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Abstract

The continuous advancement of user applications is imposing bigger challenges on
the underlying communication networks. The expectations from these networks are
surpassing basic connectivity to also include forwarding at high performance in terms
of throughput, latency, etc., and being flexible to support new services and functionali-
ties that range over the different layers of the networking stack such as load balancing,
filtering, intrusion detection, and congestion control. To fulfill these requirements,
different solutions such as Software-Defined Networking (SDN), Network Function
Virtualization (NFV), and more recently P4 programmability were proposed. The P4
programmability is considered a promising technology since it extends the flexibility
provided by the SDN paradigm by pushing programmability to the data plane of
packet processors, and it enhances the performance of the NFV paradigm by enabling
programmability on hardware accelerators. Although the integration of P4 into NFV
cloud environments can have huge potential in terms of flexibility and performance,
this integration also raises a new plane of problems and challenges in terms of the
design and management of such environments.

The goal of this doctoral thesis is to measure and model the performance of P4 pro-
grammable packet processors toward enabling the optimal performance-aware man-
agement of NFV cloud environments with the P4 technology incorporated into it. This
goal is reached step-by-step by addressing the following challenges.

First, since the P4 programming language is target independent, meaning that it can be
used to program different types of processing platforms such as CPUs, NPUs, FPGAs,
and ASICs, it is important to evaluate and fairly compare the performance of these
different types of devices to assess their suitability for different use case scenarios. In
addition, keeping in mind that P4 technology permits programming the data plane of
packet processors, it is important to understand the relation between the complexity of
the configured P4 pipeline and the packet processing latency on the running P4 device.
This thesis contributes to the conduction of a comprehensive measurement campaign
to understand the capabilities and limitations of different P4 programmable packet
processors, with a special focus on understanding the effect of the complexity of the
P4 data plane on the packet forwarding latency on different P4 devices. Moreover,
this thesis contributes to the development of a novel tool for benchmarking the perfor-
mance of P4Runtime-based controllers, which is used to evaluate the performance of a
P4-compatible SDN controller.
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Abstract

The P4-based system is made up of programmable data and control planes that interact
with each other. Different factors influence the performance of this system such as the
forwarding latency at the control and data planes, the frequency of interaction between
the control and data planes, etc. This thesis leverages the collected measurements in
the first objective to model the performance of P4-based systems in two stages: (1.) A
method is proposed to estimate the forwarding latency on P4 data planes as a function
of the configured P4 programs; (2.) A feedback-oriented queueing system is used to
model the performance of P4-based systems, whose data plane’s forwarding latency
is variable and can be quantified using the derived estimation method in the first
modeling stage.

When P4 programmable packet processors are to be deployed in cloud environments,
they create a heterogeneous pool of processing devices of distinct types each with
different performance levels, capabilities, and limitations. This diversity in processing
platforms gives an additional degree of freedom in selecting the platform that best
hosts a certain workload with given Quality of Service (QoS) requirements. This is
only possible if proper management of such an environment is realized. The thesis
leverages the performance models developed in the previous objective to contribute
two performance-aware optimization problems for the planning of the infrastructure
substrate of P4-based cloud environments and the runtime embedding of processing
workloads requests while satisfying QoS requirements.

Finally, we implement and analyze two applications to show the advantages of using
programmable data planes in cloud environments for future networks. Given that
cloud-native solutions are prevailing in cellular networks, we select the User Plane
Function (UPF) as the first studied use case NF that can run in clouds and make use
of the P4 technology. The thesis proposes and implements a microservice-based UPF
to demonstrate the usability of the P4-based cloud environment and the management
scheme proposed in the previous objective. The second application mitigates the P4
language’s lack of support for programmable traffic management by contributing a
solution that implements virtual queues to achieve this target. The programmable
traffic manager application holds as a standalone application for customizing the
rate and delay on a per slice basis to meet the required service level agreements, and
it complements the UPF implementation as it enables the enforcement of different
required QoS levels.
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Kurzfassung

Die ständige Weiterentwicklung der Benutzeranwendungen stellt die zugrunde liegen-
den Kommunikationsnetze vor immer größere Herausforderungen. Die Erwartungen
an diese Netze gehen über die grundlegende Konnektivität hinaus und umfassen auch
die Weiterleitung mit hoher Leistung in Bezug auf Durchsatz, Latenz usw. sowie die
flexible Unterstützung neuer Dienste und Funktionen, die sich über die verschiedenen
Schichten des Netzwerkstapels erstrecken, wie Lastausgleich, Filterung, Intrusion De-
tection und Staukontrolle. Um diese Anforderungen zu erfüllen, wurden verschiedene
Lösungen wie Software-Defined Networking (SDN), Network Function Virtualiza-
tion (NFV) und in jüngerer Zeit die P4-Programmierbarkeit vorgeschlagen. Die P4-
Programmierbarkeit gilt als vielversprechende Technologie, da sie die Flexibilität des
SDN-Paradigmas erweitert, indem sie die Programmierbarkeit auf die Datenebene
der Paketprozessoren verlagert, und sie verbessert die Leistung des NFV-Paradigmas,
indem sie die Programmierbarkeit auf Hardwarebeschleunigern ermöglicht. Obwohl
die Integration von P4 in NFV-Cloud-Umgebungen ein enormes Potenzial in Bezug
auf Flexibilität und Leistung haben kann, wirft diese Integration auch eine neue Ebene
von Problemen und Herausforderungen in Bezug auf den Entwurf und die Verwaltung
solcher Umgebungen auf.

Das Ziel dieser Doktorarbeit ist es, die Leistung von programmierbaren P4-Paketproz-
essoren zu messen und zu modellieren, um ein optimales, leistungsbewusstes Man-
agement von NFV-Cloud-Umgebungen zu ermöglichen, in die die P4-Technologie
integriert ist. Dieses Ziel wird schrittweise durch die Bewältigung der folgenden
Herausforderungen erreicht.

Erstens: Da die P4-Programmiersprache zielunabhängig ist, was bedeutet, dass sie
zur Programmierung verschiedener Arten von Verarbeitungsplattformen wie CPUs,
NPUs, FPGAs und ASICs verwendet werden kann, ist es wichtig, die Leistung dieser
verschiedenen Gerätetypen zu bewerten und fair zu vergleichen, um ihre Eignung für
verschiedene Anwendungsszenarien zu beurteilen. Da die P4-Technologie die Pro-
grammierung der Datenebene von Paketprozessoren erlaubt, ist es außerdem wichtig,
die Beziehung zwischen der Komplexität der konfigurierten P4-Pipeline und der
Paketverarbeitungslatenz auf dem laufenden P4-Gerät zu verstehen. Diese Arbeit trägt
zur Durchführung einer umfassenden Messkampagne bei, um die Fähigkeiten und
Grenzen verschiedener programmierbarer P4-Paketprozessoren zu verstehen, wobei
ein besonderer Schwerpunkt auf dem Verständnis der Auswirkungen der Komplexität
der P4-Datenebene auf die Latenzzeit bei der Paketweiterleitung auf verschiedenen
P4-Geräten liegt. Darüber hinaus trägt diese Arbeit zur Entwicklung eines neuartigen
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Kurzfassung

Werkzeugs zum Benchmarking und Bewerten der Leistung von P4Runtime-basierten
Controllern bei.

Das P4-basierte System besteht aus programmierbaren Daten- und Steuerungsebenen,
die miteinander interagieren. Verschiedene Faktoren beeinflussen die Leistung dieses
Systems, wie z. B. die Weiterleitungslatenz auf der Kontroll- und Datenebene, die
Häufigkeit der Interaktion zwischen der Kontroll- und Datenebene usw. In dieser
Arbeit werden die im Rahmen des ersten Ziels gesammelten Messungen genutzt, um
die Leistung von P4-basierten Systemen in zwei Schritten zu modellieren: (1.) Es wird
eine Methode vorgeschlagen, um die Weiterleitungslatenz auf P4-Datenebenen als
Funktion der konfigurierten P4-Programme zu schätzen; (2.) Ein feedback-orientiertes
Warteschlangensystem wird verwendet, um die Leistung von P4-basierten Systemen
zu modellieren, deren Weiterleitungslatenz auf der Datenebene variabel ist und mit
der abgeleiteten Schätzmethode im ersten Modellierungsschritt quantifiziert wird.

Wenn programmierbare P4-Paketprozessoren in Cloud-Umgebungen eingesetzt wer-
den sollen, bilden sie einen heterogenen Pool von Verarbeitungsgeräten verschiedener
Typen mit unterschiedlichen Leistungsniveaus, Fähigkeiten und Einschränkungen.
Diese Vielfalt an Verarbeitungsplattformen bietet einen zusätzlichen Freiheitsgrad bei
der Auswahl der Plattform, die für eine bestimmte Arbeitslast mit bestimmten An-
forderungen an die Servicequalität (QoS) am besten geeignet ist. Dies ist nur möglich,
wenn eine solche Umgebung richtig verwaltet wird. Die Arbeit nutzt die Leistungsmod-
elle, die in der vorherigen Zielsetzung entwickelt wurden, um zwei leistungsbewusste
Optimierungsprobleme für die Planung der Infrastrukturgrundlage von P4-basierten
Cloud-Umgebungen und die Laufzeiteinbettung von Workload-Anforderungen unter
Einhaltung von QoS-Anforderungen zu lösen.

Abschließend implementieren und analysieren wir zwei Anwendungen, um die Vorteile
der Verwendung programmierbarer Datenebenen in Cloud-Umgebungen für zukün-
ftige Netzwerke aufzuzeigen. In Anbetracht der Tatsache, dass Cloud-native Lösun-
gen in zellularen Netzwerken vorherrschen, wählen wir die User Plane Function
(UPF) als ersten untersuchten Anwendungsfall einer NF, die in Clouds laufen und
die P4-Technologie nutzen kann. In dieser Arbeit wird eine Microservice-basierte
UPF vorgeschlagen und implementiert, um die Nutzbarkeit der P4-basierten Cloud-
Umgebung und des im vorherigen Ziel vorgeschlagenen Verwaltungsschemas zu
demonstrieren. Die zweite Anwendung entschärft die fehlende Unterstützung der
P4-Sprache für programmierbares Verkehrsmanagement, indem sie eine Lösung für
die Implementierung virtueller Warteschlangen zur Erreichung dieses Ziels bietet. Die
programmierbare Verkehrsverwaltungsanwendung dient als eigenständige Anwen-
dung zur Anpassung der Rate und Verzögerung auf Slice-Basis, um die erforderlichen
Service Level Agreements zu erfüllen, und sie ergänzt die UPF-Implementierung, da
sie die Durchsetzung verschiedener erforderlicher QoS-Stufen ermöglicht.
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1. Introduction

Our society is continuously moving towards digitization where the digital and physical
worlds are increasingly mingling. Communication networks play a crucial role in trans-
porting digitized information from one physical location to another. For example, the
Internet is one huge realization of a network that connects the world carrying informa-
tion between content providers and consumers. The needs of user applications in terms
of connectivity dictate the requirements that should be satisfied by the underlying
networks. For example, while surfing web browsers made the best effort connectivity
good enough, video calling and streaming require higher bitrates, and applications
such as Internet of Things (IoT)s and Cyber-Physical Systems (CPS) now have more
stringent Quality of Service (QoS) requirements in terms of the expected reliability
and latency. On one hand, these emerging applications are requiring networks to be
more performant in terms of throughput, latency, etc. On the other hand, they are
demanding flexible networks that can support new functionalities that range over the
different layers of the networking stack such as load balancing, filtering, intrusion
detection, etc. [52].

Legacy networking infrastructures are mainly based on purpose-built hardware devices
or middleboxes that can deliver high processing performance but are rigid in terms of
functionalities that they can execute. In many cases, the requirements from networks
are evolving rapidly making the rigid legacy networking infrastructure an unsatis-
factory solution because of the lengthy development cycles and the high upgrading
costs. To cope with the agility in network development, software-based solutions such
as Software-defined networking (SDN) and Network Function Virtualization (NFV)
emerged and developed to a mature state nowadays.

SDN is a networking paradigm that makes networks more flexible and manageable
compared to legacy infrastructures. It decouples the functionality of the control and
data planes and realizes an interface between them while permitting programmability
at the control plane. NFV is the concept of running Network Function (NF)s as software
applications on Commercial off-the-shelf (COTS) servers instead of using purpose-built
hardware middleboxes. NFV enables network operators to leverage the advantages of
software virtualization and cloud computing techniques, which proved its effectiveness
in the Information Technology (IT) domain, in the networking domain. Virtualized
Network Function (VNF)s can be flexibly instantiated, configured, scaled up or down,
migrated, and terminated over different distributed data centers. Additionally, NFV
is considered an appealing solution from a business point of view, as scaling and
upgrading NFs takes place in software rather than hardware.
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1. Introduction

However, a purely software-based solution using NFV has limitations in terms of
performance. For instance, COTS servers cannot process packets at line rate for
computationally-intensive NFs, especially for small packets [46]. Additionally, the strict
and deterministic latency requirements of emerging applications, like augmented real-
ity and industrial IoT, can hardly be met using pure software-based NFV solutions [46].
Therefore, different acceleration techniques have been investigated to enhance the
packet processing performance of VNFs. These solutions vary from software-based
acceleration techniques, which speed up the packet processing of COTS servers, like
the Data Plane Development Kit (DPDK) framework [103], to hardware-based accel-
eration techniques, which offload part of the packet processing tasks to hardware
accelerators [45]. A sweet spot between the latter two approaches are programmable
packet processors such as SmartNICs and programmable switches. This technology
possesses the processing performance of hardware-based solutions while still offering
the flexibility of software-based solutions through programmability [46].

Furthermore, the flexibility provided by traditional SDN-based solutions is still limited
by the packet processing operations permitted by the architecture of the pipeline at
the forwarding plane. OpenFlow (OF) is widely adopted as the de facto architecture
for SDN data planes, where the communication between the control and data planes
takes place according to the messages defined in this protocol. It specifies a limited
set of matching fields and actions that can be applied on the data plane. Accordingly,
the control plane’s programmability and control over the data plane are restricted
by the matching fields and actions exposed by the OF Application Programming
Interface (API). The concept of protocol-independent programmable packet processors
extends the SDN paradigm by pushing the programmability further to the data plane
besides the control plane, wherein the packet forwarding pipeline at the data plane
can also be customized.

In this direction, P4 was proposed as a programming language for programmable
packet processors [18]. P4 is becoming a de facto standard language for describing
the forwarding behavior of packet processors. Although it adopts the match-action
abstraction in describing the packet-forwarding behavior similar to the OF protocol, it
is differentiated by being protocol-independent, meaning that it can support defining
arbitrary protocols’ matching fields and custom actions to be applied. This provides
higher flexibility by enabling the definition of innovative P4-based NFs and solutions
at the data plane. Note that we use NFs and P4 programs interchangeably in this thesis.
Moreover, P4 is target-independent, meaning that it can be used to program different
processing platforms such as software switches, programmable Application-Specific
Integrated Circuit (ASIC) switches, Field-Programmable Gate Array (FPGA)-based
SmartNICs, Network Processor Unit (NPU)-based SmartNICs, etc. It also supports
field-reconfigurability so that the packet forwarding pipeline of the packet processor
can be reconfigured even after deployment.

The integration of P4 into NFV cloud environments has huge potential in terms of flex-
ibility and performance. However, this integration also raises a new plane of problems

2



1. Introduction

and challenges in terms of the design and management of such environments. The goal
of this doctoral thesis is to measure and model the performance of P4 programmable
packet processors towards conducting performance-aware management of NFV cloud
environments with the P4 technology incorporated. The objectives of this thesis are
summarized as follows.

First, we evaluate the performance of P4 programmable packet processors by con-
ducting a comprehensive measurement campaign to understand the capabilities and
limitations of different P4 devices. Since the data plane programmability is an intrinsic
property of P4 devices, we focus on understanding the effect of the P4 data plane’s
complexity on the packet processing latency in different P4 devices.

The measurements collected out of the first objective are prerequisites for deriving
generic analytical models for the forwarding performance of a P4-based system made
up of control and data planes, which is the second targeted objective.

The third objective is to manage NFV cloud environments made up of heterogeneous P4
programmable substrate while supporting Service Function Chain (SFC) embedding
with QoS requirements. The feature of supporting QoS requirements can only be
achieved when the forwarding performance of different P4 packet processors becomes
predictable, a target accomplished in the previous objective.

The fourth objective is to demonstrate the advantages of including data plane pro-
grammability in cloud environments. This is achieved by proposing the following two
applications. As deploying cellular networks in cloud-native environments is becom-
ing a viable solution [53], the first application studies the advantages of deploying the
User Plane Function (UPF) of the 5G Core networks into cloud environments enhanced
with P4-based hardware accelerators. In this direction, we design and implement a
novel microservice-based UPF using P4. The deployment of this design leverages
the previously developed optimal management scheme that integrates hardware ac-
celerators into NFV cloud environments. The second application is a programmable
traffic management solution that enables customizing the traffic characteristics (rate
and delay) of different network slices using data plane programmability. The second
application is a stand-alone application that supports network slicing at the data plane,
and it also complements the first application, i.e., the microservice-based UPF, by
enabling QoS enforcement at the user plane of the 5G Core networks.

The research challenges accompanied by these goals are discussed in Section 1.1, while
Section 1.2 presents the contributions achieved while addressing these challenges, and
finally, Section 1.3 illustrates the outline of the remainder of the thesis.
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1.1. Research Challenges

The integration of P4 programmable packet processors into the NFV cloud environ-
ments enhances the processing performance without sacrificing the flexibility attained
via programmability. However, this integration also raises a new plane of problems
and challenges in terms of the design and management of such environments. This
section summarizes the main research challenges tackled in this thesis.

Measuring the Performance of P4 Programmable Packet Processors. After the
introduction of the P4 programming language, many networking hardware vendors
released packet processors that support P4 programmability. Although these devices
exhibit a high degree of flexibility in programming their packet forwarding pipelines,
the forwarding performance of these devices has not been entirely evaluated. Keeping
in mind that performance is a crucial factor in determining the success or failure of
any emerging technology for a given use case scenario, we focus in this part of the
thesis on fairly comparing the capabilities and limitations of different state-of-the-art
P4 programmable devices.

Different factors influence the performance of P4 programmable packet processors. To
start with, P4 programmable packet processors belong to various classes of processing
platforms such as Central Processing Unit (CPU), FPGA, NPU, ASIC, etc. Certainly,
the evaluation methodology should be applicable to all these platforms, while still
guaranteeing fairness in the comparison.

On the other hand, the capability of programming the forwarding pipeline adds a
new factor that can cause variation in the forwarding latency of P4 programmable
packet processors. This factor is the complexity of the P4 program which can result in
a more complex packet processing pipeline of operations. Moreover, the fact that the
P4 language is protocol-independent means that there are endless possibilities of P4
data planes that can be configured on these P4 devices. Accordingly, the impact of the
pipeline complexity on the forwarding latency should be understood while considering
the possibility that any arbitrary P4 program can run on these P4 packet processors.

Finally, the evaluation should be thorough where the different components that build a
P4-based system ranging from the controller to the data plane should be analyzed. The
lack of published works in this regard raises another challenge that demands in some
cases implementing novel tools for conducting this evaluation, as in the case when
benchmarking P4-based SDN controllers.

Modeling the Performance of P4 Programmable Packet Processors. While mea-
surements give exact knowledge about the performance of devices under test, it is
infeasible to cover the complete space of measurement possibilities. Alternatively,
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analytical models that build on top of measurement results play the role of abstracting
and predicting the real performance of these devices more generically.

Different factors affect the performance of the P4 devices such as the type of processing
platform, the running P4 program, the level of involvement of the control plane, the
performance of the control plane, etc. The analytical performance models should cover
the impact of these different factors, wherein these factors can be used for parametrizing
the targeted models. At the same time, the models should be as accurate as possible in
capturing the real performance of P4 devices.

Performance-aware Management of P4-based Cloud Environments. When P4
programmable packet processors are used in cloud environments, they create a het-
erogeneous pool of processing devices. This diversity in processing platforms gives
an additional degree of freedom in selecting the platform that best hosts a certain
workload with given QoS requirements. This is only possible if proper management of
such an environment is realized.

On one hand, the heterogeneity of available packet processors dictates creating profiles
that summarize the limitations and capabilities of the processing platforms. On the
other hand, the requirements of the SFC workloads to be embedded in terms of
demanded functionalities and required QoS levels should be taken into consideration.
The optimal embedding of SFCs into a heterogeneous P4-based cloud environment
should satisfy these constraints.

To support the NF embedding with QoS requirements, the optimization problem must
have a clear expectation about the performance of the underlying P4 packet processors
when running a given NF.

Finally, as the ordinary VNF embedding problem is already of Nondeterministic
Polynomial Time (NP) complexity, the new version with performance awareness is
even more complex. Thus, a greedy solution for this problem should be offered to
guarantee that solving the problem and updating the embedding solution is reached
in a reasonable execution time.

Applications Leveraging P4-based Cloud Environments. As cloud-native solu-
tions are prevailing in cellular networks, we select the UPF as a candidate NF that can
run in clouds and make use of the P4 technology. Being assigned a wide range of data
plane processing tasks, the UPF represents an interesting candidate data plane function
to be studied, which can leverage the previously developed optimal management
framework. Moreover, designing a microservice-based version of the UPF for breaking
its complexity at the user plane, similar to the approach adopted at the control plane in
5G networks, is a promising approach for enhancing the flexibility and performance
of Beyond 5G (B5G) cellular networks. However, separating such a big monolithic
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function based on the microservice architecture design principles is not an easy task,
not to mention its implementation.

On the other hand, given that the P4 language does not support programmable traffic
managers, the development of a customizable traffic management solution to mitigate
this issue by enabling the enforcement of QoS requirements at the data plane presents
another challenging exercise.

1.2. Contributions

This section summarizes the major contributions of this doctoral thesis and the relation
between these contributions toward the main goal of integrating P4 programmable
packet processors into NFV cloud-based environments. Fig. 1.1 demonstrates the struc-
ture of the thesis in the context of studied research fields and applied methodologies.
Each of the four major investigated research fields and contributions of this thesis
is included in Chapters 3 to 6, respectively. Chapter 3 contributes a comprehensive
understanding of the performance of the different components that build a P4-based
system through conducting extensive measurements. Chapter 4 presents analytical
models to characterize the forwarding performance of P4 packet processors. Chapter 5
contributes to the optimal management of NFV cloud environments made up of P4
programmable devices while leveraging the knowledge regarding the performance of
these devices to satisfy QoS requirements. Chapter 6 Provides Proof of Concept (PoC)
implementations of microservice-based UPF and programmable traffic manager solu-
tions to showcase the advantages of adopting P4 programmable packet processors in
cloud environments. In the following, we illustrate the contributions achieved in each
chapter and the methods applied for this purpose.

It is of paramount importance to understand the performance of different P4 pro-
grammable packet processors to assess their suitability for different use case scenarios.
The first major contribution in Chapter 3 targets this purpose, where we perform thor-
ough measurements of the different characteristics related to these P4 devices. First,
we propose an experimental methodology to reveal the latency of executing atomic
P4 operations on arbitrary P4 targets. The evaluation results revealed the influential
P4 operations on the data plane forwarding latency besides revealing the capabilities
and limitations of different state-of-the-art P4 targets. Then, the performance of these
P4 targets is inspected when dealing with scenarios where a scaled-up number of
traffic flows needs to be processed. The control agent lying in the P4 target, which
interacts with the controller on one side and with the data plane on the other side, is
also examined where we measure its response to control plane commands in updating
the status of the forwarding plane. Finally, we fill a research gap in the literature by
implementing a novel tool for benchmarking the performance of SDN controllers that
support controlling P4 targets using the P4Runtime (P4RT) framework [92]. We use
this tool to understand the performance of the control plane in a P4-based system,
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Investigated Fields and Contributions

Methodologies and Concepts

Performance Modeling, Optimization, and Applications for the Deployment of
Programmable Packet Processors in Cloud Environments

Chapter 1: Overview of Research Challenges, Contributions, and Thesis’ Outline

Chapter 2: Background on P4 programming language for packet processors

Chapter 3: Performance
Measurement and Analysis

[1–3, 6, 9]

Chapter 4: Perfor-
mance Modeling

[1, 4, 5, 10, 11]

Chapter 5: Performance-
aware Management

[7]

Chapter 6: Proof of Concept Implementations using P4 [8]

Testbed Implementa-
tion and Evaluation

(Sec. 3.2, 3.3, 3.4)

Profiling P4 Devices
(Sec. 4.2)

Multi-objective
Optimization

(Sec. 5.2.3)

Hardware and Soft-
ware Measurements

(Sec. 3.2, 3.3, 3.4, 3.5.2)

Estimation Method
Proposal
(Sec. 4.2)

SFCEmbedding
(Sec. 5.3.2)

Benchmarking Tool
Implementation

(Sec. 3.5.1)

Modeling based on
Queueing Theory

(Sec. 4.3)

Integer Linear
Programming
(Sec. 5.2, 5.3 )

Root Cause Anal-
ysis (Sec. 3.5.3)

Simulation and Analysis
(Sec. 4.4)

Greedy Algorithm
Implementation

(Sec. 5.3.4)

Architecture Proposal
(Sec. 6.2)

Algorithm Implementation
(Sec. 6.3)

Evaluation and Theoretical
Performance Guarantees

(Sec. 6.4)

Chapter 7: Conclusion and Future Work

Figure 1.1.: Outline showing the flow of the thesis and the relation between the differ-
ent chapters. The measurement results derived from Chapter 3 are used by
Chapter 4 to derive performance models. Chapter 5 uses these performance
models to optimize the management of NFV cloud environments. Chap-
ter 6 demonstrates the advantages of the integration of P4 devices into NFV
cloud environments. Each contribution is mapped to its corresponding
applied methods by using the same color code.
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where we evaluate the performance of the ONOS controller [109] when running in
P4RT mode versus the case when running in OF mode. Furthermore, we perform root
cause analysis using this tool to identify an implementation bottleneck in the ONOS
controller, and then we propose a code patch for mitigating this bottleneck.

The second major contribution in Chapter 4 targets deriving analytical models for
the forwarding latency of P4-based systems. These models build on top of the pre-
viously collected measurements to provide a more generic way of characterizing the
performance of P4-based systems. First, we build a model that can predict the packet
forwarding latency when running arbitrary P4 programs on different P4 targets. Then,
a simple queueing theory-based model is proposed based on meaningful parameters of
the P4-based system. This model is then further refined to better capture the real perfor-
mance of P4 targets. The different proposed models are validated through simulations
that vary a wide range of parameters and analyze their impact on the packet’s sojourn
time in the system. Finally, the developed models are used to derive constraints on the
permissible traffic volume that can be handled by P4-based systems.

Following the thorough understanding of the performance of different state-of-the-
art (SOTA) P4 targets and specifically their forwarding latency, the third major con-
tribution in Chapter 5 targets leveraging this performance knowledge and models to
optimally manage cloud environments built from P4 targets. A cloud environment
can leverage P4 targets such as SmartNICs or programmable switches to enhance its
processing capabilities without sacrificing programmability. The usage of these devices
creates a pool of heterogeneous processing resources with distinct performance levels
and capabilities. On the other hand, NFs described as P4 programs have different
requirements in terms of demanded acceleration functions and desired QoS levels that
need to be satisfied when embedding these functions into the P4-enhanced infrastruc-
ture. Although the SFC embedding problem is widely studied in the literature, this
problem is still not addressed when the embedding is performed into a heterogeneous
pool of P4 packet processors and when the performance awareness is a prerequisite
for satisfying QoS requirements. The first studied optimization problem targets plan-
ning the infrastructure of P4-based cloud environments by selecting the optimal set
of P4 packet processors that can handle an expected incoming traffic workload. The
problem formulation searches for the best placement of a given set of NFs workload by
mapping the requirements of these NFs to the capabilities and the performance of the
different available P4 packet processors. The objective function targets maximizing the
performance of the system while minimizing capital expenditure costs. The second op-
timization problem targets provisioning the optimal embedding of SFCs into P4-based
cloud environments at runtime. The problem formulation searches for the optimal
placement of SFCs into P4 packet processors while satisfying the functional and QoS
requirements of these SFCs based on the previously acquired knowledge related to the
performance and capabilities of the different available P4 packet processors. Further-
more, a greedy solution is designed and implemented to solve this problem faster. The
two optimization problems are evaluated based on different use case scenarios and the
results are analyzed to derive interesting insights.
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The fourth major contribution in Chapter 6 targets proposing two interesting solu-
tions that showcase the advantages of integrating P4 packet processors into cloud
environments. The first selected use case is related to the UPF of 5G Core networks.
We implement the UPF in a modular way using P4. Following the modular imple-
mentation of UPF in P4, we propose a microservice-based design for the UPF that
could be used in B5G networks. We argue how such a microservice P4-based UPF
can be managed and orchestrated using the previously proposed performance-aware
management scheme for P4-based cloud environments. The second application is a
P4-based programmable traffic manager solution that can be used to control the rate
and delay of different network slices at the data plane. This application complements
the UPF implementation as it enables enforcing different QoS levels for the different
network slices supported in the 5G Core network.

1.3. Outline

The outline of the thesis is shown in Fig. 1.1. This chapter introduces the objective of
the thesis, the encountered research challenges, and the contributions attained while
addressing these challenges.

Chapter 2 provides all relevant background information on P4 programmability and
its relation with SDN and NFV. It also provides a detailed explanation of the syntax of
the P4 language, the interaction with the control plane, the compilation process, and
the available state-of-the-art P4 targets.

Chapter 3 includes the first major contribution of the thesis, where experiments and
measurements are conducted for understanding the performance of P4 packet pro-
cessors. First, the impact of different P4 atomic constructs on packet forwarding
latency is explored. Next, the device’s reaction to scaling up the incoming number of
flows is studied. Then, we study the device’s responsiveness to control plane com-
mands. Finally, we evaluate the performance of the control plane when dealing with
programmable P4 data planes.

Chapter 4 elaborates on the second major contribution of the thesis related to deriving
theoretical models for the performance of P4 packet processors. These models build on
top of the previously derived measurements. The first model characterizes the packet
forwarding latency at the data plane as a function of the complexity of the loaded P4
program. The second model is a simple model that uses queueing theory to abstract
the full P4-based system including both the control and data planes. The third model
refines the second simple model by considering the distributions of the service times at
the data plane and the control plane rather than only considering the first moments.

Chapter 5 illustrates the third major contribution of the thesis, where it uses the
previously derived performance models to optimally manage NFV cloud environments
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made up of P4 programmable packet processors. Two optimization problems are
formulated and evaluated, where each problem deals with a different management
stage. The first problem is concerned with the offline optimal planning for selecting and
building a network’s substrate, while the second problem is concerned with optimizing
the runtime management of an already given built-up network.

Chapter 6 includes the fourth major contribution, which presents applications that
leverage the integration of P4 devices in cloud environments. The first implemented ap-
plication is a microservice-based UPF for B5G cellular networks. The second application
is a programmable traffic management solution for customizing traffic characteristics
(rate and delay) of different network slices. The second application is a stand-alone
application and at the same time a complementary application for the UPF as it enables
it to enforce different QoS levels based on supported slice requirements.

Finally, Chapter 7 concludes this thesis by summarizing the important research contri-
butions. It also discusses the open possibilities for future research directions.
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2. Background on P4 Programmable Packet
Processors

Communication networks are meant to transport information from one physical loca-
tion to another. This information is transformed into bits and bundled into packets.
Packet processors are devices used to process these packets to guarantee their proper
forwarding and handling. These packet processors include devices such as switches,
routers, or Network Interface Card (NIC)s for packet forwarding, and middleboxes
such as firewalls, load balancers, etc. for packet processing.

The rapid change in the tasks and capabilities required to be delivered by currently
deployed communication networks made the upgrading cost of these networks very
expensive. For this reason, packet processing devices are moving towards being
more programmable, which enables reusing the same device for different purposes
over time. Accordingly, we can observe technologies that support programmable
packet processing, which permits reconfiguring the packet processing pipeline and
the operations that packets will undergo when traversing this pipeline. There are
currently different technologies that allow customizing the behavior of programmable
packet processors. These include using micro-c language to program SmartNICs,
using Protocol-oblivious Forwarding (PoF) [17] to program packet processors, or using
extended Berkeley Packet Filter (eBPF) [105] to capture and manipulate some packets
in the Linux kernel.

One of the most promising technologies related to programmable packet processors
is Programming Protocol-Independent Packet Processors (P4) [18]. P4 is a domain-
specific language for programming packet processors. It provides high flexibility
in defining the packet processing behavior on a wide range of different processing
platforms. These features made it appealing to both researchers and device manufac-
turers. For this reason, we will focus the rest of the thesis on the deployment of P4
programmable packet processors in cloud environments. We select the P4 technology
for programming packet processors because of its expressiveness in describing the
packet processing behavior of devices, its independence from any predefined protocols,
and its target independence that permits programming any packet processor type.
General background and definitions of P4 programming language and its relation with
SDN and NFV are provided in Section 2.1. A detailed explanation of P4 programmabil-
ity is provided in Section 2.2. The content of this chapter partly relates to background
sections of publications [1, 2, 6–8]

11



2. Background on P4 Programmable Packet Processors

2.1. What is P4?

In this section, we explain the P4 programing language and its relation with the other
two well-known technologies SDN and NFV that deal with network programmabil-
ity. The elaboration on this relationship is important to understand how P4 packet
processors complement SDN and NFV in making networks more flexible, while still
providing the opportunity to adopt high-performant hardware accelerators in cloud
environments.

2.1.1. P4 Programming Language

P4 is a domain-specific language for programming packet processors. Its syntax allows
programming packet processors with simple programs compared to other languages.
For example, [14] shows that writing a program to do IPv4 routing on FPGA requires
only 266 lines of code in P4, while it needs around 3889 lines of code in Verilog. P4 has
three design objectives [18], which makes it appealing in many use cases. These are:

• Protocol-Independence: This means that the language is independent of pre-
defined networking headers and protocols such as Ethernet or IPv4. In a P4
program, all headers and actions are defined from scratch. This allows reimple-
menting all known network functions like Layer 3 Forwarding (L3Fwd), or more
interestingly, it enables the development of innovative protocols and network
functions for solving emerging problems.

• Target-Independence: This means that the language can be used to program
targets belonging to different processing platforms such as software switch or
FPGA or ASIC switch, etc.

• Field-Reconfigurablility: This means that it is possible to reconfigure or repro-
gram a P4 target even after deployment.

P4 is used to develop a wide range of applications that serve different purposes.
These applications targeted monitoring networks with In-Band Network Telemetry as
in [48], active management of switches’ queues and congestion control as in [8,47], and
executing middle-box functions such as Load balancer [49], cellular networks’-related
tasks [50], etc.

2.1.2. P4 and SDN

SDN is a networking paradigm that makes networks more flexible and manageable
compared to legacy infrastructures. It decouples the functionality of the control and
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data planes and realizes a well-defined programming interface between them [19].
The OF protocol [106] is introduced as a key component for enabling SDN because it
standardizes a way for the control plane to interact with the switch via the southbound
interface. It abstracts the packet processing at the data plane into a series of match-
action tables. It defines a set of messages that could be communicated between the
control and data plane such as installing rules into match-action tables, fetching counter
statistics, etc. The OF messages are based on predefined header fields that packets can
match on such as IPv4 destination address, and a set of actions that can be executed
upon matching such as forwarding to a specific port or dropping the packet. OF
switches should have a packet processing pipeline compatible with the OF architecture
to properly react to messages received from the controller.

However, this approach to SDN using OF switches was running into some issues. As
data plane protocols change and evolve, the protocol-dependent OF standard used
as the southbound interface between the controller and the switch had to be updated.
For example, while the first version 1.0.0 of the OF protocol had 12 header fields that
could be matched on, this number largely increased in the following versions [117]. As
a result, OF has already grown significantly and will continue to do so as data plane
protocols evolve. This requires a continuous changing of the OF standard, which takes
a long time and makes the solution impractical in many situations.

The solution to this problem was to move programmability to the data plane, where
network operators can have top-down control over the data plane’s behavior besides
the control plane. P4 programmable devices present a proper solution for this problem
since these devices are protocol-independent and can be reprogrammed to support
the ever-evolving data plane protocols. Note that it is possible to configure a P4
data path similar to that of the OF architecture, making the OF solution one possible
realization of the P4 solutions. Programmable packet processors can be alternatively
called programmable data planes, where the latter terminology is more in line with the
SDN nomenclature.

2.1.3. P4 and NFV

The rapidly evolving innovations in the networking domain demand upgrading the
network infrastructure continuously, making the lifecycle of any technology short. This
results in reducing the return on investment of deploying new services and solutions
because of the high upgrading costs. NFV was proposed to solve this issue by replac-
ing function-dedicated equipment with COTS servers for leveraging the advantages
of virtualization which has already proven its effectiveness in the IT domain. This
involves implementing NFs in software to provide higher flexibility in managing and
upgrading these virtualized NFs [107].
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However, this NFV approach of using software running on COTS servers instead of
purpose-built hardware can cause severe performance bottlenecks in terms of latency
and throughput. This is the reason for developing many frameworks, such as the
DPDK framework [103], that target enhancing the performance of NFs execution on
COTS servers and CPU-based devices [45].

One adopted solution for this performance issue is to use hardware accelerators besides
the COTS servers to boost the packet processing performance in an NFV architecture.
P4 programmable packet processors provide a powerful solution in this scope as these
devices, especially hardware-based ones, can achieve a very high packet processing
performance compared to COTS servers, while still allowing for programmability and
reconfigurability [46].

2.2. How does P4 work?

In this section, we explain the different components constituting a P4-based system,
and how these components interact with each other.

2.2.1. P4 Data Plane: Language Syntax and Architecture

The latest release of P4, i.e., P416, separates the language syntax from the architecture
of the targeted packet processor. Packet processors to be programmed are called P4
targets, and these can have different hardware implementations. Each P4 target is
programmed based on the provided P4 architecture, where the sequence of available
processing stages and the programmable ones out of these stages are specified. The
architecture provides an interface to program a target, where it can also define APIs
for extern functions that can be used to access built-in accelerators such as encryption
engines. The V1model [118], shown in Fig. 2.1, is a commonly used P4 architecture
that has the following stages:

• Data Structures Definition: First, headers are defined as structures containing
different fields with different bit string sizes. It is also possible to define metadata
to be associated with the packet when it is processed at different stages.

• Parser: The parser is the first programmable processing block after receiving a
packet from an ingress port. It is used to define which headers are to be extracted
from the received packet. It is programmed as a Finite State Machine (FSM) to
define the states and the transitions while parsing a given packet.

