

Technische Universität München

TUM School of Engineering and Design

Quality Assessment Procedure for IEC 61131-3-based

Control Software for Machine and Plant Manufacturers

Juliane Barbara Fischer

Vollständiger Abdruck der von der TUM School of Engineering and Design

der Technischen Universität München zur Erlangung des akademischen Grades einer

Doktorin der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz: Prof. Dr.-Ing. Johannes Fottner

Prüfer*innen der Dissertation:

1. Prof. Dr.-Ing. Birgit Vogel-Heuser

2. Assoc. Prof. Dr. Elisabet Estévez Estévez

3. Prof. Dr.-Ing. Ina Schaefer

Die Dissertation wurde am 21.06.2022 bei der Technischen Universität München eingereicht

und durch die TUM School of Engineering and Design am 04.10.2022 angenommen.

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind im Internet über <http://dnb.de> abrufbar.

Quality Assessment Procedure for IEC 61131-3-based Control Software
for Machine and Plant Manufacturers

Autorin:
Juliane Barbara Fischer

ISBN: 978-3-96548-155-8 (Print)
ISBN: 978-3-96548-156-5 (E-Book)

1. Auflage 2023
Cover: sierke MEDIA, Göttingen

© 2022 sierke VERLAG
sierke WWS GmbH
info@sierke-verlag.de
http://www.sierke-verlag.de

Das Buch einschließlich aller seiner Teile ist urheberrechtlich geschützt.
Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist
ohne Zustimmung des Verlags unzulässig und strafbar. Der Nutzer verpflichtet sich,
die Urheberrechte anzuerkennen und einzuhalten.

La manera más efectiva de hacer algo es hacerlo.

(The most effective way to do it, is to do it.)

Amelia Earhart

Acknowledgments

First of all, I want to thank Prof. Birgit Vogel-Heuser for giving me the chance to pursue a Ph.D. under her

supervision. She gave me the freedom to work on my research projects independently but with continuous

encouragement, support and advice. I am deeply thankful that she kept constantly challenging me, which

enabled me to grow beyond myself professionally and personally.

Moreover, I want to especially thank Prof. Elisabet Estévez Estévez and Prof. Ina Schaefer for their agree-

ment to examine my work. Furthermore, I want to thank Prof. Johannes Fottner for chairing the examination

committee.

I would also like to thank Prof. Marga Marcos for all the fruitful discussions we have had over the years

ever since she gave me the opportunity to write my master’s thesis at her institute in Bilbao.

Throughout my time at the institute, I had the pleasure to work with many motivated students who signifi-

cantly contributed to my research through numerous discussions and prototypical implementations. I hope

that all of you enjoyed and benefited from our collaborations as much as I did. Of all the students I want to

especially thank Simon Parigger, Fabian Haben, Jan Wilch, Anja Berscheit, and Christoph Huber.

I am very grateful to all my colleagues and former colleagues for numerous discussions during coffee breaks

(not always of scientific nature). Their motivation, support and advice helped me to keep going even in

stressful times. I would like to say a special thank you to Emanuel Trunzer, who encouraged me and gave

constructive, honest feedback at all times, to my office colleague Eva-Maria Neumann for always being

supportive and tirelessly showing my doubting perfectionism that the glass is half full, to Suhyun Cha for

our virtual co-working sessions, to Frieder Loch for cheering me up in stressful times and to Dorothea

Pantförder for her constant helpful advice. Moreover, many thanks to Thomas Mikschl for his great support

with various implementations in the projects I was involved in.

Furthermore, I would like to thank all industry partners I worked with for their continuous feedback. They

enabled me to develop and evaluate the concept proposed in this thesis with real industrial control software

projects while considering industrial challenges and boundary conditions.

In addition, I want to thank Heinz-Gerd, who had a guilty conscience when he didn’t make me feel guilty

on Mondays because I still had not set myself a deadline to complete this work.

Finally, I want to thank my family and friends (especially the Cesation), who supported me at all times,

always believed in me and were understanding and patient when I was busy.

Table of Contents

1. Introduction .. 1

1.1. Motivation for Software Assessment with Static Code Analysis 1

1.2. Structure of this Dissertation .. 3

1.3. Delimitation to Other Research Work in the Scope of Various Research Projects 3

2. Field of Investigation .. 5

2.1. Industrial Automation ... 5

2.2. Background on the Domain of Automated Production Systems 7

2.3. Reuse Strategies for Control Software.. 10

2.4. Static Code Analysis and Software Metrics ... 13

3. Requirements for a Software Quality Assessment Procedure with Static Code

Analysis .. 17

3.1. Applicability in the Domain of Automated Production Systems.................................. 17

3.2. Procedure Application by Software Developers including Adaptations to Company-

specific Boundary Conditions ... 18

3.3. Conducting Static Code Analysis for Quality Assessment ... 20

3.4. Use of Analysis Results to Derive Recommendations for Action 22

3.5. Limitations of the Concept’s Scope .. 23

4. State-of-the-Art ... 25

4.1. Static Control Software Analysis and Software Metrics .. 26

4.1.1. Static Code Analysis targeting Control Software ... 26

4.1.2. Overview of Software Metrics Focusing on Control Software 33

4.1.3. Commercial Tool-support for PLC Software Analysis .. 36

4.2. Code Analysis Procedures for the Quality Assessment of Industrial Software 38

4.3. Research Gap in Quality Assessment of Control Software .. 43

5. Procedure for Quality Assessment of Legacy Control Software with Static Code

Analysis .. 45

5.1. Quality Assessment Procedure for Legacy Control Software 45

5.1.1. Pre-considerations Regarding the Quality Assessment of Control Software 45

5.1.2. Overview of the Quality Assessment Procedure for IEC 61131-3-based Control Software

in an Industrial Context .. 49

5.2. Detailed Introduction to the Quality Assessment Procedure .. 51

5.2.1. Familiarizing with Company-specific Boundary Conditions (Step 1) 51

5.2.2. Static Code Analysis of a PLC Software Excerpt or Single Project (Step 2) 59

5.2.3. Comparison and Results’ Documentation of Additional PLC Software Parts or Projects

Regarding the Selected Goal (Step 3) ... 71

5.2.4. Identification of Improvement Potentials, Including the Derivation of Recommendations

for Action (Step 4) .. 80

6. Implementation ... 91

6.1. Prototypical Implementation of Context-sensitive, Configurable Static Code Analysis

Concepts .. 91

6.2. Different Visualizations of Static Code Analysis Results .. 93

7. Qualitative Evaluation .. 97

7.1. Qualitative Evaluation with Case Studies ... 98

7.1.1. Industrial Case Study B: Variability Analysis in the Intralogistics Sector 102

7.1.2. Industrial Case Study C: Analysis of Version History and Estimation of Reuse Potential

in the Automotive Sector (Component Assembly) ... 113

7.1.3. Additional Insights from Industrial Case Study D .. 124

7.1.4. Insights from Case Study E with a Lab-sized Demonstrator 125

7.1.5. Summary of Insights Gained Through Case Studies .. 127

7.2. Evaluation with Industrial Experts in Industry Working Group 132

7.2.1. Evaluation of the Industrial Applicability of the Quality Assessment Procedure with

Online Questionnaire .. 132

7.2.2. Group Discussions on Challenges of Application in an Industrial Context 136

7.3. Expert Workshop with an Industrial Focus Group in the Food and Beverage Sector 138

7.3.1. Evaluation of the Applicability of the Quality Assessment Procedure 139

7.3.2. Challenges Regarding the Applicability in an Industrial Context 141

8. Assessment of the Fulfillment of the Requirements ... 147

9. Summary and Outlook ... 151

10. Literature ... 155

11. List of Figures .. 177

12. List of Tables ... 181

13. List of Abbreviations .. 185

Appendix A. Interview Guidelines and Checklist .. 187

Appendix A.1 Interview Guiding Questions and Project Selection (in Procedure Step 1) 187

Appendix A.2 Analysis Checklist (Used in Procedure Step 2) .. 191

Appendix B. Industry-WG: Questionnaire and Results .. 193

Appendix B.1 Industry-WG Questions in German .. 193

Appendix B.2 Answers to the Online Questionnaire (translated to English) 195

Appendix C. Industrial Expert Workshop – Questions and Results 201

Appendix C.1 Single-choice Questions in German ... 201

Appendix C.2 Answers During the Workshop (translated to English) 202

1. Introduction

A short motivation for the quality assessment of control software for machines and plants is pro-

vided in the following. Subsequently, the structure of this thesis is introduced, followed by a de-

limitation to other research work in the research projects closely related to this thesis.

1.1. Motivation for Software Assessment with Static Code Analysis

Automated Production Systems (aPS) form a special, highly complex class of mechatronic sys-

tems, namely automated machines and plants, whose development generally comprises mechan-

ics, electrics/electronics and software parts, all closely interwoven [Vog⁺15b]. The amount of aPS

functionality implemented by control software is steadily increasing [DZ21; TB10; Vog⁺15a] and,

thus, software quality is gaining importance. Moreover, Industry 4.0 poses additional requirements

on the control software, such as evolvability, maintainability and changeability. In addition, the

global competition entails a shorter time-to-market, which necessitates reusing available and ma-

ture implementation parts, including control software on different platforms.

For the planned reuse of software, modular design approaches have been identified as key enablers

[Mey97]. They are supported by the three different types of control software units standardized in

IEC 61131-3 [IEC61131-3]. Despite standardized programming languages defined in IEC 61131-

3, the reuse of control software across different platforms is challenging since vendors provide

differing implementations of this standard [Bau⁺04; SS16; Sta⁺14]. Moreover, control software is

highly influenced and dependent on the controlled automation hardware [Can⁺21] and customer

requirements, leading to additional software variants [Vog⁺15b]. As a consequence, the unplanned

reuse strategy copy, paste and modify, where existing parts of or entire software projects are copied

and modified to fulfill the requirements of the currently developed aPS, is still the most common

form of reuse despite its various drawbacks [Fis⁺14; Fis⁺18]. This leads to a high amount of his-

torically grown legacy control software, which usually does not follow modular structures and

rarely follows strict coding guidelines [KP14].

According to a recent report, static code analysis is a preferred means to ensure software quality

in general-purpose software programming [Ove20]. Moreover, it is used for understanding and

documenting existing software [NNB19] and to reduce overall development costs. However,

standard tools from computer science cannot be used in the domain of aPS without adaptations

[Jet⁺13b] and the programming languages defined by IEC 61131-3 are supported by a few suppli-

ers only [Prä⁺17]. Thus, despite many advantages, static code analysis is not yet commonly used

2 1. Introduction

in aPS control software development. Consequently, the various stakeholders with different tasks

involved in the control software development, e.g., developers for standardized and for project- or

customer-specific software parts and their group leaders or project managers [Bou⁺19], so far have

little experience with quality assessment utilizing static code analysis.

The main objective of this doctoral thesis is to bridge this gap by developing a procedure for the

systematic, goal-oriented and context-aware quality assessment of control software by applying

static code analysis and software metrics. Thereby, the documentation of analysis results for dif-

ferent stakeholders and the subsequent derivation of recommendations for action are targeted to

enable the use of the gained insights. Consequently, the following research question is targeted:

How can the various stakeholders involved in control software development be supported

to independently integrate static analysis means and concepts from computer science into

their development workflow to assess control software quality and identify potentials for

its improvement, e.g., increasing planned reuse of existing software solutions?

The contents and contributions of this dissertation are based on previous publications by the au-

thor, namely [Fis⁺21a; Fis⁺21b; Fis⁺21c; Fis⁺22b; FVF15; Neu⁺20c; Vog⁺22a]. Key aspects of the

respective publications are given in the following:

[FVF15] Analysis of the industrial control software of an automated warehouse to enhance

planned reuse.

[Neu⁺20c] Software modularity is a key enabler of planned reuse in control software and in-

fluences many other factors.

[Fis⁺21a] Procedure to assess the modularity and reusability of control software units based

on software metrics, which quantify the dependencies between software units in

accordance with company-specific programming guidelines.

[Fis⁺21b] Approach for measuring the overall complexity of control software units in differ-

ent categories to identify outliers as a starting point for refactoring.

[Fis⁺21c] Company-specific boundary conditions, software characteristics and usability of

the reuse approaches need to be considered when choosing a reuse strategy.

[Vog⁺22a] Highlighting challenges and solution approaches for the reuse of extra-functional

control software parts with a focus on error handling.

1. Introduction 3

[Fis⁺22b] Proposal for assessing the conformance of control software with company-specific

programming guidelines using configurable rules. Highlights the importance of us-

ing suitable visualization means to illustrate the considered control software units

within their context.

1.2. Structure of this Dissertation

This thesis is structured as follows: Chapter 2 (p. 5) provides an overview of the field of investi-

gation and basic definitions. In Chapter 3 (p. 17), the domain requirements are presented, which

were derived from the current state of the art and industrial practices. Based on these requirements,

related works in the field of production automation and adjacent domains are investigated and

rated for their applicability in Chapter 4 (p. 25). In this literature review, a research gap for the

considered domain was identified. In Chapter 5, the procedure developed in this thesis for the

identified requirements and research gap is presented. Insights gained in pre-studies, which are

regarded by the developed procedure, are summarized in Section 5.1 (p. 45). The procedure con-

sists of four main steps, which are presented in detail in Section 5.2 (p. 51). Chapter 6 (p. 91)

introduces a prototypical implementation of selected aspects of the procedure. In Chapter 7, the

evaluation of the procedure is presented. It was performed using industrial case studies (Section

7.1, p.98), an expert workshop within the scope of an industry working group meeting (Section

7.2, p. 127) and an expert workshop with a company from the food and beverage application sector

(Section 7.3, p. 138). An assessment of the developed procedure regarding the derived require-

ments is presented in Chapter 8 (p. 147). The thesis concludes with Chapter 9 (p. 151), in which a

summary of the achieved results and an outlook on future research are given.

1.3. Delimitation to Other Research Work in the Scope of Various

Research Projects

The content of this thesis partially results from three research projects, which the author has

worked on during her time at the Institute of Automation and Information Systems (AIS) at the

Technical University of Munich (TUM).

Within the research project Increased flexibility for heterogeneously structured material flow sys-

tems enabled by intelligent software agents controlling self-configuring conveyors (iSiKon –

251665026) [GEP22b], which was funded by the German Research Foundation (DFG), the aim

was to achieve flexible, reconfigurable automated material flow systems with reusable high-qual-

ity control software. The project was a cooperation between the institutes AIS and Materials Han-

dling, Material Flow, Logistics (fml) at TUM from 2015 to 2018. After defining a joint system

https://www.mec.ed.tum.de/en/fml/cover-page/
https://www.mec.ed.tum.de/en/fml/cover-page/

4 1. Introduction

architecture, Christian Lieberoth-Leden from fml targeted the adaptation to material flow require-

ments, transport planning and route calculation and optimization from an intralogistics point of

view [Lie22]. Since 2017, the author of this thesis has worked on conceptualizing and implement-

ing software agents to control the individual material flow modules focusing on reuse, uniform

software module interfaces and functionality encapsulation in the control software [Fis⁺20c].

In the DFG-funded project Reverse Engineering Design of Software Product Lines for Automation

Technology (RED SPLAT – 335427442) [GEP22a], introducing a concept for variant management

and planned reuse of historically grown legacy control software was targeted. The project was a

cooperation between the AIS at TUM and the Institute of Software Engineering and Automotive

Informatics (ISF) at TU Braunschweig from 2017 to 2020. Alexander Schlie and Kamil Rosiak

from ISF developed and implemented a concept for defining and automatically calculating simi-

larity metrics to identify control software variants and store them as family models [Ros⁺21a]. The

author of this thesis manually analyzed several industry-sized control software variants and docu-

mented them in models to derive prerequisites and requirements for their tool-based identification.

This included requirements for a domain-specific representation of the identified variability in a

software product line from the perspective of the machine and plant manufacturers. Moreover, the

author of this thesis conducted expert interviews to gain an insight into the current state of practice

regarding variant management and reuse [Fis⁺18]. In addition, Safa Bougouffa contributed at AIS

to the RED SPLAT project by preparing representative lab-sized control software examples, in-

cluding examples of domain knowledge and metadata, and developing a concept for visualizing

the identified variability, which was subsequently enhanced by the author of this thesis. In the

scope of evaluating the quality assessment procedure presented in this thesis, results from RED

SPLAT were used in Case Study E highlighting the identification and subsequent planned reuse

of control software variants as an essential aspect of improving software quality.

Moreover, the static code analysis of control software to support its revision and quality improve-

ment using refactoring was targeted in the research project Advanced systems engineering for con-

trol software as a prerequisite for flexible, adaptive cyber-physical production systems (advacode

– DIK0112/04) conducted at AIS in cooperation with four German companies. The project was

funded by Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie and

Zentrum Digitalisierung Bayern (ZD.B) from 2020 to 2022. During the project, the focus of the

author of this thesis and her colleague Eva-Maria Neumann was on the consideration of company-

specific boundary conditions during the static analysis. More precisely, Eva-Maria Neumann tar-

geted the identification of code clones and a function-oriented reuse approach for control software.

The author of this thesis worked on conformance checks of company-specific data exchange rules,

taking into account the implemented functionality and complexity of the various software parts.

2. Field of Investigation

The presented procedure aims to support the quality assessment of control software with guiding

questions, checklists and static code analysis. It is intended for industrial application in the domain

of aPS. To better understand the domain requirements and boundary conditions, the theoretical

background of the field of investigation, i.e., industrial automation, aPS and control software de-

velopment, is presented below. Moreover, available reuse strategies for control software and a

short introduction to static code analysis are provided.

2.1. Industrial Automation

Industrial automation aims to automate technical processes, i.e., processes that manipulate the

state of material, energy or information (cf. [LG99], p. 1). Technical processes consist of different

procedures (cf. [LG99], p. 43-47), which can be classified as continuous, event-discrete and ob-

ject-related. Continuous procedures such as deformation procedures in hydraulic presses contain

time-related, continuous process values and can be described with linear differential equations.

Event-discrete procedures consist of sequentially occurring, distinguishable (discrete) process

states such as different steps in a manufacturing process. They can be described with Petri nets or

flow charts. In object-related procedures, individual objects, e.g., produced parts, are transformed,

transported or stored, which can be modeled with simulations, state machines or Petri nets. Alt-

hough different procedures are mixed in a technical process, in most cases, a dominant procedure

type can be identified, which determines the type of the technical process, i.e., continuous, sequen-

tial (discrete) or batch process (cf. [LG99], p. 47).

Technical processes are executed in technical systems and can be automated with process automa-

tion systems (cf. Figure 1 and [LG99], p. 6). A process automation system consists of three closely

coupled subsystems, i.e., a controlled technical system (bottom) executing a technical process, a

computing and communication system (middle), and operating personnel (top). For interaction

with the technical process, sensors and actuators are utilized: sensors, which measure physical

quantities and convert them to electrical or optical signals, are used to observe the technical sys-

tem, while actuators influence the physical quantities of the technical process to control the tech-

nical system (cf. [LG99], p. 29). The sensor and actuator signals are exchanged between the tech-

nical system and the supervisory computing and communication system, which observes and con-

trols the technical process. Human operators usually interact with the computing and communica-

tion system via a human-machine interface (HMI) to supervise and influence the process or react

in case of an error.

6 2. Field of Investigation

Process automation system

Computing and communication system

(e.g., programmable logic controller (PLC),

Industrial PC (IPC), micro controller, bus system)

Technical system

(technical product or technical plant) executing a technical process

Humans (operating personnel)

for supervision and operation of a technical process

Process control Process result

Singals for control of

the technical process

Singals from the

technical process

Figure 1: Schematic structure of process automation systems (translated from [LG99], p. 7).

aPS are process automation systems that control production processes. Moreover, aPS form a spe-

cial class of mechatronic systems [BF03], i.e., automated machines and plants, whose develop-

ment involves mechanics, electrics/electronics and software, all closely interwoven [Vog⁺15b]. As

mechatronic systems, aPS have “the task of converting, transporting, and/or storing energy, mate-

rial, and information flows with the help of sensors, information processing, and actuators”

[VDI2206].

In aPS, typically, a programmable logic controller (PLC) or an industrial PC (IPC) is used as a

computing and communication system executing the control software. PLCs consist of a central

processing unit (CPU), power supply, memory, communication and circuit modules (input/output

(I/O) ports) to receive data from sensors and transmit data to actuators (cf. [Han15], p. 8). The

connection to plant peripherals, e.g., sensors and actuators, can be implemented via direct wiring

to the I/O ports or remote I/O modules, which communicate with the PLC via fieldbuses [Vya13].

The control software is loaded on the PLC memory and executed by the CPU, accessing I/O ports.

Typically, PLCs are characterized by their cyclic processing of the control software, with a cycle

being divided into four steps [Vog⁺15b]. At the beginning of each cycle, the PLC reads the input

values, i.e., sensor signals, from the technical process and stores them in a process image. Based

on the stored values, the PLC program is executed. Next, the output values, i.e., the control signals

for the actuators manipulating the technical process, are written. Finally, the PLC waits until the

predefined cycle time has elapsed. By executing tasks within designated cycle times, PLCs adhere

to real-time requirements, meaning that the set cycle times may never be exceeded to ensure pro-

cess stability, safety and security.

2. Field of Investigation 7

2.2. Background on the Domain of Automated Production Systems

This Section introduces the characteristics of aPS with a focus on control software development,

including platforms, programming languages, and boundary conditions to better understand the

domain’s constraints and requirements.

As aPS are mechatronic systems, their development process includes different disciplines, e.g.,

mechanics, electrics/electronics and software. The discipline’s collaboration during the develop-

ment still poses a major challenge [Fol⁺11]. Development processes for mechatronic products like

aPS are often sequential and range from established ones such as the V-model [VDI2206] to more

recent methods like Scrum [Scrum22]. In size, aPS range from machines to entire production

plants, with the input and output signals to and from the peripherals differing from some hundred

to up to 10.000 [Fis⁺18]. Moreover, aPS are often in use for decades, which leads to a high amount

of legacy software that has been programmed over several years by multiple software developers

and, consequently, rarely follows strict coding guidelines [KP14]. The legacy software is differ-

entiated into sequentially developed versions, i.e., “an initial release or re-release of a computer

software configuration item”, and in parallel existing variants, i.e., “a version of a program result-

ing from the application of software diversity” [IEEE610].

In recent years the degree of automation and, thus, the proportion of software in production auto-

mation has been growing [DZ21] and, consequently, control software implements an increasing

proportion of aPS functionality [Thr10]. This rising importance of control software requires ap-

proaches to cope with the challenges and specifics of aPS to enable a quick time-to-market with

well-tested, high-quality control software. Additionally, control software needs to fulfill specific

requirements regarding real-time and reliability [Vog⁺15b]. Typically, aPS are designed-to-order

systems with high complexity and variations resulting from customer-specific requirements and

the degree of on-site changes, increasing from machine manufacturing over special-purpose ma-

chinery to plant manufacturing [Vog⁺15b].

Usually, aPS control software is executed on PLCs, which are commonly programmed following

the IEC 61131-3 standard [IEC61131-3]. It defines three so-called Program Organization Units

(POUs) to enable the encapsulation of PLC software into reusable units, namely Programs

(PRGs), Function Blocks (FBs) and Functions (FCs). The main differences between these POUs

are that, in contrast to FCs, PRGs and FBs possess internal memory and FBs need to be instantiated

before their use. Tasks are used to define entry points, i.e., PRGs, into an aPS’s control software,

which are invoked depending on the task’s specified cycle time or priority. The entry points then

call other POUs, which can execute code and sub-calls of further POUs.

8 2. Field of Investigation

Each POU consists of a declaration part to define its variables and an implementation part that

contains the control code programmed in one of the five IEC 61131-3 programming languages.

The standard defines two textual programming languages, i.e., Structured Text (ST) and Instruc-

tion List (IL), and three graphical programming languages, i.e., Ladder Diagram (LD), Function

Block Diagram (FBD), and Sequential Function Chart (SFC). These programming languages are

usually mixed within a PLC project since they have different strengths [VFB03]. For example, ST

is similar to the high-level programming languages Pascal or C [Han15] and used for mathematical

equations, implementing controllers or technological functions. SFC is suitable for control se-

quences, while LD (derived from physical relays in circuit diagrams [LÅ07]) is proper for inter-

lock conditions and the assembler-like IL for time-critical functionalities. Consequently, the same

functionality can be implemented in different languages, leading to additional variability [Fis⁺18].

The implementation part of POUs programmed in IL, LD and FBD is divided into networks. For

structuring the data exchanged between POUs, apart from elementary variable data types, user-

defined data types (UDTs) can be defined, e.g., to store all data belonging to a manufactured prod-

uct in one data type. Moreover, variables can be defined in global variable lists (GVL).

The recent version of the IEC 61131-3 standard introduces three new language elements (methods,

inheritance and interface abstraction) as object-oriented (OO) extensions to enhance modularity

and reuse of control software. Various authors highlighted the benefits of object-oriented program-

ming (OOP) [BFS13; Vog⁺22a; Wer09] and tool support for the OO extension of IEC 61131-3

has been available for a decade [Wer09]. Moreover, first guidelines have been developed, such as

[PLC21]. However, according to a recent survey, with only 10% of the industrial participants using

OO IEC 61131-3 by default and 42% not using it at all for their control software development, it

is not yet the state of practice in industry [VO18]. Apart from the IEC 61131-3 and PLCs, also

more sophisticated control platforms and high-level programming languages are applied in the

industry. Furthermore, new approaches aim at low-cost, open-source solutions for designing aPS

(cf. [KS19] for an overview). However, these are not targeted in the scope of this thesis.

As the market penetration of different PLC platform suppliers differs, globally operating aPS man-

ufacturers regularly need to deliver their systems equipped with different PLC types, depending

on the market they are targeting [Fis⁺18]. Despite the standardized exchange format PLCo-

pen XML [IEC61131-10], which allows exchanging configuration elements, data types and POUs

between different IEC 61131-3 development environments, reuse of PLC software across different

platforms is still challenging. This results from inconsistencies in the standard leading to different

implementations of the standard, which reduce portability [SS16]. Additionally, some vendors like

Siemens use slightly different constructs, e.g., Organization Blocks (OBs) similar in function to

2. Field of Investigation 9

PRGs, but state their compliance to IEC 61131-3 [Sie15]. In Siemens PLCs, variables can be or-

ganized in Data Blocks (DBs), which are either global (similar to a GVL) or belong to an FB.

Functionality-wise, control software for aPS consists of two main parts, i.e., functional and extra-

functional implementation parts [Vog⁺22a]. Functional implementations include the control of ac-

tuators and the processing logic for implementing the aPS behavior in automatic mode. In contrast,

extra-functional software implements communication tasks, diagnosis, fault handling and operat-

ing modes, which are highly interconnected with functional parts. For example, the extra-func-

tional task error handling requires close connections to all functional parts controlling actuators to

trigger an actuator’s emergency stop if needed, which leads to fundamentally different code struc-

tures [Vog⁺22a]. Extra-functional code makes up around 50-75% of industrial control code

[LT03], causing complexity due to strong dependencies with functional code parts [Neu⁺20c].

Thus, suitable approaches for reusing the differently structured extra-functional parts are required

[Vog⁺22a]. An overview of typical functionalities in aPS software is provided in [Wil⁺22].

According to [Mey97; Vog⁺15b], defining a suitable software architecture is essential to ensure

high software quality and enable extendibility and reusability, as the architecture design directly

affects the software’s quality attributes [Lyt⁺20]. The standard ISO 42010 defines architecture as

the “fundamental concepts or properties of a system in its environment embodied in its elements,

relationships, and in the principles of its design and evolution” [ISO42010]. Various definitions

from computer science are in line with this definition, e.g., Reussner et al. [Reu⁺19] or Medvidovic

and Taylor [MT00]. However, these definitions are not applicable to control software since they

lack core characteristics of aPS, such as real-time requirements or the dependency on automation

hardware [Neu⁺22]. Therefore, in the domain of aPS, the following definition was derived:

Software architecture “is composed by the basic structure of the software determined by

design decisions forming the skeleton of the software. These design decisions primarily

determine modules’ size, interfaces, and interaction, i.e., groups of POUs jointly perform-

ing a specific functionality. Automation software architecture in CPPS [cyber-physical

production systems] is required to consider the hardware topology, including the number,

distribution, and connection of PLCs. Thus, architecture is dependent on the interface to

and the number and type of hardware I/Os, i.e., the sensors and actuators for controlling

the mechatronic system’s behavior.” [Vog⁺22b]

In the scope of this thesis, in addition to the definition by [Vog⁺22b], the implementation of extra-

functional tasks and information on the controlled production process, including its boundary con-

ditions, are considered essential to comprehend control software and assess its quality.

10 2. Field of Investigation

Vyatkin [Vya11] introduces a software architecture for distributed automation systems based on

the IEC 61499 standard [IEC61499], which defines event-driven FBs. Significant benefits of this

approach are reduced time and effort to develop automation software, a high degree of code mod-

ularity and a high potential for reuse. These benefits are already proven through first industrial

applications. However, the standard is not commonly used in the industry yet and “[...] has [still]

a long way in order to be seriously considered by the industry” [Thr13]. Furthermore, the pro-

gramming model proposed by IEC 61499 proved to be nondeterministic [CLÅ06] and is rated as

“too complicated to gain wide adoption in industry” [Seh⁺21].

For the development of high-quality PLC software, some application sector-specific guidelines

are available. For example, ISA 88 for batch processes [IEC61512; ISA88], PackML, including

the OMAC state machine, in the food and beverage sector [PackML] or SAIL for intralogistics

systems [VDI5100]. Moreover, some application sectors need to consider specific laws and stand-

ards, e.g., quality management of certified software in medical applications [ISO13485]. In addi-

tion, general recommendations and guidelines have been defined, e.g., by the PLCopen [PLC22],

a vendor- and product-independent consortium that works on standardization and harmonization

in industrial automation, e.g., concerning aspects such as motion control or safety. Moreover, a

technical report describes guidelines for applying and implementing the IEC 61131-3 program-

ming languages and their debugging [IEC61131-8]. Still, most companies define their own inter-

nal programming guidelines tailored to their needs and applied reuse strategies.

2.3. Reuse Strategies for Control Software

This section shortly introduces selected means from academia and industry to support the reuse of

PLC software while coping with aPS-specific challenges and constraints, including approaches

adopted from the computer science domain.

Generally, ISO/IEC 25010 defines reusability as the “degree to which an asset can be used in more

than one system” [ISO25010]. Moreover, modularity is considered a prerequisite for planned soft-

ware reuse [Mey97]. It is defined as the “degree to which a system or computer program is com-

posed of discrete components such that a change to one component has minimal impact on other

components” [ISO25010]. According to the mechatronic development standard, a module consists

of components (sensors and actuators) and fulfills a specific process or task [VDI2206-04]. With

a focus on control software, “conceptually, modules represent a separation of concerns and im-

prove maintainability by enforcing logical boundaries between components.” [ISO25023]. In the

scope of this thesis, a module is considered “a software unit that can be reused without any modi-

fications in different software systems” [Vya13]. Depending on the applied programming style, a

2. Field of Investigation 11

module can either be a single POU or a group of POUs. Modules should be managed according to

their level of granularity [MJG11a]. More precisely, their reuse potential increases with higher

granularity, but it also leads to a higher organizational effort in managing the modules [MJG11b].

The control software of aPS is usually modularized in a hardware-oriented way, i.e., following the

physical machine layout [Neu⁺22]. A function-oriented modularization principle for intralogistics

systems is proposed in [Hom⁺11]. Also, combining both principles is common: on the top level,

the control software is modularized following a hardware-oriented principle and the resulting mod-

ules are designed function-oriented [Fis⁺21a]. Schröck et al. propose to divide the software devel-

opment process into project-dependent and -independent tasks [SFJ15]. This separation enables

the design of software modules independently from a specific machine or order, facilitating their

reuse in different contexts without requiring extensive changes [Fis⁺21a]. Consequently, different

stakeholders are involved in the development of control software, e.g., managers, application de-

velopers for customized machine- or order-specific tasks and module developers for the develop-

ment of reusable, standardized modules [Bou⁺19]. Moreover, control software needs to be under-

stood by operators for troubleshooting [LÅ07]. By analyzing the control software of different in-

dustrial companies, Vogel-Heuser et al. [Vog⁺15a] identified five architectural levels in PLC soft-

ware, which can be mapped to the levels defined by ISA 88 [IEC61512; ISA88]. Generally, the

reuse potential of application-specific POUs correlates with the architectural hierarchy levels they

are located on: the higher the POU level, the lower usually its potential for reuse [Fis⁺18].

Generally, reuse strategies are differentiated into planned and unplanned forms [Mah14]. To stay

globally competitive and enable a short time-to-market, especially means for planned reuse are

essential [Fis⁺21c]. Apart from standardized modules organized in libraries, templates and design

patterns, also the use of models has been promoted as a solution to cope with the rising complexity

of software development [Vya13]. Various model-based approaches with different aims (e.g., gen-

eration of interlocking conditions or HMI software) and based on different inputs (e.g., design

models from specific application sectors like the process industry) exist in the aPS domain. In a

recent survey comparing 13 code generation approaches in the aPS domain, the merging of gen-

erated and manually developed code was identified as a point for future research [Koz⁺20]. More-

over, variant and version management was identified as a prerequisite for planned reuse (cf.

[Fis⁺14; Rab⁺18; Vog⁺15b]). However, identifying suitable, reusable software parts is a challeng-

ing and time-consuming task, which requires detailed knowledge of existing variants [Fis⁺15].

Additionally, approaches from the computer science domain cannot be applied to control software

from the aPS domain without changes due to its boundary conditions [Vog⁺15b]. A short overview

of available, planned reuse strategies is presented in Table 1.

12 2. Field of Investigation

Table 1: Selected reuse approaches for control software in the aPS domain.

Reuse Strategy Details on available approaches

Library modules/

library POUs
 Company-specific, standardized software modules (often developed in a dedicated depart-

ment; distinguished in company-wide or machine-type-specific libraries) [Fis⁺18]

 Vendor-specific library modules to ease controlling a vendor’s hardware

 Activities such as Open Source Community for Automation Technology [OSCAT]: devel-

opment of cross-vendor, open-source libraries to support programming of recurring func-

tionalities in PLC projects, which market-leading companies use

 Parameterizable universal modules as a particular form to represent different variants (risk

of a high amount of dead code) [Vog⁺17]

 Functionalities of a well-defined, reusable POU for hardware control [GWF08]

 Encryption of library modules to prevent modification by library users [Sta⁺14]

Templates  Pre-developed formats for individual POUs or entire software projects [Fis⁺21a]

 Useable in combination with code generation approaches [PKK12; PKS18]

Design Patterns Design patterns describe abstract, proven solutions to frequently recurring problems [Wu⁺20]

 The Gang of Four defined 23 design patterns in high-level OO programming [Gam⁺95]

 Design patterns for translating UML models into control software [FSB11], for PackML-

compliant PLC software, including operating modes [BBF15], and for mechatronic sys-

tems using OOP in packaging machines [BFS13]

 Structural design patterns in industrial PLC software [Fuc⁺14], formalized in [Neu⁺20b]

 Two Patterns for implementing the extra-functional task error handling [Vog⁺22a]

Model-driven

approaches and

code generation

(often in combina-

tion with templates)

Overview and classification of control code generation approaches with criteria derived from

industrial best practices, including inputs and generated outputs provided by [Koz⁺20]

 PLC Coder Matlab Toolbox (generation of LD and ST control logic; supported platforms

CODESYS, Rockwell, Siemens TIA, OMRON) [Math+22]

 Code generation from application sector-specific models, e.g.,

o generating interlocking conditions in the process industry by using documents

from the development process [DFS06]

o based on the module-type package (MTP) in process plants, with operating modes

(via PackML state machines) and HMI functionality [Lad⁺18]

o from the layout plan in the intralogistics domain [AFV22]

o with models used in the power generation industry [SC21]

o in process industry with piping and instrumentation diagrams (P&ID) [KKV18]

 PLCopen-compliant software generation, e.g.,

o from UML models (with mapping between profiles for control, electrical/elec-

tronic and software engineering views) [Pri⁺16]

o from SysML and feature models (generation of OO-IEC 61131-3) [PS13]

o with methodologies combining GEMMA (operation modes) and GRAFCET (be-

havior description in sequential processes) [Alv⁺12; BG21; Cas⁺21]

o with a formal model of GRAFCET for SFC [SF14] and ST code [Jul⁺17]

o a component-based IEC 61131-3 model using a markup language [EMO07]

 Code generation, including HMI functionality [HVA16]

 Template-based code generation from a plant model for TIA Portal [PKS18]

 Modular tool suite for code generation (XML-based; TIA Portal) [Arm⁺18]

 Model-driven development of PLC software for machine tools [ZP08]

 Ontology-based automatic code generation [SZ12], for different vendors [An⁺21]

Variant and version

management

(adopted from

computer science

domain)

Feature-oriented development paradigm [Cza98] and software product lines (SPLs) are popular

approaches to enhance the planned reuse of variant-rich software in computer science [PBv05].

 Reverse engineering approaches to document variability and enable planned reuse of leg-

acy software, e.g., [Fis⁺14; Hin⁺18; Ros⁺21a; Sch⁺19]

 Supporting an enhanced application of copy, paste and modify with ECCO [Fis⁺15]

 Interdisciplinary SPLs to represent the mechatronic characteristics of aPS, e.g., [Fad⁺22;

Fan⁺15; FV17; SFJ15; VSF16]

 Interdisciplinary version management [Bif⁺15] based on AutomationML, enlarged with

cardinality-based variability modeling by [Wim⁺17]

2. Field of Investigation 13

Overall, to reach a suitable base for planned reuse, a combination of different reuse strategies is

required [Mah14]. This assumption is confirmed by a previous study in the aPS domain, which

identified that market-leading companies pursue mixed forms of reuse [VON18], e.g., by combin-

ing templates and library modules. Further, [Neu⁺20c] emphasizes the impact of factors such as

the development team size on applicable reuse strategies in software development and their po-

tential benefits. Moreover, to ensure the applicability of the selected reuse strategies, a suitable

software architecture is required, including documentation such as guidelines or checklists, e.g.,

for integrating standardized library modules into the application-specific control software project.

Although several approaches for planned reuse are available, the most common reuse strategy

applied is still the ad-hoc and unplanned method copy, paste and modify [Fis⁺14; Fis⁺18; Vog⁺17],

despite its many drawbacks such as being error-prone and time-consuming [Fis⁺14].

In summary, various reuse strategies are known (cf. Table 1), but not all recent approaches from

academia are adopted in an industrial context or are yet adaptable to aPS boundary conditions.

Moreover, there are neither publicly available lists of coding best practices for IEC 61131-3 soft-

ware [Jet⁺13b] nor guidelines to support software developers in choosing a suitable reuse strategy

for developing high-quality software in greenfield projects. Instead, many legacy control software

projects developed using copy, paste and modify are available. Respectively, the procedure pro-

posed in this thesis aims to assess existing brownfield legacy control software regarding a defined

analysis goal. For deciding on measures to improve existing, analyzed software to overcome iden-

tified drawbacks, it is advantageous if the involved software developers are aware of basic, avail-

able reuse strategies, e.g., modularization, libraries, templates, code generation and variant man-

agement.

2.4. Static Code Analysis and Software Metrics

During static code analysis, software programs are examined without executing them [EN08],

which enables detecting potential errors and problematic code constructs in early development

phases [Prä⁺17]. The structure of a program and its elements are examined, including their de-

pendencies, e.g., with visualizations such as call graphs [Ryd79], to approximate the program be-

havior [Prä⁺12]. More precisely, static code analysis checks the code for errors that the compiler

cannot detect during the syntactical assessment of the source code, e.g., violations of naming con-

ventions or possible performance problems [Prä⁺12], as well as the source code’s conformance to

company- or domain-specific programming guidelines [DZ21] and safety coding rules [Jet⁺13b].

As a result, static code analysis points out “potentially weak spots to the developer” [NNB19] that

could affect the quality of the analyzed software. However, recent research has identified a gap

14 2. Field of Investigation

between the “academically perceived potential of static analysis and its use in practice”, which

results from usability issues of analysis tools, especially targeting explainability [NNB19].

The application of static code analysis tools is a common approach in computer science for under-

standing and documenting existing software and for developing high-quality software by detecting

potential bugs or weaknesses [NNB19]. The first static analysis tool was Lint [Joh77] for the pro-

gramming language C to assess programs that compile without errors for undetected bugs [Lou06].

However, so far, the PLC programming languages defined by IEC 61131-3 are supported by a few

suppliers only [Prä⁺17].

Software quality is specified, measured and evaluated using quality properties defined in stand-

ards, e.g., SQuaRE, which is a series of international standards that defines software quality mod-

els [ISO25010] and means for measuring them [ISO25023]. The IEC/ISO 25010 defines charac-

teristics (e.g., maintainability), which are further subdivided into sub-characteristics (e.g., modu-

larity and reusability), to categorize software quality [ISO25010]. These quality characteristics

often pose conflicting requirements on the software, which results in trade-offs during the software

architecture design [Lyt⁺20]. Software metrics are applied to provide objective, quantifiable results

for comparing software parts according to quality characteristics [SZ20], which is achieved by

counting code properties and aggregating them according to a fixed algorithm [Wey88]. The IEEE

standard 1061 defines a software metric as

“a function whose inputs are software data and whose output is a single numerical value

that can be interpreted as the degree to which software possesses a given attribute that

affects its quality” [IEEE1061].

While some sub-characteristics are directly measurable, others require the definition of quantifia-

ble software quality properties [ISO25010]. For example, software complexity metrics “do not

measure the complexity itself, but instead measure the degree to which those characteristics

thought to lead to complexity exist within the code” [LC94]. Consequently, defining appropriate

thresholds and understanding and interpreting the metric results can pose a challenging task

[VFN20]. Generally, software metrics developed for general-purpose programming languages

(GPL) in computer science cannot be directly adopted to IEC 61131-3 control software [Jet⁺13b].

Static code analysis and software metrics can support the generation or enhancement of documen-

tation about the control software. At the same time, documentation from different disciplines en-

ables the interpretation and understanding of the software parts in their mechatronic context. In

the scope of this thesis, the following definition for documentation is used:

2. Field of Investigation 15

Documentation is any material related to an aPS that contains recorded information used

or created during the aPS life cycle in any involved discipline. Examples are functional

descriptions, mechanical layout plans, circuit diagrams, programming guidelines, source

code or gained and documented code analysis results such as call graphs or identified

design decisions. Thereby documentation is available in different formats, e.g., graphical

like layout plans or textual such as programming guidelines, and can be provided in dig-

ital or analog form (on paper).

Understanding software is currently still done by reading the source code [GC15], since available

documentation is often outdated [Kir⁺16]. Thus, generating up-to-date documentation during static

code analysis can improve the comprehension of legacy software [Kir⁺16]. In addition, it is rec-

ommended to use static code analysis as part of code review processes [CW07]. The IEEE standard

1028 distinguishes five types of software reviews and audits, i.e., management reviews, technical

reviews, inspections, walk-throughs, and audits [IEEE1028].

3. Requirements for a Software Quality Assessment

Procedure with Static Code Analysis

A quality assessment procedure for legacy control software using static code analysis must fulfill

different requirements. These requirements can be derived from the field of investigation, current

challenges in the industry and selected industrial and academic case studies (cf. Table 2). In the

following, the derived requirements are introduced in four categories, targeting the applicability

in the aPS domain, adaptations to company-specific constraints, conducting the static code analy-

sis and, finally, using the gained insights to assess and improve the software quality.

Table 2: Overview of conducted industrial and lab-sized demonstrator case studies.

Industrial

Case Study A

Industrial

Case Study B

Industrial

Case Study C

Industrial

Case Study D

Lab-Sized

Case Study E

Product

(company type)
PM PM MM (SPM) PM (with SPM)

Lab-sized
demonstrator

Application

sector
Woodworking Intralogistics

Automotive

engineering
(supplier), pharma /

medicine

Automotive engineering

(supplier), pharma /

medicine

Intralogistics /
factory automation

PLC

development

environments

Siemens STEP 7;

Rockwell
Siemens STEP 7

Siemens TIA;

Beckhoff;

Rockwell

Siemens TIA; Beckhoff Beckhoff

Used

programming

languages

LD, IL IL, FBD
S7 Graph, LD,

SCL

LD, FBD;

(S7 Graph, IL and SCL
on request)

SFC, ST

Applied reuse

strategies

(at case study
time)

Copy, paste and

modify

Copy, paste and
modify; some

standardized POUs

Library modules,

template project

Library modules,
template project, code

generation/configuration

OMAC state
machine on ISA 88

hierarchy levels

Legend: MM: machine manufacturing; PM: plant manufacturing; SPM: special purpose machines; Siemens STEP 7:

Siemens SIMATIC STEP 7; Siemens TIA: Siemens Totally Integrated Automation Portal.

The first category contains requirements that the concept for quality assessment must fulfill to be

applicable in the domain of aPS.

3.1. Applicability in the Domain of Automated Production Systems

In the aPS domain, there are various PLC suppliers and, consequently, different platforms are

currently used in the industry (cf. Table 2). PLCs from different suppliers pose different boundary

conditions for developing control software, e.g., IEC 61131-3-based PLCs enable structuring the

18 3. Requirements for a Software Quality Assessment Procedure with Static Code Analysis

control software with PRGs, FBs and FCs and store variables in GVLs. In contrast, Siemens PLC

software is structured using OBs, FBs and FCs and variables stored in DBs. Additionally, IEC

61131-3 based PLCs support the standard’s OO extension. PLC suppliers offer different library

modules for reusable functionalities such as timers or the control of vendor-specific automation

hardware like drives. Due to these differences and since PLC suppliers provide different imple-

mentations of IEC 61131-3 [Sta⁺14], control software development strategies and software archi-

tectures differ. Accordingly, the assessment procedure should be independent of these platforms

and their boundary conditions, focusing on IEC 61131-3 based platforms and Siemens PLCs.

Requirement RPLC – Platform Independence

The procedure should be applicable to control software from different platform suppliers.

Manufactured aPS vary in size and complexity, ranging from serial machines to entire production

plants (cf. Table 2). Special purpose machines and plants are usually highly customized. Due to

their physical size, commissioning of the whole aPS is often performed on-site at the customer’s

premises, resulting in software changes under time pressure [Vog⁺15b]. In contrast, serial ma-

chines are configured rather than custom-built, which leads to different software architectures and

reuse strategies. Since the analysis concept should be universal, it needs to be applicable to the

control software of different manufactured aPS, which are considered as products, ranging from

serial machines to plants.

Requirement RPro – Manufactured aPS as Product

Independent of the manufactured product, i.e., machines and plants, the procedure should be

applicable to the product’s control software.

To ensure the industrial applicability of the quality assessment procedure by software developers,

it needs to be applicable to company-specific boundary conditions targeted in the following.

3.2. Procedure Application by Software Developers including Adap-

tations to Company-specific Boundary Conditions

aPS are long-living systems and, consequently, their control software needs to evolve and adapt

to changing requirements and new customer demands. Therefore, the control software assessment

regarding aspects such as modularity, reuse and variability is a continuous process, which has to

be repeated. A single, one-time analysis of the control software through static code analysis is

insufficient to sustainably improve the control software quality and simultaneously shorten the

3. Requirements for a Software Quality Assessment Procedure with Static Code Analysis 19

development time. Thus, after an introduction or training, the procedure needs to be applicable by

the software developers within the company to avoid dependence on an external service provider.

Requirement RUse – Application by Software Developers (Users)

After an introduction, an application or module software developer of the company must be

able to apply the procedure independently (no dependence on external analysis experts).

Depending on the application sectors, aPS manufacturers must comply with different guidelines,

laws and regulations [Nai⁺15]. These application sector-specific guidelines, e.g., PackML

[PackML] in the food and beverage sector or SAIL [VDI5100] in the intralogistics sector, influ-

ence the control software architecture. Further, laws and legal guidelines, e.g., the Good Auto-

mated Manufacturing Practice (GAMP) [GMP; ISO13485] for aPS in the medical or pharmaceu-

tical sector, impact the control software design and functionality distribution. Since the concept

for quality assessment should be universally applicable, it must be independent of the application

sector but support the consideration of its respective guidelines, standards and constraints.

Requirement RSec – Application Sector

The concept should be applicable regardless of the application sector while taking into account

application sector-specific requirements, e.g., regulations, standards and constraints.

Static code analysis is not meant to be a rigid standard procedure following fixed steps. Instead, it

should be adaptable to the circumstances and challenges in a company’s software development.

Depending on different factors, e.g., a company’s current software development process, the in-

volved personnel and targeted reuse approaches, different aspects should be focused on in the

analysis to identify improvement potentials. Moreover, known challenges during the development

or recurring issues during start-up usually provide hints regarding sub-optimal implementation

parts or detrimental design decisions in the control software. Thus, the developed assessment pro-

cedure should support identifying a company’s pain points with respect to the control software.

Requirement RPP – Pain Points

The procedure should identify a company’s pain points in the software development to derive

the analysis goal and consider the pain points during the analysis.

An essential factor for the successful application of the assessment procedure in the industry is its

integration into the development workflow of the respective companies [NNB19]. Depending on

the organization of the software development process, the standards to be taken into account and

the applied reuse strategies (cf. Table 2), different stakeholders are involved and the development

workflows differ. Also, depending on the analysis goal, the quality assessment procedure needs to

20 3. Requirements for a Software Quality Assessment Procedure with Static Code Analysis

be applied at different stages of software development. For example, assessing a software’s con-

formance to programming guidelines should be performed in parallel to the development process,

while assessing a software unit’s reuse potential is only feasible after its development has been

completed. Thus, the procedure needs to be integrateable into different company development

workflows and, depending on the analysis goal, at different development steps in these workflows.

Requirement RWork – Workflow Integration

The procedure should be able to be integrated into the workflow at different steps, depending

on the selected analysis goal.

Depending on the development team size and organizational aspects of the software development

workflow, design decisions regarding applied reuse strategies and the overall software architecture

are taken during software development [Neu⁺20c]. Moreover, considering software in its coding

context is essential since missing knowledge about the software’s context may lead to wrong or

misleading analysis results [NNB19]. Thus, the assessment of the control software requires taking

deliberate design decisions and the coding context into account to gain valuable insights into the

software quality during the static code analysis.

Requirement RDD – Design Decisions

Deliberate design decisions and the coding context must be considered in the analysis. There-

fore, the quality assessment procedure must be adaptable since they usually depend on the

boundary conditions of the company, e.g., organizational aspects such as the development pro-

cess or the experience of the software developers and special customer requests.

Apart from the applicability in the aPS domain and in an industrial context, also requirements

targeting the static code analysis itself have been derived and are presented in the following.

3.3. Conducting Static Code Analysis for Quality Assessment

Applying static code analysis without a specific goal prevents choosing suitable measures such as

metrics, call graphs and visualizations. Depending on the faced challenges, i.e., pain points, during

the software development, different analysis goals and measures need to be considered. During

control software development, the unplanned reuse strategy copy, paste, and modify is still pre-

dominant [Fis⁺14], resulting in many duplicated code parts. Identifying these duplicates, i.e., code

clones, for their subsequent planned reuse is a potential analysis goal. In more mature companies

applying template-based software development, the conformance to programming guidelines and

correct use of templates is essential. Thus, tracking modifications of the template and checking

their conformance to guidelines during the development process would be a suitable analysis goal.

3. Requirements for a Software Quality Assessment Procedure with Static Code Analysis 21

Requirement RGoal – Analysis Goal

To be universally applicable, the procedure needs to be suitable for different analysis goals, e.g.,

reducing code clones, increasing planned reuse, restructuring, variant management, tracing

changes during the development process and conformance to company guidelines.

It needs to be ensured that the developed procedure can be applied to industrial control software

to support its assessment and identify improvement potentials. Therefore, the procedure needs to

cope with the size of industrial control software (up to 270 or more POUs [Vog⁺15a], some of

which, implemented in ST, have up to 1500 Source Lines of Code [Fis⁺21b]).

Requirement RScal – Scalability

The developed procedure needs to be applicable to industry-sized control software.

Moreover, the effort to apply the procedure should not increase with repeated use to enable its

application in an industrial context. Instead, it should decrease due to familiarization with the pro-

cedure and the available analysis means, allowing an efficient software quality assessment.

Requirement REff – Application Effort

The procedure’s application effort should decrease compared to the initial application when

applied several times to control software projects of comparable size, programming style and

aPS type.

The long life cycles of aPS combined with customer-specific requirements lead to a high amount

of legacy software that has been programmed over years and rarely follows strict coding guidelines

[KP14]. However, understanding the legacy software is a prerequisite for performing time-con-

suming, error-prone development tasks [Ste00]. Studies illustrate that, on average, software de-

velopers spend as much time understanding existing code as they do writing new code [LVD06]

or even 70% of their time understanding code [MML15]. Moreover, “understanding the rationale

behind existing code” is perceived as a big problem [LVD06] and can be frustrating and time-

consuming [Ste00]. Currently, understanding software is still done by reading the source code.

Since control software is highly contextual, considering software parts in the context of the entire

software system is essential for understanding. However, the few available tools are too rigid and

generic to consider the context [GC15]. Although static code analysis tools can ease and shorten

gaining analysis results, Prähofer et al. [Prä⁺17] emphasize that the tools often only provide hints

that need to be examined in detail by industry experts. In summary, a purely automatic static code

analysis is not sufficient to consider control software in its context and assess its quality; instead,

the rationale behind the code needs to be considered.

22 3. Requirements for a Software Quality Assessment Procedure with Static Code Analysis

Requirement RRat – Consideration of Code Rationale

During the software analysis and the interpretation of results, the intention behind the control

software, e.g., the implemented functionality (potentially indicated by metadata such as com-

ments or naming conventions), needs to be considered for the software quality assessment.

Finally, the last category of requirements targets the use of the gained analysis results.

3.4. Use of Analysis Results to Derive Recommendations for Action

Following the procedure, the performed static code analysis steps should support assessing the

analyzed control software regarding the chosen analysis goal and reveal strengths and weaknesses.

However, solely identifying weaknesses is not sufficient to support companies in improving their

control software since they need to estimate how costly the elimination of a weakness will be as a

basis for choosing the quality measures to be taken or improvements to be made. Therefore, an

estimation of the expected change effort, including different aspects such as changes in the soft-

ware itself or required adaptations in the development workflow, is needed.

Requirement RWeak – Weaknesses and Change Effort

The procedure should identify the strengths and weaknesses of the analyzed software concern-

ing a chosen analysis goal, including a qualitative estimation of the expected change effort for

eliminating the weaknesses.

Depending on the maturity of the software development process, the availability, amount and qual-

ity of software documentation vary significantly. Especially in historically grown legacy software,

often, no documentation or only outdated documentation is available [Kir⁺16]. Instead, the

knowledge about design decisions or functionality distribution is only known by the software de-

veloper himself/herself, who, in the worst case, has already retired or left the company. In compa-

nies with programming guidelines and templates, the conformance of the application projects to

these standards is an essential point, especially in the case of different software developers, maybe

even at different sites, programming one machine/plant. Thus, in both cases, documenting the

analysis results, the software itself and identified design decisions is required and helpful for plan-

ning and conducting software improvement steps. Moreover, generating up-to-date documentation

improves the comprehension of legacy software [Kir⁺16].

Requirement RDoc – Documentation of Analysis Results

Documentation of the analysis results and gained insights during the application of the quality

assessment procedure, such as identified design decisions, is essential for planning and imple-

menting software improvements to increase software quality.

3. Requirements for a Software Quality Assessment Procedure with Static Code Analysis 23

3.5. Limitations of the Concept’s Scope

The procedure presented in this thesis covers the analysis of existing brownfield control software,

i.e., legacy software, for its quality assessment, including the identification of beneficial design

decisions and improvement potentials. However, specific aspects regarding the development and

reuse of high-quality control software are out of the scope of this work. These are listed in the

following as limitations of the concept’s scope.

The quality assessment procedure proposed in this thesis is not a design guideline or overview of

best practices for developing high-quality greenfield control software. Instead, it is limited to

providing the means for assessing brownfield, legacy control software and identifying improve-

ment potentials. However, the legacy software to be analyzed must not be monolithic; at least

attempts of functionality encapsulation are required to successfully apply the proposed quality

assessment procedure.

The developed procedure does not explicitly target the analysis of OO elements of the third edition

of IEC 61131-3 since not all PLC suppliers support the development of OOP control software yet.

Moreover, no OOP elements were contained in the analyzed industrial legacy software projects.

The concept was evaluated with classical, procedural IEC 61131-3 control software. Embedded

systems and general-purpose or high-programming languages, which can be used on specific con-

trollers in combination with approaches from computer science, are not considered either.

Regarding the documentation of analysis results and gained insights, the procedure neither pro-

vides an exhaustive list of available documentation types nor specifies and links analysis goals to

their ideal type of documentation. Thus, the proposed concept does not support the choice of ap-

propriate means of documentation but only provides selected examples.

The presented procedure was developed for and evaluated with software from factory automation

(discrete processes, including intralogistics); process automation and the control of continuous

processes are not considered. Furthermore, assessment of the considered control software’s func-

tional correctness in the sense of software testing and verification is not targeted in the scope of

this thesis.

4. State-of-the-Art

Utilizing the requirements derived in the previous chapter, current research works were reviewed

and rated for their applicability to the domain and problem. In addition, adjacent domains such as

computer science were investigated. The following Sections present approaches targeting static

code analysis and software metrics (Section 4.1) and quality assessment procedures (Section 4.2).

In each Section, the reviewed approaches are compiled into a table, rating each approach regarding

the requirements derived in Chapter 3. The applied rating scheme is summarized in Table 3. The

resulting research gap is formulated in Section 4.3.

Table 3: Details of rating scheme for the evaluation of existing, related approaches with + (completely

satisfied), o (partially satisfied), – (not satisfied), ? (unknown) and n.a. (not applicable).

Requirement Rating Scheme

Platform

Independence

(RPLC)

+: Approach is independent of the PLC programming platform

o: Approach is applicable to control software of a specific PLC programming platform

-: Approach is not applicable to PLC software/used with general-purpose languages

aPS as

Product (RPro)

+: Applicable to control software from different aPS types

o: Not in focus, but applied in different companies with different aPS types

-: Not in focus and only used in one company

User (RUse) +: Approach is intended for independent use by software developer

o: Intended for independent use by software developer, but not evaluated

-: Approach requires an external expert

Application

Sector (RSec)

+: Analysis is adaptable to boundary conditions of different application sectors

o: Applicable in different sectors, but no specific consideration of boundary conditions

-: Tailored to a specific application sector/applied in only one application sector

Pain Points

(RPP)

+: Identification and consideration of pain points during the analysis

o: Pain points are identified but not considered in the analysis

-: Identification not targeted

Workflow

Integration

(RWork)

+: Integration into development workflow (optionally at different points) possible

o: Integration into development workflow not targeted, but likely possible

-: Integration into development workflow not targeted and unlikely

Design

Decision

(RDD)

+: Deliberate design decisions are considered as constraints for analysis and assessment

o: Deliberate design decisions are not specifically investigated; consideration likely possible

-: Deliberate design decisions are not specifically investigated; consideration is unlikely

Analysis Goal

(RGoal)

+: Applicable to different goals

o: Applicable to a specific goal only or a very general goal

-: Analysis goal is not specified

Scalability

(RScal)

+: Approach was applied to industry-sized control software

o: Approach was applied to small examples, likely applicable to industry-sized control software

-: Approach has not been applied to industry-sized control software

Application

Effort (REff)

+: Application effort lowered with repeated application

o: Application effort not investigated; lowering likely possible

-: Application effort not targeted; lowering unlikely possible

Code

Rationale

(RRat)

+: Combination of manual and automatic static analysis, including interpretation by developer

 considering code rationale

o: Analysis results are interpreted by the developer, but code rationale is not focused

-: Consideration of code rationale is not targeted

Weaknesses

and Change

Effort (RWeak)

+: Identified strengths and weaknesses support effort estimation

o: Strengths and/or weaknesses are identified, effort estimation not targeted/unlikely

-: Strengths and weaknesses not targeted

Documenta-

tion (RDoc)

+: Documentation incl. analysis results on various granularity levels to derive recommendations

o: Documentation includes analysis results, likely helpful for deriving recommendations

-: Documentation includes analysis results, support to derive recommendations unlikely

26 4. State-of-the-Art

4.1. Static Control Software Analysis and Software Metrics

This Section presents approaches for the static code analysis of control software, including proto-

typical tools (Sub-section 4.1.1), control software metrics (Sub-section 4.1.2) and available com-

mercial tools developed and provided by PLC platform suppliers (Sub-section 4.1.3).

4.1.1. Static Code Analysis targeting Control Software

Static code analysis supports the development of high-quality software by detecting potential er-

rors and defects in early development phases without executing the code. Approaches to applying

static code analysis targeting control software are discussed below and summarized in Table 4.

Prähofer et al. [Prä⁺12] present an approach and the tool SCoRe (Source Code Review) for a rule-

based static code analysis of software programmed according to a proprietary dialect of IEC

61131-3 (RPLC). The authors analyzed recurring issues of their industry partner (RPP) and classified

these into eight categories ranging from violations over naming conventions to dynamic statement

dependencies [Prä⁺17]. SCoRe was integrated into the GPL static analysis platform SonarQube

and used to evaluate industry-size PLC projects for injection moulding machines programmed in

ST and SFC (RPro, RSec, RScal). The most recent version of SCoRe includes a set of 46 rules, which

implement the company’s guidelines (RDD), for checking the source code regarding bad program-

ming practices. According to Prähofer et al., the rules can be adapted to different application sec-

tors and programming guidelines (RPro, RSec, RDD) [Prä⁺17]. However, so far, it has been used in

one company only. SCoRe offers call graph and pointer analysis [Ang⁺13] as well as control flow

and data flow analysis [Prä⁺17]. The identified violations are displayed as a list in the SonarQube

dashboard view (RDoc). Furthermore, the program elements and dependencies can be visualized

and queried using a web frontend [Ram⁺19]. For three years, the company has integrated SCoRe

into its development process as part of the nightly built (RWork) and the software developers use it

daily (RUse). According to the authors, the analysis provides hints, which are examined by the

software developers (RRat). Apart from manually resolving or suppressing identified violations,

SCoRe does not support identifying strengths in the analyzed control software or deriving recom-

mendations for action (RWeak). Moreover, albeit the authors identified recurring issues, no further

support to identify pain points and define an analysis goal is provided (RGoal).

