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Abstract

I think this is a song of hope!
— Robert Plant, The Song Remains the Same

Quantum cascade lasers (QCLs) are relatively novel sources of mid-infrared and terahertz radiation and
thus promising candidates to close the so-called terahertz gap. In their envisaged applications advanced
operating modes, such as frequency comb operation or ultra-short pulse generation, are desired. Those
advanced operating modes are significantly more complex than plain continuous wave operation and require
a clear understanding of the processes in QCLs. This understanding can be gained by modeling and
simulation of their dynamical behaviour. The thesis at hand provides a solid basis for the upcoming
endeavors in the field by reviewing the theoretical modeling of the QCL dynamics and presenting a flexible
software framework for the computer-aided simulation of those models.
The thesis begins with a compact description of the required theoretical basics to make the thesis self-

contained. Then, the model of the QCL dynamics is developed step-by-step from the very foundations of the
underlying theory. The flexible open-source software framework is presented as a next step. It implements
several best practices to make it a sustainable scientific software project, which are discussed in detail.
A detailed description of the numerical methods and the parallelization techniques used in the software
framework follows. Finally, the software framework is applied to actual problems in the field. Thereby, it
is verified that the framework is already able to answer questions raised by experimental findings.
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Kurzfassung (German)

Quantenkaskadenlaser sind relativ neuartige Quellen von mittlerer Infrarot- und Terahertz-Strahlung und
sind daher vielversprechende Kandidaten, um die sogenannte Terahertz-Lücke zu schließen. In den ihnen
angedachten Anwendungen sind fortgeschrittene Betriebsmodi (wie etwa Frequenzkammbetrieb oder die
Generation von ultra-kurzen Pulsen) erforderlich. Diese fortgeschrittenen Betriebsmodi sind wesentlich
komplexer als der simple Dauerstrichbetrieb und erfordern ein klares Verständnis der Prozesse in den
Quantenkaskadenlasern. Dieses Verständnis kann durch Modellierung und Simulation ihres dynamischen
Verhaltens erworben werden. Die vorliegende Arbeit stellt eine solide Basis für die bevorstehenden Unter-
fangen in diesem Gebiet zur Verfügung, indem sie eine Übersicht über die theoretische Modellierung der
Dynamik der Quantenkaskadenlaser bietet und ein flexibles Software-Framework für die computerunter-
stützte Simulation der Modelle präsentiert.
Die Arbeit beginnt mit einer kompakten Beschreibung der benötigten theoretischen Grundlagen, um

die Arbeit in sich abgeschlossen zu gestalten. Danach wird das dynamische Modell von Quantenkas-
kadenlasern Schritt für Schritt von den theoretischen Grundlagen hergleitet. Das flexible open-source
Software-Framework wird als nächster Schritt präsentiert. Es implementiert viele Maßnahmen aus der
Softwareentwicklung, die es zu einem nachhaltigen Softwareprojekt machen und die im Detail besprochen
werden. Eine detaillierte Beschreibung der verwendeten numerischen Methoden und der Parallelisierung
von Berechnungen folgt anschließend. Schließlich wird das Framework auf tatsächliche Probleme aus dem
Fachgebiet angewendet. Damit wird demonstriert, dass das Framework bereits jetzt in der Lage ist, Fragen
zu beantworten, die durch experimentielle Erkenntnisse aufgeworfen wurden.
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Habib: Give a dog a bad name!
Gladstone: We gave our dog a bad name. Colin. Terrible

name! You have no idea how many people are called Colin.
—Maggie Habib and Frank Gladstone, The Thin Blue Line
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1 Introduction

Way out west there was this fellow... fellow I wanna tell you
about. Fellow by the name of Jeff Lebowski. At least that was
the handle his loving parents gave him, but he never had much
use for it himself.

— The Stranger, The Big Lebowski

Space. It seems to go on and on forever. But then you get to the
end and the gorilla starts throwing barrels at you.

— Philip J. Fry, Futurama

Since their theoretical description by Kazarinov and Suris [1] in 1971 and their first experimental
realization by Faist et al. [2] in 1994, quantum cascade lasers (QCLs) have attracted considerable attention.
In contrast to conventional laser diodes – where the radiation frequency is largely determined by the
semiconductor band gap of the active region – the active region of the QCL can be engineered to emit
radiation in the mid-infrared and terahertz (far-infrared) regime [3]. This portion of the electromagnetic
frequency spectrum lies between the realms of optics and microwaves, and features many interesting
applications in spectroscopy and imaging since it contains the fundamental vibrational bands of a large
number of molecular compounds, vapours and gases [4], [5]. Due to the lack of powerful and compact
sources, however, the huge potential of this frequency regime could not be exploited for a long time. For
example, the lack of practical technologies for the terahertz regime (often referred to as terahertz gap)
has impeded the development of novel measurement techniques to be applied in astrophysical observation,
environmental monitoring, the detection of explosives and illegal drugs, and terahertz spectroscopy of
DNA [5], [6]. Devices such as terahertz QCLs, which were realized for the first time by Köhler et al. [7]
in 2002, aim to close this gap. This fact makes this relatively novel laser type attractive for a variety of
applications in several fields, such as physics, chemistry, biology, medicine, astronomy and public safety [8].
Over the years, the performance of QCLs with respect to operating temperature, output power, and the

available frequency range has improved considerably [3], [5]. The development and optimization of the QCL
designs has gone hand in hand with detailed modeling and computer-aided simulations [9], which underlines
the importance of computational science as third pillar of science next to theory and experiment. However,
the application range of QCLs does not depend on the performance alone, but also on the availability of
different operating modes. For example, for applications in spectroscopy the QCLs have to be driven in
frequency-comb operation or are supposed to emit ultra-short pulses [8]. Those envisaged operating modes
are significantly more complex than plain continuous wave operation and require a clear understanding
of the processes in QCLs that define their dynamical behavior. Similar to the design optimization, this
understanding can only be gained by combining experimental and theoretical work, where the latter is
divided into the modeling of the underlying physical processes and accurate computer simulations. The
thesis at hand aims to provide a solid basis for the upcoming endeavors in this field by reviewing the
theoretical modeling of the QCL dynamics and presenting a flexible software framework for the computer-
aided simulation of those models.
In this chapter, we start with a brief introduction of the basic operating principle of lasers in Section 1.1

and their advanced operating modes, such as frequency comb operation and ultra-short pulse generation, in
Section 1.2. Then, Section 1.3 discusses the basic operating principle of quantum cascade lasers and their
different subtypes. After those introductory sections, which should make the reader acquainted with the
devices to be modeled and simulated as well as with the motivation to do so, this chapter is concluded by
an overview of the thesis at hand.
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Ground level

Lower laser level

Upper laser level

Pump level
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Fast non-radiative transition

Stimulated emission

Fast non-radiative transition

Figure 1.1 Example of a four-level laser pumping scheme. An external source of energy pumps electrons from the
ground level to the pumping level. Fast non-radiative transitions ensure that there are many electrons in the upper laser
level and only few electrons in the lower laser level (population inversion). Between the upper and lower laser level,
on the other hand, the non-radiative transitions must be significantly slower. Then, stimulated emission dominates the
transitions from the upper to the lower laser level and exact copies of the incoming photons are emitted.

1.1 Lasers

Lasers come in different forms and are used in a multitude of applications, making them one of the most
influential inventions of the twentieth century. Their basic operating principle is embedded in their name
since “laser” stands for “light amplification by stimulated emission of radiation”. In this section, we
describe this operating principle briefly. For a more thorough coverage of the topic the reader is referred to
the comprehensive text book by Siegman [10], which is used as basis for the following introduction.

Stimulated emission is an effect that appears during the interaction of electrons and photons. To explain
it qualitatively, let us assume that electrons can occupy different discrete energy levels (states) in a system.
The lowest energy level is usually referred to as the ground state. If additional energy is supplied to the
system, the electrons can be brought into an exited state. An electron in an excited state will eventually
return to a lower energy level (if available), causing the difference in energy ∆ε to be emitted. Such emission
processes are grouped into radiative (emission of radiation) and non-radiative processes depending on the
form in which the energy is emitted, and into spontaneous and stimulated emission. Spontaneous emission
of radiation occurs without any external trigger and is a random process. As a consequence, the properties of
the emitted radiation, such as frequency and phase, are purely random. Stimulated emission of radiation, on
the other hand, is triggered by an incoming photon (the smallest quantum of radiation) and generates a second
photon during the transition of the electron from the upper energy level to the lower energy level. Here,
the second photon is an exact copy of the incoming photon (with respect to frequency, phase, polarization
and direction). As a consequence, the incoming radiation is amplified and the resulting radiation is highly
coherent, where coherence denotes the constant phase relationship between all the photons. Figure 1.1
depicts this effect schematically.
The medium in which the light amplification process takes place is usually referred to as the gain medium.

In real-life lasers, a multitude of materials and material systems in gaseous (e.g., helium-neon laser, carbon
dioxide laser), liquid (e.g., dye lasers), and solid (e.g., titanium-sapphire laser, semiconductor lasers) form
is used as gain medium. All of them have in common that the electrons in the medium can only assume
discrete energy values. For example, in a noble gas laser the energy values are defined by the atomic orbitals
of the gas atoms. In semiconductor lasers, on the other hand, usually the band gap leads to a discretization
of the allowed energy values. At this point, it should be noted that stimulated emission of radiation only
occurs if the energy difference ∆ε between the upper and lower energy level matches the photon energy ε
given by Planck’s relation

ε = ~ω, (1.1)



3

where ~ is the reduced Planck’s constant andω is the angular frequency of the photon. This fact establishes a
relation between the gain spectrum (the spectrum of radiation that a certain laser amplifies) and the material
properties of its gain medium. In order to amplify light of a certain frequency, a gain medium with suitable
properties (e.g., the atomic orbitals of a noble gas, or the band gap of a semiconductor) has to be selected.
Furthermore, we note that the gain medium is only functional if there are many electrons in the upper

energy level (upper laser level, ULL) and only few electrons in the lower energy level (lower laser level,
LLL). This state is called population inversion and is achieved with the help of a pumping mechanism.
There are different types of pumping mechanisms that can be grouped by the energy form in use (e.g.,
optical pumping, electrical pumping, ...). Although two levels are sufficient for stimulated emission, at least
one additional energy level is required to achieve population inversion. However, pumping schemes with
more energy levels are commonly used in real-life lasers. Here, the pumping mechanism and non-radiative
processes cause electron transitions into the ULL and out of the LLL, while the transition between the ULL
and the LLL is of course a dominantly radiative one. An exemplary four-level pumping scheme is depicted
in Fig. 1.1.
Amplifiers with a gain medium alone are widely used in fiber telecommunications, where the incoming

signal has to be amplified to bridge long distances. Should the laser act as oscillator (source), however, a
feedback mechanism is required. This mechanism is usually provided by a suitable resonator cavity, which
may come in different forms. For example, in a ring cavity the radiation is guided in a closed loop, so that
the amplified radiation is fed back to the input. At some point, a portion of the radiation is outcoupled.
This portion is the actual product of the laser oscillator. Another significant type of resonator cavity is
the Fabry-Pérot cavity, in which the radiation is reflected between two mirrors and amplified by the gain
medium between the mirrors. In this case, outcoupling can be achieved by making one of the mirrors
semi-transparent. It should be noted that a small amount of radiation is required in order to start the laser
up. While this can be achieved by using a different laser (laser seeding), often it is sufficient to exploit
spontaneous emission, which is beneficial for lasing operation initially (after the laser has started up, it
impedes the coherence of the radiation).
In summary, every laser needs a gain medium, in which the electrons can only assume discrete energy

values and a pumping mechanism that creates population inversion (a state in which more electrons are in
excited states rather than in the ground state). Laser sources additionally requires a resonator cavity that
provides a feedback mechanism. Let us keep these basic principles in mind while we turn our attention
towards the different operating modes of a laser.

1.2 Frequency combs and ultra-short pulse generation

The operating modes of a laser are distinguished by its main product, namely the emitted electromagnetic
radiation. If the power of the radiation is (quasi-)constant over time, the laser is said to be in (quasi-
)continuous wave (cw) operation. On the other hand, if the power varies significantly so that the radiation
practically vanishes for a certain period of time, the laser is operated in pulsed mode. Both operating modes
have their applications and different measures may be required to operate a laser in a certain mode.
In order to describe the operating modes, the time profile of the emitted radiation as well as its spectrum

in frequency domain have to be evaluated. In the easiest case, the spectrum consists of a single sharp peak
at a certain frequency. For the sake of simplicity we neglect the line shape of the peak for now and assume
that it is infinitesimally narrow. Then, we recall that the gain spectrum G(ω) of a laser depends heavily on
frequency and deduce that if a certain frequency is emitted then the gain for this frequency is sufficiently
large to overcome all losses in the laser (usually called the lasing threshold). Also, the frequency must
belong to the set of allowed frequencies of the resonator cavity. Those frequencies are commonly referred
to as modes, and if the laser only produces a certain frequency it is said to be in single-mode operation. This
operating mode might be considered the most trivial one from a theoretical point of view, but in practice
it may be difficult to drive a laser into single-mode operation. In fact, the gain spectrum often allows the
amplification of multiple modes, which have to be suppressed if single-mode operation is desired.
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ωc − 2ωrt ωc − ωrt ωc ωc + ωrt ωc + 2ωrt

Gth

|G(ω)|

|E(ω)|

Figure 1.2 Exemplary spectrum of the radiation emitted by a Fabry-Pérot laser. The different modes are centered
around the carrier frequencyωc and are separated by the round trip frequencyωrt = 2π frt. The spectrum only contains
the modes that experience a sufficiently large gain, i.e., the gain spectrum |G(ω)| at the corresponding frequency is
larger than the threshold value Gth.

Many applications, however, require multi-mode operation. In this case, the spectrum of the emitted
radiation resembles a comb and coined the name frequency comb [11]. As an example, Fig. 1.2 depicts
qualitatively the spectrum of the radiation emitted by a Fabry-Pérot laser. In a Fabry-Pérot cavity the
electromagnetic field can only exist in the form of standing waves due to the imposed boundary conditions.
The problem can be directly related to the standard physics exercise of a string with two fixed ends [12] and
yields

ωk = 2πk
c

2Lcavn
= 2πk

1
Trt
= 2πk frt (1.2)

for the allowed frequencies ωk , where c is the velocity of light in vacuum, n is the refractive index of
the medium in the cavity, and Lcav is the length of the cavity. The round trip frequency frt is commonly
introduced for brevity. It constitutes the inverse of the round trip time Trt = 2Lcavn/c, which is the time
that the radiation requires for one round trip through the resonator cavity. Therefore, the spectrum in
Fig. 1.2 consists of multiple modes that are separated by the round trip frequency [10]. Since the round trip
frequency is typically in the gigahertz regime but the frequencies ωk are in the optical domain, frequency
combs provide a link between optics and microwaves. In essence, the link is established with the help of a
nonlinear mixing process, which causes two adjacent modes to produce a beating signal similar to two tuning
forks with slightly different tuning. This approach is heavily used in high-precision optical metrology, e.g.,
to read out the information in the optical signal using state-of-the-art electronics [11], [13].
Frequently, frequency combs are used to generate ultra-short pulses, i.e., pulses that cannot be generated

with conventional electrical or mechanical switching techniques [11], [13]. To outline the concept behind
ultra-short pulse generation, we will use a simple mathematical model that describes the complex spectrum

E(ω) = A(ω)
∞∑

k=−∞

δ (ω − ωc − kωrt) (1.3)

of the electric field of a Fabry-Pérot Laser (cf. the spectrum in Fig. 1.2), where the complex function A(ω)
represents the amplitudes of the different modes and typically features a certain bandwidth around a carrier
frequency ωc. The Dirac distribution δ(ω) provides an idealization of each mode of the laser, where the line
shape has been neglected for simplicity. The infinite sum over the Dirac distributions

∞∑
k=−∞

δ (ω − kωrt) = F

{
1
ωrt

∞∑
k=−∞

δ (t − kTrt)

}
(1.4)

is sometimes called aDirac comb and features the interesting property that it is its ownFourier transform [14],
which is denoted with F {·}. The complex spectrum in Eq. (1.3) can be transformed to the time domain
using the inverse Fourier transform F −1{·}, which yields

E(t) = a(t) ∗
1
ωrt

∞∑
k=−∞

δ (t − kTrt) exp (iωct) =
1
ωrt

exp (iωct)
∞∑

k=−∞

a (t − kTrt) . (1.5)
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Here, we used the modulation theorem to extract the term exp (iωct), the aforementioned property of the
Dirac comb, and the convolution theorem as well as the general properties of the convolution operation
∗ [14]. The resulting time profile features a carrier signal with the frequency ωc and an envelope function
that is periodic with the round trip time Trt. The form of the latter is defined by the inverse Fourier transform
a(t) = F −1{A(ω)} of the mode amplitude function A(ω). We note that if a(t) constitutes a pulse with a
certain temporal width that is smaller than the round trip time, the time profile in Eq. (1.5) describes a train
of ultra-short pulses.
Even without exact knowledge of the mode amplitude function A(ω)we can derive two general statements

about whether or not pulses are formed. To this end, we write the complex spectrum

A(ω) = |A(ω)| exp [iφ(ω)] (1.6)

in polar notation using the absolute value |A(ω)| and the (possibly frequency dependent) phase function
φ(ω). Basing on the similarity theorem, which relates a broad spectrum in frequency domain to a narrow
pulse shape in time domain [14], we can deduce that a short temporal width of |a(t)| requires a a large
spectral width of |A(ω)|. This first statement is a necessary condition, but not sufficient for the generation
of ultra-short pulses. To demonstrate this, we expand the phase function

φ(ω) = φ0 + φ1ω + φ2ω
2 + O(ω3) (1.7)

by using the coefficients φl and the Landau notation O for the asymptotic upper bound. Then, we note that
for φl,l≥2 = 0 the resulting time profile can be written as

E(t) =
1
ωrt

exp (iωct + φ0)

∞∑
k=−∞

a′ (t − kTrt + φ1) (1.8)

by virtue of the shifting theorem [14], where a′(t) denotes the inverse Fourier transform of |A(ω)|. Although
the phase relation between the carrier signal and the envelope function is altered, and the complete signal
is shifted in time, the ability to form ultra-short pulses is not lost. However, for a non-zero φ2 (which may
occur due to e.g., dispersion) the electric field in Eq. (1.8) has to be convoluted in time domain with the
function F −1{exp(iφ2ω

2))}, which tends to broaden the pulse shape. The higher-order contributions to
the phase function φ(ω) will have a similar effect and degrade the pulse shape further. As a consequence,
ultra-short pulse generation not only requires many modes to be active but also a constant phase relationship
between the active modes.
This second requirement leads us to the termmode-locking, which refers to all measures taken to establish

such a constant phase relationship. We distinguish between active and passive mode-locking, where the
former requires an external oscillator source. This external source oscillates with the frequency ωrt and
thereby synchronizes the laser modes. Passive mode-locking, on the other hand, is implemented exclusively
by adapting the resonator cavity so that any phase mismatch is compensated. This is usually achieved by
integrating a saturable absorber into the cavity. Additionally, dispersion compensation structures may be
required to maintain the phase relation over one round trip [10], [15], [16].

1.3 Quantum cascade lasers

Quantum cascade lasers are special semiconductor lasers whose gain medium does not consist of a single
semiconductor material but rather of thin layers of different semiconductor materials. As already men-
tioned above, the spacing between the lasing energy levels is not defined anymore by the band gap of the
semiconductor material, but can be engineered by designing the layers in the gain medium. Since the
thickness of the layers is in the (sub)nanometer regime, the operating principle of those lasers is mainly
influenced by quantum mechanical effects (as already suggested by their name). One of the most crucial
quantum mechanical effects is the discretization of energy due to the confinement by a certain potential,
which explains e.g., the formation of atomic orbitals (which are exploited e.g., in gas lasers). Similarly, the
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ε

Figure 1.3 Working principle of a quantum cascade laser. The conduction band profile (light blue, dashed) features
quantum wells and barriers, which lead to a discretization of the allowed energy values of the electrons. The resulting
energy levels are represented by the corresponding wave functions (drawn in solid lines), which depend on the growth
direction z. The periodic nature of the conduction band profile allows e.g., the usage the injector level of the next
period as ground level. The arrows indicate the lasing transition. Modified from M. Riesch, The QCL Stock Image
Project [17] (CC BY 4.0).

layers of a QCL – in conjuction with an external bias voltage, which creates an energy gradient in the gain
medium – lead to a discretization of energy that defines the energy levels used for pumping and lasing. It
should be pointed out that the layer sequence is periodic and is typically repeated over about 100 periods.
Therefore, the energy discretization is periodic as well and resembles a cascade waterfall. This explains the
term “quantum cascade” in the name.
Figure 1.3 depicts an exemplary potential in the form of a conduction band profile, which is caused by

layers of two different semiconductor materials with different band gap. The resulting conduction band
offset creates quantum wells and corresponding barriers that confine the electrons to discrete energy levels.
The energy levels are represented by their wave functions (a central concept of quantum mechanics that
we will discuss in Chapter 2) in Fig. 1.3, where the offsets of the functions in vertical direction stand for
the discrete energy values. For simplicity only three levels are shown to outline the operating principle.
Lasing occurs between the upper and lower laser level and the energy difference between those two levels
will largely define the frequency of the emitted radiation. The additional injector level should feature a fast
non-radiative transition to the upper laser level in order to keep the latter well-populated. In contrast to the
pumping scheme in Fig. 1.1, the simplified scheme here does not use an extra depopulation or ground level
but rather employs the injector level of the next period to depopulate the lower laser level.
We note that a careful choice of thematerial system (the combination of different semiconductormaterials,

e.g., GaAs and AlGaAs) and the doping profile as well as the design of the thickness and sequence of the
layers are required to acquire the correct spacing of the energy levels and efficient pumping. These efforts
are eventually rewarded with the possibility to emit radiation in the mid-infrared and terahertz regime. The
energy spacing that corresponds to those frequency regimes is significantly lower than the band gap of
most semiconductor materials. With the approach outlined above, however, suitable energy spacings can be
achieved between the so-called intrasubbands (i.e., the energy levels).
In addition to the gain medium including the pumping mechanism, every laser requires a resonator cavity

with a feedback mechanism. In the following, a short overview of the QCL subtypes outlines how the
resonator cavity is typically realized in QCLs [3], [6]. As an example, Fig. 1.4 shows a typical geometry of
a metal-metal wave guide QCL with a Fabry-Pérot cavity. The layer structure of QCLs is fabricated using
the molecular beam epitaxy (MBE) or the metalorganic chemical vapor deposition (MOCVD) technique.
These processes require a substrate that provides mechanical stability. Usually, QCLs incorporate a wave
guide structure that confines the radiation in the transversal directions y and z. This confinement guides
the radiation along the propagation direction x. Two wave guide types are used in the majority of QCLs,
namely the surface-plasmon (single metal) or the metal-metal (double metal) wave guide. The difference
between the two is that the contacts of the metal-metal wave guide completely embed the gain medium of
the QCL, whereas the bottom contact of the surface-plasmon wave guide is adjacent to the gain medium,
i.e., the gain medium and the substrate are not separated by the bottom contact. For the contacts, a good
conductor material is selected (usually copper or gold). The feedback mechanism is often implemented by
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Figure 1.4 Typical geometry of a metal-metal wave guide QCL. The active region contains the gain medium and is
embedded between two metal contacts. The constant voltage source delivers the external bias voltage UB between the
contacts. The length in x direction is in the mm regime, the dimensions in y and z direction are usually several tens
of µm. Modified from M. Riesch, The QCL Stock Image Project [17] (CC BY 4.0).

cleaving the complete structure in propagation direction x at the desired cavity length. The resulting facets
act as semitransparent mirrors and turn the structure into a Fabry-Pérot cavity. For other use cases, QCLs
with ring cavities are routinely produced.
Since their first experimental realization, QCLs have undergone an astonishing development [3]. While

mid-infrared QCLs are commercially available and routinely used for a longer time, terahertz QCLs turned
out to be more complicated to realize. For quite some time the generation of terahertz radiation with QCLs
(not counting the difference frequency generation (DFG) approach, where two mid-infrared frequencies
were mixed to produce terahertz radiation) has been restricted to cryogenic temperatures [18]. Recent
advances in the design of cooling equipment and the gain medium allowed terahertz QCLs to operate at
temperatures that are in the reach of thermoelectric Peltier cooling elements. These encouraging devel-
opments suggest that terahertz QCLs may be operated without the need for cryogenic equipment in near
future, thus enabling various applications such as terahertz spectroscopy [5]. The applications of QCLs
often require frequency comb operation [19] or ultra-short pulses [6]. While active mode-locking of QCLs
is meanwhile applied routinely, passive mode-locking has not been realized yet. Additionally, even more
elaborate operating modes, such as pulse generation with harmonically mode-locked lasers, have become
increasingly interesting [20].

1.4 Overview of this work

In the introduction above the basic operating principles of lasers in general and quantum cascade lasers
in particular have been outlined. Additionally, we have discussed advanced operating modes of lasers,
especially frequency comb operation and ultra-short pulse generation, and have given a short overview
of the possible applications of QCLs operating in these modes. Although significant success has been
achieved over the last decades, there are still unresolved issues that impede, e.g., the passive mode-locking
of QCLs. Seeing that the achievements in experimental work went hand in hand with rigorous theoretical
modeling and extensive computer simulations, it seems more than reasonable to use the latter two to
extend the understanding of the dynamical processes in the QCLs that is required to exploit these advanced
operating modes. Indeed, a variety of studies has been published that investigate the dynamical behavior of
QCLs using computer simulations. The research on coherent instabilities [21], active mode-locking [22],
frequency comb generation [23], the impact of laser seeding on the QCL operation [24], and colliding pulse
mode-locking in multi-section QCL devices [25] are only few of many examples. After reading the related
publications it soon becomes apparent that most research groups develop and maintain their own closed-
source simulation tools. As we shall see later in this thesis, this requires significant efforts that are carried
out multiple times by the individual research groups. In order to reduce the amount of duplicated work,
a flexible open-source software framework for the computer-aided simulation of the dynamical behavior
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of QCLs is presented in the thesis at hand. This framework is envisaged to provide a solid basis for the
upcoming endeavors to the scientific community and to ease the collaboration between the research groups.

In the following, the path to such a flexible framework from the theoretical basis to the verification of the
simulation results is outlined. Each step on this path corresponds to a chapter in this thesis and is described
briefly at this point.
Chapter 2 provides the necessary theoretical background that is required during the subsequent chapters.

Since the main product of any laser is electromagnetic radiation, we begin with an introduction to the theory
of electrodynamics. The dynamical processes in the gain medium of a QCL can only be explained with
quantummechanics, which is treated subsequently. The chapter concludes with a concise introduction to the
application of quantummechanics to describe semiconductor materials and semiconductor heterostructures,
as these are the essential component of a QCL gain medium.
Chapter 3 bases on the theoretical background and describes a mathematical model of the dynamical

behavior of QCLs. In order to provide an efficient approach, static prerequisite simulations that have to
be run only once for a certain device are extracted from the model. After this extraction, the generalized
Maxwell-Bloch equations are identified as central component of the remaining dynamicmodel. Additionally,
software tools for the prerequisite simulations are reviewed.
Chapter 4 presents an open-source solver for the generalized Maxwell-Bloch equations. This solver

is implemented in C++ with a user-friendly Python interface and provides a flexible framework to test
different numerical methods and parallelization techniques, and to run productive simulations. Apart from
the implementation details and design rationale of this software project, the chapter discusses different test
cases that are used to verify the implementation.
Chapter 5 takes a short detour and summarizes the efforts that are required to create a sustainable open-

source software project. It reviews the best practices in scientific software engineering and presents an
open-source project skeleton for scientific software projects. An instance of this skeleton can be created
with a few clicks and reduce the setup time of a new project significantly.
Chapter 6 reviews existing numerical methods for the generalized Maxwell-Bloch equations. Accurate

and efficient numerical methods are desired in any simulation, but are required especially in long-term
simulations, which are in the scope of this thesis. During the assessment of numerical methods, special care
is given to whether or not the methods preserve the physical properties of the involved quantities. The most
promising candidates are then compared in terms of single-thread performance.
Chapter 7 presents techniques to run the simulation code on modern parallel architectures. Thereby,

the time required to run simulations can be vastly reduced and long-term simulations are facilitated. In
this chapter, two implementations of the simulation code are presented, optimized, and compared using
multi-threaded performance tests on a multi-core processor.
Chapter 8 discusses the application of the simulation framework to different problems. The first prob-

lem is purely theoretical and serves primarily as verification example. However, the validity of certain
approximations in the scope of the simulation of ultra-short pulses is discussed with the help of this prob-
lem. The two other problems described in this chapter, however, stem from recent experimental work and
provide models for self-starting harmonic mode-locking in QCLs and for frequency comb generation in an
external-cavity QCL with a graphene saturable absorber as reflector, respectively.
Finally, Chapter 9 gives a conclusion of the thesis at hand and an outlook on possible future work.
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2 Theoretical background

Renton: Right. So we all get old and then we can’t hack
it anymore. Is that it?

Sick Boy: Yeah.
Renton: That’s your theory?
Sick Boy: Yeah. Beautifully f&§!ing illustrated.

— Renton and Sick Boy, Trainspotting

Let us begin with a concise introduction to the underlying theory, which serves as foundation for the
challenges ahead. Since we aim to describe the dynamical behavior of a laser, we need to describe the
electromagnetic radiation, which is the main product of any laser, and the gain medium that produces it.
As we learned in the previous chapter, the working principle of the quantum cascade laser (QCL) exploits
quantum mechanical effects. This fact raises the question whether the QCL dynamics can be described
using classical physics. Indeed, the modeling approach presented and used in the subsequent chapters
is a semiclassical one. For the electromagnetic field there is no need for a quantized description (i.e., a
description in the context of second quantization), as the number of photons (or in other words, the optical
power) is sufficiently large. Therefore, a brief summary of classical electrodynamics is given in Section 2.1.
In order to describe the gain medium, however, the dynamical behavior of electrons in a semiconductor
device has to be modeled, which is not feasible using classical mechanics. Also, the typical dimensions
of the QCL layers lead to a confinement of the electrons in growth direction, which can only be explained
by the fundamental laws of quantum mechanics. In Section 2.2, those fundamental laws are described
briefly. Subsequently, Section 2.3 outlines the application of quantum mechanics to semiconductors and
semiconductor heterostructures, respectively.
It should be noted that this introduction is tailored to make the thesis at hand self-contained and cannot

replace the standard text books on the topics involved. For more detailed explanations of the matters
discussed in the following, the interested reader is referred to the referenced literature.

2.1 Classical electrodynamics

In this branch of theoretical physics, the dynamical behavior of electric charges, currents, and electro-
magnetic fields is studied (see the text books of Griffiths [26], Jackson [27], or Jin [28] for a thorough
introduction). This behavior is governed by the Lorentz force

F = q (E + v × B) , (2.1)

which is the force that a particle with electric charge q experiences when moving with a velocity v in an
electric field E and magnetic field B, and Maxwell’s equations

∇ × E = −∂tB, (2.2a)
∇ × B = µ0 (J + ε0∂tE) , (2.2b)
∇E = ε−1

0 ρ, (2.2c)
∇B = 0, (2.2d)

here given in microscopic form. This version considers the permittivity ε0 and permeability µ0 of vacuum,
respectively, and is particularly useful for modeling on atomic level. Here, the current density J = Jb + J f
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and charge density ρ = ρb + ρf contain both contributions from bound and freely moving particles. By
taking the divergence of Eq. (2.2b), which reads

∇ (∇ × B) = 0 = µ0 (∇J + ε0∂t∇E) , (2.3)

and plugging in Eq. (2.2c), we find that there is a constraint

∇J = −∂t ρ (2.4)

on the definitions of the current density and the charge density, which is commonly referred to as the
continuity equation.

2.1.1 Maxwell’s equations in macroscopic form

Depending on the application, however, alternative representations of Maxwell’s equations can be advanta-
geous. By defining the auxiliary fields

D = ε0E + P, (2.5a)
H = µ−1

0 B − M, (2.5b)

where P is the polarization density and M is the magnetization field, we can derive a version that is more
suitable for macroscopic modeling, e.g., for the treatment of bulk materials. In order to do so, we use

∇D = ε0∇E + ∇P = ρb + ρf + ∇P, (2.6)
∂tD = ε0∂tE + ∂tP, (2.7)

∇ × H = µ−1
0 ∇ × B − ∇ × M = Jb + J f + ε0∂tE − ∇ × M, (2.8)

as well as the definitions Jb = ∇ × M + ∂tP and ρb = −∇P, to rewrite Eqs. (2.2b) and (2.2c). This yields
Maxwell’s equations in macroscopic form

∇ × E = −∂tB, (2.9a)
∇ × H = J f + ∂tD, (2.9b)
∇D = ρf, (2.9c)
∇B = 0, (2.9d)

where the exact form of the polarization P, the magnetization M , the current density J f , and the charge
density ρf remain to be specified for the respective problem under consideration.
The specifications that define the relationship between the electric field E and the auxiliary field D, as

well as the relation between their magnetic counterparts B and H , are usually referred to as constitutive
relations. Generally, the polarization density

P = lim
∆V→0

1
∆V

∑
i

µi (2.10)

and the magnetization

M = lim
∆V→0

1
∆V

∑
i

mi (2.11)

collect the individual contributions of all electric dipoles µi and magnetic dipoles mi, respectively, in an
infinitesimally small test volume ∆V . For example, the electric dipoles µi = qidi are the product of the
charge qi and the displacement di of each dipole, where the latter can be either interpreted as dipole length
(i.e., the distance between the positive and the negative charge) or the displacement r i − r0 of the charge in
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relation to a observer point r0. For a continuous distribution ρb = ρ
+
b − ρ

−
b of bound charges within the test

volume ∆V , the dipole length can be determined as the distance

d = d+ − d− =
1
q

ˆ
∆V

ρ+b (r)rdr −
1
q

ˆ
∆V

ρ−b (r)rdr =
1
q

ˆ
∆V

ρb(r)rdr (2.12)

between the centers of gravity d± of the positive and negative bound charges ρ±b , where it is assumed that
the total values of positive and negative charges in the test volume are equal to

q =
ˆ
∆V

ρ±b (r)dr . (2.13)

As a consequence, the test volume is charge neutral from a macroscopic point of view. In this case, the
polarization can be written as

P = lim
∆V→0

1
∆V

ˆ
∆V

ρb(r)rdr (2.14)

For linear and isotropic materials, however, it is easier to use the relations

D = ε0E + ε0χeE = ε0εrE, (2.15a)
H = µ−1

0 B − χmH = µ
−1
0 µ−1

r B, (2.15b)

where χe and χm are the electric and magnetic susceptibilities, respectively, εr = 1 + χe is the relative
permittivity, and µr = 1 + χm is the relative permeability.
Finally, for the current density J f , Ohm’s law in the form

J f = σE (2.16)

is one possible relation, where σ denotes the electric conductivity.

2.1.2 Maxwell’s equations in time-harmonic form

Often, it makes sense to transform Maxwell’s equations to frequency domain. This can be achieved by
choosing the ansatz C = <{Cω exp(−iωt)} for the fields C ∈ {B,D,E,H}, where ω denotes the angular
frequency. At this point it should be noted that the physics convention for time-harmonic quantities is used
in this thesis. Plugging the time-harmonic ansatz into Eqs. (2.9) yields

∇ × Eω = iωBω, (2.17a)
∇ ×Hω = Jωf − iωDω, (2.17b)
∇Dω = ρωf , (2.17c)
∇Bω = 0, (2.17d)

where we assume the implicit transformation of the current density J f and the charge density ρf to frequency
domain.
A more compact form of Eq. (2.17b) can be obtained for the constitutive relations in Eqs. (2.15a) and

(2.16). Inserting the relations yields

∇ ×Hω = σEω − iωε0εrEω = −iωε0εrE
ω, (2.18)

where the complex relative permittivity εr = εr + iσ/(ωε0) includes both relative permittivity and conduc-
tivity.
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2.1.3 Maxwell’s equations in potential formulation

In the form as described above Maxwell’s equations are redundant. This redundancy can be demonstrated
and eliminated by introducing the scalar potential ϕ and the vector potential A, and defining the relations

E = −∇ϕ − ∂tA, (2.19a)
B = ∇ × A. (2.19b)

We insert these relations into Eqs. (2.2a) and (2.2d), which yields

∇ × E = −∇ × (∇ϕ + ∂tA) = −∂t (∇ × A) = −∂tB, (2.20)

since the curl operation on a gradient field yields zero, and

∇B = ∇(∇ × A) = 0, (2.21)

since the divergence of a rotation field is zero. We can readily see that the equations have been reduced to
identities. We proceed in similar fashion with Eq. (2.2b), which results in

∇ × B = ∇ × ∇ × A = µ0 (J + ε0∂tE) = µ0

[
J − ε0

(
∂t∇ϕ + ∂

2
t A

)]
. (2.22)

After further rearrangements, including using the identity ∇ × ∇ × A = ∇(∇A) − ∇2A, this equation reads

∇2A − ε0µ0∂
2
t A − ∇ (∇A + ε0µ0∂tϕ) = −µ0J . (2.23)

Lastly, we transform Eq. (2.2c) to
∇E = −∇2ϕ − ∂t∇A = ε

−1
0 ρ (2.24)

and note that we have effectively replaced the vector fields E and B (totaling to six components) with
the scalar field ϕ and the vector field A, which consist of only four components and are governed by the
Eqs. (2.23) and (2.24).

