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Summary

The benefits of agriculture have been enormous and it has experienced a large

increase in productivity over the last decades. It is the source of the world’s food

supply. At the same time, farming activities have been linked to a series of environ-

mental problems such as climate change, biodiversity loss, and soil degradation.

In this context, climate change has been playing an important role in recent years.

It is expected to drastically modify the natural conditions under which farmers

produce. In the face of a changing environment and an increasing demand for

food, energy and renewable resources, agricultural production is facing the two-

fold challenge of increasing production without degrading the environment (and

the climate). To reconcile the two objectives of an increased productivity and

environmental friendliness, farms have to mitigate their adverse impacts on the

environment and the climate. At the same time, they must adapt to prevailing

environmental and climatic changes.

This thesis aims to provide novel insights into the relationship between agricultural

production and environmental change at the micro-level by combining microeco-

nomic theory with state-of-the-art econometric techniques. It is comprised of four

empirical studies and focuses geographically on Bavaria, a federal state of Germa-

ny and one of the core agricultural regions in Europe.

Study 1 develops a parametric eco-efficiency concept capable of jointly evaluating

the ecological and economic performance of (farm) businesses over time and empi-

rically applies this concept to greenhouse gas emissions on farms. It distinguishes

between persistent (long-term) and time-varying (short-term) efficiency. The stu-

dy finds rather small levels of time-varying emission-inefficiency and high levels

of persistent inefficiency across different farm types. Overall, the sample farms

were mostly not emission-efficient. The parametric stochastic frontier approach

allowed to capture eco-performance dynamics over time based on a generalized

Malmquist productivity index. Emission performance slightly improved between

2005 and 2014 for most farm types.
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Study 2 measures the environmental and economic performance of extensive and

intensive dairy farms with respect to greenhouse gas emissions by combining the

concept of eco-efficiency with latent-class stochastic frontier analysis and the esti-

mation of a stochastic meta-frontier. It finds that intensive farms were on average

more efficient at minimizing greenhouse gas emissions at given economic return

levels than their extensive counterparts. This study shows that technology diffe-

rences matter with respect to ecological-economic performance. Overall, there is

large potential for climate change mitigation without risking economic viability

for both intensive and extensive farms.

Study 3 assesses the heterogeneous impacts of agri-environmental schemes on the

environmental performance of farming. The study combines economic theory with

a novel machine learning method to identify the environmental effectiveness of

agri-environmental schemes at the farm level. Results from the empirical applica-

tion suggest the existence of heterogeneous, but limited effects of agri-environment

measures across several environmental dimensions such as climate change mitiga-

tion, clean water and soil health. By making use of model-agnostic interpretation

methods, the importance of production heterogeneity and context-specificity in

agricultural policy evaluation is highlighted and important insights into the im-

proved targeting of agri-environmental schemes using contextual knowledge are

demonstrated.

Study 4 evaluates whether, and under what conditions, farmers are likely to adopt

agroforestry and wood-based land-use systems in response to regional weather ex-

tremes. The cultivation of agroforestry systems is regarded as an effective strategy

to synergistically mitigate and adapt to the impacts of climate (and environmen-

tal) change in the face of increased occurrences of regional extreme weather events.

The study combines a discrete choice experiment with geospatial weather informa-

tion. Assuming adaptive weather expectations, land users’ dynamic responses to

extreme weather years are simulated in terms of adoption probabilities. The results

from the simulation of a 2018-like extreme weather year suggest that agroforestry

might have a very high probability of being adopted in the medium to long-term

under different scenarios, thus enhancing farmers’ resilience to climate change.

The findings of this thesis contribute to the growing literature on the production-

environment nexus in agriculture. The findings of Study I and Study II demons-

trate that economic success and environmental (and climate) protection do not ne-
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cessarily have to be mutually exclusive. Furthermore, the methodological steps (in-

cluding causal machine learning and model-agnostic interpretation) and findings

of Study III help to overcome limitations in the assessment of agri-environmental

schemes and open new possibilities for agricultural impact assessments. The fin-

dings of Study IV add to a better understanding of climate (and environmental)

change adaptation and mitigation in the face of extreme weather events.

Ultimately, a number of cross-cutting themes are discussed, including the role of

farm system dynamics, production heterogeneity and context specificity, as well as

data availability and requirements. The thesis closes with an in-depth discussion

of policy implications with a special emphasis on agri-environmental schemes and

delineates pathways for future research.
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Zusammenfassung

Die Leistungstärke landwirtschaftlicher Betriebe zur Herstellung pflanzlicher und

tierscher Produkte ist enorm und erlebte starke Produktivitätsteigerungen in den

vergangenen Jahrzehnten. Landwirtschaftliche Aktivitäten werden allerdings mit

einer Reihe von Umweltproblemen wie Klimawandel, Verlust der biologischen Viel-

falt und Bodendegradation in Verbindung gebracht. Darüber hinaus, ist die Land-

wirtschaft stark von der Umwelt selbst abhängig. In diesem Zusammenhang spielt

der Klimawandel seit einigen Jahren eine außerordentliche Rolle. Es wird erwartet,

dass der Klimawandel die natürlichen Bedingungen, unter denen Landwirte produ-

zieren, drastisch verändern wird. Angesichts einer sich verändernden Umwelt und

einer steigenden Nachfrage nach Nahrungsmitteln, Energie und nachwachsenden

Rohstoffen steht die landwirtschaftliche Produktion vor der Herausforderung, die

Produktion zu steigern, ohne dabei jedoch die Umwelt (und das Klima) zu be-

schädigen. Um die beiden Ziele, Produktivitätssteigerung und Umweltfreundlich-

keit, in Einklang zu bringen, müssen landwirtschaftliche Betriebe ihre negativen

Auswirkungen auf Umwelt und Klima mindern. Gleichzeitig müssen sie sich an

vorherrschenden Umwelt- und Klimaveränderungen anpassen.

Die vorliegende Dissertation zielt darauf ab, neue Einblicke in die Beziehung zwi-

schen landwirtschaftlicher Produktion und der Veränderung der Umwelt auf Be-

triebsebene zu liefern, indem sie mikroökonomische Theorie mit modernsten ökono-

metrischen Techniken kombiniert. Die Thesis besteht aus vier empirischen Studien,

die sich räumlich auf den Freistaat Bayern konzentrieren, ein Bundesland im Süd-

osten Deutschlands, welches eine der landwirtschaftlichen Kernregionen in Europa

darstellt.

In Studie I wird ein parametrisches Ökoeffizienz-Konzept entwickelt, welches gleich-

zeitig die ökologische und ökonomische Leistung von (landwirtschaftlichen) Betrie-

ben bewertet. Das entwickelte Konzept wird dann empirisch auf Treibhausgasemis-

sionen landwirtschaftlicher Betriebe angewendet. Dabei wird zwischen persistenter

(langfristiger) und zeitvariabler (kurzfristiger) Effizienz unterschieden. Die Betrie-
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be in der bayerischen Fallstudie zeigten eine geringes Niveau an zeitvariabler Ineffi-

zienz und ein hohes Maß an persistenter Ineffizienz für verschiedene Betriebstypen.

Insgesamt waren die untersuchten Betriebe meist nicht sehr emissions-effizient. Der

verwendete Stochastik Frontier-Ansatz ermöglicht es, Öko-Performance im Verlauf

der Zeit auf der Grundlage eines Malmquist-Produktivitätsindex zu erfassen. Ins-

gesamt hat sich die Öko-Performance bezogen auf den Klimawandel zwischen 2005

und 2014 leicht verbessert.

In Studie II wird die ökologische und wirtschaftliche Leistung extensiver und in-

tensiver Milchviehbetriebe in Bezug auf Treibhausgasemissionen gemessen, indem

das Konzept der Ökoeffizienz mit einer Stochastik Frontier-Analyse und der Laten-

ten Klassenanalyse sowie der Schätzung einer stochastischen Metafrontier kombi-

niert wird. Die Ergebnisse zeigen, dass intensiv wirtschaftende landwirtschaftliche

Betriebe im Durchschnitt effizienter Treibhausgasemissionen (bei gegebenen wirt-

schaftlichen Erlösen) als extensive Betriebe minimiert haben. Diese Studie zeigt,

dass Technologieunterschiede im Hinblick auf die ökologisch-ökonomische Leistung-

fähigkeit von Milchviehbetrieben eine wichtige Rolle spielen. Insgesamt besteht ein

großes Potenzial zum Klimaschutz, ohne dabei die Wirtschaftlichkeit zu gefährden.

Das gilt sowohl für intensiv als auch extensiv wirtschaftende landwirtschaftliche

Betriebe.

In Studie III werden die heterogenen Auswirkungen von Agrarumweltprogrammen

auf die Umweltleistungen landwirtschaftlicher Betriebe untersucht. Diese Studie

kombiniert Grundlagen ökonomischer Theorie mit Methoden maschinellen Ler-

nens, um die Umweltwirksamkeit von Agrarumweltprogrammen auf der einzelbe-

trieblichen Ebene zu analysieren. Ergebnisse aus der empirischen Anwendung deu-

ten auf heterogene, jedoch begrenzte Effekte von Agrarumweltmaßnahmen über

mehrere Umweltdimensionen wie Klimaschutz, sauberes Wasser und Bodengesund-

heit hinweg hin. Durch die Verwendung modellagnostischer Interpreationsmetho-

den wird die Bedeutung von Produktionsheterogenität und Kontextspezifität in

der agrarpolitischen Bewertung solcher Programme hervorgehoben und wichtige

Einblicke in ein verbessertes Targeting analysiert.

In Studie IV wird bewertet, ob und unter welchen Bedingungen Landwirte als

Reaktion auf regionale Wetterextreme Agroforstwirtschaft und holzbasierte Land-

nutzungssysteme einführen. Der Anbau von Agroforstsystemen gilt als wirksame

Strategie zur synergetischen Minderung und Anpassung an die Auswirkungen des
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Klimawandels, unter anderem im Hinblick auf das vermehrte Auftreten regiona-

ler Extremwetterereignisse. Die Studie kombiniert ein Discrete-Choice-Experiment

mit Geo-Wetterdaten. Unter der Annahme adaptiver Wettererwartungen werden

die Reaktionen von Landnutzern auf Extremwetterjahre im Hinblick auf Anbau-

wahrscheinlichkeiten simuliert. Die Ergebnisse aus der Simulation eines Extrem-

wetterjahres zeigten, dass Agroforstsysteme über verschiedene Szenarien hinweg

mittel- bis langfristig mit sehr hoher Wahrscheinlichkeit eingeführt werden könn-

ten, wodurch die Resilienz von Landwirten gegenüber dem Klimawandel erhöht

wird.

Die Ergebnisse dieser Dissertation ergänzen die wachsende Fachliteratur zum Ver-

hältnis von Produktion und Umwelt in der Landwirtschaft. Die Ergebnisse von

Studie I und Studie II zeigen, dass sich wirtschaftlicher Erfolg und Umwelt- und

Klimaschutz nicht zwangsläufig gegenseitig ausschließen müssen. Methodische Er-

kenntnisse (einschließlich kausalem maschinellem Lernen und modellagnostischer

Interpretation) und die Resultate aus Studie III helfen dabei, methodische Li-

mitationen bei der Bewertung von Agrarumweltprogrammen zu überwinden und

eröffnen neue Möglichkeiten für kausale Folgenabschätzungen in der Landwirt-

schaft. Die Ergebnisse von Studie IV tragen zu einem verbesserten Verständnis

der Anpassung an den Klima- und Umweltwandel und dessen Minderung bei.

Letztendlich werden eine Reihe von Querschnittsthemen, darunter die dynamische

Natur landwirtschaftlicher Systeme, Produktionsheterogenität und Kontextspezi-

fität sowie Datenverfügbarkeit und -anforderungen diskutiert. Die Dissertation

schließt mit einer Diskussion über politische Implikationen der Ergebnisse unter

besonder Berücksichtigung von Agrarumweltprogrammen und skizziert zukünfti-

gen Forschungsbedarf im Kontext dieser Arbeit.
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Introduction and Methods
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1 Introduction

1.1 Motivation

The benefits of agriculture have been enormous. Agricultural production activities

are the source of the world’s food supply. Worldwide, gross crop and livestock

production has almost quadrupled since 1960 (FAOSTAT, 2022c). At the same

time, the yields of the three most important staple crops (maize, rice, and wheat)

have continuously increased (Figure 1.1a). This is also true for agriculture’s total

factor productivity (TFP), which has gone up by 81% since 1961 (Figure 1.1b).

Furthermore, this development is also reflected by the amount of people that are

fed per hectare of arable land, which increased from 2.4 people per hectare in 1961

to 5.6 people per hectare in 2019 (Figure 1.1c).

These developments over the past 60 years have guaranteed that there is sufficient

food produced for nearly eight billion people (FAOSTAT, 2022c). Modern agri-

culture helped to reduce hunger, to improve nutrition and to mitigate extreme

poverty (Tilman et al., 2002). Alongside these trends, profound changes in the

environment could globally be observed (Tilman & Lehman, 2001). These changes

have affected, among other things, the climate, biodiversity, soil, nutrient and car-

bon cycles, as well as ecosystem and land composition (Pyhälä et al., 2016). As

earth is a dynamic system, environmental change has always been a fundamen-

tal part of its functioning (Vitousek, 1992). However, more recently changes in

the environment could clearly be associated to human activities (Campbell et al.,

2017; Tilman et al., 2001; Tilman & Lehman, 2001). This is particularly true for

agriculture, which is inherently connected to environmental change. For instance,

agricultural productivity gains over the past 60 years were mainly driven by a

rise in inputs such as fertilizers, water and pesticides (see also Figure 1.2a), novel

crop varieties, and other technological advances (Tilman et al., 2002). This devel-

opment has coincided with a drastic increase in greenhouse gas (GHG) emissions

(Figure 1.2b) and a decrease in farmland birds (Figure 1.2c).

A vast body of literature has found negative impacts of agricultural production
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Figure 1.1: Productivity indicators on global agriculture (1960–2020). Sources:
FAOSTAT (2022a,c,d) and USDA (2022).

activities on the environment (Pyhälä et al., 2016). For instance, current farming

practices have been found to degrade soil due to erosion, salinization, acidifica-

tion, contamination, or compaction (Kopittke et al., 2019; Tsiafouli et al., 2015).

Adverse effects of farming have also been found on several biodiversity domains.

Especially the agriculture-induced loss of insects reported in recent studies (Ewald

et al., 2015; Gossner et al., 2016; Ramos et al., 2018; Seibold et al., 2019) has

spurred an intense public debate. Further environmental problems associated with

agricultural production include nitrate in groundwater (Scanlon et al., 2007), am-

monia emissions (European Environment Agency, 2019b) and excessive pesticide

use (European Environment Agency, 2018; Mahmood et al., 2016).

At the same time as agricultural production affects environmental conditions, it

is also heavily dependent on the environment itself which provides important nat-

ural resources such as soils, water, genetic material, as well as ecosystem services

such as soil fertility, pollination and pest control, that are crucial for production

(Lichtenberg, 2002). Simultaneously, environmental degradation has already been

shown to negatively influence farming activities (Zhang et al., 2007).

At the nexus of agricultural production and environmental change, climate change

has arguably been playing an outstanding role in the field of agricultural eco-

nomics in recent years. Climate change is expected to drastically modify the

natural conditions under which farmers produce, and has a direct effect on agri-

cultural production (Njuki et al., 2018; OECD, 2019). A growing body of evidence

suggests that this effect is most likely detrimental. In this context, multiple stud-

ies have found statistically significant relationships between climate change and
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TFP (Burke & Emerick, 2015; Chambers & Pieralli, 2020; Chambers et al., 2020;

Mendelsohn et al., 1994; Njuki et al., 2020, 2018; Ortiz-Bobea et al., 2021, 2018;

Schlenker et al., 2005), profits (e.g. Deschênes & Greenstone, 2007, 2012), labor

(Burke et al., 2015), land use (Cui, 2020; Ramsey et al., 2021) and crop yields (e.g.

Keane & Neal, 2020; Schlenker & Roberts, 2009; Vogel et al., 2019; Webber et al.,

2020).

Given the current levels of world population growth in liaison with global trends

regarding meat and dairy consumption, it is predicted that global food produc-

tion will have to grow by up to another 35–56% by 2050 compared to 2010 (van

Dijk et al., 2021). Furthermore, agriculture is expected to play a key role in the

transformation of the world’s economy toward a biobased future (Loiseau et al.,

2016; Schmidt et al., 2012). Developing a bioeconomy will require an immense

amount of fiber, energy, and renewable resources (see e.g. Biermann et al., 2011;

Muffler & Ulber, 2008; Valentine et al., 2012). However, continuing farming as it

has been done before will likely cause the earth system to exceed various planetary

boundaries, which might have irreversible consequences for humankind’s basis of

life (Campbell et al., 2017; Rockström et al., 2009).

Hence, given agriculture’s inherent multi-functionality and embedding in the en-

vironment, it is facing the two-fold challenge of increasing production without

degrading the environment. Addressing this challenge heavily depends on what

decisions farmers’ make and what actions they take locally (Pyhälä et al., 2016).

Thus, although this challenge constitutes a global endeavor, it is important to

understand the decision-making processes and environmental change responses at

the individual farm-level in that farmers are the agents or decision-making units

in this context (Malek et al., 2019).

To reconcile the two objectives of an increased productivity and environmental

friendliness, farms have to mitigate their adverse impacts on the environment

and the climate (Rosenzweig & Tubiello, 2007). Simultaneously, they have to

adapt to prevailing environmental and climatic changes (Zilberman et al., 2012).

The scientific literature has suggested multiple instruments for both mitigation

and adaptation. For instance, regarding mitigation, the Intergovernmental Panel

on Climate Change (IPCC, 2014) listed restoration of organic soil as well as an

adjustment of cropland and grassland management as effective measures. As for

adaptation, suggestions from the literature range from conservation tillage (e.g.
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Figure 1.2: Environmental indicators associated with agricultural production
(1960–2020). Sources: FAOSTAT (2022b,d); OECD (2022).

Iglesias et al., 2012) to irrigation (e.g. Klein et al., 2014) to insurance (e.g. Di

Falco et al., 2014) and diversification (e.g. Olesen et al., 2011).

What is more, mitigation and adaptation in agriculture have been found to have

great potential for synergies (Rosenzweig & Tubiello, 2007; Smith & Olesen, 2010).

One potential measure in this context is the cultivation of agroforestry systems,

which integrate woody perennials with agricultural crops and/or livestock on a

piece of land (Verchot et al., 2007). They provide a large set of important ecosys-

tem services, they are robust to climate change and extreme weather, and they

can store atmospheric carbon (Brown et al., 2018).

Another important aspect worth mentioning in the context of agricultural produc-

tion and environmental change is the role of agri-environmental policy instruments

(Hasler et al., 2022). Legislation has been shown to contribute to reducing envi-

ronmental problems/degradation caused by agricultural production (e.g. Arata &

Sckokai, 2016; Bertoni et al., 2020; Chabé-Ferret & Subervie, 2013). However, an

aspect that has largely been neglected so far, is the importance of considering the

individual farming context to gain a better understanding of the heterogeneous

impacts and effectiveness of agri-environmental policy measures (Dessart et al.,

2019). One reason for that is the fact that the traditional econometric toolset

available to agricultural and applied economists is limited in its ability to reflect

the complexities and nonlinearities of the relationship between agricultural produc-

tion and environmental change. However, recent advances in the causal machine

learning literature have opened new possibilities to take such complexities into

account (Storm et al., 2020).
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1.2 Aims and scope of this thesis

This thesis aims to provide novel insights into the relationship between agricultural

production and environmental change at the micro-level by combining microeco-

nomic theory with state-of-the-art econometric techniques. Special consideration

is given to three specific issues in this context. These are the trade-offs between

farm-level economic returns and greenhouse gas emissions, the role of AES in

promoting environmentally-friendly farming practices, and the potential of agro-

forestry adoption to tackle climate change through adaptation and mitigation.

These issues were specifically investigated for farms in the case study region of

Bavaria, a federal state in southeast Germany. A primary reason for choosing this

region lies in its large diversity both in terms of its farm structures and in terms

of its farming conditions, which may allow conclusions for various other regions

beyond Bavaria as well.

The empirical part of this thesis is subdivided into four studies:

I. Greenhouse gas emissions and eco-performance at farm level: a parametric

approach.

II. Are intensive farms more emission-efficient? Evidence from German dairy

farms.

III. Using machine learning to identify heterogeneous impacts of agri-environment

schemes in the EU: A case study.

IV. Tackling climate change: agroforestry adoption in the face of regional weather

extremes.

with the following specific aims:

I. to develop a parametric eco-efficiency concept capable of jointly evaluating

the ecological and economic performance of (farm) businesses over time and

to empirically apply this concept to greenhouse gas emissions on Bavarian

farms,

II. to measure the environmental and economic performance of extensive and

intensive dairy farms with respect to greenhouse gas emissions by combining

the concept of eco-efficiency with latent-class stochastic frontier analysis

(SFA),
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III. to assess the impact heterogeneity of agri-environmental schemes on the en-

vironmental performance of farms based on a novel causal machine-learning

approach and to use contextual knowledge to improve scheme targeting,

IV. to evaluate whether, and under what conditions, farmers are likely to adopt

agroforestry and wood-based land-use systems in response to regional weather

extremes.

Farms can only sustainably produce agricultural goods and services when their

businesses are economically viable. The relationship between economic viability

of farms and its environmental impact can be looked at from an efficiency point of

view, i.e. to ask the question by how much can GHG emissions be reduced with-

out reducing the economic outcome of a farm, or conversely, by how much could

economic returns be increased without increasing GHG emissions. In this context,

the concept of ecological-economic efficiency, or "eco-efficiency" has gained recog-

nition as a way of evaluating the balance between economic performance and the

environmental damage induced by economic activity (Kuosmanen & Kortelainen,

2005). Yet, evidence on the trade-off between greenhouse gas emissions and eco-

nomic performance is sparse. Chapters 3 and 4 encompass studies that assess this

trade-off. Study I conceptually extends the eco-efficiency approach to a general

stochastic frontier analysis (SFA) setting and develops an eco-performance indi-

cator to better evaluate farms’ performance with respect to GHG emissions over

time. Study II relates this measure to separate production technologies and shows

differences between intensive and extensive farm groups.

To reduce the environmental impact of farming activities, legislators introduced

voluntary AES, in which farmers commit themselves to adopt environmentally-

friendly farming techniques to mitigate adverse environmental effects and foster

desirable ecosystem services. There is extensive literature on the effectiveness of

such schemes. A major limitation of most studies is that they mostly look at aver-

age effects of such schemes, thereby neglecting the fact that AES are likely to affect

different farms differently. Study III presented in chapter 5 uses recent method-

ological innovations from the causal machine learning literature to overcome this

limitation and provide farm-level evidence on the environmental effectiveness of

AES.

One major channel through which farmers can actively tackle environmental and

climate change impacts is land use (Pielke, 2005). A promising pathway in this
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direction is the adoption of agroforestry and wood-based land-use systems, which

are recognized to play a key role in synergistically approaching adaptation and

mitigation (Verchot et al., 2007). Study IV presented in chapter 6 evaluates farm-

ers probability of adopting such systems in the face of an increased number of

extreme weather events.

The first three studies of this thesis have been published in international peer-

reviewed scientific journals, and the fourth study is currently under review in such

a journal. An overview of the studies can be found in Table 1.1.

1.3 Literature overview

This section provides a brief literature overview of applied research on the three

dominant topics of this thesis: agricultural production and eco-efficiency, the ef-

fectiveness of AES, and agroforestry adoption in response to climate change.

1.3.1 Agricultural production from an eco-efficiency perspective

Over recent decades, the concept of ecological-economic efficiency, or "eco-efficiency"

has gained recognition as a way of evaluating the balance between economic per-

formance and the environmental damage induced by economic activity. The first

studies concerned with eco-efficiency computed partial measures such as "economic

output per unit of waste" (see Tyteca, 1996). Starting with the article by Kuos-

manen & Kortelainen (2005), who operationalized the eco-efficiency concept to

be calculated by means of data envelopment analysis (DEA), numerous studies in

several fields followed, both at the micro- and at the macro-level.

Studies focusing on the assessment of eco-efficiency in agriculture have analyzed

various farm types, ranging from crop farms (Bonfiglio et al., 2017; Eder et al.,

2021; Gadanakis et al., 2015; Song & Chen, 2019; Yang et al., 2021) and dairy farms

(Cortés et al., 2021; Iribarren et al., 2011; Martinsson & Hansson, 2021; Mu et al.,

2018; Orea & Wall, 2017; Pérez Urdiales et al., 2016; Soliman & Djanibekov, 2021;

Soteriades et al., 2016, 2020) to horticultural farms (Angulo-Meza et al., 2019;

Godoy-Durán et al., 2017), olive (Beltrán-Esteve et al., 2014; Picazo-Tadeo et al.,

2012) and wine producers (Grassauer et al., 2021). The majority of studies have

a spatial focus on Europe including, e.g., Spain (e.g. Picazo-Tadeo et al., 2011),

the UK (e.g. Gadanakis et al., 2015), Italy (e.g. Bonfiglio et al., 2017), Sweden

(Martinsson & Hansson, 2021), Austria (e.g. Eder et al., 2021), and Poland (e.g.

Pishgar-Komleh et al., 2020). Further analyses have been conducted, e.g., in New
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Table 1.1: Overview of the empirical studies presented in Part II.

Study/
chapter

Research
problem

Data Methods Core findings

Empirical
study 1/
chapter 3

Joint evalu-
ation of the
ecological
and economic
performance
of farms over
time

Bavarian
farms by
farm types:
dairy, pig,
mixed, crop
farms; finan-
cial accoun-
tancy data;
2005-2014

Eco-efficiency;
SFA with
persistent
and time-
varying eco-
inefficiency;
Malmquist
productivity
index decom-
position

Little time-
varying emission-
inefficiency and
high levels of
persistent ineffi-
ciency; farms were
mostly not very
emission-efficient;
eco-performance
slightly improved,
farm-type differ-
ences

Empirical
study 2/
chapter 4

Comparison
of the joint
ecological
and economic
performance
of extensive
and intensive
dairy farms
with respect
to greenhouse
gas emissions

Bavarian
specialized
dairy farms,
financial ac-
countancy
data; 2005-
2014

Combination
of eco-
efficiency,
latent-class
SFA and
stochastic
meta-frontier
analysis

Intensive farms
were on average
more efficient
at minimizing
GHG emissions
at given economic
return levels
than extensive
ones, large poten-
tial for climate
change mitigation
without risking
economic viability

Empirical
study 3/
chapter 5

Assessment
of the impact
heterogeneity
of AES on
the environ-
ment and
improvment
of scheme
targeting

Bavarian
farms (all
types), fi-
nancial
accountancy
data; 2014

Neyman–Rubin
causal model
(Neyman,
1923; Rubin,
1974), gener-
alized random
forest (Athey
et al., 2019),
Shapley val-
ues (Shapley,
1988)

Impact hetero-
geneity of AES
participation
across several
environmental
domains, many
insignificant ef-
fects and even
adverse effects;
targeting specific
farm cohorts
might lead to
increased scheme
effectiveness

Empirical
study 4/
chapter 6

Agroforestry
and wood-
based land-
use systems
adoption
in response
to regional
weather
extremes

Bavarian
farms culti-
vating crops,
primary data
obtained
through sur-
vey in 2020;
geo-spatial
weather data

Discrete choice
experiment,
correlated
random pa-
rameter multi-
nomial logit
model, ex-
treme weather
simulation
(Ramsey et al.,
2021)

Agroforestry
might have a very
high probability
of being adopted
in the medium
to long-term,
especially after
long-lasting ex-
treme weather
periods
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Zealand (Soliman & Djanibekov, 2021), China (e.g. Song & Chen, 2019; Yang

et al., 2021), Pakistan (Ullah et al., 2016) and Chile (Angulo-Meza et al., 2019).

Results on the current state of eco-efficiency in agriculture are inconclusive. Sev-

eral studies found high (e.g. Godoy-Durán et al., 2017; Stȩpień et al., 2021), mod-

est (e.g. Bonfiglio et al., 2017; Orea & Wall, 2017; Soliman & Djanibekov, 2021;

Stȩpień et al., 2021) as well as rather low levels (e.g. Picazo-Tadeo et al., 2012,

2011; Pishgar-Komleh et al., 2020) of eco-efficiency. However, studies that re-

garded eco-efficiency over time, mostly found an improvement in eco-efficiency

scores over time (e.g. Staniszewski, 2018; Yang et al., 2021)

While most eco-efficiency studies have focused on the farm-level, there exists also

a variety of studies at the regional (Coluccia et al., 2020; Grzelak et al., 2019; Song

& Chen, 2019) and country-level (Pishgar-Komleh et al., 2021; Staniszewski, 2018).

There is also a wide range of ecological pressures considered in agricultural eco-

efficiency studies, including fertilizer and pesticide damages (e.g. Bonfiglio et al.,

2017), energy consumption (e.g. Gadanakis et al., 2015), water usage (e.g. Song &

Chen, 2019), land consumption (e.g. Grzelak et al., 2019), soil degradation (Eder

et al., 2021), greenhouse gas emissions (e.g. Martinsson & Hansson, 2021), waste

management (e.g. Godoy-Durán et al., 2017) and biodiversity loss (Beltrán-Esteve

et al., 2014).

Numerous studies have also assessed potential eco-efficiency drivers. Beltrán-

Esteve et al. (2014), Eder et al. (2021), Picazo-Tadeo et al. (2011), and Gadanakis

et al. (2015) showed that high levels of technical efficiency are positively correlated

with high eco-efficiency scores. What is more, there seems to be a positive rela-

tionship between agri-environmental programs and farms’ eco-efficiency (Bonfiglio

et al., 2017; Gadanakis et al., 2015; Picazo-Tadeo et al., 2011). Future prospects of

generational renewal are negatively associated with eco-efficiency (Bonfiglio et al.,

2017; Pérez Urdiales et al., 2016). However, with respect to other potential drivers

such as farm size, farm manager’s age, education, topography, agricultural train-

ing, results are not unambiguous (Bonfiglio et al., 2017; Gadanakis et al., 2015;

Godoy-Durán et al., 2017; Pérez Urdiales et al., 2016; Picazo-Tadeo et al., 2011;

Soliman & Djanibekov, 2021; Stȩpień et al., 2021).

Almost all mentioned studies are exclusively based on DEA. Nevertheless, sev-

eral methodological advancements have been suggested in the literature. For in-

stance, Picazo-Tadeo et al. (2012) use a directional distance function to asses the
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eco-efficiency of Spanish olive-growers. Beltrán-Esteve et al. (2014) extend this

approach and make use of the metafrontier approach proposed by O’Donnell et al.

(2008). Furthermore, Kortelainen (2008) embedded the concept of eco-efficiency

into a dynamic setting allowing for comparisons over time. In an attempt to trans-

fer the eco-efficiency concept to a SFA setting in order to accommodate random

noise and allow for substitutability between environmental pressure, Orea & Wall

(2017) study the eco-efficiency of Spanish dairy farms. Their findings are strik-

ingly consistent with the DEA results in Pérez Urdiales et al. (2016), confirming

that SFA is an appropriate method for estimating eco-efficiency

Furthermore, there is also a variety of alternative models to incorporate and

compare pollution in production technologies, e.g., environmentally-adjusted pro-

duction efficiency models (Färe et al., 1986), material balance principle-adjusted

models (Førsund, 2018), and multiple equation environmentally-adjusted efficiency

models (Murty et al., 2012, see also Dakpo et al. (2020) for an extensive overview).

For instance, Skevas et al. (2018d) combine farm accountancy data from a large

sample of dairy farms in the Netherlands with data on nutrient surpluses to es-

timate the impact of farm intensification on environmental efficiency using a hy-

perbolic distance function. Ait Sidhoum et al. (2022) analyzed trade-offs between

economic, environmental and social sustainability in Spanish crop farming using a

stochastic frontier latent-class approach. Serra et al. (2014), Malikov et al. (2018)

and Lamkowsky et al. (2021), and Tsagris & Tzouvelekas (2022) analyzed the rela-

tionship between farm production activities and nitrogen pollution. Ait Sidhoum

et al. (2019) additionally evaluated pesticide pollution. Eder (2022) assessed the

trade-offs between marketed agricultural outputs and soil erosion. Finally, Dakpo

et al. (2017) and Dakpo & Lansink (2019) used by-production models and con-

sidered emissions of greenhouse gases as polluting output. Basically, all of these

studies conclude that there is a lot of potential for farms to further decrease envi-

ronmental pollution.

1.3.2 Ecological effects of agri-environmental schemes in Europe

Volunatary AES are part of the common agricultural policy (CAP), which is the

main policy framework guiding agricultural legislation (Hasler et al., 2022). More

generally, AES are regarded as part of the wider payments for environmental ser-

vices regime (Wunder et al., 2020). They are aimed at reducing adverse environ-

mental impacts of farming activities by promoting more environmentally-friendly
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practices (Hasler et al., 2022). There are several overview articles on AES, e.g.,

Zimmermann & Britz (2016) provide an overview of AES participation and its

drivers. Schomers & Matzdorf (2013) summarize the literature on scheme design

and Hasler et al. (2022) give a general overview of the European agri-environmental

policy.

AES in the context of the CAP have shown mixed success across Europe in terms

of meeting environmental targets. Depending on the specific AES and the indi-

cators under investigation, they have been found to be either beneficial (Batáry

et al., 2015; Bright et al., 2015; Dadam & Siriwardena, 2019; Dal Ferro et al.,

2016; MacDonald et al., 2012; Wuepper & Huber, 2021), ineffective (Bartolini

et al., 2021; Bellebaum & Koffijberg, 2018; Calvi et al., 2018; Granlund et al.,

2005; Kaligarič et al., 2019; Kleijn et al., 2004), or even detrimental (Baer et al.,

2009). The environmental effectiveness of AES has intensively been studied across

the continent, e.g. in Italy (e.g. Bartolini et al., 2021; Bertoni et al., 2020; Gatto

et al., 2019), Germany (e.g. Pufahl & Weiss, 2009; Uehleke et al., 2022), France

(e.g. Chabé-Ferret & Subervie, 2013; Kuhfuss & Subervie, 2018), Switzerland (e.g.

Mack et al., 2020; Wuepper & Huber, 2021), and Denmark (Mahmoud & Hutch-

ings, 2020). Arata & Sckokai (2016) compared AES performance across five Euro-

pean countries (UK, Spain, France, Germany, and Italy) and found heterogeneous

country-specific effects. Furthermore, several studies conducted additional cost-

benefit analyses, which found limited cost-effectiveness of most AES (see Bertoni

et al., 2021, 2020; Chabé-Ferret & Subervie, 2013; Faria & Morales, 2020; Gómez-

Limón et al., 2019a).

Most recent econometric impact assessments of AES have statistically been based

on some sort of matching algorithm (e.g., propensity score matching or coarsened

exact matching) in combination with the difference-in-difference estimation ap-

proach (e.g. Bertoni et al., 2020; Chabé-Ferret & Subervie, 2013; Uehleke et al.,

2022). While these studies have typically been based on farm-level data, there have

also been AES evaluations at the field (Mahmoud & Hutchings, 2020), landscape

(Tanner & Fuhlendorf, 2018), and regional (Dumangane et al., 2021) level.

The effects of AES have been analyzed across a large variety of environmental

domains and indicators, such as water quality (Mahmoud & Hutchings, 2020),

crop diversification (Bertoni et al., 2020), planting of cover crops (Chabé-Ferret

& Subervie, 2013), organic farming (Mahmoud & Hutchings, 2020), GHG emis-
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sions (Bertoni et al., 2021), input use (Kuhfuss & Subervie, 2018), biodiversity

(Bougherara et al., 2021), bird conservation (Faria & Morales, 2020), grassland

maintenance (Uehleke et al., 2022), and biodiversity conservation areas (Wuepper

& Huber, 2021)1.

The overall environmental effectiveness of AES also depends on scheme uptake

(Hasler et al., 2022). There is a stream of literature analyzing farmers’ decision to

take part in such schemes by linking their preferences to scheme-specific charac-

teristics and/or to farmer and farm-specific features (e.g. Barghusen et al., 2021;

Defrancesco et al., 2018; Del Rossi et al., 2021; Leonhardt et al., 2022; McGurk

et al., 2020; Zimmermann & Britz, 2016).

Furthermore, the question of how to adjust the design of AES to improve the

delivery of a wide range of ecosystem services has been studied intensively (see

e.g. Armsworth et al., 2012; Birge et al., 2017; Burton & Schwarz, 2013; Fuentes-

Montemayor et al., 2011; Kuhfuss et al., 2016; Latacz-Lohmann & Breustedt,

2019; Latacz-Lohmann & Van der Hamsvoort, 1997; Westerink et al., 2017, 2014).

Prominent suggestions for scheme adaptations to trigger a higher return of ecosys-

tem services include the following: defining clear environmental objectives and

specifying the relationship between environmental pressures and AES (European

Court of Auditors, 2011), linking payments to the actual delivery of desired out-

comes (i.e. results based) rather than to management actions (i.e. action/in-

put based) (Birge et al., 2017; Burton & Schwarz, 2013), focusing on (coopera-

tive) landscape management contracts instead of pursuing contracts for individual

land management units (Fuentes-Montemayor et al., 2011; Westerink et al., 2017,

2014), introducing a collective bonus (Kuhfuss et al., 2016), setting up auctions

(Vergamini et al., 2020) or avoiding standardized payment rates, which ignore the

heterogeneity of compliance costs across farmers (Armsworth et al., 2012; Latacz-

Lohmann & Breustedt, 2019; Latacz-Lohmann & Van der Hamsvoort, 1997). Until

today, there have been almost exclusively action-based AES (i.e. farmers adopt

promoted management practices) available, which is why there is very little ex-

post empirical evidence on varying payment scheme designs. Recently, Wuepper

& Huber (2021) compared result-based and action-based AES in Switzerland and

found result-based payments to have a positive environmental effect.

1The impacts of AES have also been analyzed with respect to non-environmental outcomes
like TFP (Baráth et al., 2020; Mennig & Sauer, 2020), farm survival (Lovén & Nordin, 2020) or
regional employment (Dumangane et al., 2021)
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An aspect that has often been neglected is the improvement of targeting to in-

crease AES effectiveness. Authors such as van der Horst (2007), Langpap et al.

(2008), Desjeux et al. (2015), Früh-Müller et al. (2019), Uthes et al. (2010) and

Perkins et al. (2011) stress the importance of spatial targeting and adjusting agri-

environmental measures according to land use. It has been shown that both

effectiveness and efficiency of AES increase if payments are well-tailored and well-

targeted in space and time (Armsworth et al., 2012; Pe’er et al., 2020; Wätzold

et al., 2016). However, many of these studies are not based on rigorous impact

assessments and have a more correlational character, or rely on simulation ap-

proaches (e.g. Longo et al., 2021; Mahmoud & Hutchings, 2020).

1.3.3 Agroforestry, short rotation coppice adoption and climate

change

Agroforestry and other wood-based land-use systems such as short rotation coppice

(SRC) are recognized to play an important role in synergistically approaching

adaptation and mitigation (see e.g. Cardinael et al., 2021; Duguma et al., 2014;

Schoeneberger et al., 2012; van Noordwijk et al., 2014, 2011; Verchot et al., 2007).

The elicitation of farmers’ preferences for agroforestry and woody perennials has

been the subject of multiple studies, including Gillich et al. (2019) and Pröbstl-

Haider et al. (2016), who analyzed farmers’ preferences for SRC in Germany and

Austria using discrete choice experiments. Mercer & Snook (2005), Schaafsma

et al. (2019), and Oviedo et al. (2021) used discrete choice valuation methods to

elicit farmers’ preferences for agroforestry in Mexico, Malawi, and Spain.

More commonly, farmers’ adoption of trees on agricultural land has been analyzed

ex-post by linking farm and household characteristics to the adoption of such

systems using econometric binary outcome models. Amare & Darr (2020) provide

an overview of such analyses and find that a total of 151 variables have been used to

study agroforestry adoption. Many of these studies focus on the Global South, e.g.

Amusa & Simonyan (2018), Adesina & Chianu (2002), Beyene et al. (2019), and

De Giusti et al. (2019). Classical adoption drivers are for instance age, education

and income (see e.g. Pattanayak et al., 2003). Additionally, psychological and

sociological factors, such as attitudes, subjective norms, self-efficacy or perceived

behavioral control have been brought into focus (Buyinza et al., 2020; McGinty

et al., 2008; Meijer et al., 2015). Various wood-based land use systems have

been considered in such adoption studies, including SRC, alley cropping, coffee-
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integrated agroforestry, fruit trees, hedgerows and many more (Adesina & Chianu,

2002; Bannister & Nair, 2003; Mfitumukiza et al., 2017). Furthermore, some

studies have specifically focused on (potential) barriers and constraints regarding

the adoption of agroforestry, e.g. Djalilov et al. (2016), Mattia et al. (2018), and

Sollen-Norrlin et al. (2020).

Other studies have used investment analysis to evaluate the economic potential of

agroforestry and other tree-based land-use systems (e.g. Frey et al., 2013; Lasch

et al., 2010). Another important stream of the literature has conducted adop-

tion assessments by means of land-use simulations. Gosling et al. (2021) used

modern portfolio theory and robust multi-objective optimization to assess the eco-

nomic potential of different agroforestry systems in Panama. Gosling et al. (2020)

and Gosling et al. (2020) used this approach under consideration of ten different

adoption drivers also accounting for ecological goals and farmers’ preferences. Ro-

manova et al. (2021) focused on the temporal dynamics of agroforestry adoption

process (using a qualitative research approach), an important aspect that had

often been neglected in the literature.

When it comes to assessing farmers’ preferences and adoption decisions in the face

of climate change and (extreme) weather, there are only a few studies. Lasch

et al. (2010) and Gomes et al. (2020) projected the cultivation potential for SRC

in eastern Germany and coffee-agroforestry in Brazil, taking into account various

climate change scenarios until 2050. Schaafsma et al. (2019) discuss agroforestry

in the context of climate-smart agriculture in Malawi. Lasco et al. (2016) discussed

the role of agroforestry given farmers’ perceptions of climate change. Moreover,

Paul et al. (2017) use robust optimization to simulate the adoption of various tree-

based land-use systems under consideration of climate uncertainty. The only study

explicitly evaluating the effect of weather on agroforestry adoption was conducted

by Mfitumukiza et al. (2017) using a case study in Uganda.

1.4 Short description of the case study region: Bavaria

As mentioned above, the empirical studies presented in Part II of this thesis focus

on farming in Bavaria. Located in the southeast of Germany, Bavaria belongs to

the core regions of agricultural production within the European Union (EU). It

comprises seven regional districts, 71 counties and 2056 municipalities. In 2019,

there were a total of 105,297 farms, which managed 3.1 million hectares of land

( 44% of total land). Crop land accounted for 65%, and grassland made up 35%.
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233 thousand people were employed in the agricultural sector in Bavaria in 2016

(StMELF, 2021).

In terms of natural conditions, farming takes place along an elevational gradient of

1500 m (from 100 m in Northwest Bavaria to 1600 m in Southeast Bavaria) and

a macroclimatic gradient with a mean annual temperature range between 3 °C

and 10 °C and an annual precipitation of 470–1592 mm (from 1960 to 2020). Its

natural conditions range from pre-alpine and alpine areas with high precipitation

and rather clayey, limestone and dolomite-based soils to regions with flat land and

fertile loess soils to dry, marlstone, limestone and dolomite based hillside locations.

Figure 1.3 provides an overview of Bavaria’s heterogeneous natural conditions.

These conditions are well-suited for, and reflected by, various agricultural pro-

duction systems such as crop farming, intensive and extensive dairy farming, pig

and cattle fattening and breeding, poultry farming, vegetable farming, orcharding,

hop production and viticulture. This heterogeneity of farming systems represents

to some extent the European agricultural sector. For instance, farms in Bavaria

managed on average 34.7 ha of land in 2014 which is similar to average farm sizes

in, e.g., Ireland, Belgium and the Netherlands (European Statistical Office, 2020).

Furthermore, Bavaria is one of the largest milk-producing regions in the EU (Frick

& Sauer, 2018), and the Bavarian farm labor structure and livestock count can be

seen as representative for a large number of European farms in that average num-

bers are close to European averages (European Statistical Office, 2020). Bavarian

dairy farmers kept on average 34.1 livestock units (LUs) of dairy cows between

2005 and 2014. This value lies only slightly above the average for all European

regions (30.4). On average, Bavarian pig farms managed 154.4 LUs of pigs, which

was approximately equal to the European average of 154.8 LUs. As for the labor

structure, on average 1.6 average work units (AWUs) worked on Bavarian farms

between 2005 and 2014, while the European average was 1.5 AWUs in the same

period (European Statistical Office, 2020).

1.5 Outline of the thesis

The remainder of this thesis is structured as follows. Chapter 2 provides a general

overview of applied concepts and methods of this thesis. Part II consists of the

following four empirical studies focusing on the nexus of agricultural production

and environmental change in Bavaria:
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Figure 1.3: Description of the case study region, Bavaria. Sources: BGR (2022);
Cornes et al. (2018).
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• Chapter 3: Study I – Greenhouse gas emissions and eco-performance at farm

level – a parametric approach

Stetter, C., & Sauer, J.(2022). Greenhouse Gas Emissions and Eco-Performance

at Farm Level: A Parametric Approach. Environmental and Resource Eco-

nomics, 81, 617–647. DOI: https://doi.org/10.1007/s10640-021-00642-1

• Chapter 4: Study II – Are intensive farms more emission-efficient? Evidence

from German dairy farms

Stetter, C., Wimmer, S. & Sauer, J.(2022). Are Intensive Farms More

Emission-Efficient? Evidence From German Dairy Farms. Journal of Agri-

cultural and Resource Economics. DOI: doi:10.22004/ag.econ.31675

• Chapter 5: Study III – Using machine learning to identify heterogeneous

impacts of agri-environment schemes in the EU: A case study

Stetter, C., Mennig, P. & Sauer, J.(2022). Using Machine Learning to

Identify Heterogeneous Impacts of Agri-Environment Schemes in the EU:

A Case Study. European Review Of Agricultural Economics. DOI: https:

//doi.org/10.1093

• Chapter 6: Study IV – Tackling climate change: Agroforestry adoption in

the face of regional weather extremes

Stetter, C., & Sauer, J.(2022). Tackling Climate Change: Agroforestry Adop-

tion in the Face of Regional Weather Extremes. Working paper.

Finally, Part III summarizes the main findings and gives a general discussion of

the presented research articles, provides policy implications as well as recommen-

dations for future research.
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2 An overview of applied concepts

and methods

This chapter provides an overview of the theoretical background of this thesis

and a short glimpse into the methods applied in Part II. Conceptually, this thesis

combines microeconomic theory with state-of-the art econometric methods and

real-world farm-level data.

2.1 Production analysis

The main theoretical focus of this thesis is on applied production economics, which

represents the theoretical basis for studies I to III. Agricultural production eco-

nomics focuses on the producers of agricultural commodities, their goals and ob-

jectives, their choices in terms of resource allocation, input and output quantities

and their (economic) environment (Debertin, 2012).

2.1.1 The production technology and technical efficiency

In production economics, all production processes are regarded as a transforma-

tion of inputs (e.g. materials, labor, and capital) to produce outputs (goods and

services) (Kumbhakar et al., 2015). This basic principle is applicable to a large

array of different economic entities such as factories, firms, and farms or to non-

profit organizations like schools or hospitals, but also to smaller units within these

entities (e.g., bank branches, retail stores, agricultural enterprises) and to the

macro-level like regions, countries or sectors (Coelli & Rao, 2005b).

Mathematically, the transformation of a vector of inputs (x) into a vector of

outputs (q) can be described by means of a production technology set, S and

reflects the technological production possibilities of a firm (Coelli & Rao, 2005b):

S = {(x, q) : x can produce q}. (2.1)

For the case of a single output scalar q, the production possibilities of a firm can
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conveniently be described by a production function (Kumbhakar et al., 2015):

q = f(x1,x2, . . . ,xJ ) ≡ f(x) (2.2)

The production function f(x) reflects the maximum attainable output q for a

given available vector of inputs x. In production theory, it is usually assumed

that production functions are consistent with a set of axiomatic properties (see

Chambers, 1988, p.9 for a detailed discussion on this).

For now, it has implicitly been supposed that all production activities are on

the frontier of the technology set and obtain maximum output (Kumbhakar et al.,

2015), i.e. farms are considered technically efficient. However, a firm is technically

inefficient with respect to output if it could produce a higher level of output for the

given inputs (output-oriented inefficiency). Following Shepherd (1970), technical

efficiency (TE) can be defined as

TE =
q

q∗
⇔ q = q∗ · TE 0 ≤ TE ≤ 1, (2.3)

where q is the observed output quantity and q∗ is the maximum attainable output

quantity with the observed input quantities x. The concept of technical inefficiency

is graphically demonstrated in Figure 2.1. Production function f(x) defines the

maximum attainable output q∗ for a given input level x. Point A is technically

inefficient because it could produce more output at the current level of x. The

distance AB reflects the output loss due to technical inefficiency (Kumbhakar et al.,

2015). Figure 2.1 equivalently demonstrates the case for input-oriented technical

inefficiency for point A in that it could produce the same amount of output with

less input, reflected by the distance AC.

2.1.2 Stochastic frontier analysis

There exists a variety of parametric and non-parametric approaches to obtain

empirical estimates of the production technology and associated TEs based on

observed production data. One of the most prominent and widely applied method

is the stochastic frontier analysis (SFA), a parametric statistical analysis technique

(Kumbhakar & Lovell, 2000). The concepts presented above are deterministic,

i.e. the difference between observed output and maximum attainable output is

solely attributed to technical inefficiency (Kumbhakar & Lovell, 2000), and neglect

statistical noise (e.g. random shocks outside producers’ control like weather) and
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Figure 2.1: Illustration of technical inefficiency for production frontier f(x).
Point A is inefficient with respect to output q because it could
produce more q using the same amount of input x, which is reflected
by the distance AB. Point A is also inefficient with respect to input
x because it could use less input x to produce the same level of q,
which is reflected by distance the AC.

are very sensitive to positive outliers (Henningsen, 2019). SFA is able to account

for this stochasticity in the production process. Consequently, one can reformulate

Equation 2.3 by defining TE = exp(−u) and adding a producer-specific random

shock term exp(ν):

y = f(x) · exp(−u) · exp(ν). (2.4)

To facilitate estimation and following the seminal papers of Aigner et al. (1977)

and Meeusen & van den Broeck (1977), (2.4) can be represented in logarithmic

form by

ln y = ln f(x)− u+ ν u ≥ 0, (2.5)

where ν accounts for idiosyncratic errors in the estimation and u is a positive,

one-sided error term accounting for technical inefficiency. Hence, in the stochastic

frontier model, there is a composite error term (ǫ = ν − u).

