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Abstract

In recent decades, scientists and engineers have benefited greatly from advances in computa-
tional mechanics. A key ingredient for the success of computational methods is the steadily in-
creasing computing power as well as the development of algorithms capable of exploiting it. The
simulation of complex mechanical systems’ behavior is currently possible with great accuracy,
which is especially valuable for systems hardly accessible by prototyping or experiments. The
need for larger computing power is also the motivation for rising computing power, this seems
to be a trivial statement. In other words however the statement reads: To date, the available com-
puting power has never been sufficient to address the complexity of all prevailing questions to
full satisfaction. As a result, approaches to generate approximate solutions to computationally
unaffordable models have increasingly gained attention in computational science and established
the field of reduced order modeling.

Starting from a full-order model (FOM), the so-called projection-based model order reduction
(MOR) generates a reduced-order model (ROM) by searching an approximation to the FOM
solution in a low-dimensional subspace. As a result, arising systems of equations throughout
the iterative solution process can contain several orders of magnitude fewer unknowns than the
high-dimensional FOM. A natural application of projection-based MOR arises for parametrized
models, which have to be solved for a large number of parameter variations in a many query
context, e.g. arising in uncertainty quantification or optimization. Although individual model
evaluations might be affordable, the computational burden here results from the combination of
large models and large number of requested model evaluations. Examples of such parametrized
systems arise in biomedical applications. Complex geometries and pronounced nonlinearities
require high spatial resolution. At the same time, uncertainties in model parameters due to im-
precise data on the object of interest as part of the (human) body require e.g. statistical analysis
or model calibration and establish the aforementioned many query context.

In this thesis, two biomedical models are investigated. The abdominal aortic aneurysm (AAA)
is a pathological dilatation of the abdominal aorta, which is prone to spontaneous rupture with
frequently a lethal outcome for the patient. The first computational model at hand returns a
spatially resolved state of the aortic stress and can serve to examine critical conditions, e.g. if
rupture is identified with material failure. Secondly, a cardiac mechanics model is investigated.
This model returns, besides material deformation throughout heart beats, temporally resolved
data on parameters related to cardiac performance such as ventricular pressures and volumes.
Consequently, the model can be used to investigate critical conditions for heart failure. The
application and adaption of projection-based MOR to these biomedical models is the subject
of this thesis. Recalling the many query context, reduced subspaces are constructed in a data-
driven approach from selected samples of the FOMs. Upon that, a so-called hyper reduction
is performed for fast assembly of nonlinear system components. Prestressing, multidimensional
parametrization, multiple nonlinear system components, large deformations and highly nonlinear
material behavior are examples of arising challenges in the aforementioned context.






Zusammenfassung

Wissenschaftler und Ingenieure haben in den letzten Jahrzehnten in starker Auspriagung von
Fortschritten in der numerischen Mechanik profitiert. Wichtige Voraussetzungen dieses Erfolgs
waren die Verfiigbarkeit stetig wachsender Rechenleistung sowie die Entwicklung von paral-
lelisierten Algorithmen, welche diese Rechenleistung ausnutzen konnen. Die akkurate Simula-
tion komplexer mechanischer Systeme ist derzeit moglich, was von besonders hohem Wert ist,
wenn das betrachtete System nur schwer oder gar nicht durch Prototypisierung oder Experimente
zugénglich ist. Die stetig wachsende Verfiigbarkeit an Rechenleistung wird angetrieben durch
den stetig wachsenden Bedarf an Rechenleistung, diese Aussage scheint trivial. Mit anderen
Worten jedoch heifit das: Die verfiigbare Rechenleistung war bisher nie ausreichend, um alle
numerischen Probleme zur vollen Zufriedenheit behandeln zu konnen. Als Folge haben Ansitze
zur Approximation von Losungen komplexer Modelle zunehmend Aufmerksamkeit gewonnen
und den Wissenschaftsbereich der Modellordnungsreduktion (MOR) begriindet.

Ausgehend von einem hochdimensionalen Modell (FOM, Abkiirzung fiir englischen Begriff
“full-order model”) wird in der sogenannten projektionsbasierten MOR ein reduziertes Modell
(ROM, Abkiirzung fiir englischen Begriff “reduced-order model”) durch Suche einer Approxi-
mation der FOM Losung in einem niedrigdimensionalen Losungsraum erzeugt. Folglich kénnen
auftretende Gleichungssysteme im iterativen Losungsprozess um Grofenordnungen weniger
Unbekannte enthalten als das FOM. Ein natiirliches Anwendungsgebiet fiir projektionsbasierte
MOR entspringt parametrisierten Systemen, welche fiir eine groBe Anzahl an Parametervariatio-
nen ausgewertet werden miissen. Ein solcher Kontext ergibt sich z.B. bei der Quantifizierung von
Unsicherheiten oder der Optimierung. Auch wenn individuelle Modellauswertungen bezahlbar
sein konnen, wird die verfiigbare Rechenleistung zum Flaschenhals aufgrund der Kombination
von hochaufgelostem Modell und der Anzahl an auszufiihrenden Modellauswertungen. Zahl-
reiche Beispiele solcher parametrisierter Systeme ergeben sich aus der Biomechanik. Komplexe
Geometrien und ausgeprigte Nichtlinearititen setzen eine hohe raumliche Auflosung voraus.
Gleichzeitig erfordern Unsicherheiten in Modellparametern aufgrund einer Unschérfe der Daten-
lage und bedingtem Zugang zum Objekt als Teil des (menschlichen) Korpers die Anwendung
statistischer Analyse oder Modellkalibrierung und begriinden daher den oben genannten Kon-
text vieler Modellauswertungen.

Im Fokus dieser Arbeit liegen zwei biomechanische Modelle. Das abdominale Aortenaneurys-
ma ist eine pathologische Aufweitung der abdominalen Aorta. Das erkrankte Aortensegment
kann spontan rupturieren, was in den meisten Féllen fiir den betroffenen Patienten tddlich endet.
Das erste biomechanische Modell liefert einen rdumlich aufgeldsten Zustand der Aneurysmen-
wandspannungen und kann zur Untersuchung kritischer Bedingungen herangezogen werden,
wenn Ruptur als mechanisches Materialversagen interpretiert wird. Das zweite biomechanis-
che Modell beschreibt die Mechanik des schlagenden Herzens. Dieses Modell liefert, neben
der Materialverformung wihrend eines Herzschlags, zeitlich aufgeldste Daten (z.B. ventrikulire
Driicke und Volumen) im Zusammenhang mit der Herzperformanz. Folglich kann dieses Modell
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fiir die Untersuchung kritischer Bedingungen mit Auswirkung auf Herzinsuffizienz herange-
zogen werden. Zielstellung der vorliegenden Arbeit ist die Adaption und Anwendung projek-
tionsbasierter MOR auf die beschriebenen biomechanischen Modelle. Im oben erwihnten Kon-
text vieler Modellauswertungen werden niedrigdimensionale Losungsrdaume datengetrieben aus
Losungen ausgewihlter Parametersamples erzeugt. Zudem wird die sogenannte Hyperreduk-
tion fiir schnelle Assemblierung nichtlinearer Systemkomponenten verwendet. Vorgespannte
Geometrien, mehrdimensionale Parametrisierungen, mehrere nichtlineare Systemkomponenten,
grofle Deformationen und hochgradig nichtlineares Materialverhalten sind Beispiele sich ergeben-
der Herausforderungen im beschriebenen Kontext.

v









Contents

1. Introduction 1
1.1, Motivation . . . . . . . . . .. e |
1.2. Cardiovascular system . . . . . . . . . . . ... 1

1.2.1. Abdominal aortic aneurysm . . . . . . .. ... ... ... 2
1.2.2. Cardiac mechanics and heart failure . . . . . .. ... ... ... ... 3
1.3. Researchobjective . . . . .. .. .. . . .. ... ... 6
1.4, Outline . . . . . . . . e e 8

2. Fundamentals on continuum mechanics and finite elements 9

2.1. Modeling in continuous space and time . . . . . . . . . . ... ... ... 9
2.1.1. Kinematics . . . . . . ... e e 9
2.1.2. Tractionand Stress . . . . . . . . . ... e e 11
2.1.3. Constitutive modeling of a solid continuum . . . . . .. ... ... .. 12
2.1.4. Balanceequations . . . . . ... ... ... ..o 13
2.1.5. Dimensionally reduced modeling of fluid mechanics . . . .. ... .. 14

2.2. Model discretization and solution . . . . . . . . ... ... L 17
2.2.1. Weak form momentum equation . . . . . . .. ... ... ... ... 18
2.2.2. Discretization in SPaCe . . . . . . . . . i e e e 19
2.2.3. Discretization in (pseudo)time . . . . . . . ... ..o 21
2.2.4. Nonlinear solution techniques . . . . . . ... ... ... ....... 23

3. Projection-based model order reduction and hyper reduction 25

3.1. Dimensional reduction . . . . . . . .. ... L L 25
3.1.1. Projection on low-dimensional subspaces . . . . ... ... ...... 25
3.1.2. Projection-based dimensional reduction . . . . . ... ... ... ... 26
3.1.3. Construction of low-dimensional subspaces . . . . . . ... ... ... 28
3.1.4. Computational example for dimensional reduction . . . . ... .. .. 31

3.2. Hyperreduction . . . . . . . . . . .. L 32
3.2.1. General principle and overview of hyper reduction methods . . . . . . 33
3.2.2. Energy-conserving mesh sampling and weighting . . . . . ... .. .. 34
3.2.3. Computational example for hyper reduction . . . . . . ... ... ... 38

4. Model reduction of the aneurysmatic abdominal aorta 41

4.1. Computational modeling of abdominal aortic aneurysms . . . . . .. ... .. 42
4.1.1. Insilicomodel . .. ... .. ... .. ... 42
4.1.2. Exemplary computation . . . . . .. .. ... ... ... 47

4.2. Reduced-order basis construction . . . . . . . .. ... .o 48
4.2.1. Space-filling designs and maximin distance sampling . . . . . . .. .. 48

vii



Contents

4.2.2. Subspaceangles . . . . . .. ... 51

4.2.3. Construction of low-dimensional solution subspaces by greedy maximin
distance sampling . . . . . . . .. .. ... 54
4.3. Resultsand discussion . . . . . . .. ..o o 56
4.3.1. Subspaceinclination . . . . ... ... ... ... L. 56
4.3.2. Patient-specific parametrization and computational models . . . . . . . 59
4.3.3. Full-order model greedy maximin distance sampling . . . .. ... .. 60
4.3.4. Reduced-order model accuracy and speedup . . . . . .. ... .. ... 64
4.3.5. Application to Monte Carlo sampling . . . . . ... ... ... .... 66
5. Model reduction of the beating heart 69
5.1.  Computational modeling of cardiac mechanics . . . . . . . ... ... ... .. 70
5.1.1. Imsilicomodel . . .. ... ... ... .. ... ... ... ... 70
5.1.2. Exemplary computation . . . . .. ... ... ... ... 79
5.2. Reduced-ordermodel . . . . . .. ... L 82
5.3. Resultsand discussion . . . . . . .. ... L L L L 86
5.3.1. Dimensional reducibility . . . . . . ... ... 86
5.3.2. Application to homeostatic state estimation . . . . ... ... ... .. 87
5.3.3. Application to heart performance estimation . . . . . . . ... ... .. 87

5.3.4. Application to simulation of functional impairment by myocardial in-
farction . . . . . . .. 94
6. Summary and Outlook 97
A. Appendix 99
A.l. ECSW meshesof AAAmodels . . . . . ... ... ... ... .. ....... 99
A.2. Relative DROM errors of AAAmodels . . . ... ... ... ......... 101
A.3. Relative DHROM errors of AAAmodels. . . . .. ... ... ......... 102
A.4. Probability distribution approximation of AAAmodels . .. ... ....... 103
A.5. DHROM approximation of cardiac homeostasis . . . . . . .. ... ... ... 104
Bibliography 105

viii



List of Figures

1.1.

1.2.

1.3.

2.1.

2.2.

2.3.
24.
2.5.
2.6.
2.7.
2.8.
2.9.

3.1.
3.2

3.3.

Sketch of human cardiovascular system with infrarenal abdominal aortic aneurysm.
Adapted with permission from [ 1] (published under CC BY license [27]). Added
labeling, original image does not contain text. . . . . . . . . ... ... .. .. 3
Simplified scheme of the cardiovascular system. In order to highlight the closed

loop nature of blood circulation, left heart chambers have been spatially sepa-

rated from right heart chambers. The colors blue and red mark deoxygenated

and oxygenated blood, respectively. . . . . .. ... oo 4
Sketch of heart chamber pressures and ventricular volumes. Five phases of the
cardiac cycle can be identified by %, - ¢;: atrial contraction and active support of
ventricular filling, ¢; - t5: isovolumetric ventricular contraction, 5 - t3: ventricu-

lar ejection, t3 - t4: isovolumetric relaxation, ¢4 - t5: passive ventricular filling. . 5

General setting of solid body deformation in continuum mechanics. Deformation
starts from the reference configuration 2y = Q(0) at time ¢ = 0 and ends at time
t = tena and configuration Q(tend). -« « v v o e e e 10
Visualization of traction and volumetric force as well as corresponding surface
and volume elements in reference and current configuration. The traction ¢, and
volumetric force fy,1 are parallel to the traction ¢ and volumetric force fq,

respectively. . . . . L 12
Compartment element in OD fluid flow. . . . . .. ... ... ... . ... ... 15
Resistance element in OD fluid flow. . . . . . .. ... ... ... ... .. .. 15
Inertance element in OD fluid flow. . . . . . . . ... ... ... ... ..... 16
Capacitance element in OD fluid flow. . . . . . .. ... ... ... ... .. 16
Valve element in OD fluid flow. . . . . . . ... ... ... ... ........ 16
Exemplary OD flow system. . . . . . . .. .. .. ... ... ... ... 17

Tetrahedral finite element with distribution and enumeration of nodes. Red cir-
cles indicate nodes of a linearly interpolating element. Blue dots indicate nodes
of a quadratically interpolating element. . . . . . . ... ... ... ... ... 19

Projection on span(V') in direction orthogonal to span(W). . . ... ... .. 26
Visualization of an orthogonal projection on a low-dimensional subspace. The
reference shape d = 0 (drawn for better illustration, not part of the projection)
is depicted in light gray. The low-dimensional subspace is given by the span of
two shapes (green wires). The orthogonally projected mode (black wires) is an
optimal (in the sense of equation (3.6)) approximation to the light blue shape

d = d* in the given low-dimensional subspace. . . .. ... .. ... ... .. 27
Computational domain for oscillating beam simulation. The surface loaded by a
pressure boundary condition at the free end is indicated by red coloring. . . . . 31

X



List of Figures

3.4. Oscillating beam at different time instances. The depicted modes result from a
finite element simulation with linear hexahedral elements and the gen-o method
for spatial and temporal discretization, respectively. . . . . . . . ... .. ...

3.5. Singular values and relative errors of snapshot matrix containing 300 displace-
ment modes of simulated oscillating beam. Selected displacement modes are
depicted in Figure 3.4. . . . . . . ...

3.6. Element selection and weights resulting from Algorithm 2. Only colored ele-
ments are evaluated in the assembly of the internal force vector. ECSW toler-
ance of the depicted reduced mesh is ¢, = 10~%, which leads to a selection of
224 elements. . . ... .. e e e e

4.1. Patient-specific AAA computational domain. The full domain is depicted on the
left, while a cut through the AAA exposing the vessel wall (in blue) and the ILT
(in light grey) is depicted on the right. Adapted with permission from [122] (pub-
lished under CC BY license [28]). Adapted labeling to match the nomenclature
inthisthesis. . . . . . . . . . .

4.2. Finite element mesh of the patient-specific AAA computational model. . . . . .

4.3. Visualization of the prestressing stage displacement field (first row), deformation
stage displacement field (second row) and von Mises stress field (third row) at
different pressure loads. . . . . . . .. ... Lo L

4.4. Exemplary GMmD design with first point chosen at random. Reproduced with
permission from [122] (published under CC BY license [28]). . . ... .. ..

4.5. Geometrical interpretation of subspace angles in 3D space between 2D sub-
spaces. The 2D subspaces are visualized by the red and blue plane and corre-
spond to the column span of Y € R3**? and Z € R3*?, respectively. The
principle vectors yo,y; € span(Y) and zg, z; € span(Z) enclose the corre-
sponding subspace angles ¢, and 6;. Reproduced with permission from [122]
(published under CC BY license [28]). . . . . . . . . . . . ... ... ...

4.6. Maximum subspace angle between matrices Y, € R!9*20 and Y; € R!00x20
over perturbation factor n from equation (4.34) for ten different realizations.
Large perturbations are indicated by large maximum subspace angles. . . . . .

4.7. Patient 2 mesh (a), cut exposing ILT (b), exemplary von Mises stress distribution
(¢). Reproduced with permission from [ 122] (published under CC BY license [

4.8. Patient 3 mesh (a), cut exposing ILT (b), exemplary von Mises stress distribution
(c). Reproduced with permission from [ 122] (published under CC BY license [

4.9. Inclination of a subspace represented by span(V'). The direction of inclination
is Q and the angle of inclination is «j,q. The inclined subspace is span(W).
Following relations hold: ||V, = |Q], = [W], =1, VTQ =0, VIW =

COS(QUnel)e « « v v v v e e e e e e

32

33

39

43
47

49

51

53

1. 57

1. 57

58



List of Figures

4.10.

4.11.

4.12.

4.13.

4.14.

5.1.

5.2

5.3.

AAA wall von Mises stress field (left plot) and von Mises strain field (right plot)
relative errors over an inclination of the FOM solution subspace using patient 1
as computational example. Different colors indicate different directions of incli-
nation, in total 100 DROM model evaluations have been performed per inclina-
tion angle. While low inclination and high inclination angles yield similar rel-
ative 12-errors across different directions of inclination, pronounced differences
in the 12-error arise for the mid range, depending on the direction of inclination.

Decay of SADs for 200 points (one subdomain) distributed by GMmD is de-
picted in subfigures (a)-(c) for each patient-specific computational model. The
maximin distance coincides for each patient (given that the design under con-
sideration does not contain adaptivity) and is depicted in subfigure (d). Blue
markers in subfigures (a)-(c) indicate parametric configurations in the (— — —)-
octant, red markers indicate parametric configurations in the (+ + +)-octant.
Reproduced with permission from [122] (published under CC BY license [28]).

Decay of SADs for points distributed by GMmD on 8 subdomains. The green
horizontal line marks the threshold for the stopping criterion 6, = 0.1. Point
colors indicate their domain correspondence. Reproduced with permission from
[122] (published under CC BY license [28]). . . . . . . . .. .. ... ... ..

Parametric configurations in the physical parameter domain gained from GMmD
sampling on 8 subdomains. Corresponding subspace angles are depicted in Fig-
ure 4.12. Reproduced with permission from [122] (published under CC BY li-
cense [28]). . . .o e

Influence of algorithmic parameters using patient 1 as computational example.
The left plot depicts mean relative 12-errors (evaluated on a full factorial de-
sign with 1000 points in the parameter domain) together with the corresponding
number of selected ROB modes over the threshold SAD 6,;,. The right plot de-
picts mean relative 12-errors with the corresponding number of selected mesh
elements for internal force assembly over the ECSW tolerance ¢;,. Adapted with
permission from [122] (published under CC BY license [28]). Adapted axes la-
beling to match the nomenclature in this thesis. . . . . . ... ... ... ...

Porcine heart computational domain. The full domain is depicted on the left,
while a cut exposing the ventricular lumina is depicted on the right. Ventricles are
closed by artificial lids. Atria are not part of the solid mechanics computational
domain. . . . . ... e

Visualization of fiber and sheet direction on epicardial surface (left) and on en-
docardial surface (right). Black dashes correspond to fiber direction fj, white
dashes correspond to sheet direction 8. . . . . . . . ... ...

Exemplary active stress evolution over one cardiac cycle with period 7¢yce = 1s.
The curve is generated from an implicit Euler temporal discretization of equation

59

61

62

63

66

71

71

xi



List of Figures

Xii

54.

5.5.
5.6.
5.7.

5.8.

5.9.

5.10.

5.11.

5.12.

5.13.

5.14.

5.15.

Dimensionally reduced vascular system network including pulmonary and sys-
temic circulation. The four heart chambers are modeled as compartments. Two-
way coupling to the 3D structural mechanics model is achieved via the ventricu-
lar compartments (please refer to the main text for a detailed explanation). Atrial
compartments are modeled by an elastance model (5.38). Quantities highlighted
in red correspond to oxygenated blood flow, while quantities in blue correspond
to deoxygenated blood flow. . . . . . ... ... ... L.
Exemplary evolution of left and right atrial elastance over one cardiac cycle. . .
Visualization of heart finite element discretization. . . . . .. ... .. .. ..
Flow chart for homeostatic state computation of the beating heart. Abbreviations
included are IC: initial condition, CER: cycle error criterion, FOM: full-order

Flow network state variables and ventricular volumes temporally resolved over
one cardiac cycle at homeostasis. . . . . . . . . .. ... Lo
Deformation stage displacement field of heart cycle at different time instances,
in more detail (a): configuration at 80% of the diastolic phase, (b): configuration
prior to left ventricular ejection, (c): configuration prior to left ventricular refill-
ing, (d): configuration at 80% of the diastolic phase of the upcoming heart beat.
The heartis athomeostasis. . . . . . . . . ... ... ... ... ...
Decay of singular values (blue markers) for deformation stage displacement
modes for a homeostatic heart beat. The vertical lines indicate truncation of
POD modes controlled by the threshold ration &, (see equation (5.55)). Ad-
ditionally, relative orthogonal projection errors (black markers) are depicted for
several ROBs as indicated by the &, mode truncation criterion. . . . . . . . . .
Flow chart for homeostatic state computation of the beating heart including
DHROM speedup. Abbreviations included are IC: initial condition, CER: cy-
cle error criterion, FOM: full-order model, DHROM: dimensionally and hyper
reduced-order model, ROB: reduced-orderbasis. . . . . .. ... ... ....
Reduced mesh for structural part of heart model. The reduced mesh consists of
an element subset of the full computational mesh (internal force vector), an el-
ement subset of the luminal ventricular surface mesh (ventricular pressure force
vector) and an element subset of the epicardial, heart base and covering lids
surface (embedding tissue force vector). Only colored elements are evaluated
during assembly of the individual residual contributions. . . . . . . . ... ..
Effects of parameter variations on left ventricular pressure-volume curves. The
reference state is assumed with a contractility oy = 70kPa, resistance for opened
mitral valve Rfi’f:n = 1079, resistance for opened aortic valve Rﬁf&? = 107"
and resistance of systemic arterial circulation R¥® = 120 - 107°. Each (non-
reference) curve represents a deviation from the reference curve in one of the
mentioned parameters. . . . . ... . L ..o e e e e e e e e e e
Random grid with 100 points in the parameters R, oo, R“™" and R°™. The

sys? v,in v,out *

76
77
78

81

83

84

86

88

89

91

colors indicate all combinations of the discrete parameter values R and R-™™. 92

v,in v,out *

Relative DHROM errors in heart performance assessed by ejection fraction and
stroke work. . . . ... L



List of Figures

5.16.

5.17.

A2

A3.

Ad4.

AS.

A.6.

Subfigure (a): Visualization of infarct tissue. Cyan region (apex) and blue region
correspond to 1cm and 6¢cm infarct radius, respectively. Healthy tissue is colored
in red. Subfigure (b): Contracted state after ventricular ejection (f = 0.54s, see
Section 5.1.2) during dynamic cycling for 1cm infarction (red) and 6¢cm infarc-
tion (light green). . . . . . . . . . ...
Sampled cardiac output and time resolved ventricular volumes for sample with
maximum cardiac output eIror. . . . . . . . . .. ..o e e e e e

Reduced mesh for patient-specific AAA models. Only colored elements are eval-
uated during assembly of the nonlinear force contributions. Left column depicts
the subset of mesh elements for assembly of internal force, right column for
assembly of luminal pressure force. . . . . . .. .. ... ... ... ...,
Relative DROM errors for von Mises stress and von Mises strain fields in the
AAA wall. The test grid results from a full factorial design of 1000 points in the
parameter domain. Most samples (> 98%) have a relative error below 1%. . . .
Relative DHROM errors for von Mises stress and von Mises strain fields in the
AAA wall. The test grid results from a full factorial design of 1000 points in the
parameter domain. Most samples (> 97%) have a relative error below 1%. . . .
Maximum von Mises stress and maximum von Mises strain probability dis-
tributions from kernel-density-estimation (Gaussian kernel). 10* identical (per
patient) samples have been evaluated for both FOM (reference solution) and
DHROM (approximated solution). See Table 4.7 for quantitative data on the
probability distributions. . . . . . ...

Temporally resolved state variables and ventricular volumes for FOM and DHROM

homeostatic state. Most pronounced deviations arise in proximity to peaks of
flowrates. . . . . . . . e

94

95

100

101

102

103

Xiii






List of Tables

3.1.

4.1.

4.2.

4.3.

4.4.

45.

4.6.

4.7.

5.1.

5.3.

5.5.
5.7.

5.9.
5.10.

5.11.

Number of selected mesh elements and accuracy in terms of the relative error
for different ECSW tolerances ¢, cf. Algorithm2. . . .. ... ... ... ..

