
TUM School of Computation, Information and Technology
Technische Universität München

Solving Stochastic Games Reliably

Maximilian Philipp Weininger

Vollständiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universität München zur Erlangung des akademischen
Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:
Prof. Dr. Helmut Seidl

Prüfende der Dissertation:
1. Prof. Dr. Jan Křet́ınský
2. Prof. Dr. Jean-François Raskin,

Université Libre de Bruxelles

Die Dissertation wurde am 22.06.2022 bei der Technischen Universität München
eingereicht und durch die TUM School of Computation, Information and Technology am
31.10.2022 angenommen.

Abstract

By stochastic games, we understand zero-sum games played on a stochastic graph be-
tween two antagonistic players. Among the many uses of these games are verification of
and strategy synthesis for reactive systems, multistage optimization problems, and robust
decision-making under uncertainty. Applications include economics, IT security, medicine,
robot motion planning, self-adaptive systems and autonomous driving.

Solving a stochastic game amounts to computing optimal strategies for the players as
well as the resulting value of the game. We are interested in making solution methods
reliable in the following sense.

• Expressive formalisms: When translating a real world problem to a mathematical
model, we require formalisms that are expressive enough to capture all relevant details
of the problem. In particular, we consider settings with limited information, making
the resulting solutions more robust than when assuming precise knowledge; and we
allow to model problems with multiple possibly conflicting objectives and compute
optimal trade-offs.

• Guaranteed solution algorithms: All solution algorithms should give guarantees
on their precision. Depending on the formalisms, we provide guarantees in the form
of proving that the resulting value and strategies are indeed optimal, ε-optimal or
probably approximately correct (PAC).

• Explainable result: Even when using guaranteed solution algorithms, the result
is only correct under the assumption that the model is correct. To be reliable, we
cannot blindly trust the modelling process, which is typically based on simulations
or carried out by humans. Thus, we require the result to be explainable so that we
can validate it and thereby the model.

Orthogonally, our solution methods have to be scalable. This means that the algorithms
can not only solve small examples but rather scale to realistically large case studies.

In this thesis, we take a significant step towards solving stochastic games reliably. In
particular, we provide reliable solution algorithms for simple stochastic games and both
analyse and improve their scalability. We show how to extend the algorithms to give
guarantees also when the formalisms include limited information or multiple objectives.
We present a mature tool that supports explaining any memoryless pure strategy, hence
allowing to validate results. Finally, we demonstrate the applicability of our techniques on
a case study from IT security.

iii

Zusammenfassung

Als stochastische Spiele verstehen wir Nullsummenspiele, die auf einem stochastischen
Graph zwischen zwei Antagonisten gespielt werden. Zu den vielen Nutzungsmöglichkeiten
dieser Spiele gehören Verifikation und Strategiesynthese für reaktive Systeme, mehrstu-
fige Optimierungsprobleme, sowie robuste Entscheidungsfindung im Angesicht von Un-
sicherheit. Ihre Anwendungen erstrecken sich von Wirtschaftslehre über Sicherheit von
informationstechnischen Systemen, Medizin, Bewegungsplanung von Robotern und Selb-
stregulierung von Systemen bis hin zu selbstfahrenden Autos.

Ein stochastisches Spiel zu lösen bedeutet, optimale Strategien und den resultierenden
Wert des Spiels zu berechnen. Unsere Lösungsmethoden sollten vertrauenswürdig in
folgendem Sinne sein.

• Ausdrucksstarke Formalismen: Beim Übersetzen eines Problems in ein mathe-
matisches Modells benötigen wir Formalismen, die ausdrucksstark genug sind, um
alle relevanten Details des Problems abzubilden, wobei wir insbesondere Gegeben-
heiten, die robustere Ergebnisse dadurch, dass wir nur begrenzte Informationen
annehmen, erlauben, betrachten. Weiterhin untersuchen wir Gegebenheiten mit
mehreren, möglicherweise gegensätzlichen Zielen und berechnen optimale Kompro-
misslösungen.

• Lösungsalgorithmen mit Garantien: Alle Lösungsalgorithmen sollten Garantien
auf die Präzision ihrer Lösungen geben. Abhängig von den verwendeten Formalismen
geben wir solche Garantien in Form eines Beweises der Optimalität, der ε-Optimalität
oder der wahrscheinlichen, annähernden Korrektheit.

• Erklärbare Ergebnisse: Selbst bei der Nutzung von Lösungsalgorithmen mit Ga-
rantien baut die Korrektheit des Ergebnisses auf der Korrektheit des Modells auf.
Allerdings können wir für die Vertrauenswürdigkeit eben dieses Ergebnisses dem
Modellierungsprozess, der üblicherweise von Menschen durchgeführt wird, nicht blind
vertrauen. Stattdessen müssen die Ergebnisse erklärbar sein, damit wir sie und damit
auch das Modell validieren können.

Unabhängig davon sollten unsere Lösungsmethoden skalierbar sein. Das bedeutet, dass
die Algorithmen nicht nur kleine Beispiele, sondern auch realisitische, große Fallstudien
lösen können.

In dieser Doktorarbeit gehen wir einen erheblichen Schritt in Richtung des vertrauens-
würdigen Lösens stochastischer Spiele. Wir beschreiben vertrauenswürdige Algorithmen
zum Lösen einfacher, stochastischer Spiele, analysieren ihre Skalierbarkeit und verbessern
diese sogar. Wir zeigen, wie man diese Algorithmen und ihre Fähigkeit, Garantien zu
geben, auf Formalismen mit begrenzter Information und mehreren Zielen erweitert. Wir

v

Zusammenfassung

präsentieren ein Programm, das beim Erklären jedweder gedächtnislosen deterministischen
Strategie unterstützt und damit die Validierung von Ergebnissen erlaubt. Zuletzt demon-
strieren wir die Anwendbarkeit unserer Techniken an einer Fallstudie aus dem Feld der
Sicherheit von informationstechnischen Systemen.

vi

Acknowledgements

Many people helped me in various ways, making my time as a PhD-student both success-
ful and fun. First and foremost, I want to thank all my co-authors: Tobi Meggendorfer,
Clara Waldmann, Edon Kelmendi, Julia Eisentraut, Pranav Ashok, Kim G. Larsen, Adrian
Le Coënt, Jakob Haahr Taankvist, Mathias Jackermeier, Pushpak Jagtap, Majid Zamani,
Krishnendu Chatterjee, Tobias Winkler, Loris D’Antoni, Martin Helfrich, Emanuel Ram-
neantu, Joost-Pieter Katoen, Alexander Slivinskiy, Przemek Daca, Christoph Weinhu-
ber, Mayank Yadav, Javier Esparza, Stefan Kiefer, Kush Grover, Shruti Misra and Jan
Kretinsky. I enjoyed collaborating with you all and I am proud of the publications we
produced together! In particular, I am grateful to the following people.

• Pranav, for growing up together with me. Always there to help me with any question,
no matter how stupid. I feel like we really got out the best in each other, and I miss
working with you.

• Both Tobis, who are so frighteningly smart and good at proofs. My heuristic for
judging the validity of a statement is giving it to either Tobi and if they say “Yea,
seems ok, here is a proof sketch”, then the statement is true.

• My students Mathias, Emanuel, Sasha, and Christoph, for being excited about our
research and investing way more time than they had to.

• Edon, who patiently stood in front of a whiteboard with me and taught me how to
think about a proof. The idea of deflating that is used in so many of my publications
originated from such a discussion.

• Martin, who, just like me, accidentally became a project lead of Automata Tutor.
We embarked on this quest together, we helped Automata Tutor fulfil its destiny
to support teachers and students, and we keep defending it from the evil hordes of
technical problems.

• Krish, for giving me a whole new perspective on how to think about research.

• Javier, for being my mentor and having time for me whenever I needed it.

• Jan, for (i) believing in me more than I do and giving me so much confidence, (ii)
always treating me as an equal, even when I was a Master’s student who had forgotten
how Parity acceptance works, (iii) teaching me the neat trick with the itemize inside
a sentence to put more information into it than I thought was possible (and of course
so many other useful things), and lastly (iv) helping me improve everything that I
ask him to, be it a wild idea that we brainstorm about or the finalfinalTM version of
the abstract that we have to submit in 20 minutes.

vii

Acknowledgements

Further, I want to express my gratitude to people that influenced me on my path before
even starting my PhD: my teacher Herr Janocha, who got me into the field of Informatics
by telling me: “Of all the things I studied, this is the one where I really felt like I was
getting smarter.” Bernhard Küster, for believing in me and recruiting me into his team
during his son’s birthday party. Mathias Wilhelm, who taught me so much about working
independently so we can work well together, and who made me see the big value in the
little steps.

This dissertation was reviewed by my peers, namely Pranav Ashok, Muqsit Azeem and
Christoph Weinhuber. Also, Konstantina Drainas helped me with all the annoying, time-
consuming things like checking rules for commas or that all links in the bibliography are
working. Thanks to all of you for taking the time to read this enormous document! In
a similar vein: all papers in this thesis are peer-reviewed, and several reviewers read the
papers in detail and gave very insightful feedback. I want to thank these anonymous
reviewers for doing their job to such a high standard that it noticeably improved the
papers.

I am also grateful to the people of our chair who made it fun when (if) I was there.
I enjoyed our lunches and coffee breaks, and I’m proud to be a founding member of our
slow-eating, late lunch group.

I want to thank my friends and family, for giving me the privilege of a wonderful child-
hood and support system. I can just follow my dreams because I know you are there to
catch me whenever I fall.

Finally, I want to thank my wife, who is smart and beautiful. You always push me when
I need motivation and calm me when I’m working too much — even though I usually have
no idea which of the two I currently need. Eυχαριστώ πoλύ, µπισκóτo µoυ. Kartoffelreh.

viii

Contents

Abstract iii

Zusammenfassung v

Acknowledgements vii

Contents ix

List of Figures xii

List of Tables xiii

Acronyms xv

1 Introduction 1
1.1 Motivation . 1

1.2 Challenges and solutions . 1

1.3 Stochastic games . 3

1.4 Which parts of this PhD-thesis do you want to read? 4

1.5 The big picture . 5

1.5.1 Algorithms . 6

1.5.2 System . 7

1.5.3 Specification . 8

1.5.4 Output . 10

1.5.5 Input . 11

1.6 Publication summary . 12

2 Preliminaries 15
2.1 Stochastic games . 15

2.2 Semantics: Paths and strategies . 17

2.3 Objectives . 18

2.3.1 Reachability . 18

2.3.2 Other objectives . 20

2.4 Strongly connected components and end components 20

3 Guaranteed algorithms for solving simple stochastic games 23
3.1 Value iteration (VI) . 24

3.1.1 State of the art . 24

ix

CONTENTS

3.1.2 Contribution: Bounded value iteration with a guaranteed stopping
criterion . 25

3.1.3 Contribution: Simulation-based value iteration 32
3.1.4 Related work . 32

3.2 Strategy iteration (SI) . 34
3.2.1 State of the art . 34
3.2.2 Contribution: Hyper-parameters and warm start 35
3.2.3 Related work . 36

3.3 Quadratic programming (QP) . 37
3.3.1 State of the art . 37
3.3.2 Contribution: Avoiding the transformation to normal form 38
3.3.3 Related work . 39

3.4 Experimental analysis . 40
3.4.1 Algorithms and case studies . 40
3.4.2 Optimizations . 41
3.4.3 Results . 42

3.5 Summary, discussion and outlook . 42

4 Expressive system formalisms: Limited information 47
4.1 Statistical model checking . 48

4.1.1 State of the art . 48
4.1.2 Contribution: PAC statistical model checking of SGs 51

4.1.2.1 Model-based view . 51
4.1.2.2 Faster detection of being stuck 53
4.1.2.3 Extension to stochastic games 54
4.1.2.4 Obtaining the PAC Guarantee 54

4.1.3 Contribution: Detecting stuck simulations in different settings . . . 55
4.1.4 Experimental results . 56

4.1.4.1 Statistical model checking of stochastic games 56
4.1.4.2 Further comparison of black-box and grey-box statistical

model checking . 57
4.1.5 Related work . 59

4.2 Bounded-parameter stochastic games . 63
4.2.1 State of the art . 63
4.2.2 Contribution: Reducing from bounded-parameter to standard systems 68
4.2.3 Contribution: Application to ω-regular objectives 70
4.2.4 Related work . 72

4.3 Summary, discussion and outlook . 75

5 Expressive specification formalisms: Multiple objectives 77
5.1 State of the art . 77
5.2 Contribution: Approximating the Pareto-frontier in generalized-reachability

stochastic games . 80
5.3 Related work . 82
5.4 Summary, discussion and outlook . 86

x

6 Explainable output 87
6.1 State of the art . 88

6.2 Contribution: dtControl 2.0 . 90

6.2.1 Predicate domain . 90

6.2.2 Predicate selection . 93

6.2.3 Determinizer . 94

6.2.4 Further improvements of the user interface 94

6.3 Related work . 95

6.4 Summary, discussion and outlook . 98

7 Application: Defending against advanced persistent threats 101
7.1 State of the art . 101

7.2 Contribution: Guaranteed trade-offs in dynamic information flow tracking
games . 102

7.2.1 Adjusting the formalisation . 103

7.2.2 Algorithm . 104

7.2.3 Experimental results . 104

7.3 Related work . 105

7.4 Summary, discussion and outlook . 105

8 Conclusion 107

Bibliography 109

A Value Iteration for Simple Stochastic Games: Stopping Criterion and Learning
Algorithm (InC 2022) 153

B Comparison of Algorithms for Simple Stochastic Games (InC 2022) 187

C PAC Statistical Model Checking for Markov Decision Processes and Stochastic
Games (CAV 2019) 213

D Statistical Model Checking: Black or White? (ISoLA 2020) 239

E Satisfiability Bounds for ω-Regular Properties in Bounded-Parameter Markov
Decision Processes (CDC 2019) 259

F Approximating Values of Generalized-Reachability Stochastic Games (LICS
2020) 271

G dtControl 2.0: Explainable Strategy Representation via Decision Tree Learning
Steered by Experts (TACAS 2021) 287

H Guaranteed Trade-Offs in Dynamic Information Flow Tracking Games (CDC
2021) 309

xi

LIST OF FIGURES

List of Figures

1.1 The underlying paradigm of the approaches considered in this thesis and
many related works, which also inspired the outline of the thesis. 6

2.1 An example of an SG with S = {p, q, 1, 0}, S� = {q, 1}, S© = {p, 0} and the
set of actions A = {a, b, c, d, e}; Av(p) = {a} with δ(p, a)(q) = 1; Av(q) =
{b, c} with δ(q, b)(p) = 1 and δ(q, c)(q) = δ(q, c)(1) = δ(q, c)(0) = 1

3 . For
actions with only one successor, we do not depict the transition probability
1. Taken from [EKKW22, Figure 1]. 16

3.1 (a): Our running example of an SG. (b): An illustration of the first few
iterations of VI on the running example. 25

3.2 Example of an EC where not all states have the same value. α and β
denote the value of the exiting actions. Depending on their relation, different
subsets of {r, s, t} form a simple EC. Based on [EKKW22, Figure 3]. 29

3.3 The QP to compute the value of a simple SG in normal form from [Con93],
adapted to our notation. Taken from [KRSW22, Section 3.3.1]. 37

4.1 Our running example of an SG for Section 4.1. 52

4.2 Performance of our algorithm on various MDP and SG benchmarks in grey-
and black-box settings. Solid lines denote the bounds in the grey-box setting
while dashed lines denote the bounds in the black-box setting. The plotted
bounds are obtained after each BVI-phase, hence they do not start at the
interval [0, 1] nor the time 0. Taken from [AKW19a, Figure 2]. 57

4.3 (a): Our running example of a bSG for Section 4.2. (b/c): A consistent
instantiation under best-/worst-case semantics. 64

4.4 Visualization of the BFS of the state-action pair (q, c) in the bSG from
Figure 4.3a. Based on [WMK19, Figure 2b]. 67

5.1 An SG with a generalized-reachability objective and the resulting sets of
achievable vectors. The goal sets are F1 = {q, r} and F2 = {r, s}. The
transition probabilities of actions a and b are uniform, i.e. 1/2. We do not
depict the self loops of states q, r and s. The state p is not drawn as
box (Maximizer) or circle (Minimizer), but rather as a diamond because we
consider both cases: the blue solid line depicts the set of achievable vectors
if it is a Maximizer state and the red dashed line if it is a Minimizer state. 78

5.2 Example showing a Pareto-frontier of a set X, a direction d, and the point
of intersection of d with the frontier, depicted as in distance X[d] from the
origin. Taken from [ACK+20, Figure 1]. 79

5.3 Example of an EC where we need to distinguish regions in order to deflate. 81

5.4 Visualizing (a) the regions for state r and (b) the result of deflating. Based
on [ACK+20, Figure 4]. 81

xii

6.1 A graphical depiction of the case study used for our running example. Taken
from [LMT15, Figure 1]. 89

6.2 An overview of the components of the tool dtControl 2.0, showing software
architecture and workflow. Everything depicted in black was already part
of the first version of dtControl [AJJ+20a], namely the basic layout and
some possibilities for the hyper-parameters. The green colour marks the
features that are the contribution of the extension to dtControl 2.0. Based
on [AJK+21a, Figure 2]. 90

6.3 (a) An illustration of the usefulness of linear predicates. Taken from [Jac20,
Figure 5.2]. (b) An illustration of the usefulness of algebraic predicates on
the real data from the car-controlling example. Taken from [Jün21, Figure
6.1]. 91

List of Tables

4.1 Runtime (in seconds) comparison of black- and grey-SMC for various bench-
marks. Runtimes of bounded value iteration (BVI) are also presented as a
baseline. Based on [ADKW20, Table 1]. 58

7.1 Properties of the considered case studies and runtime of our algorithm.
Based on [WGMK21, Table 1]. 104

xiii

Acronyms

APT Advanced Persistent Threats Page 101
BDD Binary Decision Diagram Page 96
BFS Basic Feasible Solution Page 67
BSCC Bottom Strongly Connected Component Page 21
bMC bounded-parameter Markov Chain Page 64
bMDP bounded-parameter Markov Decision Process Page 64
bSG bounded-parameter Stochastic Game Page 63
BVI Bounded Value Iteration Page 30
DIFT Dynamic Information Flow Tracking Page 101
DT Decision Tree Page 89
EC End Component Page 21
HOP Higher Order Program Page 38
IMC Interval Markov Chain Page 72
LP Linear Programming Page 39
MDP Markov Decision Process Page 17
MEC Maximal End Component Page 21
PAC Probably Approximately Correct Page 49
QP Quadratic Programming Page 37
SCC Strongly Connected Component Page 20
SEC Simple End Component Page 29
SG Stochastic Game Page 15
SI Strategy Iteration Page 34
SMC Statistical Model Checking Page 50
VI Value Iteration Page 24

xv

1 Introduction

1.1 Motivation

“How should an agent behave to achieve its goal?”

Many questions in computer science can be phrased in this form. The agent can be very
concrete, such as an autonomous car or robot, trying to reach a destination while avoiding
obstacles [AD14]; or rather abstract, like an algorithm analysing “big data” to decide
whether to grant a credit [HA16]. The agent’s goals can be easy to formulate, for example
beating a human grand master in chess [Has17b]; or they can be complicated multi-faceted
problems where not even humans know exactly how to behave, such as an IT security
algorithm with the goal of preventing data-theft [Col12] or a medical device deciding
whether a patient is healthy based on some monitored parameters [SBS20]. Computer
systems affect our everyday lives but also perform high-impact, critical decision-making.

All these systems share the central idea of how to answer the given question: they
construct a mathematical model of the real world, formalising both the interaction of the
agent with its environment as well as the goal of the agent. Then, in this mathematical
world, a solution to the question is computed. This prescribes the behaviour of the agent
in the real world.

Often, the focus lies on getting an acceptable solution quickly, instead of computing an
optimal one. Moreover, many algorithms do not quantify how good the solution is, so it
can in fact be arbitrarily bad. In such a case, we should only take the decisions of the
system as a suggestion and must not rely on them. However, on the one hand, humans
are accustomed to trusting the systems as they usually perform well; and on the other
hand, many systems are not monitored, even if they perform critical tasks. This reliance
on algorithms without guarantees on their solutions has led to disastrous consequences,
costing millions of dollars or even human lives, with well-known examples being crashes
of the Ariane-5 missile or aeroplanes of the airbus family [BK08, Chapter 1]. The danger
posed by unreliable systems is aggravated by our society’s increased dependency on black-
box machine learning algorithms for high-stakes decisions [Rud19].

Thus, especially for decisions that carry high risk, we cannot rely on best-effort heuristics
or blindly trust computer systems. We have to use methods whose results are reliable.
This is the focus of the formal verification community in general and this dissertation
in particular.

1.2 Challenges and solutions

The central challenge of this thesis is to make the methods we use more reliable. We
differentiate three core components of reliability.

1

1 Introduction

• Expressive formalisms: When formalising the real world using a mathematical
model, we usually make assumptions and lose information. Still, we want to transfer
the result of the mathematical model back to the real problem. Thus, we have to
make sure that the formalisms we use in our model are expressive enough to capture
all relevant details. This is called “The Modeling Challenge” in the handbook of
model checking [CHVB18, Section 1.3.2].

In particular, assuming that we know the precise behaviour of the environment that
the agent interacts with often is unrealistic. Thus, we propose methods that work
in a setting of limited information in Chapter 4. Additionally, the agent’s goal often
consists of multiple possibly conflicting objectives. In Chapter 5, we deal with such
goals. For a broad overview of other more expressive formalisms and their relation
to the thesis, we refer to Section 1.5.

• Guaranteed solution algorithms: The algorithms solving the mathematical model
should give guarantees on the precision of their result. Only then can we rely on it
being optimal or at least good enough. All of the algorithms we propose in this thesis
(Chapters 3-7) provide provable guarantees.

• Explainable result: Even when using solution methods that are reliable in the
sense of the previous two points, the result we get is guaranteed to be correct only
under the assumption that the model is correct. This assumption is quite strong
since the modelling process typically involves humans. They are likely to make mis-
takes, especially since it is difficult to use the formal, mathematical language that is
necessary to construct a model.

Thus, we do not want to blindly trust the model. Instead, if we can explain and
validate the result, we can certify that it behaves as expected and hence the model was
correct. Making the resulting behaviour explainable is the main focus of Chapter 6.
Additionally, we show how a good choice of formalisms helps to understand the results
for an IT security application in Chapter 7.

Orthogonally — or even contrary — to the challenge of reliability, we also have to
address the challenge of scalability. The real world is complex and the mathematical
models describing it are very large, a problem often called state-space explosion [BK08,
Section 2.3]. Thus, the solution algorithms have to scale, i.e. be performant even for very
large instances. This is also called “The Algorithmic Challenge” in the handbook of model
checking [CHVB18, Section 1.3.1].

Methods from the field of machine learning focus only on this challenge, being able to
scale to enormous system sizes. However, this comes at cost of being utterly unreliable: it is
often not clear that the formalism really models the intended problem; the algorithms give
no guarantees, neither how close they are to the optimum nor that the result is good in all
cases; and the results often are black-boxes operating in ways beyond our understanding.

Our focus on reliability often impedes scalability, as formalisms become more complex
and algorithms more conservative. Still, there are many ways in which the formal methods
community has achieved scaling its methods to industry problems, many of which are sum-
marized in [CHVB18, Section 1.3.1]. One recent direction not mentioned in that summary

2

1.3 Stochastic games

is to combine formal verification and machine learning, obtaining the advantages of both.
The machine learning algorithms allow to quickly get a good guess of how to behave. For-
mal verification can use this guess as a basis for its computation, speeding up the process.
If the guess was not good enough, the verification can also advise the machine learning
algorithms on what to focus on before we repeat the process. This general idea has been
applied in many settings, see e.g. [JKKK18] for a recent report.

In this thesis, we utilize such a combination of machine learning and formal methods
in Section 3.1.3. Moreover, algorithms can be more scalable by weakening the guarantees.
Instead of computing a provable optimum, we can provide a statistical guarantee of opti-
mality, as we discuss in Section 4.1. Similarly, requiring an approximate guarantee allows
for the usage of so-called anytime algorithms, which at any time during the computation
can quantify the quality of their approximation and thus allow earlier termination; the
algorithms in Section 3.1 and 5 are of this type.

Finally, we mention that the solutions prescribing the behaviour of an agent are often
very large, as they scale with the problem size. However, they often have to be executed
by embedded devices with limited memory. The contribution of Chapter 6 not only helps
with explaining these solutions, but also compresses them and thus reduces the required
memory.

1.3 Stochastic games

So far, we have argued that it is important to solve questions of the form “How should an
agent behave to achieve its goal”, and that our solution methods have to be both scalable
and reliable.

In this thesis, we focus on questions that can be modelled as zero-sum stochastic
games. These are games of two antagonistic players where one player winning implies
that the other player loses. Slightly more formally, this very expressive mathematical
modelling formalism includes

• controllable nondeterminism: our behaviour affects the state of the environment.

• adversarial nondeterminism: there are other agents that affect the state of the en-
vironment. By assuming they are adversarial and do everything in their power to
hinder us, we can guarantee that the result of our analysis is safe even in the worst
case. See e.g. [CHVB18, Chapter 27] for more motivation and applications.

• stochasticity: the outcome of the actions of agents is not fixed, but probabilistic,
e.g. because a dice is rolled or a measurement is taken which is expected to fail with
some probability. See e.g. [BK08, Chapter 10] or [CHVB18, Chapter 28] for more
information.

Stochastic games are practically useful. As they are so expressive, they have been used
in many fields, e.g. economics [Ami03], IT security [RES+10], medicine [BD08], robot mo-
tion planning [LaV00], self-adaptive systems [CMG14] and autonomous driving [CKSW13].
We refer the interested reader to [SK16] for more case studies and to [Kwi16] for an overview
of how to go from a practical problem to a stochastic game. Moreover, stochastic games

3

1 Introduction

generalize the well-known and often applied models of Markov chains [Nor98], deterministic
games [CHVB18, Chapter 27] and Markov decision processes [Put94]. As a final practical
motivation, we mention that they can serve as abstractions of large Markov decision pro-
cesses [KKNP10] or robust variants of Markov decision processes in settings with limited
information, see Section 4.2.

Stochastic games are also very interesting from a complexity theoretical perspective.
For an overview of complexity classes and further references, see [Aar16, AB]. Simple
stochastic games, which are stochastic games with the objective to reach a goal state, are
in the complexity class UP ∩ co-UP [CF11, Theorem 4], a subset of NP ∩ co-NP. The
latter class is of particular interest for complexity theorists as quite possibly there exists a
polynomial algorithm for problems in this class [Joh07]. For a discussion on the efforts of
finding such an algorithm for simple stochastic games, see Section 3.5.

Simple stochastic games are fundamental for another reason, namely that many vari-
ants of stochastic games with different objectives can be polynomially reduced to simple
stochastic games [AM09, CF11]. Thus, in this thesis, we first focus on reliably solving
simple stochastic games (Chapter 3) before making them more expressive (Chapters 4
and 5).

1.4 Which parts of this PhD-thesis do you want to read?

This dissertation contains many hours’ worth of reading. Going through everything is a
daunting task, especially if you, dear reader, have a particular motivation so that not all
parts are of interest to you. Hence, I try to give you a good, modular structure and clear
organizational paragraphs throughout the whole thesis. This should help you to decide
which parts you want to read in order to achieve your goal, whatever that might be. I
hope this thesis can be of assistance and I wish you the best of luck!

Outline: In the previous Sections 1.1- 1.3 we have motivated the contributions from
different directions and referenced some sections of the main content. For a more rigid
outline adhering to the table of contents, the next Section 1.5 provides the big picture and
embeds the chapters of the thesis in their order of appearance.

Chapter structure: Every chapter starts with a short motivation, a clear problem
statement and the chapter outline. Then every part inside the chapter is ordered as:
state of the art — contribution — related work. The sections on the state of the art and
contribution are at a rather high level, focussing on intuition and examples. For detailed
formal descriptions and proofs, the sections also provide pointers to particular parts of the
full papers in the appendix. The related work sections are quite extensive. They contain
historical developments, inspiring alternative ideas as well as citations to papers that can
serve as an introduction to broadly related research. Finally, every chapter ends with a
summary, a discussion and an outlook.

Reader’s motivation: This thesis is optimized for two different key motivations.
• If you are looking for an introduction to any of the core topics of the thesis, read the

motivation, problem statement and state of the art and contribution sections. This
should provide the central intuition and, if desired, enable you to find the relevant
technical details in the full papers in the appendix.

4

1.5 The big picture

Note that, apart from a dependency on the preliminaries, all chapters are self-
contained, allowing you to immediately jump to the topic of interest.

• If you are looking for the relation of this research with other works (be it the bigger
context or an idea for a research direction), you can focus on the related work,
discussion and outlook sections.

For the key ideas of a chapter, it suffices to read the motivation and problem state-
ment at its beginning together with the summary at its end.

1.5 The big picture

In this section, we provide the relation of this thesis to many related research directions.
We categorize contributions according to the underlying paradigm that they all have in
common, as depicted in Figure 1.1. Given the complex real-world problem we want to
solve as input, we first formalise it as a mathematical model. We differentiate between (i)
the system, in our case usually a stochastic game, which describes the environment and
how the agents can affect it and (ii) the specification, the encoding of the goal of the agent.
The solution algorithms and their output differ for the various combinations of formalisms
describing system and specification.

Figure 1.1 is a variation of the model checking methodology as given in [BK08, Figure 1.4]
or [CHVB18, Figure 1]. This model checking approach has several classic advantages and
disadvantages, as described in [BK08, Section 1.2.2] or [CHVB18, Section 1.1]. However, we
emphasize that this underlying paradigm also occurs in fields other than formal verification:
for example, reinforcement learning requires a way to execute the system (called Agent-
Environment Interface in [SB18, Section 3.1]) and a well-designed reward signal encoding
the specification [SB18, Section 17.4].

Our outline adheres to the figure as follows.
• Algorithms (Chapter 3): We first describe algorithms for the most fundamental for-

malism we use in this thesis, namely simple stochastic games. Based on this under-
standing, we describe the algorithmic extensions which are necessary for dealing with
more expressive formalisms in later chapters.

• System (Chapter 4): We add the possibility to encode systems about which we only
have limited information.

• Specification (Chapter 5): We add the possibility that our specification includes
multiple possibly conflicting objectives.

• Output (Chapter 6): We describe methods for compressing and explaining the result
of our algorithms while retaining its guarantees.

• Input (Chapter 7): We show the importance of choosing the right formalism for
modelling the given input, using an example of an application to IT security.

In the rest of this section, we go through the parts of the paradigm in the same order
as the overall outline, providing more context for our contribution, pointing to the related
work sections of the chapters and more high-level related works.

5

1 Introduction

Figure 1.1: The underlying paradigm of the approaches considered in this thesis and many related
works, which also inspired the outline of the thesis.

1.5.1 Algorithms

Guarantees All algorithms in this thesis give guarantees on their precision, addressing
the second part of the challenge of reliability. For the basic algorithms, we discuss their
guarantees in Section 3.5. They are either precise or approximate, quantifying the distance
to the optimum. Chapter 5 also provides such an approximate guarantee. In Section 4.1,
we give a probably approximately correct (PAC) guarantee; this is a statistical guarantee,
claiming that with a high probability the result is correct. In Section 4.2 and Chapter 6,
our contribution is independent of the exact solution algorithm, but it allows to retain
whichever guarantees that algorithm had. In Chapter 7, our algorithm only gives a guar-
antee that it converges in the limit, which is insufficient to be reliable. However, we point
out the necessary future steps to allow for quantifying the distance to the optimum.

Scalability We complement the discussion of the challenge of scalability in Section 1.2
with more related work: apart from the already mentioned overviews in [CHVB18, Section
1.3.1] and [JKKK18], we point to the description of abstraction in [BK08, Chapter 7
and 8], the original description of symbolic model checking [CMCH96], the seminal paper
proposing guaranteed algorithms based on partial exploration [BCC+14] and the recent
overview in [BHK19, Chapter 5].

Note that the more expressive our formalisms are, the harder the problems typically
become. This is visible in an increase in complexity: reachability in Markov decision
processes is solvable in polynomial time [Put94] while solving simple stochastic games is
in NP ∩ co-NP [Con92]. Potentially, the problems we study even become undecidable,
for example when considering partially observable Markov decision processes [MHC03] or
timed or hybrid systems [HR00]. Still, there might be good heuristics even for problems
that are undecidable or that have a prohibitive theoretical worst-case complexity.

6

1.5 The big picture

In Chapter 3, we give details on the developments of the main algorithms for solving
stochastic games, namely value iteration, strategy iteration and quadratic programming,
in Sections 3.1.4, 3.2.3 and 3.3.3, respectively. The discussion in Section 3.5 provides a
theoretical and practical comparison.

Tools and practical implementations There are many practical challenges to overcome
when transferring the reliable algorithms from formal verification to industrial practice.
Such challenges and ways to deal with them (as well as ways not to do it) are discussed
in [CHVB18, Chapter 23], and the software architecture of modern model checkers is anal-
ysed in [KLvdPT19]. Moreover, we point out that there are many tools that allow for im-
plementing and testing algorithms, such as SCOTS [RZ16] and Uppaal [LPY97] for hybrid
systems or the probabilistic model checkers PRISM [KNP11, KNPS20], Storm [DJKV17],
the MODEST toolset [HH14] and others, see [CHVB18, Section 28.7.1]. Moreover, there
are collections of benchmarks [KNP12, HKP+19] and competitions to encourage practi-
cal improvements, for example QComp [HHH+19a, BHK+20] or SYNTCOMP [JBB+17,
JPA+22].

1.5.2 System

We refer to [SV15] for a short summary of the historical development of stochastic game
theory and to [NS03, FV97] for extensive books on stochastic games.

We mention four directions in which a system formalism can be made more expressive:
the first two, limited information and infinite systems, can be applied to games as well as
other formalisms, while the latter two, number of players and concurrency, are relevant
only in games.

Limited information In Chapter 4, we consider two variations of limited information.
This is practically relevant because we cannot assume that we always have information
about the full topology of the system, let alone precise knowledge of all transition prob-
abilities [JL91, Wal96, KU02, GLD00]. Moreover, limited information can serve as an
abstraction of continuous systems [KKLW12, LAB15] or allow to make the resulting deci-
sion making more robust [WTM12].

On the one hand, we study a setting where we can only simulate the system and observe
its behaviour; on the other hand, we assume that instead of precise knowledge about the
probabilities occurring in the system, we know intervals on these probabilities. We discuss
variants of these settings in Sections 4.1.5 and 4.2.4. The latter section also contains an
overview of other settings with limited information.

Infinite systems In this thesis, we only look at systems with a finite, discrete state-space.
The following formalisms have infinite state-space, but some way of compactly representing
the system in order to still reason about its behaviour.

In one direction, there are countably infinite games with recursion [EY15]. Another way
to make games countably infinite is to add lossy channels [AHdA+08].

In another direction, we want to model systems which complement discrete state-variables
with continuous ones for tracking time or sensor values. This is of immense practical in-

7

1 Introduction

terest and has been the topic of many papers and books, see e.g. [Alu15, LS17] for books
calling these systems cyber-physical and [Ras05] as well as [CHVB18, Chapter 29 and
30] for books calling them hybrid. As mentioned above, problems in this setting quickly
become undecidable [HR00]. If the whole evolution of the system follows a differential
equation, this special case is called differential game [Fri94].

Number of players Recall that stochastic games contain two players, i.e. two kinds of
nondeterminism, as well as stochasticity. Thus, they are also called 21

2 -player games, where
the half player corresponds to the stochasticity. Naturally, they generalize games with fewer
players, namely Markov chains with 1

2 , Markov decision processes with 11
2 , and determin-

istic games with 1 or 2 players. For games with more than 21
2 players, we distinguish two

cases: if the objective is zero-sum, i.e. one set of players winning corresponds to the other
set of players losing, then we can equivalently consider a game with 21

2 players [CFK+13a].
Otherwise, we need solution concepts like equilibria that capture the rational interaction
of players. We refer to the next Section 1.5.3 for more information on this.

Concurrent games In this thesis, we investigate games that are turn-based, i.e. at every
state exactly one player decides the next action. In concurrent games, e.g. [dAHK07], at
every state both players choose an action and the system evolves according to both their
choices. We refer to [San20] for a PhD-thesis summarizing recent progress on concurrent
games. Note that Matrix-games are equivalent to concurrent games with one state [FV97,
Appendix G]. A variant of concurrent games are bidding games, see e.g. [AH20], where the
next move is determined based on an “auction” between the players that is held at every
state.

1.5.3 Specification

On an intuitive level, we can view single-objective zero-sum specifications as follows: firstly,
we need a way to assign a number to every possible play of the game, i.e. every sequence
of states and actions that can occur. This can be a binary classification, saying that some
plays are winning and others losing, or one with a larger domain, for example assigning a
cumulative reward or cost to every play. Secondly, we need a way to aggregate the numbers
of multiple plays, most commonly by using expectation. Thirdly, we have to specify how we
resolve the nondeterminism in the game, i.e. how we quantify the strategies of the players.
Finally, we have to pose the question we are interested in, which can be computing optimal
strategies and values or verifying that the value is larger than a certain threshold. We now
go through these steps and recall some ways in which they can be modified; afterwards,
we comment on multi-objective and non-zero-sum specifications. For an overview with a
different structure, we refer to [BHK19, Chapter 4].

Objectives In our intuitive description, an objective is the way to assign a number to a
play. The distinction between classifying with binary or larger domain is usually denom-
inated as qualitative or quantitative objectives, and we refer to [CHVB18, Section 27.2.2]
for an overview of several well-known objectives belonging to both classes. We highlight
that there are several logics for encoding properties [CHVB18, Chapters 2 and 28] and

8

1.5 The big picture

that the automata-based approach for representing objectives, see also [CHVB18, Chapter
4], was a historical breakthrough. Note that objectives can also be classified according to
whether their value depends only on a finite number of steps (finite-horizon) or whether
potentially the whole play is relevant (infinite-horizon). A recently introduced special case
are window-objectives, e.g. [CDRR15], where the payoff is considered over a local finite
window sliding along the play.

We comment on several historical names for special classes of games, namely Shapley,
Gilette and Everette games. We base our classification on the description in [HKL+11]. All
these games are concurrent stochastic games, but they differ in their objective. Shapley
games have a discounted reward objective, Gilette games a mean-payoff objective and
Everette games (also called recursive games, but not to be confused with recursive games
as in [EY15]) a terminal reward objective.

We emphasize again that the objective of reachability which is the focus of this thesis
is very fundamental. This is not only because many other objectives can be polynomi-
ally reduced to reachability [AM09, CF11], but also because solution algorithms for many
other objectives depend on solving reachability. For example, solving ω-regular objec-
tives [CHVB18, Section 28.6] or mean-payoff objectives [ACD+17] intuitively amounts to
analysing the cycles of the system and then performing reachability analysis on these cycles.

Expectation or risk-aware measures Expectation is the most common choice for aggre-
gating information about many possible plays in a probabilistic system. Intuitively, we
multiply the value of every play with the probability of the play and take the average.
However, expectation might in fact not be the most natural or useful choice, since it is not
risk-aware. Instead, we might want to consider measures such as the conditional value-at-
risk [KM18] or the ideas of cumulative prospect theory [LM13].

Quantification of strategies Asking for the existence of a strategy makes sense if we
are controlling the agent in question and want to find a good way to behave; asking that
something holds for all strategies gives information about the worst case, defending against
whatever an opponent can do. In games, the order of quantification can be important, i.e.
who fixes their strategy first. As an intuitive example, assume we are playing rock-paper-
scissors and you have to tell your opponent what you will play before they decide; this
order puts you at a distinct disadvantage. Still, in many cases, it actually is irrelevant who
fixes the strategy first. In such cases, we say that game is determined. Determinacy has
been proven abstractly for large classes of stochastic games, see e.g. [Mar90, MS98].

Optimum, qualitative decision or quantitative decision We can be interested in com-
puting the optimal value or optimal strategies. If our problem is to decide whether the
optimum has a certain property, we can differentiate between qualitative and quantitative
questions.1 Qualitative analysis distinguishes only whether the specification is satisfied
with a probability of 0, some positive probability or with a probability of 1; for the latter

1Note that these words are overloaded to denote both the domain of the objective as well as the overall
question.

9

1 Introduction

case, we also differentiate sure, almost-sure and limit-sure winning [dAHK07]. In con-
trast, in quantitative analysis, we want to compute the exact probability of winning. Note
that recently there have been works focussing not on computing the optimum, but rather
“satisficing”, which means ensuring that the probability of winning is higher than a thresh-
old [BCV21]. A related concept is good-enough synthesis [AK20], where the specification
only has to be satisfied if such satisfaction is possible at all.

Multiple objectives The topic of Chapter 5 are specifications that consist of multiple
objectives. We discuss in detail different ways of combining such objectives in Section 5.3.

Non-zero-sum games In non-zero-sum games, the players are not antagonistic. Instead,
both of them have their own objective, and their objectives are only partially (or even not
at all) conflicting. In this case, the solution concept is not a single optimal value, but we
look for equilibria. These are combinations of strategies where no player has an incentive
to deviate. There exist many different concepts of equilibria, depending on the number of
players as well as the assumptions about their rationality and motivation.

We present a selection of relevant works. The concept of equilibria was introduced by
Nash [NJ50], but many extensions have been proposed, e.g. relevant equilibria [BBGT21]
or Stackelberg games [BRT21]. The concepts of correlated equilibria [KNPS22] and core
in [GKW19] assume that the players can and want to cooperate. Synthesis in the presence
of other rational agents with their own objectives is called rational synthesis. It was
introduced in [FKL10] and strengthened in [KPV16]. Small modifications of the objectives
of the other players in order to achieve stability or improve social welfare were studied
in [AAK15]. Finally, we refer to [BCH+16] for a survey of solution concepts in the context
of reactive synthesis.

1.5.4 Output

Model checking or synthesis Originally, model checking answers the decision problem
of: does the system satisfy the specification? Thus, the output is a yes/no-answer, ac-
companied by either a proof of correctness or a counter-example witnessing a violation of
the specification [CHVB18, Section 1.1]. We highlight that counter-examples can be used
for explaining bugs of the system or refining an abstraction. For more information, see
e.g. [AL09, DJW+14, ÁBD+14, BCC+15].

If the models contain nondeterminism, i.e. an agent with choices, we have to specify
whether this agent is beneficial or adversarial. In the former case, we check whether there
exists a behaviour of this agent, a strategy, such that the specification is satisfied; in the
latter case, we check that it is satisfied for all behaviours. The witness for such a question
commonly is a strategy that ensures/violates satisfaction of the specification. Thus, the
question of synthesis of such strategies is closely related to model checking. For more
information on this relation, see [CHVB18, Chapter 27], and for a history of the synthesis
problem, see [Cha07b, Chapter 1].

For games, there are the notions of quantitatively or strategically solving them, which
means computing the optimal values of the considered specification or the optimal strate-

10

1.5 The big picture

gies. In the cases we study in this thesis, it possible to obtain one solution from the other,
see also [AM09].

Explainability Given the synthesised strategy which should ensure that the system satis-
fies the specification, a human engineer can validate this strategy. This allows uncovering
mistakes made in the modelling process and thereby increase the reliability of the result.
The main goal of Chapter 6 is to post-process strategies to make them explainable and we
report some success stories where we detected bugs and assisted the modelling process.

There is a recent trend to explain the results of algorithms that do not give guarantees.
We provide an overview in Section 6.3. In this case, the explanation does not serve as
validation of an already quite reliable result, but rather as a way to get at least some
degree of reliability.

1.5.5 Input

It is very important to find a fitting formal model for the given complex real-world problem.
This is addressed in [CHVB18, Chapter 3 and Section 28.7.3] as well as [BK08, Section
1.2.1] and [ABD+15]. These approaches require human input, which is laborious and
potentially error prone. Instead, we can also learn the model from simulations, obtaining
a probabilistic guarantee of its correctness, see e.g. Section 4.1 or [MCJ+12, HdHA15,
WSYP18, WSQJ21].

When modelling, the choice of formalisms immensely affects the outcome of the verifi-
cation, as we show using an application from IT security in Chapter 7. On the one hand,
if the model is not expressive enough, the result is meaningless; on the other hand, if the
model is too expressive, the necessary algorithms or solution concepts might be unneces-
sarily complex. Moreover, the result might be more understandable and explainable given
the right modelling of the specification. In particular, encoding multiple objectives into a
single utility function (as is necessary for e.g. reinforcement learning [SB18, Section 17.4])
obscures the result. This yields statements like “the combined utility is below 147.3”,
whereas encoding the objectives separately allows for explaining “At a cost of 83e, our
chances of catching the hacker are 40%”.

Remark 1. At the end of this high-level overview, I want to point out that the related work
sections in this thesis benefited greatly from the following websites.

• The dblp computer science bibliography [Ley02], available at https: // dblp. org/ ,
especially for the functionality of giving good bibtex-information for all papers in their
database, but also for getting an overview of the work of certain (teams of) authors.

• Google Scholar, available at https: // scholar. google. com/ , for getting bibtex-
information on the few papers that dblp didn’t have, and for stumbling upon some
highly cited papers that I would never have come across without their heuristics.

• Connected papers, available at https: // www. connectedpapers. com/ for finding
relations, streams of research and new papers. Also, it is a beautiful feeling to know
all papers that (according to their heuristics) are most connected to an important
citation.

11

https://dblp.org/
https://scholar.google.com/
https://www.connectedpapers.com/

1 Introduction

1.6 Publication summary

This section provides a list of all papers I co-authored. It first enumerates all papers
included in this thesis, secondly all other co-authored papers and lastly concludes with a
summary.

Papers included in the thesis

This list groups papers by the chapter which discusses them and shows in which appendix
the full papers are reprinted.

Chapter 3 - Guaranteed algorithms for solving simple stochastic games

A Value Iteration for Simple Stochastic Games: Stopping Criterion and Learning Algo-
rithm (Information and Computation 2022, [EKKW22])

B Comparison of Algorithms for Simple Stochastic Games (Information and Computation
2022, [KRSW22])

Chapter 4 - Expressive system formalisms: Limited information

C PAC Statistical Model Checking for Markov Decision Processes and Stochastic Games
(CAV 2019 [AKW19a])

D Statistical Model Checking: Black or White? (ISoLA 2020, [ADKW20])

E Satisfiability Bounds for ω-Regular Properties in Bounded-Parameter Markov Decision
Processes (CDC 2019, [WMK19])

Chapter 5 - Expressive specification formalisms: Multiple objectives

F Approximating Values of Generalized-Reachability Stochastic Games (LICS 2020, [ACK+20])

Chapter 6 - Explainable output

G dtControl 2.0: Explainable Strategy Representation via Decision Tree Learning Steered
by Experts (TACAS 2021 [AJK+21a])

Chapter 7 - Application: Defending against advanced persistent threats

H Guaranteed Trade-Offs in Dynamic Information Flow Tracking Games (CDC 2021 [WGMK21])

Other co-authored papers

This list of further papers that were published during my PhD-time again is grouped
according to their relation to the chapters of the thesis.

Chapter 3 - Guaranteed algorithms for solving simple stochastic games

• Conference version of Paper A, using the same title (CAV18, [KKKW18])

• Conference version of Paper B, using the same title (GandALF20, [KRSW20])

12

1.6 Publication summary

Chapter 4 - Expressive system formalisms: Limited information

• Enforcing omega-Regular Properties in Markov Chains by Restarting (CONCUR
2021, [EKKW21])

Chapter 5 - Expressive specification formalisms: Multiple objectives

• Stochastic Games with Lexicographic Reachability-Safety Objectives (CAV 2020 [CKWW20])

• Stochastic Games with Disjunctions of Multiple Objectives (GandALF 2021, [WW21])

Chapter 6 - Explainable output

• SOS: Safe, Optimal and Small Strategies for Hybrid Markov Decision Processes
(QEST 2019, [AKL+19])

• dtControl: decision tree learning algorithms for controller representation (HSCC
2020, [AJJ+20a])

• dtControl: decision tree learning algorithms for controller representation (HSCC
2020, [AJJ+20b], tool demonstration)

Other

• Automata Tutor v3 (CAV 2020, [DHK+20])

• Index appearance record with preorders (Acta Informatica 2021 [KMWW21])

Remark 2. We make a short excursion to highlight that there is a recent development to
improve the teaching of formal methods using online tools. Automata Tutor [DHK+20] is
a part of this development. Further work in that direction was presented at the workshop
on formal methods education online (FOMEO), which I co-organized.

Its website2 provides links to and descriptions of many useful tools, including DiMo [HLS21],
Hintikka’s World [Sch18, CGNS19], Iltis [GLP+18, GLH+19], Larch3, LogAx [LHJN21],
LogEx [LHJ19], NaDeA [VFS18], pseuCo [FH19], Sequent Calculus Trainer [EHL17] and
The Incredible Proof Machine [Bre16].

Summary

In total, I have published 18 papers during my PhD-studies, namely 11 regular conference
papers (3×CAV, 2×CDC, CONCUR, 2×GandALF, Isola, LICS and QEST), 3 conference
tool papers (CAV, HSCC and TACAS), one conference demo paper (HSCC) and 3 journal
papers (2×Information and Computation, Acta Informatica). Before my PhD-studies, I
co-authored one conference paper (TACAS) and one journal paper (Nature methods).

As of June 18th 2022, the number of citations for the papers published during my PhD-
studies is 126 according to Google Scholar;4 including the papers published before the start
of my PhD-studies, it is 296.
2https://www7.in.tum.de/~kretinsk/fomeo.html
3https://thelarch.notion.site/thelarch/Larch-73c9d52748e64d4b83e2812e458b7c44
4https://scholar.google.com/citations?user=88fkEooAAAAJ&hl=de&oi=ao

13

https://www7.in.tum.de/~kretinsk/fomeo.html
https://thelarch.notion.site/thelarch/Larch-73c9d52748e64d4b83e2812e458b7c44
https://scholar.google.com/citations?user=88fkEooAAAAJ&hl=de&oi=ao

2 Preliminaries

In this chapter, we give the preliminary definitions that are relevant for all the included
works.

Intuition of the important concepts. Before the formal definitions, we give an intuitive
summary of the concepts to make the preliminaries more readable. Stochastic games are
games played on a graph. Every node of the graph (called state) belongs to one of two
players, which we call Maximizer and Minimizer. These names are chosen because in all
cases we consider, one player is trying to maximize an objective and the other tries to
minimize it.

Playing the game starts in a given initial state. Then repeatedly the player to whom
the state belongs chooses an edge (called action), and the play moves along that edge to
the next state. However, as the game is stochastic, an action can have multiple successor
states, and the successor is then sampled according to a probability distribution associated
with the action. In this way, a play moves through the game graph, depending on the
strategies of the players, i.e. on their choices of which action to pick. Plays are infinitely
long, so eventually, the play ends up in some cycle of the graph.

Additionally to the system of the stochastic game, we consider an objective, which
encodes the specification that we want to check. For example, in the reachability objective
player Maximizer wants to maximize the chances of reaching a given set of goal sets,
while player Minimizer has the opposite objective of avoiding the goal set. We are always
interested in two things: (i) the optimal strategies for both players as well as (ii) the
resulting probability to satisfy the objective under these optimal strategies.

2.1 Stochastic games

A probability distribution on a finite set X is a mapping δ : X → [0, 1] such that∑
x∈X δ(x) = 1, i.e. it assigns a probability between 0 and 1 to every element of X such

that the overall sum of probabilities is equal to 1. The set of all probability distribution
on X is denoted by D(X).

We now define discrete-time turn-based stochastic games as in e.g. [Con92].

Definition 1 (Stochastic Game (SG)). A (turn-based) stochastic game (SG) is a tuple
G := (S, S�, S©,A,Av, δ), where

• S is a finite, non-empty set of states, partitioned into the the states of Maximizer
S� and Minimizer S©. Partitioned means that S� ⊆ S, S© ⊆ S, S� ∪ S© = S and
S� ∩ S© = ∅.

• A is a finite, non-empty set of actions.

15

2 Preliminaries

p q
1

0

a

b

c

1/3

1/3
1/3

e

d

Figure 2.1: An example of an SG with S = {p, q, 1, 0}, S� = {q, 1}, S© = {p, 0} and the set
of actions A = {a, b, c, d, e}; Av(p) = {a} with δ(p, a)(q) = 1; Av(q) = {b, c} with
δ(q, b)(p) = 1 and δ(q, c)(q) = δ(q, c)(1) = δ(q, c)(0) = 1

3 . For actions with only
one successor, we do not depict the transition probability 1. Taken from [EKKW22,
Figure 1].

• Av : S → 2A is a total function assigning a non-empty set of available actions to
every state.

• δ : S×A→ D(S) is the transition function. Given a state and an available action, it
returns a probability distribution over successor states.

In Figure 2.1, we give an example of a stochastic game from [EKKW22], which we use
as running example for several chapters of the thesis. To complement our definition, we
mention useful standard restrictions and notations.

• In contrast to the notation in e.g. [Con92], we do not consider stochastic states,
but a stochastic transition function as in e.g. [EKKW22]. Both formalisations are
equivalent. We prefer the stochastic transition function because it is closer to the
standard notation for Markov decision processes, see e.g. [Put94].

• Given a state set T ⊆ S, we write T� := T ∩ S� and T© := T ∩ S© to denote all
Maximizer respectively Minimizer states in T .

• We assume that SGs are non-blocking, i.e. for all s ∈ S it holds that Av(s) 6= ∅. This
is reasonable, since we study infinite-horizon behaviour, and if there was no available
action in a state, the play could not move on. It is not restrictive because if we want
to have a state s where the play is stuck, we can model this behaviour by having a
single available action that surely loops back into s.

• The transition function is a partial function that is only defined for tuples (s, a) of a
state s ∈ S and an available action a ∈ Av(s).

• Instead of δ(s, a)(s′) we write δ(s, a, s′), slightly abusing notation when accessing a
probability distribution.

• We write Post(s, a) := {s′ | δ(s, a, s′) > 0} to denote all successors of a state-action
pair.

An SG contains two players, i.e. two kinds of nondeterminism, as well as stochastic-
ity. Thus, SGs are also called 21

2 -player games, where the half player corresponds to
the stochasticity. Consequently, SGs generalize games with 1

2 , 1, 11
2 and 2 players.

For deterministic games with 1 or 2 players [CHVB18, Chapter 27], we have that for all
s, s′ ∈ S, a ∈ Av(s) : δ(s, a, s′) ∈ {0, 1}. In Markov chains (12 -player games, see e.g. [Nor98])

16

2.2 Semantics: Paths and strategies

we have that |Av(s)| = 1 for all states s of both players,1 and in Markov decision processes
(MDP, 11/2-player games, see e.g.[How60, Put94]) |Av(s)| = 1 holds for all states of at
least one player2. For an excellent overview of these models and how to solve them when
considering different objectives, we refer the interested reader to [CH08]. In this thesis, we
often talk about Markov chains or Markov decision processes, as these are well-researched
models and it is useful to compare to them and transfer ideas.

2.2 Semantics: Paths and strategies

The semantics of an SG is given in the standard way by means of paths and strategies. In
the intuitive description, we said that a play moves through the graph depending on the
choices of the players. Such a play is called path and the choices of the players are defined
by their strategies. Given strategies of both players, we can compute the probability of a
path and thus argue about the events we are interested in. For example, the probability
of reaching a goal state t is given by the cumulative probability of all paths that contain
the state t.

Towards a more formal definition, we first define the following notation: for a set X
we use X∗ and Xω to denote all finite respectively infinite sequences consisting of elements
of X. Then, an infinite path ρ is an infinite sequence ρ = s0a0s1a1 · · · ∈ (S × A)ω, such
that for every i ∈ N, ai ∈ Av(si) and si+1 ∈ Post(si, ai). We denote the set of all infinite
paths by Paths. Finite paths are defined analogously as elements of (S× A)∗ × S.

A memoryless pure strategy is a function σ : S→ A mapping every state to an available
action.3 These kinds of strategies are sufficient for the reachability objective [Con92] and
thus of most importance to this work. A memoryless randomized strategy is a function
σ : S → D(A), which can randomize over multiple actions instead of mapping every state
to a single one. For completeness, we also mention history-dependent strategies, also called
strategies with memory. They not only depend on the current state but can access the
whole history of the finite path that was played so far. They are relevant in Section 4.2.
However, we can omit the formal definition because we avoid a full technical treatment in
the thesis in order to focus on the general implications of our results. Finally, we mention
that strategies can also be called controller, policy or scheduler.

Throughout the thesis, we always use σ : S� → A to denote Maximizer’s and τ : S© → A
to denote Minimizer’s strategies. A pair of memoryless strategies (σ, τ) together with an
SG G induces a Markov chain Gσ,τ ; and on every Markov chain, there exists a unique
probability measure P on measurable sets of paths [BK08, Chapter 10].

We now explain this standard argument in a bit more detail. Intuitively, given an SG
and a pair of strategies, every state always plays the single action that is recommended
by the strategy. In the case of randomized strategies, it plays a fixed distribution over
the actions. More formally, we now show how to construct a Markov chain as in [BK08,
Definition 10.1] from an SG G and a pair of memoryless strategies (σ, τ). The construction

1When a state has exactly one action, it is irrelevant which player owns the state and we can omit the
information about the partitioning of the state-space.

2Equivalently, we can require that all states belong to the same player, i.e. either S� = ∅ or S© = ∅.
3This means we require that σ(s) ∈ Av(s) for all s ∈ S

17

2 Preliminaries

works on randomized strategies and hence also applies to the special case of pure ones.
The Markov chain has the same state-space as G. Note that [BK08, Definition 10.1] even
allows a countably infinite set, but we only need a finite set. The new transition function
δ′ : S → D(S) does not depend on actions any more. For a Maximizer state s ∈ S�, it
is given as δ′(s, s′) =

∑
a∈Av(s) δ(s, σ(a), s′), and dually with σ replaced by τ for states

of Minimizer. The other components of [BK08, Definition 10.1], the initial distribution
and the labelling function, are related to objectives. The labelling function in fact is not
relevant for specifying the probability measure. The initial distribution defines where the
considered paths start. We use an additional parameter s ∈ S, i.e. we start in the given s
with a probability of 1. In the end, we get Pσ,τs,G, the probability measure for the SG G on
infinite paths starting in s under the strategies (σ, τ). For a description of how to obtain a
probability measure on this Markov chain, we refer to the extensive description in [BK08,
Section 10.1], in particular the Excursus on Probability Spaces and the Definitions 10.9
and 10.10.

When considering history-dependent strategies, the construction differs. The state-space
of the Markov chain is not S anymore, but instead the set of all infinite paths Paths. Note
that then the Markov chain is countably infinite. As these strategies are not relevant for
the content of this thesis, we refrain from giving the details and refer the interested reader
to [BK08, Section 10.6], in particular Definitions 10.92 and the following descriptions.

2.3 Objectives

Now that we have defined the model of stochastic game and the probability space over the
paths occurring under strategies of both players, we can talk about the objectives of the
players. Objectives formalise the goals of both players by assigning a value to each path.

We are interested both in quantitatively and strategically solving SGs, as differentiated
in [AM09]. In other words, we want to compute the value of the game, which is the optimal
expected value that the players can ensure; as well as the optimal strategies that the players
use to obtain this value. Sometimes, we allow for small deviations of ε, i.e. we do require
the optimal value, but it suffices to have something that differs by at most ε. In that case,
we speak of ε-approximation of the value and ε-optimal strategies.

Note that we can derive the value from optimal strategies and vice versa: when we have
(ε-)optimal strategies, we can obtain the value by applying the strategies and solving the
induced Markov chain — which boils down to simple equation solving. Given the values of
a reachability objective for all states, we can compute optimal strategies by picking locally
optimal actions and some additional graph analysis, see [AM09, Theorem 2]. Also, see
our work [EKKW22, Appendix A] for an extensive description and proof in the case of
obtaining ε-optimal strategies from an ε-approximation of the value.

2.3.1 Reachability

Reachability is the most important objective for this thesis and the only one we formally
define. As mentioned before, it is very fundamental because many other objectives depend
on reachability or can be reduced to reachability, see Section 1.3.

18

2.3 Objectives

A reachability objective for an SG G is specified by an initial state s0 ∈ S and a set of
goal states F ⊆ S (also known as targets or f inal states). Maximizer tries to maximize the
probability to reach a goal state from the initial state, while Minimizer has the opposite
objective. Formally, we denote the (measurable) set of all infinite paths that eventually
reach a goal state as ♦F := {ρ ∈ Paths | ρ = s0a0s1a1 · · · ∈ (S× A)ω ∧ ∃i ∈ N.si ∈ F}.

Then, for every state s ∈ S, we define the value in s as

VG(s) := sup
σ

inf
τ
Pσ,τs,G(♦F) = inf

τ
sup
σ

Pσ,τs,G(♦F).

The value of a state s is the accumulated probability of all paths starting in s that reach
a goal state under the optimal strategies of both players. Another way of looking at it is
that the value of a path is 1 if the path contains a goal state and 0 otherwise. Then the
value of a state s is the expectation of a random variable over paths, where this random
variable is distributed according to the probability distribution Pσ,τs,G. The value of the game
is VG(s0), where s0 is the given initial state. We often omit the G in the subscript when
it is clear from the context.

Strategies are called optimal if they are in the supremum or infimum; equivalently,
they obtain at least the value against all strategies of the opponent. We know that there
always exist optimal memoryless pure strategies for both players in SGs with a reachability
objective [Con92, Lemma 4 and 5]. For 0 ≤ ε ≤ 1, we call a strategy σ of Maximizer ε-
optimal if for all states s ∈ S we have infτ Pσ,τs,G(♦F) ∈ [V(s)± ε], and dually for Minimizer
with infτ replaced by supσ.

We mention several interesting properties of SGs with a reachability objective.

• They are determined, i.e. it does not matter which player fixes a strategy first [Con92,
Lemma 6]. This is why we can switch the order of supremum and infimum in the
definition of the value in a state.

• They are zero-sum, i.e. one player cannot improve their outcome without worsening
the outcome for the other player.

• They are in UP ∩ co-UP [CF11, Theorem 4], see also the discussion in Section 1.3.

• Instead of considering a single initial state, we can use initial distributions. This
is equivalent to adding a new initial state that transitions according to the initial
distribution. Dually, one can consider a single goal state instead of a set, by adding
a sure transition from every state in F to the new goal state. We choose a single
initial, but multiple target states, as we deem it most natural when modelling a real
problem: we know where we start but have multiple possible goal states.

• We can assume that all goal states are absorbing, i.e. they only have one action that
surely self-loops. This is because the value of a path only depends on whether the
state was reached once and it is irrelevant how the play continues afterwards.

19

2 Preliminaries

2.3.2 Other objectives

We now mention several other objectives which are relevant in certain parts of the thesis.
Since the discussion of the results will be at a rather high level, we do not require a formal
definition.

• Safety is the dual of reachability. The goal of Maximizer is to maximize the chance
of remaining in a safe set of states. This is equivalent to minimizing the chance
of reaching the complement of the safe states, the states to be avoided. Hence
maximizing safety is the same as minimizing reachability. Chapter 6 deals (among
other things) with strategies arising from safety objectives.

• Expected total reward, cf. [CFK+13a, Section 3.2 and 4.3], uses a reward structure
to assign a rational number to every state. Then the objective of Maximizer is to
maximize the expected sum of all rewards. There are several variants of this objective,
e.g. indicating how to deal with cycles that lead to infinite rewards. We use total
reward objectives in Chapter 7.

• ω-regular objectives, cf. [CH12], assign labels from a finite set of atomic propositions
to every state. Thus, every path corresponds to an infinite word over the set of
atomic propositions. An ω-regular objective then specifies an ω-regular language L
— usually in the form of an automaton or a formula in linear temporal logic (LTL).
The value of a path is 1 if the associated infinite word is in L and 0 otherwise. This
very rich class of objectives contains objectives classes such as reachability, safety, and
liveness, as well as objectives given by ω-regular automata, e.g. Büchi, Rabin, Streett,
Müller, parity. The contribution in Section 4.2 applies to ω-regular objectives.

2.4 Strongly connected components and end components

We define two graph theoretic concepts that are relevant when analysing and solving SGs:
strongly connected components and end components. Intuitively, they capture the notion
of state sets in which a play can cycle. In strongly connected components, every state can
reach every other state with positive probability; in end components, states can reach each
other almost-surely, i.e. with a probability of 1.

Definition 2 (Strongly connected component (SCC)). A non-empty set T ⊆ S of states
is strongly connected if for every pair s, s′ ∈ S there is a path (of non-zero length) from s
to s′. Such a set T is a strongly connected component (SCC) if it is maximal w.r.t. set
inclusion, i.e. there exists no strongly connected T ′ with T (T ′.

SCCs of an SG can be computed in linear time using Tarjan’s algorithm [Tar72]. More-
over, the SCCs form a directed acyclic graph, so we have a topological ordering of these
components. This is useful because then we know that no SCC can reach any state in
an SCC that comes before it in the topological ordering. This insight is useful for several
algorithm, see [DMWG11, KM17] and Section 3.4.2.

However, SCCs only consider the underlying graph, since they depend on the existence
of some path. Hence, they are agnostic of probabilities and the actions of the players. The

20

2.4 Strongly connected components and end components

concept of end component (EC, [DA98]) takes these into account. Intuitively, an SCC is
an EC if, under some pair of strategies, a play can end there, i.e. surely remain in the EC
infinitely long.

Definition 3 (End component (EC)). A non-empty set T ⊆ S of states is an end com-
ponent (EC) if there is a non-empty set B ⊆ ⋃s∈T Av(s) of actions such that (i) for each
s ∈ T, a ∈ B∩Av(s) we have Post(s, a) ⊆ T and (ii) for each s, s′ ∈ T there is a finite path
ρ = sa0s1a1 . . . ans

′ ∈ (T × B)∗ × T , i.e. the path goes from s to s′ while staying inside T
and only using actions in B.

A maximal end component (MEC) is an EC T that is inclusion maximal, i.e. there is no
EC T ′ such that T ⊆ T ′. A MEC decomposition of the SG, i.e. a directed acyclic graph of
MECs, can be computed in polynomial time, see [CY95] for basic or [CH14] for improved
algorithms. Note that these works refer to MDPs. However, MEC computation for SGs
assumes that both players cooperate and thus amounts to computing MECs in the MDP
where all states belong to the same player. This already hints at a problem of MECs in
SGs that we address in Chapter 3: the concept does not take into account that the players
are adversarial and one player might actually rather leave an EC, preventing the path from
“ending” there.

An SCC or EC T is called bottom, if for all states s ∈ T , a ∈ Av(s) we have Post(s, a) ⊆ T ,
i.e. no transition leaves the SCC/EC. Bottom SCCs (BSCCs) are relevant in Section 4.1.
Under any pair of strategies (σ, τ), the path in an SG G will end up in a MEC [DA98,
Theorem 3.2] and hence in a BSCC of the induced Markov chain Gσ,τ .

Example 1 (ECs and SCCs). Consider the SG in Figure 2.1. There are three ECs: {p, q},
{1} and {0}. All of these are also MECs and SCCs and the latter two are bottom. Note
that {p, q} is an EC because there exists a strategy staying in it, namely picking b in q.
The fact that there are strategies exiting the state set only makes this EC non-bottom.

If there was some probability to go from 0 back to p, then {p, q, 0} would be an SCC, since
every state can reach every other state. It would not be an EC because there is a chance to
go to 1. Hence, no pair of strategies remains inside the state set surely and allows to reach
every state in it. 4

If an SG contains no ECs except for designated absorbing states (e.g. a goal and a sink
state that both self-loop with a probability of 1), it is called stopping. The intuition for this
term is that under all strategies, the absorbing states are reached with a probability of 1
and the game “stops” (i.e. for infinitely many steps remains in the same designated goal or
sink state). This restricted class of SGs has received quite some attention for two reasons:
firstly, the absence of ECs makes algorithms and proofs easier. Secondly, there exists a
polynomial transformation from an arbitrary SG to a stopping one with almost the same
value [Con93]. However, this transformation is impractical, as we detail in Section 3.3.2.

21

3 Guaranteed algorithms for solving simple
stochastic games

Motivation In this chapter, we deal with the problem of simple stochastic games, i.e.
turn-based stochastic games (SGs) with a reachability objective. This serves as the basis
of this thesis, as the other chapters build on the algorithms described in this chapter.
Moreover, as discussed in Section 1.3, simple SGs are fundamental and practically useful.
We address the challenges described in Section 1.2 as follows: all algorithms described
in this chapter are reliable in the sense that they give guarantees on their result and we
investigate and improve their scalability.

Problem statement Given an SG G, an initial state s0 and a set of goal states F we want
to compute (an ε-approximation of) the value of the game VG(s0). Most of our algorithms
compute the value function VG for all states, not just the initial state. Moreover, we are
interested in (ε-)optimal strategies achieving these values. Recall that, given (ε-)optimal
strategies we can infer (an ε-approximation of) the value function and vice versa, see
Section 2.3.

Note that it is possible by simple graph algorithms (e.g. a backwards search from the
goal states) to find the states with no possible path to the target. We define the set of sink
states, i.e. of all states that cannot reach any state in F, as Z := {z ∈ S | ¬∃ρ ∈ ♦F.ρ0 = z},
where ρ0 denotes the starting state of a path. All states in Z trivially have value zero,
and hence every strategy is optimal. Similarly, all states in F have value one. Hence, we
only need to compute the values and strategies for states in the set of “unknown” states
S? := S \ (F ∪ Z).

Chapter outline We describe the three known classes of algorithms that are used to
solve simple SGs, namely value iteration, strategy iteration and quadratic programming.
For every class, we have a section that first describes the basic form, then our improve-
ments and lastly summarizes related developments. The section on value iteration is based
on [EKKW22] (Appendix A) and the sections on strategy iteration and quadratic pro-
gramming on [KRSW22] (Appendix B). Afterwards, we outline the experimental results of
both papers, i.e. we practically compare the algorithms. Finally, we summarize the chap-
ter, theoretically compare the algorithms and discuss the implications of our experimental
results.

23

3 Guaranteed algorithms for solving simple stochastic games

3.1 Value iteration (VI)

3.1.1 State of the art

Value iteration (VI) is a well-known algorithm in many settings, in particular for proba-
bilistic model checking. It leverages the fact that the value V is the least fixpoint1 of the
so-called Bellman equations, see e.g. [Con93].

V(s) :=

1 if s ∈ F

maxa∈Av(s) V(s, a) if s ∈ S�
mina∈Av(s) V(s, a) if s ∈ S©

(3.1)

where

V(s, a) :=
∑

s′∈S
δ(s, a, s′) · V(s′) (3.2)

VI computes a sequence of under-approximations of the value Li : S→ [0, 1]. The initial
lower bound L0 is set to be certainly smaller than the value, i.e. L0(s) = 0 for all s ∈ S \ F,
and only for the goal states f ∈ F we initialize L0(f) = 1. Then we repeatedly apply
Bellman updates according to Equations (3.3) and (3.4)

Ln(s) :=

{
maxa∈Av(s) Ln(s, a) if s ∈ S�
mina∈Av(s) Ln(s, a) if s ∈ S©

(3.3)

Ln(s, a) :=
∑

s′∈S
δ(s, a, s′) · Ln−1(s′) (3.4)

Example 2 (Basics of VI). For the convenience of the reader, we show our running ex-
ample of an SG from Figure 2.1 again in Figure 3.1a. We illustrate VI from below in the
first two columns of the table in Figure 3.1b. The other columns are only relevant for later
examples.

For the states in F = {1} and Z = {0}, the value trivially is 1 respectively 0, and hence
we do not include them in the table. The first row shows the initial value for L0. State p
only has a single action that surely goes to q. Thus, we always have Li(p) = Li−1(q). In a
sense, the information from q is always propagated to p with a delay of one iteration.

We now explain the Bellman update for state q.

L1(q) = max
a∈Av(s)

L0(s, a) =
∑

s′∈S
δ(q, c, s′) · L0(s′) = 1/3 + 0 + 0 = 1/3

Since q is a Maximizer state, it picks the action maximizing the probability to reach the
goal; this is action c because using b only promises an estimate of 0 by going to p surely.
In contrast, for action c, the resulting value is δ(q, c, 1) · L0(1) = 1/3. Note that the terms
for both q and 0 do not contribute to the estimate because L0(q) = L0(0) = 0.

1Note that all sink states in Z have a value of 0. While there are infinitely many fixpoints of the Bellman
equations for these states, the least one always assigns 0 to all z ∈ Z.

24

3.1 Value iteration (VI)

p q
1

0

a

b

c

1/3

1/3
1/3

e

d

(a)

i Li(p) Li(q) Ui(p) Ui(q) U∗i (q, c)

0 0 0 1 1 -
1 0 1⁄3 1 1 2⁄3
2 1⁄3 4⁄9 1 1 5⁄9
3 4⁄9 13⁄27 1 1 14⁄27

(b)

Figure 3.1: (a): Our running example of an SG. (b): An illustration of the first few iterations of
VI on the running example.

However, in the next iteration, we utilize the knowledge that L1(q) = 1/3 and hence the
self loop contributes δ(q, c, q) · L1(q) = 1/9. Thus the resulting estimate is L2(q) = 4/9.
Note that using action c still promises a higher value than using action b. Repeatedly
applying Bellman updates, we will get estimates closer and closer to the correct value of
V(p) = V(q) = 1/2.

Note that in the i-th iteration, VI computes the probability to reach the goal in i steps,
see e.g. [BK08, Remark 10.104]. But for any finite number of iterations i, there is a
path which always uses the self-loop in state q. This path has positive probability (namely
(1/3)i−1, assuming we start in state p). Thus, VI cannot converge to the value in finite
time because after i steps there still is a positive chance to remain in {p, q}. In the limit,
the probability of this path that always loops is 0, and thus VI converges. 4

We formalise the intuition gained from the example as follows: the sequence of
approximations converges to the value in the limit, i.e. limi→∞ Li = V [CH08]. However,
convergence may happen only in the limit and not in finite time. Example 2 shows this for
a very small SG, and the same occurs for Markov decision processes (MDPs, i.e. SGs with
only one player) or even Markov chains (where every state only has a single action).2 The
only stopping criterion of VI for SGs known previous to our work was to run VI for a specific
number of steps, which is exponential in the size of the SG; afterwards, one could round
the computed approximation to the value [CH08]. This approach is impractical because it
always needs exponential time. Hence, practically the algorithm was stopped when it was
observed to make little progress in an iteration, but this could lead to arbitrarily wrong
results [HM18]. This is why we introduce a more practical stopping criterion.

3.1.2 Contribution: Bounded value iteration with a guaranteed stopping
criterion

To estimate how close the current under-approximation Li and the value V are, we introduce
an additional sequence of over-approximations Ui : S→ [0, 1]. Then we know that the value
of every state s is between Li(s) and Ui(s), and thus we obtain an ε-approximation of V(s)
as soon as Ui(s)− Li(s) < ε.

2Note that the SG in Figure 3.1a is equivalent to an MDP where all states belong to Maximizer because
all Minimizer states have only a single action. Moreover, removing action b turns the example into a
Markov chain where the problem of non-convergence in finite time persists.

25

3 Guaranteed algorithms for solving simple stochastic games

The problem of non-convergence from above

Naively, we initialize our over-approximation to U0(s) = 1 for all states and then apply
Bellman updates as for the under-approximation, using Equations (3.3) and (3.4) (replacing
L with U). We can also3 set U0(z) = 0 for all easily pre-computable sink states z ∈ Z,
dually to setting the lower bound of goal states to 1.

For this algorithm to be sound, we require correctness and convergence. Correctness
means that Li(s) ≤ V(s) ≤ Ui(s) for all iterations i and states s. This is easy to prove, e.g.
by an induction or by observing that Bellman updates cannot reduce an over-approximation
below below the least fixpoint of the Bellman equations, and that hence Ui(s) ≥ V(s) for
all iterations and states. Convergence means that limi→∞ Ui = V. This is quite difficult
to obtain because the VI algorithm can get stuck at greater fixpoints. We now illustrate
this with an example.

Example 3 (Non-convergence of VI from above). Consider again the SG and table in
Figure 3.1. The right side of the table shows the behaviour of the over-approximation U.
Even though we used the smarter initialization and set U0(0) = 0, the upper bound of q
and p does not decrease, but is stuck at 1. This is because U0(q, b) = 1 and U0(q, c) = 2/3.
The preferred action in state q is b since it promises a higher value. Hence the over-
approximation does not change, i.e. U1(q) = U0(q). Bellman updates do not progress
towards the value (the least fixpoint of the Bellman equations) because U0 is a greater
fixpoint of the Bellman equations.

In other words: looking at the current upper bound, Maximizer is under the impression
that going back to p and staying in the end component (EC) {p, q} yields a higher value.
However, cycling in the EC forever by always picking b actually reduces the probability to
reach the target to 0. So a convergent VI algorithm has to perform an additional step to
inform states in an EC that they should not depend on each other, but on an action that
exits the EC. In the example, we want that U1(q) = U0(q, c) = 2/3.

If we continued to update in this fashion, as exemplified in the column U∗i of the table in
Figure 3.1b, then we would get a sequence converging to the correct value of 1/2. We also
see that we quickly get a precise estimate of the value. With only the lower bound, after
three iterations we can only conclude that the value of q is greater than 13/27. Using both
the lower and upper bound, we know that it is in the interval [13/27, 14/27]. For ε = 0.1,
we could terminate the algorithm now, as the difference between lower and upper bound is
smaller than ε. 4

The problem of greater fixpoints hindering the convergence of the over-approximation
occurs only in ECs. Moreover, it only happens in certain kinds of ECs. To define these, we
introduce the notion of an exiting state-action pair. Let T ⊆ S be a set of states. Then we
say (s, a) exits T (or (s, a) is an exit of T) if s ∈ T, a ∈ Av(s) and Post(s, a) * T . Depend-
ing on whether s ∈ T� or s ∈ T©, we call (s, a) a Maximizer- respectively Minimizer-exit.
Additionally, we define the best exits of the players as follows (from [EKKW22, Definition
3]). Note that the definition defines the best exit according to a function f . This is because

3We highlight that this pre-computation is not necessary for Algorithm 1 to converge because the operation
of deflating that we will add includes this pre-computation.

26

3.1 Value iteration (VI)

we are interested both in the true best exits according to V as well as those exits that seem
best according to the current estimate U.

Definition 4 (Best exit bexit). Given a set of states T ⊆ S and a function f : S → [0, 1],
the best exit according to f from T of Maximizer and Minimizer, respectively, is defined as

bexit�f (T) := max
s∈T�

(s,a) exits T

f(s, a)

bexit©f (T) := min
s∈T©

(s,a) exits T

f(s, a)

with the convention that max∅ = 0 and min∅ = 1, and where f(s, a) is the one step unfolding
of f as in Equation (3.2).

Using these definitions, we can characterize problematic ECs. In the following, we
let T ⊆ S \ F be an EC. If Minimizer’s best exit has a higher value than Maximizer’s best

exit (i.e. bexit©V (T) > bexit�V(T)), then Minimizer’s optimal strategy is to remain in the EC
T and allow Maximizer to use the best Maximizer-exit. However, if instead of V we consider
an over-approximation U > V, then staying in the EC looks more profitable for Maximizer,
as it promises a higher value than that of the best available exit bexit�V(T). Thus VI
from above does not converge in such an EC because Maximizer always chooses staying
actions, inducing a cyclic dependency at a too high value. In other words (see [EKKW22,

Lemma 1]): for every m satisfying bexit©V (T) ≥ m ≥ bexit�V(T)), there exists a fixpoint of
the Bellman equations (Equation (3.1) and (3.2)) which is greater or equal than m for all
states in T and for at least one state in T is equal to m.

Example 4 (Multiple fixpoints). In the SG in Figure 3.1a, Minimizer has no exit from
the EC T = {p, q}, which by convention is equivalent to having an exit with value 1.
Intuitively, upon reaching the EC, Minimizer cannot decrease the value but instead has to
allow Maximizer to use the best Maximizer-exit.

We have bexit�V(T) = V(q, c) = 0.5. Hence, for every 0.5 ≤ m ≤ 1, we can find a fixpoint
of the Bellman equations. In this simple example, it suffices to set U(p) = U(q) = m.
This is a fixpoint because Maximizer prefers staying and getting m to using the exit. In
particular, using U0 and setting the estimate for both states to 1 also is a fixpoint. This is
why VI from above is stuck at a greater fixpoint and cannot converge to the value V. 4

We have identified the key problem: whenever Minimizer’s best exit has a higher value
than Maximizer’s best exit (or Minimizer has no exit at all), the Bellman equations
have multiple fixpoints and thus VI from above does not converge. We call such ECs
bloated [EKKW22, Definition 4], indicating that over-approximations stay blown-up at
too high estimates. Bloated ECs indeed capture the whole problem. We have proven
in [EKKW22, Theorem 1] that in SGs without bloated ECs there is only a single fixpoint
of the Bellman equations, and thus VI from above converges. For the proof, we refer to
the paper attached in Appendix A. Here, we only exemplify an unproblematic EC to give
the intuition that indeed only bloated ECs are a problem.

27

3 Guaranteed algorithms for solving simple stochastic games

Example 5 (Unproblematic ECs). Consider again the SG in Figure 3.1a, but modified so
that the Minimizer state p has an exiting action leading to the sink state.

Independent of the estimate for q, Minimizer’s best strategy is to play this new action
instead of a, yielding a value of 0 in p. Thus, the Maximizer state q realizes that going to p
will yield a value of 0 and always prefers to use action c. The only fixpoint of the Bellman
equations then is V(p) = 0 and V(q) = 0.5, and VI converges to it from above and below.

Note that an analogous argument can be made if the newly added action takes any value
between 0 and 0.5. 4

Finding and deflating problematic end components

Now that we have identified the problem, we need a way to algorithmically solve it.
Intuitively, we want to release the pressure of the too-high approximation by making sure
Maximizer’s states depend on exiting actions. Thus, we introduce the procedure of deflat-
ing : it reduces the estimates of all states in an EC T to the over-approximation of the best
exit bexit�U(T). Note that we replaced the function f in the index with U. This is because
during VI we do not know the value of the exits (since we are just computing the values),
but we only know an over-approximation.

Example 6 (Deflating). Assume that in iteration i, we are deflating the EC in Figure 3.1a.
This means that we set the estimate for both states to bexit�Ui

(T) = Ui(q, c). This way, we
obtain the sequence of upper bounds as indicated in the column U∗i , and hence VI from
above converges. 4

This procedure is sound [EKKW22, Lemma 5] for any state set because no state can
achieve a greater probability of reaching the target than the state in the set with the highest
probability to do so, i.e. the best exit.

Yet, this is not sufficient to ensure convergence. Deflating always decreases to the es-
timate of the best exit from the whole EC. However, Minimizer can possibly restrict the
movement inside the EC and prevent Maximizer from reaching the best exit.

Example 7 (Decomposing ECs to find simple ECs). Consider the EC in Figure 3.2. The
letters α and β on the exiting actions denote the values of the action. Formally, they
represent a transition that reaches a goal state with a probability of α (respectively β) and
a sink state with the remaining probability. We have omitted this for readability.

Depending on the relation between α and β, Minimizer’s optimal strategy changes. If
α < β, then the Minimizer state r will prefer action a. Maximizer state s has to use the
exit e to gain α, as otherwise being stuck in the EC {r, s} would result in never reaching
the goal. State t has to use action f to achieve the highest possible value of β.

However, {r, s, t} is a bloated EC.4 Hence, both Maximizer states will not realize that
they have to leave, but rather choose to use the staying actions in order to keep the too-high
upper bound. Deflating the whole EC will not resolve the problem because then we set the
upper bound of all states to (our current over-approximation of) β. This is still insufficient
for states r and s, which should be deflated to α < β. We have to deflate only the EC {r, s}.
4Unless α = β = 1. In this corner case, the EC is not bloated, since Minimizer’s best exit is equal to the

value.

28

3.1 Value iteration (VI)

r st αβ

a

bc

d
ef

Figure 3.2: Example of an EC where not all states have the same value. α and β denote the value
of the exiting actions. Depending on their relation, different subsets of {r, s, t} form a
simple EC. Based on [EKKW22, Figure 3].

Dually, if α > β, Minimizer will prefer action c and we have V(r) = V(t) = β < α = V(s).
Hence, in this case we have to deflate the EC {r, t}. 4

We emphasize that this simple example shows the fundamental difficulties that we have
when dealing with SGs: decomposing into maximal end components (MECs) is not suffi-
cient because different states in a MEC can have different values. Moreover, the more-fine
grained decomposition that we need for the computation depends on the values of the
states, which are what we want to compute. This dependency prevents us from pre-
computing a decomposition of the SG as previous work does for MDPs [BCC+14, HM18].

As it is insufficient to deflate the whole EC, we have to find the correct subset to deflate.
This subset depends on the strategy of Minimizer because Minimizer restricts which exit
Maximizer can reach. In particular, Minimizer can prevent Maximizer from reaching the
best exit of the whole EC.

Intuitively, we have to find the attractors of Maximizer-exits, i.e. those states that can
reach the exit even if Minimizer plays optimally. All states in such an attractor have the
same value, namely that of the best exit they can reach. We capture this notion with the
following definition (from [EKKW22, Definition 5]):

Definition 5 (Simple end component (SEC)). An EC T is called simple end component
(SEC) if for all s ∈ T we have V(s) = bexit�V(T).

Equivalently, an EC is simple if it is an EC in the SG with all suboptimal Minimizer
actions removed [EKKW22, Lemma 4]. Intuitively, this second definition captures the idea
that under an optimal strategy, the best thing Minimizer can do is to allow Maximizer to
choose the best exit from the SEC; Minimizer has already restricted the movement of Max-
imizer as much as possible. Moreover, this gives us a way to compute SECs [EKKW22,
Algorithm 2]: we guess Minimizer’s suboptimal actions according to the current under-
approximation L. Since L converges to the true value V in the limit, eventually we
guess correctly and find the true SECs. Deflating these infinitely often achieves conver-
gence [EKKW22, Theorem 2].

The algorithm

We show the pseudocode of convergent VI from above and below, called bounded VI (BVI),
in Algorithm 1. The key theorem of [EKKW22] is the following:

Theorem 1. Algorithm 1 produces monotonic sequences L under- and U over-approximating
V and terminates for every ε > 0.

29

3 Guaranteed algorithms for solving simple stochastic games

Algorithm 1 Bounded value iteration algorithm from [EKKW22]

Require: SG G, precision ε
Ensure: functions L,U : S → [0, 1] such that for all states s ∈ S, U(s) − L(s) < ε and

L(s) ≤ VG(s) ≤ U(s)

1: for s ∈ S do . Initialization
2: L(s) = 0 . Lower bound
3: U(s) = 1 . Upper bound
4: end for
5: for s ∈ F do L(s) = 1 . Value of targets is determined a priori

6: repeat
7: L,U get updated according to Eqs. (3.3) and (3.4) . Bellman updates

8: for every SEC candidate T do
9: for s ∈ T do

10: U(s)← bexit�U(T) . Deflate, i.e. decrease U to best exit
11: end for
12: end for
13: until U(s)− L(s) < ε for all s ∈ S . Guaranteed error bound
14: return (L,U)

For the formal proof, we refer to the proof of Theorem 2 in [EKKW22], which relies on
several quite technical lemmata. Here, we summarize the key ideas of the algorithm
and give intuitive reasons for its correctness.

In Lines 2, 5 and 7, the algorithm performs classical VI from below, i.e. it initializes the
lower bound and then performs Bellman updates. However, as Example 2 showed, this
converges only in the limit. To get a practical stopping criterion, we complement VI from
below by introducing a second sequence of over-approximations. It is initialized in Line 3
and updated by Bellman updates in Line 7. If this sequence converged to the value, it
would allow us to terminate when we reach ε-precision, see Line 13.

Using only Bellman updates, the over-approximation need not converge, see Examples 3
and 4. The problem are bloated ECs, or more specifically the SECs (Definition 5) inside
the bloated ECs. We want to find these SECs and deflate them, removing the cyclic de-
pendencies by making the estimates depend on exiting actions. However, finding the SECs
is difficult, as they depend on the value. Thus, we cannot pre-compute them, but instead,
we guess SEC-candidates based on the increasingly precise under-approximation (Line 8,
using [EKKW22, Algorithm 2]). Then we deflate the SEC-candidates, see Example 6
and [EKKW22, Algorithm 3 and 4].

This is correct, as deflating is sound even for wrong SEC-candidates (see [EKKW22,
Lemma 5]). It converges since we eventually guess correctly and then deflate the true SECs.
Note that it still might be necessary to deflate infinitely often and the over-approximation
converges only in the limit, as in Example 6.

30

3.1 Value iteration (VI)

Types of end components

Before concluding this section, we list important types of ECs, pointing out several special
cases. Let T be an EC.

• Unproblematic ECs (see Example 5): these ECs are not bloated, i.e. bexit©V (T) ≤
bexit�V(T)). If all ECs are unproblematic, Bellman updates suffice to get a convergent
sequence of over-approximations [EKKW22, Theorem 1].

• Bloated ECs (see [EKKW22, Definition 4]): in these ECs we have bexit©V (T) >
bexit�V(T)). They prevent the convergence of VI from above, and we deal with them
via deflating. Note that a bloated EC can contain parts that are unproblematic.

• Simple ECs (see Definition 5): these ECs are the core of the problem. Every bloated
EC contains a SEC, and every5 SEC is bloated [EKKW22, Lemma 3]. We have
provided two equivalent definitions: all states in SECs have the same value, and
SECs are ECs under Minimizer’s optimal strategies.

• ECs with no Maximizer-exit: these ECs have value 0, as Maximizer cannot force the
play to exit the EC, and thus it can never reach the target (unless Minimizer plays
suboptimally). Since we use the convention that max∅ = 0, deflating such an EC
correctly sets the over-approximation to 0. Note that this is why we do not have
to take special care of sink states Z when initializing the upper bound (as already
highlighted in Footnote 3): either a sink state is part of an EC with no Maximizer
exit and its over-approximation is deflated correctly, or it can only reach such ECs
with no Maximizer exit, and Bellman updates will decrease the over-approximation
to 0 within the first |S| iterations.

• ECs with no Minimizer-exit: unlike the previous case, these ECs can be highly non-
trivial. Both the EC in Figure 3.1a and in Figure 3.2 have no Minimizer exit, but
still need to be deflated. While in Figure 3.1a the whole EC is a SEC, Figure 3.2
shows that this need not be the case in general.

• ECs where all states belong to a single-player: such an EC is always simple. If all
states belong to Minimizer, we have no Maximizer-exit and the value trivially is 0.
If all states belong to Maximizer, we have no Minimizer-exit and need to deflate.

Note that all ECs in MDPs belong to this category and thus are simple. This is why
minimizing reachability in MDPs works by Bellman updates, while for maximizing
reachability one needs more complex concepts [BCC+14, HM18]. The idea of these
papers is to collapse the ECs, replacing them with a single new state that can choose
between all exits of the EC. This corresponds to our intuition that in a SEC, Maxi-
mizer can choose to use any exit and will prefer the best one. Note that this solution
of collapsing is in principle applicable to SGs: collapsing SECs also yields a correct
algorithm, see [EKKW22, Remark 1]. However, to compute SECs we need to know
the value, which is what we want to compute in the first place. Hence, our algorithm
is not based on collapsing because if we guess a SEC wrongly and then collapse it, we
would get a wrong result. Thus, we apply the more conservative deflating instead.

5Except for the corner case where bexit©V (T) = bexit�V (T). Such a SEC is not bloated.

31

3 Guaranteed algorithms for solving simple stochastic games

3.1.3 Contribution: Simulation-based value iteration

As described in Section 1.2, we have to deal with the challenge of scalability, specifically
the state-space explosion problem [BK08, Section 2.3]. This means that the state-space
of the model grows exponentially in the number of tracked variables and often is so large
that it is difficult or even infeasible to fit into memory. In these cases, it is not possible to
use an algorithm working on the whole state-space at once such as Algorithm 1.

One approach to deal with this builds on the insight that often not all parts of the
state-space are relevant or likely. A state is not relevant if it is only reached under a
suboptimal strategy. Then, computing its exact value is not necessary when we are only
interested in the value of the initial state, see [EKKW22, Example 9]. A state is not likely
if it is only reached with low probability, e.g. if several errors have to occur together at
once. When we are interested in ε-precise results, we can ignore states that are reached
with low probability because they do not significantly affect the value of the initial state.
This idea is investigated in more detail in [KM20], where the authors identify the core of
a model, i.e. the states that are unlikely to be left. This core can be several orders of
magnitude smaller than the whole model.

A way to approximate the relevant and likely part of the state-space is to run simu-
lations of the model. We do this by starting in the initial state and then in every state
si picking an action a ∈ Av(si) and sampling a successor si+1 according to the probabil-
ity distribution δ(si, a). For more details on the simulations, see [EKKW22, Algorithm
5 and Example 6]. Using these simulations, we construct a partial model of the system
and only update this instead of the whole state-space. We focus on the relevant part of
the state-space by using heuristics that pick promising actions, e.g. actions with a high
upper bound. We explore the likely part of the state-space by sampling according to the
transition function.

Even though the partial model is generated based on heuristics and randomness, the
resulting approach gives correctness guarantees and terminates almost-surely [EKKW22,
Theorem 3]. The proof is quite similar to that for the simulation-based variant of VI for
MDP [BCC+14]. The key difference is that ECs are not collapsed anymore, but instead
deflated. This however does not significantly change the argument. For the pseudocode of
the simulation-based algorithm as well as the full proof, we refer to [EKKW22, Section 5].

As a final remark, we highlight that this algorithm combines techniques from machine
learning and formal verification, benefiting from the advantages of both: the heuristics
for selecting the relevant part of the state-space are from machine learning, thus they are
good at quickly identifying the core of the model. However, on their own, they would not
provide guarantees on the result. By complementing the heuristics with a guaranteed com-
putation of under- and over-approximation, we ensure that the result is correct. Moreover,
the computed guaranteed bounds can be used to inform the heuristics and improve their
guesses.

3.1.4 Related work

For a thorough description of VI in many settings and its various properties, we refer the
interested reader to the textbook [Put94] or the survey paper [CH08]. VI for solving SGs

32

3.1 Value iteration (VI)

(and MDPs) with reachability objectives, as well as various other objectives, takes at most
exponentially many iterations [CH08]. There are models where VI actually needs this
exponential number of iterations [BKN+19]. It is the default algorithm in the well-known
probabilistic model checkers PRISM [KNP11] and Storm [DJKV17], as well as the only
one available in PRISM-games [KNPS20].

For a long time, the stopping criterion used in practice checked whether in all states
s the difference between Li(s) and Li−1(s) was small. This naive approach could however
return arbitrarily wrong results [HM18]. In 2014, two independent teams of researchers
developed the idea of collapsing ECs in MDPs in order to eliminate the cyclic dependen-
cies [BCC+14, HM18]. The PhD thesis [Ujm15] discusses an extension to SGs where the
interleaving of players is severely limited, i.e. in every EC, all states must belong to exactly
one player. For more description of collapsing and why it is not sufficient for arbitrary
SGs, see the last paragraph of Section 3.1.2 and [EKKW22, Section 3]. Previous to our
work, there were two stopping criteria for SGs, both of which are however impractical. The
algorithm from [CH08], which we describe at the end of Section 3.1.1, always requires an
exponential number of steps. Alternatively, one can transform the SG into a stopping one
as described in [Con92, Section 3]. Stopping SGs do not contain ECs, hence also no bloated
ECs and thus VI converges from above and below. However, as we discuss in Section 3.3.2,
this transformation is inherently impractical because it introduces probabilities that are
smaller than machine precision.

There exists various heuristics to speed up the convergence of VI. For MDP, recently
optimistic VI [HK20] and sound VI [QK18] have been developed and could be extended to
SGs. Further, for SGs, a combination of VI with retrograde analysis yields the deterministic
algorithm with one of the best currently known upper bounds on runtime [IM12]; it is
exponential only in the number of actions with random outcome,6 i.e. actions a ∈ Av(s)
such that δ(s, a, s′) /∈ {0, 1} for some s, s′ ∈ S. However, this algorithm requires the SG to
only use probabilities 0, 1 or 0.5. We can transform every SG to satisfy this constraint at
the cost of a polynomial blow-up of the state-space, see the discussion in Section 3.3.1.

Another idea for heuristics is to use asynchronous VI. Its key insight is that we do
not have to update all states of the SG in every iteration, but can focus on ones that
are important. There are various ways to do this. Two of these are Gauß-Seidel VI
and topological VI [DMWG11], which we describe in Section 3.4.2. The simulation-based
algorithm we propose in Section 3.1.3 also is an instance of asynchronous VI: we update
states in the order that is suggested by our simulations. Our algorithm is based on the one
for general MDPs [BCC+14], which in turn extends the one for stopping MDPs [MLG05].
We mention that there are further machine learning techniques which have been used for
solving SGs [BT00, LL08, BBS08, WT16, TT16, AY17]. These, however, usually provide
no or weak guarantees. Note that some of the cited papers consider more expressive
specification or slightly different systems.

The bounded VI variant given in Algorithm 1 has been improved in [PTHH20] and
generalized to settings with limited information [AKW19a] (see Section 4.1), multiple ob-
jectives [ACK+20] (see Chapter 5) and to concurrent SGs [EKR19].

6In their formulation of SGs, they use three kinds of states: Maximizer, Minimizer and Random, and then
count the number of random vertices. Since we use a probabilistic transition function instead of the
probabilistic states, we have to adapt the definition.

33

3 Guaranteed algorithms for solving simple stochastic games

3.2 Strategy iteration (SI)

3.2.1 State of the art

Algorithm 2 Strategy iteration algorithm as given in [KRSW22]

Require: SG G
Ensure: Optimal Maximizer strategy σ and function L : S→ [0, 1] with L = VG

1: σ′ ← arbitrary Maximizer attractor strategy . Proper initial strategy
2: repeat
3: σ ← σ′

4: for s ∈ S do
5: L(s)← infτ Pσ,τs (♦F) . Solve MDP for opponent
6: end for
7: for s ∈ S� do
8: if σ(s) ∈ arg maxa∈Av(s) L(s, a) then
9: σ′(s)← σ(s) . Only change σ on strict improvement

10: else
11: σ′(s)← any element of arg maxa∈Av(s) L(s, a)
12: end if
13: end for
14: until σ = σ′

15: return (σ, L)

The approach of strategy iteration (SI), see e.g. [FV97], computes a sequence of improving
strategies, not a sequence of approximations of the value vector as VI does. The pseudocode
for SI is given in Algorithm 2. Starting from an arbitrary memoryless pure strategy of one
player (Line 1, in our pseudocode it is Maximizer), we repeatedly compute the global
best response of the opponent (Line 5) and then locally improve the Maximizer strategy
(Line 11). The resulting sequence of Maximizer strategies is monotonically improving
and converges to an optimal strategy [CdAH13, Theorem 3]. The value function and an
optimal Minimizer strategy are computed in the last iteration as the best response to
the optimal Maximizer strategy (Line 5). Both can be returned, but we only return the
Maximizer strategy and the value function, since the optimal Minimizer strategy is only
implicitly computed and hence not visible in the pseudocode. The algorithm terminates
after at most exponentially many iterations, as there are exponentially many memoryless
pure strategies.

We mention several interesting technicalities.

• In non-stopping SGs (ones containing ECs in S?), the initial Maximizer strategy has
to be proper, i.e. ensure that either a goal or a sink state is reached almost-surely;
it must not stay in some EC, as otherwise, the algorithm might not converge. In
Algorithm 2, we use the construction of the attractor strategy [CdAH13, Section 5.3]
to ensure that our initial guess is a proper strategy (Line 1). It first analyses the
game graph to find the sink states Z. Then, it performs a backwards breadth-first
search, starting from the union of the sets of goal and sink states. A state that is

34

3.2 Strategy iteration (SI)

discovered in the i-th iteration of the search has to choose some action that reaches
a successor state discovered in the (i − 1)-th iteration with positive probability. By
construction, such an action and successor state exists. The resulting strategy is
proper because it has a positive chance of progressing towards the set of goal or sink
states in every step and thus reaches either a goal or sink state almost-surely.

• One might question why one strategy is the global best response while the other is
only locally updated. This is highly relevant, as otherwise the sequence of strategies
can contain cycles and we do not necessarily converge to the optimal one [Con93,
Section 2.2].

• For termination, it is necessary that we only update the strategy if switching strictly
improves the value, as otherwise, we might cycle infinitely between equivalent strate-
gies. This is realized by Lines 8 and 9 which ensure that we leave the strategy
unchanged if it is still optimal.

3.2.2 Contribution: Hyper-parameters and warm start

Solving the opponent-MDP in Line 5 is typically done using linear programming, see
e.g. [FV97, Section 6.3]. However, this is not necessary [KRSW22, Section 4.2]. One can
equivalently solve the MDP using SI (computing a sequence of improving opponent strate-
gies) or even bounded VI. For the latter to be practical, we want to utilize the practical
stopping criterion described in the previous section. Since we only need to know the lo-
cally optimal actions, we can potentially avoid computing the precise values, but instead,
compute until the lower bound of one action is higher than the upper bound of all other
actions. So the solver for the opponent-MDP is a hyper-parameter of SI, and depending
on the structure of the MDP, using other solution algorithms can be advantageous. Note
that using value iteration to solve the opponent MDP is similar in spirit to the notion of
modified policy iteration in [Put94].

Further, the fact that we fix the Maximizer strategy first is arbitrary. It might be
advantageous to rather compute a sequence of improving Minimizer strategies, e.g. if that
player has fewer strategies, i.e. fewer states and actions per state.

As a final idea, the initial strategy affects how fast we are, since if we are closer to the
optimum, we need fewer iterations. We suggest using available prior knowledge to improve
the initial guess; this is called warm start [KRSW22, Section 4.3].

• If we have domain knowledge about the model, for example, the intuition that in case
of a transmission error in a protocol we want to resend a package, we can include
this in our initial strategy.

• We can utilize fast pre-computations, e.g. of the set of sink states Z.

• We can improve the MDP-solving in Line 5 by giving it the knowledge of the outer
algorithm: we anyway save the estimate L of the previous iteration and, since the
strategies of Maximizer get monotonically better, L is certainly a lower bound for the
values in the MDP.

35

3 Guaranteed algorithms for solving simple stochastic games

• Before starting the SI, we can run unguaranteed VI for a fixed number of iterations.
This yields a rough estimate of the value function which we use to inform our choice
of the initial strategy. This is similar in spirit to the idea of optimistic VI [HK20]:
utilize the ability of VI to usually deliver tight lower bounds quickly and then verify
them.

3.2.3 Related work

Historically, SI was first proposed in [HK66] for the class of irreducible concurrent SGs.
It was adapted for turn-based SGs with average reward objectives in [VTRF83]; this al-
gorithm is also described in the textbook [FV97]. Since reachability objectives can be
encoded as average reward objectives, this was the first variant of the algorithm able to
deal with the problem we consider. The formulation explicitly for the setting of simple
SGs was given in [Con93], together with a randomized version.

Regarding complexity, we know that the algorithm can take at most exponentially
many iterations because there are at most exponentially many memoryless pure strategies
and the algorithm is monotonically improving. For the lower bound, we know that the
associated decision problem is PSPACE-complete for both SI with one update per iteration
(called single-switch strategy iteration [FS15]) as well as with all possible updates per
iteration (called all-switches strategy iteration [FS18]). Both proofs build on the seminal
work by Friedman [Fri11], which also shows that exponentially many iterations can be
required in the worst case. Further, even for MDPs this exponential number of iterations
can be necessary [Fea10]. In contrast, if we consider SGs with a constant discount factor,
then SI is in fact strongly polynomial [HMZ13].

We now sketch the development of various variants of SI over the years. We
use Õ to denote asymptotic runtime omitting polynomial terms as was done in [DG11].
Note that our contributions for SI are practical heuristics that do not affect the asymptotic
runtime.

After the randomized variant from [Con93], a first randomized subexponential algorithm
was introduced in [Lud95]. For an SG with n states, its expected number of iterations is
Õ(2

√
n). In [Som05], a variant of SI is given which is based on a geometric interpretation

of node valuations; the paper only provides an exponential upper bound on the number of
iterations.

The influential paper [GH08] gave an algorithm that has good runtime on SGs with
little randomness. Denoting the number of actions with random outcome as r (or equiv-
alently the number of random states, see Footnote 6), the runtime is in Õ(r!). Based on
this, [DG11] gave another subexponential algorithm running in Õ(

√
r!) and [ACS19] com-

bined the ideas from [Lud95] and [GH08] to get expected running time 2O(r). Note that
the algorithm based on value iteration from [IM12] also builds on the ideas of [GH08]. Its
runtime is Õ(2r), but unlike [ACS19], it requires all probabilities to be either 0, 1 or 0.5,
while [ACS19] works with arbitrary random states.

In a different direction, [CdAH13] gave a deterministic SI algorithm for concurrent SGs.
A careful analysis of the algorithm from [CdAH13] in [IM12] showed that it runs in Õ(4r).
The standard SI approach was analysed in detail in [TVK11] and shown to converge in
O(2n/n), improving the trivial exponential bound. The authors also provide a randomized

36

3.3 Quadratic programming (QP)

variant expected to take time in O(20.78n). The SI variant from [dM21] is the first deter-
ministic one to have runtime in Õ(2cn) with c < 1. Recently, [AdMS21] provided a generic
SI method and hence a uniform framework to reason about all the SI variants that exist.
They give general arguments that reprove many of the aforementioned ad-hoc results.

3.3 Quadratic programming (QP)

3.3.1 State of the art

The idea of quadratic programming (QP) is to encode the structure of the SG in the
constraints of an optimization problem. The only global optimum of the objective function
is attained if and only if the variable for every state is set to the value of that state [Con93,
Section 3.1]. The proof, as well as the construction of the QP, rely on the game being in
a certain normal form, which consists of four conditions.

• no-one-act: If |Av(s)| = 1, then s is a target or a sink.

• half-probs: For all s, s′ ∈ S, a ∈ Av(s) : δ(s, a, s′) ∈ {0, 0.5, 1}.

• two-act: For all s ∈ S : |Av(s)| ≤ 2.

• stopping: There are no ECs in G (except for the sink and goal states).

The advantage of two-act and no-one-act is that the objective function of the QP requires
every (non-sink and non-target) state to have exactly 2 actions. The constraint half-probs
occurs because [Con93] used a game formulation with average nodes, which slightly simpli-
fied the proofs. Finally, stopping was necessary because end components introduce multiple
fixpoints to the Bellman equations (see Example 4), and thus the solution of the QP would
not be unique anymore. For every SG, we can construct a polynomially larger one in
normal form, such that the original value can be obtained by solving the SG in normal
form. The transformation to normal form was originally given in [Con92] and we give an
extensive description in [KRSW22, Section 3.3.2].

The QP in Figure 3.3 computes the value of an SG in normal form; it is the same as
in [Con93], but adapted to fit our notation. The constraints encode the structure of the

minimize
∑

s∈S
Av(s)={a,b}

(V(s)− V(s, a))(V(s)− V(s, b))

subject to V(s) ≥ V(s, a) ∀s ∈ S� : |Av(s)| = 2,∀a ∈ Av(s)
V(s) ≤ V(s, a) ∀s ∈ S© : |Av(s)| = 2,∀a ∈ Av(s)
V(s) = 1 ∀s ∈ F
V(s) = 0 ∀s ∈ Z

where V(s, a) =

{
V(s′) for Post(s, a) = {s′}
1/2V(s′) + 1/2V(s′′) for Post(s, a) = {s′, s′′}

}

Figure 3.3: The QP to compute the value of a simple SG in normal form from [Con93], adapted
to our notation. Taken from [KRSW22, Section 3.3.1].

37

3 Guaranteed algorithms for solving simple stochastic games

SG: every Maximizer state has a value higher than its best action, dually every Minimizer
state uses the action with the lowest value, and the value of goal and sink states is fixed.
Note that the definition of V(s, a), in essence, is the Bellman equation (3.2); it is restricted
to the probabilities 0, 1 or 0.5 due to the constraint half-probs. To minimize the objective
function, the summand for every state has to be minimized. Since no summand can be
negative, the optimum of the objective function is 0. It is obtained when for every state s,
its value V(s) is equal to the value of at least one of its actions V(s, a) or V(s, b). Thus, the
program computes the true value function V; see [Con93, Section 3.1] for the full proof.
The program is quadratic because by two-act all states (except goals and sinks) have two
actions and hence the summand for every state is a quadratic term.

3.3.2 Contribution: Avoiding the transformation to normal form

The transformation into normal form blows up the size of the SG and thus the time and
memory consumption of the solution algorithms. Thus, for each constraint, we developed
an alternative, so that in the end we have an optimization problem that works on the
original game. Here, we give a high-level summary of the ideas; see [KRSW22, Section 4.1]
for the full description and technical proofs.

The first two constraints, no-one-act and half-probs, can easily be avoided. For no-one-act,
the transformation into normal form adds a dummy action that is never used. Instead,
one can directly encode in the QP that every state with one action has the value of its
successor. For half-probs, one can allow the QP to use arbitrary probabilities by using the
Bellman equation (3.2) instead of restricting it to only use probabilities 0, 1 or 0.5.

The constraint two-act is indeed necessary to obtain a QP since the objective function
relies on the fact that every state has at most two successors. However, one can use a
higher-order program (HOP) to avoid this transformation. To this end, we replace7 the
quadratic term for every state s with the product Πa∈Av(s)(V(s) − V(s, a)). Hence, the
degree of the terms depends on the number of actions per state. In the experimental
Section 3.4, we evaluate both a QP where we have transformed the SG in order to satisfy
two-act, as well as a HOP on the original SG.

Finally, the constraint stopping is difficult to avoid, but practically the most important
one. To understand the problem, we first summarize the idea to transform an SG into
a polynomially larger stopping SG from [Con92]. In essence, we modify every transition,
so that with a small probability of ε the transition leads to a sink state. Hence, the SG
becomes stopping, since a sink state is reached almost-surely. If ε is chosen sufficiently
small, then the difference between the value of the modified and original SG is so small
that the original value can be obtained by rounding; this works because the value of the
SG is a rational number whose denominator can be bounded by the size of the SG.

The probability ε has to be very small; a conservative upper bound is (14)S since the
difference between original and transformed SG for every state has to be smaller than this
number [Con92, Lemma 8]. According to the IEEE 754.2019 standard,8 the commonly
used double machine precision is 10−16, so already for 27 states, the necessary ε becomes

7This description omits a technical detail.
8https://standards.ieee.org/content/ieee-standards/en/standard/754-2019.html

38

https://standards.ieee.org/content/ieee-standards/en/standard/754-2019.html

3.3 Quadratic programming (QP)

smaller than machine precision. Thus, this transformation to a stopping SG is inherently
impractical.

Our approach introduces additional constraints for every maximal EC. Similar to the
idea of deflating in Section 3.1.2, these constraints ensure that all states in the EC depend
on an exiting action. For the description of the algorithm constructing the constraints,
see [KRSW22, Section 4.1.4 and Algorithm 3]. Note that our algorithm introduces ex-
ponentially many constraints, so the resulting QP or HOP is exponential in the size of
the MECs and hence potentially exponential in the size of the SG. Still, as we show in the
experimental evaluation, this exponential approach is a lot more practical than the original
idea of introducing the ε-transitions.

We summarize the contribution of this section in the following theorem:

Theorem 2. We can transform an arbitrary SG G into a polynomially larger SG G′ such
that G′ satisfies two-act and VG′ = VG.

For an SG G′ satisfying two-act, we can use a QP to compute V′G.
For an arbitrary SG G, we can use a HOP to compute VG without modifying G.

Proof. The first statement is taken from [Con93, Section 4]. We repeat it to emphasize
that even though the QP is only applicable to SGs satisfying two-act, it can still be used
in a polynomial solution algorithm by combining it with this transformation.

The second statement is equivalent to saying that we can drop the constraints half-probs,
no-one-act and stopping. We have discussed the intuition for this above; for the proofs,
see [KRSW22, Lemmata 2, 3 and 4].

The third statement is equivalent to saying that we can also drop the two-act constraint
if we allow for the program to have a degree higher than two. For the proof, see [KRSW22,
Lemma 1].

3.3.3 Related work

To the best of our knowledge, using QP as a solution method for simple SG has not been
investigated since the initial suggestion in [Con93]. We believe that this was due to the
fact that it was accepted as common knowledge that linear programming (LP) and QP are
not efficient. For example, [GH08] states that using QP “may have prohibitive algorithmic
cost and makes the implementation tedious.” [Page 3] and LP “requires high-precision
arithmetic” [Page 4]. In the case of MDP, we can use LP instead of QP, which takes
polynomial time and is asymptotically optimal and thus theoretically superior to VI or
SI. “In practice, however, most probabilistic verification tools use (approximate) iterative
numerical methods, such as value iteration [Put94], since they scale to much larger systems
and are amenable to symbolic (BDD-based) implementations. Value iteration can also be
used for time-bounded (finite-horizon) properties, which is impractical with LP” [FKP12,
Pages 1 and 2]. Similarly, [KM17] reports that “compared to linear programming (LP),
SI scales much better. [...] [LP] procedures are not very useful in practice” [Page 2];
and [HM18] states that LP procedures “seem unable to scale to large systems, though
some results have been obtained recently by mixing it with numerical methods [Gir14]”
[Page 2]. An experimental comparison in [ACD+17] showed that LP indeed did not scale
well to models with many maximal ECs.

39

3 Guaranteed algorithms for solving simple stochastic games

Nonetheless, we believe QP and LP should be investigated. One motivation is that
convex QPs are solvable in polynomial time [KTK80] and hence might allow to find a
polynomial algorithm for solving simple SGs. The convexity is important, since solving
non-convex QPs is NP-hard [Sah74].

Additionally, even if the problem was NP-hard, many solvers have been developed for
these kinds of optimization problems and are still actively advanced, see [AAK17] for
a recent comparison. Moreover, there are lots of ways in which one can improve the
performance of an optimizer. In particular, [SLYD20, Section 2] discusses several works
that improve the search heuristics, the hyper-parameters of the algorithms or methods to
identify substructures. Finally, the single paper investigating LP for MDPs problems we
are aware of [Gir14] already improved the performance of LP significantly. However, we
are not aware of any improvement for solving simple SGs with QP in the past 30 years,
and hence it is not surprising that it currently is not as performant as VI and SI, which
have been investigated a lot, see Sections 3.1.4 and 3.2.3.

As a side note, we point out that simple SGs are an LP-type problem, and using this
formulation yielded the first strongly subexponential algorithm for the problem [Hal07].

3.4 Experimental analysis

In this section, we summarize the experimental results of [EKKW22] and [KRSW22]. The
goal of [EKKW22] was (i) to show that when complementing VI with deflating to obtain
guarantees, the overhead often is negligible and (ii) to compare the method of deflating
with the established approach of collapsing ECs in MDPs. The goal of [KRSW22] was to
compare the algorithms and find the most practical.

We first describe the algorithms and case studies we used for the analysis, then comment
on the additional optimizations we considered and finally give an overview of the experi-
mental results of both papers. Note that, as these results are quite extensive, we only focus
on the key messages and refer to the papers in the appendix for the detailed analysis.

3.4.1 Algorithms and case studies

We have implemented all our algorithms as an extension of PRISM-games [KNPS20].9

This includes bounded and simulation-based VI, SI with different solvers for the opponent
MDP and the option of a warm start, as well as QP and HOP without the transformation to
normal form. PRISM-games already contained the unguaranteed VI for simple stochastic
games. We have also added several other things to compare to, for example variants of
QP based on only lifting some of the constraints. For more details, see [KRSW22, Sections
5.1.1 and 5.1.2]. The code is available in a GitHub repository10 and at the time of writing,
we are still actively adding more sophisticated algorithms and technical improvements.

As case studies, we mainly used MDPs and SGs with reachability objectives from the
PRISM benchmark suite [KNP12] and the PRISM-games case study website.11 Moreover,

9Note that our implementation is based on the most recent version available at the time of implementing,
namely PRISM-Games 2 [KPW16].

10https://github.com/ga67vib/Algorithms-For-Stochastic-Games
11http://www.prismmodelchecker.org/games/casestudies.php

40

https://github.com/ga67vib/Algorithms-For-Stochastic-Games
http://www.prismmodelchecker.org/games/casestudies.php

3.4 Experimental analysis

for the comparison in [KRSW22], we also included models we developed in our previous
work [CKWW20] and several handcrafted models of interesting theoretical corner cases.
The prism model files of all considered SGs are collected in our GitHub repository (see Foot-
note 10) and a more detailed description is given in [EKKW22, Section 6.1] and [KRSW22,
Section 5.1.3].

3.4.2 Optimizations

We structured the code such that the following optimizations are easily applicable to all
variants of certain algorithms, as well as new implementations thereof.

• Topological approach: Working on the whole graph of the model at once can be
suboptimal because certain states, e.g. those closer to the goal, have already con-
verged and need not be updated anymore. Thus, instead of considering the whole
model, we can instead compute the topological ordering of strongly connected compo-
nents (see Definition 2 and its discussion) and then proceed in a backwards fashion,
SCC by SCC. This idea was suggested for VI in MDPs [DMWG11] and for SI in
MDPs [KM17]. The idea can be extended to SGs in a straightforward manner,
see [KRSW22, Section 4.4].

We have implemented a topological version of all our algorithms working on the
whole state-space, namely bounded VI as well as all variants of SI, QP and HOP.
The optimization is not applicable to the simulation-based algorithm.

• Gauß-Seidel VI: This variant of asynchronous VI immediately uses the results of the
current iteration when possible. Formally, in an update according to Equation (3.4),
we use Ln(s′) instead of Ln−1(s′) if a new estimate Ln(s′) already is available. This can
speed up convergence because results are propagated more quickly, see [EKKW22,
Example 8]. This optimization is available for all VI variants in our code.

• Deflating less often: In bounded VI, the operation of deflating, or more specifically
of finding SEC-candidates, is quite costly. Hence, one can only perform it every
n iterations instead of every time. Of course, for high n, this can also slow down
the computation since we might only be wasting time until the next deflation hap-
pens, but it can also speed up computation. The analysis in [EKKW22, Section 6.2]
indicates that using n = 10 is a reasonable sweet spot.

• Caching: Most of our algorithms have to use maximal ECs repeatedly. However,
it suffices to compute them only once and cache them for all further iterations.
Interestingly, this simple engineering improvement on a very practical level can have
as much or more impact than a theoretical improvement.

• We suggest two further ideas related to dealing with ECs in VI, see [EKKW22,
Section 6.2]. However, they both did not speed up the computation. The first idea
is to collapse SECs when our estimates suffice to prove that the EC is indeed simple.
The second idea is to prefer actions exiting an EC when running simulations for the
simulation-based variant. Both ideas seem useful on a theoretical level. We conjecture
that, by using a better implementation of collapsing or more suitable data structures

41

3 Guaranteed algorithms for solving simple stochastic games

for tracking exiting actions, these optimizations could still have merit, even though
in our experiments they did not.

3.4.3 Results

The results of [EKKW22] showed that the overhead of using deflating to obtain guarantees
often is negligible and that deflating is not much worse than collapsing in MDPs. Note
that every EC only can be collapsed once, while it potentially has to be deflated very
often. Thus, especially if the convergence rate of VI is low on a certain model, collapsing is
preferable. This is also visible since the approaches using deflating are always slower than
those based on collapsing, see [EKKW22, Section 6.3].

The results of [KRSW22] are very extensive, including comparisons between the algo-
rithm classes as well as within them, analysing the impact of the different optimizations
and variants. Here, we give the two main conclusions.

• There is no clear winner. In our overview (see [KRSW22, Section 5.5.1]), we
see that all variants of both VI and SI can solve most of the case studies in time,
namely between 26 and 31 of the 34 considered ones. Their verification times are
comparable for all but the hardest models. In contrast, all but the most optimized
variants of QP are significantly worse, timing out after 15 minutes for around half
the case studies. The original approach of [Con93] can only solve 3 case studies. The
best variants of QP and HOP perform similar to VI and SI, solving 24 respectively
25 solved problems and taking a similar time to do so.

Concerning the memory usage, all algorithms except for the unoptimized QP are
reasonable, see [KRSW22, Section 5.5.2].

Looking in a bit more detail, we see that the algorithms struggle with different case
studies: for example, on the model “hm 30” every VI variant times out after 15
minutes, while SI and QP can succeed in less than a second. On the other hand, for
“BigMec e4”, VI needs around four minutes, while SI and QP time out.

• The structure of the considered model is very important. Both of the models
mentioned in the previous point are rather small, one with 61 and one with 20,003
states. Still, they are very hard for the algorithms because hm 30 contains many
probabilistic cycles and BigMec e4 contains a huge maximal EC. On the other hand,
almost all of the large models we consider are solved within less than 80 seconds,
often even less than 20, even though their state-spaces have sizes of 100,000 or even
480,000. Thus, the structural properties — number of probabilistic loops, minimum
occurring probabilities, number and size of maximal ECs — are more important than
the size of the model.

3.5 Summary, discussion and outlook

Summary There are three classes of algorithms for solving simple stochastic games: value
iteration, strategy iteration and quadratic programming. We have explained all of them

42

3.5 Summary, discussion and outlook

and presented several modifications directed at improving the verification time. Moreover,
for VI we have introduced the first practical stopping criterion.

Our experimental analysis revealed that the structure of the considered case study is
very important for the performance of the algorithms, and thus there is no algorithm that
is best in all cases.

Discussion Before discussing the implications of our experimental evaluation, we recall
relevant theoretical properties of all algorithm classes in order to set the practical results
into a more general context.

Our theoretical comparison focusses on two properties: precision and complexity.

• Precision: VI converges only in the limit. The precise algorithm based on round-
ing from [CH08] is best-case exponential and hence impractical. Thus, a practical
implementation of VI is approximate by design, only giving ε-guarantees.

In contrast, SI and QP theoretically are precise algorithms. Still, practical imple-
mentations are usually not. For SI, the precise guarantee requires precisely solving
the MDP after fixing a strategy. This can be achieved by either using linear pro-
gramming or SI for MDPs, provided that one precisely solves the equation system
of the Markov chain after fixing both strategies. Both of these approaches are not
supported by PRISM, but instead, either the MDP or the Markov chain are solved
using VI, thus rendering the overall algorithm imprecise, too. We have added both
approaches to the code in our GitHub repository (see Footnote 10) after the publi-
cation of [KRSW22].

The precision of QP and HOP depends on the solver that we use. To the best of
our knowledge, the ones that performed best in our experiments — gurobi12 and
MINOS13 — do not offer a precise computation mode.

Finally, note that all computations using floating-point precision introduce rounding
errors. A way to address this was suggested in [Har22] but has not been implemented
for our algorithms so far.

• Complexity: While all algorithms take at most exponential time, for VI and SI this
exponential number of iterations can also be necessary. In [BKN+19], the authors
proved that the decision problem that VI solves in every iteration is EXPTIME-
complete. Similarly, for SI the associated decision problem is PSPACE-complete [FS18]
and an exponential number of iterations is necessary [Fri11].

In contrast, QP still has the potential to yield a polynomial algorithm. This could
be achieved by finding a polynomially sized, convex QP, since solving convex QPs
can be done in polynomial time [KTK80]. Currently, our QP is exponential and it is
unclear for both our and the previous polynomially sized QP from [Con93] whether
they are convex. If they are not, then solving them is known to be NP-hard [Sah74].

Our versions of VI, both bounded and simulation-based, have one advantage over SI and
QP: they are anytime algorithms, which means at any time during the computation we

12https://www.gurobi.com/
13http://sbsi-sol-optimize.com/asp/sol_product_minos.htm

43

https://www.gurobi.com/
http://sbsi-sol-optimize.com/asp/sol_product_minos.htm

3 Guaranteed algorithms for solving simple stochastic games

can stop and get a result with an estimate of its precision. In contrast, SI and QP have to
finish the computation to provide precision guarantees.

Now that we have provided the theoretical context, we discuss the practical impli-
cations of our results. We were surprised to find that the performance of QP often is
comparable to that of the other algorithms. It was accepted as common knowledge that
linear programming and QP are less efficient, as discussed in Section 3.3.3. We view our
results as an indication that it might be practically worthwhile to investigate linear and
quadratic programming. In particular, we saw that switching the solver from CPLEX to
Gurobi had a huge impact on the running time. This shows that the verification time of
simple SGs can be reduced by any progress in the area of solvers for QPs, be it fundamental
or via clever engineering. Moreover, while VI and SI were researched and improved over
the past decades, as discussed in Sections 3.1.4 and 3.2.3, we are not aware of any similar
works in the area of QP. Thus, there might be a lot of room for theoretical improvements
in the encoding of the SG as QP. Our work has already pushed QP’s performance from
being practically useless to being comparable on many models.

Similarly, we were surprised that SI performed on par with VI because it was reported
as similar or sometimes considerably slower than VI in [FKNP11]. Also, VI is the only
algorithm implemented in PRISM-Games [KNPS20].

Outlook We see potential for practical improvements of the algorithms in the following
directions.

