtaking zone has been detected.
Displayed in large for 1 second.

– Stage 2: An overtaking maneuver in a no–overtaking zone has been detected,
combined with harsh acceleration. Displayed as a flashing icon for 1.5 seconds.

• Fatigue warning.

– Stage 1: First signs of fatigue or sleepiness are detected. Displayed in large for 1
sec, then shown as small icon on home screen.

– Stage 2: Elevated levels of fatigue or sleepiness are detected. Displayed in large
and flashing for 1.5 sec, then shown as small icon on home screen. Warning symbol
accompanied by auditory signal.

– Stage 3: Dangerously high levels of fatigue or sleepiness are detected. Displayed
in large and flashing for 1.5 sec, then shown as small flashing icon on home screen.
Warning symbol accompanied by auditory signal. If the driver continues, the
symbol is displayed in large again.
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Figure 4.3.: Warnings symbols: a- Headway monitoring (normal driving); b- Headway monitoring (Stage 2); c- Forward
collision warning d- Pedestrian warning (Stage 1); e- Pedestrian warning (Stage 2); f- Lane monitoring (Stage
0-unavailable) ; g- Lane monitoring (Stage 0 -active); j- Lane departure warning (Stage 1); i- Distraction (smartphone
usage) warning; j- Speed limit indication (Stage 0- speed limit is detected); k- Speed limit warning (Stages 1 and 2);
l- Illegal overtaking warning; m- Fatigue warning (Stage 1); n- Fatigue warning (Stages 2 and 3)–(own illustration,
based on the i–DREAMS consortium strategies)
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4.2. Data handling

The experimental set–up for the above–described project leads to an inevitable large amount
of data collected. In this case, various partners play different roles in the data collection and
processing pipeline. Project partners can be classified as follows:

1. Technology providers: these are CardioID3, OSeven4, and DriveSimSolutions (DSS)5.
They provide the data collection equipment for the different countries and modes that
are part of this NDS. Particularly, CardioID provide the sensory equipment, OSeven
develops the android app, DSS builds the simulator and codes the scenarios for various
trial partners. These partners (technology providers) must therefore ensure proper
and consistent data collection and make it accessible to the rest of the partners. For
field trials, this happens automatically through from the technology providers to their
servers. For the simulator trials, the data collected is logged and stored locally in the
simulator PC.

2. Trial partners: they are the simulator and field trial partners, and are responsible for
organizing the experiments at their premises including collecting the questionnaire data,
running the experiments, and managing the logistical aspects at their own premises.
The different experiments (both simulator and field or on-road experiments) cover the
different countries (Belgium, Germany, Greece, Portugal, the UK) and modes (cars,
buses, trucks, and rail), as indicated in Figure 4.2.

3. Data processors: they are partners who contribute to the data analysis and processing.
They have access to the data and test various hypotheses derived from the research
questions.

Pilot data collected within this NDS provides a meaningful base to conduct analysis to
test and investigate the performance of the developed system and then improve it prior to
conducting on-road trials. Accordingly, a set of protocols for the adequate handling of this
data is necessary, mostly as it involves multiple stakeholders (listed above). Based on the
summary and lessons learned from Section 2.2.5, standard protocols for handling the data
collected have been drafted for this dissertation, and are organized according to protocols for
data collection, data preparation, data storage, and for legal and ethical considerations. These
protocols are partially available in Al Haddad, Alam, et al. (n.d.).

4.2.1. Protocols for data collection

For country-specific trials, local partners from each country are responsible for the logistics
of setting up the scenarios, leading to the collected data. However, data acquisition should
be done through the same mechanisms (servers, communication protocol, code etc. should
be similar, if not the same) to ensure consistency of processes and quality of data, even

3https://www.cardio-id.com/
4https://www.oseven.io/
5https://www.drivesimsolutions.com/
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4.2. Data handling

for country-specific scenarios. This is ensured by having common technology providers,
who deliver the hardware equipment for the in-vehicle data collection. The frequency of
collection should be decided a priori, given the fact that each sensor has a different frequency
rate, and each sample has an associated timestamp for appropriate synchronization. Each
data-collecting system should be conceptually tied to a vehicle, not a specific driver. Data is
acquired within a trip session, which is defined from the moment the vehicle is turned on
until it is turned off, with a grace period of five minutes.

4.2.2. Protocols for data preparation

Data pre-processing should be primarily done locally at the gateway and in the tech partners’
databases. The pre-processing may include:

• Handling missing data (sensor and communication failure): with sensor failure, a trigger
and alarm can be sent to the driver to ensure that nothing was disconnected (equipment
in-vehicle). For real-time interventions for which input data is missing, data can be
interpolated using the last known value or default value. For communication failure
however, data is logged, so so that offline synchronization is possible even without any
real-time communication. However, missing data can occur by the non-collaboration
of the driver; it is therefore advisable to stay engaged and have good communication
protocols with the drivers (participants).

• Ensuring temporal order in case of time-series data.

• Handling the time zone information carefully.

• Rectifying incorrect GPS data caused by reporting incorrect latitudes and longitudes
when there are momentary losses of GPS signals. A filtering procedure may be imple-
mented to remove these positional jumps. Moreover, raw GPS signals could be better
managed when cleaned and simplified, using for instance the Ramen-Douglas-Peucker
algorithm (Muckell et al., 2010). Since certain events (near-collision warnings) need to
be mapped to an exact location, the two nearest-GPS points could be added per event
to the simplified trace. This also would address the issue of protecting drivers’ privacy
in terms of their GPS locations.

• Pre-processing video data in a way to reduce data volume without compromising the
quality of the videos. Metadata of the videos (event, timestamps, trip info etc.) should
also be attached with each video for ease of future analysis. Video data pre-processing
can help obfuscating sensitive information from videos (e.g., faces and number plates
of surrounding vehicles).

• Detecting outliers and anomalies to ensure quality of data. Detection processes should
be done at the source of collection when possible.

• Verifying data to minimize errors during the communication process. Such verification
may include validation at the end of a trip session, ensuring temporal order of the data
points, and verifying that repeating sample points are filtered out.
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• Minimizing data loss at the retrieval/upload and verifying that data is consistent before
deleting them from the vehicle. In case inconsistencies are identified, the vehicle data
logger should be checked as soon as possible so that any issues can be recognized and
fixed.

• Deleting vehicle data after the data have been backed-up and verified.

• Providing a description of the data variables (either from driving simulators, instru-
mented vehicles, or from questionnaires) by the technical partners generating the data.
Having an understandable data format ensures consistency, completeness, integrity,
and timeliness. Although survey data is static, a good practice would be for the related
information to be attached to each instance:

– Date and time (hh:mm) of start

– Date and time (hh:mm) of end

– Unique identifier: the link between this identifier and the personal data (name,
address, etc.) is only stored at the local partners’ premises, so that only them could
cross-reference the data with the participant profiles.

– If applicable, reference to file names and location.

4.2.3. Protocols for data storage

Partners have the freedom of choosing their preferred storage engines (databases, file systems)
for local storage facilities. Nevertheless, the data should be automatically stored locally,
via automatic transmission (WIFI, wireless, Bluetooth). Data can be stored in two types:
onboard and remote storage (offline and online). Offline refers to storage systems which are
not accessible through standard API to external world (other partners and/or third parties).
Online storages refer to storage systems which are accessible through standard API to the
external world (other partners and/or third parties). This may also include third-party cloud
storage. Before being uploaded to the cloud, data needs to be pseudonymized. Data storage
type is relevant in terms of data bandwidth (e.g., in the vehicle, the data is sampled from
sensors at a very high rate, but usually only a portion of it is uploaded for analysis, or videos
are continuously recorded but only a buffer is kept and stored whenever an event takes place,
etc.), but also in terms of “sensitive" data; e.g., ECG data is processed locally in the vehicle to
compute the Karolinska sleepiness scale score (Shahid et al., 2011).

The ECG data is not uploaded to the cloud server as it is too sensitive; only the derived
indicators such as KSS score or heart pulse are uploaded. Once the data is uploaded, it is
deleted from the vehicle to avoid misuse. To ensure proper handling of the data in offline
storages, following requirements should be met:

• Persistence: data should be stored for at least till the end of the experiments.

• Reliability: periodic backups should be taken carefully. Deletion/modification of
operations should be handled properly (consistency and validity).
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• Availability: data shall be sent to the online data storage by uploading through the
available API of the online storage system. Once available in the storage, data should be
immediately available to the authorized user, preferably via an application programming
interface (API).

• Serviceability: data may not be available up to a certain period during storage server
maintenance (server downtime).

After transmission, data is downloaded (from the servers of the data collection equipment
providers), and then saved to an online back-end server, which saves different components of
the integrated and processed data.

4.2.4. Protocols for legal and ethical considerations

Prior to the start of the experiments, trial partners should have received an approval from
their respective ethical committees, established contact with their respective DPOs, and have
signed (preferably) a joint data agreement for the processing and use of personal data. This
agreement, which remains confidential among consortium partners, distinguishes between
data processors, data controllers, categories of personal data, and specifies how data leakage
or breaches of the agreements are to be reported. Different granted permissions would give
different roles for access to different people. This agreement can be useful in providing the
details of use of personal data among consortium partners until the end of the project and
even after it.

Experiments and data collection can only take place after participants have signed an
informed consent, where they give partners permission to collect and process their data
during the experiments. Their personal information may then be collected, after which
a unique identifier is assigned to the participants, which is a cross-reference between the
experiment data and their personal data. The personal data should be encrypted to ensure
security, and placed in an offline file system, only accessible to limited people (to be defined,
typically the DPO and persons of contact assigned for the experiments). Only the local partner
has the access to the unique identifier which can point to a participants’ personal data.

Each partner is therefore responsible for the proper pseudonymization of their participants’
personal data. When collecting data from professional drivers (trucks, buses), and when
working with professional companies, i.e., employers of the participants, an agreement is
also necessary between the field trial partner and the company, stipulating how confidential
information is exchanged within the project framework between the company and the field
trial partner.

Servers and hard drive encryption (following GDPR recommendation, article 34, recital
83) should ensure that all data (including non-personal) is protected (including local storage
in the vehicle), as a mitigation against breaches, even if the data is pseudonymized. In case
of sharing among partners residing in different countries and to assure compliance with
privacy regulations, the local partner needs to clear the simulation hardware of collected
data before handing over the hardware to another partner. This is for instance the case
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for simulator experiments conducted in Portugal and Belgium, which share the same large
vehicle simulator.

Following the agreed time after the end of the project (typically five years), the following
procedures can be applied for anonymization and for making the data accessible in an open-
source platform according to the project objectives: (1) The unique identifier that connects
the data in the partners’ databases with the personal data of the user is replaced with a
random number. The process would then be irreversible and there would no longer be any
possibility of relating the data in any database with the personal data of the user; (2) In case
the primary data (including location data) relates to the driver ID, the latter is then replaced
by a random code for each trip. This process is irreversible and there is (i) no longer any
possibility of linking the primary data of the trips (including location data) to the personal
data of the driver and (ii) no longer any correlation between the trips of a user. Following the
above procedures, the data of the driver would be fully anonymized since it would then be
impossible to trace collected data with a natural person.

The extent to which these exact procedures would be applied would depend on the
approval of the respective DPOs and would need to be agreed between consortium partners.
To transfer data efficiently, each partner generating data should either provide API access on
their own data or upload the data to a back-office server from where other partners can collect
the data. If an API is exposed to transfer data from the responsible partner’s side, an API
specification is also expected from the partner. These APIs should also be secured through
an authentication mechanism. Similarly, the back-office data should also provide an API
specification listing out how to access data which are available through its API; specifications
remain confidential among consortium partners.

To access the data, different user types should be first defined with different rights of access
(e.g., superadmin, admin, user etc.). A list of roles shall be made, with a distinction between
data access during the project lifetime, and after the project end. No deletion/modification
permission would be given to any user of the storage; only reading permission would be
provided to the appropriate users. Exceptions can take place in extraordinary circumstances
and are contingent upon approval of the superadmin (consistency and validity). Data access
should follow safe protocols with access points encryption.

Transferring data should take place over HTTPS and hence would be secured with pub-
lic/private key encryption mechanism. Access to the data should follow joint agreements set
out between partners and access to the data should be logged to trace back any problems
of data leaks. Pseudonymized data shall be accessible to consortium partners, according to
joint data agreements. Personal data shall be only accessibly locally by authorized personnel
and shall not be stored longer than necessary. A duration of five years (in the case of the
i–DREAMS project) has been advised as suitable by relevant DPOs and should be agreed by
respective parties (for the personal data). An anonymized portion of the data (a few datasets)
can be made available and offered to third-parties at the end of the project. According to the
GDPR, however, these data should exclude personal (and sensitive) information.

In Germany, the organization and collection of data within the driving simulator and on–
road experiments have been reviewed by the university ethical committee (“Ethikkomission
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der Technischen Universität München"), and approved, following a few rounds of amend-
ments. In particular, the driving simulator study has been first approved (reference number
78/20 S-KH), followed by an approval of the road experiments (reference Number: 748/20
S-KH). The above ethical review applications have been submitted, reviewed, and granted, as
part of the work done in this dissertation.

4.2.5. Protocols implementation

Based on the above-drafted protocols, a set of guidelines were implemented within the scope
of the presented case study, which are summarized as follows in Table 4.1.
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Table 4.1.: Implementation of previous findings in i-DREAMS (source: own)

Previous findings i-DREAMS Remarks

Reliability and validity checks No delete/modify permissions are given to any users of
the storage.

Common DAS
Minimize number of vehicle models Choosing the vehicles most compatible with the data

collection devices.
Centralize responsibilities for coding, processing, and
analysis
Data pre-processing prior to storage Done at the gateway and the tech partners’ databases.
Advanced video processing techniques Done to obfuscate sensitive data.
Data sources Using weather data, roadway geometry, and maps, where

possible.
Ease of access of data Central back-end API.
Systematic back-ups
Data well defined and understandable Data management plan.
Video files stored separately, but linked with the rest of
the data in file management systems

Should be possible in i-DREAMS.

Transferring the data should be done automatically Except for the simulator data (stored locally in the simu-
lator PC.

Store hard copies for manually extracted files like ques-
tionnaires and forms

Paper-based questionnaires (consent forms) will be
backed-up and hard copies will be adequately stored.

Ease of access of data Using the recommended architectures.
Consent of participants
Data agreements
Following GDPR
Data pseudonymization
First and last minutes of driving deleted
Driving across multiple countries Based on geofencing, the dashcam will be disabled from

recording in countries where its use is not allowed
Non-participant driving the vehicles incidentally Driver identification at the beginning of each trip. If

participant not identified, recording stopped
Data use after project lifetime Defined within national ethical and DPO committees, for

the use by local partners
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4.3. Driving simulator experiments

4.3.1. Experimental design

The detailed experimental design and checklists for the driving simulator experiments across
the different countries are given in Fran Pilkington-Cheney et al. (2020) and Graham Hancox,
Rachel Talbot, Brown, et al. (2021). Where possible, the driving simulator experiments follow
the recommendations and guidelines defined in Section 3.1.1, based mostly on the design
guidelines defined by Fisher et al. (2011).

The outcomes, predictor and hypotheses were defined according to the main objectives of
driving simulator trials in this project and the corresponding research questions developed
for these trials. The primary outcomes were defined as the real-time interventions, while
predictors were defined as risk factors including fatigue, sleepiness, speeding, forward
collision avoidance, lane discipline, overtaking, vulnerable road user collision, number of
harsh accelerations/ decelerations and steering. The hypotheses were drafted on the risk
factors, and the impact of the interventions and conditions (example distraction) on the
defined critical events.

Further, the sample size for the simulator trials was pre-defined based on limitations and
resources, and mainly because the primary objective of the simulator trials is to test the
technology and real-time interventions (in a set of pre-defined risk factors). As a result, the
statistical power of the trials is also affected by this. Still, for each mode, a minimum of
30 participants has been defined. The experimental design is a fractional factorial design,
where only a subset of all scenarios is selected. This is due to the large number of risk factors
resulting in an abundance of combinations for experimental trials in a full factorial design.
The statistical significance level is (in most cases) set at 0.05 (5%).

Further, the experiments are designed on a within-participant basis because the sample size
is limited (30 participants per transport mode6). Since triggering real-time warnings by the
i-DREAMS technology is achieved from the same gateway for all risk scenarios, multiple risk
events can be included in the same scenario, which increases within-participant variability
and consequently the statistical power of the overall project study. In addition, including
multiple risk events in one scenario is more efficient and reduces the overall number of
scenarios and trials. However, this approach presents some limitations for fatigue testing, as
experiencing risk events with greater frequency than would be expected in normal driving
may have alerting effects.

The order of scenarios and events was randomized among the participants and during
the trials. Due to the small sample size and the high number of risk events, the duration of
the simulator trials were initially defined based on the upper allowable limits (two hours
in total, with each trial up to one hour and a 10-minute break in between), based on the
recommendation from Fisher et al. (2011). Therefore, the maximum number of risk events
can be included in each scenario while preventing simulator sickness. In addition, several
practice drives were included prior to the intervention scenario to familiarize participants

6In Germany, for the purpose of this dissertation, an additional effort was made to increase this sample size to
60, as will be elaborated in Chapter 5.
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with the simulator device and reduce simulator sickness.
To test the confounding effects and effect modification, an additional drive was included in

the experimental design in which environmental conditions serve as a condition for driving
behavior. While target risks for different transport modes (i.e., car, bus, truck) may vary,
on-road vehicles share similarities.

For each mode, one to two risk factors were targeted. Each risk factor is captured by
several separate events, to ensure adequate validity of the observations per risk factor. More-
over, several “neutral" events are used, creating a realistic driving scenario and minimizing
confounding effects (e.g. order/learning effects). The scenarios were defined over three
drives. One drive is a baseline scenario without interventions, the other has interventions
with fixed–timing warnings, and another scenario includes variable–timing warnings. The
intervention scenario with variable timing warnings would be for the scenario including a
condition (e.g., fatigue/sleepiness, distraction or bad weather), used to adapt the timings
of the warnings related to the primary risk factors, for example, the warning for forward
collision avoidance would be given sooner in bad weather. However, it should be noted
that fatigue may need separate consideration in the design. Past studies have shown that
participants in driving simulators are usually fatigued after 20 to 90 minutes of monotonous
driving (Philip et al., 2005; Desai et al., 2007; Saxby et al., 2007; Ting et al., 2008; Rossi,
Gastaldi, and Gecchele, 2011; Chunlin Zhao et al., 2012; Merat and A. H. Jamson, 2013). In
the i-DREAMS study, fatigue can be indicated by the number of hours driven, under the
assumption that long and monotonous driving may induce fatigue directly, or indirectly
through sleepiness; this however would mostly be applicable for on–road experiments, where
participants drive for several hours, as opposed to limited driving duration within the driving
simulator experiments.

4.3.2. Multi–modal driving simulator experiments

As previously indicated, the driving simulator experiments were conducted in various
countries, to assess an array of risk factors in different modes7. A summary of these
experiments is given in Table 4.2, and visualized in Figure 4.4.

7It is important to note that the summary below does not include the car experiments conducted in Greece (as
mentioned in Figure 4.2), as these were not yet conducted until the time this thesis was written.
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Table 4.2.: Characteristics of the multi–modal driving simulator experiments (source: own)

Transport mode Car Tram Truck Bus

Country Germany UK Belgium Portugal

R
is

k
fa

ct
or

s Forward collision • • •
Illegal overtaking •
Over–speeding • •
VRU collision • • •
Distraction • •
Fatigue/ sleepiness • •
Environment Rural Urban Rural Rural

Urban Suburban Highway Urban
Highway Highway

c

d

a b

Figure 4.4.: Driving simulators for the different modes: a- Passenger car (DSS), b-Truck (DSS
heavy vehicle simulator), c-Tram (Croydon tram simulator); source: own illustration

4.3.3. Car driving simulator experiments

As mentioned in Section 4.3.2, risk factors investigated in Germany8 were tailgating and
vulnerable road user collision. The number of risk factors was considered adequate for a
45-minute session and was split into three scenarios, one for each drive (each 15-minute),
in addition to a baseline drive beforehand. In the third drive, the impact of distraction on
the chosen risk factors and critical events was investigated. The design of these experiments
followed the driving simulator guidelines set out in the project and presented in Section 4.3.1.
The detailed scenario design for the car experiments in Germany is given in Amini et al.
(2021).

In particular, for each of the tailgating and vulnerable road user risk factors, three critical
events were designed, and randomized across three road environments: rural, urban, and

8These pertain to the data collected during this dissertation.

67



4. Experimental Set–up

highway. To investigate tailgating, a lead vehicle was placed in front of the driver, to measure
car following behavior (under safe driving conditions). For the VRU events, the pedestrians
started crossing at a speed of 1.2 m/sec. The critical events (CEs) for each of the risk
factors are summarized in Table A.3 of Appendix A. Moreover, to introduce randomization
and to prevent learning and confounding effects in the dataset, the Latin square method (as
implemented in Ryan et al. (2020)) was followed to change the order of the traffic environments
associated with a particular drive scenario (intervention or distraction); the latter is described
in detail in Table A.4 of Appendix A.

An overview of the risky events for the car driving simulator is given in Figure 4.5; here,
(car)1 refers to the driver and (car)2 refers to the car driving in front of the driver within all
risky events.
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Figure 4.5.: Risk event sketches for the car driving simulator experiments; source: own illustra-
tion, adapted from Amini et al. (2021)

For the third drive, where distraction was investigated, participants were asked to drive
as before, with the additional task of reading and responding to text messages using a
smartphone. In total, six text messages were triggered before the critical events, and two
when there was no event. In total, eight text messages at two levels of simple and complex
were sent to participants during the third drive, in which: six text messages were triggered
before the critical events, and two were triggered when there was no event. Before the trial,
participants were trained to only reply to the text messages, which are in the form of a
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question. The text messages were sent or received both in German and English, depending on
participants’ preferences. A summary of the distraction types across critical events is given in
Table A.5 of Appendix A.

Instruments used in this study have been described in Section 4.1.2; in particular, for the car
driving experiments conducted in Germany, an overview of the equipment used is depicted
in Figure 4.6.

c

d

a b

Figure 4.6.: Data collection instruments. a-Fixed driving simulator setting; b-Mobileye system;
c-PulseOn wearable, d-Tobii Pro Glasses 2 (eye tracking glasses); source: own
illustration

4.4. Naturalistic driving experiments

4.4.1. Field trial protocols

The aim of the field trials are to assess the effect of the interventions developed as part of the
i-DREAMS system, for both real–time and post-trip warnings. As shown in Figure 4.2, the
field trials are part of the large–scale 4–Country 5–Stage experiment to be conducted across
Europe in five testing sites, covering different transportation modes. Following the learnings
made in the simulator experiments, the aim of these naturalistic driving experiments is to
test the developed technology9, in which all drivers for different modes would be engaged
for each of the baseline and intervention stages (Stages 3 and 4 of Figure 4.2). Prior to that,

9Participants for each of the simulator and on–road experiments are different, to prevent biases and not to
influence the results.
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a pilot stage (Stage 2) would ensure that the equipment and technology are working as
planned. For the baseline stage, no interventions are implemented, in order to provide a
basis for comparison when analyzing the impact of interventions on driving performance.
In the intervention stage (Stage 4), both real–time and post–trip interventions or warnings
are implemented; due to limited equipment and fitting capacity, participants are divided
in two groups or waves, mostly for passenger cars. For the final stage, or the interventions
stage, participants receive feedback through a smartphone application and/or a gamified web
platform. The ultimate goal of the field trials would be to successfully capture the necessary
indicators, performance metrics, and intervention characteristics, that can assist in validating
the STZ for each mode, to select the most successful in-vehicle interventions.

To summarize, the third and fourth stages span across 18 weeks, and are organized over
two groups of participants, as follows:

• Phase 1 (4 weeks): baseline measurements with no interventions activated

• Phase 2 (4 weeks): in–vehicle real-time interventions activated (auditory and visual)

• Phase 3 (4 weeks): post trip feedback (smartphone app)

• Phase 4 (6 weeks): post trip feedback (smartphone app) and gamifications

4.4.2. Practical aspects

Based on field trial recommendations provided in Chapter 3, the following plan for implemen-
tation was followed for road trial planning of the presented NDS. This includes an update
of the FESTA checklists, tailored specifically to the case study, which can be summarized as
follows:

1. Plan of approach: a set of checklists and forms was developed on a project-wide level,
which was then adapted for each country and mode. The detailed lists are provided in
Graham Hancox, Rachel Talbot, Brown, et al. (2021).

2. Participant recruitment: while attempting to meet the recruitment requirements, vehi-
cles with multiple drivers were recruited to facilitate the process, if all drivers drove
sufficiently (a set of minimum kilometers per week was defined); this procedure would
also help saving on the number of installations (within a reasonable amount) and
therefore the associated installation time and costs.

3. Participant incentives: participants were given incentives for their participation in the
experiments; the amounts however differed for each country. In Germany, incentives
were paid in the form of vouchers, worth 50 EUR for a pilot participation, and 250 EUR
for a full participation (18 weeks), in order to mitigate legal university requirements,
but also to avoid a long bureaucratic process that would allow participants to be paid
money (either cash or by transfer).
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4. Vehicle instrumentation: the equipment needed to be fitted by professional and trained
technicians. For legal purposes, the dashcam and Mobileye were installed in a way that
would not obstruct vision. For trucks and rail, CardioWheel needed was firmly installed,
so as not to be moveable on the wheel (firmly attached) and to not have trailing wires
blocking drivers’ movements.

5. Participant handling: a set of frequently asked questions (FAQs) was given to partici-
pants, as most questions tended to be asked by various participants.

6. Ethical and legal considerations: a set of guidelines and documents were developed for
the project, to cover different needs for the different modes. Although the project did
not have any foreseeable legal barriers to technology fitment or use, project partners
recommended the creation of a project fact sheet detailing equipment, who to contact
etc., to be kept in the vehicle’s glovebox. This would be referred to as “the user
manual”. This manual also included an explanation on the safe use of the installed
equipment, especially when the vehicle is moving (i.e., systems would not replace
drivers’ responsibility to observe the road and react accordingly; the drivers should
not rely too heavily on the system warnings, as the i-DREAMS technology is only
“assistive“). Further, a project wide data policy was deemed necessary to develop
guidelines on what to do if dangerous driving was witnessed on the videos (despite
having no legal obligations to do share this video data, perhaps it was morally advisable
to hand it over to authorities, depending on the frequency or severity). The same
applied for a procedure concerning the request for footage by the police. Moreover,
it was advised that different countries check their own insurances regulations; two
aspects were important to consider: a public liability insurance (to cover damages
claimed against the installation, or any claims participants might have with regards
to the conducted experiments, in case of incidents or other events) and participants‘
existing insurances (to clarify whether installing the additional devices would invalidate
any of the existing insurances participants might have).

In Germany, rules were consulted with the university legal office regarding public
liability insurance. A first consultation revealed that in case of liability claims, the
university would be covered by the Free State of Bavaria. However, as the assessed
risk could possibly be high in the event of a serious crash, permission for obtaining a
liability insurance was granted, and a subscription to a liability insurance was made.
Another effort on understanding vehicle insurances in Germany revealed that despite
most insurances not providing any binding information, they seemed quite positive
that vehicle insurances would not be affected by the installation of the i-DREAMS
technology. In other words, the terms and conditions of the existing contracts would
not change based on participation in the project; on the contrary if so, some insurances
would offer discounts for in–vehicle ADAS installation. In Germany however, the use
of the dashcam remained controversial. In essence, there was a lack of consensus or
clear regulations on dashcam installations in Germany. Owning the dashcam and
recording events per se seemed to be legal or at least not illegal; however, the exact
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terms and conditions for using such data was quite uncertain. According to GDPR
(article 6), an impermissible permanent filming and storing of public road traffic footage
remains prohibited. Accordingly, it was agreed that in Germany, dashcams would not be
permanently switched on, but rather used only to record a specific situation (dangerous
event). Recordings were to be stored only for a short time, to not endanger personal
rights of participants and other road users who did not sign up for the experiments; to
avoid storage, a loop function was recommended.
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5. Data Collection and Analysis

This chapter presents the outcomes of the data collected in the scope of this disserta-
tion (car driving simulator data in Germany), including the detailed protocols for the
experiments planning and organization, based on the guidelines developed in Chapter
4. The following sub–sections provide an overview of the practical aspects for those
experiments, but also first insights and visualizations of the outcomes obtained. Parts of
the results presented are given in Al Haddad, Abouelela, Kris Brijs, et al. (n.d.).

5.1. Practical aspects of experiments

The study design for the German car experiments followed the study protocols elaborated in
the previous sub–sections, in particular sub–sections 4.3.1 and 4.3.3. The methodology set out
for these experiments can be summarized in Figure 5.1.

5.1.1. Planning and organization

Participant handling and experimental protocol

• Participant handling ensured that all necessary forms were filled by participants, in
order to comply with the ethical, and data protection regulations that are necessary for
this type of study. In particular, participants were first briefed about the experiment
and what they were required to do (i.e., drive in the simulator and fill some forms),
after which they filled a consent form (to take part of the study, which was voluntary)
and a data protection form (for their consent to allow the processing of their data for
research purposes).

• Entry questionnaire1: initial attitudinal questions about ADAS and driving perceptions.

• Practice drive, and drives one and two (monitoring and intervention, respectively):
aimed to familiarize participants with the driving simulator itself. In this drive, the
eye tracking glasses were calibrated to the participants. Then, the first two drives
were completed. The first drive was a baseline drive, during which no warnings were
triggered. The second drive was a drive with interventions, during which real–time
warnings were triggered.

• Questionnaire Exit A: after completion of the first two drives, to assess participants’
perceptions towards the warning system.

1Details on the content of the different questionnaires is given in Section 4.1.2.
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z

Data analysis
• Descriptive and inferential statistics
• Eye tracking data visualization
• Questionnaire data analysis

Participant handling
• Briefing
• Consent and data protection forms
• Debriefing
• Compensation

z

z

Data Analysis and Model Development

Experimental protocol
• Entry questionnaire
• Practice drive, first drive (monitoring), 

second drive (intervention)
• Exit questionnaire (A)
• Third drive (distraction)
• Exit questionnaire (B)

Study design
• Objectives and hypotheses
• Data collection instruments
• Study protocol

z

Data collection and processing
• Participant recruitment
• Data collection from various sources
• Data extraction and processing

Model development
• Perceptions and acceptance models 
• Panel regression models
• Discussion and transferability of 

findings

Figure 5.1.: Study methodology (own illustration)

• Drive three: distraction drive. In this drive, the same scenario as before was given (with
different order of events); however this time, participants were requested to read and
respond to text messages. For all three drives, participants wore eye tracking glasses.
The aim was therefore to see how their eye movements changed between different
drives, in different conditions (with and without distraction).
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5.1. Practical aspects of experiments

• Exit questionnaire B: final questionnaire, filled after the final drive, aiming at assessing
one more time participants’ perceptions towards the warnings and their effectiveness.

• Debriefing: after the end of the experiments, aiming at informing participants that
texting while driving was only requested to assess the impact of distraction due to
mobile phone use during driving; it was important to stress this out, to highlight that
texting while driving was by no means encouraged. Debriefing was done however after
the completion of the experiments, to not bias participants’ behavior in the distraction
scenario.

• Compensation: given to participants upon completion of the experiments, as an incen-
tive, or rather thank you for their participation.

A comprehensive list of forms and questionnaires given to participants is presented in
Appendix C, in Sections C.1 and C.2, respectively.

5.1.2. Data handling for the collected data

The car simulator experiments conducted in Germany followed the data handling require-
ments set in Section 4.2. In particular, the experimental set–up was reviewed by the university
ethical committee. A first proposal was submitted to the university ethical committee
(“Ethikkomission der Technischen Universität München") on the 17th of February 2020; fol-
lowing feedback and amendments, a revised application was submitted and finally approved
on the 30th June 2020 (reference number 78/20 S-KH). Only after that, were recruitment and
advertisement for the study possible. Moreover, since the data collected involved personal
and possibly sensitive data, it was necessary to ensure compliance with data protection
regulations; in particular, data handling needed to follow GDPR (European Commission,
2018). Accordingly, an application for the adequate data use and processing was made to the
responsible (local) data protection entity at the university; the application was then reviewed
and approved.

5.1.3. Challenges: the COVID–19 pandemic

At the time of data collection, COVID-19 was an ongoing pandemic. This had an impact
on the project as a whole, but in particular on the contributions of this dissertation, namely
data collection in Germany. This translated to delays in delivering the equipment and the
driving simulator. Recruitment was therefore of course impacted, but also the planning and
organization of experiments. For a significant period of time, access to the university was
restricted to authorized personnel, to conduct only “essential" activities. Despite having
contacted the “corona crisis" unit of the university, and even with a suitable authorization
to carry on the data collection2, it was still a grey area for a while at least, whether or not
third–party (non–researchers) participants could access the university and participate in
the experiments. This therefore led to the inevitable rescheduling of experiments, and the

2An approval from the unit was not obtained, but neither was an objection expressed.
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consequent delay in the start of the study, until it was deemed more suitable for participants
to access the simulator facility.

5.2. Data collection

5.2.1. Sample and demographics

Participants were recruited through various channels: online (social media, LinkedIn, websites,
mailing lists, etc.), but also offline (posters with the necessary information). The inclusion
and exclusion criteria followed the guidelines set out in Fran Pilkington-Cheney et al. (2020).
The aim was to recruit a sample representative of Munich’s driver demographics. However,
since the latter was not easily obtainable, this was then changed to a sample representative of
Munich’s population. Inclusion criteria included having a valid driver’s license, and being
above 18 years old. Exclusion criteria included wearing glasses during the experiment (contact
lenses were acceptable), or having had previous ophthalmic surgeries, as these points would
not allow an adequate data collection using the selected eye trackers.