Number of degrees of freedom /N and number of elements /N, for patient-specific
computational models . . . . . . . ... ... L
Patient-specific bounds for the parameter domain . . . . . ... ... ... ..
Number of points distributed in each subdomain by GMmD sampling. A visu-
alization of the parametric configurations in the physical domain is depicted in
Figure 4.13. . . . . . . . e
Number of degrees of freedom p for patient-specific ROMs, number of assem-
bled elements for internal force n/"® and number of assembled elements for the
luminal pressure force n'P. . . .. ...
Mean values of relative errors for von Mises stress and von Mises strain field in
AAA wall. FOM evaluations serve as reference. The test grid is built from a full
factorial design with 1000 points in the parameter domain. . . . . . . . .. ..
Speedup of DROM and DHROM with FOM timing as reference. The speedup
is calculated as the mean value of seven simulations per patient. . . . .. . ..
Mean values Y max vMmax anq standard deviations oy imax gvMmax for refer-
ence (FOM) and approximate (DHROM) probability distributions of maximum
von Mises stress and maximum von Mises strain. The statistical data is computed
from 10,000 identical samples per individual patients. . . . . . . . .. ... ..

vMmax

Baseline parameters for structural heart. See equations referenced in the first
column for interpretation of physical meaning. . . . . . . . ... ... ... ..
Baseline parameters for flow network. See equations referenced in the first col-
umn for interpretation of physical meaning. . . . . .. ... ... ... ....
Baseline initial flow network state variables. . . . . . . ... .. ... ... ..
Relative 12-errors of temporally resolved state variables and ventricular volumes
for DHROM homeostatic state estimation. . . . . . . . . . . ... ... ....
Relative 12-error for DHROM estimated heart performance quantities. . . . . .
Speedup for ROM and DHROM for one cardiac cycle at randomly selected sam-
Ples. . . .
Speedup for DROM and DHROM for one cardiac cycle at randomly selected
samples. . ... e e

38

60
60

63

64

65

65

67

79

80
82

90
92

93

XV






Acronyms

AAA

CER
CT

DEIM
DHROM

DOE
DOF
DROM

ECM
ECSW
EDV
ESV
EVAR

FOM

gen-«
GMmD
GNAT

ILT

MmD
mMD
MOR
MRI
MULF

ODE
OSR
OST

POD

abdominal aortic aneurysm

cycle error criterion
computed tomography

discrete empirical interpolation method

dimensionally reduced as well as hyper reduced order
model

design of (computer) experiments

degree of freedom

dimensionally reduced order model

empirical cubature method

energy-conserving mesh sampling and weighting
end-diastolic ventricular volume

end-systolic ventricular volume

endovascular aneurysm repair

full-order model

generalized-«
greedy maximin distance design
Gauss-Newton with approximated tensors

intraluminal thrombus

maximin distance design

minimax distance design

model order reduction

magnetic resonance imaging

modified updated Lagrangian formulation

ordinary differential equation
open surgical repair

one-step-6

proper-orthogonal decomposition

xXvii



Nomenclature

xviil

PTC
PVW

QOI

ROB
ROM

SAD
SNNLS
SVD

pseudo-transient continuation
principle of virtual work

quantity of interest

reduced-order basis
reduced-order model

subspace angle distance
sparse non-negative least-squares
singular value decomposition



Nomenclature

Subscripts and superscripts

.
[ ]

e N e e e e e e e e e e e N N N e N N N
<

inlet quantity

outlet quantity

internal quantity
external quantity
isochoric contribution
volumetric contribution

quantity related to artificial lids in heart model

prestressing stage quantity
deformation stage quantity
arterial circulation quantity
venous circulation quantity
ventricular quantity

atrial quantity

minimum quantity

maximum quantity

structural and OD flow network quantity
quantity on finite element e
ILT quantity

AAA wall quantity

left heart quantity

right heart quantity

systemic circulation quantity
pulmonary circulation quantity

Domains and surfaces

Qo

reference configuration domain

current configuration domain

surface of current configuration domain
luminal ILT surface

proximal and distal cut faces of AAA
heart base surface

epicardial surface

abluminal surface of covering heart lids
left ventricular surface

right ventricular surface

Xix



Nomenclature

Continuum mechanics quantities

7] deformation map

Ty position vector of reference configuration material element
T position vector of current configuration material element
u material displacement field

v material velocity field

a material acceleration field

t time

F deformation gradient

day reference configuration material element surface
da current configuration material element surface

J determinant of deformation gradient

dvy reference configuration material element volume
dv current configuration material element volume

C right Cauchy-Green tensor

ng normed direction in reference configuration

n normed direction in current configuration

A stretch

gCL Green-Lagrange strain

gbA Euler-Almansi strain

E Green-Lagrange strain tensor

e Euler-Almansi strain tensor

df force acting on material element

to first Piola-Kirchhoff traction

P first Piola-Kirchhoff stress tensor

S second Piola-Kirchhoff stress tensor

o Cauchy stress tensor

v strain energy density function

I, 15, I3 principal invariants of right Cauchy-Green tensor
00 reference configuration mass density

p current configuration mass density

dm mass of material element

Svol,0 force per undeformed volume

fool force per deformed volume

D pressure

Vdyn dynamic viscosity

T symmetric part of spatial velocity gradient

E elastic modulus

v Poisson’s ratio

C modified right Cauchy-Green tensor

I, L, principle invariants of modified right Cauchy-Green tensor
a, 3 stiffness related material parameters of AAA wall

XX



Nomenclature

p sys
Pdia
2
oM
€vM

Jo
So
0o
O'max
O'min
tcontr
Lrelax
ki,L

Ci 1

bulk modulus

stiftness related material parameter of ILT

first Piola-Kirchhoff stress tensor field as function of the deformation gradient
first Piola-Kirchhoff stress tensor field as function of the displacement
mixed representation of first Piola-Kirchhoff stress tensor field as function of
the displacement and deformation gradient

systolic blood pressure

diastolic blood pressure

AAA wall thickness

von Mises stress field

von Mises strain field

fiber direction in heart model
sheet direction in heart model
contractility

active contraction upstroke rate
active contraction relaxation rate
initialization time of active stress
relaxation time of active stress

spring stiffness per reference surface area, ¢ € {b, e, lid}
dashpot stiffness per reference surface area, i € {b, e, lid}

Dimensionally reduced flow network quantities

QRS

at

Atabt,act

q
g

pressure
flow rate

resistance

capacitance

inertance

valve resistance

atrial elastance

duration of atrial activation
0D flow state variables

0D flow residual

Symbols related to finite element discretization

Ne
N
Te
Nn
P
d

od
N;

number of full mesh elements
number of global DOFs
number of element DOFs
number of element nodes
shape function matrix
displacement DOFs

virtual displacement DOFs

shape functions, with i € {0,...,n, — 1}

xXxi



Nomenclature

M assembled mass matrix

f assembled force vector

D assembled Rayleigh damping matrix

Y mass scaling in Rayleigh damping

cy stiffness scaling in Rayleigh damping

T assembled solid mechanics residual

J, assembled solid mechanics residual Jacobian
Er residual convergence tolerance

¥ solution increment convergence tolerance
EPTC scaling in pseudo-transient continuation

Ad displacement DOFs increment

L® assembly operator of element e towards global system
& index set of full mesh elements

Symbols related to temporal discretization

Ny number of time steps

n time step count

At time step size

0 parameter in one-step-f scheme

O, OLF residual interpolation factors in generalized-o scheme

B,y velocity and acceleration reconstruction factors in generalized-a scheme
Poo numerical dissipation controlling parameter in generalized-a scheme

Symbols in dimensional reduction and hyper reduction

reduced-order basis

discrete projection operator

low-dimensional approximation of displacement field
generalized coordinates of displacement field
generalized coordinates increment for displacement field
dimension of low-dimensional subspace

snapshot matrix

matrix with left singular vectors

diagonal matrix with singular values

matrix with right singular vectors

left singular vector

singular value

right singular vector

correlation matrix

dimensionally reduced residual

hyper reduced residual

hyper reduced residual Jacobian

ECSW weighting of element e

SISy | <

>

ISH

~

nO e W >

e

S lﬁl = Q;@

S
>
&

xXxii



Acronyms

S g My

Other symbols

I
ou
oW

EDV

index set of ECSW mesh elements

ECSW element weighting vector

ECSW system matrix

ECSW system right hand side

ECSW tolerance

ECSW subsystem matrix for subdomain j

ECSW subsystem right hand side for subdomain j
element index set of subdomain j

number of ECSW subdomains

identity matrix

weighting function

virtual work

parameter space

dimension of parameter space

number of design points to distribute
training grid

chosen points (e.g. by a specific design)
maximin design with n,, distributed points
minimax design with n,, distributed points
parameter vector

subspace angle

tuple with training grid subdomains
maximum subspace angle

subspace inclination angle

cycle error criterion

duration of one cardiac cycle

singular value threshold ratio

ejection fraction

stroke volume

end-diastolic volume

stroke work

cardiac output

heart rate

xxiii






1. Introduction

1.1. Motivation

Computational modeling for support of technical system design or general understanding of
physical processes has become a valuable instrument for scientists and engineers. Increasing
availability of high-performance computation clusters has been a key factor in development of
sophisticated algorithms with real world applications. Besides technical systems, biological sys-
tems emerged as challenging, but rewarding field of application for computational modeling with
great value for both physicians and patients. Examples are the application in understanding gen-
eral disease progression [130], risk assessment [& 1, ] or interventional planing [52, 82, ].
Frequently, spatially discretized models with high resolution are a prerequisite for reliable re-
sults. Additionally, multiple evaluations of the resulting large models have to be performed due
to the need for model calibration or statistical uncertainty in model parameters. Consequently, a
large demand on computing resources emerges.

This demand introduces a significant bottleneck towards clinical application and substantiates
the need for less computationally expensive models. As a result, model reduction with appli-
cation to biomedical models motivates the work in this thesis. The focus lies on computational
models of the cardiovascular system, in particular on cardiac and abdominal aortic aneurysm
mechanics.

This thesis takes the perspective of computational and engineering science. Nevertheless, a
certain amount of medical background is required for understanding the models at hand. The
remainder of this section is used to provide background on some aspects of the cardiovascular
system. In view of the applied models, emphasis is put on the abdominal aortic aneurysm and
the mechanics of the beating heart.

1.2. Cardiovascular system

The human cardiovascular system is the combination of a complex network of blood vessels as
well as the heart. At resting conditions, approximately five liters of blood are pumped by the
heart every minute. Blood provides nutrients and oxygen to tissue and removes waste products
and carbon dioxide from tissue, which makes a proper circulation of blood vitally important for
health.

Blood vessels are distinguished into three types: arteries, veins and capillaries. Arterial blood
flow is directed away from the heart, while venous blood flow is directed towards the heart.
Consequently, arterial blood pressure is significantly higher than venous pressure and arterial
wall structure must be mechanically stable to withstand the dynamic pressure load. Capillaries
allow an exchange of chemicals between tissue and transported blood through their thin walls
and can be found in arterial as well as venous parts of the blood vessel network.
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The heart is located inside the pericardium, a sac built of the fibrous pericardium (outer layer)
and the serous pericardium (inner layer), which itself consists of two layers forming a cavity.
This so-called pericardial cavity contains lubricating fluid to avoid friction during heart con-
traction and expansion. The inner layer of the serous pericardium is called epicardium and is
simultaneously the outer layer of the heart. The epicardium covers the myocardium, which is the
muscle tissue actively contracting in the cardiac cycle. The innermost layer of the heart is called
endocardium. Having blood contact, the endocardium avoids formation of blood clots and blood
adhering to the walls of heart chambers [£].

In this thesis, the focus lies on two computational models in the context of the cardiovascular
system. The following two sections provide brief medical background and establish a basis for
an engineering understanding of the biomechanics models under consideration.

1.2.1. Abdominal aortic aneurysm

The aorta transports oxygenated blood from the left ventricle and is the biggest artery in the
human body. Morphologically, the aorta consists of an ascending part starting at the heart, the
aortic arch, the thoracic aorta as well as the abdominal aorta bifurcating into the common iliac
arteries, see Figure 1.1.

The pathology under consideration in this thesis is the abdominal aortic aneurysm (AAA).
An AAA corresponds to a permanent dilatation of the abdominal aorta as a consequence of
preceding degeneration of aortic wall properties [ | 19]. Degenerated wall properties on the one
hand and increased blood pressure load due to increasing luminal surface on the other hand
turn AAAs prone to rupture, which is a severe medical emergency with lethal outcome in at
least 80% of incidences [36]. With age as a severe risk factor, the probability of developing
an AAA increases during the course of human life. Further exemplary risk factors are male
gender, comorbid cardiovascular diseases, hypertension, overweight as well as smoking history
and familiar predisposition [67].

Most AAAs are asymptomatic, such that diagnosis frequently happens accidentally [77].
Treatment is carried out depending on the progress of the disease. Recommendation for elec-
tive repair is given by the Society for vascular surgery in case of a size > 5.5cm for fusiform
AAAs and independently of AAAs size in case of saccular shape [19]. One type of surgical
treatment is open repair, wherein a blood vessel prosthesis is introduced to replace the dilated
section of the aorta via transabdominal access. A further, minimally invasive and in modern days
more frequently applied type of surgical treatment is endovascular aneurysm repair, wherein a
so-called stent-graft is deployed into the aorta [126]. Function of the stent-graft is to remove
mechanical load from the diseased section of the aortic wall and prevent rupture.

Surgical intervention in AAA treatment is related to a variety of risks. The risk of death within
30 days of open repair intervention has been reported up to 8%, while endovascular aneurysm
repair, regardless of its classification as minimally invasive interference, has a mortality rate up to
1.6% [19]. Postoperative risks are e.g. bowel obstruction, incisional hernia or graft infection [71]
in case of open repair and e.g. endoleaks (blood leaking into the aneurysm), endograft migration
(relocation of stent-graft after deployment) as well as endograft infection in case of endovascular
aneurysm repair [32].

A central issue physicians face is opposing the risk of surgical intervention with the risk of
AAA rupture, depending on the individual situation of every single patient. At the same time,
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strict application of AAA size based criterion mentioned above might underestimate the com-
plexity of the disease [42, 107]. In this context, state-of-the-art computational models have the
potential to greatly support clinical decision making with a benefit for both physicians and pa-
tients. The computational model under consideration in this thesis consists of a 3D resolved
aortic section fully including the dilated segment. Recently, model applications have been pre-
sented in the context of rupture risk assessment [ 14, 91] and in-silico modeling of endovascular
aneurysm repair outcome [52, 53].

aortic arch systemic
arteries

systemic

) pulmonary
Veins arteries
pulmonary ;{ ‘ 4 \"
veins - heart
/
aorta —
|
\ abdominal

aortic aneurysm

common iliac artery

Figure 1.1.: Sketch of human cardiovascular system with infrarenal abdominal aortic aneurysm.
Adapted with permission from [!] (published under CC BY license [27]). Added
labeling, original image does not contain text.

1.2.2. Cardiac mechanics and heart failure

Figure 1.2 depicts a highly simplified sketch of the cardiovascular system including the heart
and blood circulation. The heart contains four chambers, namely the left atrium, left ventricle,
right atrium and right ventricle. Left and right heart chambers have been spatially separated
in Figure 1.2 in order to illustrate the closed-loop nature of the circulation. Inside the heart,
blood flows from atria to ventricles. Outside the heart, the left ventricle pumps blood through the
systemic part of the circulation to the right atrium, while the right ventricle pumps blood through
the pulmonary part of the circulation to the left atrium. Blood oxygenation takes place in the



1. Introduction

lung as part of the pulmonary circulation. Blood deoxygenation is the consequence of oxygen
consumption in e.g. the viscera, muscles, brain and skin as part of the systemic circulation [124].

The flow in Figure 1.2 is regulated by pressure gradients as well as four valves. All valves (in a
healthy heart) close in case of a positive pressure gradient in direction of the main circulation and
keep the flow unidirectional. The mitral valve is located between the left atrium and ventricle, the
tricuspid valve between the right atrium and ventricle. These valves avoid ventricular backflow
and are simultaneously referred to as atrioventricular valves. Semilunar valves simultaneously
refer to the aortic valve between the left ventricle and aorta and the pulmonary valve between
the right ventricle and pulmonary artery. Consequently, semilunar valves avoid arterial backflow.

pulmonary . ;
pulmonary artery circulation pulmonary veins left atrium

right atrium

pulmonary valve aortic valve

mitral
tricuspid valve

valve

left ventricle

right ventricle

systemic veins

systemic aorta
circulation

Figure 1.2.: Simplified scheme of the cardiovascular system. In order to highlight the closed loop
nature of blood circulation, left heart chambers have been spatially separated from
right heart chambers. The colors blue and red mark deoxygenated and oxygenated
blood, respectively.

In more detail, a single heart beat can be subdivided in five phases [124]. Figure 1.3 contains
a sketch of exemplary pressure and volume curves and serves for discussion of the five phases.
Atrial contraction (phase 1, atrioventricular valves open, semimular valves closed) takes place
in the timespan %, - ¢;. Atrial contraction actively supports ventricular filling (ventricular volume
increases), which in turn is completed at time ¢;. Timespan t; - 5 (phase 2, atrioventricular valves
closed, semimular valves closed) is referred to as isovolumetric ventricular contraction. Given
that all valves in this phase are closed, an increase of ventricular pressure at constant ventricu-
lar volume takes place. Ventricular ejection (phase 3, atrioventricular valves closed, semimular
valves open) takes place in the timespan ¢, - 3. Blood is pumped into the aorta and pulmonary
artery. The consequence is a decrease of ventricular volume, left and right ventricular pressure
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curves align with aortic and pulmonary artery pressure curves, respectively. Isovolumetric re-
laxation (phase 4, atrioventricular valves closed, semimular valves closed) takes place in the
timespan t3 - t4. Ventricular pressure decreases at constant volume and the isovolumetric relax-
ation phase is completed with opening of atrioventricular valves at time ¢,. Finally, left and right
ventricles start to refill by receiving blood from the atria in the ventricular filling phase (phase
5, atrioventricular valves open, semimular valves closed). The cardiac cycle ends at time ¢5 and
the beginning atrial contraction initiates the next period.

Besides the presented five phases, the cardiac cycle is frequently partitioned in the systole and
the diastole. The systole comprises ventricular contraction and ejection, that is the timespan ¢,
- t3 in Figure 1.3. The rest of the cardiac cycle including ventricular relaxation and ventricu-
lar filling corresponds to the diastole. Important quantities in this context are the end-diastolic
ventricular volume (EDV) (i.e. ventricular volume at ¢;) and the end-systolic ventricular volume
(ESV) (i.e. ventricular volume at t3).

A aorta
o o right atrium
7 5
@ left ventricle 2 pulmonary artery right ventricle
8 a
left atrium
to t1ts tsty ts to t1to tsty ts
B | B
o o
i | left ventricle i | right ventricle
o P o o
£ P £ P
3 P = P
g | g |
| ¥
! L
! +—t +—t > y =t +—rt =3
to tl t2 t5 t4 t5 tO tl t? t3 t4 t5
time time
(a) Left atrium and ventricle (b) Right atrium and ventricle

Figure 1.3.: Sketch of heart chamber pressures and ventricular volumes. Five phases of the car-
diac cycle can be identified by ¢ - £;: atrial contraction and active support of ventric-
ular filling, ¢, - ¢5: isovolumetric ventricular contraction, ¢, - t3: ventricular ejection,
t3 - t4: isovolumetric relaxation, ¢4 - t5: passive ventricular filling.

Individual changes in chamber pressures and volumes dependent on physical activity (e.g.
resting vs. physically exercising person) are normal and important to meet body needs on the
one hand. On the other hand, changes in pressure and volume characteristics over longer periods
of time might indicate heart dysfunctioning. The term heart failure is used to reference a state
at which the heart is unable to supply the body with sufficient blood circulation, which might
lead to symptoms such as shortness of breath, reduced exercise capacity or fatigue. Distinction is
made between systolic and diastolic dysfunction. In systolic dysfunction, the heart suffers from
a reduced contractility. In diastolic dysfunction, ventricular filling is impaired [72].
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Prevalence estimation of heart failure is difficult due to the heterogeneity of the disease. A
recent review article [49] summarizes an adult population prevalence between 1% and 2% in
developed countries in case of recognized heart failure. Prevalence of unrecognized heart failure
(e.g. due to misclassification of symptoms) is estimated significantly higher. Besides prevalence,
high mortality after a diagnosis outlines the severeness of the disease. A recent meta-analysis
[65] of data from mainly Europe and North America states a 5-years survival rate of only 57%,
decreasing to 35% for the 10-years survival rate. In summary, heart failure severely diminishes
the quality of life by impairing heart performance. The computational model under consideration
in this thesis is able to rate patient-specific heart performance from data gained by simulation of
full cardiac cycles including a 3D resolved myocardium and a dimensionally reduced model for
the blood circulation network. Recently, model application has been presented in the context of
ventricular assist device development [59, ].

1.3. Research objective

Referring back to Section 1.1, there is a high potential value of computational biomedical mod-
els in supporting clinical analysis and decision making, while at the same time, the demand on
computational resource of large biomedical models quickly becomes a bottleneck in applica-
tion. In view of this problematic nature, the objective of this thesis is the examination, adaption
and extension of state of the art projection-based model order reduction (MOR) techniques to
the cardiovascular system, in particular to abdominal aortic aneurysm and cardiac mechanics
models.

The so-called offline-stage in projection-based MOR aims at the construction of the reduced-
order model (ROM). The goal of the offline-stage is twofold: First, a low-dimensional subspace
is constructed from processing multiple full-order model (FOM) solutions at selected parameter
samples. Second, a small subset of finite elements of the FOM discretization is extracted and
stored. Having completed the offline-stage once, a ROM results from a dimensional reduction
by restriction of the solution to remain in the low-dimensional subspace and a nonlinear system
assembly by evaluation of the extracted subset of mesh elements. The online-stage refers to the
repeated evaluation of the ROM, which, once constructed, can be evaluated using significantly
less computing resources than the FOM.
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Contributions in this work are:

e Model order reduction of prestressing: In biomedical screening, imaged structures are
frequently exposed to mechanical stress. From the viewpoint of structural continuum me-
chanics, this condition corresponds to a stressed reference configuration, significantly im-
pacting the material response in case of further loading of the nonlinear model. Prestress-
ing [46, 47], refers to the incorporation of the prevailing stress state into the fixed imaged
configuration, e.g. aortic and cardiac stress due to vascular and ventricular blood pres-
sure, respectively. The presented projection-based MOR framework consistently includes
prestressing.

e Full-order model sampling for reduced-order basis construction: Referring to the ex-
perience of preceding contributions [ 14, 83, ], the AAA is modeled by a stationary
structural mechanics problem with the deformation under systolic pressure as the con-
figuration of interest. To capture a low-dimensional subspace capable of accurately repro-
ducing all parametrized deformation states, a sampling design based on a greedy maximin
distance criterion [122] is proposed.

e Consistent hyper reduction: Nonlinear system components in biomedical modeling might
be of different nature, requiring individual treatment in hyper reduction. Examples in struc-
tural mechanics are the internal force, which needs assembly over the entire mesh includ-
ing evaluation of constitutive equations, and a nonlinear pressure load, which requires as-
sembly over a surface mesh with exclusively information on the geometry of that surface.
In this thesis, consistent hyper reduction means the application of the same hyper reduction
algorithm (energy-conserving mesh sampling and weighting, see Section 3.2.2 for details)
on different portions of the FOM mesh for different nonlinear system components.

e Validation for AAA mechanics: AAAs possess mechanically complex behavior due to
phenomena such as nonlinear constitutive laws, prestressing, interaction of thrombus and
aortic wall or deformation dependent load (e.g. blood load increases with inflating aneurysm
due to increasing luminal surface even at constant pressure). Focusing on stress and strain
states in the aneurysm wall, the influence of the quality of selected low-dimensional sub-
spaces and the approximation accuracy of constructed ROMs is investigated.

e Validation in the context of impaired cardiac functionality: Heart failure mostly is
a consequence of preceding cardiovascular diseases. The model at hand can reproduce
pathological conditions by modification of model parameters. The influence of a disease
on overall functionality of the heart can be evaluated from heart performance related me-
chanical quantities such as stroke work or cardiac output. Constructed ROMs resemble
conditions in the functionally impaired heart and are evaluated with respect to their ability
of predicting heart performance.
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1.4. Outline

The content of this thesis is organized as follows:

e Section 1 motivates the topic addressed in this thesis and gives medical background on
the cardiovascular system from an engineering perspective. Focus is laid on the abdomi-
nal aortic aneurysm and on cardiac mechanics. Research objective and thesis outline are
stated.

e Section 2 briefly introduces fundamentals of continuum mechanics with focus on 3D solid
mechanics as well as 0D (i.e. no resolution of fluid domain geometry) fluid mechanics.
In a second step, spatial and temporal discretization methods are addressed and iterative
solution techniques for nonlinear systems of equations are recalled.

e Section 3 initially deals with the general idea of discrete projection on low-dimensional
subspaces, which is then rigorously transferred to the application for dimensional reduc-
tion of discrete systems of equations. After addressing approaches for the construction of
low-dimensional subspaces, the general idea of hyper reduction following narrowed focus
on the energy-conserving mesh sampling and weighting method is presented. Both dimen-
sional reduction and hyper reduction are exemplified by simple computational examples.

e Section 4 deals with projection-based MOR of the AAA model. A discussion of the model
is presented first. Special attention is paid to the prestressing stage and a reformulation
of it in view of projection-based MOR. Next, the applied sampling algorithm for low-
dimensional subspace construction is motivated and stated. Subsequent numerical experi-
ments demonstrate application of the proposed sampling algorithm and hyper reduction to
patient-specific AAA models.

e Section S deals with projection-based MOR of the cardiac mechanics model. A discus-
sion of the computational model is presented first, including particularities as the self-
contracting myocardial tissue as well as the OD vascular system. Next, the monolithic and
two-way coupled ROM is stated. Subsequent numerical experiments discuss dimensional
reducibility of the cardiac mechanics model, show ROM application to homeostatic state
estimation and resembling impaired conditions of cardiac performance.



2. Fundamentals on continuum
mechanics and finite elements

Biomechanics models introduced in this thesis are based on continuum mechanics. Finite ele-
ment and finite difference methods are applied for discretization in space and time, respectively.
This section focuses on the fundamentals of continuum mechanics, spatial and temporal dis-
cretization schemes as well as solution strategies for the resulting nonlinear systems of equa-
tions.

2.1. Modeling in continuous space and time

Continuum mechanics is a mathematical formalism that deals with the response of a continuum
to environmental influences, whereas a continuum can be seen as a simplified model of matter.
The formalism combines general physical principles (such as conservation laws) with a great de-
gree of flexibility in modeling specific material behavior (constitutive laws), which explains the
wide application of continuum mechanics in science and engineering. This section gives a brief
introduction to continuum mechanics, specifically tailored to the needs of sections hereafter. For
a general and more complete overview, the reader is referred to the textbook [60].