2.1.4 Gauge invariance of Maxwell’s equations

The scalar field ϕ and the vector field A introduced above are only mathematical utilities rather than
physically meaningful quantities. As such, they can be varied as long as the physical results are not affected.
This can be demonstrated by introducing a new set of potentials

ϕ′ = ϕ − ∂tξ, (2.25a)
A′ = A + ∇ξ, (2.25b)

where ξ is an arbitrary twice-differentiable function. We note that the electric field

E = −∇ϕ′ − ∂tA
′ = −∇ϕ + ∂t∇ξ − ∂tA − ∂t∇ξ = −∇ϕ − ∂tA (2.26)

as well as the magnetic field

B = ∇ × A′ = ∇ × A + ∇ × ∇ξ = ∇ × A (2.27)

are invariant of the choice of ξ. For example, we can define the function ξ to be the solution of

∇2ξ = −∇A (2.28)

with∇A′ = 0 as a consequence. Then, we insert the potentials ϕ = ϕ′+∂tξ and A = A′−∇ξ into Eqs. (2.23)
and (2.24), which yields

∇2A′ + ∇ (∇A) − ε0µ0∂
2
t A
′ + ε0µ0∂

2
t ∇ξ − ∇ (∇A) − ε0µ0∂t∇ (ϕ

′ + ∂tξ) = −µ0J (2.29)
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and
− ∇2ϕ′ − ∂t∇

2ξ − ∂t∇A
′ = ε−1

0 ρ, (2.30)

respectively. After removing the terms that cancel each other, the equations read

∇2A′ − ε0µ0∂
2
t A
′ − ε0µ0∂t∇ϕ

′ = −µ0J, (2.31a)
− ∇2ϕ′ = ε−1

0 ρ, (2.31b)

and are referred to as the potential formulation of Maxwell’s equations in Coulomb gauge.

2.2 Fundamentals of quantum mechanics

Similar to other scientific theories, quantummechanics bases on a small set of postulates, whichwe introduce
in the following. In this section, we follow the descriptions given by Tang [29] in his very well-written
introduction to quantum mechanics, and by Nielsen and Chuang [30] in their comprehensive book on
quantum computation and quantum information.

2.2.1 Quantum mechanical states and operators

In classical mechanics, the state of a system at any given time can be described completely by the position
r and the momentum p. This description changes substantially in the scope of quantum mechanics, as we
shall see.
Postulate 1 The state of a dynamic system is completely described by a state vector |Ψ〉, which is a unit
vector of the state space that is associated with the system. The state space is a complex vector space with
an inner product 〈·|·〉, i.e., a Hilbert space.
In order to support the intentionally abstract formulation of the postulate, we use the Dirac notation for

the state vectors and the inner product. This notation is independent of their exact mathematical form, which
can be specified at a later stage, most commonly when discussing a particular problem. For example, if the
problem depends on three spatial dimensions, one can write the state vector |Ψ〉 as complex function Ψ(r),
where r is the position in space. In this case, the corresponding inner product assumes the form

〈Ψ|Ψ〉 =

ˆ
Ψ
∗(r)Ψ(r)dr =

ˆ
|Ψ(r)|2 dr = 1 (2.32)

and must be equal to unity as postulated above. Here, the term |Ψ(r)|2 can be interpreted as the probability
distribution function of finding a particle in the state |Ψ〉 at a certain position r , and the normalization
condition in Eq. (2.32) guarantees that the particle can be found somewhere in space.
Although the state vector |Ψ〉 contains the information that describes a certain state completely, it is

not exactly meaningful in a physical sense. Therefore, we need a further entity that extracts physically
meaningful quantities from the state vector.
Postulate 2 Every physically observable property Q of a dynamic system is represented by a linear operator
Q̂ that acts on the state space. The measurement of Q changes the state of the system to another state
|Ψ′〉 = Q̂ |Ψ〉. In contrast to classical mechanics, the result of the measurement has only statistical meaning
and is given as expectation value 〈Q̂〉 = 〈Ψ|Q̂ |Ψ〉.

The form of the operators depends on the chosen representation. In position space, we can use the
definitions r̂ = r and p̂ = −i~∇ for the position and the momentum operator, respectively, where ~ is the
reduced Planck constant. An equivalent formulation can be formed in momentum space. Independent of
the chosen space, any other operator representing a physical quantity can be derived in the same way the
quantity would be derived from position and momentum in classical terms.
The introduction of quantum mechanical states and operators reflects a crucial feature of systems with

small dimensions, namely the impact of the measurement on the system state. As a consequence, the order
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of two different measurements may make result in different outcome. For example, the measurement of
position and momentum in different order

r̂ p̂ |Ψ〉 = −i~r̂∇ |Ψ〉 , p̂ r̂ |Ψ〉 = −i~∇ r̂ |Ψ〉 = −i~ |Ψ〉 − i~r̂∇ |Ψ〉 (2.33)

leads to the commutation relation
r̂ p̂ − p̂ r̂ = [r̂, p̂] = i~, (2.34)

which is a manifestation of Heisenberg’s uncertainty principle. Here, [·, ·] denotes the commutator. In the
case that the commutator of two operators equals zero, the order of the measurements does not make a
difference and the corresponding quantities are not subject to the uncertainty principle.
We note that if the state vector |Ψ〉 is an eigenvector of the operator Q̂, then Q̂ |Ψ〉 = λ |Ψ〉 holds, where

λ is the corresponding eigenvalue. In this special case, the measurement does not change the state of the
system and the expectation value

〈Q̂〉 = 〈Ψ|Q̂ |Ψ〉 = 〈Ψ|λ |Ψ〉 = λ 〈Ψ|Ψ〉 = λ (2.35)

equals the eigenvalue. As the expectation value is always related to a physical quantity, it must be real-
valued. Consequently, all eigenvalues of the operators under consideration must be real-valued, which is
the case for Hermitian operators Q̂ = Q̂†.
Frequently, the quantum mechanical states and operators are projected onto the eigenvectors |φi〉 of the

operators. In the resulting representation, the state vector

|Ψ〉 =
∑
i

〈φi |Ψ〉 |φi〉 =
∑
i

ci |φi〉 (2.36)

can be written as linear combination of the basis functions and it is sufficient to consider the coefficients ci
in a vector. Similarly, the state vector |Ψ′〉 = Q̂ |Ψ〉 can be expanded as

|Ψ′〉 =
∑
i

〈φi |Q̂ |Ψ〉 |φi〉 =
∑
i, j

〈φi |Q̂ |φ j〉 〈φ j |Ψ〉 |φi〉 =
∑
i

c′i |φi〉 , (2.37)

where the coefficients c′i =
∑

j qi jcj depend on the matrix elements qi j = 〈φi |Q̂ |φ j〉 and the coefficients ci.
As a result, we can write the state vector |Ψ〉 as actual vector and the operator Q̂ as matrix. In the following,
we shall use the terms operator and matrix interchangeably.

2.2.2 Time evolution of quantum mechanical states

Now that we have defined quantum mechanical states and operators, we can take a look on how they evolve
with respect to time. It should be noted, however, that there is more than one way to look at this time
evolution. Unless noted otherwise, the Schrödinger picture is used in this thesis. Here, the state vectors
evolve in time but the operators are not explicitly time dependent. In the Heisenberg picture the opposite is
true. Finally, both state vectors and operators evolve in time in the interaction picture.
Postulate 3 All state vectors |Ψ〉 satisfy the time-dependent Schrödinger equation

i~∂t |Ψ〉 = Ĥ |Ψ〉 , (2.38)

where the Hamiltonian operator Ĥ = T̂ + V̂ is the sum of kinetic energy T̂ and potential energy V̂ and
therefore represents the total energy of the system. Here, ~ denotes the reduced Planck constant.
The Hamiltonian function H is the centerpiece of the eponymous formulation of mechanics, which has

been developed to provide a generalized approach to classical mechanics. However, it can be transferred
directly to quantum mechanics by replacing the physical quantities with their corresponding quantum
mechanical operators. In the scope of this formulation, the change in position and momentum can be
determined with Hamilton’s equations

dtri = ∂piH, (2.39a)
dtpi = −∂riH, (2.39b)
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where ri ∈ {x, y, z} and pi ∈ {px, py, pz} denote the components of the position andmomentum, respectively,
and dtri, dtpi represent their total derivatives with respect to time.

Using those equations, we can easily verify that the Hamiltonian operator

Ĥ0 =
p̂2

2m
+ V = −

~2∇2

2m
+ V (2.40)

describes the behavior of a system with mass m in a conservative potential V , since the expressions for
velocity and force

dtri =
pi
m
→dt r = v =

p

m
, (2.41a)

dtpi = −∂riV →dt p = md2
t r = F = −∇V (2.41b)

yield the well-known equations p = mv and F = −∇V . Note that quantum mechanical operators and
the corresponding physical quantities are used interchangeably and position and momentum are considered
independent of each other.
The solution of the Schrödinger equation (2.38) can be generally given in the form

|Ψ(t)〉 = Û(t, t0) |Ψ(t0)〉 (2.42)

using the unitary time evolution operator

Û(t, t0) = T← exp
[
−i~−1

ˆ t

t0

Ĥdτ
]
, (2.43)

where the time-ordering operator T← ensures the correct order of time-dependent operators in products. In
the case of a time-independent Hamiltonian Ĥ = Ĥ0, the evolution operator can be simplified significantly
to yield

Û0(t, t0) = exp
[
−i~−1Ĥ0(t − t0)

]
. (2.44)

We can readily see that ÛÛ† = Î holds and the time evolution operator is indeed unitary.
For a time-independent potential V (and, consequently, a time-independent Hamiltonian Ĥ0), the com-

plexity of the Schrödinger equation can be reduced by the separation ansatz |Ψ〉 = Ψ(r, t) = R(r)T(t).
Plugging this ansatz and the Hamiltonian Ĥ0 into Eq. (2.38) yields

R(r)i~∂tT(t) = T(t)Ĥ0R(r) → i~
∂tT(t)
T(t)

=
Ĥ0R(r)

R(r)
= ε, (2.45)

where ε denotes the separation constant. After rewriting the equation for the spatially dependent component
as

Ĥ0R(r) = εR(r), (2.46)

which is commonly referred to as the time-independent or stationary Schrödinger equation, it turns out that
the separation constant is an eigenvalue of the Hamiltonian operator. Since the Hamiltonian is related to the
total energy of the system, those eigenvalues are called the eigenenergies of the system. In this simple case,
the time evolution of the corresponding eigenstates can be derived by rewriting Eq. (2.45) as

i~∂tT(t) = εT(t) → T(t) = exp
[
−i~−1ε(t − t0)

]
T(t0). (2.47)

2.2.3 Hamiltonian of a system in a classical electromagnetic field

Let us now consider a quantum mechanical system in a classical electromagnetic field, which is a quite
common problem in quantum mechanics. In this case, the Hamiltonian can be taken from literature [31]
and reads

Ĥ =
( p̂ − qA)2

2m
+ qϕ + V (2.48)



16

where q is the electric charge of the system, and the potentials A and ϕ introduced in Eqs. (2.19) describe
the electromagnetic field. Then, Hamilton’s equations yield

dtri =
pi − qAi

m
→ dt r = v =

p − qA
m

, (2.49a)

dtpi =
p − qA

m
(
q∂ri A

)
− ∂ri (qϕ + V) . (2.49b)

By plugging the total time derivative of Eq. (2.49a) into Eq. (2.49b), we can determine the acting force

Fi = md2
t ri = dtpi − qdt Ai = v

(
q∂ri A

)
− ∂ri (qϕ + V) − qdt Ai (2.50)

elementwise. Using the relation dt Ai = ∂t Ai + v∇Ai for the total time derivative of the vector field A, we
can simplify the expression

v∂ri A − dt Ai = v∂ri A − ∂t Ai − v∇Ai = −∂t Ai + (v × ∇ × A)i (2.51)

and write the force
F = q (−∇ϕ − ∂tA + v × ∇ × A) − ∇V (2.52)

as vector. After comparison with Eqs. (2.1) and (2.19), we can readily see that the acting force contains the
Lorentz force in potential formulation.
We note that the canonical momentum p′ = mv + qA in Eq. (2.48) deviates from the mechanical

momentum mv, which renders the physical interpretation of results complicated [31], [32]. As a remedy,
the Hamiltonian can be transformed to a version where the canonical and mechanical momentum coincide,
such as in the Hamiltonian Ĥ0 in Eq. (2.40). This procedure requires a certain assumption, which we shall
discuss in Section 3.1.3. For the time being, the transformation itself is described. This can be accomplished
either in the scope the Lagrangian formalism of mechanics [33] or basing on the Hamiltonian formalism,
where the procedure is referred to as canonical transformation. In the following, let us consider an auxiliary
function ξ(r, t), the coordinates r = r ′ and p = p′ + ∇ξ, as well as the Hamiltonian

Ĥ(r, p, t) = Ĥ ′(r ′, p′, t) − ∂tξ. (2.53)

Naturally, such a transformation is only valid if Hamilton’s equations (cf. Eqs. (2.39) for the original form)
are not altered for the newly introduced Hamiltonian and coordinates. Since the auxiliary function does not
depend on the momentum, we can use ∂p′i/∂pi = 1 and write

dtri = ∂pi Ĥ = ∂p′i Ĥ = ∂p′i Ĥ
′ − ∂p′i∂tξ = ∂p

′
i
Ĥ ′ = dtr ′i (2.54)

for the first equation. We proceed similarly with the second equation, which yields

dtpi = dtp′i + dt∂ri ξ = −∂ri Ĥ(r, p, t) = −∂ri Ĥ(r, p
′, t) − ∂p′i Ĥ(r, p

′, t)∂ri p
′
i, (2.55)

and note that the case is more complicated due to the fact that the new momentum coordinate depends on
the spatial coordinate. We plug in the definition of the new Hamiltonian into the expression, which leads to

dtp′i + dt∂ri ξ = −∂ri Ĥ
′ + ∂ri∂tξ − ∂p′i Ĥ

′∂ri p
′
i . (2.56)

By using the identities ∂ri p′i = −∂
2
ri
ξ and ∂p′i Ĥ

′ = dtr ′i = dtri, we find that the total derivative

dt∂ri ξ = ∂t∂ri ξ + (dtri) ∂
2
ri
ξ (2.57)

can be subtracted from both sides of Eq. (2.56), which confirms that also the second of Hamilton’s equations

dtp′i = −∂ri Ĥ
′ = −∂r′i Ĥ

′. (2.58)

is invariant to the transformation described above.
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2.2.4 Density operator and the Liouville-von Neumann equation

With the help of the three postulates abovewe can already describe the physical state of a quantummechanical
system with the state vector |Ψ〉 and its time evolution by solving the Schrödinger equation. At this point,
we can readily treat single-particle problems, such as the behavior of an electron in a potential well. For
a system that contains more than one particle, however, the complexity increases. Considering the typical
charge carrier densities in semiconductor materials, it becomes apparent that it is hardly feasible to know
the exact state of each particle. Fortunately, this exact knowledge is not required in most applications, and
instead it is sufficient to know the states |Ψk〉 which the particles of the system can be in, and to determine
a statistical probability pk that indicates to what degree those states are occupied by the particles. Then, we
can generalize the expression for the expectation value of an operator Q̂ to the weighted average

〈Q̂〉3D = n3D 〈Q̂〉 = n3D
∑
k

pk 〈Ψk |Q̂ |Ψk〉 (2.59)

over all particles and all possible states. Here, n3D is the particle density in the system. As in Eq. (2.36), we
can expand the states |Ψk〉 as linear combination of a basis φi and rewrite the expectation value as

〈Q̂〉 =
∑
k

pk
∑
i, j

〈Ψk |φi〉 〈φi |Q̂ |φ j〉 〈φ j |Ψk〉 =
∑
i, j

〈φi |Q̂ |φ j〉
∑
k

pk 〈φ j |Ψk〉 〈Ψk |φi〉 . (2.60)

Now, we introduce the density operator

ρ̂ =
∑
k

pk |Ψk〉 〈Ψk | (2.61)

and find that the expression above can be simplified to

〈Q̂〉 =
∑
i, j

〈φi |Q̂ |φ j〉 〈φ j | ρ̂|φi〉 = Tr
{
Q̂ ρ̂

}
, (2.62)

where Tr{·} denotes the trace of a matrix. We note that the density operator effectively replaces several state
vectors and allows the compact treatment of systems that cannot be described by a single state.
At this point, a discussion of the probabilities pk is in order. From probability theory, we expect that

pk ∈ [0,1] and the sum over all probability values
∑

k pk = 1. This has important consequences for the
density operator ρ̂. In the basis of |Ψk〉, ρ̂ is a diagonal matrix with the main diagonal entries pk . This
means that the probabilities pk are the eigenvalues of the density matrix. We can readily see from Eq. (2.61)
that the density matrix is Hermitian, which means that the eigenvalues pk are real. Furthermore, as the pk
are non-negative, we have to demand that the density matrix is positive semidefinite. Finally, the trace of
the density matrix

Tr{ ρ̂} =
∑
k

pk = 1 (2.63)

is the sum of the eigenvalues and must sum up to unity.
While we have already derived the expectation value from the density operator, it remains to be shown

how the density operator evolves in time. In order to do so, we plug in the Schrödinger equation (2.38) into
the expression for the time derivative

∂t ρ̂ =
∑
k

pk∂t |Ψk〉 〈Ψk | + pk |Ψk〉 ∂t 〈Ψk | = −i~−1

(∑
k

pk Ĥ |Ψk〉 〈Ψk | −
∑
k

pk |Ψk〉 〈Ψk | Ĥ†
)

(2.64)

which yields the (Liouville-)von Neumann equation

∂t ρ̂ = −i~−1
(
Ĥ ρ̂ − ρ̂Ĥ

)
= −i~−1 [

Ĥ, ρ̂
]
= L (ρ̂) , (2.65)

where the Liouvillian superoperator L can be used for brevity. In this derivation, we have assumed that the
probabilities pk do not vary in time. As can be seen from the general solution

ρ̂(t) = Û (t, t0) ρ̂ (t0) Û† (t, t0) = U (t, t0, ρ̂ (t0)) (2.66)
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of the Liouville-von Neumann equation, the density operator evolves unitarily in time in this case. Here, the
unitary time evolution operator from Eq. (2.43) has been used and the solution superoperator U has been
introduced as shortcut. If, on the other hand, we allow for time-dependent probabilities, an extra term arises
in Eq. (2.65). This case shall be discussed Section 2.2.6.

2.2.5 Composite systems and the reduced density operator

Up to this point, we implicitly assumed that we are interested in all degrees of freedom of the complete
quantum mechanical system. In practice, this might not be the case and a more efficient approach would
be beneficial. A common example of such an approach is to divide the complete system in a system of
interest S and an environment E. Then, a reduced density operator can be derived that describes the system
of interest alone, thereby providing a more compact description. In order to do so, we have to introduce the
notion of composite systems in a further postulate.
Postulate 4 The state space of a composite system is the tensor product of the state spaces of the component
systems. Furthermore, if the component systems are prepared in the states |Ψi〉, then the joint state of the
composite system reads |Ψ〉 = |Ψ1〉 ⊗ |Ψ2〉 ⊗ · · · ⊗ |ΨN 〉, where ⊗ denotes the tensor product.
As a consequence, if the state spaces of the system under consideration and the environment are spanned

by the basis vectors |φi,S〉 and |φ j ,E〉, respectively, we can use the vectors |φi,S〉 ⊗ |φ j ,E〉 as basis for the
state space of the composite system. Then, any state of the composite system can be written as linear
superposition

|Ψ〉 =
∑
i, j

ci j |φi,S〉 ⊗ |φ j ,E〉 (2.67)

with the coefficients c. At this point, a very interesting implication of the postulate becomes apparent. We
note that the joint state can be determined as tensor product of the component states, but the opposite is not
necessarily true. In the case in which a decomposition is possible, the joint state is referred to as a separable
state. Otherwise, the component systems are said to be entangled, which is a physical phenomena that can
only be explained by quantum mechanics.
Similarly, we can write the operators on the composite state space as

Q̂ =
∑
i, j ,k ,l

c′i jkl
(
|φi,S〉 〈φ j ,S |

)
⊗

(
|φk ,E〉 〈φl,E |

)
=

∑
i, j

c′′i j ŝi ⊗ êj (2.68)

with the coefficients c′ and c′′. The introduced operators ŝi and êj constitute a basis of all operators in the
reduced system S and the environment E, respectively. Due to the similarity with Eq. (2.67) we deduce that
it is possible to compose an operator Q̂ = Q̂S ⊗ Q̂E from the component operators, but it is not guaranteed
that an operator of the composite system can be decomposed as tensor product of the component operators.
Let us now consider the reduced density operator ρ̂S and another operator Q̂S that acts on the system

under consideration. We know from Eq. (2.62) that the expectation value of the operator Q̂S is

〈Q̂S〉 = Tr
{
Q̂S ρ̂S

}
. (2.69)

With the help of the identity operator ÎE of the state space of the environment, we can extend the operator Q̂S
to an operator Q̂ = Q̂S ⊗ ÎE that acts on the composite system. Now we demand that this extended operator
must yield the same expectation value, as there is no action within the environment and no interaction
between the environment and the reduced system. Then, the equation

〈Q̂S〉 = Tr
{
Q̂S ρ̂S

} !
= Tr

{
Q̂ ρ̂

}
(2.70)

must hold. In order to verify this equivalence, we need to introduce the partial trace operation

TrE
{
Q̂S ⊗ Q̂E

}
= Q̂S Tr

{
Q̂E

}
(2.71)

with the property Tr{·} = TrS{TrE{·}}. With this property we can rewrite the condition as

Tr
{
Q̂S ρ̂S

} !
= TrS

{
TrE

{
Q̂ ρ̂

}}
(2.72)
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Initial value
ρ̂ (t0)

Time evolution
ρ̂ (t) = U (t, t0, ρ̂ (t0))

Initial value
ρ̂S (t0)

Time evolution
ρ̂S (t) = V (t, t0, ρ̂S (t0))

TrE TrE

Unitary evolutionU

Dynamical mapV

Figure 2.1 Comparison of the initial value and the time evolution of a complete system (closed, in orange) and the
system of interest (open, in blue), respectively. Redrawn from H.-P. Breuer and F. Petruccione, The Theory of Open
Quantum Systems. Oxford University Press, Oxford, 2002 [34].

and note that on the left hand side the trace operation Tr and partial trace operation TrS are equivalent.
Hence, we aim to verify the equivalence of the arguments

Q̂S ρ̂S
!
= TrE

{
Q̂ ρ̂

}
= TrE

{(
Q̂S ⊗ ÎE

) (∑
i, j

c′′i j ŝi ⊗ êj

)}
= TrE

{∑
i, j

c′′i jQ̂S ŝi ⊗ êj

}
(2.73)

by expanding the density operator ρ̂ as described in Eq. (2.68) and using the property (Â ⊗ B̂)(Ĉ ⊗ D̂) =
ÂĈ ⊗ B̂D̂ of the tensor product. We can rearrange the resulting expression

TrE

{∑
i, j

c′′i jQ̂S ŝi ⊗ êj

}
=

∑
i, j

c′′i j TrE
{
Q̂S ŝi ⊗ êj

}
=

∑
i, j

c′′i jQ̂S ŝi Tr
{
êj

}
=

∑
i, j

c′′i jQ̂S TrE
{
ŝi ⊗ êj

}
(2.74)

further by using the definition of the partial trace in Eq. (2.71) and find that the condition

Q̂S ρ̂S
!
= TrE

{
Q̂ ρ̂

}
= Q̂S TrE { ρ̂} (2.75)

holds if we define the reduced density matrix ρ̂S as

ρ̂S = TrE { ρ̂} . (2.76)

2.2.6 Quantum master equations and their solutions

In the section before we have defined the reduced density matrix, which represents the system of interest.
The next goal is to describe its time evolution with a so-called quantummaster equation, which subsequently
replaces the Liouville-von Neumann equation. By applying the time derivative on Eq. (2.76), we can derive

∂t ρ̂S = −i~−1 TrE
{[

Ĥ, ρ̂
]}

(2.77)

as a starting point for such a master equation. Also, we can construct the Hamiltonian

Ĥ = ĤS ⊗ ÎE + ÎS ⊗ ĤE + ĤI (2.78)

so that the reduced system alone would be governed by the Hamiltonian ĤS (and, analogously, the environ-
ment alone by the Hamiltonian ĤE). The reduced system and the environment are only coupled after the
introduction of the interaction Hamiltonian ĤI. However, deriving a master equation that contains only the
reduced density matrix is still far from trivial. In their excellent book about the theory of open quantum
systems, Breuer and Petruccione [34] outline two paths to this goal, which will be discussed in the following.
Before, however, it makes sense to discuss the mathematical properties of the solution as a prerequisite

for both approaches. After all, the ultimate goal is not only to derive the master equation, but also to solve it.
Figure 2.1 compares the initial value and the time evolution of the complete system and the reduced system
of interest, respectively. The vertical arrows denote the partial trace operation over the environment, which
transforms the initial value of the complete density matrix into that of the reduced density matrix according
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to Eq. (2.76). On the right side, the time evolution is transformed by applying the partial trace operation on
Eq. (2.66), which yields

ρ̂S(t) = TrE
{
Û (t, t0) ρ̂ (t0) Û† (t, t0)

}
= TrE {U (t, t0, ρ̂ (t0))} = V (t, t0, ρ̂S (t0)) , (2.79)

where the dynamical mapsU andV have been introduced to represent the time evolution of the complete
and the reduced system, respectively. Obviously, if the map U is applied on a valid density matrix, the
result must be a valid density matrix as well. This means that the map must be positive and trace-preserving
in order to preserve two of the three properties (positive semidefiniteness and trace) of the density matrix.
Of course, the Hermitian property must be preserved as well, but as we shall see this is usually trivial.
For the map V, however, an additional condition holds, since also every induced map V ⊗ ÎE must be
positive. In other words, even if V maps a valid reduced density matrix to another, it must be guaranteed
that the complete density matrix remains valid as well. If the dimension of the environment E can be chosen
arbitrarily, this property is referred to as complete positivity. Fortunately, the Choi-Kraus theorem gives a
compact condition whether or not a map is completely positive and trace-preserving (CPTP).
Theorem 2.2.1 (Choi-Kraus) Let L(H) denote the space of square linear operators acting on a Hilbert
space H . A map V : L(H) → L(H) is completely positive and trace-preserving (CPTP) if and only if a
Choi-Kraus decomposition

V (ρ̂) =

N2∑
i=1

V̂i ρ̂V̂†i (2.80)

exists, where ρ̂ ∈ L(H) and N denotes the dimension of the Hilbert space H , and the Kraus operators
V̂i ∈ L(H) fulfill

N2∑
i=1

V̂iV̂
†

i = Î . (2.81)

Here, Î ∈ L(H) denotes the identity operator.

Proof. The proof is omitted for brevity, but can be found e.g., in the text book by Wilde [35]. The original
work was published in the papers by Choi [36] and Kraus [37]. �

Remark It can be readily seen from Eq. (2.80) that a completely positive and trace-preserving map also
preserves the Hermitian property of ρ̂.
At this point we know the mathematical properties of the general solution of the master equation without

knowledge of the master equation itself. Now it is possible to go along the first path and derive the most
general master equation that guarantees a CPTP solution. This approach is purely mathematical and we
have to assign a physical meaning to the master equation at a later stage. The only assumptions at this
point are that we restrict ourselves to Markovian (or time-local) dynamics, and that the complete system
can be prepared initially as ρ̂(t0) = ρ̂S(t0) ⊗ ρ̂E. For the sake of brevity, we shall take a shortcut and use the
Lindblad-Gorini-Kossakowski-Sudarshan theorem below.
Theorem 2.2.2 (Lindblad-Gorini-Kossakowski-Sudarshan) The solution of a quantum master equation is
guaranteed to be a completely positive and trace-preserving map, if the master equation assumes the form

∂t ρ̂S = −i~−1 [
ĤS, ρ̂S

]
+

N2−1∑
i, j=1

ci j

(
F̂i ρ̂SF̂†j −

1
2

F̂†j F̂i ρ̂S −
1
2
ρ̂SF̂†j F̂i

)
, (2.82)

where the traceless operators F̂i form an arbitrary orthonormal basis of the space B(H) of bounded operators
on the Hilbert spaceH with the restriction that F̂N2 is proportional to the identity operator, the coefficients
ci j form a positive semi-definite matrix C, and N denotes the dimension of the Hilbert spaceH .

Proof. The proof is omitted for brevity, but can be found e.g., in the text book byBreuer and Petruccione [34].
The originalworkwas published in the papers byLindblad [38] andGorini, Kossakowski and Sudarshan [39].

�
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By introducing the Lindblad dissipation superoperator

D (ρ̂S) =

N2−1∑
i, j=1

ci j

(
F̂i ρ̂SF̂†j −

1
2

F̂†j F̂i ρ̂S −
1
2
ρ̂SF̂†j F̂i

)
, (2.83)

we can rewrite Eq. (2.82) as the extension of the Liouville-von Neumann equation (2.65). As already
anticipated in Section 2.2.4, an extra dissipation term has appeared. This is the consequence of the
transition from a closed system, in which the probability values pk cannot be affected and the dynamical
behaviour is governed by unitary evolution, to an open system, in which the probabilities can vary due to
interactions with the environment. The resulting form

∂t ρ̂S = L (ρ̂S) +D (ρ̂S) (2.84)

of the master equation shall be referred to as the Lindblad equation.
Alternatively, different forms of the quantum master equation can be derived microscopically by starting

from Eq. (2.77) and exploiting different assumptions and approximations. For example, the Markovian
approximation, the Born approximation (weak coupling limit), and the secular approximation are required
in order to derive a master equation of Lindblad form microscopically. This path has a stronger focus on
the physical processes between the system under consideration and the environment. It should be noted that
some forms, such as the Redfield equation, do not guarantee a CPTP solution and therefore might violate
the mathematical properties of the reduced density matrix. Nevertheless, they can still be useful in practice
when used with care.

2.3 Basic theory of semiconductors and semiconductor heterostructures

The behavior of semiconductors can be explained basing on the postulates of quantummechanics. However,
this is a formidable application of quantummechanics and requires significant modeling effort and auxiliary
concepts. Once more it should be noted that a complete treatment of semiconductor physics is beyond the
scope of this thesis. Instead, we derive in this section the subset of concepts that is required to understand the
state of the art in modeling semiconductor lasers, in particular QCLs. To this end, we shall employ several
existingmodels and approximations that are commonly used in semiconductor physic, but omit their detailed
introduction for the sake of brevity. The interested reader is referred to the many excellent books on the
subject, e.g., the introduction to solid state physics by Ashcroft and Mermin [40], the general introduction to
semiconductor physics by Yu and Cardona [41], or the books on low-dimensional semiconductor structures
and semiconductor heterostructures by Davies [42] and Bastard [43], respectively.

2.3.1 Band structure of semiconductors

Let us first consider a free electron, i.e., an electron that is not confined by any potential and is free to move.
In this case, the Hamiltonian Ĥ0 = p̂2/(2m0), where m0 denotes the electron mass, is time-independent and
the stationary Schrödinger equation (2.46), which then reads

−
~2∇2

2m0
Ψ(r) = εΨ(r), (2.85)

can be used to determine the eigenenergies of the free electron. By plugging in a suitable ansatz Ψ(r) =
A exp(ikr), where A is an arbitrary amplitude of a wave with the wave vector k, it becomes apparent that
the eigenenergies are continuous and form a dispersion relation

ε(k) =
~2k2

2m0
, (2.86)

which means that the electrons may assume an arbitrary energy value.
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The situation is significantly more complex when electrons in a semiconductor material are considered.
Solid state semiconductors consist of a crystal lattice in which the vertices are occupied by the atom cores.
The electrons are usually divided in valence electrons and core electrons, where the latter are usually
assumed to be localized around the atom cores. The energy of the system is the sum of the kinetic energy
of the atom cores and electrons, respectively, and the potential energy that stems from the Coulomb forces
(cf. Eq. (2.1), but neglecting the magnetic field B = 0) between the different atom cores, between the
atom cores and the electrons, as well as between the different electrons. This many-particle approach is
exceedingly complex and usually simplified with the following approximations. First, it is assumed that
only the valence electrons contribute to the dynamic behavior of the semiconductor and the core electrons
are treated in combination with the atom core. Then, the Born-Oppenheimer (or adiabatic) approximation
exploits the difference in inertia between the atom cores (including the core electrons) and the electrons. As
a consequence, the atom cores experience a time-averaged adiabatic potential that stem from the electrons,
and from the point of view of the electrons the atom cores are essentially stationary. Finally, the interactions
between the individual electrons are averaged by virtue of the mean-field approximation, which assumes
that every electron experiences the same potential V(r). In the resulting description, a single exemplary
electron can be described using the time-independent Schrödinger equation, in which of course the potential
is assumed to be time-independent. Any variations of the potential in time can be included in a later step
using perturbation theory to describe the transitions of the electrons between their quantum mechanical
states [41].
Evenwithout knowledge of the exact form of the potential it is possible to extract a significant characteristic

of semiconductors from the single-particle description. To this end, we assume that the semiconductor is
an infinite perfect crystal lattice with the period R, i.e., V(r) = V(r + R), and use Bloch’s theorem.
Theorem 2.3.1 (Bloch) The eigenstates of a single-particle Hamiltonian Ĥ0 = p̂2/(2m) + V(r), where the
potential V(r) = V(r + R) is periodic with the period R, can be chosen to have the form of a plane wave
multiplied with a function with the same periodicity. In other words, the eigenstates assume the form

Ψn,k (r) = exp (ikr) un,k (r) , (2.87)

where un,k (r) = un,k (r + R) holds.

Proof. The proof is omitted for brevity, but can be found e.g., in the text book by Ashcroft and Mermin [40].
The original work was published in the papers by Floquet [44] (for the one-dimensional case) and Bloch [45]
(for the generalized three-dimensional case). �

Remark For a given wave vector k there may be more than one solution to the stationary Schrödinger
equation, i.e., more than one eigenstate. The band index n has been introduced to distinguish between
the different families of solutions. Each family of solutions features a continuous function εn(k) for the
corresponding eigenenergy values [40].
The notion of bands, i.e., states with a continuous relation between energy and wave vector (dispersion

relation), is a significant consequence of Bloch’s theorem. Each band provides a continuous range of allowed
energy values, but introduces the possibility that between two bands there could be a gap. Indeed, such a
band gap exists in the band structure of insulator and semiconductor materials, and constitutes a range of
energy values that the electrons cannot assume. Furthermore, it separates the valence band (the highest range
of energy values that are occupied by electrons at absolute zero temperature) from the conduction band (the
lowest range of energy values that are vacant at absolute zero temperature). In a wider definition, all bands
below the band gap are referred to as valence bands, and all bands above the band gap are called conduction
bands. The energy of the electrons in the conduction band exceeds the Fermi energy, which allows them
to move and, as a consequence, contribute to electric conduction. Therefore, whether or not a band gap
arises, and what energy range it covers, defines whether the material under discussion is a conductor (no
band gap), an insulator (large band gap), or semiconductor (small band gap). This information can only be
obtained from the band structure, which requires exact knowledge of the dispersion relation of all bands.
The dispersion relation, in turn, requires the knowledge of the exact form of the potential V(r).
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2.3.2 The effective mass approximation

Various methods exist that are able to determine the band structure of a certain semiconductor material [40],
[41]. For example, plugging in the eigenstates Eq. (2.87) into the stationary Schrödinger equation (2.46)
yields the eigenvalue equation[

p̂2

2m0
+ V (r) +

~

m0
k · p̂ +

~2k2

2m0

]
un,k (r) = εn (k) un,k (r) (2.88)

for the periodic envelope function un,k (r). This equation serves as starting point for the k.p method (named
after the third term of the Hamiltonian operator) and its variations. The k.p method solves the eigenvalue
equation for k = 0, which yields the states un,0(r). The terms in the Hamiltonian that contain the wave vector
are subsequently considered using the states as basis and time-independent perturbation theory. Usually,
the center k = 0 is assumed to be an extremum of the dispersion relation εn(k) and only small deviations of
the wave vector from the center are considered. In this case, second order perturbation theory is sufficient
to approximate the dispersion relation with the expression

εn (k) ≈ εn (0) +
~2k2

2m0

{
1 +

2
m0

∑
m,m,n

��〈um,0 |k · p̂ |un,0〉��2
k2 [εn(0) − εm(0)]

}
. (2.89)

In principle, however, the method is able to determine the band structure globally (i.e., without the restriction
of the wave vector to the region around the center) provided that higher-order perturbation terms are
included [42]. We compare Eq. (2.89) to the dispersion relation for the free electron in Eq. (2.86) and find
that they only differ by the offset εn (0) in energy and the complex expression in the curly braces. Indeed, the
dispersion relation of a certain band around the center k = 0 can frequently be approximated with a parabola
similar to Eq. (2.86), where the mass is replaced with the effective mass of the band under consideration.
Assuming that we already know the band structure of a certain semiconductor material (by means of

the k.p method or one of the various alternatives), we can derive the effective mass of a certain band by
expanding the corresponding dispersion relation

εn(k) = εn(0) +
∑
i

∂ki εn(k)
��
k=0 ki +

1
2

∑
i, j

∂ki∂k j εn(k)
��
k=0 kik j + O(k

3) (2.90)

as Taylor series at the center, where the ki denote the components of the wave vector and the indices
i, j ∈ {x, y, z} represent the directions in 3D. Again, we assume that the center k = 0 is an extremum and,
as a consequence, the first-order derivatives ∂ki εn(k)

��
k=0 = 0 in all directions. We truncate the series after

the second order term and compare the result

εn(k) ≈ εn(0) +
1
2
kTHεn (0)k, (2.91)

where Hεn is the Hessian of the dispersion relation εn(k), to Eq. (2.86). Ignoring the offset εn (0) for a
moment, we can readily see that they correspond to each other provided that the electron mass m0 is replaced
with the effective mass tensor

M∗n = ~2 [
Hεn (0)

]−1
. (2.92)

With the help of this artificial mass (which is a tensor in general, and even may be negative in certain cases)
we can treat electrons in a semiconductor material as we would treat free quantum mechanical particles.
In the next section, we shall discuss the application of this concept to the modeling of semiconductor
heterostructures, in which we also use the (previously ignored) offset εn (0).