• Payload Buffer: The payload of the packet is stored in the payload buffer, as the
main processing is performed on the headers of the packet.
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Figure 2.1.: Sample P4 data plane following V1model architecture [118]. The pro-
grammable blocks such as the parser, ingress and egress pipelines, and
deparser are colored in green, while the non-programmable blocks such
as the traffic manager and payload buffer are colored in grey. Headers are
extracted from the packet in the parser stage. These extracted headers are
manipulated in ingress and egress pipelines. Finally, the packet is recon-
structed with the manipulated headers at the deparser stage before leaving
the P4 data plane on the designated egress port.

• Ingress Pipeline: In this stage, the operations that transform the extracted head-
ers are defined. The ingress stage is programmed as a sequence of instructions,
which can trigger the activation of tables or Match-Action Unit (MAU)s. The
MAU is mainly defined by specifying a key and a list of possible actions. A key
is made up of a list of header fields or metadata on which packets can match.
The matching type can be exact, Longest Prefix Match (LPM), or ternary. If a
packet matches the key of a table entry, an action listed in the action list can be in-
voked. Actions are defined as function calls that can execute different operations
on the packet. These operations include adding or removing headers from the
packet, modifying fields of a header, modifying metadata related to the packet,
or executing arithmetic and binary operations.

• Traffic Manager: After ingress processing, packets move to the traffic manager.
The traffic manager takes care of packet queueing, replication, and scheduling.
It organizes the flow of packets, especially when more than one packet needs to
leave on the same egress port, or when packets need to be replicated. Currently,
the traffic manager is non-programmable in all P4 targets.

• Egress Pipeline: The egress control block resembles a similar role to the ingress
processing block except that it takes place after the traffic manager. This location
enables accessing extra information related to the queueing process that took
place in the traffic manager. For example, it is possible to extract the length of the
queue and the time spent by the packet in the queue.
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• Deparser: In this last stage, the packet is reassembled again by adding the
manipulated headers back to it. After deparsing, the packet leaves the P4 target
on the designated egress port.

The language also defines counters to collect statistics, meters to rate limit flows, and
registers to store information to be shared across packets for stateful applications.

2.2.2. P4 Control Plane

In the following, we will describe the P4Runtime framework for controlling P4-based
data planes, then we elaborate on how the Open Network Operating System (ONOS)
controller supports and implements this framework.

P4Runtime

The P4RT framework [92] is the de facto runtime API for controlling P4 programmable
data planes. It was first released in 2019 by the P4 language consortium. P4RT is
designed to be:

• Target-independent, i.e., it can control data planes belonging to different types of
processing platforms.

• Protocol-independent, i.e., new data plane protocols can be defined.

• Pipeline-independent, i.e., it can control different P4-based data paths or pipelines.

The API is built using Google’s Protobuf [93], which is used for serializing structured
data across languages and platforms. In a p4runtime.proto file [94], the remote procedure
calls and the messages that could be communicated between the P4 data plane and the
SDN controller are defined.

The client and server endpoints of a P4RT connection are implemented using Google
Remote Procedure Call (gRPC) [95], which can be used to produce code in a variety
of programming languages automatically, provide security methods, and enable bi-
directional data streams. The server is located in the P4 device, while the client runs
in the SDN controller. P4RT also allows pushing new P4 programs to the data plane
during runtime to reconfigure its data path.
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Figure 2.2.: Architecture of ONOS controller showing the different constituting layers.
P4RT-related functional blocks are marked with green circles, while OF-
related ones are marked with orange circles.

ONOS Controller

ONOS [28] is one of the few available SDN controllers nowadays that support control-
ling P4-based data planes using P4RT framework. This controller was first developed
to support controlling OF-based switches. Then, it was extended to also support
controlling P4-programmable data planes, wherein the forwarding data path can be
reconfigurable.

The architecture of the ONOS controller, with the different constituting layers, is shown
in Fig. 2.2. This figure distinguishes between P4RT and OF-based functional blocks.
The role of the different layers of ONOS is described in the following:

• Applications: This is the top layer in ONOS architecture. The applications
developed for controlling the networking behavior resides in this layer. These
applications could be pipeline-agnostic, wherein the OF-based applications, such
as Reactive Forwarding, are reused. Alternatively, these applications could be of
the type Pipeline-aware, which means that they are specialized for controlling
distinct customized P4 pipelines at the data plane.
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• Distributed Core: This central layer contains the functional blocks that per-
form the main logic in ONOS. It communicates with the network functions
running in the application layer via the NorthBound API, and with the lower
layers via the SouthBound API. It contains the Pipeconf Store function, which
stores and packages the files relevant to a given P4 pipeline to be controlled by
ONOS. Additionally, it runs the Translation Services function, which translates
the Protocol-Dependent entities and messages into Protocol-Independent (PI)
representations to be compatible with P4 data planes.

• Driver/Provider: This layer contains the drivers of the different families of de-
vices in the data plane to be controlled by ONOS. The driver of a device provides
an interface for interacting with it.

• Protocol: This layer contains implementation of SouthBound protocols like OF
and P4RT. ONOS encodes/decodes messages and sends/receives packets to the
data plane based on these protocols.

2.2.3. P4 Compilation and Workflow

A P4 program is compiled in two steps. First, the standard open-source front-end
compiler P4 Compiler (P4C) [96] is used to compile a given P4 program to generate
an intermediate representation. It also generates a P4Info.json file, which contains
information describing the tables and other relevant information about the compiled
P4 pipeline needed for runtime control. This file acts as a ’contract’ between the control
plane and the data plane, where it is used by the controller to make API calls on top
of defined tables and external instances. The second compilation step is done by the
back-end compiler provided by the vendor of the P4 target. This back-end compiler
generates the target configuration file, which is used to configure the data path of
the P4 device. For example, this configuration file can be a bitstream file in the case
of hardware P4 targets or a JavaScript Object Notation (JSON) configuration file for
software P4 targets. Fig. 2.3 illustrates the compilation process of a P4 program as well
as the runtime control of a P4 data plane.

2.2.4. P4 Targets

There are currently different P4 targets belonging to different processing platforms that
support P4 programmability. Software P4 targets are mainly based on a compiler that
translates P4 programs to executable software switches, while hardware targets should
support this programmability at the silicon level. In the following, we will elaborate on
some of the state-of-the-art P4 targets, whose properties are summarized in Table 2.1.
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Figure 2.3.: The workflow for compiling a P4 program to be deployed in an SDN archi-
tecture with P4 programmable data planes is shown. While the P4Info file
is necessary for the P4Runtime framework to take care of the communica-
tion between the data plane and control plane, the target configuration file
reconfigures the packet processing pipeline of the two different P4 targets.

Behavioral Model (BMv2): The BMv2 [97] software switch is an open-source P4 soft-
ware switch, provided by the P4 language consortium as a prototype implementation
of software P4 targets. It is meant for prototyping P4 implementations, especially since
it can be easily integrated with the mininet [98] emulator. It can process packets at a
low processing rate compared to other P4 targets, reaching around 1 Gbps.

PISCES Software Switch: Shahbaz et al. extended the OF-based Open vSwitch
(OvS) to allow packet processing behavior to be customized using P4. The new software
switch is named PISCES [12], and it includes a compiler for analyzing P414 code and
optimizing forwarding performance. While PISCES’ performance is comparable to that
of OvS, it takes 40 times fewer P4 lines of code to describe functions when compared
to applying equivalent changes to OvS source code. PISCES was subjected to several
optimizations to improve its processing performance until it matched that of OvS.

t4p4s DPDK-based Software Switch: DPDK [103] is an open-source framework
for accelerating packet processing on different processors. It employs various methods
to accelerate packet processing on software switches. First, all flows’ incoming packets
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are distributed across different CPU cores reserved for the switch. Second, the data
pipeline between the interfaces and the processing threads is entirely in userspace,
eliminating the need for costly packet copying between user and kernel areas. Third,
it processes packets in batches to make better use of the CPU’s cache. t4p4s [16] is a
compiler that converts P4 code into a target-independent C core program, which can
then be used to execute the designed P4 datapath on top of the DPDK framework.
On average, the compilation procedure takes a few minutes. When Non-Uniform
Memory Access (NUMA) mode is enabled, two CPU cores (one as a master and one as
a slave) are reserved for packet processing by default. t4p4s also employs the V1model
architecture.

Agilio CX SmartNIC: Agilio CX 2x10GbE is a SmartNIC from Netronome [101]. It is
an NPU with tens of purpose-built multi-threaded cores that enable high parallelism.
The device’s packet processing capability is furthermore boosted by hierarchical trans-
actional memory and built-in accelerators. This SmartNIC adopts the V1model as a
P4 architecture. Its back-end compiler generates a C implementation of the datapath,
which is then used to create the firmware for the SmartNIC. Building and loading a
firmware to the SmartNIC only takes a few minutes [100].

NetFPGA-SUME : FPGAs are a viable solution for meeting the requirements of
low-latency and high-throughput concurrent packet processing while retaining pro-
grammability. By leveraging the P4→NetFPGA workflow [14], NetFPGA-SUME [15]
allows easier programmability on FPGAs. An FPGA’s hardware resources are pri-
marily represented by the number of LookUp Tables (LUTs) and on-chip memories
(Block Random Access Memory (RAM)s). Memory resources are used for various types
of matching, including Ternary Content Addressable Memory (TCAM) for ternary
matches and Static Random Access Memory (SRAM) for hash-based exact matches.
The datapath is implemented as an Register-Transfer Level (RTL) implementation
by the back-end compiler, which is then synthesized to a bitstream to program the
FPGA chip. The entire procedure takes about an hour. NetFPGA’s P4 architecture is
SimpleSumeSwitch with only an ingress pipeline, unlike the V1model which has two
pipelines abstracted as ingress and egress stages.

Tofino Chip: The Tofino chip from Intel is the first ASIC P4 programmable target.
It follows the Protocol-Independent Switch Architecture (PISA) that allows adjusting
protocols in software. It can process packets at a very high throughput reaching up to
12.8 Tbps [102].

In general, these P4 targets span a wide range of processing platforms. The software-
based targets are mainly based on compilers that translate P4 programs to programs
that run as software instances on servers with CPUs. The V1model architecture domi-
nates for software-based P4 targets, while hardware-based targets often adopt special
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Table 2.1.: A summary of the properties of different P4 targets. (-) is used when infor-
mation is not available.

P4 Device Type Processing
Platform P4 Architecture P4

version Vendor

BMv2 SW CPU V1model P416 Open Source
PISCES SW/OvS CPU - P414 Open Source
t4p4s SW/DPDK CPU V1model P416 Open Source
Agilio CX HW SmartNIC NPU V1model P416 Netronome
NetFPGA HW SmartNIC FPGA SimpleSumeSwitch P416 Xilinix
Tofino HW Switch ASIC PISA P416 Intel

architectures that are compatible with the device’s silicon design. The processing
performance of these targets widely varies based on the characteristics of the hosting
processing platform.

2.3. Summary

In this chapter, we introduced P4 programmability and its relation to the other two
technologies driving network flexibility, i.e., SDN and NFV. Then, we described the
different components that build a P4-based system. We elaborated on the language
constructs used for configuring the forwarding pipeline of the data plane, the P4RT
framework for runtime control of P4 devices, the overall compilation process and
workflow for deploying P4 targets, and the various available P4 targets.

This background information is important for thoroughly understanding the moti-
vation behind using P4 programmability and its building blocks. This is required as
the following chapters of the thesis are centered around this technology, where the
performance of P4 programmable packet processors is benchmarked and modeled
in Chapters 3 and 4, while its management and applicability in different use case
scenarios are studied in Chapters 5 and 6.
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While P4 programmable packet processors are promising due to the flexibility they
provide in customizing their packet processing behavior, it is crucial to understand
their performance and identify their limitations. This performance can be the Achilles’
heel in case the required performance level for certain use case scenarios is not met.

There are different performance metrics relevant to evaluating networking devices.
These include throughput, forwarding latency, jitter, maximum delay, and power con-
sumption. Among these, evaluating the forwarding latency is becoming more crucial
with the emergence of delay-critical applications that require low and deterministic la-
tency such as virtual/augmented reality and cloud gaming. For this reason, evaluating
the forwarding latency of P4 programmable devices is given special attention in the
rest of the thesis.

The packet processing in P4-based systems is influenced by different constituting
components as shown in Fig. 3.1. The performance of these components is studied in
this chapter. The following four performance criteria are specifically studied in the
four sections of the thesis.

(1.) The first building component of P4-based systems is the data plane pipeline. It
is responsible for processing incoming packets. This pipeline is reconfigurable and
can be defined according to the loaded P4 program. This reconfigurability introduces
the processing complexity of the loaded P4 program as a new factor that could in-
fluence the packet processing latency on the P4 target. The relation between the P4
pipeline complexity and the forwarding latency should be studied to understand the
performance of P4 targets.

(2.) While still focusing on the target’s data plane, the forwarding performance of the
P4 targets can also be affected by the number of installed rules and the number of
distinct flows coming into the P4 target. The stability of the forwarding performance of
the P4 targets in response to a scaled number of incoming flows is another important
aspect that should be studied.

(3.) On top of the data plane pipeline, the control agent interacts with the SDN
controller. Analyzing the reaction time of this control agent to control plane commands
is important for identifying any inconsistencies between the states of the control and
data planes.
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Figure 3.1.: Components building a P4-based system with control and data plane. The
mapping between the blocks and the corresponding evaluation sections is
highlighted in the figure.

(4.) The last investigated component is the SDN controller. The SDN controller in-
tervenes in case the packet processing behavior for certain flows is not defined in
the data plane. This is usually the case when a packet corresponding to a new flow
has no matching rule in the data plane’s match-action unit. The performance of the
SDN controller plays a major role in determining the overall performance of P4-based
systems.

This chapter is organized as follows. First, we discuss related works that deal with
the performance evaluation of P4 programmable devices in Section 3.1. In Section 3.2,
we conduct a detailed evaluation of the data plane’s packet forwarding latency of
different P4 programmable devices with a special focus on the influence of P4 pro-
grammability. The content of this section is based on our two published works [1, 2].
In Section 3.3, we study the impact of MAU occupancy and flow scalability on the
forwarding performance of P4 targets, where the presented results are based on our
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previous publication [3]. The control agent of P4 devices is evaluated in Section 3.4
focusing on its responsiveness to control plane update rules, where presented findings
are based on our previous publication [3]. In Section 3.5, a benchmarking tool for
evaluating the performance of P4Runtime-based SDN controllers is proposed and used
for evaluating such controllers. The contributions presented in Section 3.5 are based
on our publication [6]. Finally, Section 3.6 summarizes the findings of this chapter.

3.1. Related Work

The state-of-the-art related to measuring and evaluating the performance of the P4
data plane and SDN control plane is revisited in this section.

3.1.1. Performance Evaluation of P4 Data Plane

While literature is rich with works evaluating the performance of OF switches, there
are few that focus on P4-based devices yet.

The work in [30] proposes WhipperSnapper as a suite for benchmarking P4 targets. The
suite includes evaluating the performance of the P4 target when executing different P414

operations. The BMv2 and PISCES software switches, as well as that of the P4FPGA
emulator [13] are evaluated. Although P414 is now the legacy version of P4, still this
work is considered the first dedicated work related to evaluating the performance of
P4 devices. Authors of [32] model different performance metrics based on the type
of the P4 target. The resource utilization is selected for ASIC-based devices such as
the Tofino-based P4 switch, while latency and throughput are selected for software
switches such as t4p4s. In [41], detailed measurements and analyses for understanding
the performance of Agilio CX SmartNIC are conducted.

Other works focused on evaluating the performance of P4 devices when executing
specific functionality. For example, [40] evaluates the latency when using hashing
extern function on NetFPGA, t4p4s, and SmartNIC P4 targets. [37–39] evaluate the
performance of SmartNIC and Tofino P4 targets when performing in-network event
processing, while [35, 36] evaluate the performance of NetFPGA and Tofino when
executing stateless load-balancing functionality.

Although the objective of [33] is on optimizing the placement decision of P4 programs
between SmartNICs and software switches, a limited evaluation of table entry modifi-
cation response time is conducted in this work. The latter is used as an input parameter
for solving the placement problem. However, the description of the experimental setup
for conducting this measurement is limited, which hinders the applicability of these
results beyond the scope of that paper.
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The performance evaluation of P4 data planes conducted in this chapter shares the same
objective as these research works. However, the evaluation conducted in this chapter is
meant to be comprehensive by varying many parameters and by considering different
P4 targets to enable comparing the collected results for deriving useful conclusions.
The findings of this chapter allow for comparing different P4 targets in terms of
performance capabilities and limitations.

3.1.2. Performance Evaluation of SDN controllers

The controller is the key component in the SDN architecture, as it is responsible
for controlling and managing the data plane switches. For example, it takes care
of processing packets that do not match any installed rule in the data plane. The
performance of the SDN controllers plays a major role in determining the overall
performance of the SDN system. While many works try to benchmark and evaluate
the performance of SDN controllers with OF as a southbound interface, there is none
that benchmarks controllers with P4RT for controlling P4-based switches. This is due
to the maturity of the OF protocol compared to the relatively new P4RT framework. In
the following, some benchmarking tools for evaluating the performance of OF-based
SDN controllers are described.

Scott et al. present a simulator for troubleshooting SDN in [51]. This simulator ad-
dresses the issues that arise when developing SDN platforms as network management
services. The troubleshooting techniques used are based on inspecting logs for relevant
information. The simulator then automatically identifies the bare minimum of inputs
required to reproduce an identified bug.

The first open-source tool proposed for benchmarking OpenFlow Controllers is Cbench
[112]. This tool emulates an arbitrary number of OpenFlow switches. Each virtual
OpenFlow switch establishes a connection with the SDN controller and goes through
the handshake process. When benchmarking begins, each switch sends as many Packet-
In messages to the controller as possible in order to evaluate its performance. The tool
can assess the throughput and latency of traffic exchanged between virtual switches
and the controller.

OpenFlow Controller Probe (OFCProbe) is a benchmarking tool for OF controllers
developed in [21]. The tool is used to compare the performance of three different OF
controllers: Floodlight [108], NOX [110], and Maestro [111]. While the benchmarking
approach used by OFCProbe is similar to that used by Cbench in terms of simulating
virtual OF switches, OFCProbe focuses on more advanced design goals:

• Platform independence which enables the tool to run on the majority of common
system architectures.

• Scalability, which allows the tool to run on multiple cores, CPUs, and even hosts.

25



3. Benchmarking the Performance of P4 Programmable Packet Processors

• Modularity to allow easy evolution of the tool.

• Detailed statistics that allow monitoring the performance of the OF controller
per switch and over time. When dealing with multiple switches, this allows
evaluating the fairness of OF controllers.

OFCProbe was further extended in [22] to allow configuring the topology of the
emulated network and reporting additional performance indicators such as network
topology discovery time. The extended tool is used to evaluate various performance
metrics of the ONOS [109] controller.

In [27], Tootoonchian et al. investigate the impact of the OF controller performance on
the overall performance of SDN networks. NOX, NOX-MT (maximum throughput),
Beacon [42], and Maestro controllers are investigated. The results show that the
performance of these controllers was better than what is expected/reported in the
literature.

Shalimov et al. [25] present an open-source benchmarking tool that can compare various
efficiency indexes. Performance, scalability, and security are among these indexes. A
thorough examination of various SDN controllers (NOX, Beacon, Floodlight, Maestro,
etc.) is carried out, with various indexes indicating that the evaluated controllers need
to be improved before they can be used in production environments.

Alencar et al. [26] evaluate the performance of two Java-based SDN controllers, Flood-
light and Beacon. CPU utilization, memory, and Java virtual machine (JVM) memory
consumption are recorded. Monitoring the performance of these controllers showed
software aging effects.

Authors of [23] compare the performance of the OpenDaylight [113] SDN controller to
that of the Floodlight controller. The Cbench tool is used to evaluate throughput and
latency results. When compared to Floodlight, the results showed that OpenDaylight
serves fewer requests on average. Furthermore, the authors propose enhancements to
the Cbench tool to accommodate models of real-world traffic in data centers.

In [24], various state-of-the-art SDN controllers are surveyed. Then, they use Cbench
to evaluate new controllers such as the ONOS controller. Based on their findings, they
concluded that there is no dominant SDN controller and that the choice should be
based on use case requirements.

Published works in literature do not contain any studies on the performance of SDN
controllers when running in P4RT-mode for controlling P4 targets. Therefore, we had
to fill this research gap in Section 3.5 by studying the performance of P4RT-based
SDN controllers and by building the appropriate benchmarking tool for this purpose.
The proposed benchmarking tool in Section 3.5 extends the OFCProbe tool [20] for
benchmarking OF-based controllers described in this subsection.
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3.2. Evaluating the Complexity of P4 Data Path

The forwarding latency of networking devices is an important performance metric.
The forwarding latency is usually impacted by different factors such as processing
platform, packet size, the load of the device, etc. In the case of programmable packet
processors, such as P4 programmable devices, the forwarding latency is influenced
by one more new variable, and this is the processing complexity of the loaded P4
program. In other words, if the loaded data path performs simple operations on the
incoming packet, the processing latency will be smaller compared to the case when
more sophisticated packet processing is applied.

Understanding the relationship between packet forwarding latency and pipeline com-
plexity helps in understanding and predicting the packet forwarding performance of
programmable packet processors. The latter enables network operators to better man-
age their networking infrastructure as they can provide performance guarantees (e.g.,
latency guarantees) to their tenants for a known traffic flow — an important feature
in cloud data centers. Furthermore, measuring the forwarding latency of networking
devices is the first building block for deriving analytical models of their performance
as accomplished in Chapter 4. In addition, knowing the packet latency of running
different network functions on different programmable devices in advance is critical
for the optimal scheduling and provisioning of network functions in a heterogeneous
P4-based environment, as will be discussed in Chapter 5.

Towards understanding the relationship between the forwarding latency and the
pipeline complexity executed on a P4 device, it is clearly not possible to measure the
forwarding latency of all possible P4 programs, as this could lead to an uncountable
number of possibilities. Alternatively, we rely on two interesting observations of the
P4 language that enables this endeavor:

• P4 abstracts the programming of packet processing pipelines into a limited set
of P4 atomic constructs or operations such as parsing a header, adding a header
to a packet, modifying the header, etc. The combination of this limited set of
atomic P4 constructs builds a full P4 program that can describe realistic network
functions.

• The P4 language limits performance variations at run-time by preventing loops
with an unknown number of iterations, and by preventing dynamic memory
allocation.

Therefore, we first measure and analyze the impact of each P4 atomic construct on
the packet forwarding latency of different P4 programmable packet processors. This
analysis paves the way toward deriving a model for characterizing the forwarding
latency of P4 programmable devices as a function of the loaded P4 program as will be
discussed in Section 4.2. The contributions presented in this section are based on our
two published works [2] and [1]. The experimental setup and designed experiments
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Figure 3.2.: Experimental setup made up of two servers connected by two 10 Gbps
cables: Server I hosting the P4 device, and Server II hosting the packet
generator MoonGen. MoonGen generates the measurement traffic and
sends it to be processed in the P4 device hosted in Server I, and then
analyzes the returned traffic to generate latency reports.

are described in Subsection 3.2.1, followed by Subsection 3.2.2 where the results of
these experiments and presented and interpreted. In Subsection 3.2.3, we summarize
the findings of this section.

3.2.1. Testbed and Experiment Design

In this section, we first describe the measurement testbed shown in Fig. 3.2 used for
conducting the evaluation. Then, we elaborate on the different experiments designed
for benchmarking the latency cost of executing different P4 constructs.

The experiments are carried out on two Nokia NDCS16RM AirFrame Compute Nodes,
each has 16 cores (dual-socket Intel Xeon CPU E5-2630 v3 @ 2.40 GHz) and 64 GB of
2133 MHz DDR4 memory. Each server has an 82599ES 10-Gigabit Ethernet network
interface card installed. Three different P4 targets belonging to different processing
platforms are evaluated: (1) An Agilio CX 2x10GbE SmartNIC from Netronome [101],
(2) A NetFPGA-SUME board with Xilinx Virtex-7 XC7V690T FFG1761-3 FPGA [99],
and (3) An open-source DPDK-based software switch called t4p4s [103].

We attach the two hardware targets, i.e., NetFPGA-SUME and Agilio CX SmartNIC,
to the PCI bus of Server I, while we run the t4p4s software switch on this server. We
connect the two physical ports of each investigated P4 target to two interfaces of
Server II, where MoonGen packet generator [31] runs. The MoonGen packet generator
is a DPDK-based packet generator capable of generating more than 10 Gbps Ethernet
traffic. It makes use of the hardware timestamping feature of modern commodity
NICs to deliver accurate and precise latency measurements with sub-microsecond
precision [31].
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Table 3.1.: Parameters considered for evaluating the processing latency of atomic P4
constructs.

Varied Parameter Value

P4 Constructs
Headers Parsing, Header’s Fields Modification,

Headers Modification, Headers Copying,
Headers Removal, Headers Addition, Tables Addition

P4 Targets Agilio CX SmartNIC, NetFPGA-SUME,
t4p4s DPDK-based Software Switch

Packet Sizes (in Bytes) 256, 1000, 1500
Rate (in Gbps) 9 to 10

In each measurement case, we vary the P4 program to be loaded into the investigated
P4 target. MoonGen generates packets and sends them over one link to the studied P4
target. The bitrate of generated traffic is configured to be equal to the line rate of the
device under test, i.e., the maximum rate that could be handled by the device without
packet drop. This rate is found to be 10 Gbps for hardware devices and 9.7 Gbps for
t4p4s software switch. The generated traffic gets processed in the P4 device according
to the loaded P4 program, then, they are sent back to MoonGen for measuring and
reporting the per-packet latency. In the evaluation, we test the effect of the size of
the packet on the forwarding latency by examining small, medium, and large-sized
packets with values equal to 256, 1000, and 1500 Bytes, respectively. We collect over
100,000 data points of latency values for each measurement case using MoonGen.

Benchmarking the latency cost of executing different P4 constructs is divided into seven
experiments, where each experiment considers a single P4 construct at a time. The P4
constructs under consideration include parsing headers, performing various header
operations, and utilizing match-action tables. In each experiment, the P4 construct
under test is incremented in different P4 programs, while ensuring that the examined
P4 construct is the only variable in these programs. Accordingly, we can track any
variation in the measured packet forwarding latency and relate it to the processing
latency of the varied P4 construct. The pipelines are designed with different initial
parsing stages to ensure that the parsing operation is the same within one experiment.
All pipelines also include minimal processing of a single table that matches against the
ingress port of any incoming packet and forwards it back to MoonGen by changing its
egress port according to a pre-installed rule. The different parameters considered in
this evaluation are summarized in Table 3.1. In the following, we describe the goal and
the design of the different conducted experiments.

Headers Parsing

The purpose of this experiment is to quantify the processing latency cost of parsing
headers in a P4 pipeline. We start with a baseline P4 program, denoted by Base_1,
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which parses a single Ethernet header. Then, we gradually increase the number of
parsed headers up to 14 while measuring the packet forwarding latency of each tested
P4 pipeline. The parsed-headers-stack consists of Ethernet, IPv4, UDP, Precision Time
Protocol (PTP), and ten dummy headers each of size equal to 16 Bytes. The first four
headers should be kept for the used packet generator, MoonGen [31], to properly
measure the per-packet latency.

Header’s Fields Modification

In this experiment, the latency cost of modifying the fields of a header is investigated.
More specifically, we track the difference between modifying a single field of a header
like the IPv4 destination address versus modifying multiple fields of that header as
when modifying the source and destination IPv4 addresses of the IPv4 header. The
experiment is designed to compare the latency of two triplets of P4 programs. In the
first triplet, we modify a single field of Ethernet, IPv4, and UDP headers, while in the
second triplet, we modify multiple fields of these headers to compare with.

Headers Modification

This experiment targets to investigate the impact of modifying a different number
of headers in a P4 pipeline. First, we start with a baseline P4 pipeline, denoted by
Base_14, that parses 14 headers. Then, we incrementally modify the 14 parsed headers
in different P4 programs by changing one field of each header at a time. The latency
results of the 14 different pipelines are measured and recorded. Given that headers
cannot be modified without being parsed, Base_14 is selected to be a common pipeline
in all the cases to unify the parsing header operation in all the programs and to
make sure that only header modification operation distinguishes different pipelines.
A similar approach for selecting the baseline pipeline is followed in the remaining
experiments to make sure that the examined P4 construct is the only variable in each
experiment.

Headers Copying

The latency cost of copying-header operation, where one parsed header is copied
into another parsed header in a P4 pipeline, is studied in this experiment. We select
the Base_14 P4 pipeline as a baseline pipeline, and then we increment the number of
copied headers from 1 to 10 in different P4 programs while tracking the latency results.
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Headers Removal

In this experiment, we measure the latency cost of removing headers from a packet.
We use Base_14 P4 pipeline as a baseline pipeline. Then, we measure the forwarding
latency of 10 P4 programs that vary only in the number of removed headers.

Headers Addition

The latency cost of adding headers into a packet in a P4 pipeline is studied in this
experiment. The baseline pipeline selected for this experiment is denoted by Base_4,
where Ethernet, IPv4, UDP, PTP headers are parsed. Then, we add 1 to 10 headers
incrementally into the header stack after the four parsed headers using ten different
P4 pipelines while measuring the latency of each pipeline. Maintaining the order of
the first four parsed headers at the beginning of the header stack is important for
the operation of MoonGen, which uses the PTP protocol in measuring the per-packet
latency [31]. For this experiment, the maximum generated packet size is selected to be
1300 Bytes instead of 1500 Bytes to ensure that the processed packets, with the newly
added headers, never exceed the Maximum Transmission Unit (MTU) size. Moreover,
it is important to decrease the rate of generated traffic sent to the P4 target when more
headers are added to the packet to make sure that the bitrate of the processed packets,
with the added headers, does not exceed the line rate of the P4 target or the link’s
capacity, i.e., 10 Gbps.

Tables Addition

The goal of this experiment is to measure the latency cost of adding tables into a P4
pipeline. Tables, or MAUs, are the basic processing units in a P4 program. We begin
with the Base_4 pipeline, which already includes a single table matching on the ingress
port for writing the egress port according to a proactively installed rule. Then, we
add 1 to 14 additional tables to the P4 pipeline’s ingress stage while measuring the
packet latency corresponding to different programs. Every new table performs exact
matching on a single field and takes the same forwarding action.

3.2.2. Evaluation

In this subsection, we will present the evaluation results of the different experiments
introduced in Subsection 3.2.1.
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Figure 3.3.: Measured forwarding latency as a function of the number of parsed headers.
Packet size equals 1500 Bytes unless otherwise specified.

Headers Parsing

The box plots in Fig. 3.3 show the minimum, first quartile, median, third quartile, and
the maximum of the measured packet forwarding latency in µs as a function of the
number of parsed headers when the packet size is set to MTU. The NetFPGA-SUME
card results, presented in Fig. 3.3a, show a linear increase in the forwarding latency
as a function of the number of parsed headers. The measured latency is recorded
to increase by around 2.3µs as the number of parsed headers increases from 1 to 14.
The parser states of a P4 program are compiled into FSM on the FPGA board, which
appears to have a significant impact on the processing latency [44]. Nevertheless, it is
observed that the NetFPGA-SUME maintains a stable performance while processing
an increasingly complex pipeline with more parsing states as the distribution of mea-
sured packet latencies is observed to be consistent when the number of parsed headers
increases.
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Fig. 3.3b corresponds to the measurement results of Agilio CX SmartNIC. It shows that
the median forwarding latency of the Base_1 pipeline when only a single header is
parsed is around 7.5µs. The latency then increases slightly when the number of parsed
headers increases to 14.

The results corresponding to the t4p4s DPDK-based software switch are shown in
Fig. 3.3c. The measurements show that the distribution of the forwarding latency is
invariant when the number of parsed headers increases where the median is always
almost equal to 45µs. It is notable that while most of the measured packet latencies are
centered around the median, there are few outliers recorded at values reaching as high
as 200µs. These outliers take place periodically and the reason for that is interpreted to
be a result of batch processing executed in DPDK.

The average forwarding latency corresponding to the P4 targets is plotted in Fig. 3.3d
in µs and in the logarithmic scale as a function of the number of parsed headers scale
when the packet size is set equal to 256, 1000, and 1500 Bytes. On average, it can
be observed that the forwarding latency of NetFPGA-SUME is smaller than that of
Agilio CX SmartNIC, which is smaller than that of the t4p4s software switch. Similar to
trends observed in the other subplots, the packet latency increases slightly in NetFPGA-
SUME and Agilio CX SmartNIC cases but stays constant in the case of the t4p4s switch.
Looking at the effect of varying the size of packets, we can observe that the latter results
in shifting the curves, while slopes are still the same. This means that the variation of
packet size contributes to a constant delay disregarding the packet processing defined
in the P4 program, which is usually applied to the headers of a packet. This constant
delay is due to the packet’s payload handling, i.e., storing then forwarding it. While
the relation between packet size and forwarding latency is proportional in the cases
of NetFPGA-SUME and t4p4s, it is not the case for Agilio CX SmartNIC, where the
forwarding latency is larger when the packet size is equal to 256 Bytes compared to the
cases when the packet size is equal to 1000, and 1500 Bytes. The latter is interpreted to
be a result of the frequent expensive memory access in Agilio CX SmartNIC when the
packet size is small, i.e., the packet rate is high [29].

Header’s Fields Modification

The measurement results, plotted as box plots, corresponding to the cases when modi-
fying a single field of three different headers versus the cases when modifying multiple
fields of these three headers are shown in Fig. 3.4. Different subplots correspond to the
results of the three investigated P4 targets when the packet size is set equal to the MTU.
In all these cases, the measured latency when modifying a single field of a header
looks very similar to the latency when multiple fields of a header are modified. Recall
that the deparsing stage of the P4 language is programmed using emit commands,
where this emit command works at the level of headers to reconstruct the packet at
the end of the packet processing pipeline. Accordingly, different P4 targets rewrite the
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Figure 3.4.: Measured forwarding latency as a function of the number of modified
headers’ fields for packet size equals 1500 Bytes.

full memory space allocated to a modified header disregarding how many fields of
that header are modified when the emit command is applied in the deparsing stage.
Therefore, the packet latency of a P4 program does not depend on the number of fields
modified within a header.

Headers Modification

This section analyzes the results of modifying headers where the forwarding latency
of different P4 pipelines with an increasing number of modified headers is measured.
Recall that from the previous experiment, we found out that the number of fields
modified within a header does not affect the forwarding latency as the P4 targets
modify the full header when any of its fields are modified. Figures 3.5a, 3.5b, and
3.5c show the box plots of measured latency in µs for a packet size equal to the
MTU when the number of modified headers increases on NetFPGA-SUME, Agilio
CX SmartNIC, and the t4p4s software switch, respectively. Moreover, the latency of
Base_14 pipeline, where 14 headers are parsed, is plotted for different P4 targets. From
these figures, we can observe that while the median of the forwarding latency increases
almost linearly as a function of the increasing number of modified headers in the
case of Agilio CX SmartNIC, it stays constant in the cases of NetFPGA-SUME and
the t4p4s software switch, where the measured latency is recorded to be 5.8 and 45µs,
respectively. The latter is because the t4p4s software switch rewrites the full header
stack of a packet when a single header is modified [114]. The NetFPGA-SUME follows
a similar approach because keeping track of which headers have been modified out
of those defined in the packet’s header stack requires additional logic on the card.
This additional logic requires additional processing latency and thus makes it more
practical to always modify the complete header stack when any of its constituting
headers is modified [43]. Unlike the latter two P4 targets, Agilio CX SmartNIC marks
the modified headers with dirty flag, and consequently only rewrites the memory space
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Figure 3.5.: Measured forwarding latency as a function of the number of modified
headers. Packet size equals 1500 Bytes unless otherwise specified.

corresponding to the modified (marked) headers.

Fig. 3.5d shows the average measured latency in logarithmic scale and in µs for dif-
ferent packet sizes as a function of the number of modified headers for the three
benchmarked P4 targets. This plot shows a similar dependency as that observed in
the other subplots between packet forwarding latency and the number of modified
headers. Also, the effect of packet size on packet forwarding latency is similar to
that observed in Fig. 3.3d. Furthermore, we can observe that the average forwarding
latency measured on NetFPGA-SUME is always less than that measured on the other
two P4 devices. Also, the Agilio CX SmartNIC has lower forwarding latency compared
to the t4p4s software switch except for the case of small packet sizes. Finally, it is worth
noting that the impact of IP checksum execution is also tested when modifying the IP
header, where results showed a negligible variation in the packet forwarding latency
on the three P4 targets.
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Figure 3.6.: Measured forwarding latency as a function of the number of copied headers.
Packet size equals 1500 Bytes unless otherwise specified.

Headers Copying

The results when copying a different number of headers within a P4 pipeline are
analyzed in this subsection. The pipelines of this experiment are built on top of
Base_14 pipeline where 14 headers are parsed and whose median latency results are
presented in the first three subplots of Fig. 3.6 as baselines. In general, the box plots of
the packet forwarding latency plotted in these subplots for different P4 devices and
for MTU-sized packets, resemble a similar behavior to that recorded in the previous
experiment when the number of modified headers is varied between 1 and 10. The
same is observed when inspecting Fig. 3.6d, which shows the variation of average
forwarding latency on the three devices and for three different packet sizes as a function
of the number of copied headers in µs and in the logarithmic scale. The reason behind
the similarity between the results of this experiment and the previous one is that the
copy header operation is an extreme case of modifying header operation, i.e., in a copy
header operation we modify all the fields of the destination header. Also given the
findings of Header’s Fields Modification experiment, where we identified that the
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Figure 3.7.: Measured forwarding latency as a function of the number of removed
headers. Packet size equals 1500 Bytes unless otherwise specified.

number of fields modified within a header is irrelevant to the packet forwarding latency,
we can conclude that the copy header experiment and modify header experiment have
a similar forwarding latency because they both result in similar packet processing to
be executed in the P4 targets. There is a slight difference in the measured latency of
these two experiments when the number of headers is less than 4 because the first four
modified headers in these two experiments are different as explained earlier in the
description of these two experiments.

Headers Removal

The box plots corresponding to the packet forwarding latency as a function of the
number of removed headers are plotted in the first three subplots of Fig. 3.7 in µs and
for MTU-sized packets. Additionally, the forwarding latency of Base_14 pipeline is
plotted in these subplots.
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In the case of NetFPGA-SUME and t4p4s software switch, the median of the measured
forwarding latency slightly decreases by 0.1 and 2µs when the number of removed
headers increases up to 10, as plotted in Fig. 3.7a and 3.7c, respectively. This decrease
is probably due to the decreased size of the packet’s header stack to be emitted. The
distribution of collected packet latency for both devices is similar to that observed in
the previous experiments. The results corresponding to Agilio CX SmartNIC, depicted
in Fig. 3.7b, show that the forwarding latency linearly increases from 8.7µs to 17.5µs
when the number of remove header operations increases from 1 to 7. Afterward,
the latency sharply increases to 35.1µs when one more remove header operation is
applied. Then, the latency increases again linearly up to 39µs when the number of
removed headers increases from 8 to 10. This sharp increase in latency after removing
7 headers is related to implementation specifics of the Agilio CX SmartNIC, where an
infrastructural process is involved at the deparsing stage causing this high processing
latency. This involved process is dependent on the size of the removed headers. If
the size of removed headers is larger than a threshold, the execution time of this
process becomes larger as it triggers moving the whole payload of the packet from
one memory space to another. The movement of the payload also makes the execution
time of this process depends on the size of the payload. The collected results show
that this behavior takes place when more than 7 headers each of size 16 Bytes, i.e.,
7 · 16B = 112B, need to be removed from the packet.