• Implement and evaluate the additional variants of VI and SI that are mentioned
in Sections 3.1.4 and 3.2.3. Additionally, combine the verification algorithms with
heuristics based on machine learning, as we did with the simulation-based variant
of VI in Section 3.1.3.

• Reduce QP or HOP verification time by using better solvers, tuning the hyper-
parameters of the solvers or improving the encoding of the problem into a QP/HOP.

• Find clear correlations or even causalities between structural properties of a case
study and the performance of the algorithms. From this, develop a portfolio solver
that first analyses the structure and then picks the most suitable algorithm.

For properly evaluating the algorithms, we also believe that it is important to improve
the setup for practical experiments, i.e. the available case studies and implementations.
Currently, we only know few case studies (less than 15). Although they are scalable, it is
possible that we tune algorithms for these specific cases rather than the general problem.
Having more case studies or a good random generation is required. This could take a form
similar to or be included in the quantitative verification benchmark set [HKP+19], which
is a web application that provides scalable model files and metadata for many probabilistic
models. It includes Markov chains and MDPs, but not SGs. All of the implementa-
tions of our algorithms are an extension of PRISM-games. However, as competitions like
QComp [BHK+20] show, (i) having different implementations for the same algorithm can
make a huge difference and in particular (ii) PRISM — the basis model checker for our
implementation — is often outperformed by other model checkers.

44

3.5 Summary, discussion and outlook

Note that there is a vicious cycle: If there are few case studies, it is hardly worth investing
in a well-engineered, performant implementation. But without these implementations,
there is little incentive to create more case studies.

Now that we have discussed directions for practically oriented future work, we turn our
attention to theoretical improvements. A natural next step is to extend the given
algorithms to other settings. This includes settings with limited information or multiple
objectives, which are discussed in the next two chapters. In this outlook, we focus on more
expressive specification formalisms, see Section 1.5.3. We expect the algorithms for
other objectives to work similarly to the ones presented for reachability in this paper be-
cause for MDPs the other objectives are also similar to reachability. For example, bounded
VI in MDPs with total expected reward objective [BKL+17] differs mainly in the fact that
one first has to compute an over-approximation since it cannot start at 1 as the highest
possible probability. SI for MDPs with mean-payoff [KM17] uses the same underlying idea
as for reachability, but keeps track of two metrics (gain and bias) in order to decide how to
improve a strategy. A key problem when extending bounded VI to total expected reward
in SGs is that there are different semantics of the objective [CFK+13a] and that in some
cases the value is not the least, but the greatest fixpoint of the Bellman equations. Thus,
VI from below can be stuck. To address this, probably a dual of deflating can be de-
rived, which then increases the lower approximants so that they converge to the value. In
the direction of parity objectives, the relationship between simple ECs and tangles [vD18]
should be investigated. Tangles are a concept used for solving non-stochastic games with
parity objectives; a tangle is a strongly connected subgraph of the game where one player
can surely win. This is similar to simple ECs because there, Minimizer cannot prevent
Maximizer from choosing the best exit, so in a sense, Minimizer cannot prevent Maximizer
from winning the simple EC.

Finally, the problem of deriving a polynomial algorithm for simple SGs is of great
interest, as discussed in Section 1.3. Since QPs as a solution for simple SGs have not been
thoroughly investigated yet, this might be a promising direction. Using the normal form
of [Con93], we can construct a polynomially sized QP. A more practical polynomial QP
might be possible by finding a solution for MECs that does not enumerate an exponential
number of strategies. The key difficulty for showing that the algorithm takes polynomial
time is understanding whether the QP is convex or altering it so that it becomes convex.
Overcoming this difficulty would give a positive answer to the long-standing open question
of whether simple stochastic games can be solved in polynomial time.

45

4 Expressive system formalisms: Limited
information

Motivation In Chapter 3, we have seen how to solve simple stochastic games. However,
the algorithms require precise knowledge of all transition probabilities. This assumption
might make our results unreliable because in practice we often only have limited information
about the system, as discussed in Section 1.5.2.

In the following, we present two ways of modelling limited information by making the
formalisms for the system more expressive. The first approach assumes that we can simulate
our system and then applies statistical model checking. Thus, we get statistical guarantees
on the behaviour of the model and its value. We mention that this approach also addresses
the challenge of scalability (see Section 1.2): if a system is too large or complex to be
analysed completely, statistical model checking can be used to get an estimate of the value
of the game [YS02].

The second approach does not use simulations. Instead, it assumes that for every transi-
tion, we know an interval that the probability is contained in. Then the analysis can provide
information on the best and worst possible instantiation of the probabilities. Thus, the
analysis is robust with respect to the given imprecisions of the transition probabilities.

Problem statement The problem is quite similar to the one in the previous chapter, i.e.
given a stochastic game (SG) G, an initial state s0 and a set of goal states F, we want to
compute an ε-approximation of the value and the corresponding ε-optimal strategies.

However, this time we cannot rely on knowing the exact transition function δ. We
suggest two approaches.

• In Section 4.1, we assume that we can run and observe simulations of the system. Ad-
ditionally, in the so-called black-box setting, we require a lower bound on all transition
probabilities pmin ≤ mins∈S,a∈Av(s)

t∈Post(s,a)
δ(s, a, t). Alternatively, in the grey-box setting, we

know the topology of the SG.

We want to compute an estimate of VG(s0) with a probably approximately correct
(PAC) guarantee, a guarantee that with a high probability the estimate is ε-close.
Note that in this setting, we only care about the estimate for the value of the SG in
the initial state, not the whole value function.

• In Section 4.2, we assume that for every transition we have a probability interval,
i.e. we have two transition functions δ and δ such that for all s, s′ ∈ S, a ∈ Av(s) we
have δ(s, a, s′) ≤ δ(s, a, s′) ≤ δ(s, a, s′). We want to compute a best- and worst-case
estimate of the value function.

47

4 Expressive system formalisms: Limited information

Chapter outline Section 4.1 summarizes the papers [AKW19a] and [ADKW20] (Ap-
pendix C and D), describing methods based on statistical model checking for dealing
with unknown transition probabilities. Section 4.2 describes how to deal with bounded-
parameter SGs, i.e. SGs where we have intervals on the transition probabilities, as detailed
in [WMK19] (Appendix E). Inside the sections, we always summarize the state of the art
before our work, then describe our contribution and lastly set it into the bigger context of
the related work. Finally, in Section 4.3 we summarize and give an outlook.

4.1 Statistical model checking

4.1.1 State of the art

In this section, we consider algorithms that have limited information about the SG. We
first define formally what we mean by that in this work. Afterwards, we give an intuitive
description and then shortly discuss how our definition relates to the state of the art.

Definition 6 (Black-box and grey-box). An algorithm can simulate an SG G if

• it knows the initial state s0,

• for a given state, an oracle returns its player and available actions,

• it can begin a simulation in s0,

• if a simulation has reached a state s, the algorithm can sample a successor t ∈
Post(s, a) according to δ(s, a) for a chosen action a ∈ Av(s). The action is either
chosen by the algorithm or by an opponent that satisfies some basic fairness assump-
tion (discussed below). The simulation can continue in state t.

An algorithm works in the black-box setting if it can simulate the input SG G and
additionally knows pmin ≤ mins∈S,a∈Av(s)

t∈Post(s,a)
δ(s, a, t), an under-approximation of the minimum

transition probability.
An algorithm works in the grey-box setting, if it can simulate the input SG G and

additionally knows the number |Post(s, a)| of successors for a given state s and action a.

Intuitively, we can consider three settings: white-, grey- and black-box. In white-box
(the setting of the previous Chapter 3), we can access the whole tuple of the given SG G,
in particular also the transition function δ. In grey- and black-box, we cannot access the
tuple nor the exact transition probabilities, but instead, have to rely on simulations of the
system. While in grey-box we still know information about the local topology around the
state we simulate (its successors under all actions), in black-box we know nothing about
the system except for a global lower bound on the transition probabilities.

Discussion of Definition 6 Our definition of simulation conforms to black-box systems
in the sense of [SVA04] with sampling from the initial state. It is slightly stricter than
[YS02] or [RP09], where simulations can be run from any desired state. In these works, the
knowledge of pmin was not required; this was only introduced in [BCC+14, DHKP17] in

48

4.1 Statistical model checking

order to deal with infinite-horizon properties. However, it is a relatively light assumption in
many realistic scenarios. For instance, “bounds on the rates for reaction kinetics in chemical
reaction systems are typically known; for models in the PRISM language [KNP11], the
bounds can be easily inferred without constructing the respective state-space” [DHKP17,
Pages 2-3].

The idea of knowing the topology of the system was used in [HJB+10] and [YCZ10,
Section 3.1]. These works actually assumed to know the topology of the whole SG, i.e. the
whole tuple except for the precise transition probabilities. We refrain from that because our
motivation is to use as little information as possible about the given SG. Still, the settings
are similar, as given enough simulations in our grey-box setting, we can almost-surely infer
the whole topology. In [BGJS20], the algorithm knows the exact set of successors Post(s, a),
which is slightly stronger than our assumption of only knowing the number of successors
|Post(s, a)|. Still, as before their algorithm could be adapted to our setting, since the exact
set of successors can almost-surely be inferred in our grey-box setting.

We believe that the grey-box setting has slightly stronger assumptions than the black-
box setting, as grey-box has topological information about every state, while black-box only
has a global lower bound. However, one can also argue that the grey-box setting is more
realistic because of “systems for which probabilities are governed by uncertain forces (e.g.
error rates): in this case, it is not easy to have a lower bound on the minimal transition
probability, but we can assume that the set of transitions is known” [BGJS20, Page 20].
We provide algorithms for both the grey- and black-box settings, allowing users of our
work to choose which setting is more useful in their opinion. According to our practical
experience, grey-box should be preferred, if possible.

Finally, we discuss how the actions are chosen during the simulations. To give guar-
antees, intuitively we need to avoid a player hiding their best actions. Formally, in order to
be able to infer the value under optimal strategies, we require that with positive probability
some optimal action is played in every state. We suggest three approaches.

• If during the simulations of the system we can control both players, we can ensure
that we pick optimal actions for both (as is done for one player in [BCC+14]).

• Alternatively, we can assume that a player plays fairly, i.e. every action has a positive
chance to be picked in the future (as in [AKW19a]). This could be realized by
sampling actions uniformly, but also by skewing towards more promising actions.

• Finally, we can assume that both players eventually converge towards their optimal
strategy and only play optimal actions (as in [LN81]).

Probably approximately correct guarantee (PAC guarantee) In this section, we are
interested in algorithms that provide a probably approximately correct guarantee (PAC
guarantee) [Val84]. An algorithm gives a PAC guarantee if for any ε,∆ ∈ (0, 1), it returns
an ε-approximation of the true value with high probability 1−∆. In other words: probably
(unless we are unlucky, which only has a chance of ∆) the result of the algorithm is
approximately correct (it is off by an error of at most ε).

49

4 Expressive system formalisms: Limited information

Statistical model checking (SMC) Our algorithm is an instance of statistical model
checking (SMC), see e.g. [YS02]. We give an overview of the developments of SMC in
Section 4.1.5 and an algorithmic description in [ADKW20]. The latter work also discusses
the similarities and differences between SMC and the value iteration algorithms from the
previous Chapter 3, i.e. classical, bounded or simulation-based value iteration. In the
following, we recall the basic idea of SMC as far as it is relevant for our algorithm.

In essence, SMC for Markov chains works by running simulations through the model,
which are stopped when either a goal state is reached or we detect that we are stuck in
a sink. We only remember whether a simulation reached the goal or not. Then, we can
estimate the value as the average of successful simulations over all simulations. To obtain
a probabilistic guarantee, we do not report the average, but rather a confidence interval
around it; the width of the interval depends on the required confidence 1 − ∆ and the
number of simulations. Hence, by increasing the number of simulations we can ensure that
the result is approximately correct, i.e. ε-close to the true value.

There are two key complications when applying SMC to simple stochastic games.

• We need a way to resolve the nondeterminism. Instead of only storing whether
a simulation from the initial state reached the goal or not, the idea of [SLW+06,
BCC+14] is to keep an accumulator for every state-action pair, which stores statis-
tics about the performance of simulations using this state-action pair. Then, during
simulations, the nondeterminism is resolved based on the estimates in these accumu-
lators. Intuitively, after enough simulations, we infer the optimal strategies. Hence,
the model reduces to the Markov chain under optimal strategies and we can estimate
the value as the average number of simulations that reach the goal. However, the
number of simulations we need in order to infer anything about the actions is beyond
infeasible. Its order of magnitude is at least 108 seconds even for the smallest case
studies in the experimental evaluation of [AKW19a, Section 4], and for medium case
studies, it is larger than 10100,000 seconds. For comparison: the age of the universe
is estimated to be around 1011 seconds. We address this in Section 4.1.2 by making
the algorithm more efficient in several ways.

• SMC crucially relies on the ability to detect that a simulation is stuck in a cycle
and cannot reach the target anymore. This is difficult even for Markov chains, as
we discuss in Section 4.1.5. Only recently a fast solution in the black-box setting
was proposed [DHKP17], which relies on the knowledge of the minimum transition
probability pmin. The idea is to terminate a simulation when it is very unlikely that
a transition leaving the current cycle has been overlooked. Our algorithm extends
this approach, see Section 4.1.2.2 for more details.

Note that, when dealing with Markov decision processes (MDPs) or SGs, the prob-
lem of terminating a simulation becomes even harder, since we have to deal with end
components (ECs). In these, a simulation can be stuck, even though under optimal
strategies we can still reach the goal. This is because staying might falsely look prefer-
able to Maximizer, as we described in Example 2. Hence, most previous approaches
consider finite-horizon properties (see Section 4.1.5), thus effectively eliminating ECs
from consideration because after finite time the game almost-surely reaches a sink
state. However, our objective is infinite-horizon reachability.

50

4.1 Statistical model checking

Thus, we have to deal with ECs. The basis of our algorithm is [BCC+14], which col-
lapses ECs. This technique replaces an EC with a single state and hence eliminates
the cyclic dependencies. For more information about collapsing, see the last para-
graph of Section 3.1.2 or [EKKW22, Section 3]. However, collapsing is not sufficient
to deal with SGs, as we discuss in the previous Chapter 3. Hence, we replace it with
deflating, see Section 4.1.2.3.

4.1.2 Contribution: PAC statistical model checking of SGs

We extend the algorithm from [BCC+14, Section 4.2] in two directions: firstly, we improve
the runtime of the algorithm from usually larger than the age of the universe to being able
to deal with reasonable systems. We achieve this by switching to a model-based view and
having a faster detection of being stuck in an EC. Secondly, we replace collapsing with
deflating and thereby provide an extension to SGs for the algorithm that previously only
was applicable to MDPs. Overall, we provide an algorithm with a PAC guarantee for SGs
with limited information.

To the best of our knowledge, this is the first algorithm providing a PAC guarantee for
arbitrary SG in the black-box setting. Note that we explain how to modify the algorithm
to be applicable in the grey-box setting in Section 4.1.3.

4.1.2.1 Model-based view

The algorithm of [BCC+14, Section 4.2] is model-free. This means it is agnostic of the
graph underlying the considered model and only stores an accumulator for the estimate of
every state-action pair. While this is quite memory-efficient, it also induces the requirement
of running an infeasibly large number of simulations before being able to perform an update
with a probabilistic guarantee.

In contrast, our algorithm is model-based, i.e. we construct a partial model of the ex-
plored state-space and estimate the transition probabilities. Storing this additional infor-
mation allows us to extract information from the simulations more easily. To construct
the model, we remember all states, actions and transitions we have encountered during
simulations. Moreover, since we do not know the transition probabilities, we have to infer
them from our sampled data. For this, we count the occurrences of state-action pairs and
transitions. When in some state s we play action a ∈ Av(s) and reach state t, we increase
our occurrence counters #(s, a) for the state-action pair and #(s, a, t) for the transition.
With this, we can estimate the transition probability as the average number of times t
was sampled as successor when playing (s, a), i.e. #(s, a, t)/#(s, a). To obtain a probabilistic
guarantee, we do not just take this average, but additionally, subtract a confidence width c
which depends on the required correctness probability ∆ of the PAC guarantee. For the
details of how to obtain c using the Hoeffding bound [Hoe63], see [AKW19a, Section 3.2].
Note that c can be greater than 1, so we have to limit our estimate to not be less than 0.
Overall, we estimate the transition function δ by using

δ̃(s, a, t) := max(0,#(s, a, t)/#(s, a)− c).

51

4 Expressive system formalisms: Limited information

p q
1

0

a

b

c

1/2

1/2

e

d

Figure 4.1: Our running example of an SG for Section 4.1.

Example 8 (Estimated transition function δ̃). We show our running example for Sec-
tion 4.1 in Figure 4.1. It is a modification of the SG in Figure 2.1 because we removed the
self-loop on (q, c).

Assume we have seen 5 samples of action c, where 1 of them went to 1 and 4 of them to
0. Note that, in a sense, we were unlucky, as going to 1 seems quite unlikely based on our
observations, while actually, the probability is equal to that of going to 0. The confidence
width for ∆ = 0.1 and 5 samples is 0.48 (see [AKW19a, Example 1] for the calculation).
Hence, given these observations, we estimate δ̃(q, c, 1) = #(q, c, 1)/#(q, c)−0.48 = 1/5−0.48 =
0 and δ̃(q, c, 0) = 4/5 − 0.48 = 0.32. Note that both estimates are in fact lower than the
true transition probabilities.

When increasing the number of samples for every transition, by the law of large numbers
our estimates δ̃ will converge to δ. Subtracting the confidence width ensures that with high
probability 1 − ∆ we always get a conservative estimate, lower than the true transition
probability. 4

Using δ̃, we can give the modified update equations for the under- and over-approxi-
mations L and U. They are as in the white-box setting, see Equation (3.3), with the
difference that we do not use L(s, a) or U(s, a) because they depend on the true transition
probabilities δ. Instead, we use L̃ and Ũ, which are defined as follows:

L̃(s, a) :=
∑

t:#(s,a,t)>0

δ̃(s, a, t) · L(t) (4.1)

Ũ(s, a) :=

 ∑

t:#(s,a,t)>0

δ̃(s, a, t) · U(t)

+

1−

∑

t:#(s,a,t)>0

δ̃(s, a, t)

 (4.2)

Compared to Equation (3.4), we have replaced δ with δ̃. However, the sum of all our
estimates for the transition probabilities does not add up to 1, as we always subtract the
confidence width to get a safe under-estimation of the probabilities. For the remaining

probability, i.e.
(

1−∑t:#(s,a,t)>0 δ̃(s, a, t)
)

, we assume that it goes to a sink when cal-

culating L̃ (effectively making the term 0) and that it goes to a goal when calculating Ũ
(multiplying the term by 1). Thus, after the updates our under- and over-approximations
L and U are still correct [AKW19a, Lemma 1].

Example 9 (Modified update equations). Consider again our running example from Fig-
ure 4.1 with the 5 samples of action c as described in Example 8. Assume that we already

52

4.1 Statistical model checking

found out that 0 is a sink with value 0; how we infer this is explained in the next Sec-
tion 4.1.2.2.

Then, already with these 5 samples, we know Ũ(q, c) = (0 · 1 + 0.32 · 0) + (0.68) = 0.68.
Intuitively, we are certain (unless we are unlucky, which is unlikely at probability ∆ = 0.1)
that 0.32 probability goes to the sink. Still, concerning the lower bound, we are not yet sure
enough about what reaches the goal to give any estimate L̃(q, c) > 0. Given 500 samples of
action c, the confidence width becomes smaller than 0.05. In that case, since we have this
confidence width for both the upper and the lower bound, we can decrease the total precision
for this action to 0.1, i.e. return an interval in the order of [0.45, 0.55].

In contrast, with the same error tolerance, ∆ = 0.1 the approach of [BCC+14] has to
sample this transition more than 109 times before it can attempt a single update. 4

In summary, by switching to a model-based approach, we can estimate the transition
probabilities reasonably well already after very few simulations and get a reasonable level
of confidence with a realistic1 number of samples. We can use these estimates to update
our under- and over-approximation. This drastic decrease in runtime when compared
to the model-free approach comes at the price of increasing the memory consumption.
However, while saving triples of state, action and successor instead of only state-action
pairs asymptotically increases the memory from O(S×A) to O(S2 ×A), practically states
usually have only a small, bounded number of successors. Thus, the increase in memory
is not significant, while the improvement in runtime is.

4.1.2.2 Faster detection of being stuck

We cannot let our simulations run infinitely long. There are two natural points for stopping
the simulation: (i) when we reach a goal state, since then the value certainly is 1; or (ii)
when we reach a non-goal bottom strongly connected component (BSCC), i.e. a cycle in
the game graph that has no chance of reaching the goal. There, the value certainly is 0.

Detecting that we have reached a goal is easy, but being sufficiently certain about being
stuck in a BSCC is hard. In the black-box setting, we have to sample long enough to
exclude the possibility that some action has a non-zero probability of exiting the BSCC.

Example 10 (Difficulties of the stuck-detection). Consider the first simulation that reaches
the state 0 in our running example from Figure 4.1. We see that there is only one action e,
but we do not know how many successors it has. Imagine that with a very small probability,
e can transition to the goal state. In that case, concluding that we cannot reach the goal
and setting the value to 0 would be completely wrong because even the small probability
would make us reach the goal almost-surely.

No matter how often we sample e, we can never get δ̃(0, e, 0) = 1, since the confidence
width will always be positive. Thus, we need a different detection mechanism. 4

To detect that we are stuck in a BSCC, we utilize our knowledge of the minimum
transition probability pmin. If we have sampled some state-action pair (s, a) for n times, the
probability to overlook a transition is (1− pmin)n. Hence, we require that (1− pmin)n < ∆

1Depending on ∆ and the size of the SG, the number might still be infeasible, but it is certainly more
realistic than that of previous approaches.

53

4 Expressive system formalisms: Limited information

because then we are sure enough that we did not overlook any transition. Solving this

inequation for n yields n > ln(∆)
ln(1−pmin)

.

Example 11 (Stuck-detection using pmin). Consider our running example from Figure 4.1,
an error tolerance ∆ = 0.1 and assume we know that pmin > 1/3. Note that pmin is an
under-estimate for the actual minimum occurring transition probability of 1/2.

Then, if we sample action e for n > ln(0.1)
ln(1−1/3) = 5.6 times, we can conclude that the state

0 indeed is a BSCC and set its value to 0. If there was a transition to the goal, we would
have seen it with a probability greater than 0.1, so the chance of an error is lower than our
error tolerance. 4

So far, we have only considered the very simple case of a one-state BSCC. However,
BSCCs can be arbitrarily large. Moreover, depending on our guidance heuristics for se-
lecting actions, it is possible that we are not stuck in a BSCC, but in an EC. This would
be the case if the EC was not bottom, but the player with the exit believes that staying in
the EC is better than exiting, which can easily occur if the Maximizer strategy depends on
the over-approximation U (similar to what we described in Example 2). To deal with these
issues, we check whether according to our current model, we could be in an EC. If yes,
then we additionally check that we have seen all staying actions of the EC often enough to
not overlook any transition. Only then do we conclude that we are stuck in this EC. For
a more detailed discussion, see [AKW19a, Section 3.3].

The idea of considering the partial model to find ECs is an extension of [DHKP17],
where they find candidate BSCCs in the partial model induced by the current simulation.
Further, note that we discuss variants of our detection mechanism in Section 4.1.3.

4.1.2.3 Extension to stochastic games

The extension to SGs is quite straightforward: we replace the collapsing from [BCC+14]
with deflating, as we did in Chapter 3. Additionally, since we are in the setting with
limited information, we have to ensure that whatever we deflate is an EC with the required
confidence, using the detection mechanism we just discussed. If we did not do this, we could
overlook an exit and hence deflate our over-approximation to be smaller than the value,
as in Example 10. Finally, since we do not know the exact transition probabilities, our
computation of the over-approximation of the best exit depends on Ũ, and our guess of
the optimal Minimizer strategy to compute simple ECs depends on L̃. For a more detailed
discussion, see [AKW19a, Section 3.4].

4.1.2.4 Obtaining the PAC Guarantee

We have now described all the ingredients of our algorithm. However, combining them
and obtaining a PAC guarantee still is surprisingly difficult. In particular, we need to take
further steps to ensure that our error probability is less than ∆. Firstly, note that for every
transition probability, we allow an error probability of ∆. Thus, the bound on the overall
error probability is ∆ times the number of transitions, which is too large. We resolve this
problem by distributing ∆ over all transitions, e.g. by uniformly dividing it among them.

54

4.1 Statistical model checking

Still, with every simulation we estimate the transition probabilities anew, every time
possibly making a mistake. These error probabilities aggregate.2 We resolve this
as follows: the algorithm is divided into a simulation-phase, where we gather knowledge
and can use any estimates and guidance heuristics we want. After a certain number of
simulations, we start the second phase, which is called guaranteed bounded value iteration
phase (guaranteed BVI-phase). There, we construct a partial model, estimating all the
transition probabilities once. Then we perform BVI for a certain number of steps. If the
estimates for the transition probabilities were good enough, we converge and obtain an
ε-precise result. Otherwise, we can use the bounds obtained in the BVI-phase to guide the
next simulation-phase.

By splitting the algorithm into these two phases, we can use the simulations to gather
information, but do not rely on the bounds it calculates to be correct. The guaranteed
BVI-phase uses all the data gathered during the simulations for one informed guess of the
partial model and hence can give a probabilistic guarantee. For the pseudocode of the
algorithm and a more detailed discussion, see [AKW19a, Section 3.5]. Overall, we obtain
the following theorem ([AKW19a, Theorem 2]).

Theorem 3. With a sufficient number of simulations per simulation-phase, Algorithm 7
of [AKW19a] is PAC for any input parameters G, F, ε and ∆. That means it terminates
almost-surely and returns an interval for VG(s0) of width smaller than ε that is correct
with a probability of at least 1− δ.

However, the number of simulations that we require for this guarantee can still be infea-
sibly high. Thus, we also provide another theorem ([AKW19a, Theorem 1]) which is the
key to the practical applicability of our algorithm.

Theorem 4. For any number of simulations per simulation-phase, Algorithm 7 of [AKW19a]
is an anytime algorithm with the following property: When it is stopped, it returns an in-
terval for VG(s0) that is correct with a probability of at least 1− δ.

The theorem allows us to run the algorithm with any number of simulations that we have
time to run and then know that the returned result is probably correct. While this result
can be useless (e.g. the interval [0,1]), it can also be good enough to get an approximation
of the value in a case where otherwise we would not be able to know anything.

4.1.3 Contribution: Detecting stuck simulations in different settings

In Section 4.1.2.2, we considered the black-box setting, i.e. we used pmin to detect that
we are stuck in an EC by estimating the probability to overlook a successor. If we have
some knowledge of the topology, i.e. we are in the grey-box or white-box setting, there are
more efficient ways of detecting ECs. Given a set of states T ⊆ S we can verify that it is
an EC by checking that for all states s ∈ T and actions a ∈ Av(s) played by the current
strategies, we have |Post(s, a)| = | ˆPost(s, a)|, where ˆPost(s, a) is the number of successors
we observed while simulating the state-action pair (s, a). Note that for this we only need
the number of successors |Post(s, a)|, not the exact set of successors Post(s, a) nor the

2For an idea of how not to deal with aggregating errors, see [Mun19].

55

4 Expressive system formalisms: Limited information

transition probabilities. Assuming we know Post(s, a) (as in other variants of the grey-box
setting), our detection can be faster, since we do not have to simulate until seeing all
successors of every action. Knowing the precise transition probabilities (white-box setting)
does not make the stuck-detection easier.

Further, if we know that |Post(s, a)| = | ˆPost(s, a)| for some state-action pair (s, a), we
can be less conservative in the updating Equations (4.1) and (4.2): instead of assuming all
the remaining probability goes to a sink or goal, we know that it has to reach one of the
successors. Hence we can use their lower and upper bounds.

Our detection mechanism is not only applicable in our PAC algorithm, but we can also
use it in classical SMC. In particular, if we consider a Markov chain in grey-or white-box
setting, we do not have to assume knowledge of the second eigenvalue [LP08, YCZ10] or
transform the whole state-space [HJB+10, YCZ10] (see Section 4.1.5 for more information
on these related works). Instead, we can rely on our simple containment check.

We refer to [ADKW20, Sections 4 and 5] for an in-depth discussion of different detection
mechanisms, possible practical improvements and the impact of model structure on variants
of SMC in different settings.

4.1.4 Experimental results

We first report on the results of the algorithm for statistical model checking of SGs
from [AKW19a] (Section 4.1.2). Afterwards, we recall the key messages from the ex-
perimental comparison in [ADKW20].

4.1.4.1 Statistical model checking of stochastic games

We ran Algorithm 7 of [AKW19a] on MDPs from the quantitative verification benchmark
set [HKP+19] and on SGs from the PRISM-games case study website.3 We did not choose
the number of simulations necessary to obtain the PAC guarantee. This is because this
number probably is very high and since we only proved its existence, not a concrete bound.
Instead, we used the property of Theorem 4, namely that for any number of simulations,
we get a probabilistic guarantee. We ran the algorithm both in the black-box and the
grey-box setting in order to estimate the impact of the additional information.

Figure 4.2 shows the evolution of the lower and upper bounds in both the grey- and the
black-box settings for 4 different models. This is a representative selection in the following
sense: we see that the bounds converge from above and below, independent of whether the
value is close to 1 or 0.5; that in the grey-box setting the bounds always converge more
quickly than in the black-box setting; and that sometimes black-box does not converge
too precisely (bottom left) or at all (bottom right). Graphs for the other models are in
[AKW19b, Appendix C] and a table of the results in [AKW19a, Section 4].

In the black-box setting, within 30 minutes we obtained a precision of ε < 0.1 on 6 of
16 benchmarks. This is in stark contrast to the state of the art, which cannot finish a
single update in our lifetime. In the grey-box setting, the results were even better: within
6 minutes, we achieved a precision of ε < 0.1 for 14 of 16 benchmarks; within the 30
minutes, we achieved a precision of ε < 0.01 for 15 of 16 benchmarks.

3http://www.prismmodelchecker.org/games/casestudies.php

56

http://www.prismmodelchecker.org/games/casestudies.php

4.1 Statistical model checking

0 5 10 15 20 25 30
Time (min)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

V
al

ue

Model: cloud_5

Lower Bound (G)
Upper Bound (G)
Lower Bound (B)
Upper Bound (B)

0 5 10 15 20 25 30
Time (min)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

V
al

ue

Model: pacman

Lower Bound (G)
Upper Bound (G)
Lower Bound (B)
Upper Bound (B)

0 5 10 15 20 25 30
Time (min)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

V
al

ue

Model: csma

Lower Bound (G)
Upper Bound (G)
Lower Bound (B)
Upper Bound (B)

0 5 10 15 20 25 30
Time (min)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

V
al

ue

Model: mdsm

Lower Bound (G)
Upper Bound (G)
Lower Bound (B)
Upper Bound (B)

Figure 4.2: Performance of our algorithm on various MDP and SG benchmarks in grey-and black-
box settings. Solid lines denote the bounds in the grey-box setting while dashed lines
denote the bounds in the black-box setting. The plotted bounds are obtained after
each BVI-phase, hence they do not start at the interval [0, 1] nor the time 0. Taken
from [AKW19a, Figure 2].

In summary, we see that our algorithm is significantly better than the state of the art
in the black-box setting, making it possible to sometimes get estimates of the value. In
the grey-box setting, it actually is practically useful to obtain a good estimate of the value
within a reasonable time.

4.1.4.2 Further comparison of black-box and grey-box statistical model checking

The goal of [ADKW20] was to compare SMC in the black-and grey-box setting and to
compare it with an algorithm that gives non-probabilistic guarantees, namely bounded
value iteration (BVI, see Section 3.1.2). Note that the paper only considered Markov
chains from the PRISM benchmark suite [KNP12], not SGs.

The main results are displayed in Table 4.1. The first columns describe the model,
giving its name, size, the minimum occurring transition probability pmin (which affects
the stuck-detection in the black-box setting), and the number of BSCCs as well as their
maximum size. The last three columns show the runtime of SMC in the black-and grey-box

57

4 Expressive system formalisms: Limited information

Table 4.1: Runtime (in seconds) comparison of black- and grey-SMC for various benchmarks.
Runtimes of bounded value iteration (BVI) are also presented as a baseline. Based
on [ADKW20, Table 1].

Model/ Size pmin BSCC SMC BVI

Property (No., Max. Size) black- grey-

bluetooth(10) > 569K 7.81× 10−3 > 5.8K, 1 9 7 TO
time qual

brp nodl(10K,10K) > 40M 1× 10−2 > 4.5K, 1 86 84 TO
p1 qual

crowds nodl(8,20) 68M 5× 10−2 > 3K, 1 10 8 TO
positive qual

egl(20,20) 1719T 5× 10−1 1, 1 43 25 TO
unfairA qual

gridworld(400,0.999) 384M 1× 10−3 796, 160K 15 8 TO
prop qual

herman-17 10G 4.7× 10−7 1, 34 TO 73 98
4tokens

leader6 11 > 280K 5.6× 10−7 1, 1 106 152 OOM
elected qual

nand(50,3) 11M 2× 10−2 51, 1 11 10 455
reliable qual

tandem(2K) > 1.7M 2.4× 10−5 1, > 501K 7 7 62
reach qual

setting, called black-SMC and grey-SMC, as well as the runtime of BVI. In summary, the
experiments reveal the following.

• For most benchmarks, black-SMC and grey-SMC perform similarly. This is because
most of the models only contain trivial BSCCs of size 1, in which both black-and
grey-SMC can quickly conclude that they are stuck.

• The advantage of grey-SMC is visible on benchmarks with non-trivial BSCCs, which
is only herman-17 in Table 4.1. Here, black-SMC quickly fails while grey-SMC is
extremely competitive. The table exemplifies this for N= 17, and [ADKW20, Section
6.2] provides a more detailed analysis for multiple N.

• Another advantage of grey-SMC is that it is independent of pmin, while black-SMC is
extremely sensitive to it. This is analysed in more detail in [ADKW20, Section 6.1].

• Classical techniques such as VI and BVI fail when either the model is too large or the
transition probabilities are too small. However, they are still to be used for strongly

58

4.1 Statistical model checking

connected systems, where the whole state-space needs to be analysed for every run
in both SMC approaches, but only once for (B)VI.

4.1.5 Related work

We give an overview of the developments of SMC in the past two decades. We focus
on setting our contribution apart from similar works but also mention relevant related
directions of research. For further extensive surveys on the topic, see [LDB10, Kre16,
AP18, LLT+19]. Note that there is a special track dedicated to SMC at the conference
Isola, see [LL14] for the first and [LL20] for the most recent edition (at the time of writing).

For a comparison of statistical and numerical solution methods (like the ones in Chap-
ter 3), we refer the interested reader to either [You06], which includes an empirical com-
parison and presents a framework for expressing correctness guarantees; or to our pa-
per [ADKW20], which gives a detailed exposition of the algorithmic similarities and dif-
ferences of value iteration (classical, bounded or simulation-based) and statistical model
checking, as well as a discussion of their applicability.

Historically,4 statistical model checking started with the use of simulation and statistics
based methods for solving Markov chains with time- or step-bounded properties,
as in [YS02, SVA04, You05, YKNP06, JCL+09, JLS12, BDL+12]. Applications of this
range over numerous domains, e.g. biological [JCL+09, PGL+13], hybrid [DDL+12, EGF12,
Lar12, ZPC13] or cyber-physical [CZ11, BBB+12, DDL+13, KJL+16] systems. There are
numerous tools for solving this problem [SVA05b, BDL+12, BHH12, JLS12, BCLS13],
where [BHH12] even already handles a modest form of nondeterminism.

The problem we have described here in Section 4.1 differs from Markov chains with
bounded-horizon objectives in two ways: firstly, we consider infinite-horizon reachability
and secondly our model exhibits nondeterminism. Both of these pose fundamental chal-
lenges.

Infinite-horizon properties but no nondeterminism

When model checking infinite-horizon properties (also known as unbounded), we require a
way to terminate the simulation after a finite time and still reliably evaluate the infinite-
horizon specification based on this finite simulation. We group previous approaches into
three categories, according to the knowledge they require.

• White-box: The first approach for model checking infinite-horizon properties was
described in [SVA05a], but it depends on knowledge of the value that it wants to
compute, as observed in [HJB+10]. Similarly, in order to give guarantees, the ap-
proaches proposed in [LP08] and [YCZ10, Section 3.2] must compute the second
eigenvalue of the Markov chain, which is as hard as the verification problem itself.

• Grey-box: The approach of [HJB+10] leverages the base idea of [SVA05a], but modi-
fies the key procedure that decides whether a formula holds with positive probability.
It constructs a Markov chain with the same topology, but every transition probability
distribution is uniform. Using that the specification can be decided by simulations

4This paragraph is based on [Kre16].

59

4 Expressive system formalisms: Limited information

of bounded length. The approach of [YCZ10, Section 3.1] performs a reachability
analysis on the underlying topology of the Markov chain and then transforms it so
that all potentially infinite simulations are eliminated.

Note that both of these approaches require processing the whole state-space to con-
struct modified Markov chains, whereas our grey-box approach (see Section 4.1.3)
works on a partial model and only uses the local information about the topology to
terminate simulations. This is particularly important as this preprocessing of the
whole state-space counteracts the purpose of statistical model checking: tackling the
state-space explosion problem by avoiding the necessity to have the whole model in
memory. This practical disadvantage is also experimentally confirmed in [DHKP17,
Section 5].

Recently, [BGJS20] have proposed learning a model of a Markov chain based on the
topology and simulations. They derive a PAC guarantee. The underlying theory is
quite similar to our approach in the grey-box setting, see Section 4.1.3 and [AKW19a,
Section 3.6]. A difference is that they use the Chen bound [Che15] instead of the
Hoeffding bound [Hoe63], which “requires fewer samples than the other sequential
algorithms” [BGJS20, Page 5]. Moreover, they not only treat reachability, but the
whole computational tree logic (CTL), and provide an impossibility result for linear
temporal logic (LTL).

• Black-box: The approach in [RP09] does not assume any knowledge of the system and
instead only performs simulations. However, its usage is quite limited: it is applicable
only to ergodic Markov chains because it relies on the existence of the steady-state
distribution (observed in [DHKP17]); moreover, the practical performance of the
algorithm heavily relies on the Markov chain being monotone, but it is not discussed
how monotonicity of a Markov chain can be determined (observed in [YCZ10]).

The basis of our approach is given in [BCC+14, DHKP17], requiring not only the
power to simulate but also knowledge of the minimum transition probability pmin.
Using this, we can infer a bound on the probability that a simulation still is in the
transient part of the state-space after some number of steps; hence, we can give
an upper bound on the length of the simulation, after which the probability to not
be in the recurrent part is smaller than our confidence ∆. While the a-priori step
bound from [BCC+14] is infeasible, the faster method of [DHKP17] reduces simula-
tion lengths to be practically useful. As we discuss below Definition 6, knowledge of
pmin is a relatively light assumption in many realistic scenarios [DHKP17].

Nondeterminism but finite-horizon properties

Now, after discussing how to deal with infinite-horizon properties, we turn to the second
problem: extending the system to include nondeterminism. Firstly, we consider the setting
where the properties are finite-horizon (also known as bounded) and hence no sophisticated
stopping criterion is necessary. One approach to deal with nondeterminism is to give it a
probabilistic semantics, as for timed automata in [DLL+11a, DLL+11b, Lar13]. By doing
this, the problem is effectively reduced to a Markov chain.

60

4.1 Statistical model checking

Alternatively, [HMZ+12] employs reinforcement learning for MDPs with bounded linear
temporal logic objectives. However, “at any given point we cannot quantify how close to
optimal the candidate scheduler is” [HMZ+12, Page 5] and the algorithm “does not in
general converge to the true maximum [...] A further problem is that [the algorithm] will
eventually produce erroneous results” [DLST15, Page 3]. Moreover, it only uses memoryless
strategies, which are not sufficient for the considered objective.

Algorithms with guarantees were proposed in [Lit94, SLW+06, LP12]. They all deal
with discounted reward objectives5 and employ learning techniques. [Lit94] provides a
convergent algorithm for solving concurrent SGs. Both [SLW+06] and [LP12] study MDPs
and obtain a PAC guarantee, where [SLW+06] is model-free while [LP12] is model-based.

Further, [EGF15] solves stochastic hybrid systems6 for properties that can be encoded
in stochastic satisfiability modulo theory. It employs bounded model checking to obtain
a probabilistic guarantee on the result, and the algorithm could be straightforwardly ex-
tended to yield a PAC guarantee.

Furthermore, [HBKS21] studies combinations of a finite-horizon reward and multiple cost
objectives in constrained MDPs and provides two model-based approaches, one offline like
us and one online. Similarly, [WT21] considers SGs with a combination of sure safety7 and
discounted reward. Dealing with the safety objective in [WT21] is achieved by assuming
the grey-box setting and never taking an action that leaves the safe region. For the reward
objectives, both the online approach of [HBKS21] and [WT21] require a transition to
be seen a certain number of times before they can start updating the estimates, similar
to [BCC+14]. This required number is a lot smaller than in [BCC+14], but still infeasibly
large: for an SG with 100 states, 1 action per state and a confidence bound ∆ and error
tolerance ε of 0.1, both approaches require more than 109 samples before the first update.
Increasing the state space size to 106, the first update requires more than 1017 samples.
The online approach of [HBKS21] only starts giving the PAC guarantee after performing
a number of simulations that is slightly smaller than for the offline approach, but still
too large. In contrast, our grey-box method can immediately give guarantees and return
estimates within minutes, see Example 9 and Section 4.1.4.1.

Nondeterminism and infinite-horizon properties

Finally, we look at both complications, i.e. systems with nondeterminism and infinite-
horizon properties. Most of the papers cited in this section apply some form of learning,
e.g. reinforcement or delayed Q-learning. However, one line of research used a different
approach: The works [LST14, DLST15, DHS18] sample uniformly from the space of strate-
gies; this relies on a a compact representation of strategies as the seeds of a pseudo-random
number generators. The considered strategies can even be history-dependent since memo-
ryless strategies are insufficient for several of the system-specification combinations in the

5Note that solving a discounted objective basically is equivalent to terminating the simulation with the
discount factor in every step, and hence when approximating such an objective can be considered
bounded.

6These are MDPs with some continuous state-variables.
7The paper considers almost-sure safety. This is equivalent to sure safety because if there was any path

leaving the safe region, it would do so after a finite time and thus have a non-zero probability. Hence,
both in sure and almost-sure safety, no path may leave the winning region.

61

4 Expressive system formalisms: Limited information

papers. Note that the first presentations of the approach only dealt with bounded linear
temporal logic [LST14, DLST15], but was extended to transient properties8 in [DHS18].
This approach gives useful lower bounds on the value when good strategies are frequent
because then the chances of sampling a close to optimal scheduler are high.

Now we turn to approaches that deal with the nondeterminism using learning techniques.
Already in [LN81], a learning algorithm was given for zero-sum SGs, which converges to
the optimal pure strategies; however, it did not deal with simulations and how to terminate
them, but rather assumed that given two strategies, it can get the outcome of the SG.

[BT00] considers SGs with an undiscounted reward objective and provides a PAC learn-
ing algorithm. Unlike us, they assume ergodicity of the SG under any pair of strategies.
Intuitively, this means that the whole SG is a single BSCC and independent of the strate-
gies every state is reached almost-surely. Thus, they only perform a single simulation and
thereby learn the whole SG almost-surely.

In [FT14], the problem of terminating simulations is solved in a similar fashion to [LP08,
YCZ10] by requiring (1) the mixing time T of the MDP, which is as hard to compute as
the values we are looking for. The algorithm then yields PAC bounds in time polynomial
in T (which in turn can of course be exponential in the size of the MDP). Moreover, the
algorithm requires (2) the ability to restart simulations also in non-initial states, (3) it only
returns the strategy once all states have been visited sufficiently many times, and thus (4)
requires the size of the state-space |S|. This contradicts a key reason to use SMC, namely
to avoid exploring the whole state space.

In contrast, the basis of our algorithm, [BCC+14] does not require the assumptions (1),
(2) and (3). In particular, instead of assuming knowledge of the mixing time T , it requires
only (a bound on) the minimum transition probability pmin to be able to terminate sim-
ulations. However, as mentioned before, e.g. in Section 4.1.4.1, the approach is entirely
theoretical as the required step bounds for the simulations are infeasible. Note that since
our approach is model-based and uses the smarter techniques from [DHKP17] for terminat-
ing simulations, it does not even require assumption (4) anymore and still can terminate
simulations in a reasonable time. Also, in contrast to [FT14] our algorithm can terminate
early, while [FT14] needs at least T steps, i.e. a number exponential in the size of the MDP.

When not aiming for a PAC guarantee, but only for convergence without any bound on
the current error, deep reinforcement learning has been applied to MDP with many objec-
tives, see e.g. [HPS+19, Has20]. These works aim to make formal verification practically ap-
plicable by using deep learning techniques and hence “quantification of the sub-optimality
of the policy generated by these methods is out of the scope of this work” [Has20, Page
59]. Note that [Has20] is a PhD-thesis summarizing a large body of work, including also
algorithms for MDPs with continuous state and action spaces.

As a final note on SMC, we mention that SMC (in particular Monte-Carlo-Tree-Search)
can be combined with the simulation-based algorithm from Section 3.1.3, as suggested
in [ABKS18]. This yields a spectrum of algorithms from Monte-Carlo-Tree-Search without
any guarantees to the full-knowledge algorithm with hard guarantees. The combined algo-
rithms can outperform both basis algorithms as well as traditional (non-simulation-based)
value iteration [ABKS18].

8Also called constrained reachability: avoid a set of states while trying to reach a goal. By making all
avoid states absorbing, it is also equivalent to classical infinite-horizon reachability.

62

4.2 Bounded-parameter stochastic games

Learning strategies online

Our work in this section assumes that we are in an offline setting, where we can first
simulate the system to learn an optimal strategy before having to apply it. A related
branch of research — online learning of strategies — considers the setting where we want
to optimize performance while we are running the system. The key difference is that in
our setting we can explore all states to get a precise estimate of how good or bad they are,
while in the other setting we want to avoid bad states. Our paper [EKKW21] finds out
when we are stuck in a “bad” cycle and restarts the system, building on the techniques
from [DHKP17]. In [KPR18, KMMP20], the approach learns strategies for unknown MDPs
online. In [KPR18], they optimize mean-payoff while satisfying an ω-regular objective; in
[KMMP20], they provide PAC guarantees for both a black-box and a grey-box setting.
Both of these works assume we are inside a single EC. In a more general reinforcement-
learning context, shielding [ABE+18] allows satisfying a safety specification while learning
an optimal strategy.

4.2 Bounded-parameter stochastic games

In this section, we consider systems where the transition probabilities are not given pre-
cisely, but by an interval. In literature, there exist many names for these kinds of systems:
Markov chains with this property are called interval Markov chains [CSH08, BLW13]
or interval valued Markov chains [JL91, KU02, SVA06]; and MDPs are called inter-
val MDPs [HM18, HHH+19b], MDP with uncertain transition probabilities or uncertain
MDPs [SJ73, NG05, WTM12] or, the name that we adopt in this thesis, bounded-parameter
MDPs [GLD00, TB07, WK08, FDdB14]. For our technical discussion, we choose to only
use the word bounded-parameter system, where systems can be Markov chains, MDPs or
SGs. We motivate this choice in Remark 3.

We have adjusted the presentation of our paper [WMK19] as follows: in Section 4.2.2, we
extract a general construction for reducing bounded-parameter SGs to normal SGs from
[WMK19, Theorem 1 and Remark 3]. The actual focus of [WMK19] on bounded-parameter
MDPs with ω-regular objectives serves as a showcase of the generality and the advantages
of this construction in Section 4.2.3. We start in Section 4.2.1 by recalling relevant notions
from related work, while slightly extending and reformulating them to serve as a good basis
for our general construction.

4.2.1 State of the art

We give the definition of a bounded-parameter SG, which is a natural extension of the
definition of bounded-parameter MDP in e.g. [GLD00].

Definition 7 (Bounded-parameter stochastic game (bSG)). A bounded-parameter stochas-
tic game (bSG) is a tuple G := (S, S�,S©,A,Av, δ, δ), where S,S�, S©,A and Av are as in
Definition 1 (definition of SGs), and δ, δ : S × A × S → [0, 1] are lower and upper bounds
on the transition function.

63

4 Expressive system formalisms: Limited information

p q
1

0

a

b

c

[0.3, 0.7]

[0, 0.9]
[0.1, 0.4]

e

d

(a)

p q
1

0

a

b

c

0.3

0.6
0.1

e

d

(b)

p q
1

0

a

b

c

0.7

0.3

e

d

(c)

Figure 4.3: (a): Our running example of a bSG for Section 4.2. (b/c): A consistent instantiation
under best-/worst-case semantics.

We call an SG G = (S,S�,S©,A,Av, δ) consistent with a bSG G = (S, S�, S©,A,Av, δ, δ),
denoted G ∈ G, if and only if the transition function δ of G is in the interval defined by δ and
δ, i.e. for all states s, s′ ∈ S and action a ∈ Av(s) we have δ(s, a, s′) ≤ δ(s, a, s′) ≤ δ(s, a, s′).

Note that δ and δ do not map to probability distributions. Further, note that a necessary
requirement for the existence of SGs consistent with bSG is the following: for all states
s, s′ ∈ S and action a ∈ Av(s) we have δ(s, a, s′) ≤ δ(s, a, s′); and

∑
t∈S δ(s, a, t) < 1 as

well as
∑

t∈S δ(s, a, t) > 1. We assume that this requirement is satisfied, i.e. there exist
consistent SGs for every bSG we consider.

A bSG G generalizes bounded-parameter MDPs (bMDP) and bounded-parameter Markov
chains (bMC) in the usual way, i.e. it is a bMDP if all states belong to one player (S� = ∅
or S© = ∅), and it is a bMC if all states s have only a single action (|Av(s)| = 1).

Example 12 (bSG). Figure 4.3a shows the running example of a bSG for Section 4.2. As
before, it is a modification of the SG from Figure 2.1. Here, we use intervals instead of
precise transition probabilities. Note that for actions a, b, d and e, we do not depict the
interval [1, 1].

For action c, we do not have the precise probability distribution that assigns 1/3 to every
successor as before. Instead, we have intervals that describe possible instantiations. Note
that there are uncountably many consistent instantiations because the intervals contain
uncountably many real numbers.

We show two consistent instantiations in Figures 4.3b and 4.3c. They are consistent
because the chosen probabilities add up to 1, i.e. they are a proper distribution over succes-
sors and because all chosen probabilities lie within the given intervals. We highlight that
it is possible for the underlying graph to change when instantiating the probabilities, since
transitions can disappear, such as (q, c, 1) in Figure 4.3c. 4

There are two important semantic distinctions to be made when dealing with bounded-
parameter systems. We first give a formal definition of the semantics before providing an
example and some intuition. The semantics decide how the probabilities are picked from
the intervals. We can view the intervals as an additional source of nondeterminism and
hence we need an interval-player who resolves this nondeterminism. This player can use

64

4.2 Bounded-parameter stochastic games

memoryless or history-dependent strategies (once-and-for-all or at-every-step) and be help-
ful or adversarial (best-case or worst-case).

Definition 8 (Interval-player strategy). An interval-player strategy π in a bSG G is a
function that for a given finite path and choice of action (by either Maximizer or Minimizer)
returns a distribution over successor states that is consistent with the intervals. Formally,
π : ((S× A)∗ × S)× A 7→ D(S), such that for all ρ ∈ Paths, all s, s′ ∈ S with the last state
of ρ being s, and all a ∈ Av(s) we have δ(s, a, s′) ≤ π(ρ, a)(s′) ≤ δ(s, a, s′).

A bSG G together with a pair of Maximizer and Minimizer strategies (σ, τ) and an
interval-player strategy π induces a Markov chain9 G(σ,τ,π) and, given a starting state s ∈ S,

a unique probability measure P(σ,τ,π)
s,G on infinite paths.

Definition 9 (Semantics). If you can read this, you found a dirty hack.

• Once-and-for-all or at-every-step. In the once-and-for-all semantics, the interval-
player strategy is memoryless. This is equivalent to choosing a single consistent SG
G ∈ G. In the at-every-step semantics, the interval-player strategy uses memory.

• Best-case or worst-case. In the best-case semantics, the interval-player strategy is the
supremum over all strategies, i.e. it is maximizing the objective. In the worst-case
semantics, it is the infimum.

Example 13 (Semantics). Consider again the bSG from Figure 4.3a and let the objective
be to maximize the chance of reaching 1.

Under best-case semantics, the interval-player will choose the probabilities as in Fig-
ure 4.3b, since it minimizes the chance of reaching 0 and assigns the greatest possible
probability to reaching 1. Under worst-case semantics, the interval-player can choose the
probabilities as in Figure 4.3c, thereby reducing the chance of reaching the goal to 0. Note
that in both cases, picking the probabilities is non-trivial and does not only amount to using
extremal values of the intervals because of the interdependencies between the intervals and
the necessity to be consistent.

So far, this example used once-and-for-all semantics, as we fixed the probabilities and se-
lected a single consistent SG. Under at-every-step semantics, the interval-player can choose
new probabilities every time action c is played. For a reachability objective, this is not neces-
sary. Thus, to exemplify the necessity of these semantics, we consider a different objective:
being in state q, we want to loop once in q and afterwards reach 1. This is a linear temporal
logic objective, specifying a temporal relation between different events.

Under best-case semantics, an optimal strategy of the interval-player is to first maximize
the chances of looping by picking δ(q, c, q) = 0.4 and some consistent probabilities for both
other transitions. Upon reaching q for the second time, the interval-player switches to
picking probabilities as in Figure 4.3b. This strategy uses memory and takes advantage of
the fact that the interval-player can modify the choice at every step. 4
9This Markov chain can have infinite state-space since the interval-player strategy can be history-

dependent. We refer to [BK08, Section 10.6] for details on how to obtain a Markov chain by applying
a strategy to a nondeterministic system.

65

4 Expressive system formalisms: Limited information

We give some facts and intuition about the semantics. The best-case semantics can
be understood as a “design-challenge”, where we are interested in building our system
and finding the optimal assignment of all transition probabilities, as in [BLW13]. The
worst-case semantics is about robustness in the face of uncertainty. In other words: we
want to compute a value that can be obtained, no matter what probabilities are picked
from the intervals. This view is taken if our focus is robustness or model-checking, see
e.g. [SVA06, CSH08, WTM12, PLSS13, HHH+19b].

Once-and-for-all semantics is “included” in at-every-step semantics because the interval-
player can choose not to use memory. Further, if memoryless strategies are sufficient
for the interval-player, once-and-for-all and at-every-step semantics yield the same value
and optimal strategies. This is the case for the reachability objective in Example 13 and
is proven for other objectives in [PLSS13, BDL+17, HM18], as well as Corollary 1 in
Section 4.2.3. However, there are cases where memory is necessary to achieve the optimal
value, which also affects the complexity to solve the problem, see e.g. [CSH08]. This was
exemplified with the linear temporal logic objective in Example 13.

Remark 3 (Naming). These semantics have appeared under different names in the liter-
ature. Once-and-for-all and at-every-step were used in [BDL+17]. Alternatives are sta-
tionary uncertainty model and time-varying uncertainty model from [NG05] or uncertain
Markov chain and interval Markov decision process from [SVA06]. Even though the last
two names were reused in several works [CSH08, CK15, DC18], we refrain from using
them, as they can lead to confusion: uncertain is a very broad term that can also refer
to more general uncertainties than just intervals [NG05, WTM12] and interval Markov
decision process is also used to denote bMDPs in [HM18, HHH+19b].

Instead of best-case and worst-case, literature typically uses interval-value function [KU02,
GLD00, WK08], optimistic or pessimistic criterion [TB07], maximal and minimal proba-
bility [BDL+17] or lower and upper bound [DC18]. We do not use the word interval-value
function because we want to differentiate whether the interval-player is maximizing or min-
imizing, and we refrain from using maximal/minimal probability or lower/upper bound as
these words have been used throughout Chapter 3 with a different meaning.

The word interval-player is not used in literature, but the idea of having a player resolve
the intervals is often used. This player is called nature [NG05, PLSS13, HHH+19b], en-
vironment [WTM12] or adversary [LAB15]. These words evoke the feeling that the player
is random or adversarial, as the papers usually only consider the worst-case semantics.
Hence, since we also want to treat the best-case semantics, we use the more general term
interval-player.

Our goal is to reduce model checking of bounded-parameter systems to model check-
ing of normal systems. Thus, we need a way to get rid of the interval-player while still
capturing all uncountably many possible interval-player strategies. The following key ob-
servation allows us to that: even though there are uncountably many ways of picking
consistent probability distributions, they can be expressed as the combination of finitely
many distribution, which are called basic feasible solutions [SVA06, Section 6.1].10

10Our definition of BFS is based on [SVA06, Definition 4], but slightly adjusts notation and defines BFS for
state-action pairs instead of only states because we consider bSGs instead of only bMCs as in [SVA06].

66

4.2 Bounded-parameter stochastic games

0

0.9
0.10.4

1

0

0.3

0.7

1

p(1)p(q)

p(0)

Figure 4.4: Visualization of the BFS of the state-action pair (q, c) in the bSG from Figure 4.3a.
Based on [WMK19, Figure 2b].

Definition 10 (Basic feasible solution (BFS)). A distribution p(s,a) ∈ D(S) is a basic
feasible solution (BFS) for a state-action pair (s, a) if and only if it is consistent with the
intervals, i.e.

δ(s, a, s′) ≤ p(s,a)(s′) ≤ δ(s, a, s′) for all s′ ∈ S.

and there exists a set S′ ⊆ S with |S′| ≥ |S|−1 and for all s′ ∈ S′ either δ(s, a, s′) = p(s,a)(s
′)

or δ(s, a, s′) = p(s,a)(s
′).

We denote the set of all BFS of a state-action pair (s, a) by BFS(s, a).

In other words: we have three requirements for a basic feasible solution, namely (I) it
must be a distribution (sum up to 1), (II) it must be consistent with the intervals and (III)
it must coincide with the bounds of the intervals in at least |S| − 1 places. The following
example gives a graphical interpretation.

Example 14 (BFS). We exemplify the BFS of the state-action pair (q, c) of our running
example in Figure 4.4. It shows a coordinate system, where every point in it corresponds to
a vector of probabilities for going to q, 1 or 0. The coloured regions indicate the restrictions
imposed by the requirements.

Requirement (I) prescribes that the resulting vector must be a distribution, thus restrict-
ing the possible solutions to the light grey plane. Intuitively, the corners of the triangle
correspond to surely picking one of the successors, and the plane contains all convex com-
binations of these three points.

Requirement (II) is the consistency with the intervals, which is depicted as the dashed box.
The intersection of the light grey plane and the box forms the dark grey plane. Every point
in this intersection is a consistent solution for instantiating the intervals. The diamonds
marking the corner points of the dark grey plane are the BFS of the state-action pair (q, c).

Note that by virtue of being on the border of the dashed box, every BFS fulfils Requirement
(III), namely that the chosen probability is equal to one of the extremal values in at least
all but one dimensions. 4

67

4 Expressive system formalisms: Limited information

By construction, every possible solution can be expressed as a convex combination
of BFS [SVA06, Proposition 1]. Moreover, the number of BFS is bounded by |S| ∗
2|S|−1 [SVA06, Lemma 6], i.e. at most exponential. Since there is no proof given in [SVA06],
we think it is instructive to provide it here: the definition of BFS requires the probability
for all but one successor state to be fixed to one of two extremal values. To find all BFS,
we have to consider every one of n states to not be fixed. For each of them, the remaining
n−1 states have exactly two possible values, resulting in 2n−1 possibilities per state. In the
worst case, n = |S|, if a state-action pair can reach all states. Realistically, n = |Post(s, a)|
will often be a lot smaller.

4.2.2 Contribution: Reducing from bounded-parameter to standard systems

We utilize the idea of BFS from previous work to provide a general construction for reducing
bounded-parameter systems to standard ones. We saw in the previous Section 4.2.1 that
for every state-action pair, we can describe all possible instantiations of the intervals as
a mixture of finitely many BFS. Hence, we can capture all possible instantiations by the
following reduction: introduce a new state for every state-action pair and set its actions
to be exactly the BFS. Formally, for a bSG G = (S,S�,S©,A,Av, δ, δ), let Snew := {s(s,a) |
s ∈ S, a ∈ Av(s)} be the set of new states. Then we define the transformed SG G′ :=
(S′,S′�, S

′
©,A

′,Av′, δ′) as follows.

• S′ := S ∪ Snew

• S′� :=

{
S� ∪ Snew best-case semantics

S� worst-case semantics

• S′© :=

{
S© best-case semantics

S© ∪ Snew worst-case semantics

• A′ := A ∪ {p ∈ D(S) | s ∈ S, a ∈ Av(s), p ∈ BFS(s, a)}.

• Av′(s) :=

{
Av(s) for all s ∈ S

BFS(s, a) for all s(s,a) ∈ Snew

• for every original state s ∈ S and a ∈ Av(s), set δ′(s, a, s′) := 0 for s′ ∈ S and
δ′(s, a, s(s,a)) := 1.

• for every new state s(s,a) ∈ Snew, p ∈ Av′(s(s,a)) and s′ ∈ S, set δ′(s(s,a), p, s′) := p(s′).

This construction makes the interval-player explicit by adding a new state for the choice
of the interval-player strategy. Since this new state has exactly the BFS as actions, the
interval-player can choose every possible instantiation of the intervals. The new states
belong to either the Maximizer or the Minimizer, depending on whether we are in best- or
worst-case semantics.

The following Theorem 5 is our central claim: every behaviour of a bSG can be captured
by the transformed SG. It is a generalization of [WMK19, Theorem 1]. To make this claim

68

4.2 Bounded-parameter stochastic games

formally, we provide a way to map paths of the transformed SG back to paths in the
original bSG.

Let ρ be a path in the transformed SG. By construction, it is an element of (S×A×Snew×
(A′ \A))∗× S, i.e. original and new state-action pairs alternate. We define project(ρ) to be
the projection of this path to only elements of S and A. Concretely, for every subsequence
(s, a, s(s,a), p, s

′), we remove s(s,a) and p. The resulting sequence still is a path because
p(s′) > 0 and since p ∈ BFS(s, a), we also have s′ ∈ Post(s, a) for some δ consistent with δ
and δ.

Theorem 5 (Every bSG can be transformed to an equivalent SG). Let G be an arbitrary
bSG, (σ, τ) an arbitrary pair of Maximizer and Minimizer strategies and π an interval-
player strategy. Further, let G′ be the SG constructed from G as just described.

We can construct a pair of Maximizer and Minimizer strategies (σ′, τ ′), such that the
probability measures in both induced Markov chains are equal, i.e. for every s ∈ S and
X ⊆ PathsG′

P(σ,τ,π)
s,G [{project(ρ) | ρ ∈ X}] = P(σ′,τ ′)

s,G′ [X]

Proof. Assume without loss of generality that Snew ⊆ S′�. Then τ ′ = τ and for every path
ρ ∈ (S × A × Snew × (A′ \ A))∗ × S� in the new SG that ends in an original Maximizer
state, we let σ′(ρ) = σ(project(ρ)) be the same as in the original SG. The difference
between the original and the new strategy is that Maximizer has to mimic the interval-
player strategy in the new states Snew. Consider an arbitrary state-action pair (s, a).
By [SVA06, Proposition 1], every distribution δ(s, a) that the interval-player chooses can
be expressed as a combination of BFS(s, a). These are exactly the actions of Maximizer
in the new state s(s,a) that is surely reached upon playing a in s. Hence, Maximizer can
choose σ′(s(s,a)) such that the resulting distribution over successor states equals δ(s, a).
Then the resulting probability measure on paths projected to only the original states is
equal, as there is one sure step and one step with the same distribution. For more details
on the final step of the proof, we refer the interested reader to [SVA06, Proposition 2].

The central idea of letting a player choose the BFS in order to capture all possible
instantiations of the intervals was introduced in [SVA06] and has been reused in several
works since then. The contribution of Theorem 5 is to state the result in full generality:
independent of objectives because it talks about the underlying probability measure; in-
dependent of semantics because it captures all behaviours of the interval-player; and for
bSGs, not only bMDPs or bMCs.

Note that bSGs are the most general notion required as they are “the end of a chain” in
the following sense: applying the construction to bMCs adds a player, effectively making
them MDPs (which possibly is the intuition behind the term “IMDP semantics”). Applying
the construction to bMDPs under worst-case semantics11 also adds a player, effectively
making them SGs. But when applying the construction to bSGs, there already are two
players. Hence under both best- and worst-case semantics, the result of the transformation
is an SG. Even when considering more complex systems such as concurrent bSGs, the

11This assumes it is an MDP with only Maximizer states. The dual statement holds for an MDP with only
Minimizer states under best-case semantics.

69

4 Expressive system formalisms: Limited information

construction remains basically the same: for every pair of actions, we add a new state to
resolve the intervals, but we do not have to add a player.

We exemplify the advantages of our general construction in the next Section 4.2.3,
as follows.

• We use the independence of the specification to derive Theorem 6 by a straightforward
reduction to SGs.

• We use the independence of semantics of Theorem 5 and the natural way to capture
them in the transformation to derive Corollary 1, showing that at-every-step and
once-and-for-all semantics yield the same optimal values and strategies.

• We use the understanding of bounded-parameter systems gained from this general
viewpoint to derive a more efficient algorithm for a special case, see Theorem 7.

4.2.3 Contribution: Application to ω-regular objectives

The motivation of our paper [WMK19] was to solve bMDPs with ω-regular objectives.
Given the discussion of the previous Section 4.2.2, we know that we can transform a
bMDP into an exponentially larger SG (as there are exponentially many BFS). Hence, we
can apply solution methods for SGs with ω-regular objectives, e.g. [CH06, Algorithm 2].
Thus, we obtain the following theorem (see [WMK19, Theorem 2]):

Theorem 6. Given a bMDP (and even bSG) with an ω-regular objective under best- or
worst-case semantics, we can compute the optimal strategies as well as the value function
in time exponential in the size of the transformed SG, which is, in turn, exponential in the
size of the original bMDP (or bSG).

Moreover, we know that memoryless pure strategies are sufficient for SGs with ω-regular
objectives [CH12, Theorem 2]. Thus, we can give the following corollary of Theorem 5
(see [WMK19, Corollary 1]).

Corollary 1. Given a bSG and an ω-regular objective, the optimal strategies and values
are the same under the once-and-for-all and at-every-step semantics.

Note that this result might be confusing at first sight: in some settings, ω-regular objec-
tives require memory, but the corollary states that no memory is needed. This is because
of a technical intricacy of the standard approach for model checking ω-regular properties:
the objective can be specified on labels of the states of the system, in which case memory
is required for optimal strategies. The solution approach is to transform the objective
into an automaton and then construct the product between the system and the objective-
automaton, see e.g. [BK08, Chapter 4]. In this product, the satisfaction of the objective
depends only on the states of the system and no memory is required anymore. We exem-
plify this on the linear temporal logic objective that we already used in Example 13. For
a more formal description, we refer to the appendix of [WMK19].

Example 15 (Memoryless strategies for ω-regular objectives). We consider again our
running example of a bSG with the objective of looping in q once and then reaching 1. This

70

4.2 Bounded-parameter stochastic games

objective can be captured by an ω-regular expression, namely q(q)∗(1)ω. An automaton12

for this objective has three states: the initial state s1; the state s2 that is reached after
seeing the first q, where we loop upon seeing further q’s; and the accepting state s3 that is
reached when the system enters state 1.

Taking the product of this automaton for the objective and the system, i.e. our running
example bSG, effectively creates three copies of the states S of the bSG by taking the product
S×{s1, s2, s3}. In the state (q, s1) of the product, the interval-player uses the strategy that
improves the chances of looping in q. If a loop occurs, the automaton proceeds to state
s2, thus switching the state of the product to (q, s2). Note that, even though the system
looped in q, the product has made progress, since we reach the new state (q, s2) where the
objective has been updated. In this state, the interval-player now maximizes the chances of
reaching 1.

In summary, we see that memory is required when considering only the system since
in state q two different decisions have to be taken. But when considering the product of
system and objective, the memory is effectively part of the state-space and thus memoryless
strategies suffice. Corollary 1 refers to the product of the system and objective. 4

We highlight that both Theorem 6 and Corollary 1 rely on the generality of our approach.
We did not have to apply specialized reasoning for bSGs, but could immediately reduce
to SGs and transfer known results from literature. However, this generality comes with a
drawback: the exponential blow-up in size when transforming the bSG to an SG. If there
are not many actions and, more importantly, not many successors per state-action pair,
this blow-up can be negligible in practice. However, we are also interested in solutions with
better time- and space-complexity.

In particular, consider a bMDP with only Maximizer states under best-case semantics.
Here, the resulting system after the transformation still is an MDP, which admits a polyno-
mial solution algorithm. So we have to avoid the exponential blow-up of the transformation
in order to obtain a polynomial solution algorithm for bMDP.

• Instead of adding a new state for every action, we can add the new actions to the
same state, since all belong to the same player Maximizer.

• Since we choose the probabilities, we can avoid transitions disappearing. Thus, max-
imal end components (MECs) of the bMDP can be computed on the bMDP without
transforming it, since this qualitative analysis of the graph does not rely on the precise
transition probabilities, but only on edges being present or not. We can use [HM18,
Algorithm 3] which runs in polynomial time [HM18, Proposition 6].

• The qualitative analysis of whether a MEC is winning can also be performed on the
bMDP, see Step 1c) of our procedure in [WMK19, Section IV.C].

• Finally, computing the probability to reach the MECs can also be done in polynomial
time [PLSS13, Theorem 4.1]. Intuitively, the constraints of the intervals can be added
to the linear program that is used to solve the MDP.

12Note that the proposed automaton rejects words that cannot become part of its language by blocking.
For example, upon seeing 0, the automaton blocks, since there is no transition for 0, and thus the
objective is not satisfied.

71

4 Expressive system formalisms: Limited information

Thus, we obtain an algorithm with better space- and time-complexity (see [WMK19,
Theorem 3]).

Theorem 7. Given a bMDP with an ω-regular objective under best-case semantics, we
can compute the optimal strategy as well as the value function in time polynomial in the
size of the bMDP.

4.2.4 Related work

We first give an overview of the literature on bounded-parameter systems, i.e. Markov
chains and MDPs with interval-valued transition functions. Afterwards, we mention several
other notions of limited information that have been considered.

Bounded-parameter systems

Systems with intervals instead of exact transition probabilities were studied under a va-
riety of names, with different semantics and objectives, and in several research commu-
nities. We found works from journals or conferences about formal methods [JL91] and
model checking [SVA06, PLSS13, BDL+17], control theory [WTM12, DC18], operations
research [SJ73, NG05], planning [Buf05] and artificial intelligence [GLD00, WK08]. In the
following, we aggregate papers according to their model (Markov chain or MDP), give
their semantics (as distinguished in Definition 9) and mention their objective, possibly
complemented by a comment on special extensions.

Interval Markov chains (IMC, called bMC in our technical sections) have been in-
troduced independently by [JL91] and [KU02]. Both works use once-and-for-all semantics.
The former [JL91] considers bisimulation of interval systems, so it does not distinguish be-
tween best- or worst-case. The latter [KU02] computes best- and worst-case step-bounded
reachability values.

One work uses an uncommon combination of semantics: in [BLW13], the authors try to
find the optimal probabilities to satisfy a linear temporal logic (LTL) objective, i.e. they
consider best-case and once-and-for-all semantics. Their algorithm “converges, but not
necessarilly [sic] to a global optimum.” [BDL+17, Page 2].

The remaining works we mention in the area of IMCs all consider both the once-and-
for-all and at-every-step semantics, where [BDL+17] even shows that these semantics are
equivalent when considering reachability. There are works on model checking of IMCs in
worst-case semantics with probabilistic computational tree logic (PCTL) [SVA06, CK15]
and ω-PCTL objectives [CSH08], establishing complexity results. Note that unlike the
others, [CK15] considers open intervals. Moreover, both worst- and best-case probabilities
are computed for reachability in [BDL+17] and for ω-regular objectives in [DC18].

Bounded-parameter Markov decision processes (bMDP) were already considered
in the 70s [SJ73], but the term bMDP was introduced by [GLD00]. For a PhD-thesis
summarizing research on modelling and performance analysis of bMDPs, see [Has17a].

Several works use the once-and-for-all semantics [SJ73, GLD00, TB07, WK08], as they
quantify over all models and select one. Many others use a nature player or adversary
to pick the probabilities; when this other player uses memory, we are in the at-every-step
semantics [Buf05, WTM12, FDdB14, LAB15, HHH+19b]. Both these semantics occur

72

4.2 Bounded-parameter stochastic games

in [NG05]. Moreover, in [PLSS13, HM18] the authors even prove that they are the same
because the interval-player can play optimally using only memoryless strategies.

Both best- and worst-case are considered in the setting of discounted reward [SJ73,
GLD00], mean-payoff [TB07] and expected total reward [WK08]. Only best-case seman-
tics is investigated in [HM18], giving a guaranteed-precision algorithm for reachability.
Only worst-case semantics is investigated with the objective being stochastic shortest
path [Buf05], expected total cost [NG05], linear temporal logic (LTL) [WTM12], prob-
abilistic computational tree logic (PCTL) [PLSS13, LAB15], discounted reward [FDdB14]
and combinations of expected rewards, reachability and ω-regular properties [HHH+19b].
Note that [NG05, WTM12, PLSS13] consider more general uncertainties than just intervals.

One fundamental difficulty of interval systems is that transitions can “disappear” if their
probability is set to 0 [Buf05, DC18]. This complicates the qualitative analysis of the graph
(cycle-detection). In [CSH08, HHH+19b], the authors also consider positive uncertainty,
where every probability has to be greater than 0.

Finally, we mention that different measures of uncertainty can be considered and are
surveyed in [Wal96]. The paper concludes that: “Each of the four measures seems to be
useful in special kinds of problems, but only lower and upper previsions [(i.e. intervals)]
appear to be sufficiently general to model the most common types of uncertainty” [Wal96,
Page 1].

Other notions of limited information

The problem of not having precise information about every part of the model has been
considered for decades from different viewpoints. Our contributions relate to the setting
where we can obtain many simulations of the system, but know very little apart from that
(see the previous Section 4.1); and (in this Section 4.2) we consider the setting where we
know everything except the precise transition probabilities, on which we only assume to
have intervals. We now comment on several other notions that have appeared in literature
and point to publications that can serve as an entry-point to that area of research.

Firstly, we mention parametric models. These lift the assumption that the intervals
on all transitions are independent. Instead, they consider models where several transitions
can depend on the same unknown, but fixed parameter.13

We observed two approaches for dealing with parametric models: on the one hand, para-
metric model checking or parameter synthesis consider finding valuations of the parameters
that satisfy a specification. In essence, they apply model checking to families of systems.
See [Daw04, HKM08] for early works on this; [BDL+17] for a comparison of IMCs, para-
metric Markov chains and parametric IMCs; [CDP+17] for an application in biochemical
systems; and [Jun20] for a recent and extensive overview.

On the other hand, given a parametric model and the possibility to run simulations in
it, one can try to infer the actual parameter values. This corresponds to model check-
ing the particular given system, with the added complication that the probabilities are
unknown; in contrast to our simulation-based approach in Section 4.1, in this setting in-
formation about one transition also propagates to other transitions depending on the same

13Parametric verification should not be confused with the model checking of parameterized sys-
tems [CHVB18, Chapter 21], which contain arbitrary numbers of components.

73

4 Expressive system formalisms: Limited information

parameter. This approach was considered in different research communities, including
operations research [WKR13], foundations of software engineering [LBB+18] as well as
verification [MA20].

A variant of the parametric verification is a problem called scenario-based verifica-
tion. It assumes that there is an underlying distribution of the parameters which can be
sampled from. Then it considers the related question of what percentage of a number of
sampled models is expected to satsify the specification [CJJ+20].

Another generalization of interval systems are constraint Markov chains [CDL+11].
In these, a given constraint function defines for every possible transition function whether
it is permitted or not. In [CDL+11], linear and polynomial constraints are considered, as
they have desirable properties for closure and parallel composition of constraint Markov
chains. Very similar is the model of Markov decision process with imprecise parameters,
where the transition probabilities are also restricted by linear inequalities [WE94].

Further, instead of or additionally to assuming that the transition probabilities are un-
known, one can also consider unknown rewards. This was already done in [Sil63, Sec-
tion II] and [GLD00], but also more recently, see e.g. [HBK17, GHS18, BHL19], as well
as [Fan21] for a recent practical case study. Similarly, when looking at continuous-time
MDPs, one can consider unknown transition rates [KCS02].

Furthermore, there are partially observable models, most commonly partially ob-
servable MDPs (POMDPs) [Åst65, KLC98]. In these, the limited information is not on
the transition function, but on the state-space. Instead of being able to know the cur-
rent state, we only get an observation about the state; this observation is shared between
multiple states, thus revealing only partial information. It is undecidable whether there
exist strategies that satisfy a specification with a given probability [MHC03]; still, finding
approximate solutions has been very actively investigated, see e.g. [RGT05, Spa12]. Note
that there is a close connection between finding observation-based strategies in POMDPs
and parameter synthesis, as well as concurrent SGs and software product lines [Jun20,
Chapter 7].

A subclass of POMDPs are multi-model or multi-environment MDPs (MEMDPs).
The basic idea of this setting is that we are given a concrete, finite set of possible transition
functions and rewards, as opposed to the parameters with infinite domain in parameter syn-
thesis. Previous work has considered the question of finding a strategy for all instantiations
of the transition function [RS14]; for a given weight distribution over the transition func-
tions [SKD21]; or, in [Sil63, Section I] and [CCK+20], for a single run in a fixed MEMDP,
inferring the environment from the history. A motivation for considering MEMDPs is that
“several verification problems that are undecidable for partially observable MDPs are de-
cidable for MEMDPs” [RS14, Page 1] and that “the specific structure of MEMDPs allows
for more efficient algorithmic analysis, in particular for faster belief updates” [CCK+20,
Page 1].

Partially observable SGs are typically called games with incomplete information,
see e.g. [DR11]. For an analysis of these and variations of them, see [Sor03]. Further, there
are perspective games, where players can view only the parts of the system that they
own [KV19, KS21].

74

4.3 Summary, discussion and outlook

Finally, we mention modal transition systems, introduced by [LT88] and recently
surveyed by [Kre17]. In these, we get qualitative information about the transitions: they
must be there (corresponding to an interval with δ > 0) or they may be there (correspond-
ing to an interval with δ = 0). We refer to [Kre17] for information about their applications
and extensions.

4.3 Summary, discussion and outlook

Summary In this chapter, we studied stochastic games (SG) with limited information.
In Section 4.1, we can only simulate the system. This can either be because we do not
know the full system, but only a lower bound on the transition probabilities (black-box)
or only the local topology (grey-box); or because the system is so large that even though
we know it precisely (white-box), non-statistical algorithms are infeasible. In all cases, we
provide a statistical model checking algorithm with a PAC guarantee. It is the first one
for SG and the first practically applicable one in the black-box setting. Moreover, it is an
anytime algorithm which we can stop at any time during the computation and obtain an
estimate of the current precision and confidence.

In Section 4.2, we give a general transformation from bounded-parameter systems to
normal ones. The advantage of the transformation is its independence of the objective
and the semantics. However, the transformed normal system is exponentially larger. Still,
using reasoning based on the understanding we derived from our general procedure, we
obtain a procedure with optimal complexity for a special case.

Discussion In a sense, the partial model that is built from the simulations in Section 4.1 is
a bounded-parameter system. It is not immediately obvious because we define δ̃ using the
one-sided variant of the Hoeffding bound, and thus the resulting intervals always have an
upper limit of 1. Our algorithm deals with this by using specialized Bellman equations (4.1)
and (4.2). To have the same behaviour in a bSG, we could add a transition to the goal and
one to a sink, both with interval [0, 1]. Then the upper bound (best-case semantics) always
assigns all remaining probability to the transition going to the goal and the lower bound
(worst-case semantics) to the sink. Alternatively, we can use the two-sided variant of the
Hoeffding bound, which immediately yields intervals on the probabilities. Then, the BVI-
phase basically amounts to transforming the bSG resulting from the simulation-phase into
an SG and solving it by standard algorithms. This allows us to clearly identify whether the
BVI-phase does not converge due to BVI needing more iterations or due to the intervals
being too coarse. Previously, we could not distinguish these cases well. This combination
— learning a bounded-parameter system from simulations — is used by [SSJP22], as well
as our own work in Chapter 7. Learning a system from data in order to model check it has
also been considered in e.g. [MCJ+12, WSYP18, WSQJ21].

Outlook There are many interesting directions for future work. Firstly, we can further
investigate the combination of the approaches we just discussed in order to learn
models from real data. Note that depending on whether the learning is offline or online,

75

4 Expressive system formalisms: Limited information

further methods such as shielding [ABE+18] during the simulations become necessary, see
also the last paragraph of Section 4.1.5.

Secondly, we discuss extensions of the SMC-approach. Practically, there is a huge
potential for improvements of the algorithm. The number of simulations per simulation-
phase is not only theoretically interesting but also an important hyper-parameter affecting
the practical performance of the algorithm. Further, the bounds on the transition proba-
bilities are usually very conservative. Using another bound, e.g. the Chen bound [Che15]
as in [BGJS20], could improve this. Furthermore, we can distribute ∆ not uniformly, but
based on some heuristic to recognize which transitions are relevant. For a discussion of
relevance, we refer to Section 3.1.3. Moreover, we mention that we can combine statisti-
cal model checking with importance sampling or importance splitting, see [LST16] for an
overview. These techniques allow getting good estimations of rare events, i.e. transitions
with low probability.

Given a good implementation and choice of hyper-parameters of the SMC algorithm,
we can further compare it with non-statistical algorithms yielding hard guarantees such as
bounded value iteration. From this, we can derive practical advice on when to use SMC
and when a non-statistical algorithm; currently, the advice given in [ADKW20] only relates
to Markov chains. Moreover, the more practical this approach is, the better the chances
for using it in a model checking pipeline.

Theoretically, we can extend our algorithm to other objectives. An extension to ω-
regular objectives relies on one key change: when considering ω-regular objectives there
are no obvious goal or sink states. Thus, we have to detect that we have reached an EC as
described in Section 4.1.2.2 and then investigate whether the objective can be satisfied in
this EC. For this, only qualitative knowledge of the transitions is necessary. An orthogonal
idea is to investigate the number of simulations per simulation-phase to not only prove the
existence of a bound but the exact number.

Thirdly, we give a direction for future work on bounded-parameter systems. Here,
our general construction allows to apply algorithms for normal systems to their bounded-
parameter counterparts. Additionally, there is hope for finding algorithms with optimal
complexity by investigating and improving the naive, exponential approach, as we did for
Theorem 7.

Further, one might consider other semantics for the interval-player than only best- or
worst-case. Assuming some kind of fairness would result in a probability distribution over
BFS and could easily be incorporated without blowing up the bSG. Alternatively, one
might use things such as Minimax Regret Optimisation [RLH21], which not only considers
the worst-case but additionally tries to optimize for all instantiations.

Finally, we refer to our extensive discussion of related work considering different settings
with limited information in Sections 4.1.5 and 4.2.4, as well as the system and specification
modifications in Sections 1.5.2 and 1.5.3. Insights and ideas from this thesis can potentially
be transferred to those other settings.

76

5 Expressive specification formalisms:
Multiple objectives

Motivation So far, we have given algorithms to verify that a system satisfies a specifi-
cation which is modelled as one objective. However, we are often interested in multiple,
possibly conflicting objectives, e.g. stay safe and maximize a reward while minimizing cost
or energy consumption. Again, we focus on the most fundamental case: a generalized-
reachability objective. This problem is not only practically relevant but also theoretically:
the precise decidability of generalized-reachability stochastic games is still open.

Problem statement Similarly to Chapter 3, we are given a stochastic game (SG) G and
consider reachability. The difference is that instead of one set of goal states, in this chapter
we have a generalized-reachability objective, which is an n-tuple T = (F1, . . . ,Fn) of goal
state sets Fi ⊆ S. Thus, instead of values, we now compute vectors of values, where
every component corresponds to one objective. For a vector ~V, we denote by ~Vi its i-th
component.

We are interested in the function A : S → 2[0,1]
n
, which maps every state to the set of

vectors achievable from it. Formally, given an SGG and a generalized-reachability objective
T , for all states s ∈ S (in particular the given initial state s0) we want to compute

A(s) := {~V | ∃σ.∀τ.∀i ∈ 1, . . . , n : Pσ,τs,G[♦Fi] ≥ ~Vi}

It is currently not known whether finding the exact function A is decidable, but we show
that and how it can be approximated with arbitrary precision ε > 0.

Note that we only consider a conjunction of objectives and that we require that Maxi-
mizer fixes the strategy first. See Section 5.3 for a discussion of the implications of this as
well as possible alternatives.

Chapter outline In Section 5.1, we start by introducing some notation and geometric
notions, as well as recalling the previous solution. Section 5.2 describes our algorithm
for approximating the set of achievable vectors from the paper [ACK+20] (Appendix F).
Finally, in Section 5.3 we discuss related work (including the papers [CKWW20, WW21]
mentioned in Section 1.6) and in Section 5.4 we summarize and discuss future directions.

5.1 State of the art

We illustrate the important concepts mainly by means of examples and refer to [ACK+20]
for the completely formal treatment. To speak about sets of achievable vectors, the follow-
ing definition is very useful: Given a set X ⊆ [0, 1]n of n-dimensional vectors, its downward
closure is defined as dwc(X) := {y | ∃x ∈ X : y ≤ x}.

77

5 Expressive specification formalisms: Multiple objectives

p

q

r

s

F1

F2

a

b

Figure 5.1: An SG with a generalized-reachability objective and the resulting sets of achievable
vectors. The goal sets are F1 = {q, r} and F2 = {r, s}. The transition probabilities
of actions a and b are uniform, i.e. 1/2. We do not depict the self loops of states q, r
and s. The state p is not drawn as box (Maximizer) or circle (Minimizer), but rather
as a diamond because we consider both cases: the blue solid line depicts the set of
achievable vectors if it is a Maximizer state and the red dashed line if it is a Minimizer
state.

Example 16 (Generalized-reachability objective). Consider the example in Figure 5.1 of
an SG with two goal sets F1 and F2. The sets of achievable vectors are shown for all states,
as well as the state-action pairs (p, a) and (p, b). Since we have two objectives, we can
depict them in a two-dimensional coordinate system where the horizontal axis corresponds
to F1 and the vertical axis to F2.

The state r is in both goal sets, so it reaches both goals surely. Thus, every vector in
A(r) = dwc({(1, 1)}) is achievable. Geometrically, this corresponds to a square in the
first quadrant of the 2-dimensional coordinate system; in higher dimensions, the achievable
vectors of a state in all goal sets form an n-dimensional cube.

Each of the states q and s is in one of the goal sets, thus we have A(q) = dwc({(1, 0)})
and A(s) = dwc({(0, 1)}). Both of these correspond to an axis of the coordinate system.

By playing action a, the set F1 = {q, r} is surely reached, but F2 only with a probability
of 1/2. This corresponds to the rectangle dwc({(1, 0.5)}). Dually, we obtain the rectangle
dwc({(0.5, 1)}) for action b.

For state p, we depict two sets, depending on whether p is a Maximizer or Minimizer
state. The blue solid line corresponds to Maximizer and the red dashed line to Minimizer.
On the one hand, Minimizer obtains the intersection of the available actions. This is
because we cannot rely on any target being reached with a probability of more than 0.5.
On the other hand, Maximizer obtains not only the union, but even the convex hull of the
union. This is because Maximizer can use a randomized strategy to obtain vectors such as
(0.75, 0.75) that are not achievable by either action alone, but by a convex combination, in
this case playing both actions with a probability of 1/2.

We see that even in this simple example, there are trade-offs between the objectives, since
reaching one goal can make it impossible to reach another. Knowing all achievable vectors
is useful because then we can (i) select a trade-off that we like based on full information

78

5.1 State of the art

d
X

1

1

Figure 5.2: Example showing a Pareto-frontier of a set X, a direction d, and the point of inter-
section of d with the frontier, depicted as in distance X[d] from the origin. Taken
from [ACK+20, Figure 1].

about what is possible and (ii) decide whether a certain combination of thresholds for all
objectives is achievable. 4

We want to be able quantify the best trade-off in a certain direction, a certain “ratio” of
the objectives. Intuitively, a direction is a ray from the origin into the (n-dimensional) first
quadrant. As such, we may represent it with any vector ~v 6= ~0 on that ray. Then all vectors
λ·~v for any λ ∈ R>0 are equivalent and represent the same direction. For instance, direction
d = [(1, 0, 0)] denotes the x-axis and it is equal to [(λ, 0, 0)] for any λ > 0. Formally, a
direction d = [~v] is the set {λ · ~v | λ ∈ R>0}. We denote by D = {[~v] | ~v ∈ dwc({~1})} the
set of all directions (in the first quadrant).

Given a set X of vectors and a direction d, X evaluated in direction d is the (Euclidean)
length of the vector from the origin to the farthermost intersection of X and d, denoted

X[d] := sup{||~x|| | ~x ∈ X, d = [~x]}

with the usual sup ∅ = 0. Figure 5.2 illustrates an evaluation of a direction on an achievable
set.

Note that a set of achievable points X is uniquely identified by its Pareto-optimal vectors,
i.e. those x ∈ X such that there is no y ∈ X with x ≤ y. Intuitively, we cannot increase
one component xi of a Pareto-optimal vector without decreasing some other component
xj . In particular, in Example 16 we could describe many achievable sets as the downward
closure of a single vector. Considering Figure 5.2, we see that it can also be possible that
the Pareto-optimal vectors are the whole “upper right border” of the set. For technical
reasons, we always want to consider the whole border in all directions. Thus, we define the
Pareto-frontier of a set X as

P := {~x | d ∈ D, d = [~x], X[d] = ||~x||}

We also define the Pareto-frontier of a state s as P(s) := P(A(s)). Note that we do not
know whether the set A(s) is closed and hence whether the Pareto-frontier is actually part
of it or not — more formally: whether the suprema that are computed when evaluating
A(s)[d] are elements of A(s). But since our goal is to approximate the set of achievable
vectors, we can equivalently approximate P(s) for all states.

Previous work [CFK+13b] gives an algorithm based on value iteration (VI) to approx-
imate the Pareto-frontier from below. The idea is similar to single-dimensional VI, see
Section 3.1: we start with a lower bound on the set of achievable vectors, i.e. every state
can achieve nothing and goal states achieve 1 in the dimension of all goal set that they
are part of. Then we iteratively apply a variant of Bellman updates (see Equations (3.3)

79

5 Expressive specification formalisms: Multiple objectives

and (3.4) for the single-dimensional case and Equations (5.1) and (5.2) below for the multi-
dimensional extension) and hence backpropagate the values through the SG. In the i-th
iteration, the lower bound contains exactly those vectors that are achievable within i steps.
Thus, the algorithm converges to the Pareto-frontier in the limit [CFK+13b, Theorem 4].

Ln(s) :=

{
conv(

⋃
a∈Av(s) Ln(s, a)) if s ∈ S�⋂

a ∈ Av(s)Ln(s, a) if s ∈ S©
(5.1)

Ln(s, a) :=
∑

s′∈S
δ(s, a, s′) · Ln−1(s′) (5.2)

In Equations (5.1) and (5.2), we omit several technical details: the formal definitions of
scaling a set by a constant, summing of sets and taking the convex hull conv (see [ACK+20,
Section 2.4]) and the corner cases of a state itself or successor states being a goal states,
in which case we set the corresponding dimension to 1 (see [ACK+20, Section 2.6]). Note
that the intuition of these multi-dimensional Bellman equations is the same as for the
single-dimensional ones and the same that we sketched at the end of Example 16.

5.2 Contribution: Approximating the Pareto-frontier in
generalized-reachability stochastic games

The contribution of this chapter is the multi-dimensional analogue of Section 3.1.2: previ-
ous work gives a VI-algorithm that converges in the limit, but cannot quantify its progress
in general. In particular, [CFK+13b, Theorem 4] only talks about stopping SGs, i.e. SGs
without end components (EC). Thus, we extend the algorithm by adding a convergent
sequence of over-approximations, turning it into an anytime algorithm with guaranteed
precision. For this, we need to treat the ECs by using a multi-dimensional extension of
deflating. As a result, we obtain the central theorem, see [ACK+20, Theorem 5.4]:

Theorem 8. Given an SG G with a generalized-reachability objective T , we can compute
convergent monotonic under- and over-approximations L and U of the Pareto-frontier P(s)
for every state s ∈ S. Thus, for every ε > 0 there exists an iteration i such that for every
s ∈ S and direction d ∈ D we have

Ui(s)[d]− Li(s)[d] < ε.

In other words: we can ε-approximate the Pareto-frontier (and hence the set of achievable
vectors) to arbitrary precision.

We highlight the key difficulties that we had to overcome in order to achieve this theorem.
In essence, we want to reduce the multi-dimensional case to the single-dimensional case.
For this, we can consider any single direction in which we evaluate our approximants and
then apply deflating as usual. However, as we have an infinite continuum of directions,
we have to group them into finitely many regions. The most technically involved part of
the problem are these regions, in particular the projective geometry necessary to describe
them, their relation to deflating and the argument that they can effectively be computed.
We illustrate the ideas on a two-dimensional example.

80

5.2 Contribution: Approximating the Pareto-frontier in generalized-reachability stochastic games

r st

a

bc

d
ef

Figure 5.3: Example of an EC where we need to distinguish regions in order to deflate.

d1

d2

d3

1

0.5

0.5

1

(a)

0.5

0.5

(b)

Figure 5.4: Visualizing (a) the regions for state r and (b) the result of deflating. Based
on [ACK+20, Figure 4].

Example 17 (Multi-dimensional deflating). Consider the SG in Figure 5.3, which is the
same as Figure 3.2. The difference is that this time the values on the exits are not numbers,
but Pareto-frontiers. Recall that in the single-dimensional case, depending on the relation
of the exits, Minimizer used different strategies, and thus different parts of the maximal
end component (MEC) had to be deflated, see Example 7.

In the multi-dimensional case, Minimizer’s strategy changes depending on the direction
in which we evaluate the Pareto-frontier. Figure 5.4a shows both Pareto-frontiers of the
exits in a single coordinate system and highlights three directions d1, d2 and d3. For every
direction between d1 and d2, Minimizer prefers the exit f, and thus state r will play action c.
Dually, for every direction between d2 and d3, exit e is preferred by Minimizer, so an optimal
strategy will play b in r. In direction d2, both actions are optimal.

Note that this explanation has effectively decomposed the set of all directions into regions
where Minimizer’s strategy is the same. Thus, we can apply deflating, reducing to the
Pareto-frontier in the red region between d1 and d2 to that of exit f; and in the blue region
between d2 and d3 to that of exit e. Technically, we also have to deflate the single direction
d2, which fits in with the other segments because it was at the intersection of the Pareto-
frontiers. Similarly, direction d1 and d2 add the corner points on the axes.

The result is depicted in Figure 5.4b. Intuitively, this result is correct, as depending on
which goal set Maximizer prefers, Minimizer can always restrict the resulting value to 0.5
by restricting Maximizer to the exit that does not reach this goal surely.

Note that within a region, Minimizer’s strategy stays constant. A sufficient criterion for
this is that for all directions in the region, the ordering of the actions according to their
value in that direction is the same. Thus, we can decompose the set of all directions into
regions by splitting it at all places where the Pareto-frontiers of the actions intersect. In
Figure 5.4a, the only intersection is direction d2. 4

81

5 Expressive specification formalisms: Multiple objectives

When having more dimension than two, the same idea for finding regions still works.
Since all Pareto-frontiers are finite, the intersection of finitely many Pareto-frontiers also
yields finitely many directions in which we have to split. To effectively represent these,
we use simplicial complexes and triangulation, as exemplified in [ACK+20, Figure 5 and 6]
and described in [ACK+20, Algorithm 3 and Sections 3.3 and 4.3].

5.3 Related work

We first give some general comments about the computation and usage of Pareto-frontiers.
Then we focus on the generalized-reachability objective and discuss in detail its decidability,
its computational and strategy complexity and its determinacy.

Next, we mention variants of multi-objective specifications that go beyond optimizing
expectation. Afterwards, we give an extensive overview of other works considering mul-
tiple objectives, roughly grouping them into those more interested in computational and
strategy complexity on the one hand and those more interested in practical algorithms for
computation or approximation on the other hand. Finally, we list tools and case studies.

General comments about computation and usage of Pareto-frontiers

In general, Pareto-frontiers can be approximated by a number of vectors polynomial in the
size of the system [PY00, Theorem 1] and often also in polynomial time [PY00, Theorem
2]. To support our argument that a Pareto-frontier is a good foundation for making a
decision in a multi-objective setting, we point out that deciding which Pareto-optimal
outcome to use is the topic of a whole area of research called multiple criteria decision
making. According to an extensive book on this topic, the goal is “understood as helping
a human decision maker (DM) in considering the multiple objectives simultaneously and
in finding a Pareto-optimal solution that pleases him/her the most” [BDMS08, Page 2].
To support a decision maker, we can use techniques for describing the cartography of the
problem [BGMR18] and visualizing trade-offs [LPLSA17, HJKQ20].

Generalized-reachability objectives

To highlight the increase in difficulty when considering generalized-reachability SGs, we
report their properties in relation to single-objective SGs and Markov decision processes
(MDPs).

Decidability: The decision problem is to decide whether a given vector is achiev-
able. While SGs with a single reachability objective [Con92] and generalized-reachability
MDPs [EKVY08] are decidable, it is not known whether generalized-reachability SGs are
decidable. We know decidable subclasses, namely if the SG is determined [BF16b, Theorem
3] or if it is stopping and there are only two objectives [BF16b, Theorem 6]; and we know
undecidable subclasses, namely if we restrict to pure strategies [CFK+13b, Theorem 3].
Moreover, by our work [ACK+20] we know that the approximation problem is decidable,
i.e. if we want to decide whether an ε-approximation of a given vector can be achieved.

Strategy complexity: For simple SGs, memoryless pure strategies suffice to achieve
the optimal value [Con92]. Already in generalized-reachability MDPs with absorbing goal

82

5.3 Related work

states (i.e. goal states with only one action that self-loops surely), we need randomiza-
tion [EKVY08, Theorem 3.2]; without the assumptions that goals are absorbing, we ad-
ditionally need finite memory [EKVY08, Theorem 5.1]. When moving to generalized-
reachability SGs, we require infinite memory even if the SG is stopping and all goal states
are absorbing [CFK+13b, Theorem 2].

Computational complexity: Deciding simple SGs is in UP ∩ co-UP [CF11, Theorem
4]. Generalized-reachability MDPs are PSPACE-complete [RRS17, Theorem 2]. However,
the hardness comes mainly from the number of objectives; the solution time is polynomial
in the size of the MDP [EKVY08, Theorem 5.1]. As decidability is open for generalized-
reachability SGs, of course we cannot give computational complexity. Still, we want to
point out two things: firstly, one might wonder why the idea of [CH08] for proving that
value iteration takes at most exponentially many steps cannot be extended to multiple
objectives. The reason for this is that the infinite memory allows the strategies to introduce
arbitrarily small probabilities and thus we cannot give a lower bound on the progress that
an update of value iteration makes.

However, if we consider approximation, we should be able to apply this idea again, since
infinite memory is not necessary in that case. Thus, we conjecture that the approximation-
algorithm should terminate within an exponential number of iterations.

Algorithms: For simple SGs, we have three classes of algorithms, namely value itera-
tion, strategy iteration and quadratic programming. For generalized-reachability MDPs,
there is an approach based on linear-programming [EKVY08], but the authors argue that
value or strategy iteration can equivalently be used [EKVY08, Section 6]. For generalized-
reachability SGs, we only know of the convergent value iteration algorithm from [CFK+13b]
which we extended to be an anytime algorithm with precision guarantees. Note that an ap-
proach based on strategy iteration does not seem promising because strategies can require
infinite memory.

We mention the close connection between this Chapter 5 and Section 3.1: both of them
develop a practical stopping criterion for value iteration. Thus, we can possibly extend
improvements mentioned in Section 3.1.4, the related work section of the single-dimensional
case, to the multi-objective setting.

Determinacy and its implications: Recall that a game is determined if the order in
which the players fix their strategy does not matter. While simple SGs are determined,
see e.g. [Con93, Section 1.1.2], generalized-reachability SGs are not [CFK+13b, Theorem
1].1 This means that there are two problems to be considered: the “lower-value” problem,
where we are interested in what a single strategy can guarantee against all strategies of
the opponent; and the “upper-value” problem, where we are interested in what we can
guarantee by reacting optimally to every strategy of the opponent. Instead of changing the
order in which we quantify the strategies, we can also switch from considering conjunctions
of objectives to considering disjunctions, as explained in [WW21, Section 5]. The upper-
value problem, i.e. answering disjunctive queries, is fundamentally easier than the lower-
value problem that we address in this chapter. In particular, memoryless pure strategies

1This theorem relies on reducing the objective to a precise query, which assumes that we mix objec-
tives in which we maximize and minimize. For an example showing non-determinacy even when only
maximizing, we refer to [WW21, Section 1].

83

5 Expressive specification formalisms: Multiple objectives

are sufficient and the problem is NP-complete [CFK+13b, Theorem 7 and Corollary 1].
We refer to our work [WW21] for an in-depth discussion of the computational and strategy
complexity, also addressing the cases of deterministic strategies or non-stochastic games.

In general, the question of considering conjunctions, disjunctions or general Boolean
combinations of objectives is interesting and has massive implications, as we discuss at the
end of the section on complexity.

Variants of the multi-objective specifications

Most of the works we mention optimize the expectation of the objectives. Alternatively, one
can consider percentile queries, which require that the value of an objective is better than
a given threshold with a specified probability (percentile) [FKR95, RRS17, BGMR18]. Very
similar are quantiles, where we combine several thresholds (on probability or reward) with
the optimization of an expectation [UB13, BDD+14, BDK14a, HJKQ20]. See [BDK+14b]
for an experience report from interdisciplinary research projects where, among others, the
idea of using quantiles arose.

A corner case of percentiles are the satisfaction semantics for mean-payoff objectives,
where we maximize the probability that the reward is above a threshold [BBC+14, CKK17].
Energy objectives, introduced in [CdAHS03] are similar in spirit because they also require
the value to be above a threshold; however, they do not consider the long-run average, but
have to stay above the threshold for the whole run.

Another special case of percentiles is when some goals have to be achieved surely. This
is called beyond worst-case paradigm [RRS15, CR15, AKV16, BFRR17, BRR17], where
one constraint is surely satisfied and afterwards other performance criteria are considered.2

Further, one can also consider combinations of expectation and variance [BCFK17,
PSB22] or ratios between objectives [Bai15, BD18]. Also, in artificial intelligence, an-
other notion of optimality instead of Pareto-optimality has been used, namely Lorenz-
optimality [PWGH13]. In literature on decision making, approaches exist to immediately
get well-balanced trade-offs instead of the whole Pareto-frontier [OPW13].

Furthermore, we can assume a strict preference order over the objectives, which is also
called lexicographic preferences [Fis74]. This idea assumes that one objective (e.g.
saving a human) is strictly more important than others (e.g. minimizing energy consump-
tion). In our paper [CKWW20] we treat combinations of multiple reachability and safety
objectives with lexicographic ordering. For further works with lexicographic preferences,
we refer to the related work of [CKWW20]. Here, we only mention that the beyond worst-
case paradigm essentially also is lexicographic: it first optimizes the sure objectives and
then the strictly less important, quantitative ones.

Complexity

The papers in this section investigate decidability or computational or strategy complexity.
MDPs were considered with multiple ω-regular objectives [EKVY08] and generalized-

mean-payoff objectives under satisfaction or expectation semantics, as well as combina-

2In some of these papers, the underlying graph is considered once as a deterministic game for those
objectives that need to be satisfied surely and once as an MDP for the other performance criteria.

84

5.3 Related work

tions of both semantics [Cha07a, BBC+14, CKK17]. Further, combinations of energy,
mean-payoff and parity were investigated in [CD11] and combinations of discounted re-
ward objectives in [CMH06, CFW13]. Lastly, we list papers analysing the complexity of
variants of multi-objective model checking: combinations of percentile queries with many
kinds of quantitative payoffs (including mean-payoff and discounted reward) [RRS17]; com-
binations of expectation and variance [BCFK17]; and beyond worst-case analysis for mean-
payoff [CR15], total reward [BFRR17], ω-regular objectives [BRR17] or a combination of
an ω-regular objective with mean-payoff [AKV16].

Deterministic games were considered with generalized-mean-payoff objectives [BR15]
and combinations of mean-payoff with ω-regular [CRR14] or energy objectives [CDHR10,
BHRR19], as well as windowed mean- and total-payoff [CDRR15]. In particular, multi-
dimensional total-payoff games are undecidable [CDRR15, Theorem 2].

Stochastic games were investigated with combinations of total reward [CFK+13b],
generalized-mean-payoff objectives [BKTW15, CD16] and combinations of mean-payoff
with ω-regular [CDGO14] or energy objectives [VCD+15]. Considering lexicographic pref-
erences, we again refer to the related work of [CKWW20].

Recently, multiple mean-payoff objectives were also considered on Vector Addition Sys-
tems with States (VASS) [CHO20].

So far, we have mainly talked about conjunctions of objectives, where the goal is to
satisfy several requirements. Disjunctions are the topic of the already mentioned [WW21].
Considering general boolean combinations of objectives often is a lot harder. We know
solutions for total reward objectives can be approximated for Markov chains [HKL17], stop-
ping SGs [CFK+13b] and controllable multi-chain games [BKW18], but computability in
these is still open. Boolean combination of mean-payoff objectives are undecidable [Vel15],
but a relevant subclass is EXPTIME-complete [BHR16]. We know algorithms for Boolean
combinations of mean-payoff and Büchi [GH10] and Boolean combinations of ω-regular
objectives [BGR20].

Algorithms

First, we mention that multi-objective model checking is also prevalent in other fields, see
e.g. [MBB07] for a paper on multiagent planning and [VDB+11, RVWD13] for surveys
from machine learning and from artificial intelligence, respectively.

From the formal methods side, a lot of work has been invested into a compositional
approach for model checking MDPs [EKVY08], probabilistic automata [FKN+11, FKP12,
KNPQ13], Markov automata [QJK17, QK21] and SGs [SK16, BKW18]. The objectives of
all cited works include expected reward or cost and additionally sometimes mean-payoff, ra-
tios or ω-regular objectives. We highlight that [FKP12, QK21] report huge improvements in
the scalability of algorithms approximating Pareto-frontiers. Similarly, quantiles for reach-
ability and expected cost are efficiently computed in [HJKQ20]. Orthogonally, [DKQR20]
investigates multiple expected reward objectives when restricted to simple strategies, i.e.
pure ones with finite memory.

Multi-objective model checking was also considered in settings with limited infor-
mation (see also Chapter 4), for example using many simulations to obtain a probably
approximately correct (PAC) guarantee [JJD+16, WT21], optimizing a single run in the

85

5 Expressive specification formalisms: Multiple objectives

system [KPR18], considering bounded-parameter systems [HHH+19b] or partially observ-
able systems [DDG+10].

Tools and case studies

Multi-objective model checking is supported by multi-gain [BCFK15] (only for mean-
payoff), PRISM-games [KPW16]3 the MODEST TOOLSET, as utilized in e.g. [HJKQ20],
and there are prototypical implementations in STORM [QK21].

Case studies include cost-time-quality trade-off for optimizing access to the World-
Wide Web [PY00], delay-cost trade-offs in the Mariposa database system [PY01], au-
tonomous driving [CKSW13], electric vehicle charging [BGMR18], energy-aware network
systems [BCD+18] and further case studies collected in [SK16, Section 6].

5.4 Summary, discussion and outlook

Summary In this chapter, we have considered SGs with a conjunction of reachability ob-
jectives. We gave an anytime algorithm for approximating the Pareto-frontier to arbitrary
precision and thereby proved that the approximation problem is decidable.

Discussion The result currently is quite theoretical because the computation of the re-
gions is described on a very high level. An implementation of the necessary geometrical
notions is involved, especially since the Pareto-frontiers can become very large.

Still, the theoretical and algorithmic contributions are a significant step forward because
— as in the single-objective case — reachability is underlying many other objectives.

Outlook The most immediate open question is whether generalized-reachability SGs are
not only approximately decidable but also precisely.

However, since practically we are more interested in approximations and finite-strategy
solutions anyway, the computational complexity of our algorithm should be investigated,
as well as the relation between a bound on the memory and the quality of the result.

Focussing even more on practical progress, we plan to implement the algorithm, possibly
combining it with simulation-based methods as in Section 3.1.3.

Of course, we are also interested in more expressive formalisms for systems and specifi-
cations, e.g. concurrent SGs or reward-based objectives. We refer to the concepts listed in
Sections 1.5.2 and 1.5.3, as well as the discussion of variants of multi-objective specifications
in Section 5.3.

3Note that we cite not the most recent version of PRISM-games because version 2.0 was the one that
introduced the support for multiple objectives.

86

6 Explainable output

Motivation So far, we have focussed on computing optimal strategies, which prescribe
how an agent has to behave in order to satisfy a specification. However, these strategies
are typically very large and incomprehensible, taking the form of a long list of state-action
pairs.

We want to find a way to represent these strategies concisely and explainably. There are
two key motivations for this: firstly, we want to be able to use the strategy in practice,
i.e. store it on a device with limited memory and execute it efficiently. Hence, we need a
concise representation because systems and strategies are very large. This is related to the
challenge of scalability, see Section 1.2. Secondly, related to the challenge of reliability, we
want to be able to understand the strategy that results from solving our system in order to
validate it. Hence, it has to be small enough that it becomes human-readable. Moreover,
the representation should be explainable.

In the past decade, there have been several works using the formalism of decision trees
for this task of strategy representation. They are well-suited for it because (i) they allow
keeping the original guarantees of the strategies, (ii) they significantly reduce the size of
the strategies (iii) they can easily be transformed into executable code, but also naturally
be interpreted by humans.

Problem statement We are given a memoryless pure strategy σ : S → 2A. Note that
this is a nondeterministic (also known as permissive) strategy which recommends a set of
optimal actions. Further, we highlight that this strategy can be the result of any kind
of procedure and we are not restricted to the systems or specifications addressed in this
thesis, nor do we require that the strategy gives guarantees.

We want to represent this given strategy using a decision tree that is small, i.e. consists
of few nodes; and that is explainable, i.e. there is some intuitive explanation or deeper
reasoning behind the decisions of the tree.

Moreover, we not only want to solve this problem theoretically but offer a well-designed,
easy-to-use tool that performs the task.

Chapter outline In Section 6.1, we describe the state of the art for representing strategies
as decision trees. Then in Section 6.2, we describe the tool dtControl1 that we developed
for this task. We describe all components of the tool but focus on those features that
were added in the newest version of the tool, dtControl 2.0. This is because this chapter
is based on [AJK+21a] (Appendix G), the publication where the extensions of the second
version of dtControl are described. Afterwards, in Section 6.3 we provide related work
on decision trees, alternative forms of strategy representation and other ways of pursuing
explainability. As usual, we finish with a discussion and an outlook in Section 6.4.

1Available at dtcontrol.model.in.tum.de

87

dtcontrol.model.in.tum.de

6 Explainable output

6.1 State of the art

For this chapter, we assume that our state-space is a cross-product of state-variables. This
means that states are not monolithic elements s ∈ S, but rather tuples (s1, . . . , sn) ∈
S1 × · · · × Sn, where Si is the domain of the i-th state-variable. We highlight that almost
all case studies have a state-space that is structured as a tuple of state-variables like this,
and we exemplify it in our running Example 18.

Further, we slightly adapt the definition of strategy: firstly, we consider nondeterministic
(also called permissive) strategies. The reasons are twofold: when executing the strategy,
it can be useful to permit all actions that are safe and not arbitrarily restrict to a particular
one; and, as we explain in Section 6.2.3, it is easier to reduce the size of nondeterministic
strategies when representing them as decision trees. For more information on permissive
strategies, see e.g. [BJW02, BMOU11, DFK+15]. Secondly, we restrict our strategies to be
memoryless and pure because only these kinds of strategies can be represented by decision
trees well. Note that this is a relevant class of strategies, as they are optimal for objectives
such as reachability, safety and expected reward; we can even consider ω-regular objectives
after taking the product of state-space and system, see Example 15 in Section 4.2.3.

Definition 11 (Nondeterministic strategy). A nondeterministic (memoryless pure) strat-
egy is a function σ : S→ 2A mapping every state to a set of available actions.

Example 18 (Motivating example). This example is based on [LMT15]. Assume that we
are controlling a car that is driving in a lane behind another car, see Figure 6.1. We do
not consider more cars or lane-switching, but only focus on driving behind the other car in
a safe distance. Our actions are braking, accelerating or doing nothing. Our state-space
consists of triples (ve, vf , d), where ve, vf , d ∈ Q are the current valuations of the state-
variables: velocity of our car (ego), velocity of the car in front and distance between the
cars.

This abstraction of controlling a car is very simple, especially since we bound the ve-
locities at around 60 km/h. Still, the resulting strategy as produced by Uppaal Strat-
ego [DJL+15] consists of more than 300, 000 state-action pairs and has a size of 418 MB.
This is potentially too large to fit into the memory of the controller of the car, especially
when considering more realistic domain sizes of the velocities; and already now it is com-
pletely incomprehensible for a human.

However, the strategy has some inherent structure. For example, if the distance d becomes
smaller than 10 meters, then we have to brake. Already with such a simple rule, we can
group together many states. In this case, we capture all triples where the last component
is smaller than 10. Depending on the domain size of the velocities, this can already be
hundreds or thousands of states.

This idea of having “if-then-else”-rules that partition the state-space can be encoded well
in decision trees. These are binary trees where the inner nodes are labelled by a predicate
on the state-variables such as “d < 10”; and the leaf nodes are labelled by sets of actions
such as “{brake}”. A decision tree prescribes an action for a given state as follows: start at
the root node, evaluate the predicate and go to the left or right child depending on whether
the predicate is true or false. Repeat this process until you reach a leaf node, which gives
you the set of allowed actions. 4

88

6.1 State of the art

Distance

VelocityEgo

AccelerationEgo

VelocityFront

AccelerationFront

Figure 6.1: A graphical depiction of the case study used for our running example. Taken
from [LMT15, Figure 1].

Definition 12 (Decision tree (DT)). A decision tree (DT) is a full binary tree (every node
has exactly 0 or 2 children) where every inner node is labelled with a predicate P : S 7→
{true, false} and every leaf node is labelled with a set of actions 2A.

This definition of DT is based on [Mit97], but already tailored to our setting. Construct-
ing the optimal DT for representing a strategy is an NP-complete problem [HR76]. Hence,
the following heuristic algorithm for DT construction is commonly used.

• Base case: If all states s ∈ S agree on their set of actions, i.e. we have σ(s) = B, then
return a leaf node with label B.

• Recursive case: Otherwise, split the states. For this, select a predicate P and con-
struct an inner node with label P. Then recursively construct a DT for the subset
of states {s ∈ S | P(s)} where the predicate is true and another DT for the subset
where it is false. The resulting DTs are the children of the inner node with label P.

By exhaustively running this algorithm, we obtain a DT that exactly represents original
strategy. Thus, any guarantee we have on the input strategy is preserved. For example,
if the strategy keeps us in a safe set of states where we can avoid crashing into the car in
front of us, it still does so when represented as DT. We mention that this usage of DTs for
strategy representation is fundamentally different from the usual usage of DTs in machine
learning, where a DT should not memorize the whole data it is given (called overfitting),
but instead generalize to other problems.

Using the recursive algorithm, we can represent strategies more concisely and explain-
ably. However, there are several questions to be addressed which greatly affect how concise
and explainable the resulting DT is.

(a) What is the domain of the predicates?

(b) How do we select a predicate from this domain?

(c) How do we take advantage of the nondeterminism of the strategy?

There are state of the art answers to these questions, as well as extensions that are
part of the contribution. We refrain from first answering the questions in this section and
describing the extensions in the next, i.e. grouping the information according to how new
it is. Instead, we group the information according to the questions first, and then inside
the sections clearly mark what is new and old. We believe that this is more accessible and
readable.

89

6 Explainable output

6.2 Contribution: dtControl 2.0

Figure 6.2: An overview of the components of the tool dtControl 2.0, showing software architecture
and workflow. Everything depicted in black was already part of the first version of
dtControl [AJJ+20a], namely the basic layout and some possibilities for the hyper-
parameters. The green colour marks the features that are the contribution of the
extension to dtControl 2.0. Based on [AJK+21a, Figure 2].

Figure 6.2 shows the architecture and workflow of our tool dtControl, which we de-
veloped to transform strategies (also called controllers) represented as list of state-action
pairs to more concise and explainable DTs. It adheres to the intuition we just described
in the state of the art section: an input strategy (controller) is given to the Decision Tree
Learner of dtControl. We have to set the following hyper-parameters of the tool: The
Predicate Domain (Question (a)), the Predicate Selector (Question (b)) and the Deter-
minizer, which takes advantage of the nondeterminism of the strategy to reduce the size of
the DT (Question (c)). Everything depicted in black was already part of the first version of
dtControl [AJJ+20a], namely the basic layout and some choices for the hyper-parameters.
The green colour marks the features that are the contribution of the extension to dtControl
2.0.

6.2.1 Predicate domain

We first illustrate that the predicate domain is very important for the size and explainability
of the resulting DT by means of an example.

Example 19 (Illustrating more powerful predicates). Figure 6.3a illustrates a state-space
with two state-variables, namely the horizontal and vertical coordinate of a data-point. A
point being a circle or box indicates which action is allowed in a certain state. To represent

90

6.2 Contribution: dtControl 2.0

(a) (b)

Figure 6.3: (a) An illustration of the usefulness of linear predicates. Taken from [Jac20, Figure
5.2]. (b) An illustration of the usefulness of algebraic predicates on the real data from
the car-controlling example. Taken from [Jün21, Figure 6.1].

this strategy using only axis-aligned splits, we would need 5 predicates, as indicated by
the red line. In contrast, having one linear predicate suffices to completely partition the
state-space.

However, in real examples, linear predicates often still are not powerful enough. Con-
sider again the case study of controlling a car to keep a safe distance as described in
Example 18. The kinematic equations governing the movement of objects under accelera-
tion use quadratic terms. Hence, more powerful predicates are necessary to partition the
state-space well. Figure 6.3b shows a part of the state-space of the case study. The colour of
a data point indicates what set of actions is allowed: red corresponds to only braking, blue
to braking or doing nothing and green to also allowing acceleration. The blue hyperplane
illustrates a predicate perfectly splitting of all data-points where only braking is allowed. 4

The example shows that different predicate domains impact the number of splits and
hence the number of nodes in a DT. We now list the predicate domains supported by
dtControl 2.0 and point out their advantages and disadvantages.

Axis-aligned predicates [Mit97] have the form si ≤ c, where si is a state-variable (e.g.
distance) and c is a rational constant. These predicates have the advantage that there are
only finitely many, since the domain of every state-variable is finite.2 Hence, they are also
easy to compute, as we can just try out all of them. These predicates are the ones that
are commonly used in machine learning, possibly because of their simplicity. However,

2Technically, there are finitely many equivalence classes of predicates. For example, if the domain of a
state-variable si contains only the values 1 and 2, then si ≤ c are equivalent for all c ∈ [1, 2).

91

6 Explainable output

they are also least expressive, since they can only use a single state-variable. The term
axis-aligned comes from this fact, as in two dimensions, such a split always partitions the
state-space along a line parallel to an axis of the underlying coordinate system, for example
like the red lines in Figure 6.3a. In general, it is a hyperplane orthogonal to the axis of its
corresponding state-variable.

Linear predicates (also known as oblique [MKSB93]) have the form
∑

i si · ai ≤ c,
where si and c are as before and ai are rational coefficients. They have the advantage that
they are able to combine several state-variables which can lead to saving linearly many
splits, see Figure 6.3a. The disadvantage of these predicates is that it is highly non-trivial
to find out the best coefficients ai This is why heuristics were introduced to determine a
good set of predicates to try out in [MKSB93, AJJ+20a]. However, heuristically determined
coefficients and combinations of variables can impede explainability.

Algebraic predicates (new feature of dtControl 2.0) have the form f(s) ≤ c, where
f is any mathematical function over the state-variables and c is a rational constant. It
can use elementary functions such as exponentiation, logarithm or trigonometric functions.
Coming up with these predicates currently requires domain knowledge and expert guidance.
More concretely, a human provides a predicate template based on knowledge about the
model at hand. In the car example, these templates are based on an understanding of the
kinematic equations. Then dtControl 2.0 uses heuristics to find a good instantiation of the
template. For more information on this process, we refer to [AJK+21a, Section 4.2]. We
highlight that, even though the predicate is complex, it is still explainable, as it is based
on an actual understanding of the case study.

Example 20 (Reducing DT sizes with more powerful predicates). Consider again our
car controlling running example where the strategy is a list of more than 300, 000 state-
action pairs. Using only axis-aligned splits, dtControl returns a DT of size 869, which is
already a reduction by three orders of magnitude. Linear predicates halve the size again,
allowing to construct a DT with 369 nodes. While this is much more concise, it is still
hardly explainable (possibly with a lot of manual work, assisted by the automated support
described in Section 6.2.4). But with algebraic predicates, we are able to reduce the size to
11 nodes! Here, we can clearly identify the task of every predicate and explain its physical
meaning, thus validating that the strategy indeed makes sense. See [Jün21, Chapter 4] for
an explanation of the predicates. 4

Categorical predicates (new feature of dtControl 2.0) are special predicates for state-
variables that do not have numerical domain (such as a velocity ranging over rationals),
but rather a discrete, categorical domain. For example, a state-variable for colour can have
values {red, blue, green}. Naively, one could treat these variables as numerical, assigning
a (nonsensical) number to each value; or one could just make a full case distinction on
all possible values of the domain. Our tool dtControl 2.0 in fact supports more sophisti-
cated algorithms from literature for grouping similarly behaving values of the state-variable
together, see [AJK+21a, Section 4.1].

Categorical state-variables are common in case studies from the quantitative verification
benchmark set [HKP+19], and hence support for this benchmark set was only properly
added in dtControl 2.0. Our evaluation of our DT construction on this benchmark set
shows that the DT often is one or two orders of magnitudes smaller than the list of state-

92

6.2 Contribution: dtControl 2.0

action pairs. Still, there also are case studies where in fact we do not reduce the size or
where another representation, binary decision diagrams, resulted in a smaller (though not
more explainable) representation. We refer to [AJK+21a, Section 7] for more information.

6.2.2 Predicate selection

In general, predicate selection works as follows: given a set of predicates, we construct the
resulting partitioning of the state-space for all of them. Then, we use an impurity measure
to judge how similar the states in each of them are. If the strategy is the same for all
states in one partition, its impurity is 0; on the other hand, if the strategy differs for all
states in one partition, then the impurity is maximal. Thus, we want to use a predicate
that minimizes impurity.

There are many impurity measures considered in literature, ranging from the well-known
entropy introduced by Shannon [Sha48] to very particularly tuned measures such as the area
under the receiver-operator curve [ABC+19]. In its first version, dtControl supported only
entropy. Now, in dtControl 2.0, we added many other measures, as detailed in [AJK+21b,
Appendix D]. However, our evaluation showed that entropy typically performs best.

Moreover, dtControl 2.0 has two new features affecting predicate selection which support
experts in designing algebraic predicates: firstly, we offer the new functionality to assign
priorities to the predicate generating algorithms. Priorities are rational numbers between
0 and 1. The impurity of every predicate is divided by the priority of the algorithm that
generated it. For example, a user can use axis-aligned splits with priority 1 and a linear
heuristic with priority 1/2. Then the more complicated linear predicate is only chosen if
it is at least twice as good (in terms of impurity) as the easier-to-understand axis-aligned
split. Note that if a complicated predicate is able to split the data completely, its impurity
is 0, and thus it is infinitely better than every predicate that does not completely separate
the classes.

A predicate with priority 0 is only considered after all predicates with non-zero priority
have failed to split the data. This allows the user to give just a few predicates from domain
knowledge, which are then strictly preferred to the automatically generated ones, but which
need not suffice to construct a complete DT for the controller.

Secondly, we added interactive predicate selection. This gives an expert full control
over the DT generation, allowing to prefer predicates that are explainable over those that
optimize the impurity. At all times, our graphical user interface shows some statistics and
metadata, e.g. minimum, maximum and step size of the state-variables in the current node,
a few automatically generated predicates for reference and all predicates generated from
domain knowledge. The user can specify new predicates and is immediately informed about
their impurity. Upon selecting a predicate, the split is performed and the user continues
in the next node.