2.3.3 Modeling of semiconductor heterostructures

Over the last decades, many semiconductor devices have been developed that exploit the physical properties
of heterojunctions, such as the high electron mobility transistor (HEMT) or the quantum well laser. A
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heterojunction is defined as the interface between two different semiconductor materials (in contrast to
homojunctions, such as the well-known p-n junction, which are the consequence of differences in doping).
The combination of multiple heterojunctions are referred to as semiconductor heterostructure. The QCL
gain medium is a prime example of such a heterostructure as it consists of a stack of thin layers with different
semiconductor materials. Therefore, we derive in the following the basic concepts required to model the
QCL gain medium.

To this end, we again make some basic assumptions that simplify the resulting model significantly.
From the band structures of the different semiconductor materials we only consider the bottom conduction
band as relevant. As a consequence, interband transitions (e.g., from the conduction band to one of the
valence bands) are ignored. Instead, the transitions between states within the conduction band, which are
usually referred to as subbands, are considered. Additionally, we continue to assume that the conduction
band of each semiconductor material in use can be represented by a parabolic dispersion relation. This is
accompanied by the assumption that only a small range of wave vectors around the center k = 0 contribute
to the allowed states in a semiconductor heterostructure.
With these assumptions in mind, we aim to derive a simplified Schrödinger equation that yields the

allowed states in a heterostructure. To this end, we consider the state

Ψ (r) =

ˆ
c (k) exp (ikr) uk (r) dk ≈ u0 (r)

ˆ
c (k) exp (ikr) dk (2.93)

as linear superposition of Bloch states with the coefficients c, where the integral reflects the continuous
nature of the wave vector k and the band index n has been dropped as only the conduction band is
considered. Since we assume that only a small range of wave vectors contribute toΨ, the function uk ≈ u0 is
approximately constant and can be extracted from the integral. This step is commonly referred to as envelope
function approximation (EFA). The remaining integral can be interpreted as inverse Fourier transform of
the coefficients c(k) from the pseudo-spectral k-space, which yields a certain envelope function

ψ (r) =

ˆ
c (k) exp (ikr) dk . (2.94)

As the state Ψ(r) must fulfill the stationary Schrödinger equation Ĥ0Ψ(r) = εΨ(r), we investigate the
effect

Ĥ0Ψ (r) =

ˆ
c (k) Ĥ0 exp (ikr) uk (r) dk =

ˆ
c (k) ε (k) exp (ikr) uk (r) dk (2.95)

of theHamiltonian Ĥ0 = p̂2/(2m)+V(r) on the stateΨ(r). By invoking the envelope function approximation,
this term can be simplified to

Ĥ0Ψ (r) ≈ u0 (r)

ˆ
c (k) ε (k) exp (ikr) dk . (2.96)

At this point, Eq. (2.91) can be plugged in for the dispersion relation ε(k), which yields

Ĥ0Ψ (r) ≈ u0 (r)

[
ε(0)ψ (r) +

1
2

ˆ
c (k) kTHε (0)k exp (ikr) dk

]
. (2.97)

We note that the Hessian Hε does not depend on the wave vector and can be treated as constant. Then,
from basic Fourier theory we know that a multiplication with k in k-space corresponds to a differentiation
operation −i∇ in regular space and we can treat the integral as inverse Fourier transformation. After the
transformation, the effect of the Hamiltonian reads

Ĥ0Ψ (r) ≈ u0 (r)

[
ε(0) −

1
2
∇Hε (0)∇

]
ψ (r) . (2.98)

Finally, we find that in the envelope function approximation, the stationary Schrödinger equation

u0 (r)

[
ε(0) −

1
2
∇Hε (0)∇

]
ψ (r) = εu0(r)ψ (r) (2.99)
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for the state Ψ(r) can be reduced to the equation[
−
~2

2
∇

(
M∗n

)−1
∇ − Vc

]
ψ (r) = εψ (r) (2.100)

for the envelope ψ (r), where we plugged in the effective mass tensor and introduced the potential Vc to
replace ε(0).

Equation (2.100) can now be applied to a semiconductor heterostructure by allowing the effective mass
tensor and the potential Vc to vary in growth direction z. The resulting function Vc(z) is commonly referred
to as conduction band profile and features multiple quantum wells and barriers. An example of such a
profile has already been depicted in Fig. 1.3. For the effective mass, we make two additional assumptions.
Since the effective mass tensor is symmetric, it can be diagonalized by means of a suitable change of basis.
In other words, there exists a principal axis system in which the tensor is diagonal but it is not guaranteed
that this axis system coincides with the coordinate system of the device to be modeled. Nevertheless, a
diagonal effective mass tensor is frequently assumed in the modeling of heterostructures. Additionally, in
the Ben Daniel-Duke model it is assumed that the main diagonal entries m∗xx = m∗yy = m | | related to the
in-plane directions x and y are equal, where the in-plane effective mass m | | is introduced for convenience.
The remaining diagonal entry m∗zz = m∗ is referred to as the effective mass in growth direction z. With these
assumptions in mind, we can write Eq. (2.100) as{

−
~2

2

[
1

m | |(z)

(
∂2
x + ∂

2
y

)
+ ∂z

1
m∗(z)

∂z

]
+ Vc(z)

}
ψ(r) = εψ(r). (2.101)

Since the conduction band profile and the effective masses only vary in growth direction, we can make the
ansatz

ψ(r) = S−1/2ψkT(z) exp
(
ikT,x x + ikT,yy

)
, (2.102)

where kT = [kT,x, kT,y]
T is the in-plane wave vector, and the in-plane cross section area S ensures the

normalization
´
|ψkT(z)|

2dz = 1. Plugging in this ansatz into Eq. (2.101) yields the Ben Daniel-Duke
model {

~2

2

[
k2

T,x + k2
T,y

m | |(z)
+ ∂z

1
m∗(z)

∂z

]
+ Vc(z)

}
ψkT(z) = εkTψkT(z), (2.103)

which can be simplified to a one-dimensional stationary Schrödinger equation[
−
~2

2
∂z

1
m∗(z)

∂z + Vc(z)
]
ψ(z) = εψ(z) (2.104)

by neglecting the spatial dependence of the in-plane effective mass. For the kinetic energy, the relation
εkT = ε + ~

2k2
T/(2m | |) holds in this case.

Equation (2.104) provides a simple model that is widely used in the simulation of semiconductor het-
erostructure devices, such as the QCL. It should be noted that it must be complemented by appropriate
boundary conditions. Apart from the obvious condition ψ(z+0 ) = ψ(z−0 ) for a continuous wave function
(where z±0 represents the two sides of a heterojunction at the position z0), a second boundary condition can
be derived by integrating over Eq. (2.104). Since

0 =
ˆ z0+α

z0−α

[
−
~2

2
∂z

1
m∗(z)

∂z + Vc(z) − ε
]
ψ(z)dz

= −
~2

2
1

m∗(z)
∂zψ(z)

����z0+α

z0−α

+

ˆ z0+α

z0−α
[Vc(z) − ε]ψ(z)dz

(2.105)

must hold, we get for α→ 0

0 = −
~2

2
1

m∗(z)
∂zψ(z)

����z0+α

z0−α

(2.106)

and, as a consequence, the boundary condition m∗(z+0 )∂zψ(z
−
0 ) = m∗(z−0 )∂zψ(z

+
0 ).
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2.4 Summary

The main product of any laser is electromagnetic radiation that can be described with the laws of classical
electrodynamics, namely the equation for the Lorentz force and Maxwell’s equations. Starting from
the microscopic formulation of Maxwell’s equations, different alternative descriptions of these equations
have been derived. For example, the macroscopic formulation is usually more suitable in the scope of
device simulation. The source terms in both formulations, such as the current density and the charge
density, as well as their variations have been discussed in detail. Additionally, the time-harmonic form
of Maxwell’s equations and the corresponding complex relative permittivity have been introduced. The
potential formulation exploits the redundancy of Maxwell’s equations and uses the electromagnetic scalar
and vector potentials to describe the corresponding physical processes without any loss of generality. The
gauge invariance allows further reduction of complexity in the equations, yielding a very compact notation,
which is commonly used in physics.

The gain medium of the QCL, on the other hand, cannot be described using classical physics. Therefore,
we have reviewed the basic postulates of quantum mechanics and their implications. The state of a system
is described by a state vector, and operators that act on the state vector correspond to physical quantities.
We have discussed the properties of the operators and their relation to the macroscopic, classical quantities.
The time evolution of the quantum mechanical states can be described with the Schrödinger equation, in
which the Hamiltonian operator plays a pivotal role. For a the time-independent Hamiltonian, the concept
of eigenenergies becomes apparent. The eigenenergies can be related to the discrete energy levels already
mentioned in Chapter 1. In general, however, the Hamiltonian is time-dependent, for example for a quantum
mechanical system in a classical electromagnetic field. This example has been introduced as preparation for
the interaction between the gain medium and the electromagnetic radiation. Since a description using state
vectors is only convenient for a system with few particles, we have identified the density operator as central
concept to treat many-particle systems. When using the density operator, the time evolution of the system
is governed by the Liouville-von Neumann equation. Often it makes sense to divide the system in a reduced
system of interest and an environment in order to reduce the complexity. Therefore, we have introduced
the notion of composite systems and quantum master equations, which describe the time evolution of the
reduced density operator.
The behavior of semiconductors can be described using the basic postulates of quantum mechanics, but

this is a formidable task that is beyond the scope of this chapter. However, we have derived several basic
concepts that are common in semiconductor theory, such as the band structure of semiconductor materials.
Using the concept of the effective mass tensor, we have related the movement of an electron in the crystal
lattice of a semiconductor to that of a free electron. Finally, using the envelope function approximation a very
compact model for the states in a semiconductor heterostructure has been derived. The path from the basic
postulates of quantummechanics to this compact model leads over several assumptions and approximations,
which may have been discussed only briefly but provide a complete overview. This overview will serve as
basis for the discussion of quantum cascade laser models in the next chapter.
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3 Modeling the dynamics of quantum cascade
lasers

This is awesome! If only real life was in 3D.
— Bart Simpson

I have the solution, but it works only in the case of spherical
cows in a vacuum!

— The oldest modeling joke

Building on the general theoretical basis in Chapter 2, we advance to the modeling of quantum cascade
lasers. In alignment with the division between gain medium and resonator cavity, we start with a review
of different modeling approaches for the electron dynamics in the gain medium in Section 3.1. Here, we
exploit a feature that all of them have in common – namely, the separation of the quantum mechanical states
into envelope wave functions that depend only on the growth direction z and components that depend on the
in-plane coordinates x and y. This separation facilitates the treatment of the gain medium as collection of
quantum mechanical systems that occupy a certain position in the x-y-plane and span the complete active
region in z direction. The dynamical behavior of this collection of quantum mechanical systems can then be
described with a master equation of Lindblad form (cf. Eq. (2.84)), where the Hamiltonian of the reduced
system describes the physical effects in growth direction and the dissipation term represents the in-plane
perturbation effects. Then, we address the coupling between the electromagnetic field in the laser and the
time evolution of the quantum mechanical systems. Here, we can safely assume that the dimensions of the
quantum mechanical systems are significantly smaller than the occurring wavelengths of the optical field.
This assumptions is commonly referred to as dipole approximation. We continue in Section 3.2 with the
dynamics of an electromagnetic field in the resonator cavity, where we establish the assumption that the
total electric field

E = −∇ϕ︸︷︷︸
EB

−∂tA︸︷︷︸
EO

(3.1)

consists of a static bias field EB and a dynamic optical field EO, which are directly related to the scalar
potential ϕ and vector potential A, respectively. Then, we exploit the fact that the resonator geometry
is constant in propagation direction and derive a one-dimensional propagation model, which reduces the
overall complexity significantly. As the different modeling approaches feature (partial) differential equations
that cannot be solved analytically in general, Section 3.3 gives an overview of simulation software packages
that solve them numerically. As a conclusion, we identify the Maxwell-Bloch equations as key model for
the quantum cascade laser dynamics that will be in the focus for the remainder of the thesis at hand.

3.1 Electron dynamics in the gain medium

Over the last decades, many different approaches to model the charge carrier transport in quantum cascade
lasers have been presented. They vary in complexity and accuracy, and can be divided into four categories:
rate equations, ensemble Monte Carlo approaches, density matrix methods, and techniques that base on
non-equilibrium Green’s functions (NEGF). All approaches share the common assumption that the states
of the electrons

Ψi (r) = S−1/2ψi,k (z) exp
(
ikx x + ikyy

)
(3.2)
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can be separated into the wave function envelope ψi,k (z) that varies only in growth direction and a plane
wave with the in-plane wave vector k = [kx, ky]T (cf. Eq. (2.102) in Section 2.3, where we introduced the
in-plane cross section area S to ensure normalization) [9]. This assumption has two important consequences
that simplify the resulting models significantly. First, the in-plane wave ansatz allows the extraction of a
single quantum mechanical system that spans the complete active region in z direction from the x-y-plane.
The dynamical behavior of a single system can then be discussed, and at a later stage, the complete active
region can be considered as collection of single quantum systems. Second, during the discussion of the
dynamical behavior we can separate the physical effects in growth direction, such as the formation of discrete
basis states due to the semiconductor heterostructure (represented by the wave function envelopes ψi,k (z))
and radiative transitions between the states, from the in-plane effects that can be roughly said to define the
non-radiative transitions (scattering) between the states. The resulting picture has proven to be compact and
intuitive, yet sufficiently accurate.
Using this picture, the least complex group of models considers the occupation of the basis states in

simple rate equations, similar to those used for conventional lasers [10]. The values of the scattering rates
are chosen phenomenologically. One-dimensional density matrix methods extend the simple rate equations
by also considering the coherence terms between the basis states. In other words, the time evolution of the
full density matrix is determined rather than that of the main diagonal alone. The resulting equations still
depend on empirically determined parameters. ensemble Monte Carlo (EMC) methods [9], [46], [47], on
the other hand, take the in-plane movement of charge carriers into account and provide a self-consistent
method to determine the scattering rates. However, they neglect the coherence terms and other quantum
effects and are therefore considered semi-classical. Three-dimensional density matrix methods [48]–[50]
and techniques that base on NEGF [51]–[53] are both fully quantum mechanical descriptions that consider
the movement of the charge carriers in all directions. Hence, they constitute the most accurate group of
methods, which comes at the cost of huge computational complexity. Finally, as a trade-off between accuracy
and complexity, hybrid models have been presented. A prime example of this group is the density matrix
ensemble Monte Carlo (dmEMC) technique [54] that introduces quantum corrections to semi-classical
Monte Carlo methods, thereby combining the efficiency of the Monte Carlo framework with the accuracy
of fully quantum mechanical models.
Three-dimensional density matrix techniques as well as EMC and NEGF methods have been used

successfully for precise stationary simulations, such as the accurate description of the optical gain of the
active region. However, their computational load inhibits their usage in dynamical simulations, where the
quantum mechanical description has to be updated frequently due to the varying electromagnetic field.
Rate equations, on the other hand, have been used for dynamical simulations (for example, to study the
gain recovery dynamics [55] of quantum cascade lasers), but they do not include the coherence terms.
Instead, one-dimensional density matrix methods have been employed frequently for dynamical simulations
as they provide quantum mechanical treatment of the electron dynamics with reduced complexity. The
density matrix in these methods can be considered as the reduced density matrix of the system, where
the environment contains the in-plane degrees of freedom. Consequently, it is possible to derive a master
equation for the reduced density matrix, which corresponds to the optical Bloch equations when written in
elementwise form [32]. Together with Maxwell’s equations for the propagating electromagnetic field, the
equations are referred to as the Maxwell-Bloch equations.
In the following, we derive the master equation for the reduced density matrix. To this end, we select

a suitable set of basis states, discuss the possibilities to determine the dissipation superoperator in a
self-consistent way, and finally model the interaction between the quantum mechanical systems and the
electromagnetic field.

3.1.1 Basis states of the electrons

There are many different ways to obtain the electronic states in quantum cascade lasers. For example, in
many NEGF approaches the Wannier(-Stark) states are simply assumed as basis [51]. In order to provide
more accurate results, however, the basis states are often determined numerically using models of different
complexity. Frequently, the k.p method is used as basis to derive those models [56]. The k.p method was
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already mentioned in Section 2.3 as one possible way to determine the band structure of a semiconductor.
From this starting point, different models can be derived which are distinguished by the considered energy
bands. For example, the Kane model and the Luttinger-Kohn model consider three valence bands and the
conduction band, which results in a description of four or eight bands in total, depending on whether the
electron spin degeneracy is taken into account or not [42]. With those models it is possible to skip the
assumption of a single parabolic band, where the wave vector should be close to the extremum of the band.
Thereby, non-parabolic effects such as strain between the heterostructure layers can be taken into account.
The Ben Daniel-Duke model, on the other hand, considers only the conduction band. Particularly for
terahertz QCLs this is a reasonable approximation seeing that the energy differences between the resulting
basis states are significantly smaller than the gap between the conduction band and the valence bands [41].
Since those energy differences are larger in mid-infrared QCLs, more elaborated models may be used, such
as the three-band approach in [50]. Nevertheless, the Ben Daniel-Duke model has proven to be a valuable
tool even for mid-infrared QCLs [9]. Therefore, we discuss this model in more detail in the remainder of this
section to provide one possible way to determine the basis states of the electrons in the QCL gain medium.
We recall that in the scope of the Ben Daniel-Duke model (and by assuming a constant in-plane effective

mass m | |) we can describe the states in a semiconductor heterostructure with the one-dimensional stationary
Schrödinger equation (2.104), which yields the wave function envelopes. The complete wave function can
then be put together according to Eq. (3.2). Therefore, we define a similar Schrödinger equation[

−
~2

2
∂z

1
m∗(z)

∂z + V(z)
]
ψi(z) = εiψi(z) (3.3)

for the wave function envelopes ψi(z), where the potential energy V contains the conduction band profile
Vc. At this point, we note that we need to take the bias field into account, which we defined as EB = −∇ϕ in
Eq. (3.1). According to Eq. (2.48), the effect of the scalar potential ϕ on the Hamiltonian can be expressed
by an extra term in the potential V(z) = Vc(z) − eϕ(z), where e is the elementary charge and we assume
that the effect of the bias voltage is independent of the position in the x-y-plane. The effect of the optical
field, on the other hand, is usually neglected during the calculation of the basis states and considered as a
time-dependent perturbation at a later point. Therefore, we can write for the time-independent Hamiltonian

Ĥ0 = −
~2

2
∂z

1
m∗(z)

∂z + Vc(z) − eϕ(z). (3.4)

In principle, Eq. (3.3) can be solved numerically in the current formwith appropriate boundary conditions.
However, there are some variations that should be mentioned briefly. Although non-parabolicity effects are
neglected by default in the Ben Daniel-Duke model, it is possible to take them into account by means of an
energy dependent effective mass m∗(z, ε), whose form can be determined beforehand with the k.p method.
The drawback of this approach is that the resulting Hamiltonian Ĥ0 is not Hermitian in this case and the
resulting basis states are in general not orthogonal [9]. Another variation of the model above considers only
one period of the heterostructure and determines the basis states in a tight-binding approach. The resulting
tight-binding (localized) basis has proven to be advantageous, e.g., to account for tunneling between thick
barriers in the heterostructure in semiclassical models [54]. Finally, there are different models for the
effect of the bias voltage or the scalar potential ϕ, respectively. In the easiest case, a linear scalar potential
ϕ(z) = UBz/Lz is assumed, where Lz is the size of the heterostructure in growth direction, and UB is the
applied bias voltage. A more advanced model shall be presented in Section 3.2, where the scalar potential is
determined by solving the Poisson equation. The resulting Schrödinger-Poisson model is able to take e.g.,
space charge effects due to doping into account and is widely used in QCL simulations.

3.1.2 Master equation and dissipation superoperator

Independent of how they have been determined, we can use the basis states discussed in the section before
(or a subset thereof) to define the density matrix of a reduced quantum mechanical system. This system
contains all states that are relevant for the quantum cascade laser operation, where each state – as pointed out
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before – considers only the growth direction. Assuming that the in-plane dynamics have only little impact
on the basis states and vice-versa (weak coupling limit), and that the physical processes have no memory
(Markovian approximation), the dynamics of the reduced system can be described by a master equation

∂t ρ̂ = −i~−1 [
Ĥ, ρ̂

]
+D(ρ̂) (3.5)

of Lindblad type (cf. Section 2.2.6). For the remainder of this thesis, we drop the index from the reduced
density matrix ρ̂S C ρ̂ for brevity. The Hamiltonian Ĥ contains the Hamiltonian Ĥ0 in Eq. (3.4) and shall
be extended later by a term that accounts for the interaction with the optical field, as already envisaged in
the previous section. Often, the basis states are eigenstates of the Hamiltonian and Ĥ0 can be represented
by a diagonal matrix, where the main diagonal contains the eigenenergies. However, we note that this is not
necessarily the case. For example, when the tight-binding approach is used, off-diagonal terms may appear.
The dissipation superoperatorD in Eq. (2.83) gives a very general description of a master equation whose

solution is guaranteed to be completely positive and trace-preserving. Now we need to assign the general
description a physical meaning. We recall that the operators F̂k in Eq. (2.83) are traceless and constitute
an orthonormal basis of the space of bounded operators on the Hilbert space under consideration. With
the basis states determined in the section before, the bounded operators are N × N Hermitian matrices,
where N is the number of chosen basis states. Those matrices have N(N − 1) degrees of freedom in the
off-diagonal elements, as the Hermitian property allows for complex numbers, but requires that the lower
triangle elements are the complex conjugate of the upper triangle elements. The N real main diagonal
elements add further N − 1 degrees of freedom, since one degree is already taken into account by the
basis operator F̂N2 . A suitable choice of basis operators is presented in [57] and consists of N(N − 1)
off-diagonal operators of the form F̂k = |i〉 〈 j |, where the indices i, j ∈ [1; N], i , j are mapped to the index
k ∈ [N; N2 − 1], and N − 1 diagonal operators of the form

F̂k =
1√

k(k + 1)

(
k∑

s=1
|s〉 〈s | − k |k + 1〉 〈k + 1|

)
, (3.6)

where k ∈ [1; N − 1]. The latter group of operators can be related to the Pauli matrices and Gell-Mann
matrices (for N = 2 and N = 3, respectively). Using these basis operators, we need to determine the
coefficients ci j in Eq. (2.83) and verify that the resulting matrix is positive semi-definite.

We begin with the off-diagonal operators and assume that the coefficients ci j = 0 for i, j ≥ N, i , j.
Although this assumption may seem to be overly strict, the resulting contribution

Drelax (ρ̂) =

N2−1∑
k=N

ckk

(
F̂k ρ̂F̂†

k
−

1
2

F̂†
k

F̂k ρ̂ −
1
2
ρ̂F̂†

k
F̂k

)
, (3.7)

to the dissipation superoperator provides a physically meaningful description of the population relaxation
processes. By plugging in the off-diagonal basis operators, we find that each F̂k generates a contribution

Drelax,i j (ρ̂) =

i j



− 1
2γi j ρ1j
...

i γi j ρj j −1
2γi j ρi j
...

j −1
2γi j ρj1 . . . − 1

2γi j ρji . . . −γi j ρj j . . . − 1
2γi j ρjN

...

−1
2γi j ρN j

, (3.8)

where the mapping between the indices i, j and k mentioned before has been reverted and the scattering
rates γi j have been introduced. These rates correspond to the coefficients ckk for k ≥ N and represent the
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relaxation (or scattering) processes from the basis state |i〉 to the basis state | j〉. Now we can perform the
sum over all Drelax,i j and find that the resulting expressions

∂t ρii |relax =

N∑
j=1, j,i

γjiρj j − τ
−1
i ρii (3.9)

for the time derivative of each population provide a clear and physicallymeaningful description of incoherent
processes that is widely used in both theoretical as well as experimental work [9], [32]. Here, the inverse
population life times τ−1

i =
∑N

j=1, j,i γi j have been introduced for brevity. We derive in similar fashion the
time derivatives of the coherence terms ρi j ,i,j , which read

∂t ρi j ,i,j
��
relax = −

1
2

(
τ−1
i + τ

−1
j

)
ρi j . (3.10)

Therefore, the relaxation or scattering processes lead also to the loss of coherence, which is commonly
referred to as dephasing.
As next step, we plug in the diagonal basis operators into Eq. (2.83). It has been pointed out that

assuming a completely diagonal coefficient matrix C restricts the resulting description too strongly [57],
[58]. Therefore, the resulting contribution to the dissipation superoperator reads

Ddeph (ρ̂) = −
1
2

N−1∑
m,n=1

cmn


0

(
Fm,11 − Fn,22

)2
ρ12

(
Fm,11 − Fn,33

)2
ρ13 . . .(

Fm,22 − Fn,11
)2
ρ21 0

(
Fm,22 − Fn,33

)2
ρ23 . . .(

Fm,33 − Fn,11
)2
ρ31

(
Fm,33 − Fn,22

)2
ρ32 0 . . .

...
...

...
. . .


,

(3.11)
where the Fk ,ii denote the diagonal elements of the diagonal operators F̂k ,k≤N−1. We can readily see that the
populations are not affected by this contribution, but the coherence terms experience additional dephasing

∂t ρi j ,i,j
��
deph = −

1
2

N−1∑
m,n=1

cmn

(
Fm,ii − Fn, j j

)2
ρi j = −γi j ,pρi j, (3.12)

which is usually referred to as pure dephasing with the pure dephasing rate γi j ,p.
At this point, we have assembled a physically meaningful description with the help of the chosen basis

operators, but the values of the scattering rates γi j and the pure dephasing rates γi j ,p remain to be determined.
Fortunately, the description is compatible with all charge carrier simulation methods discussed above. For
example, the expressions in Eq. (3.9) can be found in classical rate equation approaches (cf. [10]), where
the rates are determined empirically. By choosing appropriate values for the pure dephasing rates in similar
fashion, it is possible to extend these approaches to an empirical, yet fully quantummechanical treatment. For
self-consistent simulations, on the other hand, NEGF methods [53], density matrix approaches (e.g., [50]),
or ensemble Monte-Carlo methods (see e.g., [54], [59]) can be employed to determine the scattering rates
γi j . The pure dephasing rates can be calculated in self-consistent manner using Ando’s model [60]–[62], in
which the dephasing rates

γi j ,deph = γji,deph =
1
2

(
τ−1
i + τ

−1
j

)
+ γi j ,p (3.13)

are compatible with Eqs. (3.10) and (3.12). For example, the density matrix EMC technique presented
in [54] uses this approach.
Independent of how the scattering and pure dephasing rates have been determined, it remains to be

verified whether the resulting master equation yields a completely positive and trace-preserving solution.
We recall that the coefficient matrix C must be positive semi-definite (cf. Theorem 2.2.2) in order to fulfill
this requirement. Since the coefficients related to the off-diagonal basis operators are only non-zero on
the main diagonal of C, it is sufficient that all scattering rates γi j ≥ 0 are real and non-negative. For the
coefficients related to the diagonal basis operators the situation is more complicated [57], [58]. First, the
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pure dephasing rates must be converted into a (N − 1) × (N − 1) block matrix with the entries cmn. Since
there are (N − 1)2 coefficients and N(N − 1)/2 pure dephasing rates, the problem is overdetermined and it
is not guaranteed that the conversion succeeds. After a successful conversion, the eigenvalues of the block
matrix can be determined and inspected [57]. If they are non-negative, the complete coefficient matrix is
positive semi-definite and the values for the pure dephasing rates constitute a reasonable choice.

Reduction to a single representative system

We note that the density matrix in the description above could easily contain hundreds of relevant energy
levels and causes a significant computational workload. Also, the boundary conditions of the description
need to be discussed. Due to the periodicity of the heterostructure, however, it is reasonable to assume that
the energy levels of a single period represent the complete system. This goes hand in hand with the usually
applied periodic boundary conditions [9]. Then, the description is reduced to a N ′ × N ′ density matrix of
the representative system, where N ′ is the number of levels per period (usually in the single-digit range).
The coherence terms related to levels of different periods are neglected as a consequence. For the remaining
elements, ρi j = ρ−i j = ρ+i j is assumed, where the ρ±i j denote the the density matrix entries related to the
adjacent periods.
The dynamical behavior of the representative system is still governed by the master equation (3.5) with

the following considerations in mind. In the majority of related work a block-diagonal Hamiltonian Ĥ
is implicitly assumed, where the identical blocks correspond to the Hamiltonian Ĥ ′ of the representative
system. Since both the density matrix and the Hamiltonian of the complete system are assumed to be
block-diagonal, the master equation

∂t ρ̂
′ = −i~−1 [

Ĥ ′, ρ̂′
]
+D ′(ρ̂) (3.14)

can be extracted from Eq. (3.5), where the dissipation superoperator D ′ needs further consideration. As
already pointed out, this assumption neglects the coherent interaction between different periods. Since
the period boundaries can be chosen arbitrarily, it is usually possible to choose the periods such that this
assumpion is valid. The incoherent interaction between the periods, on the other hand, cannot be ignored,
but is often assumed to be limited to the nearest neighbors [9]. For this case, Eq. (3.9) reads

∂t ρii |relax =

N ′∑
j=1, j,i

(
γjiρj j − γi j ρii

)
+

N ′∑
j=1

(
γ+jiρ

−
j j − γ

−
i j ρii

)
+

N ′∑
j=1

(
γ−jiρ

+
j j − γ

+
i j ρii

)
, (3.15)

where the rates γ±ji represent the scattering from a period to the next and to the previous period, respectively.
We use our assumption ρi j = ρ−i j = ρ

+
i j and simplify the equation to

∂t ρii |relax =

N ′∑
j=1, j,i

(
γji + γ

+
ji + γ

−
ji

)
︸               ︷︷               ︸

γ′j i

ρj j −

N ′∑
j=1, j,i

(
γi j + γ

+
i j + γ

−
i j

)
︸                        ︷︷                        ︸

τ′−1
i

ρii, (3.16)

which still is in the form of Eq. (3.9) with different parameters γ′ji and τ
′−1
i . The same holds in principle for

Eq. (3.10), which now reads

∂t ρi j ,i,j
��
relax = −

1
2

(
τ′−1
i + τ′−1

j + γ−ii + γ
+
ii + γ

−
j j + γ

+
j j

)
ρi j . (3.17)

Here, it makes sense to incorporate the additional terms into the pure dephasing rate

γ′i j ,p = γ
′
i j ,p +

1
2

(
γ−ii + γ

+
ii + γ

−
j j + γ

+
j j

)
(3.18)

in order to maintain the form of the description. We note that existing models in related literature often
implicitly apply further approximations, in which certain additional scattering rates are neglected (e.g.,
in [23]).
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3.1.3 Impact of the electromagnetic field on the time evolution

Now we introduce the effect of the electromagnetic field on the quantum mechanical system into the
master equation (3.5). To this end, we recall the Hamiltonian in Eq. (2.48) and remember that a canonical
transformation is required for the mechanical momentum p and canonical momentum p′ to coincide (cf.
Section 2.2.3). We can readily see from the transformation laws that solving the equation ∇ξ = −qA will
yield the required additional term for the Hamiltonian. At this point, the dipole approximation is usually
invoked [32], which assumes that the vector potential field A does not vary significantly on the scale of
the quantum mechanical system. This is on a par with the separation ansatz in Eq. (3.2), as we implicitly
assume that the quantum mechanical system does not extend in-plane. Additionally, the field is assumed to
be slowly varying in growth direction. Then, the field A , f (r) can be assumed constant in space and for
the auxiliary function ξ = −qr A holds. According to Eq. (2.53) the transformed Hamiltonian reads

Ĥ =
p̂2

2m
+ qϕ + V + q r̂∂tA. (3.19)

We plug in the electron charge for q = −e and compare the Hamiltonian Ĥ with Eq. (3.4). Since the
contribution of the scalar potential ϕ is already included in Ĥ0, we find that V = Vc and write for the total
Hamiltonian

Ĥ = Ĥ0 − µ̂EO, (3.20)

where we introduce the dipole moment operator µ̂ = −e r̂ and use EO = −∂tA, as described by Eq. (3.1).
As already mentioned above, we assume that the optical field does not affect the basis states and can be

seen as time-dependent perturbation. Then, the ansatz in Eq. (3.2) can be used to write the dipole moment
operator as matrix with the elements

µ̂i j = −e 〈i |r | j〉 = −eS−1
ˆ
ψ∗i (z)rψj(z)dr . (3.21)

Here, we assume that the interaction with the electromagnetic field preserves the in-plane wave numbers kx
and ky and drop the subscript k from the wave function envelopes. Since the envelopes only depend on the
growth direction, the in-plane components of the dipole operator

µ̂i j ,p = −eS−1
ˆ

pdxdy︸     ︷︷     ︸
=0

ˆ
ψ∗i (z)ψj(z)dz, (3.22)

where p = {x, y}, vanish. The component in growth direction, on the other hand, can be expressed as

µ̂i j ,z = −eS−1
ˆ

dxdy
ˆ
ψ∗i (z)zψj(z)dz = −e

ˆ
ψ∗i (z)zψj(z)dz, (3.23)

where the normalization condition was applied to simplify the result. As a consequence, the Hamiltonian
can be reduced to

Ĥ = Ĥ0 + µ̂z∂t Az = Ĥ0 − µ̂zEO,z (3.24)

in this basis.
As a side note, it should be mentioned that some methods consider the optical field during the determi-

nation of the dissipation superoperator [9]. In particular, this is relevant for quantum cascade lasers that
feature large output power, which is (at the current state of research) true for mid-infrared QCLs.

3.1.4 Impact of the quantum mechanical systems on the electromagnetic field

Conversely, the quantum mechanical systems affect the electromagnetic field by means of the source terms
in Maxwell’s equations (2.2), namely the charge density

ρ = −∇P + ρf (3.25)
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and the current density
J = ∇ × M + ∂tP + J f, (3.26)

where the definitions from Section 2.1.1 have been used. First of all, the magnetization M can be safely
neglected for optical frequencies [9]. Then, the question is raised whether the charge carriers described by
the quantum mechanical systems should be treated as bound or free carriers. However, a clear distinction is
neither possible in the scope of modeling quantum cascade lasers, nor is it necessary, since the contributions
of bound and free carriers always appear as sum [32]. Therefore, we can safely assume that the charge
carriers are (quasi-)bound and proceed with the description of the charge density ρqm = −∇Pqm and the
corresponding polarization density Pqm. We note that in this case the continuity equation (2.4) is fulfilled
by definition.
The charge carriers that are described by the quantum mechanical systems have been introduced by

doping. Therefore, we need to take into account the distribution nD(z) of positive donors, which is static and
varies only in growth direction z. The distribution of their negative counterpart, namely the electrons, can
be described using the quantum mechanical probability distribution |Ψi(r)|

2 (as postulated in Section 2.2.1)
of electrons in the state |Ψi〉. Here, we assume that the total number of electrons equals to the total number
of donors

Ne = ND =

ˆ
V

nD(z)dr (3.27)

whereV is the volume of the active region. Furthermore, each basis state |Ψi〉 is populated by Nepi electrons,
where we use the population probability values pi with

∑
i pi = 1. Using the ansatz in Eq. (3.2) and dropping

the subscript k , we can determine the contribution

ρqm,e = −e
∑
i

Nepi |Ψi(r)|
2 = −e

∑
i

NDpiS−1 |ψi(z)|2 (3.28)

of the electrons to the overall charge distribution

ρqm(z) = e

[
nD(z) −

∑
i

nS
i |ψi(z)|

2

]
, (3.29)

where the sheet densities nS
i = piNDS−1 are introduced to match the expressions in related literature [9],

[63], [64]. The sheet density values (or, essentially, the probabilities pi) are generally determined by charge
carrier simulations, which usually calculate the stationary distribution [9]. It should be pointed out, however,
that the probabilities may be time-dependent. In order to acquire an initial estimate of the probability values,
Fermi-Dirac statistics are frequently applied [63], [64].
Since the positive and negative charges are distributed differently, the overall charge distribution ρqm

causes a polarization component

Pqm = lim
∆V→0

1
∆V

ˆ
∆V

ρqm(z)rdr

= lim
∆V→0

1
∆V

e

[ˆ
∆V

nD(z)rdr −
ˆ
∆V

nD(z)dr
∑
i

pi

ˆ
∆V

Ψ
∗
i (r)rΨi(r)dr

] (3.30)

according to Eq. (2.14), where the number of electrons Ne has been adjusted to the number of donors in the
test volume ∆V . At this point it makes sense to discuss this test volume, which defines the resolution of
the polarization from a macroscopic perspective. From the microscopic point of view, on the other hand, it
is crucial that the test volume is large enough to contain the complete domain of the quantum mechanical
probability distribution function. Frequently, the period length Lp is used as a compromise between the two
perspectives, as the charge distribution is assumed to be periodic with the length Lp [9]. With a suitable
test volume, the limit operation has been applied successfully and can be dropped. On the other hand, the
boundaries of the integral over the quantum mechanical probability distribution can be ignored. Then, the
contribution of the electrons to the polarization

Pqm,e = −
1
∆V

ˆ
∆V

nD(z)dr
∑
i

pi

ˆ
Ψ
∗
i (r)erΨi(r)dr = n3D Tr {µ̂ ρ̂} (3.31)
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can be related to Eq. (2.59), which defines the macroscopic value of a quantum mechanical quantity as
product of the particle density

n3D =
1
∆V

ˆ
∆V

nD(z)dr ≈
1
Lp

ˆ
Lp

nD(z)dz (3.32)

and its expectation value (in this case, that of the dipole moment operator µ̂ = −e r̂)

〈µ̂〉 = Tr {µ̂ ρ̂} = −e 〈r̂〉 = −e
∑
i

pi 〈Ψi | r̂ |Ψi〉 , (3.33)

as defined in Eq. (2.62). The exact form of the contribution of the donors is not derived since only the time
derivative of the polarization enters Eq. (3.26) in the form of the polarization current

∂tPqm = n3D Tr {µ̂∂t ρ̂} . (3.34)

As the charge distribution only depends on the growth direction, simplifications similar to the dipole
moment in Eq. (3.22) can be made. We expand Eq. (3.30) componentwise for the in-plane directions
p = {x, y}

Pqm,p = lim
∆V→0

1
∆V

ˆ
pdxdy︸     ︷︷     ︸
=0

ˆ
ρqm(z)dz = 0 (3.35)

and can readily see that the corresponding components vanish. The remaining polarization component in
growth direction leads to a polarization current component

∂tPqm,z = n3D Tr { µ̂z∂t ρ̂} , (3.36)

where only the component µ̂z of the dipole operator in growth direction is considered.
With the contributions ρqm and ∂tPqm,z of the quantum mechanical systems to the charge density and

current density we proceed to the next section, where those contributions are included in the model of the
electromagnetic fields in the resonator.