Another static code analysis tool for control software was developed by the research group of

Kowalewski in the scope of their model-checking and test case generation framework Arcade.PLC

[BBK12]. Arcade.PLC supports analysis of PLC software written in ST, IL, SFC and FBD, in-

cluding vendor-specific extensions for ABB’s Compact Control Builder, CODESYS and Siemens

SIMATIC S7 statement list (RPLC). From source code text files or PLCopen XML files, the PLC

4. State-of-the-Art 27

software is translated into an intermediate representation to enable a language-independent quality

control (RGoal) [BBK12]. More precisely, it checks the source code for general rules regarding

runtime errors and code smells (RGoal) based on an approximation of variable value ranges without

considering application sector- or company-specific guidelines (RPro, RSec, RPP, RDD). By executing

a set of predefined checks, aspects like array out-of-bounds access, unreachable branches in con-

ditions, division by zero or multiple assignments to an output are identified [Sta⁺14]. Moreover,

Simon and Kowalewski perform a structure-preserving analysis to generate warnings for errone-

ous SFC behavior based on variable values and structural checks [SK16]. Static code analysis with

Arcade.PLC is intended for application by the software developer (RUse) and was evaluated with

industry-sized projects programmed in ST in ABB’s Compact Control Builder (RScal) [Bia16;

Sta⁺14]. Identified violations (RWeak) are displayed to the user in a list, including the source code

position (RDoc). Stylistic warnings like redundant compares or dead code have to be inspected

manually. Also, missing information resulting from encrypted library modules requires manual

review to decide which warnings should be resolved (RRat) [Sta⁺14].

Obster et al. proposed an architecture to extend Arcade.PLC for live static code analysis integrated

into the PLC development environment to provide instant feedback to software developers while

editing the source code (RWork) [OK17]. The approach was implemented for software written in ST

in the CODESYS development environment (RPLC) and evaluated with two small test programs

(RScal) by seven industry experts from two companies (RUse) [Obs21]. During editing, Arcade.PLC

checks for code smells and errors detectable by calculating value set ranges of variables (RGoal).

The developer receives feedback in a text editor view and via annotations of suspicious code parts

(RDoc) and needs to decide which of the identified weaknesses require resolving (RWeak, RRat)

[OK17]. Neither application- and aPS type-specific boundary conditions nor paint points and de-

sign decisions are targeted by the approach (RPro, RSec, RPP, RDD).

The research group around Jetley at ABB targeted different goals for applying static code analysis

to aPS control software. Using a platform-neutral implementation of IEC 61131-3 (RPLC), Jetley

et al. compared project versions of FBD and SFC control software to support version management

(RGoal) and provided a color-coded visualization of identified changes (RDoc) [Jet⁺13a]. Their pro-

totype was applied by software developers (RUse) during the software development (RWork) of in-

dustry-sized control software projects (RScal). For the identification of circular dependencies

(RGoal), i.e., code loops, in ABB control software (RPLC), Nair and Jetley developed an approach

and prototype to visualize the code loops on different abstraction levels (RDoc) [NJ16]. The tool

provides resolution suggestions, which are checked by the software developer (RRat, RUse), and was

successfully applied to industry-sized legacy control software (RScal). Finally, Nair et al. use a

28 4. State-of-the-Art

combination of data flow analysis and customizable rule checks to detect runtime errors and vio-

lations of coding guidelines or best practices (RGoal) in IEC 61131-3 ST and FBD control software

(RPLC) [Nai⁺15]. A proof-of-concept prototype generates the Abstract Syntax Tree (AST), the Con-

trol Flow Graph (CFG) and calculates variable value ranges to check for aspects such as type

constraints, division by zero, unreachable code, uninitialized and unused variables, datatype mis-

matches and non-terminating loops. The tool supports the definition of customized rules to check

naming conventions and identify incorrectly set attribute values and nesting limitations (RDD). The

prototype was included in an analysis framework for industrial automation software, which sup-

ports three customized rules for IEC 61131-3 control software based on errors mentioned by do-

main experts (RPP) [Man⁺18]. The approach was applied to an industry-sized control software pro-

ject (RScal). Identified violations, which are classified as warnings and errors (RWeak) and displayed

in a list (RDoc), were validated by software developers utilizing their domain knowledge (RUse, RRat)

[Nai⁺15]. However, application- and aPS type-specific boundary conditions are not targeted by the

approach (RPro, RSec).

With the aim to detect semantic and structural duplicates in IEC 61131-3 ST control software

(RPLC, RGoal), Jnanamurthy et al. propose a combination of structural, semantic and data interval-

based analysis [Jna⁺20]. The approach addresses the pain points and analysis goals of code opti-

mization, bug detection and analysis of reused code (RPP, RGoal). To detect semantic clones, i.e.,

duplicated code parts, they use an I/O variable impact and dependency analysis. Limiting their

analysis to hardware inputs and outputs reduces the amount of data to be analyzed. The authors

evaluated their approach with real-world industrial library modules of machine control software

(RScal, RPro) [Jna⁺20]. Results are documented in a table format within the paper, but no additional

information regarding the documentation is provided (RDoc). Based on the results, duplicated code

parts are identified as a basis for refactoring (RWeak). Neither manual code analysis nor the consid-

eration of design decisions or the workflow integration are targeted (RRat, RDD, RWork)

Preliminary work in the research group of Vogel-Heuser comprises a prototypical tool for the

analysis of Siemens SIMATIC Manager control software (RPLC). The prototype includes depend-

ency graphs and software metrics and supports identifying structural, recurring patterns [Fuc⁺14].

To support manual interpretation (RRat), the presence and absence of the structural patterns were

rated in [Neu⁺20c]. Furthermore, the search for structural clusters in the call graph enabled, even

without considering the implemented functionality, the identification of copied software parts

across several project variants as a basis for refactoring and increasing the planned reuse of legacy

control software (RGoal) [Fah⁺19]. Feldmann et al. present an analysis framework to evaluate con-

trol software quality utilizing Semantic Web technologies [Fel⁺16a]. More precisely, a dependency

model of the control software is created, which can be queried to check user-defined programming

4. State-of-the-Art 29

guidelines (RDD), application sector-specific guidelines (RSec), calculate software metrics or search

for known disadvantageous code structures (RPP). The approach was integrated into Schneider

Electric’s development environment (RPLC) in the scope of a cloud-based analysis concept to sup-

port the continuous integration of the analysis means in the development workflow (RWork, RUse)

[Bou⁺17]. Apart from call and data exchange graphs to identify beneficial and disadvantageous

structures (RWeak) [Fuc⁺14], the cloud-based code analysis offers a dashboard results view for man-

agers (RDoc). The analysis tools have been applied to industry-sized control software projects (RScal)

from different application sectors (RSec) and aPS types (RPro). Moreover, the manual static code

analysis of several industry-sized control software projects with different focuses (RScal, RGoal) pro-

vided insights on architectural hierarchy levels and the implementation of extra-functional tasks

such as error handling and operation modes [Vog⁺15a; Vog⁺16]. The individual approaches of

Vogel-Heuser’s group fulfill the derived requirements to different extents but do not provide a

systematic procedure for a goal-oriented quality assessment considering company-specific bound-

ary conditions and identified pain points. The concept developed and proposed in the scope of this

doctoral thesis is based on the insights gained by Vogel-Heuser’s research group.

Thaller et al. apply static code analysis in an industry-sized PLC software project (RScal) written in

the textual IEC 61131-3 language ST and C/C++ (RPLC) to identify POUs or POU parts, which

have been duplicated for reuse, e.g., by copying and pasting (RGoal) [Tha⁺17]. They target the iden-

tification of two different types of duplicated software, i.e., exact copies and parameterized copies

[RBS13]. For the analysis, the authors extend the Simian tool (RUse). Identified clones are classi-

fied and rated regarding their relevance by a group of experts (RRat). The considered machine con-

trol software (RPro) from the metal processing sector (RSec) was developed as a 150%-model, i.e.,

containing control software for different variants of the machine type, which results in a high

amount of duplicated code (RPP). The duplicates are identified as a basis for refactoring, but de-

riving recommendations for action is not targeted (RWeak). Moreover, the authors conclude that

existing tool support for detecting duplicates in PLC software is insufficient.

Reengineering is often applied to enhance the quality of historically grown software. It consists of

steps such as code analysis, assessment of pain points and migration from legacy software into a

new software structure [NDG05]. During this process, apart from software, additional available

documentation of different formats is used for software understanding (RRat). For the rapid devel-

opment of customized analysis tools, Nierstrasz et al. developed the language-independent plat-

form Moose as a meta-tooling environment (focused on OO and GPL) (RPLC) to support program

understanding and reengineering [NDG05]. Moose combines different analysis techniques, includ-

ing metrics evaluations, a repository for source code versions, visualization and querying and

browsing of results (RDoc, RWeak, RUse). Depending on the targeted analysis goal during the software

30 4. State-of-the-Art

assessment (RGoal), respective means can be rapidly combined in a prototype. Moreover, scalability

is considered an essential requirement due to the size of legacy software (RScal) [Nie12].

Canedo et al. propose ArduCode, a machine-learning-based approach for supporting PLC software

developers’ quality-related decision making [Can⁺21]. Their goal is to apply machine learning to

assist in PLC code classification according to the implemented functionality, identify similar code

parts and support hardware selection and configuration (RGoal). The approach has been prototypi-

cally implemented as a plug-in into Siemens TIA Portal (RPLC), including a user interface (RUse),

with the aim to only minimally disrupt existing development workflows (RWork). The OSCAT li-

brary has been used for evaluation purposes, which is mainly implemented in SCL (RScal). During

programming in the TIA Portal, results are directly displayed (RDoc), including recommendations

for action for resolving identified weaknesses (RWeak). The user can choose the recommendations

to be carried out (RRat), ignore recommendations (RDD) or provide feedback to the assistance sys-

tem, which enhances the tool’s knowledge base and, thus, continuously lowers the application

effort (REff). The identification of pain points is not targeted (RPP).

Some companies and organizations, such as CERN, use their own development frameworks to

support PLC software development for different platforms [Fer⁺15]. The Unified Industrial COn-

trol System (UNICOS) used at CERN generates control software from a list of field devices linked

to the PLC as a base for application software development. UNICOS supports software develop-

ment for Siemens and Schneider Electric PLCs (RPLC). Due to known pain points resulting from

evolution, e.g., nested if-statements, a high number of input conditions, dead code and long ex-

pressions (RPP), Ferreira et al. target the identification of these pain points and violations of com-

pany-specific naming conventions (RDD) for improving the overall software quality (RGoal)

[TBF17]. They implemented 19 basic analysis rules in the model checker PLCverif [Lop⁺21] used

at CERN (RWork, RUse) and applied them to individual FBs (RScal). The identified violations are

reported as a list to the user (RDoc) for subsequent correction (RWeak). Neither application sector-

specific rules nor consideration of the implemented functionality are targeted (RSec, RRat).

In the application sector of electrical engineering and steelmaking (RSec), Klammer and Pichler

[KP14] analyzed four industry-sized legacy control software programs (RScal) written in Fortran,

PL/SQL and C++ (RPLC). Their analysis focused on identifying domain knowledge in the analyzed

code as part of reengineering and re-documentation of industrial legacy software (RGoal). With the

aim of developing a multi-language analysis tool, they propose an analysis workflow for linking

code instructions via manual annotations to domain knowledge concepts (RRat). These annotations,

i.e., physical units and domain concepts, are usable to search for specific computations in the

source code. Moreover, overlays support program comprehension by considering design decisions

4. State-of-the-Art 31

and domain knowledge (RSec). From a code repository, source code fragments are annotated with

meta-tags, which are considered during the dependency and data flow analysis and displayed to

the user (RDoc, RUse). Based on the tool, Kirchmayr et al. generate documentation of legacy control

code on different abstraction levels by considering units and mathematical formulae (RDoc)

[Kir⁺16]. Due to the goal of identifying domain knowledge, neither pain points nor design deci-

sions or the identification of strengths and weaknesses are targeted (RPP, RDD, RWeak).

Various approaches are available, which target the one-time static code analysis of a single control

software project or a group of projects. These are usually tailored to a specific company or appli-

cation sector and a single analysis goal. Moreover, multiple use of the applied analysis process is

not targeted. An example of this is the study by Ljungkrantz and Åkesson [LÅ07]. They analyzed

Mitsubishi PLC projects from two companies in the automotive sector (RSec) regarding the number

of instantiations of library FBs. Furthermore, they sorted the used FB instances into nine categories

to analyze the functionality distribution in the projects and, thus, gain insights into industrial prac-

tices (RGoal). For their analysis, Ljungkrantz and Åkesson programmed a tool to identify and count

FB instances and considered company-specific programming guidelines and templates (RDD) when

manually assigning the categories (RRat).

Jung et al. target the conformance checking of control software for safety-critical applications in

nuclear power plants (RPro, RSec) programmed in FBD with the safety guideline Nu-REG/CR-6463

(RGoal) [JYL17]. Based on the PLCopen XML format (RPLC), their tool FBD Checker identifies

violations of 56 structural analysis rules, e.g., implicit type conversion, missing inputs to FBD

blocks, missing initial values of variables and the graphical program layout for readability (RRat).

Identified violations are listed, including the violated rule, and graphically highlighted in the pro-

gram (RDoc) to enable their correction (RWeak). The approach was applied to the FBD program of a

Korean nuclear power plant (RScal) during the design phase (RWork). Apart from the structural rules,

no other design decisions are targeted (RDD, RRat).

Recent approaches target static code analysis of control software programmed following the

IEC 61499 (RPLC). For example, the research group of Zoitl supports the identification of code

smells [Son⁺21a] and their refactoring with a catalog of refactoring operations [Obe⁺21]. A com-

bination of both is targeted in future work to support the user (RUse) in improving the software

quality (RGoal, RWeak, RDoc). Furthermore, their research focuses on design patterns: three architec-

tural design patterns for IEC 61499 are implemented for a lab-sized application and compared

based on complexity metrics to determine their scalability for industry-sized applications

[WSZ20]. A skill-based adaptation of the distributed hierarchical control pattern is applied to a

more complex lab-sized factory automation application (RSec, RScal) in [Son⁺21b]. To assess the

32 4. State-of-the-Art

proposed design, the module granularity (amount of FBs and their functionality), reuse (number

of instantiations) and understandability and adaptability are analyzed with software metrics and

compared to two other designs (RDD, RRat). However, due to the different programming paradigms,

their IEC 61499-based concepts are not directly applicable to IEC 61131-3 control software.

The approaches from the field of static control code analysis are summarized in Table 4.

Table 4: Evaluation of related approaches in the field of static code analysis.

Approach P
la

tf
o

rm

In
d

ep
en

d
en

ce
 (

R
P

L
C
)

a
P

S
 a

s
P

ro
d

u
ct

 (
R

P
ro

)

U
se

r
(R

U
se

)

A
p

p
li

ca
ti

o
n

 S
ec

to
r

(R
S

ec
)

P
a

in
 P

o
in

ts
 (

R
P

P
)

W
o

rk
fl

o
w

In
te

g
ra

ti
o

n
 (

R
W

o
rk

)

D
es

ig
n

 D
ec

is
io

n

(R
D

D
)

A
n

a
ly

si
s

G
o
a

l
(R

G
o
a
l)

S
ca

la
b

il
it

y
 (

R
S

ca
l)

A
p

p
li

ca
ti

o
n

 E
ff

o
rt

(R
E

ff
)

C
o

d
e

R
a

ti
o

n
a
le

 (
R

R
a
t)

W
ea

k
n

es
se

s,
 C

h
a

n
g

e

E
ff

o
rt

 (
R

W
ea

k
)

D
o

cu
m

en
ta

ti
o

n

(R
D

o
c)

Group of Prähofer [Ang⁺13;

Prä⁺12; Prä⁺17; Ram⁺19]
o o + + + + o o + n.a. o o o

Kowalewski et al. [BBK12;

Bia16; SK16; Sta⁺14]
+ n.a. o n.a. n.a. o n.a. o + n.a. + o o

Obster, Kowalewski et al.

[Obs21; OK17]
o n.a. + n.a. n.a + n.a. o o n.a. + o o

Jetley, Nair et al. [Jet⁺13a;

Man⁺18; Nai⁺15; NJ16]
o n.a. + n.a. o o o o + n.a. + o o

Jnanamurthy et al. [Jna⁺20] o o ? n.a. + n.a. n.a. o + n.a. - o o

Group of Vogel-Heuser

[Bou⁺17; Fah⁺19; Fel⁺16b;

Fuc⁺14; Neu⁺20c]

+ o + + o + + o + n.a. o o +

Thaller et al. [Tha⁺17] o o - n.a. n.a. n.a. - o + n.a. + o o

Nierstrasz [NDG05; Nie12] - n.a. + n.a. - + o + + n.a. + o +

Canedo et al. [Can⁺21] o n.a. o n.a. - + o + o + o o +

Research group at CERN

[Fer⁺15; Lop⁺21; TBF17]
+ n.a. o o + + o o o n.a. - o o

Klammer and Pichler

[Kir⁺16; KP14]
- o + + - - n.a. o + n.a. + - +

Ljungkrantz, Åkesson

[LÅ07]
o o - o - o + o + n.a. + - o

Jung, Yoo and Lee [JYL17] o o o o - o - o + n.a. o o +

Group of Zoitl [Obe⁺21;

Son⁺21a; Son⁺21b; WSZ20]
o n.a. o o - n.a. o o - n.a. + o o

4. State-of-the-Art 33

Overall, existing approaches for static code analysis often target a specific PLC platform (RPLC)

and some of them have not been applied to industry-sized code at all (RScal) or only to control

software of one company and, thus, in one application sector (RSec). Furthermore, visualization of

results, identifying beneficial design decisions and deriving recommendations for actions are usu-

ally not the focus (RWeak, RDoc). In addition, most of the approaches do not support deriving pain

points (RPP) as a basis for a goal-oriented (RGoal), systematic static code analysis. Adaptations of

the analysis to company-specific boundary conditions and design decisions are not in focus (RDD).

Finally, static code analysis tools neither support the results interpretation nor the analysis plan-

ning, making their successful application challenging for inexperienced software developers.

4.1.2. Overview of Software Metrics Focusing on Control Software

As introduced in Section 2.4, software metrics enable quantifying specific quality characteristics

by counting code properties of individual elements and their dependencies. The use of software

metrics is a well-established means in computer science. Popular measures for software quality in

OO software are, according to [Jab⁺15], the metric suite of Chidamber and Kemerer [CK94] or

QMOOD [BD02]. In contrast, software metrics are less common in the aPS domain [Prä⁺12].

Nevertheless, some approaches are available that apply common software metrics from computer

science in the aPS domain. These metrics include Lines of Code (LOC), which measures a pro-

gram’s length by counting the code lines, and Source Lines of Code (SLOC), which measures the

lengths by counting non-commentary, non-empty lines only [Ros97]. Also, McCabe’s Cyclomatic

Complexity, which is based on the software’s control flow graph [McC76], and Halstead’s metrics

counting operands and operators for measuring the length, vocabulary and difficulty of a software

program [Hal77] are applied in the aPS domain. Moreover, the Fan-in Fan-out metric based on

the information flow to and from a given software part [HK81] has been transferred to control

software. Overall, metrics from computer science are not applicable to graphical programming

languages and do not consider the significantly different boundary conditions, e.g., close connec-

tion to hardware, of PLC software [Jet⁺13b]. Thus, they are not transferrable to IEC 61131-3-based

control software without adaptions.

Accordingly, Younis and Frey [YF07] transfer popular metrics from computer science [Hal77;

McC76; Ros97] to a didactic and an industrial example to measure the diagnosability of PLC

software written in IL. Capitán and Vogel-Heuser successfully adapt the metrics from [McC76]

and [Hal77] to all five PLC programming languages using a lab-sized demonstrator and illustrate

that the metrics are, in principle, suitable for determining the complexity of aPS software [CV17].

Similar, Kumar et al. introduce source code metrics for control software written in LD for meas-

uring program length, difficulty, or cognitive complexity and, thus, quantify the understandability

34 4. State-of-the-Art

and testing complexity [KJS16]. However, the approach is not evaluated with industrial control

software. In contrast, the ten ST metrics by Kumar et al. for predicting change proneness at POU

level were evaluated with two industrial projects [KS17]. For assessing the usability and main-

tainability of SFC programs, Engell et al. [EDL07] develop new metrics based on McCabe’s Cy-

clomatic Complexity [McC76], including a results visualization, and evaluate them with an aca-

demic example.

Muslija and Enoiu [ME20] applied the computer science metrics [Hal77; HK81; McC76] to con-

trol software written in FBD and adapted the size metric SLOC to measure the complexity in

safety-critical PLC software. Their approach was evaluated with an industrial case study. Simi-

larly, the approach by Wilch et al. [Wil⁺19] for identifying the most complex networks in industrial

FBD control software is based on Halstead’s metrics [Hal77] and considers the information flow

[HK81]. It has been implemented as part of the Schneider Electric Machine Expert code analysis

plugin for evaluation purposes [SE22a]. The implementation includes the documentation and vis-

ualization of the calculated metric results to identify the most complex networks for their subse-

quent refactoring and has been utilized by the software developers of a German machine manu-

facturer. Similarly, Prähofer et al. implemented software metrics in their prototypical analysis tool

SCoRe to measure control software complexity. The tool indicates if defined upper limits, e.g., for

the number of lines or branch depths, are exceeded [Prä⁺12]. The implemented metrics are LOC

for each POU, McCabe’s Cyclomatic Complexity and the number of comment lines [Prä⁺17].

Moreover, some researchers propose software metrics tailored explicitly to the aPS domain. For

example, Lee and Hsu transform PLC software programmed in LD into Petri nets to compare both

regarding their design complexity and understandability using a small industrial example [LH01].

Gharieb proposed four metrics targeting simplicity, reconfigurability, reliability and flexibility of

LD and applied them to a lab-sized application [Gha06]. Also targeting LD software, Lucas and

Tilbury developed metrics to measure the size, modularity and interconnectedness of the PLC

software programs and evaluated them with a test-bed [LT05]. Nair presents a methodology frame-

work in four phases for defining IEC 61131-3 software metrics systematically [Nai12]. Using the

framework, a set of product metrics for measuring the reusability and reliability of POUs is de-

fined, which was applied in a real project. With a focus on non-functional requirements, Ladiges

et al. assess machine, process, routing and operation flexibility as a pre-step for defining metrics

to measure their fulfillment [Lad⁺13]. Rosiak et al. propose a metric-based approach for the reen-

gineering of variant-rich IEC 61131-3-based legacy software into SPLs for their subsequent

planned reuse [Ros⁺21a]. The used similarity metrics are tailored to the programming style and

the programming languages. So far, they have not been applied to industry-size PLC software.

4. State-of-the-Art 35

The group of Vogel-Heuser developed metrics to estimate the criticality of changes performed

during the evolution of PLC control software [Vog⁺18]. Based on the changes, the maturity of

modified POUs is estimated. The approach was successfully implemented and industrially evalu-

ated for Siemens PLCs [Neu⁺20b] and IEC 61131-3-based control software [VNF22]. Moreover,

it was integrated into the software development workflow of a company and applied by the soft-

ware developers [VNF22]. In addition, Neumann et al. developed software metrics to identify OO

code constructs within IEC 61131-3-based control software, which are likely to lead to an in-

creased runtime [Neu⁺20a]. The runtime metrics have been evaluated with the control software of

a packaging machine company.

In the scope of IEC 61499 control software, Sonnleithner et al. propose a set of software measures,

which were applied to a small implementation example [SZ20]. Another example is the approach

by Zhabelova and Vyatkin, who adapted, among others, McCabe’s Cyclomatic Complexity and

Halstead’s metrics to IEC 61499. Additionally, they suggest metrics for quantifying the complex-

ity of Execution Control Charts (ECC) [ZV15]. However, IEC 61499-based concepts are not di-

rectly applicable to IEC 61131-3 control software.

Overall, some software metrics for PLC control software are available, with most of them being

platform-specific in their concept or implementation (RPLC). Moreover, many of the metrics re-

cently developed in the aPS domain have not yet been applied in an industrial context (RScal) or,

so far, only in one company (RPro, RSec). Although software metrics offer consistent, reproducible

results, they are not a definite quality judgment but rather indicate possible weaknesses (RWeak)

[Wil⁺19]. Moreover, they usually target a specific quality attribute and are, thus, not applicable to

different analysis goals (RGoal) and lack adaptability to company-specific design decisions (RDD).

So far, the choice of a suitable software metric for analyzing the control software concerning a

specific pain point or analysis goal is not supported. Since the use of software metrics for control

software is relatively new, PLC software developers lack experience in interpreting the calculated

metric results, which is not trivial, even if approaches such as [VNF22] target the interpretation of

results in the context of the analyzed software and its evolution. Consequently, deriving recom-

mendations for action from the gained and documented analysis results is often challenging (RWeak)

and requires adequate documentation and visualization of the metric results (RDoc). In conclusion,

software metrics are a suitable means for assessing control software in regard to specific quality

attributes, which is beneficial but not enough for the overall quality assessment [Plö⁺10]. Thus, a

concept for the goal-oriented, context-aware quality assessment of control software should include

software metrics but not be limited to them.

36 4. State-of-the-Art

4.1.3. Commercial Tool-support for PLC Software Analysis

In high-level programming, various tools are available that support static code analysis. Some of

these are directly integrated into the programing environment, such as the extension ReSharper

for Visual Studio [Jet22], and provide direct feedback about quality defects during programming.

Moreover, GPL tools such as SonarQube [Son22] support refactoring operations, including ex-

planations about the identified defect and the strategy to resolve it. Some tools, such as CQSE

Teamscale support, among other textual languages, ST code analysis [CQS22]; however, control

software analysis is not the tool’s primary focus.

In the aPS domain, PLC platform suppliers offer first applications for static code analysis, includ-

ing conformance checks to guidelines and software metrics, in their development environments

(cf. Table 5). For example, Beckhoff TwinCAT 3 Static Analysis enables checking if the source

code follows specified coding guidelines utilizing rules and naming conventions and calculating

metrics. The analysis can be triggered manually or performed automatically and identified viola-

tions to activated rules are reported as warnings and errors [Bec22]. Available rules and metrics

are contained in [Bec21] and include prefixes for specific POU or variable types and also support

the definition of rules with regular expressions (RDD). Similarly, CODESYS Static Analysis

[COD22] offers a set of rules (cf. [COD19] for a list), which can be (de-)activated if needed, to

check the PLCopen guidelines [PLC16], prefixes of variables specified in naming conventions

and also supports the calculation of software metrics. Moreover, it offers the detection of code

duplicates in software parts programmed in ST in the Code Clone Detection. First means for re-

factoring are available, e.g., extracting a marked code snippet into a new FC or method.

Formerly known as Itris PLC Checker, Schneider Electric offers a set of four tools in the scope of

EcoStruxure Control Engineering, e.g., a reverse engineering tool for redocumentation of the code

structure and design recovery [SE22b]. The documentation tool offers a dependency tree, a data

flow and a control flow view, supporting the analysis of different PLC platform applications such

as CODESYS, Beckhoff and Siemens (RPLC) [SE21]. Additionally, Schneider Electric’s Machine

Code Analysis [SE22a] is directly integrated into the PLC development environment. It supports

software metrics and convention checks, e.g., conformity to PLCopen rules [PLC16], to measure

the software quality of IEC 61131-3 source code. Moreover, options to visualize, query and doc-

ument dependencies within the control software are available. For creating queries, a SPARQL

Editor and predefined SPARQL queries are provided (RDD). The analysis results are reported, in-

cluding key performance indicators (KPIs), in a dashboard view (RDoc).

4. State-of-the-Art 37

Logicals offers generic style guide checks in logi.CAD Static Analysis with pre-defined IEC

61131-3 design rules for ST, FBD and LD [log22a]. Available rules, e.g., references to local var-

iables from methods and functions, are listed and described in the user guide [log22b] and reported

as a list classified as information, warning and error. In the scope of TIA Portal Test Suite Ad-

vanced, Siemens offers to define programming style guides and check their compliance for se-

lected POUs or entire applications. In the rule set editor, five categories of rules can be defined,

which mainly target naming conventions, i.e., casing, prefix/suffix, name length, and additionally

the completeness of object properties such as the existence of author, title, version and comments

in the metadata [Sie20b]. Identified violations are displayed in the TIA Portal and, additionally,

reported in a log file in two selectable criticality levels. Additionally, Siemens offers the Project

Check for TIA Portal software [Sie20a], which checks the software against the Siemens program-

ming style guide [Sie18], including naming conventions and general rules, e.g., for objects refer-

encing, not requiring code analysis. It also supports the definition of rules by the user and exporting

a report. Finally, the Safety Code Analysis Tool from ABB checks the conformance of a safety

PLC project according to safety-specific coding guidelines [ABB21]. These include aspects such

as using variables instead of literals, avoiding implicit type conversions and adding a comment to

each variable declaration. The results can be generated and exported.

Overall, all available tools enable the analysis of industry-sized control software projects (RScal)

regardless of the aPS type (RPro) and can be integrated into the development workflow (RWork).

Moreover, they are intended for use by the software developer (RUse). However, except for EcoS-

truxure Control Engineering, the available tools are tailored to the vendor’s respective PLC de-

velopment environment (RPLC). Although many suppliers support the export in PLCopen XML,

the standard is not sufficient since, for example, vendor-specific libraries for actuators, e.g., for

motion control, are not transferable between different PLC platforms. Moreover, the implementa-

tion of the IEC 61131-3 standard differs between platforms [DZ21; Jet⁺13b].

In addition, the tools are limited in their scope of adaptability. Although general rules or rules for

naming conventions are available for conformance checks, the tools are not yet capable of tailoring

the analysis to the company-specific or application sector-specific programming guidelines and

boundary conditions (RSec, RDD). Moreover, although first approaches to support refactoring are

available, most tools do not yet support deriving recommendations for actions for using the in-

sights gained from the static code analysis (RWeak, RDoc). Finally, no support for the identification

of pain points as a basis for deriving an analysis goal is provided (RPP, RGoal). In summary, first

means are available, but their systematic goal-oriented use is not yet sufficiently supported.

The available static code analysis tools for PLC software are summarized in Table 5.

38 4. State-of-the-Art

Table 5: Tool-based static code analysis of PLC software evaluated with respect to the requirements.

Approach P
la

tf
o

rm

In
d

ep
en

d
en

ce
 (

R
P

L
C
)

a
P

S
 a

s
P

ro
d

u
ct

 (
R

P
ro

)

U
se

r
(R

U
se

)

A
p

p
li

ca
ti

o
n

 S
ec

to
r

(R
S

ec
)

P
a

in
 P

o
in

ts
 (

R
P

P
)

W
o

rk
fl

o
w

In
te

g
ra

ti
o

n
 (

R
W

o
rk

)

D
es

ig
n

 D
ec

is
io

n

(R
D

D
)

A
n

a
ly

si
s

G
o
a

l
(R

G
o
a
l)

S
ca

la
b

il
it

y
 (

R
S

ca
l)

A
p

p
li

ca
ti

o
n

 E
ff

o
rt

(R
E

ff
)

C
o

d
e

R
a

ti
o

n
a
le

 (
R

R
a
t)

W
ea

k
n

es
se

s,
 C

h
a

n
g

e

E
ff

o
rt

 (
R

W
ea

k
)

D
o

cu
m

en
ta

ti
o

n

(R
D

o
c)

CODESYS [COD22] o o + o - + - - + n.a. o o o

Beckhoff [Bec21] o o + o - + o - + n.a. o o o

EcoStruxure Control

Engineering [SE22b]
+ o + o - + - - + n.a. o o o

Schneider Electric

[SE22a]
o o + o - + o - + n.a. o o +

logi.cals [log22a] o o + o - + - - + n.a. o o o

Siemens [Sie20a;

Sie20b]
o o + o - + - - + n.a o o o

ABB [ABB21] o o + o - + o o + n.a. o o o

4.2. Code Analysis Procedures for the Quality Assessment of Indus-

trial Software

Apart from individual means supporting the static code analysis of control software or the calcu-

lation of software metrics, procedures for software quality assessment are available and will be

presented below. A summary is provided in Table 6.

Code inspections or review processes have been in use for decades to reduce errors in software

development, e.g., the manual code inspection approach described by Fagan [Fag76]. The inspec-

tion is performed to identify errors in the software design or the code (RGoal). Fagan describes four

stakeholders involved and required in the inspection process, i.e., a moderator, a designer, a coder

(the software developer) and a tester, and estimates an effort of 90 to 100 people hours for the

inspection (RUse). The inspection process consists of five steps, which include an introduction to

the design decisions in the software (RDD) and manual comprehension and assessment of the soft-

ware (RRat). Moreover, the inspection, which is supported by a list of common errors to look for,

should be included in the workflow with the same priority as day-to-day tasks (RWork). Every error

4. State-of-the-Art 39

detected during the inspection is classified and documented, including its severity (RDoc). In a re-

work step, the errors are corrected using the report (RWeak). Fagan rates the training of software

developers to identify errors during the inspection as essential.

Since manual code reviews are time-consuming, it is recommended to apply static code analysis

in the review process [CW07]. Chess and West introduce a four-phase code review cycle to iden-

tify security violations in GPL software (RPLC, RGoal). It consists of setting an analysis goal, running

an analysis tool, manually reviewing the tool’s results and correcting identified errors. For identi-

fying the analysis goal (targeted security violations), known software risks are assessed and pre-

viously discovered errors are consulted (RPP). However, the authors state the need for high-level

guidance to prioritize the developers’ potential code review targets (RUse). It needs to be ensured

that reviewers comprehend the code to be reviewed, including its high-level design (RDD). Before

running the tool-based analysis, customized rules should be defined, including company-specific

guidelines, to detect errors that are specific to the analyzed program (RSec). In addition, the tool

should be configured in terms of prioritization of reported errors and different means of documen-

tation are recommended, depending on the targeted goal (RDoc). Subsequently, the software devel-

oper, who has received training (RUse), or a code reviewer, who collaborates with the developer,

manually assesses the identified errors by the tool (RRat), which potentially provides hints to dis-

advantageous design decisions (RWeak). The code review can be integrated at different stages of the

development workflow (RWork) and, if being applied continuously to real-world software projects

(RScal), the effort for the code reviews of an individual project or similar programs decreases (REff).

For measuring the internal software quality, Plösch et al. developed the Evaluation Method for

Internal Software Quality (EMISQ) to guide the software assessment process and make software

quality measurable (RGoal) [Plö⁺08]. EMISQ is an expert-based procedure (RUse), which combines

manual code reviews and tool-based analysis (RDD, RRat). It is focused on quality attributes linked

to software metrics, which are aggregated to an overall quality model. This quality model is pro-

ject-specific and needs to be defined before performing the quality assessment. The authors esti-

mate that EMISQ “is too heavy-weight to constantly monitor the quality of source code in ongoing

projects” [Plö⁺08]. Based on EMISQ, Plösch et al. derived the Code Quality Monitoring Method

(CQMM) for continuous quality monitoring during the development, either as a benchmark-based

or as a trend-based assessment [Plö⁺10].

Moreover, based on EMISQ, Samarthyam et al. propose the goal-driven and context-aware Method

for Intensive Design Assessments (MIDAS) for the quality assessment of industrial software

[Sam⁺13]. It was evaluated with three Siemens internal software projects from different applica-

40 4. State-of-the-Art

tion sectors implemented in C# (RPLC, RSec) and targeting different analysis goals (RGoal). For ena-

bling the systematic application of analysis tools, a three view-model is proposed to map quality

attributes to design violations under consideration of project-specific constraints (RSec). The model

serves as a basis for deriving recommendations for action on how to address the identified viola-

tions (RWeak). However, it requires specifying and tailoring a quality model before starting the as-

sessment, which is usually not available in companies programming control software. As a prep-

aration step, a brainstorming session is held with software developers to identify technical issues

faced by the project team (RPP) to define an analysis goal. The analysis itself is performed by

external experts (RUse), who select suitable code analysis tools and assess the identified violations

and errors in a manual code review (RRat). If required, they collaborate with the developers to

consider project-, framework- or domain-specific constraints (RSec, RDD). Apart from the tool’s

documentation, the experts create a report, which includes their manual review findings and de-

rived refactoring suggestions for different stakeholders, e.g., a management summary and details

for the software developers (RDoc). If projects seem too large for feasible design analysis, the au-

thors suggest focusing on relevant sub-systems or modules which are especially critical or suitable

for analysis (RScal). Since templates from EMISQ are used at various stages, it is assumed that the

application effort decreases with multiple applications despite the manual tasks performed by the

external experts (REff). Based on the insights gained from the assessment, the expert may suggest

tools and techniques for regular use in the development process (RWork). Overall, the background

and experience of involved experts are essential for the procedure’s successful application (RUse).

Another method for assessing and improving software quality based on EMISQ is the Structured

Code Quality Assessment Method (SCQAM) proposed by Gupta et al. [Gup⁺14]. SCQAM has been

applied to eleven industry-sized projects from different application sectors programmed with GPL

(RPLC, RScal), but sector-specific boundary conditions are not targeted (RSec). The authors propose

a combination of code analysis tools and manual assessment by external experts (RRat, RUse). For

enabling manual analysis despite large project sizes, components with known pain points, e.g.,

being instable or error-prone, are selected prior to starting the analysis (RPP) with the aim of as-

sessing conformance to internal programming guidelines (RDD) and identifying issues with a neg-

ative impact on code quality. For this purpose, analysis criteria for the targeted goal are defined in

the preparation step (RGoal). Selected analysis tools are configured before the analysis. Thus, if

similar software projects are targeted in future assessments, the application effort is expected to

be lowered (REff). Experts gather the tool findings in a tabular template, classified into eleven cat-

egories, to report the top 20 to 40 weaknesses and support actions to avoid them (RDoc, RWeak). In

future work, it is intended to train one software developer per group as an expert for applying the

assessment procedure independently (RWork, RUse).

4. State-of-the-Art 41

Dorninger and Ziebermayr address the application of static code analysis for the quality assurance

of control software as part of a continuous integration process (RGoal) [DZ21]. The authors refer to

a PLC code analysis platform applicable to software from different vendors (RPLC), e.g., KEBA,

CODESYS 2 and TwinCAT 2. The analysis platform contains language-specific parsers and gen-

erates an AST on which CFG, data flow and call graphs are built. The gained analysis results about

identified weaknesses (RWeak) are provided textually or as HTML, can be integrated into So-

narQube and are usable to generate documentation of the code (RDoc). With a rule framework,

conformance with PLCopen guidelines can be checked and company- or application sector-spe-

cific rules can be defined (RSec). Additionally, checking naming conventions, calculating complex-

ity metrics or identifying code smells, e.g., large proportions of commented out code, is possible

(RDD, RGoal). However, the identification of pain points is not targeted (RPP). While the authors

suggest integrating the analysis tool into the development environment (RUse, RWork), no further

details about the framework are provided. Moreover, the authors do not mention if their tool was

applied to industry-sized control software (RScal).

In the application sector of packaging machinery (RSec), Neumann et al. developed an approach to

systematically evaluate strengths and weaknesses in company-specific control software architec-

tures, including underlying architectural design decisions (RGoal) [Neu⁺22]. Based on industrial

case studies, the authors defined different architectural views on control software, which are de-

scribed with morphological boxes. For the evaluation, a template for documenting and analyzing

architectural design decisions, including drivers, consequences and connections to the actual con-

trol code, was developed (RDoc). The documentation forms the basis for identifying optimization

potentials in the software architecture and for assessing influences between planned adaptations

and existing design decisions. A template based on former research was derived (RWeak) to formu-

late recommendations for actions [VFN20]. Neumann et al. conducted guided interviews with

three machine manufacturing companies using PLCs from the same platform supplier (RPro, RPLC)

and, subsequently, manually performed the architecture analysis (RScal, RRat). Different design de-

cisions from the companies were documented and their strengths and weaknesses under consider-

ation of company-specific boundary conditions derived (RDD). Future integration of the approach

into the development workflow is targeted (RWork), which would enable the application of the pro-

cedure by the software developers. Currently, external experts are required (RUse). Familiarization

with the templates and using documentation from previous analyses are expected to reduce the

effort in case of multiple applications to the same or similar software projects in a company (REff).

With the aim to develop an objective, quantitative classification to guide control software devel-

opers in selecting a suitable design methodology for their software (RUse, RGoal, RWork), Mejia et al.

assess control software developed according to the GEMMA-GRAFCET (GG) methodology

42 4. State-of-the-Art

[MGB22]. This methodology is a recent approach for standardizing the vocabulary and manage-

ment of operation modes in control software and, in combination with a design pattern, enables

code generation [BG21]. Mejia et al. developed and applied a benchmark workflow to assess con-

trol software obtained with the GG-methodology compared to a statechart-based methodology for

ST code generation using metrics (RGoal) [MGB22]. Both software projects for controlling a lab-

sized test bench (RScal) were programmed in CODESYS (RPLC). Four software metrics targeting

the code structure and two metrics related to the real-time behavior of the software were calculated

using CODESYS Static Analysis, CODESYS Test Manager and manual calculation. The com-

puted metric values for both methodologies are visualized in radar and bar charts (RDoc). Moreover,

they are manually assessed under consideration of specific design decisions in the compared meth-

odologies (RRat, RDD) to derive the benefits and drawbacks of the methodologies (RWeak).

Table 6: Related quality assessment approaches evaluated with respect to the derived requirements.

Approach P
la

tf
o

rm

In
d

ep
en

d
en

ce
 (

R
P

L
C
)

a
P

S
 a

s
P

ro
d

u
ct

 (
R

P
ro

)

U
se

r
(R

U
se

)

A
p

p
li

ca
ti

o
n

 S
ec

to
r

(R
S

ec
)

P
a

in
 P

o
in

ts
 (

R
P

P
)

W
o

rk
fl

o
w

In
te

g
ra

ti
o

n
 (

R
W

o
rk

)

D
es

ig
n

 D
ec

is
io

n

(R
D

D
)

A
n

a
ly

si
s

G
o
a

l
(R

G
o
a
l)

S
ca

la
b

il
it

y
 (

R
S

ca
l)

A
p

p
li

ca
ti

o
n

 E
ff

o
rt

(R
E

ff
)

C
o

d
e

R
a

ti
o

n
a
le

 (
R

R
a
t)

W
ea

k
n

es
se

s,
 C

h
a

n
g

e

E
ff

o
rt

 (
R

W
ea

k
)

D
o

cu
m

en
ta

ti
o

n

(R
D

o
c)

Fagan [Fag76] - n.a. + n.a. n.a. + + o + o + o +

Chess, West [CW07] - n.a. + o + + + o + + + o +

Plösch et al. [Plö⁺08];

Samarthyam et al.

[Sam⁺13]

- n.a. - + o o + + o o + o +

Plösch et a. [Plö⁺10] - n.a. o o - + o + + + - o +

Gupta et al. [Gup⁺14] - n.a. - o o o o + + o + o o

Dorninger and

Ziebermayr [DZ21]
+ o o + - o o o ? n.a. ? o o

Neumann et al.

[Neu⁺22]
o o - - n.a. o + o + o + + +

Mejia et al. [MGB22] o - o n.a. - o + + - n.a. + + o

Overall, available quality assessment procedures contain many valuable elements and concepts,

but none of them fulfills all the requirements derived in Section 3. Moreover, approaches from the

computer science domain targeting GPL are not applicable in the domain of aPS without changes

due to the varying boundary conditions [Jet⁺13b; Vog⁺15b].

4. State-of-the-Art 43

4.3. Research Gap in Quality Assessment of Control Software

The overview of the related work in the previous Sections shows that none of the analyzed ap-

proaches meets all requirements derived for quality assessment of control software and its subse-

quent improvement. This is primarily due to the lack of possibilities for adapting the first available

static code analysis approaches and software metrics in the aPS domain to company-specific or

application sector-specific boundary conditions. Furthermore, static code analysis and software

metrics are not sufficient without a procedure or method guiding their systematic application

[Plö⁺08] since control software developers lack experience with their application and interpreta-

tion of results. In addition, available analysis and quality assessment procedures often require an

external expert or the definition and tailoring of a quality model prior to the assessment and target

the identification of weaknesses only. However, in the aPS domain, only a few general program-

ming guidelines and barely any best coding practices are available so far. Thus, procedures based

on a quality model are not applicable without adaptation. Furthermore, not only weaknesses but

also beneficial design decisions supporting the targeted analysis goal should be documented and

considered as a basis for deriving best practices and reusing these beneficial design decisions in

future software projects. Overall, the significantly different boundary conditions in the aPS domain

prevent all approaches from computer science from being directly applicable. An overview of the

analyzed approaches in the state of the art is depicted in Figure 2.

computer

science

static code analysis

(manual and tool-based)*

means for control software

quality assessment

*Focus on legacy software

software

metrics

analysis

procedures

computer

science

Biallas, Simon,

Stattelmann

Kowalewski

Prähofer,

Angerer
Halstead

Henry,

Kafura

Rosen-

berg

McCabe

Muslija,

Enoiu

Jetley,

Nair et al.

CODESYS

Beckhoff

logi.cals

Schneider Electric

(+ former itris)

ABB

Siemens

Wilch,

Vogel-Heuser

Feldmann, Fuchs,

Vogel-Heuser

Nierstrasz

et al.

Thaller, Egyed

Klammer,

Pichler

Neumann,

Vogel-Heuser

Canedo et al.
Jung,

Yoo, Lee

CERN

(UNICOS)

commercial

tools

Sonnleithner,

Wiesmayr, Zoitl

Younis,

Frey

Capitán,

Vogel-Heuser

Kumar et al.

Engell et al.

Lee, Hsu

GhariebLadiges,

Fay, et al.

Neumann,

Vogel-Heuser

Rosiak,

Schaefer

Lucas,

Tilbury

Zhabelova,

Vyatkin

Samarthyam

et al.

Fagan Chess, West

Plösch

et al.

Mejia et al.

...

...

Obster,

Kowalewski

Gupta

et al.

Dorninger,

Ziebermayr

Jnanamurthy et al.

Ljungkrantz,

Åkesson

Figure 2: Overview of the research areas regarding means and approaches for PLC software quality

assessment, including selected approaches from computer science. The identified research

gap is highlighted in dark grey.

Consequently, the research gap that is addressed within this thesis is identified as:

44 4. State-of-the-Art

Research gap

So far, to the best of the author’s knowledge, there is no systematic quality assessment proce-

dure for IEC 61131-3-based legacy control software using guiding questions, checklists, static

code analysis and software metrics at different points of the software development workflow,

independent of the development environment. Moreover, assessment approaches with suitable

documentation of gained insights and results to enable industrial experts to identify improve-

ment potentials, derive suitable means for addressing and overcoming the identified weak-

nesses, and capture and reuse beneficial design decisions are not yet available.

The quality assessment procedure developed and presented in this thesis aims at filling the identi-

fied research gap.

5. Procedure for Quality Assessment of Legacy Con-

trol Software with Static Code Analysis

This Chapter describes the proposed procedure for quality assessment of PLC legacy software

with guiding questions, checklists and static code analysis. First, in Section 5.1, insights gained

during various pre-studies used to develop the quality assessment procedure are summarized. Fur-

thermore, a short overview of the proposed procedure is provided. Subsequently, details of the

procedure’s four concept steps are presented in Section 5.2, utilizing an industrial case study as an

application example.

The proposed procedure for software quality assessment extends the metric-based analysis proce-

dure for reuse and modularity assessment of selected control software modules by the author pub-

lished in [Fis⁺21a].

5.1. Quality Assessment Procedure for Legacy Control Software

The proposed quality assessment procedure considers the insights from pre-studies, including

questionnaires and expert interviews. Lessons learned from these, which should be considered

during control software assessment, are illustrated below. Afterward, an overview of the proposed

quality assessment procedure is presented.

5.1.1. Pre-considerations Regarding the Quality Assessment of Control Software

In general, software quality assessment with static code analysis and metrics is not a rigid method

with universal rules suitable for every type of software in every context. Instead, apart from the

control code itself, also company-specific boundary conditions need to be considered to assess

control software, as they have a strong influence on the software and its development process

[Neu⁺20c]. Furthermore, depending on the characteristics of the system under control and the ed-

ucational background knowledge of the software developers, different reuse strategies are more or

less beneficial [Fis⁺21c]. Thus, only if a context-sensitive assessment of the control software is

performed, valuable recommendations for enhancing the software quality can be derived from the

results. Insights gained during pre-studies are summarized in the following, focusing on control

software complexity, dependencies within the control software, consideration of company-specific

guidelines and constraints and the suitability of different reuse strategies.

The control software architecture, e.g., the software’s components and their interconnections,

plays an essential role in software quality as it enables, for example, planned reuse. Thus, the

46 5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis

software architecture should be considered during the quality assessment of control software. Re-

garding software components, i.e., POUs, their complexity is a relevant quality attribute: com-

plexity potentially reduces a POU’s comprehensibility, reusability and maintainability, which

leads to an increased effort during its development, testing and maintenance [KS13; Ram⁺85;

YF07]. Various software metrics exist to quantify software complexity from different viewpoints

(cf. [Fis⁺21b] for an overview). However, there is no universally agreed-upon value as an upper

limit for the complexity of PLC control software, which indicates that the software is too complex.

Similarly, ISO/IEC 25023 does not specify value ranges of software quality measures to rated

levels/grades as this correlation depends on particular boundary conditions [ISO25023]. Moreo-

ver, practitioners highlight the challenge of interpreting the meaning of specific complexity values.

To overcome this challenge, a recent approach by the author proposes to assess the software com-

plexity of a POU in the context of other POUs implemented according to the same programming

style and implementing the same functionality [Fis⁺21b]. Thereby, metrics targeting different com-

plexity classes, as described in [LC94], are combined to an overall complexity value, including

the complexity composition (cf. Figure 3). Subsequently, a selected set of POUs can be analyzed

to identify outliers, i.e., POUs with a single or an overall complexity value that is strikingly higher

than the rest of the set.

0%

250%

500%

750%

1000%

1250%

1500%

1750%

2000%

2250%

2500%

2750%

C
o

m
p

le
x

it
y

re
la

ti
v
e

 t
o

m
e
d

ia
n

 m
e
tr

ic
v
a

lu
e

s
o

f
a

n
a
ly

z
e

d
P

O
U

s
 [

%
]

Analyzed Control Software Units (POUs)

Complexity of POUs from different modules (Ladder Diagram)

Cyclomatic Complexity

Difficulty

Vocabulary Size

Program Length

Data Structure Complexity

Information Flow Complexity

Functionality Group (range of resulting complexity):

Organizational: POU calls within a module (18 - 20%)

Messages: General communication (28 - 37%)

Status: Preparation of module state for higher levels (57%)

Error: Communication of errors and Generic: Module functions (79 - 291%)

Components: Hardware control (471 - 2276%)

in
c
re

a
s
in

g
 c

o
m

p
le

x
it
y

Information Flow Complexity

Data Structure Complexity

Program Length

Vocabulary Size

Difficulty

Cyclomatic Complexity

Analyzed

POUs

2750

2500

2250

2000

1750

1500

1250

1000

750

500

250

0

Legend

Figure 3: Overall complexity of POUs from an industrial PLC project, annotated according to their

functionality (implemented in LD, PLC project taken from Case Study C (cf. Table 2, p. 17);

graphically adapted from [Fis⁺21b]).

5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis 47

A detailed, manual evaluation of the proposed complexity metric was conducted with 50 POUs,

programmed in Siemens development environments, from two global market-leading German spe-

cial purpose machine and plant manufacturers (one further considered in Case Study C). It showed

that POUs implementing the same functionality have similar values regarding their overall com-

plexity. For example, when ordering all analyzed POUs implemented in LD of a project from Case

Study C by increasing complexity values, they are at the same time grouped by their functionali-

ties. POUs with the lowest complexity values implement organizational functionalities in the eval-

uated samples and the highest complexity values are reached by POUs implementing hardware

component control (cf. Figure 3). Moreover, the performed analysis showed that POUs imple-

menting the same functionality are similar in the value distribution of the individual complexity

metrics, including their dominant complexity metric class (cf. [Fis⁺21b] for details). These find-

ings illustrate that a universal complexity threshold is not feasible. Instead, POUs implementing

the same functionality and programmed with the same guidelines should be compared to identify

outliers concerning their complexity for their quality assessment. However, complexity is only

one factor that affects software quality and needs to be combined with other factors to evaluate the

overall quality of a software project.

Secondly, dependencies between POUs are targeted, focusing on indirect dependencies as a po-

tentially disruptive factor for a planned reuse of control software. Static code analysis at various

companies conducted by the research group of Vogel-Heuser (including the author) has shown

that there is no ideal way to implement information exchange and, thus, dependencies between

POUs. This is because dependencies are influenced by multiple factors: the implemented func-

tionality, the amount of information to be shared, the time requirements regarding the data distri-

bution and the number of POUs needing the shared information, to state a few. The analysis of a

highly mature software architecture, which supports planned reuse and a clear separation of stand-

ardizable and application-specific software parts, shows that indirect data exchange is not neces-

sarily hampering the reuse potential of the POUs included in a software project. The prerequisite

is that the entire data exchange is implemented in conformance with mature programming guide-

lines, which contain detailed rules regarding the exchange of data [Fis⁺21a]. Consequently, when

analyzing the dependencies between POUs in a software project to assess its quality, analysis rules

tailored to the programming standard of the control software should be used, as demonstrated in

[Fis⁺22b]. Apart from individual recommendations, e.g., flag variables in the bit memory should

be avoided according to Siemens’ programming guidelines (cf. [Sie18], p. 99), barely any univer-

sally accepted beneficial or disadvantageous ways of implementing data exchange exist. Conse-

quently, a context-sensitive analysis, taking company-specific programming guidelines into ac-

count, is required to assess the considered control software’s quality.

48 5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis

Moreover, a recent interview study conducted by the author showed that many companies use

programming guidelines and company- or department-wide naming conventions [Fis⁺18]. Some

even use unique equipment identifiers, which enable linking the automation hardware to the re-

spective control software. Furthermore, in some companies, the symbolic name of a POU indicates

its version number or a changelog is included within the POU’s comment section to document the

POU’s version history. These examples show that programming guidelines contain valuable in-

formation or indicate available metadata supporting the quality assessment of control software.

Thus, company-specific guidelines should be considered but require manual analysis and interpre-

tation (cf. RRat). In some cases, it is possible to manually derive rules for automatically checking

the code regarding conformance to guidelines [Fis⁺18]. Overall, their company-specific character

highlights the necessity to analyze and assess control software in its context, including unique

boundary conditions and guidelines.

Another essential aspect of control software assessment is that no perfect reuse strategy is appli-

cable in any situation and software. Instead, choosing a suitable reuse strategy depends on different

boundary conditions influencing software reuse, which go beyond the software itself. A recent

study comparing the applicability of an OO-IEC and a feature-oriented development approach for

the planned reuse of variant-rich control software identified multiple factors influencing the suit-

ability of reuse approaches [Fis⁺21c]. The two presented concepts are compared concerning soft-

ware-related factors such as modularity and software characteristics, e.g., the expected amount

and scope of variation points. It is identified that the software developers’ background, meaning

their experience and knowledge, is essential for choosing a suitable reuse strategy. Also, the pre-

work required to establish a specific reuse strategy, such as preparing templates or libraries, and

the expected benefit, e.g., their reusability, plays an important role [Fis⁺21c]. Due to the high num-

ber of influencing factors, the study concludes that there is no perfect strategy for a planned reuse

of control software that fits every application scenario in all companies. Consequently, quality

assessment of PLC control software must be conducted in a context-aware analysis process, in-

cluding boundary conditions.

A comparison of reuse strategies for the extra-functional task alarm handling raises further

points to consider when comparing reuse strategies [Vog⁺22a]. These points include assessing

general aspects such as the concept’s evolvability, adaptability and reusability in a different con-

text. Furthermore, the support of legacy systems and the customer- /application-specific adaptation

of standardized parts, i.e., error handling, are compared. Apart from these aspects targeting the

software architecture, points involving the software developers are also considered, e.g., ease of

use targeting the risk for incomplete or incorrect use of standardized software parts. Additionally,

a benchmark of market-leading companies in the aPS domain with mature software development

5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis 49

processes showed that these companies often do not pursue clear strategies for planned reuse.

Instead, mixed forms combining templates and library modules are used [VON18].

Prior research results [VO18; Vog⁺17] highlight the influence of company-specific constraints

on the software development process. Moreover, influences on the software architecture are di-

verse, as emphasized in [Neu⁺20c]. Apart from software aspects, e.g., functionality distribution in

control code, also organizational aspects are crucial. For example, the impact of the development

team size on appropriate reuse strategies and their potential benefits are highlighted: universal

software modules, which often tend to get complex over time, can be handled by a relatively small

software development team, which is agile enough to allow direct communication of all develop-

ers with low organizational effort. On the contrary, change management becomes increasingly

complex and demanding for larger departments, which can even be spread across different loca-

tions or countries. In conclusion, the same reuse strategy (universal software modules) can have

varying effects depending on company-specific constraints [Neu⁺20c]. There are no universally

agreed-upon standards and the suitability of a reuse strategy depends on software characteristics,

organizational aspects, used automation hardware and the application sector.

In summary, conducting a software analysis with strict, rigid rules for quality assessment is neither

feasible nor expected to deliver beneficial results. It is not sufficient to analyze the software with-

out its context, i.e., boundary conditions such as the number of software developers, programming

guidelines, related automation hardware or variants. Consequently, although the use of static anal-

ysis tools is helpful for the analysis to save time, interpretation in the company’s context is essen-

tial and requires knowledge not available or graspable by tools. Thus, manual effort is still required

(RRat). The assessment procedure presented in the next Section takes these insights into account.

5.1.2. Overview of the Quality Assessment Procedure for IEC 61131-3-based Con-

trol Software in an Industrial Context

The proposed procedure targets the goal-oriented quality assessment of existing, often historically

grown, legacy control software. In order to be generally applicable to control software in the aPS

domain, it is designed in a platform-independent manner, i.e., it is not tailored to the specifics of

a selected implementation platform but provides general assessment steps based on the IEC 61131-

3 standard (RPLC). The procedure serves as a framework and structured guide for the quality as-

sessment of control software, which is adaptable to the characteristics of the considered product

(RPro), e.g., serial machines, special purpose machines or plants, and also takes application sector-

specific boundary conditions into account (RSec). The procedure’s four steps are depicted in Figure

4 and their aims are shortly introduced in the following.

50 5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis

2

Familiarization with company-

specific boundary conditions
1

3

Quality assessment and potential

for improvement
4

Exchange with

software developers
Projects,

Documentation

• Conducting expert interviews (interview guiding questions)

• Reviewing existing documentation

• Analysis based on checklist

• Integration at appropriate points in company

workflow

• Manual interpretation of results

• Derive variation points by analyzing multiple projects

• Identification of code clones

• Focus on analysis goal and general software quality

• Derive revised software concept

Tool-based

analysis

Manual

analysis

Graphs,

diagrams,

classifications

Refine

goal

iteratively

Documentation of

analysis results

• Call graphs

• Data exchange

• Functionality

distribution

• Standardized &

application-

specific parts

• POU properties

In
q
u

ir
ie

s
,
g

o
a

l
c
la

ri
fi
c
a
ti
o

n
,

s
e

le
c
ti
o
n

 o
f
fu

rt
h

e
r

p
ro

je
c
ts

Comparison of

additional projects

Assessment of the

software with regard

to analysis goal

Documentation

Interview

Guiding

Questions

Representative

project, first insights

Checklist

Selection of aspects

for detailed analysis

Derivation of

recommendations

for action

Conducting static

code analysis

(manual & automatic)

Comparison of additional software

parts / projects and documentation

of insights

Checklist

Findings, potential

for improvement

Figure 4: Software assessment procedure for classical IEC 61131-3 control software.

The first step aims to familiarize with the targeted software and the system it controls, including

boundary conditions to be considered during the analysis. Thus, guided expert interviews with

selected control software developers are conducted and available documentation regarding the

control software is gathered. Further, the analysis goal is defined and a representative software

project for conducting the first analysis is selected jointly with the software developers. Subse-

quently, in Step 2, following a checklist, static code analysis of the chosen project is conducted to

understand the general structure of the control software. The analysis is performed as a combina-

tion of manual and tool-based analysis to cope with the large size of industrial control software

projects while considering the semantics behind the tool-based analysis results. The insights

gained during this analysis are documented, e.g., in graphs and diagrams, for a subsequent discus-

sion with the software developers in which questions are clarified. If necessary, the chosen analysis

goal is refined. Next, additional software projects are selected for analysis in Step 3. In this step,

the focus lies on documenting the analysis results tailored to the chosen analysis goal. Using the

insights gained from Step 2, the focus is narrowed down to the analysis goal when analyzing fur-

ther projects. Therefore, unlike in Step 2, not necessarily the entire software projects are analyzed,

but specific parts are targeted. Finally, in Step 4, the analysis results are used to assess the control

software, identify beneficial and disadvantageous parts and derive recommendations for action to

enhance the software’s quality.

5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis 51

5.2. Detailed Introduction to the Quality Assessment Procedure

The details of the four procedure steps for quality assessment are introduced in the Sub-sections

below, utilizing Industrial Case Study A (cf. Table 2 for general information) as application ex-

ample for better understandability. The case study has been published in [FVF15] and [Vog⁺15a].

5.2.1. Familiarizing with Company-specific Boundary Conditions (Step 1)

In preparation for the context-aware quality assessment with static code analysis, familiarization

with the considered aPS, its functionality, available documentation and known pain points is re-

quired. Further, it is essential to set an analysis goal to ensure that the analysis results are relevant

and beneficial for the company, as highlighted in [Sam⁺13]. Means of static code analysis are

available in a great variety and address different quality attributes (cf. Section 4.1, p. 26). Applying

these means in an unstructured manner and without a pre-defined analysis goal impedes the use-

fulness of the analysis results. At the same time, analyzing too many quality attributes at once is

not feasible either, since the final assessment requires domain knowledge, meaning input from the

software developers familiar with the controlled process and its boundary conditions, and time-

consuming, manual interpretation. An overview of the activities performed in this analysis step is

depicted in Figure 5, which will be introduced utilizing Case Study A in the following.

Figure 5: Details of Step 1 (Preparation and Familiarization) of the quality assessment procedure.