The stochastic frontier model is commonly estimated by way of maximum likeli-

hood estimation (Kumbhakar & Lovell, 2000). This estimation technique requires

assumptions on the distribution of the two error terms u and ν. Usually, the
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noise term ν is assumed to be normally distributed with zero mean and constant

variance σ2
ν . The distributional assumption for the inefficiency term u varies but

often follows a positive half-normal distribution with constant scale parameter σ2
u

(see e.g. Henningsen, 2019):

ν ∼ N (0,σ2
ν) (2.6)

u ∼ N+(0,σ2
u) (2.7)

Finally, the researcher must choose a functional form for f(x). Common choices

are the Cobb-Douglas, quadratic or the translog functions, respectively (Coelli &

Rao, 2005b).

2.1.3 Environmental pressure generation and eco-efficiency

The above-described production technology does not account for potential pollu-

tion stemming from production processes. As stated in the beginning, current

agricultural practices are associated with multiple environmental problems (see

e.g. Campbell et al., 2017). Ignoring these environmental damages would yield an

incomplete picture of the impacts of agricultural production activities.

A variety of models have been proposed in the literature to incorporate envi-

ronmental pollution in production technologies: environmentally-adjusted produc-

tion efficiency models, material balance principle-adjusted models, and multiple

equation environmentally-adjusted efficiency models (Dakpo et al., 2020; Lauwers,

2009). The latter category includes the by-production model proposed by Murty

et al. (2012), which defines the global technology as the intersection of two sub-

technologies – one for good outputs (e.g., wheat or milk) and one for bad outputs

(e.g., nitrogen leaching or GHG emissions).

Another concept developed by Kuosmanen & Kortelainen (2005) is eco-efficiency,

which is the theoretical basis for the studies in chapters 3 and 4. It assesses eco-

nomic activity from an environmental impact perspective without direct recourse

to physical inputs and outputs. Starting point for this concept is the pressure-

generating technology set (PGTS) (Kortelainen, 2008; Kuosmanen & Kortelainen,

2005; Picazo-Tadeo et al., 2012), which describes how ecological pressures s trans-

late to economic returns y:

PGTS =

[
(s, y) : economic returns y can be generated with ecological pressures s

]
.

(2.8)
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It contains all technically and economically feasible combinations of economic

output (y) and environmental pressures (s).

Based on the PGTS, eco-efficiency evaluates the ability of firms to generate a

higher level of economic returns at a given level of environmental damage, or

conversely, to generate a given level of economic returns with less environmental

damage. Figure 2.2 illustrates this concept, which is very similar to the traditional

production technology and TE concept presented above.

Figure 2.2: Illustration of eco-inefficiency. Point A is eco-inefficient with respect
to economic returns because it could generate higher economic
returns with the same amount of environmental pressure, which is
reflected by the distance AB. Point A is also eco-inefficient with
respect to environmental pressure because it could cause less
environmental pressure to generate the same level of economic
returns, which is reflected by distance the AC.

Usually, eco-efficiency is estimated using mathematical programming methods, i.e.

DEA. However, this ignores the stochastic nature of the relationship between

economic returns and environmental pressures. Study I and Study II make use

of the fact that most concepts underlying eco-efficiency are very similar to tra-

ditional production economic concept and assess farms’ ecological-environmental

performance with respect to greenhouse gas emissions using SFA methods.

Although the eco-efficiency framework might axiomatically not be the most ac-

curate approach, eco-efficiency scores are easy to interpret and express the envi-

ronmental pressure mitigation potential in a tangible number, thus making them

a meaningful index allowing for policy-relevant conclusions regarding sustainable

management and efficient use of natural resources in the agricultural sector (Coluc-
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cia et al., 2020).

2.1.4 The production technology and action-based agri-environmental

schemes

Turning back to classical production analysis, one can also look at production

from a multiple output perspective. In that case, the technology set (2.1) can be

represented by an output set reflecting production possibilities for a given available

set of inputs (Coelli & Rao, 2005b):

P (x) = {q : x can produce q} = {q : (x, q) ∈ S}. (2.9)

These outputs can be both marketed (e.g. wheat or milk) and non-marketed

outputs (e.g. GHG emissions or nutrient leaching). Given the action-based nature

of most AES, i.e. participation limits their production possibilities, (2.9) can be

re-expressed as:

P (x) = {q : x can produce q for a given AES participation status w} (2.10)

= {q : (x, q,w) ∈ S}.

Figure 2.3 graphically illustrates the case of one marketed and one non-marketed

output. In this stylized representation, it is assumed that farmers decide either to

participate or not to participate in an AES. Accordingly, farms face two potential

production possibility curves (PPCs)1, where participation in an AES causes an

inward shift of the PPC. Based on this model, Chapter 5 seeks to answer the

question how participation in AES affects the environmental outcome of farming

activities across multiple environmental domains.

The fact that one can only observe the outcome of one participation status at a

time (either a farm takes part or not) represents the fundamental problem of causal

inference, which is addressed by the potential outcomes framework developed by

Neyman (1923) and Rubin (1974) (see next section).

2.2 Potential outcomes, conditional average treatment effects and

causal machine learning

Within the potential outcomes framework, a causal effect is defined as the differ-

ence between two states of the world (Cunningham, 2021). In the context of this

1The PPC graphically depicts all possible combinations of two outputs that could potentially
be produced at a given input bundle. Another term for PPC is production possibility frontier
(PPF), which can be used interchangeably.
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Figure 2.3: Illustration of the potential production possibility curves when not
participating in an action-based agri-environmental scheme
PPC(w = 0) and when participating in an action-based
agri-environmental scheme PPC(w = 1). All output combinations on
and below a production possibility curve are economically feasible.
Hence, participation in an action-based agri-environmental scheme
limits a farm’s production possibilities.

thesis, this would mean comparing the environmental performance of a farm in a

world, in which it takes part in an AES (Y 1
i ) versus a world in which it does not

take part in an AES (Y 0
i ). The problem is that one cannot observe both outcomes

for one farm. The unobservable outcome is called counterfactual. The treatment

effect τi for individual i is defined as

τi = Y 1
i − Y 0

i . (2.11)

It is not possible to estimate (2.11) because the counterfactual outcome is un-

known. However, it is possible to estimate an average treatment effect (ATE)

when individuals are randomly selected and assigned into a program by utilizing

the expected values of the potential outcomes (Cuong, 2009):

ATE = E

[
τi

]
= E

[
Y 1

i − Y 0
i

]
= E

[
Y 0

i

]
−E

[
Y 1

i

]
. (2.12)

However, there are two major problems associated with this approach. First, as in

many other settings, participation in AES is not random. Instead, farmers choose

(self-select) whether or not they participate in a program. Hence, the calculated

treatment effect in (2.12), i.e. the simple difference between the expected values
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E

[
Y 0

i

]
and E

[
Y 1

i

]
, is likely not solely attributable to the difference in participa-

tion status Di (equals 1 if one participates in the program, and 0 otherwise), but is

also due to inherent differences between the two groups (e.g. farm characteristics

such as age, education, and size). Without further assumptions, it is impossible

to identify the effect of a policy given the observational nature of the research

problem. Therefore, Study III invokes the conditional independence assumption

(Rubin, 1977), i.e. participation status Di is independent of unobservable features

conditional on a set of contextual characteristics Xi: Y 1
i ,Y 0

i ⊥⊥ Di | Xi. Further-

more, common support is assumed to rule out perfect predictability of program

participation, i.e. individuals with the same X have a positive probability of being

both participants and non-participants: 0 < P (Di = w | X) < 1.

An often neglected aspect regarding the evaluation of agri-environmental programs

(and other policies) is effect heterogeneity. The impacts of AES are expected to

vary across farm households depending on their farming context (e.g. factor endow-

ment, natural conditions, etc.) (Pufahl & Weiss, 2009). Although acknowledged

by many previous studies on the subject, most of them could only estimate average

effects on the basis of traditional statistical methods (e.g. Arata & Sckokai, 2016;

Bertoni et al., 2020; Chabé-Ferret & Subervie, 2013). Neglecting effect hetero-

geneity could potentially lead to flawed policy conclusions. For instance, assume

the true ATE of a policy is +10, containing half of the subjects with a treatment

effect of +15 and the other half of −5. The positive ATE conceals the fact that

this policy has a negative impact on half of the subjects.

Thus, the conceptual approach of Study III is based on the conditional average

treatment effect (CATE) that allows to obtain individualized AES effects. Sup-

pose a set of i.i.d. farm households i = 1, . . . ,n, for which we observe (Xi,Yi,Di),

where Xi = x ∈ R
p is a vector of p contextual covariates, describing the individual

farming context and containing all determinants of Y 0 and Y 1 as well as the deter-

minants of the participation decision. As above, Yi ∈ R is the outcome variable of

interest (e.g. an indicator reflecting environmental performance), and Di ∈
{

0, 1
}

is the policy dummy for participation and non-participation in AES. Given the

potential outcomes Y 0
i and Y 1

i , for each farm i that is (uniquely) characterized by

its contextual feature vector x, the CATE can be expressed by:

τ (x) = E

[
Y 1

i − Y 0
i | Xi = x

]
. (2.13)

Hence, the set of contextual variables x defines the extent to which the CATE is in-
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dividualized, i.e. the better the contextual variables (x) define each farm the more

accurate become the individualized treatment effect estimates τ (x). Estimating

the CATE with a large set of contextual variables that contains non-linearities

and interactions is a non-trivial task (Athey & Imbens, 2019). However, in recent

years, a series of novel estimation methods have been introduced combining causal

inference and machine learning (ML) to obtain accurate CATE estimates (see e.g.

Athey & Imbens, 2016; Athey et al., 2019; Künzel et al., 2019; Wager & Athey,

2018).

ML algorithms have primarily been developed for prediction tasks (Storm et al.,

2020).2 Popular ML prediction tools include shrinkage methods such as the

least absolute shrinkage and selection operator (LASSO), Ridge regressions, neural

networks, and tree-based methods such as (boosted) classification and regression

trees (CART) or random forests (RFs) (see e.g. James et al., 2021, for an overview).

Based on these methods, a series of ML algorithms for the estimation of causal

effects have been suggested, e.g. meta-learners (Künzel et al., 2019) or neural net-

works for causal inference (Farrell et al., 2021). However, CART and RF-based

algorithms have been playing a key role in the estimation of CATEs (Storm et al.,

2020). Figure 2.4 provides an intuition as to how these algorithms work. Ran-

dom forests, a concept developed by Breiman (2001), are basically an ensemble of

CARTs, which are grown based on recursive partitioning such that the variable

space is divided into binary nodes according to an optimality criterion (e.g. many

standard regression tree implementations split by minimizing the in-sample pre-

diction error of the node (Breiman et al., 2017)) until the final nodes (aka leaves)

contain a number of observations greater than a given minimum. The average out-

come of such a leaf is then the prediction for the observations contained in that

leaf. Random forests make predictions in the form of an average across predictions

b = 1, . . . B of such CARTs, each of which is grown on a training sample, i.e. a

random subsample of the data.

Tree-based causal ML methods include, among others, causal trees (Athey & Im-

bens, 2016), causal forests (Athey et al., 2019; Wager & Athey, 2018), modified

causal forests (Lechner, 2019), and orthogonal random forests (Oprescu et al.,

2018). All of these algorithms rest on adjusted splitting rules, such that they are

2Predicting some output based on a set of explanatory variables is called supervised ML.
Another common use of ML are unsupervised approaches, i.e. grouping and clustering of data
based in characteristics of observations. (Storm et al., 2020).
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(a) Demonstration of a CART with
one feature (X) and one response
variable (Y ). Source: Tiffin (2019).

(b) Demonstration of a CART with two features
(X1, X2) and one response variable (Y ) and
partition point t. Source: James et al. (2021).

(c) Random forests are an ensemble of regression trees based on random subsamples of
the full dataset. Source:own depiction based on Tiffin (2019).

Figure 2.4: Regression trees and random forest architecture.

optimized for an accurate CATE prediction. The empirical strategy in Study III is

based on the causal forest algorithm (Athey et al., 2019; Wager & Athey, 2018), as

this is arguably the most widely applied and well-established causal ML algorithm

in this context.

A common problem with ML prediction models is the fact that their predictive

power and ability to estimate complex models comes at the expense of interpretabil-

ity (Molnar, 2019; Storm et al., 2020). Based on this problem, interpretable ma-

chine learning has evolved as a new research discipline. It has put forth a set of

model-specific as well as model-agnostic interpretability methods in recent years.

Model-agnostic interpretability means that interpretation is separated from esti-

mating/learning a model. This makes the concept very flexible in that it is not
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bound to any specific ML model (Ribeiro et al., 2016). One such concept that has

been enjoying increasing attention are Shapley values (Shapley, 1988). It is the

only interpretability concept with a solid theory (Molnar, 2019). Study III uses

Shapley values to explore the relationship between the most relevant contextual

variables and the impact size of AES.

2.3 Random utility theory and discrete choice experiments

In Study IV, farmers’ land-use choices were assessed in response to extreme weather

events. To this end, it has been necessary to elicit farmers preferences for different

land use alternatives, which is usually done by means of stated preference methods

(Louviere et al., 2000). There are several stated preference methods to do that.

These methods measure individuals’ preferences for alternative choices based on

their decisions in hypothetical choice situations (Louviere et al., 2000). Respon-

dents have to state their choice over sets of hypothetical alternatives (Mangham

et al., 2009). These alternatives are described by a series of characteristics. Based

on the respondents’ responses, i.e. choices, the value attributed to each character-

istic can be inferred. Usually, individuals’ are repeatedly confronted with decision

situations, in which the characteristics of the alternatives change (Louviere et al.,

2000).

DCEs rest conceptually on random utility maximization (Mariel et al., 2021) fol-

lowing Lancaster’ characteristics theory of value (Lancaster, 1966) and random

utility theory (McFadden, 1973). Individuals are assumed to maximize their util-

ity. Each individual n obtains a certain level of indirect utility (U) from each

choice alternative. In a given decision situation t, they will select alternative i if

and only if Uit > Ujt, j 6= i. The indirect utility of an alternative cannot be directly

measured, but it can be expressed by a systematic (deterministic) component V ,

reflecting specific characteristics as well as farmers’ individual and location-specific

features, plus a random component ǫ, representing unobserved decision-relevant

elements (Mariel et al., 2021). Consequently, a farmer n obtains a certain level of

indirect utility Unit from a land use alternative i in a choice situation t.

Unit = Vnit + ǫnit (2.14)

Furthermore, as agricultural land-use is heavily dependent on weather, it is as-

sumed that farmers’ utility also depends on expected weather (c) at the time of
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the planting decision. Thus, U can be formulated as follows:

Unit = f(xnit, cnt;β, γ) + ǫnit (2.15)

where β and γ are coefficients to be estimated. Depending on the assumptions

about ǫnit, there are multiple models for estimating the unknown coefficient vectors

β and γ, usually based on the (simulated) maximum likelihood method, e.g. the

multinomial logit, the mixed logit, and the latent-class logit model (Louviere et al.,

2000).
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3 Study I – Greenhouse gas emissions and eco-performance

3.1 Abstract

Agriculture is an important source of greenhouse gas (GHG) emissions and thus

contributes considerably to global warming. However, farms can vary substan-

tially in terms of their climatic impact. So far, most policies aiming at reduc-

ing GHG emissions from farming have largely been based on findings at the

aggregate level, without taking farm heterogeneity properly into account. This

study seeks to provide a better understanding of the GHG mitigation potential

at the micro-level. We develop a comprehensible analytical framework for analyz-

ing economic-ecological performance by way of stochastic frontier analysis. We

introduce the concept of emission efficiency, where we distinguish between per-

sistent and time-varying efficiency. We further analyze farms with respect to

their emission-performance dynamics. Results from our (2005–2014) empirical

application from Bavaria – an important agricultural region for the EU – show

considerable differences in farm-level GHG emissions across different farm types.

The same applies to emission efficiencies. Overall, emission performance improved

over time. The results have important climate- policy implications as they help

to provide better target measures for mitigating GHG emissions from agriculture,

without compromising economic performance levels.

3.2 Introduction

Climate change – and its predicted consequences – has been a major topic of inter-

est in research, in politics and the public sphere for several decades. The discus-

sion also highly affects agriculture as it is a driving force behind global warming,

accounting for approximately 14% greenhouse gas (GHG) emissions worldwide

(European Environment Agency, 2019a). According to the Food and Agriculture

Organization of the United Nations (FAO, 2017), climate change is among the

biggest challenges agriculture is currently facing in terms of both mitigation and

adaptation. The European Union (EU) has acknowledged the impact of farming

on climate change and vice versa. Therefore, the European Commission (2019a)

has declared climate change mitigation as a specific objective of the future Com-

mon Agricultural Policy of the EU (CAP). While farmers are expected to reduce

their GHG emissions, the global need for food, fiber and bioenergy from agricul-

ture is steadily rising (FAO, 2017), i.e. agricultural productivity must further

increase. This raises the question as to what extent farmers can boost their pro-

duction while at the same time limiting their release of greenhouse gas emissions
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into the atmosphere.

In this study, we analyze the performance of farms, giving equal weighting to

economic success and to the emission of greenhouse gases. More specifically, our

research objective is two-fold. First, we develop a parametric eco-efficiency con-

cept capable of jointly evaluating the ecological and economic performance of

businesses over time. Usually, eco-efficiency is analyzed in a nonparametric data

envelopment setting. The idea behind the parametrization is to overcome some of

the conceptual limitations faced by the model in a nonparametric setting. Second,

we seek to approximate GHG emissions for a large sample of German farms by

using a novel approach based on the guidelines for national GHG inventories of

the Intergovernmental Panel on Climate Change (IPCC, 2006).

Over recent decades, the concept of ecological-economic efficiency, or "eco-efficiency"

has gained recognition as a way of evaluating the balance between economic per-

formance and the environmental damage induced by economic activity. Starting

with the article by Kuosmanen & Kortelainen (2005), who operationalized the eco-

efficiency concept to be calculated by means of data envelopment analysis (DEA),

numerous studies in several fields followed, both at the micro- and at the macro-

level. Literature focusing on the trade-off between greenhouse gas emissions and

economic performance is sparse. Camarero et al. (2014) and Gómez-Calvet et al.

(2016) analyze this relationship for European countries. Multiple authors have

utilized the above-mentioned eco-efficiency concept in the farming context, rang-

ing from livestock and arable farming to olive growing and horticulture (Bonfiglio

et al., 2017; Gadanakis et al., 2015; Godoy-Durán et al., 2017; Pérez Urdiales et al.,

2016; Picazo-Tadeo et al., 2012, 2011). Several methodological advancements have

been suggested in the literature. For instance, Picazo-Tadeo et al. (2012) use a

directional distance function to asses the eco-efficiency of Spanish olive-growers.

Beltrán-Esteve et al. (2014) extend this approach and make use of the metafron-

tier approach proposed by O’Donnell et al. (2008). Furthermore, Kortelainen

(2008) embedded the concept of eco-efficiency into a dynamic setting allowing for

comparisons over time. In an attempt to transfer the eco-efficiency concept to a

parametric setting, Orea & Wall (2017) study the eco-efficiency of Spanish dairy

farms in a stochastic frontier setting. Many of the aforementioned studies – and

micro-level studies particularly – are rather limited in terms of their scope. For

instance, none of the mentioned micro-studies on agriculture have implemented

a dynamic approach yet. Also, although having acknowledged the possibility of
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variable returns to the scale of environmental pressures, very few studies account

for it (Bonfiglio et al., 2017). What is more, none of the studies have implemented

the possibility of a non-linear structure when building composite indicators of en-

vironmental pressures. According to Beltrán-Esteve et al. (2014), one reason for

the limited scope of many works on eco-efficiency is the lack of appropriate envi-

ronmental data at the micro-level. This is also true for GHG emissions. Farms can

vary substantially regarding their climatic impact. So far, most policies aiming at

reducing GHG emissions from farming have largely been based on findings at the

aggregate level, without taking farm heterogeneity properly into account. Recent

attempts have been made to obtain GHG data at farm level. Coderoni & Esposti

(2014) and Baldoni et al. (2017) present a methodology to gather GHG emissions

primarily based on farm accountancy data. Further applications of this method

can be found in Baldoni et al. (2018) and Coderoni & Esposti (2018).

This study contributes to the literature by first conceptually extending the eco-

efficiency approach based on Kuosmanen & Kortelainen (2005) and Orea & Wall

(2017) to a more general stochastic frontier setting. By parameterizing the con-

cept, we allow for variable returns to environmental pressure scale, a nonlinear

structure of composite ecological damage, and for inter-temporal comparisons.

Furthermore, we decompose eco-performance dynamics into ecological-technical

change, eco-efficiency change and scale change, based on a generalized Malmquist

productivity index (Orea, 2002). We are able to show that our theoretical ap-

proach is equally valid for micro- and macro-level analyses. In our empirical case

study, we construct a unique panel dataset and demonstrate how to appropriately

approximate GHG emissions at the micro-level, based on multiple data sources

for farms in the German federal state of Bavaria. Finally, by applying a state-

of-the-art stochastic frontier model, we are able to further distinguish between

permanent and time-varying eco-efficiency (Kumbhakar et al., 2014). We show

how to assess farms’ emission performance, i.e. their capability to produce goods

and services while causing minimal climatic stress. By relating eco-performance

to greenhouse gas emissions, it is possible to detect the relative GHG mitigation

potential of individual farms. Such robust evidence is essential for managers and

policy-makers that aiming at further optimizing their economic-ecological perfor-

mance by reducing the release of atmospheric GHGs.

The remainder of this article is organized as follows. In Section 3.3, we develop

the conceptual framework for the empirical analysis. In Section 4.4 we outline
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the data-construction process and provide relevant summary statistics. In Section

3.5, we present our empirical model and estimation strategy. Section 3.6 gives a

description and discussion of the empirical findings, along with the policy implica-

tions thereof. The final Section 3.7 summarizes and concludes the limitations of

the study, and potential directions for further research.

3.3 Conceptual framework

3.3.1 A parametric stochastic frontier approach to eco-efficiency

In order to analyze the economic-ecological performance of businesses, we build

upon and further develop the frontier setting developed by Kuosmanen & Korte-

lainen (2005) and Orea & Wall (2017). We base our approach on the definition of

eco-efficiency from the literature on ecological economics. Eco-efficiency is defined

as the ratio between economic performance y (traditionally value added) and en-

vironmental damage (D). Suppose we observe a set of k = 1, . . .K comparable

production units which generate economic output y each year in period t = 1, . . . T

through n = 1, . . . N environmental pressures s
t = (st

1, . . . , sT
N ) that damage the

ecological system.

There are numerous ways to generate economic output which vary in their en-

vironmental impact (Kuosmanen & Kortelainen, 2005). Therefore, we introduce

the time-dependent pressure-generating technology set (Kortelainen, 2008; Kuos-

manen & Kortelainen, 2005; Picazo-Tadeo et al., 2012):

PGTSt =

[
(yt, st) ∈ R

N+1
+

∣∣∣ economic output yt can be generated (3.1)

with ecological pressures st

]

It contains all technically and economically feasible combinations of economic

outcome (y) and environmental pressures (s) in period t. It is further assumed that

all production units have a common underlying pressure-generating technology.

Note that this concept relates to economic and environmental pressures in a non-

physical sense. Greenhouse gas emissions (and other environmental pressures) are

therefore looked at from an impact-based point of view as opposed to a quantity-

based point of view. As Kuosmanen & Kortelainen (2005) state, this is a funda-

mental presupposition for the eco-efficiency concept. Physical inputs and outputs

that affect economic outcome and those that have an impact on the environment

are implicitly included in y and s. This is different from more traditional environ-
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mental economics approaches that use inputs and outputs as key elements of their

models.1

Eco-performance

Most studies (e.g. Kuosmanen & Kortelainen, 2005; Pérez Urdiales et al., 2016)

base their analyses on the eco-efficiency concept, which is defined as the ratio of

economic value added and environmental pressures. Leaning on this approach, we

define eco-performance (EP) at time t as follows:

EP t =
Economic outputt

Environmental pressuret =
yt

D(st
1, st

2, . . . , st
N )

(3.2)

where D(st
1, st

2, . . . , st
N ) is a function that reflects the environmental damage as-

sociated with the individual ecological pressures/environmental stress factors s at

time t.

As can be seen from (3.2), we depart from the traditional definition of eco-efficiency

in several ways. In line with Kortelainen (2008) and Picazo-Tadeo et al. (2014),

we define the above-mentioned ratio as eco-performance. Eq. 3.2 does not de-

liver any benchmark or baseline for which to compare given levels of performance

as assumed by the relative concept of eco-efficiency. Therefore to clearly dis-

tinguish between the absolute concept presented in (3.2) and eco-efficiency, we

choose the term eco-performance (Kortelainen, 2008).2 What is more, we define

eco-performance in a more general sense, in that we do not restrict the economic

outcome variable to be value added. We select farm revenues (r) as the economic

outcome variable of choice. This is mainly because we argue that revenues are

1In that sense, the presented concept deviates from multiple analyses on production in the
presence of undesirable outputs or by-products, respectively (e.g. Atkinson & Tsionas, 2018; Før-
sund, 2018; Malikov et al., 2018). In these studies, pollutants such as nitrogen surpluses or
carbon dioxide (CO2) emissions are considered physical quantities. Put differently, the approach
presented in this study rather relates to the field of ecological economics as opposed to envi-
ronmental economics, where emission quantities are assumed. Here, we seek to relate ecological
pressures to economic outcome, which is distinctly different from the above-mentioned approaches
that seek to model the relationship between physical inputs and outputs of a production process.
In our approach, we do not explicitly model the input-output relationship. Note however, through
relating ecological pressures to economic outcome the underlying production technology is implic-
itly contained in the model, although not explicitly modeled. For instance, GHG emissions are
a result of the use of inputs such as fertilizers or livestock. Hence, these inputs are reflected by
GHG emissions in our PGTS.

2Throughout this study, we use the terms eco-performance, environmental performance as
suggested by Kortelainen (2008) and eco-productivity interchangeably. We defer from using the
term ’environmental productivity’ to avoid confusion, as this term has previously been used in
different contexts (e.g. Ball et al., 2004; Managi, 2006; Managi et al., 2005)
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economically more relevant to farmers than economic value added. Given bind-

ing regulatory and expenditure constraints with respect to inputs, Chambers &

Lee (1986), and Kumbhakar & Bokusheva (2009) show that most farms aim at

maximizing revenues (or equivalently outputs).

As highlighted by Kortelainen (2008), the absolute value of eco-performance is

not very informative and hardly interpretable as such. Therefore, we will focus

on the assessment of change rates in eco-performance by making use of an eco-

performance index. We will return to this issue in Section 3.3.2.

The stochastic frontier pressure conversion model

Representing the pressure-generating technology (3.1) by a functional form, we

obtain a function that provides the relationship between environmental stress s

and economic outcome y, where, for now, no inefficiency is assumed:3

y = D(s1, s2, , . . . , sN ; β) (3.3)

aside from the known elements in the equation, β represents a parameter vector

to be estimated. We call (3.3) a pressure conversion function as it describes how

ecological pressures (independent variables) are converted to economic outcome

(dependent variable). Hence, economic outcome is expressed as a function of

ecological damage caused by environmental pressures. As Orea & Wall (2017)

note, the parametric specification of Eq. 3.3 allows us to evaluate the marginal

contribution of pressure sn to the economic outcome y of production unit k at

time t. For instance, it is possible to assess by how much the economic output

decreases if the n-th pressure is decreased by one unit (percent), ceteris paribus.

Thus, we can also assess which environmental pressure may be most costly to

reduce for a given firm k. A major concern could be that the omission of capital

and labor in our framework might lead to ommited variable bias (OVB) since

capital and labor are commonly modeled as key inputs to production technologies.

If labor and capital are fixed over the analyzed time period, the specified fixed-

effects model can reliably remove these variables. In farming, labor and capital

are often by definition fixed in the long-term. This assumption appears to be

rather sensible in the Bavarian farming context. What is more, OVB occurs only

3To avoid notational clutter, we omit the subscripts for time t = 1, . . . T and the production
units k = 1, . . . K.
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when the omitted variables are both correlated with the independent variables as

well as with the dependent model. We do not expect this to be a major problem

in our application. We included a robustness check in the Appendix 3.8.6, where

we estimated alternative specifications of the pressure conversion function that

included capital and labor as independent variables. As expected, we could not

find indication for the presence of omitted variable bias due to these two variables.

Eq. 3.3 neglects the fact that not all farms generate the economically feasible max-

imum level of revenue, given their level of environmental damage. To account for

(ecological) inefficiency and statistical noise, (3.3) can be expressed as a stochastic

frontier following Aigner et al. (1977) and Meeusen & van den Broeck (1977):

y = D(s1, s2, , . . . , sN ; β) e−u+ν (3.4)

where ǫ = −u+ ν represents a composite error term consisting of an ecological

inefficiency component (u) and statistical noise (ν). We assume that environmen-

tal damage is monotone in the sense that it cannot decrease, ceteris paribus, if

any environmental pressure is increased. Since y = D(s), monotonicity must also

hold for Expression 3.3, which is a necessary condition for obtaining a sensible

interpretation of individual (eco-)efficiency scores (Henningsen & Henning, 2009;

Sauer et al., 2006). One major advantage of choosing a parametric approach over

DEA is the fact that we can account for stochastic noise and thus take into ac-

count the effect of random shocks, outliers and measurement errors. Contrary to

previous DEA-based studies on eco-efficiency, our parametric approach allows us

to specify D(s) in a nonlinear fashion. This relates to the relationship between

environmental pressures and ultimate environmental damage. Kortelainen (2008,

p.703) states "[. . . ] the relationship between the environmental pressure and the

ultimate environmental impact can be complex, nonlinear, and very difficult to

predict". In that sense, the presented framework might better grasp underlying

nonlinearities.

Returns to pressure scale

There are two major perspectives concerning the question if the pressure-generating

technology exhibits constant or variable returns to scale (VRS) (Picazo-Tadeo

et al., 2012). From an ecological point of view, farming could be considered a con-

stant returns to scale (CRS) activity as the effect of farming on the environment
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is directly related to agricultural practices rather than to the allocation of land

and other inputs into individual farms (Picazo-Tadeo et al., 2012, 2011). However,

from an economic point of view, returns to pressure scale of farming activities

could also be considered variable because ecological pressures often depend on the

use of inputs both in terms of quantity as well as intensity. As the input-output

relationship in farming is usually described by VRS, this is also likely for returns

to pressure scale (Bonfiglio et al., 2017). As the imposition of CRS would a pri-

ori imply linearity between emissions and economic outcome, we decide to relax

the more restrictive assumption of constant returns to pressure scale. In allowing

returns to pressure scale to be variable, we can actually empirically test which of

the two perspectives on pressure scale is more realistic.

Eco-efficiency

In the spirit of Shepard’s technical efficiency (TE) concept, we define eco-efficiency

as the ratio between the observed economic output and the frontier economic

output:

EE =
y

D(s
′

β) eν
=
D(s

′

β) e−u eν

D(s
′

β) eν
= e−u (3.5)

This economic outcome-oriented measure of eco-efficiency by definition lies be-

tween zero and one.4 It measures the economic output of the k-th firm relative to

the maximum attainable economic outcome by a fully-efficient firm for a given level

of environmental damage. Note that this specification of eco-efficiency is different

from the traditional one given at the beginning of this section, which is defined as

the ratio between economic output and aggregate environmental pressure.

3.3.2 Eco-performance – dynamics and decomposition

As earlier mentioned, in order to obtain a more comprehensive understanding of

farms’ ecological performance, we introduce the concept of eco-performance change

which builds upon the literature on total factor productivity (TFP) (mainly Balk,

2001; Coelli & Rao, 2005b; Kumbhakar & Lovell, 2000; Orea, 2002). Analogous

to Orea (2002), our eco-performance analysis is largely based on the Malmquist

4We choose an outcome-oriented over a emission-oriented measure because we argue that in
most cases it is more realistic to assume that farms seek to maximize economic output for a given
level of environmental damage than to minimize emissions for a given level of output.
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TFP index and its three differentials: scale change, technical change and effi-

ciency change. Our approach deviates from Orea (2002) in the sense that we

do not consider TFP but rather total eco-pressure productivity (or in short: eco-

performance).

Caves et al. (1982) measure TFP change based on Malmquist input or output

distance functions, respectively. Basically, the Malmquist TFP change index is

defined by the ratio of the distances of each data point relative to a common tech-

nology. Here, the common technology is respresented by the pressure conversion

frontier (3.4). Furthermore, we make use of an output-oriented index, i.e. the vec-

tor of ecological pressures (st) is assumed to be fixed while economic outcome (y)

is maximized given the pressure-generation technology. Eco-performance change

between two periods f and t can then be expressed as the geometric mean of the

Malmquist indices for periods f and t. Furthermore, we assume that some degree

of eco-inefficiency can be observed for most production units, i.e. df
0 (yf , sf ) ≤ 1

and dt
0(yt, st) ≤ 1. Hence, the conversion of environmental pressures to economic

output are additionally subject to efficiency changes (Coelli & Rao, 2005b). We

can express eco-performance change as:

m0(yf , sf , yt, st) =
dt

0(yt, st)

d
f
0 (yf , sf )

×
[
d

f
0 (yt, st)

d
f
0 (yf , sf )

× dt
0(yt, st)

dt
0(yf , sf )

]1/2

(3.6)

where df
0 (yt, st) stands for the distance from the period t observation to the tech-

nology in f and the second term of the Eq. 3.6 reflects changes in the underlying

pressure generating technology over time, while the term outside the square brack-

ets reflects eco-efficiency change. The presented Malmquist index does not make

any assumptions with respect to returns to scale. However, as mentioned by multi-

ple authors, Eq. 3.6 is only true if the technology exhibits constant returns to scale.

Among others, Balk (2001) and Orea (2002) state that productivity can also be

improved through improvements in the scale of operations, a component that the

Malmquist index defined by Caves et al. (1982) does not capture. As noted earlier,

we explicitly allow for VRS. It is therefore pivotal to add a scale component to

the eco-performance index. Consequently, we make use of the widely accepted

and utilized generalized Malmquist TFP index suggested by Orea (2002), which

takes account of scale economies and complies with the requirements of identity,
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separability and monotonicity:5
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with

Returns to pressure scalet = en(t) =
∂ lnD0(t)/∂ ln sn∑N

n=1 ∂ lnD0(t)/∂ ln sn

Further information regarding the operationalization of the productivity change

decomposition by Orea (2002) is given in Section 3.5.

3.3.3 GHG emissions and eco-performance

In the context of this study, we wish to focus specifically on GHG emissions. For

that purpose, we define ecological damage in terms of GHG emissions as a func-

tion of the three major pressures on the climate, namely carbon dioxide (sCO2
),

methane (sCH4
) and nitrous oxide (sN2O). Contrary to that, Kuosmanen & Korte-

lainen (2005) argue in favor of using only one aggregate measure for greenhouse

gases as they contribute the same environmental problem, namely the greenhouse

effect. We, however, believe it is important to decompose climatic stress into the

above-mentioned pressures for two reasons. First, despite the fact that GHGs con-

tribute to the same effect, they do have diverging relative impacts on the climate

and thus on the ecological damage they cause, which should be accounted for.

Second, as stated earlier, physical input and output quantities are implicitly in-

cluded in D. In the farming context, they are linked to emissions through different

activities and management practices. For instance, nitrous oxide (N2O) emissions

are associated with the application of nitrogen fertilizers, while methane (CH4)

primarily stems from the digestive system of ruminants. If we seek to evaluate

these pressures in terms of the climate stress they produce, we implicitly evaluate

5In general, there is no consensus in the literature on what productivity change measure to
use best. While some TFP indices such as the Fisher or Tornquist index require price information,
others such as the Malmquist or Hicks-Morsteen index do not depend on prices. O’Donnell (2012)
argues in favor of the Hicks-Morsteen-Index. Balk (2001) and Orea (2002) advocate the use of
the Malmquist index, which has experienced quite extensive use in empirical work (e.g Coelli
& Rao, 2005a; Frick & Sauer, 2018; Song et al., 2016). What is more, Briec & Kerstens (2011)
show in their study that there are only minor numerical discrepancies between the Malmquist
and Hicks-Morsteen-Index.
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different farming activities, a fact we would miss if we used an aggregated measure

of GHGs.

Analogous to the pressure conversion frontier, by inserting GHG emissions into

Eq. 3.4 and using firm revenue (r) as economic outcome variable, we obtain the

’GHG conversion frontier’ :

r = D(sCO2
, sCH4

, sN2O, t; β) e−u+ν (3.8)

Based on (3.8), all metrics and concepts presented in Sections 3.3.1 and 3.3.2 are

equally true for GHG emissions. This allows us to assess firms’ returns to emission

scale (RTES), emission efficiency as well as eco-performance with respect to GHG

emissions. Variable t reflects the time to properly capture the time-dependency

structure of marginal emission damage (Field & Field, 2009).

It is largely undisputed that anthropogenic global warming through the emission

of greenhouse gases has detrimental environmental impacts. However, according

to Weitzman (2012) it is barely possible (if not impossible) to properly quantify

high-temperature damage. GHG emissions are not environmentally harmful per se

if they do not exceed the carrying capacity of the atmosphere. However, starting

from that threshold, additional GHG emissions can lead to erratic climate condi-

tions and, by extension, to ecological harm. The exact relationship between green-

house gas releases and high-temperature damage D(sCO2
, sCH4

, sN2O) is fairly

unknown and is seen as highly complex and nonlinear (Kuosmanen & Kortelainen,

2005). This is why we cannot attribute the adverse effects of climate change to

a specific farm in practice. As such, and in line with Kuosmanen & Kortelainen

(2005), we do not seek to compute the ultimate environmental impacts of farms’

ambient GHG releases through climate change, and instead stick to the level of

environmental pressures or climate stress factors, respectively.

3.4 Data

As will be seen in the following, data requirements for estimating the above-

mentioned conceptual model largely deviate from most other studies in the field of

production economics. First, the model has no direct recourse to physical inputs

and outputs. Second, besides farm accountancy data, we need several additional

datasets for our analysis. There is no database of farm-level greenhouse gas emis-

sions in Europe, nor can GHG emissions easily be retrieved from farm accountancy
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data only, although such data serve as an important source for calculating farm-

level GHG emissions.

3.4.1 Farm accountancy dataset

The most important dataset of our empirical analysis is farm accountancy data

for Germany, and more specifically for the federal state of Bavaria. This dataset

is part of the European Farm Accountancy Data Network (FADN). Data are

annually collected from approximately 3,100 farms. It is an unbalanced farm-

level panel dataset and participation is voluntary. The sample is stratified with

respect to farm location, size classes, and specialization of the farms. In addition

to financial records, socio-economic information is provided such as the education

level of the farm manager, number of household members or the on-farm labor

structure. The sample covers the time period from 2005 through 2014.

Although our empirical example is based on a regional sample of farms, we believe

that our empirical findings are relevant in a larger European context. The case of

Bavaria may be regarded as somewhat representative for other European regions

as well. For instance, farms in Bavaria managed on average 34.7 ha of land in

2014 which is similar to average farm sizes in, e.g., Ireland, Belgium and the

Netherlands (European Statistical Office, 2020). Also, Bavarian dairy farmers

kept on average 34.1 livestock units (LUs) of dairy cows between 2005 and 2014.

This value lies only slightly above the average for all European regions (30.4). On

average, Bavarian pig farms managed 154.4 LUs of pigs, which was approximately

equal to the European average of 154.8 LUs. As for the labor structure, on average

1.6 average work units (AWUs) worked on Bavarian farms between 2005 and

2014, while the European average was 1.5 AWUs in the same period (European

Statistical Office, 2020).

For this research, we focus on four important farm types in European agriculture,

namely dairy farms, pig fattening farms, mixed farms (livestock and crop) and crop

farms. Farms are categorized according to their principal activity within the farm

business. Specialized farms (dairy, pig and crop) are assigned to the respective

farm type if the output share of their characteristic produces exceed 66% in total

revenues (milk, fattening pigs, grains). As for mixed farms (i.e. crop-livestock

systems), no primary product accounts for more than 66 % of total revenues.

Only farms are included that provide information for at least 3 years. Organic

farms were excluded from the sample based on the assumption of a fundamental
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different technology compared to conventional farms. In our application, farm

revenue enters the model as the economic outcome variable, which is defined as

the value of sales (taxes included, subsidies excluded). In order to eliminate price

effects from our analysis we deflate revenues from different farming activities to

the base year 2014. Price indices of agricultural producer prices provided by

the German Statistical Office are used for deflating the data. Table 3.1 gives

an overview of the subsamples used for the empirical analysis and the respective

deflated revenues.

Table 3.1: Subsample description - farm types (2005 - 2014)

Dairy Swine Mixed Crop

Number of observations 9,574 3,796 2,558 5,318

Number of farms 1,513 585 711 919

Avg. participation (years) 6.33 6.49 3.6 5.79

Revenue (Const. 2014 Euro)

- Mean 154,453 296,348 172,499 109,261

- SD 88,074 205,914 143,274 115,343

- Min 11,087 700 403 241

- Max 1,139,323 1,534,219 1,464,453 1,442,213

3.4.2 Construction of farm-level GHG emissions and additional data

As agricultural GHG emissions are considered a nonpoint source pollution, direct

measurement is rather impractical and costly when applied to a large number of

farms (Dick et al., 2008; Paustian et al., 2004; Smith et al., 2008). Therefore

researchers have frequently made use of indirect methods to estimate agricultural

GHG emissions, where emissions are regarded as the outcome of a combination of

farm activities and management practices (Baldoni et al., 2018). In a multitude

of studies, greenhouse gas emissions are approximated by making use of the ISO-

standardized life cycle assessment inventory approach, where emissions associated

with each stage of the production change are cumulated (ISO 14044:2006, 2006).

These studies, however, only consider small samples of specific farm types and

rarely consider their evolution over time. This is largely due to the expensive

data-collection procedure.

An alternative procedure for recovering farm-level GHG emissions is based on

the guidelines of the United Nations Framework Convention on Climate Change
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(UNFCCC) and the Intergovernmental Panel on Climate Change (IPCC), which

are designed for national GHG inventories, and are thus considered an internation-

ally accepted and widely applicable standard (e.g. Casey & Holden, 2005; Olesen

et al., 2006). Furthermore, we use the methodological extensions to the IPCC

method added by Haenel et al. (2018). A multitude of studies has shown that

the approach is also well-suited for retrieving GHG emissions at the micro-level

(Baldoni et al., 2017, 2018; Coderoni & Esposti, 2018; Dick et al., 2008). While

earlier studies were still relatively limited with respect to time and sample scope,

recent advances towards integrating farm accountancy data allow larger samples

and comparisons across farms and time.

The basic idea is that GHG emissions at farm level can be retrieved from the

following relationship:

Emit =
L∑

l=1

(ADitl ×EFtl) (3.9)

where Emit describes total GHG emissions of farm k at time t. ADitl refers to

some activity data of farm k at time t, referring to emission source l = 1, . . . ,L.

ADitl describes the AD (e.g. number of animals, fertilizer quantities or diesel

consumption) of the l-th activity at time t, while EFtl stands for (implied) emission

factors (EFs) which characterize the emission quantities associated with a specific

activity (e.g. kg CH4 released per dairy cow per year, or kg N2O associated with

application of 1 kg of mineral fertilizer).

We define relevant system boundaries at the farm-gate to keep the inventory trans-

parent and comprehensible. Also, procedures within the farm-gate leading to emis-

sions are directly within the control of the farms and can therefore unambiguously

be attributed to farmers’ performance (Coderoni & Esposti, 2018). In terms of

which emission sources should be included in the inventory, first and foremost, we

make use of the Common Reporting Format Sector 3 "Agriculture" of the United

Nations Framework Convention on Climate Change (UNFCCC, 2014). On top

of that, CO2 emissions from the use of energy, more specifically from on-farm

fuel combustion is included, which refers to the UNFCCC "Energy" sector. An

overview of the major emission sources, AD and EFs is given in Table 3.2. We dis-

tinguish between the three major categories: livestock, crop cultivation and energy

use. As for livestock, animal numbers are retrieved from the farm accountancy
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Table 3.2: Summary of greenhouse gas sources, activity data and utilized
emission factors for the computation of farm-level GHG emissions.

Gas Emission source Activity data EF

FAD Other

Livestock

CH4 Enteric fermentation Livestock count regional

CH4 Manure management Livestock count regional

N2O Manure management (di-
rect and indirect)

Livestock count NH3 and NO

emission factors
(indirect)

regional

Crop cultivation

N2O Use of synthetic fertilizers Fertilizer expen-
ditures

State-level shares,
prices

regional

N2O Use of organic fertilizers Livestock count N excretion fac-
tors

regional

N2O Atmospheric deposition of
reactive nitrogen

Livestock count
& fertilizer
expenditures

FracGas default
& re-
gional

N2O Leaching and surface run-
off

Livestock count
& fertilizer
expenditures

FracLeach default
& re-
gional

N2O Crop residues Crop area and
yield

Various con-
stants

default

CO2 Urea application Fertilizer expen-
ditures

State-level shares,
prices

regional

CO2 Liming Fertilizer expen-
ditures

State-level shares,
prices

regional

Energy use

CO2 Fuel combustion Fuel expendi-
tures

Diesel price default

N2O Fuel combustion Fuel expendi-
tures

Diesel price default

CH4 Fuel combustion Fuel expendi-
tures

Diesel price default

dataset. For a more precise calculation, animal categories such as cattle, pig and

poultry were further decomposed according to Haenel et al. (2018).6

While GHG emissions from livestock keeping can fairly easily be recovered from

farm accountancy information, this is not true for crop cultivation, as additional

information is needed for retrieving AD. The major challenge lies in the fact that

6The following distinction has been made with respect to nitrogen excretion rates as well as
enteric fermentation rates: (a) Horses: heavy horses, ponies and light horses (b) Cattle: calves,
male beef cattle, heifers, mature males > 2 years, dairy cows and suckler cows (c) Pigs: weaners,
fattening pigs, boars, sows (d) Sheep (e) Poultry: laying hens, pullets, broilers, other poultry.
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the prime purpose of farm accountancy data is to record production, and rarely

the evaluation of ecological performance. Figure 3.5 in the appendix illustrates

how additional data sources can be utilized beside the farm accountancy data to

calculate GHG emissions.

As already found by Coderoni & Esposti (2018), a major challenge is to recover

physical fertilizer quantities when the dataset only provides information on fertil-

izer expenditures. Coderoni & Esposti (2018) use a fixed conversion factor for fer-

tilizer expenditures to retrieve quantities. We argue against this approach, since

quantities of, say, nitrogen vary in terms of their price and their relative share

within all fertilizers used over time. Therefore, as a means to recover the individ-

ual quantities of synthetic N application, we construct a double-weighted mean in

a 4-step procedure.7 A description of the method as well as more details on the

emission sources can be found in the appendix of this paper. The interested reader

is referred to Haenel et al. (2018), who describe and discuss the IPCC method in

detail for the German context. There, all underlying computation formulas for

retrieving the respective AD can be found.

3.4.3 Post-processing, GHG emissions and emission intensities

Although the IPCC method for reconstructing GHG emissions as described in Sec-

tion 3.4.2 is widely accepted in the literature, the fact that farm-level GHG emis-

sions are computed by utilizing data from different aggregation levels inevitably

leads to some anomalies in the data. For this reason, we apply the blocked adap-

tive computationally efficient outlier nominators (BACON) algorithm as suggested

by Billor et al. (2000) to detect multivariate outliers. In total, 580 observations

are excluded ( 162 dairy, 109 pigs, 83 mixed, 179 crop) from the analysis, i.e. 2.51

per cent of all observations across the four farm types.8

Summary statistics of the GHG releases per farm can be found in Table 3.3. To

ensure comparability, CH4 and N2O emissions were converted to CO2-equivalents

(CO2eq). To that end, N2O and CH4 quantities were multiplied by their respective

global warming potentials (298 and 34, respectively) as per the IPCC’s Fifth

Assessment Report (IPCC, 2013).9 There are clear differences across the inspected

7This also applies to urea and calcium carbonate (CaCO). We obtained diesel quantities in
a similar fashion, which allows us to recover CO2 emissions from fuel combustion.

8For crop farms, we did not consider CH4 in the outlier detection procedure, since 75% of
that subsample did not produce any CH4 at all in the period 2005-2014.

9Considering the inclusion of climate carbon feedback and a 100-year time horizon.
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farm types. On average, dairy farms have the highest GHG emission rate per year

(417.1 t CO2eq) followed by mixed and pig farms. Crop farms show the smallest

number of total GHG emissions per farm. As for dairy farms, unsurprisingly,

methane is the major contributor to total emissions. This is also true for mixed

farms. For the other types, it is N2O. CO2 is present in all farming systems but

plays a lesser role with respect to total emissions apart from crop farming. It is

worthwhile to note the large standard deviations concerning all farm types and

greenhouse gases. This alludes to a high level of heterogeneity across individual

farms. These first descriptive results are comparable to other findings, e.g. by

Baldoni et al. (2017) and Coderoni & Esposti (2018) for Italian farms.

To get a first impression of farms’ capacity to convert GHG emissions to monetary

output, we compute emission intensities (EI, compare Baldoni et al., 2018). EI

measures emissions in kg CO2eq per unit of output expressed in constant Euros.

Table 3.3 shows that dairy farms have the highest EI of 3.81 kg CO2eq/AC, i.e. on

average a Bavarian dairy farm emits 3.81 kg CO2eq to produce one Euro of output.

Mixed farms are next (2.03 CO2eq/AC), followed by crop farms (1.47 CO2eq/AC)

and finally pig fattening farms(1.05 CO2eq/AC).

Table 3.3: Farm-level GHG emissions and emission intensities of Bavarian farms.