3.2 Electromagnetic field in the resonator cavity

In the optical resonator the electromagnetic field consists of different components. As already pointed out in
Eq. (3.1), there are the components EO and BO that represent the optical field in the terahertz or mid-infrared
regime. Additionally, one component should be considered that stands for the bias voltage, which is applied
to the quantum cascade laser. The bias voltage is assumed to be constant in time and is therefore likely to
induce an electric field EB, but no magnetic field. With Eq. (2.19) in mind, we find that this can be reflected
by the definitions

EB = −∇ϕ, (3.37a)
EO = −∂tA, (3.37b)
BO = ∇ × A. (3.37c)

Here, we assume a time-independent scalar potential ϕ(z) that only varies in growth direction z. This is a
reasonable assumption since the bias voltage is applied to contacts with high conductance (usually, gold or
copper) and does not vary in time. Then, the sum EB + EO = E yields the total electric field, and the total
magnetic field B = BO equals the optical magnetic field. As a consequence, we can divide the discussion
into two parts, namely the description of the bias field and the propagation of the optical field.

In this discussion, we include the microscopic contributions of the quantummechanical systems to charge
density and current density presented in the previous section, as well as macroscopic contributions that
stem from the bulk properties of the resonator materials. Since the magnetization can be safely neglected,
it is sufficient to consider a background electric susceptibility χe and allow for ohmic losses σ. It should
be pointed out, however, that these two properties may be frequency dependent and may vary in space,
although they can usually be assumed constant in propagation direction x.
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3.2.1 Description of the bias field

In Coulomb gauge, the scalar potential can be described by the Poisson equation

− ∇2ϕ = ε−1
0 ρ, (3.38)

which corresponds to Eq. (2.31b) after dropping the prime. Here, the charge density

ρ = −∇P = −∇Pbg + ρqm (3.39)

contains the contribution of the quantum mechanical systems as well as the the isotropic background
polarization Pbg = ε0χe(z)EB, which is related to the static bias field in this case. Therefore, the electric
susceptibility χe is the static electric susceptibility and varies in growth direction z due to the different layers
of the heterostructure. Using these definitions, we can write Eq. (3.38) as

− ε0∇
2ϕ = ε0∇χe(z)∇ϕ + ρqm, (3.40)

and, with ∇2ϕ + ∇χe(z)∇ϕ = ∇εr(z)∇ϕ and Eq. (3.29), as

− ε0∇εr(z)∇ϕ = e

[
nD(z) −

∑
i

nS
i |ψi(z)|

2

]
. (3.41)

Since the bias field is assumed to have only a non-zero component in growth direction z, the scalar potential
ϕ does not depend on x and y (cf. Eq. (3.37)). Therefore, Eq. (3.41) can be brought into the one-dimensional
form

− ε0∂zεr(z)∂zϕ = e

[
nD(z) −

∑
i

nS
i |ψi(z)|

2

]
(3.42)

and determines the scalar potential together with the boundary conditions ϕ(0) = 0 and ϕ(Lz) = UB.

3.2.2 Propagation of the optical field

As defined in Eq. (3.37), the optical part of the electromagnetic field is represented by the vector potential
A. The vector potential is governed by

∇2A − ε0µ0∂
2
t A − ε0µ0∂t∇ϕ = −µ0J, (3.43)

i.e., the second part of the potential formulation of Maxwell’s equations in Coulomb gauge, cf. Eq. (2.31b).
Since the bias field is assumed to be static, ∂t∇ϕ = 0 holds and the equation can be simplified to

∇2A − ε0µ0∂
2
t A = −µ0J, (3.44)

a wave equation with the source term −µ0J . At this point, we assume that the magnetization is negligible at
optical frequencies [9], i.e., B = µ0H or M = 0. Hence, the bound current density is Jb = ∂tP, where we
assume that the polarization P = ε0χeEO + Pqm again consists of an isotropic background polarization and
the contribution of the quantum mechanical systems. Here, the electric susceptibility χe may differ from its
static value in the section before. Additionally, we allow for ohmic losses by adding the free current density
J f = σEO. After plugging those relations into Eq. (3.44), we find that the wave equation now reads

∇2A − ε0µ0∂
2
t A = µ0

[
ε0χe,O∂

2
t A − ∂tPqm + σ∂tA

]
(3.45)

and can be simplified to
∇2A − ε0εrµ0∂

2
t A − µ0σ∂tA = −µ0∂tPqm. (3.46)

The resulting wave equation for the vector potential can be transformed back to Maxwell’s equations in
macroscopic form and solved numerically. The three-dimensional approach allows a detailed model, but
may be too demanding in terms of computational effort.
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Determining the transversal modes

The typical wave guide geometry of quantum cascade lasers allows a significant simplification. The cross
section can be assumed to be invariant in propagation direction, which means that the conductivity σ(y, z),
the susceptibility χe,O(y, z), and, as a consequence, the permittivity εr(y, z) do not depend on x. Then, we
can use the ansatz

Ap(r, t) = <
{

AT,p(y, z)A
β,ω

L,p exp
(
iβx − iωt

)}
, (3.47)

for the components Ap of the vector potential in the directions p = {x, y, z}. This ansatz separates the vector
potential into a static transversal distribution and a longitudinal, propagating component, with the complex
amplitude Aβ,ωL,p and the (generally complex) propagation constant β. We assume that the source term ∂tPqm
in Eq. (3.46) is small and its effect on the transversal distributions can be neglected. Therefore, we ignore it
at this point and take it into account at a later stage using perturbation theory. Then, by inserting the ansatz
in Eq. (3.47) into Eq. (3.46), we can derive a complex differential equation

∇2
T AT,p − β

2 AT,p + ε0εrµ0ω
2 AT,p + iωµ0σAT,p = 0 (3.48)

for each transversal distribution, where we used the transversal differential operator ∇2
T = ∂

2
y + ∂

2
z . Alterna-

tively, the differential equation can be brought into the standard Helmholtz form

∇2
T AT,p =

[
β2 − ε0εr(y, z)µ0ω

2] AT,p, (3.49)

where the complex permittivity εr has been used for compactness. For anything but the most simple cases,
Eq. (3.49) must be solved numerically with the boundary conditions AT,p(y, z → ±∞) = 0. This step will
be discussed in Section 3.3.2 and may yield more than one possible solution families for the transversal
distributions AT,p, which are referred to as transversal modes in the following. Usually, lasers are designed
to operate in a single transversal mode, which is normally the fundamental mode.

Reduction to a one-dimensional model

In the following we use the description of the transversal modes to derive a one-dimensional propagation
model, which would be the result of starting again from Eq. (3.46) and invoking the plane wave approxima-
tion [10], in which the spatial derivatives ∂y = ∂z = 0 are neglected. This model would assume the form of
a wave equation

∂2
xAω + ε0εeffµ0ω

2Aω = iωµ0Pωqm (3.50)

in time-harmonic form, where the effective complex permittivity εeff is spatially invariant. Since we learned
in Section 3.1 that only the component Az in growth direction is relevant for the time evolution of the quantum
mechanical systems (cf. Eq. (3.24)) and the polarization density is only non-zero in growth direction (cf.
Eq. (3.36)), we can restrict our considerations to the component Az , which is described by the wave equation

∂2
x Aωz + ε0εeffµ0ω

2 Aωz = iωµ0Pωqm,z . (3.51)

In order to bring our model above in the one-dimensional form in Eq. (3.51), we assume that we have
determined the (generally frequency dependent) transversal distribution AT,z and the propagation constant
β, and insert the more general ansatz

Az(r, t) = <
{

AT,z(y, z)A
ω
L,z(x) exp (−iωt)

}
(3.52)

into Eq. (3.46). By considering the polarization density in time-harmonic form, the result can be written as(
∇2

T AT,z

)
AωL,z + AT,z∂

2
x AωL,z + ε0εrµ0ω

2 AT,z AωL,z = AT,z

(
β2 AωL,z + ∂

2
x AωL,z

)
= iωµ0Pωqm,z (3.53)

with the Helmholtz equation (3.49). The result already resembles the wave equation (3.51) with

β2(ω) = ε0εeff(ω)µ0ω
2, (3.54)
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but the source term iωµ0Pωqm,z/AT,z still depends on the transversal coordinates y and z. Hypothetically, we
could assume that the polarization density features the same transversal distribution as the vector potential
and use a variation of the ansatz in Eq. (3.52) for Pqm,z as well, which would instantly yield the desired
one-dimensional wave equation. Considering that outside of the active region the electromagnetic optical
field (represented by the vector potential) may be non-zero but the polarization density Pqm,z is clearly zero,
it becomes soon apparent that this ansatz would be an oversimplification.
Instead, we need to account for the overlap of the transversal distributions of the vector potential and

the polarization density, respectively. It seems reasonable to assume that the transversal distribution of
the polarization density is quite similar to that of the vector potential and can be expressed as PT,z(y, z) =
AT,z(y, z)C(y, z), where C(y, z) is an arbitrary function over the transversal plane. Then, we can plug in the
ansatz

Pqm,z(r, t) = <
{

AT,z(y, z)C(y, z)P
β,ω

L,z exp
(
iβx − iωt

)}
(3.55)

for the polarization density, together with the ansatz for the vector potential in Eq. (3.47), into Eq. (3.46),
which yields [

∇2
T − β

2 + ε0εrµ0ω
2] AT,z = iωµ0 AT,zCPβ,ωL,z

[
Aβ,ωL,z

]−1
(3.56)

or, after rearranging the terms,{
∇2

T + ε0εrµ0ω
2 − iωµ0C(y, z)Pβ,ωL,z

[
Aβ,ωL,z

]−1
}

AT,z = β
2 AT,z . (3.57)

We already assumed that the effect of the polarization density on the transversal distribution can be neglected.
The effect on the propagation constant, however, is accounted for using time-independent perturbation theory,
which is frequently used in quantum mechanics [65]. For the eigenvalue β2 we can derive the first-order
correction

∆β2 = −iωµ0Pβ,ωL,z

[
Aβ,ωL,p

]−1
˜ ∞
−∞
|AT,z |

2C(y, z)dydz˜ ∞
−∞
|AT,z |

2dydz
, (3.58)

where AT,z still denotes the solutions of the unperturbed differential equation (3.49), and the double integral
in the denominator accounts for the fact that the solutions may not be normalized. It has been pointed
out that the eigenvalue problem in Eq. (3.57) may be non-Hermitian and, strictly speaking, a biorthogonal
set of basis functions must be used. However, it makes sense to use the correction in Eq. (3.58) as an
approximation to the exact term [32].
Now we re-derive Eq. (3.53) but this time considering the ansatz

Pqm,z(r, t) = <
{

AT,z(y, z)C(y, z)P
ω
L,z(x) exp (−iωt)

}
(3.59)

for the polarization density, which yields

∂2
x AωL,z + β

2 AωL,z + ∆β
2 AωL,z = 0 (3.60)

after factoring out the transversal distribution AT,z . We note that Aβ,ωL,z = AωL,z exp(iβx) and Pβ,ωL,z =

PωL,z exp(iβx) and plug the expression for the correction ∆β2 into Eq. (3.60), which provides a one-
dimensional model

∂2
x AωL,z + β

2 AωL,z = iωµ0

˜ ∞
−∞
|AT,z |

2C(y, z)dydz˜ ∞
−∞
|AT,z |

2dydz
PωL,z (3.61)

in time-harmonic form that does not depend on the transversal coordinates y and z anymore.
Frequently, it is assumed that the polarization density is zero outside of the active region and has the same

transverse dependence as the vector potential in the active region. In this case, the expression
˜ ∞
−∞
|AT,z |

2C(y, z)dydz˜ ∞
−∞
|AT,z |

2dydz
=

˜
Aqm
|AT,z |

2dydz˜ ∞
−∞
|AT,z |

2dydz
= Γ (3.62)
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can be simplified using a suitable functionC(y, z) and related to the overlap factor Γ [32], which is commonly
used in non-linear optics [66]. Here, Aqm denotes the cross section of the active region.
As next step, we can transform the one-dimensional model back to the time domain using Eq. (3.54)

and replace the effective complex permittivity with the effective real permittivity εeff and the effective
conductivity σeff . Here, we keep in mind that those quantities and the overlap factor Γ still depend on
frequency in general and employ the convolution theorem [14]. The model then assumes the form

∂2
x AL,z − µ0ε0εeff(t) ∗ ∂2

t AL,z − µ0σeff(t) ∗ ∂t AL,z = −µ0Γ(t) ∗ ∂tPL,z, (3.63)

where εeff(t), σeff(t) and Γ(t) denote the impulse responses whose Fourier transforms correspond to the
frequency dependent quantities mentioned before. We note that in the case of frequency independent
quantites the convolution operations ∗ can be replaced by plain multiplications with the respective constant
parameter. Similar wave equations can be derived for the longitudinal components AL,x and AL,x , where
the contribution of the polarization density Pqm can be ignored.

3.3 Overview of the coupled model and simulation software

In this section, we combine the models for the electron dynamics in the gain medium and the propagation
of the electromagnetic field in the resonator cavity. To this end, we revisit the components of the model
discussed in the sections before (namely the model for the basis states of the electrons, the master equation
including the dissipation superoperator, the Poisson equation for the bias field, the Helmholtz equation for
the transversal modes, and the one-dimensional wave equation for the optical radiation field) and rearrange
them. Here, we can benefit from the aforementioned reductions from three to one dimension and exploit
the assumption that certain quantities do not vary strongly with respect to time. As a consequence, we can
divide the coupled model into static prerequisite components and the dynamic part, allowing for an efficient
treatment of the latter. As already mentioned, all model components require numerical simulation tools.
Therefore, a non-exhaustive overview of existing simulation software [67] is provided along the description
of the components in the following.

3.3.1 The basis states and the dissipation superoperator

In Section 3.1 we found that the description of the electron dynamics in the gain medium can be reduced
to the master equation (3.5), where the basis states of the electrons only consider the growth direction, and
the effects in in-plane direction are represented by the dissipation superoperator D. Also, we assumed
later that the interaction with the electromagnetic field does not affect the basis states and the dissipation
superoperator, but can be treated as perturbation. Therefore, we can consider them as static prerequisites
for the master equation, i.e., we can determine them once and simply use them in the dynamic model.
As already mentioned, there are several ways to determine them, but all approaches discussed above are
compatible with the master equation (3.5) and can be used interchangeably.
In order to present one exemplary approach, we use the Ben Daniel-Duke model and determine the basis

states ψi by solving the Schrödinger equation 3.3, which can be written as[
−
~2

2
∂z

1
m∗(z)

∂z + Vc(z) − eϕ(z)
]
ψi(z) = εiψi(z) (3.64)

with the Hamiltonian Ĥ0 described in Eq. (3.4). As already pointed out, there are different models for the
scalar potential ϕ. In themost accurate case, the scalar potential is determined by the Poisson equation (3.42).
The resulting Schrödinger-Poisson equation exhibits a circular dependency, as the charge distribution in the
Poisson equation depends on the basis states, which is often handled by solving iteratively the Schrödinger
equation (3.64) and the Poisson equation (3.42) until convergence is obtained [9]. Different numerical
methods have been published that solve the Schrödinger-Poisson equation, including the transfer matrix
method (e.g., in [68]), the finite difference scheme (e.g., in [69]), and the shooting method (e.g., in [70]).
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Apart from various commercial solver tools, there are open source simulation software projects that are
dedicated to solving the Schrödinger(-Poisson) equation, such as the aestimo project [70], [71].

The dissipation superoperator can be determined, for example, with the density matrix ensemble Monte
Carlo (dmEMC) approach presented in [54]. Since it requires the basis states and determines (apart from the
superoperator) the sheet densities nS

i in Eq. (3.42), there is another circular dependency. This dependency
is usually resolved by choosing suitable initial values for the sheet densities (often given by Fermi-Dirac
statistics) and invoking the Schrödinger-Poisson solver and the dmEMC solver iteratively until the results
converge.

3.3.2 Wave guide model

Similar to the separation of the in-plane effects from the electron dynamics in growth direction, the model
for the electromagnetic field in the resonator cavity features a reduction in dimensionality. As discussed
in Section 3.2, the typical wave guide geometry of the QCL resonator cavities leads to the formation of
transversal modes that can be assumed to be constant with respect to time. Therefore, we can consider the
transversal modes, which are the solution of the Helmholtz equation (3.49), as static prerequisite for the
wave equation, which represents the dynamic part of the electromagnetic model. The complex eigenvalue
problem in Eq. (3.49) appears quite often in nonlinear optics and is not necessarily restricted to QCLs.
There exist semi-analytic approaches such as the film mode matching method [72] or the wave-matching
method (WMM) [73], but it is also feasible to solve the problem using standard (commercial or open-source)
finite-difference simulation tools. In terms of open-source simulation software projects, the WMM solver
deserves mention at this point [74]. Finally, it should be mentioned that Eq. (3.49) can be simplified by
neglecting the lateral direction, i.e., ∂y = 0. The resulting one-dimensional equation models a slab wave
guide and can be solved using transfer matrix methods [9].

3.3.3 The generalized Maxwell-Bloch equations

Basing on these static prerequisite components, we can combine the master equation (3.5) with the one-
dimensional wave equation (3.63) to obtain the generalized Maxwell-Bloch equations. This combination
constitutes the key model for the dynamical behavior of QCLs. We note that the Hamiltonian described
in Eq. (3.24), which enters the master equation, requires the full vector potential Az and depends in
principle on r . However, in the modeling of QCL dynamics usually one quantum mechanical system at
y = y0, z = z0 represents the complete transversal plane. Due to performance reasons, the representative
system is additionally constrained in the number of considered basis states (for example, to one representative
period of the QCL gain medium) [32]. With this restriction, the master equation can be written as

∂t ρ̂ = −i~−1
[(

Ĥ0 + µ̂z∂t AL,z

)
, ρ̂

]
+D(ρ̂), (3.65)

where ρ(x, t) and AL,z(x, t) depend on the propagation direction and the time, and H0(x) is time-independent.
For the sake of completeness it should be noted that the contribution of the transversal distribution
AT,z(y0, z0) = 1 can be assumed to equal unity without loss of generality, as the linear Helmholtz equation
allows for a multiplicative constant in the solutions. If the transversal distributions are used explicitly, care
must be taken that this assumption is not violated.

As next step, we derive the term ∂t AL,z by taking the time derivative of Eq. (3.63) and note that it
corresponds to an electric field, which we denote by −Ez . This electric field is the solution of the resulting
wave equation

∂2
xEz − ε0εeff(t) ∗ µ0∂

2
t Ez − µ0σeff(t) ∗ ∂tEz = µ0Γ(t) ∗ ∂2

t Pz, (3.66)
where Pz denotes the longitudinal component of the polarization density that stems from the representative
quantum mechanical system. This second-order partial differential equation can be rewritten (with the
differentiation property of the convolution operation in mind) as system of two differential equations

∂xEz = µ0∂tHy, (3.67a)
∂xHy = ε0εeff(t) ∗ ∂tEz + σeff(t) ∗ Ez + Γ(t) ∗ ∂tPz, (3.67b)
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of first order that are, of course, Maxwell’s equations in one-dimensional form. According to Eq. (3.36),
the source term related to the polarization density is given by

∂tPz = n3D Tr { µ̂z∂t ρ̂} . (3.68)

For the sake of completeness, we rewrite the master equation (3.65) as

∂t ρ̂ = −i~−1 [
Ĥ0 − µ̂zEz, ρ̂

]
+D(ρ̂). (3.69)

Equations (3.67)-(3.69) are in the following referred to as the generalized Maxwell-Bloch equations in
1D. Here, the predicate “generalized” refers to the fact that the Maxwell-Bloch equations in their original
form treated quantummechanical systems with two basis states exclusively, whereas the form at hand is able
to consider any number of basis states. The Maxwell-Bloch equations have been widely used to simulate
the dynamical behavior of QCLs (e.g., in [9], [21]–[25], [75]–[80]) and can be considered as the standard
model in the field. Therefore, they will be in the focus of the remainder of the thesis at hand and separate
chapters shall be dedicated to the development of a solver tool and to the review and comparison of different
numerical methods.

3.4 Summary

In this chapter, we have applied the theoretical basics to the problem of modeling the dynamical processes
in a QCL. To this end, we have started with the basic assumption that the electromagnetic field consists of a
static bias field and a dynamic radiation field. There are different approaches to model the dynamics of the
electrons in the gain medium, i.e., the charge carrier transport in a biased semiconductor heterostructure.
All of them share a common feature, namely the separation of the in-plane effects from the effects in growth
direction. This separation allows a compact description of the electron dynamics with a reduced density
matrix and a master equation of Lindblad type. To provide an exemplary approach to obtain the basis states
of the electrons and the dissipation superoperator, which are the key elements in this master equation, we
have discussed the Schrödinger equation in the scope of the Ben Daniel-Dukemodel in detail and established
the link to the density matrix ensemble Monte Carlo (dmEMC) method. Here, it is assumed that only the
static bias field affects the basis states and the dynamic radiation field can be treated as perturbation. Both
fields and their interaction with the electron dynamics have been described in detail as next step. Here,
the typical wave guide geometry of QCL resonator cavities has been exploited to separate the transversal
distributions from the electromagnetic radiation field, resulting in an efficient, one-dimensional model.
During the discussion of the electron dynamics in the gain medium and the electromagnetic field in the

resonator cavity, we have identified several components that form the complete model of the dynamical
behavior of QCLs. Exploiting the reduction in dimensionality, we have extracted certain components,
which can be considered as static prerequisites, from the dynamic model. Thereby, the dynamic model
is reduced to the generalized Maxwell-Bloch equations in 1D, which have been identified as key model
of the QCL dynamics. The components and the relations between them are depicted in Fig. 3.1, where
the Schrödinger-Poisson model and the dmEMC method are used as example but could be replaced by
alternatives if desired.
Finally, a brief overview of numerical methods and simulation software to solve the different model

components numerically has been given. For the Maxwell-Bloch equations, which shall be in the focus of
the remainder of the thesis at hand, separate chapters are dedicated to this discussion.
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Basis states
e.g., Schrödinger equation in Ben Daniel-Duke model[
− ~

2

2 ∂z
1

m∗(z)∂z + Vc(z) − eϕ(z)
]
ψi(z) = εiψi(z)

Bias field
Poisson equation
−ε0∂zεr(z)∂zϕ = e

[
nD(z) −

∑
i nS

i |ψi(z)|
2]

Dissipation superoperator
e.g., density matrix Ensemble Monte
Carlo (dmEMC)

Wave guide model
Helmholtz equation
∇2

T AT,p =
[
β2 − ε0εr(y, z)µ0ω

2] AT,p

Electron dynamics
Master equation
∂t ρ̂ = −i~−1 [

Ĥ0 − µ̂zEz, ρ̂
]
+D(ρ̂)

Optical radiation field
Maxwell’s equations in 1D
∂xEz = µ0∂tHy,

∂xHy = −ε0εeff(t) ∗ ∂tEz − σeff(t) ∗ Ez − Γ(t) ∗ ∂tPz

ψi

ϕεi,ψi

nS
i

Ĥ0, µ̂z

D

Ez

∂tPz = n3D Tr { µ̂z∂t ρ̂}

εeff , σeff ,
Γ

Figure 3.1 Exemplary mathematical model of the dynamical behavior of a quantum cascade laser. The model is
divided into static prerequisite components and the dynamic part. The prerequisite components are the model for the
basis states (e.g., the Schrödinger equation in the scope of the Ben Daniel-Duke model), which is often combined
with the Poisson equation for the bias field (in this case resulting in the Schrödinger-Poisson model in orange dashed
rectangle), the method that determines the dissipation superoperator D (e.g., the density matrix ensemble Monte
Carlo method), and the Helmholtz equation for the transversal modes in the resonator cavity. The dynamic part (in
the blue dashed rectangle) consists of the generalized Maxwell-Bloch equations in 1D. Adapted from M. Riesch, The
QCL Stock Image Project [17], CC BY 4.0.
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4 An open-source solver for the Maxwell-Bloch
equations

Freie Wissenschaft ist ebenso selbstverständlich wie freies
Atmen.

— Lise Meitner

Talk is cheap. Show me the code.
— Linus Torvalds

In the field of nonlinear optics, the Maxwell-Bloch equations are a valuable tool to model light-matter
interaction [82], [83]. Originally devised to describe the behavior of magnetic moments of nuclei in a
magnetic field [84], the Bloch equations soon found further application in which the dynamics of a two-level
quantum mechanical system in resonance with an optical field are described [85]–[87]. This version is
often referred to as optical Bloch equations and, coupled with Maxwell’s equations for the optical field,
was successfully applied to model nonlinear phenomena such as self-induced transparency [88], [89].
Later, a generalized form of the optical Bloch equations that considers an arbitrary number of energy
levels was derived [90]. Instances of this form for three energy levels have been used e.g., to describe
electromagnetically induced transparency and the related slow light propagation [91], [92]. Similarly,
further application examples of this generalized form can be related to the propagation of light in different
media, and considering quantum mechanical systems with two [93]–[95], three [96], [97] or six [98] energy
levels, respectively.
While in earlier studies the media considered were mostly of gaseous form, advances in nanotechnology

paved the way for solid state optoelectronic devices that exhibit (at least partially) coherent light-matter
interaction, as is adequately described by the Maxwell-Bloch equations [32]. Here, the quantum cascade
laser is a notable example. In the previous chapter, we identified the generalized Maxwell-Bloch equations
as key model for the dynamical behavior of QCLs. As already pointed out, in many studies (e.g., [9],
[21]–[25], [75]–[80]) this behavior was simulated in this framework. Also quantum dot devices have been
extensively modeled based on Maxwell-Bloch equations [94], [99]–[101]. For a detailed overview of the
applications, the reader is referred to a recent review paper [32] on the subject.
In the following, Section 4.1 reviews the one-dimensional generalized Maxwell-Bloch equations as they

are used in the aforementioned related studies (and in particular, as they are used in the modeling of QCL
dynamics). Since these equations cannot be solved analytically in anything but themost trivial cases, software
tools are usually required to solver the equations numerically. Therefore, the requirements to the solver
tools are discussed subsequently. As we shall see, the following overview of the state of the art in existing
solver tools reveals that there is no solver tool that fulfills all requirements. As a consequence, Section 4.2
presents the implementation of mbsolve, an open-source solver for the Maxwell-Bloch equations, which
was developed in the scope of the thesis at hand. In Section 4.3, the correct operation of the implementation
is verified with the help of four application examples from related literature. At the same time, the various
features of the mbsolve software are presented. Finally, after a short summary we conclude with an outlook
on possible extensions of the software.

This chapter is largely based on M. Riesch and C. Jirauschek, “mbsolve: An open-source solver tool for the Maxwell-Bloch
equations”, Comput. Phys. Commun., vol. 268, p. 108 097, Nov. 2021. doi: 10.1016/j.cpc.2021.108097 in accordance
with the Elsevier Copyright Policy.

https://doi.org/10.1016/j.cpc.2021.108097
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4.1 The Maxwell-Bloch equations and existing solver tools

As already outlined, the Maxwell-Bloch equations describe the interaction of an electromagnetic field with
quantum mechanical systems. In the most general picture, the electric field E(r, t) and the magnetic field
H(r, t) depend on the three-dimensional space coordinate r and time t. The quantummechanical systems are
assumed to be uniformly distributed over space and are generally represented by the density matrix ρ̂(r, t).
While the electromagnetic field is treated classically using the macroscopic Maxwell’s equations (2.9) in
3D, the time evolution of the density matrix is governed by a quantum mechanical master equation of the
form as given in Eq. (3.5). The Hamiltonian Ĥ = Ĥ0 − µ̂E in the master equation consists of the static
Hamiltonian Ĥ0 and the interaction term µ̂E, as described in Section 3.1.3. At this point, the quantum
mechanical systems are controlled by the electromagnetic field. The interaction cycle is completed by the
introduction of a polarization term as given in Eq. (3.34) that enters Ampere’s law in Maxwell’s equations.

4.1.1 Generalized Maxwell-Bloch equations in 1D

The resulting three-dimensional form of the Maxwell-Bloch equations is quite complex. In the following
we address a simplified version that is relevant for two classes of applications. The first class consists of
simulation models in which the plane wave approximation [10] is a reasonable assumption. Those models
can be found frequently in related literature (e.g., [93], [98], [102]). The second class of applications
contains the simulation of optoelectronic devices with a wave guide geometry that permits the separation of
transversal and longitudinal modes. As a consequence, only the propagation direction has to be considered
in theMaxwell-Bloch equations, whereas the change in transversal directions is accounted for using effective
electromagnetic properties (such as the effective permittivity εeff or the overlap factor Γ). In Chapter 3 we
have found that the QCL is one example of such devices.
The simplified version of Maxwell-Bloch equations can be written in terms of the field components

Ez(x, t) and Hy(x, t), where x is the propagation direction, and y, z are the transversal coordinates. Then,
Maxwell’s equations can be reduced to equations for the time evolution of the electric field

∂tEz = ε
−1 (
−σEz − Γ∂tPz + ∂xHy

)
(4.1)

and the magnetic field
∂tHy = µ

−1∂xEz, (4.2)

where the conductivity σ, the permittivity ε = ε0εr, and the permeability µ = µ0µr can be related to a
(generally complex) effective refractive index. Additionally, the overlap factor Γ accounts for a partial
overlap of the transversal mode with the quantum mechanical systems and can be set to unity in cases where
it is not required. The effective refractive index and the overlap factor are commonly used in optoelectronic
device simulations and take into account the properties of the bulk material(s) in the setup as well as the wave
guide geometry (if any). Generally, they depend on the position x and the frequency, which applies here
for the electromagnetic properties ε , σ, µ and Γ. It should be noted that the frequency dependence reflects
the chromatic dispersion of the background medium, which combines wave guide and bulk dispersion. We
can readily see that Eqs. (4.1) and (4.2) correspond to Eqs. (3.67) if the frequency dependence is ignored.
Indeed, we ignore this frequency dependence in the following for the sake of simplicity but note that the
inclusion of the background dispersion should be in the focus of future work. The dispersion that stems
from the quantum mechanical systems, on the other hand, is included in the polarization Pz and will be
considered.
The variation of the material parameters in propagation direction is usually piecewise constant, in which

case different regions of materials can be used to address this dependence. For each region, Eqs. (4.1)
and (4.2) describe the electromagnetic field, where the material parameters are then constants. Within
this model, the quantum mechanical systems are distributed only in the propagation direction and can be
represented by the density matrix ρ̂(x, t). Furthermore, the dipole moment operator is now assumed to
have only one non-zero component µ̂z [32]. As we have seen in Chapter 3, this is a reasonable assumption
for QCLs. Therefore, the polarization contribution that stems from the quantum mechanical systems can
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be determined with Eq. (3.68) and the time evolution of the density matrix is described by the master
equation (3.69).
Now, as the system of partial differential equations is introduced, it is necessary to specify the initial and

boundary conditions. The electric and magnetic fields require initial values E(x, t = 0) and H(x, t = 0),
respectively. While many setups simply assume both to be zero, the fields may be initialized with random
values to model spontaneous emission. The latter is typically applied during the simulation of lasers. As
to boundary conditions, it is generally assumed that the electromagnetic wave is reflected with a certain
reflectivity R at the simulation domain boundary. This assumption covers the case of perfect (R = 1) and
semi-transparent (0 < R < 1) mirrors, which are often considered in optoelectronic devices, as well as
perfectly matched layer (PML) boundary conditions (R = 0). It should be noted that the reflectivity values
of the two boundaries R1 , R2 may be different. Since the master equation (3.69) does not include a spatial
derivative, only the initial value of the density matrix at each point is required, such as thermal equilibrium
(lowest energy level has the largest population) or inversion (some higher energy level, the so-called upper
laser level, has the largest population). Finally, we note that source terms are often included in related
literature. For example, an incoming electromagnetic pulse of Gaussian or sech shape is modeled by a
source term in the electric field.
Together with those initial and boundary conditions, the system of partial differential equations form the

generalized Maxwell-Bloch equations in 1D. If we reduce the model further by ignoring the propagation
effects altogether, the equation system is nothing more than the master equation (3.69) that describes the
time evolution for a single quantum mechanical system. As a consequence, the software project presented
in the following at hand may also serve as solver for e.g., the Lindblad equation. Starting again from the
one-dimensional version, we note that the generalizedMaxwell-Bloch equations are able to treat an arbitrary
number of energy levels N . The original Maxwell-Bloch equations can be derived by setting N = 2.

4.1.2 Requirements to the solver tool and existing approaches

At this point, the rotating wave approximation (RWA) in combination with the slowly varying envelope
approximation (SVEA) is invoked in the majority of related studies to reduce further the complexity of the
equation system. Naturally, these approximations may omit certain features of the solution [93]. Since it can
be assumed that those features are crucial in the scope of simulations of quantum cascade laser frequency
combs [103], [104], however we aim to avoid the RWA and SVEA in this work.
It should be noted that even when those approximations are used, analytical solutions are not generally

available. As a consequence, we need to resort to numerical methods and solver tools that implement
them. Although several numerical approaches for the Maxwell-Bloch equations have been discussed and
compared in related literature [32], [93], [97], [98], [105]–[111], there is no definitive statement on what
the best approach is. Also, just as with many problems in science and engineering, it is improbable that a
single numerical method can cover all use cases. For example, while invoking the RWA/SVEA may not be
suitable for quantum cascade laser frequency combs, it is perfectly reasonable for a multitude of problems.
Therefore, the solver tool should provide support for multiple numerical methods in order to evaluate and
compare different approaches. Here, a small and flexible code base is beneficial for rapid prototyping.
At the same time, the tool should permit productive usage with established numerical methods in the

scope of our research, which leads to the following requirements. As already stated, a full-wave treatment
of the optical field is desired (i.e., the rotating wave approximation should not be invoked). Secondly, as
the full-wave treatment is computationally more intensive, the resulting numerical operations should be
efficiently executed in parallel. Then, the solver should be able to deal with multiple sections of different
materials, flexible initial and boundary conditions, source terms, and an arbitrary number of energy levels.
Finally, the source code of the solver should be publicly available in order to allow extensions of the software
and to improve the reproducibility of simulation results.
Unfortunately, the majority of the solver tools used in related work are not publicly available (e.g., in [93],

[97], [98], [105]–[107]). In the following, the few exceptions to that rule should be mentioned. For
example, the Electromagnetic Template Library (EMTL) [112] is a free C++ library with Message Passing
Interface (MPI) support and has been used e.g., to model single quantum emitters [108]. However, it is
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only available in binary form which makes it impossible to extend the library and port it to new computing
architectures. The Freetwm [113] project is an open-source MATLAB code that solves the 1D Maxwell-
Bloch equations. But to the best of our knowledge, it uses the rotating wave approximation and does not
support alternative numerical methods. Also, solvers written and executed in MATLAB typically feature
inferior performance than implementations in compiled languages such as C++. Finally, the open-source
project MEEP [114] is a fully versed finite-difference time-domain (FDTD) solver for Maxwell’s equations
with parallelization support (using MPI) and a flexible user interface. Also, it features support for multi-
level quantum mechanical systems. It is widely accepted in the simulation community and, therefore, it is
a promising project to base future simulations onto. But one has to acknowledge that the evaluation and
comparison of different numerical methods for the Maxwell-Bloch equations is hardly possible with such a
large code base. This overview of existing approaches demonstrates the lack of a solver tool that fulfills all
requirements, which lead to the development of a new tool named mbsolve.