2.1.1. Kinematics

Figure 2.1 depicts the general problem setting in continuum mechanics. Starting at time ¢t = 0, a
body deforms continuously occupying different spatial domains. For the mathematical descrip-
tion of motion, a so-called deformation map

: { (Q0, [0, tena]) —

(x0,t) = p(x0, 1) = (20, 1) (2.1)

is used. This function maps the non-deforming reference configuration ) to the deforming
current configuration <) in the time interval of interest ¢ € [0,¢cq]. Thereby, each material
element can be referenced by its constant position vector x in the reference configuration, while
the material element position vector in the current configuration is denoted by @.
The following first-order tensor fields are introduced for the description of continuum motion.
The displacement field
u(xo, t) = x(x0,t) — 0, (2.2)

the velocity field
v=1 (2.3)
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€3

€

Figure 2.1.: General setting of solid body deformation in continuum mechanics. Deformation
starts from the reference configuration €2y = €2(0) at time ¢ = 0 and ends at time
t = tena and configuration Q(tenq)-

and the acceleration field
a=1=i. (2.4)

The dot (o) denotes the material derivative, which evaluates the temporal rate of change at a

fixed material element J
o) — , 2.

xp=const

For description of point-wise continuum deformation, the following quantities are of interest.
The deformation gradient

&p(mo, t)

F =
8(130

(2.6)

is a second-order tensor field which maps material fibers of infinitesimal length from their unde-
formed configuration dx to their deformed configuration da

dx = Fdx,. 2.7

Also the deformation of an infinitesimal surface element (da, in reference configuration, da in
current configuration)
da = JF Tda, (2.8)

as well as infinitesimal volume elements (dv, in reference configuration, dv in current configura-
tion)
dv = Jdv (2.9)
with
J = det(F). (2.10)

10
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The right Cauchy-Green tensor results from
C=F"F. (2.11)

It returns the stretch A of a material fiber dzy = ||dxy||, 2o oriented in direction n with |7 ||, =

1 by
|dz|l, /
A\ = = 4/nl'Cny. (2.12)
ldzo o

Based on the stretch A, the Green-Lagrange strain is given by

1
eCL = 5[% —1]. (2.13)
Using the Green-Lagrange strain tensor
1
Ezi[C—I], (2.14)

the Green-Lagrange strain in reference configuration direction 1y can be computed by

et = nl En,. (2.15)
Given a material fiber in current configuration dx = ||dz||, n with orientation n, the Euler-
Almansi strain results from .
et = 5[1 - A7) (2.16)
Using the Euler-Almansi strain tensor
1 ~T -1
ezé[I—F F| (2.17)
yields
et =n'en. (2.18)

2.1.2. Traction and stress

A traction corresponds to a force per surface area and can be introduced as a local quantity using
the force d f acting on an infinitesimal surface element of the continuum. Figure 2.2 illustrates
the tractions which follow here; the first Piola-Kirchhoff traction t, is defined if the surface
element day = dagng with |1 ||, = 1 corresponds to the reference configuration

daf

to =
0 dCL(),

(2.19)

while conversely a surface element da = dan on the current configuration in the denominator
returns the Cauchy traction
df

t=—. 2.20
Ta (2.20)

11
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Given the orientations 1y and n of the reference and current configuration surface elements,
respectively, the first Piola-Kirchhoff stress tensor P yields the first Piola-Kirchhoff traction by

to = Pn,, (221
while the Cauchy stress tensor o yields the Cauchy traction by
t=on. (2.22)
The second Piola-Kirchhoff stress tensor S results from
S=F'pP. (2.23)
S can be interpreted as the work conjugate component to the Green-Lagrange strain tensor

Jo:Vov=P:F=S:E. (2.24)

€3

€2

€1

Figure 2.2.: Visualization of traction and volumetric force as well as corresponding surface and
volume elements in reference and current configuration. The traction ¢, and volu-
metric force fyoo are parallel to the traction ¢ and volumetric force f., respec-
tively.

2.1.3. Constitutive modeling of a solid continuum

Constitutive modeling describes the stress response of a material, typically based on a strain mea-
sure and possibly additional internal variables. A well chosen constitutive law must on the one
hand reflect the phenomenological behavior of the specific material such as elasticity, plasticity
or viscosity and on the other hand be physically meaningful in that it satisfies thermodynamic
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2.1. Modeling in continuous space and time

principles. In this thesis, homogeneous hyperelasticity is used. This class of constitutive laws
can be modeled by a so-called strain energy density

U =0, I, I5), (2.25)

which can be expressed as a function of the three principal invariants of the right Cauchy-Green
tensor

I, =tr(C), (2.26)
L= %[tr(C)z —t(CY), (2.27)
I, = det(C). (2.28)

The strain energy density maps a second-order tensor to a scalar and has units of energy per
volume [J/m3]. Given the relations for the principle invariants (2.26) - (2.28), ¥ can equivalently
be expressed as a function of C, or as a function of FE or F', recalling relations (2.6), (2.11) and
(2.14). In the remainder of this thesis, an implicit conversion of the functional dependency of the
strain energy density function is assumed for notational convenience. For instance, the relation

(I, I, I;) = U(C) = U(E) = U(F) (2.29)

is assumed to hold by implicit conversion of functional dependencies. Following the Coleman-

Noll procedure [25], an entropy inequality returns a relation between the strain energy density

and the first Piola-Kirchhoff stress tensor

OV(F)
OF

Using the definition of the Green-Lagrange strain tensor (2.14) together with equation (2.23),
constitutive relation (2.30) can be written in terms of the second Piola-Kirchhoff stress tensor

_ OV(E)
 OE

P =

(2.30)

S

(2.31)

2.1.4. Balance equations

In this thesis, purely mechanical solids (i.e. neglecting effects such as internal heat transfer, inter-
action with magnetic fields, etc.) and an incompressible, dimensionally reduced fluid network
are under consideration. As a result, a mass balance as well as a momentum balance sufficiently
describe the physics for evaluation of numerical simulations. Mass balance in the reference con-
figuration reads

po =0, (2.32)

while the mass balance in current configuration is given by
p+pVg-v=0. (2.33)

The reference configuration density py is the ratio of a material element mass dm to its unde-

formed volume duvy
dm

S 2.34
Po d”U()y ( )

13



2. Fundamentals on continuum mechanics and finite elements

while the current configuration density p is the ratio of material element mass over its deformed
volume

dm
=— (2.35)
The linear momentum balance in the reference configuration reads
po¥ = Vg, - P+ fiolp, (2.36)
while the linear momentum balance in current configuration is given by
pU = Vg -0+ fyol. (2.37)

Analogous to the densities py and p, the volumetric forces fyq 0 and fy. (see Figure 2.2) corre-
spond to the material element force d f over its undeformed volume

d
Svoro = —d‘f (2.38)
Vo

and the material element force over its deformed volume

d
.fvol = d_f (239)
v

The angular momentum balance is satisfied by the symmetry of the Cauchy stress tensor, which
also entails the symmetry of the second Piola-Kirchhoff stress tensor

oc=0l, §=8T. (2.40)

In general, the first Piola-Kirchhoff stress tensor is not symmetric.

2.1.5. Dimensionally reduced modeling of fluid mechanics

In this thesis, a dimensionally reduced flow network is used for modeling blood flow in the vascu-
lar system. This network can be viewed as a circuit consisting of individual elements manipulat-
ing the flow, which in turn is modeled based on low-order 1D solutions of the full Navier-Stokes
equations for incompressible flow [90]

Ve v =0, (2.41)
P’U = _va + 2denvm T+ fvola (242)

wherein vg4y, 18 the (constant) dynamic viscosity (of dimension [ﬁ]) and 7 is the symmetric
part of the velocity gradient

T = %[mev + [Vv]7]. (2.43)

The presented Navier-Stokes equations correspond to the mass balance (2.33) (with p = 0 due
to incompressibility) and the momentum balance (2.37) using the constitutive equation

o = —pl + 2047 (2.44)
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2.1. Modeling in continuous space and time

for Newtonian fluids [90]. Although blood in general is known to have non-Newtonian fluid
properties [96], the modeling of hemodynamics using Newtonian flow equations is supposed as
a valid approximation in this thesis [57].

For vascular system flows, so-called windkessel models have been developed and improved
over time [103, , ]. These models are very much analogous to electric circuits and con-
sist of a combination of flow network elements such as resistances, capacitances and inertances.
In the following, the network components applied in this thesis for modeling the vascular sys-
tem in Section 5 are briefly introduced. A detailed derivation is shown in [57]. Following the
terminology in [57], the network and its components are characterized as OD.

2.1.5.1. 0D flow network components

Pressure p and flow rate ¢ (of dimension [mTS]) are the two quantities of interest in 0D flow

networks. There is a clear relation to electric circuits, wherein voltage and electric current can
be seen as analogous to pressure and flow rate. In this section, several OD flow elements, which
combined can model complex flow networks, are introduced.

T — ~
. ~
. N
4 N
’ \
1 \
! 1
L N
. u
v \ /’ e
Gin ‘\ ’ Gout
N 4
< .
< .
S~ P

_ -

Figure 2.3.: Compartment element in OD fluid flow.

Compartment: An elastic compartment (see Figure 2.3) corresponds to a volume that can
accumulate and release fluid. As such, a decrease in the flow rate is described by the rate of
volume change of the compartment

dV
& = dow. 2.45
dr q Gout ( )
R
DPin Pout
q

Figure 2.4.: Resistance element in OD fluid flow.

Resistance: A resistance (see Figure 2.4) produces a pressure decrease which is proportional
to the flow rate

Rq = pin — Pout- (2.46)
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2. Fundamentals on continuum mechanics and finite elements

L

nm

Pin s Pout

q

Figure 2.5.: Inertance element in OD fluid flow.

Inertance: An inertance (see Figure 2.5) produces a pressure decrease which is proportional
to the change of flow rate

dg
L— = py — Pout- 2.47
g~ P~ Pout (2.47)
C
TQC
(in p Gout

Figure 2.6.: Capacitance element in OD fluid flow.

Capacitance: A capacitance (see Figure 2.6) is able to accumulate and release fluid as a
reaction to a change in pressure

dp
5, — {in — {out, 2.48
Cdt q Gout ( )
dp
=C—. 2.49
qc T (2.49)
R
Pin Pout
q

Figure 2.7.: Valve element in 0D fluid flow.

Valve: A valve (see Figure 2.7) yields a pressure decrease when a flow rate is present. In
contrast to the resistance, the proportionality constant R changes with the pressure gradient
across the valve

Rq = Pin — Pout (2.50)
» _ Rmax fOI' pin < pout
= { Rmin fOI' DPin Z Pout ' (251)
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2.2. Model discretization and solution

0D network demonstrator: An exemplary derivation of equations describing a 0D flow sys-
tem is presented in the following. The system is depicted in Figure 2.8, it combines two resis-
tances, one capacitance and one inertance. In more detail, a set of equations that will describe
the flow rate g,.+ and pressure p.,; at the outlet given the quantities g, and p;, at the inflow
is wanted. From the mass balance (2.48), the wanted flow rate ¢, is reduced by the flow rate
into the capacitance g¢, which in turn following equation (2.49) depends on the rate of change
of capacitance pressure. This quantity can be expressed as combination of the rate of change of
inflow pressure as well the pressure decrease over the resistance, which reads

dpi . dpin R inn

= — ) 2.52
a At de (22
As a result, the equation for the flow rate at the outflow is
dpin de
out = Gin — C' - R . 2.53
Gout = ¢ [ dt L7 } ( )

The outflow pressure can be calculated from the inflow pressure and the accumulated pressure
decrease over the involved OD flow elements. The pressure decrease due to resistance is given
in equation (2.46), while the pressure decrease due to inertance results from equation (2.47).
Combining everything, the outflow pressure reads

dCIout
dt -

As a result, given the flow rate and pressure at the inlet as a function of time, the flow rate and
pressure at the outlet can be computed from equations (2.53) and (2.54).

_le

(in Gout

Pin Rl Pc RQ L Pout

Dout = Pin — F1Gin — RoGout — L (2.54)

Figure 2.8.: Exemplary OD flow system.

2.2. Model discretization and solution

The finite element method is well established for the spatial discretization of mathematical mod-
els. Starting from the weak form of the governing equations, the computational domain is ap-
proximated by a set of geometrically simple (e.g. tetrahedral, hexahedral, pyramid) shapes, the
so-called finite elements. Defining shape functions per finite element results in a spatially dis-
crete model as a result of approximating the solution by a weighted sum of all shape functions.
These steps are depicted briefly in Section 2.2.1 and 2.2.2; for a more detailed presentation of
the finite element method in the context of solid mechanics the reader is referred to the textbook
[145].

In case of dynamic simulations, temporal discretization is additionally required to receive a
numerically tractable computational model. The generalized-« (gen-«) method is applied for the
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2. Fundamentals on continuum mechanics and finite elements

second-order ordinary differential equation (ODE) of spatially discretized structural mechanics,
while a one-step-6 (OST) scheme is used for first-order ODEs. The time stepping methods are
discussed in Section 2.2.3. Finally, iterative techniques for solving the resulting nonlinear sys-
tems of equations are presented in Section 2.2.4.

2.2.1. Weak form momentum equation

The weak form of the balance of linear momentum in the reference configuration (2.36) is de-
rived by first contracting the momentum equation with an arbitrary weighting function dw. This
results in the scalar equation

[poth — Vg, - P — feopo] - 0u=0 Vdu. (2.55)
Integration over the reference computational domain 2 yields
/ [pgu} : (5’U,d’00 - / [Vmo : P] : (S’U,dl)() — fvol,O : (5'U,dU0 =0 You. (256)
Qo Qo Qo

Application of the divergence operator to the first Piola-Kirchhoff stress tensor is undesirable
and can be avoided using

/ [V, - P] - dudvy = / (Vao - [PT6u] — P : Vg, 0u) dug (2.57)
QO Q0

together with the Neumann boundary conditions in terms of a first Piola-Kirchhoff traction load
to

Vo - [PTouldvy = /

[Pny| - dudag = / to - duday, (2.58)
0

Qo 0

wherein 0€)y denotes the boundary of the computational domain. Finally, the weak form reads

/ [potr] - dudvg+ [ P : Vg, dudvy— Svoro - duduvy —/ to-dudag =0 Vou. (2.59)
Qo Qo Qo Qo

For structural dynamics problems, the weak form of momentum equations implies the principle
of virtual work (PVW), if the weighing function dw is interpreted as a virtual displacement field.
The PVW states that the imbalance of internal §W,(u, du) and external 6 Wy (u, du) virtual
work corresponds to the variation of momentum

/ [poth] - dudvy + dWing(w, o) — 0Wext (u, du) = 0, (2.60)
Qo
wherein
IWint(u, du) = P : V., 0udvg (2.61)
Qo

was used and

IWexe(u, 0u) = Svoro - dudvy + / to - dudag. (2.62)

Qo 00

For the definition of appropriate function spaces for the displacement field w and weighting
function field du in the weak form the reader is referred to [62].
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2.2. Model discretization and solution

2.2.2. Discretization in space

A brief review of the finite element method with a focus on structural mechanics problems
is provided in this Section. In a first step, an approximation of the computational domain is
subdivided into a set of [V, finite elements

QrQ=|] 0l (2.63)

Finite elements can differ in several properties; their main characteristics however are their shape
and order of interpolation, which in turn determines the number of element nodes 7, (see Figure
2.9). Each node holds a set of degrees of freedom (DOFs), in our case the set of DOFs corre-
sponds to the nodal displacement in each of the three spatial directions. As a result, the number
of element DOFs n, results from n, = 3n,,.

Figure 2.9.: Tetrahedral finite element with distribution and enumeration of nodes. Red circles
indicate nodes of a linearly interpolating element. Blue dots indicate nodes of a
quadratically interpolating element.

From a mathematical viewpoint, element nodes have associated shape functions N;(xy),i €
{0,...,n, — 1}, which are unity at exactly one node and null at the remaining nodes. As a result,
element-wise displacement and virtual displacement field can be interpolated by

ul® = ogl) (2.64)
dul® = ®©sd©, (2.65)
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2. Fundamentals on continuum mechanics and finite elements

using the element displacement DOF vector d'®) and virtual displacement DOF vector 5d(®)

[ diy ] [ odyy ]
¢ o
d) dodyy
d©) — 0 € R™, 5d© = 30’ c R (2.66)
di) g odS) 1
di) odyy)
_dien—1 2. _5d£ze,3—1,2_

with dze]), 5d( denoting the displacement and virtual displacement of node 7 in spatial direction

7 respectlvely The element matrix ®(©) contains the shape functions and is given by

N()(wo) 0 0 . Nnn_l(wo) 0 0
@@= 0  Nylx) 0 ... 0 N, —1(x0) 0 € R,
0 0 N()(a"io) c. 0 0 Nnn_l(.’L‘o)

(2.67)
Thereby, ®©) is designed such that the discrete fields (2.64) and (2.65) fulfill the requirements
on differentiability of the mentioned weak form function spaces.
Introducing the interpolation (2.64) and (2.65) into the principle of virtual work (2.59) yields
a sum over finite elements

Ne—1

- [ / (o546 - 60 dugy + PV, 0u9dvy — / £, - oudug
Q(?) Q(e) Q(e)
0 0 0

=0 (2.68)

—/ ()t((f) -5u(e)da0] =0 Yéu'®, ee{0,...,N, — 1},
aN¢

wherein the integral |, 20 to - du®day is simply evaluated to 0, if the element (¢) is not inter-

secting with the computatlonal domain boundary or if no traction ¢, (i.e. zero traction) is defined
on the corresponding element face. Equation (2.68) can be rewritten as

Ne—1
SO IMOdD 4 ) — £ 6d9 =0 ¥6d®), e € {0,..., N, — 1}. (2.69)

e=0

The element mass matrix M (© fulfills

/ ( )[p( @] - du@dvy = [M©d)] . 5d), (2.70)
Qy
the element internal force vector fi(net) fulfills

()P@ L Vo oudvy = £19 . 5d© (2.71)
Q
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2.2. Model discretization and solution

and the element external force vector fulfills

) ou©dug + / £ sudag = £ - 5d©, (2.72)
o aale)

wherein again the boundary integral vanishes in case of domain-internal elements or in the ab-
sence of boundary traction.

Introducing the global mass matrix M € RY*¥_ global displacement and virtual displace-
ment DOF vectors d,5d € R”" and global internal and external force vector fini, foxx € RY
(constructed by assembling the corresponding element quantities), equation (2.69) can be rewrit-
ten by including the summation implicitly into vector multiplication operations

[Md + fiui — fou] - 0d =0 Vid (2.73)
which means that the expression inside the brackets must vanish
Md + fint(da t) - fext(da t) =0. (274)

Equation (2.74) corresponds to a spatially discretized model of an undamped solid continuum.
Explicitly added were the internal and external force arguments (d, t) in order to highlight the
(potential) nonlinearity of the model. Damping is frequently added to the numerical model by
applying the so-called Rayleigh damping. The idea here is to construct a global damping matrix
from a weighted superposition of the mass matrix and referential internal force stiffness

Ofint(d, 1)

D=cyM + cr od
d=0

(2.75)

with ¢y, and ¢y as scalar factors. Including damping, the final spatially discretized computational
model for solid dynamics reads

Md + Dd + fi(d,t) — foe(d,t) = 0. (2.76)

Equation (2.76) reduces to a steady-state expression, if inertial and damping effects are ne-
glected. The steady state equations read

fint(d) - fext(d) =0. (277)

2.2.3. Discretization in (pseudo)time

In this thesis, several time integration schemes for solving first- and second-order ODEs are ap-
plied. Also, the steady state problem (2.77) is solved by applying pseudo time steps, which is
detailed in this section.

First-order ODE: For time integration of first-order ODEs of the form

q=f(q) (2.78)
the one-step-6 (OST) scheme [128]

n __ n—1

q
At

1 = 0f(q") +[1 -0 f(g" ), (2.79)
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2. Fundamentals on continuum mechanics and finite elements

is used, wherein the superscript n denotes the time step and 6 € [0, 1] is a scalar parameter yield-
ing explicit time stepping for § = 0.

Second-order ODE: Equation (2.76) corresponds to a second-order system of ODEs, which
requires a temporal discretization scheme for the numerical solution. The generalized-« (gen-«)
method [22] is used for the second-order ODE at hand. Thereby, the time-continuous system is
solved iteratively for every time step n. The residual reads

r(d") = 0 (2.80)

with
r'(d") = Ma""*" + Dv"" 4 fi M (d") = foi (A7), (2.81)

ext

Velocity, acceleration and internal as well as external forces result from a weighted combination
of current and previous time step values

V"V = (1 - ago” +aput (2.82)
a" " =1 - ayla” + a,a" (2.83)
o 0 =1 = ay] fu(d™, ") + o Fine (@1 771, (2.84)
Fori ™ =1 — ] foxe(d™, ") + af foxe (d"71 1771, (2.85)

wherein the constants «,,, € [0,1] and oy € [0, 1] were introduced. In contrast to the displace-
ment field, the velocity and acceleration field are not primary variables. The reconstruction of
velocity and acceleration reads

" — ﬁ[dn _ dnfl] . %’U”l N i ;626Atan17 (286)
1 1 1—-2
a" = ﬁAtZ [dn — dn_l] - Evn_l - Tﬁan—l (287)

using the constants v € [0,1] and 5 € [0, 2] Numerical dissipation of the time integration
algorithm can be adjusted by the parameter p., € [0, 1] and choosing the remaining parameters
as

Oy, = 2”“—;11, (2.88)
Poo
_ P
ap = (2.89)
1
B = 1(1 - + ap)?, (2.90)
1
v = E—am—l—af. (2.91)

Steady-state system: The steady-state nonlinear system (2.77) typically arises from a problem
setup, wherein the external load f,,; is prescribed (e.g. directly or by a surface traction requiring
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2.2. Model discretization and solution

surface integration and linearization), while a displacement field is calculated such that internal
and external forces are in equilibrium. For large loads with pronounced continuum deformation,
the numerical model may not converge, if the entire load is applied immediately. Therefore,
pseudo time steps (which can be interpreted as load steps) are introduced for the steady-state
problem. The residual notation reads

r*(d") = f.(d") — fo.(d"), (2.92)

int ext

wherein the superscript " specifies the load step.

2.2.4. Nonlinear solution techniques

The spatially and temporally discretized systems presented above can be iteratively solved for
the discretized displacement field d” via Newton-Raphson iterations

Ji(di)Ad] = —r(d])

2.93

d?—&—l - d? + Ad?—i—la ( )
wherein the residual Jacobian o ()
r"(d}

JHd) = —22 2.94

Py = 294)

was used. The iteration scheme (2.93) is terminated in case of a residual tolerance and a dis-
placement increment tolerance criterion

" (), < e, AVl < ea. (2.95)

For an improvement of convergence properties, the Newton-Raphson iteration scheme can be
enhanced with the so-called pseudo-transient continuation (PTC) technique [43]. The basic idea
is to increase diagonal values of the Jacobian, which results in a regularization of the linearized
system of equations (2.93). Including PTC, the modified system (as compared to (2.93)) reads

[T (d}) + kP I)AdY = —r™(d]) (2.96)
dr, =d'+ Ady, (2.97)

with the scalar
)l
|7 (d})l

ptc __ j.ptc
ki+1 - kz

(2.98)

Please note, that the perturbation k. *“I diminishes with decreasing residual, such that standard
Newton-Raphson iterations are recovered in proximity to a converged state at each time step.
The initial value k5" is a method parameter set by the user.
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3. Projection-based model order
reduction and hyper reduction

Depending on the number of degrees of freedom (DOFs), resolution in time and the number
of desired model evaluations, the demand of computational resources for application of models
introduced in Chapter 2 may surpass its availability. To mitigate the demand, projection-based
model order reduction (MOR) has evolved to a powerful tool with a large community and many
successful applications in science and engineering. This section presents the main steps in a
typical MOR process in detail. Biomedical applications are presented in Section 4 and 5.

For substantial computational speedup of the reduced model, a two-step process is applied. In
the first step, the full-order model (FOM) is reduced in the number of its DOFs. This results in
a reduced-order model (ROM) (the term order can be understood as a synonym to dimension),
or in more detail to a dimensionally reduced order model (DROM). For nonlinear problems,
pure dimensional reduction does not decouple the resulting ROM from assembly of the FOM
residual and possibly the FOM Jacobian, depending on the solution technique of the nonlinear
system of equations. Therefore, a so called hyper reduction is required in a second step, which
will result in a dimensionally reduced as well as hyper reduced order model (DHROM). In the
following, ROM refers to both DROM and DHROM, a specification to DROM or DHROM is
done whenever necessary.

3.1. Dimensional reduction

This section focuses on dimensional reduction of a nonlinear system of equations. More details
can be found in the textbook [110].

3.1.1. Projection on low-dimensional subspaces

Discrete projection operators build a theoretical foundation for dimensional reduction and are
discussed in this section. The following additive decomposition of the vector space R¥ is as-
sumed to hold

RY = span(V) @ span(W)™. (3.1)
V,W € R¥*P with N > p are full-rank matrices and the superscript - denotes the orthogonal
complement. For V C RY, the orthogonal complement is defined by the subspace

VE={dcRY:d"y=0 VycV}. (3.2)

A discrete projection operator PyY € RY*Y (in the following simply referred to as projector)
on the space span(V') in direction orthogonal to the space span(W) results from

PY =VWIvV]'wT, (3.3)
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3. Projection-based model order reduction and hyper reduction

presuming invertibility of the product WT V. Figure 3.1 provides a geometrical interpretation
of the projection using 2D subspaces in a 3D space.

span(W)

span(V')

Py d € span(V)

Figure 3.1.: Projection on span (V') in direction orthogonal to span(W).

Any square matrix P € RY* with the property PP = P represents a projector. In particu-
lar, this holds for (3.3)
PY Py =PV, (3.4)

which trivially gives
PY (PYd) =Py d (3.5)

for any d € RY, stating that a projected vector will not change by re-application of the projec-
tion.

The special case of span(V') = span(W) corresponds to an orthogonal projection character-
ized by the property

d—Pyd|,= min |d-y,, 3.6
ld=Pyd|,= min id-yl, (3.6)

while the case span(V') # span(W) is referred to as oblique projection. Without loss of gener-
ality, the columns of V' and W can be chosen as orthonormal bases for span(V') and span(W).
As a result, the orthogonal projector can be represented as

Py =VvVe (3.7)

Figure 3.2 illustrates an orthogonal projection of a vector d in a high-dimensional (N = 3948)
space on a low-dimensional (p = 2) subspace. The components of d are interpreted as nodal
displacements of a reference shape in 3D space, such that elements of the space R can be
interpreted and visualized as deformed shapes.

