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A B S T R A C T

In this thesis we treat different aspects of the Optimal Transport theory.
First of all, we present a new class of Optimal Transport costs for non-negative

measures with possibly different masses. These are obtained by a convex relax-
ation procedure of a cost for non-negative Dirac masses. As a byproduct of our
analysis, we show that the classical Optimal Transport cost can be obtained by
the same procedure. A primal-dual formulation of the cost, optimality conditions
and metric-topological properties are also presented.

Secondly, we introduce and investigate a notion of multivalued dissipative op-
erator (called Multivalued Probability Vector Field - MPVF) in the 2-Wasserstein
space of Borel probability measures on a (possibly infinite dimensional) separa-
ble Hilbert space. Taking inspiration from the theories of dissipative operators in
Hilbert spaces and of Wasserstein gradient flows, we study the well-posedness
for evolutions driven by such MPVFs, and we characterize them by a suitable
Evolution Variational Inequality (EVI), following the Bénilan notion of integral
solutions to dissipative evolutions in Banach spaces. Our approach to prove the
existence of such EVI-solutions is twofold: on one side, under an abstract stabil-
ity condition, we build a measure-theoretic version of the Explicit Euler scheme
showing novel convergence results with optimal error estimates; on the other
hand, under a suitable discrete approximation assumption on the MPVF, we
recast the EVI-solution as the evolving law of the solution trajectory of an appro-
priate dissipative evolution in an L2 space of random variables.

Finally, we prove a general criterium for the density in energy of subalgebras
of Lipschitz functions in the metric-Sobolev space H1,p

(X, d,m) associated with
a Borel positive measure m in a separable and complete metric space (X, d). We
then provide a relevant application to the case of the algebra of cylindrical func-
tions in the space H1,2

(P2(M),W2,dM
,m) arising from a probability measure m

on the Kantorivich-Rubinstein-Wasserstein space (P2(M),W2,dM
) of probability

measures in a complete Riemannian manifold or a separable Hilbert space M.
We will show that such a Sobolev space is always Hilbertian, independently of
the choice of the reference measure m so that the resulting Cheeger energy is
a Dirichlet form. We will eventually provide an explicit characterization for the
corresponding notion of m-Wasserstein gradient, showing useful calculus rules
and its consistency with the tangent bundle and the � -calculus inherited from
the Dirichlet form.
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1
I N T R O D U C T I O N

The Optimal Transport problem was proposed for the first time by Monge [83]
in 1781 and its current mathematical formulation is mainly due to Kantorovich
[66]. Roughly speaking, it asks to find the best way to move a certain amount
of material from one starting place to a given new configuration. Depending on
the meaning assigned to the terms “best", “move" and “place", one can get many
different situations: for instance allocation of resources, the physical movement
of masses, evolution of particle systems, etc...

With the modern language of measure theory, we can formulate the problem
as follows: suppose we are given two complete and separable metric spaces X

and Y and two Borel probability measures µ on X and ⌫ on Y; let us assume that
c : X⇥ Y ! [0,+1] is a cost function, meaning that the value of c(x,y) tells how
much we pay to move a unit mass in x to the target location y. What we want to
find is a map T : X ! Y “moving µ to ⌫" and minimizing the cost

Z

X

c(x, T(x))dµ(x).

The interpretation of the above quantity is straightforward: given T, we move ev-
ery x 2 X to the assigned location T(x) and we evaluate the cost of this operation
as c(x, T(x)); integrating w.r.t. µ gives the total cost associated to T.

With the expression “T moves µ to ⌫", we mean that for every subset B of
Y the total mass sent to B (corresponding to µ(T-1

(B)) must coincide with the
mass assigned to B (which is given by ⌫(B)). In other words, T must satisfy

⌫(B) = µ(T-1
(B)) for every Borel set B ⇢ Y.

This is expressed in mathematical terms saying that ⌫ is the push forward of
µ through T, denoted by T]µ. The precise formulation of the so called Monge
Optimal Transport problem is then

inf
�Z

X

c(x, T(x))dµ(x)T : X ! Y, T]µ = ⌫

�
.

Monge did a fine analysis of many properties of minimizers in case X = Y = R
d

and the cost function is given by the Euclidean distance, in particular carrying
out a deep study of the geometric properties of transport rays; existence of min-
imizers was only addressed later: the main issue is that in some cases the set of
admissible transport maps may be empty (e.g. in case X = Y = [0, 1], µ = �0 and
⌫ is the Lebesgue measure on Y) and, in general, it doesn’t enjoy good compact-
ness or closure properties.

The question of existence of minimizers was solved only many years later by
Kantorovich; in his formulation, mass is allowed to split: this corresponds to the

1



2 introduction

introduction of transport plans, instead of maps; a transport plan � is a proba-
bility on the product space X⇥ Y having as marginals µ and ⌫ respectively. This
means that, to each pair of Borel subsets A ⇢ X and B ⇢ Y, the measure � assigns
the fraction �(A⇥ B) of mass in A that has to be moved to B. The Kantorovich
Optimal Transport problem is thus to find

OTc(µ,⌫) := inf
�Z

X⇥Y

c(x,y)d�(x,y) | � 2 �(µ,⌫)
�

, (1.0.1)

where �(µ,⌫) is the set of admissible transport plans. It is readily seen that �(µ,⌫)
is always non-empty and it can be proven to enjoy very good properties, in par-
ticular it is compact in the narrow topology. Under a few regularity assumptions
on the objects involved in the problem, the existence of minimizers can be easily
proven (e.g. if the problem is feasible and the cost function is proper and lower
semicontinuous). Moreover the nice linear structure of the problem allows to use
techniques from convex optimization, and thus makes it possible to provide du-
ality formulas, in order to characterize the optimal solutions of the problem.

After the seminal works [66, 67] of Kantorovich, the Optimal Transport prob-
lem received a great boost at the end of the XX century starting with the funda-
mental work of Brenier [23] (see also [52]) where he proved that, under suitable
hypotheses on the measures and on the cost function, there is a unique Opti-
mal Transport plan which moreover is concentrated on a map. Such result also
provides connections with the Monge-Ampère equation (see also [28]) and was
used by Brenier to prove a polar factorization theorem.

Since then, the theory of Optimal Transport has enormously grown in a number
of directions, see for example the works [3, 9, 29, 47, 117] related to the existence
of optimal maps, the fundamental papers [64, 90] where the connection between
evolution PDEs and optimal transport problems was first noted and the works
[7, 56, 79, 113, 114] linked to analysis in metric spaces.

Moreover, in more recent years, Optimal Transport has been a widely used tool
in image processing or data analysis, so that it has become more and more im-
portant to come up with new ways to compute efficiently the Optimal transport
cost [16–18, 45]: this is linked for example to the Entropic regularization of Opti-
mal Transport [32] which is in turn connected with the Shrödinger problem [73,
74] and it is a fruitful ground for research. For a comprehensive introduction to
the theory of Optimal Transport and for more exhaustive lists of references we
refer to the classic monographs [5, 99, 100, 107, 118, 119], the more recent [4, 49]
and the application-oriented [92].

In the thesis we will deal with three specific research topics related to Optimal
Transport: in particular we will address the generalization of Optimal Transport
to pairs of measures with different masses, the description of evolutions of prob-
ability measures under a suitable notion of velocity field and the definition of
metric Sobolev spaces on the space of probability measures endowed with the
Wasserstein distance. Before entering in the description of the content of this the-



introduction 3

sis, let us give a few references for these topics.

Unbalaced Optimal Transport. As it can be easily checked, the constraint � 2
�(µ,⌫) in (1.0.1) forces the measures µ and ⌫ to have the same total mass. It is
thus interesting to consider the situation when the two measures have different
non-negative masses and define the analogue of an Optimal Transport cost in
this case.

The problem of extending Optimal Transport methods to pairs of unbalanced
positive measures has been considered in a large number of works with different
techniques and different aims.

For what concerns dynamical formulations, many models inspired by the fluid
dynamic formulation of [15] for the classical Optimal Transport problem have
been proposed, see for example [69, 77, 80, 95, 96]. In such works, the authors
consider source terms in the continuity equation, thus leading to gain/loss of
mass during the evolution. The models proposed differ in the kind of source
chosen or in the penalization of it. We refer also to [36] where a more detailed
description of these models is given.

Static formulations of the unbalanced Optimal Transport problem were pro-
posed already by Kantorovich and Rubinstein [65] and subsequently extended
by Hanin [60] (see also the dual norm in [59]). These approaches can be thought
as a classical Optimal Transport problem where a fraction of the mass is allowed
to go (or come from) a point at infinity (see also [58]). More recent approaches
are given by the so called optimal partial transport [30, 48], which was previously
related to image retrieval [91, 105].

Optimal partial transport (see [36]) is in turn also related to [95, 96], since this
latter works also provide a dynamic formulation of optimal partial transport. We
also mention that [95, 96] are also connected to [14] where it was proposed to
change the marginal constraints and to add a penalization term.

Let us finally mention the Entropic Transport approach that has been proposed
independently in [37, 76]. The underlying idea is to interpolate the Wasserstein
and the Hellinger metrics in order to produce a new transport cost between mea-
sures with possibly different masses. In this way, many of the above approaches
can be seen as particular instances of this class of Entropy-Transport problems.

In the first part of the thesis, extending some idea already contained in [76],
we define a cost between measures as the convex and lower semicontinuous
relaxation of a cost defined between weighted Dirac masses. Duality formulas,
optimality conditions and metric-topologial properties of this new class of costs
are also presented.

Evolutions in the space of probability measures. Many relevant examples of
evolutionary PDEs (describing transport and diffusion phenomena) and models
for describing the interaction of agents/particles show the great importance to
study the evolution in time of probability measures.

A very important class of such evolutions is provided by (a suitable adapted
notion of) gradient flow in the space of probability measures. The starting point
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of this theory comes from the works of Jordan, Kinderlerer and Otto [64, 90]
where they noted for the first time a gradient flow structure in some PDEs
w.r.t. the Kantorovich-Rubinstein Wasserstein (in brief, Wasserstein) distance on
probability measures (see also [1, 27, 90].

We refer to [5], where the authors develop a whole theory for the notion of
gradient flow in metric spaces: in this context the Euclidean definition must be
carefully adapted since neither the notion of velocity of a curve or the one of sub-
differential of a functional are immediately clear. A crucial tool they employ for
existence and uniqueness results is the one of geodesic convexity of a functional
on a metric space which is is strictly connected to the displacement convexity
introduced and studied by McCann [82].

Besides gradient flows, other kinds of evolutions describing large numbers
of agents have been considered; we mention here two recent works related to
evolutions of probability measures under the action of notions of vector fields.
In [21] the authors aim at developing a Cauchy-Lipschitz theory for non-local
continuity equations where the velocity field can be thought as a map from the
space of probabilities to the space of Lipschitz vector fields on the base space. In
the works of Piccoli [93, 94], which have been in part an inspiration for the second
part of the thesis, it is introduced the notion of Measure Probability Vector Field:
heuristically, this is a vector field on probability measures such that each point
in the support of a probability measure is moved according to a probability
distribution on the space of admissible velocities.

In the second part of the thesis we further generalize the theory proposed by
Piccoli and we connect it to the general theory of Wasserstein gradient flows
and of dissipative evolutions in Hilbert spaces. We provide a notion of evolution
based on a suitable Evolution Variational Inequality and we prove existence of
curves satisfying it employing measure theoretical versions of both implicit and
explicit Euler schemes.

Metric Sobolev spaces and Optimal Transport. Starting with the fundamen-
tal work of Otto [90], the geometry of the Wasserstein space (P2(X),W2), where
X is a Riemannain Manifold or an Hilbert space, has been deeply investigated.
Besides the study of gradients for smooths functions, the definition of tangent
spaces [5, 53] and in general the properties of a weak Riemmanian structure [78],
in the last years there have been also proposals to define a canonical Riemannain
measure on (P2(X),W2): this was done first by Sturm and Von Renesse [101] for
the particular case of X = S

1 and then generalized by Sturm [115] to the case of
a closed smooth Riemannian manifold.

It is natural to study the Dirichlet energy associated to such measure: for exam-
ple, Dello Schiavo [44] considered measures m that satisfy an integration-by-parts
formula; starting from the regular class of cylindrical functions on (P2(X),W2),
in [44] the author proves a Rademacher-type result for Lipschitz functions.

Since (P2(X),W2,m) is a particular example of complete metric measure space,
it is natural to compare the approach of Sturm and Dello Schiavo with the one
coming from the general metric theory [19, 57, 62, 108]. This aspect is even more
interesting because of the crucial role that Optimal Transport played in the devel-
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opment of the theory of CD and RCD spaces [7, 8, 54, 79, 113, 114]. In particular
this studies revealed the importance of the notion of infinitesimal Hilbertian-
ity, meaning that the Cheeger energy associated to the metric-Sobolev space is a
quadratic form. In the particular case of (P2(X),W2,m) the point is thus to under-
stand if the class of cylindrical functions is dense in energy in the metric-Sobolev
space.

The third part of the thesis is devoted to these kinds of problems; first we
provide a general criterium for sub-algebras of Lipschitz and bounded functions
to be dense in Sobolev metric measure spaces. Then we apply the general result
to the Sobolev space H1,2

(P2(X),W2,m), for a general Borel positive measure
m on P2(X), showing that, in case X is a (possibly infinite dimensional) Hilbert
space or a complete Riemannian manifold, the resulting metric Sobolev space is
indeed Hilbertian. We will eventually provide an explicit characterization for the
corresponding notion of m-Wasserstein gradient, showing useful calculus rules
and its consistency with the tangent bundle and the � -calculus inherited from
the Dirichlet form.

The remaining part of this introduction is devoted to the detailed discussion
of the three parts of the thesis.

1.1 content of the thesis and main results

1.1.1 Part I: Unbalanced Optimal Transport

In order to highlight the analogies between the classical Optimal Transport set-
ting and the results we have obtained in the unbalanced case, we first give a brief
account of some of the fundamental results of the classical theory.

The classical Optimal Transport case. We fix two complete and separable metric
spaces X1 and X2, two Borel probability measures µi 2 P(Xi), i = 1, 2, and
a proper (i.e. not identically +1) and lower semicontinuous cost function c :

X1 ⇥ X2 ! [0,+1]. As outlined in the first part of the introduction, the primal
formulation of the optimal transport problem is given by

OTc(µ1,µ2) := inf
�Z

X1⇥X2

c(x1, x2)d�(x1, x2) | � 2 �(µ1,µ2)

�
(1.1.1)

where �(µ1,µ2) can be defined as

�(µ1,µ2) :=
�
� 2 P(X1 ⇥X2) | xi]� = µi, i = 1, 2

 
,

with xi : X1 ⇥X2 ! Xi given by xi(x1, x2) = xi, for i = 1, 2. This is of course just
an alternative way to say that the marginals of � are µ1 and µ2. If we consider
on P(X1 ⇥ X2) the narrow topology (the topology induced by the duality with
bounded and continuous functions in X1 ⇥ X2), the existence of minimizers in
(1.1.1) is a direct consequence of the narrow compactness of �(µ1,µ2) and of the
narrow lower semicontinuity of the map � 7!

R
c d�.
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The celebrated Kantorovich duality theorem states that

OTc(µ1,µ2) = sup {D('1,'2;µ1,µ2) | ('1,'2) 2  c} (1.1.2)

where D is simply the duality pairing

D('1,'2;µ1,µ2) :=

Z

X1

'1 dµ1 +

Z

X2

'2 dµ2 (1.1.3)

and the set of admissible pairs  c is defined as

 c :=

�

('1,'2) 2 Cb(X1)⇥ Cb(X2)

�����
'1(x1) +'2(x2) 6 c(x1, x2)
for every (x1, x2) 2 X1 ⇥X2

✏

.

While the proof of the > inequality in (1.1.2) is immediate, the proof of the con-
verse inequality is generally more involved and, usually, it is first carried out in a
simplified setting (discrete measures, compact spaces, etc...) using some convex
analysis tool ultimately relying on Hahn-Banach theorem, and then extended to
the general setting by exploiting the structure of the problem (see e.g. [68, 72,
118]).

The existence of maximizers for the dual problem (1.1.2) (also called optimal
potentials) in the class  c is not guaranteed in general, unless stronger hypothe-
ses are assumed on the spaces and on the cost. For example if X1 and X2 are
compact and c is continuous, one can get the existence of a pair ('1,'2) 2  c

realizing the equality
Z

X1

'1 dµ1 +

Z

X2

'2 dµ2 = OTc(µ1,µ2).

The proof (see e.g. [107, Proposition 1.11]) of this result is usually based on
the c-transform technique: given an admissible pair ('1,'2), the pair ('cc

1
,'c

1
)

defined as

'c

1
(x2) := inf

x12X1

{c(x1, x2)-'1(x1)} , x2 2 X2,

'cc

1
(x1) := inf

x22X2

{c(x1, x2)-'c

1
(x2)} , x1 2 X1,

(1.1.4)

is still admissible, both functions have the same (uniform) modulus of continuity
of c and the new pair ('cc

1
,'c

1
) does better than the previous one, meaning that

Z

X1

'1 dµ1 +

Z

X2

'2 dµ2 6
Z

X1

'cc

1
dµ1 +

Z

X2

'c

1
dµ2.

Finally, observing that the “shifted" pair ('1 - k,'2 + k), k 2 R, is again admis-
sible and realizes the same value in the dual formulation, it is possible to impose
that min'1 = 0, so that one gets also uniform boundedness of the potentials and
an application of Ascoli-Arzelà theorem leads to the existence of a maximizing
pair in  c.
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The existence of a sufficiently regular maximazing pair ('1,'2) can be also
employed to prove the existence of an Optimal Transport map, if the cost c and
the probabilities µ1,µ2 satisfy some additional hypotheses. Let us briefly sketch
the idea in a simple setting: suppose that X1 = X2 = ⌦ is a smooth bounded
domain in R

d, µ1 ⌧ Ld
|
⌦

, c and '1 are Lipschitz continuous and � is an
Optimal Transport plan in �(µ1,µ2); we know that '1(x1) +'2(x2) 6 c(x1, x2)
for every x1, x2 2 ⌦ and that on the support of � this must be an equality. Under
the present assumptions, it is possible to see that the interior of the set

⌃ := {(x1, x2) 2 supp(�) | y 7! c(y, x2)-'1(y) is differentiable at y = x1}

has full �-measure. Thus on int (⌃) we have that r'1(x1) = @1c(x1, x2); if we
ask to the cost c to satisfy the so called “twist condition", i.e. that z 7! @1c(x1, z)
is invertible for every x1 2 ⌦, we have that there exists a unique x2 2 ⌦ such
that r'1(x1) = @1c(x1, x2) and thus � is concentrated on the graph of a Borel
function T i.e. T is an Optimal Transport map.

In general one cannot hope to get the existence of a maximizing pair in the class
 c, but optimality conditions are (almost) always available in the form of the
following result, which relies on the crucial notion of c-cyclical monotonicity: a
set ⇤ ⇢ X1 ⇥ X2 is said to be c-cyclically monotone if for every n 2 N, every
family of points {(xi

1
, xi

2
)}n
i=1

⇢ ⇤ and every permutation � of {1, . . . ,n} it holds

nX

i=1

c(xi
1

, xi
2
) 6

nX

i=1

c(xi
1

, x�(i)
2

).

It is clear that the c-cyclical monotonicity of the support of a plan � 2 �(µ1,µ2)

is equivalent to optimality for � in the discrete setting (i.e. if the measures µi

have a finite support), but it is a remarkable result (see e.g. [5, Theorem 6.1.4])
that this is also the case in general, under a few integrability assumptions on the
cost function.
The last fundamental fact about Optimal Transport we want to recall is related
to metric and topological properties (see e.g. [5, Proposition 7.1.5]); indeed, if
we take as cost c = dp where d is a distance metrizing X and p 2 [1,+1), then
the resulting optimal transport cost OTdp is the p-th power of a distance (the
p-Wasserstein distance Wp) on

Pp(X) :=

�
µ 2 P(X) |

Z

X

dp(x, x0)dµ(x) < +1 for some, hence for all, x0 2 X

�
.

The topology induced by Wp is compatible with the narrow topology, in the
sense that given a sequence (µn)n ⇢ Pp(X) and µ 2 Pp(x), we have that

Wp(µn,µ) ! 0 if and only if

8
>>><

>>>:

R
X

dp(x, x0)dµn(x) !
R
X

dp(x, x0)dµ(x)

for some, hence for all, x0 2 X,

µn ! µ in the narrow topology of P(X).
(1.1.5)
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Contributions in Part I. In many of the approaches to generalize the classical
Optimal Transport problem to unbalanced measures [37, 76, 95, 96] the general
idea is to find an equivalent formulation of the standard Optimal Transport prob-
lem which is suitable to be extended to general measures. Let us briefly describe
the idea of [76] which was in part an inspiration for our work: in [76] the au-
thors consider two Polish spaces X1 and X2, two nonnegative Radon measures
µ1 2 M+(X1) and µ2 2 M+(X2), two Borel functions F1, F2 : [0,+1) ! [0,+1],
and a Borel cost function c : X1 ⇥ X2 ! [0,+1]. Given a nonnegative Radon
measure � 2 M+(X1 ⇥X2), they define the functionals

Fi(�; Fi) :=
Z

Xi

Fi(�i)dµi + (Fi)
0
1�

?
i
(Xi), xi]� = �iµi + �

?
i

, i = 1, 2,

where (Fi)
0
1 := lim

s!+1

Fi(s)

s
and (�i,�?i ) is the Lebesgue decomposition of xi]�

w.r.t. µi. They then define their entropy-transport cost as

ETF1,F2,c(µ1,µ2) := inf
�2P(X1⇥X2)

X

i

Fi(�; Fi) +
Z

X1⇥X2

c d�. (1.1.6)

The idea is that Fi measures the discrepancy between the i-th marginal of � and
the measure µi, and then one adds the standard Optimal Transport cost induced
by c. If Fi = I1 for i = 1, 2, one gets the classical Optimal Transport cost induced
by c, where I1 is the function equal to 0 at 1 and +1 elsewhere.

The strategy we propose here is in the same spirit: we first notice that the classical
Optimal Transport cost can be expressed as the convex relaxation of a suitable
functional on measures and we use this point of view to define a notion of cost
for non-negative measures with possibly different masses.
The first key observation is the following: the Optimal Transport cost as in (1.1.1)
satisfies

OTc(�x1
, �x2

) = c(x1, x2) for every (x1, x2) 2 X1 ⇥X2 (1.1.7)

so that it is natural to define the singular cost Fc : M(X1)⇥M(X2) ! [0,+1]

given by

Fc(µ1,µ2) :=

8
>><

>>:

r1c(x1, x2) if
µ1 = r1�x1

, µ2 = r1�x2
,

x1 2 X1, x2 2 X2, r1 > 0,

+1 elsewhere,

(1.1.8)

where M(Xi) denotes the vector space of signed and finite Radon measures on
Xi, for i = 1, 2.
The second remark comes from (1.1.2) which shows that the Optimal Trans-
port cost OTc, being the supremum of a family of linear and narrowly contin-
uous functionals, is a convex and narrowly lower semicontinuous functional in
P(X1)⇥P(X2).
It is therefore natural to consider the extension EOTc of OTc to M(X1)⇥M(X2),
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obtained by homogeneity if µ1(X1) = µ2(X2) > 0 or set equal to +1 if one of
the measures is negative; in other words, we define EOTc : M(X1)⇥M(X2) !
[0,+1] as

EOTc(µ1,µ2) :=

8
<

:
aOTc(µ1/a,µ2/a) if µ1(X1) = µ2(X2) = a > 0,

+1 elsewhere.
(1.1.9)

The above observations strongly suggest that EOTc can be characterized as the
largest narrowly lower semicontinuous and convex functional below the cost Fc,
which is precisely the content of [109] where we thus obtained that

EOTc = co (Fc) . (1.1.10)

The nice consequence of the proof of this result is twofold: on one hand it pro-
vides a natural and simple proof of the Kantorovich duality. On the other hand,
it presents a characterization of the Optimal Transport functional that can be
generalized to the unbalanced context. To do that we need to interpret further
the equality (1.1.10); what it seems to suggest is that, in a way, the space of
non-negative measures M+(X) is the closed and convex envelope of “weighted
points" in X and that cost functions on X lift to nice cost functions on M+(X)

through a convexification procedure, meaning that the resulting cost is the corre-
sponding (extended) Optimal Transport one. The rigorous counterpart is the fact
that actually the convex envelope of the set of weighted Dirac masses is dense in
M(X) (see Proposition 3.1.1). However, there is a representation issue due to the
fact that the null measure can be represented in many (actually infinite) ways as
a weighted Dirac mass i.e.

0X = 0 · �x for every x 2 X.

This suggests that the correct space to represent weighted Dirac masses is not
exactly X⇥R+ but rather the quotient of this space w.r.t. the equivalence relation
that sends all the points (x, 0) to the same equivalence class. More rigorously, we
define on X⇥ R+ the equivalence relation

(x, r) ⇠ (y, s) def, [x = y, r = s 6= 0 _ r = s = 0]

and the corresponding geometric cone C[X] := (X ⇥ R+)/ ⇠. Points in C[X] are
denoted by equivalence classes [x, r]; in C[X] one can consider a suitable topology
(weaker than the quotient one) that makes it isomorphic to the set of weighted
Dirac masses endowed with the (restriction of the) narrow topology (see Lemma
3.2.1).

Taken into account the cone construction, the correct way to define, this time,
a cost on weighted Dirac masses is thus to consider a Borel function

H : C(X1)⇥ C(X2) ! [0,+1],

which we will assume to be proper, lower semicontinuous and 1-homogeneous,
in the sense that the map

(r1, r2) 2 R
2

+ 7! H([x1, r1], [x2, r2])
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is 1-homogeneous for every fixed (x1, x2) 2 X1 ⇥ X2. While the properness and
the lower semicontinuity assumptions are natural, the 1-homogeneity assump-
tion deserves a comment: from a modeling point of view we are saying that mov-
ing mr1�x1

to mr2�x2
costs exactly m times moving r1�x1

to r2�x2
. In analogy

with (1.1.8) we can define the unbalanced singular cost SH : M(X1)⇥M(X2) !
[0,+1] as

SH(µ1,µ2) :=

8
>><

>>:

H([x1, r1]; [x2, r2]) if
µ1 = r1�x1

, µ2 = r2�x2
,

x1 2 X1, x2 2 X2, r1, r2 > 0,

+1 elsewhere.

As a primal formulation for the unbalanced problem, given H : C[X1]⇥ C[X2] !
[0,+1] as above, let us consider the functional

UH(µ1,µ2) := inf
�Z

H d↵ | ↵ 2 H
1
(µ1,µ2)

�
, (1.1.11)

with

H
1
(µ1,µ2) :=

�
↵ 2 M

1

+(C[X1]⇥ C[X2]) : h
1

i
(↵) = µi

 
,

where M
1
+(C[X1]⇥ C[X2]) is the subset of measures in M+(C[X1]⇥ C[X2]) such

that
R
(r1 + r2)d↵ is finite and h

1

i
is the map sending ↵ 2 M

1
+(C[X1]⇥ C[X2]) to

xi](ri↵) 2 M+(Xi). Notice that this coincides precisely with the “homogeneous
perspective marginal costs" considered in [76, Definition 5.1]) (this was indeed
the part of [76] that inspired our work): the authors prove that suitably combin-
ing F1, F2 and c (see in particular [76, Definition 5.1]) one can obtain a function H
(thus depending on F1, F2 and c) such that the entropy-transport cost as in (1.1.6)
coincides with UH. Notice that, if the cost function H is given by

H([x1, r1], [x2, r2]) :=

8
<

:
r1c(x1, x2) if r1 = r2 > 0,

+1 elsewhere,
(1.1.12)

for some proper and lower semicontinuous function c : X1 ⇥X2 ! [0,+1], then
UH = EOTc and SH = Fc, so that, at least at level of singular costs and primal
formulations, these are truly generalizations of the (extended) Optimal Trans-
port problem. Moreover, in analogy with what happens for EOTc, the primal
formulation-cost UH enjoys nice properties, we have equality between co (SH)

and UH, and we can prove a duality formula (see Proposition 4.1.3 and Theo-
rems 4.1.4 and 4.2.4).

Theorem 1.1.1. Let X1,X2 be Polish spaces. Then for every (µ1,µ2) 2 M+(X1) ⇥
M+(X2), there exists ↵ 2 H

1
(µ1,µ2) such that

UH(µ1,µ2) =

Z

C[X1]⇥C[X2]
H d↵.

Moreover UH is a lower semicontinuous convex function such that

UH(r1�x1
, r2�x2

) 6 H([x1, r1]; [x2, r2]) (1.1.13)
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for every (x1, x2) 2 X1 ⇥ X2 and every (r1, r2) 2 R
2
+. If, in addition, H is also convex,

meaning that the map sending (r1, r2) 2 R
2
+ to H([x1, r1], [x2, r2]) is convex for every

fixed (x1, x2) 2 X1 ⇥X2, then the above inequality is an equality. Moreover

UH(µ1,µ2) = co (SH) (µ1,µ2) = sup {D('1,'2;µ1,µ2) | ('1,'2) 2 �H} (1.1.14)

for every (µ1,µ2) 2 M+(X1)⇥M+(X2), where

�H :=

8
>><

>>:

('1,'2) 2 Cb(X1)⇥ Cb(X2) s.t.
'1(x1)r1 +'2(x2)r2 6 H([x1, r1], [x2, r2])
for every (x1, x2) 2 X1 ⇥X2, r1, r2 > 0

9
>>=

>>;
.

The lower semicontinuity of the cost function UH follows by two consider-
ations: the first one, which is strongly based on the 1-homogeneity of H, con-
cerns the possibility of carrying out the minimization procedure among those
↵ 2 H

1
(µ1,µ2) with support contained in {([x1, r1], [x2, r2]) | r1, r2 6 R} for some

R > 0; the second fact is the nice dependence of the set ↵ 2 H
1
(µ1,µ2) w.r.t. the

narrow convergence, as it happens for the canonical set of plans �(µ1,µ2) (for
the details see Lemma 3.2.6).
The proof of the equality UH(µ1,µ2) = co (SH) (µ1,µ2) can be carried out in two
ways: the first constructive proof (see Theorem 4.1.4) exploits an explicit charac-
terization of co (SH) and the density of discrete measures to show “by hand" the
equality co (SH) = UH. The second approach is the same used for the equality
(1.1.10) in [109], i.e. just a simple application of the Fenchel-Moreau theorem. No-
tice that the duality result is completely analogous to the classical Kantorovich
duality (1.1.2) and reduces to it in case H has the form in (1.1.12).

Adopting a slightly different point of view (that involves sufficiently rich sub-
algebras of continuous and bounded functions, see Lemma 3.1.6) in the proof
of the above result we can show a reinforcement of (1.1.14) (resp. of (1.1.2)): we
can obtain duality formulas with smooth C1 functions in finite dimensional Eu-
clidean spaces, Lipschitz functions in metric spaces or smooth cylindrical func-
tions in topological vector spaces. Following the path given by the classical Opti-
mal Transport theory, it is then natural to investigate the existence of potentials
in a sufficiently regular setting; to this aim we present two different situations
where, assuming that the spaces X1,X2 are compact and that H is continuous,
1-homogeneous and convex, it is possible to prove such existence:

1. If H is finite on the whole product cone C[X1]⇥ C[X2], it is enough to as-
sume that H satisfies a few integrability conditions w.r.t. µ1 and µ2 and to
have some control on the derivatives of H at the boundary of the product
cone. For a detailed discussion see Section 5.1.1.

2. If H is finite only on a smaller cone (depending on the ratio µ1(X1)/µ2(X2)),
it is sufficient to assume that H diverges to +1 on the boundary of such
smaller cone in a uniform way. For the details see Section 5.1.2.
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In both these situations it is possible to define the analogous of the c-transform
as in (1.1.4) for a pair ('1,'2) 2 �H as

'H

1
(x2) := inf

x12X1

inf
↵>0

�
H([x1,↵], [x2, 1])-↵'1(x1)

�
, x2 2 X2,

'HH

1
(x1) := inf

x22X2

inf
↵>0

�
H([x1, 1], [x2,↵])-↵'H

1
(x2)

�
, x1 2 X1,

and prove that the transformed potentials enjoy sufficiently nice properties to
use a Ascoli-Arzelà argument. The result is the following (see Theorem 5.1.5).

Theorem 1.1.2. Assume that X1,X2 are compact, that H is continuous, 1-homogeneous,
convex and that one of the two settings above is satisfied. Then, there exists a pair
('1,'2) 2 �H such that

Z

X1

'1 dµ1 +

Z

X2

'2 dµ2 = UH(µ1,µ2).

As for the classical Optimal Transport theory, the existence of regular potentials
can be a powerful tool to prove the existence of an Optimal Transport map, under
a few additional assumptions on the cost function H, involving its differentiabil-
ity properties. We thus obtain the following result (see Theorem 5.1.6).

Theorem 1.1.3. Let K ⇢ R
d be a compact and convex set with nonempty interior,

let H : C[K] ⇥ C[K] ! [0,+1) be a 1-homogeneous and convex function which is
in addition differentiable and Lipschitz continuous on the product cone w.r.t. the cone
distance induced by the Euclidean one (see (3.2.4)). Let µi 2 M+(K) with suppµi = K,
i = 1, 2; if µ1 is absolutely continuous w.r.t. Ld

|
K

(the d dimensional Lebesgue measure
on K) and

for every x1 2 int (K) the map

C[K] 3 [y,q] 7!
 
@1H(x1, 1;y,q)
@2H(x1, 1;y,q)

!

2 R
d+1 is invertible,

then there exists a Borel map T : K ! C[K] s.t.

µ2 = (x] �T])(µ1),
Z

K

H([x1, 1], T(x1))dµ1(x1) = UH(µ1,µ2).

The proof of this result is in the same spirit of to the one of the classical Opti-
mal Transport theory, but several more complicated technical aspects have to be
taken into account.

As in the classical Optimal Transport case [5, Theorem 6.1.4], we can investigate
general optimality conditions. It is not surprising that also in the unbalanced case
the concept of cyclical monotonicity is crucial. In particular, the 1-homogeneity of
the cost function H and the cone structure allow to lift the cyclical monotonicity
from the support of an admissible plan ↵ 2 h

1
(µ1,µ2) to the convex cone that
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it generates. More precisely, given � ⇢ C[X1]⇥ C[X2] and (x1, x2) 2 X1 ⇥ X2, we
define the (x1, x2)-section of � as

�x1,x2
:=

�
(r1, r2) 2 R

2

+ | ([x1, r1], [x2, r2]) 2 �
 

and the convex cone generated by � as

�̂ :=

[

(x1,x2)2X1⇥X2

�
([x1, r1], [x2, r2]) | (r1, r2) 2 �̂x1,x2

 
,

where �̂x1,x2
is the convex cone in R

2 generated by �x1,x2
. Analogously, for

(x1, x2) 2 X1 ⇥ X2, we denote by Hx1,x2
the map (r1, r2) 7! H([x1, r1], [x2, r2]).

With this notation, we can state the following result (see Proposition 5.2.3 and
Theorem 5.2.5).

Theorem 1.1.4. Let µi 2 M+(Xi) for i = 1, 2, and let ↵ 2 H
1

H
(µ1,µ2).

If ↵ is optimal and
R

H d↵ < +1, then ↵ is concentrated on a Borel subset � ⇢
C[X1]⇥ C[X2] s.t. �̂ is H-cyclically monotone.
On the other hand, let � be a Borel set on which ↵ is concentrated such that �̂ ⇢ D(H)
and let us suppose that the effective domain of H is independent of (x1, x2) 2 X1 ⇥ X2,
meaning that D(Hx1,x2

) = D(Hy1,y2
) for every (x1, x2), (y1,y2) 2 X1 ⇥ X2. If we

assume moreover that the following conditions are satisfied:

1. there exists ([x̄1, r̄1], [x̄2, r̄2]) 2 �̂ such that (r̄1, r̄2) 2 int (D(@Hx̄1,x̄2
)),

2. there exist positive constants ai,bi, i = 1, 2 s.t.

µ1

✓�
x1 2 X1 |

Z

X2

H([x1,a1]; [x2,b1])dµ2(x2) < +1
�◆

> 0,

µ2

✓�
x2 2 X2 |

Z

X1

H([x1,a2]; [x2,b2])dµ1(x1) < +1
�◆

> 0,
(1.1.15)

then, if �̂ is H-cyclically monotone, ↵ is optimal,
R

H d↵ < +1 and there exists a
maximizing pair ('1,'2) 2 L1(X1,µ1; R̄)⇥ L1(X2,µ2; R̄) for the dual problem i.e.

Z

X1

'1 dµ1 +

Z

X2

'2 dµ2 = UH(µ1,µ2).

Finally we treat the case in which H is (the p-th power of) a distance on C[X]: un-
der this condition, we show that the resulting cost UH is itself (the p-th power of)
a distance on an appropriate subset of M+(X) metrizing the weak convergence
of measures, precisely as it is for the standard Optimal Transport problem [5,
Proposition 7.1.5]. The result is the following (see Theorems 5.3.7 and 5.3.8).

Theorem 1.1.5. Let X be a Polish space and let H : C[X]⇥ C[X] ! [0,+1) be a lower
semicontinuous and 1-homogeneous function which is the p-th power of a distance on
C[X] whose induced topology is stronger than the topology of C[X]. Then UH is the p-th
power of a distance on the subset MH,p(X) of measures with finite p-th moment w.r.t. H
defined as

MH,p(X) :=
�
µ 2 M+(X) |

Z

X

H([x, 1], o)dµ(x) < +1
�

.
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Moreover, given a sequence (µn)n ⇢ MH,p(X) and µ 2 MH,p(X), we have that

lim
n!+1

UH(µn,µ) = 0 ()

8
<

:
µn * µ,
R

X
H([x, 1]; o)dµn(x) !

R
X

H([x, 1]; o)dµ(x).

The first part of the thesis is organized as follows: Chapter 3 is devoted to estab-
lish the general setting and a few technical tools that will be used in the sequel;
Chapter 4 contains the core of our results: the convexification approach is pre-
sented and duality is treated; moreover a last section is devoted to the case of
merely Hausdorff spaces, where a suitable definition of narrow topology has to
be taken into account; finally Chapter 5 treats the optimality conditions and the
dual attainment both in the general case and in the more regular one, together
with a few remarks on the metric and topological properties of UH in case H is
(the p-th power of) a distance.

Part I is the result of a collaboration with Giuseppe Savaré and part of the mate-
rial presented in Sections 3.1, 4.3 appeared in [109].

1.1.2 Part II: Dissipative evolutions in Wasserstein spaces

The study of gradient flow evolutions has always been a very relevant topic
in analysis with many applications. An important framework for many PDEs
models is the one of a convex1, proper and lower semicontinuous function f :

H ! (-1,+1] in a Hilbert space H with norm | · |. A gradient flow of f starting
from x̄0 2 D(f) is a locally absolutely continuous curve x : [0,+1) ! H such
that

8
<

:
ẋt 2 -@f(xt) a.e. t > 0,

x0 = x̄0,
(1.1.16)

where -@f(z) is the opposite of the subdifferential of f at a point z 2 D(f),
defined as

v 2 @f(z) if and only if f(y)- f(z) > hv,y- zi for every y 2 H. (1.1.17)

The generalization of gradient flows to general metric spaces has been a very in-
teresting topic that started with the works of De Giorgi and his collaborators [41]
and has attracted a growing interest in the Optimal Transport and PDEs commu-
nities since the works of Jordan, Kinderlerer and Otto [64, 90] where they noted
a Wasserstein-gradient flows structure in some important evolution equations.
Let us explain here the main ideas when the metric space under consideration
is (P2(H),W2), where H is a (possibly infinite dimensional) separable Hilbert
space, P2(H) is the space of Borel probability measures on H with finite second

1 A less restrictive notion of convexity, namely �-convexity, � 2 R, can be used in the Hilbertian and
Wasserstein settings. While this will be considered in the thesis, we prefer to stick to the simpler
convex setting in this introduction
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moment and W2 is the 2-Wassertstein distance induced by the norm | · | of H.
In order to formulate (1.1.16) in the Wasserstein setting, we need to find a way
to express (1.1.16) without relying on the Hilbertian structure. The first step is to
notice that, if we fix a point y 2 H and we compute the derivative of the square
norm |xt - y|2 along a solution x of (1.1.16), we get

1

2

d
dt

|xt - y|2 = hẋt, xt - yi 6 f(y)- f(xt) a.e. t > 0, (1.1.18)

since ẋt 2 -@f(xt). On the other hand, it is clear that, if a locally absolutely
continuous curve x : [0,+1) ! H satisfies (1.1.18), then it satisfies (1.1.16).
Conditions like (1.1.18) are usually called Evolution Variation Inequality (EVI);
as it was first noted in [5], the very nice thing is that (1.1.18) is completely
independent from the Hilbertian structure and can be set in general: given
� : P2(H) ! (-1,+1], we say that a locally absolutely continuous curve
µ : [0,+1) ! X is a EVI-gradient flow of � starting from µ̄0 2 D(�) if

8
<

:

1

2

d
dtW

2

2
(µt,⌫) 6 �(⌫)-�(µt) for every ⌫ 2 P2(H) and a.e. t > 0,

µ0 = µ̄0.
(1.1.19)

We refer to [5] for the general theory of gradient flows in metric spaces and, in
particular, to the second part of the book, where the authors treat the Wasser-
stein case. Both in the metric and Wasserstein settings, the crucial tool is the
minimizing movement scheme [41] (which in the present Wasserstein setting is
also called JKO-scheme, according to [64]): let us define, for every µ 2 P2(H)

and ⌧ > 0, the map �(⌧,⌫; ·) : P2(H) ! (-1,+1] as

�(⌧,µ;⌫) :=
1

2⌧
W2

(µ,⌫) +�(⌫), ⌫ 2 P2(H).

Starting from the initial point µ̄0, one iteratively defines the sequence
8
<

:
µ0 := µ̄0,

µn 2 arg min
⌫2P2(H)�(⌧,µn-1;⌫), n > 1,

(1.1.20)

and the piece-wise constant interpolating curve µ⌧ : [0,+1) ! X. The reason
behind this scheme is the following: in the Hilbertian case, minimizers µn of
�(⌧,µn-1; ·) are exactly one step of Implcit Euler scheme for �; the correspond-
ing sequence (xn)n ⇢ H defined as in (1.1.20) for f : H ! (-1,+1) would
indeed satisfy

xn - xn-1

⌧
2 -@f(xn). (1.1.21)

Under suitable hypotheses on �, it is possible to prove (see [5, Chapter 11] that
the curves (µ⌧)⌧>0 have at least an accumulation point µ as ⌧ # 0 in an ap-
propriate topology and that µ solves (1.1.19). In addition, exploiting the par-
ticular structure of this space, in [5], the authors give a notion of subdiffer-
ential for a proper, lower semicontinuous and geodesically convex functional
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� : P2(H) ! (-1,+1]: we denote by TH := H ⇥ H the (flat) tangent bun-
dle to H and, given µ 2 D(�), we say that  2 P2(TH) belongs to @�(µ), the
subdifferential of � at µ, if

for every ⌫ 2 P2(H) there exists � 2 ⇤( ,⌫) such that

�(⌫)-�(µ) >
Z

TH⇥H

hv,y- xid�(x, v,y),
(1.1.22)

where ⇤( ,⌫) is the set of � 2 P(TH ⇥ H) such that (x, v)]� =  and (x, y)]� 2
�o(µ,⌫), the set of Optimal Transport plans connecting µ to ⌫. It is clear that this
definition is an integrated version of the classical (1.1.17). Notice moreover that
here an element of @�(µ) is defined as a probability on the product space, which
would correspond to say that in (1.1.17) (x, v) 2 -@f(x).

The second building block to better characterize solutions to (1.1.16) is a notion
of velocity for an absolutely continuous curve in P2(H) which has to be some-
how compatible with (1.1.22); this is provided by [5, Theorem 8.3.1, Proposition
8.4.6]: if µ : [0,+1) ! P2(H) is a locally absolutely continuous curve, then there
exists a (a.e. uniquely determined) Borel vector field v : [0,+1)⇥ H ! H such
that the continuity equation

@tµt +r · (vtµt) = 0

holds in the sense of distributions in [0,+1)⇥ H and

lim
h!0

W2((iH + hvt)]µt,µt+h)

|h|
= 0 for a.e. t > 0, (1.1.23)

where iH is the identity map on H.
With the notions of velocity and subdifferential at our disposal, we can finally
characterize a gradient flow evolution in the Wassestein space: we say that a lo-
cally absolutely continuous curve µ : [0,+1) ! P2(H) is a Wasserstein-gradient
flow for � starting from µ̄0 2 D(�) if

8
<

:
(iH,-vt)]µt 2 @�(µt) a.e. t > 0,

µ0 = µ̄0,
(1.1.24)

where vt is the vector field associated to the curve µ as above evaluated at time t.
The remarkable result [5, Theorem 11.1.3] is that the notion of EVI-gradient flow
in (1.1.19) and the Wasserstein one in (1.1.24) coincide, under suitable hypothe-
ses on the functional �.

Since the aim of this second part of the thesis is to study dissipative evolutions in
Wasserstein spaces, let us spend a few words on what is well known: a particular
example of dissipative operator is the (opposite of the) subdifferential of a convex
function f : H ! (-1,+1], meaning that

hv-w, x- yi 6 0 for every (x, v), (y,w) 2 -@f, (1.1.25)

where we are denoting by -@f the graph of the multivalued map x 7! -@f(x)

(equivalently (x, v) 2 -@f if and only if v 2 -@f(x)). It is then natural to consider
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general dissipative multivalued maps F : H ! 2H sending a point x 2 H to a
subset F(x) ⇢ H satisfying

hv-w, x- yi 6 0 for every (x, v), (y,w) 2 F, (1.1.26)

where with abuse of notation we are denoting by F both the multivalued operator
and its graph: (x, v) 2 F if v 2 F(x). Moreover, it is natural to consider the
component v as a velocity, so that we can identify F as a subset of TH = H ⇥ H.
The corresponding dissipative evolution is thus described by a locally absolutely
continuous curve x : [0,+1) ! H satisfying

8
<

:
ẋt 2 F(xt) a.e. t > 0,

x0 = x̄0,
(1.1.27)

for some x̄0 2 D(F). These evolutions have been a widely studied topic and
we refer to the book of Brézis [26] for a discussion of this theory. The strategy
to prove existence of a curve satisfying (1.1.27) in the classical setting relies on
the notion of resolvent operator J⌧ of F which encodes a step of implicit Euler
scheme for F: given x 2 H and ⌧ > 0, we say that y 2 J⌧(x) if and only if

y- x

⌧
2 F(y)

which corresponds exactly to (1.1.21) with F in place of -@f . The crucial point
is that, if F is maximal dissipative (meaning that it is maximal in the sense of
the graph in the class of dissipative operators), then the resolvent operator is an
everywhere defined contraction and it is thus single-valued so that the implicit
Euler scheme is well defined. This allows to develop the theory of dissipative
evolutions in Hilbert spaces and have existence, uniqueness and stability results
for (1.1.27) (see e.g. [26, Theorem 3.1]), thus defining the semigroup operator
St : D(F) ! H associated to F: this is the (unique Lipschitz extension to D(F) of
the) map sending x̄0 2 D(F) to the evaluation at time t > 0 of the solution x of
(1.1.27).

Contributions in Part II. The aim of this second part of the thesis is thus to
present a new class of dissipative evolutions in P2(H) in the same spirit of the
generalization of (1.1.16) to (1.1.24).
In analogy with the metric extension of gradient flow evolutions, the first step
is to express a dissipative evolution in a purely metric way (or, at least, in a
suitable way for the space P2(H)). We start again from a natural characterization
of (1.1.27) in terms of Evolution Variational Inequality: if we take (y,w) 2 F ⇢
H ⇥ H and we compute the derivative of the squared norm |xt - y|2 along a
solution x of (1.1.27), we get

1

2

d
dt

|xt - y|2 = hẋt, xt - yi = hẋt -w, xt - yi- hw,y- xti

6 -hw,y- xti for a.e. t > 0,
(1.1.28)

since ẋt 2 F(xt) and F is dissipative. If F is also maximal dissipative, it is easy to
see that (1.1.28) is also sufficient to get (1.1.27); thus (1.1.28) is an equivalent way
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to express that x is the solution of (1.1.28) and we can observe that, even if it is
not immediately apparent, this is again a (almost) purely metric formulation: if
we consider the exponential map exps : H⇥H ! H sending (x, v) to x+ sv, we
can immediately notice that

1

2

d
ds

����
s=0

| exps(x, v)- y|2 = hv, x- yi

so that (1.1.28) can be equivalently expressed as

1

2

d
dt

|xt-y|2 6 -
1

2

d
ds

����
s=0

| exps(y,w)-xt|
2 for every (y,w) 2 F and a.e. t > 0.

(1.1.29)

Moreover notice that (1.1.26) can be rewritten in terms of derivatives of the
squared distance as

1

2

d
ds

����
s=0

| exps(x, v)- exps(y,w)|2 6 0 for every (x, v), (y,w) 2 F. (1.1.30)

The problem of extending (1.1.28) and the notion of dissipativity to P2(H) thus
reduces to find a suitable notion of exp in the space P2(TH) and to study its
differentiability properties. The natural candidate is of course the map exps] :

P2(TH) ! P2(H) and the result is the following (see Proposition 7.1.3 and
Theorem 7.1.8).

Theorem 1.1.6. Let �0,�1 2 P2(TH) be measures with marginals µ0,µ1 2 P2(H).
Then the maps

s 7! 1

2
W2

2
(exps] �0,µ1), s 7! 1

2
W2

2
(exps] �0, exps] �1)

are semi-concave and thus right and left differentiable at s = 0. If we define

[�0,µ1]r := lim
s#0

W2

2
(exps] �0,µ1)-W2

2
(µ0,µ1)

2s
, (1.1.31)

[�0,�1]r := lim
s#0

W2

2
(exps] �0, exps] �1)-W2

2
(µ0,µ1)

2s
, (1.1.32)

we have that

[�0,µ1]r = min
�Z

TH⇥H

hx0 - x1, v0id� | � 2 ⇤(�0,µ1)

�
, (1.1.33)

[�0,�1]r = min
�Z

TH⇥TH

hx0 - x1, v0 - v1id⇥ |⇥ 2 ⇤(�0,�1)

�
,

(1.1.34)

where the sets ⇤(�0,�1) and ⇤(�0,µ1) are defined as

⇤(�0,µ1) :=

⌦
� 2 �(�0,µ1) | (x0, x1)]� 2 �o(µ0,µ1)

↵
,

⇤(�0,�1) :=

⌦
⇥ 2 �(�0,�1) | (x0, x1)]⇥ 2 �o(µ0,µ1)

↵
.
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Notice that the subscript “r" stands for “right" since in the thesis we will also
consider the left derivative, which is however not needed in this introductory
part. We will then call a non-empty set F ⇢ P2(TH) “Multivalued Probability
Vector Field" (MPVF), we say that it is dissipative if

[�0,�1]r 6 0 for every �0,�1 2 F (1.1.35)

and that a locally absolutely continuous curve µ : [0,+1) ! P2(H) is a EVI-
solution for F starting from µ̄0 2 D(F) if

8
<

:

1

2

d
dtW

2

2
(µt, x]�) 6 - [�,µt]r for every � 2 F and a.e. t > 0,

µ0 = µ̄0.
(1.1.36)

The characterizations in (1.1.33) and (1.1.34) are particularly useful to study
semicontinuity properties of the pairings and since, by (1.1.23), every locally
absolutely continuous curve µ : I ! P2(H) behaves locally as exph] �t for
�t = (iH, vt)]µt, it is not surprising that we can characterize the directional
derivatives of the squared Wasserstein distance from a fixed point along abso-
lutely continuous curves (see Theorems 7.2.1 and 7.2.3). This is also important
when studying the stability properties of the notion of EVI solutions: the possi-
bility of expressing derivatives as pairings allows also to show the robustness of
the notion of solution (see e.g. Proposition 8.1.6).

Notice moreover that, thanks to the result above, we can immediately see that
the (opposite of the) subdifferential of a convex and lower semicontinuous func-
tional � : P2(H) ! (-1,+1] can be characterized in the following way: given
µ 2 D(�), � 2 P2(TH) belongs to -@�(µ) (meaning that (x,-v)]� 2 @�(µ),
where (x,-v)(x, v) = (x,-v) for every (x, v) 2 H ⇥H) if and only if x]� = µ and

�(⌫)-�(µ) > [�,⌫]
r

for every ⌫ 2 P2(H).

Finally it is not difficult to see that -@� is a dissipative operator, so that it is
natural to compare the notions of gradient flow for � with the one of dissipative
evolution for -@�: the result (see Proposition 9.5.2) is that, if e.g. the domain of
@� is geodesically convex, then the two notions coincide.

Of course the framework we are developing here is not the first attempt of
defining evolutions of measures under the action of general notions of velocity
fields: we mention here two approaches that are in a way connected to ours (the
one of Piccoli [94] was partly an inspiration for our work).

The idea of both approaches is to consider maps b : P2(H) ! C(H; H), taking
values in some subset of continuous vector fields in H. The evolution driven by
b is thus described by t 7! µt 2 P2(H) such that the continuity equation

@tµt + div(vtµt) = 0, vt = b[µt], µt-a.e. for every t > 0, (1.1.37)

holds in the distributional sense. In particular, in [21] the aim of the authors is
to develop a suitable Cauchy-Lipschitz theory in Wasserstein spaces for differ-
ential inclusions which generalizes (1.1.37) to multivalued maps b : Pb(H) ◆
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Lip
loc

(H; H) and requires (1.1.37) to hold for a suitable measurable selection of
b. On the other hand, in [94], the map b is defined in terms of a single valued
MPVF, meaning that, given a map F : P2(H) ! P2(TH), b[µ] is defined as the
barycenter of F[µ]:

b[µ](x) :=

Z

H

vd(F[µ])x(v), x 2 H,

where (F[µ])x is the disintegration of F[µ] w.r.t. µ at x 2 H (see Theorem 2.1.1
and Definition 7.1.1). In other words, the notion of evolution given in [94] can be
expressed in our framework in the following way: if F is a MPVF, we say that a
locally absolutely continuous curve µ : [0,+1) ! D(F) satisfies the barycentric
property if for a.e. t > 0 there exists �t 2 F[µt] such that

d
dt

Z

H

'(x)dµt(x) =

Z

TH

hr'(x), vid�t(x, v) for every ' 2 Cyl(H), (1.1.38)

where Cyl(H) is the set of cylindrical function on H, a generalization of smooth
functions with compact support to the infinite dimensional space H (see Defini-
tion 2.4.5). The following result, which we state here in a simplified way, com-
pares the two notions of solutions (see Theorems 8.3.4 and 8.3.7 for the more
general statements).

Theorem 1.1.7. Let F be a dissipative MPVF and let µ : [0,+1) ! D(F) be a locally
absolutely continuous curve. Then

1. If D(F) = P2(H), F is sequentially closed in P2(TH), its sections are convex
(meaning that F[⌫] is convex for every ⌫ 2 P2(H)) and F is locally bounded, in
the sense that for every µ 2 D(F) there exist constants M, " > 0 such that

for every ⌫ 2 P2(H) with W2(µ,⌫) < "

there exists � 2 F[⌫] with
Z

H

|v|2 d�(x, v) 6 M,

then every EVI solution for F has the barycentric property.

2. If µt is a regular probability measure ([5, Definitions 6.2.1, 6.2.2]) for a.e. t > 0

and the curve µ has the barycentric property, then it is a EVI solution for F.

Let us now come to the question of existence of EVI solutions for a dissipative
MPVF. As we have seen, both in the classical setting of Hilbertian dissipative
evolutions and of gradient flows in P2(H), the main tool is an implicit Euler
scheme. In the first case it is possible to construct it thanks to the maximality
of the operator (which is equivalent to the global definition of the resolvent),
while in the second case it relies on the variational minimizing movements-JKO
interpretation of one step of implicit Euler scheme. Both these strategies are not
immediately clear in the present setting of dissipative evolutions in P2(H) so
that we will first carry out the analysis of an explicit Euler scheme, which has
the advantage of being easily defined, while we leave for the last part of this
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introduction the more involved construction of the implicit Euler scheme.

The explicit Euler method. We fix a finite time horizon T > 0, a time step ⌧ > 0

and we divide the interval [0, T ] in N(⌧, T) := dT/⌧e sub-intervals. Starting from
the initial datum µ̄0 we construct the following sequence

M0

⌧ := µ̄0, Mn+1

⌧ := exp⌧] �
n

⌧ = (x+ ⌧v)]�n

⌧ , �n

⌧ 2 F[Mn

⌧ ] (1.1.39)

and we consider the constant interpolating curve M̄⌧ : [0, T ] ! P2(H) defined as

M̄⌧(t) := Mbt/⌧c, t 2 [0, T ].

Obviously, one wants to study the properties of the family of curves (M̄⌧)⌧>0

and hope that, as ⌧ # 0, we obtain an EVI solution for F. Differently from the
implicit Euler method, although F is dissipative, at each step of the explicit Euler
scheme we obtain a perturbation of the distance given by

W2

2
(exp⌧] �, exp⌧]  ) 6 W2

2
(µ,⌫) + 2⌧ [�, ]

r
+ ⌧2

⇣
|�|2

2
+ | |2

2

⌘
,

where

|�|2
2
:=

Z

TH

|v|2 d�(x, v),

which thus depends on the second moments of � and  , and thus of the magni-
tude of F at µ and ⌫. However, if we impose to the discrete sequence in (1.1.39)
to satisfy

|�n

⌧ |2 6 L if 0 6 n 6 N(⌧, T) (1.1.40)

for some L > 0, then we can immediately obtain a discrete version of EVI for the
family Mn

⌧ (see Proposition 9.1.3)

1

2
W2

2
(Mn+1

⌧ ,⌫)-
1

2
W2

2
(Mn

⌧ ,⌫) 6 ⌧ [�n

⌧ ,⌫]
r
+

1

2
⌧2L2 (1.1.41)

for every 0 6 n < N(T , ⌧) and ⌫ 2 P2(H). Heuristically, this tells us that passing
to the limit as ⌧ # 0, we will obtain a solution to EVI. Adapting to the P2(H)-
setting the relaxation approach of [89], based on the doubling variable technique
of Kružkov [71] and Crandall-Evans [38] (see also [39]), we prove the main con-
vergence result for the explicit Euler scheme (see Theorems 9.1.5, 9.1.6 and 9.1.8).

Theorem 1.1.8. Let F be a dissipative MPVF and let T > 0; let (M⌧)⌧ be a family of
constant interpolating curves corresponding to the time steps 0 < ⌧ < 1 in the interval
[0, T ] and to the initial datum µ̄0 as in (1.1.39). Suppose moreover that there exists some
L > 0 such that all the sequences (Mm

⌧ )m=0,...,N(T ,⌧) satisfy (1.1.40). Then (M⌧)⌧

uniformly converges as ⌧ # 0 to a Lipschitz continuous curve µ : [0, T ] ! P2(H) which
is the unique EVI solution for F starting from µ̄0. Moreover the following error estimate
holds:

W2(µt, M̄⌧(t)) 6 CL
p
⌧(t+ ⌧) t 2 [0, T ], n 2 N, (1.1.42)

where C is a universal constant.
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We want to highlight that the estimate in (1.1.42) is sharp [106], does not re-
quire any local compactness assumption on the underlying space, and repro-
duces the celebrated Crandall-Liggett estimate for the generation of dissipative
semigroups in Banach spaces [39] in this Wasserstein-metric framework.

Moreover, if µ,⌫ are two limit solutions starting from µ0,⌫0 we prove that

W2(µt,⌫t) 6 W2(µ0,⌫0) for every t 2 [0, T ],

as it happens in the case of gradient flows of geodesically convex functions.
With the explicit Euler scheme and the notion of EVI solution, it also possible

to prove local and global existence results as it is done in the classical ODEs
theory, see Section 9.2.

The implicit Euler method. As we have seen, in the context of contraction semi-
groups generated by dissipative operators in Hilbert spaces, a fundamental role
is played by the implicit Euler scheme, which, differently from the explicit one,
is unconditionally stable, and thus avoids imposing local boundedness condi-
tions as in (1.1.40). While in the case of gradient flows the construction of the
implicit Euler scheme relies on the variational definition as in (1.1.20), if the dis-
sipative operator F doesn’t come from a functional �, it is not possible to use an
analogous construction.

The approach for the implicit Euler scheme we present is as follows:

1. We assume that the domain of F contains a sufficienlty rich set of discrete
measures;

2. We “lift" the structure of P2(H) to an Hilbert space H parametrizing mea-
sures by random variables defined in an appropriate space;

3. Starting from discrete measures, we define a maximal dissipative operator
F ⇢ H⇥H which is compatible with F in a suitable sense;

4. We prove that the dissipative evolution driven by F in H induces a EVI
evolution for F in P2(H).

In particular, point 4. can also be seen in the following way: we build the implicit
Euler scheme for F in H and this induces an implicit Euler scheme for F in P2(H).

We start from a naive guess: we could try to consider

F := {(X,V) 2 H⇥H : (X,V)]P 2 F}, (1.1.43)

where H is any Hilbert space of random variables parametrizing P2(H). Unfor-
tunately

hV -W,X- Yi >
⇥
(X,V)]P, (Y,W)]P

⇤
r

, (1.1.44)

and in general the inequality can be strict, so that this definition does not guar-
antee the dissipativity of F, even if F is.
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As stated in the first point, we suppose that the domain D(F) contains a nonempty
set of discrete measures C ⇢ Df(F), where Df(F) is the subset of D(F) of mea-
sures with finite support. Under this assumption, we can look at the properties
of F when computed on discrete measures; consider �, 2 F and suppose that
µ := x]� 2 C has finite support, meaning that it is concentrated on a set of N

distinct points for some N 2 N. If also ⌫ := x] 2 C is concentrated on the same
number N of (non necessarily distinct) points, then there is a unique Optimal
Transport plan � 2 �(µ,⌫) and it is concentrated on a map, meaning that there
exists a Borel map T : H ! H such that � = (iH, T)]µ. For this reason, the set
⇤(�, ) as in Theorem 1.1.6 is a singleton (see also Remark 7.4.2) and thus

hV -W,X- Yi =
⇥
(X,V)]P, (Y,W)]P

⇤
r
= [�, ]

r
6 0

for every X, Y,V ,W 2 H, such that (X,V)]P = � and (Y,W)]P =  , where,
again, H is any Hilbert space of random variables parametrizing P2(H).

Let us then address the second point; to lift the structure of P2(H) to a Hilbert
space, it is enough to consider any standard Borel probability space (⌦,B, P):
this means that B is a sigma algebra in ⌦ such that there exists a Polish topology
⌧ on ⌦ for which B is the Borel sigma algebra generated by ⌧ and P is just a
diffuse probability measure on (⌦,B), i.e. P({!}) = 0 for every ! 2 ⌦. It is a
classical result, see also Corollary 6.2.3, that, for any choice of standard Borel
probability space (⌦,B, P), the L2 space of random variables in (⌦,B, P) with
values in H parametrizes P2(H), in the sense that for every µ 2 P2(H) there
exists X 2 L2((⌦,B, P); H) such that X]P = µ. For the sake of clarity, in this
introduction we consider only the case in which ⌦ = [0, 1), B is the Borel sigma
algebra in [0, 1) and P is the 1-dimensional Lebesgue measure restricted to [0, 1),
while in the thesis we deal with a general standard Borel probability space2. We
thus define

H := L2(([0, 1),B, P); H).

In particular, in order to parametrize discrete measures, we define the finite
sigma algebras Bn generated by the partitions3

Pn := {[1, 1/2n), [1/2n, 2/2n), . . . , [(2n - 1)/2n, 1)} for n 2 N

and the sub-Hilbert spaces of piecewise constant random variables

Hn := L2(([0, 1),Bn, P); H),

together with their subsets On of injective maps. In this way, elements of Hn

parametrize discrete measure concentrated on 2n (non necessarily distinct) points,
while elements of On parametrize discrete measure concentrated on exactly 2n

distinct points.

2 The example of standard Borel probability space used here is, in a way, canonical, see Section 6.2
where this and other related matters are addressed in detail.

3 Also in this case, one can consider more general refining families of partitions. These is indeed
used in the thesis, but we prefer to consider only this example in this explanatory part.
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As outlined in the third point, we can start from the set of discrete measures C

and define Fn ⇢ Hn ⇥Hn as

Fn :=

⌦
(X,⇧nV) 2 (On \Dn)⇥Hn : (X,V)]P 2 F

↵
⇢ Hn ⇥Hn,

where Dn ⇢ Hn is the set of random variables X 2 Hn such that X]P 2 C and
⇧n : H ! Hn is the orthogonal projection. The first compatibility result is the
following (see Proposition 9.4.4 and Lemma 9.4.5).

Theorem 1.1.9. Let F be a dissipative MPVF, let n 2 N and suppose that F admits a
core C ⇢ D(F) which is in addition convex along couplings (in the sense that, if µ0,µ1 2
C, then ((1- t)x0 + x1)]µ 2 C for every t 2 [0, 1] and every µ 2 �(µ0,µ1)) and open
in Df(F) with respect to the W1-topology. Then the maximal dissipative extension F̂n
of Fn in Hn ⇥Hn is compatible with F in the sense that

hV ,X- Yi+
⇥
 ,X]P

⇤
r
6 0 (1.1.45)

for every (X,V) 2 F̂n, Y 2 D(F̂n) and every  2 F[Y]P].

The proof of this result is based on a few technical tools developed in Sections
6.4 and 6.5; in particular, in Theorem 6.5.2, we prove that curves induced by
couplings between discrete measures are piece-wise geodesic and, in Proposition
6.4.3, we show that the map xt : X2 ! X sending (x0, x1) 7! (1- t)x0 + tx1 is
almost injective on the support of discrete couplings, a crucial property in the
computation of the pseudo scalar product [·, ·]

r
(see Remark 7.4.2).

Finally, the maximal dissipative set F ⇢ H ⇥H is defined as the maximal
dissipative extension in H⇥H of F1 := \nF̂n, which is proven to be non-empty
and dissipative. Some of the properties of F are summarized in the following
statement (see in particular Theorem 9.3.3 and Proposition 9.4.9).

Theorem 1.1.10. Let F and C be as in Theorem 1.1.9. Then F is law invariant in
the following sense: if X0 2 D(F) and Y0 2 H is such that (X0)]P = (Y0)]P, then
Y0 2 D(F) and

(X0, J⌧X0,StX0)]P = (Y0, J⌧Y0,StY0)]P for every ⌧ > 0, t > 0, (1.1.46)

where J⌧ and St are the the resolvent and the semigroup operators associated to F, respec-
tively. Moreover, if Y 2 D(F1) and  2 F[Y]P], we have

hV ,X- Yi+
⇥
 ,X]P

⇤
r
6 0. (1.1.47)

Finally, to address the fourth point, notice that the result above alredy goes in
the correct direction: indeed, the fact that the semigroup generated by F depends
only on the law of the starting point and the compatibilty condition (1.1.47) make
reasonable to hope that the curve t 7! (StX0)]P could be an EVI solution for F
starting from µ0 := (X0)]P. To state the last result we need to assume a few
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additional hypotheses on the core C and on the geometry of the domain of F. In
particular we consider the following approximability condition for the core C

for every µ 2D(F) there exists µn 2 C and �n 2 F[µn] such that
W2(µn,µ) ! 0, sup

n

|�n|2 < +1 (1.1.48)

and, for every µ 0 2 D(F), we define the set

SF
�
µ 0�

:=

�

µ 00 2 Df(F)

�����
µt 2 D(F) for every t 2 (0, 1]
and every (µt)t2[0,1] 2 G(µ 0,µ 00

)

✏

,

where G(µ 0,µ 00
) is the set of generalized geodesics connecting µ 0 to µ 00 (for the pre-

cise definition see [5, Definition 9.2.2]). The result is the following (see Theorem
9.4.18).

Theorem 1.1.11. Let F and C be as in Theoerem 1.1.9 and suppose that, in addition,
C satisfies (1.1.48) Assume that for every µ 0 2 D(F) the set SF (µ

0
) is non-empty and

open in Df(F) with respect to the W1-topology. Let µ0 2 D(F), let (µt)t>0 be the
Lipschitz curve defined by µt := Stµ0 for every t 2 [0,+1) and let (⌫t)t>0 be a
locally absolutely continuous EVI solution for F starting from ⌫0. Then

W2(µt,⌫t) 6 W2(µ0,⌫0) for every t 2 [0,+1). (1.1.49)

In particular (µt)t>0 is the unique locally absolutely continuous 0-EVI solution for F
starting from µ0.

The second part is organized as follows: Chapter 6 collects some preliminary ma-
terial that is used in the subsequent chapters; in particular there is a synthesis of
the theory of dissipative evolutions in Hilbert spaces, a fine treatment of Borel
partitions and parametrization of measures by random variables, together with
a few technical tools related to discrete measures and weak topologies; Chap-
ter 7 contains a throughout study of the notion of dissipativity in Wasserstein
spaces, the treatment of pseudo scalar products and of the interaction between
dissipative operators in Wasserstein spaces and geodesics; Chapter 8 treats the
notion of EVI solutions and its connection with the barycentric property; finally
Chapter 9 introduces the explicit Euler scheme, presents its convergence results
and treats the construction of the Hilbertian dissipative operator F, besides pre-
senting a few results related to general law invariant dissipative operators.

Part II is the result of a collaboration with Giulia Cavagnari and Giuseppe Savaré,
and part of the material presented in Section 6.3 and Chapters 7, 8, 9 appeared
in [34].

1.1.3 Part III: Wasserstein-Sobolev spaces

Before describing the results presented in this third part of the thesis, we briefly
describe the framework of metric Sobolev spaces we deal with. To this aim, let
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us fix a complete and separable metric space (X, d), a Borel positive measure
m on X (the triplet (X, d,m) is called a Polish metric measure space) and an ex-
ponent p 2 [1,+1). We denote by L0(X,m) the space of equivalence classes of
Borel measurable functions f : X ! R identified up to m measure. This space is
naturally endowed with the topology of the convergence in m measure.

The first approach to Sobolev functions in metric measures spaces we present,
strictly related to the ideas of Cheeger [35](see also [61, 70]), is contained in the
work of Ambrosio, Gigli and Savaré [7] where they define the following concept
of p-relaxed gradient: if f 2 Lip

b
(X, d) the asymptotic Lipschitz constant of f is

defined as

lipdf(x) := lim
r#0

Lip(f, B(x, r), d) = lim sup
y,z!x, y6=z

|f(y)- f(z)|

d(y, z)
, (1.1.50)

where B(x, r) denotes the open ball centered at x with radious r and, for A ⇢ X,
the quantity Lip(f,A, d) is defined as

Lip(f,A, d) := sup
x,y2A,x 6=y

|f(x)- f(y)|

d(x,y)
.

We say that G 2 Lp(X,m) is a p-relaxed gradient of f 2 L0(X,m) if there exist a
sequence (fn)n ⇢ Lip

b
(X, d) and G̃ 2 Lp(X,m) such that

1. fn ! f in L0(X,m) and lipdf * G̃ in Lp(X,m),

2. G̃ 6 G m-a.e. in X.

It is not difficult to check that the set of p-relaxed gradients of f 2 L0(X,m)

is convex and weakly closed, so that it admits an element of minimal Lp(X,m)

norm (which turns out also to be minimal also in the a.e. sense), denoted by
|Df|? 2 Lp(X,m), and called minimal p-relaxed gradient of f. The p-Cheeger
energy of f 2 L0(X,m) is then defined as

CEp(f) :=

Z

X

|Df|p? dm

and can be proved to be the relaxation of the so called pre-p-Cheeger energy

pCEp(f) :=

Z

X

(lipdf)
p dm, f 2 Lip

b
(X, d),

in the sense that

CEp(f) = inf
�

lim inf
n!+1

pCEp(fn) : (fn)n ⇢ Lip
b
(X, d), fn ! f in L0(X,m)

�
.

(1.1.51)

The Sobolev space à la Cheeger H1,p
(X, d,m) is thus the vector space of functions

f 2 Lp(X,m) with finite Cheeger energy endowed with the norm

|f|p
H1,p(X,d,m)

:=

Z

X

|f|p dm+ CEp(f)
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which makes it a Banach space. Before moving to the next approach, let us men-
tion the strong approximation property which states that Lipschitz functions are
dense in H1,p

(X, d,m) (see also point (2) in Theorem 10.1.2):

for every f 2 H1,p
(X, d,m) there exists a sequence (fn)n ⇢ Lip

b
(X, d) such that

fn ! f, lipdfn ! |Df|? in Lp(X,m) as n ! +1.
(1.1.52)

Another approach to metric Sobolev spaces is due to Shanmugalingam [111] and
it is based on the concept of p-modulus of a family of curves. Let us denote by
�(X) the set of absolutely continuous curves defined in some non-degenerate
interval I ⇢ R with values in X. Given � 2 �(X), we denote by I(�) the interval
where the curve is defined and by �I and �F the evaluations of � at the infimum
and supremum of I(�), respectively. If G : X ! [0,+1] is a Borel function and
� 2 �(X), we set

Z

�

G :=

Z

I(�)
G(�t))|�̇t|d dt,

where |�̇t|d is the metric derivative of � at t 2 I(�) defined as

|�̇t|d := lim sup
h!0

d(�t+h,�t)
|h|

.

If we consider a family of curves � ⇢ �(X), its p-modulus is defined as

Modp(�) := inf
�Z

X

⇢p dm | ⇢ : X ! [0,+1] Borel,
Z

�

⇢ > 1 for every � 2 �
�

.

We say that a property depending on � 2 �(X) holds p-a.e. provided it is satisfied
for every � belonging to some set � ⇢ �(X) with Modp(�

c
) = 0. Finally, given

Borel functions (not equivalent classes) f : X ! R and G : X ! [0,+1], we say
that G is a p-weak upper gradient for f if

|f(�F)- f(�I)| 6
Z

�

G for p-a.e. �.

Also in this case, given f 2 L0(X,m) it is possible to prove that it admits a p-
weak upper gradient |Df|Sh 2 Lp(X,m) which is minimal in the following sense:
if f̃ : X ! R is a Borel representative of f and G is a p-weak upper gradient of f̃,
then |Df|Sh 6 G a.e. in X. Finally the so called Newtonian space N1,p

(X, d,m) is
the vector space of functions f 2 Lp(X,m) which admits a p-weak upper gradient
endowed with the norm

|f|p
N1,p(X,d,m)

:=

Z

X

|f|p dm+

Z

X

|Df|p
Sh

dm

which makes it a Banach space.
The remarkable result, which can be found in [7, Theorem 6.2] [6, Theorem
7.4], is that the two approaches are in fact equivalent, meaning that the spaces
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H1,p
(X, d,m) and N1,p

(X, d,m) coincide and the minimal p-gradients are equal,
i.e.

|Df|? = |Df|Sh m-a.e. in X and for every f 2 H1,p
(X, d,m). (1.1.53)

Contributions in Part III. Here we will adopt the Cheeger approach (even if
the equivalence of (1.1.53) will be useful, see in particular Section 10.2) with a
slight difference [108]: instead on considering the whole space of Lipschitz and
bounded functions on X, we fix a unital subalgebra A ⇢ Lip

b
(X, d) that separates

the points in X and we work with the concept of (p, A )-relaxed gradient (and
thus with the one of minimal (p, A )-relaxed gradient and Cheeger energy CEp,A )
simply substituting Lip

b
(X, d) with A in the corresponding constructions above.

This leads of course to a different Sobolev space H1,p
(X, d,m; A ) with the norm

|f|H1,p(X,d,m;A ) :=

Z

X

|f|p dm+ CEp,A (f) =

Z

X

|f|p dm+

Z

X

|Df|p?,A dm.

Of course every (p, A )-relaxed gradient is also a p-relaxed gradient and it holds
|Df|?,A > |Df|? m-a.e. in X for every f 2 L0(X,m) with a (p, A )-relaxed gradi-
ent, so that the Sobolev space H1,p

(X, d,m; A ) is contained in H1,p
(X, d,m). The

advantage in considering the subalgebra A consists in the fact that its elements
may be more regular and/or computations within the subalgebra may be easier
than in the general case.

It is thus relevant to determine sufficient conditions for the Sobolev space
H1,2

(X, d,m; A ) to coincide with the standard H1,2
(X, d,m); this would lead also

to the strong approximation property (1.1.52) in terms of the algebra A :

for every f 2 H1,p
(X, d,m) there exists a sequence (fn)n ⇢ A such that

fn ! f, lipdfn ! |Df|? in Lp(X,m) as n ! +1.
(1.1.54)

It is not difficult to see that (1.1.54) implies that

|Ddy|?,A 6 1 m-a.e. in X and for every y 2 X, (1.1.55)

where dy(x) := d(x,y) for x 2 X. The first result (see Theorem 10.2.1) is to prove
that actually this condition is also sufficient to get (1.1.54).

Theorem 1.1.12. Let (X, d,m) be a Polish metric measure space and let A be a unital
separating subalgebra of Lip

b
(X). If (1.1.55) holds true, then for every f 2 Lp(X,m)

with a p-relaxed gradient there exists a sequence (fn)n ⇢ A satisfying (1.1.54) i.e. f
has a (p, A )-relaxed gradient and

|Df|?,A = |Df|? m-a.e. in X. (1.1.56)

The proof of this results is obtained employing the regularizing properties of
the Hopf-Lax semigroup

Qt(f)(x) := inf
y2X

�
1

2t
d2(x,y) + f(y)

�
, x 2 X
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and a similar argument (although in a different setting) was already contained
in [108] (see in particular [108, Theorem 3.2.7]).

In case p = 2, the subalgebra viewpoint presents another advantage: if the pre-
Cheeger energy pCE2 satisfies the parallelogram identity at the level of A , then
the resulting space H1,2

(X, d,m; A ) (and thus H1,2
(X, d,m) if equality has been

proven) is an Hilbert space. More precisely we have the following result (see
Theorem 10.2.4).

Theorem 1.1.13 (An Hilbertianity condition). Let p = 2 and let A be a separating
unital subalgebra of Lip

b
(X) satisfying (1.1.55). If for every f,g 2 A

Z

X

⇣
|lip(f+ g)|2 + |lip(f- g)|2

⌘
dm = 2

Z

X

⇣
|lipf|2 + |lipg|2

⌘
dm, (1.1.57)

then H1,2
(X, d,m) is an Hilbert space, CE2 is a quadratic form, and A is strongly dense.

The Wasserstein-Sobolev space. As a remarkable application of Theorem 1.1.13
we consider the case of the Sobolev space on the 2-Wasserstein space on R

d.
The metric space is thus P2(R

d
), the space of probability measures on R

d with
finite second moment, with the Wasserstein distance W2; we fix then any Borel
positive measure m on P2(R

d
).

The unital subalgebra of functions A ⇢ Lip
b
(P2(R

d
),W2) we consider is

the one of cylindrical functions (which has nothing to do with the cylindrical
functions in Cyl(H) of Definition 2.4.5, and was already considered by Dello
Schiavo [44]): every � 2 C1

b
(R

d
) induces the function L� on P(Rd

)

L� : µ !
Z

Rd

�dµ (1.1.58)

which clearly belongs to Lip
b
(P2(R

d
),W2). More generally, if we consider a

vector � = (�1, · · · ,�N) 2
�
C1

b
(R

d
)
�N, we denote by L� := (L�1

, · · · , L�N
)

the corresponding map from P2(R
d
) to R

N. The algebra A of C1 cylindrical
functions is made of those functions F : P2(R

d
) ! R of the form

F(µ) =  (L�(µ)) µ 2 P2(R
d
), (1.1.59)

where � 2
�
C1

b
(R

d
)
�N and  2 C1

b
(R

N
) for some N 2 N.

Every element F 2 A as in (1.1.59) comes with a natural notion of vector
valued gradient DF : P2(R

d
)⇥ R

d ! R
d defined as

DF(µ, x) :=
NX

i=1

@i (L�(µ))r�i(x), (µ, x) 2 P2(R
d
)⇥ R

d. (1.1.60)

Since the representation of a cylindrical function F 2 A is never unique, in
principle the gradient DF of F may depend on the particular choice of  and �
used to represent F; in Proposition 11.1.10 we show that up to integrating DF

w.r.t. µ, we obtain a quantity that depends solely on F i.e.
Z

Rd

|DF(µ, x)|2 dµ(x) = (lipF(µ))2 for every µ 2 P2(R
d
). (1.1.61)
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In particular the pre-Cheeger energy satisfies the parallelogram identity (1.1.57)
when restricted to the algebra A .

It is then very important to prove that in the present Wasserstein setting the
inequality (1.1.55) holds. Let us present a formal motivation for the proof of
such result. Let us fix an absolutely continuous probability measure ⌫ 2 P2(R

d
)

and let us consider the continuous function

F⌫(µ) :=
1

2
W2

2
(µ,⌫), µ 2 P2(R

d
). (1.1.62)

Let ('1,µ,'2,µ) be a pair of Kantorovich potentials for ⌫ and µ in the sense that
Z

Rd

'1,µ dµ+

Z

Rd

'2,µ d⌫ =
1

2

Z

Rd

|y|2 d⌫(y) +
1

2

Z

Rd

|x|2 dµ(x)-
1

2
W2

2
(⌫,µ)

so that

F⌫(µ) =

Z

Rd

uµ(x)dµ(x), µ 2 P2(R
d
),

where

uµ(x) :=
1

2
|x|2 -'1,µ(x) + aµ, aµ :=

Z

Rd

✓
1

2
|y|2 -'2,µ(y)

◆
d⌫(y).

If uµ depends in a continuous way on µ and it can be approximated by elements
of A , we can expect that, by (1.1.61), we would have

|DF⌫|
2

?,A (µ) / (lipF⌫(µ))2 ⇡
Z

Rd

|ruµ(x)|
2 dµ(x) (1.1.63)

=

Z

Rd

|x-r'1,µ(x)|
2 dµ(x) = W2

2
(µ,⌫), (1.1.64)

since r'1,µ is the Optimal Transport map from µ to ⌫. Of course the assumption
that uµ depends in a continuous way on µ and can be approximated by elements
of A is not met in general. In the proof of Theorem 11.1.19 and Corollary 11.1.20
we overcome these technical difficulties by a more refined variational argument
and we obtain the following result.

Theorem 1.1.14. H1,2
(P2(R

d
),W2,m) is a Hilbert space and the algebra A of cylin-

drical functions is dense in energy: for every F 2 H1,2
(P2(R

d
),W2,m) there exists a

sequence Fn 2 A , such that

Fn ! F, lip(Fn) ! |DF|? in L2(X,m). (1.1.65)

Another advantage in using the algebra A of cylindrical functions is a conse-
quence of the fact, as already highlighted, that these functions comes already
with a notion of gradient as in (1.1.60), and not only of norm of the gradient as
in the approaches to the Sobolev theory in metric spaces mentioned above. Using
the density in (1.1.65) we hence obtain a notion of gradient for Sobolev functions
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as a relaxation of the differential DF for cylindrical functions: if we denote by m
the measure in P(P2(R

d
)⇥ R

d
) defined as

m :=

Z

P2(Rd)
�µ ⌦ µdm(µ),

there is a linear continuous Wasserstein-gradient operator

Dm : H1,2
(P2(R

d
),W2,m) ! L2(P2(R

d
)⇥ R

d,m; R
d
)

representing the bilinear form associated to the Cheeger energy as

CE2(F,G) =

Z
DmF(µ, x) · DmG(µ, x)dm(µ, x) (1.1.66)

satisfying useful calculus rules which are typical of � -calculus for Dirichlet form
and allow for an explicit characterization of the tangent bundle L2

�
TP2(R

d
)
�

in
the sense of Gigli [55, 57].

Finally, we remark that it is not difficult to extend the theory developed so far to
(P2(X),W2,m), where X is a Riemmanian manifold (using the Nash embedding
Theorem) or a (possibly infinitely dimensional) separable Hilbert space (using
projections on finite dimensional subspaces whose union is dense in the space).

The third part consists of two Chapters: Chapter 10 contains a few preliminar-
ies on the construction of Sobolev spaces with the adaptation of the Cheeger
approach to the presence of the subalgebra A and the proof of the general cri-
terium for the density in energy of such subalgebra; Chapter 11 presents the ap-
plications of the results of the previous Chapter to Wasserstein-Sobolev spaces:
in particular, Section 10.2 presents the general setting and the proof of Theo-
rem 1.1.14 while the remaining sections are devoted to the calculus rules for the
Wasserstein gradient and the extension of the results to separable Hilbert spaces
and Riemmanian manifolds.

Part III is the result of a collaboration with Massimo Fornasier and Giuseppe
Savaré.





2
P R E L I M I N A R I E S

In this chapter we discuss the main notation used in the thesis and we describe
the framework in which it is set. Most of the material is basic but we prefer to
state the definitions clearly in order to avoid ambiguities.

2.1 topological and measure-theoretic framework

Given a set X, we denote by 2X the set of subset of X. A topological space is a
pair (X, ⌧) where X is a non-empty set and ⌧ ⇢ 2X is a collection of subsets of X
containing ; and X and which is closed under finite intersections and arbitrary
unions. We say that ⌧ is a topology on X and its elements are called open sets.
Complements of open sets are called closed sets. When the topology on a set X
is understood, we simply say that X is a topological space. A neighbourhood of
a point x 2 X in the topological space (X, ⌧) is an open set containing x.

Given two topological spaces (X, ⌧), (Y,�), we denote the space of continu-
ous functions from X to Y as C((X, ⌧); (Y,�)) (or simply with C(X; Y)) when the
topologies are clear from the context). If Y = R, we write C(X) (Cb(X) if we are
dealing with continuous and bounded functions).

An extended distance on a non-empty set X is a map d : X⇥X ! [0,+1] such
that

• d(x,y) = 0 if and only if x = y,

• d(x,y) = d(y, x) for every x,y 2 X,

• d(x, z) 6 d(x,y) + d(y, z) for every x,y, z 2 X.

If, in addition, d(x,y) < +1 for every x,y 2 X, we say that d is a distance on
X. The pair (X, d) is then called an extended metric space (resp. a metric space).
Every extended metric space (X, d) is endowed with a natural topology ⌧d whose
basis is given by the open balls

B(x, r) := {y 2 X | d(y, x) < r}, x 2 X, r 2 (0,+1).

We will deal with some different kinds of topological spaces which enjoy spe-
cific properties. A topological space (X, ⌧) is said to be

• Hausdorff, if for every pair of distinct points x,y there exist disjoint neigh-
bourhoods of x and y,

• Completely regular, if it is Hausdorff and for every closed set C and point
x 2 X \C there exists a function f 2 Cb(X) such that f(x) = 0 and f(C) = {1},

• Polish, if it is homeomorphic to a complete and separable metric space,

33
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• Lusin, if it Hausdorff and it is the image of a Polish space through a con-
tinuous and injective function,

• Suslin, if it is Hausdorff and it is the image of a Polish space through a
continuous function.

Every (extended) metric space is completely regular, Polish spaces are Lusin and
Lusin spaces are Suslin. These inclusions can be proven to be strict. For a com-
plete account of the theory of Lusin/Suslin spaces we refer to [20, Chapter 6].

A set L is said to be directed w.r.t. a partial order relation � if for every pair of
elements i, j 2 L there exists h 2 L such that i � h and j � h. A net in a topolog-
ical space (X, ⌧) is a map from a directed set A to X. A subnet of a net f : L ! X

is the composition of f with a final monotone function A ! L, where A is some
directed set. We denote nets miming the notation for sequences, e.g. with (xi)i2L

and we say that a net (xi)i2L converges to x 2 X if for every neighbourhood U

of x there exists an index j 2 L such that xi 2 U for every i 2 L, j � i. We refer
e.g. to [50] for a discussion about nets.