Figure 3.7d shows the average forwarding latency of the three devices for different
packet sizes in µs and in logarithmic scale as a function of the number of removed
headers. The previously described relation between packet size and forwarding latency
for all three devices still holds, except for Agilio CX SmartNIC after 7 headers need to
be removed where in this case the forwarding latency becomes larger for larger packets
because of the implementation specifics described before. Also similar to previous
results, NetFPGA-SUME still outperforms Agilio CX SmartNIC, which outperforms
the t4p4s software switch except for two cases: (1) when the packet size is equal to
256 Bytes; and (2) when the packet size is equal to 1000 Bytes and more than 7 remove
headers operations are executed.

Headers Addition

The first three subplots of Fig. 3.8 depict the box plots of measured forwarding latency
of packets of size 1300 Bytes in µs when the number of add header operations increases
from 1 to 10. The median of the latency corresponding to the Base_4 pipeline, for
MTU-sized packets, are also plotted in these figures to approximate the baseline case.

The results corresponding to NetFPGA-SUME, depicted in Fig. 3.8a, show that the
median of the latency increases linearly from 4 to 5.8µs when the number of added
headers increases from 1 to 10. This increase is due to the grown header stack, because
of added headers, to be emitted.
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Figure 3.8.: Measured forwarding latency as a function of the number of added headers.
Packet size equals 1500 Bytes unless otherwise specified.

Similarly, the latency results corresponding to Agilio CX SmartNIC, depicted in
Fig. 3.8b, show a linear increase from 8.7 up to 16.2µs when the number of added
headers increases to 6. Afterward, the latency increases more sharply reaching up to
75.4µs while the number of added headers increases from 6 to 10. The reason for this
sharp increase in latency is similar to that clarified in the previous subsection, where
the involvement of an infrastructural process for moving the payload of the packet after
a certain threshold of added Bytes to the packet results in a large execution time. Based
on Fig. 3.8b, this behavior begins after adding more than 6 headers of size 16 Bytes, i.e.,
6 · 16B = 96B, to the header stack of a packet. Looking at the results corresponding
to the t4p4s switch plotted in Fig. 3.8c, we can observe that the latency also slightly
increases from 40.3 to 43.1µs as the number of added headers increases from 1 to 8.
This increase is also related to the grown header stack to be emitted. The maximum
number of headers that could be added to the t4p4s software switch is equal to 8
headers due to constraints imposed by the implementation of the DPDK framework.
This framework reserves a space in front of every processed packet for adding headers.
This space is called RTE_PKTMBUF_HEADROOM and it is preset to a maximum value
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equal to 128 Bytes [103]. In this experiment, the size of each added header is equal
to 16 Bytes, making the maximum number of headers that can be added to a packet
limited to 8 headers, 128B/16B = 8. The packets’ distributions on different targets
are similar to that observed in the previous experiments, except for NetFPGA-SUME,
where we observe an increasing occurrence of outliers when more headers are added
in the loaded P4 pipeline.

The average forwarding latency of the three devices for different packet sizes in µs and
in logarithmic scale as a function of the number of added headers is shown in Fig. 3.8d.
The effect of packet size on forwarding latency is the same as described in previous
experiments for all three devices, except for Agilio CX SmartNIC after 6 headers are
added where in this case the forwarding latency becomes larger for larger packets
due to the specific implementation details of the device described before. In all cases,
NetFPGA-SUME outperforms the other two targets for all packet sizes. The Agilio
CX SmartNIC has a lower forwarding latency compared to the t4p4s software switch
except for two cases: (1.) when the packet size is equal to 256 Bytes with more than one
add header operations; and (2.) when the packet size is equal to 1000 and 1500 Bytes
with the number of add header operations equal to 8.

Tables Addition

The first three subplots of Fig. 3.9 show the box plots of measured forwarding latency
in µs for MTU-sized packets when the number of instantiated tables in a P4 pipeline
increases. These figures also show the median of the measured latency of the baseline
pipeline defined for this experiment, i.e., Base_4 pipeline. Figures 3.9a, 3.9b, and 3.9c
shows a linear increase of the median of the measured latency by 1.7, 4.8, and 0.6µs in
the cases of NetFPGA-SUME, Agilio CX SmartNIC, and the t4p4s switch, respectively
when the number of added tables increases from 1 to 14. This increase in latency is due
to the extra processing taking place in the P4 targets because of the increasing lookup
and matching operations accompanied by the added tables.

The average measured latency corresponding to the three targets for different packet
sizes and as a function of the number of added tables is plotted in Fig. 3.9d in µs and in
logarithmic scale. Generally, NetFPGA-SUME always has a lower forwarding latency
compared to Agilio CX SmartNIC, which has a lower forwarding latency compared
to the t4p4s software switch. Also, the previously identified relationship between
the size of packets and measured latency is still valid for all targets, except for the
t4p4s software switch after three added tables for small-sized packets. In this case, we
observe that t4p4s starts dropping some packets and the packet forwarding latency
grows sharply. The latter takes place on t4p4s because the number of lookup operations
to be executed increases because of the increased number of tables to be processed and
the increased incoming packet rate when the packet size is smaller. When executing
a high number of lookup operations, some hardware constraints such as exceeding
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Figure 3.9.: Measured forwarding latency as a function of the number of added tables.
Packet size equals 1500 Bytes unless otherwise specified.

the cache memory size, available CPU cycles, and memory transfer bandwidth are
violated on the hosting machine [103]. For small-sized packets, our evaluation showed
that t4p4s can process 14 tables without dropping packets only when the incoming
traffic rate never exceeds 4.5 Gbps.

3.2.3. Summary

In this section, we evaluated three state-of-the-art P4 targets to quantify the contribution
of different P4 constructs to the overall forwarding latency on these investigated P4
targets. The evaluation showed that NetFPGA-SUME has a lower forwarding latency
compared to Agilio CX SmartNIC, which has a lower forwarding latency compared
to the t4p4s software switch. Generally, we observed that distinct P4 constructs have
a different impact on the processing latency of different P4 targets. Also, we could
observe that in most cases when a P4 construct influences the processing latency of a P4
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device, there exists a linear relationship between the number of applied P4 constructs
and the average forwarding latency on that P4 device. This observation is crucial for
deriving a model that quantifies the latency of executing arbitrary P4 programs on
different P4 devices as will be illustrated in Section 4.2.

3.3. Evaluating Flow Scalability

After investigating the impact of the complexity of the loaded P4 data plane on the
forwarding latency in Section 3.2, in this section, we focus on evaluating the impact
of the flow scalability on the packet forwarding latency. The flow scalability analysis
focuses on determining the maximum number of rules that can be supported by a P4
device. Assuming that different flows hit distinct rules, this analysis quantifies the
maximum number of flows that can be handled by the investigated P4 devices. As
an example, such an analysis can reveal the maximum number of users, based on the
maximum number of supported rules, that can be defined in a P4 device running a
P4 program that implements access control functionality. Moreover, we evaluate in
this analysis the impact of the increasing number of incoming flows on the packet
forwarding latency of different P4 devices. This metric is important for assessing the
behavior of the investigated P4 device when the incoming number of distinct flows
scales up. Accordingly, it can reveal the limitations of these P4 devices if they are to be
used in production environments with high traffic loads.

In this evaluation, we focus on the MAU (or P4 table) in a P4 pipeline. We identify
the maximum number of rules that can be installed in a P4 table and the impact of
scaling up the number of distinct incoming flows that match these installed rules on
the packet forwarding latency. The contributions presented in this section are based on
our publication [3]. In Subsection 3.3.1, we describe the designed experiments, while
in 3.3.1 we plot and analyze the collected results. In Subsection 3.3.3, we summarize
the findings of this section.

3.3.1. Testbed and Experiment Design

In this subsection, we describe the experimental setup used for conducting this experi-
ment as well as the different parameters used in the evaluation.

Testbed Setup

The measurement setup used in this experiment is similar to that used in the previous
experiment studied in Section 3.2, which is shown in Fig. 3.2. The flow scalability

42



3. Benchmarking the Performance of P4 Programmable Packet Processors

analysis is conducted for the same three P4 devices: Agilio CX SmartNIC, NetFPGA-
SUME, and the t4p4s software switch. In this experiment, we always load the L3Fwd
P4 program into the P4 device, while installing a different set of rules in different
evaluated scenarios. Note that in this experiment we do not vary the P4 program as in
the previous experiment, rather, we only vary the rules to be installed into the P4 tables.
Traffic is generated by MoonGen [31] and sent over a 10 Gbps link to the investigated
P4 target. After getting processed in the P4 target, this traffic is sent back to MoonGen
over another 10 Gbps link for measuring and reporting the latency results.

In all evaluated cases, MoonGen is configured to generate traffic at the line rate of
the investigated P4 devices, i.e., 10 Gbps for hardware devices and 9.7 Gbps for the
t4p4s software switch. The packet size is varied to take values equal to 256, 1000, and
1500 Bytes to test its impact on the forwarding latency. The latency measurements of
100 thousand packets are collected by MoonGen in each evaluated case to generate the
statistics report.

Evaluated Cases

As the purpose of this experiment is to test the impact of scaling up the number of
rules installed in a P4 device and the number of incoming flows to it, we fix the loaded
P4 program in the P4 device to always perform L3Fwd functionality. The program is
made up of a single table that matches the IPv4 destination address header field and
accordingly performs forwarding. The rules installed in this table define the different
proactively configured routes. The matching type of the P4 table is also varied and
studied in this experiment, where both exact matching and wildcard matching (ternary
or LPM) are examined.

Four different cases are studied in this experiment, summarized in Table 3.2, by varying
the number of installed rules in the P4 routing table and the number of incoming flows
into the P4 target. The first case R1F1 is the baseline case where a single routing rule is
installed into the P4 table while MoonGen is configured to generate a single flow of
packets with IPv4 destination address matching the installed rule. In the second case
RmaxF1, the number of rules installed in the P4 table is increased to reach the maximum
possible number, while Moongen is configured to keep sending traffic corresponding
to a single flow (hitting a single rule in the P4 table). In the third case RmaxF1k, we
keep the P4 table filled with the maximum number of rules that could be installed, but
we increase the generated flows coming into the P4 target to reach 1000 flows that hit
different installed routing rules. In the last case RmaxFmax, we increase the number of
generated flows to match the maximum number of installed rules in the P4 target.

Among the attributes of P4 tables in the P4 language is the "Table Size". This attribute
specifies the maximum number of rules that can be added to a P4 table, and accordingly
the memory space to be reserved for storing these rules. This table size is limited to
some value for each P4 device. While this limit represents the theoretical maximum
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Table 3.2.: Applied parameters with corresponding IDs for the different cases evaluated
in the flow scalability experiment.

Case ID Number of Installed Rules Number of Processed Flows
R1F1 1 1
RmaxF1 Maximum 1
RmaxF1k Maximum 1000
RmaxFmax Maximum Maximum

number of rules that can be added to a P4 table, we found that the P4 devices do not
always operate properly when reaching that limit. Accordingly, we searched for the
operable upper limit on each P4 device by trial and error. We start by trying to add the
theoretical maximum number of rules to the P4 table of each P4 device and checking if
the device operates successfully. If this was not the case, we cut the number of added
rules to half and try again until finding the operable maximum number of rules that
could be supported by a P4 device. This limit is identified for each P4 device when
performing exact and wildcard matching. In the wildcard matching case, the LPM is
used for all devices except for NetFPGA-SUME which only supports ternary matching.

Starting with NetFPGA-SUME, this P4 device uses the Xilinx P4-SDNet tool for com-
piling P4 programs. Its documentation specifies the theoretical maximum number of
rules for different match types [115]. When trying to set the table size to a value larger
than this limit, a compilation error is reported. Although the compilation process was
successful for this theoretical table size, the operable limit was less than that. For the
exact matching case, when using the theoretical limit of 512k rules, the synthesis of
this program fails as it could not allocate sufficient memory resources, specifically
RAM, to support storing this large number of rules. For 256k and 128k rules, the
program’s synthesis passes successfully, however, the control plane application fails in
interacting with the generated design when trying to add the routing rules. The reason
for this could be the high utilization of the RAM resources on the FPGA as this reached
around 90%. The next trial of 64k rules works successfully, and thus it is selected as the
operable limit for exact matching on the NetFPGA-SUME case. In the case of wildcard
matching, we found that the operable limit is the same as the documented 4k rules
theoretical limit.

In the case of Agilio CX SmartNIC, although the documentation says that the theoretical
maximum number of rules can be up to 64k rules [101], the P4 program compiles even
when the table size is set to take values as large as 50 million. However, a loading
error takes place when trying to install more than 48k rules to the SmartNIC in both
exact and wildcard matching cases. So we select 48k rules to be the operable limit in
the evaluation while 64k is the theoretical limit. It is also observed that the maximum
number of supported rules depends on the size of the rule entry, i.e., the number and
size of matching fields and action parameters. It seems that there is limited memory
space for storing the rules in the SmartNIC and this space fills up based on the product
of the number of table entries with the size of each entry.
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Table 3.3.: A summary of the theoretical and operable limit on the maximum number
of rules used in the flow scalability evaluation for the three investigated P4
targets. The symbol (=) denotes exact matching, while (*) symbol denotes
wildcard matching.

P4 Target Match Type Theoretical Max. Rules Operable Max. Rules

NetFPGA = 512k 64k
* 4k 4k

Agilio CX = and * 64k 48k
t4p4s = and * 1k 1k

In the case of the t4p4s software switch, we found that the limit on the maximum num-
ber of rules that could be installed into a P4 table is hardcoded to be 1024 rules in the
source code of this software switch in the "HASH_ENTRIES" and "LPM_MAX_RULES"
constants in "dpdk_tables.h" [114]. This makes the theoretical and operable limit for
this software switch equal to 1024 rules. Note that it is observed that although t4p4s
allows setting the table size in the P4 program to larger values without compilation
or execution errors, it only applies the last 1024 rules when performing the packet
forwarding. Moreover, we note that while the hardcoded limit on the number of rules
could be changed to larger values in the source code of t4p4s, we decide to stick to
evaluating the default implementation available in the open-sourced repository.

Table 3.3 summarizes the theoretical and operable limit on the maximum number of
rules that could be used on different P4 targets. The operable maximum number of
rules is used in the flow scalability analysis to configure the maximum size of the P4
routing table and to generate a corresponding number of distinct flows.

3.3.2. Evaluation

The results of the flow scalability experiment described in Subsection 3.3.1 are plotted
and interpreted in this Subsection.

Fig. 3.10 shows the box plots of the measured forwarding latency on the three investi-
gated P4 targets in µs for the different examined cases when the packet size is equal to
MTU. Results corresponding to the wildcard matching case are shaded in grey.

The median of the forwarding latency for the baseline case R1F1 is found to be equal
to 3.74, 8.7, and 45.4µs on NetFPGA-SUME, Agilio CX SmartNIC, and t4p4s software
switch, respectively. When the number of added rules increases to the maximum
operable value of each device in case RmaxF1, the measured forwarding latency stays
the same. However, when the number of incoming flows increases in cases RmaxF1k

and RmaxFmax, we observe that while the forwarding latency stays invariant in the
case of NetFPGA-SUME, it slightly increases in the case of Agilio CX SmartNIC by 1µs
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Figure 3.10.: Measured forwarding latency of different flow scalability cases for MTU-
sized packets.

and sharply increases in the case of t4p4s software switch by around 30µs. The results
corresponding to the wildcard matching case show the same impact of flow scalability
on the packet forwarding latency for all three investigated P4 targets.

These results reveal that NetFPGA-SUME is well designed for accommodating scaled
traffic without compromising on the high forwarding performance. Agilio CX shows
a similar high performance while dealing with a scaled-up number of flows. The
slight increase in latency could be due to the increased lookup time when accessing
per-flow cached information. Unlike the latter two optimized hardware P4 targets, the
t4p4s software switch showed a weak scaling behavior when the number of incoming
flows increased. This is because t4p4s is a software switch running on a general-
purpose server, which is not optimized for packet processing purposes, and thus can
hit different memory bottlenecks when executing extensive lookup operations. Note
that the two casesRmaxF1k andRmaxFmax are equivalent for t4p4s, because the operable
maximum number of rules, and thus generated flows, is equal to 1k in this case as
highlighted in Table 3.3.

The average forwarding latency, in µs and logarithmic scale, when running the pre-
viously defined flow scalability cases on different P4 targets with packet sizes equal
to 256, 1000, and 1500 Bytes is shown in Fig. 3.11a and 3.11b for exact and wildcard
matching cases, respectively. These figures again show that NetFPGA-SUME and
Agilio CX SmartNIC have a stable performance when processing a scaled number of
flows, unlike the case of the t4p4s software switch.

The impact of packet size on shifting the forwarding latency of different P4 targets
analyzed in Subsection 3.2.2 still holds here. It is notable that the forwarding latency
slightly decreases when the number of incoming flows scales up in the case of Agilio
CX SmartNIC for 256 Bytes-sized packets. This unexpected behavior could be due
to some optimization techniques implemented on this card, which is activated when
the number of lookup operations increases largely, as in this case when the number of
distinct incoming flows and the packet rate (for small sized-packets) increase.

46



3. Benchmarking the Performance of P4 Programmable Packet Processors

R1F1 RmaxF1 RmaxF1k RmaxFmax

Case ID

100

101

102
A

v
e

ra
g

e
 F

w
d

 L
a

te
n

c
y

 (
in

 
s

)
t4p4s

Agilio CX

FPGA

256B

1000B

1500B

(a) Exact Matching

R1F1 RmaxF1 RmaxF1k RmaxFmax

Case ID

100

101

102

A
v
e
ra

g
e
 F

w
d

 L
a
te

n
c
y
 (

in
 

s
)

(b) Wild Matching

Figure 3.11.: Average forwarding latency of different flow scalability cases for different
targets, packet sizes, and types of matching.

3.3.3. Summary

In this section, we investigated the effect of scaling up the number of incoming flows
on the forwarding latency of three state-of-the-art P4 targets. In general, the results
revealed that while hardware-based P4 targets such as NetFPGA-SUME and Agilio
CX SmartNIC could handle traffic with a high number of distinct flows without
compromising the forwarding performance, this is not the case for the software DPDK-
based t4p4s switch.

3.4. Evaluating Responsiveness of Control Agent

In this experiment, we focus on evaluating the responsiveness of P4 devices to control
plane commands. P4 devices interact with SDN controllers through the Control Agent.
This Control Agent lies in the P4 device on top of the packet forwarding pipeline. on
one hand, it communicates with the SDN controller and decodes its messages. On
the other hand, it changes the state of the packet forwarding pipeline accordingly by
adding table rules, etc.

In this study, named rule update responsiveness, we target finding the delay needed
by the packet processing pipeline to respond to control plane commands. Identifying
this delay is critical, as it reveals the period over which the control and data planes are
in an inconsistent state, which can accordingly result in vague forwarding behavior.
The contributions presented in this section are based on our publication [3]. In Subsec-
tion 3.4.1 we describe the designed experiments, while in Subsection 3.4.2 we plot and
analyze the collected results. In Subsection 3.4.3, we summarize the findings of this
section.
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Figure 3.12.: A testbed built for conducting the rule update responsiveness analysis.
Server I hosts the P4 target and the control plane, while Server II runs
MoonGen packet generator. Multiple timestamps are collected at different
stages of the experiment to calculate the delays related to the responsive-
ness of the P4 devices to control plane update rules.

3.4.1. Testbed and Experiment Design

In the following, we describe the testbed used for conducting this experiment, as well
as the different scenarios considered in this evaluation.

The two Nokia NDCS16RM AirFrame Compute Nodes described in Subsection 3.2.1
are used to build the setup shown in Fig. 3.12. Only the two hardware P4 targets, i.e.,
NetFPGA-SUME and Agilio CX SmartNIC, are evaluated in this experiment. The t4p4s
software switch is excluded because its current implementation of the Control Agent
is still experimental and does not fully allow adding rules to the switch at runtime.
The two hardware P4 targets are plugged into the Peripheral Component Interconnect
Express (PCIe) bus of Server I, which also runs the Control Plane software. These
two hardware P4 targets have physical interfaces to connect with other machines,
and virtual interfaces exposed to the operating system of the hosting machine. We
connect MoonGen to one of the physical interfaces, i.e., NF0_phy, of the P4 target under
investigation. The experiment is conducted through the following steps:

1. The L3Fwd P4 program is loaded to the investigated P4 target, along with a
routing rule that forwards packets coming from one physical interface, i.e NF0_-
phy, to another virtual interface, i.e., NF0_vir.

2. MoonGen starts sending traffic over the link connected to the physical interface
NF0_phy of the investigated P4 target. The rate and packet size of this generated
traffic is configurable.

3. The control plane program running on Server I generates and sends an updated
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forwarding rule to the P4 target over the control channel. The updated rule
changes the egress port corresponding to the packets received on NF0_phy to
let them leave on virtual interface 1, i.e., NF1_vir, instead of NF0_vir. Two
timestamps T1 and T2 are captured directly before and after sending the update
rule in the control plane application.

4. The traffic leaving on the two virtual interfaces NF0_vir and NF1_vir is monitored
using Tcpdump [116]. A timestamp T3 is taken for the last packet received
on interface NF0_vir before the update rule changes the egress port. Another
timestamp T4 is taken for the first packet received on interface NF1_vir after the
update rule takes effect in changing the forwarding path.

The collected timestamps will be used to measure relevant metrics for analyzing the
responsiveness of P4 targets to control plane update rules. Note that to avoid time
synchronization issues, we ensure that all timestamps are obtained from the same
server. Each test case is run 20 times to make confidence in the measured timestamps
T1, T2, T3, T4. The default tools provided for each P4 target are used to run the
control plane and to issue the update rules. In the case of NetFPGA-SUME, a provided
python API that includes different relevant libraries is used for pushing the control
plane update rule to the P4 data path, while in the case of Agilio CX SmartNIC, the
executable program "rtecli" is used for this purpose. Note that in the case of NetFPGA-
SUME, we could take one more timestamp just before the last line of code responsible
for pushing the control plane update rule to quantify the pre-processing delay in the
tool. This was possible because the source code of the NetFPGA-SUME’s python API
was unrestricted, unlike the case of Agilio CX which provides the "rtecli" tool as an
executable program.

Experimental Scenarios

In this experiment, we vary different parameters to study the impact of each on the
responsiveness of P4 devices to control plane commands. In each evaluated case, we
measure the following two metrics:

• Response_Time = T4 − T1: This is the period from issuing the control plane
command until this command takes effect on the data plane forwarding behavior.
Note that during this time period, the control and data planes have inconsistent
states, which may result in out-of-date forwarding behavior.

• Update_Rate = (T2 − T1)−1: This value defines the maximum rate at which a
control plane can issue and send update rules to the data plane. It is calculated
based on the execution time required for issuing a single update rule command,
i.e., (T2− T1).

Three different P4 pipelines, each requiring a different type of update rules, are investi-
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Table 3.4.: A summary of the variables and metrics considered in the rule update
responsiveness experiments.
Varied Parameter Value
P4 Targets NetFPGA-SUME, Agilio CX SmartNIC
P4 Pipelines Fwd_Exact, Fwd_Wildcard, Fwd_Register
Packet Size (in Bytes) 256, 1000, 1500
Rate (in Mbps) 100, 250, 500/ 6000
Evaluated Metrics Update_Rate, Response_Time

gated in this experiment. The three pipelines perform packet forwarding functionality.
The first pipeline, named Fwd_Exact, forwards packets based on an exact match-action
table, where the corresponding update rule modifies the egress port from NF0_vir to
NF1_vir. The second pipeline, named Fwd_Wildcard, performs similar functionality
but uses a wildcard match-action table and type of update rule. The third pipeline,
named Fwd_Register, forwards packets to an egress port whose value is read from a
stateful register, where this stored value changes according to the received update rule.

We also varied the configurations of generated traffic throughout the experiment. The
size of generated packets is set to take small, average, and large values equal to 256,
1000, and 1500 Bytes, respectively. Additionally, we varied the rate of incoming traffic
to the P4 targets. While the physical interfaces can handle up to 10 Gbps traffic rate,
this rate is limited to lower values when packets are forwarded to the virtual interfaces
through the PCIe bus. We found that the maximum supported throughput that can be
forwarded to virtual interfaces in the case of NetFPGA-SUME is limited to 500 Mbps.
On the other hand, Agilio CX SmartNIC could forward up to 6000 Mbps traffic of
small-sized packets. Therefore, we select these two rates as the maximum rates to
be evaluated for each device, besides 250, and 100 Mbps as average and low-loaded
cases, respectively. A summary of all varied parameters and evaluated metrics in this
experiment is provided in Table 3.4.

3.4.2. Evaluation

In this subsection, we present the results corresponding to the rule update respon-
siveness experiment. Figures 3.13a and 3.13a show the average response time, in µs,
measured on NetFPGA-SUME and Agilio CX SmartNIC, respectively. The results
are plotted when different combinations of traffic load, i.e., rate and packet size, are
generated, and when different types of update rules are issued by the control plane.
The results collected on NetFPGA-SUME show that the response time stays constant
in a range between 61 and 65 ms disregarding the variation of traffic load or type of
update rule. On the contrary, the Agilio CX SmartNIC results show that the type of
update rule impacts the data plane’s response time, while the traffic characteristics do
not. The recorded response time is higher than that measured on NetFPGA-SUME,
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Figure 3.13.: Measured average response time corresponding to different traffic charac-
teristics and types of control plane rules.

where it varies between 137 to 145 ms, 185 to 192 ms, and 173 to 179 ms when the
type of the issued control plane rule is register update, exact matching, and wildcard
matching, respectively.

In all the evaluated cases, we observe that the traffic characteristics have a minimal
impact on the measured response time not exceeding 10 ms. The same is recorded
when setting packet size and traffic rate to average values, i.e., 1000 Bytes and 256 Mbps,
respectively. For this reason, we skip plotting the combinations corresponding to these
cases. The standard deviation of the 20 runs of each evaluated scenario is always less
than 3 ms and 10 ms in the case of NetFPGA-SUME and Agilio CX SmartNIC, respec-
tively. It should be highlighted that the pre-processing of control plane commands that
takes place in the control plane tools contributes to a major part of the measured delay
in the response time. This pre-processing delay is found to be reaching up to 60 ms
when measured on NetFPGA-SUME.

The evaluated average update rate measured on the two devices for different traffic
characteristics and types of control plane update rules is presented in Fig. 3.14. The
update rate in the case of NetFPGA-SUME, shown in Fig. 3.14a, varies between 8 and
14 updates per second. This rate is invariant when the type of update rule changes.
However, it varies when the incoming traffic is at a high packet rate, i.e., when the
bitrate is high at 500 Mbps and the packet size is small at 256 Bytes. In this case, the
update rate drops to 8 updates per second because of a probable processing bottleneck
taking place during the interaction of the NetFPGA-SUME with the PCIe bus of the
hosting machine. On the other hand, the update rate recorded on Agilio CX SmartNIC,
depicted in Fig. 3.14b, shows invariant results when traffic characteristics or type of
update rules change. This update rate is smaller than that recorded on NetFPGA-SUME,
where it varies between 6.2 and 7 updates per second.
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Figure 3.14.: Measured average update rate corresponding to different traffic character-
istics and types of control plane rules.

Note that we removed some of the measured data points when they are identified
as outliers with a very large distance from the median value of the other collected
measurement results. These removed data points are considered measurement noise
and they are less than 2.5 % of the total number of collected measurement results.

3.4.3. Summary

In this section, we investigated the responsiveness of two state-of-the-art P4 targets to
control plane update rules. Our evaluation revealed that the response time to control
plane commands is in the millisecond range, which is three orders of magnitude
larger than the data plane’s forwarding latency. This response time varies for different
P4 targets, where we observed that NetFPGA-SUME reacts faster than Agilio CX
SmartNIC to control plane update rules. A big part of the response time is spent in
the preprocessing of the control plane commands that take place in the given devices’
toolchains.

3.5. Evaluating P4Runtime Controllers

The controller is a keen component in the SDN architecture. It is the layer that guar-
antees smooth communication between the control applications via the northbound
interface and the data planes via the southbound interface. It is involved in many pro-
cedures for managing and controlling switches in the forwarding plane. Therefore, it is
critical to evaluate this controller and its interaction with the data plane to understand
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its performance and limitations as these will be inherited by the overall SDN system.
Additionally, it is crucial to push the controller to edge cases by increasing the size
of the network to be controlled or by generating a high traffic load to be handled to
understand the existing bottlenecks in the controller’s implementation and to capture
any unexpected behaviors.

To control P4-based data planes, the controller needs to support P4RT framework as
a southbound protocol. ONOS controller, illustrated in Subsection 2.2.2, is one of
the few controllers that currently have a stable implementation of P4RT framework.
Although there are plenty of works in literature that evaluate the performance of OF-
based SDN controllers, there is none yet that studies P4RT-based ones. In this section,
we fill this gap by proposing a new benchmarking tool, called P4Runtime Controller
Probe (P4RCProbe), for evaluating the performance of P4RT-based SDN controllers.
The contributions presented in this section are based on our publication [6]. The design
and implementation of this tool are described in Subsection 3.5.1. In Subsection 3.5.2,
we use this tool to evaluate the performance of the ONOS controller when running
in P4RT mode and compare the results to that collected when using ONOS in OF
mode, where the latter serves as a baseline case. Finally, in Subsection 3.5.3, we
elaborate on the procedure applied using P4RCProbe to identify bottlenecks in ONOS-
P4RT implementation, and we describe the code patch proposed for mitigating these
bottlenecks, which resulted in 17% overall improvement in the packet rate successfully
handled by ONOS. In Subsection 3.5.4, we summarize the findings of this section.

3.5.1. P4RCProbe: Design and Implementation

In this subsection, we elaborate on the design and implementation of P4RCProbe, a
novel benchmarking tool for P4RT-based SDN controllers.

As the literature contains many open-source benchmarking tools for OF controllers,
we choose to build on top of one of these tools to utilize its mature development
stage. We extend the OFCProbe tool [20], which was originally designed to benchmark
OF controllers, to support benchmarking P4RT controllers. OFCProbe’s modular
design allows for the easy addition/integration of P4RT-enabler modules. In Fig. 3.15,
we depict the original architecture of OFCProbe highlighting the modified or added
modules to support benchmarking P4RT controllers.

The tool basically instantiates virtual (dummy) switches that connect to the SDN
controller. When benchmarking starts, the tool triggers these switches to send Packet-
In messages to the controller and receive back Packet-Out messages from it, while
recording statistics related to this communication such as packet rate, Round-trip
Time (RTT), etc. The Communication Layer of the tool initiates and manages the
connection channels between the virtual switches and the SDN controller. On the other
hand, the Traffic Generation Layer takes care of managing the events related to the life
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Figure 3.15.: Architecture of P4RCProbe, where modified/ added modules with respect
to OFCProbe are highlighted.

cycle of packets to be sent by the virtual switches such as packets’ generation, queuing,
scheduling, handling, etc. The implementation details of P4RCProbe, especially those
related to the modified or added modules, are described in the following.

Connection Handler Module

Unlike OF controllers that use OF protocol to communicate with data planes, P4RT-
based controllers use P4RT framework for this purpose. P4RT framework is based
on Remote Procedure Call (RPC)s where gRPC and Protocol Buffers are used. To
support the two types of southbound communications, we implement a parent connec-
tion handler module class, which can be inherited by both OF and P4RT connection
handlers. The P4RT connection handler can instantiate a gRPC server stub based on
the P4Runtime protocol buffer file "P4Runtime.proto" [94] for each emulated switch.
This gRPC server stub waits for the connection to be initiated by the gRPC client
stub that runs in the P4RT-based controller under investigation. For each virtual
switch-controller communication channel, the following five RPCs are established and
managed:

• Write RPC: This is a unidirectional RPC used by the controller to update/ write
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one or more P4 entities on the P4 target.

• Read RPC: This is a unidirectional RPC used by the controller to read one or
more P4 entities from the P4 target.

• SetForwardingPipelineConfig RPC: This is a unidirectional RPC used by the
controller to push the P4 pipeline’s configuration file to the P4 target.

• GetForwardingPipelineConfig RPC: This is a unidirectional RPC used by the
controller to retrieve the configuration file of the currently running P4 forwarding-
pipeline on the P4 target. Note that the"Cookie field" is one of the fields to be
filled in the messages communicated in this RPC. This field is used to uniquely
identify a P4 forwarding pipeline and is calculated as the hash function of the
configuration file of that particular P4 forwarding pipeline. The tool fills this field
with the value extracted from the same field of the SetForwardingPipelineConfig
message to emulate for the controller that all the instantiated switches run a
particular P4 forwarding pipeline.

• StreamChannel RPC: This is a bidirectional stream initiated by the controller
and connects to the P4 target. Besides initiating a connection through client
arbitration, checking the session liveliness of a switch, and streaming notifications
from the switch, this stream channel is mainly used for sending/ receiving
Packet-In/ Packet-Out messages between the switch and the controller. After the
beginning of the benchmarking procedure, P4RCProbe starts sending Packet-In
messages over this stream channel with Transmission Control Protocol (TCP)-
Synchronize (SYN) set as a payload. The metadata information of the packets
such as the ingress port and padding is set to be compatible with the predefined
Packet-In headers in the used P4 pipeline at the data plane. The tool decodes the
Packet-Out responses received over this channel to update collected statistics.

If P4RCProbe is configured to emulate multiple virtual switches, it instantiates a gRPC
server stub for each switch as depicted in Fig. 3.16. These stubs operate independently
and communicate with the same client stub running in the controller.

Configuration Module

The tool takes as input a configuration file with the different parameters that can be
used to configure the modules of the tool to customize the benchmarking procedure
according to the desired evaluation scenario. These parameters include the type of the
controller to be benchmarked (whether OF or P4RT), the number of virtual switches to
be emulated, the packet rate to be generated and sent by each emulated switch, the
statistics to be tracked, etc.

If the runtime protocol is set to P4RT, then the controller needs to know the forwarding
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Figure 3.16.: Communication channels established between P4RCProbe and the P4RT-
based controller under investigation.

pipeline configured on the P4 target’s data plane. Our benchmarking tool P4RCProbe
automatically creates and sends a configuration file to the controller with all the
necessary fields for initializing the connection. This file includes information related
to the selected forwarding pipeline configuration file, the driver of the device at the
data plane (e.g. BMv2), IDs, IP addresses, and ports of the different emulated virtual
switches. It is the role of the controller to initiate the connection with the virtual
switches emulated by P4RCProbe since the gRPC client stub runs on the controller in
P4RT framework. Thus it is important to pass this configuration file to the controller
before starting the benchmarking procedure.

Statistics Module

The RTT statistics module is modified to be compatible with P4RT mode. Initially, this
module takes two timestamps: one when the Packet-In message leaves P4RCProbe
and another one when the corresponding Packet-Out response is received, where
RTT is calculated as the difference between these two timestamps. While mapping
Packet-Out responses to their Packet-In requests can be easily done in OF mode using
the "Transaction ID" field defined in the OF protocol, this is not possible in P4RT mode.
Instead, for RTT calculation, we need to include an artificial ID in the payload of the
randomly generated TCP SYN Packet-In messages to track their Packet-Out responses.

The interactions and communication channels between P4RCProbe and the SDN
controller are shown in Fig. 3.16. The source code of P4RCProbe is made publicly
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available in 1.

3.5.2. Evaluation

In this subsection, P4RCProbe is used to benchmark the performance of the ONOS
2.5.0 release controller [109] when running in P4RT mode. The performance of ONOS
when running in OF mode is also evaluated to serve as a baseline when compared to
the performance of the P4RT-based mode.

The evaluation is conducted using a testbed made up of two connected machines
each running Ubuntu 18.04, has a CPU with 4 cores (Intel i5-4670 at 3.40GHz), and is
equipped with two 10 Gbps Ethernet ports. The benchmarking tool P4RCProbe runs
on one machine while the ONOS controller under test runs on the other machine. The
open-source pipeconf project "P4tutorial", published on the ONOS GitHub page, is
used as the P4 data plane in this evaluation. This project contains a P4 program that
describes basic forwarding and tunneling functions. It also contains the configuration
files and the interpreter file that enables ONOS to understand the specific constructs of
the given "P4tutorial" program. This P4 program, like OF switches, is compatible with
the "Reactive Forwarding" control application available in ONOS, which is developed
to interact with the data plane to control packet forwarding. Using the same control
application, i.e., Reactive Forwarding, is important to guarantee a fair comparison of
the performance of ONOS when running in P4RT vs OF mode. To plot confidence
intervals, we repeat each measurement 5 times, wherein ONOS service is restarted
between consecutive runs.

We start by evaluating the case when a single switch connects to ONOS to understand
the performance limitations of this case. Then, we extend the evaluation scenario to
the cases when multiple switches connect to ONOS.

Single Switch

In this first evaluation scenario, we target understanding the performance of ONOS
when handling incoming packet streams with increasing packet rates. For this purpose,
we configure P4RCProbe to emulate a single P4RT switch that connects to ONOS when
running in P4RT mode. Then, we run different measurements when this switch starts
sending Packet-In messages to ONOS while gradually varying the configured packet
rate. The same evaluation is conducted when ONOS runs in OF mode.

Fig. 3.17 shows the results of the sent and received packet rate when a single switch
communicates with the ONOS controller. In Fig. 3.17a, we plot the average recorded
rate of sent Packet-In messages to ONOS running in OF mode and the average rate

1https://github.com/tum-lkn/P4RCProbe

57



3. Benchmarking the Performance of P4 Programmable Packet Processors

0 10 20 30 40 50 60

Configured Packet Rate (in Kpps)

0

10

20

30

40

50

60

P
a
c
k
e
t 
R

a
te

 (
in

 K
p
p
s
)

Sent to ONOS

Received from ONOS

(a) OF mode.

0 5 10 15 20

Configured Packet Rate (in Kpps)

0

5

10

15

20

P
a
c
k
e
t 
R

a
te

 (
in

 K
p
p
s
)

Sent to ONOS

Received from ONOS

(b) P4RT mode.

Figure 3.17.: Packet rate sent to and received from ONOS when controlling a single
switch.

of Packet-out messages received from ONOS when varying the configured sending
rate in P4RCProbe. It is observed that ONOS in OF mode can process and respond to
around 30K pps rate of incoming Packet-In messages, after which he starts dropping
some incoming packets before saturating at 42K pps. On the other hand, the results
corresponding to ONOS running in P4RT mode, depicted in Fig. 3.17b, show that only
around 1.5K pps can be handled successfully.