4.2 Implementation of mbsolve

In this section, the architecture and the implementation details of the mbsolve software are presented. The
modular architecture was designed with the requirements from Section 4.1 in mind, which we revisit briefly
in the following. As already stated, it is crucial that mbsolve supports different numerical methods for
the Maxwell-Bloch equations. We note that a flexible way to combine methods for Maxwell’s equations
and methods for the master equation would be beneficial. Then, for example, it would not be required to
implement a certain method for Maxwell’s equations multiple times when evaluating different algorithms
to solve the master equation. Similarly, there are different parallelization techniques (OpenMP for shared
memory systems, MPI for distributed memory systems, CUDA for NVIDIA graphics processing units
(GPU), etc.), and mbsolve should be able to handle different techniques. Thereby, available simulation
hardware can be targeted and exploited. A preliminary study found that the Maxwell-Bloch equations can
be efficiently solved on GPUs [115], but the software should also work on a regular desktop PC without a
high-end graphics card. As already mentioned, a small, yet flexible and extensible, code base is beneficial
in order to achieve this. Finally, it is envisaged to share the resulting software project with the scientific
community. Here, several measures must be taken to guarantee that other researchers can acquire, install
and use the software [116]. While we discuss those measures in more detail below, the fundamental decision
is the choice of programming language. The mbsolve software is written in the C++ programming language
for performance reasons, but bindings for Python are offered in order to provide an easy-to-use interface
for the researchers. Both programming languages are established in the scientific community and should
constitute a reasonable choice [116].

During the implementation of the mbsolve software, the required flexibility was guaranteed by modular-
ization and clearly defined interfaces. Those design criteria lead to the architecture depicted in Fig. 4.1. The
mbsolve-lib base library constitutes the fundamental part of the software, as it provides an object oriented
framework to define a simulation setup as well as the infrastructure to add solver and writer components.
As the name suggests, the solver components implement numerical methods that solve the specified simu-
lation setup using different parallelization techniques. After the solver has completed its work, the writer
component is responsible for writing the simulation results into a file. In principle, writers for any file
format can be implemented. However, open formats such as the Hierarchical Data Format (HDF) are clearly
recommended [116].

In the following, the mbsolve-lib base library and a writer for the HDF file format are presented in more
detail. Then, the measures taken to create a sustainable open-source software project out of mbsolve are
discussed. Finally, installation notes and the requirements with respect to compilers and third-party software
libraries are given.
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Figure 4.1 Overview of the mbsolve project. Reprinted from M. Riesch, The QCL Stock Image Project [17] (CC BY
4.0).

4.2.1 The mbsolve-lib base library

The object oriented framework that describes a simulation setup can be divided into two parts. The device
part contains all properties of a setup that are static. These properties include, for example, the composition
of the device under simulation in terms of regions and materials. The dynamic properties, on the other
hand, are grouped into a scenario. For instance, simulation properties, such as the number of grid points
used, or source terms are defined in the scenario. Thereby, it is possible to simulate the same device under
different conditions, which was used, e.g., during the investigation of seeding effects in a quantum cascade
laser [24]. After device and scenario are defined, the user can pass them to a solver, which calculates the
simulation results, and optionally to a writer, which exports the results to a file.

Device setup and boundary conditions

The device is represented by a class of the same name. It contains a collection of region objects, which
models a section of the device in which the material parameters are constant. A region is defined by the xstart
and xend coordinates as well as a pointer to a certain material. The envisaged materials have to be present
in a static collection when the region is created. Thereby, material parameters are not directly stored in the
regions. This enables the efficient treatment of periodic structures, where only few materials are repeatedly
used in many different regions.

Each material is an instance of the eponymous class, which contains the electromagnetic properties as
well as the description of the quantum mechanical systems. The former consist of the permittivity ε , the
permeability µ, the overlap factor Γ, and the linear loss term

α0 =
σ

2εc
=

√
µ

ε

σ

2
, (4.3)

which is related to the conductivity σ [10]. Here, c = (µε)−1/2 is the speed of light in the material. The latter
is incorporated as pointer to the class qm_description, which represents a quantum mechanical system.
Here, the usage of a pointer allows polymorphism, i.e., the quantum mechanical description can assume
different forms.
In the general form, this description requires the density of quantum mechanical systems n3D, the

Hamiltonian Ĥ0 and the dipole moment operator µ̂z , as well as the superoperatorD. For Ĥ0 and µ̂z the class
qm_operator can be used. Since quantum mechanical operators can be expressed as Hermitian matrices, it
is sufficient to store the real entries of the main diagonal as well as the complex entries of the upper triangle
of the matrix. For example, a diagonal Hamiltonian

Ĥ0 =


ω1 0 0
0 ω2 0
0 0 ω3

 (4.4)
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can be created from a real vector [ω1,ω2,ω3]. In this case it is not necessary to provide a complex vector
for the off-diagonal elements since they are set to zero by default. On the other hand, for a dipole moment
operator

µ̂z =


0 µ12 µ13
µ21 0 µ23
µ31 µ32 0

 (4.5)

the main diagonal elements are defined by the real vector [0,0,0] and the off-diagonal elements are repre-
sented by the complex vector [µ12, µ13, µ23].
The treatment of superoperators is more complex, since the action of the superoperator on a quantum

mechanical operator must be determined. Also, different choices of the superoperator are reasonable.
Therefore, mbsolve features the class qm_superoperator and a derived sub-class qm_lindblad_relaxation
that represents the resulting Lindblad superoperator. This approach allows future extensions, yet covers all
current application examples, since the Lindblad form of the master equation is the most general Markovian
description [34] (cf. Section 2.2.6). In Section 3.1 we have discussed the physical interpretation of the
Lindblad dissipation superoperator and have identified the need for a compromise between usability and
physical accuracy when pure dephasing terms are involved. In order to provide a physically accurate,
yet practice oriented interface, mbsolve offers a user-friendly constructor for qm_lindblad_relaxation. It
accepts a matrix 

0 γ12 . . . γ1N
γ21 0 . . . γ2N
...

...
. . .

...

γN1 γN2 . . . 0


, (4.6)

where the γji denote the relaxation (or scattering) rates from the basis states |i〉 to | j〉. As second parameter,
the constructor of qm_lindblad_relaxation accepts a N(N − 1)/2 real vector

[γ12,p, γ13,p, γ23,p, γ14,p, . . . , γN−1,N ,p] (4.7)

with the pure dephasing rates, where the same ordering of off-diagonal elements as in qm_operator is
used. The constructor tries to convert the dephasing rates into a corresponding coefficient matrix C (cf.
Theorem 2.2.2) and checks whether this matrix is positive semi-definite. If the conversion or the check fails,
a warning is emitted.
For the original Maxwell-Bloch equations, however, the general quantum mechanical description is

unnecessarily complex. This form considers only two energy levels and a diagonal Hamiltonian Ĥ0, and
usually neglects the static dipole moments (µz,22 − µz,11 ≈ 0). For two energy levels, the master equation
(3.69) reads

∂t

[
ρ11 ρ12
ρ21 ρ22

]
= − i~−1

[ [
H0,11 − µz,11E −µz,12E
−µz,21E H0,22 − µz,22E

]
,

[
ρ11 ρ12
ρ21 ρ22

] ]
+

[
−γ21ρ11 + γ12ρ22 −

[ 1
2 (γ12 + γ21) + γ12,p

]
ρ12

−
[ 1

2 (γ12 + γ21) + γ21,p
]
ρ21 γ21ρ11 − γ12ρ22

]
.

(4.8)

Additionally, there is the constraint ρ11 + ρ22 = 1 on the populations, and for the coherence terms ρ12 = ρ
∗
21

holds. Therefore, it is sufficient to determine the population inversion w = ρ22 − ρ11, as the populations
ρ11 = (1 − w)/2 and ρ22 = (1 + w)/2 can be derived from this quantity, and one of the coherence terms
(usually ρ21) [32]. Following this approach, and by assuming that the dipole moment µz,21 is real, Eq. (4.8)
can be brought into the form

∂t ρ21 = −iω21ρ21 − iwΩR − γ2ρ21, (4.9a)
∂tw = 4ΩR= {ρ21} − γ1 (w − w0) , (4.9b)
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which are the optical Bloch equations in the original form. Here, ω21 = ~
−1(H0,22 − H0,11) is the transition

frequency between the two energy levels and ΩR = ~
−1µz,21Ez is the instantaneous Rabi frequency.

Furthermore, the dephasing rate

γ2 =
1
2
(γ12 + γ21) + γ12,p, (4.10)

the scattering rate γ1 = γ12 + γ21, and the equilibrium population inversion

w0 =
γ21 − γ12
γ21 + γ12

(4.11)

are introduced to simplify the terms induced by the Lindblad superoperator.
In order to provide a convenient alternative for the Maxwell-Bloch equations in that form to the user,

mbsolve features a subclass qm_desc_2lvlwhose constructor accepts six real values. Those values represent
the density n3D, the transition frequency, the dipole length z21 = −e−1µz,21 (where e is the elementary
charge), the scattering rate, the dephasing rate, and the equilibrium inversion value, respectively. Then, the
constructor builds the Hamiltonian

Ĥ0 =
~ω21

2

[
−1 0
0 1

]
, (4.12)

the dipole operator

µ̂z = −ez21

[
0 1
1 0

]
, (4.13)

and the Lindblad superoperator. For the latter step, the scattering rate matrix[
0 γ12
γ21 0

]
=
γ1
2

[
0 1 − w0

1 + w0 0

]
(4.14)

and the pure dephasing rate γ12,p = γ2 − γ1/2 have to be determined.
At this point, we have described the regions and materials of the device. Now we need to include

the boundary conditions. As mentioned above, it is sufficient to store two real values that represent the
reflectivity values of both ends of the device. Those values could be integrated directly into the device class.
However, in order to maintain the flexible nature of our base library, the device class contains two pointers to
an abstract class bc_field. Thereby, the project can be extended easily in future, e.g., to incorporate periodic
boundary conditions. At the moment, the only subclass of the abstract class is bc_field_reflectivity, whose
constructor accepts a real reflectivity value.

Scenario setup and initial conditions

As outlined above, the class scenario contains the dynamical part of the simulation setup. Namely, those
are the source terms and the initial conditions. Although in most examples one source term is sufficient,
the scenario can contain any number of terms, which are stored as pointers to the class source. Similar to
other classes mentioned before, source is a base class that stores common information, such as the position
x at which the source should be placed. Also, the source features a type field that distinguishes hard and
soft sources. Here, it should be noted that a hard source sets the value of the electric field to the source
value, whereas the soft source adds the source value to the current field value [117]. Different subclasses
can be derived from the class source, such as sech_pulse and gaussian_pulse. As their names suggest,
those subclasses yield a sech and a Gaussian pulse, respectively.
Similar to the treatment of the boundary conditions in the device, the scenario contains pointers to abstract

classes that represent the initial conditions. Here, the pointer to ic_density specifies the initialization of
the density matrix, and two pointers to ic_field determine the initial values of electric and magnetic field,
respectively. Currently, only a subclass ic_density_const, which yields a constant initial density matrix, is
implemented. For the fields there are more options: constant initialization, random initialization, and even
a certain initial curve can be specified.
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Apart from the simulation setup, further properties can be specified. For example, the number of spatial
grid points can be specified. Thereby, the user can increase the accuracy and determine the effect on the
results itself, as well as on the performance of the solver. Finally, the user needs to specify the desired
results. Even in the most trivial simulations, several data sets are generated that are not required. In
order to avoid wasting memory, a collection of record objects can be added to the scenario. Each record
specifies a certain quantity that should be recorded, and contains information on the sampling interval and
position. Then, during the simulation run, the solver analyses the information in the record list and stores
the corresponding data traces in result objects. The latter are data container classes, which can be analyzed
during postprocessing (either by accessing them in system memory or after exporting them to a file).

Solver and writer infrastructure

The base library only contains the abstract classes solver and writer, and leaves the implementation to
libraries that build on the base. Before we discuss the resulting plugin structure in more detail, let us take
a look at the common properties of all solvers and writers, respectively, that are represented by the abstract
classes. The constructor of solver expects the name of the solver, as well as the device and the scenario to
be simulated. After the solver is created, the method run executes the simulation. Then, the results can be
extracted with the method get_results. The abstract class writer features a method write that accepts the
results and writes them to a file. In addition to the results, the target filename, the device, and the scenario
must be specified. The latter are required since the simulation result files should contain meta-information,
such as the name of the device and the discretization size.
The plugin structure mentioned above guarantees the required flexibility. For the sake of brevity, this

approach is described only for the solver. All remarks in the following hold analogously for the writer.
The constructor of solver, which we already introduced, is indeed marked as protected. This means that
instances of this class cannot be created directly. In order to create an instance of a certain solver, the
static method create_instance must be called. This method expects the name of the solver as parameter (in
addition to device and scenario), looks up the corresponding subclass of solver, and returns an instance of
this subclass (using the provided device and scenario). While this approach may seem overly complex at
first glance, it provides a clean interface to the user. For example, the user can acquire the available solvers
with the static method get_avail_solvers and choose to create an instance of one of them without knowing
the name of the corresponding subclass.

4.2.2 Writer for the Hierarchical Data Format (HDF5)

As already mentioned, the result objects can be passed to a writer. Currently, the only available writer
implementation inmbsolve stores the data in theHDF5 format. This format is well accepted in computational
science, and is supported by most programming languages (including C++, Python, MATLAB, and Octave)
on all major platforms. The three main entities of the HDF5 format are groups, data sets, and attributes.
Using groups, a hierarchical structure can be created. In each group (including the root), data sets and
attributes can be placed, where attributes can be used to store meta-information.
The writer-hdf5 stores the simulation meta-information (e.g., temporal discretization size) in attributes

of the root group. Then, it creates a separate group for each result. Naturally, a data set containing the
result data is added to this newly created group. However, since HDF5 does not natively support complex
numbers, a second data set has to be added in case the result is complex (e.g., off-diagonal entries of the
density matrix). Additionally, the writer creates a per-result attribute that informs the user whether the result
is complex or real.

4.2.3 Project management and software quality assurance

From the very beginning of the mbsolve project, one goal of the project was to provide a reliable solution
of high software quality to the scientific community. Indeed, any scientific software package must work
reliably, as it serves as third pillar of science, the other two being theory and experiment. Clearly, creating a
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reliable solution requires significant efforts, which is also one reason for making the resulting source code
publicly available, in the hope that the efforts will help other research groups as well. As we shall see in
Chapter 5, there are several best practices in scientific software engineering. The mbsolve project features
the implementations of most best practices, which we discuss briefly in the following.
One elementary best practice is using a version control system. While it is beneficial even for a single

user scenario, it becomes indispensable as soon as more developers work on the project. Ideally, it is
combined with a collaboration web tool, which also offers an issue tracking system. The mbsolve source
code is hosted on GitHub, which offers both. As to the quality of the source code, a coding convention has
been defined and automated checks whether new contributions are compliant with it have been established.
During the design of the software, the aim has been to provide a clear and object-oriented architecture.
Modern features of the C++ programming language, such as smart pointers that prevent memory leaks, have
been used in order to avoid typical mistakes, and to produce readable code. As far as third party components
are concerned, open-source components have been selected exclusively. Additionally, the source code can
be compiled with a variety of compilers (open-source and proprietary) on the three major operating systems
Linux, Windows, andmacOS. By using continuous integration (CI), the repetitive tasks (such as building the
project, testing the resulting libraries, and performing additional tasks) have been automated. For example,
the documentation is generated based on comments in the source code, compiled to static HTML pages, and
uploaded to GitHub Pages [118].

4.2.4 Installation and requirements

As other researchers are invited to use and extend the mbsolve software, the build tools, the third party
dependencies, and the steps required to build and/or install the software are described in the following.
In case the mbsolve software should be built from the source code, the CMake build system (version ≥

3.9) and a recent C++ compiler are required. As to the latter, the mbsolve source code has been compiled
successfully using the GNU Compiler Collection (gcc, version ≥ 4.9.2), the Intel C++ Compiler (any recent
version), the Clang compiler (version ≥ v7.0.0), and the Microsoft Visual C++ compiler (MSVC, any recent
version). It should be noted that AppleClang lacks OpenMP support entirely, and MSVC only supports a
dated version, which may result in inferior performance. Then, the Eigen library (version ≥ 3.3.4) and the
HDF5 libraries (any recent version) must be installed. The Python interface is optional, and requires Python
(version ≥ 2.7) and SWIG (version ≥ 2.0.12). Finally, cxxopts (any recent version) is a prerequisite for
the optional mbsolve-tool, and Doxygen (any recent version) is required for generating the documentation.
If the required dependencies are not met, certain components may be disabled automatically by the build
system.
Once the requirements are set up, the build process consists of executing CMake, which creates the

project files for a certain generator, and running the generator, which depends on the platform in use (GNU
make, Microsoft Visual Studio, etc.). The reader is referred to the documentation [118] for a more detailed
description.
Alternatively, the compiled binaries can be installed directly. Here, the dependencies are a reduced set

of the list above. Namely, those are the C/C++ standard libraries including OpenMP support, the Python
runtime, and the HDF5 libraries. However, the same versions as used during compilation must be available,
which is far from trivial. Therefore, it is recommended to install the binaries via conda, where the command

$ conda install -c conda-forge mbsolve

installs the mbsolve binaries together with all required dependencies. This approach works for all major
platforms (Linux, Windows, and macOS), although the way to install a conda package may differ.

4.3 Application and simulation examples

In the following, the usage of the mbsolve project is demonstrated with the help of four application examples.
Those examples have been selected so that they represent different simulation types (the Maxwell-Bloch
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Figure 4.2 Simulation results from the self-induced transparency simulation setup, cf. Ziolkowski et al. [93], Fig.
2. Reprinted from M. Riesch and C. Jirauschek, “mbsolve: An open-source solver tool for the Maxwell-Bloch
equations” [81] in accordance with the Elsevier Copyright Policy.

equations in 1D, or solving only the master equation at a certain point in space), use different features of
mbsolve (different source types, initial conditions, etc.), and are executed using the C++ interface as well as
the Python bindings. Furthermore, the selected simulations feature different numbers of energy levels, and
while three examples are rather of theoretical nature, the final simulation models a real QCL. Apart from
providing initial guidance to the prospective user, the examples serve as verification of the implementation.

4.3.1 Self-induced transparency (SIT) in two-level systems

The first application example reproduces the results presented in the work by Ziolkowski et al. [93]. In this
pioneering work, the self-induced transparency (SIT) effect in two-level systems is investigated. Here, the
active region is embedded in two short vacuum regions. In one vacuum region a sech pulse is injected and
subsequently travels through the active region. By setting the pulse area to π, 2π, and 4π, the quantum
mechanical systems are inverted once, twice, and four times, respectively. Figure 4.2 depicts the population
inversion and the electric field for a 2π pulse, after it has propagated for 200 fs.
Listing 4.1 shows the complete Python code required to set up and run the SIT example. After the mbsolve

libraries are imported, the script creates two materials, one of which features a simple two-level quantum
mechanical description. The device to be simulated contains three regions, where vacuum is assigned to
the first and third regions, and the active region is put in the middle. Initially, all quantum mechanical
systems are inverted, which is represented by the initial density matrix rho_init. The scenario specifies
32768 spatial grid points, and that the simulation is run for 200 fs. Furthermore, two records are added
that request the recording of the population inversion and the electric field, respectively. Both quantities
are to be sampled using a time interval of 2.5 fs over the complete spatial domain. Also, a source, which
represents a sech pulse at the left end of the device, is added to the scenario. Finally, the solver is created
and runs the simulation. On a recent quad-core desktop computer this simulation should be processed in
less than 20 seconds. The results are passed to the writer, which stores the data in a HDF5 file.
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Listing 4.1 Python script for the self-induced transparency (SIT) setup, cf. tools/python/ziolkowski1995.py
in the mbsolve repository [119].
# import mbsolve libraries
import mbsolve.lib as mb
import mbsolve.solvercpu
import mbsolve.writerhdf5

# vacuum
mat_vac = mb.material("Vacuum")
mb.material.add_to_library(mat_vac)

# simple two -level quantum mechanical description
# params: particle density , transition frequency ,
# transition dipole length ,
# scattering rate gamma_1 , dephasing rate gamma_2 ,
# equilibrium population inversion w_0
qm = mb.qm_desc_2lvl (1e24 , 2 * math.pi * 2e14 , 6.24e-11, 1.0e10 ,

1.0e10 , -1.0)

# Ziolkowski active region material
mat_ar = mb.material("AR_Ziolkowski", qm)
mb.material.add_to_library(mat_ar)

# Ziolkowski device setup
dev = mb.device("Ziolkowski")
# params of each region: name , material , x_start , x_end
dev.add_region(mb.region("Vacuum left", mat_vac , 0, 7.5e-6))
dev.add_region(mb.region("Active region", mat_ar , 7.5e-6, 142.5e-6))
dev.add_region(mb.region("Vacuum right", mat_vac , 142.5e-6, 150e-6))

# initial density matrix
# params: lower level rho_11 fully populated , upper level rho_22
# empty vector with coherence terms not set in params ,
# zero by default
rho_init = mb.qm_operator ([ 1, 0 ])

# scenario
ic_d = mb.ic_density_const(rho_init)
ic_e = mb.ic_field_const (0.0)
sce = mb.scenario("Basic", 32768 , 200e-15, ic_d , ic_e)
# record electric field and population inversion in 2.5fs intervals
sce.add_record(mb.record("inv12", 2.5e -15))
sce.add_record(mb.record("e", 2.5e -15))

# add source
sce.add_source(mb.sech_pulse("sech", 0.0, mb.source.hard_source ,

4.2186e9 , 2e14 , 10, 2e14))

# run solver (advanced FDTD implementation + approach by
# Bidegaray 2001)
sol = mb.solver.create_instance("cpu -fdtd -red -2lvl -reg -cayley", dev ,

sce)
sol.run()

# write results
wri = mb.writer.create_instance("hdf5")
outfile = dev.get_name () + "_" + sce.get_name () + "." +

wri.get_extension ()
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results = sol.get_results ()
wri.write(outfile , sol.get_results (), dev , sce)

4.3.2 Pulse propagation in a V-type three-level system

Using Maxwell-Bloch simulations, Song et al. [102] investigated a setup that is conceptually similar to
the SIT example, the major difference being the active region. Here, atomic rubidium was modeled as a
three-level quantum mechanical system. While the work mainly focused on the propagation of few-cycle
pulses, it also contains the temporal simulation of a single three-level system that is driven by a pulse
(cf. [102], Fig. 3). This case can be reproduced by solving the Lindblad master equation alone.

In Listing 4.2, the creation of a device and a scenario for this setup is given. Since a three-level system is
considered here, it is necessary to use the complete quantum mechanical description including the operators
and the superoperator. In this example, the device contains only one region of zero length. This is the
first indication that the simulation does not consider any spatial dimensions. The second indication is the
number of grid points, which is passed to the scenario constructor. Here, the number of spatial grid points
is set to 1, whereas the 10000 temporal grid points are specified. Similar to the SIT setup, records and
sources can be added, although it only makes sense to add them at the position of the single grid point. It
should be noted that for a low number of spatial grid points parallelization of the calculation does not make
sense. Fortunately, it is not needed here as this example will complete within seconds on a recent desktop
computer (using only one core).

Listing 4.2 Code snippet of the Python script that reproduces the three-level driven quantum mechanical system in
[102], cf. tools/python/song2005.py in the mbsolve repository [119].
# Hamiltonian
# (diagonal qm operator , vector for off -diagonal terms omitted)
energies = [ 0, 2.3717 e15 * mb.HBAR , 2.4165 e15 * mb.HBAR ]
H = mb.qm_operator(energies)

# dipole moment operator (qm operator with off -diagonal terms)
dipoles = [ -mb.E0 * 9.2374e-11, -mb.E0 * 9.2374e-11 * math.sqrt(2),

0]
u = mb.qm_operator ([ 0, 0, 0 ], dipoles)

# relaxation superoperator
rate = 1e10
# scattering rate matrix
rates = [ [ 0, rate , rate ], [ rate , 0, rate ], [ rate , rate , 0 ] ]
# pure dephasing rates are zero in this example
pure_deph = [ 0, 0, 0 ]
relax_sop = mb.qm_lindblad_relaxation(rates , pure_deph)

# initial density matrix
rho_init = mb.qm_operator ([ 1, 0, 0 ])

# quantum mechanical description
qm = mb.qm_description (6e24 , H, u, relax_sop)
mat_ar = mb.material("AR_Song", qm)
mb.material.add_to_library(mat_ar)

# Song setup
dev = mb.device("Song")
dev.add_region(mb.region("Active region (single point)", mat_ar , 0,

0))

# scenario
ic_d = mb.ic_density_const(rho_init)
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ic_e = mb.ic_field_const (0.0)
ic_m = mb.ic_field_const (0.0)
sce = mb.scenario("Basic", 1, 80e-15, ic_d , ic_e , ic_m , 10000)
sce.add_record(mb.record("e", 0.0, 0.0))
sce.add_record(mb.record("d11", mb.record.density , 1, 1, 0.0, 0.0))
sce.add_record(mb.record("d22", mb.record.density , 2, 2, 0.0, 0.0))
sce.add_record(mb.record("d33", mb.record.density , 3, 3, 0.0, 0.0))

# add source
sce.add_source(mb.sech_pulse("sech", 0.0, mb.source.hard_source ,

3.5471e9 , 3.8118e14 , 17.248 , 1.76/5e-15,
-math.pi/2))

4.3.3 Six-level anharmonic ladder system

In the work by Marskar and Österberg [98], two simulation examples are discussed. The first example is a
variation of the SIT setup in [93], which we have already discussed above. The second example considers
the propagation of a Gaussian pulse in a medium that is modeled as a six-level anharmonic ladder system
(cf. [98], Fig. 4). In this system, the energy levels are given as

εn+1 = εn + ~ω0[1 − 0.1(n − 3)], (4.15)

where n ∈ [1; N − 1], N is the number of energy levels, and ω0 = 2π × 1013 s−1 is the transition frequency
between the energy levels ε3 and ε4. For convenience, and without loss of generality, ε1 = 0 is set to zero.

From our perspective, this setup is no more than a variation of the previous examples. However, it gives
us a nice opportunity to introduce the mbsolve-tool, which features different simulation examples written in
C++. In fact, all examples discussed in this section can be started by specifying the setup name as well as an
appropriate solver and writer as command line arguments. For example, the anharmonic ladder simulation
can be started as

$ mbsolve-tool -w hdf5 -m cpu-fdtd-red-6lvl-reg-cayley -d marskar2011-6lvl

Depending on the given setup name, the application creates the corresponding device and scenario, runs the
specified solver, and uses the given writer to store the simulation results. Further command line arguments
can be used to specify the number of spatial grid points and the simulation end time. As we shall see in
Chapters 6 and 7, this feature is particularly handy for performance tests. By default, 8192 spatial grid
points and a simulation end time of 2 ns are used, resulting in a runtime of approximately two minutes on a
recent quad-core desktop computer.
We note that in the command line entry above, the number of energy levels seems to be stated explicitly

as part of the device name. Indeed, the name “marskar2011-6lvl” and the shortcut “marskar2011” refer
to the original setup, but in fact any number N ≥ 2 can be specified. This feature has been added for
performance comparisons of numerical methods, in which the performance is analyzed with respect to
the number of energy levels (see Chapter 6). While the generalized example may not necessarily make
sense from the modeling point of view, it represents a typical application example and hence constitutes a
reasonable benchmark.

4.3.4 Quantum cascade laser frequency comb

Finally, we discuss themost complex and computationally demanding application example, as one simulation
run required up to two hours on an AMD Ryzen Threadripper 2990WX machine using 16 cores. The
quantum cascade laser frequency comb presented in [120] was modeled in previous work [23], where the
experimental results were reproduced with good agreement. Most input parameters were determined using
prerequisite Schrödinger-Poisson and ensemble Monte Carlo simulations. Thereby, the number of empirical
model parameters was reduced to a minimum.
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Listing 4.3 shows how a similar simulation can be set up using the mbsolve software. First, the quantum
mechanical description of the active region material is created. Apart from the five eigenenergies on the
main diagonal, the Hamiltonian in this example has non-zero off-diagonal elements, which account for
tunneling effects. All the elements are determined by a Schrödinger-Poisson simulation in tight-binding
basis [9]. The dipole moment operator is less spectacular as it only contains one non-zero element, which
is placed on the off-diagonal element that corresponds to the transition between upper and lower laser
level. The scattering rates and dephasing rates are used to set up the Lindblad relaxation superoperator.
The quantum mechanical description and the active region material are then created using the parameters
from [23]. Then, semi-transparent mirror boundary conditions are created, with the reflectivity values
R1 = R2 = 0.8. The boundary conditions are subsequently used during the creation of the device, to which
one region of the active region material is added. After that, the scenario is set up using the initial density
matrix, in which only the upper laser level is populated. The electric field is initialized randomly to model
spontaneous emission, whereas the magnetic field is set to zero. Since this is the default in mbsolve, we do
not need to specify this choice of initial conditions explicitly. Finally, a record that triggers the recording of
the electrical field at the facet is added to the scenario.

Listing 4.3 Code snippet of the mbsolve-tool C++ application that reproduces the quantum cascade laser frequency
comb simulation in [23], cf. mbsolve-tool/src/mbsolve-tool.cpp in the mbsolve repository [119].
/* quantum mechanical description of active region */
/* params: vector of main diagonal entries , followed by vector of
* off -diagonal entries */

mbsolve :: qm_operator H(
{ 0.10103 * mbsolve ::E0, 0.09677 * mbsolve ::E0,

0.09720 * mbsolve ::E0 , 0.08129 * mbsolve ::E0 ,
0.07633 * mbsolve ::E0 },

{ 0.0, 1.2329e-3 * mbsolve ::E0, -1.3447e-3 * mbsolve ::E0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 });

mbsolve :: qm_operator u(
{ 0.0, 0.0, 0.0, 0.0, 0.0 },
{ 0.0, 0.0, 0.0, 0.0, 0.0, -mbsolve ::E0 * 4e-9, 0.0, 0.0, 0.0,

0.0 });

/* the scattering rate matrix */
std::vector <std::vector <mbsolve ::real > > scattering_rates = {

{ 0.0000000 , 0.4947e12 , 0.0974e12 , 0.8116e12 , 1.0410 e12 },
{ 0.8245e12 , 0.0000000 , 0.1358e12 , 0.6621e12 , 1.1240 e12 },
{ 0.0229e12 , 0.0469e12 , 0.0000000 , 0.0794e12 , 0.0357 e12 },
{ 0.0047e12 , 0.0029e12 , 0.1252e12 , 0.0000000 , 0.2810 e12 },
{ 0.0049e12 , 0.0049e12 , 0.1101e12 , 0.4949e12 , 0.0000000 }

};

mbsolve ::real deph_inj_ull = 1.0/(0.6e -12);
mbsolve ::real deph_xxx_xxx = 1.0/(1.0e -12);

/* the vector of pure dephasing rates */
std::vector <mbsolve ::real > dephasing_rates =

{ 0, deph_inj_ull , deph_inj_ull , deph_xxx_xxx , deph_xxx_xxx ,
deph_xxx_xxx , deph_xxx_xxx , deph_xxx_xxx , deph_xxx_xxx ,
deph_xxx_xxx };

auto relax_sop = std:: make_shared <mbsolve :: qm_lindblad_relaxation >(
scattering_rates ,
dephasing_rates );

auto qm = std:: make_shared <mbsolve :: qm_description >(5.6e21 , H, u,
relax_sop );
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Figure 4.3 Power spectrum of the electric field recorded at the facet of the quantum cascade laser frequency comb. This
simulation example bases on Tzenov et al. [23] (cf. Fig. 5c). For the corresponding experimental results cf. Burghoff
et al. [120], Fig. 3b. Reprinted from M. Riesch and C. Jirauschek, “mbsolve: An open-source solver tool for the
Maxwell-Bloch equations” [81] in accordance with the Elsevier Copyright Policy.

auto mat_ar = std:: make_shared <mbsolve ::material >("AR", qm , 12.96 ,
0.9, 1100);

/* set up device with semi -transparent mirror boundary cond. */
auto bc =

std:: make_shared <mbsolve :: bc_field_reflectivity >(0.8 , 0.8);
dev = std:: make_shared <mbsolve ::device >("tzenov2016", bc);
dev ->add_region(std:: make_shared <mbsolve ::region >(
"Active region", mat_ar , 0, 5e-3));

/* initial density matrix (rho_33 is fully populated) */
mbsolve :: qm_operator rho_init ({ 0.0, 0.0, 1.0, 0.0, 0.0 });

/* basic scenario */
scen = std:: make_shared <mbsolve ::scenario >(

"basic", num_gridpoints , sim_endtime , rho_init );
scen ->add_record(std:: make_shared <mbsolve ::record >(

"e0", mbsolve :: record ::electric , 1, 1, 0.0, 0.0));

After a solver has processed the device and scenario, the result data are written to a HDF5 file. At
this point, we can discuss briefly the postprocessing of results. Typically, several tasks remain to be done
after the solver has completed. In this case, the Fourier transform of the recorded electric field must be
calculated and plotted. Naturally, this is beyond the scope of mbsolve and established software tools, such
as MATLAB, Octave, or Python (with NumPy, SciPy, and Matplotlib), should be used. Examples for
postprocessing MATLAB scripts can be found in tools/matlab in the mbsolve repository [119].

The simulation results (after postprocessing) are depicted in Fig. 4.3. While the spectrum of the electric
field at the facet shows reasonable agreement with the experiment, there are features missing that the
simulation in [23] could capture. This can be attributed to the differences in the underlying simulation
methods. While the method in this work does not invoke the RWA, it does not account for chromatic
dispersion or diffusion processes due to spatial hole burning.

4.4 Summary

In this chapter, we have reviewed the applications of the generalized Maxwell-Bloch equations in the
one-dimensional form that is suitable for e.g., modeling various types of optoelectronic devices such as
QCLs, where the wave guide geometry allows a reduction of the model to one spatial dimension. Besides
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optoelectronic devices, the resulting equations can be applied to a variety of problems in which the plane-
wave approximation is a reasonable assumption. Since numerical methods are required to solve these
equations, we have assorted a list of requirements to a numerical solver tool and have found that there is no
existing tool that fulfills all requirements.

Therefore, mbsolve, an open-source solver for the Maxwell-Bloch equations, has been presented in this
chapter. The basic library of mbsolve provides a flexible and extensible framework to describe devices to be
modeled, and simulation scenarios. On this basis, solvers can be written that implement different numerical
methods and/or parallelization techniques. Similarly, writers can be implemented that export the simulation
results to certain file formats, such as the open HDF5 file format. The resulting source code is written in
C++ and features automatically generated bindings for Python. It is open-source and can be compiled using
most of the established C++ compilers on all major platforms. Alternatively, the mbsolve software can be
installed in binary form using the conda package manager.
The usage of mbsolve has been demonstrated with the help of four application examples, selected to

cover different use cases. The first example features a two-level medium that can be described using a
simplified version of the quantum mechanical description. The setup of the second simulation example can
be considered a driven quantum mechanical system. In this simulation, there is no spatial coordinate, i.e.,
field propagation effects are not considered. The third example uses the generalized quantum mechanical
description to handle the six-level medium. Finally, the last example is a simulation of an actual quantum
cascade laser. This example is the most complex and computationally most demanding simulation.
Although the mbsolve software is already a helpful and reliable tool, several interesting issues are still

unsolved, and potential optimization possibilities remain to be exploited. From the modeling point of view,
the inclusion of dispersion in the electromagnetic properties should be one of the next steps. While it is
not exactly trivial to implement, it is bound to play a significant role in the modeling of optoelectronic
devices (see e.g., [121]). Also, the implementation of alternative boundary conditions will extend the
application range of mbsolve, e.g., to the simulation of ring cavities. In order to enable numerically efficient
simulations in two or three spatial dimensions, an attractive strategy could be to integrate the mbsolve
code for the Lindblad equation into an established and high-performance open-source electromagnetics
simulation project, such as MEEP.
The discussion of numerical methods is ongoing, as we shall see in Chapter 6. While we shall focus on

methods that avoid the RWA/SVEA,we note that those approximations are beneficial for several applications.
In future work, a solver that uses a numerical method that invokes the RWA (such as the Risken-Nummedal
scheme [122]) could be implemented to support these applications better. The parallelization of the
calculations shall be discussed in detail in Chapter 7. The mbsolve software already features solvers using
the OpenMP standard for shared memory systems, but those existing solvers could be extended to distributed
memory systems using Message Passing Interface (MPI) standard. Furthermore, offloading of calculations
to graphics processing units (GPUs) is an intriguing possibility.
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5 Ensuring quality in scientific software engineering

Quality is to a product what character is to a man.
— Henry J. Heinz

At this point, we take a short detour and review the measures required to obtain high-quality scientific
software, based on the experiences made during development of the mbsolve software (see Chapter 4). As a
recent essay in Nature [123] addressed, there is a familiar dilemma in (computational) science. On the one
hand, science relies heavily on open-source software packages, such as libraries for mathematical operations,
implementations of numerical methods, or data analysis tools. As a consequence, those software packages
need to work reliably and should be easy to use. On the other hand, scientific software is notoriously
underfunded and the required efforts are achieved as side projects or by the scientists working in their spare
time.
Indeed, a lot of effort has to be invested beyond the work on the actual implementation – which is

typically a formidable challenge on its own. This becomes apparent from literature on software engineering
in general (such as the influential “Pragmatic Programmer” [124]), and in scientific contexts in particular
(e.g., [125]–[128]). The vast number of best practices guides and development guidelines available (e.g.,
those published by the German Aerospace Center (DLR) [129] and the Netherlands eScience Center [130])
further underlines the importance of the topic and may serve as guidance, but often scientists lack the time
and/or formal training in software engineering required to ensure sustainable software development [123],
[127], [128]. Too often, this results in poorly maintained software projects of questionable reliability and
usability.
Given all this, once again the goal is to achieve much with little effort. Therefore, in this chapter a

project skeleton is presented that may serve as solid yet lightweight base for a small to medium-scale
scientific software project. In the envisaged use case, scientists can create an instance of this template
in just a few clicks. This instance implements essential best practices in software engineering from the
very start. After performing a minimal number of customizations, the scientist can soon start working on
the actual implementation and can concentrate on what really matters. In the context of pure C++ [131]
or Python [132] projects, such skeletons have already proven their value. The focus of this chapter is on
scientific software libraries which are written in the C++ programming language for performance reasons
and feature bindings for Python in order to provide an easy-to-use interface to the user, such as the mbsolve
software. It should be noted that the skeleton concentrates on this particular use case and does not (and
should not) cover every eventuality (e.g., when support for the Fortran programming language is required).
This is contrary to the recommendations in related literature, which are kept general and language-agnostic
on purpose. The rationale behind this decision is to keep the template lightweight and avoid cluttering.
This chapter is organized as follows: In Section 5.1, we identify the essential best practices that are

required to ensure high-quality scientific software based on related literature and the experiences with
the mbsolve software project. Subsequently, the project skeleton and the specific implementation of the
measures identified are presented in Section 5.2. As already stated above, some minor customization steps
are required. Section 5.3 gives an overview of these steps and thereby an introduction to the (potential) user.
Finally, we conclude with a short summary and give an outlook on future work, i.e., additional tools and
measures that further improve the quality of scientific software projects.