3.1.2. Projection-based dimensional reduction

Projection-based dimensional reduction aims at a decrease of the number of DOFs and achieves
its goal applying a projection to the vector of residual equations 7" (d") € RY as well as to its
argument

PEZ r"(Py d") = 0. (3.8)
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d="PYd

Figure 3.2.: Visualization of an orthogonal projection on a low-dimensional subspace. The ref-
erence shape d = 0 (drawn for better illustration, not part of the projection) is
depicted in light gray. The low-dimensional subspace is given by the span of two
shapes (green wires). The orthogonally projected mode (black wires) is an optimal
(in the sense of equation (3.6)) approximation to the light blue shape d = d* in the
given low-dimensional subspace.

For generality, equation (3.8) contains two different oblique projections, which resolve to
Y[ Z'Y| ' ZTr(VIWTV]T'WTdY) = 0. (3.9)

Recalling invertibility of [Z7Y] and the full-rank of Y, equation (3.9) states that the residual
vector must be in the kernel of Z7. At the same time, recalling invertibility of [W V| and the
full-rank of W gives span([WTV|"'WT) = R?, such that the product [W*V]~'W'd with
d € RY can be replaced by the generalized coordinates d with d € R?. Equation (3.9) simplifies
to

ZTr(Vd") =0, (3.10)

which is referred to as the projected system of equations, even though projectors as introduced
in Section 3.1.1 do not show up explicitly. Equation (3.10) can be solved for the generalized
coordinates d”. In case of well chosen Z and V, a good approximation to the solution d" is
given by
d"~d"=Vd". (3.11)
The matrices V' and Z (or more precisely their column spans) are referred to as trial and
test space, respectively. The case of different trial and test space V' # Z is called Petrov-
Galerkin projection. A specific example of a Petrov-Galerkin projection is the least-squares
Petrov-Galerkin projection [ 18]

1% [J;?(Vd")} Len(vdry = o (3.12)

with the non-constant test space Z = JT”(Vci”)V and trial space V. The least-squares Petrov-
Galerkin projection (3.12) can be derived from the optimality condition of optimization problem

d" = arg min || (Vg)||,, (3.13)
JERP
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which explains the term “least-squares”.
The special case of V' = Z gives

Vvir(vd) =0 (3.14)
and is called Galerkin projection [18]. This thesis makes use of the Galerkin projection exclu-

sively. Nonlinear system of equations (3.14) can be solved by the Newton-Raphson iteration

scheme (see equation (2.93) for the FOM) applying consistent linearization
VI (vd)VAdy, = -VTr(Vdy) G15)
dr,, =d'+ Ady. '

Iterating is stopped at a prescribed residual HVTT”(VJ?)

< ¢, and increment HAd?
2

< &4
2

tolerance.

3.1.3. Construction of low-dimensional subspaces

Recalling equation (3.11), span(V') defines the low-dimensional subspace for approximation of
the high-dimensional solution for both Petrov-Galerkin and Galerkin projection. This motivates
the term reduced-order basis (ROB), which is frequently used for V' besides trial space. For the
Galerkin projection applied in this thesis, the ROB is the only component needed to construct
a DROM from a given FOM. Construction of well-designed ROBs is motivated and detailed
in this section. Simulation-free and data-driven approaches are reviewed as opposed concepts
first. In the next step, focus is laid on the proper-orthogonal decomposition (POD) and greedy
algorithms as most prominent representatives of data-driven approaches.

Equation (3.11) motivates an intuitive design criteria for a ROB: The column span of the ROB
must be a good approximation to the space spanned by the solution d",n € {0,..., Ny — 1},
with Np denoting the number of discrete time steps. This can be expressed by a low relative
projection error

|d" —vvTd'|, < ||ld"|,, n€{0,...,Np —1}. (3.16)

Several approaches to reach this goal can be found in literature. The class of simulation-free
approaches (see [| 18] for extensive overview) performs direct analysis of the system’s compo-
nents (e.g. mass and stiffness matrix for structural dynamics) in case of linear systems in order
to find a suitable trial space. Prominent method representatives are the balanced truncation [115]
and Krylov subspace reduction [5]. For nonlinear systems, simulation-free approaches attempt
to extend the linear system ROB by modes capturing the nonlinearity such as (static) modal
derivatives [137].

Data-driven approaches in contrast pursue another strategy. They appear in the context of
parametrized systems and a many query context. The basic idea is to compute the solutions of
selected points in the parameter domain and derive a ROB from these solutions. The assumption
thereby is that a low-dimensional subspace spanned by some selected solution vectors will catch
the system dynamics for the entire parameter domain in the sense of equation (3.16).

Depending on the context of application, data-driven approaches may require data-compression
for the ROM to become truly low-dimensional. Temporally resolved structures excited by a force
pulse are an example for a great benefit of data-compression. Only few modes may be sufficient
to represent the entire dynamics [76].
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3.1. Dimensional reduction

Proper orthogonal decomposition

A state of the art technique for data-compression widely applied in projection-based MOR is the
POD [113, ]. POD is based on the concept of the singular value decomposition (SVD) [127],
which is reviewed in the following paragraph.
Assuming S € RY*™ with N > m to be a matrix of rank r < m, a thin SVD corresponds to
a decomposition of S in terms of
S =d=W7, (3.17)

with ® = [y, ..., Pp_1] € RV*™ W = [ty ..., 1,,_1] € R™™ being orthonormal matrices
with left and right singular vectors as columns, respectively, while & = diag(§) € R™ ™ is a
diagonal matrix holding singular values &;,i € {0, ..., m — 1} in descending order &, > &; > 0
for: < jand & = 0 for ¢ > r. Left and right singular vectors and singular values fulfill the
relation

So; = &, ST =&y fori,je{0...m—1}. (3.18)
Equation (3.17) can be equivalently rewritten using a sum of rank-1 matrices
m—1
S=) i, (3.19)
=0

with the following interpretation: Given descending ordering of the singular values, a truncation
of the sum at p < m frequently gives a good low-rank approximation of S. In fact, the resulting
p-rank approximation is optimal [127] in the sense of

= min IS — B, (3.20)

BeRN*xm  rank(B)<p

p—1
S — Z§i¢z’ ® ;
i=0

F

with ||(e)]| » denoting the Frobenius norm.
POD makes use of the SVD optimality property to achieve data compression. Thereby the
ROB V is built by the first p left singular vectors while § € RY*™ corresponds to the so-called
snapshot matrix (same symbol as for the second Piola-Kirchhoff stress tensor (2.23), confusion
is precluded by the context) with columns containing solution modes gathered during FOM
sampling in the parameter domain. As a result, the orthogonal projection error of the snapshot

matrix S is minimized in the Frobenius norm
||S — VVTSHF = min

W eRN xp

S -Www's|,, (3.21)

which is a consequence of optimal SVD low-rank approximation (3.20) and optimal orthogonal
projection approximation property (3.6).

In large problems, typically N > m holds, meaning that the number of model DOFs is much
larger then the number or accumulated snapshots. For this special case, an efficient algorithm
for computation of left singular vectors and singular values applying an eigendecomposition to a
m x m sized matrix [ 10] is reviewed. In a first step the so-called correlation-matrix C € R™™
(same symbol as for the right Cauchy-Green tensor (2.11), confusion is precluded by the context)
is computed by

Cc==5"'S (3.22)
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3. Projection-based model order reduction and hyper reduction

and the singular value problem
Cp; = £, fori € {0,...,m—1} (3.23)

is solved. As indicated by equation (3.23), the eigenvalues of C correspond to the squared singu-
lar values and the eigenvectors coincide with the right singular vectors. The wanted left singular
vectors then (see equation (3.18)) can be computed from

O = %S@bi fori € {0,...,m — 1}. (3.24)

Greedy algorithms

For parametrized models, greedy algorithms [79, , ] are a prominent technique for the
construction of ROBs. In every iteration loop, greedy algorithms attempt to solve an optimization
problem, which explains the designation “greedy”. The optimization problem is performed over
an error estimator J(V', i), which returns an upper bound for the ROM error

Y(V,p) > ||STOM () = STV, )| .. (3.25)

STYOM(414) denotes the FOM snapshot matrix at parametric configuration g and STOM(V', )
denotes the ROM snapshot matrix applying a ROB V" at p.

A basic greedy algorithm is depicted in Algorithm 1, while improvements and modifications
can be found in literature [63]. As can be seen from Algorithm 1, the idea is to extend the trial
space by FOM modes, which are represented worst as indicated by the error estimator using the
ROB accumulated up to this point (line 5:). The ROB itself is extended by orthogonalization of
FOM snapshots in every greedy iteration (line 4:).

Algorithm 1 GreedyAlgorithm(3;, £,, it;) (ROB construction by greedy algorithm)
Input: training grid >; C P, initial parametric configuration p; € >, maximal error €,
Output: chosen grid points 3., snapshot matrix .S, reduced-order basis V'

L Ye={pi}, S=[, V=1, tmax = €9+ 1, Bmax = H

2: while e, > ¢, do

3 S [S, "M (phmax)]
4 V < Orthogonalize([V', S¥OM(pmax)])
5: Hmax = argmax,cs, y(Va l"’)
6
7
8

Ec — Ec U Hmaxs Emax = y(V, /J’max)
: end while
: return 2., S,V

Computational feasibility of greedy algorithms relies on the error estimators (3.25), given that
the true error is inaccessible for every training grid point due to computational complexity of
the FOM. A well designed error estimator is sharp (close bounding of true error), asymptotically
correct (i.e. approach zero, when trial space is refined) and computationally inexpensive [ 1 10].
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3.1. Dimensional reduction

3.1.4. Computational example for dimensional reduction

An application of POD and data compression is presented in the following numerical example.
Figure 3.3 depicts the computational model. A beam with one clamped and one free end is
deformed by an oscillating pressure load p(t) = 50 Pa x sin(wt) with w = 1 Hz at the free end.
Beam dimensions are given by [ = 150 cm, A = 10 cm and w = 30 cm. A St. Venant-Kirchhoff
material model with strain energy density

Ev 9 E ‘
U= ) [tr(E)]* + mE E (3.26)

is applied. Material parameters are the Young’s modulus £ = 100 kPa, Poisson’s ratio v = 0.3
and reference configuration density py = 100 %, damping is not considered. The computational
model is spatially discretized using 828 linear, hexahedral finite elements with F-bar technology
[34] resulting in 3948 DOFs. Temporal discretization is done by the generalized-o method (see
Section 2.2.3) with parameters o, = 0.5, ay = 0.5, ag = 0.25 and oy, = 0.5. Ny = 300 time
steps at equal time step size At = 0.025 are performed.

free end

p(t)
(pressure load)

loaded surface

clamped end

Figure 3.3.: Computational domain for oscillating beam simulation. The surface loaded by a
pressure boundary condition at the free end is indicated by red coloring.

Figure 3.4 depicts selected deformation modes at several time steps of the oscillating beam.
All modes are gathered in a snapshot matrix STOM ¢ R3948x300 3nd a ROB V' € R3M8*P jg
computed by a SVD. Next, multiple Galerkin projection (3.14) ROMs are solved with differ-
ent dimensions p, i.e. the ROB is truncated after the first p modes. Given the FOM and ROM
snapshot matrices

STOM —1d°... d"

SFON (@ V] G20

respectively, the relative error
FOM ROM
‘S - S HF

RE(SFOM7 SROM) — ‘ o
| STOM|

(3.28)

31



3. Projection-based model order reduction and hyper reduction

t=59s "

Figure 3.4.: Oscillating beam at different time instances. The depicted modes result from a finite
element simulation with linear hexahedral elements and the gen-a method for spatial
and temporal discretization, respectively.

is defined for comparison of FOM and ROM solution. Figure 3.5 depicts all ROB singular val-
ues and several relative errors (3.28). The strong initial decay of singular values indicates that
significantly less modes are sufficient to span the FOM solution subspace with good accuracy.
This also reflects in the relative error, which drops by 6 orders of magnitude if 50 modes are
considered instead of 1. Further extension of the ROB yields a less effective improvement of the
relative error.

3.2. Hyper reduction

The introduced Galerkin projection (3.14) yields a low-dimensional system approximation, only
low-dimensional systems of equations have to be solved as can be seen from linearization (3.15).
For linear system residuals, dimensional reduction frequently is sufficient to gain substantial
computational speedup since FOM system components are linearly dependent on the solution
and ROM system components can be precomputed in the offline stage. This is different for
nonlinear systems, which require full re-assembly of some or all system components in every
Newton-Raphson iteration. In particular for structural dynamics problems under consideration
in this thesis, nonlinear system components are the internal force vector and potentially the
external force vector as well as the corresponding Jacobians.

This section introduces hyper reduction as a concept aiming at a fast approximation of system
nonlinearities. Section 3.2.1 qualitatively motivates the basic idea behind hyper reduction and
gives a literature overview. Section 3.2.2, presents the details of the so-called energy-conserving
mesh sampling and weighting (ECSW) hyper reduction method, which especially is tailored for
finite element structural dynamics problems.
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Figure 3.5.: Singular values and relative errors of snapshot matrix containing 300 displacement
modes of simulated oscillating beam. Selected displacement modes are depicted in
Figure 3.4.

3.2.1. General principle and overview of hyper reduction methods

Assembly of nonlinear systems of equations in the context of finite elements requires numerical
integration over every finite element. Hyper reduction poses the question, whether a computa-
tionally cheap approximation of residual and Jacobian

F(VdY) ~ r(VdY), (3.29)
JH(Vvd") ~ JH(VdY) (3.30)

or alternatively (in the context of Galerkin projection) an approximation of the projected residual
and Jacobian

VIiF(vd) = Vi (vdr), (3.31)

VI (vd")V ~ VI (Vd)V (3.32)

can be found. Note that fulfillment of approximations (3.31), (3.32) does not mean that approxi-
mations (3.29), (3.30) hold.

Several approaches for hyper reduction have been presented to date. Based on the theory of

the empirical interpolation method [6], the discrete empirical interpolation method (DEIM) was

introduced in [21]. Recalling the time-continuous dynamical system (2.76), DEIM can be used

to assemble the nonlinear internal and/or external force evaluating only a small subset of mesh
elements. The idea thereby is to apply an oblique projection

£,(Vd.t)~ f,(Vd,t) = Y,[Z]Y,) ' ZL f,(Vd,t) ~ € {int, ext}, (3.33)

wherein ¥, € R¥*™ with n, < N is a basis for f,(Vd,t) and Z, € RV*™ is a boolean
matrix with exactly a single 1 per column. The computational saving results from simultane-
ous assembly of Z;F f,(Vd,t), recalling that the boolean shape of Z. will extract a subset of
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3. Projection-based model order reduction and hyper reduction

vector function rows, remaining vector entries do not have to be evaluated. The basis Y, can
be computed from a POD on snapshots of internal/external force vectors, while the selection of
interpolation points resulting in Z, is computed by a greedy sampling algorithm [21]. For in-
crease of efficiency in the finite element context, the so-called unassembled DEIM was proposed
in [131]. A variant extending the DEIM to matrix interpolation is presented in [99].

The Gauss-Newton with approximated tensors (GNAT) method applies to fully (i.e. spatially
and temporally) discretized systems [16, 17]. Hyper reduction is introduced inside the residual
minimization formulation (3.13), which can be solved applying Gauss-Newton iterations
JIVd)Vy +r(Vdy)

)

2 (3.34)

Ad",, = arg min ‘
1+1 g JERP
m  __qn n

Given a residual POD basis Y, € RY*Pr and a Jacobian POD basis Y; € RV*P/ (see [16]
for details on construction of these bases) a gappy POD approach [39] is used to approximate
components of system (3.34) by

| Tmvdnvy + (v 2

with precomputable matrices A; = Y;[Z7Y;|t and A, = Y,[Z7Y,]* and ™ denoting the
Moore-Penrose pseudo-inverse given by A* = [AT A]~! AT for a full rank matrix A. Similar to
DEIM, computational savings arise from the evaluation of ZZJ"(Vd?) and ZT+"(V d") with
the boolean matrix Z € R™*?Z extracting individual matrix and vector rows. A greedy sampling
algorithm for the construction of Z is presented in [16].

The ECSW [40, 41] hyper reduction method aims at an approximation of projected force
vectors in structural dynamics problems by reduced cubature (= multidimensional quadrature).
For a set of displacement modes, a subset of mesh elements is selected such that a weighted
integration of the element subset yields a good approximation of the virtual work performed by
the force. This approach is modified by the so-called empirical cubature method (ECM) [54] to
Gauss point-wise cubature instead of element-wise cubature. The ECSW is structure preserving,
i.e. a positive definite force Jacobian will remain positive definite. This numerical favourability
together with its elegant combination with standard functionality of existing finite element code
make ECSW the method of choice for hyper reduction in this thesis. A detailed presentation is
given in Section 3.2.2.

In [73], a so-called semihyper reduction of nonlinear external forces is presented. The external
forces are assumed to result from a nonlinear system of equations, such as the Reynolds equation
describing the gap pressure in hydrodynamic lubrication. Starting from the standard ROB, a trial
space for the nonlinear external force referred to as stress modes is derived. The authors refer to
the method as “semihyper reduction”, given that it aims at a reduced evaluation of the system’s
nonlinearity, although full decoupling of the FOM DOFs is not given. In [74], the application of
stress modes is extended to a hyper reduction method in the conventional sense using the ECM.

o~ HAJZTJ,’?(VJ?)Vy +AZTr (V) (3.35)

3.2.2. Energy-conserving mesh sampling and weighting

In contrast to gappy data-reconstruction methods such as DEIM or GNAT, ECSW [40, 41] does
not attempt to approximate the FOM residual (3.29) and Jacobian (3.30). Instead, the ROM resid-
ual (3.31) and Jacobian (3.32) are approximated directly. As motivated above, hyper reduction
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is applied to the nonlinear part of the residual. For the structural dynamics system (2.76), this
corresponds to the internal and external force f., with v € {int, ext}, resulting in the approxi-
mation R R

VIf(Vd,t)~VTf (Vd,t). (3.36)
Equation (3.36) can be derived from a virtual work approximation, which is discussed in the
following steps, closely to the presentation in [122]. Virtual work for a spatially discretized
force and corresponding displacement field can be written as

SW,(d,éd,t) = 6d” f,(d, 1) (3.37)
or after applying restriction to the ROB subspace d, dd € span(V')
SW,(d,éd,t) = 6d* VT f,(Vd,1). (3.38)

Using element-wise internal force vectors fw(e), virtual work (3.38) can be equivalently written
as a sum over the element index set £

oW (d,od,t) =Y " od" VL f(LTVd, 1), (3.39)

eef

wherein L(® is the element-wise assembly operator towards the global system.

Starting point for building the ECSW hyper reduced system is an approximation of virtual
work (3.38) by a virtual work Wv(d, 6ci) resulting from a weighted sum over a small subset of
mesh elements & , that is

SW,(d, éd,t) ~ oW, (d, dd, t) (3.40)
with o R X
oWy(d,od,t) =Y wsd" VI LE £ LTV d, 1) (3.41)
ecé

using positive element weights w(®) € R*. Approximation (3.40) can be transformed into an
optimization problem by restriction to a predefined set of modes deS = {cio, . cim,l}.
Recalling that the displacement field variation is arbitrary éd € Re, approximation (3.40) holds
for the set of modes S , if

> wOVILOFNLOTVd 1)~ Y VILOFLOTVd ) vdeS (3.42)

ecé ecE

holds true. In order to keep the cardinality of the reduced element set ]5 | low, equation (3.42)
can be cast in a so-called sparse non-negative least-squares (SNNLS) optimization problem

minimize |lwl|,

weRI€|
subject to || Aw — bl|, < e ]|bl], (3.43)
min(w) >0
with system matrix
@0 - AE-1)
A= : ; c RP*mx[] (3.44)
Am-1,0) - Q(m-1,e|-1)
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3. Projection-based model order reduction and hyper reduction

defined by its vector-valued entries

aiy =VILY fOLOTV d;.t;) (3.45)
and right-hand-side vector
bo
b= : e R (3.46)
bmfl
defined by its vector-valued entries
bi= ) age. (3.47)
ecf

The vector w € RI¢l holds element weights w(® and the zero-norm ||(e)]|, returns the number
of non-zero elements. As a result, optimization problem (3.43) attempts to minimize the number
of non-zero element weights, which can be interpreted as minimization of the cardinality of the
reduced element set |€|, recalling that zero-weighted elements are not contained in the sum in
equation (3.42). The constraints in optimization problem (3.43) ensure fulfillment of approxima-
tion (3.42) up to the relative tolerance ¢;, and exclusively positive weights in the reduced element
set £. The positivity of weights is important for structure preservation and by this for numerical
stability, see [4 1] for an in-depth discussion.

Algorithm 2 [40] returns a computationally affordable approximation to the solution of op-
timization problem (3.43). The algorithm is a variant of the non-negative least-squares solver
stated in [80]. A notation similar to the presentation of the algorithm as depicted in [1 18] is
used. At the core of Algorithm 2, a linear least-squares problem is solved (line 7:). Writing an
index set to the right of a vector (e.g. z¢ in line 7:) denotes the extraction of vector rows con-
tained in the index set, whereas an index set at the right of a matrix (e.g. Az in line 7:) denotes an
extraction of matrix columns contained in the index set. The least-squares problem is embedded
in two loops. The outer loop terminates at sufficient accuracy (line 2:), while the inner loop (line
5:) terminates (line 10:) at fulfillment of the positivity constraint (line 8:). On violation of the
positivity constraint, Algorithm 2 forces the solution back to a valid state (line 14:).

For computational speedup, mesh sampling by ECSW can be executed on N, computational
subdomains (see [41] for derivation), wherein a computational subdomain defines a subset of
mesh elements &/ C &, j € {0,..., N, — 1} with

Ut el =€, &Ny & =0 (3.48)
The columns of system matrix A are divided into sub-matrices
Al = Ag; € R (3.49)

such that A’ holds columns of A with column index in £7. Likewise, a subdomain specific
right-hand-side vector b’ is built by summation of selected columns of A

by
v=| : | eRr™ (3.50)
b1

m—
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Algorithm 2 SNNLSsolver(A, b, ¢5,) (solution of sparse non-negative least-squares problem)

Input: system matrix A € RP*"*I¢l right-hand-side vector b € RP*™, tolerance ¢},
Output: solution vector w, index set £

1: 5:{},'w:0€R|5‘,r:b

2 while [[r], > &, [[b]], do

3: 1= arg mane{ou_|g|_1}[AT'l"]{j}
4: E—EU {i}

5: while True do

6: z =0 c RFl

7: zg = argmin, g || Agy — b,
8: if min(zz) > O then

9: w==z

10: break

11: end if

12: Z={ic&lzy <0}

13: = Minez w{:f{i{i}

14: w — w+ afz — w)

15: € = {ilwy # 0}

16: end while

17: r=>b-— Agwg

18: end while
19: return £, w

with vector-values entries

b= age. (3.51)

Algorithm 2 can now be executed in parallel on individual subdomains by replacing A and b
with A7 and b/, respectively. Subdomain specific tolerances can be computed by [41]

Eh- (3.52)

This ensures the fulfillment of the global tolerance ¢, as can be seen from

|Aw — b, _ X35 A — b, 35 S (6]
Bl - ol = e,
XN enlbll N [oll,

- = &n,
N |[bll, N, [|B]l,

(3.53)

wherein w/ = wg; € RI¥’I was used to denote an extraction of vector rows corresponding to
subdomain &7.
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Having found a reduced element set £ and the corresponding weights w® with e € &, the
hyper reduced forces are assembled by

£,(Vd,t) =) wLE LTV, t) (3.54)
ecé
with consistent Jacobians
T, (Vd,t) = > wOLOJN(LOTVd, ) LT (3.55)
eGSN

The hyper reduced residual f"(Vci”) results from first replacing f., by f7 in (2.76) for dynamic
and in (2.77) for steady state problems. Secondly, the Galerkin projection (3.14) is applied (after
time discretization for dynamic problems). A consistent Jacobian of the hyper reduced resid-
ual jﬁ(Vci”) 1s built from the contributions in equation (3.55). The resulting DHROM system
solved by Newton-Raphson iterations reads (see FOM system (2.93) and DROM system (3.15))

VIgNVd)VAdY, = -VTF(VdY)
r i A;—i—l N . [ (356)

3.2.3. Computational example for hyper reduction

The same setup for the presented computational example as given in Section 3.1.4 is used.
Referring to Figure 3.5, 50 POD modes yield a sufficiently accurate ROM. Consequently, 50
POD modes for the ROB and every 10th displacement mode of the oscillating beam simulation
S = [d°,d d", ... d*»°) e R¥31 are selected to build the set S (cf. Section 3.2.2) by the
columns of matrix V7' S. Algorithm 2 aiming at hyper reduction of internal force assembly is
executed with four different tolerances ;. As a result, four different reduced meshes emerge,
Figure 3.6 depicts an exemplary reduced mesh at the tolerance ¢, = 10~*. Table 3.1 depicts the
number of selected elements as well as the relative error (3.28), which is computed after evalu-
ating the four DHROMs. As expected, stricter tolerances result in more selected mesh elements,
while at the same time the relative error decreases.

Table 3.1.: Number of selected mesh elements and accuracy in terms of the relative error for
different ECSW tolerances ¢y, cf. Algorithm 2.

Eh 107! 1072 1073 1074
€] 96 137 174 224
RE(SFOM GROM) 7.04-1072  4.31-107*  2.02-107°  4.98-1077
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ecsw weighting

Figure 3.6.: Element selection and weights resulting from Algorithm 2. Only colored elements
are evaluated in the assembly of the internal force vector. ECSW tolerance of the
depicted reduced mesh is £, = 104, which leads to a selection of 224 elements.
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4. Model reduction of the
aneurysmatic abdominal aorta

The abdominal aortic aneurysm (AAA) has been introduced as a central aspect for the motiva-
tion of this thesis in Section 1.1. If left untreated, dramatic outcomes in case of rupture are the
consequence. Aiming at a support of clinical decision making and treatment, the potential of
state-of-the-art computational analysis has been investigated recently [10, 14, 52, 81, , ].