Dairy Swine Mixed Crop

Mean SD Mean SD Mean SD Mean SD

Methane
(Tonnes CO2e)

417.1 204.8 108.6 78.8 154.1 160.4 8.1 38.5

Nitrous Oxide
(Tonnes CO2e)

88.4 48.6 116.2 70 97 67.4 68.1 67.9

Carbon Dioxide
(Tonnes)

29 20 37.8 26.9 44.9 31.9 36.7 33.3

Total
(Tonnes CO2e)

534.5 267.2 262.6 160.7 296 234.3 112.9 113.5

Emission Intensity
(kg CO2e/AC)

3.81 0.79 1.05 0.42 2.03 1.14 1.47 3.16
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3.5 Empirical specification

3.5.1 Estimation strategy

In our study we employ the stochastic frontier approach as first proposed by

Aigner et al. (1977) and Meeusen & van den Broeck (1977). The production

economics literature delivers a wide range of candidate stochastic frontier models

for the estimation of the GHG conversion frontier (3.8) in a panel data setting;

for a recent overview see e.g. Kellermann (2015) and Kumbhakar et al. (2014).

Examples for regularly used stochastic frontier models are the ’error components

model’ by Battese & Coelli (1992), the ’efficiency effects’ approach by Battese &

Coelli (1995) and the ’true fixed/random effects’ model by Greene (2005). We

decide to use the stochastic frontier specification introduced by Kumbhakar et al.

(2014, KLH) and write (3.8) as:10

rknt = α0 +D(sknt, β) + µk + νkt + ηk − ukt (3.10)

Here, the error consists of four components. ηk > 0 and ukt > 0 account for

inefficiency, whilst µk and νkt represent firm effects and noise, respectively. As

Kumbhakar et al. (2014) note, all of these components have already been imple-

mented in one way or another, yet not all at the same time. Contrary to most

commonly utilized stochastic frontier models (e.g. Chen et al., 2014; Greene, 2005;

Wang & Ho, 2010), the KLH model properly distinguishes between time-varying

(ukt) and time-invariant inefficiency (ηk), while also accounting for the effect of

unobserved farm heterogeneity on outcome.11

Kumbhakar et al. (2014) suggest a multi-step estimation procedure for the KLH

model. To apply this, (3.10) must be operationalized by rewriting it as follows:

rkt = α∗
0 +D(skt, β) + αk + ǫkt (3.11)

10Kumbhakar et al. (2014) mention various shortcomings of earlier stochastic frontier models.
For instance, Battese & Coelli (1992) only allow inefficiency to change over time exponentially.
Also, firm effects (fixed or random) are often not clearly distinguished from (persistent) ineffi-
ciency. The KLH model overcomes many of the problems associated with previous stochastic
frontier models as shown below.

11Time-varying (transient) inefficiency is related to time-varying issues such as the adaptation
to changes in the firms’ environment and is therefore a short-term concept which changes over
time. It is related to operative business activities. Persistent inefficiency is a long run concept
and stable over time. It is related to the structure of a company. If a company is persistent
(structurally) inefficient this may require the introduction of several policy measures such as
change in ownership, increasing/reducing the size of a company etc.
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where α∗
0 = α0 − E(ηk) − E(ukt); αk = µ− ηk + E(ηk) and ǫkt = νkt − uit +

E(ukt). Here, αk and ǫkt have zero mean and constant variance. Technical de-

tails regarding the estimation of Eq. 3.11 can be found in the appendix and in

Kumbhakar et al. (2015).

As we wish to focus on GHG emissions in this study, methane (sCH4,kt), nitrous

oxide (sN2O,kt) and CO2 (sCO20,kt) enter in the operationalized GHG conversion

function (3.11) as independent variables. Revenue rkt is the dependent variable. In

terms of the functional form of the ’pressure/ghg conversion function’ (3.8), Orea

& Wall (2017) suggest a weighted mean of the environmental pressures (s) to de-

pict ecological damage caused by these pressures. We argue against this approach

in that it appears too simplistic to properly describe the unknown true relation-

ship between environmental pressures (here: emissions) and ecological damage.

As stated earlier, the relationship between emissions and damage is assumed to be

highly complex and nonlinear (Kuosmanen & Kortelainen, 2005). To adequately

account for this nonlinearity and complexity and to constrain our functional form

as little as possible, we suggest the use of the second-order flexible translog func-

tional form for D(s). We add a time variable to properly account for the panel

structure of the data and to accommodate the time-specific character of the cli-

mate damage function as proposed by Field & Field (2009). Hence, we specify the

empirical stochastic GHG conversion frontier (3.10) as:

ln rkt =α0 +
N∑

n=1

αn ln snkt +
1

2

N∑

n=1

N∑

l=1

αnl ln snkt ln slkt (3.12)

+ βtt+
1

2
βtt t

2 +
N∑

n=1

βnt t ln snkt + µk + νkt + ηk − ukt

where α0,αn,αnl,βt,βtt and βnt are unknown parameters to be estimated. t rep-

resents time.12 The multi-step procedure for estimating Eq. 3.12 is conducted

separately for each farm typology, since it is assumed that they relate to distinct

reference technologies. Partial outcome elasticities of the greenhouse gases can be

retrieved in the standard fashion:

enkt =
ln rkt

ln snkt

= αn +
∑

l=1

αnl ln slkt (3.13)

12We provide an alternative specification including capital and labor as a robustness check
(see Appendix. 3.8.6).
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Returns to emission scale (RTES) are the sum of the partial elasticities:

RTESkt =
∑

n=1

enkt ln snkt (3.14)

In order to evaluate the validity of our models, we test several alternative specifica-

tions against our baseline model (3.12). First, we test the hypothesis that there is

in fact an ecological-technical change with respect to emissions over time. Second,

we test if technical change might be better described as Hicks-neutral. Third, we

test the translog formulation against the Cobb-Douglas functional form.

3.5.2 Computation of productivity dynamics

As described in Section 3.3.2 and in line with Orea (2002), the eco-performance

change (EPC) is composed of three components, emission efficiency change (EEC),

ecological-technical change with respect to emissions (ETC) and emission scale

change (ESC). The EEC index can be computed as follows (Coelli & Rao, 2005b):

EECk(ft) =
EEkt

EEkf

(3.15)

ETC between two adjacent periods can be calculated as the geometric mean of

the partial derivatives of (3.12) with respect to time:

ETCi(ft) = exp

(
1

2

[
∂ ln rif

∂f
+
∂ ln rit

∂t

])
(3.16)

Finally, in accordance with Orea (2002), emission scale change is computed as:

ESCi(ft) = exp

(
1

2

N∑

n=1

[enif SFif + enitSFit] ln

(
snit

snif

))
(3.17)

where SF if = (eif − 1) /eif ; eif =
∑N

n=1 enif and enif = ∂ ln ris/∂ ln sif . Total

emission-performance change (or emission productivity change) is the sum of the

single components:

EPCi(ft) = EECi(ft) + ETCi(ft) + ESCi(ft) (3.18)
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3.6 Empirical results and discussion

3.6.1 Model specification

Parameter estimates of the empirical greenhouse gas conversion function (3.12)

were obtained by estimating a fixed effects regression model for each farm type

separately. Hausman tests were conducted, which rejected both the random effects

model and the pooled regression model at the 1% significance level for all farm

types. Cobb-Douglas specifications were rejected in favor of the translog model.

Furthermore, Wald tests rejected the hypotheses of zero technical change as well as

Hicks-neutral technical change. Therefore we opted for specifications that allow

for non-monotonic and non-neutral technical change. Estimation results of the

favored models are presented in Table 3.4.

All first-order coefficients can be interpreted as partial elasticities of GHGs at the

sample mean, which are positive and significantly different from zero for all farm

types and greenhouse gases. For instance, a 1% decrease in CH4 is, ceteris paribus,

associated with a 0.68% decrease in revenues for an average dairy farm. Evaluating

at the sample mean, we can find that the same GHGs have a different association

with revenues depending on the farm type. Reducing CH4 is most costly for dairy

farms, in that their revenues decreased most significantly, compared with N2O

and CO2. The same applies to pig fattening farms; however less pronounced. For

mixed and crop farms, it is most expensive to reduce CO2 followed by nitrous

oxide, while methane only plays a minor role.

Steps two and three were estimated based on the results provided in Table 3.4.

Maximum likelihood estimations were conducted according to (3.19) and (3.20). In

order to avoid biased standard errors, we computed bootstrapped standard errors.

This allows us to evaluate the statistical significance of the estimated parameters.

Estimation results can be found in Table 3.5 and Table 3.6. As can be seen, all

relevant coefficients have small standard errors and are statistically significant,

indicating that both permanent and time-varying efficiencies are present in all

farm typologies. Additionally, likelihood ratio tests were conducted to test the

stochastic frontier models against ordinary least squares (OLS), where OLS were

rejected in favor of the frontier models for all farm types.

As shown by Sauer et al. (2006) and Henningsen & Henning (2009), the monotonic-

ity condition plays an important conceptual role in stochastic frontier analyses. In

order to sensibly interpret (partial) elasticities, efficiency scores and other derived
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Table 3.4: KLM step 1 result table – fixed effect regression for 4 different farm
types in Bavarian agriculture.

Dependent variable:

ln(Rev)

Dairy Pig Mixed Crop

ln(CH4) 0.677∗∗∗ 0.310∗∗∗ 0.042∗∗ 0.035∗∗∗

(0.023) (0.020) (0.020) (0.010)

ln(N2O) 0.077∗∗∗ 0.074∗∗ 0.220∗∗∗ 0.133∗∗∗

(0.021) (0.031) (0.035) (0.041)

ln(CO2) 0.227∗∗∗ 0.151∗∗∗ 0.264∗∗∗ 0.314∗∗∗

(0.008) (0.015) (0.023) (0.038)

.5× ln(CH4)2 0.551∗∗∗ 0.056∗∗∗ −0.035∗∗ 0.005

(0.141) (0.017) (0.015) (0.004)

.5× ln(N2O)2 0.720∗∗∗ −0.016 0.0004 0.105∗∗∗

(0.152) (0.093) (0.082) (0.024)

.5× ln(CO2)2 0.185∗∗∗ 0.079∗∗∗ 0.093∗ 0.334∗∗∗

(0.021) (0.026) (0.055) (0.040)

ln(CH4)× ln(N2O) −0.584∗∗∗ 0.013 0.020 −0.010

(0.134) (0.042) (0.024) (0.007)

ln(CH4)× ln(CO2) 0.032 −0.035 0.016 −0.004

(0.043) (0.029) (0.018) (0.008)

ln(N2O)× log(CO2) −0.132∗∗∗ 0.043 −0.022 −0.189∗∗∗

(0.049) (0.049) (0.062) (0.028)

Time 0.005∗∗∗ 0.022∗∗∗ 0.0003 0.005

(0.001) (0.001) (0.002) (0.004)

.5× Time2 0.001∗∗ 0.006∗∗∗ 0.004∗∗∗ 0.009∗∗∗

(0.0004) (0.001) (0.001) (0.001)

ln(CH4)× Time −0.018∗∗∗ 0.004 0.0001 0.0002

(0.004) (0.003) (0.002) (0.001)

ln(N2O)× Time 0.017∗∗∗ −0.001 −0.011∗ 0.005

(0.004) (0.005) (0.006) (0.004)

ln(CO2)× Time −0.002 0.003 0.015∗∗∗ 0.002

(0.002) (0.003) (0.005) (0.005)

Observations 9,412 3,687 2,475 5,139

R2 0.509 0.371 0.236 0.161

F Statistic 586.046∗∗∗ 130.616∗∗∗ 39.039∗∗∗ 57.642∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.5: KLM step 2 result table - estimation of time-varying emission
inefficiency (bootstrapped standard errors, R = 1,000).

Dairy Pig Mixed Crop

Y = ǫ̂kt Estimate SE Estimate SE Estimate SE Estimate SE

Const. 0.073 (0.004) 0.104 (0.0059) 0.083 (0.0096) 0.211 (0.015)

σ2 0.017 (< 0.001) 0.03 (0.0015) 0.025 (0.0014) 0.119 (0.0083)

γ 0.502 (0.0383) 0.575 (0.0406) 0.438 (0.0706) 0.611 (0.0574)

Table 3.6: KLM step 3 result table - estimation of time-invariant emission
inefficiency (bootstrapped standard errors, R = 1,000).

Dairy Pig Mixed Crop

Y = α̂i Estimate SE Estimate SE Estimate SE Estimate SE

Const. 5.275 (2.533) 17.025 (1.5973) 11.564 (2.6558) 8.878 (4.222)

σ2 0.056 (0.0022) 0.59 (0.04) 0.46 (0.062) 0.796 (0.0953)

γ 0.842 (0.0088) 0.907 (0.0098) 0.687 (0.0577) 0.715 (0.0458)

metrics, we need to check if revenue is monotonically increasing in GHG emis-

sions. It can be seen from Table 3.4 that all GHGs are monotonically increasing in

revenues at the sample mean. Table 3.7 summarizes the results of the monotonic-

ity checks at all data points. Mixed farms show very few monotonicity violations:

0.85% out of all observations. Furthermore, the monotonicity condition is violated

for 8.25% of observed crop farms and for 3.58% of pig farms. As for dairy farms,

monotonicity violations are found for 27.25% of all observations and is observed

in particular for N2O, where revenue decreases in 26.54% of the observations.13 In

accordance with Sauer et al. (2006), for further analysis, we have dropped all obser-

vations that violate the monotonicity condition and keep only those observations

that are theoretically consistent. 14

3.6.2 Returns to emission scale

This section presents the results for the RTES. Kernel density plots of farm type

specific RTES values are provided in Figure 3.1. This metric can be interpreted as

13As stated above, we have evaluated several alternative model specifications. Beside having
been rejected by standard statistical tests, they performed worse than our chosen specification
with respect to theoretical consistency.

14We avoid imposing monotonicity globally in order to retain functional flexibility in line
with Sauer et al. (2006, p.161), who state "[. . . ]if theoretical consistency holds for a range of
observations, this ‘consistency area’ of the estimated frontier should be determined and clearly
stated to the reader. Estimated relative efficiency scores hence only hold for observations which
are part of this range."
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Table 3.7: Percentage (%) of monotonicity violations by greenhouse gas and
farm type.

Dairy Pig Mixed Crop

CH4 0 0.16 0.32 4.11

N2O 26.54 2.74 0 0.86

CO2 0.84 2.55 0.53 3.37

Total 27.25 3.58 0.85 8.25

the percentage change in revenues that is associated with a one percent increase

(decrease) in total greenhouse gases. We find that almost all farms in the sample

reveal decreasing RTES. However, 30% of dairies show increasing RTES. Mean

RTES are 0.97, 0.49, 0.50, 0.51 for dairy, pig, mixed and crop farms, respectively.

Hence, if a crop farm decreases its emissions by 1%, revenues will decrease by

0.51%, which is, as before, an underproportional decline in revenues. Taking on

Figure 3.1: Returns to emission scale distributions of different farm types.

a social planner perspective and giving economic performance (in the form of

revenues) and GHG emissions equal weights, constant RTES would be desirable.

In that case emissions and revenues would be proportionate and a one percent

increase (decrease) in emissions would be associated with a one percent increase

(decrease) in revenues. From that perspective, dairy farms are on average close

to the optimal emission scale, while the other farm types are far away from this

point.

In allowing returns to emission/pressure scale to be variable, we can actually
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check whether or not the prevalent assumption of constant returns to scale as

implied by most previous studies is plausible. Our results indicate that this is not

the case for most Bavarian farms. Given similar production conditions, we can

assume this holds also for other European regions. Whitney-Mann tests for all

farming systems reject the null hypothesis that RTES are on average equal to one

at standard confidence levels. However, evaluated at the sample mean, the 95%

as well as the 99% confidence interval for the RTES of dairy farms contain the

one (Annex Table 3.10). Also, 90.6% of the observations in the dairy subsample

exhibit RTES of between 0.9 and 1.1. Hence, assuming constant RTES appears

rather plausible for dairy farms. All other farm types exhibit strongly decreasing

RTES – also when evaluated at the sample mean.

According to our models, nearly all farms reveal quite extreme RTES and are a

long way away from the optimal emission scale size from an ecological-economic

perspective. A reason for this finding could be the fact that farms do not seek to

optimize their scale size with respect to emissions but rather with respect to input

use in order to optimize their economic performance, rather than their ecological

performance. Hence, farms may be at their most productive (economically moti-

vated) scale size which is desirable from a manager’s perspective. If their input

usage is linked to high levels of emissions, they might reveal decreasing RTES

and are far away from the societally desirable, most productive emission scale size,

which would imply fewer GHG emissions.

3.6.3 Emission efficiency

Following Kumbhakar et al. (2014), time-varying emission efficiency scores were

computed based on (3.19) while permanent efficiencies were calculated based on Eq.

3.20. The product for these two metrics equals total emission efficiency. Figure 3.2

presents the kernel density distributions of the individual efficiency scores for all

farm types. Time-varying efficiency is very high across all farm types. Average

scores range from 0.82 for crop farms to 0.92 for mixed farms and 0.93 for dairy

farms (pig farms 0.9). Besides the higher mean scores, the spread for livestock-

keeping farm typologies is smaller than the spread of crop farms.

Residual inefficiency stems from short-term rigidities on the farms (Kumbhakar

et al., 2014). As livestock farmers are usually subject to a rather fixed environment

in the form of stables, there is little room for improving emission efficiency in the

short-run through improved management. The emission efficiency of crop farms,
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on the other hand, can be influenced by a multitude of short-term managerial

decisions. For instance, the timing of certain activities plays an important role

in terms of what yield can be obtained from a fixed set of inputs (International

Fertilizer Industry Association (IFA), 1992). Thus, if inputs such as nitrogen

fertilizers are applied in a timely fashion, inevitable N2O emissions from this input

use can be better translated into output, and from that, eventually into revenue.

As for time-invariant efficiency, individual scores are on average lower than for

Figure 3.2: Density plots of farms’ residual (1), permanent (2) and total
emission efficiency (3) - Dairy (A), Pig (B), Mixed (C), Crop (D).

residual efficiency. This is particularly true for pig, crop and mixed farms. The

distributions are rather wide for pig, mixed and crop farms, i.e. there is greater

heterogeneity across farms than for dairy farms. The fact that persistent efficiency

is rather low could be indicative that farmers need to make structural changes to

improve overall efficiency through e.g. farm size adjustments or investments in

input-efficient, climate-friendly technologies. The high structural inefficiency may

as well explain why on average the farmers operate under decreasing economies of

scale.
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Finally, overall efficiency is on average highest for dairy farms (79.5%), followed by

mixed farms (62.0%), pig farms (54.9%) and crop farms (49.1%).15 This means

that, say, pig farms only generate 54.9% of their maximum revenue given their

level of damage on the climate. This also means by implication that farmers could

considerably reduce climatic stress while maintaining the same level of revenue.

This finding is in line with most previous studies on eco-efficiency (e.g. Godoy-

Durán et al., 2017; Picazo-Tadeo et al., 2012, 2011). As for crop farms, Bonfiglio

et al. (2017) and Gadanakis et al. (2015) find mean eco-efficiency scores of 54.8%

and 56.2% in Italy and the UK, respectively. Pérez Urdiales et al. (2016) and

Orea & Wall (2017) report average eco-efficiency levels for dairy farms in Asturia

(Spain), which are markedly lower than the average in our sample. With regard

to pig and mixed farms, we could not find any comparable study.

The huge potential for reducing climatic damage without affecting economic per-

formance is particularly striking. From a societal point of view it is important to

ponder potential reasons for the high level of eco-inefficiency found in our analysis.

One reason could lie in the technical inefficiency of farms (Picazo-Tadeo et al.,

2011). Previous studies found a strong relationship between TE and eco-efficiency

(Beltrán-Esteve et al., 2014; Gadanakis et al., 2015; Picazo-Tadeo et al., 2011).

If farmers manage their inputs efficiently such that they can reduce their level

of input use while maintaining their output level, then they are also likely to be

eco-efficient. Conversely, the overuse of inputs such as nitrogen leads to technical

and ecological inefficiency. Picazo-Tadeo & Reig-Martínez (2006) show in their

study how pressures on the environment could be reduced by simply promoting

best farming practices. This principle applies to both time-varying and persistent

inefficiency. Differences in TEs may also serve as an explanation for emission effi-

ciency differences in our case study. Mennig & Sauer (2020) find higher average

TE scores for dairy farms than for crop farms in Bavaria between 2007 and 2011,

which corresponds to our findings on eco-efficiency.

Furthermore, various other aspects have been found in the literature to have an

effect on eco-efficiency. Pérez Urdiales et al. (2016) find that age has a nega-

tive effect on eco-efficiency, i.e. older farmers are less eco-efficient, which is also

shown by Reinhard et al. (2002). Another reason for varying eco-efficiency scores

15Efficiency levels are computed for the respective farm typology-specific technologies. Hence,
we investigate efficiency levels relative to the farm type specific benchmarks and not for an overall
meta-technology.

63



Agricultural production and environmental change

could relate to farmers’ education level, which is assumed to be closely linked to

managerial skills. According to Picazo-Tadeo et al. (2011) and Gadanakis et al.

(2015) a higher education level is positively associated with eco-efficiency. Also,

the prospect of farm succession seems to play an important role with respect to

the level of eco-efficiency. Pérez Urdiales et al. (2016) and Bonfiglio et al. (2017)

show that if there is a positive expectation of the farm continuing, farms are

more eco-efficient. Furthermore, policy interventions such as agri-environment

schemes (AES) or stricter environmental regulations have been found to be pos-

itively associated with the eco-efficiency of arable farms (Bonfiglio et al., 2017;

Gadanakis et al., 2015; Pérez Urdiales et al., 2016).

3.6.4 Eco-performance dynamics

So far, we have only considered farms’ eco-performance from a static point of view.

In this section, we seek to investigate the dynamic structure of eco-performance

and its components. As outlined in Section 3.5.2, eco-performance dynamics are

determined by emission scale change, technical change and emission efficiency

change.16 Ultimately, eco-performance can be viewed as the synthesis of the con-

cepts presented in the previous sections.

Mean change rates of eco-performance and its components for all four subsamples

from 2005-2014 are presented in Table 3.8. Annual change rates are 0.49% for dairy

farms, 1.97% for pig farms, 0.08% for mixed farms and -0.04% for crop farms. Eco-

performance growth was mainly due to technical progress with respect to emissions

for dairy and pig farms. The fact that technical change is the main driver of eco-

productivity has previously been shown in the literature (Beltrán-Esteve & Picazo-

Tadeo, 2017; Kortelainen, 2008; Picazo-Tadeo et al., 2014). Emission-efficiency

change is shown to be the highest (1.09%) for crop farms. The other farm types

reveal efficiency change rates rather close to zero. Average emission scale change

rates are close to zero for all industries other than crop farms, where a negative

annual development of, on average, -1.1% has been identified.

Regarding technical change with respect to emissions, all industries reveal a pos-

itive trend in change rates starting at different points in time. Pig farms, mixed

farms, and crop farms experienced technical progress in the period under review

as of 06/07, 09/10 and 10/11, respectively. One reason for the technical regres-

16Note, that the EEC only represents the transient component of inefficiency as persistent
inefficiency is stable over time.
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sion in the pressure-generating technology could be that the underlying production

technology may have altered such that the input combination of farmers leaned

toward more emission-intensive inputs. As concerns the emission efficiency change,

sharp increases in efficiency are found for the period 2007/2008 for dairy, mixed

and crop farms and for 2008/2009 with respect to pig farms. This is followed by

periods of decreasing growth, efficiency decay and recovery at different rates and

following different patterns later on.

Figure 3.3 depicts the mean, first and third quantile values of the composite eco-

performance patterns between 2005 and 2014. As before, we can see different

patterns for different industries. The smallest average degree of volatility was

found in mixed farms, while crop farms were characterized by high fluctuations.

Dairy and pig farms were found to be somewhat between the two extremes. Hence,

the above-mentioned overall eco-performance improvement did not develop in a

monotonically increasing fashion for any of the analyzed farm types. Additionally,

the distribution of change rates expressed as the interquartile range is highest

for crop farms, indicating considerable intra-industry eco-performance differences.

That indicator is at its lowest for dairy farms, i.e. less intra-industry differences

can be observed with respect to emission performance.

Eco-efficiency change is the key factor behind the eco-performance fluctuation

patterns. As mentioned previously, one major factor that influences time-varying

efficiency is the managerial ability of farmers regarding their input use. This gives

rise to the essential question as to which contexts are farmers producing more

efficiently in, compared to others. Figure 3.4 possibly delivers an explanation

for that phenomenon. Taking the case of crop farms, we observe the real price

development of cereal prices in the relevant time period (solid line in Figure 3.4).

Low-price periods are followed by a decline in the eco-performance of crop farms

(compare Figure 3.3), while high-price periods are usually followed by increasing

rates in eco-productivity. Hence, if high output prices are expected, farmers could

seek to manage their constrained inputs more efficiently than in times of low-

price expectations. Similar but less pronounced movements can also be found for

milk prices and eco-productivity of dairy farms as well as for pig prices, and for

the eco-performance movements of pig fattening farms. Finally, assuming a close

relationship between eco-performance and TFP, Frick & Sauer (2018) and Mennig

& Sauer (2020) find similar TFP patterns for dairy and crop farms in Bavaria.
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Figure 3.3: The mean, first and third quartile values (middle, bottom and top
lines) of emission productivity of Bavarian sample farms.

Figure 3.4: Destatis price index from January 2005 to December 2014 (monthly):
cereals, milk, pigs.

3.6.5 Policy implications

The fact that most farms in the sample show strongly decreasing RTES raises the

question as to what legislators can do if their objective is to observe a proportional

relationship between emissions and revenue, i.e. if emissions are changed by one

per cent, revenues change accordingly by one per cent. One obvious answer would

be to regulate farm size to balance GHG emissions and economic outcome (input

scale effect). However, this approach could have several consequences, e.g. TFP

could decrease as farms’ TE might decrease due to impaired input use management

or underutilized resources. Hence, (regional) added value in agriculture could de-

cline, which might have unintended consequences for parts of the rural population.

Another approach is to foster policies that aim at decreasing the amount of emis-

sions per unit of input (input management effect). This would allow farmers to
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remain at a productive scale in terms of the input-output relationship and at the

same time move towards the most eco-productive scale. For instance, legislators

could promote the use of precision agriculture practices for crop producers such

as global positioning systems, where input application and agronomic practices

are matched with soil attributes (Gadanakis et al., 2015). As for livestock farms,

manure management systems could be improved to reduce GHG emissions per

livestock unit. For instance, Petersen et al. (2013) find that covering up manure

storage facilities or treating manure with additives can substantially decrease CH4

releases. These measures are expected to also positively affect persistent emission

efficency of farms through investments leading to (eco-)structural changes.

As for farmers’ general eco-performance with respect to greenhouse gas emissions,

there are ample options available to policy-makers. First, legislators could pro-

mote agricultural training programs aiming at improving farmers’ managerial

skills, which eventually translates into improved input-management and better

emission efficiency. Picazo-Tadeo et al. (2012, p.806) note that policies aiming

at increasing productive efficiency "[. . . ] can be considered the most cost-efficient

way of reducing environmental pressures without reducing farmers’ income". Leg-

islators should thereby take farm type specificities into account as performance

varies strongly across farm types.

Second, various policy options exist that aim to internalize environmental external-

ities induced by farming activities. This also applies to the emission of greenhouse

gases. By more effectively conditioning farmers’ income to their climate-protection

performance, a behavior which is more oriented towards the public good can be

expected (compare Beltrán-Esteve et al., 2014; Picazo-Tadeo et al., 2012). E.g.

Picazo-Tadeo et al. (2011) demand a stronger commitment of EU policy-makers

to the principle of conditionality, i.e. only farmers that comply with ambitious eco-

logical standards should benefit from public resources. Moreover, farmers could be

sanctioned for adverse climatic performance (polluter-pays principle) or could be fi-

nancially rewarded for climate-friendly farming practices (provider-gets principle).

The most pressing need for action applies to those farm types that were found

to be on average very emission-inefficient, such as crop and pig farms. Further-

more, EU second-pillar AES are considered to promote eco-efficiency. However,

several authors note the cost-inefficiency of such AES (Beltrán-Esteve et al., 2014;

Bonfiglio et al., 2017; Picazo-Tadeo et al., 2011).
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Finally, policy-makers are not overly concerned about short-run fluctuations in

emission-performance. Since the ultimate objective is to mitigate climate change

and its adverse effects on the environment, a positive long-run development of

eco-performance and its determinants is pivotal to that end. Beside the afore-

mentioned instruments to improve RTES and eco-efficiency, ecological-technical

progress could be promoted. Beside the aforementioned adoption of existing

climate-friendly technologies, legislators could stimulate eco-innovations in the

context of climate-smart agriculture. Long et al. (2016) recommend, among other

things, financial support for start-up companies and tax-cuts for research and

development activities. This could boost technological improvements and have

a positive impact on farms’ emission-performance and finally on their relative

climate change mitigation potential.

3.7 Summary and concluding remarks

Increasing concerns over the environmental implications of farming activities as

well as the need for increasing productivity require the development of monitoring

and evaluating instruments with respect to the ecological-economic performance

of farm businesses, in short "eco-performance". This is particularly true with

respect to the trade-off between climatic impact and the economic performance

of farms as the adverse effects of global warming become ever more apparent.

Measuring eco-performance in terms of GHG emissions is important, as it might

provide policy-makers and farm managers with sound information for designing

measures to reduce GHG emissions while at the same time improving economic

performance.

This paper has presented an approach to assess firms’ relative climate change

mitigation potential by building upon and further developing the concept of eco-

efficiency (Kuosmanen & Kortelainen, 2005; Orea & Wall, 2017). We presented

a parametric stochastic frontier approach capable of capturing eco-performance

dynamics over time. Unlike previous studies on eco-efficiency, we allowed for a

complex functional form to aggregate ecological (climatic) pressures into environ-

mental damage. The resulting ’pressure conversion function’ describes how well

ecological pressures translate into economic output. Moreover, we considered the

fact that the underlying pressure-generating technology might exhibit variable

returns to pressure scale. Finally, our theoretical framework let us analyze eco-

performance dynamics and its components – technical change, scale change and
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eco-efficiency change by means of a generalized Malmquist productivity index.

Our empirical application focused on four different farm types in the German

federal state of Bavaria, which is a significant and somewhat representative region

in the EU for the years 2005 to 2014. In order to approximate GHG emissions at

farm-level, we make use of recent methodological developments in the literature

by applying and downscaling the IPCC guidelines for national greenhouse gas

inventories to the firm-level. Besides farm accountancy data, a unique combination

of various data sources is used to estimate the pressure-generating technology

separately for dairy, pig, mixed and crop farms, based on a stochastic frontier

model for panel data based distinguishing between time-varying and persistent

eco-inefficiency.

The main findings of the study were the following. Our study revealed that, evalu-

ated at the sample mean, all greenhouse gases (namely CH4, N2O and CO2) were

positively associated with farms’ revenues. Mann-Whitney tests reject the hypoth-

esis of constant returns to scale for all farm types. Nearly all farms in our sample

experience strongly decreasing returns to their scale of GHG emissions. However,

90% of dairy farms exhibit emission scale elasticities of between 0.9 and 1.1, i.e.

they are close to the optimal emission scale of one. As for emission efficiencies,

farms revealed little time-varying eco-inefficiency and rather high levels of persis-

tent inefficiency. Overall, the farms in our sample were very eco-inefficient. Dairy

farms were on average least eco-inefficient (∼80%) followed by mixed (∼60%) and

pig farms (∼55%) and crop farms (∼50%). Based on the two above-mentioned

criteria, RTES and emission-efficiency, dairy farms performed best, followed by

pig farms, mixed farms and finally crop farms. In terms of eco-performance dy-

namics, our results showed that pig farms revealed the highest annual growth rates

followed by dairy and mixed farms. Crop farms exhibited very little (but slightly

negative) eco-performance growth between 2005 and 2014.

As this study presents a novel approach for measuring eco-performance at the

micro-level, it is subject to several limitations. First, our method for retrieving

GHG emissions at the micro-level represents an approximation of the true GHG

releases. By combining data from different aggregation levels and sources, some

imprecisions are inevitable. Also, our method only accounts for GHG releases.

We do not consider possible farm management options that serve as carbon sinks.

Second, our eco-performance measure does not imply total ecological pressures. In-
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stead, we focus on climatic stress. Therefore, we are not able to capture potentially

important interactions between climatic stress and other ecological stresses such as

nitrogen surpluses or pesticide risk. Third, some caution is due when interpreting

our estimation results, especially with respect to dairy farms. As there is a non-

negligible proportion of farms that do not comply with the monotonicity condition,

we have only made statements on theoretically consistent observations. Finally, it

should be noted that the presented concept does not refer to farms’ absolute eco-

logical performance, but relative eco-performance with respect to GHG emissions.

Even if farms were completely eco-efficient, absolute emission levels could still be

too high, in that the carrying capacity of the atmosphere is exceeded.

Several policy options for improving farms’ emission-performance can be suggested:

Promoting the development of eco-innovations and climate-smart technologies as

well as fostering the adoption of already existing climate-smart technologies might

be one way forward. Also, the EU’s common agricultural policy could be more

strongly oriented toward the principle of conditionality, i.e. only farmers that

comply with high emission standards would profit from public support. Other

options include training programs to improve farmers’ managerial skills and raise

environmental awareness. Nevertheless, even if farmers exploit their full potential

regarding emission performance, more drastic policy measures to reduce absolute

levels of GHG released might be necessary to further limit climate change.

Finally, we would like to highlight potential avenues for further research. From

a methodological point of view, it would be interesting to directly incorporate

eco-efficiency determinants into the error term of the pressure conversion frontier.

This would allow for the evaluation of their impact on eco-efficiency. Moreover,

it would be interesting make comparisons across pressure-generating technologies

by using a metafrontier framework. Furthermore, the consideration of more en-

vironmental pressures than GHG emissions would be insightful from a more gen-

eral sustainability perspective, as it would provide a more holistic picture of the

ecology-economy trade-off. From an empirical standpoint, data on environmental

pressures can be rare and difficult to obtain. It would be advisable to enrich, e.g.,

farm accountancy data with additional information on environmental pressures.

This would also be helpful in further improving the accuracy of the farm-level

greenhouse-gas-inventory methodology presented in this paper. Another interest-

ing avenue for future research could be the evaluation of the econnection between

the environmental Kuznet curve and eco-efficiency at the micro-level. Lastly, it
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would also be insightful to extend the eco-performance concept by incorporating

factors representing the social dimension of a more holistic sustainability concept.
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3.8 Appendices

3.8.1 Data processing flow to obtain farm-level GHG emissions

Figure 3.5: Data processing flow. Several data sources are considered to obtain
farm-level GHG emissions.

3.8.2 Description of GHG emission sources within the agricultural

context

Animal husbandry and enteric fermentation. Herbivores, ruminants in par-

ticular, produce CH4 as a by-product of a digestive process whereby carbohydrates

are broken down by microorganisms. Haenel et al. (2018) provides regional (state-

level) EFs for the above-mentioned livestock categories which are multiplied by

the number of animals stemming from the accountancy data.

Manure Management. Direct GHG emissions come from the storage and han-

dling of livestock excrement. Anaerobic processes cause the formation of methane;

nitrification and denitrification cause N2O emissions. Excreted nitrogen quantities

are calculated by using regional excretion factors per livestock unit provided by

Haenel et al. (2018). Different manure storage systems yield different GHG emis-

sion quantities. Here, due to data restrictions from the accountancy data, average

EFs (still Bavaria-specific) are applied. What is more, there are also indirect N2O

emissions coming from deposition of reactive nitrogen (i.e. ammonia and nitric

oxide). Again, these are accounted for by way of respective EFs.

Fertilizer application. In agricultural soils, N2O is produced as a by-product of

nitrification and denitrification processes and leaks into the atmosphere. Adding

nitrogen through the application of fertilizers (both synthetic and organic) thus

generates N2O emissions. There are year and region specific EFs for organic
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and synthetic N quantities available. However, the existing accountancy data

solely delivers overall fertilizer expenditures per year. 17 Another source of N2O

emissions connected to fertilizers is leaching and surface run-off of N. A fixed

fraction of applied N (0.3,IPCC (compare 2006)) is assumed to be lost through

this pathway which brings about additional nitrous oxide emissions (Haenel et al.,

2018; IPCC, 2006). The IPCC default EFs is used. CO2 emissions from the

application of urea is determined analogous to the direct N2O emissions from N-

fertilizer use. The use of calcium fertilizers to reduce the acidity of soils (liming)

causes the emission of CO2.

Crop residues. Crop residues left on agricultural fields contain nitrogen. Due to

microbial processes of theses residues in the ground, N2O emissions are released

into the atmosphere. A fine distinction is made with respect to crop/plant type,

and farm-level yield data is used to recover the precise amount of emissions origi-

nating from crop residues.

Energy use. To approximate emissions from the on-farm use of energy, we calcu-

late the yearly diesel quantities by using official diesel price data as well as diesel

expenditure from the accountancy data. In accordance with the IPCC (2006)

instructions, and using the regional EFs provided by the Federal Environment

Agency, CO2 emissions are calculated.

Other sources. Other sources of GHG emissions from agriculture include rice

cultivation (methane) and the burning of crop residues and stubble fields (CO2).

While rice is not cultivated in Germany, field burning is negligible as it is prohibited

under law.

3.8.3 Four-step procedure for approximating fertilizer quantities and

plausibility checks

Four-step procedure

• First, based on the shares of pure nutrients in total fertilizers, the yearly N

share is calculated for Bavaria.

• Second, yearly pure nutrient prices are multiplied by these shares to obtain

a price index for pure nutrients.

17More recently, farmers within the FADN framework have been obliged to report more de-
tailed information as to what fertilizers are utilized.
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• Third, farm-level fertilizer expenditures are divided by the price index to

obtain fertilizer quantities expressed in terms of pure nutrients.

• Fourth, the average share of N in total fertilizers for all farms is assumed, so

as to finally obtain the nitrogen quantity from synthetic fertilizers.18

Plausibility checks of the approximated nitrogen quantities

First, in order to assess if our 4-step procedure for approximating farm-level nitro-

gen (N) application is plausible, we detected observations with unreasonably high

amounts of N fertilizer. Only 0.35% of all observations apply more than 300 kg N

per ha. Also, according to our approach 3.92% of all observation use is between

200 and 300 kg N per ha. Hence, more than 95% of the data have a synthetic N

usage of up to 200 kg/ha, which appears to be quite plausible.

Furthermore, we compared two cases of total farm-level GHG emissions expressed

as CO2-equivalents. In one approach, we utilized N quantities calculated using

our 4-step procedure. In the other case, we computed fertilizer-related emissions

based on the mean nitrogen per hectare of cropland or grassland, as provided

by the Bavarian State Research Center for Agriculture (LfL). A summary of the

results is provided in Table 3.9. There is a negligible difference between the two

methods for dairy farms. For the other farm types, the 4-step procedure yields

markedly higher levels of GHG emissions. Although we do not know the true

amount of emissions, our approach might lead to an overestimation of actual farm-

level GHG emissions. Nevertheless, we adhere to the suggested 4-step-procedure,

as it returns sensible differences in the application of synthetic N fertilizers across

farm types, which would be neglected if we used average N/ha amounts for all

farms. The left panel of Figure 3.6 shows different synthetic N application rates

for crop and livestock farms. As expected, livestock farms lie well below crop

farms as they presumably cover their nitrogen fertilizer need partly through farm

manure. A similar picture is shown in the right panel of Figure 3.6. Crop farms

exhibit the highest need for synthetic nitrogen, followed by pig and mixed farms.

Surprisingly, dairy farms lie well below the other farm types. This might be due

to the fact that dairies in Bavaria are traditionally grassland-based and might

consequently need less synthetic nitrogen.

18Note: Within the FADN, most countries have recently started to collect data on fertilizer
quantities, which will allow for a more precise reconstruction of fertilizer-related GHG emissions.
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Table 3.9: Summary of farm-level GHG emissions when applying different
methods for approximating synthetic nitrogen usage. Results based
on the 4-step procedure described in Section 3.4.2 are compared to
the results based on the average per ha synth. N quantity in Bavaria
as provided by the Bavarian Research Center for Agriculture (LfL).

Synth. N calculation method Min. 1st Qu. Median Mean 3rd Qu. Max.

(t CO2e) (t CO2e) (t CO2e) (t CO2e) (t CO2e) (t CO2e)

Dairy
4-step N computation 79.89 363.4 483.78 546.52 655.22 2173.36

LfL mean kg N per ha 82.7 365.39 485.15 546.82 653.73 2180.04

Pig
4-step N computation 18.81 137.67 243.15 272.58 368.41 1058.02

LfL mean kg N per ha 15.36 131.53 232.91 259.51 358.58 996.74

Mixed
4-step N computation 24.17 135.42 247.23 302.23 409.55 1282.41

LfL mean kg N per ha 22.86 121.23 230.35 282.29 383.25 1172.55

Crop
4-step N computation 6.56 47.63 80.39 116.09 136.99 726.15

LfL mean kg N per ha 9.41 36.9 60.69 93.07 101.89 643.4

Figure 3.6: Synthetic nitrogen use per hectare in accordance with suggested
4-step-procedure.

3.8.4 Three-step estimation approach of the KLM stochastic frontier

model

Starting from this formulation Kumbhakar et al. (2014) propose the following

3-step approach:

Step 1 : A standard fixed-effects regression is employed to estimate the parameters

(fî) in (3.11). This allows us to compute parameter-based measures such as

partial elasticities and returns to scale in the conventional fashion. Step 1

also delivers predicted values of αk and ǫkt, denoted α̂k and ǫ̂kt. To assess the

robustness of our estimator, we test it against the pooled regression model.
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Furthermore, our model is tested against the more consistent random-effects

estimator.

Step 2: Time-varying emission inefficiency, ukt, is estimated by making use of ǫ̂kt

and further distributional assumptions. We know that

ǫkt = νkt − ukt +E(ukt). (3.19)

Inserting the predicted value ǫ̂it into the LHS of the equation and assuming

for νkt ∼ N (0,σ2
ν) and ukt ∼ N+(0,σ2

u), such that E(ukt) =
√

2/πσu, we

can estimate (3.19) by the standard stochastic frontier technique. Time-

varying emission efficiency (REE) is obtained through e(−ukt|ǫkt) (Battese &

Coelli, 1988).

Step 3: Time-invariant emission efficiency is estimated similar to the approach in

step 2. We know that

αk = µk − ηk +E(ηk). (3.20)

By assuming µkt ∼ N (0,σ2
µ) and ηkt ∼ N+(0,σ2

eta), so that E(ηkt) =
√

2/πση, and replacing αk with α̂k, we obtain estimates for persistent emis-

sion efficiency (PEE), e−ηk .

Overall emission efficiency is the product of REE and PEE. As noted by Kumb-

hakar et al. (2014), step 2 and step 3 yield biased standard errors, as the indepen-

dent variables are predicted values from step 1 and not the observed values. We

use clustered bootstrapping to obtain correct standard errors for the respective

coefficient estimates.
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3.8.5 Bootstrapped confidence interval for returns to emission scale

at the sample mean

Table 3.10: Bootstrapped confidence intervals (R=1000) for returns to emission
scale (RTES) evaluated at the sample mean.

Dairy Swine Mixed Crop

L.B. U.B. L.B. U.B. L.B. U.B. L.B. U.B.

95% Confidence Interval 0.964 1.031 0.485 0.572 0.473 0.581 0.437 0.586

99% Confidence Interval 0.953 1.042 0.471 0.586 0.456 0.598 0.413 0.609

L.B. = lower bound; U.B. = upper bound
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3.8.6 Robustness checks w.r.t capital and labor

Table 3.11: Comparison of the original model and an alternative model including
capital and labor as independent variables for dairy and pig
fattening farms. The coefficient estimates for the alternative models
are very similar to the original ones and there is no qualitative
difference in these estimates. To further check for the occurence of
omitted variable bias, we recalculated all results presented in Section
5 (i.e. elaticities, rtes, efficiencies etc). The results for the alternative
specifications were virtually the same as for our original model.
Hence, we conclude that our model does not suffer from omitted
variable bias due to the omission of capital and labor.

Dependent variable:

ln(Rev)

Dairy orig. Dairy altern. Pig orig. Pig altern.

ln(CH4) 0.678∗∗∗ 0.669∗∗∗ 0.310∗∗∗ 0.305∗∗∗

(0.023) (0.023) (0.020) (0.020)

ln(N2O) 0.076∗∗∗ 0.077∗∗∗ 0.074∗∗ 0.067∗∗

(0.021) (0.021) (0.031) (0.031)

ln(CO2) 0.226∗∗∗ 0.225∗∗∗ 0.151∗∗∗ 0.147∗∗∗

(0.008) (0.008) (0.015) (0.015)

.5 × ln(CH4)
2 0.555∗∗∗ 0.550∗∗∗ 0.056∗∗∗ 0.057∗∗∗

(0.141) (0.141) (0.017) (0.017)

.5 × ln(N2O)2 0.732∗∗∗ 0.733∗∗∗ −0.016 −0.005

(0.154) (0.154) (0.093) (0.093)

.5 × ln(CO2)
2 0.186∗∗∗ 0.185∗∗∗ 0.079∗∗∗ 0.079∗∗∗

(0.021) (0.021) (0.026) (0.026)

ln(CH4) × ln(N2O) −0.591∗∗∗ −0.590∗∗∗ 0.013 0.007

(0.135) (0.135) (0.042) (0.042)

ln(CH4) × ln(CO2) 0.036 0.037 −0.035 −0.034

(0.044) (0.044) (0.029) (0.029)

ln(N2O) × log(CO2) −0.137∗∗∗ −0.137∗∗∗ 0.043 0.040

(0.049) (0.049) (0.049) (0.048)

T ime 0.005∗∗∗ 0.005∗∗∗ 0.022∗∗∗ 0.023∗∗∗

(0.001) (0.001) (0.001) (0.001)

.5 × T ime2 0.001∗∗ 0.001∗∗ 0.006∗∗∗ 0.006∗∗∗

(0.0004) (0.0004) (0.001) (0.001)

ln(CH4) × T ime −0.018∗∗∗ −0.018∗∗∗ 0.004 0.004

(0.004) (0.004) (0.003) (0.003)

ln(N2O) × T ime 0.017∗∗∗ 0.017∗∗∗ −0.001 −0.002

(0.004) (0.004) (0.005) (0.005)

ln(CO2) × T ime −0.002 −0.002 0.003 0.003

(0.002) (0.002) (0.003) (0.003)

ln(Labor) 0.009 0.012

(0.012) (0.021)

ln(Capital) 0.009∗ 0.034∗∗∗

(0.005) (0.008)

Observations 9,412 9,412 3,687 3,687

R2 0.509 0.510 0.371 0.375

F Statistic 586.015∗∗∗ 513.057∗∗∗ 130.616∗∗∗ 116.117∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.12: Comparison of the original model and an alternative model including
capital and labor as independent variables for mixed and crop farms.
The coefficient estimates for the alternative models are very similar
to the original ones and there is no qualitative difference in these
estimates. To further check for the occurence of omitted variable
bias, we recalculated all results presented in Section 5 (i.e. elaticities,
rtes, efficiencies etc). The results for the alternative specifications
were virtually the same as for our original model. Hence, we
conclude that our model does not suffer from omitted variable bias
due to the omission of capital and labor.

Dependent variable:

ln(Rev)

Mixed orig. Mixed altern. Crop orig. Crop altern.

ln(CH4)
a 0.042∗∗ 0.040∗ 0.035∗∗∗ 0.037∗∗∗

(0.020) (0.020) (0.010) (0.010)

ln(N2O) 0.220∗∗∗ 0.217∗∗∗ 0.133∗∗∗ 0.126∗∗∗

(0.035) (0.035) (0.041) (0.041)

ln(CO2) 0.264∗∗∗ 0.262∗∗∗ 0.314∗∗∗ 0.310∗∗∗

(0.023) (0.023) (0.038) (0.038)

.5 × ln(CH4)
2 −0.035∗∗ −0.035∗∗ 0.005 0.006

(0.015) (0.015) (0.004) (0.004)

.5 × ln(N2O)2 0.0004 −0.009 0.105∗∗∗ 0.103∗∗∗

(0.082) (0.082) (0.024) (0.024)

.5 × ln(CO2)
2 0.093∗ 0.091∗ 0.334∗∗∗ 0.329∗∗∗

(0.055) (0.055) (0.040) (0.040)

ln(CH4) × ln(N2O) a 0.020 0.020 −0.010 −0.010

(0.024) (0.024) (0.007) (0.007)

ln(CH4) × ln(CO2)
a 0.016 0.016 −0.004 −0.004

(0.018) (0.018) (0.008) (0.008)

ln(N2O) × log(CO2) −0.022 −0.016 −0.189∗∗∗ −0.186∗∗∗

(0.062) (0.062) (0.028) (0.028)

T ime 0.0003 0.0003 0.005 0.006

(0.002) (0.002) (0.004) (0.004)

.5 × T ime2 0.004∗∗∗ 0.004∗∗∗ 0.009∗∗∗ 0.009∗∗∗

(0.001) (0.001) (0.001) (0.001)

ln(CH4) × T ime a 0.0001 −0.0001 0.0002 0.0002

(0.002) (0.002) (0.001) (0.001)

ln(N2O) × T ime −0.011∗ −0.011∗∗ 0.005 0.006

(0.006) (0.006) (0.004) (0.004)

ln(CO2) × T ime 0.015∗∗∗ 0.014∗∗∗ 0.002 −0.001

(0.005) (0.005) (0.005) (0.005)

ln(Labor) 0.030 0.034

(0.029) (0.026)

ln(Capital) 0.028∗∗ 0.031∗∗∗

(0.012) (0.011)

Observations 2,475 2,475 5,139 5,139

R2 0.236 0.239 0.161 0.163

F Statistic 39.039∗∗∗ 34.630∗∗∗ 57.642∗∗∗ 51.273∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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4 Study II – Are intensive farms more emission-efficient?

4.1 Abstract

This study compares the greenhouse gas (GHG) efficiency of intensive and exten-

sive dairy farms, and determines their GHG mitigation potential. We combine

the concept of eco-efficiency with latent-class stochastic frontier analysis and the

estimation of a stochastic meta-frontier. In the case of Bavaria, Germany, we find

that intensive dairy farms convert GHG emissions on average more efficiently into

farm economic output than their extensive counterparts. Extensive farms could,

on average, reduce GHG emissions by 225 t CO2 equivalents per year while in-

tensive farms could reduce emissions by 130 t CO2 equivalents without reducing

their economic output.