This chapter is largely based on M. Riesch, T. D. Nguyen, and C. Jirauschek, “bertha: Project skeleton for scientific software”,
PLOS ONE, vol. 15, no. 3, e0230557, Mar. 2020. doi: 10.1371/journal.pone.0230557, an open access article published
under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original author and source are credited.

https://doi.org/10.1371/journal.pone.0230557
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5.1 Best practices in scientific software engineering

This section describes the essential recommendations and best practices from related literature [123]–[130]
that serve as basis for the project skeleton. All recommendations are language-agnostic and grouped into
seven categories with no particular order of importance. Table 5.1 gives an overview of the best practices.

5.1.1 Project management

Most software projects in a scientific context start with a single developer. However, over time the projects
are likely to grow, be extended, and possibly taken over by other developers. Building a developer community
is crucial for the success of the project in general and in particular for open-source projects [126]. Therefore,
the project infrastructure should be able to handle multiple developers from the very start.

All of the guidelines in literature mention the usage of a version control system (VCS). This is beneficial
even for the single developer, as a VCS intrinsically features a backup solution and synchronization between
different machines. Once more developers start working on the project, the VCS enables transparent
collaboration. By using a VCS, the “Make Incremental Changes” paradigm [127], [128] can be implemented
easily and the intrinsically generated development historymay serve as rudimentary documentation of design
decisions [126].
In a more advanced scenario, the VCS is coupled with a project management tool that provides a

means of communication within the developer team, and thereby further enhances transparency. As the
communication logs are available for developers who join the team at a later stage, this also provides a
certain form of documentation [126]. One essential element of a project management tool is a ticket system
or issue tracker. Issues are requests for a certain change (such as a bug fix or feature implementation) and
play a crucial role in modern iterative and incremental software development processes, such as feature-
based development [133]. As the name suggests, issue trackers keep track of issues from their creation (by
users or developers) to their completion in the form of an accepted solution by the developer [129]. Modern
project management tools also include convenient mechanisms for code review. Similar to a scientific paper,
a rigorous review process may be time-intensive and annoying, but eventually yields solutions of higher
quality and wider acceptance [127].

5.1.2 Code quality

Just as we care about language style when writing a scientific article, so we should care about coding
style when writing scientific software. Here, we should bear the mottos “Write Programs for People, Not
Computers” [127] and “Don’t Repeat Yourself” [124], [127] in mind and produce easily readable and
modular code. In developer teams, it is crucial to agree on a certain coding style at the beginning of the
project. The coding style usually consists of two parts: rules for formatting code and best practices for
programming in the respective language. Code formatting tools enable manual and automated checks to
establish whether the source code is compliant with agreed code formatting rules [130]. Analogously, static
code analysis tools check whether the agreed best practices are violated [129].

5.1.3 Independence

Some guidelines recommend that open standards, protocols, and file formats should be used wherever
possible (e.g., the HDF5 format for large data sets [130]). Thereby, vendor lock-in situations are avoided
which would arise, for example, if a certain source code can only be compiled using a certain compiler
brand or version. The general recommendation here is to provide solutions that work with the most widely
used operating systems and compilers (and possibly combinations thereof) from the very start.
Following the advice that one should never reinvent the wheel, established software libraries and tools

are often used to speed up development processes. Here, we recommend using open-source components
unless there is a strong reason not to. This is in agreement with the interoperability and reusability part of
the FAIR principle [134], [135].
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5.1.4 Automation

We should “Let the Computer Do the Work” [124], [127] and automate repetitive tasks such as building the
software, running tests, performing quality checks, and deploying the generated artifacts (typically, software
in binary form and documentation) to a software repository. Otherwise, those tedious tasks are most likely
postponed, not done at all, or performed only partially. Here, continuous integration (CI) tools are helpful
as different jobs can be defined and grouped into stages, which are executed every time the developers push
changes to the version control repository. Then, the developers receive feedback on the changes, which is
an essential part of the “Make Incremental Changes” strategy [127].

The feedback typically consists of (at least) two parts, which are briefly outlined. First, the build process
should run in an automated and platform-independent fashion. Here, it is particularly important that third-
party dependencies are found without hard coded paths. The output of the build process tells the developers
whether the build on different platforms was successful. This is especially beneficial as most developers
develop on a certain platform and the code is not intrinsically tested on other platforms (different operating
systems, different compiler versions, etc.). Second, test programs can be executed automatically on different
platforms. For example, unit tests can help to verify the correct behavior of certain functions or modules of
the software. Functional tests, on the other hand, help to gain more confidence in the overall function of the
software [129].
It makes sense to define the continuous integration pipelines as early as possible, so that the developers

benefit from the feedback from the very beginning. Thereby, bugs in the software (in particular regressions)
can be detected early. Furthermore, the effectiveness of optimizations can be assessed while the correct
operation of the software is ensured.

5.1.5 Documentation

In order to make scientific software reusable, providing documentation to users and developers is one of the
most important steps [123]–[130]. Bangerth and Heister [126] list five items that the documentation should
contain: traditional comments, function level documentation, class level documentation, overview of how
modules interact, and complete examples in tutorial form. As to traditional comments, it is good practice
to “Document Design and Purpose, Not Mechanics” [127] and avoid obvious comments. Function and
class level documentation is typically generated based on comments in code using special annotation. The
resulting reference manual is particularly interesting for developers and advanced users who need to know
the details. On the other hand, the module overview documentation should inform new users about the big
picture. This information is typically written into the files README (aim of the software, installation notes,
list of dependencies), CHANGELOG (overview of releases, features, known bugs), CODE_OF_CONDUCT
and CONTRIBUTING (guidelines for (potential) developers), as well as TUTORIAL (guide for (potential)
users) [128].

5.1.6 Testing

As mistakes are natural and are bound to happen, we should plan for them and develop strategies on how
to detect them as early as possible [127]. Automated testing, the importance of which has already been
underlined in Section 5.1.4, is the cornerstone of such strategies. It should be noted that the effectiveness of
tests should be monitored as well. Here, code coverage tools are useful as they are able to detect code parts
which are not covered by the executed tests [129].
Again, we stress that certain measures, such as writing unit tests, should be carried out from the very

beginning. Apart from their use in automated testing, unit tests may have a positive effect on the code design.
Since modular code is usually testable, performing unit tests can be considered a necessary requirement for
modular code [124].
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5.1.7 Deployment

Whether or not a certain software project is used depends to a large degree on the ability to distribute
it [126]. Hence, it is advisable to package the software and distribute it using an established software
repository [123]. Similar to the practices discussed above, it is important that the deployment is carried out
automatically and as early as possible [125].

5.2 Implementation of the project skeleton

Based on the (general and language-agnostic) best practices introduced in the section above, measures for
a C++ software library with bindings for the Python language are implemented in this section. The result
is publicly available [136] and may serve as a template for new projects or reference for existing projects.
Figure 5.1 outlines the skeleton approach.
It should be noted that there may be different ways to implement a certain measure. For the sake of

simplicity, we discuss only one or two possibilities for most measures. Following the recommendations
in Section 5.1.3, open-source tools and libraries have been selected exclusively. Thereby, one particular
lightweight solution is provided for scientists who are new to the topic, while the advanced users may replace
a certain implementation of a measure with another library or tool of their choice.
Since a project skeleton does not include a real implementation, best practices regarding planning,

structuring, and writing code can hardly be demonstrated. In this regard, the reader is referred to available
literature on the topic, such as [124].

5.2.1 Usage of a version control system (VCS) and appropriate workflow

A multitude of version control systems has been published and used over the last three decades. We stick
to our criterion that the software must be open-source and note that git has received much attention since it
was first released in 2005. It features distributed version control and a flexible branching model, rendering it
perfectly suited for open-source projects. However, the flexible branching model might, at the same time, be
a significant drawback. Each project should define a workflow to show how changes are developed, tested,
and integrated. As usual, it makes sense to use something established, such as the GitLab Flow [138]. This
workflow uses feature branches to develop and test new features or bug fixes. Once the changes on the
feature branch fulfill the requirements and pass the automated tests and quality checks, the developer can
open a merge request. A maintainer can subsequently merge the changes in the main development branch.
Additionally, the GitLab Flow allows stable branches and different environments (such as production) in
which further restrictions may apply. The latter features are not required at the initial stage of a project,
but underline that the GitLab Flow is simple enough for small projects yet powerful enough for large and
established projects.

5.2.2 Usage of a project management tool including issue tracking

There are several management tools and hosting platforms that can be combined with the git version control
system with different strengths and drawbacks. Here, we can leave the choice to the developers and provide
two possible solutions for the undecided.
Over the last decade, the GitHub platform has received significant attention. It provides free public git

repositories and integrations with other services (such as the zenodo repository for storing research output).
Due to its prominence, a mirror repository of the project skeleton is available in GitHub [139]. This
repository is marked as project template, which allows a new project to be instantiated with a few clicks. As
to continuous integration, GitHub offers support for external CI providers such as Travis CI, AppVeyor, and
Microsoft Azure. These services are typically free for open-source projects and configured using a YAML
file, where CI jobs can be described. As an example, a basic configuration file for Travis CI has been added
to the skeleton. It triggers build and unit tests on Linux, Windows, and macOS platforms given that the user
registers on Travis CI, where the CI operation can be activated for the repository in question.
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Alternatively, the GitLab platform can be used, which is conceptually similar to GitHub, the main
difference being the possibility of self-hosting the platform on a local server for free. While the concepts
(such as Pages and Releases) are similar, there are slight differences. For example, the project template
instantiation mechanism is different. At this point, it is not possible to create an instance of the project
skeleton with a single click. However, this feature could be provided in the near future [140].
GitLab.com provides free hosting and internal continuous integration services for open-source projects.

Currently, those internal CI services are restricted to the Linux operating system. It is possible, however, to
install GitLab’s CI suite on a local machine and connect it to GitLab. Alternatively, an external service can
be used for Windows or macOS operating systems. In the event that the project should not be open-source,
the self-hosted operation mode may be selected. Here, the CI suite must be installed on local machines,
which can subsequently be connected to the local GitLab installation.
It should be noted that the skeleton does not contain configuration files for all options in order to provide

a lightweight solution. Instead, the configuration file for the GitLab internal CI has been added, which calls
the targets generated by the build systems. From this configuration file, corresponding files for other CI
services can be derived.

5.2.3 Automated build system

In particular when the C++ programming language is involved, the CMake project provides well-established
tools to build, test, and package software. The main advantage of CMake (compared to alternatives such as
GNU make, Visual Studio, or Eclipse) is that a level of abstraction is introduced. The configuration files
consist of directives such as add_library or find_package and are, therefore, quite easy to read and
understand. Based on those configuration files, project files for the aforementioned alternatives (and many
other build systems) can be generated. Thereby, the software project can be built for different operating
systems or using different compilers. In addition, CMake features a mechanism for finding third-party
libraries and tools. This feature is essential for cross-platform dependency management.
As a proof of concept, a simple shared library written in C++ has been added to the project skeleton.

It features a simple class device with two member variables that represent its start and end coordinates,
respectively. An instance of this class can be created using one of two constructors, where either the
coordinates are specified directly, or the length can be set and the start coordinate is assumed to be at the
origin. Finally, a method returns the length of the device.
For such a shared library, Python bindings can be generated conveniently using the SWIG project. It is

fully supported by CMake and requires only a minimal configuration file, which basically specifies which
C++ header files should be considered when the interface is created. SWIG scans the specified header files
and automatically generates a Python module, which can be subsequently imported and used in a Python
project.

5.2.4 Unit testing

Ideally, the software is designed so that each unit of software (e.g., a function) fulfills a certain, unique task
(“Design by Contract” technique [124]). Furthermore, the implementation of each unit is flawless. While
the first goal can be achieved by careful design and refactoring, the second statement is rarely true. As
mentioned above, mistakes will happen and we have to test whether the implementations of each unit work
correctly.
In the case of our simple C++ library, we have to check, for instance, whether the calculation of the

length yields the correct result. This can be achieved by writing a unit test that creates an instance of the
device class, calls its get_length method, and compares the result of the method to the expected value.
Also, whenever the user specifies input data, the implementation should check whether those values are
reasonable and deal with invalid values (most likely, by throwing an exception). Error handling code must
be tested as well, for example by creating a unit test in which the error is provoked on purpose and checking
whether the error handling code yields the correct behavior. As the number of unit tests is expected to be
large for a real life project, it is recommended to use a unit test framework.
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Here, the Catch2 library is chosen as it is open-source, lightweight and header-only. Based on this
library, a test executable with several unit tests has been added to our CMake build system using the CTest
functionality. Whether or not the unit tests cover all possible situations can be assessed using code coverage
tools. The possibility of using the gcov tool has been added to the project skeleton. This tool generates
profiling information during the execution of tests. This information can be subsequently converted to a
human-readable report, in which metrics such as line coverage are given on a per-file basis.

5.2.5 Automatic code formatting

Here, the clang-format tool constitutes a helpful and versatile instrument. It can be configured using a single
file, in which the code formatting rules are specified. There are several predefined styles that can be used
as-is, or alternatively serve as a basis. It is also possible to define a certain style from scratch, but it is
recommended to use an existent style (with slight modifications, if required).
In the project skeleton, the clang-format tool is integrated into the CMake build system, making it easy

for the user to format all source files automatically. This functionality is also used to check whether the
source code conforms to the specified style in the scope of continuous integration.

5.2.6 Documentation generation

From the implementation point of view, we can separate the different types of documentation listed in
Section 5.1.5 into two groups, namely the function reference and the overview documentation. The function
reference is based on comments in the source code that use special annotation. The information in those
comments can be extracted using the Doxygen tool. For the overview documentation, which provides
the “big picture”, it makes sense to use a structured text format. Since Doxygen supports the Markdown
language, files such as README.md and CONTRIBUTING.md are written in this annotation. Both the
overview documentation and function reference are then transformed into static HTML pages that can be
viewed locally or uploaded to a web server.
We note that while Doxygen provides unchallenged support for in-source C++ documentation, the design

of the generated HTML files appears a bit dated. More advanced workflows are available that use Doxygen
as input parser and alternative tools to generate the static HTML pages. However, this is beyond the scope
of the work at hand.

5.2.7 Automated packaging and deployment to a public repository

While many operating systems or programming languages feature a common repository for exchanging
programs and libraries in binary form, it would be beneficial to have a language-agnostic repository that
covers all operating systems. Fortunately, the conda system provides exactly this. Once a software project
is in a stable state, a recipe can be created on conda-forge that defines the source of the project, the steps
required to build it, and meta information such as the name of the responsible maintainer. Based on this
recipe, the conda-forge build system automatically generates the binaries for different platforms. Then, on
each platform the resulting package can be easily installed within a conda environment.
Most likely, the package has dependencies on other libraries. The conda system offers a vast number

of third-party components and convenient methods of installing them. The environment approach already
mentioned has a positive effect on the dependency management, as in Windows it is generally impossible
to distinguish between different versions of a library (at least when considering unmanaged C++ code),
dubbed the “DLL Hell”. Using conda environments, however, it is possible to separate different versions in
a clean and convenient way.
The documentation generated could be included in a conda package as well. However, it is usually more

appropriate to publish it on a web server for visibility reasons. Both GitHub and GitLab offer the possibility
of hosting static HTML pages, such as those generated by Doxygen. With a few lines of CI configuration,
the documentation is automatically generated and uploaded. See [141] for an example.
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Figure 5.2 Creating an instance of the project skeleton on GitHub. On the project page of bertha [139], click on “Use
this template”. In the following, enter the desired owner, repository name, and project description. The button “Create
repository from template” will then create the instance. Reprinted from M. Riesch et al., “bertha: Project skeleton for
scientific software” [116] (CC BY 4.0).

Figure 5.3Creating an instance of the project skeleton inGitLab. Click on the plus button to create a new project. After
selecting the “Create from template” tab, choose bertha by clicking “Use this template” (currently in development,
see [140]). Then, enter the project name and description and click “Create project”. Reprinted from M. Riesch et al.,
“bertha: Project skeleton for scientific software” [116] (CC BY 4.0).

5.3 Creating a skeleton instance

In order to create a new project, the project skeleton can be cloned using the mechanisms of either GitHub
(see Fig. 5.2) or GitLab (as described in Fig. 5.3). Alternatively, the files can be copied manually and
added to a new repository. After the cloning procedure, the skeleton can be adjusted to the needs of the
new project. The steps recommended and required are outlined briefly in the following. For more detailed
instructions, the reader is referred to the “Tutorial” section in the bertha documentation [141]. It should
be noted that registration on Travis CI and activation of the project is required for continuous integration
support in GitHub.

5.3.1 Setup stage

At the beginning, it is important to define a meaningful name for the project and replace bertha with this
name throughout the project (e.g., in the CMake build structure). It should be ensured that the name is not
already used (e.g., in conda-forge) if the project is to be open-source. Then, the project team should agree
on where to host the project (for internal use only or publicly available), on the license for the project, and
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on the workflow. The latter includes mainly the coding style and the version control workflow. Both should
be documented as soon as possible.

5.3.2 Implementation stage

At this point, the software project has a solid initial state. Now it is time to add functionality. Here, the
developers should consider writing the documentation first (the contract), then implementing the function-
ality, and at the same time writing unit tests. This approach will seem slow but improves the quality of
the design and helps to detect mistakes early on. Also, the CMake build structure can be adjusted to add
requirements (e.g., software libraries) or additional modules (besides the existing core library).

5.3.3 Publication stage

In the case of an open-source project, the code should be distributed and communicated as soon as it has
some first functionality. For the distribution of the project in binary form, the conda recipe for bertha [137]
may serve as reference.

5.4 Summary

In this chapter, a skeleton for scientific software projects has been presented, which consist of libraries
written in the C++ programming language and feature a Python interface. The skeleton contains the
essential elements required to ensure best software engineering practices. This project aims to provide
the scientific community with a helpful tool that saves time during the setup of a new project. Based the
experience gained during the development of the skeleton, creating a bertha instance may replace at least
one person month of evaluating tools, reading documentation, and searching for answers in the internet.

Furthermore, this contribution may serve as checklist and reference for existing projects. It is envisaged
that in both use cases – building a project from scratch and adapting an existing one – the project skeleton
shall aid the implementation of good practices in scientific software engineering and consequently improve
the quality and reusability of scientific software projects.
As a next step, the implementation of further measures is envisaged. For example, a static code analysis

tool could further improve the quality of the code. Also, the generated documentation and quality reports
should be presented with a modern appearance. Finally, the project skeleton concept could be transformed
to other project classes in scientific software engineering, such as a combination of a Fortran library with
a Python interface. In this regard, there is already one adaptation of the skeleton for scientific document
projects written in LATEX [142], [143].
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6 Numerical treatment of the Maxwell-Bloch
equations

Bender’s Computer Dating Service – Discreet and Discrete
— Futurama

Smile, you buggers! Pretend it’s Christmas!
— Pete Townshend, The Who at the Isle of Weight

As already mentioned in the previous chapters, the generalizedMaxwell-Bloch equations can usually only
be solved numerically. The required numerical treatment is discussed in this chapter, whose objective is to
find accurate and efficient numerical methods that are suitable for the long-term simulation of QCL devices
in frequency comb or ultra-short pulse operation. We shall see in Section 8.1 that invoking the rotating
wave approximation (RWA) in an ultra-short pulse generation setup requires some a priori knowledge of
the central frequency. Full-wave simulations, on the other hand, solve the same problem in self-consistent
fashion. Also, since the RWA assumes that the electromagnetic radiation features a narrow spectrum and
small peak intensities it will break down eventually in the simulation scenarios mentioned above. Therefore,
we focus on numerical methods beyond the RWA in the following. For a review on numerical methods that
invoke the RWA the interested reader is referred to [32]. The attribute long-term stems from the fact that
simulations of frequency combs often require a relatively large simulation end time in order to acquire the
radiation spectrum in high spectral resolution. Here, it is crucial that the numerical methods preserve the
physical properties in general and the properties of the density matrix in particular. As reported in [105],
[144], some methods may produce unrealistic results such as negative populations.
With these requirements in mind, we review the numerical methods for Maxwell’s equations in the

scope of the generalized Maxwell-Bloch equations in Section 6.1. Additionally, we discuss the coupling
between Maxwell’s equations and the quantum mechanical master equation and thereby provide the basis
to integrate the numerical methods for the master equation, which are in the focus of Section 6.2. Then,
Section 6.3 describes the implementation of the most promising candidates and analyzes their single-thread
performance. After a summary of the findings, a brief outlook on possible future developments concludes
this chapter.

6.1 Numerical methods for Maxwell’s equations

Out of the many methods that solve Maxwell’s equations numerically, mainly two are used in the context
of Maxwell-Bloch equations. The majority of related work (e.g., [93], [94], [96], [97], [105]) uses on
the finite-difference time-domain (FDTD) [117] method to solve Maxwell’s equations. Clearly, it is one
of the standard approaches in computational electromagnetics, and its simplicity allows straightforward
implementation of source terms and sharp material boundaries. As disadvantages, the need for a constant

Section 6.1 is largely based on Section 2.2 ofM. Riesch and C. Jirauschek, “mbsolve: An open-source solver tool for theMaxwell-
Bloch equations”, Comput. Phys. Commun., vol. 268, p. 108 097, Nov. 2021. doi: 10.1016/j.cpc.2021.108097 in
accordance with the Elsevier Copyright Policy.
Section 6.2 is largely based on M. Riesch and C. Jirauschek, “Analyzing the positivity preservation of numerical methods for the
Liouville-vonNeumann equation”, J. Comput. Phys., vol. 390, pp. 290–296, Feb. 2019.doi: 10.1016/j.jcp.2019.04.006
in accordance with the Elsevier Copyright Policy.

https://doi.org/10.1016/j.cpc.2021.108097
https://doi.org/10.1016/j.jcp.2019.04.006
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spatial discretization and its numerical dispersion must be mentioned. The need of the FDTD method
for a constant spatial discretization can lead to inefficient discretization patterns in setups with different
media. The grid spacing must be chosen to suit the medium with the largest effective refractive index and
will be unnecessarily small for media with smaller refractive indices. The usual remedy for the numerical
dispersion is to decrease the spatial and temporal grid spacing, which in turn increases the computational
workload. In practice, spatial discretization sizes between λ/20 and λ/200 have been used, where λ denotes
the smallest occuring wavelength [32].
As an alternative, the pseudo-spectral time-domain (PSTD) method has been used in related work [98],

[107]. The PSTDmethod calculates the spatial derivatives accurately in a pseudo-spectral domain, in which
they are reduced to mere multiplication operations. Thereby, the spatial contribution of the numerical
dispersion is eliminated and the temporal contribution is significantly reduced. This relaxes the requirement
for the spatial discretization size, since (in theory) only theNyquist-Shannon theorem needs to be considered.
In practice, the discretization size λ/10 has been found to achieve reasonable accuracy [98]. However,
this comes at the cost of potentially expensive calls to the fast Fourier transform (FFT), and complex
implementations of boundary conditions and source terms.
We note that numerical methods that adapt the spatial discretization variably to the problem are used to

solve Maxwell’s equations, but that they have not been applied in the scope of the Maxwell-Bloch equations.
Also, although the PSTD method provides an intriguing alternative, the efforts to implement and extend it
are estimated to outweigh its benefits. Therefore, we follow the majority of related literature and focus on
the FDTD method in the remainder of this thesis.

6.1.1 The finite-difference time-domain method

We begin the numerical treatment of Maxwell’s equations (4.1) and (4.2) with the discretization of the
variables therein. To this end, we introduce the spatial index m and discretization size ∆x as well as the
temporal index n and discretization size∆t. Then, the continuous variables, such as the electric field Ez(x, t),
are sampled at discrete grid points in space and time, so that Em,n

z = Ez(m∆x,n∆t). At this point, the Yee
grid [145] comes into play as the central element of the FDTD method. The main feature of the Yee grid
(depicted in Figure 6.1) is that the electric and magnetic field are staggered in time and space. This clever
choice allows the usage of central difference schemes for the spatial and temporal derivatives, which feature
second-order accuracy [117]. Using this discretization, the differential equations (4.1) and (4.2) can be
transformed into the difference equations

Em,n+1
z − Em,n

z

∆t
= − ε−1σ

Em,n+1
z + Em,n

z

2
− ε−1

Γ (∂tPz)
m,n+1/2

+ ε−1 Hm+1/2,n+1/2
y − Hm−1/2,n+1/2

y

∆x

(6.1)

and
Hm+1/2,n+1/2
y − Hm+1/2,n−1/2

y

∆t
= µ−1 Em+1,n

z − Em,n
z

∆x
. (6.2)

While the treatment of the derivatives is straightforward [147], the terms −σEz and −Γ∂tPz deserve
further mention. In general, care is taken that the right-hand side of the differential equations are evaluated
at a half step on the temporal discretization, thus allowing a leapfrog integration scheme [117]. Since for
the term −σEz this is not directly feasible, the value Em,n+1/2

z is approximated by averaging between the old
value Em,n

z and the new value Em,n+1
z . As a consequence, Eq. (6.1) becomes an implicit equation. However,

we can readily rewrite it as an explicit update equation. The polarization term (∂tPz)
m,n+1/2 is evaluated at

the desired position by definition, but needs to be discussed in detail in the next section.
With regard to stability of the FDTD method, the Courant-Friedrichs-Lewy condition

∆t <
n
c
∆x (6.3)
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Figure 6.1 The standard Yee grid of the FDTD method combined with the discretization of the density matrix with
respect to time and space. Electric and magnetic field are denoted with orange crosses and blue circles, respectively.
The density matrix discretization is marked using green squares. The arrows indicate the data dependencies during
the update of three quantities. Reprinted from M. Riesch et al., “Numerical simulation of the quantum cascade laser
dynamics on parallel architectures” [146] (CC BY 4.0).

must be fulfilled, where c/n = (µε)−1/2 is the speed of light in the material under consideration. Since
the speed of light may vary in a simulation setup with different materials, the largest value for c/n must be
selected, resulting in a minimal ∆t. Equation (6.3) can be rewritten as

∆t = C
n
c
∆x,C < 1, (6.4)

where the Courant number C has been introduced [117].

6.1.2 Coupling of the master equation to Maxwell’s equations

With the discretization of the electromagnetic field in mind we can advance to the discussion of the
remaining components of the Maxwell-Bloch equations, namely the polarization calculation in Eq. (3.68)
and the evolution of the density matrix, which is governed by Eq. (3.69). We begin with the calculation of
the polarization term

∂tPz = n3D Tr { µ̂z∂t ρ̂} = n3D Tr
{
−i~−1 µ̂z

[
Ĥ0 − µ̂zEz, ρ̂

]
+ µ̂zD(ρ̂)

}
= n3D Tr

{
−i~−1 µ̂z

[
Ĥ0, ρ̂

]
+ µ̂zD(ρ̂)

}
,

(6.5)

where we use the master equation (3.69), the property[
Ĥ0 − µ̂zEz, ρ̂

]
=

[
Ĥ0, ρ̂

]
− [µ̂zEz, ρ̂] (6.6)

of the commutator, and the properties (cyclic property and linearity) of the trace operation, which lead to
the relation

Tr { µ̂z [µ̂zEz, ρ̂]} = Ez Tr { µ̂z µ̂z ρ̂} − Ez Tr { µ̂z ρ̂µ̂z} = 0. (6.7)

The resulting equation can be discretized in straightforward fashion and then reads

(∂tPz)
m,n+1/2 = n3D Tr

{
−i~−1 µ̂z

[
Ĥ0, ρ̂

m,n+1/2
]
+ µ̂zD

(
ρ̂m,n+1/2

)}
. (6.8)

In this choice of discretization (depicted in Fig. 6.1), the density matrix is sampled at the same temporal
discretization points as the magnetic field, which is referred to as weak coupling. A different approach
is to sample the density matrix at the same temporal discretization points as the electric field (strong
coupling). While both approaches are stable in principle, methods that use weak coupling tend to be easier
and computationally more efficient, as the density matrix and the electric field can be updated alternatingly
using explicit update equations [106].
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Regardless of the coupling, the remaining task is the update step of the density matrix from one time
value to the next one. This operation can be formally written as

ρ̂m,n+1/2 = V
[
∆t (n + 1/2) ,∆t (n − 1/2) , ρ̂m,n−1/2

]
≈ Vm,n

(
ρ̂m,n−1/2

)
, (6.9)

whereV is the time evolution superoperator of the reduced density matrix (cf. Section 2.2.6). In practice,
however, this formal expression can only be approximated using a certain update superoperator Vm,n,
which serves as placeholder for different numerical methods. We note that the (otherwise time-independent)
update superoperator is likely to depend on the electric field Ez , which raises the question at which spatial
discretization points the field is sampled. Since the electric field value Em,n

z is readily available in the scope
of the weak coupling approach, we aim to use this value and discretize the update superoperator at the very
same discretization points.

6.2 Completely positive trace-preserving methods for the master equation

In the previous section, we have introduced the update superoperatorVm,n as placeholder for the numerical
method that solves the master equation (3.69). As next step, we review the state of the art in numerical
methods and discuss suitable candidates to replace this abstract placeholder. Several methods have been
presented in related literature and can be divided into different categories. Ziolkowski, Slavcheva and
coworkers used a Crank-Nicolson (CN) scheme in their work, where the implicit nature of the CN scheme
was resolved with a predictor-corrector (PC) approach [93], [96]. In the following, we will treat these
two methods separately. The methods used in [98], [106], [107], [148], [149] solve Eq. (3.69) exactly
by calculating matrix exponentials. This category shall be referred to as ME methods. Finally, several
implementations of the Runge-Kutta (RK) method have been presented (see e.g. [94], [97], [108]).
As pointed out above, the numerical methods must preserve the properties of the density matrix. We

recall from Section 2.2.6 that this is guaranteed if the update superoperator Vm,n is a completely positive
trace-preserving (CPTP) map. Bidégaray et al. [105] analyzed the positivity preservation of the CN scheme
and found that the update step of this method does not necessarily yield a positive semi-definite density
matrix. In a subsequent publication, Songolo and Bidégaray stated that the Runge-Kutta method does not
preserve the properties of the density matrix but no rigorous proof was given [150]. Finally, while the ME
methods preserve the properties by definition in theory, the actual implementations must be analyzed since
several approximation technique are applied in practice. Therefore, we analyze in the following whether or
not the exact ME approaches, the ME approaches using approximations, the Runge-Kutta method, and the
predictor-corrector technique feature a CPTP update step [144]).
As we shall see, it may be beneficial to switch to a vector representation of the density matrix. The

columns of the N × N density matrix ρ̂ can be stacked on top of each other into a vector ρ with N2

complex elements. This column-major order is denoted as ρ = col(ρ̂) and called representation in Liouville
space [98]. The master equation (3.69) then reads ∂tρ = (L + D) ρ, where L and D are N2 × N2 matrices
representing the Liouvillian L and the dissipation superoperator D, respectively.

6.2.1 Matrix exponential approaches that solve the equation exactly for a single time step

The numerical methods of this group calculate the solution Vm,n = exp[(Lm,n + D)∆t] in order to solve
the differential equation exactly at every time step n. The form of this exponential (and therefore the form
of the update map) is determined by the representation. For example, in Liouville space this update reads

ρm,n+1 = exp [(Lm,n + D)∆t] ρm,n C Vm,nρm,n, (6.10)

where Vm,n is the matrix that represents the update superoperator Vm,n in Liouville space. It should be
noted that the Liouvillian is assumed to be time-independent during an update step, which is perfectly
reasonable in the scope of Maxwell-Bloch simulations with the FDTD method.
This update map is completely positive and trace preserving by definition, since the differential equation is

solved analytically at every time step and the form of the master equation guarantees a CPTPmap as solution
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(cf. Section 2.2.6). Here, we assume that there are numerical methods that solve the matrix exponential with
machine precision so that the CPTP conditions will not be altered by the implementation. Obviously, such
methods exist and are implemented in publicly available libraries such as the Eigen library [151]. Here, the
scaling and squaring method combined with the Padé approximation [152] is implemented which calculates
the exponential of a M × M matrix in O(M3) time. Since in Liouville space the matrices are N2 × N2, this
approach has the complexity O(N6), which is of course a significant drawback. Therefore, the algorithm
presented in [153] is a promising alternative. It exploits the fact that not the matrix exponential itself but its
action on a vector is asked. This action can be determined in O(N4) time and up to a user-defined accuracy.
Other algorithms base on Krylov subspace methods [154], [155] such as the approaches presented in [156],
[157]. A similar technique is described in [149], [158], [159], where the matrix exponential function is
expressed using Chebychev polynomials. It should be noted that while the algorithm using the action of the
matrix exponential is designed for the application in Liouville space only, the other methods may be used in
both Liouville space and regular representation. Then, the performance of the methodsmay differ depending
on the representation. The reason for this is the dimension of the Liouville space, which represents a large
hindrance that may only be overcome if the involved matrices are sparse.

6.2.2 Matrix exponential approaches that use approximations

The evaluation of the matrix exponential function is costly, in particular when the matrices in Liouville space
are concerned. Therefore, related work focused on the solution of the Liouville-von Neumann equation in
regular representation. A closed analytic expression such as in Eq. (6.10) cannot be derived, but as remedy
the symmetric Strang operator splitting technique [160] can be invoked [98], [105]–[107]. This approach
splits the exponential

Vm,n = exp [(Lm,n +D)∆t] ≈ exp [(L1 +D)∆t/2] exp(Lm,n
2 ∆t) exp [(L1 +D)∆t/2] (6.11)

into two parts that constitute the solution to the time-independent part L1 + D of the master equation’s
right-hand side, and to the time-dependent LiouvillianLm,n

2 = i~−1[µ̂zEm,n
z , ρ̂], respectively. Both solutions

can usually be determined separately. This splitting produces an error of order O(∆t2) (except in the unlikely
case where both parts of the Liouvillian commute). However, if each part of the Liouvillian yields a CPTP
map as solution, the combination is again a CPTP map.
The separation of the time-dependent part has the advantage – apart from allowing analytic solutions –

that the time-independent solution has to be determined only once and can be precalculated. Hence, related
literature focused on the efficient evaluation of the time-dependent solution

exp
(
L

m,n
2 ∆t

)
ρ̂ = exp

(
i~−1µzEm,n

z ∆t
)
ρ̂ exp

(
−i~−1µzEm,n

z ∆t
)
, (6.12)

as this evaluation must be performed at every time step.
Since the exponential of an N × N matrix µzEm,n

z can be achieved with a complexity of O(N3) [152]
and the multiplication of N × N matrices completes in O(N≈2.37) time [161], the exponential calculation
dominates the complexity of the update step. The goal of the approaches outlined below is to approximate the
exponential using matrix multiplications and sums. Then, the complexity is reduced and sparse algorithms
may be used (note that the exponential of a matrix is usually dense, even when the matrix itself is sparse).
In [105], [106] the exponential exp(i~−1 µ̂zEm,n

z ∆t) C Â is approximated using the Crank-Nicolson
scheme. We can readily see that this exponential is the solution of the simple differential equation ∂t Â =
i~−1 µ̂zEm,n

z Â. The CN scheme is applied to this differential equation (in contrast to the work in [93], where
the CN scheme is applied to the master equation) and the approximation

exp
(
i~−1 µ̂zEm,n

z ∆t
)
≈

(
Î − i~−1 µ̂zEm,n

z ∆t/2
)−1 (

Î + i~−1 µ̂zEm,n
z ∆t/2

)
(6.13)

is derived. This approximation can be related to the Cayley transform of the skew-Hermitian matrix iµ̂z ,
which is guaranteed to be unitary [162]. Thus, we can readily see that the conditions of Theorem 2.2.1
are still fulfilled. Of course, an additional numerical error is introduced, but the density matrix properties
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are preserved thanks to the clever choice of the approximation. In terms of complexity, the matrix inverse
operation and the matrix multiplication are equal [163] and the complexity of the update step is O(N≈2.37).
In [150], a variation of this approach was described in the context of nonstandard finite difference methods,
where the resulting schemes are currently limited to the elementary but essential case with two energy levels.
In this case, analytic solutions exist for the general matrix exponential and further simplifications may be
applied, e.g., by assuming that the main diagonal entries of µ̂z are zero.
Other approaches (e.g., [164]) use the Taylor series to evaluate thematrix exponential. According to [152],

this method converges slowly and will therefore show inferior performance or relatively large numerical
errors. As an alternative, one could think of an approximation

exp(i~−1 µ̂zEm,n
z ∆t) ≈ Î + i~−1 µ̂zEm,n

z ∆t − (~−1 µ̂zEm,n
z ∆t)2/2 + · · · + (i~−1 µ̂zEm,n

z ∆t)k/k! C B̂ (6.14)

based on the truncated Taylor series. This way the update step has the form B̂ ρ̂n B̂† as required by
Theorem 2.2.1, but the condition in Eq. (2.81) is not fulfilled since B̂B̂† = Î +O(∆tl), where l = 2b1+ k/2c.
Hence, this technique does not feature a CPTP update step.