Computational modeling of AAA mechanics is subject to uncertainties as a consequence of
large intra- and inter-patient variability of material and geometric properties [1 12, ] in com-
bination with the limited approachability of data. As a result, statistical methods aiming at the
quantification of model uncertainties have become a common factor in many works. This devel-
opment in turn introduces a computational bottleneck on the application of large and nonlinear
models, given that the number of model evaluations from statistical requirements quickly be-
comes unreachable. In this section, a projection-based model reduction framework for computa-
tional speedup of solid mechanics AAA analysis is developed. The content is a revised version
of the publication [122].

Addressing the computational bottleneck, several approaches have been presented to date in
the realm of AAA analysis. In [106, , ], computationally cheap intermediate mappings
(inverse power-law function, polynomial chaos expansion, stochastic collocation) are built in
order to model quantities of interest (QOIs) without the need of evaluating the original full-order
model (FOM). A multi-fidelity approach is presented under Refs. [9, 10]. Therein, the used low-
fidelity model can be inaccurate in terms of the QOIs, the only prerequisite is a similar stochastic
structure compared to the FOM. A surrogate model replacing the FOM is not created.

Surrogates by the mentioned intermediate mappings are based on data from model evaluations,
the FOM residual is not directly incorporated within the surrogate. This is different in projection-
based model order reduction (MOR), wherein the relation between the FOM residual (and by
this the FOM physics) and the reduced-order model (ROM) residual is a projection operation.
Application of projection-based MOR to AAA hemodynamics is presented in the Refs. [20, 98].

This section introduces the computational AAA model used in this thesis at first. Next, em-
phasis is laid on a methodology for the construction of a reduced-order basis (ROB) as well as
gathering displacement modes for energy-conserving mesh sampling and weighting (ECSW).
Finally, computational experiments on ROM accuracy, application in a statistical context and
speedup are performed on three patient-specific AAAs.
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4.1. Computational modeling of abdominal aortic
aneurysms

Starting from the aorta inside the human body as the object of interest, several steps need to be
performed to receive a computational model. The following discussion comprises key points of
the entire modeling process from imaging and segmentation over continuum mechanics equa-
tions towards the final discrete model, which can be evaluated for the quantity of interest.

4.1.1. In silico model

A description of the AAA computational model is provided in this section, the model was orig-
inally developed in [92]. Governing equations are stated. Special emphasis is devoted to the
so-called prestressing stage, given that it poses a specific challenge to the snapshot collection
and subsequent dimensional reduction process for projection-based MOR. Finally, model pa-
rameters common to all AAA models investigated in this thesis are given.

Computational domain: The challenge of numerical computations performed on AAAs starts
with the identification of the computational domain. Several investigations using generic (i.e. not
generated from imaging data) AAA shapes for computational analysis can be found in literature
[4, 20]. Generic AAA models are independent from patient-specific data, which simply might
not be available or raising ethical issues when gathered on the one hand. On the other hand,
influence of AAA shape parametrizations can be investigated. Patient-specific aneurysm models
in contrast typically are subject to uncertainties. Therefore, they are frequently investigated in
combination with approaches for the quantification of these uncertainties [10, 14, 106].

Geometry data on patient-specific AAA models is obtained from medical screening such as
computed tomography (CT) or magnetic resonance imaging (MRI). Both technologies return
images of structures inside the body, while different physical principles are used. CT uses a
rotating X-rays source, while MRI applies a magnetic field and radio waves for image capturing.
A frequently named disadvantage of CT as compared to MRI scans are the exposure to harmful
radiation. MRI disadvantages in turn are unpleasant noise and long duration of screening.

Assuming available image data of a patient-specific AAA, segmentation is performed to re-
ceive a 3D model geometry, which finally can be used as the computational domain for the finite
element model [92]. Segmentation in medical context is the process of identifying anatomical
structures in a set of given images. In more detail, imaged AAAs can be segmented by extracting
the intraluminal thrombus (ILT) volume. The AAA wall can only be reconstructed in a second
step (e.g. by extrusion of abluminal ILT surface), given that image resolution is insufficient [35].
For consistent results of segmentation across operators, the segmentation protocol as presented
in [92] is followed in this thesis.

The mentioned ILT is prevailing in most AAAs and corresponds to a fibrin structure adhering
to the vessel wall [135]. ILT mechanics has been extensively examined in literature [45, 81, ],
a non-negligible influence on AAA mechanics is found. As a consequence, AAA models in this
thesis contain both ILT and AAA wall.

Figure 4.1 depicts an exemplary patient-specific computational domain €2y on the left. The
domain consists of the aneurysm sac, a small segment of the healthy aorta on the top and the
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4.1. Computational modeling of abdominal aortic aneurysms

aortic bifurcation at the bottom. A cut through the AAA on the right reveals a separation into
vessel wall and the ILT. Several surfaces are introduced for convenient reference. I'. denotes the
proximal and distal cut surfaces, I', is the outer AAA wall surface and I'; is the luminal ILT
surface.

vessel wall

ILT

Figure 4.1.: Patient-specific AAA computational domain. The full domain is depicted on the left,
while a cut through the AAA exposing the vessel wall (in blue) and the ILT (in light
grey) is depicted on the right. Adapted with permission from [122] (published under
CC BY license [28]). Adapted labeling to match the nomenclature in this thesis.

Constitutive modeling: Both ILT and arterial wall material behavior are modeled using an
isochoric-volumetric split for the strain-energy density function

VN, I, J) = Wiy (I, I) + W (), 4.1

Uwall(Iy, J) = U (1) + w¥al()) 4.2)

iso vol

with the principal invariants

I_l = tr(C’), (43)
5::%@4c»2—tacﬂn 4.4)

of the modified right Cauchy-Green tensor

C=F,

Fio 4.5)

given
F, —J 3F. (4.6)
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4. Model reduction of the aneurysmatic abdominal aorta

The isochoric part of the strain-energy density exclusively models volume preserving continuum
deformation, recalling equation (2.9) together with det(Fis,) = 1. The volumetric part in turn
models constitutive response exclusively from the change of material element volume. The iso-
choric ILT strain-energy density reads

(L L) = oI — 21, — 3. (4.7)

1S0

The material parameter c refers to material stiffness, which is spatially varying across the ILT
[45]. To account for this spatial variation, c is interpolated linearly from a value at the luminal
ILT surface ¢, to a medial value c,,.q and from c,,.q to a value at the abluminal surface c,y,.
The isochoric vessel wall contribution is given by
UN(LL) = all; — 3]+ B[ — 3] (4.8)

180

and depends on the two material parameters « and (3. For only slight continuum deformation, the

contribution [I; — 3] dominates over [I; — 3], while the opposite occurs for large deformation.

As a result, o can be interpreted as low-strain range stiffness, while 3 refers to a high-strain

range stiffness. These parameters are referred to as a-stiffness and -stiffness in the following.
Both volumetric strain-energy density contributions are modeled by the ansatz

X

T (J) = %[ﬁ —2In(J) — 1] 4.9)

vol

with x € {ILT, wall}. The volumetric bulk modulus x* is chosen sufficiently large, such that the
strain-energy density mimics almost incompressible material behavior.

Governing equations: A finite element solution for the following set of equations is to be
found

Vo P =0 in Oy, (4.10)
P'noztp70 onFl, (411)
u=0 onl.. 4.12)

Referring to the balance of linear momentum (2.36), equation (4.10) corresponds to a steady-
state momentum balance without volumetric forces. Exerted blood pressure p on the luminal ILT
surface is modeled by the boundary condition (4.11), wherein the first Piola-Kirchhoff traction
t, results from the pressure load

t,o=—pJF T my. (4.13)

Prestressing: Patient-specific AAA geometries are reconstructed from medical screening. The
screening takes place in vivo, which means that the imaged geometry is under blood pressure.
From a continuum mechanics perspective, this corresponds to a non stress-free reference con-
figuration that needs special treatment in the simulation process and impacts results of AAA
finite element analysis [47, 89].

To appropriately account for the non stress-free reference configuration, a stress state has to
be evaluated for the spatially imaged configuration. This process is called prestressing. In liter-
ature, several approaches for aortic prestressing have been presented, such as the inverse design
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4.1. Computational modeling of abdominal aortic aneurysms

method [46, 89]. The idea therein is to find a stress-free reference configuration, which will trans-
form to the (imaged) known configuration after application of the load under consideration. In
inverse design, the finite element problem is reformulated such that a deformation from stressed
to stress-free configuration is retrieved. An alternative method for prestressing is the backward
incremental method [33]. It makes use of multiple forward simulations and iteratively updates
the stress-free configuration until convergence.

The modified updated Lagrangian formulation (MULF) [46, 47] is motivated by the need for
a computationally efficient and reliable AAA prestressing method. Using MULF, the load under
consideration is (incrementally) applied on the fixed imaged configuration, while a deformation
gradient is accumulated from all preceding load steps

F,=F"'F" 2% F° (4.14)

Recalling relation (2.30), the accumulated deformation gradient results in a stress state imprinted
into the imaged configuration. By this, an approximation of the stress state in a fixed configura-
tion is computed without direct reconstruction of the stress-free configuration. When a defor-
mation stage (i.e. a simulation, wherein the geometry is deformed by the applied load) follows
the prestressing stage, the accumulated deformation gradient F}, is used to “lift” the deformation
stage displacement gradient F}; to the total deformation gradient F'

F = F,F, (4.15)

Due to its computational efficiency and robustness, MULF is the method of choice for pre-
stressing in this thesis. Given that the prestressing stage aims at computing a deformation gradi-
ent instead of a displacement field as primary variable, MULF prestressing in its original formu-
lation is not suited for snapshot collection in the offline-stage of projection-based MOR. Here, a
reformulation of the MULF prestressing stage motivated by the application in projection-based
MOR is discussed following the presentation of the original article in [122].

Given a spatial configuration {2 > x, a reference configuration {2y > x( and a virtual con-
figuration Qo 3 &g, the relation

w:afzg—l—'&:wo—i—u (416)
holds, assuming that v and w denote the displacement fields from x and x, to , respectively.
Introducing the deformation gradient F' = 597”“0 and a virtual deformation gradient F' = g—fgg, the
following kinematic relation can be stated

ou 8[%0 + ’U/] 8[530 + ’EL] 8[5'}0 + ’lNI/} 85%0 ou ~
F=1 = = = =|I+—|-F. 4.17
+ (‘3:60 8:130 8:130 85’}0 (9:00 + 85:0 ( )

Using equation (4.17), the identical first Piola-Kirchhoff stress field can be expressed in terms
of a deformation gradient, a displacement field or virtual displacement field and deformation
gradient

P = Py(F), (4.18)
P = P,(u), (4.19)
P=P,pu,F), (4.20)
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4. Model reduction of the aneurysmatic abdominal aorta

wherein
Py F s g—lq;(F), (4.21)
Piun O (I+§—;‘O), (422)
P.p:(u,F)— g—f, ({I + g—;} F) . (4.23)

was defined. Recalling MULF prestressing, the virtual deformation gradient F can be inter-
preted as the prestress deformation gradient F),, while the bracket [I + g—%} corresponds to the
deformation gradient from deformation stage. Using kinematic relation (4.17), the identical first
Piola-Kirchhoff stress field can be expressed by

P = Puvp(’u,d, Fp) = Pu(ud + ’U,p), (424)

wherein w,, is a prestress displacement field which is consistent with the prestress deformation

gradient, that is 5
Up

F,=1+ 9o (4.25)
and u, is the deformation stage displacement field. Consequently, instead of multiplicatively
extending the deformation gradient (see equation (4.15)), the displacement field is extended
additively by the prestress displacement field u, (see equation (4.24)). In analogy to the dis-
placement field, the prestress displacement field modes can be gathered in the offline-stage for
ROB construction, see Section 3.1.3.

Summed up, the set of equations (4.10) - (4.12) is solved during prestressing for u, with a
first Piola-Kirchhoff traction load ¢, evaluated on (2, given that the spatial configuration is as-
sumed fixed. Thereby, the pressure in equation (4.11) is increased up to diastolic blood pressure
P = DPaia- In the subsequent deformation stage, the set of equations (4.10) - (4.12) is solved for
the deformation stage displacement field u,, using the known prestress displacement field u,,
for evaluation of the first Piola-Kirchhoff stress field (equation (4.24)). The boundary condition
traction ¢ is evaluated on the deforming configuration {2 3 x( + u, while the load is increased
from diastolic pressure p = pgj, to systolic pressure p = pgys.

Model parameters, discretization and nonlinear solution: Data on model parameters and
the discretization common to all performed AAA simulations in this thesis is provided here. a-
and J-stiffness of the AAA wall together with the wall thickness ¢,, are given in terms of prob-
ability distributions (see Section 4.3) with the purpose of modeling patient-specific uncertainty.
The ILT stiffness interpolation points are ¢y, = 2.62 kPa, cpeq = 1.98 kPa and c,1,) = 1.73 kPa
[45]. The diastolic blood pressure value is assumed as pg;, = 87 mmHg (11.6 kPa), while the
systolic value is pgys = 121 mmHg (16.1 kPa).

A discretization with linear hexahedral finite elements with F-bar technology [34] is used for
the AAA wall. The ILT is discretized with linear tetrahedral finite elements, while a layer of
pyramidal finite elements with F-bar technology is used for the transition between the hexahe-
dral and tetrahedral meshes. An exemplary mesh is depicted in Figure 4.2. The pressure load is
applied in 25 steps, wherein 15 load steps are used for the prestressing stage and 10 load steps
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4.1. Computational modeling of abdominal aortic aneurysms

for the deformation stage. Following the steps for spatial discretization as presented in Section
2, the finite element model residual reads

(RN — RY

for prestressing stage :
L dp = fint(dp> - fext(07pdia) s (426)

for deformation stage (with given d,,) :
\ dd — fint(dd + dp) - fext(ddapsys)

wherein fe.(d, p) was introduced as external force assembled from a pressure load p on a con-
figuration following from displacement field d. The nonlinear system of equations reads

r(d") =0, (4.27)

with n denoting the load step index (see Section 2.2.3).

RIS
* %0, 9!
RRIRAKSS

H "{0:0:‘:0‘:

SRS
%0
‘):’ L

Figure 4.2.: Finite element mesh of the patient-specific AAA computational model.

The nonlinear models are iteratively solved applying Newton-Raphson iterations. Arising lin-
ear systems of equations in case of the FOM are solved using a parallel GMRES solver including
an algebraic multigrid preconditioner from the software package Trilinos [55], while ROM linear
systems of equations are solved using a direct solver [31].

4.1.2. Exemplary computation

An exemplary model evaluation at the parametrization of a-stiffness o = 169.38 kPa, 3-stiffness
B = 541.45 kPa and AAA wall thickness t,, = 1.09 mm is presented. The model is discretized
by 140,019 finite elements with 109,587 degrees of freedom. Figure 4.3 depicts the prestress
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4. Model reduction of the aneurysmatic abdominal aorta

displacement field d,, (i.e. the finite element approximation of wu,), the deformation stage dis-
placement field d; (i.e. the finite element approximation of u,) and the resulting von Mises stress
field at three different load levels.

Recalling that the prestressing stage is performed up to diastolic blood pressure load, the
prestress displacement field evolves until p = pg;,. In the deformation stage performed for a
loading from diastolic to systolic blood pressure, the prestress displacement field remains un-
changed. The opposite observation occurs for the deformation stage displacement field, which
remains unchanged during prestressing and evolves during deformation stage. Finally, the von
Mises stress increases in both stages, wherein imprinting into the undeformed configuration takes
place in prestressing stage (given that d; = 0), while the systolic pressure load von Mises stress
is given in a deformed configuration (given that d; # 0).

4.2. Reduced-order basis construction

Referring to Section 3, projection-based dimensional reduction builds upon a low-dimensional
trial and test space for the nonlinear residual. Consequently, modes contained in the ROB must be
chosen carefully in order to represent the solution subspace. If data-driven approaches including
model evaluations in a parameter domain are used, the selection of ROB modes is directly related
to the selection of points in the parameter domain.

The AAA model under consideration is stationary and only returns two modes of interest,
namely the prestress displacement and the deformation stage displacement. In Section 4.2.3, a
sampling strategy based on a so-called greedy maximin distance design and subspace angles
as a termination criterion is presented. Maximin distance sampling and subspace angles are
introduced as individual concepts in Section 4.2.1 and 4.2.2 first.

4.2.1. Space-filling designs and maximin distance sampling

Maximin distance sampling corresponds to a space-filling design, wherein space-filling de-
signs are a topic in the research field “design of (computer) experiments (DOE)”, please refer
to [121] for a general DOE overview and space-filling designs in general. As the name sug-
gests, space-filling designs attempt to distribute points evenly throughout the parameter domain,
assuming that important features of the model output can be observed in the entire domain.
Thereby, the exact meaning of “distribute evenly” depends on the applied sampling algorithm.
At the same time, space-filling designs avoid model evaluations in close proximity to already
evaluated points, in practice, the same point will never be evaluated twice. This feature is espe-
cially valuable for computer experiments having full control of model inputs and noise, such that
replicated evaluation of a point will not reveal new information.

An intuitive example of a space filling design is the factorial design [260]. Given np as the
dimension of the parameter space P € R"”? and np;,i € {0, ..., np—1}, as the number of values
taken by parameter i, a full factorial design claims H?jo_lnpi model evaluations. As a result,
whenever the number of model evaluations is limited, factorial designs might not be appropriate.
Alternatively, statistical sampling methods can be used to produce space-filling designs. Simple
random sampling is a popular choice, although a small number of samples frequently results in
an unsatisfactory point distribution in terms of space-filling. An alternative is stratified random
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Figure 4.3.: Visualization of the prestressing stage displacement field (first row), deformation
stage displacement field (second row) and von Mises stress field (third row) at dif-
ferent pressure loads.
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4. Model reduction of the aneurysmatic abdominal aorta

sampling, wherein the parameter domain is first divided into subdomains, random sampling in
each subdomain is performed next. Stratified random sampling typically results in better space-
filling properties than simple random sampling [121].

Latin hypercube is another popular class of sampling designs. Assuming a P = [0, 1|"? pa-
rameter domain, P is divided into n,” equal subdomains (or cells), with n, € N, indicating the
number divisions for every parameter interval. A Latin hypercube design places n, points in dif-
ferent cells. Thereby, the cells are selected in a way such that their midpoints result in equidistant
distributions, if projected on any of the parameter domain axes. In 2D, a Latin hypercube design
results in a point distribution with exactly one point in each row of cells and each column of
cells. A Latin hypercube design as described will not necessarily have good space-filling proper-
ties, an intuitive example (with bad space-filling properties) is the selection of diagonal cells in
2D. Consequently, extensions have been presented in order to improve the original formulation
[141].

The maximin distance design (MmD) under consideration in this thesis corresponds to the
class of distance based sampling designs. MmD as well as the minimax distance design (mMD)
have been introduced in [64], a recent review can be found in [108]. If given a training grid
%, C [0,1]" and a set of n,, chosen points p; € X)™ C %y,7 € {0,...,n, — 1}, then Z3™ is a
MmD with respect to the euclidean norm if

min . —m:|l, = max min C— D
PthEZMi“ sz p] ||2 Zn,LCZt |:pi;pj€2np, ”pl p] ”2 (4_28)

Vi,j €{0,...,n, — 1} withi # j

holds, wherein Y., denotes an arbitrary subset of X; with n, elements. In words, a MmD dis-
tributes points such that the minimal distance between any two selected points is maximized.
The mMD E?L“y C > in contrast distributes points such that

pES: piezg‘i\’l Y, CE¢ | PEX: iE€EXn,

max[ min Hp—mlb] — min {max L,min ”p‘pi”ZH (4.29)

Vie {0,...,n, —1}

holds. Consequently, the mMD organizes points such that any training grid point p € >; is as
closely as possible to another point from the design ZSMM. For clear distinction between maximin
and minimax, please note that a MmD (4.28) results from a maximization over all possible
designs maxsy,, cx,, While a mMD (4.29) results from a minimization over possible designs
miny,, cx,. General surrogate modeling by MmDs has been discussed broadly [29, 44, ,

]. Specific applications related to radial-basis-function surrogates can be found in e.g. [88]
using the maximin distance criterion to sample cut lines and planes and in [15] to place points in
Voronoi cells.

Both MmD as well as mMD are computationally demanding optimization problems, which
require initial knowledge about the number of points to distribute. In [95], a greedy version of a
MmD solving a local optimization problem in every iteration has been presented. Algorithm 3
depicts the selection of a single greedy maximin distance design (GMmD) point from an input
grid X; C X; C P, given a set of previously chosen points . C >»; C P. Thereby, the
maximin criterion is evaluated on a reference hypercube, which is possible after transformation
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Figure 4.4.: Exemplary GMmD design with first point chosen at random. Reproduced with per-
mission from [122] (published under CC BY license [28]).

by the map x from physical domain to reference hypercube. Algorithm 4 depicts the steps for the
construction of a full GMmD, given a single initial point. Figure 4.4 visualizes several GMmD
designs at different n,,. The space-filling property together with an increased exploration of the
domain boundary can be observed.

Algorithm 3 MaxiMinPoint(%;, ¥.) (select a GMmD point)
Input: input grid >; C 3, previously chosen points . C %,
Output: selected grid point u

: El = X(EZ), Zc = X(Ec) 5 .
(mingcs, [Ig —pll,)

> transform grids to reference hypercube
> get next point in reference hypercube
> transform point to physical domain

> return point in physical domain

1
20 b= arg maXges,
3 p=x""()

4: return p

4.2.2. Subspace angles

In this thesis, subspace angles (or principle angles) are used to quantify the difference between
subspaces. Subspace angles are known from matrix computations [48]. For subspaces given by
the column spans of two matrices Y € RY>*" and Z € RV*™ with n < m, subspace angles can
be defined recursively by

0, = min arccos(y’z) withk € {0,...,n—1}.
yeY b zezit

(4.30)
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Algorithm 4 MaxiMinDesign(%, i, n,,) (construct GMmD design)
Input: training grid >, C P, starting point p € >, number of points to select 7,
Output: chosen points X,

I X, = {IJ’}

2: fori e (0,...,n, —1)do

3: p = MaxiMinPoint (X%, 3.)
4: Y 2. Up

5: end for

6: return X,

The mentioned recursion becomes apparent when defining the complements

Y ={y:y espan(Y),|lyl]| =1}
Zi- ={z:zcspan(Z),|z| = 1} (4.31)
fork=20

and

Y ={y:yespan(Y), [lyll = Ly"y; = 0}
Zif ={z:z€span(2),|z|| = 1,2"z; = 0} (4.32)
forje{0,....k—2}, ke{l,...,n—1},

which for k& # 0 are defined in terms of the principle vectors y;, z; with j € {0, ..., k—2}. Def-
inition of the complements is completed by providing the principle vectors as the minimization
arguments of equation (4.30)
. T .
Yk, 2 = arg er?,lzneZ,g arccos(y' z) withk e {0,...,n—1}. (4.33)

Please note, that the arccos : [—1;1] — [0°;180°] operation in (4.30) is valid given that
|y z| < 1, as can be seen from the definition of Y;* and Z;'. Equation (4.30) also reveals why
the maximum subspace angle can be interpreted as a measure for difference of subspaces. A
maximum subspace angle of ,,_; = 90° indicates that there is at least one direction in span(Y’)
orthogonal to span(Z). As a result, there are vectors in span(Y’) not representable by span(Z).
A maximum subspace angle of 6,,_; = 0° indicates that span(Y’) C span(Z) and consequently
that any vector in span(Y") is representable in span(Z). In the following, the maximum subspace
angle is referred to as the subspace angle distance (SAD). Figure 4.5 provides a geometrical
interpretation of subspace angles in 3D.

Projection-based MOR has seen multiple applications of subspace angles. An interpolation
of ROB subspace angles for flow problems is presented in [85-87]. Application of subspace
angle interpolation to a Diffusion-Convection-Reaction problem is presented in [2]. The use of
subspace angles as a stopping criterion has been demonstrated in [7, 66, ] with focus on
linear time-invariant state-space systems [/, ] and trajectory piecewise linear approximation
[66].

Numerical computation of subspace angles does not require the recursive solution of opti-
mization formulation (4.30). Instead, a singular value decomposition can be applied, as depicted
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in Algorithm 5 [48]. The arccos operation in line 3 is valid, given that Qy, Q7 are orthonormal
matrices, such that |£;| < 1 holds for the entries of the singular values vector €.

Algorithm 5 SSA(Y', Z) (computation of subspace angles)

Input: Y € R¥X" Z € RVX™ withn <m
Output: subspace angles 6

LY =QyRy,Z=Qz;R, > perform thin QR factorization [48]
2: QT Q7 = Udiag(€)Q7 > perform thin singular value decomposition [48]
3: @ = arccos(&) > transform to angle
4: return 6

span(Y’)

Figure 4.5.: Geometrical interpretation of subspace angles in 3D space between 2D subspaces.
The 2D subspaces are visualized by the red and blue plane and correspond to the
column span of Y € R3*? and Z € R3*2, respectively. The principle vectors
Yo, Y1 € span(Y) and 2z, z; € span(Z) enclose the corresponding subspace angles
6y and 0;. Reproduced with permission from [122] (published under CC BY license

[28D).

The application of the SAD is exemplified for quantifying the difference of subspaces us-
ing the package numpy (version 1.16.2) [51] from the Python programming language. For this,
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Figure 4.6.: Maximum subspace angle between matrices Y, € R19%2Y and Y; € R190%20 gver

perturbation factor n from equation (4.34) for ten different realizations. Large per-
turbations are indicated by large maximum subspace angles.

the matrices Yy, Z € R!%9*20 are created. Both matrices contain uniformly distributed random
entries in the interval [0, 1]. A third random matrix Y; is generated by

Y=Yy +nZ (4.34)

introducing a scalar 7. By this, 77 gives control of the difference between Y| and Y; as well as
the subspaces spanned by the columns of Y; and Y; by scaling a normed perturbation Z. Figure
4.6 depicts the maximum subspace angle over the multiplication factor 7 for ten different real-
izations of Y; and Z (Y follows from (4.34)). For every single realization, large perturbations
are indicated by a large maximum subspace angle.

