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Abstract— Recent adversarial attacks with real world
applications are capable of deceiving deep neural
networks (DNN), which often appear as printed stickers
applied to objects in physical world. Though achieving high
success rate in lab tests and limited field tests, such attacks
have not been tested on multiple DNN architectures with a
standard setup to unveil the common robustness and weakness
points of both the DNNs and the attacks. Furthermore, realistic
looking stickers applied by normal people as acts of vandalism
are not studied to discover their potential risks as well the
risk of optimizing the location of such realistic stickers to
achieve the maximum performance drop. In this paper, (a) we
study the case of realistic looking sticker application effects
on traffic sign detectors performance; (b) we use traffic sign
image classification as our use case and train and attack 11 of
the modern architectures for our analysis; (c) by considering
different factors like brightness, blurriness and contrast of the
train images in our sticker application procedure, we show
that simple image processing techniques can help realistic
looking stickers fit into their background to mimic real world
tests; (d) by performing structured synthetic and real-world
evaluations, we study the difference of various traffic sign
classes in terms of their crucial distinctive features among the
tested DNNs.

I. INTRODUCTION

In the recent years, various traffic sign recognition systems
are introduced, which are developed using DNNs [2], [3],
[4], [5], [6], [7]. However, the proposed DNN based methods
have been vulnerable against changes in the input data which
could occur due to aging, vandalism in different ways such
as destruction, stickers, paintings and graffiti or adversarial
attacks [8], [9], [10], [11], which often result in bad detection
even by human drivers. Consequently, ensuring the reliability
of such detectors is requisite before their deployment, as it
could lead to catastrophic hazards otherwise.

Based on that, there is a need to evaluate such
DNNs under challenging conditions such as adversarial or
non-adversarial augmentations that could potentially lead to
their misbehaviour. It is essential for such an evaluation to
provide a controlled environment, where one can conduct
the severity of such augmentations. Furthermore, such an
analysis could extract possible common sensitive spots in the
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Fig. 1: Examples of sticker application with and without our
normalization techniques: from left to right: 1) the input images
from GTSRB [1] without any augmentations; 2) the input images
covered with stickers before the proposed adaptations; 3) the
input images covered with stickers after being adapted using our
adaptation methods; 4) the real images of the same sticker overlay
from our field tests.

traffic signs that, when occluded, could affect the detection
accuracy of different DNNs similarly. This can help to
conclude if it is possible for the attackers to optimise their
attacks on common DNNs and apply them on traffic signs,
hoping for misleading the deployed DNNs in the vehicles.

However, performing such a thorough analysis requires
an ordered data-set, in which one can query the data by
different severity levels of the attacks. As such a data-set is
almost impossible to collect, one can propose to apply such
occlusions synthetically, which come with artificial artifacts
that could mislead the DNNs due to domain shifts caused
by such augmentations, which do not necessarily happen in
real world. In order to minimize those artifacts, one needs
to normalize the occlusion patches to match the individual
images. To the best of our knowledge, there is no controlled
environment yet introduced to test the robustness of the
traffic sign detectors while considering all the challenges
discussed above.

In this paper, we report on the robustness of 11 of
the state-of-the-art classification networks, while being
challenged against realistic sticker occlusions. This is done
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by systematically applying stickers from a sticker pool to
the traffic signs in order to extract their sensitive regions.
To do so, alongside to random application of stickers (RSA),
we introduce two methods for finding such regions, namely
Saliency-based Sticker Application (SSA) and Monte Carlo
Sticker Application (MCSA). Moreover, we apply and test
adversarial attacks from the literature in real world along
with our proposed methods.

Our contributions are as follows:
• A framework to adapt synthetic stickers to real traffic

sign images based on brightness, contrast and blur.
• RSA: the effects of random sticker application on

state-of-the-art traffic sign classifiers.
• SSA and MCSA: two sticker application methods to

identify the sensitive regions in the input images.
• Cross-DNN analysis: extending the sticker attacks to 11

networks and cross analyse all to recognise the common
weakness/strength properties.

• Deployment check: field tests of different sticker
application methods in the real world.

• A sign coverage metric to measure the occlusion area
as a severity metric.

The rest of the paper is organized as follows: in Section II,
the related literature are reviewed; in Section III, our method
of adapting synthetic stickers to traffic signs along with our
sticker localisation methods are introduced; in Section IV,
the experiment setup as well as the results are discussed;
finally, the summary of the paper and the main conclusions
are reviewed in the final Section V.