A measurable space is a pair (X,F) where X is a non-empty set and F ⇢ 2X

is a sigma-algebra on X, meaning that F contains ; and X, it is closed under
countable unions and complementation. Given E ⇢ 2X, we denote by � (E) the
smallest sigma-algebra on X containing E. In particular, when (X, ⌧) is a topolog-
ical space and E = ⌧, the sigma algebra �(⌧) is denoted by B((X, ⌧)) (or B(X), if
the topology is understood) and called Borel sigma algebra on (X, ⌧). Given two
topological spaces (X, ⌧), (Y,�) we say that a function f : X ! Y is Borel (mea-
surable) if it is measurable w.r.t. the Borel sigma algebras of X and Y. When the
target space is R, we denote by B(X) (resp. Bb(X)) the space of Borel (resp. Borel
and bounded) functions from X to R.

Given a measurable space (X,F), a (finite) measure on (X,F) is a sigma-additive
map µ : F ! R. We say that µ is non-negative if µ(A) > 0 for every A 2 F. The
triplet (X,F,µ) is called a measure space. We say that the measure µ is carried by
(or it is concentrated on) X 0 ⇢ X if there exists a set X 00 2 F such that µ(X 00

) = 0

and X 0 ⇢ X 00. If (X,F) and (Y,G) are measurable spaces, µ is a measure on (X,F)
and f : X ! Y is a measurable map, the push forward of the measure µ through
f, denoted by f]µ, is a measure on (Y,G) defined by

f]µ(A) := µ
�
f-1

(A)
�

, A 2 G.

Given a topological space (X, ⌧), we say that µ is a

• Borel measure, if it is a measure on (X,B((X, ⌧)),

• Radon measure, if it is a Borel measure and for every A 2 B((X, ⌧)) and
every " > 0 there exists a compact set K ⇢ A such that |µ|(A \K) < ", where
|µ| is the total variation measure associated to µ.

Every Borel measure in a Suslin space is a Radon measure concentrated on a
sigma-compact set (i.e. the countable union of compact sets), see e.g. [20, Theo-
rem 7.4.3]. The support of a measure µ on a topological space (X, ⌧), denoted by
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supp(µ), is the smallest closed set on which µ is concentrated. We introduce the
following notation for measures on a topological space (X, ⌧):

• M(X) is the set of Radon measures on X,

• M+(X) is the set of non-negative Radon measures on X,

• P(X) is the set of probabilities on X, i.e. the elements µ 2 M+(X) such that
µ(X) = 1,

• Discr(X) is the set of discrete measures on X i.e. the elements µ 2 M(X)

such that supp(µ) is a finite (possibly empty) set,

• Discr+(X) := Discr(X)\M+(X),

• �(X) is the set of measures µ 2 M+(X) of the form µ = r�x for some x 2 X,
r > 0,

• 0X is the null measure on X.

Notice that Discr+(X) ⇢ Discr(X) ⇢ M(X) and �(X) ⇢ M(X). Unless otherwise
stated, we will deal with Radon measures on topological spaces and we will just
say "µ is a measure on X", meaning that µ is a Radon measure on the topological
space X, where the topology is understood. Usually the topological space will
be Polish (or Suslin) so that all Borel measures will be Radon measures. Only in
few cases we will distinguish between Radon measures and Borel measures.

When dealing with a product space X⇥ Y we will often use the notation ⇡X

(resp. ⇡Y) or ⇡x (resp. ⇡y) to denote the projection on X (resp. on Y) i.e. the map
sending (x,y) to x (resp. to y). In this case, if X and Y are topological spaces,
µ 2 M(X) and ⌫ 2 M(Y), we define

�(µ,⌫) :=
�
� 2 M(X⇥ Y) | ⇡X] � = µ, ⇡Y] � = ⌫

 
. (2.1.1)

If � 2 �(µ,⌫), we say that µ and ⌫ are the marginals of � and that � is a plan
between µ and ⌫.
The following is the well known disintegration theorem.

Theorem 2.1.1. Let X,X be Lusin completely regular topological spaces, let µ 2 P(X)

and let r : X ! X be a Borel map. Denote with µ = r]µ 2 P(X). Then there exists a
µ-a.e. uniquely determined Borel family of probability measures {µx}x2X ⇢ P(X) such
that µx(X \ r-1

(x)) = 0 for µ-a.e. x 2 X, and
Z

X

'(x)dµ(x) =
Z

X

✓Z

r-1(x)
'(x)dµx(x)

◆
dµ(x)

for every bounded Borel map ' : X ! R.

Remark 2.1.2. When X = X ⇥ Y and r = ⇡X, we can canonically identify the
disintegration {µx}x2X ⇢ P(X) of µ 2 P(X⇥ Y) w.r.t. µ = ⇡X] µ with a family of

probability measures {µx}x2X ⇢ P(Y). We write µ =

Z

X

µx dµ(x).
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If X is a completely regular topological space, there is a canonical duality map
h·, ·i between M(X) and Cb(X) given by

hµ,'i :=
Z

X

'dµ for every µ 2 M(X), ' 2 Cb(X). (2.1.2)

The map in (2.1.2) defines a real nondegenerate bilinear form in M(X)⇥ Cb(X),
for if a Radon measure µ 2 M(X) satisfies

R
X
'dµ = 0 for every ' 2 Cb(X),

then |µ|(B) = 0 for every B 2 B(X) (e.g. by the approximation result [20, Lemma
7.2.8]) so that µ is the null measure. Hence we can endow M(X) with the narrow
(sometimes also called weak) topology �(M(X), Cb(X)): the coarsest topology on
M(X) for which the maps µ 7!

R
X
'dµ are continuous for every ' 2 Cb(X).

Notice that, in general, M(X) with the narrow topology is not first-countable
while P(X) and M+(X) are metrizable (resp. Polish) if and only if X is metriz-
able (resp. Polish) (see e.g. [20, Theorem 8.9.4]). Unless otherwise stated, we will
endow M(X) (and its subsets M+(X) and P(X)) with the narrow topology. For a
net (µ�)�2L ⇢ M(X) (resp. P(X)) and a point µ 2 M(X) (resp. P(X)), we write
µ� ! µ in M(X) (resp. P(X)) or lim�2L µ� = µ in M(X) (resp. P(X)) to mean that
µ� converges to µ in the narrow topology of M(X) (resp. P(X)).
We list here some useful properties related to the narrow topology. see [43,
54, 58, 59 Chap. III] for the proofs of the last three claims.

Lemma 2.1.3. Let X, Y be completely regular spaces.

1. If f : X ! Y is continuous then the map f] : M(X) ! M(Y) is continuous.

2. If ' : X ! (-1,+1] is lower semicontinuous and bounded from below and
(µ�)�2L

is a net weakly converging to µ in M+(X) then

lim inf
�2L

Z

X

'dµ� >
Z

X

'dµ.

3. If ◆ : X ! Y is a topological embedding (i.e. a continuous map providing a home-
omorphism between X and ◆(X) with the topology induced by the inclusion in Y),
then ◆] : M(X) ! M(Y) is a topological embedding as well, with

◆]
�
M(X)

�
= M(◆(X), Y) :=

⌦
µ 2 M(Y) : µ is concentrated on ◆(X)

↵
.

4. If X is compact then for every M > 0 the set
⌦
µ 2 M(X) : |µ|(X) 6 M

↵
is

compact.

We recall the celebrated Prokhorov theorem ([110, Appendix]) which charac-
terizes compactness in the narrow topology.

Theorem 2.1.4 (Prokhorov). Let X be a completely regular topological space and let
F ⇢ M(X) be a equibounded (i.e. sup |µ|(X) < +1) and tight subset i.e.

for all " > 0 there exists K" ⇢ X compact s.t. sup
µ2F

|µ|(X \K") < ".

Then F is relatively compact in M(X) w.r.t. the narrow topology. If X is Polish, also the
converse implication holds true: if a set F ⇢ M(X) is relatively compact in the narrow
topology, then it is equibounded and tight.
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2.2 functions , convexification, relaxation

We briefly fix some notation related to relaxation and convexification of func-
tions. If X is a set and f : R ! (-1,+1] is a function we denote the effective
domain of f as D(f) which is defined as

D(f) := {x 2 X | f(x) < +1}.

If X is also a topological space, we denote by �f the lower semicontinuous relax-
ation of f i.e.

�f(x) := inf
�

lim inf
�

f(x�) | (x�)�2L
⇢ X , x� ! x

�
, x 2 X; (2.2.1)

We have that �f is the largest lower semicontinuous function below f. If X is
also a topological vector space and A ⇢ X, we denote by co (A) (resp. by co (A))
the convex (resp. closed and convex) envelope of A. If g : A ! (-1,+1] is a
function, we denote its convex envelope and its closed convex envelope by co (g)

and co (g), defined by

co (g) (x) := inf

�
nX

i=1

↵ig(xi) | {(xi,↵i)}
n

i=1
⇢ Sn(x), n 2 N

✏

, x 2 co (A) ,

co (g) := � co (g) , x 2 co (A) ,

where

Sn(x) :=

�

{(xi,↵i)}
n

i=1
| (xi,↵i) 2 X⇥ [0, 1],

nX

i=1

↵i = 1,
nX

i=1

↵ixi = x

✏

.

Clearly co (g) is the largest convex function below g and co (g) is the largest
lower semicontinuous and convex function below g.

2.3 the optimal transport problem

We set a few notation related to the Optimal Transport Problem, as presented
in the introduction; given two Polish spaces X, Y, probabilities µ 2 P(X) and
⌫ 2 P(Y) and a Borel cost function c : X⇥ Y ! [0,+1], the Kantorovich version
of the Optimal Transport problem asks to find

inf
�Z

X⇥Y

c(x,y)d�(x,y) | � 2 �(µ,⌫)
�

. (2.3.1)

If the cost is proper and lower semicontinuous the infumum above is attained
in a non-empty, compact and convex subset of P(X⇥ Y) denoted by � c

o(µ,⌫), the
set of c-optimal plans between µ and ⌫. On the other hand, the Monge version
of the Optimal Transport problem asks to find

inf
�Z

X

c(x, T(x))dµ(x) | T 2 Tr(µ,⌫)
�

, (2.3.2)
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where Tr(µ,⌫) is the set of admissible transport maps from µ to ⌫ defined as

Tr(µ,⌫) :=
�
T 2 B(X; Y) | T]µ = ⌫

 
.

It is clear that to every map T 2 Tr(µ,⌫) it can be associated a plan �T 2 �(µ,⌫)
defined as �T := (iX ⇥T)]µ satisfying

Z

X⇥Y

c d�T =

Z

X

c(x, T)(x,y)dµ(x)

so that the infimum in (2.3.1) is less than the one in (2.3.2). In case the cost
function is continuous and µ is non-atomic (i.e. µ({x}) = 0 for every x 2 X) it can
be proven that the two infima coincide ([97]) but, even in this case, the infimum
in (2.3.2) may not be attained.

2.4 wasserstein distances

We focus now on the case when the cost function c in the Optimal Transport
problem is a distance d, following the approach of [5].
If (X, d) is a complete and separable metric space and p 2 [1,+1), we define

Pp(X) :=

�
µ 2 P(X) |

Z

X

dp(x, x0)dµ(x) < +1 for some x0 2 X

�
.

The p-Wasserstein distance between µ,⌫ 2 Pp(X), denoted by Wp(µ,⌫), is de-
fined as

Wp(µ,⌫) :=
✓

inf
�Z

X⇥X

dp d� | � 2 �(µ,⌫)
�◆1/p

.

The set of optimal transport plans is denoted in this case by �po (µ,⌫) ⇢ P(X⇥
X). In case p = 2, we will just talk about Wasserstein distance and optimal
plans, also omitting the index in the symbol denoting the collection of optimal
plans. The metric space (Pp(X),Wp) is complete and separable and its topology
is stronger than the narrow topology (in particular Wp convergent sequences are
tight). More precisely, for a sequence (µn)n ⇢ Pp(X) and a point µ 2 Pp(X), we
have

Wp(µn,µ) ! 0 if and only if

8
>>><

>>>:

R
X

dp(x, x0)dµn(x) !
R
X

dp(x, x0)dµ(x)

for some x0 2 X,

µn ! µ in P(X).
(2.4.1)

Moreover, the p-Wasserstein distance is narrowly lower semicontinuous, mean-
ing that, if (µn)n, (µ 0

n)n ⇢ Pp(X), µ, ,µ 0 2 Pp(X) and µn ! µ, µ 0
n ! µ 0 both

narrowly, then we have

lim inf
n

Wp(µn,µ 0
n) > Wp(µ,µ 0

).

The following is a criterion for compactness in (P2(X),Wp)).
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Lemma 2.4.1. A subset K ⇢ Pp(X) is relatively compact w.r.t. the Wp-topology if and
only if

1. K is tight,

2. K is uniformly p-integrable, i.e.

lim
k!1

sup
µ2K

Z

X\B(x0,k)
dp(x0, x)dµ(x) = 0 for some x0 2 X. (2.4.2)

Proof. The necessity of (1) is clear; regarding (2.4.2) notice that the functions

Fk : Pp(X) ! [0,1), Fk(µ) :=

Z

X\B(x0,k)
dp(x0, x)dµ(x)

are upper semicontinuous, are decreasing w.r.t. k, and converge to 0 for every
µ 2 Pp(X). Then, if K is relatively compact, they converge uniformly to 0 thanks
to Dini’s Theorem. This proves the necessity of (2).

To see that (1) and (2) are also sufficient to obtain the relative compactness,
it is enough to check that every sequence (µn)n2N in K has a convergent sub-
sequence. Applying Theorem 2.1.4, we can find µ 2 P(X) and a subsequence
k 7! µnk

such that µnk
! µ in P(X). Since

R
X

dp(x, x0)dµ(x) is uniformly
bounded, then µ 2 Pp(X). Applying [5, Lemma 5.1.7], we also obtain that

lim
k!1

Z

X

dp(x, x0)dµn(x) =

Z

X

dp(x, x0)dµ(x)

so that, by (2.4.1), we conclude that

lim
k!1

Wp(µnk
,µ) = 0.

We recall that, given p,q 2 [1,+1) with q 6 p we have Pp(X) ⇢ Pq(X) and

Wq(µ,⌫) 6 Wp(µ,⌫) for every µ,⌫ 2 Pp(X). (2.4.3)

The Kantorovich duality for the p-Wasserstein distance states that, for every
µ,⌫ 2 Pp(X), we have

Wp

p(µ,⌫) = sup
�Z

X

'dµ+

Z

X

 d⌫ | (', ) 2 Admp

�
, (2.4.4)

where Admp is the set of pairs (', ) 2 Cb(X)⇥ Cb(X) such that

'(x) + (y) 6 dp(x,y) for every x,y 2 X.

When p = 1, (2.4.4) can be strengthened in

W1(µ,⌫) = sup
�Z

X

'd(µ- ⌫) | ' 2 Lip
b,1(X)

�
,
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where Lip
b,1(X) is the set of 1-Lipschitz continuous and bounded functions on

X. It is easy to check that for every f 2 Lip(X)
Z

X

fd(µ- ⌫) 6 Lip(f,X)W2(µ,⌫), (2.4.5)

since choosing µ 2 �o(µ,⌫) and setting L := Lip(f,X),
Z

X

fd(µ- ⌫) =

Z
(f(x)- f(y))dµ(x,y)

6 L

Z
d dµ

6 L
⇣ Z

d2 dµ
⌘1/2

= LW2(µ,⌫).

As outlined in the introduction, the spaces (Pp(X),Wp) enjoys many interest-
ing properties in case X has more structure i.e. when X is an Hilbert space or a
Riemmanain manifold. For this reason, in the last part of this section, we will
describe the properties of (P2(H),W2) where H is a (possibily infinite dimen-
sional) separable Hilbert space: many of the results that follow are still valid for
a generic p 2 [1,+1) and also in case X is a Riemannian manifold, but since we
will use them only in case p = 2 and X is a Hilbert space, we prefer to state them
in this simpler context.

We use the notation

xt : H
2 ! H, xt(x0, x1) := (1- t)x0 + tx1, (x0, x1) 2 H

2, t 2 [0, 1]. (2.4.6)

Definition 2.4.2 (Geodesics). A map µ : [0, 1] ! P2(H) is said to be a (constant
speed) geodesic if for every 0 6 s 6 t 6 1 we have

W2(µs,µt) = (t- s)W2(µ0,µ1),

where we denoted by µt the evaluation of µ at time t 2 [0, 1]. We also say that µ
is a geodesic from µ0 to µ1.

Definition 2.4.3 (Convexity). We say that A ⇢ P2(H) is a geodesically convex set
if for every pair µ0,µ1 2 A there exists a geodesic µ from µ0 to µ1 such that
µt 2 A for every t 2 [0, 1].
We say that A ⇢ P2(H) is convex along couplings if for any pair µ0,µ1 2 A and
any coupling � 2 �(µ0,µ1), we have that (xt)]� 2 A for any t 2 [0, 1].

The following result gives a useful characterization of geodesics (see [5, Theo-
rem 7.2.1, Theorem 7.2.2] for a proof).

Theorem 2.4.4 (Properties of geodesics). Let µ0,µ1 2 P2(H) and µ 2 �o(µ0,µ1).
Then µ : [0, 1] ! P2(H) defined by

µt := (xt)]µ, t 2 [0, 1], (2.4.7)

is a (constant speed) geodesic from µ0 to µ1. Conversely, any (constant speed) geodesic
µ from µ0 to µ1 admits the representation (2.4.7) for a suitable plan µ 2 �o(µ0,µ1).
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Finally, if µ : [0, 1] ! P2(H) is a geodesic connecting µ0 to µ1, then for every t 2 (0, 1)
there exists a unique optimal plan µt0 between µt and µ0 (resp. µt1 between µt and
µ1) and it is concentrated on a map w.r.t. µt, meaning that there exist Borel maps
rt, r 0

t
: H ! H such that

µt0 = (iX, rt)]µt, µt1 = (iX, r 0t)]µt.

The following definition generalizes the notion of smooth function in R
d.

Definition 2.4.5 (Cyl(H)). We denote by ⇧d(H) the space of linear maps ⇡ : H !
R

d of the form ⇡(x) = (hx, e1i, · · · , hx, edi) for an orthonormal set {e1, · · · , ed} of
H. A function ' : H ! R belongs to the space of cylindrical functions on H,
Cyl(H), if it is of the form

' =  � ⇡

where ⇡ 2 ⇧d(H) and  2 C1
c (R

d
) for some d 2 N.

The following result (see [5, Theorem 8.3.1, Proposition 8.4.5 and Proposition
8.4.6]) characterizes locally absolutely continuous curves in P2(H) defined on
an open interval I ⇢ R. We use again the notation µt for the evaluation at time
t 2 I of a map µ : I ! P2(H).

Theorem 2.4.6 (Wasserstein velocity field). Let µ : I ! P2(H) be a locally absolutely
continuous curve defined in an open interval I ⇢ R. There exist a Borel vector field
v : I⇥ H ! H and a set A(µ) ⇢ I with L(I \A(µ)) = 0 such that the following hold:

1. vt 2 Tanµt
P2(H) := {r' | ' 2 Cyl(H)}

L
2
µt

(H;H)
, for every t 2 A(µ);

2.
Z

H

|vt|
2 dµt = |µ̇t|

2
:= lim

h!0

W2

2
(µt+h,µt)

h2
, for every t 2 A(µ);

3. the continuity equation

@tµt +r · (vtµt) = 0

holds in the sense of distributions in I⇥ H.

Moreover, vt is uniquely determined in L2µt
(H; H) for t 2 A(µ) and

lim
h!0

W2((iX + hvt)]µt,µt+h)

|h|
= 0 for every t 2 A(µ). (2.4.8)

We conclude this section recalling (see e.g. [5, Proposition 6.1.4]) that, given
µ,⌫ 2 P2(H), � 2 �(µ,⌫) is optimal if and only if its support is cyclically mono-
tone i.e.

for every N 2 N and {(xn,yn)}
N

n=1
⇢ supp� with x0 := xN we have

NX

n=1

hyn, xn - xn-1i > 0.
(2.4.9)





Part I

U N B A L A N C E D O P T I M A L T R A N S P O RT

We present a new class of Optimal Transport costs for non-negative
measures with possibly different masses. These are obtained by a
convex relaxation procedure of a cost for non-negative Dirac masses.
As a byproduct of our analysis, we show that the classical Optimal
Transport cost can be obtained by the same procedure. A primal-dual
formulation of the cost, optimality conditions and metric-topological
properties are also presented.





3
T E C H N I C A L T O O L S A N D E X A M P L E S O F C O S T F U N C T I O N S

The aim of this chapter is to introduce some of the preliminary material used in
the sequel of Part I. In particular, in Section 3.1 we present some approximation
results related to discrete measures and we prove that sufficiently rich subalge-
bras of continuous functions generate the narrow topology; Section 3.2 is com-
pletely devoted to the construction and to the properties of the geometric cone
C[X] on a completely regular space X, besides also listing some definition related
to functions defined on the cone; finally Section 3.3 presents a few examples of
admissible cost functions H for the unbalanced Optimal Transport problem.

This Chapter is the result of a collaboration with Giuseppe Savaré and part of
Section 3.1 appeared in [109].

3.1 approximation through discrete measures and functions

Proposition 3.1.1. Let X be a completely regular space. Then

Discr+(X) = M+(X).

Proof. The null measure is already a discrete measure. Notice moreover that
M+(X) \ {0X} is open. Hence the thesis is equivalent to prove that Discr+(X)
intersects every open set contained in M+(X) \ {0X}. Take µ0 2 M+(X) \ {0X} and
any U open neighbourhood of µ0 in M+(X) \ {0X}. There exist n > 1, " > 0,
{fi}

n

i=1
⇢ Cb(X) s.t.

µ0 2 V := {µ 2 M+(X) | |µ(fi)- µ0(fi)| < " i = 1, . . . ,n} ⇢ U

hence it is enough to show that Discr+(X) intersects V i.e. that there exists ⌫ 2
Discr+(X) s.t.

|⌫(fi)- µ0(fi)| < " for every i = 1, . . . ,n. (3.1.1)

Take simple functions {gi}
n

i=1
s.t. sup

x2X
|fi(x)- gi(x)| <

"

4µ0(X)
. Then, if we can

find ⌫ 2 Discr+(X), s.t. ⌫(gi) = µ0(gi) for every i = 1, . . . ,n with ⌫(X) = µ0(X),
(3.1.1) holds immediately because

|⌫(fi)- µ0(fi)| 6 |⌫(fi)- ⌫(gi)|+ |⌫(gi)- µ0(gi)|+ |µ0(gi)- µ0(fi)| 6 "/2.

Now, every gi is of the form

gi :=

miX

k=1

↵i

k
�
Ek

i

45
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with {↵i

k
}mi

k=1
⇢ R and {Ek

i
}mi

k=1
⇢ B(X) disjoint for every i = 1, . . . ,n. Take the

partition {Pk}
m

k=1
obtained as the intersection of all the other partitions, so that

gi =
mX

k=1

�i

k
�Pk

for some {�i

k
}m
k=1

⇢ R for every i = 1, . . . ,n. Hence we have ⌫(gi) = µ0(gi) for
every i = 1, . . . ,n if and only if

mX

k=1

�i

k
⌫(Pk) =

mX

k=1

�i

k
µ0(Pk) for every i = 1, . . . ,n

and then it is enough to have ⌫(Pk) = µ0(Pk) for every k = 1, . . . ,m. Take
{xk}

m

k=1
⇢ X s.t. xk 2 Pk for every k = 1, . . . ,m. Then we can define

⌫ :=

mX

k=1

µ0(Pk)�xk
.

This is the sought ⌫.

Remark 3.1.2. Observe that in the above proof we have shown that for every
µ0 2 M+(X) and every U ⇢ M(X) open neighbourhood of µ0 there exists ⌫ 2
Discr+(X) with the same mass of µ0 s.t. ⌫ 2 U. Hence

Discr+(X)\ {µ 2 M+X | µ(X) = c} = {µ 2 M+X | µ(X) = c},

where c is a nonnegative real number.

Remark 3.1.3. It holds

co (�+(X)) = M+(X).

This is an immediate consequence of the fact that co (�+(X)) = Discr+(X) and
Proposition 3.1.1.

The following Lemma is a refinement of Proposition 3.1.1 showing that, given
a Borel function f, we can construct an approximating sequence of discrete mea-
sures for which we have convergence also of the integral of f.

Lemma 3.1.4. Let X be a completely regular space and let ↵ 2 M+(X). Let f : X !
[0,+1] be a Borel function. Then there exists a net (��)�2L

⇢ Discr+(X) \ {µ 2
M+(X) | µ(X) = ↵(X)} s.t.

lim
�2L

�� = ↵, lim
�2L

Z

X

f d�� =

Z

X

f d↵.

Proof. By Lusin’s theorem, we can find an increasing sequence of closed sets
X̃k ⇢ X̃k+1 ⇢ X s.t.

↵(X \ X̃k) 6
1

2k
, f |

X̃k

is continuous for every k > 1.
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Moreover observe that, since ↵ is a Radon measure, we can find an increasing
sequence of compact sets Bk ⇢ Bk+1 ⇢ X s.t.

↵(X \Bk) 6
1

2k
for every k > 1.

Hence we can define

Xk := X̃k \Bk for every k > 1.

Then, this new sequence of compact sets is such that

Xk ⇢ Xk+1 for every k > 1, ↵(X\Xk) 6
1

k
, f |

Xk

is bounded and continuous.

Consider now the family of measures {↵k}k>1 ⇢ {µ 2 M+(X) | µ(X) = ↵(X)}
defined as

↵k :=
↵(X)
↵(Xk)

↵|
Xk

for every k > 1.

We can easily observe that

lim
k

↵k = ↵

indeed, if ' 2 Cb(X), we have

lim
k

Z

X

'd↵k = lim
k

↵(X)
↵(Xk)

Z

X

'�Xk
d↵ =

Z

X

'd↵

by monotone convergence. The same argument shows that we also have

lim
k

Z

X

f d↵k =

Z

X

f d↵. (3.1.2)

By Proposition 3.1.1 and Remark 3.1.2, for every k > 1, we can find a net
{�k
�k
}�k2Lk

⇢ Discr+(Xk)\ {µ 2 M+(X) | µ(X) = ↵(X)}, such that

lim
�k2Lk

�k
�k

= ↵k.

Moreover, since f |
Xk

is bounded and continuous, it holds

lim
�k2Lk

Z

X

f d�k
�k

= lim
�k2Lk

Z

Xk

f d�k
�k

=

Z

Xk

f d↵k =

Z

X

f d↵k.

This allows us to find, for every k > 1, some m̄(k) 2 Lk s.t.
����
Z

X

f d�k
�k

-

Z

X

f d↵k

���� 6
1

k
for every �k > m̄(k).

Hence we can consider, for every k > 1, the directed sets Ek := {�k 2 Lk |

�k > m̄(k)} and the corresponding new sequence of nets {�k
�k
}�k2Ek

on varying
of k > 1. Obviously it holds

lim
�k2Ek

�k
�k

= ↵k,
����
Z

X

f d�k
�k

-

Z

X

f d↵k

���� 6
1

k
for every �k 2 Ek. (3.1.3)
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Define now the directed set

N⌦Ek := {(k, �) | � 2 Ek} with (k, �) 6 (k 0, � 0) () k < k 0 or (k = k 0^� 6 � 0).

By the diagonal principle for nets, we can find a directed set B and a monotone
final function

h : B ! N⌦Ek, h(�) = (h1(�),h2(�)) with h2(�) 2 Eh1(�) for every � 2 B

such that the diagonal net {��}�2B := {�
h1(�)
h2(�)

}�2B ⇢ Discr+(X) \ {µ 2 M+(X) |
µ(X) = ↵(X)} converges to ↵. We only need to prove that also the integral of f
converges:

����
Z

X

f d�� -

Z

X

f d↵
���� 6

����
Z

X

f d�� -

Z

X

f d↵h1(�)

����+
����
Z

X

f d↵h1(�) -

Z

X

f d↵
����

=

����
Z

X

f d�h1(�)
h2(�)

-

Z

X

f d↵h1(�)

����+
����
Z

X

f d↵h1(�) -

Z

X

f d↵
����

6 1

h1(�)
+

����
Z

X

f d↵h1(�) -

Z

X

f d↵
���� ,

where we have used (3.1.3). Now it is enough to observe that h1 : B ! N is a
final monotone function i.e. it is an increasing monotone sequence converging to
+1. Passing to lim�2B and using (3.1.2), we conclude.

The following statement concerns sub-algebras A ⇢ Cb(X) which are rich
enough to characterize weak convergence. We first state the relevant definition.

Definition 3.1.5. (Adapted algebra of continuous functions)
Let X be a completely regular space. We say that a unital subalgebra A ⇢ Cb(X)
is adapted if the topology of X coincides with the initial topology induced by A.
Equivalently, for every net (x�)�2L

in X

lim
�2L

x� = x , lim
�2L

f(x�) = f(x) for every f 2 A.

Since X is Hausdorff, it is immediate to check that an adapted algebra A sep-
arates the points of X. It is interesting that the above condition is also sufficient
to recover the weak topology of M(X).

Lemma 3.1.6. Let X be a completely regular space and let A ⇢ Cb(X) be an adapted
algebra. Then a net (µ�)�2L

in M(X) weakly converges to µ if and only if

lim
�2L

Z

X

fdµ� =

Z

X

fdµ for every f 2 A. (3.1.4)

Equivalently, the weak topology of M(X) coincides with �(M(X), A).

Proof. We consider only the nontrivial implication and we will show that a net
(µ�)�2L

satisfying (3.1.4) weakly converges in M(X).
Let us set If := [infX f, sup

X
f] ⇢ R and let us consider the product space

Y =
Q

f2A If endowed with the product topology; the component of a point in
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y 2 Y will be denoted as yf with f 2 A. Y is compact by Tychonoff’s Theorem.
Since A is adapted, the map

◆ : X ! Y defined by ◆(x)f := f(x) for every x 2 X

is a topological embedding. By Lemma 2.1.3(3) it is then sufficient to show that
the net µ̂� := ◆]µ� weakly converges to µ̂ := ◆]µ in M(Y). Let B be the unital
algebra obtained by functions of the form

'F,P(y) = P(yf1
,yf2

, · · · ,yfk
), y 2 Y, F = {f1, f2, · · · , fk} ⇢ A, P polynomial.

Since B contains the unit and separates the points of Y, by Stone-Weierstrass
theorem B is uniformly dense in Cb(Y), so that in order to check the convergence
of µ̂� is sufficient to test them against functions of B. We have

lim
�2L

Z

Y

'F,P(y)dµ̂�(y) = lim
�2L

Z

X

P(◆(x)f1 , ◆(x)f2 , · · · , ◆(x)fk)dµ�(x)

= lim
�2L

Z

X

P(f1(x), f2(x), · · · , fk(x))dµ�(x)

=

Z

X

P(f1(x), f2(x), · · · fk(x))dµ(x)

=

Z

Y

'F,P(y)dµ̂(y),

where we used (3.1.4) and the fact that the function x 7! P(f1(x), f2(x), · · · fk(x))
belongs to the algebra A as well.

3.2 the cone construction

It will be natural to state some definitions and results in the context of the so
called geometric cone: we introduce on X⇥ R+ the equivalence relation

(x, r) ⇠ (y, s) def, [x = y, r = s 6= 0 _ r = s = 0]

and the corresponding geometric cone C[X] = (X⇥ R+)/ ⇠, whose points are de-
noted by gothic letters like y. We denote by p the quotient map p : X⇥R+ ! C[X]
sending a point (x, r) to its equivalence class [x, r]. Notice that p is just the identity
map except for those points with r = 0, which are all sent to the same equiva-
lence class, the so called vertex of the cone that we denote with o.
On the cone we introduce the projections on R+ and X simply defined as r([x, r]) =
r and x([x, r]) = x if r > 0 and x([x, r]) = x̄ if r = 0, where x̄ 2 X is some fixed
point. We omit the dependence of x on x̄ since in the constructions where x is
involved this will be irrelevant.
We can define a right inverse of p as

q([x, r]) = (x([x, r]), r([x, r])). (3.2.1)

Notice that also q depends on the choice of x̄ in the definition of x but, again,
this will be irrelevant.
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On C[X] we consider the following topology, weaker than the quotient one: a
local system of neighbourhoods of a point [x, r] is just the image trough p of the
local system of neighbourhoods given by the product topology at (x, r) 2 X⇥R+,
if r > 0. A local system of neighbourhoods at 0 is given by

{{[x, r] 2 C[X] | 0 6 r < "} | " > 0} .

If the topology of X is induced by a distance d, then the topology of C[X] is
induced by the distance dC : C[X]⇥ C[X] ! [0,+1) defined as

dC([x, r], [y, s]) :=
�
r2 + s2 - 2rs cos(d(x,y)^ ⇡)

� 1

2 , [x, r], [y, s] 2 C[X]. (3.2.2)

With the above topology, C[X] is completely regular and it is the right object to
consider when one wants to represent elements in �+(X); in particular we have
the following result.

Lemma 3.2.1. Let X be a completely regular space. Then �+(X) is homeomorphic to
C[X].

Proof. The map ' : C[X] ! �+(X) given by

'([x, r]) :=

8
<

:
r�x if r > 0,

0X if r = 0

can be checked to be the sought homeomorphism.

If R > 0, we define

CR[X] := {[x, r] 2 C[X] | 0 6 r 6 R} (3.2.3)

and we will often identify measures on C[X] with support contained in CR[X]
with elements of M(CR[X]). There is a natural product operation on the cone
given by

�[x, r] := [x, �r] for every �, r > 0, x 2 X.

For every p > 1, we introduce moreover the set

M
p

+(C[X]) :=
�
↵ 2 M+(C[X]) |

Z

C[X]
rp d↵ < +1

�
,

and the map

h
p
: M

p

+(C[X]) ! M+(X), h
p
(↵) = (x)](rp↵).

Notice that the map h
p does not depend on the point x̄ in the definition of x.

We introduce now the product cone: given X1 and X2 completely regular spaces,
we define C[X1, X2] := C[X1]⇥ C[X2] endowed with the product topology. Points
in the product cone are denoted by bold gothich letters like y = (y1, y2) =

([x1, r1]; [x2, r2]). On the product cone we can consider the projections on the
two components ⇡Ci : C[X1, X2] ! C[Xi] sending ([x1, r1]; [x2, r2]) to [xi, ri] and
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the projections on R+ and Xi simply defined as ri := r � ⇡Ci and xi := x � ⇡Ci (xi
depends on the choice of a point x̄i 2 Xi, but this will be irrelevant). In analogy
with (3.2.2), if the topologies of X1 and X2 are induced by distances d1 and d2
respectively, the topology of the product cone is induced by the distance

(d1 ⌦C d2)((y1, y2), (w1,w2)) :=
�
d2
1,C(y1,w1) + d2

2,C(y2,w2)
� 1

2 , (3.2.4)

for every (y1, y2), (w1,w2) 2 C[X1, X2]. As in (3.2.3), given R > 0, we define

CR[X1, X2] := CR[X1]⇥CR[X2] = {y 2 C[X1, X2] | 0 6 ri(y) 6 R, i = 1, 2} (3.2.5)

and as in the previous case, we identify measures on C[X1, X2] with support
contained in CR[X1, X2] with elements of M(CR[X1, X2]). For every p > 1, we
introduce the set

M
p

+(C[X1, X2]) :=

�
↵ 2 M+(C[X1, X2]) |

Z

C[X1,X2]
(rp

1
+ rp

2
)d↵ < +1

�
,

and the maps

h
p

i
: M

p

+(C[X1, X2]) ! M+(Xi), h
p

i
(↵) = (xi)](r

p

i
↵).

Notice that the map h
p

i
does not depend on the point x̄i 2 Xi in the definition of

xi.
Finally we define, for every (µ1,µ2) 2 M+(X1)⇥M+(X2) and every p > 1, the
set

H
p
(µ1,µ2) :=

�
↵ 2 M

p

+(C[X1, X2]) | h
p

i
(↵) = µi, i = 1, 2

 
. (3.2.6)

If ↵ 2 H
p
(µ1,µ2), we say that µ1 and µ2 are the p-homogeneous marginals of ↵.

The following result comes from [76].

Lemma 3.2.2. Let Xi for i = 1, 2 be completely regular spaces and let p > 1. Given ↵ 2
M+(C[X1, X2]) and # : C[X1, X2] ! (0,+1) Borel measurable in Lp(C[X1, X2],↵) we
can define

prd
#
(y) :=

�
#(y)-1

y1, #(y)-1
y2

�
, y 2 C[X1, X2],

dil#,p(↵) := (prd
#
)](#

p↵).

Then we have

hi(dil#,p(↵)) = h
p

i
(↵), i = 1, 2.

In particular, if we define

#↵,p(y) :=
1

r⇤(↵)

8
<

:
rp
1
(y) + rp

2
(y) if y 6= (0, 0)

1 if y = (0, 0)
,

where r⇤(↵) is a normalization constant s.t.
R
C[X1,X2]

#p↵,p d↵ = 1 given by

r⇤(↵) :=

Z

C[X1,X2]
(rp

1
(y) + rp

2
(y))d↵+↵((0, 0)),

we have that dil#↵,p,p(↵) 2 P(C[X1, X2]), has the same p-homogeneous marginals of ↵
and its support is contained in Cr⇤(↵)[X1, X2].
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Theorem 3.2.3. (Compactness from converging marginals)
Let Xi for i = 1, 2 be completely regular spaces. Let (��)�2L

be a net in M+(X1 ⇥ X2)

with µi,� := ⇡i]�� 2 M+(Xi), i = 1, 2, � 2 L. If (µi,�)�2L weakly converge to some µi

in M(Xi), then there exists a subnet (� 0
↵)↵2A weakly convergent to some � 2 �(µ1,µ2)

in M(X1 ⇥X2).

Proof. We recall that every completely regular space can be topologically embed-
ded in a compact Hausdorff space (e.g. by the construction we used in the proof
of Lemma 3.1.6: this property, in fact, characterizes completely regular spaces).
Up to an identification of Xi with its homeomorphic image, we can thus assume
that Xi is a subset of a compact Hausdorff spaces X̂i; thanks to Lemma 2.1.3(3),
we can also identify the measures µi,�, µi in M+(Xi) with corresponding mea-
sures µ̂i,�, µ̂i in M+(Xi, X̂i) concentrated on Xi s.t. µ̂i,� ! µ̂i weakly in M(X̂i).
Similarly, we can identify each �� with a measure �̂� in M+(X̂1 ⇥ X̂2) concen-
trated on X1 ⇥ X2. Since X̂1 ⇥ X̂2 is compact and the total mass �̂�(X̂1 ⇥ X2)

is converging and thus it is eventually bounded, by Lemma 2.1.3(4) there exist
some �̃ 2 M+(X̂1 ⇥ X̂2) and a subnet � 0

↵ = ��(↵) (with corresponding subnet
�̂ 0
↵ = �̂�(↵)) induced by a map ↵ 7! �(↵), ↵ 2 A (see [50, Theorem 4.29]), such

that

�̂ 0
↵ ! �̃ weakly in M(X̂1 ⇥ X̂2).

On the other hand, since the marginals of �̂� are µ̂i,� and µ̂i,� ! µ̂i weakly
in M(X̂i), we deduce that the marginals of �̃ on X̂i are µ̂i. Since µ̂i are Radon
measures concentrated on two sigma compact subsets Di ⇢ Xi, we have

�̃((X̂1 ⇥ X̂2) \ (D1 ⇥D2)) 6 µ1(X1 \D1) + µ2(X2 \D2) = 0.

It follows that �̃ is concentrated on X1 ⇥ X2, and therefore can be written as
�̃ = ◆]� for a measure � 2 M(X1 ⇥ X2). A further application of Lemma 2.1.3(3)
yields that � 0

↵ weakly converges to � in M(X1 ⇥ X2) and Lemma 2.1.3(1) shows
that � 2 �(µ1,µ2).

Let us state an immediate consequence of the previous result.

Corollary 3.2.4. (Compactness from compact marginals)
Let Xi for i = 1, 2 be completely regular spaces. Let Ki ⇢ M+(Xi) be compact in the
weak topology, i = 1, 2. Then the set K :=

⌦
� 2 M+(X1⇥X2) | ⇡

i

#� 2 Ki

↵
is compact

in the weak topology of M(X1 ⇥X2).

Proof. Since K is closed in M(X1 ⇥ X2) thanks to Claim 1 of Lemma 2.1.3, it is
sufficient to prove that every net (��)�2L

in K has a converging subnet.
Setting µi,� := ⇡i]��, thanks to the compactness of K1 ⇥K2 we can find a

subnet (µ 0
1,↵,µ 0

2,↵)↵2A, µ 0
i,↵ = µi,↵(�), converging to (µ1,µ2) 2 K1 ⇥ K2 in

M(X1)⇥M(X2).
Applying Theorem 3.2.3 we can find a further subnet (� 00

�
)�2B of (� 0

↵)↵2A

converging to a measure � in M(X1 ⇥X2).

Remark 3.2.5. In locally compact or Polish spaces Corollary 3.2.4 could also be
proven by using Prokhorov’s characterization of compact subsets of M+(Xi) in
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terms of uniform tightness (see Theorem 2.1.4). The argument we are presenting
here is more direct (once Radon measures are involved) and works in completely
regular spaces as well. In the case of arbitrary topological spaces, one has to deal
with a more refined definition of the weak topology and Corollary 3.2.4 can
also be extended to this general setting. Since we think that this result is of
independent interest, we added its proof in the Section 4.3.

Lemma 3.2.6. Let Xi, i = 1, 2 be completely regular spaces, let p > 1 and let (↵�)�2L

be a net in P(CR[X1, X2]) for some R > 0 with µi,� := (h
p

i
)]↵� 2 M+(Xi), i = 1, 2,

� 2 L. If (µi,�)�2L converge to some µi in M(Xi), then there exists a subnet (↵ 0
�
)�2B

of (↵�)�2L
convergent to some ↵ 2 H

p
(µ1,µ2).

Proof. Thanks to Theorem 3.2.3, it is enough to prove that {⇡Ci

] ↵�}�2L converges,
up to a subnet, for every i = 1, 2. Then, let X be a completely regular space, let
(µ�)�2L

⇢ M+(X) be convergent and let (↵�)�2L
⇢ P(CR[X]) with h

p
(↵�) = µ�

for every � 2 L. Define, for every � 2 L,

�� := q](rp↵�) 2 M+([0,R]⇥X). (3.2.7)

Notice that this definition does not depend on the point x̄ w.r.t. which q is
defined. Observe that ⇡[0,R]

] �� 2 M+([0,R]) with mass bounded by Rp and
⇡X

] �� = µ�. Then we can apply Theorem 3.2.3 to (��)�2L
and obtain that, up to

passing to a subnet, there exists � 2 M+([0,R]⇥ X) s.t. lim�2L �� = �. Now we
define

On :=

�
[x, r] 2 C[X] | 0 6 r 6 1

n

�
, n > 1

and, for every n > 1, the nets of real numbers

m�,n := ↵�(On).

Observe that 0 6 m�,n 6 1 for every n > 1 and � 2 L then, up to passing to a
subnet, they converge in � 2 L to some mn 2 [0, 1]. Define then m := infn>1mn.
We claim then that

lim
�2L

↵� =
1

rp
p]�+m�o =: ↵.

Take any ⌦ ⇢ C[X] open; if o /2 ⌦, we have

lim inf
�2L

↵�(⌦) = lim inf
�2L

Z

[0,R]⇥X

(�⌦ � q)(x, r)
1

(rp � q)(x, r)
d��(x, r)

>
Z

[0,R]⇥X

(�⌦ � q)(x, r)
1

(rp � q)(x, r)
d�(x, r)

= ↵(⌦),

since everything is bounded, staying away from o. If, on the other hand, o 2 ⌦,
we have that ON ⇢ ⌦ for some N > 1; calling ⌦n := ⌦ \On (which is an open
set), we have, for every n > N, that

lim inf
�2L

↵�(⌦) > lim inf
�2L

↵�(On) + lim inf
�2L

↵�(⌦n)

> ↵(⌦n) +mn.
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Now we pass to the limit as n ! +1 and, using the monotone convergence
theorem and the fact that ⌦n " ⌦ \ {o}, we obtain

lim inf
�2L

↵�(⌦) > ↵(⌦ \ {o}) +m = ↵(⌦),

and this concludes the proof thanks to Portmanteau theorem (see e.g. [20, Corol-
lary 8.2.10].

3.2.1 Functions on the product cone

In this subsection X1 and X2 are completely regular spaces.

Definition 3.2.7. Let H : C[X1, X2] ! [0,+1] be a function. For every (x1, x2) 2
X1 ⇥X2 we define

Hx1,x2
: R

2

+ ! [0,+1]

(r1, r2) 7! H([x1, r1], [x2, r2]).

We say that

• H is 1-homogeneous if Hx1,x2
is 1-homogeneous for every (x1, x2) 2 X1 ⇥ X2

i.e.

Hx1,x2
(�r1, �r2) = �Hx1,x2

(r1, r2) for every � > 0, (r1, r2) 2 R
2

+;

• H is convex if Hx1,x2
is convex for every (x1, x2) 2 X1 ⇥X2.

Finally we define the functions co (H) , cof (H) , co (H) : C[X1, X2] ! [0,+1] as

co (H) ([x1, r1], [x2, r2]) := co (Hx1,x2
) (r1, r2),

cof (H) ([x1, r1], [x2, r2]) := co (Hx1,x2
) (r1, r2),

co (H) := � cof (H) = � co (H) .

Remark 3.2.8. Notice that, in particular, if H is 1-homogeneous, then H(0, 0) = 0,
since we adopt the convention that 0 ·1 = 0.

Remark 3.2.9. We will show in Corollary 4.2.6 that, if H is lower semicontinuous,
then cof (H) = co (H) and a useful representation formula will be presented.

Lemma 3.2.10. Let Xi, i = 1, 2 be completely regular spaces, let H : C[X1, X2] !
[0,+1] be a 1-homogeneous Borel function and let (µ1,µ2) 2 M+(X1) ⇥M+(X2).
Then

inf
�Z

C[X1,X2]
H d↵ | ↵ 2 H

1
(µ1,µ2)

�

= inf
�Z

C[X1,X2]
H d↵ | ↵ 2 H

1
(µ1,µ2)\P(CR(µ1,µ2)[X1, X2])

�
,

where

R(µ1,µ2) := µ1(X1) + µ2(X2). (3.2.8)
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Proof. It is of course enough to prove the > inequality. If ↵ 2 H
1
(µ1,µ2) we can

assume that ↵({0, 0}) = 0, since H(0, 0) = 0. By Lemma 3.2.2, we have that

↵̃ := dil#↵,1,1(↵) 2 H
1
(µ1,µ2)\P(CR(µ1,µ2)[X1, X2])

and
Z

C[X1,X2]
H d↵ =

Z

C[X1,X2]
H d↵̃.

This concludes the proof.

3.3 examples of cost functions

The aim of this section is to present some examples of cost functions H : C[X1, X2] !
[0,+1], where X1 and X2 are completely regular spaces, satisfying (some of) the
hypotheses we will assume throughout the rest of Part I.

3.3.1 Mass-space product costs

We consider cost functions of the form

H([x1, r1], [x2, r2]) := H+(r1, r2) +H-(r1, r2)c(x1, x2),

where H+, H- : R
2
+ ! R are convex, 1-homogeneous and continuous and c :

X1 ⇥X2 ! [0,+1) is a continuous function satisfying

H+(r1, r2) > -H-(r1, r2) sup
(x1,x2)2X1⇥X2

c(x1, x2) for every r1, r2 > 0.

Possible choices of H+ and H- are given by e.g.

1. mp(r1, r2) :=
✓
1

2
(rp

1
+ rp

2
)

◆ 1

p

, p 2 [1,+1),

2. mp(r1, r2) := -m-p(r1, r2), p 2 (-1, 0)[ (0, 1),

3. m1(r1, r2) = r1 _ r2, m-1(r1, r2) = r1 ^ r2, m0 =
p
r1r2,

4. |r↵
1
- r↵

2
|1/↵, |r↵

1
+ r↵

2
|1/↵, 0 < ↵ 6 1,

3.3.2 Homogeneous marginal perspective functional

Following [76, Section 5] we can build H starting from two entropy functions
Fi : Xi ! [0,+1], i = 1, 2 and a proper and lower semicontinuous cost function
c : X1 ⇥ X2 ! [0,+1]. Assuming that each Fi, i = 1, 2 is convex lower semicon-
tinuous and finite in at least one positive point, we can define, for every number
c 2 [0,+1], the function Hc : R

2
+ ! [0,+1], as the lower semicontinuous enve-

lope of

H̃c(r1, r2) :=

8
<

:
inf✓>0 {r1F1(✓/r1) + r2F2(✓/r2) + ✓c} , if c 2 [0,+1),

F1(0)r1 + F2(0)r2 if c = +1,
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for r1, r2 2 R
2
+. The function H : C[X1, X2] ! [0,+1] is then defined as

H([x1, r1], [x2, r2]) := Hc(x1,x2)(r1, r2), ([x1, r1], [x2, r2]) 2 C[X1, X2].

Such function H is convex and 1-homogeneous (see [76, Lemma 5.3]. Possible
choices (see e.g. [42, 75]) for Fi are given by

1. Power like entropies: for p 2 R we define

Up(s) :=

8
>>><

>>>:

1

p(p-1) (s
p
- p(s- 1)- 1)) if p 6= 0, 1,

s log s- s+ 1, if p = 1,

s- 1- log s, if p = 0,

for s > 0, with Up(0) = 1/p if p > 0 and Up(0) = +1 if p 6 0.

2. Indicator functions: for numbers 0 6 a 6 1 6 b 6 +1 we define

I[a,b](s) :=

8
<

:
0 if s 2 [a,b],

+1 if s /2 [a,b].

3. �↵ divergences: for a parameter ↵ > 1 we define

�↵(s) := |s- 1|↵, s 2 R.



4
C O N V E X I F I C AT I O N A N D D U A L I T Y

In this chapter we present the convexification/relaxation procedure that allows
to connect the cost on Dirac masses to the one defined on general non-negative
measures. Section 4.1 presents the general setting and shows the equality be-
tween the relaxation co (SH) and the primal formulation-cost UH; Section 4.2 is
devoted to the duality theorem and the application of the concept of adapted
algebra of continuous functions; Section 4.2 treats the case of merely Hausdorff
spaces, where the notion of narrow topology has to be refined. If not stated oth-
erwise, in this section X1 and X2 are completely regular spaces.

This Chapter is the result of a collaboration with Giuseppe Savaré and Section
4.3 appeared in [109].

4.1 lower semicontinuity of the transport cost and convexifi-
cation

Definition 4.1.1. Let H : C[X1, X2] ! [0,+1] be a proper Borel function. We
define the singular cost SH : M(X1)⇥M(X2) ! [0,+1] as

SH(µ1,µ2) :=

8
>><

>>:

H([x1, r1]; [x2, r2]) if
µ1 = r1�x1

, µ2 = r2�x2
,

x1 2 X1, x2 2 X2, r1, r2 > 0,

+1 elsewhere.

and the unbalanced Optimal Transport cost UH : M(X1)⇥M(X2) ! [0,+1] as

UH(µ1,µ2) := inf
�Z

C[X1,X2]
H d↵ | ↵ 2 H

1
(µ1,µ2)

�

if (µ1,µ2) 2 M+(X1)⇥M+(X2) and equal to +1 elsewhere.

The aim of this section is to study the relations between SH and UH; in particu-
lar we are interested in studying the lower semicontinuous and convex relaxation
of SH. With this in mind, we have the following remark.

Remark 4.1.2. If H : C[X1, X2] ! [0,+1] is a function, then

�SH = S�H. (4.1.1)

Indeed, both are equal to +1 outside the closed set �+(X1)⇥�+(X2) and the
equality on �+(X1)⇥�+(X2) follows by Lemma 3.2.1.

For this reason and to exploit Lemma 3.2.10, we will assume for the rest of
this section that

H : C[X1, X2] ! [0,+1] is a proper, 1-homogeneous and
lower semicontinuous function.

(4.1.2)

57
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In the following result we prove that UH is a lower semicontinuous convex
function.

Proposition 4.1.3. Let H be as in (4.1.2) and let UH be as in Definition 4.1.1. Then,
for every (µ1,µ2) 2 M+(X1) ⇥ M+(X2), there exists a probability measure ↵ 2
H
1
(µ1,µ2)\P(CR(µ1,µ2)[X1, X2]), where R(µ1,µ2) is as in (3.2.8), such that

UH(µ1,µ2) =

Z

C[X1,X2]
H d↵.

Moreover UH is a lower semicontinuous convex function such that

UH(r1�x1
, r2�x2

) 6 H([x1, r1]; [x2, r2]) (4.1.3)

for every (x1, x2) 2 X1 ⇥ X2 and every (r1, r2) 2 R
2
+. If, in addition, H is also convex,

then (4.1.3) is an equality.

Proof. Let (µ1,µ2) 2 M+(X1)⇥M+(X2); by Lemma 3.2.10, it holds

UH(µ1,µ2) = inf
�Z

C[X1,X2]
H d↵ | ↵ 2 H

1
(µ1,µ2)\P(CR(µ1,µ2)[X1, X2])

�
.

(4.1.4)

Thanks to Lemma 3.2.6, we have that H1
(µ1,µ2)\P(CR(µ1,µ2)[X1, X2]) is compact

and the lower semicontinuity of H gives that the functional

↵ 7!
Z

C[X1,X2]
H d↵ (4.1.5)

is lower semicontinuous. We can thus conclude that a minimizer exists by the
direct method in Calculus of Variations.

The convexity of UH follows by the convexity of the constraints: if (µ1

1
,µ1

2
), (µ1

2
,µ2

2
)

are measures in M+(X1)⇥M+(X2) and �,� 2 [0, 1] s.t �+ � = 1, we can take
↵1 2 H

1
(µ1

1
,µ1

2
) and ↵2 2 H

1
(µ2

1
,µ2

2
) such that

H(µ1

1
,µ1

2
) =

Z

C[X1,X2]
H d↵1, H(µ2

1
,µ2

2
) =

Z

C[X1,X2]
H d↵2.

It is then enough to observe that ↵ := �↵1 +�↵2 2 H
1
(�µ1

1
+�µ2

1
,�µ1

2
+�µ2

2
).

The lower semicontinuity of UH is a consequence of Lemma 3.2.10: if {(µ�
1

,µ�
2
)}�2L

is a net in M+(X1)⇥M+(X2) converging to (µ1,µ2) 2 M+(X1)⇥M+(X2), we
can consider, for every � 2 L, some ↵� 2 H

1
(µ�

1
,µ�

2
)\ P(C

R(µ�
1

,µ�
2
)[X1, X2]) such

that

UH(µ
�

1
,µ�

2
) =

Z

C[X1,X2]
H d↵�.

Since µ�
i

are converging for i = 1, 2 and R(µ�
1

,µ�
2
) is bounded from above,

we can use Lemma 3.2.6 to extract a convergent subnet of (↵�)�2L
with limit
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↵ 2 H
1
(µ1,µ2). Using again the lower semicontinuity of the functional in (4.1.5),

we can conclude that UH is lower semicontinuous.

(4.1.3) follows by the fact that

↵ = �[x1,r1] ⌦ �[x2,r2]

is an element of H1
(r1�x1

, r2�x2
).

If, in addition, H is convex, we can take ↵ 2 H
1
(r1�x1

, r2�x2
) such that

UH(r1�x1
, r2�x2

) =

Z

C[X1,X2]
H d↵

and we observe that ↵ is concentrated on

{�1[x1, 1], �2[x2, 1] | �1, �2 > 0}

with
Z

C[X1,X2]
r1 d↵ = r1,

Z

C[X1,X2]
r2 d↵ = r2.

Hence, using Jensen’s inequality and the convexity of Hx1,x2
, we have

UH(r1�x1
, r2�x2

) =

Z

C[X1,X2]
H d↵

=

Z

R2
+

Hx1,x2
d(r1, r2)]↵

> Hx1,x2

✓Z

R+

r1 d(r1)]↵(r1),
Z

R+

r2 d(r2)]↵(r2)
◆

= Hx1,x2
(r1, r2)

= H([x1, r1], [x2, r2]).

Thanks to Proposition 4.1.3, given µ1 2 M+(X1) and µ2 2 M+(X2), the set

H
1

H
(µ1,µ2) :=

�
↵ 2 H

1
(µ1,µ2) |

Z

C[X1,X2]
H d↵ = UH(µ1,µ2)

�
(4.1.6)

is not empty. Elements of H
1

H
(µ1,µ2) are called Unbalanced Optimal Transport

plans.

In the following result we prove that UH is the lower semicontinuous convex
envelope of SH in a direct way. Another proof is given in Theorem 4.2.4.

Theorem 4.1.4. Let H be as in (4.1.2) and let SH and UH be as in Definition 4.1.1.
Then

co (SH) = UH. (4.1.7)
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Proof. We only need to prove equality on M+(X1)⇥M+(X2) being both func-
tions equal to +1 outside it. First of all let us compute co (SH) on the set
co (�+(X1)⇥�+(X2)) = co (�+(X1))⇥ co (�+(X2)). If we take an element (µ1,µ2)

of co (�+(X1))⇥ co (�+(X2)), then we can write

co (SH) (µ1,µ2) = inf

�
X

ij

↵ijSH(µ
i

1
,µj

2
) | (µ1,µ2) =

X

ij

↵ij(µ
i

1
,µj

2
),

↵ij > 0,
X

ij

↵ij = 1, µi

k
2 �+(Xk)

✏

.

Since (µ1,µ2) 2 co (�+(X1))⇥ co (�+(X2)) it holds

µ1 =

X

h

mh�xh

1

µ2 =

X

k

nk�xk

2

for some mh,nk 2 R+ and some xh
1
2 X1, xk

2
2 X2 distinct points. Then it holds

that

µ1 =

X

h

mh�xh

1

=

X

ij

↵ijµ
i

1
=

X

ij

↵ijr
i

1
�
x̃i

1

,

µ2 =

X

k

nk�xk

2

=

X

ij

↵ijµ
j

2
=

X

ij

↵ijr
j

2
�
x̃
j

2

for some ri
1

, rj
2
2 R+ and some x̃i

1
2 X1, x̃j

2
2 X2 not necessarily distinct points.

Clearly it must be

[h{x
h

1
}h = [i{x̃

i

1
}i, [k{x

k

1
}k = [j{x̃

j

2
}j.

We can then group the ri
1

and the ↵ij as follows

{rph
1

}p := {ri
1
| x̃i

1
= xh

1
}, {↵pjh}p := {↵ij | x̃

i

1
= xh

1
}

obtaining

µ1 =

X

h

mh�xh

1

=

X

pjh

↵pjhr
ph

i
�
xh

1

,

µ2 =

X

k

nk�xk

2

=

X

pjh

↵pjhr
j

2
�
x̃
j

2

.

Analogously we can group the rj
2

and again the ↵pjh as follows

{rqk
2

}q := {rj
2
| x̃j

2
= xk

2
}, {↵pqhk}q := {↵pjh | x̃j

2
= xk

2
}

obtaining

µ1 =

X

h

mh�xh

1

=

X

pqhk

↵pqhkr
pqhk

i
�
xh

1

,

µ2 =

X

k

nk�xk

2

=

X

pqhk

↵pqhkr
qk

2
�
xk

2

.
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We are then left with the compatibility conditions
8
>>><

>>>:

mh =
P

pqk
↵pqhkr

ph

1
for everyh,

nk =
P

pqh
↵pqhkr

qk

2
for every k,

P
pqhk

↵pqhk = 1

(4.1.8)

The convex envelope of SH can be then written in two arbitrary points

(µ1,µ2) =

 
X

h

mh�xh

1

,
X

k

nk�xk

2

!

2 co (�+(X1))⇥ co (�+(X2))

as

co (SH) (µ1,µ2) = inf

�
X

pqhk

↵pqhkH([xh
1

, rph
1

], [xk
2

, rpk
2

]) s.t.

{↵pqhk}pqhk, {rph
1

}ph, {rqk
2

}qk ⇢ R+

and (4.1.8) holds

✏

.

This formula tells us that co (SH) can be written as

co (SH) (µ1,µ2) = inf
�Z

C[X1,X2]
H d↵ | ↵ 2 H

1
(µ1,µ2)\ P-Discr+(C[X1, X2])

�
,

where P-Discr+(C[X1, X2]) = Discr+(C[X1, X2]) \ P(C[X1, X2]). Reasoning as in
the proof of Lemma 3.2.10, we have that

co (SH) (µ1,µ2) = inf
�Z

C[X1,X2]
H d↵ | ↵ 2 H

1
(µ1,µ2)\ P-Discr+(C⇤)

�
,

where C⇤ := CR(µ1,µ2)[X1, X2]. Thus

UH(µ1,µ2) 6 co (SH) (µ1,µ2) for every (µ1,µ2) 2 co (�+(X1))⇥ co (�+(X2)) .

Moreover UH is lower semicontinuous and convex hence, by definition of co (SH),
it must hold

co (SH) (µ1,µ2) > UH(µ1,µ2) for every (µ1,µ2) 2 M+(X1)⇥M+(X1).

Then, in order to prove equality, we only need to prove the other inequality.
To do so, fixed (µ1,µ2) 2 M+(X1)⇥M+(X2), we prove that there exists a net
{(µ⌘

1
,µ⌘

2
)}⌘2E ⇢ co (�+(X1))⇥ co (�+(X2)) s.t. lim⌘(µ

⌘

1
,µ⌘

2
) = (µ1,µ2) and a net

{�⌘}⌘2E ⇢ Discr+(C⇤)\P(C⇤)

s.t. �⌘ 2 H
1
(µ⌘

1
,µ⌘

2
) for every ⌘ 2 E satisfying

lim
⌘2E

Z

C[X1,X2]
H d�⌘ =

Z

C[X1,X2]
H d↵⇤
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where ↵⇤ 2 H
1

H
(µ1,µ2)\P(C⇤). If we are able to do so, we conclude, indeed

co (SH) (µ1,µ2) = inf
�

lim inf
�

co (SH) (µ
�

1
,µ�

2
) with

{(µ�
1

,µ�
2
)}�2L ⇢ co (�+(X1)⇥�+(X2)) and

(µ1,µ2) = lim
�

(µ�
1

,µ�
2
)

�

6 lim inf
⌘

co (SH) (µ
⌘

1
,µ⌘

2
)

6 lim inf
⌘

Z

C[X1,X2]
H d�⌘

= lim inf
⌘

Z

C[X1,X2]
H d�⌘

=

Z

C[X1,X2]
H d↵⇤

= UH(µ1,µ2).

To do so, we use Lemma 3.1.4 with X := C⇤, f = H, ↵ := ↵⇤ and we find {�⌘}⌘2E ⇢
Discr+(C⇤)\P(C⇤) s.t.

lim
⌘2E

�⌘ = ↵⇤, lim
⌘2E

Z

C⇤

H d�⌘ =

Z

C⇤

H d↵⇤.

Finally we can define

µ⌘
1
:= h

1

1
(�⌘), µ⌘

2
:= h

1

2
(�⌘) for every ⌘ 2 E.

Obviously �⌘ 2 H
1
(µ⌘

1
,µ⌘

2
) and µi = lim⌘2E µ⌘

i
, indeed if 'i 2 Cb(Xi), then

lim
⌘2E

Z

Xi

'i dµ⌘
i
= lim
⌘2E

Z

Xi

'i dh1
i
(�⌘) = lim

⌘2E

Z

C[X1,X2]
(' � xi)ri d�⌘

= lim
⌘2E

Z

C⇤

('i � xi)ri d�⌘ =

Z

C⇤

('i � xi)ri d↵⇤

=

Z

C[X1,X2]
('i � xi)ri d↵⇤

=

Z

Xi

'i dh1
i
(↵⇤

)

=

Z

Xi

'i dµi,

where we have used that (' � xi)ri 2 Cb(C⇤) and the convergence of �⌘ to ↵⇤ in
P(C⇤). Notice that, in general, it is not true that (' � xi)ri 2 Cb(C[X1, X2]).

4.2 duality

In this section, we still assume that H is as in (4.1.2) and we study the dual
formulation of the definition of UH.

Definition 4.2.1. We define the following set of continuous functions

�H :=

8
>><

>>:

('1,'2) 2 Cb(X1)⇥ Cb(X2) s.t.
'1(x1)r1 +'2(x2)r2 6 H([x1, r1], [x2, r2])
for every (x1, x2) 2 X1 ⇥X2, r1, r2 > 0

9
>>=

>>;
(4.2.1)
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and, for every (µ1,µ2) 2 M+(X1)⇥M+(X2), the functional D(·;µ1,µ2) : Cb(X1)⇥
Cb(X2) ! R given by

D('1,'2;µ1,µ2) :=

Z

X1

'1 dµ1 +

Z

X2

'2 dµ2, ('1,'2) 2 Cb(X1)⇥Cb(X2).

(4.2.2)

Before stating the main duality result, let us briefly recall the Fenchel-Moreau
Theorem in the framework of a pair of vector spaces E, F placed in duality by
a nondegenerate bilinear map h·, ·, i, see e.g. [46]. We endow E with the weak
topology �(E, F), the coarsest topology for which all the functions e 7! he, fi,
f 2 F, are continuous.

Definition 4.2.2. Let F : E ! (-1,+1] be not identically +1 and satisfying

F (e) > he, fi- c for some f 2 F, c 2 R and every e 2 E. (4.2.3)

The polar (or conjugate) function of F is the function F ⇤
: F ! (-1,+1]

defined by

F ⇤
(f) := sup

e2E

he, fi-F (e) for every f 2 F.

Theorem 4.2.3 (Fenchel-Moreau). Let E and F be vector spaces placed in duality and
let F : E ! (-1,+1] be satisfying (4.2.3) and not identically +1. Then the lower
semicontinuous convex envelope of F is given by the dual formula

co (F ) = F ⇤⇤
(e) := sup

f2F

he, fi-F ⇤
(f) for every e 2 E.

In particular,

if F is convex and lower semicontinuous then F = F ⇤⇤.

Theorem 4.2.4. Let H be as in (4.1.2), let SH and UH be as in Definition 4.1.1 and let
Ai ⇢ Cb(Xi) be adapted algebras of continuous functions as in Definition 3.1.5. Then

UH(µ1,µ2) = sup {D('1,'2;µ1,µ2) | ('1,'2) 2 �H \ (A1 ⇥ A2)} (4.2.4)

for every (µ1,µ2) 2 M+(X1)⇥M+(X2).

Proof. Set E := M(X1)⇥M(X2) and F := A1 ⇥ A2 with the bilinear form

h·, ·i : E⇥ F ! R, ((µ1,µ2), ('1,'2)) 7! D('1,'2;µ1,µ2).

This is a well defined nondegenerate bilinear form. We endow then E with the
topology �(E, F) which coincides exactly with the product weak topology by
Lemma 3.1.6.
Consider then the function SH : E 7! (-1,+1] defined as in Definition 4.1.1.
Using Theorem 4.1.4 and Theorem 4.2.3 we have that

UH = co (SH) = S ⇤⇤
H

.
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Moreover

S ⇤
H
('1,'2) = sup

(µ1,µ2)2E

{h(µ1,µ2), ('1,'2)i-SH(µ1,µ2)}

= sup
(µ1,µ2)2�+(X1)⇥�+(X2)

{h(µ1,µ2), ('1,'2)i-SH(µ1,µ2)}

= sup
x1,r1,x2,r2

{'1(x1)r1 +'2(x2)r2 -H(x1, r1; x2, r2)}

=

8
<

:
0 if ('1,'2) 2 �H \ (A1 ⇥ A2),

+1 elsewhere.

Hence

S ⇤⇤
H

(µ1,µ2) = sup {D('1,'2;µ1,µ2) | ('1,'2) 2 �H \ (A1 ⇥ A2)} .

Remark 4.2.5. We remark that equality (4.2.4) does not require Theorem 4.1.4.
Indeed, from the proof of Theorem 4.2.4, we immediately have that

co (SH) (µ1,µ2) = sup
�Z

X1

'1 dµ1 +

Z

X2

'2 dµ2 | ('1,'2) 2 �H

�
. (4.2.5)

In Proposition 4.1.3 we have proven that UH is convex and lower semicontinuous
and stays below SH, then UH 6 co (SH). The other inequality is immediate: take
any ↵ 2 H

1
(µ1,µ2) and any ('1,'2) 2 �H; then

Z

X1

'1 dµ1 +

Z

X2

'2 dµ2 =

Z

C[X1,X2]
(('1 � x1)r1 + ('2 � x2)r2) d↵

6
Z

C[X1,X2]
H d↵.

Passing to the supremum in �H and to the infimum in H
1
(µ1,µ2) and using

(4.2.5), we conclude that UH > co (SH).

We conclude this section showing the equality co (H) = cof (H) as a conse-
quence of the above result.

Corollary 4.2.6. Let H be as in (4.1.2) and let co (H) and cof (H) be as in Definition
3.2.7. Then

co (H) ([x1, r1], [x2, r2]) = cof (H) ([x1, r1], [x2, r2])
= sup {'(x1)r1 +'2(x2)r2 | ('1,'2) 2 �H}

for every (x1, x2) 2 X1 ⇥X2 and every (r1, r2) 2 R
2
+. Moreover

co (SH) = co
�
Sco(H)

�
= UH = Uco(H)

Proof. We denote by UH : C[X1, X2] ! [0,+1] the restriction of UH to �+(X1)⇥
�+(X2)

⇠= C[X1, X2] (see Lemma 3.2.1).
It is clear that co (H) 6 cof (H) 6 H so that

Uco(H) 6 Ucof(H) 6 UH
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and

co (H) = Uco(H) 6 cof (H) = Ucof(H) 6 UH 6 H,

where we used Proposition 4.1.3 and the convexity of co (H) and cof (H). More-
over, since UH is, lower semicontinuous, convex and stays below H, we have that
UH 6 co (H). This gives that

co (H) = Uco(H) = cof (H) = Ucof(H) = UH

and in particular, using Theorem 4.2.4, that

co (H) ([x1, r1], [x2, r2]) = cof (H) ([x1, r1]; [x2, r2])
= sup {'(x1)r1 +'2(x2)r2 | ('1,'2) 2 �H} .

The fact that co (H) = UH gives that UH 6 Sco(H) so that UH 6 co
�
Sco(H)

�
.

However, by Proposition 4.1.3, we know that UH = co (SH) so that co (SH) 6
co
�
Sco(H)

�
. Since, obviously, the other inequality holds, we have co (SH) =

co
�
Sco(H)

�
. Applying again Proposition 4.1.3 to co (H) we conclude that

co (SH) = co
�
Sco(H)

�
= UH = Uco(H).

4.3 the case of merely hausdorff spaces

In this last section we show how to generalize Theorem 3.2.3 and Corollary 3.2.4
to arbitrary Hausdorff topological spaces.

Since duality with continuous and bounded functions cannot be used to define
a Hausdorff topology in M+(X), a natural topology (called narrow topology) can
be introduced following Topsoe [110, Appendix].

Definition 4.3.1. (Narrow topology)
Let X be a Hausdorff topological space. The narrow topology on M+(X) is the
coarsest topology which makes all the maps µ 7!

R
X
'dµ lower semicontinuous

for every bounded and lower semicontinuous function ' : X ! R.

In order to state a useful criterium for compactness in M+(X) we give the
following definition.

Definition 4.3.2. (Domination of compact sets)
Let X be a Hausdorff topological space and let K(X) (respectively G(X)) be the
collection of the compact (resp. open) subsets of X. We say that a collection
G ⇢ G(X) dominates the compact subsets of X, and we write G � K(X), if

for every K 2 K(X) there exists G 2 G : K ⇢ G.

Theorem 4.3.3. (Topsoe [116])
Let X be a Hausdorff topological space.
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1. A net (µ�)�2L
⇢ M+(X) is compact (i.e. from every subnet it is possible to extract

a narrowly convergent sub-subnet) if and only if lim sup
�2L

µ�(X) < +1 and
for every G � K(X) and for every " > 0 there exists a finite subset G 0 ⇢ G such
that

lim sup
�2L

min
G2G 0

µ�(X \G) 6 ". (4.3.1)

2. A narrowly closed set F ⇢ M+(X) is narrowly compact if and only if it is bounded
and for every G � K(X) and for every " > 0 there exists a finite subset G 0 ⇢ G

such that

sup
µ2F

min
G2G 0

µ(X \G) 6 ". (4.3.2)

Remark 4.3.4. Condition (4.3.2) is really a relaxation of the usual uniform tight-
ness condition: in fact, the latter guarantees the existence of a singleton G 0 satis-
fying (4.3.2).

We are now able to state and prove the analogous of Theorem 3.2.3 and Corol-
lary 3.2.4.

Theorem 4.3.5. (Compactness from converging marginals)
Let Xi, i = 1, 2 be Hausdorff topological spaces and let (��)�2L

be a net in M+(X1 ⇥
X2) with µi,� := ⇡i]�� 2 M+(Xi), i = 1, 2, � 2 L. If (µi,�)�2L narrowly converge
to some µi in M(Xi), then there exists a subnet (� 0

↵)↵2A narrowly convergent to some
� 2 �(µ1,µ2) in M(X1 ⇥X2).

Proof. Let us first recall (see e.g. [84, §26, Exercise 9]) that whenever G ⇢ X1 ⇥X2

is an open set containing the product K1 ⇥ K2 of two compact subsets Ki ⇢ Xi,
i = 1, 2, then there exist open sets Gi ⇢ Xi such that

K1 ⇥K2 ⇢ G1 ⇥G2 ⇢ G. (4.3.3)

Let G � K(X1 ⇥ X2) and let " > 0 be fixed. Thanks to (4.3.3), in order to check
(4.3.1) it is not restrictive to replace G with the collection of cartesian open sets

Gc :=

⌦
G1 ⇥G2 | 9G 2 G such that G1 ⇥G2 ⇢ G

↵
.

Let us now introduce the disjoint union X := X1 t X2 endowed with the finest
topology for which the canonical injections ◆i : Xi ! X are continuous; we can
thus identify Xi with ◆i(Xi) as (open and closed) subsets of X. Since a set A ⇢ X
is open (resp. compact) in X if and only if A \ Xi is open (resp. compact) in Xi

for i = 1, 2, it is not difficult to check that the family of open sets in X

Ĝc :=

⌦
G1 tG2 | G1 ⇥G2 2 Gc

↵

dominates K(X).
We now consider the net µ� := (◆1)]µ1,� + (◆2)]µ2,� in M+(X); equivalently,

µ�(B) := µ1,�(B\X1) +µ2,�(B\X2) for every Borel set B of X. It is immediate to
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check that µ� narrowly converges to µ := (◆1)]µ1 + (◆2)]µ2. By Theorem 4.3.3(1)
we can find a finite subset Ĝ 0

= {G1,j tG2,j}
J

j=1
of Ĝc such that

lim sup
�2L

min
G2Ĝ 0

µ�(X \G) 6 ". (4.3.4)

On the other hand we observe that, for every � 2 L and j 2 {1, · · · , J}, it holds

��(X1 ⇥X2 \G1,j ⇥G2,j)) 6 ��((X1 \G1,j)⇥X2) + ��(X1 ⇥ (X2 \G2,j))

= µ1,�(X1 \G1,j) + µ2,�(X2 \G2,j)

= µ�(X \G1,j tG2,j),

so that, setting G 0
:= {G1,j ⇥G2,j}

J

j=1
, (4.3.4) yields

lim sup
�2L

min
G2G 0

��(X1 ⇥X2 \G) 6 lim sup
�2L

min
G2Ĝ 0

µ�(X \G) 6 ".

Arguing as in the proof of Corollary 3.2.4 we eventually obtain the correspond-
ing characterization of compactness in M+(X1 ⇥X2).

Corollary 4.3.6. (Compactness from compact marginals)
Let Xi, i = 1, 2 be Hausdorff topological spaces and let Ki ⇢ M+(Xi) be compact in
the narrow topology, i = 1, 2. Then the set K :=

⌦
� 2 M+(X1 ⇥ X2) | ⇡

i

#� 2 Ki

↵
is

compact in the narrow topology of M(X1 ⇥X2).





5
D U A L AT TA I N M E N T, O P T I M A L I T Y C O N D I T I O N S A N D
M E T R I C P R O P E RT I E S

This chapter is devoted to the study of the dual attainment in (4.2.4) i.e. to un-
derstand under which hypotheses one can find a pair of functions (continuous
or not) realizing the maximum in (4.2.4). The first Section 5.1 treats the case in
which the spaces are compact and H is somehow more regular; Section 5.2 deals
with a more general settings and present sufficient and necessary optimality con-
ditions for the primal problem in the definition of UH; finally in Section 5.3 the
case in which H is a distance on the geometric cone is treated.

This Chapter is the result of a collaboration with Giuseppe Savaré.

5.1 the regular case

In this section we provide sufficent conditions for the existence of a maximizing
pair ('1,'2) 2 �H such that

Z

X1

'1 dµ1 +

Z

X2

'2 dµ2 = UH(µ1,µ2).

5.1.1 The case of H finite everywhere

In the following we assume that (X1, d1), (X2, d2) are compact metric spaces, that
H : C[X1, X2] ! [0,+1) is a 1-homogeneous, convex and continuous function
and that µi 2 M+(Xi) are such that suppµi = Xi for i = 1, 2 (notice that this
implies µi 6= 0Xi

for i = 1, 2). We define Hi : Xi ! [0,+1) for i = 1, 2 as

H1(x1) := H([x1, 1], o), H2(x2) := H(o, [x2, 1]) x1 2 X1, x2 2 X2 (5.1.1)

and we assume that

1 :=

Z

X1

H1 dµ1 < +1, 2 :=

Z

X2

H2 dµ2 < +1. (5.1.2)

Finally, we assume some control on the derivatives of H at the boundary of the
cone, meaning that we assume the existence of an open set ⌦ ⇢ X1 ⇥ X2 such
that

⇡i(⌦) = Xi, i = 1, 2,

lim
r1#0

H([x1, r1], [x2, 1])-H2(x2)

r1
= -1 for every (x1, x2) 2 ⌦,

lim
r2#0

H([x1, 1], [x2, r2])-H1(x1)

r2
= -1 for every (x1, x2) 2 ⌦.

(5.1.3)

69
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Lemma 5.1.1. There exists a finite set {xn
1

, xn
2

, rn}Nn=1
⇢ X1⇥X2⇥ (0,+1) such that

[

n

B(xn
i

, rn) = Xi, i = 1, 2
[

n

B(xn
1

, rn)⇥ B(xn
2

, rn) ⇢ ⌦.

Moreover there exists a constant C = C(X1, X2,µ1,µ2, H) > 0 such that, if ('1,'2) 2
�H are such that

Z

X1

'1 dµ1 +

Z

X2

'2 dµ2 > 0,

then for every n 2 {1, . . . ,N} there exist yn

1
2 B(xn

1
, rn),yn

2
2 B(xn

2
, rn) such that

'1(y
n

1
) > -C, '2(y

n

2
) > -C. (5.1.4)

Proof. The first claim follows by the compactness of Xi and by the properties of
⌦. We claim that

Z

B(xn

1
,ri)
'1 dµ1 > -(1 + 2 + 1),

Z

B(xn

2
,ri)
'2 dµ2 > -(1 + 2 + 1) (5.1.5)

for every n = 1, . . . ,N. Indeed, if there exists i 2 {1, 2} (say i = 1) and n 2
{1, . . . ,N} such that

Z

B(xn

1
,rn)

'1 dµ1 < -(1 + 2 + 1),

then
Z

X1

'1 dµ1 =

Z

B(xn

1
,rn)

'1 dµ1 +

Z

X1\B(xn

1
,rn)

'1 dµ1

< -(1 + 1 + 1) + 1

= -(2 + 1).

Thus

2 >
Z

X2

'2 dµ2 > -

Z

X1

'1 dµ1 > 2 + 1,

a contradiction. Let us set

m := min
i=1,2

min
n=1,...,N

µi (B(xni , rn)) > 0,

since the supports of the measures coincide with the whole spaces X1 and X2.
By (5.1.5) we have, for every i = 1, 2, that

µi (B(xni , rn)) sup
B(xn

i
,rn)

'i >
Z

B(xn

i
,rn)

'i dµi > -(1 + 2 + 1),

hence

sup
B(xn

i
,rn)

'i > -
1 + 2 + 1

m
.

This gives the existence of yn

i
2 B(xn

i
, rn) such that

'i(y
n

i
) > -

1 + 2 + 1

m
=: C.
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Lemma 5.1.2. There exists " = "(X1, X2,µ1,µ2, H) > 0 such that, for every ('1,'2) 2
�H with

Z

X1

'1 dµ1 +

Z

X2

'2 dµ2 > 0,

it holds

'i(xi) 6 Hi(xi)- " for every xi 2 Xi, i = 1, 2.

Proof. We prove the statement for i = 1, being the other case completely analo-
gous. Suppose by contradiction that there exists ('j

1
,'j

2
)j ⇢ �H with

R
X1
'j

1
dµ1+R

X2
'j

2
dµ2 > 0 and (zj)j ⇢ X1 such that

H1(zj)-'
j

1
(zj) ! 0

as j ! +1. Up to passing to a subsequence, we can assume that

0 6 H1(zj)-'
j

1
(zj) 6

1

j
for every j 2 N

and the existence of z 2 X1 such that zj ! z. By Lemma 5.1.1, we have that
z 2 B(xn

1
, rn) for some n 2 {1, . . . ,N} and we can thus assume, up to passing

again to a subsequence, that zj 2 B(xn
1

, rn) for every j 2 N. By Lemma 5.1.1,
we can find, yj 2 B(xn

2
, rn) such that 'j

2
(yj) > -C. By compactness of X2, we

can assume that yj ! y 2 B(xn
2

, rn). We have thus proven the existence of
(zj,yj) 2 ⌦ such that (zj,yj) ! (z,y) 2 ⌦ with

0 6 H1(zj)-'
j

1
(zj) 6

1

j
, 'j

2
(yj) > -C for every j 2 N.

We have

r1

✓
H1(zj)-

1

j

◆
-Cr2 6 'j

1
(zj)r1 +'

j

2
(yj)r2 6 H([zj, r1], [yj, r2])

for every r1, r2 > 0. Choosing r1 = 1, we get

H([zj, 1], [yj, r2]-H1(zj)

r2
> -C-

1

jr2
for every j 2 N, r2 > 0.

Passing first to the limit as j ! +1 and then to the limit as r2 # 0, we obtain

lim
r2#0

H([z, 1], [y, r2]-H1(x1)

r2
> -C > -1,

a contradiction with (5.1.3).

Definition 5.1.3. Let ('1,'2) 2 �H. We define the Borel functions 'H

1
: X2 ! R,

'HH

1
: X1 ! R as

'H

1
(x2) := inf

x12X1

inf
↵>0

�
H([x1,↵], [x2, 1])-↵'1(x1)

�
, x2 2 X2,

'HH

1
(x1) := inf

x22X2

inf
↵>0

�
H([x1, 1], [x2,↵])-↵'H

1
(x2)

�
, x1 2 X1.
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Proposition 5.1.4. There exist constants R = R(X1, X2,µ1,µ2, H) > 1 and M =

M(X1, X2,µ1,µ2, H) > 0 such that, for every ('1,'2) 2 �H with
Z

X1

'1 dµ1 +

Z

X2

'2 dµ2 > 0,

it holds

'H

1
(x2) = inf

x12X1

inf
06↵6R

�
H([x1,↵], [x2, 1])-↵'1(x1)

�
, x2 2 X2, (5.1.6)

'HH

1
(x1) = inf

x22X2

inf
06↵6R

�
H([x1, 1], [x2,↵])-↵'H

1
(x2)

�
, x1 2 X1. (5.1.7)

In particular, ('HH

1
,'H

1
) 2 �H, 'HH

1
> '1, 'H

1
> '2, both of them are uniformly

continuous with the same (uniform) modulus of continuity of H on CR[X1, X2] and

k'H

1
k1 6 M, k'H,H

1
k1 6 M.

Proof. Let ('1,'2) be as in the statement. By Lemma 5.1.2 we know that there
exists " > 0 (not depending on the couple) such that

'1(x1) 6 H1(x1)- " for every x1 2 X1.

Then, by uniform continuity of H on C1[X1, X2], we can find 0 < � < 1 such that

|H([x1, 1], [x2, r2])-H1(x1)| 6
"

2
for every 0 6 r2 6 �.

If we define R := 1+ 1

�
+

2

"
(maxX2

H2 + maxX1
H1 + 1), then, for every ↵ > R, we

have

H([x1,↵], [x2, 1])-↵'1(x1)

= H([x1,↵], [x2, 1])-H1(x1)↵+↵ (H1(x1)-'1(x1))

= ↵ (H([x1, 1], [x2, 1/↵])-H1(x1)) +↵ (H1(x1)-'1(x1))

> ↵"
2

> H2(x2) + 1.

Thus, for every x2 2 X2, we get

inf
x12X1

inf
↵>R

{H([x1,↵], [x2, 1])-↵'1(x1)} > H2(x2) + 1

> inf
x12X1

inf
06↵6R

{H([x1,↵], [x2, 1])-↵'1(x1)}

and this proves (5.1.6). The proof of (5.1.7) is analogous.
The fact that 'H

1
> '2, 'HH

1
> '1 and

'HH

1
(x1)r1 +'

H

1
(x2)r2 6 H([x1, r1], [x2, r2])

for every (x1, x2) 2 X1 ⇥ X2, r1, r2 > 0, follow by the definition of 'H

1
and

'HH

1
. It is then clear that 'H

1
(resp. 'HH

1
) is bounded from below by minx22X2

'2
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(resp. minx12X1
'1) and by above by maxx22X2

H2 (resp. maxx12X2
H1). Let now

x2, x 0
2
2 X2, then, recalling (3.2.4), we have

��'H

1
(x2)-'

H

1
(x 0

2
)

�� 6 sup
x12X1

sup
06↵6R

��H([x1,↵], [x2, 1])-H([x1,↵], [x 0
2

, 1])
��

6 !R

H

�
(d1 ⌦C d2)

�
([x1,↵], [x2, 1]), ([x1,↵], [x 0

2
, 1])

��

= !R

H
(d2,C([x2, 1], [x 0

2
, 1]))

6 !R

H
(d2(x2, x 0

2
)),

(5.1.8)

where!R

H
is the (uniform) modulus of continuity of H on CR[X1, X2] and we have

used that d2,C([x2, 1], [x 0
2

, 1])) 6 d2(x2, x 0
2
) (see formula (7.5) in [76]). The analo-

gous statement for 'HH

1
follows by the same strategy. This proves that 'H

1
and

'HH

1
are uniformly continuous with the same (uniform) modulus of continuity

of H on CR[X1, X2] and concludes the proof that ('HH

1
,'H

1
) 2 �H. If we define

(recalling Lemma 5.1.1)

M := C+!R

H
(diam X1) +!

R

H
(diam X2) + max

x12X1

H1 + max
x22X2

H2,

we have that 'H

1
6 H2 6 M and, by (5.1.8), we get

'H

1
(x2) > 'H

1
(x 0

2
)-!R

H
(d2(x2, x 0

2
)) > -C-!R

H
(diam X2) > -M,

for every x2 2 X2, where x 0
2
2 X2 is some point where 'H

1
is larger than -C

(whose existence is given by Lemma 5.1.1). The proof for 'HH

1
is the same.

Theorem 5.1.5. There exists ('1,'2) 2 �H such that
Z

X1

'1 dµ1 +

Z

X2

'2 dµ2 = UH(µ1,µ2).

Proof. If UH(µ1,µ2) = 0, we can take '1 and '2 to be the null functions. We
thus assume that UH(µ1,µ2) > 0. If this is the case, we can find a maximizing
sequence ('j

1
,'j

2
)j ⇢ �H for the dual problem (4.2.4) with

Z

X1

'j

1
dµ1 +

Z

X2

'j

2
dµ2 > 0 for every j 2 N.

By Proposition 5.1.4 we have that ('j,HH

1
,'j,H

1
)j ⇢ �H is a maximizing sequence

of equi-uniformly continuous and equi-bounded functions. By Arzelà–Ascoli
theorem, we can assume, up to passing to a subsequence, that there exists a
pair ('1,'2) 2 �H such that ('j,HH

1
,'j,H

1
) ! ('1,'2) uniformly on the compact

space X1 ⇥X2. By dominated convergence, we have
Z

X1

'1 dµ1 +

Z

X2

'2 dµ2 = lim
j

✓Z

X1

'j,HH

1
dµ1 +

Z

X2

'j,H
1

dµ2

◆
= UH(µ1,µ2).

