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i. SUMMARY 

Biomolecular simulations continue to evolve and are an integral part in numerous scientific fields, 
including protein/enzyme engineering and (computer-aided) drug design. These simulations can support 
the design of enzyme engineering and drug discovery studies, guide further lead optimization, and 
rationalize subsequent experimental findings. Two of the major challenges in this field remain the 
inclusion of protein flexibility in biomolecular simulations (e.g. during molecular docking and binding site 
identification simulations), and the accurate description of metal ions in a biomolecular environment. 
However, exactly these two topics are of great importance for enzyme engineering and drug design, since 
enzyme active sites as well as most drug targets are highly flexible and often contain a metal ion as 
cofactor. This dissertation addresses these issues and describes the development of two new algorithms 
EnzymeMatch and DynaBiS, a benchmarking study to guide the design of biomolecular simulations 
containing metal ions, and application studies in both enzyme engineering and drug discovery. 

The first part of this dissertation describes the development of EnzymeMatch, a bioinformatics algorithm 
to identify potential biocatalysts. Enzyme engineering approaches such as directed evolution require a 
natural enzyme as a starting point with at least measurable activity. The developed algorithm predicts 
these enzymes, and can thereby support enzyme engineering studies. EnzymeMatch only requires the 
molecular structure of the target substrate as input, automatically predicts the optimal binding site to 
accommodate binding thereof, and subsequently searches for enzymes containing such a binding site in 
the Protein Data Bank, while taking both protein- and ligand flexibility into account. 

In the second part of this dissertation, the development of the binding site identification algorithm 
DynaBiS is described. DynaBiS applies soft-core potentials between the ligand and protein to allow for a 
fully flexible treatment of the entire system, and thereby result in the simulation of conformational 
adaptation effects. Comprehensive evaluation showed that DynaBiS outperforms traditional binding site 
identification algorithms, especially in the identification of binding sites for large and flexible ligands, both 
with the holo or apo structure used as input. 

A benchmarking study of biomolecular force field-based Zn2+ models constitutes the third part of this 
dissertation. Large differences in performance between these Zn2+ models were observed, and the 
preferred coordination geometry and type of ligating atoms were determined. This highly valuable 
information is necessary to design long timescale simulations. These results led to the recommendation 
of suitable simulation protocols for a variety of modelling approaches, and a guide to further develop 
these Zn2+ models. 

Finally, application studies are described to showcase the use of biomolecular simulations in both enzyme 
engineering and drug discovery. This includes a study aiming to modulate catalytic properties of [2Fe-2S]-
dependent dehydratases, in which biomolecular simulations guided the identification of mutation 
hotspots, which were experimentally investigated with site-directed and saturation mutagenesis. 
Moreover, two drug discovery studies describe the characterization of the amidohydrolase PurAH, which 
is involved in the biosynthesis of a natural antibiotic, and the rationalization of observed clavulanic acid 
inhibition in B3-RQK metallo-β-lactamases, which can support the design of new drugs. 

The algorithms developed in this thesis, the benchmarking study of biomolecular force field-based Zn2+ 
models, and the application studies in enzyme engineering and drug design open up new strategies to 
further advance rational enzyme engineering and structure-based drug discovery.  
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ii. ZUSAMMENFASSUNG (DE) 

Biomolekulare Simulationen entwickeln sich stetig weiter und sind ein fester Bestandteil zahlreicher 
wissenschaftlicher Bereiche, darunter Enzym-Engineering und (computergestütztes) Wirkstoffdesign. 
Diese Simulationen können das Design von Studien zum Enzym-Engineering und zur Entwicklung von 
Arzneimitteln unterstützen, Leitstrukturen optimieren und experimentelle Ergebnisse rationalisieren. 
Zwei der größten Herausforderungen in diesem Bereich bleiben die Berücksichtigung der Flexibilität von 
Proteinen (z. B. bei Simulationen zum molekularen Docking und zur Identifizierung von Bindungsstellen) 
und die genaue Beschreibung von Metallionen in einer biomolekularen Umgebung. Jedoch sind genau 
diese beiden Themen für das Enzym-Engineering und das Design von Arzneimitteln von großer Bedeutung, 
da die aktiven Stellen von Enzymen sowie die meisten Zielstrukturen von Arzneimitteln sehr flexibel sind 
und häufig ein Metallion als Cofaktor enthalten. Die vorliegende Dissertation befasst sich mit diesen 
Themen und beschreibt die Entwicklung zweier neuer Algorithmen, EnzymeMatch und DynaBiS, eine 
Benchmarking-Studie zur Steuerung des Aufbaus von biomolekularen Simulationen von Metalloproteinen 
sowie Anwendungsstudien in den Bereichen Enzym-Engineering und Wirkstoffdesign. 

Der erste Teil dieser Dissertation beschreibt die Entwicklung von EnzymeMatch, einem bioinformatischen 
Algorithmus zur Identifizierung potenzieller Katalysatoren. Enzym-Engineering-Ansätze wie die gerichtete 
Evolution erfordern als Ausgangspunkt ein natürliches Enzym mit zumindest messbarer Aktivität. Der 
entwickelte Algorithmus sagt diese Enzyme voraus und kann so Enzym-Engineering-Studien unterstützen. 
EnzymeMatch benötigt nur die molekulare Struktur des Zielsubstrats als Eingabe, sagt automatisch die 
optimale Bindungsstelle für dieses Substrat voraus und sucht anschließend in der Protein Data Bank nach 
Enzymen, die eine solche Bindungsstelle enthalten, wobei sowohl die Protein- als auch die 
Ligandenflexibilität berücksichtigt werden. 

Im zweiten Teil dieser Dissertation wird die Entwicklung eines Algorithmus zur Identifizierung von 
Bindungsstellen (DynaBiS) beschrieben. DynaBiS wendet Soft-Core-Potentiale zwischen Ligand und 
Protein an, um eine vollständig flexible Betrachtung des gesamten Systems zu ermöglichen und dadurch 
die Simulation von Konformationsanpassungseffekten zu ermöglichen. Eine umfassende Evaluierung hat 
gezeigt, dass DynaBiS die traditionellen Algorithmen zur Identifizierung von Bindungsstellen übertrifft, 
insbesondere bei der Identifizierung von Bindungsstellen für große und flexible Liganden, sowohl mit der 
Holo- als auch mit der Apo-Struktur als Eingabe. 

Eine Benchmarking-Studie von biomolekularen Kraftfeld-basierten Zn2+-Modellen bildet den dritten Teil 
dieser Dissertation. Es wurden große Leistungsunterschiede zwischen diesen Zn2+-Modellen festgestellt 
und die bevorzugte Koordinationsgeometrie und die Art der ligierenden Atome bestimmt. Dies sind 
äußerst wertvolle Daten, die für die Entwicklung von Simulationen mit langen Zeitskalen erforderlich sind. 
Die Ergebnisse führten zur Empfehlung geeigneter Simulationsprotokolle für eine Vielzahl von 
Modellierungsansätzen und zu einem Leitfaden für die weitere Entwicklung dieser Zn2+-Modelle. 
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Zum Schluss werden Anwendungsstudien beschrieben, die den Einsatz biomolekularer Simulationen 
sowohl im Enzym-Engineering als auch in der Arzneimittelforschung veranschaulichen. Dazu gehört eine 
Studie zur Modulation der katalytischen Eigenschaften [2Fe-2S]-abhängiger Dehydratasen. Biomolekulare 
Simulationen führten zur Identifizierung von Mutationshotspots, die experimentell mit ortsgerichteter 
und Sättigungsmutagenese untersucht wurden. Darüber hinaus beschreiben zwei Studien zur 
Wirkstoffentwicklung die Charakterisierung der Amidohydrolase PurAH, die an der Biosynthese eines 
natürlichen Antibiotikums beteiligt ist, und die Rationalisierung der beobachteten 
Clavulansäurehemmung in B3-RQK-Metallo-β-Lactamasen, die die Entwicklung neuer Arzneimittel 
unterstützen kann. 

Die in dieser Arbeit entwickelten Algorithmen, die Benchmarking-Studie von biomolekularen Kraftfeld-
basierten Zn2+-Modellen und die Anwendungsstudien im Enzym-Engineering und Wirkstoffdesign 
eröffnen neue Strategien, um das rationale Enzym-Engineering und das strukturbasierte Wirkstoffdesign 
weiter voranzutreiben. 
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iii. SAMENVATTING (NL) 

Biomoleculaire simulaties zijn sterk in ontwikkeling en een integraal onderdeel van een tal van disciplines 
binnen de wetenschap, onder andere bij enzym-engineering en (computergestuurde) 
medicijnontwikkeling. Twee van de grootste uitdagingen op dit gebied blijven het incorporeren van 
eiwitplasticiteit (b.v. tijdens docking simulaties en de identificatie van de mogelijke eiwit-ligand 
bindingsplaatsen), en het nauwkeurig beschrijven van metaalionen in een biomoleculaire omgeving. 
Echter, juist deze twee onderwerpen zijn van groot belang, aangezien een bindingsplaats in een enzym, 
maar ook drug targets zeer flexibel zijn, en relatief vaak metaalionen bevatten. Dit proefschrift behandelt 
onderwerpen en beschrijft de ontwikkeling van twee nieuwe algoritmes EnzymeMatch en DynaBiS, een 
benchmarkstudie als leidraad voor het ontwerp van biomoleculaire simulaties met metaalionen, en twee 
toepassingsstudies in zowel de biokatalysator-optimalisatie als medicijnontwikkeling. 

In het eerste deel van dit proefschrift wordt de ontwikkeling van EnzymeMatch beschreven. 
EnzymeMatch is een algoritme binnen de bio-informatica om potentiële biokatalysatoren te identificeren. 
Experimentele methodes zoals gestuurde evolutie hebben een startenzym nodig met minstens een 
meetbare activiteit. Dit algoritme voorspelt deze enzymen, en kan daardoor enzyme engieering-studies 
ondersteunen. EnzymeMatch heeft enkel de moleculaire structuur van een specifiek substraat nodig, en 
berekent automatisch de meest optimale bindingsplaats om dit substraat te binden. Vervolgens zoekt 
EnzymeMatch enzymen in de eiwitdatabank met een vergelijkbare bindingsplaats. Daarbij houdt 
EnzymeMatch rekening met zowel eiwit- als ligand flexibiliteit. 

Het tweede deel van dit proefschrift beschrijft de ontwikkeling van het bindingsplaats 
identificatiealgoritme DynaBiS. DynaBiS gebruikt soft-core potentialen tussen het ligand en het eiwit om 
een volledig flexibele beschrijving van het gehele systeem mogelijk te maken, en zo te resulteren in de 
simulatie van conformationele aanpassingseffecten. De evaluatie van DynaBiS toonde aan dat DynaBiS 
beter presteert dan traditionele bindingsplaats identificatiealgoritmes, vooral bij de identificatie van 
bindingsplaatsen voor grote en flexibele liganden, zowel als de apo- of holo-structuur gebruikt wordt als 
input. 

Een benchmarkstudie van biomoleculaire krachtveld-gebaseerde Zn2+ modellen wordt beschreven in het 
derde gedeelte van dit proefschrift. In deze studie werden grote prestatieverschillen gevonden tussen 
deze Zn2+ modellen, en werden de voorkeursgeometrieën en voorkeurstype van liganden bepaald. Deze 
resultaten leidden tot aanbevelingen van geschikte simulatieprotocollen voor een variatie aan 
modelleringsbenaderingen, en sturen de verdere ontwikkeling van krachtveld-gebaseerde Zn2+ modellen. 

Tenslotte worden toepassingsstudies beschreven die het gebruik van biomoleculaire simulaties 
demonstreren in zowel enzym-engineering als medicijnontwikkeling. Dit omvat een studie gericht op het 
moduleren van de katalytische eigenschappen van [2Fe-2S]-afhankelijke dehydratases, waarin 
biomoleculaire simulaties de identificatie van mutatie hotspots begeleidden, die experimenteel werden 
onderzocht met site-directed en saturatiemutagenese. Daarnaast beschrijven twee studies de 
karakterisering van het amidohydrolase PurAH, dat betrokken is bij de biosynthese van een natuurlijk 
antibioticum, en de rationalisering van de waargenomen remming van clavulaanzuur in B3-RQK metallo-
β-lactamases, wat het ontwerp van nieuwe geneesmiddelen kan ondersteunen. 

De nieuw ontwikkelde algoritmes, de benchmarkstudie van krachtveld-gebaseerde Zn2+ modellen, en de 
toepassingsstudies in enzym-engineering en medicijnontwikkeling openen nieuwe strategieën die 
rationeel enzymengineering en structuur-gebaseerde medicijnontwikkeling kunnen bevorderen.  



| v 

 

Okke Melse 

iv. ACKNOWLEDGEMENTS 

 

First, special thanks go to late Prof. Dr. Iris Antes, who gave me the opportunity to perform my PhD thesis 
in her group and introduced me to the scientific community. She was also always willing to discuss new 
ideas and she showed me to always keep the bigger picture in mind, both scientifically, as well as in my 
personal development. I admire her never-lost positive attitude regarding scientific projects, also if they 
became much more challenging than expected. I would also like to thank Prof. Dr. Volker Sieber, for the 
excellent collaborations, but especially for taking over supervision for my PhD thesis after Prof. Antes 
suddenly passed away, and for his support afterwards. I also thank Prof. Dr. Ville Kaila and Prof. Dr. Martin 
Zacharias, for their immediate support during the turbulent phase of suddenly having to change groups, 
for inviting me to their group and group seminars, and for their help and scientific discussions to finish 
open projects and manuscripts. 

I would also like to thank Assist. Prof. Dr. Antoine Marion, from whom I learned a lot in the first year of 
my PhD. I also thank Prof. Dr. Gerhard Schenk, for the very pleasant collaborations, and his contagious 
enthusiasm when discussing my results, which gave me a boost to go even further into detail. I would also 
like to thank Dr. Samuel Sutiono, for the very pleasant and successful collaboration, and our enjoyable 
discussions. I also learned a lot from him about experimental enzymology, and I am very grateful for his 
continuous belief in our project, and appreciate his willingness to learn from each-other. I would also like 
to thank my other collaborators, including Jun. Prof. Dr. Jesko Koehnke and Dr. Asfandyar Sikandar, as 
well as my students and HiWi’s, Konstantin Eckel, Zora Rerop, Martin Gesell, Marvin Thielert, Silvia Bergt, 
Tongyan Wu, Franziska Totzeck, Woo Young Cho, Sarah Fink, and Sophia Zhou (I hope I listed you all), who 
always gave me interesting new insights into the projects we worked on. And also a great thank you to all 
(former) TCB group members, Dr. Antoine Marion, Dr. Ilke Ugur Marion, Dr. Ina Bisha, Martin Zachmann, 
Manuel Glaser, Markus Schneider, Dr. Chen Zheng, Lukas Wietbrock, Dr. Helmut Lutz, Maximillian 
Meixner, Simone Göppert, and Martijn Bemelmans, who were the people giving me a good time, and 
were always available to discuss scientific and technical topics. 

Last, but not least, I would also like to thank my parents, my girlfriend, and the rest of my family for their 
continuous support during my life as a PhD student. I realized that the strong and stable basis given by 
them is essential to bring this thesis to a good end. 

  



vi |  
 

Okke Melse 

v. PUBLICATIONS LIST 

 

First-author publications included in this dissertation: 
 
Melse, O., W.Y. Cho, T. Wu, I. Antes, V.R.I. Kaila, and V. Sieber, EnzymeMatch: Identification of Enzymes 
Capable of Catalyzing Target Reactions using Interaction Pattern Matching. (Submitted).  
 
Melse, O., S. Hecht, and I. Antes, DynaBiS: A hierarchical sampling algorithm to identify flexible binding 
sites for large ligands and peptides. Proteins: Struct. Funct. Bioinform., 2022. 90(1): p. 18-32. 
 
Melse, O., I. Antes, V.R.I. Kaila, and M. Zacharias, Benchmarking of Biomolecular Force Field-Based Zn2+ 
for Mono- and Bimetallic Ligand Binding Sites. (Submitted). Parts are available as preprint at bioRxiv, 
2021: p. 2021.06.28.450184. 
 
Melse, O., S. Sutiono, M. Haslbeck. G. Schenk, I. Antes, and V. Sieber, Structure-Guided Modulation of 
the Catalytic Properties of [2Fe−2S]-Dependent Dehydratases. ChemBioChem, 2022. 23(10): p. 
e202200088. 
 
 
Co-authored publications asserted as relevant work by citation: 
 
Sikandar, A., L. Franz, O. Melse, I. Antes, and J. Koehnke, Thiazoline-Specific Amidohydrolase PurAH Is the 
Gatekeeper of Bottromycin Biosynthesis. J. Am. Chem. Soc., 2019. 141(25): p. 9748-9752. 
 
Pedroso, M.M., D.W. Waite, O. Melse, L. Wilson, N. Mitić, R.P. McGeary, I. Antes, L.W. Guddat, 
P. Hugenholtz, G. Schenk, Broad spectrum antibiotic-degrading metallo-β-lactamases are 
phylogenetically diverse. Protein & Cell, 2020. 11(8): p. 613-617. 
 
 
Additional publications by this author, but not part of this dissertation: 
 
Genz, M., O. Melse, S. Schmidt, C. Vickers, M. Dörr, T. van den Bergh, H.J. Joosten, U.T. Bornscheuer, 
Engineering the Amine Transaminase from Vibrio fluvialis towards Branched-Chain Substrates. 
ChemCatChem, 2016. 8(20): p. 3199-3202. 
 
Schwarte, A., M. Genz, L. Skalden, A. Niboli, C. Vickers, O. Melse, R. Kuipers, H.J. Joosten, J. Stourac, 
J. Bendl, J. Black, P. Haase, C. Baakman, J. Damborsky, U.T. Bornscheuer, G. Vriend, H. Venselaar, 
NewProt – a protein engineering portal. Prot. Eng. Des. Sel., 2017. 30(6): p. 441-447. 
 



1.1 Enzymes as biocatalyst | 1 

Okke Melse 

1 INTRODUCTION 

1.1 ENZYMES AS BIOCATALYST 

1.1.1 Principles of biocatalysis 

Enzymes, most of which are proteins, are able to speed up chemical reactions, an essential process found 

in nature to allow cells to function under biological conditions. The basic principle underlying the 

enzymatic catalysis can most often be found in their ability to selectively bind and stabilize the transition 

state of a specific substrate, a basic principle formulated in 1946 by the double Nobel Prize winner Linus 

Pauling.[1] Enzymes are able accelerate certain chemical reactions, while still showing excellent chemo- 

stereo- and regioselectivity, under atmospheric pressure and mild pH and temperature.[2] Leonor 

Michaelis and Maud Menten proposed the following equation, which lies the basis for enzyme kinetics: 

 (1.1) 

illustrating binding of the enzyme (E) and substrate (S) to form an enzyme-substrate complex (ES), with 

the dissociation rate constant Kd. This is followed by the chemical catalysis producing the product (P), with 

a rate constant (or turnover number) kcat.[3, 4] Since the enzyme stabilizes the substrate’s transition state 

in the right-hand side of eq. (1.1), the activation energy/barrier is lowered by the enzyme, making the 

reaction more favorable. 

1.1.2 Industrial applications 

Enzymes are recognized as useful biocatalyst for numerous industrial applications in multiple industry 

sectors, including the food and pharmaceutical industry, but also cosmetics, plastics, and textile 

industry.[5, 6] For example, enzymes can be used in the (bio)synthesis of pharmaceuticals or production 

of food, but can also be added to washing detergent to improve their functioning. Furthermore, several 

enzymatic pathways are developed to efficiently produce biofuels, such as isobutanol.[7-9] The interest 

of industry in enzymes as biocatalyst is mainly because of their excellent properties regarding their high 

chemo- stereo- and regioselectivity, and their ability to work under mild conditions. Additionally, enzymes 

as biocatalyst fit perfectly the global aspiration for a more sustainable world because of their resource 

efficiency, independence of toxic reagents or solvents (enzymes generally live in an aqueous 

environment), and biodegradability, which led to a boost of the use of enzymes in industry.[10, 11] 
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While the enzyme market is already a multi-billion dollar business, only a small percentage of known 

enzymes are commercially used, and even less are produced on industrial scale.[5, 12] Therefore, much 

progress in this flourishing field can be expected in the next years.  

1.2 ENZYME ENGINEERING AND DESIGN 

Not all enzymes are immediately suitable for industrial applications. For example, enzymes can become 

unstable while used at certain temperatures or pH, or in a different solvent environment required for the 

industrial process. Moreover, enzymes can be very selective, which allows for very selective conversion, 

but may limit the application. Finally, the enzyme activity can simply be too low for efficient industrial 

use.[11] There are several strategies possible to optimize these characteristics. For example, the industrial 

process can be optimized by changing the solvent or optimizing the reactor.[13] Alternatively, enzyme 

immobilization is often applied, especially to improve the enzyme stability.[14] However, upscaling 

production lines containing immobilized enzymes appears to be difficult.[15] Finally, the enzyme itself can 

be modified via several protein engineering strategies to improve the above-mentioned characteristics.[2, 

16] The latter can be subdivided in a directed evolution approach and (semi-)rational protein design. 

1.2.1 Directed evolution 

To tailor a protein toward desired characteristics, one can look at what happens in nature. In Darwinian 

evolution, genes are randomly modified followed by selection based on the fitness of the phenotype. This 

idea can be implemented in the laboratory as well within a high-throughput screening setting. The first 

approaches included several cycles of random mutagenesis via a suboptimal polymerase chain reaction 

(PCR), i.e. error-prone PCR, followed by molecular cloning, transformation and expression, and manual 

selection of more “fit” protein variants.[2, 17] An alternative to random mutagenesis is homologous DNA 

shuffling, in which parent genes are first fragmentized, followed by homologous recombination to 

reassemble these fragments. Circular permutation and random insertion/deletion mutagenesis are two 

other methods which can be applied in a directed evolution approach. In the first, the terminals of the 

genes are first covalently linked, followed by random cleavage somewhere in the gene, resulting to a new 

gene arrangement. In random insertion/deletion mutagenesis, as the name implies, random DNA 

sequences are either inserted or deleted, leading to a gene with a different length compared to the initial 

gene.[17] 
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1.2.2 Semi-rational protein engineering 

In semi-rational protein engineering, small, but smart mutation libraries are designed based on advancing 

computational and machine-learning methods. For example, a Multiple Sequence Alignment (MSA) of the 

target sequence with homologous proteins can provide information about the evolutionary variability of 

certain amino acids to design a smart library.[2] Based on this information, Reetz et al. developed the 

Combinatorial Active-site Saturation Test (CAST) strategy, in which amino acids near the active site are 

targeted simultaneously with random mutations, which was shown to be an effective method to reduce 

the library size.[18] Two years later, Reetz and Carballeira combined CAST with Iterative Saturation 

Mutagenesis (ISM), leading to the more commonly used CAST/ISM method.[19] Several excellent reviews 

have been published by the same author, clearly describing the potential and success stories of CAST and 

CAST/ISM.[20, 21] Moreover, a new technique inspired by CAST/ISM has been developed, named Focused 

Rational Iterative Site-specific Mutagenesis (FRISM).[22] This method reduces the library size even 

further, by applying site-directed mutagenesis instead of saturation mutagenesis. Here, a single CAST site 

is mutated to several designed mutations with site-directed mutagenesis, whereas the best variant is used 

for site-directed mutagenesis at the second CAST site, and so on. To ensure proper sampling of the 

available mutations, this approach is applied on several pathways, i.e. changing the order of the CAST 

sites. This results in N! pathways, where N represents the number of CAST positions. 

Semi-rational engineering approaches thus rely on computational studies to design smart and small 

libraries. There are several bioinformatics methods available, such as 3DM, which is a bioinformatics 

method applying structural superposition, MSA, and literature mining. 3DM compares sequences and 

available experimental structures within a superfamily, and assigned a 3D number: a number which 

identifies the position in the protein structure rather than the sequence. [23] This allows the prediction 

of structure-sequence relationships, residue conservation and correlation matrices. This method has been 

successfully applied in a semi-rational engineering approach regarding PLP-dependent Amine 

Transaminases.[24] More recently, 3DM combined with CorNet, a tool to analyze co-evolving residue 

positions, gave some interesting insights in short-chain dehydrogenases, which are involved in the 

biosynthesis of rare sugars and glycosides.[25, 26] Other approaches, such as (de)stability estimation of 

certain mutations by FoldX can further guide the development of small mutation libraries.[27-29] 

Information from these predictors can be combined with use of so-called “one-stop” portals, such as 

NewProt, in which predictions retrieved from multiple servers are combined automatically to provide a 

quick and easy overview of predicted (un)desired effects of certain point mutations.[30] 
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1.2.3 Rational protein engineering 

Due to the increasing amount of structural data for proteins, illustrated by the ever-growing number of 

entries deposited in the Protein Data Bank[31] (Figure 1), rational approaches become more available to 

guide protein engineering studies. This can be performed via bioinformatics analysis, machine learning or 

biomolecular simulations, the latter described in more detail in Chapter 1.2.4. In contrast to the random 

mutations performed in the directed evolution approach, a traditional rational protein engineering 

process contains a combination of single targeted mutations, usually in or nearby the ligand binding 

site.[17, 32] When one, or a combination of residue positions have been identified which could play a role 

in enzyme activity, stability, or selectivity, (so-called “mutation hotspots”), these can be investigated in 

vitro via site-directed or site-saturation mutagenesis. In site-directed mutagenesis, a specific mutation is 

performed on a residue position by modification of the gene with PCR. Usually, a mutation towards an 

alanine is performed to evaluate the role of certain physico-chemical properties at this position (i.e. 

alanine scanning), or a mutation towards an amino acid of a different type is performed, for example to 

reduce the side-chain length to generate space in the binding pocket, or to introduce new interaction 

partners.[17, 33] With site-saturation mutagenesis, all 20 amino acids, or a subset of them, are evaluated 

at a certain position. This can be performed with a randomized codon in primers, while based on the 

chosen codon the likeliness of the presence of certain amino acids can be controlled.[19] 

 

Figure 1. Number of entries in the Protein Data Bank per year. The blue bars indicate the total number of entries in the Protein 
Data Bank in that year. Red bars indicate the number of unique proteins in the Protein Data Bank, i.e. all proteins with 95% 
sequence similarity merged. Data retrieved from ref [31]. 
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Engineering toward more stable enzymes 

Besides all beneficial characteristics of enzymes, such as their substrate selectivity and ability to work 

under mild conditions, enzymes are not necessarily very stable at conditions required for industrial 

application. Normally, enzymes get denatured, i.e. breaking of weak interactions leading to a change in 

structure, which can lead to inactivation of enzymes. However, especially in food or textile industry, e.g. 

when enzymes are supplemented to washing detergent, enzymes need to be able to work at high 

temperatures or high salt concentrations. Also other environmental factors can negatively affect enzyme 

stability, such as pH or organic solvent.[17] 

There are two flavors of enzyme stability: thermodynamic stability and kinetic stability. The first describes 

the equilibrium between unfolded (denatured) and functional enzyme, while the second describes the 

free energy barrier between enzymes in their functional folded state and non-functional state.[34] Thus, 

even if an enzyme is not thermodynamically stable, it can still be active for some time because the barrier 

between folded and (partially) unfolded enzyme is high, in which case an enzyme is kinetically stable. 