The user can also first construct a DT using some automatic algorithm and then restart
the construction from an arbitrary node. Using the interactive predicate selection, the user
can handcraft an optimized representation, or at any point decide that the rest of the DT
should again be constructed automatically.

93

6 Explainable output

6.2.3 Determinizer

In this context of strategy representation, determinizing a strategy means picking a subset
of the allowed actions for every state. Formally, determinizing a nondeterministic strategy
σ : S → 2A constructs a new (possibly still nondeterministic) strategy σ′ such that for
all states s ∈ S we have ∅ (σ′(s) ⊆ σ(s). While this looses some information, the
resulting controller still only selects optimal actions and thus preserves the guarantees of
the strategy.3 Moreover, it can drastically reduce the size of the strategy.

Example 21 (Determinizing our running example). Consider our running example of
controlling a car. Since our only objective is safety — avoiding a state where the distance
between the cars is too low, it is a valid strategy to “not drive”. By picking the brake action
in all states, we ensure that we cannot hit the front car. This reduces the size of the strategy
to 1 node.

Technically, in the formalisation of the case study, the brake action is not allowed when
we already are at minimum velocity, since then we stay neutral. Hence, the resulting DT
has 3 nodes: the inner node asking whether we are at minimum velocity and two leaves,
prescribing to stay neutral if we are and to brake if we are not. 4

We see that determinizing can greatly reduce the size of a controller, leading to a result
even smaller than that we achieved using the algebraic predicates while still preserving
guarantees. Note that, in this particular example, the strategy is definitely safe, but we
actually have a second requirement, namely that we want to make progress when driving
a car. This additional requirement is not encoded in the strategy and thus not satisfying
it is not a fault of dtControl. If we want to satisfy this requirement as well, we have to
options: firstly, we can analyse the trade-off between optimality and size by determinizing
to varying degrees as in [AKL+19]. Secondly, instead of only synthesizing a strategy for the
safety objective, we could consider the following lexicographic multi-objective specification:
first maximize safety and then maximize the travelled distance among the safe strategies.
The resulting strategy will be less nondeterministic, but immediately more performant.

The determinization procedures in dtControl arose from practically trying around with
the underlying ideas, which already led to very useful procedures. In [AJK+21a, Section
6], we give a more theoretical treatment of the matter and from that derive an improved
determinization procedure. We refer to [AJK+21a, Section 6] and [AJK+21b, Appendix
E] for the technical details. Here, we only mention the results of the experimental evalua-
tion [AJK+21a, Section 7]: the new determinization procedure is strictly better and often
produces DTs that are slightly smaller.

6.2.4 Further improvements of the user interface

We greatly improved the usability of our tool. While the first version of dtControl only
had a command line interface, dtControl 2.0 additionally offers a graphical user interface.

3This is true when considering safety objectives. For some other objectives like reachability, it might
lead to a violation of the original guarantees. For example, consider a strategy that allows both a
self-looping and a non-self-looping action at a particular state. If the determinizer decides to restrict
to the self-looping action, the reachability specification may be violated in the determinized strategy.
However, this problem can be addressed when synthesizing the strategy by ensuring that every action
makes progress towards the target.

94

6.3 Related work

This is extremely important, as the tool supports experts in coming up with algebraic
predicates. For this, we offer interactive exploration of a DTs, the interactive predicate
selection mentioned in Section 6.2.2 and a visualized simulation of a case study under the
DT strategy, highlighting the path to the leaf node prescribing the action.

Moreover, we added support for the strategy files as output by the probabilistic model
checkers Storm [DJKV17] and PRISM [KNP11]. Thus, additionally to the controller syn-
thesis tools from hybrid system, Uppaal [LPY97] and Scots [RZ16], we now also support
common model checkers for probabilistic verification.

Note that since the first version of dtControl we also offer to read a very straightforward
csv-format. Thus, users of other tools can still use dtControl by transferring their strategy
files into csv-format; this however requires writing their own scripts. Moreover, dtControl
has a very modular structure and is easily extendible with parsers for other strategy for-
mats, as was done for strategies resulting from the MODEST toolset [HH14] in the recent
Bachelor’s thesis [Wal21].

6.3 Related work

Decision trees for strategy-representation

The idea of representing a strategy more concisely while keeping its guarantees was already
discussed in [Gir13], even suggesting a determinization procedure. However, the paper de-
scribes the data structure as “inspired by algebraic decision diagrams” [Gir13, Page 8],
while actually using something more akin to a DT, and it lacks a proper construction al-
gorithm, only stating that “we can split (typically using a hyperplane)” [Gir13, Page 8].
The actual ancestor of dtControl is the paper [BCC+15], which for the first time explicitly
used DTs for strategy-representation in the context of formal methods. There, the DT
represented a liberal strategy and gave an ε-guarantee. This was addressed in [BCKT18],
where the strategy was precisely stored in the DT in order to keep its full guarantees. On
the one hand, this algorithm was extended to infinite-state safety games [NM19]. On the
other hand, it was further tuned in [ABC+19], where linear classifiers and new impurity
measures were proposed; and in [AKL+19], most notably adding a good heuristic for de-
terminization. Finally, with the first version of dtControl [AJJ+20a], a mature tool for
strategy representation using DTs was developed. The tool is still under active develop-
ment, often in the form Bachelor’s theses [Akm19, Jac20, Wei20, Jün21]. Some of the major
progress was reported in the paper summarized in this chapter [AJK+21a]. Recently, a
Bachelor’s thesis [Wal21] extended dtControl with a parser for strategy files coming from
the MODEST toolset [HH14]. This thesis was completely independent from all authors of
the dtControl-papers, highlighting the modularity and ease-of-use of our tool.

Without the restriction of keeping guarantees, DTs have been used for strategy rep-
resentation in artificial intelligence and machine learning, for example during reinforce-
ment learning algorithms [CK91, PH98]. In particular, they were used in policy itera-
tion [BDG95], dynamic programming [BD96, KP99] and reinforcement learning [KK99]
with the additional assumption that the transition function of the considered system can
be factored as a dynamic Bayesian network. Moreover, DTs were also used to represent

95

6 Explainable output

strategies for Body Sensor Networks [LPTR10], with the main goal being a reduction in
size to allow to store the strategies on embedded devices (Body Sensors).

Other uses of decision trees in formal methods and beyond

In [BCC+15], the motivation for concise and explainable representation was to explain
counterexamples, i.e. strategies leading to unwanted behaviour. For further information
on counterexample generation, see Section 1.5.4.

DTs were used to synthesize invariants [GNMR16] and piece-wise functions in [NSM16,
END+18]. Note that the DT construction algorithm for the infinite safety games [NM19]
builds on these methods.

DTs originated in the area of machine learning, in particular for classification tasks. For
an introduction to that setting, we refer to [Mit97], and for a description of the relation
between that setting and ours, we refer to [Jac20, Chapter 2 and Sections 3.2 and 5.1]. We
refer to [Mur98] for a survey on the use of DTs in many different disciplines.

Alternative data structures for strategy representation

The main alternative for DTs are binary decision diagrams (BDDs) [Bry86], which
also can be used to represent strategies as a graph of predicates on the state-variables.
There are three major differences. (i) The underlying graph of BDDs is not a tree, but a
directed acyclic graph. This allows them to reuse parts of the graph. (ii) The predicates
of the BDD work on the bits of the input state-variables. This makes them easier to
evaluate than those of a DT, but it is a big disadvantage for explainability. A predicate
of the form “the third bit of distance is 0” is hardly explainable and longer chains of such
predicates, mixing several state-variables, are not human-understandable. (iii) The leaf
nodes of BDDs are binary. Hence, to encode a strategy as a BDD, we cannot store a map
S → 2A as for DTs, but rather have to store a map S × 2A → {0, 1}.4 This is not only
harder to understand, but also more difficult to evaluate: instead of giving the current
state to the strategy and getting an action, we have to give state-action pairs to the BDD
until one of them is evaluated to 1. This can be mitigated by Algebraic Decision Diagrams
(ADD) [BFG+97], also called multi-terminal BDD (MTBDD) [FMY97], or the more recent
lattice-valued BDDs [GKG+10].

BDDs and MTBDDs are at the core of symbolic model checking algorithms, where they
are used for representing both systems and strategies [BCM+92, CMCH96, dAKN+00,
KNP04]. Moreover, they are used to represent strategies in planning [CRT98] or hybrid-
systems controllers [JDT10, RZ16]. Inspired by the usage of DTs in [BDG95, BD96] for
factored systems, [HSHB99, SHB00] use MTBDDs in reinforcement learning for strategy
synthesis. Concise (but not explainable) strategy representation using BDDs was explicitly
investigated in [PILM09, ZVJ18], where the latter even considers determinization proce-
dures, similar to us. Note that both the problem of finding an optimal DT [HR76] or an
optimal variable ordering for BDDs [BW96], are NP-complete, as is finding an optimal

4We mention that several paper using DTs, e.g. [BCC+15, BCKT18, NM19, ABC+19], represented the
strategy as map to {0, 1}, even though that is suboptimal.

96

6.3 Related work

determinization for MTBDDs [ZVJ18]. We conjecture that the latter result also extends
to DTs.

In our papers [AKL+19, AJJ+20a, AJK+21a], we always compared the DTs we generated
with BDDs. For BDD-construction, we used reordering heuristics. To avoid reporting
very suboptimal local minima, we additionally constructed several BDDs with randomly
chosen initial variable orderings. Through all our papers [AKL+19, AJJ+20a, AJK+21a]
as well as previous work [BCC+15, BCKT18], experimental results show that the BDDs
typically contain more nodes than DTs. Moreover, they are sensitive to the choice of initial
ordering [AKL+19, Table 1].

There are various other formalisms for representing history-dependent strategies, for
example Mealy machines or AIGER circuits, as used by the tool Strix [MSL18]. Moreover,
one can always employ more complex formalisms from machine learning, the most popular
of which are neural networks. However, getting any kind of guarantees on the behaviour
of the networks is very hard and a topic of active research [BP20, BP22]. Hence, they are
not suitable for the task we consider, as we want our strategy representation to keep the
guarantees. Additionally, neural networks are not explainable. There exist approaches to
distil more explainable DTs from a neural network [FH17, AAHL20].

Explainability throughout many fields

The relevance of explainability in the formal methods community has risen in the past years.
Many developments are summarized in the Isola track introduction “From Verification to
Explanation” [BH20]. More recently, causality has been suggested as a metric for explaining
systems [BFPZ22].

Looking to other fields, we see an immense amount of work done in artificial intelligence
and machine learning, mostly under the keywords eXplainable Artificial Intelligence
(XAI). There are many recent surveys trying to categorize this huge body of work, see
e.g. [GSC+19, ARS+20, TG21, GSC21, MBSG22] or the special issue [MHAH22]. Similarly,
reliability of analysis of big data has been investigated [SFO19, SKK21]. In a highly cited
paper [Rud19], Cynthia Rudin postulates replacing inexplicable models for high-stakes
decision making with interpretable models.

Generally, our methods can no longer only focus on size and performance, but they
also have to take into account our ability to understand their results. However, while
size and performance are easy to quantify, it is difficult to come up with a clear metric
for explainability, but it has been tried, see e.g. [BF16a]. We refer to [HDM+11] for an
empirical evaluation of the comprehensibility of different representations and [PLGM16]
for an extensive, in-depth study of classification-tree comprehensibility.

The fact that DT are explainable seems widely accepted. They are used for explain-
ing neural networks [FH17, AAHL20], as already mentioned above. Further applica-
tions include intrusion detection systems [MTSS21], bioinformatics [CLRT11, SKPK12]
or medicine [PKSR02]. Two groups of researchers developed a more explainable variant
of DTs, called cascading DT [ZSP20, DHD+20]. While the aim and the name are similar,
the resulting concept for cascading DT differs.

97

6 Explainable output

6.4 Summary, discussion and outlook

Summary We have presented dtControl 2.0. It is a mature, modular and performant
tool used for representing memoryless nondeterministic strategies as DTs. The resulting
representation is several orders of magnitude more concise and more explainable than the
original list of state-action pairs.

The particular contributions of the appended paper [AJK+21a] are, most importantly,
(i) the addition of algebraic and categorical predicates, (ii) a graphical user interface which
allows for exploring and interactively building DTs and (iii) a better determinization pro-
cedure, based on an improved theoretical understanding.

Discussion In the following, we discuss how dtControl already achieves its goals in certain
ways and where we see the most room for improvement. Our first motivation was to
represent strategies concisely, to fit them on embedded devices with limited memory;
the size reduction by several orders of magnitude definitely is useful in this direction. We
recall a related advantage from [AJJ+20a, Section 6]: a better quantization of the state-
space. In closed-loop systems, the information about the state of the system is measured
by sensors, transferred over a channel to the controller which then decides the next action.
Typically, these measurements are uniformly quantized, i.e. the state-space is discretized
and partitioned into equally sized subsets. We can improve this by taking advantage of
the fact that a DT effectively partitions the state-space according to the allowed actions.
This partitioning groups many states together when compared to the uniform one. Thus, a
sensor can use fewer bits to inform the controller about the state of the system. Concretely,
in the example depicted in [AJJ+20a, Figure 2 (b)], a uniform quantizer partitions the
state-space into 271 different observations and hence uses 9 bits to inform the controller of
the current state. By using dtControl instead, we see that we can partition the state-space
into 6 observations, one for every possible leaf node of the DT. The sensor only has to
inform the controller in which of these 6 sets the system currently is, and hence only 3 bits
need to be transferred per time unit. Thus, dtControl can help in constructing efficient
coder-controllers with a better-than-uniform quantization.

One more practical motivation of our approach was to allow fast execution of strategies.
A DT can be encoded in a chain of if-then-else statements, and dtControl can output a DT
as C-code. However, so far we have not run experiments to compare the memory footprint
or execution time of this with BDDs or lookup tables. For BDDs, their memory footprints
were investigated in [ZVJ18] and both memory and execution times in [PILM09]. Possibly,
enabling dtControl to output DTs in a hardware description language could improve the
resulting execution time.

Apart from conciseness, our second motivation was explainability. In this direction,
we can report two success stories: firstly, we were able to detect a bug in the model of
our running example. This shows that investigating the resulting strategy is useful for
validating the model and that such validation is necessary.

Secondly, engineers designing a bin-picking robot used dtControl to debug the PRISM
model of their robot, as reported in [KGAK22]. Essentially, this turned the modelling into a
counter-example guided loop, where the engineer specified the PRISM model, represented
the resulting strategy as a DT, analysed it and then updated the model according to

98

6.4 Summary, discussion and outlook

unwanted behaviour he saw in the strategy. Compressing the strategies with millions of
state-action pairs to DTs with thousands of nodes allowed the engineer to detect many
mistakes in the model.

This success story highlights again that model validation is necessary, and additionally
shows that even DTs of very large size are understandable enough to be useful for ex-
perts. It also supports the argument that requiring expert guidance for the development
of algebraic predicates is an acceptable restriction.

It is interesting to consider the theoretical limits of representing strategies as DTs.
Finding an optimal DT is NP-complete [HR76]. We now give a limit on the minimum
size of DTs [Jün21]: consider a strategy that recommends n different action sets, where
n potentially is exponential in the number of actions. Without determinizing, a DT for
this strategy needs at least 2n− 1 nodes, since it is a binary tree with n leaf nodes. This
is independent of whether the tree is a balanced binary tree or a “stairway”, separating
one label completely with every predicate.5 Finding the best possible determinization is
probably NP-complete because it is NP-complete for MTBDDs [ZVJ18]. As a trade-off
between computing the best determinization (which is infeasible) and not determinizing,
we use heuristics. We can further be inspired by methods from machine learning which try
to keep as many actions as possible[Rea08, TKV08]. Moreover, we could consider liberal
strategies with ε-guarantees as in [BCC+15], or reduce the size of the strategy by only
representing its core [KM20].

Outlook There are many practical improvements that we plan for dtControl. Firstly, we
want to improve the generation of algebraic predicates by

• improving the user interface to support experts better in guiding the generation of
algebraic predicates.

• automating the generation process, only requiring basic domain knowledge and not
suggestions of predicates. In this direction, we can report a negative result: start-
ing with the Kinematics equations and considering well-typed combinations of them,
coming up with the “right” predicate requires so many combinations of basic expres-
sions that the whole search space is infeasibly large [Jün21, Chapter 5]. However,
using sophisticated machine learning and prettifying could help [Jün21, Chapter 6],
even though it is at the risk of generating predicates which are too complex to be
explained.

There are many further heuristics we can try in order to construct smaller DTs.

• Using a decision diagram, i.e. reusing subtrees instead of copying them. This seems
like it would mimic an advantage of BDDs. However, our preliminary analysis showed
that this seldom helps in our case studies.

• Using lookahead during the DT construction, as in [EM03, BCKT18].

5Note that, depending on the situation, either of these could be more explainable. If there is a natural
way of finding a stairway, this is easy to follow. However, the predicates required for this form might
be too complex.

99

6 Explainable output

• Using evolutionary algorithms [BBCF12] which perform a global search and can
avoid local minima. However, to retain safety guarantees we would have to take
further measures, as these are not included in these algorithms so far. Still, the DTs
constructed this way could serve as heuristics, inspiring the predicate generation or
tree structure.

• Adding an approach based on uniform random sampling of the space of all DTs. This
requires a way to sample uniformly from the space of all predicates. Given that, such
an approach can be quite performant and provide statistical guarantees.

• Improve the performance of the DT construction by parallelising. For example,
checking the entropy of all considered predicates is completely independent and can
be parallelised.

To judge the effectiveness of our heuristics, it could be worthwhile to implement an
approach for finding the optimal determinization and optimal DT. Most probably this will
not scale well and thus we will only be able to compare on small or medium case studies.

We encourage the reader to visit our website https://dtcontrol.model.in.tum.de/,
which contains not only the tool (as an easy-to-install pip-package or source code) but also
documentation and tutorials. We hope that dtControl will help users in many different
fields to represent their strategies concisely and explainably.

100

https://dtcontrol.model.in.tum.de/

7 Application: Defending against advanced
persistent threats

Motivation The motivation for this chapter is threefold.

• We improve previous techniques for the concrete security problem of defending against
advanced persistent threats.

• We show that it can be useful to modify the formalisms which are used to model a
problem. In particular, turn-based games are easier to analyse than concurrent ones
and multi-objective analysis is more informative than merging multiple objectives
into a single utility function.

• We combine several algorithms from previous chapters, showcasing their usefulness
and the interplay between them.

Problem statement We want to compute the optimal strategies of an attacker and de-
fender in a setting where dynamic information flow tracking is used to defend against an
advanced persistent threat.

From previous work, we know that we can analyse advanced persistent threats using
concurrent stochastic games with a complex utility function and limited information.

We want to modify this formalisation so that we can equivalently analyse a turn-based
stochastic game (SG) with multiple, but simpler objectives. Then we can apply algorithms
from Chapter 4 and 5 to compute Pareto-frontiers and optimal strategies.

Chapter outline We first recall the state of the art solution in Section 7.1: what are
advanced persistent threats and how do we model the defence against them as stochastic
game. Then we summarize how we modified the formalism to facilitate easier and more
meaningful analysis in Section 7.2, provide and algorithm and experimentally evaluate our
approach. This is based on our paper [WGMK21] (Appendix H). Finally, we discuss related
work in Section 7.3 and conclude in Section 7.4.

7.1 State of the art

Advanced persistent threats (APT), see e.g. [GP+14], are a type of attack where an attacker
gains illegitimate access to a system and remains undetected for a long period of time.
APTs have emerged as a serious security threat for many organizations and industries,
including national defense, manufacturing, and finances [Col12, VG13, LCMF18].

While these attacks are difficult to detect, there still exist ways to do it. One way relies
on the fact that APTs create information flows which are recorded in the system log file.
Dynamic Information Flow Tracking (DIFT) [SLZD04] is used to analyse this recorded
information and detect APTs. DIFT operates by tagging suspicious input/output data

101

7 Application: Defending against advanced persistent threats

channels, tracing the propagation of the tagged information through the system and then
performing security analysis on these flows to detect attacks. However, this introduces
memory and performance costs on the system, especially when it involves tracking and
analysing a large number of innocuous flows [JLD+17].

Several papers [MSC+18, SXC+18, MMH+19, SMB+19, MSA+20] have modelled the
problem of defending against APTs using DIFT as a concurrent game between two players,
Attacker and Defender. The Attacker tries to gain access to secret information in the
system, while the Defender decides which flows to track. Defender has several partially
contradicting objectives: detecting the attacker, forcing the Attacker to abort the attack,
preventing the Attacker from accessing secret information and minimizing the cost on the
system. We refer to [MSA+20, Section II and III] for an extensive description of the
resulting game model. Throughout the papers, the exact game model has varied, as we
describe in Section 7.3. Our work builds on [MMH+19], where the problem is modelled as
an acyclic concurrent non-zero-sum SG with limited information. For a formal definition
of this kind of system, see [WGMK21, Definition 2].

We believe that this formalisation is suboptimal, for several reasons.

• Concurrent games are hard to analyse because even when only considering reacha-
bility, optimal strategies do not exists and ε-optimal strategies require randomiza-
tion [dAHK07]. Thus, we want to model our system as turn-based game, if possible.

• All of the mentioned works all use a single-dimensional reward function that encodes
several objectives. This is suboptimal, as the outcome of the analysis greatly depends
on the exact choice of utilities assigned to each objective. Thus, instead of relying
on a good choice of these numbers, we want to explicitly model the problem with a
multi-dimensional reward function. This more interpretable formulation allows us to
answer questions such as “What cost does the defender need to pay to achieve the
maximum probability of trapping the attacker?”, “What is the highest probability to
trap the attacker by a defence cheaper than 10?” or what the possible trade-offs are.

Note that this way of encoding the objectives also makes them zero-sum, i.e. the
objectives of the players are exactly contrary to each other. This allows us to avoid
the more involved solution concept of Nash-equilibria; instead, we compute the set
of all achievable vectors, as in Chapter 5.

• Previous solutions often relied on machine learning techniques [MMH+19, SMA+19a]
which are not reliable. Thus, we want to use an algorithm that gives guarantees on
its result. As we are in a setting with limited information, we want to provide a
probably approximately correct (PAC) guarantee.

Moreover, the analysis in [MMH+19] was limited to acyclic (hence stopping) SGs.

7.2 Contribution: Guaranteed trade-offs in dynamic information
flow tracking games

Our contribution is twofold: firstly, we prove that we can model the problem as a turn-based
SG with a multi-dimensional objective function. Secondly, we show how to solve these

102

7.2 Contribution: Guaranteed trade-offs in dynamic information flow tracking games

games in the presence of limited information, namely unknown transition probabilities.
We obtain an approximation of the set of achievable vectors.

7.2.1 Adjusting the formalisation

There are two parts to adjusting the formalisation of the problem: the concurrency of the
system and the incomprehensible, utility-based objective function.

To transform the concurrent system into a turn-based one, we used the fact that the
SGs modelling a DIFT defense against an APT attack have a very particular structure. In
every state (except for a few absorbing special states), the Defender has the choice to try to
trap the Attacker or not. If the Defender does not trap or if the trapping was unsuccessful,
the Attacker decides the next state of the system. If the trapping was successful, a special
absorbing state is reached, which models that the Attacker was detected.

The Defender’s choice of whether to trap or not does not affect the Attacker’s strategy.
Intuitively, Attacker was aware of the risk of being detected when entering the current
state and has no way of affecting the probability of being detected in the next step. Thus,
instead of having the players make their choice concurrently, we can first let Defender
decide whether to trap or not and afterwards let the Attacker decide where to move. Thus,
we can transform a concurrent SG modelling this specific problem into a turn-based one.
We prove this formally in [WGMK21, Appendix II].

For the objective-function, we observe that there are four distinct objectives that the
players have.

• Destination: Attacker wants to reach a destination, thus obtaining secret information.
Defender wants to avoid this.

• Detection: Defender wants to detect the Attacker. Attacker wants to avoid this.

• Dropout: Defender wants Attacker to drop out of the system and abort the attack.
Attacker wants to avoid this. Note that, when considering utilities, this state is
better for Attacker than being detected, and we have to numerically specify how
much better. Using a multi-objective function, we can separate the concerns.

• Cost: Defender wants to minimize the cost that the DIFT incurs. Attacker is either
indifferent to this or malicious and wants to maximize it.

We see that all these objectives are in fact zero-sum. They were only non-zero-sum in
previous work because they were combined into a single utility function.

Also, we see that it is possible to track each objective separately and not merge the payoffs
into a single function. Our solution concept thus is not a single value, but a vector of values.
To obtain a single function as previously, we can choose a weight for each component,
effectively specifying a ratio between them; this was called direction in Chapter 5. These
weights are effectively set in [MMH+19, Section IV] by choosing αk, βk, σk etc. Thus,
our analysis indeed not only solves the previous problem, but additionally provides more
information, since it informs us about all possible Pareto-optimal outcomes, not just one
outcome for a particular ratio.

103

7 Application: Defending against advanced persistent threats

Table 7.1: Properties of the considered case studies and runtime of our algorithm. Based
on [WGMK21, Table 1].

Example Size Cyclicity Time taken (s)

Random 10 No 7.78
100 No 11.90

Random 10 Yes 8.29
100 Yes 17.63

ScreenGrab 9 no 7.95

NationState 30 yes 8.40

7.2.2 Algorithm

Our algorithm proceeds in three steps: first it simulates the model to learn the unknown
probabilities with a certain confidence, using a grey-box variant of the algorithm in Chap-
ter 4.1. Then, we transform the resulting bounded-parameter SG to a normal SG using the
general approach described in Section 4.2. Finally, we use the algorithm from [CFK+13b]
to compute the Pareto-frontier in the multi-objective SG we obtained. For more details,
we refer to [WGMK21, Section IV] or the respective sections of this dissertation.

Note all of the algorithms we use do not restrict the considered SG to be acyclic, so we
have also lifted this requirement of [MMH+19].

7.2.3 Experimental results

We have implemented our algorithm and ran it on two real case studies as well as several
random graphs. The results are summarized in Table 7.1. We see that the algorithm runs
in reasonable time on the real case studies, finishing within a few seconds. Moreover, even
on the larger random models it terminates quickly, giving hope that it will also scale to
larger problems when they occur in practice.

Further, we analysed the resulting Pareto-frontiers, see [WGMK21, Figure 4]. As the
models were very small, we were able to validate that the computed values and trade-offs
make sense. Moreover, we gathered the following insights about the objective function.

• Defender cannot ensure that Attacker aborts the attack. Since we are interested
in defending against a worst-case Attacker, we have to assume the Attacker is risk-
seeking and prefers chances of incurring costs and reaching the destination over a
safe dropout. Thus, we can omit this dimension from the analysis.

• The probability to detect the Attacker is 1 minus the probability of the Attacker to
reach the goal. Again, a worst-case Attacker is risk-seeking, so the only chance of
preventing the destination being reached is to detect the Attacker.

104

7.3 Related work

7.3 Related work

We mention that the related works in Sections 4.1.5, 4.2.4 and 5.3 are relevant for this
chapter, too. This is because the algorithms we use here are combinations of those from
previous chapters. In the following, we recall developments in the analysis of the concrete
security problem of APTs and defending against them using DIFT.

Advanced persistent threats

APTs pose a huge risk for companies and governments alike, stealing terabytes of sensitive
data and causing immense financial loss [VG13, GP+14, LCMF18]. Thus, even though
successful large-scale APTs have only started being reported on in the past decade, APTs
have received a lot of attention, see the book [Col12], the surveys [VG13, GP+14, CDH14,
LCMF18, AMCH19] and the special issue [CSYY18]. These reports analyse many attacks
that have occurred in the past 15 years and discuss why they were possible, what they
achieved and what has to be changed in order to defend against them. Their conclusions are
alarming: “the old way of doing security is no longer going to scale against a game-changing
adversary, the APT.” [Col12, Page xv] and “[n]o single current protection approach alone
can efficiently defeat APT, and thus research effort is required to further investigate this
area” [CSYY18, Page 1].

Dynamic information flow tracking

Since APTs are so sophisticated and varied, protection against them cannot rely on tra-
ditional security methods anymore. One necessary defence mechanism is to monitor the
entire network and look for suspicious activity, as described in [VG13, GP+14, AMCH19]
or [Col12, Page 23].

DIFT as a way to monitor spurious information flows was introduced in [SLZD04]. It
has been improved since then, for example by using efficient parallelization [JKKP13] or
by investigating the trade-off between collecting a detailed log and minimizing runtime
overhead [JLD+17].

Based on this, a string of works modelled the interaction of an APT attack and a
DIFT defence using games. This approach of using games is common in security, see
e.g. [LW05, RES+10]. In [HZ18, SXC+18, MSC+18], the problem is modelled as a non-
stochastic concurrent game with imperfect information. Multiple attackers were considered
in [SMA+19b], and an alternative model of a zero-sum Stackelberg semi-Markov game
in [SAM+20]. Concurrent stochastic games were used in [SMB+19, SMA+19a, MMH+19,
MSA+20]. Many of these papers use a single utility function to capture the objective, often
making the game non-zero-sum.

7.4 Summary, discussion and outlook

Summary It is important to defend against APTs and one way of doing so is by using
DIFT. We have shown how to modify the formalism for modelling this problem so that it is
(i) not a concurrent game, but an easier-to-analyse turn-based one; (ii) not using a single,

105

7 Application: Defending against advanced persistent threats

incomprehensible utility function, but a multi-dimensional objective allowing for analysing
trade-offs and (iii) we have combined our algorithms to give a guaranteed solution for the
resulting model.

Discussion Over the past few years, many models have been proposed for modelling APT
versus DIFT games. We do not claim to have found an optimum, but we do believe that
our contribution can help this string of research. In particular, as discussed in Section 7.2.3,
we can essentially ignore two dimensions of the objective function.

In general, we believe it is relevant to expand the reach of formal methods. We as a
field should bring our guaranteed algorithms and our knowledge of modelling formalisms
to the communities that are practically solving problems, like the security community in
this chapter. Even though from the algorithmic side, the contribution of this chapter is a
straightforward combination of existing algorithms, it requires knowledge of and experience
with these algorithms and the involved formalisms.

Outlook The algorithms we concatenate to achieve our results are in fact suboptimal:
we only get a guarantee of convergence in the limit for non-stopping SGs, since we rely
on [CFK+13b, Theorem 4] for solving the turn-based SG with a combination of reachability
and reward objectives. While this was not relevant in the case studies, it is still desirable to
extend the contribution of Chapter 5 to also provide an ε-guarantee on reward objectives.
This would allow to giving an anytime guarantee, as well as a PAC guarantee on non-
stopping SGs.

In general, we hope to repeat the story of this paper [WGMK21]: find a practical
problem, improve the formalism that is used to model it and apply algorithms from formal
methods to compute solutions that are more informative and reliable.

106

8 Conclusion

We have given an overview of the state of the art techniques for solving stochastic games,
with a particular focus on doing so reliably. This reliability comes in the form of giving
guarantees on the precision of our algorithms (Chapter 3), more expressive formalisms for
modelling the given problem (Chapter 4 and Chapter 5) and allowing to validate a model
(Chapter 6).

Our overview has taken us on a tour through all parts of the model checking paradigm,
investigating which formalisms can be used to model the system (Chapter 4) and the
specification (Chapter 5), how to use and validate the result (Chapter 6) and how to apply
this to a real case study, in particular by choosing the right formalism (Chapter 7). We
have encountered problems of theoretical interest, e.g. whether there exists a polynomial
algorithm for solving simple stochastic games or whether generalized-reachability stochastic
games are decidable; and very practical problems, e.g. how to improve the scalability of our
methods by using statistical model checking or machine learning approaches like simulation-
based algorithms and decision trees. All chapters include an extensive overview of related
work, surveying the current literature and thus also giving many potential directions for
future work.

In conclusion, I hope that this dissertation serves as a good introduction to the topics
I encountered during my PhD, as well as an inspiration for further research. The overall
goal is to help agents — people — make good decisions reliably.

107

Bibliography

[AAHL20] Parand Alizadeh Alamdari, Guy Avni, Thomas A. Henzinger, and Anna
Lukina. Formal methods with a touch of magic. In FMCAD, pages 138–147.
IEEE, 2020. doi:10.34727/2020/isbn.978-3-85448-042-6 21.

[AAK15] Shaull Almagor, Guy Avni, and Orna Kupferman. Repairing
multi-player games. In CONCUR, volume 42 of LIPIcs, pages
325–339. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.
doi:10.4230/LIPIcs.CONCUR.2015.325.

[AAK17] Rimmi Anand, Divya Aggarwal, and Vijay Kumar. A comparative analy-
sis of optimization solvers. Journal of Statistics and Management Systems,
20(4):623–635, 2017. doi:10.1080/09720510.2017.1395182.

[Aar16] Scott Aaronson. P =? NP. In John Forbes Nash Jr. and Michael Th.
Rassias, editors, Open Problems in Mathematics, pages 1–122. Springer, 2016.
doi:10.1007/978-3-319-32162-2 1.

[AB] Scott Aaronson and Chris Bourke. The complexity zoo. URL http://cse.

unl.edu/~cbourke/latex/ComplexityZoo.pdf. Accessed: 15.06.2022.

[ABC+19] Pranav Ashok, Tomás Brázdil, Krishnendu Chatterjee, Jan Kret́ınský,
Christoph H. Lampert, and Viktor Toman. Strategy representation by de-
cision trees with linear classifiers. In QEST, volume 11785 of Lecture Notes
in Computer Science, pages 109–128. Springer, 2019. doi:10.1007/978-3-030-
30281-8 7.

[ÁBD+14] Erika Ábrahám, Bernd Becker, Christian Dehnert, Nils Jansen, Joost-Pieter
Katoen, and Ralf Wimmer. Counterexample generation for discrete-time
Markov models: An introductory survey. In SFM, volume 8483 of Lecture
Notes in Computer Science, pages 65–121. Springer, 2014. doi:10.1007/978-
3-319-07317-0 3.

[ABD+15] Rajeev Alur, Rastislav Bod́ık, Eric Dallal, Dana Fisman, Pranav Garg,
Garvit Juniwal, Hadas Kress-Gazit, P. Madhusudan, Milo M. K. Martin,
Mukund Raghothaman, Shambwaditya Saha, Sanjit A. Seshia, Rishabh
Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-
guided synthesis. In Dependable Software Systems Engineering, volume 40
of NATO Science for Peace and Security Series, D: Information and Com-
munication Security, pages 1–25. IOS Press, 2015. doi:10.3233/978-1-61499-
495-4-1.

109

https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_21
https://doi.org/10.4230/LIPIcs.CONCUR.2015.325
https://doi.org/10.1080/09720510.2017.1395182
https://doi.org/10.1007/978-3-319-32162-2_1
http://cse.unl.edu/~cbourke/latex/ComplexityZoo.pdf
http://cse.unl.edu/~cbourke/latex/ComplexityZoo.pdf
https://doi.org/10.1007/978-3-030-30281-8_7
https://doi.org/10.1007/978-3-030-30281-8_7
https://doi.org/10.1007/978-3-319-07317-0_3
https://doi.org/10.1007/978-3-319-07317-0_3
https://doi.org/10.3233/978-1-61499-495-4-1
https://doi.org/10.3233/978-1-61499-495-4-1

BIBLIOGRAPHY

[ABE+18] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer,
Scott Niekum, and Ufuk Topcu. Safe reinforcement learning via shielding. In
AAAI, pages 2669–2678. AAAI Press, 2018. URL https://ojs.aaai.org/

index.php/AAAI/article/view/11797.

[ABKS18] Pranav Ashok, Tomás Brázdil, Jan Kret́ınský, and Ondrej Slámecka. Monte
carlo tree search for verifying reachability in Markov decision processes. In
ISoLA (2), volume 11245 of Lecture Notes in Computer Science, pages 322–
335. Springer, 2018. doi:10.1007/978-3-030-03421-4 21.

[ACD+17] Pranav Ashok, Krishnendu Chatterjee, Przemyslaw Daca, Jan Kret́ınský,
and Tobias Meggendorfer. Value iteration for long-run average reward in
Markov decision processes. In CAV (1), volume 10426 of Lecture Notes in
Computer Science, pages 201–221. Springer, 2017. doi:10.1007/978-3-319-
63387-9 10.

[ACK+20] Pranav Ashok, Krishnendu Chatterjee, Jan Kretinsky, Maximilian
Weininger, and Tobias Winkler. Approximating values of generalized-
reachability stochastic games. In LICS, pages 102–115. ACM, 2020.
doi:10.1145/3373718.3394761.

[ACS19] David Auger, Pierre Coucheney, and Yann Strozecki. Solving simple stochas-
tic games with few random nodes faster using Bland’s rule. In STACS, vol-
ume 126 of LIPIcs, pages 9:1–9:16. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPIcs.STACS.2019.9.

[AD14] Matthias Althoff and John M. Dolan. Online verification of automated road
vehicles using reachability analysis. IEEE Trans. Robotics, 30(4):903–918,
2014. doi:10.1109/TRO.2014.2312453.

[ADKW20] Pranav Ashok, Przemyslaw Daca, Jan Kretinsky, and Maximilian Weininger.
Statistical model checking: Black or white? In ISoLA (1), volume 12476
of Lecture Notes in Computer Science, pages 331–349. Springer, 2020.
doi:10.1007/978-3-030-61362-4 19.

[AdMS21] David Auger, Xavier Badin de Montjoye, and Yann Strozecki. A generic
strategy improvement method for simple stochastic games. In MFCS, vol-
ume 202 of LIPIcs, pages 12:1–12:22. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.MFCS.2021.12.

[AH20] Guy Avni and Thomas A. Henzinger. A survey of bidding games
on graphs (invited paper). In CONCUR, volume 171 of LIPIcs,
pages 2:1–2:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.CONCUR.2020.2.

[AHdA+08] Parosh Aziz Abdulla, Noomene Ben Henda, Luca de Alfaro, Richard Mayr,
and Sven Sandberg. Stochastic games with lossy channels. In FoSSaCS,
volume 4962 of Lecture Notes in Computer Science, pages 35–49. Springer,
2008. doi:10.1007/978-3-540-78499-9 4.

110

https://ojs.aaai.org/index.php/AAAI/article/view/11797
https://ojs.aaai.org/index.php/AAAI/article/view/11797
https://doi.org/10.1007/978-3-030-03421-4_21
https://doi.org/10.1007/978-3-319-63387-9_10
https://doi.org/10.1007/978-3-319-63387-9_10
https://doi.org/10.1145/3373718.3394761
https://doi.org/10.4230/LIPIcs.STACS.2019.9
https://doi.org/10.1109/TRO.2014.2312453
https://doi.org/10.1007/978-3-030-61362-4_19
https://doi.org/10.4230/LIPIcs.MFCS.2021.12
https://doi.org/10.4230/LIPIcs.CONCUR.2020.2
https://doi.org/10.1007/978-3-540-78499-9_4

BIBLIOGRAPHY

[AJJ+20a] Pranav Ashok, Mathias Jackermeier, Pushpak Jagtap, Jan Kret́ınský, Max-
imilian Weininger, and Majid Zamani. dtControl: decision tree learning
algorithms for controller representation. In HSCC, pages 17:1–17:7. ACM,
2020. doi:10.1145/3365365.3382220.

[AJJ+20b] Pranav Ashok, Mathias Jackermeier, Pushpak Jagtap, Jan Kret́ınský, Max-
imilian Weininger, and Majid Zamani. dtControl: decision tree learning
algorithms for controller representation. In HSCC, pages 30:1–30:2. ACM,
2020. doi:10.1145/3365365.3383468.

[AJK+21a] Pranav Ashok, Mathias Jackermeier, Jan Kretinsky, Christoph Weinhuber,
Maximilian Weininger, and Mayank Yadav. dtControl 2.0: Explainable strat-
egy representation via decision tree learning steered by experts. In TACAS
(2), volume 12652 of Lecture Notes in Computer Science, pages 326–345.
Springer, 2021. doi:10.1007/978-3-030-72013-1 17.

[AJK+21b] Pranav Ashok, Mathias Jackermeier, Jan Kret́ınský, Christoph Weinhuber,
Maximilian Weininger, and Mayank Yadav. dtControl 2.0: Explainable strat-
egy representation via decision tree learning steered by experts. CoRR,
abs/2101.07202, 2021. URL https://arxiv.org/abs/2101.07202.

[AK20] Shaull Almagor and Orna Kupferman. Good-enough synthesis. In CAV (2),
volume 12225 of Lecture Notes in Computer Science, pages 541–563. Springer,
2020. doi:10.1007/978-3-030-53291-8 28.

[AKL+19] Pranav Ashok, Jan Kret́ınský, Kim Guldstrand Larsen, Adrien Le Coënt,
Jakob Haahr Taankvist, and Maximilian Weininger. SOS: safe, optimal and
small strategies for hybrid Markov decision processes. In QEST, volume
11785 of Lecture Notes in Computer Science, pages 147–164. Springer, 2019.
doi:10.1007/978-3-030-30281-8 9.

[Akm19] Safa Mert Akmese. Generating Richer Predicates for Decision Trees. Bach-
elor’s thesis, Technical University of Munich, 2019.

[AKV16] Shaull Almagor, Orna Kupferman, and Yaron Velner. Minimizing expected
cost under hard boolean constraints, with applications to quantitative syn-
thesis. In CONCUR, volume 59 of LIPIcs, pages 9:1–9:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.CONCUR.2016.9.

[AKW19a] Pranav Ashok, Jan Kretinsky, and Maximilian Weininger. PAC statistical
model checking for Markov decision processes and stochastic games. In CAV
(1), volume 11561 of Lecture Notes in Computer Science, pages 497–519.
Springer, 2019. doi:10.1007/978-3-030-25540-4 29.

[AKW19b] Pranav Ashok, Jan Kret́ınský, and Maximilian Weininger. PAC statistical
model checking for Markov decision processes and stochastic games. CoRR,
abs/1905.04403, 2019. URL http://arxiv.org/abs/1905.04403.

111

https://doi.org/10.1145/3365365.3382220
https://doi.org/10.1145/3365365.3383468
https://doi.org/10.1007/978-3-030-72013-1_17
https://arxiv.org/abs/2101.07202
https://doi.org/10.1007/978-3-030-53291-8_28
https://doi.org/10.1007/978-3-030-30281-8_9
https://doi.org/10.4230/LIPIcs.CONCUR.2016.9
https://doi.org/10.1007/978-3-030-25540-4_29
http://arxiv.org/abs/1905.04403

BIBLIOGRAPHY

[AL09] Husain Aljazzar and Stefan Leue. Generation of counterexamples for model
checking of Markov decision processes. In QEST, pages 197–206. IEEE Com-
puter Society, 2009. doi:10.1109/QEST.2009.10.

[Alu15] Rajeev Alur. Principles of cyber-physical systems. MIT
press, 2015. URL https://mitpress.mit.edu/books/

principles-cyber-physical-systems.

[AM09] Daniel Andersson and Peter Bro Miltersen. The complexity of solving
stochastic games on graphs. In ISAAC, volume 5878 of Lecture Notes in
Computer Science, pages 112–121. Springer, 2009. doi:10.1007/978-3-642-
10631-6 13.

[AMCH19] Adel Alshamrani, Sowmya Myneni, Ankur Chowdhary, and Dijiang Huang.
A survey on advanced persistent threats: Techniques, solutions, challenges,
and research opportunities. IEEE Commun. Surv. Tutorials, 21(2):1851–
1877, 2019. doi:10.1109/COMST.2019.2891891.

[Ami03] Rabah Amir. Stochastic games in economics and related fields: an overview.
Stochastic games and applications, pages 455–470, 2003. doi:10.1007/978-94-
010-0189-2 30.

[AP18] Gul Agha and Karl Palmskog. A survey of statistical model checking. ACM
Trans. Model. Comput. Simul., 28(1):6:1–6:39, 2018. doi:10.1145/3158668.

[ARS+20] Alejandro Barredo Arrieta, Natalia Dı́az Rodŕıguez, Javier Del Ser, Adrien
Bennetot, Siham Tabik, Alberto Barbado, Salvador Garćıa, Sergio Gil-Lopez,
Daniel Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera.
Explainable artificial intelligence (XAI): concepts, taxonomies, opportuni-
ties and challenges toward responsible AI. Inf. Fusion, 58:82–115, 2020.
doi:10.1016/j.inffus.2019.12.012.

[Åst65] Karl Johan Åström. Optimal control of Markov processes with incom-
plete state information. Journal of mathematical analysis and applications,
10(1):174–205, 1965. URL https://core.ac.uk/download/pdf/82498456.

pdf.

[AY17] Gürdal Arslan and Serdar Yüksel. Decentralized Q-learning for stochastic
teams and games. IEEE Trans. Autom. Control., 62(4):1545–1558, 2017.
URL https://doi.org/10.1109/TAC.2016.2598476.

[Bai15] Christel Baier. Reasoning about cost-utility constraints in probabilistic mod-
els. In RP, volume 9328 of Lecture Notes in Computer Science, pages 1–6.
Springer, 2015. doi:10.1007/978-3-319-24537-9 1.

[BBB+12] Ananda Basu, Saddek Bensalem, Marius Bozga, Benôıt Delahaye, and
Axel Legay. Statistical abstraction and model-checking of large heteroge-
neous systems. Int. J. Softw. Tools Technol. Transf., 14(1):53–72, 2012.
doi:10.1007/s10009-011-0201-2.

112

https://doi.org/10.1109/QEST.2009.10
https://mitpress.mit.edu/books/principles-cyber-physical-systems
https://mitpress.mit.edu/books/principles-cyber-physical-systems
https://doi.org/10.1007/978-3-642-10631-6_13
https://doi.org/10.1007/978-3-642-10631-6_13
https://doi.org/10.1109/COMST.2019.2891891
https://doi.org/10.1007/978-94-010-0189-2_30
https://doi.org/10.1007/978-94-010-0189-2_30
https://doi.org/10.1145/3158668
https://doi.org/10.1016/j.inffus.2019.12.012
https://core.ac.uk/download/pdf/82498456.pdf
https://core.ac.uk/download/pdf/82498456.pdf
https://doi.org/10.1109/TAC.2016.2598476
https://doi.org/10.1007/978-3-319-24537-9_1
https://doi.org/10.1007/s10009-011-0201-2

BIBLIOGRAPHY

[BBC+14] Tomás Brázdil, Václav Brozek, Krishnendu Chatterjee, Vojtech Forejt, and
Antońın Kucera. Two views on multiple mean-payoff objectives in Markov de-
cision processes. Log. Methods Comput. Sci., 10(1), 2014. doi:10.2168/LMCS-
10(1:13)2014.

[BBCF12] Rodrigo Coelho Barros, Márcio Porto Basgalupp, André Carlos Ponce de
Leon Ferreira de Carvalho, and Alex Alves Freitas. A survey of evolutionary
algorithms for decision-tree induction. IEEE Trans. Syst. Man Cybern. Part
C, 42(3):291–312, 2012. doi:10.1109/TSMCC.2011.2157494.

[BBGT21] Thomas Brihaye, Véronique Bruyère, Aline Goeminne, and Nathan Thomas-
set. On relevant equilibria in reachability games. J. Comput. Syst. Sci.,
119:211–230, 2021. doi:10.1016/j.jcss.2021.02.009.

[BBS08] Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive
survey of multiagent reinforcement learning. IEEE Trans. Syst. Man Cybern.
Part C, 38(2):156–172, 2008. URL https://doi.org/10.1109/TSMCC.2007.

913919.

[BCC+14] Tomás Brázdil, Krishnendu Chatterjee, Martin Chmelik, Vojtech Forejt, Jan
Kret́ınský, Marta Z. Kwiatkowska, David Parker, and Mateusz Ujma. Ver-
ification of markov decision processes using learning algorithms. In ATVA,
volume 8837 of Lecture Notes in Computer Science, pages 98–114. Springer,
2014. doi:10.1007/978-3-319-11936-6 8.

[BCC+15] Tomás Brázdil, Krishnendu Chatterjee, Martin Chmelik, Andreas Fellner,
and Jan Kret́ınský. Counterexample explanation by learning small strategies
in Markov decision processes. In CAV (1), volume 9206 of Lecture Notes
in Computer Science, pages 158–177. Springer, 2015. doi:10.1007/978-3-319-
21690-4 10.

[BCD+18] Christel Baier, Philipp Chrszon, Clemens Dubslaff, Joachim Klein, and
Sascha Klüppelholz. Energy-utility analysis of probabilistic systems with ex-
ogenous coordination. In It’s All About Coordination, volume 10865 of Lecture
Notes in Computer Science, pages 38–56. Springer, 2018. doi:10.1007/978-3-
319-90089-6 3.

[BCFK15] Tomás Brázdil, Krishnendu Chatterjee, Vojtech Forejt, and Antońın Kucera.
Multigain: A controller synthesis tool for MDPs with multiple mean-payoff
objectives. In TACAS, volume 9035 of Lecture Notes in Computer Science,
pages 181–187. Springer, 2015. doi:10.1007/978-3-662-46681-0 12.

[BCFK17] Tomás Brázdil, Krishnendu Chatterjee, Vojtech Forejt, and Antońın Kucera.
Trading performance for stability in Markov decision processes. J. Comput.
Syst. Sci., 84:144–170, 2017. doi:10.1016/j.jcss.2016.09.009.

[BCH+16] Romain Brenguier, Lorenzo Clemente, Paul Hunter, Guillermo A. Pérez,
Mickael Randour, Jean-François Raskin, Ocan Sankur, and Mathieu Sassolas.

113

https://doi.org/10.2168/LMCS-10(1:13)2014
https://doi.org/10.2168/LMCS-10(1:13)2014
https://doi.org/10.1109/TSMCC.2011.2157494
https://doi.org/10.1016/j.jcss.2021.02.009
https://doi.org/10.1109/TSMCC.2007.913919
https://doi.org/10.1109/TSMCC.2007.913919
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-21690-4_10
https://doi.org/10.1007/978-3-319-21690-4_10
https://doi.org/10.1007/978-3-319-90089-6_3
https://doi.org/10.1007/978-3-319-90089-6_3
https://doi.org/10.1007/978-3-662-46681-0_12
https://doi.org/10.1016/j.jcss.2016.09.009

BIBLIOGRAPHY

Non-zero sum games for reactive synthesis. In LATA, volume 9618 of Lecture
Notes in Computer Science, pages 3–23. Springer, 2016. doi:10.1007/978-3-
319-30000-9 1.

[BCKT18] Tomás Brázdil, Krishnendu Chatterjee, Jan Kret́ınský, and Viktor Toman.
Strategy representation by decision trees in reactive synthesis. In TACAS
(1), volume 10805 of Lecture Notes in Computer Science, pages 385–407.
Springer, 2018. doi:10.1007/978-3-319-89960-2 21.

[BCLS13] Benôıt Boyer, Kevin Corre, Axel Legay, and Sean Sedwards. Plasma-lab: A
flexible, distributable statistical model checking library. In QEST, volume
8054 of Lecture Notes in Computer Science, pages 160–164. Springer, 2013.
doi:10.1007/978-3-642-40196-1 12.

[BCM+92] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill,
and L. J. Hwang. Symbolic model checking: 10ˆ20 states and beyond. Inf.
Comput., 98(2):142–170, 1992. doi:10.1016/0890-5401(92)90017-A.

[BCV21] Suguman Bansal, Krishnendu Chatterjee, and Moshe Y. Vardi. On satisfic-
ing in quantitative games. In TACAS (1), volume 12651 of Lecture Notes
in Computer Science, pages 20–37. Springer, 2021. doi:10.1007/978-3-030-
72016-2 2.

[BD96] Craig Boutilier and Richard Dearden. Approximate value trees in
structured dynamic programming. In ICML, pages 54–62. Morgan
Kaufmann, 1996. URL https://www.semanticscholar.org/paper/

Approximate-Value-Trees-in-Structured-Dynamic-Boutilier-Dearden/

ddb3bd5136cea13652a5eca9e286956844d440ac.

[BD08] Nicola Bellomo and M Delitala. From the mathematical kinetic, and stochas-
tic game theory to modelling mutations, onset, progression and immune
competition of cancer cells. Physics of Life Reviews, 5(4):183–206, 2008.
doi:10.1016/j.plrev.2008.07.001.

[BD18] Christel Baier and Clemens Dubslaff. From verification to synthesis
under cost-utility constraints. ACM SIGLOG News, 5(4):26–46, 2018.
doi:10.1145/3292048.3292052.

[BDD+14] Christel Baier, Marcus Daum, Clemens Dubslaff, Joachim Klein, and Sascha
Klüppelholz. Energy-utility quantiles. In NASA Formal Methods, volume
8430 of Lecture Notes in Computer Science, pages 285–299. Springer, 2014.
doi:10.1007/978-3-319-06200-6 24.

[BDG95] Craig Boutilier, Richard Dearden, and Moisés Goldszmidt. Exploiting struc-
ture in policy construction. In IJCAI, pages 1104–1113. Morgan Kaufmann,
1995. URL http://ijcai.org/Proceedings/95-2/Papers/012.pdf.

114

https://doi.org/10.1007/978-3-319-30000-9_1
https://doi.org/10.1007/978-3-319-30000-9_1
https://doi.org/10.1007/978-3-319-89960-2_21
https://doi.org/10.1007/978-3-642-40196-1_12
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1007/978-3-030-72016-2_2
https://doi.org/10.1007/978-3-030-72016-2_2
https://www.semanticscholar.org/paper/Approximate-Value-Trees-in-Structured-Dynamic-Boutilier-Dearden/ddb3bd5136cea13652a5eca9e286956844d440ac
https://www.semanticscholar.org/paper/Approximate-Value-Trees-in-Structured-Dynamic-Boutilier-Dearden/ddb3bd5136cea13652a5eca9e286956844d440ac
https://www.semanticscholar.org/paper/Approximate-Value-Trees-in-Structured-Dynamic-Boutilier-Dearden/ddb3bd5136cea13652a5eca9e286956844d440ac
https://doi.org/10.1016/j.plrev.2008.07.001
https://doi.org/10.1145/3292048.3292052
https://doi.org/10.1007/978-3-319-06200-6_24
http://ijcai.org/Proceedings/95-2/Papers/012.pdf

BIBLIOGRAPHY

[BDK14a] Christel Baier, Clemens Dubslaff, and Sascha Klüppelholz. Trade-off analysis
meets probabilistic model checking. In CSL-LICS, pages 1:1–1:10. ACM,
2014. doi:10.1145/2603088.2603089.

[BDK+14b] Christel Baier, Clemens Dubslaff, Sascha Klüppelholz, Marcus Daum,
Joachim Klein, Steffen Märcker, and Sascha Wunderlich. Probabilistic model
checking and non-standard multi-objective reasoning. In FASE, volume
8411 of Lecture Notes in Computer Science, pages 1–16. Springer, 2014.
doi:10.1007/978-3-642-54804-8 1.

[BDL+12] Peter E. Bulychev, Alexandre David, Kim Guldstrand Larsen, Marius Miku-
cionis, Danny Bøgsted Poulsen, Axel Legay, and Zheng Wang. UPPAAL-
SMC: statistical model checking for priced timed automata. In QAPL, vol-
ume 85 of EPTCS, pages 1–16, 2012. doi:10.4204/EPTCS.85.1.

[BDL+17] Anicet Bart, Benôıt Delahaye, Didier Lime, Éric Monfroy, and Charlotte
Truchet. Reachability in parametric interval Markov chains using constraints.
In QEST, volume 10503 of Lecture Notes in Computer Science, pages 173–
189. Springer, 2017. doi:10.1007/978-3-319-66335-7 11.

[BDMS08] Jürgen Branke, Kalyanmoy Deb, Kaisa Miettinen, and Roman Slowinski, ed-
itors. Multiobjective Optimization, Interactive and Evolutionary Approaches
[outcome of Dagstuhl seminars], volume 5252 of Lecture Notes in Computer
Science. Springer, 2008. doi:10.1007/978-3-540-88908-3.

[BF16a] Adrien Bibal and Benôıt Frénay. Interpretability of machine
learning models and representations: an introduction. In
ESANN, 2016. URL https://www.semanticscholar.org/paper/

Interpretability-of-machine-learning-models-and-an-Bibal-Fr%

C3%A9nay/464656fc6431f1db8b2e0b0b3093a5df1cb7958e.

[BF16b] Romain Brenguier and Vojtech Forejt. Decidability results for multi-objective
stochastic games. In ATVA, volume 9938 of Lecture Notes in Computer
Science, pages 227–243, 2016. doi:10.1007/978-3-319-46520-3 15.

[BFG+97] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico
Macii, Abelardo Pardo, and Fabio Somenzi. Algebraic decision diagrams
and their applications. Formal Methods Syst. Des., 10(2/3):171–206, 1997.
doi:10.1023/A:1008699807402.

[BFPZ22] Christel Baier, Florian Funke, Jakob Piribauer, and Robin Ziemek. On
probability-raising causality in Markov decision processes. In FoSSaCS, vol-
ume 13242 of Lecture Notes in Computer Science, pages 40–60. Springer,
2022. doi:10.1007/978-3-030-99253-8 3.

[BFRR17] Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and Jean-François
Raskin. Meet your expectations with guarantees: Beyond worst-case
synthesis in quantitative games. Inf. Comput., 254:259–295, 2017.
doi:10.1016/j.ic.2016.10.011.

115

https://doi.org/10.1145/2603088.2603089
https://doi.org/10.1007/978-3-642-54804-8_1
https://doi.org/10.4204/EPTCS.85.1
https://doi.org/10.1007/978-3-319-66335-7_11
https://doi.org/10.1007/978-3-540-88908-3
https://www.semanticscholar.org/paper/Interpretability-of-machine-learning-models-and-an-Bibal-Fr%C3%A9nay/464656fc6431f1db8b2e0b0b3093a5df1cb7958e
https://www.semanticscholar.org/paper/Interpretability-of-machine-learning-models-and-an-Bibal-Fr%C3%A9nay/464656fc6431f1db8b2e0b0b3093a5df1cb7958e
https://www.semanticscholar.org/paper/Interpretability-of-machine-learning-models-and-an-Bibal-Fr%C3%A9nay/464656fc6431f1db8b2e0b0b3093a5df1cb7958e
https://doi.org/10.1007/978-3-319-46520-3_15
https://doi.org/10.1023/A:1008699807402
https://doi.org/10.1007/978-3-030-99253-8_3
https://doi.org/10.1016/j.ic.2016.10.011

BIBLIOGRAPHY

[BGJS20] Hugo Bazille, Blaise Genest, Cyrille Jégourel, and Jun Sun. Global PAC
bounds for learning discrete time Markov chains. In CAV (2), volume
12225 of Lecture Notes in Computer Science, pages 304–326. Springer, 2020.
doi:10.1007/978-3-030-53291-8 17.

[BGMR18] Patricia Bouyer, Mauricio González, Nicolas Markey, and Mickael Ran-
dour. Multi-weighted Markov decision processes with reachability ob-
jectives. In GandALF, volume 277 of EPTCS, pages 250–264, 2018.
doi:10.4204/EPTCS.277.18.

[BGR20] Raphaël Berthon, Shibashis Guha, and Jean-François Raskin. Mixing prob-
abilistic and non-probabilistic objectives in Markov decision processes. In
LICS, pages 195–208. ACM, 2020. doi:10.1145/3373718.3394805.

[BH20] Christel Baier and Holger Hermanns. From verification to explanation (track
introduction). In ISoLA (4), volume 12479 of Lecture Notes in Computer
Science, pages 1–7. Springer, 2020. doi:10.1007/978-3-030-83723-5 1.

[BHH12] Jonathan Bogdoll, Arnd Hartmanns, and Holger Hermanns. Simulation and
statistical model checking for modestly nondeterministic models. In MM-
B/DFT, volume 7201 of Lecture Notes in Computer Science, pages 249–252.
Springer, 2012. doi:10.1007/978-3-642-28540-0 20.

[BHK19] Christel Baier, Holger Hermanns, and Joost-Pieter Katoen. The 10, 000
facets of MDP model checking. In Computing and Software Science, volume
10000 of Lecture Notes in Computer Science, pages 420–451. Springer, 2019.
doi:10.1007/978-3-319-91908-9 21.

[BHK+20] Carlos E. Budde, Arnd Hartmanns, Michaela Klauck, Jan Kret́ınský, David
Parker, Tim Quatmann, Andrea Turrini, and Zhen Zhang. On correctness,
precision, and performance in quantitative verification - QComp 2020 com-
petition report. In ISoLA (4), volume 12479 of Lecture Notes in Computer
Science, pages 216–241. Springer, 2020. doi:10.1007/978-3-030-83723-5 15.

[BHL19] Giovanni Bacci, Mikkel Hansen, and Kim Guldstrand Larsen. Model checking
constrained Markov reward models with uncertainties. In QEST, volume
11785 of Lecture Notes in Computer Science, pages 37–51. Springer, 2019.
doi:10.1007/978-3-030-30281-8 3.

[BHR16] Véronique Bruyère, Quentin Hautem, and Jean-François Raskin. On the com-
plexity of heterogeneous multidimensional games. In CONCUR, volume 59 of
LIPIcs, pages 11:1–11:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPIcs.CONCUR.2016.11.

[BHRR19] Véronique Bruyère, Quentin Hautem, Mickael Randour, and Jean-François
Raskin. Energy mean-payoff games. In CONCUR, volume 140 of LIPIcs,
pages 21:1–21:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.CONCUR.2019.21.

116

https://doi.org/10.1007/978-3-030-53291-8_17
https://doi.org/10.4204/EPTCS.277.18
https://doi.org/10.1145/3373718.3394805
https://doi.org/10.1007/978-3-030-83723-5_1
https://doi.org/10.1007/978-3-642-28540-0_20
https://doi.org/10.1007/978-3-319-91908-9_21
https://doi.org/10.1007/978-3-030-83723-5_15
https://doi.org/10.1007/978-3-030-30281-8_3
https://doi.org/10.4230/LIPIcs.CONCUR.2016.11
https://doi.org/10.4230/LIPIcs.CONCUR.2019.21

BIBLIOGRAPHY

[BJW02] Julien Bernet, David Janin, and Igor Walukiewicz. Permissive strategies:
from parity games to safety games. RAIRO Theor. Informatics Appl.,
36(3):261–275, 2002. doi:10.1051/ita:2002013.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model check-
ing. MIT Press, 2008. URL https://mitpress.mit.edu/books/

principles-model-checking.

[BKL+17] Christel Baier, Joachim Klein, Linda Leuschner, David Parker, and Sascha
Wunderlich. Ensuring the reliability of your model checker: Interval iteration
for markov decision processes. In CAV (1), volume 10426 of Lecture Notes
in Computer Science, pages 160–180. Springer, 2017. doi:10.1007/978-3-319-
63387-9 8.

[BKN+19] Nikhil Balaji, Stefan Kiefer, Petr Novotný, Guillermo A. Pérez, and Mahsa
Shirmohammadi. On the complexity of value iteration. In ICALP, volume
132 of LIPIcs, pages 102:1–102:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.102.

[BKTW15] Nicolas Basset, Marta Z. Kwiatkowska, Ufuk Topcu, and Clemens Wiltsche.
Strategy synthesis for stochastic games with multiple long-run objectives. In
TACAS, volume 9035 of Lecture Notes in Computer Science, pages 256–271.
Springer, 2015. doi:10.1007/978-3-662-46681-0 22.

[BKW18] Nicolas Basset, Marta Z. Kwiatkowska, and Clemens Wiltsche. Composi-
tional strategy synthesis for stochastic games with multiple objectives. Inf.
Comput., 261:536–587, 2018. doi:10.1016/j.ic.2017.09.010.

[BLW13] Michael Benedikt, Rastislav Lenhardt, and James Worrell. LTL model check-
ing of interval Markov chains. In TACAS, volume 7795 of Lecture Notes
in Computer Science, pages 32–46. Springer, 2013. doi:10.1007/978-3-642-
36742-7 3.

[BMOU11] Patricia Bouyer, Nicolas Markey, Jörg Olschewski, and Michael Ummels.
Measuring permissiveness in parity games: Mean-payoff parity games revis-
ited. In ATVA, volume 6996 of Lecture Notes in Computer Science, pages
135–149. Springer, 2011. doi:10.1007/978-3-642-24372-1 11.

[BP20] Edoardo Bacci and David Parker. Probabilistic guarantees for safe deep
reinforcement learning. In FORMATS, volume 12288 of Lecture Notes in
Computer Science, pages 231–248. Springer, 2020. doi:10.1007/978-3-030-
57628-8 14.

[BP22] Edoardo Bacci and David Parker. Verified probabilistic policies for deep
reinforcement learning. In NFM, volume 13260 of Lecture Notes in Computer
Science, pages 193–212. Springer, 2022. doi:10.1007/978-3-031-06773-0 10.

[BR15] Romain Brenguier and Jean-François Raskin. Pareto curves of multidimen-
sional mean-payoff games. In CAV (2), volume 9207 of Lecture Notes in

117

https://doi.org/10.1051/ita:2002013
https://mitpress.mit.edu/books/principles-model-checking
https://mitpress.mit.edu/books/principles-model-checking
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.4230/LIPIcs.ICALP.2019.102
https://doi.org/10.1007/978-3-662-46681-0_22
https://doi.org/10.1016/j.ic.2017.09.010
https://doi.org/10.1007/978-3-642-36742-7_3
https://doi.org/10.1007/978-3-642-36742-7_3
https://doi.org/10.1007/978-3-642-24372-1_11
https://doi.org/10.1007/978-3-030-57628-8_14
https://doi.org/10.1007/978-3-030-57628-8_14
https://doi.org/10.1007/978-3-031-06773-0_10

BIBLIOGRAPHY

Computer Science, pages 251–267. Springer, 2015. doi:10.1007/978-3-319-
21668-3 15.

[Bre16] Joachim Breitner. Visual theorem proving with the incredible proof machine.
In ITP, volume 9807 of Lecture Notes in Computer Science, pages 123–139.
Springer, 2016. doi:10.1007/978-3-319-43144-4 8.

[BRR17] Raphaël Berthon, Mickael Randour, and Jean-François Raskin. Threshold
constraints with guarantees for parity objectives in Markov decision pro-
cesses. In ICALP, volume 80 of LIPIcs, pages 121:1–121:15. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.121.

[BRT21] Véronique Bruyère, Jean-François Raskin, and Clément Tamines.
Stackelberg-pareto synthesis. In CONCUR, volume 203 of LIPIcs, pages
27:1–27:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.CONCUR.2021.27.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean func-
tion manipulation. IEEE Trans. Computers, 35(8):677–691, 1986.
doi:10.1109/TC.1986.1676819.

[BT00] Ronen I. Brafman and Moshe Tennenholtz. A near-optimal polynomial time
algorithm for learning in certain classes of stochastic games. Artif. Intell.,
121(1-2):31–47, 2000. doi:10.1016/S0004-3702(00)00039-4.

[Buf05] Olivier Buffet. Reachability analysis for uncertain SSPs. In ICTAI, pages
515–522. IEEE Computer Society, 2005. doi:10.1109/ICTAI.2005.106.

[BW96] Beate Bollig and Ingo Wegener. Improving the variable ordering of OB-
DDs is NP-complete. IEEE Trans. Computers, 45(9):993–1002, 1996.
doi:10.1109/12.537122.

[CCK+20] Krishnendu Chatterjee, Martin Chmeĺık, Deep Karkhanis, Petr Novotný, and
Amélie Royer. Multiple-environment Markov decision processes: Efficient
analysis and applications. In ICAPS, pages 48–56. AAAI Press, 2020. URL
https://ojs.aaai.org/index.php/ICAPS/article/view/6644.

[CD11] Krishnendu Chatterjee and Laurent Doyen. Energy and mean-payoff par-
ity Markov decision processes. In MFCS, volume 6907 of Lecture Notes in
Computer Science, pages 206–218. Springer, 2011. doi:10.1007/978-3-642-
22993-0 21.

[CD16] Krishnendu Chatterjee and Laurent Doyen. Perfect-information stochastic
games with generalized mean-payoff objectives. In LICS, pages 247–256.
ACM, 2016. doi:10.1145/2933575.2934513.

[CdAH13] Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger. Strat-
egy improvement for concurrent reachability and turn-based stochas-
tic safety games. J. Comput. Syst. Sci., 79(5):640–657, 2013.
doi:10.1016/j.jcss.2012.12.001.

118

https://doi.org/10.1007/978-3-319-21668-3_15
https://doi.org/10.1007/978-3-319-21668-3_15
https://doi.org/10.1007/978-3-319-43144-4_8
https://doi.org/10.4230/LIPIcs.ICALP.2017.121
https://doi.org/10.4230/LIPIcs.CONCUR.2021.27
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1016/S0004-3702(00)00039-4
https://doi.org/10.1109/ICTAI.2005.106
https://doi.org/10.1109/12.537122
https://ojs.aaai.org/index.php/ICAPS/article/view/6644
https://doi.org/10.1007/978-3-642-22993-0_21
https://doi.org/10.1007/978-3-642-22993-0_21
https://doi.org/10.1145/2933575.2934513
https://doi.org/10.1016/j.jcss.2012.12.001

BIBLIOGRAPHY

[CdAHS03] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Mariëlle
Stoelinga. Resource interfaces. In EMSOFT, volume 2855 of Lecture Notes
in Computer Science, pages 117–133. Springer, 2003. doi:10.1007/978-3-540-
45212-6 9.

[CDGO14] Krishnendu Chatterjee, Laurent Doyen, Hugo Gimbert, and Youssouf Oual-
hadj. Perfect-information stochastic mean-payoff parity games. In FoSSaCS,
volume 8412 of Lecture Notes in Computer Science, pages 210–225. Springer,
2014. doi:10.1007/978-3-642-54830-7 14.

[CDH14] Ping Chen, Lieven Desmet, and Christophe Huygens. A study on advanced
persistent threats. In CMS, volume 8735 of Lecture Notes in Computer
Science, pages 63–72. Springer, 2014. URL https://doi.org/10.1007/

978-3-662-44885-4_5.

[CDHR10] Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-
François Raskin. Generalized mean-payoff and energy games. In FSTTCS,
volume 8 of LIPIcs, pages 505–516. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2010. doi:10.4230/LIPIcs.FSTTCS.2010.505.

[CDL+11] Benôıt Caillaud, Benôıt Delahaye, Kim G. Larsen, Axel Legay, Mikkel L.
Pedersen, and Andrzej Wasowski. Constraint Markov chains. Theor. Comput.
Sci., 412(34):4373–4404, 2011. doi:10.1016/j.tcs.2011.05.010.

[CDP+17] Milan Ceska, Frits Dannenberg, Nicola Paoletti, Marta Kwiatkowska, and
Lubos Brim. Precise parameter synthesis for stochastic biochemical systems.
Acta Informatica, 54(6):589–623, 2017. doi:10.1007/s00236-016-0265-2.

[CDRR15] Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François
Raskin. Looking at mean-payoff and total-payoff through windows. Inf.
Comput., 242:25–52, 2015. doi:10.1016/j.ic.2015.03.010.

[CF11] Krishnendu Chatterjee and Nathanaël Fijalkow. A reduction from parity
games to simple stochastic games. In GandALF, volume 54 of EPTCS, pages
74–86, 2011. doi:10.4204/EPTCS.54.6.

[CFK+13a] Taolue Chen, Vojtech Forejt, Marta Z. Kwiatkowska, David Parker, and
Aistis Simaitis. Automatic verification of competitive stochastic systems.
Formal Methods Syst. Des., 43(1):61–92, 2013. doi:10.1007/s10703-013-0183-
7.

[CFK+13b] Taolue Chen, Vojtech Forejt, Marta Z. Kwiatkowska, Aistis Simaitis, and
Clemens Wiltsche. On stochastic games with multiple objectives. In MFCS,
volume 8087 of Lecture Notes in Computer Science, pages 266–277. Springer,
2013. doi:10.1007/978-3-642-40313-2 25.

[CFW13] Krishnendu Chatterjee, Vojtech Forejt, and Dominik Wojtczak. Multi-
objective discounted reward verification in graphs and MDPs. In LPAR,

119

https://doi.org/10.1007/978-3-540-45212-6_9
https://doi.org/10.1007/978-3-540-45212-6_9
https://doi.org/10.1007/978-3-642-54830-7_14
https://doi.org/10.1007/978-3-662-44885-4_5
https://doi.org/10.1007/978-3-662-44885-4_5
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.505
https://doi.org/10.1016/j.tcs.2011.05.010
https://doi.org/10.1007/s00236-016-0265-2
https://doi.org/10.1016/j.ic.2015.03.010
https://doi.org/10.4204/EPTCS.54.6
https://doi.org/10.1007/s10703-013-0183-7
https://doi.org/10.1007/s10703-013-0183-7
https://doi.org/10.1007/978-3-642-40313-2_25

BIBLIOGRAPHY

volume 8312 of Lecture Notes in Computer Science, pages 228–242. Springer,
2013. doi:10.1007/978-3-642-45221-5 17.

[CGNS19] Tristan Charrier, Sébastien Gamblin, Alexandre Niveau, and François
Schwarzentruber. Hintikka’s world: Scalable higher-order knowledge. In
IJCAI, pages 6494–6496. ijcai.org, 2019. doi:10.24963/ijcai.2019/934.

[CH06] Krishnendu Chatterjee and Thomas A. Henzinger. Strategy improve-
ment for stochastic Rabin and Streett games. In CONCUR, volume 4137
of Lecture Notes in Computer Science, pages 375–389. Springer, 2006.
doi:10.1007/11817949 25.

[CH08] Krishnendu Chatterjee and Thomas A. Henzinger. Value iteration. In 25
Years of Model Checking, volume 5000 of Lecture Notes in Computer Science,
pages 107–138. Springer, 2008. doi:10.1007/978-3-540-69850-0 7.

[CH12] Krishnendu Chatterjee and Thomas A. Henzinger. A survey of stochas-
tic ω-regular games. J. Comput. Syst. Sci., 78(2):394–413, 2012.
doi:10.1016/j.jcss.2011.05.002.

[CH14] Krishnendu Chatterjee and Monika Henzinger. Efficient and dynamic algo-
rithms for alternating büchi games and maximal end-component decomposi-
tion. J. ACM, 61(3):15:1–15:40, 2014. doi:10.1145/2597631.

[Cha07a] Krishnendu Chatterjee. Markov decision processes with multiple long-run
average objectives. In FSTTCS, volume 4855 of Lecture Notes in Computer
Science, pages 473–484. Springer, 2007. doi:10.1007/978-3-540-77050-3 39.

[Cha07b] Krishnendu Chatterjee. Stochastic ω-regular games. PhD thesis, University
of California, Berkeley, 2007. URL https://digitalassets.lib.berkeley.

edu/techreports/ucb/text/EECS-2007-122.pdf.

[Che15] Jianhua Chen. Properties of a new adaptive sampling method with
applications to scalable learning. Web Intell., 13(4):215–227, 2015.
doi:10.3233/WEB-150322.

[CHO20] Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Multi-
dimensional long-run average problems for vector addition systems
with states. In CONCUR, volume 171 of LIPIcs, pages 23:1–
23:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.CONCUR.2020.23.

[CHVB18] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Rod-
erick Bloem, editors. Handbook of Model Checking. Springer, 2018.
doi:10.1007/978-3-319-10575-8.

[CJJ+20] Murat Cubuktepe, Nils Jansen, Sebastian Junges, Joost-Pieter Katoen, and
Ufuk Topcu. Scenario-based verification of uncertain MDPs. In TACAS (1),
volume 12078 of Lecture Notes in Computer Science, pages 287–305. Springer,
2020. doi:10.1007/978-3-030-45190-5 16.

120

https://doi.org/10.1007/978-3-642-45221-5_17
https://doi.org/10.24963/ijcai.2019/934
https://doi.org/10.1007/11817949_25
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1016/j.jcss.2011.05.002
https://doi.org/10.1145/2597631
https://doi.org/10.1007/978-3-540-77050-3_39
https://digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS-2007-122.pdf
https://digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS-2007-122.pdf
https://doi.org/10.3233/WEB-150322
https://doi.org/10.4230/LIPIcs.CONCUR.2020.23
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-030-45190-5_16

BIBLIOGRAPHY

[CK91] David Chapman and Leslie Pack Kaelbling. Input generalization in delayed
reinforcement learning: An algorithm and performance comparisons. In IJ-
CAI, pages 726–731. Morgan Kaufmann, 1991. URL http://ijcai.org/

Proceedings/91-2/Papers/018.pdf.

[CK15] Souymodip Chakraborty and Joost-Pieter Katoen. Model checking of open
interval Markov chains. In ASMTA, volume 9081 of Lecture Notes in Com-
puter Science, pages 30–42. Springer, 2015. doi:10.1007/978-3-319-18579-8 3.

[CKK17] Krishnendu Chatterjee, Zuzana Kret́ınská, and Jan Kret́ınský. Unifying two
views on multiple mean-payoff objectives in Markov decision processes. Log.
Methods Comput. Sci., 13(2), 2017. doi:10.23638/LMCS-13(2:15)2017.

[CKSW13] Taolue Chen, Marta Z. Kwiatkowska, Aistis Simaitis, and Clemens Wiltsche.
Synthesis for multi-objective stochastic games: An application to au-
tonomous urban driving. In QEST, volume 8054 of Lecture Notes in Com-
puter Science, pages 322–337. Springer, 2013. doi:10.1007/978-3-642-40196-
1 28.

[CKWW20] Krishnendu Chatterjee, Joost-Pieter Katoen, Maximilian Weininger, and To-
bias Winkler. Stochastic games with lexicographic reachability-safety objec-
tives. In CAV (2), volume 12225 of Lecture Notes in Computer Science, pages
398–420. Springer, 2020. doi:10.1007/978-3-030-53291-8 21.

[CLRT11] Dongsheng Che, Qi Liu, Khaled Rasheed, and Xiuping Tao. Decision tree and
ensemble learning algorithms with their applications in bioinformatics. Soft-
ware tools and algorithms for biological systems, pages 191–199, 2011. URL
https://link.springer.com/chapter/10.1007/978-1-4419-7046-6_19.

[CMCH96] Edmund M. Clarke, Kenneth L. McMillan, Sérgio Vale Aguiar Campos, and
Vasiliki Hartonas-Garmhausen. Symbolic model checking. In CAV, volume
1102 of Lecture Notes in Computer Science, pages 419–427. Springer, 1996.
doi:10.1007/3-540-61474-5 93.

[CMG14] Javier Cámara, Gabriel A. Moreno, and David Garlan. Stochastic game
analysis and latency awareness for proactive self-adaptation. In SEAMS,
pages 155–164. ACM, 2014. doi:10.1145/2593929.2593933.

[CMH06] Krishnendu Chatterjee, Rupak Majumdar, and Thomas A. Henzinger.
Markov decision processes with multiple objectives. In STACS, volume
3884 of Lecture Notes in Computer Science, pages 325–336. Springer, 2006.
doi:10.1007/11672142 26.

[Col12] Eric Cole. Advanced persistent threat: understanding the danger and how
to protect your organization. Newnes, 2012. URL https://books.google.

de/books?id=Y-CQmN5sEg8C&pg=PR7&lpg=PR1&ots=Hk_qVVjEWx&focus=

viewport&dq=cole+advanced+persistent+threat&lr=&hl=de.

121

http://ijcai.org/Proceedings/91-2/Papers/018.pdf
http://ijcai.org/Proceedings/91-2/Papers/018.pdf
https://doi.org/10.1007/978-3-319-18579-8_3
https://doi.org/10.23638/LMCS-13(2:15)2017
https://doi.org/10.1007/978-3-642-40196-1_28
https://doi.org/10.1007/978-3-642-40196-1_28
https://doi.org/10.1007/978-3-030-53291-8_21
https://link.springer.com/chapter/10.1007/978-1-4419-7046-6_19
https://doi.org/10.1007/3-540-61474-5_93
https://doi.org/10.1145/2593929.2593933
https://doi.org/10.1007/11672142_26
https://books.google.de/books?id=Y-CQmN5sEg8C&pg=PR7&lpg=PR1&ots=Hk_qVVjEWx&focus=viewport&dq=cole+advanced+persistent+threat&lr=&hl=de
https://books.google.de/books?id=Y-CQmN5sEg8C&pg=PR7&lpg=PR1&ots=Hk_qVVjEWx&focus=viewport&dq=cole+advanced+persistent+threat&lr=&hl=de
https://books.google.de/books?id=Y-CQmN5sEg8C&pg=PR7&lpg=PR1&ots=Hk_qVVjEWx&focus=viewport&dq=cole+advanced+persistent+threat&lr=&hl=de

BIBLIOGRAPHY

[Con92] Anne Condon. The complexity of stochastic games. Inf. Comput., 96(2):203–
224, 1992. doi:10.1016/0890-5401(92)90048-K.

[Con93] Anne Condon. On algorithms for simple stochastic games. In Advances In
Computational Complexity Theory, volume 13 of DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science, pages 51–73. DIMAC-
S/AMS, 1993. doi:10.1090/dimacs/013/04.

[CR15] Lorenzo Clemente and Jean-François Raskin. Multidimensional beyond
worst-case and almost-sure problems for mean-payoff objectives. In LICS,
pages 257–268. IEEE Computer Society, 2015. doi:10.1109/LICS.2015.33.

[CRR14] Krishnendu Chatterjee, Mickael Randour, and Jean-François Raskin. Strat-
egy synthesis for multi-dimensional quantitative objectives. Acta Informatica,
51(3-4):129–163, 2014. doi:10.1007/s00236-013-0182-6.

[CRT98] Alessandro Cimatti, Marco Roveri, and Paolo Traverso. Automatic OBDD-
based generation of universal plans in non-deterministic domains. In AAAI/I-
AAI, pages 875–881. AAAI Press / The MIT Press, 1998. URL http:

//www.aaai.org/Library/AAAI/1998/aaai98-124.php.

[CSH08] Krishnendu Chatterjee, Koushik Sen, and Thomas A. Henzinger. Model-
checking omega-regular properties of interval Markov chains. In FoSSaCS,
volume 4962 of Lecture Notes in Computer Science, pages 302–317. Springer,
2008. doi:10.1007/978-3-540-78499-9 22.

[CSYY18] Jiageng Chen, Chunhua Su, Kuo-Hui Yeh, and Moti Yung. Special issue on
advanced persistent threat. Future Gener. Comput. Syst., 79:243–246, 2018.
doi:10.1016/j.future.2017.11.005.

[CY95] Costas Courcoubetis and Mihalis Yannakakis. The complexity of probabilistic
verification. J. ACM, 42(4):857–907, 1995. doi:10.1145/210332.210339.

[CZ11] Edmund M. Clarke and Paolo Zuliani. Statistical model checking for cyber-
physical systems. In ATVA, volume 6996 of Lecture Notes in Computer
Science, pages 1–12. Springer, 2011. doi:10.1007/978-3-642-24372-1 1.

[DA98] Luca De Alfaro. Formal verification of probabilistic systems. PhD the-
sis, Stanford university, 1998. URL https://exhibits.stanford.edu/cs/

catalog/xz681dy7227.

[dAHK07] Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman. Con-
current reachability games. Theor. Comput. Sci., 386(3):188–217, 2007.
doi:10.1016/j.tcs.2007.07.008.

[dAKN+00] Luca de Alfaro, Marta Z. Kwiatkowska, Gethin Norman, David Parker,
and Roberto Segala. Symbolic model checking of probabilistic processes
using MTBDDs and the Kronecker representation. In TACAS, volume
1785 of Lecture Notes in Computer Science, pages 395–410. Springer, 2000.
doi:10.1007/3-540-46419-0 27.

122

https://doi.org/10.1016/0890-5401(92)90048-K
https://doi.org/10.1090/dimacs/013/04
https://doi.org/10.1109/LICS.2015.33
https://doi.org/10.1007/s00236-013-0182-6
http://www.aaai.org/Library/AAAI/1998/aaai98-124.php
http://www.aaai.org/Library/AAAI/1998/aaai98-124.php
https://doi.org/10.1007/978-3-540-78499-9_22
https://doi.org/10.1016/j.future.2017.11.005
https://doi.org/10.1145/210332.210339
https://doi.org/10.1007/978-3-642-24372-1_1
https://exhibits.stanford.edu/cs/catalog/xz681dy7227
https://exhibits.stanford.edu/cs/catalog/xz681dy7227
https://doi.org/10.1016/j.tcs.2007.07.008
https://doi.org/10.1007/3-540-46419-0_27

BIBLIOGRAPHY

[Daw04] Conrado Daws. Symbolic and parametric model checking of discrete-time
Markov chains. In ICTAC, volume 3407 of Lecture Notes in Computer Sci-
ence, pages 280–294. Springer, 2004. doi:10.1007/978-3-540-31862-0 21.

[DC18] Maxence Dutreix and Samuel Coogan. Satisfiability bounds for co-regular
properties in interval-valued Markov chains. In CDC, pages 1047–1052. IEEE,
2018. doi:10.1109/CDC.2018.8619756.

[DDG+10] Aldric Degorre, Laurent Doyen, Raffaella Gentilini, Jean-François Raskin,
and Szymon Torunczyk. Energy and mean-payoff games with imperfect in-
formation. In CSL, volume 6247 of Lecture Notes in Computer Science, pages
260–274. Springer, 2010. doi:10.1007/978-3-642-15205-4 22.

[DDL+12] Alexandre David, Dehui Du, Kim G. Larsen, Axel Legay, Marius Mikucionis,
Danny Bøgsted Poulsen, and Sean Sedwards. Statistical model checking for
stochastic hybrid systems. In HSB, volume 92 of EPTCS, pages 122–136,
2012. doi:10.4204/EPTCS.92.9.

[DDL+13] Alexandre David, Dehui Du, Kim Guldstrand Larsen, Axel Legay, and Marius
Mikucionis. Optimizing control strategy using statistical model checking. In
NFM, volume 7871 of Lecture Notes in Computer Science, pages 352–367.
Springer, 2013. doi:10.1007/978-3-642-38088-4 24.

[DFK+15] Klaus Dräger, Vojtech Forejt, Marta Z. Kwiatkowska, David Parker, and
Mateusz Ujma. Permissive controller synthesis for probabilistic systems. Log.
Methods Comput. Sci., 11(2), 2015. doi:10.2168/LMCS-11(2:16)2015.

[DG11] Decheng Dai and Rong Ge. Another sub-exponential algorithm for the simple
stochastic game. Algorithmica, 61(4):1092–1104, 2011. doi:10.1007/s00453-
010-9413-1.

[DHD+20] Zihan Ding, Pablo Hernandez-Leal, Gavin Weiguang Ding, Changjian Li,
and Ruitong Huang. CDT: cascading decision trees for explainable reinforce-
ment learning. CoRR, abs/2011.07553, 2020. URL https://arxiv.org/

abs/2011.07553.

[DHK+20] Loris D’Antoni, Martin Helfrich, Jan Kret́ınský, Emanuel Ramneantu, and
Maximilian Weininger. Automata tutor v3. In CAV (2), volume 12225 of Lec-
ture Notes in Computer Science, pages 3–14. Springer, 2020. doi:10.1007/978-
3-030-53291-8 1.

[DHKP17] Przemyslaw Daca, Thomas A. Henzinger, Jan Kret́ınský, and Tatjana Petrov.
Faster statistical model checking for unbounded temporal properties. ACM
Trans. Comput. Log., 18(2):12:1–12:25, 2017. doi:10.1145/3060139.

[DHS18] Pedro R. D’Argenio, Arnd Hartmanns, and Sean Sedwards. Lightweight
statistical model checking in nondeterministic continuous time. In ISoLA
(2), volume 11245 of Lecture Notes in Computer Science, pages 336–353.
Springer, 2018. doi:10.1007/978-3-030-03421-4 22.

123

https://doi.org/10.1007/978-3-540-31862-0_21
https://doi.org/10.1109/CDC.2018.8619756
https://doi.org/10.1007/978-3-642-15205-4_22
https://doi.org/10.4204/EPTCS.92.9
https://doi.org/10.1007/978-3-642-38088-4_24
https://doi.org/10.2168/LMCS-11(2:16)2015
https://doi.org/10.1007/s00453-010-9413-1
https://doi.org/10.1007/s00453-010-9413-1
https://arxiv.org/abs/2011.07553
https://arxiv.org/abs/2011.07553
https://doi.org/10.1007/978-3-030-53291-8_1
https://doi.org/10.1007/978-3-030-53291-8_1
https://doi.org/10.1145/3060139
https://doi.org/10.1007/978-3-030-03421-4_22

BIBLIOGRAPHY

[DJKV17] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias
Volk. A Storm is coming: A modern probabilistic model checker. In CAV
(2), volume 10427 of Lecture Notes in Computer Science, pages 592–600.
Springer, 2017. doi:10.1007/978-3-319-63390-9 31.

[DJL+15] Alexandre David, Peter Gjøl Jensen, Kim Guldstrand Larsen, Marius Miku-
cionis, and Jakob Haahr Taankvist. UPPAAL STRATEGO. In TACAS,
volume 9035 of Lecture Notes in Computer Science, pages 206–211. Springer,
2015. doi:10.1007/978-3-662-46681-0 16.

[DJW+14] Christian Dehnert, Nils Jansen, Ralf Wimmer, Erika Ábrahám, and Joost-
Pieter Katoen. Fast debugging of PRISM models. In ATVA, volume
8837 of Lecture Notes in Computer Science, pages 146–162. Springer, 2014.
doi:10.1007/978-3-319-11936-6 11.

[DKQR20] Florent Delgrange, Joost-Pieter Katoen, Tim Quatmann, and Mickael Ran-
dour. Simple strategies in multi-objective MDPs. In TACAS (1), volume
12078 of Lecture Notes in Computer Science, pages 346–364. Springer, 2020.
doi:10.1007/978-3-030-45190-5 19.

[DLL+11a] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikucionis,
Danny Bøgsted Poulsen, Jonas van Vliet, and Zheng Wang. Statistical model
checking for networks of priced timed automata. In FORMATS, volume
6919 of Lecture Notes in Computer Science, pages 80–96. Springer, 2011.
doi:10.1007/978-3-642-24310-3 7.

[DLL+11b] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikucionis, and Zheng
Wang. Time for statistical model checking of real-time systems. In CAV,
volume 6806 of Lecture Notes in Computer Science, pages 349–355. Springer,
2011. doi:10.1007/978-3-642-22110-1 27.

[DLST15] Pedro R. D’Argenio, Axel Legay, Sean Sedwards, and Louis-Marie Traonouez.
Smart sampling for lightweight verification of Markov decision processes. Int.
J. Softw. Tools Technol. Transf., 17(4):469–484, 2015. doi:10.1007/s10009-
015-0383-0.

[dM21] Xavier Badin de Montjoye. A recursive algorithm for solving simple stochastic
games. CoRR, abs/2110.01030, 2021. URL https://arxiv.org/abs/2110.

01030.

[DMWG11] Peng Dai, Mausam, Daniel S. Weld, and Judy Goldsmith. Topological value
iteration algorithms. J. Artif. Intell. Res., 42:181–209, 2011. URL https:

//www.jair.org/index.php/jair/article/view/10725.

[DR11] Laurent Doyen and Jean-François Raskin. Games with imperfect in-
formation: theory and algorithms. In Lectures in Game Theory
for Computer Scientists, pages 185–212. Cambridge University Press,
2011. URL http://www.lsv.fr/~doyen/papers/Games_with_Imperfect_

Information_Theory_Algorithms.pdf.

124

https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-319-11936-6_11
https://doi.org/10.1007/978-3-030-45190-5_19
https://doi.org/10.1007/978-3-642-24310-3_7
https://doi.org/10.1007/978-3-642-22110-1_27
https://doi.org/10.1007/s10009-015-0383-0
https://doi.org/10.1007/s10009-015-0383-0
https://arxiv.org/abs/2110.01030
https://arxiv.org/abs/2110.01030
https://www.jair.org/index.php/jair/article/view/10725
https://www.jair.org/index.php/jair/article/view/10725
http://www.lsv.fr/~doyen/papers/Games_with_Imperfect_Information_Theory_Algorithms.pdf
http://www.lsv.fr/~doyen/papers/Games_with_Imperfect_Information_Theory_Algorithms.pdf

BIBLIOGRAPHY

[EGF12] Christian Ellen, Sebastian Gerwinn, and Martin Fränzle. Confidence bounds
for statistical model checking of probabilistic hybrid systems. In FORMATS,
volume 7595 of Lecture Notes in Computer Science, pages 123–138. Springer,
2012. doi:10.1007/978-3-642-33365-1 10.

[EGF15] Christian Ellen, Sebastian Gerwinn, and Martin Fränzle. Statistical model
checking for stochastic hybrid systems involving nondeterminism over con-
tinuous domains. Int. J. Softw. Tools Technol. Transf., 17(4):485–504, 2015.
doi:10.1007/s10009-014-0329-y.

[EHL17] Arno Ehle, Norbert Hundeshagen, and Martin Lange. The sequent
calculus trainer with automated reasoning - helping students to find
proofs. In ThEdu@CADE, volume 267 of EPTCS, pages 19–37, 2017.
doi:10.4204/EPTCS.267.2.

[EKKW21] Javier Esparza, Stefan Kiefer, Jan Kret́ınský, and Maximilian Weininger.
Enforcing ω-regular properties in Markov chains by restarting. In CONCUR,
volume 203 of LIPIcs, pages 5:1–5:22. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021. doi:10.4230/LIPIcs.CONCUR.2021.5.

[EKKW22] Julia Eisentraut, Edon Kelmendi, Jan Kret́ınský, and Maximilian
Weininger. Value iteration for simple stochastic games: Stopping cri-
terion and learning algorithm. Inf. Comput., 285(Part):104886, 2022.
doi:10.1016/j.ic.2022.104886.

[EKR19] Julia Eisentraut, Jan Kret́ınský, and Alexej Rotar. Stopping criteria for value
and strategy iteration on concurrent stochastic reachability games. CoRR,
abs/1909.08348, 2019. URL http://arxiv.org/abs/1909.08348.

[EKVY08] Kousha Etessami, Marta Z. Kwiatkowska, Moshe Y. Vardi, and Mihalis Yan-
nakakis. Multi-objective model checking of Markov decision processes. Log.
Methods Comput. Sci., 4(4), 2008. doi:10.2168/LMCS-4(4:8)2008.

[EM03] Tapio Elomaa and Tuomo Malinen. On lookahead heuristics in decision tree
learning. In ISMIS, volume 2871 of Lecture Notes in Computer Science, pages
445–453. Springer, 2003. doi:10.1007/978-3-540-39592-8 63.

[END+18] P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusu-
dan. Horn-ICE learning for synthesizing invariants and contracts. Proc. ACM
Program. Lang., 2(OOPSLA):131:1–131:25, 2018. doi:10.1145/3276501.

[EY15] Kousha Etessami and Mihalis Yannakakis. Recursive Markov decision pro-
cesses and recursive stochastic games. J. ACM, 62(2):11:1–11:69, 2015.
doi:10.1145/2699431.

[Fan21] Zehua Fang. Robust control of Markov decision processes. In CONF-CDS,
pages 204:1–204:9. ACM, 2021. doi:10.1145/3448734.3450934.

125

https://doi.org/10.1007/978-3-642-33365-1_10
https://doi.org/10.1007/s10009-014-0329-y
https://doi.org/10.4204/EPTCS.267.2
https://doi.org/10.4230/LIPIcs.CONCUR.2021.5
https://doi.org/10.1016/j.ic.2022.104886
http://arxiv.org/abs/1909.08348
https://doi.org/10.2168/LMCS-4(4:8)2008
https://doi.org/10.1007/978-3-540-39592-8_63
https://doi.org/10.1145/3276501
https://doi.org/10.1145/2699431
https://doi.org/10.1145/3448734.3450934

BIBLIOGRAPHY

[FDdB14] Fernando L. Fussuma, Karina Valdivia Delgado, and Leliane Nunes de Bar-
ros. Bˆ2RTDP: An efficient solution for bounded-parameter Markov deci-
sion process. In BRACIS, pages 128–133. IEEE Computer Society, 2014.
doi:10.1109/BRACIS.2014.33.

[Fea10] John Fearnley. Exponential lower bounds for policy iteration. In ICALP (2),
volume 6199 of Lecture Notes in Computer Science, pages 551–562. Springer,
2010. doi:10.1007/978-3-642-14162-1 46.

[FH17] Nicholas Frosst and Geoffrey E. Hinton. Distilling a neural network into a
soft decision tree. In CEx@AI*IA, volume 2071 of CEUR Workshop Proceed-
ings. CEUR-WS.org, 2017. URL http://ceur-ws.org/Vol-2071/CExAIIA_

2017_paper_3.pdf.

[FH19] Felix Freiberger and Holger Hermanns. Concurrent programming from
pseuCo to Petri. In Petri Nets, volume 11522 of Lecture Notes in Computer
Science, pages 279–297. Springer, 2019. doi:10.1007/978-3-030-21571-2 16.

[Fis74] Peter C Fishburn. Exceptional paper—lexicographic orders, utilities and
decision rules: A survey. Management science, 20(11):1442–1471, 1974.
doi:10.1287/mnsc.20.11.1442.

[FKL10] Dana Fisman, Orna Kupferman, and Yoad Lustig. Rational synthesis. In
TACAS, volume 6015 of Lecture Notes in Computer Science, pages 190–204.
Springer, 2010. doi:10.1007/978-3-642-12002-2 16.

[FKN+11] Vojtech Forejt, Marta Z. Kwiatkowska, Gethin Norman, David Parker, and
Hongyang Qu. Quantitative multi-objective verification for probabilistic sys-
tems. In TACAS, volume 6605 of Lecture Notes in Computer Science, pages
112–127. Springer, 2011. doi:10.1007/978-3-642-19835-9 11.

[FKNP11] Vojtech Forejt, Marta Z. Kwiatkowska, Gethin Norman, and David Parker.
Automated verification techniques for probabilistic systems. In SFM, volume
6659 of Lecture Notes in Computer Science, pages 53–113. Springer, 2011.
doi:10.1007/978-3-642-21455-4 3.

[FKP12] Vojtech Forejt, Marta Z. Kwiatkowska, and David Parker. Pareto curves
for probabilistic model checking. In ATVA, volume 7561 of Lecture Notes
in Computer Science, pages 317–332. Springer, 2012. doi:10.1007/978-3-642-
33386-6 25.

[FKR95] Jerzy A. Filar, Dmitry Krass, and Keith Ross. Percentile performance criteria
for limiting average Markov decision processes. IEEE Trans. Autom. Control.,
40(1):2–10, 1995. doi:10.1109/9.362904.

[FMY97] Masahiro Fujita, Patrick C. McGeer, and Jerry Chih-Yuan Yang. Multi-
terminal binary decision diagrams: An efficient data structure for ma-
trix representation. Formal Methods Syst. Des., 10(2/3):149–169, 1997.
doi:10.1023/A:1008647823331.

126

https://doi.org/10.1109/BRACIS.2014.33
https://doi.org/10.1007/978-3-642-14162-1_46
http://ceur-ws.org/Vol-2071/CExAIIA_2017_paper_3.pdf
http://ceur-ws.org/Vol-2071/CExAIIA_2017_paper_3.pdf
https://doi.org/10.1007/978-3-030-21571-2_16
https://doi.org/10.1287/mnsc.20.11.1442
https://doi.org/10.1007/978-3-642-12002-2_16
https://doi.org/10.1007/978-3-642-19835-9_11
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-33386-6_25
https://doi.org/10.1007/978-3-642-33386-6_25
https://doi.org/10.1109/9.362904
https://doi.org/10.1023/A:1008647823331

BIBLIOGRAPHY

[Fri94] Avner Friedman. Chapter 22 Differential games. In Handbook of Game
Theory with Economic Applications, volume 2, pages 781–799. Elsevier, 1994.
doi:10.1016/S1574-0005(05)80054-2.

[Fri11] Oliver Friedmann. An exponential lower bound for the latest determinis-
tic strategy iteration algorithms. Log. Methods Comput. Sci., 7(3), 2011.
doi:10.2168/LMCS-7(3:23)2011.

[FS15] John Fearnley and Rahul Savani. The complexity of the simplex method. In
STOC, pages 201–208. ACM, 2015. doi:10.1145/2746539.2746558.

[FS18] John Fearnley and Rahul Savani. The complexity of all-switches strategy
improvement. Log. Methods Comput. Sci., 14(4), 2018. doi:10.23638/LMCS-
14(4:9)2018.

[FT14] Jie Fu and Ufuk Topcu. Probably approximately correct MDP learning and
control with temporal logic constraints. In Robotics: Science and Systems,
2014. doi:10.15607/RSS.2014.X.039.

[FV97] Jerzy Filar and Koos Vrieze. Competitive Markov decision processes. Springer
Science & Business Media, 1997. URL https://link.springer.com/book/

10.1007/978-1-4612-4054-9.

[GH08] Hugo Gimbert and Florian Horn. Simple stochastic games with few random
vertices are easy to solve. In FoSSaCS, volume 4962 of Lecture Notes in
Computer Science, pages 5–19. Springer, 2008. doi:10.1007/978-3-540-78499-
9 2.

[GH10] Hugo Gimbert and Florian Horn. Solving simple stochastic tail games. In
SODA, pages 847–862. SIAM, 2010. doi:10.1137/1.9781611973075.69.

[GHS18] Paul Gainer, Ernst Moritz Hahn, and Sven Schewe. Accelerated model check-
ing of parametric Markov chains. In ATVA, volume 11138 of Lecture Notes
in Computer Science, pages 300–316. Springer, 2018. doi:10.1007/978-3-030-
01090-4 18.

[Gir13] Antoine Girard. Low-complexity quantized switching controllers
using approximate bisimulation. Nonlinear Analysis: Hybrid
Systems, 10:34–44, 2013. URL https://www.sciencedirect.

com/science/article/abs/pii/S1751570X13000071?casa_token=

w864bz-D_W8AAAAA:CqNm5Eu-qoOh8Zo-XjP869nU1k9ggczPsp4VDbUxq_

IC3dLXBSDCy4Xc1pJkRW23SDjc2Gvz__I.

[Gir14] Sergio Giro. Optimal schedulers vs optimal bases: An approach for efficient
exact solving of Markov decision processes. Theor. Comput. Sci., 538:70–83,
2014. doi:10.1016/j.tcs.2013.08.020.

[GKG+10] Gilles Geeraerts, Gabriel Kalyon, Tristan Le Gall, Nicolas Maquet, and Jean-
François Raskin. Lattice-valued binary decision diagrams. In ATVA, volume

127

https://doi.org/10.1016/S1574-0005(05)80054-2
https://doi.org/10.2168/LMCS-7(3:23)2011
https://doi.org/10.1145/2746539.2746558
https://doi.org/10.23638/LMCS-14(4:9)2018
https://doi.org/10.23638/LMCS-14(4:9)2018
https://doi.org/10.15607/RSS.2014.X.039
https://link.springer.com/book/10.1007/978-1-4612-4054-9
https://link.springer.com/book/10.1007/978-1-4612-4054-9
https://doi.org/10.1007/978-3-540-78499-9_2
https://doi.org/10.1007/978-3-540-78499-9_2
https://doi.org/10.1137/1.9781611973075.69
https://doi.org/10.1007/978-3-030-01090-4_18
https://doi.org/10.1007/978-3-030-01090-4_18
https://www.sciencedirect.com/science/article/abs/pii/S1751570X13000071?casa_token=w864bz-D_W8AAAAA:CqNm5Eu-qoOh8Zo-XjP869nU1k9ggczPsp4VDbUxq_IC3dLXBSDCy4Xc1pJkRW23SDjc2Gvz__I
https://www.sciencedirect.com/science/article/abs/pii/S1751570X13000071?casa_token=w864bz-D_W8AAAAA:CqNm5Eu-qoOh8Zo-XjP869nU1k9ggczPsp4VDbUxq_IC3dLXBSDCy4Xc1pJkRW23SDjc2Gvz__I
https://www.sciencedirect.com/science/article/abs/pii/S1751570X13000071?casa_token=w864bz-D_W8AAAAA:CqNm5Eu-qoOh8Zo-XjP869nU1k9ggczPsp4VDbUxq_IC3dLXBSDCy4Xc1pJkRW23SDjc2Gvz__I
https://www.sciencedirect.com/science/article/abs/pii/S1751570X13000071?casa_token=w864bz-D_W8AAAAA:CqNm5Eu-qoOh8Zo-XjP869nU1k9ggczPsp4VDbUxq_IC3dLXBSDCy4Xc1pJkRW23SDjc2Gvz__I
https://doi.org/10.1016/j.tcs.2013.08.020

BIBLIOGRAPHY

6252 of Lecture Notes in Computer Science, pages 158–172. Springer, 2010.
doi:10.1007/978-3-642-15643-4 13.

[GKW19] Julian Gutierrez, Sarit Kraus, and Michael J. Wooldridge. Cooperative
concurrent games. In AAMAS, pages 1198–1206. International Founda-
tion for Autonomous Agents and Multiagent Systems, 2019. URL http:

//dl.acm.org/citation.cfm?id=3331822.

[GLD00] Robert Givan, Sonia M. Leach, and Thomas L. Dean. Bounded-
parameter Markov decision processes. Artif. Intell., 122(1-2):71–109, 2000.
doi:10.1016/S0004-3702(00)00047-3.

[GLH+19] Gaetano Geck, Artur Ljulin, Jonas Haldimann, Johannes May, Jonas
Schmidt, Marko Schmellenkamp, Daniel Sonnabend, Felix Tschirbs,
Fabian Vehlken, and Thomas Zeume. Teaching logic with iltis: an
interactive, web-based system. In ITiCSE, page 307. ACM, 2019.
doi:10.1145/3304221.3325571.

[GLP+18] Gaetano Geck, Artur Ljulin, Sebastian Peter, Jonas Schmidt, Fabian
Vehlken, and Thomas Zeume. Introduction to iltis: an interactive, web-
based system for teaching logic. In ITiCSE, pages 141–146. ACM, 2018.
doi:10.1145/3197091.3197095.

[GNMR16] Pranav Garg, Daniel Neider, P. Madhusudan, and Dan Roth. Learning in-
variants using decision trees and implication counterexamples. In POPL,
pages 499–512. ACM, 2016. doi:10.1145/2837614.2837664.

[GP+14] Ibrahim Ghafir, Vaclav Prenosil, et al. Advanced persistent threat attack
detection: an overview. Int J Adv Comput Netw Secur, 4(4):5054,
2014. URL https://www.researchgate.net/profile/Ibrahim_

Ghafir/publication/305956804_Advanced_Persistent_Threat_Attack_

Detection_An_Overview/links/57a7568008ae455e854698aa.pdf.

[GSC+19] David Gunning, Mark Stefik, Jaesik Choi, Timothy Miller, Simone Stumpf,
and Guang-Zhong Yang. XAI - explainable artificial intelligence. Sci.
Robotics, 4(37), 2019. doi:10.1126/scirobotics.aay7120.

[GSC21] Julie Gerlings, Arisa Shollo, and Ioanna D. Constantiou. Reviewing the need
for explainable artificial intelligence (xAI). In HICSS, pages 1–10. Schol-
arSpace, 2021. URL https://hdl.handle.net/10125/70768.

[HA16] Mikella Hurley and Julius Adebayo. Credit scoring in the era
of big data. Yale JL & Tech., 18:148, 2016. URL https:

//openyls.law.yale.edu/bitstream/handle/20.500.13051/7808/

Hurley_Mikella.pdf?sequence=2&isAllowed=y.

[Hal07] Nir Halman. Simple stochastic games, parity games, mean payoff games and
discounted payoff games are all LP-type problems. Algorithmica, 49(1):37–50,
2007. doi:10.1007/s00453-007-0175-3.

128

https://doi.org/10.1007/978-3-642-15643-4_13
http://dl.acm.org/citation.cfm?id=3331822
http://dl.acm.org/citation.cfm?id=3331822
https://doi.org/10.1016/S0004-3702(00)00047-3
https://doi.org/10.1145/3304221.3325571
https://doi.org/10.1145/3197091.3197095
https://doi.org/10.1145/2837614.2837664
https://www.researchgate.net/profile/Ibrahim_Ghafir/publication/305956804_Advanced_Persistent_Threat_Attack_Detection_An_Overview/links/57a7568008ae455e854698aa.pdf
https://www.researchgate.net/profile/Ibrahim_Ghafir/publication/305956804_Advanced_Persistent_Threat_Attack_Detection_An_Overview/links/57a7568008ae455e854698aa.pdf
https://www.researchgate.net/profile/Ibrahim_Ghafir/publication/305956804_Advanced_Persistent_Threat_Attack_Detection_An_Overview/links/57a7568008ae455e854698aa.pdf
https://doi.org/10.1126/scirobotics.aay7120
https://hdl.handle.net/10125/70768
https://openyls.law.yale.edu/bitstream/handle/20.500.13051/7808/Hurley_Mikella.pdf?sequence=2&isAllowed=y
https://openyls.law.yale.edu/bitstream/handle/20.500.13051/7808/Hurley_Mikella.pdf?sequence=2&isAllowed=y
https://openyls.law.yale.edu/bitstream/handle/20.500.13051/7808/Hurley_Mikella.pdf?sequence=2&isAllowed=y
https://doi.org/10.1007/s00453-007-0175-3

BIBLIOGRAPHY

[Har22] Arnd Hartmanns. Correct probabilistic model checking with floating-point
arithmetic. In TACAS (2), volume 13244 of Lecture Notes in Computer
Science, pages 41–59. Springer, 2022. doi:10.1007/978-3-030-99527-0 3.

[Has17a] Vahid Hashemi. Decision algorithms for modelling, optimal control and verifi-
cation of probabilistic systems. PhD thesis, Saarland University, Saarbrücken,
Germany, 2017. URL https://publikationen.sulb.uni-saarland.de/

handle/20.500.11880/26947.

[Has17b] Demis Hassabis. Artificial intelligence: chess match of the century. Na-
ture, 544(7651):413–414, 2017. URL https://www.nature.com/articles/

544413a.pdf.

[Has20] Mohammadhosein Hasanbeig. Safe and certified reinforcement
learning with logical constraints. PhD thesis, University of Ox-
ford, UK, 2020. URL https://ora.ox.ac.uk/objects/uuid:

b3270e19-8ae7-4c0f-b728-c2e4f1fab6f5.

[HBK17] Lisa Hutschenreiter, Christel Baier, and Joachim Klein. Parametric Markov
chains: PCTL complexity and fraction-free Gaussian elimination. In Gan-
dALF, volume 256 of EPTCS, pages 16–30, 2017. doi:10.4204/EPTCS.256.2.

[HBKS21] Aria HasanzadeZonuzy, Archana Bura, Dileep M. Kalathil, and Srini-
vas Shakkottai. Learning with safety constraints: Sample complexity
of reinforcement learning for constrained MDPs. In AAAI, pages 7667–
7674. AAAI Press, 2021. URL https://ojs.aaai.org/index.php/AAAI/

article/view/16937.

[HdHA15] Sofie Haesaert, Paul M. J. Van den Hof, and Alessandro Abate. Data-driven
property verification of grey-box systems by Bayesian experiment design. In
ACC, pages 1800–1805. IEEE, 2015. doi:10.1109/ACC.2015.7170994.

[HDM+11] Johan Huysmans, Karel Dejaeger, Christophe Mues, Jan Vanthienen, and
Bart Baesens. An empirical evaluation of the comprehensibility of decision
table, tree and rule based predictive models. Decis. Support Syst., 51(1):141–
154, 2011. doi:10.1016/j.dss.2010.12.003.

[HH14] Arnd Hartmanns and Holger Hermanns. The Modest Toolset: An integrated
environment for quantitative modelling and verification. In TACAS, volume
8413 of Lecture Notes in Computer Science, pages 593–598. Springer, 2014.
doi:10.1007/978-3-642-54862-8 51.

[HHH+19a] Ernst Moritz Hahn, Arnd Hartmanns, Christian Hensel, Michaela Klauck,
Joachim Klein, Jan Kret́ınský, David Parker, Tim Quatmann, Enno Ruijters,
and Marcel Steinmetz. The 2019 comparison of tools for the analysis of quan-
titative formal models - (QComp 2019 competition report). In TACAS (3),
volume 11429 of Lecture Notes in Computer Science, pages 69–92. Springer,
2019. doi:10.1007/978-3-030-17502-3 5.

129

https://doi.org/10.1007/978-3-030-99527-0_3
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/26947
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/26947
https://www.nature.com/articles/544413a.pdf
https://www.nature.com/articles/544413a.pdf
https://ora.ox.ac.uk/objects/uuid:b3270e19-8ae7-4c0f-b728-c2e4f1fab6f5
https://ora.ox.ac.uk/objects/uuid:b3270e19-8ae7-4c0f-b728-c2e4f1fab6f5
https://doi.org/10.4204/EPTCS.256.2
https://ojs.aaai.org/index.php/AAAI/article/view/16937
https://ojs.aaai.org/index.php/AAAI/article/view/16937
https://doi.org/10.1109/ACC.2015.7170994
https://doi.org/10.1016/j.dss.2010.12.003
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-030-17502-3_5

BIBLIOGRAPHY

[HHH+19b] Ernst Moritz Hahn, Vahid Hashemi, Holger Hermanns, Morteza Lahijanian,
and Andrea Turrini. Interval Markov decision processes with multiple objec-
tives: From robust strategies to Pareto curves. ACM Trans. Model. Comput.
Simul., 29(4):27:1–27:31, 2019. doi:10.1145/3309683.

[HJB+10] Ru He, Paul Jennings, Samik Basu, Arka P. Ghosh, and Huaiqing Wu. A
bounded statistical approach for model checking of unbounded until proper-
ties. In ASE, pages 225–234. ACM, 2010. doi:10.1145/1858996.1859043.

[HJKQ20] Arnd Hartmanns, Sebastian Junges, Joost-Pieter Katoen, and Tim Quat-
mann. Multi-cost bounded tradeoff analysis in MDP. J. Autom. Reason.,
64(7):1483–1522, 2020. doi:10.1007/s10817-020-09574-9.

[HK66] A. J. Hoffman and R. M. Karp. On nonterminating stochastic games. Man-
agement Science, 12(5):359–370, 1966. doi:10.1287/mnsc.12.5.359.

[HK20] Arnd Hartmanns and Benjamin Lucien Kaminski. Optimistic value iteration.
In CAV (2), volume 12225 of Lecture Notes in Computer Science, pages 488–
511. Springer, 2020. doi:10.1007/978-3-030-53291-8 26.

[HKL+11] Kristoffer Arnsfelt Hansen, Michal Koucký, Niels Lauritzen, Peter Bro Mil-
tersen, and Elias P. Tsigaridas. Exact algorithms for solving stochas-
tic games: extended abstract. In STOC, pages 205–214. ACM, 2011.
doi:10.1145/1993636.1993665.

[HKL17] Christoph Haase, Stefan Kiefer, and Markus Lohrey. Computing quantiles
in Markov chains with multi-dimensional costs. In LICS, pages 1–12. IEEE
Computer Society, 2017. doi:10.1109/LICS.2017.8005090.

[HKM08] Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre. Approximate
parameter synthesis for probabilistic time-bounded reachability. In RTSS,
pages 173–182. IEEE Computer Society, 2008. doi:10.1109/RTSS.2008.19.

[HKP+19] Arnd Hartmanns, Michaela Klauck, David Parker, Tim Quatmann, and Enno
Ruijters. The quantitative verification benchmark set. In TACAS (1), volume
11427 of Lecture Notes in Computer Science, pages 344–350. Springer, 2019.
doi:10.1007/978-3-030-17462-0 20.

[HLS21] Norbert Hundeshagen, Martin Lange, and Georg Siebert. DiMo - discrete
modelling using propositional logic. In SAT, volume 12831 of Lecture Notes
in Computer Science, pages 242–250. Springer, 2021. doi:10.1007/978-3-030-
80223-3 17.

[HM18] Serge Haddad and Benjamin Monmege. Interval iteration algorithm
for MDPs and IMDPs. Theor. Comput. Sci., 735:111–131, 2018.
doi:10.1016/j.tcs.2016.12.003.

[HMZ+12] David Henriques, João G. Martins, Paolo Zuliani, André Platzer, and
Edmund M. Clarke. Statistical model checking for Markov decision

130

https://doi.org/10.1145/3309683
https://doi.org/10.1145/1858996.1859043
https://doi.org/10.1007/s10817-020-09574-9
https://doi.org/10.1287/mnsc.12.5.359
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1145/1993636.1993665
https://doi.org/10.1109/LICS.2017.8005090
https://doi.org/10.1109/RTSS.2008.19
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-80223-3_17
https://doi.org/10.1007/978-3-030-80223-3_17
https://doi.org/10.1016/j.tcs.2016.12.003

BIBLIOGRAPHY

processes. In QEST, pages 84–93. IEEE Computer Society, 2012.
doi:10.1109/QEST.2012.19.

[HMZ13] Thomas Dueholm Hansen, Peter Bro Miltersen, and Uri Zwick. Strat-
egy iteration is strongly polynomial for 2-player turn-based stochastic
games with a constant discount factor. J. ACM, 60(1):1:1–1:16, 2013.
doi:10.1145/2432622.2432623.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American statistical association, 58(301):13–30,
1963. URL https://www.tandfonline.com/doi/abs/10.1080/01621459.

1963.10500830.

[How60] Ronald A Howard. Dynamic programming and Markov processes.
John Wiley, 1960. URL https://www.semanticscholar.org/paper/

Dynamic-Programming-and-Markov-Processes.-Ronald-A.-Weiss/

89a2f75b8c5a13f897580f8c3f3c886998228708.

[HPS+19] Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh
Trivedi, and Dominik Wojtczak. Omega-regular objectives in model-free
reinforcement learning. In TACAS (1), volume 11427 of Lecture Notes in
Computer Science, pages 395–412. Springer, 2019. doi:10.1007/978-3-030-
17462-0 27.

[HR76] Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary decision
trees is NP-complete. Inf. Process. Lett., 5(1):15–17, 1976. doi:10.1016/0020-
0190(76)90095-8.

[HR00] Thomas A. Henzinger and Jean-François Raskin. Robust undecidability of
timed and hybrid systems. In HSCC, volume 1790 of Lecture Notes in Com-
puter Science, pages 145–159. Springer, 2000. doi:10.1007/3-540-46430-1 15.

[HSHB99] Jesse Hoey, Robert St-Aubin, Alan J. Hu, and Craig Boutilier. SPUDD:
stochastic planning using decision diagrams. In UAI, pages 279–288. Mor-
gan Kaufmann, 1999. URL https://arxiv.org/ftp/arxiv/papers/1301/

1301.6704.pdf.

[HZ18] Linan Huang and Quanyan Zhu. Adaptive strategic cyber defense for ad-
vanced persistent threats in critical infrastructure networks. SIGMETRICS
Perform. Evaluation Rev., 46(2):52–56, 2018. doi:10.1145/3305218.3305239.

[IM12] Rasmus Ibsen-Jensen and Peter Bro Miltersen. Solving simple stochastic
games with few coin toss positions. In ESA, volume 7501 of Lecture Notes
in Computer Science, pages 636–647. Springer, 2012. doi:10.1007/978-3-642-
33090-2 55.

[Jac20] Mathias Jackermeier. dtControl: Decision tree learning for explainable con-
troller representation. Bachelor’s thesis, Technical University of Munich,
2020. URL https://mediatum.ub.tum.de/doc/1547107/file.pdf.

131

https://doi.org/10.1109/QEST.2012.19
https://doi.org/10.1145/2432622.2432623
https://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500830
https://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500830
https://www.semanticscholar.org/paper/Dynamic-Programming-and-Markov-Processes.-Ronald-A.-Weiss/89a2f75b8c5a13f897580f8c3f3c886998228708
https://www.semanticscholar.org/paper/Dynamic-Programming-and-Markov-Processes.-Ronald-A.-Weiss/89a2f75b8c5a13f897580f8c3f3c886998228708
https://www.semanticscholar.org/paper/Dynamic-Programming-and-Markov-Processes.-Ronald-A.-Weiss/89a2f75b8c5a13f897580f8c3f3c886998228708
https://doi.org/10.1007/978-3-030-17462-0_27
https://doi.org/10.1007/978-3-030-17462-0_27
https://doi.org/10.1016/0020-0190(76)90095-8
https://doi.org/10.1016/0020-0190(76)90095-8
https://doi.org/10.1007/3-540-46430-1_15
https://arxiv.org/ftp/arxiv/papers/1301/1301.6704.pdf
https://arxiv.org/ftp/arxiv/papers/1301/1301.6704.pdf
https://doi.org/10.1145/3305218.3305239
https://doi.org/10.1007/978-3-642-33090-2_55
https://doi.org/10.1007/978-3-642-33090-2_55
https://mediatum.ub.tum.de/doc/1547107/file.pdf

BIBLIOGRAPHY

[JBB+17] Swen Jacobs, Roderick Bloem, Romain Brenguier, Rüdiger Ehlers, Timo-
theus Hell, Robert Könighofer, Guillermo A. Pérez, Jean-François Raskin,
Leonid Ryzhyk, Ocan Sankur, Martina Seidl, Leander Tentrup, and Adam
Walker. The first reactive synthesis competition (SYNTCOMP 2014). Int.
J. Softw. Tools Technol. Transf., 19(3):367–390, 2017. doi:10.1007/s10009-
016-0416-3.

[JCL+09] Sumit Kumar Jha, Edmund M. Clarke, Christopher James Langmead, Axel
Legay, André Platzer, and Paolo Zuliani. A Bayesian approach to model
checking biological systems. In CMSB, volume 5688 of Lecture Notes in
Computer Science, pages 218–234. Springer, 2009. doi:10.1007/978-3-642-
03845-7 15.

[JDT10] Manuel Mazo Jr., Anna Davitian, and Paulo Tabuada. PESSOA: A tool
for embedded controller synthesis. In CAV, volume 6174 of Lecture Notes
in Computer Science, pages 566–569. Springer, 2010. doi:10.1007/978-3-642-
14295-6 49.

[JJD+16] Sebastian Junges, Nils Jansen, Christian Dehnert, Ufuk Topcu, and Joost-
Pieter Katoen. Safety-constrained reinforcement learning for MDPs. In
TACAS, volume 9636 of Lecture Notes in Computer Science, pages 130–146.
Springer, 2016. doi:10.1007/978-3-662-49674-9 8.

[JKKK18] Nils Jansen, Joost-Pieter Katoen, Pushmeet Kohli, and Jan Kret́ınský. Ma-
chine learning and model checking join forces (Dagstuhl seminar 18121).
Dagstuhl Reports, 8(3):74–93, 2018. doi:10.4230/DagRep.8.3.74.

[JKKP13] Kangkook Jee, Vasileios P. Kemerlis, Angelos D. Keromytis, and Georgios
Portokalidis. ShadowReplica: efficient parallelization of dynamic data flow
tracking. In CCS, pages 235–246. ACM, 2013. doi:10.1145/2508859.2516704.

[JL91] Bengt Jonsson and Kim Guldstrand Larsen. Specification and refinement of
probabilistic processes. In LICS, pages 266–277. IEEE Computer Society,
1991. doi:10.1109/LICS.1991.151651.

[JLD+17] Yang Ji, Sangho Lee, Evan Downing, Weiren Wang, Mattia Fazzini, Taesoo
Kim, Alessandro Orso, and Wenke Lee. RAIN: refinable attack investigation
with on-demand inter-process information flow tracking. In CCS, pages 377–
390. ACM, 2017. doi:10.1145/3133956.3134045.

[JLS12] Cyrille Jégourel, Axel Legay, and Sean Sedwards. A platform for high
performance statistical model checking - PLASMA. In TACAS, volume
7214 of Lecture Notes in Computer Science, pages 498–503. Springer, 2012.
doi:10.1007/978-3-642-28756-5 37.

[Joh07] David S. Johnson. The NP-completeness column: Finding nee-
dles in haystacks. ACM Trans. Algorithms, 3(2):24, 2007.
doi:10.1145/1240233.1240247.

132

https://doi.org/10.1007/s10009-016-0416-3
https://doi.org/10.1007/s10009-016-0416-3
https://doi.org/10.1007/978-3-642-03845-7_15
https://doi.org/10.1007/978-3-642-03845-7_15
https://doi.org/10.1007/978-3-642-14295-6_49
https://doi.org/10.1007/978-3-642-14295-6_49
https://doi.org/10.1007/978-3-662-49674-9_8
https://doi.org/10.4230/DagRep.8.3.74
https://doi.org/10.1145/2508859.2516704
https://doi.org/10.1109/LICS.1991.151651
https://doi.org/10.1145/3133956.3134045
https://doi.org/10.1007/978-3-642-28756-5_37
https://doi.org/10.1145/1240233.1240247

BIBLIOGRAPHY

[JPA+22] Swen Jacobs, Guillermo A. Pérez, Remco Abraham, Véronique Bruyère,
Michaël Cadilhac, Maximilien Colange, Charly Delfosse, Tom van Dijk,
Alexandre Duret-Lutz, Peter Faymonville, Bernd Finkbeiner, Ayrat Khal-
imov, Felix Klein, Michael Luttenberger, Klara J. Meyer, Thibaud Michaud,
Adrien Pommellet, Florian Renkin, Philipp Schlehuber-Caissier, Mouham-
mad Sakr, Salomon Sickert, Gaëtan Staquet, Clement Tamines, Leander Ten-
trup, and Adam Walker. The reactive synthesis competition (SYNTCOMP):
2018-2021. CoRR, abs/2206.00251, 2022. doi:10.48550/arXiv.2206.00251.