4.2 Introduction

Agriculture accounts for about one tenth of greenhouse gas emissions in the Euro-

pean Union (EU) (European Statistical Office, 2018). Within the agricultural sec-

tor, dairy farming is the largest source of methane (CH4) and nitrous oxide (N2O)

(Weiske et al., 2006). Over the past several decades, farming practices in indus-

trial countries’ dairy sector have become increasingly intensive, which is noticeable

in higher stocking rates, higher feed intensity, and higher milk yields. For exam-

ple, total milk production in the EU increased by about 47% from 2005 to 2016,

whereas the number of milking cows remained relatively stable at around 23 mil-

lion (European Commission, 2019d). The trend towards intensification in dairy

farming raises the question whether intensive farms are less emission intensive

than extensive dairy farms, i.e if they produce fewer emissions per unit of output.

In the public and political discussion, extensive farming is often considered less

harmful to nature and the environment than their intensive counterparts (Wuep-

per et al., 2020). However, some studies point toward opposite effects, and overall,

the empirical evidence remains scarce.

Comparing emission intensity between different types of dairy systems is often

done based on life cycle analysis (LCA) studies. For example, Basset-Mens et al.

(2009) compare the environmental impact across four different levels of input in-

tensities in New Zealand. Their results indicate that extensive dairy systems have

fewer detrimental effects on the environment. In contrast, Capper et al. (2009)

and Gerber et al. (2013) find that intensive dairy farms release fewer greenhouse

gases per kg of milk produced due to higher feed conversion efficiency and animal
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productivity. One major limitation of LCA studies is that they are usually limited

to small samples sizes due to expensive data-collection procedures. Other findings

in the literature attempt to fit ecological aspects of production into environmental

production models. For instance, Skevas et al. (2018d) combine farm accountancy

data from a large sample of dairy farms in the Netherlands with data on nutrient

surpluses to estimate the impact of farm intensification on environmental efficiency

using a hyperbolic distance function. In this production model, nutrient surpluses

are considered undesirable outputs, which are inherently related to the production

of desirable outputs. While environmental production models are increasingly em-

ployed in the literature, they are challenged by endogeneity problems and usually

rely on a set of restrictive assumptions (Atkinson et al., 2018; Kumbhakar &

Tsionas, 2016), which makes them often hard to interpret and difficult to derive

policy implications from. A third way to assess the environmental impact of the

production activities we are following in this article is to explore the concept of

eco-efficiency. Eco-efficiency describes the ability of a firm to "produce goods and

services while causing minimal environmental degradation" (Kuosmanen & Korte-

lainen, 2005). Eco-efficiency therefore measures both economic and environmental

performance of productive activities. As Kuosmanen & Kortelainen (2005) discuss,

improving eco-efficiency is a cost-effective way to reduce environmental pressures

and to design policies as environmental improvements are easier to implement

without restricting the level of economic activity.

In this article, we combine the concept of eco-efficiency with latent-class stochastic

frontier analysis to empirically measure the environmental and economic perfor-

mance of extensive and intensive dairy farms. As in Dakpo et al. (2017) our

main focus is on climate change-related environmental pressures (i.e., greenhouse

gases). Therefore, we call our measure of interest GHG emission efficiency rather

than the more general term of "eco-efficiency". By constructing a stochastic meta-

frontier around the identified classes, we examine the GHG mitigation potential

both within and across distinct technologies.

In our case study, we focus on dairy farming in Bavaria, a federal state in southeast

Germany that accounts for approximately 5 % of milk production in the EU-28

(Wimmer & Sauer, 2020). The advantage of the latent-class approach is that clas-

sifying intensive and extensive farms is purely data-driven and does not have to

be made a priori. Thus, the approach takes into account that farm intensifica-

tion is a multidimensional concept that should not be based on single indicators
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(Gonzalez-Mejia et al., 2018). Our results indicate a large climate change miti-

gation potential for both technologies in our sample. Extensive farms could, on

average, reduce GHG emissions by 225 t CO2 equivalents per year while intensive

farms could reduce emisisons by 130 t CO2 equivalents without reducing their

economic output.

The first studies concerned with eco-efficiency computed partial measures such as

"economic output per unit of waste" (see Tyteca, 1996, for a review of the litera-

ture). Kuosmanen & Kortelainen (2005) argue that a more encompassing index

is needed that considers different environmental pressures simultaneously. They

employ data envelopment analysis (DEA) to aggregate different environmental

pressures and derive a multi-dimensional eco-efficiency index for the road trans-

portation sector in Finland. The DEA approach allows them to use objective and

data-driven weights for the environmental pressures. Pérez Urdiales et al. (2016)

apply the same method to the agricultural sector using cross-sectional survey data

from 2010 on 50 dairy farms in Spain. Using truncated regression and bootstrap-

ping techniques, they find that eco-efficiency is positively related to participation

in training schemes and negatively related to farmer age. Employing the same

data, Orea & Wall (2017) propose an SFA approach to measure eco-efficiency in

order to accommodate random noise and allow for substitutability between envi-

ronmental pressures. Their findings are strikingly consistent with the DEA results

in Pérez Urdiales et al. (2016), confirming that SFA is an appropriate method for

estimating eco-efficiency. Beltrán-Esteve et al. (2014) are the first to assess tech-

nological differences in eco-efficiency among various groups of olive producers in

Spain by means of a deterministic meta-frontier approach. Further studies ap-

plying the eco-efficiency approach to the agricultural sector include Picazo-Tadeo

et al. (2011), Picazo-Tadeo et al. (2012), Bonfiglio et al. (2017) and Godoy-Durán

et al. (2017), all based on DEA techniques.

Our main contribution is to combine the eco-efficiency approach with the latent

class stochastic frontier model. Even though the eco-efficiency concept strongly

relies on the literature of productive effciency analysis, the treatment of heteroge-

neous technologies has gained little attention in previous studies. Exploiting the

inherent link between conventional production technology and pressure-generating

technology, we are able to separate distinct farm technologies (i.e., extensive vs.

intensive dairy farming) as shown by the descriptive statistics of the identified

groups. Further, we estimate eco-efficiency for a comprehensive data set spanning
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a considerably longer time horizon than most previous studies in this field. We

do this by applying the GHG inventory approach based on the guidelines of the

Intergovernmental Panel on Climate Change (IPCC) to recover greenhouse gas

emissions from farm-level bookkeeping records. In contrast to related studies that

relied on cross-sectional survey data with a limited number of observations, we

are able to estimate the link between environmental pressures (i.e. emissions) and

economic outcome using panel data and, hence, are able to account for unobserved

heterogeneity between farms. Finally, we extend the literature on eco-efficiency

by directly incorporating inefficiency determinants in the stochastic eco-efficiency

frontier. While our empirical approach is based on Orea & Wall (2017), we also

use a richer functional form to approximate the pressure-generating technology to

allow for nonlinearities and varying returns to scale.

The remainder of this article is structured as follows. In the next section, we

introduce the theoretical model that combines the eco-efficiency framework with

latent-class frontier analysis. After presenting the data and the farm-level inven-

tory approach in the subsequent section, we describe the empirical specification

for estimating the pressure-generating technology. Following that, we present and

discuss the results, focusing on the identification of heterogeneous technologies

and the determinants of eco-efficiency. The final section concludes the study.

4.3 Conceptual framework

In this section, we first introduce the concepts of the pressure-generating technol-

ogy (PGT) and eco-efficiency frontier (EEF). Further, we introduce the concept

of latent-class stochastic frontier analysis within the eco-efficiency framework. Fi-

nally, we describe the stochastic meta-frontier and how it is used in our analysis.

4.3.1 A stochastic frontier approach to eco-efficiency

To assess the GHG emission efficiency of farm businesses, we rely on the eco-

efficiency concept introduced by Kuosmanen & Kortelainen (2005), which com-

pares economic success and adverse ecological impacts generated by production

activity. Our goal is to measure and compare the emission-efficiency of dairy

farms under different technologies. Emission-efficiency is defined as the ratio be-

tween economic output and GHG emissions, so that higher emission-efficiency

implies that a farm produces more economic output with less environmental im-

pact (Dakpo et al., 2020; Huppes & Ishikawa, 2005). The emission-efficiency scores
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are easy to interpret and allow us to express the GHG mitigation potential in a

tangible number. A recent application of the concept of eco-efficiency to dairy

farming is provided by Martinsson & Hansson (2021) using DEA. We use the

pressure-generating technology to derive this measure using SFA, following Orea

& Wall (2017), rather than computing the traditional eco-efficiency ratio indica-

tors (see an overview in Tyteca, 1996). Alternative methods have been proposed

in the literature to incorporate pollution in production technologies: environmen-

tally adjusted production efficiency models, material balance principle-adjusted

models, and multiple equation environmentally adjusted efficiency models (Dakpo

et al., 2020; Lauwers, 2009). The latter category includes the by-production model

proposed by Murty et al. (2012), which defines the global technology as the in-

tersection of two sub-technologies – one for good outputs (e.g., milk) and one for

bad outputs (e.g., greenhouse gas emissions). These models explicitly show how

bad outputs are generated, and thus illustrate the mechanisms behind pollution-

adjusted efficiency. Since our purpose is to measure the economic and environmen-

tal outcomes of dairy farms operated under different technologies rather than to

explain how the bad outputs are generated, we use the more straightforward eco-

efficiency approach in this paper. Following Picazo-Tadeo et al. (2012), we assume

that we observe a set of k = 1, . . .K decision-making units (DMUs), which pro-

duce economic output y each year in period t = 1, . . . T by generating n = 1, . . . N

environmental pressures s
t
n = (s1

1, . . . , sT
N ) that damage the environment. To for-

mally describe this process, we follow Kuosmanen & Kortelainen (2005) and Ko-

rtelainen (2008) and introduce a time-dependent pressure-generating technology

set (PGTS), which contains all economically feasible combinations of economic

outputs (y) and adverse ecological impacts (s) in period t:

PGTSt =

[
(yt, st) ∈ R

N+1
+

∣∣∣ economic output yt can be (4.1)

generated with ecological pressures st

]

Given the PGTS (4.1), eco-efficiency is traditionally defined as the ratio be-

tween economic output (y) and a function that aggregates environmental damages

D(snt). This quotient y/D(.) is then usually reformulated as a non-parametric

optimization problem, where D(.) is expressed as a weighted average of snt and

can be solved using DEA (see e.g. Bonfiglio et al., 2017; Kuosmanen & Korte-

lainen, 2005; Picazo-Tadeo et al., 2012, 2014). However, as Kortelainen (2008)

notes, this eco-efficiency definition lacks any baseline to which to compare indi-
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vidual eco-efficiency levels and thus clearly deviates from the ordinary concept of

relative efficiency in production economics studies. What is more, the link be-

tween environmental impact and ecological pressures is likely to be nonlinear and

rather complex, which is why using a weighted average to aggregate environmental

pressures, as is common practice in DEA eco-efficiency studies, is likely to be too

simplistic. We therefore choose a more comprehensive parametric setting (Orea

& Wall, 2017), in which we rewrite (3.1) in functional form yielding:

y = D(s1, s2, . . . , sN ; β) (4.2)

where β represents a parameter vector to be estimated and s1, s2, . . . , sN describe

the ecological pressures that are imposed on the environment when generating eco-

nomic output y. Following Orea & Wall (2017), equation (4.2) lets us assess the

marginal contribution of pressure sn to the economic outcome y of production unit

k at time t. As extensively discussed in Kuosmanen & Kortelainen (2005), it is im-

portant to note that this concept relies on the presumption that economic outcome

and environmental pressures are regarded from an impact-based point of view and

not from a quantity-based point of view. This means that both physical inputs and

physical outputs are implicitly linked to y and s, which is why conventional produc-

tive inputs are not included in the eco-efficiency approach. Instead, "the relations

between conventional inputs and desirable outputs are no longer considered ex-

plicitly, but only the ecological outcomes with respect to the economic outcomes"

(Lauwers, 2009, p.1607). The absence of conventional inputs in the eco-efficiency

equation implies that farms with the same amounts of outputs and GHG emissions

but different levels of inputs are considered equally efficient (e.g. Tyteca, 1998).

While this is an important qualification of the frontier eco-efficiency approach, it

does not conflict with our goal to assess the ability of extensive and intensive

dairy farms to produce milk output under minimum emissions. While the eco-

efficiency approach focuses on the relationship between environmental pressures

and economic outcome, the input-output technology and the pressure-generating

technology are closely linked to one another, a fact we will later make use of when

seeking to find underlying heterogeneous pressure-generating technologies.

So far, the EEF (3.3) does not reflect the fact that firms may not produce the

maximum economically feasible level of y given their level of aggregated ecolog-

ical impact D(snt). Additionally, (4.2) is deterministic in nature and does not

account for statistical noise. To overcome these shortcomings, we express (4.2) as
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a stochastic frontier model (Aigner et al., 1977; Meeusen & van den Broeck, 1977)

and add an error term that accounts for ecological inefficiency and noise:

y = D(s1, s2, , . . . , sN ; β) e−u+ν (4.3)

where ǫ = −u+ ν represents the composite error term consisting of an ecological

inefficiency component (u) and statistical noise (ν). Taking the ordinary definition

of technical efficiency (TE), eco-efficiency is the ratio between observed economic

output and the frontier output:

EE =
y

D(s
′

β) eν
=
D(s

′

β) e−u eν

D(s
′

β) eν
= e−u (4.4)

EE can take on values between zero and one. It measures the economic output

of the k-th firm relative to the maximum attainable economic outcome by a fully

efficient firm producing the same degree of adverse environmental impacts. Kumb-

hakar et al. (2015) demonstrate that the orientation of an efficiency measure can

easily be reversed. This means in our case, as we are specifically interested in

the GHG mitigation rather than in the economic output expansion potential, we

convert the emission efficiency (EE) measure such that it measures the emission

reduction potential at a constant output level.

4.3.2 Latent-class model

The EEF in equation (4.3) implicitly assumes that firms are operated under a ho-

mogenous pressure-generating technology. Analogous to production technologies,

if multiple pressure-generating technologies existed, this would result in biased pa-

rameter estimates and incorrect eco-efficiency scores (e.g., Martinez Cillero et al.,

2019). It has been recognized that farms in general and dairy farms in particular

are often operated under at least two distinct technologies, mostly characterized

by intensive and extensive ways of production (see, e.g., Alvarez & del Corral,

2010; Orea et al., 2015; Sauer & Moreddu, 2020; Sauer & Wossink, 2013a). Since

the physical relationship between inputs and outputs is closely related to the

pressure-generating technology, heterogeneous technologies also affect the perfor-

mance measurement with respect to the pressure-outcome combination. To allow

for the presence of multiple technologies, we estimate the EEF within the latent-

class stochastic frontier framework. In this framework, the pressure-generating

technologies and unobserved class membership are estimated simultaneously. The

identification of heterogeneous technologies in a given sample is purely data-driven

but can be sharpened by the specification of separating variables, which may help
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explain class membership. To define the latent-class EEF, we rewrite its paramet-

ric form in (4.3) as

y = D(s1, s2, ..., sN ;β|j)× e−u|j+−v|j (4.5)

where subscript j denotes a finite number of distinct pressure-generating technolo-

gies. The number of distinct technology groups is unknown but can be tested

statistically using the Akaike and Bayesian information criteria (AIC and BIC).

The likelihood function for each individual farm is a weighted average of its like-

lihood function for each group j, weighted by the prior probability of class j

membership (Pij). The overall likelihood function is then given by the sum of

individual likelihood functions (Greene, 2005):

LFi(θ, δ) =
J∑

j=1

LFij(θj)× Pij(δj) (4.6)

logLF (θ, δ) =
N∑

i=1

log

( J∑

j=1

LFij(θj)× Pij(δj)

)
, (4.7)

where θ is the vector of frontier parameters and δi are parameters affecting the

prior probabilities. By definition, the prior probability must lie between zero and

one and add up to zero, which is thus parameterized as a multinomial logit model

where firm-specific variables Qi can be used to sharpen the probability:

Pij(δj) =
exp(δ

′

jQi)
∑J

j exp(δ
′

jQi)
(4.8)

If no separating variables are specified, Qi is just a constant. After maximizing the

overall log-likelihood function with respect to the parameters θ and δ using con-

ventional optimization methods, the posterior probabilities of class membership

can be calculated using Bayes Theorem (Greene, 2005):

P (j|i) = LFij(θ̂j)× Pij(δ̂j)∑J
j=1 LFij(θ̂j)× Pij(δ̂j)

(4.9)

Thus, while the prior probability only contains coefficients of the separating vari-

ables (or a constant), the posterior probability is calculated using coefficients of

both separating variables and the parameters characterizing the EEF. The pos-

terior probabilities can be interpreted as uncertainty in the class assignment of

the farms. Finally, eco-efficiency is measured individually for each class j as in

equation (4.4).
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4.3.3 Stochastic metafrontier

Following Huang et al. (2014), we define the common underlying eco-efficiency

meta-frontier for all latent classes in period t as Dt
M (sjit). This function is the

same for all classes j = 1, . . . ,J . Huang et al. (2014) show that such a meta-

frontier Dt
M (sjit) envelops all individual classes’ frontiers Dt

j(sjit). This relation

can be expressed as follows:

Dt
j(sjit) = Dt

M (sjit) e
−uM

jit (4.10)

where −uM
jit ≥ 0 and therefore Dt

M (.) ≥ Dt
j(.). The ratio between the two frontiers

in (4.10) is defined as the technology gap ratio (TGR):

TGR
j
it =

Dt
j(sjit)

Dt
M (sjit)

= e−uM
jit ≤ 1 (4.11)

which assesses the gap between the group frontier and meta-frontier. A TGR

value of one means that a decision-making unit (DMU) i of class j has adopted

the most efficient PGTj to generate economic output at time t. A TGR value

of less than one indicates a failure of the DMU to do so. In this case, the DMU

could improve its efficiency by adopting the alternative technology, given its level

of ecological impact. Sometimes switching to an alternative technology may not be

feasible or very difficult to accomplish, i.e. adopting a new technology could imply

moving to a different region. In the result section, we check if both technologies

are available across all regions in the analysis. Despite potential access to all

pressure-generating technologies, firms may not choose the best technology due

to specific circumstances, e.g., regulations, production environments or resources

(Huang et al., 2014). The pressure-outcome combination of the ith firm with

respect to the meta-frontier, Dt
M (sjit) has three components: the technology-

gap ratio TGR
j
it, the eco-efficiency of each DMU EE

j
it, and the random noise

component evjit (Huang et al., 2014), i.e.:

yjit

Dt
M (.)

= TGR
j
it ×EEj

it × evjit (4.12)

Provided the fact that a random component is obtained from the stochastic frontier

estimation of the class-specific frontiers, the eco-efficiency with respect to the

metaforntier efficiency (MTE) can be expressed as:

MTEjit =
yjit

Dt
M (.) evjit

= TGR
j
it ×EEj

it (4.13)

In the suggested method by Huang et al. (2014), the estimation of the meta-frontier

accounts for the estimation error of the class-specific eco-efficiency frontiers (4.5).
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The estimation error of the class-specific frontier is then:

ln D̂t
j(sjit)− lnDt

j(sjit) = ǫjit − ǫ̂jit. (4.14)

Given the estimation error vM
jit = ǫjit − ǫ̂jit, equation (4.10) can be expressed as:

ln D̂t
j(sjit) = lnDt

M (sjit)− uM
jit + vM

jit (4.15)

where ln D̂t
j(sjit) are the estimates of the class-specific frontiers. This specifica-

tion resembles a traditional stochastic frontier model, where the technological gap

component uM
jit ≥ 0 is assumed to follow a truncated normal distribution and to

be independent of vM
jit. Since the class-specific frontier is supposed to be smaller

than the meta-frontier Dt
j(sjit) ≤ Dt

M (sjit), the estimated TGR must be less than

or equal to 1:

ˆTGR
j
it = Ê

(
e−uM

jit | ǫ̂Mjit

)
≤ 1 (4.16)

where ǫ̂Mjit = ln D̂t
j(sjit) − lnDt

j(sjit) are the estimated composite residuals of

(4.15). Allowing for heteroskedasticity, we assume uM
jit ∼ N+(µ, σ2) and µ = ω0 +

z′
jitω, such that the estimated TGR is a function of the production environments

z′
jit, for which the parameter vector (ω0, ω′) has to be estimated (Battese & Coelli,

1995).

4.4 Data and descriptive statistics

We use data from Bavarian dairy farms that are collected as part of the European

Farm Accountancy Data Network (FADN). Bavaria is a German federal state

(NUTS 1 region) located in the southeast of Germany. The data are a large unbal-

anced panel with 9224 observations of 1291 farms observed annually between 2005

and 2014. Farms participated on average for 7.1 years. The dataset includes farm

production and economic data and is designed as a stratified sample according

to farm location, size classes, and specialization of the farms. Although the data

used in this study consists of a regional sample of farms, the analysis is highly

relevant in a larger European context. For instance, Bavaria is one of the largest

milk-producing regions within the EU (Frick & Sauer, 2018), and the Bavarian

dairy farm labor structure and livestock count can be seen as representative of the

bulk of European dairy farms in that average numbers are close to European av-

erages (European Statistical Office, 2020). Hence, the results of this study might

likely be informative for other regions in the EU as well.

In our analysis, we focus on climatic stresses caused by farming and include the

three most important GHGs as independent variables in our model, namely CH4,
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N2O and carbon dioxide (CO2). GHG emissions were reconstructed using the

farm-level inventory approach by Coderoni & Esposti (2018), which is largely

based on macro-level international standards such as the IPCC (2006) guidelines

and the United Nations Framework Convention on Climate Change (UNFCCC,

2014). The idea behind this approach is to multiply farm-level activity data (AD)

by an activity-specific emission factor (EF).1 We retrieved AD from the above-

mentioned farm accountancy dataset. Regional empirical EFs were obtained from

Haenel et al. (2018).2 Following Coderoni & Esposti (2018), we set the farm-gate

as system boundary, which accounts for all emissions over which the farmer has

a direct control. Dairy farming in Bavaria (and other regions as well) often im-

plies several other farming activities that might also contribute to the emission

of greenhouse gases. To account for all potential sources of GHG emissions, we

considered a total of eleven emission sources as described in IPCC (2006) and

depicted in Table 4.3. Utilizing data from an extensive farm accountancy dataset

enables us to evaluate a large sample of farms over multiple years. In contrast,

most previous eco-efficiency studies that are based on LCA contain fewer sample

farms (usually 50-100 max.) and cover a very limited time horizon (usually one

year) (see e.g. Iribarren et al., 2011; Pérez Urdiales et al., 2016). While collecting

data via LCA is very costly and thus limited to small samples, it is possible to

include a rich set of farm and management specificities that might be relevant

for the overall GHG emission quantity such as feed composition, housing facili-

ties or manure management (see e.g. Zehetmeier et al., 2020). The large-scale

approach chosen for this study does not allow for such detail and thus relies on a

set of simplifying assumptions including homogeneous manure management and

housing systems (Coderoni & Esposti, 2018), which inevitably leads to a certain

degree of imprecision. The main source of heterogeneity is therefore compositional

as described in Table A2 in the appendix. Hence, variations in farm-level GHG

emissions arise from structural variables such as herd and crop composition. Our

1We follow the conventions from agricultural emissions reporting, where AD are defined in
terms of areas, numbers of animals, or amounts of nitrogen (Coderoni & Esposti, 2014, 2018;
Haenel et al., 2018; Njuki et al., 2016). In this context, the term AD should not be confused with
farm activities in a more traditional sense such as feeding, milking or handling manure. Table
A2 in the appendix summarizes the livestock and crop categories used as activity.

2An important aspect is that the emission factors assigned to the farm activities are constant
across farms. Our approach thus assumes that the identified technology groups employ, e.g.
similar manure management systems on average. If farms in one technology group systematically
use less GHG-efficient manure systems than farms in the other technology group, results must be
interpreted with care. Given our data, it is not possible to distinguish between such differences
in this study.
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analysis does not account for negative emissions through potential carbon sinks

from agricultural land use (Smith et al., 2001). However, Coderoni & Esposti

(2018) suggest that these negative emissions might be negligible at the farm-level

compared to the other emission sources listed in Table 4.3. To compare GHG

mitigation potentials of the different farms studied, CH4 and N2O emissions were

converted to CO2-equivalents. To that end, N2O and CH4 quantities were multi-

plied by their respective global warming potentials (298 and 34, respectively) as

per the IPCC’s Fifth Assessment Report (IPCC, 2013), considering the inclusion

of climate carbon feedback and a 100-year time horizon. It is important to note

that farm accountancy data are not primarily aimed at calculating environmental

indicators such as GHG emissions and therefore the method must rely on several

assumptions about farm management practices. Coderoni & Esposti (2014, 2018)

present a detailed discussion about these assumptions and further technical details

about the method. Although the computed GHG emissions might only be seen as

a tentative approximation to the true GHG emissions, they still provide important

insights regarding the overall farm-level GHG mitigation potential.3

Farm revenue (yRev), deflated to the base year 2005, enters the model as the

economic outcome variable, which is defined as the value of sales (taxes included,

subsidies excluded). Aggregating several farm outputs in one variable is in line

with the related literature (e.g. Martinez Cillero et al., 2019; Mennig & Sauer,

2020). Since the farms in our sample are specialized dairy farms with milk rev-

enue accounting for at least 67% of total revenue on average, we do not focus on

substitutability or complementarity of individual farm outputs. Furthermore, we

account for the farming environment, which is likely to influence the PGT by in-

cluding regional dummy variables (r) representing five different agri-environment

zones. A short description of the regions can be found in the appendix (Table 4.7).

We also include a time variable (t) in our model to account for potential (ecological-

)technical change.

As part of the inefficiency effects model, we include a series of variables that

reflect the farmers’ characteristics. These variables include the age (zage) and

agricultural education level of the farm manager (zeduc). Further, reflecting the

farmers’ management characteristics, we include the share of milk revenue in total

revenue (zsmilkrev) as a proxy for the degree of specialization, and milk yield

3Their quantities (Table 4.1) are very similar to those found in previously-conducted LCAs
such as, e.g., Basset-Mens et al. (2009), O’Brien et al. (2012) and Zehetmeier et al. (2014).
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(zmilkyield) in the inefficiency effects model. Finally, we expect that participating

in agri-environment schemes (zaes) affects farms’ emission inefficiency.

As for the separating variables of the PGT, we make use of the close link between

production technology and pressure-generating technology and presume that classi-

cal production-related separating variables often found in the literature are equally

capable of separating different PGTs. Hence, we follow Alvarez & del Corral (2010)

and Sauer & Wossink (2013a) and include the stocking rate (number of cows per

hectare land, qCowHA) and feeding intensity (purchased concentrated feed per

cow, qFeedHA) as separating variables into our model.

Table 4.1: Descriptive statistics (N = 2473).

Variable Description Mean SD Min. Max.

yRev Farm revenue (AC1,000) 154.58 87.29 11.09 1139.32
CH4 Methane emissions (t CO2e) 417.79 202.4 62.7 2421.88
N2O Nitrous oxide emissions (t CO2e) 87.03 47.45 10.59 471.37
CO2 Carbon dioxide emissions (t CO2e) 28.85 19.89 1.83 310.41
t Time (years) 7.14 2.48 3 10
rA Region A (1 if region A, 0 otherwise) 0.63 0.48 0 1
rB Region B (1 if region B, 0 otherwise) 0.15 0.36 0 1
rC Region C (1 if region C, 0 otherwise) 0.11 0.31 0 1
rD Region D (1 if region D, 0 otherwise) 0.01 0.08 0 1
rE Region E (1 if region E, 0 otherwise) 0.11 0.31 0 1

Separating Variables

qCowHA Stocking rate (no. dairy cows/ha) 1.48 0.52 0.2 6
qFeedInt Feeding intensity (purchased feed in

AC/cow)
284.17 137.55 1.84 2303.79

Efficiency Determinants

zmilkyield Milk yield (liters milk per cow) 6759.47 1108.89 2089.23 10494.65
zsMilkRev Revenue share of milk sales 0.78 0.06 0.66 0.99
zage Age of the farm manager (years) 49.13 9.3 19 85
zeduc Agricultural education (1 = Advanced

technician/University degree, 0 other-
wise)

0.3 0.46 0 1

zaes Agri-environmental payment (1 = re-
ceives payments, 0 otherwise)

0.63 0.48 0 1

4.5 Empirical specification

The empirical version of the latent-class eco-efficiency frontier (4.5) takes on the

second-order flexible translog functional form:

ln yRevit =β0|j +
3∑

l=1

βl|j ln slit +
1

2

3∑

l=1

K∑

l=1

βlk|j ln slit ln skit +
4∑

z=1

φz|j rzi

+ βt|j t+
1

2
βtt|j t2 +

3∑

l=1

βlt|j ln slit t+ νit|j − uit|j (4.17)
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where rzi are the regional dummies and t is a time trend. The β’s are unknown

coefficients to be estimated. Emissions s ∈ {CH4,N2O,CO2} have been mean-

scaled prior to estimation, which allows the first-order coefficients to be interpreted

as emission elasticities for a farm characterized by an emission portfolio equal to

the sample arithmetic mean. As for the stochastic part of the model, ν corresponds

to normally distributed stochastic noise, u is the inefficiency term following a

positive truncated normal distribution with constant scale parameter σ2
u and a

location parameter µ, which depends on the set of inefficiency determinants z

following Battese & Coelli (1995).

Regarding the specification of the meta-frontier model, we assume a translog func-

tional form as stated earlier:

̂lnD(s
′

β|j) =β
M
0 +

L∑

l=1

βM
l ln slit +

1

2

L∑

l=1

K∑

l=1

βM
lk ln slit ln skit+

βM
t t+

1

2
βM

tt t2 +
L∑

l=1

βM
lt ln slit t+ νM

it − uM
it (4.18)

where ̂lnD(s
′

β|j) corresponds to the predicted revenues on their respective class

eco-efficiency frontier. Location dummies are omitted from the meta-frontier,

which is the same at all regions, while all assumptions from the previous section

apply equally to equation (4.18). Instead, we include regional dummies repre-

senting the production environment of farms in the TGR term of the stochastic

meta-frontier. This is because the technology gap represented by the one-sided

u is due to the choice of a particular technology that depends on the production

environment (Huang et al., 2014).

As defined above, emission-efficiency measures the economic output of a firm rel-

ative to the maximum attainable economic outcome given the same level of ad-

verse environmental impacts. For policy implications, it may be more meaning-

ful to measure the extent to which GHG emissions could be decreased without

changing the economic output. Kumbhakar et al. (2015) demonstrate that the

output-oriented approach in Eq. 3.4 can be reformulated as an ’emission-oriented’

approach: y = D(se−η, β)eν , where η is the efficiency measure with respect to

emission reduction (i.e. GHG mitigation potential). They then show that the

output-oriented efficiency measure (u) for a translog function can be expressed in

terms of η in the following way:

u = η


∑

j

βj +
∑

j

βjtt+
∑

j

(
∑

k

βjk ln xk

)
+ 1

2
η2
∑

j

∑

k

βjk (4.19)
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Solving the quadratic equation (4.19) for η yields the desired "emission-oriented"

efficiency measure. In the following results section, we will explicitly focus on

efficiency scores that express the GHG mitigation potential (η). Outcome-oriented

efficiency scores (u) can be obtained from the authors upon request. We note that

the signs and significances of the inefficiency determinants can be interpreted using

both perspectives: A variable that is positively related to emission-efficiency is also

positively related to GHG mitigation.

4.6 Empirical results and discussion

In this section, we first present our findings regarding the detection of distinct

intensity classes and discuss implications. We then depict and discuss class-specific

emission efficiency scores as well as GHG mitigation potentials. Finally, we turn

to the results from the meta-frontier estimation.

4.6.1 Heterogeneous technologies and class separation

We used the software LIMDEP 10 to implement the estimation of the latent-class

eco-efficiency frontier (4.5), where time-varying and farm-specific inefficiency is

expressed as uit|j = g(zit)|j × |Ui|. This specification ensures that farm-specific

inefficiency is not independent over time.4 As a robustness check, we also esti-

mated the latent-class frontier model specified in Greene (2005), which assumes

independence of the efficiency term over time. Overall, 74% of farm-observations

are classified into the same technology groups as in the above mentioned specifi-

cation.

The number of distinct technology classes is unknown and must be specified prior

to the estimation. To determine which group number best represents the data,

we compute AIC and BIC statistics (e.g., Alvarez & del Corral, 2010; Orea &

Kumbhakar, 2004). The estimation with four and three groups specified did not

converge, which is likely due to over-specification of the model (e.g., Orea & Kumb-

hakar, 2004). The AIC and BIC values for the model with two groups (-11,939

and -11,532) are both lower than the ones for the pooled model (-11,477 and -

11,284), indicating that the data supports the existence of two distinct technology

4However, this approach does not account for adjustment costs, which arise from adapting
the production processes (Stefanou, 2009). In stochastic frontier analysis, dynamic efficiency can
be evaluated using autocorrelated ineffiency terms (Ahn & Sickles, 2000; Emvalomatis et al., 2011;
Tsionas, 2006). Recent applications in dairy farming are provided by Skevas et al. (2018a,b,c).
Alternatively, the dynamic structure of the decision making process can also be modeled by
including gross investments in the frontier (e.g. Minviel & Sipiläinen, 2018; Serra et al., 2011).
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groups. For comparison reasons, we report the parameter estimates for both the

pooled (column 1) and the latent-class models (columns 2 and 3) in the appendix

(Table 4.8.3). Since all variables have been divided by their sample means prior

to estimation, the first-order coefficients can be interpreted as emission elasticities

evaluated at the sample mean. This is because the log of demeaned variables takes

on a value of 0 at the sample mean, and thus observation-specific values drop out

in the first derivatives of the production frontier. Note that the first-order param-

eters represent elasticities at the sample mean of all farm observations, regardless

of group membership.

Consistent with expectations, the elasticities are significantly positive across all

models. For example, a one-percent increase in CH4 release is associated with

a 0.73% increase in revenue in technology class I and with a 0.79% increase in

revenue in technology class II. The mean elasticities are largely consistent between

the pooled model and the two identified classes. Technological differences are

particularly visible in the constant terms as well as in the second-order parameters

of the eco-efficiency frontiers (Appendix 4.8.3). For example, the marginal effect of

CH4 increases in CO2 emissions in class II, whereas CH4 affects economic output

independent of CO2-levels in class I. Moreover, eco-technical progress indicated

by the pooled model seems to be driven by class I, as both the linear time variable

and its squared term are statistically insignificant in class II. Finally, regional

dummies are statistically significant in class I but insignificant in class II. Since we

use the most favorable agricultural region in terms of farming conditions ("Gäu")

as a baseline region in the estimation, the negative coefficients in class I can be

expected. The insignificant parameters in class II imply that local conditions are

less important for farms operated under this technology.

The prior probabilities, which are calculated using the coefficients of the separating

variables, are 52% for technology class I and 48% for class II on average, indicating

that the group sizes are roughly balanced and that the assumed technology specifi-

cation is relevant. The posterior probabilities of belonging to class I or class II are

computed using the coefficients of both separating variables and the parameters

of the corresponding eco-efficiency frontier. Here, we report the average posterior

probabilities of belonging to a particular class for those farms being assigned to

the same class: farms that are assigned to class I (class II) have an 85% (88%)

posterior probability of belonging to class I (class II). These posterior probabilities

indicate that the uncertainty in the class assignment is relatively low. Sauer &
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Wossink (2013a) and Orea et al. (2015) find very similar posterior probabilities in

a latent-class production frontier applied to dairy farms.

Next, we examine how farms classified to distinct technology classes can be char-

acterized. The separating variables are statistically significant and negative. This

result implies that both stocking rate and the feed intensity decrease the likelihood

of a farm being assigned to class I. Thus, we can expect that class I represents

an extensive technology while class II represents a more intensive technology. To

confirm this, we report class-specific descriptive statistics in Table 4.2. Correspond-

ing to the prior probabilities, the number of farms assigned to each group is quite

similar, with 5,062 farm observations being assigned to class I and 4,162 farm ob-

servations being assigned to class II. Farms in class I are characterized by smaller

amounts of gross outputs, both in absolute terms and relative to the number of

cows and land operated. Additionally, farms in this group have on average smaller

herd sizes, more hectares of land use, lower stocking rates, lower feed purchases

per cow, and lower capital usage per cow. The third column of Table 4.2 indicates

that the differences are all statistically significant at the 1% significance level, ac-

cording to Student’s t-tests. Thus, the descriptive statistics confirm that class I

represents the extensive technology group and class II the intensive one.

The result that the latent technologies reflect different production intensities is in

line with, e.g., Alvarez et al. (2012) or Martinez Cillero et al. (2018), who estimate

latent-class production frontiers rather than pressure-generating technologies. Al-

though it is not possible to connect these results directly to differences in specific

farming procedures and management practices concerning, e.g. manure manage-

ment technologies, cropping systems, machinery, milking technology, feed manage-

ment, veterinary services, etc., the latent-class approach enables us to compare

greenhouse gas efficiency between the distinct technology groups.

Clearly, the latent classes that were found based on the PGT reflect two groups

that show considerable differences with respect to their production intensity, as

depicted in Table 4.2. This finding is in line with previous research that finds

a positive correlation between input use and environmental pressures, such as

nutrient runoff or GHG emissions (Guerci et al., 2013; Lötjönen et al., 2020; Orea

& Wall, 2017; Pérez Urdiales et al., 2016).
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Table 4.2: Summary statistics and differences of mean farm characteristics by
technology class.

Class I Class II Difference

Observations 5,062 4,162

Total farm gross output (AC) 41,406.72 56,221.76 14815.038***

GHG emissions (tons CO2eq) 507.121 622.461 115.34***

Cows (units) 58 73 15***

Land (ha) 49.064 46.871 -2.193***

Total farm gross output per cow (AC) 712.148 770.67 58.522***

Total farm gross output per hectare
(AC)

911.009 1,299.869 388.86***

Stocking rate (Cows/ha) 1.306 1.701 0.395***

Milk (l) 257,338.2 368,329.8 110991.64***

Milk per cow (l) 6,310.643 7,305.355 994.712***

Milk per hectare (l) 5,612.597 8,532.815 2920.218***

Concentrate feed per cow (AC) 229.301 350.896 121.595***

Capital per cow (AC) 448.638 471.934 23.296***

Class name Extensive Intensive

Single, double, and triple asterisks (*, **, ***) indicate [statistical] significance at the 10%, 5%,

and 1% level.

4.6.2 GHG emission efficiency by production intensity

As shown in the previous section, we are able to identify two intensity classes

that demonstrate distinctively different GHG emission generating technologies.

Furthermore, we assumed that farms may be inefficient in that they could reduce

their emissions while keeping their revenue constant. Figure 4.1 summarizes the

groupwise GHG emission efficiency estimates.

In terms of the relative efficiency scores, we see that both intensive and extensive

technology show similar results, in that their efficiency scores are similarly dis-

tributed with a mean of 87% and 86% respectively. However, given the fact that

intensive farms emit on average more greenhouse gases than extensive farms (see

Table 4.2), EE scores translate into different absolute GHG mitigation potentials.

If extensive dairy farms were fully emission efficient, they could reduce their GHG

emissions, on average, by 67.7 tons CO2-equivalents (CO2eq) per year while their

intensive counterparts could mitigate 77.2 tons CO2eq. Considering the case in

which all 1291 dairy farms in our sample had been fully emission efficient in terms

of their respective class frontiers, a total of 664,142 tons CO2eq could have been

omitted without compromising economic output in the period considered from

2005 to 2014.
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Extensive
Class

Intensive
Class

Emission efficiency w.r.t. the class frontiers
Mean 0.8614 0.872
Std. dev. 0.0958 0.0863
5% quantile 0.6792 0.6991
95% quantile 0.9736 0.9738

GHG mitigation potential (t CO2eq)
Mean 67.71 77.22
Std. dev. 56.37 65.24
5% quantile 10.92 12.83
95% quantile 177.71 202.73

Figure 4.1: Emission efficiency and GHG mitigation potential with respect to
the class frontiers.

Furthermore, our empirical framework allows us to evaluate potential GHG emis-

sion inefficiency drivers. As outlined in the data section, we included five farm

management-related variables into the latent-class model. Estimation results can

be found in Appendix 4.8.3. We find that farmer age and education do not affect

emission efficiency. However, the degree of specialization expressed as the share of

milk sales on total revenue is positively related to EE for both groups. However,

the association is considerably stronger for intensive farms. A similar picture is

found with respect to milk yield. It is positively associated with EE for both

groups, while the association is stronger for intensive farms. Overall, the effect

size seems to be largest for milk yield. Finally, participation in agri-environment

programs appears to have a negative effect on emission efficiency for both the

intensive and extensive classes.

As we have hypothesized, farms can indeed maintain their level of production

while simultaneously reducing their negative impact on the climate, i.e., reducing

their GHG emissions, which holds true for both technology classes. Although both

101



Agricultural production and environmental change

groups show a similar level of emission efficiency in relative terms, the fact that

intensive farms emit on average more GHGs leads to a considerably higher mitiga-

tion potential for this group with respect to their own PGT. Previous studies on

eco-efficiency have also found considerable eco-inefficiency across different farm-

ing systems such as olive growing (Beltrán-Esteve et al., 2014; Picazo-Tadeo et al.,

2012), rain-fed agriculture (Gadanakis et al., 2015; Picazo-Tadeo et al., 2011),

horticulture (Godoy-Durán et al., 2017), and dairy farming (Iribarren et al., 2011;

Orea & Wall, 2017; Pérez Urdiales et al., 2016; Shortall & Barnes, 2013). In their

study, Shortall & Barnes (2013) explicitly focus on greenhouse emissions from

dairy farms in Scotland and find similar results. Milk yield appears to positively

affect emission efficiency, while the education level does not appear to have an

effect. In their analysis, however, they find that participation in AES is not or

only very weakly associated with EE, while we find a clear negative association

between participation in agri-environment schemes (AES) and EE. This might

be due to two reasons. First, most agri-environment schemes in Bavaria aim at

the extensification of production (ART, 2019), which probably decreases both the

production level and the environmental pressures. If economic outputs decrease

over-proportionally compared to emissions, emission efficiency might be negatively

affected as the ratio of emissions over economic output decreases. Second, most

AES are not explicitly aimed at reducing greenhouse gas emissions (ART, 2019;

Stetter et al., 2022a). These measures might improve the ecological performance

of farms with respect to other environmental indicators such as biodiversity and

water quality, but might worsen their climatic impact. There is likely no one-fits-

all policy solution regarding the overall environmental impact of farms, which in

turn, means a trade-off between different environmental goals, which might be

solved by prioritizing certain goals over others and by being aware of potential

ramifications this practice could have.

Agri-environmental schemes in our study area do not appear to promote emission

efficiency among dairy farms across the intensity classes. The highest positive

association with EE has the milk yield in both groups, which can be regarded

as a proxy for managerial capability. A higher milk yield indicates not only an

increased productivity level but also an effective way to reduce greenhouse gas

emissions (especially CH4) because fewer cows are needed for the same level of

milk production (Shortall & Barnes, 2013). In order to achieve the EU policy goal

of tackling climate change (European Commission, 2019b,c) another way forward
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could be to curb production and thus reduce GHG emissions. However, limiting

the production of agricultural goods is clearly counter the objective of meeting

the globally increasing demand for agricultural products (European Commission,

2019c). Such a strategy is unlikely to reconcile the two policy goals of mitigat-

ing climate change and keeping up agricultural production levels. Instead, our

results suggest that there is large potential for climate change mitigation without

risking the economic viability of farms. The increased emission efficiency of inten-

sive dairy farms implies that supporting a sustainable intensification could help

to reach both economic and climate goals. In this context, it seems essential to

improve the effectiveness of agri-environmental schemes, since they are negatively

related to farms’ eco-efficiency in our empirical application. The managerial ca-

pacity of farmers, on the other hand, is associated with an increase in emission

efficiency. Therefore, e.g., advisory and training programs could be interesting

policy instruments to improve farmers’ managerial capability (Picazo-Tadeo et al.,

2014). The ability to produce farm sales with minimum environmental impact

such as GHG emissions is also influenced by TE (i.e. the ability to maximize

output at given input levels) of the farms as shown by, e.g., Picazo-Tadeo et al.

(2011) and Shortall & Barnes (2013). Furthermore, previous research has shown

that intensive farms are more technical efficient than extensive farms (Alvarez

et al., 2012). Hence, our results suggest that this difference might also translate

to benefits in terms of GHG-efficiency.

Note that the results and conclusions should be interpreted within the European

dairy sector with relatively small dairy farms compared to, e.g. the U.S. or Canada,

where dairies with 1,000 to 5,000 cows are not uncommon. Such production sys-

tems are operated under very distinct conditions, e.g. feedlot operations. In the

U.S./Canadian context, Le et al. (2020) find that TE and emission-adjusted TE

are very high across dairy farms in Ontario. They conclude that minimizing GHG

emissions may not be inconsistent with maximizing output for given levels of input.

Njuki et al. (2016) also account for the emission of GHGs in their study on North-

western U.S. dairy farms. Although not explicitly accounting for latent production

technologies, they look at different size classes and find that large dairy operations

are environmentally more inefficient regarding GHG emissions compared to their

smaller counterparts, which is somewhat contrary to our findings. Overall, em-

pirical work on the GHG emission efficiency in the U.S./Canadian dairy farming

context remain scarce.
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4.6.3 Meta-technology frontier and GHG mitigation potential

Extensive
Class

Intensive
Class

Technology gap ratio
Mean 0.5931 0.9013
Std. dev. 0.0753 0.0509
5% quantile 0.4639 0.8042
95% quantile 0.6994 0.9625

Emission efficiency w.r.t. the meta-frontier
Mean 0.5157 0.7889
Std. dev. 0.1056 0.0875
5% quantile 0.3195 0.622
95% quantile 0.6682 0.9099

GHG mitigation potential (t CO2eq) w.r.t. meta-frontier
Mean 217.8 127.83
Std. dev. 113.75 89.54
5% quantile 78.33 30.93
95% quantile 428.55 292.5

Figure 4.2: Technology gap ratio, emission efficiency and the GHG mitigation
potential in tons CO2-equivalents with respect to the meta-frontier.

We have found heterogeneous pressure-generating technologies among the observed

dairy farms and different GHG mitigation potentials across farms and technologies.

Next, we seek to analyze the farms’ emission performance with respect to the meta-

frontier, thus allowing to compare the two technology classes directly. Appendix

Table 4.6 shows the summary statistics of the stochastic meta-frontier estimation of

equation (4.18). As expected, the SMF estimates reveal significant environmental

impact of the location on the meta-frontier production function. Namely, farms

not located in the region d operate under inferior emission-generating technology

compared to the reference, i.e., they are further away from the meta-frontier. As

highlighted in the left panel of Figure 4.2, intensive farms seem to be more efficient

104



4 Study II – Are intensive farms more emission-efficient?

in adopting the best available emission-generating technology (i.e., they are closer

to the meta-technology), in that their average TGR lies at 0.9 compared to 0.6

for extensive farms. Hence, if all intensive farms were operated under the meta-

technology, they could obtain the same revenue while producing on average 90%

of the emissions they generate using the best practices available to the intensive

class of farms. In other words, only a few farms operating under the intensive

technologies would obtain higher efficiency levels by switching to the extensive

technology. Given this result, we can conclude that the intensive farming system

has the more emission-efficient technology. Because the meta-technology envelops

both technologies, the intensive class it not a priori closer to the meta-frontier

than the extensive class at all points. Indeed, the left panel of Figure 4.2 shows an

overlapping area between intensive and extensive farms. However, provided the

small size of this area, where the extensive technology might be superior to the

intensive technology, it does not change the general interpretation of the model.

The MTE, i.e., the product of the TGR and class-wise emission efficiency de-

scribes an individual farm’s distance to the meta-frontier. Figure 4.2 compares the

meta-technology emission efficiency of the two groups. As hypothesized, extensive

farms are overall less emission-efficient regarding the meta-frontier than intensive

farms, i.e., generate more GHG emissions per economic output than their inten-

sive counterparts. The mean MTE score of 51.5% for extensive farms signifies that

they could obtain the same production level while generating only 51.5% of their

current GHG emissions if they were fully emission-efficient with respect to the

meta-frontier. The mean MTE score for the intensive farm group is with 78.9%

less pronounced.

Expressing the meta-frontier inefficiency–and hence the GHG mitigation poten-

tial without minimizing farm revenues–in absolute terms, extensive farms could

mitigate on average 225 t CO2eq per year and intensive farms could mitigate on

average 130 t CO2eqper year. Summing up these GHG mitigation potentials for

our sample of approximately thousand farms per year over ten years reveals the

potential to mitigate approximately 1.7 mil. t CO2eq. Of course, this calculation

assumes that all farms have access to the available meta-technology such that they

could potentially adopt the superior technology (in terms of emission efficiency).

One indicator for this assumption to hold true could be the presence (and thus

availability) of both intensive and extensive technologies in all studied subregions.

Appendix Table 4.7 shows the prevalence of each technology in the respective re-

105



Agricultural production and environmental change

gions and can be seen as indicative of the fact that all farms in the sample might

have indeed access to both technologies.

Looking at the GHG mitigation potential with respect to an overall potential

across technologies rather than within each distinct technology, our findings show

that the intensive class is closer to the emission-generating meta-technology fron-

tier than extensive farms. Hence, if we change the point of reference (from class

frontier to meta-frontier), intensive farms become favorable with respect to emis-

sion efficiency. This finding is in line with previous research (Crosson et al., 2011;

Gerber et al., 2013; Guerci et al., 2013). Currently, large parts of the general

public and legislators regard extensively managed, small farms as desirable from

a sustainability perspective (Wuepper et al., 2020), which is why the EU actively

promotes the extensification of farm businesses within its Common Agricultural

(CAP) (European Commission, 2013). In light of our findings, the concept of re-

warding extensification should be critically assessed with respect to climate change

mitigation. Switching technologies from extensive to intensive dairy farming might

be one way to improve the economic-ecological performance of farms, implying

a sustainable intensification of the agricultural sector. However, we emphasize

that this result refers to GHG emissions only and legislators should be careful in

promoting such a step because this might have negative consequences for other

important environmental aspects of farming such as biodiversity, animal welfare or

soil health. For instance, Norris (2008) note that intensification of agriculture has

been a major driver of biodiversity loss. Nonetheless, there could also be synergies

across objectives, e.g., decreased levels of nitrogen runoff are also likely to cause

decreased greenhouse gas emissions (Haenel et al., 2018).