4.2.3. Construction of low-dimensional solution subspaces by
greedy maximin distance sampling

The two concepts of GMmD sampling and subspace angles are combined to an efficient sampling
algorithm aiming at the construction of a ROB as well as a snapshot matrix with modes used for
subsequent hyper reduction by ECSW, see Section 3.2.2. Thereby, GMmD sampling is used to
scatter new points, while subspace angles are evaluated aiming at a termination criterion. In more
detail, the parameter domain is subdivided into ns; subdomains ¥X4;, ¢ € {0,...,ns — 1} with
Yoai Nizj Lsa; = O fori,j € {0,...,nsg — 1} and U?*;%_lzsd,i = Y, which are subsequently
excluded from sampling based on a subspace angle criterion. By introducing subdomains, the
sampling algorithm becomes adaptive. Feedback from the parametric domain in terms of sub-
space angles is processed and used for exclusion of subdomains, such that individual subdomains
might receive more detailed sampling than others.

Algorithm 6 depicts the individual steps. First, the FOM is evaluated at a starting parametric
configuration p. The local snapshot matrix s(u) is orthogonalized (line 1:) and used for the
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Algorithm 6 SDMaxiMinSampling (X4, i, 6y,) (GMmD sampling on subdomains)

Input: subdomain set Xy = {Xs40. . ., Xsdn,,—1}, starting point pp € X4, threshold angle 6y,

Output: chosen grid points 3. = { o, . . .

1:
2:
3:
4.
5:
6:
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

, Mn,—1}, ROB V, snapshot matrix S

s(u) = QR > thin QR factorization [48] of initial snapshot matrix
V=aQ

S =s(p)

Ye={u}

Y= (Zsd1, - Dsdnag—1> Lsd,0) > define subdomain tuple for iteration

while True do
for >, € X do
p = MaxiMinPoint (2,4, 2.)
Y 2. Up
0 = SSA(V,s(p))
0, = max(0)
if 0,, < 6, then
Y X\,
end if
V' Orthogonalize([V, s(u)])
S« [S,s(p)]
end for
if ¥ =0 then
break
end if
end while
return ., V', S

> iterate over subdomains

> in case of small maximum subspace angle
> exclude subdomain from sampling

> extend ROB
> extend snapshot matrix

> if no subdomain left
> stop algorithm
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initialization of the ROB (line 2:) and the snapshot matrix (line 3:). Looping through each active
subdomain (line 7:), a new point is set by a GMmD step (line 8). A local snapshot matrix s(u)
is evaluated (line 10:) and used to extend the ROB (line 15:) and the global snapshot matrix (line
16:). Please note, that the ROB extension strategy ensures that span(V;) C span(V;) for j > i,
assuming V; and V/ to represent ROBs after GMmD iteration ¢ and j, respectively. Additionally,
the maximum subspace angle 6, (line 10:, 11:) is computed. A small 6,, indicates, that the
snapshot matrix is well representable within the accumulated ROB, see Section 4.2.2. If 6,, is
below a predefined threshold subspace angle 6,;, (line 12:) the current subdomain is excluded
from sampling (line 13:). Sampling stops and the algorithm terminates, if all subdomains have
been excluded (line 18:, 19:).

The terminology used in [29] allows the following classification of the presented sampling
algorithm:

e global: A single ROB is built for the entire computational domain.

e sequential / adaptive: In contrast to one-shot designs (i.e. designs with point distributions
which can be determined before the first simulation), points are distributed iteratively in-
cluding analysis of data from previous simulations.

e fine-grained: Only one point is selected per iteration.
e explorative: Initial iterations over all subdomains ensure coverage of the entire domain.

e exploitive: With increasing number of excluded subdomains, the algorithm gains the prop-
erty of exploitation by concentrated sampling of domain regions of interest.

e collapsing: In a non-collapsing design, any two selected points will not take the same value
in any parameter domain axis. This property is not ensured by GMmD sampling.

4.3. Results and discussion

In this section, three patient-specific computational AAA models are investigated. GMmD is ap-
plied for construction of dimensionally reduced order models (DROMs) and ECSW for hyper re-
duction, which yields dimensionally reduced as well as hyper reduced order models (DHROMs).
Both ROMs are evaluated in terms of accuracy and speedup. Direct Monte Carlo sampling ap-
plied to the DHROMs is shown to be accurate in the estimation of AAA wall maximum von
Mises stress and maximum von Mises strain probability distributions.

4.3.1. Subspace inclination

In this introductory numerical experiment, the influence of the solution subspace inclination on
model accuracy is investigated, wherein model accuracy is assessed in terms of the final (i.e.
after fully performing prestressing stage and deformation stage) von Mises stress field and the
von Mises strain field in the AAA wall as quantity of interest. The evaluation of the presented
exemplary computation (see Section 4.1.2) is used as the baseline solution and a ROB V is built
from a subspace spanned by prestressing stage and deformation stage displacement field.

56



4.3. Results and discussion

o
LR
et
SRR
QAR
LA
2045094

e
23S
posssetes
LS
TSRS
o,

QR
e
o

255X

! =Y
&

|
8 8

von Mises stress (kPa)

8

(a) (b) (c)

Figure 4.7.: Patient 2 mesh (a), cut exposing ILT (b), exemplary von Mises stress distribution
(c). Reproduced with permission from [122] (published under CC BY license [28]).

! B
&

|

N N

8 3
von Mises stress (kPa)

8

(a) (b) (©)

Figure 4.8.: Patient 3 mesh (a), cut exposing ILT (b), exemplary von Mises stress distribution
(c). Reproduced with permission from [122] (published under CC BY license [28]).

The generated FOM solution subspace span(V') can be interpreted as perfectly tailored for
the exemplary computation. This can be seen from the resulting DROM, which returns relative
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4. Model reduction of the aneurysmatic abdominal aorta

errors of RE (G, 0vm) = 1.5- 107" and RE (€, eym) = 8.2 - 10712, The relative (12-norm)
error is defined by

e

I e (4.35)

|z]

with x, x representing FOM solution quantities and &, x representing ROM solution approxima-
tions and usage of 12-norm ||e||, in case of vector valued quantities and the absolute value | o |
for scalar valued quantities.

In this section, the perfectly tailored subspace is perturbed by inclination with a given angle
aincl- Consequently, the level of perturbation is controlled by the value of ;.. The other com-
ponent in subspace inclination are the directions of inclination, which are constructed as vectors
of unit length being orthogonal with respect to each other and to the perfectly tailored subspace,
see Figure 4.9 for an illustration.

inclination direction Q

inclined vector '}/

‘ L]
vector V' J with V =V + tan(aina ) Q

orthogonalized vector W
with W = Orthogonalize(V)

inclination angle (tjncl

Figure 4.9.: Inclination of a subspace represented by span(V'). The direction of inclination is Q
and the angle of inclination is aj,. The inclined subspace is span(W). Following
relations hold: |V, = [|Q], = W], =1, VIQ = 0, VIW = cos(aina).

Summed up, a set of inclined subspaces span(W;;) has been created by inclination of the
perfectly tailored ROB vectors with an angle ainq,; (index %) in directions given by matrix Q;
(same shape as V, index j)

Vij =V + tan(aina,) Q; (4.36)

and subsequent orthogonalization
W,; = Orthogonalize(V;). (4.37)

10 exemplary inclination angles i, € {0.01°-3° 0.01°- 3%, ...,0.01° - 3%,90°} and 100 in-
clination directions Q;, j € {0,...,99} are chosen. The Q; are created using random number
generated matrices (uniform distributions in the range [0,1]) with subsequent orthogonalization,
which ensures that the resulting inclination directions are orthogonal to the tailored ROB, i.e.
VTQ; = 0, orthonormal to themselves, i.e. Q]TQj = I and orthogonal to each other in order
to have independence in the sense of Q?Qi = 0 for ¢ # j. Additionally, inclination directions
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4.3. Results and discussion

are modified to preserve zero value Dirichlet boundary conditions by setting the corresponding
values in the Q; to zero.

Figure 4.10 depicts the resulting relative 12-errors for the quantities of interest over subspace
inclination angles. In more detail, a DROM simulation is evaluated for every point and the rela-
tive 12-error with respect to the FOM solution is calculated. Applied ROBs result from inclina-
tion of the FOM solution subspace in direction of Q;, j € {0,...,99} (each color corresponds
to one distinct inclination direction) by several angles (horizontal axes in Figure 4.10). Follow-
ing observations can be made. Small inclination angles result in small relative 12-errors and the
direction of inclination does not have a significant influence. The latter also applies to large
inclination angles. For moderate inclinations, the relative 12-error scatters over a pronounced
range. Obviously, inclining subspaces with a given angle in certain directions introduces signifi-
cantly more or less distortion in the quantities of interest than other inclination directions. Also,
this tendency is preserved over different inclination angles, which can be seen from the similar
stacking of colors for different angles. For instance, one of the randomly generated inclination
directions is significantly less distorting the solution than the remaining directions (one point
in light blue tends to smaller errors than all others points). This holds for the entire range of
moderate inclination angles.
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Figure 4.10.: AAA wall von Mises stress field (left plot) and von Mises strain field (right plot)
relative errors over an inclination of the FOM solution subspace using patient 1 as
computational example. Different colors indicate different directions of inclination,
in total 100 DROM model evaluations have been performed per inclination angle.
While low inclination and high inclination angles yield similar relative 12-errors
across different directions of inclination, pronounced differences in the 12-error
arise for the mid range, depending on the direction of inclination.

4.3.2. Patient-specific parametrization and computational models

The first patient-specific computational model has been presented in Section 4.1, see Figures 4.1,
4.2 and 4.3 for the computational domain, mesh and exemplary von Mises stress distributions.
Figures 4.7 and 4.8 depict the computational models for patient 2 and patient 3, respectively.
Table 4.1 provides quantitative data on spatial discretization per patient, please refer to Section
4.1.1 for further common information on AAA modeling.
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4. Model reduction of the aneurysmatic abdominal aorta

Table 4.1.: Number of degrees of freedom N and number of elements N, for patient-specific
computational models

patient 1 patient 2 patient 3
N [-] 109,587 189,504 479,487
N [-] 140,019 149,499 776,106

The models are parametrized in their a-stiffness and [-stiffness material property as well as
their wall thickness ¢,

(67
M= B S P = [al; O‘u} X [ﬁl; Bu] X [tl; tu] C RSa (438)
tw

wherein the subscripts ; and , were used to denote lower and upper bounds, respectively. The
selected parametrization is motivated by typical model uncertainties given that neither exact data
on material parameters, nor wall thickness (due to restricted resolution [35]) can be identified
non-invasively by medical screening.

Parameter domain bounds are estimated from the 0.025-percentile and 0.975-percentile values

<7la 'Vu) = (Qlog(0'025; Moy s 0-7)7 Qlog(0-975; 2% 0-7)) for Y € {a; 67 tw} (439)

of patient-specific Log-normal probability distributions for each parameter, wherein

Quog(D; f1y, 04) = exp(piy + V20 erf 1 (2p — 1)) (4.40)

return the p-percentile value of a Log-normal probability distribution with expectation /., stan-
dard deviation o., and erf denoting the error function. The bounds given in (4.39) consequently
represent the mid 95 % of realizations of parametric configurations p. The patient-specific Log-
normal probability distributions result from the methodology presented in [ 1]. Table 4.2 depicts
the derived lower and upper bounds per patient.

Table 4.2.: Patient-specific bounds for the parameter domain

patient 1 patient 2 patient 3
[ay; v [kPa] [28.23; 345.22] [18.15;344.07] [26.46; 503.16]
[B1; Bu) [kPa] [541.46;6164.14] [543.15; 9686.14] [450.97; 7986.08]
[twi; tww) [mm] [1.09; 2.66] (0.94; 2.46] [1.03;2.73]

4.3.3. Full-order model greedy maximin distance sampling

Analysis of the GMmD sampling is started by distributing 200 points to each patient-specific
parameter domain as defined in Table 4.2. Only one subdomain (corresponding to the entire
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4.3. Results and discussion

parameter domain) is used, such that the resulting point distributions can be classified as a one-
shot design and result from Algorithm 6 with inputs ¥,y = {¥;}, 6, = 0 together with a break
of the algorithm at |>.| = 200. The training grid is a full factorial with 100 equidistant points per

parameter domain axis, while the initial point for each patient is chosen as p = [y, 3, tw
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Figure 4.11.: Decay of SADs for 200 points (one subdomain) distributed by GMmD is depicted
in subfigures (a)-(c) for each patient-specific computational model. The maximin
distance coincides for each patient (given that the design under consideration does
not contain adaptivity) and is depicted in subfigure (d). Blue markers in subfigures
(a)-(c) indicate parametric configurations in the (— — —)-octant, red markers indi-
cate parametric configurations in the (+ -+ +)-octant. Reproduced with permission

from [

] (published under CC BY license [

D.

For each point, the AAA computational model is evaluated, individual failed simulations are
shifted to neighboring points on the parameter domain grid. Additionally, the SAD (see Algo-
rithm 5) is calculated between solution snapshots and the accumulated ROB. Figure 4.11 depicts
the SADs in a scatter plot together with the euclidean maximin distance of points in the refer-
ence hypercube. Recalling that the point distributions correspond to a one-shot design, maximin
distances in the reference hypercube coincide for all patients.

The distribution of SADs is influenced by two contributions. First, the euclidean distance to
a neighboring point plays a significant role. For all patients, SADs show a pronounced decay
initially and begin to scatter with increasing number of samples. An initial decay can also be
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4. Model reduction of the aneurysmatic abdominal aorta

observed for the maximin distance, while scattering of SADs coincides with a stagnation of the
maximin distance. As will be demonstrated in the following, only the region of a pronounced
decay of subspace angles is of interest. Second, subspace angles depend on the sensitivity of
the parameter domain. For demonstration, blue markers were introduced to highlight parametric
configurations in the (— — —)-octant of the parameter domain and red markers for parametric
configurations in the (++ +)-octant, wherein the (— — —)-octant is given by & < amid, 5 < Bmid
and t,, < t, mia and the (+ + +)-octant by & > @pia, 5 > Pmia and ty, > tyy mia With

Qmid 1 67] Qy,
Pmia | =5 || B | + | Bu (4.41)
2
tw,mid tw,l tw,u
as domain midpoints. Clearly, (— — —)-octant parametric configurations are predominantly as-

sociated with lower SADs as opposed to (+ + +)-octant parametric configurations.
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Figure 4.12.: Decay of SADs for points distributed by GMmD on 8 subdomains. The green hor-

izontal line marks the threshold for the stopping criterion 6, = 0.1. Point col-
ors indicate their domain correspondence. Reproduced with permission from [122]
(published under CC BY license [28]).

In our next design, the one-shot design is turned into an adaptive design by including eight
subdomains, which are equally shaped and correspond to the (ijk)-octants with i, j, k € {—, +}
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Figure 4.13.: Parametric configurations in the physical parameter domain gained from GMmD
sampling on 8 subdomains. Corresponding subspace angles are depicted in Figure
4.12. Reproduced with permission from [122] (published under CC BY license

[28D).

of the parameter domain. Algorithm 6 is consequently restarted with ¥, = {%, ..., X7}, the
initial configuration remains g = [oy, 3, twvl]T and the termination criterion is chosen as 6,, =
0.1. Figure 4.12 depicts the decay of SADs for each patient together with a green horizontal line
indicating the termination criterion. Sampling continues until the SAD is found below 6,,, in each
subdomain. The parametric configurations themselves are depicted in Figure 4.13.

Table 4.3.: Number of points distributed in each subdomain by GMmD sampling. A visualization
of the parametric configurations in the physical domain is depicted in Figure 4.13.

subdomain 0 1 2 3 4 5 6 7
patient 1 4 4 4 4 3 3 3 2
patient 2 6 5 4 4 3 5 3 3
patient 3 6 4 4 4 3 3 2 2

Table 4.3 depicts the number of points distributed to each subdomain. For instance, subdomain
0 receives more points than subdomain 7 across all patients, the difference is especially promi-
nent for patient 3. Referring to Figure 4.13, subdomain 0 corresponds to the (— — —)-octant,
while subdomain 7 is the (+ + +)-octant, such that low-stiffness and thin walled AAAs receive
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4. Model reduction of the aneurysmatic abdominal aorta

Table 4.4.: Number of degrees of freedom p for patient-specific ROMs, number of assembled
elements for internal force n'™ and number of assembled elements for the luminal
pressure force n'P.

patient 1 patient 2 patient 3
pl-] 54 66 56
nint [-] 945 1579 1482
nP [-] 411 692 590

more samples than high-stiffness and thick walled. This is plausible from a physical perspective,
given that the low-stiffness and thin walled structures undergo larger deformation.

4.3.4. Reduced-order model accuracy and speedup

For all three patients under consideration a ROB is built from application of Algorithm 6 as
discussed in Section 4.3.3 (nyg = 8,6y, = 0.1). For DHROM construction, hyper reduction
by ECSW is performed, see Section 3.2.2. Both nonlinear internal force as well as luminal
pressure force vectors are hyper reduced, the full model mesh as well as the luminal surface
mesh are sampled independently. The parallelization strategy based on domain decomposition
as presented in Section 3.2.2 is used and sampling is performed on 4 processors with global
tolerance €, = 1072 for internal force sampling and &, = 10~ for luminal pressure force
sampling. Figure A.2 depicts selected mesh elements for both the internal force as well as the
luminal pressure force assembly. Especially accurate sampling for internal force assembly is
performed in proximity to the vessel fixation and in regions of high wall curvature. Table 4.4
summarizes the number of DOFs and evaluated mesh elements for the patient-specific DROMs
and DHROMs.

DROM as well as DHROM accuracy is examined on a test grid including 1000 points from a
full factorial design with 10 equidistantly placed points in each domain axis. Consequently, the
test grid is built independently from the ROB construction points selected by the GMmD. The
quantities of interest are the von Mises stress field o,,; and the von Mises strain field e,y in the
AAA wall at the fully loaded state (i.e. completed prestressing and deformation stage).

Figures A.3 and A.4 show relative errors (4.35) for the three patients under consideration.
Individual samples have relative errors above 1%, while the majority (> 98% for DROM, > 97%

for DHROM) of samples is below 1%. Mean relative errors RE, ., RE._,, are reported in Table
4.5, wherein
1 Ngim—1 1 nsimf1
REpu = 7 — Z_; RE(&w, o), BBy = — Z_; RE(én,ear)  (442)

is used ngy, as the number of drawn samples and RE; as the relative error of sample ¢. The
conclusion is, that caution is required whenever DROM or DHROM are used for evaluations of
single point estimates, while both ROMs are accurate in a statistical sense.

Next, the threshold SAD 6,;, and the ECSW tolerance &, are modified in order to demon-
strate the influence of these algorithmic parameters. In more detail, Algorithm 6 is performed
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several times for patient 1 with 6, € {0.1,0.5,2,5,10, 20} and the DROM mean 12-error (4.42)
is evaluated over the test grid using the resulting ROBs. Furthermore, ECSW mesh sampling for
internal force assembly is performed several times for patient 1 choosing convergence tolerances
of g, € {1074,1.5-1074,1073,1.5-1073,1072,1.5- 1072, 107!}, while assemble of the luminal
pressure force is left without hyper reduction. Again, the DHROM 12-error is evaluated over the
test grid. Figure 4.14 depicts the result. As can be seen from the left plot, lowering the threshold
SAD termination criterion results in a monotonically decreasing mean relative 12-error, while the
number of selected ROB modes increases and reflects the extension of the low-dimensional so-
lution subspace. A similar behavior is depicted with respect to the ECSW convergence tolerance
ey, 1n the right plot. The mean relative 12-error decreases with decreasing ¢;, while the number
of selected mesh elements increases and represents the more accurate mesh sampling.

Table 4.5.: Mean values of relative errors for von Mises stress and von Mises strain field in AAA
wall. FOM evaluations serve as reference. The test grid is built from a full factorial
design with 1000 points in the parameter domain.

value patient 1 patient 2 patient 3
DROM RE,,, 22107 9.9-10~* 1.1-1073

RE.,, 1.5-10~* 6.1-1074 6.2-1074
DHROM RE,,, 4.4-107* 1.7-1073 1.6-1073

RE 3.2-107* 1.1-1073 8.7-107*

EvM

Computational speedup of the ROMs is evaluated next. In order to weaken dependency on
specific parameterizations, the speedup is computed as the mean value from seven simulations,
wherein the parameterization is chosen as the midpoint of the parameter domain (see Table 4.2)
together with the midpoints of the six parameter domain hypercube faces. All simulations are
performed on 4 cores (Intel Xeon W-2133 (3.60GHz)). As can be seen from Table 4.6, DROMs
yield only small computational savings, given that the system assembly is not accelerated. A
larger speedup is gained by DHROMs.

Table 4.6.: Speedup of DROM and DHROM with FOM timing as reference. The speedup is
calculated as the mean value of seven simulations per patient.

model speedup [-]
patient 1 DROM 1.6
DHROM 322
patient 2 DROM 1.5
DHROM 22.7
patient 3 DROM 1.8
DHROM 60.2
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Figure 4.14.: Influence of algorithmic parameters using patient 1 as computational example. The
left plot depicts mean relative 12-errors (evaluated on a full factorial design with
1000 points in the parameter domain) together with the corresponding number of
selected ROB modes over the threshold SAD 6y;,. The right plot depicts mean rela-
tive 12-errors with the corresponding number of selected mesh elements for internal
force assembly over the ECSW tolerance ¢;,. Adapted with permission from [122]
(published under CC BY license [28]). Adapted axes labeling to match the nomen-
clature in this thesis.

4.3.5. Application to Monte Carlo sampling

The DHROM described in Section 4.3.4 is now used for the estimation of stress and strain
probability distributions. In more detail, the quantity of interest is the 99.9-th percentile value
of the element-wise von Mises stress and von Mises strain field in the AAA wall, for simplicity
denoted as maximum von Mises stress and maximum von Mises strain in the following. For
this purpose, 10,000 randomly generated points are drawn per patient from the corresponding
parameter domains and FOM as well as DHROM are evaluated at these points.

Table 4.7 depicts mean values and standard deviations for maximum von Mises stress and
maximum von Mises strain per patient for both FOM and DHROM. Relative errors of all val-
ues are below 1%. Figure A.5 depicts probability distributions from Gaussian kernel-density-
estimations (scipy.stats.gaussian_kde from SciPy [134] (version 1.3.0) package of the Python
programming language). Differences between reference solution and approximated probability
distributions are negligible.
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vMmax

Table 4.7.: Mean values p

vMmax
stress :ustraln

and standard deviations o

vMmax
stress Y strain

oYMmax £, reference

(FOM) and approximate (DHROM) probability distributions of maximum von Mises
stress and maximum von Mises strain. The statistical data is computed from 10,000

identical samples per individual patients.

value patient 1 patient 2 patient 3
FOM piMmax [k Pa| 205.57 276.84 302.49
oyMmax [k Pa] 44.950 65.926 71.761
piMmax ] 0.17320 0.19404 0.19070
oyMmax [_] 0.038272 0.052792 0.049465
DHROM piMmax [k Pa| 205.83 277.24 302.19
oMmax [k Py 45.073 65.844 71.795
pyMmax [ 0.17358 0.19423 0.19063
gyMmax [_] 0.038452 0.052746 0.049578

train
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5. Model reduction of the beating
heart

As stated in Section 1.1, reduction of a computational cardiac mechanics model is one central
aspect for the motivation of this thesis. The cardiac mechanics model under consideration is a 3D
spatially resolved model including anisotropic as well as actively contracting material models.

Following the presentation in the review article in [101], studies on active muscle mechanics
can be traced back to an early article [56] in the year 1938. Computational models of the full
organ emerged later, an early ventricular model with focus on pressure-volume relations and
transmural distribution of sarcomere length can be found in [3] from the year 1979. In the fol-
lowing, geometrically or computationally enhanced models for ventricular mechanics have been
published [50, 69, 97, 129]. A further step towards model accuracy has been made with the appli-
cation of geometrically patient-specific computational models [30, , ] and the application
of sophisticated boundary conditions such as closed-loop circulation models [58, 70] or fluid-
structure interaction [ 102, ]. Also, the phenomenon of cardiac tissue growth and remodeling
has gained increasing attention in computational cardiac mechanics [38, 68, 75].

The cardiac mechanics model under consideration in this thesis is a full organ model devel-
oped in [57] with a geometry gained from medical screening. The solid mechanics part is cou-
pled to a system of ordinary differential equations modeling the closed-loop blood circulation
and returning dynamic pressure load boundary conditions for the cardiac chambers. Accurate
computational results require high resolution in both space and time, entailing large demand on
computational resources and motivating application of model reduction methods.

Although efficient and accurate reduced-order models (ROMs) in cardiac structural mechan-
ics are crucial for many applications such as uncertainty quantification or optimization, rela-
tively few publications on projection-based model reduction in this context exist. Application
of proper-orthogonal decomposition (POD) and the (matrix) discrete empirical interpolation
method (M)DEIM together with model reduction of idealized and patient-specific single ven-
tricle models is addressed in Refs. [13, 23, 93]. Extended focus on model reduction of cardiac
electromechanics can be found in [12], wherein again POD subspace reduction as well as hy-
per reduction by (M)DEIM or the Broyden method (Jacobian approximation by rank one matrix
updates) are used. Blood circulation mechanics is excluded from modeling. A Galerkin projec-
tion on POD subspaces in the context of optimization can be found in [57, ]. Only the 3D
structural mechanics component of the 3D-0D cardiac models is dimensionally reduced, hyper
reduction is not included. Finally, a recent publication motivates the use of deep neural networks
for hyper reduction [24]. The idea therein is to learn the approximation of projected residuals
and Jacobians as a function of the parameter vector, the time step as well as the Newton-Raphson
iteration index.

In this thesis, model reduction of a prestressed, patient-specific, biventricular solid dynam-
ics model is presented. Thereby, blood circulation is taken into account by a two-way coupling
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5. Model reduction of the beating heart

of the solid dynamics model to a closed-loop OD fluid mechanics model. Hyper reduction by
the energy-conserving mesh sampling and weighting (ECSW) method is applied to all involved
forces requiring reassembly, i.e. the internal force, the ventricular pressure force and the em-
bedding tissue force. Both, prestressing stage as well as dynamic cycling stage are subject to
dimensional reduction and hyper reduction.

5.1. Computational modeling of cardiac mechanics

5.1.1. In silico model

In the following, the applied heart computational model is described. In more detail, the compu-
tational domain and constitutive as well as governing equations for the structural part together
with the system of ordinary differential equations (ODEs) for the vascular system are presented.
Coupling between the 3D structure and the 0D flow network is explained and finally model pa-
rameters are stated.