6.2.3 Runge-Kutta method

Several research groups [94], [97], [108] used the fourth-order Runge-Kutta method (see e.g., [147]) to solve
the master equation. Here, the update step reads

Vm,n ρ̂ = ρ̂ + ∆t (k1 + 2k2 + 2k3 + k4) /6, (6.15)

where k1 = F
m,n(ρ̂), k2 = F

m,n+1/2(ρ̂+∆tk1/2), k3 = F
m,n+1/2(ρ̂+∆tk2/2), and k4 = F

m,n+1(ρ̂+∆tk3),
and Fm,n = Lm,n +D denotes the right hand side of the master equation. This method is promising since
the computational workload of the update step is dominated by multiplications of N ×N matrices (assuming
that we apply the Runge-Kutta method in regular representation). Similar to the matrix exponential methods
using approximations above, the computational complexity is O(N≈2.37) and sparse methods can be applied.
We apply this method to a simple test system with the Liouvillian L(ρ̂) = −i}−1[Ĥ, ρ̂], where the Hamil-

tonian Ĥ is time-independent, and transform the update step to the Liouville space. In this representation,
the vector ρ is updated using

ρm,n+1/2 =

[
I + L∆t +

1
2
(L∆t)2 +

1
6
(L∆t)3 +

1
24
(L∆t)4

]
ρm,n−1/2 C Vm,nρm,n−1/2, (6.16)

where I is the N2 × N2 identity matrix and the Liouvillian L = i}−1(Ĥ∗ ⊗ Î − Î ⊗ Ĥ). Here, Î is the N × N
identity matrix, the tensor product ⊗ is the Kronecker product in this case, and the asterisk denotes the
complex conjugate. See [98] for a detailed description of the Liouvillian in Liouville space.
Now we rewrite the update matrix Vm,n using H̃ = −i}−1∆tĤ and assess whether it can be decomposed

into

Vm,n =

∞∑
j=0

cj
j∑

k=0

j!
k! ( j − k)!

(
H̃∗

) j−k
⊗ H̃k !

=

N2∑
i=1

V̂∗i ⊗ V̂i, (6.17)

which is the condition in Eq. (2.80) in Liouville space [165]. For the Runge-Kutta method, the coefficients
cj on the left-hand side are zero for j > 4. Also, it becomes apparent that if such matrices V̂i exist, they must
be functions of the Hamiltonian H̃. We assume that ∆t is chosen sufficiently small so that we can expand
each matrix V̂i =

∑∞
l=0 ai,lH̃l as Taylor series. Then, the decomposition reads

N2∑
i=1

V̂∗i ⊗ V̂i =

N2∑
i=1

∞∑
l=0

∞∑
k=0

a∗i,l
(
H̃∗

) l
⊗ ai,k H̃k =

∞∑
l=0

∞∑
k=0

N2∑
i=1

a∗i,lai,k
(
H̃∗

) l
⊗ H̃k . (6.18)

We note that since c6 = 0 for the Runge-Kutta method, for j = 6 and k = 3 the corresponding term in
Eq. (6.17) vanishes, and consequently the term with the powers l = k = 3 in Eq. (6.18) should also vanish.
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Therefore, the sum
∑N2

i=1 |ai,3 |
2 = 0 and subsequently all coefficients ai,3 must be zero. However, a term

with the powers j = 3 and k = 0 is present in the update matrix in Eq. (6.17), but the corresponding term
(with l = 3 and k = 0) in Eq. (6.18) vanishes if all ai,3 are zero. We deduce that the update matrix cannot
be decomposed and the update map of the Runge-Kutta method is not CPTP.

6.2.4 Predictor-corrector technique

In their work, Ziolkowski, Slavcheva et al. [93], [96] treat the master equation with the Crank-Nicolson
scheme. The positivity preservation of this scheme has been discussed in [105]. However, the actual
implementation uses the predictor-corrector technique to resolve the implicit nature of Crank-Nicolson.
Hence, we shall concentrate on the explicit predictor-corrector method in the following.
The predictor-corrector update step begins by setting ρ̂PC = ρ̂

m,n−1/2 and then executes the procedure

ρ̂PC ← ρ̂m,n−1/2 +
∆t
2
Fm,n

(
ρ̂PC + ρ̂

m,n−1/2
)

(6.19)

four times, where F again denotes the right-hand side of the master equation. Then, the result is assigned
to the value ρ̂m,n+1/2 = ρ̂PC. Again, we consider a simple test system with a time-independent Liouvillian
and write for the complete update step in Liouville space

ρm,n+1/2 =

[
I + L∆t +

1
2
(L∆t)2 +

1
4
(L∆t)3 +

1
8
(L∆t)4

]
ρm,n−1/2 C Vm,nρm,n−1/2, (6.20)

We can readily see that apart from different coefficients cj the predictor-corrector technique and the Runge-
Kutta method have the same update step. Therefore, we can deduce that the computational complexity is
the same (the predictor-corrector method can be implemented in regular representation as well and sparse
methods can be applied) and the update map of the predictor-corrector technique is not CPTP. Indeed, by
using the argumentation above, one can show that no method of the form

ρm,n+1/2 =


M∑
j=0

cj (L∆t)j
 ρm,n−1/2 (6.21)

with a finite number of steps M can be decomposed to fulfill the condition in Eq. (2.80).

6.2.5 Verification

As we have shown above, only one group of the typically used numerical methods – namely, the matrix
exponential methods – can be represented as completely positive trace preserving map and is therefore
guaranteed to yield realistic results in long-term simulations. However, it remains to be demonstrated
that the results of this theoretical analysis are relevant in a practical example. Hence, we implement a
simple simulation based on related literature and compare the results of the different numerical methods.
We consider again the anharmonic ladder example from Section 4.3.3 [98], since it is a well-established,
multi-level setup that constitutes a significant challenge for the numerical methods in terms of accuracy and
performance. Similar to our simple test system above, we only consider a time-independent Hamiltonian
(i.e., the interaction term −µ̂zEz and the dissipation superoperator D are ignored).

The Runge-Kutta method and the predictor-corrector technique are implemented in MATLAB, as well
as a matrix exponential approach that serves as reference. By using the variable-precision arithmetic (vpa)
toolbox of MATLAB, the precision can be increased and it can be assured that the results below are not
affected by round-off error artifacts. All methods used the same time step size ∆t = 0.1 fs, which was chosen
sufficiently small in order to avoid stability issues. The resulting MATLAB scripts are publicly available as
open-source project [166].
Figure 6.2 depicts the simulation results of all three methods. The matrix exponential method solves the

problem exactly and serves as reference. By close inspection we can see that the population ρ33 remains in
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Figure 6.2 Simulation results of the anharmonic ladder system using a) the predictor-corrector approach and b) the
Runge-Kutta method. The results of the matrix exponential method serve as reference in both parts of the figure. For
details of the curves see the respective inset. Reprinted from M. Riesch and C. Jirauschek, “Analyzing the positivity
preservation of numerical methods for the Liouville-von Neumann equation” [144] in accordance with the Elsevier
Copyright Policy.

the interval [0,1], as the theory dictates. In contrast, the results of the predictor-corrector method (Fig. 6.2a)
show that after a short duration the population becomes negative, which is clearly a violation of the properties
of the density matrix. Similarly, the population becomes negative when using the Runge-Kutta method (see
Fig. 6.2b). In this case, the first instance of a negative population occurs at a later point in time, which
is consistent with the order of accuracy of the methods (a fourth-order Runge-Kutta method was used, the
predictor-corrector approach is a second-order method). Nevertheless, the Runge-Kutta method may yield
unrealistic results for certain simulation end times. Finally, it should be noted that although the population
ρ33 was chosen as figure of merit, the discussed features are also visible in other populations.

6.3 Implementation and single-thread performance comparison

Following the review of numerical methods for Maxwell’s equations and the master equation in the sections
before, we discuss in this section the implementation of the most promising candidate in the scope of the
mbsolve solver tool. This method is then used as a reference to benchmark two alternative methods, whose
implementation details are also in the focus of this section. It has been pointed out frequently that solving
the master equation is the major bottleneck in Maxwell-Bloch simulations [98], [106], [107], [109]–[111],
[167]. Therefore, the aim of this section is to evaluate different numerical approaches for themaster equation,
which are weakly coupled to the same FDTD implementation for Maxwell’s equations.

All three approaches discussed in the following subsections belong to the group of matrix exponential
methods, which guarantee a CPTP update map. The section is concluded by a performance comparison of
these three approaches.

6.3.1 Operator splitting in regular representation (os-reg-cayley)

The method by Bidégaray et al. [105], [106] is selected as the established reference method. It uses the
operator splitting technique described in Eq. (6.11) to divide the right-hand side of the master equation
into a time-independent part, which contains the contributions of the Hamiltonian Ĥ0 and the dissipation
superoperator D, and a time-dependent part, which can be related to the interaction term [µ̂zEz, ρ̂]. Then,
assuming a diagonal Hamiltonian Ĥ0 solutions for both parts can be readily derived. In the scope of this
work, however, we aim to avoid any assumptions about the Hamiltonian Ĥ0 and use a slightly different
splitting approach. To this end, we divide the right-hand side of the master equation into the Liouvillian L,
which contains the Hamiltonian Ĥ = Ĥ0 − µ̂zEz , and the dissipation superoperator. In [106] a symmetric
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splitting is suggested, in which the solution exp(L∆t) of the non-dissipative, Liouvillian part for a full time
step is embedded by two solution operators exp(D∆t/2) that solve the dissipative part for a half time step
each. The complete update operator then reads

Vm,n = exp (D∆t/2) exp (Lm,n
∆t) exp (D∆t/2) , (6.22)

where the exact form of the solution operators remains to be determined.
In the scope of this work we consider the Lindblad dissipation superoperator as the most general form and

note that its treatment of the coherence terms is completely decoupled. In fact, after combining Eqs. (3.10)
and (3.12) to

∂t ρi j ,i,j = −γi j ,dephρi j, (6.23)

we can readily derive an elementwise update step for the coherence terms

ρ
m,n+1/2
i j = exp

(
−γi j ,deph∆t/2

)
ρ
m,n−1/2
i j . (6.24)

The population terms can be updated by solving Eq. (3.9) in matrix-vector form, which reads

∂t


ρ11
ρ22
...

ρNN


=


−τ−1

1 γ12 . . . γ1N
γ21 −τ−1

2 . . . γ2N
...

...
. . .

...

γN1 γN2 . . . −τ−1
N



ρ11
ρ22
...

ρNN


C G diag (ρ̂) . (6.25)

Here, diag(ρ̂) denotes the vector representation of the main diagonal of the density matrix. The solution
can be readily derived as

diag (ρ̂)m,n+1/2 = exp (G∆t/2) diag (ρ̂)m,n−1/2 . (6.26)

We note that the operations in Eqs. (6.24) and (6.26) can be applied in arbitrary order as they are completely
decoupled. Also, since the dissipation operator is assumed to be time-independent, the operations can be
precalculated to increase the computational efficiency.

With regard to the non-dissipative part, we can recall from Eq. (2.66) that the solution to the Liouville-von
Neumann equation yields

exp (Lm,n
∆t) ρ̂ = exp

(
−i~−1Ĥm,n

∆t
)
ρ̂ exp

(
i~−1Ĥm,n

∆t
)
. (6.27)

Naturally, this part must be calculated at every time step due to the time dependence of the electric field.
The costly matrix exponential operation can now be approximated with the Cayley transform

exp
(
−i~−1Ĥm,n

∆t
)
≈

(
Î + i~−1Ĥm,n

∆t/2
)−1 (

Î − i~−1Ĥm,n
∆t/2

)
(6.28)

of the matrix −i~−1Ĥm,n∆t, as already described by Eq. (6.13). As possible next step, Fadeev formulae are
provided in [105]) that aim to optimize the calculation of the Cayley transform. While the expressions for
N ≤ 4 are reasonably compact, no general expression for N > 4 is given. However, seeing that modern
libraries for matrix operations are able to select suitable algorithms for certain problems automatically,
we defer the derivation of a general expression and leave the optimization of the expression above in the
responsibility of the underlying library.
In the mbsolve project, the update equations (6.24), (6.26), (6.27) and (6.28) have been bundled together

with Eq. (6.8) to form the os-reg-cayley algorithm for the master equation.
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6.3.2 Operator splitting in coherence vector representation (os-cvr-rodr)

The alternative method discussed in this subsection bases on a different representation of the density matrix.
Whereas in the regular case the density operator is a matrix, representations as vector are also possible. We
have already seen the vectorized version ρ = col(ρ̂) in Liouville space and note that most of the elements
in this vector are complex and redundant due to the properties of the density matrix. By using traceless
Hermitian basis operators F̂k and the Hilbert-Schmidt inner product 〈Â|B̂〉 = Tr{ Â†B̂}, the density matrix
can be transformed to a real-valued, non-redundant vector. The operators F̂k from Section 3.1.2 are a
reasonable choice as they are traceless and constitute an orthonormal basis. It should be noted, however,
that the original N(N − 1) off-diagonal operators must be combined linearly to yield the Hermitian operator
pairs

F̂k′ = |i〉 〈 j | + | j〉 〈i | ,

F̂k′′ = −i |i〉 〈 j | + i | j〉 〈i | ,
(6.29)

where the indices i and j are mapped suitably to N ≤ k ′ < N(N + 1)/2 and N(N + 1)/2 ≤ k ′′ ≤ N2 − 1.
We project the density matrix onto the basis F̂k using

ρ̂ =
1
N

Î +
1
2

N2−1∑
k=1
〈F̂k | ρ̂〉 F̂k =

1
N

Î +
1
2

N2−1∑
k=1

Sk F̂k, (6.30)

where the identity matrix Î is required to satisfy the trace condition of the density matrix as the operators
F̂k are traceless. The resulting vector S with the coefficients Sk = 〈F̂k | ρ̂〉 is called Bloch vector for N = 2
and referred to as coherence vector in the general case [90].
The master equation (3.69) can be transformed similarly and reads (elementwise)

〈F̂k |∂t ρ̂〉 = ∂tSk =

〈F̂k |L(ρ̂) +D(ρ̂)〉 =

N2−1∑
j=1

1
2
〈F̂k |L(F̂j)〉 Sj +

N2−1∑
j=1

1
2
〈F̂k |D(F̂j)〉 Sj +

1
N
〈F̂k |D(Î)〉 ,

(6.31)

since the identity matrix is time-independent, 〈F̂i |F̂j〉 = 2δi j holds, and the action L(Î) of the Liouvillian
on the identity matrix is zero. The elementwise form can be transferred to matrix-vector notation, in which
the master equation reads

∂tS = (L + D) S + Seq, (6.32)

where the elements of the (N2 − 1) × (N2 − 1) real matrices L and D read Ljk = 〈F̂k |L(F̂j)〉 /2 and
Djk = 〈F̂k |D(F̂j)〉 /2, respectively, and the N2 −1 elements of the real vector Seq read Seq

k
= 〈F̂k |D(Î)〉 /N .

For a similar treatment of the polarization term in Eq. (6.8) we need a description of the dipole moment
operator µ̂z in the coherence vector representation. This can be achieved with the projection

µ̂z =
1
N
〈µ̂z | Î〉 Î +

1
2

N2−1∑
k=1
〈F̂k | µ̂z〉 F̂k, (6.33)

where we use the identity operator as F̂N2 (cf. Section 3.1.2). Then, we can address the essential term

Tr { µ̂z [L0 (ρ̂) +D (ρ̂)]} =
1
N
〈µ̂z | Î〉 Tr

{
Î [L0 (ρ̂) +D (ρ̂)]

}︸                        ︷︷                        ︸
=0

+
1
2

N2−1∑
k=1
〈F̂k | µ̂z〉 〈F̂k |L0 (ρ̂) +D (ρ̂)〉

(6.34)
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of Eq. (6.8), where LiouvillianL0 considers only the Hamiltonian Ĥ0 and ignores the interaction term µ̂zEz ,
and simplify it using the relation Tr{âb̂} = 0 for a diagonal operator â and a traceless operator b̂. Then, we
can plug in the remainder into Eq. (6.8), which yields

(∂tPz)
m,n+1/2 = n3D

1
2

N2−1∑
k=1
〈F̂k | µ̂z〉 〈F̂k |L0 (ρ̂) +D (ρ̂)〉

=
1
2

n3Dm
T [(L0 + D) S + Seq] ,

(6.35)

where mk = 〈F̂k | µ̂z〉 denote the N2 − 1 elements of the vector m, and the matrix L0 contains the elements
L0, jk = 〈F̂k |L0(F̂j)〉 /2.
Equation (6.32) can now be treated with an operator splitting approach that considers the solutions to the

equations

∂tS = (L0 + D) S + Seq, (6.36a)
∂tS = L1S, (6.36b)

where L0 and L1 consider the contribution of the time-independent Hamiltonian Ĥ0 and the time-dependent
interaction term µ̂zEz , respectively. Since L0 + D is time-independent, the solution of Eq. (6.36a) can be
determined as

S = exp [(L0 + D) (t − t0)]
[
S(t0) + (L0 + D)−1 Seq] − (L0 + D)−1 Seq, (6.37)

where the inhomogeneous part of the solution Sin = (L0 + D)−1 Seq is introduced for brevity. Similarly, the
solution

S = exp
[ˆ t

t0

L1(τ)dτ
]
S(t0) (6.38)

of Eq. (6.36b) can be derived, where we allow for a time-dependent L1. After inspection of the elements

L1, jk =
1
2
〈F̂k | − i~−1 [

−µ̂zEz, F̂j

]
〉 B MjkEz (6.39)

of L1 it becomes apparent that they are proportional to the electric field and that the newly introduced
matrix M is time-independent. Again, we follow the recommendation in [106] and solve the dissipative,
time-independent part for a half time step, the non-dissipative, time-dependent part for a full step, and repeat
the first step. This leads to the update equations

S′ = exp [(L0 + D)∆t/2]
(
Sm,n−1/2 + Sin

)
− Sin, (6.40a)

S′′ = exp
[
MEm,n

z ∆t
]
S′, (6.40b)

Sm,n+1/2 = exp [(L0 + D)∆t/2]
(
S′′ + Sin

)
− Sin, (6.40c)

where the integral expression ˆ (n+1/2)∆t

(n−1/2)∆t
L1(τ)dτ ≈ MEz(n∆t)∆t (6.41)

has been approximated using the midpoint rule. Of course, we would have achieved the same result by
assuming that the electric field does not vary during the update of the density matrix, as we have done
with the other weakly coupled methods. As we can calculate the inhomogeneous vector Sin and the matrix
exponential exp [(L0 + D)∆t/2] once and reuse it every time step, we focus in the following on the efficient
calculation of the exponential exp

[
MEm,n

z ∆t
]
.

Due to the cyclic property of the trace operation, we can derive an alternative expression for the elements

Mjk =
1
2

i~−1 〈F̂k |
[
µz, F̂j

]
〉 =

1
2
~−1 〈µ̂z |i

[
F̂j, F̂k

]
〉 C

1
2
~−1 〈µ̂z |Ĉ〉 (6.42)
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of the matrix M . We can readily see that

Ĉ† =
(
i
[
F̂j, F̂k

] )†
= −iF̂k F̂j + iF̂j F̂k = i

[
F̂j, F̂k

]
= Ĉ (6.43)

holds and the commutator term Ĉ is Hermitian. Here, the Hermitian property of the basis operators F̂k

is used. Then, using again the properties of the trace operation and the Hermitian property of µ̂z , we can
verify that

〈µ̂z |Ĉ〉 = Tr
{
µ̂zĈ

}
= Tr

{
ĈT µ̂T

z

}
= Tr

{
µ̂T
z ĈT} = Tr

{
µ̂∗zĈ

∗
}
= Tr

{(
µ̂zĈ

)∗}
= Tr

{
µ̂zĈ

}∗ (6.44)

holds and deduce that the elements Mjk are real. Finally, due to the properties of the commutator we can
write

Mk j =
1
2

i~−1 〈µ̂z |i
[
F̂k, F̂j

]
〉 = −

1
2

i~−1 〈µ̂z |i
[
F̂j, F̂k

]
〉 = −Mjk (6.45)

and note that the elements Mjk are antisymmetric.
For the exponential of antisymmetric matrices there exist specialized formulas and algorithms. The

special case N = 2 yields a 3 × 3 matrix

M =


0 −c b
c 0 −a
−b a 0

 , (6.46)

and the corresponding matrix exponential can be calculated using Rodrigues’ formula

exp
(
MEm,n

z ∆t
)
= I +

sin
(
θEm,n

z ∆t
)

θ
M +

1 − cos
(
θEm,n

z ∆t
)

θ2 M2, (6.47)

where I is the 3 × 3 identity matrix and θ =
√

a2 + b2 + c2. This formula can be generalized to arbitrary
matrix dimensions [168] and then assumes the form

exp
(
MEm,n

z ∆t
)
= I +

p∑
i=1

sin
(
θiEm,n

z ∆t
)

Bi +
[
1 − cos

(
θiEm,n

z ∆t
) ]

B2
i , (6.48)

where I is now the N2 − 1 × N2 − 1 identity matrix and p is the number of distinct, non-zero eigenvalue
pairs θ2i−1,2i = ±iθi of the matrix M . For each eigenvalue pair there exists a corresponding, antisymmetric
matrix

Bi = TΘiTT (6.49)

that is composed of an orthogonalmatrixT and thematrixΘi. The samematrixT appears in a decomposition
M = TΘTT, where Θ is a block-diagonal matrix with a block

θi

[
0 −1
1 0

]
(6.50)

for each eigenvalue pair[168], [169]. The matrix Θi, on the other hand, consists of a single, normalized
block [

0 −1
1 0

]
(6.51)

in the (2i − 1)-th and (2i)-th row and column, respectively, and is zero otherwise. Thereby, the matrix
exponential can be reduced to calls to trigonometric functions, matrix scaling, andmatrix addition operations.
This assumes, of course, that the eigenvalues θi and the matrices Bi and B2

i are precalculated, where for the
latter the relation B2

i = TΘ2
iT

T can be used.
In the mbsolve project, the update equations (6.40) and (6.48) have been bundled together with Eq. (6.35)

to form the os-cvr-rodr algorithm for the master equation.
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6.3.3 Action approach in real-valued vector representation (action-rvr)

Vectorized representations of the density matrix, such as ρ in Liouville space or the coherence vector S,
allow mathematically compact solutions. The major drawback of these approaches is that the involved
matrices grow exponentially with the number of levels N and typically have the dimensions N2 × N2 (in
Liouville space) or (N2 − 1) × (N2 − 1) (in coherence vector representation). As a consequence, certain
operations such as the matrix-vector multiplications required in Eq. (6.40) do not scale well when increasing
the number of levels. Nevertheless it would be tempting to use a vectorized representation that allows a
general and exact solution (possibly without invoking the operator splitting technique). In this section, a
promising approach is discussed.
A representation similar to the coherence vector can be written as

ρ̂ =

N2∑
k=1
〈Ĝk | ρ̂〉 Ĝk =

N2∑
k=1

RkĜk, (6.52)

where the N2 elements Rk form the real-valued vector R. The basis operators Gk consist of N diagonal
operators

Ĝk = |k〉 〈k | , (6.53)

where k ∈ [1,N], and (N − 1)N off-diagonal operator pairs

Ĝk′ =
1
√

2
(|i〉 〈 j | + | j〉 〈i |) ,

Ĝk′′ =
−i
√

2
(|i〉 〈 j | − | j〉 〈i |) ,

(6.54)

where the indices i and j are mapped suitably to N < k ′ ≤ N(N + 1)/2 and N(N + 1)/2 < k ′′ ≤ N2. In
contrast to the coherence vector representation, the square root in the off-diagonal operators assures that
〈Ĝi |Ĝ j〉 = δi j and the operators are orthonormal. We can readily see that the operators form a basis of
all Hermitian matrices (as opposed to the basis F̂k of traceless Hermitian matrices), hence no extra term
involving the identity matrix is required in Eq. (6.52). In the following, we refer to this representation as
real-valued vector representation due to the lack of an established name. In this representation, the master
equation (3.69) reads

∂tR = (L + D) R, (6.55)

where L and D are real N2 × N2 matrices with the elements Ljk = 〈Ĝk |L(Ĝ j)〉 and Djk = 〈Ĝk |D(Ĝ j)〉,
respectively. For Eq. (6.8) we can write

(∂tPz)
m,n+1/2 = n3D

N2∑
k=1
〈Ĝk | µ̂z〉 〈Ĝk |L0 (ρ̂) +D (ρ̂)〉 = n3Dm

T (L0 + D) R, (6.56)

where in this case mk = 〈Ĝk | µ̂z〉 denote the N2 elements of the vector m, and the matrix L0 contains the
elements L0, jk = 〈Ĝk |L0(Ĝ j)〉.

Equation (6.55) yields the solution

Rm,n+1/2 = exp [(L + D)∆t] Rm,n−1/2 (6.57)

for a single time step, where the electric field is incorporated in the matrix L and again assumed to be
constant during the update of R. We note that explicit knowledge of the matrix exponential is not required
but only its action on the vector R. For this range of applications a promising algorithm exists [153]. It
bases on the scaling and squaring approach [152]

exp (A∆t) =
s∏

exp
(
s−1 A∆t

)
≈

s∏
rm

[
exp

(
s−1 A∆t

)]
, (6.58)
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where the parameter s is used to scale the matrix A, so that the resulting matrix exponential exp(s−1 A∆t)
lies in a regime in which it can be approximated by rm with negligible numerical error. The approximation
rm, which is frequently achieved by using Padé approximants [152], consists in this case of the truncated
Taylor polynomial

exp
(
s−1 A∆t

)
≈

m∑
k=0

s−k Ak∆tk

k!
C rm

[
exp

(
s−1 A∆t

)]
. (6.59)

Then, the s squaring steps required to calculate the action

exp (A∆t) b ≈
s∏

rm
[
exp

(
s−1 A∆t

)]
b = (rm(· · · (rm(rmb)))) (6.60)

of the matrix exponential on the vector b can be expressed as iterative updates

b ← rmb =
m∑
k=0

s−k Ak∆tk

k!
b =

m∑
k=1
(sk(· · · (s2(s1(b))))) + b, (6.61)

which in turn use the iterative updates
b ← sj b =

∆t
js

Ab. (6.62)

Since the update chains sk(· · · (s1b)) can be reused efficiently in the sum, the cost of one density matrix
update is dominated by ms matrix-vector products. Also, the accuracy of the algorithm is completely
controlled by the parameters m and s. Fortunately, procedures are described that determine the optimal
parameter choice for a given matrix A [153]. Thereby, the optimal tradeoff between computational effort
and accuracy is achieved. In a practical realization, the density vector R can be updated using one auxiliary
vector. Apart from that, only the matrix A = (L +D) needs to be stored. Additionally, the matrix A is likely
sparse for larger N .
In the mbsolve project, the update equations (6.57) and the algorithm for the action of the matrix

exponential [153] have been bundled together with Eq. (6.56) to form the action-rvr algorithm for the
master equation.

6.3.4 Single-thread performance measurement

The performance of the three algorithms for the master equations is now evaluated. As test example, we use
once more the anharmonic ladder example from Section 4.3.3 [98], where we vary the number of energy
levels N between 2 and 10. In principle an example with any spatial dimension would not be required for the
discussion of numerical methods for the master equation. However, it makes sense to use such an example
nevertheless, as we discuss methods for the generalized Maxwell-Bloch equations and e.g., the polarization
term calculation could affect the performance as well. It should be noted that all three algorithms are weakly
coupled to the same FDTD implementation.
The algorithms are implemented in the scope of the mbsolve project and compiled with the GNU C++

compiler 7.3.0 and the compiler flags -O3 -march=native. For the matrix operation, the Eigen library
3.3.4 is used [151]. Then, the test example is simulated on a single Intel Xeon E5-2697 v3 processor core
using a single thread. Thereby, parallelization is disabled and does not affect the performancemeasurements.
As main figure of merit the metric grid point updates per second (GPU/s) is used, which is calculated as

P =
NxNt

texec
, (6.63)

where Nx and Nt denote the number of spatial and temporal grid points, respectively, and texec is the
measured execution time. This allows the comparison of e.g., simulations with different simulation end
time, which is typically adjusted to ensure that the simulation runs for at least 30 s. Otherwise, artifacts from
e.g., the underlying operating system could affect the measurements. In order to eliminate other possible
fluctuations, the measurements are repeated five times and the time measurements are averaged [109]–[111].
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Figure 6.3 Single-thread performance of the three methods that solve the master equation numerically. Reprinted with
permission from M. Riesch et al., “Completely positive trace preserving methods for the Lindblad equation” [111].
© 2020 IEEE.

The performance results for the three algorithms are depicted in Fig. 6.3 [111]. Compared to the
reference algorithm os-reg-cayley, the performance of the os-cvr-rodr approach is larger for large N but
then drops significantly with increasing N . Seeing that simulations with only two or three energy levels
are very common, this algorithm provides an interesting alternative as no additional error due to the Cayley
approximation is introduced. The action-rvr algorithm features the least numerical error, as neither the
operator splitting technique nor other approximations are invoked. Additionally, its performance scales
quite robustly with the number of energy levels N . It should be noted that the optimal parameters m and s
were not determined at every update of the density matrix, as the naive implementation of the procedures
in [153] lead to inferior performance. It has been found, however, that the parameters remain the same over
the complete simulation and lead to the correct simulation results. Therefore, the performance results can
be considered as best-case scenario. They show that the action-rvr remains to be an interesting alternative
with superior accuracy and reasonable performance, given that the parameter determination procedures are
optimized in future work.

6.4 Summary

The rotating wave approximation (RWA) is frequently used in related work, but has been dismissed as un-
suitable for the simulation of frequency comb operation or ultra-short pulse generation scenarios. Therefore,
numerical methods that solveMaxwell’s equation directly (full-wave simulation) have been discussed. From
the two candidates used in related work the finite-difference time-domain (FDTD) method has been selected
as basis for the next steps, as it can be implemented with relatively little effort and provides reasonable
performance. As next step, the evaluation of methods that consider an adaptive grid would be promising,
as the FDTD is bound to a constant spatial and temporal discretization size.
In order to coupleMaxwell’s equations to the master equation, we have defined an abstract update operator

of the density matrix as placeholder, and have discussed possible discretizations of the density matrix. We
have found that the weakly coupled scheme is well-suited for the integration of the update operator into
the spatiotemporal grid of the FDTD. The update operator must preserve the properties of the density
matrix, especially in long-term simulations. This is the case if the update operator is a completely positive
trace-preserving (CPTP) map. We have reviewed the numerical methods for the master equation in related
work, and have discussed in detail which methods feature a CPTP update operator.
From the wide range of candidates, a well-established reference method as well as two promising

alternatives have been selected. The three methods have been presented in detail, where the implementation
in the scope of the mbsolve project has been in the focus. The performance of the three methods has
been measured for a simulation problem, in which the numbers of energy levels varies from 2 to 10. We
have found that while the reference method displays the best overall performance, it is outperformed by the
first alternative for the special, but crucial case of two energy levels. Furthermore, we have discussed the
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potential of the second alternative, which features the largest accuracy and reasonable performance. Here,
it should be noted that future work needs to revise the calculation of the parameters in order to provide an
optimal tradeoff between performance and accuracy. Additionally, further optimizations of the numerical
methods with respect to static or dynamic allocation of matrices and vectors (particularly relevant for large,
sparse matrices) and the exploitation of the Hermitian properties of certain matrices can be envisaged.
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7 Solving the Maxwell-Bloch equations on parallel
architectures

Nigel: What we do is, if we need that extra push over the cliff,
you know what we do?

Marty: Put it up to eleven.
Nigel: Eleven. Exactly. One louder.
Marty: Why don’t you just make ten louder and make ten be the top

number and make that a little louder?
Nigel: [pause] These go to eleven.

— Nigel Tufnel and Marty DiBergi, This is Spinal Tap

Tim: What do we need?
Audience: More Power!
Tim: Darn right, more power!

— Tim “Toolman” Taylor, Home Improvement

Numerical simulations of QCLs cause significant computational effort due to several reasons. As we
discussed in Chapter 6, the rotating wave approximation (RWA) should not be used for the simulation of
frequency comb operation or ultra-short pulse generation scenarios. Instead, full-wave simulations should
be carried out, which typically require a finer discretization and hence increase the computational effort.
Also, often long-term simulations are required to provide the necessary spectral resolution. Furthermore,
the simulations often need to consider several energy levels to model the QCL dynamics appropriately,
which increases the efforts for each density matrix update significantly. As a remedy, we can divide
the computational workload among many compute units in modern parallel architectures. While parallel
implementations of numerical solvers for the Maxwell-Bloch equations have been presented in related
literature [108], [114], [170], an assessment of the parallel efficiency has not been published to the best of
our knowledge. Furthermore, most of the related projects are not open-source.

Therefore, the aim of this chapter is to provide a parallel implementation of a solver in the scope of the
mbsolve project. To this end, the finite-difference time-domain (FDTD) method for Maxwell’s equations is
implemented using the C++ programming language and the OpenMP standard for parallelization. In this
implementation, described in Section 7.1, a template mechanism allows to couple different approaches for
themaster equation to the FDTDmethod. The resulting source code is of course publicly available. However,
early performance measurement results showed that this approach is not optimal for all problems [109].
As a consequence, Section 7.2 presents an advanced version of the algorithm. The parallel efficiency and
performance of both implementations on a shared memory many-core system are subsequently measured
in Section 7.3. Finally, we conclude with a brief summary and discuss possible extensions of the parallel
implementation.

This chapter is largely based onM. Riesch, N. Tchipev, H.-J. Bungartz, et al., “Numerical simulation of the quantum cascade laser
dynamics on parallel architectures”, in Proceedings of the Platform for Advanced Scientific Computing Conference, Zurich,
Switzerland: ACM, New York, NY, Jun. 2019, 5:1–5:8. doi: 10.1145/3324989.3325715, an open access article published
under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original author and source are credited.

https://doi.org/10.1145/3324989.3325715
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7.1 Parallel implementation of the FDTD method

As pointed out in Chapter 6 (cf. Fig. 6.1), the update of the density matrix does not have any spatial
dependence. We can therefore restrict the discussion to the parallelization of the FDTD method exclusively,
and include the density matrix at a later stage. The FDTD method consists in essence of the Eqs. (6.1) and
(6.2). We recall that these equations are partially in implicit form and begin by rearranging them, which
yields the update equations

Em,n+1
z =a′Em,n

z − b′Γ (∂tPz)
m,n+1/2 +

b′∆xinv

(
Hm+1/2,n+1/2
y − Hm−1/2,n+1/2

y

) (7.1)

with the coefficients

a′ =
1 − ∆t(2ε)−1σ

1 + ∆t(2ε)−1σ
, b′ =

∆tε−1

1 + ∆t(2ε)−1σ
, ∆xinv =

1
∆x

,

and
Hm+1/2,n+1/2
y = Hm+1/2,n−1/2

y + c′
(
Em+1,n
z − Em,n

z

)
(7.2)

with the coefficient
c′ =

∆t
∆xµ

.