4.7 Conclusion

In this article, we evaluated the emission efficiency of distinct technologies in

dairy farming. Our approach is based on a pressure-generating technology that

describes the relationship between agricultural revenue and released greenhouse

gases (GHG) (or any other environmental pressure) at the farm level. Thus, emis-

sion efficiency measures the ability of farms to generate revenue while causing

minimal GHG emissions. We estimated a eco-efficiency frontier in a latent-class

stochastic frontier framework to identify unobserved heterogeneity in the pressure-

generating technology. Our results show that dairy farms in our sample can be

classified into two distinct technology classes. The two classes can mainly be
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distinguished by the input intensity of the respective farms in each class. The ex-

tensive and the intensive farms show very similar emission efficiency scores when

evaluated against their class-specific frontier. The meta-frontier envelops both

identified technologies and reveals that extensive farms are overall less emission-

efficient than intensive farms: without losses in economic output, extensive farms

could reduce their GHG emissions to 51.5% of current levels when choosing the

most efficient technology, compared to 78.9% for intensive farms. Overall, up

to 1.7 mio. t CO2eq could have been saved in our sample between 2005 and

2014 without reducing economic outcome. Overall, our findings show that tech-

nology differences matter, not only with respect to TE, as suggested by previous

research (Alvarez et al., 2012; Martinez Cillero et al., 2018), but also with respect

to emission-efficiency. This fact has been largely neglected in previous research on

environmental and eco-efficiency.

Naturally, dairy farms produce other environmental pressures in addition to green-

house gases, such as nutrient surpluses, biodiversity losses or pesticide risks. One

limitation of our study is that we cannot quantify trade-offs and interaction ef-

fects across different environmental pressures (marginal change of pressure substi-

tution). Furthermore, GHG emissions are only considered within the farm-gate.

Thus, we cannot account for indirect emissions from farming through upstream

activities such as fertilizer production, although they might also play an impor-

tant role with respect to global warming. In addition, the choice of extensive

vs. intensive agricultural production has further implications on GHG emissions

through its impact on the global food system. For example, on the global scale,

the higher demand for maize and concentrate feed may be associated with land

use changes, which would increase GHG emissions following intensification (Styles

et al., 2018). Along these lines, following Kuosmanen & Kortelainen (2005), one

major critique of the suggested approach is that even if the relative level of cli-

matic pressure is low relative to economic output, the absolute climatic pressure

(i.e., GHG emissions) can still exceed the carrying capacity of the atmosphere.

Our study showed that the eco-efficiency approach can be employed in a latent

class framework to account for production heterogeneity in environmental effi-

ciency models. Combining the latent class approach with the by-production model

by Murty et al. (2012) would by a highly valuable extension of the current analysis,

to provide further insights into the mechanisms how bad outputs are generated in

distinct farm technologies. It would further allow to estimate separate efficiency
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scores for each good output, bad output, and input (see, e.g., Ait Sidhoum et al.,

2019, for a recent application in agricultural economics). The active development

of by-production models in the stochastic frontier setting (Lai & Kumbhakar,

2021) is a promising way forward, but to date, stochastic by-production models

have not been extended to a latent-class setting to distinguish between different

unobserved technology classes. Moreover, it is important to highlight that our

approach measures emission efficiency in a static framework, which does not take

into account the time interdependence of production decisions. Reducing green-

house gas emissions may require changes in quasi-fixed inputs and reallocation of

variable inputs, which involves adjustment costs. As the adjustment costs may dif-

fer between extensive and intensive farms, such a comparison would be a valuable

extension to the present study.

What is more, policy conclusions could be substantiated if more detailed data on

specific farming procedures and management practices were added to the Euro-

pean farm accountancy data network. Also, the analysis could be extended to

additional environmental pressures, allowing for the quantification of the above-

mentioned trade-offs and interactions thus a more holistic assessment of the economic-

ecological performance of farms. Finally, it would be interesting if the analysis

were replicated for other regions and different farm types, such as other livestock

farms or crop farms, which would provide additional insights into the discussion

on extensive and intensive farming practices.
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4.8 Appendices

4.8.1 Greenhouse gas sources, activity data and emission factors for

the computation of farm-level GHG emissions

Table 4.3: Summary of greenhouse gas sources, activity data and utilized
emission factors for the computation of farm-level GHG emissions. A
detailed description of the methodology can be found in Haenel et al.
(2018).

Gas Emission source Activity data EF

FAD Other

Livestock

CH4 Enteric fermentation Livestock counta regional

CH4 Manure management Livestock counta regional

N2O Manure management (di-
rect and indirect)

Livestock counta NH3 and NO

emission factors
(indirect)

regional

Crop cultivation

N2O Use of synthetic fertilizers Fertilizer expen-
ditures

State-level shares,
prices

regional

N2O Use of organic fertilizers Livestock counta N excretion fac-
tors

regional

N2O Atmospheric deposition of
reactive nitrogen

Livestock count
& fertilizer
expenditures

FracGas default
& re-
gional

N2O Leaching and surface run-
off

Livestock counta

& fertilizer expen-
ditures

FracLeach default
& re-
gional

N2O Crop residues Crop area and
yielda

Various con-
stants

default

CO2 Urea application Fertilizer expen-
ditures

State-level shares,
prices

regional

CO2 Liming Fertilizer expen-
ditures

State-level shares,
prices

regional

Energy use

CO2 Fuel combustion Fuel expendi-
tures

Diesel price default

a See Table 4.4 for a more detailed description of the farm-level data used for the
estimation of the GHG emissions.
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Table 4.4: Description of the livestock and crop categories used as activity data
for the approximation of the GHG emissions. Each sub-category gets
assigned separate emission factors.

Emission Source/ Activity Data

Livestock

The following distinction has been made with respect to nitrogen
excretion rates as well as enteric fermentation rates at the farm level.

a) Cattle: – Calves
– Male beef cattle
– Heifers
– Mature males > 2 years
– Dairy cows
– Suckler cows

b) Pigs: – Weaners
– Fattening pigs
– Boars
– Sows

c) Poultry: – Laying hens
– Pullets
– Broilers
– Other poultry

d) Sheep

e) Horses: – Heavy horses
– Ponies
– Light horses

Agricultural crops

The following distinction has been made with respect to N2O and N2 emissions
stemming from crops at the farm level. This implies yields and farmed area.

– Winter wheat
– Spring wheat
– Rye
– Winter barley
– Spring barley
– Oat
– Triticale
– Grain maize
– Maize for silage
– Rape
– Sugar beet
– Potatoes
– Grass (fodder production)
– Clover, grass clover leys, clover alfalfa mixtures
– Meadows
– Pastures
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4.8.2 Description of the agricultural regions

Region Name Description

Region A (Pre-)Alpine Land &
Eastern Low Mountain
Range

Mountainous terrain, mostly grassland-
based, region at altitude, relatively low
yield potential, medium to high precipi-
tation

Region B North Bavarian Hill
Lands

Low precipitation, medium to bad soil
conditions

Region C Tertiary Terrain Favorable production conditions,
medium to high precipitation, rela-
tively high yield potential.

Region D Gaeugebiete Very good soils, favorable weather con-
ditions, very high yield potential.

Region E Jura Mountains and
Franconian Plateau

Dry region with very low precipitation,
low yield potential.
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4.8.3 Results of the pooled as well as of the latent-class stochastic

frontier estimation separated by classes.

Table 4.5: Results of the pooled as well as of the latent-class stochastic frontier
estimation separated by classes.

Pooled Class I Class II

Variable Estimate S.E. Estimate S.E. Estimate S.E.

Pressure Conversion Frontier

Constant 0.378*** 0.020 0.428*** 0.048 0.199*** 0.037

ln CH4 0.791*** 0.014 0.727*** 0.027 0.787*** 0.020

ln N2O 0.069*** 0.014 0.099*** 0.027 0.044** 0.022

ln CO2 0.165*** 0.006 0.178*** 0.011 0.157*** 0.009

.5 × ln CH4
2 0.114 0.071 0.276* 0.159 -0.030 0.098

.5 × ln N2O 2 0.639*** 0.113 0.403** 0.169 0.988*** 0.199

.5 × ln CO2
2 0.162*** 0.017 0.144*** 0.027 0.192*** 0.027

ln CH4 × ln N2O -0.367*** 0.089 -0.351** 0.153 -0.443*** 0.145

ln CH4 × ln CO2 0.114*** 0.035 -0.025 0.053 0.301*** 0.058

ln N2O × ln CO2 -0.220*** 0.040 -0.050 0.063 -0.448*** 0.068

t 1.40E-04 0.001 -7.37E-05 0.001 4.10E-04 0.001

.5 × t2 0.001*** 4.40E-04 0.001** 0.001 0.001 0.001

ln CH4 × t -0.017*** 0.004 -0.011** 0.005 -0.027*** 0.007

ln N2O × t 0.021*** 0.004 0.011* 0.006 0.034*** 0.007

ln CO2 × t -0.005*** 0.002 -0.003 0.003 -0.006** 0.003

rA -0.212*** 0.020 -0.401*** 0.049 -0.008 0.037

rB -0.216*** 0.021 -0.367*** 0.049 0.004 0.039

rC -0.191*** 0.021 -0.349*** 0.051 0.003 0.038

rE -0.196*** 0.021 -0.375*** 0.049 0.043 0.039

Inefficiency determinants

Constant 15.002 1.93E+05 15.371 3.08E+05 27.836 3.13E+06

zmilkyield -1.664*** 0.032 -1.799*** 0.056 -3.058*** 0.157

zage 0.002 0.001 0.003 0.002 4.80E-04 0.003

zeduc -0.008 0.042 -0.114 0.090 0.075 0.072

zaes 0.131*** 0.018 0.159*** 0.036 0.181*** 0.047

zsMilkRev -0.708*** 0.100 -0.290* 0.160 -2.121*** 0.372

Separating variables

Constant 6.874*** 0.833 -

qCowHA -1.893*** 0.322 -

qF eedInt -0.014*** 0.002 -

Class probabilities

Prior probability 0.523 0.477

Posterior probability 0.851 0.879

Model diagnostics

AIC -11,477 -11,939

BIC -11,284 -11,532

Single, double, and triple asterisks (*, **, ***) indicate [statistical] significance at the 10%, 5%, and 1% level.
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4.8.4 Summary statistics of the stochastic meta-frontier estimation

Table 4.6: Summary statistics of the stochastic meta-frontier estimation.

Estimate S.E. T-
Statistic

Meta-frontier

Constant 0.0679 0.0033 20.6395

lnCH4 1.0040 0.0142 70.8158

lnN2O 0.0461 0.0149 3.0888

lnCO2 0.1834 0.0069 26.5320

.5× lnCH4
2 0.4395 0.1139 3.8572

.5× lnN2O
2 1.2780 0.1378 9.2753

.5× lnCO2
2 0.2428 0.0201 12.0759

lnCH4 × lnN2O -0.8298 0.1157 -7.1746

lnCH4 × lnCO2 0.1944 0.0444 4.3745

lnN2O× lnCO2 -0.3197 0.0485 -6.5867

t 0.0008 0.0007 1.1008

.5× t2 0.0014 0.0005 3.1274

lnCH4 × t -0.0253 0.0048 -5.2176

lnN2O × t 0.0288 0.0053 5.4602

lnCO2 × t -0.0060 0.0023 -2.6073

Environmental determinants

Constant -1.9292 0.3465 -5.5680

rA 2.0361 0.3424 5.9460

rB 2.0637 0.3419 6.0365

rC 1.8535 0.3407 5.4407

rE 2.1170 0.3421 6.1889

σ2 0.1451 0.0059 24.6330

γ 0.9850 0.0017 589.5926
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4.8.5 Percentage of farms per region belonging to the extensive or

intensive class

Table 4.7: Percentage of farms per region belonging to the extensive or intensive
class.

Class 1 (extensive) Class 2 (intensive)

Region a (mountainous
terrain)

52% 48%

Region b (northern hill
lands)

65% 35%

Region c (tertiary terrain) 45% 55%

Region d (fertile soil terrain) 50% 50%

Region e (dry regions) 70% 30%
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5 Study III – Using ML to identify heterogeneous impacts of AES

5.1 Abstract

Legislators in the European Union have long been concerned with the environ-

mental impact of farming activities and introduced so-called agri-environment

schemes (AES) to mitigate adverse environmental effects and foster desirable

ecosystem services in agriculture. This study combines economic theory with

a novel machine learning method to identify the environmental effectiveness of

AES at the farm level. We develop a set of more than 130 contextual predictors to

assess the individual impact of participating in AES. Results from our empirical

application for Southeast Germany suggest the existence of heterogeneous, but

limited effects of agri-environment measures in several environmental dimensions

such as climate change mitigation, clean water and soil health. By making use

of Shapley values, we demonstrate the importance of considering the individual

farming context in agricultural policy evaluation and provide important insights

into the improved targeting of AES along several domains.

5.2 Introduction

The European Union’s (EU) Common Agricultural Policy (CAP) has recently un-

dergone its sixth major reform. While the EU’s member states are about to adopt

the European Commission’s proposals regarding the post-2020 CAP (European

Commission, 2018a,b,c), consensus prevailed among the main negotiators that en-

vironmental care, climate change action and the preservation of landscapes and

biodiversity should be key elements of the new CAP. Especially the agriculture-

induced loss of insects reported in recent studies (Ewald et al., 2015; Gossner et al.,

2016; Ramos et al., 2018; Seibold et al., 2019) has spurred an intense public debate.

But also indicators on soil erosion (Panagos et al., 2015), nitrate in groundwater,

ammonia emissions (European Environment Agency, 2019b) and pesticide use

(European Environment Agency, 2018) still do not, despite some positive trends,

suggest an optimistic view. This situation is also a matter of concern given that

today, at least 30% of the CAP’s second pillar rural development spending must be

allocated to investments in environmental and climatic sustainability, especially

to AES. Voluntary AES in the context of CAP’s second pillar have shown mixed

success across Europe in terms of meeting environmental targets. Depending on

the specific AES and the indicators under investigation, they have been found to

be either beneficial (Batáry et al., 2015; Bright et al., 2015; Dadam & Siriwardena,

2019; Dal Ferro et al., 2016; MacDonald et al., 2012), ineffective (Bellebaum &
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Koffijberg, 2018; Calvi et al., 2018; Granlund et al., 2005; Kaligarič et al., 2019;

Kleijn et al., 2004), or even detrimental (Baer et al., 2009).

The question of how to adjust the design of AES to improve the delivery of a wide

range of ecosystem services has been studied intensively (see e.g. Armsworth et al.,

2012; Birge et al., 2017; Burton & Schwarz, 2013; Fuentes-Montemayor et al., 2011;

Kuhfuss et al., 2016; Latacz-Lohmann & Breustedt, 2019; Latacz-Lohmann & Van

der Hamsvoort, 1997; Westerink et al., 2017, 2014). More recently, a bundle of

studies focused on (spatial) targeting of AES to improve the (cost-)effectiveness of

such schemes (Desjeux et al., 2015; Früh-Müller et al., 2019; Langpap et al., 2008;

Perkins et al., 2011; Uthes et al., 2010; van der Horst, 2007), which has often been

neglected in past studies. It has been shown that both effectiveness and efficiency

of AES increase if payments are well-tailored and well-targeted in space and time

(Armsworth et al., 2012; Pe’er et al., 2020; Wätzold et al., 2016). This means, to

increase the efficacy of their AE programs, policy-makers could specifically target

farms where they expect a (large) positive treatment effect and adjust schemes

where this is not the case. Typically, many of the above-mentioned analyses are

biased toward an environmental and landscape perspective, and fail to provide a

holistic picture of the targeting problem by ignoring farm-level effects. Studies

that use farm-level data and classical statistical tools such as matching methods

and/or difference-in-difference (DiD) estimators to assess the environmental effects

of AES, on the other hand, only measure average treatment effects (ATEs) and

fail to evaluate possible impacts at the individual level. Bertoni et al. (2020), for

example, apply a conditional DiD coarsened exact matching procedure to estimate

the average treatment effect on the treated (ATT) of three AES during 2007-2013.

Similar DiD matching approaches were used by Pufahl & Weiss (2009), Chabé-

Ferret & Subervie (2013), Arata & Sckokai (2016), Kuhfuss & Subervie (2018),

and Uehleke et al. (2022).

In this paper, we demonstrate the usefulness of a novel machine learning (ML) ap-

proach to measure heterogeneous farm-level effects of AES participation. Besides

the advantage of taking into account farm heterogeneity, ML methods such as the

one used in this study can overcome multiple limitations of econometric and sim-

ulation models related to inflexible functional forms, unstructured data sources

and explanatory variables (Storm et al., 2020). First studies that evaluate pro-

gram participation based on ML methods have recently emerged in various fields

ranging from personalized medicine to customized marketing. Within the field of
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agriculture and natural resources, Rana & Miller (2019) use the Causal Tree algo-

rithm developed by Athey & Imbens (2016) to assess the impact of two community

forest management policies on vegetation in the Indian Himalaya. Deines et al.

(2019) use the generalized random forest (GRF) algorithm to study the effect of

conservation tillage practices in the US Corn Belt based on satellite-derived data.

Further applications include Carter et al. (2019) using GRF to evaluate rural de-

velopment programs in Nicaragua, and Mullally & Chakravarty (2018) applying

LASSO to study the effects of rural business development programs on production

and productivity in Nicaragua. Only recently, Miller (2020) used causal forests to

analyze the impact of quotas on fisheries’ catches around the world.

Following these novel research approaches, we seek to overcome several limitations

of previously used econometric impact evaluation methods by making use of an

innovative ML algorithm to assess the heterogeneous effects of agri-environmental

measures. We demonstrate the merits of this approach for the case of the Ger-

man Federal State of Bavaria in the 2014-2020 CAP programming period. In line

with the environmental priorities for the 2014-2020 CAP Rural Development pil-

lar defined by the European Commission (2013), which mainly target biodiversity

enhancement, improvement of water and soil quality and greenhouse gas emission

reduction, we develop comprehensive indicators for each sub-goal and test the het-

erogeneous AES efficacy for these indicators. While the success of AES largely

depends on a large variety of individual farm characteristics as well as on the bio-

physical and institutional context (Dupraz & Guyomard, 2019), legislators cannot

take account of all individual characteristics of the eligible farms when designing

and targeting AES, e.g. to avoid discrimination, which inevitably leads to ineffi-

ciencies (Dessart et al., 2019; Dupraz & Guyomard, 2019). Given the capability

of our research approach to obtain farm-specific treatment effects, we evaluate

several dimensions according to which policy-makers might target specific farm

groups to improve the efficacy of their AES (location, size, farm typology and

yield potential) by means of Shapley values, a model-agnostic concept stemming

from the interpretable ML literature.

First, farm location is given special attention in this regard. For instance, Pelosi

et al. (2010), Matzdorf et al. (2008) and Früh-Müller et al. (2019) find spatial

inefficiencies in multiple environmental dimensions such as soil health, water qual-

ity and habitat fragmentation. They argue that spatial targeting of AES could

strongly improve their environmental efficacy. Furthermore, the spatial dimension
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of AES is emphasized by Desjeux et al. (2015), Dessart et al. (2019) and Coderoni

& Esposti (2018). Second, farm typology is considered as an important driver

of AES effectiveness (Coderoni & Esposti, 2018; Westbury et al., 2011). Given

their farming context, most farms are bound to specific technologies, which is why

increasing the uptake of farm groups belonging to certain farm typologies is likely

to increase AES efficacy. For instance, Herrero et al. (2016) find that greenhouse

gas mitigation potentials are particularly large in the livestock sector. Thus, tar-

geting specific farm types might lead to higher AES efficacy. Third, farm size, e.g.

expressed by farmed area, as part of farm characteristics should also affect the

AES treatment effect. In terms of extensification, Wuepper et al. (2020) suggest

that small farms cannot easily afford to take land out of cultivation compared with

larger farms. Hence, we would expect a positive impact of farm size on AES effec-

tiveness. Other studies, such as Coderoni & Esposti (2018) and Westbury et al.

(2011) do not find that farm size affects AES effectiveness regarding GHG emis-

sions and extensification, respectively. Since farm size is already used as a target

dimension within the Single Payment Scheme of the CAP (Salhofer & Feichtinger,

2020), this might also be a good option for AES. Fourth, another important

contextual factor is yield potential. Legislators have started to realize that target-

ing farms according to their yield potential might increase their AES-effectiveness

(ART, 2019). To assess how policy-makers can make use of the above-mentioned

contextual variables to improve AES-effectiveness, we answer the following two

questions:

1. How do location, size, farm typology and yield potential affect the impact

size of AES?

2. How can legislators use location, size, farm typology and yield potential to

target specific farm groups?

This allows us to draw conclusions as to how legislators can improve the effec-

tiveness of AES by better targeting their policy measures considering farm-level

characteristics.

The remainder of this article is structured as follows. In Section 5.3, we provide

some background on AES and describe the conceptual underpinnings of the study.

Section 5.4 provides information on the data used in this study, while Section 5.5

refers to the analytical framework. In Section 5.6, we describe and discuss the

empirical findings and their policy implications. The final section 5.7 summarizes

120



5 Study III – Using ML to identify heterogeneous impacts of AES

and concludes the study, also providing promising directions for further research.

5.3 Conceptual framework and background

5.3.1 AES description

Our case study region, the Federal State of Bavaria offers a range of AES as part of

its 2014-2020 rural development program (RDP), which was extended until 2022

due to ongoing CAP negotiations. The individual measures are grouped into two

RDP subprograms, the Nature Conservation Program (Vertragsnaturschutzpro-

gramm, VNP), and the Bavarian Cultural Landscape Program (Bayerisches Kul-

turlandschaftsprogramm, KULAP). While VNP schemes are only to be imple-

mented in pre-defined areas of high nature value, KULAP measures are generally

not directly linked to specific areas and applicable in entire Bavaria.

There are up to 42 individual KULAP schemes and 36 VNP schemes that are

offered within the current RDP. All of the schemes offered in 2014, the year

we focus on, are action-based, i.e. the scheme payments are linked to certain

farming requirements. The superordinate goals of both VNP and KULAP refer to

maintaining/improving biodiversity, water and soil quality and mitigating climate

change. Each category is related with a number of AES, with multiple schemes

being assigned to several environmental goals. Such a multi-target approach is

related to interdependencies between non-marketed goods and services. An AES

restricting the use of mineral fertilizer, for example, contributes simultaneously to

water protection and greenhouse gas emission reduction in the absence of leakage

effects. Sometimes, however, the impacts of certain AES positively affect one

target and adversely affect another target (Knudson, 2009). This relation is linked

to the Tinbergen Rule (Tinbergen, 1956), which states that efficient policy requires

at least as many policy instruments as there are targets, i.e. each instrument

should address a single goal (Huber et al., 2017).

The existing mix of (agri-environment) measures and environmental goals compli-

cates impact evaluations. First, farmers often participate in several AES at the

same time. If, as in our case, only a variable indicating if a farmer participates in

any scheme is given, but no information on the exact type(s) of scheme(s), possible

effects cannot be traced back to a certain sub-scheme. And even if this informa-

tion was available, it would be difficult to unambiguously link effects to specific

schemes given their multitude of goals and combination possibilities (Chabé-Ferret
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& Subervie, 2013). We address this issue in our approach by focusing on the over-

arching aims of the Bavarian agri-environment programs of improving biodiversity,

soil and water quality and reducing greenhouse gas emissions. These goals apply

in the entire federal state. Our analysis allows to identify regions and farm types

that respond strongly and weakly to AES participation in terms of environmental

outcomes. It also provides the basis for linking effect sizes to individual scheme

uptake. In this regard, our approach is in line with existing studies on AES impact

evaluation such as Pufahl & Weiss (2009), Arata & Sckokai (2016), and Mennig

& Sauer (2020).

5.3.2 Production possibilities and farming context

To understand the impact of AES on the environmental performance of farms, it

is useful to think about how they affect farms’ production possibilities. A stan-

dard approach is to assume that all firms share the same production possibilities

(Chambers, 1988). The production possibilities depend on the available resource

or input bundle. Introducing a binding action-based AES typically means limiting

the resource bundle and thus also limiting the production possibilities. Given the

multi-functional nature of farming, this affects both agricultural (e.g. crop and

livestock) outputs as well as ecosystem services (e.g. soil formation, biodiversity,

or climate change) through their joint production (Wossink & Swinton, 2007).

In agriculture, the assumption that production possibilities are the same for all

farms is quite unrealistic for a number of reasons (Tsionas, 2002). For instance,

the available resource bundle and input intensity are at least partially exogenously

determined by the production or biophysical environment (weather, topography,

soil quality etc.), which is defined as features that are physically involved in the

production process (O’Donnell, 2016). Furthermore, given the stationary nature

of farming regarding its location, the institutional environment as well as factor

(e.g. capital, labor, and land) and output market imperfections determine farms’

point of production. This results in farm-specific factor endowments, cultivation

plans and yields. For these reasons, the production possibilities of farms are

usually bound to specific technologies, which cannot be easily switched (e.g. crop

farming vs. livestock farming, or grassland vs. arable farming). Finally, the point

of production depends also on farmer-related characteristics. This includes both

socio-demographics as well as behavioral factors (Dessart et al., 2019).

Bearing the heterogeneous nature of production (possibilities) in mind, Figure 5.1
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provides four stylized cases describing potential scenarios farmers face when de-

ciding to participate in an AES. To avoid undue complexity, only two outputs

are considered, namely composite agricultural goods and environmental services.

Figure 5.1 depicts several production possibility frontiers (PPFs), which illustrate

the combinations of outputs that the farm can produce.

All points on or beneath the curve are feasible. The optimal point of production

is where the iso-revenue line (IR), which depends on the marketed output and

its price, is tangent to the PPF. Since there is no price explicitly assigned to

environmental services, the IR is horizontal. Here, a complementary-competitive

relationship between agricultural and environmental outputs is assumed such that

(at least) the range close to the Y-axis is convex (Sauer & Wossink, 2013a; Wossink

& Swinton, 2007).1

Action-based AES are part of the production environment and usually require cer-

tain behaviors that restrict the available PPF of a farm (see Section 5.3.1). Hence,

a farm faces a decision between two potential PPFs, whose shape and location are

determined by the above-mentioned farm-specific contextual factors. PPF0 is the

PPF with no AES restrictions. PPF1 is the PPF with AES restrictions. In the

case of Fig. 5.1a, the farm decides to produce either at point A0 (no AES) or A1

(AES). Hence, the farm foregoes agricultural output2 for environmental output

(Y ) when participating in the AES. The difference between the two potential

environmental outputs Y1 and Y0 is the treatment effect of participation.

Fig. 5.1b shows a situation of an inefficient farm producing beneath the potential

PPFs. Participating in the program does not change its point of production

and therefore Y1 = Y0. The direction to the PPF is also context-specific and

endogenously determined by the farm (Färe et al., 2013). Fig. 5.1c depicts a

situation, in which the AES does not shift the PPF and participation in the

program does not change the point of production A. In Fig. 5.1d the AES changes

the PPF such that the Y1 − Y2 is negative, which means an adverse participation

effect.3 Scenarios 2 and 3 describe a situation, in which farms profit from a windfall

1A typical example where a marginal increase in ecosystem services leads to increased agri-
cultural output would be the cultivation of cover crops, which helps avoid soil erosion while at
the same time enhancing soil fertility. The same reasoning as presented here can also easily
be applied to supplementary and competitive relationships (see e.g. Sauer & Wossink, 2013a).
Appendix 5.8.1 illustrates two straightforward versions of these cases.

2We assume the program compensates adequately for this loss. Otherwise, a rational farmer
would not sign up for the program.

3This case is most likely if there is a negative trade-off effect of an AES in terms of different
environmental outcomes. E.g. a measure has an additional effect on land use diversity but
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(a) Desired response to AES participation.
Efficient farm increases production of
desired environmental output from Y0

to Y1 as production possibility frontier
shifts under AES participation.

(b) No output response to AES
participation. Inefficient farm is not
directly affected by a shift of its
production possibility frontier under
AES participation.

(c) No output response to AES
participation. AES does not shift the
production possibility frontier of the
efficient farm.

(d) Adverse response to AES participation.
Efficient farm decreases production of
desired environmental output from Y0

to Y1 as production possibility frontier
shifts under AES participation.

Figure 5.1: Stylized cases reflecting the potential impact of AES participation
under heterogeneous production possibilities with one agricultural
and one positive environmental output. Action-based AES change
the resource and input bundle of farms, thus changing farms’
production possibilities. Hence, farmers face two potential
production possibilities, of which only one can be realized.
Depending on individual farm, institutional, and environmental
characteristics, the shape and location of the PPF varies across
farms. As no price is assigned to environmental outputs, iso-revenue
lines are horizontal. Under the assumption of a fixed resource and
input bundle, an efficient farm produces at the point where the
iso-revenue line (IR) is tangent to the PPF.
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effect, i.e. they receive an environmental subsidy without having to adjust their

agricultural practices. Scenario 4 can be seen as a worst-case-scenario as farms

receive compensation although their environmental service declines. Scenario 1

represents the expected effect by policy-makers. As the AES is not designed to

match the individual production environment, all four cases can occur depending

on the heterogeneous farming context (see also Sec. 5.4.3).

The same line of argument concerning the production possibilities and farming con-

text carries over to the farm’s decision to enter the program. If the opportunity

cost of providing ecosystem services is covered by the program’s compensation,

we expect a farm to enter given their farming context (Sauer & Wossink, 2013a).

This context determines the provision of environmental services through altering

opportunity costs, i.e. the revenue foregone by providing non-marketed goods and

services. Consequently, for some farms the payments for specific AES, which are

generally the same for all farms, will be too low to participate, while others might

not face opportunity costs as even in the absence of the scheme their farm manage-

ment would have been the same. Generally, the farming context determines if the

opportunity cost of program participation is covered by the AES compensation

and hence if a farm enters the program.

5.3.3 Conditional average treatment effects

Section 5.3.2 points out that the treatment effect of AES is expected to vary across

farm households. Although acknowledged by many previous studies on the sub-

ject, most of them could only estimate average effects on the basis of traditional

statistical methods. Our approach, however, is based on the conditional aver-

age treatment effect (CATE) that allows to obtain individualized AES treatment

effects.

Having two potential outcomes Y 0 and Y 1 (see Figure 5.1), we embed the prob-

lem into the Rubin causal model (Neyman, 1923; Rubin, 1974). Suppose a set

of i.i.d. farm households i = 1, . . . ,n, for which we observe (Xi,Yi,Di), where

Xi = x ∈ R
p is a vector of p features4, describing the individual farming context

and containing all determinants of Y 0 and Y 1 as well as the determinants of the

participation decision.5 Yi ∈ R is the outcome variable of interest (e.g. an indica-

adversely affects greenhouse gas emissions.
4The term feature corresponds to "coavariate" in the traditional econometric terminology.
5By this formulation, we allow for the fact that all variables in the model might possibly

be confounding factors. Thus, we avoid making a priori assumptions as to which variables are
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tor reflecting environmental performance), and Di ∈
{

0, 1
}

is the policy dummy

for participation and non-participation in AES. Given the potential outcomes Y 0
i

and Y 1
i , for each farm i that is (uniquely) characterized by its feature vector x,

we wish to estimate the CATE: τ (x) = E

[
Y 1

i − Y 0
i | Xi = x

]
. However, following

Holland (1986), it is impossible to observe the effect for more than one treatment

on a subject. Hence, we can only observe realization Yi = Yi(Di). Without fur-

ther assumptions, it is impossible to identify the CATE τ (x). Therefore, we invoke

the conditional independence assumption (Rubin, 1977), i.e. Di is independent

of unobservable features conditional on Xi: Y 1
i ,Y 0

i ⊥⊥ Di | Xi. Furthermore, we

assume common support to rule out perfect predictability of program participa-

tion, i.e. individuals with the same X have a positive probability of being both

participants and non-participants: 0 < P (Di = w | X) < 1. We then define

the propensity score e(x) = P [Di = 1 | Xi = x] for the probability of being as-

signed to the treatment conditional on X, and m(x) = E[Yi = y | Xi = x] for

the expected outcome conditional on X. Given the aforementioned assumptions,

and based on the findings by Robinson (1988) and Chernozhukov et al. (2018),

Athey et al. (2019) argue that the CATE can be identified by the simple outcome

model Yi = τ (x)Di +m(x) + ǫi. Transforming this into a residuals-on-residuals

regression (Chernozhukov et al., 2018), we obtain the following estimator:

Yi − ˆm(x) = τ (x)
(
Di − ˆe(x)

)
+ ǫi (5.1)

where ǫi is a random error term. One advantage of using this residual-on-residual

approach is that it makes the parameter estimate (τ) insensitive to small errors

in the formulation of m(x) and e(x), thus improving its robustness (Athey et al.,

2017; Chernozhukov et al., 2018). Furthermore, it is a "doubly robust" estima-

tor. Doubly robust estimators are unbiased if one specifies at least one of the

nuisance models correctly (i.e. the treatment e(x) and outcome model m(x))

(Chernozhukov et al., 2018). Hence, this estimator is effectively a debiasing rou-

tine, which should yield a robust parameter estimate of the CATE τ under the

given assumptions.

5.4 Data and variable description

In our analysis, we mainly rely on farm accountancy data for the German fed-

eral state of Bavaria. Located in the southeast of Germany, Bavaria belongs to

confounding factors.
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the core regions of agricultural production within the EU. Its heterogeneous nat-

ural conditions are well-suited for various agricultural production systems such

as crop farming, intensive and extensive dairy farming, pig and cattle fattening

and breeding, poultry farming, vegetable farming, orcharding, hop production and

viticulture. This heterogeneity of farming systems represents to some extent the

European agricultural sector and is reflected by a broad variety of Bavarian AES.

We chose to analyze data from 2014 as the first year of the then new CAP period.

Our data are part of the European Farm Accountancy Data Network (FADN)

with a sample size of 2758 observations. We do not restrict the dataset to specific

farm types. However, organic farms are excluded from the analysis due to their

distinctly different farming approach compared to conventional farms. The sample

is stratified with respect to farm location, size classes, and specialization of the

farms. In addition to financial records, the dataset contains information about, for

example, the cultivation plan, yields and socio-economic information such as the

educational level of the farm manager, the number of household members or the on-

farm labor structure. We match the farm accountancy data to official agricultural

support data containing information about farm-specific scheme participation as

well as to secondary data at the county-level to retrieve further information on

the socioeconomic, spatial and structural environment of the farms.

5.4.1 AES indicator

For our empirical analysis, we use a binary treatment variable, which takes on a

value of 1 if a farm participated in an agri-environmental scheme in 2014.6 Farms

that did not participate were assigned a value of 0 for the treatment variable D.

For Bavaria, we find that 1641 farms participated in an AES in 2014, while 1117

did not. As outlined in Sec. 5.3.1, we choose a generic binary AES indicator

for two reasons. First, our data does not contain detailed information on indi-

vidual sub-schemes. Second, even with this information, it might be impossible

to unambiguously determine CATEs for individual sub-schemes because they are

inherently inseparable (Heiler & Knaus, 2021).

5.4.2 Environmental indicators

In order to assess the environmental performance of the sample farms, we make

use of four comprehensive, well-established environmental farm-level indicators to

6Detailed information about AE schemes in Bavaria can be found in Appendix 5.8.2.

127



Agricultural production and environmental change

properly evaluate the four domains of more environment-friendly farming practices,

namely soil and water health, biodiversity, and GHG mitigation.

First, within the soil/water domain and following studies such as Uehleke et al.

(2022) and Arata & Sckokai (2016), we select fertilizer and pesticide intensity as

environmental outcome variable, which we define as expenses in AC per hectare of

land. Second, we seek to assess farm-level (bio-)diversity by means of the Gini-

Simpson diversity index (gi) containing all managed land use types in the dataset

and calculated by the following formula:

gi =

(
1−

∑

k

s2
ik

)
× 100 (5.2)

where sik stands for the share of land-use type k on farm i. The higher the value

for the Gini-Simpson index is, the greater is the land use diversity of a farm. Stud-

ies show that the more heterogeneous landscapes are, the higher is their provision

of a multitude of environmental services such as enhanced soil nutrient cycling,

mineral retention, regulation of pests and pathogens, as well as an improvement

in pollination and water quality (see e.g. Brussaard et al., 2007; Smukler et al.,

2010; Tomich et al., 2011). There is also some evidence that they are a key deter-

minant of biodiversity (Benton et al., 2003). Third, regarding the climatic impact

of agriculture, we use the farm-level carbon footprint index developed by Baldoni

et al. (2017). Their greenhouse gas inventory approach exploits relevant activity

data regarding various emission sources, which is contained in the farm accoun-

tancy dataset. These activity data are then multiplied with the respective regional

emission factors contained in Haenel et al. (2018). This method closely follows

the recommendations of the Intergovernmental Panel on Climate Change (IPCC)

and allows for a farm-level assessment of the three most important greenhouse

gases in agriculture, namely methane, nitrous oxide and carbon dioxide stemming

from various farming activities (compare Baldoni et al., 2017; Coderoni & Esposti,

2014, 2018).7 Descriptive statistics for the four indicators can be found in Ta-

ble 5.1. While we find lower levels of fertilizer and pesticide intensities as well

as a higher diversity index on average for the participating farms, they unexpect-

edly emit more GHG emissions than the control group. One explanation for this

could be that treated farms are on average larger (in terms of whole-farm value

7To combine GHG emissions in one indicator, methane and nitrous oxide emissions were
converted to CO2eq. To that end, N2O and CH4 quantities were multiplied by their respective
global warming potentials (34 and 298, respectively) as per the IPCC’s Fifth Assessment Report
(IPCC, 2013), considering the inclusion of climate carbon feedback and a 100-year time horizon.
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added and farm land). Other than the first three indicators, GHG emissions are

measured in absolute numbers8, which is why this pattern might occur.

Table 5.1: Descriptive statistics - ecological responses.

Treated Untreated Entire sample

(N=1677) (N=1081) (N=2758)

Domain Indicator Mean SD Mean SD Mean SD

Soil/water Fertilizer inten-
sity (Euro/ha)

186.69 90.73 205.03 95.16 194.12 92.97

Soil/water Pesticide inten-
sity (Euro/ha)

120.19 99.62 121.13 105.46 120.57 102.01

Biodiversity Gini-Simpson in-
dex (0-100)

67.23 21.27 63.65 19.14 65.78 20.51

Climate GHG emissions
(t CO2eq)

469.39 370.8 411.01 334.21 445.75 357.52

5.4.3 Features

As outlined in Section 5.3.2, the effect of the participation in AE schemes depends

on a multitude of factors. We identified the following domains, according to which

the treatment effect may vary for their influence on farms’ production possibilities:

• Resource bundle and input intensities (e.g. Tsionas, 2002)

• Output bundle (e.g. Sauer & Wossink, 2013a; Wossink & Swinton, 2007)

• Farm and farmer characteristics (e.g. Dessart et al., 2019)

• Biophysical environment (e.g. Desjeux et al., 2015; O’Donnell, 2016)

• Institutional and market environment (e.g. Landini et al., 2020)

The individual heterogeneity domains are described by a rich set of observable

covariates, which are depicted in Table 5.2.9 Due to the strong nonlinear mapping

and adaptive prediction functionality of random forests (RFs), we do not have to

arbitrarily aggregate covariates. This is a clear advantage of the ML approach

compared to more traditional parametric models. The richness of the variables in

our model allows us to capture the real-world complexity of farms very well, which

is likely to influence both the propensity of participating in an agri-environmental

8This is because the absolute atmospheric pressure must be reduced to be effective. In
contrast, pesticides and fertilizers, have mostly a more local effect, which is why they are measured
per unit of land (i.e. ha).

9Descriptive statistics of the whole feature set can be obtained from the authors upon request.
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scheme as well as the effect size itself. Compared to more traditional econometric

techniques, this is a clear strength of the machine learning algorithm.

Input intensities and the farm-specific resource bundle are described by a com-

bination of land use, labor, materials and capital. Furthermore, our empirical

strategy allows to include the complete cultivation plan and livestock count of

each farm. Next, the output bundle is described by a total of ten different output

variables. Farm and farmer characteristics include, among other variables, farm

type, decoupled subsidies, value added, farmers’ age and education as well as yield

data approximating farmers’ productivity levels and management capacities. The

primary proxy for the locational setting of the farm is described by a county in-

dicator variable. Furthermore, the biophysical environment is further described

by a yield index unit describing the farm-level soil quality and yield potential

for each farm and information on the altitude. The institutional and market en-

vironment is further approximated, e.g., by county-level land rental prices (land

market), unemployment rate and population density (labor market). As stated

earlier, special attention will be given to the four targeting dimensions, namely

farm size, i.e. total land, farm type10, yield index unit as well as farms’ location

(approximated by county affiliation).

The fact that the analysis is bound to cross-sectional data gives rise to two po-

tential sources of endogeneity. First, we cannot control away time-constant un-

observed heterogeneity through fixed or random effects. We address this issue

in Section 5.5.3. Second, looking at Table 5.2, many covariates describing the

individual production possibilities might already be influenced by the treatment

itself, thus inflicting post-treatment bias by controlling away for the consequences

of treatment (King & Zeng, 2006; Montgomery et al., 2018; Wooldridge, 2005). To

shut this feedback path between treatment and controls, we use long-term average

values from the previous AES period (2007-2013) to describe the farming context

for all covariates reflecting the resource and input bundle, the output bundle, and

farm characteristics, which might all be directly affected by AES participation

itself.

The implementation of the causal forest is designed for complete data. As there

10Specialized farms (dairy, pig and crop) are assigned to the respective farm type if the output
share of their characteristic produces exceed 66% in total revenues (milk, cattle, poultry, fattening
pigs, grains). As for mixed farms (i.e. crop-livestock systems), no primary product accounts for
more than 66 % of total revenues.
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Table 5.2: Description of the predictor space for the estimation of the causal
forest.

Heterogeneity Domain Predictors

Resource bundle & input intensity

– Land use Total land (ha), rented land (ha), own land (ha),
arable land (ha), grassland (ha), share rented land
(0-1), share grassland (0-1)

– Labor (man-work units) Total on-farm labor, family labor, hired labor, labor
intensity (AC/ha)

– Materials and capital (AC) Seed expenditure, feed expenditure, capital expen-
diture, capital intensity (AC/ha), feeding intensity
(AC/ha)

– Cultivation plan (ha) Winter wheat/spelt, spring wheat, durum wheat,
rye, winter barley, spring barley, oat, winter ce-
real mixture, spring cereal mixture, grain maize,
corn cob mix, triticale, other cereals, field beans,
feed peas, other feed legumes, other legumes, win-
ter canola, spring canola, sunflowers, soybeans, lin-
seed, other oilseeds, energy corn, energy cereals, en-
ergy legumes, energy oilseeds, energy beets, pota-
toes, sugar beet, cabbage+, leafy vegetables+, fruit
vegetables+, asparagus+, other tubers+, legume
vegetables+, other vegetables+, tobacco, grass seeds,
other seeds+, minor plants (e.g. medicinal plants),
other energy plants, other renewable resources,
ground ear maize, feed root crops, clover, cover
crops, temporary grassland, permanent grassland,
alpine pasture, cereal forages, hops, set-aside land,
set-aside land (minimum 10 years), fallow

– Livestock count Light horses, heavy horses, male beef, dairy cows,
suckler cows, calves, heifers, male cattle, weaners,
fattening pigs, sows, boars, sheep, pullets, laying
hens, broilers, poultry

Agricultural output bundle (AC) Cereals, canola, potatoes, sugarbeet, other plants,
milk, pigs, cattle, livestock total, crop total

Farm characteristics Farm type, whole farm value added (AC), value added
per ha (AC/ha), Full time farm (yes/no), age (years),
agricultural education (none, low, high), Milk yield
(liters/cow), potato yield, winter wheat yield, spring
wheat yield, grain maize yield, canola yield, gen-
eral pulses yield, bean yield, fodder plant yield,
rye yield, winter barley yield, spring wheat yield,
oat yield, triticale yield, pea yield, sugarbeet yield,
silage maize yield

Biophysical environment Administrative units (counties), yield index unit, al-
titude (<300m, 300-600m, >600m )

Institutional environment and markets Administrative units (counties), GDP per capita
(AC), gross value added in agriculture (mio.
AC), unemployment rate (%), population density
(habit./km2), land rental price (AC/ha)

+ Field cultivation
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are very few missing values in the dataset, we impute the missing data points

by means of fully conditional specification using Breiman’s RFs as described in

Doove et al. (2014).

5.5 Analytical framework

5.5.1 Using causal forests to estimate the CATE

Following the residual-on-residual approach from Sec. 5.3.3, to obtain the CATE

estimate τ (x) (Eq.5.1), both environmental outcome m(x) and participation prob-

ability e(x) must be predicted in a first step. One possibility to obtain such es-

timates would be to estimate a parsimonious parametric model. However, this

model would likely be inappropriate in high-dimensional settings11. For that rea-

son, Athey et al. (2019) suggest RFs to estimate m(x) and e(x) and finally also

τ (x).

RFs, a concept developed by Breiman (2001), are basically an ensemble of re-

gression or classification trees (CART), which are grown based on recursive par-

titioning such that the feature space is divided into binary nodes according to

an optimality criterion (e.g. many standard regression tree implementations split

by minimizing the in-sample prediction error of the node (Breiman et al., 2017))

until the final nodes (aka leaves) contain a number of observations greater than

a given minimum. The average outcome of such a leaf is then the prediction for

the observations contained in that leaf. RFs make predictions in the form of an

average across predictions b = 1, . . . B of such CARTs, each of which is grown on

a training sample, i.e. a random subsample of the data. Based on that, Athey &

Imbens (2016) and Wager & Athey (2018) formally establish asymptotic normal-

ity for regression trees and RFs through honest splitting of trees, i.e. the training

sample is split into two parts, one part is used to train the tree and the other part

is used to predict the outcome of interest.

Athey & Imbens (2016) demonstrated how treatment effects could be computed

based on regression trees by means of an adjusted splitting rule by the finding that

squared-error minimizing splitting is equivalent to maximizing the heterogeneity

across child nodes. Wager & Athey (2018) build upon these findings and introduce

causal forests that average the tree-based effects for each individual over a large

11If we assume that the true relationship between, e.g. outcome and features is rather complex
and contains many features, linear models usually fail to grasp high-dimensional interactions and
nonlinearities and are prone to model misspecification and variance inflation.
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set of trees. Athey et al. (2019) generalize these findings to a broader context

of estimation methods, in that they regard RFs not as an ensemble method (aka

averaging the results of multiple trees) but as an adaptive kernel method, e.g.

some outcome Yi could be predicted by means of f̂(x) =
∑n

i=1 αi(x)Yi, where

αi(x) is a data-adaptive-kernel measuring how often the i-th observation falls in

the same leaf as a test point x. The causal effect specific similarity weights αi(x)

can be obtained by means of a causal forest based on trees that greedily optimize

for treatment effect heterogeneity across child nodes based on a local moment

condition.12 A more detailed description of the estimating strategy can be found

in the Appendix 5.8.3. The weights are formally defined as:

ai(x) =
1

B

B∑

b=1

1 ({Xi ∈ Lb(x), i ∈ Sb})
| Lb(x), i ∈ Sb |

(5.3)

where Lb(x) is the leaf of the b-th tree that contains the test point x and Sb

denotes the subsample used to grow the b-th tree. Athey et al. (2019) show that

after growing a causal forest to obtain the forest weights αi(x), the locally weighted

estimator for the treatment effect τ̂ (x) is

τ̂ (x) =

∑n
i=1 α(x)

(
D̃i − D̄α

) (
Ỹi − Ȳα

)

∑n
i=1 α(x)

(
D̃i − D̄α

)2
(5.4)

where Ỹi = Yi − m̂(x)oob and D̃i = Di − ê(x)oob13, D̄α =
∑n

i=1 α(x) D̃i and

Ȳα =
∑n

i=1 α(x) Ỹi. From (5.4) it becomes apparent that the heterogeneity of the

conditional treatment effect fundamentally stems from the causal forest weights

αi(x).14

What is more, by using an orthogonalized causal forest (see Appendix 5.8.3 Eq.

5.8) in the spirit of Eq.5.1 and obtaining estimates for the propensity scores ê(x)oob,

the estimator (5.4) is robust to potential confounding effects. This makes the

presented procedure well-suited to analyze observational data.

Athey et al. (2019) show that valid confidence intervals for causal forest estimates

can be obtained by means of the ’bootstrap of little bags method’, where basically

12Athey et al. (2019) found that the causal forest (Wager & Athey, 2018) can be seen as a
special case of the GRF for a binary treatment variable. Therefore, the terms causal forest and
GRF are used interchangeably throughout this thesis.

13oob denotes out-of-bag predictions, i.e. these predictions are generated by using only the
portion of trees that do not have that data point in the respective subsample used to generate
the predictions.

14Basically, these weights could also be computed using traditional k-NN estimates. However,
k-NN is limited in the sense that it does not distinguish with respect to feature importance. As
RFs are data-adaptive and thus prioritize high-signal features, it is better-suited to yield precise
weights in a high-dimensional feature space (Athey et al., 2019).
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small groups of trees are trained and their predictions are then compared within

and across groups to estimate the variance. For a more technical description of

the method, see Sexton & Laake (2009).

5.5.2 Model specification

In a first step, we fit a propensity forest to estimate the predicted propensity scores

ê(Xi)oob of each farm i. We specify the number of trees to 5000 in order to obtain

stable estimates in the sense that they yield the same predictions if we grow forests

of the same size on the same data set. We perform parameter tuning on this forest

to improve overall model performance (James et al., 2021), i.e. the minimum

number of observations in each tree leaf, the fraction of the data used for the

subsample to build each tree, the number of variables tried for each split, as well

as split balance parameters are chosen by means of cross-validation. As mentioned

in Section 5.5.3, by using a high-dimensional set of predictors, we are confident

to obtain reliable propensity scores that largely capture background differences

between participants and non-participants and serve as proxies for features that

were not included (Rana & Miller, 2019) such that the unconfoundedness condition

appears to be satisfactorily plausible in this setting.

Second, we estimate a separate regression forest for every environmental indica-

tor to obtain m̂(Xi)oob. Again, we determine the hyper-parameters of the forest

through tuning and train 5000 trees. Third, given ê(Xi)oob and m̂(Xi)oob, we can

train a causal forest to obtain heterogeneous treatment effects (HTE, τ̂) for each

environmental outcome. As this forest yields the final estimates of interest, we

are more stringent in terms of the prediction stability and fit 100,000 trees for

each environmental indicator. By doing this, we guarantee that the excess error –

measuring the stability of our estimates – is negligibly small (Wager et al., 2013).