Most of the bioinformatics analyses described below, as well as the majority of enzyme stability 

measurements performed in the lab, are however related to thermodynamic stability. There are several 

protein engineering approaches to improve enzyme stability. For example, a disulfide bond can be 

introduced between two oxidized cysteine residues to stabilize the folded conformation. Furthermore, 

glycine residues, which show a high amount of conformational entropy of the backbone, can be mutated 

toward a proline to reduce the protein conformational entropy. Finally, modification of the buried region 

in the protein by increasing hydrophobicity, or introduction of certain hydrogen bonds or ionic 

interactions at the protein surface can stabilize the protein.[17] 

Computational studies can help to predict the effect of certain mutations on the protein stability. 

Molecular dynamics simulations have shown to be helpful to analyze these effects, but these simulations 

are rather computationally expensive.[35] Therefore, there are several (much more efficient) 

bioinformatics tools available to predict the effect of specific mutations on protein stability. This can be 

helpful to guide engineering approaches to improve protein stability, but can also be useful to check if a 

planned mutation to modify another property, such as enzyme activity or specificity, might have negative 

influence on the protein stability. Some common bioinformatics tool related to protein stability are listed 

below: 

 PoPMuSiC: focused on single-site mutations in proteins and peptides. All possible mutations in a 

provided region are performed in silico, followed by solvent accessibility calculations which are 
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used as coefficients in a linear combination of database-derived potentials to predict the effect of 

each mutation on protein stability.[36] 

 FoldX: an empirical force field, which can be applied to predict free energy differences between 

wild-type and variant to evaluate the effect of a mutation on protein (or nucleic acid) stability, 

folding and dynamics.[27] 

 CUPSAT: predicts the free energy of unfolding between wild-type and single-mutant variants, 

applying specific atom and torsion angle potentials. A PDB structure of the protein is required.[37] 

 I-Mutant: a machine-learning algorithm applying support-vector networks, predicting if a point 

mutation is stabilizing, destabilizing or neutral. Both a sequence-based and structure-based 

prediction is possible.[38] 

Engineering to modify enzyme-substrate specificity 

Enzyme-substrate specificity is one of the main advantages of enzymes as biocatalysts compared to 

traditional chemical catalysts. However, a too specific enzyme may also limit an industrial application, 

thus protein engineering can be applied to change and/or broaden an enzyme’s substrate scope.[11] The 

substrate specificity of an enzyme is the result of a very specific binding orientation of the substrate 

required by the enzyme to make the reaction possible. In other words, an enzyme can catalyze a certain 

reaction if the substrate is able to bind in the preferred conformation in the active site, by which all active 

site residues are oriented properly to catalyze the reaction and stabilize the transition state.[17] Thus, in 

order to modify the enzyme-substrate specificity, one needs to properly understand the binding of the 

target substrate in the enzyme. Therefore, many rational engineering approaches rely on molecular 

docking simulations, in which the binding orientation of the substrate (or transition state) in the enzyme’s 

active site is predicted. Furthermore, the active site conformation may adopt upon substrate binding, 

which can either be simulated with subsequent molecular dynamics simulations, or directly during the 

molecular docking simulations with more advanced algorithms explicitly allowing for both ligand- and 

protein flexibility (more details about molecular docking simulations can be found in Chapter 1.5).[39] 

Based on the predicted enzyme-substrate complex, mutation hotspots can be defined, and the optimal 

amino acids at these positions can be predicted, which can be incorporated via site-directed 

mutagenesis.[17]  

Numerous engineering strategies based on rational design have been applied. For example, Genz et al. 

combined information from molecular docking and molecular dynamics simulations, together with 

bioinformatics analysis with 3DM, to predict mutation hotspots in the active site of the amine 
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transaminase from Vibrio fluvialis. Their approach was based on increasing the binding site volume in 

order to allow production of much bulkier amines. Therefore, they designed a seven-site mutant library, 

and thereby observed three variants able to synthesize 2,2-dimethyl-1-phenylpropan-1-amine with an 

enantiomeric excess of >99%, which was not possible with any wild-type amine transaminase until 

then.[24] Alternative approaches include reduction of the binding site volume, and adjusting the binding 

site by introduction or deletion of certain physico-chemical properties to enhance binding of the target 

substrate.[17] The latter approach, together with enlarging binding site volume has been successfully 

applied to engineer dihydroxy-acid dehydratases, which is described in one of the studies described in this 

dissertation.[40] 

Improving enzyme activity 

Enzyme activity describes the rate of the entire process including substrate binding, catalysis, and 

substrate release, and thus directly correlates with the production rate of the desired product. Therefore, 

a highly active biocatalyst is generally beneficial, since less enzyme needs to be produced or purchased, 

and problems related to high protein concentrations in bioreactors can be avoided.[11, 15] 

Rational engineering to improve enzyme activity however remains challenging. In order to reduce the 

activation barrier of the reaction, the transition state should be further stabilized. This can be performed 

with similar computational strategies as described above), thus a combination of molecular docking and 

molecular dynamics simulations, followed by hotspot identification and site-directed mutagenesis.[17, 

41] OptZyme is a computational procedure applying such an approach aiming to improve enzyme 

activity.[42] OptZyme optimizes the binding between the enzyme and a transition state analogue (i.e. an 

inhibitor closely similar to the transition state of an enzymatic reaction), rather than the target substrate. 

These transition state analogues are namely known for most enzymatic reactions. Mutations are 

predicted affecting the interaction with this transition state analogue, which likely will affect the enzyme 

activity toward the target substrate as well. 

An alternative approach is via a combination of sequence and structural information with literature 

mining. For example, a core alignment with structurally similar enzymes can be generated with 3DM, 

which can be further expanded with other sequences belonging to the same superfamily applying MSA. 

Subsequently, 3DM can perform an automatic data mining approach, searching for literature in which 

residues from homologous proteins at interesting structural positions (e.g. active site residues) were 

mentioned, together with certain keywords such as “activity”. If a certain structural position is often 

correlated with activity change, this position may be an interesting mutation hotspot.[23] This approach 
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has been used successfully to engineer numerous enzymes. For example, the activity of an esterase from 

Pseudomonas fluorescens was improved up to 240-fold with only four mutations of residues near the 

active site.[43] 

De novo enzyme design 

In de novo design studies, an enzyme is developed catalyzing a desired reaction, which is not related to 

any enzyme found in nature. This field is still under development, but there are some examples in which 

this approach has been used successfully.[44-46] Successful de novo enzyme design studies are however 

rare and require a lot of man hours, illustrated by the long author lists and high-impact journals (Nature, 

Science etc.) these studies are published in. 

The main task of de novo protein design studies can be subdivided in four steps: (I) prediction of the 

optimal backbone conformation for the desired role (e.g. catalysis of certain reaction), (II) prediction of a 

sequence which folds into this conformation, (III) scoring all proposed solutions and (IV) design of the 

functional/active site.[47] Although de novo protein design results in proteins with previously unknown 

sequences, the design procedure still relies on principles retrieved from the Protein Data Bank. For 

example, fragments which are known to fold in a certain motif or scaffold can be collected from the 

Protein Data Bank, which can subsequently be combined to predict a new fold. Other strategies include 

design of protein fragments of a certain fold or motif, e.g. by leucine-rich repeats, combined with helical 

building blocks and loop fragments to predict a desired fold.[47] 

1.2.4 Biomolecular simulations in biocatalyst development 

Biomolecular simulations are becoming an integral part of numerous research fields, including (structure-

based) drug design and protein engineering.[35, 48] The history of biomolecular simulations dates back 

to the late 1970s, when McCammon, Gelin and Karplus, the latter a Nobel Prize winner of 2013, illustrated 

the dynamics of proteins by a simulation of bovine pancreatic trypsin inhibitor.[49] They performed this 

8.8 ps simulation in vacuum, by solving the equations of motions applying an empirical potential energy 

function. The authors described the “fluid-like” behavior of proteins, which can be seen as a tripping point 

in computational chemistry from which on proteins were seen as dynamic structures, thereby initiating 

the research field of biomolecular simulations. Great progress has been made in this field since then, both 

regarding the time-scale of the simulations, as well as the accuracy of the respective models.[50, 51]  

In silico studies show several advantages over experiments, as (I) no (potentially toxic) reagents are 

required, (II) events can be studied at a molecular level, and (III) a much larger library can be screened. 
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Biomolecular simulations can be applied to rationalize experimental findings and thereby contribute to 

the understanding of biochemical processes, such as protein-ligand binding events, receptor activation 

and (enzymatic) catalysis. Because of the increasing accuracy of computational models, together with the 

vastly rising efficiency and availability of computational resources, biomolecular simulations can also be 

applied to make predictions to guide drug design-, protein engineering- and de novo protein (e.g. 

biocatalyst) development studies.[47, 50-52]  

In this thesis, the focus mainly lies on the development and application of biomolecular simulations for 

enzyme engineering and biocatalyst design. Nevertheless, the majority of the methods described here 

can be applied for structure-based drug design as well. For example, molecular docking simulations can 

be conducted to study the binding pose of a ligand in a binding site, after which either the ligand or the 

protein can be modified to enhance ligand/substrate binding. The first being a classical example for 

structure-based drug design, and the latter for protein engineering. 

1.3 STRUCTURE PREDICTION 

Many biomolecular simulation methods, such as molecular docking and molecular dynamics simulations, 

require a protein structure as input. When no experimental structure of the target protein is available in 

the Protein Data Bank, a model of the protein structure needs to be generated. The most common 

strategy to retrieve a model of the protein structure is homology modeling, but recent advances also allow 

machine-learning methods to predict the 3-dimensional protein structure.  

1.3.1 Homology Modelling 

Homology modelling, also known as comparative modelling, aims to predict the tertiary structure of the 

target protein (i.e. the protein with unknown structure). Structural information of a homologous protein 

with a resolved experimental structure is mapped on the protein sequence of the target protein, resulting 

in a predicted protein model.[53-56] It has been shown that for nearly all proteins a homologous protein 

is available in the Protein Data Bank, making homology modelling an applicable method for nearly all 

proteins.[57] Homology modelling relies on the sequence-structure relationship, which states that 

proteins sharing a high degree of amino-acid sequence similarity generally also share a similar fold.[53] 

Therefore, the quality of the resulting model for the target protein highly depends on the availability of a 

template with a high sequence identity. A homology modelling study thus starts with identification of 

suitable template structures, ideally sharing a high degree of sequence similarity with the target protein. 

When a suitable template has been found, the position of the backbone atoms of the secondary structure 
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elements can be predicted. Subsequently, the side-chain positions and the orientation of loop regions are 

modelled. Dependent on the quality of the resulting model, the sequence similarity between the target- 

and template structure, and the model accuracy required by the scientist, the homology model can be 

further refined, which is mostly performed with molecular dynamics simulations. Finally, the models are 

scored to provide an estimate of the quality of the homology model, and potentially to discriminate 

between multiple generated homology models.[53-55]  

Homology modelling can easily be performed via the online modelling platform SWISS-MODEL, which 

guides the user with a graphical user interface trough all required steps, and automatically builds the 

homology model.[55, 58] Despite being an established webserver for homology modelling, alternative 

modelling algorithms can be beneficial over SWISS-MODEL in certain cases allowing more interference by 

the user. Especially when only low sequence-identity templates are available (in this case homology 

modelling should ideally be performed applying multiple templates simultaneously), or when co-factors 

and/or ligands should be included in the modelling, these alternative modelling algorithms are often 

preferred. These modelling algorithms allow for full control of all modelling steps by the user, as well as 

more advanced loop modelling in the predicted protein structures.[59] Examples of homology modelling 

algorithms include RosettaCM[60], I-TASSER[61] and MODELLER[62], the latter being the algorithm 

applied in the homology modelling studies performed in this work. 

Template search and selection 

To identify potential template structures, the target sequence is aligned to all sequences from systems 

with a solved experimental structure in the Protein Data Bank, which is commonly performed via a BLAST 

search.[63] This results in a list of potential template structures, together with the sequence identity to 

the template sequence and some other scores describing the quality of the alignment. This information 

can be extended with information retrieved from other databases, such as UniProt and the SWISS-MODEL 

Template Library.[58, 64] As a rule of thumb, 30% sequence identity between two protein sequences 

generally suggests a common fold, while some studies even define this threshold at 20%.[65, 66] It 

remains however important to critically examine the templates manually, especially when the sequence 

identity is at the lower range. For example, Alexander et al. illustrated that two proteins sharing 88% 

sequence identity can end up in a completely different fold, here a 3-α helix fold and an α/β fold.[67] It 

needs to be noted here that the authors deliberately designed these two proteins to result in a high as 

possible sequence identity, but still resulting in a different fold. Nevertheless, this illustrates the 

importance of manual examination of the predicted templates. For example, the protein family of the 
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target and template proteins should be examined, as the fold of proteins within the same family is more 

conserved than their sequences.[54, 68] Furthermore, a closer analysis of the actual sequence alignment 

between the target and template sequence can often result in useful information: a higher local sequence 

similarity in the protein’s interior or the ligand binding site or other relevant regions generally results in 

more accurate protein models.[56] Other features which should be involved in the examination of protein 

templates are the quality of the experimental structure (e.g. X-Ray resolution), and quaternary structure 

features.[55] 

Model building 

Once one ore multiple templates are identified, the model for the target protein can be build. In the 

classical rigid body approach, the position of the Cα-atoms of structurally conserved regions can be 

predicted using the sequence alignment between the target and template(s). In the case when multiple 

templates are used, the templates are first superposed, and the average position of the Cα-atoms are 

applied for the homology model. This results in a so-called “framework”. In most homology modelling 

algorithms, small deletions are subsequently resolved by relaxation of neighboring residues, after which 

larger deletions, insertions, and loop regions are handled via the loop prediction pipeline, as described 

below.[62] A similar approach is applied by ProMod3, i.e. the modelling algorithm behind SWISS-

MODEL.[55, 69] 

An alternative approach, as applied by MODELLER, relies on modelling by satisfaction of spatial 

restraints.[62, 70] Here, constraints or restraints are defined based on the target-template alignment and 

the template structure. These restraints include Cα-Cα distances, backbone N-O distances and dihedral 

angles of the backbone framework and side-chains.[70] These restraints are often supplemented by 

restraints describing stereo-chemical properties retrieved from a molecular mechanics force field, such as 

bond lengths, angles, dihedral angles, and non-bonded interactions. These restraints are described by 

probability density functions (pdfs). The model is then generated using the distance and dihedral angle 

restraints, and subsequently refined by minimizing the violations of the above-described pdfs.[54, 62]  

Loop modelling 

Predicting the orientation of non-conserved loop regions and side-chains is more challenging than the 

prediction of the framework because of the relatively high allowed flexibility in these regions. However, 

the conformation of the loop regions is highly important, as loops often play an important role in the 

protein’s function and the formation of binding sites.[55, 62] Loop modelling is especially challenging if 

the sequence identity between the target and template sequence is below 50%, because in these cases 
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the core regions are often well conserved and aligned, but the loop regions vary.[62] Therefore, loop 

modelling strategies were developed, aiming to predict the most likely conformation of a small protein 

sequence, which are anchored in certain positions in Cartesian space from the framework. Besides the 

anchor positions, the number of residues in the loop, the neighboring residues and the loop’s surrounding 

all affect the loop conformation.[71]  

Available loop modelling algorithms can be classified in template-based and template-free methods.[56, 

71] Template-based methods search in a database for loops with known conformation with a similar 

sequence, and ideally within the same class (e.g. β-hairpin). These methods can be quite accurate for small 

loops, but the performance quickly decreases for longer loops, since the possible loop conformations 

grows exponentially with the loop length while the number of available templates decrease.[62, 71] This 

approach is however still often applied and further developed, as for example by ProMod3 in SWISS-

MODEL.[69] In ProMod3, matching loops are searched in their own StructureDB database, containing 

4.5·106 loop structures, using a query containing the number of loop residues, the distance between the 

anchor residues, and the geometric orientation of the two anchor regions described via four defined 

angles. Subsequently, the matched loops are scored based on summation of several backbone-related 

scores. If no suitable template was found, or if the number of residues exceed 12 (in the case of ProMod3), 

a Monte Carlo sampling is applied instead to predict the loop conformation.[56] 

Template free methods can be seen as a “mini protein folding problem”.[71] Template-free loop 

modelling methods differ in their energy function, conformational sampling approach and the strategy to 

tackle the “loop closure” problem, i.e. ensuring that the loop termini match the anchor position in the 

framework. The majority of template-free loop modelling algorithms apply the following pipeline: first a 

large number of possible loop conformations are sampled applying a coarse-grained sampling method, 

supplemented with a knowledge- or physics-based energy function. Multiple approaches have been 

applied to perform this initial sampling, including a random buildup approach[62] (as applied by 

MODELLER), inverse kinematics[72], Monte Carlo simulated annealing[73], molecular dynamics[74] and 

Markkov Chain Monte Carlo[73]. The resulting loop conformations are filtered and/or clustered to reduce 

the set size and redundancy, followed by refinement of these loop conformations with more accurate 

sampling algorithms and energy functions, e.g. full-atom simulations. All these simulations are performed 

under geometric restraints, such that the generated loops fit to the anchor regions of the framework. 

Finally, the refined loops are ranked based on a scoring function.[71]  
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The protein side-chain packing problem 

Side-chain placement consists of three steps: definition of possible side-chain conformations, sampling of 

possible protein side-chain packing (PSCP) combinations and scoring of these PSCPs.[75-77] All PSCP 

algorithms perform the first step via rotamer libraries, with the sole exception of the Grow-to-Fit 

molecular dynamics method.[76, 78] A rotamer, short for “rotational isomer”, is a single side-chain 

conformation of a certain residue defined by a set of dihedral angles, while a rotamer library is a collection 

of rotamers supplemented with probability values.[79] Numerous rotamer libraries are available, such as 

the dynameomics rotamer library of Dagett[80], the Richardson and Lovell rotamer library[81], and 

Dunbrack’s rotamer library[79], the latter arguable the most known. Rotamer libraries can be subdivided 

into backbone-independent and backbone-dependent libraries, where in the latter the probabilities for 

certain rotamers are dependent on the backbone phi and psi angles. Nearly all rotamer libraries are 

generated by statistical analysis of structures retrieved from the Protein Data Bank to retrieve 

probabilities of rotamers, while some more recent attempts to update the rotamer libraries additionally 

apply molecular dynamics simulations.[79, 80, 82]  

Known state-of-the-art PSCP methods include the established method from the Dunbrack’s lab 

SCWRL4[83], a simulated annealing-based method OPUS-Rota[84] and OPUS-Rota2[85]. A method 

developed by Hartmann, Antes and Lengauer named IRECS[86] is able to select more than one rotamer 

per side-chain, and a very recently published method FASPR[75], developed in the Zhang Lab was shown 

to be significantly faster than the other methods. In these PSCP methods, multiple combinations of PSCPs 

are iteratively optimized by minimizing the amount of clashes and optimizing the favorable interactions 

between side-chains. Furthermore, it has been shown that the state-of-the-art sampling algorithms in 

those PSCP methods are able to sample the correct PSCP, but that the main limitation lies in the scoring 

functions, which is valid for more topics in computational chemistry.[76]  

Quality assessment 

To estimate if the produced homology model is reasonable, scoring functions have been developed 

applying statistical potentials to compare the modelled structure to native high-resolution structures. 

These methods analyze the environment of each residue, and compare this to results obtained from a 

similar analysis in experimental structures.[62] Most of these scores are represented as a Z-score, which 

describes the number of standard deviations the model’s score is away from the expected value. Thus, a 

Z-score is the score normalized to the mean 0 and standard deviation 1.[87]  
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The DOPE score (Discrete Optimized Protein Energy) is based on a statistical potential regarding atomic 

distances retrieved from the Protein Data Bank.[88] The statistical potential is represented as a pdf based 

on inter-atomic distances of different residue types. Another scoring function, QMEAN (Qualitative Model 

Energy Analysis), is a composite scoring function, meaning that multiple scoring terms are combined to 

the final score.[87, 89] There are two flavors, namely QMEAN4 and QMEAN6, which contain respective 

four and six statistical potential terms. QMEAN4 contains two potentials describing long-range 

interactions via potentials of mean force measured between Cβ atoms, a torsion angle potential 

describing backbone geometry, and a solvation potential.[89] QMEAN6 additionally considers two 

potentials describing the agreement between calculated and sequence-based predicted secondary 

structure and solvent accessibility properties.[87] Finally, QMEANDisCo is an extension of the QMEAN 

scores, especially improving per-residue scores by assessing consistency of residue-residue interatomic 

distances in the generated homology model, and those observed in close homologues. In QMEANDisCo, 

the residue-residue interatomic distances of multiple homologues are represented as distance constraints 

(DisCo), while a neural network defines weights for the individual homologues.[55, 90] Note that this score 

can only be calculated if homologues are found. All the above-described scores can be derived globally 

(i.e. for the entire structure), or locally (i.e. per residue).[87-89] For QMEANDisCo, the global score is the 

global QMEAN score combined with the average QMEANDisCo score over all residues.[90] Finally, one can 

also evaluate the stereo-chemical quality of the model, such as bond length, angle, and backbone torsions 

with algorithms as PROCHECK.[91] 

Model refinement 

The resulting homology model can be refined by adding potentially missing co-factors and/or ligands, 

either by superposition to homologues with known experimental structures in their holo form, or via 

molecular docking simulations (see Chapter 1.5 for a more detailed discussion about molecular docking 

simulations). Further refinement of the homology models can be performed by (restrained) geometry 

optimizations or short molecular dynamics simulations. A (very) short geometry optimization is already 

included in most of the homology modelling algorithms.[62] However, the performance of molecular 

dynamics simulations to improve the fold of inaccurate homology models have shown to be limited.[92, 

93] Finally, it should also be mentioned here that proteins can exist in an equilibrium between multiple 

conformations, meaning that one cannot always speak of the “correct” structure, and should always keep 

the natural dynamics of a biological system in mind.[65] 
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1.3.2 AlphaFold 

CASP14 and the protein folding problem 

Critical Assessment of Structure Prediction (CASP) is an organization interested in strategies to improve 

protein structure prediction, sometimes referred to as “solving the protein folding problem”. They 

organize a challenge every two years since 1994, where they provide the participating groups with several 

modeling targets, which structure was recently solved, but not yet published. The participants receive the 

sequences, and are asked to predict the protein fold for these proteins, typically within three weeks.[94] 

Numerous research- and industry groups joined this challenge, often using information from homologous 

proteins together with physics-based, and later machine learning-based methods to predict the fold of 

the target proteins. However, predicting the fold based on sequence-only information appeared to be 

really hard, thus the “protein folding problem” (I personally, among others, prefer “protein structure 

prediction problem”) was often seen as one of biology’s grand challenges.[95] However, CASP13, held 

from May to July 2018, made the news in mainstream media because of the excellent performance by 

one of the participants, the company DeepMind, with their deep learning-based algorithm 

“AlphaFold”.[96] One edition later, CASP14, held from May to August 2020, CASP received again media 

attention because of the outstanding performance of DeepMind with AlphaFold2 (hereafter called 

AlphaFold), who were now able to predict the protein structure reaching a median score of 92.4.[97] It is 

important to note here that a score above 90 is considered to represent an accuracy similar to 

experimentally resolved structures.[95] DeepMind recently published their method, and made the 

source-code publicly available.[98] Because of the expected impact of AlphaFold in protein science, 

structure-based drug discovery and protein engineering and design, this Chapter briefly introduces the 

methods applied by AlphaFold, and it’s potential. 

The algorithm behind AlphaFold 

The algorithm behind AlphaFold can be classified into three parts: preprocessing section, the Evoformer 

block and the structure module.[98] An important aspect of AlphaFold is the repetition of these blocks 

(called “recycling” by the AlphaFold developers), in which the output of the structure block returns in the 

Evoformer block. This allows for incremental optimization/refinement of the structure, which was shown 

to strongly improve the final structure prediction. Finally, several innovative tricks during the training, 

such as MSA masking, application of FAPE loss and self-distillation training further improved the 

performance of AllphaFold2[98-101] The individual parts of the AlphaFold algorithm are described below. 
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Preprocessing and template identification 

The preprocessing block takes the input sequence, and searches for related sequences to construct a 

Multiple Sequence Alignment (MSA). In the MSA, all related sequences are aligned to each-other, resulting 

in a 2D Nres x Nseq matrix, where Nres and Nseq represent the number of residues (or better: alignment 

length) and the number of sequences, respectively. The MSA contains evolutionary information about the 

target protein, as residues that are not important for the structure and/or function are expected to mutate 

with a higher rate during evolution of a species compared to residues which encode important structural 

properties. In other words, residues that are important for the structure of the protein are expected to 

be conserved in the MSA, or only mutate to residues with the same type (e.g. positively/negatively 

charged, hydrophilic, hydrophobic, aromatic etc.). Moreover, residues which are close to each-other (note 

that they may though be far away from each other in the protein sequence) are expected to mutate 

simultaneously, or at least closely during evolution, due to a process known as “evolutionary pressure”. 