The core utilization of ONOS when running in OF and P4RT modes as a function of an
increased incoming packet rate from a single switch is shown in Fig. 3.18. When the
configured packet rate is low, it is observed that ONOS running in OF mode consumes
less computing resources compared to the case when running in P4RT mode. As the
configured packet rate increases, the ONOS processing in OF mode consumes more
core resources, while the resources required by ONOS when running in P4RT mode
saturates at around 250 % core utilization as soon as the configured packet rate reaches
around 1.5K pps. Recalling that ONOS is running on a machine with 4 cores, this
makes the maximum achievable core utilization equal to 400 %. This represents the
physical hardware processing limit in the testbed, which has never been reached in
this evaluation.

As the purpose of this experiment is to find the limits of ONOS when handling an
increased rate of incoming packets, we disable the RTT statistics module in P4RCProbe
to avoid overloading it with storing timestamps for packets that are dropped at ONOS
and thus will never receive a response.
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Figure 3.18.: Core utilization of ONOS when controlling a single switch running in OF
versus P4RT mode.

Multiple Switch

In this subsection, P4RCProbe is configured to emulate an increasing number of
switches to be controlled by ONOS. The evaluation is also conducted when running
ONOS in OF and P4RT modes. Based on the results of the previous subsection, the
packet rate to be sent by each switch is configured such that the sum of the rates of all
switches is around the previously identified 1.5K pps limit.

In Fig. 3.19, we show the overall packet rate sent to and received from ONOS when
running in OF versus P4RT mode as a function of the number of emulated switches
in the network for different configured packet rates to be sent per switch: 10, 50,
and 100 pps. Fig. 3.19a shows that the received packet rate curve is overlapping
with the sent packet rate curve for all cases. This means that ONOS running in OF
mode can handle all incoming traffic without packet drop for all number of switches
to be controlled and per switch packet rate configurations. Looking to Fig. 3.19b,
ONOS in P4RT mode can handle packets from all connected switches only when the
configured per switch sending packet rate is equal to 10 pps. When the packet rate per
switch increases to 50 pps and 100 pps, the received packet rate saturates after 10 and
1 switch connecting, respectively, which means that ONOS can not handle received
packets after these stages. We can observe that the performance of ONOS in P4RT
mode when controlling multiple switches is bottlenecked when processing a rate less
than 1000 pps (20 switches x 50 pps-per-switch), which is lower than the previously
identified limit of 1.5k pps in the single switch evaluation. This is interpreted to be
due to the extra processing required by ONOS for handling the connections from the
multiple connected switches.

The recorded average RTT in ms and in logarithmic scale of packets communicated
with ONOS when running in OF and P4RT modes is shown in Fig. 3.20a. The results are
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Figure 3.19.: Packet rate sent to and received from ONOS when controlling multiple
switches.

shown when the number of emulated switches increases and for different configured
per-switch packet rates. The average RTT recorded when ONOS runs in OF mode
varies between 1.5 and 4.3 ms with a slightly increasing trend when the number of
switches increases. The impact of configured per switch packet rate on the RTT is
minimal because the processing load in this evaluation is relatively low for ONOS
when running in OF mode, given that it could steadily process up to 30k pps in the
single switch evaluation. On the other hand, the P4RT mode results show high average
RTT values compared to OF mode. In the stable case when the traffic load is low at
10 pps per switch, where ONOS could handle all incoming packets successfully, the
average recorded RTT increases from 8.9 to 61 ms as the number of emulated switches
increases to 50. When configured per switch packet rate is set to 50 pps, the average
RTT increases to 1.8 seconds in the case of 10 switches, and it reaches around 20 seconds
when 50 switches are emulated. When the configured per switch packet rate is set
to 100 pps, the average RTT directly reaches 20 seconds when more than 1 switch is
emulated.

The utilization of core resources by ONOS when running in OF and P4RT modes as a
function of an increasing number of connected switches and for different per switch
packet rate configurations is shown in Fig. 3.20b. When the configured packet rate
is equal to 10 pps, both P4RT and OF modes require similar core resources, which
rise from 10 to 170 % as the number of switches increases to 50. When the configured
per switch packet rate increases to 50 and 100 pps, the consumed core resources in
both modes increase. In P4RT mode, ONOS requires more core resources compared to
OF reaching around 200 and 280 % core utilization at 50 switches for 50 and 100 pps
loads, respectively. On the other hand, OF mode requires around 200 % for both 50 and
100 pps loads. Similar to the single switch case, since the core utilization never reaches
400 %, then no hardware limit is reached in this evaluation.
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Figure 3.20.: RTT and core utilization results of the multiple switches evaluation.

P4RCProbe can evaluate another interesting metric which is the number of outstanding
packets. An outstanding packet is defined as the packet which is sent to ONOS as
a Packet-In message but no response was received for it over a given time interval.
The number of outstanding packets when ONOS runs in P4RT mode and controls
50 switches for 60 seconds is shown in Fig. 3.21. Fig. 3.21a shows the case when
the generated traffic load per switch is low at 10 pps. In this case, the number of
recorded outstanding packets is always less than one since ONOS can handle all the
incoming low volume of traffic as revealed from Fig. 3.19. The outstanding packets
results become more interesting when ONOS can not handle all the incoming packets
as shown in Figs. 3.21b and 3.21c when packet rates are set equal to 50 and 100 pps per
switch, respectively. In these two cases, the number of outstanding packets increases
linearly over time reaching around 2550 packets after 60 seconds for each switch
when the packet rate per switch is set equal to 50 pps, and around double that value
(5500 packets) when the per switch rate is set equal to 100 pps. The results of these
outstanding packets reveal that there is a consistent buffering behavior taking place
in ONOS when running in P4RT mode, where packets have to wait before they get
their turn to be served. This inferred behavior of ONOS is further supported when we
observed that ONOS could respond back to all received packets but after some time (
around tens of seconds) without any packet drop.

On the positive side, when looking at the variation of the number of outstanding
packets across the switch ID axis, it can be observed that there is a consistent accu-
mulation of outstanding packets across different switches, meaning that ONOS deals
with all these switches fairly disregarding the order they are connected in. The results
corresponding to OF mode are not plotted since the number of outstanding packets is
always less than one since ONOS in OF mode can handle all the incoming packets at
these traffic loads as we observed in 3.19a.
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(a) Configured packet rate set to
10 pps.

(b) Configured packet rate set to
50 pps.

(c) Configured packet rate set to
100 pps.

Figure 3.21.: The number of outstanding packets recorded at ONOS when running in
P4RT mode for different per switch packet rate configurations.

3.5.3. P4RCProbe in Practice

In this subsection, we showcase how the P4RCProbe tool can be used in practice for
identifying bottlenecks in the implementation of SDN controllers. After identifying one
performance bottleneck in ONOS when running P4RT mode, we propose a possible
enhanced design for solving this bottleneck.

Methodology: Our approach goes as follows. We create an artificial loopback after
different processing blocks in ONOS as depicted in Fig. 3.22. Paths P1, P2, and
P3 are created by forwarding packets back to P4RCProbe directly after the gRPC
Client module, the P4Runtime protocol decoding module, and the reactive forwarding
application, respectively. P4RCProbe is used to send 10K pps to be processed at ONOS
over each created path, and to measure the received packet rate, i.e the rate of packets
successfully processed through the investigated path in ONOS without packet drop.
Each measurement case is evaluated five times to calculate the average and standard
deviation of the received packet rate and core utilization. The measurement results
showed that while the received rate over Path 1 after the gRPC client processing
stays at around 10K pps, this rate directly drops down to around 1.8K pps when
packets traverse Path 2 which includes P4Runtime protocol module processing. These
results clearly indicate that there exists a processing bottleneck in this module. The
received packet rate over Path 3, wherein the complete ONOS processing takes place,
is measured to be equal to around 1.5K pps.

Problem Analysis: Next, we analyze the method which implements the P4Runtime
protocol processing in ONOS source code to identify the reason behind this bottleneck.
The implementation of this method retrieves/gets the pipeline configuration object
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Figure 3.22.: The method applied using P4RCProbe for identifying performance bot-
tlenecks in the implementation of the ONOS controller when running in
P4RT mode.

"PipeConf" for every received packet at ONOS. This PipeConf object includes infor-
mation, some in JSON files, that describes the loaded P4 data plane on the controlled
switch. Retrieving or getting this PipeConf object which includes a method for reading
input streams from stored files is processing-intensive. This is proven by trying to skip
the lines of code corresponding to getting this Pipeconf object, where we observed
that in this case the received packet rate increases again to 10K pps. Recalling that
ONOS in P4RT mode deals with P4 data planes that can be reconfigured at any time,
this implementation of ONOS where the PipeConf object is retrieved for every packet
is meant to ensure that each received packet gets processed according to the latest
running P4 pipeline on the data plane.

Design Enhancement: One possible design enhancement is suggested and imple-
mented to mitigate this bottleneck. The enhancement is based on the idea that the
PipeConf object should not be read for every incoming packet, rather it should be only
read when the running P4 data plane changes. When the client gRPC stub is created,
the PipeConf object of the initially loaded P4 data plane is retrieved. Then, only if
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Table 3.5.: A Summary of the received packet rate and the core utilization measured
over different processing paths before and after applying the design en-
hancement code patch to ONOS.

Metric Code
Path P1 P2 P3

Rcv. Packet Rate (in pps) Original 10030 ± 10 1836 ± 41 1471 ± 10
Enhanced 10026 ± 8 10050 ± 7 1723 ± 30

Core Utilization (in %) Original 61 ± 0.2 167 ± 0.7 215 ± 1.6
Enhanced 60 ± 0.1 66 ± 0.2 206 ± 1.1

the data plane on the P4 device changes, a signal is sent to read the PipeConf object
of the updated data plane. The change in the P4 data plane can be detected by the
GetForwardingPipelineConfig RPC, which always checks and reads the latest running
P4 pipeline. Accordingly, we save ONOS from performing the processing-intensive
call for getting the PipeConf object for every packet, where this call will be executed
only when a change in the running P4 data plane is identified.

The application of this design enhancement into the source code of ONOS lead to
increasing the packet rate that could be handled by the P4Runtime protocol block
on Path 2 again to around 10K pps, indicating that this implementation bottleneck
is resolved. A summary of the recorded received packet rates and core utilization
(averages and standard deviations) for different packet processing paths before and
after implementing the design enhancement is provided in Table 3.5. From this table,
we can observe that the core utilization results are in line with the packet rate variation.
This core utilization decreases from 167 % to 66 % over Path 2 after applying the
enhanced code patch, which indicates that the processing load at this stage is relaxed.

It is also observed that over Path 3 with the complete ONOS processing, the packet rate
drops again to 1723 pps even with the design enhancement implemented. However,
this packet rate is still more than the rate recorded on this path before implementing
the design enhancement, which was equal to 1471 pps. This means that although
the enhanced design mitigated the processing bottleneck in the P4Runtime protocol
block, there are still other bottlenecks at later stages in the ONOS processing pipeline.
Nevertheless, solving this implementation bottleneck in the P4Runtime protocol block
could improve the overall processing rate of ONOS in P4RT mode by around 17 %.
As the purpose of this exercise is to show how our proposed benchmarking tool
P4RCProbe can be used in practice for identifying bottlenecks in the design of SDN
controllers, we stop at this stage in this analysis since the same approach can be used to
solve the other processing bottlenecks in ONOS controller or in any other P4RT-based
SDN controller.
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3.5.4. Summary

In this section, we evaluate the performance of the ONOS controller when controlling
P4 targets using P4RT framework. As we did not find in the literature any bench-
marking tool for P4RT-based controllers, we had to first fill this gap by implementing
a novel benchmarking tool for this purpose, named P4RCProbe. Then, we conduct
a comprehensive evaluation for the ONOS controller when running in P4RT, and
compared that to a baseline case when ONOS runs in OF mode. The evaluation re-
vealed that although ONOS in P4RT mode handles switches fairly, it can handle less
packet rate and takes longer RTT compared to OF mode. This weaker performance of
ONOS when running in P4RT mode presents the cost of controlling reconfigurable data
planes as in the case of P4 targets. Finally, we showcased how the tool can be used to
identify bottlenecks in the implementation of P4RT based controllers, and we proposed
a design enhancement to the ONOS controller to mitigate an identified bottleneck
achieving an overall improvement of 17% in the packet processing rate of ONOS. The
RTT measurement results collected for the ONOS controller in this section are used as
input for characterizing the service time of the SDN controller in a P4-based system
in Chapter 4, where we target deriving an analytical model for the packet forwarding
latency in P4-based systems.

3.6. Summary

In this chapter, we conducted a comprehensive performance study of the different
components that build a P4-based system. While Section 3.5 filled a gap in the literature
about evaluating the performance of P4RT-based control of P4 packet processors,
Sections 3.2, 3.3, and 3.4 focus on evaluating the performance of P4 data planes. Our
measurements revealed the capabilities and limitations of different investigated P4
devices towards advancing the common knowledge on the performance of these
programmable packet processors. Table 3.6 compares the performance of different
P4 devices according to different relevant criteria. The criteria that were evaluated in
this chapter are highlighted in green, while the results of other criteria are surveyed
from [32] and [30]. The general pattern recognized from this table is in line with
the hardware-software trade-off between flexibility and performance. The summary
confirms that when the P4 device is more of a hardware type, its performance prevails
compared to software-based devices in terms of throughput, forwarding latency, flow
scalability, responsiveness to control plane commands, and jitter. On the other hand,
this high performance of hardware-based devices comes at the cost of reduced flexibility
in defining new functionalities such as P4 externs, restricted availability of computing
resources, and higher price. Note that the price of CPU-based devices is considered the
cheapest since P4 software switches can share the same CPU computational resources
with other software applications.
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Table 3.6.: A comparative summary of different P4 targets that belong to different
processing platforms based on various relevant criteria [1, 2, 30, 32]; (.) is
used for entries where information is not available. Criteria evaluated in
this chapter are highlighted in green.

Criteria
P4 Device t4p4s Agilio CX NetFPGA-SUME Tofino

CPU NPU FPGA ASIC
Throughput + ++ +++ ++++
Forwarding Latency + ++ +++ ++++
Flow Scalability + ++ +++ .

Rule Update Responsiveness . ++ +++ .
Jitter + ++ +++ ++++
Resources Availability ++++ +++ ++ +
Flexibility ++++ +++ ++ +
Price ++++ +++ ++ +

The measurement results collected in this chapter create the main building block for
deriving analytical models for the performance of P4-based systems in the following
chapter. Moreover, this performance understanding enables the performance-aware
management of P4-based cloud environments in Chapter 5.
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A P4-based system is made up of a data plane and a controller, where packets can be
sent in case the forwarding decision is not installed at the data plane. In the previous
chapter, we conducted extensive measurements to understand the performance of these
two components separately. However, to assess the suitability of P4-based systems for a
certain deployment use case scenario, it is important to understand the performance of
the complete system, including the different interaction levels between its components.
Fig. 4.1 shows a P4-based system with a P4 programmable data plane and P4Runtime-
compatible controller. Different factors influence the performance of a P4-based system.
These factors include:

• The complexity of the loaded P4 program at the data plane as the processing
latency varies based on the amount of packet processing operations to be executed
there.

• The type of the P4 device since different P4 devices have different forwarding
delays as observed from the measurement results presented in Chapter 3.

• The degree of involvement of the controller. If packets are to be sent to the
controller, additional latency should be counted.

• The forwarding delay at the controller. This delay should be added to the overall
packets’ delay in case the controller is involved in the packet processing.

• The incoming traffic load. It is expected that if the incoming traffic load ap-
proaches the line rate of a device, queueing will take place in the device and the
packet’s waiting time in the queue should be accounted for.

While measurements give exact knowledge about the performance of P4 devices or
controllers under test, it is not feasible to do the same for P4-based systems while
varying all the previously listed influential parameters since this results in countless
combinations. Therefore, in this chapter, we make use of the measurements conducted
in Chapter 3 to propose analytical models that can predict the real performance of
P4-based systems more generically.

In this direction, we first propose in Section 4.2 a model for predicting the packet
forwarding latency at the data plane as a function of the loaded P4 program. This
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Figure 4.1.: A P4-based system with a programmable data plane and controller with
all performance influential factors highlighted.

model is parametrized according to the used P4 target. The model is then verified
using measurements. The contributions of this section are based on our previously
published work [1].

In Section 4.3, we propose two queueing models for P4-based systems that can predict
the average sojourn time in the system based on the previously listed influential factors
which can be set to match any deployment configuration in question. The two models
make use of the model proposed in Section 4.2 for parametrizing the service time at the
data plane based on the used P4 target and the complexity of the loaded P4 program.
The models abstract the behavior of the system as a queue at the data plane with a
feedback queue system at the controller. The first model assumes memoryless service
times (i.e., exponentially distributed) at the data plane and the controller aiming for a
simplified version for quick sojourn time calculations. The second model relaxes this
assumption, where the service process is assumed to be generic and dependent on the
real measured service time at the data plane and controller. The purpose of the second
model is to better capture the real performance of P4-based systems. The contributions
of this chapter are partially based on our previous publication [5].

In Section 4.4, we conduct a parameter study where we vary a wide range of parameters
to verify the accuracy of the two proposed models in Section 4.3 through simulations.
Based on this evaluation, we derive a performance constraint for ensuring a stable
operation in a P4-based system, where this constraint can guide the dimensioning
of the permissible traffic that can be successfully handled by the system. Also, the
contributions of this chapter are partially based on our previous publication [5].
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Figure 4.2.: Packet’s life cycle in a P4-based system with a programmable data plane
and a controller.

The rest of this chapter is organized as follows. A background overview of the packet’s
journey in P4-based systems is provided in Section 4.1 along with a summary of related
works that deal with modeling the performance of P4-based devices. In Section 4.2, we
start with modeling the forwarding latency at the data plane based on the loaded P4
program and the used P4 device. Two queueing models are proposed in Section 4.3
for abstracting the performance of complete P4-based systems. These two models
are evaluated and analyzed in Section 4.4 towards deriving constraints related to
dimensioning the permissible traffic that can be handled in P4-based systems. Finally,
Section 4.5 summarizes the contribution of this chapter.

4.1. Background and Related Work

In this section, we first elaborate on the relevant background about the packet’s life
cycle in P4-based systems in Subsection 4.1.1, and then we describe related works in
Subsection 4.1.2.

4.1.1. Packet’s Life Cycle in a P4-based System

A P4 program describes the device’s data plane/pipeline through which packets will
be routed. At the parser stage, headers are extracted from the packet first. The packet is
then routed through a control flow of MAUs where extracted headers are manipulated.
The MAU is the fundamental unit for packet processing in P4, and it consists of a table
with matching keys as well as a list of possible custom actions that can be invoked upon
matching. Finally, the packet passes through the deparser stage, where the modified
header stack is re-added to the packet before it exits via the designated egress port.
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Fig. 4.2 depicts the life cycle of a packet passing through a P4-based system. When a
packet arrives at the switch from an ingress port, it is processed based on the P4 data
path loaded into the data plane pipeline. If a packet matches any of the rules stored in
the MAUs, it is processed following that rule. Otherwise, the packet is forwarded to
the controller, which makes the packet forwarding decision based on the applications
running in the control plane. After the controller’s processing, the packet is returned
to the data plane, along with the forwarding rules to be stored in the device’s MAUs.
Following packets matching the installed rule will only be processed at the data plane
side.

The analysis in this chapter focuses on the key performance metric of packet forwarding
latency (sojourn time) throughout the system. The sojourn time of the system can
be calculated using Eq. (4.1). It is equal to the sum of the sojourn times of the two
previously described paths: The first path is the data plane path, with sojourn time
denoted as Ed, without the involvement of the controller. The second path is taken
with probability Pnf when the received packet belongs to a new flow, which is the case
where the packet is forwarded to the controller. In this case, the sojourn time is equal
to the controller sojourn time, denoted as Ec, together with the data plane sojourn time.
Hence, we can write:

Esys = Ed + Pnf ∗ (Ed + Ec). (4.1)

4.1.2. Related Work

Modeling the performance of packet processors is critical for network planning, pre-
diction, and problem mitigation. Since there are no related works in the literature
that model the performance of complete P4-based systems, in the following, we first
review the performance modeling works of the predecessor technology, i.e., the OF
architecture. Then, we discuss the works that target modeling the performance of
P4-based devices.

Jarschel et al. [29] investigate an OF-based architecture in which the switch and control
plane are both modeled as M/M/1 queues. Mahmood et al. then map the previous
model to a general Jackson model in [55] and use it for modeling OF networks as
Jackson networks in [59]. Goto et al. [58] refines the model presented in [29] for a
single node by including processing priorities for packets going to the switch. Ansell et
al. [60] introduce a control plane application for monitoring networks and predicting
their behavior based on queueing theory. OpenFlow Operations Per Second (OFLOPS)
benchmarking suite, proposed by Rotsos et al. [34], breaks down the processing com-
ponents in OF switches and models these components. They focus on investigating the
behavior of the switch when different OF rules are inserted. Their findings indicate
that the performance of OF switches is heavily dependent on their implementation.
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While the literature is replete with papers analyzing and modeling the performance
of OF-based switches, few works focus on modeling the performance of devices with
programmable data planes.

Dang et al. proposed an approach for benchmarking individual components of P4
targets in [30], wherein they compare the latency performance of three software and
emulated P4 devices, namely the BMv2, PISCES, and P4FPGA emulator when running
legacy P4-14 constructs. Scholz et al. [32] select to measure and model only the relevant
performance metrics of a P4 device based on its type. The resource utilization is selected
in the case of the ASIC-based Tofino switches, while the latency and throughput metrics
are chosen to model the performance of the t4p4s software switch. Lukács et al. propose
a probabilistic model to calculate the expected execution cost for a given control flow
graph in [61]. The worst case, as well as the expected cost when executing the program,
can be calculated based on the P4 source code and information about the execution
environment, i.e., the target platform and implementation. As a result, this cost is
calculated as the sum of the costs of all possible execution paths multiplied by their
execution probability.

None of the previous works consider developing a comprehensive analytical model
for the performance of P4 devices. A network calculus-based model is proposed in [4]
for analyzing the worst-case data plane performance of OF and P4-based switches.
While network calculus-based models focus on worst-case analysis, in this chapter, we
consider stochastic models based on the queueing theory that can provide information
about the mean of various network metrics.

To the best of our knowledge, the literature does not provide a model yet for estimating
the packet forwarding latency on a P4 device as a function of the running P4 program.
Moreover, the performance of a complete P4-based system wherein the controller’s
impact is taken into consideration is not analyzed in the literature. Therefore, in this
chapter, we fill in these research gaps.

4.2. Modeling Data Plane’s Service Time

In this section, we propose a method for predicting the packet’s forwarding latency
when running arbitrary P4 programs on any P4 target. The complexity of the P4
program affects the processing latency on a P4 target and thus affects its overall
forwarding latency. It is of paramount importance to understand the relation between
the complexity of the P4 program and the processing latency or more generally the
forwarding latency on its hosting P4 target as this presents a pivot building block for
deriving more generic models for the performance of P4-based systems.

The proposed model uses the measurement results collected in Section 3.2 to quantify
the delay in processing different atomic P4 operations or constructs when executed
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on different P4 targets. These previously collected measurements revealed in most
cases a linear relationship between the measured forwarding latency and the number
of applied P4 constructs. These findings will guide the modeling approach in this
section. The model deals with the different atomic P4 constructs as a basis of a space
spanned by all the possible P4 programs that are made up of a combination of the basis
atomic P4 constructs. Accordingly, we predict in this section the forwarding latency of
running an arbitrary P4 program on a P4 target as the linear combination of the latency
cost for executing the P4 constructs that constitute the given P4 program. Note that the
proposed method is applicable and tested when the exact processing path of the P4
program is known, with traffic of one flow, and with deterministic processing assumed.
The contributions presented in this section are based on our publication [1].

In Subsection 4.2.1, we start by describing the created profiles for different P4 targets.
In Subsection 4.2.2, we describe the relevant information that should be extracted from
a P4 program to perform the latency prediction. Subsection 4.2.3 elaborates on how
the estimated average forwarding latency on a P4 target, using the derived targets’
profile, can be calculated as a function of the constituting P4 constructs in the loaded
P4 program. The overall workflow of the proposed estimation method is illustrated in
Fig. 4.3. Finally, we validate the proposed method using measurements by testing it on
three different realistic network functions in Subsection 4.2.4.

4.2.1. Profiling P4 Targets

In this subsection, we create performance profiles for different P4 targets based on the
measurement results collected in Section 3.2. These profiles include all the performance
information about a P4 target needed for predicting the packet forwarding latency on
that target as a function of the loaded P4 program.

The forwarding latency of a P4 target is divided into two main components as shown in
Fig. 4.3. The first one is the base processing delay, which includes the transmission delays
and the processing delay of all non-P4 programmable blocks in a P4 target. The second
component is the processing delay because of processing the P4 data path. Unlike the
base processing delay which is fixed for a given P4 target, the P4 processing part varies
based on the complexity of the loaded P4 program. This P4 program is decomposed
using the methodology applied in Section 3.2, where we could quantify the latency
cost of processing different atomic P4 constructs. Accordingly, the performance profile
of a P4 target includes these two components as shown in Fig. 4.3.

The base processing latency denoted as TDBase, is defined as the end-to-end latency for
executing a minimal P4 data path that parses a single header and applies a single table
for forwarding packets on a P4 device D. The forwarding latency of this minimal
P4 data path for different P4 devices can be derived from Fig. 3.3d by checking the
forwarding latency when a single header is parsed for any selected packet size.
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/*HEADERS DEFINITION*/   struct headers {    ethernet_t eth;}

/*PARSER*/     parser Parser() {   extract(eth);      return ingress;}

/*INGRESS*/    control Ingress(){ apply(fwd_tbl); }  

table fwd_tbl { reads { eth.dstMac : exact;} actions {  fwd_act; Drop; }  
}   

action fwd_act ( prt )   {    metadata.egress=prt;}

/*DEPARSER*/  control Deparser() {  emit(eth);}
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Figure 4.3.: The general workflow for estimating the average forwarding latency when
running arbitrary P4 programs on any P4 target. The extracted information
related to the performance of P4 targets is described in Subsection 4.2.1.
The extracted information from the given P4 program is described in Sub-
section 4.2.2.

In addition to this base processing latency, the profile includes the latency cost for
executing different atomic P4 constructs on the profiled P4 target. This information is
retrieved by using linear interpolation to extract the slopes of the curves that capture the
increase in the packet forwarding latency as a function of the number of parsed headers,
number of modified headers, number of copied headers, number of removed headers,
number of added headers, and number of added tables from Figures 3.3d, 3.5d, 3.6d,
3.7d, 3.8d, and 3.9d, respectively. For each considered P4 operation, the slope of the
fitted curve indicates the extra processing latency needed in µs to execute one instance
of that operation. For example, if the interpolated slope of the fitted parsing header
curve is equal to 2, then the latency cost of every parse header operation executed
on top of the baseline pipeline is equal to 2µs. Note that for adding and removing
header cases on the Agilio CX SmartNIC, we perform piece-wise linear interpolation
to capture the special behavior of the card when a big number of headers are added or
removed. When performing linear interpolation for fitting the plots corresponding to
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all the P4 targets and in all P4 constructs cases, the root mean square error is evaluated
and found to always be less than 0.4µs. The row vector target-profile-vector, denoted
by aD, is defined as the vector that contains all the interpolated slopes corresponding
to the different P4 constructs for a specific P4 target D. For example, it contains the
slope of the curve corresponding to parsing headers, i.e., the latency cost for parsing a
single header, besides the slopes corresponding to the other P4 operations/constructs.
These slopes are denoted by ∆D

P4Construct and ordered in aD as shown in Eq. (4.2):

aD =
[
∆D
ParseHdr,∆

D
ModifyHdr,∆

D
CopyHdr,∆

D
RemoveHdr,∆

D
AddHdr,∆

D
AddTable

]
. (4.2)

In the remainder of the thesis, we consider the results corresponding to a packet
size equal to MTU. This packet size is selected because traffic streaming utilizes the
maximum available payload of a packet. The proposed method can be easily applied
to other packet sizes by simply substituting the corresponding values from Section 3.2.
This is applicable as we observed in Section 3.2 that the packet size has only the effect
of shifting the curves without significantly changing its slopes. For MTU-sized packets,
the base processing latency is found to be equal to 45.9µs, 3.54µs, and 7.45µs in the
cases of t4p4s, NetFPGA-SUME and Agilio CX SmartNIC, respectively, while the
derived target-profile-vectors corresponding to these targets are shown in Eqs. (4.3),
(4.4), and (4.5), respectively.

at4p4s =
[
0 0 0 −0.29 0.4 0.08

]
, (4.3)

aNetFPGA =
[
0.17 0 0 −0.02 0.23 0.13

]
, (4.4)

aAgilio =
[
0.11 0.5 0.28 1.43 1.59 0.37

]
. (4.5)

Note that in the case of Agilio CX SmartNIC, the following two corrections should
be applied to capture its special behavior in some situations and thus accurately
characterize its performance. First, when the number of added headers is greater
than 6, the interpolated slope corresponding to adding header operations shown in
Eq. (4.5) should be updated with the value 14.4 instead of 1.59 to capture the steeper
slope observed after adding 6 headers, as described in Subsection 3.2.2. The second
change is applied by adding a correction factor of 17.68µs to the estimated average
latency when the number of removed headers exceeds 7, as we previously observed in
Subsection 3.2.2.
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4.2.2. Analyzing P4 Programs

In this subsection, we describe the handling of the given P4 program toward estimating
the forwarding latency when loading it to a P4 target.

First, we compile the given P4 program using the standard front-end compiler to
get the Intermediate Representation (IR) of the program’s logic that can be drawn
as a Control Flow Graph (CFG). The CFG is a directed acyclic graph that depicts
the packet’s processing life cycle based on the P4 program starting when a packet is
received on an ingress port and ending when it is pushed to an egress port or dropped.
The arrows shown in Fig. 4.3 indicate the relative order of operations in CFG. Note
that a P4 program can describe multiple NFs each with distinct packet processing
paths using some conditions as shown in the CFG. Accordingly, the analysis of the
program is applied to one selected path at a time. For example, the green lower path
with two parse header operations and two packet header operations is highlighted as
the selected path in Fig. 4.3.

Then, we extract from the CFG a vector named program-features-vector and denoted
by x(NF ). This vector contains the number of occurrences of the different atomic P4
constructs in the given P4 program for a selected path describing a specific network
functionality NF. It is defined:

x(NF ) = [#parsed headers-1, #modified headers, #copied headers, #removed head-
ers, #added headers, #tables-1].

Note that the minimal baseline program already contains a single parse header opera-
tion and a single table as described in Subsection 3.2.1. So we decrement the number
of parsed headers and the number of tables by one in the program-features-vector to
avoid counting the occurrence of these constructs twice as they are already included in
the baseline processing latency component.

4.2.3. Latency Estimation

In this subsection, we elaborate on the equation that estimates the packet forwarding
latency using the predefined target-profile-vector and the program-features-vector.

We recall that each designed experiment in Subsection 3.2.1 for the different evaluated
P4 constructs built on top of the same baseline pipeline that parses some number of
headers and modifies the egress port according to the ingress port in a single table to
forward the packet. Additionally, we made sure in each of these experiments that the
analyzed P4 construct is the only parameter varying in the evaluated P4 programs.
Accordingly, the estimated average forwarding latency of a given NF written as a
P4 program when running on a P4 target D is equal to the summation of two terms:
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(1) The measured base processing latency on a P4 target D, denoted as TDBase, which
includes the transmission delays, the propagation delays, the packet processing delays
before and after entering the P4 pipeline, and the packet processing delay of the
minimal P4 operations (parsing a single header and executing a single table ) for
forwarding packets on a P4 target; (2) The sum of the extra latency cost for executing
the P4 constructs that constitute the selected P4 program. This is equal to the target-
profile-vector aD that contains the latency for executing a single instance of different
P4 constructs weighted with the number of occurrences of each of these P4 constructs
collected in the program-features-vector x(NF ).

T̂D(NF ) = TDBase + aD ·xT (NF ). (4.6)

The formula for evaluating the estimated average packet forwarding latency in µs,
T̂D(NF ), when running network function NF on a selected P4 target D is shown in
Eq. (4.6).

4.2.4. Evaluation

In this subsection, we evaluate the proposed model by comparing the forwarding
latency it predicts to the actual forwarding latency derived from measurements. The
proposed estimation method is applied for three network functions written in P4 which
have increasing complexity. Then, the estimated latency is compared to the measured
latency when the three tested network functions are loaded to each of the investigated
P4 targets. The three selected network functions are the following:

L3Fwd: This function describes the layer 3 forwarding or IPv4 forwarding. The P4
data path of this network function is made up of the following operations: (i) parsing
Ethernet and IPv4 headers, (ii) matching on IPv4 destination address in a single
table, and (iii) modifying the source and destination Media Access Control (MAC)
addresses of the Ethernet header and the time to live Time to Live (TTL) field of
the IPv4 header if there is a match. The program-features-vector corresponding to
this network function x(L3Fwd) recognizes two parse header operations, two modify
header operations, and one table. After decrementing the number of parsed headers
and added tables operations each by one as described in Subsection 4.2.2, we get
x(L3Fwd) =

[
1 2 0 0 0 0

]
.

L3Fwd + UDP-based Firewall: This function describes the IPv4 forwarding function-
ality in addition to a simple stateless UDP-based firewall functionality. The P4 data
path corresponding to this network function is similar to that described for L3Fwd
but it also includes parsing one more header which is the UDP header. Moreover,
the data path of this network function requires one more table for matching on the
UDP destination port to drop/filter undesired packets. The program-features-vector
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Table 4.1.: Evaluation results of the proposed method for different network functions
and P4 targets.

NF P4 target Meas. Avg. Latency Est. Avg. Latency

L3Fwd
t4p4s 45.9 µs 45.9 µs
Agilio CX 8.2 µs 8.6 µs
NetFPGA-SUME 3.7 µs 3.7 µs

L3Fwd + Firewall
t4p4s 45.9 µs 46 µs
Agilio CX 8.9 µs 9.0 µs
NetFPGA-SUME 4.0 µs 4.0 µs

VxLAN_Decap
t4p4s 45.9 µs 44.8µs
Agilio CX 15.2 µs 15.5µs
NetFPGA-SUME 5.2 µs 5.3µs

corresponding to this network function x(L3Fwd+ Firewall) recognizes three parse
header operations, two modify header operations, and two tables. Accordingly, the
program-features-vector of this NF x(L3Fwd+ Firewall) equals to

[
2 2 0 0 0 1

]
.

VxLAN Decapsulation: This function describes Virtual Extensible LAN (VxLAN)
decapsulation functionality. Note that for this network function, we made sure that the
header stack up to the PTP header is maintained before implementing the operations
related to the VxLAN decapsulation. This is important for allowing the used packet
generator MoonGen [31] to perform latency measurements using PTP mechanisms.
The evaluated P4 pipeline of this NF parses the following header stack: Eth, IPv4, UDP,
PTP, ETH, IPv4, UDP, VxLAN, Eth, IPv4, UDP. It contains two tables: One table to
forward packets based on ingress port matching, and another table that matches on the
VxLAN Network Identifier (VNI) header field to perform the VxLAN Decapsulation
action. The VxLAN Decapsulation action copies the inner Ethernet, IPv4, and UDP
headers into the outer headers. Then, it removes these inner Ethernet, IPv4, and UDP
headers along with the VxLAN header. This NF requires parsing 11 headers, copying
3 headers, removing 4 headers, and matching in 2 tables. The program-features-vector
x(V xLAN_Decap) corresponding to this network function is derived to be equal to[
10 0 3 4 0 1

]
.

After extracting the program-features-vector, and using the previously derived target-
profile-vectors of the three investigated P4 targets, the estimated average latency when
running any of these network functions on any profiled P4 target can be calculated
using Eq. (4.6). For example, the average forwarding latency of running L3Fwd
network function on Agilio CX SmartNIC can be calculated as: T̂Agilio(L3Fwd) =

TAgilioBase + aAgilio ·xT (L3Fwd) = 7.45 + [0.11, 0.5, 0.28, 1.43, 1.59, 0.37] · [1, 2, 0, 0, 0, 0]T =
8.56µs.

The average forwarding latency when running each of the three network functions de-
scribed above on the three state-of-the-art P4 targets is measured. These measurement
results serve as the ground truth for assessing the accuracy of the latency estimation
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calculated based on Eq. (4.6). Table 4.1 summarizes the measured and estimated av-
erage forwarding latency in µs of the three evaluated network functions on the three
investigated P4 targets. It can be observed that the accuracy of the forwarding latency
estimations is always greater than 95% when compared to the measured latency. This
high accuracy validates the correctness and effectiveness of the proposed estimation
method.

When looking into the results corresponding to the different P4 targets, we can observe
that the prediction accuracy of the forwarding delay on the NetFPGA-SUME card is
the highest, followed by that of the t4p4s software switch, followed by that of the
Agilio CX SmartNIC. This accuracy varies based on the degree of dependency of the P4
target on the loaded P4 pipeline. This dependency can be identified by inspecting the
target-profile-vector of the investigated P4 targets from Subsection 4.2.1. For example,
Agilio CX SmartNIC has the lowest prediction accuracy because it is performance is
the most dependent one among other P4 targets on the complexity of the loaded P4
program.

Note that the described model in this thesis is slightly different from that proposed in
our published work [1]. The only difference is that we decoupled the processing latency
of parsing headers from the base processing latency as described in Subsection 4.2.1.
This proposed methodology is generic enough to be applied to other P4 targets. A
profile for any emerging P4 target can be derived by extracting the target-profile-vector
as described in Subsection 4.2.1. This profile with all relevant performance information
can be published by researchers or any third-party institution. Then, the P4 compiler
can easily be extended to analyze and decompose the given P4 program to extract the
programs-feature-vector to calculate the estimated average forwarding latency when
running arbitrary P4 programs on a specific P4 target with a given performance profile,
as described in Subsections 4.2.2 and 4.2.3.

The proposed methodology is generic and can be applied to other P4 targets. Moreover,
different performance metrics such as the deadline latency and the jitter of a device
can be estimated by tailoring this method where the maximum and the variance of the
measured packet latency are considered instead of the average forwarding latency.

4.3. Modeling P4-based Systems

In the following, we first describe in Subsection 4.3.1 the requirements targeted by the
performance model to be proposed. Then, in Subsections 4.3.2 and 4.3.3, we propose
two queueing models to capture the performance of P4-based systems. The first model
is meant to be simple with memoryless service times (i.e., exponentially distributed),
while the second model relaxes this assumption considering general service times
whose distribution is determined based on measurement data to better capture the
real behavior of the modeled system. Finally, Subsection 4.3.4 clarifies the underlying
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assumptions taken when deriving the two models.