Expert interviews with

software developers

Interview Guiding Questions

(three categories)

Aim: familiarization with automated

process, control software design and

development workflow

P
re

p
a

ra
ti

o
n

 a
n

d
 F

a
m

il
ia

ri
z
a

ti
o

n

(P
ro

c
e
d

u
re

 S
te

p
 1

)

Guidelines for project selection

(criteria for representative project)

O
n
e

-t
im

e
,

in
it
ia

l

p
re

p
a
ra

to
ry

 w
o
rk

Exemplary Analysis Goals

Aim: support goal identification

Choosing software project

for first analysis

Optional workshops

(e.g., approaches for

planned reuse)

Selecting analysis goal

Workshops for knowledge transfer

(e.g., background knowledge for goal

selection)

Collecting and reviewing

all information for the

analysis

First analysis results

(prominent findings)

Procedure Step 2

Input for static analysis

Software-related information

 PLC project

 Programming guidelines and

design decisions (from interviews)

 Libraries & documentation

RUse

RSec

RSec

RPP

RGoal

RWork

RDD

RGoal

RDD

Input for static analysis

Additional information from other

disciplines

 Functionality descriptions

 Mechanical construction plan

 Hardware variants

 Circuit diagrams

RSec

RDD

Clarify questions arising during

analysis with experts RPP

Background knowledge

related to findings

Refine analysis goal

52 5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis

Case Study A was conducted in an internationally market-leading plant manufacturing company

in the woodworking application sector. The company manufactures complete production plants,

including discrete intralogistics processes like the analyzed plant part warehouse. The following

details describe the software and its development process at the time the case study was conducted.

Expert interviews with software developers

As depicted in Figure 5, initially, an expert interview, ideally with software developers for the

considered machine or plant, is conducted. The aim of the interviews is the familiarization with

the considered aPS, the software development process, including involved stakeholders and their

tasks, and the control software itself. Critical points regarding the control, e.g., parts with hard

real-time restrictions or dependencies to systems outside the PLC, should be identified since their

implementation usually contains undocumented expert knowledge and might be rated as disad-

vantageous if the reason for the implementation is not known.

Case Study A was conducted on-site at the company over several weeks, which enabled the ex-

change with the software developer of the warehouse on short notice. During the first interview,

the software developer introduced the warehouse’s general functionality, including its process

sequence and position within the plant. The warehouse, illustrated in Figure 6, is located between

the cooling and stacking station (C&S) and the sanding line (SL). After a pressing process, pro-

duced particle boards are stacked at the C&S station’s stacking places, where they are collected

by the storage car and transported to their storage place to cool down and harden. After hardening,

the storage car transports the stacks to the SL for subsequent processing. The arrows in Figure 6

indicate the transport direction of the stacks. [FVF15]

c
o

o
lin

g
 &

s
ta

c
k
in

g

warehouse

ra
ilw

a
y
 o

f
b

a
s
ic

 c
a

r

ordinary storage group

ordinary storage group

ordinary storage group

ordinary storage group

ordinary storage group

storage

car (SC)

ordinary group

ordinary group

ordinary group

ordinary group

area 1

stacking place

stacking place

protection boards

area 0

fork lift

s
a

n
d

in
g

 l
in

e

interface to SL

protection boards

Figure 6: Exemplary layout of a warehouse (graphically adapted from [FVF15]).

5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis 53

Generally, a warehouse in Case Study A consists of a variable number of storage areas, which are

located left and right of the storage car’s railway. Figure 6 illustrates an exemplary warehouse

with two areas. The areas are further divided into storage groups. The storage car consists of a

basic car (BC) moving along the railway and a variable number of satellite cars located on the BC.

The satellite cars move along the groups to lift or set down a stack. The number of storage cars is

another variation point and limits the number of areas. Optionally, reusable protection boards can

be utilized at the bottom of the stacks to prevent damage to the manufactured boards. These are

stacked in two particular, optional storage groups – one at the C&S and one at the SL. [FVF15]

During the interview, the software developer mentioned multiple variation points. These are es-

sential since their influence on the control software needs to be reflected in the applied reuse strat-

egy. Moreover, the warehouse layout depends on customer requirements. Consequently, its com-

position varies considerably depending on individual orders, and the warehouse control software

needs to be modified accordingly. This is confirmed by the identified special boundary conditions

of the warehouse control software: it highly depends on the warehouse dimensions since these are

used to position the storage car. Further, the communication between the warehouse PLC and other

PLCs, e.g., the control of the storage car, is essential and not adaptable. Concluding, high varia-

bility is expected, which causes a high amount of software variants to be managed.

The control software is written by a single software developer utilizing the unplanned reuse strat-

egy of copy, paste and modify. When starting the software development for a new warehouse, the

software developer chooses the software of a completed project as a basis. Since no variant or

version management is established, selecting a suitable project is based solely on the practical

knowledge of the software developer. While a few standardized functions are used in the software

development process, only library elements delivered from the PLC supplier are utilized and no

company-specific module library exists. [FVF15; Vog⁺15a]

The company uses rather rough programming guidelines, which contain general software require-

ment specifications like interlocking conditions or the general structure of certain POU types.

However, a company-wide numbering system, i.e., unique equipment identifiers in the style of

[IEC81346], is used throughout the development in all involved disciplines and results in naming

conventions for POUs. The control software is mainly programmed in LD, which is often a re-

quirement by the customers. Additionally, IL is used for some elaborate calculations. [Vog⁺15a]

The overall structure of the control software and design decisions were shortly discussed with the

software developer. Generally, the individual control software variants are documented in various

forms, e.g., functional design descriptions, unique equipment identifiers and naming conventions

54 5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis

for POUs, comments in POU headers and network titles. However, the influence of the identified

variation points (from a functional and a hardware point of view) on the individual software parts

is not documented in detail. Consequently, detailed information on the design requires static code

analysis of an exemplary program in Step 2. In the discussion, five main implemented functional-

ities were identified to which the POUs are assigned. These are general aspects (alarms, operation

modes), data exchange between plant parts, storage car control, connection to the warehouse man-

agement system (WMS), and transferring data to the HMI. The mainly global variables used to

fulfill those functionalities are organized in structures within DBs. Apart from the communication

to the HMI, the communication between the storage car and the WMS is essential and should not

be changed. The warehouse can be operated in three different operation modes, i.e., an automatic

mode, a manual mode and a manual-unlocked mode, e.g., for the start-up. [FVF15; Vog⁺15a]

The software developer responsible for the warehouse is aware of the drawbacks and risks of

introducing errors when applying the current reuse strategy copy, paste and modify. Furthermore,

the lack of detailed documentation on the influence of different variation points on the control

software is considered a challenge in the development process since, at the time of the analysis,

only one software developer was familiar with the control software, which represented a signifi-

cant risk for the company. Accordingly, it was decided to train a second developer and document

the variation points to enhance planned reuse.

Overall, as can be seen from the insights gained above, interviewing the software developer ena-

bles a rough overview of the controlled aPS and the technical process as well as involved stake-

holders and information such as naming conventions that help understand the software. Without

this knowledge, the software analysis for quality assessment cannot be performed in a meaningful

way with reasonable effort. On the one hand, familiarizing and understanding the unknown control

software would take significantly longer, as understanding the rationale behind existing code is

time-consuming and difficult [LVD06; MML15; Ste00], especially without background infor-

mation on the controlled system. On the other hand, without talking to the domain experts, i.e.,

the software developers, application sector- or company-specific boundary conditions are not

known and, thus, cannot be considered (RSec). However, they have a high impact on design deci-

sions in the control software (RDD). A set of interview guiding questions was developed to simplify

the familiarization with the software to be analyzed (cf. Appendix A.1 for a detailed question list).

The questions were derived from former case studies, which illustrate the importance of architec-

tural levels [Vog⁺15a], current challenges of reuse, variant and version management [Fis⁺18] and

challenges and industrial approaches for implementing extra-functional software parts, e.g., error

5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis 55

handling [Vog⁺16], especially in variant-rich systems [Vog⁺22a]. Further, they highlight the rele-

vance of considering a company’s programming guidelines and development workflow during the

software quality assessment [Fis⁺21a; Fis⁺22b]. Also, information from other disciplines, e.g., the

mechanical layout plans and their variants, which influence the control software [FVF15], organ-

izational aspects [Neu⁺20c] and the software developers’ background knowledge [Fis⁺21c] were

identified as influencing factors for control software. Finally, multiple questionnaire studies of the

research group of Vogel-Heuser were reviewed. They are aimed to quantify and assess different

parts of the control software development process, applied reuse strategies and the commissioning

process for a benchmark between different companies [VO18; Vog⁺17; Vog⁺21c; VON18]. The

gathered questions are organized into three blocks, i.e., questions regarding the automated system,

questions targeting organizational aspects and questions regarding the control software.

The questions support identifying critical points in the application and making conscious design

decisions, which are often not documented, explicit for the analysis (RDD). A block of questions

focuses on the control software itself, e.g., naming conventions. Especially numbering systems

used across different disciplines support the analysis, as they connect software implementation

parts to the controlled automation hardware. Additional questions target recurring challenges faced

during the development or commissioning to identify pain points as potential points for improve-

ments and, thus, derive the analysis goal from them (RPP). The questions are phrased as general as

possible to support the definition of a helpful analysis goal depending on the identified pain points

and challenges (RGoal). Finally, several questions target the software development workflow, which

is essential to determine an appropriate point for conducting the static analysis in Step 2 (RWork).

In conclusion, the main aim of the interview guiding questions is to enable software developers,

after training, to perform the static code analysis themselves in a goal-oriented, systematic process

(RUse). They support identifying potentially helpful information for the analysis, including docu-

ments from different disciplines. Moreover, the questions target making implicit design decisions

about the software architecture explicit for taking them into account during the analysis (RDD). The

familiarization step can be omitted or significantly reduced when using the procedure a second

time to assess the same or similar control software from the same company (REff).

Optional workshops for knowledge transfer

After the expert interviews, optional workshops regarding selected topics can be conducted

throughout the procedure, for example, to support selecting a suitable project to start the analysis

in Step 2. Another possible focus targets the identified, recurring challenges in the company’s

control software development to provide background knowledge about potential solutions for

these.

56 5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis

During the first-time application of the assessment procedure in a company, there are multiple

reasons for conducting a workshop with the company’s software developers at different procedure

steps. A group of targets is to clarify questions that arise during the quality assessment procedure

about the control software and hinder performing the next step. For example, after the initial anal-

ysis of the first project in Step 2, a workshop can support clarifying questions that arose during

the documentation of the analysis results. Second, focusing on knowledge transfer to provide the

developers with theoretical background knowledge and, thus, enable them to perform the software

quality assessment independently in the second procedure application (RUse). An example of back-

ground knowledge potentially interesting for the software developer in Case Study A is available

means for a planned reuse of variant-rich control software, including requirements and limitations.

Selection of the analysis goal

Based on the insights gained in the expert interview, the goal of the quality assessment was de-

fined. Jointly with the software developer of the warehouse, the unplanned reuse with copy, paste

and modify and the lack of documentation on detailed design decisions and influences of variation

points were rated as the main challenges. More precisely, multiple variation points in the mechan-

ical components of the warehouse were expected to have a strong influence on the control soft-

ware. Consequently, to avoid the disadvantages of applying copy, paste and modify, the analysis

goal “enhance planned reuse of variant-rich control software” was selected (cf. Table 7, Goal 2).

With the goal being defined, some coarse requirements regarding the next procedure steps can be

set: During the analysis and familiarization with the control software in Step 2, aspects like its

structure, functionality distribution and data exchange need to be considered and documented. In

Step 3, the variation points of the warehouse should be determined jointly with the software de-

veloper, if required, including other experts from the company. Furthermore, control software var-

iants of different warehouses need to be analyzed to identify the dependencies between the control

software and the mechanical components of the warehouse. Finally, in Step 4, suitable means for

planned reuse must be chosen based on the insights gained from the static code analysis.

Generally, to support the definition of an analysis goal, exemplary goals are provided for assis-

tance (cf. Table 7). The suitability of an analysis goal always depends on the insights gained during

the conducted interviews. Moreover, the same goal can be used when analyzing software of dif-

ferent maturity levels. For example, Goal 1 proposes a general assessment of software modularity,

which is a prerequisite for software reuse. This goal can be used in historically grown control

software to analyze if any modularization strategy is already applied and to identify simple, low-

effort changes to increase the control software’s modularity. The goal is also suitable for assessing

mature control software developed using planned reuse strategies. Points for improvement can be

5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis 57

identified even in mature software, as demonstrated in a questionnaire study with market-leading

German aPS manufacturers [Vog⁺17]. Some goals require a minimum level of maturity of the

development process, e.g., in the case of Goal 6, programming guidelines must be available, which

vary significantly in their level of detail from company to company. However, many generic goals,

e.g., code clone identification to enhance reuse (Goal 3) or documentation of the current software

architecture and its primary design decisions, are suitable for legacy software without pre-defined

software architectures. Regardless of the software maturity, the definition of an analysis goal is

essential to prevent the code analysis from becoming an unorganized process. Finally, the analysis

goals are not entirely independent; e.g., Goal 3 and Goal 6 can also be relevant when assessing

Goal 2. Thus, targeting a combination of prioritized goals is also possible.

Table 7: Exemplary analysis goals for static code analysis of legacy control software (not independent

from each other).

Number Analysis Goal Details regarding the aim

Goal 1 Assessment of

software modularity

Modularity is a prerequisite for planned reuse and high-quality software. Distri-

bution of software projects into reusable parts and their interfaces are targeted.

Goal 2 Increasing planned

reuse in variant-rich

software

Documentation of variable and unchangeable software parts to separate their im-

plementation and potentially derive library modules of common parts or choose

suitable variant management and reuse strategies.

Goal 3 Analysis of

code duplicates

Identification of code duplicated on different granularity levels and within a sin-

gle project and/or across multiple projects.

Goal 4 Analysis of software

evolution during the

development

Conduction of conformance checks to detect violations of programming guide-

lines in the version history of a software project. This goal aims to identify dis-

advantageous parts in application-independent control software intended for re-

use in different projects, e.g., project or module templates, which are combined

with application-specific parts.

Goal 5 Identifying the reuse

potential in application-

specific parts

Analysis of details of application-specific parts to identify commonalities in

structure or source code as a basis for their encapsulation and planned reuse (to

reduce the application-specific parts to a minimum).

Goal 6 Assessment of pro-

gramming guidelines

Targeting, for example, library modules and application-specific software parts

(functionality distribution between them, their interactions/communication/inte-

gration of standard and application-specific/customer-specific parts).

Goal 7 Preparation for

refactoring/green-field

development

Analysis regarding disadvantageous design decisions known from the software’s

lifecycle, e.g., challenges during commissioning, reuse or adaptations to cus-

tomer requirements, maintainability, before refactoring a project. The aim is to

integrate the analysis results into the conceptual design phase of the new software

architecture (avoid repeating/keeping disadvantageous design decisions).

This list of exemplary analysis goals was derived from challenges identified in previous case stud-

ies and questionnaire studies, e.g., [MJG11a; Vog⁺15b], which highlight requirements for a

planned reuse of high-quality control software. It supports the software developer in choosing a

58 5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis

reasonable goal by considering the identified pain points and challenges. Depending on the goal,

the integration into the company workflow, timing and regularity of the analysis are influenced.

These factors might impact selecting a suitable project for the first analysis.

Choice of the software project/project parts to be analyzed in Step 2

After the analysis goal has been defined, a suitable project should be selected for the first applica-

tion of static code analysis. Since the selected analysis goal in Case Study A targets the planned

reuse of variant-rich control software, the projects chosen for analysis should include variation

points. Further, they should be complete, i.e., belonging to warehouses that are already operating

or shortly before commissioning. Otherwise, the comparison of incomplete control software vari-

ants will incorrectly detect variation points at software parts that are not yet fully programmed.

For familiarization with the warehouse and its control software, the software developer suggested

a recently commissioned warehouse, which is well-known to him. In addition, in the expert’s view,

it is representative of the general warehouse functionalities and is relatively simple. For example,

the selected warehouse contains only one storage car.

The procedure supports this step with an additional part of the guiding questions containing hints

for selecting a representative project (cf. Appendix A.1, p. 187). For example, the first project

should be representative of the aPS under consideration and the pain points addressed in the anal-

ysis. Both positive and negative examples help familiarize with the control software and compre-

hend its structure. Moreover, the functionality of the aPS being controlled by the selected software

projects and, if available, associated programming guidelines should be known. Choosing a well-

documented (or at least well-known) project for the first analysis, including its functional descrip-

tion, a mechanical layout plan or unique customer requirements, lowers the effort of the initial

analysis as these documents can be consulted rather than extracting the knowledge from the soft-

ware itself. Especially with legacy software, the source code is frequently the only documentation

available, which makes it challenging to comprehend the implemented functionality [Kir⁺16]. An-

other aspect to consider is that the applied reuse strategies and associated templates or module

libraries and the development process should be known. If questions arise during the analysis, it

is beneficial to know which developers were involved in the software programming to include

them in the clarification process.

Collection and review of additional information

For the initial analysis in Case Study A, the software developer provided two documents from

other disciplines: the mechanical layout plan of the selected warehouse variant and the correspond-

ing motor-valve-limit switch list (MVL-list). The MVL-list contains all automation hardware com-

ponents used in the warehouse, including their unique equipment identifiers. Thus, it helps connect

5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis 59

the mechanical layout plan and the naming conventions in the control software to the respective

hardware elements. During the expert interview, a significant influence of the warehouse layout

on the control software was identified, e.g., the warehouse dimensions are used within the control

software. Thus, both documents are expected to ease the analysis of the first project in Step 2.

Apart from documents from other disciplines, information about the control software is beneficial

if available. For example, if the control software to be analyzed follows a pre-defined software

architecture, it is helpful to gather documentation on the architecture concept. On the one hand, it

eases the analysis of the first project and understanding the control software in analysis Step 2. On

the other hand, it is a prerequisite for analysis goals such as checking the conformance to existing

guidelines. However, it is not necessary to define the architectural levels in advance to enable the

quality assessment of control software. Often the software architecture is not known or docu-

mented before conducting the first analysis, which is directly targeted in Step 2.

In summary, the aim of Step 1 is the preparation of the static code analysis by familiarizing with

the controlled system and its control software and gathering as much information, which is poten-

tially helpful for the analysis, as possible. To support the software developer in conducting this

procedure step, respective interview guiding questions, exemplary analysis goals and hints for

selecting a project for initial analysis are provided. It is important to note that not always all ques-

tions need to be answered and not necessarily all listed information is available. Furthermore,

information usable for the analysis and discussions with experts is not limited to the mentioned

aspects; they only provide a starting point for the systematic preparation of the static code analysis.

5.2.2. Static Code Analysis of a PLC Software Excerpt or Single Project (Step 2)

With the analysis goal set and the first project selected, the static analysis is prepared and per-

formed in Step 2. The activities during this step are depicted in Figure 7. A checklist with aspects

to be considered during the static analysis is provided as a starting point to support the selection

of suitable analysis means. As suggested in [Sam⁺13], the analysis is conducted as a combination

of manual and tool-based analysis since both methods complement each other well: due to the

large size of industrial control software projects, a pure manual analysis is not feasible. However,

manual analysis is essential to comprehend the intention of the control software parts and to take

the semantics behind the tool-based analysis results into account.

The analysis results are visualized and documented in different formats and insights gained are

summarized. If required, discussions with software developers about initial analysis results are

conducted to comprehend software parts, which require their domain knowledge. These discus-

sions are scheduled on-demand to clarify open questions about the documented analysis results.

60 5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis

As depicted in Figure 7, the analysis is iteratively refined to understand the overall software struc-

ture, its design decisions and details regarding the defined analysis goal utilizing the selected,

representative project. To support this iterative process, the aspects contained in the checklist are

sorted from a coarse-grained to a fine-grained level, i.e., from analyzing the overall software struc-

ture to analyzing selected properties of individual POUs.

Figure 7: Details of Step 2 (Static code analysis of a single PLC project) of the quality assessment pro-

cedure.

In the following, the briefly introduced activities of Step 2 are illustrated utilizing Case Study A.

Planning the static code analysis based on insights from Step 1

From the interviews in Step 1, insights regarding the control software of Case Study A were gained.

The considered warehouse control software is historically grown and software design decisions

and influences of variation points are barely documented. However, knowledge about the general

software structure, functionality distribution and design decisions is a prerequisite for planned

reuse. Further, understanding the control software architecture and its relation to the automation

hardware is essential for identifying variation points in different software projects (cf. Step 3).

Thus, the subordinate analysis goal documenting the current software architecture is defined to

address the identified challenge lack of documentation on design decisions. The results are relevant

for determining software parts suitable for planned reuse, i.e., to address the defined analysis goal.

Conducting the static code analysis (one time or regularly)

Planning the static

code analysis

Summary of results

(initial analysis)

Checklist for performing

static code analysis

 Call graph (hierarchy levels)

 Structural patterns

 Programming languages

 Used libraries

 Functionality distribution

 Link to controlled hardware

 Meta data

 (in-)direct data exchange

 Software metrics

S
ta

ti
c

 c
o

d
e

 a
n

a
ly

s
is

 o
f

s
in

g
le

 P
L

C
 p

ro
je

c
t

(p
a

rt
s

)

(P
ro

c
e

d
u

re
 S

te
p

 2
) Manual

analysis

Automatic, tool-

based analysis

Incremental refinement

(e.g., top-down: project,

selected POUs, POU parts)

Adaptation to company s

boundary conditions

Optional workshops for

knowledge transfer

Cf. Step1

Documentation for

different stakeholders /

with different focus

Application-aware analysis

Indicators for software quality

attributes (goals)

Procedure Step 1

Procedure Step 3

Means of visualization and

documentation

 Overall software structure

(call graph, data exchange graph)

 Grouping of POUs

(e.g., according to functionality)

 POU-level metric results

(diagrams: pie charts, bar charts)

 Architectural design decisions

Insights from expert

interview

Visual presentation and

documentation of results

RSec

RSec

RPro

RPP

RUse

RGoal

RGoal

RWeak

RDoc

RDoc

RScal

RScal

RScal

RWork

RWork

REff

RRat

5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis 61

Due to the close link of PLC software to the controlled hardware, familiarization with the mechan-

ical layout plan, the MVL-list and the unique equipment identifiers is required before the actual

analysis. Generally, knowledge about the controlled aPS is a prerequisite for comprehending the

rationale behind the design decisions in the control software (RRat). Moreover, a functionality-

based definition of reusable software parts is often proposed [SFJ15]. Thus, in Case Study A, link-

ing the software implementation parts to their functionality and the respective hardware modules

is necessary. Otherwise, the functionality distribution and the separation of application-specific

and standardizable software parts, which are essential to address the defined analysis goal, cannot

be reconstructed. Further, a detailed analysis of the communication to external sources is required

in Case Study A since it represents unchangeable boundary conditions. To address the defined

goal, the analysis must be performed for differing, complete software project variants. A continu-

ous quality assessment is not required to enhance planned reuse. Thus, the analysis can be per-

formed as a post-processing step of finished software projects, which are known by the software

developer currently programming the warehouse.

Generally, when planning the first static analysis, insights gained from Step 1 are summarized.

These include identified challenges, boundary conditions and the selected analysis goal. Moreo-

ver, the insights enable an application-aware static code analysis by adapting to the application

sector- or company-specific constraints (RSec, RPro). As illustrated in Case Study A, the goal of the

initial analysis might differ from the defined overall analysis goal. This difference results from the

aim of the first analysis, which is, apart from the defined analysis goal, to gain an overview and

understanding of the basic software structure. Depending on the selected analysis goal and the

company’s development workflow, additional information needs to be considered and prepared

for the analysis, e.g., the MVL-list in Case Study A. As highlighted above, for understanding the

general software structure, it is essential to understand the controlled hardware and the aPS func-

tionality. Therefore, apart from analyzing the control software itself, also influences from other

disciplines must be considered for a holistic quality assessment of aPS control software.

Regarding its integration into industrial development workflows, the quality assessment procedure

can be adapted and takes company-specific boundary conditions into account (RSec, RPro). The pro-

cedure is not linked to a specific point in the development process (RWork). Consequently, the pro-

cedure enables, for example, a one-time quality assessment of the developed control software at

particular development steps, e.g., at the end of the development process like in Case Study A.

Moreover, continuous quality monitoring during the development is also supported, e.g., to ana-

lyze software evolution and monitor the modifications performed to standardized software parts

during the development process (cf. Goal 4 in Table 7) as described in [Fis⁺21a].

62 5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis

For integrating the quality assessment into the workflow, it needs to be examined at which points

in the workflow the intended analysis is valuable and efficient. This examination includes availa-

ble resources to realize adaptations if the analysis results indicate software structures negatively

affecting the software quality, especially if continuous quality monitoring is targeted as described

in [Fis⁺21a]. To support this step, information regarding the software development process, which

was gained during the expert interviews in Step 1, can be documented utilizing the Business Pro-

cess Model and Notation (BPMN) (depicted in Figure 8) or its extensions tailored to the aPS do-

main presented in [Vog⁺21b]. With BMPN, the organization of the software development depart-

ment into sub-departments (e.g., separation of a standardized module and customer-specific appli-

cation development in Figure 8), the use of information from other disciplines (e.g., the MVL-list

from the mechanics’ department) and the general workflow, including reuse of software parts from

libraries or templates (cf. module database in Figure 8), can be illustrated.

Figure 8: Exemplary software development workflow of an aPS manufacturer modeled using BPMN.

The resulting model includes involved stakeholders, their tasks and dependencies between depart-

ments or stakeholders. Such a model supports identifying an appropriate point in the development

workflow to perform the goal-oriented, static code analysis and use its results.

Iterative, static code analysis of selected project

During the first analysis in Case Study A, mainly manual static code analysis was conducted to

understand the rationale and design decisions in the control software. For this purpose, available

means of the Siemens PLC development environment were used, e.g., reference data like the call

structure or read and write access to selected variables [Sie06]. Wherever possible, this was sup-

ported by an available prototypical tool for automatic code analysis described in [Fuc⁺14].

The initial analysis is iteratively performed in accordance with the identified sub-goal documen-

tation of software architecture. Selected aspects targeted during the analysis are listed in Table 8,

s
o
ft

w
a
re

 d
e
v
e
lo

p
m

e
n
t

m
o
d

u
le

 d
e
v
e
lo

p
m

e
n
t

a
p

p
lic

a
ti
o
n

 d
e
v
e
lo

p
m

e
n
t

Developing

library

modules

mechanical

layout plan &

circuit diagram module

library

database

library modules

Programming

guidelines

Acceptance

Test
Programming of

process logic

Parameterizing

library modules

project-specific software development

Legend

sequence flow

message/data flow

association

start event:

receipt of a message

document (generated

or used in a task)

data repository

new customer project

task

5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis 63

p. 65 (cf. detailed checklist in Appendix A.2, p. 191) and referred to in the following. First, a rough

overview of the software project, the included POUs and DBs, is targeted (Aspect 1). Due to the

unique equipment identifiers, some POUs can directly be linked to the hardware modules they

control. Next, the call graph is generated with the prototypical analysis tool (Aspect 2) and illus-

trated in Figure 9. It enables the identification of direct call dependencies between the POUs and

the four hierarchy levels, representing the control software's coarse structure. Furthermore, fre-

quently called POUs, such as warehouse route, can be identified, indicating potential library mod-

ules (Aspect 3). In contrast, dead code, i.e., uncalled POUs, can be identified as highlighted in

Figure 9. The call graph forms the basis for analyzing the functionality distribution in the control

software, for example, by highlighting all POUs required for the storage car control (cf. Figure 9)

or POUs involved in error management (Aspect 6 and 7). Annotations of the call graph are part of

the documentation of the analysis results and form the basis for more fine-grained analysis.

OB1

(entry point)

warehouse route

(central unit)

control of

interface

places

alarms and diagnosis

(e.g., safety doors)

warehouse

management

system

routing

storage car

(SC) control

transferring

data to the
HMI

dead code

corn-

flower
SC

OB FB FC

node diameter = POU size;

edge length = inverse to amount of

exchanged data

Figure 9: Annotated call graph of the analyzed software project of Case Study A, with entry point OB1.

By analyzing the call graph in combination with reviewing the control software in the development

environment, the call sequence in a program cycle is analyzed. During this part of the analysis,

interviews with the software developer are conducted. These also include the communication of

the warehouse PLC with external sources, e.g., the WMS and the storage car (Aspect 10). Regard-

ing the selected analysis goal, the exchange with the software developer is essential to understand

the functionality distribution within the overall software structure, i.e., assigning functionalities to

64 5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis

the POUs within the software to analyze the effects of the warehouse variants on the control soft-

ware in Step 3. The analysis confirmed the five main functionalities identified during the expert

interview in Step 1 and they were annotated manually in the call graph.

Finally, the information flow, especially the indirect data exchange via DBs, is targeted (Aspect 8).

As known from the expert interview, global DBs are used to organize and exchange data. The data

exchange graph generated with the STEP 7 prototype [Fuc⁺14] confirms this: 100 DBs are con-

tained in the project, with most POUs accessing and exchanging data via these. The variables are

grouped according to their “functionality” in the program and the DBs have meaningful names.

While this eases the comprehensibility of the software, it also allows the reuse of DBs during the

software development via copy, paste and modify. For example, in the case of a warehouse with

two storage cars, the DB containing the variables related to the storage car is copied and reused

for the second storage car [FVF15]. Overall, an overview of the software architecture is achieved

with the iterative software analysis, including multiple discussions with the software developer.

The performed analysis in Case Study A confirms the necessity to combine manual and automatic,

tool-based analysis, as highlighted in [Sam⁺13]. For example, for the identification of the func-

tionality distribution, considering information from different disciplines such as the mechanical

layout plan or the MVL-list is necessary. This requires handling and understanding differently

structured documents, which are usually highly company-specific. It is currently impossible to

automatically take this information into account during automatic code analysis. Consequently,

manual code audits and interpretation are necessary, for example, when amending the call graph

with semantic insights from the discussions with the software developer (RRat). Nevertheless, using

tools facilitates the analysis by reducing manual effort, e.g., the automatically generated call graph

used in Case Study A, including the size metrics and the amount of exchanged data. Thus, a tool-

based code analysis should be performed whenever possible to gain insights about the control

software regarding the selected analysis goal as efficiently as possible. However, manual analysis

is still required to prepare the tool-based analysis, interpret the automatically generated results and

assess the control software in the context of the company- and application sector-specific boundary

conditions. Current tools cannot perform this step, especially whenever expert knowledge is re-

quired to understand, for example, the intention behind the code structure or POU dependencies.

Different analysis means for static code analysis targeting various aspects are available. Potential

aspects to be considered are summarized in Table 8 and the corresponding checklist in Appendix

A.2 on p. 191. The aspects in the table are linked to the expected insights gained to enable software

developers to perform systematic, goal-oriented code analysis on their own (RUse). The checklist

5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis 65

is intended as a starting point, which guides the software analysis from the overall software struc-

ture to implementation details. It is proposed to start with coarse-grained aspects for gaining an

overview of the software structure, cf. Aspects 1 and 2. Conspicuous, structural patterns identified

during this coarse analysis (cf. Aspect 3, 4 and 5) provide an entry point for continuing the analysis

on a more detailed level, e.g., by considering sub-parts of the control software, individual POUs

and their dependencies or even implementation details within selected POUs (e.g., Aspects 6 to

10). For example, after gaining an overview of the contained elements and their dependencies

using call graphs, searching for recurring call patterns as defined in [Fuc⁺14] supports the identi-

fication of structural clusters in the control software, which should be targeted closer by conduct-

ing a manual code analysis. These structural patterns are functionality indicators [Neu⁺20c] and,

thus, give insights into architectural design decisions, e.g., if extra-functional tasks are imple-

mented centrally or distributed in each module.

Table 8: Aspects to be targeted during the static code analysis (no claim to completeness).

Number Analysis Aspect Expected insights regarding architectural design decisions

Aspect 1 Number and type of

elements
 Overview of the control software

 Basis to assess functionality distribution, planned reuse (e.g., instantiations

of FBs) and data exchange between elements or hierarchy levels

Aspect 2 Call graph and archi-

tectural hierarchy

levels

 Dependencies between POUs via calls to understand the software structure

 Combinable with views including the functionality distribution or POUs

grouped according to the folders they are organized in.

 Amount of hierarchy levels as an indicator regarding the encapsulation of

functionality:

- a flat hierarchy might indicate that process logic and hardware control

are implemented on the same level, potentially mixed within one POU

- a distinctive hierarchy might indicate that encapsulation is performed on

a very fine-grained level, requiring many POUs on different levels to

fulfill a certain functionality

Aspect 3 Structural patterns  Identification of frequently called POUs (potential library POUs) or POUs

that exchange data solely indirectly (cuckoo pattern described in [Fuc⁺14])

 Interpretation of implemented functionality provides insights into architec-

tural design decisions (e.g., functionalities implemented by frequently used

POUs, cf. [Neu⁺20c] for recurring structural patterns and their influence on

software architecture)

Aspect 4 Included libraries  Gaining a rough overview of available (company-specific) libraries effi-

ciently, including the levels they are located on

 Estimating the amount of planned reuse via used POUs from libraries

Aspect 5 Organization of soft-

ware in the develop-

ment environment

If the development environment supports organizing POUs, e.g., in folders, this

structure should be analyzed as it could provide hints regarding

 Functionality distribution across different POUs

 Modularization strategy, e.g., multiple POUs organized in a folder for con-

trol of a particular hardware module and planned reuse

66 5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis

Number Analysis Aspect Expected insights regarding architectural design decisions

Aspect 6 Standardized and

application-specific

parts

 Assessment of separation of concerns (considering data exchange and hier-

archy levels)

 Assessment of reusability of control software parts

 Standardized, application-independent POUs are potential library modules

 Project-specific parts can potentially be generated from the information of

other disciplines or merged into parameterizable POUs

Aspect 7 Extra-functional

software parts/func-

tionality distribution

 More fine-grained than Aspect 6

 Separation of functional and extra-functional software parts into standard-

ized and application-specific parts

 Insights regarding architectural design decisions and general software struc-

ture, which influence the reusability of implemented solutions (cf.

[Vog⁺22a]);

 Consideration of the interface between different functionalities (loose or

close coupling affects modularity)

Aspect 8 Indirect data

exchange graph

(including infor-

mation flows)

 Indirect dependencies are likely to hamper the software’s reusability, espe-

cially as the dependencies are not directly visible

 Data exchange and information flow provide insights into a software’s de-

gree of modularity and, consequently, reusability of sub-parts of the imple-

mentation in a different context

Aspect 9 Properties of individ-

ual POUs/groups of

POUs

 Calculation of software metrics targeting specific quality attributes on the

POU level to compare a group of POUs regarding an attribute, e.g.,

- Identification of the most complex POUs

- Assessment of similarity of several POUs (estimate their suitability for

being merged into a library POU)

- Amount of dependencies to other parts of the control software

 Selection of software metrics depends on the analysis goal

Aspect 10 Communication with

external systems
 Insights on the information required to take control decisions in the PLC

software’s control logic

 Interfaces for human intervention via HMI

 Depending on the application sector, e.g., in intralogistics, routing is per-

formed by a material flow controller outside the PLC

 Communication of POUs executed on different PLCs, e.g., drive synchroni-

zation across two PLCs for product transportation

Guided by this checklist, the analysis in Step 2 aims to understand the software architecture, in-

cluding the underlying design decisions, and identify software examples for the challenges and

pain points identified in Step 1. Regardless of the software size and the selected goal, the procedure

provides a set of relevant aspects for general software comprehension, which have been success-

fully applied in former research. Due to the size of control software (up to 450 POUs in a project,

with up to 1500 LOC in a single POU [Fis⁺21b], and 1125 call edges in the constructed call graph),

it is beneficial to use an automatic, tool-based analysis wherever possible. Especially for aspects

such as calculating software metrics (cf. Aspect 9), many platform providers already offer func-

tionalities in their IDEs, e.g., CODESYS Static Analysis [COD22] or the Machine Code Analysis

from Schneider Electric [SE22a]. These tools are already applied in industrial practice and can be

integrated flexibly into the procedure if their results provide insights for the chosen analysis goal.

5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis 67

Moreover, by sequentially focusing on selected aspects, the procedure supports coping with in-

dustry-sized software projects (RScal). Thus, insights gained from analyzing a coarse-grained aspect

from the checklist refine the details to be targeted in the goal-oriented analysis of the following

aspect. Thereby, application sector-specific guidelines or regulations identified in the expert inter-

views in Step 1 must be included as they support refining the subsequent analysis steps (RSec).

In the following, two central properties of PLC software, which have been identified as highly

relevant for the software’s quality assessment, are described in greater detail. First, data exchange

in PLC projects is essential for their quality assessment. It can be classified according to and

depending on the technically possible types, which the chosen PLC platform allows [Fis⁺22b]. For

example, the Siemens development environment TIA Portal supports the use of flags and DBs,

while the IEC 61131-3 provides GVLs to exchange data globally. Especially in the analysis of

Aspect 2 and 8, these technically possible types of data exchange need to be known. However,

quality assessment additionally requires a classification into intended data exchange and violations

of a company’s programming guidelines, hindering the reusability of software parts [Fis⁺21a]. For

this purpose, the documentation and insights gained in Step 1 are considered. If required, further

expert interviews need to be conducted to rate the criticality of violations regarding data exchange.

Metrics concerning the dependencies and data exchange of software parts can be applied and

linked to criticality levels as suggested in [Fis⁺21a; Fis⁺22b]. In summary, assessing dependencies

between POUs regarding reuse highly depends on existing programming guidelines and requires

manual analysis, at least manual pre-processing (RRat).

Another essential factor is the consideration of semantics: for example, to assess the call graph

and the implemented data exchange, it is necessary to interpret which POUs implement which

type of functionality and, therefore, exchange which type of information [Wil⁺22]. Without the

semantic meaning of the exchanged data, it is impossible to assess whether the dependencies are

required or could be avoided. This, in turn, is essential to rate the software’s overall structure and

modularity (cf. Goal 1 in Table 7). The same holds true for quality attributes such as encapsulation

or merging POUs into library modules, which are targeted, for example, in Goals 2, 3 and 5. If a

similar structure is the only factor considered for merging POUs, two semantically different func-

tionalities could be combined within one library module, which negatively impacts the under-

standability of the control software. First approaches to determine a POU’s primary functionality

based on implementation characteristics and naming conventions are available [Wil⁺22]. Although

the approach shows promising results, it still has some shortcomings. For example, its applicability

is limited to mature control software with a highly modular, function-oriented structural design.

Thus, emerging approaches have high potential and support manual code analysis in specific cases,

but they cannot yet replace it entirely.

68 5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis

The developed checklist serves various purposes for conducting the static code analysis. In the

following, two exemplary scenarios are shortly introduced. If the analysis goal is not clearly

determinable in Step 1 (which is often the case), the checklist can be followed to identify coarse

aspects, e.g., the number of hierarchy levels, implemented reuse strategies and (in-)direct data

exchange for gaining an overview of the design decisions. The results are discussed with the in-

dustrial experts to identify pain points and select a suitable analysis goal according to the expected

benefits (RPP). Furthermore, if required, discussing initial results enables refining the selected anal-

ysis goal. Overall, the main aim of the checklist is to provide a structured procedure for the analysis

and, thereby, support different analysis goals (RGoal).

If the targeted control software is historically grown legacy software without available docu-

mentation, performing a systematic, goal-oriented static code analysis following the checklist

nevertheless supports identifying improvement potential. Of course, based on the analysis results,

it is necessary to outweigh the effort of refactoring the legacy software compared to implementing

it new. However, even if it is decided to completely renew the control software, it is possible to

take insights from the performed analysis into account, which can avoid making the same disad-

vantageous design decisions as in the old architecture. In the case of undocumented legacy control

software, gaining an overview of the software structure is a primary analysis goal; thus, com-

paring direct and indirect data exchange graphs (Aspect 2 and 8) and considering structural pat-

terns (Aspect 3) is beneficial. It provides information about existing interfaces and dependencies,

which is essential for assessing the software’s modularity and reusability. Another insightful as-

pect is the consideration of the functionality implemented in frequently called POUs. For the anal-

ysis of dependencies and functionality distribution, the call graph (Aspect 2 in Table 8) is an ap-

propriate entry point, which supports the identification of particularities that should be analyzed

in detail, e.g., with a POU-interface analysis.

Visualization and documentation of results

While performing the first static code analysis in Case Study A, the insights are continuously doc-

umented as the analysis is iteratively refined according to the checklist. As depicted in Figure 9,

the automatically generated call graph, including manual annotations, is used for visualization and

documentation purposes. From the call graph, the architectural hierarchy levels and the reuse of

POUs on different levels are derived and summarized using the illustration from [Vog⁺15a] (cf.

Figure 10, left). The entry point to the warehouse software is a facility module, which is influenced

by a superordinate plant module level control. The visualization shows if and on which hierarchy

levels frequently called POUs exist. These are potential candidates for the development of library

POUs, which are directly linked to the selected analysis goal. Furthermore, it highlights the call

dependencies between POUs. In the warehouse software, call dependencies are identified between

5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis 69

POUs within one hierarchy level or adjacent hierarchy levels. Additionally, the functionality dis-

tribution and related information flows are documented with respect to the identified hierarchy

levels. Figure 10 depicts the information flow regarding alarm detection across the different levels

on the right. Thus, it documents a design decision regarding the implementation of the extra-func-

tional task error handling. Regarding planned reuse, analyzing and documenting the information

flows of extra-functional software parts supports the identification of required POU interfaces.

Overall, there is little documentation about the software structure and design decisions of the ware-

house available. Thus, the gained insights during the analysis are summed up on a coarse-grained

level, as depicted in Figure 10. This documentation format enables depicting the general software

structure and design decisions on an abstract level and independent from the analyzed control

software project. Apart from alarm handling, other extra-functional tasks are considered and can

be visualized as suggested by [Neu⁺22]. Furthermore, tables are used to list all POUs in the ware-

house with the corresponding main functionality they implement. Moreover, dependencies be-

tween the mechanical layout plan and the control software are documented in textual form.

Fault detection ->

set alarm

alarm basic

module A

Alarm

basic module A

group alarm

application

module A
Alarm basic

module X

Alarm application

module A

alarm facility

module A
...

Alarm application

module X

alarm facility

module X

alarm facility

module (X-1)

Facility-wide

operation mode

selection

basic module

(BM)

application

module

facility module

plant module

atomic basic

module (ABM)

Call Hierarchy

Facility

Module

Module 1

Sub-

module

BM

...

ABM

BM

ABM ABM

BM

Sub-

module

Sub-

module

Module 5

Sub-

module

BM

ABM

BM

ABM ABM

BM

Sub-

module

Sub-

module

BM BM

ABM ABM

Plant

Module

Error Handling

...

Timer

Figure 10: Call hierarchy (left, adapted from [Vog⁺17]) and communication of errors (right, adapted

from [Vog⁺15a]) in regard to the identified architectural hierarchy levels in Case Study A.

As highlighted in Case Study A, documentation of different aspects is generated or manually de-

rived. This documentation depends on the chosen goal and considered aspects but should contain

an overview of the general software architecture, the identified design decisions and pain points.

70 5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis

Examples of documentation are, e.g., call graphs optionally annotated with functionalities, a de-

sign structure matrix to depict dependencies between POUs/groups of POUs or different types of

diagrams reflecting calculated metric values. Depending on the focus of the analysis, e.g., software

structure or implementation details of individual POUs, suitable means for the results’ documen-

tation need to be selected. Since there are no universally agreed-on thresholds for different metric

values and software architectures can be quite different between different companies and applica-

tion sectors, a general assessment of the control software by comparing it to an ideal implementa-

tion is not possible. Instead, the various gained analysis results should be visually prepared and

presented in the context of the analyzed software set to detect outliers (RWeak, RDoc). Further, gained

analysis results can be filtered to cope with the size of industrial control software projects (RScal).

Examples of this are focusing on sub-parts of the call graph or depicting the “worst/top ten” POUs

concerning a calculated metric as proposed in [Fis⁺21b] to identify the ten most complex POUs,

which are expected to result in the highest benefit after refactoring. Finally, the documentation

should be gathered on different degrees of abstraction, depending on the involved stakeholders

and their tasks [Fis⁺20a].

Summary of insights gained – general and regarding the analysis goal

At the end of analysis Step 2, the insights gained are summarized from the documentation. In Case

Study A, the software structure and design decisions are derived. In the control software, the facility

module warehouse is called by a top module on the plant module level and the control software is

divided into four architectural levels. On the top level, the five main functionalities identified dur-

ing the expert interview are confirmed and each is represented by a POU on the application module

level. Each application module POU calls several POUs necessary to execute the specific tasks.

The application module “car control”, for example, calls other FCs on the application module

level belonging to the storage car, which subsequently call basic and atomic basic modules. All

POUs can be assigned to exactly one application module. The variables of the application modules

are organized in DBs, which can be mapped to the respective hardware via the unique equipment

identifiers. Although the control software is developed using copy, paste and modify, reusable

application modules and associated variables structured in DBs could be identified. Moreover,

many of the POUs at the basic and atomic basic module levels are already reused without adjust-

ments, although no library modules exist. [Vog⁺15a]

Regarding the functionality distribution, also extra-functional aspects are targeted. For example,

error handling in the warehouse software is divided according to the five application modules.

Within the application module “general functions”, a few general alarms, i.e., safety door alarms,

are generated and also alarms of other application modules are collected. Depending on the sever-

ity of a detected fault, the whole facility module warehouse or only parts of it are switched to

5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis 71

emergency mode. If the warehouse is switched to emergency mode, the alarm is additionally col-

lected on the plant module level. After a delay time, the preceding facility modules, which transport

the stacks to the warehouse, need to be stopped as well due to a limited buffer for accumulated

goods. Moreover, communication between the warehouse and external systems is analyzed and

the required information and the communication strategy are documented. [Vog⁺15a]

As illustrated with Case Study A, at the end of this procedure step, familiarization with the selected

representative project is complete and the software structure and architectural design decisions are

documented. In addition, positive or negative examples for challenges stated in Step 1 are identi-

fied to ensure that the challenges have been correctly understood. For gaining an overview of the

selected project, the checklist provides a structure for analyzing different general aspects of control

software that are potentially helpful for gaining insights regarding the selected analysis goal.

Thereby, insights gained in Step 1 and company- and application sector-specific boundary condi-

tions are considered to enable an application-aware analysis requiring manual code analysis (RRat).

5.2.3. Comparison and Results’ Documentation of Additional PLC Software Parts

or Projects Regarding the Selected Goal (Step 3)

In Step 3, further control software parts or projects are analyzed. An overview of the activities

performed in Step 3 is depicted in Figure 11.

C
o

m
p

a
ri

s
o

n
 o

f
a
d

d
it

io
n

a
l
P

L
C

 p
ro

je
c
ts

 (
o

r
p

a
rt

s
)

(P
ro

c
e

d
u

re
 S

te
p

 3
)

Basis for derivation of recommendations

for action for software improvement

Within and across

projects

Procedure Step 2

Selection of additional

projects to be analyzed

Documentation of results

for different stakeholders

Selection of aspects to be

analyzed in detail,

including suitable means

Optional consideration of

additional information

from other disciplines

Comparison of additional

projects with regard to

selected analysis goal

Information from other discplines

 Impact of hardware variability on

software variability (reason)

 Sequence of adjustments made during

software development (organizational

information on version history)

Documentation

from Step 2

Procedure Step 4

Analysis (and visualization)

including reason, e.g.,

 Variations or commonalities

within/between projects

 Structure and/or semantics,

e.g., implemented

functionalities

Documentation at different

levels of abstraction, e.g.,

 Dependencies

(design structure matrix)

 Variability (feature models)

 Evolution of maturity

(trend line)

E
n
la

rg
e

m
e
n

t
o
f

re
s
u
lt
s
 f

ro
m

 S
te

p
 2

RWeak

RWeak

RDoc

RDoc

RDoc

RRat

RRat

RRat

Figure 11: Details of Step 3 (Comparison of additional PLC projects or PLC project parts) of the quality

assessment procedure.

72 5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis

Unlike in Step 2, the focus lies not on the structure and design decisions of a single project but on

iteratively analyzing and comparing multiple PLC projects/project parts concerning the selected

analysis goal. Accordingly, this procedure step is not intended as a repetition of the analysis de-

scribed in Step 2. Instead, Step 3 uses the documentation from and, thus, insights gained in the

previous analysis step to select the aspects to be considered in greater detail for assessing the

selected analysis goal. Consequently, not all aspects that have been analyzed in the initial project

need to be considered for the additional projects/project parts. Similar to Step 2, information from

other disciplines is considered during the analysis. Moreover, the insights gained during the inves-

tigation of additional projects are documented. In the following, details regarding the individual

activities in Step 3 are provided with respect to Case Study A and in general.

Selection of aspects and additional projects to be analyzed

During the expert interviews in Steps 1 and 2, the software developer of the warehouse has already

mentioned typical variants of the warehouse hardware with effects on the control software. These

variation points are used in Step 3 to select four additional projects, which represent all main

storage variations and are, thus, suitable for gaining insights for the defined analysis goal. Since

little documentation is available on the warehouse software design decisions, the developer is only

aware of the rough effects of hardware variants on the software, but the details are unknown.

Therefore, a detailed analysis of the commonalities and differences within the control software of

different warehouse variants is targeted in Step 3. Further, to allow mapping the differences to

their cause, warehouse variants, which differ in one identified variation point, are selected for the

analysis. The selected control software variants are already in operation or shortly before commis-

sioning to avoid differences resulting from incomplete software projects.

In Case Study A, the aim of Step 3 is to address the defined analysis goal enhance planned reuse

of variant-rich control software by identifying POUs, which are common to all software variants,

and POUs, which can potentially be parameterized for reuse, depending on the warehouse variant.

By considering hardware variants and their influence on the control software, project-specific and

project- or variant-independent software parts can be distinguished. Since the latter are suitable

for planned reuse, in some cases even across different machines or plants, their implementation

should be separated from project-specific aspects. Means for a detailed analysis of software project

variants include coarse aspects like the amount of POUs (cf. Table 8, Aspect 1) to identify optional

POUs and implementation details of the individual POUs (Aspect 9) to identify modified POUs.

Generally, by utilizing the documentation from Step 2, software parts linked to the chosen analysis

goal, disadvantageous structures or conspicuous design decisions are identified for detailed anal-

ysis in additional projects. The checklist supports selecting relevant aspects to be targeted and

5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis 73

compared during the analysis of further projects, including suitable means for performing the anal-

ysis. Additional projects such as variants (as in Case Study A) or versions of the first project need

to be selected, depending on the analysis goal and aspects to be considered in detail. In case of

known challenges, the projects should include positive and negative examples, e.g., projects con-

taining known, recurring issues during the commissioning. Moreover, projects representing fre-

quently used variants, unique customer requirements or different optional functionalities are gen-

erally suitable for comparison regarding their implementation. Overall, the selected projects

should give a representative overview of the targeted aspects. The selection of these additional

projects ideally includes software developers who are familiar with the projects and indicate the

projects’ maturity based on their estimation and experiences.

Preparation of information from other disciplines

Prior to analyzing control software variants, the warehouse’s variation points are documented from

a mechanical and functional point of view. For this purpose, information from other disciplines is

required. More precisely, the mechanical layout plans of the five selected warehouses are com-

pared with the support of the software developer. The variation points in the mechanical view are

extracted from the layout plans and summarized in a feature model, which contains mandatory,

optional and alternative features of the considered system [Thü⁺14]. The general functions of the

warehouse from a customer point of view are identified in expert discussions and documented in

a second feature model, as proposed in [FV17].

The general functionalities offered by the warehouse remain unchanged despite variations such as

different warehouse layouts, amount of storage cars or the optional use of protection boards. In-

dependent of the storage variations, the functional feature model includes interface places to adja-

cent plant parts, handling board stacks, controlling the storage car(s) and ensuring security and

safety. For example, whether the stack transportation is conducted by a single storage car or dis-

tributed on several cars is not relevant for the storage functionalities since the warehouse cars are

all controlled identically. The number of storage cars is not a functional requirement but depends

on the storage layout. Therefore, the general functions of the warehouse from a customer point of

view are independent of the identified variation points and do not affect the warehouse control

software. In contrast, the software developer’s rough estimation of the effects on the control soft-

ware showed that every identified variation point in the mechanical view of the warehouse, i.e.,

the number of interface places or the number of storage cars, has a direct influence on the software.

For example, adding a further interface place requires an additional POU in the software. Overall,

this analysis required domain knowledge from the software developer. [FVF15]

74 5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis

As illustrated with Case Study A, additionally to the control software itself, information and doc-

uments from other disciplines, e.g., functionality desired by customers or the hardware variability,

need to be considered. They are essential when interpreting the reason or semantics behind iden-

tified differences in compared software parts, such as the project variants targeted in Case Study A

(RRat). Moreover, insights gained during expert interviews and workshops are crucial and need to

be included in the result documentation, as they provide reasons for changes or specific types of

implementations. Additionally, organizational aspects and the performed steps during the software

development process are helpful depending on the selected goal. For example, if the version his-

tory of a template-based project is compared to estimate the template’s suitability, correctness,

and completeness, the sequence of adjustments to the template across projects is relevant. Adjust-

ments performed in various projects indicate potential points of improvement of the template.

They must be documented for an expert discussion, ideally with the template developers and the

application engineers using the template. Thus, depending on the focus of the analysis in Step 3

and the targeted goal, information about the software development process and from other disci-

plines is essential to plan the analysis, document the results and interpret them (RDoc, RRat)

Comparison of additional projects or project parts

After the impact of mechanical variations on the control software was confirmed, a detailed anal-

ysis of the control software variants was performed. For this purpose, five PLC software projects

of different warehouses were compared. As a starting point, the software project known from

Step 2 is compared with a second project differing in the mechanical variation point “amount of

storage cars”. First, the number of software parts (POUs, DBs and UDTs) in the two programs is

determined to identify optional, variant-dependent parts. Next, software parts contained in both

PLC projects are compared to identify parts, which are modified according to the number of stor-

age cars. This requires a manual comparison of POUs on the network and even variable levels. A

difficulty during this step was that the distinguished differences are not only caused by variants

but are also evolutionary, such as adding and querying an extra sensor to avoid errors. [FVF15]

In order to identify and document the influences of the variation points on the control software, in

total, six project comparisons are conducted. During the comparison, automatically generated call

graphs are used as a starting point. These support the identification of optional POUs and depend-

encies. As illustrated in Figure 12, the call graphs of warehouse variants are highly similar regard-

ing the overall structure, i.e., call dependencies and complexity distribution between POUs, which

results from the applied reuse strategy of copy, paste and modify.

5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis 75

Figure 12: Call graphs of two warehouse software variants from Case Study A differing in the mechani-

cal variation point “amount of satellite cars” (124 POUs each).

In some cases, such as the variation point “number of satellite cars”, no optional POUs are identi-

fied. Manual analysis is required to analyze modifications on the sub-POU level since available

analysis tools could not provide results on the required level of detail. Nevertheless, available

means in the Siemens STEP 7 development environment were used to support the manual code

analysis. For example, deleting optional POUs in a software project and, subsequently, running

consistency checks in STEP 7 (cf. chapter 15 in [Sie06]) eased the identification of POUs, which

require modifications due to the considered variation point, since they use variables belonging to

the deleted, optional POU. Apart from manually detecting modified POUs, a manual interpretation

of these modifications is essential to separate the changes resulting from variation points and evo-

lution (RRat). Although the detailed manual code analysis is time-consuming, it is the basis for

distinguishing the invariable, unchanged core software parts, reusable without modifications, from

the variant-dependent software parts requiring adjustments depending on the particular variant.

As illustrated with Case Study A, during Step 3, an iterative analysis of the PLC projects is per-

formed. The selected analysis sub-steps, e.g., project comparisons according to a selected variation

point on different granularity levels in Case Study A, are repeated. When comparing the analysis

results of different projects regarding the selected analysis goal, aspects such as modifications,

variations and commonalities need to be documented, including their scope, e.g., the structure or

the functionality in general and application-specific parts of the investigated software (RDoc). Fur-

thermore, the documentation should include the reasons for the differences, e.g., a software change

resulting from using different automation hardware. Consequently, documentation generated from

utilized analysis tools, e.g., call graphs, is not always sufficient and often needs to be amended or

control of

interface

places

alarms and diagnosis

(e.g., safety doors)

warehouse

management

system

storage car

(SC) control

OB FB FC

node diameter = POU size;

edge length = amount of exchanged data

routing

routing

HMI

HMI

76 5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis

detailed with manual interpretation and analysis (RRat). Additional expert interviews should be

performed if the analysis results gained during Step 3 contradict the software developers’ experi-

ence knowledge. Depending on the interview insights, the analysis means need to be adapted or

changed for the best possible result.

Documentation and results preparation for different stakeholders

Different means of documentation are used in Case Study A, with some requiring workshops with

the software developer. For example, feature models are used to document the variation points of

the warehouse from different views. Feature models are a means from the computer science do-

main to document mandatory, alternative and optional parts in variant-rich software systems. In a

workshop with the software developer, the basic theory of feature models is introduced and sub-

sequently, the feature models were jointly derived. Additionally, annotated call graphs and tables

are used to document the conducted comparisons of the control software variants.

In total, six variation points of the warehouse software were identified and are listed in Table 9.

Each variation point directly influences the warehouse software. Accordingly, six project compar-

isons were conducted and their results are summarized in a table similar to Table 9. Instead of

illustrating the variability with commonly used feature models, a table was chosen due to the pos-

sibility of clearly and directly opposing the effects of the different variation points on individual

software parts. All identified software parts, i.e., POUs, DBs and UDTs, of the warehouse software

are listed in the first column. The remaining columns indicate how the different variation points

affect the identified software parts. [FVF15]

Table 9: Summary of the software comparisons during manual static code analysis by means of se-

lected software parts, published in [FVF15].

Software Parts
Satellite

Cars

Storage

Cars

Optional

Protection

Boards

Interface

Places

Optional

Forklift

Areas,

Groups,

Member

Part 1 (OB) - - - - - -

Part 2 (FB) adapt adapt adapt adapt adapt -

Part 3 (FC) adapt - - - - -

Part 4 (FC) adapt optional - - - -

Part 5 (FC) - - - - optional -

Part 6 (DB) - - - - - adapt

Part 7 (UDT) adapt - - - - -

Legend: “-“: variation point has no influence on the software part; “adapt”: variation point requires adaptations to the

software part; “optional”: POU is optional depending on the variation point.

During Step 3, the documentation from Step 2 is enlarged to gain an overview of the current soft-

ware state. The enlarged documentation is the basis for identifying weaknesses and improvement

potentials in the control software (RWeak). While the type of documentation depends on the analysis

5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis 77

goal, the aspects targeted and the methods used, it is generally essential to document the control

software on different levels of granularity for identifying anomalies within the context of the con-

sidered software. Context-sensitive documentation and assessment of the results are essential: ex-

cept for a few guidelines, e.g., SAIL in the intralogistics domain [VDI5100], there are barely any

guidelines about commonly accepted rules to follow that support that control software has high

quality. For example, there is no universally agreed-upon threshold indicating that control software

is too complex [Fis⁺21b]. Similarly, as pointed out above (cf. Sub-section 5.1.1, p. 45), the suita-

bility of a reuse approach highly depends on the characteristics of the control software and the

background knowledge of the software developers [Fis⁺21c]. Therefore, the documentation is es-

sential to identify weaknesses, including anomalies and outliers within the analyzed software.

Overall, the documentation of the analysis results should contain examples of identified strengths

and weaknesses as a basis for an assessment of the control software. Subsequently, recommenda-

tions for improving the control software are derived from the documentation in Step 4. For this

purpose, the documentation should support the estimation of the effort required for performing the

derived software modifications and the expected long-term benefits (RWeak). Especially the estima-

tion of effort and benefit requires much information about necessary changes. For example, con-

cerning the data exchange between POUs and identified violations of the (company-specific) pro-

gramming languages, the documentation should highlight where the violations took place, the in-

volved POUs and how many violations regarding the total amount of data exchange there are. This

documentation serves to identify points to be improved and how much effort the improvement

potentially requires. While the effort estimation is usually performed by application and module

developers, group leaders or managers generally take the estimation and subsequent decision if

the required effort will pay off. After assessing the control software, the documentation needs to

support these stakeholders in their tasks regarding if and how derived improvement recommenda-

tions are to be implemented. For this purpose, documentation on different layers of abstraction is

required for different stakeholders involved in the software development process, similar to

[Fis⁺20a] for the visualization and documentation of software variability.

Various means of software visualization are available from GPL and PLC platform suppliers, tar-

geting different stakeholders. Some examples, including the documentation content as support for

deriving recommendations for actions, are listed in Table 10 and illustrated in Figure 13.

78 5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis

Table 10: Selected, exemplary means for visualization and documentation of analysis results (not in-

tended to be exhaustive).

Number Visualization Content for documentation of analysis results

Visu 1 Call graphs

(optionally anno-

tated)

Overview of the structure of the considered control software project (or parts), in-

cluding dependencies via calls and (in-)direct data exchange on different architec-

tural levels.

Possibilities for annotations:

 Semantics indicator: functionality distribution

 Structuring of objects in folders: may represent similar functionality or the

machine layout

 Combined with metric results: complexity, size (in the context of architec-

tural levels and calls) or distribution of code duplicates

Similar level of detail: software cities, design structure matrix.

Visu 2 Heatmaps Navigational instrument to move through different architectural layers and see se-

lected aspects in the scope of the current layer (starts with an overview but enables

navigation to details from outliers on top-level).

Visu 3 Chord diagrams Dependencies between selected elements (due to the size of industrial control soft-

ware projects, rather a selection than an entire project; but also complete project

view might be helpful to identify highly interconnected parts).

Visu 4 Diagrams, Charts Kiviat diagrams, bar and pie charts, e.g.,

 Bar charts for complexity (including sub-measures),

 Trend lines for software maturity across POU versions or

 Pie charts for distribution of network complexity within a POU

Visu 5 Code diff views Available for textual languages to see differences between software variants or

changed duplicates. First approaches for graphical languages available: [NVO15].

Visu 6 Sortable lists Different metric values on POU implementation level inside a table for comparison,

i.e., to sort the POUs concerning a selected software property, e.g., complexity.

Visu 7 SPLs and feature

models

Variability is documented from different perspectives and on different granularity

levels, e.g., customer, mechanics or control software view (POU or sub-POU level).

As listed in Table 10, various approaches are available to visualize the characteristics of control

software. Some of these are illustrated in Figure 13, sorted according to the targeted granularity

level and stakeholders. On an abstract level, call graphs and software cities help gain an overview

of the general software structure, including classifying contained sub-elements or optional anno-

tations (Visu 1). When targeting dependencies between entities on POU-level, a design structure

matrix, chord diagrams and dependency graphs are suitable to represent inter-relationships be-

tween several entities (Visu 1 and 3). Especially chord diagrams (Visu 3) have an advantage re-

garding the illustratable amount of inter-relations. On a fine-grained level, sometimes even sub-

POU level, different diagrams such as trend lines, bar graphs and pie charts are available (Visu 4).