In the next statement we assume that (X1, d1) = (X2, d2) = (K, de), where
K ⇢ R

d is a compact convex set with non-empty interior and de is the Euclidean
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distance on K. We say that H : C[K,K] ! [0,+1) is partially differentiable if the
limits

(@1H(x1, r1; x2, r2))n := lim
h!0

H([x1 + hen, r1], [x2, r2])-H([x1, r1], [x2, r2])
h

,

@2H(x1, r1; x2, r2) := lim
h!0

H([x1, r1 + h], [x2, r2])-H([x1, r1], [x2, r2])
h

exist for every n = 1, . . . ,d, x1 2 int (K), r1 > 0 and x2 2 K, r2 > 0, where
(en)

d

n=1
is the canonical basis of R

d.

Theorem 5.1.6. Let K ⇢ R
d be a compact and convex set with non-empty interior, let

H : C[K,K] ! [0,+1) be a continuous, 1-homogeneous and convex function which is in
addition partially differentiable and (de⌦C de)-Lipschitz continuous on CR[K,K], where
R > 1 is as in Proposition 5.1.4. Let µi 2 M+(K) with suppµi = K, i = 1, 2, and
assume that (5.1.2) and (5.1.3) hold true. If µ1 is absolutely continuous w.r.t. Ld

|
K

(the
d dimensional Lebesgue measure on K) and

for every x1 2 int (K) the map

C[K] 3 [y,q] 7!
 
@1H(x1, 1;y,q)
@2H(x1, 1;y,q)

!

2 R
d+1 is invertible,

(5.1.9)

then there exists a Borel map T : K ! C[K] s.t.

µ2 = (h �T])(µ1),
Z

K

H([x1, 1], T(x1))dµ1(x1) = UH(µ1,µ2).

Proof. By Theorem 5.1.5, we know that there exists a pair ('1,'2) 2 �H of
Lipschitz continuous functions (see also Proposition 5.1.4) such that

Z

K

'1 dµ1 +

Z

K

'2 dµ2 = UH(µ1,µ2).

If ↵ 2 H
1

H
(µ1,µ2) (cf. (4.1.6)), then we can find a full ↵-measure Borel set � ⇢

C[K,K] such that

'1(x1)r1 +'2(x2)r2 = H([x1, r1], [x2, r2]) for every ([x1, r1], [x2, r2]) 2 � .

Notice that, since H(o, o) = 0, we can assume that (o, o) /2 � . Since '1 is Lipschitz
continuous, we can find a full µ1-measure Borel set U ⇢ int (K) where '1 is
differentiable (since K is convex, its boundary has 0 Lebesgue measure). Let
([x̄1, r̄1], [x̄2, r̄2]) 2 � with x̄1 2 U. We have that

the map (x1, r1) 7! H([x1,r1], [x̄2, r̄2])-'1(x1)r1

has a minimum at (x1, r1) = (x̄1, r̄1).
(5.1.10)

We claim that r̄1 6= 0: if not, we would have that

H([x1, r1], [x̄2, r̄2])-'1(x1)r1 > H(o, [x̄2, r̄2]) for every x1 2 K, r1 > 0.

By (5.1.3), there exists x̃1 2 K such that (x̃1, x̄2) 2 ⌦ so that, if we chose x1 = x̃1,
we get

H([x̃1, r1], [x̄2, r̄2])-'1(x̃1)r1 > H(o, [x̄2, r̄2]) for every r1 > 0.
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Since r̄2 6= 0 (recall that we assumed that (o, o) /2 � ), we can divide by r̄2 and
obtain

H([x̃1, r1

r̄2
], [x̄2, 1])-H2(x̄2)

r1
> '1(x̃1) for every r1 > 0,

which, passing to the limit as r1 # 0, leads to a contradiction with (5.1.3).
Thus from (5.1.10) it follows that

8
<

:
@1H(x̄1, r̄1; x̄2, r̄2) = r'1(x̄1)r̄1,

@2H(x̄1, r̄1; x̄2, r̄2) = '1(x̄1)

which, using the 1-homogeneity of H, can be rewritten as
8
<

:
@1H(x̄1, 1; x̄2, r̄2/r̄1) = r'1(x̄1),

@2H(x̄1, 1; x̄2, r̄2/r̄1) = '1(x̄1).

Let us denote by Ix1
⇢ R

d+1 the image of the map in (5.1.9) and by fx1
: Ix1

!
C[X2] the inverse of such map. If we define T : X1 ! C[X2] as

T(x1) :=

8
<

:
fx1

(r'1(x1),'1(x1)) if (r'1(x1),'1(x1)) 2 Ix1
,

o else ,

then T is a Borel map and we have just proven that

[x̄2, r̄2/r̄1] = T(x̄1),

meaning that

r1T(x1) = [x2, r2] for every ([x1, r1], [x2, r2] 2 � , x1 2 U.

From this and the fact that � \ x-1

1
(U) has full ↵-measure (recall that {r1 =

0}\ � = ;) it follows that

↵ = ([idX1
, 1], T)]µ1

which leads to the conclusion.

5.1.2 The case of H finite on a cone

In this subsection we assume that (X1, d1), (X2, d2) are compact metric spaces,
µi 2 M+(Xi), i = 1, 2 with µi 6= 0Xi

for i = 1, 2 and H : C[X1, X2] ! [0,+1] is a
1-homogeneous, convex and continuous function.
We suppose the existence of two nonnegative numbers q1,q2 with

q1 <
µ2(X2)

µ1(x1)
, q2 <

µ1(X1)

µ2(X2)
(5.1.11)

such that the open set

Uq1q2
:= {([x1, r1], [x2, r2]) 2 C[X1, X2] | r2 > r1q1, r1 > r2q2}
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is nonempty and it holds

lim
r1#q2

inf
(x1,x2)2X1⇥X2

H([x1, r1], [x2, 1]) = +1,

lim
r2#q1

inf
(x1,x2)2X1⇥X2

H([x1, 1], [x2, r2]) = +1,

H(y1, y2) < +1 for every (y1, y2) 2 Uq1q2
.

(5.1.12)

Notice that this implies that H = +1 on C[X1, X2] \ (Uq1q2
[ (o, o)). Moreover, if

q1 = q2 = 0, then Uq1q2
is simply the open product cone.

Proposition 5.1.7. There exists a constant C = C(X1, X2,µ1,µ2, H) > 0 such that, for
every ('1,'2) 2 �H with

Z

X1

'1 dµ1 +

Z

X2

'2 dµ2 > 0,

it holds

'1(x1) 6 C, '2(x2) 6 C for every (x1, x2) 2 X1 ⇥X2

and there exists (x̄1, x̄2) 2 X1 ⇥X2 such that '1(x̄1) > -C, '2(x̄2) > -C.

Proof. We start from the last claim for '1. Assume by contradiction that there
exists a sequence ('j

1
,'j

2
)j ⇢ �H with

R
X1
'j

1
dµ1 +

R
X2
'j

2
dµ2 > 0 such that

maxx12X1
'j

1
(x1) ! -1. Let (xj

1
)j ⇢ X1 be the sequence of points where the

maxima are attained. We thus have

'j

1
(xj

1
)µ1(X1) +

Z

X2

'j

2
dµ2 > 0 for every j 2 N

so that we can find (xj
2
)j ⇢ X2 such that

'j

2
(xj

2
) > -

'j

1
(xj

1
)µ1(X1)

µ2(X2)
for every j 2 N.

Since ('j

1
,'j

2
) 2 �H, we have

'j

1
(xj

1
)

✓
r1 -

µ1(X1)

µ2(X2)
r2

◆
6 'j

1
(xj

1
)r1 +'

j

2
(xj

2
) 6 H([xj

1
, r1], [xj2, r2])

for every r1, r2 > 0. We can assume, up to passing to a subsequence, that
(xj

1
, xj

2
) ! (x1, x2) 2 X1 ⇥ X2. Thanks to (5.1.11) and (5.1.12), we can find

r̄1, r̄2 > 0 such that

H([x1, r̄1], [x2, r̄2]) < +1, r̄1 -
µ1(X1)

µ2(X2)
r̄2 < 0.

We thus have that

+1 6 H([x1, r̄1], [x2, r̄2],
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a contradiction with (5.1.12). Since the proof for '2 is the same, we have proven
that there exists a constant D > 0 independent of ('1,'2) and a point (x̄1, x̄2) 2
X1 ⇥X2 such that

'1(x̄1) > -D, '2(x̄2) > -D.

Thus, if we set

C := D+ max
(x1,x2)2X1⇥X2

H([x1, r̄1], [x2, r̄2]),

where r̄1 and r̄2 are as above, we get that

'1(x1) 6
1

r̄1
(H([x1, r̄1], [x̄2, r̄1])- r̄2'2(x̄2)) 6 C for every x1 2 X1

and the corresponding statement for '2.

Proposition 5.1.8. There exist constants ai,as,bi,bs,M > 0, depending only on
X1, X2,µ1,µ2, H, such that, for every ('1,'2) 2 �H with

Z

X1

'1 dµ1 +

Z

X2

'2 dµ2 > 0,

it holds

'H

1
(x2) = inf

x12X1

inf
ai6↵6as

�
H([x1,↵], [x2, 1])-↵'1(x1)

�
, x2 2 X2,

(5.1.13)

'HH

1
(x1) = inf

x22X2

inf
bi6↵6bs

�
H([x1, 1], [x2,↵])-↵'H

1
(x2)

�
, x1 2 X1.

(5.1.14)

Moreover the sets

C
1

0
:= {(y1, y2) 2 C[X1, X2] | ai 6 r(y1) 6 as, r(y2) = 1},

C
2

0
:= {(y1, y2) 2 C[X1, X2] | bi 6 r(y2) 6 bs, r(y1) = 1}

are compact subsets of Uq1q2
, ('HH

1
,'H

1
) 2 �H, 'HH

1
> '1, 'H

1
> '2, 'HH

1
is

uniformly continuous with the same (uniform) modulus of continuity of H on C
2

0
, 'H

1
is

uniformly continuous with the same (uniform) modulus of continuity of H on C
1

0
and

k'H

1
k1 6 M, k'H,H

1
k1 6 M.

Proof. Let ('1,'2) be as in the statement. Let us set

� :=
1

2

1- q1q2

1+ q1 + q2

so that, for every 0 < " 6 �, we have

q2 + " <
1

q1 + "
.
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Let us fix a point ↵̄ 2 (q2 + �, 1

q1+�
) and let us define

m := max
(x1,x2)2X1⇥X2

H([x1, ↵̄], [x2, 1]) < +1,

since ([x1, ↵̄], [x2, 1]) 2 Uq1q2
for every (x1, x2) 2 X1 ⇥X2.

By (5.1.12), we know that for every L > 0, there exists "L > 0 such that

H([x1, r1], [x2, 1] > L for every (x1, x2) 2 X1 ⇥X2, 0 6 r1 < q2 + "L,
H([x1, 1], [x2, r2] > L for every (x1, x2) 2 X1 ⇥X2, 0 6 r2 < q1 + "L.

Let

L := max {m+C(↵̄+ q2 + �), (q1 + �)(m+ ↵̄C) +C} ,

where C comes from Proposition 5.1.7, and let us take any ai,as > 0 such that

q2 < ai < q2 + "L ^ �,
1

q1 + "L ^ �
< as <

1

q1

,

so that 0 < ai < as, C1

0
⇢ Uq1q2

and ai 6 ↵̄ 6 as.
If ↵ > as, then, for every (x1, x2) 2 X1 ⇥X2, we have

H([x1,↵], [x2, 1])-↵'1(x1) = ↵ (H([x1, 1], [x2, 1/↵])-'1(x1))

> ↵(L-C)

> as(L-C)

> m+ ↵̄C

> H([x̄1, ↵̄]), [x2, 1]- ↵̄'1(x̄1),

where x̄1 comes from Proposition 5.1.7. If ↵ < ai, then, for every (x1, x2) 2
X1 ⇥X2, we have

H([x1,↵], [x2, 1])-↵'1(x1) > L-↵C

> L-Cai

> m+ ↵̄C

> H([x̄1, ↵̄], [x2, 1])- ↵̄'1(x̄1).

Thus, for every x2 2 X2, we get

inf
x12X1

inf
06↵<ai_↵>as

{H([x1,↵], [x2, 1])-↵'1(x1)}

> H([x̄1, ↵̄], [x2, 1])- ↵̄'1(x̄1)

> inf
x12X1

inf
ai6↵6as

{H([x1,↵], [x2, 1])-↵'1(x1)}

and this proves (5.1.13). The proof of (5.1.14) is analogous.
The remaining part of the proof is identical to the one of Proposition 5.1.4.

By Proposition 5.1.8 we obtain Theorem 5.1.5 also in this setting with exactly
the same proof. In the next statement we assume that (X1, d1) = (X2, d2) =

(K, de), where K ⇢ R
d is a compact convex set with nonempty interior and de
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is the Euclidean distance on K. We say that H : C[K,K] ! [0,+1] is partially
differentiable if the limits

(@1H(x1, r1; x2, r2))n := lim
h!0

H([x1 + hen, r1], [x2, r2])-H([x1, r1], [x2, r2])
h

,

@2H(x1, r1; x2, r2) := lim
h!0

H([x1, r1 + h], [x2, r2])-H([x1, r1], [x2, r2])
h

exist for every n = 1, . . . ,d, every ([x1, r1], [x2, r2]) 2 Uq1q2
with x1 2 int (K),

where (en)
d

n=1
is the canonical basis of R

d. Notice that, for every x1 2 X1, the
map

[y,q] 7!
 
@1H(x1, 1;y,q)
@2H(x1, 1;y,q)

!

is well defined for those [y,q] in

Dx1
:=

�
y 2 C[K] | q1 < r(y) <

1

q2

�
.

Theorem 5.1.9. Let K ⇢ R
d be a compact and convex set with non-empty interior, let

H : C[K,K] ! [0,+1] be a continuous, 1-homogeneous and convex function which is in
addition partially differentiable and (de ⌦C de)-Lipschitz continuous on C

2

0
(see Propo-

sition 5.1.8). Let µi 2 M+(K) and assume that (5.1.12) holds true. If µ1 is absolutely
continuous w.r.t. Ld

|
K

(the d dimensional Lebesgue measure on K) and

for every x1 2 int (K) the map

Dx1
3 [y,q] 7!

 
@1H(x1, 1;y,q)
@2H(x1, 1;y,q)

!

2 R
d+1 is invertible,

(5.1.15)

then there exists a Borel map T : K ! C[K] s.t.

µ2 = (h �T])(µ1),
Z

K

H([x1, 1], T(x1))dµ1(x1) = UH(µ1,µ2).

Proof. By Theorem 5.1.5, we know that there exists a pair ('1,'2) 2 �H with '1

Lipschitz continuous (see also Proposition 5.1.8) such that
Z

K

'1 dµ1 +

Z

K

'2 dµ2 = UH(µ1,µ2).

If ↵ 2 H
1

H
(µ1,µ2) (cf. (4.1.6)), then we can find a full ↵-measure Borel set � ⇢

C[K,K] such that

'1(x1)r1 +'2(x2)r2 = H([x1, r1], [x2, r2]) for every ([x1, r1], [x2, r2]) 2 � .

Notice that, since H(o, o) = 0 and H = +1 outside Uq1q2
, we can assume that

� ⇢ Uq1q2
and (o, o) /2 � . Since '1 is Lipschitz continuous, we can find a full

µ1-measure Borel set U ⇢ int (K) where '1 is differentiable (since K is convex,
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its boundary has 0 Lebesgue measure). Let ([x̄1, r̄1], [x̄2, r̄2]) 2 � with x̄1 2 U. We
have that

the map (x1, r1) 7! H([x1,r1], [x̄2, r̄2])-'1(x1)r1

has a minimum at (x1, r1) = (x̄1, r̄1).
(5.1.16)

From (5.1.16) it follows that
8
<

:
@1H(x̄1, r̄1; x̄2, r̄2) = r'1(x̄1)r̄1,

@2H(x̄1, r̄1; x̄2, r̄2) = '1(x̄1)

which, using the 1-homogeneity of H, can be rewritten as
8
<

:
@1H(x̄1, 1; x̄2, r̄2/r̄1) = r'1(x̄1),

@2H(x̄1, 1; x̄2, r̄2/r̄1) = '1(x̄1).

Let us denote by Ix1
⇢ R

d+1 the image of the map in (5.1.15) and by fx1
: Ix1

!
C[K] the inverse of such map. If we define T : X1 ! C[K] as

T(x1) :=

8
<

:
f(r'1(x1),'1(x1)) if (r'1(x1),'1(x1) 2 Ix1

,

o else ,

then T is a Borel map and we have just proven that

[x̄2, r̄2/r̄1] = T(x̄1),

meaning that

r1T(x1) = [x2, r2] for every ([x1, r1], [x2, r2] 2 � , x1 2 U.

From this and the fact that � \ x-1

1
(U) has full ↵-measure (recall that {r1 =

0}\ � = ;) it follows that

↵ = ([idX1
, 1], T)]µ1

which leads to the conclusion.

Remark 5.1.10. Let us suppose that (X1, d1), (X2, d2) are non compact metric
spaces, µi 2 M+(Xi) for i = 1, 2 and H : C[X1, X2] ! [0,+1] is a 1-homogeneous,
convex and continuous function. We assume that the supports X̃i := suppµi,
i = 1, 2 are nonempty compact sets and one between the settings described in
(5.1.2), (5.1.3) or (5.1.11), (5.1.12) is satisfied for the restriction H̃ of H to C[X̃1, X̃2]

and the restrictions µ̃i of µi to X̃i, for i = 1, 2. In both situations, using The-
orem 5.1.5, we obtain the existence of two continuous and bounded functions
'̃i : X̃i ! R, i = 1, 2, such that

'̃1(x1)r1 + '̃2(x2) 6 H([x1, r1], [x2, r2]) (5.1.17)
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for every (x1, x2) 2 X̃1 ⇥ X̃2 and r1, r2 > 0, and
Z

X̃1

'̃1 dµ̃1 +

Z

X̃2

'̃2 dµ̃2 = min
�Z

C[X̃1,X̃2]
H̃ d↵̃ | ↵̃ 2 H

1
(µ̃1, µ̃2)

�
. (5.1.18)

We can thus extend '̃i to 'i : Xi ! R setting it equal to -1 outside X̃i, i = 1, 2.
Observing that the right hand side of (5.1.18) coincides with UH(µ1,µ2) we get
that

'1(x1)r1 +'2(x2) 6 H([x1, r1], [x2, r2])

for every (x1, x2) 2 X1 ⇥X2 and r1, r2 > 0, and
Z

X1

'1 dµ1 +

Z

X2

'2 dµ2 = UH(µ1,µ2)

so that ('1,'2) is a maximizing pair of (unbounded) upper semicontinuous
functions for the dual problem (4.2.4).

5.2 general optimality conditions

In this section we provide sufficient and necessary conditions for a plan ↵ 2
H
1
(µ1,µ2) to be optimal. In this section X1 and X2 are completely regular spaces

and H : C[X1, X2] ! [0,+1] is a 1-homogeneous, convex and lower semicontinu-
ous function.

Definition 5.2.1. Let B ⇢ R
2
+; we define the convex cone generated by B as

B̂ :=

� 
NX

i=1

↵ir
i

1
,

NX

i=1

↵ir
i

2

!

| {(ri
1

, ri
2
)}N
i=1

⇢ B, {↵i}
N

i=1
⇢ [0,+1) , N > 1

✏

.

If � ⇢ C[X1, X2] and (x1, x2) 2 X1 ⇥X2, we define the (x1, x2)-section of � as

�x1,x2
:=

�
(r1, r2) 2 R

2

+ | ([x1, r1], [x2, r2]) 2 �
 

and the convex cone generated by �

�̂ :=

[

(x1,x2)2X1⇥X2

�
([x1, r1], [x2, r2]) | (r1, r2) 2 �̂x1,x2

 
. (5.2.1)

Definition 5.2.2. Let � ⇢ C[X1, X2]; we say that � is H-cyclically monotone if for ev-
ery finite family of points {(yi

1
, yi

2
)}N
i=1

⇢ � and every permutation � of {1, . . . ,N}

it holds

NX

i=1

H(yi
1

, yi
2
) 6

NX

i=1

H(yi
1

, y�(i)
2

).

Proposition 5.2.3 (Necessity of cyclical monotonicity). Let µi 2 M+(Xi) for i =

1, 2, let ↵ 2 H
1

H
(µ1,µ2) be optimal and suppose that

R
C[X1,X2]

H d↵ < +1. Then ↵ is
concentrated on a Borel subset � ⇢ C[X1, X2] s.t. �̂ is H-cyclically monotone.
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Proof. Let {('k

1
,'k

2
)}k>1 ⇢ �H be a maximizing sequence for the dual problem

(4.2.4) and let us define

Hk([x1, r1], [x2, r2]) := H([x1, r1]; [x2, r2])-'k

1
(x1)r1 -'

k

2
(x2)r2.

Then there exist a subsequence m 7! k(m) and a Borel subset � ⇢ C[X1, X2] on
which ↵ is concentrated s.t. Hk(m) ! 0 on � as m ! +1. Since Hk(m) is a
convex function, this convergence takes place also on the set

�̃ :=

[

(x1,x2)2X1⇥X2

{([x1, r1], [x2, r2]) | (r1, r2) 2 co (�x1,x2
)} ⇢ �̂ .

Observe that points of �̂ are of the form (�y1, �y2) for some � > 0 and some
(y1, y2) 2 �̃ . Let now {(yi

1
, yi

2
)}N
i=1

⇢ � be a finite family of points and let � be a
permutation of {1, . . . ,N}. We can thus find {�i}

N

i=1
⇢ [0,+1) and {(w1

i
,w2

i
)}N
i=1

=

{([xi
1

, ri
1
], [xi

2
, ri

2
])}N

i=1
⇢ �̃ such that (yi

1
, yi

2
) = (�iw

i

1
, �iwi

2
) for every i = 1, . . . ,N.

Then
NX

i=1

H(yi
1

, y�(i)
2

) >
NX

i=1

⇣
�ir

i

1
'

k(m)
1

(xi
1
) + ��(i)r

�(i)
2

'
k(m)
2

(x
�(i)
2

)

⌘

=

NX

i=1

⇣
�ir

i

1
'

k(m)
1

(xi
1
) + �ir

i

2
'

k(m)
2

(xi
2
)

⌘

=

NX

i=1

�
H(yi

1
, yi

2
)- �iHk(m)(w

i

1
,wi

2
)
�

.

Letting m ! +1, we obtain the sought H-cyclical monotonicity of �̂ .

In the next statements, given (x1, x2) 2 X1 ⇥ X2, we denote by @Hx1,x2
(r1, r2)

the subdifferential of Hx1,x2
at a point (r1, r2) 2 R

2
+ of its domain, defined as

@Hx1,x2
(r1, r2) :=

8
>><

>>:
(a,b) 2 R

2

��������

Hx1,x2
(s1, s2)-Hx1,x2

(r1, r2) >
a(s1 - r1) + b(s2 - r2)

for every (s1, s2) 2 R
2
+

9
>>=

>>;
.

The domain of the subdifferential is denoted by

D(@Hx1,x2
) :=

�
(r1, r2) 2 R

2

+ | @Hx1,x2
(r1, r2) 6= ;

 

and its interior part int (D(@Hx1,x2
)) is taken with respect to the topology of R

2

so that, in particular, if (r1, r2) 2 int (D(@Hx1,x2
)), then r1 > 0, r2 > 0.

Proposition 5.2.4. Let � ⇢ C[X1, X2] be such that �̂ is H-cyclically monotone and
suppose that there exists ([x1, r1], [x2, r2]) 2 �̂ such that (r1, r2) 2 int (D(@Hx1,x2

)).
Then there exists ('̄+

1
, '̄-

1
) 2 R

2 such that

H([x1, r], yN
2
)-H(yN

1
, yN

2
) +

N-1X

i=0

�
H(yi+1

1
, yi

2
)-H(yi

1
, yi

2
)
�
+ '̄+

1
r(y0

1
) > '̄-

1
r

(5.2.2)

for every r > 0 and every finite family of points {(yi
1

, yi
2
)}N
i=0

⇢ �̂ with (y
0

1
, y0

2
) 2

{(�[x1, r1], �[x2, r2]) | � > 0}.
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Proof. Let r > 0 and {(yi
1

, yi
2
)}N
i=0

⇢ �̂ be as in the statement and let us set
H̄ := Hx1,x2

, q :=
r2

r1
> 0 and y

N+1

1
:= [x1, r]. For every k 2 N, we define

#k := q
⇣

r(y0

1
)

r

⌘1/k
and we consider the points

y
N+1+n

1
:=


x1, r

✓
#k
q

◆n�
, y

N+n

2
:=

"

x1, rq
✓
#k
q

◆n-1
#

, n = 1, . . . ,k.

Notice that

y
N+k+1

1
= [x1, r] = y

0

1
, (y

N+n

1
, yN+n

2
) = (⇢k,n[x1, r1], ⇢k,n[x2, r2]) 2 �̂

for every n = 1, . . . ,k, where ⇢k,n =
r

r1

⇣
#k

q

⌘n
. We define the two quantities

A :=

NX

i=0

�
H(yi+1

1
, yi

2
)-H(yi

1
, yi

2
)
�

, B :=

kX

n=1

�
H(yN+n+1

1
, yN+n

2
)-H(yN+n

1
, yN+n

2
)
�

and we notice that, by H-cyclical monotonicity, we have that A+ B > 0. Hence,
in order to bound A from below, it is enough to bound -B from below:

-B = -

kX

n=1

�
H(yN+n+1

1
, yN+n

2
)-H(yN+n

1
, yN+n

2
)
�

=

kX

n=1

 

H̄

 

r

✓
#k
q

◆n-1

, rq
✓
#k
q

◆n-1
!

- H̄

 

r

✓
#k
q

◆n-1 #k
q

, rq
✓
#k
q

◆n-1
!!

=

kX

n=1

r

✓
#k
q

◆n-1✓
H̄(1,q)- H̄

✓
#k
q

,q
◆◆

>
kX

n=1

r

✓
#k
q

◆n-1✓
1-

#k
q

◆
'̄k

1

= r'̄k

1

✓
1-

r(y0
1
)

r

◆

= '̄k

1
(r- r(y0

1
))

where ('̄k

1
, '̄k

2
) 2 @H̄

⇣
✓k

q
,q
⌘
6= ; for k sufficiently large, since

⇣
✓k

q
,q
⌘
! (1,q)

as k ! +1 and @H̄(1,q) = @H̄(r1, r2) with (r1, r2) 2 int
�
D(@H̄)

�
. We have

proven that, for k 2 N large enough, there exists ('̄k

1
, '̄k

2
) 2 @H̄

⇣
✓k

q
,q
⌘

such
that

A+ '̄k

1
r(y0

1
) > '̄k

1
r.

Let us define

'̄+
1
:= lim

h#0

H̄(r1 + h, r2)- H̄(r1, r2)
h

,

'̄-
1
:= lim

h"0

H̄(r1 + h, r2)- H̄(r1, r2)
h

.
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Up to passing to a subsequence, we can assume that ('̄k

1
, '̄k

2
) ! ('̃1, '̃2) 2

@H̄(r1, r2). Observe that, if r(y0
1
) > r, we have '̃1 = '̄+

1
, while, if r(y0

1
) 6 r, we

have that '̃1 = '̄-
1

so that

A+ '̄+
1

r(y0
1
) > A+ '̃1r(y01) > '̃1r > '̄-

1
r.

Theorem 5.2.5 (Sufficiency of cyclical monotonicity). Let µi 2 M+(Xi) for i = 1, 2,
let ↵ 2 H

1
(µ1,µ2) be an admissible plan concentrated on a Borel subset � such that �̂ ⇢

D(H) and suppose that the effective domain of H is independent of (x1, x2) 2 X1 ⇥ X2,
meaning that D(Hx1,x2

) = D(Hy1,y2
) for every (x1, x2), (y1,y2) 2 X1 ⇥ X2. Suppose

moreover that the following conditions are satisfied:

1. there exists ([x̄1, r̄1], [x̄2, r̄2]) 2 �̂ such that (r̄1, r̄2) 2 int (D(@Hx̄1,x̄2
));

2. there exist positive constants ai,bi, i = 1, 2 s.t.

µ1

✓�
x1 2 X1 |

Z

X2

H([x1,a1]; [x2,b1])dµ2(x2) < +1
�◆

> 0,

µ2

✓�
x2 2 X2 |

Z

X1

H([x1,a2]; [x2,b2])dµ1(x1) < +1
�◆

> 0.
(5.2.3)

If �̂ is H-cyclically monotone, then ↵ is optimal,
R
C[X1,X2]

H d↵ < +1 and there exists
a maximizing pair ('1,'2) 2 L1(X1,µ1; R̄)⇥ L1(X2,µ2; R̄) for the dual problem i.e.

Z

X1

'1 dµ1 +

Z

X2

'2 dµ2 = UH(µ1,µ2).

Proof. Let us define

S1 := o⇥ (C[X2] \ {o}), S2 := (C[X1] \ {o})⇥ o.

Since the effective domain of H is independent of (x1, x2) 2 X1 ⇥ X2 and H is 1-
homogeneous, there are only two possibilities for the value of H on Si for i = 1, 2:
either H is infinite on the whole Si or it is finite on the whole Si, for every i = 1, 2.
There are thus four possible cases, but since the statement does not depend on
the order of X1 and X2, we have to deal actually with only three possibilities:

(i) H(y1, o) = H(0, y2) = +1 for every y1 2 C[X1] \ {o} and every y2 2 C[X2] \

{o},

(ii) H(o, y2) = +1 for every y2 2 C[X2] \ {o} and H(y1, 0) < +1 for every
y1 2 C[X1]

(iii) H(y1, y2) < +1 for every (y1, y2) 2 C[X1, X2],

since, by convexity, if H is finite both on S1 and S2, it is finite everywhere. We
group these three possibilities in two cases:

(a) H(o, y2) = +1 for every y2 2 C[X2] \ {o},
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(b) H(y1, y2) < +1 for every (y1, y2) 2 C[X1, X2].

Notice that in case (a) (o, y2) /2 �̂ if y2 6= o.
We will carry out the proof under assumption (a) and point out at the end the
changes that have to be done to deal with case (b).
Step 1 (Definition of �): For every finite family of points {(yi

1
, yi

2
)}N
i=0

⇢ �̂ , we
define

⇥
�
y1; {(yi

1
, yi

2
)}N
i=0

�
:= H(y1, yN

2
)-H(yN

1
, yN

2
)

+

N-1X

i=0

�
H(yi+1

1
, yi

2
)-H(yi

1
, yi

2
)
�
+ '̄+

1
r(y0

1
),

for every y1 2 C[X1], where '̄+
1

is given by Proposition 5.2.4 with the choice
([x1, r1], [x2, r2]) := ([x̄1, r̄1], [x̄2, r̄2]) and we use the convention that, whenever
N = 0, the summation is equal to 0. Notice that there is no ambiguity in the
definition of ⇥, since H is finite on �̂ . We define � : C[X1] ! [-1,+1] as

�(y1) := inf

8
>>>><

>>>>:

⇥
�
y1; {(yi

1
, yi

2
)}N
i=0

�

����������

{yi
1

, yi
2
}N
i=0

⇢ �̂ ,

(y
0

1
, y0

2
) 2 {(�[x̄1, r̄1], �[x̄2, r̄2]) | � > 0},

N 2 N.

9
>>>>=

>>>>;

,

for every y1 2 C[X1]. For every y1 2 C[X1], we can choose N = 0 and (y
0

1
, y0

2
) =

(
r(y1)
r̄1

[x̄1, r̄1],
r(y1)
r̄1

[x̄2, r̄2]), obtaining that

�(y1) 6 ⇥
�
y1; {(y0

1
, y0

2
)}
�

=
r(y1)
r̄1

H([x(y1), r̄1], [x̄2, r̄2])-H(y0
1

, y0
2
) + '̄+

1
r(y0

1
) < +1

(5.2.4)

since the domain of H is independent of (x1, x2) 2 X1⇥X2 and H([x̄1, r̄1], [x̄2, r̄2]) <
+1, being [x̄1, r̄1], [x̄2, r̄2] 2 �̂ . In particular, for every r1 > 0, we can choose
y1 = [x̄1, r1] in (5.2.4) obtaining that

�([x̄1, r1]) 6 '̄+
1
r1.

Choosing again N = 0 and (y
0

1
, y0

2
) = (o, o) we also get

�(y1) 6 H(y1, o)-H(o, o) = H(y1, o), for every y1 2 C[X1]. (5.2.5)

Finally, again by Proposition 5.2.4, we have that

�([x̄1, r1]) > '̄-
1
r1 for every r1 > 0. (5.2.6)

Since for every finite family of points {(yi
1

, yi
2
)}N
i=0

⇢ �̂ we have that

⇥
�
�y1; {(yi

1
, yi

2
)}N
i=0

�
= �⇥

�
y1; {(�-1

y
i

1
, �-1

y
i

2
)}N
i=0

�
for every y1 2 C[X1], � > 0

and �̂ is invariant by dialations, we get that

�(�y1) = ��(y1)
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for every y1 2 C[X1] and � > 0. This shows in particular that �(o) can be only
equal to 0 or -1. Arguing as in [5, Step 1 of Therem 6.14] we can see that

�(y1) = lim
p

lim
m

lim
l

�p,m,l(y1) for every y1 2 C[X1],

where �p,m,l are suitable upper semicontinuous functions so that � is a Borel
function.
Given y

0
1
2 C[X1], (y1, y2) 2 �̂ and any finite family of points {(yi

1
, yi

2
)}N
i=0

⇢ �̂

with (y
0

1
, y0

2
) 2 {(�[x̄1, r̄1], �[x̄2, r̄2]) | � > 0}, we have, if we set (yN+1

1
, yN+1

2
) :=

(y1, y2), that the finite family of points {(yi
1

, yi
2
)}N+1

i=0
is still contained in �̂ and of

course satisfies (y
0

1
, y0

2
) 2 {(�[x̄1, r̄1], �[x̄2, r̄2]) | � > 0}; thus

�(y
0
1
) 6 H(y 0

1
, y2)-H(y1, y2) +⇥

�
y1; {(yi

1
, yi

2
)}N
i=0

�
. (5.2.7)

If y1 2 ⇡C1(�̂) \ {o}, we can find y2 2 C[X2] such that (y1, y2) 2 �̂ and plug it into
(5.2.7) with y

0
1
= [x̄1, r(y1)]. Passing then to the infimum among the admissible

finite family of points, we get, also using (5.2.6), that

'̄-
1

r(y1) 6 �([x̄1, r(y1)]) 6 H([x̄1, r(y1)], y2)-H(y1, y2) +�(y1).

Thus, noticing that H([x̄1, r(y1)], y2) < +1 thanks to the independence of the
effective domain of H from (x1, x2) 2 X1 ⇥X2, we get that �(y1) 2 R.
Summarizing the first step, we have proven that there exists a Borel function
� : C[X1] ! [-1,+1) such that

�([x̄1, r1]) > '̄-
1
r1 for every r1 > 0, (5.2.8)

�(y1) 6 H(y1, o) for every y1 2 C[X1], (5.2.9)
�(�y1) = ��(y1) for every y1 2 C[X1], � > 0, (5.2.10)

�(y1) 2 R for every y1 2 ⇡C1(�̂) \ {o} (5.2.11)

and for every finite family of points {(yi
1

, yi
2
)}N
i=0

⇢ �̂ with

(y
0

1
, y0

2
) 2 {(�[x̄1, r̄1], �[x̄2, r̄2]) | � > 0}

it holds

�(y
0
1
) 6 H(y 0

1
, y2)-H(y1, y2) +⇥

�
y1; {(yi

1
, yi

2
)}N
i=0

�
(5.2.12)

for every y
0
1
2 C[X1] and every (y1, y2) 2 �̂ .

Step 2 (Definition of  ): We define  : C[X2] ! [-1,+1] as

 (y2) := inf
y12C[X1]

{H(y1, y2)-�(y1)}.

It is clear from the definition that

 (y2) 6 H(y1, y2)-�(y1) for every (y1, y2) 2 C[X1, X2]

and by (5.2.11) we deduce that

 (y2) +�(y1) 6 H(y1, y2) (5.2.13)
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for every y1 2 ⇡C1(�̂) \ {o} and every y2 2 C[X2]. By the definition of  and
(5.2.10) it also easily follows that

 (�y2) = � (y2) for every y2 2 C[X2], � > 0

so that  (o) 2 {-1, 0,+1}. Moreover, if y2 2 C[X2] \ {o}, we have that

 (y2) 6 H
✓

r(y2)
r̄2

[x̄1, r̄1], y2
◆
- '̄-

1

r(y2)
r̄2

r̄1 < +1, (5.2.14)

where we have used (5.2.8) and the fact that ([x̄1, r̄1], [x̄2, r̄2]) 2 D(H) together
with the independence of the effective domain of H from (x1, x2) 2 X1 ⇥ X2. If
(y1, y2) 2 �̂ \ {(o, o)}, it must be that y1 6= o, since [o, y2] /2 �̂ if y2 6= o. We thus
know by (5.2.11) that �(y1) 2 R; if  (y2) = +1 the inequality

H(y1, y2) 6 �(y1) + (y2)

is trivially satisfied. If  (y2) < +1 we can write (5.2.12) for those y
0
1
2 C[X1] and

finite families of points {(yi
1

, yi
2
)}N
i=0

⇢ �̂ with (y
0

1
, y0

2
) 2 {(�[x̄1, r̄1], �[x̄2, r̄2]) | � >

0} such that H(y 0
1

, y2)-�(y
0
1
) < +1 and ⇥

�
y1; {(yi

1
, yi

2
)}N
i=0

�
2 R obtaining

H(y1, y2) 6 H(y 0
1

, y2)-�(y
0
1
) +⇥

�
y1; {(yi

1
, yi

2
)}N
i=0

�
.

Passing to the infimum w.r.t.y 0
1

and the families of points we get again

H(y1, y2) 6 �(y1) + (y2).

This, together with (5.2.13), proves that

H(y1, y2) =  (y2) +�(y1) for every (y1, y2) 2 �̂ \ {(o, o)}

and also gives that  (y2) 2 R for every y2 2 ⇡C2(�̂) \ {o}. The Borel measurability
of  can be checked as in [5, Step 2 of Theorem 6.14].
Summarizing the second step, we have proven that there exists a Borel function
 : C[X2] ! [-1,+1] such that

 6 H-� on C[X1, X2], (5.2.15)
 (�y2) = � (y2) for every y2 2 C[X2], � > 0, (5.2.16)
 (y2) < +1 for every y2 2 C[X2] \ {o}, (5.2.17)

H(y1, y2) =  (y2) +�(y1) for every (y1, y2) 2 �̂ \ {(o, o)}, (5.2.18)

 (y2) 2 R for every y2 2 ⇡C2(�̂) \ {o}. (5.2.19)

Step 3 (Definition of '1 and '2): Let us define '1 : C[X1] ! [-1,+1) and
'2 : C[X2] ! [-1,+1] as

'1(x1) := �([x1, 1]), '2(x2) :=  ([x2, 1]), x1 2 X1, x2 2 X2.

Notice that '1,'2 are Borel functions and '(x2) < +1 for every x2 2 X2 thanks
to (5.2.17). We claim that

'1(x1)r1 +'2(x2)r2 6 H([x1, r1], [x2, r2]), ([x1, r1], [x2, r2]) 2 C[X1, X2],
(5.2.20)

'1(x1)r1 +'2(x2)r2 = H([x1, r1], [x2, r2]), ([x1, r1], [x2, r2]) 2 �̂ , (5.2.21)
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where we are adopting again the convention that 0 ·1 = 0. We start from (5.2.20)
and we distinguish four cases for a general point ([x1, r1], [x2, r2]) 2 C[X1, X2]:

(i) if ([x1, r1], [x2, r2]) = (o, o), both sides are equal to 0;

(ii) if [xi, ri] 6= o for i = 1, 2, then �([x1, r1]) = r1'1(x1) and  ([x2, r2]) =

r2'2(x2) by (5.2.10) and (5.2.16). Moreover  ([x2, r2]) < +1 by (5.2.17) so
that (5.2.15) becomes (5.2.20);

(iii) if [x1, r1] 6= o and [x2, r2] = o, (5.2.20) is exactly (5.2.9) since, by (5.2.10), we
have that �([x1, r1]) = r1'1(x1);

(iv) if [x1, r1] = o and [x2, r2] 6= o there is nothing to prove, since H(0, [x2, r2]) =
+1;

To prove (5.2.21) we argue in the same way taking a point ([x1, r1], [x2, r2]) 2 �̂ ,
distinguishing in three cases (the case (o, [x2, r2]) 2 �̂ with r2 > 0 is impossible
due to (a)):

(i) if ([x1, r1], [x2, r2]) = (o, o), both sides are equal to 0;

(ii) if [xi, ri] 6= o for i = 1, 2, then �([x1, r1]) = r1'1(x1) and  ([x2, r2]) =

r2'2(x2) by (5.2.10) and (5.2.16). Hence (5.2.21) follows by (5.2.18);

(iii) if [x1, r1] 6= o and [x2, r2] = o, by (5.2.10), we have that �([x1, r1]) =

r1'1(x1) and r1'1(x1) 2 R by (5.2.11). Thus, since H is finite on �̂ , (5.2.18)
forces  (o) = 0 and thus gives (5.2.21).

Notice that, if x1 2 x1(�̂ \ (o⇥C[X2])), then there exists r1 > 0 such that [x1, r1] 2
⇡C1(�̂) \ {0} so that by (5.2.10) and (5.2.11), we get that '1(x1) 2 R. Analogously,
if x2 2 x2(�̂ \ (C[X1]⇥ o)), then there exists r2 > 0 such that [x2, r2] 2 ⇡C2(�̂) \ {0}

so that by (5.2.16) and (5.2.19), we get that '2(x2) 2 R. Thus, to prove that
'i(xi) 2 R for µi-a.e. xi 2 Xi for i = 1, 2, it is enough to show that

µi

�
Xi \ xi

�
�̂ \ {yi = o}

��
= 0, i = 1, 2

and this is a consequence of the following chain of inequalities:

µi

�
Xi \ xi

�
�̂ \ {yi = o}

��
= h

1

i
(↵)

�
Xi \ xi

�
�̂ \ {yi = o}

��

= (ri↵)
�
x-1

i

�
Xi \ xi

�
�̂ \ {yi = o}

���

= (ri↵)
�
C[X1, X2] \ x

-1

i

�
xi
�
�̂ \ {yi = o}

���

6 (ri↵)
�
C[X1, X2] \

�
�̂ \ {yi = o}

��

6 (ri↵)
�
C[X1, X2] \ �̂

�
+ (ri↵)

�
�̂ \ {yi = o}

�

6
Z

C[X1,X2]\�
ri d↵+

Z

{ri=0}
ri d↵

= 0.

Summarizing the third step, we have proven that there exist two Borel functions
'i : Xi ! [-1,+1), i = 1, 2 such that 'i(xi) 2 R for µi-a.e. xi 2 Xi, i = 1, 2
and satisfying

'1(x1)r1 +'2(x2)r2 6 H([x1, r1], [x2, r2]), ([x1, r1], [x2, r2]) 2 C[X1, X2],

'1(x1)r1 +'2(x2)r2 = H([x1, r1], [x2, r2]), ([x1, r1], [x2, r2]) 2 �̂ .
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Step 4 (Conclusion): due to the third step and (5.2.3), we can find some x1 2 X1

such that '1(x1) 2 R and
R

X2
H([x1,a2], [x2,b2])dµ2(x2) < +1; then, still by

the third step, we get that

'1(x1)a2 +'2(x2)b2 6 H([x1,a2], [x2,b2]) for every x2 2 X2

so that

'+
2
(x2) 6

H([x1,a2], [x2,b2])-'
-
1
(x1)a2

b2

for every x2 2 X2,

where we denoted by u+ and u- the positive and negative part respectively of
an extended real number u 2 [-1,+1]. This gives that '+

2
2 L1(X2,µ2; R̄). The

argument for '1 is the same. We can thus conclude that
Z

C[X1,X2]
('1(x1)r1 +'2(x2)r2)d↵̃([x1, r1], [x2, r2]) =

Z

X1

'1 dµ1 +

Z

X2

'2 dµ2

belongs to R [ {-1} for every ↵̃ 2 H
1
(µ1,µ2). Choosing ↵̃ = ↵ we get thatR

C[X1,X2]
H d↵ < +1 and 'i 2 L1(Xi,µi; R̄) for i = 1, 2. Finally, for every ↵̃ 2

H
1
(µ1,µ2), we have

Z

C[X1,X2]
H d↵̃ >

Z

C[X1,X2]
('1(x1)r1 +'2(x2)r2)d↵̃([x1, r1], [x2, r2])

=

Z

X1

'1 dµ1 +

Z

X2

'2 dµ2

=

Z

C[X1,X2]
('1(x1)r1 +'2(x2)r2)d↵([x1, r1], [x2, r2])

=

Z

C[X1,X2]
H d↵,

showing both that ↵ is optimal and that
Z

X1

'1 dµ1 +

Z

X2

'2 dµ2 = UH(µ1,µ2).

We briefly summarize case (b) i.e. when H < +1. The definition of ⇥ is the same
while we take (y

0

1
, y0

2
) = (o, o) in the definition of �. By H-cyclical monotonicity

it follows that �(0) > 0. Choosing N = 0 and (y
0

1
, y0

2
) in the definition of ⇥,

we get (5.2.5) which now shows that �(y1) < +1 for every y1 2 C[X1]. The
positive 1-homogeneity of � follows by the same argument and shows again
that �(o) 2 {-1, 0}. However, in this case, we have shown that �(0) > 0 so
that we conclude that �(o) = 0. The measurability of � follows by the same
argument. (5.2.7) is obtained with the same proof and shows that �(y1) 2 R for
every y1 2 ⇡C1(�̂) (choosing for example y

0
1
= o).

The function  is defined in the same way and, choosing y1 = o one immediately
sees that  (y2) < +1 for every y2 2 C[X2] so that � +  6 H on the whole
C[X1, X2]. From (5.2.7) we get that �+ > H on �̂ , so that we get equality on �̂ .
The measurability of � is obtained in the same way.
The functions 'i for i = 1, 2 are defined in the same way and (5.2.20) and (5.2.21)
follow immediately. The conclusion is the same.
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5.3 the metric viewpoint

In this section we study the metric and topological properties of UH under suit-
able hypotheses on H. We fix a completely regular space X, p 2 [1,+1) and we
assume that H : C[X, X] ! [0,+1] is a lower semicontinuous and 1-homogenous
function which is the p-th power of an extended distance on C[X] whose induced
topology is stronger than the topology of C[X].

Definition 5.3.1. We define DH,p : M+(X) ⇥ M+(X) ! [0,+1] and WH,p :

P(C[X])⇥P(C[X]) ! [0,+1] as

DH,p(µ1,µ2) := U 1/p

H
(µ1,µ2) =

✓
inf

�Z

C[X,X]
H d↵ | ↵ 2 H

1
(µ1,µ2)

�◆1/p

,

WH,p(↵1,↵2) :=

✓
inf

�Z

C[X,X]
H d� | � 2 �(↵1,↵2)

�◆1/p

,

where �(↵1,↵2) is the set of transport plans from ↵1 to ↵2 defined as

�(↵1,↵2) :=

⌦
� 2 C[X, X] | ⇡C1

] � = ↵1, ⇡C2

] � = ↵2

↵
.

Finally we set

PH,p(C[X]) :=
�
↵ 2 P(C[X] |

Z

C[X]
H(y, o)d↵(y) < +1

�
,

MH,p(X) :=
�
µ 2 M+(X) |

Z

X

H([x, 1], o)dµ(x) < +1
�

.

Remark 5.3.2. If µ 2 MH,p(x) then every ↵ 2 P(C[X]) such that h1(↵) = µ is an
element of PH,p(C[X]).

Remark 5.3.3. Let us consider the map Tp
: C[X, X] ! C[X, X] defined as

Tp
([x1, r1], [x2, r2]) := ([x1, r1/p

1
], [x2, r1/p

2
]), [x1, r1], [x2, r2] 2 C[X, X].

It can be easily checked that, for every µ1,µ2 2 M+(X), Tp

] : H
1
(µ1,µ2) !

H
p
(µ1,µ2) is a bijection so that

UH�Tp(µ1,µ2) = inf
�Z

C[X,X]
H d↵ | ↵ 2 H

p
(µ1,µ2)

�
.

Thus, if H : C[X, X] ! [0,+1] is a lower semicontinuous p-homogenous function
which is the p-th power of an extended distance on C[X] whose induced topology
is stronger than the topology of C[X], then H � Tp

: C[X, X] ! [0,+1] is a lower
semicontinuous 1-homogenous function which is the p-th power of an extended
distance on C[X] whose induced topology is stronger than the topology of C[X].
This allows us to treat only the 1-homogenous case also in this metric setting
without loss of generality. For example the case H = d2C fits into this setting (and
induces the Helliger Kantorovich distance on nonnegative measures).
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Of course (P(C[X],WH,p) is an extended metric space while (PH,p(C[X]),WH,p)

is a metric space.
The following two Lemmas are the analogue of [76, Corollary 7.7, Corollary 7.13]
and the proof is identical and thus omitted.

Lemma 5.3.4. For every µ1,µ2 2 M+(X), it holds

DH,p(µ1,µ2) = min
�
WH,p(↵1,↵2) | ↵i 2 P(C[X]) , h1(↵i) = µi, i = 1, 2

 
.

Remark 5.3.5. In particular we have DH,p(µ1,µ2) = WH,p(⇡
C1

] ↵,⇡C2

] ↵) for every
↵ 2 H

1

H
(µ1,µ2).

Lemma 5.3.6. If (µi)
N

i=1
⇢ M+(X) with N > 2, then there exist (↵i)

N

i=1
2 P(C[X])

such that

h
1
(↵i) = µi, DH,p(µi-1,µi) = WH,p(↵i-1,↵i) for every i 2 {2, . . . ,N}.

The next two theorems are slight generalizations of [76, Corollary 7.14, Theo-
rem 7.15] and, although the proofs are very similar, there are some small modifi-
cations to be taken into account so that we report them.

Theorem 5.3.7. The pair (M+(X),DH,p) is an extended metric space. If H finite, then
(MH,p(X),DH,p) is a metric space.

Proof. The map T : C[X, X] ! C[X, X] defined as

T(y1, y2) = (y2, y1), (y1, y2) 2 C[X, X]

is such that, for every µ1,µ2 2 M+(X), the map T] : H
1
(µ1,µ2) ! H

1
(µ2,µ1) is

a bijection satisfying
Z

C[X,X]
H d↵ =

Z

C[X,X]
H dT]↵

by the symmetry of H. This gives that DH,p(µ1,µ2) = DH,p(µ2,µ1) for every
µ1,µ2 2 M+(X).
If µ 2 M+(X) and we define

↵ = ((idC[X], idC[X]) � p)](µ⌦ �1) 2 H
1
(µ,µ),

we obtain that

Dp

H,p(µ,µ) 6
Z

C[X,X]
H d↵ =

Z

C[X,X]
H(y, y)d(p](µ⌦ �1))(y) = 0.

If, on the other hand, µ1,µ2 2 M+(X) are s.t. DH,p(µ1,µ2) = 0 and ↵ 2 H
1

H
(µ1,µ2),

we get that ↵ is concentrated on {(y, y) | y 2 C[X]}, so that µ1 = h
1

1
(↵) = h

1

2
(↵) =

µ2. This proves that DH,p(µ1,µ2) = 0 if and only if µ1 = µ2.
Finally if µ1,µ2,µ3 2 M+(X), we can find, thanks to Lemma 5.3.6, ↵1,↵2,↵3 2
P(C[X]) such that

h
1
(↵i) = µi, DH,p(µi-1,µi) = WH,p(↵i-1,↵i) i = 2, 3.
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Then, using Lemma 5.3.4, we have

DH,p(µ1,µ3) 6 WH,p(↵1,↵3)

6 WH,p(↵1,↵2) +WH,p(↵2,↵3)

= DH,p(µ1,µ2) +DH,p(µ2,µ3).

This proves that DH,p satisfies the triangular inequality and concludes the proof
that (M+(X),DH,p) is an extended metric space.
If H is finite, µ 2 MH,p(X) and ↵ 2 P(C[X]) is s.t. h1(↵) = µ, then

Z

C[X]
H(y, o)d↵(y) =

Z

C[X]
rH([x, 1], o)d↵([x, r]) =

Z

X

H([x, 1], o)dµ(x) < +1,

so that ↵ 2 PH,p(C[X]). Then, again from Lemma 5.3.4, if µ1,µ2 2 MH,p(X) we
can find ↵1,↵2 2 PH,p(C[X]) s.t. h1(↵i) = µi for i = 1, 2 so that

DH,p(µ1,µ2) 6 WH,p(↵1,↵2) < +1.

Theorem 5.3.8. If (µn)n ⇢ MH,p(X) and µ 2 MH,p(X), then

lim
n!+1

DH,p(µn,µ) = 0 ()

8
<

:
µn * µ,
R

X
H([x, 1]; o)dµ(x) !

R
X

H([x, 1]; o)dµ(x).
.

In particular, if X is separable, also (MH,p(X),DH,p) is separable.

Proof. We claim that

there exists a > 0 such that H([x, 1], o) > a for every x 2 X. (5.3.1)

If not, we could find a sequence (xn)n ⇢ X such that

H([xn, 1], o) ! 0

which implies, since the topology induced by H is stronger than the topology
of C[X], that [xn, 1] ! o in the topology of C[X], which is a contradiction. This
proves (5.3.1).
We first prove the ) implication. Notice that

DH,p(⌫, 0X) =

Z

X

H([x, 1], o)d⌫(x) for every ⌫ 2 MH,p(X) (5.3.2)

so that, by triangle inequality, we get
Z

X

H([x, 1], o)dµn(x) = DH,p(µn, 0X) ! DH,p(µ, 0X) =

Z

X

H([x, 1], o)dµ(x).

We show that µn * µ by contradiction: assume that there exist ⇠ 2 Cb(X) and a
(unrelabeled) subsequence s.t.

inf
n

����
Z

X

⇠dµn -

Z

X

⇠dµ
���� > 0. (5.3.3)
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Observe that

µn(X) 6
1

a

Z

X

H([x, 1], o)dµn(x) !
1

a

Z

X

H([x, 1], o)dµ(x) < +1,

so that R := (sup
n
µn(X) + µ(X)) < +1. By Proposition 4.1.3 and Lemma 3.2.10,

we can find (↵n)n ⇢ P(CR[X, X]) such that ↵n 2 H
1

H
(µn,µ) for every n 2 N.

Let us define ↵1
n := ⇡C1

] ↵n, ↵2
n := ⇡C2

] ↵n, n 2 N. Since h
1
(↵2

n) = µ for every
n 2 N, we obtain (see the proof of Lemma 3.2.6) the existence of a subsequence
k 7! n(k) and ↵2 2 P(CR[X]) with h

1
(↵2) = µ such that ↵2

n(k) * ↵2. Moreover
Z

C[X]
H(y, o)d↵2

n =

Z

X

H([x, 1], 0)dµ(x) for every n 2 N,

giving that (see e.g. [5, Proposition 7.1.5]) WH,p(↵
2

n(k),↵2) ! 0. Then

WH,p(↵
1

n(k),↵2) 6 WH,p(↵
1

n(k),↵
2

n(k)) +WH,p(↵
2

n(k),↵2)

= DH,p(µn(k),µ) +WH,p(↵
2

n,↵2) ! 0,

where we used Remark 5.3.5. Thus WH,p(↵
1

n(k),↵2) ! 0 and, in particular,
↵1

n(k) * ↵2 so that
Z

X

⇠dµn(k) =

Z

C[X]
⇠(x)rd↵1

n(k)([x, r]) !
Z

C[X]
⇠(x)rd↵2([x, r]) =

Z

X

⇠dµ, (5.3.4)

where we used that the map

[x, r] 7! r⇠(x)

belongs to Cb(CR[X]) and ↵1

n(k) is concentrated on CR[X] for every k 2 N. Since
(5.3.4) is a contradiction with (5.3.3), this concludes the proof of the ) implica-
tion.
Let us prove the ( implication. If µ = 0X, we have already by (5.3.2) that
DH,p(µn,µ) ! 0. Let us then assume that m := µ(X) > 0. Up to passing to a
(unrelabeled) subsequence, we can assume that mn := µn(X) > m/2 > 0 for
every n 2 N. Let us define ↵n,↵ 2 P(C[X]) as

↵ := p]

�
m-1µ⌦ �m

�
, ↵n := p]

�
m-1

n µn ⌦ �mn

�
n 2 N.

It is easy to check that h1(↵n) = µn, n 2 N, h1(↵) = µ and ↵n * ↵. To conclude
is then enough to show that WH,p(↵n,↵) ! 0 and then apply Lemma 5.3.4. Since

Z

C[X]
H(y, o)d↵n([x, r]) =

Z

X

H([x, 1], o)dµn(x)

!
Z

X

H([x, 1], o)dµ(x)

=

Z

C[X]
H(y, o)d↵([x, r]),

we get that WH,p(↵n,↵) ! 0 applying [5, Proposition 7.1.5].





Part II

D I S S I PAT I V E E V O L U T I O N S I N
K A N T O R O V I C H - WA S S E R S T E I N S PA C E S

We introduce and investigate a notion of multivalued dissipative op-
erator (called Multivalued Probability Vector Field - MPVF) in the
2-Wasserstein space of Borel probability measures on a (possibly in-
finite dimensional) separable Hilbert space. Taking inspiration from
the theories of dissipative operators in Hilbert spaces and of Wasser-
stein gradient flows, we study the well-posedness for evolutions driven
by such MPVFs, and we characterize them by a suitable Evolution
Variational Inequality (EVI), following the Bénilan notion of integral
solutions to dissipative evolutions in Banach spaces. Our approach
to prove the existence of such EVI-solutions is twofold: on one side,
under an abstract stability condition, we build a measure-theoretic
version of the Explicit Euler scheme showing novel convergence re-
sults with optimal error estimates; on the other hand, under a suit-
able discrete approximation assumption on the MPVF, we recast the
EVI-solution as the evolving law of the solution trajectory of an ap-
propriate dissipative evolution in an L2 space of random variables.
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P R E L I M I N A RY M AT E R I A L

The aim of this chapter is to introduce some of the technical tools that are used
in the rest of Part II. In particular, in Section 6.1 we synthetize the theory of
dissipative evolutions in Hilbert spaces and we present a few results connected
to maximal dissipative extensions; Section 6.2 deals with Borel partitions, the
parametrization of measures through random variables and the approximation
of Optimal Transport plans with maps; Section 6.3 presents a crucial notion of
topology for measures in product spaces that will be applied to the case of
P(TH) ⇠= P(H⇥H); Section 6.4 contains a few results related to triplans (i.e. prob-
abilities in P(H3

)) and the interpolation of measures they generate; finally Sec-
tion 6.5 presents the local optimality of couplings between discrete measures.

This Chapter is the result of a collaboration with Giulia Cavagnari and Giuseppe
Savaré and Section 6.3 appeared in [34].

6.1 dissipative evolutions in hilbert spaces

Let H be a Hilbert space. Given a set B ⇢ H ⇥ H we will set B[x] := {v 2 H :

(x, v) 2 B} and D(B) := {x 2 H : B[x] 6= ;}. A set B ⇢ H⇥H is dissipative if

hv-w, x- yi 6 0 for every (x, v), (y,w) 2 B. (6.1.1)

A dissipative set B is maximal if [26, Chap. II, Def. 2.2]

(x, v) 2 H⇥H, hv-w, x- yi 6 0 for every (y,w) 2 B ) (x, v) 2 B.
(6.1.2)

B is maximal if and only if for every x 2 H and every ⌧ > 0 there exists a unique
x⌧ 2 D(B) solving [26, Cap. II, Prop. 2.2]

x⌧ - x 2 ⌧B[x⌧]. (6.1.3)

In particular the resolvent operator J⌧ := (I- ⌧B)-1 is an everywhere defined
contraction in H.

Given E ⇢ H, we denote by co(E) the convex hull of E and by co (E) its closure.
If B is a dissipative operator, then there exists a maximal extension B̃ of B

whose domain is included in co (D(B)) [26, Chap. II, Cor. 2.1].
If B is maximal then D(B) is convex and, for every x 2 D(B), B[x] is a closed

convex subset of H, whose element of minimal norm is denoted by B�
(x). The

map B�
: D(B) ! H is also called minimal selection of B and satisfies the follow-

ing property (see [26, Chap. II, Prop. 2.7])

(x, v) 2 D(B)⇥H, hv-B�
(y), x-yi 6 0 for every y 2 D(B) ) (x, v) 2 B.

97
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(6.1.4)

Moreover, by [26, Chap. II,Prop. 2.6(iii)] we have

B�
(x) = lim

⌧#0

J⌧(x)- x

⌧
.

The following proposition is a slight generalization of [10, Lemma 2.3] but we
report its proof for the reader’s convenience.

Proposition 6.1.1. Let B ⇢ H⇥H be maximal and let G ⇢ B be s.t. D(G) is dense in
D(B). Then for every x 2 int (D(B)) it holds

B[x] = co ({v 2 H | 9(xn, vn) 2 G s.t. xn ! x, vn * v}) . (6.1.5)

Proof. Let x 2 int (D(B)) and let us define

M[x] := co ({v 2 H | 9(xn, vn) 2 G s.t. xn ! x, vn * v}) .

If (xn, vn) 2 G ⇢ B with xn ! x and vn * v, by dissipativity of B, we have that

hvn -w, xn - yi 6 0 8 (y,w) 2 B.

Passing to the limit we get

hv-w, x- yi 6 0 8 (y,w) 2 B,

meaning that v 2 B[x]. This, together with the closure and convexity of B[x],
proves that M[x] ⇢ B[x]. Let us prove the other inclusion by contradiction: sup-
pose that there is some v 2 B[x] s.t. v /2 M[x]. The sets {v} and M[x] are disjoint,
closed, convex and {v} is also compact. By Hahn-Banach theorem we can find
some z 2 H with |z| = 1 s.t.

hv, zi > hu, zi 8u 2 M[x]. (6.1.6)

Since x 2 int (D(B)), if we define zn := x+ z/n, we have that zn 2 int (D(B))

for n sufficiently large. We can thus find xn 2 D(G) s.t. |xn - zn| < n-2. Clearly
xn ! x and it is easy to check that (xn - x)/|xn - x| ! z. Since xn 2 D(G), we
can find vn 2 G(xn). Since B is maximal, it is locally bounded ([26, Prop. 2.9])
at x. Being G ⇢ B and being xn ! x, the sequence (vn) is bounded so that, up
to an unrelabeled subsequence, it converges weakly to some point u 2 H. By
dissipativity of B we have

hv- vn, x- xni 6 0 8n 2 N,

so that, dividing by |xn - x| and passing to the limit, we obtain

hv- u, zi 6 0,

a contradiction with (6.1.6) since, obviously, u 2 M[x].

The following proposition is an immediate consequence of [98, Theorem 1].
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Proposition 6.1.2. Let B ⇢ H⇥H be dissipative with open non empty convex domain.
Then there exists a unique maximal eB � B with D(eB) ⇢ D(B) and it is characterized
by

eB =

⌦
(x, v) 2 D(B)⇥H | hv-w, x- yi 6 0 8 (y,w) 2 B

↵
.

As a consequence of Propositions 6.1.1 and 6.1.2 we can prove the following.

Theorem 6.1.3. Let B ⇢ H⇥H be dissipative with

C := D(B) is convex, int (D(B)) 6= ;.

Then there exists a unique maximal eB � B with D(eB) ⇢ C and it is characterized by

eB = {(x, v) 2 C⇥H | hv-w, x- yi 6 0 8 (y,w) 2 B} . (6.1.7)

Moreover, for every x 2 int
⇣

D(eB)
⌘

it holds

eB[x] = co ({v 2 H | 9(xn, vn) 2 B s.t. xn ! x, vn * v}) . (6.1.8)

Finally

int (C) = int
⇣

D(eB)
⌘
⇢ D(eB) ⇢ D(eB) = C. (6.1.9)

Proof. Let B 0 be a maximal extension of B with D(B 0
) ⇢ C; by dissipativity of

B 0 and since B ⇢ B 0, then B 0 ⇢ eB, where eB is defined as in (6.1.7). We need to
prove the other inclusion.
Since D(B) ⇢ D(B 0

) ⇢ C, we have that D(B 0
) = C. Moreover, being B 0 maximal

and being the interior of its domain nonempty, we have (see [26, Proposition 2.9])
that

int
�
D(B 0

)
�

is convex , int
�
D(B 0

)
�
= int

⇣
D(B 0

)

⌘
= int (C) .

It is then clear that B0 := B 0 \ (int
�
D(B 0

)
�
⇥ H) is dissipative with open and

nonempty convex domain so that, by Proposition 6.1.2, there exists a unique
maximal B 00 � B0 with D(B 00

) ⇢ D(B0) = int
�
D(B 0

)
�
= int (C) = C (C is

convex) and it is characterized by

B 00
= {(x, v) 2 C⇥H | hv-w, x- yi 6 0 8 (y,w) 2 B0} . (6.1.10)

Since B 0 � B0, B 0 is maximal and D(B 0
) ⇢ C, it must be that B 0

= B 00.
By (6.1.10), we need to prove that

eB ⇢ {(x, v) 2 C⇥H | hv-w, x- yi 6 0 8 (y,w) 2 B0} . (6.1.11)

To this aim we apply Proposition 6.1.1 to the maximal B 0 and its subset B notic-
ing that D(B) is dense in D(B 0

). In this way, we obtain that

B0[y] = co
�
B[y]

�
, y 2 D(B0), (6.1.12)
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where

B[y] = {u 2 H | 9(yn,un) 2 B s.t. yn ! y, un * u} .

If (x, v) 2 eB and (y,w) 2 D(B0)⇥H is such that w 2 B[y], we can find a sequence
(yn,un) 2 B s.t. yn ! y and un * w; then, by the very definition of eB, we have

hv- un, x- yni 6 0 8n 2 N,

so that, passing to the limit, we get

hv-w, x- yi 6 0.

This proves that, if (x, v) 2 eB, then

hv-w, x- yi 6 0 8w 2 B[y], 8y 2 D(B0). (6.1.13)

Finally, if (x, v) 2 eB and (y,w) 2 B0, we can find a sequence (Nn)n ⇢ N,
numbers (↵n

i
)
Nn

i=1
⇢ [0, 1] and points (wn

i
)
Nn

i=1
⇢ B[y] s.t.

NnX

i=1

↵n

i
= 1 8n 2 N, lim

n!+1

NnX

i=1

↵n

i
wn

i
= w.

By (6.1.13)

hv-wn

i
, x- yi 6 0 8i = 1, . . . ,Nn, 8n 2 N,

so that, multiplying by ↵n

i
and summing up w.r.t. i, we obtain

hv-
NnX

i=1

↵n

i
wn

i
, x- yi 6 0 8n 2 N.

Passing to the limit as n ! +1, we obtain

hv-w, x- yi 6 0,

so that (6.1.11) holds. Finally notice that (6.1.8) is already stated in (6.1.12).

As a consequence of (6.1.10), since we have proven that B 00
= eB, we have the

following corollary.

Corollary 6.1.4. Let B ⇢ H ⇥ H be as in Theorem 6.1.3 and let G : int (C) ! H be
a single valued selection of the maximal extension eB of B. Then the unique maximal
extension eG of G coincides with eB and in particular

(x, v) 2 eB , x 2 C, hv-G[y], x- yi 6 0 8y 2 int (C) . (6.1.14)

Let us consider a different situation when D(B) does not contain interior
points but B satisfies

there exists D � D(B) s.t. for every x 2 D, ⌧ > 0

there exists a unique x⌧ =:J⌧x 2 D(B) : x⌧ - x 2 ⌧B[x⌧].
(6.1.15)
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Lemma 6.1.5. If B ⇢ H⇥H is dissipative, satistifies (6.1.15) and C := D(B) is convex,
then B admits a unique maximal extension eB with D(eB) ⇢ C characterized by

eB =
�
(x, v) 2 C⇥H | hv- ⌧-1

(J⌧y- y), x- J⌧yi 6 0 8y 2 D(B), ⌧ > 0
 

.
(6.1.16)

If moreover D is dense in H we have

eB = B :=

⌦
(x, v) 2 H⇥H : 9 (xn, vn) 2 B : xn ! x, vn ! v as n ! 1

↵
. (6.1.17)

Proof. Let B 0 be any maximal extension of B with domain included in C and let
J 0⌧ be the resolvent associated with B 0. By dissipativity of B 0 and since B ⇢ B 0,
B 0 ⇢ eB defined as in (6.1.16). We need to prove the other inclusion.
Clearly, the restriction of J 0⌧ to D � D(B) coincides with J⌧; since J 0⌧ is a contrac-
tion, it is the only 1-Lipschitz extension of J⌧ to D � C.

If (x, v) 2 eB, (6.1.16) yields by density that

hv- ⌧-1
(J 0⌧y- y), x- J 0⌧yi 6 0 8y 2 D(B 0

), 8 ⌧ > 0, (6.1.18)

and passing to the limit as ⌧ # 0 we obtain that

hv-B 0�
(y), x- yi 6 0 8y 2 D(B 0

). (6.1.19)

We can then apply (6.1.4) and conclude that (x, v) 2 B 0.
Let us now prove (6.1.17) in the case D is dense in H: since B ⇢ eB, it is sufficient

to prove the opposite inclusion eB ⇢ B. Let (x, v) 2 eB and set y := x- v. Clearly
J 01y = x; since D is dense in H, there exists a sequence (yn)n ⇢ D converging
to y as n ! 1. Setting xn := J 01yn and vn := xn - yn 2 B(xn) we clearly have
limn!1 xn = x, limn!1 vn = v.

6.2 borel partitions

In this section we list some useful results concerning Borel isomorphisms and
partitions of standard Borel spaces.

Definition 6.2.1. A standard Borel space (⌦,B) is a measurable space that is iso-
morphic (as a measure space) to a Polish space. Equivalently, there exists a Polish
topology ⌧ on ⌦ such that the Borel sigma algebra generated by ⌧ coincides with
B. We say that a positive finite measure m on (⌦,B) is diffuse if m({!}) = 0 for
every ! 2 ⌦ (notice that {!} 2 B since it is compact in any Polish topology
on ⌦). In this case, we call the triplet (⌦,B,m) a standard Borel measure space
(resp. standard Borel probability space, if m is a probability).

We start with the following fundamental result that follows by e.g. [104, Theo-
rem 9, Chapter 15].

Theorem 6.2.2. Let (⌦,B,m) and (⌦ 0,B 0,m 0
) be standard Borel measure spaces such

that m(⌦) = m
0
(⌦ 0

). Then there exist two measurable functions ' : ⌦ ! ⌦ 0 and
 : ⌦ 0 ! ⌦ such that

 �' = i⌦ m-a.e. in ⌦, ' � = i⌦ 0 m
0-a.e. in ⌦ 0, ']m = m

0,  ]m
0
= m.

(6.2.1)
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Corollary 6.2.3. Let (⌦,B,m) be a standard Borel measure space and (⌦ 0,B 0
) be a

standard Borel space. Then for every positive measure µ on (⌦ 0,B 0
) such that µ(⌦ 0

) =

m(⌦), there exists a measurable map X : ⌦! ⌦ 0 such that X]m = µ.

Definition 6.2.4. If (⌦,B) is a standard Borel space and N 2 N, a family of
subsets PN = {⌦N,k}k2IN

⇢ B, where IN := {0, . . . ,N- 1}, is called a N-partition
of (⌦,B) if

[

k2IN

⌦N,k = ⌦, ⌦N,k \⌦N,h = ; if h,k 2 IN, h 6= k.

If (⌦,B,m) and (⌦ 0,B 0,m 0
) are standard Borel measure spaces such that m(⌦) =

m
0
(⌦ 0

) and PN = {⌦N,k}k2IN
and P

0
N

= {⌦ 0
N,k}k2IN

are N-partitions of (⌦,B)

and (⌦ 0,B 0
) respectively, we say that PN and P

0
N

are m-m
0 compatible if

m(⌦N,k) = m
0
(⌦ 0

N,k) 8k 2 IN.

Lemma 6.2.5. Let (⌦,B,m) and (⌦ 0,B 0,m 0
) be standard Borel measure spaces such

that m(⌦) = m
0
(⌦ 0

) and let PN = {⌦N,k}k2IN
and P

0
N

= {⌦ 0
N,k}k2IN

be two
m-m

0 compatible N-partitions of (⌦,B) and (⌦ 0,B 0
) respectively, for some N 2 N.

Then there exist two functions ' : ⌦! ⌦ 0 and  : ⌦ 0 ! ⌦ such that

1. ' is B-B 0 measurable and �(PN)-�(P 0
N
) measurable;

2.  is B 0-B measurable and �(P 0
N
)-�(PN) measurable;

3. for every k 2 IN it holds

'(⌦N,k) ⇢ ⌦ 0
N,k,  (⌦ 0

N,k) ⇢ ⌦N,k; (6.2.2)

4. for every I ⇢ IN it holds

 I �'I = i⌦I
mI-a.e. in ⌦I,

'I � I = i⌦ 0
I
m

0
I
-a.e. in ⌦ 0

I
,

('I)]mI = m
0
I
,

( I)]m
0
I
= mI,

where the subscript I denotes the restriction to [k2I⌦N,k or [k2I⌦
0
N,k.

Proof. Applying Theorem 6.2.2 to the standard Borel measures spaces (⌦{k},B{k},m{k})

and (⌦ 0
{k},B

0
{k},m

0
{k}) for every k 2 IN, we obtain the existence of measurable

functions 'k, k satisfying (6.2.1) for each pair ⌦N,k, ⌦ 0
N,k. It is then enough to

define

'(!) := 'k(!) if ! 2 ⌦N,k,  (! 0
) :=  k(!

0
) if ! 0 2 ⌦ 0

N,k.

Notice that (6.2.2) is satisfied by construction.

If (⌦,B,m) is a standard Borel measure space, we denote by S(⌦,B,m) the
class of B-B-measurable maps g : ⌦ ! ⌦ which are essentially injective and
measure preserving, meaning that there exists a full m-measure set ⌦0 2 B

such that g is injective on ⌦0 and g]m = m. If A ⇢ B is a sigma algebra on ⌦
we denote by S(⌦,B,m;A) the subset of S(⌦,B,m) of A-A measurable maps.
Finally Sym(IN) denotes the set of permutations of IN i.e. bijective maps � :

IN ! IN.
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Corollary 6.2.6. Let (⌦,B,m) be a standard Borel measure space and let PN =

{⌦N,k}k2IN
be a N-partition of (⌦,B) for some N 2 N such that m(⌦N,k) = m(⌦)/N

for every k 2 IN. If � 2 Sym(IN), there exists a measure preserving map g 2
S(⌦,B,m;�(PN)) such that

(gk)]m|⌦N,k = m|⌦N,�(k) 8k 2 IN,

where gk is the restriction of g to ⌦N,k.

Proof. It is enough to apply Lemma 6.2.5 to the standard Borel measure spaces
(⌦,B,m) and (⌦ 0,B 0,m 0

)=(⌦,B,m) together with the N-partitions PN and P
0
N

=

{⌦N,�(k)}k2IN
respectively.

Corollary 6.2.7. Let (⌦,B,m) be a standard Borel measure space and let ⌦0,⌦1 2 B

be such that m(⌦0) = m(⌦1) > 0 and ⌦0 \⌦1 = ;. Then there exists a measure
preserving map g 2 S(⌦,B,m) such that

(g0)]m|⌦0
= m|⌦1

, (g1)]m|⌦1
= m|⌦0

, g(!) = ! in ⌦ \ (⌦0 [⌦1),

where gi is the restriction of g to ⌦k, k = 0, 1.

Proof. Applying Corollary 6.2.6 to (⌦0[⌦1,B|⌦0[⌦1
,m|⌦0[⌦1

) with the 2-Borel
partition P2 = {⌦k}k=0,1 and � sending 0 to 1, we obtain the existence of a
measure preserving map g̃ 2 S(⌦0 [⌦1,B|⌦0[⌦1

,m|⌦0[⌦1
) such that

(g̃0)]m|⌦0
= m|⌦1

, (g̃1)]m|⌦1
= m|⌦0

,

where g̃i is the restriction of g̃ to ⌦k, k = 0, 1. It is then enough to define
g : ⌦! ⌦ as

g(!) =

8
<

:
g̃(!) if ! 2 ⌦0 [⌦1,

! if ! 2 ⌦ \ (⌦0 [⌦1).

The next result follows by [112, Theorem 6.1.12], we refer also to [33, Appendix
D] for a partial result. We recall that a filtration on (⌦,B) is a sequence (Fn)n2N

of sub-sigma algebras of B such that Fn ⇢ Fn+1.

Theorem 6.2.8. Let (⌦,B,m) be a standard Borel measure space, (Fn)n2N be a filtra-
tion on (⌦,B) such that � ({Fn | n 2 N}) = B and let H be a separable Hilbert space.
Then, given X 2 L2((⌦,B,m); H), the discrete time martingale

Xn := Em [X | Fn] , n 2 N,

satisfies

lim
n!+1

Xn = X (6.2.3)

both m-a.e. and in L2((⌦,B,m); H).
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We consider the partial order on N given by

m � n , m | n, (6.2.4)

where m | n means that n/m 2 N. We write m�. n if m � n and m 6= n.

Definition 6.2.9. Let (⌦,B,m) be a standard Borel measure space and let N ⇢
N be an unbounded directed set w.r.t. �. We say that a collection of parti-
tions (PN)N2N of ⌦, with corresponding sigma algebras BN := �(PN), is a
N-segmentation of (⌦,B,m) if

1. PN = {⌦N,k}k2IN
is a N-partition of (⌦,B) for every N 2 N,

2. m(⌦N,k) = m(⌦)/N for every k 2 IN and every N 2 N,

3. if M | N = KM then
S

K-1

k=0
⌦N,mK+k = ⌦M,m, m 2 IM,

4. � ({BN | N 2 N}) = B.

In this case we call (⌦,B,m, (PN)N2N) a N-refined standard Borel measure space.

Remark 6.2.10. It is clear that, if M | N, then BM ⇢ BN.

Example 6.2.11. The canonical example of N-refined standard Borel measure
space is

([0, 1),B([0, 1)), �c, (IN)N2N),

where �c is the one dimensional Lebesgue measure restricted to [0, 1) and weighted
by a constant c > 0 and IN = (IN,k)k2IN

with IN,k := [k/N, (k+ 1)/N), k 2 IN
and N 2 N.

Lemma 6.2.12. For any standard Borel measure space (⌦,B,m) and any unbounded
directed set N ⇢ N w.r.t. �, there exists a N-segmentation of (⌦,B,m).

Proof. Let ([0, 1),B([0, 1)), �c, (IN)N2N) be the N-refined standard Borel measure
space of Example 6.2.11 with c = m(⌦). Since ([0, 1),B([0, 1)), �c) is a standard
Borel measure space such that m(⌦) = �c([0, 1)), by Theorem 6.2.2 we can find
measurable maps ' : [0, 1) ! ⌦,  : ⌦ ! [0, 1) and two subsets ⌦0 2 B,
U 2 B([0, 1)) such that m(⌦0) = �c(U) = 0, ' � = i⌦\⌦0

,  �' = i[0,1)\U,
']�

c
= m and  ]m = �c. We can thus define

⌦N,0 = '(IN,0 \U)[⌦0, ⌦N,k = '(IN,k \U), k 2 IN \ {0}, N 2 N.

Setting PN := {⌦N,k}k2IN
for every N 2 N, it is easy to check that (PN)N2N is

a N-segmentation of (⌦,B,m).

In general, the collection of sigma-algebras given by (BN)N2N is not a fil-
tration since it fails to be ordered by inclusion. However, it is always possible
to extract from (BN)N2N a filtration still satisfying item (4) in Definition 6.2.9.
More precisely we have the following result.
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Lemma 6.2.13. Let N ⇢ N be an unbounded directed subset w.r.t. �. Then there exists
a sequence (bn)n ⇢ N such that bn �. bn+1 for every n 2 N and for every N-refined
standard Borel measure space (⌦,B,m, (PN)N2N) it holds that

for every N 2 N there exists n 2 N such that BN ⇢ Bbn
. (6.2.5)

In particular, (Bbn
)n2N is a filtration on (⌦,B) such that � ({Bbn

| n 2 N}) = B, so
that for every separable Hilbert space H we have that

[

N2N

L2((⌦,BN,m); H) is dense in L2((⌦,B,m); H). (6.2.6)

Proof. Since N is unbounded and directed, for every finite subset M ⇢ N the
quantity

succ(M) := min {N 2 N | M�. N 8M 2 M}

is well defined. Let (an)n ⇢ N be an enumeration of N and consider the follow-
ing sequence defined by induction

b0 = a0, bn+1 = succ ({an+1,bn}) , n 2 N.

Then bn �. bn+1 for every n 2 N and (6.2.5) holds for (bn)n and any N-refined
standard Borel measure space (⌦,B,m, (PN)N2N).

In the next Lemma we show that, given two distinct points !,! 00 2 ⌦, they
can always be separated by some partition PN for N 2 N sufficiently large.

Lemma 6.2.14. Let (⌦,B,m, (PN)N2N) be a N-refined standard Borel measure space
such that N = (bn)n2N, where (bn)n2N is a �-increasing sequence. Then there exists
⌦0 2 B with m(⌦0) = 0 such that for every ! 0,! 00 2 ⌦ \⌦0, ! 0 6= ! 00 there exists
M 2 N such that for every n > M there are k 0,k 00 2 Ibn

, k 0 6= k 00 with ! 0 2 ⌦bn,k 0

and ! 00 2 ⌦bn,k 00 .

Proof. Let ⌧ be a Polish topology on⌦ such that B coincides with the Borel sigma
algebra generated by ⌧. By [20, Proposition 6.5.4] there exists a countable family
F of ⌧-continuous functions f : ⌦ ! [0, 1] separating the points of ⌦, meaning
that for every ! 0,! 00 2 ⌦, ! 0 6= ! 00 there exists f 2 F such that f(! 0

) 6= f(! 00
).

Since F ⇢ L2((⌦,B,m); R), by Theorem 6.2.8 with Fn := Bbn
, for every f 2 F

there exists a m-negligible set ⌦f such that

lim
n!+1

Em [f | � (Pbn
)] (!) = f(!) 8! 2 ⌦ \⌦f.

Let ⌦0 := [f2F⌦f and let ! 0,! 00 2 ⌦ \⌦0, ! 0 6= ! 00. We can find f 2 F such
that f(! 0

) 6= f(! 00
). Thus there exists M 2 N such that

Em [f | � (Pbn
)] (! 0

) 6= Em [f | � (Pbn
)] (! 00

) 8n > M.

Since Em [f | � (Pbn
)] is constant on every ⌦bn,k, k 2 Ibn

, we conclude that for
every n > M the points ! 0 and ! 00 belong to different elements of Pbn

.
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Proposition 6.2.15. Let (⌦,B,m, (PN)N2N) and (⌦ 0,B 0,m 0, (P 0
N
)N2N) be N-refined

standard Borel measure spaces such that m(⌦) = m
0
(⌦ 0

). Then there exist two measur-
able functions ' : ⌦ ! ⌦ 0 and  : ⌦ 0 ! ⌦ such that for every N 2 N and every
I ⇢ IN it holds

 I �'I = i⌦I
mI-a.e. in ⌦I, 'I � I = i⌦ 0

I
m

0
I
-a.e. in ⌦ 0

I
,

('I)]mI = m
0
I
, ( I)]m

0
I
= mI,

where the subscript I denotes the restriction to [k2I⌦N,k or [k2I⌦
0
N,k.

Proof. By Lemma 6.2.13, it is enough to prove the statement in case N = (bn)n,
where (bn)n ⇢ N is a strictly �-increasing sequence and (⌦ 0,B 0,m 0, (P 0

N
)N2N)

is given by ([0, 1),B([0, 1)), �c, (IN)N2N) as in Example 6.2.11 with c = m(⌦). By
Lemma 6.2.5, we can find for every n 2 N two measurable maps 'n : ⌦! [0, 1)
and  n satisfying the thesis of Lemma 6.2.5 for the standard Borel measure
spaces (⌦,B,m) and ([0, 1),B([0, 1)), �c) and the m-�c compatible bn-partitions
of (⌦,B) and ([0, 1),B([0, 1))) given by Pbn

and Ibn
, where we recall from

Example 6.2.11 that Ibn
= (Ibn,k)k2Ibn

with Ibn,k = [k/bn, (k + 1)/bn). SinceP
n
b-1
n < +1, for every ! 2 ⌦ the sequence ('n(!))n ⇢ [0, 1) is Cauchy,

hence converges. We thus have the existence of a measurable map ' : ⌦! [0, 1)
such that

'(!) = lim
n
'n(!) 8! 2 ⌦.

If n 2 N, k 2 Ibn
and ' 2 Cb(Ibn,k) then

Z

Ibn ,k

'd']m =

Z

⌦bn ,k

'('(!))dm(!) = lim
m

Z

⌦bn ,k

'('m(!))dm(!)

= lim
m

Z

Ibn ,k

'd�c =

Z

Ibn ,k

'd�c,

since for m sufficiently large ('m)]m|⌦bn ,k = �c|Ibn ,k by Lemma 6.2.5. This shows
that ']m|⌦bn ,k = �c|Ibn ,k for every k 2 Ibn

and every n 2 N. To conclude it is
enough to show that ' is m-essentially injective. Let ⌦0 ⇢ ⌦ be the m-negligible
subset of ⌦ given by Lemma 6.2.14 and let ⌦1 := '-1

(J), where

J := {k/bn | k 2 Ibn
, n 2 N} ⇢ [0, 1).

Since �c(J) = 0, then m(⌦1) = 0; let ! 0,! 00 2 ⌦ \ (⌦0 [⌦1). Then there exists
M 2 N such that ! 0 and ! 00 belong to different elements of Pbn

for every n >
M. By (6.2.2) and Lemma 6.2.14, we can find k 0,k 00 2 IbM

with k 6= k 0 such that,
'n(!

0
) 2 IbM,k 0 and 'n(!

00
) 2 IbM,k 00 for every n > M. Thus '(! 0

) 2 IbM,k 0

and '(! 0
) 2 IbM,k 00 ; however, since

IbM,k 0 \ IbM,k 00 ⇢ J,

it must be that '(! 0
) 6= '(! 00

).

The following result is an application of [24, Theorem 1.1].
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Theorem 6.2.16. Let (⌦,B, P, (PN)N2N) be a N-refined standard Borel probability
space such that N = (bn)n2N, where (bn)n2N is a strictly �-increasing sequence.
Then for every � 2 �(P, P) there exist a strictly increasing sequence (Nn)n ⇢ N and
maps gn 2 S(⌦,B, P;BbNn

) such that, for every separable Hilbert space H and every
X, Y 2 L2((⌦,B, P); H), it holds

(X, Y)](i⌦,gn)]P ! (X, Y)]� in P2(H
2
). (6.2.7)

Proof. We divide the proof in several steps.
(1) Let ([0, 1),B([0, 1)), �1, (IN)N2N) be the N-refined standard Borel probability space
of Example 6.2.11 with c = 1. Then for every � 2 �(�1, �1), there exist a strictly
increasing sequence (Nn)n ⇢ N and maps gn 2 S([0, 1),B([0, 1)), �1;�(IbNn

)) such
that

(i[0,1),gn)]�1 ! � in P([0, 1)⇥ [0, 1)).