Furthermore, as before, we use hyperparameter tuning using cross-validation to

improve the performance of the algorithm.

5.5.3 Latent confounders and omitted variable bias

One major criticism of the identification strategy presented in Section 5.3.3 is un-

doubtedly the selection-on-observables assumption, i.e. the heterogeneous treat-

ment effect is only identified if all relevant confounders are observed by the re-

searcher (see also a graphical visualization in Figure 5.8 in the appendix). Other-

wise, the estimates will be biased due to unobserved omitted variables that are
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correlated with both treatment and outcome (DiPrete & Gangl, 2004). Here, we

rest upon recent advances in the causal ML literature (Bennett & Kallus, 2019;

Kallus et al., 2018; Louizos et al., 2017; Wang & Blei, 2019) and make the case

that, by using RFs, we may tackle endogeneity bias stemming from unobserved

heterogeneity although we do not include all potential confounding factors directly.

The reasoning behind this is as follows (see also Figure 5.9 in the appendix). The

nonlinear, highly-complex combination of a high-dimensional set of the observed

potential confounding features X serves as an approximation of the unobserved

confounding factors and is able to represent the latent covariate space to a certain

degree, which remains unobserved to the researcher. One classical example for a

latent confounder in the context of AES is farm managers’ attitude toward the

environment, affecting both the participation decision as well as environmental

outcome.15 Through the nonlinear, high-dimensional combination of a large num-

ber of observed proxy features (X) such as farming conditions (e.g. agri-climatic

regions, yield potential, altitude), county-level settings, farm type, farm size, land

and capital use, labor structure, education and productivity indicators such as

milk yield (compare Section 5.4)16, we argue that the causal forest through its

complex structure is able to capture (a lot of) the variation coming from this

unobserved confounder space.17 RFs are very effective at uncovering such latent

structures (similar to neural networks). Such a representation is not possible with

conventional regression techniques, which are only able to assess an often linear,

low-dimensional feature space, and which therefore are not able to approximate

the latent space sufficiently.

The assumption that causal forests are able to approximate well omitted variables

might thus be one response to tackle the unconfoundedness condition. Note, in

order to effectively mitigate omitted variable bias, we rely on the assumption that

all relevant information is latently contained in our observed data. If there was a

completely different group of confounding variables that are not contained in the

included confounders, our estimates might still be biased (see also Figure 5.10 in

15Another example for such a confounder would be managerial ability.
16A multitude of studies found a close association between environmental attitude and ob-

served characteristics (Borges et al., 2015; Farr et al., 2018; Featherstone & Goodwin, 1993;
Prokopy et al., 2019, e.g.). In line with this, Austin et al. (2001) find that (environmental)
attitudes and managerial ability are manifested in (observable) management practices.

17In practice, this means that if two observations end up in the same leaf of a RF that splits
several times on the above-mentioned features,these two observations have a (nearly) identical
attitude toward the environment. We assume that miscellaneous variation in the latent variable
is idiosyncratic and has low to no signal.

135



Agricultural production and environmental change

the appendix). To test the sensitivity of this latent variable assumption, we suggest

a range of robustness checks testing the stability of our model to omitted variable

bias coming from unobserved confounding factors. These imply several placebo,

leave-p-confounders-out tests and the simulation of additional confounders under

different correlation structures. A detailed description of the sensitivity checks

can be found in the appendix (5.8.6).

5.6 Empirical results and discussion

5.6.1 AES program uptake and indicator prediction

The trained propensity forest yields plausible propensity score estimates (Fig-

ure 5.2, panel A). The scores are bounded between 0.27 and 0.86. We do not

find any propensity that is very close to 0 or 1. This is still true if we regard

the uncertainty of our estimates by including their 95% confidence intervals (Fig-

ure 5.2, panel b)). To be consistent with theory, we remove those observations for

which the overlap assumption is not fulfilled, which make up 0.8% of the sample

(=23 observations). The most important features18 for predicting the propensity

scores can be found in Appendix 5.8.7. Especially land-related features seem to

play a considerable role in determining the propensity scores, which is in line with

previous findings in the literature (e.g. Arata & Sckokai, 2016; Mennig & Sauer,

2020; Pufahl & Weiss, 2009). The GRF algorithm selected overall 108 features for

estimating the propensity scores.

The same set of features as above was used to train the regression forest for the

environmental indicators. Feature importance of the environmental outcome vari-

ables (m̂(x)) are summarized in Appendix 5.8.8. Especially the share of grassland

as well as crop and livestock outputs produced appear to be recurring important

determinants of these indicators.

5.6.2 Heterogeneous Treatment Effects of AES

Estimated treatment effects seem to vary considerably across farms for all four

indicators as depicted in Figure 5.3, thus indicating that the environmental effects

of AES are indeed heterogeneous across farms. Table 5.3 summarizes the partici-

18Feature importance is defined in terms of the number of splits on a feature. For instance,
if the feature importance value of a variable is 0.16, it means that the causal forest spent 16%
of its splits on that variable. This measure should not be interpreted in a causal fashion, e.g., a
feature with low importance is not related to propensity. This is because if two covariates are
highly correlated, the trees might split on one covariate but not the other. If one was removed,
however, the tree might split on the other.
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Figure 5.2: Summary of the propensity scores obtained from the step-1
propensity forest.

Figure 5.3: Causal forest result: Distribution of the HTE estimates for the four
environmental indicators.

pation effects on the different environmental outcomes (see also App. 5.8.10 and

App. 5.8.11).

As for greenhouse gas emissions, approx. 30% of the observations show the ex-

pected negative sign (Figure 5.3, upper left panel; Table 5.3). Surprisingly, a large

majority of treated farms seem to have increased their emissions. Yet significant

GHG effects could only be detected in 4.4% of all cases. Significant emission

growth as a consequence of scheme participation on the other hand amounts to

around 12 tons per farm. Expressed in terms of the average farm-level GHG

emission quantity in 2014 (Table 5.1), this means an increase by 2.6%. As stated

earlier, however, most farms in the sample do not show any significant treatment

effect concerning GHG emissions. Different results were obtained by Dal Ferro
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et al. (2016), who found a slight decrease in GHG emissions as a result of AES.

In light of the low GHG effects discovered in our study and the fact that the

thematic coverage of AES was extended to climate objectives following the 2009

CAP Health Check and that in the current funding period AES are even referred

to as ’agri-environment-climate schemes’, emphasizing current and future climate

change mitigation and adaptation efforts, the design of the measures needs to be

reconsidered.

Table 5.3: The impact of agri-environment schemes on different environmental
indicators.

Environmental Indicator

GHG
Emis-
sions
(t)

Fertilizer
Inten-
sity
(Eu-
ro/ha)

Pesticide
Inten-
sity
(Eu-
ro/ha)

Land
Use
Diver-
sity
(In-
dex)

Full sample

Mean treatment effect 3.57 -9.37 -1.41 1.06

SD treatment effect 7.86 6.02 6.44 0.89

Precentage of N with treatment effect < 0 29.4 93.7 61.7 15.0

Precentage of N with treatment effect > 0 70.6 6.3 38.3 85.0

Subsample 1 (Treatment effect < 0 at 95% confidence level)

N 6 908 183 28

Share in full sample (%) 0.2 33.2 6.7 1.0

Mean treatment effect -10.79 -14.30 -10.28 -0.94

SD treatment effect 1.77 4.15 3.36 0.20

Subsample 2 (Treatment effect > 0 at 95% confidence level)

N 114 0 18 1511

Share in full sample (%) 4.2 - 0.7 55.3

Mean treatment effect 12.04 - 6.62 1.60

SD treatment effect 4.70 - 3.05 0.49

In terms of fertilizer expenditures per hectare (Figure 5.3, upper right panel), we

find significant reduction effects in around 33% of the cases, and 94% show the ex-

pected sign, giving strong indication for a positive impact of AES (Table 5.3). The

effect size varies from -31 to +18 AC/hectare. Among the farms that show a signif-

icant reduction in fertilizer expenditures, we find an average effect of -AC14. Given

a price of 0.906 AC/kg of pure nitrogen in 2014, this is equivalent to a decrease of 13

kg of pure nitrogen per ha (neglecting other fertilizers). The reduction effect we

found seems to match priorities set in Bavarian agri-environmental policy. Other
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studies that do not consider farm heterogeneity in their assessment found more

pronounced treatment effects with respect to fertilizer expenditures, e.g. Pufahl

& Weiss (2009), Arata & Sckokai (2016), Uehleke et al. (2022) for the period be-

tween 2000 and 2006. With respect to pesticide intensity (Figure 5.3, bottom left

panel), we find that 62% of sample farms show the expected reduction response.

Out of these, however, only 6.7% are statistically significant (Table 5.3), which is

indicative of the fact that AES might not have a large impact on pesticide expen-

ditures per hectare. While Pufahl & Weiss (2009) find a significant ATT of AES

on pesticide expenditure, our results are rather in line with the findings of Arata

& Sckokai (2016), who do not find a significant treatment effect of AE schemes on

pesticide intensity between 2003 and 2006 in Germany. The fact that our result

suggests no to very little effect of environmental subsidies on pesticide expendi-

tures per ha does not necessarily mean that they do not promote a reduction in

the impact of pesticides on the environment. According to Möhring et al. (2019),

quantitative pesticide indicators – such as the one used in this study – might fail to

identify pesticide use patterns with the greatest risks for the environment. Finally,

we find a positive effect on land use diversity for nearly all observations (Figure 5.3,

bottom right panel). However, a significantly positive impact could only be found

for 55% of all cases (Table 5.3). Considering a mean diversity score of approx. 66

(Table 5.1), the mean heterogeneous treatment effect of just above one appears to

be very small. Likewise striking is that, spatially, regions with high uptake rates

of measures aiming at diversifying crop rotations are not always identical with

regions where the land-use diversity effect size is high – a situation which might

indicate that the payments suffer from windfall effects (compare Sec. 5.3.2). Our

results support findings on adverse participant selection and demonstrate that

there is ample room to improve the schemes’ efficiency. Besides revising the tar-

geting of these subsidy payments as one way to achieve this goal (compare Section

5.6.3), the policy design of such measures could also be improved by moderating

payments depending on the farmers’ opportunity costs, increasing monitoring and

strongly penalizing non-compliance (Gómez-Limón et al., 2019b; Latacz-Lohmann

& Breustedt, 2019). Tailored payments, however, need to be accompanied by the

efforts of farm advisors in order to increase uptake rates in regions where the

scheme effect is shown to be high (Ferraro, 2008; Schomers & Matzdorf, 2013).

Descriptively, all environmental indicators point toward heterogeneous treatment

effects. To measure the impact heterogeneity statistically, we applied an omnibus
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test for treatment effect heterogeneity (Athey & Wager, 2019) for all four envi-

ronmental outcomes (see Appendix 5.8.12). Clear evidence for treatment effect

heterogeneity could be found for land-use diversity. This is not surprising since we

found a rather large portion of significant effects for this indicator, while we only

found a relatively small fraction of significant effects for fertilizer and pesticide

intensity and GHG emissions. However, as noted by Athey & Wager (2019), that

does not necessarily mean that there is no heterogeneity present in these outcomes.

In fact, the finding that there are significant effects for only a small fraction of

observations provides interesting insights by itself, which we would have missed if

we adhered to traditional econometric techniques such as, e.g., linear regression

or propensity score matching. This has also implications for legislation. The fact

that an AES might be (in-)effective, on average, might induce flawed policy conclu-

sions. For instance, an agri-environment program might be abandoned because it

proved ineffective on average, although it might be effective for specific subgroups.

The on average environmental ineffectiveness might as well just be the result of

insufficient targeting. Hence, the ability to evaluate AES participation effects at

the farm-level enables policy-makers to draw more nuanced conclusions.

Next, the locational setting of a farm often determines its farming context to a

large extent, which is why we analyze the spatial heterogeneity of AES. The effi-

cacy of AE schemes, as well as spatial scheme uptake is depicted in four maps in Fig-

ure 5.4. While panel A and B show the spatial distribution of agri-environmental

payments and the share of farms participating in AES respectively, panel C and D

map the portion among all observations that show the desired or undesired effect

for any of the indicators selected. Certainly, such a comprehensive approach look-

ing for any effect for different indicators ignores trade-off relations among environ-

mental categories, however, it helps to easily detect whether an agri-environment

program generally reaches environmental goals.19 As Figure 5.4 demonstrates, this

seems to be the case in most parts of Bavaria. Especially northern and western

districts seem to benefit from AES in terms of environmental outcome. Districts in

the Southern Alpine region and in (North)Eastern Bavaria (‘Bavarian forest’), on

the other hand, where extensive forms of land use dominate, respond less strongly

to AES. In some cases, the portion of observations with statistically significant

adverse effects even reaches values of 30% there. Interestingly, there is a certain

overlap between regions of high support and participation and regions of compara-

19Appendix 5.8.14 contains a complete map including disaggregated indicator-specific results.
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tively low effects. This does not automatically mean that environmental payments

are ineffective in these regions. Species richness for example was found to be rather

high in these grassland-dominated areas and AE schemes might have a positive

impact on biodiversity (Heinz et al., 2015). AES payments might in fact keep

farmers from intensifying land use. However, the support-effect discrepancy can

also point toward the existence of windfall effects and the potential for improved

outcomes. Certain districts in Central Bavaria for instance show relatively low

AES participation rates, but prominent effects. Encouraging farmers in such dis-

tricts to participate in agri-environment measures might result in a higher AES

cost effectiveness. Only looking descriptively at the spatial variance of AES does

not reveal which contextual factors are specifically responsible for the AES treat-

ment effect as different contextual factors are likely to be confounded. However,

fair evidence-based targeting to improve environmental effectiveness requires the

attribution of treatment effects variation to specific contextual factors (see next

section).

Figure 5.4: Spatial distribution (at NUTS-3-level) of A) AES payments per ha
(Source: Früh-Müller et al. (2019)), B) the AES participation rate,
C) percentage of observations for which any desired treatment effect
w.r.t. fertilizer and pesticide intensity (AC/ha), land use diversity
(0-100), and greenhouse gas emissions (t) could be found, and D)
percentage of observations for which any adverse treatment effect
could be found.

Further, to assess the credibility of our analysis, we conducted a series of ro-

bustness tests to evaluate potential model misspecification and ommited variable

bias (OVB). Appendix 5.8.15 provides a detailed summary of the robustness

check results. From these tests, we can conclude that there is little evidence that

our analysis suffers from model misspecification bias. However, some of the tests

assessing OVB suggest that there is the possibility of bias if there exist latent con-
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founders that are not correlated to the observed confounders. Especially if there

were a lot of signal in left-out information due to unobserved confounding, our

results might likely be biased. By simulating unobserved confounding using vary-

ing correlation structures, we find that, for the case of weak correlation structures,

little to no bias in the treatment effect for all indicators except land use diversity.

Also, especially the fertilizer intensity and land use diversity models are sensitive

to stronger confounding and results become increasingly unreliable. The possi-

bility of OVB – if we deviate from our assumption that all relevant information

is latently contained in our observed data – should be taken into account when

interpreting our results.

5.6.3 CATE drivers and targeting

The identification of heterogeneous treatment effects, but particularly of drivers

behind these effects provides policy makers with crucial information when revising

current or drafting new, targeted measures. While the practical applicability of

ML in identifying HTE drivers has long been hampered by difficulties in interpret-

ing models and their predictions, methodological advancements now allow for the

identification and prioritization of features that determine outcomes.

To explain the individual farm-level treatment effect estimates, we make use of

Shapley values (Shapley, 1988), a model-agnostic interpretability concept stem-

ming from cooperative game theory, which is well-suited for complex prediction

models (Lundberg & Lee, 2017; Molnar, 2019; Tiffin, 2019). Concretely, Shapley

values measure the average marginal contribution of an individual variable and its

values across all possible variables. For instance, a positive Shapley value of 0.8

for some feature x leads the individual prediction of the CATE to be higher than

the sample mean prediction of the CATE by 0.8 units.20 This approach allows us

to assess the marginal contribution of treatment effect drivers (Tiffin, 2019) such

as farm size and location, which provides additional insights as to how legislators

could optimally target farms in such a way that the efficacy of AES is improved.

A detailed description and further discussions on the method can be found in

the Appendix 5.8.5 and Molnar (2019). We use Shapley values as suggested by

Štrumbelj & Kononenko (2014) and implemented in the R package ’IML’ (Molnar,

2018).

20In the context of heterogeneous treatment effects, the Shapley value is comparable to the
interaction term effect of treatment and confounder in a in a linear regression. Appendix 5.8.5
contains a more elaborate example on the interpretation of the Shapley value.
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We focused on dimensions which, according to the literature on AES, policy-

makers might target to improve the efficacy of agri-environment measures. To

answer the question of how these factors (yield potential, farm size, farm typol-

ogy, and farm location) affect AES impact size, Figure 5.5 plots the Shapley values

against the respective observed values.21 It clearly shows that the effect size varies

depending on the feature values.

The Shapley values for land use diversity with respect to yield potential, for ex-

ample, suggest that the treatment effect is more prominent for farms with more

favorable natural conditions (indicated by high Shapley values in relation to the

sample average), which might be attributed to the higher number of land use

options available to farmers in high-yield locations. Particularly striking results

were found for the combinations land (i.e. farm size) and greenhouse gas emissions

as well as land and pesticide intensity. In both cases, drops or jumps of Shapley

values, which will be assessed in more detail below, can be observed. Larger farms

participating in AES show a below-average pesticide intensity reduction effect and

a lift of up to 6 tons greenhouse gases compared to the mean treatment effect of

3.57 tons. We assume that these findings are linked to the Bavarian agricultural

structure where large farms (in terms of farmed land) are typically arable farms

with relatively low GHG reduction potential.

Although farm typology seems to drive the effectiveness to a certain extent (Figure

Figure 5.5, top right), it is the contextual dimension under investigation with the

lowest impact on treatment effect size, making it least attractive to be used as

targeting dimension by policy-makers.

In Figure 5.5 (bottom), we plotted Shapley values for environmental outcomes

against counties, with counties on the very left of the axis being located in Central

and Southeast Bavaria and districts along the axis in East, Northeast, Northwest,

West and Southwest Bavaria. Taking the example of the ’Oberallgäu’ county in

the Southwest of Bavaria, we find that being located in this county drives the AES

effect on GHG emissions, fertilizer intensity and increases land use diversity.

To use the information coming from yield potential and farm size in the same

way for targeting as farm type and location, we divided farms into groups based

on their Shapley values for these categories (Figure 5.6). As cutting points serve

21For explorative purposes, the online supplementary material contains a graph depicting the
Shapley values of the full set of contextual covariates.
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Figure 5.5: The effects of selected features on the treatment effect regarding
greenhouse gas emissions, fertilizer and pesticide intensity, and land
use diversity, expressed by Shapley values. They measure the average
marginal contribution of an individual variable and its values across
all possible variables.
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the most prominent intersections of the smooth lines in Figure 5.5 with the x-

axes (= zero contribution). By doing so, we are able to identify heterogeneous

groups with respect to size and yield potential that mark effect size drops or

jumps. E.g., in terms of pesticide intensity, for farms that are smaller than the

threshold of 26 ha, the effect size is approx. 2AC/ha lower (indicated by the positive

Shapley value) than the mean impact as opposed to larger farms, for which the

effect size is increased by 0.3AC/ha. Therefore, it might be a useful strategy for

legislators to target larger farms (>26 ha) if their objective is to reduce pesticide

intensity. Similar patterns with varying cohort effects can be found for the other

indicators and yield potential as well. Given the varying nature of these effects, it

is important that policy-makers are clear about what goal they pursue when they

target specific farm groups to improve the effectiveness of their measures as this

could inflict negative effects regarding another goal.

Figure 5.6: The mean effects of dividing farms into groups based on their
Shapley values for land and yield potential regarding greenhouse gas
emissions (t), fertilizer and pesticide intensity (AC/ha), and land use
diversity (0-100). The most prominent intersections of the smooth
lines in Figure 5.5 with the x-axes (= zero contribution) are selected
as point of division (=thresholds). This compares the mean Shapley
values for the groups below and above the threshold.

Our findings on targeting ultimately describe the environmental effectiveness for

specific subgroups of farmers based on the four target dimensions. Hence, this

study delivers results as to which farms could be targeted to increase environmental

effectiveness of AES. However, policy-makers might as well be interested in how

the respective farmers can be persuaded to enrol in AES. In this context, it might

be interesting to combine our results with those of, e.g., Kuhfuss et al. (2016), who

suggest a collective bonus to nudge farmers into participating in AES. For instance,

from Figure 5.5, we can see that being located in the "Oberallgäu" county drives up

145



Agricultural production and environmental change

the environmental performance of farms (at least in three of the four dimensions).

Legislators could consequently promote the implementation of a collective bonus

explicitly for this region to nudge local farmers into participating in AES and

hence increase the overall environmental effectiveness of these schemes. Other

suggestions to engage farms in AES are incentive payments for their participation

(Ruto & Garrod, 2009) or a reduction in transaction costs (Espinosa-Goded et al.,

2013), respectively.

Finally, when interpreting these results, several important considerations should

be taken into account.22 As described in Sec. 5.3.1, there is a multitude of

available agri-environment subprograms. Dichotomizing the treatment variable is

invariably associated with a loss of information (Hotz et al., 2005). In an ideal

situation, a policy-maker would want to learn about the heterogeneous effects for

each subprogram, which would provide the largest gain in knowledge. Without the

information on the farm-specific subprogram mix, it is not entirely clear if the es-

timated heterogeneous treatment effect is driven by effect heterogeneity (different

responses to underlying multiple treatments) or treatment heterogeneity (differ-

ent compositions of underlying treatments). Hence, as with other CATE studies,

we cannot entirely rule out spurious discovery of heterogeneous effects (Heiler &

Knaus, 2021).23 However, if we are willing to assume that the farming context

(and farm(er) characteristics) is associated with the chosen subprogram mix/AES

intensity, the discussion on targeting still holds true. While we cannot test for

this assumption, e.g., ART (2016) and ART (2019) suggest this might be the case.

Although we cannot provide advice on the design of the programs and compare

different subprograms, e.g., incentivizing farmers based on the targeting dimen-

sions into participating in AES is still likely to improve the cost-effectiveness of

AES in general without knowing the exact treatment mix. The provision of more

detailed information on farms’ AE (sub-)program participation might allow us to

precisely disentangle effect heterogeneity and treatment heterogeneity using recent

advancements in the literature on CATEs (Heiler & Knaus, 2021), which would

provide additional insights.

22We thank an anonymous reviewer for pointing this out to us.
23Regardless of this fact, our approach allows us to evaluate the general environmental ef-

fectiveness of AES participation at the farm-level as described in the previous section, esp. in
Table 5.3 and Figure 5.4.
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5.7 Summary and concluding remarks

This paper has analyzed the environmental efficacy of agri-environment schemes

in Europe in light of the post-2020 CAP debate by combining economic theory

with causal forests, a novel ML algorithm based on RFs. The use of this algo-

rithm allows to evaluate the impact of AES at the farm level and thus delivers

valuable information regarding the heterogeneity of the effects of agri-environment

measures. The approach presented in this study surpasses many limitations of pre-

vious attempts to evaluate the efficacy of AES based on more traditional econo-

metric methods. Conceptually, this study is based on production theory and the

potential outcomes framework.

For the empirical case of Southeast Germany, we find rather small statistically

significant effects of AES on land-use diversity for approx. 55% of all observations.

Regarding fertilizer expenditures per hectare, we find modest reduction effects for

30% of the sample, while we barely find any impact on pesticide expenditures.

Desirable effects could be found for 7% of the sample. In terms of GHG emis-

sions, we find mostly insignificant or adverse effects. The findings of the study

point toward the direction that treatment effects of agri-environment measures on

important environmental indicators have been rather small during the 2014-2020

CAP period.

Based on our results, we could explore spatial patterns of the environmental sub-

sidy payments as well as important drivers of heterogeneous treatment effects. We

found a large share of desired effects in at least one environmental dimension in

almost all counties. Using Shapley values to predict the contribution of the four

dimensions location, farm type, yield potential and farm size, we could confirm

the hypothesis that targeting of agri-environment payments could potentially im-

prove environmental efficacy for all environmental indicators used in this study.

Targeting farms in terms of location, farm size, and yield potential by nudging for

example can result in more efficient usage of environmental subsidies while tar-

geting schemes according to different farm types does not seem to drive subsidy

effectiveness. Finally, we used a battery of sensitivity tests to assess the robustness

of our results in various settings.

Given the novel estimation approach used in this study, there are several limita-

tions. First, we cannot observe the effect of AES over time as we are restricted

to one year in our analysis. As farms, however, must generally participate for

147



Agricultural production and environmental change

a period of at least five years, we might miss important temporal structures as

well as lagged and build-up effects of agri-environment measures. What is more,

while Shapley values are useful to illustrate the drivers of impact heterogeneity,

they do not account for estimation uncertainty. Introducing uncertainty to local

explanations would be an important addition to the literature. Furthermore, our

robustness checks indicate that there might be the possibility of unobserved con-

founding, which should be taken into account when interpreting the results. Next,

the data do not allow for a more precise analysis of the differences across sub-

schemes that might be targeted toward different environmental services. Also, we

are limited in the choice of available environmental indicators. Except for the case

of GHG, our indicators do not measure direct environmental impacts like water

pollution or soil degradation. Therefore, they do not allow for a more holistic

assessment of the environmental efficacy of agri-environment measures.

The findings of this study have several implications for the future of the CAP

debate. First, legislators have to take into account the fact that AES have hetero-

geneous consequences when it comes to the environmental performance of farms.

This is of particular importance when it comes to designing novel AE schemes.

Second, policy-makers can potentially increase the overall environmental efficacy

of AES when they improve their policy targeting such that aspects like spatiality

and farm size are taken into account. Farms with high predicted participation ef-

fects could be encouraged to participate in AES through different approaches, such

as paying a collective cohort bonus, reducing transaction costs, linking payments

amounts to site conditions, introducing spatially-coordinated auctions for conser-

vation contracts or other incentive payments. Third, existing AE measures appear

to have very little effect or additionality in several environmental dimensions such

as climate change mitigation, clean water and soil health – as approximated by

our indicators. If the environmental sustainability of farms should be further

improved, European legislators need to reconsider and revise existing AES.

Last, we would like to outline potential avenues for future research. One important

extension to our analysis would be the assessment of subprogram-specific hetero-

geneous treatment effects. If there was information on specific subprograms, it

might be possible to look at specific subprograms individually by controlling for

the participation in other subprograms in addition to the contextual variables.

Alternatively, Heiler & Knaus (2021) propose a flexible nonparametric decomposi-

tion method for the estimation and statistical inference of effect heterogeneity and
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treatment heterogeneity. A necessary precondition for this would be the provision

of more detailed data on AES, however. It would also be interesting to see similar

studies on different regions, and in different time periods, and compare the results

of such studies. Furthermore, it would be insightful to include more informative

environmental indicators, as they would provide a clearer picture in terms of the

environmental impact of AES.
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5.8 Appendices

5.8.1 Production possibilities in the case of a supplementary and

competitive relationship

(a) Supplementary case: The farm
might choose any output combination
in the supplementary region.

(b) Competitive case: The rational
farm will produce at zero
environmental output.

Figure 5.7: Extension to Figure 5.1 illustrating two simple cases for (partly)
supplementary (a) and competitive (b) output relationships.
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5.8.2 Agri-environmental schemes in Bavaria

Note: This description can also be found in Mennig & Sauer (2020).

In line with the large variety of farming systems and landscapes in Bavaria, the fed-

eral state’s 2007–2013 Rural Development Programme, which due to delays in the

approval of the 2014-2020 program was still effective in 2014, included AES tailored

to different agricultural subsystems. The schemes were and still are part of two

programs, the Nature Conservation Programme (Vertragsnaturschutzprogramm,

VNP), and the Bavarian Cultural Landscape Programme (Bayerisches Kultur-

landschaftsprogramm, KULAP). The KULAP is the core funding instrument of

Bavarian agri-enviromental policy, initiated as early as 1988. Individual KULAP

measures of the 2007-2013 programming period were subsumed in the categories

organic farming, measures for the farm segment grassland, measures for the farm

segment arable land, field-specific grassland measures, field-specific measures for

arable land and measures for special farming practices. In total, there were 14 in-

dividual KULAP measures, categorized according to the above-mentioned aspects.

Some of the measures were further subdivided following different levels of restric-

tion. The grassland measures as well as the measures for special farming practices

mainly aimed at an extensification of production. They primarily restricted the

use of mineral fertilizers and/or pesticides and set a limit to livestock units per

hectare. Measures for arable land encompassed the implementation of diversified

crop rotations, planting of cover crops, low-till methods, agro-environmental con-

cepts or the conversion of arable land to grassland. Payments for special farming

practices were mainly granted for measures with a focus on the conservation of

the Bavarian cultural landscape. Being horizontal according to the Rural Devel-

opment Programme, these measures were in fact only applicable in certain parts

of Bavaria, e.g. in the alpine region or in the wine-growing districts in the north.

In order to keep farmers from switching to different types of land use or abandon-

ing farming, these measures knotted payments to environmental farming practices

such as grazing or limiting the use of pesticides. Basically, all KULAP measures

involved some kind of restriction, either concerning the use of certain inputs or

the farmer’s choice of how to cultivate the agricultural land.

The VNP, on the other hand, included very specific schemes applicable only to a

small number of farms in nature conservation areas. It encompassed another 18

individual measures, some of which were further subclassified according to varying

151



Agricultural production and environmental change

constraints, for four different biotope types: arable fields, grassland, pastures

and ponds. For each biotope type, basic schemes with a rather low restriction

level were offered to be combined with more ambitious schemes. Generally, the

VNP schemes were more restrictive than the KULAP measures, ranging from

measures with a total ban on fertilizers and pesticides on arable land as well as on

grassland to leaving arable land fallow or maintaining extensive orchards on arable

land, grassland or pastures. Given its eligibility constraint based on pre-defined

nature conservation areas as well as its stricter guidelines, the VNP supported an

agricultural area of around 65,000 hectares only, whereas KULAP payments were

granted for around 1,234,000 hectares in the 2007-2013 programming period.
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5.8.3 Further details on the causal forest estimator

In order to deploy the causal forest for our purpose, we define the parameters of

interest as θ(x) = {m(x), e(x), τ (x)} for each farm i in a random subsample of

the training data. Each household has an observable quantity Oi and auxiliary

features Xi; for m(x) we define Oi = {Yi}, Oi = {Di} for e(x), and Oi = {Yi,Di}
for τ (x). Within this framework, Athey et al. (2019) define an optimality criterion

∂(C1,C2) as to how an individual tree of a subsample str splits the covariate space

Xi of the parent node P into binary regions (C1, C2) to greedily24 maximize the

heterogeneity of θ̂ across the children nodes (C1, C2):

∂(C1,C2) =
NC1

NC2

N2
P

(
θ̂C1

(str)− θ̂C2
(str)

)2
(5.5)

where NC1,2/NP is the fraction of training examples i : Xi ∈ str belonging to the

two children nodes C1 and C2 obtained from the parent P . Our parameter of

interest θCj
(str) is identified by locally estimating equations of the form:

E [ψ(Oi) | Xi = x] = 0 (5.6)

where ψ(Oi) is a moment condition that depends on the parameter of interest.

The solution to (5.6) can be obtained through:

θ̂Cj
(str) ∈ argmin

θ,ν





∥∥∥∥∥∥




N∑

i∈str :Xi∈P

ψ(Oi)



∥∥∥∥∥∥

2



 . (5.7)

In order to find the optimal split, Eq.5.7 is solved for multiple random splits of

Xi, where the split that maximizes the optimality criterion ∂(C1,C2) is selected

(5.5).25 The moment functions for the conditional mean estimation of m(c) and

e(x) take on the form ψ(Yi) = Yi − θ(x) and ψ(Di) = Di − θ(x), respectively.

As for the CATE model, the simple linear model Yi = c(x) + τ (x) Di + ǫ with

24Greedy means that an optimal choice is made at each step rather than considering the entire
tree when trying to find the optimal split.

25This procedure could now be repeated until a certain stopping criterion is reached, e.g.,
when a minimum size of observations per node is left. However, this would mean to estimate
Eq.5.7 over and over again, which would be computationally very demanding. Therefore, an
approximate criterion ∂̃(C1, C2) based on gradient-based approximations for θ̂Cj

is optimized,
which eventually leads to computationally less expensive Breiman splits. A detailed description
of this procedure can be found in Athey et al. (2019).
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c(x) being an intercept term serves as starting point. From this model, a doubly

robust residual-on-residual linear moment function is derived, which writes

ψτ (x),c(x)(Ỹi, D̃i) =
(
Ỹi − β(x) D̃i − c(x)

)(
1 D̃i

T
)T

(5.8)

where Ỹi = Yi − m̂(x)oob and D̃i = Di − ê(x)oob.26 Hence, the CATE can be iden-

tified by the local moment condition: E

[
ψτ (x),c(x)(Ỹi, D̃i) | Xi = x

]
= 0. Given

the local estimating equation 5.6 and the moment function (5.8), we can train

a RFs-based on trees that greedily optimize for treatment effect heterogeneity

(5.7), from which we can derive similarity weights αi(x).27 Analogue to (5.8)

and from the simple linear model above (5.1), we can identify the CATE by

τ (x) = V ar
[
D̃i | Xi = x

]−1
Cov

[
D̃i, Ỹi | Xi = x

]
. Given the forest weights

αi(x), the locally weighted estimator τ̂ (x) is

τ̂ (x) =

∑n
i=1 α(x)

(
D̃i − D̄α

) (
Ỹi − Ȳα

)

∑n
i=1 α(x)

(
D̃i − D̄α

)2
(5.10)

where D̄α =
∑n

i=1 α(x) D̃i and Ȳα =
∑n

i=1 α(x) Ỹi.

26oob denotes out-of-bag predictions, i.e. these predictions are generated by using only the
portion of trees that do not have that data point in the respective subsample used to generate
the predictions.

27These weights are defined as data-adaptive kernels measuring how often the i-th farm falls
into the same leaf as a test point x:

ai(x) =
1

B

B∑

b=1

1 ({Xi ∈ Lb(x), i ∈ Sb})

| {i : Xi ∈ Lb(x), i ∈ Sb}
(5.9)

where Lb(x) is the leaf of the b-th tree that contains the test point x and Sb denotes the subsample
used to grow the b-th tree.
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5.8.4 Graphical illustrations of identification

Figure 5.8: Directed acyclic graph (DAG) without unobserved confounders, i.e.
the unconfoundedness assumption is fulfilled. The effect of the
treatment variable D (i.e. participation in AES) on an outcome Y
(i.e. environmental indicator) is identified if our model controls for
all observed confounders X1 through XK (i.e. contextual variables)
and hence all backdoor paths are closed. Connections among
confounders are not shown for brevity.
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Figure 5.9: Directed acyclic graph (DAG) in an exemplary situation where two
unobserved confounders (U1, U2) are present. The effect of the
treatment variable D (i.e. participation in AES) on an outcome Y
(i.e. environmental indicator) is not correctly identified if our model
does not control for all observed confounders X1 through XK and
unobserved confounders (U1, U2). Since U1 and U2 are not
observable, there is no way to directly control for these confounders.
Yet, under the assumption that observed and unobserved
confounders are associated (arrows from U to X) and the unobserved
confounders are reflected in the complex, nonlinear, and
high-dimensional combination of the large number of observed
confounders (latent confounder space), it might be possible to
capture (most of) the variation coming from the unobserved
confounder space, if the causal forest maps that latent confounder
space accurately. If this is the case, the backdoor path
D ← U1,2 → Y can be closed and the treatment effect from AES
participation on environmental performance is identified.
Connections among confounders are not shown for brevity.
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Figure 5.10: Directed acyclic graph (DAG) in an exemplary situation similar to
Figure 5.9. However, there is another unobserved confounder (UCC),
which is not associated with the contextual variables X. In such a
situation, UCC cannot be represented by the set of observed
variables and the treatment effect from AES participation on
environmental performance is not identified and might be biased.
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5.8.5 Interpretable machine learning: Shapley values

A common problem with ML prediction models is the fact that their predictive

power and ability to estimate complex models comes at the expense of interpretabil-

ity (Molnar, 2019). A set of model-specific as well as model-agnostic interpretabil-

ity methods has been developed in recent years. Model-agnostic interpretability

means that interpretation is separated from estimating/learning a model. This

makes the concept very flexible in that it is not bound to any specific ML model

(Ribeiro et al., 2016), i.e. it does not interfere with model particularities of the

causal forest such as the honesty condition.

One concept that has been enjoying increasing attention are Shapley values. It

is the only interpretability concept with a solid theory, which fulfills the axioms

of efficiency, symmetry, dummy and additivity. The Shapley value is based on

cooperative game theory, which fairly distributes the marginal contribution to

the payoff of a game among individual players. The same context applies if one

wants to interpret ML models, only that the payoff is the difference between the

average prediction and the individual prediction of a test point and the features

are the players. Hence, Shapley values capture the contribution of each feature (x)

to the difference between the actual farm-level estimation and the sample mean

estimation. Hence, Shapley values reflect each feature’s relative contribution to

the predicted outcome and can be seen as a special case of a marginal impact

assessment, where interactions and redundancies between features are taken into

account (Štrumbelj & Kononenko, 2014). Therefore, they provide an explanation

why a heterogeneous causal effect model, e.g. a causal forest generate larger or

smaller effect values for particular segments of the observations (Battocchi et al.,

2019).

In the context of this study, we predict the heterogeneous impact of the participa-

tion in AES schemes on environmental outcome and want to study how contextual

features drive this prediction. Shapley values allow us to understand the model

behavior both locally and globally.

To gain a better intuition of how Shapley values work, we use a simplified example.

Assume we trained a causal forest to predict the effect of participation in AES

schemes on fertilizer intensity reduction (reduction in fertilizer expenditures per

ha expressed in )AC contitional on three contextual variables: Yield potential,

land rental price, and farmed land. The Shapley value is defined as the avaerage
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marginal contribution of a feature values across all possible coalitions. To obtain

the marginal contribution for a specific data point and a specific feature, we need to

build all possible coalitions of features as depicted for our simple case in Figure 5.11.

Assume, we want to predict the marginal contribution of yield potential on the

AES effect (top left panel). In the case of three features, there are four possible

feature coalitions. To obtain the Shapley value, the treatment effect is estimated

using coalitions 1–4 without (inserting a random number) and with the yield

potential feature. Then, for each coalition the difference between the prediction

with yield potential as predictor and without is calculated. The (weighted) mean

of all possible coalition differences is the Shapley value for a specific observation

and a specific feature. Figure 5.11 also depicts the cases for farmed area and land

rental price.

Figure 5.11: Illustration of Shapley value coalition concept by means of three
contextual covariates.

Using this game theoretic approach, one can find local explanations for the model

behavior at any data point, where "the payoff is the actual prediction for a par-

ticular instance less the average prediction for the entire dataset" (Tiffin, 2019).

Figure 5.12 illustrates the functioning for two fictitious example farms in a sample

where the average treatment effect prediction is a reduction of 35 AC/ha in fertilizer

expenditures. We can see that yield potential (for the farm-specific value of 6,000

points) pushes the expected outcome to the right, i.e. has a positive contribu-

tion to or impact on the prediction of the treatment effect. Similarly the farmed
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area (90 ha) and the land rental price (200AC/ha) pushes the expected outcome

to the left, hence they have a negative impact on the expected treatment effect.

Finally, we end up at the farm-specific treatment effect of 10 AC/ha for farm A.

The sum of the Shapley values (10− 20− 15 = −25) is the difference between

average prediction and instance specific prediction. Shapley values are tailored to

each specific data point, i.e. although two instances have the same feature value,

the Shapley value might differ. For example, Farm B in Figure 5.12 has the same

yield potential as Farm A but its contribution to the expected treatment effect is

twice as high. We can also see that the "payoff", i.e. the sum of Shapley values is

positive for Farm B.

Figure 5.12: Illustration of local Shapley values expressing marginal
contributions to the mean treatment effect prediction.

While it is interesting to find local impacts on specific instances, most of the

time we are more interested in global explanations. To find general patterns,

Shapley values can be calculated for all instances and features in the dataset.

E.g., the left panel of Figure 5.13 summarizes the Shapley values of all features

and contrasts them with the respective feature values (i.e. the color of the graph).

For instance, in our stylized example, high land rental prices contribute positively

to the treatment effect while a reversed pattern could be found for total farmed

area. Taking the example of yield potential, we can obtain a more nuanced picture

of the model behavior using a dependence plot (right panel of Figure 5.13). In this

scatter plot, we can find a convex relationship between feature value and marginal

impact of yield potential.

Finally, Shapley values also allow for the evaluation of model-agnostic relative fea-

ture importances, i.e. the overall importance of a feature for the model prediction

(Figure 5.14). For that purpose, one can take the mean of the absolute values of

the Shapley values. The higher this value is, the more important a feature is for

the model.
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Figure 5.13: Illustration of how local Shapley values can be used for global
interpretations.

Figure 5.14: Shapley values as measure for global feature importance.
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5.8.6 Sensitivity and robustness checks

To validate our results against model misspecification and unobserved heterogene-

ity bias, we suggest a range of robustness checks.A visually supported description

of these robustness checks against critical model assumptions can be found in

Figure 5.15. First, to check for model misspecification, we replace the treatment

variable D by a placebo treatment Dplacebo. Second, we introduce a placebo out-

come Yplacebo instead of the observed outcomes Y . If our model is correctly speci-

fied, we expect negligible to none association between treatment and outcome in

the placebo tests. Third, we add a random confounder (Xrandom) to our model

and compare against our baseline model and assess the stability of our baseline

estimates, which we do not expect to change.

Fourth, to explicitly analyze the model behavior regarding unobserved heterogene-

ity bias, we intentionally leave out the most important feature. We leave out the

(three) most important confounder(s) and re-estimate the model. If the (non-

linear) correlation structure of the other observed confounders properly reflect

the left-out variable(s), we expect no change of the model against our baseline

model. This could point towards the stability of our model against unobserved

confounders that are not included in the model if they are associated with the set

of observed confounders. Fifth, we leave out various observed confounders on a

more systematic basis. We use principal component analysis (PCA) and the result-

ing loadings to detect systematic groups of confounders and leave these out, such

that the combination structure of the other observed confounders are less capable

to compensate for the exclusion of these variables. The retrieved model behavior

could indicate how strongly it reacts to potentially completely left out confounders

that are not buffered away by the combination of observed covariates.28 Sixth, we

introduce a target common cause, which is correlated with both treatment and out-

come, simulating various different correlation structures between Utarget, D and Y ,

which should realistically reflect a potential relationship between Utarget, D and

Y . This robustness test can be seen as indication for how sensitive the model is

to the possibility of any left-out hidden factors, which might not be captured in

our (latent) feature space.

28Such a situation could appear if many observed features were a measure of the same latent
confounder, while other latent confounders would not be covered by the observed features.
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(a) The original treatment variable (D) is
replaced by a random placebo treatment
variable (Drandom). If the model is correctly
specified, we expect no effect of the treatment
on the environmental outcome.

(b) The original outcome variable (Y ) is replaced
by a random placebo outcome variable
(Yrandom). If the model is correctly specified,
we expect no effect of the treatment on the
environmental outcome.

(c) We add an extra random variable (Urandom)
as potential confounder to our model. As this
confounder is random, we expect no effect of
the treatment on the environmental outcome.

(d) We leave out the (three) most important
confounder(s) and re-estimate the model. If
the (nonlinear) correlation structure of the
other observed confounders properly reflect
the left-out variable(s), we expect no change
of the model against our baseline model,
which includes all observed confounders. This
could point towards the stability of our model
against unobserved confounders that are not
included in the model if they are associated
with the set of observed confounders.

(e) Similar approach to (d). However, this time,
we leave out various observed confounders
more systematically. We use principal
component analysis and the resulting loadings
to detect systematic groups of confounders and
leave these out, such that the combination
structure of the other observed confounders
are less capable to compensate for the
exclusion of these variables. The retrieved
model behavior could indicate how strongly it
reacts to potentially completely left out
confounders that are not buffered away by the
combination of observed covariates.

(f) In this robustness check, we simulate a
completely left out unobserved covariate
(Utarget) simulating various different
correlation structures between Utarget, D and
Y . This gives indication as to how strong the
omitted variable bias in our model could be
given different correlation structures between
Utarget, D and Y .

Figure 5.15: Stylized cases reflecting the potential impact of AES participation
under heterogeneous production possibilities with one agricultural
and one positive environmental output.
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5.8.7 Propensity forest – most important features

Figure 5.16: Variable importance: Depiction of the 20 most important features
for the propensity forest.
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5.8.8 Outcome forests – most important features

Figure 5.17: Variable importance: Depiction of the 10 most important features
for each outcome forest.
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5.8.9 Causal forest illustration: GHG tree

Figure 5.18: This illustration depicts a randomly selected tree from a total of
100,000 trees used to estimate the GHG causal forest.
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5.8.10 Causal forest estimates and corresponding 95% confidence

intervals

Figure 5.19: Causal forest estimates and corresponding 95% confidence intervals
reflecting estimation uncertainty.
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5.8.11 Treatment effects weighted by their inverse standard

deviations

Table 5.4: The impact of agri-environment schemes on different environmental
indicators weighted by their inverse standard deviations.

Environmental Indicator

GHG
Emis-
sions
(t)

Fertilizer
Inten-
sity
(Eu-
ro/ha)

Pesticide
Inten-
sity
(Eu-
ro/ha)

Land
Use
Diver-
sity
(In-
dex)

Full sample

Unweighted mean treatment effect 3.57 -9.37 -1.41 1.06

Weighted mean treatment effect by inverse SD 3.03 -9.4 -1.37 1.02

Subsample 1 (Treatment effect < 0 at 95% confidence level)

Unweighted mean treatment effect -10.79 -14.3 -10.28 -0.94

Weighted mean treatment effect by inverse SD -10.59 -13.54 -9.08 -0.9

Subsample 2 (Treatment effect > 0 at 95% confidence level)

Unweighted mean treatment effect 12.04 - 6.62 1.6

Weighted mean treatment effect by inverse SD 10.57 - 5.59 1.49
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Figure 5.20: Comparison of density distributions of unweighted treatment effects
(baseline) and and treatment effects weighted by their inverse
standard deviations.
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5.8.12 Omnibus test results for the presence of treatment effect

heterogeneity

Table 5.5: Omnibus test results for the presence of heterogeneity: If the
coefficient on the differential forest prediction is significantly greater
than 0, then we can reject the null of no heterogeneity, which is the
case for land use diversity.

Differential forest
prediction

Std.
Error

t
value

Pr(>t)

GHG Emission -1.3 1.28 -1.01 0.843

Fertilizer Intensity 0.3 0.56 0.53 0.299

Pesticide Intensity -1.2 0.93 -1.34 0.909

Land Use Diversity 0.8 0.33 2.48 0.007
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5.8.13 HTE drivers: Shapley values and interaction effects

Figure 5.21: HTE drivers: Shapley values and interaction effects with
administrative units ("Regierungsbezirke").
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Figure 5.22: HTE drivers: Shapley values and interaction effects with farm types.
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5.8.14 Spatial AES impact heterogeneity

Figure 5.23: Spatial AES impact heterogeneity.
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5.8.15 Robustness and sensitivity test results

One of the major concerns regarding the credibility of our results are model mis-

specification and omitted variable bias due to unobserved confounders. Figure 5.24

summarizes the results of these robustness checks described in Sec. 5.8.6. Regard-

ing the model misspecification placebo tests, we observe negligible to none asso-

ciation between treatment and outcome for all four indicators as expected for a

correctly specified model (Figure 5.24, panels A and B). Furthermore, as expected,

adding another random confounder does not seem to strongly affect our estimation

results either (Figure 5.24, panel C).

When we leave out the most important feature (panel D), and more conservatively

the three most important features (panel E), results appear to remain almost iden-

tical. Although re-estimation seems to introduce a certain degree of statistical

noise, no systematic deviation from the baseline results can be observed.29 To

further explore the sensitivity to leaving out confounders, Figure 5.24, panels F

to H describe the behavior of the model when leaving out systematic groups of

confounders based on principal component analysis (PCA) and their respective

loadings.30 We find that leaving out just one latent component leads to mostly

weakly to moderately biased estimates. Leaving out more components leads to

non-robust results. This might be due to the fact that we lose a lot of signal by

leaving out too many covariates. However, by implication, this would also mean

if there were a lot of signal in left-out information due to unobserved confounding,

our results might likely be biased. This possibility should be taken into account

when interpreting our results. Finally, to more specifically analyze the sensitiv-

ity of our results to the potential violation of the unconfoundedness assumption

directly, we simulate an unobserved common cause with various correlation struc-

tures (Huber, 2020) to both AES participation and environmental performance

and include this simulated confounder to our model (Figure 5.26 – Figure 5.29).

For weak correlation structures, we find little to no bias in the treatment effect for

all indicators except land use diversity. Moreover, especially the fertilizer intensity

and land use diversity models are sensitive to stronger confounding and results

29However, there might be a small downward bias for pesticide intensity. Note, these result
suggest that the left-out features are sufficiently correlated to the other observed confounders to be
compensated for. This test does not guard against potential bias due to unobserved confounders
that are not correlated to the observed confounders.

30A description of the left-out variables and the scree-plot of the PCA can be found in Fig-

ure 5.25. Covariates with loadings > |0.15| were taken to represent a hidden component. A full
list of all variables and respective loadings can be found in the supplementary materials.
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Figure 5.24: Multiple robustness checks regarding model misspecification and
unobserved heterogeneity bias for greenhouse gas emissions (t),
fertilizer and pesticide intensity (AC/ha), and land use diversity
(0-100) as described in Sec. 5.4.

.
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become increasingly unreliable (see also Appendix 5.8.16).