II. RELATED WORK

The recent advances in traffic sign recognition are based
on DNNs [2], [3], [4], [5], [6], [7], which are specifically
prone to be sensitive to changes in the input data. These
changes include damage or occlusion occurred to the objects
in the real world or to the data during the capturing. Based
on that, the challenges of traffic signs detection, such as
occluding objects due to camera angel, damage, and aging
are reviewed in [12], [13], [14] and different methods to
overcome such challenges are suggested. Moreover, multiple
attacks are introduced to mislead traffic sign detectors,
which mostly rely on occlusion patterns added to the traffic
signs [8], [9], [10], [11]. Eykholt et.al. [8] introduced RP2
as a two stage attack, which first localized the sensitive
spots and then defined adversarial patches in those regions
capable of deploying to the physical world. Similar to
that, Brown et.al. [15] proposed adversarial patch (AP),
which is a one stage attack that did not rely on specific
regions or classes and was therefore location, rotation and
scale invariant. However, such methods rely on introducing
highly salient textures and are barely tested in real world
conditions. For example. they are either tested on very
shallow DNNs, such as RP2 [8], or under perfect lighting
conditions and very close to the camera, such as AP [15],
which is not the case with traffic sign detection that involves
far distances, high speeds, uneven road surfaces, or bad
weather conditions. Based on that, we argue that deploying

such highly salient features to the real world, and preserving
them while capturing the images is difficult, which causes
such attacks to fail in such challenging environments.

On the other side, few papers suggested to build testing
environments, either through image augmentations or real
world test tracks to test the traffic sign detectors under the
aforementioned challenging conditions [16], [17], [18], [19].
However, none of the aforementioned papers introduced a
generic testing environment that conducted the severity of
such challenges alongside with cross analysis of different
detectors to find commonalities as weakness or strength
points of common detectors.

III. METHOD

The goal of this paper is to study the effect of occlusions
caused by realistic stickers on the common traffic sign
classifiers, which are normally applied as acts of vandalism
without any intention of misleading automated driving (AD)
systems. However, they can be applied intentionally on
crucial features to mislead the bespoken systems (e.g. to
cover the 3 in 30km/h speed limit sign.). In this paper, we
introduce methods to overcome the challenges of realistic
sticker application mentioned before, and cross analyse
multiple state-of-the-art architectures to find commonalities
among them. In the following, our approach for adapting the
stickers to fit into the traffic signs are explained, which is
followed by three methods of realistic sticker localization on
traffic signs.

A. Realistic Sticker Occlusions

Applying realistic stickers directly to traffic signs images
would cause unrealistic outputs stemming from the diversity
in individual image properties such as contrast, brightness,
and sharpness. To overcome such a challenge, we employ
conventional image processing techniques to extract the input
image properties and use for adapting the stickers to fit the
input images. To do so, we extract and apply three properties
as follows:

Brightness: To estimate the overall brightness of an
image, the average of all the pixel intensities is calculated as

bx =
1

|I|
∑
i∈I

xi, (1)

where x ∈ GH×W×C is the input image with
height H , width W , number of color channels C, and
G = {0, 1, 2, . . . , 255}. The pixel position i of the input
image x is defined as i ∈ I = {1, . . . ,H · W · C}, and
|I| = H ·W ·C. Based on that, the intensity of the sticker
overlay o is adapted as follows:

ox =
bx
λ
o, (2)

where ox is the sticker overlay adapted to match the image
x using the brightness bx calculated based on Equation (1).
The bx is first normalized by dividing by λ which is the
normalizing factor, leading to a scalar value in range [0, 2].
Multiplying this scalar by the sticker overlay ox will lead to
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an increase in the brightness of ox if it is above 1 and vice
versa if it is below 1.

Contrast: To adapt the contrast of the sticker overlay o
to the contrast of an image x, we use the standard deviation
as follows:

ox =
σ(x)

σ(o)
o, (3)

where σ() computes the standard deviation of all the pixel
intensities of the given image.