Let L̄ be the one dimensional Lebesgue measure restricted to [0, 1] and let � 2
�(�1, �1). Let µ 2 P([0, 1]⇥ [0, 1]) be an extension of � to [0, 1]⇥ [0, 1] such that
µ 2 �(L̄, L̄). In [24, Theorem 1.1] it is proven that it is possible to find a strictly
increasing sequence (Nn)n ⇢ N and maps (fn)n ⇢ S([0, 1],B([0, 1]), L̄) such that
for every n 2 N there exists �n 2 Sym(I2Nn ) such that

fn(x) = x- xNn,k + xNn,�n(k), x 2 I2Nn ,k, k 2 I2Nn (6.2.8)

satisfying

(i[0,1], fn)]L̄ ! µ in P([0, 1]⇥ [0, 1]). (6.2.9)

If we call gn the restriction of fn to [0, 1), n 2 N, we get that gn is an element of
S([0, 1),B([0, 1)), �1;�(IbNn

)) for every n 2 N and

(i[0,1),gn)]�1 ! � in P([0, 1)⇥ [0, 1)).

This proves the first step only in case bn = 2n. However, it can be easily checked
that the proof of [24, Theorem 1.1] does not depend on the specific choice of the
sequence bn but it is enough that bn �. bn+1 for every n 2 N so that the length
of the interval [k/bn, (k + 1)/bn] goes to 0 faster than 2-n as n ! +1. This
concludes the proof of the first claim.
(2) Let ([0, 1),B([0, 1)), �1, (IN)N2N) be the N-refined standard Borel probability space
of Example 6.2.11 with c = 1. Then for every � 2 �(�1, �1), there exist a strictly
increasing sequence (Nn)n ⇢ N and maps gn 2 S([0, 1),B([0, 1)), �1;�(IbNn

)) such
that, for every separable Hilbert space H and every X, Y 2 L2(([0, 1),B([0, 1)), �1); H),
it holds

(X, Y)](i[0,1),gn)]�1 ! (X, Y)]� in P2(H
2
).

Let � 2 �(�1, �1) and let (gn)n be the sequence given by (1) for �. Let H be any
separable Hilbert space and let X, Y 2 L2(([0, 1),B([0, 1)), �1); H). Observe that
for every " > 0 there exists a compact set K" ⇢ [0, 1) such that the restrictions of
X and Y to K" are continuous in K" and �1([0, 1) \K") < ", so that, setting �n :=



108 preliminary material

(i[0,1),gn)]�1, n 2 N, we have that �n([0, 1)2 \ K2
") 6 2" for every n 2 N. By [5,

Proposition 5.1.10] and (1), (X, Y)](i[0,1),gn)]�1 ! (X, Y)]� in P(H2
); moreover

Z ⇣
|x|2+ |y|2

⌘
d(X, Y)](i[0,1),gn)]�1 = E�1 [|X|

2
+ |Y|2] =

Z ⇣
|x|2+ |y|2

⌘
d(X, Y)]�,

hence the conclusion by (2.4.1).
(3) Conclusion. Let � 2 �(P, P) and let ' : ⌦ ! [0, 1) and  : [0, 1) ! ⌦ be the
maps given by Proposition 6.2.15 for the N-refined standard Borel probability
spaces (⌦,B, P, (PN)N2N) and ([0, 1),B([0, 1)), �1, (IN)N2N), where the latter
is as in Example 6.2.11 with c = 1. If we define � 0

:= (',')]�, we have that
� 0 2 �(�1, �1) so that we can find a strictly increasing sequence (Nn)n ⇢ N and
maps g 0

n 2 S([0, 1),B([0, 1)), �1;�(IbNn
)) as in step (2). Let us define

gn :=  � g 0
n �', n 2 N.

Then, up to change each gn on a P-negligible set of points, we can assume
that gn 2 S(⌦,B, P;BbNn

). Let H be a separable Hilbert space and let X, Y 2
L2(⌦,B, P); H). If we define X 0

:= X � and Y 0
:= Y � , we get that X 0, Y 0 2

L2([0, 1),B([0, 1)), �1); H). By step (2) we thus get

(X 0, Y 0
)](i[0,1),g 0

n)]�
1 ! (X 0, Y 0

)]�
0 in P2(H

2
)

which is equivalent to (6.2.7).

Corollary 6.2.17. Let (⌦,B, P, (PN)N2N) be a N-refined standard Borel probability
space such that N = (bn)n2N, where (bn)n2N is a striclty �-increasing sequence.
Then for every � 2 �(P, P) there exist a strictly increasing sequence (Nn)n ⇢ N and
maps gn 2 S(⌦,B, P;BbNn

) such that, for every Polish topology ⌧ on ⌦ generating B,
it holds

(i⌦,gn)]P ! � in P(⌦⇥⌦, ⌧⌦ ⌧),

where ⌧⌦ ⌧ is the product topology on ⌦⇥⌦.

Proof. By Theorem 6.2.16 we have the existence of a strictly increasing sequence
(Nn)n ⇢ N and maps gn 2 S(⌦,B, P;BbNn

) such that, choosing the separable
Hilbert space R, we get

('1,'2)](i⌦,gn)]P ! ('1,'2)]� in P2(R
2
)

for every '1,'2 2 Cb(⌦, ⌧) ⇢ L2((⌦,B, P); R). By the P2(R
2
) convergence we

get (see e.g.[5, Proposition 7.1.5, Lemma 5.1.7]) that
Z

⌦⇥⌦
h('1(!1),'2(!2))d�n(!1,!2) !

Z

⌦⇥⌦
h('1(!1),'2(!2))d�(!1,!2)

for every continuous function h : R
2 ! R with less than 2-growth, where �n =

(i⌦,gn)]P, n 2 N. Choosing h(x,y) := xy, we get that
Z

⌦⇥⌦
'1(!1)'2(!2)d�n(!1,!2) !

Z

⌦⇥⌦
'1(!1)'2(!2)d�(!1,!2).
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(6.2.10)

for every '1,'2 2 Cb(⌦, ⌧). Let A ⇢ Cb(⌦, ⌧) be a unital subalgebra whose
induced initial topology on ⌦ coincides with ⌧ (e.g. the subset of d-Lipschitz
continuous and bounded functions for a complete distance d inducing ⌧). It is
easy to check that

A⌦A :=

�
nX

i=1

'i

1
⌦'i

2
| ('i

1
)
n

i=1
, ('i

2
)
n

i=1
⇢ A, n 2 N

✏

⇢ Cb(⌦⇥⌦, ⌧⌦ ⌧)

is a unital subalgebra whose induced initial topology on ⌦⇥⌦ coincides with
⌧⌦ ⌧. By (6.2.10) we thus have that

Z

⌦⇥⌦
'd�n !

Z

⌦⇥⌦
'd� 8' 2 A⌦A.

We conclude by Lemma 3.1.6.

The following result is a consequence of [97, Theorem B] (see also [3, Theorem
2.1, Theorem 9.3]).

Proposition 6.2.18. Let (⌦,B, P) be a standard Borel probability space, let H be a
separable Hilbert space and let us denote H := L2((⌦,B, P); H). If µ,⌫ 2 P2(H) and
X 2 H is s.t. X]P = µ, then, for every " > 0, there exists Y 2 H s.t. Y]P = ⌫ and

|X- Y|H 6 W2(µ,⌫) + ".

Proof. Let � 2 �o(µ,⌫); we split µ into its atomless and atomic parts, µc and µd

respectively. Hence, there exists a sequence (xn)n ⇢ H s.t.

µd =

X

n2N

µn, µn := an�xn
, an := µ({xn})

and µc is atomless (i.e. µc({x}) = 0 for every x 2 H). Let

⌦n := X-1
({xn}), n 2 N, ⌦c := ⌦ \

[

n

⌦n.

We define the Borel functions

Xn := X|⌦n
, n 2 N, Xc := X|⌦c

and the nonnegative Borel measures

Pn := P|⌦n
, n 2 N, Pc := P|⌦c

.

It is clear that (Xn)]Pn = µn for every n 2 N and that (Xc)]Pc = µc. Let
{�x}x2H ⇢ P(H) be the disintegration of � w.r.t. µ, we define the nonnegative
Borel measures

�n := µn ⌦ �xn
, n 2 N, �c :=

Z

H

�x dµc(x)
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with second marginals ⌫n = an�xn
, n 2 N and ⌫c, respectively. By Corollary

6.2.3, we can find functions Yn 2 L2(⌦n, Pn; H) s.t. (Yn)]Pn = ⌫n so that
(Xn, Yn)]Pn = �n for every n 2 N. This gives

Z

⌦n

|Xn - Yn|
2 dPn =

Z

H⇥H

|x- y|2 d�n(x,y). (6.2.11)

On the other hand, we can apply [97, Theorem B] to the Polish space H, the
atomless measure µc, the measure ⌫c and the plan �c 2 �(µc,⌫c) so that, for
any " > 0, we can find t := t" : H ! H s.t. t]µc = ⌫c and

Z

H

|x- t(x)|2 dµc(x) 6
Z

H⇥H

|x- y|2 d�c(x,y) + "2.

If we define Yc 2 L2(⌦c, Pc; H) as Yc := t �Xc, we get
Z

⌦c

|Xc - Yc|
2 dPc 6

Z

H⇥H

|x- y|2 d�c(x,y) + "2 (6.2.12)

with (Yc)]Pc = ⌫c. Finally we define Y 2 L2(⌦, P; H) as

Y(!) :=

8
<

:
Yn(!) if ! 2 ⌦n, n 2 N,

Yc(!) if ! 2 ⌦c.

By (6.2.11) and (6.2.12) we have that

|X- Y|2H =

Z

⌦

|X- Y|2 dP =

X

n

Z

⌦n

|Xn - Yn|
2 dPn +

Z

⌦c

|Xc - Yc|
2 dPc

6
X

n

Z

H⇥H

|x- y|2 d�n(x,y) +
Z

H⇥H

|x- y|2 d�c(x,y) + "2

=

Z

H⇥H

|x- y|2 d�(x,y) + "2 = W2

2
(µ,⌫) + "2.

Hence the conclusion, noting that Y]P = ⌫.

6.3 a strong-weak topology for probabilities in product spaces

In this short section we denote by X, Y two separable Hilbert spaces. On the prod-
uct space X ⇥ Y we consider the product Hilbert norm and P2(X ⇥ Y) with the
2-Wasserstein distance. We will endow P2(X⇥Y) with a weaker topology which
is connected to the strong-weak topology on X⇥ Y, i.e. the product topology of
Xs ⇥ Yw, where the superscript s (resp. w) means that we are considering the
strong (resp. weak) topology on the corresponding Hilbert space. The proof of
the results presented here can be found in [86].

Let us consider the space Csw

2
(X⇥Y) of functions ⇣ : X⇥Y ! R such that

⇣ is sequentially continuous in Xs ⇥Yw, (6.3.1)

8 " > 0 9A" > 0 : |⇣(x,y)| 6 A"(1+ |x|2
X
) + "|y|2

Y
8 (x,y) 2 X⇥Y. (6.3.2)
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Notice that, if ⇣ 2 Csw

2
(X ⇥ Y), then it has quadratic growth. On Csw

2
(X) we

consider the norm

k⇣kCsw

2
(X) := sup

(x,y)2X

|⇣(x,y)|
1+ |x|2

X
+ |y|2

Y

.

Lemma 6.3.1. (Csw

2
(X⇥Y), k · kCsw

2
(X⇥Y)) is a Banach space.

Definition 6.3.2 (Topology of Psw

2
(X ⇥ Y), [86]). We denote by Psw

2
(X ⇥ Y) the

space P2(X⇥Y) endowed with the coarsest topology which makes the following
functions continuous

µ 7!
Z
⇣(x,y)dµ(x,y), ⇣ 2 Csw

2
(X⇥Y).

The topology of P2(X ⇥ Y) is finer than the topology of Psw

2
(X ⇥ Y), and the

latter is finer than the topology of P(Xs ⇥ Yw
). Notice that, if B : X ⇥ Y ! R

is a bounded bilinear form, then it belongs to Csw

2
(X ⇥ Y), hence for every net

(µ↵)↵2A ⇢ P(X⇥Y) indexed by a directed set A, we have

lim
↵2A

µ↵ = µ in Psw

2
(X⇥Y) ) lim

↵2A

Z
Bdµ↵ =

Z
Bdµ. (6.3.3)

The following result presents many useful properties of the Psw

2
(X⇥Y)-topology.

Proposition 6.3.3.

1. Assume that (µ↵)↵2A ⇢ P2(X ⇥ Y) is a net indexed by the directed set A,
µ 2 P2(X⇥Y) and they satisfy

a) µ↵ ! µ in P(Xs ⇥Yw
),

b) lim
↵2A

Z
|x|2

X
dµ↵(x,y) =

Z
|x|2

X
dµ(x,y),

c) sup
↵2A

Z
|y|2

Y
dµ↵(x,y) < 1,

then µ↵ ! µ in Psw

2
(X⇥ Y). The converse property holds for sequences: if A =

N and µn ! µ in Psw

2
(X⇥Y) as n ! 1 then properties (a), (b), (c) hold.

2. For every compact set K ⇢ P2(Xs
) and every constant c < 1 the sets

Kc :=

⌦
µ 2 P2(X⇥Y) : ⇡X

] µ 2 K,
Z
|y|2

Y
dµ(x,y) 6 c

↵

are compact and metrizable in Psw

2
(X ⇥ Y) (in particular they are sequentially

compact).

Notice that the topology Pws

2
(X⇥ Y) is strictly weaker than P2(X⇥ Y) also in

case Y has finite dimension. Indeed, the function (x,y) 7! |y|2
Y

is not an element
of Csw

2
(X ⇥ Y), so that the convergence of the quadratic moment w.r.t. y is not

guaranteed.



112 preliminary material

6.4 triplans and injectivity of interpolation maps

In this section, we state and prove the following preliminary results of indepen-
dent interest. Their importance for our study will be clear when proving Lemma
7.8.2 and more specifically in Section 9.4, since they will be involved in the proof
of one of the main results of the Section: Theorem 9.4.16. In this section H is a
separable Hilbert space and we define xt,✓ as

xt,✓
(x1, x2, x3) := (1- ✓) [(1- t)x1 + tx2] + ✓x3, t, ✓ 2 [0, 1]. (6.4.1)

Proposition 6.4.1. Let � 2 P(H3
) be such that ⇡1,2

] � and ⇡2,3
] � are optimal. Then, for

every t, ✓ 2 (0, 1), (xt,✓,⇡2)]� is the unique element of �o(xt,✓
] �,⇡2]�) and it is induced

by a map, i.e. there exists a Borel map g : H ! H such that

(xt,✓,⇡2)]� = (iH,g)](xt,✓
] �).

Proof. Let t, ✓ 2 (0, 1) be fixed. By Theorem 2.4.4, to prove the statement it is
enough to show that

(xt,✓,⇡2)]� = (xq, x1)]↵ (6.4.2)

for some optimal plan ↵ 2 P(H2
) and q 2 (0, 1). Indeed, this implies that

(xt,✓,⇡2)]� induces the restriction of a constant speed geodesic to [q, 1] and thus
it is optimal, unique and concentrated on a map. It is easy to check that (6.4.2)
holds with q := (1- ✓)t and ↵ := (xp � ⇡1,3,⇡2)]�, where p :=

✓

1-(1-✓)t . We are
left to show that ↵ is optimal and, thanks to (2.4.9), it is enough to show that it
is concentrated on a monotone set. This immediately follows if we show that

hy1 - y 0
1

, x1 - x 0
1
i > 0 8(y1, x1), (y 0

1
, x 0

1
) 2 (xp � ⇡1,3,⇡2)(supp�).

Let (y1, x2), (y 0
1

, x 0
2
) 2 (xp � ⇡1,3,⇡2)(supp�); we can find x1, x3, x 0

1
, x 0

3
2 H such

that y1 = xp(x1, x3), y 0
1
= xp(x 0

1
, x 0

3
) and (x1, x2, x3), (x 0

1
, x 0

2
, x 0

3
) 2 supp�. Then

hy1 - y 0
1

, x1 - x 0
1
i = (1- p)hx1 - x 0

1
, x2 - x 0

2
i+ phx3 - x 0

3
, x2 - x 0

2
i > 0,

where we have used the monotonicity of the supports of ⇡1,2
] � and ⇡2,3

] � coming
from their optimality, thanks again to (2.4.9).

Given two pairs of points (a 0,b 0
) and (a 00,b 00

) in H
2 it is easy to check that

(1- t)a 0
+ tb 0 6= (1- t)a 00

+tb 00 for every t 2 (0, 1)
,

b 00
- b 0 62

⌦
- s(a 00

- a 0
) : s > 0

↵
.

(6.4.3)

In particular, given a set A ⇢ H we consider the set of directions

dir(A) :=

⌦
s(a 0

- a 00
) : s 2 R, a 0,a 00 2 A

↵
=

[

s2R

s
�
A-A

�
(6.4.4)

If B ⇢ H satisfies

(B-B)\ dir(A) = {0} (6.4.5)

then for every t 2 (0, 1) the map xt : H
2 ! H is injective on A⇥B.
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Proposition 6.4.2. Let � 2 P(H3
) be such that ⇡1,2

] � and ⇡2,3
] � are optimal. Set

A1 := ⇡1(supp�), A3 := ⇡3(supp�)

and suppose that (A3 - A3) \ dir(A1) = {0}. Then, for every t, ✓ 2 (0, 1), xt,✓ is
injective on supp�.

Proof. Let t, ✓ 2 (0, 1) and let (x1, x2, x3), (x 0
1

, x 0
2

, x 0
3
) 2 supp� be such that

xt,✓
(x1, x2, x3) = xt,✓

(x 0
1

, x 0
2

, x 0
3
). Setting yt := (1- t)x1 + tx2, y 0

t
:= (1- t)x 0

1
+

tx 0
2

, we obtain

(1- ✓)yt + ✓x3 = (1- ✓)y 0
t + ✓x

0
3

so that

yt - y 0
t = -

✓

1- ✓
(x3 - x 0

3
). (6.4.6)

Since ⇡1,2
] � and ⇡2,3

] � are optimal, their supports are monotone by (2.4.9), thus

hx1 - x 0
1

, x2 - x 0
2
i > 0, hx3 - x 0

3
, x2 - x 0

2
i > 0

which gives

hyt - y 0
t, x2 - x 0

2
i > t|x2 - x 0

2
|2.

Then

0 > -
✓

1- ✓
hx3 - x 0

3
, x2 - x 0

2
i > t|x2 - x 0

2
|2

so that x2 = x 0
2

. Inserting this in (6.4.6), we obtain

x3 - x 0
3
= -

(1- ✓)(1- t)

✓
(x1 - x 0

1
).

Since by assumption (A3 -A3) \ dir(A1) = {0}, then we conclude that x1 = x 0
1

and x3 = x 0
3

, proving the sought injectivity.

In the discrete setting, we can prove the following result which gives the possi-
bility to displace the elements of a finite set B in order to satisfy condition (6.4.5)
with respect to a fixed finite set A.

Proposition 6.4.3. Assume that dim H > 2 and A ⇢ H is a finite set. For every finite
set of distinct points B = {bn}

N

n=1
⇢ H there exists a finite set B 0

:= {b 0
n}

N

n=1
of

distinct points with |b 0
n - bn| < 1 such that, setting

bn(s) := (1- s)bn + sb 0
n, B(s) := {bn(s)}

N

n=1
, (6.4.7)

we have that #B(s) = N for all s 2 [0, 1] and

(B(s)-B(s))\ dir(A) = {0} for every s 2 (0, 1]. (6.4.8)

In particular, for every t 2 (0, 1) the restriction of the map xt to A⇥ B(s) is injective
for every s 2 (0, 1].
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Proof. We split the proof of the Proposition in two steps.
Claim 1: there exists a finite set of distinct points B 00

:= {b 00
n}

N

n=1
with |b 00

n-bn| < 1

satisfying

(B 00
-B 00

)\ dir(A) = {0}. (6.4.9)

We can argue by induction with respect to the cardinality N of the set B. The
statement is obvious in the case N = 1 (it is sufficient to choose b 00

1
:= b1).

Let us assume that the property holds for all the sets of cardinality N- 1 >
1. We can thus find a finite set of distinct points B 00

N-1
= {b 00

n}
N-1

n=1
satisfying

(B 00
N-1

- B 00
N-1

) \ dir(A) = {0}. We look for a point b 00
N

2 U \ B 00
N-1

, where U :=

{x 2 H : |x- bN| < 1}, such that B 00
N

:= B 00
N-1

[ {b 00
N
} satisfies (6.4.9). b 00

N
should

therefore satisfy

b 00
N

2 U, b 00
N
- b 00

n 62 dir(A) for every n 2 {1, · · · ,N- 1}.

Such a point surely exists, since dir(A) is a closed set with empty interior (here
we use the fact that the dimension of H is at least 2) and the union

S
N-1

n=1

�
b 00
n +

dir(A)
�

has empty interior as well, so that it cannot contain the open set U.
Claim 2: If B 00 satisfies the properties of the previous claim, then there exists � 2 (0, 1]

such that setting

b 0
n := (1- �)bn + �b 00

n, (6.4.10)

the set B 0
= {b 0

n}
N

n=1
satisfies the thesis.

We denote by a the cardinality #A of A and we first make a simple remark: for
every z, z 00 2 H

#{s 2 [0, 1] : z(s) := (1- s)z+ sz 00 2 dir(A)} > a2 ) z, z 00 2 dir(A). (6.4.11)

Indeed, the set A-A contains at most a2 distinct elements, so that if the left hand
side of (6.4.11) is true, then there are at least two distinct values s1, s2 2 [0, 1],
r1, r2 2 R and a vector w 2 A-A such that (1- s1)z+ s1z

00
= r1w, (1- s2)z+

s2z
00
= r2w. We then get

z(s) = z(s1) +
s- s1
s2 - s1

(z(s2)- z(s1)) = r1w+
(s- s1)(r2 - r1)

s2 - s1
w 2 dir(A)

for every s 2 [0, 1],hence (6.4.11). As a particular consequence of (6.4.11) we get
that if z 00 does not belong to dir(A), then the set {s 2 (0, 1] : z(s) := (1- s)z+

sz 00 2 dir(A)} is finite, so that

8 z, z 00 2 H : z 00 62 dir(A) ) 9 � > 0 : (1- s)z+ sz 00 62 dir(A) 8 s 2 (0, �].
(6.4.12)

Let us now apply property (6.4.12) to all the pairs (z, z 00) of the form z = bn -

bm, z 00 = b 00
n - b 00

m, n,m 2 {1, · · · ,N}, with n 6= m. Since b 00
n - b 00

m 62 dir(A) we
deduce that there exists �n,m > 0 such that

(1- s)(bn - bm) + s(b 00
n - b 00

m) 62 dir(A) for every s 2 (0, �n,m]. (6.4.13)
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Setting

�̃ := min{|bn - bm| : n,m 2 {1, . . . ,N}, n 6= m} > 0

and choosing � := minn,m{�n,m, �̃/3} > 0, then it is not difficult to check that B 0

satisfies the thesis, with b 0
n as in (6.4.10). Indeed, |bn -b 0

n| = �|bn -b 00
n| < 1, and

for every s 2 [0, 1] and n we get

bn(s) := (1- s)bn+ sb 0
n = (1- s)bn+ s(1- �)bn+ s�b 00

n = (1- �s)bn+ �sb 00
n

so that

bn(s)- bm(s) = (1- �s)(bn - bm) + �s(b 00
n - b 00

m) 62 dir(A)

thanks to (6.4.13) and the fact that s� 6 �n,m.

6.5 local optimality of discrete couplings

We want to study the behaviour of the Wasserstein distance along couplings
between discrete measures. The main quantitative information is contained in
the following lemma.

Lemma 6.5.1. Let µ0,µ1 2 P2(H), � 2 �(µ0,µ1). If µ0 has finite support S =

{x̄1, · · · , x̄M} with � := min
�
|x̄i - x̄j| : i, j 2 {1, · · · ,M}, i 6= j

 
> 0 and

sup
⌦
|y- x| : (x,y) 2 supp�

↵
6 �/2 (6.5.1)

then � 2 �o(µ0,µ1) and W2

2
(µ0,µ1) =

R
|y- x|2 d�.

Proof. It is sufficient to prove that the support of � satisfies the cyclical mono-
tonicity condition (2.4.9).

If {(xn,yn)}
N

n=1
are points in supp� with x0 := xN and xn 6= xn-1 then

hyn, xn - xn-1i = hyn - xn, xn - xn-1i+ hxn, xn - xn-1i

> -
�

2
|xn - xn-1|+

1

2
|xn - xn-1|

2
+

1

2
|xn|

2
-

1

2
|xn-1|

2

> 1

2
|xn|

2
-

1

2
|xn-1|

2

since |yn - xn| 6 �/2 and |xn - xn-1| > �. If xn = xn-1 we trivially have
hyn, xn - xn-1i = 1

2
|xn|

2
-

1

2
|xn-1|

2, so that

NX

n=1

hyn, xn - xn-1i >
NX

n=1

1

2
|xn|

2
-

1

2
|xn-1|

2
=

1

2
|xN|2 -

1

2
|x0|

2
= 0.

As a consequence we obtain the following result.

Theorem 6.5.2. Let µ0,µ1 2 P2(H) be two measures with finite support, � 2 �(µ0,µ1)

and µt := (xt)]�, t 2 [0, 1]. Then the following properties hold.



116 preliminary material

1. For every s 2 [0, 1] there exists � > 0 such that for every t 2 [0, 1] with |t- s| 6 �
�s,t := (xs, xt)]� is an optimal plan between µs and µt, so that

W2

2
(µs,µt) =

Z
|y- x|2 d�s,t = |t- s|2

Z
|y- x|2 d�(x,y). (6.5.2)

2. There exist a finite number of points t0 = 0 < t1 < t2 < · · · < tK = 1 such that
for every k = 1, · · · ,K, µ|[tk-1,tk] is a minimal constant speed geodesic and

W2

2
(µt 0 ,µt 00) = |t 00 - t 0|2

Z
|y- x|2 d�(x,y) for every t 0, t 00 2 [tk-1, tk].

(6.5.3)

3. The length of the curve (µt)t2[0,1] coincides with
⇣ R

|y- x|2 d�
⌘1/2

.

Proof. The first statement follows by Lemma 6.5.1, since every measure µs has
finite support and for every t 2 [0, 1]

sup
�
|y- x| : (x,y) 2 supp�s,t

 
= |t- s| sup

�
|y- x| : (x,y) 2 supp�

 

6 |t- s|max{|y- x| : x 2 suppµ0, y 2 suppµ1

 
.

In order to prove the second claim, we define an increasing sequence (tn)
1
n=0

⇢
[0, 1] by induction as follows:

• t0 := 0;

• if tn < 1 then tn+1 := sup
⌦
t 2 (tn, 1] : W2

2
(µtn

,µt) = |t - tn|
2
R
|y -

x|2 d�
↵

;

• if tn = 1 then tn+1 = 1.

The sequence is well defined thanks to the first claim. It is easy to see that there
exists K 2 N such that tK = 1. If not, tn would be strictly increasing with limit
t1 6 1 as n ! 1. By the first claim, there exists r > 0 such that the restriction of
µ to [t1 - r, t1] is a minimal geodesic, so that whenever tn > t1 - r we should
get tn+1 = t1, a contradiction.

Claim (3) follows immediately by (2).



7
D I S S I PAT I V I T Y I N WA S S E R S T E I N S PA C E S

In this chapter we present the notion of dissipativity in P2(H) and we study dis-
sipative operators on the Wasserstein space. In particular Section 7.1 introduces
the pseudo scalar products/duality pairings between probability measures; Sec-
tion 7.2 presents a few results concerning the differentiability of the Wasserstein
distance along absolutely continuous curves; in Sections 7.3 and 7.4 we study the
properties of duality pairings and how they interact with geodesics in P2(H);
in Sections 7.5, 7.6 and 7.7 we introduce the notion of dissipative operator on
P2(H), called Multivalued Probability Vector Field, we study its behaviour along
geodesics and notions of extensions; finally Section 7.8 deals with a refined no-
tion of dissipativity related to discrete measures.
In this whole Chapter, H is a fixed, possibly infinite dimensional, separable
Hilbert space with dim(H) > 2.

This Chapter is the result of a collaboration with Giulia Cavagnari and Giuseppe
Savaré and, except for Section 7.8, it appeared in [34].

7.1 directional derivatives of the wasserstein distance and du-
ality pairings

We start from a concavity property of

f(s, t) :=
1

2
W2

2
(exps] �0, expt] �1), s, t 2 R, (7.1.1)

with �0,�1 2 P2(TH) and expt : TH ! H is defined as

expt(x, v) := x+ tv, (x, v) 2 TH. (7.1.2)

We also use the notation

|�|2 :=

Z

TH

|v|2 d�(x, v) � 2 P(TH). (7.1.3)

Moreover, recalling Theorem 2.1.1 and Remark 2.1.2, we give the following defi-
nition.

Definition 7.1.1. Given � 2 P2(TH|µ), the barycenter of � is the function b� 2
L2µ(H; H) defined by

b�(x) :=

Z

H

vd�x(v) for µ-a.e. x 2 H,

where {�x}x2H ⇢ P2(H) is the disintegration of � w.r.t. µ.

The proof of the following result comes from [5, Proposition 7.3.1].

117
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Lemma 7.1.2. Let �0,�1 2 P2(TH), s, t 2 R, and let #s,t 2 �(exps] �0, expt] �1).
Then there exists ⇥s,t 2 �(�0,�1) such that (exps, expt)]⇥s,t

= #s,t.

Proof. Define, for every r, s, t 2 R,

⌃r
: TH ! TH, ⌃r

(x, v) := (expr(x, v), v),
⇤s,t

: TH ⇥TH ! TH ⇥TH, ⇤s,t
:= (⌃s,⌃t

).

Consider the probabilities (⌃s
)]�0, (⌃t

)]�1 and #s,t. They are constructed in
such a way that there exists  s,t 2 P(TH ⇥TH) s.t.

(x0, v0)] s,t
= (⌃s

)]�0, (x1, v1)] s,t
= (⌃t

)]�1, (x0, x1)] s,t
= #s,t,

where we adopted the notation xi(x0, v0, x1, v1) := xi and vi(x0, v0, x1, v1) := vi,
i = 0, 1. We conclude by taking ⇥s,t

:= (⇤-s,-t
)] 

s,t.

Proposition 7.1.3. Let �0,�1 2 P2(TH) with µ1 = x]�1 and '2
:= |�0|

2

2
+ |�1|

2

2
,

let f : R
2 ! R be the function defined by (7.1.1) and let h,g : R ! R be defined by

h(s) := f(s, s) =
1

2
W2

2
(exps] �0, exps] �1),

g(s) := f(s, 0) =
1

2
W2

2
(exps] �0,µ1).

(7.1.4)

1. The function (s, t) 7! f(s, t)- 1

2
'2

(s2 + t2) is concave, i.e. it holds

f((1-↵)s0 +↵s1, (1-↵)t0 +↵t1) > (1-↵)f(s0, t0) +↵f(s1, t1)

-
1

2
↵(1-↵)

h
(s1 - s0)

2
+ (t1 - t0)

2

i
'2

(7.1.5)

for every s0, s1, t0, t1 2 R and every ↵ 2 [0, 1].

2. The function s 7! h(s)-'2s2 is concave.

3. the function s 7! g(s)- 1

2
s2|�0|

2

2
is concave.

Proof. Let us first prove (7.1.5). We set s := (1- ↵)s0 + ↵s1, t := (1- ↵)t0 + ↵t1
and we apply Lemma 7.1.2 to find ⇥ 2 �(�0,�1) such that (exps, expt)]⇥ 2
�o(exps] �0, expt] �1). Then, recalling the Hilbertian identity

|(1-↵)a+↵b|2 = (1-↵)|a|2 +↵|b|2 -↵(1-↵)|a- b|2, a,b 2 H,
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we have

W2

2
(exps] �0, expt] �1)

=

Z
|x0 + sv0 - (x1 + tv1)|

2 d⇥

=

Z
|(1-↵)(x0 + s0v0) +↵(x0 + s1v0)-

(1-↵)(x1 + t0v1)-↵(x1 + t1v1)|
2 d⇥

= (1-↵)

Z
|x0 + s0v0 - (x1 + t0v1)|

2 d⇥

+↵

Z
|x0 + s1v0 - (x1 + t1v1)|

2 d⇥

-↵(1-↵)

Z
|(s1 - s0)v0 + (t1 - t0)v1|

2 d⇥

> (1-↵)W2

2
(exps0] �0, expt0] �1) +↵W

2

2
(exps1] �0, expt1] �1)

-↵(1-↵)
⇣
(s1 - s0)

2
+ (t1 - t0)

2

⌘⇣ Z
|v0|

2 d�0 +

Z
|v1|

2 d�1

⌘
.

which is the thesis. Claims (2) and (3) follow as particular cases when t = s or
t = 0.

Semi-concavity guarantees the existence of right and left derivatives at (0, 0):
given ↵,� 2 R, we have (see e.g. [63, Ch. VI, Prop. 1.1.2]) that

f 0r(↵,�) = sup
⇢>0

f(↵⇢,�⇢)- f(0, 0)
⇢

-
⇢'2

2
(↵2

+�2
),

f 0
l
(↵,�) = inf

⇢>0

f(0, 0)- f(-↵⇢,-�⇢)
⇢

+
⇢'2

2
(↵2

+�2
).

f 0r (resp. f 0
l
) is a concave (resp. convex) and positively 1-homogeneous function.

We have

f 0r(-↵,-�) = -f 0
l
(↵,�) for every ↵,� 2 R, (7.1.6)

f 0
l
(↵,�) > f 0r(↵,�) for every ↵,� 2 R, (7.1.7)

f 0r(↵,�) > ↵f 0r(1, 0) +�f 0r(0, 1) for every ↵,� > 0, (7.1.8)

f(s, t) 6 f(0, 0) + f 0r(s, t)-
'2

2
(s2 + t2) for every s, t 2 R.

In addition

f 0r(1, 0) = g 0
r(0) = lim

⇢#0

g(⇢)- g(0)

⇢

where g is as in (7.1.4); an analogous result holds for f 0
l
(1, 0). We will use the

following notation for f 0r, f 0
l
, g 0

r and g 0
l
, setting also

P2(TH|µ) :=
�
� 2 P2(TH) | x]� = µ

 
, µ 2 P2(H). (7.1.9)
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Definition 7.1.4. Let µ0,µ1 2 P2(H), �0 2 P2(TH|µ0) and �1 2 P2(TH|µ1). We
define

[�0,µ1]r := lim
s#0

W2

2
(exps] �0,µ1)-W2

2
(µ0,µ1)

2s
,

[�0,µ1]l := lim
s#0

W2

2
(µ0,µ1)-W2

2
(exp-s

] �0,µ1)

2s
,

and analogously

[�0,�1]r := lim
t#0

W2

2
(expt] �0, expt] �1)-W2

2
(µ0,µ1)

2t
,

[�0,�1]l := lim
t#0

W2

2
(µ0,µ1)-W2

2
(exp-t

] �0, exp-t

] �1)

2t
.

Recalling the definitions of f and g given by (7.1.1) and (7.1.4), with �0 and �1

as above, we notice that

[�0,µ1]r = g 0
r(0) = f 0r(1, 0),

[�0,µ1]l = g 0
l
(0) = f 0

l
(1, 0),

[�0,�1]r = f 0r(1, 1),
[�0,�1]l = f 0

l
(1, 1).

Remark 7.1.5. Notice that [�0,µ1]r = [�0,�µ1
]
r

and [�0,µ1]l = [�0,�µ1
]
l
,

where

�µ1
= (iH, 0)]µ1 2 P2(TH).

Moreover, given � 2 P(TH) and using the notation

-� := J]�, with J(x, v) := (x,-v), (7.1.10)

we have

[-�0,-�1]r = - [�0,�1]l , and [-�0,µ1]r = - [�0,µ1]l .

In particular, the properties of [·, ·]
l

(in P2(TH)⇥ P2(TH) or P2(TH)⇥ P2(H))
and the ones of [·, ·]

r
in P2(TH)⇥P2(H) can be easily derived by the correspond-

ing ones of [·, ·]
r

in P2(TH)⇥P2(TH).

Recalling (7.1.8) and (7.1.6) we obtain the following result.

Corollary 7.1.6. For every µ0,µ1 2 P2(H) and for every �0 2 P2(TH|µ0), �1 2
P2(TH|µ1), it holds

[�0,µ1]r + [�1,µ0]r 6 [�0,�1]r and [�0,µ1]l + [�1,µ0]l > [�0,�1]l .

Our aim is now to show a useful characterization of the above pairings. We
denote by x0, v0, x1 : TH ⇥ H ! H the projection maps of a point (x0, v0, x1) in
TH ⇥ H (and similarly for TH ⇥TH with x0, v0, x1, v1).

Let us introduce the following sets.
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Definition 7.1.7. For every �0 2 P(TH) with µ0 = x]�0 and µ1 2 P2(H) we set

⇤(�0,µ1) :=

⌦
� 2 �(�0,µ1) | (x0, x1)]� 2 �o(µ0,µ1)

↵
.

Analogously, for every�0,�1 2 P(TH) with µ0 = x]�0 and µ1 = x]�1 in P2(H)

we set

⇤(�0,�1) :=

⌦
⇥ 2 �(�0,�1) | (x0, x1)]⇥ 2 �o(µ0,µ1)

↵
.

Similar results to what follows (with analogous proofs) can be found also
in [53, Theorem 4.2] and [44, Corollary 3.18] where H is a smooth compact
Riemannian manifold.

Theorem 7.1.8. For every �0,�1 2 P2(TH) and µ1 2 P2(H) we have

[�0,µ1]r = min
�Z

TH⇥H

hx0 - x1, v0id� | � 2 ⇤(�0,µ1)

�
, (7.1.11)

[�0,�1]r = min
�Z

TH⇥TH

hx0 - x1, v0 - v1id⇥ |⇥ 2 ⇤(�0,�1)

�
.

(7.1.12)

We denote by⇤o(�0,µ1) (resp.⇤o(�0,�1)) the subset of⇤(�0,µ1) (resp.⇤(�0,�1))
where the minimum in (7.1.11) (resp. (7.1.12)) is attained.

Proof. First, we recall that the minima in the right hand side are attained since
⇤(�0,µ1) and ⇤(�0,�1) are compact subsets of P2(TH ⇥H) and P2(TH ⇥TH)

respectively by Lemma 2.4.1 and the integrands are continuous functions with
quadratic growth. Thanks to Remark 7.1.5, we only need to prove the equality
(7.1.12). For every ⇥ 2 ⇤(�0,�1) and setting µ0 = x]�0, µ1 = x]�1, we have

W2

2
(exps] (�0), exps] (�1))

6
Z

TH⇥TH

|(x0 - x1) + s(v0 - v1)|
2 d⇥

=

Z

H2

|x0 - x1|
2 d(x0, x1)]⇥+ 2s

Z

TH⇥TH

hx0 - x1, v0 - v1id⇥

+ s2
Z

H2

|v0 - v1|
2 d⇥

= W2

2
(µ0,µ1) + 2s

Z

TH⇥TH

hx0 - x1, v0 - v1id⇥+ s2
Z

H2

|v0 - v1|
2 d⇥

and this immediately implies

[�0,�1]r 6 min
�Z

TH⇥TH

hx0 - x1, v0 - v1id⇥ |⇥ 2 ⇤(�0,�1)

�
.

In order to prove the converse inequality, thanks to Lemma 7.1.2, for every s > 0

we can find ⇥s 2 �(�0,�1) s.t.

(exps, exps)]⇥s 2 �o(exps] �0, exps] �1).
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Then

W2

2
(exps] �0, exps] �1)-W2

2
(µ0,µ1)

2s
> 1

2s

Z

TH⇥TH

|(x0 - x1) + s(v0 - v1)|
2 d⇥s

-
1

2s

Z

TH⇥TH

|x0 - x1|
2 d⇥s

>
Z

TH⇥TH

hx0 - x1, v0 - v1id⇥s.

(7.1.13)

Since �(�0,�1) is compact in P2(TH ⇥ TH), there exists a vanishing sequence
k 7! sk and ⇥ 2 �(�0,�1) s.t. ⇥sk

! ⇥ in P2(TH ⇥ TH). Moreover it holds
(expsk , expsk)]⇥sk

! (x0, x1)]⇥ in P(TH ⇥ TH) so that (x0, x1)]⇥ 2 �o(µ0,µ1),
and therefore ⇥ 2 ⇤(�0,�1). The convergence in P2(TH ⇥TH) yields

lim
k

Z

TH⇥TH

hx0 - x1, v0 - v1id⇥sk
=

Z

TH⇥TH

hx0 - x1, v0 - v1id⇥,

so that, passing to the limit in (7.1.13) along the sequence sk, we obtain

[�0,�1]r >
Z

TH⇥TH

hx0 - x1, v0 - v1id⇥

for some ⇥ 2 ⇤(�0,�1).

Corollary 7.1.9. Let �0,�1 2 P2(TH) and µ1 2 P2(H), then

[�,µ1]l = max
�Z

TH⇥H

hx0 - x1, v0id� | � 2 ⇤(�0,µ1)

�
, (7.1.14)

[�0,�1]l = max
�Z

TH⇥TH

hx0 - x1, v0 - v1id⇥ |⇥ 2 ⇤(�0,�1)

�
.

7.2 directional derivatives of the wasserstein distance along
a .c . curves

We present now the differentiability properties of the map I 3 t 7! 1

2
W2

2
(µt,⌫)

along a locally absolutely continuous curve µ : I ! P2(H), with I an open
interval of R and ⌫ 2 P2(H).

Theorem 7.2.1. Let µ : I ! P2(H) be a locally absolutely continuous curve and let
v : I⇥H ! H and A(µ) be as in Theorem 2.4.6. Then, for every ⌫ 2 P2(H) and every
t 2 A(µ), it holds

lim
h#0

W2

2
(µt+h,⌫)-W2

2
(µt,⌫)

2h
=
⇥
(iH, vt)]µt,⌫

⇤
r

, (7.2.1)

lim
h"0

W2

2
(µt+h,⌫)-W2

2
(µt,⌫)

2h
=
⇥
(iH, vt)]µt,⌫

⇤
l

,

so that the map s 7! W2

2
(µs,⌫) is left and right differentiable at every t 2 A(µ). In

particular,
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1. if t 2 A(µ) and ⌫ 2 P2(H) are s.t. there exists a unique optimal transport plan
between µt and ⌫, then the map s 7! W2

2
(µs,⌫) is differentiable at t;

2. there exists a subset A(µ,⌫) ⇢ A(µ) of full Lebesgue measure such that s 7!
W2

2
(µs,⌫) is differentiable in A(µ,⌫) and

1

2

d
dt

W2

2
(µt,⌫) =

⇥
(iH, vt)]µt,⌫

⇤
r
=
⇥
(iH, vt)]µt,⌫

⇤
l

=

Z
hvt(x1), x1 - x2idµ(x1, x2)

for every µ 2 �o(µt,⌫), t 2 A(µ,⌫).

Proof. Let ⌫ 2 P2(H) and for every t 2 I we set �t := (iH, vt)]µt 2 P2(TH). By
Theorem 7.1.8, we have

lim
h#0

W2

2
(exph] �t,⌫)-W2

2
(µt,⌫)

2h
=
⇥
(iH, vt)]µt,⌫

⇤
r

,

lim
h"0

W2

2
(exph] �t,⌫)-W2

2
(µt,⌫)

2h
=
⇥
(iH, vt)]µt,⌫

⇤
l

.

Since exph] �t = (iH + hvt)]µt, then thanks to Theorem 2.4.6 we have that the
above limits coincide respectively with the limits in the statement, for all t 2
A(µ).

Claim (1) comes by the characterizations given in Theorem 7.1.8 and Corollary
7.1.9. Indeed, if there exists a unique optimal transport plan between µt and ⌫,
then

⇥
(iH, vt)]µt,⌫

⇤
r
=
⇥
(iH, vt)]µt,⌫

⇤
l
.

Claim (2) is a simple consequence of the fact that s 7! W2

2
(µs,⌫) is differen-

tiable a.e. in I.

Remark 7.2.2. In Theorem 7.2.1 we can actually replace v with any Borel velocity
field w solving the continuity equation for µ and s.t. kwtkL2

µt

2 L1
loc

(I). Indeed,
we notice that by [5, Lemma 5.3.2],

⇤((iH, vt)]µt,⌫) = {(x0, vt � x0, x1)]� | � 2 �o(µt,⌫)},

⇤((iH,wt)]µt,⌫) = {(x0,wt � x0, x1)]� | � 2 �o(µt,⌫)},

so that, by [5, Proposition 8.5.4], we get
⇥
(iH, vt)]µt,⌫

⇤
r
=
⇥
(iH,wt)]µt,⌫

⇤
r

,
⇥
(iH, vt)]µt,⌫

⇤
l
=
⇥
(iH,wt)]µt,⌫

⇤
l

.

Theorem 7.2.3. Let µ1,µ2
: I ! P2(H) be locally absolutely continuous curves and let

v1, v2 : I⇥ H ! H be the corresponding Wasserstein velocity fields satisfying (2.4.8)
in A(µ1

) and A(µ2
) respectively. Then, for every t 2 A(µ1

)\A(µ2
), it holds

lim
h#0

W2

2
(µ1

t+h
,µ2

t+h
)-W2

2
(µ1

t
,µ2

t
)

2h
=
⇥
(iH, v1t)]µ

1

t , (iH, v2t)]µ
2

t

⇤
r

,

lim
h"0

W2

2
(µ1

t+h
,µ2

t+h
)-W2

2
(µ1

t
,µ2

t
)

2h
=
⇥
(iH, v1t)]µ

1

t , (iH, v2t)]µ
2

t

⇤
l

.
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In particular, there exists a subset A ⇢ A(µ1
) \A(µ2

) of full Lebesgue measure such
that s 7! W2

2
(µ1

s ,µ2
s) is differentiable in A and

1

2

d
dt

W2

2
(µ1

t ,µ2

t) =
⇥
(iH, v1t)]µ

1

t , (iH, v2t)]µ
2

t

⇤
r
=
⇥
(iH, v1t)]µ

1

t , (iH, v2t)]µ
2

t

⇤
l

=

Z
hv1t - v2t , x1 - x2idµ(x1, x2)

(7.2.2)

for every µ 2 �o(µ1
t

,µ2
t
), t 2 A.

The proof of Theorem 7.2.3 follows by the same argument of the proof of
Theorem 7.2.1.

Remark 7.2.4. In general, if µ : I ! P2(H) is a locally absolutely continuous curve
and ⌫ 2 P2(H), then the map I 3 s 7! W2

2
(µs,⌫) is locally absolutely continuous

and thus differentiable in a set of full measure A(µ,⌫) ⇢ I which, in principle,
depends both on µ and ⌫. What Theorem 7.2.1 shows is that, independently of
⌫, there is a full measure set A(µ), depending only on µ, where this map is left
and right differentiable. If moreover ⌫ and t 2 A(µ) are such that there is a
unique optimal transport plan between them, we can actually conclude that the
above map is differentiable at t. The next Example 7.2.5 shows how the result in
Theorem 7.2.1 is optimal, proving the existence of a locally absolutely continuous
curve µ : [0,+1) ! P2(R

2
) s.t. the full measure set of differentiability points of

the map [0,+1) 3 s 7! W2

2
(µs,⌫) depends also on ⌫ 2 P2(R

2
).

Example 7.2.5. It is enough to show that

for every t0 2 A(µ) there exist ⌫0 2 P2(R
2
)

and �1,�2 2 �o(µt0
,⌫0) s.t. L(�1) 6= L(�2),

where A(µ) is as in Theorem 2.4.6 and, for � 2 P2(R
2 ⇥ R

2
) s.t. x0]� = µt, we

define

L(�) :=

Z

H2

hvt(x), x- yid�(x,y).

Indeed this will imply that
⇥
(iH, vt0)]µt0

,⌫0
⇤
r
6=
⇥
(iH, vt0)]µt0

,⌫0
⇤
l
, hence the

non differentiability at t0.
Let us consider two regular functions u : [0,+1) ! R

2 and r : [0,+1) ! R

s.t. |ut| = 1 for every t > 0. Let ! : [0,+1) ! R
2 be defined as the orthogonal

direction to ut:

!t :=

 
0 -1

1 0

!

ut, t > 0.

Being the norm of u constant in time, there exists some regular � : (0,+1) ! R

s.t. u̇t = �t!t for every t > 0. Finally we define

x1 : [0,+1) ! R
2, x1(t) := rtut,

x2 : [0,+1) ! R
2, x2(t) := -rtut,

µ : [0,+1) ! P2(R
2
), µt :=

1

2

�
�x1(t) + �x2(t)

�
.
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Observe that ẋ1(t) = ṙtut + rtu̇t = -ẋ2(t) for every t > 0. Moreover, for every
' 2 C1

c (R
2
) and t > 0, we have

d
dt

Z

R2

'dµt =
d
dt

✓
1

2
'(x1(t)) +

1

2
'(x2(t))

◆

=
1

2
r'(x1(t)) ẋ1(t) +

1

2
r'(x2(t)) ẋ2(t)

=

Z

R2

hvt(x),r'(x)idµt,

where

vt(x) :=

8
<

:
ẋ1(t) if x = x1(t),

ẋ2(t) if x = x2(t),
t > 0.

Hence, the above defined vector field vt solves the continuity equation with µt.
Let t0 2 A(µ) and let us define !0 := !(t0), ⌫0 :=

1

2
�!0

+
1

2
�-!0

and the plans
�1,�2 2 �o(µt0

,⌫0) by

�1 :=
1

2
�x1(t0) ⌦ �!0

+
1

2
�x2(t0) ⌦ �-!0

,

�2 :=
1

2
�x2(t0) ⌦ �!0

+
1

2
�x1(t0) ⌦ �-!0

.

Notice that they are optimal since any plan in �(µt0
,⌫0) has the same cost, being

the points!0, x1(t0), x2(t0),-!0 the vertexes of a rhombus. Finally, we compute
L(�1) and L(�2):

L(�1) =

Z

R2⇥R2

hx- y, vt(x)id�1(x,y)

=
1

2
hẋ1(t0), x1(t0)-!0i+

1

2
hẋ2(t0), x2(t0) +!0i

= hẋ1(t0), x1(t0)-!0i = hṙt0ut0
+ rt0u̇t0

, rt0ut0
-!0i

= rt0 ṙt0 - rt0�t0 ,

L(�2) =

Z

R2⇥R2

hx- y, vt(x)id�2(x,y)

=
1

2
hẋ2(t0), x2(t0)-!0i+

1

2
hẋ1(t0), x1(t0) +!0i

= hẋ1(t0), x1(t0) +!0i
= hṙt0ut0

+ rt0u̇t0
, rt0ut0

+!0i
= rt0 ṙt0 + rt0�t0 .

In this way, if rt0 6= 0 and �t0 6= 0 we have L(�1) 6= L(�2). A possible choice for
u and r satisfying the assumptions is

ut := (cos(t), sin(t)), rt = 1, t > 0,

so that �t = 1 for every t > 0.
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We conclude this section with the following property of the upper derivative
of a distance (we state it for the Wasserstein distance, but a general distance
could be considered).

Lemma 7.2.6. Let µ : I ! P2(X), ⌫ 2 P2(X), t 2 I, �t 2 �o(µt,⌫), and consider
the constant speed geodesic ⌫t : [0, 1] ! P2(X) defined by ⌫ts := (xs)]�t for every
s 2 [0, 1]. The upper right and left Dini derivatives b±

: (0, 1] ! R defined by

b+
(s) :=

1

2s
lim sup

h#0

W2

2
(µt+h,⌫ts)-W2

2
(µt,⌫ts)

h
,

b-
(s) :=

1

2s
lim sup

h#0

W2

2
(µt,⌫ts)-W2

2
(µt-h,⌫ts)

h

are respectively decreasing and increasing in (0, 1].

Proof. Take 0 6 s 0 < s 6 1. Since ⌫t : [0, 1] ! P2(X) is a constant speed geodesic
from µt to ⌫, we have

W2(µt,⌫ts) = W2(µt,⌫t
s 0) +W2(⌫

t

s 0 ,⌫ts),

then, by triangular inequality

W2(µt+h,⌫ts)-W2(µt,⌫ts) 6 W2(µt+h,⌫t
s 0) +W2(⌫

t

s 0 ,⌫ts)-W2(µt,⌫ts)
= W2(µt+h,⌫t

s 0)-W2(µt,⌫t
s 0).

Dividing by h > 0 and passing to the limit as h # 0 we obtain that the function
a : [0, 1] ! R defined by

a+
(s) := lim sup

h#0

W2(µt+h,⌫ts)-W2(µt,⌫ts)
h

is decreasing. It is then sufficient to observe that for s > 0

b+
(s) = a+

(s)
W2(µt,⌫ts)

s
= a+

(s)W2(µt,⌫).

The monotonicity property of b- follows by the same argument.

7.3 convexity and semicontinuity of duality pairings

We present a few results about the semicontinuity and convexity properties of
[·, ·]

r
and [·, ·]

l
.

We use the notation for µ 2 P(H)

m2

2
(µ) :=

Z

H

|x|2 dµ(x), µ 2 P(H). (7.3.1)

Lemma 7.3.1. Let (�n)n2N ⇢ P2(TH) be converging to � in Psw

2
(TH), and let

(⌫n)n2N ⇢ P2(H) be converging to ⌫ in P2(H). Then

lim inf
n

[�n,⌫n]r > [�,⌫]
r

and lim sup
n

[�n,⌫n]l 6 [�,⌫]
l

. (7.3.2)

Finally, if (�i
n)n2N, i = 0, 1, are sequences converging to �i in Psw

2
(TH) then

lim inf
n!1

⇥
�0

n,�1

n

⇤
r
>
⇥
�0,�1

⇤
r

, lim sup
n!1

⇥
�0

n,�1

n

⇤
l
>
⇥
�0,�1

⇤
l

. (7.3.3)



7.3 convexity and semicontinuity of duality pairings 127

Proof. We just consider the proof of the first inequality (7.3.2); the other state-
ments follow by similar arguments and by Remark 7.1.5.

We can extract a subsequence of (�n)n2N (not relabeled) s.t. the lim inf is
achieved as a limit. We have to prove that

lim
n

[�n,⌫n]r > [�,⌫]
r

. (7.3.4)

For every n 2 N take �n 2 ⇤o(�n,⌫n) and #̄n = (x0, x1)]�n. Since the
marginals of #̄n are converging w.r.t. W2, the family (#̄n)n2N is relatively com-
pact in P2(H

2
). Hence, (�n)n2N is relatively compact in Psws

2
(TH ⇥ H) by

Proposition 6.3.3, since the moments
R
|v0|

2 d�n(x0, v0, x1) = |�n|
2

2
are uniformly

bounded by assumption. Thus, possibly passing to a further subsequence, we
have that (�n)n2N converges to some � in Psws

2
(TH ⇥ H). In particular � 2

⇤(�,⌫) since optimality of the H
2 marginals is preserved by narrow conver-

gence. Indeed, it sufficies to use [5, Proposition 7.1.3] noting that
Z
|x0 - x1|

2 d�n 6 2m2

2
(x]�n) + 2m2

2
(⌫n) 6 K,

for some K > 0.
The relation in (6.3.3) then yields

lim
n!1

[�n,⌫n]r = lim
n!1

Z
hv0, x0 - x1id�n =

Z
hv0, x0 - x1id�

which yields (7.3.4) since the r.h.s. is larger than [�,⌫]
r

by Theorem 7.1.8.

Remark 7.3.2. Notice that in the special case in which ⇤(�,⌫) is a singleton, then
the limit exists and it holds

lim
n!1

[�n,⌫n]r = [�,⌫]
r

, lim
n!1

[�n,⌫n]l = [�,⌫]
l

.

Lemma 7.3.3. For every µ,⌫ 2 P2(H) the maps � 7! [�,⌫]
r

and (�, ) 7! [�, ]
r

(resp. � 7! [�,⌫]
l

and (�, ) 7! [�, ]
l
) are convex (resp. concave) in P2(TH|µ) and

P2(TH|µ)⇥P2(TH|⌫).

Proof. We prove the convexity of (�, ) 7! [�, ]
r

in P2(TH|µ)⇥ P2(TH|⌫); the
argument of the proofs of the other statements are completely analogous.

Let �k 2 P2(TH|µ),  k 2 P2(TH|⌫), and let �k > 0, with
P

k
�k = 1, k =

1, · · · ,K. We set � =
P

K

k=1
�k�k,  =

P
K

k=1
�k k. For every k let us select

⇥k 2 ⇤(�k, k) such that

[�k, k]r =

Z
hv1 - v0, x1 - x0id⇥k.

It is not difficult to check that ⇥ :=
P

k
�k⇥k 2 ⇤(�, ) so that

[�, ]
r
6
Z
hv1 - v0, x1 - x0id⇥

=

X

k

�k

Z
hv1 - v0, x1 - x0id⇥k

=

X

k

�k [�k, k]r .
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7.4 behaviour of duality pairings along geodesics

We know that the quantities [·, ·]
r

and [·, ·]
l

may be different when �o(µ0,µ1) is
not a singleton. We thus expect a nice behaviour along geodesics. In the follow-
ing definition, we use the notation

xt(x0, x1) := (1- t)x0 + tx1, v0(x0, v0, x1) := v0

for every (x0, v0, x1) 2 TH ⇥ H, t 2 [0, 1].

Definition 7.4.1. For # 2 P2(H ⇥ H), t 2 [0, 1], #t = xt]# and �t 2 P2(TH|#t),
we set

�t(�t,#) :=
�
� 2 P2(TH ⇥ H) | (x0, x1)]� = # and (xt � (x0, x1), v0)]� = �t

 
,

(7.4.1)

which is not empty since #t = xt]# = x]�t. We set

[�t,#]
b,t :=

Z D
x0 - x1,b�t

(xt(x0, x1))
E

d#(x0, x1),

[�t,#]r,t := min
�Z

hx0 - x1, v0id�(x0, v0, x1) | � 2 �t(�t,#)
�

,

[�t,#]l,t := max
�Z

hx0 - x1, v0id�(x0, v0, x1) | � 2 �t(�t,#)
�

.

If moreover �0 2 P2(TH|#0), �1 2 P2(TH|#1), # 2 �(#0, #1), we define

[�0,�1]r,# := [�0,#]r,0 - [�1,#]l,1,
[�0,�1]l,# := [�0,#]l,0 - [�1,#]r,1.

If (�t)x is the disintegration of �t with respect to #t = x]�t, we can consider
the barycentric coupling �t :=

R
H⇥H

(�t)xt d# 2 �t(�t,#), i.e.
Z
 (x0, v0, x1)d�t =

Z h Z
 (x0, v0, x1)d(�t)(1-t)x0+tx1

(v0)
i

d#(x0, x1)

so that [�t,#]
b,t =

R
hv0, x0 - x1id�t and

[�t,#]r,t 6 [�t,#]
b,t 6 [�t,#]l,t.

If we set

s : H
2 ! H

2, s(x0, x1) := (x1, x0), (7.4.2)

with an analogous definition in TH ⇥ H, given by s(x0, v0, x1) := (x1, v0, x0), it
is easy to check that

� 2 �t(�t,#) , s]� 2 �1-t(�t, s]#)

so that

[�t,#]r,t = -[�t, s]#]l,1-t, [�t,#]l,t = -[�t, s]#]r,1-t. (7.4.3)

(7.1.11) and (7.1.14) can be simplified in some situations, as the following remark
clarifies.
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Remark 7.4.2 (Particular cases). Suppose that # 2 P2(H
2
), t 2 [0, 1], #t = xt]#,

�t 2 P2(TH|#t) and xt : H
2 ! H is #-essentially injective so that # is concen-

trated on a Borel map

(X0

t ,X1

t) : H ! H ⇥ H, i.e. # = (X0

t ,X1

t)]#t.

In this case �t(�t,#) contains a unique element given by (X0
t
� x, v,X1

t
� x)]�t

and

[�t,#]r,t = [�t,#]l,t = [�t,#]
b,t

=

Z
hv,X0

t(x)-X1

t(x)id�t(x, v) =
Z
hb�t

,X0

t -X1

tid#t.
(7.4.4)

When t = 0 and # is the unique element of �o(#0, #1) then X0
t
(x) = x and we

obtain

[�t, #1]r = [�t, #1]l = [�t,#]r,0 = [�t,#]l,0

=

Z
hv, x-X1

t(x)id�t(x, v) =
Z
hb�t

, x-X1

t(x)id#0(x).

Another simple case is when

�t = (iH,w)]#t

for some vector field w 2 L2
#t
(H; H) (i.e. its disintegration �x w.r.t. #t takes the

form �w(x) and w = b�t
). We have

[�t,#]r,t = [�t,#]l,t =

Z D
w((1- t)x0 + tx1), x0 - x1

E
d#(x0, x1).

In particular we get

[�t, #1]r = min

�Z
hw(x), x0 - x1id#(x0, x1) | # 2 �o(#0, #1)

✏

.

The following is a simple property of the brackets under restriction.

Lemma 7.4.3. For every # 2 P2(H
2
), every 0 6 s < t 6 1 and every � 2

P2(TH|xs]#),  2 P2(TH|xt]#) we have

[�,#]r,s =
1

t- s
[�, (xs, xt)]#]r,0, [ ,#]l,t =

1

t- s
[ , (xs, xt)]#]l,1. (7.4.5)

Proof. If we define T : TH ⇥ H ! TH ⇥ H and L : P2(TH ⇥ H) ! R as

T(x0, v0, x1) := (xs(x0, x1), v0, xt(x0, x1)),

L(�) :=

Z

TH⇥H

hv0, x0 - x1id�(x0, v0, x1),

it is clear that

[�,µ]r,s = inf {L(�) | � 2 �s(�,µ)} ,
[�, (xs, xt)]µ]r,0 = inf

�
L(�) | � 2 �0(�, (xs, xt)]µ)

 
.

The first equality in the statement follows by T](�s(�,µ)) = �0(�, (xs, xt)]µ) and
L(T]�) = (t- s)L(�) for every � 2 P2(TH ⇥ H). The second equality follows
from the first one and (7.4.2).
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The above Remark 7.4.2 applies to the case of geodesics in P2(H).

Lemma 7.4.4. Let µ0,µ1 2 P2(H), µ : [0, 1] ! P2(H) be a constant speed geodesic
induced by an optimal plan µ 2 �o(µ0,µ1) by the relation

µt = xt]µ, t 2 [0, 1], where xt(x0, x1) = (1- t)x0 + tx1.

If t 2 (0, 1), �t 2 P2(TH|µt), µ̂ = s]µ 2 �o(µ1,µ0), with s the reversion map in
(7.4.2), then

1

1- t
[�t,µ1]r =

1

1- t
[�t,µ1]l

= [�t,µ]r,t

= [�t,µ]l,t

= -
1

t
[�t,µ0]r

= -
1

t
[�t,µ0]l

= -[�t, µ̂]r,1-t

= -[�t, µ̂]l,1-t.

(7.4.6)

Proof. The crucial fact is that xt : H
2 ! H is injective on supp(µ) and thus a

bijection on its image supp(µt). Indeed, take (x0, x1), (x 0
0

, x 0
1
) 2 supp(µ), then

��xt(x0, x1)- xt(x 0
0

, x 0
1
)

��2 = (1- t)2|x0 - x 0
0
|2 + t2|x1 - x 0

1
|2

+ 2t(1- t)hx0 - x 0
0

, x1 - x 0
1
i

> (1- t)2|x0 - x 0
0
|2 + t2|x1 - x 0

1
|2

thanks to the cyclical monotonicity of supp(µ).
Then, for every x 2 supp(µt), there exists a unique couple

(x0, x1) = (X0

t(x),X
1

t(x)) 2 supp(µ)

s.t. x = (1 - t)x0 + tx1, where we refer to Remark 7.4.2 for the definitions of
X0
t

,X1
t

(cf. also [107, Theorem 5.29]). Hence, in Figure 1 all maps are bijections,

supp(µt0) supp(µt1)supp(µ)

supp(µt)

(xt, x0) (xt, x1)

xt

(iX,X0
t
) (iX,X1

t
)

Figure 1: Interpolation of plans and maps.

where µt1 = (xt, x1)]µ = (iH,X1
t
)]µt is the unique element of �o(µt,µ1) and
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µt0 = (xt, x0)]µ = (iH,X0
t
)]µt = (x1-t, x1)]µ̂ is the unique element of �o(µt,µ0)

(see Theorem 2.4.4). Since

x-X1
t
(x)

1- t
=

x- x1
1- t

= x0 - x1 = -
x- x0

t
= -

x-X0
t
(x)

t
,

and ⇤(�t,µ1) = {(iTH,X1
t
� x)]�t} thanks to Theorem 2.4.4, by Theorem 7.1.8

and Corollary 7.1.9 we have

[�t,µ1]r = [�t,µ1]l =

Z

TH

hv, x-X1

t(x)id�t(x, v).

Analogously, ⇤(�t,µ0) = {(iTH,X0
t
� x)]�t}. Hence

[�t,µ0]r = [�t,µ0]l =

Z

TH

hv, x-X0

t(x)id�t(x, v).

Also recalling (7.4.3) and (7.4.4) we conclude.

7.5 multivalued probability vector fields and dissipativity

Definition 7.5.1. A multivalued probability vector field F is a nonempty subset of
P2(TH) with domain D(F) := x](F) = {x]� : � 2 F}. Given µ 2 P2(H), we define
the section F[µ] of F as

F[µ] := (x])-1
(µ)\ F =

�
� 2 F | x]� = µ

 
.

A selection F 0 of F is a subset of F such that D(F 0
) = D(F). We call F a probability

vector field (PVF) if x] is injective in F, i.e. F[µ] contains a unique element for
every µ 2 D(F). A MPVF F is a vector field if for every µ 2 D(F), the section F[µ]
contains a unique element � concentrated on a map, i.e. � = (iH,b�)]µ.

Remark 7.5.2. We can equivalently formulate Definition 7.5.1 by considering F as
a multifunction, as in the case, e.g., of the Wasserstein subdifferential @F of a
function F : P2(H) ! (-1,+1], see [5, Ch. 10] and Section 9.5.1. According to
this viewpoint, a MPVF is a set-valued map F : P2(H) � D(F) ◆ P2(TH) such
that x]� = µ for all � 2 F[µ]. In this way, each section F[µ] is nothing but the
image of µ 2 D(F) through F. In this case, probability vector fields correspond to
single valued maps: this notion has been used in [94] with the aim of describ-
ing a sort of velocity field on P(H), and later in [93] dealing with Multivalued
Probability Vector Fields (called Probability Multifunctions).

Definition 7.5.3 (Metrically �-dissipative MPVF). A MPVF F ⇢ P2(TH) is (met-
rically) �-dissipative, with � 2 R, if

[�0,�1]r 6 �W2

2
(µ0,µ1) for every �0,�1 2 F, µi = x]�i. (7.5.1)

We say that F is (metrically) �-accretive if -F = {-� : � 2 F} (recall (7.1.10)) is
-�-dissipative, i.e.

[�0,�1]l > �W2

2
(µ0,µ1) for every �0,�1 2 F, µi = x]�i.
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In Section 9.5 we present a few examples of �-dissipative MPVFs.

Remark 7.5.4. Notice that (7.5.1) is equivalent to asking for the existence of a
coupling ⇥ 2 ⇤(�0,�1) (thus (x0, x1)]⇥ is optimal between µ0 = x]�0 and
µ1 = x]�1) such that

Z
hv1 - v0, x1 - x0id⇥ 6 �W2

2
(µ0,µ1) = �

Z
|x1 - x0|

2 d⇥.

The �-dissipativity condition (7.5.1) has a natural metric interpretation: if�0,�1 2
F with µ0 = x]�0, µ1 = x]�1, performing a first order Taylor expansion of the
map

t 7! 1

2
W2

2
(expt�0, expt�1)

at t = 0, recalling Definition 7.1.4, we have

W2

2
(expt�0, expt�1) 6 (1+ 2�t)W2

2
(µ0,µ1) + o(t) as t # 0.

Remark 7.5.5. Thanks to Corollary 7.1.6, (7.5.1) implies the weaker condition

[�0,µ1]r+ [�1,µ0]r 6 �W2

2
(µ0,µ1) for every �0,�1 2 F, µi = x]�i. (7.5.2)

It is clear that the inequality of (7.5.2) implies the inequality of (7.5.1) whenever
�o(µ0,µ1) contains only one element. More generally, we will see in Corollary
7.6.6 that (7.5.2) is in fact equivalent to (7.5.1) when D(F) is geodesically convex
(according to Definition 2.4.2).

Analogously to the Hilbertian setting, �-dissipativity can be reduced to dissi-
pativity (meaning 0-dissipativity) as shown in Lemma 7.5.6. Let us introduce the
map

L� : TH ! TH, L�(x, v) := (x, v- �x).

Lemma 7.5.6. F is a �-dissipative MPVF (resp. satisfies (7.5.2)) if and only if F� :=

L�] (F) = {L�]� | � 2 F} is dissipative (resp. satisfies (7.5.2) with � = 0).

Proof. Let us first check the case of (7.5.2). If � 2 P2(TH ⇥ H) with (xi)]� = µi,
i = 0, 1, the transformed plan �� := (L�, iH)]� satisfies

Z
hv0, x0 - x1id�� =

Z
hv0 - �x0, x0 - x1id�

=

Z
hv0, x0 - x1id�-

�

2

Z
|x0 - x1|

2 d� (7.5.3)

+
�

2

⇣
m2

2
(µ1)-m2

2
(µ0)

⌘
. (7.5.4)

Since � 2 ⇤o(�0,µ1) if and only if �� 2 ⇤o(L
�

]�0,µ1), (7.5.3) yields
Z
hv0, x0 - x1id�� =

Z
hv0, x0 - x1id�

-
�

2

⇣
m2

2
(µ0)-m2

2
(µ1) +W2

2
(µ0,µ1)

⌘
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and therefore

⇥
L�]�0,µ1

⇤
r
= [�0,µ1]r -

�

2

⇣
m2

2
(µ0)-m2

2
(µ1) +W2

2
(µ0,µ1)

⌘
. (7.5.5)

Using the corresponding identity for
h
L�]�1,µ0

i

r

we obtain that F� is dissipative.

Similarly, if ⇥ 2 P2(TH ⇥ TH) with xi]⇥ = µi, the plan ⇥� := (L�,L�)]⇥
satisfies

Z
hv0 - v1, x0 - x1id⇥� =

Z
hv0 - v1 - �(x0 - x1), x0 - x1id⇥

=

Z
hv0 - v1, x0 - x1id⇥- �

Z
|x0 - x1|

2 d⇥.

(7.5.6)

Reasoning with a similar argument as for the case of assumption (7.5.2), using
the identity (7.5.6), we get the equivalence between the �-dissipativity of F and
the dissipativity of F�.

We conclude the section showing that a Lipschitz like condition similar to the
one considered in [94] (see Section 9.5.5) implies �-dissipativity.

Lemma 7.5.7. Suppose that the MPVF F satisfies

W2(F[⌫], F[⌫ 0
]) 6 LW2(⌫,⌫ 0

) for every ⌫,⌫ 0 2 D(F),

where W2 : P2(TH)⇥P2(TH) ! [0,+1) is defined by

W2

2
(�0,�1) = inf

�Z

TH⇥TH

|v0 - v1|
2 d⇥(x0, v0, x1, v1) :⇥ 2 ⇤(�0,�1)

�
,

with ⇤(·, ·) as in Definition 7.1.7. Then F is �-dissipative according to (7.5.1), for � :=

1

2
(1+ L2)

Proof. Let ⌫ 0,⌫ 00 2 D(F), then by Theorem 7.1.8 and Young’s inequality, we have

⇥
F[⌫ 0

], F[⌫ 00
]
⇤
r
= min

�Z

TH⇥TH

hx 0
- x 00, v 0 - v 00id⇥ : ⇥ 2 ⇤(F[⌫ 0

], F[⌫ 00
])

�

6 1

2

�
W2

2
(⌫ 0,⌫ 00

) +W2

2
(F[⌫ 0

], F[⌫ 00
])
�

6 L2 + 1

2
W2

2
(⌫ 0,⌫ 00

).

7.6 behaviour of dissipative mpvfs along geodesics

We want to study the interaction between MPVFs and geodesic. In the classical
Hilbert setting, given a map F : H ! H in a Hilbert space H, it is easy to see that
the function

f(t) := hF(xt), x0 - x1i, xt = (1- t)x0 + tx1, t 2 [0, 1] (7.6.1)
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is monotone increasing.

Let F ⇢ P2(TH), µ0,µ1 2 D(F), µ 2 �o(µ0,µ1). In order to compute the
measure-theoretic analogue of the scalar product in (7.6.1), we need to define
the set

I(µ|F) :=
⌦
t 2 [0, 1] : xt]µ 2 D(F)

↵
, (7.6.2)

since we can evaluate the MPVF F along geodesics only for time instants t 2 [0, 1]
at which they lie inside the domain.

Definition 7.6.1. Let F ⇢ P2(TH) be a MPVF. Let µ0,µ1 2 D(F), µ 2 �o(µ0,µ1)

and let µt := xt]µ, t 2 [0, 1]. For every t 2 I(µ|F) we define

[F,µ]r,t := sup
⌦
[�t,µ]r,t | �t 2 F[µt]

↵
,

[F,µ]l,t := inf
⌦
[�t,µ]l,t | �t 2 F[µt]

↵
.

Theorem 7.6.2. Let us suppose that the MPVF F satisfies (7.5.2), let µ0,µ1 2 D(F),
and let µ 2 �o(µ0,µ1). Then the following properties hold

1. [F,µ]l,t 6 [F,µ]r,t for every t 2 (0, 1)\ I(µ|F);

2. [F,µ]r,s 6 [F,µ]l,t + �(t- s)W2

2
(µ0,µ1) for every s, t 2 I(µ|F), s < t;

3. the maps

t 7! [F,µ]r,t + �tW
2

2
(µ0,µ1) and t 7! [F,µ]l,t + �tW

2

2
(µ0,µ1)

are increasing respectively in I(µ|F) \ {1} and in I(µ|F) \ {0};

4. if t0 is a right accumulation point of I(µ|F), then

lim
t#t0

[F,µ]r,t = lim
t#t0

[F,µ]l,t (7.6.3)

and these right limits exist. If, instead, t0 is a left accumulation point of I(µ|F),
the same holds with the right limits in (7.6.3) replaced by the left limits at t0;

(5) [F,µ]l,t = [F,µ]r,t at every interior point t of I(µ|F) where one of them is contin-
uous.

Proof. Throughout all the proof we set

fr(t) := [F,µ]r,t and fl(t) := [F,µ]l,t. (7.6.4)

Thanks to Lemma 7.5.6 and in particular to (7.5.5), it is easy to check that it is
sufficient to consider the dissipative case � = 0.

1. It is a direct consequence of Lemma 7.4.4 and the definitions of fr and fl.
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2. We prove that for every �s 2 F[µs] and � 0
t
2 F[µt] it holds

[�s,µ]r,s 6 [� 0
t,µ]l,t. (7.6.5)

The thesis will follow immediately passing to the sup over �s 2 F[µs] in
the l.h.s. and to the inf over � 0

t
2 F[µt] in the r.h.s.. It is enough to prove

(7.6.5) in case at least one between s, t belongs to (0, 1). Let us define the
map L : P2(TH ⇥ H) ! R as

L(�) :=

Z

TH⇥H

hv0, x0 - x1id�(x0, v0, x1) � 2 P2(TH ⇥ H).

Observe that, since it never happens that s = 0 and t = 1 at the same time,
the map Ts,t : �s(�s,µ) ! ⇤(�s,µt), with �s(·, ·) as in (7.4.1) and ⇤(·, ·) as
in Definition 7.1.7, defined as

Ts,t(�) :=
�
xs � (x0, x1), v0, xt � (x0, x1)

�
] �

is a bijection s.t. (t - s)L(�) = L(Ts,t(�)) for every � 2 �s(�s,µ). This
immediately gives that

(t- s)[�s,µ]r,s = [�s,µt]r .

In the same way we can deduce that

(s- t)[� 0
t,µ]l,t =

⇥
� 0

t,µs

⇤
r

.

Thanks to the dissipativity assumption (7.5.2) of F, we get

(t- s)[�s,µ]r,s - (t- s)[� 0
t,µ]l,t = [�s,µt]r +

⇥
� 0

t,µs

⇤
r
6 0.

3. Combining (1) and (2) we have that for every s, t 2 I(µ|F) with 0 < s < t < 1

it holds

fl(s) 6 fr(s) 6 fl(t) 6 fr(t), (7.6.6)

with fr, fl as in (7.6.4). This implies that both fl and fr are increasing in
I(µ|F)\ (0, 1). Observe that, again combining (1) and (2), it also holds

fr(0) 6 fl(t) 6 fr(t),
fl(t) 6 fr(t) 6 fl(1)

for every t 2 I(µ|F) \ {0, 1}, and then fr is increasing in I(µ|F) \ {1} and fl is
increasing in I(µ|F) \ {0}.

4. It is an immediate consequence of (7.6.6).

5. It is a straightforward consequence of (4).
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Thanks to Theorem 7.6.2(4), we have

lim
t#0

[F,µ]r,t = lim
t#0

[F,µ]l,t,

lim
t"1

[F,µ]r,t = lim
t"1

[F,µ]l,t,

and those limits exist whenever the starting time t0 = 0 and the final time
t1 = 1 are accumulation points of I(µ|F), respectively. Due to the importance
played by these objects in Section 8.1, we give the following definitions. These
are intended to weaken the requirement for the operator’s domain D(F) to be
open or geodesically convex.

Definition 7.6.3. Let F ⇢ P2(TH), µ0,µ1 2 D(F), µ 2 �o(µ0,µ1). We define the
sets

� io(µ0,µ1|F) :=
⌦
µ 2 �o(µ0,µ1) : i is an acc. point of I(µ|F)

↵
, i = 0, 1

(7.6.7)

�01o (µ0,µ1|F) := �0o(µ0,µ1|F)\ �1o(µ0,µ1|F), (7.6.8)
�(µ0,µ1|F) :=

�
µ 2 �(µ0,µ1) | xt]µ 2 D(F) for every t 2 [0, 1]

 
(7.6.9)

Notice that these sets depend on F just through D(F). In particular, if µ0,µ1 2
D(F) and D(F) is open or geodesically convex according to Definition 2.4.2 then
�01o (µ0,µ1|F) 6= ;.

By the previous discussion, the next definition is well posed.

Definition 7.6.4. Let us suppose that the MPVF F satisfies (7.5.2), let µ0,µ1 2
D(F).

If µ 2 �0o(µ0,µ1|F) we set [F,µ]0+ := lim
t#0

[F,µ]r,t = lim
t#0

[F,µ]l,t.

If µ 2 �1o(µ0,µ1|F) we set [F,µ]1- := lim
t"1

[F,µ]r,t = lim
t"1

[F,µ]l,t.

In the following statements, we make use of the objects introduced in Defini-
tion 7.6.3 in order to get refined dissipativity conditions involving the limiting
pseudo-scalar products of Definition 7.6.4. These results will be useful in the se-
quel: in Proposition 7.7.3 they allow to get a dissipativity property of a suitable
notion of extension F̂ of F; in Section 8.1 (see in particular Lemma 8.1.3) they are
relevant to study the properties of so-called �-EVI solutions for a �-dissipative
MPVF F.

Corollary 7.6.5. Let us keep the same notation of Theorem 7.6.2 and let s 2 I(µ|F) \
(0, 1) with � 2 F[µs].

1. If µ 2 �0o(µ0,µ1|F), we have that

[F,µ]0+ 6 [�,µ]l,s + �sW
2
= [�,µ]r,s + �sW

2; (7.6.10)

if moreover �0 2 F[µ0] then

[�0,µ1]r 6 [�0,µ]r,0 6 [F,µ]0+. (7.6.11)
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2. If µ 2 �1o(µ0,µ1|F), we have that

[�,µ]l,s - �(1- s)W2
= [�,µ]r,s - �(1- s)W2 6 [F,µ]1-;

if moreover �1 2 F[µ1] then

[F,µ]1- 6 [�1,µ]l,1 6 - [�1,µ0]r (7.6.12)

3. In particular, for every�0 2 F[µ0],�1 2 F[µ1] and µ 2 �01o (µ0,µ1|F) we obtain

[�0,�1]r,µ 6 [F,µ]0+ - [F,µ]1- 6 �W2

2
(µ0,µ1). (7.6.13)

(7.6.13) immediately yields the following property.

Corollary 7.6.6. Suppose that a MPVF F satisfies

for every µ0,µ1 2 D(F) the set �01o (µ0,µ1|F) of (7.6.8) is not empty (7.6.14)

(e.g. if D(F) is open or geodesically convex), then F is �-dissipative according to (7.5.1)
if and only if it satisfies (7.5.2).

Proposition 7.6.7. Let F ⇢ P2(TH) be a MPVF satisfying (7.5.2), let µ0 2 D(F) and
let � 2 P2(TH|µ0). Consider the following statements

(P1) [�,µ]
r
+ [ ,µ0]r 6 �W2

2
(µ0,µ) for every  2 F with µ = x] ;

(P2) for every µ 2 D(F) there exists  2 F[µ] s.t. [�,µ]
r
+ [ ,µ0]r 6 �W2

2
(µ0,µ);

(P3) [�,µ]r,0 6 [F,µ]0+ for every µ1 2 D(F), µ 2 �0o(µ0,µ1|F);

(P4) [�,µ]r,0 6 [F,µ]0+ for every µ1 2 D(F), µ 2 �0o(µ0,µ1|F);

(P5) [�,µ]r,0 6 �W2

2
(µ0,µ1) + [F,µ]1- for every µ1 2 D(F), µ 2 �1o(µ0,µ1|F);

(P6) [�,µ]r,0 6 �W2

2
(µ0,µ1) + [F,µ]1- for every µ1 2 D(F), µ 2 �1o(µ0,µ1|F).

Then the following hold

1. (P1) ) (P2) ) (P3) ) (P4);

2. (P1) ) (P2) ) (P5) ) (P6);

3. if for every µ1 2 D(F) �0o(µ0,µ1|F) 6= ;, then (P4) ) (P1) (in particular, (P1),
(P2), (P3), (P4) are equivalent);

4. if for every µ1 2 D(F) �1o(µ0,µ1|F) 6= ;, then (P6) ) (P1) (in particular, (P1),
(P2), (P5), (P6) are equivalent).
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Proof. We first prove that (P2) ) (P3),(P5). Let us choose an arbitrary µ1 2 D(F);
by the definition of [F,µ]r,t and arguing as in the proof of Theorem 7.6.2(2), for
all µ 2 �o(µ0,µ1) and t 2 I(µ|F) there exists  t 2 F[µt] such that

[�,µ]r,0 =
1

t
[�,µt]r

6 -
1

t
[ t,µ0]r + t�W2

2
(µ0,µ1)

= [ t,µ]r,t + t�W2

2
(µ0,µ1)

6 [F,µ]r,t + t�W2

2
(µ0,µ1),

where we also used (7.4.6). If µ 2 �0o(µ0,µ1|F), by passing to the limit as t # 0 we
get (P3).

In the second case, assuming that µ 2 �1o(µ0,µ1|F), we can pass to the limit as
t " 1 and we get (P5).

We now prove item (3). Let µ1 2 D(F),  2 F[µ1], µ 2 �0o(µ0,µ1|F), s 2
I(µ|F) \ (0, 1), �s 2 F[µs], with µs = xs]µ. Assuming (P4) and using (7.6.11),
(7.6.10), (7.4.6) and (7.5.2), we have

[�,µ1]r 6 [�,µ]r,0 6 [F,µ]0+ 6 [�s,µ]r,s + �sW
2

2
(µ0,µ1)

=
1

1- s
[�s,µ1]r + �sW

2

2
(µ0,µ1)

6 -
1

1- s
[ ,µs]r + �(1+ s)W2

2
(µ0,µ1).

By Lemma 7.3.1, letting s # 0 we get (P1). Item (4) follows by (7.6.11), (7.6.12).

7.7 extensions of dissipative mpvfs

Let us describe a few properties of extensions of �-dissipative MPVFs. The first
one is about the sequential closure in Psw

2
(TH): given A ⇢ P2(TH), we denote

by cl(A) its sequential closure defined by

cl(A) :=

⌦
� 2 P2(TH) : 9 (�n)n2N ⇢ A : �n ! � in Psw

2
(TH)

↵
.

Proposition 7.7.1. If F is a �-dissipative MPVF according to (7.5.1), then its sequential
closure cl(F) is �-dissipative as well according to (7.5.1).

Proof. If �i, i = 0, 1, belong to cl(F), we can find sequences (�i
n)n2N ⇢ F such

that �i
n ! �i in Psw

2
(TH) as n ! 1, i = 0, 1. It is then sufficient to pass to the

limit in the inequality
⇥
�0

n,�1

n

⇤
r
6 �W2

2
(µ0

n,µ1

n), µi

n = x]�i

n

using the lower semicontinuity property (7.3.3) and the fact that convergence in
Psw

2
(TH) yields µi

n ! x]�i in P2(H) as n ! 1.
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A second result concerns the convexification of the sections of F. For every
µ 2 D(F) we set

co(F)[µ] : = the convex hull of F[µ]

=

�
X

k

↵k�k : �k 2 F[µ],↵k > 0,
X

k

↵k = 1

✏

,
(7.7.1)

co(F)[µ] := cl(co(F)[µ]). (7.7.2)

Notice that if F[µ] is bounded in P2(TH) then co(F)[µ] coincides with the closed
convex hull of F[µ].

Proposition 7.7.2. If F is �-dissipative according to (7.5.1), then co(F) and co(F) are
�-dissipative as well according to (7.5.1).

Proof. By Proposition 7.7.1 and noting that co(F) ⇢ cl(co(F)), it is sufficient to
prove that co(F) is �-dissipative. By Lemma 7.5.6 it is not restrictive to assume
� = 0. Let�i 2 co(F)[µi], i = 0, 1; there exist positive coefficients ↵i

k
, k = 1, · · · ,K,

with
P

k
↵i

k
= 1, and elements �i

k
2 F[µi

], i = 0, 1, such that �i
=
P

K

k=1
↵i

k
�i

k
.

Setting �h,k := ↵0

h
↵1

k
, we can apply Lemma 7.3.3 and we obtain

⇥
�0,�1

⇤
r
=

hX

h,k

�h,k�
0

h
,
X

h,k

�h,k�
1

k

i

r

6
X

h,k

�h,k
⇥
�0

h
,�1

k

⇤
r
6 0.

We recall that in the Hilbertian case (cf. e.g. [26]), a fundamental role is played
by the notion of maximality for a dissipative operator F ⇢ H ⇥ H. Indeed, this
notion enables to extablish the existence and uniqueness of solutions of the cor-
responding evolution equation and to get crucial properties of the resolvent op-
erator. Moreover, if F is maximal, in order to prove that an element (x, v) 2 H⇥H
belongs to F it is enough to verify that it satisfies the dissipativity inequality

hv-w, x- yi 6 0 for every (y,w) 2 F. (7.7.3)

For these reasons, if F is not maximal it is important to study its maximal exten-
sion, whose elements (x, v) must satisfy (7.7.3).

By analogy with the Hilbertian framework, it is interesting to study the prop-
erties of the extended MPVF defined by

F̂ :=

8
<

:� 2 P2(TH) :

µ = x]� 2 D(F),

[�,⌫]
r
+ [ ,µ]

r
6 �W2

2
(µ,⌫) 8 2 F, ⌫ = x] 

9
=

; . (7.7.4)

This notion of extension F̂ of a MPVF F will be involved later in Section 8.1 deal-
ing with differential inclusions in Wasserstein spaces, in particular in Theorem
8.1.4 and in Subsection 8.3.

It is obvious that F ⇢ F̂; if the domain of F satisfies the geometric condition
(7.7.6), the following result shows that F̂ provides the maximal �-dissipative ex-
tension of F.

Proposition 7.7.3. Let F be a �-dissipative MPVF according to (7.5.1).
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(a) If F 0 � F is �-dissipative according to (7.5.1), with D(F 0
) ⇢ D(F), then F 0 ⇢ F̂.

In particular co(cl(F)) ⇢ F̂.

(b) [cl(F) = F̂ and [co(F) = F̂.