The recruitment resulted in over 100 interested participants, out of which 60 were selected
and conducted the full set of experiments3. Table 5.1 presents the sample characteristics for
the 60 participants, including gender, age, driver’s license duration (the number of years since
a participant has obtained his or her driver’s license), and vision impairment (important when
considering the eye trackers). The average and percentage values are provided for gender
and vision impairment (as they are categorical values), whereas median and interquartile
ranges are given for age and driver’s license duration (as they are continuous values). Beyond
these variables, the entry questionnaire reflected that most participants did not have medical
problems (97% of participants), nor previous accident history (93%), or fines (only 31%
of participants have had one or more fines in their lives–particularly 30% of those were
over–speeding fines).

Table 5.1.: Socio–demographics characteristics of sample data (N=60)

Variable Statistics
Gender Male 25 (42%)

Female 35 (58%)
Age 30 (26, 37)
Driver’s license duration (years) 9 (6, 15)
Vision impairment None 43 (72%)

Yes (contact lenses) 14 (23%)
Yes (no glasses, no contact lenses) 3 (5%)

3To reach this number, actually 62 participants participated in the experiments, out of which two could not
complete the runs due to simulator sickness.
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5.3. Data processing

5.2.2. Data types

Data collected within i–DREAMS is highly heterogeneous and results from a variety of sources
and instruments, as elaborated in Section 4.1.2. In particular, data collected in the simulator
experiments in Germany4 is detailed in Section 4.3.3, with a schematic representation of the
instruments in Figure 4.6. This data comes from different sources, namely:

• Simulation data including the driving simulator dataset (details on the simulator
parameters are provided in Appendix A.2.), the Mobileye dataset, the bracelet biometric
dataset5.

• The eye tracking dataset (exported from the eye tracking device).

• The questionnaire datasets (including the different demographics, and attitude ques-
tionnaires; an exhaustive list of questionnaires is provided in Appendix C.2).

5.3. Data processing

Data collected within the car simulator experiments in Germany resulted in a multitude of
datasets, of different types, as mentioned in Section 5.2.2. A necessary step is therefore the
processing of data in order to extract the needed variables for analysis. This section presents
the detailed data extraction of variables resulting from the driving simulator (Section 5.3.1),
and from the eye tracking glasses (Section 5.3.2), and a summary of selected variables (Section
5.3.3).

5.3.1. Driving simulator data extraction

The simulator software automatically collects driving parameters at frame rate (+/-60 Hz).
Further, for the purpose of the described experiments, the files generated by the simulation
also integrated external data including the ones from Mobileye, and the biometric data
generated from the bracelet; this data was then automatically collected and saved. A full list
of the driving simulator parameters and specifications are provided in Appendix A.2. For the
purpose of analysis, this data was then extracted and aggregated per event, and then used to
compare driving performance between different driving conditions and safety–critical events.

5.3.2. Eye tracking data extraction

To extract relevant eye tracking metrics, recordings containing participants’ eye movement
data and associated information like drive scenario (monitoring, intervention or distraction)
were imported into the Analyzer module of Tobii Pro Lab V1.162 (AB, 2014). Each recording
was analyzed individually after adjusting for time offsets (approximately 1s) to synchronize

4Data collected in the scope of this dissertation.
5The biometric dataset will not be used in this dissertation, but would be more relevant for assessing risk factors

such as fatigue for professional drivers, where longer driving hours are collected.
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the starting times of both the simulator and eye tracking recordings. Selected eye tracking
metrics were exported for the defined times of interests (TOIs) and areas of interests (AOIs).
TOIs, were the defined intervals of interest, for which the analysis was focused and extracted;
in our case the starting and ending points of critical events, which were manually defined.
AOIs were the areas defined, to assist the extraction of glance behavior on a particular area,
including the extraction of metrics such as fixation count and total fixation. For the distraction
scenario, five AOIs were created: the road ahead, the dashboard, the i-DREAMS display, the
mobile phone screen, and the pedestrian area. The first three were kept active all the time,
while the mobile phone screen was activated only when the use of the phone was relevant, i.e.,
when drivers were requested to read or respond to a text message using the mobile phone.
Similarly, the pedestrian AOI was only activated during critical events involving VRUs. For
the remaining recordings (baseline and intervention recordings), all AOIs were used, except
the mobile phone screen, as no texting or mobile phone use was part of those drives. As both
driver movements and the simulation scene were highly dynamic, the AOIs position and
sizes needed to be constantly (manually) adjusted. The required metrics from the analyzed
recordings containing information about a particular AOI during a certain TOI were then
exported as CSV files. An example of the Analyzer module interface, including both AOIs
and TOIs is given in Figure 5.2.

(a) The Time of Interest (TOI) interface (b) The Area of Interest (AOI) interface

Figure 5.2.: Interfaces in the Analyzer module of Tobii Pro Lab V1.162 (source: own illustration)

While various metrics could be of interest for visual tracking analysis (as mentioned in
Section 1.2.2 of the introduction), the ones selected for the purpose of this research are the the
total fixation duration and total fixation count for the areas of interest. Fixation Count (FC) is
the total number of fixations present on a particular AOI (Sharafi, Soh, and Guéhéneuc, 2015;
Tobii Pro AB, 2020). Goldberg and Kotval (1999) noted that a higher number of fixations on a
specific AOI due to an induced stimulus meant that the subject was not able to cognitively
gather relevant information he or she was looking for efficiently. Previous eye tracking studies
used this variable to single out AOIs that attracted more visual attention/gaze. A higher
value for this metric was also used to imply that more visual effort was required to perform a
specified task. Total Fixation Duration (TFD) has been defined as the sum of the durations
of all fixations on an AOI during a specified task (T. Busjahn, Schulte, and A. Busjahn, 2011;
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T. Busjahn, Bednarik, and Schulte, 2014). This metric can also be obtained as the summation
of all dwell times by a subject on a particular AOI during the entire duration of a task (T.
Busjahn, Bednarik, and Schulte, 2014). The purpose would be to eventually assess based on
these metrics the attention drivers had on one area as compared to another.

5.3.3. Summary of data collected and processed

A summary of the variables selected for analysis, including the simulator and eye tracking
variables is given in Table 5.2.
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Table 5.2.: Selected simulator and eye tracking variables
Category Variable Explanation Unit Remark(s)

Longitudinal con-
trol

Long. vel. (mean, max.) Longitudinal velocity m/s

Headway (mean, min) Time headway to vehicle ahead in
same lane

s Only used for tailgating events

Long. acc. (mean, max.) Longitudinal acceleration m/s2

Lateral control Lat. pos. (mean, SD) Lateral position with respect to di-
viding lane (right is positive)

m

Steer. angle (mean, SD) Steering wheel angle degrees
Lat. vel. (mean, max.) Lateral Velocity m/s
Lat. acc. (mean, max.) Lateral acceleration m/s2

Risk perception TTC (mean, min) Time–to–collision with vehicle
ahead (for tailgating events) or
pedestrian ahead (for VRU events).

s TTC is used for tailgating events and
TTC_ped is used for VRU events (calcu-
lated variable).

Gas displ. (mean, min, SD) Percentage of max. gas pedal, where
1 is the maximum pressing.

0-1

Brake displ. (mean, max.,
SD)

Percentage of max. brake pedal,
where 1 is the maximum pressing.

0-1

Fixation count Fixation count (i-DREAMS
display)

Not applicable for the monitoring drive,
where no interventions are activated

Fixation count (Road ahead)
Fixation count (Dashboard)
Fixation count (Pedestrian) Only applicable for VRU events

Fixation duration Total fixation duration (i-
DREAMS display)

Not applicable for the monitoring drive,
where no interventions are activated

Total fixation duration (Road
ahead)
Total fixation duration (Dash-
board)
Total fixation duration
(Pedestrian ahead)

Only applicable for VRU events
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5.4. Data analysis

This section presents an overview of the analysis for the collected data, including de-
scriptive and inferential statistics for the simulator and eye tracking data (Section 5.4.1),
a visualization of the eye movement data (Section 5.4.2), but also an overview on the
main results of the questionnaire data (Section 5.4.3). Analysis results pave the way
to obtaining first insights on the collected data, with initial points of discussion, that
enable the later modeling steps. Parts of the results presented in this chapter are found
in Al Haddad, Abouelela, Kris Brijs, et al. (n.d.).

5.4.1. Descriptive and inferential statistics for the simulator and eye tracking data

In this section, an overview of the aggregated results for the selected variables is provided;
in essence, for the selected variables, mean values are provided per event and as an average
over all 60 participants. Furthermore, an independent two–sample t–test was conducted to
compare the change in the selected variables based on the change in the different conditions;
namely, the aim was to assess the impact on driving performance and visual attention of
different conditions on the one hand (warnings and distraction), and of different safety–critical
events on the other hand (differences between different events and event types and related
conditions). This can be summarized as follows:

1. A two sample t–test to compare the impact of warnings and distraction on the selected
variables. This was conducted by performing pairwise t–tests between the different
drives: monitoring, intervention, and distraction. The results for these comparisons are
presented in Tables 5.3, 5.4, 5.56.

a) When comparing the monitoring and intervention drives (meaning measuring the
direct impact of warnings), following observations were noted, based on the results
presented in Table 5.3. For longitudinal control parameters, velocity (both mean
and max.) significantly increased in the intervention drive as compared to the
monitoring one. Moreover, longitudinal acceleration (mean and max.) increased
in magnitude (negative magnitude means here deceleration) for the intervention
drive (CE1) as compared to the monitoring one. On the other hand, no significant
changes were noted in the lateral control variables between the monitoring and
the intervention drives. For risk perception variables, notably minimum time–to–
collision, a significant decrease was noted in the intervention drive, as compared to
the monitoring one. Similarly, for tailgating events, significant changes were noted
in the minimum percentage of gas pedal displaced (a significant decrease in the
intervention drive) and in the maximum percentage of brake pedal displaced (sig-
nificant increase). Finally, both road ahead count and fixation metrics significantly
decreased for tailgating events in the intervention drive (maybe as participants
were looking more at the display or the dashboard); on the other hand, a significant

6Please note that for these tables, abbreviations are used for most simulator variables; the full description of
these variables is given in Table 5.2.
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increase was noted in the fixation duration and count for the pedestrian area for
the VRU events in the intervention drives as compared to the monitoring ones.

b) When comparing the intervention and the distraction drives (meaning measuring
the direct impact of distraction), following observations were noted, based on the
results presented in Table 5.4. Longitudinal control variables were significantly
impacted by distraction; notably maximum velocity significantly increased in some
pedestrian events, while it decreased for some tailgating events. On the other hand,
metrics for lateral control, in particular those indicating variability, such as the
standard deviation of lateral position and of the steering wheel angle, consistently
increased for the distraction drives for the different events. When looking at the
pedal metrics, a higher standard deviation of the gas pedal displacement was noted
for the tailgating events in distraction scenarios, as well as a higher maximum brake
percentage for all the events, possibly indicating an increase in braking reaction
due to distraction (possibly to compensate the deteriorating driving performance).
Finally, when looking at the eye tracking metrics, we noticed a somewhat mixed
variation in the fixation count and duration of the i—DREAMS display (higher
fixation at the i–DREAMS display for VRU events, but lower for the tailgating
events). Moreover, the fixation metrics (both count and duration) on the road
ahead, the dashboard, and the pedestrian, consistently decreased (significantly)
due to distraction, in all events.

c) By comparing the monitoring drive with the distraction one (though no direct
conclusions can come out of that, since two conditions changed between these two
drives), the following was observed, based on results presented in Table 5.5: an
increase in maximum longitudinal velocity for pedestrian and tailgating events in
the distraction drive, as well as a significant change in the longitudinal acceleration.
Moreover, as observed when comparing the intervention and distraction drives, a
significant change in lateral control was observed, reflected in a significant change
in the standard deviation of the lateral position and steering wheel angles, both of
which significantly increased in the distraction drive. Also, the gas pedal displace-
ment (SD) significantly increased in the distraction drive, while its minimum value
decreased; on the other hand, the maximum brake pedal percentage significantly
increased for the distraction drive. Finally, we observed significantly lower fixation
(count and duration) on the road ahead, dashboard, and even pedestrian in the
distraction drive (less fixation on these areas, possibly due to driver distraction).
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Table 5.3.: Two–sample t–test results for selected variables between monitoring and intervention drives

Category Variable

Potential vulnerable road user interactions Tailgating scenarios

Critical event 1 Critical event 2 Critical event 3 Critical event 1 Critical event 2 Critical event 3

Mon. Int. t-
value

Mon. Int. t-
value

Mon. Int. t-
value

Mon. Int. t-
value

Mon. Int. t-
value

Mon. Int. t-
value

Long. Long. vel. (mean) 13.65 14.23 -0.84 9.91 10.28 -0.58 11.21 11.84 -1.32 14.66 15.91 -2.59 20.84 23.89 -2.26 10.91 11.99 -2.47

control Long. vel. (max.) 19.57 20.02 -0.67 14.19 14.13 0.11 14.45 15.09 -1.19 18.96 19.99 -1.30 26.57 30.34 -2.73 13.73 14.74 -1.70

Headway (mean) N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. 35.14 23.50 1.23 31.86 25.65 0.38 153.19 64.68 2.35

Headway (min.) N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. 16.18 8.57 1.14 17.48 8.75 1.26 14.42 9.16 1.21

Headway (SD) N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. 25.31 22.53 0.45 13.54 192.79 -0.94 379.89 77.37 1.72

Long. acc. (mean) -0.13 -0.26 2.17 -0.16 -0.23 1.26 -0.13 -0.11 -0.28 -0.05 -0.01 -1.01 0.22 0.25 -0.52 0.02 0.04 -0.96

Long. acc. (max.) -3.58 -3.88 0.48 -1.85 -1.33 -0.77 -3.37 -2.19 -1.73 -0.28 -0.98 1.36 0.67 0.12 1.21 -0.32 0.43 -1.42

Lateral Lat. pos. (mean) 2.39 2.22 0.82 6.49 6.46 0.59 6.36 6.36 0.01 7.07 7.19 -0.73 11.33 11.74 -1.03 2.13 2.17 -0.18

control Lat. pos. (SD) 0.21 0.15 0.91 0.13 0.14 -0.53 0.15 0.15 -0.17 0.16 0.13 1.07 0.30 0.25 0.57 0.18 0.13 1.13

Steer. angle (mean) -0.02 -0.04 0.29 0.09 -0.00 1.04 -0.05 0.01 -0.87 0.03 -0.00 1.30 -0.03 -0.03 0.04 0.10 -0.00 1.50

Steer. angle (SD) 1.05 1.26 -0.67 1.09 1.26 -0.71 1.29 1.02 1.05 0.74 0.76 -0.11 0.80 0.69 0.65 1.50 1.06 0.96

Lat. vel. (mean) 0.008 0.001 1.04 0.004 0.004 0.08 0.001 0.00 0.36 -0.001 0.003 -1.25 -0.005 0.002 -0.70 0.006 0.006 -0.01

Lat. vel. (max.) 0.04 0.04 -0.16 0.03 0.02 0.23 0.01 0.03 -0.46 -0.005 -0.001 -0.08 -0.02 -1.07 0.96 0.03 0.05 -0.57

Lat. acc. (mean) 0.00 -0.001 1.50 -0.00 -0.00 0.10 -0.001 -0.00 -0.30 -0.00 -0.00 0.06 -0.001 -0.002 0.69 -0.001 -0.00 -0.83

Lat. acc. (max.) 0.03 -0.07 0.97 -0.02 -0.003 -0.96 -0.03 -0.01 -1.11 -0.05 -0.02 -0.71 -0.06 -0.12 0.67 -0.02 -0.04 0.63

Risk TTC (mean) 184.39 141.98 1.44 238.73 121.29 1.60 468.11 322.72 2.07 334.78 231.14 0.90 361.10 197.81 0.99 1087.72 870.46 0.53

perception TTC (min.) 42.96 17.48 1.31 82.26 30.65 1.33 100.68 15.35 2.29 35.60 24.05 0.70 41.74 30.97 0.44 43.07 28.32 0.88

TTC (SD) 263.30 172.79 1.48 396.43 509.02 -0.58 481.78 409.05 0.67 2675.20 1228.50 1.08 1851.24 1167.14 0.67 7054.92 6096.95 0.26

Gas displ. (mean) 0.37 0.35 0.92 0.27 0.24 1.33 0.29 0.29 -0.10 0.33 0.36 -1.57 0.54 0.62 -1.69 0.28 0.31 -1.61

Gas displ. (min.) 0.03 0.01 1.11 0.02 0.01 0.85 0.01 0.02 -0.78 0.02 0.02 0.20 0.19 0.07 2.79 0.01 0.02 -1.71

Gas displ. (SD) 0.27 0.28 -0.74 0.20 0.19 1.14 0.17 0.18 -0.51 0.20 0.22 -1.70 0.22 0.26 -2.00 0.17 0.19 -1.06

Brake displ. (mean) 0.11 0.12 -0.59 0.09 0.08 2.00 0.08 0.07 1.33 0.06 0.06 -0.34 0.06 0.06 -0.10 0.06 0.06 -0.00

Brake displ. (max.) 0.54 0.59 -0.81 0.48 0.35 2.42 0.55 0.39 2.26 0.14 0.23 -2.05 0.11 0.11 -0.00 0.23 0.21 0.56

Brake displ. (SD) 0.14 0.15 -0.56 0.10 0.07 2.40 0.10 0.07 2.20 0.02 0.03 -1.70 0.01 0.01 0.46 0.03 0.03 0.71

Gaze Road ahead 37.90 35.47 0.96 53.68 48.45 1.81 70.18 62.35 1.86 50.47 46.25 1.03 38.00 36.95 0.34 80.97 64.75 2.41

fixation Dashboard 9.02 8.18 0.67 7.40 7.98 -0.51 12.58 11.28 0.89 11.03 9.55 1.10 7.38 6.05 1.16 12.33 11.22 0.71

count Pedestrian ahead 6.72 8.03 -1.87 11.82 12.17 -0.31 13.15 14.75 -0.97 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

Gaze Road ahead AOI 12.85 12.49 0.54 17.32 17.33 -0.01 23.58 23.43 0.12 22.89 18.96 2.37 16.73 15.65 0.98 28.43 23.88 2.02

fixation Dashboard 2.72 2.50 0.53 2.11 2.29 -0.50 3.46 3.37 0.20 3.27 2.97 0.60 2.04 1.74 0.84 2.91 2.81 0.25

duration Pedestrian ahead 2.25 2.77 -2.43 3.41 4.45 -2.17 3.96 5.67 -2.68 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
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Table 5.4.: Two–sample t–test results for selected variables between intervention and distraction drives

Category Variable

Potential vulnerable road user interactions Tailgating scenarios

Critical event 1 Critical event 2 Critical event 3 Critical event 1 Critical event 2 Critical event 3

Int. Dist. t-
value

Int. Dist. t-
value

Int. Dist. t-
value

Int. Dist. t-
value

Int. Dist. t-
value

Int. Dist. t-
value

Long. Long. vel. (mean) 14.23 13.77 0.68 10.28 10.72 -1.03 11.84 11.75 0.17 15.91 14.84 2.05 23.89 24.52 -0.51 11.99 11.32 1.34

control Long. vel. (max.) 20.02 20.50 -0.64 14.13 15.57 -2.34 15.09 16.40 -1.62 19.99 20.46 -0.58 30.34 29.26 0.85 14.74 15.72 -1.28

Headway (mean) N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. 23.50 180.88 -1.10 25.65 179.05 -0.92 64.68 126.55 -2.41

Headway (min.) N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. 8.57 10.61 -0.33 8.75 170.28 -0.97 9.16 13.95 -0.81

Headway (SD) N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. 22.53 118.60 -1.23 192.79 7.64 0.97 77.37 348.67 -1.49

Long. acc. (mean) -0.26 -0.15 -1.85 -0.23 -0.21 -0.39 -0.11 -0.10 -0.58 -0.01 0.08 -2.35 0.25 0.11 2.66 0.04 0.01 1.36

Long. acc. (max.) -3.88 -3.60 -0.43 -1.33 -2.30 1.50 -2.19 -2.25 0.09 -0.98 0.22 -2.09 0.12 -0.34 0.96 0.43 -0.26 1.14

Lateral Lat. pos. (mean) 2.22 2.25 -0.21 6.46 6.32 1.28 6.36 6.49 -1.13 7.19 7.16 0.49 11.74 11.92 -0.67 2.17 2.24 -0.29

control Lat. pos. (SD) 0.15 0.27 -2.00 0.14 0.24 -1.59 0.15 0.37 -2.42 0.13 0.25 -2.92 0.25 0.31 -0.76 0.13 0.26 -1.45

Steer. angle (mean) -0.04 -0.10 0.64 -0.00 0.09 -0.94 0.01 0.05 -0.73 -0.00 -0.06 1.02 -0.03 -0.10 0.84 -0.00 0.02 -0.64

Steer. angle (SD) 1.26 2.04 -1.77 1.26 1.89 -2.13 1.02 1.61 -2.68 0.76 1.64 -3.88 0.69 1.12 -2.52 1.06 1.78 -3.24

Late. vel. (mean) 0.001 -0.008 2.175 0.004 0.008 -1.170 0.000 0.004 -0.941 0.003 -0.002 1.671 0.002 -0.012 1.744 0.006 0.003 1.386

Lat. vel. (max.) 0.045 -0.128 1.828 0.021 -1.044 0.980 0.026 -2.218 1.449 -0.001 0.002 -0.061 -1.068 -0.134 -0.858 0.050 -2.182 1.441

Lat. acc. (mean) -0.001 -0.001 0.144 -0.000 0.001 -1.607 -0.000 -0.001 0.706 -0.000 -0.000 0.219 -0.002 -0.002 -0.268 -0.000 0.001 -0.970

Lat. acc. (max.) -0.076 -0.124 0.347 -0.003 0.011 -0.499 -0.010 -0.047 0.804 -0.022 0.056 -0.961 -0.122 -0.144 0.182 -0.045 -0.000 -0.885

Risk TTC (mean) 141.98 224.27 -2.65 121.29 182.39 -1.51 322.72 326.65 -0.12 231.14 724.80 -1.98 197.81 1978.33 -1.14 870.46 384.58 1.47

perception TTC (min.) 17.48 21.72 -0.23 30.65 30.38 0.01 15.35 26.69 -0.74 24.05 25.72 -0.13 30.97 249.68 -0.98 28.32 13.22 1.23

TTC (SD) 172.79 237.24 -2.09 509.02 362.78 0.70 409.05 362.79 0.67 1228.50 4036.57 -1.23 1167.14 22088.48 -1.00 6096.95 1625.90 1.50

Gas displ. (mean) 0.35 0.35 0.08 0.24 0.25 -0.66 0.29 0.27 0.73 0.36 0.36 0.20 0.62 0.59 0.75 0.31 0.29 1.43

Gas displ. (min.) 0.01 0.03 -1.05 0.01 0.01 -0.46 0.02 0.02 -0.14 0.02 0.02 -0.28 0.07 0.06 0.35 0.02 0.01 1.25

Gas displ. (SD) 0.28 0.26 1.12 0.19 0.21 -1.50 0.18 0.21 -1.71 0.22 0.25 -1.74 0.26 0.28 -0.68 0.19 0.22 -2.65

Brake displ. (mean) 0.12 0.11 1.19 0.08 0.09 -1.48 0.07 0.08 -0.32 0.06 0.06 -0.27 0.06 0.06 -0.21 0.06 0.07 -1.25

Brake displ. (max.) 0.59 0.58 0.21 0.35 0.46 -2.00 0.39 0.43 -0.52 0.23 0.22 0.21 0.11 0.11 -0.16 0.21 0.31 -2.40

Brake displ. (SD) 0.15 0.13 0.75 0.07 0.10 -1.79 0.07 0.08 -0.50 0.03 0.03 0.20 0.01 0.01 -0.50 0.03 0.05 -2.66

Gaze i-Dreams display 1.10 2.63 -3.53 0.88 3.98 -5.01 1.52 3.65 -3.66 5.22 3.20 2.43 4.73 4.10 0.66 3.02 2.08 1.36

fixation Road ahead 35.47 33.12 0.86 48.45 39.45 2.86 62.35 42.03 4.47 46.25 32.63 3.39 36.95 31.77 1.68 64.75 31.43 6.61

count Dashboard 8.18 6.82 0.98 7.98 6.48 0.93 11.28 9.30 1.14 9.55 7.07 1.70 6.05 4.63 1.34 11.22 7.05 2.29

Pedestrian ahead 8.03 4.87 4.20 12.17 8.88 2.60 14.75 7.43 4.27 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

Gaze i-DREAMS display 0.25 0.78 -3.14 0.17 1.05 -5.56 0.31 1.03 -4.09 1.18 0.83 1.65 1.36 1.05 0.90 0.59 0.53 0.36

fixation Road ahead 12.49 11.55 1.25 17.33 13.06 3.82 23.43 14.91 5.23 18.96 10.13 6.60 15.65 11.54 3.93 23.88 10.80 8.50

duration Dashboard 2.50 1.86 1.57 2.29 1.57 1.92 3.37 2.46 1.90 2.97 2.05 1.79 1.74 1.16 1.95 2.81 1.88 2.11

Pedestrian ahead 2.77 1.74 4.79 4.45 2.82 3.06 5.67 2.69 4.19 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

84



5.4.
D

ata
analysis

Table 5.5.: Two–sample t–test results for selected variables between monitoring and distraction drives

Category Variable

Vulnerable road user scenarios Tailgating scenarios

Critical event 1 Critical event 2 Critical event 3 Critical event 1 Critical event 2 Critical event 3

Mon. Dist. t-value Mon. Dist. t-value Mon. Dist. t-value Mon. Dist. t-value Mon. Dist. t-value Mon. Dist. t-value

Long. Long. vel. (mean) 13.65 13.77 -0.16 9.91 10.72 -1.30 11.21 11.75 -1.12 14.66 14.84 -0.32 20.84 24.52 -2.84 10.91 11.32 -1.18

control Long. vel. (max.) 19.57 20.50 -1.08 14.19 15.57 -1.87 14.45 16.40 -2.48 18.96 20.46 -1.72 26.57 29.26 -1.91 13.73 15.72 -3.03

Headway (mean) N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. 35.14 180.88 -1.02 31.86 179.05 -0.88 153.19 126.55 0.60

Headway (min.) N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. 16.18 10.61 0.79 17.48 170.28 -0.92 14.42 13.95 0.08

Long. acc. (mean) -0.13 -0.15 0.45 -0.16 -0.21 0.89 -0.13 -0.10 -0.75 -0.05 0.08 -3.31 0.22 0.11 1.88 0.02 0.01 0.62

Long. acc. (max.) -3.58 -3.60 0.03 -1.85 -2.30 0.65 -3.37 -2.25 -1.54 -0.28 0.22 -0.97 0.67 -0.34 2.20 -0.32 -0.26 -0.10

Lateral Lat. pos. (mean) 2.39 2.25 0.65 6.49 6.32 1.53 6.36 6.49 -1.13 7.07 7.16 -0.54 11.33 11.92 -1.72 2.13 2.24 -0.58

control Lat. pos. (SD) 0.21 0.27 -0.66 0.13 0.24 -1.71 0.15 0.37 -2.47 0.16 0.25 -2.10 0.30 0.31 -0.14 0.18 0.26 -0.89

Steer. angle (mean) -0.02 -0.10 0.85 0.09 0.09 0.04 -0.05 0.05 -1.42 0.03 -0.06 1.44 -0.03 -0.10 0.87 0.10 0.02 1.09

Steer. angle (SD) 1.05 2.04 -2.76 1.09 1.89 -3.43 1.29 1.61 -1.23 0.74 1.64 -4.34 0.80 1.12 -2.01 1.50 1.78 -0.58

Lat. vel. (mean) 0.01 -0.01 2.14 0.00 0.01 -1.18 0.00 0.00 -0.72 -0.00 -0.00 0.46 -0.01 -0.01 0.60 0.01 0.00 1.18

Lat. vel. (max.) 0.04 -0.13 1.99 0.03 -1.04 0.99 0.01 -2.22 1.44 -0.00 0.00 -0.11 -0.02 -0.13 1.39 0.04 -2.18 1.43

Lat. acc. (mean) 0.00 -0.00 0.88 -0.00 0.00 -1.79 -0.00 -0.00 0.61 -0.00 -0.00 0.16 -0.00 -0.00 0.51 -0.00 0.00 -1.36

Lat. acc. (max.) 0.03 -0.12 1.64 -0.02 0.01 -1.45 -0.03 -0.05 0.36 -0.05 0.06 -1.22 -0.06 -0.14 0.78 -0.02 -0.00 -0.50

Risk TTC (mean) 184.39 224.27 -1.21 238.73 182.39 0.74 468.11 326.65 2.00 334.78 724.80 -1.60 361.10 1978.33 -1.03 1087.72 384.58 2.53

perception TTC (min.) 42.96 21.72 1.00 82.26 30.38 1.35 100.68 26.69 2.01 35.60 25.72 0.73 41.74 249.68 -0.93 43.07 13.22 2.53

Gas displ. (mean) 0.37 0.35 0.89 0.27 0.25 0.63 0.29 0.27 0.60 0.33 0.36 -1.40 0.54 0.59 -1.15 0.28 0.29 -0.09

Gas displ. (min.) 0.03 0.03 0.33 0.02 0.01 0.55 0.01 0.02 -0.84 0.02 0.02 -0.11 0.19 0.06 3.24 0.01 0.01 -0.37

Gas displ. (SD) 0.27 0.26 0.40 0.20 0.21 -0.51 0.17 0.21 -2.22 0.20 0.25 -3.64 0.22 0.28 -2.58 0.17 0.22 -3.80

Brake displ. (mean) 0.11 0.11 0.64 0.09 0.09 0.42 0.08 0.08 0.89 0.06 0.06 -0.60 0.06 0.06 -0.30 0.06 0.07 -1.24

Brake displ. (max.) 0.54 0.58 -0.59 0.48 0.46 0.32 0.55 0.43 1.66 0.14 0.22 -2.10 0.11 0.11 -0.16 0.23 0.31 -1.80

Brake displ. (SD) 0.14 0.13 0.18 0.10 0.10 0.54 0.10 0.08 1.60 0.02 0.03 -1.67 0.01 0.01 0.09 0.03 0.05 -1.82

Gaze Road ahead 37.90 33.12 1.87 53.68 39.45 4.82 70.18 42.03 6.56 50.47 32.63 4.36 38.00 31.77 2.05 80.97 31.43 8.75

fixation Dashboard 9.02 6.82 1.62 7.40 6.48 0.61 12.58 9.30 1.83 11.03 7.07 2.68 7.38 4.63 2.47 12.33 7.05 2.84

count Pedestrian ahead 6.72 4.87 2.66 11.82 8.88 2.65 13.15 7.43 3.96 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

Gaze Road ahead 12.85 11.55 1.91 17.32 13.06 4.46 23.58 14.91 6.18 22.89 10.13 8.37 16.73 11.54 4.95 28.43 10.80 9.19

fixation Dashboard 2.72 1.86 2.17 2.11 1.57 1.54 3.46 2.46 1.98 3.27 2.05 2.53 2.04 1.16 2.73 2.91 1.88 2.36

duration Pedestrian ahead 2.25 1.74 2.30 3.41 2.82 1.58 3.96 2.69 2.55 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
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2. A t–test analysis to compare the impact of different conditions (or change in events
conditions) on the selected driving performance and eye tracking metrics. For each of
the sub–groups, VRU interactions and tailgating events, a pairwise t–test analysis has
been conducted between the different events; results for these comparisons are provided
in Appendix D.1.

a) VRU events: an overview of the events as well as a comparison between the
different events, notably between between the first (CE1-Ped-Rural) and second
(CE2- Ped-Urban) event, the first (CE1-Ped-Rural) and third (CE3-Ped-Urban) event,
and between between the second (CE2-Ped-Urban) and third (CE3-Ped-Urban)
event, is provided in Tables D.1 , D.2, and D.3 of Appendix D.1.1, respectively.

i. Comparing the first and second pedestrian events (Table D.1) revealed that
longitudinal velocity was overall lower in the urban event, while lateral position
was higher. Gas pedal displacement was lower for the urban event, as well
as the maximum brake percentage displaced. Finally, eye tracking metrics
revealed that in the urban event, fixation on the road ahead was higher, on the
dashboard lower, and on pedestrians, significantly higher.

ii. Comparing the first and third pedestrian events (Table D.2) revealed similar
insights; longitudinal velocity (mean and max.) was significantly lower in
urban environment as compared to rural; this was also the case for longitudinal
acceleration (but not for lateral position which was higher). Similarly, gas
pedal displacement and brake pedal displacement significantly decreased for
the urban event as compared to the rural one. Finally, insights similar to those
observed in Table D.1 were found with respect to eye tracking metrics: overall
fixation (both gaze count and total gaze duration) was found to be significantly
higher for the urban event for each of road ahead, dashboard, and pedestrian
areas, as compared to the rural pedestrian events.

iii. Between the second and third events (both urban; see Table D.3), a higher
longitudinal acceleration (max.) was observed for the latter, as well as a
higher longitudinal velocity (both mean and max.). For the eye tracking
measures, a higher fixation (count and duration) was noted for CE3 for the
dashboard area, the road ahead, but also pedestrian area (except for distraction
where a decrease was noted between CE2 as compared to CE3). Results for
this comparison are difficult to interpret since they pertain to a comparison
between two pedestrian events with a similar environment (both urban).

b) Tailgating events: a comparison between the tailgating events: basically a compari-
son between the different environments, rural (CE1-Tail-Rural), highway (CE2-Tail-
Highway), and urban (CE3-Tail-Urban) was conducted; a summary of the results
is provided in Tables D.4, D.5, and D.6 of Appendix D.1.2.

i. When comparing the rural and highway environments for tailgating events
(Table D.4), a significant increase in longitudinal velocity (mean and max.),
longitudinal acceleration (mean) and lateral position (mean) is observed for the
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highway events as compared to the rural (probably due to the inherently higher
speed limits for highway environments. Moreover, the gas pedal percentage
displaced (mean) seems to be significantly higher in the highway environment,
whereas the brake percentage significantly lower (also consistent with the
nature of the environments). Finally, a significant decrease in the gaze fixation
was noted for the events in highway environment (fixation on the road ahead
and the dashboard).

ii. Significantly lower longitudinal velocities (mean and max.), acceleration (mean
and max.), lateral position (mean), and gas pedal percentage displaced (mean)
were noted for urban tailgating events, as compared to the rural ones (Table
D.5). On the other hand, a significantly higher steering wheel variability (SD),
and brake displacement (max.) were noted for urban as compared to rural
tailgating events. Eye tracking metrics revealed a higher fixation gaze for the
road ahead in urban events; however, for the dashboard fixation, while fixation
count was higher for the urban events, the fixation duration was lower.

iii. Finally, when comparing urban and highway tailgating events (Table D.6),
some significant changes (that were expected) were noted: significantly lower
longitudinal velocity, acceleration, and lateral position for the urban events
(expected as in highway environments, more lane changes happen). On the
other hand, a significantly higher steering wheel angle variation was noted
for the urban events. Moreover, the gas pedal displacement was significantly
lower for the urban events (also expected, due to lower speeds or opportunities
of speeding), as opposed to an overall higher brake pedal displacement (max.);
the latter also makes sense since on a highway, less harsh braking is expected.
Finally, eye tracking metrics reveal higher gaze fixation (both duration and
count) for each of the road ahead and the dashboard in the urban environment,
as compared to the highway.