Finally, approaches such as a side-to-side view of variants with color-coding to compare software

implementations and their variability exist (Visu 5). [Fis⁺20a]

5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis 79

Figure 13: Different means of visualization and documentation of analysis results for different stakehold-

ers such as managers (), application developers (), and module developers (); sum-

marized from [Bou⁺19; Fis⁺20a; Fis⁺21b; Neu⁺20b; VNF22; Vog⁺16; Wil⁺19; Wil⁺22].

Overall, by comparing multiple projects regarding selected aspects in Step 3, the documentation

from Step 2 is enlarged. The documentation should be on different granularity levels to fulfill the

needs of different stakeholders, include information relevant to the control software from different

disciplines (e.g., hardware variants influencing the control software) and focus on the selected

analysis goal. The documentation serves two general purposes: first, it is a means to document the

current state of the control software (e.g., its structure, functionality distribution, implemented

ways of data exchange or complexity) since available documentation is often outdated [Kir⁺16].

Moreover, the documentation needs to support the identification of outliers and anomalies. Due to

the lack of generally applicable guidelines for achieving high-quality software, these should al-

ways be considered and assessed in the context of the analyzed project to select implementation

parts with a high potential for improvement. The documentation is the basis for identifying

strengths and weaknesses and the overall assessment of the control software regarding the selected

analysis goal. Consequently, it is essential and determines the quality of the recommendations of

actions that will be derived in the final procedure step. The documentation needs to be fine-grained

enough to estimate the effort of proposed modifications, e.g., determine the amount of POUs that

need to be changed or the risks of changing specific software parts.

Overview on overall software structure with call graphs, optionally annotated with functionality, and software cities (Visu 1)

Conveyor

Actuators

Alarm
Handling

Parts only in Project A
Parts only in Project B
Parts in both Projects

0%

25%

50%

75%

100%

125%

150%

FB04_component FB03_component FB02_component FB01_component

C
o

m
p

le
x

it
y

POUs

Complexity of POUs for Component Control

Cyclomatic Complexity Difficulty Vocabulary Size

Program Length Data Structure Complexity Information Flow Complexity

Dependencies on POU-level within and across software projects with design structure matrix (Visu 1), chord diagram (Visu 3) and

contrasting call and indirect data exchange graphs (Visu 1)

Implementation characteristics of selected POUs, i.e. maturity of library POUs (trendline and performed changes), visualization of metric

results (Visu 4) and side-to-side view of POU variants (Visu 5)

© 2019 IEEE

M
a

tu
ri

ty

Maturity of Function Block A

Version of Function Block A

© 2019 IEEE

OB1

(entry point)

warehouse route

control of

interface

places

alarms and diagnosis

(e.g., safety doors)

warehouse

management

system

routing

storage car

(SC) control

transferring

data to the
HMI

SC

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

c
5

c
1
5

c
1
9

c
2
7

c
3
2

c
3
7

c
4
4

c
4
8

c
5
3

c
5
9

c
6
4

c
6
8

c
7
2

c
7
6

c
8
2

c
8
7

c
9
3

c
9
7

c
1
0
1

c
1
0
6

c
1
1
0

c
1
1
5

c
1
2
3

c
1
3
1

c
1
3
6

W
e
ig

h
te

d
 c

h
a
n

g
e

im
p
a
c
t

Changes

Functional Changes

Structural Changes

Operator Changes

Assessment of the

last change according

to the metric

Non-

critical

Calculated change values of FB_1 until today

80 5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis

5.2.4. Identification of Improvement Potentials, Including the Derivation of Rec-

ommendations for Action (Step 4)

Based on the documented analysis results, including project comparisons, an assessment of the

control software regarding the selected analysis goal (RGoal) is performed in Step 4. Thereby,

strengths and weaknesses in the analyzed control software are identified. Subsequently, recom-

mendations for actions are derived to enhance the software quality concerning the identified weak-

nesses and the selected analysis goal. The derived recommendations are compared regarding their

estimated implementation effort (RWeak), the expected benefit and the potential risk when perform-

ing the recommendation for action. Moreover, concerning the applicability of the derived recom-

mendations for action, their inclusion in the development workflow is reviewed (RWork). Conse-

quently, this step’s outcome is a list of recommendations for action, including software parts af-

fected by the proposed change and where it should be made in the workflow. If required, available

programming guidelines, used templates or even the development process itself need to be

adapted. An overview of the tasks performed in this step is given in Figure 14.

Software assessment

regarding analysis goal

(with indicators)

Derivation of

recommendations for action

for new software concept

Q
u

a
li

ty
 a

s
s

e
s
s

m
e
n

t
a

n
d

 r
e

c
o

m
m

e
n

d
a
ti

o
n

s

(P
ro

c
e

d
u

re
 S

te
p

 4
)

Adapt software development

process if necessary

Consideration of boundary

conditions and design

decisions

Documentation of points

in analysis checklist

Effort estimation for

realization and strategy for

new concept

Identified strengths and

weaknesses from analysis

Selection of recommendations

to be implemented in the

workflow

Details from analysis

results with code

examples and scope

indicators

Different change scopes

 Modification of

programming guidelines

 Adaptation of templates

 Change of overall project

structure or details

levers

Procedure Step 3

RGoal

RWeak

RWeak

RWork

RWork

RWork

RDD

Figure 14: Details of Step 4 (Quality assessment and recommendations) of the assessment procedure.

The individual activities are introduced in detail below utilizing Case Study A.

Software assessment based on analysis results

The documentation gained from Steps 2 and 3 about the warehouse control software from Case

Study A is interpreted for assessing the control software concerning the defined analysis goal.

Since the targeted goal is to enhance planned reuse, aspects directly related to software reuse, e.g.,

the amount of duplicated code and the influence of hardware variants, are focused (RGoal). From

the comparison of five PLC software variants, three primary influences of hardware variation

5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis 81

points on control software parts are derived, i.e., no influence, requiring adaptations and optional

software parts (cf. Table 9). Overall, the software parts can be divided into two main groups: a set

of invariable software parts, which are common to all warehouses and not influenced by the hard-

ware variation points, and variant-dependent parts, which require modifications or are optional

depending on the specific variant (cf. [FVF15] for a detailed interpretation of hardware influ-

ences). In the variant-dependent group, both the POUs and the related variables need to be modi-

fied according to the chosen warehouse variant.

These insights regarding the software structure are used to identify the strengths and weaknesses

of the analyzed software. An apparent weakness is the use of copy, paste and modify, which leads

to a high amount of duplicated software, which in turn decreases maintainability. Moreover, data

exchange is mainly implemented via global variables stored in DBs. This might result from the

high amount of FCs used in the warehouse software, but it potentially hinders planned reuse. How-

ever, also various strengths are identified. Due to the hardware-oriented structure of the control

software, the influence of hardware variation points on the control software is limited. For exam-

ple, the variation point “number of storage cars” affects the FCs for car control, general alarm FCs

and visualization FCs, but no further POUs. Furthermore, despite the extensive use of global var-

iables, UDTs support structuring the variables with respect to the data they store, e.g., information

about the storage car control. Consequently, POUs and related UDTs for controlling warehouse

sub-parts are identified, representing a basis for planned reuse. Another strength resulting from

the overall software structure is that some POUs, including their variables, are reusable without

modifications and, thus, are suitable for developing library POUs for planned reuse. Regarding the

variant-dependent software parts, it is concluded that a suitable set of parameters is sufficient to

describe individual warehouse variants entirely and unambiguously, including the control soft-

ware. Since the unambiguous description of a variant and its effect on the control software are

prerequisites for planned reuse strategies such as code configuration, this finding is highly relevant

for the analysis goal.

As illustrated with Case Study A, the actual software quality assessment is conducted utilizing the

acquired documentation of the different aspects analyzed in Steps 2 and 3, meaning the gained

results for different projects with different methods. The main aim is to identify strengths and

weaknesses, i.e., disadvantageous implementation parts or design decisions, in the control soft-

ware projects regarding the targeted analysis goal (RGoal, RWeak). The disadvantageous software

parts pose potential for improving the software quality, which requires further analysis. However,

some of these parts might be unchangeable due to boundary conditions, requirements or deliberate

design decisions. Therefore, the identified weaknesses need to be reviewed for their relationship

82 5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis

to these unchangeable parts, documented in Step 1 (RDD). As a side effect, deliberate design deci-

sions are associated with the analysis results during this task. Thus, they are evaluated: it is no-

ticeable if a design decision results in many disadvantages regarding the analysis goal. If this is

the case, a discussion with the software developers to reconsider these design decisions is pro-

posed, taking into account their negative consequences. Overall, a manual interpretation of the

documented analysis results, e.g., achieved metric values, is foreseen and required to identify

strengths and weaknesses (RRat) to derive measures for improving the software quality [VFN20].

Furthermore, by analyzing the advantageous software parts regarding the selected analysis goal,

implementation parts and design decisions, which positively impact the analyzed software quality

characteristics, are identified. An example is the hardware-oriented structure of the warehouse

software in Case Study A, which limits the effects of hardware variation points. When deriving

recommendations for actions, these parts should not be changed as their modification poses a risk

of turning them into less beneficial software parts regarding the analysis goal. Moreover, it needs

to be considered that software parts, which are beneficial or disadvantageous for one goal and the

related software quality attributes, might contradict others. An example is highlighted in

[Neu⁺20a], where the conflict between reducing complexity by using OO IEC and its potential

negative effects on performance efficiency is illustrated. In the example, applying OO IEC reduces

software complexity by defining standardized module interfaces. At the same time, this leads to

an increased cycle-time, i.e., a reduced performance efficiency, which is particularly disadvanta-

geous for time-critical applications. Thus, a design decision that is beneficial regarding one soft-

ware quality attribute might have a negative impact on another. Since the analysis is focused on a

selected goal, this potential conflict of different software quality attributes should be taken into

account during the assessment and subsequent derivation of recommendations for action.

Deriving recommendations for action

During the software assessment in Case Study A, two main findings regarding the enhancement of

planned reuse are identified. These are subsequently used to derive recommendations for action.

Targeting the software characteristic planned reuse (defined analysis goal) and its sub-character-

istic avoidance of duplicated software parts, the first finding is a high amount of invariable, du-

plicated code parts across project variants. It indicates a weakness in the developed control soft-

ware. However, despite the use of global variables, UDTs linked to these duplicated code parts are

identified. To address this weakness and reduce the amount of copied software while enhancing

planned reuse, the respective software parts should be merged and encapsulated in library POUs.

Thus, the derived recommendation for action regarding the first finding is to merge invariable

software parts, including related variables, into library POUs intended for planned reuse.

5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis 83

The second finding is that all possible warehouse variants can be identified with a suitable set of

parameters. Moreover, a warehouse variant’s control software is directly linked to the values of

the chosen parameters [FVF15]. Targeting the defined analysis goal enhancement of planned reuse

once again, parameter-based reuse of the variant-dependent software parts is proposed. More pre-

cisely, by separating the invariant and variant-dependent software parts, the configuration of the

warehouse software is possible. The invariant software parts, which are intended for planned reuse

as library POUs, are merged into a base project, i.e., a project template. From the analysis, the

correlations among variable and optional software parts are known and, thus, can be specified in

a configuration tool. With these actions performed, it is possible to develop the warehouse soft-

ware of a specific variant by automatically configuring the source code of the variant-dependent

software parts and adding them to the base project. Since the used PLC development environment

does not yet support variant management and code generation from parameters, Excel is chosen

as a potential starting point for an external configuration tool. In summary, the derived recommen-

dation for action regarding finding 2 is to use a parameter-based configuration to develop the

warehouse control software, which partially builds on the first recommendation. Consequently, a

stepwise enhancement of planned reuse is possible with the derived recommendations for action.

Generally, with the documentation from Steps 2 and 3, examples from the analyzed control soft-

ware are available to point out implementation parts for illustrating the identified strengths and

weaknesses. These can be used to derive recommendations for enhancing the software quality by

addressing the identified weaknesses. As illustrated with Case Study A, linking the targeted anal-

ysis goal with the identified weaknesses supports deriving suitable measures to improve the soft-

ware. Furthermore, approaches such as the goal-lever-indicator-principle can be used [VFN20].

The goal-lever-indicator-principle is based on the module model and module characteristics from

[KFV04], who analyzed lever-action relationships between module characteristics and deduced a

causal structure of three aspects, i.e., goal, lever and indicator. In the following, the principle’s

definition from [VFN20] is refined.

The principle defines a goal as a desirable quality characteristic of the control software concerning

its modularity. In the scope of this thesis, the goal corresponds to the selected analysis goal derived

in Step 1 for quality assessment and is not limited to modularity. Similar to the ISO 25010

[ISO25010], desirable software characteristics can be further divided into sub-characteristics, rep-

resenting sub-goals. Means of influencing quality characteristics and, thus, a selected goal are

called levers. More precisely, levers represent measures, e.g., design decisions or guidelines on

different granularity levels concerning the overall software architecture or individual POUs. An

industrial expert can take or follow these to improve the software to fulfill the desired goal to a

greater extent. Thus, if a goal has not been reached entirely yet, a lever is the connection to derive

84 5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis

recommendations for action [VFN20]. Finally, indicators represent the quality-related software

attributes measured during static code analysis to evaluate the selected analysis goal. Thereby, to

measure and assess a software’s quality characteristic fully, a set of attributes is often required

[ISO25010] and, consequently, a single indicator is not sufficient. The relationship between goals,

levers and indicators is illustrated with an example from Case Study A in Figure 15.

Quality

Characteristic

Sub-

characteristic

Planned Reuse

Avoidance of reuse via

copy, paste and modify

Design

decision

Measurable

attribute

Merging of common

software parts

Measuring the amount

of duplicated software

Legend

Goal Lever Indicator

Figure 15: Goal-lever-indicator-principle at the example of planned reuse (adopted from [VFN20]).

In the depicted example, the targeted analysis goal is the quality characteristic planned reuse. One

of its sub-characteristics is the avoidance of reuse via copy, paste and modify. A lever for this sub-

characteristic is the design of reusable software modules by merging common parts. The extent to

which the sub-characteristic is met can be assessed by measuring the amount of duplicated soft-

ware (indicator) with approaches from static code analysis. Thus, the indicators are targeted by

conducting static code analysis or calculating software metrics to assess the selected goal or quality

characteristic. If a weakness is identified within the analyzed software, the lever represents the

starting point for deriving a recommendation for action from the causal structure of goal, lever and

indicator. Thereby, boundary conditions like used platforms, the current development workflow

and deliberate design decisions should be considered (RWork, RDD). Furthermore, current software

characteristics and the developer’s background should be taken into account since the choice of

suitable software concepts like reuse strategies highly depend on these [Fis⁺21c]. When deriving

recommendations for action, conducting expert workshops is helpful as it provides background

knowledge concerning the analysis goal. For example, when reuse is to be improved by merging

code duplicates into mature library modules, the properties that a mature library module should

satisfy and the typical design errors in the process should be known.

For documenting the derived requirements in an understandable format, the goal-lever-indicator-

principle proposes a table-based structure with different criteria, as depicted in Table 11 [VFN20].

Besides the recommendation itself, additional information about its context is documented. For

5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis 85

example, the design principle targeted by the recommendation, including the related quality attrib-

ute, is stated. Moreover, the recommendation’s scope, i.e., the affected parts of the control soft-

ware, including its functionality (optionally classified as proposed in [Wil⁺22]), and the expected

benefit after performing the recommendation are documented.

Table 11: Criteria of a recommendation for action derived from static code analysis results during pro-

cedure Step 4 (*representative list without claim for completeness); enlarged from [VFN20]

Criteria Characteristics of the criteria

Recom-

mendation

Summary of recommendation listing actions suggested for enhancing the selected software quality at-

tribute.

Design

Principle*

Design decision, architectural aspect (e.g., as defined in [Neu⁺20c]), or guideline targeted by the recom-

mendation. Examples include data exchange, modularity and hierarchy levels (link to analysis goal).

Quality

Attribute

Addressed software quality attributes, e.g., according to the DIN EN ISO 25010 [ISO25010]

(corresponds to the defined analysis goal)

Scope* PLC project part affected by the recommendation:

 Entire project (all POUs and their interrelations)

 All POUs

 Specific software parts (e.g., single PRGs, FBs, FCs, actions or groups thereof)

 POUs on specific hierarchy levels

 Standardized POUs in self-defined libraries

 POUs implemented in a particular language

Function-

ality*

Implemented functionality targeted by the recommendation, e.g.,

 Independent of functionality

 Reusable functionality (potentially present in different POUs)

 According to the classification proposed in [Wil⁺22], including among others

 Sequence control

 Control of automation hardware (sensors and actuators)

 Communication (different types)

 Extra-functional software parts, e.g.,

 Diagnosis and error handling

 Change of operation mode

 Connection to HMI

 Operating Data Collection

Reason Explanation of how the recommendation supports achieving the selected goal.

The goal-lever-indicator-principle supports presenting the derived recommendation for action to

the industry experts systematically, as suggested in Table 11. With this, the expert shall be enabled

“to comprehend the analysis result and possible measures to be taken to improve the software

based on the identified weaknesses” [VFN20]. While static code analysis and software metrics

enable the assessment of control software regarding the selected goal, the principle goes one step

further beyond the pure identification of weaknesses by detecting potentials for improvement con-

cerning a defined goal and providing hints for achieving this goal. The direct use of the analysis

86 5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis

results is also the aim of procedure Step 4. The referenced principle is one possibility to relate the

selected goal and the obtained analysis results to derive concrete measures for improvement.

Effort estimation for implementing derived recommendations

To estimate the required implementation effort, the derived recommendations for action and the

documented results from the static analysis are consulted. From the static analysis in Case Study A,

it is known that the control software can be divided into variant-dependent and invariant parts,

including detailed documentation for all elements contained in the analyzed variants. The imple-

mentation effort for the first recommendation (planned reuse of invariant software parts) is rated

low, especially since it can be realized incrementally: invariant POUs can be designed as library

POUs stepwise and independent of each other. Further, the recommendation is expected to im-

prove the control software quality by easing bug fixing or software maintenance and reusing well-

tested library modules. Moreover, the software development time is reduced since the software

developer does not have to modify these library modules concerning the hardware variability.

The second recommendation for action can be implemented in various ways. First, the base project

can be defined as a template for new development projects. Thus, copy, paste and modify is already

reduced to the variant-dependent software parts. Further, with means for parameterization, se-

lected variable POUs can be revised into configurable POUs. The required link between the hard-

ware variation points and the effect on the control software is documented in detail (cf. Step 3,

Table 9) and directly useable for the revision. However, from the interviews, it is known that

changes to the POUs implementing communication functionalities are critical. Consequently, it is

advised to start with POUs with other functionalities. For a complete implementation of the rec-

ommended configuration in an external tool, a high effort is required. Since it can be achieved

incrementally with direct benefits and the influence of the individual variation points on the soft-

ware is limited, it is still considered feasible. Moreover, by using a configuration tool to develop

the control software, the method copy, paste and modify and its disadvantages are entirely avoided.

Since the chosen set of parameters is sufficient to describe a warehouse variant unambiguously, it

represents a suitable basis for configuration and variant management on incremental levels.

In general, not all derived recommendations are equally suitable for enhancing the control software

regarding the analysis goal. Therefore, the expected benefits, the estimated change effort, and risks

of changes related to each of the derived recommendations for actions should be considered to

select the ones to be implemented (RWeak). In combination with the analysis documentation, levers

can be used to estimate the effort of required changes linked to a recommendation of action. More

precisely, the documentation provides a rough estimation of the scope of a planned change. For

example, it illustrates if a recommendation solely affects the implementation within single POUs,

5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis 87

interfaces of a group of POUs need to be changed or an architectural design decision, e.g., regard-

ing an extra-functional aspect, requires modifications. Thus, the documentation provides insights

into the number of POUs and the connections between POUs affected by a planned change. Ad-

ditionally, code examples for disadvantageous software parts are available from the analysis re-

sults to support the effort estimation.

Addressing some of the identified weaknesses might cause much effort, while only a slight im-

provement is expected. In these cases, it is not feasible to implement these in the first step. More-

over, in some cases, not all POUs affected by a recommendation for action need to be changed at

once. As illustrated in Case Study A, incremental implementation of the recommendation can al-

ready be beneficial. In another example, intending to increase comprehensibility, the identification

and subsequent refactoring of the POUs assessed as the most complex has the highest effect and

is also incrementally possible [Fis⁺21b]. However, refactoring of POUs, which have been identi-

fied as slightly too complex, will not improve the comprehensibility to a great extent. Conse-

quently, refactoring these should not be chosen as a top priority. Concluding, it needs to be decided

to what extent a recommendation for action should be pursued.

Depending on the software change, the potential risks of introducing errors or causing incompati-

bilities between software parts should be considered. An available approach at the POU level is

presented in [VNF22], where a maturity assessment of control software is performed. Thereby, 69

different change types in the implementation of individual POUs are distinguished and classified

into three criticality categories. If a planned change is related to a high risk of introducing errors,

tests of the respective control software parts or even the entire software project need to be repeated,

especially if module interfaces or central modules are affected. This retesting is particularly cum-

bersome in application sectors such as medical applications (MedTech), where control software

requires time-consuming re-certification after a change to ensure legal regulations are met. After

comparing the estimated effort, expected benefits and risks, a strategy for software quality en-

hancement needs to be chosen, i.e., the recommendations for action to be implemented should be

selected. Also, a suitable time for their implementation needs to be determined, which requires

taking the software development workflow into account (RWork).

In some cases, the effort to implement derived recommendations for action outweighs the expected

benefits by far. However, the gained insights about the strengths and weaknesses identified are

still useable since they should be considered in the design phase of new software concepts. This

way, positive design decisions can be transferred into the new concept, while decisions leading to

disadvantageous software parts can be avoided.

88 5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis

Optional adaptation of software development process

With the derived recommendations for action, means for the step-wise enhancement of planned

reuse of the warehouse software are identified. These need to be integrated into the development

process, which requires adapting the copy, paste and modify process to a development workflow

utilizing library modules and, subsequently, a project template or even software configuration.

Since only one developer is responsible for the warehouse software, separating module and appli-

cation development into two departments is not feasible. However, quality gates should be intro-

duced to ensure the maturity of new library POUs and the project template. Since the software

developer has basic background knowledge about these reuse strategies, no additional expert

workshop is required. Details of the software development workflow with a configuration tool are

described in [FVF15]. The identified variation points in the warehouse hardware could potentially

be used during the entire warehouse development process. However, it is sufficient to adopt the

software development workflow to code configuration as a starting point. For this, no additional

information from other disciplines is required since the MVL-list and layout plan are sufficient.

Case Study A demonstrates that apart from updating the control software itself by changing struc-

tures, selected sub-parts or interfaces, additional modifications might be required when performing

a selected recommendation for action. Depending on the scope of the selected recommendation

for action, changes include updates of currently applied reuse strategies, e.g., modifications of

templates or existing library modules. Also, organizational aspects are targeted, depending on the

recommendations for action to be implemented, which might result in adaptations of the develop-

ment process or specific tasks performed during the software development. If the recommendation

for action requires taking a new design decision or updating an available template, modifying

programming guidelines might also be necessary.

In summary, in Step 4, the quality assessment of the control software regarding the selected anal-

ysis goal is performed based on the documented analysis results from previous steps. From the

identified weaknesses, an approach like the goal-lever-indicator-principle is applied to derive rec-

ommendations for action to improve the control software concerning the analysis goal. The de-

tailed documentation from Step 3 enables the effort estimation of the suggested improvements and

supports the choice of actions to be performed. Thus, the procedure aims to support the industrial

experts in using the gained insights from the quality assessment and identifying potential measures

to improve the detected weaknesses. The result of this step is a concept with changes planned to

be performed to enhance the software quality.

5. Procedure for Quality Assessment of Legacy Control Software with Static Code Analysis 89

Summary concerning the entire quality assessment procedure

The presented quality assessment procedure is neither intended as a strict guide to be followed nor

are its four procedure steps and the tasks performed therein always perfectly separable. In contrast,

multiple iterations through the steps targeting sub-aspects of the selected analysis goal or even a

mixture of the activities of different steps during the quality assessment are possible. The proposed

procedure supports conducting the quality assessment in a structured, systematic and goal-oriented

way by providing an overall schema and additional material, e.g., interview guiding questions and

a checklist of aspects to be considered during the analysis. However, it has to be noted that all

presented lists, e.g., the interview guiding questions, potential analysis goals and means of visual-

izing the results, have no claim to completeness. Instead, they are intended as examples to enable

software developers to perform the quality assessment themselves.

The initial application of the proposed quality assessment procedure should be performed in close

cooperation with the company’s software developers or other involved personnel (depending on

the selected goal). After conducting an analysis supported by external experts familiar with static

code analysis, the company’s software developers should subsequently perform the software anal-

ysis themselves. Thereby, ideally, the software developer conducting the analysis is not the one

who has programmed the software but a colleague from the same department and machine type.

A developer, who is not familiar in detail with the software being analyzed, has an outside view

of the software. Thus, it is more likely that the developer questions design decisions or historically

grown software structures during the analysis. Moreover, if the following analysis targets the same

control software, familiarization with the software architecture and identification of an analysis

goal are less time-consuming than during the first-time application of the procedure. Conse-

quently, the overall application effort of the procedure is lower the second time (REff).

6. Implementation

This Chapter gives a brief overview of the implementation of selected concept parts as support for

a context-sensitive analysis using the proposed procedure and for documenting the analysis results.

Most implementations are contained in the prototype of the research project advacode [Ins22],

which was implemented by the programmer Thomas Mikschl and the student assistants Fabian

Haben and Jan Wilch according to the concepts and specifications of the author of this thesis.

6.1. Prototypical Implementation of Context-sensitive, Configurable

Static Code Analysis Concepts

In the research project advacode [Ins22], various means for an automatic static code analysis of

Siemens TIA Portal control software have been implemented in a prototype. The input files for

the advacode prototype are Siemens TIA XML files of the considered source code, which can be

exported from the TIA Portal via TIA Portal Openness [Sie22]. In a preparation step, the files are

parsed into an internal data model, including information on the contained elements, e.g., POUs,

DBs and UDTs, and the dependencies between them, e.g., call and data exchange edges, for sub-

sequent analysis. After this preprocessing step, various analysis means are available, ranging from

call graphs, the calculation of software metrics and the identification of duplicated software parts.

Selected analysis means, which are closely related to the quality assessment procedure, are shortly

introduced in the following.

The proposed assessment procedure sets the framework for a goal-oriented, context-sensitive static

code analysis, taking company-specific boundary conditions and deliberate design decisions such

as programming guidelines into account (RDD). An approach to enable the automatic identification

of dependencies violating company-specific programming guidelines has been proposed in

[Fis⁺22b] and implemented as a Data Exchange Analysis view in the advacode prototype. First, a

classification scheme was introduced to distinguish different types of dependencies between soft-

ware parts. Based on the classification, an editor to enable the configuration of rules was imple-

mented to evaluate the concept with industry-sized control software (RDD).

The Data Exchange Analysis view consists of three main parts, which are depicted in Figure 16.

The available rules, which can be activated for use in the subsequent analysis, are listed on the

left. After the analysis is conducted, the identified violations are displayed in table format on the

right. The rule configuration is performed in a separate editor, which allows defining two types of

rules, optionally including regular expressions (Regex) to enable filtering for or excluding specific

92 6. Implementation

elements and taking company-specific naming conventions into account. Configured rules can be

stored, exported from and imported to the advacode prototype and edited. [Fis⁺22b]

In
te

rf
a
c
e
 f
o
r

ru
le

 d
e
fi
n

it
io

n

A
v
a
ila

b
le

 R
u
le

s

T
a

b
le

-b
a
s
e
d
 li

s
t
w

it
h

 a
n
a
ly

s
is

 r
e
s
u
lt
s

Figure 16: Screenshot of the data exchange view in the advacode prototype, including available, pre-de-

fined rules (top left) with criticality level, rule editor (bottom left) and the table-based results

view (right); content published in [Fis⁺22b].

6. Implementation 93

When assessing if dependencies are implemented as intended, considering the functionality im-

plemented in the dependent POUs is essential. Moreover, the functionality distribution in a soft-

ware project is relevant for the reuse of its sub-parts (e.g., separation of application-specific control

logic and standardizable hardware control). Currently, the identification of implemented function-

ality of individual POUs and, thus, the functionality distribution within a control software project,

is mainly a manual task that requires understanding the intention behind the control code (RRat). A

first approach enables the automated identification of the main functionality of individual POUs

within a software project based on structural and semantic factors. These factors include the used

programming language, a POU’s hierarchy level in the call graph, complexity and naming con-

ventions (cf. [Wil⁺22] for details). It has been implemented in the advacode prototype and evalu-

ated with industry-sized control software [Wil⁺22]. Although the implementation does not substi-

tute the manual comprehension of the functionality distribution, it eases its understanding (RRat).

Similarly, the advacode prototype contains different metrics, which can be calculated for all or

selected POUs inside a software project. The metrics results are displayed in a sortable table.

However, a manual interpretation of the gained metric values is required to assess the control

software and derive recommendations for action from the analysis results (RRat).

6.2. Different Visualizations of Static Code Analysis Results

The results gained during the static code analysis in the advacode prototype are visualized in dif-

ferent formats. While table-based forms summarize metric results and identified violations, call

and data exchange graphs with highlighting and filtering options are utilized to show the overall

software structure or selected details in their context. For example, the results of the functionality

distribution analysis are visualized color-coded in the call graph [Wil⁺22] (cf. Figure 17).

Apart from call graphs with color-coded functionality indications, additional color-coded infor-

mation is available, e.g., the folder each POU belongs to in the development environment to ana-

lyze dependencies between project parts structured in folders. Moreover, the results of different

software metrics can be visualized as the diameter of the nodes in the call and data exchange

graphs. A Combined DataExchange Visualization view that contrasts the direct data exchange in

the call graph and the indirect data exchange via global variables (in Siemens TIA Portal, i.e., via

global DBs) was developed to support the dependency analysis. The Combined DataExchange

Visualization view is depicted in Figure 18. It helps to understand the analysis results, as it displays

the identified dependency violations and the affected POUs within their context, which is essential

[GC15]. Furthermore, the amount of data a POU reads from or writes to global DBs is encoded as

thickness in the edges between POUs and DBs.

94 6. Implementation

Figure 17: Screenshot of a call graph, including color-coding for the implemented main functionality of

each POU in the advacode prototype.

6. Implementation 95

Call Graph

(direct data exchange)

Data Block View

(indirect data exchange)

Writing POUs Global DBs Reading POUs

Filtering options

Figure 18: Screenshot of combined view with call graph (left) and data exchange via data blocks (right);

dependencies to selected POU “W4_Wrapper_Scan” are highlighted in both views (content

published in [Fis⁺22b]).

Apart from performing static code analysis, the advacode prototype also supports visualizing and

exporting the gained insights, e.g., call and data exchange graphs, table-based lists of metrics re-

sults and violations of programming guidelines (RDoc). Industrial experts, i.e., software developers,

group leaders and managers from different companies, have confirmed the usefulness of the vari-

ous documentation types. An expert confirmed that the combined view is promising to visualize

the software’s modularity, but it is not yet convincing for an overall modularity assessment. One

expert raised a concern regarding the suitability of the proposed call graph views to visualize OOP

software, which has not been focused on in this thesis and needs to be investigated in future work.

Different visualizations focusing on software variability have been prototypically implemented

and evaluated in the DFG-funded project RED SPLAT [GEP22a]. These visualizations are tailored

to the tasks of different stakeholders and show various granularity levels of the analyzed software

project [Fis⁺20a].

The different analysis features of the advacode prototype have been applied to and evaluated with

industry-sized control software in various studies (cf. [Fis⁺21b; Fis⁺22b; Pun⁺22; Wil⁺22] for de-

tails). Filtering options, e.g., in call and data exchange graphs [Fis⁺22b; Wil⁺22], highlighting pos-

sibilities, e.g., to display data exchange violations in their context [Fis⁺22b], and different visual-

izations, e.g., using a design structure matrix [Pun⁺22], support the assessment of the analysis

results despite the size of industrial software projects (RScal).

7. Qualitative Evaluation

The proposed quality assessment procedure for legacy control software was evaluated using the

requirements derived in Chapter 3. For this purpose, four different evaluation methods targeting

different sub-sets of these requirements were used (cf. Table 12 for an overview).

 The overall applicability of the developed procedure was evaluated with three industrial

Case Studies B to D, including industrial expert interviews (Sub-sections 7.1.1 to 7.1.3).

 Focusing on integrating the quality assessment procedure into different company work-

flows (REff) and combining the proposed procedure with available means for automatic

code analysis, the lab-sized demonstrator Case Study E was conducted. It was evaluated

with a mixed industrial expert group using an online questionnaire (Sub-section 7.1.4).

 The suitability of the proposed quality assessment procedure to cope with different bound-

ary conditions in the aPS domain and the procedure application by software developers to

control software on different platforms, including adaptations to company-specific con-

straints, was targeted with an industrial expert group in the scope of an industry working

group (WG) meeting. Due to their different backgrounds, the WG members are considered

a representative group for the characteristics of industrial control software development.

The evaluation included a web-faced questionnaire and industrial expert discussions in

sub-groups (Section 7.2).

 Finally, the applicability of the procedure in an application sector with specific rules and

regulations was evaluated in a workshop conducted with developers and group leaders

from a German plant manufacturing company in the food and beverage sector. The eval-

uation targeted the conduction of the quality assessment and the use of the analysis results,

including deriving recommendations for action, with an online questionnaire and indus-

trial expert discussions (Section 7.3).

98 7. Qualitative Evaluation

Table 12: Evaluation methods per requirement with reference to the relevant Sections.

C
a

se

S
tu

d
ie

s

E
x

p
er

t
ev

a
lu

a
ti

o
n

 i
n

W
G

-m
ee

ti
n

g

(a
p

p
li

ca
b

il
it

y
 i

n
 a

P
S

d
o

m
a

in
)

E
x

p
er

t
w

o
rk

sh
o
p

 i
n

fo
o

d
 a

n
d

 b
ev

er
a
g

e
se

ct
o

r

In
d

u
st

ri
a

l

ca
se

 s
tu

d
ie

s

L
a

b
-s

iz
ed

 d
e-

m
o

n
st

ra
to

r

ca
se

 s
tu

d
y

Evaluation

method
CS, E CS, Q Q, E Q, E

Section
Sec. 7.1.1 Sec. 7.1.2 Sec. 7.1.3 Sec. 7.1.4

Sec. 7.2 Sec. 7.3
(Summary in Sec. 7.1.5)

Evaluation

Element

Targeted

Requirements

Case

Study B

Case

Study C

Case

Study D

Case

Study E
WG Workshop

RPLC – Platform

Independence
x x x x

x

(WG#13)

RPro – aPS as

Product
x x x x

x

(WG#3, 7)

RUse – User x
x

(W#8)

x

(W#7)

RSec – Application

Sector
x x x x

x

(WG#11, 12)

x

(W#4)

RPP – Pain Points x x x x
x

(WG#6)

x

(W#2)

RWork – Workflow

Integration
x x x x

x

(WG#3)

x

(W#8)

RDD – Design x x x x
x

(WG#7)

x

(W#3)

RGoal –

Analysis Goal
x x x x

RScal – Scalability x x x

REff – Application

Effort
x x x

RRat – Rationale x x x x

RWeak –

Weaknesses and

Change Effort

x x x x
x

(W#6)

RDoc –

Documentation
x x x x

x

(W#5)

Legend:

x: requirement targeted by evaluation, empty cell: requirement not targeted by evaluation;

CS: case study; Q: questionnaire; E: feedback from industrial experts in interviews/discussions; WG/workshop ques-

tions referred to as WG/W#[question number].

7.1. Qualitative Evaluation with Case Studies

Four case studies have been conducted in addition to Industrial Case Study A (cf. Chapter 5.2) for

evaluation. Three case studies target industrial control software from German machine and plant

engineering companies; one utilizes a lab-sized demonstrator and is assessed with an industrial

7. Qualitative Evaluation 99

expert group. An overview of the conducted case studies is provided in Table 13 (in contrast to

Table 2 on p. 17, only aspects regarding the analyzed control software projects are listed).

Although the proposed quality assessment procedure has been applied in five case studies, Case

Studies B and C are focused mainly. Apart from Case Study A, these were the first applications,

and thus, the most insights about the procedure were gained. Before introducing the details of the

case studies in the following Sub-sections, Case Studies B and C are contrasted in Figure 19.

Procedure

Step

Case Study B

(independent project variants of a plant part)

Case Study C

(dependent versions of a software project)

S
te

p
 1

)

F
a
m

ili
a
ri
za

ti
o
n

w
it
h
 a

p
p
lic

a
ti
o
n

Expert interviews:

- Machine functionality and general hardware structure

- Development workflow (copy, paste and modify)

Analysis goal: Documentation of software variants for their

planned reuse (incl. hardware influences)

Workflow integration: Analyze differences in projects after

start-up (variants of a plant part)

Expert interviews:

- Machine functionality and general hardware structure

- Development workflow (template, library modules)

Analysis goal: Assessment of project template regarding

modularity, comprehensibility and suitability for reuse

Workflow integration: Analyze changes during development

(versions of a software project)

S
te

p
 2

)

S
ta

ti
c
 c

o
d
e
 a

n
a
ly

s
is

(m
a
n
u
a
l
&

 a
u

to
m

a
ti
c
)

Aim: Understanding structure of control software by

- Identification of design decisions

- Analyzing the link of software parts to the controlled

hardware and functionality

Analysis focus: Control of mechanical modules, including

process logic (interlocks), e.g.,

- Functionality distribution in the software

- Dependencies in the software, e.g. interlocking conditions

Aim: Understanding applied modularization principle

- Link of software modules to hardware and functionality

- Familiarization with programming guidelines and library

modules

Analysis focus: Understanding software structure and

dependencies in final version of selected project

- Analyzing data exchange between modules

- Starting point: Central process, extra-functional tasks

S
te

p
 3

)

A
n
a
ly

s
is

 o
f

a
d
d
it
io

n
a
l
s
o
ft
w

a
re

 p
a
rt

s

in
c
lu

d
in

g
 d

o
c
u
m

e
n
ta

ti
o
n

Goal: Modularization and reuse concept

Analysis focus: How does change in hardware / layout

affect control software?

Additional projects: variants of considered plant part

Method:

- Mapping of hardware variants to control software

- Documentation of variability (hardware, software and

functionality) in feature models

- Analysis of data exchange between software modules via

flag variables (including type of passed information)

- Continuous discussions with software developer to

ensure correctness of findings

- Structural patterns (not helpful due to flat call hierarchy)

Goal: Assessment of project template’s reusability

Analysis focus: Which changes from template to final

version are performed and when are they implemented?

Additional projects: version history of project from Step 2

Method:

- Analysis of changes from template to final version

- Focus on data exchange of selected modules

- Documentation of deviations from template

- Analysis of programming progress (implementation

additions, including violations and their consequences)

- Classification of violations to analyze to which extent

they could be automatically identified using static code

analysis

S
te

p
 4

)

Q
u
a
lit

y

a
s
s
e
s
s
m

e
n
t

Assessment results:

- Suggestions for modularity concept

(restructuring of control software)

- Reuse strategy with invariable and variable parts

- Documentation of variability and link between

functionality, hardware and software

Assessment results:

- Evaluation of the project template

- Classification of violations

(metrics for their identification)

- Recommendations for action to improve usability of

template

Figure 19: Comparison of Case Study B and C linked to the four quality assessment steps.

Details of the conducted Case Studies B to E are presented in the following Sub-sections. In Sub-

section 7.1.5, insights gained from all case studies are summarized and linked to the derived re-

quirements.

T
a

b
le

 1
3

:
O

ve
rv

ie
w

 o
f

co
n

d
u

ct
ed

 i
n

d
u

st
ri

a
l

C
a

se
 S

tu
d

ie
s

A
,

B
,

C
 a

n
d

 D
 a

n
d

 l
a
b

-s
iz

ed
 d

em
o

n
st

ra
to

r
C

a
se

 S
tu

d
y

E
.

In
d

u
st

r
ia

l
C

a
se

 S
tu

d
y

 A

(i
n

te
r
n

a
ti

o
n

a
ll

y
 o

p
e
ra

ti
n

g
)

In
d

u
st

r
ia

l
C

a
se

 S
tu

d
y

 B

(i
n

te
r
n

a
ti

o
n

a
ll

y
 o

p
e
ra

ti
n

g
)

In
d

u
st

r
ia

l
C

a
se

 S
tu

d
y

 C

(i
n

te
r
n

a
ti

o
n

a
ll

y
 o

p
e
ra

ti
n

g
)

In
d

u
st

r
ia

l
C

a
se

 S
tu

d
y

 D

(i
n

te
r
n

a
ti

o
n

a
ll

y
 o

p
e
ra

ti
n

g
)

L
a

b
-s

iz
e
d

 D
e
m

o
n

st
r
a

to
r

C
a

se
 S

tu
d

y
 E

P
r
o

d
u

c
t/

a
P

S
 t

y
p

e
P

M

P
M

M

M
 (

S
P

M
)

P
M

 (
w

it
h
 S

P
M

)
L

ab
-s

iz
ed

 d
em

o
n

st
ra

to
r

A
p

p
li

ca
ti

o
n

se
c
to

r
*

W
o

o
d

w
o

rk
in

g

In
tr

al
o
g
is

ti
cs

A

u
to

m
o
ti

v
e

en
g
in

ee
ri

n
g
 (

su
p

p
li

er
)

A

u
to

m
o
ti

v
e

en
g
in

ee
ri

n
g
 (

su
p

p
li

er
)

In
tr

al
o
g
is

ti
cs

 /
 f

ac
to

ry
 a

u
to

m
at

io
n

P
L

C
 d

e
v
el

o
p

m
e
n

t

e
n

v
ir

o
n

m
e
n

t*

S
ie

m
en

s
S

IM
A

T
IC

 M
an

ag
er

(S
T

E
P

 7
)

S
ie

m
en

s
S

IM
A

T
IC

 M
an

ag
er

(S
T

E
P

 7
)

S
ie

m
en

s
T

IA
 P

o
rt

al

S
ie

m
en

s
T

IA
 P

o
rt

al

B
ec

k
h

o
ff

 T
w

in
C

A
T

 3

C
o

m
p

a
n

y
 S

iz
e

A
b

o
u

t
1
,9

7
0

 e
m

p
lo

y
ee

s
in

 t
o
ta

l
A

b
o
u

t
6
0
0

 e
m

p
lo

y
ee

s
in

 t
o
ta

l
A

b
o
u

t
1
,1

0
0

 e
m

p
lo

y
ee

s
in

 t
o
ta

l
A

b
o
u

t
8
0
0

 e
m

p
lo

y
ee

s
in

 t
o
ta

l
n

.a
.

S
o

ft
w

a
re

d
e
v
e
lo

p
e
r
s*

A
b

o
u

t
3
0

 s
o
ft

w
ar

e
d

ev
el

o
p

er
s

fo
r

P
L

C
,

H
M

I
an

d
 s

ta
ti

c
p

ro
ce

ss
 c

o
n

tr
o
l

A
b

o
u

t
2
0

 P
L

C
 s

o
ft

w
ar

e
d

ev
el

o
p

er
s

(a
ls

o
 w

o
rk

 a
s

co
m

m
is

si
o
n

er
s)

A
b

o
u

t
3
0

 P
L

C
 a

p
p

li
ca

ti
o
n

 d
ev

el
o
p

-

er
s;

 t
h

re
e

P
L

C
 m

o
d

u
le

 d
ev

el
o
p

er
s

A
b

o
u

t
3
5

 P
L

C
 m

o
d
u

le
 a

n
d
 a

p
p

li
ca

-

ti
o
n
 d

ev
el

o
p

er
s

n
.a

.

A
m

o
u

n
t

o
f

c
o

n
si

d
e
re

d

so
ft

w
a

re
 p

ro
je

c
ts

(i
n

c
l.

 n
u

m
b

e
r
 o

f

P
O

U
s)

*

F
iv

e
co

m
p

le
te

,
in

d
ep

en
d

en
t

so
ft

w
ar

e

p
ro

je
ct

s
co

n
tr

o
ll

in
g
 v

ar
ia

n
ts

 o
f

a
p

la
n

t

p
ar

t
(a

lr
ea

d
y
 o

p
er

at
in

g
 o

r
sh

o
rt

ly
 b

e-
fo

re

co
m

m
is

si
o
n

in
g
);

p

ro
je

ct
s

w
it

h

ab
o
u
t

1
3

0
 t

o
 1

8
0

 P
O

U
s

S
ev

en

co
m

p
le

te
,

in
d

ep
en

d
en

t

so
ft

w
ar

e
p

ro
je

ct
s

co
n

tr
o
ll

in
g
 v

ar
ia

n
ts

o
f

a
p

la
n
t

p
ar

t
(f

iv
e

co
n

si
d

er
ed

in

d

et
ai

l)
;

p
ro

je
ct

s
w

it
h
 3

3
 t

o
 5

1
 P

O
U

s

T
w

o

co
m

p
le

te

cu
st

o
m

er

p
ro

je
ct

s

sh
o
rt

ly
 b

ef
o

re
 c

o
m

m
is

si
o
n

in
g
;

fi
rs

t
p

ro
je

ct
 p

ro
v
id

ed
 i

n
 f

iv
e

v
er

si
o
n

s
F

in
al

v
er

si
o
n

s
o
f

p
ro

je
ct

s
w

it
h

2
2

5

an
d

 3
6
3

 P
O

U
s

T
w

o
 c

o
m

p
le

te
,

in
d

ep
en

d
en

t
cu

st
o
m

er

p
ro

je
ct

s
(1

8
7

 a
n
d

 1
3

5
 P

O
U

s)
,

T
w

o

tr

ai
n
in

g

p

ro
je

ct
s

fo
r

n
ew

so

ft
-

w
ar

e
d

ev
el

o
p

er
s

to

fa
m

il
ia

ri
ze

w

it
h

th
e

st
an

d
ar

d
 (

b
as

e
p

ro
je

ct
:3

4
 P

O
U

s,

ex
am

p
le

 p
ro

je
ct

:
1
0

7
 P

O
U

s)

F
o
u

r
v

er
si

o
n

s
(e

v
o
lu

ti
o
n

sc

en
ar

io
s)

,

w
h

ic
h
 c

o
n
ta

in
 v

ar
ia

n
ts

 o
f

h
ar

d
w

ar
e

el
-

em
en

ts
,

e.
g
.,

 c
o
n

v
ey

o
r

b
el

ts
;

P

ro
je

ct
s

w
it

h
 1

9
 t

o
 2

1
 P

O
U

s

A
p

p
li

e
d

 r
e
u

se

st
r
a

te
g

ie
s*

C
o
p

y,
 p

a
st

e
a

n
d

 m
o
d

if
y
 o

f
h
is

to
ri

ca
ll

y

g
ro

w
n

 l
eg

ac
y
 s

o
ft

w
ar

e

(d
ev

el
o
p

er
 r

eu
se

s
o
w

n
 p

ro
je

ct
s)

1
)

M
ai

n
ly

 c
o

p
y,

 p
a

st
e

a
n

d
 m

o
d

if
y
 o

f

h
is

to
ri

ca
ll

y

g
ro

w
n

le

g
ac

y

so
ft

w
ar

e

(d
ev

el
o
p

er
s

re
u

se
 o

w
n

 p
ro

je
ct

s)
2

)
F

ew
 s

ta
n
d

ar
d

iz
ed

 P
O

U
s

(w
it

h
 v

er
-

si
o
n

 c
o
n

tr
o
l,

 n
o

 l
ib

ra
ri

es
)

P
ro

je
ct

te

m
p

la
te

s
co

m
b

in
ed

w

it
h

li
b

ra
ry

m

o
d

u
le

s
(s

o
ft

w
ar

e

d
ev

el
o
p

m
en

t
d
iv

id
ed

in

to

st
an

d
ar

d
iz

ed
 a

n
d

 a
p
p

li
ca

ti
o
n

-s
p

ec
if

ic

d
ev

el
o
p

m
en

t)

T
em

p
la

te
-b

as
ed

 r
eu

se
 i

n
 c

o
m

b
in

at
io

n

w
it

h
 l

ib
ra

ry
 m

o
d

u
le

s,
 c

o
d

e
g
en

er
at

io
n

C
o
p

y,
 p

a
st

e
a
n

d
 m

o
d
if

y
o
f

p
ro

je
ct

s;

O
M

A
C

st

at
e

m
ac

h
in

es

u
se

d

o
n

IS
A

 8
8

 h
ie

ra
rc

h
y
 l

ev
el

s

U
se

d

p
r
o
g

ra
m

m
in

g

g
u

id
el

in
e
s*

(x
)

v
er

y
 b

as
ic

 g
u
id

el
in

es
;

co
m

p
an

y
-w

id
e

u
n
iq

u
e

eq
u

ip
m

en
t

ID
s

x

st
ru

ct
u

re
,

fu
n

ct
io

n
al

it
y
 d

is
tr

ib
u
ti

o
n

,

n
am

in
g
 c

o
n

v
en

ti
o
n

s,
 r

eu
sa

b
le

 P
O

U
s

x

st
ru

ct
u

re
,

in
te

n
d

ed

d

ep
en

d
en

ci
es

fo

r

d
at

a
ex

ch
an

g
e,

 n
am

in
g
 c

o
n

v
en

ti
o
n

s

x

m
at

u
re

 s
ta

n
d
ar

d
,
in

cl
u

d
in

g
 a

n

ex
am

p
le

 p
ro

je
ct

 f
o
r

a
te

st
b

ed

n
o

co
m

p
an

y
-s

p
ec

if
ic

g
u

id
el

in
es

;
so

ft
w

ar
e

is

st
ru

ct
u

re
d

ac

co
rd

in
g

to

IS
A

 8
8

 w
it

h
 O

M
A

C
 a

ct
io

n
s

In
fo

r
m

a
ti

o
n

 f
ro

m

in
te

r
v
ie

w
s

(S
te

p
 1

)

r
e
g
a
r
d

in
g

 p
a
in

p
o

in
ts

 a
n

d
 c

u
r
re

n
t

ta
rg

e
ts

1
)

U
se

 o
f

co
p

y,
 p

a
st

e
a
n
d

 m
o
d

if
y
 l

ea
d

to

h
is

to
ri

ca
ll

y

g
ro

w
n

so

ft
w

ar
e

st
ru

ct
u

re
s

w
it

h

li
tt

le

d
o
cu

m
en

ta
ti

o
n

o
n

 d
et

ai
le

d
 s

o
ft

w
ar

e
d

es
ig

n
 d

ec
is

io
n

s

an
d

 i
n

fl
u

en
ce

s
o
f

h
ar

d
w

ar
e

v
ar

ia
ti

o
n

p
o
in

ts
 o

n
 t

h
e

co
n

tr
o
l

so
ft

w
ar

e;
 o

n
ly

o
n

e
so

ft
w

ar
e

d
ev

el
o
p

er

re
sp

o
n

si
b

le

fo
r

th
e

p
la

n
t

p
ar

t

1
)

M
o
d
u

le
s

d
ep

en
d

en
ci

es
 a

re
 c

ru
ci

al

an
d

m

ai
n

ly

im
p

le
m

en
te

d

in
d
ir

ec
tl

y
;

n
o

su
it

ab
le

m

o
d
u

la
ri

za
ti

o
n

st

ra
te

g
y
,

fu
n
ct

io
n

al
it

y

d
is

tr
ib

u
ti

o
n

is

ch
al

le
n

g
in

g
 d

u
e

to
 v

ar
ia

ti
o
n

 p
o
in

ts

2
)

C
u

rr
en

t
ta

rg
et

s:

st
an

d
ar

d
iz

at
io

n
,

p
la

n
n

ed

re
u

se
,

ea
se

in

te
g
ra

ti
o
n

o
f

re
u

sa
b

le

ar
ti

fa
ct

s
in

to

o
v
er

al
l

P
L

C

1
)

N
o
t

al
l

p
ro

je
ct

-s
p

ec
if

ic

ch
an

g
es

co
n

fo
rm

 t
o
 t

h
e

te
m

p
la

te
,

w
h

ic
h

 l
ea

d
s

to

d
if

fi
cu

lt
ie

s
w

h
en

u
p

d
at

in
g

th
e

so
ft

w
ar

e,

fi
n

d
in

g

b
u

g
s

o
r

re
u

si
n

g

m
o
d

u
le

s
in

a

d
if

fe
re

n
t

co
n
te

x
t

an
d

re
d

u
ce

s
u
n
d

er
st

an
d
in

g

2
)

A
p

p
li

ca
ti

o
n

en

g
in

ee
rs

so

m
et

im
es

re
-p

ro
g
ra

m

fu
n

ct
io

n
al

it
y

al
re

ad
y

P
ro

g
ra

m
m

in
g

st
an

d
ar

d

an
d

li

b
ra

ry

m
o
d

u
le

s
ar

e
in

u

se
;

th
e

co
m

p
an

y

cu
rr

en
tl

y

ai
m

s
to

in

cr
ea

se

th
e

re
u

sa
b

le
,

st
an

d
ar

d
iz

ab
le

so

ft
w

ar
e

p
ar

ts

S
ta

n
d
ar

d
iz

at
io

n
 i

s
ch

al
le

n
g
in

g
 d

u
e

to

h
ig

h
 c

u
st

o
m

iz
at

io
n

O
M

A
C

 s
ta

n
d

ar
d
 a

n
d
 I

S
A

 8
8
 u

se
d

 f
o
r

st
ru

ct
u

re
 

 e
x
p

ec
ta

ti
o
n

:
so

ft
w

ar
e

is

m
o
d

u
la

r;
 i

m
p

re
ss

io
n

 o
f

a
d

ev
el

o
p

er
:

d
es

p
it

e
re

cu
rr

in
g
 h

ar
d

w
ar

e,
 n

o
 r

eu
se

o
f

re
sp

ec
ti

v
e

co
n

tr
o
l

so
ft

w
ar

e
(m

an
y

co
d

e
d
u

p
li

ca
te

s)

100 7. Qualitative Evaluation

In
d

u
st

r
ia

l
C

a
se

 S
tu

d
y

 A

(i
n

te
r
n

a
ti

o
n

a
ll

y
 o

p
e
ra

ti
n

g
)

In
d

u
st

r
ia

l
C

a
se

 S
tu

d
y

 B

(i
n

te
r
n

a
ti

o
n

a
ll

y
 o

p
e
ra

ti
n

g
)

In
d

u
st

r
ia

l
C

a
se

 S
tu

d
y

 C

(i
n

te
r
n

a
ti

o
n

a
ll

y
 o

p
e
ra

ti
n

g
)

In
d

u
st

r
ia

l
C

a
se

 S
tu

d
y

 D

(i
n

te
r
n

a
ti

o
n

a
ll

y
 o

p
e
ra

ti
n

g
)

L
a

b
-s

iz
e
d

 D
e
m

o
n

st
r
a

to
r

C
a

se
 S

tu
d

y
 E

2
)

C
u

rr
en

t
ta

rg
et

s:
 d

o
cu

m
en

ta
ti

o
n
 o

f

v
ar

ia
ti

o
n

p

o
in

ts
;

p
la

n
n

ed

re
u

se
;

tr
ai

n
in

g
 o

f
a

se
co

n
d
 p

ro
g
ra

m
m

er

so
ft

w
ar

e
p

ro
je

ct
,

in
cr

ea
se

in

m
o
d

u
la

ri
ty

3

)
P

la
n

:
fu

n
ct

io
n

-o
ri

en
te

d

ap
p

ro
ac

h

fo
r

co
m

p
an

y
-w

id
e

u
se

 (
o
n

g
o
in

g
)

im
p

le
m

en
te

d

in

li
b

ra
ry

m

o
d
u

le
s

in

n
ew

P

O
U

s,

w
h

ic
h

ar
e

al
re

ad
y

in
cl

u
d

ed
 i

n
 l

ib
ra

ry
 m

o
d

u
le

s;

3
)

C
u

rr
en

t
ta

rg
et

s:

In
cr

ea
se

th

e

p
ro

p
o
rt

io
n

 o
f

re
u

se
d

 s
o
ft

w
ar

e

A
n

a
ly

si
s

g
o

a
l

In
fl

u
en

ce

o
f

h
ar

d
w

ar
e

v
ar

ia
n

ts

o
n

co
n

tr
o
l
so

ft
w

ar
e

(p
la

n
n

ed
 r

eu
se

 t
ak

in
g

v
ar

ia
b
il

it
y
 i

n
to

 a
cc

o
u
n
t;

se

p
ar

at
io

n
 o

f
ap

p
li

ca
ti

o
n

-s
p

ec
if

ic
 a

n
d

st
an

d
ar

d
iz

ab
le

/p
ar

am
et

er
iz

ab
le

 p
ar

ts
)

D
o
cu

m
en

ta
ti

o
n

 o
f

av
ai

la
b

le
 h

ar
d

w
ar

e

fu
n
ct

io
n

al
it

y
 (

in
cl

.
co

m
b
in

at
io

n
s)

 a
n

d

it
s

ef
fe

ct
s

o
n
 t

h
e

co
n

tr
o
l

so
ft

w
ar

e
to

d

ev
el

o
p

a

n
ew

m

o
d

u
la

ri
za

ti
o
n

st
ra

te
g
y

an

d
,

th
u

s,

en

h
an

ce

p

la
n

n
ed

re
u

se
,

e.
g
.,

 w
it

h
 s

ta
n
d

ar
d
iz

ed
 l

ib
ra

ry

m
o
d

u
le

s

1
)

A
ss

es
sm

en
t

o
f

te
m

p
la

te
:

fo
cu

s
o
n

in
te

rf
ac

es
 t

o
 c

h
ec

k
 c

o
n

fo
rm

an
ce

 w
it

h

g
u

id
el

in
es

 i
n

 t
h

e
fi

n
al

 p
ro

je
ct

 a
n
d

 i
ts

v
er

si
o
n

 h
is

to
ry

;

2
)

E
st

im
at

io
n

o
f

st
an

d
ar

d
iz

at
io

n

p
o
te

n
ti

al
 i

n
 a

p
p

li
ca

ti
o
n
 s

o
ft

w
ar

e

M
at

u
ri

ty
 a

ss
es

sm
en

t
o
f

p
ro

g
ra

m
m

in
g

g
u

id
el

in
es

,
in

cl
u
d
in

g
 b

as
e

p
ro

je
ct

 a
n

d

li
b

ra
ry

m

o
d

u
le

s,

to

as
se

ss

th
e

st
an

d
ar

d
’s

m

o
d

u
la

ri
ty

an

d

im
p

ro
v
em

en
t

p
o
te

n
ti

al

(f
o
cu

s
o
n

fu
n
ct

io
n

al
it

y

d
is

tr
ib

u
ti

o
n

an

d

in
te

rf
ac

es

b
et

w
ee

n

li
b

ra
ry

m

o
d

u
le

s

an
d

 a
p
p

li
ca

ti
o
n

-s
p

ec
if

ic
 p

ar
ts

)

Id
en

ti
fi

ca
ti

o
n

 o
f

co
d

e
d
u

p
li

ca
te

s
an

d

v
ar

ia
n
ts

to

d

er
iv

e
li

b
ra

ry

P
O

U
s

fo
r

p
la

n
n

ed
 r

eu
se

D
e
si

g
n

 D
e
ci

si
o

n
s

ta
k

e
n

 i
n

to
 a

cc
o

u
n

t

(R
D

D
)

O
rg

an
iz

at
io

n
 o

f
w

ar
eh

o
u

se
 a

re
as

 i
n
to

D

B
s,

 d
at

a
ex

ch
an

g
e

w
it

h
 W

M
S

T

im
in

g
 r

eq
u

ir
em

en
ts

;

fe
w

 e
x
is

ti
n

g
 r

eu
sa

b
le

 P
O

U
s;

co
n

n
ec

ti
o
n
 t

o
 s

u
p

er
o
rd

in
at

e
W

M
S

D
at

a
ex

ch
an

g
e

v
ia

g
lo

b
al

D

B
s;

sp

ec
if

ic

P
O

U
s

in

ea
ch

m

o
d
u

le

d
ed

ic
at

ed
 t

o
 c

o
m

m
u
n
ic

at
io

n

H
ie

ra
rc

h
ic

al

m
o
d

u
la

ri
za

ti
o
n

w
it

h

d
ed

ic
at

ed

F
B

s
fo

r
co

n
tr

o
ll

in
g

p
la

n
t

p
ar

ts
 a

n
d

 e
x
tr

a
-f

u
n

ct
io

n
al

 t
as

k
s;

 D
B

s

as
 i

n
te

rf
ac

es
 i

n
 P

L
C

 a
n

d
 t

o
 H

M
I

P
ro

je
ct

st

ru
ct

u
re

an

d

d
ev

el
o
p

m
en

t
w

o
rk

fl
o

w

co
n

si
d

er
ed

fo

r
th

e

d
ef

in
it

io
n

 o
f

so
ft

w
ar

e
m

et
ri

cs

W
o

r
k

fl
o
w

in
te

g
r
a

ti
o

n

D
ec

o
u

p
le

d
 f

ro
m

 d
ai

ly

w

o
rk

;
sh

o
rt

ly

b
ef

o
re

 c
o
m

m
is

si
o
n

in
g
/a

ft
er

 s
ta

rt
u
p

D
ec

o
u

p
le

d

fr
o
m

d

ai
ly

w

o
rk

;

co
m

m
is

si
o
n

ed
 p

ro
je

ct
s

af
te

r
st

ar
tu

p

D
u

ri
n

g
 t

h
e

d
ev

el
o
p

m
en

t
p

ro
ce

ss
 a

n
d

sh
o
rt

ly
 b

ef
o

re
 c

o
m

m
is

si
o
n

in
g

D
ec

o
u

p
le

d
 f

ro
m

 d
ai

ly
 w

o
rk

;
b

as
e

&

co
m

m
is

si
o
n

ed
 p

ro
je

ct
s

af
te

r
st

ar
t-

u
p

D
ec

o
u

p
le

d

fr
o
m

d

ai
ly

w

o
rk

;

co
m

m
is

si
o
n

ed
 p

ro
je

ct
s

af
te

r
st

ar
t-

u
p

In
v
o

lv
e
d

 i
n

d
u

st
r
y

e
x
p

e
r
ts

 i
n

 q
u

a
li

ty

a
ss

es
sm

e
n

t

T
w

o

so
ft

w
ar

e
d

ev
el

o
p

er
s

(o
n

e
fa

m
il

ia
r

w
it

h
 t

h
e

co
n

tr
o
l

so
ft

w
ar

e,
 a

n
ew

 o
n

e
u

n
d

er
 t

ra
in

in
g

)

T
w

o
 s

o
ft

w
ar

e
d

ev
el

o
p

er
s,

a

g
ro

u
p
 l

ea
d

er
,

a
m

an
ag

er
 (

p
ar

ti
ci

p
at

ed
 p

ar
ti

al
ly

)

A
 m

o
d

u
le

 s
o
ft

w
ar

e
d

ev
el

o
p

er
,

a
m

an
ag

er

T
w

o
 s

o
ft

w
ar

e
d

ev
el

o
p

er
s,

a

g
ro

u
p
 l

ea
d

er

A
 s

o
ft

w
ar

e
d

ev
el

o
p

er
;

(t

en
 i

n
d
u

st
ri

al
 e

x
p

er
ts

 w
it

h
 d

if
fe

re
n

t

b
ac

k
g
ro

u
n

d
s)

U
n

iq
u

e
 f

o
r
 c

a
se

st
u

d
y

E
ff

ec
ts

o
f

h
ar

d
w

ar
e

v
ar

ia
ti

o
n

s
in

cl
u

d
ed

in

so

ft
w

ar
e

q
u

al
it

y

as
se

ss
m

en
t;

d

ev
el

o
p

m
en

t
o
f

p
ar

am
et

er
iz

ab
le

 s
o
ft

w
ar

e
p

ar
ts

M
o
d
u

la
ri

ty

w
o
rk

sh
o
p

en

ab
le

d

so
ft

w
ar

e
d

ev
el

o
p

er
s

to
 a

p
p

ly
 q

u
al

it
y

as
se

ss
m

en
t

in
d

ep
en

d
en

tl
y

to

o
th

er

so
ft

w
ar

e
p

ar
ts

;
h

ar
d

w
ar

e
v
ar

ia
n

ts

co
n

si
d

er
ed

 (
fe

at
u

re
 m

o
d

el
s)

A
p

p
li

ed

at

tw
o

st
ag

es

o
f

th
e

d
ev

el
o
p

m
en

t
cy

cl
e;

v
er

si
o
n

 h
is

to
ry

 c
o
n

si
d

er
ed

G
ro

u
p

le

ad
er

co

n
fi

rm
ed

h

el
p

fu
ln

es
s

an
d

re

le
v
an

ce

o
f

d
o
cu

m
en

ta
ti

o
n

(p
ro

g
ra

m
m

in
g

g
u

id
el

in
es

an

d

so
ft

w
ar

e
ar

ch
it

ec
tu

re

u

n
d

er
st

an
d
ab

le

fo
r

m
an

ag
em

en
t

le
v

el
;

en
ab

le
s

ri
sk

as
se

ss
m

en
t

fo
r

ch
an

g
es

)

C
o
m

b
in

at
io

n
 o

f
m

an
u

al
 a

n
d

 a
u

to
m

at
ic

st

at
ic

co

d
e

an
al

y
si

s;

te
n

in
d
u

st
ri

al

ex
p

er
ts

 c
o
n

fi
rm

 t
h
at

 a
p

p
ro

ac
h
 c

an
 b

e
in

te
g
ra

te
d

in

to

th
ei

r
co

m
p

an
y

w
o

rk
fl

o
w

L
eg

en
d

:
*

:
a

t
ca

se
 s

tu
d
y

ti
m

e
a
n

d
 c

o
n

ce
rn

in
g

 t
h
e

a
n

a
ly

ze
d
 s

o
ft

w
a

re
 p

ro
je

ct
s/

p
a

rt
s;

 M
M

:
m

a
ch

in
e

m
a
n

u
fa

ct
u

ri
n
g

;
P

M
:

p
la

n
t

m
a
n
u

fa
ct

u
ri

n
g

;
S

P
M

:
sp

ec
ia

l
p
u

rp
o
se

 m
a

ch
in

es
;

W
M

S
:

w
a

re
h
o

u
se

 m
a

n
a
g

em
en

t
sy

st
em

.