(c) F̂ is sequentially closed and F̂[µ] is convex for every µ 2 D(F̂).

(d) If D(F) satisfies (7.6.14), then the restriction of F̂ to D(F) is �-dissipative according
to (7.5.1) and for every µ0,µ1 2 D(F) it holds

[F,µ]0+ = [F̂,µ]0+, [F,µ]1- = [F̂,µ]1- for every µ 2 �01o (µ0,µ1|F).
(7.7.5)

(e) If µ0 2 D(F), µ1 2 D(F) and �1o(µ0,µ1|F) 6= ; then

�i 2 F̂[µi] ) [�0,�1]r 6 �W2

2
(µ0,µ1).

(f) If

for every µ0,µ1 2 D(F) the set �01o (µ0,µ1|F) is not empty, (7.7.6)

then F̂ is �-dissipative as well according to (7.5.1) and for every µ0,µ1 2 D(F)
(7.7.5) holds.

Proof. Claim (a) is obvious since every �-dissipative extension F 0 of F in D(F)
satisfies F 0 ⇢ F̂.

(b) Let us prove that if � 2 F̂ then � 2 [cl(F). If  2 cl(F) we can find a
sequence ( n)n2N ⇢ F converging to  in Psw

2
(TH) as n ! 1. We can then

pass to the limit in the inequalities

[�,⌫n]r + [�n,µ]
r
6 �W2

2
(µ,⌫n), µ = x]�, ⌫n = x] n,

using the lower semicontinuity results of Lemma 7.3.1. We conclude since D(F) =
D(cl(F)).

In order to prove that � 2 F̂ ) � 2 [co(F) we take  =
P
↵k k 2 co(F); for

some  k 2 F[⌫], ⌫ = x] 2 D(F), and positive coefficients ↵k, k = 1, · · · ,K, withP
k
↵k = 1. Taking a convex combination of the inequalities

[�,⌫]
r
+ [ k,µ]

r
6 �W2

2
(µ,⌫), for every k = 1, · · · ,K,

and using Lemma 7.3.3 we obtain

[�,⌫]
r
+ [ ,µ]

r
6
X

k

↵k

⇣
[�,⌫]

r
+ [ k,µ]

r

⌘
6 �W2

2
(µ,⌫).

The proof of claim (c) follows by a similar argument.
(d) Let µi 2 D(F), �i 2 F̂[µi], i = 0, 1, and µ 2 �01o (µ0,µ1|F). The implication

(P1))(P4) of Proposition 7.6.7 applied to µ and to s]µ, with s the reversion map
in (7.4.2), yields

[�0,µ]r,0 6 [F,µ]0+, [�1, s]µ]r,0 6 [F, s]µ]0+ = -[F,µ]1-
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so that (7.6.13) yields

[�0,�1]r 6 [�0,µ]r,0 + [�1, s]µ]r,0 6 [F,µ]0+ - [F,µ]1- 6 �W2

2
(µ0,µ1).

In order to prove (7.7.5) we observe that F ⇢ F̂ so that, for every µ 2 �01o (µ0,µ1|F)
and every t 2 I(µ|F), we have [F,µ]r,t 6 [F̂,µ]r,t and [F,µ]l,t > [F̂,µ]l,t, hence
(7.7.5) is a consequence of Definition 7.6.4 and Theorem 7.6.2.

The proof of claim (f) follows by the same argument.
In the case of claim (e), we use the implication (P1))(P6) of Proposition 7.6.7

applied to µ and the implication (P1))(P3) applied to s]µ, obtaining

[�0,µ]r,0 6 �W2

2
(µ0,µ1) + [F,µ]1-, [�1, s]µ]r,0 6 [F, s]µ]0+ = -[F,µ]1-

and then

[�0,�1]r 6 [�0,µ]r,0 + [�1, s]µ]r,0 6 �W2

2
(µ0,µ1).

7.8 dissipativity in the discrete setting

We want to show that, in case we restrict our attention to discrete measures,
the properties shown in Theorem 7.6.2 holds also for non necessarely optimal
couplings. To this aim, let us consider the space of probability measures with
finite and with compact support

Pf(H) :=

⌦
µ 2 P(H) : supp(µ) is finite

↵
,

Pc(H) :=

⌦
µ 2 P(H) : supp(µ) is compact

↵ (7.8.1)

and the set

PN(H) :=

⌦
µ 2 Pf(H) : Nµ(A) 2 N 8A ⇢ H

↵
, (7.8.2)

with N 2 N.
If F is a MPVF, we correspondingly set

Df(F) := D(F)\Pf(H). (7.8.3)

For every µ0,µ1 2 Pc(H) we define the L1-Wasserstein distance by

W1(µ0,µ1) := min
⌦��x0 - x1kL1(H⇥H,µ) : µ 2 �(µ0,µ1)

↵
. (7.8.4)

In the following, we investigate the results recalled in Theorem 7.6.2 in the case
of marginals µ0,µ1 with finite support, but removing the optimality requirement
over the coupling µ.

Lemma 7.8.1. Let F be a MPVF satisfying (7.5.2). If µ0,µ1 2 Df(F) and µ 2
�(µ0,µ1|F) is such that xt is µ-essentially injective for every t 2 (0, 1), then

[F,µ]r,s- [F,µ]l,t 6 �(t- s)W2, W2
:=

Z
|x0-x1|

2 dµ, for every 0 6 s < t 6 1.

(7.8.5)

In particular, t 7! [F,µ]r,t+�W
2t and t 7! [F,µ]l,t+�W

2t are increasing respectively
in [0, 1) and in (0, 1], [F,µ]l,t = [F,µ]r,t at every t 2 (0, 1) where one of them is
continuous, hence they coincide outside a countable set of discontinuities.
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Proof. By Theorem 7.6.2 it is not restrictive to assume � = 0; we can also assume
s = 0 and t = 1 thanks to (7.4.5). We set µt := xt]µ and we select arbitrarily
�t 2 F[µt].

Applying Theorem 6.5.2, we can find points t0 = 0 < t1 < · · · < tK = 1 such
that

µk
:= (xtk-1 , xtk)]µ 2 �(µtk-1

,µtk
|F)\ �o(µtk-1

,µtk
) for every k = 1, · · · ,K.

In particular, from (7.4.5) and Theorem 7.6.2(2), we get

[�tk-1
,µ]r,tk-1

=
1

tk - tk-1

[�tk-1
,µk

]r,0 6 1

tk - tk-1

[�tk
,µk

]l,1 = [�tk
,µ]l,tk .

(7.8.6)

Since xt is µ-essentially injective, Remark 7.4.2 yields [�tk
,µ]l,tk = [�tk

,µ]r,tk
so that

[�0,µ]r,0 6 [�1,µ]l,1.

Taking the supremum w.r.t. �0 2 F[µ0] and the infimum w.r.t. �1 2 F[µ1] we
obtain (7.8.5). The last part of the statement follows as in the proof of Theorem
7.6.2.

Lemma 7.8.2. Let F be a MPVF satisfying (7.5.2), let µ0,µ1 2 Df(F), µ 2 �(µ0,µ1|F)
(see Definition 7.6.3) and let µt = xt]µ, t 2 [0, 1]. Assume that one of the following
conditions is satisfied:

1. for every t 2 (0, 1) µt belongs to the interior of Df(F) in Pf(H) with respect to
the W1-topology;

2. there exists N 2 N such that µ 2 PN(H⇥H) and for every t 2 (0, 1) µt belongs
to the interior of D(F)\PN(H) in PN(H) with respect to the W1-topology.

Then

[F,µ]r,s- [F,µ]l,t 6 �(t- s)W2, W2
:=

Z
|x0-x1|

2 dµ, for every 0 6 s < t 6 1.

(7.8.7)

Proof. We prove the Lemma only in case 1., being the proof in case 2. analogous.
By Theorem 7.6.2 it is not restrictive to assume � = 0; we can also assume s = 0

and t = 1 thanks to (7.4.5). By Theorem 6.5.2 we can find 0 < � < 1/2 and ⌧ 2
(�, 1- �) s.t. x�, x⌧ and x1-� are µ-essentially injective and (x0, x�)]µ, (x1-�, x1)]µ
are optimal. In this way, since by Theorem 7.6.2 the relation (7.8.7) is true both
for the case s = 0, t = � and s = 1- �, t = 1, we only need to prove it for s = �

and t = 1- �.
We set A = supp(µ�) [ supp(µ1-�) and B = supp(µ⌧). By compactness, we can
find " > 0 such that every measure with finite support in the W1-neighborhood
of radious " > 0 around µt is contained in D(F) for every � 6 t 6 1- �.
Applying Proposition 6.4.3 we can find a map b : B ! H with values in the
open ball of radious " centered at 0 such that setting bs

(x) := x+ sb(x) for every
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s 2 [0, 1] and x 2 B, the set Bs
:= bs

(B) satisfies (Bs
- Bs

) \ dir(A) = {0} and
#Bs

= # supp(µ⌧) for every s 2 (0, 1]. Considering the measures ⌫s := bs

] (µ⌧) we
can pick  s 2 F[⌫s] with barycenter vs : Bs ! H.
Now for every (x0, x1) 2 supp((x�, x1-�)]µ) we set

xa := xa(x0, x1), bs,⌧
:= bs

(xa), vs,⌧
:= vs(bs,⌧

),

where a =
⌧-�
1-2�

. Let us consider �� 2 F[µ�], �1-� 2 F[µ1-�] and � 2 P(TH ⇥
TH) s.t. (x0, x1)]� = (x�, x1-�)]µ, (x0, v0)]� = �� and (x1, v1)]� = �1-�. For
every (x0, v0, x1, v1) 2 supp(�) we have

hv0 - v1, x0 - x1i = hv0 - vs,⌧, x0 - x1i+ hv1 - vs,⌧, x1 - x0i

=
1

a
hv0 - vs,⌧, x0 - xai+

1

1- a
hv1 - vs,⌧, x1 - xai

=
1

a
hv0 - vs,⌧, x0 -bs,⌧i+ 1

1- a
hv1 - vs,⌧, x1 -bs,⌧i

+
1

a
hv0 - vs,⌧,bs,⌧

- xai+
1

1- a
hv1 - vs,⌧,bs,⌧

- xai

=
1

a
hv0 - vs,⌧, x0 -bs,⌧i+ 1

1- a
hv1 - vs,⌧, x1 -bs,⌧i

+
1

a(1- a)
hv1,⌧

- vs,⌧,bs,⌧
- xai

+
1

a(1- a)
h(1- a)v0 + av1 - v1,⌧,bs,⌧

- xai

=
1

a
hv0 - vs,⌧, x0 -bs,⌧i+ 1

1- a
hv1 - vs,⌧, x1 -bs,⌧i

+
s

(1- s)a(1- a)
hv1,⌧

- vs,⌧,b1,⌧
-bs,⌧i

+
s

a(1- a)
h(1- a)v0 + av1 - v1,⌧,b1,⌧

- xai.

We have that
Z
hv0 - vs,⌧

(x0, x1), x0 -bs,⌧
(x0, x1)id� = [��,µs,⌧

]r,0 - [ s,µs,⌧
]l,1,

Z
hv1 - vs,⌧

(x0, x1), x1 -bs,⌧
(x0, x1)id� = [�1-�, µ̃s,⌧

]r,0 - [ s, µ̃s,⌧
]l,1

and
Z
hv1,⌧

(x0, x1)- vs,⌧
(x0, x1),b1,⌧

(x0, x1)-bs,⌧
(x0, x1)id�

= [ 1,#s,⌧
]r,0 - [ s,#s,⌧

]l,1,

where µs,⌧
= (x0,bs,⌧

)]�, µ̃s,⌧
= (x1,bs,⌧

)]�, #s,⌧
= (b1,⌧,bs,⌧

)]� and the equal-
ities with the pseudo scalar products come from the fact that all those plans
are concentrated on a map w.r.t. their first marginal (here we are using the µ-
essential injectivity of x�, x⌧, x1-� and the fact that the cardinality of Bs is con-
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stant w.r.t. s). By construction, these plans satisfy the hypotheses of Lemma 7.8.1
so that we end up with

Z
hv0 - v1, x0 - x1id� 6 s

a(1- a)

Z
h(1- a)v0 + av1 - v1,⌧,b1,⌧

- xaid�.

Passing to the limit as s # 0 we obtain
Z
hv0 - v1, x0 - x1id� 6 0.

Passing to the supremum w.r.t. �� 2 F[µ�] and to the infimum w.r.t. �1-� 2
F[µ1-�], we get

[F, (x�, x1-�)]µ]r,0 - [F, (x�, x1-�)]µ]l,1 6 0,

which is (7.8.7) with s = � and t = 1- � thanks to (7.4.5).



8
M E A S U R E D I F F E R E N T I A L I N C L U S I O N S A N D E V I

In this chapter we treat the notion of EVI evolution, its properties and its relation
to a weaker notion of solution, called barycentric property. In particular Section
8.1 is devoted to the definition of EVI solution and its properties; in Section 8.2
we present a few consequences of the definition in terms of properties of solu-
tions to the evolution problem; finally in Section 8.3 we compare the notion of
EVI solution with the barycentric one.

This Chapter is the result of a collaboration with Giulia Cavagnari and Giuseppe
Savaré and it appeared in [34].

For the whole chapter, H denotes a separable Hilbert space.

8.1 metric characterization

In this section we study a suitable notion of solution to the (formal) problem

µ̇t 2 F[µt], t 2 I, (8.1.1)

where F is a MPVF as in Definition 7.5.1 and I is a connected subset of R.
Reasoning in analogy with the theory of gradient flows in P2(H), the naive

way to interpret (8.1.1) is to ask for a locally absolutely continuous curve µ : I !
P2(H) to satisfy

(iH, vt)]µt 2 F[µt] for a.e. t 2 I, (8.1.2)

where v is the velocity vector of µ (see Theorem 2.4.6).
However, there is no reason why a given F[µt] should contain vectors of the

tangent space Tanµt
P2(H). We thus introduce a different notion of solution to

(8.1.2), inspired by the EVI formulation for gradient flows, and we will eventually
obtain the inclusion (8.1.2) for the extended MPVF F̂ introduced in (7.7.4).

It is not difficult to see that, if F is �-dissipative according to (7.5.1), also us-
ing Theorem 7.2.1 and Remark 7.5.5, every locally absolutely continuous curve
satisfying (8.1.2) also satisfies the Evolution Variational Inequality (�-EVI)

1

2

d
dt

W2

2
(µt,⌫) 6 �W2

2
(µt,⌫)- [�,µt]r in D 0� int (I)

�
, (�-EVI)

for every ⌫ 2 D(F) and every � 2 F[⌫], where [·, ·]
r

is the functional pairing in
Definition 7.1.4 and the writing D 0� int (I)

�
means that the expression has to be

understood in the distributional sense over int (I). Starting from this heuristic
remark, we give the following definition.

145
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Definition 8.1.1 (�-EVI solution). Let F be a MPVF and let � 2 R. We say that
a continuous curve µ : I ! D(F) is a �-EVI solution to (8.1.1) for the MPVF F if
(�-EVI) holds for every ⌫ 2 D(F) and every � 2 F[⌫].
A �-EVI solution µ is said to be a strict solution if µt 2 D(F) for every t 2 I,
t > inf I.
A �-EVI solution µ is said to be a global solution if sup I = +1.

See Example 9.5.5 for a justification of the mere continuity assumption on µ.
We recall that, given a function ⇣ : I ! R, the right upper and lower Dini

derivatives of ⇣ at a point t 2 I, t < sup I are defined as

d
dt

+

⇣(t) := lim sup
h#0

⇣(t+ h)- ⇣(t)

h
,

d
dt+

⇣(t) := lim inf
h#0

⇣(t+ h)- ⇣(t)

h
. (8.1.3)

Remark 8.1.2. Arguing as in [85, Lemma A.1] and using the lower semiconti-
nuity of the map t 7! [�,µt]r, the distributional inequality of (�-EVI) can be
equivalently reformulated in terms of the right upper or lower Dini derivatives
of the squared distance function and requiring the condition to hold for every
t 2 int (I):

1

2

d
dt

+

W2

2
(µt, x]�) 6 �W2

2
(µt, x]�)- [�,µt]r for every t 2 int (I) , � 2 F

(�-EVI1)
1

2

d
dt+

W2

2
(µt, x]�) 6 �W2

2
(µt, x]�)- [�,µt]r for every t 2 int (I) , � 2 F.

(�-EVI2)

A further equivalent formulation [85, Theorem 3.3] involves the difference quo-
tients: for every s, t 2 I, s < t

e-2�(t-s)W2

2
(µt, x]�)-W2

2
(µs, x]�)

6 -2

Z
t

s

e-2�(r-s)
[�,µr]r dr for every � 2 F.

(�-EVI3)

Finally, if µ is also locally absolutely continuous, then (�-EVI1) and (�-EVI2) are
also equivalent to

1

2

d
dt

W2

2
(µt, x]�) 6 �W2

2
(µt, x]�)- [�,µt]r

for a.e. t 2 I and every � 2 F.

The following lemma discusses further properties of �-EVI solutions. We refer
respectively to (7.6.2), (7.6.7) and Definition 7.6.4 for the definitions of I(µ|F),
� io(·, ·|F), with i = 0, 1, and for the definitions of [F,µ]0+ and [F,µ]1-.

Lemma 8.1.3. Let F be a �-dissipative MPVF according to (7.5.1) and let µ : I ! D(F)
be a continuous �-EVI solution to (8.1.1). We have

1

2

d
dt

+

W2

2
(µt,⌫) 6 [F,µt]0+

for every ⌫ 2 D(F), t 2 int (I) , µt 2 �0o(µt,⌫|F),
(8.1.4a)

1

2

d
dt

+

W2

2
(µt,⌫) 6 �W2

2
(µt,⌫) + [F,µt]1-

for every ⌫ 2 D(F), t 2 int (I) , µt 2 �1o(µt,⌫|F).
(8.1.4b)
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If moreover µ is locally absolutely continuous with Wasserstein velocity field v satisfying
(2.4.8) for every t in the subset A(µ) ⇢ I of full Lebesgue measure, then

⇥
(iH, vt)]µt,⌫

⇤
r
6 �W2

2
(µt,⌫)- [�,µt]r

for every t 2A(µ)� 2 F, ⌫ = x]�,
(8.1.5a)

[(iH, vt)]µt,µt]r,0 6 [F,µt]0+

for every t 2 A(µ), ⌫ 2D(F), µt 2 �0o(µt,⌫|F),
(8.1.5b)

[(iH, vt)]µt,µt]r,0 6 �W2

2
(µt,⌫) + [F,µt]1-

for every t 2 A(µ), ⌫ 2 D(F), µt 2 �1o(µt,⌫|F).
(8.1.5c)

Proof. In order to check (8.1.5a) it is sufficient to combine (7.2.1) of Theorem
7.2.1 with (�-EVI1). (8.1.5b) and (8.1.5c) then follow applying Proposition 7.6.7.
Let us now prove (8.1.4a): fix ⌫ 2 D(F) and t 2 int (I). Take µt 2 �o(µt,⌫) and
define the constant speed geodesic ⌫t : [0, 1] ! P2(H) by ⌫ts := (xs)]µt, thus in
particular ⌫t

0
= µt and ⌫t

1
= ⌫. Then by Lemma 7.2.6, for every s 2 I(µ|F)\ (0, 1)

and �s 2 F(⌫ts) we have

1

2

d
dt

+

W2

2
(µt,⌫) 6 1

2s

d
dt

+

W2

2
(µt,⌫ts)

6 -
1

s
[�s,µt]r +

�

s
W2

2
(µt,⌫ts)

6 [F,µt]r,s + �sW
2

2
(µt,⌫),

where the second inequality comes from (�-EVI1). Taking µt 2 �0o(µt,⌫|F) and
passing to the limit as s # 0 we get (8.1.4a). Analogously for (8.1.4b).

The following result presents the relation between the notion of �-EVI solution
and of differential inclusion (8.1.2).

Theorem 8.1.4. Let F be a �-dissipative MPVF according to (7.5.1) and let µ : I !
D(F) be a locally absolutely continuous curve.

1. If µ satisfies the differential inclusion (8.1.2) driven by any �-dissipative extension
of F in D(F), then µ is also a �-EVI solution to (8.1.1) for F.

2. µ is a �-EVI solution of (8.1.1) for F if and only if

(iH, vt)]µt 2 F̂[µt] for a.e. t 2 I. (8.1.6)

3. If D(F) satisfies (7.6.14) and µt 2 D(F) for a.e. t 2 I, then the following properties
are equivalent:

- µ is a �-EVI solution to (8.1.1) for F.

- µ satisfies (8.1.5b).

- µ is a �-EVI solution to (8.1.1) for the restriction of F̂ to D(F).

4. If F satisfies (7.7.6) then µ is a �-EVI solution to (8.1.1) for F if and only if it is a
�-EVI solution to (8.1.1) for F̂.
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Proof. (1) It is sufficient to apply Theorem 7.2.1 and the definition of �-dissipativity.
The left-to-right implication ) of (2) follows by (8.1.5a) of Lemma 8.1.3 and

the definition of F̂.
Conversely, if µ satisfies (8.1.6), ⌫ 2 D(F), � 2 F[⌫], then Theorem 7.2.1 and

the definition of F̂ yield

1

2

d
dt

W2

2
(µt,⌫) =

⇥
(iH, vt)]µt,⌫

⇤
r
6 �W2

2
(µt,⌫)- [�,µt]r a.e. in I.

Claim (3) is an immediate consequence of Lemma 8.1.3, Proposition 7.7.3(d) and
Proposition 7.6.7.

Claim (4) is a consequence of Proposition 7.7.3(f) and the �-dissipativity of
F̂.

The result stated in Theorem 8.1.4 suggests a compatibility between the notion
of EVI solution for a dissipative MPVF and the notion of gradient flow for a
convex functional in P2(H). This correspondence is analysed in Subsection 9.5.1,
where we consider the particular case where the MPVF is the opposite of the
Fréchet subdifferential of a proper, lower semicontinuous and convex functional
F : P2(H) ! (-1,+1] (see Proposition 9.5.2).

We derive a further useful a priori bound for �-EVI solutions.

Proposition 8.1.5. Let F be a �-dissipative MPVF according to (7.5.1) and let T 2
(0,+1]. Every �-EVI solution µ : [0, T) ! D(F) with initial datum µ0 2 D(F) satisfies
the a priori bound

W2(µt,µ0) 6 2|F|2(µ0)

Z
t

0

e�s ds (8.1.7)

for all t 2 [0, T), where

|F|2(µ) := inf
⌦
|�|2 : � 2 F[µ]

↵

for every µ 2 D(F).

Proof. Let � 2 F(µ0). Then (�-EVI) with ⌫ := µ0 yields

d
dt

+

W2

2
(µt,µ0)- 2�W2

2
(µt,µ0) 6 -2 [�,µt]r 6 2|�|2W2(µt,µ0)

for every t 2 [0, T). We can then apply the estimate of Lemma [5, Lemma 4.1.8]
to obtain

e-�tW2(µt,µ0) 6 2|�|2

Z
t

0

e-�s ds

for all t 2 [0, T), which in turn yields (8.1.7).

We conclude this section with a stability result w.r.t. uniform convergence.

Proposition 8.1.6. If µn : I ! D(F) is a sequence of �-EVI solutions locally uniformly
converging to µ as n ! 1, then µ is a �-EVI solution.

Proof. µ is a continuous curve defined in I with values in D(F). Using pointwise
convergence, the lower semicontinuity of µ 7! [�,µ]

r
of Lemma 7.3.1, and Fa-

tou’s Lemma, it is easy to pass to the limit in the equivalent characterization
(�-EVI3) of �-EVI solutions, written for µn.
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8.2 stability and uniqueness

The following results provide stability properties of �-EVI. In the first theorem
we assume absolute continuity.

Theorem 8.2.1 (Stability for absolutely continuous solutions). Let F be a �-dissipative
MPVF according to (7.5.1) and let µ1,µ2

: [0, T) ! D(F), T 2 (0,+1], be locally ab-
solutely continuous �-EVI solutions to (8.1.1). If �0o(µ1

t
,µ2

t
|F) 6= ; for a.e. t 2 (0, T),

then

W2(µ
1

t ,µ2

t) 6 W2(µ
1

0
,µ2

0
) e�t for every t 2 [0, T). (8.2.1)

In particular, if µ1

0
= µ2

0
then µ1 ⌘ µ2 in [0, T).

Proof. Since µ1,µ2 are locally absolutely continuous curves, we can apply The-
orem 7.2.3 and find a subset A ⇢ A(µ1

) \ A(µ2
) of full Lebesgue measure

such that (7.2.2) holds and �0o(µ
1
t

,µ2
t
|F) 6= ; for every t 2 A. Selecting µt 2

�0o(µ
1
t

,µ2
t
|F), we have

1

2

d
dt

W2

2
(µ1

t ,µ2

t) =

Z
hv1t(x1), x1-x2idµt(x1, x2)+

Z
hv2t(x2), x2-x1idµt(x1, x2).

Note that

�0
�
(iH, v1t)]µ

1

t ,µt

�
= ⇤

�
(iH, v1t)]µ

1

t ,µ2

t

�
=

⌦
(x0, v1t � x0, x1)]µt

↵
,

�0
�
(iH, v2t)]µ

2

t , s]µt

�
= ⇤

�
(iH, v2t)]µ

2

t ,µ1

t

�
=

⌦
(x1, v2t � x1, x0)]µt

↵

by [5, Lemma 5.3.2], where �0(·, ·) is the set defined in (7.4.1) with t = 0 and
⇤(·, ·) is defined in Definition 7.1.7. Hence, using (8.1.5b), (8.1.5c) and recalling
the definition of reversion map s in (7.4.2), for every t 2 A we get

1

2

d
dt

W2

2
(µ1

t ,µ2

t) = [(iH, v1t)]µ
1

t ,µt]r,0 + [(iH, v2t)]µ
2

t , s]µt]r,0

6 [F,µt]0+ + �W2

2
(µ1

t ,µ2

t) + [F, s]µt]1-

= �W2

2
(µ1

t ,µ2

t),

where we also used the property

[F, s]µt]1- = -[F,µt]0+.

The next Theorem considers the situation when one curve is absolutely contin-
uous and the other merely continuous. The argument presents some technicali-
ties and comes by [89, Theorem 1.1]. Before stating and proving it, we present a
simple lemma that allows us to pass from a differential inequality for the right
upper Dini derivative to the corresponding distributional inequality (see also [85,
Lemma A.1] and [51]).

Lemma 8.2.2. Let (a,b) ⇢ R be an open interval (bounded or unbounded) and let
⇣,⌘ : (a,b) ! R be s.t. ⇣ is continuous in (a,b) and ⌘ is measurable and locally
bounded from above in (a,b). If

d
dt

+

⇣(t) 6 ⌘(t)



150 measure differential inclusions and evi

for every t 2 (a,b), then the above inequality holds also in the sense of distributions,
meaning that

-

Z
b

a

⇣(t)' 0
(t)dt 6

Z
b

a

⌘(t)'(t)dt

for every ' 2 C1
c (a,b) with ' > 0.

Proof. Let ' 2 C1
c (a,b) with ' > 0, then there exist a < x < y < b s.t. the

support of ' is contained in [x,y] ; since ⌘ is locally bounded from above, there
exists a positive constant C > 0 s.t. ⌘(t) 6 C for every t 2 [x,y]. Then the function
t 7! ⇣(t)-Ct is such that

d
dt

+

(⇣(t)-Ct) 6 0

for every t 2 [x,y], so that it is decreasing in [x,y] and hence a function of
bounded variation in [x,y]. Its distributional derivative is hence a non positive
measure T on [x,y] whose absolutely continuous part (w.r.t. the 1-dimensional
Lebesgue measure on [x,y]) coincides a.e. with the right upper Dini derivative.
Then we have

-

Z
b

a

(⇣(t)-Ct)' 0
(t)dt = T(') =

Z
b

a

d
dt

+

(⇣(t)-Ct)'(t)dt+ Ts(')

6
Z
b

a

(⌘-C)'(t)dt,

where Ts is the singular part of T . This immediately gives the thesis.

Theorem 8.2.3 (Refined stability). Let T > 0 and F be a �-dissipative MPVF accord-
ing to (7.5.1). Let

(i) µ1
: [0, T ] ! D(F) be an absolutely continuous �-EVI solution for F, with µ1

0
2

D(F);

(ii) µ2
: [0, T ] ! D(F) be �-EVI solution for F.

If at least one of the following properties hold:

1. �0o(µ1
r ,µ2

s |F) 6= ; for every s 2 (0, T) and r 2 [0, T)\N with N ⇢ (0, T), L(N) =

0;

2. µ1 satisfies (8.1.2),

then

W2(µ
1

t ,µ2

t) 6 e�tW2(µ
1

0
,µ2

0
) for every t 2 [0, T ].
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Proof. We extend µ1 in (-1, 0) with the constant value µ1

0
, denote by v the

Wasserstein velocity field associated to µ1 (and extended to 0 outside A(µ1
))

and define the functions w, f,h : (-1, T ]⇥ [0, T ] ! R by

w(r, s) := W2(µ
1

r ,µ2

s),

f(r, s) :=

8
<

:
2|F|2(µ1

0
)w(0, s) if r < 0,

0 if r > 0,

h(r, s) :=

8
<

:
0 if r < 0,

2
⇥
(iH, vr)]µ1

r ,µ2
s

⇤
r

if r > 0.

Theorem 7.2.1 yields

@

@r
w2

(r, s) = h(r, s) in D 0
(-1, T), for every s 2 [0, T ]. (8.2.2)

In case (1) holds, writing (8.1.4b) for µ2 with ⌫ = µ1
r and r 2 (-1, T ] \N, then

for every µrs 2 �0o(µ1
r ,µ2

s |F) we obtain

d
ds

+

w2
(r, s) 6 2�w2

(r, s)- 2[F,µrs]0+ for s 2 (0, T) and r 2 (-1, T) \N.

(8.2.3)

On the other hand (8.1.5b) yields

-2[F,µrs]0+ 6 -2[(iH, vr)]µ1

r ,µrs]r,0 6 -2
⇥
(iH, vr)]µ1

r ,µ2

s

⇤
r

for r 2 A(µ1
) \N,

-2[F,µrs]0+ 6 2|F|2(µ1

0
)w(0, s) = f(r, s) for every r < 0.

(8.2.4)

Combining (8.2.3) and (8.2.4) we obtain

d
ds

+

w2
(r, s) 6 2�w2

(r, s)+ f(r, s)-h(r, s) for s 2 (0, T), r 2 (-1, 0][A(µ1
)\N.

Since, recalling Theorem 2.4.6, we have |h(r, s)| 6 2|µ̇1
r |w(r, s), then applying

Lemma 8.2.2 we get

@

@s
w2

(r, s) 6 2�w2
(r, s) + f(r, s)- h(r, s) in D 0

(0, T), for a.e. r 2 (-1, T ].

(8.2.5)

The expression in (8.2.5) can also be deduced in case (2) using (8.1.2).
By multiplying both inequalities (8.2.2) and (8.2.5) by e-2�s we get

@

@r

⇣
e-2�sw2

(r, s)
⌘
= e-2�sh(r, s)

in D 0
(-1, T) and every s 2 [0, T ],

@

@s

⇣
e-2�sw2

(r, s)
⌘
6 e-2�s

�
f(r, s)- h(r, s)

�

in D 0
(0, T) and a.e. r 2 (-1, T ].
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We fix t 2 [0, T ] and " > 0 and we apply the Divergence theorem in [89, Lemma
6.15] on the two-dimensional strip Q"

0,t as in Figure 2,

Q"
0,t := {(r, s) 2 R

2 | 0 6 s 6 t , s- " 6 r 6 s}, (8.2.6)

and we get

6

-

� -"

� -
" r = t

s = t

�
�
�
�

�
�

�
�
�

��

�
�
�
�
�
�

�
�
�

��

Q"
0,t

r

s

r = s

r = s- "

Figure 2: Strip Q"
0,t corresponding to penalization about the diagonal {r = s}.

Z
t

t-"
e-2�tw2

(r, t)dr 6
Z
0

-"
w2

(r, 0)dr+
ZZ

Q"

0,t

e-2�sf(r, s)drds.

Using

w(t, t) 6
Z
t

r

|µ̇1

u|du+w(r, t) 6
Z
t

t-"
|µ̇1

u|du+w(r, t) if t- " 6 r 6 t,

then, for every �, �? > 1 conjugate coefficients (�? = �/(�- 1)), we get

w2
(t, t) 6 �w2

(r, t) + �?
✓Z

t

t-"
|µ̇1

u|du
◆2

. (8.2.7)

Integrating (8.2.7) w.r.t. r in the interval (t- ", t), we obtain

e-2�tw2
(t, t) 6 �

"

Z
t

t-"
e-2�tw2

(r, t)dr

+ �?

✓Z
t

t-"
|µ̇1

u|du
◆2

max{1, e2|�|T }.
(8.2.8)

Finally, we have the following inequality

"-1

ZZ

Q"

0,t

e-2�sf(r, s)drds 6 2|F|2(µ1

0
)

Z
"

0

e-2�sw(0, s)ds. (8.2.9)

Summing up (8.2.8) and (8.2.9) we obtain
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e-2�tw2
(t) 6 �

✓
w2

(0) + 2|F|2(µ1

0
)

Z
"

0

e-2�sw(0, s)ds
◆

+ �?

✓Z
t

t-"
|µ̇1

u|du
◆2

max{1, e2|�|T },

where we have used the notation w(s) = w(s, s). Taking the limit as " # 0 and
� # 1, we obtain the thesis.

8.3 barycentric property

If the MPVF F satisfies additional properties, we are able to show that EVI so-
lutions satisfy the so called barycentric property which is strongly related to the
notion of evolution treated in [31, 93, 94].

We introduce the following closure of F along cylindrical functions. We set

exp'(x) := x+r'(x)

for every ' 2 Cyl(H), and

F[µ] :=

8
<

:� 2 P2(H)

�����
9' 2 Cyl(H), (rn)n2N ⇢ [0,+1), rn # 0,

�n 2 F[exprn'

] µ] : �n ! � in Psw

2
(TH)

9
=

; . (8.3.1)

Definition 8.3.1 (Barycentric property). Let F be a MPVF. We say that a lo-
cally absolutely continuous curve µ : I ! D(F) satisfies the barycentric property
(resp. the relaxed barycentric property) if for a.e. t 2 I there exists �t 2 F[µt]

(resp. �t 2 co(F[µt])) such that

d
dt

Z

H

'(x)dµt(x) =

Z

TH

hr'(x), vid�t(x, v) for every ' 2 Cyl(H). (8.3.2)

Notice that F ⇢ F ⇢ cl(F) and F = F if F is sequentially closed in Psw

2
(TH).

From Proposition 7.7.3(a) we also get

co(F) ⇢ F̂,

so that the relaxed barycentric property implies the corresponding property for
the extended MPVF F̂ defined in (7.7.4). In particular, considering the directional
closure F in place of the sequential closure cl(F) not only allows us to obtain
a finer result, but it could be easier to compute when one considers specific
examples, being F̄ the closure of F along regular directions.

Remark 8.3.2. If H = R
d, the property stated in Definition 8.3.1 coincides with

the weak definition of solution to (8.1.1) given in [93].

The aim is to prove that the �-EVI solution of (8.1.1) enjoys the barycentric
property of Definition 8.3.1, under suitable mild conditions on F. This is strictly
related to the behaviour of F along the family of smooth deformations induced by
cylindrical functions. Let us denote by pr

µ
the orthogonal projection in L2µ(H; H)
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onto the tangent space Tanµ P2(H) and by b� the barycenter of � as in Defini-
tion 7.1.1.

Before stating the next Theorem, we recall the following characterization of the
closed convex hull co(C) of a set C (i.e. the intersection of all the closed convex
sets containing C) in a Banach space.

Lemma 8.3.3. Let Z be a Banach space and let C ⇢ Z be nonempty. Then v 2 co(C) if
and only if

hz⇤, vi 6 sup
c2C

hz⇤, ci (8.3.3)

for all z⇤ 2 Z⇤. Moreover if C is bounded, it is enough to have (8.3.3) holding for every
z⇤ 2 W, with W a dense subset of Z⇤.

Proof. The result is a direct consequence of Hahn-Banach theorem.
Concerning the last assertion, observe that the function

Z⇤ 3 z⇤ 7! sup
c2C

hz⇤, ci

is Lipschitz continuous if C is bounded. Hence, if (8.3.3) holds only for some
W ⇢ Z⇤ dense, then it holds for the whole Z⇤.

Theorem 8.3.4. Let F be a �-dissipative MPVF according to (7.5.1). Assume that for
every µ 2 D(F) there exist constants M, " > 0 such that

exp'] µ 2 D(F) and |F|2(exp'] µ) 6 M (8.3.4)

for every ' 2 Cyl(H) such that sup
H

|r'| 6 ". If µ : I ! D(F) is a locally absolutely

continuous �-EVI solution of (8.1.1) with Wasserstein velocity field v satisfying (2.4.8)
for every t in the subset A(µ) ⇢ I of full Lebesgue measure, then

for every t 2 A(µ) there exists �t 2 co(F)[µt] such that vt = pr
µt

�b�t
. (8.3.5)

In particular, µ satisfies the relaxed barycentric property.
If moreover F = F and, for every ⌫ 2 D(F), the section F[⌫] is a convex subset of

P2(TH), i.e.

F[⌫] = co(F)[⌫],

then µ satisfies the barycentric property (8.3.2).

Proof. We divide the proof of (8.3.5) into two steps.

Claim 1. Let t 2 A(µ) and M = Mt be the constant associated to the measure µt in
(8.3.4). Then vt 2 co(Kt), where

Kt :=

⌦
pr

µt
(b�) : � 2 F[µt], |�|2 6 Mt

↵
⇢ Tanµt

P2(H). (8.3.6)

Proof of Claim 1. For every ⇣ 2 Cyl(H) there exists � = �(⇣) > 0 such that
⌫⇣ := exp-�⇣

] µt 2 D(F) and �⇣ := (iH, exp-�⇣
)]µt 2 �01o (µt,⌫⇣|F) is the unique
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optimal transport plan between µt and ⌫⇣.
Thanks to Theorem 7.2.1, the map s 7! W2

2
(µs,⌫⇣) is differentiable at s = t,

moreover by employing also (8.1.5b), it holds

�

Z

H

hvt(x),r⇣(x)idµt(x) =
d
dt

1

2
W2

2
(µt,⌫⇣) 6 [F,�⇣]0+ = lim

s#0
[F,�⇣]l,s. (8.3.7)

We can choose a decreasing vanishing sequence (sk)k2N ⇢ (0, 1), measures ⌫⇣
k
:=

xsk] �
⇣ and �⇣

k
2 F[⌫⇣

k
] such that sup

k
|�⇣

k
|2 6 Mt and �⇣

k
! �⇣ in Psw

2
(TH).

Then, by (8.3.1), we get �⇣ 2 F[µt] with |�⇣|2 6 Mt and by (8.3.7) and the upper
semicontinuity of [·, ·]

l
(see Lemma 7.3.1) we get

�

Z

H

hvt(x),r⇣(x)idµt(x) 6
⇥
�⇣,⌫⇣

⇤
l
= �

Z

TH

hv,r⇣(x)id�⇣(x, v). (8.3.8)

Indeed, notice that, by [5, Lemma 5.3.2], we have ⇤(�⇣,⌫⇣) = {�⇣ ⌦ ⌫⇣} with
(x0, x1)](�⇣ ⌦ ⌫⇣) = �⇣.

The expression in (8.3.8) can be written as follows

hvt,r⇣iL2
µt

(H;H) 6 hb�⇣ ,r⇣iL2
µt

(H;H) = hpr
µt
(b�⇣),r⇣iL2

µt
(H;H)

so that

hvt,r⇣iL2
µt

(H;H) 6 sup
b2Kt

hb,r⇣iL2
µt

(H;H)

for all ⇣ 2 Cyl(H), with Kt as in (8.3.6). Applying Lemma 8.3.3 in Tanµt
P2(H) ⇢

L2µt
(H; H) we obtain that vt 2 co(Kt).

Claim 2. For every w 2 co(Kt) there exists  2 co(F)[µt] such that w = pr
µt

�b .
Proof of Claim 2. Notice that an element w 2 Tanµ P2(H) coincides with

pr
µ
(b ) for  2 P2(TH|µ) if and only if
Z
hw,r⇣idµ =

Z
hv,r⇣id (x, v) (8.3.9)

for every ⇣ 2 Cyl(H). It is easy to check that any element w 2 co(K)t can
be represented as pr

µt
(b ) (and thus as in (8.3.9)) for some  2 co(F[µt]). If

w 2 co(Kt) we can find a sequence ( n)n2N ⇢ co(F[µt]) such that | n|2 6
Mt and wn = pr

µt
(b n

) ! w in L2µt
(H; H). Since the sequence ( n)n2N is

relatively compact in Psw

2
(TH) by Proposition 6.3.3(2), we can extract a (not

relabeled) subsequence converging to a limit  in Psw

2
(TH), as n ! +1. By

definition  2 co(F[µt]) with | |2 6 Mt. We can eventually pass to the limit
in (8.3.9) written for wn and  n thanks to Psw

2
(TH) convergence, obtaining the

corresponding identity for w and  in the limit.

The thesis (8.3.5) follows by Claim 1 and Claim 2.
Finally, being µ locally absolutely continuous, it satisfies the continuity equa-

tion driven by v in the sense of distributions (see Theorem 2.4.6), so that by (8.3.5)
we have

d
dt

Z

H

⇣(x)dµt(x) =

Z

H

hr⇣(x), vt(x)idµt(x) =

Z

TH

hr⇣(x), vid�t(x, v),

for every ⇣ 2 Cyl(H) and every t 2 A(µ).
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Remark 8.3.5. Using a standard approximation argument (see for example the
proof of Lemma 5.1.12(f) in [5]) it is possible to show that actually the barycentric
property (8.3.2) holds for every ' 2 C1,1

(H; R) (indeed, in this case, r' 2
Tanµ P2(H) for every µ 2 P2(H)).

Remark 8.3.6. We point out that the result stated in Theorem 8.3.4 is still valid
if we replace the convex hull of F defined in (7.7.1) using the “flat” structure of
P2(TH), with the following one which makes use of plan interpolations

eco(F)(⌫) :=

8
<

:

✓
x,

NX

k1

↵kvk
◆

]

�

�����
� 2 P(HN+1

), (x, vk)]� = �k, �k 2 F[⌫],

↵k > 0, k = 1, . . . ,N,
P

N

k=1
↵k = 1, N 2 N

9
=

; ,

for any ⌫ 2 D(F), where

x(x, v1, . . . , vN) = x and vk(x, v1, . . . , vN) = vk, k = 1, . . . ,N.

Indeed, co(F)(⌫) and eco(F)(⌫) share the same barycentric projection. However,
while co(F) preserves dissipativity as proved in Proposition 7.7.2, eco(F)(⌫) does
not satisfy this property in general, as highlighted in the following example: let
H = R and consider the PVF F, with domain D(F) =

�
�0, 1

2
�1 +

1

2
�0
 

, defined
by

F[�0] :=
1

2
�(0,3) +

1

2
�(0,-3), F


1

2
�1 +

1

2
�0

�
:=

1

2
�(1,2) +

1

2
�(0,1).

Then F is dissipative, indeed


F[�0], F

1

2
�1 +

1

2
�0

��

r

6 -1 6 0.

However, eco(F) is not dissipative, indeed, if we take �(0,0) 2 eco(F)[�0], we have

�(0,0), F


1

2
�1 +

1

2
�0

��

r

= 2 > 0.

As a complement to the studies investigated in this section, we prove the con-
verse characterization of Theorem 8.3.4 in the particular case of regular measures
or regular vector fields. We refer to [5, Definitions 6.2.1, 6.2.2] for the definition of
Pr

2
(H), that is the space of regular measures on H. When H = R

d has finite
dimension, Pr

2
(H) is just the subset of measures in P2(H) which are absolutely

continuous w.r.t. the d-dimensional Lebesgue measure Ld.

Theorem 8.3.7. Let F be a �-dissipative MPVF according to (7.5.1). Let µ : I ! D(F)
be a locally absolutely continuous curve satisfying the relaxed barycentric property of
Definition 8.3.1. If for a.e. t 2 I at least one of the following properties holds:

1. µt 2 Pr

2
(H),

2. F[µt] contains a unique element�t concentrated on a map, i.e.�t = (iH,b�t
)]µt

then µ is �-EVI solution of (8.1.1).
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Proof. Take ' 2 Cyl(H) and observe that, since µ has the relaxed barycentric
property, then for a.e. t 2 I (recall Theorem 7.2.1) there exists �t 2 co(F[µt])

such that

d
dt

Z

H

'(x)dµt(x) =

Z

TH

hr'(x), vid�t

=

Z

H

hr', pr
µt

�b�t
idµt

=

Z

H

hvt,r'idµt,

hence µ solves the continuity equation @tµt + div(vtµt) = 0, with vt = pr
µt

�
b�t

2 Tanµt
P2(H). By Theorem 7.2.1, we also know that

d
dt

1

2
W2

2
(µt,⌫) =

Z

H2

hvt(x0), x0 - x1id�t(x0, x1) (8.3.10)

for any t 2 A(µ,⌫), �t 2 �o(µt,⌫), ⌫ 2 P2(H). Possibly disregarding a Lebesgue
negligible set, we can decompose the set A(µ,⌫) in the union A1 [A2, where
A1,A2 correspond to the times t for which the properties (1) and (2) hold.

If t 2 A1 and ⌫ 2 D(F), then by [5, Theorem 6.2.10], since µt 2 Pr

2
(H), there

exists a unique �t 2 �o(µt,⌫) and �t = (iH, rt)]µt for some map rt s.t. iH - rt 2
Tanµt

P2(H) ⇢ L2µt
(H; H) (recall [5, Proposition 8.5.2]), so that

Z

H2

hvt(x0), x0 - x1id�t(x0, x1) =
Z

H

hvt(x0), x0 - rt(x0)idµt(x0)

=

Z

H

hb�t
, x0 - rt(x0)idµt(x0)

=

Z

TH

hv, x- rt(x)id�t(x, v)

= [�t,⌫]
r

,

(8.3.11)

where we also applied Theorem 7.1.8 and Remark 7.4.2, recalling that in this case
⇤(�t,⌫) is a singleton.

If t 2 A2 we can select the optimal plan �t 2 �o(µt,⌫) along which

[�t,⌫]
r
= [�t,�t]r,0 =

Z

H

hb�t
(x0), x0 - x1id�t(x0, x1).

If rt is the barycenter of �t with respect to its first marginal µt, recalling that
iH - rt 2 Tanµt

P2(H) (see also the proof of [5, Thm. 12.4.4]) we also get
Z

H2

hvt(x0), x0 - x1id�t(x0, x1) =
Z

H

hvt(x0), x0 - rt(x0)idµt(x0)

=

Z

H

hb�t
(x0), x0 - rt(x0)idµt(x0)

=

Z

H

hb�t
(x0), x0 - x1id�t(x0, x1)

= [�t,⌫]
r

,

(8.3.12)

where we still applied Theorem 7.1.8 and Remark 7.4.2.
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Combining (8.3.10) with (8.3.11) and (8.3.12) we eventually get

d
dt

1

2
W2

2
(µt,⌫) = [�t,⌫]

r
6 - [ ,µt]r + �W

2

2
(µt,⌫)

for every  2 F[⌫], by definition of F̂ and the fact that co(F)[µt] ⇢ F̂[µt].



9
E X P L I C I T A N D I M P L I C I T E U L E R S C H E M E S , E X A M P L E S

The aim of this chapter is to present two tools to prove existence of EVI solutions:
the Explicit Euler scheme and the Implicit one. In particular Section 9.1 presents
the Explicit Euler scheme and the conditions under which we can prove its con-
vergence; in Section 9.2 we presents the main consequence of the solvability of
the Explicit Euler scheme in terms of stability and uniqueness of EVI solutions;
Section 9.3 deals with law invariant dissipative operators in a space of random
variables H and presents their main properties; Section 9.4 contains the proce-
dure that allows to construct a dissipative operator on H starting from a MPVF
on P2(H); finally in Section 9.5 are listed a few examples of MPVFs and EVI
solutions.

This Chapter is the result of a collaboration with Giulia Cavagnari and Giuseppe
Savaré and Sections 9.1, 9.2 and 9.5 appeared in [34].

In this whole chapter, H is a separable Hilbert space with dim(H) > 2.

9.1 explicit euler scheme

Our first strategy to prove the existence of a �-EVI solution to (8.1.1), is to define
an Explicit Euler scheme.
In the following b·c and d·e denote the floor and the ceiling functions respectively,
i.e.

btc := max {m 2 Z | m 6 t} and dte := min {m 2 Z | m > t} , (9.1.1)

for any t 2 R.

Definition 9.1.1 (Explicit Euler Scheme). Let F be a MPVF and suppose we are
given a step size ⌧ > 0, an initial datum µ0 2 D(F), a bounded interval [0, T ],
corresponding to the final step N(T , ⌧) := dT/⌧e , and a stability bound L > 0.
A sequence (Mn

⌧ ,�n
⌧ )06n6N(T ,⌧) ⇢ D(F)⇥ F is a L-stable solution to the Explicit

Euler Scheme in [0, T ] starting from µ0 2 D(F) if
8
><

>:

M0

⌧ = µ0,
�n

⌧ 2 F[Mn

⌧ ], |�n

⌧ |2 6 L 0 6 n < N(T , ⌧),

Mn

⌧ = (exp⌧)]�n-1

⌧ 1 6 n 6 N(T , ⌧).

(EE)

We define the following two different interpolations of the sequence (Mn
⌧ ,�n

⌧ ):

• the affine interpolation:

M⌧(t) := (expt-n⌧
)]�

n

⌧ if t 2 [n⌧, (n+1)⌧] for some n 2 N, 0 6 n < N(T , ⌧),
(9.1.2)

159
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• the piecewise constant interpolation:

M̄⌧(t) := M
bt/⌧c
⌧ , t 2 [0, T ], (9.1.3)

F⌧(t) := �
bt/⌧c
⌧ , t 2 [0, T ]. (9.1.4)

We define the following (possibly empty) sets

E (µ0, ⌧, T ,L) :=
⌦
(M⌧, F⌧) | M⌧, F⌧ are as in (9.1.2), (9.1.4) respectively

↵
,

M (µ0, ⌧, T ,L) :=
⌦
M⌧ | M⌧ is the curve given by (9.1.2)

↵
.

(9.1.5)

Remark 9.1.2. We immediately notice that, if (M⌧, F⌧) 2 E (µ0, ⌧, T ,L) and M̄⌧(·)
is as in (9.1.3), then the following holds for any 0 6 s 6 t 6 T :

1. the affine interpolation can be trivially written as

M⌧(t) =
⇣
expt-bt/⌧c⌧

⌘

]
(F⌧(t)) ;

2. M⌧ satisfies the uniform Lipschitz bound

W2(M⌧(t),M⌧(s)) 6 L|t- s|; (9.1.6)

3. we have the following estimate

W2(M̄⌧(t),M⌧(t)) = W2

✓
M⌧

✓�
t

⌧

⌫
⌧

◆
,M⌧(t)

◆
6 L⌧. (9.1.7)

The estimate (9.1.7) shows that the stability and convergence results stated for
the affine interpolation can be easily adapted to the piecewise constant one.

Notice that, in general, F[µ] is not reduced to a singleton, so that E (µ0, ⌧, T ,L)
and M (µ0, ⌧, T ,L) may contain more than one element.

9.1.1 The Explicit Euler Scheme: preliminary estimates

We first prove a simple estimate and a discrete version of (�-EVI).

Proposition 9.1.3. Every solution (M⌧, F⌧) 2 E (µ0, ⌧, T ,L) of (EE) satisfies

W2(M⌧(t),µ0) 6 Lt, |F⌧(t)|2 6 L for every t 2 [0, T ], (9.1.8)
W2(M⌧(t),M⌧(s)) 6 L|t- s| for every s, t 2 [0, T ], (9.1.9)

and

d
dt

1

2
W2

2
(M⌧(t),⌫) 6 [F⌧(t),⌫]r + ⌧|F⌧(t)|

2

2
6 [F⌧(t),⌫]r + ⌧L

2 (IEVI)

for every t 2 [0, T ] and ⌫ 2 P2(H), with possibly countable exceptions. In particular

1

2
W2

2
(Mn+1

⌧ ,⌫)-
1

2
W2

2
(Mn

⌧ ,⌫) 6 ⌧ [�n

⌧ ,⌫]
r
+

1

2
⌧2L2 (9.1.10)

for every 0 6 n < N(T , ⌧) and ⌫ 2 P2(H).
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Proof. The second inequality of (9.1.8) is a trivial consequence of the definition
of E (µ0, ⌧, T ,L), the first inequality is a particular case of (9.1.9). The estimate
(9.1.9) is immediate if n⌧ 6 s < t 6 (n+ 1)⌧ since

W2(M⌧(s),M⌧(t)) = W2((exps-n⌧
)]�

n

⌧ , (expt-n⌧
)]�

n

⌧ )

6
sZ

TH

|(t- s)v)|2 d�n
⌧

= (t- s)

sZ

TH

|v|2 d�n
⌧

6 (t- s)L.

This implies that the metric velocity of M⌧ is bounded by L in [0, T ] and therefore
M⌧ is L-Lipschitz.

Let us recall that for every ⌫ 2 P2(H) and � 2 P2(TH) the function g(t) :=

1

2
W2

2
(expt] �,⌫) satisfies

t 7! g(t)-
1

2
t2|�|2

2
is concave, g 0

r(0) = [�,⌫]
r

, g 0
(t) 6 [�,⌫]

r
+ t|�|2

2
(9.1.11)

for t > 0, by Definition 7.1.4 and Proposition 7.1.3. In particular, the concavity
yields the differentiability of g with at most countable exceptions. Thus, taking
any n 2 N, 0 6 n < N(T , ⌧), t 2 [n⌧, (n+ 1)⌧) and � = �n

⌧ so that expt] � =

M⌧(t), (9.1.11) yields (IEVI). The inequality in (9.1.10) follows by integration in
each interval [n⌧, (n+ 1)⌧].

We conclude this subsection with a stability estimate. We introduce the nota-
tion

I(t) :=

Z
t

0

er dr =
1


(et - 1) if  6= 0; I0(t) := t.

Notice that for every t > 0

I(t) 6 tet if  > 0. (9.1.12)

Proposition 9.1.4. Let M⌧ 2 M (µ0, ⌧, T ,L) and M 0
⌧ 2 M (µ 0

0
, ⌧, T ,L). If �+⌧ 6 2

then

W2(M⌧(t),M 0
⌧(t)) 6 W2(µ0,µ 0

0
)e�t + 8L

p
t⌧
⇣
1+ |�|

p
t⌧
⌘

e�+t

for every t 2 [0, T ].

Proof. Let us set w(t) := W2(M⌧(t),M 0
⌧(t)). Since by Proposition 7.1.3(2), in

every interval [n⌧, (n + 1)⌧] the function t 7! w2
(t) - 4L2(t - n⌧)2 is concave,

with

d
dt

w2
(t)

����
t=n⌧+

= 2
⇥
F⌧(t), F 0

⌧(t)
⇤
r
6 2�W2

2
(M̄⌧(t), M̄ 0

⌧(t)),

we obtain

d
dt

w2
(t) 6 2�W2

2
(M̄⌧(t), M̄ 0

⌧(t)) + 8L2⌧
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for every t 2 [0, T ], with possibly countable exceptions. Using the identity

a2
- b2

= 2b(a- b) + |a- b|2

with a = W2(M̄⌧(t), M̄ 0
⌧(t)) and b = W2(M⌧(t),M 0

⌧(t)) and observing that

|a- b| 6 W2(M̄⌧(t),M⌧(t)) +W2(M̄
0
⌧(t),M

0
⌧(t)) 6 2L⌧,

we eventually get

d
dt

w2
(t) 6 2�w2

(t) + 8L2⌧+ 8|�|L⌧w(t) + �+8L
2⌧2

6 2�w2
(t) + 8|�|L⌧w(t) + 24L2⌧,

since �+⌧ 6 2 by assumption. The Gronwall estimate in [5, Lemma 4.1.8] and
(9.1.12) yield

w(t) 6
⇣
w2

(0)e2�t + 24L2⌧I2�(t)
⌘1/2

+ 8|�|L⌧I�(t)

6 w(0)e�t + 8L
p
t⌧
⇣
1+ |�|

p
t⌧
⌘

e�+t.

9.1.2 Error estimates for the Explicit Euler scheme

In this subsection we prove that the family of affine interpolants is Cauchy, pro-
viding estimates under different step sizes and a uniform (optimal, see [106])
error estimate between the affine interpolant and the �-EVI solution for F.

Theorem 9.1.5. Let F be a �-dissipative MPVF as in (7.5.1). If M⌧ 2 M (M0
⌧, ⌧, T ,L),

M⌘ 2 M (M0
⌘,⌘, T ,L) with �

p
T(⌧+ ⌘) 6 1, then for every � > 1 there exists a

constant C(�) such that

W2(M⌧(t),M⌘(t)) 6
⇣p
�W2(M

0

⌧,M0

⌘) +C(�)L
p
(⌧+ ⌘)(t+ ⌧+ ⌘)

⌘
e�+ t

for every t 2 [0, T ].

Proof. We argue as in the proof of Theorem 8.2.3. Since �-dissipativity implies
� 0-dissipativity for � 0 > �, it is not restrictive to assume � > 0. We set � := ⌧+ ⌘.
We will extensively use the a priori bounds (9.1.8) and (9.1.9); in particular,

W2(M⌧(t), M̄⌧(t)) 6 L⌧, W2(M⌘(t), M̄⌘(t)) 6 L⌘.

We will also extend M⌧ and M̄⌧ for negative times by setting

M⌧(t) = M̄⌧(t) = M0

⌧, F⌧(t) = M0

⌧ ⌦ �0 if t < 0. (9.1.13)

The proof is divided into several steps.
1. Doubling variables.

We fix a final time t 2 [0, T ] and two variables r, s 2 [0, t] together with the
functions

w(r, s) := W2(M⌧(r),M⌘(s)), w⌧(r, s) := W2(M̄⌧(r),M⌘(s)),
w⌘(r, s) := W2(M⌧(r), M̄⌘(s)), w⌧,⌘(r, s) := W2(M̄⌧(r), M̄⌘(s)),

(9.1.14)
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observing that

max {|w-w⌧|, |w⌘ -w⌧,⌘|} 6 L⌧, max {|w-w⌘|, |w⌧ -w⌧,⌘|} 6 L⌘. (9.1.15)

By Proposition 9.1.3, we can write (IEVI) for M⌧ and get

@

@r

1

2
W2

2
(M⌧(r),⌫1) 6 ⌧|F⌧(r)|22+ [F⌧(r),⌫1]r for every ⌫1 2 P2(H), (IEVI⌧)

and for M⌘ obtaining

@

@s

1

2
W2

2
(M⌘(s),⌫2)

6 ⌘|F⌘(s)|22 + [F⌘(s),⌫2]r
6 ⌘|F⌘(s)|22 + �W2

2
(M̄⌘(s),⌫2)-

⇥
�, M̄⌘(s)

⇤
r

for � 2 F[⌫2], ⌫2 2 D(F).
(IEVI⌘)

Apart from possible countable exceptions, (IEVI⌧) holds for r 2 (-1, t] and
(IEVI⌘) for s 2 [0, t]. Taking ⌫1 = M̄⌘(s), ⌫2 = M̄⌧(r), � = F⌧(max{r, 0}) 2
F[M̄⌧(r)], summing the two inequalities (IEVI⌧,⌘), setting

f(r, s) :=

8
<

:
2LW2(M̄⌘(s),M⌧(0)) = 2Lw⌘(0, s) if r < 0,

0 if r > 0,

using (9.1.8) and the �-dissipativity of F, we obtain

@

@r
w2

⌘(r, s) +
@

@s
w2

⌧(r, s) 6 2�w2

⌧,⌘(r, s) + 2L2�+ f(r, s)

in (-1, t]⇥ [0, t] (see also [89, Lemma 6.15]). By multiplying both sides by e-2�s,
we have

@

@r
e-2�sw2

⌘ +
@

@s
e-2�sw2

⌧ 6
⇣
2�
�
w2

⌧,⌘ -w2

⌧

�
+ f+ 2L2�

⌘
e-2�s. (9.1.16)

Using (9.1.15), the inequalities

w⌧,⌘ +w⌧ = w⌧,⌘ -w⌧ + 2(w⌧ -w) + 2w 6 2L�+ 2w,
|w(r, s)-w(s, s)| 6 L|r- s|

and the elementary inequality a2
- b2 6 |a- b||a+ b|, we get

2
�
w2

⌧,⌘(r, s)-w2

⌧(r, s)
�
6 Rr,s, if r, s 6 t,

where Rr,s := 4L2�(�+ |r- s|) + 4L�w(s, s). Thus (9.1.16) becomes

@

@r
e-2�sw2

⌘ +
@

@s
e-2�sw2

⌧ 6 Zr,s, (9.1.17)

where Zr,s :=

⇣
R�+ f+ 2L2�

⌘
e-2�s.

2. Penalization.
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We fix any " > 0 and apply the Divergence Theorem to the inequality (9.1.17)
in the two-dimensional strip Q"

0,t as in (8.2.6) and we get
Z
t

t-"
e-2�tw2

⌧(r, t)dr 6
Z
0

-"
w2

⌧(r, 0)dr+

+

Z
t

0

e-2�s
�
w2

⌧(s, s)-w2

⌘(s, s)
�

ds

+

Z
t

0

e-2�s
�
w2

⌘(s- ", s)-w2

⌧(s- ", s)
�

ds

+

ZZ

Q"

0,t

Zr,s drds.

(9.1.18)

3. Estimates of the r.h.s..
We want to estimate the integrals (say I0, I1, I2, I3) of the right hand side of

(9.1.18) in terms of

w(s) := w(s, s) and W(t) := sup
06s6t

e-�sw(s).

We easily get

I0 =

Z
0

-"
w2

⌧(r, 0)dr = "w2
(0).

(9.1.15) yields

|w⌧(s, s)-w⌘(s, s)| 6 L(⌧+ ⌘) = L�

and

|w2

⌧(s, s)-w2

⌘(s, s)| 6 L�
⇣
L�+ 2w(s)

⌘
;

after an integration,

I1 6 L2�2t+ 2L�

Z
t

0

e-2�sw(s)ds 6 L2�2t+ 2L�tW(t).

Performing the same computations for the third integral term at the r.h.s. of
(9.1.18) we end up with

I2 =

Z
t

0

e-2�s
�
w2

⌘(s- ", s)-w2

⌧(s- ", s)
�

ds

6 L2t�2 + 2L�

Z
t

0

e-2�sw(s- ", s)ds

6 L2�2t+ 2L2�"t+ 2L�

Z
t

0

e-2�sw(s)ds

6 L2�2t+ 2L2�"t+ 2L�tW(t).

Eventually, using the elementary inequalities,
ZZ

Q"

0,t

�e-2�s drds 6 "

2
,

ZZ

Q"

0,t

e-2�sw(s, s)drds = "
Z
t

0

e-2�sw(s)ds,
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and f(r, s) 6 2L2(⌘+ s) + 2Lw(s) for r < 0 and f(r, s) = 0 for r > 0, we get

I3 =

ZZ

Q"

0,t

Zr,s drds 6 2L2�"(�+ ") + 4L��"

Z
t

0

e-2�sw(s)ds+ 2L2�"t

+ 2

ZZ

Q"

0,min{",t}

(L2(⌘+ s) + Lw(s))e-2�s drds

6 2L2�"(�+ ") + 2L2"2(�+ ") + 2L2�"t+ 4L��"tW(t) + 2L"2W(min{t, "}).

We eventually get

3X

k=0

Ik 6 "w2
(0) + 2L2�2t

+ 4L2�"t+ 2L2"(�+ ")2 + 4L�(1+ �")tW(t) + 2L"2W(min{t, "}).
(9.1.19)

4. L.h.s. and penalization
We want to use the first integral term in (9.1.18) to derive a pointwise estimate

for w(t);
(9.1.9) and (9.1.14) yield

w(t) = w(t, t) 6 L(t- r) +w(r, t) 6 L(⌧+ |t- r|) +w⌧(r, t). (9.1.20)

We then square (9.1.20), use the Young inequality (i.e. 2ab 6 a
2

#
+ #b2 for any

a,b > 0, # > 0), multiply the resulting inequality by e
-2�t

"
and integrate over the

interval (t- ", t). So that, for every �, �? > 1 conjugate coefficients, we get

e-2�tw2
(t) 6 �

"

Z
t

t-"
e-2�tw2

⌧(r, t)dr+ �?L2(⌧+ ")2

6 �

"
(I0 + I1 + I2 + I3) + �?L

2
(⌧+ ")2,

with I0, I1, I2, I3 as in step 3. Using (9.1.19) yields

e-2�tw2
(t) 6(2�+ �?)L

2
(�+ ")2 + �

⇣
w2

(0) + 2L2�2t/"+ 4L2�t
⌘

+
4L(1+ �")��

"
tW(t) + 2L"�W(min{t, "}).

5. Conclusion.
Choosing " :=

p
� max{�, t} and assuming �

p
T� 6 1, we obtain

e-2�tw2
(t) 6 �w2

(0) + (14�+ 4�?)L
2 � max{�, t}+ 10�L

p
� max{�, t}W(t).

(9.1.21)

Since the right hand side of (9.1.21) is an increasing function of t, (9.1.21) holds
even if we substitute the left hand side with e-2�sw2

(s) for every s 2 [0, t]; we
thus obtain the inequality

W2
(t) 6 �w2

(0) + (14�+ 4�?)L
2 � max{�, t}+ 10�L

p
� max{�, t}W(t).
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Using the elementary property for positive a,b

W2 6 a+ 2bW ) W 6 b+

p
b2 + a 6 2b+

p
a, (9.1.22)

we eventually obtain

e-�tw(t) 6
⇣
�w2

(0) + (14�+ 4�?)L
2 � max{�, t}

⌘1/2
+ 10�L

p
� max{�, t}

6
p
�w(0) +C(�)L

p
� max{�, t},

with C(�) := (14 �+ 4 �?)
1/2

+ 10 �.

9.1.3 Error estimates between discrete and EVI solutions

Theorem 9.1.6. Let F be a �-dissipative MPVF according to (7.5.1). If µ : [0, T ] ! D(F)
is a �-EVI solution and M⌧ 2 M (M0

⌧, ⌧, T ,L), then for every � > 1 there exists a
constant C(�) such that

W2(µt,M⌧(t)) 6
⇣p
�W2(µ0,M0

⌧) +C(�)L
p
⌧(t+ ⌧)

⌘
e�+t

for every t 2 [0, T ].

Remark 9.1.7. When µ0 = M0
⌧ and � 6 0 we obtain the optimal error estimate

W2(µt,M⌧(t)) 6 13L
p
⌧(t+ ⌧).

Proof. We repeat the same argument of the previous proof, still assuming � > 0,
extending M⌧, M̄⌧, F⌧ as in (9.1.13) and setting

w(r, s) := W2(M⌧(r),µs), w⌧(r, s) := W2(M̄⌧(r),µs).

We use (�-EVI) for µs with ⌫ = M̄⌧(r) and � = F⌧(max{r, 0}) and (IEVI) for
M⌧(r) with ⌫ = µs obtaining

@

@r

e-2�s

2
W2

2
(M⌧(r),µs) 6 e-2�s

⇣
⌧|F⌧(r)|

2

2
+ [F⌧(r),µs]r

⌘

for every s 2 [0, T ], r 2 (-1, T)

@

@s

e-2�s

2
W2

2
(µs, M̄⌧(r)) 6 -e-2�s

[F⌧(max{r, 0}),µs]r

in D 0
(0, T), r 2 (-1, T).

Using [89, Lemma 6.15] we can sum the two contributions obtaining

@

@r
e-2�sw2

(r, s) +
@

@s
e-2�sw2

⌧(r, s) 6 Zr,s,

where Zr,s := (2L2⌧+ 2f(r, s))e-2�s, and

f(r, s) :=

8
<

:
LW2(M⌧(0),µs) = Lw(0, s) if r < 0,

0 if r > 0.
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Let t 2 [0, T ] and " > 0. Applying the Divergence Theorem in Q"
0,t (see (8.2.6)

and Figure 2), we get
Z
t

t-"
e-2�tw2

⌧(r, t)dr 6
Z
0

-"
w2

⌧(r, 0)dr

+

Z
t

0

e-2�s
�
w2

⌧(s, s)-w2
(s, s)

�
ds

+

Z
t

0

e-2�s
�
w2

(s- ", s)-w2

⌧(s- ", s)
�

ds

+

ZZ

Q"

0,t

Zr,s drds.

(9.1.23)

Using

w(t, t) 6 w(r, t) + L(t- r) 6 w⌧(r, t) + L(⌧+ ") if t- " 6 r 6 t,

we get for every �, �? > 1 conjugate coefficients (�? = �/(�- 1))

e-2�tw2
(t) 6 �

"

Z
t

t-"
e-2�tw2

⌧(r, t)dr+ �?L2(⌧+ ")2. (9.1.24)

Similarly to (9.1.15) we have

|w⌧(s, s)-w(s, s)| 6 L⌧, |w2

⌧(s, s)-w2
(s, s)| 6 L⌧

⇣
L⌧+ 2w(s)

⌘

and, after an integration,
Z
t

0

e-2�s
�
w2

⌧(s, s)-w2
(s, s)

�
ds 6 L2t⌧2 + 2L⌧

Z
t

0

e-2�sw(s)ds. (9.1.25)

Performing the same computations for the third integral term at the r.h.s. of
(9.1.23) we end up with

Z
t

0

e-2�s
�
w2

(s- ", s)-w2

⌧(s- ", s)
�

ds 6 L2t⌧2 + 2L⌧

Z
t

0

e-2�sw(s- ", s)ds

6 L2t⌧(⌧+ 2") + 2L⌧

Z
t

0

e-2�sw(s)ds.

(9.1.26)

Finally, since if r < 0 we have f(r, s) = Lw(0, s) 6 L2s+ Lw(s, s), then

"-1

ZZ

Q"

0,t

Zr,s drds 6 2L2t⌧+ "-1

ZZ

Q"

0,min{",t}

2f(r, s)e-2�s drds

6 2L2t⌧+ L2"2 + 2L" sup
06s6min{",t}

e-�sw(s). (9.1.27)

Using (9.1.25), (9.1.26), (9.1.27) in (9.1.23), we can rewrite the bound in (9.1.24) as

e-2�tw2
(t) 6 �?L2(⌧+ ")2+

+ �
⇣
w2

(0) + 2L2t⌧2/"+ 2L2t⌧+ L2"2

+ 2L" sup
06s6min{",t}

e-�sw(s)
⌘

+
4�L⌧

"

Z
t

0

e-2�sw(s)ds.
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Choosing " :=
p
⌧ max{⌧, t} we get

e-2�tw2
(t) 6 4 �?L

2 ⌧ max{⌧, t}+ �
⇣
w2

(0) + 5L2 ⌧ max{⌧, t}
⌘

+ 6 �L
p
⌧ max{⌧, t} sup

06s6t

e-�sw(s).

A further application of (9.1.22) yields

e-�tw(t) 6
⇣
�w2

(0) + (5�+ 4�?)L
2 ⌧ max{⌧, t}

⌘1/2
+ 6�L

p
⌧ max{⌧, t}

6
p
�w(0) +C(�)L

p
t+ ⌧

p
⌧,

with C(�) := (5�+ 4�?)
1/2

+ 6�.

We show now that the limit curve as ⌧ # 0 of the family (M⌧)⌧>0 as in (9.1.2)
is a �-EVI solution of (8.1.1).

Theorem 9.1.8. Let F be a �-dissipative MPVF according to (7.5.1) and let n 7! ⌧(n)

be a vanishing sequence of time steps, let (µ0,n)n2N be a sequence in D(F) converging
to µ0 2 D(F) in P2(H) and let Mn 2 M (µ0,n, ⌧(n), T ,L). Then Mn is uniformly
converging to a Lipschitz continuous limit curve µ : [0, T ] ! D(F) which is a �-EVI
solution starting from µ0.

Proof. Theorem 9.1.5 shows that Mn is a Cauchy sequence in C([0, T ]; D(F)), so
that there exists a unique limit curve µ as n ! 1. Moreover, µ is also L-Lipschitz
and, recalling (9.1.7), we have that µ is also the uniform limit of M̄⌧(n).
Let us fix a reference measure ⌫ 2 D(F) and � 2 F[⌫]. The (IEVI) and the �-
dissipativity of F yield

d
dt

1

2
W2

2
(Mn(t),⌫) 6 ⌧(n)|F⌧(n)(t)|

2

2
+
⇥
F⌧(n),⌫

⇤
r

6 ⌧(n)L2 + �W2

2
(M̄⌧(n)(t),⌫)-

⇥
�, M̄⌧(n)(t)

⇤
r

for a.e. t 2 [0, T ]. Integrating the above inequality in (t, t+ h) ⇢ [0, T ] we get

W2

2
(Mn(t+ h),⌫)-W2

2
(Mn(t),⌫)

2h
6

⌧(n)L2 +
1

h

Z
t+h

t

⇣
�W2

2
(M̄⌧(n)(s),⌫)-

⇥
�, M̄⌧(n)(s)

⇤
r

⌘
ds.

(9.1.28)

Notice that as n ! +1, by (9.1.7), we have

lim inf
n!+1

⇥
�, M̄⌧(n)(s)

⇤
r
> [�,µs]r

for every s 2 [0, T ], together with the uniform bound given by
���
⇥
�, M̄⌧(n)(s)

⇤
r

��� 6 1

2
W2

2
(M̄⌧(n)(s),⌫) +

1

2
|�|2

2

for every s 2 [0, T ]. Thanks to Fatou’s Lemma and the uniform convergence given
by Theorem 9.1.5, we can pass to the limit as n ! +1 in (9.1.28) obtaining

W2

2
(µt+h,⌫)-W2

2
(µt,⌫)

2h
6 1

h

Z
t+h

t

⇣
�W2

2
(µs,⌫)- [�,µs]r

⌘
ds.
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A further limit as h # 0 yields

1

2

d
dt

+

W2

2
(µt,⌫) 6 �W2

2
(µt,⌫)- [�,µt]r

which provides (�-EVI).

9.2 consequences of the solvability of the explicit euler scheme

In the following Theorem we collect the results obtained in Subsection 9.1. We
stress that in the next statement A(�) solely depend on � (in particular, it is
independent of �,L, T , ⌧,⌘,M⌧,M⌘).

Theorem 9.2.1. Let F be a �-dissipative MPVF according to (7.5.1).

1. For every µ0,µ 0
0
2 D(F), every M⌧ 2 M (µ0, ⌧, T ,L), M 0

⌧ 2 M (µ 0
0

, ⌧, T ,L) with
⌧�+ 6 2 we have

W2(M⌧(t),M 0
⌧(t)) 6 e�tW2(µ0,µ 0

0
) + 8L

p
t⌧
⇣
1+ |�|

p
t⌧
⌘

e�+t (9.2.1)

for every t 2 [0, T ].

2. For every � > 1 there exists a constant A(�) such that if M⌧ 2 M (M0
⌧, ⌧, T ,L)

and M⌘ 2 M (M0
⌘,⌘, T ,L) with �+(⌧+ ⌘) 6 1 then

W2(M⌧(t),M⌘(t)) 6
⇣
�W2(M

0

⌧,M0

⌘) +A(�)L
p

(⌧+ ⌘)(t+ ⌧+ ⌘)
⌘

e�+ t

for every t 2 [0, T ].

3. For every � > 1 there exists a constant A(�) such that if µ : [0, T ] ! D(F) is a
�-EVI solution and M⌧ 2 M (M0

⌧, ⌧, T ,L) then

W2(µt,M⌧(t)) 6
⇣
�W2(µ0,M0

⌧) +A(�)L
p
⌧(t+ ⌧)

⌘
e�+t (9.2.2)

for every t 2 [0, T ].

4. If n 7! ⌧(n) is a vanishing sequence of time steps, (µ0,n)n2N is a sequence in
D(F) converging to µ0 2 D(F) in P2(H) and Mn 2 M (µ0,n, ⌧(n), T ,L), then
Mn is uniformly converging to a Lipschitz continuous limit curve µ : [0, T ] !
D(F) which is a �-EVI solution starting from µ0.

Definition 9.2.2 (Local and global solvability of (EE)). We say that the Explicit
Euler Scheme (EE) associated to a MPVF F is locally solvable at µ0 2 D(F) if there
exist strictly positive constants ⌧, T ,L such that E (µ0, ⌧, T ,L) is not empty for
every ⌧ 2 (0,⌧).
We say that (EE) is globally solvable at µ0 2 D(F) if for every T > 0 there exist
strictly positive constants ⌧,L such that E (µ0, ⌧, T ,L) is not empty for every ⌧ 2
(0,⌧).
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If we work under the assumption that the Explicit Euler scheme is locally
solvable, then Theorem 9.2.1 is very useful to treat local existence and uniqueness
of �-EVI solutions.

Given T 2 (0,+1] and µ : [0, T) ! P2(H) we denote by |µ̇t|+ the right upper
metric derivative

|µ̇t|+ := lim sup
h#0

W2(µt+h,µt)

h
.

Theorem 9.2.3 (Local existence and uniqueness). Let F be a �-dissipative MPVF
according to (7.5.1).

(a) If the Explicit Euler Scheme is locally solvable at µ0 2 D(F), then there exists
T > 0 and a unique Lipschitz continuous �-EVI solution µ : [0, T ] ! D(F)
starting from µ0, satisfying

t 7! e-�t|µ̇t|+ is decreasing in [0, T). (9.2.3)

If µ 0
: [0, T 0

] ! D(F) is any other �-EVI solution starting from µ0 then µt = µ 0
t

if 0 6 t 6 min{T , T 0}.

(b) If the Explicit Euler Scheme is locally solvable in D(F) and

for any local �-EVI solution µ starting from µ0 2 D(F)
there exists � > 0 : t 2 [0, �] ) µt 2 D(F),

(9.2.4)

then for every µ0 2 D(F) there exist a unique maximal time T 2 (0,1] and
a unique strict locally Lipschitz continuous �-EVI solution µ : [0, T) ! D(F)
starting from µ0, which satisfies (9.2.3) and

T < 1 ) lim
t"T

µt 62 D(F). (9.2.5)

Any other �-EVI solution µ 0
: [0, T 0

) ! D(F) starting from µ0 coincides with µ

in [0, min{T , T 0}).

Proof.
(a) Let ⌧, T ,L positive constants such that E (µ0, ⌧, T ,L) is not empty for every

⌧ 2 (0,⌧). Thanks to Theorem 9.2.1(2), the family M⌧ 2 E (µ0, ⌧, T ,L) satisfies the
Cauchy condition in C([0, T ];P2(H)) so that there exists a unique limit curve

µ = lim
⌧#0

M⌧

which is also Lipschitz in time, thanks to the a-priori bound (9.1.6). Theorem
9.2.1(4) shows that µ is a �-EVI solution starting from µ0 and the estimate (9.2.2)
of Theorem 9.2.1(3) shows that any other �-EVI solution in an interval [0, T 0

]

starting from µ0 should coincide with µ in the interval [0, min{T 0, T }].
Let us now check (9.2.3): we fix s, t such that 0 6 s < t < T and h 2 (0, T - t),

and we set

s⌧ := ⌧ bs/⌧c and h⌧ := ⌧ bh/⌧c .
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The curves

r 7! M⌧(s⌧ + r) and r 7! M⌧(s⌧ + h⌧ + r)

belong to M (M⌧(s⌧), ⌧, t- s,L) and M (M⌧(s⌧ + h⌧), ⌧, t- s,L), so that (9.2.1)
yields

W2(M⌧(s⌧+ t- s),M⌧(s⌧+h⌧+(t- s))) 6 e�(t-s)W2(M⌧(s⌧),M⌧(s⌧+h⌧))+B
p
⌧,

for B = B(�,L,⌧, T). Passing to the limit as ⌧ # 0 we get

W2(µt,µt+h) 6 e�(t-s)W2(µs,µs+h).

Dividing by h and passing to the limit as h # 0 we get (9.2.3).

(b) Let us call S the collection of �-EVI solutions µ : [0,S) ! D(F) starting from
µ0 with values in D(F) and defined in some interval [0,S), S = S(µ). Thanks to
(9.2.4) and the previous claim the set S is not empty.

It is also easy to check that two curves µ 0,µ 00 2 S coincide in the common
domain [0,S) with

S := min
�
S(µ 0

),S(µ 00
)
 

.

Indeed, the set
�
t 2 [0,S) : µ 0

r = µ 00
r if 0 6 r 6 t

 

contains t = 0, is closed since µ 0,µ 00 are continuous, and it is also open since,
if µ 0

= µ 00 in [0, t], then the previous claim and the fact that µ 0
t
= µ 00

t
2 D(F)

show that µ 0
= µ 00 also in a right neighborhood of t. Since [0,S) is connected, we

conclude that µ 0
= µ 00 in [0,S).

We can thus define

T := sup
⌦
S(µ) : µ 2 S

↵
,

obtaining that there exists a unique �-EVI solution µ starting from µ0 and de-
fined in [0, T) with values in D(F).

If T < 1, since µ is Lipschitz in [0, T) thanks to (9.2.3), we know that there
exists the limit

µ̄ := lim
t"T

µt

in P2(H). If µ̄ 2 D(F) we can extend µ to a �-EVI solution with values in D(F)
and defined in an interval [0, T 0

) with T 0 > T , which contradicts the maximality
of T .

A set A in a metric space X is locally closed if every point of A has a neighbor-
hood U such that A \U = Ā \U. Equivalently, A is the intersection of an open
and a closed subset of X. In particular, open or closed sets are locally closed.

We refer to Definition 8.1.1 for the notion of strict EVI solutions, used in the
following.
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Corollary 9.2.4. Let F be a �-dissipative MPVF according to (7.5.1) for which the
Explicit Euler Scheme is locally solvable in D(F). If D(F) is locally closed then for every
µ0 2 D(F) there exists a unique maximal strict and locally Lipschitz continuous �-EVI
solution µ : [0, T) ! D(F), T 2 (0,+1], satisfying (9.2.5).

We now present a few situation where the Explicit Euler scheme is locally
solvable. The constraints in the construction of the explicit Euler scheme are
feasible if at each measure Mn

⌧ , 0 6 n < N(T , ⌧), the set Adm⌧,L(M
n
⌧ ) defined by

Adm⌧,L(µ) :=
⌦
� 2 F[µ] : |�|2 6 L and exp⌧] � 2 D(F)

↵
, µ 2 P2(H),

is not empty. If D(F) is open and F is locally bounded, then it is easy to check that
the Explicit Euler scheme is locally solvable (see Lemma 9.2.5). We will adopt the
following notation:

|F|2(µ) := inf
⌦
|�|2 : � 2 F[µ]

↵
for every µ 2 D(F), (9.2.6)

and we will also introduce the upper semicontinuous envelope |F|2? of the func-
tion |F|2: i.e.

|F|2?(µ) := inf
�>0

sup
⌦
|F|2(⌫) : ⌫ 2 D(F), W2(⌫,µ) 6 �

↵

= sup
⌦

lim sup
k!1

|F|2(µk) : µk 2 D(F), µk ! µ in P2(H)

↵
.

Lemma 9.2.5. If F is a �-dissipative MPVF according to (7.5.1), µ0 2 Int(D(F)) and
F is bounded in a neighborhood of µ0, i.e. there exists ⇢ > 0 such that |F|2 is bounded in
B(µ0, ⇢), then the Explicit Euler scheme is locally solvable at µ0 and the locally Lipschitz
continuous solution µ given by Theorem 9.2.3(a) satisfies

|µ̇t|+ 6 e�t|F|2?(µ0) for all t 2 [0, T). (9.2.7)

In particular, if D(F) is open and F is locally bounded, for every µ0 2 D(F) there exists
a unique maximal locally Lipschitz continuous �-EVI solution µ : [0, T) ! P2(H)

satisfying (9.2.5) and (9.2.7).

Proof. Let µ0 2 Int(D(F)) and let ⇢,L > 0 so that |F|2(µ) < L for every µ 2
B(µ0, ⇢). We set

T := ⇢/(2L) and ⌧ := min{T , 1}

and we perform a simple induction argument to prove that

W2(M
n

⌧ ,µ0) 6 Ln⌧ < ⇢

if n 6 N(T , ⌧), so that we can always find an element �n
⌧ 2 Adm⌧,L(M

n
⌧ ). In fact,

if W2(M
n
⌧ ,µ0) < Ln⌧ and n < N(T , ⌧) then

W2(M
n+1

⌧ ,µ0) 6 W2(M
n+1

⌧ ,Mn

⌧ ) +W2(M
n

⌧ ,µ0) 6 L(n+ 1)⌧.

The property in (9.2.3) shows that |µ̇t|+ 6 Le�t for every L > |F|2?(µ0), so that
we obtain (9.2.7).
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Another example is related to measures with bounded support.

Proposition 9.2.6. Let F be a �-dissipative MPVF according to (7.5.1). Assume that
D(F) ⇢ Pb(H) and for every µ0 2 D(F) there exist ⇢ > 0, L > 0 such that, for every
µ 2 Pb(H) with supp(µ) ⇢ supp(µ0) + B(0, ⇢), there exists � 2 F[µ] such that

supp(v]�) ⇢ B(0,L).

Then for every µ0 2 D(F) there exists T 2 (0,+1] and a unique maximal strict and
locally Lipschitz continuous �-EVI solution µ : [0, T) ! D(F) satisfying (9.2.5).

Proof. Arguing as in the proof of Lemma 9.2.5, it is easy to check that setting
T := ⇢/4L, ⌧ = min{T , 1}, we can find a discrete solution (M⌧, F⌧) 2 E (µ0, ⌧, T ,L)
satisfying the more restrictive condition

supp(Mn

⌧ ) ⇢ supp(µ0)+B(0,Ln⌧) ⇢ supp(µ0)+B(0, ⇢/2), supp(v]�n

⌧ ) ⇢ B(0,L).

So that the Explicit Euler scheme is locally solvable and M⌧ satisfies the uniform
bound

supp(M⌧(t)) ⇢ supp(µ0) + B(0, ⇢/2) (9.2.8)

for every t 2 [0, T ]. Theorem 9.2.3 then yields the existence of a local solution, and
Theorem 9.2.1(3) shows that the local solution satisfies the same bound (9.2.8) on
the support, so that (9.2.4) holds.

9.2.1 Stability and uniqueness

The following stability result assumes that the Explicit Euler scheme is locally
solvable in D(F).

Theorem 9.2.7 (Uniqueness and Stability). Let F be a �-dissipative MPVF according
to (7.5.1) such that the Explicit Euler scheme is locally solvable in D(F), and let µ1,µ2

:

[0, T) ! D(F), T 2 (0,+1], be �-EVI solutions to (8.1.1). If µ1 is strict, then

W2(µ
1

t ,µ2

t) 6 W2(µ
1

0
,µ2

0
) e�+ t for every t 2 [0, T). (9.2.9)

In particular, if µ1

0
= µ2

0
then µ1 ⌘ µ2 in [0, T).

If µ1,µ2 are both strict, then

W2(µ
1

t ,µ2

t) 6 W2(µ
1

0
,µ2

0
) e�t for every t 2 [0, T). (9.2.10)

Proof. In order to prove (9.2.9), let us fix t 2 (0, T). Since the Explicit Euler scheme
is locally solvable and µ1

t
2 D(F), there exist ⌧, �,L such that M (µ1

t
, ⌧, �,L) is not

empty for every ⌧ 2 (0,⌧). If M1
⌧ 2 M (µ1

t
, ⌧, �,L), then (9.2.2) yields

W2(µ
1

t+h
,µ2

t+h
) 6 W2(M

1

⌧(h),µ
2

t+h
) +W2(M

1

⌧(h),µ
1

t+h
)

6 �W2(µ
1

t ,µ2

t)e
�+h

+B
p
⌧ if 0 6 h 6 �,

for B = B(�,L,⌧, �) Passing to the limit as ⌧ # 0 we obtain

W2(µ
1

t+h
,µ2

t+h
) 6 �W2(µ

1

t ,µ2

t)e
�+h
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and a further limit as � # 1 yields

W2(µ
1

t+h
,µ2

t+h
) 6 W2(µ

1

t ,µ2

t)e
�+h

for every h 2 [0, �], which implies that the map t 7! e-�+tW2(µ
1
t

,µ2
t
) is decreas-

ing in [t, t+ �]. Since t is arbitrary, we obtain (9.2.9).