For example, imagine a positively charged residue (e.g. lysine) which interacts with a negatively charged 

residue (e.g. aspartate). If the first residue mutates from a lysine to a negatively charged glutamate, this 

results in a repulsive force with the nearby aspartate. Therefore, the aspartate is expected to mutate 

toward a positively charged residue, to restore this interaction. Otherwise, the fold may be disrupted, and 

the species or subfamily carrying this mutation may become extinct. This evolutionary pressure, among 

other information, can be retrieved from the MSA providing valuable information for the structure 

determination in later stages.[102] 

Besides these MSAs, AlphaFold generates a pair representation, represented by a 2D Nres x Nres matrix. 

This pair representation contains predicted distances between the respective residues. In order to predict 

these inter-residue distances, AlphaFold searches for structural templates, using a similar approach as 

described in Chapter 1.3.1 in the context of homology modelling. The sequence differences and structure 

similarities are assessed, thereby retrieving sequence-structure relationships and identify conserved 

structure fragments. This information is used to generate an initial pair representation. 

So far there is not much new compared to existing methods, as these methods are also applied in a similar 

way in homology modelling (see Chapter 1.3.1), and other protein folding algorithms.[103, 104] 

Evoformer block 

The main aim of the Evoformer block is to retrieve structural information from the pre-processed data.[98, 

102] The main innovations of AlphaFold are that the Evoformer block does not only use MSA information, 

but mixes the information from the MSA and pair representations during the entire optimization 
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procedure to predict structural features, as well as optimizes the MSA and pair representations. By feeding 

this output (optimized MSA and pair representation) back into the Evoformer block, the structural 

features can additionally be used to further refine the output, and so on.[98, 102] 

The Evoformer applies a deep learning architecture named “transformer”.[105] A transformer works with 

the principle of “attention”, representing regions of high importance.[98, 101] The Evoformer contains 

two transformers, one for the MSA representation, and one for the pair representation. The transformer 

for the MSA representation first analyzes the matrix row-wise (i.e. over the protein the sequence), 

identifying parts of the sequences which contain the most valuable information regarding the protein fold. 

Subsequently, the transformer analyzes the matrix column-wise, thus analyzing which sequences contain 

most valuable information. The transformer additionally uses information from the pair representation in 

this analysis.[98, 101, 102] The transformer for the pair representation works slightly different. A main 

task of this transformer is to enforce the triangle inequality, which states that the sum of the length of 

two triangle edges must be equal or larger than the remaining side.[106] In other words, it can be that 

the distances in the pair representation do not sum up to a clear position in Cartesian coordinates for all 

atoms. For example, the position of two atoms need to be at a certain position to fulfill the majority of 

the distances in the pair representation, but still violates some of the other distances. In this case, the 

distances in the pair representation need to be optimized, which is performed by the latter transformer 

in the Evoformer block.[98]  

Structure module 

Finally, the structure module uses the refined MSA and pair representations resulting from the Evoformer 

block to predict the structure. Internally, the structure module does not describe the structure via 

Cartesian coordinates, but uses a “residue gas” representation, i.e. a triangle representation for the 

backbone atoms and torsion angles for the side-chains, making rotation and translation modifications 

easier.[98] The structure module starts with the “black hole initialization”, meaning that all residues are 

located at the origin, having the same orientation. This representation is optimized via translations and 

rotations to finally lead to the predicted protein structure via a so-called “Invariant Point Attention” 

method.[98] An important aspect of the structure module is that there are no constraints applied to keep 

the backbone atoms together (chain constraint). The AlphaFold developers also observed that this chain 

constraint is often violated by the neural network, such that the neural network can first optimize 

substructures without having to fix complex loop closure. The peptide bond geometry is only restrained 

during the final fine-tuning of the structure, by which most introduced gaps are resolved.[98] To finally 
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resolve all unphysical conformations, backbone gaps and stereochemical violations, the structure is 

relaxed applying the Amber ff99SB force field[107] under certain constraints. 

Impact of AlphaFold, is the protein folding problem solved? 

Now AlphaFold is available, is the protein folding problem solved? The short answer is probably: “no”, but 

the development of Alphafold has still been an outstanding performance which can certainly provide a 

boost to structural biology, and will come in very handy in numerous fields related to protein science. This 

Chapter may be a bit more of an opinion rather than a description of scientific facts, since the future, and 

thus the impact of AlphaFold is hard to predict. Moreover, it is important to briefly highlight the difference 

between the “protein folding problem” and “protein structure prediction problem”, already briefly 

mentioned in above. Where “protein structure prediction” refers to predicting the protein structure and 

fold based on sequence data, which was successfully addressed by AlphaFold, the “protein folding 

problem” includes the folding process, which is not addressed at all by AlphaFold, as no information about 

the folding pathway is provided. Furthermore, protein dynamics are essential for proteins to function, e.g. 

due to domain movements or conformational adaptations of the binding site, which is also not predicted 

by AlphaFold.[108] This should however not take the shine off DeepMind’s work, which still has a lot of 

applications. For example, protein structures predicted by AlphaFold can be used as search model to solve 

X-Ray structures, or by computational biologists/chemists to accelerate drug design and protein (e.g. 

biocatalyst) design.[109] Furthermore, it has also already been suggested that AlphaFold can help the way 

out of the covid-19 pandemic, e.g. via the development of (improved) vaccines.[110] Furthermore it 

should be mentioned that AlphaFold is not completely by its own, as RoseTTAFold approaches the 

accuracy of AlphaFold, which is also publicly available.[103] Finally, several important questions in 

structural biology remain unsolved, such as the prediction of important protein-protein or protein-ligand 

interactions, prediction of protein function, and predictions regarding the presence and importance of 

different conformational states.[101, 109] 

1.4 BINDING SITE IDENTIFICATION 

In order to apply biomolecular simulations in structure-based drug design or enzyme engineering, 

identification of the ligand binding site is essential. This information could be extracted from experiments, 

for example from an X-Ray structure in which the ligand was co-crystallized. However, this data is often 

not available, and experimentally still difficult to retrieve. Therefore, multiple computational approaches 

to identify the binding site in proteins have been presented.[111] Sequence-based methods solely use the 
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protein sequence to suggest potential ligand binding sites, applying methods such as MSA and Position 

Specific Scoring Matrices.[112, 113] However, since biomolecular simulations generally require the 

availability of a protein structure, either experimentally solved or predicted via computational methods 

(see Chapter 1.3), the structure can also be used to improve the accuracy of the binding site identification 

methods. Numerous approaches have been proposed, all with their advantages and disadvantages. The 

most applied methods are briefly described below. 

1.4.1 Surface-scanning algorithms 

One of the most popular approaches applied in structure-based binding site identification algorithms is 

scanning the protein surface to search for potential binding sites. These methods are based on the 

observation that ligand binding sites are often located in cavities in the protein surface.[111, 114] For 

example, “Putative Active Site with Spheres” (PASS), is a binding site identification algorithm which 

completely relies on geometric properties of the protein.[115] First, probe atoms are placed around the 

protein, after which the probe atoms are removed if they clash too much with the protein, if the probe is 

not sufficiently buried in the protein, or if another probe nearby is more buried. This procedure then 

continues with smaller probes in the predicted regions, until all probes are removed.[114, 115] Other 

binding site identification algorithms relying on a similar geometric approach include POCKET[116], 

LIGSite[117], CAST[118] and LigandFit[119]. In these methods, the largest cavity found is often suggested 

as the ligand binding site.[114] These methods do however not account for the ability of a pocket to be a 

ligand binding site. Therefore, other methods have been proposed using probe atoms of different types, 

in order to additionally scan for physico-chemical properties of the predicted sites and predict interaction 

forces with the probe atoms.[111, 114] This approach is applied in webservers such as Q-SiteFinder[120], 

SITEHOUND[121], FTSite[122] and SiteComp[123]. 

1.4.2 Cavity mapping 

The methods above rely on the rigid protein approximation (i.e. the assumption that the protein 

conformation does not change upon ligand binding) as they apply their predictions on a static structure. 

However, cavities in proteins (and thus ligand binding sites) can split into multiple cavities, merge again 

into a single cavity, or even completely disappear due to the protein dynamics.[124] POVME[125] and 

mkgridXf[126] are binding site identification algorithms which map cavities and measure their volume to 

find cavities large enough to accommodate ligand binding. Both these methods can work on an ensemble 

of proteins retrieved from a molecular dynamics simulation, thereby partially considering the effects 

described above. However, the molecular dynamics simulations should be rather long in order to observe 
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cavity appearing/disappearing effects, making these methods computationally expensive. Furthermore, 

ligand-induced effects are not considered by these methods, as they rely on structure ensembles retrieved 

from a molecular dynamics simulation of the apo structure.  

1.4.3 Template-based approaches 

Another strategy to identify the binding site in proteins is via a comparison of the target protein with 

proteins with known binding sites. In these methods, a structure alignment is performed on the target 

protein with a database of proteins with known binding sites, to search for structurally similar protein 

templates. Subsequently, the information of the binding sites of the templates is transferred to the target 

protein, generally after performing a cluster analysis. The accuracy of these methods is highly dependent 

on the availability of structurally similar protein templates.[111] Binding site identification algorithms 

applying this approach include FINDSITE[127], FunFold[128] and 3DLigandSite[129]. 

If the structure is not known, template-based approaches can also be performed on protein sequences 

instead. Here, protein templates are identified by their similarity in the protein sequence, followed by a 

sequence alignment of the target protein with the identified templates. The amino acids which align in 

the binding site region of the target proteins are then assumed to form the ligand binding site in the target 

structure.[111] S-Site[130] is a known binding site identification algorithm applying this approach, using 

the BioLip Database[131] which contains annotated information of the binding sites of all proteins in the 

Protein Data Bank. Binding site identification algorithms applying a mixture of these sequence-based and 

structure-based methods (so-called “hybrid methods”) have also been presented, such as COFACTOR[132] 

and TM-SITE[130]. 

1.4.4 Affinity grid representations 

AutoLigand[133] and AutoSite[134] are commonly applied binding site identification algorithms, both 

relying on a principle called “affinity grids”. In these methods, a grid is placed over the entire protein, 

where each grid point represents a possible position for an atom. The affinity of an atom at each grid point 

is often pre-calculated, which speeds up the subsequent binding site identification. [133-135] AutoLigand 

applies the following strategy to identify ligand binding sites in a target protein: first cavities in the target 

protein (identified via a random set of grid points) are flooded with grid points, followed by a “migration” 

step, in which low-affinity points are deleted and high-affinity neighboring points are added to the flood. 

Furthermore, an approach called “ray-casting” is applied to identify potential new pockets at greater 

distances from the pocket.[133] AutoSite applies the same idea of affinity grids, but calculates the affinity 

of grid points for multiple atom types, namely for a hydrophobic atom (carbon), a hydrogen bond donor, 
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and a hydrogen bond acceptor. The high-affinity points of these different types are collected and 

clustered, which results in a set of predicted binding sites, together with a representation of the physico-

chemical properties of the respective binding site.[134] 

1.4.5 Blind docking 

Blind docking is a docking approach (see Chapter 1.5) without pre-knowledge of the binding site.[39] Thus 

the ligand is docked all around the protein surface, and a score is calculated for each docked solution, 

often representing the binding affinity. The top-scored poses finally represent the suggested binding sites 

of the proteins.[136, 137] Despite being a rather straightforward approach, this method can result in very 

reliable predictions. Moreover, this method searches for a binding site specifically for the input ligand, 

while the majority of the methods described above predict general ligand binding sites. However, because 

of the high number of docked poses required to rigorously scan the protein surface, this method can 

become computationally expensive.[136-138] Hitényi et al. developed such a blind docking approach 

applying AutoDock, in which they successfully predicted the binding site for 34 of the 43 proteins present 

in the evaluation set.[137] PEP-SiteFinder[139] is another blind docking approach designed for the 

prediction of binding sites for peptides. PEP-SiteFinder uses the protein-protein ATTRACT force field and 

docking algorithm.[140] First, several peptide conformations are predicted based on the peptide 

sequence, followed by a fast blind docking approach on the entire protein surface. The authors evaluated 

this approach using an evaluation set consisting of 41 protein systems. Considering the 10 top-scored 

poses, the binding site residues predicted by PEP-SiteFinder overlapped for almost 90% of the poses with 

the known (experimentally-resolved) binding site.[139] 

1.5 PROTEIN-LIGAND COMPLEX PREDICTION 

In both rational protein engineering and structure-based drug design, it is essential to gather knowledge 

about ligand binding. Based on the structure of a protein-ligand complex, one could engineer the protein 

(in rational protein engineering) or modify the ligand (in structure-based drug design) to alter properties 

of interest, such as ligand binding or enzyme activity. For most applications, molecular docking simulations 

are the best choice to efficiently predict the structure of a protein-ligand complex.[39] A molecular 

docking simulation consists of two parts: sampling of possible ligand conformations in the binding site, 

followed by ranking of the generated poses with a scoring function. Within these two steps, multiple 

challenges need to be addressed, such as consideration of ligand flexibility, description of protein-ligand 

interactions, design of the scoring function, and potentially consideration of protein flexibility.[39] 
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Furthermore, there are many degrees of freedom in molecular docking simulations, including the 

translational and rotational degrees of freedom and the conformational degrees of freedom. Numerous 

molecular docking algorithms have been proposed, and are still being developed, which all differ in the 

number of degrees of freedom they ignore, and in the strategy to reliably, but also efficiently perform the 

sampling and scoring steps, and.[39, 141]  

1.5.1 Approaches relying on the rigid protein approximation 

The majority of available molecular docking algorithms rely on the rigid protein approximation, meaning 

that they assume that the protein conformation will not change upon ligand binding. This strongly 

simplifies the docking problem and allows for much more efficient algorithms, but therefore lose in their 

accuracy. However, for many proteins this approximation can be applied successfully.[39, 141, 142] All 

rigid molecular docking algorithms, including the algorithms only considering ligand flexibility, rely on the 

“lock-and-key” model (Figure 2A). This traditional idea, introduced by Emil Fischer in 1894 describes that 

the function of an enzyme can be explained by the analogy of a lock and a key: the lock (i.e. enzyme) and 

key (i.e. ligand/substrate) should fit properly together, as a requisite for a reaction to occur.[143] Thus, a 

good substrate should geometrically match the binding site. 

 

Figure 2. Schematic overview of the lock-and-key model (A), the induced-fit model (B) and the conformational selection 
model (C), illustrated for a hypothetical system representing an enzyme cleaving a substrate, with the equilibrium lying on the 
product side. The gray shape represents the hypothetical enzyme, and the cove represents the binding site. The orange and green 
shape represent a substrate. A detailed description of these models is provided in the main text. 
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Shape complementary and incremental construction algorithms 

The simplest kind of docking methods include the algorithms ignoring all conformational degrees of 

freedom, as both the protein and ligand are considered as rigid bodies. These methods rely on shape 

complementary between the ligand and the binding site.[141, 144] DOCK, one of the first molecular 

docking algorithms, relies on this shape complementary principle.[145] In this algorithm, the binding site 

cavity is represented by a collection of overlapping spheres touching the molecular surface of the protein, 

which are subsequently mapped on a sphere representation of the ligand.[141, 145] These methods, 

ignoring both ligand- and protein flexibility, are nowadays not regularly applied anymore due to increased 

availability of computation power and the development of new algorithms which take more degrees of 

freedom into account. Most of the molecular docking methods only consider ligand flexibility, as this is 

computationally much easier to handle than protein flexibility, and can be implemented in numerous 

ways.[39, 141, 144, 146, 147] One possibility is an incremental construction of the ligand inside the binding 

site, as applied by the docking algorithms Hammerhead[148], DOCK[149] (a variant of the version 

described above), and FlexX[150]. In this method, the ligand is first fragmentized into small rigid 

fragments, followed by the definition of a base fragment, typically a rather rigid region of the ligand, which 

is placed inside the binding site. All the different placements of the base fragment act as starting point for 

the incremental construction algorithm, which iteratively place the remaining fragments of the ligand. 

The individual molecular docking algorithms applying this approach can differ in their fragmentation 

approach, base placement strategy, incremental build-up algorithm and scoring function.[39, 141, 145, 

148, 149, 151]  

Genetic algorithms 

Another popular way to implement ligand flexibility is the application of a genetic algorithm, which encode 

dihedral angles of all rotatable bonds in the ligand, as well as the orientation of the ligand inside the 

binding site.[39, 141] In a genetic algorithm, molecular properties (here: dihedral angles and ligand 

orientation) can be encoded in a bit string, or a “chromosome” in the context of a genetic algorithm. Every 

chromosome is assigned a fitness score, which scores the quality of the docked pose. Often the internal 

energy calculated via a Molecular Mechanics force field or a score retrieved from a scoring function is 

used for this fitness score. A first population of chromosomes (“parents”) are randomly generated, 

followed by generation of new chromosomes (“children”) by genetic operators such as crossover and 

mutation, which randomly pick parents with a slight bias toward the more “fit” chromosomes. The 

crossover operator, as inspired by chromosomal crossover during sexual reproduction, combines 

properties from both parents to generate children, which are again assigned a fitness score. The mutation 



24 | 1 Introduction 

Okke Melse 

operator randomly mutates the chromosome to aim for improved fitness, as inspired by principles from 

evolution. By altering parameters such as crossover- and mutation rates, population sizes and number of 

allowed generations, the performance of the genetic algorithm can be modified.[39, 141, 152] Molecular 

docking algorithms applying this idea include AutoDock[135], AutoDock Vina[153] and Gold[154]. 

1.5.2 Consideration of protein flexibility in molecular docking simulations 

The “lock-and-key” model, which serves as basis for the rigid molecular docking algorithms, is however 

not always valid. Numerous studies have shown that the conformation of the binding site can adapt on 

the presence of a ligand.[124, 155-158] Therefore modifications of the “lock-and-key” model have been 

proposed, such as the “induced fit” model[159], later followed by the “conformational selection” 

model[160] (Figure 2B,C). In the first, the binding site conformation is induced by the ligand, thus the 

conformational change happens during the binding event, while in the latter, the binding site 

conformation changes already before the binding event, after which the ligand finds an enzyme/receptor 

with the “correct” binding site conformation. The question regarding which of the two is correct has been 

a topic of discussion for many years.[124, 158, 161-163] Regardless of which of the two models is more 

accurate, the requirement for such a model illustrates the importance to consider protein flexibility in 

molecular docking simulations. 

Ensemble docking and side-chain flexibility 

A straightforward way to include information about protein flexibility in molecular docking simulations is 

to perform rigid docking simulations into multiple protein conformations. These conformations can either 

be retrieved from experimental data, such as X-Ray or NMR crystallography, or via computational 

sampling methods such as molecular dynamics or Monte Carlo simulations. This approach is often referred 

to as “ensemble docking”.[164, 165] This ensemble docking approach has been applied frequently, such 

that even automated pipelines were developed for AutoDock[166] and FlexX (named: FlexE)[167]. 

However, experimental structures of multiple relevant protein conformations are often not available, 

while very extensive sampling needs to be performed to retrieve these conformations computationally 

due to the large phase space which needs to be sampled, making the latter very computationally 

expensive. Therefore, the application for this ensemble docking method is limited.[142, 165] 

However, by limiting the protein flexibility to the side-chains, one can overcome the unfeasible 

computations required to generate protein conformations.[39, 165] Methods which only consider side-

chain flexibility typically rotate small organic groups, or apply rotamer libraries to predict the most likely 

conformations of the side-chains (see Chapter 1.3.1 for a more extensive discussion about rotamer 
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libraries).[39] For example, in the docking algorithm GOLD[152, 154], hydrogen atoms can rotate to 

optimize hydrogen bonds, while in AutoDock[135], protein conformations can be pre-sampled by 

modifying the side-chain conformations, followed by docking of the ligand using an ensemble docking 

approach. 

Ligand-induced protein flexibility 

The above-mentioned approaches to consider protein flexibility do not account for conformational 

changes induced by the ligand, i.e. induced-fit effects. Even if one rather follows the conformational 

selection model, it is rather unlikely that large conformational changes, such as loop movement events, 

are properly sampled during pre-sampling. Therefore, several docking algorithms have been presented, 

which explicitly account for full protein (thus including backbone) flexibility during the docking process. 

For example, RosettaLigand[168] allows for full protein flexibility, combining a coarse-grained stage, and 

a Monte Carlo minimization stage, followed by a geometry optimization to relax protein-ligand 

interactions. DynaDock[169] is another molecular docking algorithm which accounts for full protein 

flexibility. The DynaDock algorithm consists of two stages: broad sampling and Optimized Potential 

Molecular Dynamics (OPMD) refinement. In the first broad sampling step, random ligand conformations 

are sampled within the binding site, allowing a certain protein-ligand overlap. For a selection of these 

broad sampled poses, an OPMD simulation is performed, during which the protein-ligand overlap is slowly 

resolved by slight movements of both the ligand and the protein.[169] 

1.5.3 Evaluation of docked complexes 

After generating possible ligand orientations in the binding site (i.e. docked poses) during the sampling 

stage, the docked poses are ranked with help of a scoring function. Scoring functions aim to rank the 

docked poses by their free energy of binding, which is given by: 

∆𝐺 = ∆𝐻 − 𝑇∆S (1.2) 

where ∆𝐺 represents the Gibbs free energy of binding, ∆𝐻 the enthalpy change, 𝑇 the temperature (in 

Kelvin) and ∆𝑆 the change in entropy. The relation between the free energy of binding and the binding 

constant Ki is given by: 

∆𝐺 = −𝑅𝑇 𝑙𝑛(𝐾𝑖) (1.3) 

where 𝑅 represents the gas constant.[141, 158] 
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Scoring functions need to be efficient because a large number of poses need to be scored. Therefore, the 

majority of the scoring functions do not aim to accurately reproduce the absolute value of the free energy 

of binding, but produce a unitless score, which does not necessarily represent any physico-chemical 

property, but only intends to identify the best generated solution.[141, 158] The majority of available 

scoring functions can be classified into physics-based, empirical, knowledge-based and machine learning-

based scoring functions.[39, 170] Empirical, knowledge-based and machine learning-based scoring 

functions are only introduced briefly, as mainly physics-based scoring functions were applied in this 

dissertation.  

Physics-based scoring functions 

Physics-based scoring functions are one of the best known scoring functions, existing in multiple flavors. 

The classical physics-based scoring functions are the force field-based scoring functions, which are based 

on the following terms: 

∆𝐺𝑏𝑖𝑛𝑑 = 𝐸𝑣𝑑𝑤 + 𝐸𝑒𝑙𝑒𝑐 + ∆𝐺𝑠𝑜𝑙𝑣 (1.4) 

∆𝐺𝑏𝑖𝑛𝑑  is the free energy of binding, and 𝐸𝑣𝑑𝑤  and 𝐸𝑒𝑙𝑒𝑐  are the Van der Waals and electrostatic 

interactions between the protein and ligand, respectively. ∆𝐺𝑠𝑜𝑙𝑣 is the solvation free energy, typically 

calculated with an implicit solvent model. Not all force field-based scoring functions contain the solvation 

term, as this is harder to calculate than the other terms, and thereby making the scoring function more 

computationally expensive.[39, 170] One well-known physics-based scoring function is MM(GB/PB)SA 

(Molecular Mechanics Generalized Born/Poisson-Boltzmann Surface Area), in which the free energy of 

binding (∆𝐺𝑏𝑖𝑛𝑑) is estimated as the difference in free energy between the bound state (𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥) and 

the unbound states (𝐺𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟 and 𝐺𝑙𝑖𝑔𝑎𝑛𝑑): 

∆𝐺𝑏𝑖𝑛𝑑 = 𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − (𝐺𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟 + 𝐺𝑙𝑖𝑔𝑎𝑛𝑑) (1.5) 

The individual contributions of the bound and unbound states are either calculated based on a single 

frame (e.g. X-Ray structure of energy-minimized structure), or as an ensemble-average retrieved from (a) 

molecular dynamics simulation(s). For the latter, molecular dynamics simulations can either be performed 

for the complex only (single-trajectory protocol), or for multiple states (multiple-trajectory protocol). In a 

single-trajectory protocol, the energy of the receptor and ligand state are simply retrieved from the 

complex simulation.[171] However, in this protocol, it is assumed that the receptor and ligand sample 

similar conformations in the bound and free states, which is questionable. In order to address this so-
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called adaptation free energy (i.e. free energy associated with conformational adaption of receptor and 

ligand upon binding), a multi-trajectory protocol can be performed. Here, the free states are simulated as 

well, either all three states in a 3-trajectory protocol, or only the complex state and the unbound ligand 

state in a 2-trajectory protocol. The multi-trajectory protocol often introduces a lot of noise, and requires 

much more simulations, which is the reason that the single-trajectory protocol is most commonly 

used.[171, 172]  

In MM(GB/PB)SA, the free energy of binding is estimated as: 

∆𝐺𝑏𝑖𝑛𝑑 = ∆𝐻 − 𝑇∆𝑆 

≈ ∆𝐸𝑔𝑎𝑠 + ∆𝐺𝑠𝑜𝑙𝑣,𝑝𝑜𝑙 + ∆𝐺𝑠𝑜𝑙𝑣,𝑛𝑝 − 𝑇∆𝑆 (1.6) 

∆𝐸𝑔𝑎𝑠 is the gas-phase (vacuum) interaction energy term, i.e. the sum of the change in internal energies 

(bond, angle, and dihedral energies, which are cancelled out in a single-trajectory protocol) and the Van 

der Waals and electrostatic interactions. The solvation free energy is divided in two terms, the polar 

( ∆𝐸𝑠𝑜𝑙𝑣,𝑝𝑜𝑙 ) and nonpolar ( ∆𝐸𝑠𝑜𝑙𝑣,𝑛𝑝 ) contribution. The polar solvation term is calculated in an 

electrostatic continuum, calculated applying a Generalized Born (GB) model, or by solving the Poisson-

Boltzmann (PB) equation. The nonpolar part is calculated as a function of the surface accessible surface 

area (SASA). The entropy term (𝑇∆𝑆) can be approximated by a normal mode analysis[173], but often this 

term is neglected because of the rather high computational costs, and the contribution often rather small, 

especially when only relative binding free energies are of interest.[172] 

Alternative scoring approaches 

Empirical scoring functions sum up potential terms such as the Van der Waals protein-ligand interaction 

term, a hydrogen-bond term, a term accounting for loss of entropy and a term describing hydrophobic 

clashes. All terms are weighted by a weighting term, which results from a training of protein-ligand 

interactions with available experimental binding affinity data.[170, 174] Examples of empirical scoring 

functions are X-score[175, 176] and the FlexX scoring function[150, 177]. 