5.4.2. Eye tracking dataset visualization

One of the main purposes of eye tracking-based experiments is to provide information
about visual attention distribution and its fluctuations for specific stimuli such as distraction
in driving simulator studies (Blascheck et al., 2017). Visual tracking devices record gaze
coordinates as raw data and then aggregates them into fixations and saccades (AB, 2014; Tobii
Pro AB, 2020). For a specific area of interest, this data needs to be visually presentable to
provide a quantitative and/or qualitative measure of the attention distribution (Blascheck
et al., 2017). In addition to using statistical methods to analyze eye movement data (as done
in Holmqvist et al. (2011)), visualization methods are often helpful (Andrienko et al., 2012),
to qualitatively visualize the glance behavior intensity; one example is the use of heatmaps
(Blascheck et al., 2017). Heatmaps were therefore extracted using the Analyzer module of
the eye trackng glasses; in essence, the heatmaps assist in visualizing the aggregated gaze
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behavior (both fixation and count) for all participants (N=60) for the different scenarios7. For
each drive scenario, six aggregated heat maps were obtained (to directly visualize the change
induced by distraction), each of them corresponding to one safety-critical event. Heat maps
use color distributions to display the duration and number of fixations subjects made within
a specific AOI; the distribution ranges from red (highest fixation count and longest fixation
duration) to green (least count and duration). In this section, a visualization based on the
total fixation duration is presented, and as done in Beraneck, Lambert, and Sadeghi (2014).

Figures 5.3, 5.4, and 5.5 present the gaze aggregations during potential vulnerable user
interactions and tailgating scenarios for the intervention and distraction drives8, assisting in
visualizing the changes induced by distraction in the third drive. The heatmaps show that
during distraction (as compared to the intervention scenario), drivers’ gazes tend to be more
spread over the different areas of interest, notably the intervention system (marked by a red
square). In other words, we can visually see that drivers’ attention is more “divided" during
distraction, irrespective of the safety–critical event or of the driving environment.

7It should be noted that heatmap exports are normally provided on a black background by Tobii Pro Lab. For
the sake of visualization, heatmaps representing the aggregate glance data over the events of interest have
been transposed on an individual snapshot of the driving environment during a moment in the corresponding
safety-critical event (otherwise, this would be on an empty background, which would not be easy to grasp).

8For a description of the critical events, please refer to Table A.3 of Appendix A.2
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(a) CE2, intervention scenario (b) CE2, distraction scenario (c) CE6, intervention scenario (d) CE6, distraction scenario

Figure 5.3.: Heat maps for gaze distribution during CE2 (vulnerable road user interaction) and CE6 (tailgating scenario) in the
urban context

(a) CE1, intervention scenario (b) CE1, distraction scenario (c) CE4, intervention scenario (d) CE4, distraction scenario

Figure 5.4.: Heat maps for gaze distribution during CE1 (vulnerable road user interaction) and CE4 (tailgating scenario) in the
rural context (N=60)

(a) CE3, intervention scenario (b) CE3, distraction scenario (c) CE5, intervention scenario (d) CE5, distraction scenario

Figure 5.5.: Heat maps for gaze distribution during CE3 (vulnerable road user interaction) in the urban context and CE6
(tailgating scenario) in a highway environment (N=60)89
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5.4.3. Questionnaire data analysis

In addition to getting first insights on the driving simulator and eye tracking datasets,
assessing drivers’ responses to the different questionnaires is crucial to better understand
their initial attitudes and perceptions towards driving, driving safety, ADAS, but also their
feedback, perceptions, and acceptance of the system they experienced, namely the i–DREAMS
system. In this sub–section, a descriptive analysis of the questionnaires results is provided,
with initial statistics on demographics’ impacts on various attitudes. After that, a qualitative
analysis of the questionnaires’ open–ended questions was conducted, to further explore
participants’ experiences.

1. Descriptive analysis
The descriptive questionnaire analysis consists of an analysis of responses to the entry
questionnaire and to the first exit questionnaire (Exit A). After aggregating the results
over participants, average values for the different constructs were visualized. Only
when otherwise significant, a differentiation by gender is shown. Figures 5.6 to 5.8
present participants’ attitudes towards ADAS, towards the i–DREAMS system, but also
towards the system clarity. Additional plots representing participants’ exposure to
ADAS (availability in their vehicles and frequency of use), perceptions with regards to
distraction engagement and driving are presented in Appendix D.2.1.

Furthermore, an assessment of the impact of demographics on various perceptions was
made; in particular, the impact of gender9 was investigated, using Chi-square tests, with
a 95% confidence level. Overall, the Chi-square tests showed that gender did not impact
significantly the constructs of ADAS presence, frequency of use, perceptions towards
ADAS, overall attitudes towards distraction engagement, driving, but also attitudes
towards the i-DREAMS system. The Chi–square results for gender and other attitudinal
variables are presented in Appendix D.3.1.

In the entry questionnaire, participants’ attitudes towards ADAS in general were
assessed, with insights on their perception of ADAS usefulness, ease of use, but also
potential distracting effect they might have on driving. Figure 5.6 presents a summary
of these findings for the different statements, which had five response options, ranging
from “strongly disagree" to “strongly agree". For the below summary, the term “agree"
will be used as a simpler way to refer to both answer options “strongly agree" and
“agree", whereas the term “disagree" would be used as a simplification for “strongly
disagree" and “disagree". In general, most respondents seemed to agree that ADAS
are useful (about 95%) and are a good idea (about 90%), and that they have benefits
[help maintaining safe driving (above 80%), decrease accident risk (above 70%)]. The
majority also seemed to trust the information received from ADAS (above 60%), and feel
comfortable doing other things with ADAS (above 50%). Moreover, most respondents
found ADAS information clear and ADAS easy to use (above 65%). Overall, participants
had therefore rather positive feedback towards ADAS, with only a lower percentage

9Based on Table 5.1, only gender was a suitable variable for the Chi–square tests of independence, as it was the
only balanced categorical variable that could be used for comparison.
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believing that ADAS itself might be distracting (about 15%) or might require increased
attention (less than 15%).
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Figure 5.6.: Car participants’ overall attitudes towards ADAS (N=60)

Figure 5.7 presents a summary of the findings of participants’ attitudes towards the
i–DREAMS system, based on the first exit questionnaire (Exit A), collected after the first
set of driving experiments. The main findings suggest that participants mostly agree
that the i–DREAMS system is a good idea (about 80%), which helps them to maintain
safe driving (about 75%) or reach their destinations safely (also make them safer drivers–
above 50%), and allows them to multi-task while driving. Most participants would
rely on the system, and believe it would make them more aware of their surroundings,
would recommend it to others, and continue using it if given the choice (about 60%).
Moreover, most respondents seemed to agree that the system is easy to use (about 85%),
and that they have the knowledge necessary to use it (above 80%). A lack of consensus
however was found on whether or not the system required increased attention (about
45% neutral), and whether participants would be proud to show it to others (about 30%
neutral), or whether they believed others would encourage them to use it (above 40%
neutral). Finally, most participants seemed to disagree that the system distracts them
(about 65%), annoys them (about 75%), or negatively affects their driving performance
(above 75%).
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Overall, perceptions towards the system were quite positive, with participants believing
it to be useful and easy to use (above 80%); however, overall, the level of acceptance
seemed to be rather lower than the one of the ADAS in Figure 5.6, which makes sense
since the latter refers to participants’ overall ADAS perceptions, while the former refers
to the newly experienced system (within the scope of the experiments).

67.8%
6.8%25.4%

57.6%

3.4%

11.9%27.1%

65.5%

3.5%

19.0%12.1%

69.5% 5.1%20.3%5.1%

47.5% 10.2%16.9%

25.4%

52.5% 16.9%22.0%

8.5% 55.9% 10.2%27.1%

5.1% 1.7%49.1% 8.5%

32.2%10.2% 55.2% 12.1%

31.0%1.7% 49.1% 16.9%30.5%

1.7% 1.7%45.8%

11.9%40.7%1.7%

44.1% 13.6%35.6%1.7% 5.1%

40.7% 20.3%32.2%3.4%

3.4%

42.4%

6.8%49.1%

1.7% 30.5%

23.7%

39.0%

3.4% 3.4%20.3%

28.8%

42.4%

6.8% 1.7%22.0%

20.3%49.1%1.7% 6.8%

13.8% 55.2%

22.4%

8.6%

6.9%

58.6%

17.2% 17.2%

3.4% 44.1%10.2%1.7% 40.7%

Is easy to understand

I know how to use it

Is a good idea

Helps me maintain safe
driving

Does not negatively
affect my driving

Makes me more aware of my
surroundings

Would continue to use it

Would recommend to others

Makes me a safer driver

Proud to show it to
people

People would encourage me
to use it

I can depend on it

Improves my driving
performance

Helps me reach my
destination safely

Allows me to multitask

Requires increased
attention

Makes driving interesting

Distracts me from driving

Is annoying

I do not understand it

0% 25% 50% 75% 100%

Percentage (%)
Strongly disagree Disagree Neutral Agree Strongly agree

Figure 5.7.: Car participants’ overall attitudes towards the i-DREAMS system (N=60)

Figure 5.8 presents a summary of the findings on participants’ perceptions of the i–
DREAMS system clarity. Overall, 88% of participants found the system generally clear (a
combination of “very clear" and “clear" answer options). Similarily, 88% of participants
found the system to be visually clear (based on the visual symbols). On the other hand,
only 45 % found the sounds of the i–DREAMS system to be clear (combination of “very
clear" and “clear"). These results reflect the findings from the qualitative analysis, in
which respondents indicate that they understand the system overall, mostly the visual
components, but also indicate some limitations or improvement potentials in the sounds
of the different warnings.

2. Qualitative analysis
In this section, a qualitative analysis is presented based on the open–ended questions of
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Figure 5.8.: Car participants’ overall perceptions of the i–DREAMS system clarity (N=60)

the questionnaires (Exit A and Exit B). These concern the main strengths of the system,
the recommended improvements, the general impressions about the system (positive
and negative keywords), and finally its clarity (general, visual, and sound clarity). When
it comes to the strengths, most comments indicated that the system was found to be
quite useful, by increasing driver’s safety, and maintaining driving awareness. It was
also perceived as quite useful, easy to understand, and user–friendly. Visual graphics
were clear, auditory sounds were understandable, and the simulator design was realistic.
Finally, the warning system including the time indication (time remaining before hitting
the obstacle) was perceived as quite useful, and quick enough (to alert).

However, participants indicated some measures which could improve the system.
Notably, the screen where the warnings were displayed was perceived to be too far and
too small. With regards to the sound assistance, more sounds or a voice notification
announcing the warnings to come would be appreciated; another tip was for instance to
announce exceedance of speed limit, or upcoming danger. It was also noted that some
warnings could be improved, notably the distraction warning, the pedestrian collision
warning, and the over–speeding warning. Another suggestion was to remove (as they
were perceived as distracting) the numbers from the pictograms (seconds to collisions)
and replace them by the corresponding distance.

The main keywords used to describe the system were positive and can be summarized
as follows: easy, clear, visually appealing, useful, safe, and convenient. On the other
hand, some comments pointed out that the system was acoustically incomplete (lacking
perhaps some sound functionalities such as a voice over warning) or even distracting.
Overall, the system was found to be easy to understand and therefore quite clear:
symbol colors were understandable as they resembled existing systems. As mentioned
above, some warnings were triggered a bit too late, and a voice over warning could be
useful. A vibrating steering wheel was also suggested as a further improvement.

Regarding visuals, icons and graphics were seen as simple to understand. On the other
hand, sound clarity while for most was adequate, for others, sounds seemed to be a bit
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too loud and sometimes even distracting, or not understandable. More differentiation
between the sounds was also noted as a suggestion. A longer testing phase where
warnings are explained (sounds wise) would be useful; on the other hand, this might
lead to biases in the driving performance and scenario predictability.

94



6. Modeling Results

This chapter presents the models developed based on results obtained and discussed
in Chapter 5. Excerpts of this chapter are found in Al Haddad, Abouelela, Kris Brijs,
et al. (n.d.) and Al Haddad, Abouelela, Graham Hancox, et al. (2022). In particular,
results are modeled to i) understand drivers’ attitudes and perceptions and acceptance
of the system they experienced, ii) understand the impact of various factors on driving
performance based on selected variables (including driving simulator, eye tracking data,
and questionnaire data).

6.1. Drivers’ perceptions and acceptance models

Modeling drivers’ attitudes and perceptions essentially relies on using the questionnaire
data, and exploring whether some of the variables resulting from agreement statements or
constructs have any underlying meaning that can help in making a better use of this data.
The aim of this section is therefore to on the first hand extract these variables, and on the
other hand use them in order to test the hypotheses of interest in relation to the system’s
acceptance. The former will be done by means of exploratory factor analyses, while the latter
would be reached by testing hypotheses drawn in Section 3.3, in relation with the technology
acceptance model. Finally, a discussion of the findings can help shed light on the main
insights obtained from this analysis.

6.1.1. Exploratory factor analysis

As mentioned in Section 3.2.1, exploratory factor analyses can be used as methods to reduce
the dimensionality of questions that have the same response option scales, which can assist in
revealing hidden patterns or uncovering latent variables behind this set of similar constructs.
In particular, for the questionnaires of the driving simulator experiments, each of the entry
and exit questionnaires had a set of constructs, to which such analyses could be useful;
five–point Likert scale agreement statements were grouped in three analyses of interest:
participants’ initial perceptions of ADAS (based on the entry questionnaire), participants’
attitudes on distraction engagement while driving (based on the entry questionnaire), and
participants’ perceptions of the i–DREAMS system (based on the exit questionnaire). The
analyses results are presented in Tables 6.1, 6.2, and 6.3, based on the constructs presented in
Figures 5.6, D.3 to D.6, and 5.7, respectively.

For all analyses, the maximum likelihood estimation was used as a factor extraction method.
Moreover, a scree test was performed to determine the optimal number of factors, and since
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the factors were assumed to be uncorrelated, varimax orthogonal rotation was used (H. F.
Kaiser, 1958). Factor scores were then computed using a weighted sum of the factor loads.
Variables for which loadings were higher than 0.4 were retained and factors that could explain
more than 10% of the variance were considered acceptable [Costello and Osborne (2005)].

For the first factor analysis (Table 6.1), factors extracted were interpreted as ADAS ease
of use and ADAS usefulness. The former is a combination of “easy to understand" and
“clear and understandable" (accounting for 27% of the data variance), while the latter is a
combination of “useful", “reduces accident risks", and “trust ADAS information" (accounting
for 21% of the variance); the cumulative variance represented by both factors corresponds to
48%.

Table 6.1.: Factor analysis results of car participants’ perceptions of ADAS

Loadings Factor 1 Factor 2

ADAS are easy to understand 0.84
ADAS are clear and understandable 0.77
ADAS are useful 0.70
ADAS reduces accident risks 0.61
I trust ADAS information 0.41
Sum of square of loadings 1.34 1.05
Proportion variance 0.27 0.21
Cumulative variance 0.27 0.48

Factor interpretation ADAS
ease of use

ADAS
usefulness

Distraction attitudes were grouped under two main factors (Table 6.2). The first factor
corresponds to engagement in secondary distraction, including the belief of being able to
drive well while eating or drink and while conversing with passenger, the perception that it is
okay to drive while eating or drinking, and the perception that these activities are distracting
(for the latter construct, a negative sign was observed, which makes sense since it is the
meaning is opposite in comparison with the other constructs). This factor represents 30%
of the data variance. The second factor corresponds to phone distraction, combining a set
of factors on beliefs and perception of driving well or thinking it is okay to drive while
interacting with the phone, or conversing with the phone. This factor represents 21% of the
variance. In total, both factors make up to 51% of the data variance for these constructs.
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Table 6.2.: Factor analysis results of car participants’ attitudes on distracted driving

Loadings Factor 1 Factor 2

Believe to drive well while eating andor drinking 0.91
Believe to drive well while conversing with passengers 0.71
Think it is okay to drive while eating andor drinking 0.62
Find it distracting to drive while reading roadside advertisements -0.50
Find it distracting to drive while conversing with passengers -0.64
Find it distracting to drive while eating andor drinking -0.71
Believe to drive well while conversing with the phone 0.56
Believe to drive well while interacting with the phone 0.61
Think it is okay to drive while interacting with the phone 0.73
Think it is okay to drive while conversing with the phone 0.86
Sum of square of loadings 3.03 2.08
Proportion variance 0.30 0.21
Cumulative variance 0.30 0.51

Factor interpretation Secondary
distraction

Phone
distraction

For the final factor analysis, focusing on participants’ perceptions of the i–DREAMS
system (Table 6.3), two main factors were extracted, namely the i–DREAMS system perceived
usefulness and the i–DREAMS system perceived ease of use, representing 31 % and 14% of
the total variance, respectively, a cumulative 45% of the data variance. The former factor is a
combination of various constructs including the system’s usefulness, the perception that it is
a good idea, that it makes drivers more aware of their surroundings, that it makes them safer
drivers, and that it improves their driving performance, etc. The latter factor is a combination
of constructs reflecting the system ease of use; this includes a negative loading for the third
construct (“I am afraid I do not understand the system"), which makes sense as it is opposite
in meaning to the other variables this factor is based on.

Having obtained the factor analysis results summarized in Tables 6.1, 6.2, and 6.3, new
factors scores were generated as a linear combination of the factor loadings and variables for
which the factors loaded, using a weighted sum of the factor loads.
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Table 6.3.: Factor analysis results of car participants’ perceptions of the i–DREAMS system

Loadings Factor 1 Factor 2

Using the i–DREAMS system is a good idea. 0.72
Using the i–DREAMS system makes me more aware of my surroundings 0.69
The i-DREAMS system makes me a safer driver 0.69
The i-DREAMS system improves my driving performance 0.66
I would be proud to show the i-DREAMS system to people close to me 0.65
While using the i-DREAMS system, I can maintain safe driving behavior. 0.62
People who I like would encourage me to use the i-DREAMS system 0.59
Using the i-DREAMS system, I will reach my destination safely 0.55
The i-DREAMS system makes driving more interesting. 0.55
I have the knowledge necessary to use the i-DREAMS system. 0.77
I think the i-DREAMS system is easy to understand 0.50
I am afraid that I do not understand the system. -0.71
Sum of square of loadings 3.68 1.71
Proportion variance 0.31 0.14
Cumulative variance 0.31 0.45

Factor interpretation Perceived
usefulness

Perceived
ease of use

6.1.2. Technology acceptance model hypothesis testing

This section presents the results of the models developed to test the hypotheses presented
in Figure 3.1. To test the first hypothesis, or in other words that the intention to use of the
i–DREAMS system is a function of its perceived ease of use and perceived usefulness, the
“usage" variable (“I would continue to use the i–DREAMS system) was used as the “behavioral
intention" (BI) of the technology acceptance model. For the independent variables, or in
other words the perceived ease of use (PEU) and perceived usefulness (PU) of the system,
the newly generated factors resulting from the factor analysis presented in Table 6.3 were
used. Since the dependent variable (“usage") is a discrete outcome with answer options
ranging from “strongly agree" to “strongly disagree", or in other words ordinal discrete
responses, the hypothesis was tested by developing an ordinal logit model with the variables
mentioned (usage as dependent variable, ease of use and perceived usefulness as independent
variables). For this model, and since the responses were unbalanced, the five answer options
were regrouped in three categories: disagree (including “strongly disagree" and “disagree"),
neutral, and agree (including “strongly agree" and “agree"). The model results are presented
in Table 6.4.

Results of the above model highlight that the perceived usefulness and ease of use of
the i–DREAMS system are highly significant factors (95% confidence level) that impact the
intention to use the system (Hypothesis 1). The positive sign also indicates that the higher
the perceived usefulness and perceived ease of use of the i–DREAMS system, the higher the
chance of intending to use it in the future, which again is consistent with hypothesis 1.

For the second hypothesis, PU was used as a dependent variable, in order to test its
relationship with both PEU, but also other external variables. For this model, an ordinary
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Table 6.4.: Ordinal logit model estimate results for car participants’ intention to use the system

Variable Estimate t–test Sig.

Perceived usefulness 2.11 4.63 ***
Perceived ease of use 0.66 2.04 *
Disagree | Neutral -3.41 -5.11 ***
Neutral | Agree -0.59 -1.60

Log–likelihood = -34.7
AIC = 77.5
BIC = 85.8
Sig. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

least square regression model was developed due to the ordinal and continuous nature of the
dependent variable in question. The model results are presented in Table 6.5.

Table 6.5.: Ordinary least squares estimate results for car participants’ perceived usefulness of
the system

Variable Estimate t–test Sig.

Intercept -0.010 -0.083
ADAS perceived usefulness 0.33 2.67 **
R squared 0.11
Adjusted R–squared 0.09

Sig. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Results of the model presented in Table 6.5 did not indicate a strong and significant
relationship between the perceived usefulness and perceived ease of use of the i–DREAMS
system. On the other hand, only perceived usefulness of ADAS (factor resulting from the
factor analysis presented in Table 6.1) was found to be significant (among other external
variables) in impacting the perceived usefulness of the i–DREAMS system. This means that
the second hypothesis is only partially validated.

Finally, the third hypothesis was tested. Among other external variables, gender was
used, in addition to the newly generated attitudinal factors resulting from the factor analyses
presented in Tables 6.1 and 6.2, indicating participants’ attitudes and perceptions towards
ADAS and distraction engagement while driving, respectively. To examine the relation
postulated in this hypothesis, and since the perceived ease of use is a continuous variable
(whose values was computed as a linear combination of the factor loadings and different
variables as per the factor analysis results), an ordinary least square model (OLS) was
developed; the results of this model are presented in Table 6.6.

Results presented in Table 6.6 highlighted the impact of only one external variable in
relation to the i–DREAMS’ system perceived ease of use, the duration or time period for
which the participant has obtained his or her driver’s license. In particular, this negative
relation indicates that the higher this duration is, the lower the perceived ease of use of the
i–DREAMS system. This could be attributed to the fact that the higher the license duration,
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Table 6.6.: Ordinary least squares estimate results for car participants’ perceived ease of use
of the system

Variable Estimate t–test Sig.

Intercept 0.41 2.08 *
Driver’s license duration (years) -0.034 -2.65 **
R squared 0.11
Adjusted R–squared 0.09

Sig. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

the older the participants, and therefore the (possibly) lower affinity to newer technologies,
which could explain the negative correlation with the perceived system ease of use. Still, this
means that the third hypothesis is validated, as external variables such as the license duration
significantly impacted the system’s perceived ease of use.

6.2. Panel regression models: an integration of various datasets

The resulting and merged dataset consisted of highly heterogenous variables from different
sources: the driving simulator, the eye tracking glasses, and the different questionnaires
(demographics, attitudes, newly generated attitudinal variables from the factor analysis).
To understand the factors impacting different driving performance metrics for different
safety–critical situations, various models were developed for each of the tailgating and VRU
events. To have a rich dataset, observations were merged across the three drives, with
newly created dummy variables for warnings (whether there were warnings or not) and
distraction (presence of distraction or not), to label or indicate the condition of the drive
(basically to differentiate the first, second, and third drives from each other). Therefore,
for each of the 60 participants, and for each critical event , 180 observations were available
after merging the drives (60*3). Variables of interest for VRU events were selected as the
minimum time–to–collision, the variability of the gas pedal percentage pressed, the maximum
brake pedal percentage pressed, and the absolute value maximum longitudinal acceleration
(the maximum across both acceleration and deceleration variables). For tailgating events,
additionally, the minimum time headway was a variable of interest. The aim was therefore to
investigate how different conditions (driving, environment, driver—specific) would impact
the selected driving performance variable; the variables to investigate would be used as
independent variables in the developed panel regression models. Of course, the initial data
analysis and inferential statistics for the simulator and eye tracking data paved the way
into better understanding the variables that were significantly impacted as a result of the
intervention–system or of distraction. This was therefore taken into account for the models to
follow and would be used to see whether the model results consistently reflect the findings of
these statistics.

As the same individuals participated in different safety–critical events and therefore
various observations were repeated across the same individuals, panel regression models
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were considered to be suitable; models of interest considered individual effects only, as time
effects were not of interest for the studied dataset (the repetition across drives does not really
span across time and the repetition impact is also taken care of in the experimental design
by randomly changing the order of events across the drives). Random effect models were
first developed and considered. Then, to validate their adequate use, various tests were
conducted, by comparing them with fixed-effect models, or no-effects/pooled (or simply
put OLS) models. The models were developed for each critical event separately at first (a
maximum of 180 observations per model), then for a dataset containing all events per category
(e.g. all 3 VRU events merged at once, or all 3 tailgating events merged at once, a maximum
of 540 (180*3) observations, for which the specific events (e.g. CE1, or CE2), and thereby
the resulting driving environment, were used as a dummy variable. A summary of the best
performing models is given below in sub–sections 6.2.1 and 6.2.2, for VRU and tailgating
models, respectively.

6.2.1. VRU models

In the below sub–section, VRU events model results and a preliminary interpretation are
given, with the following selected dependent variables: log(TTCmin), maximum brake pedal
pressing percentage, gas pedal pressing percentage variability, absolute value of maximum
longitudinal acceleration.

1. log(TTCmin):
As TTCmin was rather unbalanced for VRU events, the logarithmic value of this variable
was used instead [log(TTCmin)]; see a distribution of these variables [both TTCmin and
log(TTCmin)] in Appendix D.2.3. Models were then developed using log(TTCmin) as
a dependent variable for each of the VRU events (CE1, CE2, CE3, but also a merged
dataset with all events). A summary of the results is found in Table 6.7.

For CE1, various variables were found to positively impact log(TTCmin), and therefore
TTCmin

1, including longitudinal velocity (mean), and lateral velocity (mean), whereas
lateral position (SD) was found to negatively impact TTCmin. For CE1, the no–effects
model was found to be better than the random effect models, for which individual
effects were found to account for about 17% of the variance. For CE2, the no–effects
model was found to be best, but was in fact the same as the random–effects model, for
which individual random effects were null (0%). For this model, the absolute value
maximum longitudinal acceleration was found to positively impact TTCmin, whereas
lateral position (mean) and steering wheel angle (SD) were found to negatively impact
TTCmin. A higher pedestrian fixation count was found to be positively related with
a higher TTCmin, which makes sense, as drivers who stare longer on pedestrians, are
expected to have focused more, enough to keep a higher distance from them, and which
is detected in a higher TTCmin value. Finally, age was found to negatively impact TTCmin

1For the remainder of this section, and for the sake of simplicity, TTCmin will be used instead of log(TTCmin), as
an impact on one is likely to impact the other directly.
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for this event; in other words, older participants had a higher tendency to keep a lower
gap with the pedestrian crossing.

For CE3, the random–effects model was found to be best (although random effects did
not prove to be significant), for which random individual effects accounted for about 8%;
significant values obtained in this model were the absolute value maximum longitudinal
acceleration. Finally, for the model using all events, the random–effects model was found
to be the best, with about 13% of the effects being individual. Maximum longitudinal
acceleration was found to be significantly related to a lower TTCmin, whereas maximum
longitudinal deceleration and both lateral velocity (mean) and position (mean) were
found to be positively related with a higher TTCmin value. The presence of warnings (so
the interventions being activated) seemed to be related with a lower TTCmin, whereas a
rural environment seemed to have the opposite impact (higher TTCmin).

Overall, for VRU events, it seemed that significant variables for the TTCmin were longi-
tudinal control indicators (acceleration and velocity), lateral control parameters (lateral
position, steering wheel angle), the presence of warnings, the type of environment
(rural), and pedestrian gaze fixation.

2. Brake pedal percentage displaced (max.):
Model results for this variable are listed in Table 6.8 (for CE1 and CE2) and Table 6.9
(for CE3 and the merged dataset). For the model using the CE1 dataset (Table 6.8),
the random–effects model was found to be the best (with 13% of the effects being
individual), with significant variables obtained being longitudinal control parameters
(maximum deceleration and mean velocity) which were negatively associated with the
maximum brake pedal percentage displaced, but also lateral control ones, including
mean deceleration (positive relation), lateral velocity (mean) and position (mean), both
having a negative impact on the maximum brake pedal displaced. From the condition
variables, distraction seemed to positively impact the brake pedal displacement, and
gender (females vs. males) seemed to also be a significant variable (females having a
tendency to press less on the brake pedal as opposed to males).

For CE2 (Table 6.8), the random–effects model was found to be the best as well, with
22% of the random effects attributed to individual ones. Here, longitudinal velocity
(max.) and perceived ease of use for the system, were both found to be highly significant
in impacting the brake pedal displacement. For CE3 (Table 6.9), the fixed–effect models
were found to be best, followed by the no–effect models, whose estimates were quite
close in magnitude to the random–effects model (that only had 2% of random effects
coming from the individual ones). Longitudinal acceleration (mean) and deceleration
(max.), as well as lateral deceleration (mean) and lateral position (mean) all had negative
estimates, meaning they were negatively associated with a higher increase in brake
pedal displacement.

Finally, for the model applied on the entire VRU observations dataset (Table 6.9), the
fixed–effect was found to be the better model in comparison. Most significant variables
had a negative impact on the maximum brake percentage displacement: notably,
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longitudinal control variables [longitudinal control acceleration (mean), deceleration
(max.), and velocity (mean)], lateral control variables [lateral velocity (mean) and lateral
position (mean)], and finally the driving environment (rural).

3. Gas pedal percentage displaced (SD):
For both CE1 and CE2 (Table 6.10), the random–effects model was found to be better
(for the latter, individual effects accounted for about 17% of the total random effects).
For both models, longitudinal velocity (maximum) had a positive impact. Additional
significant variables obtained were longitudinal acceleration (mean and maximum),
deceleration (mean, maximum), lateral acceleration (mean), and lateral position (mean).
For CE3 (Table 6.11), the no–effects model was found to be the better model, followed
by the fixed effects one, then the random–effects model; this is also noted from the
R–squared values (the R–squared for the random–effects model is quite low in com-
parison with those of the fixed effects and no–effects models). Variables that were
highly significant are longitudinal acceleration (maximum), velocity (mean), but also
gender (females as compared to males tending to have a lower gas pedal displacement
variability).

Finally, for the model merging all events (Table 6.11), the random–effects model per-
formed best. Longitudinal acceleration (maximum) and velocity both yielded positive
estimates, as opposed to deceleration (mean) and lateral position (SD), whose estimates
were negative. Moreover, distraction as a condition seemed to be highly significant for
the gas pedal percentage displacement variability (negative relation). Finally, the urban
environment seemed to play a positive role in the gas pedal displacement variability, as
compared to other road environments.

4. Longitudinal acceleration [Abs(max.)]:
Results of these models are given in Table 6.12. For the different models (CE1, CE2, CE3,
or merged events), the random effect model proved to be the best. For CE1, significant
variables were longitudinal velocity (maximum), lateral position (mean) and perceived
usefulness of ADAS. The total random (individual) effects of the model amounted to
16.5%. For CE2 (23% individual random effects), the longitudinal velocity (maximum)
was also found to be significant, as well as the perceived ease of use of ADAS. For CE3,
in addition to the longitudinal velocity (maximum), the steering wheel angle variability
was highly significant. Moreover, the presence of warnings also seemed to have a high
impact on harsh acceleration; finally, gender was also found to be quite impactful.

The merged model also revealed that the random–effects model was the better per-
forming model, with 13% of the effects owing to individual variability. Highlighted
significant variables were: longitudinal velocity (max.), perceived ease of use of the
i–DREAMS system, and finally the environment (urban as opposed to rural).