4.3.1. Model Requirements

The proposed model for P4-based systems should satisfy the following requirements:

• The model should take into account the variability of the packet processing
latency at the P4 data plane. This variability is based on the complexity of the
configured P4 program/pipeline as discussed in Section 4.2.

• The model should be generic to cover the performance of different P4 devices,
which may have different service processes.

• The model should take into account that the SDN controller may be involved in
processing packets that have no matching rule at the data plane; typically, this is
the case for the first packet of every newly observed flow.

• The model should account for the variable volume of incoming traffic loads,
which mimics the situation in production environments.

• The model should stay relatively simple to permit a quick first-hand understand-
ing of the system’s performance and limitations.

4.3.2. Simple Model with Exponentially-Distributed Service Times

In the following, a simple queueing model for P4-based systems is proposed. The
proposed model is a feedback-oriented queueing system, similar to the approach
followed in [29]. The forwarding behavior of the P4 data plane is abstracted as an
M/M/1 queueing system, while the forwarding of the controller is abstracted as a
feedback queueing system of the same M/M/1 type. The overall proposed model
of the system where each influential factor is associated with a system parameter is
shown in Fig. 4.4. The external arrival process to the switch is assumed to follow a
Poisson process with an average packet rate equal to λext. A Poisson arrival process
is selected since it is a convenient mathematical representation of the input traffic in
many communication systems. Moreover, since we are dealing with time averages, the
Poisson Arrivals See Time Averages (PASTA) property of the Poisson process allows
us to assume the interarrival times are memoryless [54].

In the following, we will describe each of the data plane and controller models.
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Figure 4.4.: A simple model for P4-based system abstracting a programmable data
plane and a controller.

Data Plane

The service time on the P4 data plane is assumed to be exponentially distributed.
The average service time on a P4 device is not constant as the processing latency
on the device varies based on the complexity of the loaded P4 program. When the
loaded program is more complex, the processing delay increases, and accordingly the
forwarding latency or the service time at the data plane becomes longer. This creates a
challenge in capturing the variation in the performance of the data plane since it can
arbitrarily change based on the complexity of the loaded P4-based network function.
However, the previous work presented in Section 4.2 already addresses this issue,
where it provides a method for estimating the packet forwarding latency on a P4 device
as a function of the loaded P4 program. According to these findings, we model the
data plane of a P4 device as a queueing system made up of a queue followed by a
series of sequential servers. The first server abstracts the base processing TB that takes
place in a P4 target, and the following servers abstract the processing of the different
P4 constructs TP4c that constitute the running P4 program. To simplify the model,
we assume that all these described service processes, when combined, form a service
process with exponentially-distributed service times with an average service rate equal
to µDd (NF ) evaluated as shown in Eq. (4.7).

µDd (NF ) = (TDBase + aD ·xT (NF ))−1 ∀NF,∀D, (4.7)

where µDd (NF ) is the data plane service rate when running network function NF on a
P4 device D. It is equal to the inverse of the forwarding latency, which is calculated
as the summation of two terms: The first term TDBase is the base processing delay on a
selected P4 device. The second term, calculated as the dot product of the target-profile-
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vector aD and the program-feature-vector xT (NF ), is the delay required for processing
the P4 constructs that constitute a network function NF on a given P4 device D.

The size of the queue in the data plane model is assumed to be infinite. The arrival
process into the data plane has a rate λd, which can be evaluated as shown in Eq. (4.8).

λd = λext + Pnf ∗ λext, (4.8)

It is equal to the combination of the externally arriving packets, with a rate equal to
λext, and the loop-backed packets from the controller [55].

Controller

The controller is modeled as a feedback queueing system on top of the data plane model.
To keep the model simple, we assume that service time at the controller is exponentially
distributed. Note that, in this model, we assume that the interarrival process to the
controller and the data plane follows a Poisson process with exponentially distributed
service times. The latter may not fully hold since the interarrival process to the data
plane is made up of the combination of two dependent Poisson processes ( i.e., external
arrivals and feedback arrivals). Recalling that the first packet corresponding to a
new flow will be forwarded to the controller only once after being processed at the
data plane, the arrival process incoming to the controller will have an average arrival
rate equal to Pnf ∗ λext, where Pnf is equal to the probability that an observed packet
corresponds to a new flow. Packets with a rate of Pnf ∗ λext are fed back to the data
plane from the controller as shown in Fig. 4.4.

Overall System’s Model

The model of the P4 system under consideration resembles a Jackson network [54].
Therefore, the average sojourn time at the data plane and the controller Ed and Ec
can be evaluated based on the equations of M/M/1 queueing systems. By substituting
these components in the system’s average sojourn time shown in Eq. (4.1), we get the
packet’s sojourn time evaluated according to this simple model as shown in Eq. (4.9):

Esys =
1

µDd (NF )− λd
+ Pnf ∗ (

1

µDd (NF )− λd
+

1

µc − λc
), (4.9)

where µDd (NF ) and λd can be evaluated as illustrated in Eqs. (4.7) and (4.8), respectively,
while µc and λc refer to the controller’s service and arrival rates, respectively.
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4.3.3. Refined Model with General Service Times

The next step is to derive a refined model that better captures the real performance
of P4 programmable devices. This is done by adopting the same feedback-oriented
queueing system described in the simple model case, but with the assumption related
to the exponentially-distributed service times at the data plane of P4 devices and at
the controller relaxed. Alternatively, in this model, we go beyond the first moment in
characterizing the service time of the data plane and controller. More specifically, we
assume a general service process at the data plane and controller, whose distribution
is determined based on measurements conducted on these components. The data
plane is abstracted as an M/G/1 queueing system, while the controller is abstracted as a
feedback queueing system of the type M/G/1. Note that we assume that the incoming
traffic to the controller and that forwarded back to the data plane from the controller
have exponential interarrival time even though this traffic is generated from generic
service processes. The impact of this assumption on the model accuracy is put to test
in the evaluation section in 4.4.3.

In the following, we first elaborate on the data plane’s model and its fitting procedure,
then we illustrate the controller model, and finally, we discuss the system’s model with
the data plane and controller components involved.

Data Plane

In this enhanced model, the distribution of the data plane’s service time is not assumed
to be exponential, rather it is derived based on the measured service time of different
P4 devices. The service time of the data plane varies based on the selected P4 device
and based on the complexity of the loaded P4 program for each device.

In our approach, we start by fitting a service curve that best fits the measured service
time when a baseline P4 program, which describes the minimal required processing
for forwarding packets, is loaded to different P4 devices. This way we can find the
service time distribution that best fits the realistic performance of the different devices.

The Matlab Statistics and Machine Learning toolbox [119] can be used to find the
best fitting distribution for the service time of the modeled P4 device. The Akaike
Information Criterion (AIC) metric can also be used to assess the goodness of fit
of different distributions. Besides the goodness of fit, the best-fitting distribution
should also have a closed-form expression. The latter is important especially since the
analytical equations of the model eventually depend on the selected distribution, and
the complexity of these equations should not grow arbitrarily large.

Note that different P4 devices are distinguished by having different standard deviation
values that characterize the sparseness observed in measured forwarding delay.
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After selecting the best fitting distribution for the baseline data path, the next step
is to capture the effect of processing more complex P4 programs on each device. In
Section 4.2, we showcased that the latency for processing a P4 program could be
calculated as the summation of the base processing latency of the device and the pro-
cessing latency of each P4 construct constituting the loaded P4 program. Accordingly,
these components are considered in the data plane path of the model as shown in
Fig. 4.4. The average service time is equal to the summation of the baseline processing
latency, extracted from the fitted Erlang distribution, and the average processing time
of all the constituting P4 constructs creating the loaded P4 data path. The latency
cost of the constituting P4 constructs on each P4 device can be extracted based on the
target-profile-vector derived in Subsection 4.2.1.

The overall latency of the data plane component in this refined model can be calculated
using the Pollaczek-Khinchin formula for M/G/1 queue systems as follows [69]:

EG
d =

1

µDd (NF )
+
λd ∗ ( 1

µDd (NF )2
+ σ2

d)

2 ∗ (1− ρd)
, (4.10)

where µDd (NF ) and λd are equal to the data plane’s average service rate and arrival rate
and can be calculated as illustrated in Eqs. (4.7) and (4.8), respectively. The parameter
σd stands for the standard deviation of the service time for different P4 devices and is
constant for a given P4 device. Finally, ρd stands for the utilization of the data plane
queue.

Controller

Similar to the approach followed in data plane modeling, we target enhancing the
model adopted for the control plane. This is achieved by relaxing the assumption
related to the exponentially-distributed service times at the controller. So instead of
assuming that the controller’s service time is exponentially-distributed, we adopt a
more accurate distribution that fits the real service time of the controller, which is
identified based on measurements.

The de-facto control runtime for P4 devices is the P4Runtime framework [92]. This
framework enables controlling P4 data planes that can be reconfigured at any time.
Our novel P4RCProbe tool, described in Section 3.5, can be used to benchmark the
performance of P4Runtime-based controllers. The tool can be configured to emulate a
single switch sending packets according to Poisson distribution with a configurable
rate. It also records the RTT of each packet sent to the controller. The distribution
of these collected RTT values is used as a ground truth empirical distribution of the
controller’s service time.

Next, we search for the theoretical distribution that best fits the measurement-based
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empirical distribution. Again, the AIC metric is used to assess the goodness of fit of
different candidate distributions, and then the best fitting distribution is used to model
the service time of the controller.

The overall latency of the control plane component can be calculated according to the
Pollaczek-Khinchin formula for M/G/1 queue systems as follows [69]:

EG
c =

1

µc
+
λc ∗ ( 1

µ2c
+ σ2

c )

2 ∗ (1− ρc)
, (4.11)

where µc and σc stand for the service rate and standard deviation of the service distri-
bution, respectively, and they are constant for a given P4 controller. The controller’s
utilization is denoted by ρc, while the controller’s interarrival rate is denoted by λc and
is calculated as Pnf ∗ λext.

Overall System’s Model

After evaluating the average sojourn time at the data plane and the controller EG
d and

EG
c based on Eqs. (4.10) and (4.11), respectively, the sojourn time of the system can be

calculated by substituting these values in the system’s average sojourn time Eq. shown
in (4.1). The average packet’s sojourn time in the system according to this refined
model is shown in Eq. (4.12):

EG
sys =

1

µDd (NF )
+
λd ∗ ( 1

µDd (NF )2
+ σ2

d)

2 ∗ (1− ρd)
+ Pnf ∗ [

1

µDd (NF )
+
λd ∗ ( 1

µDd (NF )2
+ σ2

d)

2 ∗ (1− ρd)
+

1

µc
+
λc ∗ ( 1

µ2c
+ σ2

c )

2 ∗ (1− ρc)
], (4.12)

where µDd (NF ) and λd can be evaluated as illustrated in Eqs. (4.7) and (4.8), respectively,
while µc and λc refer to the controller’s service and arrival rates, respectively. The
variables ρd and ρc correspond to the data plane and controller utilization, while σd
and σc correspond to the standard deviation of the data plane’s and controller’s service
time which can be derived from measurements. Finally, Pnf stands again for the level
of interaction with the controller.

4.3.4. Assumptions

In the following, we highlight some of the assumptions that were made while deriving
the models described in the previous subsection. In the two models, the external
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arrival process coming to the switch is assumed to follow a Poisson distribution with
a single queue assumed to abstract the incoming traffic from different ports of the
switch. Additionally, it is assumed that the first packet of every newly observed flow
is forwarded to the controller, which is usually the case for TCP traffic. Moreover, the
analysis and evaluation conducted for the two models focus on the average results
of the system rather than on actual distributions. Finally, the interarrival process
into the controller and back from the controller to the data plane are both assumed
to be exponentially distributed in the two proposed models. The service times for
the data plane and controller are assumed to be exponentially distributed in the first
simple model, while this assumption is relaxed in the second refined model where
these service times are assumed to follow a general distribution derived based on
measurement results.

4.4. Evaluation of P4-based System’s Models

In this section, we test the derived models under various scenarios and validate the
results with simulations. We first elaborate on the parameters and evaluation scenarios
adopted for conducting this evaluation in Subsection 4.4.1. Then, we present the evalu-
ation results corresponding to the simple exponentially-distributed service time model
and the refined model with generally-distributed service time in Subsections 4.4.2 and
4.4.3, respectively. Finally, in Subsection 4.4.4, we provide a constraint for properly
dimensioning the use of systems with P4 devices based on the results of the previous
two subsections.

4.4.1. Evaluation Scenarios and Parameters

In the following, we explain the different varied influential parameters of the system.
Then, we elaborate on the conducted evaluation scenarios.

Data Plane’s Parameters:

In this evaluation, we reuse the following three NFs described in Subsection 4.2.4.
These NFs are L3Fwd, L3Fwd + UDP-based Firewall, and VxLAN Decapsulation. The
packet forwarding latency when running these three NFs on t4p4s software switch,
Agilio CX SmartNIC, and NetFPGA-SUME is summarized in Table 4.1. These results
are used to derive the service rate of the data plane µDd (NF ) for different P4 targets
and different NFs by taking the inverse of the forwarding latency values presented in
Table 4.1 according to Eq. (4.7).
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For the refined model with generally-distributed service times, we need to find the
best fitting distribution as explained in Subsection 4.3.3. We refer to the previous
measurements presented in Subsection 3.2.2, wherein the forwarding latency when
running baseline P4 programs on NetFPGA-SUME, Agilio CX SmartNIC, and t4p4s
software switch are plotted, as the ground truth presentation of the device’s service
process. It is clearly observed from these plots that the distribution and the range of
the service curves corresponding to different devices differ a lot even when these P4
devices run the same P4 program.

To this end, we decided to model the service time of the data plane corresponding to
different devices with an Erlang distribution. The Erlang distribution is found to be
a plausible option since it is one of the best-fitting distributions with a closed-form
expression and relatively manageable expression complexity. Moreover, it is selected
because the measurement service time of different devices is found to have a coefficient
of variation of less than one, which is best mimicked by the Erlang distribution.

The goodness of fit of the Erlang distribution is better than that found when fitting an
exponential distribution to the service time. This means that the refined M/G/1 model
better mimics the service process of P4 devices’ data plane and thus the model better
captures the real performance of these devices. Note that we do not remove outliers
from the measured data to keep the derivations as authentic and realistic as possible.
The Root Mean Square Error (RMSE) between the Cumulative Density Function (CDF)
of fitted Erlang distribution and the Empirical CDF of measured data is found to be
equal to 0.5, 0.3, and 5.6 in the cases of NetFPGA-SUME, Agilio CX SmartNIC, and
t4p4s, respectively.

The average service rate is also derived from Table 4.1, where the average service time
corresponding to the different combinations of running different NFs on different P4
targets is shown. The standard deviation of the service times of different P4 targets are
calculated based on the measurement data and is found to be equal to 0.39, 0.21, and
4.55 µs in the cases of NetFPGA-SUME, Agilio CX SmartNIC, and t4p4s, respectively.
Note that this standard deviation is needed for calculating the average sojourn time in
the refined model with generally-distributed service times.

Controller’s Parameters:

Currently, the ONOS controller is one of the few SDN controllers that has a stable
P4Runtime implementation. For this reason, we select ONOS as a representative
P4-compatible SDN controller in this modeling exercise.

The service distribution that best mimics the behavior of the controller is derived
based on measurements. The testbed for conducting this evaluation is similar to that
described in Subsection 3.5.2, where the P4RCProbe tool is used. The tool runs on
one server while the controller runs on another server. The tool is then configured to
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emulate a single switch that sends 100,000 packets to the ONOS controller according to
Poisson distribution with a rate equal to 5 packets per second.

The tool records the RTT of each packet sent to ONOS. The distribution of the collected
RTT values is used as a ground truth empirical distribution of the controller’s service
time. The average service time is found to be approximately equal to 8 ms, while the
standard deviation is equal to 1.1 ms.

The selected values corresponding to the controller’s service process are inspired by
the collected measurement results. In this evaluation, we consider a 10 ms average
controller service time as the worst-case scenario. We expect that the continuous en-
hancement in the implementation of these controllers will reduce the service time
in the future. Accordingly, we study the following three different controller’s ser-
vice times: 31µs, 240µs, and 10 ms to accommodate for a wide range of controller’s
performance, where the standard deviation is always set to 10% of the average con-
troller’s service time to be in line with the revealed measurement results. The standard
deviation is relevant for calculating the sojourn time in the refined model case with
generally-distributed service times.

The Erlang distribution is selected as the general distribution that best mimics the
service process at the controller in the refined model case based on the same arguments
provided in the previous data plane modeling part.

Involvement Level of the Controller:

The involvement level of the controller is varied by varying the probability of observing
a new flow, Pnf . It is varied from zero where all packet processing takes place on the
data plane to one where the controller is involved in handling every packet arriving
at the switch. The latter can be useful in a scenario when a new southbound protocol
is tested, wherein every packet arriving at the switch needs to be forwarded to the
controller, such as the case in [56]. Moreover, values of Pnf equal to 0.2 and 0.5 are taken
as intermediate values, while Pnf = 0.04 is evaluated since it reflects the probability of
observing a new flow in a normal production network handling end-user traffic based
on [57].

Evaluation Scenario

The proposed theoretical models in Subsections 4.3.2 and 4.3.3 are evaluated using
simulations. We chose simulations over measurements to validate the models because
simulation results can be obtained faster while still allowing us to widely vary the
model’s parameters. To that end, we used MATLAB [119] to create a packet-based
simulation that reflects the chosen model.
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The simulation ensures that a packet only visits the controller once to adhere to the
realistic behavior of the packet’s life cycle. The controller and data plane service times
are set to be exponential- and Erlang-distributed in the simulations in Subsections 4.4.2
and 4.4.3, respectively. The external arrival process, like in the analytical model, is set
to follow a Poisson process. The Poisson assumptions on the arrival process to the
controller, which is the departure process from the data plane, as well as the one on
the arrival process from the controller to the data plane, which is the loopback traffic,
are relaxed. In the simulations, we do not force these arrival processes to be Poisson,
rather we keep the interaction between the controller and data plane systems free to
reflect the real performance of the overall system.

Each simulation in this section with different parameter sets is run on approximately
1.3 million packets and repeated five times with different seeds. On top of the average
simulation results, the 95 percent confidence interval is plotted.

4.4.2. Simple Model with Exponentially-Distributed Service Times

In this subsection, we present the results corresponding to the simple model presented
in Subsection 4.3.2. The sojourn time is calculated using Eq. (4.9) based on the proposed
model, and the simulation results are presented in the following when the controller’s
service time is set to 10 ms, 240µs, and 31µs.

Results of Slow Controller Case

The analytical and simulation results of the average sojourn time in µs and in logarith-
mic scale as a function of controller load, ρc, for different Pnf values when controller
service time is set to 10 ms are shown in Fig. 4.5. Figs. 4.5a, 4.5b, and 4.5c corre-
spond to cases where L3Fwd and VxLAN Decapsulation P4 pipelines are evaluated on
NetFPGA-SUME, Agilio CX SmartNIC, and t4p4s software switch, respectively, with
data plane service times taken from Table 4.1. The results for the L3Fwd + UDP-based
Firewall pipeline are not plotted because they look similar to the L3Fwd results as
they both have very similar service times as can be inspected from Table 4.1. Note that
when Pnf = 0, the x-axis varies depending on the data plane load since the controller’s
load is always zero.

All of these results show that the sojourn time increases almost linearly up to a load
value of 0.8, whereafter the latency increases more sharply as the load approaches
full utilization (i.e., equal to one), which is typical for all queueing systems. Further-
more, we can see that the derived analytical equations always accurately capture the
performance of the simulated system under various loads.

In the case of Pnf = 0, the system’s performance is only influenced by the performance
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Figure 4.5.: Sojourn time of the system in the slow controller case.

of the data plane. In this case, we can see that when the data plane’s service time is
larger, the curves are shifted upward. For example, when comparing the results in
Fig. 4.5a corresponding to NetFPGA-SUME that has the smallest data plane’s service
time to the results presented in Fig. 4.5c for t4p4s software switch that has the largest
service time. Furthermore, when the load is low, the sojourn time is nearly equal to
the data plane’s service time. For example, as shown in Fig. 4.5b, the sojourn time in
cases of L3Fwd and VxLAN Decapsulation is equal to 8.6 and 16µs, respectively when
running on the Agilio CX SmartNIC with a load of 0.05.

When the Pnf values increase from zero to one, the sojourn time increases by 2 to 3
orders of magnitude. This significant increase in latency is due to the controller’s
involvement in packet processing, which has a much longer service time, i.e., 10ms,
compared to the data plane’s service time. Furthermore, the impact of loading different
P4 pipelines becomes negligible as Pnf values increase, where the small difference in
the data plane’s service time is obscured by the controller’s long service time.

Results of Average Controller Case

In the following, we examine the differences in system performance when the con-
troller’s service time is shorter, i.e., a faster controller compared to the previous case.
Fig. 4.6 corresponds to Fig. 4.5 in displaying the analytical and simulation results of
the average sojourn time for various cases but with the controller’s service time set to
240µs.

Because most of the previously examined observations remain valid, we will only
look at the changes in performance that occur as a result of the controller’s reduced
service time. As the controller’s service time decreases, the data plane performance
becomes more important in determining the system’s performance. When Pnf is low,
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Figure 4.6.: Sojourn time of the system in the average controller case.

the performance curves corresponding to different P4 pipelines become more distinct.
This is mostly visible in the case of Agilio CX SmartNIC in Fig. 4.6b since the difference
in the pipeline’s service time is larger on this device compared to the other devices.

The sojourn time increases by one to two orders of magnitude as Pnf increases. This
smaller impact of Pnf on sojourn time is due to the controller requiring less service
time to process packets corresponding to newly observed flows forwarded to it.

Unlike the previously observed patterns in the case of slow controller, we see a sig-
nificant increase in latency in some of the curves in this case with average controller
service time. This sharp increase is taking place in the following cases: (i) Agilio CX
SmartNIC with VxLAN pipeline at Pnf = 0.04, (ii) t4p4s software switch with L3Fwd
and VxLAN pipelines at Pnf = 0.04 and later at Pnf = 0.2. It is worth noting that in
these cases, we skipped plotting the sojourn time after a certain point because the
values became arbitrarily large. The reason for this sudden increase in latency is that
the data plane’s load/utilization in these cases is approaching one. More importantly,
we can see that even when the system approaches these corner cases, the analytical
model can still capture the system’s performance. This instability will never happen
with the controller queue because we explicitly vary its load between 0.05 and 0.95 in
all tested cases. Subsection 4.4.4 provides a detailed analysis of this behavior.

Results of Fast Controller Case

Fig. 4.7 depicts the sojourn time of the various considered cases when the controller is
fast, with an average service time of 31µs. In this case, as in the previous case of the
average controller, when latency caused by control plane processing is reduced, the
data plane plays a larger role in determining the performance of the system. In general,
we can see that the average sojourn time is reduced when compared to the previous
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Figure 4.7.: Sojourn time of the system in the fast controller case.

two cases. Moreover, the impact of loading different P4 programs with different service
times at the data plane on the average sojourn time of the system is amplified.

Furthermore, we can clearly see that the data plane utilization limit is frequently
exceeded. This can be seen in the following situations: (i) The violation occurs in both
pipelines in Agilio CX SmartNIC when Pnf = 0.04 and 0.2, but only in the VxLAN
case when Pnf = 0.5; (ii) The violation occurs in both pipelines of NetFPGA-SUME
when Pnf = 0.04; (iii) The violation occurs in all cases, except when Pnf = 0 where data
plane’s load is explicitly configured, in the t4p4s software switch. This violation occurs
at various ρc values, and when the violation occurs early before ρc = 0.05, the curve is
not shown at all, as can be observed in Fig. 4.7c when Pnf = 0.04.

It is worth noting that the confidence intervals in all cases are extremely narrow. In
high-load cases where the system performance approaches instability, it is barely
visible. Furthermore, the deviation of model results from simulations is evaluated in
all cases and found to be less than 1.5% on average for all controller service rates.

4.4.3. Refined Model with General Service Processes

In this subsection, we analyze the results corresponding to the refined model pre-
sented in Subsection 4.3.3. The average sojourn time in the system is calculated using
Eq. (4.12).

The simulation results of the system when using generally-distributed service times
at the data plane and the controller revealed similar trends as those observed in the
previous subsection when exponentially-distributed service times were adopted. For
this reason, we will plot only the results corresponding to the t4p4s software switch
with the three controller cases as an exemplary case in Fig. 4.8. The results of the
refined model plotted in Figs. 4.8a, 4.8b, and 4.8c corresponding to the three different
controller cases look very similar to the results of the simple model for t4p4s software
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(a) Slow controller case.
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(b) Average controller case.
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(c) Fast controller case.

Figure 4.8.: Average sojourn time of the system with t4p4s software switch.

switch previously analyzed in Figs. 4.5c, 4.6c, and 4.7c, respectively. The impacts of
the controller’s load, Pnf , data plane’s service time, and controller’s service time on
the average sojourn time of the system are still the same in the refined model case
compared to the previously analyzed simple model case. Moreover, the sudden jumps
in the sojourn time of the system due to the over-utilization of the data plane’s queue
are also visible in this case.

The main difference when adopting Erlang-distributed service times at the data
plane and the controller in this refined model compared to the simple model with
exponentially-distributed service times is that the average sojourn time in the system
is relatively smaller. For example, looking at the curves of the fast controller case with
the t4p4s software switch, while sojourn time reaches 1000 µs in the simple model case
in Fig. 4.7c, we can observe that it is always less than that value in the refined model
case in Fig. 4.8c. The reason for this decrease in sojourn time is that the variability of
service time in the refined model case with Erlang-distributed service times is smaller
than that in the simple model case with exponentially-distributed service times. This
leads to smaller queueing delays in the data plane’s and controller’s queues and thus
results in a smaller average system’s sojourn time.

We can also observe that the theoretical results derived from the refined model very
well match the system’s performance revealed by simulations. The error in the model
is found to be less than 12% in all cases when the system is not highly utilized (ρd and
ρc are both less than 90%). When either of the two queues in the data plane or control
plane approaches full utilization, the accuracy of the model decreases. In general, the
reason for this decreased accuracy in the model compared to the simple model case
is the memoryless assumption related to the arrival process to the controller and that
to the data plane back from the controller. This assumption holds better in the simple
model case with memoryless exponentially-distributed service times and departures
compared to the refined model that adopts different service distributions at the data
plane and controller.
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(a) Controller’s service time set to 240 µs.
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(b) Controller’s service time set to 31 µs.

Figure 4.9.: Service rate and arrival rate at the data plane for different cases.

4.4.4. Derived Constraint for System Dimensioning

In this subsection, we derive a constraint for dimensioning input traffic to the system
while avoiding packet drop. The utilization of a queue should always be less than one
to keep it stable. In the feedback-oriented model under consideration, the system is
not stable if any of the two queues at the data plane and the controller is not stable.

The system’s utilization can be derived as follows. The system is empty, only if both
the data plane and the controller queues are empty. The latter happens with probability
equal to (1 − ρd) ∗ (1 − ρc). Accordingly, the system utilization can be expressed as
ρsys = 1− (1− ρd) ∗ (1− ρc).

During the previous evaluation, we noticed that the sojourn time increased arbitrarily
large in some cases indicating that the system is over-utilized. In the controller’s
case, the load never exceeds one because we explicitly vary it between 0.05 and 0.95.
However, this could be the case for the data plane’s queue, wherein the packet arrival
rate to the data plane surpasses the data plane’s service rate. When we express the
external arrival rate as a function of controller load as λext = (µc∗ρc)/Pnf and substitute
it into Eq. (4.8) of the data plane’s arrival rate, we get the following constraint

µDd (NF ) >
µc ∗ ρc ∗ (1 + Pnf )

Pnf
. (4.13)

Given the expected traffic characteristics for a use case scenario, this constraint can
aid in the selection of the appropriate P4 target for running the intended network
functionality based on its service rate or inversely its average forwarding latency.
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Alternatively, the constraint can be used to control the maximum amount of incoming
external traffic into a deployed P4 device with a specific service rate such that the traffic
is handled without packet drops.

Fig. 4.9 depicts the arrival rate to the data plane (right-hand side term of 4.13) as a
function of ρc for various Pnf values in logarithmic scale. In addition, the service rates
corresponding to the various P4 pipelines and P4 devices are plotted in this figure,
where these rates are calculated as the inverse of the previously provided service
times. Figs. 4.9a and 4.9b correspond to the average and fast controller cases where
service rates are set to (240 µs)−1 and (31 µs)−1, respectively. Note that the results
corresponding to the slow controller with service time equal to 10 ms are not shown
because data plane utilization is always stable in this case. Also, we skip plotting the
arrival rate curves when Pnf = 0 because the data plane utilization is explicitly set to
less than 1 in these cases. The data plane system, and thus the overall system, is stable
as long as the service rate is greater than the arrival rate with different Pnf values.

Figs. 4.9a and 4.9b show that the constraint presented in Eq. (4.13) is violated at Pnf
and ρc values that match the cases observed in Figs. 4.6 and 4.7, respectively, where
the sojourn time increased arbitrarily and thus was not plotted. For example, let
us examine the case where the controller service time is equal to 240µs, as shown
in Fig. 4.9a. It can be seen that the arrival rate for Pnf = 0.5 and 1 is never greater
than any of the data plane service rates, meaning that the system is never overloaded.
On the other hand, the system is overloaded when the arrival rate corresponding to
Pnf = 0.04 crosses the service rate of the t4p4s switch for both pipelines after ρc = 0.2
and crosses the service rate corresponding to running the VxLAN pipeline on the
Agilio CX SmartNIC after ρc = 0.6. Similarly, the arrival rate when Pnf = 0.2 crosses
the service rate associated with the t4p4s switch after ρc = 0.85. The same analysis can
be performed by cross-referencing the results presented for the fast controller case with
Fig. 4.9b. Note that this analysis is conducted based on the simple model results, but it
also holds the same in the refined model case.

4.5. Summary

In this chapter, we proposed performance models for P4-based systems. These models
recognize the different factors that can influence the performance of the system and
incorporate them as parameters that can be tuned based on the tested scenario.

The modeling exercise is broken into two stages. In Section 4.2, we focus mainly on
modeling the challenging part related to the dependency between the data plane’s
forwarding latency and the complexity of the loaded P4 program. In this direction,
we make use of the measurements collected in Section 3.2 to derive a generic method
for predicting the packet forwarding latency when running arbitrary P4 programs on
different P4 packet processors. The proposed method is based on a three-step approach.
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First, we build performance profiles for different P4 packet processors that quantify
the base forwarding latency and the latency to execute different P4 operations. Then,
we analyze the given P4 program to extract the constituting P4 operations. Finally,
we estimate the packet forwarding latency using the program’s extracted information
and the built P4 targets’ performance profiles. The proposed method is validated by
applying it to three realistic network functions running on three P4 targets, where the
recorded estimation accuracy always exceeded 95%.

The method proposed in Section 4.2 served as the first building block for deriving
more comprehensive analytical performance models for P4-based systems, where
the estimated forwarding latency at the data plane characterizes the service process
on that path. Section 4.3 uses the previous results to propose two queueing theory-
based models that abstract the performance of P4-based systems as feedback-oriented
queues where all the factors that influence the performance of this system are included
in the models. The first model assumes exponentially-distributed service times to
keep the model simple, while the second model relaxes this assumption and adopts
generic service processes whose distribution is based on measurements to provide
more realistic performance predictions.

Finally, Section 4.4 evaluates the two models by varying a wide set of parameters and
analyzing their impact on the packet’s sojourn time in the system. The model results
are validated through simulations. In general, we observed that the results of the
two models are very similar when varying any of the influential parameters, except
that the refined model has lower sojourn time values compared to the model with
exponentially-distributed service times. The accuracy of the two models compared
to simulation results is found to be very high. This evaluation leads to deriving
constraints for dimensioning the permissible input traffic that can be handled by the
system without packet drops.
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The optimal planning and management for the deployment of P4 programmable packet
processors in cloud environments are studied in this chapter. When P4 programmability
is integrated into cloud environments to process NF workloads, they create a new
environment, which we call: P4-enhanced NFV environment.

P4 language is target or device-independent, meaning that the same P4 program can
be used to configure different types of P4 programmable devices such as software
switches, NPUs, FPGAs, or ASIC switches. When these different devices are used
as a substrate for building cloud environments, they form a heterogeneous pool of
processing resources. The measurements conducted in Chapter 3 revealed that there is
a large difference in the forwarding performance of the different SOTA P4 targets. For
example, when running the same P4 program on different P4 devices, the forwarding
latency could vary by more than 12 folds as in the case when running the L3Fwd P4
program on the NetFPGA-SUME card versus running it on t4p4s software switch. On
the other hand, these measurements also revealed that even when using the same
P4 device, the processing latency could increase by up to 85% when the complexity
of the P4 program increases as in the case when running L3Fwd P4 program versus
VxLAN Decapsulation on the Agilio CX SmartNIC. The distinct performance and
capabilities of the different available P4 programmable processing resources require
smart management of these resources when selecting the processing platform that
best hosts a certain workload with given QoS requirements for a certain type of
functionality. The optimal management of these cloud environments enables enhancing
the performance of the overall system in terms of forwarding performance, which is a
valuable objective. For example, [120] quotes that a 1-millisecond latency advantage in
trading applications can be worth 100 Million dollars a year to a major brokerage firm.

Thanks to the models derived in Chapter 4, we have a thorough understanding of
the forwarding latency when running an arbitrary P4 program on an arbitrary P4
target. This performance-awareness enables us to manage the P4-enhanced NFV
environments in a highly efficient way, wherein we can satisfy QoS requirements in
terms of delay as we can predict a priori the forwarding latency of embedding any NF
on any network substrate made up of P4 devices.

In this chapter, we consider two optimization problems related to managing P4-
enhanced NFV environments, wherein each problem considers a different stage of
management, and results in a different problem setup and formulation: (i.) The first
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problem is concerned with the offline optimal planning for selecting and building a
network’s substrate, and (ii.) the second problem is concerned with optimizing the
runtime management of an already given built-up network.

The first problem called Performance-Aware P4 Virtual Network Functions Resource
Allocation (PA-P4VNF-RA) deals with the planning of the infrastructure substrate of
P4-enhanced NFV environments. The optimization problem looks for the optimal
set of P4 packet processors that can handle a given processing workload and the
placement solution of this workload into the selected hosting devices. The different
requirements of the NFs workload and the distinct performance and capabilities of
the available P4 devices in the cloud infrastructure are taken into consideration while
formulating the problem. The objective function targets maximizing the performance in
the system while minimizing the capital expenditure costs when selecting the optimal
set of P4 packet processors that can handle a given processing workload. Note that the
contributions related to this problem are based on our early publication [7].

The second optimization problem, called Performance-Aware P4 Service Function
Chain Embedding (PA-P4SFC-E), targets finding the optimal embedding of SFCs into
P4-enhanced NFV environments at runtime. The optimization problem formulation
searches for the optimal placement and routing of SFCs into P4 packet processors. The
functional and QoS requirements of these SFCs are fulfilled by leveraging the acquired
knowledge from previous chapters related to the performance and capabilities of the
different available P4 packet processors. Furthermore, a greedy solution is designed
and implemented to solve this problem in a shorter time.

The rest of this chapter is organized as follows. In Section 5.1, we define the context and
objective of the two studied optimization problems, as well as the distinction between
these problems from state-of-the-art literature. In Sections 5.2 and 5.3, we define the
mathematical formulation and present the evaluation of the two studied optimization
problems PA-P4VNF-RA and PA-P4SFC-E, respectively. Finally, Section 5.4 concludes
the chapter.

5.1. Problem Context and Related Work

In Subsection 5.1.1, we describe the scenario related to the two optimization problems
addressed in this chapter. Then, we distinguish the scope of these problems from
state-of-the-art works in the literature in Subsection 5.1.2.

97



5. Performance-Aware Management of P4-based Cloud Environments

5.1.1. Problem Context

The recent trend of deploying programmable packet processors in cloud environments
improves packet processing capability without sacrificing the ability to adapt functions
at runtime. However, managing network functions, particularly deciding where to
instantiate a specific function, is a difficult task with numerous deciding factors. On
one hand, the management scheme should take into consideration that the NFs to be
managed in the environment have different functional and performance requirements.
For example, a NF can be compatible with specific P4 architecture, or it can require
certain acceleration functions, or it can demand some QoS levels in terms of delay or
throughput, etc. On the other hand, the P4-enhanced NFV environment is made up of a
heterogeneous pool of P4 packet processors with different capabilities and performance
levels. For example, each P4 packet processor may support different P4 architectures,
may include certain acceleration functions, or have different performance levels as
analyzed in Chapter 3. To this end, we propose a management scheme that targets
optimizing the deployment of network functions with distinct requirements into a
P4-enhanced NFV environment made up of different P4 packet processors with distinct
capabilities. The management scheme addresses the following two optimization
problems:

PA-P4VNF-RA Problem

This problem stands for Performance-aware P4 Virtualized Network function Resource
Allocation. In this problem, we are interested in the scenario where we want to plan for
the infrastructure of the P4-enhanced NFV environment. Given an expected workload
of NFs that need to be processed in a cloud environment, the problem searches for
the best set of P4 packet processors that can host the NF workload while maximiz-
ing the forwarding performance and minimizing the capital expenditure costs.

Fig. 5.1 depicts the considered scenario. The workload to be processed by the envi-
ronment is presented as a set of NFs written as P4 programs. If there is branching in
the SFC definition, we consider each path of the acyclic graph as one sequential SFC.
Each NF has different functional requirements such as compatible P4 architecture or
required acceleration functions (expressed in terms of P4 externs), etc. Moreover, each
NF describes a different processing pipeline written as a different P4 program with a
different set of constituting P4 atomic constructs. We extract the atomic P4 constructs
of each P4-based NF using the methodology described in Subsection 4.2.2. The model
also checks for the possibility of NF sharing among the requested set of SFCs to be
placed to avoid duplicate packet processing and save processing resources.

On the other hand, the problem recognizes that candidate P4 packet processors belong
to different processing platforms, and thus they have different functional capabilities
and limitations, as well as different performance levels. The optimization problem uses
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Figure 5.1.: Considered scenario in PA-P4VNF-RA problem.

the measurements conducted in Chapter 3 to identify the limitations and capabilities of
hosting P4 devices to constraint the placement of NFs into P4 packet processors based
on the requirements of NFs and the capabilities of the candidate P4 packet processors.
These constraints ensure the compatibility between the NF and the hosting P4 device.
The checked constraints include and are not limited to the following: compatibility of
P4 architecture, availability of acceleration functions, sufficient throughput, availability
of memory resources in terms of the total number of rules that can be placed, capacity
in terms of the maximum number of atomic P4 constructs that can be supported
on a device. Moreover, the problem uses the predeveloped performance models in
Chapter 4 to make a priori calculations of the forwarding delay that may result from
different placement options. This performance awareness enables finding the optimal
placement solution that achieves the highest forwarding performance in the system or
guarantees some QoS levels associated with the placement requests.