In knowledge-based scoring functions, distance-based potentials (more exact: potential of mean force) 

are generated for all possible combinations of protein-ligand interactions, based on available structural 

information (usually the Protein Data Bank). In other words, if a ligand atom and a protein atom are often 

found at a certain distance from each-other, it is assumed that this is the optimal distance for these atoms 

and should retrieve the best score. [39, 170] 
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Finally, machine learning-based scoring functions are the newest type of scoring functions, which depend 

on a non-linear learning algorithm. Machine learning-based scoring functions can apply numerous 

machine learning algorithms, such as random forest, deep-learning, or neural networks. These types of 

scoring functions have shown to be able to outperform the traditional scoring functions already. However, 

so far these type of scoring functions are barely implemented in any docking algorithm because of their 

dependence on the training set they were developed with.[170] 

1.5.4 Model refinement and analysis 

Molecular docking simulations typically result in multiple predicted protein-ligand complex solutions, 

which are scored based on their binding affinity to the protein. However, there may be more information 

about the specific target system available, which can be used to further filter down the predicted 

solutions. This filtering is generally performed with the use of pharmacophore constraints. Moreover, the 

majority of the molecular docking algorithms result in a static representation of the protein-ligand 

complex, thus subsequent dynamics simulation (e.g. molecular dynamics, Monte Carlo simulations or 

geometry optimizations) can provide further information about the stability of this complex, and the 

importance of individual protein-ligand interactions. Finally, if one is interested in more complex 

electronic properties within the binding site, such as (transition) metal coordination effects or the reaction 

mechanism, subsequent Quantum Mechanics (QM) or hybrid Quantum Mechanics/Molecular Mechanics 

(QM/MM) calculations can provide useful insights. 

Pharmacophore constraints 

When investigating the binding of a certain ligand to a protein, one may already have some knowledge 

about how the ligand, or a part of the ligand, will bind to the protein. This information can either be 

retrieved from binding affinity data and/or crystallography data of a similar ligand or homologous protein, 

via mutation data of binding site residues, or simply because one knows the catalytic site (e.g. catalytic 

residue or triad, iron-sulfur cluster, or metal ion). This information can be used to filter out docked poses 

that do not fulfill these conditions with the use of pharmacophore constraints.[141, 178, 179] 

A pharmacophore is defined as an ensemble of physico-chemical features allowing intermolecular 

interactions, leading to activation or prevention of a biological response. Thus, a pharmacophore is 

neither a ligand, nor a functional group, but an abstract moiety which can interact with a biological target. 

A pharmacophore is associated with a certain pharmacophoric descriptor, such as hydrophobic, aromatic, 

positively/negatively charged or hydrogen-bond donor/acceptor.[180] One could define such 

pharmacophore constraints during or after a molecular docking simulation, which enforces a certain 
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pharmacophore in a pre-defined region in three-dimensional space.[178, 179] This strategy is often 

applied in virtual screening approaches in computer-aided drug design, but can also be used in molecular 

docking studies of an enzyme-substrate complex. For example, if a catalytic triad has been identified in an 

enzyme, one knows where to expect a certain pharmacophore of the ligand in the binding site, which can 

guide the placement of a pharmacophore constraint. This approach has been applied frequently, and can 

help to automatically filter out incorrectly docked poses.[141, 178, 179] 

Pose refinement by molecular dynamics simulations 

In order to obtain more information about the dynamics and stability of the predicted protein-ligand 

complex, subsequent molecular dynamics simulations can be performed. The stability of the ligand pose 

during a molecular dynamics simulation can also provide information regarding the quality of the docked 

pose, since only a decently docked pose will occupy a local minimum allowing equilibrium molecular 

dynamics simulations.[169, 181] Thus, poses which result in an unstable molecular dynamics trajectory, 

i.e. when the predicted protein-ligand interactions are not present during the majority of the simulation, 

can be assumed to be incorrectly placed, and thus rejected as protein-ligand complex solution.[169, 181, 

182] Besides filtering out incorrectly docked poses, several studies showed that these molecular dynamics 

pose refinement simulations are also able to discriminate between binders and non-binders, and not 

predicted protein-ligand interactions can be recovered, especially when small conformational changes of 

the binding site upon binding is expected.[183-185] 

Application of Quantum Mechanical calculations in molecular docking simulations 

Finally, pure Quantum Mechanics (QM) or hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) 

simulations can help to refine and/or to rescore docked poses. This is especially helpful if the binding site 

contains a complex electronic structure (e.g. a highly polarized binding site, or presence of one or multiple 

transition metal ions) which are hard to describe with Molecular Mechanics (MM).[186, 187] The major 

bottleneck of the application of QM methods in refinement simulations or rescoring approaches are their 

rather high computational expenses. Therefore, the region of the system that is described via a QM 

potential can be reduced, as performed in a QM-cluster approach (sometimes referred to as “QM-only”). 

In this approach, only the relevant region of the system (generally the ligand and binding site residues) is 

described via a QM potential, and the remaining atoms are removed. The electrostatics of the protein 

environment can be mimicked by a homogenous polarizable continuum using a dielectric constant.[188] 

An alternative to the QM-cluster approach is a hybrid QM/MM potential, in which only the most relevant 

region is simulated by a QM potential, and the remaining via a MM potential. While all interactions within 



30 | 1 Introduction 

Okke Melse 

the QM- and MM-region are handled by the QM- and MM-code respectively, a coupling scheme is 

required to account for the interactions between those two regions. This can either be conducted via an 

additive QM/MM coupling scheme (often referred to as the “QM/MM scheme”), or a subtractive scheme, 

as applied in ONIOM (Our own N-layered Integrated Molecular Orbital + Molecular Mechanics).[188, 189] 

See Chapter 2.1.2 in the Theory section for a more detailed discussion on this topic. 

Due to the increasingly rising computing power, it became nowadays possible to apply QM-calculations 

efficiently directly during the molecular docking simulations, or in scoring functions. Numerous QM-based 

docking algorithms and scoring functions have been developed in the last years, applying different 

approaches.[190-193] For example, QM calculations can be used to derive system specific partial charges 

(so-called “polarized protein-specific charges”) for the ligand and potentially the binding site.[194, 195] 

Other methods include the “on-the-fly” scheme, where a QM/MM geometry optimization is included in 

the docking algorithm.[196] Moreover, several QM-based scoring functions have been developed, which 

mostly rely on semi-empirical QM potentials due to their reduced computational cost. For example, 

QMScore is a QM-based scoring function developed by Raha and Merz, combining the AM1 semi-empirical 

Hamiltonian to calculate gas phase interaction energies, a MM potential for the nonpolar interactions, 

while using the Poisson-Boltzmann implicit solvent model for the solvent contribution. This method was 

successfully applied for 23 ligands binding to the zinc metalloenzymes carbonic anhydrase and 

carboxypeptidase A. [197] More recently, several SQM/COSMO scoring functions have been developed, 

which combine a semi-empirical QM potential for the enthalpic contribution and COSMO, a QM-based 

solvent model, for the solvation term. Pecina et al. published many variants of this SQM/COSMO scoring 

function applying different semi-empirical Hamiltonians and correction terms for dispersion, hydrogen-

bonding and halogen-bonding, and showed its ability to outperform classical scoring functions for several 

metalloenzymes.[191, 198-200] Finally, Cavasotto and Aucar recently developed a QM-based scoring 

function (PM7/COSMO), which is according to the authors suitable for high-throughput docking 

simulations, as it is only 10 times slower compared to MM-based scoring functions. They evaluated the 

scoring function on 10 diverse protein systems, showing excellent results, even without applied geometry 

optimizations of the docked complexes.[192] 
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1.6 METALLOENZYMES 

1.6.1 Dihydroxyacid Dehydratases 

Dihydroxy-acid dehydratases (DHADs) and other sugar-acid dehydratases (DHTs) are hydro-lyases 

(EC 4.2.1) acting on carbon-oxygen bonds. They catalyze the dehydration of sugar-acids (or dihydroxy-

acids), producing a C-O double bond in the substrate (Figure 3). These enzymes belong to the ilvD/EDD 

superfamily, which are suggested to contain an iron-sulfur cluster in the active site, either [2Fe-2S] or 

[4Fe-4S], where enzymes carrying the latter are often unstable in aerobic conditions.[201] These enzymes 

have gained increased attention due to their involvement in a large variety of biosynthetic and 

carbohydrate metabolic pathways. For example, DHADs are involved in branched-chain amino acid 

biosynthesis via the Ehrlich pathway.[202] Moreover, via a modified Ehrlich pathway, DHAD is involved in 

the production of higher-chain alcohols, which show high potential as biofuel, and can be produced 

starting from glucose.[9, 203] As an alternative to the in vivo approach (by the modified Ehrlich pathway) 

to produce higher chain alcohols, an in vitro pathway has been developed consisting of only eight enzymes 

to produce isobutanol from D-glucose.[8] The limiting factor in the pathway is the non-natural reaction of 

D-glycerate to pyruvate by a DHAD from Saccharolobus solfataricus (SsDHAD).[8, 204] Other members of 

the ilvD/EDD family include D-xylonate dehydratase (XyDHT), L-arabinonate dehydratatse (ArDHT), and 

6-phosphogluconate dehydratase (6PGDHT), where the first two catalyze the dehydration of D-xylonate 

and L-arabinonate, respectively.[205, 206] The latter is involved in glucose metabolism via the Entner-

Doudoroff (ED) pathway.[207] 

 

Figure 3. Structure of DHADs, illustrating the active site at the dimer interface and active site composition (A) and chemical 
reaction catalyzed by DHADs (B). The DHAD dimer is shown in cartoon representation, with both monomers colored in orange 
and gray, respectively. The inlet represents the active site, with important residues and the [2Fe-2S] cluster shown as sticks. The 
green and red spheres represent the Mg2+ ion and two crystallized water molecules, respectively, which are replaced upon 
substrate binding. The dotted lines represent coordinate bonds. The residues are indicated by their one-letter abbreviation. The 
protein structure shown here is from the DHAD from Mycobacterium tuberculosis (MtDHAD; PDB-ID: 6ovt). 
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Despite the promising role of DHADs in biotechnology, there are not many resolved structures of DHADs 

or other [2Fe-2S]-containing dehydratases belonging to the ilvD/EDD superfamily. However, it is known 

that the active site is located in a dimer interface, and most DHADs are present in a tetrameric 

oligomerization (here: dimer of dimers). The active form contains an iron-sulfur cluster, a divalent metal 

ion, and an essential serine residue, which are all assumed to play a role in substrate binding and/or 

catalysis.[208-213] There are two reaction mechanisms proposed for DHADs, where the one originally 

suggested by Pirrung et al.[208], and later by Rahman et al.[209], is most often applied, and also fits best 

to the simulations performed in this work.[209] The reaction starts with proton abstraction from the 

substrate’s C2 atom by a deprotonated serine residue in the active site (i.e. the catalytic serine). The 

resulted carbanion is stabilized by Mg2+, such that Fe2 of the [2Fe-2S] act as Lewis acid accepting the 

hydroxyl group from C3, followed by tautomerization to the product in keto form. 

1.6.2 Metallo-β-Lactamases 

β-lactamases (EC 3.5.2.6) are enzymes hydrolyzing substrates carrying a four-membered β-lactam ring 

(Figure 4), which are often found in antibiotics. These enzymes are produced by both Gram-positive and 

Gram-negative bacteria, thereby making them resistant against a large range of antibiotics.[214, 215] 

β-lactamases can be classified with the Ambler classification scheme into class A, B, C and D β-lactamases 

on the basis of their amino acid sequence.[216] Class A, C and D are serine-β-lactamases, which contain a 

(catalytic) serine residue in their active site, which is involved in the hydrolysis reaction of β-lactams. Class 

B β-lactamases contain one or two Zn2+ ions in their active site activating a hydroxide ion, and are 

therefore also named metallo-β-lactamases (MBL). The MBLs can be further divided into three subclasses: 

B1, B2 and B3, based on their sequence similarity and substrate specificity. The B1 and B3 MBLs contain 

two Zn2+ ions in the active site, while B2 MBLs are active in their mono-metallic form, and are even 

inhibited upon binding of a second Zn2+ ion.[217, 218] B3 MBLs show a low sequence similarity to the 

other two classes, but their substrate scope is similar to B1 MBLs.[219] A B4 class has also been suggested, 

in which a second Zn2+ ion binds when the substrate is already present.[220] This class can however also 

be classified as a B3 MBL with a different active site motif.[221] The traditional composition of the two 

Zn2+ sites (denoted as α- and β-sites) observed in B3 MBLs is namely: HHH/DHH, for the α- and β-site 

respectively. However, in a MBL from Elizabethkingia meningoseptica (GOB-1/18), Gln116 was observed 

in the α-site, leading to the sequence motif QHH/DHH (residue varying to common motif indicated in 

bold).[222] Moreover, Vella et al. found via a database search a MBL from Serratia proteamaculans 

(SPR-1), which shows even more variations in the active site composition leading to the sequence motif 

HRH/DQK. In this MBL, only one Zn2+ ion was observed in the resting state, but it operates in its di-Zn2+ 



1.6 Metalloenzymes | 33 

Okke Melse 

state.[223] These two enzymes can be named B3-Q and B3-RQK, respectively, based on their active site 

motif. 

 

Figure 4. Structural representation of the B3-RQK member CSR-1 MBL (PDB-ID: 6qd2), illustrated as (A) surface representation, 
and (B) cartoon representation with an inlet illustrating the active site, and (C) the reaction catalyzed by MBLs. The protein is 
shown as gray surface/cartoon, and the residues coordinating the Zn2+ ions in the α-site and β-site are shown as respective orange 
and green sticks. The Zn2+ ions are shown as gray spheres, and are manually modelled by superposition with CSR-1 triple mutant 
(R118H, Q121H, K263H; PDB-ID: 6dr8). The residues are indicated by their one-letter abbreviation, except KCX, which stands for 
carboxylated lysine. 

1.6.3 Carbonic Anhydrase 

Carbonic anhydrases (CAs; EC 4.2.1.1; Figure 5A) are enzymes catalyzing the conversion between carbon 

dioxide (CO2) and bicarbonate (HCO3
-), and is widespread in nature.[224, 225] CAs contain a Zn2+ ion in 

the active site, which is coordinated in a tetrahedral geometry by three histidine residues and a water 

molecule (or hydroxide ion), which is the most common coordination environment for Zn2+ in 

proteins.[226] CAs are popular model systems in numerous research fields, including biophysics and 

medicinal chemistry, especially for protein-ligand binding studies. This has several reasons, for example, 

(I) CAs are monomeric and of intermediate size (~30 kDa), (II) they are widely available and inexpensive, 

(III) a large number of inhibitors have been identified, and (IV) they are well studied. Thus, a lot of data 

about its structure, catalysis mechanism, internal interaction (e.g. hydrogen-bond) networks, and catalytic 

activity is available and well described.[225] Moreover, there are many experimental structures available: 

there are 1255 CA structures in the Protein Data Bank to date (checked at: Dec 21th, 2021). 

In this work, carbonic anhydrase II (CAII) was one of the model systems in the benchmarking study of 

Molecular Mechanics-based Zn2+ models.[227] CAII proved to be an ideal model system, because of the 
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common coordination geometry of the Zn2+ ion, and its small size, which allowed for long-range molecular 

dynamics simulations. Furthermore, multiple X-Ray structures were available of CAII in complex with 

multiple inhibitors, all with available affinity data, allowing for an in-depth analysis of the sampling ability 

of the evaluated models in metalloproteins.[200] Finally, the binding of sulfonamide inhibitors to CAII has 

been studied in detail, including experimental deduction of the inhibitor’s protonation states, together 

with important hydrogen-bond networks, which allowed for highly accurate quality assessment of the 

performed simulations.[224, 228] 

 

Figure 5. Structural representation of (A) CAII (PDB-ID: 5nxg) and (B) PurAH (PDB-ID: 6i5s). The protein structure is visualized in a 
surface representation (left) and cartoon representation (center). The inlet shows the active site with the Zn2+ ions and crystallized 
water molecules shown as respective gray and red spheres, and coordinating residues and the CAII inhibitor are shown as sticks. 
The residues are indicated by their one-letter abbreviation, except KCX, which stands for carboxylated lysine. 

1.6.4 Amidohydrolases 

The last metalloenzyme studied in this work is an amidohydrolase from Streptomyces purpureus 

(PurAH; Figure 5B).[229] This enzyme is involved in the biosynthesis of bottromycin, which is a natural 

product with antibiotic activity, discovered in 1957.[230] Bottromycins are especially worth studying 

because of their antibiotic activity against methicillin-resistant Staphylococcus aureus (MRSA) and 

vancomycin-resistant enterococci (VRE), which are multidrug resistant strains, and therefore play an 

important role in the antibacterial resistance problem. Bottromycins are macrocyclic peptides, belonging 
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to the ribosomally synthesized and post-translationally modified peptide (RiPP) family. They contain 

several non-natural amino acids, such as thiazolines (formed from a cysteine residue), as well as several 

amino acid analogues. The tetrapeptidic macrocycle and several amino acid substituents have shown to 

be essential for its antibacterial activity.[231] The biosynthesis of bottromycins, and other RiPPs, have 

gained increased attention in the last years.[229, 231, 232] 

PurAH, an enzyme studied and characterized in this work, is involved in the macroamidine formation. In 

fact, in this study we could elucidate PurAH as the “gatekeeper” of the macroamidine formation during 

bottromycin biosynthesis, since PurAH irreversibly cleaves the follower peptide after a thiazoline residue, 

resulting in a bottromycin precursor.[229] PurAH contains two divalent metal ions in the active site. While 

the X-Ray structure show two Zn2+ ions, enzyme activity could also be observed with Co2+ and Mn2+. Based 

on molecular docking (DynaDock), QM/MM calculations and molecular dynamics simulations, we 

suggested a possible binding mode of the peptide in the surface-exposed and highly flexible active site of 

PurAH. These results allowed us to suggest a reaction mechanism, in which an activated (by Zn2+) water 

molecule or hydroxide ion hydrolyses the peptide bond between the thiazoline and the follower peptide, 

while D348 acts as a base accepting the remaining proton. Further mutagenesis studies supported the 

proposed binding mode, as well as the proposed reaction mechanism. 

1.7 AIMS OF THIS WORK 

1.7.1 Development of an efficient screening algorithm identifying enzymes capable of catalyzing target 

reactions 

Biocatalysts show numerous advantages over traditional chemical catalysts, as extensively introduced 

above. Moreover, enzyme engineering studies have shown to be able to broaden the substrate scope of 

enzymes, improve enzyme activity, improve enzyme stability, and much more. However, one first needs 

to identify a suitable enzyme as starting point in order to develop a biocatalyst for a new target reaction, 

ideally with at least measurable activity for either the substrate of interest, or a structurally similar 

substrate. Because of the growing amount of structural data, the aim was to develop a bioinformatics 

algorithm to screen characterized enzymes on their ability of catalyzing a target reaction. The developed 

algorithm should fulfill several conditions: (I) the algorithm should be efficient in order to quickly evaluate 

a large number of potential enzymes, (II) the algorithm should be easy to install and use, also by non-

expert users, (III) the user should be able to modify and fine-tune the search algorithm without having to 

modify the code, and (IV) the output should be easy to understand, contain information relevant for 
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experimental scientists, and allow for further (either automatic or human) assessment of an enzyme’s 

ability to become a useful biocatalyst. 

1.7.2 Development of a binding site identification algorithm with explicit consideration of protein- and 

ligand flexibility 

In order to perform biomolecular simulations in proteins (enzymes in the case of biocatalyst development, 

or receptors, ion-channels, or other proteins for structure-based drug discovery), it is often essential to 

know the location of the binding site. However, this information is not necessarily known, and currently 

available computational tools to predict these binding sites often ignore protein flexibility. Accurate 

description of this flexibility is however especially important for binding sites for large and flexible ligands, 

such as peptides. Therefore, the second aim in this dissertation is to develop an algorithm which is able 

to predict binding sites for large and highly flexible ligands, with explicit consideration of protein- and 

ligand flexibility. The inspiration for the new binding site identification algorithm is retrieved from the 

principles of DynaDock[169], in which soft-core potentials are used to allow a certain amount of protein-

ligand overlap, which is subsequently resolved to simulate an induced fit effect. However, instead of 

OPMD, a more efficient algorithm is required because of the large number of potential binding sites that 

need to be studied. Therefore, an alternative sampling method needs to be selected to explore the 

potential binding pockets. The performance is compared to existing binding site identification algorithms, 

such as AutoSite, a blind docking algorithm with AutoDock, and PEP-SiteFinder. 

1.7.3 Benchmarking Biomolecular force field-based strategies to simulate Zn2+ containing metalloproteins 

Biomolecular simulations are being improved year by year, and are already able to accurate simulate the 

majority of biomolecules. However, interactions with metal ions are still challenging to simulate, 

especially in a protein environment. Accurate simulations of metalloproteins are however of particular 

interest because a large number of proteins, including enzymes, rely on a metal ion (often Zn2+) for their 

activity. These simulations can be accurately performed with QM or QM/MM simulations, but these type 

of simulations are still too computationally expensive for every-day use, and not suitable for long 

timescale (molecular dynamics) simulations. Therefore, the third aim of this work is to benchmark and 

assess available force field-based Zn2+ models on their performance in sampling Zn2+ ions in ligand binding 

sites. Besides the stability of the simulations, special focus should be given to the simulated coordination 

geometries of the Zn2+ ions, as well as the preferred type of interactions. 
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1.7.4 Application of multiscale modelling techniques to engineer [2Fe-2S]-dependent dehydratases 

The final aim of this dissertation is to apply a wide range of biomolecular simulations and other 

bioinformatics tools to guide a rational enzyme engineering project to derive sequence, structure, and 

activity relationships of DHADs. Because of the relevance of DHADs in the biosynthesis of biofuels, 

antibiotics and other fine chemicals, it is worth studying which factors determine the difference in 

substrate specificity of known DHADs. This information can be used to engineer DHADs to alter their 

substrate specificity, ideally toward D-glycerate, as no suitable DHAD has yet been identified showing high 

activity on this substrate. Since there are no X-Ray structures available for the target DHADs, homology 

models need to be generated for all target DHADs. Because of the low sequence-similarity with potential 

templates, the produced models should be carefully evaluated and refined, e.g. with molecular dynamics 

simulations and other refinement techniques. Furthermore, a DHAD-specific simulation procedure and 

parameter set should be designed to accurately simulate the iron-sulfur cluster, based on the results from 

the study described in Chapter 1.7.3. Traditional bonded models may namely fail because of the vacant 

coordination position for one of the irons, and the highly polarized binding site due to a Mg2+ ion nearby. 

Based on bioinformatics analysis, followed by molecular docking and molecular dynamics simulations, 

residue positions that are likely to play a role in substrate specificity (so-called engineering hotspots) 

should be identified. These positions can be further evaluated experimentally with site-directed and 

saturation mutagenesis, performed by experimental collaborators. Finally, the above-mentioned 

simulations can be used to further rationalize the experimental findings. 
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2 THEORY AND METHODS 

2.1 POTENTIAL ENERGY FUNCTIONS 

2.1.1 Molecular Mechanics 

In order to describe (bio)molecular structures, we need a model with which we can calculate physical 

properties of molecular systems at an atomic level. We could use Quantum Mechanics (QM), which relies 

on quantum theory to describe the electronic structure of molecular systems using the Schrödinger’s 

wave function. While QM simulations can be highly accurate, they are computationally expensive because 

of the high number of electrons that need to be considered, and the iterative guessing of the approximate 

Hamiltonian, to solve, or approximate, the Schrödinger equation.[233] An alternative are classical 

simulations relying on Molecular Mechanics (MM), in which the electronic motions are ignored, and thus 

calculate the energy of a system as a function of atom’s nuclear positions. These simulations can still be 

rather accurate thanks to the Born-Oppenheimer approximation, which describes that the electronic and 

nuclear motion can be decoupled because of their significant difference in mass, and thus 

momentum.[141, 233] Thus, MM allows for simulations consisting of much more particles (atoms), and is 

thus often the method of choice for simulations of large complexes, such as proteins. 

Force fields 

In order to calculate the potential energy of a system with MM, one needs a collection of functions and 

corresponding (empirically-derived) parameters, which are collected in a so called “force field”. A variety 

of force field flavors are available, including all-atom, united atom and coarse-grained force fields that 

differ in the proportion of simplification applied. Within these classes, numerous force fields have been 

developed, applying slightly different functional forms and parameters.[141, 233] Furthermore, 

polarizable force fields are (being) developed, which explicitly account for electronic polarization effects, 

and thus additionally contain polarizability parameters.[234] Examples of regularly applied protein force 

fields are the AMBER, CHARMM, GROMOS, and OPLS force fields.[235-238] Force fields contain both 

bonded and non-bonded potentials, which will be introduced briefly. 
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The first potential energy function describes bond stretching, and is generally defined as 

𝑉𝑏𝑜𝑛𝑑(𝑟𝑖𝑗) = ∑
1

2
𝑘𝑖𝑗(𝑟𝑖𝑗 − 𝑟𝑒𝑞)

2

𝑏𝑜𝑛𝑑𝑠

 
(2.1) 

where kij is the force constant, and rij and req are the bond length between atom i and j, and the 

equilibrium bond length, respectively. 