103



6.
M

odeling
R

esults

Table 6.7.: VRU panel model results using log(TTCmin) as a dependent variable
Critical event 1 Critical event 2

No effects (OLS) Random effects Random effects
β SE t-value Sig. β SE t-value Sig. β SE t-value Sig

Constant -3.49 0.51 -6.84 *** -3.60 0.52 -6.94 *** Constant 6.29 1.58 3.97 ***
Long. vel. (mean) 0.083 0.032 2.56 * 0.089 0.032 2.74 ** Abs. Long. acc. (max.) 0.12 0.032 3.76 ***
Lat. vel. (mean) 10.20 3.64 2.80 ** 10.15 3.62 2.81 ** Lat. pos. (mean) -0.60 0.24 -2.51 *
Lat. pos. (mean) 1.11 0.12 8.95 *** 1.12 0.12 9.26 *** Steer. wheel angle (SD) -0.29 0.081 -3.52 ***
Lat. pos. (SD) -1.06 0.34 -3.13 ** -1.07 0.34 -3.19 ** Pedestrian fix. count 0.030 0.018 1.67 .

Age -0.025 0.013 -1.95 .

Random effects Random effects
σ2[e] = 2 (83%) σ2[e] = 2.624 (100%)
σ2[u] = 0.41 (17%) σ2[u] = 0 (0%)

Model fit Model fit Model fit
Observations: 179 Observations: 179 Observations: 180
R-Squared: 0.39 R-Squared: 0.41 R-Squared: 0.21
Adj. R-squared: 0.37 Adj. R-squared: 0.39 Adj. R-squared: 0.19

Hausman test 0.91 Hausman test 0.95
Breusch-Pagan Lagrange Multiplier Test 0.06 Breusch-Pagan Lagrange Multiplier Test 0.37

Critical event 3 Merged events
No effects (OLS) Random effects Random effects

β SE t-value Sig. β SE t-value Sig. β SE t-value Sig.
Constant 1.66 0.16 10.52 *** 1.65 0.17 9.90 *** Constant 0.23 0.62 0.37
Abs. Long. acc. (max.) 0.22 0.034 6.30 *** 0.21 0.035 6.10 *** Long. acc. (max.) -0.31 0.060 -5.17 ***

Long. dec. (max.) 0.27 0.033 8.00 ***
Lat. vel. (mean) 6.73 2.65 2.54 *
Lat. pos. (mean) 0.42 0.090 4.74 ***
Warning (yes/no) -0.30 0.14 -2.19 *
CE1, rural (yes/no) 0.95 0.40 2.41 *

Random effects Random effects
σ2[e] = 2.78 (92%) σ2[e] = 2.15 (87%)
σ2[u] = 0.24 (8%) σ2[u] = 0.32 (13%)

Model fit Model fit Model fit
Observations: 178 Observations: 178 Observations: 533
R-Squared: 0.18 R-Squared: 0.17 R-Squared: 0.35
Adj. R-squared: 0.18 Adj. R-squared: 0.17 Adj. R-Squared: 0.34

Hausman test 0.17 Hausman test 0.172
Breusch-Pagan Lagrange Multiplier Test 0.31 Breusch-Pagan Lagrange Multiplier Test ≈ e-11

Sig. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Table 6.8.: VRU panel model results (CE1 and CE2) using brake displacement (max.) as a dependent variable

Critical event 1
Random effects

β SE t-value Sig.
Constant 0.015 0.020 0.76
Long. dec. (max.) -0.14 0.0016 -91.49 ***
Lat. dec. (mean.) 0.11 0.063 1.70 .
Long. vel. (mean) -0.0037 0.0012 -3.16 **
Lat. vel. (mean) -0.35 0.10 -3.39 ***
Lat. pos. (mean) -0.0099 0.0035 -2.83 **
Distraction (yes/no) 0.017 0.0068 2.48 *
Female (yes/no) -0.015 0.0077 -1.95 .

Random effects
σ2[e] = 0.0016 (86.2%)
σ2[u] = 0.00025 (13.8%)
Model fit
Observations: 178
R-Squared: 0.98
Adj. R-squared: 0.98

Hausman test 0.09
Breusch-Pagan Lagrange Multiplier Test 0.007

Critical event 2
Random effects

β SE t-value Sig.
Constant 0.27 0.093 2.88 **
Long. vel. (max.) 0.011 0.0061 1.78 .
Perc. ease of use (i-DREAMS) -0.066 0.027 -2.45 *

Random effects
σ2[e] = 0.068 (78%)
σ2[u] = 0.019 (22%)
Model fit
Observations: 180
R-Squared: 0.052
Adj. R-squared: 0.041

Hausman test test 0.56
Breusch-Pagan Lagrange Multiplier Test 0.007

Sig. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

105



6.
M

odeling
R

esults

Table 6.9.: VRU panel model results (CE3 and merged events) using brake displacement (max.) as a dependent variable
Critical event 3

No effects (OLS) fixed effects Random effects
β SE t-value sig β SE t-value Sig. β SE t-value Sig.

Constant 0.14 0.049 2.86 ** -0.053 0.019 -2.83 ** 0.14 0.049 2.83 **
Long. acc. (mean) -0.039 0.012 -3.15 ** -0.14 0.0023 -61.27 *** -0.039 0.013 -3.14 **
Long. dec. (max.) -0.15 0.0017 -83.85 *** -0.74 0.30 -2.46 * -0.15 0.0017 -83.59 ***
Lat. dec. (mean.) -0.59 0.24 -2.45 * -0.013 0.0030 -4.50 *** -0.60 0.24 -2.45 *
Long. vel. (mean) -0.0077 0.0020 -3.81 *** -0.0036 0.0084 -0.43 -0.0078 0.0020 -3.84 ***
Lat. pos. (mean) -0.018 0.0067 -2.74 ** -0.018 0.0067 -2.68 **

Random effects
σ2[e] = 3.04 e-04 (98.3%)
σ2[u] = 5.30 e-05 (1.7%)

Model fit Model fit Model fit
Observations: 177 Observations: 177 Observations: 177
R-Squared: 0.98 R-Squared: 0.97 R-Squared: 0.98
Adj. R-squared: 0.98 Adj. R-squared: 0.96 Adj. R-squared: 0.98

Hausman test 0.015
F test for individual effects 0.21

Merged events
fixed effects Random effects

β SE t-value Sig. β SE t-value Sig.
Constant 0.095 0.022 4.35 ***
Long. acc. (mean) -0.015 0.0047 -3.26 *** -0.012 0.0044 -2.80 **
Long. dec. (max.) -0.14 0.0011 -127.93 *** -0.14 0.0010 -141.75 ***
Long. vel. (mean) -0.0080 0.00092 -8.66 *** -0.0063 8.12 e-04 -7.79 ***
Lat. vel. (mean) -0.14 0.090 -1.56 -0.18 0.089 -1.97 *
Lat. pos. (mean) -0.010 0.0030 -3.31 *** -0.013 0.0030 -4.25 ***
CE1, rural (yes/no) -0.020 0.014 -1.44 -0.038 0.014 -2.80 **

Random effects
σ2[e] = 0.0024 (92.4%)
σ2[u] = 0.00020 (7.6%)

Model fit Model fit
Observations: 533 Observations: 533
R-Squared: 0.97 R-Squared: 0.98
Adj. R-squared: 0.97 Adj. R-squared: 0.98

Hausman test ≈ e-6
F test for individual effects ≈ e-6

Sig. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Table 6.10.: VRU panel model results (CE1 and CE2) using gas pedal displacement (SD) as a dependent variable

Critical event 1
Random effects

β SE t-value Sig.
Constant -0.0029 0.020 -0.15
Long. acc. (mean) 0.086 0.0052 16.48 ***
Long. dec. (mean) -0.027 0.0038 -7.26 ***
Long. vel. (max.) 0.0068 0.0010 6.91 ***

Random effects
σ2[e] = 0.0016 (68.1%)
σ2[u] = 0.00074 (31.9%)
Model fit
Observations: 178
R-Squared: 0.75
Adj. R-squared: 0.74

Hausman test 0.32
Breusch-Pagan Lagrange Multiplier Test ≈ e-4

Critical event 2
Random effects

β SE t-value Sig.
Constant -0.012 0.043 -0.28
Long. acc. (max.) 0.11 0.0072 15.33 ***
Long. dec. (max.) -0.0044 0.0016 -2.71 **
Long. vel. (max.) 0.0046 0.0011 4.024 ***
Lat. acc. (mean) -0.31 0.18 -1.69 .
Lat. pos. (mean) 0.011 0.0063 1.74 .

Random effects
σ2[e] = 0.0014 (83.4%)
σ2[u] = 0.00028 (16.6%)
Model fit
Observations: 178
R-Squared: 0.68
Adj. R-squared: 0.67

Hausman test 0.113
Breusch-Pagan Lagrange Multiplier Test 0.05

Sig. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Table 6.11.: VRU panel model results (CE3 and merged events) using gas pedal displacement (SD) as a dependent variable
Critical event 3

No effects (OLS) fixed effects Random effects
β SE t-value Sig. β SE t-value Sig. β SE t-value Sig.

Constant -0.0026 0.021 -0.124 -0.14 0.0024 -60.84 *** 0.091 0.027 3.39 ***
Long. acc. (max.) -0.14 0.0017 -85.67 *** -0.0091 0.0026 -3.53 *** -0.011 0.0020 -5.24 ***
Long. vel. (mean) -0.0052 0.0016 -3.207 ** 0.0040 0.0021 1.94 .
Female (yes/no) -0.017 0.0091 -1.904 . 0.024 0.014 1.68 .

Random effects
σ2[e] = 0.0035 (68.6%)
σ2[u] = 0.0016 (31.4%)

Model fit Model fit Model fit
Observations: 178 Observations: 178 Observations: 178
R-Squared: 0.98 R-Squared: 0.97 R-Squared: 0.16
Adj. R-squared: 0.98 Adj. R-squared: 0.95 Adj. R-squared: 0.15

Hausman test ≈ e-16
F test for individual effects 0.17

Merged events
Random effects

β SE t-value Sig.
Constant -0.040 0.011 -3.79 ***
Long. acc. (max.) 0.036 0.0018 20.30 ***
Long. dec. (mean) -0.015 0.0031 -4.85 ***
Long. vel. (max.) 0.0100 0.00066 15.29 ***
Lat. pos. (SD) -0.0270 0.0062 -4.35 ***
Distraction (yes/no) -0.0110 0.0043 -2.64 **
CE2, urban (yes/no) 0.0160 0.0045 3.67 ***

Random effects
σ2[e] = 0.0020 (89%)
σ2[u] = 0.00024 (11%)
Model fit
Observations: 533
R-Squared: 0.71
Adj. R-Squared: 0.70

Hausman test 0.26
Breusch-Pagan Lagrange Multiplier Test ≈ e-10

Sig. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Table 6.12.: VRU panel model results using longitudinal acceleration [Abs.(max.)] as a dependent variable

Critical event 1 Critical event 2
Random effects Random effects

β SE t-value Sig. β SE t-value Sig.
Constant -1.77 1.36 -1.31 Constant 0.83 1.14 0.73
Long. vel. (max.) -0.15 0.060 -2.50 * Long. vel. (max.) -0.18 0.075 -2.44 *
Lat. pos. (mean) 0.47 0.23 2.07 * Perc. ease of use (ADAS) 0.75 0.33 2.26 *
Perceived usefulness (ADAS) -0.55 0.30 -1.84 .

Random effects Random effects
σ2[e] = 9.21 (83.5%) σ2[e] = 8.00 (77%)
σ2[u] = 1.81 (16.5%) σ2[u] = 2.38 (23%)
Model fit Model fit
Observations: 180 Observations: 180
R-Squared: 0.085 R-Squared: 0.16
Adj. R-squared : 0.069 Adj. R-squared: 0.15

Hausman test 0.15 Hausman test 0.92
Breusch-Pagan Lagrange Multiplier Test 0.038 Breusch-Pagan Lagrange Multiplier Test 0.0074

Critical event 3 Merged events
Random effects Random effects

β SE t-value Sig. β SE t-value Sig.
Constant -0.47 1.17 -0.40 Constant 0.065 0.68 0.095
Long. vel. (max.) -0.19 0.073 -2.53 * Long. vel. (max.) -0.18 0.036 -5.04 ***
Steer. wheel angle (SD) -0.57 0.20 -2.87 ** Perceived ease of use (i-DREAMS) 0.51 0.23 2.27 *
Warning (yes/no) 1.41 0.53 2.69 ** CE2, urban (yes/no) 0.78 0.32 2.40 *
Female (yes/no) 1.17 0.63 1.87 .

Random effects Random effects
σ2[e] = 10.24 (78.4%) σ2[e] = 10.99 (86.6%)
σ2[u] = 2.81 (21.6%) σ2[u] = 1.70 (13.4%)
Model fit Model fit
Observations: 178 Observations: 538
R-Squared: 0.060 R-Squared: 0.089
Adj. R-squared: 0.049 Adj. R-Squared: 0.084

Hausman test 0.9 Hausman test 0.905
Breusch-Pagan Lagrange Multiplier Test 0.026 Breusch-Pagan Lagrange Multiplier Test ≈ e-9

Sig. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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6.2.2. Tailgating models

In the below sub–section, model results and preliminary interpretation for the tailgating events
are given, with the following selected dependent variables: log(Headwaymin), log(TTCmin),
maximum brake pedal displacement percentage (maximum), gas pedal displacement percent-
age variability, absolute value of maximum longitudinal acceleration.

1. Headwaymin
As Headwaymin for tailgating events was rather unbalanced, the logarithmic value of
this variable was instead used; see a distribution of this variable [both Headwaymin and
log(Headwaymin] in Appendix D.2.32. Results for these models are given in Table 6.13.
Model results for CE1 revealed that the no–effects model performed better than the
random–effects model (for which 7% of effects were individual). Significant variables
were longitudinal control variables: acceleration (mean), and deceleration (max.). Also,
lateral control variables: deceleration (mean), lateral position (mean) were found to be
significant variables. Among conditions variables, distraction was found to negatively
impact Headwaymin, meaning being distracted while driving (as compared to not)
would likely decrease the minimum time headway, or in other words, deteriorate
driving performance. Finally, perceived usefulness of the system was also found to be
highly significant for the dependent variable.

For CE2, the no–effects model was also found to be better than the random effects one,
with significant obtained variables for longitudinal control such as velocity (mean) and
lateral control like acceleration (mean), velocity (mean), and lateral position (mean).
For this case, the random–effects model had no effects coming from individual ones,
which means the random–effects model was exactly the same as an ordinary least
squared or no–effects model. For the CE3 model, the no–effects model was found to
be the best, followed by the fixed–effects model, then the random–effects model (for
which no random effects were found to be based on individual ones, meaning it is
the same as the no–effects model). Significant obtained variables were longitudinal
deceleration (max.), lateral acceleration (mean), lateral deceleration (max.), and lateral
position (mean). Moreover, the road ahead fixation count was found to positively impact
Headwaymin (the higher the road fixation, the higher the time headway to the vehicle
ahead). Similarly, age was also found to have that same impact, meaning older drivers
were more likely to keep a longer distance or time headway to the vehicle ahead, as
compared to their younger counterparts.

For the merged effects model, the random–effects model was found to be the better
model. Significant variables obtained for longitudinal control were deceleration (max.),
and velocity (max.); higher deceleration meant a possibly higher Headwaymin, and a
higher velocity meant a lower Headwaymin, both of which make sense. Moreover, condi-
tions like the presence of interventions or distraction negatively impacted Headwaymin;
in other words a higher distraction meant a lower Headwaymin (could mean a worse

2For the remainder of this section, and for the sake of simplicity, Headwaymin will be used to refer to
log(Headwaymin), and mostly as an impact on one is likely to impact the other directly.
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driving performance), and driving with interventions in general would also mean a
lower Headwaymin (could be attributed to the fact that drivers rely more on interventions
and therefore optimize their Headwaymin due to the driving assistance). Finally, in the
rural environment, as compared to other environments (urban and highway), the time
to headway was likely to be lower.

2. log(TTCmin):
Similarly to the VRU events, TTCmin for tailgating events was rather unbalanced, the
logarithmic value of this variable was instead used; see a distribution of this variable
[both TTCmin and log(TTCmin] in Appendix D.2.33. Results of models for CE1 and CE2
are given in Table 6.14 and those of CE3 and the merged events dataset are given in
Table 6.15. For each of CE1 and CE2, the random–effects models were found to be best.
For CE1 for instance, this was also reflected in the higher R–squared value. Obtained
significant variables were longitudinal acceleration (mean), longitudinal velocity (mean),
lateral acceleration (max.), lateral deceleration (mean), and lateral position (mean).
Moreover, perceived ease of use of the system was found to be highly significant for
the minimum time–to–collision. For CE2, the maximum longitudinal velocity was the
highly significant variable.
For CE3, the fixed–effect models was found to be better than the random effect models
(which was the same as no–effects model as there were no individual random effects).
Obtained significant variables were longitudinal velocity (mean), deceleration (max.),
and lateral position. Moreover, eye tracking metrics like fixation for road ahead led
to a higher TTCmin; this makes sense as the more drivers fixate on the road, the more
they pay attention, and therefore the more conservative is their driving likely to be, or
the higher the distance kept to the vehicle ahead. Finally, the presence of warnings or
intervention–systems led in general to lower TTCmin, which can be understood as way
to compensate for risk, by relying on the warning–monitoring system, or could on the
contrary be perceived as a distracting element.

For the merged effects model, the fixed–effect model was also found to be the best. Ob-
tained significant variables were longitudinal acceleration (mean, max), lateral position
(SD), road fixation count, presence of warnings, or of a rural environment. For merged
events with more observations, again the random effect model was found to be best.
Longitudinal control parameters were found to be significant (mean and max. velocity),
or lateral control ones including acceleration, deceleration, lateral position. Moreover,
eye tracking metrics like gaze fixation count (road ahead), attitudinal variables like
perceived ease of use of the system, or specific conditions for the experiment (warning
presence) or road environment (rural) were all found to be highly influential on TTCmin.

3. Brake pedal percentage displaced (max.):
Results are presented in Table 6.16. For the CE1 model, the OLS model was found
to be better than the random model (3% individual effects) with variables such as

3For the remainder of this section, and for the sake of simplicity, TTCmin will be used instead of log(TTCmin), as
an impact on one is likely to impact the other directly.
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lateral deceleration (max.), lateral velocity (mean), steering wheel angle (SD) being
highly significant, as well as longitudinal control variables such as acceleration (max.),
deceleration (max.) and steering wheel angle (mean). Moreover, distraction had a
positive impact on the maximum brake percentage displaced (could mean that this was
a compensatory effect due to distraction).

For the CE2 model, the random effect models was equivalent to the no–effect one (0%
random indiviudal effects) with significant variables of longitudinal control such as
longtiduinal acceleration (max.) and velocity (mean), and lateral control (lateral position
variation). Moreover demographics such as attitudinal variables and gender were found
to be highly influential on the maximum brake displacement; the system’s perceived
usefulness had a positive impact on the maximum brake percentage displaced, and
females were more likely, as compared to males to have a higher maximum brake
displacement.

For the CE3 model, the no–effects model was the best (the random–effects model
resulted in only 2% of effects being due to individual ones, which meant that both the
random and no effects model were quite similar). Longitudinal acceleration (mean),
deceleration (max.), velocity (mean), lateral deceleration (mean) and velocity (mean)
were all found to be highly significant.

Finally, for the merged effects model, the random–effects model (with 4% individual
effects) was found to be the best one, with obtained significant variables being longitudi-
nal deceleration (max.) and velocity (mean), but also the attitudinal variable perceived
ease of use of the system (resulting from the factor analysis conducted in the previous
analysis steps).

4. Gas pedal percentage displaced (SD):
Results of CE1 and CE2 are given in Table 6.17. Results of CE3 and the merged events
dataset are given in Table 6.18.

For the CE1 model, the no–effects model was found to be better than the random effects
one (10% due to individual effects), although both led to similar results; significant
obtained variables were longitudinal acceleration (max.), deceleration (mean), velocity
(max.).

For the CE2 model, the fixed–effects model was better than the random effects one, and
longitudinal acceleration, velocity, and deceleration, as well as lateral position, were all
found to be highly significant. In addition, in the random–effects model, the perceived
usefulness of ADAS and of the system tested were found to be highly significant, and
likely to impact the gas pedal percentage variation.

For the CE3, the no–effects model was found to be better than the random. Insights
revealed that longitudinal velocity, acceleration, and deceleration (max.) were highly
significant.

The merged events model found the random–effects model to be best. Obtained
significant variables were longitudinal velocity and acceleration (max.) and deceleration
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(max.). Moreover, the highway environment (or CE2) was found to lead to a lower
deviation in the gas pedal displacement (in comparison with other road environments).

Overall, highway environment, longitudinal control (maximum velocity, maximum
acceleration, deceleration), lateral control, and attitudinal variables (perceived useful-
ness) were all highlighted as meaningful variables in understanding the gas pedal
displacement variability.

5. Longitudinal acceleration [Abs(max.)]:
Results of CE1 and CE2 models are given in Table 6.19 and those of CE3 and the merged
events models are given in Table 6.20.

The CE1 model showed that the no–effects model is better than the random–effects
model, for which 9% of effects noted were individual. Significant variables noted were
lateral position (mean), but also the presence of distraction. For CE2, the no–effects
model was also found to be better than the random effects one, with significant variables
noted being longitudinal velocity, lateral position (SD), but also eye tracking metrics
such as the dashboard fixation count. For the CE3 model, the no–effects model was
found to be the best. In this model, the longitudinal velocity (mean) and lateral position
(mean) were found to be highly significant. Finally, the merged effects model showed
that the random–effects model was the best (with 10% of effects being individual).
Lateral position (SD), longitudinal velocity (max.) were highly significant. Overall,
longitudinal velocity, lateral position (SD or mean) were found to be highly significant
for harsh acceleration (max absolute value); occasionally, distraction had a high impact
as well, in addition to some fixation metrics. Also, the OLS was mostly better than the
random, but in the merged model, the random–effects model was found to be best.
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Table 6.13.: Tailgating panel model results using log(Headwaymin) as a dependent variable
Critical event 1 Critical event 2

No effects (OLS) Random effects Random effects
β SE t-value Sig. β SE t-value Sig. β SE t-value Sig.

Constant 7.15 0.99 7.23 *** 7.23 0.99 7.28 *** Constant 6.34 0.54 11.76 ***
Long. acc. (mean) -0.77 0.22 -3.54 *** -0.78 0.22 -3.52 *** Lat. acc. (mean) -3.71 1.20 -3.10 **
Long. dec. (max.) 0.18 0.061 2.87 ** 0.18 0.061 2.89 ** Long. vel. (mean) -0.088 0.013 -7.02 ***
Lat. dec. (mean) -4.55 1.45 -3.14 ** -4.25 1.52 -2.80 ** Lat. vel. (mean) 6.50 1.45 4.49 ***
Lat. pos. (mean) -0.72 0.14 -5.28 *** -0.73 0.14 -5.32 *** Lat. pos. (mean) -0.24 0.045 -5.30 ***
Distraction (yes/no) -0.49 0.19 -2.64 ** -0.49 0.18 -2.68 **
PU (i-DREAMS) 0.21 0.091 2.27 * 0.21 0.10 2.18 *

Random effects Random effects
σ2[e] = 1.08 (93.1%) σ2[e] = 1 (100%)
σ2[u] = 0.08 (6.9%) σ2[u] = 0 (0%)

Model fit Model fit Model fit
Observations: 176 Observations: 176 Observations: 180
R-Squared: 0.34 R-Squared: 0.36 R-Squared: 0.50
Adj. R-squared: 0.34 Adj. R-squared: 0.34 Adj. R-squared: 0.49

Hausman test 0.21 Hausman test 0.624
Langrange Multiplier Test- Breusch Pagan 0.55 Breusch-Pagan Lagrange Multiplier Test 0.78

Critical event 3 Merged events
fixed effects Random effects Random effects

β SE t-value Sig. β SE t-value Sig. β SE t-value Sig.
Constant 0.49 0.35 1.40 Constant 3.41 0.17 19.53 ***
Long. dec. (max.) 0.20 0.067 2.96 ** 0.24 0.050 4.81 *** Long. dec. (max.) 0.20 0.035 5.67 ***
Lat. acc. (mean) 13.81 7.09 1.95 . 8.19 4.76 1.72 . Long. vel. (max.) -0.052 0.0066 -7.83 ***
Lat. dec. (max.) 0.48 0.66 0.73 1.51 0.54 2.79 ** Distraction (yes/no) -0.24 0.12 -2.03 *
Lat. pos. (mean) 0.20 0.086 2.30 * 0.25 0.072 3.46 *** Warning (yes/no) -0.44 0.12 -3.63 ***
Road ahead fix. count 0.0088 0.0027 3.21 ** 0.0085 0.0021 4.06 *** CE1, rural (yes/no) -0.46 0.10 -4.42 ***
Age 0.024 0.0082 2.92 **

Random effects Random effects
σ2[e] = 0.8882 (100%) σ2[e] = 1.26 (91.6%)
σ2[u] = 0 (0%) σ2[u] = 0.12 (8.4%)

Model fit Model fit Model fit
Observations: 175 Observations: 175 Observations: 525
R-Squared: 0.21 R-Squared: 0.32 R-Squared: 0.25
Adj. R-squared: -0.26 Adj. R-squared: 0.29 Adj. R-Squared: 0.25

Hausman test 0.010 Hausman test 0.06
F test for individual effects 0.29 Breusch-Pagan Lagrange Multiplier Test ≈ e-5

Sig. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Table 6.14.: Tailgating panel model results (CE1 and CE2) using log(TTCmin) as a dependent variable

Critical event 1
No effects (OLS) Random effects

β SE t-value Sig. β SE t-value Sig.
Constant 8.91 0.84 10.61 *** 9.11 0.80 11.34 ***
Long. acc. (mean) -0.58 0.16 -3.62 *** -0.58 0.16 -3.76 ***
Long. dec. (max.) 0.26 0.047 5.65 *** 0.25 0.046 5.46 ***
Lat. acc. (max.) -0.72 0.30 -2.43 * -0.79 0.26 -3.04 **
Lat. dec. (mean) -5.86 1.80 -3.26 ** -6.20 1.82 -3.42 ***
Long. vel. (mean) -0.068 0.027 -2.48 * -0.060 0.028 -2.17 *
Lat. pos. (mean) -0.64 0.10 -6.41 *** -0.69 0.097 -7.10 ***
Perc. ease of use (i-DREAMS) -0.14 0.065 -2.18 * -0.15 0.083 -1.83 .

Random effects
σ2[e] = 0.45 (68.3%)
σ2[u] = 0.21 (31.7%)

Model fit Model fit
Observations: 170 Observations: 170
R-Squared: 0.49 R-Squared: 0.51
Adj. R-squared: 0.47 Adj. R-squared: 0.49

Hausman test 0.39
Breusch-Pagan Lagrange Multiplier Test 0.0087

Sig. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Critical event 2
Random effects

β SE z-value Sig.
Constant 4.11 0.33 12.48 ***
Long. vel. (max.) -0.058 0.011 -5.29 ***

Random effects
σ2[e] = 0.84 (76.7%)
σ2[u] = 0.26 (23.3%)
Model fit
Observations: 172
R-Squared: 0.15
Adj. R-Squared: 0.15

Hausman test 0.31
Breusch-Pagan Lagrange Multiplier Test 0.013

Sig. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Table 6.15.: Tailgating panel model results (CE3 and merged events) using log(TTCmin) as a dependent variable
Critical event 3

fixed effects Random effects
β SE t-value Sig. β SE t-value Sig.

Constant 4.02 0.38 10.62 ***
Long. vel. (mean) -0.12 0.042 -2.83 ** -0.15 0.034 -4.53 ***
Long. dec. (max.) 0.28 0.052 5.44 *** 0.29 0.040 7.20 ***
Lat. pos. (mean) 0.40 0.092 4.38 *** 0.41 0.076 5.47 ***
Road ahead fix. count 0.0045 0.0024 1.87 . 0.0070 0.0018 3.86 ***
Warning (yes/no) -0.49 0.14 -3.51 *** -0.37 0.13 -2.84 **

Random effects
σ2[e] = 0.0023 (100%)
σ2[u] = 0 (0%)

Model fit Model fit
Observations: 171 Observations: 171
R-Squared: 0.44 R-Squared: 0.43
Adj. R-squared: 0.10 Adj. R-squared: 0.41

Hausman test 0.0051
F test for individual effects 0.0068

Merged events
fixed effects Random effects

β SE t-value Sig. β SE t-value Sig.
Constant 3.28 0.15 22.62 ***
Long. acc. (mean) -0.31 0.10 -3.18 ** -0.29 0.093 -3.15 **
Long. dec. (max.) 0.28 0.031 8.98 *** 0.26 0.029 9.08 ***
Lat. pos. (SD) 0.41 0.12 3.55 *** 0.43 0.11 3.86 ***
Road ahead fix. count 0.0042 0.0016 2.56 * 0.0049 0.0015 3.28 **
Warning (yes/no) -0.33 0.085 -3.87 *** -0.30 0.084 -3.63 ***
CE1, rural (yes/no) -0.17 0.079 -2.17 * -0.17 0.079 -2.11 *

Random effects
σ2[e] = 0.66 (87.3%)
σ2[u] = 0.096 (12.7%)

Model fit Model fit
Observations: 484 Observations: 484
R-Squared: 0.31 R-Squared: 0.30
Adj. R-Squared: 0.20 Adj. R-Squared: 0.29

Hausman test 0.00090
Breusch-Pagan Lagrange Multiplier Test ≈ e-6

Sig. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Table 6.16.: Tailgating panel model results using the brake percentage displacement (max.) as a dependent variable

Critical event 1 Critical event 2
No effects (OLS) Random effects Random effects

β SE t-value Sig. β SE t-value Sig. β SE t-value Sig.
Constant -0.11 0.0087 -13.02 *** -0.11 0.0088 -12.92 *** Constant 0.17 0.030 5.46 ***
Long. acc. (max.) -0.0082 0.0045 -1.82 . -0.0079 0.0045 -1.76 . Long. acc. (max.) -0.025 0.0035 -7.30 ***
Long. dec. (max.) -0.15 0.0029 -51.96 *** -0.15 0.0029 -51.80 *** Long. vel. (mean) -0.0037 0.0012 -3.06 **
Lat. dec. (max.) 0.14 0.034 4.27 *** 0.14 0.034 4.19 *** Lat. pos. (SD) 0.065 0.019 3.42 ***
Lat. vel. (mean) 0.66 0.23 2.91 ** 0.66 0.23 2.90 ** Perc. usefulness (i-DREAMS) 0.014 0.0085 1.65 .
Steer. wheel angle (mean) -0.073 0.036 -2.05 * -0.071 0.036 -2.00 * Female (yes/no) 0.028 0.017 1.70 .
Steer. wheel angle (SD) 0.017 0.0058 2.95 ** 0.017 0.0059 2.87 **
Distraction (yes/no) 0.023 0.0091 2.50 * 0.023 0.0090 2.52 *

Random effects Random effects
σ2[e] = 2.58e-03 (96.8%) σ2[e] = 0.012 (100%)
σ2[u] = 8.53e-05 (3.2%) σ2[u] = 0 (0%)

Model fit Model fit Model fit
Observations: 176 Observations: 176 Observations: 180
R-Squared: 0.96 R-Squared: 0.96 R-Squared: 0.32
Adj. R-squared: 0.96 Adj. R-squared: 0.96 Adj. R-squared: 0.30

Hausman test 0.79 Hausman test 0.7
Breusch-Pagan Lagrange Multiplier Test 0.43 Langrange Multiplier Test- Breusch Pagan 0.06

Critical event 3 Merged events
No effects (OLS) Random effects Random effects

β SE t-value Sig. β SE t-value Sig. β SE t-value Sig.
Constant 0.040 0.019 2.11 * 0.040 0.019 2.11 * Constant -0.00023 0.0092 -0.025
Long. acc. (mean) -0.023 0.0094 -2.42 * -0.023 0.0094 -2.41 * Long. dec. (max.) -0.14 0.0020 -68.65 ***
Long. dec. (max.) -0.15 0.0025 -59.15 *** -0.15 0.0025 -59.12 *** Long. vel. (mean) -0.0060 0.00045 -13.33 ***
Long. vel. (mean) -0.010 0.0016 -6.24 *** -0.010 0.0016 -6.25 *** Perc. ease of use (i-DREAMS) 0.0074 0.0035 2.11 *
Lat. dec. (mean) -0.39 0.17 -2.22 * -0.39 0.18 -2.20 *
Lat. vel. (mean) -0.78 0.34 -2.30 * -0.77 0.34 -2.28 *

Random effects Random effects
σ2[e] = 2.26e-03 (98.2%) σ2[e] = 0.0044 (95.8%)
σ2[u] = 4.22e-05 (1.8%) σ2[u] = 0.00019 (4.2%)

Model fit Model fit Model fit
Observations: 175 Observations: 175 Observations: 525
R-Squared: 0.96 R-Squared: 0.96 R-Squared: 0.91
Adj. R-squared: 0.96 Adj. R-squared: 0.96 Adj. R-Squared: 0.90

Hausman test 0.96 Hausman test 0.36
Breusch-Pagan Lagrange Multiplier Test 0.49 Breusch-Pagan Lagrange Multiplier Test 0.04

Sig. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1117
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Table 6.17.: Tailgating panel model results (CE1 and CE2) using gas pedal displacement (SD) as a dependent variable
Critical event 1

No effects (OLS) Random effects
β SE t-value Sig. β SE t-value Sig.