[Jun20] Sebastian Junges. Parameter synthesis in Markov models. PhD thesis,
RWTH Aachen University, Germany, 2020. URL https://publications.

rwth-aachen.de/record/783179.

[Jün21] Florian Jüngermann. Learning algebraic predicates for explainable con-
trollers. Bachelor’s thesis, Technical University of Munich, 2021. URL
https://mediatum.ub.tum.de/doc/1612766/1612766.pdf.

[KCS02] Suresh Kalyanasundaram, Edwin K. P. Chong, and Ness B. Shroff. Markov
decision processes with uncertain transition rates: sensitivity and robust con-
trol. In CDC, pages 3799–3804. IEEE, 2002. doi:10.1109/CDC.2002.1184956.

[KGAK22] Jonis Kiesbye, Kush Grover, Pranav Ashok, and Jan Kretinsky. Planning via
model checking with decision-tree controllers. ICRA (To appear), 2022.

[KJL+16] Kenan Kalajdzic, Cyrille Jégourel, Anna Lukina, Ezio Bartocci, Axel Legay,
Scott A. Smolka, and Radu Grosu. Feedback control for statistical model
checking of cyber-physical systems. In ISoLA (1), volume 9952 of Lecture
Notes in Computer Science, pages 46–61, 2016. doi:10.1007/978-3-319-47166-
2 4.

[KK99] Michael J. Kearns and Daphne Koller. Efficient reinforcement learning in
factored MDPs. In IJCAI, pages 740–747. Morgan Kaufmann, 1999. URL
http://ijcai.org/Proceedings/99-2/Papers/013.pdf.

[KKKW18] Edon Kelmendi, Julia Krämer, Jan Kretinsky, and Maximilian Weininger.
Value iteration for simple stochastic games: Stopping criterion and learning
algorithm. In CAV (1), volume 10981 of Lecture Notes in Computer Science,
pages 623–642. Springer, 2018. doi:10.1007/978-3-319-96145-3 36.

[KKLW12] Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf. Three-
valued abstraction for probabilistic systems. J. Log. Algebraic Methods Pro-
gram., 81(4):356–389, 2012. doi:10.1016/j.jlap.2012.03.007.

[KKNP10] Mark Kattenbelt, Marta Z. Kwiatkowska, Gethin Norman, and David Parker.
A game-based abstraction-refinement framework for Markov decision pro-
cesses. Formal Methods Syst. Des., 36(3):246–280, 2010. doi:10.1007/s10703-
010-0097-6.

133

https://doi.org/10.48550/arXiv.2206.00251
https://publications.rwth-aachen.de/record/783179
https://publications.rwth-aachen.de/record/783179
https://mediatum.ub.tum.de/doc/1612766/1612766.pdf
https://doi.org/10.1109/CDC.2002.1184956
https://doi.org/10.1007/978-3-319-47166-2_4
https://doi.org/10.1007/978-3-319-47166-2_4
http://ijcai.org/Proceedings/99-2/Papers/013.pdf
https://doi.org/10.1007/978-3-319-96145-3_36
https://doi.org/10.1016/j.jlap.2012.03.007
https://doi.org/10.1007/s10703-010-0097-6
https://doi.org/10.1007/s10703-010-0097-6

BIBLIOGRAPHY

[KLC98] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Plan-
ning and acting in partially observable stochastic domains. Artif. Intell.,
101(1-2):99–134, 1998. doi:10.1016/S0004-3702(98)00023-X.

[KLvdPT19] Fabrice Kordon, Michael Leuschel, Jaco van de Pol, and Yann Thierry-Mieg.
Software architecture of modern model checkers. In Computing and Software
Science, volume 10000 of Lecture Notes in Computer Science, pages 393–419.
Springer, 2019. doi:10.1007/978-3-319-91908-9 20.

[KM17] Jan Kret́ınský and Tobias Meggendorfer. Efficient strategy iteration for mean
payoff in Markov decision processes. In ATVA, volume 10482 of Lecture Notes
in Computer Science, pages 380–399. Springer, 2017. doi:10.1007/978-3-319-
68167-2 25.

[KM18] Jan Kret́ınský and Tobias Meggendorfer. Conditional value-at-risk for reacha-
bility and mean payoff in Markov decision processes. In LICS, pages 609–618.
ACM, 2018. doi:10.1145/3209108.3209176.

[KM20] Jan Kret́ınský and Tobias Meggendorfer. Of cores: A partial-exploration
framework for Markov decision processes. Log. Methods Comput. Sci., 16(4),
2020. URL https://lmcs.episciences.org/6833.

[KMMP20] Jan Kret́ınský, Fabian Michel, Lukas Michel, and Guillermo A. Pérez. Finite-
memory near-optimal learning for Markov decision processes with long-run
average reward. In UAI, volume 124 of Proceedings of Machine Learning
Research, pages 1149–1158. AUAI Press, 2020. URL http://proceedings.

mlr.press/v124/kretinsky20a.html.

[KMWW21] Jan Křet́ınskỳ, Tobias Meggendorfer, Clara Waldmann, and Maximilian
Weininger. Index appearance record with preorders. Acta Informatica, pages
1–34, 2021. doi:10.1007/s00236-021-00412-y.

[KNP04] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Probabilistic
symbolic model checking with PRISM: a hybrid approach. Int. J. Softw.
Tools Technol. Transf., 6(2):128–142, 2004. doi:10.1007/s10009-004-0140-2.

[KNP11] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Ver-
ification of probabilistic real-time systems. In CAV, volume 6806 of Lecture
Notes in Computer Science, pages 585–591. Springer, 2011. doi:10.1007/978-
3-642-22110-1 47.

[KNP12] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. The PRISM
benchmark suite. In QEST, pages 203–204. IEEE Computer Society, 2012.
doi:10.1109/QEST.2012.14.

[KNPQ13] Marta Z. Kwiatkowska, Gethin Norman, David Parker, and Hongyang Qu.
Compositional probabilistic verification through multi-objective model check-
ing. Inf. Comput., 232:38–65, 2013. doi:10.1016/j.ic.2013.10.001.

134

https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1007/978-3-319-91908-9_20
https://doi.org/10.1007/978-3-319-68167-2_25
https://doi.org/10.1007/978-3-319-68167-2_25
https://doi.org/10.1145/3209108.3209176
https://lmcs.episciences.org/6833
http://proceedings.mlr.press/v124/kretinsky20a.html
http://proceedings.mlr.press/v124/kretinsky20a.html
https://doi.org/10.1007/s00236-021-00412-y
https://doi.org/10.1007/s10009-004-0140-2
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1109/QEST.2012.14
https://doi.org/10.1016/j.ic.2013.10.001

BIBLIOGRAPHY

[KNPS20] Marta Kwiatkowska, Gethin Norman, David Parker, and Gabriel Santos.
PRISM-games 3.0: Stochastic game verification with concurrency, equilibria
and time. In CAV (2), volume 12225 of Lecture Notes in Computer Science,
pages 475–487. Springer, 2020. doi:10.1007/978-3-030-53291-8 25.

[KNPS22] Marta Kwiatkowska, Gethin Norman, David Parker, and Gabriel Santos.
Correlated equilibria and fairness in concurrent stochastic games. In TACAS
(2), volume 13244 of Lecture Notes in Computer Science, pages 60–78.
Springer, 2022. doi:10.1007/978-3-030-99527-0 4.

[KP99] Daphne Koller and Ronald Parr. Computing factored value functions for
policies in structured MDPs. In IJCAI, pages 1332–1339. Morgan Kaufmann,
1999. URL http://ijcai.org/Proceedings/99-2/Papers/094.pdf.

[KPR18] Jan Kret́ınský, Guillermo A. Pérez, and Jean-François Raskin. Learning-
based mean-payoff optimization in an unknown MDP under omega-
regular constraints. In CONCUR, volume 118 of LIPIcs, pages
8:1–8:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.CONCUR.2018.8.

[KPV16] Orna Kupferman, Giuseppe Perelli, and Moshe Y. Vardi. Synthesis
with rational environments. Ann. Math. Artif. Intell., 78(1):3–20, 2016.
doi:10.1007/s10472-016-9508-8.

[KPW16] Marta Kwiatkowska, David Parker, and Clemens Wiltsche. PRISM-games
2.0: A tool for multi-objective strategy synthesis for stochastic games. In
TACAS, volume 9636 of Lecture Notes in Computer Science, pages 560–566.
Springer, 2016. doi:10.1007/978-3-662-49674-9 35.

[Kre16] Jan Kret́ınský. Survey of statistical verification of linear unbounded proper-
ties: Model checking and distances. In ISoLA (1), volume 9952 of Lecture
Notes in Computer Science, pages 27–45, 2016. doi:10.1007/978-3-319-47166-
2 3.

[Kre17] Jan Kret́ınský. 30 years of modal transition systems: Survey of extensions and
analysis. In Models, Algorithms, Logics and Tools, volume 10460 of Lecture
Notes in Computer Science, pages 36–74. Springer, 2017. doi:10.1007/978-3-
319-63121-9 3.

[KRSW20] Jan Kretinsky, Emanuel Ramneantu, Alexander Slivinskiy, and Max-
imilian Weininger. Comparison of algorithms for simple stochastic
games. In GandALF, volume 326 of EPTCS, pages 131–148, 2020.
doi:10.4204/EPTCS.326.9.

[KRSW22] Jan Kretinsky, Emanuel Ramneantu, Alexander Slivinskiy, and Maximilian
Weininger. Comparison of algorithms for simple stochastic games. Inf. Com-
put., 2022. URL https://doi.org/10.1016/j.ic.2022.104885.

135

https://doi.org/10.1007/978-3-030-53291-8_25
https://doi.org/10.1007/978-3-030-99527-0_4
http://ijcai.org/Proceedings/99-2/Papers/094.pdf
https://doi.org/10.4230/LIPIcs.CONCUR.2018.8
https://doi.org/10.1007/s10472-016-9508-8
https://doi.org/10.1007/978-3-662-49674-9_35
https://doi.org/10.1007/978-3-319-47166-2_3
https://doi.org/10.1007/978-3-319-47166-2_3
https://doi.org/10.1007/978-3-319-63121-9_3
https://doi.org/10.1007/978-3-319-63121-9_3
https://doi.org/10.4204/EPTCS.326.9
https://doi.org/10.1016/j.ic.2022.104885

BIBLIOGRAPHY

[KS21] Orna Kupferman and Noam Shenwald. Perspective multi-player games. In
LICS, pages 1–13. IEEE, 2021. doi:10.1109/LICS52264.2021.9470616.

[KTK80] Mikhail K Kozlov, Sergei P Tarasov, and Leonid G Khachiyan. The
polynomial solvability of convex quadratic programming. USSR Com-
putational Mathematics and Mathematical Physics, 20(5):223–228, 1980.
doi:10.1016/0041-5553(80)90098-1.

[KU02] Igor Kozine and Lev V. Utkin. Interval-valued finite Markov chains. Reliab.
Comput., 8(2):97–113, 2002. doi:10.1023/A:1014745904458.

[KV19] Orna Kupferman and Gal Vardi. Perspective games. In LICS, pages 1–13.
IEEE, 2019. doi:10.1109/LICS.2019.8785662.

[Kwi16] Marta Z. Kwiatkowska. Model checking and strategy synthesis for stochas-
tic games: From theory to practice. In ICALP, volume 55 of LIPIcs,
pages 4:1–4:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.
doi:10.4230/LIPIcs.ICALP.2016.4.

[LAB15] Morteza Lahijanian, Sean B. Andersson, and Calin Belta. Formal verifica-
tion and synthesis for discrete-time stochastic systems. IEEE Trans. Autom.
Control., 60(8):2031–2045, 2015. doi:10.1109/TAC.2015.2398883.

[Lar12] Kim G. Larsen. Statistical model checking, refinement checking, optimiza-
tion, ... for stochastic hybrid systems. In FORMATS, volume 7595 of Lecture
Notes in Computer Science, pages 7–10. Springer, 2012. doi:10.1007/978-3-
642-33365-1 2.

[Lar13] Kim Guldstrand Larsen. Priced timed automata and statistical model check-
ing. In IFM, volume 7940 of Lecture Notes in Computer Science, pages
154–161. Springer, 2013. doi:10.1007/978-3-642-38613-8 11.

[LaV00] Steven M. LaValle. Robot motion planning: A game-theoretic foundation.
Algorithmica, 26(3-4):430–465, 2000. doi:10.1007/s004539910020.

[LBB+18] Yamilet R. Serrano Llerena, Marcel Böhme, Marc Brünink, Guoxin Su, and
David S. Rosenblum. Verifying the long-run behavior of probabilistic system
models in the presence of uncertainty. In ESEC/SIGSOFT FSE, pages 587–
597. ACM, 2018. doi:10.1145/3236024.3236078.

[LCMF18] Antoine Lemay, Joan Calvet, François Menet, and José M. Fernandez. Survey
of publicly available reports on advanced persistent threat actors. Comput.
Secur., 72:26–59, 2018. doi:10.1016/j.cose.2017.08.005.

[LDB10] Axel Legay, Benôıt Delahaye, and Saddek Bensalem. Statistical model check-
ing: An overview. In RV, volume 6418 of Lecture Notes in Computer Science,
pages 122–135. Springer, 2010. doi:10.1007/978-3-642-16612-9 11.

136

https://doi.org/10.1109/LICS52264.2021.9470616
https://doi.org/10.1016/0041-5553(80)90098-1
https://doi.org/10.1023/A:1014745904458
https://doi.org/10.1109/LICS.2019.8785662
https://doi.org/10.4230/LIPIcs.ICALP.2016.4
https://doi.org/10.1109/TAC.2015.2398883
https://doi.org/10.1007/978-3-642-33365-1_2
https://doi.org/10.1007/978-3-642-33365-1_2
https://doi.org/10.1007/978-3-642-38613-8_11
https://doi.org/10.1007/s004539910020
https://doi.org/10.1145/3236024.3236078
https://doi.org/10.1016/j.cose.2017.08.005
https://doi.org/10.1007/978-3-642-16612-9_11

BIBLIOGRAPHY

[Ley02] Michael Ley. The DBLP computer science bibliography: Evolution, research
issues, perspectives. In SPIRE, volume 2476 of Lecture Notes in Computer
Science, pages 1–10. Springer, 2002. doi:10.1007/3-540-45735-6 1.

[LHJ19] Josje Lodder, Bastiaan Heeren, and Johan Jeuring. A comparison of
elaborated and restricted feedback in LogEx, a tool for teaching rewrit-
ing logical formulae. J. Comput. Assist. Learn., 35(5):620–632, 2019.
doi:10.1111/jcal.12365.

[LHJN21] Josje Lodder, Bastiaan Heeren, Johan Jeuring, and Wendy Neijenhuis. Gen-
eration and use of hints and feedback in a Hilbert-style axiomatic proof tu-
tor. Int. J. Artif. Intell. Educ., 31(1):99–133, 2021. doi:10.1007/s40593-020-
00222-2.

[Lit94] Michael L. Littman. Markov games as a framework for multi-agent rein-
forcement learning. In ICML, pages 157–163. Morgan Kaufmann, 1994.
doi:10.1016/b978-1-55860-335-6.50027-1.

[LL08] Jianwei Li and Weiyi Liu. A novel heuristic Q-learning algorithm for solving
stochastic games. In IJCNN, pages 1135–1144, 2008. URL https://doi.

org/10.1109/IJCNN.2008.4633942.

[LL14] Kim Guldstrand Larsen and Axel Legay. Statistical model checking past,
present, and future - (track introduction). In ISoLA (2), volume 8803
of Lecture Notes in Computer Science, pages 135–142. Springer, 2014.
doi:10.1007/978-3-662-45231-8 10.

[LL20] Kim G. Larsen and Axel Legay. 30 years of statistical model checking. In
ISoLA (1), volume 12476 of Lecture Notes in Computer Science, pages 325–
330. Springer, 2020. doi:10.1007/978-3-030-61362-4 18.

[LLT+19] Axel Legay, Anna Lukina, Louis-Marie Traonouez, Junxing Yang, Scott A.
Smolka, and Radu Grosu. Statistical model checking. In Computing and
Software Science, volume 10000 of Lecture Notes in Computer Science, pages
478–504. Springer, 2019. doi:10.1007/978-3-319-91908-9 23.

[LM13] Kun Lin and Steven I. Marcus. Dynamic programming with non-
convex risk-sensitive measures. In ACC, pages 6778–6783. IEEE, 2013.
doi:10.1109/ACC.2013.6580904.

[LMT15] Kim Guldstrand Larsen, Marius Mikucionis, and Jakob Haahr Taankvist.
Safe and optimal adaptive cruise control. In Correct System Design, volume
9360 of Lecture Notes in Computer Science, pages 260–277. Springer, 2015.
doi:10.1007/978-3-319-23506-6 17.

[LN81] S. Lakshmivarahan and Kumpati S. Narendra. Learning algorithms for two-
person zero-sum stochastic games with incomplete information. Math. Oper.
Res., 6(3):379–386, 1981. doi:10.1287/moor.6.3.379.

137

https://doi.org/10.1007/3-540-45735-6_1
https://doi.org/10.1111/jcal.12365
https://doi.org/10.1007/s40593-020-00222-2
https://doi.org/10.1007/s40593-020-00222-2
https://doi.org/10.1016/b978-1-55860-335-6.50027-1
https://doi.org/10.1109/IJCNN.2008.4633942
https://doi.org/10.1109/IJCNN.2008.4633942
https://doi.org/10.1007/978-3-662-45231-8_10
https://doi.org/10.1007/978-3-030-61362-4_18
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1109/ACC.2013.6580904
https://doi.org/10.1007/978-3-319-23506-6_17
https://doi.org/10.1287/moor.6.3.379

BIBLIOGRAPHY

[LP08] Richard Lassaigne and Sylvain Peyronnet. Probabilistic verification
and approximation. Ann. Pure Appl. Log., 152(1-3):122–131, 2008.
doi:10.1016/j.apal.2007.11.006.

[LP12] Richard Lassaigne and Sylvain Peyronnet. Approximate planning and verifi-
cation for large Markov decision processes. In SAC, pages 1314–1319. ACM,
2012. doi:10.1145/2245276.2231984.

[LPLSA17] Rodrigo Lankaites Pinheiro, Dario Landa-Silva, and Jason Atkin. A tech-
nique based on trade-off maps to visualise and analyse relationships between
objectives in optimisation problems. Journal of Multi-Criteria Decision Anal-
ysis, 24(1-2):37–56, 2017. doi:10.1002/mcda.1604.

[LPTR10] Shuping Liu, Anand Panangadan, Ashit Talukder, and Cauligi S Raghaven-
dra. Compact representation of coordinated sampling policies for body sensor
networks. In 2010 IEEE Globecom Workshops, pages 2044–2048. IEEE, 2010.
URL https://ieeexplore.ieee.org/abstract/document/5700304.

[LPY97] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in
a nutshell. Int. J. Softw. Tools Technol. Transf., 1(1-2):134–152, 1997.
doi:10.1007/s100090050010.

[LS17] Edward A. Lee and Sanjit A. Seshia. Introduction to Embedded Systems, A
Cyber-Physical Systems Approach, Second Edition. MIT press, 2017. URL
https://ptolemy.berkeley.edu/books/leeseshia/.

[LST14] Axel Legay, Sean Sedwards, and Louis-Marie Traonouez. Scalable verification
of Markov decision processes. In SEFM Workshops, volume 8938 of Lecture
Notes in Computer Science, pages 350–362. Springer, 2014. doi:10.1007/978-
3-319-15201-1 23.

[LST16] Axel Legay, Sean Sedwards, and Louis-Marie Traonouez. Rare events for
statistical model checking an overview. In RP, volume 9899 of Lecture Notes
in Computer Science, pages 23–35. Springer, 2016. doi:10.1007/978-3-319-
45994-3 2.

[LT88] Kim Guldstrand Larsen and Bent Thomsen. A modal process logic. In LICS,
pages 203–210. IEEE Computer Society, 1988. doi:10.1109/LICS.1988.5119.

[Lud95] Walter Ludwig. A subexponential randomized algorithm for the sim-
ple stochastic game problem. Inf. Comput., 117(1):151–155, 1995.
doi:10.1006/inco.1995.1035.

[LW05] Kong-wei Lye and Jeannette M. Wing. Game strategies in network security.
Int. J. Inf. Sec., 4(1-2):71–86, 2005. doi:10.1007/s10207-004-0060-x.

[MA20] Gareth W. Molyneux and Alessandro Abate. ABC(SMC)2: Simultaneous
inference and model checking of chemical reaction networks. In CMSB, vol-
ume 12314 of Lecture Notes in Computer Science, pages 255–279. Springer,
2020. doi:10.1007/978-3-030-60327-4 14.

138

https://doi.org/10.1016/j.apal.2007.11.006
https://doi.org/10.1145/2245276.2231984
https://doi.org/10.1002/mcda.1604
https://ieeexplore.ieee.org/abstract/document/5700304
https://doi.org/10.1007/s100090050010
https://ptolemy.berkeley.edu/books/leeseshia/
https://doi.org/10.1007/978-3-319-15201-1_23
https://doi.org/10.1007/978-3-319-15201-1_23
https://doi.org/10.1007/978-3-319-45994-3_2
https://doi.org/10.1007/978-3-319-45994-3_2
https://doi.org/10.1109/LICS.1988.5119
https://doi.org/10.1006/inco.1995.1035
https://doi.org/10.1007/s10207-004-0060-x
https://doi.org/10.1007/978-3-030-60327-4_14

BIBLIOGRAPHY

[Mar90] Donald A. Martin. An extension of borel determinacy. Ann. Pure Appl. Log.,
49(3):279–293, 1990. doi:10.1016/0168-0072(90)90029-2.

[MBB07] Abdel-Illah Mouaddib, Matthieu Boussard, and Maroua Bouzid. Towards a
formal framework for multi-objective multiagent planning. In AAMAS, page
123. IFAAMAS, 2007. doi:10.1145/1329125.1329276.

[MBSG22] Christian Meske, Enrico Bunde, Johannes Schneider, and Martin Ger-
sch. Explainable artificial intelligence: objectives, stakeholders, and fu-
ture research opportunities. Information Systems Management, 39(1):53–63,
2022. URL https://www.tandfonline.com/doi/full/10.1080/10580530.

2020.1849465.

[MCJ+12] Hua Mao, Yingke Chen, Manfred Jaeger, Thomas D. Nielsen, Kim G. Larsen,
and Brian Nielsen. Learning Markov decision processes for model checking. In
QFM, volume 103 of EPTCS, pages 49–63, 2012. doi:10.4204/EPTCS.103.6.

[MHAH22] Tim Miller, Robert R. Hoffman, Ofra Amir, and Andreas Holzinger. Special
issue on explainable artificial intelligence (XAI). Artif. Intell., 307:103705,
2022. doi:10.1016/j.artint.2022.103705.

[MHC03] Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of
probabilistic planning and related stochastic optimization problems. Artif.
Intell., 147(1-2):5–34, 2003. doi:10.1016/S0004-3702(02)00378-8.

[Mit97] Tom M. Mitchell. Machine learning, International Edition. McGraw-Hill Se-
ries in Computer Science. McGraw-Hill, 1997. URL https://www.worldcat.

org/oclc/61321007.

[MKSB93] Sreerama K. Murthy, Simon Kasif, Steven Salzberg, and Richard Beigel.
OC1: A randomized induction of oblique decision trees. In AAAI, pages
322–327. AAAI Press / The MIT Press, 1993. URL http://www.aaai.org/

Library/AAAI/1993/aaai93-049.php.

[MLG05] H. Brendan McMahan, Maxim Likhachev, and Geoffrey J. Gordon.
Bounded real-time dynamic programming: RTDP with monotone upper
bounds and performance guarantees. In ICML, volume 119 of ACM
International Conference Proceeding Series, pages 569–576. ACM, 2005.
doi:10.1145/1102351.1102423.

[MMH+19] Shruti Misra, Shana Moothedath, Hossein Hosseini, Joey Allen, Linda Bush-
nell, Wenke Lee, and Radha Poovendran. Learning equilibria in stochastic
information flow tracking games with partial knowledge. In CDC, pages
4053–4060. IEEE, 2019. doi:10.1109/CDC40024.2019.9029404.

[MS98] Ashok P. Maitra and William D. Sudderth. Finitely additive stochastic games
with Borel measurable payoffs. Int. J. Game Theory, 27(2):257–267, 1998.
doi:10.1007/s001820050071.

139

https://doi.org/10.1016/0168-0072(90)90029-2
https://doi.org/10.1145/1329125.1329276
https://www.tandfonline.com/doi/full/10.1080/10580530.2020.1849465
https://www.tandfonline.com/doi/full/10.1080/10580530.2020.1849465
https://doi.org/10.4204/EPTCS.103.6
https://doi.org/10.1016/j.artint.2022.103705
https://doi.org/10.1016/S0004-3702(02)00378-8
https://www.worldcat.org/oclc/61321007
https://www.worldcat.org/oclc/61321007
http://www.aaai.org/Library/AAAI/1993/aaai93-049.php
http://www.aaai.org/Library/AAAI/1993/aaai93-049.php
https://doi.org/10.1145/1102351.1102423
https://doi.org/10.1109/CDC40024.2019.9029404
https://doi.org/10.1007/s001820050071

BIBLIOGRAPHY

[MSA+20] Shana Moothedath, Dinuka Sahabandu, Joey Allen, Andrew Clark, Linda
Bushnell, Wenke Lee, and Radha Poovendran. A game-theoretic approach
for dynamic information flow tracking to detect multistage advanced per-
sistent threats. IEEE Trans. Autom. Control., 65(12):5248–5263, 2020.
doi:10.1109/TAC.2020.2976040.

[MSC+18] Shana Moothedath, Dinuka Sahabandu, Andrew Clark, Sangho Lee, Wenke
Lee, and Radha Poovendran. Multi-stage dynamic information flow tracking
game. In GameSec, volume 11199 of Lecture Notes in Computer Science,
pages 80–101. Springer, 2018. doi:10.1007/978-3-030-01554-1 5.

[MSL18] Philipp J. Meyer, Salomon Sickert, and Michael Luttenberger. Strix: Explicit
reactive synthesis strikes back! In CAV (1), volume 10981 of Lecture Notes
in Computer Science, pages 578–586. Springer, 2018. doi:10.1007/978-3-319-
96145-3 31.

[MTSS21] Basim Mahbooba, Mohan Timilsina, Radhya Sahal, and Martin Serrano. Ex-
plainable artificial intelligence (XAI) to enhance trust management in intru-
sion detection systems using decision tree model. Complex., 2021:6634811:1–
6634811:11, 2021. doi:10.1155/2021/6634811.

[Mun19] Randall Munroe. xkcd 2110. https://xkcd.com/2110/, 2019. Accessed:
29.05.2022.

[Mur98] Sreerama K. Murthy. Automatic construction of decision trees from data:
A multi-disciplinary survey. Data Min. Knowl. Discov., 2(4):345–389, 1998.
doi:10.1023/A:1009744630224.

[NG05] Arnab Nilim and Laurent El Ghaoui. Robust control of Markov decision
processes with uncertain transition matrices. Oper. Res., 53(5):780–798, 2005.
doi:10.1287/opre.1050.0216.

[NJ50] John F Nash Jr. Equilibrium points in n-person games. Proceedings of the
national academy of sciences, 36(1):48–49, 1950. URL https://www.pnas.

org/doi/full/10.1073/pnas.36.1.48.

[NM19] Daniel Neider and Oliver Markgraf. Learning-based synthesis
of safety controllers. In FMCAD, pages 120–128. IEEE, 2019.
doi:10.23919/FMCAD.2019.8894254.

[Nor98] James R Norris. Markov chains. Cambridge university press, 1998.
URL https://books.google.de/books/about/Markov_Chains.html?id=

qM65VRmOJZAC&redir_esc=y.

[NS03] Abraham Neyman and Sylvain Sorin. Stochastic games and applications,
volume 570. Springer Science & Business Media, 2003. doi:10.1007/978-94-
010-0189-2.

140

https://doi.org/10.1109/TAC.2020.2976040
https://doi.org/10.1007/978-3-030-01554-1_5
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1155/2021/6634811
https://xkcd.com/2110/
https://doi.org/10.1023/A:1009744630224
https://doi.org/10.1287/opre.1050.0216
https://www.pnas.org/doi/full/10.1073/pnas.36.1.48
https://www.pnas.org/doi/full/10.1073/pnas.36.1.48
https://doi.org/10.23919/FMCAD.2019.8894254
https://books.google.de/books/about/Markov_Chains.html?id=qM65VRmOJZAC&redir_esc=y
https://books.google.de/books/about/Markov_Chains.html?id=qM65VRmOJZAC&redir_esc=y
https://doi.org/10.1007/978-94-010-0189-2
https://doi.org/10.1007/978-94-010-0189-2

BIBLIOGRAPHY

[NSM16] Daniel Neider, Shambwaditya Saha, and P. Madhusudan. Synthesizing piece-
wise functions by learning classifiers. In TACAS, volume 9636 of Lecture
Notes in Computer Science, pages 186–203. Springer, 2016. doi:10.1007/978-
3-662-49674-9 11.

[OPW13] Wlodzimierz Ogryczak, Patrice Perny, and Paul Weng. A compro-
mise programming approach to multiobjective Markov decision pro-
cesses. Int. J. Inf. Technol. Decis. Mak., 12(5):1021–1054, 2013.
doi:10.1142/S0219622013400075.

[PGL+13] Sucheendra K. Palaniappan, Benjamin M. Gyori, Bing Liu, David Hsu, and
P. S. Thiagarajan. Statistical model checking based calibration and analysis
of bio-pathway models. In CMSB, volume 8130 of Lecture Notes in Computer
Science, pages 120–134. Springer, 2013. doi:10.1007/978-3-642-40708-6 10.

[PH98] Larry D Pyeatt and Adele E Howe. Decision tree function approximation
in reinforcement learning. Computer Science Technical Report, CS-98-112,
1998. URL https://arxiv.org/ftp/arxiv/papers/1309/1309.6856.pdf.

[PILM09] Giuseppe Della Penna, Benedetto Intrigila, Nadia Lauri, and Daniele Mag-
azzeni. Fast and compact encoding of numerical controllers using OB-
DDs. In Informatics in Control, Automation and Robotics, pages 75–
87. Springer, 2009. URL https://link.springer.com/chapter/10.1007/

978-3-642-00271-7_5.

[PKSR02] Vili Podgorelec, Peter Kokol, Bruno Stiglic, and Ivan Rozman. Decision
trees: an overview and their use in medicine. Journal of medical sys-
tems, 26(5):445–463, 2002. URL https://link.springer.com/article/

10.1023/A:1016409317640.

[PLGM16] Rok Piltaver, Mitja Lustrek, Matjaz Gams, and Sanda Martincic-Ipsic. What
makes classification trees comprehensible? Expert Syst. Appl., 62:333–346,
2016. doi:10.1016/j.eswa.2016.06.009.

[PLSS13] Alberto Puggelli, Wenchao Li, Alberto L. Sangiovanni-Vincentelli, and San-
jit A. Seshia. Polynomial-time verification of PCTL properties of MDPs with
convex uncertainties. In CAV, volume 8044 of Lecture Notes in Computer
Science, pages 527–542. Springer, 2013. doi:10.1007/978-3-642-39799-8 35.

[PSB22] Jakob Piribauer, Ocan Sankur, and Christel Baier. The variance-
penalized stochastic shortest path problem. CoRR, abs/2204.12280, 2022.
doi:10.48550/arXiv.2204.12280.

[PTHH20] Kittiphon Phalakarn, Toru Takisaka, Thomas Haas, and Ichiro Hasuo.
Widest paths and global propagation in bounded value iteration for stochas-
tic games. In CAV (2), volume 12225 of Lecture Notes in Computer Sci-
ence, pages 349–371. Springer, 2020. URL https://doi.org/10.1007/

978-3-030-53291-8_19.

141

https://doi.org/10.1007/978-3-662-49674-9_11
https://doi.org/10.1007/978-3-662-49674-9_11
https://doi.org/10.1142/S0219622013400075
https://doi.org/10.1007/978-3-642-40708-6_10
https://arxiv.org/ftp/arxiv/papers/1309/1309.6856.pdf
https://link.springer.com/chapter/10.1007/978-3-642-00271-7_5
https://link.springer.com/chapter/10.1007/978-3-642-00271-7_5
https://link.springer.com/article/10.1023/A:1016409317640
https://link.springer.com/article/10.1023/A:1016409317640
https://doi.org/10.1016/j.eswa.2016.06.009
https://doi.org/10.1007/978-3-642-39799-8_35
https://doi.org/10.48550/arXiv.2204.12280
https://doi.org/10.1007/978-3-030-53291-8_19
https://doi.org/10.1007/978-3-030-53291-8_19

BIBLIOGRAPHY

[Put94] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. Wiley Series in Probability and Statistics. Wiley, 1994.
doi:10.1002/9780470316887.

[PWGH13] Patrice Perny, Paul Weng, Judy Goldsmith, and Josiah Hanna. Approxima-
tion of Lorenz-optimal solutions in multiobjective Markov decision processes.
In AAAI (Late-Breaking Developments), volume WS-13-17 of AAAI Tech-
nical Report. AAAI, 2013. URL https://arxiv.org/ftp/arxiv/papers/

1309/1309.6856.pdf.

[PY00] Christos H. Papadimitriou and Mihalis Yannakakis. On the approximability
of trade-offs and optimal access of web sources. In FOCS, pages 86–92. IEEE
Computer Society, 2000. doi:10.1109/SFCS.2000.892068.

[PY01] Christos H. Papadimitriou and Mihalis Yannakakis. Multiobjective query
optimization. In PODS. ACM, 2001. doi:10.1145/375551.375560.

[QJK17] Tim Quatmann, Sebastian Junges, and Joost-Pieter Katoen. Markov au-
tomata with multiple objectives. In CAV (1), volume 10426 of Lecture Notes
in Computer Science, pages 140–159. Springer, 2017. doi:10.1007/978-3-319-
63387-9 7.

[QK18] Tim Quatmann and Joost-Pieter Katoen. Sound value iteration. In CAV
(1), volume 10981 of Lecture Notes in Computer Science, pages 643–661.
Springer, 2018. doi:10.1007/978-3-319-96145-3 37.

[QK21] Tim Quatmann and Joost-Pieter Katoen. Multi-objective optimization of
long-run average and total rewards. In TACAS (1), volume 12651 of Lecture
Notes in Computer Science, pages 230–249. Springer, 2021. doi:10.1007/978-
3-030-72016-2 13.

[Ras05] Jean-François Raskin. An introduction to hybrid automata. In Handbook of
Networked and Embedded Control Systems, pages 491–518. Birkhäuser, 2005.
doi:10.1007/0-8176-4404-0 21.

[Rea08] Jesse Read. A pruned problem transformation method for multi-label clas-
sification. In NZCSRS 2008, volume 143150, page 41, 2008. URL https:

//users.ics.aalto.fi/jesse/papers/NZCSRCS08.pdf.

[RES+10] Sankardas Roy, Charles Ellis, Sajjan G. Shiva, Dipankar Dasgupta, Vivek
Shandilya, and Qishi Wu. A survey of game theory as applied to net-
work security. In HICSS, pages 1–10. IEEE Computer Society, 2010.
doi:10.1109/HICSS.2010.35.

[RGT05] Nicholas Roy, Geoffrey J. Gordon, and Sebastian Thrun. Finding approx-
imate POMDP solutions through belief compression. J. Artif. Intell. Res.,
23:1–40, 2005. doi:10.1613/jair.1496.

142

https://doi.org/10.1002/9780470316887
https://arxiv.org/ftp/arxiv/papers/1309/1309.6856.pdf
https://arxiv.org/ftp/arxiv/papers/1309/1309.6856.pdf
https://doi.org/10.1109/SFCS.2000.892068
https://doi.org/10.1145/375551.375560
https://doi.org/10.1007/978-3-319-63387-9_7
https://doi.org/10.1007/978-3-319-63387-9_7
https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.1007/978-3-030-72016-2_13
https://doi.org/10.1007/978-3-030-72016-2_13
https://doi.org/10.1007/0-8176-4404-0_21
https://users.ics.aalto.fi/jesse/papers/NZCSRCS08.pdf
https://users.ics.aalto.fi/jesse/papers/NZCSRCS08.pdf
https://doi.org/10.1109/HICSS.2010.35
https://doi.org/10.1613/jair.1496

BIBLIOGRAPHY

[RLH21] Marc Rigter, Bruno Lacerda, and Nick Hawes. Minimax regret optimisation
for robust planning in uncertain Markov decision processes. In AAAI, pages
11930–11938. AAAI Press, 2021. URL https://ojs.aaai.org/index.php/

AAAI/article/view/17417.

[RP09] Diana El Rabih and Nihal Pekergin. Statistical model checking using perfect
simulation. In ATVA, volume 5799 of Lecture Notes in Computer Science,
pages 120–134. Springer, 2009. doi:10.1007/978-3-642-04761-9 11.

[RRS15] Mickael Randour, Jean-François Raskin, and Ocan Sankur. Variations on
the stochastic shortest path problem. In VMCAI, volume 8931 of Lecture
Notes in Computer Science, pages 1–18. Springer, 2015. doi:10.1007/978-3-
662-46081-8 1.

[RRS17] Mickael Randour, Jean-François Raskin, and Ocan Sankur. Percentile queries
in multi-dimensional Markov decision processes. Formal Methods Syst. Des.,
50(2-3):207–248, 2017. doi:10.1007/s10703-016-0262-7.

[RS14] Jean-François Raskin and Ocan Sankur. Multiple-environment Markov
decision processes. In FSTTCS, volume 29 of LIPIcs, pages
531–543. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014.
doi:10.4230/LIPIcs.FSTTCS.2014.531.

[Rud19] Cynthia Rudin. Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead. Nat. Mach. Intell.,
1(5):206–215, 2019. doi:10.1038/s42256-019-0048-x.

[RVWD13] Diederik M. Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley.
A survey of multi-objective sequential decision-making. J. Artif. Intell. Res.,
48:67–113, 2013. doi:10.1613/jair.3987.

[RZ16] Matthias Rungger and Majid Zamani. SCOTS: A tool for the syn-
thesis of symbolic controllers. In HSCC, pages 99–104. ACM, 2016.
doi:10.1145/2883817.2883834.

[Sah74] Sartaj Sahni. Computationally related problems. SIAM J. Comput.,
3(4):262–279, 1974. doi:10.1137/0203021.

[SAM+20] Dinuka Sahabandu, Joey Allen, Shana Moothedath, Linda Bushnell, Wenke
Lee, and Radha Poovendran. Quickest detection of advanced persistent
threats: A semi-Markov game approach. In ICCPS, pages 9–19. IEEE, 2020.
doi:10.1109/ICCPS48487.2020.00009.

[San20] Gabriel HR Santos. Automatic verification and strategy synthesis for zero-
sum and equilibria properties of concurrent stochastic games. PhD thesis,
University of Oxford, 2020. URL https://ora.ox.ac.uk/objects/uuid:

225cfc43-df30-4dc2-919b-66e8037633a6/download_file?safe_

filename=THESIS__GABRIEL_SANTOS.pdf&file_format=pdf&type_of_

work=Thesis.

143

https://ojs.aaai.org/index.php/AAAI/article/view/17417
https://ojs.aaai.org/index.php/AAAI/article/view/17417
https://doi.org/10.1007/978-3-642-04761-9_11
https://doi.org/10.1007/978-3-662-46081-8_1
https://doi.org/10.1007/978-3-662-46081-8_1
https://doi.org/10.1007/s10703-016-0262-7
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.531
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1613/jair.3987
https://doi.org/10.1145/2883817.2883834
https://doi.org/10.1137/0203021
https://doi.org/10.1109/ICCPS48487.2020.00009
https://ora.ox.ac.uk/objects/uuid:225cfc43-df30-4dc2-919b-66e8037633a6/download_file?safe_filename=THESIS__GABRIEL_SANTOS.pdf&file_format=pdf&type_of_work=Thesis
https://ora.ox.ac.uk/objects/uuid:225cfc43-df30-4dc2-919b-66e8037633a6/download_file?safe_filename=THESIS__GABRIEL_SANTOS.pdf&file_format=pdf&type_of_work=Thesis
https://ora.ox.ac.uk/objects/uuid:225cfc43-df30-4dc2-919b-66e8037633a6/download_file?safe_filename=THESIS__GABRIEL_SANTOS.pdf&file_format=pdf&type_of_work=Thesis
https://ora.ox.ac.uk/objects/uuid:225cfc43-df30-4dc2-919b-66e8037633a6/download_file?safe_filename=THESIS__GABRIEL_SANTOS.pdf&file_format=pdf&type_of_work=Thesis

BIBLIOGRAPHY

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An in-
troduction. MIT press, 2018. URL https://mitpress.mit.edu/books/

reinforcement-learning-second-edition.

[SBS20] Farahnaz Sadoughi, Ali Behmanesh, and Nasrin Sayfouri. Internet of
things in medicine: A systematic mapping study. J. Biomed. Informatics,
103:103383, 2020. doi:10.1016/j.jbi.2020.103383.

[Sch18] François Schwarzentruber. Hintikka’s world: Agents with higher-order knowl-
edge. In IJCAI, pages 5859–5861. ijcai.org, 2018. doi:10.24963/ijcai.2018/862.

[SFO19] Hicham Moad Safhi, Bouchra Frikh, and Brahim Ouhbi. Assessing reliability
of big data knowledge discovery process. Procedia computer science, 148:30–
36, 2019. doi:10.1016/j.procs.2019.01.005.

[Sha48] Claude E. Shannon. A mathematical theory of communication. Bell Syst.
Tech. J., 27(4):623–656, 1948. doi:10.1002/j.1538-7305.1948.tb00917.x.

[SHB00] Robert St-Aubin, Jesse Hoey, and Craig Boutilier. APRICODD: Approxi-
mate policy construction using decision diagrams. In NIPS, pages 1089–1095.
MIT Press, 2000. URL https://proceedings.neurips.cc/paper/2000/

hash/201d7288b4c18a679e48b31c72c30ded-Abstract.html.

[Sil63] Edward A Silver. Markovian decision processes with uncertain transition
probabilities or rewards. Technical report, Massachusetts inst of tech cam-
bridge operations research center, 1963. URL https://apps.dtic.mil/sti/

citations/AD0417150.

[SJ73] Jay K. Satia and Roy E. Lave Jr. Markovian decision processes
with uncertain transition probabilities. Oper. Res., 21(3):728–740, 1973.
doi:10.1287/opre.21.3.728.

[SK16] Maŕıa Svorenová and Marta Kwiatkowska. Quantitative verification and
strategy synthesis for stochastic games. Eur. J. Control, 30:15–30, 2016.
doi:10.1016/j.ejcon.2016.04.009.

[SKD21] Lauren N. Steimle, David L. Kaufman, and Brian T. Denton. Multi-
model Markov decision processes. IISE Trans., 53(10):1124–1139, 2021.
doi:10.1080/24725854.2021.1895454.

[SKK21] Shalini Sharma, Naresh Kumar, and Kuldeep Singh Kaswan. Big data re-
liability: A critical review. J. Intell. Fuzzy Syst., 40(3):5501–5516, 2021.
doi:10.3233/JIFS-202503.

[SKPK12] Gregor Stiglic, Simon Kocbek, Igor Pernek, and Peter Kokol. Compre-
hensive decision tree models in bioinformatics. PloS one, 7(3):e33812,
2012. URL https://journals.plos.org/plosone/article?id=10.1371/

journal.pone.0033812.

144

https://mitpress.mit.edu/books/reinforcement-learning-second-edition
https://mitpress.mit.edu/books/reinforcement-learning-second-edition
https://doi.org/10.1016/j.jbi.2020.103383
https://doi.org/10.24963/ijcai.2018/862
https://doi.org/10.1016/j.procs.2019.01.005
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://proceedings.neurips.cc/paper/2000/hash/201d7288b4c18a679e48b31c72c30ded-Abstract.html
https://proceedings.neurips.cc/paper/2000/hash/201d7288b4c18a679e48b31c72c30ded-Abstract.html
https://apps.dtic.mil/sti/citations/AD0417150
https://apps.dtic.mil/sti/citations/AD0417150
https://doi.org/10.1287/opre.21.3.728
https://doi.org/10.1016/j.ejcon.2016.04.009
https://doi.org/10.1080/24725854.2021.1895454
https://doi.org/10.3233/JIFS-202503
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0033812
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0033812

BIBLIOGRAPHY

[SLW+06] Alexander L. Strehl, Lihong Li, Eric Wiewiora, John Langford, and
Michael L. Littman. PAC model-free reinforcement learning. In ICML, vol-
ume 148 of ACM International Conference Proceeding Series, pages 881–888.
ACM, 2006. URL http://doi.acm.org/10.1145/1143844.1143955.

[SLYD20] Jialin Song, Ravi Lanka, Yisong Yue, and Bistra Dilkina. A general
large neighborhood search framework for solving integer linear programs.
In NeurIPS, 2020. URL https://proceedings.neurips.cc/paper/2020/

hash/e769e03a9d329b2e864b4bf4ff54ff39-Abstract.html.

[SLZD04] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure
program execution via dynamic information flow tracking. In ASPLOS, pages
85–96. ACM, 2004. doi:10.1145/1024393.1024404.

[SMA+19a] Dinuka Sahabandu, Shana Moothedath, Joey Allen, Linda Bushnell, Wenke
Lee, and Radha Poovendran. Stochastic dynamic information flow tracking
game with reinforcement learning. In GameSec, volume 11836 of Lecture
Notes in Computer Science, pages 417–438. Springer, 2019. doi:10.1007/978-
3-030-32430-8 25.

[SMA+19b] Dinuka Sahabandu, Shana Moothedath, Joey Allen, Andrew Clark, Linda
Bushnell, Wenke Lee, and Radha Poovendran. Dynamic information flow
tracking games for simultaneous detection of multiple attackers. In CDC,
pages 567–574. IEEE, 2019. doi:10.1109/CDC40024.2019.9029836.

[SMB+19] Dinuka Sahabandu, Shana Moothedath, Linda Bushnell, Radha Poovendran,
Joey Allen, Wenke Lee, and Andrew Clark. A game theoretic approach for
dynamic information flow tracking with conditional branching. In ACC, pages
2289–2296. IEEE, 2019. doi:10.23919/ACC.2019.8814596.

[Som05] Rafal Somla. New algorithms for solving simple stochastic
games. Electron. Notes Theor. Comput. Sci., 119(1):51–65, 2005.
doi:10.1016/j.entcs.2004.07.008.

[Sor03] Sylvain Sorin. Stochastic games with incomplete information. In Stochastic
Games and applications, pages 375–395. Springer, 2003. doi:10.1007/978-94-
010-0189-2 25.

[Spa12] Matthijs T. J. Spaan. Partially observable markov decision processes. In Re-
inforcement Learning, volume 12 of Adaptation, Learning, and Optimization,
pages 387–414. Springer, 2012. doi:10.1007/978-3-642-27645-3 12.

[SSJP22] Marnix Suilen, Thiago D. Simão, Nils Jansen, and David Parker. Robust
anytime learning of Markov decision processes. CoRR, abs/2205.15827, 2022.
doi:10.48550/arXiv.2205.15827.

[SV15] Eilon Solan and Nicolas Vieille. Stochastic games. Proceedings of the National
Academy of Sciences, 112(45):13743–13746, 2015. URL https://www.pnas.

org/doi/epdf/10.1073/pnas.1513508112.

145

http://doi.acm.org/10.1145/1143844.1143955
https://proceedings.neurips.cc/paper/2020/hash/e769e03a9d329b2e864b4bf4ff54ff39-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e769e03a9d329b2e864b4bf4ff54ff39-Abstract.html
https://doi.org/10.1145/1024393.1024404
https://doi.org/10.1007/978-3-030-32430-8_25
https://doi.org/10.1007/978-3-030-32430-8_25
https://doi.org/10.1109/CDC40024.2019.9029836
https://doi.org/10.23919/ACC.2019.8814596
https://doi.org/10.1016/j.entcs.2004.07.008
https://doi.org/10.1007/978-94-010-0189-2_25
https://doi.org/10.1007/978-94-010-0189-2_25
https://doi.org/10.1007/978-3-642-27645-3_12
https://doi.org/10.48550/arXiv.2205.15827
https://www.pnas.org/doi/epdf/10.1073/pnas.1513508112
https://www.pnas.org/doi/epdf/10.1073/pnas.1513508112

BIBLIOGRAPHY

[SVA04] Koushik Sen, Mahesh Viswanathan, and Gul Agha. Statistical model check-
ing of black-box probabilistic systems. In CAV, volume 3114 of Lecture Notes
in Computer Science, pages 202–215. Springer, 2004. doi:10.1007/978-3-540-
27813-9 16.

[SVA05a] Koushik Sen, Mahesh Viswanathan, and Gul Agha. On statistical model
checking of stochastic systems. In CAV, volume 3576 of Lecture Notes in
Computer Science, pages 266–280. Springer, 2005. doi:10.1007/11513988 26.

[SVA05b] Koushik Sen, Mahesh Viswanathan, and Gul A. Agha. VESTA: A statistical
model-checker and analyzer for probabilistic systems. In QEST, pages 251–
252. IEEE Computer Society, 2005. doi:10.1109/QEST.2005.42.

[SVA06] Koushik Sen, Mahesh Viswanathan, and Gul Agha. Model-checking
Markov chains in the presence of uncertainties. In TACAS, volume 3920
of Lecture Notes in Computer Science, pages 394–410. Springer, 2006.
doi:10.1007/11691372 26.

[SXC+18] Dinuka Sahabandu, Baicen Xiao, Andrew Clark, Sangho Lee, Wenke Lee,
and Radha Poovendran. DIFT games: Dynamic information flow tracking
games for advanced persistent threats. In CDC, pages 1136–1143. IEEE,
2018. doi:10.1109/CDC.2018.8619416.

[Tar72] Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM
J. Comput., 1(2):146–160, 1972. doi:10.1137/0201010.

[TB07] Ambuj Tewari and Peter L. Bartlett. Bounded parameter Markov decision
processes with average reward criterion. In COLT, volume 4539 of Lecture
Notes in Computer Science, pages 263–277. Springer, 2007. doi:10.1007/978-
3-540-72927-3 20.

[TG21] Erico Tjoa and Cuntai Guan. A survey on explainable artificial intelligence
(XAI): Toward medical XAI. IEEE Trans. Neural Networks Learn. Syst.,
32(11):4793–4813, 2021. doi:10.1109/TNNLS.2020.3027314.

[TKV08] Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. Effective and
efficient multilabel classification in domains with large number of labels.
In Proc. ECML/PKDD 2008 Workshop on Mining Multidimensional Data
(MMD’08), volume 21, pages 53–59, 2008. URL http://www.ecmlpkdd2008.

org/files/pdf/workshops/mmd/4.pdf.

[TT16] Alain Tcheukam and Hamidou Tembine. One swarm per queen: A particle
swarm learning for stochastic games. In SASO, pages 144–145, 2016. URL
https://doi.org/10.1109/SASO.2016.22.

[TVK11] Rahul Tripathi, Elena Valkanova, and V. S. Anil Kumar. On strategy im-
provement algorithms for simple stochastic games. J. Discrete Algorithms,
9(3):263–278, 2011. doi:10.1016/j.jda.2011.03.007.

146

https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/11513988_26
https://doi.org/10.1109/QEST.2005.42
https://doi.org/10.1007/11691372_26
https://doi.org/10.1109/CDC.2018.8619416
https://doi.org/10.1137/0201010
https://doi.org/10.1007/978-3-540-72927-3_20
https://doi.org/10.1007/978-3-540-72927-3_20
https://doi.org/10.1109/TNNLS.2020.3027314
http://www.ecmlpkdd2008.org/files/pdf/workshops/mmd/4.pdf
http://www.ecmlpkdd2008.org/files/pdf/workshops/mmd/4.pdf
https://doi.org/10.1109/SASO.2016.22
https://doi.org/10.1016/j.jda.2011.03.007

BIBLIOGRAPHY

[UB13] Michael Ummels and Christel Baier. Computing quantiles in Markov reward
models. In FoSSaCS, volume 7794 of Lecture Notes in Computer Science,
pages 353–368. Springer, 2013. doi:10.1007/978-3-642-37075-5 23.

[Ujm15] Mateusz Ujma. On verification and controller synthesis for probabilistic
systems at runtime. PhD thesis, University of Oxford, UK, 2015. URL
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.711811.

[Val84] Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–
1142, 1984. doi:10.1145/1968.1972.

[VCD+15] Yaron Velner, Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger,
Alexander Moshe Rabinovich, and Jean-François Raskin. The complexity of
multi-mean-payoff and multi-energy games. Inf. Comput., 241:177–196, 2015.
doi:10.1016/j.ic.2015.03.001.

[vD18] Tom van Dijk. Attracting tangles to solve parity games. In CAV (2), volume
10982 of Lecture Notes in Computer Science, pages 198–215. Springer, 2018.
doi:10.1007/978-3-319-96142-2 14.

[VDB+11] Peter Vamplew, Richard Dazeley, Adam Berry, Rustam Issabekov, and Evan
Dekker. Empirical evaluation methods for multiobjective reinforcement learn-
ing algorithms. Mach. Learn., 84(1-2):51–80, 2011. doi:10.1007/s10994-010-
5232-5.

[Vel15] Yaron Velner. Robust multidimensional mean-payoff games are undecidable.
In FoSSaCS, volume 9034 of Lecture Notes in Computer Science, pages 312–
327. Springer, 2015. doi:10.1007/978-3-662-46678-0 20.

[VFS18] Jørgen Villadsen, Asta Halkjær From, and Anders Schlichtkrull. Natural
deduction assistant (NaDeA). In ThEdu@FLoC, volume 290 of EPTCS, pages
14–29, 2018. doi:10.4204/EPTCS.290.2.

[VG13] Nikos Virvilis and Dimitris Gritzalis. The big four - what we did wrong
in advanced persistent threat detection? In ARES, pages 248–254. IEEE
Computer Society, 2013. doi:10.1109/ARES.2013.32.

[VTRF83] OJ Vrieze, SH Tijs, Tirukkannamangai ES Raghavan, and JA Filar. A finite
algorithm for the switching control stochastic game. Operations-Research-
Spektrum, 5(1):15–24, 1983. URL https://doi.org/10.1007/BF01720283.

[Wal96] Peter Walley. Measures of uncertainty in expert systems. Artif. Intell.,
83(1):1–58, 1996. doi:10.1016/0004-3702(95)00009-7.

[Wal21] LE Wal. Using dtControl to process schedulers produced by the Modest
Toolset. Bachelor’s thesis, University of Twente, 2021. URL http://essay.

utwente.nl/87059/1/vanderWal_BA_EEMCS.pdf.

147

https://doi.org/10.1007/978-3-642-37075-5_23
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.711811
https://doi.org/10.1145/1968.1972
https://doi.org/10.1016/j.ic.2015.03.001
https://doi.org/10.1007/978-3-319-96142-2_14
https://doi.org/10.1007/s10994-010-5232-5
https://doi.org/10.1007/s10994-010-5232-5
https://doi.org/10.1007/978-3-662-46678-0_20
https://doi.org/10.4204/EPTCS.290.2
https://doi.org/10.1109/ARES.2013.32
https://doi.org/10.1007/BF01720283
https://doi.org/10.1016/0004-3702(95)00009-7
http://essay.utwente.nl/87059/1/vanderWal_BA_EEMCS.pdf
http://essay.utwente.nl/87059/1/vanderWal_BA_EEMCS.pdf

BIBLIOGRAPHY

[WE94] Chelsea C. White III and Hany K. Eldeib. Markov decision processes
with imprecise transition probabilities. Oper. Res., 42(4):739–749, 1994.
doi:10.1287/opre.42.4.739.

[Wei20] Christoph Weinhuber. Learning domain-specific predicates in decision trees
for explainable controller representation. Bachelor’s thesis, Technical Univer-
sity of Munich, 2020. URL https://mediatum.ub.tum.de/doc/1617115/

1617115.pdf.

[WGMK21] Maximilian Weininger, Kush Grover, Shruti Misra, and Jan Kret́ınský. Guar-
anteed trade-offs in dynamic information flow tracking games. In CDC, pages
3786–3793. IEEE, 2021. doi:10.1109/CDC45484.2021.9683447.

[WK08] Di Wu and Xenofon D. Koutsoukos. Reachability analysis of uncertain sys-
tems using bounded-parameter Markov decision processes. Artif. Intell.,
172(8-9):945–954, 2008. doi:10.1016/j.artint.2007.12.002.

[WKR13] Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust
Markov decision processes. Math. Oper. Res., 38(1):153–183, 2013.
doi:10.1287/moor.1120.0566.

[WMK19] Maximilian Weininger, Tobias Meggendorfer, and Jan Kretinsky.
Satisfiability bounds for ω-regular properties in bounded-parameter
Markov decision processes. In CDC, pages 2284–2291. IEEE, 2019.
doi:10.1109/CDC40024.2019.9029460.

[WSQJ21] Jingyi Wang, Jun Sun, Shengchao Qin, and Cyrille Jégourel. Automati-
cally ‘verifying’ discrete-time complex systems through learning, abstrac-
tion and refinement. IEEE Trans. Software Eng., 47(1):189–203, 2021.
doi:10.1109/TSE.2018.2886898.

[WSYP18] Jingyi Wang, Jun Sun, Qixia Yuan, and Jun Pang. Learning probabilis-
tic models for model checking: an evolutionary approach and an empir-
ical study. Int. J. Softw. Tools Technol. Transf., 20(6):689–704, 2018.
doi:10.1007/s10009-018-0492-7.

[WT16] Min Wen and Ufuk Topcu. Probably approximately correct learning in
stochastic games with temporal logic specifications. In IJCAI, pages 3630–
3636. IJCAI/AAAI Press, 2016. URL http://www.ijcai.org/Abstract/

16/511.

[WT21] Min Wen and Ufuk Topcu. Probably approximately correct learning in ad-
versarial environments with temporal logic specifications. IEEE Transactions
on Automatic Control, pages 1–1, 2021. doi:10.1109/TAC.2021.3115080.

[WTM12] Eric M. Wolff, Ufuk Topcu, and Richard M. Murray. Robust control of
uncertain Markov decision processes with temporal logic specifications. In
CDC, pages 3372–3379. IEEE, 2012. doi:10.1109/CDC.2012.6426174.

148

https://doi.org/10.1287/opre.42.4.739
https://mediatum.ub.tum.de/doc/1617115/1617115.pdf
https://mediatum.ub.tum.de/doc/1617115/1617115.pdf
https://doi.org/10.1109/CDC45484.2021.9683447
https://doi.org/10.1016/j.artint.2007.12.002
https://doi.org/10.1287/moor.1120.0566
https://doi.org/10.1109/CDC40024.2019.9029460
https://doi.org/10.1109/TSE.2018.2886898
https://doi.org/10.1007/s10009-018-0492-7
http://www.ijcai.org/Abstract/16/511
http://www.ijcai.org/Abstract/16/511
https://doi.org/10.1109/TAC.2021.3115080
https://doi.org/10.1109/CDC.2012.6426174

BIBLIOGRAPHY

[WW21] Tobias Winkler and Maximilian Weininger. Stochastic games with disjunc-
tions of multiple objectives. In GandALF, volume 346 of EPTCS, pages
83–100, 2021. doi:10.4204/EPTCS.346.6.

[YCZ10] H̊akan L. S. Younes, Edmund M. Clarke, and Paolo Zuliani. Statistical veri-
fication of probabilistic properties with unbounded until. In SBMF, volume
6527 of Lecture Notes in Computer Science, pages 144–160. Springer, 2010.
doi:10.1007/978-3-642-19829-8 10.

[YKNP06] H̊akan L. S. Younes, Marta Z. Kwiatkowska, Gethin Norman, and David
Parker. Numerical vs. statistical probabilistic model checking. Int. J. Softw.
Tools Technol. Transf., 8(3):216–228, 2006. doi:10.1007/s10009-005-0187-8.

[You05] H̊akan L. S. Younes. Probabilistic verification for ”black-box” systems. In
CAV, volume 3576 of Lecture Notes in Computer Science, pages 253–265.
Springer, 2005. doi:10.1007/11513988 25.

[You06] H̊akan L. S. Younes. Error control for probabilistic model checking. In
VMCAI, volume 3855 of Lecture Notes in Computer Science, pages 142–156.
Springer, 2006. doi:10.1007/11609773 10.

[YS02] H̊akan L. S. Younes and Reid G. Simmons. Probabilistic verification of
discrete event systems using acceptance sampling. In CAV, volume 2404
of Lecture Notes in Computer Science, pages 223–235. Springer, 2002.
doi:10.1007/3-540-45657-0 17.

[ZPC13] Paolo Zuliani, André Platzer, and Edmund M. Clarke. Bayesian statistical
model checking with application to Stateflow/Simulink verification. Formal
Methods Syst. Des., 43(2):338–367, 2013. doi:10.1007/s10703-013-0195-3.

[ZSP20] Jialu Zhang, Mark Santolucito, and Ruzica Piskac. Succinct explanations
with cascading decision trees. CoRR, abs/2010.06631, 2020, 2010.06631. URL
https://arxiv.org/abs/2010.06631.

[ZVJ18] Ivan S. Zapreev, Cees Verdier, and Manuel Mazo Jr. Optimal symbolic con-
trollers determinization for BDD storage. In ADHS, volume 51 (16) of IFAC-
PapersOnLine, pages 1–6. Elsevier, 2018. doi:10.1016/j.ifacol.2018.08.001.

149

https://doi.org/10.4204/EPTCS.346.6
https://doi.org/10.1007/978-3-642-19829-8_10
https://doi.org/10.1007/s10009-005-0187-8
https://doi.org/10.1007/11513988_25
https://doi.org/10.1007/11609773_10
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/s10703-013-0195-3
http://arxiv.org/abs/2010.06631
https://arxiv.org/abs/2010.06631
https://doi.org/10.1016/j.ifacol.2018.08.001

Appendix

151

A Value Iteration for Simple Stochastic
Games: Stopping Criterion and Learning
Algorithm (InC 2022)

Licensed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which per-
mits sharing, copying and redistribution in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made, and you do not use it for commercial
purposes and make no derivates.

This is an exact reprinting of the paper which has been published as a peer reviewed
journal paper.

Julia Eisentraut, Edon Kelmendi, Jan Kretinsky, and Maximilian Weininger.
“Value Iteration for Simple Stochastic Games: Stopping Criterion and Learn-
ing Algorithm”. In: Information and Computation. Elsevier, 2022. doi:
10.1016/j.ic.2022.104886

Summary

The classical problem of reachability in simple stochastic games is typically solved by
value iteration (VI), which produces a sequence of under-approximations of the value of the
game, but is only guaranteed to converge in the limit. We provide an additional converging
sequence of over-approximations, based on an analysis of the game graph. Together, these
two sequences entail the first error bound and hence the first stopping criterion for VI on
simple stochastic games, indicating when the algorithm can be stopped for a given precision.
Consequently, VI becomes an anytime algorithm returning the approximation of the value
and the current error bound. We further use this error bound to provide a learning-based
asynchronous VI algorithm; it uses simulations and thus often avoids exploring the whole
game graph, but still yields the same guarantees. Finally, we experimentally show that the
overhead for computing the additional sequence of over- approximations often is negligible.

For more details on this publication, we refer to Chapter 3 of the main body.

153

A VI for SSG (InC 2022)

Contribution

Contribution of Maximilian Weininger

Development and conceptual design of the research project 30%
Discussion and development of ideas 50%
Composition and revision of the manuscript 90%
Implementation 100%
Experimental evaluation 100%

154

Information and Computation 285 (2022) 104886

Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Value iteration for simple stochastic games: Stopping criterion

and learning algorithm ✩

Julia Eisentraut a, Edon Kelmendi b, Jan Křetínský a, Maximilian Weininger a,∗
a Technical University of Munich, Germany
b University of Oxford, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 August 2020
Received in revised form 23 February 2022
Accepted 27 February 2022
Available online 4 March 2022

Keywords:
Probabilistic verification
Stochastic games
Markov decision processes
Value iteration
Reachability

The classical problem of reachability in simple stochastic games is typically solved by
value iteration (VI), which produces a sequence of under-approximations of the value
of the game, but is only guaranteed to converge in the limit. We provide an additional
converging sequence of over-approximations, based on an analysis of the game graph.
Together, these two sequences entail the first error bound and hence the first stopping
criterion for VI on simple stochastic games, indicating when the algorithm can be stopped
for a given precision. Consequently, VI becomes an anytime algorithm returning the
approximation of the value and the current error bound. We further use this error bound
to provide a learning-based asynchronous VI algorithm; it uses simulations and thus often
avoids exploring the whole game graph, but still yields the same guarantees. Finally, we
experimentally show that the overhead for computing the additional sequence of over-
approximations often is negligible.
© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A simple stochastic game (SG) [24] is a zero-sum 2.5-player game played on a graph by the two players Maximizer and
Minimizer, who choose actions in their respective states. Each action is associated with a probability distribution determin-
ing the next state to move to. The objective of Maximizer is to maximize the probability of reaching a given target state;
the objective of Minimizer is the opposite.

Stochastic games constitute a fundamental problem for several reasons. From the theoretical point of view, the complex-
ity of this problem1 is known to be in UP ∩ coUP [16], but no polynomial-time algorithm is known. Further, several other
important problems can be reduced to SGs, for instance parity games, mean-payoff games, discounted-payoff games and
their stochastic extensions [16]. The task of solving SGs is also polynomial-time equivalent to solving perfect information
Shapley, Everett and Gillette games [1]. Besides, the problem is practically relevant in verification and synthesis. SGs can
model reactive systems, with players corresponding to the controller of the system and to its environment, where quantified
uncertainty is explicitly modelled. This is useful in many application domains, ranging from smart energy management [20]

✩ This research was funded in part by the German Excellence Initiative and the European Union Seventh Framework Programme under grant agreement
No. 291763 for TUM – IAS, the Studienstiftung des Deutschen Volkes project “Formal methods for analysis of attack-defence diagrams”, TUM IGSSE Grant
10.06 (PARSEC), and the German Research Foundation (DFG) project KR 4890/2-1 “Statistical Unbounded Verification”.

* Corresponding author at: Technical University of Munich, Department of Informatics, Chair I 7, Boltzmannstr. 3, 85748 Garching, Germany.
E-mail address: maxi.weininger@tum.de (M. Weininger).

1 Formally, the problem is to decide, for a given rational p ∈ [0, 1] whether Maximizer has a strategy ensuring probability at least p to reach the target.

https://doi.org/10.1016/j.ic.2022.104886
0890-5401/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

over autonomous urban driving [22] and robot motion planning [49] to self-adaptive systems [14]; for various recent case
studies, see e.g. [56]. Finally, since Markov decision processes (MDP) [53] are a special case with only one player, SGs can
serve as abstractions of large MDPs [38].
Solution techniques. There are several classes of algorithms for solving SGs, namely strategy iteration algorithms, quadratic
programming and value iteration algorithms [25]. Strategy iteration (also known as policy iteration) computes a sequence
of strategies converging to the optimal one. In each iteration, we fix the strategy of one player and compute the best
response of the opponent in the resulting one-player game (Markov decision process); this is typically done using linear
programming. Then the strategy we originally fixed is improved based on the response of the opponent. Since there are
finitely many strategies and they are monotonically improving, an optimal strategy is found after finitely many iterations.
Currently, the best known upper bound for the number of iterations is exponential in the size of the SG.

Quadratic programming encodes the SG into a single polynomially sized quadratic program. The constraints of the program
mimic the structure of the SG and the objective function ensures that the unique solution is the one where both players
behave optimally. Both strategy iteration and quadratic programming produce an exact solution.

In contrast, value iteration (VI) is an approximative method that only converges in the limit. It computes a sequence of
value-vectors that approximates the true values from below, but may never reach them in finite time. Still, there is a way to
obtain the exact values: after O(γ 2) iterations of the algorithm, where γ is a number exponential in the size of the SG, we
can round the approximation to the precise result [18]. However, as the required number of iterations is always exponential
and the algorithm gives no guarantee before it finishes, this approach is infeasible even for small SGs. It would be useful to
be able to stop the VI algorithm early, after a required precision is reached.

Theoretically, the best known upper bound of the runtime of all three classes of algorithms is exponential in the size
of the SG. Practically, VI currently is the preferred solution. For instance, the most used probabilistic model checkers Storm
[28] and PRISM [44], as well as PRISM’s branch PRISM-Games [43] use VI for MDPs and SGs as the default option; in the
case of PRISM-games, VI is the only option. As the exponential number of iterations that is necessary to obtain a guarantee
is impractical, PRISM-games stops when the difference between the two most recent approximations is low, and thus may
return arbitrarily imprecise results [33].

VI was preferred in these model checkers, because evaluating many large linear programs respectively a very large
quadratic program was expected to be slow, similar to the special case of MDPs [40]. However, a recent extensive compari-
son of these algorithms [42] showed that in fact both strategy iteration and value iteration can perform similarly well. Also,
there exists cases where either of the two algorithms outperforms the other, depending on the structure of the given SG.

An advantage of strategy iteration and quadratic programming is that they can possibly produce a guaranteed result in
less than exponential time, while VI only converges in the limit and always has to run for an exponential number of steps
in order to obtain a precise result. We address this by complementing the VI algorithm with error bounds, allowing us to
stop the computation early when a required precision is reached. Thus we can leverage VI’s ability to typically produce good
results fast while also giving guarantees on the precision.
Value iteration with guarantees. In the special case of MDPs, in order to obtain bounds on the imprecision of the result,
one can employ a bounded variant of VI [51,11] (also called interval iteration [33]). Here one computes not only an under-
approximation, but also an over-approximation of the actual value. On the one hand, iterative computation of the least
fixpoint of Bellman equations yields an under-approximating sequence converging to the value. On the other hand, iterative
computation of the greatest fixpoint yields an over-approximation, which, however, does not converge to the value, because
the least and greatest fixpoint do not coincide. Moreover, it often results in the trivial bound of 1. A solution suggested for
MDPs [11,33] is to modify the underlying graph, namely to collapse end components. In the resulting MDP there is only one
fixpoint, thus the least and greatest fixpoint coincide and both approximating sequences converge to the actual value. In
contrast, for general SGs no value iteration based procedure is known which approximates the least fixpoint from above. In
this paper we provide such an algorithm. Together with standard value iteration from below, this yields a stopping criterion
to interrupt execution of VI at a given precision. We show that the pre-processing approach of collapsing is not applicable
in general and provide a solution on the original graph. We also characterize SGs where the fixpoints coincide and naive VI
converges from above. The main technical challenge is that states in an end component in SGs can have different values, in
contrast to the case of MDPs.
Practical efficiency using guarantees. We further utilize the obtained guarantees to practically improve our algorithm. Sim-
ilar to the MDP case [11], the quantification of the error allows for ignoring parts of the state space, and thus a speed
up without jeopardizing the correctness of the result. Indeed, we provide a technique where some states are not explored
and processed at all, but their potential effect is still taken into account. It relies on learning algorithms with simulations;
these are guided by the quantification of the error, using the information to decide which state to explore and analyse next.
While for MDPs this idea has already demonstrated speed ups in orders of magnitude [11,3], this paper provides the first
technique of this kind for SGs.
Our contribution. We can summarize our contribution as follows.

2

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

• We introduce a VI algorithm for under- and over-approximation sequences, both of which converge to the value of
the game. Thus we present the first practical stopping criterion for VI on SGs, yielding an anytime algorithm2 with
guaranteed precision. We also characterize when a simpler solution is sufficient.

• We provide a learning-based algorithm, which preserves the guarantees, and which additionally is more efficient in
some cases since it avoids exploring the whole state space.

• We evaluate the running times of the algorithms experimentally, concluding that obtaining guarantees requires an
overhead that is either negligible or mitigated by the learning-based approach.

Related work. The works closest to ours are the following. As mentioned above, [11,33] describe the solution to the special
case of MDPs. While [11] also provides a learning-based algorithm, [33] discusses the convergence rate and the exact
solution. The basic algorithm of [33] is implemented in PRISM [8] and the learning approach of [11] in Storm [28]. The
extension for SGs where the interleaving of players is severely limited (every end component belongs to one player only) is
discussed in [58].

Further, in the area of probabilistic planning, bounded real-time dynamic programming [51] is related to our learning-
based approach. However, it is limited to the setting of stopping MDPs where the target sink or the non-target sink is
reached almost surely under any strategy.

For stopping SGs, the error of value iteration can be bounded without computing an additional over-approximation. [25,
Section 3] describes how to transform an arbitrary SG to a polynomially larger stopping SG such that the original value can
be inferred. In essence, the construction adds a transition to every action that reaches a sink state with very low probability
γ ; this is the same as computing the discounted reachability with discount factor γ . However, this approach is impractical,
because the convergence rate of value iteration depends on the lowest occurring probability in the SG. Further, in order to
be able to infer the original value, γ has to be chosen smaller than standard machine precision already for an SG with 27
states [42, Section 4.1.4]. Our algorithm works for general SGs, not only for stopping ones, without increasing the size of the
game or introducing very low probabilities.

The idea of strategy iteration was suggested in [35], for the class of irreducible concurrent SGs. In [60], the authors
provide a strategy iteration algorithm for turn-based SGs with average reward objectives. The algorithm relies on the linear
program formulation from [36] that solves the one-player game (Markov decision process) after fixing one strategy. The
algorithm is also described in the textbook [32, Chapter 6.3]. Note that reachability objectives can be encoded as average
reward objectives. The formulation of strategy iteration explicitly for simple stochastic games was given in [25], together
with a randomized version. For a description of further developments and a practical comparison of all three algorithm
classes (value iteration, strategy iteration and quadratic programming), see the recent work [42].

The tools implementing the standard SI and/or VI algorithms for SGs are PRISM-games [43], GAVS+ [23] and GIST [19].
GAVS+ is however not maintained anymore, and more for educational purposes. GIST considers ω-regular objectives, but
performs only qualitative analysis. For MDPs (games with a single player), the recent friendly competition QComp [34] gives
an overview of the existing tools.

Apart from fundamental algorithms to solve SGs, there are various practically efficient heuristics that, however, provide
none or weak guarantees, often based on some form of learning [10,50,61,57,2,12]. For MDPs, the first probably approx-
imately correct (PAC [59]) algorithm was given in [55]. This result has been further extended [11] to MDP settings more
relevant for verification: firstly, [11] considers non-discounted unbounded horizon, such as the reachability objective. Sec-
ondly, it treats not only the case when the transition probabilities are unknown, but also when they are given.

In terms of complexity, [9] recently proved that deciding whether an action in an MDP is optimal for the n-step bounded
reachability is EXPTIME-complete. This means that the worst case running time for VI on SGs is exponential, since VI
computes the n-step bounded reachability for all states and since SGs are an extension of MDPs. The runtime is not larger
than exponential, as [18] proved that VI can always compute the precise value in an exponential number of steps.

Finally, the concept of simple end component that is introduced in this paper is similar to tangles in parity games [29].
Both concepts describe a strongly connected sub-graph in which one of the players can surely win, which forces the other
player to leave this sub-graph.

This article is the extended version of the paper presented at CAV 2018 [39]. We added more examples, an in-depth
description of the learning-based algorithm as well as more on the implementation of both our algorithms and more ex-
perimental results. Also, we provide the full technical proofs, including many instructive details in the proofs of Theorem 1
and 2, as well as the new Theorem 3 about the learning-based algorithm. In particular, we extracted Lemma 2, a statement
relating the existence of exiting actions to the existence of end components. Further, we clarified the case distinction in
the proof of Theorem 1 and show in Fig. 4 the many ways in which a simple end component can affect the values of
other states. Furthermore, in Lemma 6, we provide a detailed lattice-theoretic argument about the convergence of the upper
bound to a fixpoint; this includes a surprising complication which is elaborated on in Remark 2. Moreover, we fixed an error
in the statement and proof of Lemma 1, cf. Footnote 9. Finally, we give—to the best of our knowledge for the first time—a
formal description of how to obtain optimal strategies from value vectors, see Appendix A.

2 An algorithm which can be stopped at any time in the computation, returning an estimate and its precision.

3

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

p q

1

0

a

b

c

1/3

1/3

1/3

e

d

Fig. 1. An example of an SG with S = {p, q, 1, 0}, S� = {q, 1}, S© = {p, 0}, the initial state p and the set of actions A = {a, b, c, d, e}; Av(p) = {a} with
δ(p, a)(q) = 1; Av(q) = {b, c} with δ(q, b)(p) = 1 and δ(q, c)(q) = δ(q, c)(1) = δ(q, c)(0) = 1

3 . For actions with only one successor, we do not depict the
transition probability 1.

Several works have extended the original paper [39] already: the ideas have been lifted to a setting with limited infor-
mation [6], with multiple objectives [4] and to concurrent stochastic games [30]. There also is an improved version of the
algorithm based on global propagation of the over-approximation [52].
Organization of the paper. Section 2 introduces the basic notions and revises value iteration. Section 3 explains the idea of
our approach on an example. Section 4 first characterizes the sub-graphs of the game which cause the non-convergence.
Then it introduces the concept of simple end components and finally shows how to have a converging algorithm using a
special treatment of these components. Section 5 describes the learning-based algorithm, Section 6 discusses experimental
results and Section 7 concludes.

2. Preliminaries

2.1. Stochastic games

A probability distribution on a finite set X is a mapping δ : X → [0, 1], such that
∑

x∈X δ(x) = 1. The set of all probability
distributions on X is denoted by D(X). We now define stochastic games, which are often referred to simple stochastic
games or turn-based stochastic two-player games with a reachability objective. As opposed to the notation of e.g. [24], we
do not have special stochastic nodes, but rather a probabilistic transition function.

Definition 1 (SG). A stochastic game (SG) is a tuple (S, S�, S©, s0, A, Av, δ) where S is a finite set of states partitioned3 into
the sets S� and S© of states of the player Maximizer and Minimizer4 respectively, s0 ∈ S is the initial state, A is a finite set
of actions, Av : S → 2A assigns to every state a set of available actions, and δ : S ×A → D

(
S
)

is a transition function that given
a state s and an action a ∈ Av(s) yields a probability distribution over successor states.

A Markov decision process (MDP) is a special case of an SG where S© = ∅, and a Markov chain (MC) is a special case of an
MDP, where for all s ∈ S : ∣∣Av(s)

∣∣ = 1.

We assume that SGs are non-blocking, so for all states s we have Av(s) �= ∅. For a state s and an available action
a ∈ Av(s), we denote the set of successors by Post(s, a) := {s′ | δ(s, a, s′) > 0}. Finally, for any set of states T ⊆ S , we use
T� and T© to denote the states in T that belong to Maximizer and Minimizer, whose states are drawn in the figures as �
and ©, respectively.

Since we consider the reachability objective, in addition to an SG we require a set of target states F ⊆ S . As it is irrelevant
what happens after reaching a target state, we assume that all of them are absorbing, i.e. they only have one action that is
a self-loop with probability 1.

An example of an SG is given in Fig. 1.

2.2. Semantics: paths and strategies

The semantics of SGs is given in the usual way, see e.g. [25], by means of strategies, the induced Markov chain and the
respective probability space, as follows. An infinite path ρ is an infinite sequence ρ = s0a0s1a1 · · · ∈ (S × A)ω , such that for
every i ∈N , ai ∈ Av(si) and si+1 ∈ Post(si, ai). Finite paths are defined analogously as elements of (S × A)∗ × S .

As this paper deals with the reachability objective, we can restrict our attention to memoryless strategies, which are
optimal for this objective [24]. A strategy of Maximizer, respectively Minimizer, is a function σ : S� → D

(
A
)
, respectively

S© → D
(
A
)
, such that σ(s) ∈ D

(
Av(s)

)
for all s . We call a strategy deterministic if it maps to Dirac distributions only, i.e.

if it plays a single action surely. Although deterministic strategies suffice, we still allow randomizing strategies, because
they are needed for the learning-based algorithm later on. A pair (σ , τ) of strategies of Maximizer and Minimizer induces
a Markov chain Gσ ,τ where the transition probabilities are defined as δ(s, s′) = ∑

a∈Av(s) σ (s, a) · δ(s, a, s′) for states of
Maximizer and analogously for states of Minimizer, with σ replaced by τ . The Markov chain induces a unique probability
distribution Pσ ,τ

s,G over measurable sets of infinite paths [7, Ch. 10].

3 I.e., S� ⊆ S , S© ⊆ S , S� ∪ S© = S , and S� ∩ S© = ∅.
4 The names are chosen, because Maximizer maximizes the probability of reaching a given target state, and Minimizer minimizes it.

4

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

We write �F = {ρ | ρ = s0a0s1a1 · · · ∈ (S × A)ω ∧ ∃i ∈ N. si ∈ F} to denote the (measurable) set of all paths which
eventually reach the target states F .

For each s ∈ S , we define the value in s as

VG(s) := sup
σ

inf
τ
Pσ ,τ

s,G (�F) = inf
τ

sup
σ

Pσ ,τ
s,G (�F),

where the equality follows from [24]. We omit the G in the subscript when it is clear from context.
To compute the value, we need take special care of end components (ECs). Intuitively, an EC is a subset of states of the

SG, where the game can remain forever; i.e. given certain strategies of both players, there is no positive probability to exit
the EC to some other state. An EC corresponds to a bottom strongly connected component in a Markov chain induced by
some pair of strategies.

To define ECs formally, we first introduce the following notation. Given a set of states T ⊆ S and a state s ∈ T , we say
that (s, a) exits T if we have s ∈ T , a ∈ Av(s) and Post(s, a) � T .

Definition 2 (EC). A non-empty set T ⊆ S of states is an end component (EC) if there is a non-empty set B ⊆ ⋃
s∈T Av(s) of

actions such that

1. for each s ∈ T , a ∈ B ∩ Av(s) we do not have (s, a) exits T ,
2. for each s, s′ ∈ T there is a finite path w = sa0 . . .ans′ ∈ (T × B)∗ × T , i.e. the path stays inside T and only uses actions

in B .

An end component T is a maximal end component (MEC) if there is no other end component T ′ such that T ⊆ T ′ . Note
that the MECs of an SG are equivalent to the MECs in an MDP with both players unified,5 as the definition only depends on
the existence of the actions. Thus the set of MECs of an SG G , denoted by MEC(G), can be computed in polynomial time
using the standard algorithm for MDPs, e.g. [17].

2.3. (Bounded) value iteration

Let Z be the set of states that cannot reach any state in F (called Z , because they have value zero). It can be computed,
for example, by a reverse breadth-first-search from all states in F .

The value function V satisfies the following system of equations, referred to as the Bellman equations:

V(s) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if s ∈ F

0 if s ∈ Z
maxa∈Av(s) V(s,a) if s ∈ S�
mina∈Av(s) V(s,a) if s ∈ S©

(1)

where6

V(s,a) :=
∑
s′∈S

δ(s,a, s′) · V(s′) (2)

Moreover, V is the least solution to the Bellman equations, see e.g. [18]. To compute the value of V for all states in an
SG, one can thus utilize the iterative approximation method value iteration (VI) as follows: we start with a lower bound
function L0 : S → [0, 1] such that L0(s) = 1 for target states s ∈ F and for all other states s ∈ S \ F , we have L0(s) = 0. Then
we repetitively apply Bellman updates according to Equations (3) and (4)

Ln(s,a) :=
∑
s′∈S

δ(s,a, s′) · Ln−1(s
′) (3)

Ln(s) :=
{

maxa∈Av(s) Ln(s,a) if s ∈ S�
mina∈Av(s) Ln(s,a) if s ∈ S©

(4)

until convergence. Note that convergence may happen only in the limit even for such a simple game (even an MDP) as in
Fig. 2 on the left. The sequence is continuous and monotonic, because all involved operations – summation and multiplica-
tion – are continuous and monotonic. Moreover, at all times it is a lower bound on V, i.e. Li(s) ≤ V(s) for all s ∈ S , and the
least fixpoint satisfies L∗ := limn→∞ Ln = V, see e.g. [18].

5 Intuitively, this is also why it does not suffice to consider MECs in an SG, and we need to introduce the stronger notion of simple end component.
6 Throughout the paper, for any function f : S → [0, 1] we overload the notation and also write f (s, a) meaning ∑s′∈S δ(s, a, s′) · f (s′).

5

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

Algorithm 1 Bounded value iteration algorithm.
1: procedure BVI(precision ε > 0)
2: for s ∈ S do # Initialization
3: L() (s) = 0 # Lower bound
4: U(s) = 1 # Upper bound

5: for s ∈ F do L(s) = 1 # Value of targets is determined a priori
6: for s ∈ Z do U(s) = 0 # Value of sinks is determined a priori

7: repeat
8: UPDATE(L, U) # Bellman updates or their modification
9: until U(s0) − L(s0) < ε # Guaranteed error bound

s t

1

0

a

b

c
1
3

1
3

1
3

e

d

{s, t}

1

0

c
1
3

1
3

1
3

e

d

i Li({s, t}) Gi({s, t})
0 0 1
1 1

3
2
3

2 4
9

5
9

3 13
27

14
27

Fig. 2. Left: an MDP (as special case of SGs) where BVI does not converge due to the grayed EC. Middle: the same MDP where the EC is collapsed, making
BVI converge. Right: the approximations illustrating the convergence of the MDP in the middle.

We achieve our goal when L(s0) is ε-close to the value V(s0). Then we have an ε-approximation of the value of the SG
V(s0) and can extract a corresponding pair of ε-optimal strategies for both players, i.e. strategies σ , τ such that Pσ ,τ

s0
(�F)

is ε-close to V(s0). To the best of our knowledge, no explicit description of how to obtain strategies from a vector of (an
ε-approximation of the) values exists, thus we provide it in Appendix A.

Unfortunately, there is no known stopping criterion which estimates how close the current under-approximation is to
the value. The current tools stop when the difference between two successive approximations is smaller than a certain
threshold, which can lead to arbitrarily wrong results [33].

For the special case of MDPs, it has been suggested to also compute the greatest fixpoint [51] and thus an upper bound
as follows. The function G : S → [0, 1] is initialized for all states s ∈ S as G0(s) := 1 except for states s ∈ Z with no path to
a target where G0(s) := 0. Then we repetitively apply updates (3) and (4), where L is replaced by G. The resulting sequence
Gn again is monotonic and continuous, and moreover provides an upper bound on V. The greatest fixpoint G∗ := limn Gn is
the greatest solution to the Bellman equations on [0, 1]S . This approach is called bounded value iteration (BVI) (or bounded
real-time dynamic programming (BRTDP) [51,11] or interval iteration [33]).

If L∗ = G∗ then they are both equal to V and we say that BVI converges. BVI is guaranteed to converge in MDPs if the
only ECs are trivial, i.e. the self-loops of target states in F or ECs with no path to a target in Z . Otherwise, if there are
non-trivial ECs, BVI does not converge. For MDPs, the authors of [11,33] independently introduced the solution to “collapse”
all ECs, i.e. merge all states of an EC into one and preserve only the actions exiting the EC. Computing the greatest fixpoint
on the modified MDP results in another sequence Ui of upper bounds on V, converging to U∗ := limn Un , and it holds that
U∗ = V and BVI converges. The next section illustrates the difficulty and the solution through collapsing on an example.

Collapsing can be extended to SGs, but it does not solve the problem for arbitrary SGs. This is also illustrated in an
example in the next section. In certain cases, it can still be used as a heuristic to speed up the algorithm, see Section 6.2.

In summary, all versions of BVI discussed so far and later on in the paper follow the pattern of Algorithm 1. In the naive
version, UPDATE just performs the Bellman update on L and U according to Equations (3) and (4). For a general MDP, U
does not converge to V, but to G∗ , and thus the termination criterion may never be met if G∗(s0) − V(s0) > 0. If the ECs are
collapsed in pre-processing then U converges to V. For the general case of SGs, the collapsing approach fails and this paper
provides another version of BVI where U converges to V, based on a more detailed structural analysis of the game.

3. Example: why over-approximations do not converge

In this section, we illustrate why naive BVI does not converge on SGs and sketch our solution on a few examples. We
face two problems: (i) states in ECs promise overly high values, even in MDPs. (ii) ECs in SGs do not belong to a single
player and thus states in them can have different values.

We always denote by G the sequence converging to the greatest solution of the Bellman equations (monotonically from
above), while we use U for any sequence over-approximating V that one or another BVI algorithm suggests.
(i) We illustrate the issue that arises already for the special case of MDPs. Consider the MDP of Fig. 2 on the left. Although
V(s) = V(t) = 0.5, we have Gi(s) = Gi(t) = 1 for all i. Indeed, the upper bound for t is always updated as the maximum of
Gi(t, c) and Gi(t, b). Although Gi(t, c) decreases over time, Gi(t, b) remains the same, namely equal to Gi(s), which in turn

6

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

p

q

r

α

β

a

b

c

d

e

f

pq

r

α

β

d

e

f

α < β:

pr

q α

β

b

e

f

α > β:

pqr

α

β

e

f

α = β:

Fig. 3. Collapsing ECs in SGs may lead to incorrect results. The Greek letters on the leaving arrows denote the values of the exiting actions. Left figure: an
example of an EC that can be collapsed in different ways depending on the relationship of α and β . Right three figures: correct collapsing in the different
cases. In contrast to MDPs, some actions of the EC exiting the collapsed part have to be removed.

remains equal to Gi(s, a) = Gi(t). This cyclic dependency lets both s and t remain in an illusion that the value of the other
one is 1.

The solution for MDPs is to remove this cyclic dependency by collapsing all MECs into singletons and removing the
resulting purely self-looping actions. The middle of Fig. 2 shows the MDP after collapsing the EC {s, t}. This turns the MDP
into a stopping one, where the states in F or Z are reached with probability 1 under any strategy. In such MDPs, there is a
unique solution to the Bellman equations. Therefore, the greatest fixpoint is equal to the least one and thus to V.
(ii) We illustrate the issues that additionally arise for general SGs. It turns out that the collapsing approach can be extended
only to games where all states of each EC belong to one player only [58]. In this case, both Maximizer’s and Minimizer’s
ECs are collapsed the same way as in MDPs.

However, when both players are present in an EC, then collapsing may not solve the issue. Consider the SG of Fig. 3.
Here α and β represent the values of the respective actions.7 There are three cases.

• First, let α < β . If the bounds converge to these values we eventually observe Gi(q, e) < Li(r, f) and learn the induced
inequality. Since p is a Minimizer’s state it will never pick the action leading to the greater value of β . Therefore, we
can safely merge p and q, and remove the action leading to r, as shown in the second sub-figure

• Second, if α > β , p and r can be merged in an analogous way, as shown in the third sub-figure
• Third, if α = β , both previous solutions as well as collapsing all three states as in the fourth sub-figure is possible.

However, since the approximations may only converge to α and β in the limit, we may not know in finite time which
of these cases applies and thus cannot decide for any of the collapses.

Sketching the solution. Consequently, the approach of collapsing is not applicable in general. In order to ensure BVI conver-
gence, we suggest a different method, which we call deflating. It does not involve changing the state space, but rather de-
creasing the upper bound Ui to the least value that is currently provable (and thus still correct). To this end, we analyse the
exiting actions, i.e. actions with successors outside of the EC, for the following reason: if the play stays in the EC forever, the
target is never reached and Minimizer wins. Therefore, Maximizer has to pick some exiting action to avoid staying in the EC.

For the EC with the states s and t in Fig. 2, the only exiting action is c. In this example, since c is the only exiting action,
Ui(t, c) is the highest possible upper bound that the EC can achieve. Thus, by decreasing the upper bound of all states in
the EC to that number, we still have a safe upper bound. Moreover, with this modification BVI converges in this example,
intuitively because now the upper bound of t depends on action c as it should. We choose the name “deflating” to evoke
decreasing the overly high “pressure” in the EC until it equalizes with the actual “pressure” outside.

However, this does not lead to convergence of BVI yet. Consider for instance the SG in Fig. 3. It is correct to decrease the
upper bound to the maximal exiting one, i.e. max{α̂, β̂}, where α̂ := Ui(a), β̂ := Ui(b) are the current approximations of α
and of β , but this itself does not ensure BVI convergence. Indeed, if for instance α̂ < β̂ then deflating all states to β̂ is not
tight enough, as values of p and q can even be bounded by α̂ . In fact, we have to find a certain sub-EC that corresponds to
α̂, in this case {p,q} and set all its upper bounds to α̂ . We define and compute these sub-ECs in the next section.

In summary, the general structure of our convergent BVI algorithm is to produce a sequence U by applying Bellman
updates and occasionally finding the relevant sub-ECs and deflating them. The main technical challenge is that states in an
EC in SGs can have different values, in contrast to the case of MDPs.

4. Convergent over-approximation

In Section 4.1, we characterize SGs where Bellman equations have more than one fixpoint. Based on this analysis, sub-
sequent sections show how to alter the procedure computing the sequence Gi over-approximating V so that the resulting

7 Precisely, they represent a probabilistic branching with probability α (or β) to 1 and with the remaining probability to 0. For clarity, we omit this
branching and depict only the value.

7

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

tighter sequence Ui still over-approximates V, but also converges to V, which ensures convergence of BVI. Section 5 presents
the learning-based variant of our BVI.

4.1. Bloated end components cause non-convergence

As we have seen in the example of Fig. 3, BVI generally does not converge due to ECs with a particular structure of the
exiting actions. The analysis of ECs relies on the extremal values that can be achieved by exiting actions (in the example, α
and β). Given the value function V or just its current over-approximation Ui , we define the most profitable exiting action
for Maximizer (denoted by �) and Minimizer (denoted by ©) as follows.

Definition 3 (bestExit). Given a set of states T ⊆ S and a function f : S → [0, 1] (and its equivalent on state-action pairs, see
Footnote 6), the best exit according to f from T of Maximizer and Minimizer, respectively, is defined as

bestExit�f (T) := max
s∈T�

(s,a) exits T

f (s,a)

bestExit
©
f (T) := min

s∈T©
(s,a) exits T

f (s,a)

with the convention that max∅ = 0 and min∅ = 1.

Example 1 (Non-convergence). In the example of Fig. 3 on the left with T = {p, q, r} and α < β , we have bestExit�V (T) = β

and bestExit
©
V (T) = 1. It is due to β < 1 that BVI does not converge here. We generalize this in the following lemma. �

Lemma 1 (Multiple solutions). Let T ⊆ S \ F be an EC. For every m satisfying bestExit�V (T) ≤ m ≤ bestExit
©
V (T), there is a solution

U : S → [0, 1] to the Bellman equations, which for all states in T is greater than m, and for at least one state is equal to m.

Proof. Intuitively, this lemma states the following: given an over-approximation that is greater than what T can actually
achieve, but smaller than what Minimizer can certainly restrict to, Bellman updates (value iteration) will be stuck at the
over-approximation. However, constructing the exact over-approximation where the iteration is stuck is technically involved.

Let m satisfy bestExit�VG
(T) ≤ m ≤ bestExit

©
VG

(T). Note that we explicitly added G in the index, as we will later construct
a modified SG G′ and thus have to make clear to which SG we are referring to. We first construct a function from states
to real numbers, then prove that it is greater than m for all states in T and afterwards that it is a solution to the Bellman
equations, i.e. a fixpoint of applying Equations (3) and (4). Lastly, we show that it assigns exactly m to at least one state
in T .

We obtain a modified SG G′ from the given SG G as follows: for every Maximizer state in T , add an action that leads to
a target state with probability m and to a sink state with probability (1 − m). Intuitively, this allows all Maximizer states to
actually achieve the over-approximation m in every state. Further, we have to treat the corner case of ECs that only consist
of Minimizer states. If there is an EC T ′ ⊆ T© , then all states in T ′ also get an action leading to a target with m and to a
sink with the 1 − m; moreover, all other actions of these states are removed. Let U := VG′ be the value function of G′ .

We now prove that for all states s ∈ T , it holds that U(s) = VG′(s) ≥ m. If s is a Maximizer state, then it has the newly
added action with value m. Thus, the value in the modified SG8 of every s ∈ T� is at least m (but possibly higher9).

If s is a Minimizer state, we have to treat the corner case of an EC consisting only of Minimizer states. If s is in an EC
T ′ ⊆ T© , then by construction it only has an action with value m, and thus its value is (at least) m. Finally, we consider the
case of a Minimizer state which is not part of an EC T ′ ⊆ T© . We know that for all leaving actions (actions a� ∈ Av(s) with
(s, a�) exits T) it holds that

VG′(s,a�) ≥ VG(s,a�) ≥ bestExit
©
VG

≥ m

The first inequality holds, because in G′ we only added more possibility to reach the target, potentially increasing the value;
note in particular that ECs with only Minimizer states actually have a value of 0. The second inequality follows from the
definition of bestExit and the third from the choice of m.

8 For the remainder of this sub-proof of VG′ (s) ≥ m, we omit the phrase “in the modified SG” for ease of notation.
9 In the original paper [39], this lemma was wrong, since it claimed that the solution has to be constant on T . We provide a counter example. Consider

the leftmost EC from Fig. 3. Let action e lead to a target with probability 1
2 and to r with probability 1

2 ; let β = 1
2 . Then we have V(r) = V(r, f) = 1

2
and V(q) = V(q, e) = 1

2 + 1
2 · 1

2 = 3
4 . Note that the Minimizer state p prefers to go down using action c, as V(r) < V(q). The best exit is bestExit�V (T) = 3

4 .
However, picking m = 3

4 and setting U(q) = U(p) = U(r) = m is not a fixpoint of Bellman updates, because applying an update on q we have U(q, e) =
1
2 + 1

2 · m = 7
8 > m. This is why we adjusted the statement of the lemma to only require equality with m in at least one state in T , not all of them. This

weaker claim still suffices to prove Corollary 1.

8

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

Now we consider staying actions of s . Let X be the set of states that are reached by following Minimizer’s optimal staying
actions starting from s . Formally, X is initialized to {s} and then for all s′ ∈ X© we recursively add arg min

a∈Av(s)
¬(s,a)exits T

Post(s, a). As

T is finite and only states from T can be added (since we consider staying actions), X will converge. We analyze all cycles
in X . If there is an EC X ′ ⊆ X© consisting only of Minimizer states, we already proved that its value is m. All other cycles
have at least some probability to go to a Maximizer state, and we already proved that all Maximizer states in T have value
at least m. So s has no other choice but to almost surely reach a Maximizer state or an EC consisting only of Minimizer
states, both of which have value of at least m. Thus, for all actions of s we have proven that their value in the modified SG
is at least m.

Now we show that U is a fixpoint applying Bellman updates in the original SG G . If in G′ a state depended on an
action that is also available in G , applying one Bellman update will not change its value; this is because U was a fixpoint
of applying Bellman updates in G′ . Thus we only have to prove that all states that depended on an action added in the
modified SG do not change their value upon applying a Bellman update. Firstly consider a Maximizer state s ∈ T� . If
U(s) > m, it would not depend on the newly added action, and hence we know that U(s) = m. As T is an EC, s has a
staying action as with U(s, as) ≥ m, because all states in T have U of at least m. We also know that U(s, as) = m, because
U(s) = m, and Maximizer would have used an action yielding more than m if it was available. So for every Maximizer state
that previously used one of the newly added actions, it is optimal to choose a staying action and the estimate after one
Bellman update is still m. Secondly consider a Minimizer state s ∈ T© . We only added an action for those if they were
part of some EC T ′ ⊆ T© . For all states s′ ∈ T ′ we have U(s′) = m. Hence, by playing actions that stay in T ′ , Minimizer can
achieve a U of m. It is the optimal choice for Minimizer to do this, because by assumption all exiting actions are worse
(higher number) than m. In conclusion, applying a Bellman update on U in G will not change U, and thus it is a fixpoint.

Finally we prove that at least one state s ∈ T has U(s) = m. We already know U(s) ≥ m for all s ∈ T . Assume for
contradiction that U(s) > m for all s ∈ T . Then no state would depend on one of the newly added actions. Thus, the values
in G and G′ would be equal, and we would also have VG (s) > m for all s ∈ T . This is a contradiction, because the value of
states in an EC can be at most bestExit�V (T) ≤ m. So we conclude that there exists a s ∈ T with U(s) = m. �

Corollary 1. If bestExit
©
V (T) > bestExit�V (T) for some EC T , then G∗ �= V.

Proof. There are m1, m2 such that bestExit�V (T) < m1 < m2 < bestExit
©
V (T). By Lemma 1, for both there exists a solution to

the Bellman equations U1 and U2. The solutions are distinct, as there always exists at least one state where U1(s) = m1 <

m2 ≤ U2(s).
Thus, there exist multiple fixpoints of Bellman updating. In particular, G∗ > L∗ = V, and BVI does not converge. �

In accordance with our intuition that ECs satisfying the above inequality should be deflated, we call them bloated.

Definition 4 (BEC). An EC T is called a bloated end component (BEC), if bestExit
©
V (T) > bestExit�V (T).

Example 2 (BEC). In the example of Fig. 3 on the left with α < β , the ECs {p,q} and {p,q, r} are BECs. �

Example 3 (Corner cases of bestExit). If an EC T has no exiting actions of Minimizer (or no Minimizer’s states at all, as in an
MDP), then bestExit

©
V (T) = 1 (the case with min∅). Hence all numbers between bestExit�V (T) and 1 are a solution to the

Bellman equations and G∗(s) = 1 for all states s ∈ T .
Analogously, if Maximizer does not have any exiting action in T , then it holds that bestExit�V (T) = 0 (the case with

max∅), T is a BEC and all numbers between 0 and bestExit
©
V (T) are a solution to the Bellman equations. �

Note that in MDPs all ECs belong to one player, namely Maximizer. Consequently, all ECs are BECs except for ECs where
Maximizer has an exiting action with value 1; all other ECs thus have to be collapsed (or deflated) to ensure BVI convergence
in MDPs. Interestingly, all non-trivial ECs in MDPs are a problem, while in SGs through the presence of the other player
some ECs can converge, namely if both players want to exit, which we illustrate in the subsequent example.

Example 4 (Unproblematic ECs). If in the example of Fig. 3 on the left p had an exiting action with value γ < min(α, β), then
Minimizer’s best strategy is to pick the leaving action and ensure the smaller value. Consequently, Maximizer realizes that
going to p is suboptimal, as both α and β are larger than γ . Thus all states depend on exiting actions, we have no cyclic
dependencies and BVI converges. �

Our first theorem states that BECs are indeed the only obstacle for BVI convergence. To prove it, we need the following
lemma.

9

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

Lemma 2. If a set T ⊆ S does not contain an EC, then there exists a state s ∈ T , such that for all a ∈ Av(s) it holds that (s, a) exits T .

Proof. Let T ⊆ S be a set of states that does not contain an EC. Assume for contradiction that for all states s ∈ T there exists
an action a , such that ¬(s, a) exits T . Then we can construct an EC as follows: let T ′ = {s} for some state s ∈ T . Then, for
all states in T ′ add all successors of the actions that do not exit T to T ′ . Repeat this until a fixpoint is reached. This must
happen, as T is finite and the actions are not exiting, i.e. only have successors in T . Now compute the strongly connected
components of T ′ with only the staying actions. There has to be a non-trivial strongly connected component, because T ′
is connected and finite, and every state has at least one outgoing edge to another state in T ′ , so there exists a cycle. The
strongly connected component forms an EC, which is a contradiction. Thus we know that for some state, all actions are
leaving T . �

We will also sometimes use the contrapositive of this lemma, i.e. that if every state in a set T has at least one staying
action, then T contains an EC.

Theorem 1 (Convergence without BECs). If an SG contains no non-trivial BECs, i.e. no BECs in S \ (F ∪ Z), then G∗ = V, i.e. value
iteration from above converges to the value in the limit.

Proof (Structure). We first give the general idea of the proof.
We assume towards a contradiction, that there is some state s with a positive difference G∗(s) − V(s) > 0. Then we will

look at the set of states X that have the maximal difference and prove the following.

No state in X “depends on the outside”. (5)

This means that for all states in X , the best action must not have successors outside of X . Best action means that it
minimizes V for Minimizer states and maximizes G∗ for Maximizer states.

Then, using a case distinction over the possible graph structures of X , we show that the only way to satisfy Statement
(5) is that we have an EC Z ⊆ X where the best action for every state is not exiting Z . However, this implies that Z is a
BEC (and in fact even a simple end component, which will be introduced in the next section). This is a contradiction to the
assumption that the game is BEC-free, and thus proves our goal.

Proof (Complete). We denote the difference in a state by (s) := G∗(s) −V(s). We also use (s, a), see Footnote 6. Assume
for contradiction there exists a state s ∈ S with positive difference (s) > 0.

Let X := {s ∈ S | (s) = max
s∈S

(s)} denote the set of all states with maximal difference. Note that by assumption of

there being a state with positive difference, X is non-empty and for all s ∈ X we have (s) > 0. By definition, we require
V(1) = G∗(1) = 1 for every 1 ∈ F. Hence, (1) = 0 and thus, F ∩ X = ∅. Analogously, it holds that Z ∩ X = ∅. Hence we
know that X ⊆ S \ (F ∪ Z).

We will now prove that no state in X “depends on the outside”, i.e.

∀(s,a)exits X :
{

G∗(s,a) < G∗(s) if s ∈ X�
V(s,a) > V(s) if s ∈ X©

(5)

To prove Statement (5), first observe the following:

∀(s,a)exits X : (s,a) < (s). (6)

This holds, because if (s, a) exits X , then ∃t ∈ Post(s, a) \ X . Since t /∈ X , (t) < (s). Then the following chain of equations
proves Statement (6):

(s,a) := G∗(s,a) − V(s,a) (Definition of)

=
∑
s′∈S

δ(s,a, s′) · (G∗(s′) − V(s′)) (Definition of V and G, pulling together the sums)

=
∑
s′∈S

δ(s,a, s′) · (s′) (Definition of)

< (s)

The last inequality holds, since δ(s, a, t) > 0 and (t) < (s), so there is one summand that is smaller than (s); also,
(s) is the maximum difference, so there can be no larger summand to make up for the loss.

10

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

0.1/0.4 0.2/0.8

0.2/0.8

0.2/0.8

0.2/0.8

0.2/0.8 0.4/1

0.4/10.4/1

0.4/1
0/0

0.2

0.8

10.4

0.4S

X X ′ Y

Z1

Z2

Fig. 4. An example of an SG where all the sets in the proof of Theorem 1 are different. Numbers on exiting arrows denote values, see Footnote 7. Every
state is inscribed with V/G.

Now we can prove Statement (5) with the following chain of equations:

G∗(s,a) − V(s,a) = (s,a) (Definition of)

< (s) (Using Statement (6))

= G∗(s) − V(s) (Definition of)

≤
{

G∗(s) − V(s,a) if s ∈ S�
G∗(s,a) − V(s) if s ∈ S©

The last inequality holds since for every available action a and for s ∈ S� : V(s) ≥ V(s, a), as Maximizer uses the maximum
action, and dually for s ∈ S© : G∗(s) ≤ G∗(s, a). Simplifying the inequation yields Statement (5).

Now we make a case distinction over the possible graph structures of X and use Statement (5) and Lemma 2 to derive
a contradiction.

• If X does not contain an EC,
then by Lemma 2 there exists a state s ∈ X , such that for all a ∈ Av(s) we have (s, a) exits X . Thus, this state “depends
on the outside”, which by Statement (5) yields a contradiction. Formally, if s ∈ X� , we have that ∀a ∈ Av(s) : G∗(s, a) <
G∗(s), because all actions exit X and Statement (5). However, by definition G∗(s) = maxa∈Av(s) G∗(s, a), so there has to
be an equality for some action. The argument works analogously for a Minimizer state s ∈ X© .

• If X contains an EC,
we need to make further steps. States can have a large difference just by depending on a BEC. Our further steps will
allow us to find a BEC inside X . See Fig. 4 for an example of a game where all the sets we introduce in the following
are different.
We now need the notion of bottom MEC. When talking about the whole game, bottom MECs are defined as MECs
without leaving actions. However, we need the notion of bottom MEC in X . Formally, this requires that every successor
of an action leaving the bottom MEC reaches a state outside of X with positive probability under all pairs of strategies.
Intuitively, a bottom MEC in X is a MEC, such that after leaving it, there is no other MEC in X . They are computed by
computing the MEC decomposition of X , ordering the MECs topologically and picking one at the end of a chain.
Let X ′ ⊆ X be a bottom MEC in X . X ′ exists, because by assumption X contains an EC, so there also is an EC that is
bottom in X . If X ′ was a MEC at the end of the topological ordering of MECs in X , but not bottom, that would mean
that there is a successor state s′ of some action exiting X ′ , such that there is a pair of strategies under which the
play from s′ surely remains in X . This would imply that s′ can reach an EC inside X , which is a contradiction to the
assumption that X ′ is at the end of the topological ordering of MECs in X .
Let m = maxs∈X ′ G∗(s) be the maximum upper bound in X ′ , and let Y := {s | s ∈ X ′ ∧ G∗(s) = m} be the states with
that maximum upper bound.
∀s ∈ Y , ∃a ∈ Av(s) : ¬(s, a) exits Y , i.e. all states in Y have actions that stay in Y . We prove this by a case distinction
over where the actions of Y can exit to. Let s ∈ Y be an arbitrary state. There has to be some action am with G∗(s, am) =
G∗(s) = m. We say that action am exits X towards a set of states T , if (s, am) exits X and some successor of the action
is in T .
– Action am cannot exit towards S \ X . Otherwise, s would “depend on the outside” and we get a contradiction as in

the case of X not containing an EC.

11

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

– No action can exit towards X \ X ′ , because X ′ is a bottom MEC in X . If an action left towards some state t ∈ X \ X ′ ,
then from t there would be no reachable EC in X . Hence, by Lemma 2, the states that t can reach must contain some
state that only has actions exiting X , which yields a contradiction as in the case of X not containing an EC.

– am cannot exit towards X ′ \ Y , as by definition of Y all states s′ ∈ X ′ \ Y have G∗(s′) < m.
– The only remaining possibility is that am stays in Y .
Let Z ⊆ Y be a bottom MEC in Y . Z exists, since by the previous step all states in Y have actions staying in Y , and by
the contrapositive of Lemma 2 this implies the existence of a MEC in Y.
Note that for all states s ∈ Z we have V(s) = m − c, where c = maxs∈S (s), as Z ⊆ Y and Z ⊆ X . So in fact, Z is a
simple EC, which will be introduced in the next subsection. This fact is relevant for the proof of Theorem 2.
We now prove that Z is a BEC by a case distinction on the bestExit of Maximizer.
– If bestExit�G∗(Z) > m,

then the Maximizer state s that has this exit would use it to get G∗(s) > m. However, we know that G∗(s) = m, so
this is a contradiction.

– If bestExit�G∗(Z) = m,
then let (s, a�) be a state-action pair, such that s ∈ Z� , (s, a�) exits Z and G∗(s, a�) = G∗(s) = m. This pair exists by
the assumption that there is an exit of Maximizer from Z that achieves m. However, we showed earlier, that such an
action a� can only stay in Y (note that Z ⊆ Y , thus the earlier case distinction fully applies). Since (s, a�) exits Z , we
know that there is a successor of that state-action pair in Y \ Z . This is a contradiction, because Z is a bottom MEC
in Y . The argumentation is analogous to that of an action exiting Y towards X \ X ′ .

– If bestExit�G∗(Z) < m,
first note that we are not done yet, because the case distinction talks about bestExitG∗ , while the definition of BEC
uses bestExitV . We still need to show that the true value of Minimizer’s best exit is higher than the true value of
Maximizer’s one. There are two possibilities, depicted in Fig. 4 as Z1 and Z2.
∗ If there are ©-exits,

then let (s, a�) be the minimal ©-exit, i.e. the state-action pair with s ∈ Z© and (s, a�) exits Z with V(s, a�) =
bestExit

©
V (Z). We know that (s, a�) cannot exit towards X \ X ′ or Y \ Z , by the same bottom MEC argumentation as

before. It cannot exit towards X ′ \ Y , because then G∗(s, a�) < m = G∗(s), but Minimizer uses the minimal available
action. Thus, it exits towards S \ X , i.e. (s, a�) exits X . Then, by Statement (5) we know that V(s, a�) > V(s). Recall
that all states in Z have the same value. Additionally, for all s′ ∈ Z�, a′ ∈ Av(s′) we have V(s′) ≥ V(s′, a′) since
Maximizer picks the best action. Let (s′, a′) be the state-action pair used for bestExit�V (Z). Then we know that Z is
a BEC by the following inequation chain:

bestExit
©
V (Z) = V(s, a�) > V(s) = V(s′) ≥ V(s′, a′) = bestExit�V (Z).

∗ If there are no ©-exits,
then bestExit

©
V = 1, since min∅ = 1. Hence, by Lemma 1, m = 1. Recall that in the case distinction we assumed

bestExit�G∗(Z) < m. Thus Z is a BEC, since

bestExit
©
V (Z) = 1 = m > bestExit�G∗(Z) ≥ bestExit�V (Z).

The fact that Z is a BEC is a contradiction to the assumption of the theorem that the SG contains no non-trivial BECs,
as Z ⊆ S \ (F ∪ Z). Thus we arrive at a contradiction in all cases, and Theorem 1 is proven. �

In Section 4.2, we show how to eliminate BECs by collapsing their “core” parts, called below MSECs (maximal simple
end components). Since MSECs can only be identified with enough information about V, Section 4.3 shows how to avoid
direct a priori collapsing and instead dynamically deflate candidates for MSECs in a conservative way.

4.2. The core of the problem: simple end components

Now we turn our attention to SG with BECs. In a BEC all Minimizer’s exiting actions have a higher value than what
Maximizer can achieve; hence, Minimizer will not use exiting actions, but prefers staying in the EC and steering Maximizer
towards his worse exiting actions. Consequently, only Maximizer wants to take an exiting action.

Intuitively, solving a BEC amounts to computing the attractors of Maximizer’s exits, i.e. those states that can reach an
exit if Minimizer plays optimally. All states in such an attractor have the same value, namely that of the best exit they can
reach. Thus, we define the following sub-component.

Definition 5 (Simple EC). An EC T is called simple end component (SEC), if for all s ∈ T we have V(s) = bestExit�V (T).
A SEC T is maximal (MSEC) if there is no SEC T ′ such that T � T ′ .

To give another intuition: an EC is simple, if Minimizer cannot keep Maximizer away from his bestExit. Independently
of Minimizer’s decisions, Maximizer can reach the bestExit almost surely, unless Minimizer decides to leave, in which case
Maximizer would achieve an even higher value.

12

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

Algorithm 2 FIND_MSEC.
1: function FIND_MSEC(f : S → [0, 1])
2: Av′ ← Av
3: for s ∈ S© do # Keep only optimal actions for Minimizer

4: Av′(s) ← {a ∈ Av(s) | f (s, a) = minb∈Av(s) f (s, b)}
5: return MEC(G[Av/Av′]) # MEC(G[Av/Av′]) are MSECs of the original G

In the MDP case, every EC is simple, as Maximizer can decide to use any exit. As a result, in MDPs all states of an EC
have the same value and can all be collapsed into one state. In the SG case, Maximizer may be restricted by Minimizer’s
behaviour or even not given any chance to exit the EC at all. As a result, a BEC may contain several parts, each with different
value, intuitively corresponding to different exits. Thus instead of MECs, we have to decompose into finer MSECs and only
collapse these.

Example 5 (SECs). Assume α < β in the example of Fig. 3. Then {p, q} is a SEC and an MSEC. Further observe that action
c is sub-optimal for Minimizer and removing it does not affect the value of any state, but simplifies the graph structure.
Namely, it destructs the whole EC into several (here only one) SECs and some non-EC states (here r). �

Lemma 3 (SECs are the core of the problem). For a set T ⊆ S, the following two statements hold.

1. If T is a BEC, then there exists a T ′ ⊆ T such that T ′ is a SEC.
2. If T is a SEC, then either T also is a BEC or bestExit

©
V (T) = bestExit�V (T).

Proof. 1. Let τ be an optimal strategy of Minimizer. If T ⊆ S is a BEC, then bestExit
©
V (T) > bestExit�V (T), so the optimal

strategy of Minimizer does not contain any exiting actions, or formally for all (s, a) exits T with s ∈ T© , we have
τ (s)(a) = 0. Hence, every state in the MDP Gτ induced by fixing an optimal Minimizer strategy has an available staying
action, and thus it still contains an EC T ′ ⊆ T , by the contrapositive of Lemma 2.
Note that T ′ can be a subset of T , if Minimizer restricts the game to a part of the EC, as in Example 5.

2. Let T ⊆ S be a SEC. Note that our goal is equivalent to showing

bestExit
©
V (T) ≥ bestExit�V (T),

as that means either the two numbers are equal, or the best Minimizer exit is greater and thus T is a BEC.
If there is no Minimizer exit, we have bestExit

©
V (T) = 1 ≥ bestExit�V (T), using the convention that min∅ = 1 and the fact

that no probability can be greater than 1.
If on the other hand there is a Minimizer exit, then let (s, a) be the best Minimizer exit. Then the following chain of
equations proves our goal:

bestExit
©
V (T) = V(s,a) (By (s,a) being the best Minimizer exit)

≥ V(s) (By definition of V(s) (Equation (1)))

= bestExit�V (T) (As T is a SEC)

�

So SECs are the core of the problem, as by Theorem 1 BECs are the reason for non-convergence, and by Lemma 3 every
BEC contains a SEC. As all states in a SEC have the same value, they are easy to treat; we can even collapse them as in
MDPs without changing the value.

Thus, we need to find SECs. Algorithm 2, called FIND_MSEC, shows how to compute the inclusion maximal MSECs. It
returns the set of all MSECs if called with parameter V. However, as we want to compute the value and hence cannot
assume to know it, later we also call this function with other parameters f : S → [0, 1].

The idea of the algorithm is the following: Minimizer actions with a non-minimum value cannot be part of any SEC and
thus should be ignored when identifying SECs. Hence, we construct the set of available actions Av′ which does not contain
non-minimum Minimizer actions. (The previous example illustrates that ignoring these actions is indeed safe as it does not
change the value of the game.) We denote the game G where the available actions Av are changed to the new available
actions Av′ (ignoring the Minimizer’s sub-optimal ones) as G[Av/Av′] . Once removed, Minimizer has no choices to affect the
outcome of the game and thus every remaining EC is simple. Another intuition for this is that we fix Minimizer’s strategy
to be optimal according to f and then compute the ECs in the resulting MDP.

Lemma 4 (Correctness of Algorithm 2). T ∈ FIND_MSEC(V) if and only if T is an MSEC.

13

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

Proof. Direction ⇒ We want to show: T ∈ FIND_MSEC(V) =⇒ T is an MSEC. Let T ∈ FIND_MSEC(V). So T is a
MEC of the game where the mapping of available actions is Av′ . Hence for all s ∈ T©, a ∈ Av′(s) we have V(s, a) =
minb∈Av(s) V(s, b) = V(s). We now show that for all s ∈ T we have V(s) = bestExit�V (T).

• If there is no exit for Maximizer, then bestExit�V (T) = 0, and all states in T have the value 0, since Minimizer can force
the game to stay inside the EC forever.

• If there is an exiting state e for Maximizer, then also from each state in T there is a path using only states in T
to e. For each state s ∈ T we can compute V(s) by recursively applying the Bellman equations. In each application,
we choose an action that leads us closer to e, i.e. for t being the next state on the path to e, choose a such that
V(s, a) = δ(s, a, t) · V(t) +∑

s′∈Post(s,a)\{t} δ(s, a, s′) · V(s′). Since for each state in T we have a path to e, we can replace
every V(s′) in this way. By repeating this and thereby multiplying all the probabilities δ(s, a, t), the factor in front of
the terms that do not contain V(e) approaches 0, and thus we get V(s, a) = V(e) for an arbitrary s ∈ T and a staying
action a . Since we showed before that for Minimizer all actions have the same value, all Minimizer states have as value
V(e). Maximizer can certainly achieve V(e) by picking the action with the maximal value. Maximizer cannot achieve
more than V(e), because this is defined to be the best exit from the EC, and thus the best value that can be achieved
from any state in the EC.

Since T is a MEC of the game with some available actions removed, it certainly is an EC in the original game. Thus, from
this and the previous argument, we know that T is a SEC.

T is inclusion maximal, because if there was some T ′ � T , such that T ′ is a SEC, then there exists some state s ∈ T ′ \ T
with all staying actions of this state having the value bestExit�V (T). If it is a Minimizer’s state, it cannot have a lower exit
available, because otherwise T ′ would not be a SEC. Thus no staying action of s is removed by Line 4, and it should also be
part of the MEC in the modified game. This contradicts the assumption that s /∈ T , and thus T is an MSEC.
Direction ⇐ Let T be an MSEC. We need to show that T is a MEC of the game where the mapping of available actions is
Av′ .

We first show that T is an EC in the modified game. Since T is an EC in the original game, there exists a B such that
for each s ∈ T , a ∈ B ∩ Av(s) we do not have (s, a) exits T by the first condition of Definition 2. Moreover, B ∩ Av(s) is
non-empty, as otherwise there could not be a path starting in s and using only actions from B , see the second condition of
Definition 2. Hence for all s ∈ T , a ∈ B ∩ Av(s) the following holds.

V(s,a) :=
∑
s′∈S

δ(s,a, s′) · V(s′) (by definition of V (s,a) (Equation (2)))

=
∑
s′∈S

δ(s,a, s′) · bestExit�V (T) (since s′ ∈ T and T is simple)

= bestExit�V (T)

So every action that stays in T (i.e. does not exit T), in particular every action in B , is not removed from the game, because
for all s ∈ T , a ∈ Av(s), ¬(s, a) exits T we have V(s) = bestExit�V (T) = V(s, a). The first equality comes from T being an
MSEC, the second is what we have just shown.

Since no action in B is removed from the game and T is still an EC after the removal, T is inclusion maximal by the
same argumentation as at the end of the ⇒ case, and thus T ∈ FIND_MSEC(V). �

Remark 1 (Hypothetical algorithm with an oracle). In Section 3, we have seen that collapsing MECs does not ensure BVI
convergence on SGs. Collapsing does not preserve the values, since in BECs states with different values would be collapsed.
Hence we only want to collapse MSECs, where the values are the same. If we collapse all MSECs of a game G , the resulting
game G′ does not contain any BECs (as by Lemma 3 every BEC contains a SEC), and hence by Theorem 1 BVI converges.
Using a similar argument as the correctness of collapsing in MDPs [11], we could show that the values in G′ are equivalent
to those in G .

However, the difficulty with this algorithm is that it requires an oracle to compare values, for instance a sufficiently
precise approximation of V. Consequently, we cannot pre-compute the MSECs, but have to find them while running BVI.

But since the approximations converge only in the limit we may never be able to conclude on simplicity of some ECs.
For instance, if α = β in Fig. 3, and if the approximations converge at different speeds, then Algorithm 2 always outputs
only a part of the EC, although the whole EC on {p,q, r} is simple.

4.3. Deflating simple end components

Since MSECs cannot be identified from approximations of V for sure, we refrain from collapsing10 and instead only
decrease the over-approximation in a conservative way. We call the method deflating, by which we mean decreasing the

10 Our subsequent method can be combined with local collapsing whenever the lower and upper bounds on V are conclusive.

14

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

Algorithm 3 DEFLATE.
1: function DEFLATE(State set T , f : S → [0, 1])
2: for s ∈ T do
3: f (s) ← min(f (s), bestExit�f (T)) # Decrease the upper bound

4: return f

Algorithm 4 UPDATE procedure for bounded value iteration on SG.
1: procedure UPDATE(L : S → [0, 1], U : S → [0, 1])
2: L, U get updated according to Eq. (3) and (4) # Bellman updates

3: for T ∈ FIND_MSEC(L) do # Use lower bound to find ECs
4: U ← DEFLATE(T , U) # and deflate the upper bound there

upper bound of all states in an EC to its bestExit�U , see Algorithm 3. The procedure DEFLATE (called on the current upper
bound Ui) decreases this upper bound to the minimum possible value according to the current approximation and thus
prevents states from only depending on each other, as in SECs.

Overall, we want to gradually approximate SECs and perform the corresponding adjustments, but we do not commit to
any of the approximations by collapsing and thus definitively changing the game graph.

Lemma 5 (DEFLATE is sound). For any f : S → [0, 1] such that f ≥ V (where ≥ is point-wise comparison) and any state-set T ⊆ S,
it holds that DEFLATE(T , f) ≥ V.

Proof. Let T ⊆ S and f : S → [0, 1] be such that f ≥ V. We reformulate the goal to saying that for all states s ∈ T it holds
that min(f (s), bestExit�f (T)) ≥ V(s).
This is equivalent to our goal, because the change in Line 3 is the only change Algorithm 3 applies and because the com-
parison of the functions DEFLATE(T , f) and V is point-wise.

If in Line 3 of DEFLATE the expression min(f (s), bestExit�f (T)) gets evaluated to f (s) or if f (s) = bestExit�f (T), by
assumption of f ≥ V the goal trivially holds.