The potential energy function describing angle bending is defined as 

𝑉𝑎𝑛𝑔𝑙𝑒(𝛳𝑖𝑗𝑘) = ∑
1

2
𝑘𝑖𝑗𝑘(𝛳𝑖𝑗𝑘 − 𝛳𝑒𝑞)

2

𝑎𝑛𝑔𝑙𝑒𝑠

 
(2.2) 

where kijk, ϴijk and ϴeq are the force constant, the actual angle defined by atom i, j, and k, and the 

equilibrium bond angle, respectively. Thus, both bond stretching and bond angle is approximated via a 

harmonic potential, which can quite accurately describe these potentials for bond lengths and angles 

around the equilibrium values. 

The torsional potential energy is given by 

𝑉𝑡𝑜𝑟𝑠(𝜙) = ∑
1

2
𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠

𝑉𝑛[1 + cos(𝑛𝜙 − 𝛾)] 
(2.3) 

where Vn is the potential height, n is the periodicity, ϕ is the dihedral angle and γ is the phase shift. 

The non-bonded potentials describe the Van der Waals and electrostatic interaction. The Van der Waals 

interaction is described by the Lennard-Jones (LJ) potential between atom i and j: 

𝑉𝐿𝐽(𝑟𝑖𝑗) = 𝜀𝑖𝑗 [(
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

12

− 2 (
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

6

] (2.4) 

where rij is the distance between atom i and j, Rmin,ij is the distance where the LJ-potential reaches its 

minimum, and εij is the LJ-well depth. 
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The electrostatic potential is described by the Coulomb term: 

𝑉𝐶𝑜𝑢𝑙(𝑟𝑖𝑗) =
1

4𝜋𝜀0

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
 (2.5) 

where rij is the distance between atom i and j, ε0 is the relative permittivity, and qi and qj are the partial 

charges of atom i and j, respectively. 

Interactions with metal ions 

A classical description applying the coulomb and LJ 12-6 potential for non-bonded interactions is often 

sufficient. However, limitations of this model, especially the LJ 12-6 term, becomes evident in simulations 

with (multivalent) metal ions.[239] This is mainly due to the complex nature of these metal ions: the high 

charge induces strong polarization and charge-transfer effects, and its electron configuration causes the 

metal-coordinating atoms to orient themselves in certain coordination geometries. Since a metal ion only 

consists of a single atom, all these properties need to be described by the limited non-bonded parameters 

of this ion. As the charge of the ion is fixed, the only remaining adjustable parameters are the Rmin and the 

well-depth (ε) of the Lennard-Jones potential. There are numerous parameter sets available for these 

metal ions, as well as alternative (mathematical) constructs to improve the description with metal ions in 

a biomolecular force field, which were benchmarked in this dissertation (Chapter 3.3).  

Li et al.[240] realized the relevance of charge-induced dipole interactions in non-bonded interactions with 

metal ions. This effect is however not described by the classical LJ 12-6 potential, thus including this 

interaction could improve the description of non-bonded interactions with metal ions (Figure 6A). 

Therefore, Li et al. introduced a 1/r4 term into the classical LJ 12-6 potential, leading to the so-called 12-6-4 

LJ-type model: 

𝑉𝐿𝐽(𝑟𝑖𝑗) = 𝜀𝑖𝑗 [(
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

12

− 2 (
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

6

− 2𝜅𝑅𝑚𝑖𝑛,𝑖𝑗
2 (

𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

4

] (2.6) 

introducing κ as a scaling factor with unit Å-2, which was parameterized for a large range of multivalent 

metal ions.[240, 241] 

An alternative strategy to improve the description with metal ions in a biomolecular force field is via the 

use of cationic dummy-atom models (Figure 6B), also called multiscale models. The first dummy-atom 

model was developed for the Mn2+ ion in 1990 by Åqvist and Warshel.[242] Nowadays, this model has 

been parameterized for a large range of multivalent ions, including Mg2+, Fe2+, Cu2+, Ni2+ and Zn2+.[243-
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246] In the dummy-atom model, non-interaction atoms (i.e. dummy-atoms) are placed around the metal 

ion in a certain geometry matching the coordination geometry which should be sampled, typically 

tetrahedral or octahedral. The dummy-atoms are kept in place by covalent bonds (see eq. (2.1)), but can 

still rotate freely. The charge of the ion is then distributed among the metal ion and the dummy atoms, 

thereby introducing a charge delocalization. This charge-delocalization supports the ligating atoms to 

coordinate the metal ion in a certain coordination geometry, but still allows exchange of metal-ligating 

atoms.[239, 247, 248] 

 

Figure 6. Illustrations of metal ion models. Intermolecular interactions described by (A) the LJ 12-6 and 12-6-4 LJ-type potential, 
spheres with a “+” represent a charge, the ellipse with a gradient represents a permanent dipole, and an ellipse with dotted 
border represents an induced dipole. A representation of an (B) octahedral dummy-atom model is shown, with the metal ion in 
gray, and the dummy-atoms in orange. The δ represents a partial charge, and n the charge of the ion. 

Another alternative to simulate metal ions in biomolecular simulations is via a ‘bonded model’. Here, 

explicit bonds are placed between the metal ion and its ligating atoms, to enforce a certain coordination 

geometry.[239, 249, 250] The bonded model however requires a system-specific parameterization for the 

newly introduced bonded potentials. Multiple strategies to parameterize the bonded parameters have 

been proposed, with the Seminario method being the most commonly applied method, in which the 

bonded parameters are derived via the Cartesian Hessian matrix.[251] For metal centers including a Zn2+ 

ion, the parameterization can also be performed empirically applying the Extended Zinc AMBER Force 

Field (EZAFF).[250] During the design of this force field, several typical zinc coordination models were 

parameterized, and the resulting parameters are listed in the force field. If the Zn2+ center for a certain 

application is similar to one of the parameterized coordination models, these pre-parameterized 

parameters can be applied. 
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Soft-core potentials 

In contrast to experiments, molecular simulations can also be applied to study biomolecules in unphysical 

states. For example, these unphysical simulations can be applied to study the behavior of atoms or 

molecules in extreme conditions (e.g. concentrations above solubility limit), or at very close 

interatomic/intermolecular distance. These unphysical simulations can also be applied to calculate the 

free energy of binding (e.g. Thermodynamic Integration or Free Energy Perturbation), improve sampling 

around transition states or other barrier regions (e.g. umbrella sampling), or to accelerate ligand-induced 

conformational changes (e.g. application of soft-core potentials).[141] The latter is performed in 

DynaDock and DynaBiS, where the Lennard Jones and Coulomb potentials (eq. (2.4) and (2.5)) are 

modified to allow atoms at unphysical interatomic distances. By placing a ligand in the binding site 

allowing certain protein-ligand overlap, followed by gradually re-introducing the normal (i.e. non-

softened) potentials during a molecular dynamics simulation, an induced fit effect can be simulated which 

would normally require much longer sampling.[169, 252] 

There are several functional forms of soft-core potentials, where the following functional form initially 

proposed by Taylor et al.[253] is used in this study: 

𝑉𝑛𝑏(𝑟𝑖𝑗) =  𝑉𝐿𝐽(𝑟𝑖𝑗) + 𝑉𝐶𝑜𝑢𝑙(𝑟𝑖𝑗) 

= 4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

12

(𝛼𝑚𝜎𝑖𝑗
6 +𝑟𝑖𝑗

6)
2) − (

𝜎𝑖𝑗
6

(𝛼𝑚𝜎𝑖𝑗
6 +𝑟𝑖𝑗

6)
)]  +  

(1−∝)𝑛𝑞𝑖𝑞𝑗

4𝜋𝜀0√𝛼 + 𝑟𝑖𝑗
2

 
(2.7) 

where σij is the distance at which the potential reaches zero, εij is the well depth, and α is the soft-core 

scaling factor, which takes values ranging from 0 to 1. If α is 0, the normal potentials are returned, while 

the potentials reach (almost) zero if α is 1. Any α value in between 0 and 1 thus returns a “softened” 

potential, which allows for very small interatomic distances during biomolecular simulations (Figure 7). 

Furthermore, the behavior of the soft-core potential can be further modified via the exponents m and n, 

which were set in this study to 3 and 6, respectively, as this showed best results in original study from 

Taylor et al. 
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Figure 7. Combined LJ and Coulomb soft-core potential for different values of the soft-core scaling parameter α. The potential is 
calculated for a C-H pair. 

2.1.2 Hybrid Quantum Mechanics/Molecular Mechanics simulations 

Classical simulations applying Molecular Mechanics can be combined with Quantum Mechanics to 

explicitly account for electronic effects, leading to a more accurate description of (a part of) the system. 

In these “hybrid” simulations, a small part of the system (e.g. the active/binding site, or entire solute) is 

described by a QM potential, while the remainder of the system is described by a classical MM force field. 

Alternatively, the system can be truncated to a small QM-only system (i.e. QM-cluster method), containing 

solely relevant atoms, for example active site atoms which play a role in the catalyzed chemical reaction. 

The removed part of the system is either completely ignored (i.e. vacuum) or the electrostatic effects is 

modelled assuming a homogeneous polarizable continuum model (i.e. PCM). Depending on the 

application, the QM-region can be described with the Hartree-Fock method (HF), post-HF methods, 

Density Functional Theory (DFT), or Semi-Empirical (SE) methods, among others. In the first, the many-

electron wave function is described with a Slater determinant, i.e. a determinant of single-electron wave 

functions. However, the Hartree-Fock method does not accurately describe electron correlation, 

therefore several post Hartree-Fock methods have been developed aiming to tackle this problem. Known 

post Hartree-Fock methods are the Configuration Interaction and Møller-Plesset method. The Density 

Functional Theory applies a different approach, as the energy is calculated as a function of electron density 

instead. While an energy function correlating electron density to the system’s energy must exist according 

to the Hohenberg-Kohn theorems, this function is not known. Therefore, numerous approximate 

functionals are proposed, which have shown to be able to lead to very accurate results, making this a 
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popular QM method at the moment. Semi-Emprical methods are typically Hartree-Fock based methods, 

in which numerous approximations were made based on empirically-derived information, making the 

calculations much less computationally demanding.[141, 233] A further detailed description of these 

“pure” QM methods, derivations, postulates and theorems is out of scope for this Chapter, but extensively 

described in excellent books, reviews, and further literature.[141, 189, 233] In the remainder of this 

Chapter, the focus lies on combining QM and MM methods in a single simulation. 

QM/MM interface 

One of the main challenges in QM/MM simulations is a proper description of the electrostatic coupling 

(polarization) between the QM- and MM-region. This is handled by the so-called “embedding scheme”. 

Three embedding schemes are commonly used: mechanical embedding, electrostatic embedding and 

polarized embedding.[141, 188, 189, 233] In the first, the electrostatic coupling is handled at the MM-

level, by adding point charges (or higher order multipoles) of the QM-atoms in the MM-system. In this 

way, the MM-atoms are polarized by the QM-region, but not vice-versa. Therefore, in the electrostatic 

embedding scheme, the MM point charges are included in the QM calculations, such that the QM-region 

is polarized by the MM-region, and thus can adapt to changes in the electronic structure of the entire 

system. This embedding scheme is most often applied in biomolecular simulations, also in the calculations 

performed in this dissertation. Finally, a polarized embedding scheme has been suggested, in which a 

polarizable force field is applied for the MM-region, such that both the QM- and MM-region polarize each-

other. 

The second consideration is how to treat bonds crossing the QM/MM interface. The easiest would be to 

avoid these bonds crossing the interface, but this is not often practically possible, for example in 

simulations of proteins, with the active site in the QM-region. The most common treatment (i.e. boundary 

scheme) of these interface-crossing bonds is via the use of link atoms. Link atoms are usually hydrogen 

atoms, present in the QM-region at the end of the interface-crossing bond to saturate the free valence 

atoms, and thus caps the dangling bond. The link atom can be constrained to avoid addition of degrees of 

freedom. Furthermore, the MM-atoms close to the boundary may over-polarize the QM-system due to 

the close link atom in an electrostatic or polarized embedding scheme. This over-polarization can be 

reduced in multiple ways, while the most common way is to shift charges to neighboring MM-atoms. An 

alternative to the link atom scheme is the localized-orbital scheme, in which frozen hybrid orbitals replace 

the interface-crossing bond, capping the QM-region.[188, 189] Finally, besides the choice of the 

embedding and boundary scheme, the location of the QM/MM boundary is highly important. To avoid 
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artefacts, the interface should ideally not cut highly polarized bonds (e.g. peptide bonds) and be located 

as far as possible from where the studied event takes place. 

Additive and subtractive schemes 

 

Figure 8. Illustration of the additive and subtractive scheme applied in QM/MM and ONIOM calculations. 

In a hybrid QM/MM simulation, the energy of the QM and MM regions are calculated separately, often 

by two different programs. The question remains how to use these simulations to calculate the total 

energy of the entire system. Two schemes are available: the additive and subtractive scheme. In the 

additive scheme, often also named “QM/MM scheme”, the total energy is calculated as follows: 

𝐸𝑄𝑀/𝑀𝑀 = 𝐸𝑀𝑀
𝑜𝑢𝑡𝑒𝑟 + 𝐸𝑄𝑀

𝑖𝑛𝑛𝑒𝑟 + 𝐸𝑄𝑀/𝑀𝑀
𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

 (2.8) 

Thus, the MM calculation is performed on the outer region only, the QM calculation on the inner region 

only, and the boundary effects are included via an additional QM/MM coupling term (Figure 8). The 

coupling term contains the bonded and non-bonded interactions between both subsystems. This additive 

scheme has the advantage that no MM-parameters are required for the inner region, and that no region 

is simulated twice (by both the QM and MM code). 

The subtractive scheme is defined as follows: 

 𝐸𝑄𝑀/𝑀𝑀 = 𝐸𝑀𝑀
𝑎𝑙𝑙 + 𝐸𝑄𝑀

𝑖𝑛𝑛𝑒𝑟 − 𝐸𝑀𝑀
𝑖𝑛𝑛𝑒𝑟 (2.9) 

Thus, three simulations are required: one MM calculation of the entire system, one QM calculation of the 

inner system, as well as a MM calculation of the inner system to avoid double counting (Figure 8). This 

also adds the drawback that MM-parameters need to be available for the inner region, in contrast to the 

additive scheme. However, no special boundary term is required anymore, and the MM-system does not 

need to be truncated, such that these calculations can be performed by any MM-code.[188, 189] One of 

the most widely used subtractive scheme is ONIOM: Our own N-layered Integrated Molecular Orbital + 
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Molecular Mechanics. ONIOM also allows for hybrid simulations with more than two layers, as in 

ONIOM3(MO:MO:MO) or ONIOM3(MO:MO:MM), where the first contains three QM layers (often with 

different functionals, e.g. DFT and SE), and the latter contains two QM layers, and one MM layer.[254]  

2.2 APPLIED METHODOLOGY 

This section briefly describes the most relevant simulation procedures applied in this this work. Details in 

simulation procedure may differ between the different studies described in this dissertation, thus please 

refer to the respective publication for full details. Table 1 lists the most relevant software applied in this 

work. 

Table 1. Overview of regularly applied scientific software and algorithms in this work. 

Software/Algorithm Version/release  Purpose 

Amber and AmberTools Amber14/AmberTools14, 
Amber16/AmberTools16 and 
Amber18/AmberTools18 

Molecular Dynamics, Geometry 
Optimization, SQM 

Gromacs Version 4.5.6 Molecular Dynamics (system preparation 
for DynaBiS) 

Gaussian Gaussian09 QM calculations: geometry optimization, 
single point calculations, RESP fitting, 
interaction energy scanning 

TURBOMOLE Version 7.1 QM calculations: geometry optimization 
and single point calculations 

Chemshell Version 3.4 (Tcl-version) Hybrid QM/MM calculations 

AutoDock & AutoGrid Version 4.2.6 Molecular docking 

FlexX (LeadIT) Version 2.3.2 Molecular docking 

DynaDock Release 604 and older Molecular docking 

AutoSite Version 2.0.3 Binding site identification 

DynaBiS Original release Binding site identification 

EnzymeMatch Original release Prediction of enzymes catalyzing target 
reaction 

FitFF Original release Derivation of Amber-compatible force 
field parameters from QM interaction 
energy scans 

VMD Version 1.9.3 Visualization 

PyMol Version 1.4 Molecular visualization and in silico 
mutations (using Dunbrack’s rotamer 
library) 

Chemdraw Version 20.0 Molecular editing 

Matplotlib Version 3.3.1 Plotting 

PyCharm Multiple versions Programming IDE 

Vim 7.4 Text editing and programming IDE 

PEP-SiteFinder 1.0 (after March 2014 update) Identify peptide binding sites 
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2.2.1 Homology modelling 

Potential templates were identified based on a BLAST[255] search, and further manually filtered based on 

their characterized substrate scope. Pairwise and multiple sequence alignments were performed with 

Clustal Omega[256], except stated otherwise, applying the default parameters. Homology models were 

generated with Modeller[62] applying the salign module, either on single- or multiple (structurally pre-

aligned) templates. Homology models of the homo-dimers were generated, and potentially missing ions 

and cofactors were placed using structural information from homologues with resolved experimental 

structures, or docked using a molecular docking algorithm (see Chapter 1.5). The DOPE[88] and 

QMEAN[87, 89] scores were calculated, and Ramachandran plots were generated. All this information 

was combined to identify the model with the highest quality. 

2.2.2 Molecular docking simulations 

AutoDock 

Molecular docking simulations with AutoDock4.2 were generally performed with a 60x60x60 points grid 

(size may differ between applications), with 0.375 Å spacing generated with AutoGrid. ≥150 poses (GA 

runs) were generated, with a population size of 150, allowing a maximum of 2.5·106 energy evaluations 

with AutoDock. The poses were ranked with the AutoDock scoring function, and clustered with a RMSD 

tolerance of 1.0 Å. 

FlexX 

Docking with FlexX was performed within the LeadIT platform (https://www.biosolveit.de/LeadIT/). The 

binding site was defined as all residues within 10 Å of the binding site center (size may differ between 

applications). The ‘Enthalpy and Entropy’ (i.e. Hybrid) approach was applied for initial base placement, a 

clash factor of 0.6 was applied, and the maximum allowed overlap volume was set to 3.5 Å3. 

DynaDock 

Prior to application of DynaDock, the ligands were parameterized, and the system was prepared, heated 

and equilibrated as described in Chapter 2.2.3. ≥200 random ligand conformations were generated 

during the broadsampling step in the equilibrated protein structure, allowing 60-80% protein-ligand 

overlap, and 40-75% intra-ligand overlap. The broad sampling was restricted to a sphere of 8 Å around 

the center of the binding site (see individual studies for exact sphere size and definition of binding site). 

The generated poses were clustered with cpptraj from AmberTools, applying the hieragglo clustering 

algorithm. The centroids of each cluster continued to the next step, i.e. the OPMD simulations. In this 
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step, the soft-core parameter α is optimized using a steepest descent energy minimization. The OPMD 

simulation was performed at 300 K with an integration step of 1 fs, and the langevin thermostat[257] was 

used with a collision frequency of 1 ps-1. As the simulation was performed in vacuum, all backbone atoms 

which were not within a sphere of 1.5 nm from any ligand atom were restrained with a force constant of 

1000 kJ·mol-1·nm-2 (identical to the default restraint force constant in Gromacs). To avoid too fast decrease 

of the soft-core parameter α, the soft-core parameter was kept fixed for at least 600 steps after α was 

optimized. Moreover, all soft-core parameters (i.e. for Lennard-Jones, Coulomb, and dihedral terms, if 

applied) were enforced to be equal. Finally, the simulation continued for 500 ps with standard force field 

potentials (i.e. non-softened potentials) after α reached zero. 

2.2.3 Molecular dynamics simulations 

System and ligand preparation, parameterization, definition of protonation states 

For each biomolecular system, the first occurrence of any multi-resolved residue was selected, and the 

protonation state of all ionizable protein residues was determined at pH 7.0, except stated otherwise, 

with the PROPKA3.0 software package[258, 259]. The protonation state was checked visually, especially 

for the metal centers. The AMBER ff14SB[238] force field was applied for all standard protein residues. 

The system was solvated in a rectangular box or a truncated octahedron filled with TIP3P[260] water, 

applying a 12 Å buffer region, and counterions (Na+ or Cl-) were added to neutralize the system. This was 

performed using the tleap module of the AmberTools software package. The metal ion parameters 

applied differs for the individual studies, and is described in the Methods sections of the respective 

publications.  

Bonded and Van der Waals force field parameters for all ligands were retrieved from the General Amber 

Force Field (GAFF)[261], and charges were derived applying the RESP procedure based on a QM-geometry 

optimized structure performed at the HF/6-31G(d) level of theory. The QM calculations were performed 

with Gaussian09 (revision E.01)[262]. In this dissertation, new force field parameters were also derived 

for a carboxylated lysine, as well as a thiazoline residue, as there exist no parameters for these residues 

in the ff14SB force field. For the thiazoline residue parameterization, an aspartate and thiazoline residue 

were treated as one residue, as there is no peptide bond between them. For all atoms within the aspartate 

residue not directly bound to the thiazoline residue, the standard ff14SB force field bonded parameters 

were used. GAFF parameters were selected for the bonded and Van der Waals parameters for the 

thiazoline residue, the remaining aspartate residue, and the carboxylated lysine. For the charge 

derivation, the residues were capped with an N-terminal methyl group and a C-terminal acetyl group to 
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avoid terminal charges during the geometry optimization. A QM-geometry optimization at the 

HF/6-31G(d) level of theory was performed, which served as basis for the RESP fitting, using an in-house 

script to keep the charges of the capping groups fixed to the values from the ff14SB force field.  

Simulation protocol 

The procedure for minimization and heat up was derived from the method described in Duell et al.[263] 

During the minimization (XMIN method; ntmin=3), the box size was adjusted sequentially in steps of 

0.02 g/cm3 to bring the density from 0.8 g/cm3 to 1.0 g/cm3, using sander from the Amber/AmberTools 

software package. In each sequential minimization step, 3.0 kcal·mol-1·Å-2 restraints were applied to all 

protein atoms. Once the target density was reached, one additional minimization step was performed 

without application of any restraints. In the heat up procedure, the system was equilibrated for 10 ps at 

0 K and afterwards heated to 20 K following a NVT ensemble, applying the Langevin thermostat[257] with 

a collision frequency of 4.0 ps-1. 3.0 kcal mol-1·Å-2 restraints were applied to the position of all atoms in 

the following sequence: 0-5 K, 5-10 K, and 10-20 K, each for 50 ps. For the heat up to 200 K, the restraint 

was only applied to the backbone atoms, as well as potential metal ions and hydroxide ions. This heat up 

was performed in the following sequence: 20-50 K, 50-100 K, and 100-200 K in 50 ps, 100 ps and 100 ps, 

respectively. Afterwards, the system was equilibrated at 200 K for 200 ps without any positional 

restraints. Finally, the system was heated to 300 K in 400 ps and equilibrated for another 500 ps at the 

target temperature in a NPT ensemble, applying the Berendsen barostat[247] with a relaxation time of 

1 ps and compressibility of 44.6 x 10-6 bar-1 to keep the pressure constant at 1 bar. During the heat up 

simulations, periodic boundary conditions were applied and the SHAKE algorithm[248] was used on all 

bonds involving hydrogen atoms. A nonbonded cut-off of 12 Å was used, the particle mesh Ewald 

method[264] was applied for the long-range electrostatics and an integration step of 1 fs was used. The 

heat-up and production simulations were conducted in three replicas with the pmemd.cuda MD engine 

from the Amber/AmberTools software package. The post-processing of the simulations strongly differs 

between all studies, and is accurately described in the respective publications. 

2.2.4 Hybrid QM/MM simulations 

For the QM/MM calculations described in this dissertation, the systems were prepared as follows. The 

proteins were protonated with the tleap module from the Amber/AmberTools software package. The 

protonation state of all QM-residues was visually inspected, especially for residues coordinating metal 

ions. Force field parameters were assigned as described in Chapter 2.2.3, and Amber topologies and input 

coordinate files were prepared. The definition of the QM-region is system-specific, and described in detail 
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in the respective publications. QM/MM-boundaries were only placed on non-polar bonds, mostly on the 

Cα-Cβ bond. If multiple consecutive residues were included in the QM-region, the atoms of these residues 

were also included, and the QM/MM-boundary was placed at the N-Cα and Cα-C’ bonds instead. The 

QM/MM-boundary was described with an electrostatic embedding scheme, with link atoms placed at the 

boundary (hydrogen atoms), and the charges at the QM/MM-boundary were shifted away by a dipole on 

the recipient atom, as implemented in the shift scheme in ChemShell. 

The QM-atoms were described with the TPSS meta-GGA functional[265], applying RI-J 

approximation[266] on a m4 multigrid[267], and Grimme’s D3 dispersion correction[268]. The def2-

SVP[267, 269] basis set was applied for all atoms except the metal ions, which were described with the 

def2-TZVP basis set[267, 270]. The SCF convergence criteria was set to 10-7 au.  