Constant -0.036 0.013 -2.77 ** -0.035 0.014 -2.61 **
Long. acc. (max.) 0.041 0.0033 12.51 *** 0.041 0.0033 12.59 ***
Long. dec. (mean) -0.054 0.010 -5.22 *** -0.053 0.010 -5.09 ***
Long. vel. (max.) 0.0075 0.00076 9.90 *** 0.0075 0.00078 9.56 ***

Random effects
σ2[e] = 0.0013 (89.2%)
σ2[u] = 0.00016 (10.8%)

Model fit Model fit
Observations: 178 Observations: 178
R-Squared: 0.82 R-Squared: 0.82
Adj. R-squared: 0.82 Adj. R-squared: 0.81

Hausman test 0.89
Breusch-Pagan Lagrange Multiplier Test 0.118

Critical event 2
fixed effects Random effects

β SE t-value Sig. β SE t-value Sig.
Constant -0.0082 0.029 -0.28
Long. vel. (max.) 0.0029 0.0012 2.37 * 0.0047 0.00092 5.12 ***
Long. acc. (max.) 0.054 0.0079 6.87 *** 0.049 0.0064 7.69 ***
Long. dec. (max.) -0.037 0.0072 -5.11 *** -0.034 0.0058 -5.87 ***
Lat. pos. (SD) -0.043 0.015 -2.79 ** -0.046 0.013 -3.41 ***
PU (ADAS) 0.021 0.0076 2.72 **
PU (i-DREAMS) -0.018 0.0076 -2.35 *

Random effects
σ2[e] = 0.0051 (84.6%)
σ2[u] = 0.00093 (15.4%)

Model fit Model fit
Observations: 170 Observations: 170
R-Squared: 0.51 R-Squared: 0.51
Adj. R-squared: 0.21 Adj. R-squared: 0.49

Hausman test 0.035
F test for individual effects 0.026

Sig. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Table 6.18.: Tailgating panel model results (CE3 and merged events) using gas pedal displacement (SD) as a dependent variable

Critical event 3
No effects (OLS) Random effects

β SE t-value Sig. β SE t-value Sig.
Constant -0.0043 0.014 -0.32 -0.000012 0.014 -0.0008
Long. vel. (max.) 0.0067 0.0010 6.83 *** 0.0064 0.0010 6.53 ***
Long. acc. (max.) 0.042 0.0032 13.17 *** 0.041 0.0032 12.71 ***
Long. dec. (max.) -0.0069 0.0023 -3.01 ** -0.0069 0.0023 -3.03 **

Random effects
σ2[e] = 0.0017 (91.4%)
σ2[u] = 0.00016 (8.6%)

Model fit Model fit
Observations: 175 Observations: 175
R-Squared: 0.70 R-Squared: 0.68
Adj. R-squared: 0.70 Adj. R-squared: 0.68

Hausman test 0.07
Breusch-Pagan Lagrange Multiplier Test 0.193

Merged events
Random effects

β SE t-value Sig.
Constant 0.014 0.0082 1.77 .
Long. vel. (max.) 0.0054 0.00044 12.28 ***
Long. acc. (mean) 0.12 0.0056 21.69 ***
Long. dec. (max.) -0.0084 0.0018 -4.78 ***
CE2, highway (yes/no) -0.016 0.0072 -2.21 *

Random effects
σ2[e] = 0.0027 (94.1%)
σ2[u] = 0.00017 (5.9%)
Model fit
Observations: 523
R-Squared: 0.69
Adj. R-Squared: 0.69

Hausman test 0.84
Breusch-Pagan Lagrange Multiplier Test 0.015

sig. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Table 6.19.: Tailgating panel model results (CE1 and CE2) using longitudinal acceleration [Abs. (max.)] as a dependent variable
Critical event 1

No effects (OLS) Random effects
β SE t-value Sig. β SE t-value Sig.

Constant -5.30 2.15 -2.47 * -5.18 2.15 -2.41 *
Lat. pos. (mean) 0.66 0.30 2.19 * 0.64 0.30 2.13 *
Distraction (yes/no) 0.83 0.46 1.81 . 0.84 0.44 1.91 .

Random effects
σ2[e] = 7.67 (90.6%)
σ2[u] = 0.80 (9.4%)

Model fit Model fit
Observations: 179 Observations: 179
R-Squared: 0.045 R-Squared: 0.045
Adj. R-squared: 0.034 Adj. R-squared: 0.035

Hausman test 0.393
Breusch-Pagan Lagrange Multiplier Test 0.114

Critical event 2
No effects (OLS) Random effects

β SE t-value Sig. β SE t-value Sig.
Constant 2.80 0.66 4.26 *** 2.74 0.67 4.08 ***
Long. vel. (mean) -0.12 0.025 -4.76 *** -0.12 0.025 -4.56 ***
Lat. pos. (SD) -0.87 0.40 -2.17 * -0.89 0.40 -2.22 *
Dashboard fix. count 0.053 0.029 1.82 . 0.053 0.029 1.81 .

Random effects
σ2[e] = 5.17 (91.8%)
σ2[u] = 0.46 (8.2%)

Model fit Model fit
Observations: 180 Observations: 180
R-Squared: 0.17 R-Squared: 0.16
Adj. R-squared: 0.16 Adj. R-squared:0.15

Hausman test 0.82
Breusch-Pagan Lagrange Multiplier Test 0.183

Sig. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Table 6.20.: Tailgating panel model results (CE3 and merged events) using longitudinal acceleration [Abs. (max.)] as a

dependent variable
Critical event 3

No effects (OLS) Random effects
β SE t-value Sig. β SE t-value Sig.

Constant -0.44 1.13 -0.38 -0.72 1.13 -0.64
Long. vel. (mean) 0.21 0.11 1.88 . 0.24 0.11 2.10 *
Lat. pos. (mean) -0.93 0.25 -3.76 *** -0.93 0.25 -3.78 ***

Random effects
σ2[e] = 8.27 (91.6%)
σ2[u] = 0.76 (8.4%)

Model fit Model fit
Observations: 175 Observations: 175
R-Squared: 0.076 R-Squared: 0.077
Adj. R-Squared: 0.065 Adj. R-Squared: 0.066

Hausman test 0.06
Breusch-Pagan Lagrange Multiplier Test 0.23

Merged events
Random effects

β SE z-value Sig.
Constant 2.35 0.48 4.88 ***
Long. vel. (max.) -0.13 0.027 -4.87 ***
Lat. pos. (SD) -1.05 0.33 -3.20 ***

Random effects
σ2[e] = 7.12 (89.6%)
σ2[u] = 0.82 (10.4%)
Model fit
Observations: 534
R-Squared: 0.066
Adj. R-Squared: 0.062

Hausman test 0.62
Breusch-Pagan Lagrange Multiplier Test ≈ e-6

Sig. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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7. Discussion and Conclusion

This final chapter presents the discussion of this work’s results (Section 7.1), highlighting
the main insights obtained on the presented technology’s acceptance, on the findings
from the panel regression models, but also discusses the transferability of some of the
findings across different modes; the latter is openly available in Al Haddad, Abouelela,
Graham Hancox, et al. (2022). Then, the chapter highlights the thesis highlight and
contributions (Section 7.2), reflecting on the answered objectives (that were introduced in
Section 1.3). Finally, Section 7.3 sheds light on the work’s limitations, but then discusses
future work opportunities based on the work presented in this dissertation.

7.1. Discussion

This section discusses the results based on the findings obtained in Sections 6.1 and 6.2, with
an aim to answer many of the hypotheses and research questions laid out in this work. Finally,
an analysis of transferability of findings is presented, based on a partial replicability of the
models developed in Section 6.1, using a dataset of truck and tram simulator experiments;
these have been collected within the same project case–study, following the same protocols
given in Section 4.3.3, however not within the scope of this dissertation.

7.1.1. Technology acceptance

Findings for this analysis revealed that respondents overall had positive views of ADAS
(Figure 5.6), meaning that they mostly thought it was useful (good idea, has benefits like
maintaining driving safety), trusted it, but also found the information ADAS provided to be
clear and understandable; in general, very few participants perceived ADAS as distracting.
Similarly, for the i—DREAMS system (Figure 5.7), most participants seemed to find it useful
(to maintain safe driving), indicating an overall high level of trust for the system, stating that
they would keep using it and even recommend to others (most participants seemed to agree
with this).

The i–DREAMS system was also found to be rather easy to use. Overall, the i–DREAMS’
system clarity was also assessed (Figure 5.8) and was perceived to be quite high; this was
also the case for visual clarity, but less so for sound clarity. These findings are consistent
with the insights provided by the qualitative analysis. In particular, the latter revealed that
some improvements can be done by bringing in voice assistance to the warning–system in
case of an over–speeding, or in dangerous situations. Some participants found the auditory
warnings to be too loud or even confusing and/ distracting. For visual clarity, the qualitative
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analysis indicated that mostly, warning pictograms were similar to existing ADAS; yet, some
comments indicated a confusion with regards to the numbers indicated on the pictograms
(such as the one in Figure 4.3-b), whether they referred to time, distance, and were therefore
found to be confusing or even distracting. For each of the visual or auditory improvements
highlighted, there was a bit of contrast noticed by participants, which suggest a potential
lack of familiarity with the system, which could explain this discrepancy, as opposed to
a high level of understanding of ADAS in general. One way to get around this would be
to have a longer test phase in which participants get further acquainted with the system’s
different functionalities (with the disadvantage of course of possible higher biases and
scenario predictability); better instructing participants on the meaning of such warnings
would possibly allow them to better benefit from their usefulness, increasing thereby the
system acceptability, as noted in Rossi, Gastaldi, Biondi, et al. (2020).

In assessing whether any of the participants’ demographics had an impact on their percep-
tions and attitudes towards ADAS, the i–DREAMS system, or driving distraction, Chi–square
tests were conducted with gender as the variable of interest. Results of these tests revealed
that gender had no significant impacts on the observed attitudes. Further, the factor analysis
models on perceptions towards ADAS and the i–DREAMS system led to extracting two
main factors: perceived usefulness, and perceived ease of use; while the extracted factors
are different than the ones identified in M. M. Rahman, Strawderman, et al. (2018), from
which many survey items were extracted, this can be explained by the fact that not all
survey items were used in the current study. Still, the obtained findings are in line with
the main premises of the technology acceptance model, and compatible with the work of
several researchers who used this method to understand users’ perceptions of transportation
systems (Tyrinopoulos and Antoniou, 2008; Efthymiou, Antoniou, and Waddell, 2013), or
even acceptance of disruptive transport technologies (Al Haddad, Chaniotakis, et al., 2020),
in which they reduced initial indicators to fewer factors, each explaining more than 10% of
the total variance (with one exception at most), with a cumulative total variance ranging
roughly from an average of 46% to 55%. Overall, the above–mentioned study design, analysis,
and results have led to answering the research question on better understanding drivers’
acceptance of the i–DREAMS warning system. People seemed to in general have had positive
perceptions towards it, finding it useful, easy to use, and in particular clear (both auditorily,
but even more visually).

To understand whether this acceptance could be represented by the classical TAM, the
hypotheses drawn in Figure 3.1 were tested. To answer the first hypothesis, an ordered logit
model was developed, with “i–DREAMS intention to use" as a dependent variable, and the
factors resulting from the factor analysis (Table 6.3)– i–DREAMS usefulness and ease of use,
as independent variables. The model results (Table 6.4) revealed that both perceived ease
of use and usefulness positively and significantly impacted the intention to use, validating
thereby the first hypothesis, which is in line with the study by M. M. Rahman, Lesch, et al.
(2017), in which TAM was found to be suitable to explain the variability in the behavioral
intention to use ADAS. This is also in line with previous research (Biassoni, Ruscio, and
Ciceri, 2016; Cho et al., 2017; Viktorová and Šucha, 2018) that highlighted that perceived
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safety benefits highly impact the system acceptance.
To test the second hypothesis (impacts of PEU and of external variables on PU), an

ordinal least square model (OLS) –results in Table 6.5 revealed that the i–DREAMS perceived
usefulness was highly impacted by the perceived usefulness of ADAS; this is expected, and
also validates the hypothesis partially. On the other hand, there was no indication that the
i–DREAMS perceived usefulness highly depended on the i–DREAMS perceived ease of use,
which also can be due to the fact that both were newly calculated factors based on the factor
analysis results (Table 6.3). Finally, the third hypothesis was also validated (impact of external
variables on PEU), based on the model results presented in Table 6.6, in which the duration
for which a driver has had his or her license significantly impacts his or her perceived ease
of use, which could be associated to driver age (the longer the license duration, the older
the participant is, in principle), which is compatible with previous research by Xu, Ye, and
C. Wang (2021), in which they indicated that driver age is among the influencing factors
for ADAS acceptance; yet main factors such as gender did not prove to be highly impactful
for perceived ease of use, which again is expected as the Chi–square test result for attitude
statements could not prove gender to be significant for any of the tested perceptions.

Overall, the three hypotheses were validated (at least partially), helping to conclude that the
warning–monitoring system in the case of the driving simulator (in our case: the i–DREAMS
system) can be represented by means of a technology acceptance model. Based on the findings,
and only based on the fully validated hypotheses (without the link between PEU and PU, that
was not validated), a representation of the validated TAM for the current study was drawn,
as shown in Figure 7.1.

7.1.2. Datasets integration

Descriptive and inferential statistics for the simulator and eye tracking data, along with the eye
tracking dataset visualization (both part of Section 5.4) revealed initial insights on the impact
of both the i-DREAMS system and distraction on driving performance. In particular, in the
intervention drive, longitudinal control parameters were found to have significantly changed
(due to the presence of warnings), along with a decrease in the minimum time-to-collision (for
VRU events), and an increase in the gaze (fixation count and duration) on the road ahead (for
tailgating events). Distraction was also found to significantly impact longitudinal and lateral
control parameters; for the latter, the lateral position and steering wheel angle variability were
found to significantly increase due to distraction, which can be interpreted as a compensatory
action for the higher cognitive load experienced by participants due to distraction. This
pattern was also observed in the higher variability of the gas pedal displacement and brake
pedal (max.) displacement, as a result of distraction. Finally, fixation counts and duration on
the road ahead, the dashboard, and the pedestrian area, all decreased in the distraction drive,
as participants were occupied using the mobile phone handed to them (reading or replying).
This was also reflected in Figures 5.3, 5.4, and 5.5, where participants’ gaze distribution
appears to be more divided in the distraction drive, as compared to the baseline (intervention)
drive.

Comparing the events among themselves (Section 5.4) also revealed a significant change in
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Figure 7.1.: Validated TAM based on the car driving simulator experiments (own illustration)

some of the parameters, based on the change in road environment. For the urban VRU events,
as compared to the rural ones, a higher fixation on the road ahead and pedestrian areas was
noticed; however, a lower one was noticed on the dashboard area. For tailgating events, the
highway environment was reflected with a lower brake percentage, and a generally lower
gaze intensity on the road ahead and on the dashboard area. For the urban tailgating events,
a higher steering wheel variability and brake displacement was noticed, in addition to a
higher gaze on the road ahead, as compared to the rural ones. By interpreting these findings,
it becomes evident that there are significant differences due to distraction, to the presence of
warnings, but also due to the environment type. Panel regression models can therefore come
as a way to combine the different data sources, assuming that there are individual effects
(pertaining to the participants) that need to be captured, and that these are random and
non-negligible. As mentioned and summarized in Section 5.3.3, previous research categorized
driving behavior parameters into different groups including longitudinal control, lateral
control, risk perception parameters (including time-to-collision, gas and brake displacement
factors). Finally, previous studies have shown proven the impact of socio-demographics and
attitudes and perceptions on driving behavior. The developed panel regression models (in
Section 6.2) combine these different data sources, with an attempt to answer or validate the
different hypotheses drawn, for each of the VRU interactions (Section 6.2.1) and tailgating
events (Section 6.2.2); these can be summarized as follows:

• Hypothesis 1: panel effects are random
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• Hypothesis 2: individual effects are not null

• Hypothesis 3: prior attitudes and experiences significantly impact driving behavior

• Hypothesis 4: visual attention metrics are significant indicators for driving behavior

• Hypothesis 5: socio–demographics significantly impact driving behavior

• Hypothesis 6: longitudinal control factors are significant indicators for driving behavior

• Hypothesis 7: latitudinal control factors are significant indicators for driving behavior

• Hypothesis 8: the road environment significantly impacts driving behavior

• Hypothesis 9: the presence of warnings significantly impacts driving behavior

• Hypothesis 10: distraction significantly impacts driving behavior

The above hypotheses have been tested by means of the developed models, for the different
datasets (using one specific event, or the merged dataset with all events) for each of the
VRU and tailgating events models, where different driving performance variables were
used as a dependent variable, and the different data source parameters as independent
variables (including the eye tracking metrics, the questionnaire attitudes and perceptions,
the demographics, the road environment and event types, but also the driving parameters
as well). A summary of the hypotheses results is given in Table 7.1 and 7.2, for the VRU
and tailgating events, respectively. It is important to note that for the sake of simplicity, a
hypothesis validation refers to the failure of rejection of the opposite statement for one or
more of the events used. For instance, Hypothesis 5 is validated by rejecting the statement
“socio-demographics do not impact driving behavior"; therefore, it would be sufficient to
develop models in which socio-demographics (such as age or gender) are highly significant
(for instance to the 90% confidence level or above), in order to validate this hypothesis.

The hypotheses test results (for the VRU events models) revealed that all of the hypotheses
have been validated in at least one more more model. In particular, panel effects were found
to be mostly random, for which individual effects ranged from 8% to around 32% (except
when those were found to be 0%, for which the random–effects model was nothing but a
simple ordinary least squares, or a no–effects model). For attitudes and perceptions, those
were reflected in the significant variables resulting from the previously developed factor
analyses; these include the perceived usefulness for the i-DREAMS system, but also the
perceived ease of use for ADAS and their perceived usefulness. For this hypothesis, it is
important to note that the attitudes pertaining to the i-DREAMS system should be looked at
carefully, as these stem from an analysis of respondents’ perceptions of that system, which
were collected after the second drive; in other words, for the first two drives, attitudinal
constructs on the i-DREAMS system did not yet exist, as participants had not experienced it
(and we had not yet collected their feedback) up until this point.

Visual attention or eye tracking metrics were found to be significant, as noted in the impact
of the fixation count on the pedestrian areas; similarly, significant socio–demographics were
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extracted, including age and gender. Moreover, influential longitudinal control parameters
included longitudinal acceleration (mean, max., and abs.[max.]), longitudinal deceleration
(mean), longitudinal velocity (mean and max.). Similarly, lateral control parameters included
lateral position (mean and SD), steering wheel angle (SD), lateral acceleration (mean), lateral
deceleration (mean), and lateral velocity (mean). The road environment proved to also be
influential including rural and urban environments. Finally, the conditions including the
presence of warnings and distraction were also found to be significant; for the former, this
was reflected in a lower TTCmin, and a higher maximum (absolute value) acceleration, which
means in other words, more margin to drive closer to the “acceptable" limits or boundaries of
safety (or perhaps a higher reliance on the system). For the latter, or for distraction, the same
patterns were observed; this however could possibly be due to a compensatory effect of a
deteriorating driving performance due to distraction. Drivers who are distracted possibly
have a higher cognitive load (often demonstrated by the corresponding visual attention
metrics), which means that to reach the same “safe" boundaries, they need to do more efforts
to compensate for their poorer performance, so for example a higher braking pedal percentage
could be one such example.

For the tailgating models (Table 7.2), most hypotheses were validated as well, for one or
more of the datasets used. The best performing models mostly had random effects, with
non–negligible individual effects (except for a few models, for which individual effects were
null), ranging from about 2% to around 32% for the different models. Attitudinal factors that
proved to be significant included perceived usefulness of ADAS. For visual metrics, both the
road ahead and dashboard fixation counts were found to be related with a lower minimum
time–headway and minimum time–to–collision; for demographics, age and gender proved to
be the significant parameters.

When it comes to longitudinal control parameters, acceleration (mean and max.), decelera-
tion (mean and max.), and velocity (mean and max.) were found to be influencing variables.
Lateral control parameters included acceleration (mean and max.), deceleration (mean and
max.), velocity (mean), position (mean and SD), steering wheel angle (mean and SD). The
road environment included rural environment, but also highway (for the gas pedal displace-
ment model). Finally, interventions and distraction were found to highly impact driving
performance; for the former (warnings), and similarly to the VRU models, it seemed to be
used as an extra margin for safety; therefore it was usually correlated with lower gaps to the
cars ahead, while for distraction, usually the opposite effect was noticed, as drivers usually
tended to compensate for the higher cognitive load experienced due to distraction. This for
example can be witnessed in the increase of braking percentage displacement (max.), or the
increase in harsh acceleration [abs.(max.)].
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Table 7.1.: Summary of hypotheses tested for VRU panel regression models

TTCmin Brake pedal displacement (max.)
Hypothesis Validated? Validated in Validated? Validated in
1: random effects CE2, CE3, Merged CE1, CE2
2: individual effects CE1, CE3, Merged All
3: attitudes CE2 (PEU i-DREAMS)
4: visual attention CE2 (Ped. FC)
5: socio–demographics CE2 (Age) CE1 (Females)
6: longitudinal control CE2, CE3, Merged All
7: lateral control CE1, CE2, Merged CE1, CE3, Merged
8: road environment Merged
9: system warnings Merged (Rural)
10: distraction CE1

Gas pedal displacement (SD) Long. acc. [Abs.(max.)]
Hypothesis Validated? Validated in Validated? Validated in
1: random effects CE1, CE2, Merged All
2: individual effects All All
3: attitudes CE1 (PU ADAS), CE2 (PEU ADAS),

Merged (PEU i-DREAMS)
4: visual attention
5: socio-demographics CE3 (Females) CE3 (Females)
6: longitudinal control All All
7: lateral control CE2, CE3, Merged CE1, CE3
8: road environment Merged (Urban) Merged (Urban)
9: system warnings CE3
10: distraction Merged
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Table 7.2.: Summary of hypotheses tested for tailgating panel regression models
Headwaymin TTCmin

Hypothesis Validated? Validated in Validated? Validated in
1: random effects CE2, CE3, merged CE1, CE2, merged
2: individual effects CE1, merged CE1, CE2, merged
3: attitudes CE1 (PU i-DREAMS) CE1 (PEU i-DREAMS)
4: visual attention CE3 (Road ahead FC) CE3 and merged

(Road ahead FC)
5: socio–demographics CE3 (Age)
6: longitudinal control All All
7: lateral control CE1, CE2, CE3 CE1, CE3, merged
8: road environment Merged (Rural) Merged (Rural)
9: system warnings Merged CE3, merged
10: distraction Merged

Brake pedal displacement (max.) Gas pedal displacement (SD) Long. acc. [Abs.(max.)]
Hypothesis Validated? Validated in Validated? Validated in Validated? Validated in
1: random effects CE2, merged CE1, CE2, merged All
2: individual effects CE1, CE3, merged All All
3: attitudes CE2 (PU i-DREAMS)

and merged (PEU i-
DREAMS)

CE2 (PU ADAS and
PU i-DREAMS)

4: visual attention CE2 (Dashboard
FC)

5: socio–demographics CE2 (Females)
6: longitudinal control All All CE2, CE3, merged
7: lateral control CE1, CE2, CE3 CE2 All
8: road environment Merged (Highway)
9: system warnings
10: distraction CE1 CE1
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7.1.3. Transferability of findings

Chapter 6 discussed the model findings including the acceptance of the developed system,
but also the insights revealed from the models integrating the different datasets. This was
based on the data collected in this dissertation (the car driving simulator data in Germany).
However, there is a motivation in knowing whether some of the findings could at least
be transferred to other modes, a question which can be answered by conducting a similar
analysis to the driving simulator datasets from other modes. While not collected in the
scope of the dissertation, tram, and truck simulator data were made available within the
context of the same case study and were therefore used for discussing the transferability of
findings. In particular, the same analysis that was done in Section 6.1 (drivers‘ perceptions
and acceptance models) was repeated using the truck and tram simulator datasets. This
section presents the main findings obtained from this analysis, including as well an overview
of the qualitative analysis (based on the open-ended questions in the questionnaires), but
also discusses whether the technology acceptance model (TAM) can be validated for the
multi—modal context. Excerpts from this section are presented in (Al Haddad, Abouelela,
Graham Hancox, et al., 2022).

An overview of the multi–modal driving simulator data (based on the design principles
elaborated in Section 4.3, in particular in Section 4.3.2) is given in Appendix B, where an
overview of the socio–demographics is given, including a high level analysis of the attitudinal
statements. Additional plots for the questionnaire statements are also given in Appendix
D.2.2, including cars and truck participants’ prior exposure to ADAS, attitudes towards
ADAS, and perceptions of the i-DREAMS system and its clarity. Moreover, Chi–square
tests were conducted to test whether the difference between some of the statements across
modes was significant (Appendix D.3.2). In general, it seems that on average, findings
were not so different between cars and trucks’ ADAS exposure (Figure D.7) and attitudes
towards ADAS (Figure D.8). A Chi–square test for ADAS exposure between cars and trucks
revealed a significant difference for following ADAS: automatic emergency break, forward
collision warning, lane keeping assistance (all of which were more present for truck drivers),
and parking assist (more for cars). When looking at perceptions towards ADAS systems,
significant differences were observed for perceptions of distraction (overall truck drivers
seemed to agree less that ADAS would distract them from driving in comparison with car
drivers; 30% vs. around 60%, respectively), driving performance improvement, accident risk
reduction, driving behavior maintenance (for all later statements, it seemed that car drivers
seemed to have a higher level of agreement on ADAS usefulness, compared to truck drivers).
This comparison was not possible with tram drivers, as tram ADAS were not common (more
details on the truck and tram questionnaires is given in Fran Pilkington-Cheney et al. (2020)).
When looking at drivers’ attitudes towards the system, it seems that both car and truck
participants found the system clearer visually as compared to auditorily. Still for truck drivers,
clarity was overall lower, and mostly auditorily (Figure D.9).

Figures D.10 and D.11 present the results for car and truck driver participants’ attitudes
towards the i–DREAMS system. Significant differences between the different modes were
noted for perceptions on whether people would encourage participants to use the system,
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whether they would be proud to show it to people, and on whether they knew how to use
it. In particular, between car and truck drivers, differences were noted on the perceptions of
increased attention induced by using the system, and social perceptions (interactions with
people); between car and tram drivers, differences were noted on whether they knew how
to use the system or not. As tram drivers did not have common ADAS (exact same ones at
least), a closer analysis on questionnaires regarding their risk perceptions revealed that tram
drivers were mostly risk averse, perceiving ADAS to be very important overall.

Chi–square test results for the multi–modal driving simulator study are detailed in Ap-
pendix D.3.2; Tables D.16 and D.17 present the results for the comparison across modes,
where the latter table is a pairwise comparison highlighting for which modes the difference
was significant.

Factor analyses were also conducted on the questionnaires’ attitudinal statements for truck
and tram simulator experiments; results for these analyses are presented in Appendix D.4, in
Tables D.18 to D.21. Table D.18 presents the factor analysis results of truck participants’ prior
perceptions towards ADAS, which resulted in two constructs of ADAS, perceived usefulness
and perceived ease of use. Comparing that with the results of ADAS perceptions for car
participants (see Table 6.1), similar findings are observed. As already mentioned, tram drivers
did not share the same ADAS, therefore this analysis was not also done for the tram data.

Table D.19 presents findings on truck drivers’ attitudes towards the i–DREAMS system,
which resulted in two main factors, perceived usefulness, and the perceived ease of use.
Findings obtained are similar to those of car drivers participants (Table 6.3); noted differences
were on perceived ease of use for truck drivers including factors related to perceived system
clarity. Similar findings were also observed for tram drivers (Table D.20); for both tram and
truck drivers, system annoyance was found to negatively impact perceived usefulness, which
was not found for car drivers. Also, when merging all observations for the different modes,
similar findings were observed (see Table D.21).

For truck participants, the qualitative analysis of the questionnaires revealed that drivers
found the system to be clear, simple, easy to understand, useful (bringing awareness), realistic,
and quite timely (warnings on time). The visuals and auditory systems were well perceived.
However, there seemed to be a confusion with regards to the numbers on the pictograms. A
suggestion was to replace the time in second with distance in meters. Further improvements
suggested to integrate the system into the existing dashboard devices, and to increase the size
of the display screen. Possible improvements included an improvement in screen resolution,
and in road signs recognition (for it to be faster). Moreover, while the auditory system was
generally found to be good, there seemed to be a lack of consensus on whether it was loud
enough or not, some finding it possibly distracting. An overall suggestion was to possibly
reward participants based on their “good” behavior. Participants also praised the “coffee”
sign, which they seemed to understand as a warning to stop for a few minutes, to avoid
fatigue. Yet, some participants were skeptical about it, stating they would prefer to rely on
themselves, to know when they are tired or not. These findings were rather comparable with
the insights obtained from car driver participants.

For tram drivers, noted challenges included more demanding driving during rush hours,

132



7.1. Discussion

due to the presence of additional road users, including pedestrians, school children, scooters,
delivery riders, bikes, or other vehicles. Additionally, bad weather conditions were indicated
as a factor making driving more demanding, such as having wet, or frosty (and therefore
slippery) roads. Finally, fatigue was mentioned, mostly when driving long continuous hours
(consistent environments without much change, leading to repetition), or due to very early
or very late shifts. Among the ADAS investigated, Drivers Safety Device, Correct Side
Door Enabling, Emergency Stop Button, and Emergency PAN (pantograph) Down button
were found to be useful, reliable, important and essential; the latter though less used. The
overspeeding aid was found to be necessary, positive, with a few saying that it was distracting.
Finally, the guardian received some skepticism; while many found it to be useful, some
found it distracting and unreliable. Wishes for additional safety systems included warnings
for: upcoming signals or bends, speed limits and overspeeding, proximity to pedestrians
or other vehicles (collisions), obstacles or object detection in swept path. Moreover, tram
drivers indicated their wish for louder warnings, but also for improvements for the current
“guardian" system. Overall, while some findings were comparable for tram drivers, it is clear
that some insights are mode–specific such as the ones in relation with the ADAS used, but
also the mode–specific challenges, including but not limited to fatigue.

Finally, in investigating the technology acceptance model transferability, the hypotheses
drawn in Figure 3.1 were tested, with a similar approach as the one followed in Section
6.1., for which the behavioral intention to use the system was validated for cars and trucks.
The first hypothesis, testing the relation between the behavioral intention to use and the
perceived usefulness and ease of use (both generated from the factor analyses results), has
been validated for truck drivers (as was already validated for car drivers) by developing an
ordinal logit model with the intention to use as a dependent variable, and the perceived
usefulness and ease of use as the independent variables. For tram participants, this was tested
both using the tram dataset alone, or a merged dataset with the different modes (for which
the mode type was used as a dummy variable), but could not be validated.

The second hypothesis was developed by developing ordinal least squares using the
perceived usefulness as a dependent variable; the results however could not validate this
hypothesis for either truck or tram participants. For the third hypothesis, each of the perceived
usefulness and perceived ease of use was tested as a function of external variables. However,
for this hypothesis, a merged model could not be developed as external variables among
different modes (for instance demographics) were not common; therefore, these hypotheses
were tested for each dataset mode separately. Perceived usefulness was found to be a function
of prior perceived usefulness of ADAS, for each of the car and truck datasets, but was not
validated for the tram data. Further, perceived ease of use was found to be a function of
external variables for all modes; it was strongly related to having previously had fines for
truck drivers, and drivers’ age for tram drivers. Therefore, the latter relation for each of truck
and tram drivers was comparable to the one previously observed for car drivers, for which
a relation was found with driver’s license duration, or in other words driving experience
or history. As a summary, we can say that the technology acceptance model was mostly
validated for truck drivers, as was done for car drivers, validating the different links except
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the second hypothesis (based on the hypotheses laid in Figure 3.1). For tram drivers, only
one of the hypotheses was validated. A summary of the findings is given in Figure 7.2,
which is an extension of Figure 7.1, adding where possible the modes for which the different
links were validated. Essentially, we can see that findings were mostly transferred between
car and truck drivers, but not to tram drivers (based on the models, although based on the
qualitative analysis, some findings were found to be common). This makes sense, as rail
transport has mode–specific particularities. These findings can lay the ground for future
work on mode–specific transferability, which would possibly help better scope multi–modal
studies.

Note: For the perceived usefulness ADAS for the different modes, it is important that the ADAS
refer to the mode–specific ADAS. For cars and trucks, these are quite similar, however for trams, these
are different.

Perceived Usefulness
(PU)

Perceived 
ease of use

(PEU)

Behavioral Intention
(BI)

PU of similar 
systems

Driving 
experience 

z z

Original TAM (Davis, 1989)
Cars, trucks

Cars, trucks, trams

Figure 7.2.: Validated TAM based on the multi–modal driving simulator experiments (own
illustration)

7.2. Thesis findings and contributions

This dissertation has followed a set of methods (presented in Chapter 3), applied to the
experimental case—study (Chapter 4), based on which data has been collected and analyzed
(Chapter 5) and then modeled (Chapter 6). In this process, the research questions and
objectives initially drawn in the introduction (Section 1.3) have been reached as follows,
leading to the contributions of this work (that have been presented in Section 1.4).
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1. Objective 1: data—knowledge–information cycle has been tackled in Section 2.1, which
is partially presented in Al Haddad and Antoniou (2022). Data is often collected by
means of various methods and equipment, often combining vehicle data, environment
and context data, and driver data. These can be further classified as dynamic or static,
subjective, or objective, depending on the features collected. In understanding the nature
of this data, it is important to note that driver data is at the intersection between objective
and subjective data, but also static and dynamic data. Data collection comes with various
challenges, such as data size, which imposes the development of certain protocols to
control data quality (for both data collection, and data processing), but also to reduce
data and extract the relevant features. A data–knowledge cycle can come in handy to
better represent features of analytics and fusion, for driving behavior modeling. The
first component is a data analytics framework, starting from a data collection component
(with different sources of data: static, dynamic, etc.), followed by a data processing
component (with detailed suggested tasks for quality, format, reduction, and data
pseudonymization for data protection purposes), then a data storage component (with
different storage strategies), and ending with a data mining and analytics component.
Additionally, overarching principles or external considerations including ethical, legal,
and data protection, overrule and provide guidelines for the different components,
eg., pseudonymization before storing and uploading the data, but also regarding data
sharing and access to other parties etc. Besides the data analytics framework, data
fusion methods adapted from Akbar et al. (2018) were highlighted for use according to
the desired objectives. Here an example of fusion for ADAS acceptance across various
road transport modes was given. Despite limited research in other sectors focusing
on driving behavior, different transport modes can arguably learn from each other, as
suggested in Papadimitriou et al. (2020).