Blur: One can calculate the Laplacian of an image as an
indication of blurriness [20], which discovers rapid changes
in an image, in other words, edges. The standard deviation
of the Laplacian is then taken to rank the sharpness of an
image generally, as the Laplacian is calculated locally. Using
this, we have:

s = σ(∆(x)), (4)

where ∆() function computes the Laplacian and σ()
computes the standard deviation. A high s would indicate
a sharp image and a low s a blurry one. As the blur factor
is applied locally, we define a two dimensional convolution
filter of size θ−sx×θ−sx which needs to be an odd number,
where θ is a hyper-parameter defined as 13. This convolution
filter is initialised with zeros except in the middle row,
which is initialised with 1/sx. This way, a horizontal motion
blur is added to the sticker overlay to mimic the motion
blur caused by vehicle movement while capturing the video
frames. The three aforementioned factors are extracted and
applied sequentially to the sticker overlay as a pre-processing
step. An example of the sticker applications with and without
our normalization method is illustrated in Figure 1, where
one can compare the similarity of the adapted stickers and
the real world examples of the same stickers.

B. Sticker Localization Methods
The next step towards this process is to control the

selection and positioning of the stickers. To do so, a one
by one approach is defined, in which after applying a sticker
to the traffic sign images, the loss of the DNN is evaluated
while the sticker is applied to all the images in the data-set.
To do so, we define S as the set of all the stickers in
our sticker pool, X all the traffic sign images, Y all the
labels used to optimize the sticker positioning algorithms,
and fθ(x) the activation function using the set of parameters
θ . Based on that, we define the loss of one sample x ∈ X as
ℓxi(θ) = ℓxi(fθ(xi),yi), while i is the index of the selected
traffic sign image and its associated label. Having this, the
loss of an image while a sticker overlay is applied to it can
be calculated as follows:

ℓxio(θ) = ℓxio(fθ(xi + o),yi), (5)

while o is the overlay consisting one or more stickers.
Adding a new sticker s to the current sticker overlay o is
donated as os = o + s. To see the effect of adding s, we
calculate the average loss increase on all the images in X as
follows:

LXos(θ) =
1

n

n∑
i=1

ℓxios(fθ(xi + os),yi). (6)

Fig. 2: Examples of saliency-based sticker application using
saliency maps. From left to right: the input image; the saliency
extracted using Vanilla [21]; the position of the selected sticker(s);
the saliency map excluding the sticker(s) overlay o and a safe
margin around each sticker.

To find the best sticker for the current iteration, the LXos(θ)
is calculated for all the stickers in S and the one with the
highest LXos(θ) is considered as the best sticker for the
current iteration. Based on the number of iterations (i.e. the
number of stickers to be added to the sticker overlay o),
the process is then repeated to add more stickers having the
previous ones already applied. For selection and localisation
of the stickers, we have defined three approaches as follows:

Random Sticker Application (RSA): As of its name,
this method is just a random application of the stickers,
where one selects stickers from our sticker pool randomly
and applies them to the traffic signs after the pre-processing
mentioned in Section III-A, which is repeated 100 times
for each experiment. Furthermore, the traffic sign is then
checked to assure that no place on the traffic sign surface is
left without being covered with stickers during this process.
The main difference of the other two proposed methods with
RSA is that they aim at increasing the DNN loss. This means,
in case of multi-sticker application, the goal would be to find
the combination of stickers that achieve the highest loss.

Saliency-based Sticker Application (SSA): In this
method, we extract the saliency of each image inferred into
the DNN while no stickers are applied to, which returns the
most important features of the image, where the DNN has
paid attention for its decision. We employed Vanilla [21] to
calculate the saliency map m as follows:

mVanilla(x0) =
∂y

′

∂x
|x=x0

, (7)

which is of size H ·W and represents the simple derivative
of the class score y

′
with respect to the input image x.

Afterwards, we take the argmax to extract the peak points
of the saliency map as the center points of the stickers.
This way, the most important features will be covered with
stickers. Furthermore, the scalar values of the saliency map
which fall inside the sticker plus a margin around the sticker
are removed from the saliency map to avoid multiple stickers
to overlap. An example of the SSA for two stickers is shown
in Figure 2.

Monte Carlo Sticker Application (MCSA): In this
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method, all the stickers are applied one by one in random
positions, and the one which causes the highest loss gets
selected. In other words, to calculate the effect of a new
sticker s, it is added to the sticker overlay o 100 times with
100 random locations on the traffic sign and the one with the
highest LXos(θ) is considered as the best position for that
sticker. As mentioned before, LXos(θ) is then calculated for
all the stickers in the S using the 100 iteration to find the
best position for all of the stickers in the current iteration.
Finally, the one with the highest LXos(θ) is selected as the
best sticker in the best position for the current iteration.
Afterwards, the process is repeated again to choose the
second sticker and continues until it reaches the maximum
number of applicable stickers defined by the user.