QM/MM calculations were performed using the ChemShell suite.[271] The DL_POLY module 

implemented in ChemShell was used for the MM-calculations, and an interface with Turbomole[272] was 

applied for the QM-calculations. The geometry optimizations of all QM-atoms and the neighboring MM-

atoms were performed using the DL-Find[273] optimizer.   
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3 RESULTS 

3.1 ENZYMEMATCH: IDENTIFICATION OF ENZYMES CAPABLE OF CATALYZING TARGET REACTIONS 

USING INTERACTION PATTERN MATCHING 

 

Enzymes gain increasing attention for their role as biocatalyst because they deliver tools for green 

chemistry, addressing global challenges toward the Bioeconomy. Enzymes can work at mild conditions 

and low temperatures, and form products with high chemo-, regio-, and stereoselectivity, making them 

valuable tools for the food and pharma industry.[11] Moreover, enzyme engineering has shown to be a 

valuable tool to modify certain properties of enzymes, including enzyme activity, selectivity and 

stability.[16, 274] However, in order to optimize an enzyme towards an industrially applicable biocatalyst, 

an enzyme with measurable desired activity needs to be available to function as starting point for 

engineering studies. Therefore, EnzymeMatch was developed in this dissertation: a bioinformatics 

algorithm to identify enzymes capable of catalyzing a target reaction using interaction pattern matching. 

First, an interaction pattern is automatically generated based on the structure of the target substrate in 

the “Automatic Query Design” (AQD) module, in which substrate flexibility is explicitly considered. 

Subsequently, the “ResidueMatch” module compares the available physico-chemical properties required 

to bind the target substrate to those found in characterized enzymes. This mode can further filter for a 

certain required chemical reaction that needs to be catalyzed. Finally, the “TriangleMatch” module 

structurally matches the interaction patterns found in the enzymes identified by ResidueMatch to the 

optimal interaction pattern of the substrate, applying a newly designed graph-theoretical interaction 

pattern matching approach. The required structures from potential enzymes are automatically retrieved 

from the Protein Data Bank, and annotation about the binding site is retrieved from the BioLiP 

database.[131] EnzymeMatch was extensively evaluated in both UNIX-based and Windows operating 

systems, and significant effort was spent on a user-friendly user interface. An extensive manual including 

several tutorials was written as well, describing all functionalities of this algorithm. 

Okke Melse, Iris Antes and Volker Sieber devised the study, and Okke Melse with support from Iris Antes 

translated these ideas to an actual programmable algorithm. Woo Young Cho and Tongyan Wu supported 

in the programming and evaluation of EnzymeMatch. Okke Melse wrote the Applications Note with 

support from Ville R. I. Kaila and Volker Sieber.  
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Source code freely available from GitHub: 

https://github.com/MelseO24/EnzymeMatch 

distributed under the terms of the GNU General Public License. 
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3.2 DYNABIS: A HIERARCHICAL SAMPLING ALGORITHM TO IDENTIFY FLEXIBLE BINDING SITES FOR 

LARGE LIGANDS AND PEPTIDES 

 

Knowledge about the location of a ligand binding site is highly important in both drug discovery and 

protein engineering, and numerous computational algorithms rely on this information. Experimental 

elucidation of the binding site location is however still difficult. A large variety of binding site identification 

algorithms have been presented, but the majority relies on the rigid protein approximation. However, 

typically only an apo structure is available when a binding site needs to be predicted, in which the binding 

site is not adopted yet to the presence of a ligand. Therefore, this publication describes the development 

of DynaBiS: a binding site identification algorithm that explicitly accounts for both protein- and ligand 

flexibility, in order to find flexible binding sites for large ligands, such as peptides. 

The DynaBiS algorithm consists of two steps: “surface screening” and “pocket sampling”. In the first, 

random ligand conformations are sampled around the protein surface, allowing a certain amount of 

protein-ligand overlap. After clustering and selection of the most promising binding sites, the pockets are 

further screened during the pocket sampling step. Here, Monte Carlo/Simulated Annealing (MC/SA) 

simulations are performed applying a soft-core potential, as inspired by the flexible docking algorithm 

DynaDock. During this step, the binding pocket is analyzed in more detail to investigate if the target ligand 

could bind in this respective pocket. At the end of the MC/SA simulations, the overlap is resolved to 

simulate the induced fit/conformational selection effect. The performance of DynaBiS was evaluated 

against a diverse evaluation set, consisting of both peptide- and small-ligand binding sites. Additionally, 

the apo structure was included for the majority of the evaluation systems as well to analyze how well 

protein flexibility is simulated. This evaluation showed that DynaBiS was able to identify all binding sites 

from the evaluation set as potential binding sites. Furthermore, DynaBiS predicted the correct binding site 

in the top-5 ranked binding site predictions for all but one system, and 19 out of 26 binding sites were 

predicted as the top-ranked binding site. With this outstanding performance, DynaBiS outperformed 

other commonly used binding site identification algorithms. The major improvement was observed in the 

identification of peptide binding sites using an apo structure as input, but still performing well with rigid 

small-ligand binding sites. 

Iris Antes initially designed the project, and the initial coding was performed by Sabrina Hecht, and revised 

by Okke Melse, who also designed the evaluation, and performed all calculations with DynaBiS and the 

other binding site algorithms. The manuscript was written by Okke Melse and Iris Antes.  
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3.3 BENCHMARKING BIOMOLECULAR FORCE FIELD-BASED ZN2+ FOR MONO- AND BIMETALLIC LIGAND 

BINDING SITES 

 

In this study, a large number of commonly-used biomolecular force field-based Zn2+ models were 

benchmarked. An accurate description of Zn2+ in biomolecular systems is highly important because Zn2+ 

can play an important role in biocatalysis or support protein folding and -activation.[239] However, 

modelling of a Zn2+ ion applying classical force fields remains challenging, as advanced structural 

properties of the ion, including strong polarization effects and adaptation of multiple coordination 

geometries needs to be described solely by the non-bonded interaction terms with a single atom. Various 

Zn2+ models have been proposed, either applying the traditional 12-6 Lennard-Jones (LJ) potential, or a 

12-6-4 LJ-type potential to include charge-induced dipole effects.[239, 240, 275, 276] Moreover, several 

dummy-atom models were included in the benchmarking set, as well as bonded models with various 

bonded parameters.[245, 246, 249, 250] The performance of these Zn2+ models was assessed in 

challenging environments: in the mono-metallic Carbonic Anhydrase II (CAII) and the bimetallic metallo-

β-lactamase VIM-2. These ligand binding sites of both systems represent highly challenging benchmarking 

environments for the Zn2+ models because of the large number of possible Zn2+-ligating atoms and the 

relatively large flexibility allowed in the pocket. Furthermore, these benchmarking environments also 

represent actual application-cases for drug design or biocatalyst development. The benchmarking study 

focused on properties that are important for molecular dynamics simulations, such as a correct and stable 

description of the coordination geometry and type of ligation. Based on these results, suitable simulation 

conditions for a variety of modelling approaches were suggested. Additional attempts to develop a new 

tetrahedral dummy-atom model, as well as a combination of parameters from different Zn2+ models 

provided further insights in promising parameterization strategies to further improve existing Zn2+ 

models. 

Okke Melse and Iris Antes initially designed the project, and Ville R. I. Kaila gave useful suggestions for the 

development attempts of a tetrahedral Zn2+ model. Okke Melse designed the benchmarking study, 

performed all simulations, analyzed the data, and wrote the initial draft of the manuscript. Finally, all 

authors were involved in writing the final version of the manuscript. 
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3.4 STRUCTURE-GUIDED MODULATION OF THE CATALYTIC PROPERTIES OF [2FE-2S]-DEPENDENT 

DEHYDRATASES 

 

In this publication, sequence, structure and activity relationships within the [2Fe-2S]-dependent ilvD/EDD 

superfamily were deduced to understand, and rationally modify the substrate preferences of these 

different dehydratases. Based on this analysis, a new classification of these enzymes was proposed based 

on their evolutionary relationships and substrate preference into: sugar acid dehydratase (SADHT), 

branched-chain acid dehydratase (BCADHT) and promiscuous acid dehydratase (PADHT). Enzymes 

belonging to the first group, such as the DHT from Paralcaligenes ureilyticus (PuDHT), are most active to 

substrates with longer chain length, such as D-gluconate. BCADHTs are predominantly active toward DHIV, 

such as the DHAD from Fontimonas thermophilia (FtDHAD). The last category, PADHT, show a substrate 

profile which lies in between of the two other categories, with the DHAD from Saccharolobus solfataricus 

(SsDHAD) as its currently only characterized member. For the rational design, homology models of PuDHT, 

FtDHAD and SsDHAD were produced. Subsequently, several mutation hotspots were identified via 

molecular modelling which are likely to play a role in substrate specificity, and/or enzyme activity. These 

positions were confirmed to be catalytically relevant by in vitro site-directed mutagenesis. Further 

investigations led to several interesting enzyme variants, including a variant (P73G) of FtDHAD with 

improved substrate promiscuity toward D-gluconate by >10-fold, while retaining a high activity toward 

DHIV, i.e. the biological substrate of the wild-type enzyme. The hypothesis is raised that this effect is due 

to a slight increase of binding site volume. Moreover, molecular docking and molecular dynamics 

simulations suggested that the C-terminal histidine in PuDHT plays a role in substrate stabilization. Thus, 

saturation mutagenesis was performed on this position, which showed that a mutation toward a 

phenylalanine indeed shifts the substrate preference toward shorter sugar acids, showing around six-fold 

improved activity toward D-glycerate. In summary, the sequence, structure and activity relationships 

identified in this work may guide further engineering of DHADs to further improve biocatalysis cascades, 

leading to more efficient production of fine chemicals. 

Okke Melse designed and performed the structural modelling including parameterization of the [2Fe-2S]-

containing binding site, molecular docking and molecular dynamics simulations, prediction of mutation 

hotspots, and suggestion of in vitro mutagenesis strategies. Samuel Sutiono designed the in vitro 

experiments, which were conducted together with Magdelena Haslbeck. Okke Melse and Samuel Sutiono 

wrote the manuscript, with support by Gerhard Schenk and Volker Sieber.  
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3.5 THIAZOLINE-SPECIFIC AMIDOHYDROLASE PURAH IS THE GATEKEEPER OF BOTTROMYCIN 

BIOSYNTHESIS 

 

In this study, the metallo-dependent amidohydrolase from Streptomyces purpureus (PurAH) was 

characterized, and its role in the biosynthesis of bottromycin A2, a ribosomally synthesized and post-

translationally modified peptide (RiPP), was elucidated. Bottromycins are natural products with 

antimicrobial activity, especially against Methicillin-resistant Staphylococcus aureus (MRSA), and other 

dangerous human pathogens, and its biosynthesis is getting increasing attention.[277-279] The 

biosynthesis starts with BotA, a precursor peptide which is tailored by numerous enzymes, including 

several YcaO enzymes (i.e. bacterial enzymes involved in thiazole-containing antibiotics).[280] The 

reaction of interest in this study is the macroamidine formation by the YcaO enzyme BotCD together with 

BotAH. Since recombinant expression of BotAH led to insoluble protein, a homologous enzyme PurAH 

(72% sequence identity) was expressed and studied instead. In a previous publication, co-authors Laura 

Franz and Jesko Koehnke already showed that PurCD (a homologue of BotCD) can catalyze both 

macroamidine formation and its reopening, thus PurCD catalyzes the reaction in both directions.[278] In 

this study, PurAH was shown to be highly selective to the macroamidine-containing bottromycin 

precursor, and cleaves the peptide C-terminal of the thaizoline. Moreover, the results showed that BotCD 

cannot reopen the macroamidine ring of the cleaved peptide. Thus, the concerted efforts of 

macroamidine formation by PurCD, followed by peptide cleavage by PurAH, lead to the irreversible 

formation of the macroamidine-containing bottromycin precursor in vitro. In other words, PurAH acts as 

the ‘gatekeeper’ during the in vitro biosynthesis of bottromycin, by preventing reopening of the 

macroamidine ring. Furthermore, an X-Ray structure of PurAH in the apo-form was determined at 1.73 Å 

resolution. The activity of PurAH on some mutated peptides was measured, and site-directed mutagenesis 

of PurAH was performed in order to study the binding of the bottromycin precursor to PurAH. 

Jesko Koehnke designed the study, and Asfandyar Sikandar and Laura Franz performed and analyzed the 

in vitro experiments. Okke Melse performed molecular docking studies with DynaDock to support the site-

directed mutagenesis, and also conducted bioinformatics analysis and binding site volume measurements 

in PurAH and structural homologues. All authors were involved in writing of the manuscript. 
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3.6 BROAD SPECTRUM ANTIBIOTIC-DEGRADING METALLO-Β-LACTAMASES ARE PHYLOGENETICALLY 

DIVERSE 

 

Antibiotic resistance is a major public health problem, reported as a current crisis by the World Health 

Organization.[281] β-lactamases, which can be divided in serine-β-lactamases (class A, C, and D) and 

metallo-β-lactamases (MBLs, class B), play an important role in the antibiotic resistance by bacteria.[214, 

215] Since MBLs are not inhibited by clinically available antagonists, they are responsible for a large 

number of the antibiotic resistance problems.[218] Most MBLs contain two Zn2+ ions in their active site, 

with B3-type MBLs typically carrying the active site motif HHH/DHH for the α- and β-site, respectively. 

Two variations have been observed with the active site motifs QHH/DHH and HRH/DQK instead (variations 

shown in bold).[222, 223] In this study, the above-mentioned B3-Q and B3-RQK MBLs (named by their 

active site motif variations), among others, were studied in more detail.[221] It was found that B3-RQK is 

sensitive to the serine-β-lactamase inhibitor clavulanic acid, which was never observed for any MBL so 

far. Moreover, no density for Zn2+ ions was observed in the determined X-Ray structures, suggesting 

reduced Zn2+ affinity. In X-Ray structures of B3-RQK variants, where either the α-site, β-site, or both sites 

were “back-mutated” to the original motif found in B3 MBLs (HHH/DHH), Zn2+ binding was observed again 

in parallel with increased activity and resistance against clavulanic acid. Thus, molecular docking with 

subsequent QM/MM geometry refinement simulations were performed, both in bimetallic and 

monometallic MBL, by which a binding mode for clavulanic acid in B3-RQK MBLs could be determined. 

The QM/MM calculations further resulted in a suggestion for the inhibition mechanism of clavulanic acid, 

namely via Zn2+ displacement from the low affinity β-site. The in silico studies suggested K263 to play an 

essential role in clavulanic acid binding, which is in agreement with experimental data. Therefore, the 

results in this study suggest that modifying clavulanic acid to target H263 may increase the therapeutic 

range of clavulanic acid, and perhaps lead to drugs acting as MBL inhibitors. 

Marcelo Monteiro Pedroso, David W. Waite, Nataša Mitić, Ross P. McGeary, and Gerhard Schenk devised 

the study, while David W. Waite and Philip Hugenholtz performed the phylogenetic analysis. Marcelo 

Monteiro Pedroso, Nataša Mitić, Liam Wilson, and Luke W. Guddat performed the experimental work. 

Okke Melse and Iris Antes designed the in silico analysis, and Okke Melse performed and analyzed the 

molecular docking and QM/MM simulations, and drafted the first hypotheses to structurally rationalize 

the observed differences in Zn2+ and inhibitor binding. All authors were involved in writing the final version 

of the manuscript.  
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4 DISCUSSION 

4.1 COMPUTER-AIDED IDENTIFICATION OF POTENTIAL BIOCATALYSTS AND LIGAND BINDING SITES 

4.1.1 Target and biocatalyst identification 

Biomolecular simulations have shown to make a useful contribution in numerous scientific areas, 

including enzyme engineering and structure-based drug discovery.[2, 16, 147, 282] However, in order to 

perform simulations which are able to guide enzyme engineering or drug discovery projects, pre-

knowledge about the target structure (ideally with known structure) and the binding site is essential. This 

information is often not available, and experimental approaches to retrieve this knowledge, such as target 

fishing and high-throughput screening, are time-consuming tasks.[283] Bioinformatics tools can support 

in this process, for example via public biological databases, which collect and combine large amounts of 

functional information about known proteins, and stores them in a searchable manner. Besides for data 

collection, bioinformatics tools can also be used to predict target proteins, including enzymes. Ligand 

similarity search algorithms are often applied for this purpose, for example in SciFinder[284] and 

PubChem[285]. In these tools, a large number of databases are searched for a structurally similar ligand 

or substrate compared to the particular ligand of interest. The general idea is that if a target is known for 

an identified similar ligand, this target may also bind to the ligand of interest. Other bioinformatics tools 

generally apply profile analysis (e.g. interaction fingerprints), network-based searches, shape-based 

screening or virtual screening.[283, 286-288] Most of these methods are however developed for drug 

(off-)target identification, and not to predict potential biocatalysts, i.e. an enzyme which can not only bind 

a certain substrate, but also catalyze a target reaction. 

4.1.2 EnzymeMatch: challenges, features, and perspectives 

In order to fill this gap, this dissertation describes the development of EnzymeMatch: a python-based 

algorithm which applies a structure-based interaction point matching approach combined with a database 

search. In short, a query containing an optimal interaction point network at the protein side is 

automatically predicted based on the target substrate (.mol2 or .sdf file formats supported). 

Subsequently, a database search is performed within the BioLiP database, which contains information 

about binding sites of nearly all structures in the Protein Data Bank, in order to efficiently identify enzymes 

containing the required interaction types, and thus potentially able to catalyze the target reaction.[131] 
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Finally, an interaction pattern matching is performed in all enzyme candidates applying a graph-

theoretical approach and triangle matching, which allows for efficient, and accurate predictions. 

Based on discussions with experimentalists, several conditions were defined which EnzymeMatch should 

fulfill (see Chapter 1.7.1). In short: (I) the algorithm should be able to efficiently screen a large number of 

enzymes, (II) the program should be easy to install and use by non-expert users, (III) the user should be 

able to fine-tune the search- and matching procedure without having to modify the code, and (IV) the 

output should be comprehensible, and contain relevant information for experimentalists to further 

assess, express and engineer the predicted enzymes. In order to address the first condition, EnzymeMatch 

matches enzymes and the target substrate applying graph theory instead of extensive conformational 

sampling and docking techniques. In this way, only vectors connecting interaction points need to be 

compared, which can be implemented in a much more efficient manner than traditional conformational 

sampling and docking approaches. The second condition (i.e. easy to install and usable by non-expert 

users) was fulfilled by writing this algorithm as a python project, with as little dependencies as possible. 

Python code has the advantage that it is easy to run on multiple operating platforms, easy to share, e.g. 

via GitHub or other platforms, and rather easy to read for new developers who want to further develop 

the algorithm. The third condition (i.e. user-modifiable settings) was met by using input files in a human-

readable format, in which all settings can be defined. Furthermore, the algorithm carefully checks the 

validity of (the combination of) applied keywords and their settings during the input file parsing. Finally, 

the last condition (i.e. clear, informative, and extendable output) was fulfilled by saving information 

retrieved from the BioLiP database for each matched entry, which include information such as binding 

site residues, EC numbers, known ligands, etc. Moreover, the residues that were predicted to interact 

with the ligand are provided in the output as well. A small additional external python script was written, 

which matches all predicted enzymes with the Protein Data Bank, to further provide information about 

the enzyme annotation, origin organism and expression system. 

Protein- and ligand flexibility is often not considered in bioinformatics tools aiming to support in target 

finding, while protein- and ligand flexibility is known to strongly influence ligand binding (see 

Chapter 1.5.2 for an extensive discussion on this topic in the context of molecular docking simulations). 

This lack of describing protein- and ligand flexibility is often caused by the strong simplification applied in 

these algorithms, e.g. in profile- or network analysis approaches, and due to the lack of structural 

information used in these approaches.[286, 288] However, due to the large amount and ever-growing 

availability of protein structures in the Protein Data Bank (Figure 1), and potentially on-demand structure 
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prediction by AlphaFold (see Chapter 1.3.2), structure-based approaches show promising potential. In 

EnzymeMatch, ligand flexibility is automatically considered during the Automatic Query Design (AQD) 

step. Here, a user-defined number of substrate conformations are automatically generated, which are all 

used to predict the optimal geometry of interaction points at the protein side. Moreover, the generated 

substrate conformations also provide information about flexible and rigid regions of the substrate, which 

is also considered during the interaction pattern matching phase. Smaller deviations from the optimal 

interaction geometry are allowed when the respective interaction point interacts with a rigid region of 

the substrate, and more deviation is allowed for interaction points interacting with more flexible regions 

of the substrate (Figure 9). This is implemented by using individual offset values for each vector in the 

interaction pattern, as described in Chapter 3.1. Protein flexibility can also be considered during the 

interaction point matching in EnzymeMatch, which is performed by the use of rotamer libraries (see 

Chapter 1.3.1), where all possible combinations of rotamers for all flexible binding site residues are 

predicted. However, this has the consequence that much more interaction point patterns of the 

respective enzyme need to be matched to the input interaction point pattern (i.e. the optimal interaction 

point pattern predicted by AQD). This significantly increases computation time, and is thus only 

reasonable when a small database is screened. Besides consideration of protein- and ligand flexibility, 

several additional features were implemented in EnzymeMatch. For example, a mode which automatically 

downloads the required protein structures from the Protein Data Bank was added, as well as a scoring 

function, which provides a measure on how the interaction patterns matched (note that this requires 

evaluation of all possible interaction patterns in a binding site in order to find the best-fit, and therefore 

negatively affects computation time). 

 

Figure 9. Illustration of the interaction point matching algorithm in EnzymeMatch including the consideration of ligand flexibility. 
Colored nodes indicate optimal positions of different types of interaction points at the protein side, and the edges represent the 
Euclidean distances between them, which are matched during the TriangleMatch phase. Dotted spheres and edges indicate a 
hypothetically matched binding site from the BioLiP database. 
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Performance evaluation of EnzymeMatch is not straightforward because of the expected high number of 

enzymes which may be active on the target substrate, but not identified as such, making e.g. Receiver 

Operator Plots hard to interpret. Note that identifying these so far unidentified enzymes, which are able 

to catalyze a certain reaction on the target substrate, is exactly the aim of EnzymeMatch. Therefore, an 

ideal evaluation analysis should include experimental activity measurements on the top-predicted 

enzymes. However, this is a very time-consuming and labor intensive process, as not all enzymes may be 

easily expressed in the lab, and one does generally not know if the expressed enzyme is properly folded. 

Therefore, we evaluated EnzymeMatch by performing docking simulations in the top-predicted enzymes, 

which was performed for a range of target substrates of varying size and rigidity. For all evaluated systems, 

top-ranked enzymes could be confirmed to be good candidates by molecular docking simulations. For 

example, in an EnzymeMatch run searching for enzymes binding riboflavin, a lumazine synthase from 

Aquifex aeolicus was matched (fit: 0.713 Å), which after some literature search appeared to be the second 

last enzyme in the biosynthesis pathway of RBF.[289] Molecular docking studies further illustrated that 

riboflavin fits perfectly in the binding site of the lumazine synthase. Furthermore, EnzymeMatch predicted 

the synthetic glucocorticoid dexamethasone to be catalyzed by human aldo-keto reductase, an enzyme 

known to bind testosterone, which is structurally highly similar to dexamethasone. Finally, for S-

hexylglutathione, numerous glutathione-binding enzymes were identified (e.g. glutathione S-transferase), 

which is structurally identical to S-hexylglutathione, except the hexylgroup connected to the thiol group 

of glutathione. These examples show the potential of EnzymeMatch, but the performance remains limited 

to the enzymes which are present in the Protein Data Bank. 

4.1.3 Protein-ligand interaction points in search queries 

The idea of representing protein binding sites as a set of protein-ligand interaction points is not completely 

new, neither is the application of these interaction points to search through the Protein Data Bank. For 

example, Relibase and Relibase+, nowadays part of CSD-CrossMiner from the Cambridge Crystallographic 

Data Centre, compiled a database containing protein-ligand interactions and structural information, such 

as distance, angle and interaction partners. All information was retrieved from the Protein Data Bank. This 

information can be used to analyze preferred interaction patterns of certain chemical groups, including 

information about preferred interaction partners and interaction geometry.[290] More recently, another 

web application was published: GeoMine, as part of ProteinPlus, which is a web-based portal with its focus 

on protein-ligand interaction developed by the Computational Molecular Design Group from the 

University of Hamburg.[291] GeoMine starts with loading a PDB structure, which immediately highlights 

the first main difference with EnzymeMatch, as EnzymeMatch does not need a protein-ligand complex as 
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starting point. In GeoMine, one can define certain atoms, distances and interactions in a graphical user 

interface, which can be added to the query. The presence of this query is subsequently searched in the 

Protein Data Bank. Thus, in principle, a binding site similarity search is performed taking the co-crystallized 

ligand as part of the binding site, meaning that GeoMine can be used to find proteins with a similar binding 

site rather than a binding site for new substrates, which is required to identify potential new biocatalysts. 

In contrast, EnzymeMatch does not require a protein structure (which is often not known when searching 

for a potential biocatalyst), as the optimal interaction points at the protein side are automatically 

predicted by the AQD module based on the target substrate. Moreover, GeoMine only matches 

interactions, thus a protein is only matched when a similar protein-ligand interaction was observed in the 

X-Ray structure of the protein to what has been observed in the input structure. This strongly limits the 

amount of possible predictions, and limits the predictions to proteins which were co-crystallized with a 

ligand. EnzymeMatch does not have this limitation, since a geometric interaction pattern is matched 

instead, which is generated from interaction points at the protein side. In other words, EnzymeMatch 

predicts if a protein-ligand interaction could be formed, rather than matching on known protein-ligand 

interactions, making the amount of potential targets (here: enzymes) much larger. 

Altogether, EnzymeMatch can efficiently and rigorously predict enzymes which can potentially bind a 

target substrate and catalyze a required chemical reaction. Due to the careful design choices, it is easy to 

use, also for non-expert users. This, together with numerous additional features described above, makes 

EnzymeMatch a potentially valuable tool to screen for potential biocatalysts. 