In order to prove the estimate (9.2.10) (which is better than (9.2.9) when � < 0),
we argue in a similar way, using (9.2.1).

As before, for a given t 2 (0, T), since the Explicit Euler scheme is locally solv-
able and µ1

t
,µ2

t
2 D(F), there exist ⌧, �,L such that M (µ1

t
, ⌧, �,L) and M (µ2

t
, ⌧, �,L)

are not empty for every ⌧ 2 (0,⌧). If Mi
⌧ 2 M (µi

t
, ⌧, �,L), for i = 1, 2, (9.2.1) and

(9.2.2) then yield

W2(µ
1

t+h
,µ2

t+h
) 6 W2(µ

1

t+h
,M1

⌧(h)) +W2(M
1

⌧(h),M
2

⌧(h)) +W2(µ
2

t+h
,M2

⌧(h))

6 e�hW2(µ
1

t ,µ2

t) +B
p
⌧

if 0 6 h 6 �, with B = B(�,L,⌧, �). Passing to the limit as ⌧ # 0 we obtain

W2(µ
1

t+h
,µ2

t+h
) 6 e�hW2(µ

1

t ,µ2

t)

which implies that the map t 7! e-�tW2(µ
1
t

,µ2
t
) is decreasing in (0, T).

Corollary 9.2.8 (Local Lipschitz estimate). Let F be a �-dissipative MPVF according
to (7.5.1) and let µ : (0, T) ! D(F), T 2 (0,+1], be a �-EVI solution to (8.1.1). If at
least one of the following two conditions holds

(a) µ is strict and (EE) is locally solvable in D(F),

(b) µ is locally absolutely continuous and (7.7.6) holds,

then µ is locally Lipschitz and

t 7! e-�t|µ̇t|+ is decreasing in (0, T). (9.2.11)

Proof. Since for every h > 0 the curve t 7! µt+h is a �-EVI solution, (9.2.10)
yields

e-�(t-s)W2(µt+h,µt) 6 W2(µs+h,µs)

for every 0 < s < t. Dividing by h and taking the limsup as h # 0, we get (9.2.11),
which in turn shows the local Lipschitz character of µ.

9.2.2 Global existence and generation of �-flows

Here we treat the existence of global solutions and the generation of �-flows.

Theorem 9.2.9 (Global existence). Let F be a �-dissipative MPVF according to (7.5.1).
If the Explicit Euler Scheme is globally solvable at µ0 2 D(F), then there exists a unique
global and locally Lipschitz continuous �-EVI solution µ : [0,1) ! D(F) starting from
µ0.
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Proof. We can argue as in the proof of Theorem 9.2.3(a), observing that the global
solvability of (EE) allows for the construction of a limit solution on every interval
[0, T ], T > 0.

Let us provide a simple condition ensuring global solvability; we will use the
following discrete Gronwall estimate.

Lemma 9.2.10 (Discrete Gronwall inequality). Let ↵ > 0, y > 0, ⌧ > 0 and N 2 N

with N > 0. If a sequence (xn)n2N of positive real numbers satisfies

xn+1 - xn 6 ⌧y+ ⌧↵xn, (9.2.12)

for any 0 6 n 6 N, then

xn 6 (x0 + ⌧ny)e↵n⌧,

for any 0 6 n 6 N+ 1.

Proof. We treat only the non trivial case n > 1 and ↵ > 0; we will repeatedly use
the elementary inequality

1+ x 6 ex (9.2.13)

for every x 2 R. Multiplying (9.2.12) written for n = k 2 {0, . . . ,N} by e-↵⌧(k+1),
we obtain

e-↵⌧(k+1)xk+1 6 ⌧ye-↵⌧(k+1)
+xk(1+⌧↵)e-↵⌧(k+1) 6 ⌧ye-↵⌧(k+1)

+xke-↵⌧k,

where the last inequality comes from (9.2.13) with x = ↵⌧. Let n 2 {0, . . . ,N+ 1};
we sum the previous inequality written for k 2 {0, . . . ,n- 1} obtaining

e-↵⌧nxn - x0 6 ⌧ye-↵⌧
n-1X

k=0

�
e-↵⌧

�k
= ⌧ye-↵⌧

1- e-↵⌧n

1- e-↵⌧
.

Then we get

xn 6 x0e↵⌧n + ⌧y
e↵⌧n - 1

e↵⌧ - 1

= x0e↵⌧n + ⌧yn
e↵⌧n - 1

↵⌧n

↵⌧

e↵⌧ - 1

6 x0e↵⌧n + ⌧yne↵⌧n,

where we used again (9.2.13) in the last step.

Proposition 9.2.11. Let F be a �-dissipative MPVF according to (7.5.1). Assume that
for every R > 0 there exist M = M(R) > 0 and ⌧̄ = ⌧̄(R) > 0 such that, for every
µ 2 D(F) with m2(µ) 6 R and every 0 < ⌧ 6 ⌧̄,

there exists � 2 F[µ] s.t. |�|2 6 M(R) and exp⌧] � 2 D(F). (9.2.14)

Then the Explicit Euler scheme is globally solvable in D(F). More precisely, if for a given
µ0 2 D(F) with  0 2 F[µ0], m0 := m2(µ0), and we set

R := m0 +

⇣
| 0|2 + 1

⌘p
2Te(1+2�+)T , L := M(R), ⌧ = min

�
1

L2
, ⌧̄(R), T

�
,

(9.2.15)

then for every ⌧ 2 (0,⌧] the set E (µ0, ⌧, T ,L) is not empty.
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Proof. We want to prove by induction that for every integer N 6 N(T , ⌧), (EE)
has a solution up to the index N satisfying the upper bound

m2(M
N

⌧ ) 6 R, (9.2.16)

corresponding to the constants R,L given by (9.2.15). For N = 0 the statement
is trivially satisfied. Assuming that 0 6 N < N(T , ⌧) and elements (Mn

⌧ ,�n
⌧ ),

0 6 n < N, MN
⌧ , are given satisfying (EE) and (9.2.16), we want to show that we

can perform a further step of the Euler Scheme so that (EE) is solvable up to the
index N+ 1 and m2(M

N+1
⌧ ) 6 R.

Notice that by the induction hypothesis, for n = 0, . . . ,N- 1, we have |�n
⌧ |2 6

L; since m2(M
N
⌧ ) 6 R, by (9.2.14) we can select �N

⌧ 2 F[MN
⌧ ] with |�N

⌧ |2 6 L such
that MN+1

⌧ = exp⌧] �
N
⌧ 2 D(F). Using (9.1.10) with ⌫ = µ0, the �-dissipativity

with  0 2 F[µ0]

[�n

⌧ ,µ0]r 6 �W2

2
(Mn

⌧ ,µ0)- [ 0,Mn

⌧
]
r

,

and the bound

- [ 0,Mn

⌧
]
r
6 1

2
W2

2
(Mn

⌧ ,µ0) +
1

2
| 0|

2

2
,

we end up with

1

2
W2

2
(Mn+1

⌧ ,µ0)-
1

2
W2

2
(Mn

⌧ ,µ0) 6
⌧2

2
L2 + ⌧

✓
1

2
+ �+

◆
W2

2
(Mn

⌧ ,µ0)

+
⌧

2
| 0|

2

2
,

for every n 6 N. Using the Gronwall estimate of Lemma 9.2.10 we get

W2(M
n

⌧ ,µ0) 6
p
T + ⌧

⇣
| 0|2 +

p
⌧L
⌘

e(
1

2
+�+) (T+⌧)

6
p
2T
⇣
| 0|2 + 1

⌘
e(1+2�+)T

for every n 6 N+ 1, so that

m2(M
N+1

⌧ ) 6 m0 +

p
2T
⇣
| 0|2 + 1

⌘
e(1+2�+)T 6 R.

Let us consider now the generation of �-flows.

Definition 9.2.12. We say that the �-dissipative MPVF F, according to (7.5.1),
generates a �-flow if for every µ0 2 D(F) there exists a unique �-EVI solution
µ = S[µ0] starting from µ0 and the maps µ0 7! St[µ0] = (S[µ0])t induce a
semigroup of Lipschitz transformations (St)t>0 of D(F) satisfying

W2(St[µ0], St[µ1]) 6 e�tW2(µ0,µ1) for every t > 0. (9.2.17)

Theorem 9.2.13 (Generation of a �-flow). Let F be a �-dissipative MPVF according
to (7.5.1). If at least one of the following properties is satisfied:

(a) the Explicit Euler Scheme is globally solvable for every µ0 in a dense subset of
D(F);



9.2 consequences of the solvability of the explicit euler scheme 177

(b) the Explicit Euler Scheme is locally solvable in D(F) and, for every µ0 in a dense
subset of D(F), there exists a strict global �-EVI solution starting from µ0;

(c) the Explicit Euler Scheme is locally solvable in D(F) and D(F) is closed;

(d) for every µ0 2 D(F), µ1 2 D(F) we have �0o(µ0,µ1|F) 6= ; and, for every µ0

in a dense subset of D(F), there exists a locally absolutely continuous strict global
�-EVI solution starting from µ0;

(e) for every µ0 in a dense subset of D(F), there exists a locally absolutely continuous
solution of (8.1.2) starting from µ0,

then F generates a �-flow.

Proof. (a) Let D be the dense subset of D(F) for which (EE) is globally solvable.
For every µ0 2 D we define St[µ0], t > 0, as the value at time t of the unique
�-EVI solution starting from µ0, whose existence is guaranteed by Theorem 9.2.9.

If µ0,µ1 2 D, T > 0, we can find ⌧,L such that M (µ0, ⌧, T ,L) and M (µ1, ⌧, T ,L)
are not empty for every ⌧ 2 (0,⌧). We can then pass to the limit in the uniform
estimate (9.2.1) for every choice of Mi

⌧ 2 M (µi, ⌧, T ,L), i = 0, 1, obtaining (9.2.17)
for every µ0,µ1 2 D.

We can then extend the map St to D = D(F) still preserving the same property.
Proposition 8.1.6 shows that for every µ0 2 D(F) the continuous curve t 7! St[µ0]

is a �-EVI solution starting from µ0.
Finally, if µ : [0, T 0

) ! D(F) is any �-EVI solution starting from µ0, we can
apply (9.2.2) to get

W2(µt,M1

⌧(t)) 6
⇣
2W2(µ0,µ1) +C(⌧,L, T)

p
⌧
⌘

e�+t (9.2.18)

for every t 2 [0, T ], T < T 0 and ⌧ < ⌧, where C(⌧,L, T) > 0 is a suitable constant.
Passing to the limit as ⌧ # 0 in (9.2.18) we obtain

W2(µt, St[µ1]) 6 2W2(µ0,µ1)e�+t for every t 2 [0, T ]. (9.2.19)

Choosing now a sequence µ1,n in D converging to µ0 and observing that we can
choose arbitrary T < T 0, we eventually get µt = St[µ0] for every t 2 [0, T 0

).

(b) Let D be the dense subset of D(F) such that there exists a global strict �-EVI
solution starting from D. By Theorem 9.2.7 such a solution is unique and the
corresponding family of solution maps St : D ! D(F) satisfies (9.2.17). Arguing
as in the previous claim, we can extend St to D(F) still preserving (9.2.17) and
the fact that t 7! St[µ0] is a �-EVI solution.

If µ is �-EVI solution starting from µ0, Theorem 9.2.7 shows that (9.2.19) holds
for every µ1 2 D. By approximation we conclude that µt = St[µ0].

(c) Corollary 9.2.4 shows that for every initial datum µ0 2 D(F) there exists a
global �-EVI solution. We can then apply Claim (b).

(d) Let D be the dense subset of D(F) such that there exists a locally absolutely
continuous strict global �-EVI solution starting from D. By Theorem 8.2.1 such
a solution is the unique locally absolutely continuous solution starting from µ0
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and the corresponding family of solution maps St : D ! D(F) satisfies (9.2.17).
Arguing as in the previous claim (b), we can extend St to D(F) still preserving
(9.2.17) (again thanks to Theorem 8.2.1) and the fact that t 7! St[µ0] is a �-EVI
solution.

If µ is a �-EVI solution starting from µ0 2 D(F) and (µn

0
)n2N ⇢ D is a sequence

converging to µ0, we can apply Theorem 8.2.3(1) and conclude that µt = St[µ0].

(e) The proof follows by the same argument of the previous claim, eventually
applying Theorem 8.2.3(2).

By Lemma 9.2.5 we immediately get the following result.

Corollary 9.2.14. If F is locally bounded �-dissipative MPVF according to (7.5.1), with
D(F) = P2(H), then for every µ0 2 P2(H) there exists a unique global �-EVI solution
starting from µ0.

We show now that our notion of solution is consistent with the Hilbertian
theory.

Corollary 9.2.15 (Consistency with the theory of contraction semigroups in Hilbert
spaces). Let F ⇢ H ⇥ H be a dissipative maximal subset generating the semigroup
(Rt)t>0 of nonlinear contractions [26, Theorem 3.1]. Let F be the dissipative MPVF
according to (7.5.1), defined by

F :=

⌦
� 2 P2(TH) | � is concentrated on F

↵
.

The semigroup µ0 7! St[µ0] := (Rt)]µ0, t > 0, is the 0-flow generated by F in D(F).

Proof. Let D be the set of discrete measures 1

n

P
n

j=1
�xj

with xj 2 D(F). Since
every µ0 2 D(F) is supported in D(F), D is dense in D(F). Our thesis follows
by applying Theorem 9.2.13(e) if we show that for every µn

0
=

1

n

P
n

j=1
�xj,0 2 D

there exists a locally absolutely continuous solution µn
: [0,1) ! D of (8.1.2)

starting from µn

0
.

It can be directly checked that

µn

t := (Rt)]µ
n

0
=

1

n

nX

j=1

�xj,t , xj,t := Rt(xj,0)

satisfies the continuity equation with Wasserstein velocity vector vt (defined on
the finite support of µn

t
) satisfying

vt(xj,t) = ẋj,t = F�(xj,t) and |vt(xj,t)| 6 |F�(xj,0)|

for every j = 1, · · · ,n, and a.e. t > 0, where F� is the minimal selection of F. It
follows that

(iH, vt)]µn

t 2 F[µn

t ] for a.e. t > 0,

so that µn is a Lipschitz EVI solution for F starting from µn

0
. We can thus con-

clude observing that the map µ0 7! (Rt)]µ0 is a contraction in P2(H) and the
curve µn

t
= (Rt)]µ

n

0
is continuous with values in D(F).
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We conclude this sections with a result which is the natural refinement of
Proposition 9.2.6

Theorem 9.2.16 (Generation of �-flow). Let F be a �-dissipative MPVF according to
(7.5.1). Assume that Pb(H) ⇢ D(F) and for every µ0 2 Pb(H) there exist ⇢ > 0 and
L > 0 such that, for every µ with supp(µ) ⇢ supp(µ0) + B(0, ⇢),

there exists � 2 F[µ] s.t. supp(v]�) ⇢ B(0,L). (9.2.20)

Let Fb := F \Pb(TH). If there exists a > 0 such that for every � 2 Fb

supp(�) ⇢
⌦
(x, v) 2 TH : hv, xi 6 a(1+ |x|2)

↵
, (9.2.21)

then F generates a �-flow.

Proof. It is enough to prove that Fb generates a �-flow. Applying Proposition
9.2.6 to the MPVF Fb, we know that for every µ0 2 D(Fb) there exists a unique
maximal strict and locally Lipschitz continuous �-EVI solution µ : [0, T) !
Pb(H) driven by Fb and satisfying (9.2.5). We argue by contradiction, and we as-
sume that T < +1. Notice that by (9.2.20) F satisfies (8.3.4), so that µ is a relaxed
barycentric solution for Fb. Since µ0 2 Pb(H), we know that supp(µ0) ⇢ B(0, r0)
for some r0 > 1.

It is easy to check that (9.2.21) holds also for every � 2 co(Fb). Moreover,
setting b := 2a, condition (9.2.21) yields

hv, xi 6 b|x|2 for every (x, v) 2 supp� 2 Fb, |x| > 1. (9.2.22)

Let �(r) : R ! R be any smooth increasing function such that �(r) = 0 if
r 6 r0 and �(r) = 1 if r > r0 + 1, and let '(t, x) := �(|x|e-bt

). Clearly ' 2
C1,1

(H ⇥ [0,+1)), with

r'(t, x) = x

|x|
� 0

(|x|e-bt
)e-bt if x 6= 0,

r'(t, 0) = 0,

@t'(t, x) = -b� 0
(|x|e-bt

)|x|e-bt.

We thus have for a.e. t 2 [0, T)

d
dt

Z

H

'(t, x)dµt = e-bt

Z

TH

⇣
- b� 0

(|x|e-bt
)|x|

+ hv, xi|x|-1� 0
(|x|e-bt

)

⌘
d�t(v, x)

6 e-bt

Z

TH

⇣
- b� 0

(|x|e-bt
)|x|

+ b|x|� 0
(|x|e-bt

)

⌘
d�t(v, x)

= 0

where in the last inequality we used (9.2.22) and the fact that the integrand
vanishes if |x| 6 1. We get

Z

H

'(t, x)dµt = 0 in [0, T);
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this implies that supp(µt) ⇢ B(0, (r0 + 1)ebt) so that the limit measure µT be-
longs to Pb(H) as well, leading to a contradiction with (9.2.5) for Fb.

We deduce that µ is a global strict �-EVI solution for Fb. We can then apply
Theorem 9.2.13(b) to Fb.

9.3 law invariant dissipative operators in hilbert spaces

The aim of this section is to study the properties of a dissipative operator de-
fined on a Hilbert space of random variables, that is invariant w.r.t. measure
preserving maps. The results obtained in this section will be applied to Section
9.4.

In this section, (⌦,B, P) is an arbitrary fixed standard Borel probability space
(see Definition 6.2.1). We denote by S(⌦) the class of B-measurable maps g : ⌦!
⌦ which are essentially injective and measure preserving, meaning that there
exists a full P-measure set ⌦0 2 B such that g is injective on ⌦0 and g]P = P.
Every g 2 S(⌦) has an inverse g-1 2 S(⌦) (defined up to a P-negligible set)
such that g-1 � g = g � g-1

= i⌦ P-a.e. in ⌦. Finally, we set

H := L2((⌦,B, P); H). (9.3.1)

Definition 9.3.1. We say that a set L ⇢ H⇥H is invariant if for every g 2 S(⌦) it
holds

(X,V) 2 L ) (X � g,V � g) 2 L.

We refer to Section 6.1 for a review on maximal dissipative operators L on
Hilbert spaces, in particular for the definitions of J⌧ and L�, denoting respec-
tively the resolvent operator and the minimal selection of L.

Lemma 9.3.2. Let L ⇢ H ⇥H be an invariant maximal dissipative operator and let
g 2 S(⌦). Then

1. if X 2 H and ⌧ > 0 it holds

J⌧(X � g) = (J⌧X) � g;

2. if X 2 D(L) we have

L�
[X � g] = L�

[X] � g.

In particular

|J⌧X � g- J⌧X|H 6 |X � g-X|H , (9.3.2)

for every ⌧ > 0 and X 2 H.

Proof. The identities J⌧(X � g) = (J⌧X) � g and L�
[X � g] = L�

[X] � g come from
the invariance of L and the uniqueness property of the resolvent operator while
(9.3.2) follows from the contractivity of the resolvent operator and (1).
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Since L is a maximal operator, there exists (see [26, Thm. 3.1]) a semigroup of
contractions (St)t>0 with St : D(L) ! D(L) s.t. the curve t 7! StX0 is the unique
Lipschitz continuous solution of the evolution equation

8
<

:
Ẋt 2 L[Xt] a.e. t > 0,

Xt|t=0 = X0.
(9.3.3)

By [26, Thm. 3.1], we have

d
dt

(StX0) = L�
[StX0], for a.e. t > 0. (9.3.4)

Theorem 9.3.3. Let L ⇢ H⇥H be an invariant maximal dissipative operator, X0 2
D(L) and Y0 2 H be such that (X0)]P = (Y0)]P. Then Y0 2 D(L) and

(X0, J⌧X0,L�
[X0],StX0)]P = (Y0, J⌧Y0,L�

[Y0],StY0)]P 8⌧ > 0, t > 0. (9.3.5)

Moreover

(a) for every X 2 H and ⌧ > 0, there exists a 1-Lipschitz map fX,⌧ : H ! H such
that J⌧X = fX,⌧ �X in H;

(b) for every X 2 D(L), there exists a Borel function hX 2 L2(H,X]P; H) such that
L�

[X] = hX �X in H.

Proof. Let N := {2n | n 2 N} and let (PN)N2N be a N-segmentation of (⌦,B, P)

as in Definition 6.2.9, whose existence is granted by Lemma 6.2.12. Let us define

HN := L2((⌦,� (PN) , P); H), N 2 N, H1 := [N2NHN.

We divide the proof in several steps.
(1) If ⌧ > 0 and X 2 HN for some N 2 N, then (there exists a unique representative of)
J⌧X (that) belongs to HN and

|J⌧X(!
0
)- J⌧X(!

00
)| 6 |X(! 0

)-X(! 00
)| for every ! 0,! 00 2 ⌦. (9.3.6)

Let ⌦ 0 ⇢ ⌦ be a full P-measure subset of ⌦ where both (6.2.3) and Lemma
6.2.14 hold for the increasing sequence bn = 2n, n 2 N and the L2((⌦,B, P); H)

function J⌧X. Let us fix k 2 IN := {0, . . . ,N- 1} and show that (a representative
of) J⌧X is almost everywhere constant on ⌦ 0

N,k := ⌦N,k \⌦ 0, where PN :=

{⌦N,k}k2IN
for every N 2 N. Let ! 0,! 00 2 ⌦ 0

N,k with ! 0 6= ! 00. For every
n 2 N there exist k(n;! 0

),k(n;! 00
) 2 Ibn

such that ! 0 2 ⌦bn,k(n;! 0) and
! 00 2 ⌦bn,k(n;! 00). By Lemma 6.2.14 we know that for n 2 N sufficiently large
⌦bn,k(n;! 0),⌦bn,k(n;! 00) ⇢ ⌦N,k and ⌦bn,k(n;! 0) \⌦bn,k(n;! 00) = ;. Thus, since
P(⌦bn,k(n;! 0)) = P(⌦bn,k(n;! 00)) = 2-n for every n 2 N (see Definition 6.2.9),
by Corollary 6.2.7 we can find a measure preserving map gn 2 S(⌦) such that

(gn)]P|⌦
bn ,k(n;! 0) = P|⌦

bn ,k(n;! 00)

and gn is the identity outside ⌦bn,k(n;! 0) [⌦bn,k(n;! 00). By (9.3.2) we have

|J⌧X � gn - J⌧X|H 6 |X � gn -X|H = 0, 8n 2 N sufficiently large
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since X is constant on the whole ⌦N,k. This implies that

2-n

Z

⌦
bn ,k(n;! 0)

J⌧XdP = 2-n

Z

⌦
bn ,k(n;! 00)

J⌧XdP 8n 2 N sufficiently large.

By definition of conditional expectation, this means that

EP [J⌧X | � (Pbn
)] (! 0

) = EP [J⌧X | � (Pbn
)] (! 00

) 8n 2 N sufficiently large.

Passing to the limit as n ! +1 we get by (6.2.3) that J⌧(!
0
) = J⌧(!

00
). This

proves that J⌧X is P-almost everywhere constant on⌦N,k; being k 2 IN arbitrary,
we can find a representative of J⌧X belonging to HN. If ! 0,! 00 2 ⌦ and ! 0 2
⌦N,i, ! 00 2 ⌦N,j, i, j 2 IN we choose as g 2 S(⌦) a measure preserving map
induced by the permutation � 2 Sym(IN) that swaps i and j (see Corollary 6.2.6),
so that we get

2

N
|J⌧X(!

0
)- J⌧X(!

00
)|2 6 2

N
|X(! 0

)-X(! 00
)|2

which yields (9.3.6).
(2) If X 2 D(L), there exists a sequence (Xn)n ⇢ D(L) \H1 such that Xn ! X

as n ! +1. By Theorem 6.2.8 we can find a sequence (Yn)n ⇢ H1 such that
Yn ! X. Define

Xn := J1/nYn, n 2 N;

since Yn 2 H1, we have by (1) that Xn 2 D(L)\H1. Moreover

|Xn-X|H 6 |J1/nYn- J1/nX|H + |J1/nX-X|H 6 |Yn-X|H + |J1/nX-X|H ! 0,

where we used that the resolvent operator is a contraction.
(3) For every ⌧ > 0 it holds

(X0, J⌧X0)]P = (Y0, J⌧Y0)]P. (9.3.7)

By (2) we can find (Xn)n ⇢ H1 \D(L) such that Xn ! X0. By Proposition 6.2.18
we can find (Yn)n ⇢ H such that (Xn)]P = (Yn)]P for every n 2 N and Yn ! Y0.
Having Xn and Yn the same discrete law, there exist measure preserving maps
gn 2 S(⌦) such that Yn = Xn � gn so that by Lemma 9.3.2 we get

(Yn, J⌧Yn) = (Xn, J⌧Xn) � gn

which implies

(Yn, J⌧Yn)]P = (Xn, J⌧Xn)]P.

Passing to the limit as n ! +1 we obtain (9.3.7), by the continuity of the resol-
vent operator.
(4) Y0 2 D(L) and (9.3.5) holds. By (9.3.7) we have in particular that

����
J⌧Y0 - Y0

⌧

����
H

=

����
J⌧X0 -X0

⌧

����
H

8⌧ > 0
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so that

lim
⌧#0

����
J⌧Y0 - Y0

⌧

����
H

= |L�
[X0]|H < +1.

This gives that Y0 2 D(L) by e.g. [26, Proposition 2.6(iv)]. By Lemma 9.3.2 we
have that, for every ⌧,� > 0, t > 0 and m,n 2 N, it holds
✓
Xn, J⌧Xn,

J�Xn -Xn

�
, (Jt/m)

mXn

◆
=

✓
Yn, J⌧Yn,

J�Yn - Yn
�

, (Jt/m)
mYn

◆
�gn

so that
✓
Xn, J⌧Xn,

J�Xn -Xn

�
, (Jt/m)

mXn

◆

]

P =

✓
Yn, J⌧Yn,

J�Yn - Yn
�

, (Jt/m)
mYn

◆

]

P.

Using the continuity of the resolvent operator, we can first pass to the limit as
n ! +1 and then as � # 0 and m ! +1, obtaining (9.3.5).
(4)Claim (a). Let X 2 H and let ⌧ > 0; by Theorem 6.2.8 we can find (Xn)n ⇢ H1

s.t. Xn ! X. By (9.3.6) we have

|J⌧Xn(!
0
)- J⌧Xn(!)| 6 |Xn(!

0
)-Xn(!)| for every !,! 0 2 ⌦, n 2 N.

Let us consider two representatives of J⌧X and X, a full measures set⌦0 ⇢ ⌦ and
a subsequence (Xnk

)k s.t. Xnk
(!) ! X(!) and J⌧Xnk

(!) ! J⌧X(!) for every
! 2 ⌦0. Passing to the limit in the above inequality for every pair (!,! 0

) 2 ⌦2

0
,

we obtain that

|J⌧X(!
0
)- J⌧X(!)| 6 |X(! 0

)-X(!)| for every !,! 0 2 ⌦0.

This gives the existence of a 1-Lipschitz function fX,⌧ : X(⌦0) ! H s.t. (J⌧X)(!) =

fX,⌧(X(!)) for every ! 2 ⌦0. By Kirszbraum theorem we can extend it to the
whole H and it is easy to check that fX,⌧ does not depend on the chosen repre-
sentative of X.
(5)Claim (b). Since ⌧-1

(J⌧X- X) ! L�
[X] as ⌧ # 0, we can find a vanishing sub-

sequence (⌧k)k, representatives X and L�
[X] and a full measure set ⌦0 ⇢ ⌦

s.t.

lim
k

(J⌧kX)(!)-X(!)

⌧k
= lim

k

fX,⌧k(X(!))-X(!)

⌧k
= L�

[X](!) for every ! 2 ⌦0.

This means that the Borel set

EX :=

�
x 2 H | 9 lim

k

fX,⌧k(x)- x

⌧k

�

contains X(⌦0). We can thus define hX : H ! H as1

hX(x) =

8
<

:
limk

fX,⌧
k
(x)-x

⌧k
if x 2 EX,

0 if x 2 H \ EX.
(9.3.8)

1 One can alternatively notice that X(⌦0) is ◆X-measurable since it is a Souslin set (see [20, Theorem
7.4.1]); this means that we can find E1,E2 2 B(H) s.t. E1 ⇢ X(⌦0) ⇢ E2 and ◆X(E2 \E1) = 0. Then
hX can be defined as in (9.3.8) with E1 in place of EX. The equality in (9.3.9) holds then in the full
P-measure set X-1

(E1).
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Of course hX satisfies

L�
[X](!) = hX(X(!)) for every ! 2 ⌦0 (9.3.9)

and it is easy to check that hX does not depend on the choice of the representative
X and that hX 2 L2(H,X]P; H).

Let us conclude this section with the following simple remark: if L ⇢ H⇥H

is a maximal dissipative operator we can define the associated MPVF

FL :=
�
(X,V)]P | (X,V) 2 L

 
⇢ P2(TH).

It is clear that FL is dissipative: if �, 2 FL, we can find (X,V), (Y,W) 2 L such
that (X,V)]P = � and (Y,W)]P =  so that

[�, ]
r
6 hV -W,X- Yi 6 0

by dissipativity of L.

9.4 dissipative operators : from wasserstein to hilbert

In this section we will work under the following assumptions.

Hypothesis 9.4.1. We assume that:

(a) N is a fixed unbounded directed subset of the integers w.r.t. the order
relation � as in (6.2.4).

(b) (⌦,B, P, (PN)N2N), with PN = {⌦N,n}n2IN
and IN := {0, . . . ,N- 1}, is a

fixed N-refined standard Borel probability space as in Definition 6.2.9.

(c) F is a fixed dissipative MPVF as in Definition 7.5.3 with � = 0.

(d) C ⇢ D(F) \ PN(H) is a fixed nonempty set such that C \ PN(H) is W1-
relatively open in PN(H) and convex along couplings in PN(H ⇥ H) for
every N 2 N, where we recall that

PN(H) :=

⌦
µ 2 Pf(H) : Nµ(A) 2 N 8A ⇢ H

↵
(9.4.1)

and we define

PN(H) :=

[

N2N

PN(H). (9.4.2)

We call such a set C a N-core for F.

We denote by BN := � (PN), N 2 N, and set

H := L2((⌦,B, P); H), HN := L2((⌦,BN, P); H), N 2 N, H1 := [N2NHN

(9.4.3)

and we recall that H1 is dense in H by Theorem 6.2.8.
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Thanks to Corollary 6.2.3 we can parametrize measures in P(H) by random
variables in (⌦,B, P). On the other hand, every element X 2 H induces a mea-
sure ◆X := X]P 2 P2(H): the map ◆ : H ! P2(H), X ! ◆X is 1-Lipschitz, since

W2(◆X, ◆Y) 6 |X- Y|H for every X, Y 2 H. (9.4.4)

Similarly, to every pair (X,V) 2 H ⇥H we can associate the measure ◆2
X,V :=

(X,V)]P 2 P2(TH). We can identify HN with the space HN of maps x : IN ! H

such that X(!) = x(n) whenever ! 2 ⌦N,n. In this case we set X = IN(x).
Clearly ◆(HN) = PN(H).

The isomorphism IN preserves the scalar product on HN

hx,yiHN
:= N-1

N-1X

n=0

hx(n),y(n)i = E
⇥
hIN(x), IN(y)i

⇤
= hIN(x), IN(y)iH

(9.4.5)

for every x,y 2 HN. The conditional expectation ⇧N = E[·|BN] provides the
orthogonal projection of an arbitrary map X 2 H onto HN:

⇧N[X](!) = N

Z

⌦N,n

XdP if ! 2 ⌦N,n. (9.4.6)

Notice that

if M | N then BM ⇢ BN and ⇧M = ⇧M �⇧N. (9.4.7)

For every X = IN(x) 2 HN the probability measure ◆X = X]P takes the form
◆X = N-1

P
N-1

n=0
�x(n) 2 PN(H) and we have

W1(◆X, ◆Y) 6 max
n2IN

|x(n)-y(n)| 6 N |X- Y|H. (9.4.8)

We denote by ON ⇢ HN the subset of the injective maps and by ON := IN(ON) ⇢
HN. Since the complement of ON is the union of a finite number of proper closed
subspaces with empty interior Sij := {x 2 HN : x(i) = x(j)}, i 6= j, of HN, then
ON is open and dense in HN.

Every permutation � 2 Sym(IN) acts on HN via �x(n) := x(�(n)) and can be
thus extended to HN via �(IN(x)) := IN(�(x)). It is not difficult to see that, for
every X, Y 2 HN, ◆X = ◆Y is equivalent to Y = �X for some � 2 Sym(IN).

As in Section 9.3, we denote by S(⌦) the class of B-B-measurable maps g :

⌦ ! ⌦ which are essentially injective and measure preserving, meaning that
there exists a full P-measure set ⌦0 2 B such that g is injective on ⌦0 and
g]P = P. Moreover, for every N 2 N, we denote by SN(⌦) := S(⌦,B, P;BN),
i.e. the subset of S(⌦) of BN-BN measurable maps.

Remark 9.4.2. Clearly, if X = IN(x) 2 HN and g 2 SN(⌦) then X � g 2 HN and
there exists a unique permutation � = �g 2 Sym(IN) such that X � g = �gX =

IN(x � �g). Conversely, if � 2 Sym(IN) there exists g 2 SN(⌦) such that � = �g,
as shown in Corollary 6.2.6.
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We set

D1 : =

⌦
X 2 H1 : ◆X 2 C

↵
,

DN := D1 \HN =

⌦
X 2 HN : ◆X 2 C \PN(H)

↵
.

(9.4.9)

Lemma 9.4.3. Under Hypothesis 9.4.1, we have that for every N 2 N it holds:

1. DN and ON \DN are relatively open subsets of HN, invariant with respect to
the action of permutations of Sym(IN).

2. ON \DN is dense in DN, and DN = co(ON \DN).

3. ON \DN = DN is convex and its relative interior in HN coincides with DN =

co(ON \DN).

4. If M 2 N and M | N then DM = DN \HM = ⇧M(DN), DM = DN \HM.

Proof. (1) DN is open in HN since C \ PN(H) is relatively open in PN(H) with
respect to W1, and the map X 7! ◆X is Lipschitz from HN to PN(H), thanks to
(9.4.8). ON \DN is also open, since ON is open in HN and ON = IN(ON) is
relatively open in HN.

(2) ON \DN is dense in DN since ON is dense in HN and DN is relatively
open.

On the other hand DN is convex, since C\PN(H) is convex along couplings of
PN(H ⇥ H) and for every X, Y 2 HN the coupling µ = ◆2

X,Y belongs to PN(H ⇥
H). Clearly the displacement interpolation µt = xt]µ corresponds to ((1- t)X+

tY)]P and belongs to C \PN(H).
Let us now show that DN coincides with co(ON \DN). If z : IN ! H is an

arbitrary injective map with |z(n)| 6 1 for every n 2 IN, it is easy to see that
for every x 2 HN there exists a sufficiently small " > 0 such that x+ tz 2 ON

whenever |t| < ". It follows that for every X = IN(x) 2 DN we can find t > 0

such that IN(x+ tz), IN(x- tz) 2 ON \DN and therefore X 2 co(ON \DN).
(3) ON \DN = DN is the closure of a convex set and therefore it is convex. By

convexity, its relative interior coincides with DN.
(4) The identity DM = DN \HM is trivial. Since DM ⇢ DN, in order to prove

that DM = ⇧MDN it is sufficient to prove the inclusion ⇧MDN ⇢ DM. Let
X 2 DN, K := N/M, and let � : IN ! IN be the cyclic permutation defined by

�(n) :=

8
<

:
mK+ k+ 1 if n = mK+ k, m 2 IM, 0 6 k < K- 1;

mK if n = mK+K- 1, m 2 IM

and let us consider its powers �p, p 2 IK. It is not difficult to check that �K =

�0 = IdIN
and for every Y 2 HM we have �pY = Y for every p 2 IK. Therefore

for every X 2 HN we obtain the representation

⇧M(X) =
1

K

K-1X

p=0

�pX. (9.4.10)
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Since DN is invariant with respect to permutations and convex, we get ⇧M(X) 2
DN for every X 2 DN, so that ⇧M(X) 2 DN \HM = DM.

Concerning the last property, it is obvious that DM ⇢ DN \HM. On the other
hand, if X 2 DN then ⇧MX 2 DM so that DN \HM ⇢ DM.

Let us now study the Lagrangian representations of � 2 P2(TH). We can
consider the (not empty) set of all the maps (X,V) 2 H2 such that (X,V)]P = �.
A particular case arises when the first marginal µ = x]� of � belongs to PN(H).
In this case, X has the form X = IN(x) 2 HN, so that µ = X]P =

1

N

P
k2IN

�x(k),
and we can construct V from the representation of � given by

� =
1

N

X

k2IN

�k, x]�k = �x(k), (9.4.11)

for a family (�k)k2IN
⇢ P(TH), by setting V(!) := Vk(!) if ! 2 ⌦N,k, where

Vk 2 L2(⌦N,k, P|⌦N,k ; H) are maps such that (Vk)]P|⌦N,k =
1

N
v]�k.

In the general case, when � 2 P2(TH), it is easy to check that if (X,V)]P = �

and Y 2 H then

[�, ◆2
X,Y ]r,0 6 hV ,X- YiH. (9.4.12)

A particular important case arises when X 2 ON and Y 2 HN: in this case �k

is uniquely determined by the disintegration of � w.r.t. µ, and V |⌦N,k coincides
with Vk, with Vk as above, and

hV ,X- YiH = h⇧NV ,X- YiH, ⇧NV(!) = b�(x(k)) if ! 2 ⌦N,k. (9.4.13)

It is easy to check that

[�, ◆2
X,Y ]r,0 = hV ,X-YiH = h⇧NV ,X-YiH if (X,V)]P = �, X 2 ON, Y 2 HN,

(9.4.14)

since ◆2
X,Y is concentrated on a map. We thus set

FN :=

⌦
(X,⇧NV) 2 (ON \DN)⇥HN : (X,V)]P 2 F

↵
. (9.4.15)

We will also adopt the notation V 2 FN[X] if (X,V) 2 FN. It is easy to check
that for every � 2 Sym(N) and (X,V) 2 FN we have (�X,�V) 2 FN. Indeed, if
(X,V) 2 FN then there exists W 2 H such that (X,W)]P 2 F and V = ⇧NW. By
Corollary 6.2.6, we can write �X = X � g 2 ON \DN and (X � g,W � g)]P 2 F. To
conclude, it suffices to notice that ⇧N(W � g) = �V .

Moreover (9.4.14) and the dissipativity of F along couplings in PN(H ⇥ H)

given by Lemma 7.8.2 yields

(X,V), (Y,W) 2 FN ) hW - V , Y -XiH 6 0, (9.4.16)

so that FN is a dissipative set in HN⇥HN with open domain D(FN) = ON \DN.
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Proposition 9.4.4. Let us assume Hypothesis 9.4.1. For every N 2 N the dissipative set
FN admits a unique maximal extension F̂N in HN ⇥HN with DN ⇢ D(F̂N) ⇢ DN.
F̂N can be equivalently characterized by

(X,V) 2 F̂N , X 2 DN, V 2 HN, hV -W,X- YiH 6 0 8 (Y,W) 2 FN,
(9.4.17)

and, whenever X 2 DN, F̂N[X] = co
�
F̄N[X]

�
, where

F̄N[X] :=
⌦
V 2 HN : 9 (Xn,Vn) 2 FN : Xn ! X, Vn * V

↵
. (9.4.18)

F̂N is invariant with respect to permutations

(X,V) 2 F̂N, � 2 Sym(IN) ) (�X,�V) 2 F̂N (9.4.19)

and for every X, Y 2 DN, we have

V 2 F̂N[X],  2 F[◆Y ] ) hV ,X- Yi+ [ , ◆2
Y,X]r,0 6 0. (9.4.20)

Finally, if M | N = KM, X 2 DM, and (X,V) 2 F̂N then ⇧MV 2 F̂M[X]. Conversely,
if X 2 DM and W 2 F̂M[X] then there exists V 2 HN such that

(X,V) 2 F̂N, W = ⇧MV . (9.4.21)

Proof. (9.4.17) and (9.4.18) follow by the fact that DN is convex and open and the
domain of FN is dense in DN, see Lemma 9.4.3 and Theorem 6.1.3.

Using (9.4.17) it is immediate to check that F̂N satisfies (9.4.19), since for every
(X,V) 2 F̂N and (Y,W) 2 FN

h�V -W,�X- YiH = hV - �-1W,X- �-1YiH 6 0,

since FN and the scalar product in HN are invariant by the action of permuta-
tions in Sym(IN).

If (X,V) 2 FN, (9.4.20) follows immediately since there exists W 2 H such that
� := (X,W)]P 2 F, V = ⇧NW, and (9.4.14) yields hV ,X- YiH = [�, ◆2

X,Y ]r,0 so
that

hV ,X- YiH + [ , ◆2
Y,X]r,0 = [�, ◆2

X,Y ]r,0 + [ , ◆2
Y,X]r,0 6 0 (9.4.22)

by (7.8.7).
If X 2 DN and V 2 F̄N[X] according to (9.4.18), then there exist (Xn,Vn) 2 FN,

Xn 2 ON \DN, such that Xn ! X and Vn * V . We can pass to the limit in
(9.4.22) written for (Xn,Vn) and using Lemma 7.3.1 we obtain that (X,V) satisfies
(9.4.22) as well. Finally, since (9.4.22) holds for every V 2 F̄N[X], it also holds for
every V 2 co

�
F̄N[X]

�
, hence (9.4.20).

Let us now suppose that M | N, (X,V) 2 F̂N and X 2 DM. We want to
show that W := ⇧MV belongs to F̂M[X] by using (9.4.17). If (Y,U) 2 FM with
Y 2 OM \DM, we have U = ⇧MU 0 with (Y,U 0

)]P =: � 2 F, so that (9.4.20)
yields

hV ,X- YiH + [�, ◆2
Y,X]r,0 6 0. (9.4.23)
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Since Y 2 OM and X 2 HM we have [�, ◆2
Y,X]r,0 = hU, Y - XiH by (9.4.14); since

X- Y 2 HM we also have hV ,X- YiH = h⇧MV ,X- YiH and we get

hW,X- YiH + hU, Y -XiH = hV ,X- YiH + [�, ◆2
Y,X]r,0 6 0. (9.4.24)

Hence, by (9.4.17) (X,W) 2 F̂M. In particular, the above property shows that
if G : DN ! HN is an arbitrary single valued selection of F̂N, the restriction
of ⇧M �G to DM is a selection of F̂M. To conclude we need to prove that the
property holds also if X 2 DM. Recall that by Lemma 9.4.3(3), D(FM) = DM.
Then if X 2 DM, by Corollary 6.1.4 we have that W belongs to F̂M[X] if and only
if

hW - (⇧M �G) |DM
[Y],X- YiH 6 0 for every Y 2 DM, (9.4.25)

i.e., if and only if

hW -G[Y],X- YiH 6 0 for every Y 2 DM. (9.4.26)

If V 2 F̂N[X], then using Corollary 6.1.4 we have

hV -G[Y],X- YiH 6 0 for every Y 2 DN � DM,

hence by (9.4.26) we get ⇧MV 2 F̂M[X].
Let us now show the converse implication. If X 2 DM and W 2 F̂M[X], we

need to prove that W 2 ⇧M

⇣
F̂N[X]

⌘
. Since D(G) = DN, by Corollary 6.1.4

and Theorem 6.1.3 applied to B := G, we get ⇧M

⇣
F̂N[X]

⌘
= ⇧M

�
G̃[X]

�
=

⇧M

�
co
�
Ḡ[X]

��
, where

Ḡ[X] :=
⌦
Z 2 HN : 9Xn 2 DN : Xn ! X, G(Xn) * Z

↵
.

Similarly, denoting by G := (⇧M �G) |DM
, by Corollary 6.1.4 and Theorem 6.1.3

we get

F̂M[X] = G̃[X] = co
�
G[X]

�

= co ({Z 2 HM : 9Xn 2 DM : Xn ! X, G(Xn) * Z})

= ⇧M

�
co
�
Ḡ[X]

��
,

where the proof of the last equality can be pursued as follows. We first observe
that

{Z 2 HM : 9Xn 2 DM : Xn ! X, G(Xn) * Z}

= ⇧M({W 2 HN : 9Xn 2 DN : Xn ! X, G(Xn) * W}) = ⇧M(Ḡ[X]),

by using the local boundedness of G as a selection of G̃ (see [26, Prop. 2.9]) and
the fact that ⇧M is a linear and continuous operator. Then we notice that

co
�
⇧M(Ḡ[X])

�
= ⇧M(co(Ḡ[X])) = ⇧M(co

�
Ḡ[X]

�
),

where the first equality follows by linearity of ⇧M and, for the second, we ex-
ploit again the local boundedness of Ḡ as a selection of G̃ and the linearity and
continuity of ⇧M. Hence the conclusion.
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We can improve (9.4.20) with the following result.

Lemma 9.4.5. Let us assume Hypothesis 9.4.1 and let N 2 N. Then

hV ,X- Yi+ [ , ◆2
Y,X]r,0 6 0 (9.4.27)

for every (X,V) 2 F̂N, Y 2 D(F̂N) and every  2 F[◆Y ].

Proof. We start by proving (9.4.27) in case X 2 DN. Let

Ys := (1- s)Y + sX 2 DN

for every s 2 (0, 1]; then, by (9.4.20), we have

hV ,X- Ysi+ [F, ◆2
Ys,X]r,0 6 0.

Using (7.4.5) we can rewrite the above equation as

hV ,X- Ysi+ (1- s)[F, ◆2
Y,X]r,s 6 0,

which, together with (7.8.7), gives

hV ,X- Ysi+ (1- s)[F, ◆2
Y,X]r,0 6 0.

Passing to the limit as s # 0, we obtain

hV ,X-Yi+[ , ◆2
Y,X]r,0 6 0 8X 2 DN, V 2 F̂N[X], Y 2 D(F̂N), 2 F[◆Y ]. (9.4.28)

We come now to the general case; let (X,V) 2 F̂N, Y 2 D(F̂N) and  2 F[◆Y ].
We define Z = (X + Y)/2 2 DN and, given T 2 DN and VT 2 F̂N[T ], we set
Zt := (1- t)Z+ Tt 2 DN for every t 2 (0, 1]; we take, for every t 2 (0, 1], some
Vt 2 F̂N[Zt]. Clearly

(X,V), (Zt,Vt), (T ,VT ) 2 F̂N 8 t 2 (0, 1].

We compute

hV ,X- Yi+ [ , ◆2
Y,X]r,0 =

= hV - Vt,X- Yi- hVt, Y -Xi+ [ , ◆2
Y,X]r,0

= 2hV - Vt,X-Zi- 2hVt, Y -Zi+ 2[ , ◆2
Y,Z]r,0

= 2hV - Vt,X-Zti- 2hVt, Y -Zti+ 2[ , ◆2
Y,Zt

]r,0

+ 2hV - Vt,Zt -Zi- 2hVt,Zt -Zi- 2[ , ◆2
Y,Zt

]r,0 + 2[ , ◆2
Y,Z]r,0

= 2hV - Vt,X-Zti- 2hVt, Y -Zti+ 2[ , ◆2
Y,Zt

]r,0

+ 4hVT - Vt,Zt -Zi+ 2hV - 2VT ,Zt -Zi- 2[ , ◆2
Y,Zt

]r,0 + 2[ , ◆2
Y,Z]r,0

= 2hV - Vt,X-Zti+ 2hVt,Zt - Yi+ 2[ , ◆2
Y,Zt

]r,0

+
4t

1- t
hVT - Vt, T -Zti+ 2thV - 2VT , T -Zi- 2[ , ◆2

Y,Zt
]r,0

+ 2[ , ◆2
Y,Z]r,0

6 2thV - 2VT , T -Zi- 2[ , ◆2
Y,Zt

]r,0 + 2[ , ◆2
Y,Z]r,0,



9.4 dissipative operators : from wasserstein to hilbert 191

where we have used again (7.4.5), the dissipativity of F̂N and (9.4.28) applied to
Zt 2 DN, Vt 2 F̂N[Zt]. Passing to the lim sup as t # 0, we get

hV ,X- Yi+ [ , ◆2
Y,X]r,0 6 2[ , ◆2

Y,Z]r,0 - 2 lim inf
t#0

[ , ◆2
Y,Zt

]r,0 6 0

by Lemma 7.3.1.

Proposition 9.4.6. Let us assume Hypothesis 9.4.1. Then for every X 2 H1 and every
⌧ > 0 there exists a unique X⌧ 2 H1 such that

X 2 HN ) X⌧ 2 D(F̂N) ⇢ HN and X⌧ -X 2 ⌧F̂N[X⌧]. (9.4.29)

Moreover

|X⌧(!
0
)-X⌧(!

00
)| 6 |X(! 0

)-X(! 00
)| for every ! 0,! 00 2 ⌦. (9.4.30)

Proof. Since X 2 H1, there exits N 2 N such that X 2 HN. Since F̂N is maximal,
recalling (6.1.3), there exists a unique solution X⌧,N 2 D(F̂N) of

X⌧,N -X 2 ⌧F̂N[X⌧,N].

The invariance of F̂N by permutations shows that (�X)⌧,N = �(X⌧,N) for every
� 2 Sym(IN). In particular, by dissipativity of F̂N we have

h�X⌧,N - �X- (X⌧,N -X),�X⌧,N -X⌧,NiH 6 0

so that

|�X⌧,N -X⌧,N|H 6 |�X-X|H for every � 2 Sym(IN).

If ! 0 2 ⌦N,i, ! 00 2 ⌦N,j, i, j 2 IN, and we choose as � the transposition which
shifts i with j, we get

2

N
|X⌧,N(! 0

)-X⌧,N(! 00
)|2 6 2

N
|X(! 0

)-X(! 00
)|2

which yields (9.4.30).
Let us now suppose that X 2 HM with M | N. X⌧,N belongs to HM by (9.4.30),

so that X⌧,N 2 DN \HM = DM by Lemma 9.4.3(4). By Proposition 9.4.4, for
every Y 2 DM and W 2 F̂M[Y] we can find V 2 F̂N[Y] such that W = ⇧MV , so
that by dissipativity of F̂N we have

hX⌧,N -X- ⌧V ,X⌧,N - YiH 6 0. (9.4.31)

Since X⌧,N - Y 2 HM, we can replace V with W = ⇧MV in (9.4.31), thus ob-
taining that X⌧,N - X 2 ⌧F̂M[X⌧,N] by Corollary 6.1.4, i.e. X⌧,N = X⌧,M. If M,N
are arbitrary and X 2 HM \HN, then setting R := MN the previous argument
shows that X⌧,M = X⌧,R = X⌧,N.

Corollary 9.4.7. Let us assume Hypothesis 9.4.1, let M 2 N and let X 2 D(F̂M). Then

1. X 2 D(F̂N) for every N 2 N s.t. M | N.
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2. F�[X] := lim⌧#0
X⌧-X

⌧
2 F̂M[X]. In particular F�[X] 2 F̂N[X] for every N 2 N

s.t. M | N.

3. |F�[X]|H 6 |V |H for every V 2 F̂N[X] and for every N 2 N s.t. M | N.

4. |X⌧ -X|H 6 ⌧|F�[X]|H for every ⌧ > 0.

Moreover, for every X, Y 2
S

N2N D(F̂N), we have

hF�[X]- F�[Y],X- YiH 6 0. (9.4.32)

Proof. By e.g. [26, Prop. 2.6(iii)] there exists the limit

lim
⌧#0

X⌧ -X

⌧
= F�[X] 2 F̂M[X]

and (4) holds. If N 2 N is s.t. M | N, then X 2 D(F̂M) ⇢ DM ⇢ DN, by Lemma
9.4.3. Moreover by Proposition 9.4.6, we have that

X⌧ -X

⌧
2 F̂N[X⌧] 8⌧ > 0.

In particular

hX⌧ -X

⌧
-W,X⌧ - Yi 6 0 8(Y,W) 2 FN 8⌧ > 0,

so that, passing to the limit as ⌧ # 0, we get

hF�[X]-W,X- Yi 6 0 8(Y,W) 2 FN,

since X⌧ ! X as ⌧ # 0 by [26, Theorem 2.2]. This proves that (X, F�[X]) 2 F̂N
and, in particular, that X 2 D(F̂N). This proves (1) and (2), while (3) immediately
follows, also using [26, Prop. 2.6(iii)].
Finally, if X, Y 2

S
N2N D(F̂N), then there exist N,M 2 N s.t. X 2 D(F̂N) and

Y 2 D(F̂M) so that, taking R := MN, we have

(X, F�[X]), (Y, F�[Y]) 2 F̂R

by (3) and the dissipativity of F̂R gives (9.4.32).

We can therefore define the operator F1 ⇢ H⇥H

F1 :=

⌦
(X,V) 2 H1⇥H1 : 9M 2 N : (X,V) 2 F̂N 8N 2 N, M | N

↵
. (9.4.33)

By the previous results, F1 is well defined and dissipative with domain D(F1) =S
N2N D(F̂N), F� provides the minimal selection and, by Proposition 9.4.6, for

every X 2 H1 there exists a unique X⌧ 2 D(F1) such that X⌧ - X 2 ⌧F1[X⌧].
We can then apply Lemma 6.1.5 and find the unique maximal extension F with
domain D(F) ⇢ D(F1) and characterized by

(X,V) 2 F , X 2 D(F1), hV -W,X- Yi 6 0 for every (Y,W) 2 F1.
(9.4.34)

Moreover, since H1 is dense in H, we have by Lemma 6.1.5 that

F = F1
H⇥H. (9.4.35)
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Remark 9.4.8. Notice that the notation F� used in Corollary 9.4.7 and in the above
discussion is coherent with the one used in Section 6.1 since, as highlighted in
the proof of Lemma 6.1.5, the minimal selection of F, when restricted to D(F1),
coincides with F� defined as in Corollary 9.4.7. Moreover, if X 2 H1, the resol-
vent operator J⌧ of F applied to X coincides with X⌧ as in Proposition 9.4.6.

Proposition 9.4.9. Let us assume Hypothesis 9.4.1, let (X,V) 2 F and let g 2 S(⌦).
Then (X �g,V �g) 2 F; in particular, we have that F is an invariant maximal dissipative
operator. Moreover, if Y 2 D(F1) and  2 F[◆Y ], we have

hV ,X- Yi+ [ , ◆2
Y,X]r,0 6 0. (9.4.36)

Finally, if X 2 DM for some M 2 N and � 2 F[◆X], then

|F�[X]|2H 6
Z

H

|b�|
2 d◆X. (9.4.37)

Proof. To show that (X � g,V � g) 2 F, by (9.4.35), it is enough to prove that there
exist ((Zn,Wn))n ⇢ F1 s.t. Zn ! X � g and Wn ! V � g. By (9.4.35), we can
find a sequence ((Xn,Vn))n ⇢ F1 and an increasing sequence (Nn)n ⇢ N s.t.
Xn ! X, Vn ! V and (Xn,Vn) 2 F̂N for every N 2 N such that Nn � N.
Let (bn)n ⇢ N be the sequence given by Lemma 6.2.13; by Theorem 6.2.16 ap-
plied to (⌦,B, P, (Pbn

)n2N) and � := (i⌦,g)]P, we can find a strictly increasing
sequence (Mj)j ⇢ N and maps gj 2 SbM

j

(⌦) such that

(U,W)](i⌦,gj)]P ! (U,W)](i⌦,g)]P in P2(H
2
)

for every U,V 2 H. Since Mj is increasing and (6.2.5) holds, then for every n 2 N

there exists j = j(n) 2 N such that gj(n) 2 SNn
(⌦). Thus setting g 0

n := gj(n),
n 2 N, by Remark 9.4.2 and (9.4.19) we get that (Xn � g 0

n,Vn � g 0
n) 2 F̂N 8N 2 N

s.t. Nn � N, for every n 2 N. In particular, (Xn � g 0
n,Vn � g 0

n) 2 F1 for any
n 2 N and

(U,W)](i⌦,g 0
n)]P ! (U,W)](i⌦,g)]P in P2(H

2
) (9.4.38)

for every U,V 2 H. We are left to show that Xn � g 0
n ! X � g in H (the case of V

is completely analogous). Since |X � g 0
n - Xn � g 0

n|H = |X- Xn|H it is enough to
show that X � g 0

n ! X � g which, on the other hand, is implied by X � g 0
n * X � g,

since |X � g 0
n|H = |X|H = |X � g|H. Let Y 2 H and let us take U = Y,V = X in

(9.4.38) so that

hX � g 0
n, YiH =

Z

H2

hx,yid((Y,X) � (i⌦,g 0
n))]P

!
Z

H2

hx,yid((Y,X) � (i⌦,g))]P

= hX � g, YiH,

since '(x,y) := hx,yi is a real valued function on H
2 with less than quadratic

growth (see e.g.[5, Proposition 7.1.5, Lemma 5.1.7]). This shows that X � g 0
n *

X � g. We conclude that (X � g,V � g) 2 F.
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We now prove (9.4.36). Let ((Xn,Vn))n as before. If Y 2 D(F1) and  2 F[◆Y ],
for every n 2 N we can find Mn 2 N such that

(Xn,Vn) 2 F̂N, Y 2 D(F̂N) 8N 2 N, Mn � N.

By Lemma 9.4.5, we have

hVn,Xn - Yi+ [ , ◆2
Y,Xn

]r,0 6 0 8n 2 N.

Passing to the liminf as n ! +1 and using Lemma 7.3.1 we obtain (9.4.36).
Let now X 2 DM for some M 2 N, and observe that, since DM is open by
Proposition 9.4.3, J⌧X 2 DM for ⌧ > 0 sufficiently small, since J⌧X ! X as ⌧ # 0.
We can thus apply (9.4.20) and get

1

⌧
hJ⌧X-X, J⌧X-XiH + [�, ◆2

X,J⌧X]r,0 6 0.

Since we have shown that F is an invariant maximal dissipative operator, by
Theorem 9.3.3, there exists a Lipschitz function fX,⌧ such that J⌧X = X � fX,⌧;
thus ◆2

X,J⌧X is concentrated on a map so that, by Remark 7.4.2, we have

[�, ◆2
X,J⌧X]r,0 = hb�,X- J⌧XiH.

We hence get

1

⌧2
|J⌧X-X|2H 6 |b�|

2

H =

Z

H

|b�|
2 d◆X

and passing to the limit as ⌧ # 0 we obtain (9.4.37).

Thanks to Proposition 9.4.9 and Theorem 9.3.3, for every X 2 D(F), the law
of (X, F�[X]) only depends on the law of X so that we can give the following
definition.

Definition 9.4.10. For every µ 2 ◆(D(F)), we define F�
[µ] as

F�
[µ] := (X, F�[X])]P,

where X 2 D(F) is such that ◆X = µ.

9.4.1 Lagrangian EVI solutions

In this section we show that the curve t 7! StX0 solving (9.3.3) for the maximal
dissipative operator F constructed starting from F induces a 0-EVI solution for F.
We recall that by Theorem 9.3.3 the curve t 7! StX0 only depends on the law of
X0.

In addition to Hypothesis 9.4.1, we adopt the following additional compatibil-
ity property for the core C.

Hypothesis 9.4.11. We assume that

for every µ 2D(F) there exists µn 2 C and �n 2 F[µn] such that
W2(µn,µ) ! 0, sup

n

|�n|2 < +1. (9.4.39)
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Lemma 9.4.12. Under Hypotheses 9.4.1 and 9.4.11, it holds

D(F) ⇢ ◆(D(F)) ⇢ D(F).

Proof. Let µ 2 D(F). By (9.4.39), we can find a sequence (µn)n ⇢ C ⇢ D(F) \
PN(H) s.t. µn ! µ and a sequence �n 2 F[µn] with sup

n
|�n|2 < +1. We can

assume without loss of generality that

+1X

n=1

W2(µn,µn+1) < +1

and find a sequence (Xn)n ⇢ H s.t. (Xn,Xn+1)]P 2 �o(µn,µn+1) for every n 2
N (see [5, Lemma 5.3.4] and Corollary 6.2.3). Then (Xn)n is a Cauchy sequence
in H and thus there exists some X 2 H s.t. Xn ! X and X]P = µ. Moreover,
since µn 2 C \ P2Nn (H) for some Nn 2 N, we can find Zn 2 DNn

s.t. ◆Zn
= µn

for every n 2 N and, by (9.4.37), we also have

sup
n

|F�[Zn]|H < +1.

Having Xn and Zn the same law, Proposition 9.4.9 and Theorem 9.3.3 give that
(Xn, F�[Xn]) 2 F with

sup
n

|F�[Xn]|H < +1.

We can thus find an (unrelabeled) subsequence s.t. F�[Xn] * V 2 H. By (9.4.34)
we get that (X,V) 2 F and, in particular, that X 2 D(F). This proves that D(F) ⇢
◆(D(F)). Let us come to the other inclusion: if X 2 D(F), we can find a sequence
(Xn)n ⇢ D(F1) s.t. Xn ! X. This means that Xn 2 DNn

for some Nn 2 N and
we can thus find some X 0

n 2 DNn
s.t. |Xn - X 0

n|H < 1/n for every n 2 N. It is
clear that ◆X 0

n
2 D(F) and that ◆X 0

n
! ◆X in P2(H).

Corollary 9.4.13. Let us assume Hypotheses 9.4.1 and 9.4.11 and let

G :=

⌦
 2 P2(TH) : 9 n 2 F :  n !  in Psw

2
(TH), x] n 2 C

↵
⇢ cl(F),

(9.4.40)

where cl(F) is as in Proposition 7.7.1. Then for every (X,V) 2 F,  2 G and Y 2 H

such that Y]P = x] , we have

hV ,X- Yi+ [ , ◆2
Y,X]r,0 6 0. (9.4.41)

Proof. Let X,V , , Y be as in the statement and set ⌫ := x] = Y]P. Then, there
exists ( n)n2N ⇢ F such that  n !  in Psw

2
(TH) and ⌫n := x] n 2 C. By

Proposition 6.2.18, there exists (Yn)n2N ⇢ H such that (Yn)]P = ⌫n and Yn ! Y

in H. Moreover, since ⌫n 2 C\PNn
(H) for some Nn 2 N, we can find Ỹn 2 DNn

s.t. ◆
Ỹn

= ⌫n for every n 2 N. Thus, having Yn and Ỹn the same discrete law,
there exists some gn 2 S(⌦) s.t. Ỹn = Yn � gn. In particular we get by (9.4.19)
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that Yn � gn 2 D(F1) and, by Proposition 9.4.9, (X � gn,V � gn) 2 F for all n 2 N.
By (9.4.36), we get

hV � gn,X � gn - Yn � gni+ [ n, ◆2
Yn�gn,X�gn

]r,0 6 0 8n 2 N.

Being gn measure preserving maps, the above relation is equivalent to

hV ,X- Yni+ [ n, ◆2
Yn,X]r,0 6 0 8n 2 N.

Taking the lim inf as n ! +1 and using Lemma 7.3.1, we conclude.

Corollary 9.4.14. Let us assume Hypotheses 9.4.1 and 9.4.11 and let G be as in (9.4.40).
Then for every ⌫ 2 ◆(D(F)),  2 G and � 2 �(⌫, x] ) it holds

[F�
[⌫],�]r,0 6 [ ,�]l,1, (9.4.42)

where F�
[⌫] is as in Definition 9.4.10.

Proof. Let X, Y 2 H be such that (X, Y)]P = �. By Proposition 9.4.9 and Theorem
9.3.3 we have that X 2 D(F). By Corollary 9.4.13, we have that

[F�
[⌫],�]r,0 = [(X, F�[X])]P,�]r,0 6 hF�[X],X- Yi 6 [ , ◆2

X,Y ]l,1 = [ ,�]l,1.

We recall that, given µ,⌫ 2 P2(H), a generalized geodesic ([5, Definition 9.2.2])
connecting µ to ⌫ is a curve (µt)t2[0,1] ⇢ P2(H) such that there exists � 2 P(H3

)

with ⇡1,2
] � and ⇡2,3

] � optimal and

µ0 = µ, µ1 = ⌫, µt = xt](⇡
1,3
] �), t 2 [0, 1].

We denote by G(µ,⌫) the set of generalized geodesic connecting µ to ⌫.

Definition 9.4.15. For every ⌫ 2 D(F) we define the set of measures that see ⌫,
denoted by SF (⌫), as

SF (⌫) :=

�

µ 2 Df(F)

�����
µt 2 D(F) for every t 2 (0, 1]
and every (µt)t2[0,1] 2 G(⌫,µ)

✏

,

Theorem 9.4.16. Let us assume Hypotheses 9.4.1 and 9.4.11, let µ 2 D(F) and let
� 2 P2(TH|µ) be such that

⇥
�, x] 

⇤
r
+ [ ,µ]

r
6 0 8 2 G, (9.4.43)

where G is as in (9.4.40). If for every µ 0 2 D(F) the set SF (µ
0
) is non-empty and open

in Pf(H) with respect to the W1-topology, then for any ⌫ 2 ◆(D(F)) we have

[F�
[⌫],�]

r
6 0. (9.4.44)
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•⌫

• µ

• ⌫ 0

•

⌫ 1

2

•

⌫ 1

2
,✓

⇢✓

�✓

� 0

�

↵

Figure 3: The plans used in the proof of Theorem 9.4.16.

Proof. We start by proving the theorem in case ⌫ 2 ◆(D(F1)). By the geodesic
convexity of D(F) (given by (9.4.39) and the convexity of C along any discrete
plan coming from Hypothesis 9.4.1(d)), we can find � 2 �o(⌫,µ) such that xt]� 2
D(F) for every t 2 [0, 1]; in particular ⌫1/2 := x1/2] � 2 D(F). Since SF

�
⌫1/2

�
is

open in Pf(H) with respect to the W1-topology and supp(⌫) is a finite set, we
can use Proposition 6.4.3 to find ⌫ 0 2 SF

�
⌫1/2

�
such that

(supp⌫ 0
- supp⌫ 0

)\ dir(supp⌫) = {0}. (9.4.45)

Let � 0 2 �o(µ,⌫ 0
) and let � 2 P(H3

) be such that ⇡1,2
] � = � and ⇡2,3

] � = � 0.
By Proposition 6.4.2, we get that x1/2,✓ is injective on supp� for every ✓ 2 (0, 1).
For every ✓ 2 (0, 1) we define

⌫1/2,✓ := x1/2,✓
] �,

↵ := (x1/2 � ⇡1,2,⇡3)]�,

�✓ := (x1/2,✓,⇡2)]�,

⇢✓ := (x1/2,✓,⇡1)]�

and we take  ✓ 2 G[⌫1/2,✓] and ⌃✓ 2 P(TH⇥H) with ⇡1,2
] ⌃✓ =  ✓, ⇡1,3

] ⌃✓ = ⇢✓
such that

Z

TH⇥H

hx2, x1 - x3id⌃✓(x1, x2, x3) = [ ✓,⇢✓]r,0.

Observe that, by Proposition 6.4.1, �✓ (resp. s]�✓) is the unique optimal transport
plan from ⌫1/2,✓ to µ (resp. from µ to ⌫1/2,✓), so that by (9.4.43) we get

[�, s]�✓]r,0 + [ ✓,�✓]r,0 =
⇥
�,⌫1/2,✓

⇤
r
+ [ ✓,µ]

r
6 0. (9.4.46)

By construction, we can find �✓ 2 P(H5
) such that

⇡1,2,3
] �✓ = ⌃✓, ⇡1,3,4,5

] �✓ = (x1/2,✓, iH3)]�.
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Let us define h✓ : H
3 ! H as

h✓(x1, x2, x3) :=
2

1- ✓
(x1 - ✓x3)- x2, (x1, x2, x3) 2 H

3

and ⌅✓ 2 P(H4
) as

⌅✓ := (⇡2,3,h✓ � ⇡1,3,5,⇡5)]�✓.

It can be easily checked that

(x1/2,✓ � ⇡2,3,4,⇡1,2
)]⌅✓ = ⌃✓, (9.4.47)

(x1/2 � ⇡2,3,⇡1, x1/2,✓ � ⇡2,3,4
)]⌅✓ 2 �1( ✓, (x0, x✓)]↵), (9.4.48)

(x1/2,✓ � ⇡2,3,4,⇡1,3
)]⌅✓ 2 �0( ✓,�✓). (9.4.49)

By (9.4.42), we have

[F�
[⌫], s]⇢✓]r,0 6 -[ ✓,⇢✓]r,0. (9.4.50)

Using (9.4.47) we can thus compute

[F�
[⌫], s]⇢✓]r,0 6 -[ ✓,⇢✓]r,0

=

Z

TH⇥H

hx2, x3 - x1id⌃✓

=

Z

H4

hx1, x2 - x1/2,✓
(x2, x3, x4)id⌅✓

=

Z

H4

hx1, x2 -
x2 + x3

2
id⌅✓

+

Z

H4

hx1,
x2 + x3

2
- x1/2,✓

(x2, x3, x4)id⌅✓

=

Z

H4

hx1,
x2 + x3

2
- x3id⌅✓

+

Z

H4

hx1,
x2 + x3

2
- x1/2,✓

(x2, x3, x4)id⌅✓

= 2

Z

H4

hx1,
x2 + x3

2
- x1/2,✓

(x2, x3, x4)id⌅✓

+

Z

H4

hx1, x1/2,✓
(x2, x3, x4)- x3id⌅✓

= 2

Z

TH⇥H

hx2, x1 - x3id(x1/2 � ⇡2,3,⇡1, x1/2,✓ � ⇡2,3,4
)]⌅✓

+

Z

TH⇥H

hx2, x1 - x3id(x1/2,✓ � ⇡2,3,4,⇡1,3
)]⌅✓

6 2[ ✓, (x0, x✓)]↵]l,1 + [ ✓,�✓]r,0,

where we have used (9.4.48), (9.4.49) and the fact that �0( ✓,�✓) contains a
unique element, being �✓ induced by a map w.r.t. ⌫1/2,✓, as previously remarked.
By (9.4.46) we get

[F�
[⌫], s]⇢✓]r,0 6 -[�, s]�✓]r,0+2[ ✓, (x0, x✓)]↵]l,1 = -[�, s]�✓]r,0+2✓[ ✓,↵]r,✓,
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(9.4.51)

thanks to (7.4.5), Remark 7.4.2 and the ↵-essential injectivity of xt for every t 2
(0, 1) given by Proposition 6.4.2. From (9.4.42) with � = (x1, x✓)]↵,  =  ✓ and
⌫ = ⌫ 0, we get

[F�
[⌫ 0

], (x1, x✓)]↵]r,0 6 [ ✓, (x1, x✓)]↵]l,1

which gives, using (7.4.3) and (7.4.5), that

[ ✓,↵]r,✓ 6 [F�
[⌫ 0

],↵]l,1. (9.4.52)

Using (9.4.52) in (9.4.51) we finally get

[F�
[⌫], s]⇢✓]r,0 + [�, s]�✓]r,0 6 2✓[F�

[⌫ 0
],↵]l,1.

Passing to the lim inf as ✓ # 0 and using Lemma 7.3.1 we get that

[F�
[⌫], (x0, x1/2)]�]r,0 + [�, (x1, x1/2)]�]r,0 6 0.

Thus

1

2
[F�

[⌫],�]
r
6 [F�

[⌫], (x0, x1/2)]�]r,0 + [�, (x1, x1/2)]�]r,0 6 0.

This proves the Theorem in case ⌫ 2 ◆(D(F1)). Let us prove the general case; let
X 2 D(F) be such that ◆X = ⌫. By (9.4.35), we can find (Xn,Vn)n ⇢ F1 such that
Xn ! X and Vn ! F�[X]. Since (Vn)n is bounded, also (F�[Xn])n is bounded and
thus weakly converges, up to an unrelabeled subsequence, to V 0 2 F[X], where
we used (9.4.34) to conclude that (X,V 0

) 2 F. By the weak lower semicontinuity
of the norm, we have that

|V 0|H 6 lim inf
n

|F�[Xn]|H 6 lim sup
n

|F�[Xn]|H 6 lim sup
n

|Vn|H = |F�[X]|H,

and then V 0
= F�[X] and F�[Xn] ! F�[X]. Writing (9.4.44) for ◆Xn

and observing
that F�

[◆Xn
] ! F�

[⌫] in P2(TH), we conclude using Lemma 7.3.1.

Remark 9.4.17. Notice that if

for every µ 0 2 D(F) there exists x0 2 H s.t. �x0
2 SF

�
µ 0�,

then, in order to prove Theorem 9.4.16, there is no need to assume that SF (µ
0
)

is open in Pf(H) with respect to the W1-topology. Indeed, condition (9.4.45) is
automatically satisfied for ⌫ 0

= �x0
so that the use of Proposition 6.4.3 is not

necessary.

In the following Theorem, given µ0 2 D(F), we denote

Stµ0 := (StX0)]P for t > 0, (9.4.53)

where X0 2 H is such that ◆X0
= µ0. Notice that this definition is well posed

since, by Theorem 9.3.3, Stµ0 only depends on µ0.
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Theorem 9.4.18. Let us assume Hypotheses 9.4.1 and 9.4.11 and let µ0,⌫0 2 D(F).
Assume that for every µ 0 2 D(F) the set SF (µ

0
) is non-empty and open in Pf(H) with

respect to the W1-topology. Let (µt)t>0 be the Lipschitz curve defined by µt := Stµ0

for every t 2 [0,+1) and let (⌫t)t>0 be a locally absolutely continuous 0-EVI solution
for F starting from ⌫0. Then

W2(µt,⌫t) 6 W2(µ0,⌫0) 8t 2 [0,+1), (9.4.54)

In particular (µt)t>0 is the unique locally absolutely continuous 0-EVI solution for F
starting from µ0.

Proof. Let X0 2 H be such that ◆X0
= µ0. By Proposition 9.4.9, Theorem 9.3.3 and

Lemma 9.4.12, we have that X0 2 D(F) and (µs)s>0 is independent of X0. By
Lemma 9.4.12, since ◆(D(F)) ⇢ D(F) and SsX0 2 D(F), we have that (µs)s>0 2
Lip([0,+1); D(F)). Let us define for every s > 0, vs : H ! H as vs(x) :=

hSsX0
(x) (see Theorem 9.3.3(b)); by (9.3.4) we get

@sµs +r · (µsvs) = 0 for every s > 0

in the sense of distributions.
(1) (µs)s>0 is a 0-EVI solution for F. Let � 2 F and t 2 A((µs)s>0, x]�) be fixed,
where A((µs)s>0, x]�) is the subset of A((µs)s>0) coming from in Theorem 7.2.1.
Observe that, since G ⇢ cl(F) (cf. (9.4.40)) and the latter is dissipative by Propo-
sition 7.7.1, we have that

⇥
�, x] 

⇤
r
+
⇥
 , x]�

⇤
r
6 0 8 2 G. (9.4.55)

By Theorem 7.2.1,

1

2

d
ds

����
s=t

W2

2
(µs, x]�) =

⇥
(iH, vt)]µt, x]�

⇤
r

=
⇥
(StX0, F�[StX0])]P, x]�

⇤
r

=
⇥
F�

[µt], x]�
⇤
r

6 - [�,µt]r ,

where, thanks to (9.4.55), we applied Theorem 9.4.16 to get the last inequality.
This proves that (µs)s>0 is a 0-EVI solution (cf. Definition 8.1.1) for F starting
from µ0 2 D(F).
(2) (µs)s>0 is the unique absolutely continuous 0-EVI solution for F starting from µ0.
Let (⌫s)s>0 be a locally absolutely continuous 0-EVI solution for F starting from
⌫0 2 D(F) and let w be its Wasserstein velocity field coming from Theorem 2.4.6.
Let t 2 A((µs)s>0, (⌫s)s>0) be fixed, where A((µs)s>0, (⌫s)s>0) is the subset of
A((µs)s>0) \A((⌫s)s>0) coming from in Theorem 7.2.3. By definition of 0-EVI
solution for F we have that

1

2

d
ds

����
s=t

W2

2
(⌫s, x] 0

) =
⇥
(iH,wt)]⌫t, x] 0⇤

r
6 -

⇥
 0,⌫t

⇤
r

8 0 2 F. (9.4.56)

If  2 G (cf. (9.4.40)), we can take a sequence ( 0
n)n ⇢ F converging to  in

Psw

2
(TH) obtaining by Lemma 7.3.1 that (9.4.56) holds also for  so that
⇥
(iH,wt)]⌫t, x] 

⇤
r
6 - [ ,⌫t]r 8 2 G. (9.4.57)
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We thus have by Theorem 7.2.3 that

1

2

d
ds

����
s=t

W2

2
(µs,⌫s) =

⇥
(iH, vt)]µt, (iH,wt)]⌫t

⇤
r

=
⇥
(StX0, F�[StX0])]P, (iH,wt)]⌫t

⇤
r

=
⇥
F�

[µt], (iH,wt)]⌫t
⇤
r

6 0,

where we were allowed to use (9.4.44) with � = (iH,wt)]⌫t thanks to (9.4.57).
Thus

W2(µt,⌫t) 6 W2(µ0,⌫0) 8t 2 [0,+1)

so that we obtain the sought uniqueness.

9.4.2 JKO scheme and Hilbertian resolvent

The aim of this section is to show that, under suitable assumptions, the JKO/Min-
imizing movement scheme for � : P2(H) ! (-1,+1] and the (law of the) Im-
plicit Euler Hilbertian scheme constructed starting from the MPVF -@� coincide.
We will work under the following assumptions.

Hypothesis 9.4.19. We assume that:

(a) N is a fixed unbounded directed subset of the integers w.r.t. the order
relation � as in (6.2.4).

(b) (⌦,B, P, (PN)N2N), with PN = {⌦N,n}n2IN
and IN := {0, . . . ,N- 1}, is a

fixed N-refined standard Borel probability space as in Definition 6.2.9.

(c) � : P2(H) ! (-1,+1] is a proper, lower semicontinuous and geodesi-
cally convex functional.

(d) C ⇢ D(�) \ PN(H) is a fixed nonempty set such that C \ PN(H) is W1-
relatively open in PN(H) and convex along couplings in PN(H ⇥ H) for
every N 2 N, where PN(H) and PN(H) are as in (9.4.1) and (9.4.2) respec-
tively.

(e) C is dense in energy, meaning that for every µ 2 D(�) there exists (µn)n ⇢ C

such that

µn ! µ and �(µn) ! �(µ).

We consider the MPVF F := -@� ⇢ P2(TH), the (opposite of the) Wasserstein
subdifferential of � defined as

 2 -@�(µ) iff µ 2 D(�), �(⌫)-�(µ) > [ ,⌫]
r

for every ⌫ 2 D(�).
(9.4.58)
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It is easy to check that F is a dissipative MPVF. We will use the notations
H,HN, ◆·,DN, FN, F̂N, F1, F precisely as in the first part of Section 9.4 with F =

-@�. Finally we denote by  : H ! (-1,+1] the functional on H defined as

 (X) := �(◆X) X 2 H.

Proposition 9.4.20. The functional  is proper, convex and lower semicontinuous. In
particular, � is convex along any coupling and the opposite of the subdifferential of  ,
-@ ⇢ H⇥H, is a maximal dissipative operator.

Proof. We only check the convexity of  since the other properties are trivially
inherited by the functional �. We proceed in two steps.
(1) � is convex in C, meaning that for every µ0,µ1 2 C, every µ 2 �(µ0,µ1) and every
t 2 [0, 1] it holds

�(xt]µ) 6 (1- t)�(µ0) + t�(µ1).

The thesis follows if we prove that f(t) := �(µt), t 2 [0, 1] is convex, where
µt := xt]µ. By Theorem 6.5.2 there exists a natural number K 2 N and times
0 = t0 < t1 < · · · < tK-1 < tK = 1 such that xtj-1,tj

] µ is optimal for every j =

1, . . . ,K. Setting s2j := tj, j = 0, . . . ,K and s2j+1 := (tj + tj+1)/2, j = 0, . . . ,K- 1,
we get a partition 0 = s0 < s1 < · · · < sN-1 < sN = 1 with N = 2K of [0, 1]
such that xsj-1,sj

] µ, j = 1, . . . ,N, is the unique optimal transport plan connecting
its marginals. Hence, f is convex in each interval [sj-1, sj] for j = 1, . . . ,N by
definition of geodesic convexity. In particular, f is continuous in [0, 1], the right
(resp. left) derivative of f, denoted by f 0r (resp. f 0

l
), exists at every point of [0, 1)

(resp. (0, 1]) and it is increasing in each subinterval [sj-1, sj) (resp. (sj-1, sj]);
moreover f 0r and f 0

l
coincide in a dense set I ⇢ [K

j=1
(sj-1, sj). Let now t 2 [0, 1)

and let j 2 1, . . . ,N be such that t 2 [sj-1, sj); let h > 0 be such that t+ h < sj.
By definition of subdifferential at µt and using the fact that xt,t+h

] µ is the unique
element of �o(µt,µt+h), we get that

f(t+ h)- f(t) > [�t,µt+h]r = [�t, xt,t+h

] µ]r,0 = h[�t,µ]r,t

for every �t 2 -@�(µt). Dividing by h and passing to the limit as h # 0 shows
that f 0r(t) > [-@�,µ]r,t. The same argument shows that f 0

l
(t) 6 [-@�,µ]l,t for

every t 2 (0, 1]. This, together with Theorem 7.6.2 also implies that, if u 2 I, then

f 0r(u) = f 0
l
(u) = [-@�,µ]r,u = [-@�,µ]l,u.

To conclude that f is convex it is enough to show that f 0
l
(sj) 6 f 0r(sj) for every

j = 1, . . . ,N- 1. Let us fix j 2 {1, . . . ,N- 1} and let us consider any s 2 (sj-1, sj)
and t 2 (sj, sj+1). Then we can find two points u1 2 (s, sj)\ I and u2 2 (sj, t)\ I

so that

f 0
l
(s) 6 f 0

l
(u1) = [-@�,µ]r,u1

6 [-@�,µ]l,u2
= f 0r(u2) 6 f 0r(t),

where we have used (7.8.7) for the second inequality. Passing to the limit as
s " sj and t # sj and using the right (resp. left) continuity of the right (resp. left)
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derivative (see e.g. [102, Theorem 24.1]), we conclude. This proves the convexity
of f and concludes the first step.
(2)  is convex.

Let X, Y 2 D( ) and let t 2 [0, 1]; then ◆X, ◆Y 2 D(�) and we can thus find
by Hypothesis 9.4.19(e) sequences (µn)n, (⌫n) ⇢ C such that W2(µn, ◆X) ! 0,
W2(⌫n, ◆Y) ! 0, �(µn) ! �(◆X) and �(⌫n) ! �(◆Y) as n ! +1. By Proposition
6.2.18 we can find sequences (Xn)n, (Yn)n ⇢ H such that ◆Xn

= µn, ◆Yn
= ⌫n,

Xn ! X and Yn ! Y. In particular by step (1) with µ = ◆2
Xn,Yn

we have that

 ((1- t)Xn + tYn) = �(xt]◆
2

Xn,Yn
)

6 (1- t)�(µn) + t�(⌫n)

= (1- t) (Xn) + t (Yn).

Passing to the lim infn and using the lower semicontinuity of  yield the sought
convexity.

Proposition 9.4.21. Under Hypothesis 9.4.19, it holds

F = -@ .

Proof. Since both operators are maximal dissipative it is enough to prove that
F ⇢ -@ . We do it in several steps.
(1) If N 2 N, (X,V) 2 FN, Y 2 DN, then  (Y)- (X) > hV ,X- YiH.

By the very definition of FN, there exists W 2 H such that V = ⇧NW and
(X,W)]P 2 -@� i.e.

 (Y)- (X) = �(◆Y)-�(◆X) >
⇥
(X,W)]P, ◆Y

⇤
r
= hV ,X- YiH,

where we used (9.4.14) for the last equality.
(2) If N 2 N, X, Y 2 DN, V 2 F̂N[X], then  (Y)- (X) > hV ,X- YiH.

This follows by step (1) arguing as in the proof of (9.4.20), first approximat-
ing V 2 F̄N[X] with elements of FN and then by using the equality F̂N[X] =

co
�
F̄N[X]

�
.

(3) If N 2 N, (X,V) 2 F̂N, Y 2 D(F̂N), then  (Y)- (X) > hV ,X- YiH.
This follows by step (2) arguing as in the proof of Lemma 9.4.5 replacing

[ , ◆2
Y,X]r,0 with  (X)- (Y).

(4) If (X,V) 2 F1, Y 2 D( ), then  (Y)- (X) > hV ,X- YiH.
If (X,V) 2 F1 there exists M 2 N such that (X,V) 2 FN for every N 2 N such

that M � N. By Hypotesis 9.4.19(e) we can find a sequence (⌫n) ⇢ C such that
W2(⌫n, ◆Y) ! 0 and �(⌫n) ! �(◆Y) as n ! +1. By Proposition 6.2.18, we can
find a sequence (Yn)n ⇢ H such that ◆Yn

= ⌫n and Yn ! Y. We can thus find a
sequence (Nn) ⇢ N such that (X,V) 2 FNn

and Yn 2 DNn
⇢ D(F̂Nn

) for every
n 2 N. By step (3) written for (X,V) and Yn and passing to the limit as n ! +1,
we conclude.
(5) If (X,V) 2 F, then (X,V) 2 -@ .

By (9.4.35), we can find a sequence (Xn,Vn) ⇢ F1 such that Xn ! X and
Vn ! V . Let Y 2 D( ); by step (4) written for (Xn,Vn) and Y and passing to the
limit as n ! +1, we conclude.
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Proposition 9.4.22. Under Hypothesis 9.4.19 the the Implicit Euler scheme provides a
step of JKO scheme. In particular, let µ 2 P2(H) and let ⌧ > 0. If X 2 H is such that
◆X = µ, then the law µ⌧ of X⌧ := J⌧X satisfies

µ⌧ 2 arg min
⌫2P2(X)

�
1

2⌧
W2

2
(µ,⌫) +�(⌫)

�
, (9.4.59)

i.e. µ⌧ is a step of JKO for � starting from µ.

Proof. By Proposition 9.4.9 and Theorem 9.3.3, we have that µ⌧ doesn’t depend
on the choice of X 2 H such that ◆X = µ; if ⌫ 2 P2(H), we can thus find
(X 0, Y) 2 H2 such that ◆2

X 0,Y 2 �o(µ,⌫). By the properties of the resolvent operator
J⌧, we have that

�(µ⌧) +
1

2⌧
W2

2
(µ⌧,µ) 6  (J⌧X 0

) +
1

2⌧
|J⌧X

0
-X 0|2H

6  (Y) + 1

2⌧
|Y -X 0|2H

= �(⌫) +
1

2⌧
W2

2
(µ,⌫),

which yields the conclusion.

In this last lemma we remark that the hypotheses we assumed on � in this
section are implied by the one assumed on -@� in the previous section.

Lemma 9.4.23. Hypothesis 9.4.19(e) for � is weaker than Hypothesis 9.4.11 for -@�.

Proof. In particular we show that

there exists C ⇢ D(@�) s.t. for every µ 2 D(@�)

there exists (µn) ⇢ C, �n 2 -@�(µn) s.t. µn ! µ and sup
n

|�n|2 < +1

(9.4.60)

implies

there exists D ⇢ D(�) s.t. for every µ 2 D(�) there exists (µn)n ⇢ D s.t.
µn ! µ and �(µn) ! �(µ).