The multi-objective optimization function searches for the best set of hosting P4 packet
processors and the optimal placement of NFs into this set of devices while minimizing
both the forwarding latency in the system and the capital expenditure.
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PA-P4SFC-E Problem

The second problem is more relevant for the runtime management of the P4-enhanced
NFV environment. As its name states, performance-aware P4 SFC embedding, this
problem deals with the embedding of SFCs into the P4 substrate. Fig. 5.2 illustrates the
considered scenario.

Unlike the previous scenario, in this one, we consider that the infrastructure of the
P4-enhanced NFV environment is already given. Although the formulated model can
be solved for any topology, the commonly used "Fat Tree" topology is assumed in this
scenario. The infrastructure is made up of racks of servers with CPU processors. Each
server can be equipped with an NPU-based SmartNIC or an FPGA-based SmartNIC
as depicted in Fig. 5.2. The servers and the two types of SmartNICs can support P4
programmability. The racks are connected via Top of Rack (ToR) switches. These ToR
switches could be P4 programmable ASIC switches or traditional switches that only
perform Layer 2 Forwarding (L2Fwd) functionality. Finally, the interconnection of the
racks is achieved via traditional L2Fwd switches. The abstract representation of this
network is shown in Fig. 5.2, where different P4 packet processors are presented as
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nodes with different colors. The links between the SmartNICs and the CPU-based
servers abstract the PCIe bus connectivity between these devices when SmartNICs are
plugged into the servers. On the other hand, the connections between the SmartNICs
and the ToR switches present the case when the physical interfaces of the SmartNICs
are connected to the ToR switches. For the sake of generality, the scenario recognizes
the cases when traditional non-programmable switches are used in the infrastructure
for interconnection. We assume that all P4 packet processors can process all their
incoming traffic at line rate, so only the capacity of the connecting links (and not
the devices) is considered in throughput constraints. It is also assumed that all P4
programmable devices in the network can serve as ingress or egress nodes for the
traffic processed in the network. So each node is assumed to have another pair of ports
that can serve as ingress and egress interfaces for traffic to enter or leave the network.
The throughput constraint is also applied for these ingress and egress ports according
to the throughput capacity of each P4 packet processor.

The workload in this scenario is made up of SFCs that need to be embedded into the P4
substrate. Each SFC is a connected sequence of P4-based NFs. Besides the requirements
described in the previous scenario associated with each constituting NF, each SFC also
has its QoS requirements related to the throughput and delay that need to be satisfied
as shown in Fig. 5.2. The model also realizes that some SFCs are built of the same type
of NFs. So, if the model decided to place two SFCs that have a common NF on the
same device, it will place this common NF only once on the hosting device and let the
two SFCs share this single placed function. NF sharing is favored by the model when
applicable because when SFCs share an NF, there is no need to instantiate a duplicate
NF on the same device as this would waste processing resources on the hosting device.
Note that the model includes a constraint that checks the available processing resources
on each device which are limited based on the device type.

The problem in this scenario is to search for the optimal embedding of a workload
of SFCs into a given P4 infrastructure, while satisfying all the functional and QoS
constraints associated with each SFC.

The component NFs of each SFC should be properly placed into P4 packet processors
while recognizing the requirements of the NFs and the capabilities of the P4 devices
as described in the previous scenario. Moreover, the routing between the NFs con-
stituting an SFC should also be provisioned. Similar to the previous scenario, the
predeveloped performance models are utilized in the formulated problem to perform
a priori calculations of the delays associated with different embedding options until
finding the optimal embedding that satisfies the required QoS levels per SFC. The
objective function in this scenario targets minimizing the operational cost in the system
by minimizing the total power consumed by the operating P4 devices.
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5.1.2. Related Work

Since the introduction of NFV technology, many works were introduced to address
the resource allocation and SFC embedding problems. More about these works can be
found in these two surveys: [67] and [66]. For example, VNF Orchestration Problem
(VNF-OP) [65] presents a comprehensive problem formulation for the placement and
mapping of SFC requests. The authors used commodity servers to host a variety of
NFs that were instantiated based on the flow requirements. However, this paper does
not consider function accelerators or P4 programmability as needed in our considered
scenario.

While most solutions in the literature, such as VNF-OP [65], deal with NF placement on
commodity servers, Accelerator-aware VNF Placement and Chaining (VNF-AAPC) [64]
considers also accelerators in the substrate when dealing with the placement problem.
In the formulation of VNF-AAPC, the accelerator and server are considered as a single
node. If a compatible accelerator is available, the server-accelerator node uses fewer
resources (i.e., cores) to host an NF. Although VNF-AAPC recognizes accelerators in
the problem formulation, it does not consider P4 programmability and the fact that
different accelerators may execute different functions, which requires proper mapping
between the requirements of the NF workload and the availability of acceleration
functions on the hosting devices.

In its problem formulation, P4NFV [33] takes P4 programmability into account. The
authors of this paper are interested in determining the best NF placement between
a SmartNIC and its hosting server. However, they do not consider the placement
problem at the level of a full network which may be made up of heterogeneous types
of P4 programmable devices. Smartchain [62] is another work that targets finding the
optimal placement of an SFC between the SmartNIC and the CPU of a device, similar
to [33], but without utilizing the P4 programmability.

Flightplan [63] enables the placement of P4 programs on a network of devices by utiliz-
ing coarse segmentation of the P4 programs. The model presented in Flightplan divides
a P4 program into several smaller P4 programs that can run on different P4 targets. It is
stated that this would improve the overall network performance and resource utiliza-
tion. Although Flightplan takes into consideration the performance of segmented P4
programs, the applicability and usefulness of this performance awareness are hindered
because of the coarse granularity in segmenting P4 programs compared to the approach
followed in our work, where we consider the performance awareness at the level of
atomic P4 operations.

In this chapter, we investigate the optimal NF placement and routing in cloud environ-
ments comprised of various P4 devices. The planning aims to optimize the placement
of NFs while minimizing the overall delay and cost. The applied method in this work
takes into account the characteristics of cutting-edge P4 devices at the granularity of
the execution of various P4 atomic constructs. Each NF is decomposed into a set of
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Table 5.1.: Summary of the related works and their commonalities with the problems
studied in this chapter.

Problem Scope VNF-OP VNF-AAPC P4NFV Flightplan Work in
[65] [64] [33] [63] this Chapter

VNF Placement X X X X X
SFC Embedding X X X X X
Placement into a X X X X X
Network of Devices
Quality of Service X X X X X
Requirements
Availability of X X X X X
Acceleration Functions
P4 Programmability X X X X X
Heterogenous X X X X X
P4 devices
Performance X X X X X
Awareness based on
Atomic P4 constructs

atomic P4 constructs in order to find the best-performing P4 device that can support
running that NF. In contrast to the SFC embedding problem, which is widely studied
in the literature, this problem is still not addressed when the embedding is performed
into a heterogeneous pool of P4 packet processors with performance-awareness taken
into consideration for satisfying QoS requirements. Table 5.1 represents a summary of
the related works in comparison to the problems studied in this chapter.

5.2. PA-P4VNF-RA Problem

In this section, we describe the PA-P4VNF-RA problem formulation and its evaluation.
The contributions presented in this section are based on our publication [7]. First, we
model the infrastructure of the P4-enhanced NFV environment and the capabilities
of the P4 packet processors in Subsection 5.2.1. The description of the workload in
terms of NFs requirements is illustrated in Subsection 5.2.2. The formulation of the
optimization problem under study, i.e., PA-P4VNF-RA, is provided in Subsection 5.2.3,
where the decision variables, objective functions, and constraints are described. In
Subsection 5.2.4, we illustrate the selection of system parameters. The selection of the
parameters related to NFs and P4 devices is based on the evaluation conducted in
Chapter 3 and other works surveyed from the literature. Finally, a detailed evaluation
of the PA-P4VNF-RA problem is conducted in Subsection 5.2.5, wherein different
scenarios are defined to vary the weights of the two objective functions, i.e., the cost
and the performance.
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5.2.1. Infrastructure Variables and P4 Devices’ Characteristics

The target-independence feature of P4 allows the same P4 program to run on different
types of P4 devices if a compatible P4 architecture is supported on these devices. The P4
architecture defines the programmable blocks in a P4 device, as well as the supported
externs. These extern functions are additional methods supported by the P4 device
that can be called from within a P4 program via a given API. For hardware P4 packet
processors, externs can be used to access built-in acceleration functions such as an
encryption function, while for software P4 packet processors, externs can be used to
access software implementations of the referenced external function.

We defineD,DP , andDN to be the sets of all devices, all P4 programmable devices, and
all non-programmable switches in a cloud environment, respectively ( D = DP ∪ DN ).
The set DP may include multiple instances of devices belonging to the same type
of processing platforms such as NetFPGA-SUME cards. In this case, these instances
have the same device capabilities. The two sets A, and E are defined to include
all the supported P4 architectures, and the available P4 extern functions in a cloud
environment, respectively.

Each P4 device d ∈ DP has the following characteristics:

• δBPd stands for the base processing delay of P4 device d, which includes the delay
of the non-programmable blocks in the device.

• δcd stands for the processing delay of a P4 construct c on P4 device d.

• δed stands for the processing delay of running a P4 extern function e ∈ E on P4
device d.

• ωd stands for the processing resources of P4 device dwhose definition depends on
the type of the processing platform. For example, while the processing resources
in the case of FPGA-based devices are expressed in terms of the available Look-
up-tables, these resources are expressed in terms of the number of available
stages in the case of ASIC devices. To have a common definition, we quantify the
processing resources of a P4 device as the maximum number of P4 constructs
that can run simultaneously on that device.

• τd stands for the memory space in terms of the total number of rules that can be
stored in a P4 device d.

• Pd stands for the expected power consumption by P4 device d when it is active.
The power consumption of the device is assumed to be constant if the device is
in use, and zero if it is not in use.

• Costd stands for the Capital expenditures (CAPEX) cost or price of P4 device d.
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Table 5.2.: Description of symbols used for modeling the cloud infrastructure variables
and P4 devices’ characteristics.

Symbol Infrastructure Symbols Description
DP Set of P4 programmable devices
DN Set of non programmable devices
D Set of all devices D = DP ∪ DN
X Set of all physical links in the network
A Set of possible P4 architectures
E Set of possible P4 extern functions
δBPd Base processing delay on a P4 device d ∈ DP
δcd Processing delay of executing P4 construct c on device d ∈ DP
δed Processing delay of a P4 extern function e on device d ∈ DP
ωd Available processing resources in device d ∈ DP
τd Number of rules that can be stored in P4 device d ∈ DP
Pd Power consumption of P4 device d ∈ DP when active
Costd Price of P4 device d ∈ DP
Archad Boolean parameter equal to 1 if device d ∈ DP supports architecture a ∈ A
Exted Boolean parameter equal to 1 if device d ∈ DP supports extern e ∈ E
Td Supported throughput by P4 device d ∈ DP on each of its interfaces
T ed Supported throughput when running extern e ∈ E on P4 device d ∈ DP
T (di, dj) Capacity of physical link (di, dj) ∈ X for di, dj ∈ D
kd Delay of non programmable devices d ∈ DN

• Archad is a Boolean parameter equal to 1 if P4 device d supports architecture a ∈ A,
and equal to 0 otherwise.

• Exted is a Boolean parameter equal to 1 if P4 device d supports extern e ∈ E , and
equal to 0 otherwise.

• Td stands for the maximum supported throughput by P4 device d on each of its
interfaces.

• T ed denotes the maximum supported throughput when running extern e on P4
device d.

Each non-programmable switch d ∈ DN is characterized by a constant forwarding
delay denoted by kd. When these programmable P4 devices and the non-programmable
switches are connected with physical links, they create a network. Let X denote the
set of all physical links in the network and T (di, dj) denote the capacity of physical
link (di, dj) ∈ X for di, dj ∈ D. Table. 5.2 summarizes the description of all the symbols
used for modeling the cloud infrastructure variables and P4 devices’ characteristics
defined in this subsection.
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5.2.2. Network Function Requirements

The processing workload that needs to be supported by the cloud infrastructure is
made up of NFs. In the following, we describe the requirements associated with NFs
workload.

We denote F to be the set that includes the NF instances workload that should be
placed into the network. The set Y includes all the possible types of NFs. For example,
there could be more than one instance of Firewall NF in F , but all these NFs have the
same type y ∈ Y . The binary variable ψyf is defined to be equal to 1 when NF f ∈ F is
of type y ∈ Y . Note that some functionalities, such as the L2Fwd or L3Fwd, need to
run on every used packet processor to guarantee proper packet forwarding between
devices. The set of required functions is denoted by Freq. Set Ftot = F ∪ Freq includes
all the NFs defined in a scenario.

An NF written as a P4 program is made up of a group of atomic P4 operations as
described in Subsection 4.2.2. We define set C to include all the possible P4 constructs
that may be used to write a P4 program. Any NF of type y ∈ Y can be written as
a combination of the P4 constructs contained in C. The set of P4 constructs that are
needed to compose a NF instance of type y is denoted by Cy, where Cy ⊂ C. The
following variables summarize the requirements associated with any NF f of type y:

• σcy represents the number of occurrences of each construct c ∈ Cy needed to build
a NF of type y.

• ωy represents the total number of P4 constructs required to describe a NF of
type y, i.e., ωy =

∑
c∈Cy

σcy. This variable reflects the complexity of the NF, and
consequently, the expected required processing resources by this NF.

• Archay is a Boolean parameter equal to 1 if the NF of type y is compatible with P4
architecture a ∈ A, and equal to 0 otherwise.

• Extey is a Boolean parameter equal to 1 if the NF of type y requires extern e ∈ E ,
and equal to 0 otherwise.

• τf represents the expected required number of rules that need to be stored when
hosting NF instance f ∈ F .

• QoSTf represents the expected throughput that needs to be processed by NF
instance f ∈ F .

Table. 5.3 summarizes the description of all the symbols used for modeling NFs work-
load and their associated requirements.
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Table 5.3.: Description of symbols used for modeling NFs workload and their associ-
ated requirements.

Symbol Workload Symbols Description
F Set of all NF instances to be placed
Freq Set of required NFs for forwarding
Ftot F ∪ Freq
Y Set of all types of NFs
C Set of all P4 constructs/operations
Cy Set of P4 constructs used to build a NF of type y ∈ Y
ψyf Boolean parameter equal to 1 if NF f is of type y
σcy Number of occurrence of each construct c in Cy needed to build an NF of type y
ωy Total number of P4 constructs required to describe NF of type y
QoSTf Expected throughput that should be processed by NF instance f ∈ F
τf Number of rules that need to be stored when hosting NF instance f ∈ F
Archay Boolean parameter equal to 1 if NF of type y is

compatible with P4 architecture a ∈ A
Extey Boolean parameter equal to 1 if NF of type y requires extern e ∈ E

5.2.3. Problem Formulation

The PA-P4VNF-RA problem searches for the best set of P4 devices that can host a given
workload of NFs while minimizing the forwarding latency and the capital expenditure
cost. For this problem, we need the predeveloped performance models to calculate
a priori the forwarding latency corresponding to different NF placement options. In
the following, we first describe how the delay of different NF placement options is
calculated, and then we define the objective function and constraints related to the
PA-P4VNF-RA problem.

NF Delay Calculation

The formulation of this problem makes use of the studies presented in Chapters 3 and 4
related to understanding the performance of different P4 devices and their performance
variation at the level of atomic P4 constructs. This enables quantifying the expected
forwarding delay of all NF placement options of any P4 device.

Using the previously provided formulation of the requirements of any NF of type
y ∈ Y and the capabilities of any P4 device d ∈ DP , we can calculate the delay that will
result from any NF placement option. This delay is calculated as the summation of the
base processing delay of the hosting P4 device, denoted by δBPd , and the delay related
to processing the programmable logic in the device, denoted by ∆y

d. The latter delay
component is expressed as follows:
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∆y
d =

∑
c∈Cy

σyc δ
c
d +

∑
e∈E|Extef=1

δed, (5.1)

where it is equal to the delay of processing the different P4 constructs that constitute
the NF of type y, and the delay for executing extern functions required by this NF.

Objective Function

The objective of this problem is to minimize the overall packet forwarding delay D in
the considered environment, as well as the overall CAPEX costs C, each expressed as:

D =
∑
d∈D

∑
f∈Ftot

∑
y∈Y

αfd × ψ
y
f × (δBPd + ∆y

d), (5.2)

C =
∑
d∈D

xd × Costd, (5.3)

where the Boolean decision variable αfd is equal to one if NF f is placed on P4 device d,
and the dependent variable xd indicates whether a P4 device d is being used:

xd =

{
1 if

∑
f∈Ftot

αfd ≥ 1

0 otherwise.
(5.4)

The final goal is a multi-objective function that targets minimizing both the forwarding
delay and the cost of the system. This function is formulated as a weighted sum of the
two metrics D and C as shown in Eq. (5.5):

Minimize (µD + εC). (5.5)

As the two considered metrics have different ranges and units (µs and dollars), they
are normalized according to the maximum value recorded for each metric. This is
necessary to make sure that both objectives affect the placement decision equally
without one objective overshadowing the other. The weights µ and ε are used to tune
the relative importance of each of the two metrics in the optimization problem.

Constraints

The placement decision should recognize a set of constraints. First, each NF f in F
should be placed just once on any P4 device, as expressed in Eq. (5.6):∑

d∈DP

αfd = 1 ∀f ∈ F . (5.6)
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As mentioned earlier, some functions in Freq should be placed on every device used.
For example, in this problem, it is assumed that L3Fwd functionality is needed on
each operating device. This requirement can be achieved by the constraint shown in
Eq. (5.7):

αfd = xd ∀d ∈ DP ∀f ∈ Freq. (5.7)

The dependent variable πyd indicates whether any NF instance of type y is placed on
device d:

πyd =

{
1 if

∑
f∈Ftot

αfd × ψ
y
f ≥ 1

0 otherwise.
(5.8)

We make sure that a NF f of type y can be hosted on a device d only if the device has a
compatible architecture and supports all the extern functions required by the NF of
type y. In Eq. (5.9), the decision variable πyd is forced to be zero in case the architecture
required by the NF and that supported by the P4 device do not match. On the other
hand, Eq. (5.10) makes sure that πyd can be equal to 1 only if all the extern functions
required by NF of type y are available on device d. Note that N is a large constant
bigger than the maximum number of externs required by any NF.

πyd ≤
∑
a∈A

Archay × Archad ∀y ∈ Y ∀d ∈ DP , (5.9)

∑
e∈E

Extey ≤
∑
e∈E

Extey × Exted +N(1− πyd) ∀y ∈ Y ∀d ∈ D
P . (5.10)

Eq. (5.11) makes sure that the required processing resources of all NFs to be placed
on any P4 device d never exceed the limited processing capacity of that device. The
problem realizes that if two instances of NFs of the same type y are placed on the same
device d, then it is enough to place this NF only once to save processing resources on
the hosting device. For this reason, the constraint limits the utilization of processing
resources on a P4 device based on the requirements of different types of NFs hosted on
that device, assuming that NFs of the same type will not be placed more than once on
the P4 device.

∑
y∈Y

πydωy ≤ ωd ∀d ∈ DP . (5.11)

The required number of rules by all NFs to be placed on any P4 device d should never
exceed the total memory space available on that device.∑

f∈Ftot

αfdτf ≤ τd ∀d ∈ DP . (5.12)
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Table 5.4.: Description of variables and objectives used to formulate the PA-P4VNF-RA
problem.

Symbol Symbols Description for PA-P4VNF-RA problem
Decision Variable

αfd Boolean variable equals to one if NF f is placed on P4 device d ∈ DP

Variables
xd Boolean variable equals 1 if any NF instance is placed on P4 device d ∈ DP
πyd Boolean variable equals to 1 if any NF instance of type y

is placed on P4 device d ∈ DP
∆y
d Delay needed to process programmable logic (P4 blocks and externs)

when running NF of type y on P4 device d
µ Weighting factor between 0 and 1 for delay objective
ε Weighting factor between 0 and 1 for cost objective

Objectives
D Total forwarding delay in the system
C Total CAPEX cost to equip the system

On the other hand, Eq. (5.13) makes sure that the cumulative throughput required by
different NFs to be placed on a device never exceeds the limited throughput of that
device. Similarly, Eq. (5.14) ensures that the cumulative throughput of NFs that require
offloading some functionalities to an extern function on a device never exceeds the
limited throughput of that extern.∑

f∈Ftot

QoSTf × α
f
d ≤ Td ∀d ∈ DP , (5.13)

∑
f∈Ftot

∑
y∈Y

αfd × ψ
y
f × Ext

e
y ×QoSTf ≤ T ed ∀e ∈ E ∀d ∈ DP . (5.14)

A constraint to limit the total CAPEX costs is added to ensure that the total cost of used
devices according to the optimal placement solution never exceeds a predefined limit
denoted by MaxCost as shown in Eq. (5.15):∑

d∈DP

xd × Costd ≤MaxCost. (5.15)

Finally, the following two constraints are introduced to set the dependent variable xd
to 1 when at least one NF is placed on device d. Note that M is a large constant bigger
than the number of NF instances in the network.

xd ≤
∑
f∈Ftot

αfd ∀d ∈ D
P , (5.16)
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∑
f∈Ftot

αfd ≤Mxd ∀d ∈ DP . (5.17)

Table 5.4 summarizes the description of all the symbols used for the formulation of the
PA-P4VNF-RA problem.

5.2.4. Surveying NFs’ and P4 Devices’ Parameters

To evaluate the proposed model, we select a scenario with a realistic set of NFs and P4
devices whose parameters are surveyed from the literature.

Surveyed NFs

We consider seven different NFs with different complexities: (i) L2Fwd, (ii) L3Fwd,
(iii) Firewall (FW), (iv) VxLAN Decapsulation (VDecap), (v) Load Balancer (LB), (vi)
Tunneling, (vii) Network Address Translation (NAT). In PA-P4VNF-RA problem, the
workload is made up of these NFs, where L3Fwd network function is selected to be
in the set of functions required to be in every functioning device to ensure proper
routing on different used packet processors. On the other hand, the PA-P4SFC-E
problem targets embedding SFCs made up of these NFs with L2Fwd being the NF
that is required on all functioning devices that need to forward packets within the
network. All NFs support the three most common P4 architectures: V1Model (V1M),
SimpleSumeSwitch (SUME), and PISA). Only the LB NF requires the use of an external
hashing function. Using the methodology described in Subsection 4.2.2, each NF
is decomposed to its atomic P4 constructs. For example, L2Fwd NF necessitates
parsing and modifying a single header (Ethernet), whereas L3Fwd necessitates the
same operations for both Ethernet and IPv4 headers. Note that in the delay calculation
of NFs, we subtract one from the number of parsed headers and one from the number
of added tables when calculating the delay related to the P4 program to account for
the presence of these two constructs in the base P4 program whose delay is included
in the base processing delay component for each device. Table 5.5 summarizes the
various parameters and requirements corresponding to all the considered NFs in this
evaluation.

Surveyed P4 Devices

For this evaluation, we select four P4 programmable packet processors that belong to
different types of processing platforms: CPU, NPU, FPGA, and ASIC.

The different criteria related to the different selected types of P4 devices are summarized
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Table 5.5.: Surveyed parameters of different used Network functions.
L2Fwd L3Fwd FW VDecap LB Tunneling NAT

Required PA-P4SFC PA-P4VNF no no no no no
-E -RA

Compatible V1M, V1M, V1M, V1M, V1M, V1M, V1M,
P4 Arch. PISA, PISA, PISA, PISA, PISA, PISA, PISA,

SUME SUME SUME SUME SUME SUME SUME
Externs none none none none SipHash-2-4 none none
# Const.
Parse Hdr. 1 2 3 7 3 3 3
Modify Hdr. 1 2 0 0 0 0 2
Copy Hdr. 0 0 0 3 0 0 0
Remove Hdr. 0 0 0 4 0 0 0
Add Hdr. 0 0 0 0 0 0 0
Add Table 1 1 1 2 1 1 1

in Table 5.6. The supported P4 architecture of each device is based on its datasheet. The
throughput and the per P4 construct latency values are based on the evaluation results
presented in Chapter 3 and another work in literature [32]. Note that the delay values
used in this paper are collected when devices are running at line rate, and accordingly
it is assumed that no queueing is taking place in the system’s devices. The performance
related to the extern "SipHash-2-4" function is derived from [40] for packet size equal
to 64 Bytes since the Load Balancer function requires calculating the hash function of
some headers only. The maximum number of supported constructs is based on the
comparative analysis provided in [32] and [3]. Since no work in the literature gives
a quantitative evaluation regarding the maximum number of supported constructs
on different devices, we assume some reasonable numbers that follow the order of
devices in terms of the available processing resources. The cost or price of devices
resembles the real costs of the different types of P4 devices. For CPU-based switches,
we assume that the cost is approximately equal to the price of 2 cores, which is the
typical minimum requirement for running P4-based software switches. Because no
evaluation in the literature quantifies the variation of latency on ASIC devices as a
function of P4 constructs and P4 externs, it is assumed that ASIC-based devices are
powerful enough to run any P4 program with no latency variation and to execute
hashing functions with higher performance than other device types. Finally, the power
consumption of each device is surveyed from the literature and the datasheets of the
devices. [122] states that the peak power consumption of the NetFPGA-SUME device
can reach as high as 184 Watts. According to [123], the Thermal Design Power (TPD),
which reflects the maximum power consumption, of 4 cores CPU-based processor can
reach up to 105 Watts. So we take the peak power consumption for running CPU-based
P4 packet processors to be approximately equal to half this value since 2 cores are
the typical minimum requirement for running P4-based software switches. Based on
measurements reported in [68], the overall power consumption of a P4 ASIC-based
switch, when measured at the plug, is approximately equal to 100 Watts. Finally,
we assume that the power consumption of NPU-based P4 devices equals the power
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Table 5.6.: Surveyed parameters corresponding to P4 devices of different types.

Param.
Device CPU NPU FPGA ASIC

P4 Architecture V1M V1M SUME PSA
Throughput per link (Gbps) 9 10 10 100
Power Consumption (Watts) 50 65 184 100
Max. Constructs 1000 500 250 100
Cost ($) 160 500 5000 40000
Extern (SipHash-2-4)
Present yes yes yes yes
Throughput (Gbps) 3.3 7.6 4.2 20
Latency (µs) 90 40 0.5 0.2
Per P4 Construct
Latency (µs)
Base Processing Delay 45.9 7.45 3.54 2
Parse Header ≈ 0 0.11 0.17 0
Modify Header 0 0.5 0 0
Copy Header 0 0.28 0 0
Remove Header -0.29 1.43 -0.02 0
Add Header 0.4 1.59 0.23 0
Add Table 0.08 0.37 0.13 0

consumption of other NPU-based devices, whose peak power consumption is reported
to be equal to 65 Watts according to its data sheet [121].

The web chart in Fig. 5.3 depicts a visual representation of the comparative advantages
of the different devices in terms of different metrics [104]. The chart is based on the
values presented in Table 5.6 after normalizing these values between zero and one
based on the maximum value for each metric.

5.2.5. Evaluation

In this subsection, we first define the evaluation scenario selected for the PA-P4VNF-RA
problem, and then we analyze the collected results.

Evaluation Scenario

The goal is to find the best placement of NFs as well as the best set of P4 devices to use
to satisfy a given set of workloads as input. This workload varies as multiples of the
previously defined NFs in Table 5.5, ranging from 1 to approximately 200 NFs. It is
assumed that the NFs workload is distinct even though they are of the same type. This
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Figure 5.3.: Web chart showing the comparative advantage of different P4 device types.

assumption is taken because otherwise the processing of NFs belonging to the same
type will be shared resulting in a reduced workload equal to the number of NF types.
Each NF is assumed to have a 1 Gbps traffic to be handled. The widely used Gurobi
solver [124] is used to solve the optimization problem.

This evaluation considers four scenarios in which µ and ε in Eq. (5.5) are varied to
change the relative importance of the performance and cost objectives:

1. Scenario 1: with µ = 1 and ε = 0 so that the goal is to achieve the best performance
regardless of cost.

2. Scenario 2: with µ = 0 and ε = 1 so that the goal is to provide the cheapest
solution where best-effort performance is tolerable.

3. Scenario 3: with µ = ε = 0.5 so that the goal is to find a balanced solution where
both performance and costs are equally weighted.

4. Scenario 4: with µ = 1 and ε = 0 but with a predefined cost constraint of $100k.
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Figure 5.4.: Utilized P4 devices in Scenario 4.

Evaluation Results

The optimal solution for Scenario 1 is trivial, as all NFs are placed on ASIC-based
devices, which are the most performant. The evaluation revealed that 15 ASIC devices
are required in this case to place all NFs. In Scenario 2, on the other hand, the cheapest
CPU-based devices are chosen to place all NFs when the goal is only to minimize costs.
In this case, 25 CPU-based devices are required to place all NFs. NPU-based devices
achieve the best trade-off between performance and cost in Scenario 3, where 22 NPU
devices are required to place all NFs in this scenario. More interestingly are the results
corresponding to Scenario 4, wherein a cost limit of $100k is specified.

The optimal placement solution for Scenario 4 is shown in Fig. 5.4, along with the
number of instances of each device type required for hosting an increasing number
of NFs. It can be seen that for low workload, one ASIC device is chosen because it
provides the best performance while remaining affordable given the cost limit. Then,
another ASIC device is used when up to 22 NFs must be placed, where the second
device is required because the first device’s processing resources constraint is reached.

After this point, no more ASIC devices could be used because the remaining $20k
budget only allows for the second-best performing device, which is an FPGA. In this
case, up to four FPGA devices are required to process the additional NFs until the
total number of NFs reaches 90. Following this point, one ASIC device is sacrificed
to afford more FPGA devices capable of handling the increased workload. At 174
NFs, the second ASIC device is also replaced with more FPGAs until reaching up to
20 FPGAs when the workload increases up to 199 NFs. Following this, the optimal
solution sacrifices performance even further by replacing FPGA devices with the next
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Figure 5.5.: Objective functions results for the different scenarios evaluated in the PA-
P4VNF-RA problem.

best performant device, i.e., NPUs, to support processing all NFs within the available
budget. Note that the limiting factor for using more FPGA and NPU devices when the
workload increases is the throughput constraint.

The delay and cost functions of the optimal solution for different scenarios as a function
of NFs to be placed are shown in Figs. 5.5a and 5.5b, respectively. As expected, the
overall delay in Scenario 1 is the shortest, while the overall cost in Scenario 1 is the
smallest. The results corresponding to Scenario 3 show the trade-off between the
two objectives, where the overall delay and cost are both minimized. The results of
Scenario 4 show that the system’s delay is as low as that in Scenario 1 (when only the
delay is optimized) until the budget constraint is reached after the point when 22 NFs
need to be placed. After this point, the system’s delay begins to increase in comparison
to Scenario 1, while the cost stays always less than the preset budget of $100k.

5.3. PA-P4SFC-E Problem

In this section, we describe the PA-P4SFC-E problem formulation and its evaluation.
This problem uses the same modeling of the P4-enhanced NFV environment infrastruc-
ture and the capabilities of the P4 packet processors as described in Subsection 5.2.1.
The description of the workload in terms of SFCs requirements is illustrated in Subsec-
tion 5.3.1. The formulation of the optimization problem under study, i.e., PA-P4SFC-E,
is provided in Subsection 5.3.2, where the decision variables, objective functions, and
constraints are described. A performance-agnostic version of the problem is designed
in Subsection 5.3.3 to serve as a baseline for assessing the importance of the perfor-
mance awareness feature in the PA-P4SFC-E problem formulation. Then, a greedy
algorithm for the problem is designed in Subsection 5.3.4 for solving the problem faster
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Table 5.7.: Description of symbols used for modeling SFCs workload and their associ-
ated requirements.

Symbol Workload Symbols Description
S Set of all the Service Function Chains (SFCs)
F s Set of all the NFs constituting SFC s ∈ S
Ls Set of all the logical links between NFs of s ∈ S
f sk , f

s
k+1 Two consecutive NFs in SFC s ∈ S

QoSTs expected throughput that should be processed by SFC s
QoSDs QoS requirement for delay limit

at runtime. Finally, a detailed evaluation of the PA-P4SFC-E problem is conducted in
Subsection 5.3.5, wherein we define different experiments to evaluate: (i.) the impact of
different PA-P4SFC-E problem parameters on the embedding solution; (ii.) the benefits
of the performance-awareness feature adopted in the PA-P4SFC-E problem formulation
when compared to the performance-agnostic baseline scenario; and (iii.) the proposed
greedy solution in a scaled-up scenario.

5.3.1. Service Function Chains Requirements

A Service Function Chain (SFC) describes a processing path made up of more than
one NF connected in a particular order. For example, it could be Firewall functionality
followed by a Load Balancer, followed by L3Fwd. We define the set S to contain all the
SFCs that should be supported by the network. The set F s is defined to include all the
NFs that build an SFC s ∈ S, while the set Ls is defined to contain all the logical links
between the NFs that constitute the SFC s ∈ S. The pair f sk , f

s
k+1 stands for any two

consecutive NFs in SFC s ∈ S.

A request to embed an SFC may be associated with certain QoS levels in terms of
desired throughput or forwarding delay. The expected throughput associated with an
SFC s is denoted by QoSTs . The expected throughput to be processed by all NFs f ∈ F s
that constitute an SFC s is equal to the required throughput to be processed by SFC
S, i.e., QoSTf = QoSTs for every f ∈ F s. If an SFC does not have a QoS requirement in
terms of throughput, a "best-effort" QoS level is assumed with throughput equal to a
predefined small value. The QoS requirement for an SFC S in terms of the upper limit
on the forwarding delay is denoted by QoSDs . If an SFC does not have a maximum
delay requirement, it is given a "best-effort" service with QoSDs set equal to a very large
number. Table. 5.7 summarizes the description of all the symbols used for modeling
SFCs workload and their associated requirements.
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5.3.2. Problem Formulation

The PA-P4SFC-E problem searches for the optimal embedding of a given workload
of SFCs into a given P4 infrastructure while satisfying all the functional and QoS
constraints associated with each SFC. For this problem, we need the predeveloped
performance models to calculate a priori the forwarding latency of different SFC
embedding options. In the following, we first describe how the delay of different
SFC embedding options is calculated and then we define the objective function and
constraints relevant to this problem.

SFC Delay Calculation

The decision variables in this problem specify where the constituting NFs and the
logical links of an SFC are embedded. The first Boolean decision variable in this
problem, αf

s
k
d , is equal to one if the kth NF of SFC s is placed on P4 device d. The second

Boolean decision variable γdi,djfsk ,f
s
k+1

is for mapping the logical links of an SFC to the
physical links of the network. It is equal to one if logical link (f sk , f

s
k+1) ∈ Ls utilizes

the physical link (di, dj) ∈ X . Note that, unlike the physical links, the logical links of
an SFC have direction. This is why the order of parameters in the γ subscripts and
superscripts matters.

The following considerations are observed when calculating the SFC delay:

1. It is possible that the NFs of one SFC get placed on the same device or on different
devices across the network. Therefore, the delay calculation of an SFC should
include the base delay, δBPd , of all devices used by this SFC. This base delay
accounts for the delay to access a P4 device and process the non-P4 programmable
blocks inside the device. In case consecutive NFs of the same SFC are placed on
the same device, then the base delay is added only once for accessing the device.

2. The average processing delay for running an arbitrary NF instance f of type y on
device d ∈ DP is denoted by ∆y

d, and can be calculated according to Eq. (5.1).

3. Some functionalities must run on each operating device in the network. For
example, it is assumed for this problem that each operating P4 device should
run L2Fwd functionality, if the device hosts a part of an SFC that split over
multiple devices that need to forward packets within the network, to ensure
proper forwarding between connected devices in the network. So the delay to
execute this required L2Fwd functionality should be added to the total delay of
an SFC if it traverses from one to another device. For the sake of generality, the
set Freq is already defined to include all possible required functionalities. The
delay to process the required NFs in the set Freq is calculated according to the
following equation:
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∆req
d =

∑
f∈Freq

∑
y∈Y

ψyf ×
(∑
c∈Cy

σcyδ
c
d +

∑
e∈E|Extey=1

δed

)
=
∑
f∈Freq

∑
y∈Y

ψyf ×∆y
d. (5.18)

4. The propagation delay over the links is neglected because we are dealing with
a scenario where the network is in a cloud data center with relatively short link
delays.

5. NFs constituting an SFC can be placed on separate devices. As a result, it is possi-
ble that packets need to be forwarded using devices in the network other than
the hosting ones to complete their NF processing chain. While the forwarding
delay of programmable devices DP can be calculated as shown in Eq. 5.18, the
forwarding delay over the non-programmable switches DN is set to be a constant.
All these forwarding delays are also added to the overall SFC delay calculation.

Taking these aspects into consideration, the total forwarding delay of a packet travers-
ing an SFC s is calculated as shown in the following equation:

∆s =
∑
d∈DP

(
δBPd α

fs0
d + θins,dδ

BP
d + θouts,d ∆req

d +
∑
fsk∈Fs

∑
y∈Y

α
fsk
d ψ

y
fsk

∆y
d

)
+
∑
d∈DN

θouts,d kd, (5.19)

where θins,di and θouts,di
are dependent variables that count the number of logical links

corresponding to SFC s that enter and leave a P4 device d ∈ D, respectively. These two
dependent variables are calculated as follows:

θins,di =
∑

(fsk ,f
s
k+1)∈Ls

∑
dj∈D|(di,dj)∈X

γ
dj ,di
fsk ,f

s
k+1
, (5.20)

θouts,di
=

∑
(fsk ,f

s
k+1)∈Ls

∑
dj∈D|(di,dj)∈X

γ
di,dj
fsk ,f

s
k+1
. (5.21)

The delay components that contribute to the overall forwarding delay when traversing
an SFC s shown in Eq. (5.19) are explained in the following:

• The term
∑

d∈DP δBPd α
fs0
d counts for the base processing delay while accessing

the first hosting P4 device, while the term
∑

d∈DP θins,dδ
BP
d counts for this base

processing delay at all following P4 devices used for hosting SFC s.

• The term
∑

d∈DP θouts,d ∆req
d is equal to the sum of the processing delays of all

required NFs when leaving a P4 device. In this scenario, the required NF is
selected to be L2Fwd.
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Figure 5.6.: Example showing the delay calculation for an SFC distributed across dif-
ferent P4 devices.

• The term
∑

d∈DP

∑
fsk∈Fs

∑
y∈Y α

fsk
d ψ

y
fsk

∆y
d is equal to the sum of the processing

delays of the P4 programmable blocks of all the NFs in SFC s over all the used P4
devices.