If f (s) > bestExit�f (T), the following chain of equations proves our goal:

DEFLATE(T , f)(s) = bestExit�f (T)

≥ bestExit�V (T) (Since f ≥ V)

≥ V(s) (Since no state can achieve a greater value than the best exit)

�

Using DEFLATE, we can define an improved UPDATE procedure which makes the BVI algorithm (Algorithm 1) converge.
The difference to the standard update are the additional lines 3 and 4. After the usual Bellman updates in Line 2, we
compute the MSEC candidates according to the current under-approximation in Line 3. Then for every MSEC candidate, the
upper bound is deflated in Line 4. Since DEFLATE is sound, the upper bound always remains a correct over-approximation.
Intuitively, the over-approximation converges, because L converges to the value in the limit, and thus we eventually find
the correct MSECs and deflate them.

The main loop of Algorithm 1 using Algorithm 4 as UPDATE describes an operator B : ([0, 1]S , [0, 1]S) → ([0, 1]S , [0, 1]S),
i.e. given two functions from states to [0, 1], it computes two updated versions of these functions. In order to prove the
correctness and termination of Algorithm 1 using Algorithm 4 as UPDATE, we first prove that the sequence of upper bounds
converges to a fixpoint.

Lemma 6 (Upper bound converges to a fixpoint). The limit of repeatedly applying the operator B to the initial lower and upper bound
exists and is a fixpoint of the operator B, i.e. limi→∞ Bi(L0, U0) = B

(
limi→∞ Bi(L0,U0)

)
.

Proof. On a high level, the proof amounts to phrasing the problem so that the Kleene fixpoint theorem is applicable.
Concretely, we follow the proof of [27, 8.15 CPO Fixpoint Theorem I.], adjusting some details to fit our setting.

We consider the domain [0, 1]
∣∣S∣∣ × [0, 1]

∣∣S∣∣
, i.e. every element consists of two functions from states to real numbers, the

under- and over-approximation. We say (L1, U1) � (L2, U2) if and only if both L1 ≤ L2 and U1 ≥ U2 with component-wise
comparison. Intuitively, an element on the right side of � is a more precise approximation. The bottom element of the do-
main is (�0, �1), where �a denotes the function that assigns a to all states. We further restrict the domain to exclude elements
of the domain that are trivially irrelevant for the computation. Concretely, we exclude all tuples (L, U) where L(s) < 1 for a
target state s ∈ F or U(s) > 0 for a state with no path to the target s ∈ Z . Then the bottom element is ⊥ = (L0, U0), where
L0(s) is 1 for target states and 0 everywhere else, and U0(s) is 0 for states in Z and 1 everywhere else. Note that these are
the vectors that we have before the first iteration of the main loop of Algorithm 4. The comparator � induces a complete

15

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

partial order over the domain, as we have a bottom element, and as every directed subset has a supremum; the latter claim
holds, because � reduces to component-wise comparisons between real numbers from [0, 1], where suprema exist. For
more details on the definition of directed set and complete partial orders, we refer to [27, Definition 7.7] respectively [27,
Definition 8.1].

We prove several facts about B that we need for the final argument. B first applies Bellman updates and then addi-
tionally deflates the over-approximation. Bellman updates are monotonic (see Section 2.3) and deflating is monotonic, as in
Line 3 of Algorithm 3 we take the minimum of the current value and the best exit. Thus for all i and every pair of approx-
imations (L, U) we have Bi(L, U) ≤ Bi+1(L, U). Intuitively, applying B can only make the approximations more precise. It
follows that

⊥ � B(⊥) � · · · � Bi(⊥) � Bi+1(⊥) � . . .

form an ascending chain. Since the domain with � is a complete partial order, we know that

lim
i→∞

Bi(⊥) = sup
i≥0

Bi(⊥), (7)

and that the supremum exists.
We now argue that B eventually is continuous. Bellman updates are continuous (see Section 2.3). Applying Bellman

updates to the lower bound converges to the true value V, see e.g. [18]. Thus, after a finite number of steps n the optimal
actions of Minimizer according to L do not change any more, because the lower approximation has converged enough such
that Ln of every suboptimal action is larger than Ln of every optimal action. In case of multiple optimal actions, one of
them might converge at slower speed, and only some optimal action is selected, not all of them. Still, the selected actions
stay constant for every n′ ≥ n. This implies that we always find and deflate the same ECs. Thus deflating an EC T simplifies
to applying a Bellman update on the whole T , updating every over-approximation to the best exit. Thus, for every n′ ≥ n,
deflating is also continuous. Since we argue about behaviour in the limit, it suffices that B is eventually continuous.

Then we can conclude:

B(lim
i→∞

Bi(L0,U0)) = B(sup
i≥0

Bi(⊥)) (Definition of ⊥ and Equation (10))

= sup
i≥0

B(Bi(⊥)) (The supremum is certainly larger than Bn, thus B is continuous.)

= sup
i≥1

Bi(⊥)

= sup
i≥0

Bi(⊥) (since ⊥ ≤ Bn(⊥) for all n)

= lim
i→∞

Bi(L0,U0) (Definition of ⊥ and Equation (10))

�

Remark 2. Lemma 6 was assumed without justification in the conference version of the paper, as it relies on standard
methods from lattice theory and seemed obvious. However, there is one surprising complication: the operator B is not
continuous in general. This is because the algorithm deflates SEC-candidates, and these candidates vary depending on the
current under-approximation. A state might be part of a SEC-candidate for a less precise under-approximation, but not
be part of a SEC-candidate for a more precise under-approximation. In the first case it is deflated and its upper bound
decreased. In the second case, it is not deflated and its upper bound stays. This violates continuity, since the upper bound
in the first case is more precise, even though the element of the domain was more precise in the second case. This is why
we argue about eventual continuity in the proof of Lemma 6.

Theorem 2 (Soundness and completeness). Algorithm 1, using Algorithm 4 as UPDATE, produces monotonic sequences L under- and
U over-approximating V, and terminates for every ε > 0.

Proof. We denote by Li and Ui the lower/upper bound function after the i-th call of UPDATE. Li and Ui are monotonic
under- respectively over-approximations of V because they are updated via Bellman updates, which preserve monotonicity
and the under-/over-approximating property (this can be shown by a simple induction), and from Lemma 5.

Note that UPDATE, FIND_MSEC and DEFLATE take finite time, as all the for-loops in the algorithms iterate over finite
sets. So it remains to prove that the main loop of Algorithm 1 terminates, i.e. that for all ε > 0 there exists an n such that
Un(s0) − Ln(s0) < ε. It suffices to show that limn→∞ Un − V = 0, because limn→∞ Ln = V (from e.g. [18]).

In the following, let U∗ := limn→∞ Un and (s) := U∗(s) − V(s); we also use (s, a), see Footnote 6. Assume for con-
tradiction that the algorithm does not converge, i.e. there exists a state with (s) > 0.

The rest of the proof is structured as follows.

16

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

Step 1 From (s) > 0 we derive that there has to be a SEC Z by using an analogue of the proof of Theorem 1.
Step 2 Then we show that by applying one more iteration of the loop of Algorithm 1, a SEC Z ′ ⊆ Z is found and deflated,

thereby decreasing the upper bound.
Step 3 This is a contradiction, because by Lemma 6, U∗ is a fixpoint. Thus we get that for all s ∈ S we have (s) = 0 and

hence convergence from above.

The full technical proof follows.

Step 1 We reuse parts of the proof of Theorem 1 to prove that there exists a SEC Z . Note that as before when proving
Theorem 1, we have the assumption that there exists a state with (s) > 0.
The difference is, that instead of the greatest fixpoint G∗ we use limit of the upper bound computed by our algorithm
U∗ . We prove the analogue of Statement (5).

∀(s,a)exits X :
{

U∗(s,a) < U∗(s) if s ∈ X�
V(s,a) > V(s) if s ∈ X©

The only argument that we need to adjust is that for the fact: ∀s ∈ S�, a ∈ Av(s) : U∗(s) ≥ U∗(s, a). For a Bellman
update this property holds, as the upper bound of a state is always the maximum upper bound of all its actions.
The additional deflating does not violate the property. Deflating is only executed if s ∈ Z for some EC Z that was found
by the latest call of FIND_MSEC. It sets U(s) = bestExit�U (Z). For actions staying inside Z , all successors have the same
upper bound, namely bestExit�U (Z). Thus all staying actions a satisfy bestExit�U (Z) = U(s) = U(s, a). No exiting action
a can have U(s, a) > bestExit�U (Z), because then by definition of bestExit we would have U(s, a) = bestExit�U (Z). So all
exiting actions satisfy U(s) = bestExit�U (Z) ≥ U(s, a). As every application of deflating preserves the property, it also
transfers to U∗ .
Then, using the analogue of Statement (5) and Lemma 2, we can construct the sets X , X ′ , Y and Z as before. All states
in Z have the same value, as noted already in the proof of Theorem 1. This implies that Z is a SEC, as the only possible
value for the states is bestExit�V (Z). If there is no Maximizer exit, the value of all states as well as bestExit�V (Z) is 0.
If there is a Maximizer exit, let (s, a) be the best exit. Then V(s) ≥ V(s, a) = bestExit�V (Z), and an EC cannot have a
higher value than that of its best Maximizer exit.

Step 2 Applying one more iteration of the loop of Algorithm 1, i.e. calling UPDATE once more, finds an EC Z ′ ⊆ Z . This is the
case, because after some finite number of steps Li is close enough to V such that the following holds: ∀s ∈ Z©, (s, a)

exits Z : Li(s, a) > Li(s). This will happen, because all ©-exits from Z lead towards S \ X , and hence by Statement
(5), we have V(s, a) > V(s). So from some point onward, for all i′ ≥ i, we have Li′(s, a) > V(s) ≥ Li′ (s). Then, when
computing FIND_MSEC(Li′), all actions exiting Z are removed and the MECs of the modified game are computed. This
will result in finding an EC Z ′ ⊆ Z , because every state has to have at least one action, and all actions have to stay
inside Z .
Z ′ can be a strict subset of Z , for example if the BEC looks as depicted in Fig. 3 and α = β , but Li′(q, e) �= Li′ (r, f) for
all i′ , because they converge at different speeds. However, this poses no problem for the convergence of our algorithm;
intuitively, after Z ′ is deflated, the states from Z \ Z ′ adjust their upper bounds according to their best exit, as going to
Z ′ is suboptimal.
When calling UPDATE once more on U∗ , we can instantiate L with some Li that is such that we find Z ′ ⊆ Z (by previous
arguments). Since Z ′ is returned by FIND_MSEC(Li), the algorithm executes DEFLATE(Z ′, U∗). Then for all s ∈ Z ′ we
set U∗

new(s) = bestExit�U∗(Z ′), thereby decreasing the upper bound and yielding the contradiction bestExit�U∗ (Z ′) < U∗(s),
because of the following argument.
There have to be �-exits. If there were no �-exits in Z ′, then for all i we have bestExit�Ui

(Z ′) = 0 (the case of max∅),
and hence (s) would be 0; however, since Z ′ ⊆ X , it has to hold that (s) > 0. Let (se, ae) be one of the best �-exits,
i.e. U∗(se, ae) = bestExit�U∗(Z ′). Using Statement (5), we know that U∗(se, ae) < U∗(se).

Step 3 Finally, we get U∗
new(se) = bestExit�U∗(Z ′) = U∗(se, ae) < U∗(se). This is a contradiction, because by Lemma 6 U∗ is a

fixpoint, but applying one more update yields a smaller U∗
new.

Hence our assumption that there was some state with a positive difference is wrong, and thus BVI also converges from
above. Thus, the algorithm will terminate for every ε > 0. �

The story so far:

1. Using only Bellman updates on an over-approximation need not converge to the value (see Corollary 1).
2. Since maximal ECs can have non-constant values, instead we have to focus on maximal simple ECs. Collapsing those

allows BVI to converge (see Remark 1).
3. As we cannot find maximal simple ECs without knowing a close enough approximation of the value, we identify candi-

dates for simple ECs on the fly and gradually deflate them (see Algorithm 4).
4. This is correct, because deflating is sound, and it converges, because we eventually find the correct maximal simple ECs

and deflate them (see Theorem 2).

17

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

Algorithm 5 Update procedure for the learning/BRTDP version of BVI on SG.
1: procedure UPDATE(L : S → [0, 1], U : S → [0, 1])

Simulating
2: ρ ← s0
3: repeat
4: s′ ← sampled as successor of the last state in ρ
5: ρ ← ρ s′
6: until s′ ∈ F or SIMULATION_STUCK

Deflating
7: if SIMULATION_STUCK then
8: for T ∈ FIND_MSECρ (L) do
9: DEFLATE(T , U)

Bellman updates
10: L, U get updated by Eq. (3) and (4) on all states s ∈ ρ

5. Learning-based algorithm

State spaces of systems in model checking often are very large, so that standard algorithms take too long; the state space
might be so large that it doesn’t even fit onto memory. To tackle this problem, we harvest our convergence results and BVI
algorithm for SGs to extend the asynchronous learning-based approach of BRTDP (bounded real time dynamic programming)
to SGs.

Asynchronous value iteration selects in each round a subset T ⊆ S of states and performs the Bellman update in that
round only on T . Consequently, it may speed up computation if “important” states are selected, i.e. states that have a high
probability to be visited and where the current error still is large. However, using standard VI one does not know the current
error and thus cannot estimate the importance of the states; moreover, if certain states are not selected infinitely often the
lower bound may not even converge.

In the setting of bounded value iteration, the current error bound is known for each state and thus convergence can
easily be enforced. This gave rise to algorithms such as BRTDP in the setting of stopping MDPs [51], where the states are
selected as those that appear on a simulation run. Very similar is the adaptation for general MDP [11, Section 4.1].

These algorithms in principle still have access to every parameter of the model, e.g. the exact transition function for
every state-action pair. The advantage is that they are based on partial exploration, i.e. they try to avoid working on the
whole state space by only considering those states that were encountered in simulations. This allows to work on the “core”
of the model, which typically is much smaller than the whole state space [41]. Still, in the worst case the whole state space
might be explored. Note that there are variants of the algorithms which do not know the transition function, but only the
minimum transition probability for MDPs [11, Section 4.2] and for SGs [6].

Algorithm 5 shows the pseudocode for the BRTDP version of UPDATE. After describing the algorithm, we illustrate it as
well as its advantages on several examples. Then we explain how some parts of the algorithm can be improved. Afterwards,
we talk about the differences between Algorithm 5 and its predecessor from [11], as well as advantages and disadvantages
when compared to the deterministic Algorithm 4 and finally prove its correctness.
Description of the algorithm. First a run of the SG is simulated (Lines 2-6). It starts with the initial state and then repeatedly
samples a successor of the last state in the current run. When sampling, the non-deterministic choice is resolved by picking
the “most promising action”. For a Minimizer state, this is the action with the lowest lower bound, for a Maximizer state
dually it is the highest upper bound; in case of ties, the choice is resolved uniformly at random. The probabilistic choice
can be resolved by sampling a successor according to the transition distribution; a different idea is described below. The
simulation is stopped either when a target state is reached or when it is stuck (SIMULATION_STUCK) inside an EC that
it cannot leave, see Example 6. Several ways to detect if a simulation is stuck are discussed after the examples. If the
simulation was stuck in an EC, we need to deflate this EC to get new information (Line 7-9), see Example 7. Note that in the
pseudocode, we wrote FIND_MSECρ (L) to indicate that we do not search for MSECs in the whole game, but only on the
path we just constructed. The procedure uses the knowledge of the transition function to ensure that a cycle that occurred
along the path is indeed an EC. Afterwards Bellman updates are executed on all states that were just simulated (Line 10).
These updates happen asynchronously and backwards, which allows them to propagate information faster, see Example 8.

Example 6 shows why we need to check whether a simulation is stuck.

Example 6 (Simulation). Consider the SG in Fig. 2. The starting state s only has a single available action with a single
successor. The next state t can choose between action b and c. Both currently have an upper bound of 1, so the action is
picked randomly. Assume action c was selected; then the next state is sampled according to the distribution δ(t, c). Let 0
be the next state in the simulation. If we just had the breaking condition s′ ∈ F , we would continue sampling infinitely. The
additional condition to detect that the simulation is stuck in the EC {0} allows us to stop. Several ways to detect whether a
simulation is stuck are discussed after the examples. �

Example 7 demonstrates when and how DEFLATE is executed.

18

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

s0

s1 s2 . . . sn 1

⊥

a

b
1
2

1
2

Fig. 5. An example of an SG to illustrate the advantages of BRTDP. The cloud symbolizes an arbitrarily large state space that need not be explored.

Example 7 (Deflating). Consider the SG in Fig. 2. When a simulation is stuck in the EC {0}, DEFLATE is executed on this EC.
Since there is no exit, the upper bound is correctly set to 0.

If afterwards the simulation is stuck in the EC {s, t}, because U(t, b) = 1 > 2
3 = U(t, c), then DEFLATE is executed on {s, t},

setting the upper bound of both states to the best current approximation bestExit�U ({s, t}) = U(t, c) = 2
3 .

In the next iteration, the simulation is stuck again as U(t, b) = 2
3 > 5

9 = U(t, c), and thus DEFLATE is executed again. This
is repeated until the required precision is reached. �

Example 8 shows that information can be propagated faster using asynchronous VI.

Example 8 (Propagation of information). Consider the top path in the SG in Fig. 5. To propagate the information that the
target can be reached surely from sn to s0, normal VI needs n + 1 steps. After simulating the top path, BRTDP executes
the Bellman updates in a backward manner, directly using the updated information: first L(sn) is set to 1; then L(sn−1) is
updated and can immediately use the information that L(sn) = 1, and hence also is set to 1. Thus after one simulation of the
top path and one update, BRTDP knows the result for this game, while normal VI needs n steps. This idea of immediately
using the information available is part of asynchronous value iteration, and not directly linked to simulating paths; however,
simulating the paths gives an easy and reasonable way to decide which states to update first. �

Example 9 shows how BRTDP can avoid exploring the whole state space.

Example 9 (Avoid state space exploration). Consider the bottom path in the SG in Fig. 5. The cloud symbolizes an arbitrarily
large state space with arbitrary value. After sampling ⊥ as successor once, U(s0, b) ≤ 0.5. Then b is never used in simu-
lations from then on, as the upper bound of the other action is higher, and hence the other action is “more promising”.
So the cloud will most likely not be explored often, potentially (if ⊥ is picked as successor the first time) never. This way,
BRTDP can ignore billions of states, if they are not relevant for convergence. The value of s0 certainly depends on action a,
so the exact value of action b does not need to be computed. In contrast, normal VI and BVI have to remember the bounds
for all the states symbolized by the cloud. �

Detecting SIMULATION_STUCK. We now discuss ways to detect that a simulation is stuck. A safe approach is to keep a
partial model of all states of the current simulation and their successors, and check this partial model for ECs. This is similar
to the idea of candidates in [26], but in contrast to that work it can utilize the full information about the model. However,
as it is acceptable to have false positives (report stuck if we are not stuck), we can use heuristics such as stopping after
the simulation has a certain length, which is a lot faster to check and easier than keeping track of a partial model. Several
heuristics about when to stop are discussed and compared in [11,58]; in our own experiments, however, none of their
suggestions performed as well as the simple idea of stopping the simulation when the length of the run becomes longer
than twice the size of the currently explored state space. Even if deflation is not necessary in an EC and the simulation has
a positive probability to exit, it might still loop several times. Hence the bound to stop the simulation should be greater
than the explored state space, to allow for some looping. However, the approaches of [11,58] allowed to cycle for a very
long time, thus sometimes wasting time before generating new information. For a more in-depth discussion of stopping
heuristics, we refer the interested reader to [5].
Improvements for probabilistic choice. Another part of the algorithm that can be heuristically improved is how to resolve
the probabilistic choice. Instead of picking the successor according to the transition distribution, we can weight the proba-
bilities with the difference U − L. It was shown in [11,58] that this converges faster than just using the probabilities. This
is the case, because states where we still know little (high difference between U and L) get more weight than states where
we know a lot. In particular, states that have already converged (U − L = 0) are not assigned any weight. Note that it is
important to not only consider the difference between the bounds, but also the transition distribution, as states that are
reached with a high probability are more important than states that are only reached with a very small probability.
Comparison. Algorithm 5 is built upon the algorithm in [11]. The key differences are that (i) in SG there also is a mini-
mizing player, who minimizes the lower bound instead of maximizing the upper bound and that (ii) in SG the approach of
collapsing does not work in general, and hence we use deflating.

19

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

In contrast to using Algorithm 4 as UPDATE, BRTDP uses simulation and asynchronous partial updates and deflations. The
(dis-)advantages of BRTDP on SG compared to BVI are the same as for the special case of MDP [11]: the backward updates
propagate information faster and the exploration of parts of the state space can be avoided, as illustrated in Examples 8
and 9. This can save both time and memory. However, if large parts of the state space are relevant or if there are many
ECs, simulations tend to perform worse than straightforward updates on the whole state space. Still, for models that are too
large to load into memory, BRTDP is an option to get at least some information on the value.

Theorem 3 (BRTDP soundness and completeness). Algorithm 1, using Algorithm 5 as UPDATE, produces monotonic sequences L under-
and U over-approximating V, and terminates almost surely for every ε > 0.

Proof. Soundness (L and U being monotonic sequences under- respectively over-approximating the value) follows from the
same argument as in the proof for the deterministic algorithm. The fact that we only update parts of the state space does
not affect the correctness of the Bellman update or deflation.

For completeness, the proof is similar to the one for MDPs [11, Theorem 3]. The difference is (i) that we also have to
argue that Minimizer picks correct actions in the simulations by using the one with minimal lower bound and (ii) that
instead of collapsing ECs we deflate them.

As before, we denote by Li and Ui the under-/over-approximations after the i-th iteration of the main loop and show
that U∞(s0) −L∞(s0) = 0, which implies that for every ε > 0 the algorithm terminates. Note that in contrast to the previous
theorems, we only have to show that the approximations converge in the initial state, not in all states. We instead prove
the claim that the approximations converge in all states that are sampled infinitely often by the simulations.

Let S∞ be exactly those states that, when running the algorithm forever, are sampled infinitely often almost surely. Since
every simulation starts in s0, we have s0 ∈ S∞ .

We call actions that are optimal according to U respectively L approx-optimal. Concretely, in iteration i an action in
a Maximizer state is approx-optimal if it has the highest upper bound Ui ; and dually in a Minimizer state if it has the
lowest lower bound Li . Every approx-optimal action has a positive probability to be chosen, and every successor of such
an action has a positive probability to be sampled. Thus, when considering a state s ∈ S∞ and an action a that is approx-
optimal infinitely often, this action is picked infinitely often almost surely; further, all successors are sampled infinitely often
almost surely, thus we have Post(s, a) ⊆ S∞ . Note that actions that are not picked infinitely often are detected as not being
approx-optimal in some iteration, cf. Example 9.

We know the approximations for all states in S∞ are updated infinitely often almost surely. Thus we can use the same
argument as in the proofs of Theorems 1 and 2: assume there was a state s ∈ S∞ with a positive difference U∞(s) −L∞(s) >
0. Then we can consider the set of states X ⊆ S∞ with maximal difference, where again we know that no state may “depend
on the outside”: since the sampling picks the optimal actions (according to U∞ respectively L∞ for Maximizer/Minimizer
states) and every state in S∞ is updated infinitely often, we know that no optimal action can lead outside of X . Thus, by the
same case distinction as in Theorem 1, we have that X has to contain a bottom MEC Z . However, since X ⊆ S∞ , Z is almost
surely sampled, detected and deflated. If Z has no exit, its upper bound becomes 0, decreasing the difference to 0; if Z
has an exit, it has to exit towards a state outside of X , thereby again “depending on the outside” and decreasing the upper
bound. Thus we get the contradiction to the assumption that there was a state s ∈ S∞ with a positive difference and can
conclude that the approximations converge for all states that are sampled infinitely often, in particular the initial state. �

6. Experimental results

In the following, we present our experimental results on how these theoretical improvements perform practically on
MDPs and on SGs. After describing the used models, tools and the technical setup, we report on some optimizations which
we considered. Next, we present our results on MDPs and finally on SGs. Note that we include tests on MDPs since there
are not so many SG models available for benchmarking, and since it is interesting to see how the more general approach of
deflating compares to the more specialized collapsing.

6.1. Models and tools

We implemented both our algorithms as an extension of PRISM-games [43], a branch of PRISM [44] that allows for
modelling SGs, utilizing previous work of [11,58] for MDP and SG with single-player ECs, respectively.

We tested the implementation on the SGs from the PRISM-games case studies11 that have reachability properties and
one additional model from [13] (thus using all models with reachability properties that were used in [58]). We compared
the results with both the explicit and the hybrid engine of PRISM-games, but since the models are small both of them
performed similar and we only display the results of the faster hybrid engine in Table 4.

Furthermore we ran experiments on MDPs from the PRISM benchmark suite [45] and on the adversarial example
from [33]. We compared our results there to the hybrid and explicit engine of PRISM 4.5, the interval iteration of [33]

11 prismmodelchecker.org/games/casestudies.php.

20

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

Table 1
Verification times (in seconds) for both our
algorithms, BVI and BRTDP, applied to the
model cloud with N=6, using various values
of i for Optimization (III). An X in the table
indicates a timeout.

1 10 100 1000

BVI X 123 123 117
BRTDP 11 12 25 255

as implemented in PRISM, the BRTDP implementation of [11] and the hybrid engine of Storm 1.3.0 [28], which uses topo-
logical value iteration. All the models, MDPs as well as SGs, are described in Appendix C.
Technical setup. All of the experiments were conducted on a server with 256 GB RAM and 2 Intel(R) Xeon(R) E5-2630 v4
2.20 GHz processors. We limited the computation to one core to avoid results being incomparable due to different times
spent parallelizing. All model checkers worked at a precision of ε = 10−6. Each experiment had a timeout of 15 minutes,
which is represented by an X in the tables. We set the available Java memory to 16 GB. Still, the largest versions of csma
and mer could not be loaded with the explicit engine of PRISM. Since the learning-based approaches are randomized, we
took the average of 20 repetitions of the experiments.

6.2. Optimizations

We considered the following optimizations:

(I) collapsing of SECs when we are certain that it is safe;
(II) preferring exiting actions during the simulation in BRTDP;

(III) executing FIND_MSEC and DEFLATE only every i steps for various i;
(IV) caching the MECs of the SG and restricting the SEC computation to them.

When used with the learning-based algorithm, optimizations (I) and (II) reduce the length of simulations. As an example,
consider the SG in Fig. 1: after DEFLATE was executed on the EC {p, q}, both action b and c have the same upper bound.
So in state q, a simulation randomizes uniformly between picking b and c, which means that there is a positive probability
to cycle through the EC again. Since we are only interested in runs that leave the EC, we want to minimize the time that is
spent cycling through an EC again.

Optimization (I) does this by collapsing ECs where we are certain that collapsing is safe, i.e. that the EC is a SEC. Col-
lapsing a SEC intuitively means replacing it with a single state that has only the exiting actions available, thereby removing
the possibility to loop inside the EC. Thus we always use the best leaving action immediately. Extending the collapsing from
MDPs to SGs requires some technical changes, which are explained in Appendix B.

If it is not clear how to collapse an EC, e.g. if it looks like in Fig. 3, we can still avoid cycling by using Optimization (II),
i.e. preferring exiting actions if possible. For example, if in Fig. 3 the actions d and f for state r have the same value, we
prefer f.

Our implementation of optimization (I) and (II) did not result in a significant speed up, because both checking whether
an EC can really be collapsed as well as checking in each step whether some action is exiting was about as costly as the
gain it brought in our implementation. However, with a better implementation these optimizations are promising, as they
ensure that there no longer is a probability for simulations to cycle in an EC.

Optimization (I) can also be used for the deterministic algorithm, but our experiments did not show a significant speed
up there as well.

Since finding all MSEC candidates is a costly operation, Optimization (III) decreases the number of times that FIND_MSEC
and DEFLATE are executed, by only calling the procedures every i steps for some i. Optimization (III) had the largest impact
on the model cloud (with scaling parameter N = 6), as depicted in Table 1. For i = 1, BVI was not able to finish within 15
minutes, while for the other i it was done within approximately 2 minutes. Looking at BRTDP on this model, we see that
increasing the i increased the verification time from 11 seconds for i = 1 to 255 for i = 1000. Note that depending on the
combination of algorithm and model, both a small and a large i can be advantageous. Probably the number of MSECs as
well as their position in the model play a role. On the one hand, if i is too small, time is wasted to repeatedly compute
the current MSEC decomposition. On the other hand, if i is too large, then we might need to wait for i iterations of the
main loop before we can deflate some MSEC. As in our experiments both very small and very large i (1 or 1000) brought
the possibility of a huge increase in verification time, for all following experiments we chose i = 10. This number always
yielded a verification time that was very close to the optimum we could achieve.

Finally, Optimization (IV) is a technical improvement that speeds up the computation of SECs. In Algorithm 2, we com-
pute the MECs of the modified SG with only optimal Minimizer actions. However, note that any MEC in the modified SG
is an EC in the original SG, and hence a subset of a MEC in the original SG. Thus, we do not have to look for MECs in the
whole modified SG, but it suffices to perform the computation on the MECs of the original SG. By caching these original

21

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

Table 2
CPU time for each MDP experiment in seconds. For each model, there first is a row giving the name of
the model and the parameter(s), and then several rows for the different parameter values we tried. We
compared our deterministic and learning based approaches (BVI and BRTDP) to the deterministic and
learning based approaches based on collapsing ([33] and [11]). We also compared to the explicit engine
of PRISM (PRISM_e), and the hybrid engines of PRISM (PRISM_h) and the topological value iteration of
Storm, all three of which are without guarantees. X indicates a timeout, W that the returned result was
wrong.

Model (scaling-
parameters)

With guarantees Without guarantees

Deterministic Learning-based

BVI [33] BRTDP [11] PRISM_e PRISM_h Storm

firewire (dl)
220 418 389 5 4 389 202 125
240 634 512 5 4 491 346 163
260 894 621 5 4 617 695 186

wlan (k, COL)
4, 2 20 17 5 4 18 12 3
4, 6 36 34 5 3 34 16 7
6, 2 715 691 5 4 760 128 53
6, 6 709 701 5 5 773 134 53

zeroconf (K, N)
2, 20 14 9 3 7 9 7 1
2, 1000 14 10 8 11 9 7 1
10, 20 254 233 7 8 163 133 26
10, 1000 282 170 8 10 155 146 27

csma (N, K)
2, 2 1 1 7 2 1 <1 <1
2, 6 5 3 93 39 3 1 <1
3, 2 4 3 22 12 3 1 <1
3, 6 X X X X X 47 X

leader (N)
3 3 2 4 4 1 1 <1
4 5 3 10 9 1 1 <1
5 8 6 17 28 2 2 <1
6 20 14 50 X 8 8 3

mer (x, n)
10−4, 1500 X X 73 15 629 83 145
10−4, 3000 X X 70 13 X 172 516
0.1, 1500 X X X X 571 115 146
0.1, 3000 X X X X X 235 513

hm (N, p)
20, 0.5 70 33 X 604 W W W
20, 0.9 67 33 X 585 W W W

MECs, we can speed up the computation drastically, especially since typically MECs are small and many states are not part
of any MEC.

6.3. MDP results

We compare seven different approaches to compute the reachability probability as well as optimal strategies on MDPs.
We group these algorithms as follows.
Value iteration with guarantees. There are four guaranteed value iteration approaches – two of them based on collapsing
([11] and [33]) and two based on the new idea of deflating (BRTDP and BVI). Comparing columns 2 and 3 as well as 4 and
5 of Table 2, we see that both the deterministic (BVI and [33]) and both the learning-based (BRTDP and [11]) approaches
perform similarly. We conclude that collapsing and deflating are both useful for practical purposes. The collapsing based
approaches are usually slightly faster. This might be the case, because after an EC is collapsed, it will not have to be
considered again, while for our new approach it is deflated every time. However, the difference might also depend on other
implementation details, for example the different implementations of SIMULATION_STUCK between the two learning-based
approaches.
Value iteration without guarantees. We compare BVI to the usual (unguaranteed) value iteration of PRISM’s explicit engine
(column 6 of Table 2) and see that the guaranteed approach did not take significantly more time in most cases. In all models
but zeroconf for K=10 and mer for n=1500, PRISM_e and BVI produce times in the same order of magnitude. This implies
that the overhead for the computation of the guarantees often is negligible.

22

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

Table 3
The number of states for each model and the number of states
that the two simulation based approaches of [11] and of this pa-
per (BRTDP) explored. Models and their scaling parameters are
denoted on the left as in Table 2. An X indicates a timeout.

Model #States [11] BRTDP
(scaling-parameters)

firewire (dl)
220 10,490,495 792 751
240 13,366,666 779 702
260 15,255,584 791 596

wlan (k, COL)
4, 2 345,118 767 199
4, 6 728,990 764 333
6, 2 5,007,666 858 116
6, 6 5,007,670 691 133

zeroconf (K, N)
2, 20 89,586 393 125
2, 1000 89,586 1,625 898
10, 20 3,001,911 1,161 599
10, 1000 3,001,911 5,358 782

csma (N, K)
2, 2 1,038 964 965
2, 6 66,718 64,341 33,413
3, 2 36,850 22,883 26,650
3, 6 84,856,004 X X

leader (N)
3 364 335 313
4 3,172 2,789 2,599
5 27,299 21,550 8,281
6 237,656 128,593 22,368

mer (x, n)
10−4, 1500 8,862,064 2,603 2,032
10−4, 3000 17,722,564 2,632 2,028
0.1, 1500 8,862,064 X X
0.1, 3000 17,722,564 X X

hm (N, p)
20, 0.5 41 41 X
20, 0.9 41 41 X

Note that for hm the approaches without guarantees return the wrong result (denoted by “W” in the table), e.g. PRISM_e
reports 0.35 when the true result is 0.9. The model checker does not print a warning that this might have happened.
Hybrid approaches. Compared to the hybrid engine of Storm and PRISM (columns 7 and 8 in Table 2), BVI is vastly outper-
formed on larger models; however, this difference is because BVI explicitly constructs the whole model, while the hybrid
engines can avoid this using symbolic representations. An implementation of BVI using the hybrid engine would most prob-
ably also get the speed up of this approach, and hence again be comparable. Looking at the differences between PRISM’s
explicit and hybrid engine we see that the gain of the different engine is much larger than the overhead for computing the
guarantees.
Simulation-based approaches. The simulation based approaches BRTDP and [11] perform well on firewire, wlan and zero-
conf, even outperforming Storm in some cases. For firewire, they are two orders of magnitude faster. So in certain cases,
simulation based approaches can produce a huge speed-up while still giving guarantees, as already noted in [11]. However
for csma, leader and mer they are not well suited, as they need to explore thousands of states to achieve convergence. For
the first two rows of mer they are still faster, since the explored part of the state space is very small in comparison to the
whole model and not too large in general, but as the model is scaled, the number of relevant states grows too large for
the simulation based approaches to work well. In hm, the adversarial handcrafted model, every value iteration algorithm
is slow due to the slow convergence of the values. Moreover, the simulation based approaches have an additional problem
that increases their runtime: every time a simulation starts in the initial state, it has a high probability, around 99.99%
for our choice of N, to lead back to the initial state and not reach a target or a sink. Thus, simulations are often stopped
by SIMULATION_STUCK without making any progress. Intuitively, the algorithm assumes that it does not reach a target
because of an EC, while in fact it is only due to the low probability to reach the goal.

The results in Table 3 show that [11] explores a larger portion of the state space for almost all experiments. This is due
to the different choice of the heuristic SIMULATION_STUCK, i.e. the number of steps before a simulation is stopped. The
implementation in [11] allows for simulating longer, and hence more of the state space is explored. Depending on the model

23

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

Table 4
Experimental results for the experiments on SGs. Models and their scaling parameters
are denoted on the left as in Table 2. Columns 2, 3 and 4 display the verification time in
seconds for each of the solvers, namely PRISM-games (referred as PRISM), our determin-
istic algorithm (BVI) and our learning-based algorithm (BRTDP). The next two columns
compare the number of states that BRTDP explored (#States_B) to the total number of
states in the model. The rightmost column shows the number of MSECs in the model.
An X indicates a timeout.

Model Model checking times Model properties

(scaling-parameters) PRISM BVI BRTDP #States_B #States #MSECs

mdsm (prop)
1 10 14 20 895 62,245 1
2 6 9 28 471 62,245 1

cdmsn
3 4 9 1,213 1,240 1

teamform (N)
3 5 7 102 7,337 12,476 0
4 10 14 X X 96,666 0

cloud (N)
5 6 15 19 1,311 8,842 4,421
6 9 123 12 768 34,954 17,477

structure, this can be advantageous or detrimental for the verification time. In hm, the longer simulations are necessary to
have a good chance of reaching a target or sink and making progress, so here [11] outperforms BRTDP. In contrast, in leader
with N=6 [11] explores 128,593 states without producing a result, while BRTDP can terminate after seeing only 22,368
states. Here, stopping a simulation early prevents the algorithm from wasting time exploring irrelevant parts of the state
space or cycling in ECs for a long time.

In general one can see, that the approach of deflating works well also on MDPs and that giving guarantees often is
possible without significant overhead.

6.4. SG results

Since we gave the first guaranteed value iteration approach, we performed experiments to empirically estimate the
overhead for the upper bound computation. We compared both our algorithms, the deterministic BVI and the learning-
based BRTDP, to the hybrid engine of PRISM-games; note that the latter does not give any guarantees on the value. The
results in Table 4 show that on all our benchmarks at least one of our approaches was close to the time that the hybrid
engine of PRISM-games needed. The amount of times deflate has to be executed grows when there are many MSECs, as
for example in cloud. This explains the longer runtime that BVI has, especially for cloud with N=6. Luckily, for this model
apparently only a small part of the state space is relevant for convergence, and thus BRTDP performs well. On the other
hand, for cdmsn and teamform a large part of the state space is relevant, so that BRTDP is slow in comparison and does not
even finish in time for teamform with N=4.

In conclusion, we see that deflating can be very costly, but the cost often is negligible or can be mitigated by using the
learning-based approach.

7. Conclusions

We have provided the first stopping criterion for value iteration on simple stochastic games and an anytime algorithm
with bounds on the current error and thus guarantees on the precision of the result. The main technical challenge was that
states in end components in SGs can have different values, in contrast to the case of MDPs. We have shown that collapsing
is in general not possible, but we utilized the analysis of the game graph to obtain the procedure of deflating, a solution
on the original graph. Besides, whenever a simple end component is identified for sure it can be collapsed and the two
techniques of collapsing and deflating can thus be combined.

The experiments indicate that the price to pay for the overhead to compute the error bound is often negligible. For each
of the experimental models, at least one of our two implementations has performed similar to or better than the standard
approach that yields no guarantees. Further, the obtained guarantees facilitate (e.g. learning-based) heuristics which treat
only a part of the state space and can thus potentially lead to huge improvements. Surprisingly, already our straightforward
adaptation of a learning-based algorithm from MDP to SG yields good results, sometimes palliating the overhead of our non-
learning method, despite the most naive implementation of deflating. Future work could reveal whether other heuristics or
more efficient implementation can lead to huge savings as in the case of MDP [11].

The concept of simple end components has already been generalized to settings with limited information [6], with
multiple objectives [4] and to concurrent stochastic games [30]. It is probable that it can also be applied in settings with

24

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

s1

s2

1staystay

exit

exit

Fig. A.6. An example of an SG (also MDP) where following (ε-)optimal actions is not necessarily an (ε-)optimal strategy.

other objectives, e.g. expected reward or parity. To this end, the relationship between simple end components and tangles
in parity games [29] should also be investigated.

Declaration of competing interest

This research was funded in part by the German Excellence Initiative and the European Union Seventh Framework Pro-
gramme under grant agreement No. 291763 for TUM – IAS, the Studienstiftung des Deutschen Volkes project “Formal
methods for analysis of attack-defence diagrams”, TUM IGSSE Grant 10.06 (PARSEC), and the German Research Foundation
(DFG) project KR 4890/2-1 “Statistical Unbounded Verification”.

Appendix A. Obtaining ε-optimal strategies

In this appendix, we show how to obtain ε-optimal strategies, given an SG G = (S, S�, S©, s0, A, Av, δ) and vectors of
under- and over approximants of the value, L respectively U. Intuitively, the strategy just plays an action which is optimal
according to the approximants. However, this might not be sufficient, as the following counter-example shows.

Consider the SG (that also is an MDP) from Fig. A.6. After one update we have L(s1) = L(s2) = 1. Thus,
arg maxa∈Av(si)

L(si, a) = {stay, exit} and L is ε-close to the true value (in fact it is equal). Both actions are indeed opti-
mal, as after playing stay, the other state still can reach the target with probability 1. However, using the strategy that in
both states picks the stay-action results in probability 0 to reach the target. Intuitively, the problem is that picking ε-optimal
actions only guarantees that they are one-step ε-optimal, but does not ensure that the target is actually reached in the end.
Thus, in order to obtain ε-optimal strategies, we additionally have to ensure that the strategies “make progress” towards
the target.

A way to achieve this would be to randomize over all ε-optimal actions; however, this is suboptimal, as theoretically it
needs the additional power of randomization and practically the strategy has a chance of cycling unnecessarily by using the
actions that stay instead of making progress.

In [7, Remark 10.104], the authors observe that Li corresponds to the i-step-bounded reachability probability (for MDPs,
but the argument extends to SGs). They suggest that a strategy obtaining this value can be generated by choosing an optimal
action according to Li in the first state, then according to Li−1 in the next step and so on.12 However, note that this strategy
requires memory as well as knowledge of all intermediate results Li .

We now describe a way to obtain a memoryless deterministic ε-optimal strategy for Maximizer and Minimizer, using
only the final approximants L respectively U. We also prove the correctness of our strategies. Concretely, we want to find a
σ such that for all τ : Pσ ,τ

s0
(�F) > V(s0) − ε. Dually we also want a τ such that for all σ : Pσ ,τ

s0
(�F) < V(s0) + ε. Intuitively,

for the Minimizer it suffices to just play actions which are optimal according U. For the Maximizer, we play optimally
according to L, but additionally have to ensure that the actions make progress; we achieve this by performing a backwards
search from the target states and picking only those actions that decrease the distance to the targets.

A.1. Assumptions on the approximants

We first state several assumptions which the approximants have to satisfy and for each assumption prove that it is
satisfied for approximants coming from our algorithm. For ease of notation, we use the operator arg opt to find the set of
optimal actions for a state s:

arg opt
a∈Av(s)

:=
{

arg maxa∈Av(s) if s ∈ S�
arg mina∈Av(s) if s ∈ S©

• The approximants are correct, i.e. for all states L(s) ≤ V(s) ≤ U(s). This assumption is satisfied for our algorithm by
Theorem 2.

12 In the previous example, for all i > 1, both stay and exit are optimal, while for i = 1 only exit is optimal. Thus, this strategy ensures that the target is
reached.

25

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

• The approximants are ε-close in the initial state, i.e. V(s0) − L(s0) < ε and U(s0) − V(s0) < ε. This is satisfied for our
algorithm, as the bounds are correct and the stopping criterion ensures U(s0) − L(s0) < ε.

• For all target states the lower approximant is 1. This assumption is satisfied by the initialization of the algorithm.
• Unfolding the Bellman equation for the approximants can only make them more precise, i.e. for all states s:

L(s) ≤ arg opt
a∈Av(s)

∑
s′∈S

δ(s,a, s′) · L(s′)

U(s) ≥ arg opt
a∈Av(s)

∑
s′∈S

δ(s,a, s′) · U(s′)

We first prove this assumption for the lower approximants. Let i be the iteration in which the algorithm computing the
approximants finished. We denote by L j the approximants in the j-th iteration for all j ≤ i. Then we have L = Li by
definition. The lower approximant is computed according to the Bellman equations (3) and (4). Thus for all states s we
have

Li(s) := arg opt
a∈Av(s)

∑
s′∈S

δ(s,a, s′) · Li−1(s
′)

≤ arg opt
a∈Av(s)

∑
s′∈S

δ(s,a, s′) · Li(s
′),

where the second inequality follows the fact that the bounds are monotonically increasing, i.e. Li−1(s) ≤ Li(s).
For the upper approximant, the proof is mostly analogous, replacing ≤ with ≥. However, we also have to address
the additional deflating that can modify the upper approximants. If a state s is deflated down to x, then it is part
of an EC T and all states in the T were deflated to x as well. As T is an EC, every s ∈ T has a staying action as .
Since all successors of this action are in the EC and have an upper estimate of x, we have U(s, as) = x. Hence, if s
is a Minimizer state, we have U(s) = x and arg mina′∈Av(s)

∑
s′∈S δ(s, a, s′) · U(s′) ≤ U(s, as) = x and the assumption is

satisfied. If s is a Maximizer state, we also use the fact that x = bestExit�U (T), and thus for all leaving actions a� we
have U(s, a�) ≤ x. Then, as all staying actions have an estimate of x and all leaving actions have at most x, we can
conclude that arg maxa′∈Av(s)

∑
s′∈S δ(s, a, s′) · U(s′) = x.

Note that given the true values V, unfolding the Bellman equations for one step results in exactly the same values, as
the value vector is a fixpoint. Thus, in that case we have an equality.

A.2. Strategies following only the approximants

Let σ L and τU be the strategies that pick an action that is optimal according to the approximants L respectively U.
Formally, for all states s , let σ L(s) be an element of arg maxa∈Av(s)

∑
s′∈S δ(s, a, s′) · L(s′). Dually, let τU(s) be an element

of arg mina∈Av(s)
∑

s′∈S δ(s, a, s′) · U(s′).
We now prove that following these strategies for a finite number of steps does not decrease the probability to reach the

target. For this, let �i X := {ρ ∈ (S × A)ω | ρ = s0a0s1a1 · · · ∧ si ∈ X} denote the measurable set of all paths which reach a
state from the set X ⊆ S after exactly i steps. We mention two technical details: firstly, we only require that X is visited
after exactly i steps. We do not require that this is the first visit to X . Secondly, this definition only restricts a finite prefix of
the path; however, as we have defined the probability distribution only over infinite paths, this set contains infinite paths.

Lemma 7 (Following the approximants for a finite time). For all states s ∈ S and all i ∈N0 , the following two statements hold. For all
Minimizer strategies τ :∑

s′∈S

Pσ L,τ
s [�i{s′}] · L(s′) ≥ L(s).

Dually, for all Maximizer strategies σ :∑
s′∈S

Pσ ,τU

s [�i{s′}] · U(s′) ≤ U(s).

Proof. We show only the first statement, as the second proof is completely analogous. We proceed by induction on i, the
number of steps for which we follow σ L . For i = 0,

Pσ L,τ
s [�0{s′}] =

{
1 if s = s′

0 otherwise
.

26

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

Thus, the left side of the inequality evaluates to L(s) and the base case is completed.
For the induction step, the following chain of equations proves our goal. We justify every transformation below the

equations.∑
s′∈S

Pσ L,τ
s [�i+1{s′}] · L(s′)

=
∑
t∈S

Pσ L,τ
s [�i{t}] ·

⎛
⎝∑

s′∈S

δ(t,π(t), s′) · L(s′)

⎞
⎠ (Step 1)

≥
∑
t∈S

Pσ L,τ
s [�i{t}] · L(t) (Step 2)

≥ L(s) (Induction hypothesis)

For Step 1, instead of considering paths that follow the strategies for i + 1 steps, we consider paths that follow it for i steps

and explicitly unfold the final step. Here, π(s′) =
{
σ L(s′) if s ∈ S�
τ (s′) if s ∈ S©

.

For Step 2, we use the fourth assumption on the approximants, namely that unfolding the Bellman equation can only
make them more precise. If t is a Maximizer state, by definition we have

σ L(t) = arg max
a∈Av(t)

∑
s′∈S

δ(t,a, s′) · L(s′)

and thus can immediately apply the assumption. If t is a Minimizer state, we know that the assumption holds for arg min
of all available actions, so it also holds for whichever action τ uses. In the final step, we apply the induction hypothesis. �

Lemma 8. τU is an ε-optimal strategy of Minimizer.

Proof. Using Lemma 7, we have that for all states s , all Maximizer strategies σ and all i ∈N0:∑
s′∈S

Pσ ,τU

s [�i{s′}] · U(s′)

=
⎛
⎝∑

s′∈F

Pσ ,τU

s [�i{s′}] · U(s′)

⎞
⎠ +

⎛
⎝ ∑

s′∈S\F

Pσ ,τU

s [�i{s′}] · U(s′)

⎞
⎠ (Splitting the sum)

≤ U(s) (Lemma 7)

The second sum over all non-target states certainly evaluates to 0 or more. Also, U(s′) = 1 for all s′ ∈ F . Hence, it holds that∑
s′∈F

Pσ ,τU

s [�i{s′}] ≤ U(s).

Thus, pulling the sum into the definition of the paths, we get

Pσ ,τU

s [�iF] ≤ U(s).

Note that as this statement holds for all i and all target states are absorbing, we can also take the limit and consider all
paths that reach a target state �F . Considering the initial state s0 and using that U is correct and ε-optimal, we conclude
that τU is ε-optimal:

Pσ ,τU

s0
[�F] ≤ U(s0) ≤ V(s0) + ε. �

A.3. Ensuring maximizer makes progress

We already saw in the counter-example in the beginning that the dual of Lemma 8 is not true, as only playing actions
according to the approximants is not ε-optimal. We will now show how to augment σ L to become ε-optimal.

We employ a folklore construction which is sometimes called attractor, similar13 to the one used in [15, Section 5.3]. In
other words: we perform a backwards search from the target state, using only actions that are ε-optimal according to L.

13 In that paper, they ensure that the target or sink states are reached almost surely. We require that target states are reached with positive probability.

27

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

Formally, we use the following recursive procedure. Let Sattr
0 = F . For i ≥ 1, we define

Sattr
i = {s ∈ S� | ∃a ∈ arg max

a′∈Av(s)
L(s,a′).Post(s,a) ∩ Sattr

i−1 �= ∅}

∪ {s ∈ S© | ∀a ∈ Av(s).Post(s,a) ∩ Sattr
i−1 �= ∅}.

We terminate when Sattr
j = Sattr

j−1.

For all i, Sattr
i contains those states that have a path of length at most i to the target which for Maximizer states uses

only ε-optimal actions, and for Minimizer states has no other choice but to continue on a path towards the target. This can
be proven by simple induction on the length of the path. Note that the states with no path to the target are not in Sattr

i for
any i.

Let P := {s ∈ S | V(s) > 0} be all states with a positive value. As every state with a positive value has a path to a target
state, it holds that P = Sattr

j , where j is the iteration where the recursive procedure terminates.

We now define the ε-optimal Maximizer strategy σ L,attr. Note that for states in F or states with value 0, the strategy
is irrelevant as either we anyway have reached target or no strategy can reach the target (against a rational opponent).
Thus, here σ L,attr picks an arbitrary available action. For every state in s ∈ P \ F , we pick an action as follows: let i be the
minimum number with s ∈ Sattr

i . As s ∈ P , such an i exists. Then the strategy σ L,attr(s) picks an action from

{a ∈ Av(s) | a ∈ arg max
a′∈Av(s)

L(s,a′) ∧ Post(s,a) ∩ Sattr
i−1 �= ∅}.

Such an action exists, because s was added in the i-th step, hence it must have an action leading to Sattr
i−1 by definition

of Sattr
i . Note that not all successors of the action have to be in Sattr

i−1, but we require only at least one in order to have a
positive probability of making progress. Further, note that i − 1 ≥ 0, since s /∈ F , so the strategy is well defined.

Under this strategy σ L,attr, for every Minimizer strategy τ , every state in s ∈ P \ F has a positive probability to reach the
target states. To prove this, observe that every s is in some Sattr

i . For a Maximizer state, by construction it uses an action
with a positive chance to reach a state in Sattr

i−1; for Minimizer, it has no choice but to put positive probability on reaching
Sattr

i−1. Repeating the argument until i = 0 shows the claim.

Lemma 9. σ L,attr is an ε-optimal strategy of Maximizer.

Proof. We again use Lemma 7 and split the sum as in the proof of Lemma 8. However, this time we split S into F , P and
the remaining states with value 0. Note that for states with value 0 also the lower approximant is 0, since by assumption
the lower approximant is correct. Hence, the summand considering the value 0 states evaluates to 0. Thus we have that for
all states s , all Minimizer strategies τ and all i ∈N0:⎛

⎝∑
s′∈F

Pσ L,attr,τ
s [�i{s′}] · L(s′)

⎞
⎠ +

⎛
⎝ ∑

s′∈P\F

Pσ L,attr,τ
s [�i{s′}] · L(s′)

⎞
⎠ ≥ L(s)

Here is the crucial difference between constructing a Maximizer and Minimizer strategy: for Maximizer, it is possible that
the whole probability mass still remains in P . Following a strategy that maximizes L for a finite number of steps does not
decrease the chance of reaching the targets, but it might be necessary to eventually switch to the optimal strategy in order
to actually realize the value. This is why we used the attractor construction to ensure that under σ L,attr every state in P \ F
has a positive probability to reach the target. Then, for i → ∞, the second summand converges to 0. Intuitively, more and
more probability leaves towards the target or sink states. Formally, as from every state there exists a path with positive
probability to reach a target, the probability to reach F in

∣∣S∣∣ steps is at least q := p
∣∣S∣∣

, where p is the minimum probability
occurring in the SG. Since

∑∞
i q · (1 − q)i = 1 (geometric series), the probability to remain in P \ F is 0.

Having ensured that the probability mass actually arrives at the target, we can consider the infinite behaviour and
conclude:

Pσ L,attr,τ
s [�F] ≥ L(s)

Note that we again pulled the sum into the definition of the paths and used that for target states the lower approximant is
initialized to 1. Finally, considering the initial state and using that L is correct and ε-close, we arrive at our goal:

Pσ L,attr,τ
s0

[�F] ≥ L(s0) ≥ V(s0) − ε. �

Note that, given the true values V, all inequalities in the proofs become equalities. Thus, we also showed how to construct
optimal strategies from the true value vector.

28

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

Appendix B. Definition of COLLAPSE

The way in which we define COLLAPSE is not only able to collapse ECs in MDPs, but also simple ECs (SEC, see Defini-
tion 5) in SGs. Note that every EC in an MDP is a SEC. If there are no actions of Maximizer leaving the SEC, we have to keep
staying actions, so the SEC becomes an absorbing state (we do not want a state without actions, as we assumed the game
is non-blocking). Otherwise all staying actions are removed and the SEC becomes a single state, whose available actions are
all the exiting actions of Maximizer states in the SEC. Note that we have to remove Minimizer actions, because otherwise
we would allow Maximizer to use an exit that Minimizer wants to prevent.

Definition 6 (COLLAPSE). Let G = (S, S�, S©, s0, A, Av, δ) be an SG and T a SEC in G . Then COLLAPSE(G, T) = G′ =
(S′, S′

�, S′
©, s′

0, A
′, Av′, δ′), where G′ is defined as follows:

• S′ = (S \ T) ∪ {sT }
• S′

� = (S� \ T) ∪ {sT }
• S′

© = S© \ T

• s′
0 =

{
sT if s0 ∈ T

s0 otherwise
• A′ = A ∪ {⊥}, where ⊥ /∈ A is a new action.
• Av′(s) is defined for all s ∈ S′ by:

– Av(s),
if s ∈ (S \ T), i.e. s �= sT
(Rest stays the same)

–
⋃

t∈T� {a ∈ Av(t) | (t, a) exits T },
if s = sT and ∃t ∈ T� : (t, a) exits T
(Keep leaving Maximizer actions, if there is an exit for Maximizer)

– {⊥},
if s = sT and ¬∃t ∈ T� : (t, a) exits T
(Keep a staying action, if there is no exit for Maximizer)

• δ′ is defined for all s ∈ S′ and a ∈ Av′(s) by:
– δ′(s, a)(s′) = δ(s, a)(s′)

for all s′ ∈ S′ with s, s′ �= sT
(Rest stays the same)

– δ′(s, a)(sT) = ∑
s′∈T δ(s, a)(s′),

if s �= sT
(going to T)

– δ′(sT , a)(s′) = δ(s, a)(s′)
for all a ∈ Av′(sT), the unique s ∈ T with a ∈ Av(s) and all s′ ∈ S′ \ {sT }
(leaving from T)

– δ′(sT , a)(sT) = ∑
t∈T δ(s, a)(t)

for all a ∈ Av′(sT) and the unique s ∈ T with a ∈ Av(s)

(staying in T when using an exit)
– δ′(sT , ⊥)(sT) = 1

if ⊥ ∈ Av′(sT)

(staying in T in the case of no Maximizer exits)

Note that when defining δ in the case of leaving from T , we assume that no action is available for multiple states in T .
If there are duplicates, we rename the actions before collapsing, e.g. by indexing them with their respective state.

When computing the reachability probability of reaching a target set F , we also have to adjust the target set as follows:

F′ = (F \ T) ∪
{

∅ if T ∩ F = ∅
{sT } otherwise

.

We now argue about the correctness of this definition. Firstly, note that G′ is well-defined. All states in S \ T remain a
part of the state space, and the controlling player as well as the available actions remain unchanged. All states from T have
been replaced by the newly added sT . To argue about the transition function, we make a case distinction:

• Going to T : if an action previously lead to a state s′ ∈ T , now this probability mass leads to sT . Note that an action
might have multiple different successors in T , thus we sum over all s′ ∈ T when defining δ′(s, a)(sT). Thus, δ′ still is a
valid probability distribution, since all probability mass previously going to a state in T now goes to sT .

29

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

• Using an exit from T : the third and fourth items in the definition of δ′ deal with the case that we use an action
a ∈ Av′(sT) that was an exit from T . Note that for this case we use the additional assumption that — possibly by
renaming actions — there were no states s, s′ ∈ T such that a ∈ Av(s) ∩ Av(s′), i.e. actions are unique for the states in
T . So for an action a there is a unique state-action pair (s, a) with s ∈ T that identifies this exit. Thus, for transitions
leading to states s′ outside of T , we can reuse the old transition function δ(s, a)(s′); this is done by the third item.
For transitions leading back into T (which is possible, since for a to be an exit we do not require all successors to be
outside of T , but only at least one of them), we use the same idea as in the previous item: we sum the probability
of all transitions leading to any state t ∈ T and assign it to sT ; this is done by the fourth item. Thus, δ′ still is a valid
probability distribution, since (i) it is defined for every available action of sT , and (ii) all probability mass leaving T
remains unchanged, and all probability mass staying in T now leads to sT .

• If there is no exit for Maximizer in T , formally ¬∃t ∈ T� : (t, a) exits T , then we use the newly added action ⊥ that
loops surely.

Appendix C. Description of the experimental models

Our experiments are based on the ones that were conducted in [58]. Most models we use are also analyzed in that
thesis, and we obtained them from the website,14 where the author of the thesis made them available for download. We
used the exact models from that website, but partly modified the properties to be of a form that our implementation can
handle. These modifications did not change the semantics of the property, e.g. instead of formulating a property that a
probability is greater than a certain number (P>0.999) we compute the maximal probability (Pmax=?), and then manually
check whether it is greater than the number. The only models not from [58] are the MDPs csma and leader and the MC hm.

We consider six MDP models, namely firewire, wlan, zeroconf, csma, leader and mer. The first five are part of the PRISM
benchmark suite [45], mer is from [31]. The four SG models are mdsm, cdmsn, team-form and cloud, and the first three are
contained in the PRISM-games case studies.15 Cloud is from [13]. Note that some of the SG models actually contain more
than two players. However, since there are at most two coalitions, they can be viewed as an SG with only two players. We
will now shortly describe all models, the properties we check and the parameters we use for scaling.

firewire [48]:
This case study models the protocol known as FireWire, which is a leader election protocol of the IEEE 1394 High Perfor-
mance Serial Bus. Several devices connected to a bus can use the protocol to dynamically elect a leader. We compute the
probability Pmax=? [Fleader_elected], so the maximal probability with which a leader gets elected before the deadline. By
this one can check the property that a leader gets elected with a certain, optimally high, probability. To scale the model up,
we raise the deadline.

wlan [47]:
This model describes the two-way handshake mechanism of the IEEE 802.11 medium access control (WLAN protocol). Two
stations try to communicate with each other; however, if both of them send at once, a collision occurs. We are interested
in computing the maximum probability that both stations transmit their messages correctly, i.e. Pmax=? [F s1=12 & s2=12],
where s1 and s2 describe the state of the stations, and 12 is the final state where the transmission was successful. To scale
the model up, we increase the maximal backoff k and the maximal number of collisions COL.

zeroconf [46]:
Zeroconf is a protocol for dynamically assigning an IP address to a device, provided that several other hosts have already
blocked some IP addresses. The device picks some IP randomly and then sends probes to check whether this address is
already in use. The parameters that we use to scale the model are N , the number of other hosts already possessing an IP
address and K , the number of probes sent. The probability we are interested in is Pmin=? [F configured], so the minimum
probability with which the device obtains an IP address.

csma: [45]
This case study concerns the IEEE 802.3 CSMA/CD (Carrier Sense, Multiple Access with Collision Detection) protocol. N is
the number of stations and K is the maximum backoff. Pmin=? [F min_backoff_after_success<=K] is the probability we are
interested in, namely that a message of some station is eventually delivered before K backoffs.

leader [45]:
This case study is based on the asynchronous leader election protocol of [37]. This protocol solves the following problem.
Given an asynchronous ring of N processors design a protocol such that they will be able to elect a leader (a uniquely
designated processor) by sending messages around the ring. The probability we are interested in is Pmax=? [F “elected”], so
that at some point a leader is elected.

mer [31]:
In the Mars Exploration Rover there is a resource arbiter that handles distributing resources to different users. There is a
probability x that the communication between the arbiter and the users fails. We change this probability to influence the

14 http://www.prismmodelchecker.org /files /thesismujma/.
15 prismmodelchecker.org/games/casestudies.php.

30

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

structure of the MDP. The probability we compute is Pmax=? [F err_G], which is the maximum probability that an error
occurs.

hm [33]:
An example that was handcrafted to show when value iteration without guarantees fails. It consists of two chains of states
of length n that lead to the target and a sink state; however, at every position in the chain there is some probability to go
back to the initial state. This also is an adversarial example for simulation based algorithms, as the probability to reach a
sink state and make any progress the simulation has to be lucky n times in a row, which is unlikely.

mdsm [20]:
This case study models multiple households which all consume different amounts of energy over time. To minimize the peak
energy consumption, they utilize the distributed energy management “Microgrid Demand-Side Management” (mdsm). The
property we check is the maximal probability with which the first household can deviate from the management algorithm,
i.e. Pmax=? [F deviated], which should be smaller than 0.01. We check the property once for player 1 and once for player 2.

cdmsn [20,54]:
This model describes a set of agents which have different sites available and different preferences over these sites. The
collective decision making algorithm of this case study is utilized so that the agents agree on one decision. We anal-
yse the model to find the strategy for player 1 to make the agents agree on the first site with a high probability, so
<<p1>> Pmax=? [F all_prefer_1].

team-form [21]:
As in the previous case study, there is a set of agents in a distributed environment. They need to form teams so they are
able to perform a set of tasks together. We want to compute a strategy so that the first task is completed with the maximal
possible probability, so we check the property <<p1,p2,p3>> Pmax=? [F task1_completed]. The model can be scaled using
the number of agents N. However, for this model PRISM’s pre-computations already solve the problem and hence it cannot
be used to compare the approaches; thus, it is not included in any of our tables.

cloud [13]:
This model describes several servers and virtual machines forming a cloud system. The controller of the system wants to
deploy a web application on one of the virtual machines, but it is possible that the servers fail due to hardware failures. We
compute the strategy and the maximal probability for the controller to successfully deploy his software, so <<controller>>

Pmax=? [F deployed]. The model can be scaled by increasing the number of virtual machines N.

References

[1] D. Andersson, P.B. Miltersen, The complexity of solving stochastic games on graphs, in: ISAAC, Springer, 2009, pp. 112–121.
[2] G. Arslan, S. Yüksel, Decentralized Q-learning for stochastic teams and games, IEEE Trans. Autom. Control 62 (2017) 1545–1558, https://doi .org /10 .

1109 /TAC .2016 .2598476.
[3] P. Ashok, K. Chatterjee, P. Daca, J. Kretínský, T. Meggendorfer, Value iteration for long-run average reward in Markov decision processes, in: CAV (1),

Springer, 2017, pp. 201–221.
[4] P. Ashok, K. Chatterjee, J. Kretínský, M. Weininger, T. Winkler, Approximating values of generalized-reachability stochastic games, in: LICS, ACM, 2020,

pp. 102–115.
[5] P. Ashok, P. Daca, J. Kretínský, M. Weininger, Statistical model checking: black or white?, in: ISoLA (1), Springer, 2020, pp. 331–349.
[6] P. Ashok, J. Kretínský, M. Weininger, PAC statistical model checking for Markov decision processes and stochastic games, in: CAV (1), Springer, 2019,

pp. 497–519.
[7] C. Baier, J. Katoen, Principles of Model Checking, MIT Press, 2008.
[8] C. Baier, J. Klein, L. Leuschner, D. Parker, S. Wunderlich, Ensuring the reliability of your model checker: interval iteration for Markov decision processes,

in: CAV (1), Springer, 2017, pp. 160–180.
[9] N. Balaji, S. Kiefer, P. Novotný, G.A. Pérez, M. Shirmohammadi, On the complexity of value iteration, in: ICALP, Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2019, pp. 102:1–102:15.
[10] R.I. Brafman, M. Tennenholtz, A near-optimal polynomial time algorithm for learning in certain classes of stochastic games, Artif. Intell. 121 (2000)

31–47, https://doi .org /10 .1016 /S0004 -3702(00)00039 -4.
[11] T. Brázdil, K. Chatterjee, M. Chmelik, V. Forejt, J. Kretínský, M.Z. Kwiatkowska, D. Parker, M. Ujma, Verification of Markov decision processes using

learning algorithms, in: ATVA, Springer, 2014, pp. 98–114.
[12] L. Busoniu, R. Babuska, B.D. Schutter, A comprehensive survey of multiagent reinforcement learning, IEEE Trans. Syst. Man Cybern. Part C 38 (2008)

156–172, https://doi .org /10 .1109 /TSMCC .2007.913919.
[13] R. Calinescu, S. Kikuchi, K. Johnson, Compositional reverification of probabilistic safety properties for large-scale complex IT systems, in: Monterey

Workshop, Springer, 2012, pp. 303–329.
[14] J. Cámara, G.A. Moreno, D. Garlan, Stochastic game analysis and latency awareness for proactive self-adaptation, in: SEAMS, ACM, 2014, pp. 155–164.
[15] K. Chatterjee, L. de Alfaro, T.A. Henzinger, Strategy improvement for concurrent reachability and turn-based stochastic safety games, J. Comput. Syst.

Sci. 79 (2013) 640–657, https://doi .org /10 .1016 /j .jcss .2012 .12 .001.
[16] K. Chatterjee, N. Fijalkow, A reduction from parity games to simple stochastic games, in: GandALF, 2011, pp. 74–86.
[17] K. Chatterjee, M. Henzinger, Faster and dynamic algorithms for maximal end-component decomposition and related graph problems in probabilistic

verification, in: SODA, SIAM, 2011, pp. 1318–1336.
[18] K. Chatterjee, T.A. Henzinger, Value iteration, in: O. Grumberg, H. Veith (Eds.), 25 Years of Model Checking - History, Achievements, Perspectives,

Springer, 2008, pp. 107–138.
[19] K. Chatterjee, T.A. Henzinger, B. Jobstmann, A. Radhakrishna, Gist: a solver for probabilistic games, in: CAV, 2010, pp. 665–669.
[20] T. Chen, V. Forejt, M.Z. Kwiatkowska, D. Parker, A. Simaitis, Automatic verification of competitive stochastic systems, Form. Methods Syst. Des. 43

(2013) 61–92, https://doi .org /10 .1007 /s10703 -013 -0183 -7.
[21] T. Chen, M.Z. Kwiatkowska, D. Parker, A. Simaitis, Verifying team formation protocols with probabilistic model checking, in: CLIMA, Springer, 2011,

pp. 190–207.

31

J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886

[22] T. Chen, M.Z. Kwiatkowska, A. Simaitis, C. Wiltsche, Synthesis for multi-objective stochastic games: an application to autonomous urban driving, in:
QEST, 2013, pp. 322–337.

[23] C. Cheng, A.C. Knoll, M. Luttenberger, C. Buckl, GAVS+: an open platform for the research of algorithmic game solving, in: TACAS, Springer, 2011,
pp. 258–261.

[24] A. Condon, The complexity of stochastic games, Inf. Comput. 96 (1992) 203–224, https://doi .org /10 .1016 /0890 -5401(92)90048 -K.
[25] A. Condon, On algorithms for simple stochastic games, in: Advances in Computational Complexity Theory, DIMACS/AMS, 1993, pp. 51–71.
[26] P. Daca, T.A. Henzinger, J. Kretínský, T. Petrov, Faster statistical model checking for unbounded temporal properties, ACM Trans. Comput. Log. 18 (2017)

12:1–12:25, https://doi .org /10 .1145 /3060139.
[27] B.A. Davey, H.A. Priestley, Introduction to Lattices and Order, Cambridge University Press, 2002.
[28] C. Dehnert, S. Junges, J. Katoen, M. Volk, A storm is coming: a modern probabilistic model checker, in: CAV (2), Springer, 2017, pp. 592–600.
[29] T. van Dijk, Attracting tangles to solve parity games, in: CAV (2), Springer, 2018, pp. 198–215.
[30] J. Eisentraut, J. Kretínský, A. Rotar, Stopping criteria for value and strategy iteration on concurrent stochastic reachability games, CoRR, arXiv:1909 .08348

[abs], http://arxiv.org /abs /1909 .08348, 2019.
[31] L. Feng, M.Z. Kwiatkowska, D. Parker, Automated learning of probabilistic assumptions for compositional reasoning, in: FASE, Springer, 2011, pp. 2–17.
[32] J. Filar, K. Vrieze, Competitive Markov Decision Processes, Springer Science & Business Media, 2012.
[33] S. Haddad, B. Monmege, Interval iteration algorithm for mdps and imdps, Theor. Comput. Sci. 735 (2018) 111–131, https://doi .org /10 .1016 /j .tcs .2016 .

12 .003.
[34] E.M. Hahn, A. Hartmanns, C. Hensel, M. Klauck, J. Klein, J. Kretínský, D. Parker, T. Quatmann, E. Ruijters, M. Steinmetz, The 2019 comparison of tools

for the analysis of quantitative formal models - (QCOMP 2019 competition report), in: TACAS (3), Springer, 2019, pp. 69–92.
[35] A.J. Hoffman, R.M. Karp, On nonterminating stochastic games, Manag. Sci. 12 (1966) 359–370, https://doi .org /10 .1287 /mnsc .12 .5 .359.
[36] A. Hordijk, L. Kallenberg, Linear programming and Markov decision chains, Manag. Sci. 25 (1979) 352–362, https://doi .org /10 .1287 /mnsc .25 .4 .352.
[37] A. Itai, M. Rodeh, Symmetry breaking in distributed networks, Inf. Comput. 88 (1990) 60–87, https://doi .org /10 .1016 /0890 -5401(90)90004 -2.
[38] M. Kattenbelt, M.Z. Kwiatkowska, G. Norman, D. Parker, A game-based abstraction-refinement framework for Markov decision processes, Form. Methods

Syst. Des. 36 (2010) 246–280, https://doi .org /10 .1007 /BF01415989.
[39] E. Kelmendi, J. Krämer, J. Kretínský, M. Weininger, Value iteration for simple stochastic games: stopping criterion and learning algorithm, in: CAV (1),

Springer, 2018, pp. 623–642.
[40] J. Kretínský, T. Meggendorfer, Efficient strategy iteration for mean payoff in Markov decision processes, in: ATVA, Springer, 2017, pp. 380–399.
[41] J. Kretínský, T. Meggendorfer, Of cores: a partial-exploration framework for Markov decision processes, Log. Methods Comput. Sci. 16 (2020), https://

lmcs .episciences .org /6833.
[42] J. Kretínský, E. Ramneantu, A. Slivinskiy, M. Weininger, Comparison of algorithms for simple stochastic games, in: GandALF, 2020, pp. 131–148.
[43] M. Kwiatkowska, G. Norman, D. Parker, G. Santos, Prism-games 3.0: stochastic game verification with concurrency, equilibria and time, in: CAV (2),

Springer, 2020, pp. 475–487.
[44] M.Z. Kwiatkowska, G. Norman, D. Parker, PRISM 4.0: verification of probabilistic real-time systems, in: CAV, Springer, 2011, pp. 585–591.
[45] M.Z. Kwiatkowska, G. Norman, D. Parker, The PRISM benchmark suite, in: QEST, IEEE Computer Society, 2012, pp. 203–204.
[46] M.Z. Kwiatkowska, G. Norman, D. Parker, J. Sproston, Performance analysis of probabilistic timed automata using digital clocks, Form. Methods Syst.

Des. 29 (2006) 33–78, https://doi .org /10 .1007 /s10703 -006 -0005 -2.
[47] M.Z. Kwiatkowska, G. Norman, J. Sproston, Probabilistic model checking of the IEEE 802.11 wireless local area network protocol, in: PAPM-PROBMIV,

Springer, 2002, pp. 169–187.
[48] M.Z. Kwiatkowska, G. Norman, J. Sproston, Probabilistic model checking of deadline properties in the IEEE 1394 firewire root contention protocol, Form.

Asp. Comput. 14 (2003) 295–318, https://doi .org /10 .1007 /s001650300007.
[49] S.M. LaValle, Robot motion planning: a game-theoretic foundation, Algorithmica 26 (2000) 430–465, https://doi .org /10 .1007 /s004539910020.
[50] J. Li, W. Liu, A novel heuristic Q-learning algorithm for solving stochastic games, in: IJCNN, 2008, pp. 1135–1144.
[51] H.B. McMahan, M. Likhachev, G.J. Gordon, Bounded real-time dynamic programming: RTDP with monotone upper bounds and performance guarantees,

in: ICML, ACM, 2005, pp. 569–576.
[52] K. Phalakarn, T. Takisaka, T. Haas, I. Hasuo, Widest paths and global propagation in bounded value iteration for stochastic games, in: CAV (2), Springer,

2020, pp. 349–371.
[53] M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, Wiley Series in Probability and Statistics, Wiley, 1994.
[54] F. Saffre, A. Simaitis, Host selection through collective decision, ACM Trans. Auton. Adapt. Syst. 7 (2012) 4:1–4:16, https://doi .org /10 .1145 /2168260 .

2168264.
[55] A.L. Strehl, L. Li, E. Wiewiora, J. Langford, M.L. Littman, PAC model-free reinforcement learning, in: ICML, ACM, 2006, pp. 881–888.
[56] M. Svorenová, M. Kwiatkowska, Quantitative verification and strategy synthesis for stochastic games, Eur. J. Control 30 (2016) 15–30, https://doi .org /

10 .1016 /j .ejcon .2016 .04 .009.
[57] A. Tcheukam, H. Tembine, One swarm per queen: a particle swarm learning for stochastic games, in: SASO, 2016, pp. 144–145.
[58] M. Ujma, On verification and controller synthesis for probabilistic systems at runtime, Ph.D. thesis, University of Oxford, UK, 2015, http://ethos .bl .uk /

OrderDetails .do ?uin =uk.bl .ethos .711811.
[59] L.G. Valiant, A theory of the learnable, Commun. ACM 27 (1984) 1134–1142, https://doi .org /10 .1145 /1968 .1972.
[60] O. Vrieze, S. Tijs, T.E. Raghavan, J. Filar, A finite algorithm for the switching control stochastic game, OR Spektrum 5 (1983) 15–24, https://doi .org /10 .

1007 /BF01720283.
[61] M. Wen, U. Topcu, Probably approximately correct learning in stochastic games with temporal logic specifications, in: IJCAI, IJCAI/AAAI Press, 2016,

pp. 3630–3636, http://www.ijcai .org /Abstract /16 /511.

32

B Comparison of Algorithms for Simple
Stochastic Games (InC 2022)

Licensed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which per-
mits sharing, copying and redistribution in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made, and you do not use it for commercial
purposes and make no derivates.

This is an exact reprinting of the paper which has been published as a peer reviewed
journal paper.

Jan Kretinsky, Emanuel Ramneantu, Alexander Slivinskiy, and Maximilian
Weininger. “Comparison of Algorithms for Simple Stochastic Games”. In:
Information and Computation. Elsevier, 2022. doi: 10.1016/j.ic.2022.104885

Summary

Simple stochastic games are turn-based 2½-player zero-sum graph games with a reachability
objective. The problem is to compute the winning probability as well as the optimal
strategies of both players. In this paper, we compare the three known classes of algorithms
– value iteration, strategy iteration and quadratic programming – both theoretically and
practically. Further, we suggest several improvements for all algorithms, including the first
approach based on quadratic programming that avoids transforming the stochastic game
to a stopping one. Our extensive experiments show that these improvements can lead
to significant speed-ups. We implemented all algorithms in PRISM-games 3.0, thereby
providing the first implementation of quadratic programming for solving simple stochastic
games.

For more details on this publication, we refer to Chapter 3 of the main body.

187

B Comparison of Algorithms for Simple Stochastic Games (InC 2022)

Contribution

Contribution of Maximilian Weininger

Development and conceptual design of the research project 90%
Discussion and development of ideas 50%
Composition and revision of the manuscript 80%
Proofs 60%
Implementation 15%
Experimental evaluation 15%

188

JID:YINCO AID:104885 /FLA [m3G; v1.314] P.1 (1-23)

Information and Computation ••• (••••) ••••••

Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Comparison of algorithms for simple stochastic games ✩

Jan Křetínský, Emanuel Ramneantu, Alexander Slivinskiy,
Maximilian Weininger ∗

Technical University of Munich, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 November 2020
Received in revised form 16 September
2021
Accepted 23 February 2022
Available online xxxx

Keywords:
Formal methods
Probabilistic verification
Stochastic games
Algorithms
Value iteration
Strategy iteration
Quadratic programming

Simple stochastic games are turn-based 2½-player zero-sum graph games with a reachabil-
ity objective. The problem is to compute the winning probabilities as well as the optimal
strategies of both players. In this paper, we compare the three known classes of algorithms
– value iteration, strategy iteration and quadratic programming – both theoretically and
practically. Further, we suggest several improvements for all algorithms, including the first
approach based on quadratic programming that avoids transforming the stochastic game to
a stopping one. Our extensive experiments show that these improvements can lead to sig-
nificant speed-ups. We implemented all algorithms in PRISM-games 3.0, thereby providing
the first implementation of quadratic programming for solving simple stochastic games.
© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Simple stochastic games (SGs), e.g. [18], are zero-sum games played on a graph by players Maximizer and Minimizer,
who choose actions in their respective vertices (also called states). Each action is associated with a probability distribution
determining the next state to move to. The objective of Maximizer is to maximize the probability of reaching a given target
state; the objective of Minimizer is the opposite.

The basic decision problem is to determine whether Maximizer can ensure a reachability probability above a certain
threshold if both players play optimally. This problem is among the rare and intriguing combinatorial problems that are in
NP ∩ co-NP [19], but whether it belongs to P is a major and long-standing open problem. Further, several other important
problems can be reduced to SG, for instance parity games, mean-payoff games, discounted-payoff games and their stochastic
extensions [8].

Besides the theoretical interest, SGs are a standard model in control and verification of stochastic reactive systems [23,
11]; see e.g. [44] for an overview over various recent case studies. Further, since Markov decision processes (MDP) [40] are

✩ This research was funded in part by the German Research Foundation (DFG) projects 383882557 Statistical Unbounded Verification (SUV) and 427755713
Group-By Objectives in Probabilistic Verification (GOPro). It is the extended version of the paper of the same name that appeared at GandALF 20 [37]. On the
theoretical side, we added the full technical proofs and more description of quadratic programming. For the experiments, we extended the description of
the experimental setup, included the complete tables for the runtime comparison and added an analysis of memory consumption. Moreover, we investigate
the behaviour of quadratic programming on models with many actions per state.

* Corresponding author.
E-mail address: maximilian.weininger@tum.de (M. Weininger).

https://doi.org/10.1016/j.ic.2022.104885
0890-5401/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

JID:YINCO AID:104885 /FLA [m3G; v1.314] P.2 (1-23)

J. Křetínský, E. Ramneantu, A. Slivinskiy et al. Information and Computation ••• (••••) ••••••

a special case with only one player, SGs can serve as abstractions of large MDPs [31] or provide robust versions of MDPs
when precise transition probabilities are not known [14,45].

There are three classes of algorithms for computing the reachability probability in simple stochastic games, as surveyed
in [19]: value iteration (VI), strategy iteration (SI, also known as policy iteration) and quadratic programming (QP). In [19],
they all required the SG to be transformed into a certain normal form, among other properties ensuring that the game is
stopping. This not only blows up the size of the SG, but also changes the reachability probability; however, it is possible to
infer the original probability. For VI and SI, this requirement has since been lifted, e.g. [10,7], but not for QP.

While searching for a polynomial algorithm, there were several papers on VI and SI; however, the theoretical im-
provements so far are limited to subexponential variants [38,21] and variants that are fast for SG with few random
vertices [24,30], i.e. games where most actions yield a successor deterministically. QP was not looked at, as it is consid-
ered common knowledge that it performs badly in practice.

There exist several tools for solving games: GAVS+ [17] offers VI and SI for SGs, among other things. However, it is more
for educational purposes than large case studies and currently not maintained. GIST [12] performs qualitative analysis of
stochastic games with ω-regular objectives. For MDPs (games with a single player), we refer to [26] for an overview of
existing tools. Most importantly, PRISM-games 3.0 [36] is a recent tool that offers algorithms for several classes of games.
However, for SGs with a reachability objective, it offers only variants of value iteration, none of which give a guarantee, so
the result might be arbitrarily far off. Thus, currently no tool offers a precise solution method for large simple stochastic
games.

Our contribution is the following:

• We provide an extension of the quadratic programming approach that does not require the transformation of the SG
into a stopping SG in normal form.

• We propose several optimizations for the algorithms, inspired by [34], including an extension of topological value iter-
ation from MDPs [22,4].

• We implement VI with guarantees on precision as well as SI, QP and our optimizations in PRISM-games 3.0—thereby
providing the first implementations of QP for SGs—and experimentally compare them on both the realistic case studies
of PRISM-games and on interesting handcrafted corner cases.

Related work

We sketch the recent developments of each class of algorithms and then several further directions.
Value iteration is a standard solution method also for MDPs [40]. For a long time, the stopping criterion of VI was such

that it could return arbitrarily imprecise results [25]. In principle, the computation has to run for an exponential number
of steps in order to be able to give a precise answer [10]. However, recently several heuristics that give guarantees and are
typically fast were proposed for MDPs [6,25,41,28], as well as for SGs [32,39]. A learning-based variant of VI for MDPs [6]
was also extended to SGs [32]. The variant of VI from [30] requires the game to be in normal form, blowing up its size, and
is good only if there are few random vertices, as it depends on the factorial of this number; it is impractical for almost all
case studies considered in this paper.

Strategy iteration was introduced in [29]. A randomized version was given in [19], and subexponential versions in [38,21].
Another variant of SI was proposed in [43], however there is no evidence that it runs in polynomial time. The idea of
considering games with few random vertices (as in the already mentioned works of [21,30]) was first introduced in [24],
where they exhaustively search a subspace of strategies, which is called f-strategies.

To the best of our knowledge, quadratic programming as solution method for simple stochastic games was not investi-
gated further after the first mention in [19]. However, convex QPs are solvable in polynomial time [33]. If it was possible
to encode the problem in a convex QP of polynomial size, this would result in a polynomial algorithm. The encoding we
provide in this paper can however be exponential in the size of the game.

Further related works consider other variants of the model, for example concurrent stochastic games, see e.g. [27] for
the complexity of SI and VI and [9] for strategy complexity, or games with limited information [2]. Furthermore, one can
consider other objectives, e.g. ω-regular objectives [11], total reward [4], mean payoff [46] or combinations of objectives [16,
1].

2. Preliminaries

We now introduce the model of stochastic games, define the semantics by the standard means of infinite paths and
strategies and then define the important concept of end components, which are subgraphs of stochastic games that are
problematic for all three classes of algorithms.

A probability distribution on a finite set X is a mapping δ : X → [0, 1], such that
∑

x∈X δ(x) = 1. The set of all probability
distributions on X is denoted by D(X).

2

JID:YINCO AID:104885 /FLA [m3G; v1.314] P.3 (1-23)

J. Křetínský, E. Ramneantu, A. Slivinskiy et al. Information and Computation ••• (••••) ••••••

p q

1

o

a

b

c

1/3

1/3

1/3

e

d

Fig. 1. An example of an SG with S = {p, q, 1, o}, S� = {q, 1}, S© = {p, o}, the initial state p and the set of actions A = {a, b, c, d, e}; Av(p) = {a} with
δ(p, a)(q) = 1; Av(q) = {b, c} with δ(q, b)(p) = 1 and δ(q, c)(q) = δ(q, c)(1) = δ(q, c)(o) = 1

3 . For actions with only one successor, we do not depict the
transition probability 1.

2.1. Stochastic games

Now we define stochastic games, in literature often referred to as simple stochastic games or turn-based stochastic two-
player games with a reachability objective. As opposed to the notation of e.g. [18], we do not have special stochastic nodes,
but rather a probabilistic transition function. See Fig. 1 for an example of an SG.

Definition 1 (SG). A stochastic game (SG) is a tuple (S, S�, S©, s0, A, Av, δ, F) where

• S is a finite set of states partitioned1 into the sets S� and S© of states of the player Maximizer and Minimizer2 respec-
tively

• s0 ∈ S is the initial state
• A is a finite set of actions
• Av : S → 2A assigns to every state a set of available actions
• δ : S × A → D

(
S
)

is a transition function that given a state s and an action a ∈ Av(s) yields a probability distribution
over successor states. We slightly abuse notation and write δ(s, a, s′) instead of δ(s, a)(s′).

• F ⊆ S is a set of target states. Without loss of generality we can assume that every target state only has one action that
is a self-loop with probability 1, because we consider the reachability objective.

A Markov decision process (MDP) is a special case of SG where S© = ∅, and a Markov chain (MC) is a special case of an
MDP, where for all s ∈ S : ∣∣Av(s)

∣∣ = 1.
Without loss of generality we assume that SGs are non-blocking, so for all states s we have Av(s)
= ∅. For a state s

and an available action a ∈ Av(s), we denote the set of successors by Post(s, a) := {s′ | δ(s, a, s′) > 0}. Finally, for any set of
states T ⊆ S , we use T� and T© to denote the states in T that belong to Maximizer and Minimizer, whose states are drawn
in the figures as squares � and circles ©, respectively.

2.2. Semantics: paths, strategies and values

The semantics of SGs is given in the usual way by means of strategies, the induced Markov chain and the respective
probability space, as follows: An infinite path ρ is an infinite sequence ρ = s0a0s1a1 · · · ∈ (S × A)ω , such that for every i ∈N
we have ai ∈ Av(si) and si+1 ∈ Post(si, ai). Finite paths are defined analogously as elements of (S × A)∗ × S .

As this paper deals with the probabilistic reachability objective, we can restrict our attention to memoryless deterministic
strategies, which are optimal for this objective [18]. A strategy of Maximizer, respectively Minimizer, is a function σ : S� →
A , respectively S© → A , such that σ(s) ∈ Av(s) for all s . A pair (σ , τ) of memoryless deterministic strategies of Maximizer
and Minimizer induces a Markov chain Gσ ,τ , as for every state the strategies select a single action. The Markov chain
induces a unique probability distribution Pσ ,τ

s over measurable sets of infinite paths [3, Ch. 10].
We write �F := {ρ | ρ = s0a0s1a1 · · · ∈ (S × A)ω ∧ ∃i ∈ N. si ∈ F} to denote the (measurable) set of all paths which

eventually reach F . For each s ∈ S , we define the value in s as

V(s) := sup
σ

inf
τ
Pσ ,τ

s (�F) = inf
τ

sup
σ

Pσ ,τ
s (�F),

where the equality follows from [18]. Note that SGs with a reachability objective are determined, i.e. knowing the strategy
of the opponent does not increase the chances of winning, provided the opponent plays optimally. Moreover, since there
are only finitely many memoryless deterministic strategies, one could replace sup and inf with max and min.

1 I.e., S� ⊆ S , S© ⊆ S , S� ∪ S© = S , and S� ∩ S© = ∅.
2 The names are chosen, because Maximizer maximizes the probability of reaching the given target states, and Minimizer minimizes it.

3

JID:YINCO AID:104885 /FLA [m3G; v1.314] P.4 (1-23)

J. Křetínský, E. Ramneantu, A. Slivinskiy et al. Information and Computation ••• (••••) ••••••

The value is the least fixpoint of the so called Bellman equations [19]:

V(s) =

⎧⎪⎨
⎪⎩

1 if s ∈ F

maxa∈Av(s) V(s,a) if s ∈ S� \ F

mina∈Av(s) V(s,a) if s ∈ S© \ F,

(1)

with V(s,a) :=
∑
s′∈S

δ(s,a, s′) · V(s′) (2)

The states with no path to the target, so called sinks, are of special interest, as they have a value of 0. Moreover, they can
be computed a priori by standard graph analysis. For example, the sinks are all states that are not visited by a backwards
depth-first search beginning at the target states F . We denote the set of sinks as Z.

We are interested not only in the values V(s) for all s ∈ S , but also their ε-approximation, i.e. an approximation L :
S → Q with

∣∣V(s) − L(s)
∣∣ < ε. Moreover, we want to provide the corresponding (ε-)optimal strategies for both players.

A strategy σ of Maximizer is (ε-)optimal, if for every Minimizer strategy τ we have Pσ ,τ
s (�F) ≥ V(s) (respectively ≥

V(s) − ε) and an optimal Minimizer strategy is defined analogously. Note that it suffices to have either the values or the
optimal strategies, because from one we can infer the other as follows: given a pair of optimal strategies (σ , τ), the values
can be computed by solving the induced Markov chain Gσ ,τ . Given a vector of values for all states, an optimal pair of
strategies can be computed by randomizing over all locally optimal actions in each state (e.g. σ(s) randomizes over the
set arg maxa∈Av(s) V(s, a) for Maximizer states, and dually with arg min for Minimizer). To get a deterministic strategy, we
cannot only pick some locally optimal action, but additionally we have to ensure that Maximizer is not stuck in some
cycle when playing the actions. One way of doing this is by looking at end components, which are the topic of the next
subsection.

2.3. End components

When computing the values of states in an SG, we need to take special care of end components (EC). Intuitively, an EC
is a subset of states of the SG, where the game can remain forever; i.e. given certain strategies of both players, there is
no positive probability to exit the EC to some other state. ECs correspond to bottom strongly connected components of the
Markov chains induced by some pair of strategies.

Definition 2 (EC). A non-empty set T ⊆ S of states is an end component (EC) if there exists a non-empty set B ⊆ ⋃
s∈T Av(s)

of actions3 such that

1. for each s ∈ T , a ∈ B ∩ Av(s) we have Post(s, a) ⊆ T ,
2. for each s, s′ ∈ T there is a finite path w = sa0 . . .ans′ ∈ (T × B)∗ × T , i.e. the path stays inside T and only uses actions

in B .

An end component T is a maximal end component (MEC) if there is no other end component T ′ such that T ⊆ T ′ .

Given an SG G , the set of its MECs is denoted by MEC(G) and can be computed in polynomial time [20]. ECs are of
special interest, because in ECs there can be multiple fixpoints of the Bellman equations (see Equation (1) and (2)).

Example 1. Consider the SG of Fig. 1. The set of states T = {p, q} is an EC, as when playing only actions from B = {a, b} the
play remains in T forever. It is even a MEC, as there is no superset of T with this property.

We now show that setting the value of both states in T to any x with 1
2 ≤ x ≤ 1 is a fixpoint of the Bellman equations.

Note that since 1 ∈ F , V(1) = 1, and since o ∈ Z, V(o) = 0. State p only has action a that goes with probability 1 to q. So,
since V(q) = x, we also have V(p) = x. Similarly, V(q, b) = x. Finally, observe that V(q, c) = 1

3 + 1
3 · x, which is equal to x for

x = 1
2 and less than x for all x > 1

2 . Thus, for every x ≥ 1
2 , it will be optimal for the Maximizer state q to use action b and

we have V(q) = x.
So we see that there are infinitely many fixpoints which are greater than the value, which is the least fixpoint of the

Bellman equations, i.e. V(p) = V(q) = 1
2 . �

As there can be multiple greater fixpoints of the Bellman equations, methods relying on iterative over-approximation of
the value may not converge, as they can be stuck at some greater fixpoint than the value (cf. [32, Lemma 1] and Example 2
in the next section). This is why the original description of the algorithms [19] considered only stopping games. Stopping

3 Note that this assumes that action names are unique. This can always be achieved by renaming actions, e.g. prepending every action with the state it
is played from.

4

JID:YINCO AID:104885 /FLA [m3G; v1.314] P.5 (1-23)

J. Křetínský, E. Ramneantu, A. Slivinskiy et al. Information and Computation ••• (••••) ••••••

games are SGs where the set F ∪Z is reached with probability 1, or equivalently games without ECs in the set S \ (F ∪Z). The
algorithms are theoretically applicable to arbitrary SGs, as for every non-stopping SG one can construct a stopping SG and
infer the original value from solving the stopping SG. See Section 3.3.2 for a description of this approach and Section 4.1.4
for a discussion of the practical drawbacks.

3. State of the art algorithms

In this section, we describe the existing algorithms for solving simple stochastic games, namely value iteration, strat-
egy iteration and quadratic programming (Section 3.1, 3.2 and 3.3 respectively). The input for all of them is an SG
G = (S, S�, S©, s0, A, Av, δ, F). Value iteration additionally needs a precision ε, given as a rational number. After termi-
nation, all of them return a vector of values for each state (ε-precise for BVI) and the corresponding (ε-)optimal strategies.
Quadratic programming in its current form only works on stopping SGs in a certain normal form.

3.1. Bounded value iteration

Value Iteration (VI), see e.g. [40], is the most common algorithm for solving MDPs and SGs, and the only method imple-
mented in PRISM-games [36]. Originally, VI only computed a convergent sequence of under-approximations; however, as it
was unclear how to stop, results returned by model checkers could be off by arbitrary amounts [25]. Thus, it was extended
to also compute a convergent over-approximation [32]. The resulting algorithm is called bounded value iteration (BVI).

The basic idea of BVI is to start from a vector L0 respectively U0 that definitely is an under-/over-approximation of the
value, i.e. for every state L0(s) ≤ V(s) ≤ U0(s). Then the algorithm repeatedly applies so called Bellman updates, i.e. it uses a
version of Equation (1) as follows (the equation for the over-approximation is obtained by replacing L with U):

Ln(s) =
{

maxa∈Av(s) Ln−1(s,a) if s ∈ S�
mina∈Av(s) Ln−1(s,a) if s ∈ S©

, (3)

where Ln−1(s, a) is computed from Ln−1(s) as in Equation (2). Since V is the least fixpoint of the Bellman equations,
limn→∞ Ln converges to V . However, the over-approximation U need not converge in the presence of ECs.

Example 2. Consider the SG of Fig. 1 with the EC {p, q}. Let U0 = 1 for p, q and 1 and U0 = 0 for o. Then we have
U0(q, b) = 1 and U0(q, c) = 2/3. Thus, q will pick action b, as it promises a higher value, and the over-approximation does
not change. This happens, because looking at the current upper bound, Maximizer is under the impression that staying in
the EC yields a higher value. However, it actually reduces the probability to reach the target to 0. So the algorithm has to
perform an additional step to inform states in an EC that they should not depend on each other, but on the best exit. In
this case, U1(q) = U0(q, c) = 2/3. �

In fact, it does not suffice to only decrease the upper bound of ECs, but a more in-depth graph analysis is required to
detect the problematic subsets of states, so called simple end components (SEC) [32, Definition 5]. These SECs cannot be found
a priori, because they depend on the values of their exits. Thus, candidate SECs are guessed according to the current lower
bound. When the lower bound eventually converges to the value, the true SECs are found. The over-approximation of states
in the SECs has to be decreased (“deflated” in the words of [32]) to the over-approximation of the best exit from the SEC.
Formally, the best exit is defined as

best_exitU(T) = max
s∈T�

¬Post(s,a)⊆T

U(s,a),

where U is the over-approximation in the current iteration. Decreasing the approximation for the SEC candidates to the
best exit always results in a correct over-approximation [32, Lemma 3] and suffices to converge to the true value in the
limit [32, Theorem 2]. Algorithm 1 shows the full BVI algorithm from [32].

There also is a simulation based asynchronous version of BVI (see [32, Section 4.4]) which can perform very well on
models with a certain structure [35]. It updates states encountered by simulations, and guides those simulations to explore
only the relevant part of the state space. If only few states are relevant for convergence, this algorithm is fast; if large parts
of the state space are relevant or there are many cycles in the game graph that slow the simulations down, this adaption of
BVI performs badly.

3.2. Strategy iteration

In contrast to value iteration, the approach of strategy iteration (SI) [29] does not compute a sequence of value-vectors, but
instead a sequence of strategies. Starting from an arbitrary strategy of Maximizer, we repeatedly compute the best response
of Minimizer and then greedily improve Maximizer’s strategy. The resulting sequence of Maximizer strategies is monotonic
and converges to the optimal strategy [7, Theorem 3]. The pseudocode for strategy iteration is given in Algorithm 2.

5

JID:YINCO AID:104885 /FLA [m3G; v1.314] P.6 (1-23)

J. Křetínský, E. Ramneantu, A. Slivinskiy et al. Information and Computation ••• (••••) ••••••

Algorithm 1 Bounded value iteration algorithm from [32].
1: procedure BVI(precision ε > 0)
2: for s ∈ S do # Initialization
3: L(s) = 0 # Lower bound
4: U(s) = 1 # Upper bound

5: for s ∈ F do L(s) = 1 # Value of targets is determined a priori

6: repeat
7: L, U get updated according to Eq. (3) # Bellman updates

8: for every SEC candidate T do
9: for s ∈ T do

10: U(s) ← best_exitU (T) # Decrease U to best exit

11: until U(s) − L(s) < ε for all s ∈ S # Guaranteed error bound

Algorithm 2 Strategy iteration.
1: procedure SI

2: σ ′ ← arbitrary Maximizer attractor strategy # Proper initial strategy
3: repeat
4: σ ← σ ′
5: for s ∈ S do
6: L(s) ← infτ P

σ ,τ
s (�F) # Solve MDP for opponent

7: for s ∈ S� do
8: if σ(s) ∈ arg maxa∈Av(s) L(s, a) then
9: σ ′(s) ← σ(s) # Only change σ on strict improvement

10: else
11: σ ′(s) ← any element of arg maxa∈Av(s) L(s, a)

12: until σ = σ ′

Note that in non-stopping SGs (games with ECs) the initial Maximizer strategy cannot be completely arbitrary, but it
has to be proper, i.e. ensure that either a target or a sink state is reached almost surely; it must not stay in some EC, as
otherwise the algorithm might not converge to the optimum due to problems similar to those described in Example 2. In
Algorithm 2, we use the construction of the attractor strategy [7, Section 5.3] to ensure that our initial guess is a proper
strategy (Line 2). It first analyses the game graph to find the sink states Z. Then, it performs a backwards breadth first
search, starting from the set of both target and sink states. A state discovered in the i-th iteration of the search has to
choose some action that reaches a state discovered in the (i-1)-th iteration with positive probability. Such a state exists by
construction, and the choice ensures that the initial strategy reaches the set of target or sink states almost surely.

When a Maximizer strategy is fixed, the main loop of Algorithm 2 solves the induced MDP Gσ (Line 6). We discuss
the different ways to do this in Section 4.2. The algorithm need not remember the Minimizer strategy, but only uses the
computed value estimates L to greedily update Maximizer’s strategy (Line 11); note that here L(s, a) is again computed
from L(s) as in Equation (2). For termination, it is necessary that we only update the strategy if switching strictly improves
the value (see Line 8), as otherwise we might cycle infinitely between equivalent strategies. The algorithm stops when the
Maximizer strategy does not change any more in one iteration. We can then compute the values and the corresponding
Minimizer strategy by solving the induced MDP Gσ .

3.3. Quadratic programming

As mentioned before, the approach of Quadratic programming currently requires that the input SG is in a certain normal
form. We first recall how the approach works for a game in that normal form and then describe how to transform an
arbitrary SG into normal form.

3.3.1. The quadratic program
Quadratic programming (QP) [19] works by encoding the graph of the SG in a system of constraints. The only global (and

local) optimum of the objective function under these constraints is 0, and it is attained if and only if the variable for every
state is set to the value of that state [19, Section 3.1]. The proof as well as the construction of the quadratic program relies
on the game being in a certain normal form, which consists of four conditions:

• 2Act: For all s ∈ S : |Av(s)| ≤ 2.
• No1Act: If |Av(s)| = 1, then s is a target or a sink.
• 1/21/21/2Probs: For all s, s′ ∈ S, a ∈ Av(s) : δ(s, a, s′) ∈ {0, 0.5, 1}.
• Stopping game: There are no ECs in G (except for the sinks and targets).

We shortly discuss the advantage of each condition of the normal form: the reason for 2Act and No1Act is that the objective
function of the QP requires every (non-sink and non-target) state to have exactly 2 successors. Arguing about a game with

6

JID:YINCO AID:104885 /FLA [m3G; v1.314] P.7 (1-23)

J. Křetínský, E. Ramneantu, A. Slivinskiy et al. Information and Computation ••• (••••) ••••••

p

qrs

b

1
2 1

2

a
c

a aa

p

p′

qrs

b

1
2

1
2

a

c

a

a aa

Fig. 2. An example of transforming an SG into one fulfilling the 2Act-constraint. p has more than two actions, so a binary subtree is built up where every
state except for the leaves s, r and q has exactly two actions.

average nodes instead of actions mapping to arbitrary probability distribution simplified the proofs, which is the advantage
of 1/21/21/2Probs. Stopping game was necessary, because of the problem of non-convergence in end components, as in Example 2.
We describe the procedure from [18] to transfer an arbitrary SG into a polynomially larger SG in normal form in the next
Section 3.3.2.

We now state the quadratic program for an SG in normal form as given in [19], but adjusted to our notation. Intuitively,
the objective function is 0 if all summands are 0. And the summand for some state s is 0 if its value V(s) is equal to the
value of one of its actions V(s, a) or V(s, b). The program is quadratic, since all states (except targets and sinks) have exactly
two successors and hence the summand for every state is a quadratic term. The constraints encode the game, ensuring that
Maximizer/Minimizer states use the action with the highest/lowest value and fixing the values of targets and sinks. Note
the additional definition of V(s, a), which assumes that all occurring non-trivial probabilities are 1/2.

minimize
∑
s∈S

Av(s)={a,b}

(V(s) − V(s,a))(V(s) − V(s,b))

subject to V(s) ≥ V(s,a) ∀s ∈ S� : |Av(s)| = 2,∀a ∈ Av(s)

V(s) ≤ V(s,a) ∀s ∈ S© : |Av(s)| = 2,∀a ∈ Av(s)

V(s) = 1 ∀s ∈ F
V(s) = 0 ∀s ∈ Z

where V(s,a) =
{

V(s′) for Post(s,a) = {s′}
1/2V(s′) + 1/2V(s′′) for Post(s,a) = {s′, s′′}

}

3.3.2. Transforming an arbitrary stochastic game into normal form
We describe the constructions of [18] to transform an arbitrary SG into one in normal form that is only polynomially

larger. For each of the conditions that are required for normal form, i.e. for 2Act, No1Act, 1/21/21/2Probs and Stopping game, we
give the respective transformation.
2Act: In normal form, every state s that is not an absorbing state must have at most two actions. To transform an arbitrary
SG into one complying with 2Act, take every state s with |Av(s) > 2| and construct a binary tree as illustrated in Fig. 2.
Two actions of s are taken and given to a new vertex v ′. State s has then one action leading to the additional state v ′
instead of its previous two actions. This can be done iteratively until there is a binary tree where s is the root and has only
two actions. Note that every other inner node in this tree also has two actions, and the leaves are exactly v1, v2, ..., vk . If a
state s has n ≥ 2 actions, then after the transformation there are n − 2 additional states. Every newly added state belongs to
the same player as the original state s .No1Act: Every state that is not a target or sink must have more than one action. We
can add a second action to every state that is missing one. This action leads to a target in the case of s ∈ S© and otherwise
to a sink. If there is no sink in S , we can introduce an artificial sink. In any optimal strategy, neither player would choose
the additional action, as the other option is at least as good as the additional one. Therefore, the additional actions do not
influence the value of any state.

In Fig. 3, s0 has an additional action leading to o. Every state s ∈ (S© \ {o}) should have an action leading to 1 , but we
omit this to improve the readability of the figure.
1/21/21/2Probs: The normal form requires that transition probabilities are either 0, 0.5 or 1. This implies that every action has either
one or two successors. Let s ∈ S be a state which has an action a that has an arbitrary amount of successors v1, v2, ..., vk

7

JID:YINCO AID:104885 /FLA [m3G; v1.314] P.8 (1-23)

J. Křetínský, E. Ramneantu, A. Slivinskiy et al. Information and Computation ••• (••••) ••••••

s0 s1

1s2o

a

a

3
9

5
9

1
9

a a
a

s0 s1

1s2o

a

b

a ab a

h′′
1 h′′

2 h′′
3 h′′

4 h′′
5 h′′

6 h′′
7 h′′

8

a

a

1
2

1
2

a a

a

1
2

1
2

a
a

a

h′
1 h′

2 h′
3 h′

4

a
1
2

1
2

a
1
2

1
2

a
1
2

1
2

a
1
2

1
2

h1 h2

a

1
2

1
2

a

1
2

1
2

a

1
2

1
2

Fig. 3. An example of an arbitrary SG that gets transformed into Condon’s normal form. States h′′
1, h′′

2, ..., h′′
8 , h′

1, h′
2, h′

3, h′
4 and h1, h2 are introduced to fulfill

the 1/21/21/2Probs-constraint. State s2 has now a second action leading to sink o, as otherwise it would not comply with No1Act. All the ©-states with only one
action except the sink o must have an action leading to 1 but we omit these for the sake of readability.

with rational transitions probabilities pi := δ(s, a vi) ∈ [0, 1] ⊂ Q. Consider the greatest common divisor q of all occurring
transition probabilities of (s, a). Let q′ be the smallest power of 2 such that q′ ≥ q, i.e. q′ = 2k, k ∈N : 2k−1 < q < 2k = q′ .

Create 1/2 · q′ new vertices, each with one action and two transitions with probability 0.5. Out of the q′ many transitions,
pi · q lead to vi . If a vertex has two transitions assigned that lead to the same state, the two transitions are unified to
one with transition probability 1. The q′ − q remaining transitions lead to s . From the new vertices, we build up a binary
tree with s as root such that s and every new state have one action each with two transitions that have only transition
probabilities of 0, 0.5 or 1, and such that the probability of reaching vi from s is pi .

Fig. 3 illustrates an example. s1 has an action a with transition probabilities 3/9, 1/9, 5/9. The common divisor q of all these
fractions is 9. The next power of 2 is 4, so we have q = 9 ≤ 16 = 24 = q′ . We need 8 states h′′

1, h′′
2, ..., h′′

8 that store the 16
transitions. Every transition has a probability of 1/2.

• The probability to reach o from s is 3/9, therefore 3 transitions have to lead there. We let h′′
1 lead to o with probability

1 and h′′
2 with one of the two transitions.

• The probability to reach s2 from s is 1/9, therefore the second transition of h′′
2 leads in s2.

• The probability to reach 1 from s is 5/9, therefore h′′
3, h′′

4 and one transition of h′′
5 lead to 1 .

8

JID:YINCO AID:104885 /FLA [m3G; v1.314] P.9 (1-23)

J. Křetínský, E. Ramneantu, A. Slivinskiy et al. Information and Computation ••• (••••) ••••••

s sa t

h1 h2 hm

o

a′
1
2

1
2

a

a

1
2

1
2 a

1
2

1
2

1
2

a

1
2

1
2

a

a

Fig. 4. An example of adding the ε-transitions to a simple SG where initially there were only the initial state s and a target state t and the action a with
Post(s, a) = Post(t, a) = t. The action of sa is simulating the outcome of taking action a in s in the original SG while h1, h2, ...hm add the ε needed if the
initial SG would be non-stopping. For better readability, we omit the superscript s, a for all states hi .

• The remaining transitions lead back to s .

To connect h′′
1, h′′

2, ..., h′′
8 to s a binary tree is constructed with h′

1, h
′
2, h

′
3, h

′
4 and h1, h2.

Stopping game: To avoid the possibility of never reaching any absorbing state, we add a transition with a small probability ε
leading to a sink-state o to every action. If the players pick strategies that trap the play in a MEC in the original SG, the play
would almost surely reach o in the modified SG. If the ε is chosen sufficiently small, one can infer the value in the original
SG from the modified SG [18]. This is due to the fact that the value of an SG must be rational, where the denominator is at
most 4

∣∣S∣∣
, and thus we can round the value in the modified SG to the nearest fraction with denominator 4

∣∣S∣∣
.

In Fig. 4, we illustrate the transformation. Although the initial SG is already stopping in this example, we chose this
simple game for explanatory purposes. For the ε-transitions that have to be introduced to comply with the Stopping game
constraint, [19] suggest something smarter instead of constructing a binary tree: for every state-action pair (s, a) add a new
state sa which has only one action that has the same successors and transition probabilities as (s, a) in the initial game.
The state s instead has a new action a′ with 1/2-probabilities of leading either to sa or to the state hs,a

1 of a chain of m ∈N

(sufficiently large) new states hs,a
1 , hs,a

2 , ...hs,a
m . Each state hs,a

i with i ∈ [m −1] has only one action with two 1/2-probabilities
leading to either hs,a

i+1 or sa . The action of hs,a
m also has probabilities of 1/2 and leads either to a sink o or to sa . Thus, playing

a′ in s now has a ε = (1/2)m chance of going to a sink, and with the remaining probability behaves as before.

4. Improvements

In this section, we first generalize QP to be applicable to arbitrary SGs, thereby omitting the costly transformations into
the normal form. Then, we identify a hyperparameter of SI, namely that the way in which the MDP is solved after fixing
one strategy can be varied. Finally, we provide two optimizations that are applicable to all three algorithms.

4.1. Quadratic programming for general stochastic games

Every transformation into the normal form (see Section 3.3.2) adds additional states or actions to the SG. We want to
change the constraints of the QP so that it can deal with arbitrary SGs. This way, we avoid blowing up the SG, which is
good since the time for solving the QP depends on the size of the SG.

4.1.1. 2Act
In order to drop the constraint that every state has at most two actions, we can generalize the summand of a state s in

the objective function to
∏

a∈Av(s)(V(s) −V(s, a)). The resulting program is no longer quadratic, as for a state with n actions
now the objective function has order n. Thus, in the experiments, we report the verification times of both (i) a higher-order
optimization problem for the original SG as well as (ii) a QP for the SG that was transformed to comply with 2Act.

One more step is needed to ensure that the objective function still is correct: we have to duplicate one term
(V(s) − V(s, a)) in Minimizer states with an odd number of actions. This ensures that the objective function cannot be-
come negative. A more detailed explanation is given in the proof of the following lemma.

Lemma 1. Consider a higher-order optimization problem for an SG G which minimizes the objective function
∑

s∈S

∏
a∈Av(s)(V(s) −

V(s, a)), where additionally for Minimizer states s with an odd number of actions, the term (V(s) − V(s, a)) is duplicated for an
arbitrary action a ∈ Av(s). The constraints are as given4 for the QP in Section 3.3.1, i.e. they encode the game G .

Then the global optimum of the objective function is 0 and it is attained if and only if for every state s ∈ S and some action a ∈ Av(s)

we have V(s) = V(s, a).

4 Note that the constraint V(s) ∼ V(s, a) with ∼∈ {≤, ≥} is specified for every action a ∈ Av(s) and now there can be more than two actions.

9

JID:YINCO AID:104885 /FLA [m3G; v1.314] P.10 (1-23)

J. Křetínský, E. Ramneantu, A. Slivinskiy et al. Information and Computation ••• (••••) ••••••

Proof. The objective function evaluates to 0 if and only if every summand is 0. This is the case if and only if at least
one factor of every product is 0, which happens if and only if for every state s ∈ S and some action a ∈ Av(s) we have
V(s) = V(s, a). So if the objective function is 0, the solution vector V is a solution to the SG G .

It remains to show that 0 is indeed the global optimum of the higher-order optimization problem. For this, first observe
that every summand is non-negative, i.e. greater or equal than 0: For every Maximizer state s , the constraint V(s) ≥ V(s, a)

ensures that every factor of the product is non-negative, and thus the whole product is non-negative. For every Minimizer
state, dually we know that every factor of the product is non-positive. Moreover, we have ensured that every product has
an even number of factors. Thus, the product certainly is non-negative, since either all factors are smaller than 0 and the
result is a positive number, or at least one factor is 0 and the result is 0. Finally, the argument that 0 can always be attained
is analogous to the one in [19], since the number of actions per state does not affect the proof. �

4.1.2. No1Act
The No1Act-constraint compels every state s ∈ S that is not a target or a sink to have more than one action. The

transformation for complying with this constraint adds a second action to every state with only one action; however, the
newly added action is chosen in such a way that it does not influence the value of the state, and can thus also be omitted.

Lemma 2. Let s ∈ S be a state in an SG with two actions a and b: a is the action s originally had, and b is the additional action inserted
to comply with No1Act. Then it holds that V(s) = V(s, a).

Proof. We prove this by a case distinction over the player s belongs to. We only provide the proof for the case that s ∈ S� ,
as the other case is analogous. Let the strategy τ of the Minimizer be arbitrary. Let σb be a strategy for the Maximizer in
which s takes action b . Per construction, b leads to a sink, and therefore it holds that Vσb,τ (s) = 0. Let σa be a strategy for
the Maximizer in which s takes action a . For every state s′ ∈ S it holds that V(s′) ≥ 0. Thus, Vσa,τ (s) ≥ Vσb,τ = 0. It follows
that every optimal Maximizer strategy σ may take action a in s . Since s allows a in every optimal strategy it holds that
V(s) = V(s, a). �

Thus, for a non-absorbing state s with only one action a , we can simplify the program by not including it in the objective
function, but only adding a single constraint V(s) = V(s, a).

4.1.3. 1/2Probs
To comply with the 1/21/21/2Probs-requirement, every transition δ(s, a, s′) with s, s′ ∈ S and a ∈ Av(s) must have a probability

of 0, 0.5 or 1. We can omit this constraint if we use the general definition of V(s, a) as in Equation (2), summing the
successors with their respective given transition probability.

Lemma 3. Let G be an SG that does not comply with 1/21/21/2Probs. The QP from Section 3.3.1 still is correct, i.e. returns the value vector of
G , if we modify it such that V(s, a) := ∑

s′∈S δ(s, a, s′) · V(s′).

Proof. The proof, that the QP computes the value vector of the SG G from [19] does not rely on the fact the probabilities
are all 0, 0.5 or 1. This restriction is only due to the different, more restrictive definition of SG. �

4.1.4. Stopping game
The final and most complicated constraint of the normal form is that we require the SG to be stopping. The transforma-

tion of an arbitrary game into a stopping one adds a transition to a sink with a small probability ε to every action, thus
ensuring that a sink (or a target) is reached almost surely. This is problematic not only because the added transitions blow
up the quadratic program, but even more so because of the following.

The ε-transitions modify the value of the game. Theoretically, this is no problem, because the value is rational and we
know the greatest possible denominator q it can have. Thus, by choosing ε sufficiently small, we ensure that the modified
value does not differ by more than 1/q and we can obtain the original value by rounding. However, practically, this denomi-
nator becomes smaller than machine precision even for small systems, resulting in immense numerical errors. The ε has to
be strictly smaller5 than (1/4)

∣∣S∣∣
[18]. According to IEEE 754.2019 standard,6 the commonly used double machine precision

is 10−16, so already for 27 states the necessary ε becomes smaller than machine precision. Thus, the transformation to a
stopping game is inherently impractical.

Our approach introduces additional constraints for every maximal end component (MEC) to ensure that the QP finds the
correct solution.

5 It actually has to be a lot smaller, since the value of every state may differ by at most that amount, but this conservative upper bound suffices to prove
our point.

6 https://standards .ieee .org /content /ieee -standards /en /standard /754 -2019 .html.

10

JID:YINCO AID:104885 /FLA [m3G; v1.314] P.11 (1-23)

J. Křetínský, E. Ramneantu, A. Slivinskiy et al. Information and Computation ••• (••••) ••••••

Algorithm 3 Algorithm to add constraints for MECs containing states of both players.
1: procedure ADD_MEC_CONSTRAINTS(MEC T ⊆ S)
2: for all strategies σ on T� do
3: for all strategies τ on T© do
4: for every (s, a) ∈ E T do
5: Compute pσ ,τ

e(s ,a)
(t) for all t ∈ T by solving the modified induced MC Gσ ,τ

6: for every t ∈ T do
7: Add constraint: V(t) = max

σ
min

τ

∑
(s,a)∈E T pσ ,τ

e(s ,a)
(t) · V(s, a)

For MECs where all states belong to the same player, the solution is straightforward. All states in MECs with only
Minimizer states have a value of 0, as they can choose to remain forever in the EC and not reach the target; they can
be identified a priori and are part of the set of sinks Z. All states in MECs with only Maximizer states have the value
of the best exit from that MEC [32]. Thus, for all T ∈ MEC(G) with T ∩ S© = ∅ we can introduce an additional constraint:
∀s ∈ T : V(s) = best_exitV (T), where best_exit is defined as for BVI (see Section 3.1). Note that max-constraints are expressed
through continuous and boolean variables and therefore, the resulting quadratic program is a mixed-integer program.

For MECs containing states of both players, the values of the states depend on the best exit that Maximizer can ensure
reaching against the optimal strategy of Minimizer. We cannot just set the value to the best exit of the whole MEC, as
Minimizer might prevent some states in the MEC from reaching that best exit. The solution of [32] to analyse the graph and
figure out Minimizer’s decisions on the fly is not possible, because we have to give the constraints a priori.

We solve the problem as follows: iterate over all strategy-pairs (σ , τ) in the MEC and for each pair describe the corre-
sponding value of every state Vσ ,τ (s) depending on the values of the exiting actions E T = {(s, a) | s ∈ T ∧ Post(s, a) � T }.
Then constrain the value for all states in the MEC according to the optimal strategies, i.e. V(s) = max

σ
min

τ
Vσ ,τ (s). This

ensures that the value of every state is set to the best exit it can reach, because the optimal strategies are chosen.
It remains to define how to describe Vσ ,τ depending on the exits E T . For a pair of strategies (σ , τ) in the MEC, we

consider the induced Markov chain Gσ ,τ . We modify the MC and let every state-action pair (s, a) ∈ E T lead to a sink state
e(s,a) . Then, for every such sink state, we compute the probability pσ ,τ

e(s,a)
(t) to reach it from every state t ∈ T by solving the

MC. Then we set Vσ ,τ (t) =
∑

(s,a)∈E T

pσ ,τ
e(s,a)

(t) · V(s, a). We summarize the procedure we just described in Algorithm 3. We

use all strategies on T to denote every possible mapping that maps every state t ∈ T to some available action a ∈ Av(t).
Note that V(s, a) is defined as usual (see Equation (2)). As (s, a) is an exit from T , it depends on some successor s′ /∈ T .

Thus the states in the MEC do not depend only on each other any more, but they depend on exiting actions. Intuitively, this
ensures there is a unique solution.

Lemma 4. Let G be a non-stopping SG. The QP from Section 3.3.1 still is correct, i.e. returns the value vector of G , if we modify it as
follows: For every MEC T , we add the constraint V(s) = max

σ
min

τ
Vσ ,τ (s) for all strategies (σ , τ) in T and all states s ∈ T .

Proof. We proceed in the following steps:

• Summarize the relevant definitions.
• Prove that Vσ ,τ (t) =Pσ ,τ

t (�F) for all t ∈ T .
• Prove that V(s) = max

σ
min

τ
Vσ ,τ (s) for all strategies (σ , τ).

• Prove that adding this constraint ensures the convergence of the QP to a unique correct solution.
• Show why we can restrict to consider only strategies in the MEC T .

1. As before, we consider an SG G . We use T to denote an arbitrary MEC of G , respectively. For strategies, we write σ for
Maximizer and τ for Minimizer strategies.
The proof relies on the following definitions:
• E T = {(s, a) | s ∈ T ∧ Post(s, a) � T } is the set of exiting state-action pairs.
• For every (s, a) ∈ E T , we introduce a new sink state e(s,a) .
• pσ ,τ

e(s,a)
(t) is the probability to reach such a sink state e(s,a) from state t in the induced Markov chain Gσ ,τ modified

so that the exiting actions lead to the newly introduced sinks.
• Note that the symbol V is overloaded in the context of the QP: it can refer both to the value of the SG as well

as to the variable of the QP that eventually converges to the value, but that can have other valuations during the
computation.
To be precise, in this proof we distinguish the actual value of the SG – V – and the value of the SG assuming we
play (σ , τ) in the MEC – V′ – which is what the variables of the QP are set to. However, when adding the constraint
to the optimization problem, the distinction between V and V′ is not necessary, since the valuation of the variable
V(s, a) of the QP always depends on the current strategies.

11

JID:YINCO AID:104885 /FLA [m3G; v1.314] P.12 (1-23)

J. Křetínský, E. Ramneantu, A. Slivinskiy et al. Information and Computation ••• (••••) ••••••

• Vσ ,τ (t) =
∑

(s,a)∈E T

pσ ,τ
e(s,a)

(t) · V′(s, a) is the value of a state t ∈ T , assuming strategies σ and τ are played.

2. We now prove that Vσ ,τ (t) = Pσ ,τ
t (�F) for all t ∈ T . In other words, we prove that the computation we use for Vσ ,τ

actually captures the concept of probability to reach the target under the strategies (σ , τ). For this, we use the following
chain of equations:

Vσ ,τ (t) :=
∑

(s,a)∈E T

pσ ,τ
e(s,a)

(t) · V′(s,a) (By definition of Vσ ,τ (t))

=
∑

(s,a)∈E T

pσ ,τ
e(s,a)

(t) ·
⎛
⎝ ∑

s′∈Post(s,a)

δ(s,a, s′) · V′(s′)

⎞
⎠ (Unfolding the Bellman equation)

=
∑

(s,a)∈E T

pσ ,τ
e(s,a)

(t) ·
⎛
⎝ ∑

s′∈Post(s,a)

δ(s,a, s′) · Pσ ,τ
s′ (�F)

⎞
⎠ (By definition of V′)

= Pσ ,τ
t (�F)

In the last step, we pull together the unfolded probability of the path (going to some exit, taking an exiting action and
then continuing from the successor); and we use the fact that all paths reaching the target have to pass through some
exiting state-action pair, as otherwise they are stuck in the EC forever.
Note that this relies on the assumption that there is no target state in the MEC; this assumption is justified, since we
argued in the preliminaries that every target state has only one action which is a self loop, and we exclude these trivial
MECs from consideration, because their value is immediately set correctly to 1.

3. It follows from the previous step that for all t ∈ T we have

V(t) := sup
σ

inf
τ
Pσ ,τ

t (�F) = sup
σ

inf
τ

Vσ ,τ (t)

We overload the symbol Vσ ,τ to also denote the probability for states outside the MEC T to reach the targets under

strategies σ and τ , so formally: Vσ ,τ (t) :=
{∑

(s,a)∈E T pσ ,τ
e(s,a)

(t) · V′(s,a) if t ∈ T

Pσ ,τ
t (�F) otherwise

.

Then, trivially, we also have that for all state s ∈ S

V(s) = sup
σ

inf
τ

Vσ ,τ (s)

As there are only finitely many memoryless deterministic strategies, and those strategies suffice to attain the optimal
value in simple stochastic games, we also have for all state s ∈ S

V(s) = max
σ

min
τ

Vσ ,τ (s)

4. The problem of MECs is that in these state sets there are multiple solutions to the Bellman equations (cf. Example 2),
and thus multiple solutions to the quadratic program. By constraining all states in the MECs to max

σ
min

τ
Vσ ,τ (s), we

constrain them to exactly their value (by the previous step). Thus, we solve the problem, as now the additional solutions
are excluded.

5. Note that so far, this proof considered strategies on the whole state space. However, our algorithm only iterates over all
strategies in the MEC.
This is sufficient, because the states outside the MEC are solved by the rest of the QP, and the newly added constraints
depend on those solutions, as they depend on the valuation of V(s, a) of exiting state-action pairs. �

For a MEC of size n we have to examine at most (maxs∈T
∣∣Av(s)

∣∣)n pairs of strategies, because it suffices to consider
memoryless deterministic strategies. Since the min and max constraints have to be explicitly encoded, we have to add a
number of constraints that is exponential in the size of the MEC. Thus, in the worst case, this reduction creates a QP of
size exponential in the size of SG, which is worse than the original reduction using the normal form. However, as MECs are
typically small, the approach still is more practical.