(9.4.61)

If we take D := C, we see that D ⇢ D(@�) ⇢ D(�). If µ 2 D(@�) and (µn) ⇢
D, �n 2 -@�(µn) are such that µn ! µ and sup

n
|�n|2 < +1, by lower

semicontinuity of � we have that lim infn�(µn) > �(µ). Moreover

�(µ)-�(µn) > [�n,µ]
r
> -|�n|2W2(µn,µ)

so that

�(µn) 6 �(µ) + |�n|2W2(µn,µ)

and passing to the lim sup
n

shows that �(µn) ! �(µ). This shows that D is
dense in energy in D(@�). Since this is dense in energy in D(�) we can conclude
by a diagonal argument.
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9.5 examples of dissipative mpvfs and flows

In this section we give some examples of MPVFs that fit our framework. The first
subsection 9.5.1 is devoted to subdifferentials of functionals. In Subsection 9.5.4,
we give some examples of MPVFs generating �-flows with particular properties.
We then conclude with Subsection 9.5.5, where we compare our framework with
that developed in [94].

9.5.1 Subdifferentials of �-convex functionals

Recall that a functional � : P2(H) ! (-1,+1] is �-(geodesically) convex on
P2(H) (see [5, Definition 9.1.1]) if for any µ0,µ1 in the proper domain D(�) :=

{µ 2 P2(H) | �(µ) < +1} there exists µ 2 �o(µ0,µ1) such that

�(µt) 6 (1- t)�(µ0) + t�(µ1)-
�

2
t(1- t)W2

2
(µ0,µ1)

for every t 2 [0, 1], where µ : [0, 1] ! P2(H) is the constant speed geodesic
induced by µ, i.e. µt = xt]µ.

The Fréchet subdifferential @� of � [5, Definition 10.3.1] is a MPVF which can
be characterized [5, Theorem 10.3.6] by

� 2 @�[µ] , µ 2 D(�), �(⌫)-�(µ) > - [�,⌫]
l
+
�

2
W2

2
(µ,⌫).

for every ⌫ 2 D(�). According to the notation introduced in (7.1.10), we set

-@�[µ] = J]@�[µ], with J(x, v) := (x,-v), (9.5.1)

and we have the following result.

Theorem 9.5.1. If � : P2(H) ! (-1,+1] is a proper, lower semicontinuous and
�-convex functional, then -@� is a (-�)-dissipative MPVF according to (7.5.1).

In the following proposition, we prove a correspondence between gradient
flows for � and (-�)-EVI solutions for the MPVF -@�. We refer respectively
to (7.6.2), (7.6.7) and Definition 7.6.4 for the definitions of I(µ|F), �0o(·, ·|F) and
[F,µ]0+.

Proposition 9.5.2. Let � : P2(H) ! (-1,+1] be a proper, lower semicontinuous
and �-convex functional and let µ : I ! D(@�) be a locally absolutely continuous curve,
with I a (bounded or unbounded) interval in R. Then

1. if µ is a Gradient Flow for � i.e.

(iH, vt)]µt 2 -@�(µt) a.e. t 2 I,

then µ is a (-�)-EVI solution of (8.1.1) for the MPVF -@� as in (9.5.1);

2. if µ is a (-�)-EVI solution of (8.1.1) for the MPVF -@� and the domain of @�
satisfies

for a.e. t 2 I, �0o(µt,⌫|@�) 6= ; for every ⌫ 2 D(@�),

then µ is a Gradient Flow for �.
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Proof. The first assertion is a consequence Theorem 8.1.4(1). We prove the second
claim; by (8.1.5b) we have that for a.e. t 2 I it holds

⇥
(iH, vt)]µt,⌫

⇤
r
6 [(iH, vt)]µt,µt]r,0 6 [-@�,µt]0+

for every ⌫ 2 D(�) and µt 2 �0o(µt,⌫|@�). We show that for every ⌫0,⌫1 2
D(@�) and every ⌫ 2 �0o(⌫0,⌫1|F)

[-@�,⌫]0+ 6 �(⌫1)-�(⌫0)-
�

2
W2

2
(⌫0,⌫1). (9.5.2)

To prove that, we take s 2 I(⌫|@�)\ (0, 1) and �s 2 -@�(⌫s), where we have set
⌫s := xs]⌫. By definition of subdifferential we have

[�s,⌫1]r 6 �(⌫1)-�(⌫s)-
�

2
W2

2
(⌫s,⌫1).

Dividing by (1- s), using (7.4.6) and passing to the infimum w.r.t.�s 2 -@�(⌫s)

we obtain

[-@�,⌫]r,s 6 1

1- s
(�(⌫1)-�(⌫s))-

�(1- s)

2
W2

2
(⌫0,⌫1).

Passing to the limit as s # 0 and using the lower semicontinuity of � lead to the
result. Once that (9.5.2) is established we have that for a.e. t 2 I it holds

⇥
(iH, vt)]µt,⌫

⇤
r
6 �(⌫)-�(µt)-

�

2
W2

2
(µt,⌫) for every ⌫ 2 D(@�). (9.5.3)

To conclude it is enough to use the lower semicontinuity of the l.h.s. (see Lemma
7.3.1) and the fact that D(@�) is dense in D(�) in energy: indeed we can apply
[86, Corollary 4.5] and [5, Lemma 3.1.2] to the proper, lower semicontinuous and
convex functional �� : P2(H) ! (-1,+1] defined as

��(⌫) = �(⌫)-
�

2
m2

2
(⌫)

to get the existence, for every ⌫ 2 D(�), of a family (⌫⌧)⌧>0 ⇢ D(��) = D(�) s.t.

⌫⌧ ! ⌫, ��(⌫⌧) ! ��(⌫) as ⌧ # 0.

Of course �(⌫⌧) ! �(⌫) as ⌧ # 0 and, applying [5, Lemma 10.3.4], we see that
⌫⌧ 2 D(@��). However @�� = L�] @� (see (7.5.5)) so that ⌫⌧ 2 D(@�). We can
thus write (9.5.3) for ⌫⌧ in place of ⌫ and pass to the limit as ⌧ # 0, obtaining
that, by definition of subdifferential, (iH, vt)]µt 2 -@�(µt) for a.e. t 2 I.

Referring to [5], here we list interesting and explicit examples of (-�)-dissipative
MPVFs, according to (7.5.1), induced by proper, lower semicontinuous and �-
convex functionals, focusing on the cases when D(@�) = P2(H).

1. Potential energy. Let P : H ! R be a l.s.c. and �-convex functional satisfying

|@oP(x)| 6 C(1+ |x|) for every x 2 H,
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for some constant C > 0, where @oP(x) is the element of minimal norm in
@P(x). By [5, Proposition 10.4.2] the PVF

F[µ] := (iH,-@oP)]µ, µ 2 P2(H),

is a (-�)-dissipative selection of -@FP for the potential energy functional

FP(µ) :=

Z

H

P dµ, µ 2 P2(H).

2. Interaction energy. If W : H ! [0,+1) is an even, differentiable, and �-
convex function for some � 2 R, whose differential has a linear growth,
then, by [5, Theorem 10.4.11], the PVF

F[µ] := (iH, (-rW ⇤ µ))] µ, µ 2 P2(H),

is a (-�)-dissipative selection of -@FW , the opposite of the Wasserstein
subdifferential of the interaction energy functional

�W(µ) :=
1

2

Z

H2

W(x- y)d(µ⌦ µ)(x,y), µ 2 P2(H).

3. Opposite Wasserstein distance. Let µ̄ 2 P2(H) be fixed and consider the func-
tional �Wass : P2(H) ! R defined as

�Wass(µ) := -
1

2
W2

2
(µ, µ̄), µ 2 P2(H),

which is geodesically (-1)-convex [5, Proposition 9.3.12]. Setting

b(µ) := arg min
�Z

H

|b(x)- x|2 dµ : b = b� 2 L2µ(H; H), � 2 �o(µ, µ̄)
�

,

the PVF

F[µ] := (iH, iH -b(µ))#µ, µ 2 P2(H)

is a selection of -@�Wass(µ) and it is therefore 1-dissipative according to
(7.5.1).

9.5.2 MPVF concentrated on the graph of a multifunction

The previous example of Section 9.5.1 has a natural generalization in terms of
dissipative graphs in H⇥H [12, 13, 26]. We consider a (non-empty) �-dissipative
set F ⇢ H ⇥ H, i.e. satisfying

hv0 - v1, x0 - x1i 6 �|x0 - x1|
2 for every (x0, v0), (x1, v1) 2 F.

The corresponding MPVF defined as

F :=

⌦
� 2 P2(TH) | � is concentrated on F

↵
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is �-dissipative as well, according to (7.5.1). In fact, if �0,�1 2 F with ⌫i = x]�i,
i = 0, 1, and ⇥ 2 ⇤(�0,�1) then (x0, v0, x1, v1) 2 F ⇥ F ⇥-a.e., so that

Z

TH⇥TH

hv0 - v1, x0 - x1id⇥(x0, v0, x1, v1) 6 �
Z

TH⇥TH

|x0 - x1|
2 d⇥

= �W2

2
(⌫0,⌫1).

since (x0, x1)]⇥ 2 �o(⌫0,⌫1). Taking the supremum w.r.t. ⇥ 2 ⇤(�0,�1) we
obtain [�0,�1]l 6 �W2

2
(⌫0,⌫1) which is even stronger than �-dissipativity. If

D(F) = H then D(F) contains Pc(H), the set of Borel probability measures with
compact support. If F has also a linear growth, then it is easy to check that
D(F) = P2(H) as well.

Despite the analogy just shown with dissipative operators in Hilbert spaces,
there are important differences with the Wasserstein framework, as highlighted
in the following examples. In particular, in Subsection 6.2 we showed how dissi-
pativity allows to deduce relevant properties when the MPVF F is tested against
optimal directions. On the contrary, whenever v]F[µ] is orthogonal to Tanµ P2(H),
we are not able to deduce information through the dissipativity assumption, as
shown in Example 9.5.3 and Example 9.5.4.

Example 9.5.3. Let H = R
2, let B := {x 2 R

2 | |x| 6 1} be the closed unit ball, let
LB be the (normalized) Lebesgue measure on B, and let r : R

2 ! R
2, r(x1, x2) =

(x2,-x1) be the anti-clockwise rotation of ⇡/2 degrees. We define the MPVF

F[⌫] =

8
<

:
(iR2 , 0)]⌫, if ⌫ 2 P2(R

2
) \ {LB},

�
(iR2 ,ar)]LB | a 2 R

 
, if ⌫ = LB.

Observe that D(F) = P2(R
2
) and F is obviously unbounded at ⌫ = LB, i.e.

sup {|�|2 : � 2 F[LB]} = +1.

The MPVF F is also dissipative with � = 0 according to (7.5.1): indeed, thanks to
Remark 7.1.5 it is enough to check that

⇥
(iR2 ,ar)]LB,⌫

⇤
r
= 0 for every ⌫ 2 P2(R

2
), a 2 R. (9.5.4)

To prove (9.5.4), we notice that the optimal transport plan from LB to ⌫ is concen-
trated on a map which belongs to the tangent space TanLB

P2(R
2
) [5, Prop. 8.5.2];

by Remark 7.4.2 we have just to check that
Z

R2

hr(x),r'(x)idLB(x) = 0 for every ' 2 C1
c (R

2
),

that is a consequence of the Divergence Theorem on B. This example is in con-
trast with the Hilbertian theory of dissipative operators according to which an
everywhere defined dissipative operator is locally bounded (see [26, Proposition
2.9]).

Example 9.5.4. In the same setting of the previous example, let us define the
MPVF

F[⌫] = (iR2 , r)]⌫, r(x1, x2) = (x2,-x1), ⌫ 2 P2(R
2
).



9.5 examples of dissipative mpvfs and flows 209

It is easy to check that F is dissipative according to (7.5.1) and Lipschitz continu-
ous (as a map from P2(R

2
) to P2(TR

2
)). Moreover, arguing as in Example 9.5.3,

we can show that (iRd , 0)]LB 2 F̂[LB], where F̂ is defined in (7.7.4). This is again
in contrast with the Hilbertian theory of dissipative operators, stating that a sin-
gle valued, everywhere defined, and continuous dissipative operator coincides
with its maximal extension (see [26, Proposition 2.4]).

9.5.3 Interaction field induced by a dissipative map

Let us consider the Hilbert space Y = H
n, n 2 N, endowed with the scalar

product hx,yi := 1

n

P
n

i=1
hxi,yii, for every x = (xi)

n

i=1
, y = (yi)

n

i=1
2 H

n. We
identify TY with (TH)

n and we denote by xi, vi the i-th coordinate maps. Every
permutation � : {1, · · · ,n} ! {1, · · · ,n} in Sym(n) operates on Y by the obvious
formula �(x)i = x�(i), i = 1, · · · ,n, x 2 Y.

Let G : Y ! Y be a Borel �-dissipative map bounded on bounded sets (this
property is always true if Y has finite dimension) and satisfying

x 2 D(G) ) �(x) 2 D(G), G(�(x)) = �(G(x)) for every permutation �.
(9.5.5)

Denoting by (G1, · · · ,Gn
) the components of G, by xi the projections from Y to

H and by µ⌦n
=
N

n

i=1
µ, we have that the MPVF

F[µ] := (x1,G1
)]µ

⌦n with domain D(F) := Pb(H)

is �-dissipative as well according to (7.5.1). Indeed, let µ,⌫ 2 D(F), � 2 �o(µ,⌫)
and let

� = (x1,G1
)]µ

⌦n and  = (x1,G1
)]⌫

⌦n.

We can consider the plan � := P]�
⌦n 2 �(µ⌦n,⌫⌦n

), where

P((x1,y1), · · · , (xn,yn)) := ((x1, · · · , xn), (y1, · · · ,yn)).

Considering the map H1
(x,y) := (x1,G1

(x),y1,G1
(y)) we have ⇥ := H1

]� 2
⇤(�, ), so that

[�, ]
r
6
Z
hv1 -w1, x1 - y1id⇥(x1, v1,y1,w1)

=

Z
hG1

(x)-G1
(y), x1 - y1id�(x,y)

=
1

n

nX

k=1

Z
hGk

(x)-Gk
(y), xk - ykid�(x,y)

=

Z
hG(x)-G(y), x-yid�(x,y),
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where we used (9.5.5) and the invariance of � with respect to permutations. The
�-dissipativity of G then yields

Z
hG(x)-G(y), x-yid�(x,y) 6 �

Z
|x-y|2

Y
d�(x,y)

= �
1

n

nX

k=1

Z
|xk - yk|

2

Y
d�(x,y)

= �
1

n

nX

k=1

Z
|xk - yk|

2

Y
d�(xk,yk)

= �W2

2
(µ,⌫).

A typical example when n = 2 is provided by

G(x1, x2) := (A(x1 - x2),A(x2 - x1))

where A : H ! H is a Borel, locally bounded, dissipative and antisymmetric
map satisfying A(-z) = -A(z). We easily get

hG(x)-G(y), x-yi

=
1

2

⇣
hA(x1 - x2)-A(y1 - y2), x1 - y1i- hA(x1 - x2)-A(y1 - y2), x2 - y2i

⌘

=
1

2
hA(x1 - x2)-A(y1 - y2), x1 - x2 - (y1 - y2)i 6 0.

In this case

F[µ] = (iH,a[µ])]µ, a[µ](x) =

Z

H

A(x- y)dµ(y) for every x 2 H.

9.5.4 A few borderline examples

In this subsection, we collect a few examples which reveal the importance of
some of the technical tools we developed in Section 8.1. First of all we exhibit an
example of dissipative MPVF generating a 0-flow, for which solutions starting
from given initial data are merely continuous. In particular, the nice regularizing
effect of gradient flows (see [25] for the Hilbert case and [5, Theorem 4.0.4, Theo-
rem 11.2.1] for the general metric and Wasserstein settings), according to which
a solution belongs to the domain of the functional for any t > 0 even if the initial
datum merely belongs to its closure, does not hold for general dissipative evolu-
tions. This also clarifies the interest in a definition of continuous, not necessarily
absolutely continuous, solution given in Definition 8.1.1.

Example 9.5.5 (Lifting of dissipative evolutions and lack of regularizing effect).
Let us consider the situation of Corollary 9.2.15, choosing the Hilbert space H =

`2(N). Following [106, Example 3] we can easily find a maximal linear dissipative
operator A : D(A) ⇢ `2(N) ! `2(N) whose semigroup does not provide a
regularizing effect. We define A as

A(x1, x2, . . . , x2k-1, x2k, . . . ) = (-x2, x1, . . . ,-kx2k,kx2k-1, . . . ), x 2 D(A),
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with domain

D(A) :=

�

x 2 `2(N) :

1X

k=1

k2|xk|
2 < 1

✏

,

so that there is no regularizing effect for the semigroup (Rt)t>0 generated by
(the graph of) A: evolutions starting outside the domain D(A) stay outside the
domain and do not give raise to locally Lipschitz or a.e. differentiable curves.
Corollary 9.2.15 shows that the 0-flow (St)t>0 generated by F on P2(X) is given
by

St[µ0] = (Rt)]µ0 for every µ0 2 D(F) = P2(H)

so that there is the same lack of regularizing effect on probability measures.

In the next example we show that a constant MPVF generates a barycentric
solution.

Example 9.5.6 (Constant PVF and barycentric evolutions). Given ✓ 2 P2(H), we
consider the constant PVF

F[µ] := µ⌦ ✓.

F is dissipative according to (7.5.1): in fact, if �i = µi ⌦ ✓, i = 0, 1, µ 2 �o(µ0,µ1),
and r : H ⇥ H ⇥X ! TH ⇥TH is defined by r(x0, x1, v) := (x0, v; x1, v), then

⇥ = r](µ⌦ ✓) 2 ⇤(�0,�1)

so that (7.1.12) yields

[�0,�1]r 6
Z
hx0 - x1, v- vid(µ⌦ ✓)(x0, x1, v) = 0.

Applying Proposition 9.2.11 and Theorem 9.2.9 we immediately see that F gener-
ates a 0-flow (St)t>0 in P2(H), obtained as a limit of the Explicit Euler scheme.
It is also straightforward to notice that we can apply Theorem 8.3.4 to F so that
for every µ0 2 P2(H) the unique EVI solution µt = Stµ0 satisfies the continuity
equation

@tµt +r · (bµt) = 0, b =

Z

H

vd✓(v).

Since b is constant, we deduce that St acts as a translation with constant velocity
b, i.e.

µt = (iH + tb)]µ0,

so that St coincides with the semigroup generated by the PVF F 0
[µ] := (iH,b)]µ.

We conclude this subsection with a 1-dimensional example of a curve which
satisfies the barycentric property but it is not an EVI solution.
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Example 9.5.7. Let H = R. It is well known (see e.g. [88]) that P2(R) is isometric
to the closed convex subset K ⇢ L2(0, 1) of the (essentially) increasing maps
under the action of the isometry J : P2(R) ! K which maps each measure
µ 2 P2(R) into the pseudo inverse of its cumulative distribution function.

It follows that for every ⌫̄ 2 P2(R) the functional � : P2(R) ! R defined as

�(µ) :=
1

2
W2

2
(µ, ⌫̄)

is 1-convex, since it satisfies �(µ) = G(J(µ)) where G : L2(0, 1) ! R is defined as

G(u) :=

8
<

:

1

2
ku- J(⌫̄)k2 if u 2 K,

+1 otherwise.

Thus � generates a gradient flow (St)t>0 which is a semigroup of contractions
in P2(R); for every µ0 2 P2(R), the map St[µ0] is the unique (-1)-EVI solution
for the MPVF -@� starting from µ0 2 P2(R) (see Proposition 9.5.2). Since the
notion of gradient flow is purely metric, the gradient flow of G starting from
J(µ0) is just the image through J of the gradient flow of � starting from µ0 2
P2(R). Indeed: let µ be the gradient flow for � starting from µ0 2 P2(R), then
by e.g. [5, Theorem 11.1.4] we have that µ satisfies

d
dt

1

2
W2

2
(µt,⌫) 6 �(⌫)-�(µt)-

1

2
W2

2
(µt,⌫) for a.e. t > 0, for ⌫ 2 P2(R),

so that we get

d
dt

1

2
kJ(µt)- J(⌫)k2 6 G(J(⌫))- G(J(µt))-

1

2
kJ(µt)- J(⌫)k2,

which, recalling the characterization of gradient flows in Hilbert spaces, gives
that u(t) := J(µt) is the gradient flow of G starting from J(µ0).

It is easy to check that

u(t) := e-tJ(µ0) + (1- e-t
)J(⌫̄)

is the gradient flow of G starting from u0 = J(µ0). Note that u(t) is the L2(0, 1)
geodesic from J(⌫̄) to J(µ0) evaluated at the rescaled time e-t, so that St[µ0]

must coincide with the evaluation at time e-t of the (unique) geodesic connect-
ing ⌫̄ to µ0 i.e.

St[µ0] = xs]�, s = e-t 2 (0, 1],

where � 2 �o(⌫̄,µ0).
Let us now consider the particular case ⌫̄ =

1

2
�-a +

1

2
�a, where a > 0 is a

fixed parameter and µ0 = �0. It is straightforward to see that

µt = St[�0] =
1

2
�a(1-e-t) +

1

2
�a(e-t-1), t > 0

so that

(iH, vt)]µt =
1

2
�((1-e-t)a,e-ta) +

1

2
�((e-t-1)a,-e-ta) 2 -@�(µt), a.e. t > 0,
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where v is the Wasserstein velocity field of µt. On the other hand, [5, Lemma
10.3.8] shows that

�0 ⌦
✓
1

2
�-a +

1

2
�a

◆
2 -@�(�0)

so that the constant curve µ̄t := �0 for t > 0 has the barycentric property for the
MPVF -@� but it is not a EVI solution for -@�, being different from µt = St[�0].

9.5.5 Comparison with [94]

In this section, we provide a brief comparison between the assumptions we re-
quired in order to develop a strong concept of solution to (8.1.1) and the hypothe-
ses assumed in [94]. We remind that the relation between our solution and the
weaker notion studied in [94] was exploited in Section 8.3. Here, we conclude
with a further remark coming from the connections between our approximating
scheme proposed in (EE) and the schemes proposed in [31] and [94].

We consider a finite time horizon [0, T ] with T > 0, the space H = R
d and we

deal with measures in Pb(R
d
) and in Pb(TR

d
), i.e. compactly supported. We

also deal with single-valued probability vector fields (PVF) for simplicity, which
can be considered as everywhere defined maps F : Pb(R

d
) ! Pb(TR

d
) such

that x]F[⌫] = ⌫. This is indeed the framework examined in [94].
We start by recalling the assumptions required in [94] for a PVF F : Pb(R

d
) !

Pb(TR
d
).

(H1) there exists a constant M > 0 such that for all ⌫ 2 Pb(R
d
),

sup
(x,v)2supp(F[⌫])

|v| 6 M

 

1+ sup
x2supp(⌫)

|x|

!

;

(H2) F satisfies the following Lipschitz condition: there exists a constant L >
0 such that for every � = F[⌫], � 0

= F[⌫ 0
] there exists ⇥ 2 ⇤(�,� 0

)

satisfying
Z

TRd⇥TRd

|v0 - v1|
2 d⇥(x0, v0, x1, v1) 6 L2W2

2
(⌫,⌫ 0

),

with ⇤(·, ·) as in Definition 7.1.7.

Remark 9.5.8. Condition (H1) is (H:bound) in [94], while (H1) corresponds to
(H:lip) in [94] in case p = 2 (see also Remark 5 in [94]).
We stress that actually in [94] condition (H2) is local, meaning that L is allowed
to depend on the radius R of a ball centered at 0 and containing the supports of
⌫ and ⌫ 0. Thanks to assumption (H1), it is easy to show that for every final time
T all the discrete solutions of the Explicit Euler scheme and of the scheme of [94]
starting from an initial measure with support in B(0,R) are supported in a ball
B(0,R 0

) where R 0 solely depends on R and T . We can thus restrict the PVF F to
the (geodesically convex) set of measures with support in B(0,R 0

) and act as L

does not depend on the support of the measures.
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Proposition 9.5.9. If F : Pb(R
d
) ! Pb(TR

d
) is a PVF satisfying (H2), then F is

�-dissipative according to (7.5.1) for � =
L
2+1

2
, the Explicit Euler scheme is globally

solvable in D(F), and F generates a �-flow, whose trajectories are the limit of the Explicit
Euler scheme in each finite interval [0, T ].

Proof. The �-dissipativity comes from Lemma 7.5.7. We prove that (9.2.14) holds.
Let ⌫ 2 D(F) and take ⇥ 2 ⇤(F[⌫], F[�0]) such that

Z

TRd⇥TRd

|v 0 - v 00|2 d⇥ 6 L2W2

2
(⌫, �0) = L2m2

2
(⌫).

Since F[�0] 2 Pc(TR
d
) by assumption, there exists D > 0 such that supp(v]F[�0]) ⇢

BD(0). Hence, we have

L2m2

2
(⌫) >

Z

TRd⇥TRd

|v 0 - v 00|2 d⇥

>
Z

TRd⇥TRd

[|v 0|-D]
2

+ d⇥

>
Z

TRd

|v 0|2 dF[⌫]- 2D

Z

TRd

|v 0|dF[⌫],

where [ . ]+ denotes the positive part. By the trivial estimate |v 0| 6 D+
|v 0|2

4D
, we

conclude

|F[⌫]|2
2
6 2

�
2D2

+ L2m2

2
(⌫)
�

.

Hence (9.2.14) and thus the global solvability of the Explicit Euler scheme in
D(F) by Proposition 9.2.11. To conclude it is enough to apply Theorem 9.2.13(a)
and Theorem 9.1.8.

It is immediate to notice that the semi-discrete Lagrangian scheme proposed
in [31] coincides with the Explicit Euler Scheme given in Definition 9.1.1. In
particular, we can state the following comparison between the limit obtained by
the Explicit Euler scheme (EE) (leading to the �-EVI solution of (8.1.1)) and that
of the approximating LASs scheme proposed in [94] (leading to a barycentric
solution to (8.1.1) in the sense of Definition 8.3.1).

Corollary 9.5.10. Let F be a PVF satisfying (H1)-(H2), µ0 2 Pb(R
d
) and let T 2

(0,+1). Let (nk)k2N be a sequence such that the LASs scheme (µnk)k2N of [94,
Definition 3.1] converges uniformly-in-time and let (M⌧k

)k2N be the affine interpolants
of the Explicit Euler Scheme defined in (9.1.2), with ⌧k =

T

nk
. Then (µnk)k2N and

(M⌧k
)k2N converge to the same limit curve µ : [0, T ] ! Pb(R

d
), which is the unique

�-EVI solution of (8.1.1) in [0, T ].

Proof. By Proposition 9.5.9, F is a
⇣
L
2+1

2

⌘
-dissipative MPVF according to (7.5.1)

s.t. M(µ0, ⌧, T , L̃) 6= ; for every ⌧ > 0, where L̃ > 0 is a suitable constant de-
pending on µ0 and F. Thus by Theorem 9.1.8, (M⌧k

)k2N uniformly converges
to a �-EVI solution µ : [0, T ] ! P2(R

d
) which is unique since F generates a⇣

L
2+1

2

⌘
-flow. Since we start from a compactly supported µ0, the semi-discrete La-

grangian scheme of [31] and our Euler Scheme actually coincide. To conclude we
apply [31, Theorem 4.1] obtaining that µ is also the limit of the LASs scheme.
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We conclude that among the possibly not-unique (see [31]) barycentric solu-
tions to (8.1.1) - i.e. the solutions in the sense of [94]/Definition 8.3.1 - we are
selecting only one (the �-EVI solution), which turns out to be the one associated
with the LASs approximating scheme.

In light of this observation, we revisit an interesting example studied in [94,
Section 7.1] and [31, Section 6].

Example 9.5.11 (Splitting particle). For every ⌫ 2 Pb(R) define:

B(⌫) := sup
�
x : ⌫(]-1, x]) 6 1

2

�
, ⌘(⌫) := ⌫(]-1,B(⌫)])-

1

2
,

so that ⌫({B(⌫)}) = ⌘(⌫) + 1

2
- ⌫(]-1,B(⌫)[). We define the PVF

F[⌫] :=
Z

Fx[⌫]d⌫(x),

by

Fx[⌫] :=

8
>><

>>:

�-1 if x < B(⌫)

�1 if x > B(⌫)
(⌘�1+(

1

2
-⌫(]-1,B(⌫)[))�-1)

⌫({B(⌫)}) if x = B(⌫),⌫({B(⌫)}) > 0.

By [94, Proposition 7.2], F satisfies assumptions (H1)-(H2) with L = 0 and the
LASs scheme admits a unique limit. Moreover, the solution µ : [0, T ] ! Pb(R)

obtained as limit of LASs, is given by

µt(A) =µ0((A\]-1,B(µ0)- t[) + t) + µ0((A\]B(µ0) + t,+1[)- t)

+
1

µ0({B(µ0)})

✓
⌘�B(µ0)+t(A) + (

1

2
- µ0(]-1,B(µ0)[))�B(µ0)-t(A)

◆
.

(9.5.6)

By Corollary 9.5.10, (9.5.6) is the (unique) �-EVI solution of (8.1.1). In particular:

i) if µ0 =
1

b-a
Lx[a,b], i.e. the normalized Lebesgue measure restricted to

[a,b], we get µt =
1

b-a
Lx[a-t,a+b

2
-t]+

1

b-a
Lx[a+b

2
+t,b+t];

ii) if µ0 = �x0
, we get µt =

1

2
�x0+t +

1

2
�x0-t.

Notice that, in case (i), since µt ⌧ L for all t 2 (0, T), i.e. µt 2 Pr

2
(R), we can

also apply Theorem 8.3.7 to conclude that µ is the �-EVI solution of (8.1.1) with
µ0 =

1

b-a
Lx[a,b]. Moreover, take " > 0, and consider case (i) where we denote by

µ"
0

the initial datum and by µ" the corresponding �-EVI solution to (8.1.1) with
a = x0 - ", b = x0 + ". We can apply (9.2.17) with µ0 = µ"

0
and µ1 = �x0

in order
to give another proof that, for all t 2 [0, T ], the W2-limit of St[µ"0] as " # 0, that
is St[�x0

] =
1

2
�x0+t +

1

2
�x0-t, is a �-EVI solution starting from �x0

. Thus we end
up with (ii).

Dealing with case (ii), we recall that, if µ0 = �x0
then also the stationary curve

µ̄t = �x0
, for all t 2 [0, T ], satisfies the barycentric property of Definition 8.3.1

(see [31, Example 6.1]), thus it is a solution in the sense of [94]. However, µ̄ is not
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a �-EVI solution since it does not coincide with the curve given by (ii). This fact
can also be checked by a direct calculation as follows: we find ⌫ 2 Pb(R) such
that

d
dt

1

2
W2

2
(µ̄t,⌫) > �W2

2
(µ̄t,⌫)- [F[⌫], µ̄t]r t 2 (0, T), (9.5.7)

where � =
1

2
is the dissipativity constant of the PVF F coming from the proof of

Proposition 9.5.9. Notice that the l.h.s. of (9.5.7) is always zero since t 7! µ̄t = �0
is constant. Take ⌫ = Lx[0,1] so that we get F[⌫] =

R
Fx[⌫]d⌫(x), with Fx[⌫] = �1

if x > 1

2
, Fx[⌫] = �-1 if x < 1

2
. Noting that ⇤(F[⌫], �0) = {F[⌫]⌦ �0}, by using the

characterization in Theorem 7.1.8 we compute

[F[⌫], �0]r =

Z

TH

hx, vidF[⌫]

=

Z
1/2

0

hx, vidFx[⌫](v)dx+
Z
1

1/2

hx, vidFx[⌫](v)dx

=
1

4
.

Since W2

2
(�0,⌫) = m2

2
(⌫) = 1

3
, we have

�W2

2
(µ̄t,⌫)- [F[⌫], µ̄t]r =

1

6
-

1

4
< 0,

and thus we obtain the desired inequality (9.5.7) with ⌫ = Lx[0,1].



Part III

K A N T O R O V I C H - WA S S E R S T E I N - S O B O L E V S PA C E S

We prove a general criterium for the density in energy of subalgebras
of Lipschitz functions in the metric-Sobolev space H1,p

(X, d,m) asso-
ciated with a positive Borel measure m in a separable and complete
metric space (X, d).

We then provide a relevant application to the case of the algebra of
cylindrical functions in the space H1,2

(P2(M),W2,dM
,m) arising from

a positive measure m on the Kantorivich-Rubinstein-Wasserstein space
(P2(M),W2,dM

) of probability measures in a complete Riemannian
manifold or a separable Hilbert space M. We will show that such a
Sobolev space is always Hilbertian, independently of the choice of
the reference measure m so that the resulting Cheeger energy is a
Dirichlet form.

We will eventually provide an explicit characterization for the corre-
sponding notion of m-Wasserstein gradient, showing useful calculus
rules and its consistency with the tangent bundle and the � -calculus
inherited from the Dirichlet form.





10
D E N S I T Y O F S U B A L G E B R A S O F L I P S C H I T Z F U N C T I O N S I N
M E T R I C S O B O L E V S PA C E S

In this Chapter, we treat the case of general metric Sobolev spaces and we show
that sufficiently rich subalgebras of Lipschitz functions characterize the space. In
Section 10.1 we recap the construction of metric Sobolev spaces with the relax-
ation approach of Cheeger; in Section 10.2 we present our main density result,
while in Section 10.3 we briefly treat the case of intrinsic distances.

This Chapter is the result of a collaboration with Massimo Fornasier and Giuseppe
Savaré.

10.1 sobolev functions and minimal relaxed gradients

In this section we will briefly recap the construction of metric Sobolev spaces
adapting the relaxation viewpoint of the Cheeger energy to the presence of a
distinguished algebra of Lipschitz functions [6, 7, 108]. Let (X, d) be a complete
and separable metric space. We will denote by Lip

b
(X, d) the space of bounded

and Lipschitz real functions f : X ! R. The asymptotic Lipschitz constant of
f 2 Lip

b
(X, d) is defined as

lipdf(x) := lim
r#0

Lip(f, B(x, r), d) = lim sup
y,z!x, y6=z

|f(y)- f(z)|

d(y, z)
, (10.1.1)

where B(x, r) denotes the open ball centered at x with radious r and, for A ⇢ X,
the quantity Lip(f,A, d) is defined as

Lip(f,A, d) := sup
x,y2A,x6=y

|f(x)- f(y)|

d(x,y)
. (10.1.2)

We will simply write Lip
b
(X), lipf, Lip(f,A), omitting to explicitly mention d,

when the choice of the metric d is clear from the context.
We will also deal with a unital algebra A ⇢ Lip

b
(X) separating the points of

X, i.e.

1 2 A , for every x0, x1 2 X there exists f 2 A : f(x0) 6= f(x1). (10.1.3)

The initial Haudorff topology ⌧A induced on X by A is clearly coarser than the
metric topology of X. Let m be a finite and positive Borel measure on X (being
X a Polish space, m is also a Radon measure). We will denote by L0

(X,m) the
set of m-measurable real functions defined in X; L0(X,m) is the usual quotient
of L0

(X,m) obtained by identifying two functions which coincide m-a.e. in X.
In a similar way, Lp

(X,m) and Lp(X,m) are the usual Lebesgue spaces of p-
summable m-measurable (equivalence classes of) real functions, p 2 [1,+1]. It
is worth noticing that by [108, Lemma 2.1.27] we have that

A is dense in Lp(X,m) for every p 2 [1,1). (10.1.4)

219
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We will endow L0(X,m) with the topology of the convergence in measure, which
is induced by the metric

dL0(f1, f2) :=
Z

X

#(|f1 - f2|)dm (10.1.5)

where # : [0,+1) ! [0,+1) is any increasing, concave, bounded function with
#(0) = limr#0 #(r) = 0.

In the following we fix an exponent p 2 (1,+1).

Definition 10.1.1 ((p, A )-relaxed gradients). We say that G 2 Lp(X,m) is a (p, A )-
relaxed gradient of a m-measurable function f 2 L0(X,m) if there exists a se-
quence (fn)n2N 2 A such that:

1. fn ! f in m-measure and lipfn ! G̃ weakly in Lp(X,m);

2. G̃ 6 G m-a.e. in X.

The minimal (p, A )-relaxed gradient of f (denoted by |Df|?,A ) is the element of
minimal Lp-norm among all the (p, A )-relaxed gradients of f. We will just write
|Df|? if A = Lip

b
(X).

We collect in the following Theorem the main properties of |Df|?,A we will
extensively use.

Theorem 10.1.2.

(1) The set

S :=

⌦
(f,G) 2 L0(X,m)⇥ Lp(X,m) : G is a (p, A )-relaxed gradient of f

↵

is convex and it is closed with respect to to the product topology of the convergence
in m-measure and the weak convergence in Lp(X,m). In particular, the restriction
Sq := S\Lq(X,m)⇥Lp(X,m) is weakly closed in Lq(X,m)⇥Lp(X,m) for every
q 2 (1,+1).

(2) (Strong approximation) If f 2 L0(X,m) has a (p, A ) relaxed gradient then |Df|?,A
is well defined. If f takes values in a closed (possibly unbounded) interval I ⇢ R

then there exists a sequence fn 2 A with values in I such that

fn ! f m-a.e. in X, lipfn ! |Df|?,A strongly in Lp(X,m). (10.1.6)

If moreover f 2 Lq(X,m) for some q 2 [1,+1) then we can also find a sequence
as in (10.1.6) converging strongly to f in Lq(X,m).

(3) (Pointwise minimality) If G is a (p, A )-relaxed gradient of f 2 L0(X,m) then
|Df|?,A 6 G m-a.e. in X.

(4) (Leibniz rule) If f,g 2 L1(X,m) have (p, A )-relaxed gradient, then h := fg has
(p, A )-relaxed gradient and

|D(fg)|?,A 6 |f| |Dg|?,A + |g| |Df|?,A m-a.e. in X. (10.1.7)
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(5) (Sublinearity) If f,g 2 L0(X,m) have (p, A )-relaxed gradient then

|D(↵f+�g)|?,A 6 |↵| |Df|?,A + |�| |Dg|?,A m-a.e. in X. (10.1.8)

(6) (Locality) If f 2 L0(X,m) has a (p, A ) relaxed gradient, then for any L 1-
negligible Borel subset N ⇢ R we have

|Df|?,A = 0 m-a.e. on f-1
(N). (10.1.9)

(7) (Chain rule) If f 2 L0(X,m) has a (p, A ) relaxed gradient and � 2 Lip(R) then
� � f has (p, A )-relaxed gradient and

|D(� � f)|?,A 6 |� 0
(f)| |Df|?,A m-a.e. in X, (10.1.10)

and equality holds in (10.1.10) if � is monotone or C1.

(8) (Truncations) If fj 2 L0(X,m) has (p, A ) relaxed gradient, j = 1, · · · , J, then
also the functions f+ := max(f1, · · · , fJ) and f- := min(f1, · · · , fJ) have (p, A )

relaxed gradient and

|Df+|?,A = |Dfj|?,A m-a.e. on {x 2 X : f+ = fj}, (10.1.11)
|Df-|?,A = |Dfj|?,A m-a.e. on {x 2 X : f- = fj}. (10.1.12)

Proof. We give a few references for the proofs. The case when p = 2, A =

Lip
b
(X) and the local slope of f is used to define relaxed gradients have been

considered in [7, Sec. 4], whose proof generalizes easily to the case p 2 (1,1)

and the asymptotic Lipschitz constant (10.1.1), see also [6].
The definition and the properties involving a general unital subalgebra A

have been discussed in [108, Sec. 3]: points (1,2) correspond to Lemma 3.1.6 and
Corollary 3.1.9, (3) has been stated in Lemma 3.1.11, (4) refers to Corollary 3.1.10,
(5,6,7,8) are proved in Theorem 3.1.12 and its Corollary 3.1.13.

Let us make three further technical comments:

• both [7, 108] involve an auxiliary topology ⌧: in the present case, being X

complete and separable and d a canonical metric (thus d only take finite
values), we can select ⌧ as the (Polish) topology induced by d.

• In order to deal with extended distances, in [108] has also been assumed
that the unital algebra A satisfies the stronger compatibility condition

d(x,y) = sup
⌦
f(x)- f(y) : f 2 A , Lip(f,X) 6 1

↵
, (10.1.13)

which clearly implies that A separates the points of X as in (10.1.3). How-
ever, such a property is not needed in the construction and the proofs of
Section 3.1.1 of [108]. The only point where (10.1.13) explicitely occurs is in
the proof of Locality [108, Lemma 3.1.11], to ensure that the restriction of
A to each compact set K ⇢ X is uniformly dense in C(K), a property which
is guaranteed by (10.1.3) thanks to Stone-Weierstrass Theorem.
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• The standard approach of [7, 108] considers first functions f belonging to
Lp(X,m) instead of general m-measurable functions. However, the compat-
ibility with truncations showing that for every k > 0

|D Tk(f)|?,A (x) =

8
<

:
|Df|?,A (x) if |f(x)| < k,

0 if |f(x)| > k,
Tk(f) := -k_ f^ k,

(10.1.14)

and the possibility to find strong approximations of Tk(f) satisfying (10.1.6)
and taking values in [-k,k] (see [108, Cor. 3.1.9]) allow for a standard exten-
sion of the theory from Lp(X,m) to L0(X,m), see also the discussion related
to (4.16) of [7].

Starting from Definition 10.1.1 and using the properties of Theorem 10.1.2 it is
natural to introduce the following notions.

Definition 10.1.3 (Cheeger energy and Sobolev space). We call D1,p
(X, d,m; A )

the set of functions in L0(X,m) with a (p, A )-relaxed gradient and we set

CEp,A (f) :=

Z

X

|Df|p?,A (x)dm(x) for every f 2 D1,p
(X, d,m; A ), (10.1.15)

with CEp,A (f) := +1 if f 62 D1,p
(X, d,m; A ). The Sobolev space H1,p

(X, d,m; A )

is defined as Lp(X,m) \D1,p
(X, d,m; A ) and it is a Banach space with the norm

kfkp
H1,p(X,d,m;A )

:= kfkp
Lp +CEp,A (f). As usual, we will write D1,p

(X, d,m), CEp(f),
H1,p

(X, d,m) and kfkH1,p when A = Lip
b
(X).

Remark 10.1.4 (Cheeger energy as relaxation of the pre-Cheeger energy). We can
equivalently define the Cheeger energy CEp,A as the L0-lower semicontinuous
relaxation of the restriction to A of the pre-Cheeger energy pCEp, the latter being
defined as

pCEp(f) :=

Z

X

(lipf)p dm, f 2 Lip
b
(X). (10.1.16)

In other words, for every f 2 L0(X,m) it holds ([108, Corollary 3.1.7])

CEp,A (f) = inf
�

lim inf
n!+1

pCEp(fn) : fn 2 A , fn ! f in L0(X,m)

�
. (10.1.17)

In particular the functional CEp,A is lower semicontinuous in L0(X,m). Here the
choice of the L0-topology does not play a crucial role, since, by Theorem 10.1.2(2),
the restriction of CEp,A to Lq(X,m), q 2 [1,1), can be equivalently obtained as
Lq-relaxation:

CEp,A (f) = inf
�

lim inf
n!+1

pCEp(fn) : fn 2 A , fn ! f in Lq(X,m)

�
, f 2 Lq(X,m).

(10.1.18)
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It is clear that we have the obvious implication for f 2 L0(X,m):

f has a (p, A )-relaxed gradient )
�
f has a (p, Lip

b
(X))-relaxed gradient and

|Df|? 6 |Df|?,A m-a.e. in X.
(10.1.19)

The converse implication together with the identity |Df|? = |Df|?,A is an impor-
tant density property for an algebra A : by Theorem 10.1.2(2), it is equivalent to
the following property.

Definition 10.1.5 (Density in energy of a subalgebra of Lipschitz functions). We
say that a subalgebra A ⇢ Lip

b
(X) is dense in p-energy if for every f 2 L0(X,m)

with a p-relaxed gradient there exists a sequence (fn)n2N satisfying

fn 2 A , fn ! f m-a.e. in X, lipfn ! |Df|? strongly in Lp(X,m). (10.1.20)

When A is unital and separating, this is equivalent to the fact that f has a (p, A )-
relaxed gradient and

|Df|?,A = |Df|? m-a.e. in X. (10.1.21)

In particular D1,p
(X, d,m; A ) = D1,p

(X, d,m).

Remark 10.1.6. As we already mentioned in Remark 10.1.4, the choice of ar-
bitrary measurable maps f 2 L0(X,m) in Definition 10.1.5 and of the point-
wise m-a.e. convergence in (10.1.20) is not restrictive: a simple truncation argu-
ment (which can be implemented by using odd polynomials, see [108, Corollary
2.1.24]) shows that A is dense in p-energy if and only if for every f 2 Lp(X,m)

with a p-relaxed gradient there exists a sequence (fn)n2N satisfying

fn 2 A , fn ! f in Lp(X,m), lipfn ! |Df|? strongly in Lp(X,m). (10.1.22)

If A is unital and separating this is equivalent to H1,p
(X, d,m; A ) = H1,p

(X, d,m)

with equal norms.
A first sufficient condition, in the more general framework of extended topo-

logical metric measure spaces, is provided by the compatibility condition (10.1.13)
[108, Theorems 3.2.7, 5.3.1].

In the present Polish setting, we notice that (10.1.20) (and, a fortiori, (10.1.13))
implies the weaker condition

for every y 2 X the function dy : x 7! d(x,y) has (p, A )-relaxed gradient 1
(10.1.23)

which is equivalent, thanks to Theorem 10.1.2(2), to

|Ddy|?,A 6 1 m-a.e. in X. (10.1.24)

In fact, using the truncations (10.1.14), each function dy can be approximated by
the increasing sequence fk := Tkdy of 1-Lipschitz maps, so that

|Ddy|? 6 1 m-a.e. in X for every y 2 X, (10.1.25)

and therefore (10.1.20) yields (10.1.24).
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Remark 10.1.7 (The effect of truncations). The (p, A )-relaxed gradient is not af-
fected by truncations of the distance functions, in particular it is not restrictive to
assume d bounded above by a constant, e.g. 1. In fact, if we introduce a parameter
a > 0 and the truncated distance

da(x1, x2) := d(x1, x2)^ a for every x1, x2 2 X, (10.1.26)

(X, da) is still a complete and separable metric space, the sets Lip
b
(X, d) and

Lip
b
(X, da) coincide, and it is easy to check that

lipdf = lipda
f for every bounded and Lipschitz function f. (10.1.27)

We deduce that d and da induce the same (p, A )-relaxed gradient. Notice more-
over that using (10.1.26) we can also easily cover the case of extended distances
(i.e. possibly assuming the value +1), provided (X, da) is a separable metric space.
The case when (X, da) is not separable requires a more refined setting involving
an auxiliary topology ⌧ [108].

Remark 10.1.8. Using the above truncation argument, one can easily see that if
d, d 0 are two metrics satisfying

d(x1, x2) = d 0
(x1, x2) whenever d(x1, x2)^ d 0

(x1, x2) < a (10.1.28)

then the sets Lip
b
(X, d) and Lip

b
(X, d 0

) coincide,

lipdf = lipd 0f for every bounded and Lipschitz function f. (10.1.29)

and d and d 0 induce the same (p, A )-relaxed gradient.

It is possible to express (10.1.24) in a more flexible way, by using suitable
nonlinear functions of dy. We state a general result.

Lemma 10.1.9. Let I = (a,b) be an interval (possibly unbounded) of R and let ⇣ : R !
R be a Lipschitz and nondecreasing map satisfying

the restriction of ⇣ to I is of class C1 with ⇣ 0(s) > 0 if s 2 I. (10.1.30)

If f : X ! I is a Borel function, then the condition

f 2 D1,2
(X, A ), |Df|?,A 6 1 (10.1.31)

is equivalent to

⇣ � f 2 D1,2
(X, A ),

��D(⇣ � f)
��
?,A (x) 6 ⇣ 0(f(x)) for m-a.e. x 2 X. (10.1.32)

Proof. It is clear that if |Df|?,A 6 1 then (10.1.32) holds, thanks to (10.1.10). In or-
der to prove the converse implication, we consider a strictly decreasing sequence
an # a, a strictly increasing sequence bn " b and nondecreasing and bounded
Lipschitz functions  n : R ! R such that

 n(z) = an if z < ⇣(an),  n(⇣(s)) = s for every s 2 [an,bn],
 n(z) = bn if z > ⇣(bn).
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The restriction of  n to the interval [⇣(an), ⇣(bn)] is of class C1.
Setting h(x) := ⇣(f(x)), the Chain rule (10.1.10) yields

|D( n � h)|?,A (x) 6 ( 0
n � h) |Dh|?,A (x) 6 ( 0

n � ⇣(f(x)))⇣ 0(f(x)).

Since  n(h(x)) = an _ f(x) ^ bn the locality property (10.1.9), the truncation
property 10.1.2(8), and the fact that  0

(⇣(s))⇣ 0(s) = 1 if s 2 [an,bn] yield

|D( n � h)|?,A 6 1 m-a.e. (10.1.33)

Since  n � h ! f pointwise in X as n ! 1, passing to the limit in (10.1.33) we
get |Df|?,A 6 1.

Remark 10.1.10. Thanks to Lemma 10.1.9, if d is a bounded metric and q > 1,
(10.1.24) is equivalent to

|Ddqy|?,A (x) 6 q dq-1

y (x) for m-a.e. x 2 X. (10.1.34)

In particular, if (10.1.34) holds for some q > 1, it holds for any q > 1.

10.2 a density result

We have seen that in the present setting of Polish spaces, condition (10.1.24) (or,
equivalently, (10.1.32) for some admissible truncation satisfying (10.1.30)) is a
necessary condition for the validity of the approximation property (10.1.20) and
of the identification |Df|? = |Df|?,A . We want to show that (10.1.24) or (10.1.32)
are also sufficient conditions.

Theorem 10.2.1. Let (X, d,m) be a Polish metric measure space, let Y ⇢ X be a dense
subset, and let A be a unital separating subalgebra of Lip

b
(X) as in (10.1.3). If

for every y 2 Y it holds dy 2 D1,2
(X, A ),

��Ddy
��
?,A 6 1 (10.2.1)

then A is dense in p-energy according to Definition 10.1.5.

Proof. We split the proof in various steps. Notice that by (10.1.19) it is sufficient
to prove that

|Df|?,A 6 |Df|? m-a.e. in X. (10.2.2)

(1) It is not restrictive to assume d bounded above by 1: see Remark 10.1.7.
By Remark 10.1.10 we know that (10.1.34) holds for every y 2 Y and every

q > 1.
(2) It is sufficient to prove that

CEp,A (f) 6
Z

X

(lipf)p dm = pCEp(f) for every f 2 Lip
b
(X). (10.2.3)

In fact, if f has (p, Lip
b
(X))-relaxed gradient, by (10.1.6) we can find a sequence

fn 2 Lip
b
(X) such that fn ! f m-a.e. and lipfn ! |Df|? strongly in Lp(X,m) as
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n ! 1. By the L0-lower semicontinuity of the CEp,A -energy, passing to the limit
in (10.2.3) written for fn we get

CEp,A (f) =

Z

X

|Df|p?,A dm 6
Z

X

|Df|p? dm = CEp(f) < 1.

We deduce that f has a (p, A ) relaxed gradient and that (10.1.21) holds, since
|Df|? 6 |Df|?,A m-a.e.
(3) For every f 2 Lip

b
(X) and t > 0 we introduce the Hopf-Lax regularization

Qtf : X ! R defined by

Qtf(x) := inf
y2X

1

2t
d2(x,y) + f(y), x 2 X. (10.2.4)

It is clear that Qtf is bounded (it takes values in the interval [infX f, sup
X
f] and

Lipschitz, being the infimum of a family of t-1-Lipschitz functions. We consider
the upper semicontinuous function [7, (3.4) and Prop. 3.2]

D+
t
f(x) := sup

(yn)

lim sup
n!1

d(x,yn), (10.2.5)

where the (yn)n’s vary among all the minimizing sequences of (10.2.4). D+
t
f is

also uniformly bounded and satisfies (see e.g. [108, Lemma 3.2.1])

Dtf
+
(x)

t
6 2Lip(f,X). (10.2.6)

In fact, if yn is a minimizing sequence of (10.2.4), for every " > 0 we eventually
have

1

2t
d2(x,yn) + f(yn) 6 Qtf(x) + " 6 f(x) + "

i.e., setting L := Lip(f,X),

1

2t
d2(x,yn) 6 "+ f(x)- f(yn) 6 "+ Ld(x,yn) 6 "+

1

4t
d(x,yn)

2
+ tL2.

We thus get

lim sup
n!1

1

4t
d2(x,yn) 6 "+ tL2

which yields (10.2.6) since " > 0 is arbitrary.
(4) For every f 2 Lip

b
(X) and for every t > 0

|DQtf|?,A (x) 6 t-1D+
t
f(x) for m-a.e. x 2 X. (10.2.7)

Let Y 0
= {yn}n2N be a countable set dense in Y; since f 2 Lip

b
(X) it is easy to

check that

Qtf(x) = inf
y2Y

1

2t
d2(x,y) + f(y) = lim

n!1
Qn

t f(x),

Qn

t f(x) := min
16k6n

1

2t
d2(x,yk) + f(yk).

(10.2.8)
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We can now use (10.1.34) with q = 2 and, also using Theorem 10.1.2 (8), we
obtain that the upper semi-continuous (see[108, Lemma 3.2.2 (b)]) function

Dn

t (x) :=
1

t
max

⌦
d(x,yk) : 1 6 k 6 n, Qn

t (x) =
1

2t
d2(x,yk) + f(yk)

↵
, (10.2.9)

is a (p, A )-relaxed gradient of Qn
t
f. It is then clear that for every x there ex-

ists a sequence n 7! y 0
(n; x) with y 0

(n; x) 2 {y1, · · · ,yn} such that Dn
t
(x) =

1

t
d(x,y 0

(n; x)) and Qn
t
f(x) = 1

2t
d2(x,y 0

(n; x)) + f(y 0
(n; x)) ! Qtf(x) as n ! 1,

i.e. y 0
(n; x) is a minimizing sequence of (10.2.4). We deduce that

lim sup
n!1

Dn

t (x) = lim sup
n!1

d(x,y 0
(n; x)) 6 D+

t
f(x) for every x 2 X. (10.2.10)

Since Dn
t

are uniformly bounded, up to extracting a suitable subsequence we can
suppose that t-1Dn

t
* G in Lp(X,m), G is a (p, A )-relaxed gradient of Qtf, and

G 6 t-1D+
t

thanks to Fatou’s Lemma.
(5) For every x 2 X, t > 0, and f 2 Lip

b
(X) we have

f(x)-Qtf(x)

t
=

1

2

Z
1

0

⇣D+
rt
f(x)

rt

⌘2
dr, (10.2.11)

lim sup
t#0

f(x)-Qtf(x)

t
6 1

2

�
lipf(x)

�2. (10.2.12)

This follows by [108, Thm. 3.2.4] (see also [5, Thm. 3.1.4, Lemma 3.1.5]).
(5) Conclusion. We argue as [108, Theorem 3.2.7]: (10.2.11) and (10.2.6) yield the

uniform bound

f(x)-Qtf(x)

t
6 2
�
Lip(f,X)

�2 for every x 2 X, t > 0. (10.2.13)

Integrating (10.2.12) in X and applying Fatou’s Lemma we get

lim sup
t#0

Z

X

f(x)-Qtf(x)

t
dm(x) 6 1

2

Z

X

�
lipf(x)

�2 dm(x). (10.2.14)

On the other hand, (10.2.11) and Fubini’s Theorem yield
Z

X

f(x)-Qtf(x)

t
dm(x) =

1

2

Z
1

0

Z

X

⇣D+
rt
f(x)

rt

⌘2
dm(x)dr. (10.2.15)

A further application of Fatou’s Lemma yields

lim inf
t#0

Z

X

f(x)-Qtf(x)

t
dm(x) > 1

2
lim inf

t#0

Z

X

⇣D+
t
f(x)

t

⌘2
dm(x). (10.2.16)

Using the fact that t-1D+
t
f is uniformly bounded by (10.2.6), we can find a de-

creasing and vanishing sequence n 7! t(n) and a limit function G 2 L1(X,m)

such that

t(n)-1D+
t(n)f *

⇤ G weakly⇤ in L1(X,m) as n ! 1,

lim
n!1

Z

X

⇣D+
t(n)f(x)

t(n)

⌘2
dm(x) = lim inf

t#0

Z

X

⇣D+
t
f(x)

t

⌘2
dm(x). (10.2.17)
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Since t-1D+
t
f it is a (p, A )-relaxed gradient of Qtf by claim (4) and Qtf ! f

pointwise everywhere, using Theorem 10.1.2(1) we get that G is a (p, A )-relaxed
gradient of f.
Using the lower semicontinuity of the L2-norm w.r.t. the weak⇤ L1(X,m) conver-
gence, we get that

lim
n!1

Z

X

⇣D+
t(n)f(x)

t(n)

⌘2
dm(x) >

Z

X

G2 dm(x) >
Z

X

|Df|2?,A (x)dm(x), (10.2.18)

where we also used the pointwise minimality of |Df|2?,A (x) given by Theorem
10.1.2(3). Combining (10.2.18), (10.2.17), (10.2.16) and (10.2.14) we deduce that

Z

X

|Df|2?,A (x)dm(x) 6
Z

X

�
lipf(x)

�2 dm(x)

so that (10.2.3) holds.

Corollary 10.2.2 (Density in energy of A ). If A is a separating unital subalgebra of
Lip

b
(X) satisfying (10.2.1) then

CEp,A (f) = CEp(f) for every m-measurable function f : X ! R. (10.2.19)

In particular, H1,p
(X, d,m) = H1,p

(X, d,m; A ).

As we have already said, (10.2.19) can be interpreted as a density result in
H1,p

(X, d,m): for every f 2 H1,p
(X, d,m) there exists a sequence fn 2 A , n 2 N,

such that

fn ! f, lipfn ! |Df|⇤ strongly in Lp(X,m). (10.2.20)

The next result shows that we can always consider the algebra generated by
(suitable compositions/truncations of) the distance functions.

Corollary 10.2.3. Let Y be a dense subset of X and let ⇣ : [0,+1) ! [0,+1) be a
nondecreasing and bounded Lipschitz function for which there exists a constant a > 0

such that the restriction of ⇣ to the interval [0,a] is of class C1 with ⇣ 0(s) > 0 for every
s 2 [0,a].

Then the unital algebra A generated by the functions x 7! ⇣(d(x,y)) satisfies (10.1.21).

Proof. It is not difficult to check that A separates the points of X, so that in
order to apply Theorem 10.2.1, it is enough to check that (10.2.1) holds. Recalling
Remark 10.1.7, it will be sufficient to prove that

|D(dy ^ a)|?,A 6 1 m-a.e., for every y 2 Y. (10.2.21)

Let  : [0,+1) ! [0,+1) a nondecreasing and bounded Lipschitz function such
that  (⇣(r)) = r for every r 2 [0,a]. The restriction of  to the interval [0, ⇣(a)] is
of class C1.

If y 2 Y and f(x) := ⇣(dy(x)) (recall the notation (10.1.23)), a direct computa-
tion shows that

lipf(x) 6 ⇣ 0(dy(x)) for every x 2 B(y,a).
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Since f 2 A , the Chain rule (10.1.10) yields

|D( � f)|?,A 6 ( 0 � f) |Df|?,A 6 ( 0 � f) lipf.

Since  (f(x)) = dy(x) in B(y,a) and  (f(x)) >  (f(a)) = a if x 2 X \ B(y,a), the
locality property (10.1.9) and the truncation property 10.1.2(8) yield

��D(dy ^ a)
��
?,A =

��D
�
( � f)^ a

���
?,A 6

�
 0 � f

�
lipf�B(y,a). (10.2.22)

On the other hand, since  0
(⇣(r))⇣ 0(r) = 1 if r 2 [0,a),

 0
(f(x)) lipf(x) 6  0

(⇣(dy(x))⇣ 0(dy(x)) = 1 for every x 2 B(y,a)

so that we obtain (10.2.21).

We conclude this section with a simple application to the case when p = 2 and
lipf has good properties for functions of A .

Theorem 10.2.4 (An Hilbertianity condition). Let p = 2 and let A be a separating
unital subalgebra of Lip

b
(X) satisfying (10.2.1). If for every f,g 2 A

Z

X

⇣
|lip(f+ g)|2 + |lip(f- g)|2

⌘
dm = 2

Z

X

⇣
|lipf|2 + |lipg|2

⌘
dm, (10.2.23)

then H1,2
(X, d,m) is an Hilbert space, CE2 is a quadratic form, and A is strongly dense.

Proof. It is sufficient to prove that the Cheeger energy is a quadratic form in its
domain. Thanks to [40, Prop. 11.9] and the 2-homogeneity of CE2, this property
is equivalent to

CE2(f+ g) + CE2(f- g) 6 2CE2(f) + 2CE2(g) for every f,g 2 H1,p
(X, d,m).
(10.2.24)

We can find two sequences fn,gn 2 A such that fn ! f, gn ! g in m-measure
as n ! 1 and lipfn ! |Df|?, lipgn ! |Dg|? in L2(X,m). Clearly we have fn +

gn ! f+ g, fn - gn ! f- g in m-measure and (10.2.23) shows that lip(fn + gn)

and lip(fn - gn) are uniformly bounded in L2(X,m). Up to extracting a suitable
sequence, it is not restrictive to assume that lip(fn+gn) * G+ > |D(f+g)|? and
lip(fn - gn) * G- > |D(f- g)|? m-a.e. in X. (10.2.23) then yields

CE2(f+ g) + CE2(f- g) =

Z

X

|D(f+ g)|2? dm+

Z

X

|D(f- g)|2? dm

6 lim inf
n!1

Z

X

|lip(fn + gn)|
2

? dm

+

Z

X

|lip(fn - gn)|
2

? dm

= lim inf
n!1

2

Z

X

|lipfn|2? dm

+ 2

Z

X

|lipgn|2? dm

= 2CE2(f) + CE2(g).

Since H1,2
(X, d,m) is Banach space, we deduce that H1,2

(X, d,m) is an Hilbert
space, so it is reflexive. This also shows that A is strongly dense.
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Remark 10.2.5. In the framework of Theorem 10.2.4, there exists a scalar product
h·, ·iH1,2 on H1,2

(X, d,m) inducing the norm k · kH1,2 and satisfying

hf,giH1,2 =

Z

X

fgdm+ CE2(f,g) for every f,g 2 H1,p
(X, d,m), (10.2.25)

where CE2(·, ·) denotes the quadratic form associated to CE2(·).

10.3 intrinsic distances

By using the general properties of metric Sobolev spaces and the equivalence
with the Newtonian viewpoint based on the notion of upper gradient [19, 62], it
is possible to improve considerably the density result of Corollary 10.2.2. Let us
first recall the notion of metric velocity

|�̇|d(t) := lim sup
h!0

d(�(t+ h),�(t))
|h|

(10.3.1)

and length

`d(�, [↵,�]) := sup
⌦ NX

n=1

d(�(tn-1),�(tn)) : t0 = ↵ < t1 < · · · < tN-1 < tN = �
↵

=

Z
�

↵

|�̇|d(t)dt

(10.3.2)

of a d-Lipschitz curve � : [a,b] ! X; here [↵,�] ⇢ [a,b] and we just write `d(�)
for `d(�, [a,b]).

If Y ⇢ X is a given set, we can introduce the length (or intrinsic) extended distance
dY,` induced by d on Y, as the infimum of the length of Y-valued Lipschitz curves
connecting two given points y0,y1 2 Y:

dY,`(y0,y1) : = inf
⌦
`d(�) : � 2 Lip([0, 1]; (Y, d)), �(0) = y0, �(1) = y1

↵

(10.3.3)

= inf

�
` > 0 : � 2 Lip([0, `]; (Y, d)) s.t.
�(0) = y0, �(`) = y1, |�̇|d 6 1 a.e.

✏

. (10.3.4)

Clearly we have

d(y0,y1) 6 dX,`(y0,y1) 6 dY,`(y0,y1) for every y0,y1 2 Y. (10.3.5)

If g : X ! [0,+1] is a Borel function, the integral of g along � is defined by
Z

�

g :=

Z
b

a

g(�(t))|�̇|d(t)dt. (10.3.6)
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It is well known that length and integral are invariant with respect to arc-length
reparametrization of � and it is always possible to find a 1-Lipschitz curve R� :

[0, `d(�)] ! X such that

R�(`d(�, [a, t]) = �(t) for t 2 [a,b], |Ṙ�|(s) = 1 a.e. in [0, `d(�)],Z

R�

g =

Z

�

g
(10.3.7)

for every nonnegative Borel function g (see e.g. [108, Section 3.3]). A Borel func-
tion g : X ! [0,+1] is an upper gradient of f : X ! R if

|f(�(b))- f(�(a))| 6
Z

�

g for every � 2 Lip([a,b]; (X, d)) (10.3.8)

Functions in Lp
(X,m) wich admits an upper gradient in Lp

(X,m) characterize
the Newtonian-Sobolev space N1,p

(X, d,m) [19, 62]. We state here a useful conse-
quence of the main equivalence results [7, Theorem 6.2] [6, Theorem 7.4].

Theorem 10.3.1. Let Y be a Borel subset of X of full m measure (i.e. m(X \ Y) = 0)
satisfying

� 2 Lip([a,b]; (X, d)), R�(s) 2 Y for L 1-a.e. s 2 [0, `d(�)] ) �([a,b]) ⇢ Y,
(10.3.9)

let f : X ! R be a m measurable function and let g : Y ! [0,+1] be a Borel function
satisfying

|f(�(b))- f(�(a))| 6
Z

�

g for every � 2 Lip([a,b]; (Y, d)). (10.3.10)

If
Z

Y

|g|p dm < 1 then f has a p-relaxed gradient and

|Df|? 6 g m-a.e. in Y. (10.3.11)

Notice that condition (10.3.10) is weaker than (10.3.8), since the upper gradient
condition is imposed only along curves taking values in Y; however, starting from
any function g 2 Lp

(Y,m) satisfying (10.3.10) we can define a new Borel function
g̃ : X ! [0,+1] whose restriction to Y coincides with g such that g̃|X\Y

⌘ +1.
Clearly Z

X

g̃p dm =

Z

Y

gp dm < +1 since m(X \ Y) = 0.

Moreover g̃ is an upper gradient for f according to (10.3.8): in fact it is sufficient

to check (10.3.8) for those curves � with � = R� and
Z

�

g̃ < +1; since g̃(�(s)) =

+1 if �(s) 62 Y, we deduce that �(s) 2 Y for m-a.e. s 2 [0, `d(�)] so that � 2
Lip([0, `d(�)]; (Y, d)) by (10.3.9), and (10.3.8) then follows by (10.3.10).

It is also immediate to check that (10.3.9) holds if Y is closed.
We consider the situation where

(A) Y ⇢ X is a Borel set with full m-measure satisfying (10.3.9);
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(B) a metric � : Y ⇥ Y ! [0,+1) is given on Y such that (Y, �) is complete and
separable and (recall Remark 10.1.7)

d1(y1,y2) 6 �(y1,y2) 6 dY,`(y1,y2) for every y1,y2 2 Y. (10.3.12)

Remark 10.3.2 (Y-intrinsic distance). � is intrinsically equivalent to d on Y, i.e. ev-
ery d-Lipschitz curve � : [0, 1] ! Y is also �-Lipschitz, its �-length coincides
with the corresponding d-length, and integration along � does not depend on
the choice of the distance. In particular condition (10.3.10) can be equivalently
stated in terms of �.
To see that these conditions are implied by (10.3.12), let us fix a d-Lipschitz curve
� : [0, 1] ! Y with Lipschitz constant bounded by L > 0; then

dY,`(�(s),�(t)) 6 `d
�
�|[s,t]

�
=

Z
t

s

|�̇|d(r)dr 6 L|t- s| 0 6 s 6 t 6 1,

so that � is dY,`-Lipschitz continuous and thus, by (10.3.12), also �-Lipschitz
continuous. To see that the � and the d-lengths of � coincide, it is enough to show
that `�(�) 6 `d(�), since (10.3.12) and the trivial equality `d1(�) = `d(�) already
give the other inequality; by (10.3.12) we immediately have `�(�) 6 `dY,`(�) and
by the very definition of dY,` we see that `dY,`(�) 6 `d(�). Finally, to see that the
integral along � does not depend on the choice of the distance, it is enough to
see that |�̇|d = |�̇|� a.e. in [0, 1]. The 6 inequality is an immediate consequence of
(10.3.12) and (10.3.1), while the > follows by

�(�(s),�(t))
t- s

6
`�(�|[s,t])

t- s
=
`d(�|[s,t])

t- s
=

1

t- s

Z
t

s

|�̇|d(r)dr 0 6 s < t 6 1,

and passing to the limit as s ! t for every Lebesgue point t of |�̇|d.

Since m(X \ Y) = 0 we can identify Lp(Y,m) with Lp(X,m). In general, the topol-
ogy induced by � is finer than the d topology on Y, and they coincide if � is
continuous w.r.t. d. It is also clear from property (B) that the restriction to Y of
every bounded d-Lipschitz function f : X ! R is also �-Lipschitz. Thanks to
(10.3.12) (which in particular implies that �-balls of radious r < 1 centered at
some point y 2 Y are included in d-balls of the same radious and with the same
center) it is also clear that

lip�f(y) 6 lipdf(y) for every y 2 Y, f 2 Lip
b
(X, d). (10.3.13)

Since lip�f is bounded and �-u.s.c. in Y, it is m-measurable and we can define
the � pre-Cheeger energy

pCEp,�(f) :=

Z

Y

|lip�f(y)|p dm(y) (10.3.14)

and we can still consider its l.s.c. envelope in L0(Y,m)

CEp,�,A (f) := inf
⌦

lim inf
n!1

pCEp,�(fn) : fn 2 A , fn ! f in L0(X,m)

↵
. (10.3.15)

When A = Lip
b
(X, d) we simply write CEp,�(f).
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Theorem 10.3.3. If A is a separating unital subalgebra of Lip
b
(X, d) satisfying (10.2.1)

and (Y, �) satisfies the conditions (A), (B) above, we have

CEp,�(f) = CEp,�,A (f) = CEp,A (f) = CEp(f) for every f 2 L0(X,m). (10.3.16)

In particular, the minimal p-relaxed gradients of f 2 L0(X,m) computed w.r.t. (�, A ),
(�, Lip

b
(Y)), (d, A ) or (d, Lip

b
(X)) coincide and we have

D1,p
(Y, �,m) = D1,p

(Y, �,m; A ) = D1,p
(X, d,m) = D1,p

(X, d,m; A ).

Proof. Since pCEp,�(f) 6
R
X

�
lipdf(x)

�p dm for every f 2 Lip
b
(X, d), we clearly

have

CEp,�(f) 6 CEp,�,A (f) 6 CEp,A (f) = CEp(f) for every f 2 L0(X,m),

where the last equality follows from Corollary 10.2.2. It is then sufficient to prove
that CEp,�(f) > CEp(f) in order to get (10.3.16). Using (10.3.15) and the L0(X,m)-
lower semicontinuity of CEp (see Remark 10.1.4), the latter inequality will be a
consequence of

Z

Y

|lip�f(y)|p dm(y) > CEp(f) for every f 2 Lip
b
(X, d). (10.3.17)

In order to prove (10.3.17) it is sufficient to apply Theorem 10.3.1 and prove
that the Borel function g := lip�f satisfies (10.3.10). Now we use the fact that
the restriction to Y of a function f 2 Lip

b
(X) belongs to Lip

b
(Y, �) and every

d-Lipschitz curve � with values in Y is also �-Lipschitz, the respective length
coincide and therefore also the arc-length reparametrizations are the same. Since
lip� is an upper gradient we thus obtain

|f(�(b))- f(�(a))| 6
Z

�

lip�f.
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T H E WA S S E R S T E I N - S O B O L E V S PA C E

In this chapter, we apply the results of Chapter 10 to the Sobolev-Wasserstein
space H1,2

(P2(M),W2,dM
,m) arising from a measure m on the Wasserstein space

(P2(M),W2,dM
) of probability measures in a complete Riemannian manifold or a

separable Hilbert space M. In particular in Section 11.1 we give the main defini-
tions, we study the space of cylindrical functions and we prove the main density
result; in Section 11.2 we provide an explicit characterization for the notion of
m-Wasserstein gradient, showing useful calculus rules; finally in Section 11.3 we
treat the case where the underlying space is not R

d but it is a complete Rieman-
nian manifold or a separable Hilbert space.

This Chapter is the result of a collaboration with Massimo Fornasier and Giuseppe
Savaré.

11.1 construction and properties of the wasserstein-sobolev space

In this section we consider the metric space P2(R
d
), endowed with the L2-

Wasserstein distance d = W2 and a finite positive Borel measure m. We will
denote by W2 = W2(R

d,m) the metric-measure space (P2(R
d
),W2,m) and we

want to study the Wasserstein-Sobolev space H1,2
(W2).

Let us start with the following useful results about optimal potentials for the
optimal transport problem in R

d.

Theorem 11.1.1. Let µ,⌫ 2 Pr

2
(R

d
) with supp⌫ = B(0,R) for some R > 0. Then

there exists a unique pair of lower semicontinuous and convex functions

' : B(0,R) ! (-1,+1], '⇤
: R

d ! (-1,+1]

such that

(i) '⇤
(y) = sup

x2B(0,R)
{hx,yi-'(x)} for every y 2 R

d,

(ii) '⇤
(0) = 0,

(iii)
Z

B(0,R)
'd⌫+

Z

Rd

'⇤dµ =
1

2
m2

2
(⌫) +

1

2
m2

2
(µ)-

1

2
W2

2
(⌫,µ).

Moreover the pair (','⇤
) satisfies

1. ' and '⇤ are real valued,

2. inf
B(0,R)

' = 0,

3. W2

2
(µ,⌫) =

Z

B(0,R)
|x-r'(x)|2 d⌫(x) =

Z

Rd

|y-r'⇤
(y)|2 dµ(y),

235
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4. '⇤ is R-Lipschitz continuous.

Proof. Let c : R
d ⇥ R

d ! [0,+1) be defined as

c(x,y) :=
1

2
|x- y|2 x,y 2 R

d.

Since the cost function c is continuous, finite and it is in L1(Rd ⇥ R
d,�) for

every � 2 �(⌫,µ), it is a classical result (see e.g. [5, Theorem 6.4.1]) that, given
�0 2 �o(⌫,µ) we can find a c-concave (see [5, Definition 6.1.2]) function � : R

d !
[-1,+1) such that � 2 L1(Rd,⌫), �c 2 L1(Rd,µ) and

�(x) +�c
(y) = c(x,y) for every (x,y) 2 supp�0, (11.1.1)

where �c
: R

d ! [-1,+1) is the c-transform of � defined as

�c
(y) := inf

x2Rd

{c(x,y)-�(x)} , y 2 R
d.

We thus get that the function x 7! 1

2
|x|2 -�(x) is lower semicontinuous, convex

and it is not identically equal to +1 on the ball B(0,R) since
Z

B(0,R)
|�|d⌫ =

Z

B(0,R)
|�|d⌫ =

Z

Rd

|�|d⌫ = k�kL1(Rd,⌫) < +1,

due to the fact that ⌫(@B(0,R)) = 0, being ⌫ absolutely continuous w.r.t. the d-
dimensional Lebesgue measure on R

d.
Thus m := infB(0,R)� 2 R; let us define '̃ : R

d ! (-1,+1] as

'̃(x) :=
1

2
|x|2 -�(x)-m, x 2 R

d;

it is clear that '̃ is convex, lower semicontinuous and infB(0,R) '̃ = 0. Let us now
prove that '̃(x) 2 R for every x 2 B(0,R). First of all we observe that

D :=

⌦
x 2 B(0,R) | '̃(x) 2 R

↵

is a convex nonempty set with ⌫(D) = 1 and ⌫(@D) = 0, so that ⌫(int (D)) = 1

and in particular int (D) 6= ;. Since the first projection P of supp� on R
d is

dense in supp⌫ = B(0,R) and '̃ is finite on P, we get that D = B(0,R). Then
D � int (D) = int

�
D
�
= int

⇣
B(0,R)

⌘
= B(0,R) so that B(0,R) ⇢ D.

Let us define '̃⇤,'⇤
: R

d ! (-1,+1] as

'̃⇤
(y) := sup

x2Rd

{hx,yi- '̃(x)} , y 2 R
d,

'⇤
(y) := sup

x2B(0,R)
{hx,yi- '̃(x)} , y 2 R

d.

It is clear that '̃⇤ and '⇤ are convex and lower semicontinuous functions with
'⇤

(0) = - infB(0,R)' = 0. Moreover from (11.1.1) it follows that

'̃(x) + '̃⇤
(y) = hx,yi for every (x,y) 2 supp�0. (11.1.2)
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By their definition, it is clear that '̃⇤
(y) > '⇤

(y) for every y 2 R
d. Since

supp⌫ = B(0,R) and ⌫(@B(0,R)) = 0, we get by (11.1.2) that for µ-a.e. y 2 R
d,

there exists x 2 B(0,R) such that '̃(x) + '̃⇤
(y) = hx,yi. This gives that '⇤

= '̃⇤

µ-a.e. so that, still by (11.1.2) one gets
Z

Rd

'̃d⌫+
Z

Rd

'̃⇤dµ =

Z

B(0,R)
'd⌫+

Z

Rd

'⇤dµ =
1

2
m2

2
(⌫)+

1

2
m2

2
(µ)-

1

2
W2

2
(⌫,µ),

where we have defined ' as the restriction of '̃ to B(0,R). We have already
noticed that infB(0,R)' = 0 while the R-Lipschitz continuity of '⇤ immediately
follows by its definition. The equality

W2

2
(µ,⌫) =

Z

B(0,R)
|x-r'(x)|2 d⌫(x) =

Z

Rd

|y-r'⇤
(y)|2 dµ(y)

is classical and can be obtained starting from (iii) with a standard argument (see
e.g. the third step in the proof of Theorem 2.12 in [118]). This shows the existence
of a pair (','⇤

) as in the statement satisfying points (i)- (iii) and (1)- (4).
Let us show that points (i)- (iii) are also sufficient to get uniqueness. If ('0,'⇤

0
)

is another pair as in the statement satisfying points (i)- (iii), then, again arguing
e.g. as in the third step in the proof of Theorem 2.12 in [118], one gets by (iii)

that both r' and r'0 are optimal transport maps from ⌫ to µ, implying that
r'0 = r' Ld-a.e. in B(0,R) by the a.e. uniqueness of the optimal transport map
(see e.g. [118, Theorem 2.12]). Since infB(0,R)' = infB(0,R)'0 = 0 by (ii), we get
that ' = '0 in B(0,R) which gives by (i) that also �⇤

= �⇤
0

in R
d.

11.1.1 The algebra of cylindrical functions

We denote by C1

b
(R

d
) the space of bounded and Lipschitz C1 functions � : R

d !
R. Every � 2 C1

b
(R

d
) induces the function L� on P(Rd

)

L� : µ !
Z

Rd

�dµ (11.1.3)

which clearly belongs to Lip
b
(P2(R

d
),W2) thanks to (2.4.5). More generally, if

� = (�1, · · · ,�N) 2
�
C1

b
(R

d
)
�N, we denote by

L� := (L�1
, · · · , L�N

) (11.1.4)

the corresponding map from P2(R
d
) to R

N.
Our construction is based on the algebra of C1 cylindrical functions generated

by (11.1.3) and it is quite similar to the one of [44, Section 2]. Working in the
flat space R

d allows for a further simplification in the structure of the tangent
bundle and of corresponding vector fields.

Definition 11.1.2 (C1-Cylindrical functions). We say that a function F : P2(R
d
) !

R is a C1-cylindrical function if there exist N 2 N,  2 C1

b
(R

N
) and � =

(�1, . . . ,�N) 2 (C1

b
(R

d
))

N such that

F(µ) =  (L�(µ)) =  
�
L�1

(µ), · · · , L�N
(µ)
�

for every µ 2 P2(R
d
). (11.1.5)

We denote the set of such functions by Cyl
�
P2(R

d
)
�
.
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Remark 11.1.3. Notice that Cyl
�
P2(R

d
)
�
⇢ Lip

b
(P2(R

d
),W2) is a unital subalge-

bra.

Remark 11.1.4. Since for every � 2
�
C1

b
(R

d
)
�N the range of L� is always con-

tained in the bounded set [-M,M]
N where M := maxi=1,...,d k�ik1, also func-

tions F =  � L� with  2 C1
(R

N
) belong to Cyl

�
P2(R

d
)
�
. Indeed it is enough

to consider a function  ̃ 2 C1

b
(R

N
) coinciding with  on [-M,M]

N and equal
to 0 outside [-M- 1,M+ 1]N so that F =  ̃ � L�. In particular every function of
the form L�, � 2 C1

b
(R

d
), belongs to Cyl

�
P2(R

d
)
�
.

Let us consider the set

D :=

⌦
(µ, x) 2 P2(R

d
)⇥ R

d
: x 2 supp(µ)

↵
. (11.1.6)

The set D is a Borel set (in fact it is a G�): if (rn)n = Q \ (0,+1) we have that
D = \nDn, where

Dn :=
�
(µ, x) 2 P2(R

d
)⇥ R

d
: µ(B(x, rn)) > 0

 
,

and each Dn is open in P2(R
d
)⇥R

d, being the inverse image of (0,+1) through
the lower semicontinuous map (µ, x) 7! µ(B(x, rn)).

Definition 11.1.5. If F =  � L� 2 Cyl
�
P2(R

d
)
�

as in (11.1.5) for some N 2 N,
 2 C1

b
(R

N
) and � 2 (C1

b
(R

d
))

N, then the Wasserstein differential of F, DF :

D ! R
d, is defined by

DF(µ, x) :=
NX

n=1

@n 
�
L�(µ)

�
r�n(x), (µ, x) 2 D. (11.1.7)

We will also denote by DF[µ] the function x 7! DF(µ, x) and we will set

kDF [µ]k2
µ
:=

Z

Rd

|DF[µ](x)|2dµ(x), µ 2 P2(R
d
). (11.1.8)

Remark 11.1.6. It is not difficult to check that

DF is continuous in P(Rd
)⇥ R

d (11.1.9)

with respect to the natural product (narrow and euclidean) topology.
In principle DF (and thus kDF [µ]k

µ
) may depend on the choice of N 2 N,

 2 C1

b
(R

N
) and � 2 (C1

b
(R

d
))

N used to represent F. In Proposition 11.1.10 we
show that for every µ 2 P2(R

d
) the function DF[µ] is uniquely characterized in

supp(µ) and kDF [µ]k
µ

is well defined, so that DF is uniquely characterized by F

in D. By (11.1.9), DF is also uniquely characterized by F on D.

We have seen that the Wasserstein differential DF can be considered as a map
from D with values in R

d. It is natural to introduce the measure m =
R
�µ ⌦

µdm(µ) 2 P(P2(R
d
) ⇥ R

d
) obtained integrating the measures µ w.r.t. m: for

every bounded Borel function H : P2(R
d
)⇥ R

d ! R we have
Z
H(µ, x)dm(µ, x) =

Z

P2(Rd)

⇣ Z

Rd

H(µ, x)dµ(x)
⌘

dm(µ). (11.1.10)
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Since supp(m) ⇢ D, it is then clear that DF belongs to L2(P2(R
d
)⇥ R

d,m; R
d
)

and
Z

P2(Rd)
kDF [µ]k2

µ
dm(µ) =

Z

D
|DF(µ, x)|2 dm(µ, x). (11.1.11)

Lemma 11.1.7. Let Y be a Polish space and let G : P(Y)⇥ Y ! [0,+1) be a bounded
and continuous function. If (µn)n2N is a sequence in P(Y) narrowly converging to µ

as n ! +1, then

lim
n!1

Z

Y

G(µn,y)dµn(y) =

Z

Y

G(µ,y)dµ(y).

Proof. We set gn(x) := G(µn, x), g(x) := G(µ, x). Since G is continuous, gn con-
verge uniformly to g on compact subsets of Y as n ! 1. Thanks to [5, Lemma
5.2.1] (gn)]µn converge narrowly to g]µ in P(R). On the other hand, the support
of (gn)]µ is uniformly bounded so that

lim
n!1

Z

Y

G(µn,y)dµn(y) = lim
n!1

Z

R

rd((gn)]µn)(r)

=

Z

R

rd(g]µ)(r)

=

Z

Y

G(µ,y)dµ(y).

Lemma 11.1.8. Let F =  � L� 2 Cyl
�
P2(R

d
)
�

as in (11.1.5) and let (µt)t2[0,1] be
an absolutely continuous curve in P2(R

d
). Then

F(µ1)- F(µ0) =

Z
1

0

Z

Rd

hDF[µt](x), vt(x)idµt(x)dt, (11.1.12)

where vt 2 L2(Rd,µt; R
d
) is the Wasserstein velocity field (cf. Theorem 2.4.6) of

(µt)t2[0,1] at time t and DF is as in (11.1.7).

Proof. Observe that, since F is Lipschitz continuous and t 7! µt is absolutely
continuous, the map t 7! F(µt) is absolutely continuous and thus it holds

F(µ1)- F(µ0) =

Z
1

0

d
dt

F(µt)dt.

It is then enough to prove that

d
dt

F(µt) =

Z

Rd

hDF(µt, x), vt(x)idµt(x) for a.e. t 2 (0, 1). (11.1.13)

We have, for every t 2 A((µt)t2[0,1]) ⇢ (0, 1) (cf. Theorem 2.4.6), that

d
dt

F(µt) =

NX

i=1

@i (L�(µt))
d
dt

Z

Rd

�i dµt

=

NX

i=1

@i (L�(µt))

Z

Rd

hr�i, vt(x)idµt(x)

=

Z

Rd

hDF(µt, x), vt(x)idµt(x),

where we used Theorem 2.4.6.
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Remark 11.1.9. In case the curve (µt)t2[0,1] has the simple form

µt := (iRd + tu)]µ, t 2 [0, 1]

for some map u 2 L2(Rd,µ; R
d
), (11.1.13) holds for every t 2 [0, 1] and takes the

simpler form

d
dt

F(µt) =

Z

Rd

hDF(µt, x),u(x)idµt(x)

and, in particular, we get

lim
t#0

F(µt)- F(µ)

t
=

Z

Rd

hDF(µ, x),u(x))idµ(x). (11.1.14)

Proposition 11.1.10. Let F =  � L� 2 Cyl
�
P2(R

d
)
�

as in (11.1.5). Then

kDF [µ]k
µ
= lipF(µ) for every µ 2 P2(R

d
).

In particular kDF [µ]k
µ

does not depend on the choice of the representation of F and DF

just depends on F on D.

Proof. Let µ 2 P2(R
d
) and let (µ 0

n,µ 00
n) 2 P2(R

d
)
2 with µ 0

n 6= µ 00
n be such that

(µ 0
n,µ 00

n) ! (µ,µ) in W2 and

lim
n

|F(µ 0
n)- F(µ 00

n)|

W2(µ 0
n,µ 00

n)
= lipF(µ).

Let us define, for every t 2 [0, 1], the map xt : R
d ⇥ R

d ! R
d as

xt(x0, x1) := (1- t)x0 + tx1, (x0, x1) 2 R
d ⇥ R

d.