Computational domain: The challenge in the identification of the computational domain in
biomedical simulations has already been addressed in Section 4.1.1, the process from imaging
to simulation in case of the heart model under consideration can be found in [57]. In brief, the
heart geometry is extracted from a computed tomography scan of a porcine heart. The lumina of
cardiac chambers as well as the outermost layer of the heart muscle are segmented and a boolean
operation is performed to subtract the chamber lumina. Segmentation is performed at 80 % of
the diastolic phase time interval.

The atria are not part of the computational domain, only ventricular dynamics is simulated. To
extract the domain of interest, the geometry is truncated by the atrioventricular plane. This plane
cuts the posterior mitral valve leaflet and is orthogonal to the axis from the lowest left ventricular
point to the center of the aortic valve. Two artificial lids are introduced in order to create closed
ventricular volumes, which have been cut open by the atrioventricular plane. Additionally, bulk
material is extended 10 mm at the heart base.

Figure 5.1 depicts the full computational domain on the left and a cut exposing ventricular
lumina on the right. Several surfaces are introduced for convenient reference in following sec-
tions. I'y (heart base) refers to the top of the extended bulk material. I', refers to the epicardial
surface and I'};q is the abluminal surface of the covering lids. Left and right ventricle surfaces are
denoted by I and I'",, wherein the luminal surfaces of the covering lids are not part of I'Y and I'”.

Constitutive modeling: Myocardial tissue has orthotropic material behavior [61], wherefore
two families of fibers are generated and enter the constitutive equation. One fiber direction cor-
responds to the muscle fiber direction f, the second direction is the sheet direction sy [57],
which is orthogonal to the fiber direction and approximately in-plane with the wall. The mus-
cle fiber inclination starts with —60° measured from the circumferential ventricle directions on
the epicardium and varies continuously in transmural direction to an inclination of 60° at the
endocardium. Figure 5.2 illustrates fiber and sheet direction.

70



5.1. Computational modeling of cardiac mechanics

1—‘lid

Figure 5.1.: Porcine heart computational domain. The full domain is depicted on the left, while
a cut exposing the ventricular lumina is depicted on the right. Ventricles are closed
by artificial lids. Atria are not part of the solid mechanics computational domain.

Figure 5.2.: Visualization of fiber and sheet direction on epicardial surface (left) and on endo-
cardial surface (right). Black dashes correspond to fiber direction f;, white dashes
correspond to sheet direction s.

The constitutive model for the myocardial tissue (i.e. the entire computational domain except
for the lids, see Figure 5.1) consists of the sum of passive material and active stress contribution

ov

S=3E

+ 7a(t) fo @ fo. (5.1)

The strain energy density for the passive material behavior contains eight material constants
(ag, bo, k,ar, by, as, bs, ars, bys) and reads [61]

o - [ebomfa] _ 1] cE e Y [ebf[f(?cfwl? _ 1}

 2by 2 2b¢
As [ bs[sTCso—1]2 Afs [ brofCsol? (5-2)
5 | gbslso Cso— _1} _S[fso 50 _1]
%, g o, L
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5. Model reduction of the beating heart

The first two summands model the isotropic part of material response under an isochoric-volumetric
split with I; as the first principal invariant of the modified Cauchy-Green tensor (4.3). The re-
maining three summands model the anisotropic, passive material response.

The second summand in equation (5.1) models the force-generating behavior of the heart,
that is its property to contract. Thereby, a temporally varying active stress of magnitude 7,(t) is
generated in fiber direction fj, whereby 7,(t) is the solution of the ODE [57]

To(t) = —|u(t)|7a(t) + 00 max (0, u(t)). (5.3)

The scalar o adjusts the maximum of the active stress and is referred to as contractility. The
function u(t) is defined in terms of the upstroke rate ouy,.x, relaxation rate a.y,;, and an activation
function f(¢)

~

u(t) = F(t) - Cmax + [1 = f(8)] - uin (54)
with
F(t) =[K[t = 1] + 1] - H(K[t — 2] + 1) = K[t — el H(K [t — c1]) 55)
— K[t — o] - H(K[t — o)) + [K[t — o] = 1] - H(K[t — o] = 1) '
using the Heaviside function
R — {0,1}
0 forz<0 . (5.6)
v 1 forz>0

K, ¢; and ¢, are constants, wherein ¢; and ¢y are defined in terms of the time of active stress
initialization £..,:, and relaxation t,qjax

Omax
= teontr + ) 5.7
“ ’ K[amax - amin] ( )
Co = lrelax — Cmax . (58)

K[amax - Oémin]

Figure 5.3 depicts an exemplary active stress curve over one cardiac cycle. The 10 mm bulk
material extension of the heart mentioned above is not subject to generation of active stress.

The covering lids are modeled using a Neo-Hookean material under a volumetric-isochoric
split

U= “;d I, — 3] + ”;d -1, (5.9)

wherein the material parameters pu;;,q and kj;,q were introduced.

Structural dynamics governing equations: Analogous to the abdominal aortic aneurysm
(AAA), the imaged heart configuration is under blood pressure and therefore not stress-free. As a
result, the heart simulation consists of a prestressing and a deformation stage. In the prestressing
stage, the heart is loaded at a fixed spatial configuration to the diastolic ventricle pressures. In
the deformation stage, a temporally discretized cardiac cycle is simulated with heart contraction
triggered by active stress ODE (5.3).
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tcontr 2frelaux

0.0 0.2 0.4 0.6 0.8 1.0
time [s]

Figure 5.3.: Exemplary active stress evolution over one cardiac cycle with period T¢yee = 1 s.
The curve is generated from an implicit Euler temporal discretization of equation
(5.3).

The following governing equations are solved in the prestressing stage

Vao - P=0 in Q, (5.10)
P.ny=t, onT?, i€ {(,r}, (5.11)
P-ny= tlbc,O + tﬁ) on I'y, (5.12)
P-ng =t only, i€ {elid}. (5.13)

Boundary condition (5.11) corresponds to a diastolic blood pressure load exerted on endocardial
surfaces (see Figure 5.1) with first Piola-Kirchhoff traction introduced in equation (4.13). Bound-
ary conditions (5.12) and (5.13) model embedding tissue at the heart base as well as covering
lids and epicardial surface by introducing a traction that is locally proportional to displacement.
The traction is either a response to the full displacement

tho = —kvu (5.14)
or a response to the displacement in direction of the reference surface normal
tih = —kii(u-ng)ng, i€ {belid}. (5.15)

The proportionality constants k; | ,i € {b, e,lid} and k; can be interpreted as spring stiffness per
reference surface area and are of physical unit [%} . In the prestressing stage, embedding tissue

boundary conditions are evaluated based on the prestress displacement field.
The deformation stage governing equations read

Vo - P = pov in €, (5.16)
P.ny=t, onT?%, i€ {(,r}, (5.17)
P -ny= tzc,o + tZi,o on Iy, (5.18)
P-ng=t, only, i€ {elid}. (5.19)
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5. Model reduction of the beating heart

When compared to the steady state equations (5.10) - (5.13), an additional inertia term can be
found in the momentum equation (5.16). The ventricle pressure load boundary condition (5.17) is
evaluated on the deformed geometry. The embedding tissue boundary conditions (5.17) - (5.19)
is extended with a velocity proportional contribution in velocity direction

theo = —kou — cyt (5.20)
and in reference configuration normal direction
t?cto = _kzL(u . ’I’LQ)TI,O — CiL(’l.l, . ’I’Lo)’no, 1 € {b, e, hd} (521)

The constants ¢; |, i € {b, e,lid} and ¢, can be interpreted as dashpot stiffness per unit reference
surface and are of physical unit [%] In the deformation stage, embedding tissue boundary
conditions are evaluated on the sum of prestress and deformation stage displacement field, that
is the prestressing of embedding tissue is maintained. The velocity proportional contribution of
embedding tissue remains independent from prestressing, given that the prestressing stage dis-
placement field remains constant in the deformation stage.

Flow network governing equations: Simplified modeling of the vascular network has been
discussed in several contributions in literature [103, , ], the approach followed in this
thesis is presented in [57]. The flow network is built from elements introduced in Section 2.1.5
and is depicted in Figure 5.4. The 16 equations (5.22) - (5.37) describe the system dynamics in
terms of 8 pressure states

pﬁt . left atrial pressure, pae ¢ right atrial pressure,
pf, . left ventricular pressure, p,, : right ventricular pressure,
Py ¢ systemic arterial pressure, p™ : pulmonary arterial pressure,
pi¥° . systemic venous pressure, pP : pulmonary venous pressure
and 8 flow rates
¢’ ., : inflow rate left ventricle, ¢y, - inflow rate right ventricle,
¢’ . outflow rate left ventricle, Qv out - OUtflow rate right ventricle,
¢¥® . systemic arterial flow rate, ¢®™ : pulmonary arterial flow rate,
s+ systemic venous flow rate, qfféﬁ : pulmonary venous flow rate.
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5.1. Computational modeling of cardiac mechanics

dvt
d_tat - \lﬁ::é + qv Jn 07 (522)
1
3 —— [Pl —P] — dosn =0, (5.23)
de
@ vin + Gon =0, (5.24)
Re 08— D3] — ¢ o = O, (5.25)
v,out
dpsys dq€ out
Sys — 7= - R () 5.26
ar [ dt ar dt v out + q ( )
L:ys dqsys 1 SYyS SYS SyS SyS
RY dt + Rsys[ v}én pa}rl Z v r 4y out] + Qar =0, (5.27)
dpsys )
Con=h — g + g3 = 0, (5.28)
Lff}éi d \sfzfl 1 T SYyS SyS
R‘S}éi dt + R‘S,}éi [par - pv}én] + qun = O (529)
dvr
1 ;‘t — @+ i =0, (5.30)
1
i [P — P — @y = 0, (5.31)
dt - qv ,in + qv ,out — O (532)
1
P PR = @0 pue = 0, (5.33)
v,out
dpp! dgy o
o | Sas g | g g =0, (534
Lpul d pul
o T g Plen = P+ 28 ol + a2 =0, (5.35)
ul
ce d];%“ — @+ b =0, (5.36)
Lby dgbs 1 o o
+ pul [pat pgerll] + qxrz)eé =0. (537)

Rbw dt  Rbu

Additional time dependent system variables are the left atrium cavity volume V£, left ven-
tricle cavity volume V', right atrium cavity volume V" and right ventricle cavity volume V.
In contrast to the pressures and flow rates, cavity volumes are not regarded as primary vari-
ables of the system. The ventricle volumes are calculated from the 3D structure model, while the
atrial volumes are gained from elastance models. An atrial elastance [Iﬁpa } is the proportionality
value between the volume change with respect to an initial value V), , i € {/,r} and the atrial
pressure

pat - E;t( ) [VZ Vzt u] Z S {£7T}‘ (538)
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Figure 5.4.: Dimensionally reduced vascular system network including pulmonary and systemic
circulation. The four heart chambers are modeled as compartments. Two-way coup-
ling to the 3D structural mechanics model is achieved via the ventricular compart-
ments (please refer to the main text for a detailed explanation). Atrial compartments
are modeled by an elastance model (5.38). Quantities highlighted in red correspond
to oxygenated blood flow, while quantities in blue correspond to deoxygenated blood
flow.

Atrial contraction and relaxation can be modeled by time varying elastances

E;t(t) = [Ezimt,max - E;t,min] ' y;t(t) + E;t,min (S {gﬁ T’} (539)
with the minimum and maximum elastance values E;mmin, E;mmax, i € {¢,r} and the activation
function

R — [0, 1]
i R 3 [1 — cos (Ai:tact>:| for ¢ < Atagacts ie{lr} (5.40)
0 for t> Atat,act

using Aty act as the duration of atrial activation. Figure 5.5 depicts an exemplary evolution of
atrial elastance.
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x10~°

Figure 5.5.: Exemplary evolution of left and right atrial elastance over one cardiac cycle.

Several system constants have been introduced in the set of equations (5.22) - (5.37), see
Figure 5.4. Valve resistances Rﬁm, Ré,out, stin and ngout model the influence of mitral, aortic,
tricuspid and pulmonary valve, respectively. The capacitances Cij , Tesistances R{ and inertances
Lf are given for systemic arterial, systemic venous, pulmonary arterial and pulmonary venous
flows with ¢ € {sys,pul} and j € {ar,ven} indicating the corresponding value. Finally, the
resistances Z%° and ZP" can be found upstream of systemic and pulmonary arterial inertance-

resistance-capacitance combinations.

In the order given, equations (5.22) - (5.37) can be interpreted as (5.22): left atrial mass bal-
ance, (5.23): mitral valve momentum balance, (5.24): left ventricular mass balance, (5.25): aortic
valve momentum balance, (5.26): systemic arterial mass balance, (5.27): systemic arterial mo-
mentum balance, (5.28): systemic venous mass balance, (5.29): systemic venous momentum
balance, (5.30): right atrial mass balance, (5.31): tricuspid valve momentum balance, (5.32):
right ventricular mass balance, (5.33): pulmonary valve momentum balance, (5.34): pulmonary
arterial mass balance, (5.35): pulmonary arterial momentum balance, (5.36): pulmonary venous
mass balance and (5.37): pulmonary venous momentum balance.

Discretization, coupling and model parameters: The heart model under consideration is
discretized with linear, tetrahedral finite elements with an edge length of approximately 1.5mm,
Figure 5.6 depicts the discretization. In total, this results in 489,365 finite elements with 284,163
DOFs. As a model assumption, a cardiac cycle triggered by active stress generation lasts for
Teycle = 1s. The temporal discretization of the structural model deformation stage is performed
by the generalized-a method (see Section 2.2.3) using 500 time steps of size 0.002 s and p, =
0.8. Temporal discretization of the flow network equations is done by one-step-6 (see Section
2.2.3) time integration using 6 = 0.5. During prestressing of the full-order model (FOM), ven-
tricular pressure load is applied in 10 steps using a pseudo-transient continuation (PTC) en-
hanced Newton-Raphson nonlinear solver (see Section 2.2.4) with initial value k;"° = 3.33. For
ROM prestressing, 20 load steps with a pure Newton-Raphson nonlinear solver are applied.
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5. Model reduction of the beating heart

Coupling between structural dynamics (5.16) - (5.19) and flow network equations (5.22) -
(5.37) takes place at the luminal surfaces of the ventricles as given in equation (5.17). In words,
the ventricle pressures state variables of the flow network are applied as boundary condition
on the structural heart model. On the other hand, the structural heart model returns ventricle
volumes, which enter the flow network by the left and right ventricular mass balances (5.24) and
(5.32).

Figure 5.6.: Visualization of heart finite element discretization.

The fully discretized residual reads

r(d" Q")} N+
rie(d",q") = | ., ail € RTTE 541
wherein g"(d", q") denotes the temporally discretized residual of the z = 16 flow network
equations and

no_ [ T ¢ . r ,sys ,pul , sys b pul
q [pat7pat7pv7pv7par 7pa,r 7pven7pven7 (5.42)

¢ r l r sys .pul _sys pulin
qv,in’ qv,in? qv,out? qv,out? Qar 5 Qar 5 Qvens qven]

denotes the DOF vector of the flow network state. Dependency of the structural residual on flow
network DOFs and vice versa follows from coupling of the two systems as explained above. The
full system is solved monolithically by Newton-Raphson iterations using a block Jacobian

J7(d}, q)) Jﬁq(d%qn] |:Ad?+1:| _ [Tn(d?a q?)] (5.43)

ol = ) + [sak
Gl = | - 5.44
|:Qi+1 q; qu’+1 ( )
wherein
a,r.n d’I’L’ n n o n a,r,n dn7 n .

ra(d”, q") = —% A Lerv, g = —(a 7 D e, (45

n o . 09"(d" q" . nom oy . 09"(d", q" 2%z

ga(d".q )3:%61[%“[7 Jgq,(d",q )3Z%ERX ‘ (5.46)
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5.1. Computational modeling of cardiac mechanics

were introduced. For details on the evaluation of these Jacobians the reader is referred to [57].

The linear block systems are iteratively solved using a parallel GMRES solver implemented
in the software package Trilinos [55] in combination with SIMPLE type preconditioning [37]
for the full block system and algebraic multigrid preconditioning for the structural block.

Physical baseline parameters for the structural heart model and the flow network model are
given in Table 5.1 and 5.3, respectively, for detailed information on parameter estimation see
[57]. Flow network system resistances / inertances as well as capacitances are given in depen-
dency of the systemic arterial resistance [75)° and the so-called systemic arterial windkessel time
constant 75* = 1.652 s and pulmonary arterial windkessel time constant T2 = 0.3 s.

Table 5.1.: Baseline parameters for structural heart. See equations referenced in the first column
for interpretation of physical meaning.

equation ‘ symbol ‘ value )
boundary conditions cquation ‘ symbol ‘ value
G.14). 5.20) . 0.5 kP passive myocardial material
. . . b . —
mm (5.2) a 0.059 kPa
(521),(5.15) | k. | 125k "
(521).5.15) | ke | 0.075 ke g;i af 128;871255 i
. Qg . a
(5.21), (5.15) kiar | 0.05 k2 5 P
(5.20) ¢ | 0.0005 kb gzz abfs 0.281(()523 a
(5.21) cor | 0.0005 KPa 5'2 bo 16' 026
(5.21) Cer | 0.0005 kP2 Es.zz bf 11'120
521 L | 0.0005 kP2 ' ) '
(5.21) clidL mmn (5.2) by, 11.436
active contraction (5.2) K 103 kPa
(5.3) 0o 70 kPa (5.16) 00 106 %
(5.5),(5.7),(5.8) | K 5 et
covering 1ds
(5.4), (5.7), (5.8) | Qmax 101 5.9) SO KP
. i a
(5.4),(5.7),(5.8) | Qmin —3012 i
57 t 0 (5.9) Kiid 10 kPa
. contr N S
(5.8) t t 0.53 5 G160 | g0 | 10750
. relax .

5.1.2. Exemplary computation

An exemplary computation of a FOM heart beat is presented together with a discussion on output
quantities of interest. The heart model as introduced in Section 5.1.1 is used for estimation of the
homeostatic state, that is, periodically steady conditions of the beating heart. In more detail, the
homeostatic state is assumed as given if the so-called cycle error criterion (CER) £y is below
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5. Model reduction of the beating heart

Table 5.3.: Baseline parameters for flow network. See equations referenced in the first column
for interpretation of physical meaning.

equation \ symbol \ value
atrial models
(540) Atat,act 04s
(5.39) fmin | 901070 23
2 —6 kPa
(5.39) Loyt max 29-107° mm3 equation ‘ symbol ‘ value
(5.39) E%t min 8-107° % system resistance / impedances
(539) | Efimax | 18-107° 5% (5.27) RY* | 1201076 kPas
valve resistances (5.29) R %R;{S
(2.51),(523) | RUmn | 106 KPes (5.35) Ry s
ul 1 psys
(2.51), (5.23) | REm™ 10 kPas (5:37) Ftyen sltar
2.51),(5.25) | R 1076 kPas (5.26), (5.27) | Z3° 5000y
(2.51), (5.25) | REmex 10 KPae (5.34),(5.35) | Zp" 0 kba
2.51), (5.31) | RyR® 1076 KPas system capacitances
@2.51),(5.31) | BRI 10 kPas (5.26) Csys =
(251),(5.33) | RO 1076 ies (5.28) oSy 3005
(2.51),(5.33) | Ryout: 10 kPas (5.34) Cpul 81;53;1
system inertances (5.36) Cgélnl 2.50;111
(5.27) Ly | 0.667 - 10-0kPas
529 | L 0 80
(5.35) Y O KPas?
(537 | Lpd 0 Kes
a prescribed tolerance Eqyer < Ecyele With
e P (Teya) — DR (0) | | P (Teya) — P2(0)
cycl = 1Inax SYS () ) pul ’
Dar ( ) Dar (0)
Sys Tc o) — 5Ys (() pul Tc o) — pul 0
pven( ys3l12 pven( ) ' , pven( Yy lu)] pven( ) , (547)
pven(o) pgen“))
Vi (Teya) = VEO) | |V (Teya) = VI (0)| [SVy —SVy
Vi (0) ’ V(o) sV '
The ventricular stroke volume
SV!=EDV! — ESV! withie€ {{,r} (5.48)
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5.1. Computational modeling of cardiac mechanics

corresponds to the amount of ejected blood during one cardiac cycle and can be computed from
the difference between the end-diastolic volume E DV, and end-systolic volume ESV/, with
ie{lr}

All quantities in equation (5.47) evaluated at time ¢ = T, result from the evaluation of one
cardiac cycle starting from given values at time ¢ = 0. Consequently, the problem of identifying
the homeostatic state can be understood as finding a set of initial conditions g(¢t = 0) for the
flow network variables (5.42), such that the flow network state at the end of the cardiac cycle
q(t = Teya) fulfills the cycle error criterion (5.47).

A strategy to find such initial conditions is described in [57]. Therein, multiple cardiac cycles
are evaluated successively updating the initial conditions by q(t = 0) < q(t = Tiya), that
is, the flow network state at the end of the cardiac cycle is used as initial condition for the
following cardiac cycle, Figure 5.7 depicts the iterative process in a flow chart. A tolerance of
Ecycle = 0.05 1s used and convergence is received after 6 cardiac cycles. Table 5.5 reveals the
initially chosen flow network state variables, which also are used as initial conditions for all
presented simulations in the following, except explicitly stated otherwise.

CER
fulfilled

Figure 5.7.: Flow chart for homeostatic state computation of the beating heart. Abbreviations
included are IC: initial condition, CER: cycle error criterion, FOM: full-order model.

The homeostatic state flow network variables are depicted in Figure 5.8 together with pressure-
volume curves and volumes of left and right ventricle. Cardiac cycle phases described in Section
1.2.2 can be identified. Starting from ¢ = 0 s, atrial contraction and final ventricular filling
proceeds until closing of atrioventricular valves, which can be seen from the separation of the
p' -curve and the p’, -curve in Figure 5.8a at t = 0.2 s. Next, isovolumetric contraction takes place
until opening of semilunar valves entailing ventricular ejection, which starts with joining of the

p¥s-curve with the p’-curve at t = 0.27 s. Ventricular ejection ends with closing of semilunar
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Table 5.5.: Baseline initial flow network state variables.

pressure [kPa] initial condition flow rate [2!] initial condition
Pl 0.606 %oin 0
pf/ 0.6 q\{,out 0
par 12 G 0
Pren 2.266 Gien 0
Pat 0.606 v.in 0
P 0.6 v out 0
peu! 2.400 g 0
Phen 1.6 @en 0

valves at diverging p’-curve and p¥*-curve at t = 0.54 s. Isovolumetric relaxation follows at
closed valves until joining of p-curve and p,-curve at ¢t = 0.65 s. Ventricular refilling claims
the remaining of the cardiac cycle until t = 1 s.

Figure 5.9 depicts 3D heart configurations at different instances in time, namely the initial
configuration at ¢ = 0 s, the configuration prior to left ventricular ejection at ¢ = 0.27 s (see
qﬁ’out in Figure 5.8c), the configuration prior to left ventricular filling (see q\ain in Figure 5.8¢)
at t = 0.65 s and the final configuration at £ = 1 s. As a consequence of homeostasis, the initial
and final configurations are visually indistinguishable. The configurations prior to ventricular
ejection and filling clearly show differences in ventricular volumes and shapes.

5.2. Reduced-order model

The dimensionally reduced order model (DROM) and dimensionally reduced as well as hyper
reduced order model (DHROM) follow the principles of Section 3 applying a Galerkin projec-
tion as well ECSW hyper reduction. A specific feature of the given computational model is the
subdivision of the residual in a structural and a flow network part (5.41). Model reduction is
exclusively applied to the structural dynamics part, given that the flow network residual con-
sists of very few equation with low computational cost in comparison to the structural dynamics
residual. Arising linear problems are of small size and therefore solved using a direct solver [31].

Monolithic DROM equations: Pure dimensional reduction of the coupled model has been
presented in [57, ]. In order to exclude the flow network residual from dimensional reduction,
the applied reduced-order basis (ROB) is of block-diagonal shape

V 0
_ (N+2)x(N+2)
Vi [0 I} eR (5.49)
yielding the Galerkin projection
Fo(d", q") = VIri(Vd', q") (5.50)
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(f) Ventricular volume curves

Figure 5.8.: Flow network state variables and ventricular volumes temporally resolved over one

cardiac cycle at homeostasis.

and consequently

VTTn(VCin, qn)

g"(d", q")

€ RPH=,

(5.51)
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displacement [mm]
displacement [mm]

(@t=0s (b)t=0.27s

displacement [mm]
displacement [mm]

(c)t=0.65s dt=1s

Figure 5.9.: Deformation stage displacement field of heart cycle at different time instances, in
more detail (a): configuration at 80% of the diastolic phase, (b): configuration prior
to left ventricular ejection, (c): configuration prior to left ventricular refilling, (d):
configuration at 80% of the diastolic phase of the upcoming heart beat. The heart is
at homeostasis.

The corresponding Newton-Raphson iterations result from linearization of residual (5.51) and
read
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5.2. Reduced-order model

VIgr(vdr,q)V VTJIr(Vdy, qb)

’ ’ [AJ?H} _ [VTT”(VJ?,qi")]

Aql', g"(d},q})

=]+ ]
a1 q; Agqj,,

wherein the Jacobian blocks have been defined in equation (5.45) and (5.46).

(5.52)

Monolithic DHROM equations: Hyper reduction is performed on top of the dimensional

reduction of the structural dynamics part. The hyper reduced residual reads

.y vIiF(vdr q”)}

ri(d", q") = [ ) € RP**, (5.53)

", a") g"(d".q")

wherein 'F"(Vci", q") denotes a residual gained from weighted assembly of a small subset of
computational mesh elements identified from ECSW, see Section 3.2.2. Consistent linearization
yields a Newton-Raphson iteration scheme

VI (vd,g)V VI (vdr gp)

’ ’ {Ad;ql} _ {VTf’”(Vci?,q?)}
Jy,(Vd!,q)V Jg,(Vd q)

Ag}, g"(d}, q;')
[dal] _ [d?] N [Adal]

9 q; AV %)
with Jacobians j],fd(Vd?, q") and j,’,fq(Vci?, q!") assembled from weighted contributions of pre-
viously selected ECSW elements, see equation (3.55).