Figure 5.25: Description of the principal component analysis underlying the
principal component (PC) robustness checks.
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Figure 5.26: Greenhouse gas emissions: Simulation of omitted variable with
different correlation structures using the approach of Huber (2020).
The corresponding treatment effect distributions are depicted and
compared to the baseline model.
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Figure 5.27: Fertilizer intensity: Simulation of omitted variable with different
correlation structures using the approach of Huber (2020). The
corresponding treatment effect distributions are depicted and
compared to the baseline model.
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Figure 5.28: Pesticide intensity: Simulation of omitted variable with different
correlation structures using the approach of Huber (2020). The
corresponding treatment effect distributions are depicted and
compared to the baseline model.
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Figure 5.29: Land use diversity: Simulation of omitted variable with different
correlation structures using the approach of Huber (2020). The
corresponding treatment effect distributions are depicted and
compared to the baseline model.
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5.8.16 Robustness check: Observations outside baseline 95%

confidence interval

Table 5.6: This figure shows the percentage of observations in the robustness
checks that lie outside the 95 per cent confidence interval of the
baseline model.

(Percentage of obs. Greenhouse gas Fertilizer Pesticide Land use

outside 95% CI of baseline) emissions intensity intensity diversity

Leave out most important feature 0 0 0 0

Leave out 3 most important features 0 0 0 0

Random common cause 0 0 0.1 0.1

Leave out PC 1 0 0 0.2 11.6

Leave out PC 1-3 5.2 3.5 7.3 56.3

Leave out PC 1-6 10 9.1 14.9 48.9
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6 Study IV – agroforestry adoption and weather extremes

6.1 Abstract

The cultivation of agroforestry systems is regarded as an effective strategy to syn-

ergistically mitigate and adapt to the impacts of climate change in the face of

increased occurrences of regional extreme weather events. This study addresses

the question of whether, and under what conditions, farmers are likely to adopt

agroforestry and wood-based land-use systems in response to regional weather ex-

tremes and presents a novel research approach to tackle this question. A discrete

choice experiment was conducted to elicit farmers’ preferences for, and willingness

to adopt, agroforestry and wood-based land use systems. The results were then

combined with geospatial weather information. Assuming adaptive weather expec-

tations, land users’ dynamic responses to extreme weather years were simulated in

terms of adoption probabilities. Farmers in the case study region in southeastern

Germany were found to have a negative preference for alley-cropping systems (i.e.

agroforestry) and short rotation coppice, compared to an exclusively crop-based

land use system. However, the results from the simulation of a 2018-like extreme

weather year showed that alley-cropping might have a very high probability of

being adopted in the medium to long-term under different circumstances, thus

enhancing farmers’ resilience to climate change.

6.2 Introduction

The latest assessment report from the Intergovernmental Panel on Climate Change

(IPCC) reiterates the fact that climate change poses exceptional challenges to var-

ious social and economic sectors on a global scale (IPCC, 2021). The World

Economic Forum, in its 2020 Global Risks Report, listed climate-related concerns

among the top-five long-term risks for the first time (WEF, 2020). In addition

to affecting annual mean temperatures and precipitation, climate change also in-

creases the number of occurrences of regional extreme weather events such as

drought, heat waves, heavy rain and floods (IPCC, 2021; Lüttger & Feike, 2018;

Mann et al., 2018; Westra et al., 2014). In this context, agriculture is often seen

as one of the most susceptible sectors to such changes (IPCC, 2007), which nega-

tively affect, e.g., crop yields (e.g. Haqiqi et al., 2021; Lesk et al., 2016; Schlenker

& Roberts, 2009), total factor productivity (e.g. Chambers & Pieralli, 2020; Cham-

bers et al., 2020; Stetter & Sauer, 2021), and ultimately farm income and viability

(e.g. Dalhaus et al., 2020; Dell et al., 2014; Kawasaki & Uchida, 2016). Prime

examples of years with extreme weather conditions, which heavily impacted agri-
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culture are the 2003 European heat wave, the 2018 European drought and heat

wave, and the 2010–2013 Southern United States and Mexico drought. Despite

these impacts, agriculture is also regarded as one of the most important anthro-

pogenic contributors to climate change (Lynch et al., 2021). Overall, farmers

require effective adaptation and mitigation strategies to effectively deal with the

challenges of climate change.

One major channel through which agriculture can actively tackle climate change

impacts is land use (Pielke, 2005). A promising pathway in this direction is the

adoption of agroforestry and wood-based land-use systems, which are recognized

to play a key role in synergistically approaching adaptation and mitigation (Car-

dinael et al., 2021; Duguma et al., 2014; van Noordwijk et al., 2014, 2011; Verchot

et al., 2007). Agroforestry systems are defined as land-use systems in which woody

perennials are deliberately integrated with agricultural crops and/or livestock on

a piece of land, either in some sort of spatial arrangement or in temporal sequence

(Cardinael et al., 2021; Leakey, 2017; Nair, 1985). These systems mitigate cli-

mate change impacts through their carbon sequestration potential aboveground,

belowground, and in the soil (e.g. Albrecht & Kandji, 2003; Cardinael et al., 2017;

Oelbermann et al., 2004; Schroeder, 1993). There are also indirect mitigation ef-

fects created by the planting of trees and other woody perennials on agricultural

land and these may also effectively reduce deforestation (Schroeder, 1993; Verchot

et al., 2007) and help replace fossil fuels with fuel wood (Kuersten & Burschel,

1993). Simultaneously, the resulting positive regulation effects on hydrological

cycles, soil, and the microclimate, may lead to more climate change resilient agri-

cultural production practices (Lasco et al., 2014). Furthermore, agroforestry and

its provision of multiple ecosystem services (Brown et al., 2018; Wolz et al., 2018)

is also seen as a main component in the realm of ecosystem-based climate change

adaptation (Hernández-Morcillo et al., 2018; Pramova et al., 2012).

Provided the various merits of agroforestry systems, there remains a large un-

tapped potential for the introduction of agroforestry and its expansion across the

globe (van Noordwijk et al., 2014), and this may become of even more importance

in the face of an increased frequency of regional extreme weather events (Duguma

et al., 2014; van Noordwijk et al., 2021).

This paper addresses the question of whether, and under what conditions, farm-

ers are likely to adopt agroforestry and wood-based land-use systems in response
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to regional weather extremes. To answer this question, we conducted a discrete

choice experiment to elicit farmers’ preferences for, and willingness to adopt alley

cropping (AC) and short rotation coppice (SRC). We combined the results with

geo-spatial weather data. Assuming adaptive weather expectations, the farmers’

dynamic land-use responses to extreme weather years in terms of adoption proba-

bilities were locally simulated utilizing the approach of Ramsey et al. (2021). The

paper then discusses these land-use responses in a wider climate change resilience

context (see Meuwissen et al., 2019; OECD, 2020).

We found that farmers in our case study region of southeastern Germany have

a negative preference and willingness to adopt (WTA) for AC and SRC com-

pared to an exclusively crop-based land use system. However, the results from the

simulation of extreme weather under different scenarios show that AC systems

(agroforestry) might have a very high probability of being adopted in the medium

to long-term and thus strengthening farmers’ resilience to extreme weather events

and climate change.

The elicitation of farmers’ preferences for agroforestry and woody perennials has

been the subject of multiple studies, including Gillich et al. (2019) and Pröbstl-

Haider et al. (2016), who analyzed farmers’ preferences for SRC in Germany and

Austria using discrete choice experiments. Other studies focused on the adop-

tion of agroforestry systems, mostly in the context of the Global South (Amusa

& Simonyan, 2018; Bayard et al., 2007; Beyene et al., 2019; Dhakal et al., 2015;

McGinty et al., 2008; Schaafsma et al., 2019). However, none of these studies,

examined the effects of climate and (extreme) weather in this context. Further-

more, multiple authors have simulated the (economic) potential of agroforestry

cultivation under different circumstances (e.g Frey et al., 2013; Paul et al., 2017).

Lasch et al. (2010) and Gomes et al. (2020), including projecting the cultivation

potential for SRC in eastern Germany and coffee-agroforestry in Brazil, all taking

into account various climate change scenarios until 2050. The problem with such

scenarios is that they are usually conducted on a global scale and likely do not

represent local farmers’ actual and perceived experiences with extreme weather

and climate change. This is why they are usually not well-suited for farm-level

based simulations (Morton et al., 2015; Ramsey et al., 2021). Overall, studies on

the effects of weather shocks on land-use change are scarce (Girard et al., 2021).

To fill in this gap, Ramsey et al. (2021) developed a novel framework to simulate

how farmers dynamically adjust their cropping decisions in response to specific
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weather patterns.

This study contributes to the literature in several ways. It quantifies the link be-

tween adverse weather and farmers’ preferences for agroforestry and SRC account-

ing for short- to long-term adaptation responses. While many of the aforemen-

tioned studies are concerned with why integrating woody perennials into farms’

cultivation plans might be useful in terms of mitigation and adaptation, they

frequently ignore whether and how farmers respond to weather patterns. Estab-

lishing this link is particularly important in light of the increased frequency of

extreme weather events resulting from climate change. Furthermore, by combin-

ing a discrete choice experiment, geo-spatial weather information, and the sim-

ulation framework of Ramsey et al. (2021), this study is able to provide novel

insights into farmers’ responses and resilience in the face of a changing climate.

By extending the work of Ramsey et al. (2021), the approach presented in this

paper allows to evaluate two important aspects, that have widely been neglected

in the literature on the climate change land use nexus so far. First, this nexus

has usually only been studied ex-post for already established land uses. With the

approach of this study, it is possible to evaluate this relationship for more recent,

not yet established land use systems. Second, by taking choice-specific attributes

into account, it is possible to simulate multiple alternative scenarios reflecting the

role of legislation, market conditions, and technological progress in the context of

climate change adaptation. Finally, the empirical case study focused on southeast

Germany sheds more light on the adoption potential of agroforestry in the context

of an industrialized country, since much of the work on this topic has until now

been done in the context of developing countries.

The remainder of the article is structured as follows. First, a short description

of agroforestry and wood-based agricultural land use systems is provided before

presenting a conceptual framework (Sec. 6.3). In Section 6.4, the data collection

and empirical strategy is presented. Section 6.5 describes the result from the

discrete choice experiment and the weather simulations, followed by a discussion

of the most important finding (Sec. 6.6). The paper closes with a summary and

several concluding remarks in Sec. 6.7.
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6.3 Background and conceptual framework

6.3.1 A short description of agroforestry and wood-based agricultural

land use systems

As mentioned previously, agroforestry systems are land-use systems where woody

perennials are integrated with agricultural crops and/or livestock on a piece of land,

either in a spatial arrangement or in a temporal sequence (Cardinael et al., 2021;

Leakey, 2017; Nair, 1985). This definition includes a wide range of diverse sys-

tems including silvopastoral (the combination of trees with livestock), silvoarable

(planting crops between rows of trees), forest farming (food, herbal, botanical, or

decorative crops under a forest canopy), home gardens; as well as hedge, wind-

break, and riparian buffer strip systems and many more (Pantera et al., 2021;

USDA, 2019). As can be seen by this diverse list, agroforestry is not a new con-

cept and goes back a very long time in many regions of the world (Pantera et al.,

2021).

With regard to the integration of trees on agricultural land, SRC have been iden-

tified as an attractive land-use alternative from both economic and ecological per-

spectives (Baum et al., 2009; Wolbert-Haverkamp & Musshoff, 2014). SRCs usu-

ally consist of fast-growing tree species such as poplar, willow, paulownia, robinia,

or eucalyptus with short rotation periods and frequent harvests (every 3 to 5 years)

(Rödl, 2017). Other than agroforestry, SRCs are typically associated with a single

use on the same field.

More recently, AC systems that integrate strips of SRCs into agricultural fields

have been receiving increasing attention (Tsonkova et al., 2012). In this system,

farmers produce crops and woody biomass on the same field at the same time.

This can result in multiple advantages across several domains.

Several previous studies, including Paul et al. (2017), Gosling et al. (2020) and

Schoeneberger et al. (2017) have found that AC can generate higher economic re-

turns than single crop land uses. Furthermore, diversifying production output can

raise economic stability (Tsonkova et al., 2012), and ACs can contribute to a more

sustainable biobased economy by simultaneously providing food and renewable

raw materials (Gillich et al., 2019). Numerous studies have also found positive

effects on crop yield and land-use efficiency (see e.g. Schoeneberger et al., 2017).

AC also provides a range of environmental services due to its multi-functional
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nature. It has the ability to break up large-scale structures, increase biodiver-

sity through increased habitat, increase species diversity and their connectivity

throughout agricultural landscapes, and it can also reduce soil erosion and nutri-

ent leaching (Langenberg & Theuvsen, 2018; Schoeneberger et al., 2017; Tsonkova

et al., 2012).

Finally, agroforestry systems and SRC can, to some degree, play an important

role in synergistically approaching climate change mitigation and adaptation. In

terms of climate change mitigation, AC and SRC systems can store large amounts

of carbon in aboveground and belowground biomass (Albrecht & Kandji, 2003) as

well as in soil (Cardinael et al., 2017), thus reducing atmospheric carbon dioxide

(Cardinael et al., 2021; Schroeder, 1993; Tsonkova et al., 2012). Regarding adap-

tation, the integration of trees on agricultural land provides a buffer to weather

extremes through regulating hydrological cycles, improving nutrient and water-

use efficiencies, and modifying microclimates (Ashraf et al., 2019; Pramova et al.,

2012; Wolz et al., 2018). Agroforestry can also diversify farmer income by hedging

financial risk (Wolz et al., 2018), and can make production more resilient to the

negative effects of climate change (van Noordwijk et al., 2021).

Despite these myriad advantages, silvoarable agroforestry systems are still rel-

atively rare in Europe (den Herder et al., 2015; Langenberg & Theuvsen, 2018).

van Noordwijk et al. (2014) note that there is a huge potential for the introduction

and expansion of agroforestry areas around the globe.

6.3.2 Land-use, random utility maximization and weather

expectations

Given the large potential for the introduction and expansion of agroforestry, this

study seeks to elicit farmers’ preferences for agroforestry and SRC in comparison to

conventional crop farming against a background of climate change. The theoretical

basis for this analysis is based on random utility maximization following Lancaster

(1966) and McFadden (1973). When it comes to planning the usage of their land,

farmers face a choice among a set of alternative land uses in various decision

situations under varying conditions. Each farmer obtains a certain level of indirect

utility from each land-use alternative. In a given decision situation t, she will

select alternative i if and only if Uit > Ujt, j 6= i. The indirect utility of an

alternative cannot be directly measured but it can be expressed by a systematic

(deterministic) component V , reflecting specific characteristics as well as farmers’
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individual and location-specific features, plus a random component ǫ, representing

unobserved decision-relevant elements (Mariel et al., 2021). A farmer n obtains

a certain level of indirect utility Unjt from a land use alternative j in a choice

situation t.

Unjt = Vnjt + ǫnjt (6.1)

As is standard, it is assumed that farmers’ utility for a land-use alternative to vary

with a set of decision-relevant characteristics (x, see Sec. 6.4.2). Furthermore,

as agricultural land-use is heavily dependent on weather (c), it is assumed that

farmers’ utility also depends on expected weather at the time of the planting

decision:

Vnjt = f(xnjt, cnt;β, γ) (6.2)

where β and γ are coefficients to be estimated. Following Nerlove (1958) and

Ramsey et al. (2021), it is also assumed that farmers have adaptive weather ex-

pectations that are based on past local weather history, where both short-term

and long-term trends might affect land use choices. What is more, it is realistic to

assume that farmers do not assign equal importance on each past weather event,

which is why a simple average of past weather would not properly reflect farm-

ers’ expectations. Ramsey et al. (2021) express the expected-weather-formation-

process as follows:

cnkt = ω0 + ωs W (c̈nkt−1, . . . , c̈nkt−r) + ωl W (c̈nkt−r−1, . . . , c̈nkt−R) (6.3)

where c̈nkt−r are actual past weather events. ω0 is a reference expectation, ωs

reflects a farmer’s weight assigned to the recent past, ωl is the weight assigned

to the more distant past, and W (·) is a weighting function (e.g. annual mean).

Hence, weather expectations are formed by two components, one reflecting longer

term weather patterns ("signal") and one reflecting short term weather variations

("noise"). In terms of climate change adaptation (i.e. the adoption of novel land

use options), one may presume that the signal plays the dominant role in decision

making. However, especially with respect to severe, more tangible weather events,

the noise component might be more important because of its immediate negative

effect on production (Ramsey et al., 2021), while such an experience might level

off with ordinary weather events in the longer-term.
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In light of these theoretical considerations, past (extreme) weather events are

expected to influence farmers’ decisions to adopt more climate change resilient

land-use options such as agroforestry or SRC .

6.4 Material and methods

This section first provides information on the case study region, Bavaria, before

describing the discrete choice experiment (DCE) setup used to collect data on farm-

ers’ preferences. Then the data that are used to describe weather are presented.

By combining the experimental with the weather data and utilizing a correlated

random parameter logit (RPL) approach, it is possible to estimate farmers’ prefer-

ences and probabilities for the cultivation of each land-use option and to retrieve

coefficient estimates reflecting the influence of land-use characteristics and (an-

ticipated) weather. Finally, the simulation approach used to model the adaptive

adjustment behavior of farmers in response to an extreme weather year based on

the estimates from the RPL model is described.

6.4.1 Study area

The DCE was conducted in Bavaria, a federal state of Germany in Central Eu-

rope. Located in the southeast of Germany, Bavaria belongs to the core regions of

agricultural production within the European Union (EU). It reflects the variety of

European farming (conditions) to a high extent, which is why this site was selected

for conducting this study. In terms of natural conditions, farming takes place along

an elevational gradient of 1500 m (from 100 m in Northwest Bavaria to 1600 m

in Southeast Bavaria) and a macroclimatic gradient with a mean annual tempera-

ture range between 3 °C and 10 °C and an annual precipitation of 470–1592 mm

(from 1960 to 2020). Its natural conditions range from pre-alpine and alpine ar-

eas with high precipitation and rather clayey, limestone and dolomite based soils

to regions with flat land and fertile loess soils to dry, marlstone, limestone and

dolomite based hillside locations. They are well-suited for various agricultural pro-

duction systems including crop farming, intensive and extensive dairy farming, pig

and cattle fattening and breeding, poultry farming, vegetable farming, orcharding,

hop production and viticulture. This heterogeneity is to a high degree reflected in

Bavaria’s seven regional districts (Figure 6.1). These will be analyzed individually

in addition to the entire region in the results section. Appendix 6.8.1 provides a

detailed description of the structural and natural conditions for each district.
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Figure 6.1: The case study region Bavaria is a federal state of Germany and lies
in Central Europe. It is comprised of seven regional districts.

6.4.2 Choice experiment setup

A DCE was used to elicit the influence of land use characteristics on farmers’

decisions regarding whether or not to cultivate agroforestry. Each farmer was

repeatedly confronted with a choice situation, in which the attributes of three

land-use alternatives (namely SRC, AC, and status quo crop farming) varied.

Attribute selection and levels

Following a careful literature search and after receiving feedback from agricultural

experts, the attributes used to describe the land-use alternatives are the follow-

ing: average yearly margin contribution, yearly margin contribution variability,

minimum useful lifetime, payments for ecosystem services and a dummy if the

alternative qualifies as ecological priority area.

The primary monetary attribute, the margin contribution, measures yearly rev-

enues (yield times price), minus variable cost. Fixed cost and subsidies are not

considered in this measure. Moreover, because revenues and costs are spread over

the entire production period of SRC and AC, a margin contribution equivalent,

which corresponds to the annualized form of the net present value is introduced.

Previous studies show that uncertainty plays an important role when it comes to

farmers’ decision making processes in general (see e.g. Menapace et al., 2013) and

land allocation in particular (El-Nazer & McCarl, 1986; Knoke et al., 2015). This

study expresses outcome uncertainty in terms of gross margin fluctuations. Since

farmers tend to be risk-averse (Menapace et al., 2013), we expect an increase in

variability to negatively affect preferences.
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The minimum useful lifetime of a land-use alternative is closely related to the

entrepreneurial flexibility of farm businesses. Being tied longer-term to one land-

use type means a loss of flexibility (Musshoff, 2012). This is expected to negatively

affect farmers’ preferences.

Since SRC and AC provide a wide range of environmental services, payments for

ecosystem services (PES) could provide a positive incentive for farmers to cultivate

one of these land-use options (e.g. Layton & Siikamäki, 2009).

Finally, Langenberg et al. (2018) find that one major driver for farmers to engage

in AC may be the area’s qualification as "ecological priority area". To achieve this

designation, farmers must attribute a certain amount of land to ecological priority

areas (which are considered environmentally-friendly). They then receive area

based "greening" payments, which account for approximately 30% of the farmers’

total basic payment.

We aimed for realistic levels of each attribute based on official databases (e.g.

LfL, 2018; StMELF, 2018), previous studies (e.g. Gillich et al., 2019; Hauk et al.,

2014; Langenberg et al., 2018; Pröbstl-Haider et al., 2016), expert consultation

and plausibility considerations. Table 6.1 summarizes the attributes and attribute

levels.

Table 6.1: Description of attributes and levels.

Attribute Description Attribute
levels

MC Margin contribution (equivalent) (AC/ha) 400a,
600, 800

MCV Margin contribution variation (%) 15a, 30

MUL Minimum useful lifetime (years) 3a,b, 16,
20, 24

PES Payment for environmental services (AC/ha) 0a, 100,
200

Green Qualification as ecological priority area Yes,
Noa

a Fixed attribute levels for the status quo alternative.
b Attribute level that only applies for the status quo alternative.

Conducting the choice experiment

After having determined choices, attributes and corresponding levels the actual

choice experiment commenced. A choice experiment with three labeled alterna-
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tives was created, namely "Short Rotation Coppice", "Agroforestry", and "Status

Quo". Given its labeled nature, we followed Viney et al. (2005) and created an

LMA design for the DCE, that resulted in 36 choice cards. To reduce the psycho-

logical burden of answering all choice tasks, they were randomly blocked into three

sets of twelve choice cards. An exemplary choice card can be found in appendix

6.8.3. Each respondent was then randomly assigned to one of the three blocks.

Before the participants started the choice experiment, an explanation of how the

DCE would work was provided, along with descriptions of the alternatives and

attributes relevant for the task (see appendix 6.8.4). To tackle hypothetical bias,

we used "cheap talk" (Landry & List, 2007) and reminded the participants about

the danger of hypothetical bias and that they should answer truthfully.

The survey consisted of several parts. After some general information and the

respondents’ consent to participate, they were asked for general (socioeconomic)

characteristics of their farm, which was followed by the DCE. Finally, the par-

ticipants were asked to give further information on their local climate change

perception and several character traits.

After an extensive pre-test phase which took place in the early summer, the survey

was conducted online in October 2020. Respondents from Bavaria were recruited

from a large panel of farmers provided by an agricultural market research platform

called agriEXPERTS and through multiple outlets of a specialist publishing house

for agriculture (Deutscher Landwirtschaftsverlag, dlv). The survey included

an invitation to take part in a lottery to win one of ten vouchers for a popular

agricultural clothing shop worth 50 EUR each. It took approximately twelve

minutes to complete the questionnaire.

6.4.3 Weather variables

To accurately describe the local weather history of these farms, five common

weather indicators were selected, including average temperature, precipitation

sum, number of dry days, number of hot days and the number of heavy rain

days, during the local growing season (March–October). The variables are de-

rived from 0.1 degree gridded daily data from the European Climate Assessment

& Dataset (ECA&D) project (Cornes et al., 2018). Following ETCCDI (2018) and

DWD (2022), dry days are defined as days with precipitation of < 1mm and hot

days are defined as days with maximum temperature > 30 °C. On heavy rain days

precipitation exceeds 20 mm (DWD, 2022). The weather indicators were aggre-
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Figure 6.2: Summary of the weather variables used for the estimation of the
baseline model with lag structure 1-3 and 4-10.

gated at the municipality level (2031 municipalities) and linked to the responses

from the questionnaire via zip codes.

As outlined in Section 6.3.2, farmers form their weather expectations based on

historical weather patterns, which can be distinguished between short-term and

longer-term weather patterns. To capture this distinction, short-term and long-

term weather variables were defined by different lag structures. The base specifi-

cation for short-term weather patterns for the five indicators were based on the

average of years t− 1 to t− 3 (more recent past) and longer-term weather patterns

are based on the average of years t− 4 to t− 10 (more distant past). Figure 6.2

summarizes these variables. Further lag structures were computed reflecting mul-

tiple candidate time horizons of expectation formation, which were later tested

against the base structure (sec. 6.5.2). All weather variables were mean-centered,

which will prove useful for the interpretation of the alternative-specific constants

in the RPL model and the corresponding willingness to adopt measures.1

1Mean-centering the weather variables allow to directly interpret these measures, as the
intercepts are evaluated at the average weather (for which all weather variables take on a value
of zero.)
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6.4.4 Econometric approach

For the econometric analysis, the random parameter logit model was used to ac-

count for preference heterogeneity in the utility function of the investigated sample

(Hensher et al., 2015; Train, 2001). The utility function (6.2) was parametrized

with alternative specific constants (αij), land-use specific attributes (X) and indi-

vidual-specific weather parameters (C):

Vijt = αij + βiXjt + δijCi + ǫijt (6.4)

The model formulation is a one level multinomial logit model, for individuals i =

1, . . . ,N in choice setting t and alternatives j. It assumes a Gumbel distribution

of the error term ǫijt, and the probability of each choice j is as follows (Hensher

et al., 2015):

Prob(yit = j) =
expαij + βiXjt + δijCi∑
j(expαij + βiXjt + δijCi)

(6.5)

In the RPL framework, the coefficient vectors αij , βi, and δij are considered

random draws from a distribution whose parameters need to be estimated. Under

this assumption, we can use maximum simulated likelihood estimation to obtain

coefficient estimates for αij , βi, and δij (Train, 2001). A total of 1000 Halton

draws were used for each model estimation. As for the parameter distributions, it

was assumed:

(αij ,βi) = (αj ,β) + Γ ν(j)i (6.6)

δij = δij + Ω υij (6.7)

where νi(j) and υij describe random unobserved preference variation, with mean

zero and covariance matrix with known values on the diagonal, and fixed by iden-

tification restrictions. Γ is a lower triangular matrix that allows correlation across

the attribute-related random parameters and Ω = diag(σ1, . . . ,σk).

This specification followed the approaches of Hess & Rose (2012) and Hess &

Train (2017), who showed that only by allowing for correlation across attribute-

related random parameters, is it possible to capture scale heterogeneity alongside

heterogeneity in utility coefficients. According to Hess & Rose (2012, p.9): "Such

correlations can be expected in any setting: they simply reflect that respondents’

preferences for one attribute are related to their preferences for another attribute".

Ignoring this correlation could severely bias parameter estimates. One reason why
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this specification is only rarely observed in the literature might be its significantly

higher computational burden (Mariel & Meyerhoff, 2018).

It is assumed that all random parameters were normally distributed except for

the coefficient of the contribution margin, which was assumed to be log-normally

distributed. This was done for two reasons. First, economic theory states that the

sign for the profit attribute should always be positive. Second, finite moments for

the WTA values (Daly et al., 2012) are assured. These are defined as the change

in one attribute with respect to the return margin. Hence they are the ratio of

each parameter estimate and the parameter estimate of the marginal contribution:

WTA =
(α̂ij , β̂i)

β̂i,contribution margin

(6.8)

By mean-centering the weather variables we can make direct use of the estimated

ASCs. Dividing them by the individual-specific coefficient estimate on the re-

turn margin gives the marginal WTA at mean weather because all mean centered

weather variables in C are zero at their means (see also Iacobucci et al., 2016).

6.4.5 Post-estimation simulation

To evaluate the short- and longer-term adjustment dynamics to an extreme weather

period, farm-level responses to one to five-year weather shocks over a period of

10 years were simulated following the method of Ramsey et al. (2021). The sim-

ulation is based on the estimated parameters from the fitted RPL model in Sec.

6.4.4. These simulations are primarily based on the 2018 drought year, which

caused severe damage to German crop farming (Webber et al., 2020). Following

the reasoning of Girard et al. (2021), that different weather shocks have different

impacts on land-use responses, we also present simulation results for a 2003-like

heatwave (Ciais et al., 2005).

Given the lag structure of the weather variables, farmers’ adoption probabilities

in response to an extreme weather period each year during and after the weather

shock based on the formula for land use probabilities can be simulated (Eq. 6.5).

In the baseline scenario, the values of the weather variables C were replaced for

every farm in years 0–10 with their respective (sub-)sample long-term averages

(LTA) over the 20-year period 1991–2020. For a one-year shock scenario, the 2018

(2003)-like event is assumed to occur in period t = 0, and then the weather returns

to the LTA. This shock will affect the values for the short-term weather variables
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(lags 1–3) in periods 1–3, and then they return to the LTAs. The longer-term

weather variables (lags 4–10) remain at the LTAs for periods 1–3 before changing

to a "shocked" level in years 4–10 after the shock (compare Ramsey et al., 2021,

p.13 and App. 6.8.5). Figure 6.3 illustrates the composition of each weather

variable over time for a one-year, a two-year and a three-year weather shock as

they enter equation 6.5 in the simulation.

Figure 6.3: Illustration of the composition of the weather variables as they enter
the simulation scenarios and replace the original weather variables
used for the RPL estimation. The replacement procedure is
demonstrated of a one-year, two-year and three-year shock scenario.
Longer-term shocks change accordingly.

We ran simulations for the full sample as well as for each district separately to

explore more potential regional adaptation paths. Table 6.2 summarizes the re-

spective values used for the construction of the weather variables.

Regarding the levels of the land-use attributes X, we constructed several scenarios,

reflected by different attribute levels used in the simulations. The respective levels

and scenarios are summarized in Table 6.3.

6.5 Results

6.5.1 Sample summary statistics

In total, we received 210 responses. Twelve responses were deleted after a series

of plausibility checks. The resulting analysis is thus based on the responses of

198 farmers. In Table 6.4, summary statistics for key farm characteristics in this

sample are described and compared with the population means for Bavaria (mostly

stemming from official census data). Approximately half of the sample is full-time
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Table 6.2: Description of the weather indicators as they enter the 2018-like shock
simulations.

Precipi-
tation

(mm/year)

Average
Temp.

(°C)

Dry
days

Heavy
rain
days

Hot
days

Bavaria (full sample)
Long-term average (baseline) 610.21 12.39 156.35 4.92 12.36
Extreme weather year (2018) 421.52 13.93 181.14 3.75 24.63
Difference -188.70 1.53 24.79 -1.17 12.26

Upper Bavaria
Long-term average (baseline) 778.48 12.27 147.98 7.77 11.14
Extreme weather year (2018) 583.21 13.70 170.29 6.23 17.99
Difference -195.27 1.44 22.32 -1.54 6.85

Lower Bavaria
Long-term average (baseline) 601.28 12.57 156.37 4.48 13.09
Extreme weather year (2018) 421.10 14.27 180.66 3.34 26.73
Difference -180.18 1.70 24.29 -1.14 13.64

Upper Palatinate
Long-term average (baseline) 509.76 12.30 160.66 3.09 12.52
Extreme weather year (2018) 327.00 13.97 184.70 1.97 29.04
Difference -182.75 1.67 24.04 -1.12 16.52

Upper Franconia
Long-term average (baseline) 525.48 12.13 158.80 3.40 11.58
Extreme weather year (2018) 302.93 13.72 185.51 1.60 25.63
Difference -222.55 1.59 26.70 -1.80 14.05

Middle Franconia
Long-term average (baseline) 474.35 12.85 164.70 2.91 15.00
Extreme weather year (2018) 316.06 14.39 193.00 2.93 31.40
Difference -158.29 1.54 28.30 0.02 16.40

Lower Franconia
Long-term average (baseline) 463.42 12.90 163.59 2.54 15.41
Extreme weather year (2018) 304.78 14.57 192.77 2.54 35.61
Difference -158.64 1.67 29.18 0.00 20.20

Swabia
Long-term average (baseline) 721.56 11.93 152.09 6.98 9.54
Extreme weather year (2018) 506.23 13.17 174.49 4.94 14.21
Difference -215.33 1.24 22.41 -2.03 4.68

Table 6.3: Simulation scenarios and corresponding attribute values.

Alley-Cropping Short Rotation Coppice Status Quo

Scenario MC MC
V

MU
L

PE
S

Gre-
en

MC MC
V

MU
L

PE
S

Gre-
en

MC MC
V

MU
L

PE
S

Gre-
en

1. Regular-case 400 30.0 24 0 No 400 30.0 24 0 No 400 15 3 0 No
2. Regular-case
w/ policy
support

400 30.0 24 200 Yes 400 30.0 24 200 Yes 400 15 3 0 No

3. Regular-case
w/
technological
improvement

400 30.0 16 0 No 400 30.0 16 0 No 400 15 3 0 No

4. Better-case
for agroforestry

600 22.5 20 100 Yes 600 22.5 20 100 Yes 400 15 3 0 No

5.Ideal-case for
agroforestry

800 15.0 16 200 Yes 800 15.0 16 200 Yes 400 15 3 0 No

Note: MC = Margin contribution (Euro), MCV = margin contribution variation (%),
MUL = Minimum useful lifetime (years), PES = Payments for environmental services
(Euro), Green = Cultivated area eligible for greening premium
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Table 6.4: Sample description and comparison with the population mean.

Sample Bavaria

Mean Median SD Population Mean

Full-time farming (1 if yes, 0
otherwise)

0.49 0 0.5 0.45c

Utilized area (ha) 69.79 40.5 89.84 36.66c

Share of cropland (%) 59.57 64.55 27.13 65.18c

Share of grassland (%) 34.07 30 22.9 34.37c

Share of forested land (%) 10.19 5 12.37 –

Share of rented land (%) 31.13 20 30.71 51.0c

Workforce (AWUa) 0.1 0 0.3 0.12c

Full-time farming (1 if yes, 0
otherwise)

1.63 1.25 1.29 2.27c

Farmer’s age (years) 48.34 50 12.42 50.3d

Higher education (1 if yes, 0
otherwise)b

0.24 0 0.43 –

Participation in
agri-environmental program (1 if
yes, 0 otherwise)

0.73 1 0.44 0.68e

Note: Number of observations = 198; a AWU denotes annual working units. b Higher

education refers to having a university degree.

Sources: c Destatis (2021b), d LfL (2015), e Destatis (2021a)

farmers, which is only slightly higher than the Bavarian average (45%). Several

characteristics of this sample are similar, on average, to the Bavarian average,

namely cropland and grassland shares, farmers’ ages and the participation rate in

agri-environmental programs. At the same time, these sample farms manage more

land on average, have a smaller share of rented land, and have a smaller workforce

than the population mean. Also, the sample share of organic farms with 10% is

very similar to the population share (12%). Overall, the descriptive statistics show

that our sample reflects the Bavarian farmer population reasonably well, except

for a few dimensions including farm size and labor. These deviations from the

population mean are not necessarily negative in light of a dynamic trend toward

fewer but larger farms within the EU (Wimmer & Sauer, 2020). Nearly all farmers

stated they had already experienced negative consequences due to climate change

related extreme weather events, especially in the form of yield and quality losses.

201



Agricultural production and environmental change

6.5.2 Model estimates and willingness to adopt

Model estimates

The model estimation results are summarized in Table 6.7. In a first step, we

compared the model of our choice – the correlated RPL model – to a multinomial

logit model (Model 1), and an uncorrelated RPL model with weather variables

(Model 2). Likelihood-ratio tests showed that the correlated RPL model was

a significantly better fit to the data than the alternative models. This is why

this model was the preferred choice. Table 6.8 shows the parameters’ correlation

structure. Additionally, from these tests it was possible to empirically confirm that

the weather (history) variables jointly have a significant impact on farmers’ land

use decisions as assumed in theory section. From Table 6.7 (Model 3), we can see by

the attribute specific constants (ASC) that crop farming is preferred to both SRC

and AC during average weather conditions. Preference heterogeneity (indicated

by the estimates of the standard deviation of the random parameters) was also

found for most choice attributes, except for margin contribution variability.

Willingness to adopt

To obtain further insights into farmers’ land-use preferences, we calculated farm-

ers’ WTA based on the individual coefficient estimates from the correlated RPL.

Figure 6.4 presents the results separately for both the full sample as well as for

regional districts. Panel A shows that farmers had a generally negative WTA with

respect to agroforestry (median value of −AC123 for Bavaria) and SRC (median

value of −AC513 for Bavaria) evaluated at average weather conditions. These values

can be interpreted as the farmers’ ceteris paribus compensations to cultivate the

corresponding alternative in addition to the contribution margin from the status

quo crop rotation. SRC is valued more negatively and has a larger heterogeneity

than AC (and crop farming), a pattern that is seen consistently across regional dis-

tricts. Median WTA values for AC range from −AC83 in Lower Bavaria to −AC132

in Central Franconia, and for SRC from −AC286 in Lower Bavaria to −AC544 in

Central Franconia. Hence, on average, farms in Central Franconia seem to be

most adherent to status quo crop farming, while farms in Lower Bavaria seem to

be most willing to switch to agroforestry and SRC.

When examining the land-use characteristics (Figure 6.4 panel B), it can be seen

that an increase in the contribution margin variability (i.e. higher economic risk),
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as well as an increase in the minimum useful lifetime (i.e. lower entrepreneurial

flexibility), decreases the willingness to adopt the land use options. This was the

case for all regions to varying extents. This also meant that a reduction in these

variables could lead to a higher willingness to cultivate agroforestry and SRC. For

instance, the negative WTA for agroforestry in the Lower Franconia subsample

(median: −AC128) could potentially be offset by a ceteris paribus reduction of

the minimum useful lifetime (median WTA: −AC33.4) by 4 years. Furthermore,

offering PES lead to an increase in the WTA. For example, within the full sample,

every extra PES Euro leads to an AC0.53 increase. While this value varies across

observations and regions, the increase in ecosystem payments is in many cases

under-proportional to the increases in the WTA (< 1) and thus rather inefficient.

As already evident from the data presented in Table 6.7, designating land as an

ecological priority area is not a useful lever to increase farmers’ willingness to

cultivate AC and SRC.

Figure 6.4: Summary of individual-specific willingness to adopt (WTA)
estimates expressed as EUR/ha.
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This paper refrains from analyzing the coefficient estimates of the weather vari-

ables individually because they likely suffer from a certain degree of multi-collinearity,

which is not a problem per se but makes ceteris paribus statements very difficult.

This issue is further examined in Sec. 6.6.

Further robustness checks

As mentioned previously, there are multiple possibilities for the empirical spec-

ification of the lag structure of the weather history data reflecting longer-term

weather patterns ("signal") and short-term weather variations ("noise"). Therefore,

we tested a series of alternative weather variable specifications and re-estimated

the correlated RPL model and compared the model fit with our selected model

(lags 1-3 and lags 4-10) (Table 6.9). It can be seen that the preferred model fits

the data best followed by models with lag structures 1/2-15 and 1-3/4-15.

6.5.3 Weather simulations

To examine farmers’ agroforestry adoption in response to the more extreme and

adverse weather patterns, which are predicted to occur more often and last longer,

we simulate a 2018-like (and 2003-like) extreme weather year at the regional level

and observe the deviations of land-use probabilities from the average thirty-year

baseline weather considering multiple socioeconomic scenarios. Additional simu-

lations of the same weather events lasting for three and five years, respectively,

were conducted. Furthermore, we developed an interactive simulation tool that

allows to flexibly adjust and combine the simulation settings according to one’s in-

dividual needs. This tool is available at: https://ge36raw.shinyapps.io/main_

dashboard/.

Examining the pre-defined scenarios in Figure 6.5, for a one-year 2018-like weather

shock, one can see that in the regular-case scenario (all land-use options at their

base levels), farms’ land-use probabilities remain close to their baseline levels af-

ter an adjustment period. In all regions except Swabia crop farming was the

preferred land-use type. However, if the settings are changed such that AC and

SRC experience policy support ("Regular-case w/ policy supp"), then AC becomes

at least equally likely to be adopted as crop farming in Upper and Lower Bavaria.

This effect is even more pronounced if the minimum useful lifetime of wood-based

cultivars is reduced to sixteen years. From the scenarios with more preferential

conditions for the wood-based land uses, it can be seen that farmers in Upper
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Palatinate and Middle Franconia are quite reluctant to adopt these land use types.

An interesting pattern can be observed across all scenarios and regions. In the

first years after a one-year shock, farmers tend to prefer status quo crop farming,

indicated by an increasing adoption probability. Similar outcomes for a 2003-like

weather event (Figure 6.8) are also found, although less adjustment movement can

be observed in the case of crop farming but more pronounced adjustment move-

ment in the case of SRC. Also, we find that AC also becomes more likely to be

adopted in Swabia.

To consider a longer duration shock, Figure 6.6 shows the simulation results for

a three-year 2018-like extreme event. Over all, we find very similar patterns to

those seen before. Nevertheless, following the more pronounced extreme weather

event (in terms of duration) the farms’ adaptation path following such an event

becomes also more marked. For instance in Lower Bavaria, the probability of

cultivating crops first reaches near 100% in scenarios one and three following the

extended weather shock before falling considerably below the baseline level (and

the probability of adopting AC). It was also found that without policy intervention

or the shortening of the minimum useful lifetime, AC becomes the preferred land-

use option in both Upper and Lower Bavaria. In a scenario of a 2003-like extended

weather event (Figure 6.9) and when examining the full sample, AC becomes the

preferred land-use choice regardless of the scenario. Additionally, the adaptation

path regarding crop farming becomes considerably more volatile.

Finally, examining an even more extensive weather shock sceanrio, which spans

five years (Figure 6.7), it can be seen that AC eventually becomes the preferred

land-use type in almost all instances (except for in Swabia and Middle Franconia),

which also holds true for a 2003-like weather period (Figure 6.10). However, in

case of a 2003-like five-year weather period, AC is also preferred in Swabia.

Overall, farmers in Lower and Middle Franconia were found to be most reluctant

to transition away from status quo crop farming. These results show that socioe-

conomic conditions affect the land-use responses of farmers to regional weather

extremes. This involves policy support as well as technological progress. Further-

more, regional differences were found in farmers’ willingness to adopt AC and SRC

after an extreme weather event. Finally, these results show that prolonged extreme

weather periods lead to an increased probability of adopting climate-resilient agro-

forestry land-use systems in this sample.
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Figure 6.5: Simulated probabilities from a 2018-like extreme weather event
lasting one year.

6.6 Discussion

From the result section (6.5), a series of interesting patterns can be observed. In

examining farmers’ dynamic land-use responses to extreme weather years (Sec-

tion 6.5.3), one finds characteristic response pathways which occur across farms

and regions before reaching a (novel) equilibrium state. More specifically, these

pathways can be largely divided into three phases: an absorption phase (during

and directly after a shock, in which land-use probabilities move away from the
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Figure 6.6: Simulated probabilities from a 2018-like extreme weather event
lasting three years.

baseline), a recovery phase (in which probabilities return to the initial levels), and

an adaptation phase (in which probabilities move away from the initial level to-

ward a (new) equilibrium). These phases reflect important resilience capacities in

agricultural systems (Meuwissen et al., 2019; OECD, 2020).

As for the absorption phase, the probability of status quo crop farming was found

to increase across all regions encountering a 2018-like weather shock. Since crop

farming is also the land-use system with the highest probability in most scenarios
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Figure 6.7: Simulated probabilities from a 2018-like extreme weather event
lasting five years.

and regions, it can be concluded that farmers adhere more strongly to their status

quo in the direct aftermath of a shock when compared to the baseline. This might

be surprising at first sight, because one would expect farmers to turn to more

weather-robust land uses such as AC and SRC (Ogunbode et al., 2019; Wilson

et al., 2020). However, in the short-run, decisional factors are usually rigid, and

production structures fixed, and thus farmers’ capacity to react is somewhat lim-

ited (Girard et al., 2021). Further barriers to transform their land-use directly
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after a (long-lasting) weather shock might lie in behavioral barriers such as farm-

ers’ perceived risk or their perceptions of the benefits and costs associated with

more weather-robust land uses (Dessart et al., 2019). Farmers might therefore be

prone to only make adjustments within their familiar land-use system (i.e. crop

farming). This trend intensifies with the duration of the weather shock.

Depending on the situation, the recovery phase can last between one and five years.

Independent of the scenario and region, it can be seen that the sample farms are

able to recover from a weather shock in terms of their land-use probabilities (see

also Béné et al., 2012; OECD, 2020). This might also be seen as a phase when

the extreme weather period has settled and farmers are able to reconsider their

initial land use and prepare for adaptive action.

In the adaptive phase, mixed effects regarding farmers’ adaptive capacity (Engle,

2011; Smit & Wandel, 2006) are found. AC and SRC both provide comparative

advantages over crop farming apart from their relative excellence with respect to

climate robustness, but if there is no monetary incentive or technological improve-

ment, farms remain reluctant to transform and adopt these options. Although

a certain degree of heterogeneity across shocks and regions was found, this trend

was quite stable in our analyses. However, farmers appear to acknowledge the rela-

tive excellence of the agroforestry system, because irrespective of the scenario and

region, the probability of adopting this system after a weather shock increases in

the long-run. Especially, in the case of a very long-lasting extreme weather period

(i.e. five years), agroforestry becomes the preferred land-use option.

What is more, our results empirically confirm the conceptual considerations by

Meuwissen et al. (2019), i.e. resilience and its capacities are shock- and context-

specific.

Next, our results have important implications for policy-makers. First, PES in-

crease farmers’ probability of adopting wood-based and agroforestry land-use sys-

tems. Therefore, they can be an important lever to promote the cultivation of

these climate-robust systems. While PES might be effective in promoting climate-

robust land-use systems, they could be more cost-effective. From Sec. 6.5.2, we

learned that one extra Euro of such payments increases the marginal willingness

of most farmers to adopt these system (approx. 67%) by only less than a Euro

(median: AC0.54). This finding is in line with a series of previous studies finding

low cost-effectiveness of PES and agri-environmental schemes (e.g. Bartolini et al.,
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2021; Chabé-Ferret & Subervie, 2013; Stetter et al., 2022a). However, there is

inter and intra-region heterogeneity, e.g. the cost-effectiveness is on average high-

est in Upper (90%) and lowest in Central Franconia (28%). Accounting for such

differences and adjusting the offers of environmental payments for the cultivation

of agroforestry at a regional level could significantly increase the cost-effectiveness

of such payments (Stetter et al., 2022a; Wünscher et al., 2008).

Another policy-relevant driver of agroforestry adoption is the minimum useful

lifetime of the wood-based land use options. Farmers appear to assign a high

value to their entrepreneurial flexibility (see also Musshoff, 2012). Rosenqvist &

Dawson (2005), Avohou et al. (2011) and Londo et al. (2001) showed that the useful

lifetime of wood-based land uses is very important for their economic viability.

To better incentivize land-use change, legislators could establish a framework to

encourage the development of coppices with reduced minimum useful lifetime but

without reduced economic benefits. One way to do this might be the promotion

of novel breeding methods, which have shown high innovation potential across

several domains (Qaim, 2020).

Furthermore, our analysis adds to a small but increasing body of studies that

assesses the link between climate variability and land-use change (Girard et al.,

2021). While most of these previous studies focus on established land use types

and crops (He & Chen, 2022; Ramsey et al., 2021; Salazar-Espinoza et al., 2015),

this study’s approach allows the ex ante assessment of the potential of novel, not-

established land-use types, which could play an important role in the future. What

is more, the integration of a choice experiment into the simulation approach allows

the evaluation of different scenarios, thus providing a more holistic view on the

link between extreme weather and land-use responses.

Finally, this study has some limitations that bear mentioning. For instance, we use

cross-sectional weather data for the estimation of the econometric models. This

means that farmers’ preferences were measured only at one point in time (October

2020). This might be problematic under the assumption that preferences vary

temporally (neglecting weather changes, which the model accounts for). However,

several studies suggest that preferences are likely to be stable at least in the short-

to medium-term (see e.g. Andersen et al., 2008; Dasgupta et al., 2017; Doiron &

Yoo, 2017). Another weakness relates to the direct interpretation of the estimated

weather coefficients in the RPL model. It is unlikely that any of the weather
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indicators changes in isolation, i.e. ceteris paribus statements are not valid. This

is why we refrained from direct interpretation of the estimated weather coefficients

and instead focused on the weather simulations, which alleviates this problem to

some extent (Ramsey et al., 2021). Additionally, multiple common characteristics

of the sample and the underlying Bavarian farmer population indicated reasonable

representativeness. This is true for the full sample, but it is not likely the case

for the subsample analyses, which is why these results should be interpreted with

care regarding their generalizability at the regional level (Pachali et al., 2020).

Last, hypothetical bias might be a concern in the presented choice experiment

setup. The issue was tackled using cheap talk. There are varying but mostly

positive results in the literature with regard to the effectiveness of cheap talk

at eliminating hypothetical bias (Liu & Tian, 2021; Murphy et al., 2005; Penn

& Hu, 2019). The foregoing notwithstanding, a recent meta-study found that

hypothetical bias might not be very problematic in willingness-to-accept settings

(Penn & Hu, 2021).

6.7 Summary and concluding remarks

Climate change poses exceptional challenges to farm businesses and the rising

number of extreme weather events call for action in terms of climate change adap-

tation and mitigation. The cultivation of agroforestry and wood-based land-use

systems could play a key role in making farms more resilient to climate change.

This study analyzes farmers’ dynamic WTA such systems in response to extreme

weather periods. To this end, random utility theory was integrated with the con-

cept of adaptive weather expectations. Methodologically, a DCE was conducted

with farmers in Bavaria, Germany was combined with local weather data. For this

analysis, a correlated random parameter model was used, which served as a basis

for regional weather simulations following Ramsey et al. (2021).

The results of this study indicate that farms are generally reluctant to adopt agro-

forestry and SRC compared with crop farming but they are more likely to adopt

these options after an extreme weather event in the medium- to long-term. Further-

more, characteristic weather response pathways were found which can be divided

into three phases reflecting important resilience capacities, these being absorption,

recovery, and adaptation. Additionally, these findings show that policy makers

can effectively promote the adoption of agroforestry through PES – although at

a relatively low cost-effectiveness – and through fostering technological progress.
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Several robustness checks were conducted to assess the plausibility of our model.

This study also addresses important limitations concerning the underlying data,

its representativeness and the model interpretation. Overall, our results show that

farms may be increasingly likely to switch to agroforestry and wood-based systems

in response to regional weather extremes.

Finally, we want to outline potential paths for future research. Firstly, it would be

worthwhile to assess the statistical uncertainty of the simulations. This could, for

instance, be done either by means of a (computationally very expensive) nonpara-

metric bootstrap procedure or by switching to a (hierarchical) Bayesian estimation

framework. Furthermore, it would also be interesting to evaluate the appropriate-

ness of this study’s approach for other climate change adaptation strategies beyond

land-use. Lastly, we would appreciate similar studies in different regions around

the world for to get a better overall understanding of the causal links between

climate change and land use.
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6.8 Appendices

6.8.1 Characterization of the regional districts

Table 6.5: Short summary of the main district characteristics based on Table 6.6.
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Table 6.6: Detailed overview of regional district charcteristics primarily based on
Bavarian census data from 2010 and 2016.