2. Objective 2: standard data handling protocols have been drafted in Section 2.2, in-
cluding protocols for the adequate data collection, preparation, storage, and legal and
ethical considerations and are presented partially in Al Haddad, Alam, et al. (n.d.).

3. Objective 3: experiments have been designed to study relevant research questions;
the entire experimental set—up is presented in Chapter 4, including the design of the
various simulator and on-road experiments, along with an elaboration of the different
data collection instruments used, including eye tracking glasses. In particular, car
driving simulator experiments studying VRU interactions, tailgating, and distraction
are presented in Section 4.3, with practical aspects elaborated in Section 5.1.

4. Objective 4: data collected has been analyzed and modeled and presented in Chapters
5 and 6. The different data sources (eye tracking, simulator, and questionnaire data)
have been integrated in panel regression models to assess driving behavior in different
situations, such as VRU interactions or tailgating (see Chapter 6). Various hypotheses
have been drawn to understand the impact of different factors on driving in different
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situations. In particular, human factors including attitudes and perceptions have
been found to highly influence driving behavior; this included perceptions (or prior
attitudes) towards ADAS, but also demographics like age and gender and driving history.
Individual-specific factors in panel regression models have been found to capture part
of the models’ variability, and therefore proved to be non-negligible. Furthermore,
comparing driving performance metrics with and without intervention—based systems
showed the impact of the latter on driving (see Tables 5.3 and 5.4 for the results between
both conditions). Similarly, distraction has proven to change many of the driving
performance metrics, such as lateral control, which usually significantly changed, as a
way to compensate for the deteriorating driving performance due to distraction. This
was also visible through strongly significant eye movement metrics, but also through
the qualitative analysis of the heatmaps. Finally, the assessment of user questionnaires
and feedback showed that the acceptance of those systems can be modeled using a
classical technological acceptance model, with most relations validated, except the one
between PU and PEU; obtained external variables of interest included driving history
and prior ADAS experience. The system has overall received positive feedback, with
participants expressing high level of trust towards it, with intentions to recommend it
further. The system’s visuals have been revealed to be particularly easy to understand,
with some suggestions however for the sound system (including a voice-over assistance
system), but also warnings understandability.

5. Objective 5: transferability of findings across modes has been assessed and discussed
in Section 7.1.3, focusing on transferability for system acceptance, which was then
presented in the updated technology acceptance model for the multi—modal simulator
data analysis (See Figure 7.2); this transferability analysis is openly available in Al Had-
dad, Abouelela, Graham Hancox, et al. (2022). Findings revealed strong transferability
potentials mostly between car and truck drivers, with similar factor analysis results and
extracted factors for ADAS exposure and attitudes; less however was common with tram
drivers and experiments, as ADAS of tram systems were quite different and therefore
the statements and questionnaires were not always compatible (it was not possible to
match some of the responses). Overall, drivers found the system to be clearer visually
(than auditorily); perceived clarity was even lower for truck drivers. For presenting
results in terms of a TAM, again, car and truck results were more comparable. However,
a merged dataset using the different modes revealed that a TAM could be applicable
for the different modes, with driving experience as the common external variable that
highly impacts PEU; could be fines for trucks, age for tram drivers, and license duration
for cars. Overall, still, the experience was rather positive for most drivers, with car and
truck drivers having closer common factors as compared to tram drivers.

7.3. Limitations and Future Work

Despite the various contributions of this work, it of course does not come without limitations,
which are necessary to acknowledge. To start with, the data handling protocols (presented in
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Section 2.2) have their own challenges, mostly as they are to be applied by various countries
and institutes. As part of the data collection protocols, many consent (and other) forms
were provided (printed) in hard copies, and signed by participants, and would therefore
be only locally stored at the premises of each partner, which might pose a burden for their
management. In addition, different questionnaires were translated to different languages,
which might have its limitations in terms of consistency of data and responses, and could be
burdensome for a multi—modal analysis. The data collection itself was highly impacted by the
pandemic; the recruitment was therefore a major challenge, as many of the initially registered
participants had dropped out. This of course impacted the sample representativeness and
size. Future work could therefore focus on overcoming these limitations. For instance, for
data challenges, a harmonization between the different data collection stakeholders would
tremendously help mitigating inconsistency risks resulting from data heterogeneity; the
stakeholders harmonizing and overseeing the entire data collection could ensure that the
quality of collected data does not differ across locations. Another point to be tackled in
the future would be the data handling and use beyond the data collection or naturalistic
experiment timeline: in other words, future research and studies (also stemming from this
one) could focus on drafting protocols and guidelines for an open data initiative, with special
attention on which portions of the data (anonymized) could be shared with the wider public;
such a research direction goes together with the principles of the European Union for open
access data.

The analysis results and models (Chapters 5 and 6) have been conducted using aggregate
data for the events of interest; future work could focus on developing more dynamic models
(time-series ones) using insights obtained from the models developed in this dissertation. A
more complete use of the data could include a use of the biometric wristband heart-rate data,
which has not been used in this dissertation; arguably, this is more relevant for fatigue studies,
commonly used for professional drivers, and long driving hours. Yet, this data can be tested
for private car drivers, to see whether it can enrich the developed models. Furthermore, the
transferability analysis conducted in this work (see Section 7.1.3) while proving useful for
analysis across car and other modes, has only been done for user perception and acceptance of
the system; an interest might be to apply the same or similar models as the panel regression
ones developed using the car simulator data (see Section 6.2), to a larger scale dataset
(including the simulator data from the other modes). Beyond a transferability analysis for
modes within the driving simulator context, an interest could also be to assess transferability
between the simulator and the real-road environment, where possible. Such a direction
would ensure the scalability of the comprehensive and integrated approach presented in
this dissertation. The contributions provided in this work, along with the directions for
future research, can help better manage future naturalistic studies aiming at an improved
understanding of driving behavior, by better using the available resources, integrating the
resulting knowledge, for it to become useful and transferable, paving the way towards safer
roads, and towards “Vision Zero".
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Pop, Mădălin-Dorin and Octavian Prostean (2019). “Bayesian Reasoning for OD Volumes
Estimation in Absorbing Markov Traffic Process Modeling”. In: 2019 4th MEC International
Conference on Big Data and Smart City (ICBDSC), pp. 1–6. doi: 10.1109/ICBDSC.2019.
8645611.

Precht, Lisa, Andreas Keinath, and Josef F. Krems (2017). “Identifying effects of driving and
secondary task demands, passenger presence, and driver characteristics on driving errors
and traffic violations – Using naturalistic driving data segments preceding both safety
critical events and matched baselines”. In: Transportation Research Part F: Traffic Psychology and
Behaviour 51, pp. 103–144. issn: 1369-8478. doi: https://doi.org/10.1016/j.trf.2017.09.
003. url: http://www.sciencedirect.com/science/article/pii/S1369847817304631.

153

https://doi.org/10.1109/BigComp.2018.00118
https://doi.org/10.4271/2009-01-2715
https://doi.org/10.4271/2009-01-2715
https://doi.org/https://doi.org/10.1016/j.ssci.2020.104715
https://doi.org/https://doi.org/10.1016/j.ssci.2020.104715
http://www.sciencedirect.com/science/article/pii/S0925753520301120
http://www.sciencedirect.com/science/article/pii/S0925753520301120
https://doi.org/10.1109/TENCON.2019.8929426
https://doi.org/10.1109/ICBDSC.2019.8645611
https://doi.org/10.1109/ICBDSC.2019.8645611
https://doi.org/https://doi.org/10.1016/j.trf.2017.09.003
https://doi.org/https://doi.org/10.1016/j.trf.2017.09.003
http://www.sciencedirect.com/science/article/pii/S1369847817304631


Bibliography

PROLOGUE (2011). Promoting Real Life Observations for Gaining Understanding of Road Behaviour
in Europe. url: https://trimis.ec.europa.eu (visited on 03/25/2021).

Pucci, Paola and Giovanni Vecchio (2019). “Big Data: Hidden Challenges for a Fair Mobil-
ity Planning”. In: Enabling Mobilities: Planning Tools for People and Their Mobilities. Cham:
Springer International Publishing, pp. 43–58. isbn: 978-3-030-19581-6. doi: 10.1007/978-3-
030-19581-6_4. url: https://doi.org/10.1007/978-3-030-19581-6_4.

Rahman, Md Mahmudur, Mary F Lesch, et al. (2017). “Assessing the utility of TAM, TPB,
and UTAUT for advanced driver assistance systems”. In: Accident Analysis & Prevention 108,
pp. 361–373.

Rahman, Md Mahmudur, Lesley Strawderman, et al. (2018). “Modelling driver acceptance of
driver support systems”. In: Accident Analysis & Prevention 121, pp. 134–147.

Rasch, Alexander et al. (2020). “How do drivers overtake pedestrians? Evidence from field
test and naturalistic driving data”. In: Accident Analysis & Prevention 139, p. 105494. issn:
0001-4575. doi: https://doi.org/10.1016/j.aap.2020.105494. url: http://www.
sciencedirect.com/science/article/pii/S0001457519305391.

Riad, Mohammed-Issa et al. (Oct. 2014). “Investigating the Moderating Effects of Gender
and Self-Efficacy in the Context of Mobile Payment Adoption: A Developing Country
Perspective”. In: International Journal of Business and Management 9.

Ridel, Dana et al. (2022). “Does gender affect the driving performance of young patients with
diabetes?” In: Accident Analysis & Prevention 167, p. 106569.

Rosales, Athina et al. (2017). “Naturalistic driving data for a smart cloud-based abnormal
driving detector”. In: 2017 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced
Trusted Computed, Scalable Computing Communications, Cloud Big Data Computing, Internet
of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI),
pp. 1–8. doi: 10.1109/UIC-ATC.2017.8397449.

Rossi, Riccardo, Massimiliano Gastaldi, Francesco Biondi, et al. (2020). “A driving simulator
study exploring the effect of different mental models on ADAS system effectiveness”. In:
International Conference on Augmented Reality, Virtual Reality and Computer Graphics. Springer,
pp. 102–113.

Rossi, Riccardo, Massimiliano Gastaldi, and Gregorio Gecchele (2011). “Analysis of driver
task-related fatigue using driving simulator experiments”. In: Procedia-Social and Behavioral
Sciences 20, pp. 666–675.

Ryan, Alyssa et al. (2020). “Driver performance due to small unmanned aerial system appli-
cations in the vicinity of roadways”. In: Transportation research part F: traffic psychology and
behaviour 68, pp. 118–131.

Samiee, Sajjad et al. (2014). “Data Fusion to Develop a Driver Drowsiness Detection System
with Robustness to Signal Loss”. In: Sensors 14.9, pp. 17832–17847. issn: 1424-8220. doi:
10.3390/s140917832. url: https://www.mdpi.com/1424-8220/14/9/17832.

Sangster, John, Hesham Rakha, and Jianhe Du (2013). “Application of Naturalistic Driving
Data to Modeling of Driver Car-Following Behavior”. In: Transportation Research Record
2390.1, pp. 20–33. doi: 10.3141/2390-03. eprint: https://doi.org/10.3141/2390-03. url:
https://doi.org/10.3141/2390-03.

154

https://trimis.ec.europa.eu
https://doi.org/10.1007/978-3-030-19581-6_4
https://doi.org/10.1007/978-3-030-19581-6_4
https://doi.org/10.1007/978-3-030-19581-6_4
https://doi.org/https://doi.org/10.1016/j.aap.2020.105494
http://www.sciencedirect.com/science/article/pii/S0001457519305391
http://www.sciencedirect.com/science/article/pii/S0001457519305391
https://doi.org/10.1109/UIC-ATC.2017.8397449
https://doi.org/10.3390/s140917832
https://www.mdpi.com/1424-8220/14/9/17832
https://doi.org/10.3141/2390-03
https://doi.org/10.3141/2390-03
https://doi.org/10.3141/2390-03


Bibliography

Saxby, Dyani J et al. (2007). “Development of active and passive fatigue manipulations using
a driving simulator”. In: Proceedings of the Human Factors and Ergonomics Society Annual
Meeting. Vol. 51. 18. SAGE Publications Sage CA: Los Angeles, CA, pp. 1237–1241.

Sayer, James R., Joel M. Devonshire, and Carol A. C. Flannagan (2005). “The Effects of
Secondary Tasks on Naturalistic Driving Performance”. In.

Schatzinger, Susanne and Chyi Yng Rose Lim (2017). “Taxi of the Future: Big Data Analysis
as a Framework for Future Urban Fleets in Smart Cities”. In: Smart and Sustainable Planning
for Cities and Regions: Results of SSPCR 2015. Ed. by Adriano Bisello et al. Cham: Springer
International Publishing, pp. 83–98. isbn: 978-3-319-44899-2. doi: 10.1007/978-3-319-
44899-2_6. url: https://doi.org/10.1007/978-3-319-44899-2_6.

Seo, Young-Woo, David Wettergreen, and Wende Zhang (2012). “Recognizing temporary
changes on highways for reliable autonomous driving”. In: 2012 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), pp. 3027–3032. doi: 10.1109/ICSMC.2012.6378255.

Serok, Nimrod et al. (2019). “Unveiling the inter-relations between the urban streets network
and its dynamic traffic flows: Planning implication”. In: Environment and Planning B: Urban
Analytics and City Science 46.7, pp. 1362–1376. doi: 10.1177/2399808319837982.

Shahid, Azmeh et al. (2011). “Karolinska sleepiness scale (KSS)”. In: STOP, THAT and One
Hundred Other Sleep Scales. Springer, pp. 209–210.

Shankar, Venky et al. (2008). “Analysis of Naturalistic Driving Data: Prospective View on
Methodological Paradigms”. In: Transportation Research Record 2061.1, pp. 1–8. doi: 10.3141/
2061-01. url: https://doi.org/10.3141/2061-01.

Sharafi, Zohreh, Zéphyrin Soh, and Yann-Gaël Guéhéneuc (2015). “A systematic literature
review on the usage of eye-tracking in software engineering”. In: Information and Software
Technology 67, pp. 79–107.

Sharif, Bonita, Michael Falcone, and Jonathan I Maletic (2012). “An eye-tracking study on the
role of scan time in finding source code defects”. In: Proceedings of the Symposium on Eye
Tracking Research and Applications, pp. 381–384.

Shaughnessy, John J, Eugene B Zechmeister, and Jeanne S Zechmeister (2000). Research methods
in psychology. McGraw-Hill.

Shih, Hung-Pin (2004). “An empirical study on predicting user acceptance of e-shopping on
the Web”. In: Information & Management 41.3, pp. 351–368.

SHRP 2 (2013). SHRP 2 Naturalistic Driving Study (SHRP 2 NDS). url: https://www.shrp2nds.
us/.

Simmons, Sarah M., Anne Hicks, and Jeff K. d Cair (2016). “Safety-critical event risk associated
with cell phone tasks as measured in naturalistic driving studies: A systematic review and
meta-analysis”. In: Accident Analysis & Prevention 87, pp. 161–169. issn: 0001-4575. doi:
https://doi.org/10.1016/j.aap.2015.11.015. url: http://www.sciencedirect.com/
science/article/pii/S0001457515301305.

Simons-Morton, Bruce G. et al. (2015). “Naturalistic teenage driving study: Findings and
lessons learned”. In: Journal of Safety Research 54. Strategic Highway Research Program
(SHRP 2) and Special Issue: Fourth International Symposium on Naturalistic Driving

155

https://doi.org/10.1007/978-3-319-44899-2_6
https://doi.org/10.1007/978-3-319-44899-2_6
https://doi.org/10.1007/978-3-319-44899-2_6
https://doi.org/10.1109/ICSMC.2012.6378255
https://doi.org/10.1177/2399808319837982
https://doi.org/10.3141/2061-01
https://doi.org/10.3141/2061-01
https://doi.org/10.3141/2061-01
https://www.shrp2nds.us/
https://www.shrp2nds.us/
https://doi.org/https://doi.org/10.1016/j.aap.2015.11.015
http://www.sciencedirect.com/science/article/pii/S0001457515301305
http://www.sciencedirect.com/science/article/pii/S0001457515301305


Bibliography

Research, 41.e29–44. issn: 0022-4375. doi: https://doi.org/10.1016/j.jsr.2015.06.010.
url: http://www.sciencedirect.com/science/article/pii/S0022437515000420.

Sivasankaran, Sathish Kumar and Venkatesh Balasubramanian (2019). “Data Mining Based
Analysis of Hit-and-Run Crashes in Metropolitan City”. In: Proceedings of the 20th Congress
of the International Ergonomics Association (IEA 2018). Ed. by Sebastiano Bagnara et al. Cham:
Springer International Publishing, pp. 113–122.

Soccolich, Susan A. et al. (2013). “An analysis of driving and working hour on commercial
motor vehicle driver safety using naturalistic data collection”. In: Accident Analysis &
Prevention 58, pp. 249–258. issn: 0001-4575. doi: https://doi.org/10.1016/j.aap.2012.06.
024. url: http://www.sciencedirect.com/science/article/pii/S0001457512002485.

Sun, Chuan et al. (2018). “A novel method of symbolic representation in diving data mining:
A case study of highways in China”. In: Concurrency and Computation: Practice and Experience
30.24. e4976 CPE-18-0859.R1, e4976. doi: 10.1002/cpe.4976. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/cpe.4976.

Sun, Heshan and Ping Zhang (2006). “The role of moderating factors in user technology
acceptance”. In: International Journal of Human-Computer Studies 64.2, pp. 53–78.

Sutherland, JE et al. (2022). “Modeling social rejection, physiological arousal, and peer
influence on risky driving among adolescents and young adults”. In: Transportation research
part F: traffic psychology and behaviour 84, pp. 114–138.

Tement, Sara et al. (2022). “Assessment and Profiling of Driving Style and Skills”. In: User
Experience Design in the Era of Automated Driving. Springer, pp. 151–176.

Thapa, Raju et al. (2019). “Assessing driving behavior upstream of work zones by detecting
response points in speed profile: A naturalistic driving study”. In: Traffic Injury Prevention
20.8. PMID: 31647333, pp. 854–859. doi: 10.1080/15389588.2019.1663348. url: https:
//doi.org/10.1080/15389588.2019.1663348.

The University of New South Wales (2017). Australian Naturalistic Driving Study. url: http:
//www.ands.unsw.edu.au/about-study.

Tian, Renran et al. (2014). “Estimation of the vehicle-pedestrian encounter/conflict risk on the
road based on TASI 110-car naturalistic driving data collection”. In: 2014 IEEE Intelligent
Vehicles Symposium Proceedings, pp. 623–629. doi: 10.1109/IVS.2014.6856599.

Ting, Ping-Huang et al. (2008). “Driver fatigue and highway driving: A simulator study”. In:
Physiology & behavior 94.3, pp. 448–453.

Tivesten, Emma and Marcoa Dozz (2014). “Driving context and visual-manual phone tasks
influence glance behavior in naturalistic driving”. In: Transportation Research Part F: Traffic
Psychology and Behaviour 26, pp. 258–272. issn: 1369-8478. doi: https://doi.org/10.
1016/j.trf.2014.08.004. url: http://www.sciencedirect.com/science/article/pii/
S1369847814001211.

Tivesten, Emma and Marco Dozza (2015). “Driving context influences drivers’ decision to
engage in visual–manual phone tasks: Evidence from a naturalistic driving study”. In:
Journal of Safety Research 53, pp. 87–96. issn: 0022-4375. doi: https://doi.org/10.1016/
j.jsr.2015.03.010. url: http://www.sciencedirect.com/science/article/pii/
S0022437515000225.

156

https://doi.org/https://doi.org/10.1016/j.jsr.2015.06.010
http://www.sciencedirect.com/science/article/pii/S0022437515000420
https://doi.org/https://doi.org/10.1016/j.aap.2012.06.024
https://doi.org/https://doi.org/10.1016/j.aap.2012.06.024
http://www.sciencedirect.com/science/article/pii/S0001457512002485
https://doi.org/10.1002/cpe.4976
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4976
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4976
https://doi.org/10.1080/15389588.2019.1663348
https://doi.org/10.1080/15389588.2019.1663348
https://doi.org/10.1080/15389588.2019.1663348
http://www.ands.unsw.edu.au/about-study
http://www.ands.unsw.edu.au/about-study
https://doi.org/10.1109/IVS.2014.6856599
https://doi.org/https://doi.org/10.1016/j.trf.2014.08.004
https://doi.org/https://doi.org/10.1016/j.trf.2014.08.004
http://www.sciencedirect.com/science/article/pii/S1369847814001211
http://www.sciencedirect.com/science/article/pii/S1369847814001211
https://doi.org/https://doi.org/10.1016/j.jsr.2015.03.010
https://doi.org/https://doi.org/10.1016/j.jsr.2015.03.010
http://www.sciencedirect.com/science/article/pii/S0022437515000225
http://www.sciencedirect.com/science/article/pii/S0022437515000225


Bibliography

Tobii Pro AB (2020). Tobii Pro Lab User Manual. Version 1.152. Danderyd, Stockholm. url:
http://www.tobiipro.com/.

– (2021). How do Tobii Eye Trackers work? url: https://connect.tobiipro.com/s/article/
How-do-Tobii-eye-trackers-work?language=en_US.

Torre-Bastida, Ana Isabel et al. (2018). “Big Data for transportation and mobility: recent
advances, trends and challenges”. In: IET Intelligent Transport Systems 12.8, pp. 742–755.
issn: 1751-9578. doi: 10.1049/iet-its.2018.5188.

Track & Know (2021). Track & Know. url: https://trackandknowproject.eu/.
Train, Kenneth E (2009). Discrete choice methods with simulation. Cambridge university press.
Tyrinopoulos, Yannis and Constantinos Antoniou (2008). “Public transit user satisfaction:

Variability and policy implications”. In: Transport Policy 15.4, pp. 260–272.
Uc, Ergun Y (2022). “Driving in Parkinson’s disease”. In: Movement Disorder Emergencies.

Springer, pp. 555–576.
UDRIVE (2017). UDRIVE European Naturalistic Driving Study. url: https://cordis.europa.
eu/docs/results/314/314050/final1-udrive-final-publishable-summary-report.
pdf (visited on 2021).

Valero-Mora, Pedro M. et al. (2013). “Is naturalistic driving research possible with highly
instrumented cars? Lessons learnt in three research centres”. In: Accident Analysis & Preven-
tion 58, pp. 187–194. issn: 0001-4575. doi: https://doi.org/10.1016/j.aap.2012.12.025.
url: http://www.sciencedirect.com/science/article/pii/S0001457512004472.

Van der Heijden, Hans (2004). “User acceptance of hedonic information systems”. In: MIS
quarterly, pp. 695–704.

Velicer, Wayne F and Douglas N Jackson (1990). “Component analysis versus common factor
analysis: Some issues in selecting an appropriate procedure”. In: Multivariate behavioral
research 25.1, pp. 1–28.

Venkatesh, Viswanath and Hillol Bala (2008). “Technology acceptance model 3 and a research
agenda on interventions”. In: Decision sciences 39.2, pp. 273–315.

Venkatesh, Viswanath and Fred D Davis (2000). “A theoretical extension of the technology
acceptance model: Four longitudinal field studies”. In: Management Science 46.2, pp. 186–204.

Venkatesh, Viswanath, Michael G Morris, et al. (2003). “User acceptance of information
technology: Toward a unified view”. In: MIS quarterly, pp. 425–478.

Victor, Trent, Jonas Bärgman, et al. (Mar. 23, 2021). Sweden-Michigan Naturalistic Field Opera-
tional Test (SeMiFOT) Phase 1. url: https://www.saferresearch.com/library (visited on
03/25/2021).

Victor, Trent, Marco Dozza, et al. (2015). Analysis of naturalistic driving study data: Safer glances,
driver inattention, and crash risk. Tech. rep.

Viktorová, Lucie and Matúš Šucha (2018). “Drivers’ acceptance of advanced driver assistance
systems–what to consider”. In: International Journal for Traffic and Transport Engineering 8.3,
pp. 320–333.

Vollrath, Mark and Josefine Fischer (2017). “When does alcohol hurt? A driving simulator
study”. In: Accident Analysis & Prevention 109, pp. 89–98.

157

http://www.tobiipro.com/
https://connect.tobiipro.com/s/article/How-do-Tobii-eye-trackers-work?language=en_US
https://connect.tobiipro.com/s/article/How-do-Tobii-eye-trackers-work?language=en_US
https://doi.org/10.1049/iet-its.2018.5188
https://trackandknowproject.eu/
https://cordis.europa.eu/docs/results/314/314050/final1-udrive-final-publishable-summary-report.pdf
https://cordis.europa.eu/docs/results/314/314050/final1-udrive-final-publishable-summary-report.pdf
https://cordis.europa.eu/docs/results/314/314050/final1-udrive-final-publishable-summary-report.pdf
https://doi.org/https://doi.org/10.1016/j.aap.2012.12.025
http://www.sciencedirect.com/science/article/pii/S0001457512004472
https://www.saferresearch.com/library


Bibliography

Vu, Anh et al. (2013). “Traffic sign detection, state estimation, and identification using onboard
sensors”. In: 16th International IEEE Conference on Intelligent Transportation Systems (ITSC
2013), pp. 875–880. doi: 10.1109/ITSC.2013.6728342.

Wallace, B. et al. (2015). “Automation of the Validation, Anonymization, and Augmentation
of Big Data from a Multi-year Driving Study”. In: 2015 IEEE International Congress on Big
Data, pp. 608–614. doi: 10.1109/BigDataCongress.2015.93.

Wallace, Bruce, Frank Knoefel, et al. (2017). “Features that Distinguish Drivers: Big Data
Analytics of Naturalistic Driving Data”. In.

Wallace, Bruce, Akshay Puli, et al. (2016). “Measurement of Distinguishing Features of Stable
Cognitive and Physical Health Older Drivers”. In: IEEE Transactions on Instrumentation and
Measurement 65.9, pp. 1990–2001. issn: 1557-9662. doi: 10.1109/TIM.2016.2526617.

Wang, Gang, Ping Sun, and Yi Zhang (2019). “Utilizing Random Forest and Neural Network
to Extract Lane Change Events on Shanghai Highway”. In: CICTP 2019, pp. 318–330.

Wang, Wuhong et al. (2019). “A cross-cultural analysis of driving behavior under critical
situations: A driving simulator study”. In: Transportation research part F: traffic psychology and
behaviour 62, pp. 483–493.

Wang, Xiyao and Jiong Fu (2019). “Steering Wheel Interaction Design Based on Level 3
Autonomous Driving Scenario”. In: HCI International 2019 – Late Breaking Posters. Ed. by
Constantine Stephanidis and Margherita Antona. Cham: Springer International Publishing,
pp. 78–84.

Wang, Yuhao and Ivan Wang-Hei Ho (2018). “Joint Deep Neural Network Modelling and
Statistical Analysis on Characterizing Driving Behaviors”. In: 2018 IEEE Intelligent Vehicles
Symposium (IV), pp. 1–6. doi: 10.1109/IVS.2018.8500376.

Warren, Josh, Jeff Lipkowitz, and Vadim Sokolov (2019). “Clusters of Driving Behavior From
Observational Smartphone Data”. In: IEEE Intelligent Transportation Systems Magazine 11.3,
pp. 171–180. issn: 1941-1197. doi: 10.1109/MITS.2019.2919516.

Washington, Simon P, Matthew G Karlaftis, and Fred Mannering (2010). Statistical and
econometric methods for transportation data analysis. Chapman and Hall/CRC.

Wege, Claudia, Sebastian l Wil, and Trent Victor (2013). “Eye movement and brake reactions
to real world brake-capacity forward collision warnings—A naturalistic driving study”. In:
Accident Analysis & Prevention 58, pp. 259–270. issn: 0001-4575. doi: https://doi.org/10.
1016/j.aap.2012.09.013. url: http://www.sciencedirect.com/science/article/pii/
S000145751200320X.

Weiler, John M et al. (2000). “Effects of fexofenadine, diphenhydramine, and alcohol on
driving performance: a randomized, placebo-controlled trial in the Iowa driving simulator”.
In: Annals of Internal Medicine 132.5, pp. 354–363.

Wijnands, Jasper S et al. (2019). “Real-time monitoring of driver drowsiness on mobile
platforms using 3D neural networks”. In: Neural Computing and Applications, pp. 1–13.

World Health Organization (2011). “Mobile phone use: a growing problem of driver distrac-
tion”. In.

Wu, Kun-Feng, Jonathan Aguero-Valverde, and Paul P. Jovanis (2014). “Using naturalistic
driving data to explore the association between traffic safety-related events and crash risk

158

https://doi.org/10.1109/ITSC.2013.6728342
https://doi.org/10.1109/BigDataCongress.2015.93
https://doi.org/10.1109/TIM.2016.2526617
https://doi.org/10.1109/IVS.2018.8500376
https://doi.org/10.1109/MITS.2019.2919516
https://doi.org/https://doi.org/10.1016/j.aap.2012.09.013
https://doi.org/https://doi.org/10.1016/j.aap.2012.09.013
http://www.sciencedirect.com/science/article/pii/S000145751200320X
http://www.sciencedirect.com/science/article/pii/S000145751200320X


Bibliography

at driver level”. In: Accident Analysis & Prevention 72, pp. 210–218. issn: 0001-4575. doi:
https://doi.org/10.1016/j.aap.2014.07.005. url: https://www.sciencedirect.com/
science/article/pii/S0001457514002012.

Wu, Kun-Feng and Paul P. Jovanis (2012). “Crashes and crash-surrogate events: Exploratory
modeling with naturalistic driving data”. In: Accident Analysis & Prevention 45, pp. 507–
516. issn: 0001-4575. doi: https://doi.org/10.1016/j.aap.2011.09.002. url: http:
//www.sciencedirect.com/science/article/pii/S0001457511002399.

– (2013). “Defining and screening crash surrogate events using naturalistic driving data”.
In: Accident Analysis & Prevention 61. Emerging Research Methods and Their Application
to Road Safety Emerging Issues in Safe and Sustainable Mobility for Older Persons The
Candrive/Ozcandrive Prospective Older Driver Study: Methodology and Early Study
Findings, pp. 10–22. issn: 0001-4575. doi: https://doi.org/10.1016/j.aap.2012.10.004.
url: http://www.sciencedirect.com/science/article/pii/S0001457512003600.

Xia, Ye et al. (2018). “Predicting driver attention in critical situations”. In: Asian conference on
computer vision. Springer, pp. 658–674.

Xu, Yueru, Zhirui Ye, and Chao Wang (2021). “Modeling commercial vehicle drivers’ accep-
tance of advanced driving assistance system (ADAS)”. In: Journal of Intelligent and Connected
Vehicles.

Yadawadkar, Sujay et al. (2018). “Identifying Distracted and Drowsy Drivers Using Naturalistic
Driving Data”. In: 2018 IEEE International Conference on Big Data (Big Data). IEEE, pp. 2019–
2026.

Yan, Ying et al. (2019). “Driving risk assessment using driving behavior data under continuous
tunnel environment”. In: Traffic injury prevention 20.8, pp. 807–812.

Yang, Liu et al. (2018). “Effect of traffic density on drivers’ lane change and overtaking
maneuvers in freeway situation—A driving simulator–based study”. In: Traffic injury
prevention 19.6, pp. 594–600.

Yasmin, Shamsunnahar, Jie Hu, and Sheng Luo (2020). “A Car-Following Driver Model
Capable of Retaining Naturalistic Driving Styles”. In: Journal of Advanced Transportation.
issn: 0197-6729. doi: https://doi.org/10.1155/2020/6520861. url: https://doi.org/10.
1155/2020/6520861.

Zaman, Asim, Xiang Liu, and Zhipeng Zhang (2018). “Video Analytics for Railroad Safety
Research: An Artificial Intelligence Approach”. In: Transportation Research Record 2672.10,
pp. 269–277. doi: 10.1177/0361198118792751.

Zhang, Jiarui et al. (2019). “Analysis of Driving Control Model of Normal Lane Change based
on Naturalistic Driving Data”. In: 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), pp. 104–109.

Zhao, Chunlin et al. (2012). “Electroencephalogram and electrocardiograph assessment of
mental fatigue in a driving simulator”. In: Accident Analysis & Prevention 45, pp. 83–90.

Zhao, Chunqing et al. (2017). “Speed and steering angle prediction for intelligent vehicles
based on deep belief network”. In: 2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC), pp. 301–306. doi: 10.1109/ITSC.2017.8317929.