The coefficients are constant (at least, constant for each material) and are precalculated once to save costly
division operations. Prior to this step, the number of spatial and temporal grid points has to be determined.
The user is responsible for the specification of the number of spatial grid points Nx . The discretization size
∆x = L/(Nx − 1) is calculated for a given total length L of the simulation domain, which often corresponds
to the QCL cavity length Lcav. Here, care must be taken to choose a reasonable number of grid points
so that the resulting discretization size lies in the range λ/20 to λ/200, where λ is the smallest occurring
wavelength (cf. Chapter 6). The temporal discretization size ∆t is calculated with Eq. (6.4), where the
smallest refractive index in the simulation domain is selected, and the Courant number is set to C = 1/2,
which was found to be adequate in related literature [32]. Then, based on the simulation end time te the
number of temporal grid points can be calculated, where the discretization size ∆t may be decreased slightly
to allow an integer number Nt . We note that for the borderline case Nx = 1 the spatial discretization size
calculation does not make sense. In this case, the user can specify the number of temporal grid points, which
determines the temporal discretization size. The initialization of the discretization sizes, numbers of grid
points, and coefficients for the update equations is delegated to the helper functions init_fdtd_simulation,
which analyses the given device and scenario and calculates appropriate numbers of grid points, and
get_fdtd_constants, respectively.
With regard to the update equations (7.1) and (7.2), we note that all electric and all magnetic field

points can be updated simultaneously, but synchronizations are required after all electric field updates and,
respectively, after all magnetic field and density matrix updates. Furthermore, the density matrix updates do
not depend on their neighbors and can be processed in parallel, as we have already pointed out. Algorithm 1
shows the required calculations in the main loop in a simplified manner. Here, the abstract functions
update_h and update_e represent the update equations (7.1) and (7.2), whereas update_d and calc_p refer
to the update of the density matrix and the calculation of the polarization term in Eq. (6.8), which are both
provided by the specified algorithm for the master equation. As their names suggest, the functions sync
and record_results represent the code that ensures the synchronization of all compute units and store the
desired simulations results, respectively.
By adding OpenMP directives (e.g., #pragma omp parallel for) to the serial code, both loops over

m in Algorithm 1 can be distributed over multiple threads. Thereby, a parallelized version is created with
minimal changes compared to the serial version. The details such as thread creation or synchronization are
implicitly added by the compiler and in principle the user does not have to worry about the details. When it
comes to the optimization of the parallel code, however, one must know the details behind the scenes. For
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Algorithm 1 Simulation main loop – basic version.
for n = 0 to nmax do
for m = 1 to mmax do

h[m] ← update_h(e[m], e[m − 1])
d[m] ← update_d(e[m])
p[m] ← calc_p(d[m])

end for
sync()
for m = 0 to mmax − 1 do

e[m] ← update_e(h[m + 1], h[m], p[m])
end for
sync()
record_results()

end for

example, it is feasible to create the threads before the main loop with #pragma omp parallel and reuse
them at every loop with #pragma omp for. The partitioning of the data must be considered thoroughly.
First, the workload per thread should be approximately equal. Also, the partition boundaries should be
aligned to the size of the cache line size in order to prevent false cache sharing. And finally, the assignment
of threads to processors is crucial. Although the memory appears uniform to the programmer, it consists
physically of several domains. While all processors are able to access memory addresses of all domains, the
latency differs significantly. Also, situations where all data are stored in one single domain must be avoided,
since then an artificial bottleneck would be created. Such first-touch issues can be avoided by initializing
the data in parallel and pinning the threads to the processors (and therefore to the memory domains).
In thembsolve project, Algorithm 1 is implemented in the form of the template class solver_cpu_fdtd. We

recall that different algorithms for the master equations (and variations thereof) are likely to be implemented
and evaluated in mbsolve. Since it is considered bad practice to copy and paste parts of the code, such as
the FDTD implementation, we need a way to factor out the common parts. The template class provides an
elegant way to do so, since we easily can create e.g., a solver object solver_cpu_fdtd_cvr_rodr from the
template class by providing the corresponding class algo_lindblad_cvr_rodr as template argument. The
class to be passed as argument must provide certain methods, which are subsequently called by the template
class. Most importantly, the class method update is called, which combines the functions update_d and
calc_p in Algorithm 1. The template argument is considered at compile time, which increases the time
required to compile to project significantly but offers an efficient approach at runtime.

7.2 Advanced FDTD implementation

Despite all efforts to optimize the basic version of the FDTD implementation, it turned out that in certain
cases the performance did not scale very well with the number of used processors [109]. The reason for
this behavior are the expensive synchronizations, which are performed twice during each iteration. If the
amount of work per processor is relatively small, the synchronization overhead exceeds the benefit of using
multiple processors in parallel. The remedy for this problem was a communication-reducing approach
as presented in [171]. Here, each thread calculated certain field values redundantly around the partition
boundary. Hence, less synchronizations were required and the parallel efficiency increased.
Algorithm 2 shows the essential elements of this approach. Here, we assume that every thread runs

the main loop. First, the data in the overlap regions are exchanged between the threads. After this
operation, a synchronization is required. Then, each thread performs the calculations for all grid points in
its partition and in the overlap regions. Since there are no dependencies on data belonging to other threads,
no synchronizations are necessary. After the sub-loop, i.e., before the next data exchange, a synchronization
call must be inserted using the #pragma omp barrier pragma. Figure 7.1 sketches an example of this
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Figure 7.1Advanced version of the FDTDwith redundant calculations at the partition boundary. Instead of performing
two costly synchronizations at each iteration, the data in the overlap region (size OL = 3) are exchanged between the
threads. In order to calculate the electric field (orange crosses) at the boundary, the calculations in the green triangle
are required. Those are performed by both neighbors in a redundant fashion. Therefore, four synchronization calls
are traded against twelve extra calculations. Reprinted from M. Riesch et al., “Numerical simulation of the quantum
cascade laser dynamics on parallel architectures” [146] (CC BY 4.0).

technique. Here, at each boundary two regions with the size OL = 3 are exchanged. The number of
redundant calculations is in this case 2 · 2 · 3 = 12 (two regions, two fields,

∑OL−1
m m = OL(OL − 1)/2 = 3).

On the other hand, while originally 2OL = 6 synchronizations were required, the advanced version only
needs 2.

Algorithm 2 Simulation main loop – advanced version.
for n = 0 to nmax/OL do

exchange_data(OL)
sync()
for l = 0 to OL do
for m = 1 −OL to partition_size +OL do

h[m] ← update_h(e[m], e[m − 1])
d[m] ← update_d(e[m])
p[m] ← calc_p(d[m])

end for
for m = −OL to partition_size +OL − 1 do

e[m] ← update_e(h[m + 1], h[m], p[m])
end for

end for
sync()

end for

Since a trade-off between redundant calculations and synchronizations is performed, a tuning parameter
OL, which is the size of the overlap region, is introduced. The optimal choice of OL is likely to be
different for each parallel architecture and for each problem size (in particular, the number of energy levels),
respectively, and has to be determined carefully by performance measurements. After knowledge of the
optimal choice has been gained, the simulation software can be adjusted to select automatically a reasonable
overlap region size for a given problem and architecture.

In thembsolve project, Algorithm2 is implemented in the formof the template class solver_cpu_fdtd_red,
where the suffix red refers to the redundant calculations used in this approach. Similar to solver_cpu_fdtd,
this template class expects a class for the master equation algorithm as template argument, where the classes
to be passed are of course compatible between the two FDTD implementations.
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Figure 7.2 Performance of the advanced implementation (using 28 threads) for the two-level test case as function of
different overlap region sizes. The performance of the basic version is shown as reference. Reprinted from M. Riesch
et al., “Numerical simulation of the quantum cascade laser dynamics on parallel architectures” [146] (CC BY 4.0).

7.3 Performance measurements

In this section, the performance measurement results of both versions of the FDTD implementation are
shown. To this end, the source code is compiled using the GNU compiler collection (g++ 7.3.0) with
the compiler optimization flags -O3 -march=native and the Eigen library version 3.3.4. Subsequently,
exclusive access to a shared memory node with two Intel Xeon E5-2697 v3 processors (with 14 physical
cores each and Intel HyperThreading disabled) is acquired. The LIKWID [172] tool suite is used to pin the
threads to the processor cores as close to each other as possible. During all performance measurements, it
is ensured that each measurement has a duration of at least 30 s in order to eliminate variations from the
operating system. Furthermore, each measurement is repeated five times and the average performance value
is taken. The parallel efficiency ET = ST/T is used to evaluate to what degree the T threads are utilized.
Here, the speedup ST = PT/P1, where PT is given by Eq. (6.63) and denotes the the performance with
T used threads. Two setups are used to assess the performance of the implementations: a two-level QCL
simulation [25] and the six-level setup presented in [98]. Both setups are discretized with 8192 as well as
with 16384 spatial grid points.

7.3.1 Two-level setup

For a simple two-level simulation, the computationalworkload (and hence the cost for redundant calculations)
is relatively small. In such cases it should be beneficial to use the advanced implementation. Therefore,
we compile our code with different overlap sizes OL, which has been introduced as compile-time constant
variable to allow optimizations by the compiler, and measure the performance. The measurement results in
Fig. 7.2 clearly show that the advanced version outperforms the basic implementation over the chosen range
of values for OL. Furthermore, the performance peak can be easily identified to be at OL = 8, where the
advanced version provides an improvement of 45 % of the basic version’s performance.

Using this overlap size, we compare the performance scalability of both implementations. The per-
formance curves in Fig. 7.3 demonstrate that the advanced version is clearly superior for this particular
simulation problem. While the basic version’s performance saturates for higher number of used threads,
the advanced version achieves the parallel efficiency E28 = 79.4 % for 8192 grid points and E28 = 84 % for
16384 grid points.

7.3.2 Six-level setup

For the six-level test case, the situation is quite different. Here, the density matrix updates are exceedingly
expensive which is – at least in terms of parallel efficiency – beneficial. The results in Fig. 7.4 confirm this
statement. Only the lowest possible overlap value OL = 1 yields reasonable performance, whereas with a
larger overlap region size the advanced implementation is outperformed by the basic version.
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Figure 7.3 Performance scalability of both implementations for the two-level test case using 8192 and 16384 grid
points, respectively. For the advanced version, OL = 8 was chosen. Reprinted from M. Riesch et al., “Numerical
simulation of the quantum cascade laser dynamics on parallel architectures” [146] (CC BY 4.0).
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Figure 7.4 Performance of the advanced implementation (using 28 threads) for the six-level test case as function of
different overlap region sizes. The performance of the basic version is shown as reference. Reprinted from M. Riesch
et al., “Numerical simulation of the quantum cascade laser dynamics on parallel architectures” [146] (CC BY 4.0).
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Figure 7.5 Performance scalability of both implementations for the six-level test case using 8192 and 16384 grid
points, respectively. For the advanced version, OL = 1 was chosen. Reprinted from M. Riesch et al., “Numerical
simulation of the quantum cascade laser dynamics on parallel architectures” [146] (CC BY 4.0).

Again, we haven chosen the overlap region size with the best performance and performed the scalability
measurement. As Fig. 7.5 shows, the performance of both implementations are comparable, i.e., the efforts
of the advanced version are not beneficial in this particular case. The parallel efficiency of the advanced
implementation exceeds 82% for both problem sizes.

7.4 Summary

We have discussed two parallelized implementations of a numerical method for the Maxwell-Bloch equa-
tions based on the finite-difference time-domain method. The straight-forward implementation using simple
OpenMP directives has not shown the desired parallel efficiency in test cases with relatively low compu-
tational workload. In these cases, an advanced version that exchanges costly synchronizations against fast
redundant calculations is clearly beneficial. Here, the optimal overlap region size must be determined for
each combination of simulation problem and architecture.
The measured parallel efficiency values of ≈ 80% and above confirm that the respective implementations

are reasonably efficient. The deviations from the ideal curve can be explained by considering the grid size.
Using 8192 grid points and 28 processor cores, each thread operates on ≈ 300 grid points, which does not
yield a large amount of calculations (given the performance of recent processor cores). As a consequence,
the overhead to coordinate the cores is relatively large. As the plots in Figs. 7.3 and 7.5 demonstrate, the
efficiency tends to increase for larger problems, i.e., with more grid points or with more energy levels.
Those findings are quite common in high-performance computing and can be readily transferred to

other parallel architectures. For example, the synchronizations are bound to become even more costly on
distributed memory systems due to the larger communication costs. Also, larger problems (with respect
to the spatial grid size) generally benefit more from parallelization. Therefore, we conclude that careful
optimization for a certain combination of problem size, numerical method for the master equation, and the
parallel architecture in use is still required. However, the parallel implementations discussed in this chapter
already constitute efficient tools to run Maxwell-Bloch simulations in parallel.
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8 Application of the simulation framework to
different problems

Aber immer mehr kommen wir zu dem schrecklichen Schluß:
unsere Radium-Isotope verhalten sich nicht wie Radium,
sondern wie Barium. Wie gesagt, andere Elemente, Trans-Urane
kommen nicht in Frage. Ich habe mit Straßmann verabredet, dass
wir vorerst nur Dir dies sagen wollen. Vielleicht kannst Du
irgendeine phantastische Erklärung vorschlagen.

— Otto Hahn, in a letter to Lise Meitner

At this point, we can apply the mathematical models, the numerical methods, and the mbsolve software
project discussed in the previous chapters and simulate different quantum cascade laser setups. In the
following, one section is dedicated to the description of each setup followed by the interpretation of the
corresponding simulation results. The simulation setup in Section 8.1 reproduces the results of a theoretical
study [25] and serves as additional verification example, whereas the setups in the Sections 8.2 and 8.3 aim
to answer questions raised by the results of experimental measurements [20], [173]. The final section of
this chapter summarizes the current applications of the work at hand and gives a brief outlook on future
extensions and use cases.

8.1 Colliding pulse mode-locking in quantum cascade lasers

As already stated in Chapter 1, mode-locking of quantum cascade lasers without an external modulation
(i.e., passive mode-locking, PML) has not yet been achieved. Although early studies reported successful
attempts to mode-lock a QCL passively [174], [175], it was shown later that the experimental proof was not
sufficient and also dynamic instabilities could be the cause of the demonstrated experimental results [176].
Furthermore, it is believed that PML in the traditional sense [16] is impossible due to the short relaxation
times of QCLs [176]. Therefore, a theoretical study [25] explored alternative mode-locking schemes
including the so-called colliding pulse mode-locking (CPML) approach. Simulations of this CPML setup
demonstrated ultra-short pulse operation, where in contrast to traditional passive mode-locking two pulses
per round trip were emitted.
In this section, we aim to reproduce the simulation of the CPML setup in [25] for two reasons: to have an

additional verification example for the mbsolve solver tool (in the ultra-short pulse regime) and to discuss
the effects of invoking the RWA (as was done in [25]). The CPML setup, depicted in Fig. 8.1, consists
of a sequential arrangement of two gain sections, embedding an absorber section with the same transition
frequency. While the gain sections and the absorber section can be realized by using different active region
designs, it has been pointed out that a similar result can be achieved by using different bias voltages [77].
In [25] both gain and absorber sections are represented by two-level systems with the common transition
frequency ω21 = 2π3.4 THz, where the remaining parameters may differ (cf. Tab. 1 in [25]). With the code
snippet in Listing 8.1, this model can be implemented effortlessly in mbsolve.

Listing 8.1 Code snippet of the mbsolve-tool C++ application that reproduces the colliding pulse mode-locking
simulation in [25], cf. mbsolve-tool/src/mbsolve-tool.cpp in the mbsolve repository [119].
/* set up quantum mechanical descriptions */
auto qm_gain = std:: make_shared <mbsolve :: qm_desc_2lvl >(

5e21 ,
2 * mbsolve ::PI * 3.4e12 ,
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Figure 8.1 Schematic of the test case setup. The absorber region (A) is embedded between two gain regions. The
region types are distinguished by the material and/or the bias voltage. Reprinted with permission from M. Riesch
et al., “Dynamic Simulations of Quantum Cascade Lasers Beyond the Rotating Wave Approximation” [103]. © 2018
IEEE.

2e-9,
1.0 / 10e-12,
1.0 / 200e-15,
1.0);

auto qm_absorber = std:: make_shared <mbsolve :: qm_desc_2lvl >(
1e21 ,
2 * mbsolve ::PI * 3.4e12 ,
6e-9,
1.0 / 3e-12,
1.0 / 160e -15);

/* materials */
auto mat_absorber = std:: make_shared <mbsolve ::material >(

"Absorber", qm_absorber , 12.96 , 1.0, 500);
auto mat_gain = std:: make_shared <mbsolve ::material >(

"Gain", qm_gain , 12.96 , 1.0, 500);
mbsolve :: material :: add_to_library(mat_absorber );
mbsolve :: material :: add_to_library(mat_gain );

/* set up device */
dev = std:: make_shared <mbsolve ::device >("tzenov -cpml");
dev ->add_region(std:: make_shared <mbsolve ::region >(

"Gain R", mat_gain , 0, 0.5e-3));
dev ->add_region(std:: make_shared <mbsolve ::region >(

"Absorber", mat_absorber , 0.5e-3, 0.625e-3));
dev ->add_region(std:: make_shared <mbsolve ::region >(

"Gain L", mat_gain , 0.625e-3, 1.125e-3));

The resulting full-wave simulation of 310 round trips takes approximately 20 minutes on an Intel i7-4790
desktop processor using four threads. The simulation results in Fig. 8.2a) show that two pulses per round
trip are formed, each of them featuring an intensity FWHM duration of approximately 850 fs. This is in
excellent agreement with the pulse envelopes from the RWA simulation code [25]. As already pointed out,
the latter simulation yields only the envelope of the electric field. The envelope is subsequently multiplied
with the carrier wave, which corresponds to the transition frequency ω21. Then, also the spectrum of the
radiation can be determined, which is depicted in Fig. 8.2b). We note that a frequency shift of 115GHz is
clearly visible between the two resulting spectra. This discrepancy can be attributed to different effects that
are known to be omitted by the RWA, e.g., the Bloch-Siegert shift [177]. This demonstrates that certain
effects that may be crucial in the analysis of the QCL dynamics are omitted when using the RWA, and that
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Figure 8.2 Comparison of the simulation results of the CPML setup with and without invoking the RWA. a) The
electric field recorded at the right facet of the CPML setup. b) The amplitude spectrum of the electric field. Reprinted
with permission from M. Riesch et al., “Efficient Simulation of the Quantum Cascade Laser Dynamics beyond the
Rotating Wave Approximation” [104].

the self-consistent full-wave approach may be required to avoid a priori assumptions about the resulting
central frequency.

8.2 Modeling harmonic mode-locking in quantum cascade lasers

The time traces in Fig. 8.2a) exhibit the key feature of harmonic mode-locking, namely the emission of
multiple pulses per round trip. In frequency domain, this corresponds to modes that are separated by a
multiple of the round trip frequency frt, as can be seen in Fig. 8.2b). Harmonic mode-locking is routinely
used in the visible and near-infrared regime for applications that require low noise [20]. Additionally, self-
starting harmonic mode-locking has been observed in mid-infrared QCLs [178], and there are indications
that terahertz QCLs could exhibit similar behavior [179]. In a recent study [20], time traces of the
electromagnetic field in a passive harmonic mode-locking setup in the terahertz regime have been presented
for the first time. While the time traces do not contain clearly separated pulses, their periodicity and
quasi-pulsed nature strongly indicate that passive harmonic mode-locking in the terahertz regime is possible
after all. In the frequency domain, the experimental results exhibit two significant features: the modes are
separated by 2 frt and are grouped into two lobes, which are separated by 15 frt. Correspondingly, there are
15 quasi-pulses in time domain per round trip, which can be grouped into two blocks. In the following, we
aim to investigate the reason of these features.
To this end, we have to be aware that a radio frequency beat note signal can bemeasured in frequency comb

setups (e.g., in [120], [180], [181]). This can be qualitatively explained by assuming that the polarization

Pz(Ez) = ε0

[
χ(1)Ez + χ

(2)E2
z + χ

(3)E3
z + . . .

]
(8.1)

in Eqs. (3.67) depends on the electric field Ez in nonlinear fashion and can be expanded as power series.
The electric field

Ez =
∑
k

ak cos (ωct + kωrtt + φk) (8.2)

of a frequency comb, where we use a real-valued, discretized version of Eq. (1.3) in time domain, leads then
to the term

E2
z =

∑
jk

1
2

ajak
{
cos

[
( j − k)ωrtt + φ j − φk

]
+ cos

[
2ωct + ( j + k)ωrtt + φ j + φk

]}
. (8.3)
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As we are only interested in the radio frequency component, we can ignore the terms with cos[2ωct + . . . ]
and write

P(2)z = ε0χ
(2)


∑

jk ,k=j

1
2

a2
j +

∑
jk ,k=j±1

1
2

ajak cos
(
ωrtt ± φ j ∓ φk

)
+

∑
jk ,k=j±2

1
2

ajak cos
(
2ωrtt ± φ j ∓ φk

)
+ . . .


(8.4)

for the second-order component of the polarization. This component enters Eqs. (3.67) as source term

∂tP
(2)
z =

∑
l>0

bl cos (lωrt t + ϕl) , (8.5)

where the amplitudes aj and phase values φ j have been aggregated to bl and ϕl, respectively. As a
consequence of its nonlinearity, the active region of QCLsmay act as source of an additional electromagnetic
signal. This signal oscillates with multiples of the round trip frequency, which is typically in the radio
frequency domain, and can be measured with appropriate network analyzers.
The situation is quite similar in active mode-locking scenarios. Here, an external electromagnetic signal

is injected into the QCL to achieve fundamental [180], [181] (signal oscillates with round trip frequency) or
harmonic [20] (signal oscillates with the second harmonic of the round trip frequency) active mode-locking.
Therefore, it is widely believed that the intrinsically generated radio frequency signal could have a similar
impact on the QCL dynamics. In order to account for the radio frequency (or modulation) signal, the model
has to be extended by a description of its source (intrinsic or external) as well as of its impact on the active
region. This idea is not exactly new and first notions of this extension can be traced back to 2004 [182].
Additionally, the radio frequency properties of the resonator wave guide need to be considered (cf. [183],
[184]), as they govern the propagation of the modulation signal in the QCL. Although there have been initial
attempts to implement such an extension [185], [186], unfortunately no readily usable model exists at the
moment.
Therefore, we choose a different path and consider the qualitative impact of an intrinsic modulation signal

that oscillates with the second harmonic of the round trip frequency. Thereby we aim to confirm that such
a signal could cause the features in the emitted terahertz radiation described above. This in turn would
suggest the presence of such a second harmonic modulation signal, which could not be verified in [20] due
to the lack of suitable measurement equipment. It has been reported that a modulation signal creates a
population inversion grating [187]. As the population inversion is directly related to the gain and the QCLs
are typically operated close to the lasing threshold, the modulation signal may cause regions that amplify
or absorb the terahertz radiation, respectively. As the grating in [187] is time-dependent, there is no direct
relation with the CPML setup in the previous section. However, using a mapping technique applied in [20]
and described in [188] we can establish such a relation.
To this end, we consider a certain mode

Em(x, t) = Am

{√
R exp

[gx
2
+ i (kmx − ωmt)

]
+ exp

[
−gx

2
+ i (kmx + ωmt)

]}
+ c.c., (8.6)

of the modulation signal in the cavity (cf. Eq. (S5) in the Supplementary of [187]), where Am is the
mode amplitude, R represents the reflection at the facet, g denotes the net gain in the cavity, and km and
ωm = 2πm frt are wave number and angular frequency of the mode, respectively. For simplicity, we assume
a steady-state solution with perfectly reflecting mirrors (i.e., R = 1) and a perfectly balanced gain-loss ratio
(i.e., the net gain g = 0). Then, the mode assumes a standing wave

Em = Bm cos (kmx) cos (ωmt) , (8.7)

where the amplitude Bm = 4Am. Due to the periodicity of the cosine function we can replace the spatial
coordinate x ∈ [0, Lcav] with a new coordinate ξ = ξ0 ± ct/n ∈ (−∞,∞) that represents the position of a
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Figure 8.3 Simulated spectrum of the emitted radiation of the absorber-gain-absorber-gain-absorber setup. Reprinted
from F. Wang et al., “Ultrafast response of harmonic modelocked THz lasers” [20] (CC BY 4.0).

pulse moving with the velocity c/n. We plug the new coordinate into Eq. (8.7) and can thereby determine
the modulation signal

Em(ξ, t) = Bm cos (kmξ0 ± kmct/n) cos (ωmt)

=
1
2

Bm [cos (kmξ0 ± kmct/n − ωmt) + cos (kmξ0 ± kmct/n + ωmt)]
(8.8)

that the moving pulse experiences. By further assuming that kmc/n = ωm, i.e., the velocity values of the
pulse and the modulation signal coincide, we can simplify the result to the expression

Em(ξ, t) =
1
2

Bm [cos (kmξ0) + cos (kmξ0 ± 2kmct/n)]

=
1
2

Bm [cos (kmξ0) + cos (−kmξ0 + 2kmξ)] ,
(8.9)

which now only depends on the new spatial coordinate ξ. Again we exploit the periodicity of the cosine
function and establish the fact that the pulse experiences the same modulation signal if it travels back and
forth in a resonator cavity with the length Lcav and the corresponding time-independent modulation grating

Em(x) =
1
2

Bm [cos (kmξ0) + cos (−kmξ0 + 2kmx)] . (8.10)

We note that the direction in which the pulse travels is not relevant due to the symmetry of the cosine
function. The initial pulse position ξ0 can be considered as measure for the relation between the terahertz
radiation and the modulation signal, which was found to be crucial in active mode-locking scenarios [180].
This is reflected by Eq. (8.10) as the modulation features an offset value cos(kmξ0).
As already stated above, we assume that the QCL is operated slightly above its lasing threshold bias ϕth,

e.g., at ϕth + Bm/2. Then, the modulation grating (which is added to the bias) might drive the laser below
threshold for Em < −Bm/2. Therefore, the modulation grating defines whether a certain portion of the
active region acts as gain or absorber medium. According to this reasoning, the complete active region acts
as gain medium for kmξ0 = 0. On the other hand, for kmξ0 = π the modulation grating

Em(x) = −
1
2

Bm [1 + cos (2kmx)] (8.11)

clearly yields absorber and gain regions, similar to the CPML setup. In case of the device in [20], the
grating leads to the sequence 0.75mm absorber, 1.5mm gain, 1.5mm absorber, 1.5mm gain, and 0.75mm
absorber, totaling up to a device length of 6mm. The gain and absorber materials were implemented by
selecting suitable parameters from a range of reasonable values, as was done e.g., in [23]. The resulting
device can be readily simulated using mbsolve with a publicly available Python script [189].
The results of the simulation (depicted in Fig. 8.3) show that two features of the experimental results could

be reproduced. The modes are separated by 2 frt and can be grouped into two lobes, which are separated
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by 15 frt. While the overall agreement with the experimental results leaves room for improvement, the
corresponding features in time domain are also visible (cf. [20]). This strongly suggests that an intrinsic
modulation signal oscillating with 2 frt can be responsible for those effects. We need to keep in mind,
however, that this is only a qualitative analysis and we are still far from a self-consistent, quantitative model.

8.3 Dynamics of a quantum cascade laser with a graphene reflector

This simulation setup bases on the work in [173]. In this recent study a QCL was coupled with a graphene-
coated mirror, thereby forming an external resonator cavity. Most notably, it was shown that the 65 nm
thin graphene layer caused a significant improvement in the linewidth of the beat note signal. This was
demonstrated with the help of a similar setup that used an uncoated mirror. Here, the beat note linewidth
increased by five orders of magnitude (cf. Fig. 6 in [173]). In addition to the latter experiment, simulations
were carried out to investigate whether the graphene layer could indeed have such impact on the beat note
linewidth.
To this end, the active region of the QCL is modeled as two-level gain medium with empirically chosen

parameters, selected from a range of reasonable values, to match the measured experimental laser spectrum.
The graphene material is assumed as saturable absorber, where the power loss coefficient

α(I) = αNS +
αS

1 + (I/IS)
(8.12)

depends on the intensity I [190]. Here, IS is the saturation intensity, and αS and αNS are the saturable and
non-saturable loss coefficient, respectively. The non-saturable loss coefficient can be converted to a linear
amplitude loss α0 (as used in mbsolve), and the saturable part can be generally described as a two-level
system [32], [83], [191] using the relations

αS = Γω21n3D
|d21 |

2 T2
neff

1
ε0c~

(8.13)

and
IS = ~

2cε0
neff

|z21 |
2 T2

1
2T1

. (8.14)

After invoking the adiabatic elimination and assuming instantaneous absorption (i.e., T1,T2 ≈ 0), as well
as using the values from the QCL model for the background effective refractive index, the overlap factor,
and the transition frequency, the values for the dipole length z21 and the charge carrier density n3D can be
readily determined.
The device setup in the simulation neglects the air gap, as it is significantly smaller than the central

wavelength of the emitted radiation and its effect on the operation is limited to loss, independent of
frequency and intensity. The air gap, and similarly the outcoupling of radiation, is considered in the form
of an increased loss in the QCL resonator wave guide. The ultra-thin graphene layer constitutes a major
challenge for the finite-difference time-domain method, as the spatial discretization size must be reduced
significantly. In order to maintain computational efficiency, a further approximation is used. It is assumed
that the main effect of the graphene is the reflection at the interface, and that the radiation that enters the
graphene layer is rapidly attenuated. Then, we can artificially extend the dimension of the absorber, thus
allowing a larger spatial discretization size. In a second simulation run, the graphene layer can be replaced
by a perfectly reflecting mirror to extract its impact on the device operation.
As next step, the setup can be simulated with mbsolve and the resulting recorded time traces of the emitted

radiation can be transformed to frequency domain for comparisonwith themeasured spectrum. Twomethods
are available to determine the beat note signal. One approach follows Eq. (8.1) and relates the beat note
signal to the square of the electric field, which is subsequently transformed to frequency domain [23].
Alternatively, the auto-correlation ansatz used e.g., in [173], [188] can be employed. Although limited in
spectral resolution, the simulations with and without the graphene layer clearly confirm that the graphene
layer is responsible for the significant reduction [173].
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8.4 Summary

We have seen in this chapter that the simulation framework presented in the thesis at hand is already able to
aid theoretical and experimental studies. The flexibility of the framework already facilitates the modeling
and simulation of various experimental setups, and allows the accurate reproduction of theoretical results
without invoking the RWA. Here, a particularly interesting feature is the ability to model multi-section
setups. A first approach to integrate different QCL active regions laterally has been published [192],
opening up a variety of possible applications. Also, the interaction with materials outside of the QCL (cf.
the graphene-coated mirror in Section 8.3) can be simulated appropriately.
Nevertheless, several challenges remain to be mastered. While qualitative models for the impact of the

beat note signal in Section 8.2 and the generation of the beat note signal in Section 8.3 could confirm the
respective working hypothesis, we note that quantitative and self-consistent models are required to predict
the dynamical behavior of a certain setup. Here, the simulation framework at hand provides a solid basis to
build upon.
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9 Conclusion and outlook

Lately it occurs to me what a long strange trip it’s been.
— Grateful Dead, Truckin’

Since the application range of quantum cascade lasers does not depend on the performance (with respect
to output power and/or operating temperature) alone but also on the availability of different operating modes,
the computer-aided investigation of the dynamical behavior of QCLs has been in the focus of the thesis
at hand. As we have seen, this investigation requires the discussion of several topics spanning different
fields: physics, (numerical) mathematics, and computer science. In the following, we conclude this thesis
by iterating over these topics, where a short summary as well as an outlook on possible future tasks is given.
Every computational investigation in physics needs to base on a solid theoretical foundation. In the

work at hand, this foundation has been provided in Chapter 2 in the form of a compact introduction to
classical electrodynamics as well as quantum mechanics and its application to semiconductors. Basing on
this introduction, the underlying model has been derived in Chapter 3. In this rigorous derivation care has
been taken to consider and describe all assumptions and approximations. Although the resulting model
is commonly used in related work, such a thorough description has not yet been published to the best of
the author’s knowledge. As pointed out in Chapter 8, which has presented the application of the model to
different experimental setups, and in related literature, good agreement with experimental results can be
achieved using the model at hand.
However, certain features in experimental results cannot be explained with the current model. In many

experimental setups a radio frequency probe is attached to the contacts of a QCL and the electromagnetic
signal is measured with a network analyzer. As discussed in Chapter 8, a beat note signal can be frequently
measured and indicates frequency comb operation. The generation of this beat note signal is not accounted
for in state-of-the-art models. It has been indicated that the nonlinear polarization current density ∂tPz that
stems from the quantum mechanical systems is the source of this signal, in which case the model would
already include the beat note generation intrinsically. However, due to the different frequency regimes
the beat note signal is bound to have different propagation properties as the optical radiation field. For
example, the difference in the refractive index as well as its consequences have been discussed in [184],
[188]. As a consequence, an additional set of Maxwell’s equations for the beat note signal with different
electromagnetic properties has been suggested in [182], [185], [186]. While different forms are possible
(e.g., the telegrapher’s equations), it is probably most straight-forward to write

∂xERF,z = µ0∂tHRF,y, (9.1a)
∂xHRF,y = −ε0εRF,eff∂tERF,z − σRF,eff ERF,z − ΓRF∂tPRF,z, (9.1b)

for the radio-frequency portion of the electromagnetic field, in analogy to Eq. (3.67). Here, ∂tPRF,z
represents the radio-frequency contribution to the polarization current density, which needs to be extracted
from the total current density. While the implementation of a second set ofMaxwell’s equations is trivial, the
exact extraction model as well as the calculation of the radio-frequency electromagnetic properties (εRF,eff ,
σRF,eff , and ΓRF) need further discussion. As a subsequent step, the impact of the radio-frequency signal on
the QCL operation should be modeled. Thereby, the interaction between the radio-frequency signal and the
QCL operation would bemodeled completely. Apart fromQCLs the resulting traveling wavemodel could be
applicable to other quantum devices, such as Josephson junctions [193]. In contrast to the optical radiation
field the radio-frequency signal cannot be treated as perturbation (at least in some cases), but it may help
to assume that the signal is slowly varying when compared to the transition frequencies between the energy
levels. In the end, the quantum mechanical operators Ĥ0 and µ̂z as well as the dissipation superoperator
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D may depend on the radio-frequency electric field ERF,z . Finally, soft sources could be added in the
numerical treatment of Eqs. (9.1) to model external radio-frequency sources, which are commonly used for
active mode-locking of QCLs. Such an extended model for the QCL dynamics would be helpful to simulate
active mode-locking setups and to investigate the self-starting effects in harmonic mode-locking setups,
which are discussed in e.g. [20], [194].
After the mathematical model is defined, the second step of a computational investigation is typically

to find suitable numerical methods for the involved differential equations. Since for the static prerequisite
models (cf. Fig. 3.1) numerical methods and tools exist already, the discussion in Chapter 6 has focused
on the treatment of the Maxwell-Bloch equations including methods for Maxwell’s equations, various
numerical techniques for the Lindblad equation, and the coupling between them. Apart from suitable and
ready-to-use methods for the Maxwell-Bloch equations promising alternatives have been discussed. Here,
the algorithm by Al-Mohy and Higham [153] for solving the Lindblad equation deserves explicit mention,
as it features the largest accuracy and reasonable performance. Seeing that the model might be extended
in near future to account for the radio-frequency signal, which leads to more time-dependent quantities in
the Lindblad equation, the approach shall be even more helpful. Since it does not depend on precalculated
quantities its performance will not decrease in this case. The absolute performance may be increased by
further mathematical optimizations (such as using improved parameter calculations [195]), which should be
in the focus of future work. As far as Maxwell’s equations are concerned, the finite-difference time-domain
(FDTD) method has proven to be well-suited for the use in QCL simulations. However, the inclusion
of dispersion is significantly more complex in comparison to the methods that invoke the rotating-wave
approximation. Since dispersion effects play an essential role in the QCL dynamics, the FDTD should
be extended to allow for frequency dependent electromagnetic properties. Fortunately, suitable numerical
approaches (e.g., in [196]) are already available and there is even a draft implementation in the scope of the
mbsolve project [197].
Following the numerical treatment, the implementation of a (ideally publicly available) solver tool

constitutes the next step of a computational investigation. In order to provide a sustainable solution, certain
considerations with respect to the software development process are required. Chapter 5 discusses in detail
those considerations and presents a skeleton project that can be used as template for new or as guideline
for existing scientific software projects. In the case of mbsolve, the open-source solver for the Maxwell-
Bloch equations presented in Chapter 4, the skeleton project was used as guideline to provide a software
package that is easy to install and use. The flexible interface (in C++ or Python) does not only allow the
convenient usage of the simulation tool, but could also enable the inclusion in automated optimization
tools for quantum cascade lasers, such as those presented in [198], [199]. The required computational
performance is achieved by distributing the workload among many processors using the OpenMP standard.
This approach is discussed in Chapter 7. While for the current simulation tasks the OpenMP approach for
shared memory systems is sufficient, future simulations may require the usage of larger high-performance
computing systems. Therefore, the support for distributed memory systems should be in the focus of future
work. Also, many additional features can be envisaged, such as support for periodic spatial boundary
conditions to model ring cavities.
Although there are some tasks left for future work, we note that the main goal of this thesis has been

achieved: the envisaged flexible software framework for the computer-aided simulation of the dynamical
behavior of quantum cascade lasers has been implemented and is publicly available. As a side effect, the
solver tool can be used for the investigation of other quantum mechanical effects (outside the scope of QCL
simulations), such as Rabi flopping [200], and the modeling of other nano-optoelectronic structures and
devices (e.g., based on quantum dots). While the application of the solver tool to actual problems constitutes
a relatively small part of the thesis at hand, the theoretical description, the numerical treatment, and the
implementation tasks carried out shall provide a solid basis for upcoming simulation work.
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