IV. EXPERIMENTS AND RESULTS

A. Experiment Setup

Training: We trained 11 image classification networks
including VGG16 and VGG19 [22], InceptionV3 [23],
ResNet family with 18, 50, 101 and 152 layers [24],
WideResNet50 and WideResNet101 [25],
ResNeXt50 and ResNeXt101 [26] on the German
Traffic Sign Recognition Benchmark (GTSRB) data-set [1],
that includes about 50, 000 images that are split among
43 classes. This way, a broad variation of DNNs in terms
of type as well as the number of parameters are tested.
The image sizes are 299 × 299 pixels. We used the Adam
optimizer [27] with a learning rate of 0.0001 and a batch
size of 64 to train the aforementioned DNNs on four Nvidia
Geforce 1080 Ti GPUs for 100 epochs.

Optimisation: We have optimised SSA and MCSA on
all of the mentioned DNNs along with RSA averaged over
100 repeats per each DNN. We have implemented and
applied the RP2 [8] and AP [15] from the literature as
well. These methods are optimised and applied to five
classes including 30km/h, yield, stop, no entry, and
children crossing, which all represent safety critical
classes in three shapes (i.e. triangle, circle, and octagon), and
diverse types of critical features, from centralized small ones
such as the 30km/h to diverse ones such as the stop sign.

Evaluation Metrics: Besides the mean average
precision mAP, we have also introduced a sign coverage
metric C, which indicates the area of the traffic sign covered
with stickers by the sticker application algorithm. This way,
having a lower C is an indication of a stronger attack. C
is calculated based on the intersection over union metric as
follows:

C =
Intersection(m,o)

Union(m,o)
, (8)

where m is the class specific mask of the traffic sign and o
is the sticker overlay.

Real World Tests: We conducted outdoor field tests on
the MCSA overlays from our methods, as it performed better
than RSA and SSA on all the DNNs, and the RP2 [8] and
AP [15] from the literature. The videos are captured using
a cellphone capable of 4K (i.e. 3840 × 2160 pixels) video
capturing mounted on a vehicle dashboard while driving

towards the signs from a range of 50 meters. The accuracy of
the DNN under test is first evaluated on a video of the clean
traffic sign with a similar setup. Therefore, the results of the
field test include both the clean and attacked accuracy of
each DNN. However, performing real world field tests on all
the combinations of the DNNs, sticker methods, and classes
was not feasible for us. Therefore, we hand picked two DNNs
for the classes 30km/h, yield, stop and no entry and
three DNNs for the class children crossing.

B. Results and Discussion

Comparative Results: We tested our methods both by
synthetic attacks through augmentation and field tests in real
world. In the first case we only compared our RSA, SSA
and MCSA methods, and left the RP2 and AP for the field
tests, as their sensitivity to post-processing prevented them
to be applied seamlessly to the test images. Based on that,
the class based results of RSA, SSA and MCSA are present
in Figure 3 representing the five attacked classes and the
sign coverage. One can observe, that the MCSA method was
able to outperform both RSA and SSA in all of the studied
classes, while the RSA method barely deceived the DNNs
under test. As shown in this figure, the class 30km/h is the
most sensitive one among the five, while the stop sign is the
most robust. After visual inspections , we concluded that the
most observable reason behind this is the spatial diversity
of the features of the two classes. For example, the digit 3
in the class 30km/h is the only feature that distinguishes
it from the other speed limit classes such as 20km/h or
80km/h. Similar to that, the class children crossing
also consists of features that lie in the center of the traffic
sign, which can be covered with 2 to 3 stickers, leading to
dropping the accuracy close to zero percent. Therefore, the
attacks on all the networks are focused on covering those
features.

On the other hand, the class stop sign consists of the
word "STOP" along with an octagonal shape which is not
similar to any of the other classes in the GTSRB data-set,
which causes the MCSA attacks on different DNNs to not
focus on any specific feature for this class. Finally, as shown
in the last sub-figure of Figure 3, the sign coverage of
the SSA and MCSA are very close, which indicates their
similarity in selecting the stickers. One can also observe, that
although having extremely centralized features in the classes
30km/h and children crossing, RSA did not lead to
any significant drop in the performance. This indicates that
up to five random stickers (or up to 20 percent coverage)
applied by normal people, unless intentionally applied to
cover the critical features, do not necessarily lead to any
significant performance drop in the common DNNs.