7. Qualitative Evaluation 101

102 7. Qualitative Evaluation

7.1.1. Industrial Case Study B: Variability Analysis in the Intralogistics Sector

Industrial Case Study B was conducted in a German plant manufacturing company (RPro) from the

intralogistics sector (RSec). A few peculiarities characterize this application sector: according to a

recent study, the hardware modules, i.e., conveying elements, are highly reused [Spi⁺17]. These

reused conveying elements have clearly defined interfaces to connect to neighboring modules and

enable material transport. Due to this high degree of reuse, the control software can be modularized

according to the used hardware, which results in a high reuse potential for the software (cf., for

example, [AFV22]). Case Study B was conducted with an intralogistics part of a corrugated card-

board manufacturing plant, which transports product stacks from the cardboard manufacturing

machine to further processing stations. For its control, mainly historically grown PLC software is

used. The company used Siemens PLCs, programmed with the SIMATIC Manager (STEP 7) when

conducting the case study (RPLC).

Information on Procedure Step 1 with Case Study B

The expert interviews were conducted with three experts from the company, namely a manager,

a group leader from the software development department and a PLC software developer. The

experts briefly introduced the entire plant with a film and the targeted intralogistics part with me-

chanical construction plans. Apart from currently applied reuse strategies and the development

workflow, pain points and recently targeted changes in the development were discussed.

The targeted plant part conveys produced cardboard stacks (cf. Figure 20). The entry points are

so-called stacker stations, where the produced stacks are collected for subsequent transportation

to a storage system, packaging machinery or other conveying elements. Additionally to the actual

conveying area, the intralogistics system optionally contains a rework area to manually correct

defects in individual product stacks. The amount of stacker stations varies and influences the lay-

out of the intralogistics system. Each stacker station is connected to a straight conveying line called

lane, whereby both have the same number. Furthermore, each lane consists of multiple numbered

conveying elements, which vary significantly due to the functionalities they offer in addition to

pure transportation. The used numbering system allows for determining a conveying element’s

position inside the conveying area. Depending on the desired functionality, several lanes can be

combined into one or a lane can be split into several parallel conveying elements in a so-called

special conveying area (SCA, cf. Figure 20).

The selection of conveying elements, which depends on the desired functionality and the produc-

tion hall’s layout, leads to a high variability of the considered intralogistics system, which also

needs to be managed in the control software. During the initial interview, the experts stated possi-

7. Qualitative Evaluation 103

ble combinations of two different conveying elements (hardware variations) influencing the con-

trol software. The variations in the hardware were mainly caused by the logistics functionality,

e.g., pure conveying or conveying with combining, dividing, or turning the transported stacks.

Stacker 3Stacker 2Stacker 1

transfer

car

SCA

Lane1 Lane3Lane2

Rework Area

Conveying

Area

Legend

conveying direction

direction of movement

conveyor element

intralogistics

plant part

CE21conveying element

(CE)

special conveying

area (SCA)

Figure 20: Considered intralogistics plant part of Case Study B, including interfaces to adjacent plant

parts and organization in lanes consisting of conveying elements (CEs); adapted and modified

from [Ber19].

As typical in the aPS domain, the control software’s structure is highly influenced by the position

and number of control panels, which varies, e.g., depending on the location of emergency stop

switches. Each panel area supports two operating modes (manual and automatic) and, conse-

quently, influences the required interlocks and the process logic in the respective control software.

Standardly, the plant part is run in automatic mode, but manual control of individual conveying

elements from an operating panel is possible. During the first interview, the company shared

various materials. The mechanical layout plans of two plants, including the targeted intralogistics

part, were provided. An image film containing the intralogistics system and the conveyed goods

was also presented. During the analysis, further information was shared, including mechanical and

functional descriptions of the conveying elements, excerpts from circuit diagrams and functional

plans of the intralogistics system. Moreover, information on the company-wide, cross-disciplinary

numbering system was provided.

When conducting the case study, the control software for the considered plant part is developed

almost entirely using copy, paste and modify (cf. Figure 21). Despite the reuse of the hardware

modules, which the company itself manufactures, very limited planned reuse of the respective

software is performed. Only a few recurring functionalities are standardized in reusable FCs and

104 7. Qualitative Evaluation

FBs. For these POUs, documentation exists, but they are not organized in libraries. The software

is programmed according to company-specific programming guidelines, including general re-

marks on the programming style, naming conventions and information on standardized, reusable

POUs. Moreover, the call structure and functionality distribution across POUs, including memory

areas of flag variables assigned to specific functionalities, are contained. Finally, the implementa-

tion of extra-functional tasks and different logistics functionalities are addressed. The legacy PLC

programs are mainly implemented in FBD, with a few POUs programmed in IL. The programming

guidelines were provided for the analysis.

C
a

s
e
 S

tu
d
y
 B

Analysis of

project

information
functional description

Search and compare

similar legacy

projects

In-house test

Legacy project as basis
Test resultCAD & ECAD

Company-wide legacy

project database

s
o
ft

w
a
re

 d
e
v
e
lo

p
m

e
n
t

Modification of

legacy project

p
ro

d
u
c
ti
o

n

Personal

legacy projects

(preferred)

CAD &

ECAD

production

Software

New customer project

Legend

sequence flow

message/data flow

association

start event:

receipt of a message

document (generated or

used in a task)

data repository

task

parallel gateway (AND)

Figure 21: Software and product development workflow applied in Case Study B at the company site us-

ing BPMN.

The overall software structure follows a coarse-granular modularization on the level of lanes. The

control of an individual lane is divided into several POUs in a function-oriented manner. Thus,

controlling a single conveying element requires more than one POU. Individual tasks such as the

extra-functional task error handling are implemented by dedicated FCs. Extensive information

exchange exists between the PLC software and a superordinate control, visualization and manage-

ment system, which monitors the entire plant and coordinates the material flow. Process-wise,

very strict timing requirements must be kept and the information exchange between PLC and the

superordinate system is set (RDD).

During the interview, the software developer and group leader mentioned the communication be-

tween modules as a known pain point. Overall, identifying a suitable modularization strategy as

a prerequisite for enhancing the planned reuse of the control software is a challenge (RPP). A mod-

ularization strategy for the control software must consider the high variability of the mechanical

modules caused by their different functionalities. Currently, the company targets establishing a

company-wide, function-oriented planned reuse approach. Since the influence of hardware vari-

ants on the control software is not documented, this is challenging. Moreover, interfaces between

7. Qualitative Evaluation 105

modules and functionality distribution within the control software were stated as challenging.

From these pain points, the analysis goal was defined: deriving a modular reuse concept for his-

torically grown software variants to reuse recurring logistics functionalities and control variant-

rich automation hardware (RGoal). Based on the gained insights and after reviewing the received

material, the analysis of the first project was planned and conducted.

Information on Procedure Step 2 with Case Study B

Following the proposed assessment procedure, the initial analysis targets the overall software

structure and principle design decisions with the support of the software developer and provided

material. With a focus on the set analysis goal, the link of the control software to the automation

hardware is considered in detail. Consequently, the analysis is performed after completing the PLC

project and start-up of the respective plant part (RWork). The static analysis was started tool-based

utilizing a prototype [Fuc⁺14] to generate the software’s call graph and data exchange graphs (cf.

Figure 22). However, the flat call hierarchy (cf. Figure 22, left) and the high amount of indirect

data exchange via flag variables (cf. Figure 22, right) hampered the comprehension and the tool-

based analysis was not sufficient. Thus, manual code analysis was conducted to understand the

dependencies between the POUs (RRat). Iterative exchanges with the software developers were

organized to clarify questions arising during the analysis.

The first analysis targeted three different aspects, which were analyzed sequentially from a

coarse-grained to a fine-grained level following the analysis checklist (cf. Table 8, p. 65): initially,

the aim was to gain an overview of the entire software project, including the contained POU types

(cf. Aspect 1), their dependencies (cf. Aspects 2 and 8), structural design patterns (Aspect 3) and

included library elements (Aspect 4) on a coarse level. To a great extent, this step was performed

with the analysis prototype. Subsequently, the functionality distribution in the software (Aspect 7),

including the link to controlled automation hardware and superordinate control system (As-

pect 10), was analyzed manually. For this purpose, the layout plan and programming guidelines

were used. Finally, since module communication, i.e., interfaces between the respective software

parts, was mentioned as a challenge, it was analyzed in greater detail (cf. Aspect 9). An overview

of the examined aspects and targeted findings is provided in Table 14.

Table 14: Overview of targeted aspects during the first project analysis in Case Study B.

Focus Aspects and followed procedure Targeted findings

Overall

structure

Aspects 1, 2, 3, 4 and 8

Contained POUs (including type)

Call graph, indirect data exchange graph

Used library POUs and structural patterns

Overall project structure (hierarchy levels)

Overview of amount of direct and indirect

dependencies between POUs

Contained library elements

106 7. Qualitative Evaluation

Focus Aspects and followed procedure Targeted findings

Link to automation

hardware

Aspects 6 and 10

Detailed, manual implementation analysis for

1) Identification of POUs linked to panel areas, su-

perordinate system and others

2) Identification of implementation within POUs for

controlling the conveying elements

Functionality distribution (on POU and

sub-POU level)

Link of control software parts (on network

level) to controlled hardware

Communication

between POUs

Aspect 9

1) Dependencies between POUs (indirect data ex-

change via memory areas of flag variables)

2) Analysis of according data flow

Amount and type of exchanged data

Intention behind data exchange; reason for

dependency

The first analysis results were documented and visualized using manually annotated call and

data exchange graphs (including size metrics, cf. Figure 22), in a table-based format and, addition-

ally, in a presentation as a combination of code screenshots and comments (RDoc).

Control Panel

Area 2Control Panel

Area 3

Control

Panel Area 1

Control Panel Area 4

Control Panel

Area 3

Control Panel

Area 2

Control Panel

Area 1

Control Panel

Area 4

OB100

OB35

Communication

to external

systems

OB1

call graph indirect data exchange graph via flag variables

OB FB FCPOU type:

FCs marked according to functionality: FC A FC A FC B FC B FC C FC C FC D FC D

Legend

Figure 22: Generated, manually annotated call graph (left) and indirect data exchange graph via flag

variables (right) of Case Study B’s control software in Step 2; adopted from [Ber19].

The software structure in this case is relatively flat, with a maximum of four hierarchy levels.

Apart from the tree pattern, no other structural patterns could be identified. The functionality is

mainly implemented in FCs and, consequently, there is no reuse through multiple instantiations of

a FB. However, some Siemens library POUs are used. Three groups of POUs were identified

during the functionality analysis, namely general POUs, POUs belonging to a specific operating

panel (cf. panel areas in Figure 22) and POUs for communication. Each lane is controlled by four

FCs, modularized in a function-oriented manner. Sub-parts of these FCs can be linked to the con-

trol of individual conveying elements within the respective lane. The dependencies between POUs

7. Qualitative Evaluation 107

are implemented mainly indirectly via flag variables. Although the control of different lanes is

similar, the four POUs associated with a lane need to be adapted to the contained conveying ele-

ments and their offered logistics functionalities, which affect the required interlocking conditions.

The gained insights were discussed with the company’s developers. Due to the pain points and

challenges, it was decided to analyze further PLC projects focusing on the POU interfaces and

links between the control code to the hardware modules. An overview of the dependencies and

exchanged data is essential for the analysis goal, i.e., choosing a suitable modularization strategy.

Information on Procedure Step 3 with Case Study B

The software developers selected five additional independent software project variants of the

plant part targeted in Step 2 to identify and document their variation points. Due to lacking tool

support, it was planned to conduct a manual analysis. Thus, only a limited number of projects

could be compared and a representative selection based on the developers’ experience was essen-

tial. For ease of understanding, the variability analysis was started with a one-week stay at the

company’s site to enable clarification of questions on short notice.

According to the defined goal (enhancing planned reuse), the analysis of the additional projects

was performed in two parts: first, the selected variants were compared regarding the contained

conveying elements. Since variations in the automation hardware were expected to impact the

respective control software, they were documented to consider them in the targeted modularization

and reuse concept. Second, the functionality was analyzed as the company aims to apply a func-

tion-based modularization strategy across all disciplines. From a functional/hardware perspective,

the identified common, alternative and optional parts were documented as feature models.

Subsequently, the effects of the identified hardware- and functionality variation points on the six

control software projects were targeted on different granularity levels. These are summarized in

Figure 23. A comparison of the call graphs showed recurring structural patterns, e.g., a group of

POUs responsible for communication via the bus system (cf. Figure 24). However, only little var-

iability was identified on the project and POU level. Thus, a manual analysis of the sub-POU level

was required.

108 7. Qualitative Evaluation

Comparison of the call graphs of the

different projects

Documentation of identified variations in

control of a considered conveying element

Detailed network comparison in

recurring POUs with largest variation

Limitation to a conveying element s variants

Comparison of the POUs used in the

different projects

Comparison of the networks and/or data

structure within selected POUs

Too coarse-grained;

hardly any changes in graphs detected

Too coarse-grained;

some POUs directly assignable to a lane,

dead code identified

Individual networks can partially be linked to

conveying elements

Strong dependence of the software of a conveying

element on its predecessor and successor

No consistency across projects in names for

networks or variables with the same purpose

Figure 23: Performed steps during the automatic and manual control software analysis of project vari-

ants concerning influences of hardware variations (left), including gained insights (right).

The four FCs used for controlling the conveying elements in a lane are recurring multiple times in

all projects. They have high variability concerning their implementation, but the used variables

are almost identical. Thus, considering the company’s naming conventions, these POUs are com-

pared in a very fine-granular analysis on the network level. Some networks and their variants are

directly traceable to hardware specifics or the required functionality. With a focus on POU parts

linked to hardware control, the communication between POUs was targeted. According to the

programming guidelines, it is mainly implemented as indirect data exchange via flag variables.

However, the causes for the variations are not documented. Thus, it was analyzed which flag var-

iables belong to which conveying elements, including their variations. As a result, the implemen-

tation parts and flag variables required to control individual conveying element variants were doc-

umented. By comparing the control software of identical conveying elements with different pre-

and successors, it was noted that a conveying element’s control software strongly depends on its

physically connected neighboring elements, e.g., regarding interlocking conditions.

Figure 24: Comparison of two call graphs regarding prominent features and commonalities in their

structure as a pre-step for their detailed manual comparison on the sub-POU level.

7. Qualitative Evaluation 109

During the comparisons, some challenges arose, which required manual interpretation of the tar-

geted control software (RRat). For example, despite naming conventions, FCs implementing the

same functionality did not always follow a uniform numbering and naming. Similarly, naming

conventions for network titles or variables with the same functionality were not used consistently

across different projects, which required manual interpretation to identify variable and common

parts (e.g., correspondent variables in different projects) in the comparisons. Moreover, some pro-

jects contained unused dead code, i.e., unused POUs resulting from a copy, paste and modify error,

which created wrong dependencies within the software. Finally, the programming preferences and

styles of different software developers lead to additional variants. These had to be eliminated be-

fore defining a new modularization strategy, which required the support of the software develop-

ers. Also, due to the high number of variants, the company experts’ help was required to identify

the actual variants, including their cause (RRat).

The identified variation points were documented with feature models from a functional and hard-

ware viewpoint (RDoc). The identified variation points affect the control software differently,

mainly requiring software changes within existing POUs, i.e., changes on network level. These

effects were documented on different granularity levels (POUs, networks and variables) using a

table-based format. Also, the dependencies of flag variables to POUs and functionalities were

reported in a table-based form. The resulting table provides an overview of the POU interfaces,

including data required from other POUs (potential input variables), data provided to other POUs

(potential output variables) and data on the material flow. Overall, the documentation is a basis

for deriving a new modularization principle with clearly defined, standardized interfaces between

the software parts controlling the conveying elements.

Information on Procedure Step 4 with Case Study B

During the quality assessment and derivation of recommendations for action, deliberate design

decisions such as POUs that are already reused, the connection to the superordinate system and

the strict time requirements were taken into account (RDD) and integrated into the new concept.

Overall, the analysis results, i.e., the documentation of variability in functionality, hardware and

control software, confirm a high potential for increasing planned reuse. The control software is

already modularized; however, the level is too coarse-grained, which leads to weaknesses hinder-

ing planned reuse (cf. Table 15 for an overview). The identified three to a maximum of four ar-

chitectural hierarchy levels in the control software indicate lacking encapsulation. The detailed

implementation analysis confirmed that the hardware control and process logic, i.e., process-inde-

pendent and -dependent software parts, of all conveying elements inside a lane are mixed in four

POUs per lane. This mix reduces the reuse potential of those POUs since their reuse in a different

110 7. Qualitative Evaluation

context requires application-specific adaptations (WB-1). However, a few POUs are already reused

in a planned way. The second identified weakness is also closely linked to the applied modulari-

zation strategy. Currently, the data exchange between POUs is mainly implemented indirectly via

flags, which requires much expertise to reuse one hardware module’s control software, including

all dependencies to neighboring modules, in a different context (WB-2). In addition, the use of flag

variables is error-prone because read and write accesses are challenging to trace. Finally, the var-

ying programming styles of different programmers lead to additional variants, which complicate

the planned reuse of existing functionality implementations (WB-3).

From these weaknesses and the documented analysis results, recommendations for action are

derived, including an estimation of their effort (RWeak). The goal-lever-indicator principle is ap-

plied to address the weakness WB-1 with a suitable recommendation. As depicted in Figure 25,

the quality characteristic modularity and its sub-characteristic separation of concerns can be meas-

ured by analyzing the functionality distribution. A recommendation is derived from the related

lever, namely the separation of application-specific parts such as interlocking conditions and

standardizable parts like the control of recurring automation hardware.

Modularity

Separation of

concerns

Quality characteristic

Sub-characteristic

Separation

of process-

(in-)dependent

parts

Functionality

distribution

Design decision Measurable attribute

Legend

Goal Lever Indicator

Figure 25: Goal-lever-indicator principle applied to the identified weakness WB-1 to derive a recommen-

dation for action (following the style of [VFN20]).

To achieve the recommended separation of process logic and hardware control, the followed hard-

ware-oriented modularization strategy needs to be implemented more fine-granular on the level of

conveying elements. This recommendation aims to enable planned reuse of the hardware control

POUs of recurring conveying elements and limit the amount of POUs, which need to be adapted

according to application-specific combinations and resulting interlocking conditions.

Regarding the modularity’s sub-characteristic loose coupling, the analysis of (in-)direct depend-

encies between the POUs shows indirect communication between neighboring modules via flag

variables (WB-2). Thus, reducing the dependencies and implementing them directly or via DBs is

recommended following the lever uniform and lean data exchange. The use of flag variables

should be avoided entirely. For combining and standardizing information to be exchanged between

7. Qualitative Evaluation 111

POUs, the development of UDTs is an option to reduce interface variables. Finally, to address the

weakness WB-3, it is suggested to strengthen the programming guidelines to avoid unnecessary

variants by introducing uniform variable names, network titles and numbering for POUs.

Although the change efforts for addressing weaknesses WB-1 and WB-2 are estimated as high,

since they affect the entire software structure, they are expected to lead to high benefits by enabling

planned reuse. Moreover, the detailed documentation of the analysis results eases the process. As

the activities go hand in hand, they can be carried out in parallel, decreasing effort. The resulting

POUs for hardware control, if defined according to the new modularization strategy, can directly

be implemented as library modules and, thus, address the defined analysis goal.

Table 15: Summary of identified weaknesses, derived recommendations for action and the estimated

change effort in Case Study B.

Identified weakness Recommendation for action Estimated change effort

WB-1 Functionality distribution

according to lanes reduces reusa-

bility (modularization is too

coarse-grained)

Separation of hardware-control and pro-

cess logic; modularization of POUs on

the more fine-grained level of convey-

ing elements

High (change of entire software

structure required for separation of

concerns, but documentation is

available from the analysis)

WB-2 Indirect data exchange via

flag variables

Redefine POU interfaces: direct data

exchange; lean interfaces; elimination

of flag variables

High (change of entire data ex-

change required; but: POU imple-

mentation parts and linked flag

variables were documented)

WB-3 Available programming

guidelines in parts too vague

Revision in identified points leading to

unnecessary, additional variants

Low (identified examples can be

directly included)

With the derived recommendations for action, means for the step-wise increase of the software’s

modularity are identified. These need to be integrated into the development process, which re-

quires adapting the copy, paste and modify process to a development workflow utilizing library

modules. A new modularization concept was developed and prototypically implemented based on

the identified weaknesses. In addition, a two-part modularity workshop was conducted with the

company’s software developers to provide them with the necessary background knowledge to im-

plement improvements and new modularization strategies without support of external consultants.

Apart from solution alternatives, the workshop included limitations and boundary conditions along

the entire software lifecycle. In a short meeting after the quality assessment had been finished, the

experts confirmed that they applied the principles discussed during the joint PLC code analysis

and workshop to individual parts of a machine currently under development themselves (RUse).

112 7. Qualitative Evaluation

Lessons learned from Case Study B

The insights gained during the application of the quality assessment procedure in Case Study B

are summarized with a link to the respective procedure steps in Table 16.

Table 16: Summary lessons learned from procedure application in Case Study B.

Procedure

step & activity
Challenges Required input

Lessons learned about the proposed

quality assessment procedure

Step 1)

Interview

with experts

One interview was not suf-

ficient; continuous feed-

back by experts was re-

quired

Domain knowledge was re-

quired during the analysis on

different granularity levels

(concerning functionality,

hardware and software).

Expert interview in Step 1 is essential

but not enough. Instead, continuous

feedback loops with company experts

are required to clarify arising questions

during the analysis.

Step 2a)

Static code

analysis with

tool

Due to flat call hierarchy,

little knowledge gain with

available code analysis tool

(no structural patterns)

Tool could not identify as-

pects like: link of software to

controlled hardware, inten-

tion behind software parts.

Available tools and automated means

for static code analysis are not enough.

Case Study B confirmed the importance

of manual code analysis (cf. RDD).

Step 2b)

Manual

analysis

Gaining overview and un-

derstanding of software ar-

chitecture and relevant parts

Feedback/input from industry

experts required to under-

stand programming rationale.

Quality of the results after applying the

procedure depends on feedback from

industrial experts.

Step 2b)

Manual

analysis

Time-consuming task with

unknown result (risky if the

effort is worth the result)

Estimation of software devel-

opers regarding challenges in

daily work to select software

parts for detailed, manual

analysis (closely linked to se-

lection of analysis goal).

Due to the historically grown software

structure with little planned reuse, im-

provement potential was expected and

confirmed with analysis results. Expert

interview(s) are essential for estimating

if the manual analysis effort will pay off.

Step 3)

Documenta-

tion of varia-

bility analysis

Linking commonalities and

differences in software var-

iants to their cause (for var-

iability) could not be per-

formed by static code anal-

ysis only

Documentation on hardware

variants was essential to un-

derstand software variations.

Dead code or errors due to in-

complete modify-step cause

false variants that require do-

main expertise.

Domain knowledge and information

from other disciplines are essential to

identify causes for software variability,

e.g., variations in functionality, hard-

ware, customized aspects and others.

Finding: Software seldom varies due to

programming style.

Step 3)

Expert in-

volvement in

documenta-

tion

Software developers are

not always familiar with

means used to document

analysis results (e.g., fea-

ture models for variability)

Software developers need to

participate and be motivated

to understand the means used

for documenting analysis re-

sults.

Motivation of involved experts is cru-

cial for long-term success (enable ex-

perts to apply procedure themselves)

and for usefulness of generated docu-

mentation.

Step 4)

Expert

workshop

Industrial experts need to

be enabled to understand

the assessment and the

gained insights and to draw

the conclusions themselves

Two-part workshop with in-

dustrial experts targeting dif-

ferent aspects of modularity,

including potential conflict-

ing sub-goals of modularity.

Training of software developers is es-

sential to enable them to apply the as-

sessment procedure. Scope and content

of training depend on the background of

the involved experts.

Step 4)

Assessment

(and interpre-

tation) of

results

Background information

about theoretical aspects is

required to draw conclu-

sions about the analysis

goal

Workshop with software de-

velopers regarding modular-

ity, which went beyond the

considered example to pro-

vide general background

knowledge.

Without the workshop targeting general

background knowledge, the developers

would not have been able to inde-

pendently apply the approach to a dif-

ferent machine part.

Limitation: If a different software/anal-

ysis goal is targeted, developers might

lack required background knowledge.

7. Qualitative Evaluation 113

The proposed quality assessment procedure was successfully applied in Case Study B. It confirmed

the importance of expert interviews, domain knowledge and information from other disciplines to

understand the intention behind the control software or identify reasons for variations. Further-

more, the involvement of industrial experts is crucial to enable them to apply the quality assess-

ment procedure themselves successfully. However, the scope and structure of such a workshop

require further research and need to be tailored to company-specific boundary conditions.

7.1.2. Industrial Case Study C: Analysis of Version History and Estimation of Re-

use Potential in the Automotive Sector (Component Assembly)

The industrial Case Study C was conducted in an internationally operating German special-pur-

pose machine manufacturer (RPro, cf. Table 13 for an overview). During Case Study C, the quality

assessment procedure was applied to a machine for the automated assembly of products used in

automotive engineering (RSec). The machine’s control software is programmed in Siemens TIA

Portal (RPLC). Due to customer requirements, already developed machines, including control soft-

ware, are usually not reusable without changes. The company follows a modular design principle

to stay globally competitive and achieve a high degree of reuse. Accordingly, software develop-

ment is divided into creating reusable, project-independent and project-specific software parts.

Partially Case Study C has been published in [Fis⁺21a].

Information on Procedure Step 1 with Case Study C

In Step 1, two expert interviews were conducted with a software developer responsible for stand-

ardized, project-independent software parts and a manager familiar with the machines. During the

interviews, the software developer briefly introduced the considered machine-type, applied reuse

strategies and rough pain points. Further, he provided details of the machine controlled by the

software project chosen for the quality assessment.

The selected machine automatically assembles two parts of a product, including several prepara-

tion and post-processing steps. The machine is divided into mechanical modules that provide func-

tions regarding the workpiece processing or the workpiece flow. First, a robot loads the machine

with raw parts. These parts are assembled on a turning table with several adjacent stations that

perform different assembly processing steps. After each step, the turning table rotates to move the

parts one station further. Consequently, it requires close coordination with the adjacent stations.

In the end, the robot places the parts on pallets for further transport.

The company shared material on the operating concept of the machine, its mechanical layout

plan, details on the individual mechanical modules and the performed processing steps to ease

114 7. Qualitative Evaluation

familiarization with the targeted system. Additionally, general training materials for the PLC pro-

gramming in the company were received. This includes, among others, information on the soft-

ware modules’ structure and functionality distribution, their organization into folders and their

intended interfaces. Moreover, several boundary conditions were identified during the inter-

views. For example, time constraints apply as all stations must have completed their sub-process

before the turning table rotates by one station to transport the parts. This requires close coordina-

tion between the stations and, furthermore, part tracking is essential.

The company’s software development workflow is divided into two departments (cf. Figure 26).

The standardization department develops customer- and project-independent templates, including

reusable library modules, and defines programming guidelines. The template project defines the

overall software architecture. At the start of a new development project, a project-specific template

is created, in which all required modules are contained in the correct number. On this basis, appli-

cation developers implement the process logic and interfaces between the modules. [Fis⁺21a]

Figure 26: Development workflow of Case Study C, divided into module and application development,

using BPMN (adapted and extended from [Fis⁺21a]).

A set of general PLC programming guidelines introduces aspects such as standardly imple-

mented operation modes and basic programming concepts to be adhered to and provides hints

regarding software quality assurance. Platform-specific programming guidelines targeting the de-

velopment environment Siemens TIA portal contain additional information. For example, conven-

tions for comments and variable names, used programming languages, details on library modules,

structuring the POUs inside a PLC project into folders, memory allocation and local error-handling

strategies. The PLC programs are mainly implemented in LD, with S7 Graph being used for pro-

cesses and SCL for system functionalities like communication or utility functions.

s
o

ft
w

a
re

 d
e
v
e

lo
p

m
e
n

t

m
o
d

u
le

 d
e
v
e
lo

p
m

e
n
t

a
p

p
lic

a
ti
o
n

 d
e
v
e
lo

p
m

e
n
t

Preparing of

software

template

Hardware list

& Functional

description Template /

module

database

Briefing/

Instructions

Template version

Programming

guidelines

Acceptance

Test

Identifying modules

with potential for

reuse

Final version

Adaptation of

process

sequences

Coordination

of processes

Configuring

component

interfaces

Adaptation

project-specific adaptation of the template

Reusable

modules

Legend

sequence flow

message/data flow

association

start event:

receipt of a message

document (generated

or used in a task)

data repository

new customer project

task

7. Qualitative Evaluation 115

Overall, the control software has a hardware-oriented, modular structure, e.g., a robot or a turning

table are controlled by a software module each. The software modules are designed function-ori-

ented and consist of several POUs, which implement specific functionalities [Fis⁺21b]. To achieve

a high degree of modularity, the design specifies only a few to no calls between the software

modules (RDD). Instead, data exchange between modules is foreseen indirectly via global DBs.

UDTs are used to standardize the exchanged information. Extra-functional aspects like communi-

cation to the HMI, error handling and safety are standardized in project-independent library POUs.

During the two interviews and email exchanges, the software developer mentioned challenges

and known pain points in the workflow (RPP). The project-specific template is provided to the

application developers, who adapt it to the required, usually unique, machine functionality. Due

to time pressure and customer requirements, violations of the programming guidelines, the in-

tended project structure and the functionality distribution are introduced. Consequently, reusing

new modules in a different context becomes very costly. However, this contradicts the company’s

plans to increase reuse steadily and, thus, decrease development time by standardizing parts from

commissioned projects. During the second interview, this pain point was refined. The reuse of

software modules is prevented by many dependencies on POUs of other modules, which contradict

the intended, standardized interfaces. Consequently, the derived analysis goal is to examine the

software development of the modular, template-based control software during project-specific

adaptions to assess the template’s suitability for the integration of reusable modules (RGoal). Ac-

cordingly, changes made to the template during the development are analyzed, focusing on de-

pendencies between the template, library modules and project-specific POUs.

In a short discussion after the first interview, the criteria for selecting the first project to be ana-

lyzed were jointly defined: the software developer must be familiar with the PLC project, it needs

to contain application-specific adaptations, which are not implemented in an ideal way, and it

should be (close to) finished to ensure all project-specific adaptations had been made and the over-

all structure and design decisions in the project are comprehensible. The software developer se-

lected the final version of a recently finished project. During the project-specific software devel-

opment, many challenges had to be resolved, which are estimated as representative by the devel-

oper and lead to many dependencies violating the company’s programming standard.

Information on Procedure Step 2 with Case Study C

As intended by the assessment procedure, the initial analysis first targets understanding the overall

software structure and principle design decisions with the support of the software developer and

provided material. According to the software developer, most changes and difficulties in the pro-

ject-specific adaptations occur in the modules and their dependencies. Therefore, it was planned

116 7. Qualitative Evaluation

to focus on how modules are integrated into and adapted within the template. When analyzing the

first project, several meetings and emails were scheduled and exchanged with the software devel-

oper to clarify questions arising during the analysis iteratively. This led to a refinement of the

analysis goal: to assess the template’s suitability, understanding the dependencies between mod-

ules is targeted, whereby data exchange within the modules was not considered important. More

precisely, it was decided to examine if dependencies are implemented as intended or contradictory

to the design principle. To assess the refined analysis goal, the software developer recommended

focusing on the turning table due to its central character and high dependencies on the adjacent

stations. Further, the coupling of the robot to the turning table was highlighted since it requires a

relatively complex sequence, which is known to be challenging.

Following the set analysis goal, the quality assessment was planned at two different points of

the development workflow (RWork). The first analysis is conducted after the software develop-

ment to understand the software structure and assess the template’s modularity and the application-

specific parts, including their conformance to the programming guidelines, focusing on depend-

encies. The second part of the analysis targets the changes performed during the application-spe-

cific development process, which requires comparing different project versions. The aim is to

identify if and when violations of programming guidelines are implemented.

During Step 2, mainly manual static code analysis was performed since, apart from a prototype in

its early stages, there was no analysis tool available when the analysis was conducted. However,

the folder structure in the TIA Portal project explorer, an in-program tool that lists the call hierar-

chy and the cross-reference data were used to obtain information on the software architecture.

Corresponding with the analysis checklist (cf. Table 8, p. 65), the manual analysis is performed

from coarse- to fine-grained aspects. Initially, the folders in the PLC project explorer and the POUs

organized within these are analyzed to understand the overall structure, i.e., the division of the

project into modules consisting of POUs (cf. Aspects 1 and 5). During this step, the naming con-

ventions of the folders and software elements (e.g., POUs, DBs) are used to link the considered

modules to the respective hardware and, thus, comprehend their functionality. Next, the call graph

was analyzed with an in-program tool in the TIA Portal (cf. Aspect 2). Finally, the organization of

module data was analyzed, targeting the structuring of the information, POUs exchanging data

and identification of data exchange patterns across different modules (cf. Aspects 3 and 8). Con-

cerning the refined analysis goal, the implementation of central functional processes was analyzed

in detail. Furthermore, standardized POUs implementing central generic functionalities, namely

selection of operation mode and error handling, were examined to understand the dependencies

between the application-independent and the project-specific software parts (cf. Aspects 6, 7 and

9). An overview of the analyzed aspects and targeted findings is contained in Table 17.

7. Qualitative Evaluation 117

Table 17: Overview of targeted aspects during the first project analysis in Case Study C.

Focus Aspects and followed procedure Targeted findings

Overall

structure

Aspects 1, 2, 3, 5 and 8

Contained elements (modules, POUs)

Organization of elements in folders

Call graph

Indirect data exchange

Structural patterns

Functionality distribution (incl. link to hardware)

Modules (and POUs) intended for a planned reuse

Direct dependencies between elements via calls

Linking functionalities/elements to hierarchy levels

Organization of module data

Accesses to information (linking elements with data)

Central module

(high amount of

dependencies)

Detailed implementation analysis

(central module)

1) Understanding implemented production

process

2) Identification of code parts linked to

other modules (e.g., variables in interlock-

ing conditions)

3) Analysis of according data flow and in-

volved modules, POUs and DBs

Modules and POUs with dependencies to central

module (incl. hierarchy levels and functionality)

Concerned module interfaces (any standardization,

recurring patterns in modules with similar function-

ality)

Amount and type of exchanged data

Intention behind data exchange; reason for depend-

ency

Extra-functional

task

error-handling

Aspects 6, 7 and 9
1) Directory for error data in a module
2) Tracing of signal chain
3) Reaction of a module to errors (internally

and externally)

Internal identification and reaction to an error (inter-

locking, halt of operation sequence, change of oper-

ation mode)

Communication of module error to superordinate

levels (any hierarchical patterns)

Error propagation to other modules (uniform inter-

face)

Separation of (extra-)functional parts; separation of

application-(in)dependent parts

In summary, two main aims were targeted in the analysis in Step 2. Firstly, understanding the

project's general structure and functionality distribution, including the link to controlled automa-

tion hardware. For this purpose, the mechanical layout plan and programming guidelines were

used. Secondly, analyzing module interfaces, including dependencies of central modules and be-

tween extra-functional, generic software implementation parts with project-specific modules. The

support of the software developer was essential for the module selection and comprehensibility.

The results from the initial analysis were visualized and documented mainly manually (RDoc).

Regarding the overall software structure, the integration of modules into the template project and

design decisions targeting extra-functional aspects such as error handling, sketches were used to

illustrate the functionality distribution across different hierarchy levels and the identified depend-

encies (cf. Figure 27). Moreover, the dependencies between different modules were documented

in various tables, including classifications of the dependencies. Additionally, manual sketches of

the data flow between selected modules were created.

118 7. Qualitative Evaluation

zone

functions

facility

module

basic module

application

module

specific

hardware

component

functions

zone error

handling

selection of

operation mode

Legend:

Module

n-1
...

zone

status

Module

n

Module

n+1

generic

software part

memory area

indirect data

exchange

(global variables)

direct data

exchange

(call)

generic POUs (fault detection)

Figure 27: Module integration into the template project in the style of [Vog⁺15a], adopted from [Hub20].

Finally, a summary of the insights from Step 2 regarding the general software architecture and

the targeted analysis goal was created. As depicted in Figure 27, the software is divided into three

hierarchy levels. The facility and the basic module level contain standardized, project-independent

POUs for extra-functional tasks and hardware control. On the facility module level, the zone co-

ordinates the project-specific, hardware-oriented modules located on the application module level.

Data exchange, including coordination between physically neighboring modules, is mainly imple-

mented indirectly via global variables, which is described in the programming guidelines.

Since the software developer highlighted module interfaces as critical and error-prone, these were

analyzed in detail. The intended interfaces and dependencies were documented, including the se-

mantics behind each dependence. Three basic types of indirect data exchange were identified,

which are utilized for different tasks, e.g., information exchange for process coordination or work-

piece data transfer. Details are described in [Fis⁺21a]. During the clarification of questions with

the software developer, several weaknesses, e.g., dead code and violations of programming guide-

lines, were identified, including data exchange between modules implemented in POUs, which are

not foreseen to realize dependencies to other modules.

Information on Procedure Step 3 with Case Study C

Four prior versions of the commissioned project analyzed in Step 2 were selected for examina-

tion in Step 3 to identify changes during the project-specific adaptations to the template and ana-

lyze their impact on modularity and reusability. Starting with the customer- and order-specific

template project, software versions at intervals of one month were received. Thus, it was decided

to analyze the changes performed continuously from the template to the commissioned version of

the project. Moreover, a second, well-implemented project of a comparable machine and, thus,

with a similar structure, following the same development process, was selected to compare the

implementation of module interfaces in both projects.

7. Qualitative Evaluation 119

In correspondence with the set analysis goal and the insights gained in the previous two procedure

steps, selected aspects were analyzed in Step 3 to assess the reusability of the template. As de-

fined with the software developer in Step 2, the analysis focused on the central modules and their

dependencies on other modules since these are the main adaptations required to the template. More

precisely, the five versions of project 1 were analyzed manually to identify software changes con-

cerning interfaces of the central module that may lead to difficulties and impede reuse in the long

term. Thereby, it was documented in which version violations to the template or the programming

guidelines were introduced, including consequences for further project development. The interface

analysis was also conducted for the second project, focusing on a similar central module. Moreo-

ver, interfaces targeting the workpiece data transfer were analyzed. The comparison of project

versions was conducted as depicted in Figure 28.

Comparison of project-specific template

and final version of project 1 (P1)

Comparison of central module (P1) with a

comparable central module in project 2

Analysis of coarse-granular changes in the

directory structure (P1)

Analysis of fine-granular changes of the

central module s interfaces (P1)

c
o

m
p

a
ri

s
o

n
 o

f
s
u
c
c
e
s
s
iv

e

v
e
rs

io
n
s
 o

f
P

1
 o

n
 t

w
o

 l
e

v
e

ls

Aim:

overview of the extent of performed changes

Aim:

assess suitability of the overall template structure

Aim: identify which changes were made regarding

which functionality, e.g., interlocking, fault handling

Aim: confirm findings from analyzing P1;

identify similar, reused structures and differences

in project-specific adaptations of project 2

Figure 28: Comparison of project versions in Case Study C, focusing on interface changes.

The overall aim of the comparisons was to identify reasons for unusual and significant changes

over different versions. The identified changes were classified as intended or as violations of pro-

gramming guidelines. More precisely, it was analyzed to what extent intended interface structures

in the template are used and adapted and, further, if violations are dependent on each other, e.g.,

if one violation results in additional ones throughout the development process. Company-tailored

software metrics were developed to enable a quantitative analysis of the module interfaces (cf.

[Fis⁺21a] for details). During the comparison of the project versions, a significant challenge was

identifying the reason for a change, which required manual interpretation and support by the soft-

ware developer (RRat). Especially when comparing the final versions of projects 1 and 2, it was

challenging to distinguish between the reasons for deviations in the implementations of similar

functionalities. These did not always result from violations of the programming guidelines but

were also caused by different programming styles or hardware variations.

120 7. Qualitative Evaluation

For documentation of the analysis results, mainly tables were used to track the changes made

between the project versions (RDoc). Similar to the excerpt in Table 18, these included the seman-

tical reason for the dependency (interface task), the dependency type, its change history and if the

change was intended, meaning compliant with the programming guidelines and principles. Addi-

tionally, the version in which it occurred was documented for each interface change. For a quan-

titative assessment of the implemented interfaces, interface metric tables from [Fis⁺21a] were used,

which support the identification of disadvantageous module interfaces.

Table 18: Excerpt of the findings from the manual analysis concerning implemented interface tasks with

their dependency types and unplanned changes in Case Study C.

Interface task
Dependency Type

Change

history

Unintended

change
Type 1 Type 2 Type 3

Coordination of the zone x A

Error propagation to a higher level x A

Transfer of workpiece data x x x B x

Coordination between central

modules in the workpiece flow
x x x B x

Movement release coordination x x C

Use of function in an external module x x C x

Legend: Type 1: read access; Type 2: write access; Type 3: copy operation; A: prepared interface structures are used;

B: prepared interface structures from template are not used or changed; C: new interface structures are implemented.

Furthermore, insights gained about the order of the project-specific adaptations were documented

in a textual form, supported with screenshots of code excerpts. Overall, the structure in the tem-

plate and the final version are similar; project-specific adaptions are mainly realized by modifying

or adding code in the project-specific modules. In contrast, the implementation of standardized

POUs, e.g., for error handling or hardware control, is rarely changed. The required degree of cus-

tomization of project-specific POUs varies significantly. The version analysis reveals that diffi-

culties in the project-specific adaptation of the control software lead to unplanned changes that

impair reusability. Prepared interface structures are often changed or not used at all, which leads

to the implementation of new interfaces affecting the reusability of the corresponding modules (cf.

Table 18, interface tasks with change history “B” and “C”). However, the template offered suffi-

cient adaption possibilities in most cases, and many issues could have been avoided.

Comparing the two central modules in projects 1 and 2 revealed significant differences in their

interfaces. While the module interfaces in project 1 show various types of violations leading to

critical, disadvantageous interfaces, the central module in project 2 shows no significant issues

7. Qualitative Evaluation 121

(cf. [Fis⁺21a] for details). However, interfaces between project-specific modules and the standard-

ized software parts in the template are implemented identically. Overall, this result matches the

experience-based assessment of the industrial experts.

Information on Procedure Step 4 with Case Study C

In the quality assessment, deliberate design decisions in Case Study C are taken into account,

e.g., the intended communication between project-specific modules via dedicated POUs and

global variables instead of calls (cf. RDD). Hence, indirect data exchange is only rated as disadvan-

tageous if it is implemented contradictory to the programming guidelines or if foreseen interfaces

are not used, but new ones are implemented instead.

Overall, the assessment of the two final project analysis results confirms that the template enables

the reuse of standardized functionalities, e.g., extra-functional tasks or hardware control, on two

hierarchy levels with minimal or no modifications required. Moreover, standardized interfaces

between these reusable software parts and the hardware-oriented, project-specific modules enable

the integration of modules into new projects with little effort. The high modularity of the software

design supports testing, adapting and reusing project-specific modules individually. However,

dead code, violations of naming conventions and lacking documentation of changes indicate high

time pressure during the project-specific adaptations. Furthermore, several weaknesses regarding

the dependencies between project-specific modules were identified. The four main weaknesses are

listed in the following and summarized in Table 19.

Generally, the prepared interface structures within the project-specific template support the imple-

mentation of interfaces between project-specific modules, as identified by analyzing project 2.

However, in some cases, they are modified or not used at all (project 1), which reduces the com-

prehensibility and reusability of respective modules. The analysis findings suggest that this weak-

ness is caused by insufficient knowledge of application developers about the template’s customi-

zation options (WC-1), which the module software developer confirmed. Additionally, module

pairs with several interfaces between each other, sometimes even several accesses from one mod-

ule to the same variable of the other module, were identified. According to the software developer,

these modules are unsuitable for planned reuse without changes since the high amount of depend-

encies increases the adaptation effort (WC-2). The assessment of the project-specific development

process illustrates that module interfaces violating the encapsulation principle are introduced un-

der time pressure, which hampers the module’s understandability and reusability (WC-3). Finally,

additional interfaces are caused since the software modules follow the modularization strategy

applied by the mechanics’ department, which does not always correspond with the functional view

from a software development perspective (WC-4).

122 7. Qualitative Evaluation

Table 19: Summary of identified weaknesses, derived recommendations for action and the estimated

change effort in Case Study C.

Identified weakness
Recommendation

for action
Estimated change effort

WC-1 Application software developers are

unfamiliar with template’s customization

options (no use of prepared interfaces)

Enhance documentation;

additional training

Low (challenges documented in de-

tail, including code examples)

WC-2 Multiple interfaces between two

modules, some accessing the same variable

Reduce interfaces between

modules

Low

(detailed documentation available)

WC-3 Violations of the encapsulation prin-

ciple during the development

Continuous quality control

of interfaces

Medium (version management

available; metrics are known, but no

automated means available)

WC-4 Suboptimal allocation of hardware

components to modules

Function-oriented design

principle in all disciplines

High (requires coordination with

other disciplines, e.g., mechanics)

From these weaknesses and the insights gained during the static analysis, recommendations for

action are derived, including an effort estimation. An enhancement of the template documenta-

tion and additional training for the application developers is suggested to address WC-1. Since

detailed positive and negative examples are documented from the static analysis, the effort is es-

timated as low. Regarding the number of module interfaces (WC-2), the identified issues should

be revised to implement leaner interfaces and increase reusability. Like WC-1, the effort is esti-

mated as low due to the available, detailed documentation. To identify violations of the encapsu-

lation principle early (WC-3), a continuous quality control regarding interfaces during the devel-

opment is recommended. From the analysis, the critical interfaces are known and metrics have

been defined to quantify the violations (cf. [Fis⁺21a] for details). The development workflow al-

ready includes version management. Nevertheless, the effort is estimated as medium since no au-

tomated means for metric calculations are available yet, which requires the company to implement

it themselves. However, recent approaches such as [VNF22] and [Neu⁺20b], which automatically

rate the maturity of library modules by tracking and quantifying the changes between different

versions, show the feasibility of this recommendation. Finally, to reduce additional dependencies

caused by the mechanical modularization (WC-4), it is suggested to apply a function-oriented de-

sign principle in all disciplines, which requires high effort as it involves other departments.

Overall, the expected benefits correspond to the estimated effort. Even though continuous quality

control requires minimal adaptations to the development workflow, the software developer con-

firmed its usefulness as it would provide quick feedback by indicating critical interfaces at an early

stage. The gained and documented knowledge about typical interface violations was rated benefi-

cial, as it supports their recognition. The software developer and the manager confirmed two ap-

plication scenarios of the conducted quality assessment: a continuous interface analysis during the

7. Qualitative Evaluation 123

project-specific development process to identify violations at an early stage and post-processing

of finished projects for standardizing project-specific modules (cf. [Fis⁺21a]).

Lessons learned from Case Study C

The quality assessment procedure application in Case Study C confirmed the results from Case

Study B. Moreover, additional insights were gained, which are summarized in Table 20.

Table 20: Summary lessons learned from procedure application in Case Study C.

Procedure step

and activity
Challenges Required input

Lessons learned about the proposed

quality assessment procedure

Step 1)

Interview with

experts

One initial expert interview

was not sufficient

After joint identification of chal-

lenges and pain points, a suitable

machine example was required.

Interview was split into two parts

to enable software developers the

selection of a suitable application

example in an internal discussion.

Step 2)

Static analysis

of first project

Refinement of initially se-

lected analysis goal

Indication of challenging software

parts known to the software devel-

oper from his experience.

High relevance of continuous

feedback from software develop-

ers during the analysis to refine

the chosen analysis goal.

Step 2)

Choice of

first software

project

Conducting the analysis ef-

ficiently with a focus on

software parts most rele-

vant for the defined analy-

sis goal

The software developer pointed out

software parts where most viola-

tions were expected for a detailed

implementation analysis.

Confirmed the need and benefits

of choosing a project containing

known difficulties and examples

of gathered pain points for an ef-

ficient first analysis (requires

software developer’s input).

Step 2)

Understanding

software

architecture

High amount of interfaces

in the PLC project compli-

cated the general under-

standing of software archi-

tecture

Detailed, manual analysis for com-

prehending different types of de-

pendencies and their intentions was

required

Spending too much time on de-

tails unrelated to the defined anal-

ysis goal should be avoided to

make the quality assessment as

efficient as possible.

Step 2)

Manual and

tool-based

code analysis

Formalizing company-spe-

cific guidelines for auto-

matic conformance check-

ing is not trivial, but tool-

based identification of gen-

eral dependencies was not

sufficient

Manual effort and feedback from

software developers required to

comprehend the intention behind

module dependencies, including

underlying functionality and se-

mantics of exchanged data

Manual interpretation is essential

to understand the rationale behind

dependencies in control software

and to identify violations against

programming guidelines (cf.

RDD).

Step 3)

Documenta-

tion of

rationale

Reason for changes be-

tween versions of the ana-

lyzed project could not be

derived automatically

Manual interpretation of changes in

version history, e.g., spelling mis-

takes in added code and comments,

indicated time pressure as a reason

for violations in changed parts.

Tool-based, static code analysis is

insufficient to comprehend the ra-

tionale behind software changes.

Step 3)

Knowledge

from other

disciplines

Control software alone is

not enough for understand-

ing underlying intentions

Module definition from mechanics

department was required to under-

stand the intentions behind some

interface changes.

The importance of knowledge

from other disciplines to assess

aPS control software was con-

firmed.

Step 3)

Selection of

additional

projects

Selecting a suitable time

interval for versions to be

manually analyzed required

a compromise

Versions selected at time intervals

that enable identification of change

sequence and causal relations be-

tween introduced violations while

To analyze changes in the version

history of a project, a time inter-

val has to be selected, enabling an

124 7. Qualitative Evaluation

Procedure step

and activity
Challenges Required input

Lessons learned about the proposed

quality assessment procedure

avoiding laborious manual work

(caused by too short time intervals)

efficient but still detailed compar-

ison (choice depends on com-

pany’s development workflow).

All Steps Background of the in-

volved software developer

is highly relevant for an ef-

ficient, goal-oriented anal-

ysis

Input on software’s overall design

strategy and recurring difficulties

required and provided by module

developer from standardization de-

partment.

Application software developers

might not have sufficient

knowledge about the template’s

scope.

For successful application of the

assessment procedure, it is crucial

to include different stakeholders,

if arising questions cannot be an-

swered by the initially involved

software developer.

In summary, Case Study C confirmed that iterative discussions with the software developer

throughout all steps are essential for the procedure’s successful application, including refining the

defined analysis goal. Furthermore, Case Study C demonstrated that the proposed procedure ena-

bles the integration of the software quality assessment continuously during development or once

at specific development steps (RWork, cf. [Fis⁺21a] for details). Albeit barely any means for an

automatic static code analysis were available during the time Case Study C was conducted, the

procedure supported the control software assessment. It could identify approaches for partially

automating the performed analysis in the future. Overall, the application of the quality assessment

procedure enabled a goal-oriented, systematic analysis, including the derivation of recommenda-

tions for action, which were estimated as helpful by the software developer and the involved man-

ager. Furthermore, it showed that the procedure is successfully applicable to mature software al-

ready implementing means for planned reuse.

7.1.3. Additional Insights from Industrial Case Study D

For confidentiality reasons, no details about Case Study D are described. Moreover, the insights

gained about the proposed procedure are very similar to the previous Case Studies B and C. In-

dustrial Case Study D was conducted in a company within the automotive sector (mounting and

testing of components) for a maturity assessment of the company’s programming guidelines and

template project (cf. overview in Table 13). The control software parts are created by several soft-

ware developers and merged within one project at the end. During the application of the quality

assessment procedure, the involved group manager highlighted the benefits of utilizing (annotated)

call graphs to visualize dependencies and functionality distribution within the project. More pre-

cisely, he stated that the documentation enabled him to understand the applied software architec-

ture entirely. Further, it supports the identification of crucial, central POUs, which need to be

7. Qualitative Evaluation 125

checked in detail regarding their quality. Moreover, the visualization also enables the identifica-

tion of POUs that play a central role in integrating the different software parts created by different

developers into one project, which is essential for the company due to the distributed software

development approach. In summary, software developers for standardized and application-specific

parts and the group manager confirmed the suitability of the annotated call graphs to understand

the software architecture and identify critical dependencies.

7.1.4. Insights from Case Study E with a Lab-sized Demonstrator

Case Study E targets the similarity estimation of POUs inside PLC software variants of a lab-sized,

factory automation demonstrator called extended Pick and Place Unit (xPPU) [Vog⁺14]. The case

study aimed to identify copied code parts as a pre-requisite for their planned reuse after refactoring.

It was developed in the scope of the DFG-funded project RED SPLAT [GEP22a] with TU Braun-

schweig (TUB) and includes results from Alexander Schlie [Sch⁺19] and Kamil Rosiak [Ros⁺21a].

The concept for defining similarity metrics for control software and their subsequent calculation

has been developed by TUB [Sch⁺19]. TUB’s Variability Analysis Toolkit (VAT) [Ros21b] was

used to automatically perform the similarity estimation within Case Study E. VAT supports iden-

tifying similar software parts with software metrics tailored to the respective programming style.

The activities performed in Case Study E are linked to the four procedure steps in Figure 29. The

defined analysis goal is the identification of code duplicates and variants to derive library POUs

for planned reuse. The xPPU project variants are programmed in Beckhoff TwinCAT 3 and struc-

tured according to the ISA 88 hierarchy levels. In Step 2, static code analysis is performed to

comprehend the software structure and programming style. Based on the insights, similarity met-

rics tailored to the identified programming style are defined in VAT by selecting attributes, their

weights and thresholds. In Step 3, four xPPU project variants are compared in VAT. The results

are stored in a family model, which classifies mandatory, alternative and optional code parts (cf.

[Ros⁺21a] for details). Additional visualizations tailored to the needs of different PLC software

stakeholders have been implemented and evaluated, such as a chord diagram (cf. [Fis⁺20a] for

details, RDoc). The results of the tool-based similarity estimation are reviewed manually and, if

needed, the similarity metrics are refined. Finally, a manual interpretation of the results in Step 4

leads to deriving recommendations for action, e.g., merging mandatory or alternative POUs into

parameterizable library modules. The refactoring workflow proposed in [Fis⁺20b] can be applied

for performing the library module definition.

126 7. Qualitative Evaluation

Familiarization with xPPU

software and its boundary

conditions

Static code analysis and

metric definition

(manual)

Comparison and

similarity estimation

(automatic)

Manual interpretation of

results and derivation of

recommendations

m
e

tr
ic

s
 d

e
fi
n

it
io

n
 i
n

 V
A

T

Analysis goal:

Identification of code duplicates

and variant management

• Static code analysis with

programming guidelines

• Similarity metrics definition

(choice of attributes and

weights)

• Tool-supported identification

of similar software parts

• Visualization and

documentationIt
e
ra

ti
v
e

 r
e

fi
n

e
m

e
n
t
o

f

s
im

ila
ri

ty
 m

e
tr

ic
s

Merging mandatory software

parts into library modules

xPPU

Documen-

tation

Library POUs

Figure 29: Procedure steps for defining customized similarity metrics and the subsequent semi-automatic

identification of reusable software parts; details published in [Fis⁺20a; Fis⁺20b; Ros⁺21a].

The similarity analysis procedure presented in Case Study E was evaluated by ten industrial ex-

perts in an interactive, three-hour online workshop conducted during the Automation Software

Engineering Congress 2020. The 18 workshop participants were industrial experts from different

domains, including machine and plant manufacturers and PLC developers. The xPPU served as a

simple example so that the experts could understand the procedure in the short time of the work-

shop. Since the control software is programmed according to industry standards (ISA 88 and

OMAC state machines), the results are expected to be transferable to industrial-sized systems.

In the beginning, a presentation with theoretical background regarding static code analysis, soft-

ware metrics and planned reuse of control software modules was given by the author. Subse-

quently, divided into three groups, the participants applied manual code analysis to identify vari-

ants in legacy control software and estimate their similarities. For this task, software variants of

the xPPU’s conveyor belts were provided. After discussing the experiences and challenges during

the manual static code analysis for similarity estimation, a live demo of the semi-automatic simi-

larity assessment workflow in Case Study E (cf. Figure 29) was given: the definition of similarity

metrics and their calculation to derive a family model in VAT [Sch⁺19], exploration of the derived

family model with visualizations tailored to the needs of different stakeholders [Fis⁺20a] (RDoc)

and subsequent refactoring of a selected, mandatory POU and its identified variants [Fis⁺20b].

Subsequently, ten participants voluntarily filled out a questionnaire consisting of ten questions.

7. Qualitative Evaluation 127

In the questionnaire, 80% of the participants confirmed that variant management and planned reuse

are (very) significant challenges they face in their companies, representing a pain point (cf. RPP).

Furthermore, 80% indicated that the semi-automatic workflow could be entirely or partially inte-

grated into their development workflow, confirming RWork. As the main challenges for applying

the presented workflow in an industrial context, the participants indicated in a free-text question

the time to familiarize themselves with the tool (VAT), the acceptance of the software developers

and the use across different PLC platforms. Moreover, 40% of the participants rated the workflow

as helpful and 50% as partially helpful to support the planned reuse of variant-rich software and,

thus, address their challenges. All participants agreed that the semi-automatic workflow has ben-

efits compared to a purely manual analysis because it is faster, easier to perform and the metrics

ensure a consistent similarity assessment.

In Case Study E, manual static code analysis was required in Step 2 to customize the VAT similarity

metrics to the programming guidelines and practices applied in the targeted control software since

no universal metric applicable to all programming styles can be defined. Instead, the design deci-

sions of the software developer need to be taken into account (cf. RDD). Once the similarity metrics

have been defined, an automated comparison and similarity estimation of software variants can be

performed. This shows that the presented quality assessment procedure can be flexibly extended

with semi-automatic methods as required, i.e., manual static code analysis means should be com-

bined with automatable, tool-supported means such as VAT wherever possible. Despite the high

potential of automatically deriving variation points in control software, the similarity metrics do

not replace manual, human interpretation of the gained results. For example, expert knowledge is

required to distinguish recurring variants that should be merged into a reusable library module

from highly customized solutions (cf. RRat).

7.1.5. Summary of Insights Gained Through Case Studies

This Section links the insights gained from the five conducted case studies (industrial Case Studies

A to D, lab-sized Case Study E) to the related requirements as a basis for the concept assessment

in Chapter 8. Overall, control software of different maturity was analyzed during the case study

evaluations. More precisely, the quality assessment procedure was successfully applied to histor-

ically grown control software, which was developed using copy, paste and modify and with a high

amount of indirect data exchange (Case Study B). The procedure was also successfully applied to

highly mature control software following a function-oriented modularization principle and reuse

strategies such as library modules and templates (Case Studies C and D).

The five successful procedure applications showed that the proposed analysis steps are not always

precisely separable from each other. Instead, in some cases, it was required and possible to perform

128 7. Qualitative Evaluation

a mixture of the procedure steps, e.g., analysis in Steps 2 and 3, or perform iterations concerning

sub-aspects. This finding aligns with the proposed analysis concept: for a successful quality as-

sessment, the procedure needs not to be strictly followed. Instead, it shall provide a framework to

assist software developers in conducting the analysis in a systematic, goal-oriented manner.