4.1.5. Summary
In summary, we have shown how to replace every condition of the normal form by modifying the constraints and

objective function of the program. The modifications always ensure that the program still computes the correct value,
because it still only has a single global optimum in the constrained region, namely if every state variable is set to its value.
Thus, we can provide a higher-order program to solve arbitrary SGs, and a quadratic program to solve SGs that only have to
satisfy the 2Act condition.

12

JID:YINCO AID:104885 /FLA [m3G; v1.314] P.13 (1-23)

J. Křetínský, E. Ramneantu, A. Slivinskiy et al. Information and Computation ••• (••••) ••••••

4.2. Opponent strategy for strategy iteration

We can tune the MDP solution method that is used to compute the opponent strategy in Line 6 of Algorithm 2. We
need to ensure that we fix the new choices of Maximizer correctly. For this, we can use the precise MDP solution methods
strategy iteration or linear programming (LP, a QP with an objective function of order 1). However, as [34] pointed out for
the mean payoff objective, we do not need the precise solution of the induced MDP, but it suffices to know that an action
is better than all others. So we can also use bounded value iteration and check that the lower bound of one action is larger
than the upper bound of all other actions, and thus we can stop the algorithm earlier. This approximation and the fact that
VI tends to be the fastest methods in MDPs can speed up the solving. Using unguaranteed VI is dangerous, as it might stop
too early and return a wrong strategy.

4.3. Warm start

All three solution methods can benefit from prior knowledge. VI and quadratic/higher-order programs (QP/HOP) can
immediately use initial solution vectors obtained by domain knowledge or any precomputation. For VI, it is necessary to
know whether it is an upper or lower estimate to use the prior knowledge correctly. The QP/HOP optimization process can
start at the given initial vector.

SI can use the information of an initial estimate to infer a good initial strategy, as already suggested in [34]. This reduces
the number of iterations of the main loop and thus the runtime. However, we have to ensure that the resulting strategy is
proper. For example, we can check whether the target and sink states are reached almost surely from every state, and if not,
we change the strategy to an attractor strategy where necessary, preferring those allowed actions that have a higher value.

We can also improve the MDP-solving for SI (Line 6 of Algorithm 2) by giving it the knowledge we currently have. We
anyway save the estimate L of the previous iteration and, since the strategies of Maximizer get monotonically better, L
certainly is a lower bound for the values in the MDP.

Even in the absence of domain knowledge or sophisticated precomputations, we can run unguaranteed VI first in order
to get some estimates of the values. Then we can use those estimates for SI and QP/HOP. Note that this is similar in spirit
to the idea of optimistic value iteration [28]: utilize VI’s ability to usually deliver tight lower bounds and then verify them.

4.4. Topological improvement

For MDPs, topological improvements have been proposed for VI [22] and for SI [34, Algorithm 3]. These utilize the fact
that the underlying graph of the MDP can be decomposed into a directed acyclic graph of strongly connected components
(SCC). Intuitively speaking, there are parts of the graph that, after leaving them, can never be reached again. Their value
depends solely on the parts of the state space that come after them. So instead of computing the values on the whole game
at once, one can iterate over the SCC in a backwards fashion, starting with the target and sink states and then propagating
the information and solving the SCCs one by one according to their topological ordering.

This idea was extended to BVI for MDPs in [4]. The proof generalizes to SGs, as the basic argument of the topologi-
cal ordering of SCCs is independent from introducing a second player. As the proof relies on the solutions for the later
components being ε-precise, solving those components with the precise methods SI or QP is of course also possible.

5. Experimental comparison

First, we give all the meta information about the experimental setup and the way we describe the results in Section 5.1.
Then, in Section 5.2 to 5.4 we compare different variants of the same algorithm, including a detailed look at the behaviour
of QP on models with many actions. Finally in Section 5.5 we compare the between the algorithm classes, considering
runtime, memory and the bigger theoretical context.

5.1. Experimental setup

5.1.1. Implementation
We implemented all our algorithms as an extension of PRISM-games 3.0 [36]. The implementation is available via

github.7 For BVI, we reimplemented the algorithm as described in [32]; for SI and QP, this is the first implementation in
PRISM-games. To solve the quadratic program, we used Gurobi8 or CPLEX.9 For the higher-order programs, we constructed
them with AMPL and solved them with MINOS.10

7 https://github .com /ga67vib /Algorithms -For-Stochastic -Games.
8 https://www.gurobi .com/.
9 https://www.ibm .com /analytics /cplex -optimizer.

10 https://ampl .com /products /solvers /solvers -we -sell /minos/.

13

JID:YINCO AID:104885 /FLA [m3G; v1.314] P.14 (1-23)

J. Křetínský, E. Ramneantu, A. Slivinskiy et al. Information and Computation ••• (••••) ••••••

s0

s1

s2

(a)

s0

u1

l1

u2

l2

u3

l3

1/2

2/5

(b)

Fig. 5. Fig. 5a depicts the MEC that is used in the handcrafted MulMec model, as well as in cdmsnMEC and dice50MEC. Fig. 5b shows the handcrafted
scalable model “BigMec” with N = 3. In this model, there are 2 · N + 1 states in the MEC and a dedicated target and sink. The initial state is a Minimizer
state, leading to two chains of length N of Maximizer states. The fractions on the leaving actions denote the values; they are obtained by a transition to
the target state with the given probability and to the sink with the remaining probability. The value of every state in the upper chain is 0.5; the initial
state and the lower chain have value 0.4.

5.1.2. Setup
All experiments were conducted on a Linux Manjaro server with a 3.60 GHz Intel(R) Xeon(R) W-2123 CPU and 64 GB

of RAM. We used a timeout of 15 minutes and set the java heap size for PRISM-games to 32 GB and the stack size to
16 GB.11 The precision for BVI was set to 10−6. In theory, the other algorithms are precise. In practice, QP and higher-order
programming can have numerical problems; we mark these cases with red background colour in the table (this is only
visible in the web version of the article).

For SI, even when using strategy iteration to solve the MDP of the opponent, PRISM still solves the resulting Markov
chain by value iteration. For all of the models except hm, our solution is still precise, because we detect and fix probabilistic
cycles of size 1. The model hm is the only one in our benchmark set that has larger probabilistic cycles that cause issues
with convergence. However, this implementation detail does not imply that SI is in general not precise. For example, solving
the Markov chain with linear programming would result in precise solutions.

5.1.3. Case studies
On the one hand, we used all case studies we are aware of that model a realistic scenario as a simple stochastic game.

On the other hand, we generated some examples of interesting theoretical extreme cases ourselves, to see the behaviour
the algorithms exhibit and estimate the impact of certain subcomponents.

As realistic case studies, we use the ones that are distributed with PRISM-games 3.0 and available on their case-study-
website.12 These are coins, prison_dil, adt, charlton, cdmsn, cloud, mdsm, dice and two_investors. Moreover, we use the HW
and AV models which were introduced in [13]. The first index indicates the size of the square grid a robot moves on, the
second index denotes the property that is checked.

As handcrafted models, we prepended the MEC-free models dice and cdmsn with a single small MEC (depicted in
Fig. 5a) in order to judge the impact of such a single MEC. The exits lead to the initial state of the original model with
some probability, and the remaining probability leads to a sink. Further, we used the adversarial model for value iteration
from [25] (called hm13) as well as two newly handcrafted models with either one large MEC (BigMec) or many 3 state
MECs (MulMec). In BigMec, there is a MEC with two chains of N Maximizer states, see Fig. 5b. In MulMec, a single MEC is
repeated N times. For the first N-1 repetitions, both exits lead to s0 of the next MEC with some probability and to s0 of
the current MEC with the rest. For the last repetition, both exits lead to some probabilistic combination of target and sink.

Note that the largest models we use in the paper have less than 500,000 states, so we can only make limited statements
about how the algorithms scale when applied to extremely large, realistic SGs. A reason for few benchmarks being available
probably is that so far there were no guaranteed solvers for simple stochastic games. We hope that our implementation
will motivate others to model their problems as SGs and thus enable further analysis on realistic case studies. Moreover, we
discuss at the end of Section 5.5 that structural properties of a model are more important than its size. This indicates that
to make claims about scalability to extremely large models, we also need to take into account their structural properties.

5.1.4. Table layout and considered algorithms
We first analyse the impact of our optimizations by comparing different variants of the same algorithm: value iteration in

Section 5.2 and Table 1; strategy iteration in Section 5.3 and Table 2; and quadratic respectively higher-order programming
in Section 5.4 and Table 3. Based on this, we select the same variants of each algorithm and compare between the algorithms
in Section 5.5; here we consider both runtime in Table 4 and memory in Table 5 and comment on the context of the
theoretical properties of the algorithms.

11 -javamaxmem 32g -javastack 16g.
12 http://www.prismmodelchecker.org /games /casestudies .php.
13 hm is short for haddad-monmege, the names of the authors of [25].

14

JID:YINCO AID:104885 /FLA [m3G; v1.314] P.15 (1-23)

J. Křetínský, E. Ramneantu, A. Slivinskiy et al. Information and Computation ••• (••••) ••••••

Every runtime table includes the verification times (in seconds) of several variations of the algorithms, i.e. different
optimizations enabled or disabled. An X in the table denotes that the computation did not finish within 15 minutes. A

red background colour indicates that the returned result was wrong, i.e. off by more than the allowed precision (the red

background colour is only visible in the web version of this article). All results that are wrong are off significantly, i.e. by
more than 0.1. The four left-most columns are shared by all tables and give relevant properties that are interesting when
analysing the performance. They show the name of the considered case study, its size, the maximum/average number of
actions and the number of MECs; for the latter, note that this number excludes trivial MECs, i.e. sink or target states and
MECs in regions of the graph that are either not reachable or identified as trivially having value 0/1 by the precomputation.
The case studies are roughly sorted by increasing size/difficulty, with scaled versions of the same model grouped together.
For the comparison within the algorithms, we report all case studies we used; for the comparison between the algorithms,
we restricted to the most interesting ones.

We consider the following algorithms:

VI denotes unguaranteed value iteration.
BVI denotes bounded value iteration.
Sim denotes the simulation-based variant of value iteration [32]. As this is a randomized algorithm, we report both the

maximum and median runtime of three tries.
SI denotes strategy iteration.
[19] is the original QP algorithm that transforms the SG into normal form.
[19]ε is a small modification of the original algorithm that only introduces the ε transition to make it stopping if

necessary.
QP denotes quadratic programming for arbitrary SGs, only transforming the SG to satisfy the 2Act-constraint.
HOP is higher-order programming for arbitrary SGs.

For each algorithm, optimizations are indicated as follows:

T as a prefix denotes the topological optimization.
W as a superscript denotes the warm start optimization, i.e. unguaranteed value iteration to guess a good initial

strategy.
D in the subscript of BVI denotes an optimization suggested in [32]: instead of “deflating” (finding SEC candidates

and decreasing their over-approximation) in every step, this costly operation is only carried out every 100 steps.
SI/BV in the subscript of SI indicates the method used to solve the MDP, either SI or BVI.
C/G in the subscript of QP indicates the used solver, C for CPLEX and G for Gurobi.

5.2. Value iteration (Table 1)

We now analyse the results of the different variants of value iteration. We could reproduce most of the findings of [32]:
the overhead of BVI compared to unguaranteed VI is usually negligible and not performing the expensive deflate operation
in every step speeds up the computation. Unguaranteed VI fails on three of the models. In contrast to [32], we found no
model where the simulation based asynchronous version BRTDP was significantly faster than BVI. In fact, BRTDP is only
faster on a single model (cloud6, which is not too significant as BVI also takes only 2 seconds), but significantly slower on
many others, often even failing to produce results in time. Note that the implementation of BRTDP was in PRISM-games
2, and thus the disadvantage may also have technical reasons; improvements in the simulation engine or data structures
might lead to speed-ups that make BRTDP competitive again.

The new topological variant of BVI (called TBVI) is usually in the same order of magnitude as the default approach. The
exception to this are the models AV15_15 and especially MulMec, where TBVI fails. This is because TBVI solves every SCC of
the model with a precision of ε. When one SCC is solved and has a difference of almost exactly ε between upper and lower
bound, SCCs depending on it have suboptimal information about their exits. This not only slows down convergence, but can
even aggregate and lead to precision problems when there is a chain of many SCCs. Indeed, for MulMec with N>15, the
progress that TBVI makes in the 15th SCC it considers is smaller than machine precision, and thus the computation is stuck.
This problem is not specific to topological VI for SGs, but can also occur for MDPs.

5.3. Strategy iteration (Table 2)

We now analyse the results of the different variants of strategy iteration. Using BVI for the opponent’s MDP and the
warm start usually lead to small speed-ups. We did not consider using linear programming for the opponent’s MDP, as it
is not supported by PRISM. The topological variant is significantly faster in two_inv and MulMec_e3, but on the rest of the
models performs very similar to the non-topological version. Combining topological SI and BVI for the opponent’s MDP leads
to the same problems with MulMec as when using topological BVI. In contrast, topological SI with SI for the opponent’s

15

JID:YINCO AID:104885 /FLA [m3G; v1.314] P.16 (1-23)

J. Křetínský, E. Ramneantu, A. Slivinskiy et al. Information and Computation ••• (••••) ••••••

Table 1
Table with all experimental results on variations of value iteration. See Section 5.1.4 for a description of table
layout and considered algorithms, and Section 5.2 for the analysis.

Case Study States Acts MECs VI Sim BVI BVID TBVI TBVID

coins 19 2 | 1.1 0 <1 <1 <1 <1 <1 <1
prison_dil 102 3 | 1.3 0 <1 <1 <1 <1 <1 <1
adt 305 4 | 1.2 0 <1 X <1 <1 <1 <1
charlton1 502 3 | 1.5 0 <1 <1 <1 <1 <1 <1
charlton2 502 3 | 1.5 0 <1 <1 <1 <1 <1 <1
cdmsn 1,240 2 | 1.6 0 <1 <1 <1 <1 <1 <1
cdmsnMec 1,244 2 | 1.6 1 <1 <1 <1 <1 <1 <1
cloud5 8,842 11 | 3.9 520 <1 9 | 6 <1 <1 <1 <1
cloud6 34,954 13 | 4.4 2176 <1 <1 2 2 8 3
mdsm1 62,245 2 | 1.3 0 4 7 | 7 5 5 3 3
mdsm2 62,245 2 | 1.3 0 <1 15 | 14 <1 <1 <1 <1
dice20 16,915 2 | 1.4 0 <1 262 | 222 <1 <1 <1 <1
dice50 96,295 2 | 1.4 0 6 X 6 6 6 6
dice50Mec 96,299 2 | 1.4 1 6 X 6 6 6 6
two_inv 172,240 3 | 1.3 0 13 X 14 13 13 13
hw5_1 25,000 5 | 2.4 0 <1 87 | 18 <1 <1 <1 <1
hw5_2 25,000 5 | 2.4 0 <1 <1 <1 <1 <1 <1
hw8_1 163,840 5 | 2.5 0 3 X 3 3 3 3
hw8_2 163,840 5 | 2.5 0 <1 <1 <1 <1 <1 <1
hw10_1 400,000 5 | 2.5 0 10 X 10 10 10 11
hw10_2 400,000 5 | 2.5 0 <1 <1 <1 <1 1 1
AV10_1 106,524 6 | 2.1 0 <1 X <1 <1 <1 <1
AV10_2 106,524 6 | 2.1 6 70 X 81 72 82 70
AV10_3 106,524 6 | 2.1 1 47 X 46 45 52 55
AV15_1 480,464 6 | 2.1 0 1 X 1 1 1 1
AV15_2 480,464 6 | 2.1 6 729 X X X X X
AV15_3 480,464 6 | 2.1 1 492 X X X X X

hm_30 61 1 | 1.0 0 <1 X X X X X

MulMec_e2 302 2 | 1.9 100 <1 X <1 2 X X
MulMec_e3 3,002 2 | 2.0 1000 4 X 36 151 X X

MulMec_e4 30,002 2 | 2.0 10000 591 X X X X X

BigMec_e2 203 2 | 1.9 1 <1 X <1 <1 <1 <1
BigMec_e3 2,003 2 | 2.0 1 <1 X 6 1 6 1

BigMec_e4 20,003 2 | 2.0 1 161 X 856 226 871 230

MDP works, because SI solves the SCCs precisely, allowing the SCCs depending on the previous solutions to converge as
well.

5.4. Quadratic programming

5.4.1. Runtime comparison (Table 3)
We now analyse the results of the different variants of quadratic or higher-order programming. The original version of

quadratic programming [19], that requires to transform the SG into normal form is impractical, producing a result within
15 minutes for only 3 of 34 case studies, and even there taking a lot more time than the improved version. After dropping
the constraints No1Act and 1/21/21/2Probs, it can correctly solve 14 of the case studies in time. Both of these variants are exhibit
the numerical errors described in Section 4.1.4 and produce incorrect results on some models. The quadratic program ob-
tained after dropping all but the 2Act constraint is solved successfully by Gurobi in 19 instances; CPLEX on the other hand
only solves 7 instances correctly, one time even reporting an incorrect result. The warm start helps Gurobi on the model
charlton1. Several other times, Gurobi’s internal heuristics are deemed more promising by the program and it discards the
given initial suggestion; thus, the warm start sometimes incurs a slight overhead.

Dropping all constraints, the higher-order program (HOP) with the solver Minos gets the correct result on 26 instances.
The HOP approaches are typically faster than the QP ones, except on the models HW and AV. The topological variant of both
the quadratic programs as well as the higher-order program can lead to significant speed-ups, for example on charlton1,
cloud5 and cloud6, mdsm1, two_inv or HW10_10_2. On all models but cloud, the topological HOP is strictly faster than all
other algorithms in this subsection.

To estimate the impact of the EC solution method, we used several handcrafted or modified models: A single large MEC
(BigMec_e2, with a MEC of size 201) cannot be solved with our approach, as there are too many choices; possibly, some
heuristic could help identify reasonable strategies. In contrast, small MECs do not affect runtime a lot. The models cdmsn

16

JID:YINCO AID:104885 /FLA [m3G; v1.314] P.17 (1-23)

J. Křetínský, E. Ramneantu, A. Slivinskiy et al. Information and Computation ••• (••••) ••••••

Table 2
Table with all experimental results on variations of strategy iteration. See Section 5.1.4 for a description of table layout and
considered algorithms, and Section 5.3 for the analysis.

Case Study States Acts MECs SISI SIBV SIW
SI SIW

BV TSISI TSIBV TSIW
SI TSIW

BV

coins 19 2 | 1.1 0 <1 <1 <1 <1 <1 <1 <1 <1
prison_dil 102 3 | 1.3 0 <1 <1 <1 <1 <1 <1 <1 <1
adt 305 4 | 1.2 0 <1 <1 <1 <1 <1 <1 <1 <1
charlton1 502 3 | 1.5 0 <1 <1 <1 <1 <1 <1 <1 <1
charlton2 502 3 | 1.5 0 <1 <1 <1 <1 <1 <1 <1 <1
cdmsn 1,240 2 | 1.6 0 <1 <1 <1 <1 <1 <1 <1 <1
cdmsnMec 1,244 2 | 1.6 1 <1 <1 <1 <1 <1 <1 <1 <1
cloud5 8,842 11 | 3.9 520 <1 <1 <1 <1 <1 <1 <1 <1
cloud6 34,954 13 | 4.4 2176 <1 <1 <1 <1 <1 <1 <1 <1
mdsm1 62,245 2 | 1.3 0 5 5 6 6 3 3 3 3
mdsm2 62,245 2 | 1.3 0 <1 <1 <1 <1 <1 <1 <1 <1
dice20 16,915 2 | 1.4 0 <1 <1 <1 <1 <1 <1 <1 <1
dice50 96,295 2 | 1.4 0 7 6 7 7 6 6 6 6
dice50Mec 96,299 2 | 1.4 1 6 7 7 7 6 6 6 6
two_inv 172,240 3 | 1.3 0 38 19 37 22 11 11 13 12
HW5_1 25,000 5 | 2.4 0 <1 <1 <1 <1 <1 <1 <1 <1
HW5_2 25,000 5 | 2.4 0 <1 <1 <1 <1 <1 <1 <1 <1
HW8_1 163,840 5 | 2.5 0 4 4 4 4 4 4 4 4
HW8_2 163,840 5 | 2.5 0 <1 <1 <1 <1 <1 <1 <1 <1
HW10_1 400,000 5 | 2.5 0 11 11 11 11 10 11 11 11
HW10_2 400,000 5 | 2.5 0 2 2 2 2 1 1 2 2
AV10_1 106,524 6 | 2.1 0 <1 <1 <1 <1 <1 <1 <1 <1
AV10_2 106,524 6 | 2.1 6 83 79 79 80 79 76 77 79
AV10_3 106,524 6 | 2.1 1 55 50 58 52 60 X 60 X
AV15_1 480,464 6 | 2.1 0 2 2 2 2 1 2 2 2
AV15_2 480,464 6 | 2.1 6 797 825 843 791 X X X X
AV15_3 480,464 6 | 2.1 1 529 500 512 497 X X X X
hm_30 61 1 | 1.0 0 X X X X X X X X
MulMec_e2 302 2 | 1.9 100 <1 X <1 X <1 X <1 X
MulMec_e3 3,002 2 | 2.0 1000 56 X 56 X 3 X 3 X
MulMec_e4 30,002 2 | 2.0 10000 X X X X X X X X
BigMec_e2 203 2 | 1.9 1 <1 <1 <1 <1 <1 <1 <1 <1
BigMec_e3 2,003 2 | 2.0 1 1 1 1 1 1 1 1 1
BigMec_e4 20,003 2 | 2.0 1 X X X X X X X X

and dice50 prepended with a single three-state MEC are solved in the same time as the original models. Even a chain of
1000 three-state MECs can be solved quickly (MulMec_e3).

5.4.2. Additional analysis: impact of the number of actions (Fig. 6)
It seems plausible that a high number of actions is problematic for the QP/HOP-algorithms, since for QP the SG has to

be blown up and for HOP the degree of the objective function increases. Thus, independent of the runtime comparison, in
this subsection we investigate how the number of actions per state affects the performance of the algorithms.

The highest number of actions per state in the real-word case studies is 13 and the highest average is 4.4. We want to
analyse the performance with even higher number of actions and on more models. However, the PRISM language, which is
used for encoding the models, does not have the feature of scalable number of actions. Hence, we used random generation
to obtain models with a large number of actions per state.
Random generation of models: We have the following requirements for the randomly generated models: firstly they should
not be trivial, so we filter out models that are solved by standard precomputations or have value 1. Secondly, all models
should be of the same size, to ensure that effects we see are not due to an increase in size, but rather due to increasing the
number of actions. Similarly, the models should not contain non-trivial MECs, as we have already seen that these strongly
influence on the runtime of the algorithms. Their presence could obfuscate the impact of the number of actions.

We use two different approaches to generate the random models, where in both, every state has equal chance of being
a Maximizer or Minimizer state; also, both are parametrized by the designated number of actions per state m.

• Random tree: The main underlying topology of this model is a tree. That means that every inner node has m actions
that have a non-zero probability of leading to states of the next level. Additionally, there may be transitions to random
other states of the tree, where the smallest transition probability is 0.1. The generated tree can consist of a single SCC
– if all states have some path back to the root – or of as many SCCs as there are states in the tree – if no state has
a transition to an ancestor. Every state has a non-zero probability of reaching a leaf state, which are either targets or
sinks. Thus, there can be no non-trivial MECs. We report our results for tree size 1000, because QP could still solve
several models of this size. For larger trees, it regularly timed out, i.e. needs more than 15 minutes.
For every m ∈ {2, 5, 10, 30, 50, 70, 90, 100}, we generated 20 trees, resulting in a total of 160 models.

17

JID:YINCO AID:104885 /FLA [m3G; v1.314] P.18 (1-23)

J. Křetínský, E. Ramneantu, A. Slivinskiy et al. Information and Computation ••• (••••) ••••••

Table 3
Table with all experimental results on variations of quadratic/higher order programming. See Section 5.1.4 for a description of table layout and considered
algorithms, and Section 5.4 for the analysis.

Case Study States Acts MECs [19] [19]ε QPC QPG QPW
G HOP TQPG TQPW

G THOP

coins 19 2 | 1.1 0 X X <1 <1 <1 <1 <1 <1 <1

prison_dil 102 3 | 1.3 0 X 8 11 9 8 <1 <1 <1 <1

adt 305 4 | 1.2 0 X <1 <1 <1 <1 <1 <1 <1 <1
charlton1 502 3 | 1.5 0 X 179 X 180 144 <1 <1 <1 <1
charlton2 502 3 | 1.5 0 X X X X X <1 X X <1
cdmsn 1,240 2 | 1.6 0 17 <1 <1 <1 <1 <1 <1 <1 <1

cdmsnMec 1,244 2 | 1.6 1 X <1 <1 <1 <1 <1 <1 <1 <1

cloud5 8,842 11 | 3.9 520 X X X X X 1 3 3 4
cloud6 34,954 13 | 4.4 2176 X X X X X 8 14 15 21
mdsm1 62,245 2 | 1.3 0 X X X X X 107 6 7 3
mdsm2 62,245 2 | 1.3 0 X <1 1 <1 <1 5 <1 <1 <1
dice20 16,915 2 | 1.4 0 X 3 X 3 3 2 <1 <1 <1
dice50 96,295 2 | 1.4 0 X X X X X 15 6 6 6
dice50Mec 96,299 2 | 1.4 1 X X X X X 12 6 7 6

two_inv 172,240 3 | 1.3 0 X X 253 X X 432 X X 20

HW5_5_1 25,000 5 | 2.4 0 13 1 X 1 1 3 <1 <1 <1
HW5_5_2 25,000 5 | 2.4 0 X 1 X 1 1 3 <1 <1 <1
HW8_8_1 163,840 5 | 2.5 0 96 22 X 20 20 17 4 4 4
HW8_8_2 163,840 5 | 2.5 0 X 11 X 11 11 47 2 2 <1
HW10_10_1 400,000 5 | 2.5 0 X 98 X 98 98 44 12 12 11
HW10_10_2 400,000 5 | 2.5 0 X 48 X 49 49 286 4 4 1
AV10_10_1 106,524 6 | 2.1 0 X 3 X 3 3 9 <1 <1 <1
AV10_10_2 106,524 6 | 2.1 6 X X X X X X X X X
AV10_10_3 106,524 6 | 2.1 1 X X X X X X X X X
AV15_15_1 480,464 6 | 2.1 0 X 15 X 10 11 41 3 3 2
AV15_15_2 480,464 6 | 2.1 6 X X X X X X X X X
AV15_15_3 480,464 6 | 2.1 1 X X X X X X X X X

hm_30 61 1 | 1.0 0 735 <1 <1 <1 <1 <1 <1 <1 <1

MulMec_e2 302 2 | 1.9 100 X X X <1 <1 <1 <1 <1 <1
MulMec_e3 3,002 2 | 2.0 1000 X X X 4 7 3 5 8 4
MulMec_e4 30,002 2 | 2.0 10000 X X X X X X X X X
BigMec_e2 203 2 | 1.9 1 X X X X X X X X X
BigMec_e3 2,003 2 | 2.0 1 X X X X X X X X X
BigMec_e4 20,003 2 | 2.0 1 X X X X X X X X X

• Repeated tree: The underlying topology of this model is a series of 20 trees, where every tree has 400 states. This
ensures the problem has a certain complexity, as there are at least 20 SCCs. Every tree is generated in similar fash-
ion as described in the random-tree-approach. For every m ∈ {2, 5, 10, 30, 50, 70, 100, 200}, we generated two models,
resulting in a total number of 16.

Analysis: In Fig. 6a, we see the results on the random tree models. For both QP and HOP, there is no visible correlation
between number of actions per state. Contrary to the claim that more actions increase the runtime, we see that most time
outs occur for models with very low m.

Fig. 6b shows the results on the repeated tree models. QP times out for all of them, while HOP is able to solve all but
one. Here, it looks like there is a linear relation between the number of actions per state and the runtime. Still, even for
200 actions per state, HOP is able to solve a benchmark.

In conclusion: in real case studies the average number of actions per state is typically smaller than 10. Since HOP is
able to solve models with more than 100 actions per state, this model property will likely not be prohibitive. Moreover, we
saw timeouts occur even for small number of actions per state, indicating that other structural properties of the models are
more important.

5.5. Comparison between algorithm classes

Comparing all classes of algorithms, we differentiate three topics: First the runtime comparison, similar to the previous
subsections, then a memory comparison and finally a comparison of theoretical properties to set the practical results into
context.

18

JID:YINCO AID:104885 /FLA [m3G; v1.314] P.19 (1-23)

J. Křetínský, E. Ramneantu, A. Slivinskiy et al. Information and Computation ••• (••••) ••••••

Fig. 6. Analysis of the number of actions per state on the runtime of QP and HOP. Fig. 6a and Fig. 6b show the results on random models generated by the
random-tree-approach respectively the repeated-tree-approach. The y-axis of all plots denotes runtime of the algorithm in seconds. The red line denotes a
time out, which we report after 15 minutes (The colour is only visible in the web version of the article).

5.5.1. Runtime comparison (Table 4 and Fig. 7)
For the runtime comparison between the different classes of algorithms, we provide the experimental data in two forms:

• In Fig. 7 we visualize the number of benchmarks solved as well as the aggregated time to solve them. We refer to the
caption of Fig. 7 for a detailed description of the meaning of the lines.

• In Table 4 we present a subset of benchmarks and algorithms from the previous tables. For each algorithm we selected
one variant with and one without the topological optimization, because it can have significant positive as well as
negative impact. We also included one QP and one HOP, as there is a fundamental difference between the approaches.
Regarding the other optimizations, we selected the ones that minimize the aggregated runtime over all benchmarks.

Fig. 7 provides an overview of the performance of all algorithms. Note that this plot immensely depends on the selection
of benchmarks. By e.g. including several variants of the hm model, one could skew it and make all VI based algorithms
seem worse. Still, to the best of our knowledge our set of benchmarks is somewhat balanced which allows us to extract
general trends.

We see that many variants of QP and the simulation based VI variant end significantly earlier than all SI and deterministic
VI algorithms. The worst algorithm is the unmodified QP variant from [19] with 3 benchmarks, while using TQP, HOP or
THOP at least comes close to the SI and VI variants with 24 respectively 25 solved benchmarks. The SI and VI variants to
the right of the plot all solve between 26 and 31 benchmarks. For the first 26 benchmarks they are very comparable in
runtime to each other and to TQP and THOP. They only increase above 250 seconds when solving the hardest case studies.

We now turn to the more detailed analysis of Table 4. Observe that BVI and SI succeed/fail on different models. While
BVI succeeds in the largest version of BigMec, SI is the only one to solve the large and complicated models AV15_15_2/3,
and TSI has the best runtime in MulMec_e3. TSI benefits from a model with small subcomponents that it can quickly solve
(as in MulMec), while BVI is fast in subgraphs without probabilistic cycles (as the large chains in BigMec). Depending on
the model structure, both of these algorithms are a viable choice.

19

JID:YINCO AID:104885 /FLA [m3G; v1.314] P.20 (1-23)

J. Křetínský, E. Ramneantu, A. Slivinskiy et al. Information and Computation ••• (••••) ••••••

Table 4
Table for the runtime comparison between the classes of algorithms. See Section 5.1.4 for a description of
table layout and considered algorithms, and Section 5.5.1 for the analysis.

Case Study States Acts MECs BVID TBVID SIBV TSIW
SI QPW

G THOP

prison_dil 102 3/1.3 0 <1 <1 <1 <1 8 <1
charlton1 502 3/1.5 0 <1 <1 <1 <1 144 <1
cdmsn 1,240 2/1.6 0 <1 <1 <1 <1 <1 <1
cdmsnMec 1,244 2/1.6 1 <1 <1 <1 <1 <1 <1
cloud6 34,954 13/4.4 2176 2 3 <1 <1 X 21
mdsm1 62,245 2/1.3 0 5 3 5 3 X 3
dice50 96,295 2/1.4 0 6 6 6 6 X 6
dice50Mec 96,299 2/1.4 1 6 6 7 6 X 6
two_inv 172,240 3/1.3 0 13 13 19 13 X 20
HW10_10_1 400,000 5/2.5 0 10 11 11 11 98 11
HW10_10_2 400,000 5/2.5 0 <1 1 2 2 49 1
AV10_10_1 106,524 6/2.1 0 <1 <1 <1 <1 3 <1
AV10_10_2 106,524 6/2.1 6 72 70 79 77 X X
AV10_10_3 106,524 6/2.1 1 45 55 50 60 X X
AV15_15_1 480,464 6/2.1 0 1 1 2 2 11 2
AV15_15_2 480,464 6/2.1 6 X X 825 X X X
AV15_15_3 480,464 6/2.1 1 X X 500 X X X

hm_30 61 1/1.0 0 X X X X <1 <1

MulMec_e2 302 2/1.9 100 2 X X <1 <1 <1
MulMec_e3 3,002 2/2.0 1000 151 X X 3 7 4
MulMec_e4 30,002 2/2.0 10000 X X X X X X
BigMec_e2 203 2/1.9 1 <1 <1 <1 <1 X X
BigMec_e3 2,003 2/2.0 1 1 1 1 1 X X
BigMec_e4 20,003 2/2.0 1 226 230 X X X X

Fig. 7. An overview of the aggregated runtimes of all 23 considered algorithms. For each algorithm, we ordered the benchmarks it solved by time taken to
solve them. A point (x, y) indicates that to solve the “first” x benchmarks, the algorithm had an aggregated runtime of y seconds. The star at the end of
a line highlights the maximum number of benchmarks the algorithm could solve, i.e. all other case studies could not be solved within the timeout of 15
minutes. VI variants are depicted with dashed, SI with dotted and QP/HOP with solid lines. Note that the legend is ordered by performance, i.e. algorithms
with less solved benchmarks (and more required time in case of ties) are listed first.

Topological higher-order programming (THOP), the improved version of QP, is comparable on many case studies, but still
a lot worse on several others, e.g. cloud6 and BigMec. This volatility is even more pronounced for the QP approaches. The
reason for this can be MECs which blow up the QP, but it can also happen in models with few or no MECs; in the latter
case, we do not know which property of the model slows down the solving. Note that QP and HOP are able to solve models
with many small MECs (MulMec_e3) quickly, while already one medium sized MEC (BigMec_e2) makes it infeasible.

The model hm_30 from [25] deserves special attention: it only is an MC, i.e. there are no nondeterministic choices. Still,
as it is a handcrafted extreme case, we can observe interesting behaviour of the algorithms. Since hm is an adversarial
example for VI, of course all variants of VI fail. Moreover, since the solvers for MDPs and MCs in PRISM use VI, and since
SI relies on those solvers, the PRISM implementation of SI also fails on the model (see Section 5.1.2 for more details). QP
shines on this model, being the only method to solve it. However, for increasing parameter N , the probabilities in hm_N
become so small that they are at the border of numerical stability. If the state-chains in the model were prolonged by one

20

JID:YINCO AID:104885 /FLA [m3G; v1.314] P.21 (1-23)

J. Křetínský, E. Ramneantu, A. Slivinskiy et al. Information and Computation ••• (••••) ••••••

Table 5
Table for the memory comparison between the classes of algorithms. See Section 5.1.4 for a description
of considered algorithms, and Section 5.5.2 for the analysis.

BVI TBVI SI [19] [19]ε QPC QPG HOP

min. memory used 31/34 26/34 32/34 4/34 18/34 27/34 24/34 34/34
Maximum overhead 4× 29× 2× 88× 7× 8× 3× 1×

more state (i.e. the parameter N is set to 31), QP has numerical problems and reports an incorrect result. Similarly, noting
that THOP reports an incorrect result on hm_30, one can experimentally find out that THOP succeeds only for N ≤ 25. So if
the model exhibits very small probabilities, one has to consider using a solver capable of arbitrary-precision arithmetic.

Note that the size of the model is only loosely correlated with the difficulty of solving it. For example, the largest case
study AV15_1 with 480,464 states can be solved in few seconds by all algorithm classes. In contrast, already the small model
hm_30 with 61 states takes a long time for all VI-based algorithms and can induce precision problems for all QP-based ones.
Further, the medium-sized model MulMec_e4 with 30,002 states is not solved in time by any algorithm. The reason for the
difficulty of the hm model is the number of probabilistic loops as well as the small probability of the path from initial
state to target. The difficulty of MulMec and BigMec models stems from the number and size of MECs. We see that these
structural properties of the underlying graph have a huge effect on the performance of the algorithms.

5.5.2. Memory comparison (Table 5)
For a general overview, we report the minimum and maximum memory used in our experiments: on the smallest model

coins, almost all algorithms need around 80 MB. Most memory is needed on the largest models AV and HW, where BVI, SI
and HOP need between 1 GB and 1.5 GB, while QP can go up to 9.5 GB.

For a more detailed analysis, consider Table 5. The first row shows the number of times an algorithm needed less than
twice as much memory as the algorithm who used the minimum memory. In other words, this is the number of times
the algorithm performed “almost optimally” memory-wise. The second row shows the maximum relative overhead when
compared to the minimum. For example, on one benchmark BVI needed 4 times as much as the minimum. Note that we
omit optimizations in this table when they do not make a difference. For example, all 8 variants of SI perform the same in
terms of memory.

We see that the memory usage of BVI, SI and HOP is very similar. HOP actually is close to the minimum memory on all
benchmarks, while BVI and SI have a few where they need slightly more, namely BigMec_1e3, ManyMec_1e2 (both SI and
BVI) and hm_30 (only BVI). Most QP variants perform worse, needing more memory several times. Moreover, this typically
occurs on the large models AV and HW, where even the minimum memory is more than 1 GB, and thus a relative difference
of 3 times larger is quite significant.

The topological variant of BVI is significantly worse on AV10_3 (8×) and BigMec_1e4 (29×). Interestingly, this problem
does not occur for the topological variants of SI, QP or HOP. The original approach from [19] almost always needs more
memory, often significantly so. The need for 88 times the memory occurs in the case study cdmsnMEC, with a difference
of 120 MB to 10.5 GB. This highlights another14 practical drawback of the transformation into normal form which blows up
the game.

5.5.3. Theoretical comparison
To set the practical results into a more general context, we recall relevant theoretical properties of all three algorithm

classes.
VI has two main drawbacks when compared to the other two: (i) it is an imprecise algorithm, i.e. it only converges

in the limit and thus does not return the precise result in finite time. This can be addressed by introducing an additional
rounding step after an exponential number of steps [10]; however, this is impractical, as the algorithm then always needs
exponentially many steps. (ii) There are models where the exponential number of steps is necessary [5], so there is no hope
to find a polynomial algorithm based on VI.

In contrast, SI and QP theoretically are precise methods, even though our practical implementation is not, since SI uses
an imprecise, VI-based MDP solver and since QP exhibits numerical instability.

Both SI and QP still have the potential to yield a polynomial algorithm. For SI, this could be achieved by finding a
polynomial bound for the number of iterations; currently, the best known bound is exponential. For QP, this could be
achieved by finding a polynomially sized, convex QP (as solving convex QPs can be done in polynomial time [33]). Currently,
our QP is exponential and it is unclear for both our and the previous polynomially sized QP [19] whether they are convex.
If they are not, then the solving them is known to be NP-hard [42].

14 Additionally to the one described in Section 4.1.4.

21

JID:YINCO AID:104885 /FLA [m3G; v1.314] P.22 (1-23)

J. Křetínský, E. Ramneantu, A. Slivinskiy et al. Information and Computation ••• (••••) ••••••

6. Conclusions

We have extended the three known classes of algorithm – value iteration, strategy iteration and quadratic programming
– with several improvements and compared them both theoretically and practically.

In summary, for all algorithms, the structure of the underlying graph is more important than its size; thus knowledge
about the model is relevant both for estimating the expected time, as well as the preferred algorithm and combination of
optimizations. BVI and SI perform very similar on most models in our practical evaluation; each of them has some models
where they are better. Quadratic/higher order programming is volatile and typically slower than the other two; however,
the used solver has a huge impact, as we already see when changing between CPLEX, Gurobi and Minos. Thus, advances in
the area of optimization problems could make this solution method the most practical.

In future work, we want to extend all algorithms to SGs with other objectives, e.g. total expected reward, mean payoff or
parity. We expect the algorithms to work in a similar fashion as the ones presented for reachability in this paper, because
for MDPs the other objectives are also similar to reachability. For example bounded value iteration in MDPs with total
expected reward objective [4] differs mainly in the fact that one first has to compute an over-approximation, since it cannot
start at 1 as the highest possible probability. Strategy iteration for MDPs with mean payoff [34] uses the same underlying
idea as for reachability, but keeps track of two metrics (gain and bias) in order to decide how to improve a strategy. A key
problem when extending bounded value iteration to total expected reward in SGs is that there are different semantics of
the objective [15], and that in some cases the value is not the least, but the greatest fixpoint of the Bellman equations. Thus,
value iteration from below can be stuck. To address this, probably a dual of the “deflating” [32] operation can be derived,
which then increases the lower approximants in order to converge to the value.

A further direction for future work is coming up with a polynomially sized, convex QP. Using the normal form of [19],
we have a polynomially sized QP. Possibly we could find a more practical polynomial QP by finding a solution for MECs that
does not enumerate an exponential number of strategies. The key difficulty is in understanding whether the QP is convex
or altering it so that it becomes convex. Overcoming this difficulty would give a positive answer to the long-standing open
question whether simple stochastic games can be solved in polynomial time.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential com-
peting interests:
This research was funded in part by the German Research Foundation (DFG) projects 383882557 Statistical Unbounded
Verification (SUV) and 427755713 Group-By Objectives in Probabilistic Verification (GOPro).

References

[1] Pranav Ashok, Krishnendu Chatterjee, Jan Kretínský, Maximilian Weininger, Tobias Winkler, Approximating values of generalized-reachability stochastic
games, in: LICS, ACM, 2020, pp. 102–115.

[2] Pranav Ashok, Jan Kretínský, Maximilian Weininger, PAC statistical model checking for Markov decision processes and stochastic games, in: CAV (1),
in: Lecture Notes in Computer Science, vol. 11561, Springer, 2019, pp. 497–519.

[3] Christel Baier, Joost-Pieter Katoen, Principles of Model Checking, MIT Press, 2008.
[4] Christel Baier, Joachim Klein, Linda Leuschner, David Parker, Sascha Wunderlich, Ensuring the reliability of your model checker: interval iteration for

Markov decision processes, in: CAV (1), in: Lecture Notes in Computer Science, vol. 1042, Springer, 2017, pp. 160–180.
[5] Nikhil Balaji, Stefan Kiefer, Petr Novotný, Guillermo A. Pérez, Mahsa Shirmohammadi, On the complexity of value iteration, in: ICALP, in: LIPIcs, vol. 132,

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 102.
[6] Tomás Brázdil, Krishnendu Chatterjee, Martin Chmelik, Vojtech Forejt, Jan Kretínský, Marta Z. Kwiatkowska, David Parker, Mateusz Ujma, Verification

of Markov decision processes using learning algorithms, in: ATVA, in: Lecture Notes in Computer Science, vol. 8837, Springer, 2014, pp. 98–114.
[7] Krishnendu Chatterjee, Luca de Alfaro, Thomas A. Henzinger, Strategy improvement for concurrent reachability and turn-based stochastic safety games,

J. Comput. Syst. Sci. 79 (5) (2013) 640–657, https://doi .org /10 .1016 /j .jcss .2012 .12 .001.
[8] Krishnendu Chatterjee, Nathanaël Fijalkow, A reduction from parity games to simple stochastic games, in: GandALF, 2011, pp. 74–86.
[9] Krishnendu Chatterjee, Kristoffer Arnsfelt Hansen, Rasmus Ibsen-Jensen, Strategy complexity of concurrent safety games, in: MFCS, LIPIcs 83, Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2017, 55.
[10] Krishnendu Chatterjee, Thomas A. Henzinger, Value iteration, in: 25 Years of Model Checking, in: Lecture Notes in Computer Science, vol. 5000,

Springer, 2008, pp. 107–138.
[11] Krishnendu Chatterjee, Thomas A. Henzinger, A survey of stochastic ω-regular games, J. Comput. Syst. Sci. 78 (2) (2012) 394–413, https://doi .org /10 .

1016 /j .jcss .2011.05 .002.
[12] Krishnendu Chatterjee, Thomas A. Henzinger, Barbara Jobstmann, Arjun Radhakrishna, Gist: a solver for probabilistic games, in: CAV, in: Lecture Notes

in Computer Science, vol. 6174, Springer, 2010, pp. 665–669.
[13] Krishnendu Chatterjee, Joost-Pieter Katoen, Maximilian Weininger, Tobias Winkler, Stochastic games with lexicographic reachability-safety objectives,

in: CAV (2), in: Lecture Notes in Computer Science, vol. 12225, Springer, 2020, pp. 398–420.
[14] Krishnendu Chatterjee, Koushik Sen, Thomas A. Henzinger, Model-checking omega-regular properties of interval Markov chains, in: FoSSaCS, in: Lecture

Notes in Computer Science, vol. 4962, Springer, 2008, pp. 302–317.
[15] Taolue Chen, Vojtech Forejt, Marta Z. Kwiatkowska, David Parker, Aistis Simaitis, Automatic verification of competitive stochastic systems, Form. Meth-

ods Syst. Des. 43 (1) (2013) 61–92, https://doi .org /10 .1007 /s10703 -013 -0183 -7.
[16] Taolue Chen, Vojtech Forejt, Marta Z. Kwiatkowska, Aistis Simaitis, Clemens Wiltsche, On stochastic games with multiple objectives, in: MFCS, in:

Lecture Notes in Computer Science, vol. 8087, Springer, 2013, pp. 266–277.
[17] Chih-Hong Cheng, Alois Knoll, Michael Luttenberger, Christian Buckl, GAVS+: an open platform for the research of algorithmic game solving, in: TACAS,

in: Lecture Notes in Computer Science, vol. 6605, Springer, 2011, pp. 258–261.

22

JID:YINCO AID:104885 /FLA [m3G; v1.314] P.23 (1-23)

J. Křetínský, E. Ramneantu, A. Slivinskiy et al. Information and Computation ••• (••••) ••••••

[18] Anne Condon, The complexity of stochastic games, Inf. Comput. 96 (2) (1992) 203–224, https://doi .org /10 .1016 /0890 -5401(92)90048 -K.
[19] Anne Condon, On algorithms for simple stochastic games, in: Advances in Computational Complexity Theory, in: DIMACS Series in Discrete Mathematics

and Theoretical Computer Science, vol. 13, DIMACS/AMS, 1993, pp. 51–71.
[20] Costas Courcoubetis, Mihalis Yannakakis, The complexity of probabilistic verification, J. ACM 42 (4) (1995) 857–907, https://doi .org /10 .1145 /210332 .

210339.
[21] Decheng Dai, Rong Ge, Another sub-exponential algorithm for the simple stochastic game, Algorithmica 61 (4) (2011) 1092–1104, https://doi .org /10 .

1007 /s00453 -010 -9413 -1.
[22] Peng Dai Mausam, Daniel S. Weld, Judy Goldsmith, Topological value iteration algorithms, J. Artif. Intell. Res. 42 (2011) 181–209, Available at, http://

jair.org /papers /paper3390 .html.
[23] J. Filar, K. Vrieze, Competitive Markov Decision Processes, Springer-Verlag, 1997.
[24] Hugo Gimbert, Florian Horn, Simple stochastic games with few random vertices are easy to solve, in: FoSSaCS, in: Lecture Notes in Computer Science,

vol. 4962, Springer, 2008, pp. 5–19.
[25] Serge Haddad, Benjamin Monmege, Interval iteration algorithm for MDPs and IMDPs, Theor. Comput. Sci. 735 (2018) 111–131, https://doi .org /10 .1016 /

j .tcs .2016 .12 .003.
[26] Ernst Moritz Hahn, Arnd Hartmanns, Christian Hensel, Michaela Klauck, Joachim Klein, Jan Kretínský, David Parker, Tim Quatmann, Enno Ruijters,

Marcel Steinmetz, The 2019 comparison of tools for the analysis of quantitative formal models - (QComp 2019 competition report), in: TACAS (3), in:
Lecture Notes in Computer Science, vol. 11429, Springer, 2019, pp. 69–92.

[27] Kristoffer Arnsfelt Hansen, Rasmus Ibsen-Jensen, Peter Bro Miltersen, The complexity of solving reachability games using value and strategy iteration,
Theory Comput. Syst. 55 (2) (2014) 380–403, https://doi .org /10 .1007 /s00224 -013 -9524 -6.

[28] Arnd Hartmanns, Benjamin Lucien Kaminski, Optimistic value iteration, in: CAV (2), in: Lecture Notes in Computer Science, vol. 12225, Springer, 2020,
pp. 488–511.

[29] A.J. Hoffman, R.M. Karp, On nonterminating stochastic games, Manag. Sci. 12 (5) (1966) 359–370, https://doi .org /10 .1287 /mnsc .12 .5 .359.
[30] Rasmus Ibsen-Jensen, Peter Bro Miltersen, Solving simple stochastic games with few coin toss positions, in: ESA, in: Lecture Notes in Computer Science,

vol. 7501, Springer, 2012, pp. 636–647.
[31] Mark Kattenbelt, Marta Z. Kwiatkowska, Gethin Norman, David Parker, A game-based abstraction-refinement framework for Markov decision processes,

Form. Methods Syst. Des. 36 (3) (2010) 246–280, https://doi .org /10 .1007 /s10703 -010 -0097 -6.
[32] Edon Kelmendi, Julia Krämer, Jan Kretínský, Maximilian Weininger, Value iteration for simple stochastic games: stopping criterion and learning algo-

rithm, in: CAV (1), in: Lecture Notes in Computer Science, vol. 10981, Springer, 2018, pp. 623–642.
[33] Mikhail K. Kozlov, Sergei P. Tarasov, Leonid G. Khachiyan, The polynomial solvability of convex quadratic programming, USSR Comput. Math. Math.

Phys. 20 (5) (1980) 223–228, https://doi .org /10 .1016 /0041 -5553(80)90098 -1.
[34] Jan Kretínský, Tobias Meggendorfer, Efficient strategy iteration for mean payoff in Markov decision processes, in: ATVA, in: Lecture Notes in Computer

Science, vol. 10482, Springer, 2017, pp. 380–399.
[35] Jan Kretínský, Tobias Meggendorfer, Of cores: a partial-exploration framework for Markov decision processes, in: CONCUR, in: LIPIcs, vol. 140, Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 5.
[36] Marta Kwiatkowska, Gethin Norman, David Parker, Gabriel Santos, PRISM-games 3.0: stochastic game verification with concurrency, equilibria and

time, in: CAV (2), in: Lecture Notes in Computer Science, vol. 12225, Springer, 2020, pp. 475–487.
[37] Jan Křetínský, Emanuel Ramneantu, Alexander Slivinskiy, Maximilian Weininger, Comparison of algorithms for simple stochastic games, Electr. Proc.

Theor. Comput. Sci. 326 (2020) 131–148, https://doi .org /10 .4204 /eptcs .326 .9.
[38] Ludwig Walter, A subexponential randomized algorithm for the simple stochastic game problem, Inf. Comput. 117 (1) (1995) 151–155, https://doi .org /

10 .1006 /inco .1995 .1035.
[39] Kittiphon Phalakarn, Toru Takisaka, Thomas Haas, Ichiro Hasuo, Widest paths and global propagation in bounded value iteration for stochastic games,

in: CAV (2), in: Lecture Notes in Computer Science, vol. 12225, Springer, 2020, pp. 349–371.
[40] Martin L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, Wiley Series in Probability and Statistics, Wiley, 1994.
[41] Tim Quatmann, Joost-Pieter Katoen, Sound value iteration, in: CAV (1), in: Lecture Notes in Computer Science, vol. 10981, Springer, 2018, pp. 643–661.
[42] Sartaj Sahni, Computationally related problems, SIAM J. Comput. 3 (4) (1974) 262–279, https://doi .org /10 .1137 /0203021.
[43] Rafal Somla, New algorithms for solving simple stochastic games, Electron. Notes Theor. Comput. Sci. 119 (1) (2005) 51–65, https://doi .org /10 .1016 /j .

entcs .2004 .07.008.
[44] María Svorenová, Marta Kwiatkowska, Quantitative verification and strategy synthesis for stochastic games, Eur. J. Control 30 (2016) 15–30, https://

doi .org /10 .1016 /j .ejcon .2016 .04 .009.
[45] Maximilian Weininger, Tobias Meggendorfer, Jan Kretínský, Satisfiability bounds for ω-regular properties in bounded-parameter Markov decision pro-

cesses, in: CDC, IEEE, 2019, pp. 2284–2291.
[46] Uri Zwick, Mike Paterson, The complexity of mean payoff games on graphs, Theor. Comput. Sci. 158 (1,2) (1996) 343–359, https://doi .org /10 .1016 /

0304 -3975(95)00188 -3.

23

C PAC Statistical Model Checking for
Markov Decision Processes and Stochastic
Games (CAV 2019)

Licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropri-
ate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.

This is an exact reprinting of the paper which has been published as a peer reviewed
conference paper.

Pranav Ashok, Jan Kretinsky, and Maximilian Weininger. “PAC Statistical
Model Checking for Markov Decision Processes and Stochastic Games”. In:
CAV (1). Vol. 11561. Lecture Notes in Computer Science. Springer, 2019,
pp. 497–519. doi: 10.1007/978-3-030-25540-4 29

Summary

Statistical model checking (SMC) is a technique for analysis of probabilistic systems that
may be (partially) unknown. We present an SMC algorithm for (unbounded) reachability
yielding probably approximately correct (PAC) guarantees on the results. We consider both
the setting (i) with no knowledge of the transition function (with the only quantity required
a bound on the minimum transition probability) and (ii) with knowledge of the topology
of the underlying graph. On the one hand, it is the first algorithm for stochastic games.
On the other hand, it is the first practical algorithm even for Markov decision processes.
Compared to previous approaches where PAC guarantees require running times longer than
the age of universe even for systems with a handful of states, our algorithm often yields
reasonably precise results within minutes, not requiring the knowledge of mixing time.

For more details on this publication, we refer to Section 4.1 of the main body.

213

C PAC SMC for MDPs and SGs (CAV 2019)

Contribution

Contribution of Maximilian Weininger

Development and conceptual design of the research project 50%
Discussion and development of ideas 50%
Composition and revision of the manuscript 75%
Proofs 75%
Implementation 50%
Experimental evaluation 15%

214

PAC Statistical Model Checking
for Markov Decision Processes

and Stochastic Games

Pranav Ashok, Jan Křet́ınský,
and Maximilian Weininger(B)

Technical University of Munich, Munich, Germany
maxi.weininger@tum.de

Abstract. Statistical model checking (SMC) is a technique for analysis
of probabilistic systems that may be (partially) unknown. We present an
SMC algorithm for (unbounded) reachability yielding probably approx-
imately correct (PAC) guarantees on the results. We consider both the
setting (i) with no knowledge of the transition function (with the only
quantity required a bound on the minimum transition probability) and
(ii) with knowledge of the topology of the underlying graph. On the
one hand, it is the first algorithm for stochastic games. On the other
hand, it is the first practical algorithm even for Markov decision pro-
cesses. Compared to previous approaches where PAC guarantees require
running times longer than the age of universe even for systems with a
handful of states, our algorithm often yields reasonably precise results
within minutes, not requiring the knowledge of mixing time.

1 Introduction

Statistical model checking (SMC) [YS02a] is an analysis technique for prob-
abilistic systems based on

1. simulating finitely many finitely long runs of the system,
2. statistical analysis of the obtained results,
3. yielding a confidence interval/probably approximately correct (PAC) result

on the probability of satisfying a given property, i.e., there is a non-zero prob-
ability that the bounds are incorrect, but they are correct with probability
that can be set arbitrarily close to 1.

One of the advantages is that it can avoid the state-space explosion problem,
albeit at the cost of weaker guarantees. Even more importantly, this technique
is applicable even when the model is not known (black-box setting) or only

This research was funded in part by TUM IGSSE Grant 10.06 (PARSEC), the Czech
Science Foundation grant No. 18-11193S, and the German Research Foundation (DFG)
project KR 4890/2-1 “Statistical Unbounded Verification”.

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 497–519, 2019.
https://doi.org/10.1007/978-3-030-25540-4_29

498 P. Ashok et al.

qualitatively known (grey-box setting), where the exact transition probabilities
are unknown such as in many cyber-physical systems.

In the basic setting of Markov chains [Nor98] with (time- or step-)bounded
properties, the technique is very efficient and has been applied to numerous
domains, e.g. biological [JCL+09,PGL+13], hybrid [ZPC10,DDL+12,EGF12,
Lar12] or cyber-physical [BBB+10,CZ11,DDL+13] systems and a substantial
tool support is available [JLS12,BDL+12,BCLS13,BHH12]. In contrast, when-
ever either (i) infinite time-horizon properties, e.g. reachability, are considered or
(ii) non-determinism is present in the system, providing any guarantees becomes
significantly harder.

Firstly, for infinite time-horizon properties we need a stopping criterion such
that the infinite-horizon property can be reliably evaluated based on a finite
prefix of the run yielded by simulation. This can rely on the the complete knowl-
edge of the system (white-box setting) [YCZ10,LP08], the topology of the system
(grey box) [YCZ10,HJB+10], or a lower bound pmin on the minimum transition
probability in the system (black box) [DHKP16,BCC+14].

Secondly, for Markov decision processes (MDP) [Put14] with (non-trivial)
non-determinism, [HMZ+12] and [LP12] employ reinforcement learning [SB98]
in the setting of bounded properties or discounted (and for the purposes of
approximation thus also bounded) properties, respectively. The latter also yields
PAC guarantees.

Finally, for MDP with unbounded properties, [BFHH11] deals with MDP
with spurious non-determinism, where the way it is resolved does not affect
the desired property. The general non-deterministic case is treated in [FT14,
BCC+14], yielding PAC guarantees. However, the former requires the knowledge
of mixing time, which is at least as hard to compute; the algorithm in the latter
is purely theoretical since before a single value is updated in the learning process,
one has to simulate longer than the age of universe even for a system as simple
as a Markov chain with 12 states having at least 4 successors for some state.

Our contribution is an SMC algorithm with PAC guarantees for (i) MDP and
unbounded properties, which runs for realistic benchmarks [HKP+19] and con-
fidence intervals in orders of minutes, and (ii) is the first algorithm for stochastic
games (SG). It relies on different techniques from literature.

1. The increased practical performance rests on two pillars:
– extending early detection of bottom strongly connected components in

Markov chains by [DHKP16] to end components for MDP and simple
end components for SG;

– improving the underlying PAC Q-learning technique of [SLW+06]:
(a) learning is now model-based with better information reuse instead of

model-free, but in realistic settings with the same memory require-
ments,

(b) better guidance of learning due to interleaving with precise computa-
tion, which yields more precise value estimates.

(c) splitting confidence over all relevant transitions, allowing for variable
width of confidence intervals on the learnt transition probabilities.

PAC Statistical Model Checking 499

2. The transition from algorithms for MDP to SG is possible via extend-
ing the over-approximating value iteration from MDP [BCC+14] to SG by
[KKKW18].

To summarize, we give an anytime PAC SMC algorithm for (unbounded) reach-
ability. It is the first such algorithm for SG and the first practical one for MDP.

Related Work

Most of the previous efforts in SMC have focused on the analysis of properties
with bounded horizon [YS02a,SVA04,YKNP06,JCL+09,JLS12,BDL+12].

SMC of unbounded properties was first considered in [HLMP04] and the
first approach was proposed in [SVA05], but observed incorrect in [HJB+10].
Notably, in [YCZ10] two approaches are described. The first approach proposes
to terminate sampled paths at every step with some probability pterm and re-
weight the result accordingly. In order to guarantee the asymptotic convergence
of this method, the second eigenvalue λ of the chain and its mixing time must
be computed, which is as hard as the verification problem itself and requires the
complete knowledge of the system (white box setting). The correctness of [LP08]
relies on the knowledge of the second eigenvalue λ, too. The second approach
of [YCZ10] requires the knowledge of the chain’s topology (grey box), which is
used to transform the chain so that all potentially infinite paths are eliminated.
In [HJB+10], a similar transformation is performed, again requiring knowledge
of the topology. In [DHKP16], only (a lower bound on) the minimum transition
probability pmin is assumed and PAC guarantees are derived. While unbounded
properties cannot be analyzed without any information on the system, knowledge
of pmin is a relatively light assumption in many realistic scenarios [DHKP16]. For
instance, bounds on the rates for reaction kinetics in chemical reaction systems
are typically known; for models in the PRISM language [KNP11], the bounds
can be easily inferred without constructing the respective state space. In this
paper, we thus adopt this assumption.

In the case with general non-determinism, one approach is to give the non-
determinism a probabilistic semantics, e.g., using a uniform distribution instead,
as for timed automata in [DLL+11a,DLL+11b,Lar13]. Others [LP12,HMZ+12,
BCC+14] aim to quantify over all strategies and produce an ε-optimal strategy.
In [HMZ+12], candidates for optimal strategies are generated and gradually
improved, but “at any given point we cannot quantify how close to optimal
the candidate scheduler is” (cited from [HMZ+12]) and the algorithm “does
not in general converge to the true optimum” (cited from [LST14]). Further,
[LST14,DLST15,DHS18] randomly sample compact representation of strategies,
resulting in useful lower bounds if ε-schedulers are frequent. [HPS+19] gives
a convergent model-free algorithm (with no bounds on the current error) and
identifies that the previous [SKC+14] “has two faults, the second of which also
affects approaches [...] [HAK18,HAK19]”.

Several approaches provide SMC for MDPs and unbounded properties with
PAC guarantees. Firstly, similarly to [LP08,YCZ10], [FT14] requires (1) the

500 P. Ashok et al.

mixing time T of the MDP. The algorithm then yields PAC bounds in time
polynomial in T (which in turn can of course be exponential in the size of the
MDP). Moreover, the algorithm requires (2) the ability to restart simulations
also in non-initial states, (3) it only returns the strategy once all states have
been visited (sufficiently many times), and thus (4) requires the size of the state
space |S|. Secondly, [BCC+14], based on delayed Q-learning (DQL) [SLW+06],
lifts the assumptions (2) and (3) and instead of (1) mixing time requires only (a
bound on) the minimum transition probability pmin. Our approach additionally
lifts the assumption (4) and allows for running times faster than those given by
T , even without the knowledge of T .

Reinforcement learning (without PAC bounds) for stochastic games has been
considered already in [LN81,Lit94,BT99]. [WT16] combines the special case of
almost-sure satisfaction of a specification with optimizing quantitative objec-
tives. We use techniques of [KKKW18], which however assumes access to the
transition probabilities.

2 Preliminaries

2.1 Stochastic Games

A probability distribution on a finite set X is a mapping δ : X → [0, 1], such
that

∑
x∈X δ(x) = 1. The set of all probability distributions on X is denoted

by D(X). Now we define turn-based two-player stochastic games. As opposed to
the notation of e.g. [Con92], we do not have special stochastic nodes, but rather
a probabilistic transition function.

Definition 1 (SG). A stochastic game (SG) is a tuple
G = (S,S�,S©, s0,A,Av, T), where S is a finite set of states partitioned1 into the

sets S� and S© of states of the player Maximizer and Minimizer2, respectively

s0 ∈ S is the initial state, A is a finite set of actions, Av : S → 2A assigns to every
state a set of available actions, and T : S × A → D(S) is a transition function
that given a state s and an action a ∈ Av(s) yields a probability distribution
over successor states. Note that for ease of notation we write T(s, a, t) instead
of T(s, a)(t).

A Markov decision process (MDP) is a special case of SG where S© = ∅. A
Markov chain (MC) can be seen as a special case of an MDP, where for all
s ∈ S : |Av(s)| = 1. We assume that SG are non-blocking, so for all states s we
have Av(s) �= ∅.

For a state s and an available action a ∈ Av(s), we denote the set of successors
by Post(s, a) := {t | T(s, a, t) > 0}. We say a state-action pair (s, a) is an exit
of a set of states T , written (s, a) exits T , if ∃t ∈ Post(s, a) : t /∈ T , i.e., if with
some probability a successor outside of T could be chosen.

We consider algorithms that have a limited information about the SG.

1 I.e., S� ⊆ S, S© ⊆ S, S� ∪ S© = S, and S� ∩ S© = ∅.
2 The names are chosen, because Maximizer maximizes the probability of reaching a

given target state, and Minimizer minimizes it.

PAC Statistical Model Checking 501

Definition 2 (Black box and grey box). An algorithm inputs an SG as
black box if it cannot access the whole tuple, but

– it knows the initial state,
– for a given state, an oracle returns its player and available action,
– given a state s and action a, it can sample a successor t according to T(s, a),3

– it knows pmin ≤ mins∈S,a∈Av(s)
t∈Post(s,a)

T(s, a, t), an under-approximation of the min-

imum transition probability.

When input as grey box it additionally knows the number |Post(s, a)| of succes-
sors for each state s and action a.4

The semantics of SG is given in the usual way by means of strategies and the
induced Markov chain [BK08] and its respective probability space, as follows.
An infinite path ρ is an infinite sequence ρ = s0a0s1a1 · · · ∈ (S × A)ω, such that
for every i ∈ N, ai ∈ Av(si) and si+1 ∈ Post(si, ai).

A strategy of Maximizer or Minimizer is a function σ : S� → D(A) or S© →
D(A), respectively, such that σ(s) ∈ D(Av(s)) for all s. Note that we restrict to
memoryless/positional strategies, as they suffice for reachability in SGs [CH12].

A pair (σ, τ) of strategies of Maximizer and Minimizer induces a Markov
chain Gσ,τ with states S, s0 being initial, and the transition function T(s)(t) =∑

a∈Av(s) σ(s)(a) · T(s, a, t) for states of Maximizer and analogously for states of
Minimizer, with σ replaced by τ . The Markov chain induces a unique probability
distribution Pσ,τ over measurable sets of infinite paths [BK08, Ch. 10].

2.2 Reachability Objective

For a goal set Goal ⊆ S, we write ♦Goal := {s0a0s1a1 · · · | ∃i ∈ N : si ∈ Goal}
to denote the (measurable) set of all infinite paths which eventually reach Goal.
For each s ∈ S, we define the value in s as

V(s) := sup
σ

inf
τ

Pσ,τ
s (♦Goal) = inf

τ
sup

σ
Pσ,τ

s (♦Goal),

where the equality follows from [Mar75]. We are interested in V(s0), its
ε-approximation and the corresponding (ε-)optimal strategies for both players.

3 Up to this point, this definition conforms to black box systems in the sense of [SVA04]
with sampling from the initial state, being slightly stricter than [YS02a] or [RP09],
where simulations can be run from any desired state. Further, we assume that we
can choose actions for the adversarial player or that she plays fairly. Otherwise the
adversary could avoid playing her best strategy during the SMC, not giving SMC
enough information about her possible behaviours.

4 This requirement is slightly weaker than the knowledge of the whole topology, i.e.
Post(s, a) for each s and a.

502 P. Ashok et al.

Let Zero be the set of states, from which there is no finite path to any state
in Goal. The value function V satisfies the following system of equations, which
is referred to as the Bellman equations:

V(s) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

maxa∈Av(s) V(s, a) if s ∈ S�
mina∈Av(s) V(s, a) if s ∈ S©
1 if s ∈ Goal

0 if s ∈ Zero

with the abbreviation V(s, a) :=
∑

s′∈S T(s, a, s′) ·V(s′). Moreover, V is the least
solution to the Bellman equations, see e.g. [CH08].

2.3 Bounded and Asynchronous Value Iteration

The well known technique of value iteration, e.g. [Put14,RF91], works by starting
from an under-approximation of value function and then applying the Bellman
equations. This converges towards the least fixpoint of the Bellman equations,
i.e. the value function. Since it is difficult to give a convergence criterion, the
approach of bounded value iteration (BVI, also called interval iteration) was
developed for MDP [BCC+14,HM17] and SG [KKKW18]. Beside the under-
approximation, it also updates an over-approximation according to the Bellman
equations. The most conservative over-approximation is to use an upper bound
of 1 for every state. For the under-approximation, we can set the lower bound
of target states to 1; all other states have a lower bound of 0. We use the func-
tion INITIALIZE BOUNDS in our algorithms to denote that the lower and upper
bounds are set as just described; see [AKW19, Algorithm 8] for the pseudocode.
Additionally, BVI ensures that the over-approximation converges to the least
fixpoint by taking special care of end components, which are the reason for not
converging to the true value from above.

Definition 3 (End component (EC)). A non-empty set T ⊆ S of states is
an end component (EC) if there is a non-empty set B ⊆ ⋃

s∈T Av(s) of actions

such that (i) for each s ∈ T, a ∈ B ∩ Av(s) we do not have (s, a) exits T and (ii)
for each s, s′ ∈ T there is a finite path w = sa0 . . . ans′ ∈ (T × B)∗ × T , i.e. the
path stays inside T and only uses actions in B.

Intuitively, ECs correspond to bottom strongly connected components of the
Markov chains induced by possible strategies, so for some pair of strategies all
possible paths starting in the EC remain there. An end component T is a maximal
end component (MEC) if there is no other end component T ′ such that T ⊆ T ′.
Given an SG G, the set of its MECs is denoted by MEC(G).

Note that, to stay in an EC in an SG, the two players would have to cooperate,
since it depends on the pair of strategies. To take into account the adversarial
behaviour of the players, it is also relevant to look at a subclass of ECs, the so
called simple end components, introduced in [KKKW18].

PAC Statistical Model Checking 503

Definition 4 (Simple end component (SEC) [KKKW18]). An EC T is
called simple, if for all s ∈ T it holds that V(s) = bestExit(T,V), where

bestExit(T, f) :=

⎧
⎨
⎩

1 if T ∩ Goal �= ∅
max s∈T∩S�

(s,a) exits T

f(s, a) else

is called the best exit (of Maximizer) from T according to the function f : S → R.
To handle the case that there is no exit of Maximizer in T we set max∅ = 0.

Intuitively, SECs are ECs where Minimizer does not want to use any of
her exits, as all of them have a greater value than the best exit of Maximizer.
Assigning any value between those of the best exits of Maximizer and Minimizer
to all states in the EC is a solution to the Bellman equations, because both
players prefer remaining and getting that value to using their exits [KKKW18,
Lemma 1]. However, this is suboptimal for Maximizer, as the goal is not reached
if the game remains in the EC forever. Hence we “deflate” the upper bounds
of SECs, i.e. reduce them to depend on the best exit of Maximizer. T is called
maximal simple end component (MSEC), if there is no SEC T ′ such that T � T ′.
Note that in MDPs, treating all MSECs amounts to treating all MECs.

Algorithm 1. Bounded value iteration algorithm for SG (and MDP)

1: procedure BVI(SG G, target set Goal, precision ε > 0)
2: INITIALIZE BOUNDS
3: repeat
4: X ← SIMULATE until LOOPING or state in Goal is hit
5: UPDATE(X) � Bellman updates or their modification
6: for T ∈ FIND MSECs(X) do
7: DEFLATE(T) � Decrease the upper bound of MSECs

8: until U(s0) − L(s0) < ε

Algorithm 1 rephrases that of [KKKW18] and describes the general structure
of all bounded value iteration algorithms that are relevant for this paper. We
discuss it here since all our improvements refer to functions (in capitalized font)
in it. In the next section, we design new functions, pinpointing the difference
to the other papers. The pseudocode of the functions adapted from the other
papers can be found, for the reader’s convenience, in [AKW19, Appendix A].
Note that to improve readability, we omit the parameters G,Goal, L and U of
the functions in the algorithm.

Bounded Value Iteration: For the standard bounded value iteration algo-
rithm, Line 4 does not run a simulation, but just assigns the whole state
space S to X5. Then it updates all values according to the Bellman equations.

5 Since we mainly talk about simulation based algorithms, we included this line to
make their structure clearer.

504 P. Ashok et al.

After that it finds all the problematic components, the MSECs, and “deflates”
them as described in [KKKW18], i.e. it reduces their values to ensure the con-
vergence to the least fixpoint. This suffices for the bounds to converge and the
algorithm to terminate [KKKW18, Theorem 2].

Asynchronous Bounded Value Iteration: To tackle the state space explo-
sion problem, asynchronous simulation/learning-based algorithms have been
developed [MLG05,BCC+14,KKKW18]. The idea is not to update and deflate
all states at once, since there might be too many, or since we only have limited
information. Instead of considering the whole state space, a path through the
SG is sampled by picking in every state one of the actions that look optimal
according to the current over-/under-approximation and then sampling a suc-
cessor of that action. This is repeated until either a target is found, or until the
simulation is looping in an EC; the latter case occurs if the heuristic that picks
the actions generates a pair of strategies under which both players only pick
staying actions in an EC. After the simulation, only the bounds of the states on
the path are updated and deflated. Since we pick actions which look optimal in
the simulation, we almost surely find an ε-optimal strategy and the algorithm
terminates [BCC+14, Theorem 3].

3 Algorithm

3.1 Model-Based

Given only limited information, updating cannot be done using T, since the true
probabilities are not known. The approach of [BCC+14] is to sample for a high
number of steps and accumulate the observed lower and upper bounds on the
true value function for each state-action pair. When the number of samples is
large enough, the average of the accumulator is used as the new estimate for
the state-action pair, and thus the approximations can be improved and the
results back-propagated, while giving statistical guarantees that each update
was correct. However, this approach has several drawbacks, the biggest of which
is that the number of steps before an update can occur is infeasibly large, often
larger than the age of the universe, see Table 1 in Sect. 4.

Our improvements to make the algorithm practically usable are linked to
constructing a partial model of the given system. That way, we have more infor-
mation available on which we can base our estimates, and we can be less conser-
vative when giving bounds on the possible errors. The shift from model-free to
model-based learning asymptotically increases the memory requirements from
O(|S| · |A|) (as in [SLW+06,BCC+14]) to O(|S|2 · |A|). However, for systems
where each action has a small constant bound on the number of successors,
which is typical for many practical systems, e.g. classical PRISM benchmarks,
it is still O(|S| · |A|) with a negligible constant difference.

We thus track the number of times some successor t has been observed when
playing action a from state s in a variable #(s, a, t). This implicitly induces
the number of times each state-action pair (s, a) has been played #(s, a) =

PAC Statistical Model Checking 505

∑
t∈S #(s, a, t). Given these numbers we can then calculate probability estimates

for every transition as described in the next subsection. They also induce the
set of all states visited so far, allowing us to construct a partial model of the
game. See [AKW19, Appendix A.2] for the pseudo-code of how to count the
occurrences during the simulations.

3.2 Safe Updates with Confidence Intervals Using Distributed
Error Probability

We use the counters to compute a lower estimate of the transition probability
for some error tolerance δT as follows: We view sampling t from state-action pair
(s, a) as a Bernoulli sequence, with success probability T(s, a, t), the number of
trials #(s, a) and the number of successes #(s, a, t). The tightest lower estimate
we can give using the Hoeffding bound (see [AKW19, Appendix D.1]) is

T̂(s, a, t) := max(0,
#(s, a, t)

#(s, a)
− c), (1)

where the confidence width c :=
√

ln(δT)
−2#(s,a) . Since c could be greater than 1,

we limit the lower estimate to be at least 0. Now we can give modified update
equations:

L̂(s, a) :=
∑

t:#(s,a,t)>0

T̂(s, a, t) · L(t)

Û(s, a) :=

⎛
⎝ ∑

t:#(s,a,t)>0

T̂(s, a, t) · U(t)

⎞
⎠ +

⎛
⎝1 −

∑

t:#(s,a,t)>0

T̂(s, a, t)

⎞
⎠

The idea is the same for both upper and lower bound: In contrast to the usual
Bellman equation (see Sect. 2.2) we use T̂ instead of T. But since the sum of all
the lower estimates does not add up to one, there is some remaining probability
for which we need to under-/over-approximate the value it can achieve. We use

s0 s1

s2

a1

b1

b2

p1

p2

p3

a2 c

Fig. 1. A running example of an SG. The dashed part is only relevant for the later
examples. For actions with only one successor, we do not depict the transition proba-
bility 1 (e.g. T(s0, a1, s1)). For state-action pair (s1, b2), the transition probabilities are
parameterized and instantiated in the examples where they are used.

506 P. Ashok et al.

the safe approximations 0 and 1 for the lower and upper bound respectively; this
is why in L̂ there is no second term and in Û the whole remaining probability
is added. Algorithm 2 shows the modified update that uses the lower estimates;
the proof of its correctness is in [AKW19, Appendix D.2].

Lemma 1 (UPDATE is correct). Given correct under- and over-approxi-
mations L,U of the value function V, and correct lower probability estimates

T̂, the under- and over-approximations after an application of UPDATE are also
correct.

Algorithm 2. New update procedure using the probability estimates

1: procedure UPDATE(State set X)
2: for f ∈ {L, U} do � For both functions
3: for s ∈ X \ Goal do � For all non-target states in the given set

4: f(s) =

⎧
⎨
⎩

maxa∈Av(s) f̂ (s, a) if s ∈ S�

mina∈Av(s) f̂ (s, a) if s ∈ S©

Example 1. We illustrate how the calculation works and its huge advantage over
the approach from [BCC+14] on the SG from Fig. 1. For this example, ignore
the dashed part and let p1 = p2 = 0.5, i.e. we have no self loop, and an even
chance to go to the target 1 or a sink 0. Observe that hence V(s0) = V(s1) = 0.5.

Given an error tolerance of δ = 0.1, the algorithm of [BCC+14] would have
to sample for more than 109 steps before it could attempt a single update. In
contrast, assume we have seen 5 samples of action b2, where 1 of them went to 1
and 4 of them to 0. Note that, in a sense, we were unlucky here, as the observed
averages are very different from the actual distribution. The confidence width for
δT = 0.1 and 5 samples is

√
ln(0.1)/ − 2 · 5 ≈ 0.48. So given that data, we get

T̂(s1, b2, 1) = max(0, 0.2−0.48) = 0 and T̂(s1, b2, 0) = max(0, 0.8−0.48) = 0.32.
Note that both probabilities are in fact lower estimates for their true counterpart.

Assume we already found out that 0 is a sink with value 0; how we gain this
knowledge is explained in the following subsections. Then, after getting only
these 5 samples, UPDATE already decreases the upper bound of (s1, b2) to 0.68,
as we know that at least 0.32 of T(s1, b2) goes to the sink.

Given 500 samples of action b2, the confidence width of the probability esti-
mates already has decreased below 0.05. Then, since we have this confidence
width for both the upper and the lower bound, we can decrease the total preci-
sion for (s1, b2) to 0.1, i.e. return an interval in the order of [0.45; 0.55]. 	

Summing up: with the model-based approach we can already start updating after
very few steps and get a reasonable level of confidence with a realistic number
of samples. In contrast, the state-of-the-art approach of [BCC+14] needs a very
large number of samples even for this toy example.

Since for UPDATE we need an error tolerance for every transition, we need
to distribute the given total error tolerance δ over all transitions in the current

PAC Statistical Model Checking 507

partial model. For all states in the explored partial model Ŝ we know the number
of available actions and can over-approximate the number of successors as 1

pmin
.

Thus the error tolerance for each transition can be set to δT := δ·pmin

|{a|s∈Ŝ∧a∈Av(s)}| .
This is illustrated in Example 4 in [AKW19, Appendix B].

Note that the fact that the error tolerance δT for every transition is the same
does not imply that the confidence width for every transition is the same, as the
latter becomes smaller with increasing number of samples #(s, a).

3.3 Improved EC Detection

As mentioned in the description of Algorithm1, we must detect when the simu-
lation is stuck in a bottom EC and looping forever. However, we may also stop
simulations that are looping in some EC but still have a possibility to leave it;
for a discussion of different heuristics from [BCC+14,KKKW18], see [AKW19,
Appendix A.3].

We choose to define LOOPING as follows: Given a candidate for a bottom EC,
we continue sampling until we are δT-sure (i.e. the error probability is smaller
than δT) that we cannot leave it. Then we can safely deflate the EC, i.e. decrease
all upper bounds to zero.

To detect that something is a δT-sure EC, we do not sample for the astronom-
ical number of steps as in [BCC+14], but rather extend the approach to detect
bottom strongly connected components from [DHKP16]. If in the EC-candidate
T there was some state-action pair (s, a) that actually has a probability to exit
the T , that probability is at least pmin. So after sampling (s, a) for n times, the
probability to overlook such a leaving transition is (1 − pmin)n and it should be
smaller than δT . Solving the inequation for the required number of samples n

yields n ≥ ln(δT)
ln(1−pmin) .

Algorithm 3 checks that we have seen all staying state-action pairs n times,
and hence that we are δT-sure that T is an EC. Note that we restrict to staying
state-action pairs, since the requirement for an EC is only that there exist staying
actions, not that all actions stay. We further speed up the EC-detection, because
we do not wait for n samples in every simulation, but we use the aggregated
counters that are kept over all simulations.

Algorithm 3. Check whether we are δT-sure that T is an EC

1: procedure δT -sure EC (State set T)

2: requiredSamples = ln(δT)
ln(1−pmin)

3: B ← {(s, a) | s ∈ T ∧ ¬(s, a) exits T} � Set of staying state-action pairs
4: return

∧
(s,a)∈B #(s, a) > requiredSamples

We stop a simulation, if LOOPING returns true, i.e. under the following three
conditions: (i) We have seen the current state before in this simulation (s ∈ X),

508 P. Ashok et al.

i.e. there is a cycle. (ii) This cycle is explainable by an EC T in our current
partial model. (iii) We are δT-sure that T is an EC.

Algorithm 4. Check if we are probably looping and should stop the simulation

1: procedure LOOPING(State set X, state s)
2: if s /∈ X then
3: return false � Easy improvement to avoid overhead

4: return ∃T ⊆ X.T is EC in partial model ∧ s ∈ T ∧ δT -sure EC(T)

Example 2. For this example, we again use the SG from Fig. 1 without the
dashed part, but this time with p1 = p2 = p3 = 1

3 . Assume the path we simulated
is (s0, a1, s1, b2, s1), i.e. we sampled the self-loop of action b2. Then {s1} is a can-
didate for an EC, because given our current observation it seems possible that
we will continue looping there forever. However, we do not stop the simulation
here, because we are not yet δT-sure about this. Given δT = 0.1, the required

samples for that are 6, since ln(0.1)

ln(1− 1
3)

= 5.6. With high probability (greater than

(1 − δT) = 0.9), within these 6 steps we will sample one of the other successors
of (s1, b2) and thus realise that we should not stop the simulation in s1. If, on
the other hand, we are in state 0 or if in state s1 the guiding heuristic only picks
b1, then we are in fact looping for more than 6 steps, and hence we stop the
simulation. 	

3.4 Adapting to Games: Deflating MSECs

To extend the algorithm of [BCC+14] to SGs, instead of collapsing problematic
ECs we deflate them as in [KKKW18], i.e. given an MSEC, we reduce the upper
bound of all states in it to the upper bound of the bestExit of Maximizer. In
contrast to [KKKW18], we cannot use the upper bound of the bestExit based on
the true probability, but only based on our estimates. Algorithm5 shows how to
deflate an MSEC and highlights the difference, namely that we use Û instead
of U.

Algorithm 5. Black box algorithm to deflate a set of states

1: procedure DEFLATE(State set X)
2: for s ∈ X do

3: U(s) = min(U(s), bestExit(X, Û)

The remaining question is how to find MSECs. The approach of [KKKW18]
is to find MSECs by removing the suboptimal actions of Minimizer according
to the current lower bound. Since it converges to the true value function, all

PAC Statistical Model Checking 509

MSECs are eventually found [KKKW18, Lemma 2]. Since Algorithm 6 can only
access the SG as a black box, there are two differences: We can only compare our
estimates of the lower bound L̂(s, a) to find out which actions are suboptimal.
Additionally there is the problem that we might overlook an exit from an EC,
and hence deflate to some value that is too small; thus we need to check that any
state set FIND MSECs returns is a δT-sure EC. This is illustrated in Example 3.
For a bigger example of how all our functions work together, see Example 5 in
[AKW19, Appendix B].

Algorithm 6. Finding MSECs in the game restricted to X for black box setting

1: procedure FIND MSECs(State set X)

2: suboptAct© ← {(s, {a ∈ Av(s) | L̂ (s, a) > L(s)} | s ∈ S© ∩ X}
3: Av′ ← Av without suboptAct©
4: G′ ← G restricted to states X and available actions Av′

5: return {T ∈ MEC(G′) | δT -sure EC(T) }

Example 3. For this example, we use the full SG from Fig. 1, including the
dashed part, with p1, p2 > 0. Let (s0, a1, s1, b2, s2, b1, s1, a2, s2, c, 1) be the path
generated by our simulation. Then in our partial view of the model, it seems
as if T = {s0, s1} is an MSEC, since using a2 is suboptimal for the minimizing
state s0

6 and according to our current knowledge a1, b1 and b2 all stay inside T .
If we deflated T now, all states would get an upper bound of 0, which would be
incorrect.

Thus in Algorithm6 we need to require that T is an EC δT-surely. This was
not satisfied in the example, as the state-action pairs have not been observed the
required number of times. Thus we do not deflate T , and our upper bounds stay
correct. Having seen (s1, b2) the required number of times, we probably know
that it is exiting T and hence will not make the mistake. 	

3.5 Guidance and Statistical Guarantee

It is difficult to give statistical guarantees for the algorithm we have developed
so far (i.e. Algorithm1 calling the new functions from Sects. 3.2, 3.3 and 3.4).
Although we can bound the error of each function, applying them repeatedly can
add up the error. Algorithm7 shows our approach to get statistical guarantees:
It interleaves a guided simulation phase (Lines 7–10) with a guaranteed standard
bounded value iteration (called BVI phase) that uses our new functions (Lines
11–16).

The simulation phase builds the partial model by exploring states and remem-
bering the counters. In the first iteration of the main loop, it chooses actions
randomly. In all further iterations, it is guided by the bounds that the last BVI

6 For δT = 0.2, sampling the path to target once suffices to realize that L(s0, a2) > 0.

510 P. Ashok et al.

phase computed. After Nk simulations (see below for a discussion of how to
choose Nk), all the gathered information is used to compute one version of the

partial model with probability estimates T̂ for a certain error tolerance δk. We
can continue with the assumption, that these probability estimates are correct,
since it is only violated with a probability smaller than our error tolerance (see
below for an explanation of the choice of δk). So in our correct partial model,
we re-initialize the lower and upper bound (Line 12), and execute a guaran-
teed standard BVI. If the simulation phase already gathered enough data, i.e.
explored the relevant states and sampled the relevant transitions often enough,
this BVI achieves a precision smaller than ε in the initial state, and the algo-
rithm terminates. Otherwise we start another simulation phase that is guided
by the improved bounds.

Algorithm 7. Full algorithm for black box setting

1: procedure BlackVI(SG G, target set Goal, precision ε > 0, error tolerance δ > 0)
2: INITIALIZE BOUNDS
3: k = 1 � guaranteed BVI counter
4: Ŝ ← ∅ � current partial model

5: repeat
6: k ← 2 · k
7: δk ← δ

k

// Guided simulation phase
8: for Nk times do
9: X ← SIMULATE

10: Ŝ ← Ŝ ∪ X

// Guaranteed BVI phase
11: δT ← δk·pmin

|{a|s∈Ŝ∧a∈Av(s)}| � Set δT as described in Section 3.2

12: INITIALIZE BOUNDS
13: for k ·

∣∣∣Ŝ
∣∣∣ times do

14: UPDATE(Ŝ)

15: for T ∈ FIND MSECs(Ŝ) do
16: DEFLATE(T)

17: until U(s0) − L(s0) < ε

Choice of δk: For each of the full BVI phases, we construct a partial model
that is correct with probability (1 − δk). To ensure that the sum of these errors
is not larger than the specified error tolerance δ, we use the variable k, which is
initialised to 1 and doubled in every iteration of the main loop. Hence for the

i-th BVI, k = 2i. By setting δk = δ
k , we get that

∞∑

i=1

δk =

∞∑

i=1

δ

2i
= δ, and hence

the error of all BVI phases does not exceed the specified error tolerance.

PAC Statistical Model Checking 511

When to Stop Each BVI-Phase: The BVI phase might not converge if the
probability estimates are not good enough. We increase the number of iterations
for each BVI depending on k, because that way we ensure that it eventually
is allowed to run long enough to converge. On the other hand, since we always
run for finitely many iterations, we also ensure that, if we do not have enough
information yet, BVI is eventually stopped. Other stopping criteria could return

arbitrarily imprecise results [HM17]. We also multiply with
∣∣∣Ŝ

∣∣∣ to improve the

chances of the early BVIs to converge, as that number of iterations ensures that
every value has been propagated through the whole model at least once.

Discussion of the Choice of Nk: The number of simulations between the
guaranteed BVI phases can be chosen freely; it can be a constant number every

time, or any sequence of natural numbers, possibly parameterised by e.g. k,
∣∣∣Ŝ

∣∣∣,
ε or any of the parameters of G. The design of particularly efficient choices or
learning mechanisms that adjust them on the fly is an interesting task left for
future work. We conjecture the answer depends on the given SG and “task” that
the user has for the algorithm: E.g. if one just needs a quick general estimate of
the behaviour of the model, a smaller choice of Nk is sensible; if on the other
hand a definite precision ε certainly needs to be achieved, a larger choice of Nk

is required.

Theorem 1. For any choice of sequence for Nk, Algorithm7 is an anytime
algorithm with the following property: When it is stopped, it returns an interval
for V(s0) that is PAC7 for the given error tolerance δ and some ε′, with 0 ≤
ε′ ≤ 1.

Theorem 1 is the foundation of the practical usability of our algorithm. Given
some time frame and some Nk, it calculates an approximation for V(s0) that is
probably correct. Note that the precision ε′ is independent of the input parameter
ε, and could in the worst case be always 1. However, practically it often is
good (i.e. close to 0) as seen in the results in Sect. 4. Moreover, in our modified
algorithm, we can also give a convergence guarantee as in [BCC+14]. Although
mostly out of theoretical interest, in [AKW19, Appendix D.4] we design such a
sequence Nk, too. Since this a-priori sequence has to work in the worst case, it
depends on an infeasibly large number of simulations.

Theorem 2. There exists a choice of Nk, such that Algorithm7 is PAC for any
input parameters ε, δ, i.e. it terminates almost surely and returns an interval for
V(s0) of width smaller than ε that is correct with probability at least 1 − δ.

7 Probably Approximately Correct, i.e. with probability greater than 1 − δ, the value
lies in the returned interval of width ε′.

512 P. Ashok et al.

3.6 Utilizing the Additional Information of Grey Box Input

In this section, we consider the grey box setting, i.e. for every state-action pair
(s, a) we additionally know the exact number of successors |Post(s, a)|. Then
we can sample every state-action pair until we have seen all successors, and
hence this information amounts to having qualitative information about the
transitions, i.e. knowing where the transitions go, but not with which probability.

In that setting, we can improve the EC-detection and the estimated bounds in
UPDATE. For EC-detection, note that the whole point of δT-sure EC is to check
whether there are further transitions available; in grey box, we know this and
need not depend on statistics. For the bounds, note that the equations for L̂ and

Û both have two parts: The usual Bellman part and the remaining probability
multiplied with the most conservative guess of the bound, i.e. 0 and 1. If we
know all successors of a state-action pair, we do not have to be as conservative;
then we can use mint∈Post(s,a) L(t) respectively maxt∈Post(s,a) U(t). Both these
improvements have huge impact, as demonstrated in Sect. 4. However, of course,
they also assume more knowledge about the model.

4 Experimental Evaluation

We implemented the approach as an extension of PRISM-Games [CFK+13a]. 11
MDPs with reachability properties were selected from the Quantitative Verifi-
cation Benchmark Set [HKP+19]. Further, 4 stochastic games benchmarks from
[CKJ12,SS12,CFK+13b,CKPS11] were also selected. We ran the experiments
on a 40 core Intel Xeon server running at 2.20 GHz per core and having 252 GB
of RAM. The tool however utilised only a single core and 1 GB of memory for
the model checking. Each benchmark was ran 10 times with a timeout of 30 min.
We ran two versions of Algorithm7, one with the SG as a black box, the other
as a grey box (see Definition 2). We chose Nk = 10, 000 for all iterations. The
tool stopped either when a precision of 10−8 was obtained or after 30 min. In
total, 16 different model-property combinations were tried out. The results of
the experiment are reported in Table 1.

In the black box setting, we obtained ε < 0.1 on 6 of the benchmarks. 5
benchmarks were ‘hard’ and the algorithm did not improve the precision below
1. For 4 of them, it did not even finish the first simulation phase. If we decrease
Nk, the BVI phase is entered, but still no progress is made.

In the grey box setting, on 14 of 16 benchmarks, it took only 6 min to achieve
ε < 0.1. For 8 these, the exact value was found within that time. Less than
50% of the state space was explored in the case of pacman, pneuli-zuck-3,
rabin-3, zeroconf and cloud 5. A precision of ε < 0.01 was achieved on 15/16
benchmarks over a period of 30 min.

PAC Statistical Model Checking 513

Table 1. Achieved precision ε′ given by our algorithm in both grey and black box
settings after running for a period of 30 min (See the paragraph below Theorem 1 for
why we use ε′ and not ε). The first set of the models are MDPs and the second set are
SGs. ‘-’ indicates that the algorithm did not finish the first simulation phase and hence
partial BVI was not called. m is the number of steps required by the DQL algorithm
of [BCC+14] before the first update. As this number is very large, we report only
log10(m). For comparison, note that the age of the universe is approximately 1026 ns;
logarithm of number of steps doable in this time is thus in the order of 26.

Model States Explored % Precision log10(m)

Grey/Black Grey Black

consensus 272 100/100 0.00945 0.171 338

csma-2-2 1,038 93/93 0.00127 0.2851 1,888

firewire 83,153 55/- 0.0057 1 129,430

ij-3 7 100/100 0 0.0017 2,675

ij-10 1,023 100/100 0 0.5407 17

pacman 498 18/47 0.00058 0.0086 1,801

philosophers-3 956 56/21 0 1 2,068

pnueli-zuck-3 2,701 25/71 0 0.0285 5,844

rabin-3 27,766 7/4 0 0.026 110,097

wlan-0 2,954 100/100 0 0.8667 9,947

zeroconf 670 29/27 0.00007 0.0586 5,998

cdmsn 1,240 100/98 0 0.8588 3,807

cloud-5 8,842 49/20 0.00031 0.0487 71,484

mdsm-1 62,245 69/- 0.09625 1 182,517

mdsm-2 62,245 72/- 0.00055 1 182,517

team-form-3 12,476 64/- 0 1 54,095

Figure 2 shows the evolution of the lower and upper bounds in both the grey-
and the black box settings for 4 different models. Graphs for the other models
as well as more details on the results are in [AKW19, Appendix C].

514 P. Ashok et al.

Fig. 2. Performance of our algorithm on various MDP and SG benchmarks in grey and
black box settings. Solid lines denote the bounds in the grey box setting while dashed
lines denote the bounds in the black box setting. The plotted bounds are obtained after
each partial BVI phase, because of which they do not start at [0, 1] and not at time 0.
Graphs of the remaining benchmarks may be found in [AKW19, Appendix C].

5 Conclusion

We presented a PAC SMC algorithm for SG (and MDP) with the reachability
objective. It is the first one for SG and the first practically applicable one.
Nevertheless, there are several possible directions for further improvements.
For instance, one can consider different sequences for lengths of the simula-
tion phases, possibly also dependent on the behaviour observed so far. Further,
the error tolerance could be distributed in a non-uniform way, allowing for fewer
visits in rarely visited parts of end components. Since many systems are strongly
connected, but at the same time feature some infrequent behaviour, this is the
next bottleneck to be attacked. [KM19]

References

[AKW19] Ashok, P., Křet́ınský, J.: Maximilian Weininger. PAC statistical model
checking for markov decision processes and stochastic games. Technical
Report arXiv.org/abs/1905.04403 (2019)

PAC Statistical Model Checking 515

[BBB+10] Basu, A., Bensalem, S., Bozga, M., Caillaud, B., Delahaye, B., Legay, A.:
Statistical abstraction and model-checking of large heterogeneous sys-
tems. In: Hatcliff, J., Zucca, E. (eds.) FMOODS/FORTE 2010. LNCS,
vol. 6117, pp. 32–46. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13464-7 4

[BCC+14] Brázdil, T., et al.: Verification of markov decision processes using learning
algorithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol.
8837, pp. 98–114. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-11936-6 8

[BCLS13] Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: a flexi-
ble, distributable statistical model checking library. In: Joshi, K., Siegle,
M., Stoelinga, M., DArgenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054,
pp. 160–164. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40196-1 12

[BDL+12] Bulychev, P.E., et al.: UPPAAL-SMC: statistical model checking for
priced timed automata. In: QAPL (2012)

[BFHH11] Bogdoll, J., Ferrer Fioriti, L.M., Hartmanns, A., Hermanns, H.: Partial
order methods for statistical model checking and simulation. In: Bruni,
R., Dingel, J. (eds.) FMOODS/FORTE 2011. LNCS, vol. 6722, pp. 59–74.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21461-
5 4

[BHH12] Bogdoll, J., Hartmanns, A., Hermanns, H.: Simulation and statistical
model checking for modestly nondeterministic models. In: Schmitt, J.B.
(ed.) MMB&DFT 2012. LNCS, vol. 7201, pp. 249–252. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-28540-0 20

[BK08] Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008).
ISBN 978-0-262-02649-9

[BT99] Brafman, R.I., Tennenholtz, M.: A near-optimal poly-time algorithm for
learning a class of stochastic games. In: IJCAI, pp. 734–739 (1999)

[CFK+13a] Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: PRISM-
games: a model checker for stochastic multi-player games. In: Piterman,
N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 185–191.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-
7 13

[CFK+13b] Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: Auto-
matic verification of competitive stochastic systems. Formal Meth. Syst.
Des. 43(1), 61–92 (2013)

[CH08] Chatterjee, K., Henzinger, T.A.: Value iteration. In: Grumberg, O., Veith,
H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 107–138.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69850-
0 7

[CH12] Chatterjee, K., Henzinger, T.A.: A survey of stochastic ω-regular games.
J. Comput. Syst. Sci. 78(2), 394–413 (2012)

[CKJ12] Calinescu, R., Kikuchi, S., Johnson, K.: Compositional reverification of
probabilistic safety properties for large-scale complex IT systems. In:
Calinescu, R., Garlan, D. (eds.) Monterey Workshop 2012. LNCS, vol.
7539, pp. 303–329. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-34059-8 16

[CKPS11] Chen, T., Kwiatkowska, M., Parker, D., Simaitis, A.: Verifying team for-
mation protocols with probabilistic model checking. In: Leite, J., Torroni,

516 P. Ashok et al.

P., Ågotnes, T., Boella, G., van der Torre, L. (eds.) CLIMA 2011. LNCS
(LNAI), vol. 6814, pp. 190–207. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-22359-4 14

[Con92] Condon, A.: The complexity of stochastic games. Inf. Comput. 96(2),
203–224 (1992)

[CZ11] Clarke, E.M., Zuliani, P.: Statistical model checking for cyber-physical
systems. In: ATVA, pp. 1–12 (2011)

[DDL+12] David, A., et al.: Statistical model checking for stochastic hybrid systems.
In: HSB, pp. 122–136 (2012)

[DDL+13] David, A., Du, D., Guldstrand Larsen, K., Legay, A., Mikučionis, M.:
Optimizing control strategy using statistical model checking. In: Brat, G.,
Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 352–367.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38088-
4 24

[DHKP16] Daca, P., Henzinger, T.A., Křet́ınský, J., Petrov, T.: Faster statisti-
cal model checking for unbounded temporal properties. In: Chechik,
M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 112–129.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-
9 7

[DHS18] D’Argenio, P.R., Hartmanns, A., Sedwards, S.: Lightweight statistical
model checking in nondeterministic continuous time. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11245, pp. 336–353. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03421-4 22

[DLL+11a] David, A., et al.: Statistical model checking for networks of priced timed
automata. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS,
vol. 6919, pp. 80–96. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24310-3 7

[DLL+11b] David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for
statistical model checking of real-time systems. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 27

[DLST15] D’Argenio, P., Legay, A., Sedwards, S., Traonouez, L.-M.: Smart sampling
for lightweight verification of markov decision processes. STTT 17(4),
469–484 (2015)

[EGF12] Ellen, C., Gerwinn, S., Fränzle, M.: Confidence bounds for statisti-
cal model checking of probabilistic hybrid systems. In: Jurdziński, M.,
Ničković, D. (eds.) FORMATS 2012. LNCS, vol. 7595, pp. 123–138.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33365-
1 10

[FT14] Fu, J., Topcu, U.: Probably approximately correct MDP learning and
control with temporal logic constraints. In: Robotics: Science and Sys-
tems (2014)

[HAK18] Hasanbeig, M., Abate, A., Kroening, D.: Logically-correct reinforcement
learning. CoRR, 1801.08099 (2018)

[HAK19] Hasanbeig, M., Abate, A., Kroening, D.: Certified reinforcement learning
with logic guidance. CoRR, abs/1902.00778 (2019)

[HJB+10] He, R., Jennings, P., Basu, S., Ghosh, A.P., Wu, H.: A bounded statistical
approach for model checking of unbounded until properties. In: ASE, pp.
225–234 (2010)

PAC Statistical Model Checking 517

[HKP+19] Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.:
The quantitative verification benchmark set. In: TACAS 2019 (2019, to
appear)

[HLMP04] Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate
probabilistic model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004.
LNCS, vol. 2937, pp. 73–84. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24622-0 8

[HM17] Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and
IMDPs. Theor. Comput. Sci. (2017)

[HMZ+12] Henriques, D., Martins, J., Zuliani, P., Platzer, A., Clarke, E.M.: Statis-
tical model checking for Markov decision processes. In: QEST, pp. 84–93
(2012)

[HPS+19] Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak,
D.: Omega-regular objectives in model-free reinforcement learning. In:
Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 395–
412. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-
0 27

[JCL+09] Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani,
P.: A bayesian approach to model checking biological systems. In: Degano,
P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03845-
7 15

[JLS12] Jegourel, C., Legay, A., Sedwards, S.: A platform for high performance
statistical model checking – PLASMA. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 498–503. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28756-5 37

[KKKW18] Kelmendi, E., Krämer, J., Křet́ınský, J., Weininger, M.: Value iteration
for simple stochastic games: stopping criterion and learning algorithm.
In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981,
pp. 623–642. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96145-3 36

[KM19] Křet́ınský, J., Meggendorfer, T.: Of cores: a partial-exploration frame-
work for Markov decision processes. Submitted 2019

[KNP11] Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of
probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22110-1 47

[Lar12] Larsen, K.G.: Statistical model checking, refinement checking, optimiza-
tion,. for stochastic hybrid systems. In: Jurdziński, M., Ničković, D. (eds.)
FORMATS 2012. LNCS, vol. 7595, pp. 7–10. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33365-1 2

[Lar13] Guldstrand Larsen, K.: Priced timed automata and statistical model
checking. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940,
pp. 154–161. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38613-8 11

[Lit94] Littman, M.L.: Markov games as a framework for multi-agent reinforce-
ment learning. In: ICML, pp. 157–163 (1994)

[LN81] Lakshmivarahan, S., Narendra, K.S.: Learning algorithms for two-person
zero-sum stochastic games with incomplete information. Math. Oper.
Res. 6(3), 379–386 (1981)

518 P. Ashok et al.

[LP08] Lassaigne, R., Peyronnet, S.: Probabilistic verification and approxima-
tion. Ann. Pure Appl. Logic 152(1–3), 122–131 (2008)

[LP12] Lassaigne, R., Peyronnet, S.: Approximate planning and verification for
large Markov decision processes. In: SAC, pp. 1314–1319, (2012)

[LST14] Legay, A., Sedwards, S., Traonouez, L.-M.: Scalable verification of markov
decision processes. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol.
8938, pp. 350–362. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-15201-1 23

[Mar75] Martin, D.A.: Borel determinacy. Ann. Math. 102(2), 363–371 (1975)
[MLG05] Mcmahan, H.B., Likhachev, M., Gordon, G.J.: Bounded real-time

dynamic programming: RTDP with monotone upper bounds and per-
formance guarantees. In: In ICML 2005, pp. 569–576 (2005)

[Nor98] Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge
(1998)

[PGL+13] Palaniappan, S.K., Gyori, B.M., Liu, B., Hsu, D., Thiagarajan, P.S.: Sta-
tistical model checking based calibration and analysis of bio-pathway
models. In: Gupta, A., Henzinger, T.A. (eds.) CMSB 2013. LNCS, vol.
8130, pp. 120–134. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40708-6 10

[Put14] Puterman, M.L.: Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Wiley, Hoboken (2014)

[RF91] Raghavan, T.E.S., Filar, J.A.: Algorithms for stochastic games – a survey.
Z. Oper. Res. 35(6), 437–472 (1991)

[RP09] El Rabih, D., Pekergin, N.: Statistical model checking using perfect sim-
ulation. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799,
pp. 120–134. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04761-9 11

[SB98] Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT
Press, Cambridge (1998)

[SKC+14] Sadigh, D., Kim, E.S., Coogan, S., Sastry, S.S.S., Sanjit, A.: A learn-
ing based approach to control synthesis of markov decision processes for
linear temporal logic specifications. In: CDC, pp. 1091–1096 (2014)

[SLW+06] Strehl, A.L., Li, L., Wiewiora, E., Langford, J., Littman, M.L.: PAC
model-free reinforcement learning. In: ICML, pp. 881–888 (2006)

[SS12] Saffre, F., Simaitis, A.: Host selection through collective decision. ACM
Trans. Auton. Adapt. Syst. 7(1), 4:1–4:16 (2012)

[SVA04] Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-
box probabilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004.
LNCS, vol. 3114, pp. 202–215. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-27813-9 16

[SVA05] Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of
stochastic systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 266–280. Springer, Heidelberg (2005). https://doi.
org/10.1007/11513988 26

[WT16] Wen, M., Topcu, U.: Probably approximately correct learning in stochas-
tic games with temporal logic specifications. In: IJCAI, pp. 3630–3636
(2016)

[YCZ10] Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical verification of prob-
abilistic properties with unbounded until. In: Davies, J., Silva, L., Simao,
A. (eds.) SBMF 2010. LNCS, vol. 6527, pp. 144–160. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19829-8 10

PAC Statistical Model Checking 519

[YKNP06] Younes, H.L.S., Kwiatkowska, M.Z., Norman, G., Parker, D.: Numerical
vs. statistical probabilistic model checking. STTT 8(3), 216–228 (2006)

[YS02a] Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete
event systems using acceptance sampling. In: Brinksma, E., Larsen, K.G.
(eds.) CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45657-0 17

[ZPC10] Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking
with application to simulink/stateflow verification. In: HSCC, pp. 243–
252 (2010)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

D Statistical Model Checking: Black or
White? (ISoLA 2020)

Reprinted by permission from Springer Nature (License Number 5342910466506): Lecture
Notes in Computer Science book series (LNTCS,volume 12476) Statistical Model Check-
ing: Black or White?, Pranav Ashok, Przemyslaw Daca, Jan Kretinsky, and Maximilian
Weininger, © 2020 Springer Nature Switzerland AG (2020)

This is an exact reprinting of the accepted version of the following paper which has been
published as a peer reviewed conference paper.

Pranav Ashok, Przemyslaw Daca, Jan Kretinsky, and Maximilian Weininger.
“Statistical Model Checking: Black or White?” In: ISoLA (1). Vol. 12476.
Lecture Notes in Computer Science. Springer, 2020, pp. 331–349. doi:
10.1007/978-3-030-61362-4 19

Summary

One of the advantages of statistical model checking (SMC) is its applicability to black-
box systems. In this paper, we discuss the advantages gained when SMC is applied to
white-box systems, utilizing the knowledge of their internals. We focus on the setting
of unbounded-horizon properties such as reachability or LTL. We compare our approach
to other statistical and numerical techniques both conceptually as instantiations of the
same framework, and experimentally. It not only clearly preserves scalability advantages
of black-box SMC compared to classical model checking (while providing high level of
guarantees), but it also scales yet better than either of the two for a wide class of models.

For more details on this publication, we refer to Section 4.1 of the main body.

Contribution

Contribution of Maximilian Weininger

Development and conceptual design of the research project 40%
Discussion and development of ideas 60%
Composition and revision of the manuscript 80%
Implementation 10%
Experimental evaluation 15%

239

https://link.springer.com/chapter/10.1007/978-3-030-61362-4_19
https://link.springer.com/chapter/10.1007/978-3-030-61362-4_19

Statistical Model Checking: Black
or White?

Pranav Ashok(B), Przemys�law Daca, Jan Křet́ınský(B),
and Maximilian Weininger(B)

Technical University of Munich, Munich, Germany
ashok@in.tum.de, jan.kretinsky@tum.de, maxi.weininger@tum.de

Abstract. One of the advantages of statistical model checking (SMC)
is its applicability to black-box systems. In this paper, we discuss the
advantages gained when SMC is applied to white-box systems, utilizing
the knowledge of their internals. We focus on the setting of unbounded-
horizon properties such as reachability or LTL. We compare our app-
roach to other statistical and numerical techniques both conceptually as
instantiations of the same framework, and experimentally. It not only
clearly preserves scalability advantages of black-box SMC compared to
classical model checking (while providing high level of guarantees), but
it also scales yet better than either of the two for a wide class of models.

1 Introduction

Classical probabilistic verification techniques rely on iterative approximation
algorithms for linear equation systems and linear programs, such as value iter-
ation (VI), e.g. [Put14]. However, the scalability of such numeric analyses is
severely limited, compared to standard non-quantitative (hardware or software)
verification, since exact transformations, such as abstraction or partial-order
reduction, are more difficult to use. Consequently, weaker guarantees such as
probably approximately correct (PAC) results become acceptable even for com-
pletely known systems (white box) and not only in contexts where the system
is executable but unknown (black box), and where thus absolute guarantees are
principally impossible.

Example 1. Consider the task of model checking a reachability property of
a probabilistic communication protocol, which starts by generating a few, say k,
random bits. Thus the execution immediately branches into 2k states. If there are
only few or hard-to-find symmetries in the behaviour, standard analysis quickly
becomes infeasible. In the following, we discuss drawbacks of previously studied
alternative approaches; then we suggest a new one that overcomes the difficulties
for a wide class of models.

This research was funded in part by TUM IGSSE Grant 10.06 (PARSEC) and the Ger-
man Research Foundation (DFG) project 383882557 Statistical Unbounded Verification
(KR 4890/2-1).

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 331–349, 2020.
https://doi.org/10.1007/978-3-030-61362-4_19

332 P. Ashok et al.

The exponential state-space explosion quickly renders explicit VI unable
to propagate information by more than a single step. Besides, if the transi-
tion probabilities depend on the generated bits, even the symbolic variants of
VI [BCH+97] cannot help much. There have been two major alternatives pro-
posed, both relying on extensive use of simulations.

• (I) For large and possibly unknown systems, statistical model checking
(SMC) [YS02] reincarnates the Monte Carlo method. It runs simulations of
the system; the resulting statistics then yields confidence intervals, i.e. PAC
results. However, for unbounded-horizon properties, such as reachability or
linear temporal logic (LTL) [Pnu77], performing simulations of finite length
requires some information about the model [Kře16]:

1. Either the second eigenvalue of the transition matrix can be
bounded [LP08,YCZ10], which requires essentially the complete knowl-
edge of the system (white box) and is as hard as solving the model
checking problem, or

2. the topology of the underlying state-graph is known [YCZ10,HJB+10]
(sometimes called grey box, e.g. [AKW19]) and the whole system is pre-
processed, which beats the purpose of sublinear analysis, or

3. a bound on the minimum transition probability pmin is known as is the
case in [BCC+14,DHKP17]. This is the closest to black box, thus called
black SMC here.

In black SMC, long enough simulations can be run to ensure the system
passes from the transient to the recurrent part and reliable information on
the whole infinite run is obtained. While the a-priori length is practically
infeasible [BCC+14], early detection of recurrent behaviour has been pro-
posed [DHKP17] as follows. Based on the observed part of a simulation run,
a hypothesis on the topology of the system is made, answering what bottom
strongly connected component (BSCC) this run ends up in. With repetitive
observations of transitions over the run, the confidence grows that what cur-
rently looks as a BSCC indeed is a BSCC. Since quite a few repetitions of all
transitions in the BSCC are required, this approach turns out practical only
for systems with small BSCCs and not too small pmin.
In this paper, assuming knowledge of the system (white-box setting), we twist
the technique to a more efficient one as follows. After quickly gaining (unre-
liably low) confidence that the run entered a BSCC, we use the knowledge
of the topology to confirm this information—again very quickly since not
the whole model is built but only the local BSCC. Consequently, BSCCs are
detected fast even in the case with larger BSCCs or small pmin. As the infor-
mation used turns out quite limited, corresponding to the grey-box setting,
we call this approach grey SMC.

• (II) The other alternative to VI, now in the context or large but known sys-
tems, is the asynchronous value iteration, e.g. [BT89], a generalization of the
Gauss-Seidel method and the core of reinforcement learning and approximate
dynamic programming. There, the VI updates on states of the system are per-
formed in varying orders, in particular possibly entirely skipping some states.

Statistical Model Checking: Black or White? 333

The class of algorithms providing guarantees is represented by bounded real-
time dynamic programming (BRTDP) [MLG05,BCC+14,AKW19] where the
states to be updated at each moment are those appearing on a current sim-
ulation run. Consequently, states with low probability of visiting and thus
low impact on the overall value are ignored. While this allows for treating
very “wide” systems with lots of unimportant branches, the scalability prob-
lem persists as soon as the branching is very uniform (see also Example 5 on
Fig. 2b). From this perspective, grey SMC relaxes the rigorous approximation
in the transient part and replaces it with a statistical estimate.

Overall, grey SMC fills the gap in the following spectrum:

VI BRTDP grey SMC black SMC

analysis
analysis with simulation with

simulation
simulation inside analysis inside

On the one end, numeric analysis (VI) provides reliable results; in BRTDP, sim-
ulations are additionally used in the analysis to improve the performance while
preserving the guarantees. On the other end, simulations (SMC) provide PAC
guarantees; grey SMC then improves the performance by additional analysis in
the simulation.

Our contribution can be summarized as follows:

– We modify the black SMC for unbounded properties of [DHKP17] to perform
better in the white-box (and actually also in the so-called grey-box) setting.

– We compare our grey SMC to black SMC, BRTDP and VI both conceptually,
illustrating advantages on examples, as well as experimentally, comparing the
runtimes on standard benchmarks.

– We present all algorithms within a unified framework, which in our opinion
eases understanding and comparison, provides a more systematic insight, and
is pedagogically more valuable.

Outline of the Paper: After recalling necessary definitions in Sect. 2, we describe
and exemplify the algorithms in Sect. 3 and the respective key sub-procedure
in Sect. 4. Then we compare the algorithms and other related work in Sect. 5,
discussing the expected implications, which we confirm experimentally in Sect. 6.
For a broader account on related work on SMC in the context of unbounded-
horizon properties, we refer the interested reader to the survey [Kře16].

2 Preliminaries

A probability distribution on a finite set X is a mapping δ : X → [0, 1], such
that

∑
x∈X δ(x) = 1. The set of all probability distributions on X is denoted by

D(X).

Definition 1 (MC). A Markov chain (MC) is a tuple (S, s0, δ), where S is a
finite set of states with a designated initial state s0 ∈ S, and δ : S → D(S)

334 P. Ashok et al.

is a transition function that given a state s yields a probability distribution δ(s)
over successor states. For ease of notation, we write δ(s, t) instead of δ(s)(t) and
Post(s) := {t | δ(s, t) > 0} to denote the set of successors of a state.

The semantics of an MC is given in the usual way by the probability space on
paths. An infinite path ρ is an infinite sequence ρ = s0s1 · · · ∈ (S)ω, such that for
every i ∈ N we have si+1 ∈ Post(si). A finite path is a finite prefix of an infinite
path. The Markov chain together with a state s induces a unique probability
distribution Ps over measurable sets of infinite paths [BK08, Ch. 10].

Definition 2 (Reachability probability). For a target set T ⊆ S, we write
♦T := {s0s1 · · · | ∃i ∈ N : si ∈ T} to denote the (measurable) set of all infinite
paths which eventually reach T. For each s ∈ S, we define the value in s as

V(s) := Ps(♦T).

The reachability probability is then the value of the initial state V(s0).

The value function V satisfies the following system of equations, which is
referred to as the Bellman equations:

V(s) =

{
1 if s ∈ T∑

s′∈S δ(s, s′) · V(s′) otherwise
(1)

Moreover, V is the least solution to the Bellman equations, see e.g. [CH08].
Certain parts of the state space are of special interest for the analysis of MC

with respect to unbounded-horizon properties, such as reachability:

Definition 3 (SCC, BSCC). A non-empty set T ⊆ S of states is strongly
connected if for every pair s, s′ ∈ S there is a path (of non-zero length) from s
to s′. Such a set T is a strongly connected component (SCC) if it is maximal
w.r.t. set inclusion, i.e. there exists no strongly connected T ′ with T � T ′. An
SCC T is called bottom (BSCC), if for all states s ∈ T we have Post(s) ⊆ T ,
i.e. no transition leaves the SCC.

Note that the SCCs of an MC are disjoint and that, with probability 1,
infinitely often reached states on a path form a BSCC.

We consider algorithms that have a limited information about the MC:

Definition 4 (Black box and grey box setting). An algorithm inputs an
MC as black box if it cannot access the whole tuple, but

– it knows the initial state,
– for a given state, it can sample a successor t according to δ(s),1

1 Up to this point, this definition conforms to black box systems in the sense of [SVA04]
with sampling from the initial state, being stricter than [YS02] or [RP09], where
simulations can be run from any desired state.

Statistical Model Checking: Black or White? 335

– it knows pmin ≤ min
s∈S,t∈Post(s)

δ(s, t), an under-approximation of the minimum

transition probability.

When input as grey box, it additionally knows the number |Post(s)| of successors
for each state s.2

3 Description of Algorithms

In this section, we describe all of the algorithms that we compare in this paper.
They all use the framework of Algorithm1. The differences are in the instanti-
ations of the functions (written in capital letters). This allows for an easy and
modular comparison.

Algorithm 1. Framework for all considered algorithms

Input: MC M, reachability objective T
Output: (An estimate of) Ps0

(♦T)
1: procedure Compute reachability probability
2: INITIALIZE
3: repeat
4: X ← GET STATES
5: UPDATE(X)
6: until TERM CRIT

3.1 Value Iteration

Value iteration (VI), e.g. [Put14], computes the value for all states in the MC.
As memory, it saves a rational number (the current estimate of the value) for
every state. In INITIALIZE, the estimate is set to 1 for target states in T and to 0
for all others. GET STATES returns the whole state space, as the estimate of all
values is updated simultaneously. The UPDATE works by performing a so called
Bellman backup, i.e.g.iven the current estimate function Li, the next estimate
Li+1 is computed by applying the Bellman Equation (1) as follows:

Li+1(s) =
∑

s′∈S

δ(s, s′) · Li(s
′)

Example 2. Consider the MC from Fig. 1a, with δ(s2, s2) = δ(s2, t) = δ(s2, s3) =
1
3 and the reachability objective {t}. The estimates that VI computes in the first 4
iterations are depicted in Fig. 1b. The target state t is initialized to 1, everything
else to 0. The estimate for s3 stays at 0, as it is a BSCC with no possibility to

2 This requirement is slightly weaker than the knowledge of the whole topology, i.e.
Post(s) for each s.

336 P. Ashok et al.

s0 s1 s2

s3

t

(a)

Iter. L(s0) L(s1) L(s2)

0 0 0 0
1 0 0 1/3

2 0 1/3 4/9

3 1/3 4/9 13/27

4 4/9 13/27 40/81

(b)

Iter. L(s2) U(s2)

0 0 1
1 0.01 0.99
2 0.029 0.980
3 0.039 0.970
4 0.048 0.961

(c)

Fig. 1. (a) Example Markov chain (b) Under approximations computed by value iter-
ation, see Example 2 (c) Under- and over-approximations computed by bounded value
iteration, see Example 3.

reach the target state. Since these two states do not change, they are omitted
in the figure. In every iteration, the estimates are updated and become more
precise, coming closer to the true value 0.5 for s0, s1 and s2. However, they
converge to 0.5 only in the limit, as for any finite number of iterations there is
a positive probability to remain in s2. Note that s0 always is two steps behind
s2, as it takes two iterations to backpropagate the current estimate.

VI converges to the true value only in the limit, hence we need some termi-
nation criterion TERM CRIT to stop when we are close enough. However, to be
certain that the estimate is close, one has to perform an exponential number of
iterations [CH08], which is infeasible. Hence, usually this version of VI does not
give convergence guarantees, but instead just runs until the difference between
two successive iterations is small. The result of this heuristic is guaranteed to be
a lower bound, but can be arbitrarily imprecise [HM18], as we will also see in
Example 3.

3.2 Bounded Value Iteration

To be able to give convergence guarantees, Bounded value iteration (BVI, also
called interval iteration) was introduced more generally for Markov decision pro-
cesses in [BCC+14,HM18]. In this paper, we only focus on Markov chains, i.e.
Markov decision processes with a single action in every state. In addition to the
under-approximation computed by VI, this approach also computes a convergent
over-approximation. For this, it stores a second rational number for every state.
Dually to the under-approximation, INITIALIZE sets the estimate to 0 in states
that cannot reach the target and 1 everywhere else. Note that finding the states
with value 0, i.e. BSCC that do not contain the target, BVI has to perform
a graph analysis, e.g. a backwards search from the targets. BVI still works on
the whole state space and the update is completely analogous to VI, only this
time updating both approximations. As TERM CRIT, BVI checks that difference
between the over- and under-approximation in the initial state is smaller than a
given precision ε. This guarantees that the returned value is ε-precise.

Statistical Model Checking: Black or White? 337

Example 3. Consider the MC from Fig. 1a with the same objective, but this time
with δ(s2, s2) = 0.98 and δ(s2, t) = δ(s2, s3) = 0.01. Note that by pre-processing
we set the over approximation U(s3) to 0, as it is a BSCC with no possibility of
reaching the target. The estimates BVI computes for s2 in the first 4 iterations
are depicted in Fig. 1c.

If we were running VI only from below, we might stop after iteration 4, as
the lower bound changes by less than 0.01 between these iterations and hence
it seems to have converged close to the value. However, the difference between
upper and lower bounds is still very high, so BVI knows that there still is a huge
uncertainty in the values, as it could be anything between 0.048 and 0.961. Even-
tually, both estimates converge close enough to 0.5; for example, after around
400 iterations the lower bound is 0.49 and the upper bound 0.51. Then BVI can
return the value 0.5 (the center of the interval) with a precision of 0.01, as this
value is off by at most that.

3.3 Simulation-Based Asynchronous Value Iteration

The biggest drawback of the two variants we introduced so far is that they
always work on the whole state space. Because of the state-space explosion,
this is often infeasible. In contrast, asynchronous value iteration only updates
parts of the state space in every iteration of the loop, i.e. GET STATES does
not return the whole state space, but instead heuristically selects the states to
update next. This not only speeds up the main loop, but also allows the algo-
rithm to reduce the memory requirements. Indeed, instead of storing estimates
for all states, one stores estimates only for the partial model consisting of pre-
viously updated states. In [BBS95,MLG05,BCC+14], the heuristic for selecting
the states is based on simulation: a path is sampled in the model, and only the
states on that path are updated. The partial model contains all states that have
been encountered during some of the simulations. If the part of the state space
that is relevant for convergence of value iteration is small, this can lead to enor-
mous speed-ups [BCC+14,KM19]. For more details on why this happens and a
formal definition of ’state space relevant for convergence’, we refer the interested
reader to [KM19].

Algorithm 2. Simulation-based implementation of GET STATES
Input: MC M, reachability objective T, s0
Output: A set of states X ⊆ S
1: procedure SIMULATE
2: ρ ← s0
3: repeat
4: s′ ← sample from δ(last(ρ)) according to NEXT STATE
5: ρ ← ρs′

6: until last(ρ) ∈ T or STUCK
7: return ρ

338 P. Ashok et al.

s0

s1 s2 t

1− ε

ε

(a)

s0

s1

s2

.

.

.

sn

ε

ε

ε

(b)

Fig. 2. (a) A Markov chain where exploring the whole state space can be avoided. ε
denotes a transition probability. The cloud represents an arbitrarily large state space.
(b) A Markov chain with high branching. From s0, there is a uniform probabilistic
choice with n = 1

ε
successors.

Algorithm 2 shows how states can be sampled through simulations, as done
in [BCC+14]: Starting from the initial state, in every step of the simulation a
successor is chosen from the distribution of the last state on the path. Note
that this choice depends on another heuristic NEXT STATE. The successor
can be chosen according to the transition probabilities δ, but it has proven to
be advantageous to additionally consider the difference between the upper and
lower bound in the successor states [MLG05,BCC+14]. In consequence, states
where we already know a lot (under- and over-approximations are close to each
other) are given less priority than states where we still need information.