• The term
∑

d∈DN θouts,d kd counts for the constant forwarding delay of all used non-
programmable switches for forwarding packets between NFs of SFC s.

As previously stated, SFCs can share NFs. If two SFCs have the same type of NF placed
on one P4 device, then the placement of this function is done only once and the two
SFCs can share the usage of this NF. This is necessary to save processing resources on
the hosting P4 devices by avoiding duplicate placement of NFs of the same type. Also,
note that L2Fwd is assumed as a required function on devices that host a part of an
SFC that split over multiple devices, to ensure proper forwarding between connected
devices in the network.

For illustration purposes, we elaborate on how the delay is calculated for an SFC
distributed across three different P4 devices, as shown in Fig. 5.6. The SFC is made
up of 4 NFs, the network is made up of CPU and ASIC-based P4 devices, and the
racks are connected with a non-programmable switch. The placement of the NFs and
logical links of this SFC is spread over three different P4 devices. The delay calculation
for this SFC is equal to the summation of the following components: (i) the base
processing delay for accessing CPU1, the delay for processing NF1 on CPU1, and the
delay to process L2Fwd function on CPU1 to forward packets to the second hosting
device; (ii) the base processing delay to access ASIC1, the delay for processing NF2

and NF3 on ASIC1, and the delay to process L2Fwd function on ASIC1 to forward
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packets to the following hosting device; (iii) the constant forwarding delay kd on the
non-programmable switch; (iv) finally, the base processing delay to access ASIC2 and
the delay for processing NF4 on ASIC2. There is no need to add the delay of L2Fwd at
the end of the SFC because we assume that the last NF of any SFC should have L3Fwd
functionality to guarantee proper routing of packets when leaving the network.

Objective Function

The objective of this problem is to minimize the operational costs when running the
system. We select the total power consumption of active devices in the network,
denoted by P, as a representative of this cost, which is expressed as follows:

P =
∑
d∈DP

Pd × xd, (5.22)

where the dependent variable xd, defined in Eq. (5.4), indicates whether the device
d ∈ DP is used in the embedding solution.

The objective is to minimize the power consumption of active devices in the system.
Accordingly, the model will favor using a combination of devices that consume less
energy to reduce the total power consumption in the network.

Minimize (P). (5.23)

Eq. (5.23) depicts the objective function corresponding to the PA-P4SFC-E problem.

Constraints

The same constraints previously defined in the PA-P4VNF-RA problem for ensuring
that all the NFs ∈ F that constitute the workload of SFCs are placed, architecture com-
patibility, availability of required externs, limited availability of processing resources
and memory capacity in Eqs. (5.6), (5.9), (5.10), (5.11), (5.12), respectively still hold in
the PA-P4SFC-E problem.

The following two constraints are added to ensure proper forwarding between con-
nected devices in the network by placing the L2Fwd NF as a required function on
devices that host a part of an SFC that split over multiple devices. Note that M is an
arbitrarily big number that should be greater than the maximum number of logical
links leaving any P4 device.
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αfd ≤
∑
s∈S

θouts,d ∀d ∈ DP ∀f ∈ Freq, (5.24)

∑
s∈S

θouts,d ≤Mαfd ∀d ∈ D
P ∀f ∈ Freq. (5.25)

The constraint presented in Eq. (5.14) for ensuring that the cumulative throughput
of NFs that require offloading some functionalities to an extern function on a device
never exceeds the limited throughput of that extern on the device still holds. In this
problem, we assume that each programmable device in the network has one ingress
and one egress port to serve as an ingress or egress node for the traffic corresponding
to any SFC. Hence, the cumulative traffic rate of all SFCs entering and leaving each
programmable device on the ingress and egress ports, respectively should never exceed
the capacity of these ports. This is achieved by the following two constraints:∑

s∈S

QoSTs × α
fs0
d ≤ Td ∀d ∈ DP , (5.26)

∑
s∈S

QoSTs × α
fsend
d ≤ Td ∀d ∈ DP , (5.27)

where αf
s
0
d and α

fsend
d , respectively indicate whether the first (ingress) NF of SFC s and

the last (egress) NF of s were placed on device d.

To make sure that all the logical links of all SFCs are mapped to physical links while
respecting flow conservation, the following constraint is needed:∑
dj∈D|(di,dj)∈X

(γ
di,dj
fsk ,f

s
k+1
−γdj ,difsk ,f

s
k+1

) = (α
fsk
di
−αf

s
k+1

di
) ∀s ∈ S ∀(f sk , f sk+1) ∈ Ls ∀di ∈ D. (5.28)

This constraint ensures that for any logical link between 2 consecutive NFs (f sk , f
s
k+1)

of an SFC s, and for each device di, if the NF f sk+1 of SFC s is not placed on di as its
predecessor f sk , then there should be a neighboring device dj such that the logical link
between f sk and f sk+1 uses its physical link with di. This equation also ensures that the
sum of all incoming flows and outgoing flows of logical links for each device adds up
to 0, i.e., the net flow is equal to 0 on all devices.

The following constraint is needed to ensure that a logical link can not be mapped to
the same physical link in both directions.

γ
di,dj
fsk ,f

s
k+1

+ γ
dj ,di
fsk ,f

s
k+1
≤ 1 ∀s ∈ S ∀(f sk , f sk+1) ∈ Ls ∀di, dj ∈ D | (di, dj) ∈ X . (5.29)

The capacity of physical links between devices should never be exceeded. This is
ensured with the following constraint:
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Table 5.8.: Description of variables and objectives used to formulate the PA-P4SFC-E
problem.

Symbol Symbols Description for PA-P4SFC-E problem
Decision Variables

α
fsk
d Boolean variable equals 1 if the kth NF f of SFC s is placed on P4 device d ∈ DP

γ
di,dj
fsk ,f

s
k+1

Boolean variable equals 1 if logical link (f sk , f
s
k+1) uses the physical link (di, dj)

Variables
xd Boolean variable equals 1 if any NF instance is placed on P4 device d ∈ DP
πyd Boolean variable equals 1 if any NF instance of type y

is placed on P4 device d ∈ DP
θins,d Integer variable equals the number of logical links in SFC s

that enter a device d ∈ D
θouts,d Integer variable equals the number of logical links in SFC s

that leave a device d ∈ D
∆y
d Delay needed to process programmable logic (P4 blocks and externs)

when running NF of type y on P4 device d
∆s Average forwarding delay when traversing SFC s

Objective
P Total power consumed by active devices in the network

∑
s∈S

∑
(fsk ,f

s
k+1)∈Ls

QoSTs × γ
di,dj
fsk ,f

s
k+1
≤ T (di, dj) ∀(di, dj) ∈ X . (5.30)

Finally, to support the QoS requirements in terms of forwarding delay associated with
SFC embedding requests, the following constraint should be satisfied for all SFCs:

∆s ≤ QoSDs ∀s ∈ S. (5.31)

If an SFC does not have a delay QoS requirement (i.e., best-effort service), then QoSDs
is set to a very large number.

Table 5.8 summarizes the description of all the symbols used for the formulation of the
PA-P4SFC-E problem.

5.3.3. Performance-Agnostic Baseline Scenario

To evaluate the effectiveness of integrating performance awareness into the proposed
PA-P4SFC-E problem, we implement a performance-agnostic baseline scenario of the
problem. The only difference between the PA-P4SFC-E problem and the baseline
scenario is that we remove the predeveloped performance models used for the a priori
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Figure 5.7.: Workflow in PA-P4SFC-E approach versus the performance-agnostic base-
line approach.

SFC delay calculation as shown in Fig. 5.7. In this performance-agnostic baseline
version, the solution will be found using the same Integer Linear Programming (ILP)
formulation presented for the performance-aware scenario, except that the constraints
related to the delay QoS are removed because this QoS information is missing in this
scenario. Instead, the delay resulting from the embedding solution will be derived
from measuring it on the real system. In case the required QoS level is not met, a
new solution should be found after excluding the previously examined placement
solution (combination of P4 device types) until satisfying the required QoS level. After
embedding the SFC successfully, the network status is updated by subtracting the
consumed processing resources on the hosting devices and the utilized rates from link
capacities.

5.3.4. Greedy Algorithm for PA-P4SFC-E Problem

The SFC embedding problem is known to be a NP-hard problem. Therefore, it is
important to consider a greedy approach that helps in solving the problem in a short
time when the network is large even if this came at the cost of reduced optimality. In
this direction, we propose and implement a greedy algorithm as illustrated in Fig. 5.8.

The algorithm restricts the placement of an SFC to take place only on a single device,
i.e., no SFC splitting on more than one device is allowed. This assumption is taken
based on preliminary evaluation, wherein we found that the optimal solution rarely
results in splitting the placement of SFCs into more than one device because of the
performance penalty (additional base processing delay) incurred when accessing new
devices. On the other hand, this assumption has a big impact on simplifying the
solution because it saves searching for the optimal logical link placement. In this
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Figure 5.8.: Proposed greedy algorithm for the PA-P4SFC-E problem.

case, the link capacity throughput constraint is discarded and only the throughput
constraints on the externs, ingress port, and egress port are applicable.

When a new SFC request arrives, the algorithm searches for the best placement solu-
tion that reduces power consumption in the system while satisfying all the applied
constraints. In the ILP problem, this solution is found through the Branch and Bound
Algorithm. In our proposed algorithm, the solution is found by applying the following
steps as shown in Fig. 5.8:

1. Excluding Device Types: The algorithm checks first the constraints to exclude
incompatible device types, such as CPU, NPU, FPGA, and ASIC, for hosting
the given SFC. Then, it excludes all device instances belonging to a certain type
in case this type does not satisfy all the constraints. These device type-related
constraints include the P4 architecture compatibility, Extern requirements, and
delay QoS requirement. Note that the last constraint depends on SFC delay
calculation, which is the same for a given device type.

2. Searching Reduced Space: After shortlisting the candidate hosting P4 devices,
the algorithm searches the reduced solution space by visiting an ordered list
of devices which is created to guide the search, instead of a random search, to
reduce the execution time of the algorithm. The devices in the list are ordered in
an ascending order based on a newly defined ratio equal to:

norm(Power)

norm(Rate) + norm(Processing_Resources)
(5.32)

This metric represents the power efficiency of a device per available resources.
Thus, if the power consumption is smaller, or the device supports higher through-
put capacity and has more processing resources, this ratio will be smaller and thus
the device is more favored. This way, the SFC embedding solution is guided to
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minimize the power consumption in the system while recognizing the resources
available on the devices and their throughput capacities. Note that this ratio is
calculated for each device type after normalizing the constituting metrics (power,
rate, and processing resources) between 0 and 1. This normalization is done by
subtracting the minimum value recorded for that metric across different device
types and dividing by the range of the values (i.e. maximum value - minimum
value of the normalized metric among the device types). In the considered evalu-
ation scenario, the device types are ordered according to the proposed ratio as
follows: CPU, NPU, ASIC, FPGA, meaning that the placement algorithm will
first favor checking the CPU devices, which have the lowest power consumption,
as long as the other constraints, including delay QoS constraint, are satisfied. On
the contrary, FPGA devices, with the highest power consumption and relatively
fewer processing resources, will be checked as a last resort.

3. Checking Constraints: The next step is to check if the selected P4 device instance
satisfies the remaining constraints which are applied for each device instance.
These constraints include the throughput capacity of the devices as well as the
processing/compute resources capacity. If all constraints are satisfied, then the
embedding is successfully applied, otherwise, the next device in the ordered list
from the previous step is examined.

4. Update Network Status & Excluding Device Instances: In this last step, the
network status is updated by subtracting the resources consumed by the current
SFC request from the hosting device. The ordered list is updated by excluding the
device instances whose remaining processing resources or throughput capacity
is smaller than preset thresholds, without changing the order of the devices.
These preset thresholds are input parameters to the algorithm, whose values
depend on the granularity of the SFC’s requests in terms of processing resources
and throughput. In other words, these thresholds are set equal to the expected
smallest throughput required in the system and the expected smallest SFC size
(in terms of the total number of constituting P4 constructs) to be embedded in
the system.

5.3.5. Evaluation

In this subsection, we define different experiments for evaluating the PA-P4SFC-E
problem. The problem is formulated and implemented as an ILP problem. The
commonly used Gurobi solver [124] is used to solve the ILP problem. Note that the
selection of the system’s parameters related to NFs and P4 devices is the same as that
described in Subsection 5.2.4.

The model’s complexity grows in direct proportion to the size of the network and the
number of SFCs to be placed. The first three experiments were designed to understand
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the impact of different factors related to the SFC workload and network topology on
the performance of the system. The evaluation of these three experiments is conducted
on small networks as the purpose is only to reveal the impact of these factors. In these
experiments, the entire workload of SFCs must be placed at the same time to achieve
the optimal placement based on our model. In other words, it is assumed that no
functions are running on the network before the placement optimization. If any subset
of the SFCs to be placed on the network cannot be placed, the entire placement of the
SFC workload is considered infeasible. The SFCs used in these experiments are chains
made up of the NFs defined in Table 5.5. The workload to be placed is made up of a
repeated set of SFCs, where the set of SFCs corresponding to different experiments
is selected differently as will be elaborated in the experiments’ description. The NFs
constituting the SFCs are assumed to be distinct even though they belong to the same
type because otherwise, NF sharing will take place reducing the overall workload to be
placed into the network. The purpose of each of the first three experiments is defined
in the following:

• Experiment 1: In this experiment, the characteristics of the SFC workload are
analyzed. For this purpose, we vary both the length of the SFCs as well as the
delay QoS required by these SFCs.

• Experiment 2: In this experiment, the effect of replacing traditional ToR switches
with programmable ASIC switches is investigated.

• Experiment 3: In this experiment, we target understanding the impact of equip-
ping the servers in the network with Infrastructure Processing Unit (IPU)s (i.e.,
NPU and FPGA-based SmartNICs) on the performance of the network in terms
of the embedding capacity as well as the power consumption savings.

In Experiments 4 and 5, the model is required to embed SFCs into a network already
populated with other running SFCs. In other words, the problem takes into con-
sideration the network state when it handles SFC embedding requests at runtime.
The purpose of the 4th experiment is to highlight the gains achieved by adopting
performance awareness in the formulation of the problem compared to a performance-
agnostic case that serves as a baseline scenario. In the 5th experiment, the proposed
greedy solution is evaluated to evaluate its execution time and the optimality gap
compared to the ILP-based solution, when dealing with a scaled-up scenario where
bigger networks are considered.

Experiment 1- Examining Impact of SFC Characteristics

The goal of this experiment is to examine the impact of SFC characteristics on the
embedding solution. For this purpose, we vary the length of the SFCs to be made up of
2, 4, and 6 connected NFs. Moreover, we consider 3 delay QoS levels for any SFC: 10µs,
100µs, and Best-Effort (no delay QoS requirement). To ensure a fair comparison when
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Figure 5.9.: Network setup used in the first experiment where SFC characteristics are
varied.

examining the impact of SFC length on the performance of the system, we compare
the three cases with different SFC lengths based on the total number of NFs to be
embedded. Moreover, the throughput QoS for each SFC is selected in a way to ensure
that the overall traffic coming to the system is identical for the different SFC length
cases. So the throughput QoS for SFCs of length 6 is x1.5 that of SFCs of length 4,
and x3 that of SFCs of length 2. In our case, we select the QoS throughput for SFCs
of lengths 2, 4, and 6 to be equal to 1, 2, and 3 Gbps, respectively. This way, a request
to embed a workload of one SFC of length 6 with 6 NFs to be processed and a total
throughput of 3 Gbps is comparable to a request to embed a workload of x1.5 SFCs of
length 4 each requiring 2 Gbps, or a workload of x3 SFCs of length 2 each requiring
1 Gbps. In these three cases, the workload in terms of the total number of NFs to be
processed and the total incoming traffic rate is the same, and the only difference is
in the chaining complexity between these NFs based on the length of the SFCs. The
SFCs to be embedded are all made up of the NFs described in Table 5.5, and they
all include LB NF that require SipHash-2-4 extern functionality. The evaluation is
conducted assuming an infrastructure made up of different types of P4 devices as
shown in Fig. 5.9.

The results corresponding to this experiment are shown in Fig. 5.10. The plots in this
figure show the value of the objective function in terms of the total power consumption
in the system in Watts (W) as a function of the total number of NF instances embedded
into the system for different delay QoS cases. The different subplots 5.10a, 5.10b, 5.10c
correspond to the cases where the length of the SFCs is set equal to 2, 4, and 6, respec-
tively. Note that we plot on the x-axis the total number of NF instances constituting
these SFCs to have a normalized way of presenting the processing workload of the
different cases. In this evaluation, we gradually increase the number of SFCs to be
embedded up to a point where no feasible solution could be found, i.e., the processing
capacity of the network is reached.
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(b) SFC of length 4.
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(c) SFC of length 6.

Figure 5.10.: Results corresponding to the optimal placement solution in experiment 1
where delay QoS and SFC length are varied.

For all SFC length cases, we can observe that when the delay QoS is more stringent, the
total number of NFs (or SFCs) that are successfully embedded decreases. For example,
looking at the case when the SFC length is equal to 6 in Fig. 5.10c, we can observe that
the total number of NFs successfully embedded is equal to 78 NFs (= 13 SFCs) when
delay QoS is equal to 10 µs, which is less than the case when delay QoS is set to 100 µs
where 126 NFs (= 21 SFCs) could be embedded, which is less than the Best-Effort delay
QoS case where 162 NFs (=27 SFCs) could be embedded. The reason for this is that
when the required delay QoS is more stringent, the P4 devices with low performance
can not fulfill these requirements and thereby they get shortlisted. For example, we can
see from Table 5.6 that the base processing delay to access the CPU-based devices is
approximately equal to 46 µs, accordingly, this device is automatically excluded from
being an option to host SFCs with 10 µs delay QoS requirement.

We can also observe from these figures that for a given NF workload, the total power
consumption in the system increases when the delay QoS requirement is more stringent.
For example, looking at Fig. 5.10c, when 60 NFs (=10 SFCs) are to be embedded, the
power consumption yielding from the optimal solution is equal to 280 W when delay
QoS is equal to 100µs, which is less than 568 W power consumption needed for hosting
this workload when the delay QoS is equal to 10µs. The reason for this is that the more
performant P4 devices needed to suffice the embedding of SFCs with more stringent
delay QoS requirements consume more power as can be inspected from Table 5.6.

When comparing the three subplots in Fig. 5.10, we can observe that the impact of
the length of SFCs on the optimal placement solution is minimal. Recalling that the
incoming traffic rate per NF workload for all SFC lengths are normalized, we can
conclude that the complexity of the SFCs in terms of the number of NFs chained does
not affect the optimal management and performance of the system. Note that when
the NF workload is high, we can observe a minor difference in the total number of NFs
that can be placed into the network between the different SFC length cases. This is due
to the difference in the granularity of the SFCs to be placed in terms of the number
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Abstracted Topology

4 racks with:
➢ CPU: 12
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Figure 5.11.: Network setup used in the second experiment where the ratio of pro-
grammable switches adoption is varied.

of constituting NFs and the throughput requirements. In other words, just before the
saturation of the processing capacity of the P4 devices, it is possible to fit a few short
SFCs with low throughput requirements into the remaining processing capacity of the
system before saturation. This is not possible for longer SFCs with higher throughput
requirements. Note that in most of the cases in this experiment, the capacity of the
devices is reached because of the extern throughput constraint, i.e, the throughput
capacity for running external functions.

Experiment 2- Examining Impact of Programmable ASICs Adoption

The purpose of the second experiment is to study the impact of replacing traditional
ToR switches with P4 programmable ASICs. These P4 ASIC devices can execute NFs
beside the typical forwarding. The experimental scenario is shown in Fig. 5.11. The
network is made up of CPU-based processors. The ToR switches can be replaced with
P4 programmable ASIC switches according to the ratio "P4ASIC_Ratio", denoted by
r, where a value of zero means that no P4 ASIC switches are used, while a value
of one means that all ToR switches are replaced with P4 ASIC-based devices. Five
networks are emulated where r is varied taking the following values: 0, 0.25, 0.5, 0.75,
and 1. Recall from Table 5.6 and Fig. 5.3 that the P4 ASIC devices possess higher
performance in terms of throughput and forwarding speed but lower power efficiency
and processing resources compared to CPU-based devices. SFCs of length 4 are selected
as the workload to be embedded in this experiment, where the constituting NFs are
based on those defined in Table 5.5 such that all the chains include LB NF that require
extern function. The delay QoS for the SFC workload is set to Best-Effort to make sure
that CPU devices can suffice the delay requirements and thus can be used as potential
hosts for the SFCs. The throughput QoS for each SFC is set to 1 Gbps.

Fig. 5.12 shows the results corresponding to the optimal solution in experiment 2 in
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Figure 5.12.: Results corresponding to the optimal placement solution in experiment 2
where the degree of adoption of programmable ASIC switches is varied.

terms of the system’s power consumption as a function of an increasing SFC workload.
Different plots correspond to different cases where the degree of adoption of P4 ASICs
is varied between zero and one. The results corresponding to the different cases when
P4 ASICs are used (i.e., r>0) resemble a similar pattern where the curves overlap up to
a certain workload before they increase sharply. In the overlapping stage, the model
makes use of the available P4 ASIC-based devices until they are fully occupied before
falling back to the CPU-based devices. The reason for this is that the ASIC-based
devices can handle higher throughput ( x11 normal traffic and x6 traffic requiring
extern function) compared to CPU-based devices as can be inspected from Table 5.6.
This makes the power efficiency of these ASIC devices higher compared to CPU-based
servers since one ASIC device, even though consumes more power, can handle a
larger workload that may require multiple CPU-based devices to suffice. After the
overlapping stage, the slopes of the curves corresponding to the cases when the ratio
of P4 ASIC adoption is equal to 0.25, 0.5, 0.75, and 1 suddenly change after handling
around 30, 60, 90, and 120 SFCs, respectively. At these points, the P4 ASIC devices are
fully occupied, and only the other available type of devices, i.e., CPU-based, is used
to handle the remaining SFC workload. It is observed that the slope of these curves
after the sudden change is equal to that in the case when r=0 where only CPU-based
devices are available to host the SFC workload. When the throughput constraint on
the CPU-based devices is reached, no more SFC embedding requests can be supported.
Note that it is expected that the same patterns will get repeated when evaluating bigger
networks with more racks and devices per rack.

In general, we can observe that using more programmable ASICs as ToR switches
increases the embedding capacity of the system. Moreover, for the same SFC workload,
using more programmable ASIC devices reduces the operational cost of the system
presented as the power consumption. The selection of ASIC devices takes place,
even though the power consumption of a single programmable ASIC device is higher
than the power consumption of alternative CPU-based devices because a single ASIC
device has a higher throughput capacity for accommodating a bigger number of SFCs,
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Abstracted Topology
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Figure 5.13.: Network setup used in the third experiment where IPUs adoption ratio is
varied.

especially when extern function for LB NF is needed. However, it should be recalled
that the performance gains when adopting ASIC devices come with a higher CAPEX
cost as the programmable ASIC devices may be more expensive than traditional ToR
switches.

Experiment 3- Examining Impact of IPUs Adoption

The purpose of this experiment is to study the impact of adopting more hardware
accelerators in the cloud infrastructure on the performance of the system. These
accelerators or IPUs can be NPU or FPGA-based SmartNICs attached to the servers in
the network. The experimental scenario is shown in Fig. 5.13. The network is made
up of CPU-based servers. These servers can be equipped with programmable IPUs
according to the parameter "IPU_Ratio", denoted by r. Three networks are emulated
where r is varied taking the following values: 0, 0.5, and 1. A value of zero means
that no IPUs are used, while a value of one means that all servers are upgraded with
IPUs. A ratio of 0.5 means that half of the racks are equipped with IPUs (a quarter with
FPGAs and the other quarter with NPUs). Recall from Table 5.6 and Fig. 5.3 that the
NPU and FPGA-based IPUs possess higher performance in terms of throughput and
forwarding speed but lower power efficiency and processing resources compared to
CPU-based devices. SFCs of length 4 are selected as the workload to be embedded in
this experiment, where the constituting NFs are based on those defined in Table 5.5
such that all the chains include LB NF that require extern function. The delay QoS
for the SFC workload is set to Best-Effort to make sure that CPU-based devices can
suffice the delay requirements and thus can be used as potential hosts for the SFCs.
The throughput QoS is set to 2 Gbps for all the SFC requests.

The results corresponding to this experiment are shown in Fig. 5.14. The power con-
sumption in the system is plotted as a function of an increasing SFC workload to be
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Figure 5.14.: Results corresponding to the optimal placement solution in experiment 3
where the degree of adoption of IPU devices is varied.

embedded for different IPU adoption degrees. We can clearly observe that upgrading
the network with IPUs increases the capacity for handling more SFC requests. This
increase reaches 125% when half of the racks are equipped with IPUs and 250% when
all the racks are upgraded with IPUs. This is mainly because these IPUs can handle
additional traffic rates especially when inline processing takes place there. Moreover,
we can observe that for the same SFC workload such as at 20 SFCs, the power con-
sumption in the system decreases when using more IPUs even though the per IPU
power consumption is higher compared to CPU-based servers. The reason for this is
that the model efficiently utilizes the higher throughput capacity of IPUs in handling
extern functions when hosting the LB NF. This results in using fewer devices and
thus higher power efficiency in the system. Similar to the previous experiment, the
performance gains in the system when using IPUs as a function of adoption ratio r
follows an identifiable pattern, which permits extrapolating the impact of these IPUs
on more scaled-up scenarios with more racks and devices per rack. Again, this comes
at a higher CAPEX cost for purchasing these IPUs.

Experiment 4- Examining the Impact of Performance Awareness

The goal of this experiment is to evaluate the effectiveness of integrating performance
awareness in the proposed PA-P4SFC-E problem. For this purpose, we evaluate the
performance-agnostic baseline scenario explained in Subsection 5.3.3, wherein the
same PA-P4SFC-E ILP problem is formulated except that we remove the predeveloped
performance models used for the a priori SFC delay calculation. In this evaluation,
the proposed PA-P4SFC-E model and the baseline model will host newly coming SFC
requests one at a time without altering the previously embedded SFCs in the network.

The evaluation is conducted on a network made up of 4 racks each with 40 CPUs and
40 IPUs. The CPUs and IPUs per rack are connected with programmable ASIC ToR
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Figure 5.15.: Network setup used in the fourth experiment for evaluating the impact of
performance awareness.

switches as shown in Fig. 5.15. In total, the programmable processing substrate is
made up of 160 CPUs, 80 NPUs, 80 FPGAs, and 4 programmable ASICs.

Three realistic SFCs taken from the literature are used as the workload in this experi-
ment. we always assume that L3Fwd NF is available at the end of the SFCs to assure
proper packet routing at the end of the processing chain. The adopted SFCs along with
their delay and throughput QoS requirements are listed in the following:

• Firewall → NAT → L3Fwd [70] with 10µs delay QoS and 2 Gbps throughput
QoS.

• Load Balancer→ L3Fwd [71] with 100µs delay QoS and 1 Gbps throughput QoS.

• Firewall→ Load Balancer→ L3Fwd [72] with Best-Effort delay QoS and 3 Gbps
throughput QoS.

The power consumption in the system, in Watts, for both PA-P4SFC-E and baseline
approaches as a function of an increasing total number of NFs to be placed is shown in
Fig. 5.16. Note that we show on the x-axis the total number of NFs instead of the total
number of SFCs because the considered SFCs to be embedded in this experiment have
different lengths. The embedding in this experiment is done at runtime, where the
previous placements and network status are preserved when a new SFC embedding
request is served. We can observe that the power consumption in the system is the
same in both the PA-P4SFC-E and baseline approaches, meaning that they are both
yielding almost the same optimal solution. This is expected because the performance-
agnostic baseline solution will keep searching until it finds a solution that satisfies
all the QoS requirements. The cost of this search is reflected in the execution time.

134



5. Performance-Aware Management of P4-based Cloud Environments

0 500 1000 1500 2000

Total number of NF instances

0

0.5

1

1.5

2

2.5

P
o

w
e

r 
C

o
n

s
u

m
p

ti
o

n
 (

in
 W

a
tt

s
)

10
4

Optimal

Baseline

Figure 5.16.: Results corresponding to the optimal and baseline solutions in experiment
4 where the impact of performance-awareness is studied.

We found that the execution time to find a solution in the baseline scenario is around
2.6 times that needed to find a solution using our proposed PA-P4SFC-E problem.
This extra time is due to the extra trials needed by the performance-agnostic baseline
approach to finding a solution that satisfies all QoS requirements. We found that on
average, the baseline solution needs additional 1.68 extra trials until it embeds an
SFC request successfully compared to the solution found by the performance-aware
problem formulation. These extra trials are due to the failure of the baseline solution
in satisfying the QoS requirements because it is performance-agnostic. Moreover, it
should be noted that for each trial in the baseline approach, the time and cost for
evaluating the delay of the tried/unsuccessful solution should be added, which makes
this approach almost non-practical for real-life deployments that require fast solutions.

Experiment 5- Evaluating the Greedy Solution

The purpose of this experiment is to evaluate the effectiveness of the proposed greedy
solution in Subsection 5.3.4 compared to the original ILP problem’s solution. The
trade-off between the execution time and the optimality gap is analyzed. For this
evaluation, we use a realistic SFC workload similar to that used in the previous (4th)
experiment. We evaluate 4 different topologies of increasing size to investigate the
impact of scalability on the execution time of the algorithm. The first used topology is
similar to the network used in the 4th experiment shown in Fig. 5.15, where it is made
up of 4 racks, each with 40 CPUs, 40 IPUs (40 FPGAs or 40 NPUs), and connected
with ASIC devices. The other evaluated networks are the same but with an increased
number of racks made up of 10, 20, and 30 racks, respectively.

The results of this experiment are shown in Fig. 5.17. The power consumption in the
system, when made up of 4 racks, in Watts, for both optimal and greedy solutions as a
function of an increasing total number of NFs to be placed, is shown in Fig. 5.17a. Note
that we show on the x-axis the total number of NFs instead of the total number of SFCs
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Figure 5.17.: Results corresponding to the optimal and greedy solutions in experiment
5 where scaled-up scenarios are tested.

because the considered SFCs to be embedded in this experiment have different lengths.
The embedding in this experiment is done at runtime, where the previous placements
and network status are preserved when a new SFC embedding request is served. For
this reason, we can see that the cumulative difference in the total power consumption
in the system, compared to the optimal case, increases when the number of SFCs to
be embedded increases, as the per SFC embedding optimality gap accumulates. The
total number of NFs that could be embedded into the system is equal to around 1480
when the greedy solution is applied, approximately 26.6 % less than that when the
ILP solution is applied, where the total number of NFs that could be embedded is
equal to 2018. At the maximum number of NFs that could be embedded using the
greedy solution, the optimality gap in terms of power consumption reaches around
8000 Watts.

Fig. 5.17b shows, in a logarithmic scale, the average execution time (in ms) needed
for embedding an SFC request when the greedy and optimal solutions are applied as
the number of racks in the network substrate increases. The standard deviation of the
different recorded execution times is recorded and plotted on top of the averages. While
the execution time to solve the ILP problem increases largely when the network size
increases, our proposed greedy solves scaled-up scenarios faster. The optimal solution
requires 435, 4137, 28500, and 64000 ms to be reached when the number of racks is
equal to 4, 10, 20, and 30 racks, respectively, while the greedy solution only requires 5,
30, 35, and 53 ms to solve the problem in these cases. When looking at execution time
results, it is clear that such a greedy solution is important, especially when considering
large networks where tens of seconds are needed to find an embedding solution at
runtime using the ILP formulation.
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5.4. Summary

In this chapter, we utilize the performance models derived in Chapter 4 to formu-
late and evaluate two optimization problems related to managing P4-enhanced NFV
environments.

The first problem, named PA-P4VNF-RA, targets finding the optimal planning of the
infrastructure substrate of P4-enhanced NFV environments. The optimization problem
looks for the optimal set of P4 packet processors that can handle a given processing
workload and the placement solution of this workload into the selected hosting devices.
The multi-objective function targets maximizing the performance in the system while
minimizing the capital expenditure costs when selecting the optimal set of P4 packet
processors that can handle a given processing workload. The problem constraints the
solution space to satisfy the requirements of the NF workload, while recognizing the
distinct capabilities of the different candidates hosting P4 devices. The predeveloped
performance models and evaluation in Chapters 3 and 4 enable the a priori calculation
of the forwarding delay resulting from different possible placement options, to guide
the search towards the most performance-efficient solution.

The second optimization problem is named PA-P4SFC-E, and targets finding the
optimal embedding of SFCs into P4-enhanced NFV environments at runtime. The
optimization problem searches for the optimal placement and routing of SFCs into P4
programmable substrate. The functional and QoS requirements of the different SFC
embedding requests are fulfilled by finding the best placement solutions, using the
acquired knowledge from Chapters 3 and 4 related to the performance and capabilities
of the different available P4 packet processors. Furthermore, a performance-agnostic
scenario is designed to serve as a baseline scenario to assess the effectiveness of the
proposed performance-aware solution. Finally, a greedy solution is designed and
implemented to solve the PA-P4SFC-E problem faster at runtime.

A detailed evaluation of the two problems is conducted, where the model’s parameters
are populated based on surveyed literature works. The trade-off between the cost and
the performance objective functions is highlighted when evaluating the PA-P4VNF-RA
problem. On the other hand, when evaluating the PA-P4SFC-E problem, the impact
of the different system parameters such as the length of SFCs, and the degree of
adoption of IPUs and programmable ASICs is evaluated. Furthermore, the baseline
scenario is evaluated, where we found that it requires on average extra 1.68 trials to
find the optimal placement if performance awareness does not exist, where each trial
includes conducting measurements of the system to check for the satisfaction of QoS
requirements. Finally, the evaluation of the greedy solution revealed the effectiveness
of the solution for handling scaled-up scenarios in terms of the execution time, on the
cost of reduced optimality.
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After evaluating the performance of P4 programmable devices and optimizing their
integration into cloud environments, we provide in this chapter some use cases and
applications to demonstrate the advantages of adopting programmable data planes for
future networks.

The first application is related to 5G cellular networks. More specifically, we propose
a microservice-based design for the 5G User Plane Function (UPF) and provide a
proof-of-concept implementation of this design using P4. Then, we discuss how the
microservice-based UPF can be deployed into the P4-enhanced NFV environment
proposed in Chapter 5 to achieve optimized performance levels.

The second application introduces a programmable traffic management solution, where
virtual queue-based Active Queue Management (AQM) is used to enforce throughput
and delay limits on a per-flow or slice basis. While the programmable traffic manage-
ment application holds as a stand-alone solution that can be used in many scenarios,
it also complements the UPF implementation by enforcing the required QoS levels.
The contributions related to implementing and evaluating the programmable traffic
management solution are based on our published work [8].

The remainder of this chapter is organized as follows. Background information on 5G
Core UPF and programmable traffic management using P4 is provided in Section 6.1
along with the relevant SOTA works. The description of the design, implementation,
and integration of the proposed microservice-based UPF into the previously proposed
P4-enhanced NFV environment is provided in Section 6.2. In Section 6.3, we elaborate
on the design and implementation details related to the second proposed application,
i.e, the P4-based programmable traffic management solution. Section 6.4 includes
a detailed evaluation of the P4-based programmable traffic management solution.
Finally, a summary for this chapter is provided in Section 6.5.

6.1. Background and Related Work

In this section, we provide background information and discuss some SOTA works
related to 5G Core networks and programmable traffic management using P4 in Sub-
sections 6.1.1 and 6.1.2, respectively.
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Figure 6.1.: 5G system architecture.

6.1.1. 5G Core Networks and P4

The 5G cellular network is the latest generation of mobile networks. Its major role, sim-
ilar to its predecessor generations, is to ensure connectivity for mobile users. On top of
basic connectivity, 5G increased the network’s capacity and enhanced the performance
in terms of data rate and latency.

The 5G system is made up of two main components as shown in Fig. 6.1. These
components are:

• Radio Access Network (RAN): This component includes User Equipment (UE)s,
which represents any end-user equipment. The UE can be mobile and it connects
to the Next Generation NodeB (gNB)s, which are part of the RAN. The UE
and gNB implement the radio access technology to communicate over the air
interface.

• 5G Core: The 5G Core supports the traffic routing between the UE and the Data
Network. It also handles security, authentication, and session management-
related tasks. It adopts a Service-Based Architecture (SBA) similar to cloud
environments, where all the constituting NFs are interconnected.

According to Release 16 5G specifications from 3rd Generation Partnership Project
(3GPP) [127], the 5G Core network splits between the control plane and user/data
plane as shown in Fig. 6.1. While most of the functions in the 5G Core handle control
plane functionalities, the UPF is the only function that handles the user data traffic. In
the following, we list and briefly describe some of the NFs constituting the 5G Core
control plane:

• Access and Mobility Management Function (AMF): This function interacts with
the UE and the gNB to take care of basic access and mobility management tasks.
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• Session Management Function (SMF): This function manages the sessions estab-
lished in the network between UEs and Data Network. It mainly interacts with
the UPF to communicate relevant session management information.

• Policy Control function (PCF): This function provides policy rules to other control
plane functions to be enforced.

• Unified Data Management (UDM): This function generates authentication cre-
dentials.

• NF Repository Function (NRF): This function handles service discovery tasks.

• Network Slice Selection Function (NSSF): This function selects a set of network
slice instances to serve a specific UE.

• Authentication Server Function (AUSF): This function takes care of authentication
services.

• Network Exposure Function (NEF): This function takes care of exposing capabili-
ties and events to other NFs.

On the user plane side, the UPF handles all the packet processing of user data in the
5G Core network. In the following, we list some of the main functions designated to
the UPF:

• Packet forwarding and routing.

• Allocation of IP address and prefix to UE upon SMF request.

• External Protocol Data Unit (PDU) session point for interconnecting with the
Data Network.

• Traffic usage reporting for billing purposes.

• QoS handling for user plane traffic by applying, for example, rate-limiting.

• Packet duplication in the downlink direction and elimination in the uplink di-
rection. This may be useful when dealing with handover scenarios while high
reliability is required.

• Lawful intercept when needed.

• Downlink data buffering when UE is in idle mode.

There are few prior works in the literature that investigate the usage of P4 language for
implementing 5G Core UPF. Shah et al. proposed in [88] offloading a part of the user
state in the mobile packet core network to programmable switches to perform signaling
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Table 6.1.: Summary of the related works and the completeness of their UPF imple-
mentations compared to the proposed implementation described in this
chapter.

UPF Tasks vEPG PoC UPF P4-based UPF Work in
[89] [129] [91] this Chapter

Packet Forwarding & Routing X X X X
GTP-U En/Decapsulation X X X X
Packet Detection Rule Inspection X X X X
Forward Action Rule Inspection X X X X
Traffic Usage Reporting X X X X
QoS Handling X X X X
Packet Duplication & Elimination X X X X
Lawful Intercept X X X X

at the data plane. Authors of [90] demonstrate the usage of transport network slicing
to accommodate the various network service requirements of different applications.
In this direction, they integrate a P4-based implementation of the UPF into their 5G
testbed.