The comparison of the case studies confirms that the developed quality assessment procedure is

not limited to specific standards. Instead, it allows the integration of application sector- or com-

pany-specific guidelines. Moreover, the procedure provides a structure to gather relevant infor-

mation and perform a manual software analysis with the option of incorporating available methods

and tools for automatic code analysis. Thus, the analysis methods are flexibly selectable and the

assessment procedure is adaptable to the situation. Different pain points, analysis goals, and design

decisions have been targeted in the case studies. The proposed procedure provides a framework

for the analysis that does not require or prohibit any process or application sector properties. How-

ever, it has not been evaluated with continuous processes in the process engineering sector yet.

From the case studies, two challenges are identified: the provided interview guiding questions and

list of potential analysis goals can support the industrial experts to apply the procedure inde-

pendently (RUse). However, basic background knowledge about control software design and reuse

is required for a successful application. The procedure does not contain automated means to sug-

gest improvements for the analyzed control software. Consequently, to ease applicability, the pro-

cedure should be combined with refactoring guidelines or best practices, which are, however, not

yet available. Second, if the analyzed software is unstructured and monolithic, without comments,

it might not be suitable to be used as a basis for improving individual aspects. Instead, a greenfield

development of the respective software might be better. However, even if software of low maturity

is analyzed, the gained documentation can help avoid repeating the disadvantageous design deci-

sions in the new concept, summarize critical design decisions required due to boundary conditions

or provide an overview of implemented functionalities or interfaces.

A summary of the insights gained from the case studies concerning the derived requirements is

presented in the following Table 21.

T
a

b
le

 2
1

:
S

u
m

m
a

ri
ze

d
 e

xa
m

p
le

s
fr

o
m

 t
h

e
ca

se
 s

tu
d

y
ev

a
lu

a
ti

o
n

s
ta

rg
et

in
g

 d
if

fe
re

n
t

re
q

u
ir

em
en

ts
.

R
eq

u
ir

e
m

e
n

t
E

x
a

m
p

le
s

fr
o

m
 c

o
n

d
u

ct
e
d

 i
n

d
u

st
ri

a
l

a
n

d
 l

a
b

-s
ca

le
 c

a
se

 s
tu

d
ie

s
w

it
h

 r
e
m

a
r
k

s
L

im
it

a
ti

o
n

s

R
P

L
C
 –

P
la

tf
o

rm

In
d

ep
en

d
en

ce


C

a
se

 S
tu

d
ie

s
A

,
B

:
S

ie
m

en
s

S
IM

A
T

IC
 M

an
ag

er
 (

S
T

E
P

 7
)


C

a
se

 S
tu

d
ie

s
C

,
D

:
S

ie
m

en
s

T
IA

 P
o

rt
al


C

a
se

 S
tu

d
y

E
:

B
ec

k
h

o
ff

 T
w

in
C

A
T

 3

C
as

e
S

tu
d
ie

s
li

m
it

ed
 t

o
 t

h
e

fi
el

d
 o

f
fa

ct
o

ry
 a

u
to

m
at

io
n

;

F
o

cu
s

o
n

 c
la

ss
ic

al
 c

o
n

tr
o

l
so

ft
w

ar
e

(O
O

-I
E

C
 n

o
t

ta
r-

g
et

ed
)

R
P

ro
 –

aP
S

 a
s

P
ro

d
u

ct


C

a
se

 S
tu

d
ie

s
A

,
B

,
D

:
P

la
n

t
m

an
u
fa

ct
u

re
rs


C

a
se

 S
tu

d
ie

s
C

:
(s

p
ec

ia
l

p
u

rp
o

se
)

m
ac

h
in

e
m

an
u

fa
ct

u
re

r


C

a
se

 S
tu

d
y

E
:

L
ab

-s
iz

ed
 d

em
o

n
st

ra
to

r

P
ro

ce
d

u
re

 w
as

 n
o

t
ap

p
li

ed
 t

o
 a

 s
er

ia
l

m
ac

h
in

e
m

an
u

-

fa
ct

u
re

r

R
U

se
 –

U
se

r

C
a

se
 S

tu
d

y
B

:
S

o
ft

w
ar

e
d

ev
el

o
p

er
s

ap
p

li
ed

 t
h

e
p

ro
ce

d
u

re
 t

h
em

se
lv

es
 t

o
 a

 d
if

fe
re

n
t

p
la

n
t

p
ar

t
af

te
r

p
ar

ti
ci

p
at

in
g

in
 a

 t
w

o
-p

ar
t

tr
ai

n
in

g
 w

o
rk

sh
o

p
.

T
o

 a
v
o

id
 “

o
p

er
at

io
n

al
 b

li
n
d

n
es

s”
,
a

so
ft

w
ar

e
d

ev
el

-

o
p

er
 s

h
o

u
ld

 n
o

t
as

se
ss

 h
is

 o
w

n
 s

o
ft

w
ar

e.
 B

en
ef

it
s

o
f

an
 u

n
b

ia
se

d
 “

vi
ew

 f
ro

m
 t

h
e

o
u

ts
id

e”
 w

er
e

co
n

fi
rm

ed

b
y
 i

n
d

u
st

ri
al

 e
x
p

er
ts

 f
ro

m
 C

a
se

 S
tu

d
ie

s
A

,
B

 a
n
d

 C
.

R
S
ec

 –

A
p

p
li

ca
ti

o
n

S
ec

to
r


C

a
se

 S
tu

d
y

A
:

W
o
o

d
w

o
rk

in
g


C

a
se

 S
tu

d
y

B
,
E

:
In

tr
al

o
g
is

ti
cs


C

a
se

 S
tu

d
y

C
,

D
:

S
u
p

p
li

er
 i

n
 a

u
to

m
o

ti
v
e

en
g
in

ee
ri

n
g

N
o

 c
o

n
si

d
er

at
io

n
 o

f
ap

p
li

ca
ti

o
n
 s

ec
to

rs
 w

it
h

 s
p

ec
ia

l

le
g
al

 r
eg

u
la

ti
o

n
s,

 e
.g

.,
 f

o
o

d
 a

n
d
 b

ev
er

ag
e,

 o
r

p
h

ar
m

a

an
d

 m
ed

ic
in

e

R
P

P
 –

P
ai

n
 P

o
in

ts


C

a
se

 S
tu

d
y

A
,

B
,

C
 a

n
d

 D
:

C
h

al
le

n
g
es

 i
n

 t
h

e
so

ft
w

ar
e

d
ev

el
o

p
m

en
t

w
er

e
id

en
ti

fi
ed

 i
n

 e
x
p

er
t

in
te

rv
ie

w
s,

w
h

ic
h

 e
n

ab
le

d
 t

h
e

d
ef

in
it

io
n

 o
f

th
e

an
al

y
si

s
g
o

al
.


C

a
se

 S
tu

d
y

E
:

In
d
u

st
ri

al
 e

x
p

er
ts

 c
o

n
fi

rm
ed

 v
ar

ia
n

t
m

an
ag

em
en

t
an

d
 p

la
n

n
ed

 r
eu

se
 a

s
th

ei
r

ch
al

le
n

g
es

.

R
W

o
rk

 –

W
o

rk
fl

o
w

In
te

g
ra

ti
o

n

R
eq

u
ir

ed
 w

o
rk

fl
o

w
 i

n
te

g
ra

ti
o

n
 d

ep
en

d
s

o
n
 t

h
e

d
ef

in
ed

 a
n

al
y
si

s
g
o

al
.


C

a
se

 S
tu

d
y

A
,
B

,
D

:
A

ft
er

 c
o

m
m

is
si

o
n

in
g
 (

“a
s

b
u

il
d

”
af

te
r

d
ev

el
o

p
m

en
t

an
d

 a
ft

er
 s

ta
rt

-u
p

 o
f

aP
S

)


C

a
se

 S
tu

d
y

C
:

C
o

n
ti

n
u

o
u

sl
y
 d

u
ri

n
g
 s

o
ft

w
ar

e
d

ev
el

o
p

m
en

t;
 o

n
e
-t

im
e

an
al

y
si

s
af

te
r

st
ar

t-
u

p


C

a
se

 S
tu

d
y

E
:

In
d

u
st

ri
al

 e
x
p

er
ts

 f
ro

m
 d

if
fe

re
n

t
co

m
p

an
ie

s
co

n
fi

rm
ed

 t
h

at
 i

n
te

g
ra

ti
o

n
 i

n
to

 t
h

ei
r

in
d

u
st

ri
al

w
o

rk
fl

o
w

 w
o

u
ld

 b
e

p
o

ss
ib

le

M
an

u
al

 w
o

rk
lo

ad
 a

s
h
in

d
er

in
g
 f

ac
to

r
fo

r
re

g
u

la
r

ap
p

li
-

ca
ti

o
n

 o
f

q
u

al
it

y
 a

ss
es

sm
en

t
p

ro
ce

d
u

re
;

la
ck

 o
f

to
o

ls

fo
r

co
n

ti
n
u

o
u

s
su

p
p
o

rt

R
D

D
 –

D
es

ig
n

D
ec

is
io

n


C

a
se

 S
tu

d
y

A
:

D
at

a
ex

ch
an

g
e

w
it

h
 W

M
S

,
st

o
ra

g
e

ca
r

co
n

tr
o

l
an

d
 o

th
er

 P
L

C
 m

u
st

 n
o

t
b

e
m

o
d

if
ie

d


C

a
se

 S
tu

d
y

B
:

S
tr

ic
t

ti
m

in
g
 r

eq
u

ir
em

en
ts

 m
u

st
 b

e
k
ep

t
(m

o
d

u
le

 c
o
m

m
u

n
ic

at
io

n
);

 i
n

fo
rm

at
io

n
 e

x
ch

an
g
e

w
it

h

th
e

su
p

er
o

rd
in

at
e

sy
st

em
;
st

an
d

ar
d

iz
ed

 F
C

s
sh

o
u

ld
 n

o
t
b

e
ch

an
g
ed

;
a

co
m

b
in

at
io

n
 o

f
h

ar
d

w
ar

e
-

an
d

 f
u

n
ct

io
n

-

o
ri

en
te

d
 m

o
d

u
la

ri
za

ti
o

n
 i

s
k
ep

t
in

 t
h

e
n

ew
 c

o
n

ce
p

t


C

a
se

 S
tu

d
y

C
:

In
te

n
d

ed
 g

lo
b

al
 d

at
a

ex
ch

an
g
e

b
et

w
ee

n
 m

o
d

u
le

s
(a

cc
o

rd
in

g
 t

o
 s

p
ec

if
ie

d
 r

u
le

s,
 t

o
 e

n
su

re
 t

h
at

m
o

d
u

le
s

ar
e

re
u

sa
b

le
 i

n
 d

if
fe

re
n

t
co

n
te

x
ts

);
 n

o
 d

ir
ec

t
ca

ll
s

b
et

w
ee

n
 m

o
d

u
le

s)


C

a
se

 S
tu

d
y

D
:
H

ie
ra

rc
h

ic
al

 m
o

d
u

la
ri

za
ti

o
n

 w
it

h
 d

ed
ic

at
ed

 F
B

s
fo

r
co

n
tr

o
ll

in
g
 p

la
n

t
p

ar
ts

 a
n
d

 e
x
tr

a
-f

u
n

ct
io

n
al

ta
sk

s;
 D

B
s

as
 i

n
te

rf
ac

es
 w

it
h

in
 P

L
C

 s
o

ft
w

ar
e

p
ro

je
ct

 a
n

d
 t

o
 H

M
I


C

a
se

 S
tu

d
y

E
:

O
M

A
C

 S
ta

te
 m

ac
h

in
e

an
d
 I

S
A

 8
8

 w
er

e
co

n
si

d
er

ed

R
G

o
a
l –

A
n

al
y
si

s
G

o
al



C
o

n
si

d
er

ed
 g

o
al

s
ra

n
g
in

g
 f

ro
m

 v
ar

ia
n

t
m

an
ag

em
en

t
in

cl
u
d

in
g
 i

n
fl

u
en

ce
 f

ro
m

 a
u

to
m

at
io

n
 h

ar
d

w
ar

e
(C

a
se

S
tu

d
ie

s
A

,
B

)
o

v
er

 a
 r

ed
u

ct
io

n
 o

f
co

d
e

d
u
p

li
ca

te
s

(C
a

se
 S

tu
d

y
E

)
u
p

 t
o

 q
u

al
it

y
 a

ss
es

sm
en

t
o

f
p

ro
je

ct
 t

em
p

la
te

(C
a

se
 S

tu
d

y
C

)
an

d
 p

ro
g
ra

m
m

in
g

 g
u

id
el

in
es

 (
C

a
se

 S
tu

d
y

D
);

 (
cf

.
d
et

ai
ls

 i
n

 T
ab

le
 1

3
)


A

n
al

y
si

s
g
o

al
s

d
er

iv
ed

 w
it

h
 i

n
te

rv
ie

w
 g

u
id

in
g
 q

u
es

ti
o

n
s

an
d

 p
ai

n
 p

o
in

ts
 (

al
l

ca
se

 s
tu

d
ie

s)


S

u
cc

es
sf

u
l

re
fi

n
em

en
t

o
f

an
al

y
si

s
g
o

al
 d

u
ri

n
g
 p

ro
ce

d
u

re
 a

p
p

li
ca

ti
o
n

 (
C

a
se

 S
tu

d
y

C
)

C
a

se
 S

tu
d

y
C

:
P

ai
n

 p
o

in
t

w
as

 c
le

ar
 i

n
 f

ir
st

 i
n

te
rv

ie
w

,

b
u

t
se

co
n

d
 i

n
te

rv
ie

w
 a

n
d

 e
m

ai
ls

 w
er

e
re

q
u

ir
ed

 t
o

 d
e-

fi
n

e
th

e
an

al
y
si

s
g
o

al

E
x
p

er
ie

n
ce

:
W

h
en

 r
ev

ie
w

in
g
 t

h
e

fi
rs

t
an

al
y
si

s
re

su
lt

s,

ca
u

se
s

fo
r

su
b

je
ct

iv
e

p
ai

n
 p

o
in

ts
 e

m
er

g
e;

 s
u

b
se

q
u

en
t

re
fi

n
em

en
t

o
f

an
al

y
si

s
g
o

al
 i

s
p

o
ss

ib
le

 a
n

d
 r

ea
so

n
ab

le

7. Qualitative Evaluation 129

R
eq

u
ir

e
m

e
n

t
E

x
a

m
p

le
s

fr
o

m
 c

o
n

d
u

ct
e
d

 i
n

d
u

st
ri

a
l

a
n

d
 l

a
b

-s
ca

le
 c

a
se

 s
tu

d
ie

s
w

it
h

 r
e
m

a
r
k

s
L

im
it

a
ti

o
n

s

R
S
ca

l –

S
ca

la
b

il
it

y

C
a

se
 S

tu
d
ie

s
A

,
B

,
C

 a
n

d
 D

 t
ar

g
et

ed
 i

n
d
u

st
ri

al
-s

iz
ed

 c
o

n
tr

o
l

so
ft

w
ar

e
p

ro
je

ct
s

in
 t

h
e

ra
n

g
e

o
f,

 e
.g

.,
 [

V
o

g
⁺1

7
]

(c
f.

o
v
er

v
ie

w
 i

n
 T

ab
le

 1
3

,
p

.
1

0
0

),
 w

it
h

 P
O

U
s

w
ri

tt
en

 i
n

 S
C

L
 w

it
h

 u
p

 t
o
 1

5
0

0
 S

o
u

rc
e

L
in

es
 o

f
C

o
d

e

R
E

ff
 –

A
p

p
li

ca
ti

o
n

E
ff

o
rt


C

a
se

 S
tu

d
y

B
:

A
ft

er
 p

ro
ce

d
u

re
 a

p
p

li
ca

ti
o
n

,
h

ar
d

w
ar

e
v
ar

ia
n

ts
 a

n
d

 e
x
ch

an
g
ed

 v
ar

ia
b

le
s

ar
e

k
n

o
w

n
 a

n
d

 d
o

cu
-

m
en

te
d

 
 u

p
d

at
in

g
 d

o
cu

m
en

ta
ti

o
n

 w
it

h
 n

ew
 v

ar
ia

n
ts

 i
s

le
ss

 e
ff

o
rt

 t
h

an
 i

n
it

ia
l

an
al

y
si

s


C

a
se

 S
tu

d
y

C
:

A
ft

er
 f

ir
st

 a
p

p
li

ca
ti

o
n

,
te

m
p

la
te

 a
n

d
 s

o
ft

w
ar

e
st

ru
ct

u
re

 a
re

 k
n

o
w

n
 a

n
d

 c
ri

ti
ca

l
p

ar
ts

 a
re

 i
d

en
ti

-

fi
ed

 (
v
io

la
ti

o
n

s
q

u
an

ti
fi

ab
le

 w
it

h
 m

et
ri

cs
);

 s
im

il
ar

 a
n

al
y
si

s
o

f
a

p
ro

je
ct

 f
o

ll
o

w
in

g
 t

h
e

sa
m

e
re

u
se

 s
tr

at
eg

y
 i

s

ex
p

ec
te

d
 t

o
 b

e
le

ss
 e

ff
o

rt
;

co
n

ti
n

u
o

u
s

ap
p
li

ca
ti

o
n

 o
f

an
al

y
si

s
is

 e
x
p

ec
te

d
 l

es
s

ef
fo

rt
 t

h
an

 i
n
it

ia
l

an
al

y
si

s
(c

ri
t-

ic
al

 i
n

te
rf

ac
es

 a
re

 k
n

o
w

n
,

ad
d

it
io

n
al

 o
n

es
 c

an
 b

e
ad

d
ed

)


C

a
se

 S
tu

d
y

D
:

A
ft

er
 p

ro
ce

d
u

re
 a

p
p

li
ca

ti
o
n

,
fu

n
ct

io
n

al
it

y
 d

is
tr

ib
u

ti
o
n

 a
n
d
 i

n
te

rf
ac

es
 b

et
w

ee
n

 l
ib

ra
ry

 m
o

d
u

le
s

an
d

 a
p
p

li
ca

ti
o
n

-s
p

ec
if

ic
 p

ar
ts

 a
re

 d
o

cu
m

en
te

d
,

w
h

ic
h

 r
ed

u
ce

s
ef

fo
rt

 f
o

r
S

te
p

 1
 i

n
 f

u
rt

h
e
r

ap
p
li

ca
ti

o
n

s

E
ff

o
rt

 r
ed

u
ct

io
n

 d
o

es
 n

o
t

ap
p

ly
 t

o
 a

n
 a

n
al

y
si

s
o

f
so

ft
-

w
ar

e
o

f
tw

o
 u

tt
er

ly
 d

if
fe

re
n

t
m

ac
h

in
e

ty
p

es
,

p
o

ss
ib

ly

ev
en

 a
t

d
if

fe
re

n
t

lo
ca

ti
o

n
s

o
f

th
e

co
m

p
an

y
 a

n
d

 w
it

h

o
th

er
 g

u
id

el
in

es

R
R

a
t –

R
at

io
n

al
e


C

a
se

 S
tu

d
ie

s
A

 a
n

d
 B

:
L

in
k
ag

e
b

et
w

ee
n

 h
ar

d
w

ar
e

m
o

d
u

le
s

an
d

 s
o

ft
w

ar
e

re
q

u
ir

ed
 t

o
 d

er
iv

e
th

e
re

as
o

n
 f

o
r

th
e

v
ar

ia
b

il
it

y
 i

n
 t

h
e

co
n

tr
o

l
so

ft
w

ar
e

(n
ee

d
ed

 f
o

r
fu

n
ct

io
n

al
it

y
-o

ri
en

te
d
 m

o
d

u
la

ri
za

ti
o

n
 i

n
 C

a
se

 S
tu

d
y

B
)


C

a
se

 S
tu

d
y

B
:

C
o

m
m

en
ts

,
v
ar

ia
b

le
s

an
d

 P
O

U
s

h
av

e
d

if
fe

re
n

t
sy

m
b

o
li

c
n

a
m

es
 a

cr
o

ss
 p

ro
je

ct
s

(p
ar

ti
al

ly

ca
u

se
d

 b
y
 p

ro
g
ra

m
m

in
g
 s

ty
le

/p
er

so
n

al
 p

re
fe

re
n

ce
s)

 
 r

eq
u

ir
es

 m
an

u
al

 i
n

te
rp

re
ta

ti
o
n

 o
f

th
e

co
m

m
en

ts
 t

o

id
en

ti
fy

 “
fa

ls
e”

 v
ar

ia
ti

o
n

s
an

d
 c

o
rr

es
p

o
n
d

in
g
 p

ar
ts

 i
n

 t
h

e
co

n
tr

o
l

so
ft

w
ar

e


C

a
se

 S
tu

d
y

C
:

R
ea

so
n

 f
o

r
ch

an
g
es

 i
d

en
ti

fi
ed

 i
n

 m
et

ad
at

a
(m

is
si

n
g
 c

o
m

m
en

ts
,

m
is

s-
sp

el
le

d
 w

o
rd

s)
 o

r
b

y

co
n

si
d

er
in

g
 i

n
fo

rm
at

io
n

 f
ro

m
 o

th
er

 d
is

ci
p

li
n

es
 (

m
o

d
u

la
ri

za
ti

o
n

 s
tr

at
eg

y
 f

ro
m

 m
ec

h
an

ic
s

d
ep

ar
tm

en
t

ca
u

si
n

g

ch
al

le
n

g
es

 i
n

 c
o

n
tr

o
l

so
ft

w
ar

e
m

o
d

u
la

ri
za

ti
o
n

)


C

a
se

 S
tu

d
y

C
:

In
te

rp
re

ta
ti

o
n

 o
f

d
if

fe
re

n
ce

s
b

et
w

ee
n

 P
O

U
 i
n

te
rf

ac
es

 i
n

 t
w

o
 i
n
d

ep
en

d
en

t
p

ro
je

ct
s

(c
o

n
si

d
er

in
g

m
o

d
u

le
s

im
p

le
m

en
ti

n
g
 s

im
il

ar
 f

u
n

ct
io

n
al

it
ie

s)
 r

eq
u
ir

es
 t

h
e

su
p

p
o

rt
 o

f
an

 i
n
d

u
st

ri
al

 e
x
p

er
t


C

a
se

 S
tu

d
y

C
:

S
el

ec
ti

o
n

 o
f

ce
n

tr
al

 m
o

d
u

le
s

fo
r

a
d

et
ai

le
d

 a
n

al
y
si

s
sa

v
ed

 l
ab

o
ri

o
u

s
m

an
u

al
 w

o
rk

 a
n

d
 w

as

re
q

u
ir

ed
 t

o
 g

ai
n

 i
n

si
g
h

ts
 e

ff
ic

ie
n

tl
y
 (

n
o

t
p

o
ss

ib
le

 w
it

h
o

u
t

th
e

so
ft

w
ar

e
d

ev
el

o
p

er
’s

 i
n
p

u
t)


C

a
se

 S
tu

d
y

D
:

E
x
am

p
le

s
ar

e
av

ai
la

b
le

,
b
u

t
n
o

 d
et

ai
ls

 a
re

 p
ro

v
id

ed
 d

u
e

to
 c

o
n

fi
d

en
ti

al
it

y
 r

ea
so

n
s


C

a
se

 S
tu

d
y

E
:

E
x
p

er
t

k
n
o

w
le

d
g
e

is
 r

eq
u
ir

ed
 t

o
 d

is
ti

n
g
u

is
h

 r
ec

u
rr

in
g
 v

ar
ia

n
ts

 s
u

it
ab

le
 f

o
r

re
u

se
 a

s
li

b
ra

ry

m
o

d
u

le
s

fr
o

m
 h

ig
h

ly
 c

u
st

o
m

iz
ed

 s
o

lu
ti

o
n

s

R
W

ea
k

–

W
ea

k
n

es
se

s

an
d

C
h

an
g
e

E
ff

o
rt

A
n

al
y
si

s
re

su
lt

s
en

ab
le

d
 i

d
en

ti
fi

ca
ti

o
n

 o
f

w
ea

k
n

es
se

s
an

d
 e

st
im

at
io

n
 o

f
re

q
u

ir
ed

 c
h

an
g
e

ef
fo

rt
,

fo
r

ex
am

p
le

:


C

a
se

 S
tu

d
y

A
:

S
o

ft
w

ar
e

ca
n

 b
e

d
iv

id
ed

 i
n
to

 v
ar

ia
n

t-
d

ep
en

d
en

t
an

d
 -

in
d

ep
en

d
en

t
P

O
U

s
(p

re
ci

se
 n

u
m

b
er

k
n

o
w

n
 f

ro
m

 S
te

p
 3

);
 e

ff
o

rt
 f

o
r

a
p

la
n

n
ed

 r
eu

se
 o

f
in

v
ar

ia
n

t
p

ar
ts

 i
s

lo
w

 b
u

t
ex

p
ec

te
d

 t
o

 i
m

p
ro

v
e

th
e

co
n

tr
o
l

so
ft

w
ar

e
q

u
al

it
y
;

fo
r

v
ar

ia
b

le
 p

ar
ts

,
th

e
li

n
k
 t

o
 t

h
e

h
ar

d
w

ar
e

is
 c

le
ar

 a
n

d
 t

h
e

d
o

cu
m

en
ta

ti
o

n
 s

u
p
p
o

rt
s

th
e

so
ft

w
ar

e
d

ev
el

o
p

er
 i

n
 h

is
 m

o
d

if
ic

at
io

n
 t

as
k
s.


C

a
se

 S
tu

d
y

B
:

C
h

an
g
e

ef
fo

rt
 i

s
h

ig
h

 s
in

ce
 t

h
e

en
ti

re
 s

o
ft

w
ar

e
st

ru
ct

u
re

 n
ee

d
s

to
 b

e
ch

an
g
ed

.
E

sp
ec

ia
ll

y
 l

o
g
ic

an
d

 h
ar

d
w

ar
e

co
n

tr
o

l
n

ee
d

 t
o
 b

e
se

p
ar

at
ed

 a
n

d
 P

O
U

 i
n

te
rf

ac
es

 n
ee

d
 t

o
 b

e
re

d
ef

in
ed

 (
fl

ag
 v

ar
ia

b
le

s
sh

o
u

ld
 b

e

el
im

in
at

ed
).

 T
h

e
ex

p
ec

te
d

 b
en

ef
it

s
fo

r
re

u
se

 a
re

 a
ls

o
 h

ig
h

 a
n

d
 d

et
ai

le
d

 d
o

cu
m

en
ta

ti
o

n
 i

s
av

ai
la

b
le

.
T

o
 a

v
o

id

v
ar

ia
ti

o
n

s
re

su
lt

in
g
 f

ro
m

 d
if

fe
re

n
t

p
ro

g
ra

m
m

in
g

 s
ty

le
s,

 i
d

en
ti

fi
ed

 e
x
am

p
le

s
ca

n
 b

e
d

ir
ec

tl
y
 i

n
te

g
ra

te
d

 i
n

to

th
e

p
ro

g
ra

m
m

in
g
 g

u
id

el
in

es
 w

it
h

 a
 l

o
w

 e
ff

o
rt

.

Id
en

ti
fi

ca
ti

o
n

 o
f

w
ea

k
n

es
se

s
re

q
u

ir
es

 s
u

it
ab

le
 d

o
cu

-

m
en

ta
ti

o
n

 o
f

th
e

an
al

y
si

s
re

su
lt

s
(f

o
r

d
if

fe
re

n
t

st
ak

e-

h
o

ld
er

s,
 w

h
ic

h
 a

ls
o

 p
ro

v
id

es
 t

h
e

b
as

e
fo

r
ch

an
g
e

ef
fo

rt

es
ti

m
at

io
n

.

F
ro

m
 t

h
e

an
al

y
si

s,
 i

t
is

 u
su

al
ly

 k
n

o
w

n
,

if
 a

 p
la

n
n

ed

ch
an

g
e

af
fe

ct
s

th
e

en
ti

re
 s

o
ft

w
ar

e
st

ru
ct

u
re

 (
h

ig
h

 e
f-

fo
rt

)
o

r
sp

ec
if

ic
 p

ar
ts

 (
lo

w
er

 e
ff

o
rt

).

Id
en

ti
fy

in
g
 t

h
e

“w
o

rs
t/

to
p

 t
en

”
P

O
U

s
re

g
ar

d
in

g
 a

 s
e-

le
ct

ed
 w

ea
k
n

es
s

al
lo

w
s

st
ar

ti
n

g
 w

it
h

 t
h

e
so

ft
w

ar
e

p
ar

ts
 t

h
at

 h
av

e
th

e
g
re

at
es

t
ex

p
ec

te
d

 b
en

ef
it

s
an

d
 s

u
p

-

p
o

rt
 a

 c
o

n
ti

n
u
o

u
s

im
p

ro
v
em

en
t

p
ro

ce
ss

.

130 7. Qualitative Evaluation

R
eq

u
ir

e
m

e
n

t
E

x
a

m
p

le
s

fr
o

m
 c

o
n

d
u

ct
e
d

 i
n

d
u

st
ri

a
l

a
n

d
 l

a
b

-s
ca

le
 c

a
se

 s
tu

d
ie

s
w

it
h

 r
e
m

a
r
k

s
L

im
it

a
ti

o
n

s


C

a
se

 S
tu

d
y

C
:

In
si

g
h

ts
 f

ro
m

 t
h

e
an

al
y
si

s
in

cl
u

d
e

in
te

rf
ac

e
ty

p
es

 a
n

d
 t

h
ei

r
ra

ti
o
n

al
e

(g
o

o
d

 a
n

d
 b

ad
 e

x
am

p
le

s

av
ai

la
b

le
),

 d
ep

en
d

en
ci

es
 c

h
an

g
ed

 a
n

d
 v

io
la

te
d
 d

u
ri

n
g
 p

ro
je

ct
 d

ev
e
lo

p
m

en
t

(i
n

cl
u
d

in
g
 h

o
w

 t
h

ey
 a

re
 v

io
la

te
d

)

an
d

 m
o

d
u

le
s

w
it

h
 a

 h
ig

h
 n

u
m

b
er

 o
f

in
te

rf
ac

es
 (

o
p

ti
m

iz
at

io
n

 p
o
te

n
ti

al
).

 M
ed

iu
m

 e
ff

o
rt

 i
s

ex
p

ec
te

d
 f

o
r

re
v
is

in
g

sp
ec

if
ic

 c
ri

ti
ca

l
in

te
rf

ac
es

 (
ex

am
p

le
s

av
ai

la
b

le
,
tr

ai
n

in
g
 a

n
d

 e
n
h

an
ce

m
en

t
o

f
g
u

id
el

in
es

 w
it

h
 i
d

en
ti

fi
ed

 w
ea

k
-

n
es

se
s)

.
H

ig
h

 e
ff

o
rt

 b
u

t
al

so
 h

ig
h

 b
en

ef
it

 i
s

ex
p

ec
te

d
 f

ro
m

 c
o

n
ti

n
u

o
u

s
ch

an
g
e

tr
ac

k
in

g
 t

o
 i

d
en

ti
fy

 c
ri

ti
ca

l

in
te

rf
ac

es
 a

t
an

 e
ar

ly
 s

ta
g

e
(m

et
ri

cs
 a

v
ai

la
b

le
).

 I
n

te
rd

is
ci

p
li

n
ar

y
 e

x
ch

an
g
e

to
 a

v
o

id
 s

u
b

-o
p

ti
m

al
 c

o
d

e
st

ru
c-

tu
re

s
re

q
u

ir
es

 h
ig

h
 e

ff
o

rt
.


C

a
se

 S
tu

d
y

D
:

E
x
am

p
le

s
ar

e
av

ai
la

b
le

,
b
u

t
n
o

 d
et

ai
ls

 a
re

 p
ro

v
id

ed
 d

u
e

to
 c

o
n

fi
d

en
ti

al
it

y
 r

ea
so

n
s.


C

a
se

 S
tu

d
y

E
:
Id

en
ti

fi
ed

 m
an

d
at

o
ry

 s
o

ft
w

ar
e

p
ar

ts
 c

an
 b

e
m

er
g
ed

 i
n

to
 l
ib

ra
ry

 m
o

d
u

le
s

w
it

h
 l
o

w
 e

ff
o

rt
.
M

er
g
-

in
g
 a

lt
er

n
at

iv
e

p
ar

ts
 r

eq
u

ir
es

 m
ed

iu
m

 t
o

 h
ig

h
 e

ff
o

rt
 (

d
ef

in
in

g
 p

ar
am

et
er

iz
ab

le
 l

ib
ra

ry
 m

o
d

u
le

s
o

r
u
n

iv
er

sa
l

m
o

d
u

le
s)

.

R
D

o
c

–

D
o

cu
m

en
ta

-

ti
o

n


A

ll
 u

se
 c

a
se

s:
 d

if
fe

re
n

t
le

v
el

s
o

f
g
ra

n
u

la
ri

ty
 a

n
d

 v
ie

w
p

o
in

ts
 w

er
e

u
se

d
 f

o
r

d
o

cu
m

en
ta

ti
o

n
 (

S
te

p
s

2
 a

n
d

 3
);

g
ai

n
ed

 d
o

cu
m

en
ta

ti
o

n
 w

as
 b

en
ef

ic
ia

l
to

 r
at

e
ch

an
g
e

ef
fo

rt
 (

cf
.

R
W

ea
k)

.


C

a
se

 S
tu

d
y

A
:

S
o

ft
w

ar
e

ar
ch

it
ec

tu
re

 a
n

d
 m

ai
n

 f
u

n
ct

io
n

al
it

ie
s,

 i
n

cl
u

d
in

g
 e

rr
o

r
h

an
d

li
n

g
 (

la
ck

 o
f

d
o

cu
m

en
ta

-

ti
o

n
 a

b
o
u

t
so

ft
w

ar
e

d
es

ig
n

 d
ec

is
io

n
s

w
as

 a
 m

en
ti

o
n

ed
 c

h
al

le
n

g
e)

,
ar

e
d

o
cu

m
en

te
d

 w
it

h
 a

n
n

o
ta

te
d

 c
al

l
g
ra

p
h

s

in
 S

te
p

 2
;

ta
b

le
-b

as
ed

 s
u

m
m

ar
y
 o

f
li

n
k
s

b
et

w
ee

n
 h

ar
d

w
ar

e
v

ar
ia

ti
o

n
 p

o
in

ts
 a

n
d
 a

ff
ec

te
d

 P
O

U
s.


C

a
se

 S
tu

d
y

B
:

E
x
am

p
le

s
o

f
p

ro
g
ra

m
m

in
g
 g

u
id

el
in

es
’

w
ea

k
n

es
se

s
d

o
cu

m
en

te
d

 (
S

te
p

 3
);

 i
n

fl
u

en
ce

 o
f

fu
n

c-

ti
o

n
al

it
y
 a

n
d

 m
ec

h
an

ic
al

 l
ay

o
u

t
o

n
 t

h
e

re
sp

ec
ti

v
e

co
n

tr
o
l

so
ft

w
ar

e
d

o
cu

m
en

te
d

 i
n

 f
ea

tu
re

 m
o

d
el

s
(c

o
ar

se
-

g
ra

in
ed

)
an

d
 t

ab
le

-b
as

ed
,

w
it

h
 a

n
n

o
ta

te
d
 s

cr
ee

n
sh

o
ts

 a
n

d
 e

x
am

p
le

s
(f

in
e
-g

ra
in

ed
);

 d
o

cu
m

en
ta

ti
o

n
 o

f
fu

n
c-

ti
o

n
al

it
y
 d

is
tr

ib
u

ti
o

n
;

ta
b

le
 o

f
re

q
u

ir
ed

 m
o

d
u

le
 i

n
te

rf
ac

es
 (

d
er

iv
ed

 f
ro

m
 d

if
fe

re
n

t
v
ar

ia
n

ts
).


C

a
se

 S
tu

d
y

C
:

G
ra

p
h

ic
al

,
te

x
tu

al
 a

n
d
 t

ab
le

-b
as

ed
 d

o
cu

m
en

ta
ti

o
n

 h
ig

h
li

g
h

ts
 c

ri
ti

ca
l

p
ar

ts
 i

n
 t

h
e

te
m

p
la

te
,

in
cl

u
d

in
g
 c

o
rr

ec
t

im
p

le
m

en
ta

ti
o

n
s

(p
ro

je
ct

 2
)

an
d

 v
io

la
ti

o
n

s
(p

ro
je

ct
 1

).


C

a
se

 S
tu

d
y

D
:

C
o
n

fi
rm

ed
 u

se
fu

ln
es

s
o

f
d

o
cu

m
en

ta
ti

o
n

 f
o

r
u

n
d

er
st

an
d

in
g
 o

v
er

al
l

so
ft

w
ar

e
st

ru
ct

u
re

,
fu

n
c-

ti
o

n
al

it
y
 d

is
tr

ib
u

ti
o

n
 a

n
d
 d

ep
en

d
en

ci
es

 (
h

el
p

fu
l

fo
r

es
ti

m
at

in
g
 t

h
e

ri
sk

 o
f

ch
an

g
es

).


C

a
se

 S
tu

d
y

E
:

S
o

ft
w

ar
e

v
ar

ia
n

ts
 a

re
 d

o
cu

m
en

te
d

 a
n

d
 v

is
u

al
iz

ed
 f

o
r

d
if

fe
re

n
t

st
ak

eh
o

ld
er

s,
 i

n
cl

u
d

in
g
 t

h
ei

r

lo
ca

ti
o

n
,

si
ze

,
an

d
 q

u
an

ti
fi

ed
 s

im
il

ar
it

y
 v

al
u

e.

E
x
am

p
le

s
o

f
d

o
cu

m
en

ta
ti

o
n

 s
ty

le
s

o
n

 d
if

fe
re

n
t

g
ra

n
u

-

la
ri

ty
 l

ev
el

s
ar

e
p

ro
v
id

ed
.

H
o

w
ev

er
,

n
o

 c
o

m
p

le
te

 l
is

t

o
f

av
ai

la
b

le
 m

ea
n

s
fo

r
d

o
cu

m
en

ta
ti

o
n
 i

s
g
iv

en
.

F
u

r-

th
er

,
n
o

 s
et

 o
f

ru
le

s
fo

r
se

le
ct

in
g
 s

u
it

ab
le

 d
o

cu
m

en
ta

-

ti
o

n
 i

s
d

ef
in

ed
.

D
o

cu
m

en
ta

ti
o

n
 t

y
p

es
 a

re
 n

o
t

li
n

k
ed

 t
o

p
o

te
n
ti

al
 a

n
al

y
si

s
g
o

al
s.

T
h

e
p

ro
ce

d
u

re
 d

o
es

 n
o

t
p

ro
v
id

e
su

p
p
o

rt
 f

o
r

th
e

co
rr

ec
t

in
te

rp
re

ta
ti

o
n

 o
f

th
e

d
if

fe
re

n
t

m
ea

n
s

o
f

d
o

cu
m

en
ta

-

ti
o

n
.

It
 i

s
o

n
ly

 a
 f

ra
m

ew
o

rk
 w

it
h

 e
x
am

p
le

s
an

d
 t

h
e

in
-

te
rp

re
ta

ti
o

n
 i

s
in

d
iv

id
u

al
ly

/u
se

 c
as

e-
sp

ec
if

ic
.

7. Qualitative Evaluation 131

132 7. Qualitative Evaluation

7.2. Evaluation with Industrial Experts in Industry Working Group

The evaluation with 20 German industrial experts from the aPS domain was conducted in the scope

of an online meeting of the industry working group (WG) “Modular machine and software (Modu-

lare Maschine und Software)” on June 18th, 2021. Some of the industrial experts have participated

in the WG for several years and join the WG meetings regularly to exchange views, thoughts and

ideas on the planned reuse of control software. Thus, the WG participants acknowledge the im-

portance of modular software architectures and the need for strategies for planned software reuse.

They are aware of the current challenges and obstacles hindering both. Furthermore, the partici-

pants have different backgrounds ranging from software developers to managers. Thus, the WG is

very suitable for evaluating the proposed quality assessment procedure.

The evaluation was carried out within the WG meeting’s 2.5-hour morning session: after a short

welcome of the 25 participants, the WG meeting started with a 40-minute keynote presentation

entitled Quality assurance using static code analysis and software metrics presented by the author.

First, a general overview of static code analysis methods was provided. Subsequently, the quality

assessment procedure was derived utilizing the Self-X Material Flow Demonstrator from the AIS

institute (originally an industrial testbed) as a use case. Following the keynote, the participants

could ask questions regarding the presentation. The only question raised was whether the presented

methods had already been applied to industrial control software, which was confirmed.

Subsequently, the participants were asked to individually fill in an online questionnaire regarding

the presented quality assessment procedure before exchanging their thoughts in a virtual break.

Participation in the questionnaire was voluntary. After a short break, current challenges and solu-

tion approaches for using static code analysis were discussed in four sub-groups, each moderated

by a member of the AIS institute. Afterward, each moderator presented the group’s results to the

other participants and the morning session was closed with a summary.

7.2.1. Evaluation of the Industrial Applicability of the Quality Assessment Proce-

dure with Online Questionnaire

The participants’ background and the main findings from the online questionnaire, which was

voluntarily and anonymously answered by 20 of the 25 participants, are presented below. The

original German version of the questionnaire and all answers can be found in Appendix B. The

asked questions are referred to as WG#[question number], e.g., question 1 is identified as WG#1.

Since participation in the questionnaire was anonymous, the distribution of the participants’ back-

grounds is not known in detail. In the WG meeting, 25 industrial experts from 16 German machine

and plant manufacturing companies from seven application sectors (cf. Figure 30 for an overview

7. Qualitative Evaluation 133

gained through question WG#11) with varying boundary conditions participated. In general, aPS

from plant manufacturing are more customer-specific regarding size and location. However, the

assignment between machine and plant manufacturing is not trivial [Vog⁺21a]; the difference be-

tween special-purpose machine and plant manufacturers is not strictly defined. Of the 16 German

companies, eleven are considered machine manufacturers, ranging from serial to special purpose

machines, and five are considered plant manufacturers by the author. The participants had different

positions within their company, e.g., managing directors, department and team leaders, and control

software developers (module and application developers) were present. Moreover, 75% of the

participants who responded to the questionnaire indicated that at the time of the WG meeting, no

static code analysis was used in their development workflows (cf. WG#9).

Figure 30: Background of participants regarding application sector (question WG#11, multiple-choice,

answers: 20 participants).

The industrial Case Studies presented in Section 7.1 were conducted with control software imple-

mented for Siemens PLCs. Therefore, to assess the requirement RPLC, industrial experts using dif-

ferent platforms were questioned in the WG meeting. The high market share of Siemens also

shows in the WG participants. However, of the ten experts indicating the use of Siemens as a

platform, all but two use at least one other platform in their company. Figure 31 gives an overview

of the used platforms, including IEC 61131-3 based platforms such as Beckhoff, B&R and Schnei-

der Electric. Overall, the background of the participants is mixed, including at least seven different

platforms, which is considered representative.

The participants formed a heterogeneous group regarding their position in the company, applica-

tion sector and used programming platforms. Thus, their answers are considered representative of

the aPS domain. To assess requirement RUse, question WG#8 targeted the application of the pro-

posed procedure by the industrial expert him-/herself. Overall, 65% of the participants confirmed

0 1 2 3 4 5 6 7 8

automotive engineering

food and beverage

construction (material) equipment

materials handling and intralogistics

pharma / medicine

metals industry

woodworking machinery

packaging machinery

other / further

No answer

number of responses

a
p

p
li

c
a

ti
o

n
 s

e
c

to
r

WG#11) In which industrial application sectors does your company operate?

134 7. Qualitative Evaluation

that they would at least be able to partially apply the procedure independently after training. An-

other 30% indicated they are unsure since this strongly depends on the training amount. Consid-

ering that the procedure should be used by software developers and not necessarily by group lead-

ers or software managers, who also participated in the questionnaire, overall, this confirms that

the industrial experts would be able to apply the procedure after an adequate amount of training

(RUse). Moreover, in question WG#12, 45% of the participants indicated that the assessment pro-

cedure would be applicable in their application sector, and 55% agreed that it would be partially

applicable. In combination with WG#13 (cf. Figure 30, application sectors the companies operate

in), the requirement RSec is considered fulfilled.

Figure 31: Background of participants regarding used programming platforms within their company

(question WG#13, multiple-choice, answers: 20 participants).

Regarding the interview guiding questions presented during the keynote, question WG#6 targeted

their suitability for identifying the analysis goal and additional information, e.g., from other disci-

plines, for conducting the analysis. In the answers, 40% of the participants confirmed that the

interview guiding questions are suitable and 55% indicated they are partially suitable to identify

the analysis goal. However, identifying pain points was not targeted in question WG#6. Conse-

quently, the requirement RPP is rated as partially fulfilled.

The questions WG#3 addressed the integratability of the presented quality assessment procedure

into the company workflow. While 20% of the respondents agreed that the entire procedure could

be integrated into their development workflow, 55% of the participants indicated that it could be

partially integrated (cf. Figure 32). Since the proposed procedure does not necessarily need to be

integrated completely but only the parts that are helpful and relevant for the company’s defined

analysis goal, the requirement RWork is considered fulfilled.

0 2 4 6 8 10 12

Beckhoff

B&R

CODESYS

Rockwell

Schneider Electric

Siemens

SIGMATEK

STW

other / further

No answer

number of responses

c
o

n
tr

o
l

p
la

tf
o

rm

WG#13) Which control platforms are used in your company?

7. Qualitative Evaluation 135

Figure 32: Estimation of the integratability of the quality assessment procedure into the company work-

flow (question WG#3, single choice, answers: 20 participants).

Concerning the procedure’s applicability to company-specific boundary conditions such as un-

changeable design decisions, 20% of the participants agreed that it is definitely applicable and

80% indicated that it is partially applicable (cf. questions WG#7). Accordingly, requirement RDD

is considered partially fulfilled. The participants of the WG have a mixed background, including

serial machine, special purpose machine and plant manufacturing. Further, the majority confirm

that the procedure can be integrated at least partially into their workflow (cf. question WG#3) and

that it is capable of at least partially taking the company’s design decisions into account (cf. ques-

tion WG#7). Thus, the requirement RPro is considered fulfilled.

Finally, the summary of the free-text answers to question WG#4 targeting challenges in applying

the procedure in an industrial environment is depicted in Figure 33. The summary shows that the

challenges most frequently mentioned independently by several participants are boundary condi-

tions such as the tool integration, the developers’ mindset or the high implementation effort under

time pressure. However, only a few stated challenges are caused by the proposed procedure itself,

e.g., one participant mentioned the insufficiency of the interview guiding questions, which were

shortly presented in excerpts, as a challenge hindering the procedure’s application.

Figure 33: Challenges hindering the procedure application in an industrial context (question WG#4,

free-text question, answers: 19 participants).

20%

55%

20%

0%

5%

0% 10% 20% 30% 40% 50% 60%

Yes, the entire procedure can be integrated in principle

Yes, parts of the procedure can be integrated

I am unsure if the procedure would be integratable

No, the procedure cannot be integrated at all

No answer

WG#3) In principle, could you imagine integrating the described procedure for static code
analysis of control software into your company workflow?

0 1 2 3 4 5 6 7

Integration within development environment / different platforms

Convince employees / mindset of employees

High realization effort

Time pressure

Conplexity of projects or plants

Expected benefit must justify additional expenses

Availability of experts / Validation of automatic analysis results

implementation of required functions vs. software quality (reasonable ratio)

interview guiding questions not sufficent

n (number of votes)

F
re

e
-t

e
x
t

a
n

s
w

e
rs

WG#4) In your opinion, what are the biggest challenges in applying the demonstrated procedure in an industrial environment?

136 7. Qualitative Evaluation

Finally, in question WG#5, all participants agreed that the presented procedure is at least partially

helpful to integrate means and methods for quality assurance with static code analysis into their

development process.

7.2.2. Group Discussions on Challenges of Application in an Industrial Context

For the second part, participants were divided into four groups to discuss current challenges and

boundary conditions with one group, consisting of seven participants, focusing specifically on the

presented procedure. Mentioned challenges from all groups are summarized in the following.

Several challenges concern the applicability of analysis tools; e.g., one participant highlighted the

importance of a meaningful toolchain for conducting static code analysis in an industrial context.

More precisely, an analysis tool must be easy to use, flexible towards boundary conditions and

embedded in the development workflow since “an independent tool would not be used due to time

constraints, no matter how good it is”. Although tool-based static code analysis is only a part of

the developed quality assessment procedure, this statement confirms the importance of integrating

the quality assessment at an appropriate point in the company’s development workflow (cf. RWork).

Furthermore, it highlights the need to consider company-specific boundary conditions (cf. RDD).

In several groups, application and module developers emphasized the assessment of the refactor-

ing effort, including its expected benefit, as essential to convince the management level of the

necessity to perform time-consuming software maintenance tasks. The benefit, which opposes the

effort of the analysis, must be communicateable, e.g., by statements like “the software develop-

ment of the next plant is 20% cheaper”. However, currently, no approaches to assess or quantify

the long-term effects of “good and bad software” are available. By documenting the analysis re-

sults for subsequent estimation of the required change effort and expected benefits (cf. RWeak), the

proposed procedure supports assessing the refactoring effort after the analysis has been conducted.

However, measuring long-term effects requires analyzing aspects such as technical debt as tar-

geted in [VB21], which are not included in the procedure.

Moreover, various external factors were mentioned in the discussions, such as the need for a ho-

listic modularization principle including hardware and software, required coordination between

different disciplines and the currently lacking cross-disciplinary understanding of (software) qual-

ity. An industrial expert from a plant manufacturing company was concerned regarding incomplete

development models and data received from other involved departments/disciplines as “a far

greater challenge”, which needs to be solved before optimizing the control software. With a focus

on static code analysis, the acceptance by the software developers was mentioned as a prerequisite.

Furthermore, the software developers stated time pressure from management to have high-quality,

7. Qualitative Evaluation 137

“finished” software as a challenge since the developers consider software improvement as a con-

tinuous process that is never finished. The need for best practices and support when starting with

static code analysis was also indicated as a challenge. This challenge confirmed the general need

for a systematic, goal-oriented quality assessment such as proposed by the presented procedure,

including interview guiding questions and checklists. However, best practices for developing con-

trol software are not targeted by the presented procedure and require further research.

Analyzing the software structure through call graphs was highlighted as most important in dis-

cussing analysis methods, especially when assessing brown-field projects. Another mentioned

strength of the structural analysis is “finding an entry point into the software”, e.g., for its optimi-

zation or extension. Further, means for identifying code duplicates and software metrics to identify

large, extensive software parts for a subsequent refactoring step were rated as beneficial. This

confirms the order and importance of aspects in the analysis checklist (cf. Table 8, p. 65 and Ap-

pendix A.2, p. 191).

During the discussion, the industrial experts stated various application scenarios and goals where

they expect benefits from the proposed procedure. While one participant questioned the usefulness

of the procedure when applying it to well-defined control software already programmed according

to company-specific guidelines, another emphasized that the presence of guidelines “does not

mean that everything runs perfectly”. Instead, in his eyes, an analysis of the quality of the pro-

gramming guidelines is necessary. One expert sees potential for the procedure’s application in the

current changeover from IL to ST in his company, e.g., to analyze the dependencies between the

modules. Another expert mentioned conducting an analysis focusing on improving the software

quality, as new developers often have little experience with implementation, while management

demands ever-greater efficiency. To integrate new employees more quickly, the usability and in-

terfaces of the modules are of increasing relevance so that they can be used without knowledge of

their internal details. The modules could be improved by applying the procedure. Finally, another

mentioned application scenario was to check for software changes during commissioning. How-

ever, according to the industrial experts, this analysis would have to include the accompanying

circumstances, i.e., the reason for the change, which confirms the importance of manual interpre-

tation of changes (cf. RRat). A developer of a plant manufacturer mentioned in this context that no

two plants are the same in his company. In addition, adjustments to the customer premises are

always necessary. Therefore, the meaningful application of code analysis and quality assessment

is limited to the time during software development. Overall, these different application scenarios

confirm that the proposed quality assessment procedure can support different analysis goals at

different points of the development workflow from the industrial experts’ point of view.

138 7. Qualitative Evaluation

Despite the mentioned challenges, the participants confirmed that the presented procedure is gen-

erally helpful and applicable for integrating analysis means and metrics into the development

workflow for the quality assessment with different boundary conditions and in various scenarios.

7.3. Expert Workshop with an Industrial Focus Group in the Food

and Beverage Sector

The quality assessment procedure and selected aspects of its four steps were discussed and evalu-

ated in the scope of an online workshop with experts from a German, internationally operating

plant manufacturing company in the food & beverage and intralogistics sector. Overall, the com-

pany has over 16,000 employees worldwide. It mainly uses automation hardware, including pro-

gramming platforms, from Siemens, Rockwell Automation, and B&R Industrial Automation. PLC

projects are programmed in graphical and textual programming languages while considering com-

pany-wide programming guidelines and utilizing library POUs, code generation and templates.

The invited experts were primarily from the software development department, but some also had

an electrical engineering background. Most of the invitees were PLC software developers, with a

few participants from the management level. These different backgrounds of the participants ena-

ble an evaluation of the proposed procedure from various stakeholders with different tasks. The

results of the expert workshop were originally published in [Fis⁺22a].

The workshop was scheduled as a web meeting for 2.5 hours. After a short welcome, the quality

assessment procedure was introduced in a timeslot of 1.5 hours to the participants as a mixture of

presentations and live demonstrations utilizing the advacode prototype [Ins22]. The procedure

explanation was divided into four blocks (each with 15 minutes of presentation by the author and

5 minutes for participants to voluntarily answer one or two single-choice question(s)). The blocks

targeted a general introduction to the procedure, details on the interview guiding questions, con-

ducting the analysis under consideration of company-specific boundary conditions and, finally,

utilizing the result documentation to derive recommendations for actions. Afterward, the work-

shop participants were divided into three groups to clarify potential questions about the presented

information and, subsequently, to join an interactive part as a basis for an in-depth discussion

about the applicability and usefulness of the proposed procedure.

Due to the online format of the workshop, invited participants were able to join and leave the

online meeting while the workshop was being conducted. In total, 46 participants joined the work-

shop meeting, whereby some of these stayed for (parts) of the presentation and prototype demon-

stration only. Of all participants, 36 remained in the web conference for the entire workshop du-

ration. During the workshop, nine single-choice questions were asked via a polling application of

7. Qualitative Evaluation 139

the used web meeting tool Microsoft Teams. Answering the questions was voluntary and anony-

mous. The findings obtained during the workshop are presented in the following sections. Cer-

tainly, the results cover only the responses of experts from a single company. However, due to the

mixed background and the number of workshop participants, qualitative results can be derived,

which provide additional insights beyond the previous evaluations regarding its applicability in an

application sector with specific rules, regulations and boundary conditions.

7.3.1. Evaluation of the Applicability of the Quality Assessment Procedure

As described above, the introduction of the quality assessment procedure and selected subparts

was divided into four topic blocks, each scheduled for 20 min. First, an overview of the means for

static code analysis and an introduction to the proposed assessment procedure was given. The

introduction to static code analysis was essential since 65% of the participants indicated in ques-

tion W#1 that they do not apply any means of static code analysis at all during the software devel-

opment (cf. Appendix C.2 for complete answers to the workshop questions).

Secondly, details regarding the preparation step were provided, focusing on choosing an analysis

goal as a prerequisite for conducting the code analysis goal-oriented, thus, enabling the subsequent

derivation of recommendations for action from the gained results. An excerpt of the developed

interview guiding questions was presented in theory and utilizing the application example Self-X

Material Flow Demonstrator. Furthermore, criteria for selecting a suitable PLC software project

for the analysis in the second procedure step were introduced. In the following question W#2, 92%

of the participants confirmed that the interview guiding questions are helpful or partially helpful

for identifying the analysis goal. Thus, RPP can be considered fulfilled in this case.

The third topic concerned conducting the static analysis under consideration of company-specific

boundary conditions. For example, the analysis and rating of data exchange types according to

company-specific programming guidelines was introduced in theory and demonstrated with the

advacode prototype. Subsequently, the participants were asked if they thought the procedure could

be successfully applied regarding the boundary conditions such as design decisions in their com-

pany (Question W#3). While 62.5% of the participants think that the procedure is at least partially

applicable, over one-third were unsure (cf. Figure 34). Since the participants included management

personnel who do not work closely with control software in their daily tasks, RDD is nevertheless

considered partially fulfilled.

140 7. Qualitative Evaluation

Figure 34: Answers to W#3 concerning the applicability of the analysis procedure under consideration of

company-specific boundary conditions (total answers n = 40).

The participants were further asked in question W#4 if they think that the procedure can suffi-

ciently address the constraints of their application sector (food & beverage) and would therefore

be applicable. While 47% think it would be applicable at least partially, with 45%, almost half of

the participants are unsure. It might result from the fact that not all participants had a background

in PLC programming or that the short concept presentation did not sufficiently show the possibil-

ities for adaptations. Concluding, RSec is only partially fulfilled and additional research is required

to identify the critical boundary conditions and to what extent the procedure could address them.

In the fourth topic block, different documentation types for the analysis results on varying granu-

larity levels were exemplarily provided. These are, for example, the call graph on a coarse-grained

level to visualize the overall software structure and peculiarities within, e.g., violations to the in-

tended hierarchy levels or structural patterns. On a fine-grained level, the documentation with

software metrics provides quantitative values for an objective comparison of a selected software

characteristic to identify the “worst ten” POUs, e.g., the ten most complex POUs. It was further

highlighted that especially anomalies in the context of the own software are relevant due to a lack

of commonly accepted programming guidelines. With the advacode prototype, exemplary availa-

ble means to document different aspects such as data exchange, metric values and call graphs were

demonstrated. Subsequently, 39% of the participants answering question W#5 confirmed that the

documentation on different levels in the context of their software is helpful to identify anomalies

and disadvantageous software elements and 46% stated it is partially helpful. Thus, RDoc is ful-

filled. Regarding the derivation of recommendations for action, including a rough effort estimation

(Question W#6), only 20% think that the documentation enables this, while 60% state it is partially

helpful. The hesitation might result from the lacking experience of the company experts with static

code analysis and the required effort for manually creating detailed documentation in case tool

support is not yet available. However, future research is required to identify the reasons for the

hesitation and the requirement RWeak is considered partially fulfilled.

22.5%

40.0%

10.0%

27.5%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

Yes, definitely

Partially the procedure can be used

No, the procedure is not applicable

I do not know

W#3) Do you consider the analysis procedure to be successfully applicable in your company
with regard to the boundary conditions (such as unchangeable design decisions)?

7. Qualitative Evaluation 141

As a summary for the first workshop part, the overall assessment procedure and its four steps were

introduced for a second time to link the previously presented and demonstrated aspects to the

different steps and highlight their relations. Next, the participants were asked if they would be able

to apply the presented procedure to their control software after a first application together with an

analysis expert (Question W#7). As depicted in Figure 35, about half of the participants confirm

that they would be able to (partially) follow the procedure to apply static code analysis themselves

(49%) and 35% think that it depends on the amount and scope of training. Therefore, RUse is con-

sidered partially fulfilled. Moreover, measures to tailor the proposed training, including work-

shops, to the company’s boundary conditions, e.g., the background knowledge of the developers,

need to be investigated in a future step to ensure that the procedure application can be performed

without external experts. Additionally, developing means for automated support during the proce-

dure application, e.g., an assistant system, is expected to reduce required training.

Figure 35: Answers to W#7 regarding the independent application of the analysis procedure by the par-

ticipants themselves (total answers n = 37); pseudo accuracy to avoid rounding error.

Furthermore, the participants were asked if the procedure could be integrated into the development

workflow they currently follow (Question W#8). 68% of the participants indicated that the proce-

dure could be integrated at least partially. Since the procedure is supposed to support the applica-

tion of static code analysis for a goal-oriented, context-sensitive quality assessment, it need not

necessarily be included completely. Thus, the requirement RWork is fulfilled.

7.3.2. Challenges Regarding the Applicability in an Industrial Context

Afterward, the participants were divided into three groups (Group 1 with 13 participants, Group 2

with 11 participants and Group 3 with 15 participants), each moderated by a member of the AIS

institute. First, the remaining questions regarding the presentation were clarified to enable the par-

ticipants to assess the applicability and usefulness of the procedure voluntarily. A summary of the

qualitative ratings is depicted in Figure 36, whereby the answers from the different groups are

illustrated in different colors.

18.9%

29.7%

35.2%

13.5%

2.7%

0% 10% 20% 30% 40%

Yes, after an introduction I could use the procedure

Partly I could use the procedure after an introduction

I am unsure, as it depends strongly on the training

No, even after an introduction I could probably not
use the procedure

I do not know

W#7) After an introduction to the procedure, would you be able to independently transfer
and apply the code analysis procedure to your control software?

142 7. Qualitative Evaluation

Not applicable

at all

Very helpful

Not helpful at all

Fully

applicable

Assessment of the applicability and usefulness of the procedure

Figure 36: Qualitative assessment of the applicability and usefulness of the procedure for integrating

quality-assuring means into the software development process (Group 1 = black (12 replies),

Group 2 = grey (6 replies), Group 3 = white (12 replies)), adapted from [Fis⁺22a].

In the subsequent group discussions, experts indicated challenges hindering the procedure’s ap-

plicability and ways to improve its usefulness. Since Group 2 mainly discussed tool-related as-

pects, no additional insights regarding the proposed procedure were gained and it is not explicitly

mentioned in the following. The main tool-related challenge raised independently in all three

groups is the mix of programming platforms used in the investigated company, including the anal-

ysis of the correctness of the data exchange between these platforms. Thereby, especially concerns

regarding a tool capable of analyzing control software across different platforms were raised. The

current organization within the company’s software development department was seen as an ad-

ditional obstacle. For a successful application of static code analysis, the participants highlighted

the need for assigning a team responsible for analysis, documentation and subsequent software

improvement. There is a concern that, otherwise, there is no capacity available in a software de-

veloper’s day-to-day operations to resolve the identified weaknesses. Despite these organizational

concerns, the participants of Group 1 confirmed that an integration of the assessment procedure

into their current development workflow would be possible and even indicated an appropriate

point for this. Since Group 1 rated the applicability and usefulness most skeptical of all groups (cf.

black dots in Figure 36), the requirement RWork is considered fulfilled.