The simulation is stopped in two cases: Either (i) it reaches a target state
or (ii) it is stuck in a BSCC with no path to the target. Different heuristics for
checking whether the simulation is stuck are discussed in depth in Sect. 4. Note
that being able to differentiate between targets and non-target BSCCs during the
simulations allows us not to do anything in INITIALIZE; we can set the value to 1
when reaching a target and 0 in the other case. The UPDATE function for simu-
lation based asynchronous value iteration again uses the Bellman equation (1) to
update the estimates of all states on the path; moreover, it can utilize additional
information: Since GET STATES returns a path, there is a notion of order of the
states. Updating the states in reverse order backpropagates information faster.

Example 4. Consider the MC in Fig. 2a, again with reachability objective {t}.
The cloud represents an arbitrarily large state space. However, since it is only
reachable with a very small probability ε (and we are interested in an ε-precise
solution), it need not be explored. Let the first sampled path be s0s1s2t. This
happens with high probability, as the only other possibility would be to select
a successor from the cloud in state s0, but since the selection process depends
on the transition probabilities δ , going to s1 has a higher probability. After the

Statistical Model Checking: Black or White? 339

simulation reaches t, this value is backpropagated in reverse order. First the
lower estimate L(s2) is set to 1, then L(s1) is set to 1, then L(s0) is set to 1 − ε.
At this point the algorithm has converged, as difference between the lower and
upper bound is ε.

So in this example, sampling the most probable path a single time gives a
good approximation. The algorithm avoids exploring the large cloud and back-
progagates values faster than synchronous VI.

Example 5. As an adversarial example, consider the MC in Fig. 2b. Here, the
model exhibits high branching, so every single path has a low probability, and
only by aggregating all paths we actually get a high value. Unlike the previous
example, there is no part of the state space that is clearly irrelevant. In fact,
to achieve precision of ε the algorithm has to see so many paths that their
cumulative probability is 1 − ε, which in this case means seeing all but one
transition from the starting state. This needs at least 1

ε simulations, but since
the successors are chosen probabilistically, most likely a lot more.

Note that similarly to synchronous VI, there are versions of asynchronous VI
without (RTDP [BBS95]) and with (BRTDP [MLG05,BCC+14])3 guaranteed
error bounds.

3.4 Statistical Model Checking

Algorithms for statistical model checking (SMC), [YS02], are different from all
previously described ones in two ways, namely what they store and what they
return. The VI-based algorithms store estimates for every (seen) state and they
update these values to be ever more precise. Thus, the returned bounds on the
values are certainly correct, although possibly quite loose. In contrast, SMC
stores only a single accumulator (for the value of the initial state) and the
returned value is probably approximately correct (PAC [Val84]). Being PAC
with probability α and approximation ε > 0 guarantees the following: with high
probability (α), the returned value is close to the true value (off by at most ε).
However, the returned confidence interval is not guaranteed to be a valid under-
and over-approximation; if we are unlucky (i.e. with the remaining probability
1 − α), there is no guarantee whatsoever on the returned value.

SMC does not need to do anything in INITIALIZE. It only stores a single
accumulator to remember how often a target state was reached. GET STATES
works as in Algorithm 2 with NEXT STATE typically sampling the successor
according to the transition probabilities δ (in some settings, importance sampling
may also be possible, e.g. [JLS12,BDH17]). UPDATE remembers whether we
reached the target or not; in the end we can divide the number of reaches by
the total number of samples to get the probability estimate. TERM CRIT is a
(typically low) number of samples that depends on the required probability of

3 While all are more generally applicable to Markov decision processes, [MLG05] only
ensures convergence if no end components [BK08] are present (for MC, no BSCCs
without a target are present) and [BCC+14] lifts this restriction.

340 P. Ashok et al.

the guarantee and the width of the confidence interval; see [DHKP17, Section 2.2]
for details or [JSD19] for more advanced techniques.

Example 6. Consider again the MC depicted in Fig. 1a. Let the first sampled
path be s0s1s2s2t. At this point the simulation stops, as we have reached a
target state, and we remember that we have seen a target once. Let the second
path be s0s1s2s2s2s3s3 On the one hand, the STUCK function has to let the
simulation continue, even though s2 is seen 3 times and it looks like a cycle. On
the other hand, it has to detect that the simulation will loop forever in s3 and
has to stop it. Ways to detect this are discussed in Sect. 4. After detecting that
we are stuck, we remember that the simulation did not reach the target.

Let the required probability of the guarantee be α = 0.9 and the width of
the confidence interval ε = 0.1. Using Hoeffding’s inequality [Hoe63] we can
show that the required number of samples for this is 461. So assume that after
461 simulations we have seen the target 223 times. Then we know that with
probability at least 0.9, the value is in the interval 223/461±0.05, i.e. [0.434, 0.534].
Increasing the number of simulations can both increase the confidence or decrease
the width of the interval.

Note that this number of simulations is independent of the system. While
461 simulations are a lot for this small system, the number would be the same
if we were considering a model with several billion states where value iteration
is impossible.

4 STUCK

In this section, we discuss heuristics for detecting whether a simulation is stuck
in a BSCC with no path to a target state. We also propose one new such heuristic
with convenient theoretical properties.

For simulation-based asynchronous value iteration, previous work either
excluded the existence of non-target BSCCs in their assumptions [BBS95,
MLG05] or used a heuristic with no false negatives, but the possibility of false
positives [BCC+14]. This means that if the simulation is stuck in a BSCC, the
simulation definitely is stopped, which is required for termination. However, if the
simulation is not stuck in a BSCC, it might still be stopped, guessing the value
of the last state in the path is 0, although it might not be. The STUCK-heuristics
used in previous work either depend on the path length ([BCC+14,Ujm15,
Chapter 7.5]) or simply stops exploring when any state is seen twice [AKW19,
Appendix A.3].

SMC has to be sure with high probability that the simulation is stuck, as
otherwise it loses the probabilistic guarantee. In [YCZ10], two approaches are
described. The first approach requires knowledge of the second eigenvalue of the
MC in order to guarantee asymptotic convergence. However, getting the second
eigenvalue is as hard as the verification problem itself. The second approach
works in the grey-box setting and pre-processes the MC so that all potentially
infinite paths are eliminated. A similar transformation, using white-box informa-

Statistical Model Checking: Black or White? 341

tion, was suggested in [HJB+10]. However, both of these approaches transform
the whole model and thus face problems in the case of very large models.

An alternative was suggested in [DHKP16]. It monitors the finite path sam-
pled during the simulation, implicitly constructing a graph with all seen states as
nodes and all seen transitions as edges. The candidate of the current path is the
(possibly empty) set of states forming the maximal BSCC of this graph. Intu-
itively, it is what we believe to be a BSCC given the observation of the current
simulation. This candidate has to be validated, because as we saw in Example 6,
a state set can look like a BSCC for several steps before being exited. In the
black-box setting, this validation works by continuing the simulation until the
probability of overlooking some transition exiting the candidate becomes very
small [DHKP16].

In this paper, we pinpoint that in the grey-box or white-box setting, this
costly type of validation is not necessary. Instead of validating the candidate
by running around in it for a huge number of steps, one can verify it using the
additional information on the model. If no successor of any state in the candidate
is outside of the candidate, then it indeed is a BSCC. Formally, for a candidate
T , we check that {s | ∃t ∈ T : s ∈ Post(t)} ⊆ T (if the topology is known),

or alternatively that ∀t ∈ T : |P̂ost(t)| = |Post(t)| (in what we defined as the

grey-box setting) where P̂ost yields the number of successors within the observed
candidate.

Example 7. Consider again the MC depicted in Fig. 1a. When a simulation enters
s3, STUCK should return true in order to stop the simulation, as it has reached a
BSCC with no path to a target. In the black box setting of [DHKP16], this is only
possible after continuing the simulation for another huge amount of steps. For
example, even in a BSCC with only a single state, hundreds of further steps can
be necessary to reach the required confidence. Given the grey-box information,
the algorithm can determine that all successors of the states in the candidate
({s3}) have been seen and conclude that the candidate is indeed a BSCC.

However, this check stops the simulation and can incur an overhead if there
are many SCCs in the transient part of the state space. Hence, we can delay it,
not checking at the first occurrence of a cycle, but e.g. only when every state in
the candidate has been seen twice. Alternatively, one can only allow the check
every n (e.g. hundred) steps of the simulation. Depending on the model and the
implementation of the algorithm, these heuristics can have some impact on the
runtime.

Furthermore, one might modify this heuristic even further. If a state of the
BSCC is only reached with low probability, it takes many steps for the simulation
to reach it. When we check whether the current candidate is a BSCC, this
state might not have occurred in the simulation yet. Instead of concluding that
the information is insufficient and the simulation has to continue, one could
deterministically explore the unknown successors and compute the BSCC. On
the one hand, for small to medium sized BSCCs, this could result in a speed-up.
On the other hand, it increases the overhead when transient SCCs are checked

342 P. Ashok et al.

by STUCK. Consequently, in the available benchmarks, this heuristic did not
prove advantageous. Hence we do not even report on it in the evaluation section.

5 Discussion

5.1 Dependency of Simulation Length on Topology

Although the number of samples in SMC is independent of the model size, the
length of the simulations is highly dependent on the model size and even more
on the structure. Indeed, any kind of cyclic behaviour in the transient part
of the state space increases the simulation time for two reasons. Firstly, the
simulation loops in transient SCCs and does not make progress towards a target
or a BSCC. Secondly, the check whether the simulation is stuck in transient
SCCs incurs an overhead. An adversarial handcrafted worst-case example where
simulations struggle is given in [HM18, Figure 3]. Moreover, the structure of
BSCCs affects the length of the simulation. For cyclic BSCCs, the simulation
easily encounters all states of the BSCC and can quickly terminate. For more
complex topologies, some states are typically only seen with very low frequency
and thus the simulation takes longer.

If the model exhibits many transient SCCs, using any simulation-based tech-
nique is problematic.

5.2 Black, Grey and White SMC

The difference between the variants of SMC we report on are their knowledge
of the transition system: pmin corresponds to black, the number of successors to
grey and the exact successors and probabilities to the white-box setting. This
information can be used in the STUCK-check; apart from that, the algorithms
are the same.

Comparing grey and black box, it is apparent that simulations in grey box
can be much shorter, as upon detection of a candidate that is a BSCCs the
simulation is immediately stopped, whereas in the black box setting it has to
continue for a number of steps. This number of steps depends on two things: (i)
The size of the BSCC, as larger BSCC take longer to explore, especially since all
states, no matter how improbable, need to be seen a certain amount of times,
and (ii) the given under-approximation of the minimum transition probability
pmin, as this determines how often every state in the candidate has to be seen
until the probability of a false positive is small enough.

Thus, for large BSCCs or small pmin, grey SMC is clearly better, as we also
experimentally validate in Table 3 (large BSCC) and Table 2 (various pmin) in
the next section. For small BSCCs (e.g. only of size 1) and not so small pmin,
black and grey SMC become more comparable, but grey SMC still has shorter
simulations. However, practically, the overhead of verifying the candidates in
grey SMC can be so large that black SMC can even be slightly faster than grey
SMC (see e.g., leader6 11 in Table 1).

Statistical Model Checking: Black or White? 343

Heuristically reducing the number of checks in grey SMC (as described in
Sect. 4) can make it faster again, but the effectiveness of the heuristics depends
on the models. So, if it is known that the BSCC-detection is very easy for black
SMC (e.g. they are of size 1 or cyclic and pmin is not too small), black SMC can
be a viable choice. However, as black SMC is never far better, using grey SMC
is the safer variant when facing models with uncertain topology.

5.3 Comparison of Algorithms

Finally, we compare the (dis-)advantages of the different algorithms, giving a
practical decision guidance. If hard guarantees are required, then BVI or BRTDP
are to be used. The latter is simulation based, and thus good if only a small part
of the state space is relevant for convergence. Additionally, if the model is too
large for BVI, BRTDP still has a chance, but quite possibly the partial model
will also be too large. Conversely, if the model contains lots of transient SCCs,
BVI is preferable, as simulation based approaches fail on this kind of model, see
Sect. 5.1. Note that, if there are small probabilities present, it might take very
long for BVI and BRTDP to converge, see Example 3.

For a quick estimate, or if PAC guarantees are sufficient, or if the system is
too large, so that it is not possible to provide hard guarantees, SMC is to be
used, if possible (white or grey box setting) in our grey variant. As both the
memory and the termination criterion are independent of the size of the system,
SMC always has a chance to yield an estimate, which additionally comes with a
probabilistic guarantee.

There is no case in which un-guaranteed (synchronous or asynchronous) VI
are preferable, as they suffer from the same drawbacks as BVI and BRTDP, but
additionally do not provide guarantees. Whenever hard guarantees are not of
interest and the system is not strongly connected, grey SMC should be used for
a quick estimate.

5.4 Extensions to Other Unbounded-Horizon Properties

For more complex unbounded-horizon properties [BK08], such as Until (avoid-
reach), LTL or long-run average reward, (B)VI pre-processes the state space
to analyze the BSCCs [BK08] and BRTDP [BCC+14] can either do the same
or analyze the encountered BSCCs only. Black SMC of [DHKP17] is applicable
through additional analysis of the BSCC candidates after they have been found
likely to be BSCCs. This is directly inherited by grey SMC and makes it available
for these specifications with low overhead.

6 Experimental Evaluation

We implemented grey SMC in a branch of the PRISM Model Checker [KNP11]
extending the implementation of black SMC [DHKP17]. We ran experiments on
(both discrete- and continuous-time) Markov chains from the PRISM Benchmark

344 P. Ashok et al.

Table 1. Runtime (in seconds) comparison of black and grey SMC for various bench-
marks. BVI runtimes are also presented as a baseline.

Model/property Size pmin BSCC (no.,

max. size)

SMC BVI

Black Grey

bluetooth(10)time qual >569K 7.81 × 10−3 >5.8K, 1 9 7 TO

brp nodl(10K,10K)p1 qual >40M 1 × 10−2 >4.5K, 1 86 84 TO

crowds nodl(8,20)positive qual 68M 5 × 10−2 >3K, 1 10 8 TO

egl(20,20)unfairA qual 1719T 5 × 10−1 1, 1 43 25 TO

gridworld(400,0.999)prop qual 384M 1 × 10−3 796, 160K 15 8 TO

herman-174tokens 10G 4.7 × 10−7 1, 34 TO 73 98

leader6 11elected qual >280K 5.6 × 10−7 1, 1 106 152 OOM

nand(50,3)reliable qual 11M 2 × 10−2 51, 1 11 10 455

tandem(2K)reach qual >1.7M 2.4 × 10−5 1, >501K 7 7 62

Suite [KNP12a]. In addition to a comparison to black SMC, we also provide
comparisons to VI and BVI of PRISM and BRTDP of [BCC+14]. An interested
reader may also want to refer [DHKP17, Table II] for a comparison of black
SMC against two unbounded SMC techniques of [YCZ10].

For every run configuration, we run 5 experiments and report the median.
In black SMC, the check for candidates is performed every 1000 steps during
path simulations, while in grey SMC the check is performed every 100 steps.
Additionally, grey SMC checks if a candidate is indeed a BSCC once every state
of the candidate is seen at least twice. In all our tables, ‘TO’ denotes a timeout
of 15 min and ‘OOM’ indicates that the tool ran out of memory restricted to
1GB RAM.

6.1 Comparison of Black and Grey SMC

Table 1 compares black SMC and grey SMC on multiple benchmarks. One can see
that, except in the case of leader6 11 and brp nodl, grey SMC finishes atleast
as soon as black SMC. In bluetooth, gridworld, leader and tandem, both
the SMC methods are able to terminate without encountering any candidate
(i.e. either the target is seen or the left side of the until formula is falsified).
In brp nodl, crowds nodl and nand, the SMC methods encounter a candidate,
however, since the candidate has only a single state (all BSCCs are trivial),
black SMC is quickly able to confidently conclude that the candidate is indeed a
BSCC. The only interesting behaviour is observed on the herman-17 benchmark.
In this case, every path eventually encounters the only BSCC existing in the
model. Grey SMC is able to quickly conclude that the candidate is indeed a
BSCC, while black SMC has to sample for a long time in order to be sufficiently
confident.

Statistical Model Checking: Black or White? 345

Table 2. Effect of pmin on black SMC runtimes (in seconds) on some of the benchmarks.
Lower pmin demands stronger candidates, due to which black SMC has to sample longer
paths.

Model Black SMC/pmin Grey SMC

1 × 10−2 1 × 10−3 1 × 10−4 1 × 10−5

brp nodl(10K,10K) 86 93 183 TO 84

crowds nodl(8,20) 11 41 334 TO 9

egl(20,20) 47 106 875 TO 44

The performance of black SMC is also a consequence of the pmin being quite
small. Table 2 shows that black SMC is very sensitive towards pmin. Note that
grey SMC is not affected by the changes in pmin as it always checks whether a
candidate is a BSCC as soon as all the states in the candidate are seen twice.

6.2 Grey SMC vs. Black SMC/BRTDP/BVI/VI

We now look more closely at the self-stabilization protocol herman [KNP12b,
Her90]. The protocol works as follows: herman-N contains N processes, each
possessing a local boolean variable xi. A token is assumed to be in place i if
xi = xi−1. The protocol proceeds in rounds. In each round, if the current values
of xi and xi−1 are equal, the next value of xi is set uniformly at random, and
otherwise it is set equal to the current value of xi−1. The number of states in
herman-N is therefore 2N . The goal of the protocol is to reach a stable state
where there is exactly one token in place. For example, in case of herman-5, a
stable state might be (x1 = 0, x2 = 0, x3 = 1, x4 = 0, x5 = 1), which indicates
that there is a token in place 2. In every herman model, all stable states belong
to the single BSCC. The number of states in the BSCC range from 10 states in
herman-5 to 2,000,000 states in herman-21.

For all herman models in Table 3, we are interested in checking if the prob-
ability of reaching an unstable state where there is a token in places 2–5, i.e.
(x1 = 1, x2 = 1, x3 = 1, x4 = 1, x5 = 1) is less than 0.05. This property, which
we name 4tokens, identifies 2N−5 states as target in herman-N. The results in
Table 3 show how well grey SMC scales when compared to black SMC, BRTDP,
BVI4 and VI. Black SMC times out for all models where N ≥ 11. This is due
to the fact that the larger models have a smaller pmin, thereby requiring black
SMC to sample extremely long paths in order to confidently identify candidates
as BSCCs. BVI and VI perform well on small models, but as the model sizes
grow and transition probabilities become smaller, propagating values becomes
extremely slow. Interestingly, we found that in both grey SMC and black SMC,
approximately 95% of the time is spent in computing the next transitions, which

4 We refrain from comparison to other guaranteed VI techniques such as sound
VI [QK18] or optimistic VI [HK19] as the implementations are not PRISM-based
and hence would not be too informative in the comparison.

346 P. Ashok et al.

Table 3. Runtime (in seconds) of the various algorithms on the Herman self-
stabilization protocol [KNP12b] with the property 4tokens. The median runtimes are
reported for grey SMC, black SMC [DHKP17], BRTDP [BCC+14], Bounded value
iteration (BVI) and Value iteration (VI). The SMC algorithms use SPRT method with
parameters α = 0.01 and β = 0.01. BRTDP, BVI and VI run until a relative error of
0.01 is obtained.

Model States Grey SMC Black SMC BRTDP BVI VI

herman-5 32 11 15 TO 1 1

herman-7 128 12 57 TO 1 1

herman-9 512 10 775 TO 1 1

herman-11 2048 19 TO TO 1 1

herman-13 8192 18 TO TO 1 1

herman-15 33K 17 TO TO 9 3

herman-17 131K 49 TO TO 98 21

herman-19 524K 252 OOM TO 602 113

herman-21 2M 759 OOM OOM TO TO

grow exponentially in number; an improvement in the simulator implementation
can possibly slow down the blow up in run time, allowing for a fairer comparison
with the extremely performant symbolic value iteration algorithms.

Finally, we comment on the exceptionally poor performance of BRTDP on
herman models. In Table 4, we run BRTDP on three different properties: (i)
tokens in places 2–3 (2tokens); (ii) tokens in places 2–4 (3tokens); and (iii)
tokens in places 2–5 (4tokens). The number of states satisfying the property
decrease when going from 2 tokens to 4 tokens. The table shows that BRTDP is
generally better in situations where the target set is larger.

In summary, the experiments reveal the following:

– For most benchmarks, black SMC and grey SMC perform similar, as seen in
Table 1. As expected, the advantages of grey SMC do not show up in these
examples, which (almost all) contain only trivial BSCCs.

– The advantage of grey SMC is clearly visible on the herman-N benchmarks,
in which there are non-trivial BSCCs. Here, black SMC quickly fails while
grey SMC is extremely competitive.

– Classical techniques such as VI and BVI fail when either the model is too
large or the transition probabilities are too small. However, they are still to
be used for strongly connected systems, where the whole state space needs to
be analysed for every run in both SMC approaches, but only once for (B)VI.

Statistical Model Checking: Black or White? 347

Table 4. Effect of restrictive properties (satisfied in fewer states) on the runtime (in
seconds) of BRTDP in the herman benchmarks.

Model Property

2tokens 3tokens 4tokens

herman-5 1 2 TO

herman-7 1 1 TO

herman-9 1 2 TO

herman-11 2 2 TO

herman-13 2 2 TO

herman-15 3 3 TO

herman-17 5 6 TO

herman-19 9 9 TO

herman-21 104 111 TO

herman-23 OOM OOM OOM

7 Conclusion

While SMC has found its use also in the white-box setting as a scalable alter-
native, we introduce the first approach that utilizes the knowledge in a local
way, without globally processing the state space, and thus preserves the effi-
cency advantages of black-box SMC. We call this approach grey SMC since we
utilize only the topological information and not the quantitative information
(sometimes referred to as grey box). On the one hand, this is useful as the
quantitative information is often unavailable or imprecise w.r.t. the modelled
reality. On the other hand, while the full quantitative information is irrelevant
in BSCCs, it plays a major role in the transient phase and could be used to
further enhance the approach. For instance, it could be used for importance
sampling in order to handle rare events efficiently [JLS12,BDH17] even in the
context of unbounded-horizon properties.

References

[AKW19] Ashok, P., Křet́ınský, J., Weininger, M.: PAC statistical model checking for
Markov decision processes and stochastic games. In: Dillig, I., Tasiran, S.
(eds.) CAV 2019. LNCS, vol. 11561, pp. 497–519. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25540-4 29

[BBS95] Barto, A.G., Bradtke, S.J., Singh, S.P.: Learning to act using real-time
dynamic programming. Artif. Intell. 72(1–2), 81–138 (1995)

[BCC+14] Brázdil, T., et al.: Verification of Markov decision processes using learning
algorithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol.
8837, pp. 98–114. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-11936-6 8

348 P. Ashok et al.

[BCH+97] Baier, C., Clarke, E.M., Hartonas-Garmhausen, V., Kwiatkowska, M.,
Ryan, M.: Symbolic model checking for probabilistic processes. In: Degano,
P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol.
1256, pp. 430–440. Springer, Heidelberg (1997). https://doi.org/10.1007/
3-540-63165-8 199

[BDH17] Budde, C.E., D’Argenio, P.R., Hartmanns, A.: Better automated impor-
tance splitting for transient rare events. In: Larsen, K.G., Sokolsky, O.,
Wang, J. (eds.) SETTA 2017. LNCS, vol. 10606, pp. 42–58. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-69483-2 3

[BK08] Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cam-
bridge (2008)

[BT89] Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation:
Numerical Methods. Prentice-Hall Inc., Upper Saddle River (1989)

[CH08] Chatterjee, K., Henzinger, T.A.: Value iteration. In: Grumberg, O., Veith,
H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 107–138.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69850-0 7

[DHKP16] Daca, P., Henzinger, T.A., Křet́ınský, J., Petrov, T.: Faster statistical model
checking for unbounded temporal properties. In: Chechik, M., Raskin, J.-
F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 112–129. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49674-9 7

[DHKP17] Daca, P., Henzinger, T.A., Kret́ınský, J., Petrov, T.: Faster statistical model
checking for unbounded temporal properties. ACM Trans. Comput. Log.
18(2), 12:1–12:25 (2017)

[Her90] Herman, T.: Probabilistic self-stabilization. Inf. Process. Lett. 35(2), 63–67
(1990)

[HJB+10] He, R., Jennings, P., Basu, S., Ghosh, A.P., Wu, H.: A bounded statistical
approach for model checking of unbounded until properties. In: ASE, pp.
225–234 (2010)

[HK19] Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. CoRR,
abs/1910.01100 (2019)

[HM18] Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and
IMDPs. Theor. Comput. Sci. 735, 111–131 (2018)

[Hoe63] Hoeffding, W.: Probability inequalities for sums of bounded random vari-
ables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)

[JLS12] Jegourel, C., Legay, A., Sedwards, S.: Cross-entropy optimisation of impor-
tance sampling parameters for statistical model checking. In: Madhusudan,
P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 327–342. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7 26

[JSD19] Jégourel, C., Sun, J., Dong, J.S.: Sequential schemes for frequentist esti-
mation of properties in statistical model checking. ACM Trans. Model.
Comput. Simul. 29(4), 25:1–25:22 (2019)

[KM19] Křet́ınský, J., Meggendorfer, T.: Of cores: a partial-exploration framework
for Markov decision processes. (2019, Submitted)

[KNP11] Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of prob-
abilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22110-1 47

[KNP12a] Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite.
In: QEST, pp. 203–204. IEEE Computer Society (2012)

Statistical Model Checking: Black or White? 349

[KNP12b] Kwiatkowska, M.Z., Norman, G., Parker, D.: Probabilistic verification of
Herman’s self-stabilisation algorithm. Formal Asp. Comput. 24(4–6), 661–
670 (2012). https://doi.org/10.1007/s00165-012-0227-6

[Kře16] Křet́ınský, J.: Survey of statistical verification of linear unbounded prop-
erties: model checking and distances. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2016. LNCS, vol. 9952, pp. 27–45. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-47166-2 3

[LP08] Lassaigne, R., Peyronnet, S.: Probabilistic verification and approximation.
Ann. Pure Appl. Logic 152(1–3), 122–131 (2008)

[MLG05] Mcmahan, H.B., Likhachev, M., Gordon, G.J.: Bounded real-time dynamic
programming: RTDP with monotone upper bounds and performance guar-
antees. In: ICML 2005, pp. 569–576 (2005)

[Pnu77] Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)
[Put14] Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic

Programming. Wiley, Hoboken (2014)
[QK18] Quatmann, T., Katoen, J.-P.: Sound value iteration. In: Chockler, H., Weis-

senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 643–661. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 37

[RP09] El Rabih, D., Pekergin, N.: Statistical model checking using perfect sim-
ulation. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp.
120–134. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
04761-9 11

[SVA04] Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-
box probabilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS,
vol. 3114, pp. 202–215. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-27813-9 16

[Ujm15] Ujma, M.: On verification and controller synthesis for probabilistic systems
at runtime. Ph.D. thesis, University of Oxford, UK (2015)

[Val84] Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142
(1984)

[YCZ10] Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical verification of prob-
abilistic properties with unbounded until. In: Davies, J., Silva, L., Simao,
A. (eds.) SBMF 2010. LNCS, vol. 6527, pp. 144–160. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19829-8 10

[YS02] Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event
systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.)
CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45657-0 17

E Satisfiability Bounds for ω-Regular
Properties in Bounded-Parameter Markov
Decision Processes (CDC 2019)

©2019 IEEE. Reprinted, with permission, from Maximilian Weininger, Tobias Meggen-
dorfer, and Jan Kretinsky. “Satisfiability Bounds for ω-Regular Properties in Bounded-
Parameter Markov Decision Processes”. IEEE, Conference Proceedings: 2019 IEEE 58th
Conference on Decision and Control (CDC), December/2019

This is an exact reprinting of the accepted version of the following paper which has been
published as a peer reviewed conference paper.

Maximilian Weininger, Tobias Meggendorfer, and Jan Kretinsky. “Satisfia-
bility Bounds for ω-Regular Properties in Bounded-Parameter Markov Deci-
sion Processes”. In: CDC. IEEE, 2019, pp. 2284–2291. doi: 10.1109/CDC40024.
2019.9029460

Summary

We consider the problem of computing minimum and maximum probabilities of satisfying
an ω-regular property in a bounded-parameter Markov decision process (BMDP). BMDP
arise from Markov decision processes (MDP) by allowing for uncertainty on the transition
probabilities in the form of intervals where the actual probabilities are unknown. ω-regular
languages form a large class of properties, expressible as e.g. Rabin or parity automata,
encompassing rich specifications such as linear temporal logic. In a BMDP the probability
to satisfy the property depends on the unknown transitions probabilities as well as on the
policy. In this paper, we compute the extreme values. This solves the problem specifically
suggested by Dutreix and Coogan in CDC 2018, extending their results on interval Markov
chains with no adversary. The main idea is to reinterpret their work as analysis of interval
MDP and accordingly the BMDP problem as analysis of an ω-regular stochastic game,
where a solution is provided. This method extends smoothly further to bounded-parameter
stochastic games.

For more details on this publication, we refer to Section 4.2 of the main body.

259

E Satisfiability Bounds for ω-Regular Properties in BMDP (CDC 2019)

Contribution

Contribution of Maximilian Weininger

Development and conceptual design of the research project 60%
Discussion and development of ideas 60%
Composition and revision of the manuscript 40%
Proofs 35%
Case study 75%

260

Home Help Live Chat Sign in Create Account

© 2022 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Terms and Conditions

RightsLink
Satis�ability Bounds for ω-Regular Properties in Bounded-Parameter
Markov Decision Processes

Conference Proceedings: 2019 IEEE 58th Conference on Decision and Control (CDC)

Author: Maximilian Weininger

Publisher: IEEE

Date: Dec. 2019

Copyright © 2019, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., �gure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted �gure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Micro�lms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at customercare@copyright.com

Rightslink® by Copyright Clearance Center https://s100.copyright.com/AppDispatchServlet#formTop

1 of 1 5/31/22, 15:51

Satisfiability Bounds for ω-Regular Properties in
Bounded-Parameter Markov Decision Processes

Maximilian Weininger∗ Tobias Meggendorfer∗ Jan Křetínský∗
Department of Informatics, Technical University of Munich

Abstract—We consider the problem of computing
minimum and maximum probabilities of satisfying an
ω-regular property in a bounded-parameter Markov
decision process (BMDP). BMDP arise from Markov
decision processes (MDP) by allowing for uncertainty
on the transition probabilities in the form of inter-
vals where the actual probabilities are unknown. ω-
regular languages form a large class of properties,
expressible as, e.g., Rabin or parity automata, en-
compassing rich specifications such as linear tempo-
ral logic. In a BMDP the probability to satisfy the
property depends on the unknown transitions prob-
abilities as well as on the policy. In this paper, we
compute the extreme values. This solves the prob-
lem specifically suggested by Dutreix and Coogan
in CDC 2018, extending their results on interval
Markov chains with no adversary. The main idea is to
reinterpret their work as analysis of interval MDP and
accordingly the BMDP problem as analysis of an ω-
regular stochastic game, where a solution is provided.
This method extends smoothly further to bounded-
parameter stochastic games.

I. Introduction
Markov decision processes (MDP) are a classical

formalism encompassing both probabilistic and non-
deterministic features: in each state some actions are
enabled and each action is assigned a distribution over the
successor states. In other words, each action corresponds
to a set of transitions, each of which is assigned a
transition probability. Bounded-parameter MDP (BMDP)
[16] are like MDP, but to each transition is instead
assigned an interval of possible transition probabilities.
Thus each BMDP specifies a set of MDP. There are
two interpretations of these intervals. Firstly, in the
uncertain interpretation, the BMDP specifies MDP with
unknown but constant transition probabilities in the
intervals. An MDP is thus derived from the BMDP by
picking a value in each interval once for all. Secondly,
in the adversarial interpretation, the BMDP specifies a
decision process where the transition probabilities may be
different numbers (in the intervals) every time we come
to a state. Each interpretation found its use. The former
can model, for instance, various degrees of uncertainty
for each action or confidence intervals for the transition
probabilities learnt from experience. In this case there is
one true transition probability, however unknown. The
latter can be used as a formalism for abstracting MDP:
states with different outgoing transition probabilities

∗All authors contributed equally to this work. It was funded
in part by the German Research Foundation (DFG) project KR
4890/2-1 “Statistical Unbounded Verification”.

can be abstracted into a single state with an interval
covering all the values [16]. In this case, the interval can
stand for any of the values whenever visiting the state.
As such BMDP extend interval Markov chains (IMC)
[21], [23] by an adversary (or an underspecified/non-
deterministic controller). The uncertain interpretation of
IMC then yields uncertain Markov chains (UMC), while
the adversarial interpretation of IMC yields interval MDP
(IMDP), as distinguished in [33].
ω-regular languages, e.g. [36], form a robust class of

rich specifications, which can be represented in various
ways, e.g., by formulae of monadic second-order logic
or by automata over infinite words. In the setting of
probabilistic systems, it is often advantageous to use
deterministic Rabin automata (DRA) or their variations.
In particular, this class encompasses properties expressible
in linear temporal logic (LTL) [27] and there are efficient
ways of translating LTL to DRA [24]. Control of MDP
with LTL specifications is widely studied, e.g. [35], [22],
[38], [30], [40], and typically uses the DRA representation.
In [13], Dutreix and Coogan argue for computing

minimum and maximum probabilities of satisfying an
ω-regular property in an IMC interpreted as IMDP. In
future work, they wish to apply the technique to solve the
problem for BMDP, the controllable counterpart of IMC.
In this paper, we re-interpret their technique in a different
light and using that perspective give a solution to BMDP,
in both the uncertain and the adversarial understanding
of the intervals. We consider both the upper bound (also
called design choice of values in intervals [13]) and the
lower bound (antagonistic in [13]). We present the results
for controllers that try to maximize the probability to
satisfy the ω-regular property; minimization is analogous
as ω-regular languages are closed under complement.

The main idea of our approach is to not only view the
IMC as an IMDP, but also as an MDP, since an IMDP is
a special case of MDP where the adversary chooses the
transition probabilities. We show the standard analysis on
the respective MDP coincides with the tailored algorithm
of [13] applied to the IMC. Our main contribution is
taking this perspective on BMDP, yielding a stochastic
game. Since we can solve the stochastic game with an
ω-regular objective we can obtain also the solutions.
Moreover, for the upper bound, the two players play
cooperatively and we can solve the problem in polynomial
time using adapted MDP techniques. Finally, we show
how the game extension of IMC with two competing
agents can be solved analogously to BMDP, this time
without the need of introducing an additional agent.

Further related work: The general model of MDP
with imprecise parameters (MDPIP) was introduced
in [32]. BMDP [16] are then a subclass where the
parametrization is limited to independent intervals.
BMDP have been investigated with respect to various
objectives, such as stochastic shortest path (minimum
expected reward) [4], expected total reward [26], [39], [18],
discounted reward [26], [15], LTL [37], PCTL [28], [19],
or mean payoff [34].
The special non-controlled case of IMC has also been

investigated for various objectives, e.g. PCTL [33], [5],
LTL [3] ([2] observes this algorithm may not converge to
the optimum) or ω-regular properties [9].
Recent improvements include importance sampling

techniques for IMC [20] or topological policy iteration for
BMDP [31]. IMC and BMDP are used as abstractions of
systems in [25].

Organization of the paper: After recalling the used
formalisms in Section II, we state our problem in Sec-
tion III. We provide the solution in Section IV and an
illustrative case study (adjusted from [13]) in Section V.
Section VI concludes and presents ideas for future work.

II. Preliminaries
In this section, we recall basics of probabilistic systems

and set up the notation. As usual, N refers to the natural
numbers (including 0). A probability distribution on a
finite set X is a mapping p : X → [0, 1], such that∑
x∈X p(x) = 1. We use D(X) to denote the set of all

probability distributions on the set X. Given some set
S, we use S? and Sω to denote the set of all finite and
infinite sequences comprising elements of S, respectively.

A. Markov Decision Processes
Definition 1 A Markov decision process (MDP) is a
tuple M = (S, s0, A,Av,∆, Acc), where S is a finite set
of states, s0 ∈ S is the initial state, A is a finite set
of actions, Av : S → 2A \ {∅} assigns to every state a
non-empty set of available actions, ∆ : S ×A→ D(S) is
a transition function that for each state s and (available)
action a ∈ Av(s) yields a probability distribution over suc-
cessor states, and Acc ∈ 2S × 2S is the Rabin acceptance.
Furthermore, for ease of notation we assume w.l.o.g. that
actions are unique for each state, i.e. Av(s) ∩ Av(s′) = ∅
for s 6= s′.1 An element (Fi, Ii) ∈ Acc is called Rabin
pair. We assume w.l.o.g. that Fi ∩ Ii = ∅ for all pairs.

In figures, we denote a Rabin pair (F, I) by F I .
An MDP with |Av(s)| = 1 for all s ∈ S is called Markov

chain (MC). For ease of notation, we overload functions
that map to distributions f : Y → D(X) by f : Y ×X →
[0, 1], where f(y, x) := f(y)(x). For example, instead
of ∆(s, a)(s′) we write ∆(s, a, s′) for the probability of
transitioning from state s to s′ using action a.

An infinite path in an MDP is an infinite sequence ρ =
s0a0s1a1 · · · , such that ai ∈ Av(si) and ∆(si, ai, si+1) > 0

1The usual procedure to achieve this in general is to replace A
by S ×A and to adapt Av and ∆ appropriately.

for every i ∈ N. We use ρi to refer to the i-th state si in
a given path. A finite path is a finite prefix of an infinite
path. Inf(ρ) ⊆ S denotes the set of all states which are
visited infinitely often in the path ρ.

A path ρ is accepted, denoted ρ |= Acc, if an only if
there exists a Rabin pair (Fi, Ii) ∈ Acc such that all
states in Fi are visited finitely often, i.e. Fi ∩ Inf(ρ) = ∅,
and at least one state of Ii is visited infinitely often, i.e.
Ii ∩ Inf(ρ) 6= ∅. We call such a Rabin pair accepting for ρ.

Remark 1 Often, system and specification are modelled
separately, e.g., by a labelled MDP together with a de-
scription of an ω-regular property such as an LTL formula
[27] or an automaton. The common approach then is
to build the product of the system, the BMDP, and an
automaton describing the specification; this results in a
system as described in Definition 1. Since our work is
largely independent of this construction’s details we omit
this step for simplicity. We highlight that indeed [13] only
refers to the product throughout the main body of their
work. Details can be found in Section VII and, e.g., [1].

A policy (also called controller, strategy) on an MDP is
a function π : (S ×A)∗ × S → D(A) which given a finite
path % = s0a0s1a1 . . . sn yields a probability distribution
π(%) ∈ D(Av(sn)) on the actions to be taken next. We call
a policy memoryless randomized (or stationary) if it is
of the form π : S → D(A), and memoryless deterministic
(or positional) if it is of the form π : S → A. Later
in the paper, we prove that positional strategies are
indeed sufficient for all considered problems. We denote
the set of all policies of an MDP by Π. By fixing the
policy π in an MDPM, we naturally obtain a MC and
thus a probability measure PπM over potential runs [29].
Throughout this work, we are interested in finding policies
which maximize the probability of accepting runs, i.e.
supπ∈Π PπM [ρ |= Acc].

An end component in an MDP is a pair (T,A) of a set
of states T and a set of actions A such that the system
can remain within the states T indefinitely, using only
actions from A. Formally, a pair (T,A), where ∅ 6= T ⊆ S
and ∅ 6= A ⊆ ⋃

s∈T Av(s), is an end component of an
MDP M if (i) for all s ∈ T, a ∈ A ∩ Av(s) we have
{s′ | ∆(s, a, s′) > 0} ⊆ T , and (ii) for all s, s′ ∈ T there
is a finite path % = sa0 . . . ans

′ ∈ (T × A)∗ × T , i.e. the
path stays inside T and only uses actions in A. An end
component (T,A) is a maximal end component (MEC)
if there is no other end component (T ′, A′) such that
T ⊆ T ′ and A ⊆ A′. The set of MECs of an MDPM is
denoted by MEC(M) and can be obtained in polynomial
time [12]. For further detail, see [1, Sec. 10.6.3].

B. Bounded-parameter Markov Decision Processes
Definition 2 A bounded-parameter Markov decision
process (BMDP) is a tuple M = (S, s0, A,Av, q∆, ∆̂, Acc),
where S, s0, A, Av and Acc are as in the definition of
MDP, and q∆, ∆̂ : S × A × S → [0, 1] are lower and
upper bounds on the transition probability in each state.
Again, we assume that actions are unique for each state.

q0, x

q1, y

q2, z

a

b

c

d

[0.5, 1.0]

[0.0, 1.0]

[0.7, 1.0]
[0

.2
5,

1.
0]

[0.5, 1.0]

[0.
0,

1.0
] [0.5, 1.0]

(a) Example BMDP

q0

q1

q2

a

b

c

d

1.0

1.0

0.
5

0.5

0.5

0.5

q0

q1

q2

a

b

c

d

0.5

0.5

1.0

0.
25

0.75
1.0

(b) MDPs consistent with the BMDP
Fig. 1. Examples of an BMDP and its instantiations. The acceptance is Acc = { q2 q1 }.

For consistency, we require that
∑
s′∈S

q∆(s, a, s′) ≤ 1 ≤∑
s′∈S ∆̂(s, a, s′) for each state s and action a ∈ Av(s).

Given a BMDP M = (S, s0, A,Av, q∆, ∆̂, Acc), we call
a Markov decision process M = (S, s0, A,Av,∆, Acc)
consistent with M, denoted M ∈ M, if and only if
M’s transition probabilities satisfy M’s bounds, i.e.
q∆(s, a, s′) ≤ ∆(s, a, s′) ≤ ∆̂(s, a, s′) for all states s, s′ ∈ S
and actions a ∈ Av(s). Note that in general there are
uncountably many MDPs consistent with a BMDP M.
A BMDP with |Av(s)| = 1 for all s ∈ S is called Interval
Markov chain (IMC) (e.g., [9]).

See Fig. 1a for an example BMDP and Fig. 1b for two
MDPs consistent with this BMDP.

C. Stochastic Games
For our analysis, we additionally need the concept of

stochastic games. These can be understood as an MDP
where, instead of a single agent controlling the process,
we have two antagonistic players. Intuitively, the first
player’s aim is to obtain an accepted path, while the
second player aims to stop the first player from doing
so. Each state in the game is “owned” by one of the two
players and the owner of a particular state can decide
which action to take in that state.

Definition 3 A stochastic game (SG) is a tuple G =
(S, s0, A,Av,∆, Acc,O), where (S, s0, A,Av,∆, Acc) is an
MDP and O : S → {1, 2} is an ownership function,
assigning each state to either player 1 or player 2. This
naturally gives rise to the sets of states S1 and S2, which
are controlled by the respective player.

The definitions of (in)finite paths directly extend to
stochastic games. Policies are slightly modified, since
each player can only make decisions in a part of the
game. Formally, we have two kinds of policies π1 :
(S × A)∗ × S1 → D(A) and π2 : (S × A)∗ × S2 → D(A),
one for each player.We denote the set of all policies of
the respective players by Π1 and Π2. Fixing the policy
of a single player yields an MDP, denoted G(πi); fixing
both players’ policies π1 and π2 again yields an MC and
measure over the set of runs, denoted Pπ1,π2

G [11].

III. Problem Statement
In this work, we are given a BMDP and want to

control it such that the probability of an accepting run

is maximized. This raises two orthogonal questions:
Firstly, the semantics of the interval constraints have

to be fixed. We consider two different popular interpreta-
tions, called uncertain and antagonistic. In the uncertain
(or design-choice) model, an external environment fixes
the transition probabilities once and for all, i.e. for a
BMDP M a particular consistent MDPM∈M is chosen.
In the antagonistic model, the external environment
instead is allowed to change the transition probabilities at
every step, taking into account the full path so far. These
interpretations have been shown to be yield the same
optima for reachability in interval Markov chains [10]. In
the following, we show that this also is the case for BMDP
with Rabin objectives; hence we do not distinguish the
semantics in our formal problem statement.

Secondly, it is not specified whether the aforementioned
environment is cooperative or antagonistic. We consider
both of these two extreme cases. In particular, we
are interested in finding the maximal probability of
acceptance while assuming that all transition probabilities
are chosen (i) to our liking and (ii) as bad as possible.

Formally, given a BMDP M we want to compute
(i) P̂(M) = supπ∈Π supM∈M PπM [ρ |= Acc], and
(ii) qP(M) = supπ∈Π infM∈M PπM [ρ |= Acc].

Further, we are interested in the optimal policy and the
best- / worst-case MDP consistent with the given BMDP,
if it exists, i.e. the witnesses for the above values.
Case (i) can be understood as a “design challenge”.

We are interested in building our system, i.e. finding
an optimal assignment for all transitions, such that we
maximize the probability of acceptance. On the other
hand, Case (ii) can be thought of as uncertainty about
the real world or measurement imprecisions. Here, we
rather are interested in optimizing the worst case and
want to find a safe strategy, able to reasonably cope with
any concrete instantiation of the intervals.
Consider the situation depicted in Fig. 1. We are

interested in finding the upper and lower bounds for
the BMDP given in Fig. 1a. The upper bound, 1.0, is
exhibited by the left MDP of Fig. 1b. There, we end up
in q1 with probability 1 and, by always playing action
b, get an accepting run with probability 1. The right
MDP shows the lower bound of 0.5, since we get stuck
in state q2 with probability 0.5. Observe that if action d
in state q2 had a non-zero probability of moving to q0,

the resulting run would be accepting with probability 1,
since we would almost surely eventually reach q1.
In the following, we re-interpret existing approaches,

and present our unified approach for solving BMDP.

IV. Solution approach
In order to explain our approach, we first shed some

light on the simpler case of interval Markov chains (IMC),
handled in [13], and provide a different perspective on
their approach.

In [13], the authors present a specialized algorithm for
dealing with IMCs. In essence, they compute maximal
sets of (non)accepting states and then obtain the final
value by solving a reachability query for these states.
We now provide a different viewpoint on their algorithm
which will help us solve the more general case of BMDPs.

The key observation is the following. We can view the
intervals in an IMC as a player (the external environment)
picking the transition probabilities at every step. This
can be understood as an MDP, where in every state
the player has an action for each distribution satisfying
the interval constraints. This MDP has uncountably
many actions in general, as there are infinitely many
possibilities to choose the probabilities. However, all
possible distributions can be constructed as a convex
combination of finitely many special cases which are basic
feasible solutions (BFS) of a linear program [9], [17] (also
known as corner-point abstraction). We can identify each
of these special solutions and use them to construct a
finite MDP. This MDP is often called interval Markov
decision process (IMDP); not to be confused with BMDP.
By model checking the IMDP, using established methods,
we obtain the desired result for the IMC.

Indeed, the algorithm presented in [13, Sec. IV-C]
actually can be interpreted as a symbolic adaption of the
standard model checking procedure for Rabin objectives
on the MDP, namely an adapted MEC decomposition to-
gether with a reachability query [1, Sec. 10.6.4]. Similar to
the methods presented in [17], their specialized algorithm
cleverly avoids explicit computation of the exponentially
large IMDP, achieving polynomial runtime.

Before we can extend these ideas to BMDP, we explain
some details of the basic feasible solutions, since they are
essential to our idea.

A. Basic feasible solutions
Given an IMC (S, s0, q∆, ∆̂, λ) and a state s ∈ S, we are

interested in the set of all successor distributions p ∈ D(S)
consistent with the constraints imposed by the IMC. In
particular, the following constraints have to be satisfied:

(I)
∑
s′∈S p(s′) = 1, and

(II) q∆(s, s′) ≤ p(s′) ≤ ∆̂(s, s′) for all s′ ∈ S.
Geometrically, Item I constrains the solution set to a
plane, while Item II bounds it in a box, as shown in
Fig. 2. Since each point in the solution corresponds to a
valid transition distribution and vice versa, we identify
solutions of the constraints with their corresponding
distributions. Observe that the resulting solution set

q0

q1

q2

q3

[0.0, 0.9]

[0.1, 0.4]

[0.3, 0.7]
(a) Example IMC

0
1

0
1

0

1

p(q1)p(q2)

p(q3)

(b) Visualized constraints.
Fig. 2. Visualization of the set of basic feasible solutions. The
left picture shows a state together with its transition constraints
in an IMC, the right picture depicts a geometric representation of
the inequalities induced by the interval constraints. The light grey
plane corresponds to the distribution constraints (Item I), while
the dashed box represents the interval constraints (Item II). Finally,
the dark grey area shows the set of consistent distributions and the
diamonds mark the basic feasible solutions.

(and the corresponding set of distributions) is convex
and any element of this set can be obtained by a convex
combination of the corner-points, which are the basic
feasible solutions.
There is one dimension per successor state and thus

at most exponentially many basic feasible solutions.
This set can be computed in exponential time using
standard theory of linear programs or simple geometric
computations. Due to lack of space we refer the reader
to, e.g., [17, Sec. 4] for further detail.

B. Solving BMDP
When solving Rabin objectives on BMDPs, we observe

one central problem: The set of end components depends
on the choice of intervals. For example, consider the
BMDP in Fig. 1a. This BMDP comprises only one MEC
containing all three states. However, depending on the
choice of probabilities, edges may be removed from the
underlying graph, as for example in the right MDP of
Fig. 1b. This MDP contains two MECs, namely ({q1}, {b})
as well as ({q2}, {d}).

In [13], a similar problem was encountered, as in IMC
the set of bottom strongly connected components can be
modified by the choice of intervals. The authors solved
the problem implicitly by considering states where the
Rabin objective is not satisfied as “leaky”, i.e. not part
of any strongly connected component.
In contrast to that, our general solution relies on

making the possible choices of the probabilities explicit.
We utilize the key observation that the non-determinism
induced by intervals essentially corresponds to adding a
player, who picks the probabilities for the intervals. Thus,
we reduce the BMDP to a stochastic game that can be
solved by known model checking methods. However, in the
next section we introduce a more sophisticated approach
inspired by the ideas of [13].

Intuitively, the reduction from BMDP to SG amounts
to replacing every action in the BMDP with an additional
state owned by the new player. In this state, the new
player can choose from the corresponding basic feasi-
ble solutions, allowing him to construct any consistent

q0 (q0, a)

q1(q1, b)

(q1, c)

q2(q2, d)

0
.5

0.
5 0.2

5

0.75

0.5

0.5

0.
5

0.5

Fig. 3. The stochastic game obtained from the BMDP in Fig. 1a
by the construction in the proof of Theorem 2. States owned by
the system are depicted by rectangles, while environment states
have rounded corners. For readability, we omit all action labels.
Furthermore, we omit action nodes for probability 1 transitions.

distribution over the successors. An example of this con-
struction is shown in Fig. 3, where the game constructed
from the BMDP in Fig. 1a is depicted. This new player
can play against the system (yielding qP) or cooperate
(yielding P̂).
Theorem 1 For every BMDP M, there exists an SG
G(M) such that
(i) P̂(M) = supπ1∈Π1 supπ2∈Π2 P

π1,π2
G(M) [ρ |= Acc], and

(ii) qP(M) = supπ1∈Π1 infπ2∈Π2 P
π1,π2
G(M) [ρ |= Acc]

Proof: Let M = (S, s0, A,Av, q∆, ∆̂, λ) be a BMDP.
In contrast to IMC, where we found the basic feasible
solutions for a state, in BMDP we have to consider state-
action pairs. Recall that we assumed that each action
belongs to a single state. Hence, each a ∈ A induces a set
of basic feasible solutions, given by the constraints q∆(s, a)
and ∆̂(s, a), where s is the unique state with a ∈ Av(s).
We denote this set by BFS(a), and it can be computed
as described in Section IV-A. Recall that any p ∈ BFS(a)
corresponds to a distribution over states.
The SG G(M) = (S′, s0, A

′,Av′,∆, Acc,O) is con-
structed from M as follows.
• S′ = S ∪ {(s, a) | s ∈ S ∧ a ∈ Av(s)},
• A′ = A ∪ {(a, p) | a ∈ A, p ∈ BFS(a)}, and
• O(s) = 1 if s ∈ S and 2 otherwise, i.e. all newly

introduced states (s, a) belong to the environment.
• For every old state s ∈ S we set

– Av′(s) = Av(s) and
– ∆(s, a, (s, a)) = 1 (and 0 for all other states) for

all actions a ∈ Av(s).
• For every new state (s, a) ∈ S′ \ S we set

– Av′((s, a)) = {(a, p) | p ∈ BFS(a)} and
– ∆((s, a), (a, p), s′) = p(s′) for all p ∈ BFS(a).

For any consistent MDP M ∈ M, there exists a policy
for the other player π2 inducing the transition function
of M, i.e. for all π1 ∈ Π1 we have Pπ1

M [ρ |= Acc] =
Pπ1,π2
G(M) [ρ |= Acc], and vice versa. This can be proven

completely analogously to the proof for IMC, see, e.g., [9,
Thm. 8]. Intuitively, randomizing over the BFS exactly
yields the set of valid distributions. This immediately
yields the desired equality.

Corollary 1 Positional policies suffice to achieve optimal
solutions in BMDP. Consequently, the uncertain and
antagonistic semantics are equivalent for the optima.

Proof: Positional policies are sufficient for Rabin
objectives in SG [8], and thus by the reduction of
Theorem 1 also for BMDP. Hence the best policy for
choosing the intervals is positional both for maximization
and minimization, and there is no benefit in switching.

Remark 2 This result relies on the fact that the objective
Acc is already part of the BMDP. See Appendix VII-C for
further discussion.

To solve ω-regular objectives for SGs, we use the strategy
improvement algorithm presented in [7] and the reach-
ability algorithm for MDPs from [1], which yields both
the maximum and minimum probability, as well as the
optimal controller. Given a BMDP M, our procedure
works as follows:
1) Lower bound:

a) Use [7, Alg. 2] to solve G(M) with the given Rabin
objective Acc. This yields the optimal player 1
policy π1, which induces an MDP Mπ1 . Note
that the actions of the system, the original non-
determinism of the BMDP, are fixed inMπ1 , and
the remaining non-determinism belongs to the
environment player choosing the intervals.

b) Compute the minimum reachability probability
with the algorithm from [1, Sec. 10.6.4], to obtain
the the value qP and the worst-case environment
policy π2 forMπ1 , and thus the worst-case instan-
tiation of the intervals.

2) Upper bound:
a) LetM(M) be the MDP obtained by assigning all

nodes in G(M) to player 1.
b) Use standard model checking procedures to obtain

the best policy π forM(M) and the value P̂; the
policy handles both the non-determinism of the
system and the instantiation of the intervals.

Theorem 2 This procedure correctly computes
1) qP(M), the optimal policy π1 to achieve it and the

worst-case MDP, and
2) P̂(M), and π, describing the best-case system con-

troller as well as the best choice of intervals.
It terminates in time exponential in the size of the G(M),
which in turn is exponential in the size of M.

Proof: The correctness follows directly from Theo-
rem 1 and the correctness of the the used algorithms [7,
Thm. 3], [1, Sec. 10.6.4]. The complexity is dominated
by the computation of the game G(M) and its solution
process. The SG is exponential in the size of the BMDP
(see Section IV-A) and the solution algorithm takes time
exponential in the size the game [7, Thm. 3].

Remark 3 We can immediately apply the presented
methods to “bounded-parameter stochastic games”, i.e.
stochastic games with transition probability intervals. In

particular, we do not need to introduce another player,
as the states added by the construction in the proof of
Theorem 1 can be assigned to one of the existing players –
player 1 in the uncertain and player 2 in the antagonistic
setting. Thus the system remains a stochastic game.
C. Improving computation of upper bounds

Note that for the computation of the upper bounds, we
did not make use of the second player, but instead only
introduced new states for the existing player, yielding
an exponentially large MDP. By adapting observations
from [13], we can improve on this algorithm by directly
analysing the MC and avoiding the explicit construction
of the SG, yielding a polynomial time algorithm for
computing the upper bound.

Intuitively, the improved procedure symbolically iden-
tifies for each Rabin pair in (F, I) ∈ Acc the winning
end components. It does so by computing MECs while
temporarily excluding states in F . After obtaining all
states that are in a winning end-component for some pair,
we compute the probability to reach any of these states.
The structure of this improved procedure is similar to
[13, Alg. 1], and relies on methods to compute the MEC
decomposition on a BMDP from [17] and the reachability
algorithm from [28].2

Given a BMDP M, our procedure works as follows:
1) For each Rabin pair (Fi, Ii) ∈ Acc:

a) Construct a modified copy Mi of M where all (s, q)
with q ∈ Fi absorbing, i.e. all outgoing transitions
are replaced with a self-loop.

b) Compute the MEC decomposition of the resulting
BMDP using [17, Alg. 3].

c) If a MEC (T,A) has a non-empty intersection with
Ii, then it is winning and all states T are added
to the set of winning states W .

2) Compute the maximal probability of reaching W ,
using the methods presented in, e.g., [28].

Theorem 3 This procedure correctly computes P̂(M) and
terminates in polynomial time.

Proof: By [17, Prop. 6], we get that the MEC
computation of a BMDP M through [17, Alg. 3] is correct,
i.e. the computed MECs correspond to the MECs of
G(M).The MECs identified as winning in Step 1b and
1c thus indeed are winning MECs in M(M), where
M(M) is as in Step 2a of the procedure of Section IV-B.
Consequently, we exactly identify the set of potentially
winning states. Finally, the correctness of the algorithms
used to compute the reachability in Step 2 yields the
overall correctness.
For the complexity, observe that each step requires

at most polynomial time ([17, Prop. 6] for Step 1b, [28,
Thm. 4.1] for Step 2) and there are only linearly many
Rabin pairs in Acc.
Remark 4 Note that in the setting of [13] a procedure
for computing the upper bound is sufficient, as the lower

2In [17] and [28], the authors refer to BMDP as “IMDP”.

q0 q1 q2

q3 q4 q5

r0

d0

l1

d1

r1

l2

d2

s3

l4

u4

r4

s5

[0.1, 0.5]

[0.3, 0.6][0
.3

, 0
.6

]

[0.1, 0.5]

[0.
3,

0.6
]

[0.3, 0.6][0
.4

, 1
.0

]

[0.0, 0.6]

Acc1 = { } Acc2 = { ∅ , }

Fig. 4. Graphic representation of our extension of the case study
from [13]. A robot navigates through a grid of six states according
to the BMDP, using the actions up, down, left, and right, where
enabled. For readability, all [1.0, 1.0] constraints are omitted and the
corresponding edges are drawn dashed. In our analysis, we consider
two different acceptance conditions Acc1 and Acc2.

TABLE I
Results for the BMDP in Fig. 4

qP P̂
Acc1 0.0 0.7
Acc2 0.4 0.7

bound can be computed as 1 minus the maximal probability
to satisfy the negation of the specification. However, this
idea is not applicable in the BMDP setting due to the
alternation of sup and inf in the definition of qP.

Remark 5 Our algorithm can easily be extended to use
generalized Rabin transition acceptance, allowing for
efficient practical implementation. See [6] for details.

V. Case Study
We extend the case study from [13], where an agent

moves on a coloured grid of six states. We added several
actions in each state, modelling a robot which navigates
the grid as depicted in Fig. 4. It can choose between going
down, up, left or right; it cannot leave the grid, e.g., in
q0 only down and right are available. The robot is pulled
towards the red states q3 and q5, e.g. when moving right
from q0 there is some chance to be pulled down onto q4
or even q3. The strength of the pulling force and hence
also the probability distribution over the successor states
is unknown and hence modelled by uncertainty intervals.
As a first example, we calculate the probability to

reach state q2 starting from q0. From q1 we can surely
reach q2 and from q3 and q5 there is no possibility of
reaching q2. From q4, it depends on the instantiation of
the BMDP. The probability to remain in q4 may equal
1, preventing the robot from reaching q2 when it is in q4.
On the other hand, we might have ∆(q4, u4, q1) = 0.6 and
q1 can almost surely be reached from q4. Consequently,
q2 can be reached from q4 with probability 1. Finally, the
best strategy in q0 is to go right, as otherwise the robot
is immediately stuck in q3. Together, this gives us a lower
bound of 0.1 and an upper bound of 0.7.
Now we consider the properties from [13], adjusted

to our setting as depicted in Fig. 4. The resulting
probabilities are given in Table I and explained below.

Acc1 corresponds to “The agent visits a green state
infinitely often while visiting red states finitely often”.
In the antagonistic interpretation, the probability of
satisfying this property is zero, since there is no MEC
containing q1. Intuitively, actions r0, d1 and l2 all have a
positive probability of moving to the bottom row, where
we may be forced to remain forever. For the upper bound,
observe that by setting ∆(q4, u4, q1) = 0.6 we obtain the
winning MEC ({q1, q4}, {d1, u4}), which can be reached
with probability 0.7.
Acc2 corresponds to “The agent visits a red state

infinitely often only if it visits a green state infinitely
often”. Observe that in this case both q4 and q1 are
winning in any consistent MDP, as playing actions d1
and u4 always leads to a winning path. In contrast to
Acc1, remaining in q4 is winning by the second pair of
Acc2, since only white states are visited. We thus get a
lower and upper bound of 0.4 and 0.7, respectively, by
computing the probability to reach q1 or q4.

VI. Conclusion
We have presented a solution to the open problem of

bounding the probabilities to satisfy an ω-regular property
on a bounded-parameter Markov systems. A different
perspective on previous approaches enabled us to solve
the problem by analysis of ω-regular stochastic games.
Future work includes applications of our approach to
more general settings such as MDPIP, as well as a
practical implementation. For the latter, we plan to apply
approaches based on learning and real-time dynamic
programming, see e.g. [15].

References
[1] Christel Baier and Joost-Pieter Katoen. Principles of model

checking. MIT Press, 2008.
[2] Anicet Bart, Benoît Delahaye, Didier Lime, Eric Monfroy, and

Charlotte Truchet. Reachability in parametric interval markov
chains using constraints. In QEST, pages 173–189, 2017.

[3] Michael Benedikt, Rastislav Lenhardt, and James Worrell. LTL
model checking of interval markov chains. In TACAS, pages
32–46, 2013.

[4] Olivier Buffet. Reachability analysis for uncertain ssps. In
ICTAI, pages 515–522, 2005.

[5] Souymodip Chakraborty and Joost-Pieter Katoen. Model
checking of open interval markov chains. In ASMTA, pages
30–42, 2015.

[6] Krishnendu Chatterjee, Andreas Gaiser, and Jan Kretínský.
Automata with generalized rabin pairs for probabilistic model
checking and LTL synthesis. In CAV, volume 8044 of LNCS,
pages 559–575. Springer, 2013.

[7] Krishnendu Chatterjee and Thomas A. Henzinger. Strategy
improvement for stochastic rabin and streett games. In
CONCUR, volume 4137 of LNCS, pages 375–389. Springer,
2006.

[8] Krishnendu Chatterjee and Thomas A. Henzinger. A survey of
stochastic ω-regular games. J. Comput. Syst. Sci., 78(2):394–
413, 2012.

[9] Krishnendu Chatterjee, Koushik Sen, and Thomas A. Hen-
zinger. Model-checking omega-regular properties of interval
markov chains. In FOSSACS, pages 302–317, 2008.

[10] Taolue Chen, Tingting Han, and Marta Z. Kwiatkowska. On
the complexity of model checking interval-valued discrete time
markov chains. Inf. Process. Lett., 113(7):210–216, 2013.

[11] Anne Condon. The complexity of stochastic games. Inf.
Comput., 96(2):203–224, 1992.

[12] Costas Courcoubetis and Mihalis Yannakakis. The complexity
of probabilistic verification. Journal of the ACM, 42(4):857–907,
July 1995.

[13] Maxence Dutreix and Samuel Coogan. Satisfiability bounds
for co-regular properties in interval-valued markov chains. In
CDC, pages 1047–1052, 2018.

[14] Javier Esparza, Jan Kretínský, and Salomon Sickert. One
theorem to rule them all: A unified translation of LTL into
ω-automata. In LICS, pages 384–393. ACM, 2018.

[15] Fernando L. Fussuma, Karina Valdivia Delgado, and
Leliane Nunes de Barros. B2rtdp: An efficient solution for
bounded-parameter markov decision process. In BRACIS,
pages 128–133, 2014.

[16] Robert Givan, Sonia M. Leach, and Thomas L. Dean. Bounded-
parameter markov decision processes. Artif. Intell., 122(1-2):71–
109, 2000.

[17] Serge Haddad and Benjamin Monmege. Interval iteration
algorithm for MDPs and IMDPs. Theor. Comput. Sci., 735:111–
131, 2018.

[18] Ernst Moritz Hahn, Vahid Hashemi, Holger Hermanns, Morteza
Lahijanian, and Andrea Turrini. Multi-objective robust strat-
egy synthesis for interval markov decision processes. In QEST,
pages 207–223, 2017.

[19] Vahid Hashemi, Holger Hermanns, and Andrea Turrini. Com-
positional reasoning for interval markov decision processes.
CoRR, abs/1607.08484, 2016.

[20] Cyrille Jégourel, Jingyi Wang, and Jun Sun. Importance
sampling of interval markov chains. In DSN, pages 303–313,
2018.

[21] Bengt Jonsson and Kim Guldstrand Larsen. Specification and
refinement of probabilistic processes. In LICS, pages 266–277,
1991.

[22] M. Kloetzer and C. Belta. A fully automated framework for
control of linear systems from temporal logic specifications.
IEEE Trans. Automat. Contr., 53(1):287–297, Feb 2008.

[23] Igor Kozine and Lev V. Utkin. Interval-valued finite markov
chains. Reliable Computing, 8(2):97–113, 2002.

[24] Jan Kretínský, Tobias Meggendorfer, Salomon Sickert, and
Christopher Ziegler. Rabinizer 4: From LTL to your favourite
deterministic automaton. In CAV (1), volume 10981 of LNCS,
pages 567–577. Springer, 2018.

[25] Morteza Lahijanian, Sean B. Andersson, and Calin Belta.
Formal verification and synthesis for discrete-time stochastic
systems. IEEE Trans. Automat. Contr., 60(8):2031–2045, 2015.

[26] Arnab Nilim and Laurent El Ghaoui. Robust control of
markov decision processes with uncertain transition matrices.
Operations Research, 53(5):780–798, 2005.

[27] Amir Pnueli. The temporal logic of programs. In FOCS, pages
46–57. IEEE Computer Society, 1977.

[28] Alberto Puggelli, Wenchao Li, Alberto L. Sangiovanni-
Vincentelli, and Sanjit A. Seshia. Polynomial-time verification
of PCTL properties of MDPs with convex uncertainties. In
CAV, pages 527–542, 2013.

[29] Martin L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons, Inc.,
New York, NY, USA, 1st edition, 1994.

[30] Vasumathi Raman, Alexandre Donzé, Mehdi Maasoumy,
Richard M. Murray, Alberto L. Sangiovanni-Vincentelli, and
Sanjit A. Seshia. Model predictive control with signal temporal
logic specifications. In CDC, pages 81–87. IEEE, 2014.

[31] Willy Arthur Silva Reis, Leliane Nunes de Barros, and Ka-
rina Valdivia Delgado. Robust topological policy iteration for
infinite horizon bounded markov decision processes. Int. J.
Approx. Reasoning, 105:287–304, 2019.

[32] Jay K. Satia and Roy E. Lave Jr. Markovian decision processes
with uncertain transition probabilities. Operations Research,
21(3):728–740, 1973.

[33] Koushik Sen, Mahesh Viswanathan, and Gul Agha. Model-
checking markov chains in the presence of uncertainties. In
TACAS, pages 394–410, 2006.

[34] Ambuj Tewari and Peter L. Bartlett. Bounded parameter
markov decision processes with average reward criterion. In
COLT, pages 263–277, 2007.

[35] J. G. THISTLE and W. M. WONHAM. Control problems in
a temporal logic framework. International Journal of Control,
44(4):943–976, 1986.

s0 s1z

x, y

y

x, z

Fig. 5. Example DRA with acceptance Acc = { s0 s1 , s1 s0 }.

[36] Wolfgang Thomas. Languages, automata, and logic. In
Grzegorz Rozenberg and Arto Salomaa, editors, Handbook of
Formal Languages, Volume 3: Beyond Words., pages 389–455.
Springer, 1997.

[37] Eric M. Wolff, Ufuk Topcu, and Richard M. Murray. Robust
control of uncertain markov decision processes with temporal
logic specifications. In CDC, pages 3372–3379, 2012.

[38] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M. Mur-
ray. Receding horizon control for temporal logic specifications.
In HSCC, pages 101–110. ACM, 2010.

[39] Di Wu and Xenofon D. Koutsoukos. Reachability analysis of
uncertain systems using bounded-parameter markov decision
processes. Artif. Intell., 172(8-9):945–954, 2008.

[40] B. Yordanov, J. Tumova, I. Cerna, J. Barnat, and C. Belta.
Temporal logic control of discrete-time piecewise affine systems.
IEEE Transactions on Automatic Control, 57(6):1491–1504,
June 2012.

VII. Appendix – The product construction
In this section, we briefly explain how linear objectives

usually are specified and how they are model checked
using the product construction. First, we define the
concept of ω-regular languages and automata. Fix a finite
alphabet Σ. Elements of Σω are called words and sets of
words L ⊆ Σω are called languages. Such a language is
ω-regular if it can be recognized by an automaton.

A. Automata & regular languages
Definition 4 A deterministic Rabin automaton (DRA)
is a tuple A = (Q,T, q0, Acc), where Q is a finite set of
states, T : Q×Σ→ Q is a transition function3, q0 ∈ Q is
an initial state, and Acc ⊆ 2Q×2Q is the Rabin condition.
An element (Fi, Ii) ∈ Acc is called Rabin pair. We assume
w.l.o.g. that Fi ∩ Ii = ∅.
Let A be a DRA and w ∈ Σω a word. A word w induces
a run, i.e. a sequence of states A(w) = q0q1q2 · · · ∈ Qω,
where qi+1 = T (qi, wi). As with MDP, let Inf(w) denote
the set of states occurring infinitely often on the run
A(w). A word is accepted by the automaton, denoted
w |= A, if there exists a Rabin pair (Fi, Ii) ∈ Acc with
Fi ∩ Inf(w) = ∅ and Ii ∩ Inf(w) 6= ∅. Such a Rabin pair
is called accepting for w.
A language L ⊆ Σω is called ω-regular if and only

if there exists a DRA A recognizing L, i.e. some word
w ∈ Σω is accepted by the automaton if and only if it is
in L. See Fig. 5 for an example of a DRA recognizing the
language “eventually only y or eventually only z”.

Remark 6 A wide variety of specifications are ω-regular.
For example, reachability and liveness constraints can
easily be translated to an automaton. Moreover, the whole
of linear temporal logic is expressible through Rabin
automata and efficient translations from LTL to Rabin
automata exist [14].

3Recall that the alphabet Σ is already fixed.

q0 q1 q2 q3

q4

x y x

z

y, z

x, z y,
z

x, y

x, y, z

(a) Example DRA with acceptance Acc = { q2 q0, q1 }

s0, x s2, zs1, y

[0.0, 1.0]

[0.0, 1.0]

[1.0, 1.0]

[1.0, 1.0]
(b) Example IMC.

Fig. 6. Uncertain/adversarial interval interpretations are not equal.

B. Labelled MDPs & product
For the product construction, we modify the definition

of MDPs by replacing the acceptance by a labelling
function λ : S → Σ, assigning to each state of the MDP
a letter. We are given such a labelled MDP and a Rabin
automaton. We construct the product by tracking both
the evolution of the MDP and the automaton, where the
automaton progresses based on the letter assigned to the
current state.
Definition 5 Let M = (S, s0, A,Av,∆, λ) be a labelled
MDP and A = (Q,T, q0, Acc) a Rabin automaton. The
productM⊗A = (S ×Q, (s0, q0), A,Av′,∆′, Acc′) is an
MDP where Av′((s, q)) := Av(s), ∆((s, q), a, (s′, q′)) :=
∆(s, a, s′) if q′ = T (q, λ(s)) and 0 otherwise, and Acc′ =
{(Fi × S, Ii × S) | (Fi, Ii) ∈ Acc}.
We analogously define this product construction for
BMDP. Observe that the product is now of the form
as we defined it in Definition 5. Applying our methods
to this product yields a solution for the original system.
C. Caveat
Since this construction modifies the state space, it is

not obvious how optimal policies on the product relate to
policies on the original MDP. Indeed, while a memoryless
policy may be optimal on the product, it might be the
case that finite memory is needed to behave optimally
in the given system. Moreover, it is the case that for ω-
regular objectives, the optimal values for the uncertainty
and the antagonistic interpretation are not equal already
for IMCs.
Fix the alphabet Σ = {x, y, z} and consider the lan-

guage L = {(xyxz)ω}, i.e. a language containing a single
word w which repeats the string xyxz indefinitely. This
language is regular and is recognized by the automaton
shown in Fig. 6a. Consider now the IMC in Fig. 6b.
Clearly, the probability of satisfying the property is
zero under the uncertainty interpretation – any MC
consistent with the IMC eventually violates the structure
of the property with probability 1. On the other hand,
interpreted as an IMDP, the transitions can be chosen
such that the required word is always produced.

F Approximating Values of
Generalized-Reachability Stochastic
Games (LICS 2020)

Copyright held by the authors. Permission to make digital or hard copies of part or all
of this work for personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Moreover, the ACM author rights page (https: //
authors. acm. org/ author-services/ author-rights , accessed 25.08.22) states: “Au-
thors can include partial or complete papers of their own (and no fee is expected) in a
dissertation as long as citations and DOI pointers to the Versions of Record in the ACM
Digital Library are included.”

This is an exact reprinting of the paper which has been published as a peer reviewed
conference paper.

Pranav Ashok, Krishnendu Chatterjee, Jan Kretinsky, Maximilian Weininger,
and Tobias Winkler. “Approximating Values of Generalized-Reachability
Stochastic Games”. In: LICS. ACM, 2020, pp. 102–115. doi: 10.1145/
3373718.3394761

Summary

Simple stochastic games are turn-based 2½-player games with a reachability objective. The
basic question asks whether one player can ensure reaching a given target with at least
a given probability. A natural extension is games with a conjunction of such conditions
as objective. Despite a plethora of recent results on the analysis of systems with multiple
objectives, the decidability of this basic problem remains open. In this paper, we present an
algorithm approximating the Pareto-frontier of the achievable values to a given precision.
Moreover, it is an anytime algorithm, meaning it can be stopped at any time returning the
current approximation and its error bound.

For more details on this publication, we refer to Chapter 5 of the main body.

271

https://authors.acm.org/author-services/author-rights
https://authors.acm.org/author-services/author-rights

F Approximating Values of Generalized-Reachability Stochastic Games (LICS 2020)

Contribution

Contribution of Maximilian Weininger

Development and conceptual design of the research project 40%
Discussion and development of ideas 45%
Composition and revision of the manuscript 70%
Proofs 70%

272

Approximating Values of Generalized-Reachability
Stochastic Games

Pranav Ashok
Technical University of Munich

Germany
ashok@in.tum.de

Krishnendu Chatterjee
IST Austria
Austria

Krishnendu.Chatterjee@ist.ac.at

Jan Křetínský
Technical University of Munich

Germany
jan.kretinsky@in.tum.de

Maximilian Weininger
Technical University of Munich

Germany
maxi.weininger@tum.de

Tobias Winkler
RWTH Aachen University

Germany
tobias.winkler@cs.rwth-aachen.de

Abstract
Simple stochastic games are turn-based 2½-player games with
a reachability objective. The basic question asks whether one
player can ensure reaching a given target with at least a given
probability. A natural extension is games with a conjunction
of such conditions as objective. Despite a plethora of recent
results on the analysis of systems with multiple objectives, the
decidability of this basic problem remains open. In this paper,
we present an algorithm approximating the Pareto frontier
of the achievable values to a given precision. Moreover, it is
an anytime algorithm, meaning it can be stopped at any time
returning the current approximation and its error bound.

CCS Concepts: • Theory of computation → Algorithmic
game theory; Verification by model checking; • Mathe-
matics of computing→ Probability and statistics.

Keywords: Stochastic games; Multiple Reachability Objec-
tives; Pareto frontier; Anytime algorithm

ACM Reference Format:
Pranav Ashok, Krishnendu Chatterjee, Jan Křetínský, Maximilian
Weininger, and Tobias Winkler. 2020. Approximating Values of Gen-
eralized-Reachability Stochastic Games. In Proceedings of the 35th
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS
’20), July 8–11, 2020, Saarbrücken, Germany. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3373718.3394761

1 Introduction
Simple stochastic games [27] are zero-sum turn-based sto-
chastic games (SG) with two players, which we call Maximizer

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).
LICS ’20, July 8–11, 2020, Saarbrücken, Germany
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7104-9/20/07.
https://doi.org/10.1145/3373718.3394761

and Minimizer. The objective of player Maximizer is to maxi-
mize the probability of reaching a given target set of states,
while player Minimizer aims at the opposite. The basic de-
cision problem is to determine whether there is a strategy
for Maximizer achieving at least a given probability thresh-
old. These games are interesting theoretically: the problem
is known to be in NP∩ co-NP, but whether it belongs to P is
a major and long-standing problem. Moreover, several other
important game problems such as parity games reduce to
it [17]. Besides, they are also practically relevant: they can
serve as a tool for synthesis with safety/co-safety objectives
in environments with stochastic uncertainty.

Multi-objective stochastic systems have attracted a lot
of attention recently, both SG and the special case with only
one player (Markov decision processes,MDP [43]). Theymodel
and enable optimization with respect to conflicting goals,
where a desired trade-off is to be considered. A natural multi-
dimensional generalization of the reachability threshold con-
straint P[^𝑇] ≥ 𝑡 is a conjunction

∧
𝑖 P[^𝑇𝑖] ≥ 𝑡𝑖 giving rise

to generalized-reachability (or multiple-reachability) stochastic
games, similar to e.g. generalized mean-payoff SG [8, 16]. The
problem is then to decide whether a given vector of thresh-
olds can be achieved by Maximizer. Note that these games
are not determined [23], and in this paper we consider the
lower-value (worst-case) problem formulation, i.e. finding a
strategy of Maximizer that can guarantee the vector no matter
what Minimizer does.

The main results established in the literature are as fol-
lows. For MDP, while generalized mean-payoff can be solved
in P [10, 15], generalized reachability is PSPACE-hard and
can be solved in exponential time [44]. For SG, generalized
mean-payoff has been solved for almost-sure conditions only
[8, 16] and approximation of the values for generalized mean-
payoff as well as generalized reachability are still open. The
generalized-reachability SG problem is only known to be de-
cidable for the subclass of stopping SGs with a 2-dimensional
objective [13] (an SG is stopping if under any strategies a
designated set of sinks is reached almost surely).

LICS ’20, July 8–11, 2020, Saarbrücken, Germany P. Ashok, K. Chatterjee, J. Křetínský, M. Weininger, T. Winkler

The main open question for generalized-reachability SG
is decidability. There are several important subgoals towards
this problem: From the decidability perspective, stopping SG
with more than 2-dimensional objectives, or general SG with
2- (or more) dimensional objectives have been open. More-
over, the same holds even for Y-approximability. From the
algorithmic perspective, [23] provides a converging sequence
of lower bounds on the Pareto frontier, i.e. the set of achievable
vectors that are pointwise-maximal (in other words, vectors
which cannot be improved in one dimension without sac-
rificing another one). It is open whether converging upper
bounds can also be computed. Since such bounds would imply
Y-approximability, this open question is the most imminent.

Our contribution in this paper is twofold. Firstly, we prove
the following theorem:

Theorem: The set of all achievable vectors in an ar-
bitrary (not necessarily stopping) SGwith generalized-
reachability objective of any dimension can be ef-
fectively approximated for any given precision Y.

Secondly, we provide a value-iteration algorithm that approx-
imates the Pareto frontier by giving converging lower and
upper bounds. Consequently, it becomes an anytime algorithm,
providing the current approximation and its error at each mo-
ment of the computation. Thus our first contribution resolves
the Y-approximability open question and our second contribu-
tion resolves the algorithmic open question; both results are
for arbitrary SG with generalized-reachability objectives of
any dimension.
Convergent upper bounds on the value are known to be

notoriously difficult to achieve. Until recently, the default en-
gine for analysis in the most used probabilistic model checker
PRISM [40] and PRISM-Games [22] used value iteration, e.g.
[43], which converges to the value from below, but because
of the used stopping criteria the results could be arbitrarily
wrong [35]. For a solutionwith a given precision, one could use
linear programming instead, which however, does not scale
well for MDP, and, more importantly, does not work at all for
SG [28]. For MDP, value iteration has been extended [11, 35]
so that it provides not only the under-approximating conver-
gent sequence, but also an over-approximating one, calling the
technique “bounded value iteration” (due to [41]) or “interval
iteration”, respectively. Its essence is to collapse maximal end
components (MECs) of the MDP, thereby not changing the
values; on MDP without MECs the over-approximating se-
quence converges to the actual value of the (collapsed as well
as original) MDP. This technique was further extended toMDP
with mean-payoff objective [2]. In contrast, for SG one cannot
collapse MECs since they account for non-trivial alternating
structure, as opposed toMDP,where any desired action exiting
the MEC can be taken almost surely. Therefore, a more com-
plex procedure has been proposed for SG [37]: Depending on
the current under-approximation, problematic parts of MECs
are dynamically identified and their over-approximation is

lowered to over-approximations of certain actions exiting the
MEC, as exemplified and explained later. We lift this proce-
dure to general dimensions. Note that we do not give any
convergence rate for our algorithm, because it is not possible
to extend the argument of the single-dimensional case [19] in
a straightforward manner. This argument requires the lowest
probability occurring in a play to be bounded. However, in the
multi-dimensional setting strategies may need infinite mem-
ory and hence there is no lower bound on the probability that
a strategy assigns to actions [24, Appendix B1, full version].
Giving bounds on the convergence is an interesting direction
of future work.
This paper combines and extends several techniques from

literature to obtain the corresponding result for the multi-
dimensional case:

• Firstly, we use the Bellman operator extended to down-
ward-closed sets (instead of just real values) [23], allow-
ing for value iteration in the multi-dimensional setting.
• Secondly, we exploit the technique of [37], which in
the single-dimensional setting repetitively identifies the
problematic parts of MECs hindering convergence.
• Thirdly, in order to apply this technique, we reduce the
multi-dimensional problem to a continuum of single-
dimensional problems, by splitting the Pareto front into
directions, similar to [33].
• Fourthly, we group the single-dimensional problems
into finitely many regions, similar in spirit to regions
of timed automata [1] since they are essentially given
by orderings of the approximate values of certain ac-
tions. Nevertheless, due to the projective geometry of
the problem, we need to work slightly more generally
with simplicial complexes, see e.g. [36].

Themain technical difficulty is to identify (i) the parts of MECs
with an unjustified too high upper bound and (ii) the value to
which it should be decreased in each step. Both of these depend
on the desired trade-off between the targets. As we compute
the whole set of achievable vectors, we need to consider all
possible trade-offs, which are, moreover, uncountably many.

Related work. Already for a decade, MDP have been ex-
tensively studied in the setting of multiple objectives. Mul-
tiple objectives have been considered both qualitative, such
as reachability and LTL [30], as well as quantitative, such
as mean payoff [10, 15], discounted sum [18], or total re-
ward [32]. The expectation has been combined with variance
in [12]. Beside expectation queries, conjunctions of percentile
(threshold) queries have been considered for various objec-
tives [10, 21, 31, 45]. Further, for general Boolean combinations
for Markov chains with total reward, [34] approximates the
value, while computability is still open. In contrast, [47] shows
that Boolean combinations over mean payoff games become
quickly undecidable. For the specifics of the two-dimensional
case and the interplay of the two objectives, see [4]. The usage

Approximating Values of Generalized-Reachability Stochastic Games LICS ’20, July 8–11, 2020, Saarbrücken, Germany

of the multi-dimensional setting is discussed in [5, 6], compar-
ing multiple rewards and quantiles and reporting how they
have practically been applied and found useful by domain
experts.
More recently, SG have been also analyzed with multiple

objectives; [46] provides an overview and implementation of
existing algorithms for Pareto frontier computation for multi-
objective total reward, reachability, and probabilistic LTL prop-
erties as well as mixtures thereof. However, the computation
is limited to stopping SGs, i.e. ones without end components
Multiple mean-payoff objective was first examined in [8]

and both the qualitative and the quantitative problems are
coNP-complete [16]. Although Boolean combinations of mean-
payoff are undecidable in general [47], in certain subclasses
of SG they can be approximated [9]. Boolean combinations
of total-reward objectives were approximated in the case of
stopping games [23] and applied to autonomous driving [25],
where LTL is reduced to total reward in the case of stopping
games and, for dimension two, the problem is shown decidable
in [13].

PRISM-Games [38] provides tool support for several multi-
player multi-objective settings [39]. Other tools supporting
multi-player settings, GAVS+ [26] and GIST [20], are not main-
tained any more and are limited to single-objective settings.

In many settings, Pareto frontiers can be Y-approximated in
polynomial time [42]. Pareto frontiers are constructed for the
generalizedmean-payoff objective for 2-player (non-stochastic)
games in [14], MDPs in [10, 21], and SGs in [9]. For the genera-
lized-reachability, the Pareto frontier is approximated forMDP
in [30], but for SG the Pareto frontier is not even known to be
given by finitely many points, except for dimension two [13].
In contrast, in the single-dimensional case, the value is known
to be a multiple of a denominator that can be calculated from
the syntactic description of the game [19].
Structure of the paper After recalling the basic notions

in Section 2, we illustrate the problem, the difficulties and
our solution on examples in Section 3. The algorithm is de-
scribed and the correctness intuitively explained in Section 4
and formally proven in Section 5. The proofs of several tech-
nical statements are, for the sake of readability, relayed to [3,
Appendix]. We conclude in Section 6.

2 Preliminaries
2.1 Stochastic Games
A probability distribution on a finite set 𝑋 is a mapping 𝛿 :
𝑋 → [0, 1], such that∑𝑥 ∈𝑋 𝛿 (𝑥) = 1. The set of all probability
distributions on 𝑋 is denoted by D(𝑋). Given a dimension
𝑛 ∈ N, often implicitly clear from context, and 𝑐 ∈ R, we
let ®𝑐 denote the 𝑛-dimensional vector with all components
equal to 𝑐 . For a vector ®𝑣 , its 𝑖-th component is denoted ®𝑣𝑖 . We
compare vectors component-wise, i.e. ®𝑢 ≤ ®𝑣 if ®𝑢𝑖 ≤ ®𝑣𝑖 for all
𝑖 . In this paper, we restrict ourselves to non-negative vectors,
i.e. elements of R𝑛≥0

Now we define turn-based two-player stochastic games. As
opposed to the notation of e.g. [27], we do not have special
stochastic nodes, but rather a probabilistic transition function.

Definition 2.1 (SG). A stochastic game (SG) is a tuple (S, S�,
S⃝, s0,A,Av, 𝛿), where S is a finite set of states partitioned
into the sets S� and S⃝ of states of the player Maximizer
and Minimizer, respectively, s0 ∈ S is the initial state, A is a
finite set of actions, Av : S → 2A assigns to every state a set
of available actions, and 𝛿 : S × A → D (

S
)
is a transition

function that given a state s and an action a ∈ Av (s) yields a
probability distribution over successor states.

A Markov decision process (MDP) is then a special case of
SG where S⃝ = ∅. We assume that SG are non-blocking, so
for all states s we have Av (s) ≠ ∅.
For a state s and an available action a ∈ Av (s), we denote

the set of successors by Post (s, a) := {s′ | 𝛿 (s, a, s′) > 0}. We
say a state-action pair (s, a) is an exit of a set of states𝑇 , writ-
ten (s, a) exits𝑇 , if ∃𝑡 ∈ Post (s, a) : 𝑡 ∉ 𝑇 , i.e., if with some
probability a successor outside of 𝑇 could be chosen. Further,
we use Exits(𝑇) = {(s, a) | s ∈ 𝑇, a ∈ Av (s), (s, a) exits𝑇 }
to denote all exits of a state set 𝑇 ⊆ S . Finally, for any set of
states 𝑇 ⊆ S , we use 𝑇� and 𝑇⃝ to denote the states of 𝑇 that
belong to Maximizer and Minimizer, whose states are drawn
in the figures as � and ⃝, respectively.

The semantics of SG is given in the usual way by means of
strategies and the induced Markov chain [7] and its respective
probability space, as follows. An infinite path 𝜌 is an infinite
sequence 𝜌 = s0a0s1a1 · · · ∈ (S × A)𝜔 , such that for every
𝑖 ∈ N, a𝑖 ∈ Av (s𝑖) and s𝑖+1 ∈ Post (s𝑖 , a𝑖). Finite paths are
defined analogously as elements of (S × A)∗ × S . A strategy
of Maximizer or Minimizer is a function 𝜎 : (S × A)∗ × S� →
D (

A
)
or (S × A)∗ × S⃝ → D (

A
)
, respectively, such that

𝜎 (𝜌s) ∈ D (
Av (s)) for all s. We call a strategy deterministic if it

maps to Dirac distributions only; otherwise, it is randomizing.
A pair (𝜎, 𝜏) of strategies of Maximizer and Minimizer induces
an (infinite state) Markov chainG𝜎,𝜏 with finite paths as states,
s0 being initial, and the transition function 𝛿 (ws,wsas′) =
𝜎 (ws) (a) · 𝛿 (s, a, s′) for states of Maximizer and analogously
for states ofMinimizer, with𝜎 replaced by𝜏 . TheMarkov chain
induces a unique probability distribution P𝜎,𝜏 over measurable
sets of infinite paths [7, Ch. 10] (the usual index with the initial
state is not used since it is fixed already in the game).

2.2 End Components
Now we recall a fundamental tool for analysis of MDP called
end components. An end component of a SG is then defined as
the end component of the underlying MDP with both players
unified.

Definition 2.2 (EC). A non-empty set 𝑇 ⊆ S of states is an
end component (EC) if there is a non-empty set𝐵 ⊆ ⋃

s∈𝑇 Av (𝑠)
of actions such that

1. for each s ∈ 𝑇, a ∈ 𝐵 ∩Av (s), we have (s, a) ∉ Exits(𝑇),

LICS ’20, July 8–11, 2020, Saarbrücken, Germany P. Ashok, K. Chatterjee, J. Křetínský, M. Weininger, T. Winkler

2. for each s, s′ ∈ 𝑇 there is a finite path w = sa0 . . . a𝑛s
′ ∈

(𝑇 × 𝐵)∗ ×𝑇 , i.e. the path stays inside 𝑇 and only uses
actions in 𝐵.

Intuitively, ECs correspond to bottom strongly connected
components of the Markov chains induced by possible strate-
gies. Hence for some pair of strategies all possible paths start-
ing in an EC remain there. An EC 𝑇 is a maximal end compo-
nent (MEC) if there is no other end component 𝑇 ′ such that
𝑇 ⊆ 𝑇 ′. Given an SG G, the set of its MECs is denoted by
MEC(G) and can be computed in polynomial time [29].

2.3 Generalized Reachability
For a set 𝑇 ⊆ S , we write ^𝑇 := {s0a0s1a1 · · · ∈ (S × A)𝜔 |
∃𝑖 ∈ N : s𝑖 ∈ 𝑇 } to denote the (measurable) set of all paths
which eventually reach 𝑇 . A generalized-reachability objective
(of dimension 𝑛) is an 𝑛-tuple T = (𝑇1, . . . ,𝑇𝑛) of state sets
𝑇𝑖 ⊆ S . A vector ®𝑣 (of dimension 𝑛) is achievable if there is
a strategy 𝜎 of Maximizer such that for all strategies 𝜏 of
Minimizer

∀𝑖 ∈ {1, . . . , 𝑛} P𝜎,𝜏 (^𝑇𝑖) ≥ ®𝑣𝑖
Note that, since these games are not determined [23], this
corresponds to the lower value, i.e. the worst case analysis.
For a given state s, the set of points achievable from s,

meaning in a game where the initial state is set to s, is denoted
𝔄T (𝑠) or just 𝔄(𝑠) when T is clear from context.

2.4 Basic Geometry Notation and Pareto Frontiers
In order to consider convex combinations of sets, we define
scaling of a set 𝑋 ⊆ R𝑛 by a constant 𝑐 ∈ [0, 1] as 𝑐 · 𝑋 =
{𝑐 · 𝑥 | 𝑥 ∈ 𝑋 }, and the Minkowski sum of sets 𝑋 and 𝑌 as
𝑋 + 𝑌 = {𝑥 + 𝑦 | 𝑥 ∈ 𝑋,𝑦 ∈ 𝑌 }. The convex hull of a set
𝑋 is denoted by 𝑐𝑜𝑛𝑣 (𝑋) = {∑𝑘

𝑖=1 𝑎𝑖𝑥𝑖 | 𝑘 ≥ 1, 𝑥𝑖 ∈ 𝑋, 𝑎𝑖 ≥
0,
∑𝑘

𝑖=1 𝑎𝑖 = 1}.
A downward closure of a set 𝑋 of vectors is dwc(𝑋) := {𝑦 |
∃𝑥 ∈ 𝑋 : 𝑦 ≤ 𝑥}. A set 𝑋 is downward closed if 𝑋 = dwc(𝑋).
The set 𝔄 of achievable points is clearly downward closed.

It will be convenient to use a few basic notions of projective
geometry, which we now recall. Intuitively, a direction is a
ray from the origin ®0 into the (𝑛-dimensional) first quadrant.
As such, we may represent it with any vector ®𝑣 ≠ ®0 on that
ray. Then all vectors _ · ®𝑣 for any _ ∈ R>0 are equivalent
and represent the same direction. For instance, direction d =
[(1, 0, 0)] denotes the 𝑥-axis and it is equal to [(_, 0, 0)] for any
_ > 0. Formally, a direction d = [®𝑣] is the set {_ · ®𝑣 | _ ∈ R>0}.
We denote byD = {[®𝑣] | ®𝑣 ∈ dwc({®1})} the set of all directions
(in the first quadrant).

Given a set 𝑋 of points and a direction d, 𝑋 evaluated in
direction d is the (Euclidean) length of the vector from the
origin to the farthermost intersection of 𝑋 and d, denoted

𝑋 [d] := sup{| | ®𝑥 | | | ®𝑥 ∈ 𝑋, d = [®𝑥]}
with the usual sup ∅ = 0. Fig. 1 illustrates an evaluation of a
direction on an achievable set. Intuitively, it describes what is

d
𝑋

1

1

Figure 1. Example showing a Pareto frontier of a set 𝑋 , a direction
d, and the point of intersection of d with the frontier, depicted as
in distance 𝑋 [d] from the origin.

achievable if we prefer the dimensions in the “ratio” given by
d. Another example is the whole set (blue and red) of Fig. 4a:
evaluated in [(1, 1)] it yields √2/2.

Given a downward closed set 𝑋 , its Pareto frontier is the set
of farthermost points in each direction:

𝔓(𝑋) = {®𝑥 | d ∈ D, d = [®𝑥], 𝑋 [d] = | | ®𝑥 | |}
The Pareto frontier of a state s is the Pareto frontier of the set
achievable in s, i.e. 𝔓(s) := 𝔓(𝔄(s)). The Pareto set of the
game is 𝔓 := 𝔓(s0). Thus by definition, 𝔓 = 𝔓(𝔄(s0)) and,
further, dwc(𝔓) is (the closure of) 𝔄(s0).1 Note that it is not
known whether 𝔄 is closed, since it is not known whether the
suprema of achievable points are also achievable. Our notion
of𝔓 includes these suprema, which is why it is only equal to
the closure of 𝔄.

2.5 Problem Formulation
In this paper, we are interested in Y-approximating𝔓. In terms
of under- and over-approximation:

Given an SG, generalized-reachability objective T , and
precision Y > 0, the task is to construct sets L,U ⊆ R |T |
such that for each direction d ∈ D, L[d] and U[d] are
effectively computable and we have
L[d] ≤ 𝔓[d] ≤ U[d] and U[d] − L[d] < Y .

2.6 Multi-dimensional and Bounded Value Iteration
In this section we recall two extensions of the standard value
iteration: a generalization formulti-dimensional objectives and
a “bounded” one with an over-approximating sequence. Firstly,
the multi-dimensional Bellman operator for reachability, e.g.
[23],

𝔅 :
(
S → 2[0,1]𝑛

) → (
S → 2[0,1]𝑛

)
works with sets 𝑋 (s) of points achievable in s rather than
single points:

1Our notion of Pareto frontier captures the whole surface in the first quadrant.
Other definitions such as 𝔓T = {®𝑣 | ®𝑣 is achievable ∧ ∀ achievable ®𝑢 :
®𝑢 ≯ ®𝑣 } only capture the Pareto optimal points. For example, if the set of
achievable points in the three-dimensional space is the whole unit cube then
our definition returns its three sides, while the other definition returns only
the singleton with the Pareto optimal point (1, 1, 1) .

Approximating Values of Generalized-Reachability Stochastic Games LICS ’20, July 8–11, 2020, Saarbrücken, Germany

𝔅(𝑋) (s) =
{ ⋂

𝑎∈Av (s) 𝑋 (s, a) if s ∈ S⃝
𝑐𝑜𝑛𝑣 (⋃𝑎∈Av (s) 𝑋 (s, a)) if s ∈ S�

where we define

𝑋 (s, a) = ©«
dwc({1T (s)}) +

∑
s′∈S

𝛿 (s, a, s′) · 𝑋 (s′)ª®¬
∩ 1

and 1T is the indicator vector function of target sets, i.e.
1T (s)𝑖 equals 1 if s ∈ 𝑇𝑖 and 0 otherwise, and 1 = dwc({®1}) is
the unit box.

Intuitively, the operator works as follows. Given what can
be achieved from s using now an action a, we can compute
the value for the minimizing state as the intersection over
all actions since these points are achievable no matter what
Minimizer does. For maximizing states, if there exists an action
achieving a point then Maximizer can achieve it from here;
moreover, we compute the convex hull since Maximizer can
also randomize and, as opposed to the minimizing case with
intersection, union of convex sets need not be convex. Once
we have dealt with decision making on the first line, it remains
to determine what can be achieved by each decision, on the
second line. The achievable values are given by the weighted
average of the successors’ values, but additionally, the base
case of targets must be handled. Namely, whenever a state is in
a target set, all values up to 1 in that dimension are achievable
(but not greater than 1).

This also gives rise to an algorithm approximating𝔄 , which
is the least fixpoint of 𝔅 [23]. We initialize L : S → 2[0,1]𝑛

to return {®0} everywhere and iteratively apply the Bellman
operator, yielding arbitrarily precise approximations of 𝔄 by
𝔅𝑘 (L) as 𝑘 → ∞ [23]2. Moreover, for every state 𝑠 it can be
checked that the set 𝔅𝑘 (L) (𝑠) is presented at each step 𝑘 as a
closed downward-closed convex polyhedron, i.e. a finite object.
Thus we can effectively construct any desired approximation.

However, it is not known how to bound the difference of
the actual achievable set 𝔄 and the approximation after 𝑘
iterations. For that reason, [37] introduced for the single-
dimensional case the bounded value iteration (named along the
tradition of [41]), a way to compute also an over-approximating
sequence. If we initialize U to return dwc({®1}) everywhere3,
then lim𝑘→∞𝔅𝑘 (U) is a fixpoint, which is generally different
from the least one. Hence [37] modifies 𝔅 so that it has a sin-
gle fixpoint equal to the least one of the original𝔅. Then both
the sequence of lower bounds and of upper bounds converge
to 𝔄, the value of the game. The modification is demonstrated

2Precisely, lim𝑘→∞𝔅𝑘 (L) ⊆ 𝔄 ⊆ dwc (𝔓) = clos(lim𝑘→∞𝔅𝑘 (L)) where
clos is the standard closure in R𝑛 .
3The same holds even if we initialize to 0 all the dimensions 𝑖 in states from
which there is no path to𝑇𝑖 , as is customary in MDP analysis. The solution
of [37] is not sensitive to this and does not require this special treatment in
the initialization of U.

p

q

r

𝛼

𝛽

𝛾

a

b

c

d

e

f

g

Figure 2. An example demonstrating the complications arising in
an end component.

in the next section, where we also illustrate the main ideas
how to cope with the multi-dimensional case.

3 Example
In this section, we illustrate the issues preventing convergence
of the upper bounds, as well as the solution of [37] and our
extension of it. Value iteration converges if the SG is stopping,
i.e. if the game reaches a designated sink with probability 1,
or equivalently, if there are no end components (ECs). Hence
the difficulty in solving reachability SG is rooted in ECs, as it
is possible to cycle in its states infinitely long. As a running
example, consider the EC in Fig. 2 with states p, q, r and actions
a, . . . , g. The symbols 𝛼 , 𝛽 and 𝛾 are placeholders; in the single
dimensional case, they represent a real number; in the multi
dimensional case, a Pareto frontier. One can make this game
a standard SG in the single dimensional case by, for example,
replacing 𝛼 with a transition that reaches the target with
probability 𝛼 and the sink with probability 1 − 𝛼 . The multi-
dimensional case is a straightforward extension.
We start by considering the single-reachability objective.

The standard Bellman update procedure as described in Sec-
tion 2.6 reduces to the following equations, where intersec-
tions become minima and unions become maxima. We write
U
𝑘
as short for 𝔅𝑘 (U).

U𝑖+1 (p) = min {U𝑖 (q),U𝑖 (r), 𝛾}
U𝑖+1 (q) = max {U𝑖 (p), 𝛼}
U𝑖+1 (r) = max {U𝑖 (p), 𝛽}

By replacing U with L, we get the update equations for the
lower bound. Recall that we initialize L0 to return 0 every-
where and U0 to return 1 everywhere.

3.1 MDP
Firstly, let us briefly mention the solution of [11, 35] for MDP.
Suppose that all states belonged to the maximizing player,
i.e. p was also maximizing. Then, the initialization U0 = ®1 is
already a fixpoint, although the true value of all three states
ismax{𝛼, 𝛽,𝛾}. Intuitively, the reason for this is that the equa-
tions create a cyclic dependency: the process of finding the
value by “asking neighbours” is not well-founded and all states

LICS ’20, July 8–11, 2020, Saarbrücken, Germany P. Ashok, K. Chatterjee, J. Křetínský, M. Weininger, T. Winkler

falsely believe that they can achieve the higher value 1. [37]
calls such an EC bloated, having an unjustifiably large (bloated)
upper bound. The solution of [11, 35] is to detect that this is
an EC and collapse it into a single state, eliminating the cycle.
Only outgoing actions 𝛼, 𝛽,𝛾 of the EC are kept, and in the
next iteration, the Bellman operator correctly sets the value
of the collapsed state to max{𝛼, 𝛽,𝛾}, thus converging to the
true value. The solution of [37] captures this idea from a dif-
ferent perspective: It does not change the underlying graph,
but instead realizes that all three states can reach the “best
exit” of the EC, i.e. the state with an action exiting the EC
and having the highest value. Then the algorithm reduces the
upper bounds of the states of the EC to that of the best exit.
This is called deflating, as the “internal higher pressure” of
bloated upper bounds is “relieved”, equalizing with the best
exit.

3.2 Single-reachability SG
Secondly, for single-reachability SG, the EC cannot in general
be collapsed, since the values of the states differ, and it is not
clear a priori which states share a value. They depend on the
ordering of the values of the exits, i.e. on the ordering of 𝛼 , 𝛽
and 𝛾 .
Case 1: If 𝛾 < min(𝛼, 𝛽), then after the first iteration we

have U1 (p) = 𝛾 , U1 (q) = 1 and U1 (r) = 1. After the next
iteration, U2 (p) = 𝛾 , U2 (q) = 𝛼 and U2 (r) = 𝛽 . These are the
true values, as observable in Figure 2. In this caseU

𝑘
converges

to the value. However, note that the values of the states in the
same EC are different.
Case 2: If 𝛾 ≥ min(𝛼, 𝛽), and say 𝛼 > 𝛽 , then the values of

p and r are 𝛽 and that of q is 𝛼 . This is the case, because p will
always play action c, not allowing state r to achieve anything
but the smallest value 𝛽 . However, U

𝑘
does not converge to

these values. In the first iteration, U1 (p) = 𝛾 , U1 (q) = 1 and
U1 (r) = 1. After the next iteration,U2 (p) = U2 (q) = U2 (r) = 𝛾 .
After this, the upper bounds do not change any more, because
we have the problem of cyclic dependencies as described in
Section 3.1. If we fix the strategy of the Minimizer to c as that
is the best choice, only {p, r} forms an EC. The value of both
p and r is 𝛽 , as that is the best exit that the Maximizer can
achieve, given that Minimizer does not play the suboptimal
action a. Such an EC where all states share the same value is
called simple end component (SEC) [37]. It is simple, because
after fixing the strategy of Minimizer to be optimal, this player
cannot influence the play anymore (as the SG locally becomes
an MDP). In the SEC, Maximizer can direct the play to the
best exit and almost surely achieve the value of it. Deflating
the SEC {p, r}, i.e. setting the upper bound for all states in the
SEC to that of the best exit, correctly updates the bounds to 𝛽 .
Afterwards, the upper bound of q is correctly set to 𝛼 in the
next iteration. So one would like to find and deflate all SECs.

However, which states form a SEC depends on the relative
ordering of the exits’ values and the corresponding choices
that Minimizer makes (recall we had to fix the strategy of p

0.9

0.5

(0.5, 0.9)

0.5

0.9

(0.9, 0.5)
(0.5, 0.9)

(0.9, 0.5)

1

1

Figure 3. Pareto frontiers of 𝛼 (left), 𝛽 (center) and 𝛾 (right) in a 2-
objective setting. X-axis represents the value along the first objective
and Y-axis represents the value along the second objective.

d1

d2

d3

0.9

0.5

0.5

0.9

(a)

0.5

0.5

(b)

Figure 4. (a) Visualizing the regions for state p; and (b) the result of
deflating.

to the optimal action 𝑐 in order to realize which states form
the SEC). Indeed, in the case with 𝛼 < 𝛽 , a different SEC
({p, q}) should be deflated and if 𝛼 = 𝛽 then all three states
form a SEC. Since we do not know the values of the exits,
the algorithm uses the approximations (L𝑖) to guess which
actions are suboptimal for the Minimizer, and hence which
states form a SEC. As the lower approximation converges to
the value, the true SECs are eventually detected and correctly
deflated. However, when L𝑖 is not yet close enough to the
value, the computation of SECs can be wrong, e.g. if 𝛼 < 𝛽 ,
but for the first few iterations of the algorithm the lower
bound on 𝛽 is smaller than that on 𝛼 . Then, for these first
iterations, the algorithm believes {p, r} to be the SEC, and
only afterwards realizes that it actually is {p, q}. Hence, the
operation we perform on the SEC has to be conservative, i.e.
sound even if it is given a set of states that actually do not
form a SEC. This is why deflating was introduced, as it is
sound for any EC, even ones that are not SECs [37, Lemma 3].
In contrast, modifying the underlying graph by collapsing as
in [11, 35] would commit to the detected SEC-candidate and
thereby possibly make the wrong choice. Note that we never
know that we have correctly detected a SEC, we just know
that in the limit we will eventually detect it.

3.3 Generalized-reachability SG
Here we intuitively describe and illustrate the main elements
of our solution. The formal definitions of the key concepts
only follow in the next section.

Approximating Values of Generalized-Reachability Stochastic Games LICS ’20, July 8–11, 2020, Saarbrücken, Germany

Regions. Consider again the example of Fig. 2. In the multi-
dimensional case, instead of 𝛼, 𝛽 and 𝛾 being reals, they are
sets of achievable vectors. Let them be given as in Fig. 3, so
e.g. 𝛼 = dwc({(0.5, 0.9)}). Here 𝛾 gives the highest values, so
it is the best one for Maximizer, and hence Minimizer will not
play the corresponding e (as in Case 2 in Section 3.2). 𝛼 and
𝛽 , however, cannot be compared. Depending on the trade-off
(corresponding to a direction) thatMaximizerwants to achieve,
𝛼 or 𝛽 might be better than the other. To this end, let d be the
direction in which Maximizer wants to maximize. Depending
on d, Minimizer’s behaviour changes. If the objective along
the x-axis is more important, then Minimizer chooses action
a. This way, the value of the more important objective is
restricted to 0.5. If on the other hand, the objective along y-
axis is more important, then the Minimizer chooses action c.
The Minimizer, for each direction d, decides on the action to
be chosen by comparing 𝛼 and 𝛽 evaluated in that direction;
in other words, by computing the minimum of 𝛼 [d] and 𝛽 [d].
Our algorithm identifies finitely many regions where the

Minimizer has the same preference ordering over actions and
then we deflate each region separately. In our example, we
can identify three regions, as shown in Fig. 4a. Between the
directions d1 and d2 (red region), Minimizer’s best choice
is action 𝑐; between d2 and d3 (blue region), Minimizer’s
best choice is action 𝑎; and along d2 (grey line), Minimizer
is indifferent.

Deflating regional SECs. Once restricting to a region fixes
the preference ordering over Minimizer’s actions, we can pro-
ceed as in the single-dimensional case: We fix Minimizer’s
optimal strategy based on the lower bounds, identify SEC-
candidates and deflate them. That means we update the Pareto
frontier in the region to that of the best exit from the SEC. The
whole Pareto frontier is constructed piece by piece, region by
region.
Returning to our running example, we have already iden-

tified the three regions in the Pareto frontier for state p in
Figure 4a. The SECs depending on the regions are as follows:
In the blue region it is {p, q}, in the red region it is {p, r},
and along d2 all three states form a SEC. Deflating the blue
region, we see that the best exit from the SEC has value 𝛼 , so
between 0° and 45° the value of p is set to the corresponding
part of 𝛼 . Doing the same for the other two regions results in
the Pareto frontier depicted in Figure 4b. This result is also
intuitively expected, as depending on which direction Maxi-
mizer prefers, Minimizer can always restrict the play to the
other exit. Note that for the sake of example here we always
talked about the true values, while the algorithm does not
know these precisely. Therefore, deflating cannot update the
values based on the value of 𝛼 , but only on its approximation.
Being on the safe side, the values will be decreased only to its
over-approximation.

[0, 1, 0] [1, 0, 0]

[0, 0, 1]

[0, 1, 0] [1, 0, 0]

[0, 0, 1]

[0, 1, 0] [1, 0, 0]

[0, 0, 1]

Figure 5. The left column shows Pareto frontiers; there is the blue
tetrahedon and a pink box of varying size. The right column shows
the projection of the intersection onto the projective hyperplane.

Figure 6. Triangulation of the top right of Fig. 5

Computing and representing regions. As explained above,
a region depends on the preference ordering of actions. To
compute regions where this ordering is constant, we use geo-
metric methods. In the example of Fig. 4a, the point where
the preference ordering changes is (0.5, 0.5), which is where
the two Pareto frontiers intersect. So, intuitively, by drawing
the Pareto frontiers and finding the points of intersection, we
can identify the regions (sets of the corresponding directions)
where the preference ordering over actions is constant.

In Figure 5, we give a set of three examples to illustrate
the construction of regions. The left picture in each row of
the figure shows two Pareto frontiers: One is the blue tetra-
hedron, generated by Maximizer’s free, but exclusive choice
between target sets. The other is a red box of different sizes,
generated by the possibility to reach a state in all target sets
with a given probability. From top to bottom, we increase this

LICS ’20, July 8–11, 2020, Saarbrücken, Germany P. Ashok, K. Chatterjee, J. Křetínský, M. Weininger, T. Winkler

1
0.5 1 1.5

0.5

1

(a) Three sets of
achievable points

[(1,0,0)][(0,1,0)]

[(0,0,1)]

[(0.5,0,0.5)]

(b) Projection of the
intersections

(c) Convex regions as
a simplicial complex

Figure 7. Projections of intersections of Pareto frontiers to the pro-
jection plane, which in 3D is the triangle formed by the points (1, 0, 0),
(0, 1, 0) and (0, 0, 1). In Fig. 7b, labels represent directions and not
individual vectors.

probability, thereby increasing the size of the box, yielding
three different examples. We define regions as sets of direc-
tions. In order to draw directions, it is useful to consider the
so-called projective hyperplane. It is the set of all directions
and can be drawn (in our case with non-negative vectors only)
as a triangle with corners [1, 0, 0], [0, 1, 0], [0, 0, 1], capturing
all directions. When a point (vector) ®𝑣 is projected into its
direction [®𝑣], it intuitively corresponds to drawing a ray from
the origin through the point ®𝑣 . If we identify the projective
hyperplane with the hyperplane passing through the points
(1, 0, 0), (0, 1, 0) and (0, 0, 1) (or more precisely with this trian-
gle) then the intersection of the ray and the hyperplane, say
point ®𝑝𝑣 , is the projection of ®𝑣 to the projective hyperplane. In
our example, the right side of the figure shows the projection
of the intersection of the Pareto frontiers onto the projective
hyperplane. This gives rise to three regions, each with differ-
ent preference ordering: the inner open triangle, its boundary
and the outer triangle with the hole. Minimizer prefers the
red action in the outside triangle, the blue one in the inside
triangle, and is indifferent on the boundary. As these regions
are hard to describe (as well as possibly not even convex and
connected), we triangulate the projections to get smaller re-
gions which are convex and generated by finitely many points.
The triangulation of the top right of Figure 5 is depicted in
Figure 6. Further note that while the preference ordering of
actions is constant in each region, the faces of a region rep-
resent turning points of the preference ordering; hence these
faces need to be separate regions like is customary for timed
automata [1]. Hence in order to represent the regions, we thus
decompose the triangle (generally, in higher dimensions, a
simplex) into open triangles, open line segments and points
(in general into a simplicial complex, i.e. the simplex together
with its faces and recursively their faces).

As another example of the projection to the projective
hyperplane and the triangulation, consider Figure 7a with
three achievable sets: two rectangles – dwc({(1, 0, 0.5)}) and

dwc({(0.5, 0, 1)}); and one line – dwc({(0, 1, 0)}). The fron-
tiers of the sets generate only one non-empty intersection4,
namely the point (0.5, 0, 0.5). Its projection is represented by
its direction, [(0.5, 0, 0.5)] in Figure 7b. In order to keep the
representation of regions effective, we again triangulate re-
gions into finer ones, which are convex and generated by
finitely many points, see Fig. 7c. Finally, note that Pareto fron-
tiers of smaller dimensions may induce regions that are faces
of the projective hyperplane (triangle). In this example, the
vertex at [(0, 1, 0)] is its own region, as it is the only direction
where playing the line-action is not optimal for Minimizer.
We can also see that in Fig. 4b: the red vertex corresponds to
Minimizer choosing one of the "rectangular" actions (as the
other action is suboptimal), the orange region to choosing
the action yielding (0, 1, 0), and in the yellow Minimizer is
indifferent between all actions. Since these cases only arise
on faces of the projective hyperplane, the decomposition into
the simplicial complex of the projective hyperplane (triangle)
caters for these corner cases. Note that for identifying the
regions, we considered the point [(0.5, 0, 0.5)], which is the
turning point of preference between the two rectangles. As
both of them are suboptimal in this direction, this is not neces-
sary to get the coarsest partition. However, it is not a problem
to use a finer partition (splitting the orange line and the yellow
triangle), as we still have the invariant that in every region
the strategy of Minimizer is constant.

4 Algorithm
4.1 Lifting the concepts from the single-dimensional

case
Before giving the algorithm, we have to define extensions of
the concepts of best exit and simple end component (SEC)
introduced in [37] to the multi-objective setting, as intuitively
discussed in the previous section. To this end, we also intro-
duce the concept of regions.

Best exits. In the single-dimensional case, the best exit of
an EC was just the best exiting action for the Maximizer. In the
multi-dimensional setting, Maximizer cannot only pick the
best exit, but first visits all targets inside the (S)EC and then
use any combination of exits to achieve any desired tradeoff.
The definition of best exit depends on a parameter 𝑓 . This
function is used to calculate the set of achievable points from
an exit. We can instantiate it with 𝔄 to denote the actual set
of achievable points, as well as with the over-approximation
U; in the algorithm, we do the latter, as we do not know 𝔄 .

Thuswe define the best exit in themulti-dimensional setting
(similarly as 𝑋 (s, a) in Section 2.6):

BE𝑓 (𝑇) := ©«
dwc(

∑
s∈𝑇
{1T (s)}) + 𝑐𝑜𝑛𝑣 (

⋃
(s,a) ∈Exits(𝑇�)

𝑓 (s, a))ª®¬
∩ 1

4The neutral element {®0} is not considered a non-empty intersection.

Approximating Values of Generalized-Reachability Stochastic Games LICS ’20, July 8–11, 2020, Saarbrücken, Germany

The first part ensures that, if a target is in the EC, all states in
the EC have probability 1 to reach it; the second part takes the
convex hull of the union of (Pareto sets of) all of Maximizer’s
exits, corresponding to randomizing over the exiting actions.
For general ECs, this may give a strict over-approximation
since Minimizer might prevent Maximizer from freely visiting
all states and combining all actions. However, for SECs the
expression is later shown exact. Note that here we use the
convention

⋃
∅ (·) = {®0}, which is a neutral and minimal

element. This solves the corner case of an EC without any
exit.

Regions. The extension of SEC works only when partition-
ing the set of all possible directions into regions, and then
applying the same ideas as in the single-dimensional case in
each region separately.

Definition 4.1 (Region). A region is a subset 𝑅 ⊆ D of direc-
tions.

To keep the presentation simple, we rely on a very general
definition of regions at this point. We will see later in Section
4.3 how we can restrict to handling only regions that corre-
spond to a finitely generated cone. In the following, slightly
abusing notation, we sometimes view a region 𝑅 as the set of
points it contains, i.e. {𝑣 ∈ [0, 1]𝑛 | ∃d ∈ 𝑅 : [𝑣] = d}.
Simple ECs. In the single-dimensional case, the idea of

SEC is the following: If Minimizer fixes their strategy to the
optimal strategy (i.e. ignores all suboptimal actions), and in
the remaining game there still exists an EC, then this EC is
simple. It is the best choice of Minimizer to allow Maximizer
to roam around freely in the SEC and pick the best exit. Thus,
all states in the SEC have the same value, namely that of the
best exit (recall, best for Maximizer).

In the multi-dimensional case, the optimal strategy of Min-
imizer depends on the tradeoffs between the different goals.
This is why, to generalize the concept of SEC, we need to add
the restriction that a set of states is a SEC for some region 𝑅,
as the trade-offs between the goals are resolved in the same
way in the whole region, or in other words: where the opti-
mal strategy of Minimizer is the same for all directions in 𝑅.
Formally:

Definition 4.2 (Regional 𝑆𝐸𝐶). An EC 𝑇 is a regional simple
end component for some region 𝑅, if for every direction d ∈ 𝑅
and all states 𝑠 ∈ 𝑇 , 𝔄 (𝑠) [d] = BE𝔄 (𝑇) [d].

Note that from this definition we also know that all states in
the regional 𝑆𝐸𝐶 have the same value. Moreover, as we shall
see, the definition implies that on 𝑅, the optimal strategy of
Minimizer should be the same in all directions. Lifting this to
a set of regions we have the following property:

Definition 4.3 (Consistent Partition). Let 𝑇 be an EC and
𝑓 : 𝑆 → 2R𝑛 . A partition of the set D of directions into a set
of regions R is called consistent w.r.t. 𝑇 and 𝑓 if for all 𝑅 ∈ R

Algorithm 1Multi-Objective Bounded Value Iteration
Input:

SG G, generalized-reach. objective T , precision Y
Output:
L,U such that ∀d ∈ D : L[d] ≤ 𝔓[d] ≤ U[d] and
U[d] − L[d] < Y

1: procedureMO-BVI(G,T ,Y)
2: for each s ∈ S do ⊲ Initialization
3: L (s) ← {®0} ⊲ to the least and
4: U (s) ← dwc({®1}) ⊲ the greatest values

5: repeat ⊲ The new Bellman update 𝔅
6: L ← 𝔅(L) ⊲ Standard Bellman updates
7: U ← 𝔅(U)
8: U ← DEFLATE_SECs(G, L,U) ⊲ New treatment
9: until max

d∈D
U (s0) [d] − L (s0) [d] < Y ⊲ Y-approximate

10: return (L (s0),U (s0))

and all d1, d2 ∈ 𝑅, 𝑠 ∈ 𝑇⃝ and 𝑎 ∈ Av (𝑠) it holds that

𝑓 (𝑠, 𝑎) [d1] = min
𝑏∈Av (𝑠)

𝑓 (𝑠, 𝑏) [d1] ⇐⇒
𝑓 (𝑠, 𝑎) [d2] = min

𝑏∈Av (𝑠)
𝑓 (𝑠, 𝑏) [d2] .

In the other direction, we shall see that every possible re-
gional SEC can be defined on regions of an arbitrary consistent
partition. Hence, algorithmically, we shall be looking for such
partitions first and then for regional SECs.

4.2 Algorithms
We present our overall bounded VI procedure as Algorithm 1.
In the following, we provide intuitive explanations of the al-
gorithm and its sub-procedures, as well as the proofs for the
lemmata on correctness of the sub-procedures. The correct-
ness of the whole algorithm is proven in Section 5. Section 4.3
gives more details on the effectiveness of the computation in
Algorithm 3, as that pseudocode is rather mathematical and
it is not trivial to see that it is indeed effectively computable
and yields an effective approximation.

Algorithm 1 (MO-BVI). initializes the under- and over-
approximations L and U and updates them using the new Bell-
man update operator𝔅. This operator first performs the stan-
dard Bellman updates and then calls the procedureDEFLATE_SECs,
which we exemplified in Section 3. The intuition of the whole
algorithm is, that as the under-approximation converges, even-
tually the correct regional SECs are found and deflated. When
all regional SECs are deflated, the over-approximation ap-
proaches the true set of achievable vectors in the limit. Note
that the stopping criterion can be evaluated, as the under- and
over-approximation are at all times described by finitely many
points, for details see Section 4.3.

LICS ’20, July 8–11, 2020, Saarbrücken, Germany P. Ashok, K. Chatterjee, J. Křetínský, M. Weininger, T. Winkler

Algorithm 2 Deflate candidate SECs
Input:

SG G, functions L and U such that for all states 𝑠 : L (𝑠) ⊆
𝔄 (𝑠) ⊆ U (𝑠)

Output:
Updated upper bound U′

1: procedure DEFLATE_SECs(G, L,U)
⊲ In each MEC, we compute relevant regions, find all

candidate 𝑆𝐸𝐶s and decrease their upper bounds
2: U′(𝑠) ← {®0} for all s ∈ 𝑆 ⊲ Result variable
3: M ← MEC(G) ⊲ MEC decomposition of the game
4: for each 𝑇 ∈ M do
5: R ← GET_REGIONS(𝑇, L)
6: for each 𝑅 ∈ R do
7: S ← FIND_SECs(𝑇, L, 𝑅) ⊲ Candidate SECs
8: for each s ∈ 𝑇 do

⊲ If in candidate SEC, deflate
9: if s ∈ 𝐶 for some 𝐶 ∈ S then
10: U′(s) ← U′(s) ∪ (U (s) ∩ BEU (𝐶) ∩ 𝑅)

⊲ Otherwise, keep estimate in this region
11: else
12: U′(s) ← U′(s) ∪ (U (s) ∩ 𝑅)
13: return U′

Algorithm 3 Compute consistent partition into regions
Input:

MEC 𝑇 ⊆ S , function L such that for all states 𝑠 : L (𝑠) ⊆
𝔄 (𝑠)

Output:
Consistent partition R w.r.t. 𝑇 and L

1: procedure GET_REGIONS(𝑇, L)
2: R ← {D} ⊲ initialize with trivial partition
3: for s ∈ 𝑇⃝ do
4: for each 𝐵 ⊆ Av (s) do
5: 𝑅𝐵 ← {d ∈ D | 𝐵 = argmin𝑎∈Av (s) L (s, 𝑎) [d]}
6: R ′ = {𝑅𝐵 | 𝐵 ⊆ Av (𝑠), 𝑅𝐵 ≠ ∅}
7: R ← common refinement of R and R ′
8: return R

Algorithm 2 (DEFLATE_SECs). is the heart of our new
algorithm. It implements the correct handling of end com-
ponents, ensuring convergence of the upper and the lower
approximation to the same fixpoint. As every SEC is an EC and
every EC is a subset of a MEC, the algorithm first computes
the MEC-decomposition. Then, for each MEC we compute
a consistent partition of the set of directions into regions
using Algorithm 3. Finally, Algorithm 2 updates the over-
approximation of every state in the considered MECs. It does
so piece by piece, region by region; this is why in Lines 10
and 12 we always intersect with 𝑅, restricting the update to

Algorithm 4 Find candidate SECs
Input: Under-approximation L, EC 𝑇 , region 𝑅 from a con-

sistent partition w.r.t. 𝑇 and 𝐿
Output: Set of Regional 𝑆𝐸𝐶s for 𝑅, according to L
1: procedure FIND_SECs(L,𝑇 ,𝑅) 𝑇 ⊆ S, L, region 𝑅
2: d← arbitrary element of 𝑅
3: Av′← Av
4: for each 𝑠 ∈ 𝑇⃝ do

⊲ Keep only optimal Minimizer actions
5: Av′(𝑠) ← {𝑎 ∈ Av (𝑠) | L (𝑠, 𝑎) [d] =

min𝑏∈Av (𝑠) L (𝑠, 𝑏) [d]}
6: return MEC(𝑇 |Av′) ⊲ MEC decomposition on 𝑇

with actions restricted to Av′

points in the current region, and take the union with the in-
termediate result U′, adding all the points from the previous
iterations of the loop over R. If a state is part of a regional
SEC 𝐶 (as detected by Algorithm 4), the upper bound in the
current region is reduced to BEU (𝐶), i.e. to the best exit from
the regional SEC. If a state is not in a candidate SEC for the
current region, its upper bound does not change. Note that the
best exit depends on U, our current best over-approximation.
The intersection with U (𝑠) ensures that deflate is monotonic.
Formally, we have the following:

Lemma 4.4 (DEFLATE is monotonic and sound). Given a
game G with correct upper and lower bounds U and L (i.e.
∀𝑠 ∈ 𝑆 : L (s) ⊆ 𝔄 (s) ⊆ U (s)), U′ = DEFLATE_SECs(G, L,U)
has the following properties: For all states 𝑠 ∈ 𝑆 ,
• U′(s) ⊆ U (s) (Monotonicity),
• 𝔄 (s) ⊆ U′(s) (Soundness),

Proof. For monotonicity notice that due to line 10, U′(𝑠) is
obtained by intersecting U (𝑠) with BEU (𝐶) on each region
𝑅 ∈ R, which makes sure thatU′(s) ⊆ U (s) in the end. For the
second item, we have that 𝔄 (s′) ⊆ U′(s′) for all states 𝑠 ′ by
assumption. Recall that BEU (𝔄) is the set of points achievable
from 𝑠 ∈ 𝐶 assuming that Maximizer has control over all
states in𝐶 . Clearly,𝔄 (𝑠) ⊆ BE𝔄 (𝐶) ⊆ BEU (𝔄), which proves
soundness (see [3, Appendix A.1] for details). �

Algorithm 3 (GET_REGIONS). has to return a consistent
partition of the set of directions D, i.e. for all directions in a
region, the optimal strategy of Minimizer needs to be the same.
To do that, for every state in the given MEC, we partition the
set of directions into regions according to the optimal strategy
of Minimizer, i.e. which actions are optimal in the region5.
Then we take the common refinement of all these partitions.
The common refinement of two partitionsR1 andR2 is defined
as the coarsest partition R such that for all 𝑅1 ∈ R1, 𝑅2 ∈ R2

5The implementation suggested in Section 4.3 actually computes regions for
all orderings of actions. It then describes the regions with the same optimal
actions as a union of all regions where these actions are at the top of the
ordering.