4.1.4 Consideration of protein- and ligand flexibility during binding site identification 

Dependent on the application, an identified target is not sufficient. For example, in structure-based drug 

design, as well as in protein design or -engineering studies, the next challenge is the definition of (a) 

binding site(s). When an experimental structure is available in complex with a ligand, the definition of the 

binding site can often be retrieved from the structure. However, many structures are resolved in their 

apo-form (i.e. without presence of ligand or cofactor), making a prediction of the binding site essential. 

Since experimental elucidation of ligand binding sites is challenging, numerous computational models 

have been developed, which are extensively described in Chapter 1.4. Moreover, large conformational 

changes can occur upon ligand binding, as described by the induced fit- and conformational selection 

models (Figure 2), which can result in opening or closing events of the binding site and/or entrance tunnel, 

or lead to conformational changes affecting substrate specificity. The majority of available binding site 

identification methods neglect protein- and ligand flexibility despite recognition that protein-ligand 
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interactions can be strongly affected by the protein dynamics.[136, 155, 156, 169] Cavity-mapping 

algorithms such as POVME and mkgridXf can work on an ensemble of protein structures retrieved from a 

molecular dynamics simulation of the apo structure, but this does not account for induced fit effects upon 

ligand binding.[125, 126] Furthermore, most of the available methods were evaluated using protein 

structures resolved in the ligand-bound state, meaning that the binding site was already adapted on the 

presence of the ligand. However, in actual applications of these binding site identification methods, the 

algorithms are applied on an apo structure, where one cannot expect that the binding site is present in 

the conformation required to accommodate ligand binding.  

Thus, DynaBiS was developed in this dissertation to improve the binding site identification for large and 

highly flexible ligands, such as peptides, in protein apo structures, as described in detail in Chapter 3.2. 

The performance of DynaBiS was evaluated using a diverse evaluation set consisting of 8 small ligand and 

7 peptide protein-ligand complexes. The apo structures were used for 11 of the systems as well, to 

evaluate the performance of DynaBiS in a more real-life example. [252] The evaluation set consisted of 

binding sites for ligands ranging from small organic ligands to large, and highly flexible peptides. We 

showed that in the top-5 predicted binding sites, the correct binding site was present for all but one of 

the evaluation systems, and for 19 out of 26 binding sites, the correct binding site was predicted correctly 

as top-ranked binding site. Thereby DynaBiS strongly outperformed the AutoDock blind docking method, 

as well as the commonly used algorithm AutoSite.[134, 137] We further showed that the sampling 

algorithm in DynaBiS was able to sample all known binding sites, as all known binding sites were identified 

as potential binding sites and further evaluated in the pocket sampling step. 

Because DynaBiS uses both the protein and ligand structure, the predicted binding sites are ligand-

specific. This means that only binding sites which might be able to accommodate binding of the target 

ligand are considered. The majority of other available binding site identification methods including 

AutoLigand, AutoSite, POVME, and Q-SiteFinder, predict binding sites independent of a target ligand.[120, 

125, 133, 134] These methods thus also consider binding sites which are too small (e.g. small ligand or 

metal ion binding sites), or do not contain the required physico-chemical properties to bind the target 

ligand. Besides DynaBiS, Pep-SiteFinder is one of the few ligand-specific binding site identification 

methods. Pep-SiteFinder is however limited to the identification of peptide binding sites, as the algorithm 

consists of a blind docking approach with the ATTRACT force field and pre-generated peptide 

conformations.[139] Moreover, Pep-SiteFinder applies a rigid docking strategy, in contrast to the fully 

flexible treatment of both the ligand and protein by DynaBiS. 
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The major limitation of DynaBiS lies in the scoring function, as the pepscore is used to rank the sampled 

binding sites. The pepscore was developed for peptide docking within the DynaDock algorithm, and 

trained on a set consisting of 15 peptides by Iris Antes.[169] Thus, the performance of DynaBiS could be 

further improved by the design of a scoring function specifically designed for the identification of binding 

sites rather than docked poses, and trained on a set consisting of both peptides and small ligands. 

Nevertheless, the strong performance of DynaBiS illustrates that explicit consideration of protein-ligand 

flexibility can strongly improve binding site identification, especially for binding sites for large and flexible 

ligands.  

4.1.5 Fragment-based molecular docking combined with QM/MM simulations 

As soon as the binding site is known, e.g. identified by DynaBiS, molecular docking simulations can be 

applied to predict the binding mode of a ligand in the binding site. These molecular docking algorithms 

perform rather well for small ligands, but docking of peptides, or other large and flexible ligands, remains 

challenging.[292, 293] For example, Chapter 3.5 describes the characterization of the amidohydrolase 

from Streptomyces purpureus (PurAH), which led to the identification of this enzyme as the “gatekeeper” 

of bottromycin synthesis.[229] These conclusions were supported by an in-depth analysis of the binding 

site including binding site volume calculations, as well as structural comparison to other homologues. 

Further, in silico analysis and molecular dynamics simulations also led to the suggestion of several 

interesting mutation positions to probe the promiscuity of PurAH, which were further analyzed in vitro by 

site-directed mutagenesis. Furthermore, the X-Ray structure of PurAH was resolved in this study, however 

no electron density was observed for enzyme-bound substrate (PDB-ID: 6i5s). However, it would be of 

interest to know how the bottromycin precursor exactly binds in the PurAH binding site, as this can guide 

engineering studies leading to a more efficient bottromycin biocatalysis. Initial molecular docking 

simulations applying AutoDock and FlexX, which both rely on the rigid protein approximation, did not 

result in any poses which were biochemically feasible (i.e. in which the ligand is positioned such that the 

hydrolysis reaction could occur). Since an apo-structure of the protein is used during docking (there is no 

complex structure available for this or a related protein, as is common for RiPPs enzymes), these failed 

docking simulations indicate that an induced fit of the binding site upon ligand binding may be important. 

This necessitates the flexible treatment of the active site during the docking process. Side-chain flexibility, 

as in AutoDock (see Chapter 1.5.2) might not suffice in the case of PurAH due to the large binding site 

(Figure 5B). Moreover, due to the lack of ligand-bound structures, it is unknown (I) which and how many 

side chains are flexible and (II) if and to what extend backbone movement is involved in binding site 

adaptation. Extensive previous studies demonstrated that in such cases molecular dynamics-based 
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molecular docking methods as implemented in DynaDock are needed to obtain realistic bound protein-

ligand conformations.[169, 185, 294] Therefore, DynaDock may be the most suitable algorithm for the 

treatment of binding site flexibility in the docking pipeline in PurAH. 

As described above, docking of ligands with many rotatable bonds, such as peptides, remains challenging 

due to their large degrees of freedom. This was recognized in 1996 by Rarey et al.[150] and led to the 

development of the FlexX incremental construction algorithm. In this method, the ligand is fragmented 

into small, rigid substructures prior to docking, and the docking procedure consists of the incremental 

reconstruction of the ligand from these fragments under consideration of all possible conformational 

angles between these fragments. Nowadays, fragment-based docking is a common way to dock large 

peptides. For example, Liao et al.[295] showed that the docking performance of a test case consisting of 

17 peptides could be improved significantly by first docking the individual fragments (peptide was 

fragmented in two halves in this study) with AutoDock Vina. After placement, the fragments were 

combined and refined by molecular dynamics simulations. However, in that strategy, protein flexibility is 

only included in the final simulation, as the docking of the fragments is performed using a rigid protein 

conformation. 

A molecular docking study of the bottromycin precursor in PurAH thus requires a combination of 

DynaDock and a fragment-based docking strategy. To illustrate if this suggested docking protocol could 

indeed be suitable for PurAH, this docking protocol was evaluated for this discussion. The substrate was 

truncated with a methylamine after four follower peptide residues, which was subsequently subdivided 

in four fragments (Figure 10A). Since the cleavage site of the substrate is known, a pharmacophore 

constraint (see Chapter 1.5.4) enforcing the cleavage site to be located near the catalytic hydroxide ion 

was applied during docking of the first fragment, i.e. the thiazoline moiety. The pharmacophore constraint 

was defined as follows: (I) The distance between the geometric centers of the ligand and the binding site 

(defined as the geometric center of the two Zn2+ ions) was enforced to be less than 0.35 nm, and (II) all 

vacant coordination sites of both Zn2+ ions needed to be filled after base placement. Since the binding 

mode of the base fragment strongly affects the placement of the remaining fragments, a QM/MM 

geometry optimization was performed on this docked base fragment. This refinement optimizes the 

placement of the base fragment, and ensures a correct coordination geometry of the Zn2+ ions and the 

catalytic hydroxide ion in the active site. Subsequently, the two adjacent fragments were docked, followed 

by the macrocycle moiety. Finally, a 150 ns molecular dynamics simulation was performed, which after a 

short equilibration phase showed stable substrate binding (Figure 10D). The final pose suggested here is 
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the representative pose after clustering the converged section of the molecular dynamics simulation. 

Besides the native substrate, the substrate analogue which was used in the in vitro measurements was 

also docked applying the same protocol, which resulted in a highly similar docked pose (Figure 10B), 

indicating that the experimental measurements in our PurAH study will most likely be valid for the native 

substrate as well. 

This docked pose fills the vacant coordination positions of both Zn2+ ions: Zn1
2+ is coordinated by D7 of the 

substrate leading to a tetrahedral coordination geometry (H210, H229 and OH-), and an interaction with 

the thiazoline residue fulfills the octahedral coordination geometry for Zn2
2+ (H94, H96, D348, Kcx183, 

OH-; Figure 10A,B). This observation is in agreement with the substrate mutation study described in 

Chapter 3.5, as PurAH did not process a substrate carrying a valine instead of aspartate at position 7, 

probably due to the lacking interaction with Zn1
2+. A substrate with an alanine at this position was however 

still partially processed.[229] To understand this observation, a short molecular dynamics simulation was 

performed with this modified substrate, which showed a slight reorientation of the substrate such that 

the backbone carbonyl oxygen of F6 the takes over the coordination of Zn1
2+ (data not shown), which 

could potentially explain the observed activity for this substrate. Furthermore, a stable pi-stacking 

interaction between F6 of the substrate and W118 was predicted, an interaction which is assumed to play 

an important role in substrate binding. Finally, the macrocycle moiety of the substrate, which we showed 

to be essential for substrate recognition by PurAH, binds in a hydrophobic patch in the binding site. This 

docked pose also fits the performed mutations in PurAH rather well, as substrates carrying the mutations 

P2A, V4L, F6W or D7N were all determined to be PurAH substrates, and full conversion was observed. 

Moreover, the Y185F mutation in PurAH showed reduced activity to the natural substrate due to impaired 

hydrogen-bonding with D8, and the D348N variant was fully inactive, either due to loss of the catalytic 

base, or impaired Zn2+ binding.[229] During the DynaDock OPMD refinement simulations, as well as the 

subsequent molecular dynamics simulations, opening of a hydrophobic sub-pocket was observed. The 

opening/closing of this sub-pocket is controlled by R279, and binds M9 of the substrate during the docking 

procedure (Figure 10E). This observation is in agreement with the poor side-chain electron density 

observed for R279 in the X-Ray structure of PurAH, indicating side-chain flexibility. Moreover, in vitro 

studies with mutated substrates agree with the observation of this sub-pocket, as a substrate carrying the 

M9A mutation was barely processed, while a substrate carrying the M9F mutation, which narrowly fits 

into the sub-pocket, was partially processed. The required opening of the sub-pocket may explain the 

failed initial docking simulations, and thereby further illustrate the importance of docking algorithms 

allowing for a fully flexible treatment of both the protein and the ligand. 
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Figure 10. The results of the docking study of (A) a truncated native substrate (with the substrate colored according to the applied 
fragmentation), and (B) a truncated substrate analogue as used in the in vitro experiments, with the native and measured 
substrate in cyan and green sticks, respectively. The substrate residues are labeled by their three-letter code, the enzyme residues 
by their one-letter code (Kcx represents a carboxylated lysine residue), and differences between the native and measured 
substrate are highlighted in black dashed circles. The substrate-enzyme interactions (C) are shown in a PoseView scheme, and 
(D) the RMSD course of 150 ns molecular dynamics simulations for the measured and native substrate are plotted, where the 
RMSD of the substrate backbone atoms is shown in red, and the heavy-atom RMSD of the thiazoline residue (i.e. the cleavage 
site) in blue. The multi-panel section (E) shows the suggested opening of the arginine-controlled pocket. A surface representation 
of the binding site with closed (panel 1 & 3) and open (panel 2 & 4) sub-pocket, with (panel 1 & 2) and without (panel 3 & 4) 
docked substrate. The arrows indicate the sub-pocket occupied by Met9, and the region controlled by R279 is colored red. The 
two alternate conformations of R279 derived from the electron density are shown in cyan (panel 5), and the corresponding 
conformation after refinement is shown in orange.  
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Enzymes belonging to the YcaO superfamily (i.e. enzymes involved in the biosynthesis of thiazole-

containing antibiotics), as well as other enzymes involved in the biosynthesis of RiPPs with antimicrobial 

activity, are still actively studied and show potential to become useful biocatalysts due to their unique 

structural features.[229, 232, 278, 279] Therefore, knowledge about the binding mode of the respective 

substrates in these enzymes is highly valuable, and can guide protein engineering studies to improve 

enzyme activity and/or its substrate scope. The detailed knowledge about the binding mode of the 

bottromycin precursor in PurAH presented here can thus guide the development of biocatalysts for 

bottromycin derivatives with antibiotic activity, and other RiPPs. 

4.2 BIOMOLECULAR SIMULATIONS OF METALLOPROTEINS 

4.2.1 Classical simulations 

Biomolecular force field-based description of interactions between a metal ion and its biochemical (e.g. 

protein) environment is highly challenging, because the complex nature of a metal ion needs to be 

described with (non-bonded) force field parameters of only a single atom. Therefore, numerous versatile 

metal ion models were presented over the last years. The first models consist of standard LJ 12-6 

parameters, i.e. the well depth and Rmin values. Such a description is however often too limited to 

accurately describe all properties of a metal ion.[275] Zhang et al.[296] did though manage to simulate 

accurate solvation free energies and several structural properties with a traditional LJ 12-6 model, but 

needed a rather high value for the well depth (ε): they applied a well depth of 295.5289 kcal·mol-1, while 

the well depths for the non-bonded Zn2+ models from Li et al. ranged from 7.16·10-4 to 1.49·10-2 kcal·mol-1. 

The benchmarking study (see Chapter 3.3) showed that the LJ 12-6 non-bonded models often fail to 

describe the interaction between Zn2+ and non-charged ligating atoms, such as the imidazole nitrogen in 

histidine, generally leading to distorted coordination geometries. While the 12-6-4 LJ-type model 

improved the description to soft-bases, we showed that this model can only simulate octahedral 

coordination geometries, and over-estimate the interaction with charged ligating atoms. Dummy-atom 

models showed the best performance, but can only simulate the coordination geometry they were 

designed for. While this works perfectly for an octahedral coordination geometry, a tetrahedral geometry 

remains challenging to simulate. Thus, the development of a tetrahedral dummy atom model specifically 

parameterized for tetrahedral Zn2+ in a protein environment would be highly useful. The parameterization 

of a tetrahedral Zn2+ model is however not so straightforward. While octahedral dummy atom models are 

parameterized in bulk water, where the non-bonded force field parameters can be tuned to reproduce 
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the hydration free energy and ion-oxygen distance, tetrahedral Zn2+ does not have a counterpart in water. 

Thus, another parameterization strategy needs to be developed to design a tetrahedral Zn2+ model. In this 

dissertation, an attempt to parameterize such a tetrahedral model by reproducing the interaction energy 

profile calculated at the QM level (MP2/cc-pVTZ level of theory; Figure 11) is described (Chapter 3.3). The 

Lennard-Jones parameters of a tetrahedral Zn2+ dummy-atom model were fitted applying a weighted 

least-squared fitting approach, and both a LJ 12-6 and a 12-6-4 LJ-type model was designed. These models 

clearly reproduced the potential energy surface (PES) better in comparison to the already published 

models (Figure 11). However, these models did not result in a stable tetrahedral Zn2+ coordination in 

molecular dynamics simulations of CAII and VIM-2, indicating that solely fitting a dummy-atom model to 

reproduce a Zn2+-water interaction energy scan is not suitable to design a tetrahedral Zn2+ model. The 

above strategy was also performed applying different charge distributions over the dummy atoms and 

the Zn2+ ion, but this did neither result in a better fit of the PES, nor to more accurate simulations. 

Moreover, this approach was further extended to additionally fit interaction energy profiles between a 

Zn2+ ion and amino acid analogues of histidine, cysteine, aspartate, and glutamate. A proper fit of these 

interaction energy patterns appeared to be challenging, as visualized here for a PES scan between Zn2+ 

and a cysteine analogue (Figure 11B), thus this approach is probably not a suitable fitting procedure to 

develop a tetrahedral dummy atom model for Zn2+.  

 

Figure 11. Potential energy surfaces between Zn2+ and (A) TIP3P water and (B) a cysteine analogue. The obtained surfaces for 
published parameters are shown (depicted as ‘DU + first author’; note that DU-Duarte and DU-Jiang are octahedral dummy atom 
models) as well as the surfaces obtained from the newly fitted tetrahedral models in this dissertation. The reference surface 
measured at the MP2/cc-pVTZ level of theory is shown as a blue dotted line. The classical energy represents the full interaction 
energy, i.e. containing both the Lennard-Jones and Coulomb potentials. 

The benchmarking study presented in this dissertation showed promising performance of a rather recent 

non-bonded model by Macchiagodena et al.[276, 297] In this model, new Zn2+ parameters were presented 

together with additional new Zn2+-coordinating residues (histidine, cysteine, aspartate and glutamate) for 

the AMBER force field. These residues contain modified LJ-parameters and an altered charge distribution 

to improve the description with a Zn2+ ion. While showing excellent performance in this benchmarking 
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study regarding the description of Zn2+-protein interactions (e.g. stable coordination and correct Zn2+-

ligating atom distances), it was observed that interactions with non-protein residues, such as ligands, are 

not properly described by this model. This led to unstable coordination of the Zn2+ ions in the ligand 

binding sites during the molecular dynamics simulations of CAII and VIM-2. Interestingly, replacing the 

Zn2+ parameters by the compromise model of Li et al.[275] led to more stable simulations and a correct 

tetrahedral coordination geometry of Zn2+ in CAII. These results indicate that there is potential to further 

improve this model to overcome its current limitations, which may lead to a Zn2+ model able to correctly 

simulate Zn2+ in a tetrahedral coordination geometry in proteins. 

4.2.2 Hybrid QM/MM simulations: metallo-β-lactamases 

The above-described limitations of a classical description of a metal site are especially problematic when 

a change of coordination geometry needs to be sampled. The dummy-atom and bonded models all 

enforce/support a certain coordination geometry by design, but also the non-bonded models clearly 

prefer a certain geometry (see Chapter 3.3). In the case of the studies performed in metallo-β-lactamase 

CSR-1 (Cronobacter sakasakii), the expected coordination geometries for both Zn2+ ions were unknown, 

since the binding mode of the inhibitor clavulanic acid was unclear (see Chapter 3.6). Therefore, QM/MM-

geometry optimization was performed on a number of docked substrates to further refine the binding 

mode, as well as the coordination by the Zn2+ ion. The choice of QM-potential is not so obvious due to the 

large number of available QM-potentials, and the large difference in accuracy and required computing 

time between them. Most approaches aiming to improve the scoring capability of the docked substrates 

rely on semi-empirical (SE) methods due to their reduced computational costs (see Chapter 1.5.4 for a 

more in-depth discussion of this topic). However, because of the limited accuracy of the SE methods, a 

DFT functional was applied instead in this study to ensure accurate description of the Zn2+ ion and its 

surroundings. 

The computations in this study elucidated the binding mode of the inhibitor clavulanic acid to CSR-1, as 

well as the interaction between clavulanic acid and K263, thereby suggesting an inhibition mechanism of 

clavulanic acid by displacing the Zn2+ ion in the β-site. The predicted binding mode is highly similar to what 

has been observed in the X-Ray structure of L1 MBL from Stenotrophomonas maltophilia, another B3-

MBL, in complex with the hydrolysis product of moxalactam (Figure 12; PDB-ID: 2aio).[298] Only one other 

X-Ray structure of a B3-MBL in complex with a ligand is known, i.e. MIM-1 MBL from Novosphingobium 

pentaromativorans (PDB-ID: 6auf), which contains citric acid in the active site. However, no supporting 

literature has been published yet describing this structure. Both these enzymes contain the common 
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HHH/DHH motif for the α- and β-site, respectively. In L1, both Zn2+ ions are coordinated in an octahedral 

coordination geometry. The coordination geometry in the X-Ray structure of MIM-1 is less clear: the Zn2+ 

ion in the α-site is either present in a distorted tetrahedral, or distorted octahedral geometry with a vacant 

coordination site, dependent on the interpretation, while the Zn2+ ion in the β-site was found in a distorted 

octahedral geometry (Figure 12). Comparing these geometries to the predicted binding mode of 

clavulanic acid in the triple mutant of CSR-1 (i.e. with back-mutated HHH/DHH motif), both Zn2+ ions were 

observed in a perfect tetrahedral coordination geometry, which is the most common coordination 

geometry for Zn2+ in proteins according to a study by Laitaoja et al.[226] More interesting is the docked 

pose in the wild-type of CSR-1 (HRH/DQK motif), since inhibition by clavulanic acid was observed in this 

enzyme.[221] Here, the Zn2+ ion in the α-site was shown to be tetrahedral (Figure 12), which is in line with 

the expectations due to the missing H118. The β-site is expected to be empty because of highly unstable 

Zn2+ binding, which is in agreement with the missing density in the X-Ray structure. The hydrolysis product 

of clavulanic acid was also docked because one cannot rule out that the observed inhibition is caused by 

hydrolyzed clavulanic acid. In this pose, a trigonal bipyramidal coordination was observed for the Zn2+ ion 

in the α-site: the nitrogen in the hydrolyzed product was able to additionally coordinate the Zn2+ ion, 

which was looking for additional ligating partners due to the lacking H118 (Figure 12). Thus, comparing 

the predicted binding mode of clavulanic acid in CSR-1 and the coordination geometries of the Zn2+ ions 

between CSR-1 and other available X-Ray structures of B3-type MBLs indicate that the resulting Zn2+ 

coordination is in line with the expectations due to a missing ligating residue in CSR-1. Moreover, the 

predicted interactions between the Zn2+ ions and the ligands were similar to what has been observed in 

the X-Ray structures of homologues. All by all, the observed similarities with homologous structures 

further support the accuracy of the predicted protein-ligand complex, as well as the suggested inhibition 

mechanism. Therefore, it is likely that the conclusions draw in Chapter 3.6 can be transferred to other 

MBLs in the B3-RQK family as well. 
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Figure 12. Comparison of binding modes observed in B3-type metallo-β-lactamases (MBLs). The ligating residues in the α- and 
β-site are shown as green and orange sticks, respectively. The active site motif is shown in brackets after the annotation, and 
variations to the most common motif are indicated in bold. Residues are numbered according to the BBL numbering scheme for 
class B β-lactamases. L1 MBL from Stenotrophomonas maltophilia (PDB-ID: 2aio) was co-crystallized with hydrolyzed moxalactam, 
and MIM-1 MBL from Novosphingobium pentaromativorans (PDB-ID: 6auf) was co-crystallized with citric acid in the active site. 
The binding modes of clavulanic acid in CSR-1 WT (PDB-ID: 6dq2) and a triple mutant of CSR-1 (PDB-ID: 6dr8) were obtained from 
docking simulations followed by QM/MM simulations, as described in this dissertation (Chapter 3.6). 
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4.3 RATIONAL ENZYME ENGINEERING: DIHYDROXY-ACID DEHYDRATASES 

A rational engineering approach of dihydroxy-acid dehydratases (DHADs) is described in this dissertation 

as well (Chapter 3.4). Based on the multiple sequence alignments and superposition of structural models, 

alignment numbers were defined for all residues, allowing comparison of residues present at the same 

position in the three-dimensional structure, rather than a position in the sequence. Moreover, homology 

models of several DHADs belonging to different DHAD clusters were generated. Subsequent 

computational analysis of sequence- and structural data resulted in the identification of interesting 

mutation hotspots. Via subsequent in vitro site-directed and saturation mutagenesis, the role of these 

residues was elucidated, and engineered variants with improved activity and/or altered substrate scope 

were produced. This information can be used to further study enzymes belonging to the ilvD/EDD 

superfamily and guide engineering studies to optimize properties of dehydratases. For example, we 

engineered the recently discovered PuDHT, and observed >6-fold improved activity for D-glycerate by 

introducing the H575F mutation, leading to a specific activity of 6.18 U/mg. This represents a >20-fold 

higher activity compared to the recently engineered SsDHAD variant (I161M/Y145S/G205K) by Wang et 

al.[299], who applied a semi-rational engineering approach including iterative saturation mutagenesis, 

illustrating the relevance of these results. Compared to the wild-type SsDHAD enzyme, which is generally 

applied in the biosynthesis of isobutanol or L-lactate from glucose or glycerol, this PuDHT variant shows 

>200-fold improved activity.[8, 299, 300] Moreover, the activity of PuDHT was measured at 30˚C vs 70˚C 

for SsDHAD, which is much closer to typical temperatures at which enzymatic cascades are conducted.  