In more detail, equations (5.10) to (5.13) and (5.16) to (5.19) reveal three force contributions
which require re-assembly at every time step, namely the internal force vector, the ventricular
pressure (external) force vector and the embedding tissue (external) force vector. Each of these
residual contributions is independently sampled using ECSW. As a result, ECSW is performed

independently on first: the full computational mesh, second: the lumimal ventricular surface
mesh, and third: the epicardial, heart base and external lids surface mesh.

(5.54)

Selection of POD modes: ROBs for the heart model are constructed by POD of a snapshot
matrix containing displacement modes from FOM solutions. Since a cardiac cycle includes a
prestressing stage followed by a dynamic deformation stage, both prestessing and deformation
stage modes are gathered in the snapshot matrix. Referring to Section 3.1.3, only POD modes
with large singular values (relative to the spectrum of singular values) are of interest. As a result,
the POD basis is truncated after p modes. Recalling the descending ordering of singular values
&, p is selected such that [ 1 18]

i < % and Ein > b1 (5.55)

&1 &

using a threshold ratio 0 < &y < 1. Consequently, the significance of POD modes is weighted
relatively to the very first POD mode and adjusted by &y,.
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5. Model reduction of the beating heart

5.3. Results and discussion

5.3.1. Dimensional reducibility

The dimensional reducibility of a simulation can be assessed by the singular values of a solution
snapshot matrix, see Section 3.1.3. The exemplary computation from Section 5.1.2 is used and
the homeostatic state solution, that is the last cardiac cycle with fulfilled cycle error criterion
(5.47), is examined. One heart beat is assumed to last for 1 s, which is temporally discretized by
500 time steps. Consequently, 500 displacement stage deformation modes can be gathered. The
resulting snapshot matrix is decomposed by a singular value decomposition, see Section 3.1.3,
and the ordered singular values are depicted in Figure 5.10.
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& — =107
102 % &in = 10_;4
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10°4 N
‘\ — fu=10"
¥ \ x  singular value &;
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‘
104 X \

X
b
X 3

0 100 200 300 400 500
index 1

&, RE

Figure 5.10.: Decay of singular values (blue markers) for deformation stage displacement modes
for a homeostatic heart beat. The vertical lines indicate truncation of POD modes
controlled by the threshold ration &, (see equation (5.55)). Additionally, relative
orthogonal projection errors (black markers) are depicted for several ROBs as in-
dicated by the &, mode truncation criterion.

A pronounced initial decay of singular values indicates good dimensional reducibility. Addi-
tionally, vertical lines visualize the POD modes selection criterion (5.55) for different values of
the threshold ratio &;;,. As a result, an initial decay of singular values of for instance three orders
of magnitude (&, = 1073) is achieved by only 29 modes.

In order to demonstrate the relation between singular values and the quality of the extracted
POD mode subspace, the relative orthogonal projection errors between snapshot matrix S and
ROB V/, that is
S-vVv7Ts|,

STl

are also depicted in Figure 5.10. Thereby, several ROBs are constructed from POD modes using
a mode truncation as indicated by the threshold ratio &;,. As expected, the relative orthogonal
projection error decreases monotonically.

RE(S,VV1S) = |

(5.56)
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5.3. Results and discussion

5.3.2. Application to homeostatic state estimation

The exemplary computation in Section 5.1.2 presented a strategy for homeostatic state estima-
tion. The strategy included repeated computation of cardiac cycles together with adjustment of
initial conditions until fulfillment of the cycle error criterion (5.47), see Figure 5.7. In this sec-
tion, computational speedup of homeostatic state calculation by application of a DHROM is
demonstrated. Figure 5.11 depicts the proposed approach. Starting from the first guess of initial
conditions, one single cardiac cycle on the FOM is evaluated. Data from this cardiac cycle can
be used in a second step to build a DHROM (or a DROM, if hyper reduction is not implemented)
and to update the initial conditions. Finally, iterations until convergence similar to the original
flow chart in Figure 5.11 are performed on the DHROM.

In more detail, a snapshot matrix including prestressing load step 5 and 10 and each fifth dis-
placement mode from deformation stage is built, such that the snapshot matrix in total contains
102 modes. Using a threshold ratio of &, = 10~ (see Section 5.2) returns 61 POD modes,
which yield the ROB. The obtained ROB is used together with the snapshot matrix for ECSW
hyper reduction. Thereby, mesh sampling is performed independently for internal force vec-
tor, ventricular pressure load vector and embedding tissue load vector, see governing equations
(5.10) - (5.13) for prestressing stage and (5.16) - (5.19) for deformation stage. The domain de-
composition strategy described in Section 3.2.2 is used for parallelization and mesh sampling
is performed on 4 processors. Figure 5.12 depicts the reduced mesh. The internal force vector
is assembled as element subset of the full mesh, the ventricular load force vector as element
subset of the ventricular surface mesh and the embedding tissue force vector as element subset
of epicardial, heart base and abluminal surface of the covering lids. As a result, 1010 volume el-
ements (0.21% of the full mesh), 232 surface elements (1.18% of the full mesh) and 200 surface
elements (0.65% of the full mesh) are selected for internal force, ventricular pressure load and
embedding tissue force vector, respectively.

Figure A.6 depicts temporally resolved pressures, flow rates, ventricular volumes and ventric-
ular pressure-volume curves for both FOM and DHROM simulations. Qualitative, good coinci-
dence of reference FOM and DHROM curves can be seen. Most pronounced deviations arise in
proximity to peaks of the flow rate curves. Table 5.7 quantifies DHROM quality in terms of the
relative 12-error.

DHROM enhanced results as depicted in Figure A.6 (flow chart in Figure 5.11) are retrieved
with a speedup factor of 4.05 compared to pure FOM results (flow chart in Figure 5.7). All sim-
ulations as well as ECSW sampling were executed on 4 cores (Intel Xeon W-2133 (3.60GHz)).
Homeostasis for both FOM cycling and DHROM enhanced cycling is reached after 6 heart beats
(for DHROM enhanced cycling, the initial FOM cycle is included in the 6 cycles). Note that the
given statement on speedup in the current example does not compare a single FOM vs. DHROM
simulation, instead the entire Algorithm in Figure 5.11 is compared with the Algorithm in Figure
5.7. Thereby, the initial FOM simulation in Figure 5.11 takes 66.2 % of the full simulation time
until homeostasis.

5.3.3. Application to heart performance estimation

Referring to Section 1, heart failure is a life-threatening condition which should be diagnosed as
early as possible. Thereby, several heart performance related parameters can be used as indicators
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5. Model reduction of the beating heart

Figure 5.11.: Flow chart for homeostatic state computation of the beating heart including
DHROM speedup. Abbreviations included are IC: initial condition, CER: cycle er-
ror criterion, FOM: full-order model, DHROM: dimensionally and hyper reduced-
order model, ROB: reduced-order basis.

for heart failure. The ejection fraction

_ SN
~ EDV,

E'F, (5.57)

relates ventricular stroke volume SV, = EDV, — ESV, (with the end-diastolic volume E DV,
and the end-systolic volume ESV,) to the end-diastolic volume EDV;. Normal ranges for left
ventricular ejection fraction have been reported as 0.52 - 0.72 (male) and 0.54 - 0.74 (female)
[78].

A further heart performance estimator including ventricular pressure is the stroke work

SWy = %_pvd‘/\/; (5.58)

which is frequently approximated in literature by the relation SW, = SV - p with p as a pressure
mean value (e.g. mean arterial pressure). This computational experiment demonstrates that the
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(a) Element weightings for assembly of internal ~ (b) Element weightings for assembly of ven-
force vector tricular pressure force
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Figure 5.12.: Reduced mesh for structural part of heart model. The reduced mesh consists of an
element subset of the full computational mesh (internal force vector), an element
subset of the luminal ventricular surface mesh (ventricular pressure force vector)
and an element subset of the epicardial, heart base and covering lids surface (em-
bedding tissue force vector). Only colored elements are evaluated during assembly
of the individual residual contributions.

proposed DHROM is able to accurately estimate cardiac performance at various conditions of
the beating heart. In more detail, the condition of mitral valve stenosis and aortic valve stenosis
are examined at different states of afterload and contraction.

The mentioned conditions and states are generated by a model parameterization in terms of
the contractility, opened mitral and opened aortic valve resistance as well as systemic arterial
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5. Model reduction of the beating heart

Table 5.7.: Relative 12-errors of temporally resolved state variables and ventricular volumes for
DHROM homeostatic state estimation.

quantity relative 12-error quantity relative 12-error
o 9.86 - 10~ @ in 8.77-1072
2 1.08 - 1072 @5 out 4.00 - 1072
sys 3.88.10°3 sys 9.97.10-3 quantity relative 12-error
s 6.90 - 10~ sys 7.01-1073 Vi 8.33-107°
oL, 1.29 - 1072 @i 6.80 - 1072 vy 9.69 - 1073
s 1.22-1072 @ out 3.44-1072
peu! 6.69 - 1073 e 1.01-1072
peul 5.33-1073 qeul 6.58 - 1073
resistance
0o
¢, min
= bk 5.59
i >
Rar

Sys

with a parameter domain (cf. [57]) given by oy € [30,100], R™™ e {1076,2.5 - 1076},

v,in
Ry € {107%,5-1075} and R, € [40-1079,220-107°]. Figure 5.13 exemplifies the simulated
influence of the introduced parametrization on left ventricular pressure-volume relations with re-
spect to a baseline state pty,s = [70 kPa, 10751076 120 - 107%], each subfigure corresponds to
a variation of one parameter. All subfigures show homeostatic states, which are retrieved by the
Algorithm in Figure 5.7 for variation of o and R/ .. Computation of homeostatic state in case of
modified valve resistances Ri’fi’:n and Rﬁﬁﬁ? is computed by a transition from the baseline state.
In more detail, the baseline homeostatic state is used as initial condition for the 0D circulation
and ventricular prestressing pressure, while the transition to homeostasis with impaired valve

resistance is computed without re-iterating the prestressing stage, see [57].

As depicted in Figure 5.13a, a change in contractility has significant influence on the stroke
work as well as stroke volume, while the end-diastolic volume is approximately preserved. Fig-
ure 5.13b mimics conditions of mitral stenosis, wherein opening of the mitral valve is impaired.
This complicates left ventricular filling and leads to an increased pressure gradient from left
atrium to left ventricle. End-diastolic volume decreases and yields a lower stroke volume. Next,
a condition of aortic valve stenosis is simulated by increased opened aortic valve resistance,
which can be found in Figure 5.13c. In this case, opening of the aortic valve is impaired which
leads to an increased pressure gradient from left ventricle to the aorta. As a result, the maximum
ventricular pressure increases significantly. Finally, Figure 5.13d depicts the pressure-volume
response for the variation of ventricular afterload, which is achieved by different values of the
systemic arterial resistance. At high values of systemic arterial resistance, the aortic pressure is
elevated, such that left ventricular pressure also has to increase in order to eject blood. Low sys-
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Figure 5.13.: Effects of parameter variations on left ventricular pressure-volume curves. The ref-
erence state is assumed with a contractility 0y, = 70kPa, resistance for opened
mitral valve Rﬁ’,ﬁin = 1075, resistance for opened aortic valve Rﬁ?&? = 107% and

resistance of systemic arterial circulation RSY® = 120 - 107°. Each (non-reference)

curve represents a deviation from the reference curve in one of the mentioned pa-

rameters.

temic arterial resistance yields lower left ventricular pressure during ejection. The stroke volume
decreases at an approximately preserved end-diastolic volume.

A DHROM is constructed as follows. A training set of 36 FOM simulations is evaluated on
all combinations of the parameters oy € {30,65,100}, R™™ € {1075,2.5 - 1070}, Ryt €

{107°,5- 107} and R%, € [40 - 107°,130 - 107°,220 - 10-°]. As a result, parameter domain
bounds as well as domain mid points of oy and R, are sampled. Iterations to homeostatic

conditions are stopped after 25 cycles or a cycle-error criterion (5.47) of .y = 0.05.

Since heart performance at homeostasis is of interest, only simulation data of the last cycle
is stored and processed. As described in Section 5.1.1, each model yields one prestress dis-
placement field as well as 500 displacement fields from dynamic cycling. The ROB is sup-
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Model reduction of the beating heart

Figure 5.14.: Random grid with 100 points in the parameters RZ
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Table 5.9.: Relative 12-error for DHROM estimated heart performance quantities.

quantity max. relative 12-error mean relative 12-error
EF* 1.18-1072 0.22- 1072
EF] 0.72-1072 0.24-1072
SW* 1.13- 1072 0.47 - 1072
SW 2.46 - 1072 0.72-1072

posed to span an accurate subspace for the system dynamics. Given that POD is applied for
data-compression, a high sampling rate for displacement fields can be chosen (the initially cho-
sen sampling rate for displacement modes does not directly determine the dimension of the
ROM). A time interval of 0.01s is chosen. This results in 100 deformation stage displacement
modes per simulation. Together with one prestress displacement mode per simulation, in total
36 - 101 = 3636 displacement modes enter the snapshot matrix. Applying POD with a threshold
ratio (5.55) of &, = 1073 results in a subspace of dimension 57 spanned by the columns of the
ROB V.

Additionally, ECSW requires a set of displacement modes for mesh sampling. In contrast to
the snapshot matrix for ROB construction, ECSW displacement modes are used to reconstruct
specific states of the nonlinear system and are not subject to a data-compression step, each mode
directly enters into the optimization problem (3.43). A time interval of 0.05s is chosen, which
(together with the prestress displacement mode) results in 26 - 36 = 936 modes in total. ECSW
sampling is performed in parallel on 16 cores with a global tolerance of £, = 1072 (see Algo-
rithm 2) and results in a selection of 4075 elements (0.83% of the full mesh) for internal force
assembly, 417 elements (2.11% of the full mesh) for ventricular pressure force assembly and
359 elements (1.16% of the full mesh) for embedding tissue force assembly. Both ROB as well
as ECSW mesh yield the DHROM with nonlinear iterations as given in equation (5.54).
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Figure 5.15.: Relative DHROM errors in heart performance assessed by ejection fraction and
stroke work.

Accuracy of the DHROM is tested by 100 samples from a random grid (uniform probability
distribution) in the parameter space. Figure 5.14 depicts the grid, recalling that valve diseases
are either present or not (i.e. Riﬁin and Rﬁful;‘ each can take the “normal” or “diseased” value),
while o and R, can take any value in the parameter domain. Relative errors in the ejection
fraction as well as the stroke work are depicted in Figure 5.15. Most values are below 1%, Table
5.9 depicts maximum and mean relative 12-error for the quantities of interest.

For the assessment of computational speedup, the mean value of 7 simulations is taken at
randomly selected points (uniform probability distribution) in the parameter domain. Thereby,
one single cardiac cycle is taken into account. Table 5.10 depicts the selected points as well as
the speedup. For comparison, also the speedup of DROMs is stated. The DROMs result from
dimensional reduction without hyper reduction, the corresponding nonlinear iterations are given
in equation (5.52). A mean speedup of 3.28 and 14.69 is measured for the DROM and DHROM,
respectively.

Table 5.10.: Speedup for ROM and DHROM for one cardiac cycle at randomly selected samples.

sample speedup
oo [kPa Ry Ry RS DROM DHROM
93.95 2.50-107° 5.00-107° 1.94-1071 3.18 14.36
91.88 1.00-107¢ 5.00- 1073 1.71-107* 3.20 14.26
87.01 2.50-107° 1.00-107¢ 1.31-107* 3.39 15.10
61.10 1.00-10°6 5.00-107° 1.80-10* 3.27 14.63
98.89 2.50-107° 1.00- 107 9.66 - 107° 3.41 15.20
59.16 1.00- 1075 1.00- 107 7.18-107° 3.28 14.77
53.40 1.00- 107 5.00-107° 1.40- 1074 3.24 14.49
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5. Model reduction of the beating heart

5.3.4. Application to simulation of functional impairment by
myocardial infarction

A heart attack is a medical emergency that mostly sets in as a consequence of sudden occlusion
of a coronary artery. Coronary arteries supply the heart muscle with oxygenated blood, which is
vitally important for functioning of myocardial tissue. If that supply is greatly restricted or even
interrupted, tissue cells die in the affected region. This damage is called myocardial infarction.
Exemplary risk factors for experiencing a heart attack are age, a lack of physical activity, hyper-
tension, diabetes, obesity and smoking. The occlusion of a coronary artery itself is frequently
initiated by atherosclerotic plaque [94].

Dead myocardial tissue following a heart attack becomes stiffer, impairs contraction as well
as cardiac output and eventually leads to growth and remodeling, which is an adaption process of
biological tissue in order to maintain blood circulation. Computational modeling of myocardial
infarction faces high complexity due to phenomena such as border zone (i.e. the region between
dead and healthy tissue) development, scar formation or the mentioned growth and remodeling
and consequently is currently subject to research [84]. For simplicity, infarct tissue is modeled
following the approach in [57] by assuming dead cells to loose the ability of active force gener-
ation. Consequently, infarct tissue resembles passive myocardial material.

(a) Infarct tissue (b) Contracted state at ¢ = 0.54s

Figure 5.16.: Subfigure (a): Visualization of infarct tissue. Cyan region (apex) and blue region
correspond to Icm and 6¢cm infarct radius, respectively. Healthy tissue is colored
in red. Subfigure (b): Contracted state after ventricular ejection (¢ = 0.54s, see
Section 5.1.2) during dynamic cycling for 1cm infarction (red) and 6¢cm infarction
(light green).

The heart model under consideration is extended with myocardial infarction, Figure 5.16a
depicts infarct tissue. In more detail, infarct cells are selected given a center point (located at
the apex) and a radius r. If all nodes of a cell (i.e. a finite element) are located within a sphere
with radius r, the cell is assumed as dead. The cyan and blue region correspond to infarct tissue
in case of » = lcm and r = 6cm, respectively. Figure 5.16b depicts the contracted state after
ventricular ejection for » = lcm (red) and r = 6em (light green). The contracted shapes differ
significantly. The higher loss in contractility for » = 6cm manifests in a “weaker” heart beat,
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5.3. Results and discussion

the apex lifts significantly less. Also in the region of the heart base a lower contraction can be
identified.

In the focus of this computational experiment is the performance of a DHROM designed for
approximating functional impairment by infarction assuming an infarction radius r € [1cm, 6em].
In more detail, the homeostatic state as computed in the example from Section 5.1.2 is used
as starting point. Next, infarction is introduced by modifying material properties and the new
homeostatic state is computed as a transition from the healthy homeostatic state (analogous
to valve disease transition as described in Section 5.3.3). In the offline stage, five samples
r € {lem,2.25cm, 3.50cm, 4.75cm, 6em} are taken and (analogous to the computational ex-
periment presented in Section 5.3.3) 100 deformation state displacement modes (sampling time
interval of 0.01s) as well as one prestress displacement per simulation are organized in a snap-
shot matrix. Using POD with a threshold ratio of &;, = 1073, 49 modes are extracted as optimal
low-dimensional subspace. For ECSW (analogous to the computational experiment presented in
Section 5.3.3), 20 deformation stage displacement modes (sampling time interval of 0.05s) as
well as one prestress displacement mode per simulation are extracted. Mesh sampling is per-
formed on 4 cores with a global tolerance of £, = 1072. As a result, 1892 elements (0.39% of
the full mesh) for internal force assembly, 236 elements (1.20% of the full mesh) for ventricular
pressure force assembly and 218 elements (0.71% of the full mesh) for embedding tissue force
assembly are extracted.

For assessment of DHROM accuracy, 25 equidistantly placed points are sampled in the pa-
rameter domain for both FOM and DHROM. The ventricular cardiac output

CO! = SV!-w withie€ {(,r} (5.60)

is used as the quantity of interest, recalling that the reduced amount of contracting tissue reflects
in this quantity. The symbol w denotes the heart rate, i.e. the number of heart beats per second.
In our case w = 1Hz, see Section 5.1.1.
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Figure 5.17.: Sampled cardiac output and time resolved ventricular volumes for sample with
maximum cardiac output error.
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Table 5.11.: Speedup for DROM and DHROM for one cardiac cycle at randomly selected sam-

ples.

sample \ speedup

7 [cm] | DROM DHROM
5.71 3.44 16.59
2.24 3.35 15.95
3.94 3.34 15.93
3.54 341 16.30
3.80 343 16.39
3.07 3.46 16.38
4.93 3.49 16.34

Figure 5.17 depicts the cardiac output over infarction size as well as relative DHROM errors
(4.35). Starting discussion with FOM curves, the cardiac output decreases with increasing in-
farction size as expected. At the same time, left ventricular and right ventricular curves overlap,
which can also be expected, given that left and right stroke volume match in case of homeostasis.
The DHROM approximation resembles the FOM curve, a maximum relative error of 1.55% and
1.56% for the left and right ventricular cardiac output can be observed, respectively.

DROM and DHROM speedup is measured as the mean of 7 randomly selected samples (uni-
form probability distribution) for the infarct radius. Thereby, one cardiac cycle is evaluated,
starting from the healthy homeostatic state as described above. Table 5.11 depicts the individual
speedups and yields a mean speedup of 3.42 and 16.27 for the DROM and DHROM, respec-
tively.
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6. Summary and Outlook

The work presented in this thesis was motivated by medical applications of computational biome-
chanics models. Accurate results require fine spatial resolution, while at the same time a large
number of model evaluations in a parameter space frequently results in a bottleneck regarding
computing resources. To overcome this burden, methods for computationally inexpensive high-
dimensional model approximations were in the focus of this thesis.

More specifically, the application, adaption and extension of projection-based model order
reduction (MOR) techniques to large computational models of the cardiovascular system, in par-
ticular that of the abdominal aortic aneurysm and of cardiac mechanics, has been presented. The
patient-specific abdominal aortic aneurysm (AAA) model consisted of an imaged aortic segment
fully including the aneurysm as well as a non-dilated part at the proximal and the aortic bifurca-
tion at the distal ending. The intraluminal thrombus (ILT) and the aortic wall were both modeled
including individual constitutive behavior and blood load was applied as hydrostatic pressure on
the luminal surface of the ILT, wherein the mechanical state of interest corresponded to a sys-
tolic blood pressure load. The cardiac mechanics model consisted of a 3D resolved biventricular
structure and a 0D (i.e. no resolution of geometry) model for blood flow in the systemic and pul-
monary vascular system represented by a set of ordinary differential equations. The biventricular
structure was two-way coupled to the vascular system and the arising equations were monolith-
ically solved using consistent linearization. Pumping of the heart was triggered by the active
stress component of the applied material model, wherein a contracting force was generated in
direction of fibers placed in the reference configuration.

With prestressing (i.e. introduction of a stress state into a structure without deforming it) as
a relevant part for computational modeling in biomechanics, a consistent inclusion of a mod-
ified updated Lagrangian formulation prestressing stage into projection-based MOR was pre-
sented. Aiming at accurate reduced-order models (ROMs) in patient-specific parameter domains,
a greedy maximin distance design (GMmD) and a termination criterion based on subspace an-
gles for reduced-order basis construction was introduced. The effect of altering a perfectly tai-
lored subspace by increasing inclination has been discussed and investigated by computational
experiments in case of AAAs. The proposed GMmD has been applied to three patient-specific
AAA computational models achieving similar results in terms of dimensionality reduction. The
energy-conserving mesh sampling and weighting method has been applied for hyper reduction,
which has been used on system components requiring re-assembly during Newton-Raphson it-
erations (i.e. internal force, luminal pressure force, embedding tissue force). The hyper reduced
monolithic block system model for cardiac mechanics has been stated, wherein model reduction
has been applied to the 3D structure exclusively. Dimensional reducibility has been demon-
strated regarding singular values of heart beat deformation modes. The performance of several
ROMs has been investigated for homeostatic state estimation and impaired cardiac functionality
in terms of different states of contractility, afterload, valve diseases and myocardial infarction.
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6. Summary and Outlook

Future investigations on projection-based MOR and hyper reduction of cardiovascular system
models could include more detailed patient-specific models. For the AAA, examples are the in-
corporation of calcification or the distinction between ‘“healthy” and “diseased” aortic wall in
terms of constitutive behavior. Likewise, the active stress generation of the presented cardiac
mechanics model was strongly simplified using an ordinary differential equation. Here, coup-
ling of the mechanical contraction to a spatially resolved propagation of the action potential
would better represent physiology. Another important extension would be cross-patient model
reduction, that has the ability to determine low-dimensional subspaces and hyper reduction com-
ponents while working simultaneously on different geometries. One decisive challenge here is
that finite element simulations rely on computational meshes, which would have to be related
across patients.
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A. Appendix

A.1. ECSW meshes of AAA models

intfernal force
luminal pressure

(a) Patient 1: element weightings for assembly (b) Patient 1: element weightings for assembly
of internal force vector of luminal pressure force
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intfernal force
luminal pressure

(a) Patient 2: element weightings for assem- (b) Patient 2: element weightings for assem-
bly of internal force vector bly of luminal pressure force

[ 200

internal force
luminal pressure

(c) Patient 3: element weightings for assem- (d) Patient 3: element weightings for assem-
bly of internal force vector bly of luminal pressure force

Figure A.2.: Reduced mesh for patient-specific AAA models. Only colored elements are evalu-
ated during assembly of the nonlinear force contributions. Left column depicts the
subset of mesh elements for assembly of internal force, right column for assembly
of luminal pressure force.
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Figure A.3.: Relative DROM errors for von Mises stress and von Mises strain fields in the AAA
wall. The test grid results from a full factorial design of 1000 points in the parameter
domain. Most samples (> 98%) have a relative error below 1%.
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A.3. Relative DHROM errors of AAA models
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Figure A.4.: Relative DHROM errors for von Mises stress and von Mises strain fields in the
AAA wall. The test grid results from a full factorial design of 1000 points in the
parameter domain. Most samples (> 97%) have a relative error below 1%.
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Figure A.5.: Maximum von Mises stress and maximum von Mises strain probability distribu-

tions from kernel-density-estimation (Gaussian kernel). 10* identical (per patient)
samples have been evaluated for both FOM (reference solution) and DHROM (ap-
proximated solution). See Table 4.7 for quantitative data on the probability distri-
butions.
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A.5. DHROM approximation of cardiac homeostasis
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Figure A.6.: Temporally resolved state variables and ventricular volumes for FOM and DHROM

homeostatic state. Most pronounced deviations arise in proximity to peaks of flow
rates.
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