Figure 4 represents the similar results per individual DNN
averaged over the five classes. One can observe from this
figure, that VGG19 and VGG16 performed the best against
our realistic sticker applications. In contrary, ResNet18
appeared to be the most sensitive one. Furthermore, except
for ResNet101, there is a linear correlation with the
number of layers and robustness in the architectures with
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Fig. 3: Average accuracy of all the networks on different attacked classes and the average sign coverage of all the networks and the attacked
classes according to number of the stickers. Blue line: the average clean accuracy of all the networks; red line: the average accuracy of all
the networks after applying stickers using RSA; yellow line: the average accuracy of all the networks after applying stickers using SSA;
green line: the average accuracy of all the networks after applying stickers using MCSA. Top left: the average accuracy of the networks on
the class 30km/h; top center: the average accuracy of the networks on the class yield; top right: the average accuracy of the networks
on the class stop; bottom left: the average accuracy of the networks on the class no entry; bottom center: the average accuracy of
the networks on the class children crossing; bottom right: the average sign coverage of different attack methods on all of the
networks and the selected classes.

Fig. 4: Average accuracy of all the five classes per each model. Blue dashed line: the DNNs accuracy on the clean data; red bars: average
accuracy of the RSA method; yellow bars: average accuracy of the SSA method; green bars: average accuracy of the MCSA method. The
models are displayed on the x-axis which include: VGG16 and VGG19 [22], InceptionV3 [23], ResNet DNNs with 18, 50, 101 and
152 layers [24], WideResNet with 50 and 101 layers [25], and ResNeXt with 50 and 101 layers [26]. The y-axis indicates the average
accuracy based on mean average precision mAP.

size variations. Moreover, the difference in SSA and MCSA in
some of the DNNs are much higher than the other ones. This
can be an indication of how good one saliency extraction
method, in our case Vanilla [21], can highlight the most
important features in the input image, which could be used
to compare different saliency methods.

Cross Analysis: The cross analysis of our MCSA results
are presented in Table I. Each column of this table represents
a MCSA optimised on the according model and tested on the
other models. One can observe that the two models VGG16
and VGG19 appear to be the most robust ones among all the
11 models. Therefore, not only they have achieved the best
accuracy results on the other 9 DNNs (the top two rows),
but also they are the only DNNs that their sticker application
achieved better misclassification rate on the other networks
than themselves.

DNNs Common Interests: Based on the averaged results
in the last row of Table I, one can conclude that except
InceptionV3, MCSA could deceive all the other DNNs by

more than 50 percent, while optimised on either of them, out
of which, the ResNet18 was the most extreme case with
30.26 percent. This can be an indication of how probable is to
optimize one sticker application on one model and deceive
other models with. We have also cross analysed the other
attacks including our SSA, RP2 [8] and AP [15], which
achieved 53.68, 52.68 and 91.41 percent in the best case
accordingly. This shows that with our MCSA approach, not
only we were able to find the common important regions
from the input classes that are crucial for one DNN to detect,
but also we calculated the probability of such regions being
important for other DNNs as well. Such a conclusion can
be used in designing/refining traffic sign detectors to ensure
a safe prediction (e.g. as the digit "3" is crucial for all the
DNNs, one can conclude that there must be a visible 3 in
the image, if the detector suggests 30km/h).

Field Test Results: The field test results are presented
in Table II. As shown in this table, except the class stop
sign, all the other classes are successfully misdetected
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Model VGG [22]
InceptionV3 [23] ResNet [24] WideResNet [25] ResNeXt [26]

16 19 18 50 101 152 50 101 50 101

VGG [22] 16 35.93 54.40 64.40 48.98 49.44 54.54 46.09 33.13 46.99 58.90 56.25
19 54.68 38.60 62.10 39.08 41.21 54.42 43.92 47.59 34.37 57.45 56.40

InceptionV3 [23] 30.94 36.52 21.03 26.95 31.45 29.02 33.44 34.99 30.50 37.68 36.39

ResNet [24]