In this study, a new classification scheme was proposed for [2Fe-2S]-dependent dehydratases belonging 

to the ilvD/EDD superfamily based on their substrate preference, in order to be able to clearly discriminate 

between them. Briefly, the dehydratases catalyzing predominantly DHIV are classified as branched chain 

acid dehydratases (BCADHTs), which includes dehydratases homologous to the DHAD from Fontinomas 

thermophilia (FtDHAD), while dehydratases that are most active to sugar acids are called sugar acid 

dehydratases (SADHTs). The latter contain the DHAD from Paralcaligenes ureilytius (PuDHT), the 

D-xylonate dehydratase from Caulobacter crescentus (CcDHT), and the L-arabinonate dehydratase from 

Rhizobium leguminosarum (RlArDHT), among others. Finally, there are also dehydratases characterized 

with a less clear substrate preference, such as the DHAD from Saccharolobus solfataricus (SsDHAD), which 

we therefore classified in promiscuous acid dehydratases (PADHTs). However, there are also dehydratases 

characterized which bind a [4Fe-4S] cluster instead, such as the DHAD from Escherichia coli (EcDHAD) and 

the 6-phosphogluconate dehydratases (6-PGDHTs) from Zymomonas mobilis (Zm6PGDHT).[301, 302] 
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Moreover, Bayaraa et al.[303] recently characterized the DHAD from Campylobacter jejuni (CjDHAD) and 

Staphylococcus aureus (SaDHAD), and suggest that these enzymes bind a [4Fe-4S] cluster, but this could 

not be confirmed due to the lack of structural models. A phylogenetic tree generated from characterized 

dehydratases belonging to these classes (Figure 13A) shows the evolutionary relationship between them. 

The classification described above based on the substrate preference of dehydratases is also reflected in 

its phylogenetics, as enzymes belonging to these classes cluster together in their own clades. This 

phylogenetic study also resolves that BCADHTs and PADHTs are rather well connected, with sequence 

identities ranging from 31-79 % for the BCADHTs and PADHTs included in this dissertation (Figure 13B). 

Moreover, while the dihydroxy acid dehydratases (BCADHT, PADHT, and [4Fe-4S]-DHADs) share 

somewhat similarity between them, with sequence identities >28 %, the sugar acid dehydratases 

(SADHTs, as well as 6-PGDHT) are more distant from the other classes (seq. identity 17—26 % to the 

DHADs), illustrating an earlier separation during evolution. Interestingly the dehydratases which require 

a [4Fe-4S] cluster for their activity ([4Fe-4s]-DHADs and 6-PGDHTs) do not share a high sequence similarity 

to each-other, but are more similar to other [2Fe-2S]-dependent dehydratases, which may indicate that a 

small number of mutations might be sufficient to change the preference of a dehydratase from a [2Fe-2S] 

to a [4Fe-4S] cluster.  

Several conserved residues and motifs can be observed in ilvD/EDD enzymes, such as the fully-conserved 

CDK motif (Figure 13C), which contains an FeS-coordinating cysteine, as well as an aspartate and 

(carboxylated) lysine residue, which both are involved in the coordination of a Mg2+ ion. Furthermore, the 

other Mg2+-coordinating residues are fully conserved, with position 89 (PuDHT numbering) either an 

aspartate or glutamate, as well as the catalytically essential serine (position 476 for PuDHT) in a SGXX 

motif, with X being either T, S, or A, which was one of the motifs studied in this dissertation (Chapter 3.4; 

Appendix 1). While the FeS-coordinating cysteine residues C125 (CDK motif) and C198 (both PuDHT 

numbering) are fully conserved within the ilvD/EDD superfamily, C57 in the PCN motif is only conserved 

within the [2Fe-2S]-containing dehydratases (i.e. SADHT, BCADHT, and PADHT). In this alignment position, 

a PGH and SAH motif is observed for [4Fe-4S]-DHADs and 6-PGDHTs, respectively (Figure 13C). Due to the 

nearby histidine (PGH and SAH), it has been suggested by numerous people including Bashiri et al.[212] 

that this histidine may coordinate the FeS instead.[212, 304] Rahman et al.[210] however suggested C112 

(So6PGDHT numbering) within the CDG motif as a putative FeS-coordinating residue for 6-PGDHTs, but 

this cysteine is not present in the [4Fe-4S]-DHADs.  
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Figure 13. Sequence analysis of a selection of dehydratases belonging to the ilvD/EDD superfamily. The (A) phylogenetic tree and 
(B) sequence identity matrix are shown, illustrating the (evolutionary) relationship between these sequences. In (C) the multiple 
sequence alignment, conserved residues are depicted in red, with motifs containing the investigated FeS coordinating residues 
highlighted in cyan and yellow boxes. All dehydratases are colored based on their classification: 6-phosphogluconate 
dehydratases (6-PGDHTs; green), [4Fe-4S]-containing DHADs (blue), promiscuous acid dehydratases (PADHTs; magenta), sugar 
acid dehydratases (SADHTs; red) and branched chain acid dehydratases (BCADHTs; black). 

By constructing a structural model of CjDHAD followed by modelling of a [4Fe-4S] cluster in the active site, 

it can be observed that the suggested histidine (PGH and SAH motif) aligning the PCN motif is most likely 

too remote to coordinate the FeS cluster (Figure 14). This was also observed in AlphaFold structures of 

other [4Fe-4S]-DHADs and 6-PGDHTs (data not shown). However, this structural analysis indicates that 

D77 (CjDHAD numbering) may be a good candidate to coordinate the third iron of the [4Fe-4S] cluster 

(Figure 14). While being less common than cysteine residues, aspartate is able to coordinate FeS clusters 

as well, as shown by Yonemoto et al. in a [NiFe]-hydrogenase.[305] Alternatively, D78 could also 

coordinate the [4Fe-4S] cluster, but since this residue is involved in Mg2+ binding, coordination by D77 is 

more likely. Moreover, this D77 is conserved in a DDG motif in [4Fe-4S]-DHADs, and aligned to a CDG 

motif in 6-PGDHTs, i.e. the cysteine suggested by Rahman et al. There is an X-Ray structure available for a 

6-PGDHT from Shewanella oneidensis (So6PGDHT; PDB-ID: 2gp4), however, the model does not fit well in 

the observed electron density. Moreover, no FeS-coordinating cysteine residues could be found, partially 

due to the many unresolved loops around the active site. Rahman et al.[210] re-refined this structure 
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which led to a better fit to the observed electron density, where C112 (part of the CDG motif) and C154 

are located in the active site, which could potentially coordinate the FeS cluster. However, the third 

cysteine was present in an unresolved loop. Therefore, AlphaFold structures for 6-PGDHTs, including 

So6PGDHT were generated for this discussion. These structures indeed suggest the cysteine within the 

CDG motif to coordinate the [4Fe-4S] in 6-PGDHTs (Figure 14). The final coordination position for the last 

iron is probably vacant, similarly to what has been observed for [2Fe-2S] dehydratases, as this iron may 

coordinate the substrate, and abstract the C3’OH proton to initiate the reaction.[40, 209] 

 

Figure 14. Structural models of the DHAD from Campylobacter jejuni (CjDHAD) generated by AlphaFold, followed by manual 
modeling of a [4Fe-4S] cluster in the active site. The [4Fe-4S] cluster and important binding site residues, as well as His47, are 
shown in sticks, while the Mg2+ ion is represented as a green sphere. 

In summary, based on sequence and structural analysis, this author suggests that besides the two fully 

conserved cysteine residues, the aspartate or cysteine in a respective DDG ([4Fe-4S]-DHADs) or CDG motif 

(6-PGDHTs) coordinates the [4Fe-4S] cluster. This hypothesis requires further experimental elucidation by 

site-directed mutagenesis and EPR studies, which could finally provide an explanation for the so far 

unclear, but often discussed FeS coordination in [4Fe-4S]-dependent dehydratases. 
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5 CONCLUSIONS AND OUTLOOK 

In this dissertation, a complete enzyme engineering pathway has been followed and partially designed, 

with special emphasis on metalloproteins as target. The first part of this dissertation describes the 

development of the bioinformatics algorithm EnzymeMatch, which can support the search of enzymes 

catalyzing a target reaction on a user-specified substrate, and thus potentially fulfilling the role as 

biocatalyst. So far, existing algorithms require the structure of an enzyme as input, and search for proteins 

with a similar binding site/active site geometry. EnzymeMatch however only requires the target substrate 

as input, as it automatically designs an optimal binding site around it, and searches for enzymes with a 

matching binding site in the Protein Data Bank. The implementation of a graph theoretical method in 

EnzymeMatch allows for a highly efficient screening of all Protein Data Bank entries, as well as a 

straightforward ranking of the identified matched enzymes. 

Alternatively, if the target enzyme or protein is already known, one may still not know the exact location 

of the binding site, which is essential information for (semi-)rational protein engineering studies. Since 

experimental elucidation of the binding site is challenging, several computational approaches have been 

developed to take over this task. However, the majority of these methods rely on the rigid-protein 

approximation, an approximation which is known to be often invalid, especially when only information 

about apo-structures is available. The second part of this dissertation describes the development and 

evaluation of DynaBiS, which explicitly includes both protein- and ligand flexibility. DynaBiS applies soft-

core potentials and allows protein-ligand overlap to identify binding sites for large and flexible ligands, 

such as peptides. DynaBiS was shown to outperform the commonly applied binding site identification 

algorithms AutoSite and AutoDock, in particular for peptide binding sites. Moreover, the sampling 

algorithm behind DynaBiS was able to simulate the correct binding sites for all 26 evaluation systems, 

while predicting the correct site for 19 systems as top-ranked prediction. For all but one system, the 

correct binding site was present in the top five ranked binding site predictions. This strong performance 

illustrates the importance of a flexible treatment of both the protein and ligand in a computational binding 

site identification method. To make DynaBiS more broadly applicable, it would be worth implementing 

the DynaBiS algorithm in the newest DynaCell code (i.e. a wider in-house simulation package containing 

e.g. the DynaDock and OPMD algorithms), which is planned to be presented to the public in the near 

future. Moreover, scoring remains the biggest challenge in both molecular docking and binding site 

identification. The pepscore was applied as scoring function in DynaBiS, which is a force-field scoring 

function trained on 15 peptide binding sites during the development of DynaDock by Iris Antes.[169] 
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Thus, DynaBiS may strongly benefit from a further optimized scoring function, potentially containing 

additional empirical terms as well. Such a scoring function could also be developed for small molecules, 

which may positively affect the scoring capability of DynaBiS for small ligand binding sites.  

In order to rationally design a protein engineering study, information about the role of binding site 

residues is essential. Molecular dynamics simulations can provide such information, making them a 

popular tool in rational protein engineering studies. However, many proteins, especially enzymes, contain 

a metal ion as cofactor in the binding/active site. Simulations of these metal sites with biomolecular force 

fields remains challenging, especially if the metal ion is present in a highly flexible site with numerous 

potential ligating atoms, which is often true in the active sites of enzymes. To this end, the third part of 

this dissertation describes a benchmarking study of numerous metal ion models to describe Zn2+ ions in 

ligand binding sites. This benchmarking study was performed for Zn2+, as this is a highly versatile, 

biologically available metal ion, which is often found in catalytically relevant metalloproteins.[225, 226, 

306] The performance of these Zn2+ models was evaluated on several aspects, including the ability to 

sample the correct coordination geometry, the preference of certain types of ligating atoms, as well as 

the overall stability of the simulation. This resulted in large performance differences and allowed 

suggestions of suitable simulation conditions for varying modelling approaches. This data further 

indicated that Zn2+ ions adopting a tetrahedral coordination are still not accurately described by existing 

Zn2+ models. Since the dummy-atom models performed best for the octahedral site and were able to 

enforce a coordination geometry while still allowing for ligand exchange, this type of model may be most 

suitable for a tetrahedral Zn2+ model as well. An initial design approach for a new tetrahedral Zn2+ model 

was not successful, illustrating that stable metal ligation is not fully reflected in ion-water interaction 

energy profiles. However, the model developed by Macchiagodena et al.[276, 297], in which new force 

field residues were developed for Zn2+-coordinating residues was very promising. Therefore, a 

combination of this approach with a tetrahedral dummy-atom model may be an interesting 

parameterization procedure to explore. 

Finally, the application of rational protein engineering with a strong computational input has been 

illustrated in several studies described in this dissertation. For example, sequence, structure, and activity 

relationships within [2Fe-2S]-dependent dehydratases were deduced, which led to the proposal of a new 

classification scheme reflecting substrate preference and evolutionary relationships. Moreover, mutation 

hotspots were identified which were further investigated with site-directed and saturation mutagenesis. 

This resulted in several variants with altered substrate preference and improved activity towards non-
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native substrates. These results can guide further dehydratase engineering, ultimately leading to a more 

efficient production of biofuels and other fine chemicals. The structural information and sequence, 

structure, and activity relationships can be further extended to [4Fe-4S]-dependent dehydratases and 

potentially elucidate the so-far unknown coordination of the [4Fe-4S] cluster. For example, in this 

dissertation, the suggestion is raised that the first aspartate residue in the conserved DDG motif within 

[4Fe-4S]-dependent dehydratases coordinates the [4Fe-4S] cluster, rather than the previously suggested 

histidine in PGH/SAH motif. Moreover, in 6-phosphogluconate dehydrogenases, the cysteine in a CDG 

motif may coordinate the [4Fe-4S] cluster, which is present at the same alignment position as the DDG 

motif for [4Fe-4S]-dependent dehydratases. Experimental elucidation of this hypothesis, for example via 

site-directed mutagenesis, would be scientifically interesting. This would resolve the “missing cysteine” 

problem, which concerns the unknown [4Fe-4S]-coordinating residue, and provide valuable information 

about the structure of these dehydratases and promising biocatalysts. 

The application of biomolecular simulations in metalloproteins has been illustrated in two structure-based 

drug discovery settings as well, namely in the characterization of an amidohydrolase PurAH, and in the 

rationalization of observed inhibition in metallo-β-lactamases. Both applications provide useful insights 

which can support the development and/or biosynthesis of drugs: in the first application a natural product 

with antibiotic activity, and in the second application a metallo-β-lactamase inhibitor. The development 

of such drugs are expected to have major impact in biomedicine, and computational chemistry can play a 

significant supporting role to accomplish these goals. 

All by all, this dissertation describes the development of two new algorithms which can support in the 

identification of potential biocatalysts (EnzymeMatch) or identify so-far unknown binding sites for difficult 

targets (DynaBiS), and suggests suitable simulation conditions for metalloproteins. The role of 

computational biology has been illustrated in both an enzyme engineering setting showcased by the 

development of several [2Fe-2S]-dependent dehydratase variants, as well as in a drug-discovery setting 

showcased by molecular characterization of PurAH, and the rationalization of metallo-β-lactamase 

inhibition by clavulanic acid. The results and new algorithms presented here open up new strategies to 

further advance both rational enzyme engineering and structure-based drug discovery. 
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Appendix 1. Multiple Sequence Alignment of dehydratases belonging to the ilvD/EDD superfamily. Conserved residues are 
indicated in red, and secondary structure elements (from the PuDHT structure) are indicated above the alignment. 
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Protein Organism UniProtKB PDB-ID 

Dehydratases 
   

PuDHT Paralcaligenes ureilyticus A0A4R3LQ44 n.a. 

CcXylDHT Caulobacter crescentus Q9A9Z2 5oyn 

RlArDHT Rhizobium leguminosarum B5ZZ34 5j83, 5j84, 5j85 

FtDHAD Fontimonas thermophila A0A1I2J0Y3 n.a. 

MtDHAD Mycobacterium tuberculosis P9WKJ5 6ovt 

SnDHAD Synechocystis sp. P74689 6nte 

AtDHAD Arabidopsis thaliana Q9LIR4 5ze4, 5ym0 

SsDHAD Sulfolobus solfataricus Q97UB2 n.a. 

MsDHAD Metallosphaera sedula A4YEN4 n.a. 

StoDHAD Sulfurisphaera tokodaii Q96YK0 n.a. 

EcDHAD Escherichia coli P05791 n.a. 

CnN1DHAD2 Cupriavidus necator F8GPL1 n.a. 

CjDHAD Campylobacter jejuni A8FJH6 n.a. 

SaDHAD Staphylococcus aureus P65156 n.a. 

CgDHAD Corynebacterium glutamicum Q8NQZ9 n.a. 

Zm6PGDHT Zymomonas mobilis P21909 n.a. 

Ec6PGDHT Escherichia coli P0ADF6 n.a. 

So6PGDHT Shewanella oneidensis Q8EEA0 2gp4[a]  

Metallo-β-lactamases 
   

CSR-1 MBL Cronobacter sakazakii NCBI: 
WP_007898024.1 

6dq2 

L1 MBL Stenotrophomonas maltophilia P52700 2aio 

MIM-1 MBL Novosphingobium 
pentaromativorans 

G6EHN2 6auf 

VIM-2 Pseudomonas aeruginosa Q9K2N0 6hf5 

Others 
   

PurAH  
(Bottromycin amidohydrolase) 

Streptomyces purpureus 

 

A0A5S8WF49 6i5s 

CAII 
(Carbonic Anhydrase II) 

Homo sapiens 

 

P00918 5nxg 

Appendix 2. Overview of proteins described in this dissertation. 
[a]: Structure only partially resolved 
n.a. = not available 
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8 ABBREVIATIONS 

6PGDHT: 6-Phosphogluconate Dehydratase 
AQD: Automatic Query Design 
BCADHT: Branched-Chain Acid Dehydratase 
CA: Carbonic Anhydrase 
CASP: Critical Assessment of Structure Prediction 
CAST: Combinatorial Active-Site Saturation Test 
COSMO: Conductor like Screening Model 
DFT: Density Functional Theory 
DHAD: Dihydroxy-acid dehydratase 
DHIV: (R)-2,3-dihydroxyisovalerate 
DHT: (sugar-acid) dehydratase 
DOPE: Discrete Optimized Protein Energy 
EC: Enzyme Commission 
ED: Entner-Doudoroff (pathway) 
FRISM: Focused Rational Iterative Site-specific Mutagenesis 
GA: Generic Algorithm 
GAFF: General Amber Force Field 
HF: Hartree-Fock 
ISM: Iterative Saturation Mutagenesis 
KIV: 2-ketoisovalerate 
LJ: Lennard Jones 
MBL: Metallo-β-Lactamase 
MC/SA: Monte Carlo/Simulated Annealing 
MM: Molecular Mechanics 
MM-(PB/GB)SA: Molecular Mechanics – (Poisson Boltzmann/Generalized Born) Surface Area 
MSA: Multiple Sequence Alignment 
ONIOM: Our own N-layered Integrated Molecular Orbital + Molecular Mechanics 
OPMD: Optimized Potential Molecular Dynamics 
PADHT: Promiscuous Acid Dehydratase 
PASS: Putative Active Site with Spheres 
PCR: Polymerase Chain Reaction 
PDB: Protein Data Bank 
pdf: Probability Density Function 
PES: Potential Energy Surface 
PSCP: Protein Side-Chain Packing 
RiPP: Ribosomally synthesized and post-translationally modified peptide 
SASA: Solvent Accessible Surface Area 
QM: Quantum Mechanics 
QM/MM: Quantum Mechanics/Molecular Mechanics 
QMEAN: Qualitative Model Energy Analysis 
QMEANDisCo: Qualitative Model Energy Analysis with Distance Constraints 
SADHT: Sugar Acid Dehydratase 
SE: Semi-Empirical 
VIM-2: Verona Integron-encoded Metallo-β-lactamase 2  



166 | 10 List of Figures 

Okke Melse 

9 LIST OF TABLES 

Table 1. Overview of regularly applied scientific software and algorithms in this work. .......................... 47 

 

10 LIST OF FIGURES 

Figure 1. Number of entries in the Protein Data Bank per year. .................................................................. 4 

Figure 2. Schematic overview of the lock-and-key model (A), the induced-fit model (B) and the  

conformational selection model (C), illustrated for a hypothetical system representing an enzyme cleaving 

a substrate, with the equilibrium lying on the product side. ..................................................................... 22 

Figure 3. Structure of DHADs, illustrating the active site at the dimer interface and active site composition 

(A) and chemical reaction catalyzed by DHADs (B). .................................................................................... 31 

Figure 4. Structural representation of the B3-RQK member CSR-1 MBL (PDB-ID: 6qd2), illustrated as (A) 

surface representation, and (B) cartoon representation with an inlet illustrating the active site, and (C) the 

reaction catalyzed by MBLs. ....................................................................................................................... 33 

Figure 5. Structural representation of (A) CAII (PDB-ID: 5nxg) and (B) PurAH (PDB-ID: 6i5s). ................... 34 

Figure 6. Illustrations of metal ion models. ................................................................................................ 42 

Figure 7. Combined LJ and Coulomb soft-core potential for different values of the soft-core scaling 

parameter α. The potential is calculated for a C-H pair. ............................................................................ 44 

Figure 8. Illustration of the additive and subtractive scheme applied in QM/MM and ONIOM calculations.

 .................................................................................................................................................................... 46 

Figure 9. Illustration of the interaction point matching algorithm in EnzymeMatch including the 

consideration of ligand flexibility. ............................................................................................................. 125 

Figure 10. The results of the docking study of (A) a truncated native substrate (with the substrate colored 

according to the applied fragmentation), and (B) a truncated substrate analogue as used in the in vitro 

experiments. ............................................................................................................................................. 132 

Figure 11. Potential energy surfaces between Zn2+ and (A) TIP3P water and (B) a cysteine analogue. .. 134 

Figure 12. Comparison of binding modes observed in B3-type metallo-β-lactamases (MBLs). ............... 137 

Figure 13. Sequence analysis of a selection of dehydratases belonging to the ilvD/EDD superfamily. ... 140 

Figure 14. Structural models of the DHAD from Campylobacter jejuni (CjDHAD) generated by AlphaFold, 

followed by manual modeling of a [4Fe-4S] cluster in the active site. ..................................................... 141 


	i. Summary
	ii. Zusammenfassung (DE)
	iii. Samenvatting (NL)
	iv. Acknowledgements
	v. Publications list
	1 Introduction
	1.1 Enzymes as biocatalyst
	1.1.1 Principles of biocatalysis
	1.1.2 Industrial applications

	1.2 Enzyme engineering and design
	1.2.1 Directed evolution
	1.2.2 Semi-rational protein engineering
	1.2.3 Rational protein engineering
	Engineering toward more stable enzymes
	Engineering to modify enzyme-substrate specificity
	Improving enzyme activity
	De novo enzyme design

	1.2.4 Biomolecular simulations in biocatalyst development

	1.3 Structure prediction
	1.3.1 Homology Modelling
	Template search and selection
	Model building
	Loop modelling
	The protein side-chain packing problem
	Quality assessment
	Model refinement

	1.3.2 AlphaFold
	CASP14 and the protein folding problem
	The algorithm behind AlphaFold
	Preprocessing and template identification
	Evoformer block
	Structure module
	Impact of AlphaFold, is the protein folding problem solved?


	1.4 Binding site identification
	1.4.1 Surface-scanning algorithms
	1.4.2 Cavity mapping
	1.4.3 Template-based approaches
	1.4.4 Affinity grid representations
	1.4.5 Blind docking

	1.5 Protein-ligand complex prediction
	1.5.1 Approaches relying on the rigid protein approximation
	Shape complementary and incremental construction algorithms
	Genetic algorithms

	1.5.2 Consideration of protein flexibility in molecular docking simulations
	Ensemble docking and side-chain flexibility
	Ligand-induced protein flexibility

	1.5.3 Evaluation of docked complexes
	Physics-based scoring functions
	Alternative scoring approaches

	1.5.4 Model refinement and analysis
	Pharmacophore constraints
	Pose refinement by molecular dynamics simulations
	Application of Quantum Mechanical calculations in molecular docking simulations


	1.6 Metalloenzymes
	1.6.1 Dihydroxyacid Dehydratases
	1.6.2 Metallo-β-Lactamases
	1.6.3 Carbonic Anhydrase
	1.6.4 Amidohydrolases

	1.7 Aims of this work
	1.7.1 Development of an efficient screening algorithm identifying enzymes capable of catalyzing target reactions
	1.7.2 Development of a binding site identification algorithm with explicit consideration of protein- and ligand flexibility
	1.7.3 Benchmarking Biomolecular force field-based strategies to simulate Zn2+ containing metalloproteins
	1.7.4 Application of multiscale modelling techniques to engineer [2Fe-2S]-dependent dehydratases


	2 Theory and Methods
	2.1 Potential energy functions
	2.1.1 Molecular Mechanics
	Force fields
	Interactions with metal ions
	Soft-core potentials

	2.1.2 Hybrid Quantum Mechanics/Molecular Mechanics simulations
	QM/MM interface
	Additive and subtractive schemes


	2.2 Applied methodology
	2.2.1 Homology modelling
	2.2.2 Molecular docking simulations
	AutoDock
	FlexX
	DynaDock

	2.2.3 Molecular dynamics simulations
	System and ligand preparation, parameterization, definition of protonation states
	Simulation protocol

	2.2.4 Hybrid QM/MM simulations


	3 Results
	3.1 EnzymeMatch: Identification of Enzymes Capable of Catalyzing Target Reactions using Interaction Pattern Matching
	3.2 DynaBiS: A Hierarchical Sampling Algorithm to Identify Flexible Binding Sites for Large Ligands and Peptides
	3.3 Benchmarking Biomolecular force Field-Based Zn2+ for Mono- and Bimetallic Ligand Binding Sites
	3.4 Structure-Guided Modulation of the Catalytic Properties of [2Fe-2S]-Dependent Dehydratases
	3.5 Thiazoline-Specific Amidohydrolase PurAH is the Gatekeeper of Bottromycin Biosynthesis
	3.6 Broad Spectrum Antibiotic-Degrading Metallo-β-Lactamases are Phylogenetically Diverse

	4 Discussion
	4.1 Computer-Aided identification of potential biocatalysts and ligand binding sites
	4.1.1 Target and biocatalyst identification
	4.1.2 EnzymeMatch: challenges, features, and perspectives
	4.1.3 Protein-ligand interaction points in search queries
	4.1.4 Consideration of protein- and ligand flexibility during binding site identification
	4.1.5 Fragment-based molecular docking combined with QM/MM simulations

	4.2 Biomolecular simulations of metalloproteins
	4.2.1 Classical simulations
	4.2.2 Hybrid QM/MM simulations: metallo-β-lactamases

	4.3 Rational enzyme engineering: Dihydroxy-acid Dehydratases

	5 Conclusions and Outlook
	6 References
	7 Appendices
	8 Abbreviations
	9 List of Tables
	10 List of Figures