159

https://doi.org/https://doi.org/10.1016/j.aap.2014.07.005
https://www.sciencedirect.com/science/article/pii/S0001457514002012
https://www.sciencedirect.com/science/article/pii/S0001457514002012
https://doi.org/https://doi.org/10.1016/j.aap.2011.09.002
http://www.sciencedirect.com/science/article/pii/S0001457511002399
http://www.sciencedirect.com/science/article/pii/S0001457511002399
https://doi.org/https://doi.org/10.1016/j.aap.2012.10.004
http://www.sciencedirect.com/science/article/pii/S0001457512003600
https://doi.org/https://doi.org/10.1155/2020/6520861
https://doi.org/10.1155/2020/6520861
https://doi.org/10.1155/2020/6520861
https://doi.org/10.1177/0361198118792751
https://doi.org/10.1109/ITSC.2017.8317929


Bibliography

Zhao, Shuanfeng et al. (2019). “A Traffic Flow Prediction Method Based on Road Crossing
Vector Coding and a Bidirectional Recursive Neural Network”. In: Electronics 8.9. issn:
2079-9292. url: https://www.mdpi.com/2079-9292/8/9/1006.

Zhou, Tong et al. (2019). “A Novel Approach for Online Car-Hailing Monitoring Using
Spatiotemporal Big Data”. In: IEEE Access 7, pp. 128936–128947. issn: 2169-3536. doi:
10.1109/ACCESS.2019.2939787.

Zhu, Li et al. (2019). “Big Data Analytics in Intelligent Transportation Systems: A Survey”. In:
IEEE Transactions on Intelligent Transportation Systems 20.1, pp. 383–398. issn: 1558-0016. doi:
10.1109/TITS.2018.2815678.

Zicat, Emma et al. (2018). “Cognitive function and young drivers: The relationship between
driving, attitudes, personality and cognition”. In: Transportation research part F: traffic psy-
chology and behaviour 55, pp. 341–352.

160

https://www.mdpi.com/2079-9292/8/9/1006
https://doi.org/10.1109/ACCESS.2019.2939787
https://doi.org/10.1109/TITS.2018.2815678


161



A. Driving Simulator and Eye Tracking Specifications

A. Driving Simulator and Eye Tracking
Specifications

A.1. DSS simulator specifications

Table A.1.: DSS simulator specifications, based on Annex 3 of Graham Hancox, Rachel Talbot,
Fran Pilkington-Cheney, et al. (2020)

DSS Car simulator Truck simulator
Description Based on Peugeot 206, using OEM parts.

Modular and expandable.
Easy to transport, assemble and disassem-
ble.

Mock-up or ergonomic truck/bus driving
position.
Modular and expandable.
Easy to transport, assemble and disassem-
ble.

Driver controls • Fanatec Podium DD1 20Nm force
feedback steering motor.

• Car steering wheel with Car-
dioWheel Technology.

• OEM blinker/light controls.
• Fanatec Clubsport V3 inverted ped-

als with 90kg Loadcell brake + vibra-
tor on brake and accelerator.

• Fanatec Clubsport SQ V1.5 man/seq
Shifter

• Fanatec Podium DD1 20Nm force
feedback steering motor.

• Truck steering wheel with Car-
dioWheel Technology.

• OEM blinker/light controls.
• Fanatec Clubsport V3 pedals with

90kg Loadcell brake + vibrator on
brake and accelerator.

• Fanatec Clubsport SQ V1.5 man/seq
Shifter

Frame material Aluminium T-slot profile Aluminium T-slot profile
Frame dimension,
excl. TV’s

Length: 1800mm
Width: 1350mm

Length: 1300mm
Width: 800mm

Full dimensions,
incl. TV’s

Length: 1800mm
Width: 3300mm
Height: 1550mm

Length: 1300mm
Width: 3300mm
Height: 1550mm

Visual 3x Samsung Q70R 49inch TV, 135° Horizon-
tal FOV

3x Samsung Q70R 49inch TV, 135° Horizon-
tal FOV

Instrumentation Original Instrument Cluster TBD
Software STISIM Drive 3 STISIM Drive 3
PC specifications Intel i7 9700K

GeForce RTX 2070 Super
16GB DDR4 RAM
512 GB SSD

Intel i7 9700K
GeForce RTX 2070 Super
16GB DDR4 RAM
512 GB SSD

Electrical
requirements

1 Schuko Type Socket
1x230VAC + PE, protected by an overcur-
rent device of 16A and residual current de-
vice of max. 300mA.

1 Schuko Type Socket
1x230VAC + PE, protected by an overcur-
rent device of 16A and residual current de-
vice of max. 300mA.

Electrical
specifications

Max power: 3.2 kW, 14A 230VAC Internally
protected by 16A automatic fuse.

Max power: 3.2 kW, 14A 230VAC Internally
protected by 16A automatic fuse.
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A.2. Driving simulator parameters

Table A.2.: Driving simulator parameters (source: own, based on DSS specifications)
Parameter Unit Parameter Unit
Elapsed time Seconds Scene viewing angle Degrees
Longitudinal acceleration Meters/second2 Total pitching angle Radians
Lateral acceleration Meters/second2 Total rolling angle Radians
Longitudinal velocity Meters/second Steering wheel angular rate Radians/second
Lateral velocity Meters/second Minimum distance to vehicle in own lane Meters
Total longitudinal distance travelled Meters Minimum distance to vehicle in opposing

lane
Meters

Lateral lane position, relative to centerline Meters Minimum time to collision in own lane Seconds
Current driven vehicle lane / Minimum time to collision in opposing

lane
Seconds

Current roadway curvature 1/Meter Computer timestamp Date
Vehicle heading angle Degrees Total inertial heading angle Degrees
Steering wheel angle input Degrees Current status of the digital input port on

the secondary I/O device
Longitudinal acceleration due to throttle Meters/second2 Current speed limit Meters/second
Longitudinal deceleration due to brake Meters/second2 Number of the most recently activated trig-

gered event
/

Current traffic signal light position / Current speed limit Kilometers/hour
Running compilation of driver crashes / Engine rpm value RPM
Minimum time to collision Seconds Clutch pedal input counts /
Data marker flag / Hand wheel torque Newton meters
Driver vehicle speedometer value Kilometers/hour Left indicator state /
Vehicle yaw rate Radians/second Right indicator state /
Current transmission gear / Running compilation of driver tickets /
Steering input counts / Percentage gas pedal %
Gas pedal input counts / Percentage brake pedal %
Brake pedal input counts /
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A. Driving Simulator and Eye Tracking Specifications

A.3. Driving simulator scenario design

The full scenario design is available in Amini et al. (2021), which provides the detailed events
starting and ending points (distance–based).

Table A.3.: Summary of critical events for the car driving simulator experiments

Risk factor Critical
event

Road segment Description

CE1 Rural A (car)2 is driving at low speed in front of the
driver, while the available gap in the opposite
traffic is not long enough for an overtaking ma-
neuver. The (car)1 has to follow for a distance
of 300–350m

Tailgating CE2 Urban A (car)2 overtakes (car)1 and suddenly merges
into the lane in front of it with the result that
(car)1 needs to adjust the driving speed.

CE3 Highway A car enters the highway in front of (car)2, with
the result that the lead (car)2 needs to make a
harsh brake

CE4 Urban A pedestrian crosses the road illegally (the traf-
fic light does not permit crossing) when the
driver is approaching the intersection on the
green phase.

VRU colli-
sions

CE5 Urban At a mid-block crossing, a pedestrian -initially
obstructed from the driver’s view by a bus
starts crossing the road while the driver is ap-
proaching.

CE6 Rural A pedestrian - initially obstructed from the
driver’s view by bushes- crosses the road at
the uncontrolled crossing while the car is ap-
proaching.

A.4. Eye Tracking (TobiiPro2) background

The concept of visual tracking to study how we gather information via glancing at specific
objects has been around since the 1800s (Tobii Pro AB, 2021). An eye tracking device makes
use of invisible near-infrared rays and high-definition cameras to project incident light onto
the eye and assess the direction of the reflected ray off the eye’s cornea (Tobii Pro AB, 2021).
Analyzer modules with the appropriate algorithms are then made use of to assess the eye
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A.4. Eye Tracking (TobiiPro2) background

Table A.4.: Order of traffic environments for simulation configurations

Segment sequence Configuration A Configuration B Configuration C

Segment 1 Rural Urban Highway

Segment 2 Highway Highway Rural

Segment 3 Urban Rural Urban

Table A.5.: Distraction types across critical events
Distance (m) CE Distraction type Text message
1850 CE 6 Reading “Thank you for participating in the experiment”
4100-4400 CE 2 Reading and replying “Can you name two cities you want to visit?”
5000 No event Reading “Your dentist appointment is scheduled for 30/11/2020 at 14:15”
7500-8500 CE 3 Reading and replying “Where is your hometown?”
11850-11890 CE 5 Reading “Nice to see you at the café yesterday”
13150 CE 4 Reading “50% discount on online orders! Today only!”
14100 No event Reading and replying “What are two things you enjoy doing the most?”
14700-15000 CE 1 Reading and replying “27+32=?”

position and its gaze. The aim is to visually map the subject’s gaze behavior. The different
modules of the Tobii Pro Glasses are depicted in Figure A.1.

Figure A.1.: Tobii Pro Glasses (Tobii Pro AB, 2021)
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B. Multi–modal Driving Simulator Data

This chapter presents an overview of the collected data within the multi–modal driving
simulator experiments described in Section 4.3.2. As previously mentioned, only the car
simulator experiments conducted in Germany (N=60) have been designed and executed as
part of this dissertation.

Table B.1.: Socio–demographic characteristics of the different simulator samples (source: own)

Variable Car (N=60) Truck (N=36) Tram (N=28)
Gender Male 25 (42%) 30 (83.3%) 27 (96.4%)

Female 35 (58%) 6 (16.7%) 1 (3.6%)

Age 30 (26, 37) 37 (22, 49.25) 47.3 (36, 57.3)

Employment Full-time - - 3 ( 82.1 %)
Part-time - 5 ( 17.9%)

Weekly kms <500 km - 4 (11.8 %) -
500 to 1000 km - 7 (20.6 %) -
1000 to 2000 km - 10 (29.4 %) -
>2000 km - 13 (38.2 %) -

Fines None 41 (68%) 11 (33.3 %) -
At least one 19 (32%) 22 (66.7 %) -

Accidents None 56 (93%) 23 (69.7 %) -
At least one 4 (7%) 10 (33.3 %) -

Working years - - 10.2 (3.5, 18)

License years 9 (6, 15) - 10 (4, 15)

An overview of the demographics reveals findings on the different samples. While gender
seems to be balanced for car drivers, this was not the case for truck and tram drivers, who
tend to be mostly (exclusively) males; which makes sense as this is commonly the case for
professional drivers.

Similarly to car drivers, most fines for truck drivers pertained to overspeeding, the same
way accidents resulted in material damage only. Still, it is interesting to note that on average
the percentage of truck drives having had at least one fine is double the one for car drivers,
the same way the percentage having had an accident is way higher for truck drivers.

In addition to the demographics and variables reported in Table B.1, additional questions
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were asked on the roadway environments, but also sleep quality, for each of truck and tram
drivers. Truck drivers mostly drove on motorways (a distribution of on average 42%), followed
by rural (on average 36%), then by urban (on average 27%). Their working time was mostly
during the day (53%), followed by a combination of both daytime and nighttime (44%). On
the other hand, tram drivers worked an average of 28 hours per week, mostly (71%) in a
combination of day and night shifts.

Regarding sleep patterns, it seemed on average that neither truck or tram drivers had main
sleep issues, none had previous sleep diseases (except one tram driver who had sleep apnea).
Both truck and tram drivers indicated that their sleep quality was mostly mostly good or
very good (about 64% of drivers), while only 21% of truck drivers revealed that their sleep
quality was not so good, as opposted to 18% for tram drivers. The majority of truck drivers
(61% or 20 out of 33 drivers), only very occasionally (less than 2 to 4 times per month in the
last year) had to fight sleep to stay awake, as opposed to only 12% of them indicating that
they never had to do so in the past year. For tram drivers, the last two figures were 57% and
36%, respectively.

Most truck drivers (52%) never had to stop driving due to drowsiness in the past year,
and about 21% of them had to do so more than three times that year. The percentages were
similar for drivers who wanted to stop driving due to drowsiness, but were not able to do
so at that time; On the other hand, no tram drivers indicated that they had to stop because
of feeling sleepy. Only one person indicated that they wanted to stop the tram but were
unable to (3.6%). The last figures indicate that truck drivers on average struggled more with
sleep, which makes sense due to longer travelled distances, but also as they have more the
opportunity, compared to tram drivers, to stop in case of drowsiness.

Finally, very few truck drivers indicated that in the past year they fell asleep while driving
(only one driver), as opposed to no tram drivers; also, only one driver indicated that they
had a sleep–related incident in the past year (incident due to falling asleep while driving), as
opposed to only two tram drivers (who had an incident over the past 10 years).

Remarks:

• While the statistics intend to be for the entire sample (N=36 for example for trucks), for some
variables, there were some missing values (usually 1 or 2 at most); for those, the N was not 36
naturally, therefore the statistics are provided both in absolute values, but also in percentages.
Moreover, provided statistics are usually percentages, but also sometimes the interquartile range,
for variables whose answer options were continuous and not discrete, such as age, number of
years worked, or number of years since acquiring the license.

• Both “Fine" and “Accident" variables refer to the last three years of using the truck or the car.

• Weekly kilometers is an estimate of the mileage using the truck.

• The variables fines, accidents, working years and license years refer to the main mode investigated.
For instance, even if truck drivers also drive cars, the reported numbers refer to accidents or fines
or working years as a truck driver; the same applies for tram drivers.
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C. Forms and Questionnaires

Forms and questionnaires used for the data collection in the car simulator experiments are
given in this Appendix. Section C.1 first provides an overview of the created forms, including
the participant information sheet and consent forms (to collect and use the data), a debriefing
form (to highlight that texting while driving, which was part of the experiment, was only
done for the purpose of research, and is not an acceptable behavior in real driving conditions),
and a participant payment voucher form.

Section C.2 then provides an overview of the different questionnaires, including first
the recruitment questionnaire [conducted online through the university Wikipedia system
(https://wiki.tum.de/)], followed by the various questionnaires [entry questionnaire, and
exit questionnaires A and B, all of which have been deployed online, using LimeSurvey
(https://www.limesurvey.org/de/)].

It is important to note that these forms and questionnaires were available in both English
and German, depending on the participants’ preferences; in this appendix, the forms and
questionnaires are only provided in English.
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Participant Information Sheet and Participant Consent to:i-DREAMS: Driving simulator experiments.
Dear participant,
You are taking part in i-DREAMS (a smart Driver and Road Environment Assessmentand Monitoring System) scientific research study. In this information sheet, you can find allnecessary information relating to it.
At least 30 participants are taking part in this study. The study is led by the Chair of TransportationSystems Engineering at the Faculty of Civil, Geo, and Environmental Engineering at the TechnicalUniversity of Munich. It is funded through the EU horizon 2020, Grant No. 814761, i-DREAMS.
This study has been reviewed by the TUM Ethics Commission, which raised no objections against thestudy during consultation (Approval number: 78/20 S).
Your participation is completely voluntary. You can withdraw from the study if you do not wish toparticipate or withdraw your consent without any consequences at any time.
We ask you to carefully read this information sheet. The study supervisor will brief you about thestudy and answer any questions you may have.
Why is the study conducted?
The aim of the experiment is to test driver safety under specific conditions. Risk factors are tested ina simulator environment to evaluate driving behavior under specific risk conditions. The expectedbenefit is to investigate whether real time warnings can improve driving behavior.
What is the procedure?
Your participation to the study ends after this session.
Your participation will last one to two hours and includes, 1) filling questionnaires regarding your
socio-demographic characteristics, your driving experience, your attitude towards safety and driving
in general, and 2) driving in a simulator, as you would in the real world. The following equipment will
be used:

 A steering wheel (CardioWheel), which measures your heart rate; the position of your hand
on the steering wheel will determine stress, fatigue, and distraction while driving

 A front camera (Mobileye), which records the simulated environment (e.g. road environment,
pedestrians, distance to the vehicle in front, lane position, etc.)

 Tobii Pro 2 Glasses, wearable eye-trackers/glasses, which collect eye movement data, e.g.
the glance direction.

What are your benefits from participating in this study?
Participation in this study does not have any particular benefits for you. Rather, the results of the
study could in the future help all people, by improving road safety.
What are the risks associated with your participation in this study?
The participation in this study does not expose you to any risks.
Do you receive any compensation?
As a thank you for your participation, you will receive a voucher worth 25 Euros.

This project has received funding fromthe European Union's Horizon 2020research and innovation program undergrant agreement No 814761.

C. Forms and Questionnaires

C.1. Forms

170



2/3

Can you drop out of this study?
Your participation to this study is voluntary. You can end your participation at any time, without the
need of justification. In this case, you do not get any compensation.
Your data would then be deleted unless you consent to the use of your anonymized data. After
anonymization, it is not possible to delete your data, as we would not be able to relate it to your
identity.
Data protection information
In this study, the Chair of Transportation Systems Engineering at the Technical University of Munich
is responsible of the data handling. Processing your data is only allowed upon your consent. Your
data will only be collected for the purpose of this study and used within the scope of this study.
The collected data includes personal data like name, address, and birth date. Sensitive data is not
collected, with the exception of your nationality, health status, attitudes, and perceptions. The data
that directly identifies you like name, address, etc., would be replaced by an identification code
(pseudonym).
Your data would be saved in a server in Germany. Your personal data will be deleted at most five
years after the end of the project, and therefore your data will become anonymized.
Only the pseudonymized data (protected) would be shared among other partners in this project, who
have the same data agreements.
Data used for publications would not identify you personally. Following the EU open data strategy,
a fully anonymized portion of the data could be made publicly available.
The consent to the processing of your data is voluntary. You can revoke your consent at any time for
the future without affecting the legality of the processing carried out on the basis of the consent until
the revocation on the basis of Art. 6 para. 1 lit. a DSGVO. After your revocation, your personal data
will be deleted immediately. Please address your revocation to Prof. Dr. Constantinos Antoniou
(c.antoniou@tum.de) or Ms. Christelle Al Haddad (christelle.haddad@tum.de).
Under the legal conditions, there is a right of access, as well as a right to rectification or deletion or
to restriction of processing or a right to object to processing, as well as the right to data portability.
There is also a right of appeal to the Bavarian State Commissioner for Data Protection.
In such cases, please contact:
Chair of Transportation Systems Engineering , Prof. Dr. Constantinos Antoniou (c.antoniou@tum.de)
or Ms. Christelle Al Haddad (christelle.haddad@tum.de).
In case of a complaint, please contact:
Data Protection Officer of TUM
Technische Universität München
Arcisstr. 21 , 80333 München
E-Mail: beauftragter@datenschutz.tum.de

Or:
Bavarian State Commissioner for Data Protection
Postal address: Postfach 22 12 19, 80502München
Office address: Wagmüllerstr. 18, 80538München
E-Mail: poststelle@datenschutz-bayern.de

C.1. Forms
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Participant information and consent to the project:i-DREAMS Participant consent
Consent to participation
I was informed about the study by __________________________. I have read the participant
information and participant consent regarding the above study. I also received detailed information
(written and oral) regarding the objective and procedure of the study, risks of my participation, my
rights, and my obligations. I had the chance to ask questions and received satisfactory responses.
Besides the written information, the following points were discussed:
___________________________________________________________________________
I was informed that my participation is voluntary and that I have the right to withdraw at any time
without the need for justifications and without any disadvantages.
I hereby consent to the participation of the above study.

__________________________________________________________________________
Participant name in capital letters

__________________________________________________________________________
Place, date Participant signature

__________________________________________________________________________
Supervisor name in capital letters

__________________________________________________________________________
Place, date Supervisor signature

Consent to data processing
The processing and use of my personal data for the study exclusively follows the described
information.
I hereby consent to the described processing of my personal data.

__________________________________________________________________________
Place, date Participant signature

__________________________________________________________________________
Place, date Supervisor signature

C. Forms and Questionnaires
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Dear participant,
Thank you for supporting the i-DREAMS project by taking part in the simulator study and filling out
the questionnaires.
As already explained in the information sheet, the conducted experiment is purely for research and
the collected data will be handled in accordance with the GDPR regulations.
It is also important to note that the simulator trial in which you were asked to read and reply to text
messages aims to better understand the impact of distraction on driving. Using a mobile phone while
driving is by all means not allowed and we are not promoting this behavior. This was not mentioned
in the information sheet or prior to the experiment in order to not bias the results of the trial.
Please do not hesitate to ask any questions you might have.
I have read and understood the debriefing form regarding the simulator trials and my participation
in the study “Safety tolerance zone calculation and interventions for driver-vehicle environment
interactions under challenging conditions”.

My questions were answered, and I received a copy of this form.

__________________________________
Participant name (Capital letters)

_____________________________ ________________________
Participant signature Place, date

This project has received funding fromthe European Union's Horizon 2020research and innovation program undergrant agreement No 814761.
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Participant Payment Voucher
I participated in the i-DREAMS driving simulator research project on driver performance on
____ /____ /______.(date)
For my participation in this study, I received a participation voucher worth 25 Euros.

__________________________________Participant name (Capital letters)

_____________________________ ________________________Participant signature Place, date

_____________________________Administrator signature

This project has received funding fromthe European Union's Horizon 2020research and innovation program undergrant agreement No 814761.

174



* 

* 

* 

Simulator Study Recruitment Questionnaire

* Required

Application form
        

I. Contact details

With the help of the information below we can contact you for further arrangements regarding this study.

First name

Last name

Email address

Phone number

Mobile or landline

The following questionnaire is intended to assess whether you can participate in the study. 

Filling in the questionnaire takes .around 5 minutes

Please answer the questions as honestly and clearly as possible.

Thanks in advance!

C.2. Questionnaires

C.2. Questionnaires
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* 

* 

* 

* 

* 

* 

Do you give us your consent 
to call you at this number?

 Yes
 No

II. Personal information

Using the data below, we will assess your suitability as a participant for our study.

Gender Male
Female
Other

Nationality

Second nationality

if applicable

Birth year

e.g. 1990

City of residence

Do you have a valid driving 
license?

 Yes
 No

If yes, is your driving licence 
valid in Germany?

 Yes
 No

When did you get your 
driving license? e.g. 2010

III. Additional information

We use this information to select those people whose conditions match the objectives of our study.

Do you have a medical 
problem that can affect your 
driving performance?

Yes
No

If yes, please specify:

Do you need to wear glasses 
while driving?

No
Yes
I wear contact lenses

Have you ever gone through 
an eye surgery?

No
Yes, scars are left on my cornea
Yes, scars are left on one of my eyes
Others

IV. Language preference

Choose the language which 
you prefer for the study 
sessions?

English
German
I don't mind

V. Further comments

How did you hear about us?  TUM communication (website, linkedin, other)
 Social media (Facebook groups, linkedIn)
 Friends
 Posters
 Other

C. Forms and Questionnaires
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Please let us know, if you 
have any questions or further 
comments.

+

Submit

Form: myFormEnglish

View/Edit stored data
Import API
Recovery API
Cleanup API
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Simulator study car drivers – Entry questionnaire
Participant ID: Date:

Advanced Driving Assistance Systems (ADAS)

Which ADAS are present in your car?o Adaptive cruise controlo Forward collision warningo Night vision and pedestrian detectiono Traffic sign recognitiono Lane keeping assistanceo Blind spot warningo Drowsiness alerto Parking assisto High speed alerto Automatic emergency brakingo Noneo Other: ………………….
If you have/share a car in your household, this question applies to you.

How often do you use the following ADAS that are present in your car? (if applicable)
Almost never Sometimes Often Almost always Not applicable

Adaptive cruise control
Forward collision warning
Night vision and
pedestrian detection
Traffic sign recognition
Lane keeping assistance
Blind spot warning
Drowsiness alert
Parking assist
High speed alert
Automatic emergency
braking
Other: …………………..

This project has received fundingfrom the European Union's Horizon2020 research and innovationprogramme under grant agreementNo 814761.
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Indicate to what extent you agree with the following statements about ADAS in general.
Strongly
disagree

Disagree Neutral Agree Strongly
agree

ADAS are useful while driving
Using ADAS increases my driving
performance
My interaction with ADAS is clear
and understandable
I find ADAS easy to use
Using ADAS is a good idea
I can maintain safe driving
behavior while using ADAS
I will feel more comfortable
doing other things (e.g.,
adjusting the radio) with ADAS
Using ADAS information requires
increased attention
Using ADAS information
decreases the accident risk
I trust the information I receive
from ADAS
ADAS distract me while driving

Distraction Engagement
Never Rarely Sometimes Often Very often

When driving, you:
converse on a hand-held mobile
phone
manually interact with a phone (e.g.,sending texting messages, updatingFacebook status)
adjust in-vehicle devices (e.g., radio,navigation)
smoke
converse with passenger(s)
eating and/or drinking
read roadside advertisements
feel fatigue, stressed, unwell
daydream

C.2. Questionnaires
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Indicate to what extent you agree with the following statements about distraction.
Strongly
disagree

Disagree Neutral Agree Strongly
agree

You think it is all right for you to drive and:
converse on a hand-held mobile
phone
manually interact with a phone (e.g.,
sending texting messages, updating
Facebook status)
adjust in-vehicle devices (e.g., radio,
navigation)
smoke
converse with passenger(s)
eat and/or drink
read roadside advertisements
You believe you can drive well even when you:
converse on a hand-held mobile
phone
manually interact with a phone (e.g.,
sending texting messages, updating
Facebook status)
adjust in-vehicle devices (e.g., radio,
navigation)
smoke
converse with passenger(s)
eat and/or drink
read roadside advertisements
While driving you find it distracting when you:
converse on a hand-held mobile
phone
manually interact with a phone (e.g.,
sending texting messages, updating
Facebook status)
adjust in-vehicle devices (e.g., radio,
navigation)
smoke
converse with passenger(s)
eating and/or drinking
read roadside advertisements
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Accident involvement and traffic offense details

Within the last three years, have you been involved in an accident with your car, which
was self-inflicted?o Yes, onceo Yes, two timeso Yes, three or more timeso Never

If yes, how severe was this accident / were these accidents?
Accident 1 Accident 2 Accident 3

Material damage only ☐ ☐ ☐
At least one person
was mildly injured (no hospitalization). ☐ ☐ ☐
At least one person
was severely injured. ☐ ☐ ☐
At least one person was killed. ☐ ☐ ☐

Within the last three years, have you been fined for a traffic offense while driving with
your car?☐ Yes ☐ No

If yes, for which offense have you been fined within the last three years? Multiple answers
are possible.o Speedingo Driving under the influence (e.g., alcohol, drugs)o Tailgating (unsafe following distance)o Using hand-held phone while drivingo Parking offenseo Illegal overtakingo Running a traffic lighto Running a stop signo Running a yielding signo Not stopping at a pedestrian crossingo Other: ………………………………..

C.2. Questionnaires
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Simulator study car drivers – Exit questionnaire A
Participant ID: Date:

i-DREAMS system
Indicate to what extent you agree with the following statements about the i-DREAMSsystem.

Stronglydisagree Disagree Neutral Agree Stronglyagree
Using the i-DREAMS system improves mydriving performance.
If I use the i-DREAMS system, I will reachmy destination safely.
I think the i-DREAMS system is easy tounderstand.
I think the i-DREAMS system is annoying.
Using the i-DREAMS system is a good idea.
The i-DREAMS system makes driving moreinteresting.
I would be proud to show the i-DREAMSsystem to people who are close to me.
In general, people who I like wouldencourage me to use the i-DREAMSsystem.
While using the i-DREAMS system I canmaintain safe driving behavior.
I have the knowledge necessary to use thei-DREAMS system.
I am afraid that I do not understand thesystem.
I am confident that the i-DREAMS systemdoes not affect my driving in a negativeway.
Using the i-DREAMS system informationrequires increased attention.
The i-DREAMS system distracts me fromdriving.
I think using the i-DREAMS system makesme a safer driver.
I think using the i-DREAMS system makesme more aware of my surroundings (othervehicles, lane position, etc.).

This project has received funding fromthe European Union's Horizon 2020research and innovation programmeunder grant agreement No 814761.
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Stronglydisagree Disagree Neutral Agree Stronglyagree
I think I can depend on the i-DREAMSsystem.
I will feel more comfortable doing otherthings (e.g., adjusting the radio) with the i-DREAMS system.
If I had a choice, I would continue to usethe i-DREAMS system.
I would recommend the i-DREAMS systemto other drivers.
Indicate to what extent you find the i-DREAMS system clear in general.

Veryunclear Unclear Neutral Clear Veryclear
How clear do you find the i-DREAMS systemin general?
Why?

Suggestions to improve

How clear do you find the visual symbols ofthe system in general?
Why?

Suggestions to improve

How clear do you find the sounds of thei-DREAMS system in general?
Why?

Suggestions to improve
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Simulator study car drivers – Exit questionnaire B
Participant ID: Date:

i-DREAMS system

Indicate to what extent you find the following characteristic of the i-DREAMS systemuseful.
Not useful at all Not useful Neutral Useful Very useful

How useful do you find it thatthe system takes into accountdistraction?

What are according to you the strongest points of the i-DREAMS system? Max. 3
1.
2.
3.
What are according to you the points for improvement of the i-DREAMS system? Max 3
1.
2.
3.

Please describe the i-DREAMS system with max. 3 keywords (e.g., visually attractive,complicated)
1.
2.
3.