18 46.77 47.80 54.16 8.55 25.08 25.38 37.67 30.53 28.60 50.83 42.60
50 40.47 46.94 60.53 21.75 18.35 50.82 39.29 33.49 32.58 52.83 47.77
101 44.79 42.31 59.13 33.77 27.61 16.55 37.72 28.90 28.06 49.37 40.11
152 49.99 50.01 64.40 36.32 30.58 21.79 19.50 27.52 34.53 50.93 46.15

WideResNet [25] 50 53.07 47.36 57.22 32.29 27.42 39.04 40.72 19.36 37.06 56.29 50.67
101 37.72 33.08 50.59 31.77 27.73 32.17 31.72 27.38 23.42 41.64 28.29

ResNeXt [26] 50 40.97 39.03 47.44 28.35 30.33 31.33 27.24 32.03 26.66 19.73 36.76
101 39.75 38.90 45.31 25.11 25.09 35.67 24.44 35.69 25.69 46.83 20.68

Average 43.19 43.18 53.30 30.26 30.39 35.52 34.70 31.87 31.68 47.50 42.01

TABLE I: The cross analysis results on our MCSA method averaged over all the five classes per individual models. Columns indicate
the models, which MCSA is optimised on, and the rows indicate the models, which are evaluated on that optimised MCSA. The numbers
indicate the mean average precision in percentage. Cells with gray background indicate the accuracy of that model on the MCSA optimised
on the same model. Bold numbers represent the minimum accuracy per each column. The last row represents the averaged accuracy
numbers of each column, out of which the bold number in this row indicates the minimum averaged accuracy in this row only.

Baseline & Attacks 30km/h Yield Stop No Entry Children Crossing
Clean Accuracy 97.85 100.00 100.00 99.64 100.00
RP2 [8] 29.22 67.12 100.00 71.95 1.13
AP [15] 100.00 99.37 100.00 100.00 99.37

MCSA (Ours) 0.71 2.59 100.00 5.15 0.7

TABLE II: The averaged field test results of RP2, AP and our MCSA
optimized and applied to traffic signs in the real world. The first
row indicates the clean accuracy of the aforementioned networks
on the clean traffic sign video frames. The following rows indicate
their accuracy on the same traffic sign after partially covered by
the according method. In each column, lower accuracy indicates
the success of the according method compared to the others in that
column.

when covered by our MCSA method, which outperforms the
adversarial methods from the literature. Furthermore, the
AP [15] has not been successful in deceiving the DNNs as
such, which explains the fact that introducing only salient
features for deceiving DNNs while leaving the important
features of the attacked object to be visible would not deceive
the DNNs successfully. In fact, after inspecting the results of
RP2 [8], we conclude that the partial success of this method
in our field tests also relies on its spatial optimization,
which covered the aforementioned important features of the
attacked objects, and not the salient adversarial features it
introduced. Finally, the sign coverage C for MCSA, RP2, and
AP are 18.06, 19.9, and 23.96 percent accordingly, which
indicates that MCSA covered less area from the traffic signs
compared to the other two.

Stickers as Acts of Vandalism: Based on our experiments
and the reported results on our RSA method, we conclude
that the stickers applied to traffic signs by normal people, if
not intentionally engineered to cover specific critical features,
would not deceive the tested DNNs as such. However,
we have not tested different printing materials such as
fluorescent stickers that could cause highly salient textures
and dark backgrounds when captured by camera.

MCSA for Data-set Enhancement: Although we did
not use any of the sticker overlays in our DNNs training
procedure, we suggest that such an experiment would lead
to possible increase in the DNNs accuracy. In other words,

one can use our methods to enhance the training data-sets
to include traffic signs with different combination of stickers
on them and use those along with the clean data to train the
DNNs. The aim of such an experiment would be to increase
the robustness of the traffic sign detectors against the realistic
stickers.

V. CONCLUSIONS

In this paper, we have reviewed the challenges of applying
realistic looking stickers to traffic signs, both as unintentional
acts of vandalism and also as intentional act aiming at
deceiving particular DNNs. Based on that, we have proposed
three sticker content enhancement methods to apply as
pre-processing steps towards closing the gap between the
traffic signs and the stickers in terms of their difference in
brightness, contrast and blurriness. Furthermore, we have
also proposed three sticker application methods, namely
RSA, SSA and MCSA that can deceive the traffic signs
recognition DNNs with realistic looking stickers, which by
outperforming the adversarial methods from literature, led
us to this final conclusion that deploying highly salient
adversarial attacks to the real world would be less crucial
than covering the important features by even normal stickers
for the detectors performance.
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