Moreover, the participants of Group 1 stated that they have little experience with static code anal-

ysis, but they once tried to analyze their software’s structure in the Siemens TIA Portal. Due to

the different stakeholders involved, e.g., developers, designers, and commissioners, and their dif-

ferent requirements concerning the software, it was challenging for the experts to interpret the

results and distinguish between positive and negative software ratings. Similarly, an industrial

expert from Group 3 thinks that defining the software architecture and clear goals in advance is a

prerequisite to setting evaluation criteria and focal points for the quality assessment with static

7. Qualitative Evaluation 143

code analysis. Otherwise, different stakeholders will come to different results. However, once a

company has defined these, the expert rates the presented procedure as “very strong” to support

software quality management. This statement confirms the importance of a structured, goal-ori-

ented quality assessment procedure and the need to target a specific analysis goal while consider-

ing the company’s design decisions and boundary conditions (cf. RPP, RDD).

Regarding the usefulness of the procedure and the analysis results, the experts in all groups high-

lighted that (automatically) analyzing and documenting the software’s conformance to the com-

pany’s programming guidelines would be beneficial. However, the current guidelines are partly

formulated flexibly, which leads to different interpretations among the software developers. A

suggestion of the experts to overcome this obstacle is to differentiate between software parts,

where the rules must be strictly followed, and less critical parts. These strict rules could then be

inserted via an input mask into an analysis tool for the subsequent automated checking, which

would also enable a cross-departmental comparison (e.g., between machine types) of guideline

conformance. Additionally, Group 1 indicated that the comparison of a machine’s control software

versions would be helpful to detect incorrect use of the template. This application scenario of the

assessment procedure with a focus on dependencies between POUs is described in [Fis⁺21a].

Concerning relevant aspects and limitations of the presented procedure, the experts in Group 1

indicated that analyzing, visualizing and documenting the dependencies between software parts

are essential to estimate the impact, i.e., required effort and cross effects, after a software change.

Thus, during static analysis, two aspects of modularity should be considered: reuse and the possi-

bility to add or remove modules to or from the system. Consequently, the analysis documentation

should support an assessment of the impact when a module is removed from the software, espe-

cially if the software is still functional. In Group 3, the technical applicability of the quality as-

sessment procedure is rated high as it is „helpful to get a gut feeling“. However, the industrial

expert does not expect automated suggestions from an analysis tool since it lacks the required

domain knowledge. According to another expert, identifying the highest pain points and appoint-

ing resources for their refactoring is a strategic question that cannot be answered automatically.

These expert opinions confirm the importance of domain knowledge during the quality assessment

of control software, which is addressed by combining automatic analysis and manual interpretation

in the proposed quality assessment procedure (cf. RRat).

A limitation of the presented prototype was highlighted in Group 1. According to the participants,

hardware dependency plays a significant role in software assessment. However, module defini-

tions across these disciplines do not always match since each has different perceptions about mod-

144 7. Qualitative Evaluation

ule boundaries. From the expert’s point of view, this aspect is still missing in the analysis. Simi-

larly, a participant in Group 3 highlighted that the analysis focus is on a technical review of code

and that the essential aspect of functional correctness is not considered. To resolve this, the expert

suggests including a model-based description of the automation hardware to amend the analysis

with information regarding the required functionality.

To improve the usefulness, the experts in all groups expressed great interest in best practices,

which would be helpful for initially designing high-quality software. To increase the applicability

of the presented prototype, an expert from Group 1 suggested that “the analysis could identify

used design patterns in a program, represent them abstractly and compare them with the planned

structure.” Furthermore, performing the static analysis within the PLC’s IDE to provide feedback

while editing the control code would be helpful. Finally, including a user interface to insert com-

pany-specific programming guidelines in the code analysis tool for a subsequent conformance

check was suggested. Meanwhile, the advacode prototype was extended to enable conformance

checks to company-specific rules in the data exchange (cf. [Fis⁺22b] for details).

Despite the experts’ concerns regarding the applicability of the procedure in an industrial context,

in a final question at the end of the workshop (Question W#9), they confirmed that the proposed

procedure eases the application of static code analysis (cf. Figure 37). Despite the specific bound-

ary conditions and regulations in the food & beverage sector, the industry experts confirmed the

proposed procedure’s suitability to support applying static code analysis for the quality assessment

of control software in an industrial context.

Figure 37: Answers to W#9 regarding the application of static code analysis with and without the pro-

posed procedure (total answers n = 34); pseudo accuracy to avoid rounding error.

Comparing the answers to the asked questions (cf. Table 22), it shows that the percentage of re-

sponses selecting “I don’t know” varies from 5% (W#2, helpfulness of interview guiding ques-

tions) to 45% (W#4, consideration of sector-specific constraints). A reason for this might be the

time spent on introducing the different topics and the required knowledge of control software and

process details for answering the respective questions. The interview guiding questions were in-

troduced with specific examples, including their aim, and do not require expert knowledge of the

64.7%

11.8%

23.5%

0% 20% 40% 60% 80%

Yes, the application seems easier with the procedure

No, the procedure does not ease the application

I do not know

W#9) From your point of view, is the application of static code analysis easier with the
shown procedure than without the procedure?

7. Qualitative Evaluation 145

programming of control software to be answered. Thus, workshop participants with an electrical

engineering background and from the management level could answer the question. On the con-

trary, details of the control software of the Self-X Material Flow Demonstrator were used to show

the adaptability of the proposed procedure to different boundary conditions and constraints. Thus,

knowledge of PLC programming, including the transfer to the control software projects of the

company and their boundary conditions, was required to answer the respective question W#4. It is

likely that not all participants from management or electrical engineering had the necessary back-

ground knowledge of the software, including details of the constraints in the food & beverage

sector that affect the control software, to make the transfer and answer the question. Similarly, the

high amount of participants, who estimate that they could not independently apply the procedure

themselves or are unsure about it (51% of the responses to W#7), is in line with expectations: it

requires detailed knowledge of PLC software programming and code analysis, but 65% of the

participants do not yet apply static code analysis during the development (W#1).

Table 22: Comparing the company experts’ answers to the questions asked during the workshop.

Answer
W#1

W#2

RPP

W#3

RDD

W#4

RSec

W#5

RDoc

W#6

RWeak

W#7

RUse

W#8

RWork

W#9

overall

Yes / partially 27.0% 92.3% 62.5% 47.3% 84.6% 80.0% 48.6% 67.6% 64.7%

No 64.9% 2.6% 10.0% 7.9% 2.6% 11.4% 13.5% 2.7% 11.8%

unsure - - - - - - 35.2% 29.7% -

I don’t know 8.1% 5.2% 27.5% 44.8% 12.8% 8.6% 2.7% 0% 23.5%

In summary, the assignment of human resources to and the organization of software quality control

as well as the mix of platforms used are considered the most significant obstacles to successfully

integrating the analysis procedure for quality assessment. Future steps concerning the procedure

should focus on the required amount and depth of training to enable software developers to apply

the procedure themselves. Furthermore, additional research is needed regarding the procedure’s

applicability to the boundary conditions of different application sectors. Suggestions for improv-

ing the presented quality assessment procedure and demonstrated prototypical tool include con-

ceptual-wise the integration of automation hardware modules to assess the fulfilled functionalities

within the software. Tool-wise, a user interface to insert company-specific guidelines and addi-

tional support in highlighting dependencies to estimate the impact of changes would increase the

procedure’s usefulness and applicability in an industrial context, according to the participants.

Overall, the industrial experts confirmed the need to combine tool-based, static code analysis with

human interpretation of the results, taking domain knowledge into account. The effort for applying

the procedure to monolithic legacy software is estimated as very high. However, once a company

has defined clear design strategies and rules, the presented quality assessment procedure is rated

as “very strong” to support software quality management in an industrial context.

8. Assessment of the Fulfillment of the Requirements

The previous Chapters 6 and 7 discussed the findings of the prototypical implementation, the con-

ducted case studies and expert evaluations (WG and workshop) and the fulfillment of the derived

requirements (Chapter 3). These results are summarized in Table 23 to assess to what extent the

proposed quality assessment procedure addresses the identified research gap. All requirements

were evaluated positively with the conducted case studies. However, the industrial experts raised

concerns regarding the independent application of the quality assessment procedure, the consider-

ation of deliberate design decisions and the support to derive recommendations for action. Thus,

future research should target the scope and amount of required training, the consideration of com-

pany-specific design decisions and stronger integration of approaches to derive recommendations.

Table 23: Summary of the evaluation of the presented procedure with respect to the requirements.

Requirement Im
p

le
m

en
ta

ti
o

n

(S
ec

ti
o

n
 6

)

C
a

se
 S

tu
d

ie
s

(S
ec

ti
o

n
 7

.1
)*

E
x

p
er

t
E

v
a
lu

a
ti

o
n

 (
W

G
)

(S
ec

ti
o

n
 7

.2
)

E
x

p
er

t
W

o
rk

sh
o

p
 i

n

fo
o

d
 a

n
d

 b
ev

er
a
g

e
se

ct
o

r

(S
ec

ti
o

n
 7

.3
)

O
v

er
a

ll
 E

v
a

lu
a

ti
o
n

RPLC – Platform

Independence
 +

+

(WG#13)
 +

RPro – aPS as

Product
 +

+

(WG#3, 7)
 +

RUse – User
 +**

o

(W#8)

o

(W#7)
o

RSec – Application

Sector
 +

+

(WG#11, 12)

o

(W#4)
+

RPP – Pain Points
 +

o

(WG#6)

+
(W#2)

+

RWork – Workflow

Integration
 +

+

(WG#3)

+

(W#8)
+

RDD – Design

Decision
+ +

o

(WG#7)

o

(W#3)
+/o

RGoal – Analysis

Goal
 + +

RScal – Scalability + + +

REff – Application

Effort
 + +

RRat – Rationale + + +

RWeak –Weaknesses

and Change Effort
 +

o

(W#6)
+/o

RDoc –Documenta-

tion
+ +

+
(W#5)

+

Legend:
“+”: fully satisfied; “o”: partially satisfied; “-“: not satisfied; empty cell: not available.

*refer to Table 21, p. 129 for details regarding the fulfillment of the requirements by the conducted case studies.

** requirement is targeted and fulfilled by Case Study B only.

148 8. Assessment of the Fulfillment of the Requirements

From the prototypical implementation and the conducted evaluations, an assessment of the pro-

posed quality assessment procedure is performed. The procedure is designed platform-independ-

ent (RPLC) and should be applicable regardless of the produced aPS type (RPro), which is confirmed

by the conducted case studies and the WG evaluation. Although the four industrial case studies

were conducted with companies using Siemens PLCs (SIMATIC STEP 7 and TIA Portal), Case

Study E demonstrated the applicability of the quality assessment procedure to TwinCAT 3 control

software. Moreover, half of the WG members answering the questionnaire indicated that they do

not use Siemens PLCs at all in their company. Of the six WG participants answering that they

would be able to use the procedure after an introduction (WG#8), three do not use Siemens PLCs

as platforms, one indicated the use of Siemens and IEC 61131-3-based PLCs and two use only

Siemens PLCs in their companies. Thus, RPLC is considered fulfilled, but as Case Study E is a lab-

sized case study, at least two additional case studies with non-Siemens platforms should be con-

ducted in future work.

The software developers’ use of the proposed procedure is supported by the provided interview

guiding questions and analysis checklist and was successfully demonstrated in Case Study B. How-

ever, due to the high effort for the involved companies, it was not targeted in any other case study.

Nevertheless, the case study evaluation of requirement RUse is considered fulfilled. Overall, the

software developers’ use of the procedure highly depends on the scope and amount of training and

additional research is required, which leads to RUse being considered partially satisfied. The case

studies showed that the company-specific and application sector-specific boundary conditions

could be considered during the analysis and quality assessment. The WG evaluation confirmed it

as well (RSec). Nevertheless, future work should focus on application sectors with specific bound-

ary conditions since the workshop participants working in the food and beverage sector were un-

sure regarding the constraints of their application sector.

The evaluations confirmed that the proposed assessment procedure supports identifying pain

points as the basis for deriving the analysis goal (RPP). Furthermore, integrating the procedure into

the development workflow is rated as feasible (RWork). However, without proper tool support, the

application requires too much additional effort and is, thus, not combinable with the developers’

day-to-day tasks. While the case studies confirmed that deliberate design decisions regarding the

control software could be considered in the analysis, the WG and the workshop participants raised

concerns (RDD). Thus, the requirement is considered partially fulfilled and future work regarding

the procedure’s limitations is necessary.

Conducting the static code analysis for a quality assessment in the five case studies and utilizing

the advacode prototype confirmed that the procedure supports targeting different analysis goals

8. Assessment of the Fulfillment of the Requirements 149

(RGoal) and that it is applicable to industry-sized control software (RScal). While the evaluation

demonstrated that the procedure is suitable to assess the quality of industry-sized control software,

it also showed that the effort required to perform the static code analysis in Step 2 is not feasible

in industrial use without tool support and, furthermore, that the current tool-support is not suffi-

cient. Nevertheless, the proposed procedure supports conducting static code analysis of industry-

sized control software systematically and goal-oriented, regardless of the specific analysis goal.

While the procedure points out possible analysis methods and aspects to be targeted, it is not lim-

ited to the suggested ones. Moreover, some procedure steps do not have to be repeated if a similar

analysis goal is considered. For example, familiarization with the software architecture and avail-

able analysis methods, targeted aspects and types of documentation is performed in the first itera-

tion of the procedure. The gained knowledge can be used in further procedure applications, which

reduces the required familiarization time (REff). However, if control software that follows different

guidelines and a new analysis goal are targeted in the second application, the effort reduction is

lower. Nevertheless, it is still not as high as during the first application if the software developers

from the first application of the procedure are involved, who are already familiar with the proce-

dure’s steps and available analysis means. While applying automatic means for static code analysis

whenever possible is suggested, the case studies confirm the importance of including the manual

assessment of the gained insights for rating the software’s quality while considering boundary

conditions, constraints and design decisions (RRat).

The procedure evaluation with case studies confirmed that weaknesses could be identified and,

further, the required change effort to overcome these can be qualitatively estimated (RWeak). How-

ever, the workshop participants were not completely convinced that the procedure enables deriving

recommendations for action. Consequently, RWeak is not considered completely fulfilled. Future

research should target how available approaches like the goal-lever-indicator-principle can be en-

hanced or even automated, e.g., in the context of an assistance system, to integrate it closer into

the procedure and derive recommendations for action. Finally, documenting the analysis results

and insights gained is rated fully satisfied (RDoc).

Comparing the questionnaire answers shows that the responses from the workshop are less con-

vincing than the answers from the WG. Different factors might cause this. On the one hand, the

WG members discussed modularity and code analysis several times with different foci in the pre-

vious WG meetings. Additionally, some WG members were previously involved in research pro-

jects with the AIS institute targeting modularity, static code analysis and reuse. In contrast, 65%

of the workshop participants stated that they do not apply any means of static code analysis at all

during the software development. Thus, the WG members have more background knowledge and

experience with means for quality assessment and transferring the presented procedure to their

150 8. Assessment of the Fulfillment of the Requirements

control software is expected to be easier for them. On the other hand, the workshop developers

work in the application sector of food processing. Since the boundary conditions, laws and regu-

lations in this sector are quite strict, they might require specific design decisions and, thus, hinder

the applicability of the presented procedure. Nevertheless, the workshop participants were more

convinced of the interview guiding questions than the WG members. This estimation might result

from the fact that the discussion of interview guiding questions in the workshop was more detailed

than in the WG meeting. In conclusion, further research is needed on the amount of training, es-

pecially when software developers are unfamiliar with the means for quality assessment, and on

the adaptability to application sector-specific constraints.

Overall, the assessment of the two requirements RGoal and REff is limited to a qualitative evaluation

within the detailed case studies. Although the case studies represent different aPS characteristics,

some boundary conditions might not have been included, which might require adaptation of the

quality assessment procedure. Moreover, the insights gained from the questionnaires conducted in

the WG meeting and the workshop are closely linked to the presented procedure excerpts demon-

strated with the Self-X Material Flow Demonstrator from the AIS institute. Although this demon-

strator was originally an industrial testbed, the focus on an intralogistics system might have biased

the participant’s responses to the questionnaire. Thus, additional case studies should be conducted

with selected WG and workshop participants to compare their questionnaire responses with their

assessments after applying the procedure to the control software they work with, ideally in appli-

cation sectors with specific constraints, e.g., the food and beverage sector or MedTech.

9. Summary and Outlook

Control software realizes an increasing proportion of system functionality in aPS. This requires

the reuse of high-quality control software to remain competitive in the global market and deliver

evolvable, maintainable and reconfigurable systems that meet the requirements of Industry 4.0.

While static code analysis is commonly used to ensure software quality in the computer science

domain, it is not yet standardly applied in the aPS domain. Moreover, to gain valuable and mean-

ingful results, static code analysis needs to be adapted and tailored to the domain’s boundary con-

ditions, including application sector- and company-specific factors.

Accordingly, this thesis proposed a quality assessment procedure for control software in the aPS

domain, including the derivation of recommendations for action from the gained analysis results

to improve the software quality by addressing identified weaknesses. The goal-oriented procedure

and the additional material, e.g., interview guiding questions, exemplary analysis goals, an analy-

sis checklist, and means for visualizing and documenting analysis results, support control software

developers to conduct the static code analysis independently and without needing to consult ex-

ternal experts. Moreover, the procedure suggests performing the assessment as an automatic and

manual static code analysis. The combination enables coping with the size of industrial control

software projects while considering the rationale, deliberate design decisions and domain

knowledge in the assessment.

The presented quality assessment procedure was successfully applied in four industrial case stud-

ies and a lab-sized demonstrator case study. Additionally, it has been evaluated by two expert

groups, i.e., in an industrial working group meeting and a workshop with software developers and

managers from a company operating in the food and beverage sector. Overall, the evaluation con-

firmed that the developed procedure enables a goal-oriented and systematic use of available means

for control software quality assessment in an industrial context. It further supports the identifica-

tion of improvement potential and deriving recommendations for action for overcoming identified

weaknesses. Moreover, the industrial experts agreed that the procedure eases the application of

static code analysis if the integration into the company workflow succeeds, which requires allo-

cating resources to the quality assessment and tool support for combining the analysis with day-

to-day tasks. Thus, the research question stated in the introduction has been successfully answered

and the proposed quality assessment procedure addresses the research gap by fulfilling most re-

quirements.

152 9. Summary and Outlook

However, the proposed procedure does not yet fully satisfy all derived requirements, which should

be addressed in future research. For example, training and workshops are essential to enable soft-

ware developers to independently perform a quality assessment of their control software (RUse).

The amount and scope of the required training highly depend on the background knowledge of the

involved software developers and the targeted analysis goal. Accordingly, the definition of train-

ing concepts needs to be investigated in future research. One way to address this is to perform

additional workshops with different companies to determine the amount of required training. An-

other potential starting point is the definition of a catalog containing a classification of available

reuse approaches for PLC control software linked to company-specific boundary conditions. More

precisely, such a catalog would support the identification of reuse strategies suitable for applica-

tion in the scope of the company’s boundary conditions as started in [Neu⁺20c; Neu⁺22]. Based on

the catalog, the scope and amount of training could be derived, which are required to transform a

company’s current development workflow and reuse strategy into the selected solution. Moreover,

developing means for automated support during the procedure application, e.g., as an assistant

system, is expected to reduce the amount of training required since the software developer could

be guided during the quality assessment.

The assessment of RScal demonstrated that the current tool support is insufficient for the successful,

efficient application of the proposed procedure in industrial practice. There is a great need for tool

support for the automatic static code analysis of industry-sized control software. Ideally, support-

ive analysis means should be directly implemented into the PLC development environment to

integrate them seamlessly into the development workflow and, thus, enable a continuous assess-

ment during the development process [DP12] and, at the same time, avoid interruptions in the

developer’s workflow [NNB19]. This requires additional research regarding suitable visualiza-

tions, analysis means and software metrics capable of dealing with the high complexity and size

of industry-sized control software. Integration of analysis means into the PLC development envi-

ronment would also enable measuring and, ideally, quantifying the quality improvement gained

through the procedure application, which has not been targeted in the scope of this thesis. Estimat-

ing the expected benefits in terms of time or money would also make it easier to decide which

recommendations for action with a high level of effort should nonetheless be implemented.

While the proposed quality assessment enables the identification of disadvantageous design deci-

sions and software structures, it does not support the greenfield development of high-quality con-

trol software but is intended for existing legacy software. Nevertheless, the insights gained and

lessons learned from the procedure applications could be used to derive quality attributes that

control software should meet, including best practices for meeting these characteristics, in future

9. Summary and Outlook 153

work. During the expert discussions, the software developers confirmed the need for design pat-

terns and best practices to support the development of high-quality control software in advance,

rather than only analyzing existing software to identify improvement potentials. In turn, best prac-

tices and design patterns could be used to establish refactoring guidelines. These would enable

industry experts to derive recommendations for action from the quality assessment results even if

they have little background knowledge on static code analysis (RWeak).

Moreover, the development of best practices and the definition of quality characteristics to be

fulfilled by Industry 4.0-enabling control software would make conflicts between different design

decisions explicit, which is a prerequisite for strategies to address and, ideally, resolve them. Static

code analysis could be combined with a questionnaire-based approach such as [VO18] to enhance

the maturity assessment of control software. A questionnaire could serve as a starting point of the

maturity assessment to identify boundary conditions such as the development workflow, applied

reuse strategies and experience and background of involved stakeholders. Moreover, it can serve

as a benchmark to compare a company’s development process and control software maturity to

the average maturity. Subsequently, identified weaknesses would be the starting point for detailed

static code analysis. Combining a company’s rating of both questionnaire and detailed analysis

could enable assigning the company to a maturity level similar to the approach of Antkiewicz et

al. from computer science [Ant⁺14]. Derived recommendations could then illustrate which actions

must be performed to lift the control software maturity to the next higher maturity level. Addition-

ally, this benchmark could serve as a certification of software quality, which companies’ could

show to their customers.

Finally, the concept proposed within this thesis is tailored to and evaluated with classical IEC

61131-3 control software and discrete processes. Generally, it should be applicable to OO IEC

with minor changes, but further investigations are required to derive necessary adaptations of the

concept. The same holds true for the application to control software of continuous processes,

which face different and additional boundary conditions to be considered in the quality assessment.

Thus, additional case studies should be performed to confirm the transferability of the approach

to OO IEC and different process types.

10. Literature

[ABB21] ABB, "Safety Code Analysis (SCA)" [Online] Available:

https://library.e.abb.com/public/3f33689dcd904e41a27e7b5947ca7166/3ADR0104

89_SCA_Read_Me,%203,%20en_US.pdf, [Accessed: 10-05-22], 2021.

[AFV22] Aicher, T., Fottner, J. and Vogel-Heuser, B., "A model-driven engineering design

process for the development of control software for Intralogistics Systems," In: at –

Automatisierungstechnik, vol. 70, no. 2, pp. 164–180, 2022.

[Alv⁺12] Alvarez, M. L., Burgos, A., Sarachaga, I., Estévez, E. and Marcos, M., "GEMMA

based approach for generating PLCopen Automation projects," In: IFAC Procee-

dings Volumes, vol. 45, no. 4, pp. 230–235, 2012.

[An⁺21] An, Y., Qin, F., Chen, B., Simon, R. and Wu, H., "OntoPLC: Semantic Model of

PLC Programs for Code Exchange and Software Reuse," In: IEEE Transactions on

Industrial Informatics (TII), vol. 17, no. 3, pp. 1702–1711, 2021.

[Ang⁺13] Angerer, F., Prähofer, H., Ramler, R. and Grillenberger, F., "Points-to analysis of

IEC 61131-3 programs: Implementation and application," In: IEEE 18th Conference

on Emerging Technologies & Factory Automation (ETFA): IEEE, pp. 1–8, 2013.

[Ant⁺14] Antkiewicz, M., Ji, W., Berger, T., Czarnecki, K., Schmorleiz, T., Lämmel, R., Stăn-

ciulescu, Ș., Wąsowski, A. and Schaefer, I., "Flexible product line engineering with

a virtual platform," In: Pankaj Jalote, Lionel Briand and André van der Hoek (Eds.):

Companion Proceedings of the 36th International Conference on Software Engine-

ering (ICSE). New York, NY, USA: ACM, pp. 532–535, 2014.

[Arm⁺18] Armentia, A., Estévez, E., Orive, D. and Marcos, M., "A Tool Suite for Automatic

Generation of Modular Machine Automation Projects," In: IEEE 16th International

Conference on Industrial Informatics (INDIN): IEEE, pp. 553–558, 2018.

[Bau⁺04] Bauer, N., Huuck, R., Lukoschus, B. and Engell, S., "A Unifying Semantics for

Sequential Function Charts," In: David Hutchison, Takeo Kanade, Josef Kittler, Jon

M. Kleinberg, Friedemann Mattern, John C. Mitchell et al. (Eds.): Integration of

Software Specification Techniques for Applications in Engineering, Bd. 3147. Ber-

lin, Heidelberg: Springer Berlin Heidelberg (Lecture Notes in Computer Science),

pp. 400–418, 2004.

[BBF15] Barbieri, G., Battilani, N. and Fantuzzi, C., "A PackML-based Design Pattern for

Modular PLC Code," In: IFAC-PapersOnLine, vol. 48, no. 10, pp. 178–183, 2015.

[BBK12] Biallas, S., Brauer, J. and Kowalewski, S., "Arcade.PLC: a verification platform for

programmable logic controllers," In: Michael Goedicke, Tim Menzies and Motoshi

Saeki (Eds.): 27th IEEE/ACM International Conference on Automated Software En-

gineering (ASE). New York, NY, USA: ACM Press, pp. 338, 2012.

156 10. Literature

[BD02] Bansiya, J. and Davis, C. G., "A hierarchical model for object-oriented design qua-

lity assessment," In: IEEE Transactions on Software Engineering, vol. 28, no. 1, pp.

4–17, 2002.

[Bec21] Beckhoff Automation GmbH & Co. KG, "TE1200 - TwinCAT 3 | PLC Static Ana-

lysis (Manual), Version: 2.5" [Online] Available: https://download.beck-

hoff.com/download/document/automation/twincat3/TE1200_TC3_PLC_Sta-

tic_Analysis_EN.pdf, [Accessed: 09-05-22], 2021.

[Bec22] Beckhoff Information System, "Code analysis (Static Analysis)" [Online]

Available: https://infosys.beckhoff.com/english.php?content=./con-

tent/1033/tc3_plc_intro/2527107467.html&id=, [Accessed: 09-05-22], 2022.

[Ber19] Berscheit, A., "Analyse und Dokumentation der Variabilität in historisch gewachse-

nen Steuerungssoftwareprojekten aus der Intralogistik [Analysis and Documenta-

tion of Variability in Historically Grown Control Software Projects from Intralogis-

tics]," Bachelor's Thesis, Technical University of Munich, 2019.

[BF03] Bonfè, M. and Fantuzzi, C., "Design and verification of industrial logic controllers

with UML and statecharts," In: IEEE Conference on Control Applications (CCA):

IEEE, pp. 1029–1034, 2003.

[BFS13] Bonfè, M., Fantuzzi, C. and Secchi, C., "Design patterns for model-based automa-

tion software design and implementation," In: Control Engineering Practice (CEP),

vol. 21, no. 11, pp. 1608–1619, 2013.

[BG21] Barbieri, G. and Gutierrez, D. A., "A GEMMA-GRAFCET Methodology to enable

Digital Twin based on Real-Time Coupling," In: Procedia Computer Science, vol.

180, pp. 13–23, 2021.

[Bia16] Biallas, S., "Verification of programmable logic controller code using model che-

cking and static analysis," Dissertation, RWTH Aachen University, Aachen, 2016.

[Bif⁺15] Biffl, S., Maetzler, E., Wimmer, M., Lueder, A. and Schmidt, N., "Linking and ver-

sioning support for AutomationML: A model-driven engineering perspective," In:

IEEE 13th International Conference on Industrial Informatics (INDIN). Piscata-

way, NJ: IEEE, pp. 499–506, 2015.

[Bou⁺17] Bougouffa, S., Diehm, S., Schwarz, M. and Vogel-Heuser, B., "Scalable cloud ba-

sed semantic code analysis to support continuous integration of industrial PLC

code," In: IEEE 15th International Conference on Industrial Informatics (INDIN):

IEEE, pp. 621–627, 2017.

[Bou⁺19] Bougouffa, S., Vogel-Heuser, B., Fischer, J., Schaefer, I. and Li, H., "Visualization

of Variability Analysis of Control Software From Industrial Automation Systems,"

In: IEEE International Conference on Systems, Man and Cybernetics (SMC), pp.

3357–3364, 2019.

10. Literature 157

[Can⁺21] Canedo, A., Goyal, P., Di Huang, Pandey, A. and Quiros, G., "ArduCode: Predictive

Framework for Automation Engineering," In: IEEE Transactions on Automation

Science and Engineering (TASE), vol. 18, no. 3, pp. 1417–1428, 2021.

[Cas⁺21] Castillo, J. M., Barbieri, G., Mejia, A., Hernandez, J. D. and Garces, K., "A

GEMMA-GRAFCET Generator for the Automation Software of Smart Manufac-

turing Systems," In: Machines, vol. 9, no. 10, pp. 232, 2021.

[CK94] Chidamber, S. R. and Kemerer, C. F., "A metrics suite for object oriented design,"

In: IEEE Transactions on Software Engineering, vol. 20, no. 6, pp. 476–493, 1994.

[CLÅ06] Cengic, G., Ljungkrantz, O. and Åkesson, K., "Formal Modeling of Function Block

Applications Running in IEC 61499 Execution Runtime," In: IEEE Conference on

Emerging Technologies & Factory Automation (ETFA): IEEE, pp. 1269–1276,

2006.

[COD19] CODESYS GmbH - Online Help, "Static Analysis" [Online] Available: https://pro-

duct-help.schneider-electric.com/Machine%20Expert/V1.1/en/LibDevSum-

mary/topics/static_analysis.htm, [Accessed: 01-05-22], 2019.

[COD22] CODESYS GmbH, "CODESYS Static Analysis" [Online] Available:

https://store.codesys.com/en/codesys-static-analysis.html, [Accessed: 01-05-22],

2022.

[CQS22] CQSE GmbH, "Teamscale" [Online] Available:

https://www.cqse.eu/en/teamscale/overview/, [Accessed: 05-06-22], 2022.

[CV17] Capitán, L. and Vogel-Heuser, B., "Metrics for software quality in automated pro-

duction systems as an indicator for technical debt," In: 13th IEEE Conference on

Automation Science and Engineering (CASE): IEEE, pp. 709–716, 2017.

[CW07] Chess, B. and West, J., "Secure programming with static analysis." Upper Saddle

River, NJ: Addison-Wesley (Software security series), 2007.

[Cza98] Czarnecki, K., "Generative Programming. Principles and Techniques of Software

Engineering Based on Automated Configuration and Fragment-Based Component

Models," Dissertation, Technical University of Ilmenau. Department of Computer

Science and Automation, 1998.

[DFS06] Drath, R., Fay, A. and Schmidberger, T., "Computer-aided design and implementa-

tion of interlock control code," In: IEEE Conference on Computer Aided Control

System Design, IEEE International Conference on Control Applications, IEEE In-

ternational Symposium on Intelligent Control: IEEE, pp. 2653–2658, 2006.

[DP12] Dondey, H. and Peron, C., "Software Qualimetry at Schneider Electric: a field back-

ground," In: Proceedings of the 6th European Congress on Embedded Real Time

Software and Systems (ERTS), 2012.

158 10. Literature

[DZ21] Dorninger, B. and Ziebermayr, T., "Software quality assurance in mechanical and

plant engineering: automated assessment of the technical quality of PLC code [Soft-

ware-Qualitätssicherung im Maschinen- und Anlagenbau: automatisierte Bewer-

tung der technischen Qualität von SPS-Code]," In: e&i (Elektrotechnik und Infor-

mationstechnik), 2021.

[EDL07] Engell, S., Dandachi, A. and Lohmann, S., "Impact of Complexity on Logic Con-

troller Design," In: IFAC Proceedings Volumes, vol. 40, no. 6, pp. 121–126, 2007.

[EMO07] Estévez, E., Marcos, M. and Orive, D., "Automatic generation of PLC automation

projects from component-based models," In: The International Journal of Advanced

Manufacturing Technology (JAMT), vol. 35, no. 5-6, pp. 527–540, 2007.

[EN08] Emanuelsson, P. and Nilsson, U., "A Comparative Study of Industrial Static Analy-

sis Tools," In: Electronic Notes in Theoretical Computer Science, vol. 217, pp. 5–

21, 2008.

[Fad⁺22] Fadhlillah, H. S., Feichtinger, K., Meixner, K., Sonnleithner, L., Rabiser, R. and

Zoitl, A., "Towards Multidisciplinary Delta-Oriented Variability Management in

Cyber-Physical Production Systems," In: Paolo Arcaini, Xavier Devroey and A-

lessandro Fantechi (Eds.): Proceedings of the 16th International Working Con-

ference on Variability Modelling of Software-Intensive Systems. New York, NY,

USA: ACM, pp. 1–10, 2022.

[Fag76] Fagan, M. E., "Design and code inspections to reduce errors in program develop-

ment," In: IBM Systems Journal, vol. 15, no. 3, pp. 182–211, 1976.

[Fah⁺19] Fahimipirehgalin, M., Fischer, J., Bougouffa, S. and Vogel-Heuser, B., "Similarity

Analysis of Control Software Using Graph Mining," In: IEEE 17th International

Conference on Industrial Informatics (INDIN): IEEE, pp. 508–515, 2019.

[Fan⁺15] Fang, M., Leyh, G., Doerr, J., Elsner, C. and Zhao, J., "Towards model-based deri-

vation of systems in the industrial automation domain," In: Douglas C. Schmidt

(Eds.): Proceedings of the 19th International Conference on Software Product Line.

New York, NY: ACM, pp. 283–292, 2015.

[Fel⁺16a] Feldmann, S., Hauer, F., Ulewicz, S. and Vogel-Heuser, B., "Analysis framework

for evaluating PLC software: An application of Semantic Web technologies," In:

IEEE 25th International Symposium on Industrial Electronics (ISIE): IEEE, pp.

1048–1054, 2016.

[Fel⁺16b] Feldmann, S., Ulewicz, S., Diehm, S. and Vogel-Heuser, B., "Structural code ana-

lysis - Analysis framework using semantic web technologies [Strukturelle Codean-

alyse: Analyseframework mittels Semantic-Web-Technologien]," In: atp magazin,

vol. 58, no. 09, 42-51, 2016.

[Fer⁺15] Ferreira, R., Blanchard, S., Gomes, P. and Vestergard, H., "Consolidation of the

control system of a chemical polishing machine for superconducting RF cavities

10. Literature 159

using the UNICOS-CPC framework," In: IEEE International Conference on Auto-

mation Science and Engineering (CASE): IEEE, pp. 1471–1476, 2015.

[Fis⁺14] Fischer, S., Linsbauer, L., Lopez-Herrejon, R. E. and Egyed, A., "Enhancing Clone-

and-Own with Systematic Reuse for Developing Software Variants," In: IEEE In-

ternational Conference on Software Maintenance and Evolution (ICSME): IEEE,

pp. 391–400, 2014.

[Fis⁺15] Fischer, S., Linsbauer, L., Lopez-Herrejon, R. E. and Egyed, A., "The ECCO Tool:

Extraction and Composition for Clone-and-Own," In: 2nd ACM International Con-

ference on Mobile Software Engineering and Systems (MOBILESoft): IEEE, pp.

665–668, 2015.

[Fis⁺18] Fischer, J., Bougouffa, S., Schlie, A., Schaefer, I. and Vogel-Heuser, B., "A Quali-

tative Study of Variability Management of Control Software for Industrial Automa-

tion Systems," In: IEEE International Conference on Software Maintenance and

Evolution (ICSME): IEEE, pp. 615–624, 2018.

[Fis⁺20a] Fischer, J., Vogel-Heuser, B., Wilch, J., Loch, F., Land, K. and Schaefer, I., "Vari-

ability Visualization of IEC 61131-3 Legacy Software for Planned Reuse," In: IEEE

International Conference on Systems, Man, and Cybernetics (SMC): IEEE, pp.

3760–3767, 2020.

[Fis⁺20b] Fischer, J., Vogel-Heuser, B., Haben, F. and Schaefer, I., "Reengineering Workflow

for Planned Reuse of IEC 61131-3 Legacy Software," In: IEEE International Con-

ference on Industrial Engineering and Engineering Management (IEEM): IEEE,

pp. 1126–1130, 2020.

[Fis⁺20c] Fischer, J., Lieberoth-Leden, C., Fottner, J. and Vogel-Heuser, B., "Design, Appli-

cation, and Evaluation of a Multiagent System in the Logistics Domain," In: IEEE

Transactions on Automation Science and Engineering (TASE), vol. 17, no. 3, pp.

1283–1296, 2020.

[Fis⁺21a] Fischer, J., Vogel-Heuser, B., Huber, C., Felger, M. and Bengel, M., "Reuse Asses-

sment of IEC 61131-3 Control Software Modules Using Metrics – An Industrial

Case Study," In: IEEE 19th International Conference on Industrial Informatics (IN-

DIN): IEEE, pp. 1–8, 2021.

[Fis⁺21b] Fischer, J., Vogel-Heuser, B., Schneider, H., Langer, N., Felger, M. and Bengel, M.,

"Measuring the Overall Complexity of Graphical and Textual IEC 61131-3 Control

Software," In: IEEE Robotics and Automation Letters (RAL), vol. 6, no. 3, pp. 5784–

5791, 2021.

[Fis⁺21c] Fischer, J., Vogel-Heuser, B., Berscheit, A. and Parigger, S., "Comparison of Two

Concepts for Planned Reuse of Variant-rich IEC 61131-3-based Control Software,"

In: IEEE International Conference on Industrial Engineering and Engineering Ma-

nagement (IEEM), 713–720, 2021.

160 10. Literature

[Fis⁺22a] Fischer, J., Neumann, E.-M., Wilch, J., Obermeier, M., Kellhammer, T. and Vogel-

Heuser, B., "Preliminary Evaluation Results of Static Code Analysis of Control

Software in an Industrial Context" [Online] Available: https://media-

tum.ub.tum.de/doc/1658416/1658416.pdf, [Accessed: 11-05-22], 2022.

[Fis⁺22b] Fischer, J., Vogel-Heuser, B., Haben, F., Beuggert, L. and Neumann, E.-M., "To-

wards Configurable Conformance Checks of PLC Software with Company-specific

Guidelines," In: 5th IEEE International Conference on Industrial Cyber-Physical

Systems (ICPS): IEEE, pp. 1–8, 2022.

[Fol⁺11] Follmer, M., Hehenberger, P., Punz, S., Rosen, R. and Zeman, K., "Approach for

the Creation of Mechatronic System Models," In: Proceedings of the 18th Interna-

tional Conference on Engineering Design (ICED), pp. 258–267, 2011.

[FSB11] Fantuzzi, C., Secchi, C. and Bonfè, M., "A Design Pattern for translating UML soft-

ware models into IEC 61131-3 Programming Languages," In: IFAC Proceedings

Volumes, vol. 44, no. 1, pp. 9158–9163, 2011.

[Fuc⁺14] Fuchs, J., Feldmann, S., Legat, C. and Vogel-Heuser, B., "Identification of Design

Patterns for IEC 61131-3 in Machine and Plant Manufacturing," In: IFAC Procee-

dings Volumes, vol. 47, no. 3, pp. 6092–6097, 2014.

[FV17] Feldmann, S. and Vogel-Heuser, B., "Interdisciplinary product lines to support the

engineering in the machine manufacturing domain," In: International Journal of

Production Research, vol. 55, no. 13, pp. 3701–3714, 2017.

[FVF15] Fischer, J., Vogel-Heuser, B. and Friedrich, D., "Configuration of PLC software for

automated warehouses based on reusable components- an industrial case study," In:

IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA):

IEEE, pp. 1–7, 2015.

[Gam⁺95] Gamma, E., Helm, R., Johnson, R. and Vlissides, J., "Design Patterns. Elements of

Reusable Object-Oriented Software." Reading, Mass.: Addison-Wesley (Addison-

Wesley professional computing series), 1995.

[GC15] Gîrba, T. and Chiş, A., "Pervasive software visualizations (keynote)," In: IEEE 3rd

Working Conference on Software Visualization (VISSOFT): IEEE, pp. 1–5, 2015.

[GEP22a] GEPRIS - projects funded by German Research Association (DFG), "Reverse En-

gineering Design of Software Product Lines for Automation Technology (RED

SPLAT)" [Online] Available: https://gepris.dfg.de/gepris/projekt/335427442?lan-

guage=en, [Accessed: 15-05-22], 2022.

[GEP22b] GEPRIS - projects funded by German Research Association (DFG), "Increased fle-

xibility for heterogeneously structured material flow systems enabled by intelligent

software agents controlling self-configuring conveyors" [Online] Available:

https://gepris.dfg.de/gepris/projekt/251665026?language=en, [Accessed: 15-05-

22], 2022.

10. Literature 161

[Gha06] Gharieb, W., "Software Quality in Ladder Programming," In: International Con-

ference on Computer Engineering and Systems: IEEE, pp. 150–154, 2006.

[GMP] European Commission, "EU Guidelines for Good Manufacturing Practice for Me-

dicinal Products for Human and Veterinary Use: GMP" [Online] Available:

https://ec.europa.eu/health/medicinal-products/eudralex/eudralex-volume-4_en,

[Accessed: 07-03-22].

[Gup⁺14] Gupta, S., Singh, H. K., Venkatasubramanyam, R. D. and Uppili, U., "SCQAM: a

scalable structured code quality assessment method for industrial software," In:

Chanchal K. Roy, Andrew Begel and Leon Moonen (Eds.): Proceedings of the 22nd

International Conference on Program Comprehension - ICPC 2014. New York,

New York, USA: ACM Press, pp. 244–252, 2014.

[GWF08] Güttel, K., Weber, P. and Fay, A., "Automatic generation of PLC code beyond the

nominal sequence," In: IEEE International Conference on Emerging Technologies

& Factory Automation (ETFA): IEEE, pp. 1277–1284, 2008.

[Hal77] Halstead, M. H., "Elements of software science." New York, NY, USA: Elsevier

Science Inc. (Operating and programming systems series), 1977.

[Han15] Hanssen, D. Håkon, "Programmable logic controllers. A practical approach to IEC

61131-3 using CODESYS." Chichester, West Sussex: Wiley, 2015.

[Hin⁺18] Hinterreiter, D., Prähofer, H., Linsbauer, L., Grünbacher, P., Reisinger, F. and

Egyed, A., "Feature-Oriented Evolution of Automation Software Systems in Indust-

rial Software Ecosystems," In: IEEE 23rd International Conference on Emerging

Technologies & Factory Automation (ETFA): IEEE, pp. 107–114, 2018.

[HK81] Henry, S. and Kafura, D., "Software Structure Metrics Based on Information Flow,"

In: IEEE Transactions on Software Engineering, vol. SE-7, no. 5, pp. 510–518,

1981.

[Hom⁺11] ten Hompel, M., Nettsträter, A., Feldhorst, S. and Schier, A., "Engineering of Mo-

dular Material Flow Systems in the Internet of Things [Engineering von modularen

Förderanlagen im Internet der Dinge]," In: at – Automatisierungstechnik, vol. 59,

no. 4, pp. 248–256, 2011.

[Hub20] Huber, C., "Analysis of the version history of an IEC 61131-3-based control project

with special consideration of modularity and criteria for change evaluation," Ba-

chelor's Thesis, Technical University of Munich, 2020.

[HVA16] Harrison, R., Vera, D. and Ahmad, B., "Engineering Methods and Tools for Cyber–

Physical Automation Systems," In: Proc. IEEE, vol. 104, no. 5, pp. 973–985, 2016.

[IEC61131-10] IEC 61131-10, 2019, "Programmable controllers - Part 10: PLC open XML

exchange format".

[IEC61131-3] IEC 61131-3, 2013, "Programmable controllers - Part 3: Programming languages".

162 10. Literature

[IEC61131-8] IEC 61131-8, 2017, "Industrial-process measurement and control - Programmable

controllers - Part 8: Guidelines for the application and implementation of program-

ming languages".

[IEC61499] IEC 61499-1, 2013, "Function blocks - Part 1: Architecture".

[IEC61512] IEC 61512, 1997, "Batch control - Part 1: Models and terminology".

[IEC81346] IEC 81346-2, 2019, "Industrial systems, installations and equipment and industrial

products - Structuring principles and reference designations - Part 2: Classification

of objects and codes for classes".

[IEEE1028] IEEE SA 1028, 2008, "IEEE Standard for Software Reviews and Audits".

[IEEE1061] IEEE Std 1061, 1998, "IEEE Standard for a Software Quality Metrics Methodo-

logy".

[IEEE610] IEEE Std 610, 1990, "IEEE Standard Glossary of Software Engineering Termino-

logy".

[Ins22] Institute of Automation and Information Systems, "Advanced systems engineering

for control software as a prerequisite for flexible, adaptive cyberphysical production

systems (advacode)" [Online] Available: https://www.mec.ed.tum.de/ais/for-

schung/aktuelle-forschungsprojekte/advacode/, [Accessed: 28-04-22], 2022.

[ISA88] ANSI/ISA 88.01, 1995, "Batch Control, Part 1: Models and Terminology".

[ISO13485] ISO 13485, 2016, "Medical devices - Quality management systems - Requirements

for regulatory purposes".

[ISO25010] ISO/IEC 25010, 2011, "Systems and software engineering - Systems and software

Quality Requirements and Evaluation (SQuaRE) - System and software quality mo-

dels".

[ISO25023] ISO/IEC 25023, 2016, "Systems and software engineering - Systems and software

Quality Requirements and Evaluation (SQuaRE) - Measurement of system and soft-

ware product quality".

[ISO42010] ISO/IEC/IEEE 42010, 2011, "Systems and Software Engineering – Architecture

Description".

[Jab⁺15] Jabangwe, R., Börstler, J., Šmite, D. and Wohlin, C., "Empirical evidence on the

link between object-oriented measures and external quality attributes: a systematic

literature review," In: Empirical Software Engineering, vol. 20, no. 3, pp. 640–693,

2015.

[Jet⁺13a] Jetley, R., Rath, A., Aparajithan, V., Kumar, D., Prasad, V. and Ramaswamy, S.,

"An approach for comparison of IEC 61131-3 graphical programs," In: IEEE 18th

Conference on Emerging Technologies & Factory Automation (ETFA): IEEE, pp.

1–8, 2013.

10. Literature 163

[Jet⁺13b] Jetley, R., Nair, A., Chandrasekaran, P. and Dubey, A., "Applying software engine-

ering practices for development of industrial automation applications," In: 11th

IEEE International Conference on Industrial Informatics (INDIN): IEEE, pp. 558–

563, 2013.

[Jet22] JetBrains s.r.o., "ReSharper - The Visual Studio Extension for.NET Developers"

[Online] Available: https://www.jetbrains.com/resharper/, [Accessed: 01-05-22],

2022.

[Jna⁺20] Jnanamurthy, H. K., Jetley, R., Henskens, F., Paul, D., Wallis, M. and Sudarsan, S.

D., "Multi-level analysis of IEC 61131-3 languages to detect clones," In: Internati-

onal Journal of Computer Applications in Technology (IJCAT), vol. 63, no. 4, pp.

286, 2020.

[Joh77] Johnson, S. C., "Lint, a C Program Checker. techn. report 65," Published by: Bell

Laboratories, 1977.

[Jul⁺17] Julius, R., Schürenberg, M., Schumacher, F. and Fay, A., "Transformation of

GRAFCET to PLC code including hierarchical structures," In: Control Engineering

Practice, vol. 64, pp. 173–194, 2017.

[JYL17] Jung, S., Yoo, J. and Lee, Y.-J., "A PLC platform-independent structural analysis

on FBD programs for digital reactor protection systems," In: Annals of Nuclear

Energy, vol. 103, pp. 454–469, 2017.

[KFV04] Katzke, U., Fischer, K. and Vogel-Heuser, B., "Development and Evaluation of a

Model for Modular Automation in Plant Manufacturing," In: 10th International

Conference on Information Systems Analysis and Synthesis (CITSA), pp. 15–20,

2004.

[Kir⁺16] Kirchmayr, W., Moser, M., Nocke, L., Pichler, J. and Tober, R., "Integration of

Static and Dynamic Code Analysis for Understanding Legacy Source Code," In:

IEEE International Conference on Software Maintenance and Evolution (ICSME):

IEEE, pp. 543–552, 2016.

[KJS16] Kumar, L., Jetley, R. and Sureka, A., "Source code metrics for programmable logic

controller (PLC) ladder diagram (LD) visual programming language," In:

IEEE/ACM 7th International Workshop on Emerging Trends in Software Metrics

(WETSoM), pp. 15–21, 2016.

[KKV18] Koltun, G., Kolter, M. and Vogel-Heuser, B., "Automated Generation of Modular

PLC Control Software from P&ID Diagrams in Process Industry," In: IEEE Inter-

national Systems Engineering Symposium (ISSE): IEEE, pp. 1–8, 2018.

[Koz⁺20] Koziolek, H., Burger, A., Platenius-Mohr, M. and Jetley, R., "A classification

framework for automated control code generation in industrial automation," In:

Journal of Systems and Software (JSS), vol. 166, pp. 1–23, 2020.

164 10. Literature

[KP14] Klammer, C. and Pichler, J., "Towards tool support for analyzing legacy systems in

technical domains," In: IEEE Conference on Software Maintenance, Reengineering,

and Reverse Engineering (CSMR-WCRE): IEEE, pp. 371–374, 2014.

[KS13] Kaur, N. and Singh, A., "A Complexity Metric for Black Box Components," In:

International Journal of Soft Computing and Engineering (IJSCE), vol. 3, no. 2,

179-184, 2013.

[KS17] Kumar, L. and Sureka, A., "Using Structured Text Source Code Metrics and Artifi-

cial Neural Networks to Predict Change Proneness at Code Tab and Program Orga-

nization Level," In: 10th Innovations in Software Engineering Conference (ISEC).

New York, NY, USA: ACM Press, pp. 172–180, 2017.

[KS19] Kazala, R. and Straczynski, P., "The Most Important Open Technologies for Design

of Cost Efficient Automation Systems," In: IFAC-PapersOnLine, vol. 52, no. 25,

pp. 391–396, 2019.

[LÅ07] Ljungkrantz, O. and Åkesson, K., "A Study of Industrial Logic Control Program-

ming using Library Components," In: IEEE International Conference on Automa-

tion Science and Engineering (CASE): IEEE, pp. 117–122, 2007.

[Lad⁺13] Ladiges, J., Fay, A., Haubeck, C. and Lamersdorf, W., "Operationalized definitions

of non-functional requirements on automated production facilities to measure evo-

lution effects with an automation system," In: IEEE 18th Conference on Emerging

Technologies & Factory Automation (ETFA): IEEE, pp. 1–6, 2013.

[Lad⁺18] Ladiges, J., Fay, A., Holm, T., Hempen, U., Urbas, L., Obst, M. and Albers, T.,

"Integration of Modular Process Units Into Process Control Systems," In: IEEE

Transactions on Industry Applications, vol. 54, no. 2, pp. 1870–1880, 2018.

[LC94] Lake, A. and Cook, C. R., "Use of Factor Analysis to Develop OOP Software Com-

plexity Metrics," Published by: Oregon State University, 1994.

[LG99] Lauber, R. and Göhner, P., "Process Automation 1 [Prozessautomatisierung 1]."

Berlin, Heidelberg: Springer Berlin Heidelberg, 1999.

[LH01] Lee, J.-S. and Hsu, P.-L., "A new approach to evaluate ladder logic diagrams and

Petri nets via the IF-THEN transformation," In: IEEE International Conference on

Systems, Man & Cybernetics: IEEE, pp. 2711–2716, 2001.

[Lie22] Lieberoth-Leden, C., "Steuerungskonzept für die Berücksichtigung von gegenseiti-

gen Abhängigkeiten zwischen Transporten in adaptiven automatisierten Material-

flusssystemen," Dissertation, Technical University of Munich. Materials Handling,

Material Flow, Logistics (fml), 2022.

[log22a] logi.cals GmbH, "Validating an application" [Online] Available: https://help.logi-

cals.com/lco3docu/latest/user-documentation/en/referenzdokumentation/anwen-

dung-validieren, [Accessed: 09-05-22], 2022.

10. Literature 165

[log22b] logi.cals GmbH, "Rules for the validation of an application" [Online] Available:

https://help.logicals.com/lco3docu/latest/user-documentation/en/referenzdokumen-

tation/anwendung-validieren/regeln-fuer-das-validieren-einer-anwendung, [Acces-

sed: 09-05-22], 2022.

[Lop⁺21] Lopez-Miguel, I. D., Adiego, B. F., Tournier, J.-C., Viñuela, E. B. and Rodriguez-

Aguilar, J. A., "Simplification of numeric variables for PLC model checking," In:

S. Arun-Kumar, Dominique Mery, Indranil Saha and Lijun Zhang (Eds.): Procee-

dings of the 19th ACM-IEEE International Conference on Formal Methods and Mo-

dels for System Design. New York, NY, USA: ACM, pp. 10–20, 2021.

[Lou06] Louridas, P., "Static code analysis," In: IEEE Softw., vol. 23, no. 4, pp. 58–61, 2006.

[LT03] Lucas, M. R. and Tilbury, D. M., "A study of current logic design practices in the

automotive manufacturing industry," In: International Journal of Human-Computer

Studies, vol. 59, no. 5, pp. 725–753, 2003.

[LT05] Lucas, M. R. and Tilbury, D. M., "Methods of measuring the size and complexity

of PLC programs in different logic control design methodologies," In: The Interna-

tional Journal of Advanced Manufacturing Technology (JAMT), vol. 26, no. 5-6, pp.

436–447, 2005.

[LVD06] LaToza, T. D., Venolia, G. and DeLine, R., "Maintaining mental models," In: Leon

J. Osterweil, Dieter Rombach and Mary Lou Soffa (Eds.): Proceeding of the 28th

International Conference on Software Engineering - ICSE '06. New York, New

York, USA: ACM Press, pp. 492–501, 2006.

[Lyt⁺20] Lytra, I., Carrillo, C., Capilla, R. and Zdun, U., "Quality attributes use in architec-

ture design decision methods: research and practice," In: Computing, vol. 102, no.

2, pp. 551–572, 2020.

[Mah14] Mahler, C., "Automatisierungsmodule für ein funktionsorientiertes Automatisie-

rungsengineering," Dissertation, Helmut-Schmidt-Universität, Hamburg. Institut

für Automatisierungstechnik, 2014.

[Man⁺18] Mandal, A., Mohan, D., Jetley, R., Nair, S. and D'Souza, M., "A Generic Static

Analysis Framework for Domain-specific Languages," In: IEEE 23rd International

Conference on Emerging Technologies & Factory Automation (ETFA): IEEE, pp.

27–34, 2018.

[Math+22] MathWorks, Inc., "Simulink PLC Coder" [Online] Available:

https://www.mathworks.com/products/simulink-plc-coder.html, [Accessed: 04-04-

22].

[McC76] McCabe, T. J., "A Complexity Measure," In: IEEE Transactions on Software Engi-

neering, vol. SE-2, no. 4, pp. 308–320, 1976.

[ME20] Muslija, A. and Enoiu, E. P., "On the Measurement of Software Complexity for

PLC Industrial Control Systems using TIQVA," In: 35th ACM/SIGAPP Symposium

on Applied Computing, pp. 1556–1565, 2020.

166 10. Literature

[Mey97] Meyer, B., "Object-Oriented Software Construction. Second Edition." New York:

Prentice hall, 1997.

[MGB22] Mejia, A., Guarnizo, A. F. and Barbieri, G., "Assessment of the PLC Code generated

with the GEMMA-GRAFCET Methodology," In: Procedia Computer Science, vol.

200, pp. 699–709, 2022.

[MJG11a] Maga, C. R., Jazdi, N. and Göhner, P., "Requirements on engineering tools for in-

creasing reuse in industrial automation," In: IEEE Conference on Emerging Tech-

nologies & Factory Automation (ETFA): IEEE, pp. 1–7, 2011.

[MJG11b] Maga, C. R., Jazdi, N. and Göhner, P., "Reusable Models in Industrial Automation:

Experiences in Defining Appropriate Levels of Granularity," In: IFAC Proceedings

Volumes, vol. 44, no. 1, pp. 9145–9150, 2011.

[MML15] Minelli, R., Mocci, A. and Lanza, M., "I Know What You Did Last Summer - An

Investigation of How Developers Spend Their Time," In: IEEE 23rd International

Conference on Program Comprehension: IEEE, pp. 25–35, 2015.

[MT00] Medvidovic, N. and Taylor, R. N., "A classification and comparison framework for

software architecture description languages," In: IEEE Transactions on Software

Engineering, vol. 26, no. 1, pp. 70–93, 2000.

[Nai⁺15] Nair, S., Jetley, R., Nair, A. and Hauck-Stattelmann, S., "A static code analysis tool

for control system software," In: IEEE 22nd International Conference on Software

Analysis, Evolution, and Reengineering (SANER): IEEE, pp. 459–463, 2015.

[Nai12] Nair, A., "Product metrics for IEC 61131-3 languages," In: IEEE 17th International

Conference on Emerging Technologies & Factory Automation (ETFA): IEEE, pp.

1–8, 2012.

[NDG05] Nierstrasz, O., Ducasse, S. and Gǐrba, T., "The Story of Moose: an Agilke Reengi-

neering Environment," In: ACM SIGSOFT Software Engineering Notes, vol. 30, no.

5, pp. 1–10, 2005.

[Neu⁺20a] Neumann, E.-M., Vogel-Heuser, B., Fischer, J., Keller, J., Weis, I., Diehm, S.,

Schwarz, M., Englert, T., Stoll, M. and Zell, U., "Identifying Runtime Issues in Ob-

ject-Oriented IEC 61131-3-Compliant Control Software using Metrics," In: The

46th Annual Conference of the IEEE Industrial Electronics Society (IECON): IEEE,

pp. 259–266, 2020.

[Neu⁺20b] Neumann, E.-M., Fischer, J., Schneider, H., Vogel-Heuser, B. and Bengel, M.,

"Metric-based determination of maturity of IEC 61131-3-compliant control soft-

ware (Metrikbasierte Reifebestimmung von IEC 61131-3 konformer Steuerungs-

software)," In: VDI Berichte AUTOMATION 2020, pp. 417–428, 2020.

[Neu⁺20c] Neumann, E.-M., Vogel-Heuser, B., Fischer, J., Ocker, F., Diehm, S. and Schwarz,

M., "Formalization of Design Patterns and Their Automatic Identification in PLC

Software for Architecture Assessment," In: IFAC World Congress, 7819-7826,

2020.

10. Literature 167

[Neu⁺22] Neumann, E.-M., Vogel-Heuser, B., Fischer, J., Diehm, S., Schwarz, M. and Eng-

lert, T., "Automation software architectures in automated production systems: an

industrial case study in the packaging machine industry," In: Production Enginee-

ring (PERE), vol. 16, pp. 847–856, 2022.

[Nie12] Nierstrasz, O., "Agile software assessment with Moose," In: ACM SIGSOFT Soft-

ware Engineering Notes, vol. 37, no. 3, pp. 1–5, 2012.

[NJ16] Nair, S. and Jetley, R., "Solving circular dependencies in industrial automation pro-

grams," In: IEEE International Conference on Industrial Informatics (INDIN):

IEEE, pp. 397–404, 2016.

[NNB19] Nachtigall, M., Nguyen Quang Do, L. and Bodden, E., "Explaining Static Analysis

- A Perspective," In: 34th IEEE/ACM International Conference on Automated Soft-

ware Engineering Workshop (ASEW): IEEE, pp. 29–32, 2019.

[NVO15] Nedved, M., Vrba, P. and Obitko, M., "Tool for visual difference display of pro-

grams in IEC 61131-3 ladder diagrams," In: IEEE International Conference on In-

dustrial Technology (ICIT): IEEE, pp. 2994–2999, 2015.

[Obe⁺21] Oberlehner, M., Sonnleithner, L., Wiesmayr, B. and Zoitl, A., "Catalog of Refacto-

ring Operations for IEC 61499," In: IEEE 26th International Conference on

Emerging Technologies & Factory Automation (ETFA): IEEE, pp. 1–4, 2021.

[Obs21] Obster, M., "Unterstützung der SPS-Programmierung durch statische Analyse wäh-

rend der Programmeingabe," Dissertation, RWTH Aachen University, 2021.

[OK17] Obster, M. and Kowalewski, S., "A live static code analysis architecture for PLC

software," In: 22nd IEEE International Conference on Emerging Technologies &

Factory Automation (ETFA): IEEE, pp. 1–4, 2017.

[OSCAT] Tobias Mühlbauer, "Open Source Community for Automation Technology (OS-

CAT)" [Online] Available: http://www.oscat.de/, [Accessed: 10-03-22].

[Ove20] OverOps, "2020 Report: The State of Software Quality," Published by: OverOps,

2020.

[PackML] Organization for Machine Automation and Control (OMAC), 2016, "PackML Unit

/ Machine Implementation Guide Part 1: PackML Interface State Manager".

[PBv05] Pohl, K., Böckle, G. and van der Linden, F., "Software Product Line Engineering."

Berlin, Heidelberg: Springer Berlin Heidelberg, 2005.

[PKK12] Preschern, C., Kajtazovic, N. and Kreiner, C., "Applying patterns to model-driven

development of automation systems," In: Andreas Fiesser and Christian Kohls

(Eds.): Proceedings of the 17th European Conference on Pattern Languages of Pro-

grams - EuroPLoP '12. New York, New York, USA: ACM Press, pp. 1–10, 2012.

168 10. Literature

[PKS18] Pavlovskyi, Y., Kennel, M. and Schmucker, U., "Template-Based Generation of

PLC Software from Plant Models Using Graph Representation," In: 25th Internati-

onal Conference on Mechatronics and Machine Vision in Practice (M2VIP): IEEE,

pp. 1–8, 2018.

[PLC16] PLCopen Software Construction Guidelines - Task Force Coding Guidelines,

"Coding Guidelines V.1.0," Published by: PLCopen, 2016.

[PLC21] PLCopen Promotional Committee 2 – Training, "Guidelines for usage of Object-

Oriented Programming. Version 1.0," Published by: PLCopen, 2021.

[PLC22] PLCopen, "Downloads - Guidelines Category" [Online] Available: https://plco-

pen.org/downloads?field_category_target_id=164, [Accessed: 05-06-22], 2022.

[Plö⁺08] Plösch, R., Gruber, H., Hentschel, A., Körner, C., Pomberger, G., Schiffer, S., Saft,

M. and Storck, S., "The EMISQ method and its tool support-expert-based evaluation

of internal software quality," In: Innovations in Systems and Software Engineering,

vol. 4, no. 1, pp. 3–15, 2008.