Thank you for taking part in the i-DREAMS study

This project has received funding fromthe European Union's Horizon 2020research and innovation programmeunder grant agreement No 814761.
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D. Additional Results

D.1. Additional t–test results

This section presents additional t–test results for each of the VRU (section D.1.1) and tailgating
events (section D.1.2). The former presents the t–test results for the pairwise comparison of
the different VRU events: the comparison between the first (CE1-Ped-Rural) and second (CE2-
Ped-Urban) event (Table D.1), between the first (CE1-Ped-Rural) and third (CE3-Ped-Urban)
event (Table D.2, and between the second (CE2-Ped-Urban) and third (CE3-Ped-Urban) event
(Table D.3). For the tailgating results (section D.1.2), comparison results are given for the
t–tests between the first (CE1-Tail-Rural) and second (CE2-Tail-Highway) event (Table D.4),
the second (CE1-Tail-Rural) and third (CE3-Tail-Urban) event (Table D.5, and the second
(CE2-Tail-Highway) and third (CE3-Tail-Urban) event (Table D.6). For the tables presented in
this section, abbreviations are used for most simulator variables; the full description of these
variables is given in Table 5.2.
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D.1.1. Metrics comparison across VRU events

Table D.1.: Two–sample t–test results for selected variables between the first (CE1-Ped-Rural) and second (CE2-Ped-Urban)
VRU critical event

Category Variable
Monitoring drive Intervention drive Distraction drive

CE1 CE2 t-value CE1 CE2 t-value CE1 CE2 t-value

Longitudinal Long. vel. (mean) 13.65 9.91 4.81 14.23 10.28 7.77 13.77 10.72 4.93

control Long. vel. (max.) 19.57 14.19 7.16 20.02 14.13 12.73 20.50 15.57 5.76

Long. acc. (mean) -0.13 -0.16 0.59 -0.26 -0.23 -0.62 -0.15 -0.21 1.12

Long. acc. (max.) -3.58 -1.85 -2.59 -3.88 -1.33 -3.99 -3.60 -2.30 -1.95

Lateral Lat. pos. (mean) 2.39 6.49 -24.28 2.22 6.46 -33.16 2.25 6.32 -26.10

control Lat. pos. (SD) 0.21 0.13 1.22 0.15 0.14 0.57 0.27 0.24 0.30

Steer. angle (mean) -0.02 0.09 -1.73 -0.04 -0.00 -0.38 -0.10 0.09 -1.72

Steer. angle (SD) 1.05 1.09 -0.22 1.26 1.26 0.00 2.04 1.89 0.37

Lat. vel. (mean) 0.01 0.00 0.58 0.00 0.00 -1.05 -0.01 0.01 -3.50

Lat. vel. (max.) 0.04 0.03 0.28 0.05 0.02 0.41 -0.13 -1.04 0.84

Lat. acc. (mean) 0.00 -0.00 0.85 -0.00 -0.00 -0.56 -0.00 0.00 -1.27

Lat. acc. (max.) 0.03 -0.02 2.01 -0.08 -0.00 -0.69 -0.12 0.01 -1.48

Driver risk TTC (mean) 184.39 238.73 -0.75 141.98 121.29 0.67 224.27 182.39 1.03

perception TTC (min.) 42.96 82.26 -1.05 17.48 30.65 -0.61 21.72 30.38 -0.39

TTC (SD) 263.30 396.43 -1.24 172.79 509.02 -1.95 237.24 362.78 -1.05

Gas displ. (mean) 0.37 0.27 4.26 0.35 0.24 5.70 0.35 0.25 3.82

Gas displ. (min.) 0.03 0.02 0.41 0.01 0.01 0.27 0.03 0.01 0.87

Gas displ. (SD) 0.27 0.20 4.22 0.28 0.19 6.37 0.26 0.21 2.81

Brake displ. (mean) 0.11 0.09 2.54 0.12 0.08 4.73 0.11 0.09 2.23

Brake displ. (max.) 0.54 0.48 1.18 0.59 0.35 4.21 0.58 0.46 2.01

Brake displ. (SD) 0.14 0.10 2.08 0.15 0.07 4.78 0.13 0.10 2.40

Gaze fixation i-DREAMS display N.A. N.A. N.A. 1.10 0.88 0.69 2.63 3.98 -1.96

count Road ahead 37.90 53.68 -6.23 35.47 48.45 -4.48 33.12 39.45 -2.12

Dashboard 9.02 7.40 1.48 8.18 7.98 0.16 6.82 6.48 0.19

Pedestrian ahead 6.72 11.82 -6.28 8.03 12.17 -3.91 4.87 8.88 -3.93

Gaze fixation i-DREAMS display N.A. N.A. N.A. 0.25 0.17 1.27 0.78 1.05 -1.19

duration Road ahead 12.85 17.32 -6.08 12.49 17.33 -4.90 11.55 13.06 -1.65

Dashboard 2.72 2.11 1.63 2.50 2.29 0.52 1.86 1.57 0.74

Pedestrian ahead 2.25 3.41 -4.50 2.77 4.45 -3.66 1.74 2.82 -3.15
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Table D.2.: Two–sample t–test results for selected variables between the first (CE1-Ped-Rural) and third (CE3-Ped-Urban) VRU
critical event

Category Variable
Monitoring drive Intervention drive Distraction drive

CE1 CE3 t-value CE1 CE3 t-value CE1 CE3 t-value

Longitudinal Long. vel. (mean) 13.65 11.21 3.90 14.23 11.84 4.27 13.77 11.75 3.05

control Long. vel. (max.) 19.57 14.45 7.57 20.02 15.09 9.01 20.50 16.40 4.28

Long. acc. (mean) -0.13 -0.13 -0.09 -0.26 -0.11 -2.81 -0.15 -0.10 -1.34

Long. acc. (max.) -3.58 -3.37 -0.31 -3.88 -2.19 -2.64 -3.60 -2.25 -1.94

Lateral Lat. pos. (mean) 2.39 6.36 -19.95 2.22 6.36 -24.78 2.25 6.49 -34.52

control Lat. pos. (SD) 0.21 0.15 0.95 0.15 0.15 -0.05 0.27 0.37 -0.98

Steer. angle (mean) -0.02 -0.05 0.43 -0.04 0.01 -0.83 -0.10 0.05 -1.58

Steer. angle (SD) 1.05 1.29 -0.99 1.26 1.02 0.74 2.04 1.61 1.15

Lat. velocity (mean) 0.01 0.00 0.96 0.00 0.00 0.06 -0.01 0.00 -2.47

Lat. velocity (max.) 0.04 0.01 0.67 0.05 0.03 0.33 -0.13 -2.22 1.35

Lat. acceleration (mean) 0.00 -0.00 1.46 -0.00 -0.00 -0.56 -0.00 -0.00 -0.11

Lat. acceleration (max.) 0.03 -0.03 2.16 -0.08 -0.01 -0.63 -0.12 -0.05 -0.77

Driver risk TTC (mean) 184.39 468.11 -4.03 141.98 322.72 -6.24 224.27 326.65 -3.00

perception TTC (min.) 42.96 100.68 -1.49 17.48 15.35 0.13 21.72 26.69 -0.28

TTC (SD) 263.30 481.78 -1.97 172.79 409.05 -4.06 237.24 362.79 -2.57

Gas displ. (mean) 0.37 0.29 3.96 0.35 0.29 3.43 0.35 0.27 3.08

Gas displ. (min.) 0.03 0.01 1.04 0.01 0.02 -0.89 0.03 0.02 0.16

Gas displ. (SD) 0.27 0.17 6.05 0.28 0.18 6.51 0.26 0.21 2.96

Brake displ. (mean) 0.11 0.08 4.13 0.12 0.07 5.31 0.11 0.08 3.90

Brake displ. (max.) 0.54 0.55 -0.07 0.59 0.39 3.19 0.58 0.43 2.28

Brake displ. (SD) 0.14 0.10 1.95 0.15 0.07 4.85 0.13 0.08 3.47

Gaze fixation i-DREAMS display N.A. N.A. N.A. 1.10 1.52 -1.10 2.63 3.65 -1.64

count Road ahead 37.90 70.18 -9.93 35.47 62.35 -7.28 33.12 42.03 -2.35

Dashboard 9.02 12.58 -2.60 8.18 11.28 -2.31 6.82 9.30 -1.39

Pedestrian ahead 6.72 13.15 -6.01 8.03 14.75 -4.65 4.87 7.43 -2.15

Gaze fixation i-DREAMS display N.A. N.A. N.A. 0.25 0.31 -0.71 0.78 1.03 -1.08

duration Road ahead 12.85 23.58 -12.96 12.49 23.43 -9.03 11.55 14.91 -2.54

Dashboard 2.72 3.46 -1.63 2.50 3.37 -2.04 1.86 2.46 -1.32

Pedestrian ahead 2.25 3.96 -5.45 2.77 5.67 -4.89 1.74 2.69 -2.11
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Table D.3.: Two–sample t–test results for selected variables between the second (CE2-Ped-Urban) and third (CE3-Ped-Urban)
VRU critical event

Category Variable
Monitoring drive Intervention drive Distraction drive

CE2 CE3 t-value CE2 CE3 t-value CE2 CE3 t-value

Longitudinal Long. vel. (mean) 9.91 11.21 -2.14 10.28 11.84 -3.17 10.72 11.75 -2.08

control Long. vel. (max.) 14.19 14.45 -0.42 14.13 15.09 -1.98 15.57 16.40 -0.93

Long. acc. (mean) -0.16 -0.13 -0.74 -0.23 -0.11 -2.82 -0.21 -0.10 -2.69

Long. acc. (max.) -1.85 -3.37 2.09 -1.33 -2.19 1.38 -2.30 -2.25 -0.07

Lateral Lat. pos. (mean) 6.49 6.36 1.08 6.46 6.36 0.84 6.32 6.49 -1.58

control Lat. pos. (SD) 0.13 0.15 -1.11 0.14 0.15 -0.77 0.24 0.37 -1.17

Steer. angle (mean) 0.09 -0.05 1.72 -0.00 0.01 -0.20 0.09 0.05 0.54

Steer. angle (SD) 1.09 1.29 -0.87 1.26 1.02 0.90 1.89 1.61 1.08

Lat. vel. (mean) 0.00 0.00 1.11 0.00 0.00 1.28 0.01 0.00 0.80

Lat. vel. (max.) 0.03 0.01 0.58 0.02 0.03 -0.17 -1.04 -2.22 0.62

Lat. acc. (mean) -0.00 -0.00 0.53 -0.00 -0.00 0.02 0.00 -0.00 2.88

Lat. acc. (max.) -0.02 -0.03 0.35 -0.00 -0.01 0.31 0.01 -0.05 1.19

Driver risk TTC (mean) 238.73 468.11 -2.39 121.29 322.72 -6.19 182.39 326.65 -3.58

perception TTC (min.) 82.26 100.68 -0.37 30.65 15.35 0.71 30.38 26.69 0.19

TTC (SD) 396.43 481.78 -0.65 509.02 409.05 0.55 362.78 362.79 -0.00

Gas displ. (mean) 0.27 0.29 -0.88 0.24 0.29 -2.94 0.25 0.27 -1.01

Gas displ. (min.) 0.02 0.01 0.60 0.01 0.02 -1.25 0.01 0.02 -0.75

Gas displ. (SD) 0.20 0.17 2.34 0.19 0.18 0.70 0.21 0.21 0.22

Brake displ. (mean) 0.09 0.08 1.71 0.08 0.07 1.13 0.09 0.08 1.90

Brake displ. (max.) 0.48 0.55 -1.10 0.35 0.39 -0.71 0.46 0.43 0.51

Brake displ. (SD) 0.10 0.10 0.06 0.07 0.07 0.26 0.10 0.08 1.32

Gaze fixation i-DREAMS display N.A. N.A. N.A. 0.88 1.52 -1.87 3.98 3.65 0.43

count Road ahead 53.68 70.18 -4.89 48.45 62.35 -3.62 39.45 42.03 -0.65

Dashboard 7.40 12.58 -4.06 7.98 11.28 -2.46 6.48 9.30 -1.43

Pedestrian ahead 11.82 13.15 -1.13 12.17 14.75 -1.59 8.88 7.43 1.05

Gaze fixation i-DREAMS display N.A. N.A. N.A. 0.17 0.31 -1.95 1.05 1.03 0.07

duration Road ahead 17.32 23.58 -6.70 17.33 23.43 -4.43 13.06 14.91 -1.30

Dashboard 2.11 3.46 -3.28 2.29 3.37 -2.74 1.57 2.46 -1.94

Pedestrian ahead 3.41 3.96 -1.62 4.45 5.67 -1.68 2.82 2.69 0.27
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D.1.2. Metrics comparison across tailgating events

Table D.4.: Two–sample t–test results for selected variables between the first (CE1-Tail-Rural) and second (CE2-Tail-Highway)
tailgating critical event

Category Variable
Monitoring drive Intervention drive Distraction drive

CE1 CE2 t-value CE1 CE2 t-value CE1 CE2 t-value

Longitudinal Long. vel. (mean) 14.66 20.84 -5.82 15.91 23.89 -8.33 14.84 24.52 -10.31

control Long. vel. (max.) 18.96 26.57 -6.24 19.99 30.34 -10.13 20.46 29.26 -7.88

Headway (mean) 35.14 31.86 0.30 23.50 25.65 -0.14 180.88 179.05 0.01

Headway (min.) 16.18 17.48 -0.16 8.57 8.75 -0.03 10.61 170.28 -0.96

Headway (SD) 25.31 13.54 1.97 22.53 192.79 -0.89 118.60 7.64 1.42

Long. acc. (mean) -0.05 0.22 -4.54 -0.01 0.25 -4.89 0.08 0.11 -0.70

Long. acc. (max.) -0.28 0.67 -2.14 -0.98 0.12 -2.08 0.22 -0.34 1.06

Lateral Lat. pos. (mean) 7.07 11.33 -12.32 7.19 11.74 -19.08 7.16 11.92 -33.04

control Lat. pos. (SD) 0.16 0.30 -2.21 0.13 0.25 -1.80 0.25 0.31 -1.01

Steer. angle (mean) 0.03 -0.03 1.87 -0.00 -0.03 1.01 -0.06 -0.10 0.35

Steer. angle (SD) 0.74 0.80 -0.38 0.76 0.69 0.40 1.64 1.12 2.36

Lat. vel. (mean) -0.00 -0.01 0.48 0.00 0.00 0.03 -0.00 -0.01 1.53

Lat. vel. (max.) -0.00 -0.02 0.32 -0.00 -1.07 0.98 0.00 -0.13 1.64

Lat. acc. (mean) -0.00 -0.00 0.36 -0.00 -0.00 1.27 -0.00 -0.00 1.02

Lat. acc. (max.) -0.05 -0.06 0.33 -0.02 -0.12 1.31 0.06 -0.14 1.65

Risk TTC (mean) 334.78 361.10 -0.15 231.14 197.81 0.33 724.80 1978.33 -0.80

perception TTC (min.) 35.60 41.74 -0.27 24.05 30.97 -0.37 25.72 249.68 -1.01

TTC (SD) 2675.20 1851.24 0.52 1228.50 1167.14 0.10 4036.57 22088.48 -0.86

Gas displ. (mean) 0.33 0.54 -5.95 0.36 0.62 -7.12 0.36 0.59 -7.83

Gas displ. (min.) 0.02 0.19 -4.64 0.02 0.07 -2.08 0.02 0.06 -1.84

Gas displ. (SD) 0.20 0.22 -1.05 0.22 0.26 -2.02 0.25 0.28 -1.12

Brake displ.(mean) 0.06 0.06 0.36 0.06 0.06 0.65 0.06 0.06 0.68

Brake displ. (max.) 0.14 0.11 1.24 0.23 0.11 3.08 0.22 0.11 3.38

Brake displ. (SD) 0.02 0.01 0.93 0.03 0.01 3.30 0.03 0.01 3.10

Gaze fixation i-Dreams display N.A. N.A. N.A. 5.22 4.73 0.50 3.20 4.10 -1.09

count Road ahead 50.47 38.00 3.41 46.25 36.95 2.57 32.63 31.77 0.24

Dashboard 11.03 7.38 2.82 9.55 6.05 2.88 7.07 4.63 1.83

Gaze fixation i-Dreams display N.A. N.A. N.A. 1.18 1.36 -0.55 0.83 1.05 -0.94

duration Road ahead 22.89 16.73 4.10 18.96 15.65 2.53 10.13 11.54 -1.31

Dashboard 3.27 2.04 2.94 2.97 1.74 2.76 2.05 1.16 2.20
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Table D.5.: Two–sample t–test results for selected variables between the second (CE1-Tail-Rural) and third (CE3-Tail-Urban)
tailgating critical event

Category Variable
Monitoring drive Intervention drive Distraction drive

CE1 CE3 t-value CE1 CE3 t-value CE1 CE3 t-value

Longitudinal Long. vel. (mean) 14.66 10.91 8.71 15.91 11.99 7.96 14.84 11.32 6.70

control Long. vel. (max.) 18.96 13.73 7.69 19.99 14.74 7.33 20.46 15.72 5.57

Headway (mean) 35.14 153.19 -3.13 23.50 64.68 -4.31 180.88 126.55 0.37

Headway (min.) 16.18 14.42 0.28 8.57 9.16 -0.12 10.61 13.95 -0.48

Headway (SD) 25.31 379.89 -2.02 22.53 77.37 -6.88 118.60 348.67 -1.16

Long. acc. (mean) -0.05 0.02 -2.14 -0.01 0.04 -1.65 0.08 0.01 2.15

Long. acc. (max.) -0.28 -0.32 0.09 -0.98 0.43 -2.57 0.22 -0.26 0.77

Lateral Lat. pos. (mean) 7.07 2.13 27.59 7.19 2.17 28.15 7.16 2.24 32.04

control Lat. pos. (SD) 0.16 0.18 -0.47 0.13 0.13 -0.20 0.25 0.26 -0.11

Steer. angle (mean) 0.03 0.10 -1.08 -0.00 -0.00 -0.06 -0.06 0.02 -1.28

Steer. angle (SD) 0.74 1.50 -1.66 0.76 1.06 -1.74 1.64 1.78 -0.52

Lat. vel. (mean) -0.00 0.01 -2.20 0.00 0.01 -1.93 -0.00 0.00 -1.76

Lat. vel. (max.) -0.00 0.04 -1.00 -0.00 0.05 -1.85 0.00 -2.18 1.41

Lat. acc. (mean) -0.00 -0.00 0.38 -0.00 -0.00 -0.52 -0.00 0.00 -1.22

Lat. acc. (max.) -0.05 -0.02 -0.79 -0.02 -0.04 0.57 0.06 -0.00 0.65

Risk TTC (mean) 334.78 1087.72 -2.80 231.14 870.46 -1.95 724.80 384.58 1.35

perception TTC (min.) 35.60 43.07 -0.45 24.05 28.32 -0.26 25.72 13.22 1.87

TTC (SD) 2675.20 7054.92 -1.72 1228.50 6096.95 -1.63 4036.57 1625.90 1.05

Gas displ. (mean) 0.33 0.28 2.29 0.36 0.31 2.46 0.36 0.29 3.60

Gas displ. (min.) 0.02 0.01 1.36 0.02 0.02 -0.64 0.02 0.01 0.84

Gas displ. (SD) 0.20 0.17 2.13 0.22 0.19 2.49 0.25 0.22 1.98

Brake displ. (mean) 0.06 0.06 0.03 0.06 0.06 0.39 0.06 0.07 -0.57

Brake displ. (max.) 0.14 0.23 -2.21 0.23 0.21 0.65 0.22 0.31 -1.83

Brake displ. (SD) 0.02 0.03 -1.67 0.03 0.03 0.86 0.03 0.05 -1.80

Gaze fixation i-DREAMS display N.A. N.A. N.A. 5.22 3.02 2.48 3.20 2.08 1.82

count Road ahead 50.47 80.97 -5.18 46.25 64.75 -3.53 32.63 31.43 0.32

Dashboard 11.03 12.33 -0.86 9.55 11.22 -1.16 7.07 7.05 0.01

Gaze fixation i-DREAMS display N.A. N.A. N.A. 1.18 0.59 3.00 0.83 0.53 1.69

duration Road ahead 22.89 28.43 -2.52 18.96 23.88 -2.84 10.13 10.80 -0.62

Dashboard 3.27 2.91 0.85 2.97 2.81 0.34 2.05 1.88 0.34
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Table D.6.: Two–sample t–test results for selected variables between the second (CE2-Tail-Highway) and third (CE3-Tail-Urban)
tailgating critical event

Category Variable
Monitoring drive Intervention drive Distraction drive

CE2 CE3 t-value CE2 CE3 t-value CE2 CE3 t-value

Longitudinal Long. vel. (mean) 20.84 10.91 9.87 23.89 11.99 11.94 24.52 11.32 14.90

control Long. vel. (max.) 26.57 13.73 11.58 30.34 14.74 15.36 29.26 15.72 12.48

Headway (mean) 31.86 153.19 -3.22 25.65 64.68 -2.38 179.05 126.55 0.31

Headway (min.) 17.48 14.42 0.46 8.75 9.16 -0.09 170.28 13.95 0.94

Headway (SD) 13.54 379.89 -2.09 192.79 77.37 0.61 7.64 348.67 -1.88

Long. acc. (mean) 0.22 0.02 3.69 0.25 0.04 4.42 0.11 0.01 2.60

Long. acc. (max.) 0.67 -0.32 2.03 0.12 0.43 -0.62 -0.34 -0.26 -0.13

Lateral Lat. pos. (mean) 11.33 2.13 28.32 11.74 2.17 32.74 11.92 2.24 48.21

control Lat. pos. (SD) 0.30 0.18 1.73 0.25 0.13 1.77 0.31 0.26 0.53

Steer. angle (mean) -0.03 0.10 -1.87 -0.03 -0.00 -0.86 -0.10 0.02 -1.40

Steer. angle (SD) 0.80 1.50 -1.53 0.69 1.06 -2.20 1.12 1.78 -2.91

Lateral velocity (mean) -0.01 0.01 -1.18 0.00 0.01 -0.53 -0.01 0.00 -2.65

Lateral velocity (max.) -0.02 0.04 -1.18 -1.07 0.05 -1.03 -0.13 -2.18 1.32

Lat. acc. (mean) -0.00 -0.00 -0.02 -0.00 -0.00 -1.44 -0.00 0.00 -1.91

Lat. acc. (max.) -0.06 -0.02 -0.92 -0.12 -0.04 -0.94 -0.14 -0.00 -1.46

Risk TTC (mean) 361.10 1087.72 -2.39 197.81 870.46 -2.11 1978.33 384.58 1.02

perception TTC (min.) 41.74 43.07 -0.06 30.97 28.32 0.14 249.68 13.22 1.07

TTC (SD) 1851.24 7054.92 -2.19 1167.14 6096.95 -1.65 22088.48 1625.90 0.98

Gas displ. (mean) 0.54 0.28 7.52 0.62 0.31 8.92 0.59 0.29 10.94

Gas displ. (min.) 0.19 0.01 5.00 0.07 0.02 1.78 0.06 0.01 2.42

Gas displ. (SD) 0.22 0.17 2.52 0.26 0.19 4.41 0.28 0.22 2.93

Brake displ. (mean) 0.06 0.06 -0.35 0.06 0.06 -0.26 0.06 0.07 -1.23

Brake displ. (max.) 0.11 0.23 -3.50 0.11 0.21 -3.36 0.11 0.31 -4.98

Brake displ. (SD) 0.01 0.03 -2.62 0.01 0.03 -3.44 0.01 0.05 -4.97

Gaze fixation i-Dreams display N.A. N.A. N.A. 4.73 3.02 1.94 4.10 2.08 2.57

count Road ahead 38.00 80.97 -7.74 36.95 64.75 -5.62 31.77 31.43 0.10

Dashboard 7.38 12.33 -3.45 6.05 11.22 -3.87 4.63 7.05 -1.49

Gaze fixation i-Dreams display N.A. N.A. N.A. 1.36 0.59 2.55 1.05 0.53 2.35

duration Road ahead 16.73 28.43 -5.99 15.65 23.88 -5.21 11.54 10.80 0.76

Dashboard 2.04 2.91 -2.37 1.74 2.81 -2.99 1.16 1.88 -1.81
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D.2. Additional plots

D.2.1. Car simulator questionnaire plots

In this sub–section, additional plots based on the questionnaire analysis or the car driving
simulator experiments are provided; these plots present participants’ exposure to ADAS
(Figure D.1), frequency of ADAS use (Figure D.2), and distraction engagement when driving
(Figures D.3 to D.6).
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Figure D.1.: Car participants’ exposure to ADAS (N=60)
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Figure D.2.: Car participants’ frequency of ADAS use (N=60)
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D.2.2. Multi–modal simulator questionnaire plots

In this sub–section, additional plots based on the questionnaire analysis or the driving
simulator experiments in different modes are provided; these plots present participants’
exposure to ADAS (cars and truck participants–Figure D.7), attitudes towards ADAS (cars
and trucks–Figure D.8) perceptions of the system clarity (cars and trucks–Figure D.9), and
perceptions towards the i–DREAMS system (cars and truck participants, split across two
figures, starting from the statements with the highest levels of significance for the Chi–square
tests across modes–Figures D.10 and D.11).
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Figure D.7.: Car (N=60) and truck (N=36) participants’ exposure to ADAS
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Figure D.8.: Car (N=60) and truck (N=36) participants’ attitudes towards ADAS
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Figure D.10.: Car (N=60), tram (N=28), and truck (N=36) participants’ perceptions of the
system (part 1)
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Figure D.11.: Car (N=60), tram (N=28), and truck (N=36) participants’ perceptions of the
system (part 2)
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D.2.3. Log plots

Figure D.12.: Distribution of TTCmin in VRU events
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Figure D.13.: Distribution of log(TTCmin) in VRU events

Figure D.14.: Distribution of gas pedal displacement (minimum) in VRU events
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Figure D.15.: Distribution of log of gas pedal displacement (minimum) in VRU events

Figure D.16.: Distribution of log of gas pedal displacement (SD) in VRU events
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Figure D.17.: Distribution of Headwaymin in tailgating events

Figure D.18.: Distribution of log(Headwaymin) in tailgating events
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Figure D.19.: Distribution of TTCmin in tailgating events

Figure D.20.: Distribution of gas pedal displacement (minimum) in tailgating events
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Figure D.21.: Distribution of log of gas pedal displacement (minimum) in tailgating events

Figure D.22.: Distribution of log of gas pedal displacement (SD) in tailgating events

207



D. Additional Results

D.3. Chi-square test results

D.3.1. Car driving simulator study

In the following section, results for chi–square tests are presented for most variables, to see
whether there is a significant difference between males and females; these are summarized
in Tables D.7 to D.15. Mostly none was noted, with the exception of the highlighted metrics
which are significant up to a 95% confidence level.

Table D.7.: Chi–square test results for independence between car participants’ ADAS exposure
and gender

Variable ‘X-squared‘ ‘P-value‘

Parking assist 0.939 0.333
Adaptive cruise control 3.72 0.0536
Blind spot warning 2.7 0.101
Forward collision warning 2.04 0.153
Lane keeping assistance 2.36 0.125
High speed alert 3.86 0.0495
Automatic emergency braking 1.15 0.284
Traffic sign recognition 3.23 0.0723
Drowsiness alert 2.44 0.118
Night vision and pedestrian detection 0.122 0.726

Table D.8.: Chi–square test results for independence between car participants’ ADAS fre-
quency of use and gender

Variable ‘X-squared‘ ‘P-value‘

Blind spot warning 1.19 0.756
Traffic sign recognition 1.48 0.688
Automatic emergency braking 3.14 0.37
Parking assist 1.98 0.577
Forward collision warning 4.07 0.254
Lane keeping assistance 2.92 0.404
Drowsiness alert 2.04 0.361
Night vision and pedestrian detection 4.8 0.187
Adaptive cruise control 0.53 0.912
High speed alert 7.2 0.0658
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Table D.9.: Chi–square test results for independence between car participants’ ADAS percep-
tions and gender

Variable ‘X-squared‘ ‘P-value‘

ADAS are useful while driving 0.729 0.695
Using ADAS is a good idea 2.930 0.231
I can maintain safe driving behavior while using ADAS 4.090 0.130
Using ADAS information decreases the accident risk 0.900 0.825
My interaction with ADAS is clear and understandable 2.640 0.267
I trust the information I receive from ADAS 5.070 0.281
I find ADAS easy to use 2.180 0.537
Using ADAS increases my driving performance 0.350 0.950
I will feel more comfortable doing other things (e.g., adjusting the..) 2.260 0.688
Using ADAS information requires increased attention 6.080 0.193
ADAS distract me while driving 2.900 0.407

Table D.10.: Chi–square test results for independence between car participants’ distraction
engagement when driving and gender

Variable X-squared P-value

Adjust in-vehicle devices (e.g., radio, navigation) 6.07 0.108
Converse with passenger(s) 4.00 0.406
Daydream 4.50 0.343
Eating and/or drinking 3.19 0.527
Converse on a hand-held mobile phone 5.78 0.216
Manually interact with a phone 2.39 0.665
Read roadside advertisements 4.18 0.382
Smoke 3.06 0.216
Feel fatigue, stressed, unwell 1.17 0.761

Table D.11.: Chi–square test results for independence between car participants’ perceptions of
acceptable driving behavior and gender

Variable ‘X-squared‘ ‘P-value‘

Manually interact with a phone 1.60 0.81
Converse on a hand-held mobile phone 0.12 1.00
Smoke 1.04 0.90
Eating and/or drinking 0.65 0.96
Read roadside advertisements 4.50 0.34
Adjust in-vehicle devices (e.g., radio, navigation) 5.40 0.25
Converse with passenger(s) 2.38 0.67
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D. Additional Results

Table D.12.: Chi–square test results for independence between car participants’ perceived
ability to drive well (when engaging in certain distracting activities) and gender

Variable ‘X-squared‘ ‘P-value‘

Manually interact with a phone 4.57 0.207
Converse on a hand-held mobile phone 6 0.199
Smoke 3.58 0.467
Read roadside advertisements 8.21 0.0841
Adjust in-vehicle devices (e.g., radio, É 2.53 0.64
Eating and/or drinking 1.42 0.84
Converse with passenger(s) 2.52 0.642

Table D.13.: Chi–square test results for independence between car participants’ perceptions of
distracting activities when driving and gender

Variable ‘X-squared‘ ‘P-value‘

Converse with passenger(s) 2.71 0.61
Adjust in-vehicle devices (e.g., radio) 5.52 0.24
Eating and/or drinking 1.56 0.82
Read roadside advertisements 4.65 0.33
Smoke 1.32 0.86
Converse on a hand-held mobile phone 2.84 0.59
Manually interact with a phone 4.80 0.19
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D.3. Chi-square test results

Table D.14.: Chi–square test results for independence between car participants’ perceptions of
the i–DREAMS system and gender

Variable ‘X-squared‘ ‘P-value‘

If I use the i-DREAMS system, I will reach my destination safe 4.85 0.18
people who I like would encourage me to use the i-DREAMS system 3.41 0.33
The i-DREAMS system makes driving more interesting. 2.65 0.62
I am afraid that I do not understand the system. 4.28 0.37
I would be proud to show the i-DREAMS system to people 5.32 0.26
I think I can depend on the i-DREAMS system. 0.86 0.93
I think using the i-DREAMS system makes me a safer driver. 1.62 0.65
i-DREAMS system improves my driving performance. 4.24 0.38
I will feel more comfortable doing multitasking with the i-DREAMS 5.32 0.26
While using the i-DREAMS system I can maintain safe driving behavior 3.34 0.34
I would continue to use the i-DREAMS system. 2.56 0.63
Using the i-DREAMS system information requires increased attention 3.99 0.41
I think using the i-DREAMS system makes me more aware of my sure 0.05 1.00
I recommend the i-DREAMS system to other drivers. 3.14 0.37
Using the i-DREAMS system is a good idea. 4.41 0.22
I am confident that the i-DREAMS system does not affect my drive 4.52 0.21
I think the i-DREAMS system is easy to understand. 0.47 0.79
I have the knowledge necessary to use the i-DREAMS system. 4.33 0.23
I think the i-DREAMS system is annoying. 1.19 0.76
The i-DREAMS system distracts me from driving. 3.37 0.34

Table D.15.: Chi–square test results for independence between car participants’ perceived
clarity of the i–DREAMS system and gender

Variable ‘X-squared‘ ‘P-value‘

System sound clarity 5.03 0.17
Overall system clarity 2.5 0.475
System visuals clarity 1.27 0.736

D.3.2. Multi–modal driving simulator study

In the following section, results for chi–square tests for testing the impact of modes (cars,
trucks, trams) on the i–DREAMS system perception are presented in Table D.16. Based
on those results, pairwise Chi–square tests were then conducted for all metrics having a
significance higher than 90% (highlighted); the results of these new tests are presented in
Table D.17, where highly significant metrics (up to 95%) are highlighted.
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Table D.16.: Attitudes towards the i–DREAMS system (between car, trucks, and trams)

Variable X-squared’ P-value’

Proud to show it to people 21.12 0.007
People would encourage me to use it 20.81 0.008
I know how to use it 17.17 0.028
Improves my driving performance 14.27 0.075
Requires increased attention 13.98 0.082
Makes driving interesting 12.88 0.116
Would continue to use it 10.72 0.218
Is a good idea 10.33 0.243
Helps me reach my destination safely 7.78 0.255
Helps me maintain safe driving 9.68 0.288
Would recommend to others 9.65 0.290
Is annoying 7.20 0.303
Allows me to multitask 8.34 0.401
Distracts me from driving 5.94 0.430
Makes me aware of my surroundings 7.51 0.482
Does not negatively affect my driving performance 6.04 0.643
Makes me a safer driver 5.42 0.712
I can depend on it 5.02 0.755
Is easy to understand 1.49 0.829
I do not understand it 3.64 0.888

Table D.17.: Attitudes towards the i–DREAMS system (significant results between car, trucks,
and trams)

Variable Modes X-squared’ P-value’

Requires increased attention Car & Truck 9.58 0.048
Requires increased attention Car & Tram 4.44 0.350
Requires increased attention Truck & Tram 3.42 0.491
People would encourage me to use it Car & Truck 18.75 0.001
People would encourage me to use it Car & Tram 2.37 0.499
People would encourage me to use it Truck & Tram 6.47 0.166
Improves my driving performance Car & Truck 5.91 0.206
Improves my driving performance Car & Tram 7.97 0.093
Improves my driving performance Truck & Tram 5.44 0.245
I know how to use it Car & Truck 2.26 0.521
I know how to use it Car & Tram 9.88 0.043
I know how to use it Truck & Tram 9.20 0.056
Proud to show it to people Car & Truck 15.34 0.004
Proud to show it to people Car & Tram 8.83 0.065
Proud to show it to people Truck & Tram 8.87 0.064
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D.4. Additional factor analysis results

Table D.18.: Factor analysis results for truck participants’ perceptions of ADAS

Loadings Factor 1 Factor 2

ADAS are useful 0.84
ADAS reduce accident risks 0.83
ADAS are a good idea 0.81
ADAS improve driving performance 0.71
I can rely on ADAS 0.57
ADAS are easy to understand 0.82
ADAS are clear and understandable 0.70
ADAS distract me while driving -0.66
Sum of square of loadings 3.12 2.06
Proportion variance 0.39 0.26
Cumulative variance 0.39 0.65

Factor interpretation
ADAS

usefulness
ADAS

ease of use

Table D.19.: Factor analysis results for truck participants’ perceptions of the i–DREAMS
system

Loadings Factor 1 Factor 2

Persons I like would recommend me to use the system 0.83
While using the i-DREAMS system, I can maintain safe driving behavior 0.78
I would be proud to show the i-DREAMS system to people close to me 0.78
If I use the system, I will reach my destination safely 0.74
I think I can rely on the system 0.73
I think the system is annoying -0.73
I think by using the system I am a safer driver 0.72
Using the i-DREAMS system is a good idea 0.69
The system makes driving more enjoyable 0.67
Using the system improves my driving performance 0.67
Using the system makes me more aware of my surroundings 0.63
The system will not negatively affect my driving performance 0.62
How clear the i–DREAMS system generally is 0.92
How clear the visuals of the system are 0.60
Sum of square of loadings 6.23 1.74
Proportion variance 0.45 0.13
Cumulative variance 0.45 0.57

Factor interpretation
Perceived
usefulness

Perceived
ease of use
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Table D.20.: Factor analysis results for tram participants’ perceptions of the i–DREAMS system

Loadings Factor 1 Factor 2

While using the i-DREAMS system, I can maintain safe driving behavior 0.77
I think the i-DREAMS system is annoying -0.75
Using the i–DREAMS system makes me more aware of my surroundings 0.71
The i-DREAMS system makes me a safer driver 0.66
I think the i-DREAMS system is easy to understand 0.71
I am afraid that I do not understand the system. -0.60
I would be proud to show the i-DREAMS system to people close to me 0.53
Sum of square of loadings 2.37 1.19
Proportion variance 0.34 0.17
Cumulative variance 0.34 0.51

Factor interpretation
Perceived
usefulness

Perceived
ease of use

Table D.21.: Factor analysis results for participants’ perceptions of the i–DREAMS system
(merged car, truck, tram datasets)

Loadings: Factor 1 Factor 2
Using the system is a good idea 0.72
I would be proud to show the system to people who are close to me 0.7
I would recommend the system to other drivers 0.69
In general, people who I like would encourage me to use the system 0.66
Using the system improves my driving performance 0.65
While using the system I can maintain safe driving behaviour 0.64
Using the i-DREAMS system makes me more aware of my surroundings 0.64
Using the i-DREAMS system makes me a safer driver 0.63
If I use the system, I will reach my destination safely 0.63
The i-DREAMS system makes driving more interesting 0.6
I think the i-DREAMS system is annoying -0.51
I am afraid that I do not understand the system -0.77
I have the knowledge necessary to use the system 0.69
I think the i-DREAMS system is easy to understand 0.52

Sum of square of loadings 4.58 1.67
Proportion variance 0.33 0.12
Cumulative variance 0.33 0.45

Factor interpretation
Perceived
usefulness

Perceived
ease of use
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