Approximating Values of Generalized-Reachability Stochastic Games LICS ’20, July 8–11, 2020, Saarbrücken, Germany

we have 𝑅1 ∩ 𝑅2 ∈ R. Notice that the common refinement
of any number of consistent partitions (w.r.t. the same 𝑇 and
L) is again consistent. Intuitively, in every resulting region
the strategy of all Minimizer states in the MEC is constant.
Formally, we have the following lemma:

Lemma 4.5 (GET_REGIONS is sound). For any set of states𝑇
and bound function L, the set of regions R returned by procedure
GET_REGIONS(𝑇, L) is a consistent partition.

Proof. We simply consider for every subset 𝐵 ⊆ Av (𝑠), 𝑠 ∈
𝑇⃝ , the region 𝑅 where the actions in 𝐵 are all optimal. This
yields a partition R ′ = {𝑅𝐵 | 𝐵 ⊆ Av (𝑠), 𝑅𝐵 ≠ ∅} which is
consistent w.r.t. {𝑠} and L. We repeat this for all 𝑠 ∈ 𝑇⃝ and
take the common refinement of all partitions obtained in this
way, yielding a consistent partition for the whole EC 𝑇 and L.
See the next section on how to technically implement these
operations effectively. �

Algorithm 4 (FIND_SECs). is very similar to the single-di-
mensional case ([37, Alg. 2]). The difference is that in themulti-
objective setting we cannot just fix the strategy of Minimizer
and compute the ECs in the resulting SG. We have to pick a di-
rection from the region and consider the strategy of Minimizer
w.r.t. that direction. Since we know that the given region is
from a consistent partition by assumption on the input (which
is true due to Lemma 4.5), Minimizer’s optimal strategy is the
same for all directions in the input region. Thus the direc-
tion can be arbitrarily chosen from that region. We stress that
FIND_SECs is called with the current under-approximation
and returns only those state sets, which according to the cur-
rent lower bound form regional SECs; these need not actually
be regional SECs according to 𝔄 . However, as sketched in
the proof of Lemma 4.4, deflation is so conservative that it
is sound given any EC. The required property of FIND_SECs
is that it eventually finds the correct regional SECs when L
converges to 𝔄 close enough, or formally:

Lemma 4.6 (FIND_SECs is sound). For 𝑇 ⊆ S and a region 𝑅
from a consistent partition, it holds that𝑋 ∈ FIND_SECs(𝑇,𝔄, 𝑅)
if and only if 𝑋 is an inclusion-maximal 𝑆𝐸𝐶 for region 𝑅.

Proof. Since 𝑅 is from a consistent partition, we can pick any
direction d ∈ 𝑅 and identify Minimizer’s optimal actions for
the whole region 𝑅 as in line 5. Let 𝑋 be a MEC returned by
FIND_SECs. Then within this EC, Minimizer only has optimal
actions for region 𝑅 and thus, it does not matter how exactly
these choices are resolved – in particular, it does notmake a dif-
ference if Maximizer takes over control of Minimizer’s states
as explained earlier. But then, from each 𝑠 ∈ 𝑋 , Maximizer can
achieve precisely BE𝔄 (𝑋). Thus 𝑋 is an inclusion-maximal
SEC for region 𝑅. �

4.3 Effectiveness of GET_REGIONS
In this section we describe GET_REGIONS in more detail
and argue why the computation is effective. As discussed in

Section 3, regions in our context bear some resemblance to
regions of timed automata [1]. We first recall some geometric
notions from e.g. [36] that are necessary to talk about the
representation of the considered objects:
A (𝑘)-simplex is a 𝑘-dimensional polytope given as the

convex hull of 𝑘 + 1 affinely independent vertices. Intuitively,
a simplex is a point, line segment, triangle, tetrahedron etc.
For example, considering Figure 7b, the point (0.5, 0, 0.5) is a 0-
simplex, the line between this point and (1, 0, 0) is a 1-simplex,
and thewhole triangle is a 2-simplex. A face of a𝑘-dimensional
simplex is the convex hull of a non-empty subset of the 𝑘 + 1
points making up the simplex. A facet of a 𝑘-dimensional
simplex is a natural face, i.e. a face that uses exactly 𝑘 points.
For example, for a 2-simplex which is a triangle, the triangle
itself, the 3 edges and 3 vertices are all faces. Each face is also
a simplex. Only the three edges are facets.

A simplicial complex (SC) is a set of simplices closed under
taking faces, i.e. every face of a simplex in the SC is also
part of the SC. It also satisfies the property that a non-empty
intersection of any two simplices in the SC is a face of both the
simplices. Using Figure 7b again: Consider the SC containing
the two lines (1-simplices) between (0.5, 0, 0.5) and (1, 0, 0) as
well as between (0.5, 0, 0.5) and (0, 0, 1). It also has to contain
the point (0-simplex) (0.5, 0, 0.5), as that is the intersection
of the lines. Additionally, the points (1, 0, 0) and (0, 0, 1) need
to be in the SC, as they are the faces of the lines. In order to
represent (i) partitions (disjoint decompositions) and (ii) open
regions, as discussed already in Section 3.3, we consider the
open version: we subtract from each simplex all its facets and,
abusing the notation, call them simplices and their union SC.

The invariant of our computation is that all partitions into
regions as well as the Pareto frontiers are represented as finite
unions of SCs. The partitions decompose (triangulate) D, the
part of the projective hyperplane that is in the non-negative
orthant (𝑛-dimensional analog of the first quadrant), which
can thus itself be seen as (𝑛 − 1)-simplex; the Pareto frontiers
are given by linear functions on the areas defined by regions,
hence consists of SCs in the non-negative orthant (of course,
generally not arranged in a hyperplane). Altogether, since
simplices can be stored as the set of their vertices, we can
effectively represent these partitions and frontiers by finite
sets of finite sets of points.
For the computation of GET_REGIONS on Line 5, we can

compute the intersections of all pairs of Pareto frontiers of
the available actions as they are piece-wise linear with finitely
many pieces, and we obtain a finite partition. The projected
intersections then become 𝑘-simplices for some 𝑘 > 0 (the
intersection of Pareto frontiers can be points, lines, planes and
so on as seen in Fig. 7 and 5). Similarly, on Line 7, starting
from two finite partitions, their common refinement after the
respective triangulation, as e.g. in Figure 6, is also finite and
an SC. Recall the base case for the partition is the SC of the
projective 𝑛 − 1-simplex.

LICS ’20, July 8–11, 2020, Saarbrücken, Germany P. Ashok, K. Chatterjee, J. Křetínský, M. Weininger, T. Winkler

Finally, the resulting approximation of 𝔄 is effective since,
given a direction d, we can identify its region and the respec-
tive simplex on the Pareto frontiers L and U and their value
in the intersection with d. For effectiveness of the stopping
criterion on Line 9 of Algorithm 1, we additionally note that
we only need to test for each simplex the differences in its
generating points (more precisely the limits as the simplex is
open) since the difference is a linear function on each of the
finitely many pieces of the approximation.

5 Correctness Proof of Algorithm MO-BVI
Our new Bellman operator𝔅 defined as one application of the
loop body of Algorithm 1 is a higher order operator transform-
ing pairs of the estimate functions: the two estimate functions
L,U ∈ S → 2[0,1]𝑛 for the under-/over-approximation are
transformed into a pair with the modified under- and over-
approximation. It can thus be seen as a function of type

𝔅 :
(
S → 2[0,1]𝑛 × 2[0,1]𝑛

)
→

(
S → 2[0,1]𝑛 × 2[0,1]𝑛

)
.

We fix an SG G = (S, S�, S⃝, s0,A,Av, 𝛿) and a generalized-
reachability objectiveT for the following proofs and implicitly
use them as parameters of 𝔅. Note that for all states s ∈ S ,
U0 (s) = dwc({®1}) respectively L0 (s) = {®0} are set by the
initialization.
We consider the sequence (L𝑖 ,U𝑖) := 𝔅

𝑖 (L0,U0), 𝑖 ∈ N,
output by our algorithm. We also use the notation L∞ :=
lim𝑖→∞ L𝑖 :=

⋃
𝑖≥0 L𝑖 and U∞ := lim𝑖→∞ U𝑖 :=

⋂
𝑖≥0 U𝑖 .

Proposition 5.1. Soundness
Algorithm 1 computes for each state s ∈ S a sequence of mono-
tonic over- and under-approximations of 𝔄(s), i.e. ∀𝑖 ∈ N :
L𝑖 (s) ⊆ 𝔄(s) ⊆ U𝑖 (s) and for 𝑖 < 𝑗, L𝑖 (s) ⊆ L𝑗 (s) as well as
U𝑖 (s) ⊇ U𝑗 (s).
Proposition 5.2. Convergence from below
∀ states s ∈ S and all directions d ∈ D : L∞ (s) [d] = 𝔄(s) [d].
Proposition 5.3. Convergence from above
∀ states s ∈ S and all directions d ∈ D : U∞ (s) [d] = 𝔄(s) [d].

Note that for all directions d and for all s ∈ S by definition
𝔄(s) [d] = 𝔓(s) [d]. Using this and the three propositions, we
can prove the main theorem.

Theorem 5.4. Algorithm 1 computes convergent monotonic
over- and under-approximations of𝔓(s) for each s ∈ S . Since
it is convergent, for every 𝜖 > 0 there exists an 𝑖 , such that for
every s ∈ S and direction d ∈ D : U𝑖 (s) [d] − L𝑖 (s) [d] < 𝜖 . So
by instantiating s with s0, we solve the problem posed in Section
2.5.

Proof of Propositions 5.1 and 5.2. Note that for all 𝑖 ∈ N it holds
that L𝑖 = 𝔅𝑖 (L0), since DEFLATE_SECs does not change the
under-approximation. [9, Proposition 8] proves that𝔅 is order-
preserving, i.e. monotonic, and that it converges to the unique

least fixpoint 𝔄 when repeatedly applied to the bottom el-
ement of a complete partial order. The least possible lower
bound assigns ®0 to all S , since there is no smaller vector that
can be assigned to a state. This is exactly the definition of L0,
which implies that for all s ∈ S , the closure of L∞ (s) equals
the closure of 𝔄(s), which implies Proposition 5.2.
For the soundness of the over-approximation we require

that the additional operation, namely DEFLATE_SECs, per-
formed by𝔅 is sound (proven in Lemma 4.4). The monotonic-
ity of the under- and over-approximation follows from the
monotonicity of 𝔅 [9, Proposition 8] and of DEFLATE_SECs
(Lemma 4.4) Thus we can deduce Proposition 5.1. �

It only remains to show Proposition 5.3. As a key ingredient
for the proof we will use the following:

Lemma 5.5 (Fixpoint). 𝔅(L∞,U∞) = (L∞,U∞), i.e. the limit
of 𝔅 is also a fixpoint.

Proof idea. We only need to argue about the second compo-
nent U∞. If we did not have a fixpoint, then a further applica-
tion of 𝔅 would find a SEC 𝑇 for some region 𝑅 and decrease
the over-approximation U∞ for some d ∈ 𝑅 and 𝑠 ∈ 𝑇 , i.e.
BEU∞ (𝑇) [d] < U∞ (𝑠) [d]. The key idea is that since the lower
approximations 𝐿𝑖 converge to 𝔄 , the SEC 𝑇 is detected and
deflated infinitely many times before convergence. But this
means that BEU∞ (𝑇) [d] = U∞ (𝑠) [d], contradiction. For more
details, see [3, Appendix A.2]. �

Proof of Proposition 5.3. Wewill use the fixpoint property from
Lemma 5.5 to derive a contradiction. We assume for contradic-
tion that there is a state s ∈ S and a direction d ∈ D such that
U∞ (s) [d] ≠ 𝔄(s) [d]. Applying the Bellman operator once
more to (L∞,U∞) results in a new upper bound U′. We will
show that U′ (U∞. In other words, applying the loop once
more decreases the over-approximation. This is a contradic-
tion to U∞ being a fixpoint and proves our goal.

1. Assume for contradiction, that∃𝑡 ∈ S, d ∈ D : U∞ (𝑡) [d] ≠
𝔄(𝑡) [d] and thus ∃d U∞ (𝑡) [d] > 𝔄(𝑡) [d] with Prop.
5.1. We fix this direction d and 𝑡 for the rest of the proof.

2. Let 𝑋 := {s ∈ S | Δ(s) = max𝑡 ∈S Δ(𝑡)}, where Δ(s) :=
U∞ (s) [d] − 𝔄(s) [d] is the difference between over-
approximation U∞ (s) and achievable set 𝔄 in d.
a. We also define Δ(s, a) := U∞ (s, a) [d] − 𝔄(s, a) [d]
for an action a ∈ Av (𝑠).

b. By assumption, 𝑋 ≠ ∅ and for all s ∈ 𝑋 : Δ(s) > 0.
Note: Δ(𝑠),Δ(𝑠, 𝑎) and 𝑋 are all defined w.r.t. the fixed
direction d (not indicated in notation to avoid clutter).

3. Δ(𝑠) > 0 implies that dwc(1T (s)) [d] = 0, i.e. 𝑠 is not
contained in target sets “aligned” in direction d because
otherwise, U∞ (s) [d] = 𝔄(s) [d] = dwc(1T (s)) [d].

4. For all (s, a) exits𝑋 it holds that Δ(s, a) < Δ(s).
Reason: If (s, a) exits𝑋 , then ∃s′ ∈ Post (s, a) \𝑋 . Note

Approximating Values of Generalized-Reachability Stochastic Games LICS ’20, July 8–11, 2020, Saarbrücken, Germany

that Δ(s′) < Δ(s) by construction of 𝑋
Δ(s, a) = U∞ (s, a) [d] − 𝔄 (s, a) [d] (Definition of Δ(𝑠, 𝑎))

=
∑

s′∈Post (s,a)
𝛿 (𝑠, 𝑎, 𝑠 ′) (U∞ (s′) [d] − 𝔄 (s′) [d])

(Definition of 𝔄 (s, a) and Step 3)

=
∑

s′∈Post (s,a)
𝛿 (𝑠, 𝑎, 𝑠 ′)Δ(𝑠 ′) (Definition of Δ(𝑠))

< Δ(s) (since 𝑡 ∈ Post (s, a) and Δ(𝑡) < Δ(s))
5. No state in 𝑋 depends on a leaving action. Formally:

(a) ∀s ∈ 𝑋⃝, (s, a) exits𝑋 : 𝔄 (s) [d] < 𝔄 (s, a) [d], i.e.
a leaving action leaving 𝑋 cannot be optimal for
Minimizer in direction d.
Reason: Since s is a state of Minimizer, ∀a ∈ Av (𝑠) :
U∞ (s) [d] ≤ U∞ (s, a) [d]. From this and the inequal-
ity from the previous Step 4, we get that:
U∞ (s, a) [d] − 𝔄 (s, a) [d]
= Δ(s, a) (Definition of Δ)
< Δ(s) (Step 4)
= U∞ (s) [d] − 𝔄 (s) [d] (Definition of Δ)
≤ U∞ (s, a) [d] − 𝔄 (s) [d] (s ∈ 𝑋⃝)

SubtractingU∞ (s, a) [d] andmultiplying by (-1) yields
the claim.

(b) ∀s ∈ 𝑋�, U∞ (𝑠) [d] >
∑

𝑎∈Av (𝑠,𝑎) 𝑤𝑎 · U∞ (𝑠, 𝑎) if
𝑤𝑎 > 0 for some action 𝑎 exiting 𝑋 . Intuitively, this
means that Maximizer cannot assign positive weight
to any action leaving 𝑋 . The proof is similar to part
(a).

6. 𝑋 contains an EC because if not, then ∃𝑠 ∈ 𝑋 : ∀a ∈
Av (𝑠) : (𝑠, 𝑎) exits𝑋 . But then 𝑠 necessarily depends
on a leaving action in the sense of the previous Step 5,
contradiction.

7. Using that 𝑋 contains an EC, we can show that 𝑋 even
contains a regional simple EC 𝑍 ⊆ 𝑋 w.r.t. to the re-
gion {d}. Applying 𝔅 once more to (𝔄,U∞), the over-
approximation decreases.

Reason: We only give high-level intuition here, as the
proof is very technical. The formal details are in [3,
Appendix A.3]. We prove by a large case distinction
that 𝑋 contains a regional SEC 𝑍 for the region {d}.
Since L∞ = 𝔄 , by Lemma 4.6 this regional SEC is found
and deflated. By construction of 𝑍 , then its value is
set to “depend on the outside”, i.e. it assigns a positive
weight on an action leaving 𝑋 . Then, by Step 5, the
over-approximation is reduced and we arrive at a con-
tradiction. �

6 Conclusion
For a given Y > 0 and a generalized-reachability stochastic
game, we compute an Y-approximation of its Pareto frontier.

Our algorithm can be run as an anytime algorithm, reporting
the under- and over-approximations on the frontier, due to
an extended version of value iteration. We have suggested
the name “bounded value iteration” as it better generalizes
to higher dimensions than “interval iteration”. We conjecture
that this technique can be generalized to other models, such
as concurrent games, and more complex objectives, such as
total reward. Finally, while decidability remains open, the ap-
proximation algorithms are practically more relevant even in
the single-dimensional case. Note that approximative value it-
eration is the default technique for analysis of MDP, although
there is an exact and polynomial solution by linear program-
ming. The reason is that the theoretical worst-case complexity
of value iteration is practically not too relevant. Consequently,
an efficient implementation, possibly exploring only a part of
the state space using learning, as e.g. in [11, 37], may be an
interesting future direction.

Acknowledgments
Pranav Ashok, Jan Křetínský and Maximilian Weininger were
funded in part by TUM IGSSE Grant 10.06 (PARSEC) and
the German Research Foundation (DFG) project KR 4890/2-1
“Statistical Unbounded Verification”. Krishnendu Chatterjee
was supported by the ERC CoG 863818 (ForM-SMArt) and
Vienna Science and Technology Fund (WWTF) Project ICT15-
003. TobiasWinkler was supported by the RTG 2236 UnRAVeL.

References
[1] Rajeev Alur and David L. Dill. 1994. A Theory of Timed Automata.

Theor. Comput. Sci. 126, 2 (1994), 183–235.
[2] Pranav Ashok, Krishnendu Chatterjee, Przemyslaw Daca, Jan Kretínský,

and Tobias Meggendorfer. 2017. Value Iteration for Long-Run Average
Reward in Markov Decision Processes. In CAV. 201–221. https://doi.
org/10.1007/978-3-319-63387-9_10

[3] Pranav Ashok, Krishnendu Chatterjee, Jan Kretinsky, Maximilian
Weininger, and Tobias Winkler. 2020. Approximating Values of
Generalized-Reachability Stochastic Games. CoRR abs/1908.05106
(2020).

[4] Christel Baier, Marcus Daum, Clemens Dubslaff, Joachim Klein, and
Sascha Klüppelholz. 2014. Energy-Utility Quantiles. In NASA Formal
Methods. 285–299.

[5] Christel Baier, Clemens Dubslaff, and Sascha Klüppelholz. 2014. Trade-
off analysis meets probabilistic model checking. In CSL-LICS. 1:1–1:10.

[6] Christel Baier, Clemens Dubslaff, Sascha Klüppelholz, Marcus Daum,
Joachim Klein, Steffen Märcker, and Sascha Wunderlich. 2014. Proba-
bilistic Model Checking and Non-standard Multi-objective Reasoning.
In FASE. 1–16.

[7] Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Check-
ing.

[8] Nicolas Basset, Marta Z. Kwiatkowska, Ufuk Topcu, and Clemens
Wiltsche. 2015. Strategy Synthesis for Stochastic Games with Multiple
Long-Run Objectives. In TACAS (Lecture Notes in Computer Science),
Vol. 9035. Springer, 256–271.

[9] Nicolas Basset, Marta Z. Kwiatkowska, and Clemens Wiltsche. 2018.
Compositional strategy synthesis for stochastic games with multiple
objectives. Inf. Comput. 261, Part (2018), 536–587.

LICS ’20, July 8–11, 2020, Saarbrücken, Germany P. Ashok, K. Chatterjee, J. Křetínský, M. Weininger, T. Winkler

[10] Tomás Brázdil, Václav Brozek, Krishnendu Chatterjee, Vojtech Forejt,
and Antonín Kucera. 2014. Two Views on Multiple Mean-Payoff Ob-
jectives in Markov Decision Processes. LMCS 10, 1 (2014). https:
//doi.org/10.2168/LMCS-10(1:13)2014

[11] Tomás Brázdil, Krishnendu Chatterjee, Martin Chmelik, Vojtech Forejt,
Jan Kretínský, Marta Z. Kwiatkowska, David Parker, and Mateusz Ujma.
2014. Verification of Markov Decision Processes Using Learning Algo-
rithms. In ATVA (Lecture Notes in Computer Science), Vol. 8837. Springer,
98–114.

[12] Tomás Brázdil, Krishnendu Chatterjee, Vojtech Forejt, and Antonín
Kucera. 2013. Trading Performance for Stability in Markov Decision
Processes. In LICS. 331–340.

[13] Romain Brenguier and Vojtech Forejt. 2016. Decidability Results for
Multi-objective Stochastic Games. In ATVA (Lecture Notes in Computer
Science), Vol. 9938. 227–243.

[14] Romain Brenguier and Jean-François Raskin. 2015. Pareto Curves of
Multidimensional Mean-Payoff Games. In CAV (2) (Lecture Notes in
Computer Science), Vol. 9207. Springer, 251–267.

[15] Krishnendu Chatterjee. 2007. Markov Decision Processes with Multiple
Long-Run Average Objectives. In FSTTCS (Lecture Notes in Computer
Science), Vol. 4855. Springer, 473–484.

[16] Krishnendu Chatterjee and Laurent Doyen. 2016. Perfect-Information
Stochastic Games with Generalized Mean-Payoff Objectives. In LICS.
ACM, 247–256.

[17] Krishnendu Chatterjee and Nathanaël Fijalkow. 2011. A reduction from
parity games to simple stochastic games. In GandALF. 74–86. https:
//doi.org/10.4204/EPTCS.54.6

[18] Krishnendu Chatterjee, Vojtech Forejt, and Dominik Wojtczak. 2013.
Multi-objective Discounted Reward Verification in Graphs and MDPs.
In LPAR. 228–242.

[19] Krishnendu Chatterjee and Thomas A Henzinger. 2008. Value iteration.
In 25 Years of Model Checking. Springer, 107–138.

[20] Krishnendu Chatterjee, Thomas A. Henzinger, Barbara Jobstmann, and
Arjun Radhakrishna. 2010. Gist: A Solver for Probabilistic Games. In
CAV. 665–669. https://doi.org/10.1007/978-3-642-14295-6_57

[21] Krishnendu Chatterjee, Zuzana Kretínská, and Jan Kretínský. 2017. Uni-
fying Two Views on Multiple Mean-Payoff Objectives in Markov Deci-
sion Processes. Logical Methods in Computer Science 13, 2 (2017).

[22] Taolue Chen, Vojtech Forejt, Marta Z. Kwiatkowska, David Parker, and
Aistis Simaitis. 2013. PRISM-games: A Model Checker for Stochastic
Multi-Player Games. In TACAS (Lecture Notes in Computer Science),
Vol. 7795. Springer, 185–191.

[23] Taolue Chen, Vojtech Forejt, Marta Z. Kwiatkowska, Aistis Simaitis, and
Clemens Wiltsche. 2013. On Stochastic Games with Multiple Objectives.
In MFCS (Lecture Notes in Computer Science), Vol. 8087. Springer, 266–
277.

[24] Taolue Chen, Vojtech Forejt, Marta Z. Kwiatkowska, Aistis Simaitis, and
Clemens Wiltsche. 2013. On Stochastic Games with Multiple Objectives.
Technical Report. 266–277 pages.

[25] Taolue Chen, Marta Z. Kwiatkowska, Aistis Simaitis, and Clemens
Wiltsche. 2013. Synthesis for Multi-objective Stochastic Games: An
Application to Autonomous Urban Driving. In QEST. 322–337. https:
//doi.org/10.1007/978-3-642-40196-1_28

[26] Chih-Hong Cheng, Alois Knoll, Michael Luttenberger, and Christian
Buckl. 2011. GAVS+: An Open Platform for the Research of Algorithmic
Game Solving. In ETAPS. 258–261. https://doi.org/10.1007/978-3-642-
19835-9_22

[27] Anne Condon. 1992. The complexity of stochastic games. Information
and Computation 96, 2 (1992), 203–224.

[28] Anne Condon. 1993. On Algorithms for Simple Stochastic Games. In
Advances in Computational Complexity Theory, volume 13 of DIMACS Se-
ries in Discrete Mathematics and Theoretical Computer Science. American
Mathematical Society, 51–73.

[29] Costas Courcoubetis and Mihalis Yannakakis. 1995. The Complexity of
Probabilistic Verification. J. ACM 42, 4 (July 1995), 857–907.

[30] Kousha Etessami, Marta Z. Kwiatkowska, Moshe Y. Vardi, and Mihalis
Yannakakis. 2008. Multi-Objective Model Checking of Markov Decision
Processes. Logical Methods in Computer Science 4, 4 (2008).

[31] J.A. Filar, D. Krass, and K.W Ross. 1995. Percentile performance criteria
for limiting average Markov decision processes. Automatic Control, IEEE
Transactions on 40, 1 (Jan 1995), 2–10.

[32] Vojtech Forejt, Marta Z. Kwiatkowska, Gethin Norman, David Parker,
and Hongyang Qu. 2011. Quantitative Multi-objective Verification for
Probabilistic Systems. In TACAS. 112–127. https://doi.org/10.1007/978-
3-642-19835-9_11

[33] Vojtech Forejt, Marta Z. Kwiatkowska, and David Parker. 2012. Pareto
Curves for Probabilistic Model Checking. In ATVA (Lecture Notes in
Computer Science), Vol. 7561. Springer, 317–332.

[34] Christoph Haase, Stefan Kiefer, and Markus Lohrey. 2017. Computing
quantiles in Markov chains with multi-dimensional costs. In LICS. 1–12.

[35] Serge Haddad and Benjamin Monmege. 2018. Interval iteration algo-
rithm for MDPs and IMDPs. Theor. Comput. Sci. 735 (2018), 111–131.

[36] A. Hatcher. 2002. Algebraic Topology. Cambridge University Press.
https://books.google.de/books?id=BjKs86kosqgC

[37] Edon Kelmendi, Julia Krämer, Jan Kretínský, and Maximilian Weininger.
2018. Value Iteration for Simple Stochastic Games: Stopping Criterion
and Learning Algorithm. In CAV. https://doi.org/10.1007/978-3-319-
96145-3_36

[38] Marta Kwiatkowska, David Parker, and Clemens Wiltsche. 2016. PRISM-
Games 2.0: A Tool for Multi-objective Strategy Synthesis for Stochastic
Games. In TACAS (Lecture Notes in Computer Science), Vol. 9636. Springer,
560–566.

[39] Marta Kwiatkowska, David Parker, and Clemens Wiltsche. 2018. PRISM-
games: verification and strategy synthesis for stochastic multi-player
games with multiple objectives. STTT 20, 2 (2018), 195–210.

[40] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM
4.0: Verification of Probabilistic Real-Time Systems. In CAV (Lecture
Notes in Computer Science), Vol. 6806. Springer, 585–591.

[41] H. Brendan Mcmahan, Maxim Likhachev, and Geoffrey J. Gordon. 2005.
Bounded real-time dynamic programming: RTDP with monotone upper
bounds and performance guarantees. In ICML 05. 569–576.

[42] Christos H. Papadimitriou and Mihalis Yannakakis. 2000. On the Ap-
proximability of Trade-offs and Optimal Access of Web Sources. In FOCS.
IEEE Computer Society, 86–92.

[43] Martin L. Puterman. 2014. Markov decision processes: Discrete stochastic
dynamic programming. John Wiley & Sons.

[44] Mickael Randour, Jean-François Raskin, and Ocan Sankur. 2015. Per-
centile Queries in Multi-dimensional Markov Decision Processes. In CAV
(1) (Lecture Notes in Computer Science), Vol. 9206. Springer, 123–139.

[45] Mickael Randour, Jean-François Raskin, and Ocan Sankur. 2017. Per-
centile queries in multi-dimensional Markov decision processes. Formal
Methods in System Design 50, 2-3 (2017), 207–248. https://doi.org/10.
1007/s10703-016-0262-7

[46] María Svorenová and Marta Kwiatkowska. 2016. Quantitative verifi-
cation and strategy synthesis for stochastic games. Eur. J. Control 30
(2016), 15–30. https://doi.org/10.1016/j.ejcon.2016.04.009

[47] Yaron Velner. 2015. Robust Multidimensional Mean-Payoff Games are
Undecidable. In FoSSaCS. Springer, 312–327.

G dtControl 2.0: Explainable Strategy
Representation via Decision Tree Learning
Steered by Experts (TACAS 2021)

Licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropri-
ate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.

This is an exact reprinting of the paper which has been published as a peer reviewed
conference paper.

Pranav Ashok, Mathias Jackermeier, Jan Kretinsky, Christoph Weinhuber,
Maximilian Weininger, and Mayank Yadav. “dtControl 2.0: Explainable
Strategy Representation via Decision Tree Learning Steered by Experts”.
In: TACAS (2). Vol. 12652. Lecture Notes in Computer Science. Springer,
2021, pp. 326–345. doi: 10.1007/978-3-030-72013-1 17

Summary

Recent advances have shown how decision trees are apt data structures for concisely repre-
senting strategies (or controllers) satisfying various objectives. Moreover, they also make
the strategy more explainable. The recent tool dtControl had provided pipelines with tools
supporting strategy synthesis for hybrid systems, such as SCOTS and Uppaal Stratego.
We present dtControl 2.0, a new version with several fundamentally novel features. Most
importantly, the user can now provide domain knowledge to be exploited in the decision
tree learning process and can also interactively steer the process based on the dynamically
provided information. To this end, we also provide a graphical user interface. It allows
for inspection and re-computation of parts of the result, suggesting as well as receiving
advice on predicates, and visual simulation of the decision-making process. Besides, we
interface model checkers of probabilistic systems, namely STORM and PRISM and pro-
vide dedicated support for categorical enumeration-type state-variables. Consequently, the
controllers are more explainable and smaller.

For more details on this publication, we refer to Chapter 6 of the main body.

287

G dtControl 2.0 (TACAS 2021)

Contribution

Contribution of Maximilian Weininger

Development and conceptual design of the research project 40%
Discussion and development of ideas 30%
Composition and revision of the manuscript 75%
Implementation 5%
Experimental evaluation 15%

288

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

dtControl 2.0: Explainable Strategy
Representation via Decision Tree Learning

Steered by Experts ?

Pranav Ashok1 , Mathias Jackermeier1, Jan Křet́ınský1 ,
Christoph Weinhuber1(B) , Maximilian Weininger1 , and Mayank Yadav2

1 Technical University of Munich, Munich, Germany
firstname.lastname@tum.de

2 Department of Computer Science and Engineering, I.I.T. Delhi,
New Delhi, India

cs1180356@iitd.ac.in

Abstract. Recent advances have shown how decision trees are apt data
structures for concisely representing strategies (or controllers) satisfying
various objectives. Moreover, they also make the strategy more explainable.
The recent tool dtControl had provided pipelines with tools support-
ing strategy synthesis for hybrid systems, such as SCOTS and Uppaal

Stratego. We present dtControl 2.0, a new version with several fun-
damentally novel features. Most importantly, the user can now provide
domain knowledge to be exploited in the decision tree learning process
and can also interactively steer the process based on the dynamically
provided information. To this end, we also provide a graphical user inter-
face. It allows for inspection and re-computation of parts of the result,
suggesting as well as receiving advice on predicates, and visual simulation
of the decision-making process. Besides, we interface model checkers of
probabilistic systems, namely STORM and PRISM and provide dedicated
support for categorical enumeration-type state variables. Consequently,
the controllers are more explainable and smaller.

Keywords: Strategy representation · Controller representation · Deci-
sion Tree · Explainable Learning · Hybrid systems · Probabilistic Model
Checking · Markov Decision Process

1 Introduction

A controller (also known as strategy, policy or scheduler) of a system assigns to
each state of the system a set of actions that should be taken in order to achieve a
certain goal. For example, one may want to satisfy a given specification of a robot’s

? This work has been partially supported by the German Research Foundation (DFG)
project No. 383882557 SUV (KR 4890/2-1), No. 427755713 GOPro (KR 4890/3-1)
and the TUM International Graduate School of Science and Engineering (IGSSE)
grant 10.06 PARSEC. We thank Tim Quatman for implementing JSON-export of
strategies in STORM and Pushpak Jagtap for his support with the SCOTS models.

c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 326–345, 2021.
https://doi.org/10.1007/978-3-030-72013-1 17

dtControl 2.0 327

behaviour or exhibit a concurrency bug appearing only in some interleaving. It
is desirable that the controllers possess several additional properties, besides
achieving the goal, in order to be usable in practice. Firstly, controllers should
be explainable. Only then can they be understood, trusted and implemented
by the engineers, certified by the authorities, or used in the debugging process
[11]. Secondly, they should be small in size and efficient to run. Only then they
can be deployed on embedded devices with limited memory of a few kilobytes,
while the automatically synthesized ones are orders of magnitude larger [49].
Thirdly, whenever the primary goal, e.g. functional correctness, is accompanied
by a secondary criterion, e.g. energy efficiency, they should be performant with
respect to this criterion.

Automatic controller synthesis is able to provide controllers for a given goal
in various domains, such as probabilistic systems [32, 17], hybrid systems [45,
16, 30, 19] or reactive systems [35]. In some cases, even the performance can be
reflected [16]. However, despite recent interest in explainability in connection to
AI-based controllers [2] and despite typically small memories of embedded devices,
automatic techniques for controller synthesis mostly fall short of producing small
explainable results. A typical outcome is a controller in the form of a look-up
table, listing the actions for each possible state, or a binary decision diagram
(BDD) [14] representation thereof. While the latter reduces the size to some
extent, none of the two representations is explainable: the former due to its size,
the latter due to the bit-level representation with all high-level structure lost.
Instead, learning representations in the form of decision trees (DT) [38] has
been recently explored to this end [7, 3]. DTs turn out to be usually smaller
than BDD but do not drown to the bit level and are generally well known for
their interpretability and explainability due to their simple structure. However,
despite showing significant potential, the state-of-the-art tool dtControl [4] uses
predicates without natural interpretation, and moreover, the best size reductions
are achieved using determinization, i.e. making the controller less permissive,
which negatively affects performance [7].

Example 1 (Motivating example). Consider the cruise control model of [34],
where we want to control the speed of our car so that it never crashes into the
car in front while, as a secondary performance objective, keeping the distance
between the two cars small.

A safe controller for the this model as returned by Uppaal Stratego, is
a lookup table of size 418 MB with 300,000 lines. The respective BDD has
1,448 nodes with all information bit-blasted. Using adaptations of standard
DT-construction algorithms, as implemented in dtControl, we can get a DT
with 987 nodes, which is still too large to be explained. Using determinization
techniques, the controller can be compressed to 3 nodes! However, then the DT
allows only to decelerate until the minimum velocity. This is safe, as we cannot
crash into the car in front, but it does not even attempt at getting close to the
front car, and thus has a very bad performance.

One can find a strategy with optimal performance, retaining the maximal
permissiveness, not determinizing at all, which can be represented by a DT with 11

328 P. Ashok et al.

nodes. A picture of this DT as well as reasoning how to derive the predicates from
the kinematic equations is in the extended version of this paper [5, Appendix A].

However, exactly because the predicates are based on the domain knowledge,
namely the kinematic equations, they take the form of algebraic predicates and
not simply linear predicates, which are the only ones in dtControl and commonly
in the machine-learning literature on DTs. 4

This motivating example shows that using domain knowledge and algebraic
predicates, available now in dtControl 2.0, one can get smaller representation
than when using existing heuristics. Further, it improves the performance of the
DT, and it is easily explainable, as it is based on domain knowledge. In fact,
the discussed controller is so explainable that it allowed us to find a bug in the
original model. In general, using dtControl 2.0 a domain expert can try to
compress the controller, thus gain more insight and validate that it is correct.
Another example of this has been reported from the use of dtControl in the
manufacturing domain [31].

While automatic synthesis of good predicates from the domain knowledge may
seem as distant as automatic synthesis of program invariants or automatic theorem
provers, we adopt the philosophy of those domains and offer semi-automatic
techniques.

Additionally, if not performance but only safety of a controller is relevant,
we can still benefit from determinization without drawbacks. To this end, we
also provide a new determinization procedure that generalizes the extremely
successful MaxFreq technique of [4] and is as good or better on all our examples.

To incorporate the changes just discussed, namely algebraic predicates, semi-
automatic approach, and better determinization, we have also reworked the
tool and its interfaces. To begin with, the software architecture of dtControl

2.0 is now very modular and allows for easy further modifications, as well as
adding support for new synthesis tools. In fact, we have already added parsers
for the tools STORM [17] and PRISM [32], and thus we support probabilistic
models as well. Since these models also contain categorical (or enumeration-
type) variables, e.g. protocol states, we have also added support for categorical
predicates. Furthermore, we added a graphical user interface that not only is
easier to use than the command-line interface, but also allows to inspect the DT,
modify and retrain parts of it, and simulate runs of the model under its control,
further increasing the possibilities to explain the DT and validate the controller.

Summing up, the main improvements of dtControl 2.0 over the previous
version [4] are the following:

– Support of algebraic predicates and categorical predicates
– Semi-automatic interface and GUI with several interactive modes
– New determinization procedure
– Interfaces for model checkers PRISM and Storm and experimental evidence

of improvements on probabilistic models compared to BDD

The paper is structured as follows. After recalling necessary background in
Section 2, we give an overview of the improvements over the previous version of

dtControl 2.0 329

the tool from the global perspective in Section 3. We detail on the algorithmic
contribution in Sections 4 (predicate domains), 5 (predicate selection) and 6
(determinization). Section 7 provides experimental evaluation and Section 8
concludes.

Related work. DTs have been suggested for representing controllers of and
counterexamples in probabilistic systems in [11], however, the authors only discuss
approximate representations. The ideas have been extended to other setting, such
as reactive synthesis [12] and hybrid systems [7]. More general linear predicates
have been considered in leaves of the trees in [3]. dtControl 2.0 contains the
DT induction algorithms from [7, 3]. The differences to the previous version
of the tool dtControl [4] are summarized above and schematically depicted in
Figure 2.

Besides, DTs have been used to represent and learn strategies for safety
objectives in [40] and to learn program invariants in [21]. Further, DTs were
used for representing the strategies during the model checking process, namely
in strategy iteration [10] or in simulation-based algorithms [42]. Representing
controllers exactly using a structure similar to DT (mistakenly claimed to be an
algebraic decision diagram) was first suggested by [22], however, no automatic
construction algorithm was provided.

The idea of non-linear predicates has been explored in [28]. In that work,
however, it is not based on domain knowledge, but rather on projecting the
state-space to higher dimensions.

BDDs [14] have been commonly used to represent strategies in planning [15],
symbolic model checking [32] as well as to represent hybrid system controllers
[45, 30]. While BDD [14] operate only on Boolean variables, they have the
advantage of being diagrams and not trees. Moreover, they correspond to Boolean
functions that can be implemented on hardware easily. [18] proposes an automatic
compression technique for numerical controllers using BDDs. Similar to our work,
[49] considers the problem of obtaining concise BDD representation of controllers
and presents a technique to obtain smaller BDDs via determinization. However,
BDDs are difficult to explain due to variables being bit-blasted and their size is
very sensitive to the chosen variable ordering. An extension of BDDs, algebraic
or multi-terminal decision diagrams (ADD/MTBDD) [8, 20], have been used in
reinforcement learning for strategy synthesis [26, 47]. ADDs extend BDDs with
the possibility to have multiple values in the terminal nodes, but the predicates
still work only on boolean variables, retaining the disadvantages of BDDs.

2 Decision tree learning for controller representation

In this section, we briefly describe how controllers can be represented as decision
trees as in [4]. We give an exemplified overview of the method, pinpointing the
role of our algorithmic contributions.

A (non-deterministic, also called permissive) controller is a map C : S 7→ 2A

from states to non-empty sets of actions. This notion of a controller is fairly

330 P. Ashok et al.

general; the only requirement is that it has to be memoryless and non-randomized.
These kind of controllers are optimal for many tasks such as expected (discounted)
reward, reachability or parity objectives. Moreover, even finite-memory controllers
can be written in this form by considering the product of the state space with
the finite memory as the domain, for example, like in LTL model checking.

Decision trees (DT), e.g. [38], are trees where every leaf node is labelled with
a non-empty set of actions and every inner node is labelled with a predicate
ρ : S 7→ {true, false}.

vo vf d actions

0 0 5 {neu}
2 6 10 {dec,neu, acc}
2 6 15 {dec,neu, acc}
4 4 15 {dec,neu}

(a)

vo > 0

{neu}vf > 4

{dec,neu}{dec,neu, acc}

falsetrue

(b)

Fig. 1: An example controller based on the cruise-control model in the form of a lookup
table (left), and the corresponding decision tree (right).

Example 2 (Decision tree representation). As an example, consider the controller
given in Figure 1a. It is a subset of the real cruise-control case study from the
motivating Example 1. A state is a 3-tuple of the variables vo, vf and d, which
denote the velocity of our car, the front car and the distance between the cars
respectively. In each state, our car may be allowed to perform a subset of the
following set of actions: decelerate (dec), stay in neutral (neu) or accelerate (acc).
A DT representing this lookup table is depicted in Figure 1b.

Given a state, for example vo = vf = 4, d = 10, the DT is evaluated as follows:
We start at the root and, since it is an inner node, we evaluate its predicate
vo > 0. As this is true, we follow the true branch and reach the inner node
labelled with the predicate vf > 4. This is false, so we follow the false branch and
reach the leaf node labelled {dec,neu}. Hence, we know that all three possibilities
of decelerating, staying neutral and accelerating are allowed by the controller. 4

To construct a DT representation of a given controller, the following recursive
algorithm may be used. Note that it is heuristic since constructing an optimal
binary decision tree is an NP-complete problem [27].

Base case: If all states in the the controller agree on their set of actions B (i.e.
for all states s we have C(s) = B), return a leaf node with label B.

Recursive case: Otherwise, we split the controller. For this, we select a predicate
ρ and construct an inner node with label ρ. Then we partition the controller

dtControl 2.0 331

by evaluating the predicate on the state space, and recursively construct one
DT for the sub-controller on states {s ∈ S | ρ(s)} where the predicate is
true, and one for the sub-controller where it is false. These controllers are
the children of the inner node with label ρ and we proceed recursively.

For selecting the predicate, we consider two hyper-parameters: The domain
of the predicates (see Section 4) and the way to select predicates (see Section 5).
The selection is typically performed by selecting the predicate with the lowest
impurity ; this is a measure for how homogenous (or “pure”) the controller is after
the split, in other words the degree to which all the states agree on their actions.

We also consider a third hyper-parameter of the algorithm, namely deter-
minization by safe early stopping (see Section 6). This modifies the base case as
follows: if all states in the controller agree on at least one action a (i.e. for all
states s we have a ∈ C(s)), then we return a leaf node with label {a}. This variant
of early stopping ensures that, even though the controller is not represented
exactly, still for every state a safe action is allowed.

Hence, if the original controller satisfies some property, e.g. that a safe set of
states is never left, the DT construction algorithm ensures that this property is
retained. This is because our algorithm represents the strategy exactly (or a safe
subset, in case of determinization) and does not generalize as DTs typically do in
machine learning. DTs are suitable for both tasks, as both rely on the strength
of DTs exploiting underlying structure.

Remark 1. Note that for some types of objectives such as reachability, deter-
minization of permissive strategies might lead to a violation of the original
guarantees. For example, consider a strategy that allows both a self-looping and
a non-self-looping action at a particular state. If the determinizer decides to
restrict to the self-looping action, the reachability property may be violated in the
determinized strategy. However, this problem can be addressed when synthesizing
the strategy by ensuring that every action makes progress towards the target.

3 Tool

dtControl 2.0 is an easy-to-use open-source tool for representing memoryless
symbolic controllers as more compact and more interpretable DTs, while retaining
safety guarantees of the original controllers. Our website dtcontrol.model.in.

tum.de offers hyperlinks to the easy-to-install pip package3, the documentation
and the source code. Additionally, the artifact that has passed the TACAS 21
artifact evaluation is available here [6].

The schema in Figure 2 illustrates the workflow of using dtControl, high-
lighting new features in red. Considering dtControl as a black box, it shows that
given a controller, it returns a DT representing the controller and also offers the
possibility to simulate a run of the system under the control of the DT, visualizing

3 pip is a standard package-management system used to install and manage software
packages written in Python.

332 P. Ashok et al.

dtControl

Decision Tree
Learner

Predicate
Domain

Axis-aligned
Linear

Categorical
Algebraic

Controller

SCOTS, UPPAAL
PRISM, Storm

CSV

Predicate
Selector

Entropy
Interactive
Many more

Determinizer

None
Pre/Post

Safe early stopping

MaxFreq
MinNorm
Random

Multi-label entropy

Decision Tree

C-Code
Graph (JSON, DOT)

Interactive Graph

Visualized
Simulation

User Choice
Domain

Knowledge

Fig. 2: An overview of the components of dtControl 2.0, thereby showing software
architecture and workflow. Contributions of this paper are highlighted in red.

the decisions made. The controller can be input in various formats, including
the newly supported strategy representations of the well-known probabilistic
model checkers PRISM [32] and STORM [17]. The DT is output in several machine
readable formats, and as C-code that can be directly used for executing the
controller on embedded devices. Note that this C-code consists only of nested
if-else-statements. The new graphical user interface also offers the possibility
to inspect the graph in an interactive web user interface, which even allows to
edit the DT. This means that parts of the DT can be retrained with a different
set of hyper-parameters and directly replaced. This way, one can for example
first train a determinized DT and then retrain important parts of it to be more
permissive and hence more performant for a secondary criterion. Figure 3 shows
a screenshot of the newly integrated graphical user interface.

Looking at the inner workings of dtControl, we see the three important
hyper-parameters that were already introduced in Section 2: predicate domain,
predicate selector, and determinizer. For each of these, dtControl offers various
choices, some of which were newly added for version 2.0. Most prominently, the
user now has the possibility to directly influence both the predicate domain and
the predicate selector, by providing domain knowledge and thus also additional
predicates, or by directly using the interactive predicate selection. More details
on the predicate domain and how domain knowledge is specified can be found in
Section 4. The different ways to select predicates, especially the new interactive
mode, are the topic of Section 5. Our new insights into determinization are

dtControl 2.0 333

Fig. 3: Screenshot of the new web-based graphical user interface. It offers a sidebar for
easy selection of the controller file and hyper-parameters, an experiments table where
benchmarks can be queued, and a results table in which some statistics of the run are
provided. Moreover, users can click on the ‘eye’ icon in the results table to inspect the
built decision tree.

described in Section 6. To support the user in finding a good set of hyper-
parameters, dtControl also offers extensive benchmarking functionality, allowing
to specify multiple variants and reporting several statistics.

Technical notes. dtControl 2.0 is written in Python 3 following an architec-
ture closely resembling the schema in Figure 2. The modularity, along with our
technical documentation, allows users to easily extend the tool. For example,
supporting another input format is only a matter of adding a parser.

dtControl 2.0 works with Python version 3.7.9 or higher. The core of the
tool which runs the learning algorithms requires numpy [23], pandas [36] and
scikit-learn [41] and optionally the library for the heuristic OC1 [39]. The
algebraic predicates rely on SymPy [37] and SciPy [48]. The web user interface is
powered by Flask [1] and D3.js [9].

4 Predicate domain

The domain of the predicates that we allow in the inner nodes of the DT is of key
importance. As we saw in the motivating Example 1, allowing for more expressive
predicates can dramatically reduce the size of the DT.

We assume that our state space is structured, i.e. it is a Cartesian product of
the domain of the variables (S = S1 × . . .× Sn). We use si to refer to the i-th
state-variable of a state s ∈ S. In Example 2, the three state-variables are the
velocity of our car, the velocity of the front car, and the distance.

334 P. Ashok et al.

We first give an overview of the predicate domains dtControl 2.0 supports,
before discussing the details of the new ones.

Axis-aligned predicates [38] have the form si ≤ c, where c is a rational constant.
This is the easiest form of predicates, and they have the advantage that there are
only finitely many, as the domain of every state-variable is bounded. However,
they are also least expressive.

Linear predicates (also known as oblique [39]) have the form
∑

i si · ai ≤ c,
where ai are rational coefficients and c is a rational constant. They have the
advantage that they are able to combine several state-variables which can lead to
saving linearly many splits, cf. [29, Fig. 5.2]. The disadvantage of these predicates
is that there are infinitely many choices of coefficients, which is why heuristics
were introduced to determine a good set of predicates to try out [39, 4]. However,
heuristically determined coefficients and combinations of variables can impede
explainability.

Algebraic predicates have the form f(s) ≤ c, where f is any mathematical
function over the state-variables and c is a rational constant. It can use elementary
functions such as exponentiation, log, or even trigonometric functions. Example
1 illustrated how this can reduce the size and improve explainability. More
discussion of these predicates follows in Section 4.2.

Categorical predicates are special predicates for categorical (enumeration-
type) state-variables such as colour or protocol state, and they are discussed in
Section 4.1.

4.1 Categorical predicates

Categorical state-variables do not have a numeric domain, but instead are un-
ordered and qualitative. They commonly occur in the models coming from the
tools PRISM and STORM.

Example 3. Let one state-variable be ‘colour’ with the domain {red, blue, green}.
A simple approach is to assign numbers to every value, e.g. red = 0, blue =
1, green = 2, and treat this variable as numeric. However, a resulting predi-
cate such as colour ≤ 2 is hardly explainable and additionally depends on the
assignment of numbers. For example, it would not be possible to single out
colour ∈ {red, green} using a single predicate, given the aforementioned numeric
assignment. Using linear predicates, for example adding half of the colour to
some other state-variable, is even more confusing and dependent on the numeric
assignment. 4

Instead of treating the categorical variables using their numeric encodings,
dtControl 2.0 supports specialized algorithms from literature, see e.g. [43, 44].
They work by labelling an inner node with a categorical variable and performing
a (possibly non-binary) split according to the value of the categorical variable.
The node can have at most one child for every possible value of the categorical
variable, but it can also group together similarly behaving values, see Figure 4 for
an example. For the grouping, dtControl 2.0 uses the greedy algorithm from [44,

dtControl 2.0 335

Chapter 7] called attribute-value grouping. It proceeds by first considering to
have a branch for every single possible value of the categorical variable, and then
merging branches as long as it improves the predicate; see [5, Appendix C] for
the full pseudocode of the algorithm.

In our experiments we found that the grouping algorithm sometimes did not
merge branches in cases where it would actually have made the DT smaller or more
explainable. This is because the resulting impurity, the goodness of a predicate,
could be marginally worse due to floating-point inaccuracies. Thus, we introduce
tolerance, a bias parameter in favour of larger value groups. When checking
whether to merge branches, we do not require the impurity to improve, but we
allow it to become worse up to our tolerance. Setting tolerance to 0 corresponds
exactly to the algorithm from [44], while setting tolerance to ∞ results in merging
branches until only two remain, thus producing binary predicates.

To allow dtControl 2.0 to use categorical predicates, the user has to provide
a metadata file, which tells the tool which variables are categorical and which
are numeric; see [5, Appendix B.1] for an example.

4.2 Algebraic predicates

It is impossible to try out every mathematical expression over the state-variables,
and it would also not necessarily result in an explainable DT. Instead, we allow
the user to enter domain knowledge to suggest templates of predicates that
dtControl 2.0 should try. See [5, Appendix B.2] for a discussion of the format
in which domain knowledge can be entered.

Providing the basic equations that govern the model behaviour can already
help in finding a good predicate, and is easy to do for a domain expert. Addition-
ally, dtControl 2.0 offers several possibilities to further exploit the provided
domain knowledge:

Firstly, the given predicates need not be exact, but may contain coefficients.
These coefficients can be both completely arbitrary or may come from a finite
set suggested by the user. For coefficients with finite domain, dtControl 2.0

tries all possibilities; for arbitrary coefficients, it uses curve fitting to find a good

color

{c}{a} {b}

br g

(a)

color

{b}{a}

br, g

(b)

Fig. 4: Two examples of a categorical split. On the left, all possible values of the state-
variable colour lead to a different child in a non-binary split. On the right, red and
green lead to the same child, which is a result of grouping similar values together.

336 P. Ashok et al.

value. For example, the user can specify a predicate such as d+ (vo− vf) · c0 > c1
with c0 being an arbitrary rational number and c1 ∈ {0, 5, 10}.

Secondly, the interactive predicate selection (see Section 5) allows the user
to try out various predicates at once and observe their respective impurity in
the current node. The user can then choose among them as well as iteratively
suggest further predicates, inspired by those where the most promising results
were observed.

Thirdly, the decisions given by a DT can be visualized in the simulator,
possibly leading to better understanding the controller. Upon gaining any further
insight, the user can directly edit any subtree of the result, possibly utilizing the
interactive predicate selection again.

5 Predicate selection

The tool offers a range of options to affect the selection of the most appropriate
predicate from a given domain.

Impurity measures: As mentioned in Section 2, the predicate selection is typically
based on the lowest impurity induced. The most commonly used impurity mea-
sure (and the only one the first version of dtControl supported) is Shannon’s
entropy [46]. In dtControl 2.0, a number of other impurity measures from the
literature [43, 13, 25, 39, 3] are available. However, our results indicate that
entropy typically performs the best, and therefore it is used as the default option
unless the user specifies otherwise. Due to lack of space, we delegate the details
and experimental comparison between the impurity measures to [5, Appendix D].

Priorities: dtControl 2.0 also has the new functionality to assign priorities to
the predicate generating algorithms. Priorities are rational numbers between 0
and 1. The impurity of every predicate is divided by the priority of the algorithm
that generated it. For example, a user can use axis-aligned splits with priority
1 and a linear heuristic with priority 1/2. Then the more complicated linear
predicate is only chosen if it is at least twice as good (in terms of impurity) as
the easier-to-understand axis-aligned split. A predicate with priority 0 is only
considered after all predicates with non-zero priority have failed to split the data.
This allows the user to give just a few predicates from domain knowledge, which
are then strictly preferred to the automatically generated ones, but which need
not suffice to construct a complete DT for the controller.

Interactive predicate selection: dtControl 2.0 offers the user the possibility
to manually select the predicate in every split. This way, the user can prefer
predicates that are explainable over those that optimize the impurity.

The screenshot of the interactive interface in [5, Appendix F] shows the
information that dtControl 2.0 provides. The user is given some statistics
and metadata, e.g. minimum, maximum and step size of the state-variables in
the current node, a few automatically generated predicates for reference and all

dtControl 2.0 337

predicates generated from domain knowledge. The user can specify new predicates
and is immediately informed about their impurity. Upon selecting a predicate,
the split is performed and the user continues in the next node.

The user can also first construct a DT using some automatic algorithm
and then restart the construction from an arbitrary node using the interactive
predicate selection to handcraft an optimized representation, or at any point
decide that the rest of the DT should be constructed automatically.

6 New insights about determinization

In our context, determinization denotes a procedure that, for some or all states,
picks a subset of the allowed actions. Formally, a determinization function δ
transforms a controller C into a “more determinized” C ′, such that for all states
s ∈ C we have ∅ (C ′(s) ⊆ C(s). This reduces the permissiveness, but often
also reduces the size. Note that, for safety controllers, this always preserves
the original guarantees of the controller. For other (non-safety) controllers, see
Remark 1.

dtControl 2.0 supports three different general approaches to determinizing a
controller: pre-processing, post-processing and safe early stopping. Pre-processing
commits to a single determinization before constructing the DT. Post-processing
prunes the DT after its construction, e.g. safe pruning in [7]. The basic idea of
safe early stopping is already described in Section 2: if all states agree on at
least one action, then instead of continuing to split the controller, stop early
and return a leaf node with that common action. Alternatively, to preserve more
permissiveness, one can return not only a single common action, but all common
actions; formally, return the maximum set B such that for all states s in the
node B ⊆ C(s).

The results of [4] show that both pre-processing and post-processing are
outperformed by an on-the-fly approach based on safe early stopping. This is
because pre-processing discards a lot of information that could have been useful
in the DT construction and post-processing can only affect the bottom-most
nodes of the resulting DT, but usually not those close to the root.

We now give a new view on safe early stopping approaches for determinizing
a controller that allows us to generalize the techniques of [4], reducing the size of
the resulting DTs even more.

Example 4. Consider the following controller: C(s1) = {a, b, c}, C(s2) = {a, b, d},
C(s3) = {x, y}. All three states map to different sets of actions, and thus an
impurity measure like entropy penalizes grouping s1 and s2 the same as grouping
s1 and s3. However, if determinization is allowed, grouping s1 and s2 need not be
penalized at all, as these states agree on some actions, namely a and b. Grouping
s1 and s2 into the same child node thus allows the algorithm to stop early at that
point and return a leaf node with {a, b}, in contrast to grouping s1 and s3. 4

Knowing that we want to determinize by safe early stopping affects the
predicate selection process. Intuitively, sets of states are more homogeneous the

338 P. Ashok et al.

more actions they share. We want to take this into account when calculating the
impurity of predicates. One way to do this would be to calculate the impurity of
all possible determinization functions and pick the best one. This, however, is
infeasible, hence we propose the heuristic of multi-label impurity measures. These
impurity measures do not only consider the full set of allowed actions in their
calculation, but instead they depend on the individual actions occurring in the
set. This allows the DT construction to pick better predicates, namely those
whose resulting children are more likely to be determinizable. In [5, Appendix E]
we formally derive the multi-label variants of entropy and Gini-index.

To conclude this section, we point out the key difference between the new
approach of multi-label impurity measures and the previous idea that was intro-
duced in [4]. The approach from [4] does not evaluate the impurity of all possible
determinization functions, but rather picks a smart one – that of maximum
frequency (MaxFreq) – and evaluates according to that. MaxFreq determinizes in
the following way: for every state, it selects from the allowed actions that action
occurring most frequently throughout the whole controller. This way, many states
share common actions. This is already better than pre-processing, as it does not
determinize the controller a priori, but rather considers a different determinization
function at every node. However, in every node we calculate the impurity for
several different predicates, and the optimal choice of determinization function
depends on the predicate. Thus, choosing a single determinization function for
a whole node is still too coarse, as it is fixed independent of the considered
predicate. We illustrate the arising problem in the following Example 5.

x

y

0 1 2 3
0

1

2

3
{a, c}

{a, c}

{a}

{b, c}

{b, c}

{b}

Fig. 5: A simple example of a dataset that is split suboptimally by the MaxFreq approach
from [4], but optimally by the new multi-label entropy approach.

Example 5. Figure 5 shows a simple controller with a two-dimensional state
space. Every point is labeled with its set of allowed actions.

As c is the most frequent action, MaxFreq determinizes the states (1, 2),
(1, 3), (2, 2) and (2, 3) to action c. Hence the red split (predicate y < 1.5) is
considered optimal, as it groups together all four states that map to c. The blue

dtControl 2.0 339

split (predicate x < 1.5) is considered suboptimal, as then the data still looks
very heterogeneous. So, using MaxFreq, we need two splits for this controller;
one to split of all the c’s and one to split the two remaining states.

However, it is better to first choose a predicate and then determine a fitting
determinization function. When calculating the impurity of the blue split, we can
choose to determinize all states with x = 1 to {a} and all states with x = 2 to
{b}. Thus, in both resulting sub-controllers the impurity is 0 as all states agree on
at least one action. This way, one split suffices to get a complete DT. Multi-label
impurity measures notice when labels are shared between many (or all) states in
a sub-controller, and thus they allow to prefer the optimal blue split. 4

7 Experiments

Experimental setup. We compare three approaches: BDDs, the first version of
dtControl from [4] and dtControl 2.0. For BDDs4 the variable ordering is
important, so we report the smallest of 20 BDDs that we constructed by starting
with a random initial variable ordering and reordering until convergence. To
determinize BDDs, we used the pre-processing approach, 10 times with the mini-
mum norm and 10 times with MaxFreq. For the previous version of dtControl,
we picked the smaller of either a DT with only axis-aligned predicates or a DT
with linear predicates using the logistic regression heuristic that was typically
best in [4]. Determinization uses safe early stopping with the MaxFreq approach.
For dtControl 2.0, we use the multi-label entropy based determinization and
utilize the categorical predicates for the case studies from probabilistic model
checking. We ran all experiments on a server with operating system Ubuntu
19.10, a 2.2GHz Intel(R) Xeon(R) CPU E5-2630 v4 and 250 GB RAM.

Comparing determinization techniques on cyber-physical systems. Table 1 shows
the sizes of determinized BDDs and DTs on the permissive controllers of the
tools SCOTS and Uppaal Stratego that were already used in [4]. We see that the
new determinization approach is strictly better than the previous one, with only
two DTs being of equal size, as the result of the previous method was already
optimal. With the exception of the case studies helicopter and truck trailer where
BDDs are comparable or slightly better, both approaches using DTs are orders
of magnitude smaller than BDDs or an explicit representation of the state-action
mapping.

Case studies from probabilistic model checking. For Table 2, we used case studies
from the quantitative verification benchmark set [24], which includes models from
the PRISM benchmark suite [33]. Note that these case studies contain unordered
enumeration-type state-variables for which we utilize the new categorical predi-
cates. To get the controllers, we solved the case study with STORM and exported
the resulting controller. This export already eliminates unreachable states. The

4 Our implementation of BDDs is based on the dd python library https://github.

com/tulip-control/dd.

340 P. Ashok et al.

Table 1: Controller sizes of different determinized representations of the controllers
from SCOTS and Uppaal Stratego. “States” is the number of states in the controller,
“BDD” the number of nodes of the smallest BDD from 20 tries, dtControl 1.0 [4] the
smallest DT the previous version of dtControl could generate and dtControl 2.0 the
smallest DT the new version can construct. “TO” denotes a failure to produce a result
in 3 hours. The smallest numbers in each row are highlighted.

Case study States BDD dtControl 1.0 dtControl 2.0

cartpole 271 127 11 7

10rooms 26,244 128 7 7

helicopter 280,539 870 221 123

cruise-latest 295,615 1,448 3 3

dcdc 593,089 381 9 5

truck trailer 1,386,211 18,186 42,561 31,499

traffic 30m 16,639,662 TO 127 97

previous version of dtControl was not able to handle these case studies, so we
only compare dtControl 2.0 to BDDs.

Table 2 shows that also for case studies from probabilistic model checking, DTs
are a good way of representing controllers. The DT is the smallest representation
on 13 out of 19 case studies, often reducing the size by an order of magnitude
compared to BDDs or the explicit representation. On 3 case studies, BDDs are
smallest, and on 2 case studies, both the DT and the BDD fail to reduce the size
compared to the explicit representation. This happens if there are many different
actions and thus states cannot be grouped together. A worst case example of this
is a model where every state has a different action; then, a DT would have as
many leaf nodes as there are states, and hence twice as many nodes in total.

Remark 2. Note that the controllers exported by STORM are deterministic, so no
determinization approach can be utilized in the DT construction. We conjecture
that if a permissive strategy was exported, dtControl 2.0 would benefit from
the additional information and be able to reduce the controller size further as for
the cyber-physical systems.

8 Conclusion

We have presented a radically new version of the tool dtControl for representing
controllers by decision trees. The tool now features a graphical user interface,
allowing both experts and non-experts to conveniently interact with the decision
tree learning process as well as the resulting tree. There is now a range of
possibilities on how the user can provide additional information. The algebraic
predicates provide the means to capture the (often non-linear) relationships from
the domain knowledge. The categorical predicates together with the interface
to probabilistic model checkers allow for efficient representation of strategies for
Markov decision processes, too. Finally, the more efficient determinization yields

dtControl 2.0 341

Table 2: Controller sizes of different representations of controllers from the quantitative
verification benchmark set [24], i.e. from the tools STORM and PRISM. “States” is the
number of states in the controller, “BDD” the number of nodes of the smallest BDD of
20 tries and dtControl 2.0 the smallest DT we could construct. The smallest numbers
in each row are highlighted.

Case study States BDD dtControl 2.0

triangle-tireworld.9 48 51 23

pacman.5 232 330 33

rectangle-tireworld.11 241 498 373

philosophers-mdp.3 344 295 181

firewire abst.3.rounds 610 61 25

rabin.3 704 303 27

ij.10 1,013 436 753

zeroconf.1000.4.true.correct max 1,068 386 63

blocksworld.5 1,124 3,985 855

cdrive.10 1,921 5,134 2,401

consensus.2.disagree 2,064 138 67

beb.3-4.LineSeized 4,173 913 59

csma.2-4.some before 7,472 1,059 103

eajs.2.100.5.ExpUtil 12,627 1,315 153

elevators.a-11-9 14,742 6,750 9,883

exploding-blocksworld.5 76,741 34,447 1,777

echoring.MaxOffline1 104,892 43,165 1,543

wlan dl.0.80.deadline 189,641 5,738 2,563

pnueli-zuck.5 303,427 50,128 150,341

very small (possibly non-performant) controllers, which are particularly useful
for debugging the model.

We see at least two major promising future directions. Firstly, synthesis
of predicates could be made more automatic using mathematical reasoning on
the domain knowledge, such as substituting expressions with a certain unit of
measurement into other domain equations in the places with the same unit of
measurement, e.g. to plug difference of two velocities into an equation for velocity.
Secondly, one could transform the controllers into possibly entirely different
controllers (not just less permissive) so that they still preserve optimality (or
yield ε-optimality) but are smaller or simpler. Here, a closer interaction loop
with the model checkers might lead to efficient heuristics.

342 P. Ashok et al.

References

1. Flask web development: developing web applications with python. https://pypi.
org/project/Flask/, accessed: 14.10.2020

2. Adadi, A., Berrada, M.: Peeking inside the black-box: A survey on explainable
artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

3. Ashok, P., Brázdil, T., Chatterjee, K., Křet́ınský, J., Lampert, C.H., Toman, V.:
Strategy representation by decision trees with linear classifiers. In: QEST. Lecture
Notes in Computer Science, vol. 11785, pp. 109–128. Springer (2019)

4. Ashok, P., Jackermeier, M., Jagtap, P., Křet́ınský, J., Weininger, M., Zamani, M.:
dtcontrol: decision tree learning algorithms for controller representation. In: HSCC.
pp. 17:1–17:7. ACM (2020)

5. Ashok, P., Jackermeier, M., Křet́ınský, J., Weinhuber, C., Weininger, M., Yadav,
M.: dtControl 2.0: Explainable strategy representation via decision tree learning
steered by experts. CoRR abs/2101.07202 (2021)

6. Ashok, P., Jackermeier, M., Křet́ınský, J., Weinhuber, C., Weininger, M., Yadav, M.:
dtControl 2.0: Explainable strategy representation via decision tree learning steered
by experts (TACAS 21 artifact) (Jan 2021). https://doi.org/10.5281/zenodo.4437169

7. Ashok, P., Křet́ınský, J., Larsen, K.G., Coënt, A.L., Taankvist, J.H., Weininger,
M.: SOS: safe, optimal and small strategies for hybrid Markov decision processes.
In: QEST. Lecture Notes in Computer Science, vol. 11785, pp. 147–164. Springer
(2019)

8. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A.,
Somenzi, F.: Algebraic decision diagrams and their applications. Formal Methods
Syst. Des. 10(2/3), 171–206 (1997)

9. Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE transactions
on visualization and computer graphics 17(12), 2301–2309 (2011)

10. Boutilier, C., Dearden, R., Goldszmidt, M.: Exploiting structure in policy construc-
tion. In: IJCAI. pp. 1104–1113. Morgan Kaufmann (1995)

11. Brázdil, T., Chatterjee, K., Chmelik, M., Fellner, A., Křet́ınský, J.: Counterexample
explanation by learning small strategies in Markov decision processes. In: CAV (1).
Lecture Notes in Computer Science, vol. 9206, pp. 158–177. Springer (2015)

12. Brázdil, T., Chatterjee, K., Křet́ınský, J., Toman, V.: Strategy representation by
decision trees in reactive synthesis. In: TACAS (1). Lecture Notes in Computer
Science, vol. 10805, pp. 385–407. Springer (2018)

13. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression
Trees. Wadsworth (1984)

14. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986)

15. Cimatti, A., Roveri, M., Traverso, P.: Automatic obdd-based generation of universal
plans in non-deterministic domains. In: AAAI/IAAI. pp. 875–881. AAAI Press /
The MIT Press (1998)

16. David, A., Jensen, P.G., Larsen, K.G., Mikucionis, M., Taankvist, J.H.: Uppaal
stratego. In: TACAS. Lecture Notes in Computer Science, vol. 9035, pp. 206–211.
Springer (2015)

17. Dehnert, C., Junges, S., Katoen, J., Volk, M.: A storm is coming: A modern
probabilistic model checker. In: CAV (2). Lecture Notes in Computer Science, vol.
10427, pp. 592–600. Springer (2017)

18. Della Penna, G., Intrigila, B., Lauri, N., Magazzeni, D.: Fast and compact encoding
of numerical controllers using obdds. In: Cetto, J.A., Ferrier, J.L., Filipe, J. (eds.)

dtControl 2.0 343

Informatics in Control, Automation and Robotics: Selcted Papers from the Interna-
tional Conference on Informatics in Control, Automation and Robotics 2008, pp.
75–87. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

19. Frehse, G., Guernic, C.L., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: Spaceex: Scalable verification of hybrid systems.
In: CAV. Lecture Notes in Computer Science, vol. 6806, pp. 379–395. Springer
(2011)

20. Fujita, M., McGeer, P.C., Yang, J.C.: Multi-terminal binary decision diagrams:
An efficient data structure for matrix representation. Formal Methods Syst. Des.
10(2/3), 149–169 (1997)

21. Garg, P., Neider, D., Madhusudan, P., Roth, D.: Learning invariants using decision
trees and implication counterexamples. In: POPL. pp. 499–512. ACM (2016)

22. Girard, A.: Low-complexity quantized switching controllers using approximate
bisimulation. CoRR abs/1209.4576 (2012)

23. Harris, C.R., Millman, K.J., van der Walt, S., Gommers, R., Virtanen, P., Courna-
peau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S.,
van Kerkwijk, M.H., Brett, M., Haldane, A., del Ŕıo, J.F., Wiebe, M., Peterson, P.,
Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke,
C., Oliphant, T.E.: Array programming with numpy. CoRR abs/2006.10256
(2020)

24. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quan-
titative verification benchmark set. In: TACAS (1). Lecture Notes in Computer
Science, vol. 11427, pp. 344–350. Springer (2019)

25. Heath, D.G., Kasif, S., Salzberg, S.: Induction of oblique decision trees. In: Proceed-
ings of the 13th International Joint Conference on Artificial Intelligence. Chambéry,
France, August 28 - September 3, 1993. pp. 1002–1007 (1993)

26. Hoey, J., St-Aubin, R., Hu, A.J., Boutilier, C.: SPUDD: stochastic planning using
decision diagrams. In: UAI. pp. 279–288. Morgan Kaufmann (1999)

27. Hyafil, L., Rivest, R.L.: Constructing optimal binary decision trees is NP-complete.
Inf. Process. Lett. 5(1), 15–17 (1976)

28. Ittner, A., Schlosser, M.: Non-linear decision trees - NDT. In: ICML. pp. 252–257.
Morgan Kaufmann (1996)

29. Jackermeier, M.: dtControl: Decision Tree Learning for Explainable Controller
Representation. Bachelor’s thesis, Technische Universität München (2020)

30. Jr., M.M., Davitian, A., Tabuada, P.: PESSOA: A tool for embedded controller
synthesis. In: CAV. Lecture Notes in Computer Science, vol. 6174, pp. 566–569.
Springer (2010)

31. Kiesbye, J.: Private Communication (2020)
32. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic

real-time systems. In: CAV. Lecture Notes in Computer Science, vol. 6806, pp.
585–591. Springer (2011)

33. Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite. In:
QEST. pp. 203–204. IEEE Computer Society (2012)

34. Larsen, K.G., Mikucionis, M., Taankvist, J.H.: Safe and optimal adaptive cruise
control. In: Correct System Design. Lecture Notes in Computer Science, vol. 9360,
pp. 260–277. Springer (2015)

35. Luttenberger, M., Meyer, P.J., Sickert, S.: Practical synthesis of reactive systems
from LTL specifications via parity games. Acta Informatica 57(1-2), 3–36 (2020)

36. Wes McKinney: Data Structures for Statistical Computing in Python. In: Stéfan
van der Walt, Jarrod Millman (eds.) Proceedings of the 9th Python in Science
Conference. pp. 56 – 61 (2010). https://doi.org/10.25080/Majora-92bf1922-00a

344 P. Ashok et al.

37. Meurer, A., Smith, C.P., Paprocki, M., Cert́ık, O., Kirpichev, S.B., Rocklin, M.,
Kumar, A., Ivanov, S., Moore, J.K., Singh, S., Rathnayake, T., Vig, S., Granger,
B.E., Muller, R.P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F.,
Curry, M.J., Terrel, A.R., Roucka, S., Saboo, A., Fernando, I., Kulal, S., Cimrman,
R., Scopatz, A.M.: Sympy: symbolic computing in python. PeerJ Comput. Sci. 3,
e103 (2017)

38. Mitchell, T.M.: Machine learning. McGraw Hill series in computer science, McGraw-
Hill (1997)

39. Murthy, S.K., Kasif, S., Salzberg, S., Beigel, R.: OC1: A randomized induction of
oblique decision trees. In: AAAI. pp. 322–327. AAAI Press / The MIT Press (1993)

40. Neider, D., Markgraf, O.: Learning-based synthesis of safety controllers. In: FMCAD.
pp. 120–128. IEEE (2019)

41. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

42. Pyeatt, L.D., Howe, A.E., et al.: Decision tree function approximation in reinforce-
ment learning. In: Proceedings of the third international symposium on adaptive
systems: evolutionary computation and probabilistic graphical models. vol. 2, pp.
70–77. Cuba (2001)

43. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
44. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
45. Rungger, M., Zamani, M.: SCOTS: A tool for the synthesis of symbolic controllers.

In: HSCC. pp. 99–104. ACM (2016)
46. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(4),

623–656 (1948)
47. St-Aubin, R., Hoey, J., Boutilier, C.: APRICODD: approximate policy construction

using decision diagrams. In: NIPS. pp. 1089–1095. MIT Press (2000)
48. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau,

D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S., Brett, M.,
Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson,
E., Carey, C.J., Polat, I., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald,
A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy: Scipy 1.0-fundamental
algorithms for scientific computing in python. CoRR abs/1907.10121 (2019)

49. Zapreev, I.S., Verdier, C., Jr., M.M.: Optimal symbolic controllers determinization
for BDD storage. In: ADHS 2018. IFAC-PapersOnLine, vol. 51, pp. 1–6. Elsevier
(2018). https://doi.org/10.1016/j.ifacol.2018.08.001

dtControl 2.0 345

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License(https://creativecommons.org/licenses/by/4.

0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

H Guaranteed Trade-Offs in Dynamic
Information Flow Tracking Games (CDC
2021)

©2021 IEEE. Reprinted, with permission, from Maximilian Weininger, Kush Grover,
Shruti Misra, and Jan Kretinsky. “Guaranteed Trade-Offs in Dynamic Information Flow
Tracking Games”. IEEE, Conference Proceedings: 2021 IEEE 60th Conference on Deci-
sion and Control (CDC), December/2021

This is an exact reprinting of the accepted version of the following paper which has been
published as a peer reviewed conference paper.

Maximilian Weininger, Kush Grover, Shruti Misra, and Jan Kretinsky. “Guar-
anteed Trade-Offs in Dynamic Information Flow Tracking Games” In: CDC.
IEEE, 2021, pp. 3786-3793. doi: 10.1109/CDC45484.2021.9683447

Summary

We consider security risks in the form of advanced persistent threats (APTs) and their
detection using dynamic information flow tracking (DIFT). We model the tracking and
the detection as a stochastic game between the attacker and the defender. Compared to
the state of the art, our approach applies to a wider set of scenarios with arbitrary (not
only acyclic) information-flow structure. Moreover, multidimensional rewards allow us to
formulate and answer questions related to trade-offs between resource efficiency of the
tracking and efficacy of the detection. Finally, our algorithm provides results with proba-
bly approximately correct (PAC) guarantees, in contrast to previous (possibly arbitrarily
imprecise) learning-based approaches.

For more details on this publication, we refer to Chapter 7 of the main body.

309

H Guaranteed Trade-Offs in Dynamic Information Flow Tracking Games (CDC 2021)

Contribution

Contribution of Maximilian Weininger

Development and conceptual design of the research project 95%
Discussion and development of ideas 75%
Composition and revision of the manuscript 80%
Proofs 80%
Implementation 20%
Experimental evaluation 10%

310

Home Help Live Chat Sign in Create Account

© 2022 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Terms and Conditions

RightsLink
Guaranteed Trade-O�s in Dynamic Information Flow Tracking Games

Conference Proceedings: 2021 60th IEEE Conference on Decision and Control (CDC)

Author: Maximilian Weininger

Publisher: IEEE

Date: 14 Dec. 2021

Copyright © 2021, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., �gure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted �gure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Micro�lms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at customercare@copyright.com

Rightslink® by Copyright Clearance Center https://s100.copyright.com/AppDispatchServlet#formTop

1 of 1 5/31/22, 15:50

Guaranteed Trade-Offs in Dynamic Information Flow Tracking Games

Maximilian Weininger∗, Kush Grover∗, Shruti Misra and Jan Křetı́nský

Abstract— We consider security risks in the form of advanced
persistent threats (APTs) and their detection using dynamic
information flow tracking (DIFT). We model the tracking and
the detection as a stochastic game between the attacker and
the defender. Compared to the state of the art, our approach
applies to a wider set of scenarios with arbitrary (not only
acyclic) information-flow structure. Moreover, multidimensional
rewards allow us to formulate and answer questions related
to trade-offs between resource efficiency of the tracking and
efficacy of the detection. Finally, our algorithm provides results
with probably approximately correct (PAC) guarantees, in
contrast to previous (possibly arbitrarily imprecise) learning-
based approaches.

I. INTRODUCTION

In 2013, Target Corporation’s network was breached,
which resulted in 40 million credit and debit card numbers
along with 70 million records of personal information being
stolen. Attackers entered the network by compromising a
third party vendor and collected sensitive information from
Target’s network over the course of two weeks, while re-
maining undetected [22]. Such targeted attacks in which the
attacker gains illegitimate access to a system and remains
undetected for a long period of time are known as advanced
persistent threats (APTs). APTs use prolonged and stealthy
incursion techniques, which are customized to specific targets
in order to gather confidential data and sabotage critical
infrastructure. They are methodically designed to bypass
conventional security mechanisms, which makes them dif-
ficult to detect. APTs have emerged as a security threat
to many organizations and industries, including national
defense, manufacturing, and the financial industry [7].

Although detecting APTs is difficult, their interaction with
the system during an attack creates information flows such as
data-flow and control-flow commands, which are recorded in
the system log file. Consequently, the recorded information
flows can be analysed, leading to a feasible method to detect
the presence of APTs. Dynamic Information Flow Tracking
(DIFT) is a widely used mechanism to detect APTs in
this manner [23]. DIFT operates by “tagging” suspicious
input/output data channels, tracing the propagation of the

∗These authors contributed equally to this work.
This research was funded in part by the German Research Founda-

tion (DFG) projects 383882557 Statistical Unbounded Verification (SUV),
427755713 Group-By Objectives in Probabilistic Verification (GOPro), and
the research training group GRK 2428 Continuous Verification of Cyber-
Physical Systems (ConVeY).

K. Grover, J. Křetı́nský and M. Weininger work at the Department of
Informatics, Technical University of Munich, 80333 Munich, Germany. E-
mail: firstname.lastname@tum.de

S. Misra works at the Department of Electrical and Computer Engi-
neering, University of Washington, Seattle, Washington, United States of
America. E-mail: shrm145@uw.edu

tagged information through the system and then performing
security analysis on these flows to detect attacks. However,
this introduces memory and performance costs on the system,
especially when it involves tracking and analyzing a large
number of innocuous flows [13]. Therefore, our aim is to op-
timally select which system processes to perform the security
analysis on, for effective and resource-efficient detection.

This paper extends prior work conducted on modelling
a cost effective DIFT-based APT detection mechanism [16].
In [16], the strategic interactions between APT and DIFT are
modeled as a game. The game is played on the information
flow graph (IFG). The position of the information on the IFG
along with the actions of the attacker and defender yield a
probability distribution on the transitions in the game. A key
aspect of this model is that the probability of a successful
attack by the APT and an effective defense by DIFT depend
on the actions of both the defender and the attacker, making
the game concurrent. Further, the transition probabilities are
determined by the DIFT’s rate of false negatives, which
varies over the IFG nodes and is unknown in practical scenar-
ios. Therefore, the game is of incomplete information with,
moreover, asymmetric information structure since DIFT is
not capable of distinguishing between malicious and benign
information flows. Finally, as the game captures the trade-off
between DIFT’s resource efficiency and detection effective-
ness, the game is non-zero-sum. Altogether, the interaction
was modelled as a non-zero-sum concurrent stochastic game
with unknown transition probabilities. For an acyclic game,
the paper [16] proves the existence of Nash equilibria and
provides a learning-based approach to find approximate Nash
equilibria. This paper retains the characteristics of the game
in [16], but extends the work in the following dimensions:

1) Instead of a non-zero-sum game with a single-
dimensional reward function [16], we explicitly model
the problem with a multi-dimensional (zero-sum) re-
ward function. This more interpretable formulation
allows us to ask and answer questions such as “What
cost does the defender need to pay to achieve the
maximum probability of trapping the attacker?”, “What
is the highest probability to trap the attacker by a
defence cheaper than 10” or what the possible trade-
offs are. We address this by computing the achievable
vectors in a 4-dimensional-reward setting.

2) Our approach is applicable also to games with cycles.
We observe how to represent the particular concurrent
stochastic game of [16] as a turn-based stochastic
game, for which we can handle cycles. The work
of [6] gives an algorithm to compute the achievable

vectors for turn-based stochastic games with multiple
objectives.

3) In contrast to the previous learning-based solution, we
provide a guarantee on the result in the form of a
probably approximately correct (PAC) best-/worst-case
analysis. Technically, we learn confidence intervals on
the transition probabilities. The choice of probabilities
within these intervals is assigned to one of the players.
If the attacker chooses the probabilities, we obtain
the worst-case analysis; if the defender can choose
the probabilities, we obtain the best-case analysis. To
compute them, we can utilize our solution [24] to
bounded-parameter (turn-based) stochastic games.

The paper is organized as follows: In Section II we recall
the definitions of the model (concurrent dynamic information
flow tracking stochastic game) and of the multi-dimensional
objective function. Section III gives the formal problem
statement and relation to the one in [16]. In Section IV we
describe the algorithm to solve the problem step by step. Sec-
tion V discusses our implementation and experimental results
on several real-world and randomly generated case studies.

A. Related work

The application of stochastic games to model strategic in-
teractions has been well studied in the security context [26],
[15]. A dynamic multi-stage Bayesian game framework for
APT detection has been provided in [12]. References [20]
and [18] provide game-theoretic models for resource efficient
detection of APTs, where the trap locations are fixed. How-
ever, these game models are not stochastic as they assume
that the security analysis performed by DIFT is accurate and
do not consider the rate of false-positives and false-negatives
generated by the system. A stochastic model of the APT
versus DIFT game is proposed in [19], where the notion of
conditional branching is considered. Note that in [16]-[20]
the game models are concurrent, such that the defender and
attacker simultaneously select actions. Moreover, all three
game models are non-zero-sum, with a single dimensional
reward function, whereas the model proposed in this paper is
a turn-based zero-sum game with a multi-dimensional reward
function. Concurrent games are generally significantly harder
to handle than turn-based ones, e.g. [5], but our special case
can be turned into an equivalent turn-based game. For further
examples of PAC model checking, see [2], [9], [25].

II. PRELIMINARIES

In this section, we recall the basics of both concurrent
and turn-based stochastic games, as well as the specific
structure of the Dynamic information flow tracking stochastic
game (DIFT-SG). Further, we describe the multi-dimensional
objective function.

First, we establish standard notation. N and Q are the set
of all natural respectively rational numbers. For a set X , X∗

denotes the set of all finite sequences consisting of elements
of S. |X| denotes the cardinality of the set. A probability
distribution over a countable set X is a mapping d : X →
[0, 1] such that

∑
x∈X d(x) = 1. D(X) denotes the set of

all probability distributions on X . Given a vector x ∈ Qn,
we refer to its i-th component as xi, where 1 ≤ i ≤ n.

A. Stochastic games

We briefly summarize the definition of DIFT-SG
from [16]. It is a game played between two players which
are called Attacker A and Defender D. The underlying state
space is the information flow graph (IFG) of the system,
see [16, Section III.A], with the addition of special states
to indicate that the Attacker is trapped τ , has dropped out
and aborted the attack φ or has reached the destination1 and
was successful d. A play of the game moves through the
state space. In every state, the Attacker can follow an edge
of the IFG to get to a successor state and thereby closer to
the destination d. However, the Defender can decide to trap
the flow. Then with some probability the trapped-state τ is
reached, and with the remaining probability a false negative
occurs and the play moves according to Attacker’s choice.
A DIFT-SG is an instance of a concurrent SG. See Figure 1
for an example and [16, Section III-IV] for more details.

Definition 1 (Concurrent SG): A concurrent stochastic
game, e.g. [8], is a tuple (S,A,AA,AD, δ), where S is a finite
set of states and A is a finite set of actions. AA and AD are
functions S→ 2A \∅ mapping every state to a non-empty set
of available actions. δ : S× A× A→ D(S) is the transition
function which given a state and two available actions2

returns a probability distribution over successor states.
Definition 2 (DIFT-SG): In a DIFT-SG on an IFG with

nodes s0, . . . , sN (where sN = d) the state space is S =
{s0, . . . , sN−1, d, φ, τ}. For every state s ∈ {s0, . . . , sN−1},
we have AA(s) ⊆ S \ {τ}, i.e. the Attacker chooses which
state to try to reach next; the choice of successor is limited
by the information flow graph. The action to drop out is
available in every state. AD(s) = {0, 1}, where 1 denotes
trapping the flow and 0 not doing so. The transition function
is defined as follows: If the Defender does not trap, we
have δ(s, 0, s′)(s′) = 1. If the Defender traps, we have
δ(s, 1, s′)(τ) = p(s) and δ(s, 1, s′)(s′) = 1 − p(s), where
p(s) denotes the probability of trapping the Attacker in state
s, i.e. 1 minus the false negative rate. In the special states
d, φ, τ , both players only have a dummy action loop that
leads to looping in the respective state. The set of all actions
is A = (S \ {τ}) ∪ {0, 1} ∪ {loop}.

Intuitively, a concurrent SG is played by starting in some
initial state s and having both players choose an action from
their set of available ones, i.e. aD ∈ AD(s) for Defender and
aA ∈ AA(s) for Attacker. Then the game probabilistically
transitions to a successor state s′, where δ(s, aD, aA)(s′)
gives the probability of moving to s′. Choosing actions and
sampling the successor state is repeated infinitely often.

The game is concurrent, because in every state both
players pick an action and the transitions depends on both
their choices. A subclass of concurrent SGs are turn-based

1Note that the target is a state sN of the IFG, but as in previous work
we always denote it by d.

2Note that δ is not total. δ(s, a, b) is undefined if a /∈ AD(s) or b /∈
AA(s).

s0 d

φ τ

0, d

1, d 1− p(s0)

p(s0)
1, φ

0, φ

1− p(s0)
p(s0)

Fig. 1. An example of a small DIFT-SG.

SGs. There, in every state s we have either |AA(s)| = 1 or
|AD(s)| = 1, i.e. one player has a trivial choice and cannot
affect the next transition. Thus, we say it is the other players
turn. This yields a partitioning3 of the state space into states
of Attacker SA = {s ∈ S | |AD(s)| = 1} and of the Defender
SD = {s ∈ S | |AA(s)| = 1, |AD(s)| > 1}. Every turn-based
SG can be made concurrent by adding a dummy action for
the player to whom the state does not belong.

B. Semantics: Paths and strategies

The semantics of SGs is defined in the usual way by
means of paths and strategies. Intuitively, an outcome of
an SG depends on the path taken through the game graph.
When both players decide what to do in each state, i.e. they
fix a strategy, the outcome of the game only depends on
the evaluation of the probabilistic transition function. Thus,
given two strategies and an SG, we get a probability measure
over paths in the game graph.

Formally, an infinite path in an SG is an infinite sequence
ϕ = s0a0b0s1a1b1 . . . , such that for all i ∈ N we have si ∈
S, ai ∈ AD(si), bi ∈ AA(si) and δ(si, ai, bi)(si+1) > 0. A
finite path is a finite prefix of an infinite path.

A strategy (also called policy, controller or scheduler) is
a function π : (S × A × A)∗ × S → D(A), which given a
finite path ϕ = s0a0b0 . . . sn yields a probability distribution
on the actions to be taken next. We differentiate between
Attacker strategies πA(ϕ) ∈ D(AA(sn)) and Defender
strategies πD(ϕ) ∈ D(AD(sn)).

By fixing strategies of both players for an SG G with initial
state s, we obtain a probability measure PπD,πA

G,s over infinite
paths in the usual way [3, Ch. 10].

C. Objectives

An objective assigns a value to every path, and thus
provides a way to formalize the goal of the players, as they
want to either maximize or minimize this value.

A total reward objective augments the game with rewards
(also called payoffs) that are assigned to every triple of state
and actions of both players. These rewards are accumulated
along the path. Formally, a reward structure is a function r :
S×A×A→ Q. Then the total reward of an infinite path ϕ =
s0a0b0s1a1b1 . . . is given by TR(ϕ) =

∑∞
j=0 r(sj , aj , bj).

A special case of total reward objectives are reachability

3Note the corner case of states where both players only have one action:
they could be assigned to either player, but we choose to let them belong
to Attacker.

0.8 1
−1

Trapped
Cost

0.8 1
−1

Trapped
Cost

Fig. 2. Example of the set of achievable vectors.

objectives. They assign value 1 to all paths that reach a
specified target state and 0 otherwise4.

The value of an SG G with initial state s and a total reward
objective r is the expected reward that the optimal strategy of
the Defender can ensure against all strategies of the Attacker;
formally V(G, s, r) = supπD infπA EπD,πA

G,s [TR(ϕ)], where
EπD,πA
G,s is the expected value of the reward under the

probability measure PπD,πA
G,s over paths ϕ.

In this paper, we are not interested in only a single total
reward objective. Instead, we are interested in four separate
but interdependent objectives: three reachability objectives,
namely the probability to reach the destination node, dropout
state or trap state; and the cost that Defender accumulates
for trying to trap the Attacker. Hence we need to deal with
multiple objectives, see e.g. [6].

For a tuple of total reward objectives TR =
(TR1, . . . ,TRn), the set of achievable vectors is defined as

A(G, s,TR) =
{x ∈ Qn | ∃πD∀πA∀1 ≤ i ≤ n.EπD,πA

G,s [TRi(ϕ)] ≥ xi}
Intuitively, the Defender tries to maximize the value of all
total reward objectives while the attacker tries to minimize
them. A vector x is achievable if for every dimension i
Defender can guarantee that the reward is at least xi. Note
that the objectives might be partially conflicting, and thus two
vectors x1, x2 ∈ A(G, s,TR) can be incomparable. Further,
observe that Defender chooses a strategy first in both the
definition of the value as well as of the achievable vectors.
This is because we are interested in the rewards which the
Defender can guarantee against every strategy of the attacker
without knowing what to defend against. If we allowed
Defender to react to Attacker’s strategy, this could increase
the set of achievable points; however, assuming to know
what the Attacker plans is hardly a practical assumptions.
In contrast, computing what Defender can guarantee against
every strategy of the attacker gives a worst-case estimate that
can definitely be achieved.

Example 1 (Achievable vectors): As the set of achievable
vectors is a complex object, we illustrate it on the simple
DIFT-SG from Figure 1. We only consider a two-dimensional
objective, namely maximizing the probability to trap the At-
tacker and minimizing the cost. Let the trapping probability
be p(s0) = 0.8 and the cost of trapping −1.

The resulting set of achievable vectors is depicted in
Figure 2. The corners of the set are (0, 0) and (0.8,−1). The

4Formally, to transfer a reachability objective to a total reward objective,
one can add a dummy state and give the target state only one transitions
with reward 1 that certainly goes to the dummy state.

former vector is achievable by not trapping the Attacker, i.e.
not incurring any cost but also having no chance of trapping.
The latter point is achievable by trapping, paying 1 cost, but
also getting the full 0.8 probability to trap the Attacker. Any
vector on the line between the corners can be achieved by
randomizing between the two actions. Any vector to the left
and below of the line is achievable, because Defender can
actually achieve even better vectors.

III. PROBLEM STATEMENT

Given a DIFT-SG G with unknown trapping probabilities
p(s), we want to approximate the set of achievable vectors
A(G, s0,TR), where TR consists of the following four
total reward objectives: i) Reaching the trapped state τ ii)
Reaching the dropout state φ iii) Avoiding the destination
state d iv) Minimizing the cost. Our definition of achievable
vectors requires that Defender is maximizing the reward in all
dimensions. Hence some rewards are negative, e.g. instead
of minimizing the cost, Defender maximizes the negative
cost. Thus, the reward structures for the objectives are the
following: for the two reachability objectives, the reward is
1 upon entering the target. For avoiding the destination, the
reward is -1 upon entering the destination. For a triple of
state, attacker action and defender action (s, aD, aA), the
cost is 0 if aD = 0 and some given negative rational number
C(s) if aD = 1.

We comment on some differences to the problem formu-
lation in the previous paper [16] that introduced the analysis
of DIFT-SG: On the side of the model, our notion of DIFT-
SG allows for cycles in the game graph. On the side of the
objective, instead of merging all 4 dimensions of interest
(trapping, dropout, destination and cost) into a single utility
function, we have separated the goals in order to be able
to identify the trade-offs between them. Further, instead of
looking for Nash-equilibria, our work identifies the worst-
case rewards, i.e. the rewards Defender can guarantee against
any strategy of the Attacker. A point on the border of the set
of achievable vectors need not be a Nash equilibrium. Still,
for any point-wise maximal vector in the set of achievable
vectors, the Attacker cannot switch to a strategy that prevents
Defender from achieving this vector of rewards.

IV. ALGORITHM

The problem is hard for two reasons: Firstly, the trapping
probabilities are unknown. Secondly, there are no algorithms
for approximating the sets of achievable points in multi-
objective concurrent SGs5.

We propose a three step approach to solve these issues:
First, we obtain confidence intervals for the unknown trap-
ping probabilities by running simulations and then apply
bounded-parameter reasoning in order to obtain guaranteed
estimates. Second, we take advantage of the special structure

5While multi-objective concurrent (non-repeated) games are considered
already in the works of Blackwell [4] and Shapley [21] together with the
notion of approachable sets of vectors, the subsequent research has focused
mostly on equilibria rather than on algorithmics for the values, in contrast
to the single-dimensional case, cf. [10].

of the DIFT-SG and transform the concurrent SG into a turn-
based one. Third, we apply the standard algorithm for com-
puting achievable vectors in turn-based SGs, implemented in
PRISM-games [14].

Theorem 1: Given a DIFT-SG G with unknown trapping
probabilities, we can probably approximately correctly (PAC)
under- and over-approximate the set of achievable vectors
A(G, s0,TR), i.e. the approximants are correct with proba-
bility 1− δ and differ by at most ε for some δ, ε ∈ (0, 1).

In the following, we show how to construct turn-based SGs
Ĝ−c and Ĝ+c such that A(Ĝ−c, s0,TR) ⊆ A(G, s0,TR) ⊆
A(Ĝ+c, s0,TR). Theorem 1 follows by combining Lemma 1
and Lemma 2 below.

A. Step 1: Estimating unknown trapping probabilities

A DIFT-SG only exhibits probabilistic behaviour when
trapping a flow in a certain state. Thus, for every state s
we want to estimate the trapping probability p(s). We do so
by running simulations of the system, e.g. by simulating an
attack and trying to trap the attacker in state s or by analyzing
system logs. Then for every state s we get the number of
times we tried to trap the flow total(s) and the number of
times the trapping succeeded trap(s).

Based on these simulations, we give a probabilistic guar-
antee with some error tolerance δ. It guarantees that with
probability 1 − δ, i.e. unless our sampling was unlucky,
the following statement holds: by estimating every trapping
probability as the empirical average trap(s)

total(s) minus some confi-
dence width c, we ensure that we get an under-approximation
of the achievable points. Dually, by adding the confidence
width, we get an over-approximation. Note that the confi-
dence width depends on the error tolerance δ. We formalize
this claim in Lemma 1 and prove it in Appendix I.

Lemma 1 (Estimating unknown probabilities): Let the
confidence width of a state s be c(s) =

√
ln(δ/(2|S|))
−2 total(s) , where

δ ∈ (0, 1). For a DIFT-SG G, let G−c be the same SG
except that for every state s the trapping probability p(s)

is given by trap(s)
total(s) − c. Analogously we define G+c with

p(s) = trap(s)
total(s) + c. Then with probability 1− δ it holds that

for every state s:
A(G−c, s,TR) ⊆ A(G, s,TR) ⊆ A(G+c, s,TR).
Using Lemma 1, we can estimate the trapping probabilities

from the simulations in such a way that solving the obtained
SG results in a guaranteed under- or over-approximation of
the achievable vectors. Increasing the number of simulations
decreases the confidence width and thus improves the quality
of the estimates. Since we compute both an under- and
over-approximation, we can judge the error introduced by
the uncertainty on the trapping probabilities and decide
accordingly whether we need more simulations. Thus, we
have reduced the problem to solving two concurrent DIFT-
SG with known transition probabilities.

B. Step 2: Transformation to turn-based SG

We now give a way to transform a concurrent DIFT-
SG into a turn-based one. It crucially relies on the special

s s′

τ

s ŝ s′

τ

0, s′

1, s′

q(s0)
p(s0)

0,⊥

1,⊥
q(s0)

p(s0)

⊥, s′

Fig. 3. Example of the transformation from concurrent DIFT-SG to turn-
based SG. To avoid clutter, we use q(s0) = 1− p(s0)

structure of the DIFT-SG and is not applicable in general.
The key idea is depicted in Figure IV-B: for every state s
that is not one of the sinks (i.e. not τ , φ or d), we create
a copy ŝ of it. We use this to split the concurrent choice.
Defender chooses whether to trap or not in the original
state s and, if the trapping was not successful, Attacker
chooses an action in the new state ŝ afterwards. Replacing the
concurrent choice with a consecutive one gives the second
player, Attacker, more information, namely that in ŝ the
trapping was not successful. However, as we will prove, this
does not affect the possible outcomes of the game.

Formally, given a DIFT-SG G, we define its turn-based
equivalent as Ĝ = (S ∪ Ŝ,A ∪ {⊥}, ÂA, ÂD, δ̂), where
• Ŝ = {ŝ | s ∈ S\{d, φ, τ}} is a copy of all states except

the sinks.
• we add a new dummy action ⊥.
• for all states s ∈ S, we have ÂA(s) = {⊥} and

ÂD(s) = AD(s) and dually for all states ŝ ∈ Ŝ we
have ÂD(ŝ) = {⊥} and ÂA(ŝ) = AA(s).

• for s ∈ S \ {d, φ, τ} the transition function is defined
as follows6: in case of no trapping δ̂(s, 0,⊥)(ŝ) =
1; in case of trapping δ̂(s, 1,⊥)(ŝ) = 1 − p(s) and
δ̂(s, 1,⊥)(τ) = p(s). For the Attacker controlled states
ŝ ∈ Ŝ and any successor state s′ ∈ ÂA(ŝ) we have
δ̂(ŝ,⊥, s′)(s′) = 1. The transition function for the sink
states {d, φ, τ} is not changed, as anyway both players
only have dummy actions leading to a self-loop.

Lemma 2 (Transformation to turn-based SG): For some
DIFT-SG G, let Ĝ be its turn-based version. It holds for all
states s ∈ S that A(G, s,TR) = A(Ĝ, s,TR).
The proof is in Appendix II.

C. Step 3: Solving turn-based SG

An algorithm for solving turn-based SGs with a multiple
total reward objectives is described in [6] and implemented
in the well-known model checker PRISM-games [14]. The
algorithm applies a generalization of value iteration, cf. [3,
Ch. 10.6.1]. In the k-th iteration, it computes the set of
vectors achievable in k steps, see Proposition 2 in the
full version of [6]. Consequently, the algorithm converges
towards the true set of achievable points.

V. EXPERIMENTS

Our implementation builds on the code for obtaining
probability estimates from [2] and the implementation of the

6Note that we only specify all non-zero elements of the distribution. For
all other states, the transition probability is 0.

TABLE I
MODEL PROPERTIES AND RUNTIME PER CASE STUDY.

Example Size Cyclicity Time taken (s)
Random 10 No 7.78

100 No 11.90

Random 10 Yes 8.29
100 Yes 17.63

ScreenGrab 9 no 7.95

NationState 30 yes 8.40

value iteration from [6], both of which are implemented as
part of PRISM-games [14]. Our code and the results for
all case studies are available at https://github.com/
kushgrover/apt-vs-dift.

The considered benchmarks are ScreenGrab [20] and
NationState Attack [17], as well as randomly generated
graphs. Table I reports for each case study its size, whether
it contains cycles and the runtime of all three steps of our
algorithm combined, where the error tolerance was δ = 0.01
and the resulting over- and under-approximation never differ
by more than ε = 0.1. It shows that our our approach is
able to deal with both real world systems as well as larger
cyclic models in reasonable time even on a consumer grade
computer with 32 GB RAM and a 2.60 GHz CPU.

When performing the experiments, we observed the fol-
lowing interesting facts: The reward in the dropout dimension
is always 0. This makes sense, as the dropout action is under
the control of Attacker, and thus Defender can never guaran-
tee that Attacker drops out. Intuitively, since we compute the
worst-case reward, this includes the case of a very aggressive
Attacker with no intention of aborting the attack. Similarly,
we observed that the reward for trapping in a state s is never
higher than p(s). This is because we cannot guarantee that
Attacker will continue to play after the first step, and thus we
cannot aggregate more trapping probability. Intuitively, the
worst-case also includes the case of a very cautious Attacker
that immediately aborts after the first trapping attempt.

We explain the analysis of the set of achievable vectors on
the example of NationState. For the other case studies, the
results look similar. We omit the dropout dimension, which is
always 0 and display the resulting three-dimensional object
from multiple viewpoints in Figure 4. The figure shows the
achievable vectors for G−c , G and G+c, but we can barely
make out a difference between the lines, proving that our
approximations are close enough. The plots showing the
relation between cost and both destination and trapped look
as explained in Example 1. In fact, in this model Attacker
has a path of length one to the destination, so Defender only
gets the chance to trap once. For the relation between trapped
and destination, we see that (by playing trap) Defender
can achieve anything with trapping probability less than
p(s0) and probability to reach the destination less than
1 − p(s0). Note that, because of the way we defined the
reward structures, when projecting to two dimensions the
following holds: every achievable vector implies that any

.

Fig. 4. Achievable vectors of the NationState Attack case study. We give the three dimensional view as well as projections to all 2d planes. We show
the frontiers of G−c , G and G+c in red, blue and green respectively.

point below or to the left of it is also achievable.

VI. CONCLUSION

We have presented a novel solution to DIFT detection of
APTs. Compared to the state of the art, our approach applies
to a wider set of scenarios, can answer more refined ques-
tions on trade-offs between resource efficiency and detection
efficacy, and provides results with a guaranteed precision.

Note that arbitrary precision can be achieved since the
algorithm of [6] converges in the limit to the set of achievable
vectors. Moreover, for SGs without cycles, the difference
between the current approximation and the true set can be
even bounded by the criterion given in [6, Theorem 4]. If
cycles are present, we can still rely on the convergence, but
a criterion for the current difference is an interesting point
for future work. Recently, a convergent over-approximation
technique was introduced [1], giving such a criterion for
multi-dimensional reachability objective. We conjecture that
it can be extended to total reward.

REFERENCES

[1] Pranav Ashok, Krishnendu Chatterjee, Jan Kretı́nský, Maximilian
Weininger, and Tobias Winkler. Approximating values of generalized-
reachability stochastic games. In LICS, pages 102–115. ACM, 2020.

[2] Pranav Ashok, Jan Kretı́nský, and Maximilian Weininger. PAC sta-
tistical model checking for markov decision processes and stochastic
games. In CAV (1), volume 11561 of Lecture Notes in Computer
Science, pages 497–519. Springer, 2019.

[3] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT Press, 2008.

[4] D. Blackwell. An analog of the minimax theorem for vector payoffs.
Pac J Math, 6(1):1–8, 1956.

[5] Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger.
Strategy improvement for concurrent reachability and turn-based
stochastic safety games. J. Comput. Syst. Sci., 79(5):640–657, 2013.

[6] Taolue Chen, Vojtech Forejt, Marta Z. Kwiatkowska, Aistis Simaitis,
and Clemens Wiltsche. On stochastic games with multiple objectives.
In MFCS, volume 8087 of Lecture Notes in Computer Science, pages
266–277. Springer, 2013.

[7] Eric Cole. Advanced persistent threat: understanding the danger and
how to protect your organization. Newnes, 2012.

[8] Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman. Con-
current reachability games. In FOCS, pages 564–575. IEEE Computer
Society, 1998.

[9] Alex Devonport and Murat Arcak. Estimating reachable sets with
scenario optimization. In Learning for dynamics and control, pages
75–84. PMLR, 2020.

[10] Kristoffer Arnsfelt Hansen, Michal Koucký, Niels Lauritzen, Peter Bro
Miltersen, and Elias P. Tsigaridas. Exact algorithms for solving
stochastic games: extended abstract. In STOC, pages 205–214. ACM,
2011.

[11] Wassily Hoeffding. Probability inequalities for sums of bounded
random variables. Journal of the American statistical association,
58(301):13–30, 1963.

[12] Linan Huang and Quanyan Zhu. Adaptive strategic cyber defense
for advanced persistent threats in critical infrastructure networks.
SIGMETRICS Perform. Evaluation Rev., 46(2):52–56, 2018.

[13] Yang Ji, Sangho Lee, Evan Downing, Weiren Wang, Mattia Fazzini,
Taesoo Kim, Alessandro Orso, and Wenke Lee. RAIN: refinable attack
investigation with on-demand inter-process information flow tracking.
In CCS, pages 377–390. ACM, 2017.

[14] Marta Kwiatkowska, David Parker, and Clemens Wiltsche. Prism-
games 2.0: A tool for multi-objective strategy synthesis for stochastic
games. In TACAS, volume 9636 of Lecture Notes in Computer Science,
pages 560–566. Springer, 2016.

[15] Kong-wei Lye and Jeannette M. Wing. Game strategies in network
security. Int. J. Inf. Sec., 4(1-2):71–86, 2005.

[16] Shruti Misra, Shana Moothedath, Hossein Hosseini, Joey Allen, Linda
Bushnell, Wenke Lee, and Radha Poovendran. Learning equilibria in

stochastic information flow tracking games with partial knowledge. In
CDC, pages 4053–4060. IEEE, 2019.

[17] Shana Moothedath, Dinuka Sahabandu, Joey Allen, Andrew Clark,
Linda Bushnell, Wenke Lee, and Radha Poovendran. A game-
theoretic approach for dynamic information flow tracking to detect
multistage advanced persistent threats. IEEE Trans. Autom. Control.,
65(12):5248–5263, 2020.

[18] Shana Moothedath, Dinuka Sahabandu, Andrew Clark, Sangho Lee,
Wenke Lee, and Radha Poovendran. Multi-stage dynamic information
flow tracking game. In GameSec, volume 11199 of Lecture Notes in
Computer Science, pages 80–101. Springer, 2018.

[19] Dinuka Sahabandu, Shana Moothedath, Linda Bushnell, Radha
Poovendran, Joey Allen, Wenke Lee, and Andrew Clark. A game
theoretic approach for dynamic information flow tracking with condi-
tional branching. In ACC, pages 2289–2296. IEEE, 2019.

[20] Dinuka Sahabandu, Baicen Xiao, Andrew Clark, Sangho Lee, Wenke
Lee, and Radha Poovendran. DIFT games: Dynamic information flow
tracking games for advanced persistent threats. In CDC, pages 1136–
1143. IEEE, 2018.

[21] L.S. Shapley. Equilibrium points in games with vector payoffs. Nav
Res Logist Q, 6:57–61, 1959.

[22] Xiaokui Shu, Ke Tian, Andrew Ciambrone, and Danfeng Yao. Break-
ing the target: An analysis of target data breach and lessons learned.
CoRR, abs/1701.04940, 2017.

[23] G Edward Suh, Jae W Lee, David Zhang, and Srinivas Devadas.
Secure program execution via dynamic information flow tracking.
ACM Sigplan Notices, 39(11):85–96, 2004.

[24] Maximilian Weininger, Tobias Meggendorfer, and Jan Kretı́nský.
Satisfiability bounds for ω-regular properties in bounded-parameter
markov decision processes. In CDC, pages 2284–2291. IEEE, 2019.

[25] Bai Xue, Miaomiao Zhang, Arvind Easwaran, and Qin Li. PAC model
checking of black-box continuous-time dynamical systems. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst., 39(11):3944–3955,
2020.

[26] Quanyan Zhu, Andrew Clark, Radha Poovendran, and Tamer Basar.
Deceptive routing games. In CDC, pages 2704–2711. IEEE, 2012.

APPENDIX I
PROOF OF LEMMA 1

We view the simulations of trapping in a state s as a
Bernoulli sequence with success probability p(s), number of
trials total(s) and number of successes trap(s). We uniformly
distribute the allowed error probability δ over the |S| many
states. Then we use the Hoeffding bound [11, Theorem 1] to
obtain the probabilistic guarantee on the confidence intervals
around the empirical average as follows:

P
(
| trap(s)
total(s)

− p(s)| ≥ c
)
≤ 2 · e−2c2total(s)

≤ δ/|S|

In words, this application of the Hoeffding bound says that
the probability of the empirical average for a state s being
more than c away from the true trapping probability p(s)
is less than δ/|S|. Thus, the error probability over all states
is δ. Solving the inequation for the confidence width yields
c ≥

√
ln(δ/(2|S|))
−2total(s) , and thus our choice of confidence width

is correct.
Given the guaranteed confidence interval for the trap-

ping probability, we still have to prove that picking the
smallest/greatest values for all states results in an under-
/over-approximation of the achievable vectors. Intuitively, we
use that the probabilistic transitions are very simple in that
they have only two successors. Additionally, one successor
is the trap state which is clearly good for the Defender
and bad for the Attacker. Thus, to under-approximate we

pick the smallest possible trapping probability and to over-
approximate the largest one.

Formally, we apply the reasoning for bounded-parameter
SGs from [24]. We start by recalling the construction de-
scribed in their Theorem 1. Given an SG G with intervals on
the transition probabilities, their algorithm first computes the
basic feasible solution (BFS, cf. [24, Section IV.A]) of the
constraints given by the intervals for every action. Mixing
these BFS allows to imitate any valid instantiation of the
intervals. Then we can construct a new SG G′, where every
action leads to a new state; this new state has an action
for every BFS, allowing it to mimic any valid distribution.
Depending on the player the new states belong to, the
resulting modified system either over-approximates or under-
approximates the actual value. Note the following differences
between the algorithm of [24] and our setting: We consider
concurrent SG with multiple expected total rewards, while
they consider SG (cf. [24, Remark 5]) with a single omega-
regular objective. Concurrency is not a problem, as we can
introduce a new state for every pair of actions. The proof
of [24, Theorem 1] does not rely on any specific property
of omega-regular objectives, but instead only argues about
the transition function, so considering multiple total reward
objectives works completely analogous.

It remains to show that we can simplify the construction
of G′ to just replacing all transition probabilities with the
extremal values from the intervals. For ease of notation, let
p− = trap(s)

total(s) − c be the minimum value of the confidence
interval and analogously define p+.

First, observe that we know the graph structure of the
given DIFT-SG G. Since we know that all transitions where
the Defender does not trap have probability 1, we do not
need to change anything about them. If the Defender traps,
the transition has two possible successors: the trap state τ
or some other state s′. As there are only two successors, the
basic feasible solutions are very simple: the new state has one
action that goes to τ with p− and to s′ with the remaining
probability and one action that goes to τ with p+ and to s′

with the remaining probability. By mixing these actions, the
state can imitate any trapping probability between p− and
p+. However, note that, depending on the player the state
belongs to, an optimal strategy will always pick only one of
the actions. If the state belongs to the Defender, using the
action with p+ is optimal for all objectives. It increases the
probability to reach the trap state and thereby decreases the
probability to reach the target. As in the trap state no further
cost is accumulated, increasing the chances of reaching it
also serves to minimize the cost. The dropout dimension is
irrelevant, as Defender cannot guarantee any positive reward
in this dimension (see Section V for a discussion of this fact).
By the dual argumentation, if the state belongs to Attacker,
the action with probability p− is optimal. Thus, we see that
instead of surely going to the new state and then always
picking the p− action in the case of an under-approximation
(state belongs to Attacker) or the p+ action in case of
an over-approximation, we can just replace the trapping
probability on the original action with p− respectively p+.

APPENDIX II
PROOF OF LEMMA 2

In the following, let G be a DIFT-SG and Ĝ its turn-based
version. To show that the achievable vectors in both games
are equal, we use contraposition. That means we show that if
a point is not achievable in one game, it is also not achievable
in the other. We use the statement “Attacker can spoil a
vector” to say that for all Defender strategies there exists an
Attacker strategy under which the vector is not achievable.

Our goal is thus reformulated as follows: Attacker can
spoil a vector in the concurrent DIFT-SG G if and only if
Attacker can spoil it in the turn-based version Ĝ.

In order to argue about the expected total reward, we
argue about the probability space over paths induced by
the SGs and the pair of strategies. Note that there exists
a bijection between paths7 in the SGs by adding/omitting
the new dummy actions ⊥ and the new state ŝ. A path
ϕ = s0d0a0s1 . . . in the concurrent DIFT-SG can be mapped
to a path ϕ̂ = s0d0⊥ŝ0⊥a0s1 and vice versa. Observe that
the reward of a path and its equivalent are equal, as non-zero
rewards are only on the trap action and the special actions
in target states of a reachability objective.

The proofs for both directions of the if and only if
statement are very similar. We start by proving the simpler
direction (concurrent implies turn-based) to introduce the
concepts of the proof. For the harder direction (turn-based
implies concurrent) we only describe the additional ideas.

Direction →: We assume that for all Defender strategies
πD Attacker has a strategy πA to spoil an arbitrary point x
in the concurrent SG G. Using this, we have to show that for
all Defender strategies π̂D Attacker also has a strategy π̂A to
spoil x in the turn-based version Ĝ. Intuitively, Attacker has
more information in the turn-based SG, so naturally anything
spoilable in G is also spoilable in Ĝ.

Formally, let π̂D be an arbitrary Defender strategy in
the turn-based SG. We define the equivalent strategy in the
concurrent game as πD(ϕ) = π̂D(ϕ̂), i.e. map the path to
one in the turn-based SG and apply π̂D. Then by assumption
there is an Attacker strategy πA so that x is spoiled in the
concurrent SG under πD and πA. Let π̂A(ϕ̂d⊥s′) = πA(ϕ)
be the Attacker strategy for the turn-based SG; it maps the
path to its concurrent equivalent (dropping the additional
information about the Defender’s most recent action) and
then uses πA. It remains to show that the probability space
over paths induced by π̂D and π̂A in Ĝ is equivalent to the
one induced by πD and πA in G, because then we arrive at
the conclusion that x is also spoilable in Ĝ.

Thus we show that, under the strategies just described,
the following two probabilities are equal: the probability to
go to s′ ∈ S in one step in the concurrent SG after seeing
an arbitrary path ϕs ending in some state s ∈ S; and the
probability to go to s′ in two steps in the turn-based SG
after seeing the equivalent path ϕ̂s.

First, we argue about the special cases of s ∈ {τ, φ, d}. As
we loop in the sink state, in both SGs the probability to stay

7more formally: finite prefixes of paths ending in a state s ∈ S

is 1. Second, we address the special case of s′ = τ , i.e. the
Defender succeeding to trap. In the concurrent SG, the prob-
ability to go from s to τ in one step is πD(ϕs)(1) · p(s), i.e.
the probability that Defender assigns to the trapping action in
state s times the trapping probability. In the turn-based SG,
it is π̂D(ϕ̂s)(1) · p(s), which is equal to πD(ϕs)(1) · p(s) by
definition of πD. Note that in the second step the play loops
in τ surely. Finally, we address the “normal” case of starting
in any non-sink state s and going to any state s′ ∈ S \ {τ}.
We denote by �ks′ the set of all paths that reach s′ in k steps.
The following chain of equations proves our goal. The first
equality unfolds the strategies for one step and makes a case
distinction over the choice of Defender. The second equality
applies the definitions of π̂A and π̂D. The third equality uses
the observation that the left side describes exactly all two step
paths from s to s′ in Ĝ.

PπD,πA
G,s [�1s′]
= πD(ϕs)(0) · πA(ϕs)(s′)

+ πD(ϕs)(1) · (1− p(s)) · πA(ϕs)(s′)
= π̂D(ϕ̂s)(0) · π̂A(ϕ̂s0⊥ŝ)(s′)

+ π̂D(ϕ̂s)(1) · (1− p(s)) · π̂A(ϕs1⊥ŝ)(s′)
= Pπ̂D,π̂A

Ĝ,s
[�2s′]

Thus, using the probability measure over paths in G under
πD and πA is the same as using the probability measure over
paths in Ĝ under π̂D and π̂A and then mapping them to their
equivalent path in the concurrent SG. Thus, as noted above,
we arrive at the conclusion that x is also spoilable in Ĝ.

Direction ←: Assuming that for all Defender strategies
π̂D Attacker has a strategy π̂A to spoil an arbitrary point x
in the turn-based SG Ĝ, we have to show that for all Defender
strategies πD Attacker also has a strategy πA to spoil x in
the concurrent SG G. The proof is analogous to the previous
case, except that obtaining πA from π̂A is more involved,
since π̂A uses more information.

Let πD be an arbitrary Defender strategy for the concurrent
SG and π̂D its equivalent as in the previous proof. Then there
exists a π̂A that spoils x in Ĝ. We need to find a πA that
induces the same probability space over paths in G as using
π̂A for Ĝ and then mapping the paths to their concurrent
equivalent. Formally, we need a πA so that the chain of
equations we used in the proof of the other direction holds.

By using the fact that for i ∈ {0, 1} : πD(ϕs)(i) =
π̂D(ϕ̂s)(i) and solving the second and third line of the
sequence of equations for πA, we obtain πA(ϕs)(s′) =
πD(ϕs)(0)·π̂A(ϕ̂s0⊥ŝ)(s′) + πD(ϕs)(1)·(1−p(s))·π̂A(ϕ̂s1⊥ŝ)(s′)

πD(ϕs)(0)+πD(ϕs)(1)·(1−p(s)) .
Setting πA like this, using the given probabilities of the
Defender strategy and the spoiling Attacker strategy in the
turn-based game, we ensure that the chain of equations hold.
As a sanity check, observe that

∑
s′∈S πA(ϕs)(s

′) = 1, so
πA is indeed a valid strategy.

Intuitively, we just showed that any way in which Attacker
uses the additional information in the turn-based SG can be
recreated by using a certain probability distribution in the
concurrent SG.

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Challenges and solutions
	Stochastic games
	Which parts of this PhD-thesis do you want to read?
	The big picture
	Algorithms
	System
	Specification
	Output
	Input

	Publication summary

	Preliminaries
	Stochastic games
	Semantics: Paths and strategies
	Objectives
	Reachability
	Other objectives

	Strongly connected components and end components

	Guaranteed algorithms for solving simple stochastic games
	Value iteration (VI)
	State of the art
	Contribution: Bounded value iteration with a guaranteed stopping criterion
	Contribution: Simulation-based value iteration
	Related work

	Strategy iteration (SI)
	State of the art
	Contribution: Hyper-parameters and warm start
	Related work

	Quadratic programming (QP)
	State of the art
	Contribution: Avoiding the transformation to normal form
	Related work

	Experimental analysis
	Algorithms and case studies
	Optimizations
	Results

	Summary, discussion and outlook

	Expressive system formalisms: Limited information
	Statistical model checking
	State of the art
	Contribution: PAC statistical model checking of SGs
	Model-based view
	Faster detection of being stuck
	Extension to stochastic games
	Obtaining the PAC Guarantee

	Contribution: Detecting stuck simulations in different settings
	Experimental results
	Statistical model checking of stochastic games
	Further comparison of black-box and grey-box statistical model checking

	Related work

	Bounded-parameter stochastic games
	State of the art
	Contribution: Reducing from bounded-parameter to standard systems
	Contribution: Application to -regular objectives
	Related work

	Summary, discussion and outlook

	Expressive specification formalisms: Multiple objectives
	State of the art
	Contribution: Approximating the Pareto-frontier in generalized-reachability stochastic games
	Related work
	Summary, discussion and outlook

	Explainable output
	State of the art
	Contribution: dtControl 2.0
	Predicate domain
	Predicate selection
	Determinizer
	Further improvements of the user interface

	Related work
	Summary, discussion and outlook

	Application: Defending against advanced persistent threats
	State of the art
	Contribution: Guaranteed trade-offs in dynamic information flow tracking games
	Adjusting the formalisation
	Algorithm
	Experimental results

	Related work
	Summary, discussion and outlook

	Conclusion
	Bibliography
	Value Iteration for Simple Stochastic Games: Stopping Criterion and Learning Algorithm (InC 2022)
	Comparison of Algorithms for Simple Stochastic Games (InC 2022)
	PAC Statistical Model Checking for Markov Decision Processes and Stochastic Games (CAV 2019)
	Statistical Model Checking: Black or White? (ISoLA 2020)
	Satisfiability Bounds for -Regular Properties in Bounded-Parameter Markov Decision Processes (CDC 2019)
	Approximating Values of Generalized-Reachability Stochastic Games (LICS 2020)
	dtControl 2.0: Explainable Strategy Representation via Decision Tree Learning Steered by Experts (TACAS 2021)
	Guaranteed Trade-Offs in Dynamic Information Flow Tracking Games (CDC 2021)