Using (11.1.12) along µt
n := xt]µn for plans µn 2 �o(µ 0

n,µ 00
n) (it is easy to check

that (µt)t2[0,1] is Lipschitz continuous), we get

��F(µ 0
n)- F(µ 00

n)

�� 6
�����

Z
1

0

Z

Rd

hDF(µt

n, x), vt(x)idµt

n(x)dt

�����

6
 Z

1

0

Z

Rd

��DF(µt

n, x),
��2 dµt

n(x)dt

! 1

2

 Z
1

0

Z

Rd

|vnt (x)|
2 dµt

n(x)dt

! 1

2

= W2(µ
0
n,µ 00

n)

 Z
1

0

Z

Rd

��DF(µt

n, x)
��2 dµt

n(x)dt

! 1

2

,

where we used Theorem 2.4.6. Dividing both sides by W2(µ
0
n,µ 00

n), we obtain

|F(µ 0
n)- F(µ 00

n)|

W2(µ 0
n,µ 00

n)
6
 Z

1

0

Z

Rd

��DF(µt

n, x)
��2 dµt

n(x)dt

! 1

2

.
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Observe that µn ! (iRd , iRd)]µ in P(Rd ⇥ R
d
) so that µt

n ! µ in P(Rd
) for

every t 2 [0, 1]. We can pass to the limit as n ! +1 the above inequality using
the dominated convergence Theorem and Lemma 11.1.7 with

G(µ, x) := |DF(µ, x)|2 , µ 2 P(Rd
), x 2 R

d.

We hence get

lipF(µ) 6
 Z

1

0

Z

Rd⇥Rd

|DF(µ, x)|2 dµ(x)dt

! 1

2

= kDF [µ]k
µ

.

This proves one inequality. Let us now consider the map T : R
d ! R

d defined
as

T(x) := DF[µ](x), x 2 R
d.

By definition of Tanµ(P2(R
d
)), we have that T 2 Tanµ(P2(R

d
)) so that, by Prop-

sition 8.5.6 in [5], we have

lim
"#0

W2(µ, (iRd + "T)]µ)

"
= kTkL2(Rd,µ;Rd) = kDF [µ]k

µ
.

Moreover, if we apply (11.1.14) to the curve µ" := (iRd + "T)]µ, " 2 [0, 1], we get

lim
"#0

F(µ")- F(µ)

"
=

Z

Rd

hDF(µ, x), T(x))idµ(x) = kDF [µ]k2
µ

,

thus

lipF(µ) > lim
"#0

F(µ")- F(µ)

W2(µ",µ)
= kDF [µ]k

µ
.

This shows the other inequality and concludes the proof.

11.1.2 The density result

Recall that for a bounded Lipschitz function F : P2(R
d
) ! R the pre-Cheeger

energy (cf. (10.1.16)) associated to m is defined by

pCE2(F) =

Z

P2(Rd)

�
lipF(µ)

�2 dm(µ). (11.1.15)

Thanks to Proposition 11.1.10, if F is a cylindrical function in Cyl
�
P2(R

d
)
�

we
have a nice equivalent expression

pCE2(F) =

Z

P2(Rd)
kDF [µ]k2

µ
dm(µ) =

Z
|DF(µ, x)|2 dm(µ, x), (11.1.16)

which shows that the restriction of pCE2 to Cyl
�
P2(R

d
)
�

is a quadratic form
(thus satisfying (10.2.23)) induced by the bilinear form

pCE2(F,G) :=

Z
DF(µ, x) ·DG(µ, x)dm(µ, x), F,G 2 Cyl

�
P2(R

d
)
�

. (11.1.17)

It is therefore important to prove that Cyl
�
P2(R

d
)
�

is dense in energy and there-
fore H1,2

(W2) is an Hilbert space: this is precisely the object of our main result.
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Theorem 11.1.11. The algebra Cyl
�
P2(R

d
)
�

is dense in energy in D1,2
(W2): for

every F 2 D1,2
(W2) there exists a sequence Fn 2 Cyl

�
P2(R

d
)
�
, n 2 N, such that

Fn ! F m-a.e., lip(Fn) ! |DF|? in L2(X,m); (11.1.18)

if moreover F 2 Lp(X,m), p 2 [1,+1), then we can find a sequence Fn 2 Cyl
�
P2(R

d
)
�

as in (11.1.18) and converging to F in Lp(X,m).

Corollary 11.1.12. H1,2
(W2) is a separable Hilbert space and Cyl

�
P2(R

d
)
�

is strongly
dense in H1,2

(W2).

According to the terminology introduced in [54] (see also [7]) we can say that
(P2(R

d
),W2,m) is infinitesimally Hilbertian for every Borel probability measure

m.
We devote the remaining part of this subsection to the proof of the Theorem
above. We start with a Lemma from convex analysis which will be useful in the
proof of Proposition 11.1.19.

Lemma 11.1.13. Let R > 0 and let ('n)n and ( n)n be sequences of functions such
that

(a) 'n : R
d ! R is convex and R-Lipschitz continuous with 'n(0) = 0 for every

n 2 N;

(b)  n : B(0,R) ! R is convex and lower semicontinuous for every n 2 N;

(c) it holds

'n(x) = sup
y2B(0,R)

{hx,yi- n(y)} for every x 2 R
d,

for every n 2 N.

Then there exist a subsequence j 7! n(j) and two convex and lower semicontinuous
functions ' : R

d ! R and  : B(0,R) ! (-1,+1] such that

(i) 'n(j) ! ' locally uniformly on R
d;

(ii) lim infj n(j)(y) >  (y) > 0 for every y 2 B(0,R);

(iii) it holds

'(x) = sup
y2B(0,R)

{hx,yi- (y)} for every x 2 R
d;

(iv) r'n(j) ! r' Ld-a.e. on R
d.

Proof. We start the proof with the following trivial remark: if u : B(0,R) !
[-1,+1) is a concave function, then

sup
B(0,R)

u = sup
B(0,R)

u. (11.1.19)
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In fact, if we take y0 2 @B(0,R), by concavity of u we have that

lim
t"1

u(ty0) > u(y0)

and, since ty0 2 B(0,R) for every t 2 [0, 1), we get that

sup
y2B(0,R)

u(y) > sup
y2@B(0,R)

u(y)

thus giving (11.1.19).
By (a) and Arzelà-Ascoli Theorem, we can find a subsequence j 7! n(j) and

a convex and R-Lipschitz function ' : R
d ! R such that 'n(j) ! ' locally

uniformly on R
d and '(0) = 0; this proves (i). In particular, 'n(j) Mosco con-

verges (see e.g. [11, Definition 3.17, Proposition 3.19]) to '. If we denote by  ̃j

the convex and lower semicontinuous envelope of the extension of  n(j) to R
d

(set equal to +1 outside B(0,R)), we have that 'n(j) coincides with the Legendre
transform L( ̃j) of  ̃j; indeed, for every x 2 R

d, we have

L( ̃j)(x) := sup
y2Rd

�
hx,yi-  ̃j(y)

 

= sup
y2B(0,R)

�
hx,yi-  ̃j(y)

 

= sup
y2B(0,R)

�
hx,yi-  ̃j(y)

 

= sup
y2B(0,R)

�
hx,yi- n(j)(y)

 

= 'n(j)(x),

where the second equality comes from the fact that  ̃j = +1 outside B(0,R),
the second follows by (11.1.19) and (b), the third is a consequence of the equality
 ̃j =  (n(j) in B(0,R), following from (b), and the last one is (c).
Thus (by e.g. [11, Theorem 3.18]) we get that  ̃j Mosco converges to a proper,
lower semicontinuous and convex function  ̃ : R

d ! (-1,+1] such that '
is the Legendre transform of  ̃. By Mosco convergence we have that  ̃ = +1
outside B(0,R) so that, if we denote by  the restriction of  ̃ to B(0,R), we get
that, for every x 2 R

d, it holds

'(x) = L( ̃)(x)

= sup
y2Rd

�
hx,yi-  ̃(y)

 

= sup
y2B(0,R)

�
hx,yi-  ̃(y)

 

= sup
y2B(0,R)

{hx,yi- (y)} ,

where the last inequality follows again by (11.1.19); this proves (iii). By Mosco
convergence and by'(0) = infB(0,R) we also get that lim infj n(j)(y) >  (y) >
0 for every y 2 B(0,R); this proves (ii). Finally, by [11, Theorem 3.66], the Mosco
convergence of 'n(j) to ', implies the graph convergence (see [11, Definition
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3.58]) of the subdifferentials @'n(j) to the subdifferential @'. Being the func-
tions 'n(j) and ' differentiable Ld-a.e., we obtain that r'n(j) ! r' Ld-a.e. in
R

d; this proves (iv) and concludes the proof of the Lemma.

The following preliminary lemma provides a simple gradient estimate for the
distance from the Dirac mass at 0, i.e. the quadratic moment of a measure.

Lemma 11.1.14. Let # 2 Lip(Rd
) be a L-Lipschitz function which is continuously

differentiable in the open set ⌦# :=
�
x 2 R

d
: #(x) 6= 0

 
. Then the map

F : µ !
�
L#2

�1/2
=

⇣ Z

Rd

#2(x)dµ(x)
⌘1/2

(11.1.20)

is L-Lipschitz and belongs to D1,2
(W2, A ), in particular its (2, A )-relaxed gradient is

bounded above by L and satisfies

|DF|2?,A (µ) 6 1

F2(µ)

Z

Rd

#2|r#|2 dµ for m-a.e. µ 2 P2(R
d
) with F(µ) > 0.

(11.1.21)

Proof. Let T 2 C1
(R) be an odd, nondecreasing truncation function satisfying

T(x) = x if |x| 6 1/2, |T(x)| = 1 if |x| > 2, |T 0
(x)| 6 1, (11.1.22)

and let us set Tn(x) := nT(x/n), #n := Tn � #, so that #n is L-Lipschitz and is
continuously differentiable in ⌦#, so that #2n 2 C1

b
(R

d
).

We define  n(r) := (r+n-2
)
1/2 and Fn :=  n � L#2

n
. By construction Fn 2 A

with

DFn(µ, x) =
1

Fn(µ)
#n(x)r#n(x),

�
lipFn(µ)

�2
= kDFn[µ]k2 =

1

F2n(µ)

Z

Rd

#2n(x)|r#n(x)|2 dµ(x) 6 L2 (11.1.23)

Since (P2(R
d
),W2) is a length space we deduce that Fn is L-Lipschitz. On the

other hand limn!1 Fn(µ) = F(µ) pointwise everywhere, so that F is L-Lipschitz
as well, it belongs to D1,2

(W2, A ) and |DF|?,A 6 L. Passing eventually to the
limit as n ! 1 in (11.1.23) for µ in the open set {µ 2 P2(R

d
) : F(µ) > 0} we get

(11.1.21).

Given µ 2 P2(R
d
), we denote by

m2

2
(µ) :=

Z

Rd

|x|2 dµ(x) (11.1.24)

its squared moment. Selecting #(x) := |x| in the Lemma above, we immediately
get the following result.

Corollary 11.1.15. The function m2(·) belongs to D1,2
(W2, A ) with

|Dm2|?,A (µ) 6 1 for m-a.e. µ 2 P2(R
d
). (11.1.25)
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We now use m2 for localizing gradient estimates in P2(R
d
).

Lemma 11.1.16. Let Fn be a sequence of functions in D1,2
(W2, A ) such that Fn and

|DFn|?,A are uniformly bounded in every bounded set of P2(R
d
) and let F,G be Borel

function in L2(P2(R
d
),m), G nonnegative. If

lim
n!1

Fn(µ) = F(µ), lim sup
n!1

|DFn|?,A (µ) 6 G(µ) m-a.e. in P2(R
d
) (11.1.26)

then F 2 H1,2
(W2, A ) and |DF|?,A 6 G.

Proof. Let us consider a smooth nonincreasing function ✓ 2 C1
[0,+1) such that

✓(r) = 1 if 0 6 r 6 1, ✓(r) = 0 if r > 2, |✓ 0(r)| 6 2 (11.1.27)

and set

�
n(µ) := ✓

�
m2(µ)/n

�
(11.1.28)

By Corollary 11.1.15 we have

�
n 2 H1,2

(W2, A ), |D�n|?,A 6 2/n,
|D�n|?,A (µ) = 0 if m2(µ) 6 n or m2(µ) > 2n.

(11.1.29)

Thanks to the Leibniz rule, setting Fn,m(µ) := Fn(µ)�
2
m(µ) and Gn := |DFn|?,A ,

we have

Fn,m 2 D1,2
(W2, A ), |DFn,m|?,A (µ) 6 Gn(µ)�

2

m(µ) + 4/mFn(µ)�m(µ).
(11.1.30)

Since for every m 2 N the sequence n 7! Gn
�2
m is uniformly bounded, we can

find an increasing subsequence k 7! n(k) such that k 7! Gn(k)�
2
m is weakly⇤

convergent in L1(P2(R
d
),m) and we denote by G̃m is weak⇤ limit. By Faotu’s

lemma, for every Borel set B ⇢ P2(R
d
) we get

Z

B

G̃m dm = lim
k!1

Z

B

Gn(k)(µ)�
2

m(µ)dm(µ)

6
Z

B

lim sup
k!1

⇣
Gn(k)(µ)�

2

m(µ)
⌘

dm(µ)

6
Z

B

G2�2
m dm

so that we deduce

G̃m 6 G2�2
m m-a.e. in P2(R

d
), for every m 2 N. (11.1.31)

On the other hand, passing to the limit in (11.1.30) along the subsequence n(k)

and recalling that limk!1 Fn(k),m = F�2m m-a.e. we get

|D(F�2m)|?,A (µ) 6 G̃m(µ)+
4

m
F(µ)�m(µ) 6 G(µ)�2m(µ)+

4

m
F(µ)�m(µ) (11.1.32)

for m-a.e. µ 2 P2(R
d
). We eventually pass to the limit as m ! 1 concluding the

proof of the Lemma.
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We now derive a natural estimate, extending (11.1.7) to the case of quadrati-
cally coercive functions whose gradient has a linear growth.

Lemma 11.1.17. Let � 2 C1
(R

d
) be satisfying the growth conditions

�(x) > A|x|2 -B, |r�(x)| 6 C(|x|+ 1) for every x 2 R
d (11.1.33)

for given positive constants A,B,C > 0 and let ⇣ : R ! R be a C1 nondecreasing
function whose derivative has compact support. Then the function F(µ) := ⇣ � L� is
Lipschitz in P2(R

d
), it belongs to H1,2

(W2, A ), and

|DF|?,A (µ) 6 ⇣ 0(L�(µ))
⇣ Z

Rd

|r�(x)|2 dµ(x)
⌘1/2

. (11.1.34)

Proof. We set ⇣a(z) := (z+ a)1/2 and #a := ⇣a ��, with a := A+B, so that

#a 2 C1
(R

d
), #a >

�
A(|x|2 + 1)

�1/2, |r#a(x)| =
|r�(x)|

2(�(x) + a)1/2
6 L,

where L := A-1/2C, for every x 2 R
d.

We can then apply Lemma 11.1.14, observing that

�
L#2

a
(µ)
�1/2

= ⇣a
�
L�(µ)

�
;

we deduce that Fa = ⇣a � L� is L-Lipschitz, it belongs to D1,2
(W2, A ) and satis-

fies (recall (11.1.21))

|DFa|?,A (µ) 6 1

2Fa(µ)

⇣ Z

Rd

|r(#2a)|
2 dµ

⌘1/2
= ⇣ 0a(L�(µ))

⇣ Z

Rd

|r�|2 dµ
⌘1/2

.

(11.1.35)

We eventually observe that F =  a � Fa where  a(z) = ⇣(z2 - a) which is still
C1 with derivative with compact support. Then (11.1.35) yields (11.1.34).

Let  2 C1
c (R

d
) be such that supp = B(0, 1), (x) > 0 for every x 2 R

d and
(x) > 0 for every x 2 B(0, 1),

R
Rd dLd

= 1 and (-x) = (x) for every x 2 R
d.

Let us define, for every 0 < " < 1 the standard mollifiers

"(x) :=
1

"d
(x/") x 2 R

d.

Given � 2 P2(R
d
) and 0 < " < 1, we define

�" := � ⇤ ", (11.1.36)

�̂" :=
�" B(0, 1/") + "d+3Ld B(0, 1/")
�"(B(0, 1/")) + "d+3Ld(B(0, 1/"))

. (11.1.37)

Notice that �", �̂" 2 Pr

2
(R

d
), supp �̂" = B(0, 1/") and W2(�",�) ! 0, W2(�̂",�) !

0 as " # 0. Moreover, if �,� 0 2 P2(R
d
), we have

W2(�",� 0
") 6 W2(�,� 0

) for every 0 < " < 1 (11.1.38)
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and it is easy to check that, if we set

C" := m2("L
d
), (11.1.39)

then we have

m2(µ") 6 m2(µ) +C" for every 0 < " < 1. (11.1.40)

Definition 11.1.18. Let ⌫ 2 P2(R
d
), 0 < " < 1, ⇣ : R ! R be a C1 nondecreas-

ing function whose derivative has compact support. We define the continuous
functions W"

⌫, F"⌫,W⌫ : P2(R
d
) ! R as

F"⌫(µ) :=
1

2
W2

2
(µ", ⌫̂"), W"

⌫(µ) := ⇣
⇣
F"⌫(µ)

⌘
, W⌫(µ) := W2(µ,⌫).

Proposition 11.1.19. Let ⌫ 2 P2(R
d
), " 2 (0, 1) and let A = Cyl

�
P2(R

d
)
�
. We

have

|DW"

⌫|?,A (µ) 6 ⇣ 0(F"⌫)
⇣ Z

Rd

|x-r('⇤
" ⇤ ")(x)|

2 dµ(x)
⌘1/2

for m-a.e. µ 2 P2(R
d
),

(11.1.41)

where '⇤
" = �

⇤
(⌫̂",µ").

Proof. Let G := {µh}h2N be a dense and countable set in P2(R
d
) and let us set,

for every h 2 N, 'h := �(⌫̂",µh
" ), '⇤

h
:= �⇤

(⌫̂",µh
" ) (see Theorem 11.1.1),

ah :=

Z

B(0,1/")

✓
1

2
|y|2 -'h(y)

◆
d⌫̂"(y), uh(x) :=

1

2
|x|2-'⇤

h
(x)+ah, x 2 R

d

and

Gk(µ) := max
16h6k

Z

Rd

uhdµ", µ 2 P2(R
d
).

We first observe that '⇤
h
(x) is 1/"-Lipschitz, so that |'⇤

h
(x)| 6 |x|/" and

uh(x) >
1

2
|x|2 -

1

"
|x|+ ah > 1

4
|x|2 -

1

"2
+ ah (11.1.42)

uh(x) 6 |x|2 +
1

"2
+ ah. (11.1.43)

Claim 1. It holds

lim
k!+1

Gk(µ) = F"⌫(µ) for every µ 2 P2(R
d
).

Proof of claim 1. Since Gk+1(µ) > Gk(µ) for every µ 2 P2(R
d
), we have that

lim
k!+1

Gk(µ) = sup
k

Gk(µ) = sup
h

Z

Rd

uhdµ" for every µ 2 P2(R
d
).
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By the definition of 'h and '⇤
h

we have, for every µ 2 P2(R
d
) and h 2 N, that

Z

Rd

uhdµ" =
Z

Rd

✓
1

2
|x|2 -'⇤

h
(x)

◆
dµ" +

Z

B(0,1/")

✓
1

2
|y|2 -'h(y)

◆
d⌫̂"(y)

6 1

2
W2

2
(µ", ⌫̂")

= F"⌫(µ).

This proves that sup
k
Gk(µ) 6 F"⌫(µ) for every µ 2 P2(R

d
). Clearly, if µ 2 G, this

is an equality. Let now µ,µ 0 2 P2(R
d
) and h 2 N and observe that

Z

Rd

uhdµ" -
Z

Rd

uhdµ 0
" =

1

2
m2

2
(µ")-

1

2
m2

2
(µ 0
")-

Z

Rd

'⇤
h

d(µ" - µ 0
")

6 1

2
((m2(µ") +m2(µ

0
"))W2(µ",µ 0

") +
1

"
W2(µ",µ 0

")

6 1

2
(m2(µ) +m2(µ

0
) + 2C"W2(µ,µ 0

) +
1

"
W2(µ,µ 0

)

6
✓

m2(µ) +m2(µ
0
) + 2C" +

1

"

◆
W2(µ,µ 0

),

where we used (11.1.38), (11.1.40), the fact that '⇤
h

is 1/"-Lipschitz continuous
and (2.4.5). We hence deduce that for every k 2 N

��Gk(µ)-Gk(µ
0
)

�� 6
✓

m2(µ) +m2(µ
0
) +

1

"
+ 2C"

◆
W2(µ,µ 0

) (11.1.44)

for every µ,µ 0 2 P2(R
d
). Choosing µ 0 2 G and passing to the limit as k ! +1

we get from (11.1.44)
���� lim
k!+1

Gk(µ)- F"⌫(µ
0
)

���� 6
✓

m2(µ) +m2(µ
0
) + 2C" +

1

"

◆
W2(µ,µ 0

)

for every µ 2 P2(R
d
), µ 0 2 G. Using the density of G and the continuity of

µ 0 7! F"⌫(µ
0
) we deduce that

lim
k!+1

Gk(µ) = F"⌫(µ) for every µ 2 P2(R
d
)

proving the first claim.

Claim 2. If Hk := ⇣ �Gk and uh," := uh ⇤ " it holds

|DHk|
2

?,A (µ) 6
�
⇣ 0(Gk(µ))

�2
Z

Rd

|ruh,"|
2 dµ(x)

=
�
⇣ 0(Gk(µ))

�2
Z

Rd

|x-r('⇤
h
⇤ ")(x)|2 dµ(x),

for m-a.e. µ 2 Bk

h
, where Bk

h
:= {µ 2 P2(R

d
) | Gk(µ) =

R
Rd uhdµ"}, h 2 {1, . . . ,k}.

Proof of claim 2. For every h 2 N, (11.1.42) yields

uh,"(x) >
1

4
|x|2 +

C2
"

4
-

1

"2
+ ah, |ruh,"(x)| 6 |x|+

1

"
+ "; (11.1.45)
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Since the map `h : P2(R
d
) ! R defined as `h(µ) :=

R
Rd uhdµ" satisfies

`h(µ) =

Z

Rd

(uh ⇤ ")dµ = Luh,"(µ), µ 2 P2(R
d
),

Lemma 11.1.17 and the above estimates yield

|D(⇣ � `h)|?(µ) 6 ⇣ 0(`h(µ))
⇣ Z

Rd

|ruh,"|
2 dµ

⌘1/2
for m-a.e. µ 2 P2(R

d
).

Since Hk can be written as

Hk(µ) = max
16h6k

(⇣ � `h)(µ), µ 2 P2(R
d
),

we can apply Theorem 10.1.2 (8) and conclude the proof of the second claim.

Claim 3. For every R > 0 there exists a constant C > 0 independent of h such that

⇣ Z

Rd

|ruh,"(x)|
2 dµ(x)

⌘1/2
6 C whenever m2(µ) 6 R. (11.1.46)

Proof of Claim 3. It is sufficient to use (11.1.45) obtaining C := R+ 1/"+ " .

Claim 4. Let (hn)n ⇢ N be an increasing sequence and let µ 2 P2(R
d
). If

limn

R
Rd uhn

dµ" = F"⌫(µ), then

lim
n

Z

Rd

��x-r('⇤
hn

⇤ ")(x)
��2 dµ(x) =

Z

Rd

|x-r('⇤
" ⇤ ")(x)|

2 dµ(x),

where '⇤
" = �

⇤
(⌫̂",µ").

Proof of claim 4. Let us set for every n 2 N

�n := 'hn
, �⇤

n := '⇤
hn

.

We will show that from any (non relabeled) increasing sequence it is possible to
extract a further subsequence j 7! n(j) such that

lim
j

Z

Rd

���x-r(�⇤
n(j) ⇤ ")(x)

���
2

dµ(x) =
Z

Rd

|x-r('⇤
" ⇤ ")(x)|

2 dµ(x).

By Theorem 11.1.1, we have that, for every n 2 N, �⇤
n : R

d ! R is convex
and 1/"-Lipschitz continuous with �⇤

n(0) = 0, �n : B(0, 1/") ! R is convex and
lower semicontinuous and

�⇤
n(x) = sup

y2B(0,1/")
{hx,yi-�n(y)} for every x 2 R

d.

Thus by Lemma 11.1.13, we get the existence of a subsequence j 7! n(j) and two
convex and lower semicontinuous functions �⇤

: R
d ! R and � : B(0, 1/") !

(-1,+1] such that points (i), (ii), (iii) and (iv) of Lemma 11.1.13 hold. By points
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(i) and (ii) we can use Fatou Lemma and the dominated convergence Theorem
to conclude that

lim inf
j

Z

B(0,1/")
�n(j)d⌫̂" >

Z

B(0,1/")
�d⌫̂", lim

j

Z

Rd

�⇤
n(j)dµ" =

Z

Rd

�⇤dµ".

We thus deduce that
Z

Rd

✓
1

2
|x|2 -�⇤

(x)

◆
dµ"(x) +

Z

B(0,1/")

✓
1

2
|y|2 -�(y)

◆
d⌫̂"(y)

> lim sup
j

Z

Rd

uhn(j)
dµ"

= F"⌫(µ)

proving that
Z

B(0,1/")
�d⌫̂" +

Z

Rd

�⇤dµ" =
1

2
m2

2
(⌫̂") +

1

2
m2

2
(µ")-

1

2
W2

2
(⌫̂",µ").

By the uniqueness part of Theorem 11.1.1 and point (iii) in Lemma 11.1.13, we
deduce that � = �(⌫̂",µ") and �⇤

= �⇤
(⌫̂",µ"). Finally, the a.e. convergence of

the gradient of �⇤
n to the gradient of �⇤ given by point (iv) in Lemma 11.1.13

gives that r(�⇤
n(j) ⇤") ! r(�⇤ ⇤") pointwise everywhere. Moreover, since for

every x 2 R
d we have

���x-r('⇤
n(j) ⇤ ")(x)

���
2

6 |x|2 + "2 + 1/"2 + 2 2 L1(Rd,µ),

we can use the dominated convergence Theorem to conclude that

lim
j

Z

Rd

���x-r(�⇤
n(j) ⇤ ")(x)

���
2

dµ(x) =
Z

Rd

|x-r(�⇤ ⇤ ")(x)|2 dµ(x).

This concludes the proof of the fourth claim.

Claim 5. It holds

lim sup
k

|DHk|?,A (µ) 6 ⇣ 0(F"⌫(µ))
⇣ Z

Rd

|x-r('⇤
" ⇤ ")(x)|

2 dµ(x)
⌘1/2

for m-a.e. µ 2 P2(R
d
), where '⇤

" = �
⇤
(⌫̂",µ").

Proof of claim 5. Let B ⇢ P2(R
d
) be defined as

B :=

\

k

k[

h=1

Ak

h
,

where Ak

h
is the full m-measure subset of Bk

h
where claim 2 holds. Notice that B

has full m-measure. Let µ 2 B be fixed and let us pick an increasing sequence
k 7! hk such that

Gk(µ) =

Z

Rd

uhk
dµ".
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By claim 1 we know that Gn(µ) ! F"⌫(µ) so that we can apply claim 4 and
conclude that

⇣ 0(F"⌫(µ))

Z

Rd

|x-r('⇤
" ⇤ ")(x)|2dµ(x)

= lim
k

⇣ 0(Gk(µ))

Z

Rd

��x-r('⇤
hk

⇤ ")(x)
��2 dµ(x).

By claim 2, the right hand side is greater than lim sup
k
|DHk|

2
?,A (µ); this con-

cludes the proof of the fifth claim.

Eventually, we observe that by Claim 1

W"

⌫(µ) = lim
k!1

⇣(Gk(µ)) = lim
k!1

Hk(µ). (11.1.47)

Moreover, passing to the limit the estimate in Claim 3, we see that

⇣ 0(F"⌫(µ))

Z

Rd

|x-r('⇤
" ⇤ ")(x)|

2 dµ(x)

is uniformly bounded. We can then combine the expression of Claim 2, the
uniform estimate of Claim 3, the limit of Claim 5 with Lemma 11.1.16 to get
(11.1.41).

Corollary 11.1.20. Let ⌫ 2 P2(R
d
). Then

|DW⌫|?,A (µ) 6 1 for m-a.e. µ 2 P2(R
d
). (11.1.48)

Proof. First of all we prove that
Z

Rd

|x-r('⇤
" ⇤ ")(x)|

2 dµ(x) 6 W2

2
(µ", ⌫̂") for m-a.e. µ 2 P2(R

d
). (11.1.49)

Since

|x-r('⇤
" ⇤ ")(x)|

2 6 |x-r'⇤
"(x)|

2 ⇤ "(x) for every x 2 R
d,

we get, also using Proposition 11.1.19, that
Z

Rd

|x-r('⇤
" ⇤ ")(x)|

2 dµ(x) 6
Z

Rd

⇣
|x-r'⇤

"(x)|
2 ⇤ "(x)

⌘
dµ(x)

=

Z

Rd

|x-r'⇤
"(x)|

2 dµ"(x)

= W2

2
(µ", ⌫̂"),

for m-a.e. µ 2 P2(R
d
), where the last equality comes from Theorem 11.1.1. This

proves (11.1.49). It then follows that

|D (⇣ � F"⌫)|?,A (µ) 6 ⇣ 0(F"⌫(µ))
p
2F"⌫(µ)

Setting #(r) = ⇣(1
2
r2) so that # 0(r) = r⇣ 0(1

2
r2) and ⇣ � F"⌫ = #(W"

⌫) we get

|D (# �W"

⌫)|?,A (µ) 6 ⇣ 0(1
2
(W"

⌫)
2
(µ))W"

⌫(µ) = #
0
(W"

⌫)(µ). (11.1.50)
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Let now ⇣n : R ! R be a sequence of C1 functions having derivatives with
compact support such that

⇣n(t) ! u(t), ⇣ 0n(t) ! u 0
(t), 0 6 ⇣ 0n(t) 6 2 for every t 2 R,

where u : R ! R is equal to arctan(t) if t > 0 and equal to 0 if t 6 0. Then,
setting ✓n(t) := ⇣n(12t

2
), we get by (11.1.50) that

|D (#n �W"

⌫)|?,A (µ) 6 # 0n(W"

⌫)(µ). (11.1.51)

Passing to the limit as n ! +1 (11.1.51) using Theorem 10.1.2(1)-(3), we obtain

|D (v �W"

⌫)|?,A (µ) 6 v 0(W"

⌫)(µ),

where v : R ! R is equal to arctan(1
2
t2) if t > 0 and equal to 0 if t 6 0. We thus

conclude that

|DW"

⌫|?,A 6 1 (11.1.52)

by Lemma 10.1.9. Choosing " = 1/k, we have limk!+1W
1/k

⌫ (µ) = W⌫(µ) for
every µ 2 P2(R

d
); using Theorem 10.1.2 (1)-(3), we obtain (11.1.48).

The proof of Theorem 11.1.11 then easily follows by Corollary 11.1.20 and
Theorem 10.2.1.

We conclude this section with a simple but useful density property, which
shows the possibility to use smaller algebras of cylindrical functions to operate
in H1,2

(W2).

Proposition 11.1.21. Let F be a subset of C1

b
(R

d
) satisfying the following property:

for every f 2 C1

b
(R

d
) there exists a sequence fn 2 F , n 2 N, such that

sup
Rd

|fn|+ |Dfn| < 1, lim
n!1

Z

Rd

|fn- f|+ |r(fn- f)|dµ = 0 m-a.e. µ 2 P2(R
d
).

(11.1.53)

Then the algebra A ⇢ Cyl
�
P2(R

d
)
�

generated by the set of cylindrical functions�
Lf : f 2 F

 
is dense in H1,2

(W2) and satisfies the strong approximation property
of Theorem 11.1.11.

In particular the algebra Cyl1(P2(R
d
)) generated by

�
Lf : f 2 C1

c (R
d
)
 

is strongly
dense in H1,2

(W2) and satisfies the approximation property of Theorem 11.1.11.

Proof. Thanks to Theorem 11.1.11 and a simple diagonal argument, it is suffi-
cient to prove that for every cylindrical function F 2 Cyl

�
P2(R

d
)
�

there exists a
sequence Fn 2 A such that

Fn ! F in L2(P2(R
d
),m) and pCE2(Fn - F) ! 0 as n ! 1. (11.1.54)

In the case F = Lf with f 2 C1

b
(R

d
), (11.1.53) and Lebesgue Dominated Con-

vergence Theorem show that we can find a sequence fn 2 F such that, setting
Fn := Lfn , we have

Z

P2(Rd)
|Fn - F|2 dm =

Z

P2(Rd)

���
Z

Rd

(fn(x)- f(x))dµ(x)
���
2

dm(µ) ! 0,

pCE2(Fn - F) =

Z

P2(Rd)

Z
|rfn(x)-rf(x)|2 dµ(x)dm(x) ! 0
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as n ! +1. Let us now consider a general F =  � Lf as in (11.1.5), where
f = (f1, · · · , fN) is a vector of functions in C1

b
(R

d
) and  2 C1

b
(R

N
). If we

consider f̃ := (1, f1, . . . , fN) and  ̃ 2 C1

b
(R

N+1
) defined as

 ̃(x0, x1, . . . , xn) :=  (0)x0- (0)+ (x1, x2, . . . , xN), (x0, x1, . . . , xN) 2 R
N+1,

we have that  ̃(0) = 0 and  ̃ �Lf̃ = F. For this reason we can always suppose that
f1 ⌘ 1 and  (0) = 0. It is also not restrictive to assume that  is a polynomial
with  (0) = 0: in fact, setting R := sup

Rd,16k6N

⇣
|fk|+ |rfk|

⌘
, we can find a

sequence of polyonomials (Ph)h in R
N such that

Ph(0) = 0, sup
|z|6R

|Ph(z)- (z)|+ |rPh(z)-r (z)| ! 0 as h ! 1. (11.1.55)

It follows that Fh := Ph � Lf satisfies

lim
h!1

sup
P2(Rd)

⇣
|Fh(µ)- F(µ)|+ kDFh[µ]- DF[µ]kµ

⌘
= 0. (11.1.56)

Applying (11.1.53) we can find sequences (fk,n)n2N, k = 1, · · · ,N, approximat-
ing fk as in (11.1.53). In particular, there exists R > 0 such that sup

Rd

⇣
|fk,n|+

|Dfk,n| + |fk| + |Dfk|
⌘

6 R for every n 2 N, k 2 {1, · · · ,N}. If  is a polyno-
mial in R

N with  (0) = 0 then the function Fn :=  � Lfn belongs to A , where
fn = (f1,n, f2,n, . . . , fN,n). Denoting by L the maximum of the Lipschitz constants
of  and @k in the cube [-R,R]N with respect to the 1-norm, it is easy to see
that

|Fn(µ)- F(µ)| =
��� (Lfn(µ)) (Lfn(µ)))

��� 6 L sup
k

|Lfk,n(µ)- Lfk(µ)| ! 0,

kDFn[µ]- DF[µ]kµ =

���
X

k

⇣
@k (Lfn(µ))rfk,n - @k (Lf(µ))rfk

⌘���
µ

6
X

k

���@k (Lfn(µ))rfk,n - @k (Lfn(µ))rfk

���
µ

+

X

k

���
⇣
@k (Lfn(µ))- @k (Lf(µ))

⌘
rfk

���
µ

6 L
X

k

✓���rfk,n -rfk

���
µ

+ R
���hfk,n - fk,µi

���
◆

.

Both terms are uniformly bounded w.r.t. µ and n, and converge to 0 as n ! 1.
We deduce that (11.1.54) holds.

11.2 calculus rules and examples

Let us now show how we can give a more precise description of CE2 and to
establish useful calculus rules.

Theorem 11.2.1 (m-Wasserstein differential). For every F 2 D1,2
(W2) there exists

a unique vector field DmF 2 L2(P2(R
d
)⇥R

d,m; R
d
) (the m-Wassesrstein differential
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of F) such that for every sequence Fn 2 Cyl
�
P2(R

d
)
�
, n 2 N, satisfying (11.1.18) we

have

DFn ! DmF strongly in L2(P2(R
d
)⇥ R

d,m; R
d
). (11.2.1)

Moreover:

(a) The map F 7! DmF from D1,2
(W2) to L2(P2(R

d
)⇥ R

d,m; R
d
) is linear and

for every F,G 2 D1,2
(W2) we have

CE2(F,G) =

Z
DmF(µ, x) · DmG(µ, x)dm(µ, x), CE2(F) =

Z
|DmF(µ, x)|2 dm(µ, x),

(11.2.2)

where CE2(·, ·) denotes the quadratic form associated to CE2(·) as in Remark
10.2.5.

(b) The map F 7! (F, DmF) is a linear isometric (thus continuous) immersion of
H1,2

(W2) into L2(P2(R
d
),m)⇥ L2(P2(R

d
)⇥ R

d,m; R
d
).

(c) The graph of Dm in L2(P2(R
d
),m)⇥L2(P2(R

d
)⇥R

d,m; R
d
) is (weakly) closed:

for every sequence Fn 2 H1,2
(W2)

Fn * F in L2(P2(R
d
),m)

DmFn * G in L2(P2(R
d
)⇥ R

d,m; R
d
)

✏

) F 2 H1,2
(W2), G = DmF.

(11.2.3)

Proof. The proof uses well known arguments of the theory of quadratic forms. If
Fn, n 2 N, is a sequence in Cyl

�
P2(R

d
)
�

for every m,n 2 N we have

1

4
pCE2(Fm - Fn) =

1

2

⇣
pCE2(Fm) + pCE(Fn)

⌘
- pCE2

⇣1
2
(Fm + Fn)

⌘
. (11.2.4)

If (11.1.18) holds, observing that limm,n!1
1

2
(Fm + Fn) = F, we can pass to the

limit as m,n ! 1 and therefore by (10.1.17) lim infm,n!1 pCE2

⇣
1

2
(Fm + Fn)

⌘
>

CE2(F); we thus obtain

lim sup
m,n!1

1

4
pCE2(Fm - Fn) = lim sup

m,n!1

1

4

Z
|DFm(µ, x)-DFn(µ, x)|2 dm(µ, x) 6 0

(11.2.5)

which shows that n 7! DFm is a Cauchy sequence in L2(P2(R
d
)⇥ R

d,m; R
d
)

and therefore converges to some element V.
If F̃n is another sequence satisfying (11.1.18), we can use the identity

1

4
pCE2(Fn - F̃n) =

1

2

⇣
pCE2(Fn) + pCE(F̃n)

⌘
- pCE2

⇣1
2
(Fn + F̃n)

⌘
(11.2.6)

and the same argument to conclude that limn!1 pCE2(Fn - F̃n) = 0, so that the
limit V is independent of the approximating sequence and we are authorized to
call it DmF.
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Concering claim (a), the linearity of Dm follows immediately from the linearity
of D as a map from Cyl

�
P2(R

d
)
�

to L2(P2(R
d
)⇥ R

d,m; R
d
).

If F,G 2 D1,2
(W2) and (Fn)n, (Gn)n ⇢ Cyl

�
P2(R

d
)
�

are sequences satisfying
(11.1.18) for F and G respectively, we can see that pCE2(Fn,Gn) ! CE2(F,G);
indeed

pCE2(Fn,Gn) =
1

2
pCE2(Fn +Gn)-

1

2
pCE2(Fn)-

1

2
pCE2(Gn),

= -
1

2
pCE2(Fn -Gn) +

1

2
pCE2(Fn) +

1

2
pCE2(Gn).

Passing the first equality to the lim infn, the second one to the lim sup
n

and
using (10.1.17), we get that pCE2(Fn,Gn) ! CE2(F,G). Passing then to the limit
in (11.2.2) we immediately see that

CE2(F,G) =

Z
DmF(µ, x) · DmG(µ, x)dm(µ, x) (11.2.7)

which, together with (10.2.25), shows that F 7! (F, DmF) is an isometry from
H1,2

(W2) into L2(P2(R
d
),m)⇥ L2(P2(R

d
)⇥ R

d,m; R
d
) (claim (b)).

Claim (c) then follows by claim (b) and the fact that H1,2
(W2) is an Hilbert

space.

Let us now collect a few properties of DmF, which follow by the corresponding
metric versions of Theorem 10.1.2 and the approximation property of Theorem
11.2.1.

Proposition 11.2.2 (Calculus properties of DmF). The m-Wasserstein differential
satisfies the following properties:

(1) (Relaxed gradient and asymptotic Lipschitz constant) For every F 2 D1,2
(W2)

we have

kDmF[µ]k2µ =

Z
|DmF(µ, x)|2 dµ(x) = |DF|2?(µ) for m-a.e. µ 2 P2(R

d
).

(11.2.8)

In particular, for every F 2 Lip
b
(P2(R

d
))

kDmF[µ]k2µ =

Z
|DmF(µ, x)|2 dµ(x) 6

��lipF(µ)
��2 for m-a.e. µ 2 P2(R

d
),

(11.2.9)

and if F 2 Cyl
�
P2(R

d
)
�

Z
|DmF(µ, x)|2 dµ(x) 6

Z
|DF(µ, x)|2 dµ(x) for m-a.e. µ 2 P2(R

d
). (11.2.10)

(2) (Leibniz rule) If F,G 2 L1(P2(R
d
),m)\D1,2

(W2), then H := FG 2 D1,2
(W2)

and

DmH(µ, x) = F(µ)DmG(µ, x)+G(µ)DmF(µ, x) for m-a.e. (µ, x) 2 P2(R
d
)⇥ R

d.
(11.2.11)
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(3) (Locality) If F 2 D1,2
(W2) then for any L 1-negligible Borel subset N ⇢ R we

have

DmF[µ] = 0 in L2(Rd,µ; R
d
) m-a.e. on F-1

(N). (11.2.12)

(4) (Truncations) If Fj 2 D1,2
(W2), j = 1, · · · , J, then also the functions

F+ := max(F1, · · · , FJ) and F- := min(F1, · · · , FJ)

belong to D1,2
(W2) and

DmF+ = DmFj m-a.e. on {(µ, x) 2 P2(R
d
)⇥ R

d
: F+(µ) = Fj(µ)},

(11.2.13)

DmF- = DmFj m-a.e. on {(µ, x) 2 P2(R
d
)⇥ R

d
: F-(µ) = Fj(µ)}.

(11.2.14)

(5) (Chain rule) If F 2 D1,2
(W2) and � 2 Lip(R) then � � F 2 D1,2

(W2) and

Dm(� � F) = � 0
(F)DmF m-a.e. on P2(R

d
)⇥ R

d. (11.2.15)

Remark 11.2.3. Notice that the product in (11.2.15) is well defined since there
exists a L 1-negligible Borel set N ⇢ R such that � is differentiable in R \N and
DmF vanishes m-a.e. in F-1

(N) thanks to the locality property (11.2.12).

Proof. Claim (a) is an immediate consequence of the fact that (11.1.18) yields
lipFn ! |DF|? strongly in L2(P2(R

d
),m); up to extracting a suitable (not rela-

beled) subsequence we get
R
|DFn|

2 dµ ! |DF|2?(µ) for m-a.e. µ. On the other
hand (11.2.1) yields

Z ���|DFn(µ, x)|2 - |DmF(µ, x)|2
��dm(µ, x) ! 0 as n ! 1 (11.2.16)

so that Fubini’s Theorem yields, up to extracting a suitable subsequence,
Z
|DFn(µ, x)|2 dµ !

Z
|DmF(µ, x)|2 dµ for m-a.e.µ 2 P2(R

d
). (11.2.17)

(11.2.9) and (11.2.10) then follows by the general properties of the minimal re-
laxed gradients.

Claim (c) follows by (10.1.9) and (11.2.8).
Claim (d) is just a consequence of the locality property (11.2.12).
Claim (e) is true if � 2 C1

b
(R) just by passing to the limit in the corresponding

formula for a cylindrical function. In fact if Fn 2 Cyl
�
P2(R

d
)
�

is a sequence as
in (11.1.18) and (11.2.1) we have

D(� � Fn) = (� 0 � Fn)DFn in D. (11.2.18)

Since � 0 is bounded and continuous we get

D(��Fn) ! G = (� 0 �F)DmF strongly in L2(P2(R
d
)⇥R

d,m; R
d
) as n ! 1.
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(11.2.19)

Integrating w.r.t. m and recalling (11.2.8) and Theorem 10.1.2(7) we get
Z
|G|2 dm =

Z
|� 0

(F(µ))|2|DmF(µ, x)|2 dm(µ, x)

=

Z
|� 0

(F(µ))| |DF|2? dm

= CE2(� � F)

so that

lim
n!1

pCE2(� � Fn) = CE2(� � F).

We conclude by Theorem 11.2.1 that G = (� 0 � F)DmF coincides with Dm(� � F).
Let us now consider the case of a general Lipschitz function �; by truncation

and Claim (d) it is not restrictive to assume that � is also bounded. We can find
a sequence �n 2 C1

b
(R) such that sup

R
|�n|+ |� 0

n| 6 L < 1, �n ! � uniformly,
and � 0

n(x) ! � 0
(x) for every x 2 R \N for a Borel set N with L 1

(N) = 0. We
have

Dm(�n � F) = � 0
n(F)DmF m-a.e. in P2(R

d
). (11.2.20)

Setting Ñ := {(µ, x) 2 D : F(µ) 2 N}, Fubini’s Theorem and the locality prop-
erty (11.2.12) yields DmF(µ, x) = 0 for m-a.e. (µ, x) 2 Ñ. On the other hand
� 0
n(F(µ)) ! � 0

(F(µ)) for every (µ, x) 2 D \ Ñ; since � 0
n is uniformly bounded,

we deduce that

� 0
n(F)DmF ! � 0

(f)DmF strongly in L2(P2(R
d
)⇥ R

d,m; R
d
). (11.2.21)

We conclude by Theorem 11.2.1(b) that Dm(� � F) = � 0
(F)DmF.

Claim (b) follows by claim (e); indeed, since F,G 2 L1(P2(R
d
),m), we can find

a constant M > 0 such that

|F|(µ) 6 M, |G|(µ) 6 M, |F+G|(µ) 6 M for m-a.e. µ 2 P2(R
d
).

Let � 2 Lip(R) be such that �(x) = x2 for every x 2 [-M- 1,M+ 1]; then we
have

DmFG =
1

2
Dm((F+G)

2
)-

1

2
Dm(F

2
)-

1

2
D(G2

)

=
1

2
Dm(� � (F+G))-

1

2
Dm(� � F)- 1

2
D(� �G)

=
1

2
� 0

(F+G)Dm(F+G)-
1

2
� 0

(F)DmF-
1

2
� 0

(G)DG

= (F+G)Dm(F+G)- FDmF-GDG

= FDmG+GDmF

for m-a.e. (µ, x) 2 P2(R
d
)⇥ R

d.
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Corollary 11.2.4. CE2 is a local Dirichlet form in L2(P2(R
d
),m) [22, p. 3.1.1] enjoying

� -calculus with Carré du champs � given by

�(F,G)[µ] :=

Z
DmF(µ, x) · DmG(µ, x)dµ(x) for m-a.e. µ 2 P2(R

d
). (11.2.22)

In particular, for every F,G 2 H1,2
(W2) we have

CE2(F,G) =

Z

P2(Rd)
�(F,G)[µ]dm(µ) =

Z
DmF(µ, x) · DmG(µ, x)dm(µ, x),

CE2(F) =

Z

P2(Rd)
�(F, F)dm(µ) =

Z
|DmF(µ, x)|2 dm(µ, x).

(11.2.23)

Proof. The fact that CE2 is a Dirichlet form follows by the truncation property
(11.2.15) with �(r) := r^ 1. Since CE2(1) = 0, the same property with �(r) = |r|

also shows that CE2 is local (see [22, Corollary 5.1.4]).
Using the Leibniz rule (11.2.11) one can also easily show that the � -operator

(11.2.22) is the Carré du champ associated to 1

2
CE2 [22, Definition 4.1.2].

11.2.1 Tangent bundle, residual differentials and relaxation

In general CE2(F) doesn’t coincide with pCE2(F) if F 2 Cyl
�
P2(R

d
)
�
, or, equiv-

alently, DmF is not equal to DF: this equality corresponds to the closability of
pCE2. We can however investigate the relations between DF and DmF: two useful
tools are represented by the closure of the graph of D and by the collection of all
the weak limits of Wasserstein differentials along vanishing sequences.

Definition 11.2.5 (Multivaled gradient). We denote by G ⇢ L2(P2(R
d
),m) ⇥

L2(P2(R
d
)⇥ R

d,m; R
d
) the closure of the space

�
(F, DF) : F 2 Cyl

�
P2(R

d
)
� 

.
The multivalued gradient Dm : H1,2

(W2) ◆ L2(P2(R
d
)⇥ R

d,m; R
d
) is the op-

erator whose graph is G.

It is clear that G is a closed vector space of L2(P2(R
d
),m) ⇥ L2(P2(R

d
) ⇥

R
d,m; R

d
), which can also be obtained as the weak closure of

�
(F, DF) : F 2

Cyl
�
P2(R

d
)
� 

. Thus V 2 DmF if and only if there exists a sequence Fn 2
Cyl

�
P2(R

d
)
�

such that

Fn ! F in L2(P2(R
d
),m), DFn * V in L2(P2(R

d
)⇥ R

d,m; R
d
). (11.2.24)

The set Dm0 plays a crucial role.

Definition 11.2.6 (Residual gradients). The set of residual gradients

G0 ⇢ L2(P2(R
d
)⇥ R

d,m; R
d
)

is defined as

G0 :=

⌦
V 2 L2(P2(R

d
)⇥ R

d,m; R
d
) : there exists (Fn)n2N ⇢ Cyl

�
P2(R

d
)
�
:

Fn ! 0 in L2(P2(R
d
),m), DFn * V in L2(P2(R

d
)⇥ R

d,m; R
d
)

↵
.

(11.2.25)
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Notice that pCE2 is closable if and only if G0 is trivial. A third important
space is the L2 tangent bundle of P2(R

d
). In the following, given a Borel map

G 2 L2
(P2(R

d
)⇥ R

d,m; R
d
), we denote, for every µ 2 P2(R

d
), by G[µ] the

map x 7! G(µ, x).

Definition 11.2.7. We denote by Tan(P2(R
d
),m) the subspace of L2(P2(R

d
)⇥

R
d,m; R

d
) of vector fields V satisfying

V[µ] 2 Tanµ P2(R
d
) for m-a.e. µ 2 P2(R

d
). (11.2.26)

Lemma 11.2.8. Tan(P2(R
d
),m) is a closed subspace of L2(P2(R

d
) ⇥ R

d,m; R
d
)

which is a L1(P2(R
d
),m) module:

for every V 2 Tan(P2(R
d
),m), H 2 L1(P2(R

d
),m) : HV 2 Tan(P2(R

d
),m).

(11.2.27)

For every function H 2 H1,2
(W2) (resp. F 2 Cyl

�
P2(R

d
)
�
) we have that DmF 2

Tan(P2(R
d
),m) (resp. DF 2 Tan(P2(R

d
),m)). Finally, if C ⇢ C1

c (R
d
) is a countable

set dense in C1
c (R

d
) with respect to the Lipschitz norm k⇣kLip := sup

Rd |⇣|+ |r⇣| and
L is a countable set dense in L2(P2(R

d
),m) then the set

T = span
⌦
Hr⇣ : H 2 L , ⇣ 2 C

↵
is dense in Tan(P2(R

d
),m). (11.2.28)

Proof. Let (Vn)n2N be a sequence in Tan(P2(R
d
),m) strongly converging to V

in L2; it is not restrictive to assume that Vn are Borel maps satisfying Vn[µ] 2
Tanµ P2(R

d
) for every µ 2 P2(R

d
) \ N for a m-negligible set of P2(R

d
). Up to

extracting a suitable subsequence, we can also assume that
P1

n=1
kVn -Vk2

L2 <

1. Applying Fubini’s Theorem it follows that

Z

P2(Rd)

⇣ 1X

n=1

Z

Rd

|Vn[µ](x)-V[µ](x)|2 dµ(x)
⌘

dm < +1

so that there exists a m-negligible set N 0 � N such that

1X

n=1

Z

Rd

|Vn[µ](x)-V[µ](x)|2 dµ(x) < 1 for every µ 2 P2(R
d
) \ N 0;

and this implies that Vn[µ] ! V[µ] strongly in L2(P2(R
d
),µ), so that V[µ] 2

Tanµ P2(R
d
) for every µ 2 P2(R

d
) \ N 0.

(11.2.27) is obvious. Since for every F = L�, � 2 C1

b
DF[µ] = r� 2 Tanµ P2(R

d
)

for every µ 2 P2(R
d
), it is immediate to check that DF 2 Tanµ P2(R

d
) for ev-

ery cylindrical function. The closure property of Tan(P2(R
d
),m) then yields the

analogous conclusion for the Wasserstein differential of DmF of a Sobolef func-
tion F 2 H1,2

(W2).
Let us eventually consider (11.2.28): it is sufficient to prove that any V 2 T ?

belongs to
�

Tan(P2(R
d
),m)

�?. If V 2 T ? is a Borel vector field, then
Z

P2(Rd)

⇣ Z
hr⇣,V(µ, x)idµ(x)

⌘
H(µ)dm(µ) = 0
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for every ⇣ 2 C , H 2 L . Since L is dense in L2(P2(R
d
),m) we have for every

⇣ 2 C
Z
hr⇣,V(µ, x)idµ(x) = 0 for m-a.e. µ 2 P2(R

d
)

Since C is countable, we can find a m-negligible set N ⇢ P2(R
d
) such that

Z
hr⇣,V(µ, x)idµ(x) = 0 for every ⇣ 2 C and every µ 2 P2(R

d
) \ N

which shows that V[µ] 2
⇣

Tanµ P2(R
d
)

⌘?
for every µ 2 P2(R

d
) \ N, so that for

every W 2 Tan(P2(R
d
),m)

Z
hV(µ, x),W(µ, x)idm =

Z

P2(Rd)

⇣ Z

Rd

hV[µ](x),W[µ](x)idµ(x)
⌘

dm(µ)

= 0.

Let us collect a few simple properties of G0.

Lemma 11.2.9. Let G0 be as in (11.2.25).

(1) G0 is a closed subspace of L2(P2(R
d
)⇥ R

d,m; R
d
) and coincides with the set

Dm0 =
�
V 2 L2(P2(R

d
)⇥ R

d,m; R
d
) : (0,V) 2 G

 
. (11.2.29)

(2) For every V 2 G0 there exists a sequence Fn 2 Cyl
�
P2(R

d
)
�

, n 2 N, such that

Fn ! 0 in L2(P2(R
d
),m), DFn ! V strongly in L2(P2(R

d
)⇥R

d,m; R
d
).

(11.2.30)

Every element V 2 G0 is therefore characterized by the property

for every " > 0 there exists F 2 Cyl
�
P2(R

d
)
�

s.t.
kFkL2(P2(Rd),m) 6 ", kDF-VkL2(P2(Rd)⇥Rd,m;Rd) 6 ".

(11.2.31)

(3) G0 satisfies the locality property

for every V 2 G0, H 2 L1(P2(R
d
),m) : HV 2 G0. (11.2.32)

Proof. We have already observed that G is a closed vector space, coinciding with
the weak closure of

�
(F, DF) : F 2 Cyl

�
P2(R

d
)
� 

; in view of (11.2.24), (11.2.25)
precisely characterizes the elements V for which (0,V) 2 G. Therefore the first
two claims are obvious.

Let us eventually prove the last claim. We first consider the case when H 2
Cyl

�
P2(R

d
)
�
. If V 2 G0 we can find a sequence Fn 2 Cyl

�
P2(R

d
)
�

such that
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(11.2.30) holds. Setting Gn := HFn, since H is bounded we clearly have Gn ! 0

strongly in L2(P2(R
d
),m); moreover, by the Leibnitz rule we get

DGn = HDFn + FnDH ! HV (11.2.33)

since DH 2 L1(P2(R
d
)⇥ R,m; R

d
) and Fn ! 0 strongly in L2(P2(R

d
),m). We

deduce that HV 2 G0 as well.
If now H is a function in L1(P2(R

d
),m) we can find by (10.1.4) a uniformly

bounded sequence Hn 2 Cyl
�
P2(R

d
)
�

converging to H m-a.e. in P2(R
d
), so

that HnV ! HV in L2(P2(R
d
)⇥ R

d,m; R
d
). Being G0 a closed subspace and

HnV 2 G0 by the previous step, we deduce that HV 2 G0.

We now define

T := Tan(P2(R
d
),m)\ G?

0

=

⌦
V 2 Tan(P2(R

d
),m) : hV,WiL2 = 0 for every W 2 G0

↵ (11.2.34)

We can now obtain our main structure result.

Theorem 11.2.10. For every F 2 H1,2
(W2) we have DmF 2 T and for every V 2 G0

we have the pointwise orthogonality property

Z

Rd

DmF(µ, x) ·V(µ, x)dµ(x) = 0 for m-a.e. µ 2 P2(R
d
). (11.2.35)

If V 2 DmF then V - DmF 2 G0. In particular for every F 2 Cyl
�
P2(R

d
)
�

DF-

DmF 2 G0 and for every G 2 H1,2
(W2)

Z

Rd

DmF(µ, x) · DmG(µ, x)dµ(x) =
Z

Rd

DF(µ, x) · DmG(µ, x)dµ(x) (11.2.36)

for m-a.e. µ 2 P2(R
d
). Finally, DmF is the element of minimal L2-norm in DmF.

Proof. Let us first observe that if Fn 2 Cyl
�
P2(R

d
)
�

satisfies (11.2.30) and F̃n 2
Cyl

�
P2(R

d
)
�

satisfies (11.2.1), we have Fn + F̃n ! F strongly in L2(P2(R
d
),m),

with D(Fn + F̃n) ! DmF+V, so that by (10.1.17) we get

CE2(F) =

Z
|DmF|

2 dm 6
Z
|DmF+V|2 dm. (11.2.37)

Since V is arbitrary in G0 we deduce that
Z

DmF ·V dm = 0 for every V 2 G0.

Replacing V with HV, H 2 L1(P2(R
d
),m) we get

Z

P2(Rd)

⇣ Z

Rd

DmF ·V dµ(x)
⌘
H(µ)dm(µ) = 0 for V 2 G0, H 2 L1(P2(R

d
),m),

(11.2.38)

which yields (11.2.35).
If now Fn 2 Cyl

�
P2(R

d
)
�

converges strongly to F with DF * V, selecting F̃n
as above, we have Fn - F̃n ! 0 strongly in L2(P2(R

d
),m) and D(Fn - F̃n) *

G- DmF weakly in L2(P2(R
d
)⇥ R

d,m; R
d
), so that G- DmF 2 G0. By (11.2.37)

we conclude that DmF is the element of minimal norm in DmF = DmF+ G0.
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We can give a “pointwise” interpretation of the orthogonality properties of
the previous Theorem. Let us select an orthonormal set O0 := {Vn : n 2 N} ⇢
L2

(P2(R
d
)⇥ R

d,m; R
d
) dense in G0 (we are thus assuming that Vn are Borel

vector fields everywhere defined). Since
Z

P2(Rd)

⇣ Z

Rd

|Vn(µ, x)|2 dµ(x)
⌘

dm(µ) = 1

we deduce that there exists a m-negligible set N ⇢ P2(R
d
) such that

Z

Rd

|Vn(µ, x)|2 dµ(x) < 1 for every n 2 N, µ 2 P2(R
d
) \ N. (11.2.39)

We thus define for every µ 2 P2(R
d
) \ N

G0[µ] := span{Vn[µ] : n 2 N} ⇢ L2(Rd,µ; R
d
), (11.2.40)

T[µ] :=
�
G0[µ]

�? \ Tanµ P2(R
d
) (11.2.41)

Theorem 11.2.11. Let F 2 H1,2
(W2) and V 2 L2(P2(R

d
)⇥ R

d,m; R
d
).

(1) V belongs to G0 if and only if for m-a.e. µ V[µ] 2 G0[µ].

(2) V belongs to T if and only if for m-a.e. µ V[µ] 2 T[µ].

(3) DmF[µ] 2 T[µ] for m-a.e. µ.

(4) If F 2 Cyl
�
P2(R

d
)
�

then DmF[µ] is the L2(Rd,µ)-orthogonal projection of
DF[µ] on T[µ] for m-a.e. µ 2 P2(R

d
).

Proof. If V 2 G0 we can write V = limN!1VN in L2(P2(R
d
) ⇥ R

d,m; R
d
)

where VN
=

P
N

n=1
unVn is the orthogonal projection of V on the space gen-

erated by {V1, · · · ,VN}, with un := hV ,Vni. Clearly VN
[µ] 2 G0[µ] for every

N 2 N and µ 2 P2(R
d
) \ N. Moreover we can find a subsequence, not relabeled,

and a m-negligible set N 0 � N such that VN
[µ] ! V[µ] in L2(Rd,µ; R

d
) for every

µ 2 P2(R
d
) \ N 0, so that V[µ] 2 G0[µ] for every µ 2 P2(R

d
) \ N 0.

Let now V 2 L2(P2(R
d
)⇥ R

d,m; R
d
) be a vector field such that V[µ] 2 G0[µ]

for m-a.e. µ 2 P2(R
d
). Since G0 is a closed subspace, in order to show that

V 2 G0, it is sufficient to prove that the scalar product with every element
W 2 G?

0
vanishes.

If W 2 G?
0

then for every H 2 L1(P2(R
d
),m) and every n 2 N we get

Z

P2(Rd)

⇣ Z

Rd

W ·Vn dµ(x)
⌘
H(µ)dm(µ) = 0,

since HVn 2 G0 by (11.2.32). Being H arbitrary, we find that there exists a m-
negligible set N 00 ⇢ P2(R

d
) such that

Z

Rd

W[µ] ·Vn[µ]dµ = 0 for every n 2 N, µ 2 P2(R
d
) \ N 00,

so that W[µ] 2
�
G0[µ]

�? for m-a.e.µ 2 P2(R
d
). We then deduce that

Z

Rd

W[µ] ·V[µ]dµ = 0 for m-a.e. µ 2 P2(R
d
),
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and therefore

hW,ViL2 =

Z

P2(Rd)

⇣ Z

Rd

W ·V dµ(x)
⌘

dm(µ) = 0.

The previous argument also shows that a vector field V belongs to G?
0

if and
only if V[µ] 2

�
G0[µ])

? for m-a.e. µ 2 P2(R
d
). This fact, together with the very

definition of Tan(P2(R
d
),m) (11.2.26), yields claim (2).

Claim (3) just follows by Theorem 11.2.10, since (11.2.35) shows that, for every
F 2 H1,2

(W2), DmF[µ] 2 T[µ] for m-a.e. µ 2 P2(R
d
).

If F 2 Cyl
�
P2(R

d
)
�

we also have DF[µ]- DmF[µ] 2 G0[µ] =
�
G[µ]

�?
m-a.e., so

that DmF[µ] is the L2(Rd,µ; R
d
)-orthogonal projection of DF[µ] on G[µ], as stated

in Claim (4).

We can now interpret the above results in terms of the nonsmooth tangent and
cotangent structures introduced and developed by Gigli in [55]. Since we are in
the Hilbertian case, we can identify the cotangent module L2(T⇤P2(R

d
)) and

dual tangent module L2(TP2(R
d
)) with the Hilbert space T defined by (11.2.34).

Let us report a useful characterization of the cotangent module L2(T⇤X) [57,
Theorem 4.1.1] for a general metric measure space (X, d,m).

Theorem 11.2.12. Let (X, d,m) be a metric measure space. Then there exists a unique
pair ((M, k · kM, ·M, | · |M), diff) such that (M, k · kM, ·M, | · |M) is a L2(X,m)-normed
L1(X,m) module (cf. [57, Definition 3.1.1]) and diff : D1,2

(X, d,m) ! M is a linear
operator such that

(i) |diff(f)|M = |Df|? m-a.e. in X for every f 2 D1,2
(X, d,m).

(ii) M is generated by
�
diff(f) : f 2 D1,2

(X, d,m)
 

.

Uniqueness is intended in the following sense: if ((M̃, k · kM̃, ·M̃, | · |M̃), ˜diff) is another
pair with the above properties, then there exists a module isomorphism J : M ! M̃ such
that ˜diff = J � diff.

We thus have the following result.

Theorem 11.2.13. There exists a module isomorphism I : T ! L2(T⇤P2(R
d
)) ⇠=

L2(TP2(R
d
)) such that I � Dm coincides with the abstract differential operator taking

values in L2(T⇤P2(R
d
)) as in [55, Defintion 2.2.2].

Proof. It is enough to show that T (with an appropriate module structure) and
the map Dm satisfy the properties listed in Theorem 11.2.12.
If as k · kT we take the L2(P2(R

d
)⇥ R

d,m; R
d
) norm, it is clear that (T, k · kT)

is a Banach space, being closed by Lemma 11.2.8. The pointwise product ·T :

L1(P2(R
d
),m)⇥ T ! T is well defined by (11.2.27) and (11.2.32), bilinear and

associative in L1(P2(R
d
),m) by definition. Defining the pointwise norm | · |T

as the map sending V 2 T to kV[µ]kµ, we immediately have that kVkT =

k|V|TkL2(P2(Rd),m) and |H ·T V|T = |H||V|T m-a.e. in P2(R
d
) for every V 2 T and

every H 2 L1(P2(R
d
),m). This shows that (T, k · kT, ·T, | · |T) is a L2(P2(R

d
),m)-

normed L1(P2(R
d
),m) module.
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Taking as diff the map Dm : D1,2
(P2(R

d
),W2,m) ! T, we see that it is well

defined and linear by Theorem 11.2.1 and Theorem 11.2.10. Property (i) of Theo-
rem 11.2.12 follows by (11.2.8). Finally property (ii) of Theorem 11.2.12, meaning
that ([57, Definition 3.1.13]) T coincides with the k · kT-closure of

span
�
HDmF : H 2 L1(P2(R

d
),m), F 2 D1,2

(P2(R
d
),W2,m)

 
,

follows by (11.2.28) and the definition of T. This shows the existence of the mod-
ule isomorphism I : T ! L2(T⇤P2(R

d
)).

Finally, notice that L2(T⇤P2(R
d
)) ⇠= L2(TP2(R

d
)) since (P2(R

d
),W2,m) is in-

finitesimally Hilbertian by Corollary 11.1.12 (see also [57, Theorem 4.3]).

11.2.2 Examples

Isometric embedding of Euclidean Sobolev spaces

Let ⌦ be a Lipschitz bounded open set in R
d. For every ! 2 ⌦ let us consider

the Dirac mass �! concentrated at !. The map ◆ : ! 7! �! is an isometry
between R

d and ◆(Rd
) ⇢ P2(R

d
). Setting m := ◆]L d ⌦ we easily see that

H1,2
(P2(R

d
),W2,m) is isomorphic to H1,2

(⌦).
In this case only Dirac masses are involved and cylindrical functions are of the

form F(�!) =  (�(!)), so that the Wasserstein gradient reduces to the usual
gradient of  ��.

Another isometric embedding is also possible: we fix a reference measure � 2
P2(R

d
) symmetric w.r.t. the origin and we consider the map ◆ : ⌦ ! P2(R

d
)

given by

◆(!) := �(·-!) = (t!)]�, t!(x) := x+!, ! 2 ⌦. (11.2.42)

Every function F : P2(R
d
) ! R corresponds to a map

F̂(!) = F((t!)]�). (11.2.43)

In the case of a cylindrical function as in (11.1.5) we get

F̂(!) =  
⇣ Z
�1(x+!)d�(x), · · · ,

Z
�N(x+!)d�(x)

⌘

=  
⇣
�1 ⇤ �(!), · · · ,�N ⇤ �(!)

⌘
.

(11.2.44)

In this case (identifying ◆(!) with !) we have

DF(!, x) =
NX

j=1

@ j(�1 ⇤ �(!), · · · ,�N ⇤ �(!))r�j(x) (11.2.45)

and

kDF[!]k2! =

Z

Rd

���
NX

j=1

@ j(�1 ⇤ �(!), · · · ,�N ⇤ �(!))r�j(x+!)

���
2

d�(x).

(11.2.46)
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Moreover, ◆ is an isometry of R
d into P2(R

d
), so that H1,2

(P2(R
d
),W2,m) is still

isomorphic to H1,2
(⌦). It follows that the m-Wasserstein gradient of F is

DmF(!, x) =
NX

j=1

@ j(�1 ⇤ �(!), · · · ,�N ⇤ �(!))r�j ⇤ �(!) (11.2.47)

independent of x and the minimal relaxed gradient is

|DmF|
2

?(!) =

���
NX

j=1

@ j(�1 ⇤ �(!), · · · ,�N ⇤ �(!))r�j ⇤ �(!)

���
2

. (11.2.48)

Gaussian distributions

Let now  = N(!,⌃) := (det(2⇡⌃))-1/2e-
1

2
hx,⌃-1

xiL d be a Gaussian measure
with mean ! and covariance matrix ⌃ 2 Sym+

(d), the space of symmetric and
positive definite d⇥ d-matrices; we consider the set

Nd
:=

⌦
N(!,⌃) : ! 2 R

d, ⌃ 2 Sym+
(d)

↵
, (11.2.49)

endowed with the Wasserstein distance and a Borel probability measure m con-
centrated on Nd. Since

W2

2
(N(!1,⌃1),N(!2,⌃2)) = |!1-!2|

2
+ tr⌃1+ tr⌃2- 2tr

⇣
⌃
1/2

1
⌃2⌃

1/2

1

⌘1/2
,

(11.2.50)

H1,2
(P2(R

d
),W2,m) is isometric to H1,2

(P2(R
d
), d, m̂) where P2(R

d
) = R

d ⇥
Sym+

(d) ⇢ R
d ⇥ R

d⇥d endowed with the distance d induced by the formula
(11.2.50) and m̂ is the measure induced by m.

Closable case

Following [44], we assume the following integration by parts formula: for every
G 2 Cyl1(P2(R

d
)) and w 2 C1

c (R
d; R

d
) there exists D⇤

wG 2 L2(P2(R
d
),m)

such that for every F 2 Cyl1(P2(R
d
)) it holds

Z

P2(Rd)

✓Z

Rd

DF(µ, x) ·w(x)dµ(x)
◆
G(µ)dm(µ) =

Z

P2(Rd)
D⇤

wG(µ)F(µ)dm(µ).

This equality implies that G0 = {0} i.e. that pCE2 is closable. We notice that
the measure m induced by the immersion in the space of delta measure consid-
ered at the beginning of this section satisfies the integration by parts formula
above (see also Example 5.4 in [44]). In [44], in case the base space is a com-
pact Riemannian manifold, are reported a few example of measures m satisfying
the (Riemannian analogue of the) integration by parts formula: the normalized
mixed Poisson measure (Example 5.11 in [44] and [2, 103]), the entropic measure
over S

1 (Example 5.15 in [44] and [101]) and the Malliavin–Shavgulidze image
measure (Example 5.18 in [44] and [81]).
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11.3 extension to riemannian manifolds and hilbert spaces

The aim of this Section is to extend the density result stated in Theorem 11.1.11
from the finite dimensional and flat space R

d to Riemannian manifolds and
(possibly infinite dimensional) separable Hilbert spaces. Our first step deals with
manifolds embedded in some Euclidean space R

d and in fact we will consider
more general closed subsets of R

d.

11.3.1 Intrinsic Wasserstein spaces on closed subsets of R
d

In this subsection we denote by ⇢ the Euclidean distance on R
d. P2(R

d
) still

denotes the subset of Borel probability measure on R
d with finite second ⇢-

moment and W2 is the Wasserstein distance on P2(R
d
) induced by ⇢.

We assume that C ⇢ R
d is a closed set and that � is a distance on C such that

(C,�) is a complete and separable metric space and

⇢(x1, x2) 6 �(x1, x2) 6 ⇢C,`(x1, x2) for every x1, x2 2 C, (11.3.1)

where ⇢C,` is defined as in (10.3.3) with respect to the distance d := ⇢. Since
the topology induced by � is stronger than the Euclidean topology and they are
both Polish topologies, the Borel sets of (C,�) coincide with the Borel sets of C
as a subset of the Euclidean space R

d. This means that every Borel probability
measure on R

d with support contained in C can be identified with a Borel prob-
ability measure in (C,�). Conversely any probability measure on (C,�) extends
to a probability measure on R

d. We can thus denote unambiguously by P(C) the
set of Borel probability measures on C and by P2,�(C) the elements of P(C) with
finite second �-moment.
P2,�(C) can be identified with the subset of P2(R

d
)

�
µ 2 P2(R

d
) : supp(µ) ⇢ C,

Z

C

�2(x0, x)dµ(x) < +1 for some x0 2 C

�
.

We will denote by ◆ : C ! R
d the inclusion map; ◆ : P2,�(C) ! P2(R

d
) is the

corresponding continuous injection given by ◆(µ) := ◆]µ, which may be identified
with the inclusion map of P2,�(C) into P2,�(R

d
).

Since (P2(C),W2,�) is a complete and separable metric space and the topology
induced by W2,� is stronger than the topology induced by W2, we deduce that
P2,�(C) is a Lusin (and therefore Borel) subset of P2(R

d
).

If m is a Borel probability measure on P2,�(C), ◆]m is the Borel measure in
P2(R

d
) which is concentrated on P2,�(C) and satisfies ◆]m(Z) = m(Z\ P2,�(C))

for every Borel set Z ⇢ P2(R
d
).

In a similar way, if F : P2(R
d
) ! R is a Borel (or ◆]m- measurable) map, we

will set ◆⇤F := F � ◆ : P2,�(C) ! R.

Theorem 11.3.1. We have H1,2
(P2,�(C),W2,�,m) ⇠= H1,2

(P2(R
d
),W2, ◆]m) with

equal minimal relaxed gradient, meaning that

|D(◆⇤F)|? = ◆⇤ (|DF|?) for every F 2 H1,2
(P2(R

d
),W2, ◆]m). (11.3.2)
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In particular H1,2
(P2,�(C),W2,�,m) is an Hilbert space and the algebra of cylindri-

cal functions ◆⇤
�

Cyl
�
P2(R

d
)
� �

is dense in H1,2
(P2,�(C),W2,�,m) in the sense of

(11.1.18).

Proof. We want to apply Theorem 10.3.3 where X := P2(R
d
), d := W2, Y :=

P2,�(C), and � := W2,�. The first assumption of Condition (A), ◆]m(P2(R
d
) \

P2,�(C)) = 0, is clearly satisfied by construction.
In order to prove (10.3.9) we consider a W2-Lipschitz curve µ : [0, `] ! P2(R

d
)

parametrized by the W2-arclength such that µ(s) 2 P2,�(C) for L 1-a.e. s 2 [0, `].
Since the map µ is continuous in P2(R

d
), C is a closed set, and µs(R

d \C) = 0

for L 1-a.e. s 2 [0, `], we conclude that µs(R
d \C) = 0 for every s 2 [0, `].

By [5, Theorem 8.2.1, Theorem 8.3.1]) there exists a measure ⌘ 2 P(C([0, `]; R
d
))

concentrated on absolutely continuous curves such that (et)](⌘) = µ(t) for every
t 2 [0, `] and

Z
|� 0

(t)|2 d⌘(�) =
Z
|�̇|2⇢(t)d⌘(�) = 1 for a.e. t 2 [0, `]. (11.3.3)

Let us also consider the function ⇣(x) := dist(x,C)^1, x 2 R
d, where dist(x,C) :=

minz2C ⇢(x, z). ⇣ is a bounded Lipschitz function which vanishes precisely on C.
Fubini’s Theorem yields

Z ⇣ Z `

0

⇣(�(t))dt
⌘

d⌘(�) =
Z
`

0

Z
⇣(et(�))d⌘(�)dt =

Z
`

0

Z

Rd

⇣dµt dt = 0

since
R
⇣(x)dµt = 0 for L 1-a.e. t 2 (0, `).

It follows that
R
`

0
⇣(�(t))dt = 0 for ⌘-a.e. �, so that the set of t 2 [0, `] for

which �(t) 2 C is dense in [0, `]. Being C closed, we conclude that � takes values
in C for ⌘-a.e. �.

We can now estimate the W2,� distance between the two measures µt0
and

µt1
, where 0 6 t0 < t1 6 ` :

W2

2,�(µt0
,µt1

) 6
Z
�2(�(t0),�(t1))d⌘(�) 6

Z ⇣ Zt1

t0

|�̇|�(s)ds
⌘2

d⌘(�)

=

Z ⇣ Zt1

t0

|�̇|⇢(s)ds
⌘2

d⌘(�) 6 (t1 - t0)

Z Z
t1

t0

|�̇|2⇢ dsd⌘(�)

= (t1 - t0)

Z
t1

t0

Z
|�̇|2⇢ d⌘(�)ds = (t1 - t0)

2,

where we have used (11.3.1) and Remark 10.3.2 to say that |�̇|⇢(s) = |�̇|�(s).
Choosing t0 2 [0, `] such that µt0

2 P2,�(C) we deduce that µt1
2 P2,�(C) as

well for every t1 2 [0, `]. This concludes the proof of property (A).
Condition (B) corresponds to

W2(µ0,µ1) 6 W2,�(µ0,µ1) 6 (W2)Y,`(µ0,µ1) for every µ0,µ1 2 Y = P2,�(C),
(11.3.4)

where (W2)Y,`(µ0,µ1) is defined as in (10.3.3) with W2 in place of d. The first in-
equality immediately follows by (11.3.1); to prove the second one, we use (10.3.4)
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and the above estimate with t0 = 0 and t1 = ` for a a W2-Lipshitz curve
µ : [0, `] ! Y such that |µ̇|W2

= 1 a.e. in [0, `] with µ(0) = µ0 and µ(`) = µ1.
Taking the infimum w.r.t. ` we obtain (11.3.4).

11.3.2 Wasserstein-Sobolev space on complete Riemannian manifolds

In this subsection, we discuss the case of the Sobolev space H1,2
(P2(M),W2,dM

,m)

where (M, dM) is a smooth and complete Riemannian manifold endowed with
the canonical Riemannian distance dM (inducing the Wasserstein distance W2,dM

)
and m is a Borel probability measure on P2(M). We will denote by A the unital
algebra generated by

�
Lf : f 2 C1

c(M)
 

.

Theorem 11.3.2. H1,2
(P2(M),W2,dM

,m) is an Hilbert space and the algebra A is
(strongly) dense: for every F 2 H1,2

(P2(M),W2,dM
,m) there exists a sequence Fn 2 A ,

n 2 N such that

Fn ! F, lip(Fn) ! |DF|? strongly in L2(P2(M),m). (11.3.5)

Proof. By Nash isometric embedding Theorem [87] we can find a dimension d,
and an isometric embedding | : M ! |(M) ⇢ R

d. On M := |(M) we can
define the (Riemannian) metric dM inherited by dM: dM(|(x), |(y)) = dM(x,y)
so that | is an isometry and (M, dM) is a complete and separable metric space.
We denote by | := |] the corresponding isometry between (P2(M),W2,dM

) and
(P2(M),W2,dM) and we also set m̃ := |]m 2 P(P2(M)).

It is clear that the map |⇤ : F 7! F � | induces a linear isometric isomorphism
between H1,2

(P2(M),W2,dM , m̃) and H1,2
(P2(M),W2,dM

,m).
Since M is complete and | is an embedding, M is a closed subset of R

d and
dM induces on M the relative topology of R

d. Since | is isometric, we also have

⇢(y1,y2) 6 dM(y1,y2) = ⇢M,`(y1,y2) for every y1,y2 2 M, (11.3.6)

where ⇢M,` is as in (10.3.3) and ⇢ denotes the Euclidean distance on R
d.

As in Section 11.3.1, we can introduce the inclusion map ◆ : M ! R
d and

the corresponding ◆ = ◆] : P2,dM(M) ! P2(R
d
). By Theorem 11.3.1 we have

that the map ◆⇤ : F 7! F � ◆ provides a linear isometric isomorphism between
H1,2

(P2(R
d
),W2, ◆]m̃) and H1,2

(P2,dM(M),W2,dM , m̃) satisfying (11.3.2); we con-
clude that the map ⇤ := |⇤ � ◆⇤ = (◆ � |)⇤ is a isometric isomorphism between
H1,2

(P2(R
d
),W2,]m) (notice that ] = ◆] � |]) and H1,2

(P2,dM
(M),W2,dM

,m)

satisfying

|D(⇤F)|? = ⇤ (|DF|?) for every F 2 H1,2
(P2(R

d
),W2,]m). (11.3.7)

This property in particular yields the Hilbertianity of H1,2
(P2(M),W2,dM

,m).
In order to prove that A is dense in H1,2

(P2(M),W2,dM
,m) we consider the

algebra ˜A generated by
�
L
f̃
: f̃ 2 C1

c (R
d
)
 

; Proposition 11.1.21 shows that ˜A is
strongly dense in H1,2

(P2(R
d
),W2, m̃), so that A 0

:= ⇤( ˜A ) is strongly dense in
H1,2

(P2,dM
(M),W2,dM

,m).
A 0 is generated by functions of the form ⇤L

f̃
, f̃ 2 C1

c (R
d
). Since

⇤L
f̃
(µ) = L

f̃
((µ)) =

Z

Rd

f̃((x))dµ(x) for every µ 2 P2,dM
(M),
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where  = ◆ � |, we see that A 0 is generated by functions of the form L
f̃�, so that

A 0 ⇢ A and a fortiori A is strongly dense in H1,2
(P2,dM

(M),W2,dM
,m) as well.

To prove (11.3.5) (involving the asymptotic Lipschitz constants of functions in
A with respect to the Riemannian metric) we observe that for every F̃ 2 ˜A [108,
Lemma 3.1.14]

⇤F̃ 2 A 0 ⇢ A , ⇤(lipW2
F̃) > lipW2,d

M

⇤F̃. (11.3.8)

Let now F = ⇤F̃ 2 H1,2
(P2(M),W2,dM

,m) with F̃ 2 H1,2
(P2(R

d
),W2, m̃); there

exists a sequence F̃n 2 ˜A such that

F̃n ! F̃, lipW2
F̃n ! |DF̃|? in L2(P2(R

d
), m̃).

Applying the linear isometric isomorphism ⇤, we deduce that the sequence
⇤Fn 2 A 0 satisfies

⇤F̃n ! F, ⇤
�
lipW2

F̃n
�
! ⇤

�
|DF̃|?

�
= |DF|? in L2(P2,dM

(M),m). (11.3.9)

Up to extracting a suitable (not relabelled) subsequence and using (11.3.8), we
can suppose that lipW2,d

M

⇤F̃n converges weakly in L2(P2(M),W2,dM
) to some

G 2 L2(P2(M),W2,dM
) relaxed gradient of F. (11.3.8) and (11.3.9) also yield

Z
G2 dm 6 lim sup

n!1

Z
(lipW2,d

M

⇤Fn)
2 dm

6 lim sup
n!1

Z ⇣
⇤(lipW2

F̃n)
⌘2

dm

=

Z
|DF|2? dm,

showing that G = |DF|? and lipW2,d
M

⇤Fn ! |DF|? strongly in L2(P2,dM
(M),m).

11.3.3 Wasserstein-Sobolev space on Hilbert spaces

In this last section we will consider the case of a separable Hilbert space (H, | · |);
as usual, the space P2(H) will be endowed with the Wasserstein distance W2

induced by the Hilbertian norm of H and we will assume that m is a Borel
probability measure on P2(H).

We select a complete orthonormal system E := (en)n2N and the collection of
maps ⇡d : H ! R

d, d 2 N, given by

⇡d(x) :=
�
hx, e1i, · · · , hx, edi

�
. (11.3.10)

The adjoint map ⇡d⇤ : R
d ! H is given by

⇡d⇤(y1, · · · ,yd) :=

dX

j=1

yj ej. (11.3.11)

The map ⇡̂d := ⇡d⇤ � ⇡d is the orthogonal projection of H onto span{e1, · · · , ed}.
We say that a function � : H ! R belongs to C1

b
(H,E) if it can be written as

� := ' � ⇡d for some d 2 N, ' 2 C1

b
(R

d
). (11.3.12)
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Clearly � 2 C1

b
(H) and its gradient r� can be written as

r� = ⇡d⇤ �r' � ⇡d, r�(x) :=
dX

j=1

@j'(⇡
d
(x))ej. (11.3.13)

We then consider the algebra Cyl (P2(H)) generated by
�
L� : � 2 C1

b
(H,E)

 
. For

every F 2 Cyl (P2(H)) we can find N 2 N, a polynomial  : R
N ! R and

functions �n 2 C1

b
(H,E), n = 1, · · · ,N, such that

F(µ) = ( � L�)(µ), (11.3.14)

where � = (�1, . . . ,�N). As in (11.1.7) we can set

DF(µ, x) :=
NX

n=1

@n (L�(µ))r�n(x). (11.3.15)

It is also easy to check that a function F belongs to Cyl (P2(H)) if and only if
there exists d 2 N and F̃ 2 Cyl

�
P2(R

d
)
�

such that

F(µ) = F̃(⇡d] (µ)) for every µ 2 P2(H), (11.3.16)

so that

DF(µ, x) = ⇡d⇤
⇣

DF̃(⇡d] µ,⇡d(x))
⌘

, kDF[µ]kµ = kDF̃(⇡d] µ)k⇡d

] µ
. (11.3.17)

By Proposition 11.1.10 and using (11.3.17) it is not difficult to check that

kDF[µ]kµ = lipF(µ) for every µ 2 P2(H). (11.3.18)

Adapting in an obvious way the definitions in (11.1.16) and (11.1.17) to the
Hilbertian framework, we have the following result.

Theorem 11.3.3. H1,2
(P2(H),W2,m) is an Hilbert space and the algebra Cyl (P2(H))

is (strongly) dense: for every F 2 H1,2
(P2(H),W2,m) there exists a sequence Fn 2

Cyl (P2(H)), n 2 N such that

Fn ! F, lip(Fn) ! |DF|? strongly in L2(P2(H),m). (11.3.19)

Proof. Let us set A := Cyl (P2(H)); we use Theorem 10.2.1 and we want to prove
that for every ⌫ 2 P2(H) the function

F(µ) := W2(⌫,µ) satisfies |DF|?,A 6 1 m-a.e.. (11.3.20)

We split the proof in two steps.
Step 1: it is sufficient to prove that, for every h 2 N, the function Fh : P2(H) !

R

Fh(µ) := W2(⇡̂
h

] ⌫, ⇡̂h] µ) satisfies |DFh|?,A 6 1 m-a.e. (11.3.21)

In fact, using the continuity property of the Wasserstein distance, it is clear that
for every µ 2 P2(H)

lim
n!1

Fh(µ) = F(µ), (11.3.22)
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so that it is enough to apply Theorem 10.1.2(1)-(3) to obtain (11.3.20).
Step 2: Let h 2 N be fixed and let us denote by W2,h the Wasserstein distance

on P2(R
h
); it is easy to check that

W2,h(⇡
h

] µ0,⇡h] µ1) = W2(⇡̂
h

] µ0, ⇡̂h] µ1) for every µ0,µ1 2 P2(H).

Thus, if we define the function F̃h : P2(R
h
) ! R as

F̃h(µ) := W2,h(⇡
h

] ⌫,µ)

we get that

Fh(µ) = F̃h(⇡
h

] µ).

We also introduce the measure mh 2 P(P2(R
h
)) which is the push-forward of

m through the (1-Lipschitz) map Ph
: P2(H) ! P2(R

h
) defined as Ph

(µ) := ⇡h] µ.
By Theorem 11.1.11 applied to H1,2

(P2(R
h
),W2,h,mh), we can find a sequence

of cylindrical functions F̃h,n 2 Cyl
�
P2(R

h
)
�
, n 2 N, such that

F̃h,n ! F̃h in L2(P2(R
h
),mh), (11.3.23)

lipP2(Rh)F̃h,n ! gh in L2(P2(R
h
),mh) with gh 6 1 mh-a.e. (11.3.24)

We thus consider the functions Fh,n 2 Cyl (P2(H)) defined as in (11.3.16) by

Fh,n(µ) := F̃h,n(⇡
h

] µ) = F̃h,n(P
h
(µ)) for every µ 2 P2(H). (11.3.25)

We immediately have that Fh,n ! Fh in L2(P2(H),m); on the other hand, (11.3.17)
and (11.3.18) yield

lipFh,n(µ) = lipP2(Rh)F̃h,n(P
h
(µ)

so that

lipFh,n ! gh � Ph in L2(P2(H),m)

and gh � Ph 6 1 m-a.e. in P2(H). By Theorem 10.1.2(1)-(3), we obtain (11.3.21),
concluding the proof.

Remark 11.3.4. We remark that the results in Sections 11.1.2 and 11.2.1 can be
extended to P2(M) and P2(H) in an analogous way.
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