Ba-
varia

Upper
Ba-
varia

Lower
Ba-
varia

Upper
Palati-
nate

Upper
Fran-
co-
nia

Central
Fran-
co-
nia

Lower
Fran-
co-
nia

Swabia

Structural conditions

Total area (mio. ha) 7.1 1.8 1 1 0.7 0.7 0.9 1

Population density
(residents/km2)

186.3 269.3 120.8 114.8 146.9 245.1 154.5 190.7

Share of forest area in total
area (%)

36.9 36.2 34.9 43.3 40.6 34 42.2 29.2

Share of agricultural land in
total area (%)

44.3 42.8 48.7 40.4 41.3 45.2 41 50.4

Share of arable land in
agricultural land (%)

65.5 57.6 74.5 70.1 68.6 70.4 78.5 50.8

Share of grassland in
agricultural land (%)

34 42.2 25.3 29.9 31 29.2 19.4 48.8

Livestock density (livestock
units/ha agricultural land)

0.9 1.04 0.96 0.93 0.67 0.85 0.37 1.16

Share of rented land (%) 45 36.2 40.3 43.5 50.8 51.1 59 46.9

Size classes (Share of farms in %)

< 10 ha 22 19.7 23 20.2 25.7 23.3 30.2 18.4

≥ 10 ha < 20 ha 27.2 27.9 27.2 28.8 25.2 27.5 22.6 28.3

≥ 20 ha < 50 ha 29.7 35.3 29.8 28.6 23.6 24.8 22.2 32.2

≥ 50 ha < 100 ha 15.6 13.8 15.8 17.7 16.1 16.8 14 16.7

≥ 100 5.5 3.3 4.2 4.7 9.4 7.6 11 4.4

Land prices (rental price in
EUR/ha)

251 272 347 214 148 219 235 282

Full-time farms (%) 51.3 56.9 53.5 48.9 38.9 43.9 38.1 60.3

Generational renewal is secured
(% of farms w/ farm manager’s
age > 45)

37.3 43.8 41.1 39.2 31.3 32.9 28 32.7

Natural conditions

Elevation (m above sea level) 519.5 630.9 485 489 456.5 411.9 322 646.2

Mean temperature 1960-2020
(°C)

8.09 7.97 8.05 7.89 7.86 8.55 8.76 7.78

Yearly precipitation sum
1960-2020 (mm)

864.4 1046.7 857.8 740.3 796.6 689.6 717.6 988.2

Cation Exchange Capacity1 16.5 20.82 13.87 12.11 14.34 15.24 15.37 19.53

pH value of the soil 5.62 5.78 5.48 5.28 5.42 5.71 5.78 5.75

Available water capacity
(m3

/m3)2

0.098 0.098 0.095 0.092 0.101 0.099 0.104 0.1

Coarse fragments (%) 14.1 16.2 14.5 13.9 14.7 10.3 12.9 13.5

Yields (dt/ha)

Wheat 75.1 77.9 80.7 76.3 65.2 70.4 69.7 81.8

Grain maize 104.7 105.3 107.1 103.9 97.6 96.6 97.7 106.2

Grassland 77.1 80 78.5 73.9 69.7 82.6 64.8 88.4

Sources: Bayerisches Landesamt für Statistik (2022), Cornes et al. (2018), Panagos et al. (2012)
1 Soil fertility indicator: soil’s ability to supply important plant nutrients.
2 Amount of water that can be stored in the soil and be available for growing crops.
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6.8.2 Exemplary choice card (in German)
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6.8.3 Description of the DCE alternatives
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6.8.4 Description of the DCE attributes
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6.8.5 Weather variable formulation for simulation

One year shock:

weath1to3t =
1

3
weathshock +

2

3
weathlta for t = 1, 2, 3 (6.9)

weath1to3t =weathlta for t = 4, . . . , 10 (6.10)

weath4to10t =weathlta for t = 1, 2, 3 (6.11)

weath4to10t =
1

7
weathshock +

6

7
weathlta for t = 4, . . . , 10 (6.12)
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6.8.6 Weather simulations of a 2003-like extreme weather event

Figure 6.8: Simulated probabilities from a 2003-like extreme weather event
lasting one year.
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Figure 6.9: Simulated probabilities from a 2003-like extreme weather event
lasting three years.
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Figure 6.10: Simulated probabilities from a 2003-like extreme weather event
lasting five years.
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Table 6.7: Estimation results summary.

MNL uncor. RPL cor. RPL

Means
ASC: SRC −1.52 (0.22)∗∗∗ −3.82 (0.57)∗∗∗ −3.52 (0.60)∗∗∗

ASC: AC −0.98 (0.22)∗∗∗ −2.04 (0.53)∗∗∗ −0.89 (0.53)◦

Returns 0.00 (0.00)∗∗∗ −4.87 (0.10)∗∗∗ −4.80 (0.10)∗∗∗

Returns variability −0.01 (0.00)∗ −0.03 (0.01)∗∗ −0.05 (0.01)∗∗∗

Min. useful lifet. −0.04 (0.01)∗∗∗ −0.22 (0.03)∗∗∗ −0.26 (0.03)∗∗∗

PES 0.00 (0.00)∗∗∗ 0.01 (0.00)∗∗∗ 0.01 (0.00)∗∗∗

No greening −0.09 (0.07) −0.64 (0.17)∗∗∗ −0.25 (0.22)
Rain 1-3:SRC 0.01 (0.00)∗ 0.07 (0.01)∗∗∗ 0.10 (0.02)∗∗∗

Rain 1-3:AC 0.01 (0.00)∗ 0.02 (0.01)∗ 0.04 (0.01)∗∗∗

Rain 4-10:SRC −0.02 (0.01)∗ −0.20 (0.03)∗∗∗ −0.09 (0.03)∗∗∗

Rain 4-10:AC −0.01 (0.01)∗ −0.06 (0.02)∗∗∗ −0.02 (0.02)
Temp. 1-3:SRC 1.17 (0.84) −5.44 (1.91)∗∗ −9.36 (2.48)∗∗∗

Temp. 1-3:AC −1.66 (0.67)∗ −14.06 (2.02)∗∗∗ −1.70 (1.96)
Temp. 4-10:SRC −1.29 (0.86) 6.05 (1.95)∗∗ 8.21 (2.54)∗∗

Temp. 4-10:AC 1.80 (0.69)∗∗ 14.25 (2.00)∗∗∗ 1.33 (1.79)
Dry days 1-3:SRC −0.05 (0.04) −0.30 (0.13)∗ 0.69 (0.15)∗∗∗

Dry days 1-3:AC −0.03 (0.04) 0.18 (0.10)◦ −0.04 (0.11)
Dry days 4-10:SRC −0.03 (0.05) −0.80 (0.18)∗∗∗ −0.46 (0.20)∗

Dry days 4-10:AC −0.09 (0.05)◦ −0.53 (0.12)∗∗∗ −0.04 (0.12)
Heavy rain 1-3:SRC 0.03 (0.16) −0.71 (0.38)◦ −2.87 (0.49)∗∗∗

Heavy rain 1-3:AC 0.11 (0.13) −0.27 (0.34) 0.17 (0.35)
Heavy rain 4-10:SRC 0.16 (0.23) 5.48 (0.92)∗∗∗ 3.27 (0.96)∗∗∗

Heavy rain 4-10:AC 0.02 (0.20) 2.34 (0.56)∗∗∗ −0.74 (0.56)
Hot days 1-3:SRC 0.01 (0.05) 0.88 (0.18)∗∗∗ 0.70 (0.20)∗∗∗

Hot days 1-3:AC 0.13 (0.04)∗∗ 0.98 (0.16)∗∗∗ −0.01 (0.15)
Hot days 4-10:SRC −0.10 (0.11) −2.01 (0.36)∗∗∗ −1.75 (0.40)∗∗∗

Hot days 4-10:AC −0.18 (0.09)◦ −1.75 (0.30)∗∗∗ 0.30 (0.29)
Standard deviations

SD Rain 1-3:SRC 0.06 (0.01)∗∗∗ 0.05 (0.00)∗∗∗

SD Rain 1-3:AC 0.05 (0.00)∗∗∗ 0.02 (0.00)∗∗∗

SD Rain 4-10:SRC 0.06 (0.00)∗∗∗ 0.05 (0.00)∗∗∗

SD Rain 4-10:AC 0.05 (0.00)∗∗∗ 0.02 (0.00)∗∗∗

SD Temp. 1-3:SRC 2.02 (0.57)∗∗∗ −4.03 (0.58)∗∗∗

SD Temp. 1-3:AC 2.28 (0.44)∗∗∗ −0.74 (0.48)
SD Temp. 4-10:SRC 0.02 (0.33) 1.77 (0.46)∗∗∗

SD Temp. 4-10:AC −0.81 (0.29)∗∗ −4.44 (0.65)∗∗∗

SD Dry days 1-3:SRC 0.02 (0.04) 0.09 (0.04)∗

SD Dry days 1-3:AC 0.08 (0.02)∗∗ 0.00 (0.04)
SD Dry days 4-10:SRC −0.02 (0.03) −0.20 (0.04)∗∗∗

SD Dry days 4-10:AC 0.12 (0.04)∗∗ 0.22 (0.04)∗∗∗

SD Heavy rain 1-3:SRC 0.57 (0.14)∗∗∗ 0.10 (0.18)
SD Heavy rain 1-3:AC −0.24 (0.15) −0.37 (0.20)◦

SD Heavy rain 4-10:SRC 0.08 (0.11) −0.08 (0.17)
SD Heavy rain 4-10:AC 0.11 (0.11) 0.17 (0.11)
SD Hot days 1-3:SRC 0.09 (0.05) −0.30 (0.06)∗∗∗

SD Hot days 1-3:AC −0.25 (0.04)∗∗∗ −0.28 (0.04)∗∗∗

SD Hot days 4-10:SRC 0.50 (0.09)∗∗∗ 0.47 (0.11)∗∗∗

SD Hot days 4-10:AC −0.78 (0.11)∗∗∗ −0.57 (0.11)∗∗∗

SD Returns 1.08 (0.07)∗∗∗ 1.22 (0.69)◦

SD Returns variability 0.07 (0.01)∗∗∗ 0.33 (0.57)
SD Min. useful lifet. 0.25 (0.02)∗∗∗ 1.11 (0.07)∗∗∗

SD AES 0.01 (0.00)∗∗∗ 0.10 (0.02)∗∗∗

SD No greening 1.27 (0.20)∗∗∗ 0.28 (0.03)∗∗∗

SD ASC: SRC −2.38 (0.32)∗∗∗ 0.01 (0.00)∗∗∗

SD ASC: AC −0.33 (0.23) 1.76 (0.28)∗∗∗

Correlation - No Yes

logLik −2156.04 −1184.13 −1155.21

Pseudo-R2 0.09 0.50 0.51

AIC 4366.09 2476.27 2460.43

Obs. 2376.00 2376.00 2376.00

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ◦p < 0.1
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6.8.7 Parameter correlation matrix

Table 6.8: Parameter correlation matrix of the RPL model.

ASC:
SRC

ASC:
AC

Returns Returns
vari-

ability

Min.
useful

lifet.

PES No
green-

ing

ASC:
SRC

0.01 -0.45 0.51 0.29 0.46 0.26 0.57

ASC:
AC

-0.45 1.76 0.08 0.11 -0.08 0.09 -0.34

Returns 0.51 0.08 1.22 0.88 0.67 -0.05 0.25

Returns
vari-
ability

0.29 0.11 0.88 0.33 0.75 -0.43 -0.12

Min.
useful
lifet.

0.46 -0.08 0.67 0.75 1.11 -0.11 -0.14

PES 0.26 0.09 -0.05 -0.43 -0.11 0.10 0.23

No
green-
ing

0.57 -0.34 0.25 -0.12 -0.14 0.23 0.28
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6.8.8 Comparison of alternative estimations based on different lag

structures

Table 6.9: Comparison of alternative estimations using different lag structures.

Log
Likelihood

McFadden
Pseudo R2

Akaike
Information

Criterion

Selected Model
short-term: 1-3 years,
long-term: 4-10 years

-1155.21 0.51 2460.43

Specification Alt. 1
short-term: 1 year,
long-term: 2-10 years

-1389.99 0.41 2929.97

Specification Alt. 2
short-term: 1 year,
long-term: 2-15 years

-1176.99 0.50 2503.98

Specification Alt. 3
short-term: 1 year,
long-term: 2-20 years

-1400.24 0.41 2950.47

Specification Alt. 4
short-term: 1-3 year,
long-term: 4-15 years

-1238.40 0.48 2626.81

Specification Alt. 5
short-term: 1-3 year,
long-term: 4-20 years

-1382.27 0.42 2914.54

Specification Alt. 6
short-term: 1-5 year,
long-term: 6-10 years

-1411.71 0.40 2973.42

Specification Alt. 7
short-term: 1-5 year,
long-term: 6-15 years

-1398.10 0.41 2946.20

Specification Alt. 8
short-term: 1-5 year,
long-term: 6-20 years

-1405.48 0.41 2960.97
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7 Summaries and authors’

contributions

This thesis aimed at investigating the nexus between agricultural production and

environmental change at the micro-level by combining sound microeconomic con-

cepts, state-of-the-art econometric approaches and real-world farm-level data. It

has a special emphasis on climate change and encompasses a total of four empiri-

cal studies centered around the themes of agricultural production and ecological-

economic efficiency, the ecological effectiveness of agri-environmental schemes, and

agroforestry adoption in response to extreme weather events. Geographically, all

studies focused on Bavaria, a federal state of Germany, one of the core regions of

agricultural production within the EU.

7.1 Study I – Greenhouse gas emissions and eco-performance

Given the environmental and climatic implications of farming activities and the

need to sustainably increase productivity, Study I focused on the development of

a monitoring and evaluation instrument for the ecological-economic performance

of farm businesses. It has presented an approach to assess firms’ relative eco-

logical (i.e. climatic) damage mitigation potential by building upon and further

developing the concept of eco-efficiency (Kuosmanen & Kortelainen, 2005; Orea &

Wall, 2017)). A parametric stochastic frontier approach capable of capturing eco-

performance dynamics over time was developed. Unlike previous studies on eco-

efficiency, this study allowed for a complex functional form to aggregate ecological

(climatic) pressures into environmental damage. The resulting pressure conversion

function described how well ecological pressures translate to economic output. The

developed theoretical framework enabled the analysis of eco-performance dynam-

ics and its components – technical change, scale change and eco-efficiency change

by means of a generalized Malmquist productivity index.

The empirical application focused on four different farm types in Bavaria for the

years 2005 to 2014. A unique combination of various data sources was used to
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estimate the pressure-generating technology separately for dairy, pig, mixed and

crop farms, based on a stochastic frontier model for panel data distinguishing

between time-varying and persistent eco-inefficiency.

The main findings of the study were the following. Farms revealed little time-

varying eco-inefficiency and rather high levels of persistent inefficiency. Overall,

the farms in the sample were quite eco-inefficient. Dairy farms were on average

the least eco-inefficient (∼80%) followed by mixed (∼60%), pig (∼55%) and crop

farms (∼50%). In terms of eco-performance dynamics, results showed that pig

farms revealed the highest annual growth rates. Dairy farms and mixed farms

showed less pronounced positive growth. On average, crop farms’ eco-performance

barely changed between 2005 and 2014.

This work has been published in Environmental and Resource Economics (Stet-

ter & Sauer, 2022). The authors contributed to the research article as follows.

Christian Stetter designed the conceptual framework of this study. Both authors

contributed to the empirical specification. Christian Stetter prepared and cleaned

the data, conducted the analysis and wrote the manuscript. Johannes Sauer pro-

vided reviewing and editing and contributed with continuous feedback during the

entire process.

7.2 Study II – Are intensive farms more emission-efficient?

Study 2 can be seen as a natural extension to the first study. This article evaluated

the emission efficiency of distinct technologies in dairy farming, which measures

the ability of farms to generate revenue while causing minimal GHG emissions.

An eco-efficiency frontier was estimated within a latent-class stochastic frontier

framework to identify unobserved heterogeneity in the pressure-generating tech-

nology. The results revealed that dairy farms in the case study region could be

separated into two distinct technology classes. The two classes could mainly be dis-

tinguished by the input intensity of the respective farms in each class. Extensive

and intensive farms showed very similar emission efficiency scores when evaluated

against their class-specific frontiers. The meta-frontier, which envelops both iden-

tified technologies, revealed that extensive farms were overall less emission-efficient

than intensive farms, i.e. without losses in economic output, extensive farms could

reduce their GHG emissions to 51.5% of current levels when choosing the most

efficient technology, compared to 78.9% for intensive farms. Overall, up to 1.7

mio. t CO2-equivalents (CO2eq) could have been saved in the sample between
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2005 and 2014 without reducing economic outcome. Overall, the findings show

that technology differences matter, not only with respect to technical efficiency, as

suggested by previous research (Alvarez et al., 2012; Martinez Cillero et al., 2018),

but also with respect to emission-efficiency. This fact has been largely neglected

in previous research on environmental and eco-efficiency. This study showed that

the eco-efficiency approach can be employed in a latent-class framework to account

for production heterogeneity in environmental efficiency models.

This article has been published in the Journal of Agricultural and Resource Eco-

nomics (Stetter et al., 2022b). The authors contributed to the research article

as follows. Christian Stetter and Stefan Wimmer have jointly developed the re-

search idea and both contributed to reviewing and summarizing existing literature.

Christian Stetter developed the conceptual framework, constructed the data, esti-

mated the metafrontier and visualized the results. Stefan Wimmer performed the

latent-class analysis. Christian Stetter and Stefan Wimmer jointly interpreted the

results and wrote the manuscript under the lead of Christian Stetter. Johannes

Sauer contributed to the process through valuable suggestions and feedback as

well as by reviewing and editing the manuscript.

7.3 Study III – Using machine learning to identify heterogeneous

impacts of agri-environment schemes

Study 3 moved away from the relative perspective on the ecological-economic per-

formance of farms and assessed the impact of a policy intervention (agri-environment

schemes) on the environmental friendliness of agricultural production at the micro-

level by combining economic theory with causal forests, a novel machine learning

algorithm based on random forests. The use of this algorithm allowed to evaluate

the impact of AES at the farm level and thus delivered valuable information regard-

ing the heterogeneity of the effects of agri-environment measures. The selected

research approach presented in this study surpasses many limitations of previous

attempts to evaluate the efficacy of AES based on more traditional econometric

methods. Conceptually, this study is based on production theory and the potential

outcomes framework.

For the empirical case of Southeast Germany, rather small statistically significant

effects of AES on land-use diversity were found for approx. 55% of all observations.

Regarding fertilizer expenditures per hectare, modest reduction effects for 30%

of the sample were found. Desirable effects on pesticide expenditures could be
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found for 7% of the sample. In terms of GHG emissions, mostly insignificant or

adverse effects were found. The findings of the study point toward the direction

that treatment effects of agri-environment measures on important environmental

indicators were rather small during the 2014-2020 CAP period.

Based on these results, spatial patterns of environmental subsidy payments as well

as important drivers of heterogeneous treatment effects could be explored. A large

share of desired effects in at least one environmental dimension was detected in

almost all counties. Using Shapley values to predict the contribution of the four di-

mensions location, farm type, yield potential and farm size, it could confirmed that

targeting of agri-environment payments could potentially improve environmental

efficacy for all environmental indicators used in this study. Targeting farms in

terms of location, farm size, and yield potential by nudging for example can result

in more efficient usage of environmental subsidies while targeting schemes accord-

ing to different farm types did not seem to drive subsidy effectiveness. Finally,

a battery of sensitivity tests was used to assess the robustness of the results in

various settings.

This article has been published in the Journal of Agricultural and Resource Eco-

nomics (Stetter et al., 2022a). The authors contributed to the research article as

follows. Christian Stetter and Philipp Mennig have both contributed to review-

ing and summarizing existing literature on AES. Christian Stetter developed the

conceptual and empirical framework, constructed the data, trained the model and

conducted all analyses. All authors interpreted the results. Christian Stetter and

Philipp Mennig jointly wrote the manuscript under the lead of Christian Stetter

and wrote the manuscript under the lead of Christian Stetter. Johannes Sauer

contributed to the process through valuable suggestions and feedback as well as

by reviewing and editing the manuscript.

7.4 Study IV – Agroforestry adoption and weather extremes

The cultivation of agroforestry and wood-based land-use systems could play a

key role in making farms more resilient to climate change. This study analyzed

farmers’ dynamic willingness (i.e. probability) to adopt such systems in response

to extreme weather periods. To this end, random utility theory was integrated

with the concept of adaptive weather expectations. Methodologically, a DCE was

conducted with farmers and combined with local weather data. For this analysis, a

correlated random parameter model was used, which served as a basis for regional
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weather simulations following Ramsey et al. (2021).

The results of this study indicated that farms were generally reluctant to adopt

agroforestry and SRC compared with crop farming but they are more likely to

adopt these options after an extreme weather event in the medium- to long-term.

Furthermore, characteristic weather response pathways were found, which could

be divided into three phases reflecting important resilience capacities, these being

absorption, recovery, and adaptation. Additionally, the findings showed that pol-

icy makers could effectively promote the adoption of agroforestry through PES –

although at a relatively low cost-effectiveness – and through fostering technologi-

cal progress. Several robustness checks were conducted to assess the plausibility of

the estimation model. This study also addressed important limitations concerning

the underlying data, its representativeness and the model interpretation. Overall,

the results showed that farms might be increasingly likely to switch to agroforestry

and wood-based systems in response to regional weather extremes.

This work is currently under review at Environmental & Resource Economics.

The authors contributed to the research article as follows. Christian Stetter de-

veloped the conceptual and empirical framework of the study. Christian Stetter

prepared and conducted the discrete choice experiment, retrieved the weather data

and joined the datasets. Christian Stetter conducted the analyses and wrote the

manuscript. Johannes Sauer contributed to the process through valuable sugges-

tions and feedback as well as by reviewing the manuscript.
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The focus of this chapter lies on the synthesis of the results and conclusions drawn

from the empirical studies in Part II of this thesis. It further discusses important,

cross-cutting themes in this context. Moreover, multiple policy implications are

explored. Finally, it highlights further research directions, which can be derived

from this thesis.

8.1 General reflections on the economic-ecological performance of

farms

Having analyzed the relationship between agricultural production (reflected by eco-

nomic returns) and environmental degradation (reflected by GHG emissions), the

first two studies of this thesis showed that environmental protection (i.e. climate

change mitigation) and farming do not necessarily have to be mutually exclusive.

This finding was robust across various farm types and technologies. Farms can

drastically decrease their climate change impact without risking economic viability

by improving farm management practices, i.e. reducing eco-inefficiencies. From

an eco-efficiency perspective, there is a lot of potential for farms to improve in

this regard. This finding is in line with the recent eco-efficiency literature and has

been found for other environmental stresses as well, such as fertilizer and pesticide

damages (e.g. Bonfiglio et al., 2017), water usage (e.g. Song & Chen, 2019), or

biodiversity loss (Beltrán-Esteve et al., 2014). This means there is ample room

for a synergistic relationship between reducing farms’ environmental impact and

being economically successful up to an (eco-)efficient frontier.

This raises two central questions. First, why are farmers eco-inefficient? Second,

what is the economic-ecological relationship on the eco-efficient frontier? As for

the first question, this thesis does not have a definite answer. However, from a

farmer’s perspective, it is not unlikely that a certain degree of eco-inefficiency is

rational, i.e. they actively choose not to be eco-efficient. Usually in classical pro-

duction economics, technical inefficiency is regarded as waste in the utilization of

production factors (Bogetoft & Hougaard, 2003; Hansson et al., 2020). However,
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eco-efficiency is conceptually different from technical efficiency and gives equal

weight to ecological and economic objectives. In reality, farms might predom-

inantly aim at optimizing economic performance, which could potentially (but

not necessarily) cause eco-inefficiencies for the sake of higher economic efficiency.

Therefore, if the aim is to reduce eco-inefficiency, mechanisms might be neces-

sary that provide incentives to farmers to improve their ecological performance,

e.g. farm management practices that provide both economic and ecological merits

(e.g. higher milk yield as shown in Study 2).

As for the second question, it could potentially be the case that reductions of

environmental pressures beyond the eco-efficient production level are inevitable

in order not to irreversibly surpass earth’s planetary boundaries (Kuosmanen &

Kortelainen, 2005). For this case, Sauer & Wossink (2013b) have empirically

shown that there exist three relationships between agricultural production and

non-marketed ecosystem services generation: complementary, supplementary and

competitive. For the case of arable farms in the UK, they found a competitive

relationship for many instances, i.e. decreasing the environmental impact means

a net loss in agricultural output. Overall, the results from the literature on this

relationship have been mixed and context-specific (Rosa-Schleich et al., 2019), e.g.

Kragt & Robertson (2014) found both win-lose and win-win trade-offs for broad-

acre farming in Western Australia, and Galdeano-Gómez et al. (2017) found a

mostly synergistic relationship for fruit and vegetable farms in South Spain.

What is more, Study 2 laid the focus on the GHG mitigation potential in dairy

farming. Dairy farming is likely to play a key role in the next decades when it

comes to GHG emission reduction and tackling climate change. This is because

most GHG emissions on dairy farms come from methane, which has a high global

warming potential but only a short atmospheric lifetime (Pérez-Domínguez et al.,

2021). This is why its reduction offers the possibility to mitigate climate change

efficiently, especially in the shorter run (Saunois et al., 2016).

Furthermore, a pervasive assumption in the public debate on agriculture in Europe

is that extensive production systems are inherently more environmentally-friendly

than their intensive counterparts. However, the results from Study 2 show that

GHG emissions translate more efficiently to economic returns for intensive dairy

farms in Bavaria. Again, this implies a relative perspective on the environment-

productivity nexus. The relative excellence of intensive dairy farms in this regard
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could come from the fact that they are likely to have more control over nutrient

flows and animal behavior through better infrastructure and management skills

(Alvarez & del Corral, 2010). Burney et al. (2010) found a similar positive effect

of agricultural intensification in terms of GHG mitigation for crop farming on a

global scale.

However, one should not jump to conclusions and promote the intensification of

agriculture as an imperative for environmentally-friendly production. The litera-

ture shows that the intensification of agriculture has also had negative impacts on

various environmental domains not assessed in this thesis such as soil health (Ko-

pittke et al., 2019), biodiversity (Ewald et al., 2015; Gossner et al., 2016; Ramos

et al., 2018; Seibold et al., 2019), or water quality (Scanlon et al., 2007).

Hence, in terms of the production-environment nexus, there might also be impor-

tant trade-offs among environmental objectives themselves. The identification of

such trade-offs (and synergies) beyond climatic stresses would be an important

addition to the results of this thesis. However, in the European context it has

been difficult to obtain the necessary data for such analyses (see below).

8.2 The role of farm system dynamics

Another important cross-cutting theme that has been considered in this thesis is

the fact that farming systems are dynamic by nature and evolve over time (Dillon,

1992; Meuwissen et al., 2019), which also has consequences for the production-

environment nexus and agroforestry adoption.

First, Study 1 distinguished between time-varying (short-term) and persistent

(long-term) GHG inefficiency. These two inefficiency measures relate to different

managerial dimensions covering different time horizons. Time-varying inefficiency

reflects short-run rigidities, temporary managerial and behavioral problems that

are potentially solvable in the short-run (Addo & Salhofer, 2022), whereas time-

invariant inefficiency reflects the "[. . . ] presence of structural problems in the

organization of the production process of a firm or the presence of systematic

shortfalls in managerial capabilities" (Filippini & Greene, 2016, p.187). Study 1

finds that, independent of the farm type, permanent eco-efficiency is noticeably

lower than time-varying efficiency. From that, it becomes apparent that efficiently

reconciling economic success and GHG mitigation requires structural, longer-term

adjustments, which has important consequences in that such adjustments usually
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take time and cannot be made in the short-run (Filippini & Greene, 2016).

A similar result was also found in Study 2 in that structural change in the form

of a technology switch for extensive farms could lead to higher GHG mitigation

at constant economic returns. Furthermore, Study 4 is indicative of the fact that

short-run rigidities keep farmers from making optimal decisions in terms of agro-

forestry adoption in the aftermath of an extreme weather year. Farm system

dynamics appear to prevent farmers from making short-term adjustments to im-

prove climate change mitigation and adaptation but rather require adaptive and

transformative capacities (Spiegel et al., 2020). Such further-reaching adjustments

depend upon farmers’ management abilities and cognitive social capital and might

only be carried out after certain thresholds of a key decision variables have been

exceeded (Sinclair et al., 2014).

Next, the fact that farming at the nexus of agricultural production and environ-

mental change is not static can also be seen by farms’ eco-performance evolution

over time (Study 1). Within the analyzed time horizon, GHG emission perfor-

mance across farm types is subject to yearly fluctuations of up to more than 10%

(see Table 3.8 and Figure 3.3), which highlights the dynamic nature of this pro-

cess, which has often been neglected in the literature (e.g. Beltrán-Esteve et al.,

2014; Godoy-Durán et al., 2017; Martinsson & Hansson, 2021). The importance

of the time dimension has also become apparent in the simulation of agroforestry

adoption patterns (Study 4). Farmers react dynamically to a weather shock in the

years following such a shock. This is in line with recent literature on resilience in

agriculture (Meuwissen et al., 2019).

8.3 Production heterogeneity and context specificity

Another recurring theme across all studies is the fact that the production-environment

nexus is not homogeneous but context-specific. This thesis assessed differences

across and within farm types regarding eco-efficiency, regional differences regard-

ing the adoption of agroforestry as well as farm-to-farm differences for the envi-

ronmental effectiveness of AES (see Table 8.1 for an overview).

Tsionas (2002) argue that the pervasive assumption in the literature that pro-

duction is the same for all farms is quite unrealistic and an over-simplification.

The production possibilities of farms are usually bound to specific technologies,

which cannot be easily switched (e.g. crop farming vs. livestock farming, or grass-
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land vs. arable farming), which makes it important to distinguish between farm

types (Study 1), technological (Study 2), and/or regional differences (see Study 4).

Study 3 went even a step further by explicitly defining the farm-specific context

through a comprehensive set of approx. 130 covariates.

Table 8.1: Level of farm & production heterogeneity as considered in Part II.

Study/
chapter

Research focus Level of heterogeneity

Empirical study 1/
chapter 3

Eco-efficiency and eco-
performance w.r.t. GHG
emissions

Farm type differences
(dairy, pig, crop, and
mixed farms)
(ex ante)

Empirical study 2/
chapter 4

Eco-efficiency w.r.t. GHG
emissions

Production intensity (in-
tensive & extensive dairy
farms)
(data-driven)

Empirical study 3/
chapter 5

Heterogeneous effect
of agri-environmental
schemes on the environ-
mental performance of
farms

130 contextual variables
to account for individual
farming context
(data-driven)

Empirical study 4/
chapter 6

Agroforestry and wood-
based land-use systems
adoption in response to
extreme weather

Regional differences (dis-
trict level)
(ex ante)

The fact that the results of all four studies vary across farms and groups of farms

confirms the presupposition that production heterogeneity is an important factor

when it comes to the analysis of the production-environment nexus. This finding

is in line with the recent agricultural production economics and impact assessment

literature (see e.g. Ait Sidhoum et al., 2022; Baráth et al., 2020; Njuki et al., 2019;

Sauer & Moreddu, 2020; Sauer & Wossink, 2013a) and has important consequences

for policy-makers and agricultural stakeholders (see below).

A critical point worth discussing in this context is the potential conflict between

context-specificity and generalizability. In this thesis, Bavaria was intentionally

chosen as a case study. As shown in the introduction of this thesis, it might be

well-representative of many European regions. Nevertheless, extrapolating results

to other regions should be done with care and should further be evaluated by local

experts. Furthermore, on a lower level, Study 4 collects primary data of Bavarian

farmers, which reflect the Bavarian farmers population reasonably well (see Sec.

6.5.1). While this holds for the full sample, it is not likely the case for the sub-
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sample analyses, which is why results should be interpreted with care regarding

their generalizability at the regional level (Pachali et al., 2020). This problem is

likely reduced in the case of the FADN dataset used in Studies 1-3 as it provides

representative data according to region, economic size and type of farming (Euro-

pean Commission, 2022b). Nevertheless, context-specific, heterogeneous findings

should be interpreted with care in terms of their generalizability to the underlying

populations.

8.4 Methodological and conceptual contributions

Beside the empirical insights into the agricultural production-environment nexus,

this thesis makes several methodological and conceptual contributions to the agri-

cultural economics toolset.

To begin with, Study 1 is the first study that accounts for both persistent and

time-varying eco-efficiency. Although there have been multiple methodological

and conceptual advancements since the introduction of the concept by Kuosma-

nen & Kortelainen (2005, see also Sec. 2.1.3), none of them accounted for the

fact that eco-efficiency can be separated into two important components following

recent developments in the productivity analysis literature (Filippini & Greene,

2016; Kumbhakar et al., 2014). Study 1 and the discussion on farm dynamics

demonstrated the added value by using this approach.

Furthermore, based on the parametric eco-efficiency concept developed in Study 1,

Study 2 demonstrates how eco-efficiency and latent-class analysis can be combined

to take account of technological differences among groups of farms. If such tech-

nology differences are ignored, it might be the case that they are wrongly labeled

as inefficiencies leading to biased results (Orea & Kumbhakar, 2004). There are al-

ready eco-efficiency studies comparing different technology groups. However, they

are commonly chosen a priori based on observed differences, e.g., Beltrán-Esteve

et al. (2014) in their study on rain-fed olive farming system in Spain demonstrate

the relevance of technology differences between traditional mountain and plain

groves with respect to eco-efficiency. This thesis followed the strain of literature

that propagates the use of latent-class modeling because this approach is able to

account for latent (unobserved) technology differences, which would otherwise not

be possible (Alvarez & del Corral, 2010; Martinez Cillero et al., 2019; Orea &

Kumbhakar, 2004).
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Furthermore, the research approach presented in Study 4 goes well-beyond the

usual application of discrete choice experiments through the combination of pref-

erence and meteorological data, regression analysis and simulation. There are a

few similar studies in different contexts, e.g. Dundas & von Haefen (2020) assessed

the effects of weather on recreational fishing demand and adaptation. Motoaki &

Daziano (2015) analyzed the weather effects on cycling demand, Hashida & Lewis

(2022) focused on the climate change impact on forest management in the Pa-

cific states of the U.S. However, none of these studies accounted for the dynamic

nature of adaptation decisions and neglected the multitude of potential future

socioeconomic scenarios as it is done in this thesis.

Finally, Study 3 constitutes the first study to demonstrate the applicability of

causal machine learning to the environmental impact assessment of AES in the

EU. The utilized causal forest algorithm allows to better capture the high degree of

complexity, nonlinearity as well context-specificity of the AES-environment nexus

in the realm of agricultural production. The approach overcomes several limita-

tions of standard econometric approaches, including restrictive functional forms

and the limited ability to deal with a large number of explanatory variables (Storm

et al., 2020). As is often the case in machine learning (ML), the increased model

complexity of the causal forest comes at the expense of interpretability (James

et al., 2021). This problem was tackled by means of model-agnostic Shapley val-

ues, which were further used to draw conclusions with respect to scheme targeting.

A pervasive problem with such flexible machine learning approaches is that they

allow researchers to include a myriad of predictor variables in their models, which

are prone to lead to bias structures in cause-effect relationships, e.g. by including

bad control variables (Cinelli et al., 2020; Hünermund et al., 2021). Thus, if one is

interested in causal inference rather than pure outcome prediction, it is absolutely

necessary to set up a credible identification strategy based on a comprehensive

theoretical model (Pearl, 2018). Modern machine learning algorithms do not free

the applied researcher from conducting this first stage, which is why Study 3 lays

special emphasis on a solid conceptual framework.

Finally, it is important to note that the use of Shapley values as model-agnostic

interpretation tool refer to the modeled relationship between AES and the envi-

ronmental indicators and not the ground truth, which is not the same (Lipton,

2018). This is a major epistemological difference from more traditional statistical

methods. Hence, the results on CATE drivers in Study 3 rely on the assumption
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that the empirical model approximates the causal mechanisms of the true relation-

ship sufficiently well (Páez, 2019). Bearing this in mind is particularly important

if one was to include an excess set of covariates (see above) that are not causally

related to the outcome variable, which would lead to Shapley values explaining a

spurious relationship. For the assumption that the estimated model reflects the

true relationship, beside having a reliable identification strategy, it is important

to conduct various robustness checks to see if the estimated relationship is indeed

stable across multiple configurations of the model as done in Study 3 of this thesis.

8.5 The importance of data availability, sources, and processing

The availability of empirical data plays a key role in this thesis. Studies 1 – 3 use

primarily farm accountancy data, which are collected for the Farm Accountancy

Data Network of the EU (FADN). The underlying farm-level GHG indicator addi-

tionally uses a series of secondary data and merge these with the FADN dataset.

The FADN monitors commercial farms’ income and business activities and it is

the only source of microeconomic farm data based on harmonized bookkeeping

principles (European Commission, 2022b). This dataset is a very important source

for myriad studies on agricultural production in the context of the EU. However,

the dataset is not explicitly built for the evaluation of environmental dimensions

of farming such as environmental sustainability, climate change adaptation and

mitigation, or resource efficiency. The data fusion approach used to develop a

farm-level GHG emission approximation (Study 1) can be seen as an important

step to overcome the lack of environmental information in the FADN dataset, but

it cannot divert attention from the fact that better farm-level environmental data

is needed.

Data limitations are also relevant for Study 3, which suffers mainly from two

shortcomings of the dataset. First, the environmental indicators used as response

variables are only coarse approximations of the underlying environmental domains.

Except for the case of GHG emissions, the utilized indicators do not measure

direct environmental impacts like water pollution or soil degradation. However,

more accurate environmental indicators are very important when one wishes to

assess the environmental effects of the EU’s agricultural policies. Second, to draw

more precise policy conclusions, it would be necessary to provide more detailed

data on individual AESs. By treating AES participation as a binary variable, a

lot of important information is lost as the multitude of different AES, which might
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be targeted toward different environmental services is not properly reflected in the

model. Thereby, an assessment of the environmental performance of individual

AES should be in the policy-makers’ own interest as this could lead to more specific,

evidence-based policy recommendations.

Given these current limitations of the FADN dataset, the European Commission

has realized the need to further develop this data source against the background of

the European Green Deal and its Farm to Fork strategy (Vrolijk & Poppe, 2021).

It has decided to convert the FADN to the Farm Sustainability Data Network

(FSDN). From a researcher’s perspective this can be regarded as huge leap forward

to create further sound and evidence-based knowledge regarding farms’ economic

and environmental performance. First steps have already been undertaken in

the past years, e.g. the inclusion of detailed information on fertilizer and farm

chemicals usage. Further extending the FADN dataset by environmental and

social dimensions implies several difficulties, however, such as the high cost of

data collection, farmers’ limited willingness to provide the respective information,

increased administrative burden, and a potentially limited quality of data (Vrolijk

& Poppe, 2021). The European Commission is currently in the process of setting

up a roadmap for the conversion of the data network and has received a first round

of feedback from various stakeholders (European Commission, 2022a). It remains

to be seen if the Commission will be able to solve the above-mentioned issues

and set up an FSDN that provides usable information for better sustainability

assessments at the farm level.

An alternative to retrieving environmental information through survey responses

are geospatial data, which have become increasingly available in recent years and

are heavily driven by the advancement of satellite remote sensing (Chi et al., 2016;

Kamilaris et al., 2017). In Europe, big geospatial data is available on a fine tem-

poral and spatial scale, which is particularly true for weather and climate data

(Kamilaris et al., 2017). Other environmental domains include, e.g., soil properties

(Panagos et al., 2015, 2012), invasive species (Katsanevakis et al., 2012), land use

change (Winkler et al., 2021), or air pollution (Cui et al., 2021). Acknowledging

the additional value of geospatial data, Study 4 combines an economic experi-

ment with gridded meteorological data, thus allowing to assess the relationship

between weather (expectations) and farmers’ land use preferences. The integra-

tion of economic and biophysical data has increased considerably during the past

years and has provided novel insights, e.g., in the fields of agricultural insurance
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(Vroege et al., 2021), productivity analysis (Ortiz-Bobea et al., 2021), or land use

(Ramsey et al., 2021).

While the combination of economic and geospatial data has large potential, it

is also associated with various difficulties. For instance, merging economic and

spatial data requires knowledge of the exact location of farms and/or fields. Re-

searchers usually do not have this knowledge in the context of the FADN for data

protection reasons. Thus, only analyses at an aggregate (e.g. regional) level are

possible, which itself leads to imprecisions and spatial mismatches between eco-

nomic and geospatial data. What is more, especially remotely-sensed data are

often measured at a fine temporal resolution such as hours or days, while farm

economic data is usually collected annually, which can cause the problem of finding

the appropriate joint level of resolution (Arbia, 1989).

Finally, as mentioned above and demonstrated in Study 3, novel ML-based meth-

ods can bring about additional value to the analysis of farm production processes

and the environment. However, they are usually data-intensive, i.e. they require a

large sample of observations. Economic and survey data generated through inter-

views can often be on the lower end regarding the minimal sample size necessary

for ML algorithms to work (which is especially true for neural networks). Hence,

in the face of limited data availability, such methods should not be regarded as a

magic bullet, but rather as a potent extension to the applied researcher’s toolset

applicable in certain settings .

8.6 Policy implications

As suggested before, the results presented in this thesis have several policy im-

plications. First, the potential of AES to promote environmentally-friendly and

eco-efficient farming practices have been mentioned multiple times throughout this

thesis and were the primary research subject of Study 3. Table 8.2 summarizes

the effects of AES on different (economic-)environmental indicators.

While Study 1 did not explicitly look at the effect of AES, Study 2 found a

negative association between AES and eco-efficiency. This is somewhat in contrast

to previous work, which found mainly a positive relationship (Bonfiglio et al., 2017;

Gadanakis et al., 2015; Picazo-Tadeo et al., 2011). A potential reason for this

could be the fact that the other studies did not explicitly consider GHG emissions

(i.e. climate impacts). One conclusion of this could be that the effectiveness of
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Table 8.2: Overview of the effects of agri-environmental schemes presented in
Part II.

Study/
chapter

Indicator AES effect*

Empirical study 1/
chapter 3

Eco-efficiency w.r.t. GHG emissions
for dairy, pig, crop, and mixed farms

Not evaluated

Empirical study 2/
chapter 4

Eco-efficiency w.r.t. GHG emissions
for intensive and extensive dairy
farms

−

Empirical study 3/
chapter 5

GHG emissions
Fertilizer expenditures per ha
Pesticide expenditures per ha
Land use diversity

0/−
0/+
0/+
+/0

Empirical study 4/
chapter 6

Agroforestry and wood-based land-
use systems adoption

+

* + Desired effect; − Undesired effect; 0 No effect.

AES in terms of eco-efficiency depends on the underlying environmental indicators,

e.g. climate change had not been a priority in CAP pillar 2 schemes, while other

pressures enjoyed more attention (e.g. nutrient runoff and diversification, ART,

2019). The thematic coverage of AES was extended to climate objectives only

in 2009 following the CAP Health Check, and only as of 2014, AESs have been

referred to as ’agri-environment-climate schemes’, emphasizing current and future

climate change mitigation and adaptation efforts (see also Hasler et al., 2022).

Notwithstanding, the practical implementation of climate objectives have been

lacking behind ever since (European Court of Auditors, 2021).

Having recognized the urgent need for action in terms of climate change and

having set the objectives of reducing GHG emissions by at least 55% by 2030 and

becoming climate neutral by 2050 (Hasler et al., 2022), agricultural legislators

should more strongly focus on effective AES design in terms of GHG mitigation.

This could be achieved by promoting the adoption of existing climate-friendly

technologies.

One such climate-friendly farming practice is the cultivation of agroforestry sys-

tems, which was analyzed in Study 4. Following the current proposal on the

implementation of the post-2020 CAP, agroforestry systems will be financially

supported by way of the newly created eco-scheme framework (Deutscher Bun-

destag, 2021). In Germany, it is planned that farmers receive AC60 per hectare
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with regard to the tree-covered area. This would mean in a system with 10% tree-

covered area, AC6 per ha (Landwirtschaftskammer Niedersachsen, 2022). Given

our estimation results of a negative willingness to cultivate alley cropping of AC123

on average for Bavaria and a positive marginal WTA of AC0.53 for PES, it would

require financial support of at least AC232 per ha for agroforestry to be adopted

(with regard to total area, incl. crops and trees). Although this support sum

varies across regional districts and farms (see Study 4), the current proposal will

very likely not lead to a wide adoption of agroforestry among farmers in Germany

and Bavaria.

This reveals another problem of the currently planned implementation of the CAP

reform. Production heterogeneity and context specificity are not explicitly taken

into consideration. This is in contrast to one of the main conclusions of Study 3,

namely that it is essential to take account of these aspects as they can be used

for targeting, which can ultimately lead to greater environmental effectiveness of

AES. Based on context information, farms with high predicted participation ef-

fects could be encouraged to participate in AES through different approaches, such

as paying a collective cohort bonus, reducing transaction costs, linking payments

amounts to site conditions, introducing spatially-coordinated auctions for conser-

vation contracts or other incentive payments (Del Rossi et al., 2021; Ferraro, 2008;

Kuhfuss et al., 2016; Pelosi et al., 2010).

Furthermore, given the low effectiveness of AES across indicators (Study 3), Euro-

pean legislators might have to fundamentally reconsider and revise agri-environment

payment schemes. The literature has made several suggestions including, e.g.,

result-based payments (Burton & Schwarz, 2013) or payments by modeled results

(Bartkowski et al., 2021).

What is more, Studies 1, 2 and 4 highlighted the importance of technology and (eco-

)technical change. Legislators could address this particular point to foster produc-

tive, as well as environmentally and climate-friendly farming practices. Beltrán-

Esteve & Picazo-Tadeo (2015) suggest that the stimulation of eco-innovations

could improve the ecological-economic performance of businesses. Long et al.

(2016) recommend, among other things, financial support for start-up companies

and tax-cuts for research and development activities. This could boost techno-

logical improvements and have a positive impact on farms’ emission-performance

and finally on their relative climate change mitigation potential. In terms of agro-
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forestry adoption, reducing the current minimum useful lifetime of the wood-based

land use options could increase adoption. Legislators could establish a framework

to encourage the development of coppices with reduced minimum useful lifetime

but without reduced economic benefits. One way to do this might be the pro-

motion of novel breeding methods, which have shown high innovation potential

across several domains (Qaim, 2020).

Another approach is to internalize environmental externalities induced by farm-

ing activities. By more effectively conditioning farmers’ income to their climate-

protection and environmental performance, a behavior which is more oriented

towards the public good can be expected (compare Beltrán-Esteve et al., 2014;

Picazo-Tadeo et al., 2012). E.g. Picazo-Tadeo et al. (2011) demand a stronger

commitment of EU policy-makers to the principle of conditionality, i.e. only farm-

ers that comply with ambitious ecological standards should benefit from public

resources. Following this line of argumention, European legislators have intro-

duced the above-mentioned eco-schemes, a novel set of policy instruments that is

supposed to strengthen the conditionality principle (Latacz-Lohmann et al., 2022).

If this instrument will be effective in this regard remains to be seen and depends

on the actual implementation of the EU member states.

This thesis has shown that it is possible to reconcile environmental goals (specif-

ically climate change mitigation) and economic returns. In light of this, current

claims to increase agricultural production at the expense of environmental objec-

tives due to the Russian invasion in Ukraine and the associated rise in agricultural

commodity prices (Baffes & Nagle, 2022) should be looked at critically. For in-

stance, the European Commission has allowed farmers to grow food on fallow land,

which has originally been dedicated to increase biodiversity (Blenkinsop & Baczyn-

ska, 2022). Giving up environmental protection in favor of a (marginal) production

boost is questionable. Studies 1 and 2 of this thesis have shown that agricultural

production and environmental protection are not necessarily mutually exclusive.

Legislators should therefore try to promote the eradication of eco-inefficiencies

before sacrificing environmental protection areas in favor of production.

8.7 Future research directions

The analysis of the relationship between agricultural production and environmen-

tal and climate change is an active research field. There are interesting pathways

for future research resulting from this thesis.
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First, it would be interesting to analyze more environmental pressures and longer

time horizons in the realm of the eco-efficiency studies. This would allow a more

holistic assessment of the ecological-economic performance of farms. It would also

be interesting to conduct a spatially explicit eco-performance analysis to detect

local or regional (in-)efficiency hotspots. In the presence of spatial information, it

would also be possible to account for spatial correlation through a spatial autore-

gressive eco-efficiency model.

Second, regarding the criticisms on the eco-efficiency approach from an axiomatic

perspective, future research could focus on methodological advances regarding the

combination of axiomatically more consistent by-production models (Murty et al.,

2012) and latent-class analysis (Orea & Kumbhakar, 2004) in the spirit of Study

2, which would further improve the understanding of the production-environment

nexus.

Third, more work is needed to elaborate on the usefulness of different causal

machine learning methods and the inclusion of novel data sources (e.g. remotely

sensed) in the context of agricultural impact analysis to further explore their

strengths and weaknesses in comparison to more traditional approaches. This

is also true when it comes to exploring the possibilities of using model-agnostic

interpretation methods in the realm of causal machine learning approaches.

Fourth, an important extension to the analysis in Study 3 would be the assessment

of subprogram-specific heterogeneous treatment effects. If there was information

on specific agri-environmental subprograms, it might be possible to look at specific

schemes individually. Heiler & Knaus (2021) propose a promising nonparametric

decomposition method for the estimation and statistical inference of effect hetero-

geneity and treatment heterogeneity.

Fifth, we cannot observe the effect of AES over time as we are restricted to one

year in our analysis. As farms, however, must generally participate for a period of

at least five years, we might miss important temporal structures as well as lagged

and build-up effects of agri-environment measures. An extension of the method

presented in Study 3 to account for these effects would be a promising direction

for future research. Miller (2020) offers a good starting point for such an analysis.

Finally, to better understand and compare farmers’ responses to extreme weather

events, it would be interesting to see similar analyses to the one in Study 4 assess-

ing other environmentally and climate-friendly land uses and technologies.
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