[Plö⁺10] Plösch, R., Gruber, H., Körner, C. and Saft, M., "A Method for Continuous Code

Quality Management Using Static Analysis," In: 7th IEEE International Conference

on the Quality of Information and Communications Technology: IEEE, pp. 370–

375, 2010.

[Prä⁺12] Prähofer, H., Angerer, F., Ramler, R., Lacheiner, H. and Grillenberger, F., "Oppor-

tunities and challenges of static code analysis of IEC 61131-3 programs," In: IEEE

17th International Conference on Emerging Technologies & Factory Automation

(ETFA): IEEE, pp. 1–8, 2012.

[Prä⁺17] Prähofer, H., Angerer, F., Ramler, R. and Grillenberger, F., "Static Code Analysis

of IEC 61131-3 Programs: Comprehensive Tool Support and Experiences from

Large-Scale Industrial Application," In: IEEE Transactions on Industrial Informa-

tics (TII), vol. 13, no. 1, pp. 37–47, 2017.

[Pri⁺16] Priego, R., Armentia, A., Estévez, E. and Marcos, M., "Modeling techniques as ap-

plied to generating tool-independent automation projects," In: at – Automatisie-

rungstechnik, vol. 64, no. 4, 2016.

[PS13] Papakonstantinou, N. and Sierla, S., "Generating an Object Oriented IEC 61131-3

software product line architecture from SysML," In: IEEE 18th Conference on

Emerging Technologies & Factory Automation (ETFA): IEEE, pp. 1–8, 2013.

[Pun⁺22] Puntel Schmidt, P., Fischer, J., Neumann, E.-M., Vogel-Heuser, B., Witte, M., Ben-

gel, M. and Felger, M., "Kriterien für die Strukturanalyse von Steuerungscode: SPS-

Software-Architekturen verstehen und interpretieren," In: atp, vol. 64, no. 3, pp. 60–

69, 2022.

[Rab⁺18] Rabiser, D., Prähofer, H., Grünbacher, P., Petruzelka, M., Eder, K., Angerer, F.,

Kromoser, M. and Grimmer, A., "Multi-purpose, multi-level feature modeling of

10. Literature 169

large-scale industrial software systems," In: Software & Systems Modeling, vol. 17,

no. 3, pp. 913–938, 2018.

[Ram⁺19] Ramler, R., Buchgeher, G., Klammer, C., Pfeiffer, M., Salomon, C., Thaller, H. and

Linsbauer, L., "Benefits and Drawbacks of Representing and Analyzing Source

Code and Software Engineering Artifacts with Graph Databases," In: Dietmar

Winkler, Stefan Biffl and Johannes Bergsmann (Eds.): Software Quality: The Com-

plexity and Challenges of Software Engineering and Software Quality in the Cloud,

Bd. 338. Cham: Springer International Publishing (Lecture Notes in Business Infor-

mation Processing), pp. 125–148, 2019.

[Ram⁺85] Ramamoorthy, C. V., Tsai, W. T., Yamaura, T. and Bhide, A., "Metrics Guided

Methodology," In: IEEE International Computer Software and Applications Con-

ference (COMPSAC): IEEE, pp. 111–120, 1985.

[RBS13] Rattan, D., Bhatia, R. and Singh, M., "Software clone detection: A systematic re-

view," In: Information and Software Technology, vol. 55, no. 7, pp. 1165–1199,

2013.

[Reu⁺19] Reussner, R., Goedicke, M., Hasselbring, W., Vogel-Heuser, B., Keim, J. and Mär-

tin, L., "Managed Software Evolution." Cham: Springer International Publishing,

2019.

[Ros⁺21a] Rosiak, K., Schlie, A., Linsbauer, L., Vogel-Heuser, B. and Schaefer, I., "Custom-

tailored clone detection for IEC 61131-3 programming languages," In: Journal of

Systems and Software (JSS), vol. 182, pp. 1–18, 2021.

[Ros21b] Rosiak, K., "TUBS-ISF / IEC_61131_3_Clone_Detection" [Online] Available:

https://github.com/TUBS-ISF/IEC_61131_3_Clone_Detection, [Accessed: 05-06-

22], 2021.

[Ros97] Rosenberg, J., "Some misconceptions about lines of code," In: Fourth International

Software Metrics Symposium: IEEE Computer Society, pp. 137–142, 1997.

[Ryd79] Ryder, B. G., "Constructing the Call Graph of a Program," In: IEEE Transactions

on Software Engineering, vol. SE-5, no. 3, pp. 216–226, 1979.

[Sam⁺13] Samarthyam, G., Suryanarayana, G., Sharma, T. and Gupta, S., "MIDAS: A design

quality assessment method for industrial software," In: 35th International Con-

ference on Software Engineering (ICSE): IEEE, pp. 911–920, 2013.

[SC21] Sarkar, S. and Chandrika, K. R., "Automatic Control Code Generation from SAMA

Specification," In: IEEE 26th International Conference on Emerging Technologies

& Factory Automation (ETFA): IEEE, pp. 1–4, 2021.

[Sch⁺19] Schlie, A., Rosiak, K., Urbaniak, O., Schaefer, I. and Vogel-Heuser, B., "Analyzing

variability in automation software with the variability analysis toolkit," In: Camille

Salinesi and Tewfik Ziadi (Eds.): Proceedings of the 23rd International Systems

and Software Product Line Conference volume B - SPLC '19. New York, New York,

USA: ACM Press, pp. 1–8, 2019.

170 10. Literature

[Scrum22] ScrumGuides.org, "Scrum Guides" [Online] Available: https://scrumguides.org/,

[Accessed: 20-05-22].

[SE21] Schneider Electric, "EcoStruxure Control Engineering - Documentation (User Ma-

nual)" [Online] Available: https://www.se.com/ww/en/down-

load/document/EIO0000004426.01_Documentation/, [Accessed: 10-05-22], 2021.

[SE22a] Schneider Electric, "EcoStruxure Machine Expert - Machine Code Analysis (User

Guide)" [Online] Available: https://www.se.com/us/en/down-

load/document/EIO0000002710/, [Accessed: 10-05-22], 2022.

[SE22b] Schneider Electric, "EcoStruxure Control Engineering" [Online] Available:

https://www.se.com/ww/en/product-range/39982702-ecostruxure-control-enginee-

ring/, [Accessed: 10-05-22], 2022.

[Seh⁺21] Sehr, M. A., Lohstroh, M., Weber, M., Ugalde, I., Witte, M., Neidig, J., Hoeme, S.,

Niknami, M. and Lee, E. A., "Programmable Logic Controllers in the Context of

Industry 4.0," In: IEEE Transactions on Industrial Informatics (TII), vol. 17, no. 5,

pp. 3523–3533, 2021.

[SF14] Schumacher, F. and Fay, A., "Formal representation of GRAFCET to automatically

generate control code," In: Control Engineering Practice, vol. 33, pp. 84–93, 2014.

[SFJ15] Schröck, S., Fay, A. and Jäger, T., "Systematic interdisciplinary reuse within the

engineering of automated plants," In: 9th Annual IEEE International Systems Con-

ference (SysCon). Piscataway, NJ: IEEE, pp. 508–515, 2015.

[Sie06] Siemens AG, "SIMATIC Programming with STEP 7. Manual," Published by: Sie-

mens AG, 2006.

[Sie15] Siemens AG, "Standards compliance according to IEC 61131-3 (3rd Edition)" [On-

line] Available: https://cache.industry.siemens.com/dl/fi-

les/748/109476748/att_845621/v1/IEC_61131_compliance_en_US.pdf, [Acces-

sed: 11-06-22], 2015.

[Sie18] Siemens AG, "Programming Guideline for S7-1200/1500" [Online] Available:

https://cache.industry.siemens.com/dl/fi-

les/040/90885040/att_970576/v1/81318674_Programming_guide-

line_DOC_v16_en.pdf, [Accessed: 18-04-22], 2018.

[Sie20a] Siemens AG, "Project Check for TIA Portal" [Online] Available: https://support.in-

dustry.siemens.com/cs/document/109741418/project-check-for-tia-portal-check-

against-programming-style-guides?dti=0&lc=en-WW, [Accessed: 18-05-22],

2020.

[Sie20b] Siemens AG, "TIA Portal Test Suite (Function Manual)" [Online] Available:

https://cache.industry.siemens.com/dl/fi-

les/356/109779356/att_1019655/v1/TestSuiteOLH_enUS_en-US.pdf, [Accessed:

10-05-22], 2020.

10. Literature 171

[Sie22] Siemens AG, "TIA Portal Openness: Introduction and Demo Application" [Online]

Available: https://support.industry.siemens.com/cs/document/108716692/tia-por-

tal-openness-introduction-and-demo-application?dti=0&lc=en-DE, [Accessed: 22-

04-22].

[SK16] Simon, H. and Kowalewski, S., "Static analysis of Sequential Function Charts using

abstract interpretation," In: IEEE 21st International Conference on Emerging Tech-

nologies & Factory Automation (ETFA): IEEE, pp. 1–4, 2016.

[Son⁺21a] Sonnleithner, L., Oberlehner, M., Kutsia, E., Zoitl, A. and Bacsi, S., "Do you smell

it too? Towards Bad Smells in IEC 61499 Applications," In: IEEE 26th Internatio-

nal Conference on Emerging Technologies & Factory Automation (ETFA): IEEE,

pp. 1–4, 2021.

[Son⁺21b] Sonnleithner, L., Wiesmayr, B., Ashiwal, V. and Zoitl, A., "IEC 61499 Distributed

Design Patterns," In: IEEE 26th International Conference on Emerging Technolo-

gies & Factory Automation (ETFA): IEEE, pp. 1–8, 2021.

[Son22] SonarSource S.A, "SonarQube" [Online] Available: https://www.sonarqube.org/,

[Accessed: 05-06-22], 2022.

[Spi⁺17] Spindler, M., Aicher, T., Vogel-Heuser, B. and Fottner, J., "Engineering the Control

Software of Automated Material Handling Systems via Drag & Drop [Erstellung

von Steuerungssoftware für automatisierte Materialflusssysteme per Drag &

Drop]," In: Logistics Journal, pp. 1–8, 2017.

[SS16] Silva, B. G. and Sousa, M. de, "Internal inconsistencies in the third edition of the

IEC 61131-3 international standard," In: IEEE 21st International Conference on

Emerging Technologies & Factory Automation (ETFA): IEEE, pp. 1–4, 2016.

[Sta⁺14] Stattelmann, S., Biallas, S., Schlich, B. and Kowalewski, S., "Applying static code

analysis on industrial controller code," In: IEEE Emerging Technology & Factory

Automation (ETFA): IEEE, pp. 1–4, 2014.

[Ste00] Stewart, M., "An experiment in scientific program understanding," In: Proceedings

ASE 2000. Fifteenth IEEE International Conference on Automated Software Engi-

neering: IEEE, pp. 281–284, 2000.

[SZ12] Steinegger, M. and Zoitl, A., "Automated code generation for programmable logic

controllers based on knowledge acquisition from engineering artifacts: Concept and

case study," In: IEEE 17th International Conference on Emerging Technologies &

Factory Automation (ETFA): IEEE, pp. 1–8, 2012.

[SZ20] Sonnleithner, L. and Zoitl, A., "A Software Measure for IEC 61499 Basic Function

Blocks," In: 25th IEEE International Conference on Emerging Technologies & Fac-

tory Automation (ETFA): IEEE, pp. 997–1000, 2020.

[TB10] Thramboulidis, K. and Buda, A., "3+1 SysML view model for IEC61499 Function

Block control systems," In: 8th IEEE International Conference on Industrial Infor-

matics (INDIN): IEEE, pp. 175–180, 2010.

172 10. Literature

[TBF17] Tsiplaki Spiliopoulou, C., Blanco Viñuela, E. and Fernández Adiego, B., "Experi-

ence With Static PLC Code Analysis at CERN," In: 16th International Conference

on Accelerator and Large Experimental Control Systems (ICALEPCS). JACoW,

Geneva, Switzerland, pp. 1787–1791, 2017.

[Tha⁺17] Thaller, H., Ramler, R., Pichler, J. and Egyed, A., "Exploring code clones in pro-

grammable logic controller software," In: 22nd IEEE International Conference on

Emerging Technologies & Factory Automation (ETFA): IEEE, pp. 1–8, 2017.

[Thr10] Thramboulidis, K., "The 3+1 SysML View-Model in Model Integrated Mechatro-

nics," In: Journal of Software Engineering and Applications (JSEA), vol. 03, no. 02,

pp. 109–118, 2010.

[Thr13] Thramboulidis, K., "IEC 61499 as an Enabler of Distributed and Intelligent Auto-

mation: A State-of-the-Art Review—A Different View," In: Journal of Enginee-

ring, vol. 2013, no. 4, pp. 1–9, 2013.

[Thü⁺14] Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G. and Leich, T., "Fea-

tureIDE: An extensible framework for feature-oriented software development," In:

Science of Computer Programming, vol. 79, pp. 70–85, 2014.

[VB21] Vogel-Heuser, B. and Bi, F., "Interdisciplinary effects of technical debt in compa-

nies with mechatronic products — a qualitative study," In: Journal of Systems and

Software (JSS), vol. 171, pp. 1–17, 2021.

[VDI2206] VDI/VDE 2206, November 2021, "Development of mechatronic and cyber-physical

systems".

[VDI2206-04] VDI/VDE 2206, June 2004, "Design methodology for mechatronic systems".

[VDI5100] VDI/VDMA 5100, 2016, "System Architecture For Intralogistics (SAIL)".

[VFB03] Vogel-Heuser, B., Friedrich, D. and Bristol, E. R., "Evaluation of modeling notati-

ons for basic software engineering in process control," In: 29th Annual Conference

of the IEEE Industrial Electronics Society (IECON'03, IEEE Cat. No.03CH37468):

IEEE, pp. 2209–2214, 2003.

[VFN20] Vogel-Heuser, B., Fischer, J. and Neumann, E.-M., "Goal-Lever-Indicator-Principle

to Derive Recommendations for Improving IEC 61131-3 Control Software," In:

IEEE International Conference on Industrial Engineering and Engineering Ma-

nagement (IEEM): IEEE, pp. 1131–1136, 2020.

[VNF22] Vogel-Heuser, B., Neumann, E.-M. and Fischer, J., "MICOSE4aPS: Industrially

Applicable Maturity Metric to Improve Systematic Reuse of Control Software," In:

ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 31,

no. 1, pp. 1–24, 2022.

[VO18] Vogel-Heuser, B. and Ocker, F., "Maintainability and evolvability of control soft-

ware in machine and plant manufacturing — An industrial survey," In: Control En-

gineering Practice, vol. 80, pp. 157–173, 2018.

10. Literature 173

[Vog⁺14] Vogel-Heuser, B., Legat, C., Folmer, J. and Feldmann, S., "Researching Evolution

in Industrial Plant Automation: Scenarios and Documentation of the Pick and Place

Unit," AIS Institute, Technical University of Munich, 2014.

[Vog⁺15a] Vogel-Heuser, B., Fischer, J., Rösch, S., Feldmann, S. and Ulewicz, S., "Challenges

for maintenance of PLC-software and its related hardware for automated production

systems: Selected industrial Case Studies," In: IEEE International Conference on

Software Maintenance and Evolution (ICSME): IEEE, pp. 362–371, 2015.

[Vog⁺15b] Vogel-Heuser, B., Fay, A., Schaefer, I. and Tichy, M., "Evolution of software in

automated production systems: Challenges and research directions," In: Journal of

Systems and Software (JSS), vol. 110, pp. 54–84, 2015.

[Vog⁺16] Vogel-Heuser, B., Rösch, S., Fischer, J., Simon, T., Ulewicz, S. and Folmer, J.,

"Fault Handling in PLC-Based Industry 4.0 Automated Production Systems as a

Basis for Restart and Self-Configuration and Its Evaluation," In: Journal of Software

Engineering and Applications (JSEA), vol. 09, no. 01, pp. 1–43, 2016.

[Vog⁺17] Vogel-Heuser, B., Fischer, J., Feldmann, S., Ulewicz, S. and Rösch, S., "Modularity

and architecture of PLC-based software for automated production Systems: An ana-

lysis in industrial companies," In: Journal of Systems and Software (JSS), vol. 131,

pp. 35–62, 2017.

[Vog⁺18] Vogel-Heuser, B., Fischer, J., Neumann, E.-M. and Diehm, S., "Key maturity indi-

cators for module libraries for PLC-based control software in the domain of auto-

mated Production Systems," In: IFAC-PapersOnLine, vol. 51, no. 11, pp. 1610–

1617, 2018.

[Vog⁺21a] Vogel-Heuser, B., Fischer, J., Neumann, E.-M. and Kreiner, M., "Success Factors

for the Design of Field-level Control Code in Machine and Plant Manufacturing -

an Industrial Survey," In: Research Square - preprint, 2021.

[Vog⁺21b] Vogel-Heuser, B., Huber, C., Cha, S. and Beckert, B., "Integration of a formal spe-

cification approach into CPPS engineering workflow for machinery validation," In:

IEEE International Conference on Industrial Informatics (INDIN): IEEE, 2021.

[Vog⁺21c] Vogel-Heuser, B., Neumann, E.-M., Zoitl, A., Fernandez, A. M. G., Rabiser, R. and

Fadhlillah, H. S., "An International Case Study on Control Software Development

in Large-Scale Plant Manufacturing Companies of One Industrial Sector at Diffe-

rent Locations," In: 47th Annual Conference of the IEEE Industrial Electronics

Society (IECON): IEEE, pp. 1–8, 2021.

[Vog⁺22a] Vogel-Heuser, B., Fischer, J., Hess, D., Neumann, E.-M. and Würr, M., "Boosting

Extra-Functional Code Reusability in Cyber-Physical Production Systems: The Er-

ror Handling Case Study," In: IEEE Transactions on Emerging Topics in Computing

(TETC), vol. 10, no. 1, pp. 60–73, 2022.

[Vog⁺22b] Vogel-Heuser, B., Neumann, E.-M., Fischer, J., Marcos, M., Estévez Estévez, E.,

Barbieri, G., Sonnleithner, L. and Rabiser, R., "Automation Software Architecture

174 10. Literature

in CPPS - Definition, Challenges and Research Potentials," In: 5th IEEE Internati-

onal Conference on Industrial Cyber-Physical Systems (ICPS): IEEE, pp. 1–8,

2022.

[VON18] Vogel-Heuser, B., Ocker, F. and Neumann, E.-M., "Maturity variations of PLC-

based control software within a company and among companies from the same in-

dustrial sector," In: IEEE Industrial Cyber-Physical Systems (ICPS): IEEE, pp.

283–290, 2018.

[VSF16] Vogel-Heuser, B., Simon, T. and Fischer, J., "Variability management for automa-

ted production systems using product lines and feature models," In: IEEE Interna-

tional Conference on Industrial Informatics (INDIN): IEEE, pp. 1231–1237, 2016.

[Vya11] Vyatkin, V., "IEC 61499 as Enabler of Distributed and Intelligent Automation:

State-of-the-Art Review," In: IEEE Transactions on Industrial Informatics (TII),

vol. 7, no. 4, pp. 768–781, 2011.

[Vya13] Vyatkin, V., "Software Engineering in Industrial Automation: State-of-the-Art Re-

view," In: IEEE Transactions on Industrial Informatics (TII), vol. 9, no. 3, pp. 1234–

1249, 2013.

[Wer09] Werner, B., "Object-oriented extensions for IEC 61131-3," In: IEEE Industrial

Electronics Magazine, vol. 3, no. 4, pp. 36–39, 2009.

[Wey88] Weyuker, E. J., "Evaluating software complexity measures," In: IEEE Transactions

on Software Engineering, vol. 14, no. 9, pp. 1357–1365, 1988.

[Wil⁺19] Wilch, J., Fischer, J., Neumann, E.-M., Diehm, S., Schwarz, M., Lah, E., Wander,

M. and Vogel-Heuser, B., "Introduction and Evaluation of Complexity Metrics for

Network-based, Graphical IEC 61131-3 Programming Languages," In: 45th Annual

Conference of the IEEE Industrial Electronics Society (IECON): IEEE, 2019.

[Wil⁺22] Wilch, J., Fischer, J., Langer, N., Felger, M., Bengel, M. and Vogel-Heuser, B.,

"Towards automatic generation of functionality semantics to improve PLC software

modularization," In: at-Automatisierungstechnik, vol. 70, no. 2, pp. 181–191, 2022.

[Wim⁺17] Wimmer, M., Novak, P., Sindelar, R., Berardinelli, L., Mayerhofer, T. and Mazak,

A., "Cardinality-based variability modeling with AutomationML," In: 22nd IEEE

International Conference on Emerging Technologies & Factory Automation. Pis-

cataway, NJ: IEEE, 2017.

[WSZ20] Wiesmayr, B., Sonnleithner, L. and Zoitl, A., "Structuring Distributed Control Ap-

plications for Adaptability," In: IEEE Conference on Industrial Cyberphysical Sys-

tems (ICPS): IEEE, pp. 236–241, 2020.

[Wu⁺20] Wu, Q., Gouyon, D., Levrat, E. and Boudau, S., "Use of Patterns for Know-How

Reuse in a Model-Based Systems Engineering Framework," In: IEEE Systems Jour-

nal, vol. 14, no. 4, pp. 4765–4776, 2020.

10. Literature 175

[YF07] Younis, M. B. and Frey, G., "Software quality measures to determine the diagnosa-

bility of PLC applications," In: IEEE Conference on Emerging Technologies & Fac-

tory Automation (ETFA): IEEE, pp. 368–375, 2007.

[ZP08] Zaeh, M. F. and Poernbacher, C., "Model-driven development of PLC software for

machine tools," In: Production Engineering, vol. 2, no. 1, pp. 39–46, 2008.

[ZV15] Zhabelova, G. and Vyatkin, V., "Towards software metrics for evaluating quality of

IEC 61499 automation software," In: IEEE 20th Conference on Emerging Techno-

logies & Factory Automation (ETFA): IEEE, pp. 1–8, 2015.

11. List of Figures

Figure 1: Schematic structure of process automation systems (translated from [LG99], p. 7).. 6

Figure 2: Overview of the research areas regarding means and approaches for PLC software

quality assessment, including selected approaches from computer science. The

identified research gap is highlighted in dark grey. ... 43

Figure 3: Overall complexity of POUs from an industrial PLC project, annotated according to

their functionality (implemented in LD, PLC project taken from Case Study C (cf.

Table 2, p. 17); graphically adapted from [Fis⁺21b]). ... 46

Figure 4: Software assessment procedure for classical IEC 61131-3 control software. 50

Figure 5: Details of Step 1 (Preparation and Familiarization) of the quality assessment

procedure. .. 51

Figure 6: Exemplary layout of a warehouse (graphically adapted from [FVF15]). 52

Figure 7: Details of Step 2 (Static code analysis of a single PLC project) of the quality

assessment procedure. ... 60

Figure 8: Exemplary software development workflow of an aPS manufacturer modeled using

BPMN. ... 62

Figure 9: Annotated call graph of the analyzed software project of Case Study A, with entry

point OB1. ... 63

Figure 10: Call hierarchy (left, adapted from [Vog⁺17]) and communication of errors (right,

adapted from [Vog⁺15a]) in regard to the identified architectural hierarchy levels in

Case Study A. .. 69

Figure 11: Details of Step 3 (Comparison of additional PLC projects or PLC project parts) of the

quality assessment procedure. ... 71

Figure 12: Call graphs of two warehouse software variants from Case Study A differing in the

mechanical variation point “amount of satellite cars” (124 POUs each)................. 75

Figure 13: Different means of visualization and documentation of analysis results for different

stakeholders such as managers (), application developers (), and module

developers (); summarized from [Bou⁺19; Fis⁺20a; Fis⁺21b; Neu⁺20b; VNF22;

Vog⁺16; Wil⁺19; Wil⁺22]. .. 79

178 11. List of Figures

Figure 14: Details of Step 4 (Quality assessment and recommendations) of the assessment

procedure. .. 80

Figure 15: Goal-lever-indicator-principle at the example of planned reuse (adopted from

[VFN20]). .. 84

Figure 16: Screenshot of the data exchange view in the advacode prototype, including available,

pre-defined rules (top left) with criticality level, rule editor (bottom left) and the table-

based results view (right); content published in [Fis⁺22b]. 92

Figure 17: Screenshot of a call graph, including color-coding for the implemented main

functionality of each POU in the advacode prototype. .. 94

Figure 18: Screenshot of combined view with call graph (left) and data exchange via data blocks

(right); dependencies to selected POU “W4_Wrapper_Scan” are highlighted in both

views (content published in [Fis⁺22b]). ... 95

Figure 19: Comparison of Case Study B and C linked to the four quality assessment steps. 99

Figure 20: Considered intralogistics plant part of Case Study B, including interfaces to adjacent

plant parts and organization in lanes consisting of conveying elements (CEs); adapted

and modified from [Ber19]. ... 103

Figure 21: Software and product development workflow applied in Case Study B at the company

site using BPMN. ... 104

Figure 22: Generated, manually annotated call graph (left) and indirect data exchange graph via

flag variables (right) of Case Study B’s control software in Step 2; adopted from

[Ber19]. .. 106

Figure 23: Performed steps during the automatic and manual control software analysis of project

variants concerning influences of hardware variations (left), including gained insights

(right). .. 108

Figure 24: Comparison of two call graphs regarding prominent features and commonalities in

their structure as a pre-step for their detailed manual comparison on the sub-POU

level. ... 108

Figure 25: Goal-lever-indicator principle applied to the identified weakness WB-1 to derive a

recommendation for action (following the style of [VFN20]). 110

Figure 26: Development workflow of Case Study C, divided into module and application

development, using BPMN (adapted and extended from [Fis⁺21a]). 114

11. List of Figures 179

Figure 27: Module integration into the template project in the style of [Vog⁺15a], adopted from

[Hub20]. ... 118

Figure 28: Comparison of project versions in Case Study C, focusing on interface changes. 119

Figure 29: Procedure steps for defining customized similarity metrics and the subsequent semi-

automatic identification of reusable software parts; details published in [Fis⁺20a;

Fis⁺20b; Ros⁺21a]. ... 126

Figure 30: Background of participants regarding application sector (question WG#11, multiple-

choice, answers: 20 participants). .. 133

Figure 31: Background of participants regarding used programming platforms within their

company (question WG#13, multiple-choice, answers: 20 participants). 134

Figure 32: Estimation of the integratability of the quality assessment procedure into the company

workflow (question WG#3, single choice, answers: 20 participants). 135

Figure 33: Challenges hindering the procedure application in an industrial context (question

WG#4, free-text question, answers: 19 participants). .. 135

Figure 34: Answers to W#3 concerning the applicability of the analysis procedure under

consideration of company-specific boundary conditions (total answers n = 40). .. 140

Figure 35: Answers to W#7 regarding the independent application of the analysis procedure by

the participants themselves (total answers n = 37); pseudo accuracy to avoid rounding

error. .. 141

Figure 36: Qualitative assessment of the applicability and usefulness of the procedure for

integrating quality-assuring means into the software development process (Group 1

= black (12 replies), Group 2 = grey (6 replies), Group 3 = white (12 replies)), adapted

from [Fis⁺22a]. ... 142

Figure 37: Answers to W#9 regarding the application of static code analysis with and without

the proposed procedure (total answers n = 34); pseudo accuracy to avoid rounding

error. .. 144

Figure 38: First page of the industry-WG questionnaire in German. 193

Figure 39: Second page of the industry-WG questionnaire in German. 194

Figure 40: Third page of the industry-WG questionnaire in German. 195

12. List of Tables

Table 1: Selected reuse approaches for control software in the aPS domain. 12

Table 2: Overview of conducted industrial and lab-sized demonstrator case studies. 17

Table 3: Details of rating scheme for the evaluation of existing, related approaches with +

(completely satisfied), o (partially satisfied), – (not satisfied), ? (unknown) and n.a.

(not applicable). ... 25

Table 4: Evaluation of related approaches in the field of static code analysis. 32

Table 5: Tool-based static code analysis of PLC software evaluated with respect to the

requirements. ... 38

Table 6: Related quality assessment approaches evaluated with respect to the derived

requirements. ... 42

Table 7: Exemplary analysis goals for static code analysis of legacy control software (not

independent from each other). ... 57

Table 8: Aspects to be targeted during the static code analysis (no claim to completeness). 65

Table 9: Summary of the software comparisons during manual static code analysis by means

of selected software parts, published in [FVF15]. ... 76

Table 10: Selected, exemplary means for visualization and documentation of analysis results

(not intended to be exhaustive). ... 78

Table 11: Criteria of a recommendation for action derived from static code analysis results

during procedure Step 4 (*representative list without claim for completeness);

enlarged from [VFN20] ... 85

Table 12: Evaluation methods per requirement with reference to the relevant Sections. 98

Table 13: Overview of conducted industrial Case Studies A, B, C and D and lab-sized

demonstrator Case Study E. ... 100

Table 14: Overview of targeted aspects during the first project analysis in Case Study B. ... 105

Table 15: Summary of identified weaknesses, derived recommendations for action and the

estimated change effort in Case Study B. .. 111

Table 16: Summary lessons learned from procedure application in Case Study B. 112

Table 17: Overview of targeted aspects during the first project analysis in Case Study C. ... 117

182 12. List of Tables

Table 18: Excerpt of the findings from the manual analysis concerning implemented interface

tasks with their dependency types and unplanned changes in Case Study C......... 120

Table 19: Summary of identified weaknesses, derived recommendations for action and the

estimated change effort in Case Study C. .. 122

Table 20: Summary lessons learned from procedure application in Case Study C. 123

Table 21: Summarized examples from the case study evaluations targeting different

requirements... 129

Table 22: Comparing the company experts’ answers to the questions asked during the

workshop. ... 145

Table 23: Summary of the evaluation of the presented procedure with respect to the

requirements... 147

Table 24: Checklist regarding the aspects to be targeted during the static code analysis (no claim

to completeness). ... 191

Table 25: Answers to industry-WG question WG#1: Does the topic of efficient quality

assurance of control software currently represent a challenge in your company?

(single choice, mandatory) ... 195

Table 26: Answers to industry-WG question WG#2: How high do you estimate the additional

effort due to subsequent corrections, bug fixes or refactoring in the control software

relative to the initial development effort? (single choice, mandatory) 196

Table 27: Answers to industry-WG question WG#3: In principle, could you imagine integrating

the described procedure for static code analysis of control software into your

company workflow? (single choice, mandatory) ... 196

Table 28: Answers to industry-WG question WG#5: In your opinion, is the demonstrated

procedure helpful for integrating means and methods for quality assurance with static

code analysis into the development process? (single choice, mandatory) 197

Table 29: Answers to industry-WG question WG#6: Do you find the interview guiding

questions suitable for identifying the analysis goal and usable additional information

for the analysis? (single choice, mandatory) .. 198

Table 30: Answers to industry-WG question WG#7: Do you consider the analysis procedure to

be successfully applicable in your company with regard to the boundary conditions

(such as unchangeable design decisions)? (single choice, mandatory).................. 198

12. List of Tables 183

Table 31: Answers to industry-WG question WG#8: After an introduction to the procedure,

would you be able to independently transfer and apply the code analysis procedure

to your control software? (single choice, mandatory) ... 198

Table 32: Answers to industry-WG question WG#9: Are static code analysis methods or tools

currently already used in the development process in your company? (single choice,

mandatory) ... 199

Table 33: Answers to industry-WG question WG#11: In which industrial application sectors

does your company operate? (multiple-choice, mandatory) 199

Table 34: Answers to industry-WG question WG#12: Do you think the procedure would be

applicable in your application area? (single choice, mandatory) 200

Table 35: Answers to industry-WG question WG#13: Which control platforms are used in your

company? (multiple-choice, mandatory) ... 200

Table 36: Single-choice questions asked during the workshop via a polling application in

German. ... 201

Table 37: Answers to workshop question W#1: Have you ever used static code analysis methods

or tools in the development process in your daily work? 202

Table 38: Answers to workshop question W#2: Do you find the interview guiding questions

helpful for preparing the analysis and identifying the analysis goal? 203

Table 39: Answers to workshop question W#3: Do you consider the analysis procedure to be

successfully applicable in your company with regard to the boundary conditions

(such as unchangeable design decisions)? ... 203

Table 40: Answers to workshop question W#4: Do you think the procedure can sufficiently

address the constraints of your application sector and would therefore be applicable?

 ... 203

Table 41: Answers to workshop question W#5: From your point of view, is the documentation

of the analysis results on different levels in the context of your own software helpful

to identify anomalies as well as disadvantageous software elements? 204

Table 42: Answers to workshop question W#6: Does the documentation enable the derivation

of recommendations for action and a rough estimate of effort? 204

Table 43: Answers to workshop question W#7: After an introduction to the procedure, would

you be able to independently transfer and apply the code analysis procedure to your

control software? ... 204

184 12. List of Tables

Table 44: Answers to workshop question W#8: In principle, could you imagine integrating the

described procedure for static code analysis of control software into your company

workflow? .. 205

Table 45: Answers to workshop question W#9: From your point of view, is the application of

static code analysis easier with the shown procedure than without the procedure?

 ... 205

13. List of Abbreviations 185

13. List of Abbreviations

Abbreviation Description

aPS Automated Production Systems

AST Abstract Syntax Tree

BPMN Business Process Model and Notation

CFG Control Flow Graph

CPPS Cyber-Physical Production Systems

CPU Central Processing Unit

DB Data Block

ECC Execution Control Charts

FB Function Block

FBD Function Block Diagram

FC Function

GPL General-Purpose Programming Language

GVL Global Variable List

HMI Human Machine Interface

IDE Integrated Development Environment

IL Instruction List

I/O ports Input/Output Ports

IPC Industrial PC

KPI Key Performance Indicator

LD Ladder Diagram

LOC Lines of Code

MTP Module-Type Package

MVL-list Motor-Valve-Limit switch list

OB Organization Block

OO Object Orientation

OOP Object-oriented Programming

P&ID Piping and Instrumentation Diagram

PLC Programmable Logic Controller

POU Program Organization Unit

PRG Program

SFC Sequential Function Chart

SLOC Source Lines of Code

SPL(E) Software Product Line (Engineering)

ST Structured Text

TIA Portal Totally Integrated Automation Portal

UDT User Defined Type

UML Unified Modeling Language

WMS Warehouse Management System

XML Extensible Markup Language

Appendix A. Interview Guidelines and Checklist

This appendix includes the list of interview guiding questions to be used in step 1 during the expert

interviews (Appendix A.1) and the checklist regarding points for static analysis, including availa-

ble means (no claim to completeness, Appendix A.2).

Appendix A.1 Interview Guiding Questions and Project Selection (in

Procedure Step 1)

The interview guiding questions can be divided into three main groups, namely questions regard-

ing the controlled automation system and its functionality, questions targeting the control software

and questions concerning organizational aspects of the software development process.

Questions targeting the controlled automation system

These guiding questions aim to understand the controlled automation hardware and the desired

process. Identifying the mechanical hardware parts, their relations and the process logic within the

control software can ease understanding, especially if no documentation of the software and the

process is available.

1. What function does the machine perform, what is the general process?

2. Which (“large”) variants are known from the customer's point of view?

3. Which (“large”) variants are known due to hardware alternatives?

4. Which special, machine- or process-specific boundary conditions must be fulfilled?

5. Apart from the control software itself, what documents, materials or information can be

consulted in the software analysis to better understand the software, its structure and its

variants?

- Aim 1: Understand the functionality of the controlled machine

i. Which variants of the functionality are known?

ii. Is there a central process linking other sub-processes?

iii. How is the product flow through the aPS organized?

- Aim 2: Include decisions from other disciplines with influence on software in the

analysis

- Helpful material: hardware design plan, functional description, known variation

points (hardware and/or customer perspective)

188 Appendix A. Interview Guidelines and Checklist

Questions targeting the development workflow and the organization of the engineering process

The second block of questions is related to organizational aspects of the company and, especially,

the software development workflow and involved stakeholders, including their tasks. The organi-

zational aspects are usually closely coupled to the applied reuse strategy. Thus, the background

knowledge and tasks of all involved stakeholders should be gathered.

1. Which PLC platforms are used for the control? Are there machines, which are controlled

by PLCs from different vendor’s (e.g., due to customer requests from different countries,

when operating globally)

2. How or in which steps is the software development workflow organized? Which stake-

holders are involved?

- Which departments are involved? Is, e.g., the software development divided into

module and application development?

- How many software developers work in the company / section of the company?

- How many software developers cooperate to program one machine? (e.g., one soft-

ware developer per machine or different software developers responsible for pro-

gramming a machine; separation of control engineering and automation engineering

(hardware control, process logic), dedicated stakeholder for motion or safety, etc.)

- Are parts of the software developed from a different company and need to be inte-

grated with the software developed in house?

3. Which tools are used for software development and maintenance and to handle software

evolution?

- Which commercial or in-house developed tools are used for software development

and maintenance? For example, tools for variant and/or version management, tools

for configuring the software, tools for code generation or similar.

- How are changes within the software documented? In software intended for planned

reuse, e.g., library modules, and in in case of changes in the software?

4. Are there software parts that are (planned to be) reused?

- What strategies are used to link reused, machine-independent and machine-depend-

ent software parts?

- What functionalities in the software are (planned to be) reused?

- Variability of machine-specific software parts? (How much do these parts differ?)

- According to which principle is the software modularized (e.g., hardware-oriented or

function-oriented)? Is the modularization strategy used only within the control soft-

ware or across disciplines (e.g., mechatronic modules)?

Appendix A. Interview Guidelines and Checklist 189

5. Are there any company-specific programming guidelines? If yes:

- Do these apply company-wide or to specific machine types only?

- Who created the guidelines (individual software developer or separate department)

and for what purpose?

- When were the programming guidelines established? Have the guidelines been mod-

ified since then?

- Are there any suppliers that must adhere to the guidelines?

- Is compliance with the rules monitored? By whom and how?

- What is the scope of the guidelines? Examples are:

i. Naming conventions

ii. Software architecture (division of functionality, use of standardized POUs)

iii. Templates on different granularity levels, e.g., on project- or POU-level

iv. Basic structure of a module or a POU (textual/example POU, no template)

v. Rules for change management, e.g., in the module header

vi. Use of comments (How many are desired? Which abbreviations should be used

(company-specific dictionary if multiple languages need to be supported))

vii. Use of certain programming languages for certain functionalities (e.g., LD for

interlocking and SFC for process flows)? Prohibition of the use of selected

programming languages (e.g., new modules must not be implemented in IL) ?

6. What are the biggest challenges in the current development processes?

- Example 1: high amount of unplanned reuse via copy, paste and modify  identifi-

cation of common software parts suitable for planned reuse is required

- Example 2: high variability of aPS and variants appear unique (no two identical ma-

chines are sold) with no possibilities for reuse (especially special purpose machines)

 analysis of variant drivers and their effects on the software to find non-variable,

reusable parts and possibly parameterizable parts, including a reuse concept to link

them

7. Are there any plans to cope with known pain points? If yes, which? Have any strategies

been tried out lately? If yes, what and what was its outcome?

Questions targeting the control software

A block of questions focusing on the control software itself, e.g., programming guidelines, naming

conventions or unique equipment identification numbers.

190 Appendix A. Interview Guidelines and Checklist

1. How many architectural hierarchy levels does the control software have and which func-

tionality is implemented on which of these?

2. Which programming languages are used on which hierarchy level or for which function-

alities? Are, e.g., specific programming languages used for standardized and non-stand-

ardized control software parts?

3. Which POUs control the machine behavior (step chains/sequences), which are used for

hardware control?

4. Which operating modes and/or machine states are distinguished in the control software?

5. How does the diagnosis of fault or error states work and which error states are differenti-

ated? (considering both, hardware and control logic)

6. How is the communication between POUs (potentially across different PLCs) and be-

tween POUs and the HMI software implemented? How do safety circuits and HMI panel

areas affect the structure of the PLC software (e.g., interlocking conditions)?

- How is the link to HMI software realized? How many operating panels are there?

- Note: Link to manual operation mode, recovery in case of an error, others

7. Is there any information that is required and used in the control program but is brought

into the PLC from outside?

- Example: routing from the material flow controller or warehouse management sys-

tem, which influences the order of and the actuators to be controlled.

- Which interfaces to which other systems does the PLC need?

- How is the communication with external sources (e.g., databases) implemented?

Selection of a project (depends on the selected analysis goal)

1) The project should be representative of the targeted machine type and the challenge and

pain points being investigated - both positive and negative examples are helpful.

2) The functionality of the machine of the selected software project and the associated pro-

gramming guidelines should be clear. The functional description, mechanical layout plan,

special customer requirements, etc. should be known.

3) Applied reuse strategies and associated templates/libraries/code generation tools/etc.

should be known and available for the analysis, if possible.

4) Applied/followed development process should be clear.

5) Knowledge of all software developers involved and the project parts for which they are

responsible is beneficial if questions arise during the analysis.

6) Any programming guidelines or software specifications followed during the development

of the selected project should be known and available.

Appendix A. Interview Guidelines and Checklist 191

Appendix A.2 Analysis Checklist (Used in Procedure Step 2)

The subsequent Table 24 contains a checklist for the analysis aspects introduced in Sec. 5.2.2.

Table 24: Checklist regarding the aspects to be targeted during the static code analysis (no claim to

completeness).

Number Analysis Aspect Checklist

Aspect 1 Number and type of ele-

ments

 How many POUs does the software contain and what type are they

(OB/PRG, FB, FC)?

 How many global structures are contained (GVL, DBs)?

 Is the concept “module” use in the control software structuring?

 If yes, how is a software module defined? (single POU or group of POUs)

Aspect 2 Call graph and architec-

tural hierarchy levels

 How many hierarchy levels does the control software have?

 Which elements are connected (dependent) via calls?

 How are their interfaces defined? (Amount of data exchanged, input and

return parameters?)

 How many data are exchanged via calls? (close coupling?)

 Are there particularly many/few direct dependencies between POUs via

calls?

 Across how many hierarchy levels do the calls span?

 What does the call structure look like in terms of hierarchy levels?

 Are there any unused POUs (dead code)?

 Which programming languages are used on which hierarchy level?

 Which functionalities are implemented on which hierarchy levels?

 Which POUs are linked to the controlled automation hardware? On

which levels?

 Is a modularization strategy recognizable?

Aspect 3 Structural patterns  Are there any POUs, which are called frequently (indicated potential li-

brary elements)?

 Are there any POUs with many outgoing calls?

 Can recurring call structures be identified, e.g., as indication for reusable

software parts? [Fah⁺19]

 For details about known structural patterns and the interpretation of their

presence/absence cf. [Neu⁺20c]

Aspect 4 Included libraries

(closely linked to As-

pect 6)

 Are there any libraries included?

 If yes, how many libraries are contained in the project?

 Are POUs from these libraries used?

 Are the libraries platform supplier or company-specific libraries?

 Which functionalities are implemented by the used library modules?

 Are many standardized functionalities from the PLC supplier/PLC de-

velopment IDE used?

 On which levels are library modules called?

 How is the interface between library POUs and application-specific soft-

ware parts?

Aspect 5 Organization of software

in development environ-

ment

 Are folders used to structure the elements contained in the project?

 If yes, does the structure follow a modularization principle? For example,

hardware- or function oriented?

 Can groups of POUs / elements be recognized (indicator for encapsula-

tion principle)?

Aspect 6 Standardized and applica-

tion-specific parts

(closely linked to As-

pect 4 and Aspect 7)

 What is the degree of standardization?

 Where are standardized software parts, where are application-specific

software parts? What is the interface between the two?

 What is the ratio of library modules to application-specific modules?

192 Appendix A. Interview Guidelines and Checklist

Number Analysis Aspect Checklist

 How does the scope of the modules implementing different parts com-

pare?

 Which standard functions are used?

 How much software is generated (e.g., from models), configured, part of

a template or in any other form reused in a planned way?

Aspect 7 Extra-functional software

parts/functionality distri-

bution

 Which extra-functional tasks are contained in the PLC software?

 Error handling (including diagnosis, communication of an error and

resolving an error, cf. [Vog⁺22a] for error handling steps)

 Change of operation mode

 Operating data collection

 How are transversal or extra-functional tasks implemented?

 Centrally and in dedicated POUs

 Decentrally (contained in every module/actuator)

 Which functionalities are implemented in dedicated POUs / which are

combined? (cf. [at Wilch] for overview on functionalities)

 Annotation of call graph/data exchange graph with functionalities

(course-grained like, e.g. [Vog⁺16], or detailed such as [Wil⁺22])

Aspect 8 Indirect data exchange

graph

 What does the data exchange via global variables (or flags and data

blocks) look like?

 Is a regularity or structure recognizable?

 Global structures for gathering data, e.g., alarm data or the current

status from all actuators?

 Global structures for distributing the current operation mode?

 Organization of data in correspondence to module structure?

 Which type of elements exchange data indirectly via global structures?

Which functionality do they implement?

 How much data is exchanged indirectly? Are standardized structures

used for similar data?

 Information flow (semantics behind exchanged data/reason for depend-

ency)

Aspect 9 Properties of individual

POUs/groups of POUs

 Can groups of elements be assigned to certain functionalities?

 Can groups of elements be assigned to safety-circuits?

 Use of software metrics with different focus, e.g.,

 Size, complexity, or other properties of elements

 Size and amount of interfaces between elements (coupling, cohe-

sion)

 Identification of copied code parts (code clones)

 Overall complexity distribution in the project

 Data exchange within and between modules?

 How frequent is the use of comments?

Aspect 10 Communication with ex-

ternal systems

 Which external systems exist that influence the control software?

 Where are the interfaces to external systems implemented?

 Which POUs offer the required communication functionalities?

 Which information is communicated to external systems?

 How and where is information from external systems used in the control

logic?

 Different types of connection to the HMI [Vog⁺16]

Appendix B. Industry-WG: Questionnaire and Results 193

Appendix B. Industry-WG: Questionnaire and Results

The German online expert questionnaire and detailed results for Section 7.1.5 are presented below.

Appendix B.1 Industry-WG Questions in German

The originally asked questions, including their answer options, are provided.

Figure 38: First page of the industry-WG questionnaire in German.

194 Appendix B. Industry-WG: Questionnaire and Results

Figure 39: Second page of the industry-WG questionnaire in German.

Appendix B. Industry-WG: Questionnaire and Results 195

Figure 40: Third page of the industry-WG questionnaire in German.

Throughout the text, the industry-WG questions are referred to as WG#[question number], e.g.,

question 1 is referred to as WG#1.

Appendix B.2 Answers to the Online Questionnaire (translated to

English)

The detailed answers to the online questionnaire conducted during the working group meeting are

provided below, including the number of responses and the percentage.

Table 25: Answers to industry-WG question WG#1: Does the topic of efficient quality assurance of con-

trol software currently represent a challenge in your company? (single choice, mandatory)

Answer options

Number of responses

(relative)

Very big challenge 1 (5%)

Great challenge 13 (65%)

Moderate challenge 6 (30%)

Low challenge 0 (0%)

Hardly any challenge 0 (0%)

I am uncertain 0 (0%)

Sum (total answers n) 20

196 Appendix B. Industry-WG: Questionnaire and Results

Table 26: Answers to industry-WG question WG#2: How high do you estimate the additional effort due

to subsequent corrections, bug fixes or refactoring in the control software relative to the ini-

tial development effort? (single choice, mandatory)

Answer options

Number of responses

(relative)

Less than 10% 1 (5%)

Between 10 -19% 7 (35%)

Between 20 - 29% 3 (15%)

30% or more 8 (40%)

I do not know 1 (5%)

Sum (total answers n) 20

Table 27: Answers to industry-WG question WG#3: In principle, could you imagine integrating the de-

scribed procedure for static code analysis of control software into your company workflow?

(single choice, mandatory)

Answer options

Number of responses

(relative)

Yes, the entire procedure can be integrated in principle 4 (20%)

Yes, parts of the procedure can be integrated 11 (55%)

I am unsure if the procedure would be integratable 4 (20%)

No, the procedure cannot be integrated at all 0 (0%)

No answer 1 (5%)

Sum (total answers n) 20

Answers to industry-WG question WG#4: In your opinion, what are the biggest challenges in

applying the demonstrated procedure in an industrial environment? (free-text question, optional)

 Complexity of a project requires a very detailed analysis, where I currently cannot yet imagine how this can

be fully captured with the interview guiding questions.

 Control platform-spanning tool; import and exports from the IDE; automation of processes

 The effort involved

 The development environments used would have to integrate these possibilities so that they can be executed

without much effort and frequently.

 Additional financial effort must justify the benefit; affected employees must be open to change (motto: we

have always done it this way)

Appendix B. Industry-WG: Questionnaire and Results 197

 The capabilities of the development system to use this approach in a toolchain

 Available time; availability of experts to interpret; added value if templates and detailed programming guide-

lines already exist

 I think one of the biggest challenges is the change of mindset among colleagues, as these are after all much

more abstract concepts that are at least unfamiliar. In this respect, success should also depend significantly on

the "leadership" of the process.

 Peculiarities of the programming software, e.g., B&R Automation Studio

 Convincing the employee that it makes sense and is necessary

 To establish object-oriented program structures

 The results of the automatic code analysis must be validated and differentiated on a case-by-case basis. I,

therefore, see the analysis primarily as a tool to improve code quality.

 Time pressure

 I see the individuality of the plants as the greatest challenge

 Difficult to say, currently more due to time pressure

 A reasonable relationship between the implementation of the required functions and a good quality of the

software. It basically must not "hinder" the actual development.

 Generation change

 Integration into the development process, acceptance by the “affected developers”.

 Peculiarities of the different programming software, e.g., B&R

Table 28: Answers to industry-WG question WG#5: In your opinion, is the demonstrated procedure

helpful for integrating means and methods for quality assurance with static code analysis into

the development process? (single choice, mandatory)

Answer options

Number of responses

(relative)

Yes, the procedure is helpful from my point of view 10 (50%)

The procedure is partially helpful 10 (50%)

No, the procedure is not helpful from my point of view 0 (0%)

I do not know 0 (0%)

Sum (total answers n) 20

198 Appendix B. Industry-WG: Questionnaire and Results

Table 29: Answers to industry-WG question WG#6: Do you find the interview guiding questions suitable

for identifying the analysis goal and usable additional information for the analysis? (single

choice, mandatory)

Answer options

Number of responses

(relative)

Yes, the interview guiding questions are suitable 8 (40%)

In part, I think the interview guiding questions are suitable 11 (55%)

No, the interview guiding questions are not suitable 0 (0%)

I do not know 1 (5%)

Sum (total answers n) 20

Table 30: Answers to industry-WG question WG#7: Do you consider the analysis procedure to be suc-

cessfully applicable in your company with regard to the boundary conditions (such as un-

changeable design decisions)? (single choice, mandatory)

Answer options

Number of responses

(relative)

Yes, definitely 4 (20%)

Partially 16 (80%)

No, the procedure is not applicable 0 (0%)

I do not know 0 (0%)

Sum (total answers n) 20

Table 31: Answers to industry-WG question WG#8: After an introduction to the procedure, would you

be able to independently transfer and apply the code analysis procedure to your control soft-

ware? (single choice, mandatory)

Answer options

Number of responses

(relative)

Yes, after an introduction, I could use the procedure 6 (30%)

Partly I could use the procedure after an introduction 7 (35%)

I am unsure, as this depends strongly on the scope of training 6 (30%)

No, even after an introduction, I could probably not use the procedure 0 (0%)

I do not know 1 (5%)

Sum (total answers n) 20

Appendix B. Industry-WG: Questionnaire and Results 199

Table 32: Answers to industry-WG question WG#9: Are static code analysis methods or tools currently

already used in the development process in your company? (single choice, mandatory)

Answer options

Number of responses

(relative)

Yes, means of static code analysis are an inherent part of the development process 1 (5%)

Means of static code analysis are used optionally or irregularly in the development process 4 (20%)

No, means of static code analysis are not applied 15 (75%)

I do not know 0 (0%)

Sum (total answers n) 20

Answers to industry-WG question WG#10: If yes, what tools do you use and how satisfied are you

with the methods and tools you use? (free-text question, optional)

 SVN, Jenkins, Polarion

 In-house development

 We do not use such tools in the control area but certainly in the high-level language area. They are then

integrated into the build chain.

 Currently, we are using the code analysis from Schneider [Electric]

Table 33: Answers to industry-WG question WG#11: In which industrial application sectors does your

company operate? (multiple-choice, mandatory)

Answer options

Number of responses

(relative)

automotive engineering 3 (15%)

food and beverage 2 (10%)

construction (material) equipment 1 (5%)

materials handling and intralogistics 2 (10%)

pharma / medicine 7 (35%)

metals industry 5 (25%)

woodworking machinery 0 (0%)

packaging machinery 2 (10%)

other / further 0 (0%)

No answer 1 (5%)

Sum (total answers n) 23

200 Appendix B. Industry-WG: Questionnaire and Results

Table 34: Answers to industry-WG question WG#12: Do you think the procedure would be applicable in

your application area? (single choice, mandatory)

Answer options

Number of responses

(relative)

Yes, definitely 9 (45%)

Partially the procedure would be applicable 11 (55%)

No, the procedure would not be applicable 0 (0%)

I do not know 0 (0%)

Sum (total answers n) 20

Table 35: Answers to industry-WG question WG#13: Which control platforms are used in your com-

pany? (multiple-choice, mandatory)

Answer options

Number of responses

(relative)

Beckhoff 6 (30%)

B&R 9 (45%)

CODESYS 0 (0%)

Rockwell 6 (30%)

Schneider Electric 5 (25%)

Siemens 10 (50%)

SIGMATEK 0 (0%)

STW 1 (5%)

other / further 2 (10%)

No answer 0 (0%)

Sum (total answers n) 23

Appendix C. Industrial Expert Workshop – Questions and Results 201

Appendix C. Industrial Expert Workshop – Questions

and Results

This appendix contains the detailed results of Section 7.3, namely the nine original single-choice

questions asked during the online workshop with an industrial focus group in German (Appendix

C.1) and the workshop participants’ replies (translated to English) in Appendix C.2. The workshop

questions are referred to as W#[question number] throughout the text, e.g., question 1 is referred

to as W#1. The results were originally published in [Fis⁺22a].

Appendix C.1 Single-choice Questions in German

The originally asked questions, including their answer options, are provided in Table 36 below.

Table 36: Single-choice questions asked during the workshop via a polling application in German.

Num-

ber

Originally asked Workshop Question

(Single-choice)

Answer Options

W#1 Haben Sie in Ihrem Arbeitsalltag schon

einmal Methoden oder Werkzeuge der

statischen Codeanalyse im Entwick-

lungsprozess eingesetzt?

 Ja, Mittel der statischen Codeanalyse sind fester Bestandteil

im Entwicklungsprozess

 Mittel der statischen Codeanalyse werden optional oder un-

regelmäßig im Entwicklungsprozess verwendet

 Nein, es werden keine Mittel der statischen Codeanalyse an-

gewendet

 Weiß ich nicht

W#2 Halten Sie die Interviewleitfragen für

hilfreich zur Vorbereitung der Analyse

und zur Identifikation des Analyseziels?

 Ja, die Interviewleitfragen sind hilfreich

 Teilweise halte ich die Interviewleitfragen für hilfreich

 Nein, die Interviewleitfragen sind nicht hilfreich

 Weiß ich nicht

W#3 Halten Sie das Analyseverfahren im

Hinblick auf die Randbedingungen (wie

z. B. unveränderliche Designentschei-

dungen) in Ihrem Unternehmen für er-

folgreich einsetzbar?

 Ja, auf jeden Fall

 Teilweise ist das Verfahren einsetzbar

 Nein, das Verfahren ist nicht einsetzbar

 Weiß ich nicht

W#4 Glauben Sie, dass die Vorgehensweise

die Randbedingungen Ihres Anwen-

dungsbereichs ausreichend berücksich-

tigen kann und daher anwendbar wäre?

 Ja, auf jeden Fall

 Teilweise wäre die Vorgehensweise anwendbar

 Nein, die Vorgehensweise wäre nicht anwendbar

 Weiß ich nicht

W#5 Ist die Dokumentation der Analyseer-

gebnisse auf verschiedenen Ebenen im

Kontext Ihrer eigenen Software aus Ih-

rer Sicht hilfreich, um Auffälligkeiten

sowie nachteilige Softwareelemente zu

identifizieren?

 Ja, die Dokumentation ist hilfreich

 Teilweise halte ich die Dokumentation für hilfreich

 Nein, die Dokumentation ist nicht hilfreich

 Ich bin unsicher

202 Appendix C. Industrial Expert Workshop – Questions and Results

Num-

ber

Originally asked Workshop Question

(Single-choice)

Answer Options

W#6 Ermöglicht die Dokumentation das Ab-

leiten von Handlungsempfehlungen und

eine grobe Aufwandsabschätzung?

 Ja, die Dokumentation der Analyseergebnisse ermöglicht das

 Teilweise ermöglicht das die Dokumentation

 Nein, die Dokumentation ermöglicht das nicht

 Ich bin unsicher

W#7 Wären Sie nach einer Einführung in die

Vorgehensweise in der Lage, das Code-

Analyseverfahren selbstständig auf Ihre

Steuerungssoftware zu übertragen und

anzuwenden?

 Ja, nach einer Einführung könnte ich die Vorgehensweise an-

wenden

 Teilweise könnte ich die Vorgehensweise nach einer Einfüh-

rung anwenden

 Ich bin unsicher, da dies stark vom Schulungsumfang ab-

hängt

 Nein, auch nach einer Einführung könnte ich die Vorgehens-

weise eher nicht anwenden

 Weiß ich nicht

W#8 Könnten Sie sich prinzipiell vorstellen,

die beschriebene Vorgehensweise zur

statischen Codeanalyse von Steuerungs-

software in Ihren Unternehmensablauf

zu integrieren?

 Ja, die gesamte Vorgehensweise ist prinzipiell integrierbar

 Ja, Teile der Vorgehensweise sind integrierbar

 Ich bin unsicher, ob die Vorgehensweise integrierbar wäre

 Nein, die Vorgehensweise lässt sich gar nicht integrieren

 keine Angabe

W#9 Ist Anwendung statischer Codeanalyse

mit der gezeigten Vorgehensweise aus

Ihrer Sicht einfacher als ohne die Vor-

gehensweise?

 Ja, mit der Vorgehensweise erscheint mir die Anwendung

einfacher

 Nein, die Vorgehensweise macht die Anwendung nicht ein-

facher

 Weiß ich nicht

Appendix C.2 Answers During the Workshop (translated to English)

The detailed answers to the single-choice questions are provided below, including the number of

responses and the percentage.

Table 37: Answers to workshop question W#1: Have you ever used static code analysis methods or tools

in the development process in your daily work?

Answer options

Number of responses

(relative)

Yes, means of static code analysis are an inherent part of the development process 2 (5.4%)

Means of static code analysis are used optionally / irregularly in the development process 8 (21.6%)

No, means of static code analysis are not applied 24 (64.9%)

I do not know 3 (8.1%)

Sum (total answers n) 37

Appendix C. Industrial Expert Workshop – Questions and Results 203

Table 38: Answers to workshop question W#2: Do you find the interview guiding questions helpful for

preparing the analysis and identifying the analysis goal?

Answer options

Number of responses

(relative)

Yes, the interview guiding questions are helpful 19 (48.7%)

In part, I find the interview guiding questions helpful 17 (43.6%)

No, the interview guiding questions are not helpful 1 (2.6%)

I do not know 2 (5.1%)

Sum (total answers n) 39

Table 39: Answers to workshop question W#3: Do you consider the analysis procedure to be success-

fully applicable in your company with regard to the boundary conditions (such as unchangea-

ble design decisions)?

Answer options

Number of responses

(relative)

Yes, definitely 9 (22.5%)

Partially the procedure can be used 16 (40.0%)

No, the procedure is not applicable 4 (10.0%)

I do not know 11 (27.5%)

Sum (total answers n) 40

Table 40: Answers to workshop question W#4: Do you think the procedure can sufficiently address the

constraints of your application sector and would therefore be applicable?

Answer options

Number of responses

(relative)

Yes, definitely 4 (10.5%)

Partially the procedure would be applicable 14 (36.8%)

No, the procedure would not be applicable 3 (7.9%)

I do not know 17 (44.8%)

Sum (total answers n) 38

204 Appendix C. Industrial Expert Workshop – Questions and Results

Table 41: Answers to workshop question W#5: From your point of view, is the documentation of the

analysis results on different levels in the context of your own software helpful to identify

anomalies as well as disadvantageous software elements?

Answer options

Number of responses

(relative)

Yes, the documentation is helpful 15 (38.5%)

Partially I think the documentation is helpful 18 (46.1%)

No, the documentation is not helpful 1 (2.6%)

I am uncertain 5 (12.8%)

Sum (total answers n) 39

Table 42: Answers to workshop question W#6: Does the documentation enable the derivation of recom-

mendations for action and a rough estimate of effort?

Answer options

Number of responses

(relative)

Yes, the documentation of the analysis results enables this 7 (20.0%)

Partly the documentation enables this 21 (60.0%)

No, the documentation does not allow this 4 (11.4%)

I am uncertain 3 (8.6%)

Sum (total answers n) 35

Table 43: Answers to workshop question W#7: After an introduction to the procedure, would you be

able to independently transfer and apply the code analysis procedure to your control soft-

ware?

Answer options

Number of responses

(relative)

Yes, after an introduction, I could use the procedure 7 (18.9%)

Partly I could use the procedure after an introduction 11 (29.7%)

I am unsure, as this depends strongly on the scope of training 13 (35.2%)

No, even after an introduction, I could probably not use the procedure 5 (13.5%)

I do not know 1 (2.7%)

Sum (total answers n) 37

Appendix C. Industrial Expert Workshop – Questions and Results 205

Table 44: Answers to workshop question W#8: In principle, could you imagine integrating the described

procedure for static code analysis of control software into your company workflow?

Answer options

Number of responses

(relative)

Yes, the entire procedure can be integrated in principle 7 (18.9%)

Yes, parts of the procedure can be integrated 18 (48.7%)

I am unsure if the procedure would be integratable 11 (29.7%)

No, the procedure cannot be integrated at all 1 (2.7%)

No answer 0 (0.0%)

Sum (total answers n) 37

Table 45: Answers to workshop question W#9: From your point of view, is the application of static code

analysis easier with the shown procedure than without the procedure?

Answer options

Number of responses

(relative)

Yes, the application seems easier to me with the procedure 22 (64.7%)

No, the procedure does not make the application easier 4 (11.8%)

I do not know 8 (23.5%)

Sum (total answers n) 34