Singh et al. [89] implemented a basic set of user plane functions of the virtual Evolved
Packet Gateway (vEPG) using P4. They showed that offloading the user plane function
to hardware programmable switches can achieve high-performance gains compared
to software-based execution. Authors of [129] provide a PoC implementation of 5G
UPF using P4 focusing on the interaction of this P4-based UPF with the control plane.
Finally, an extended version of the UPF was implemented in [91] using P4, where more
UPF-related tasks are realized.

Compared to these prior works, our P4 implementation of UPF is more extensive,
covering more functionalities designated to the UPF. Moreover, the proposal in this
chapter takes one step further towards designing a microservice-based UPF, wherein
a sample separation of the functions assigned to the UPF is proposed. Table 6.1
summarizes some of the UPF tasks implemented in the most relevant SOTA papers
compared to the tasks implemented in this chapter.

6.1.2. Programmable Traffic Management using P4

While the P4 language is comprehensive in expressing packet processing logic, its
support for programming traffic managers is still limited. As highlighted in Fig. 2.1,
while all the processing stages in the V1model P4 architecture are programmable, the
traffic manager stage, where packets are queued before leaving to egress stage, is still
non-programmable. In the following, we elaborate on prior works that deal with
customizing traffic management at the data plane.
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Authors of [76] emphasize the importance of tailoring data plane algorithms, such as
scheduling and queuing management strategies, to application requirements. Sharma
et al. [77] proposed Approximate Fair Queuing, which prioritizes packets to achieve
shorter flow completion times and is designed to run on programmable switches;
namely, a hardware prototype based on a Cavium network processor, and a pro-
grammable switch implementation using P4. They proposed a programmable calendar
queue using either data-plane primitives or control plane commands to dynamically
modify the schedule status of queues in a follow-up work [78]. Cascone et al. [79] intro-
duce Fair Dynamic Priority Assignment, a design for a packet forwarding pipeline that
uses primitives common in data plane abstractions such as P4 and OpenFlow to enforce
approximate fair bandwidth sharing. Sivaraman et al. propose a programmable sched-
uler in [80] that can implement variants of priority scheduling and ideal fair queuing
at line rate using a Push-In-First-Out (PIFO) priority queue. PIFO allows packets to be
enqueued at any point in the queue (enabling programmable packet scheduling), but it
permits dequeueing only from the head. Strict-Priority-Push-In-First-Out (SP-PIFO),
an approximation of PIFO queues by First-In-First-Out (FIFO) queues, is introduced by
the authors in [81]. Shrivastav proposes a Push-In-Extract-Out (PIEO) data structure
to express buffer management policies in [82]. PIEO, like PIFO, keeps an ordered
list of elements, but it allows dequeueing from any position in the list by supporting
programmable predicate-based filtering at the dequeueing stage. Another work by
Mittal et al. [83] demonstrates that the classical Least Slack Time First (LSTF) algorithm
approaches being a universal scheduling function. Shrivastav claims in [82] that LSTF
has the same limitations as PIFO because it is based on a priority queue abstraction.

Focusing on queue management schemes, and after analyzing different AQM ap-
proaches, Sivaraman et al. [76] argue that there is no "one-size-fits-all" algorithm. They
enable data plane programmability by attaching an FPGA to the fast path of a hardware
switch and implementing Controlled Delay (CoDel) and Random Early Drop (RED) as
proof of concept. Kundel et al. [84], [128] demonstrated that such algorithms can be
implemented for P4 programmable data planes while elaborating on the P4 capabil-
ities and constraints. [85] demonstrates ways how to overcome P4 limitations when
developing one AQM algorithm. The authors of [86] present an implementation of
activity-based congestion management using P4, including new target-specific externs
for floating-point operations to support rate measurement, activity computation, activ-
ity averaging, and drop threshold computation. Finally, authors of [87], uses the P4
context to implement Proportional Integral controller Enhanced (PIE) and RED AQM
schemes.

All of these approaches improve queue utilization within shared network infrastruc-
tures (links), but they do not provide guarantees on bandwidth and delay on a per slice
basis. The authors of [75] use built-in P4 meters and priority scheduling to manage
bandwidth per slice without addressing delay requirements. In our proposed virtual
queue-based traffic management mechanism, we can support customizable congestion
control capabilities for elastic traffic, ensuring both rate and delay limits per slice.
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6.2. Microservice-based UPF for B5G Networks

In this section, we elaborate on the first developed application, i.e, microservice-based
UPF for B5G networks. In Subsection 6.2.1, we illustrate and motivate the design
choices taken for the development of the microservice-based UPF. A proof of concept
implementation for this design using P4 is described in Subsection 6.2.2. Finally, the
optimal deployment and orchestration of the proposed microservice-based design
in cloud environments using the framework proposed in Chapter 5 is discussed in
Subsection 6.2.3.

6.2.1. Design Proposal

Compared to monolithic designs, a microservice-based implementation divides the
application’s logic into smaller and well-encapsulated services that are loosely cou-
pled and can be distributed across multiple computing devices. Each service has
its IP address on the network and exposes a language-independent public interface.
A Representational State Transfer (REST) API is the most commonly used type of
language-agnostic interface, but other communication models exist. When they go live,
microservices are typically deployed as containers.

The microservice design of the UPF follows the general design principles for building
microservice-based applications. These principles include satisfying the following
criteria [130]:

• A microservice should have a single concern, meaning that it should be responsi-
ble for a single task.

• A microservice should be discrete, having clear boundaries separating it from
other microservices.

• A microservice should be transportable so that it can be moved between runtime
environments easily.

• A microservice should carry its own data, where data sharing can take place only
via clearly defined interfaces.

• A microservice is ephemeral so that it can be created, destroyed, and restored
easily.

In this direction, we propose separating the UPF into the microservices shown in
Fig. 6.2. These microservices are:

1. Ingress Steering Function (ISF): This microservice handles the incoming packets
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Figure 6.2.: 5G architecture with the microservice-based UPF integrated.

when they arrive at the UPF. First, it checks the validity of the received packets
based on defined admission control rules to drop the invalid packets. Then, it
steers the packets to uplink or downlink microservices. This steering is done
based on checking whether the packet has a GTP-U header (uplink packet) or
not (downlink packet). It is also possible to steer the packets based on control
plane rules that associate the port on which the packet is received to the uplink
or downlink processing paths. Moreover, this microservice can implement load
balancer mechanisms to balance the processing workload when multiple replicas
of the following microservices (i.e., uplink or downlink) exist.

2. Downlink Function (DLF): This microservice handles the packets coming from
the Data Network (DN) to the gNB and later on the UE. It implements all the
packet processing required to fulfill the basic tasks assigned to the UPF when
handling downlink data traffic.

3. Uplink Function (ULF): This microservice handles the packets coming from the
UE through the gNB to the DN. It implements all the packet processing required
to fulfill the basic tasks assigned to the UPF when handling uplink data traffic.

4. On-Demand Function (ODF)s: This list of microservices includes all the optional
tasks assigned to the UPF, which can be activated on demand. For example, this
list may include a lawful intercept microservice, where data is intercepted for
some devices and over a certain period of time on a per-demand basis.

The reason for splitting the uplink and downlink user plane processing is to efficiently
handle unsymmetric traffic incoming to the core. This way, the resources assigned
to processing downlink packet streams can be scaled up/down independently based
on the volume of downstream traffic. The same holds for upstream processing re-

144



6. P4 Applications: Use Case Studies

sources. Moreover, we decide to make the optional functions of UPF as ODFs to flexibly
activate/deactivate them on demand and also to scale them up/down over time as
needed.

Note that this proposal should not be the only way to design microservice-based UPFs.
Nevertheless, we believe that this design option keeps the dependency between the
functions at a low level, where boundaries between functions can be clearly drawn
as illustrated in the implementation proposal in Subsection 6.2.2. Note that in this
architecture, the interaction of the UPF microservices with the control plane will still be
via the SMF, where an intermediate layer or another microservice can take care of that.

6.2.2. Implementation using P4

In this subsection, we elaborate on the implementation of the UPF using P4. The tasks
implemented are the ones listed in Table 6.1. Fig. 6.3 shows a flow diagram depicting
the UPF processing logic implemented using P4. The distinction between the SOTA
open-sourced implementation and our extended implementation is highlighted in the
diagram by using different color codes. Moreover, the splitting of the implementation
logic into the different microservices described in Subsection 6.2.1 is also highlighted.

Ingress Steering Function (ISF)

When a packet arrives at the UPF, its validity and other admission control rules are
checked to keep or discard the packet accordingly. If the packet is valid, it will go
through the uplink or downlink processing path based on the availability of GTP-U
headers in the packet or based on a control plane rule that specifies the next destination.
At this stage, the ISF processing is complete. Note that it is also possible to extend the
functionality of ISF by incorporating load balancing functionality to steer the traffic
into different ULF and DLF replicas.

DownLink Function (DLF)

In the DLF, the packet goes through the following processing. First, P4 tables are used
for packet classification to map packets to their corresponding UE and traffic classes.
For example, the UPF can match the packet based on the 5 tuples (i.e, IP destination
and source addresses, source and destination ports, and the transport protocol in
use) to retrieve the Packet Detection Rule (PDR). The PDR contains information that
instructs the UPF on how to handle/process the received packet. Note that a UE may
have more than one PDR for its packets corresponding to the different directions of
the traffic (uplink or downlink), and the different traffic classes (QoS levels, etc.). The
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Figure 6.3.: Flow diagram showing the processing logic in the UPF and a sample
proposed microservice-based design for it.

control plane is responsible for adding, updating, and removing PDRs into/from the
UPF when the UE attaches, moves to another gNB, and detaches from the network,
respectively.

According to the PDR, the Forward Action Rule (FAR) corresponding to the packet
under process is decided. The FAR specifies the action that will be applied to the
packet. These actions could be forwarding a packet in normal cases, buffering packets
when a device is in idle mode, or notifying the control plane to wake an idle device. In
the FAR inspection step, a P4 table is used again to retrieve the relevant information
for applying the action specified by the FAR. For example, to forward traffic in the
downlink direction, the Tunnel Endpoint Identifier header field and the IP address of
the base station are needed. Then, the packet is buffered if the FAR dictates that. This
will be the case when the device is in idle mode. Note that as P4 devices do not support
buffering packets, the packets are forwarded to another service that is assumed to be
capable of buffering packets such as a database.

Next, P4 counters are used to collect information about the volume of traffic used in
the active session. This information is necessary for billing and accounting purposes.

After that, the UPF adds GTP-U, UDP, and IP headers into the packet’s header stack
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between the Layer 2 and Layer 3 headers of the processed packet. The fields in the
added headers are populated to ensure the correct forwarding of the packet. Moreover,
the QoS Flow Identifier (QFI) field in the GTP-U header is populated to specify certain
required QoS levels. Also, the GTP-U header fields related to enabling the reflective
QoS are populated. The reflective QoS is used to instruct the UE to use certain QoS
levels when sending packets to the DN in the uplink direction.

If the UE is in a handover procedure, the UPF may be required to forward the packet
to both the source and destination gNBs of the handover procedure to ensure that the
packet is delivered to the UE reliably. If this is the case, the clone-egress-to-ingress P4
action is used to duplicate the processed packet. The forwarding information in the
duplicated packet is updated before sending the packet to the other gNB.

After checking on-demand optional functions such as the Lawful Intercept Function
(LIF) as shown in Fig. 6.3, the QoS requirements of the active session are checked to
enforce the required QoS level using rate limiting. The description of the implemen-
tation of this functionality is illustrated in detail in Section 6.3. Finally, the packet is
forwarded to its destination.

Uplink Function (ULF)

If the packet is in the uplink direction, it will visit again the PDR inspection step, where
P4 tables are used to match the 5 tuples and retrieve the relevant information telling
how to process this particular packet.

In the uplink direction, it is possible to receive duplicate packets from the UE through
the gNBs if the UE is in a handover procedure. Again, this feature is supported in
5G for resiliency purposes. For such a scenario, the UPF checks such situations and
eliminates duplicated packets at an early processing stage. Each active PDU session is
assigned a stateful P4 register. The register saves the GTP-U sequence number header
field of the last received packet in the active session. If the packet under process has
a sequence number less than or equal to the stored number in the P4 register, then
the packet is dropped, otherwise, the register will store the sequence number of the
packet currently under process. Note that if the order of sequence numbers inside
the GTP-U header of incoming packets can be altered due to any enabled reordering
mechanisms, then the presented implementation of duplicated packet elimination
should be revisited.

Afterward, the packet will go through the decapsulation step, wherein the GTP-U,
UDP, and IP headers relevant for packet handling in the cellular network are removed
before the packet leaves to the DN.

Similar to the DLF, the FAR is inspected to retrieve relevant forwarding information
from the control plane. Note that in the uplink direction, buffering packets is not an
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option, so packets can only be forwarded.

Then, traffic usage reporting is performed using P4 counters for accounting and billing
purposes. Finally, the packet is forwarded to its destination in case no other on-demand
functions are active. Note that the QoS enforcement step is only applied in the downlink
direction.

On-Demand Function (ODF)

The optional on-demand functions are processed only when these features are activated.
For example, in Fig. 6.3, we show the implementation of LIF, where packets are
duplicated using P4 clone-ingress-to-egress action, and then sent to another destination
in case the lawful intercept feature is active.

Discussion on Limitations

It is worth raising some of the limitations in P4 language and P4 targets, which limit
the full implementation of UPF using P4. For example, as P4 language syntax and P4
targets handle packets one at a time and do not support storing full packets inside
the targets, it is not possible to fully implement buffering mechanism needed in the
downlink processing path.

Moreover, to identify duplicate packets to be eliminated in the uplink processing, P4
registers are needed to keep track of the packets’ sequence numbers in the active PDU
session with the ongoing handover procedure. Accordingly, the maximum number
of available P4 registers in a P4 target limits the number of active PDU sessions with
ongoing handover procedures that can be supported by the P4 target.

Finally, the limited number of rules that can be supported by a P4 target also limits
the number of active PDU sessions that can be supported by the running UPF, which
needs rules from the control plane to get instructed on how to process the packets
corresponding to the different active sessions.

6.2.3. Deployment into P4-enhanced Cloud Environments

The proposed microservice-based UPF can be orchestrated using the framework de-
scribed in Subsection 5.1.1 as depicted in Fig. 6.4. This integration serves as a PoC
demonstration for the usage of the framework presented in Chapter 5 to manage a
specific workload scenario related to 5G Core user plane processing.

In this case, the requests to embed UPF instances, presented as SFCs, will be the
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Figure 6.4.: PoC demonstration on the integration of the microservice-based 5G Core
user plane processing into the framework presented in Chapter 5.

workload to be handled by the cloud infrastructure. Each UPF instance, or SFC, is
made up of a series of microservice functions that together constitute a complete UPF.
For example, if a UPF instance is designated to do only basic downlink processing, then
it will be made up of ISF followed by DLF. Alternatively, the UPF instance can be made
up of ISF, followed by ULF, followed by LIF to perform uplink processing followed by
the optional (on-demand) lawful intercept task. Each UPF instance embedding request
can be associated with QoS requirements in terms of throughput and delay. Different
QoS requirements can define different UPF instances that belong to different network
slices.

The PA-P4SFC-E problem defined in Section 5.3 can be used to optimize the placement
of the SFC requests into the heterogeneous cloud environment with a programmable
substrate. The optimization solver can reside in the orchestrator entity of the cloud
environment.
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6.3. P4-based Programmable Traffic Manager

In this section, we describe in detail the implementation of the programmable traffic
management solution. This function can be used for the QoS enforcement step in the
UPF processing as discussed in Subsection 6.2.2, where the QFI GTP-U header field is
populated to specify certain required QoS levels in terms of throughput and delay.

The description of this implementation is done in a separate section because it holds
as a stand-alone implementation that can serve different applications such as guaran-
teeing some performance levels for different network slices, besides serving the QoS
requirements in the 5G Core UPF. Note that slices and flows are used interchange-
ably in the following as we assume that each slice is made up of a single flow. The
contributions presented in this section are based on our publication [8].

In the following, we describe the design and then the implementation of the P4 pro-
grammable traffic management solution in Subsections 6.3.1 and 6.3.2, respectively.
Then, in Subsection 6.3.3, we comment on the advantages of our proposed solution
compared to the standard P4 meters, which serve as a baseline solution. Finally, in
Subsection 6.3.4, we discuss some identified portability issues when applying the
solutions to different P4 devices and the ways applied to mitigate these issues.

6.3.1. Design

The proposed P4 programmable traffic management design allows for the customiza-
tion of traffic characteristics associated with different flows. In this context, we ensure
that the proposed design also meets the following criteria:

1. Traffic Customization: The design should enable managing traffic characteristics
on a per slice basis, where rate limits and maximum tolerable latency can be set.

2. State Isolation: Slices should be managed and controlled independently while
customizing their traffic characteristics. As a result, state information per slice
should be kept in the data plane.

3. Performance Isolation: Service-level key performance indicators should be met
per slice, regardless of congestion and/or performance levels of other slices
sharing the same infrastructure.

The proposed solution incorporates a Traffic Classifier and a Virtual Queue based Traffic
Manager. The design of these components is described in the following.
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Traffic Classifier

We perform per-flow traffic classification using a match-action table, assuming that the
controller assigns a unique local id per slice called Data Plane Slice ID (DP_SID). The
VxLAN tag of incoming traffic, for example, can be used as DP_SID. This DP_SID is
read from the table and stored in the packet’s user-defined metadata to classify the
packets based on their originating flows. This classification enables the data plane to
make local policy decisions (i.e., QoS enforcement) on a per-packet basis. Note that
this DP_SID can be mapped to the QFI if this proposed traffic management solution is
used in the context of QoS enforcement for UPF as discussed in Subesection 6.2.2.

Virtual Queue based Traffic Management

A Virtual Queue (vQueue) is a mechanism used to model the length of the queue, or in
our case the sojourn latency, as if the packets arriving at the real queue were served
by a link with a capacity less than the actual capacity of the link. It contains no packet
data. It is a number that is incremented as packets arrive and decremented based on
the model. The virtual queue’s latency, for example, can be used to drive an AQM
scheme, replacing the same metric from the real queue. A detailed description of the
structure and applications of vQueues in an exemplary AQM can be found in [73].

The vQueue is implemented using commonly supported P4 constructs (i.e., registers)
as a design option, to allow easy portability of the implementation across different P4
targets. Furthermore, by associating a network slice with a vQueue implemented with
registers, we can keep network slice state information. The control plane can also access
these registers during runtime, allowing for per-slice monitoring and management.
Because we cannot use custom (e.g., multi-dimensional) data structures to index such
registers, we use the predefined local identifier DP_SID to allocate memory for a
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specific slice and its corresponding port in a network element.

Each vQueue in the example used in this section is associated with a network slice,
as color-coded in Fig. 6.5. As a result, by dropping or marking excess traffic, virtual
queues and thus network slices can be individually rate limited, while each vQueue
can be assigned a unique AQM realization based on the requirements of each network
service. An exemplary use of different queue management schemes and transport-layer
congestion control schemes to satisfy the requirements of the different network slices
and their running applications is illustrated in Fig. 6.5, where local queueing latency
limits are enforced. Furthermore, when available, we use the scheduling capabilities of
the non-programmable Traffic Manager to ensure performance isolation, where each
slice can be assigned a priority based on its application requirements. We assume
that the priorities of different network slices are calculated and pushed top-down to
the data plane by the control plane. As depicted in Fig.6.5, the delay-sensitive traffic
from Slice 1 can be prioritized over traffic from Slice 2 and Slice 3 to be forwarded with
minimal delay. The need for different priorities or the opportunity to share priorities
will be determined by how slice rate limits relate to the worst-case real bandwidth limit
remaining and latency caused by other higher and equal priority slices. It is beyond
the scope of this work to discuss how the control plane will assign these priorities, but
the equations coming in Subsection 6.4.2 could be used.

6.3.2. Implementation using P4

For each slice, we apply traffic management rules that match the corresponding DP_-
SID carried by every packet in the user metadata. We can apply rate limiting and queue
management per slice using vQueue in the queue_manage action as can be inspected
from Listing 6.1), depending on the type and version of the transport protocol used
and application requirements. We demonstrate our approach by implementing two
basic schemes: Tail Drop (TD) and Explicit Congestion Notification (ECN) step AQM to
support both classic (e.g., TCP Cubic) and scalable (e.g., Data Center TCP (DCTCP) [74])
congestion controls.

For the sake of efficiency, we use a single table to perform both per-flow traffic classifica-
tion and the standard IPv4 forwarding functionality L3Fwd. The L3Fwd match-action
table is part of the P4 pipeline’s ingress processing, and it forwards the packet to the
appropriate egress port while also injecting the DP_SID into the packet’s user-defined
metadata. In our example, a slice is a collection of flows with the same destination IP
address.

Listing 6.1 describes the per slice vQueue management action. For the sake of brevity,
we assume equal-sized packets and define the rate using a packet transmission time
parameter. The algorithm is easily adaptable to use byte transmission time rather
than packet transmission time to account for variable packet sizes. The algorithm
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is implemented by using (i) the slice_ts register, which stores the global timestamp
of the previous packet for the slice at the control block (lines 7-13), and (ii) the delay
register, which holds the virtual queue size for the slice (line 19). We determine how
long the current packet has to wait in the virtual queue based on the time that has
passed since the previous packet of the vQueue (slice) was processed (lines 20-24). We
define C_DELAY parameter for each virtual queue to be the maximum tolerated delay
in milliseconds whose value is prescribed by the Service Level Agreement (SLA) for
the slice. The burst limit is calculated using this delay, the average packet size, and
the rate limit (maximum throughput) specified in the SLA. If the size of the vQueue,
after adding the current packet’s transmission delay (T_DELAY), exceeds the burst size
C_DELAY, the packet is dropped; otherwise, the vQueue size is incremented by the
packet’s transmission delay (lines 25-29). In any case, the delay register is accordingly
updated (line 30).

If the used TCP version at the flow level supports ECN functionality, it is possible to
ECN mark the packets when the virtual queue delay exceeds the marking burst limit
denoted by M_DELAY, indicating congestion (lines 32-34). The latter can be used as a
proactive measure to control the traffic before the drop burst limit C_DELAY is reached.
The algorithm can be extended to support more complex schemes, wherein distinct
AQM mechanisms can be implemented in separate actions.

The P4 code is implemented for two P4 targets: software BMv2 switch and hardware
Agilio CX SmartNIC. Several target-specific modifications were required to enable
running the solution on each of the two targets. The queue admission control should
be performed at the ingress stage before enqueuing packets. However, due to some
SmartNIC target limitations, meters do not work in the ingress. Nevertheless, since
queues are located after the egress pipeline in the case of the SmartNIC, metering
functionality can be safely executed in the egress pipeline, but this violates the P4
program’s generality. A P4 program in the BMv2 case can access information about
the real queue in the egress pipeline as part of the packet metadata. As a result, we
can also check the true queuing delay and decide whether to drop or mark a packet.
By including the relevant parameters received at ingress in packet metadata fields,
the additional match at egress can be avoided. Finally, for multi-threaded targets,
concurrent execution by threads that manipulate the same memory locations can cause
inconsistency issues. The @atomic feature of the P4-16 language can be used to instruct
the compiler to execute a code block atomically.

6.3.3. Advantages Compared to P4 Meters

For bandwidth management, standard P4 meters can be used [75]. In this work, we
consider the metering mechanism as the baseline scenario compared to our proposed
traffic management mechanism. In the following, we argue about the advantages of the
proposed vQueue-based management solution compared to the meter-based baseline
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1 action queue_manage(bit<64> T_DELAY, bit<64> C_DELAY, bit<64> M_DELAY){
2 bit<64> delay=0; //Delay reported
3 meta.ts=hdr.intrinsic_metadata.current_global_timestamp;
4 bit<64> c_ts = meta.ts;
5 bit<64> p_ts;
6 bit<64> delta = 0;
7 @atomic { //Update timestamps
8 slice_ts.READ_REG(p_ts,meta.slice_id);
9 slice_ts.WRITE_REG(meta.slice_id, c_ts);

10 }
11 if ((p_ts==0) || (p_ts>c_ts)) { //For reordered packets
12 p_ts = c_ts;
13 }
14 delta = c_ts-p_ts;
15 if (delta >= 3294967296) { //Wrap up timestamps
16 delta=delta-3294967296;
17 }
18 @atomic { //Update delay
19 slice_delay.READ_REG(delay,meta.slice_id);
20 if (delta > delay) {
21 delay = 0;
22 } else {
23 delay = delay - delta;
24 }
25 if (delay + T_DELAY > C_DELAY) {
26 meta.DropFlag = 1; //Drop Packet
27 } else {
28 delay = delay + T_DELAY;
29 }
30 slice_delay.WRITE_REG(meta.slice_id,delay);
31 }
32 if ((meta.flag == 0) && (hdr.ipv4.ecn != 0) && (delay > M_DELAY)) {
33 hdr.ipv4.ecn = 3; //Mark Packet
34 }
35 }

Listing 6.1: Queue Management P4 Action (excerpt).

solution.

Meters are used to record statistics and the state of a flow to maintain the state. This
data can be used to drop or mark packets based on burstiness and bit rate criteria. For
packet classification, P4-16 supports the two rate Three Color Marker (trTCM) [125].
The trTCM meters a packet flow and colors its packets green, yellow, or red based on
their Peak Information Rate (PIR) and Committed Information Rate (CIR), as well as
their associated burst sizes. The P4 program can make use of this metering information
to implement custom actions such as dropping or marking packets based on their
meter-related colors.

In terms of bandwidth management, the use of P4 meters and, optionally, priority
schedulers should suffice. However, to support the delay requirements for elastic
congestion-controlled traffic, we must use additional traffic management schemes (e.g.,
AQM, etc.) to deal with congestion. Yet, the traffic management logic in forwarding
devices is still not programmable. Virtual queues are used not only to enable pro-
grammable active (virtual) queue management and to regulate the load on the actual
queue(s) but also as a slicing abstraction that allows for the implementation of stateful
data plane algorithms on a per slice basis. This also enables the integration of new
traffic management approaches easily.
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Additionally, some P4 targets may not support metering functionality in their archi-
tecture as in the case of NetFPGA-SUME [15]. Moreover, even if meter functionality
is available on a P4 target, it may have proprietary behavior or limited functionality.
With meter-based rate limiting, the state variables (current queue/burst size), which
could be useful in the implementation of AQM mechanisms, may be hidden.

6.3.4. On the Portability of P4 Implementations

The proposed vQueue-based approach and the baseline indirect P4 meters solutions
are implemented and evaluated on the BMv2 software switch and Agilio CX SmartNIC.
In the following, we summarize the lessons learned from this exercise focusing on the
identified portability issues.

• The P4 registers used in the vQueue implementation are not synchronized with
the SmartNIC’s in-hardware flow cache. This results in a flaw in the design logic
unless we disable the cache-flow option on the SmartNIC, even though this may
affect the card’s performance.

• The SmartNIC’s multi-thread processing causes a lack of synchronization be-
tween register read/write operations. This problem was resolved by requiring
read and write register operations to be "atomic operations" (lines 7, 18).

• The time-stamping mechanisms of the two targets are not the same. Because
the SmartNIC’s 64-bit time is represented by two 32-bit fields (seconds and
nanoseconds), we must subtract 232−109 whenever one second is exceeded (lines
15-16).

• Although the SmartNIC is compatible with the v1model architecture [118], still,
its queues are located after the egress pipeline, which makes it impossible to read
standard metadata fields that report queue occupancy in the egress stage. As a
result, we can only observe the status of the virtual queue and not the real queues
when evaluating the SmartNIC in Subsection 6.4.1.

• The assignment of different queue priorities on SmartNIC is currently not well
supported [126].

• When meters are executed in the ingress pipeline, the SmartNIC behavior is
undefined. As a result, we had to use traffic policing at the egress pipeline (via
the queue_manage action or meters execution).

• The SmartNIC meters have only one threshold. Therefore, two meters have been
used in tandem to implement the trTCM.
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Figure 6.6.: Setup used for conducting the rate and delay management experiments.

6.4. Evaluation of the P4-based Programmable Traffic
Manager

This section focuses on a set of representative experiments that demonstrate the level
of flexibility and portability of our proposed programmable traffic manager solution
by utilizing two different state-of-the-art P4 targets: the BMv2 software switch and
the Agilio CX SmartNIC. We validate and compare the performance of our approach,
denoted as vQueue, to the baseline approach described in Subsection 6.3.3 using P4
Meters [75].

Subsection 6.4.1, in particular, validates the effectiveness of the proposed approaches
in controlling throughput and delay per slice, ensuring performance isolation. Subsec-
tion 6.4.2 investigates the operational limits and trade-offs of the proposed vQueue
approach. Finally, in Subsection 6.4.3, we compare the processing efficiency of the
vQueue implementation in the SmartNIC setup to that of the Meters.

6.4.1. Rate and Delay Management

Evaluation Environment and Reporting

As shown in Fig. 6.6, the testbed used in this set of experiments consists of three Linux
machines that serve as traffic client, server, and host for the P4 target. The client and
the server are configured with Macvlan [] to assure traffic isolation at the hosts. We
build two experimentation setups: one for the BMv2 switch and the other for Agilio CX
SmartNIC. In the first case, we use three machines each with a different Intel CPU (i7-
4770 @ 4x3.40GHz, Pentium D @ 2.8GHz, and i5-4590 @ 4x3.30GHz) running Ubuntu
16.04 with Linux Kernel version 4.4.0. Each machine has at least two 1GbE NICs with
MTUs set to 1500 bytes. In the Agilio CX SmartNIC setup, we use machines running
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Table 6.2.: Per slice traffic characteristics.

Parameter
Slice DC Enterprise Peering

BMv2 SmartNIC BMv2 SmartNIC BMv2 SmartNIC
RTT (msec) 5 10 30
TCP Flavor DCTCP Cubic Cubic
TCP flows (#) 10 100 1 10 10 100

18.04 Ubuntu based on Linux Kernel version 4.19.0, each with 16 cores (dual-socket
Intel Xeon CPU E5-2630 v3 @ 2.40GHz), 64GB of 2133 MHz Double Data Rate Fourth
Generation (DDR4) memory, and an 82599ES 10GbE NIC.

In terms of reporting, the IPv4 header’s identification field has been repurposed to
report measurement results. This is done solely for the purpose of validating the Proof
of Concept (by generating the corresponding graphs) and is not required for the real-
world deployment of the proposed approach. When a BMv2 switch is used as the target,
the six least significant bits store the packet’s virtual queuing delay in milliseconds
(ms), the next six bits report the packet’s real queuing delay in milliseconds (up to
63ms), and the four most significant bits report the number of dropped packets in the
first next non-dropped packet of the same slice. Because of size constraints, up to 15
drops can be reported. Any additional dropped packets will be carried over to the
next packet, bringing the maximum reportable drop rate to 15/16 = 94%. When virtual
queues are not used, the packet’s real queuing delay in milliseconds is stored in all 12
least significant bits (up to 4s). In the case when the SmartNIC is used as the target,
the real queuing delay cannot be reported, as discussed in Subsection 6.3.4. Therefore,
in this case, we use the 16-bit identification field to report the virtual queuing delay
(in milliseconds) using the least 9 significant bits and the number of dropped packets
using the upper 7 bits.

Network Slice description, traffic & configuration

We assume three network slices, each with its own set of requirements based on its
intended use: (i) data center interconnection (Data Center (DC) slice), (ii) enterprise
Wide Area Network (WAN) connectivity (Enterprise slice), and (iii) peering between
two virtual network operators (Peering slice).

Table 6.2 contains the traffic characteristics per slice (number of TCP flows and RTT
values) used in the experiments. The greedy TCP traffic is only limited by the con-
gestion control scheme chosen and its interaction with drops and marks by the slice’s
configured AQMs. Before running these applications, the congestion control is set to
Cubic or DCTCP on the client(s) and server(s).

Table 6.3 lists the configuration parameters required for the three slices when running
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Table 6.3.: Per slice configurations

Parameter
Slice DC Enterprise Peering

BMv2 SmartNIC BMv2 SmartNIC BMv2 SmartNIC
Rate limit (Mbps) 48 480 12 120 240 2400
Burst limit (msec) 20 10 30

(pkts) 80 800 10 100 600 6000
Queue Management Scheme ECN_Step Tail Drop Tail Drop
Target delay (msec) 5 - -

on the BMv2 switch and the SmartNIC. To match the forwarding devices’ throughput
capabilities, which are relatively limited, particularly in the case of the BMv2 reference
software switch 1, we have reduced the aggregated slices’ rate limit (approximately
threefold decrease for the BMv2 switch and the SmartNIC compared to their respective
1Gbps and 10Gbps line rate values).

The rate and target delay (burst limit) per slice are initially set arbitrarily. The burst
limit is set as the delay caused by a burst of packets to a real queue served by the
specified rate limit. We assume that the most stringent delay and loss requirements
apply to DC slice. As a result, the DCTCP active queue management algorithm with an
immediate ECN step is used [74]. We use ECN packet marking to control the virtual
queue’s delay to a 5ms target while avoiding loss by allowing a larger (exceptional)
burst limit before packets are dropped. The other two slices only use their drop-based
burst limit, resulting in a delay-based TD (virtual) queue.

Experiments, Measurements & Evaluation Metrics

The first experiment (Experiment 1- BMv2 software switch) assesses the efficacy of the
proposed approach using vQueue for policing and AQM, as well as the system’s
interaction with TCP flows on the BMv2 switch. The results are compared to the
baseline Meter-based implementation. We run the three slices concurrently over the
shared non-congested link. All traffic is routed to the same physical queue at the
switch’s egress port, with the size set high enough (e.g., 200k packets) to ensure that
congestion control is performed only at the virtual queues by the queue management
algorithm.

In this experiment, we measure the virtual queue and the physical queue’s throughput
and delay over time. Measurements are taken 50 seconds after the experiment begins
to capture only the steady state and span a time interval of 250 seconds. The packets
are captured at the outgoing switch-to-client interface. The throughput plots are based
on averages taken over one-second intervals. To see the TCP variations, we measure
the queuing delay per packet and zoom in on the plot (over a 10 s period). We also plot

1https://github.com/p4lang/behavioral-model/blob/main/docs/performance.md
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the queuing delay’s CDF. The queuing delay CDFs are based on the per-packet queue
delays counted in bin-sizes of 1024mus, ranging from 0 ms to 30 ms.

The second experiment (Experiment 2- Agilio CX SmartNIC) is performed to assess
the performance of the vQueue management mechanism when running on the P4
programmable Agilio CX SmartNIC. In this experiment, the same measurement pro-
cedure described for the first experiment is used. However, because the physical queue
follows the ingress/egress pipeline in the SmartNIC architecture/implementation, we
do not report the packet delay in the physical queue. The purpose of the experiment is
to validate the mechanism’s portability by running it on a hardware target.

The third experiment (Experiment 3- BMv2 performance isolation with over-utilized link) is
conducted to investigate the potential benefits of the proposed vQueue implementation
for slice performance isolation (i.e., meeting throughput and latency bounds per slice).
For this purpose, we repeat the previously described experimental procedure, but this
time with the three slices operating concurrently over a shared bottleneck. To this end,
we rate limit the link on which packets leave the switch to 285Mbps, which is just
under the combined capacity of the three slices of 300Mbps. Furthermore, in addition
to vQueue-based traffic management, we make use of the target’s non-programmable
traffic manager. In particular, we use traffic prioritization with two priority queues,
assigning traffic from the DC and Enterprise slices to the highest priority queue. This
experiment is only carried out with the BMv2 target because real queuing delay cannot
be measured on the SmartNIC and configuring queue priorities with P4 is not well
supported on this target.

Experiment 1- BMv2 software switch

The results of the BMv2 switch experiment are shown in Fig. 6.7. The plots in Figs. 6.7d,
6.7e, and 6.7f display the per packet and average delay in the virtual and real (switch
egress port) queues, as well as packet drops (zoomed in for the first 10 seconds of the
experiment) for the DC, enterprise, and peering slices, respectively. The delay CDFs
over the duration of the experiment is depicted in Fig. 6.7c. The measured average
throughput for all slices when using vQueue implementation is shown in Fig. 6.7a,
while Fig. 6.7b depicts the average throughput in the baseline case when using the
standard P4 packet classifier/meters.

The gauged TCP throughputs for the three slices in Fig. 6.7a confirm the effectiveness of
the policing approach using vQueues; the results are similar to the baseline in Fig. 6.7b,
where we limit the per slice rate using P4 meters. Unlike the off-the-shelf P4 meters-
based implementation, the vQueue implementation can also control the behavior and
limits of each slice in terms of drop/target delay (when applicable) besides throughput.
This is checked by inspecting the delay CDF plots when using vQueue implementation
depicted in Fig. 6.7c. The results demonstrate that for a non-congested physical link,
the real queuing delay for all slices sharing that link is in the order of microseconds
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(f) Peering slice.

Figure 6.7.: Results of BMv2 software switch in the first experiment.

(dashed plots at very low values), while the virtual queue delay is kept below the
corresponding burst limit and the hard rate limits are never violated.

Looking at the vQueue results corresponding to DC slice in Fig. 6.7d, we can observe
that the DCTCP flows (slice DC) are controlled at the target rate and around the 5ms
marking threshold (in line with the slice configurations set in Table 6.3). Because
packets are marked rather than discarded, the average virtual queue delay for DCTCP
flows can exceed the 5ms marking threshold. The additional 15ms virtual queue size is
required to reduce packet drops, which still occur on occasion when this threshold is
exceeded. The higher delay variation in the virtual queue is due to the virtual queue’s
fast integration function and the TCP senders’ delayed mark response.

The Enterprise slice results plotted in Fig. 6.7e reveal that due to the non-shaped
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(non-ACK-paced) traffic, the full congestion window of the single flow is transmitted
repetitively at line rate, resulting in a very bursty virtual queuing delay. Because the
virtual transmission time of a single packet is 1 ms on a virtual rate limit of 12 Mbps,
only bursts of approximately 10 packets per RTT (10 ms) are permitted. This reduces
the actual rate to just above 10 Mbps.

We can also see the Cubic TCP behavior (in Reno mode) for the flows of the Peering
slice in Fig.6.7f. The throughput variations are due to the abrupt 30% Cubic backoff
on loss and slow increase. A high level of jitter is observed due to line-rate bursts at
congestion window size, but it is not limited by the virtual queue’s burst limit in this
case. We see a high level of synchronization even with 10 flows. This results in frequent
episodes of minor under-utilization, as seen in the throughput and CDF plots. It is
worth noting that the real queuing delay of the three slices is always in the microsecond
range, and thus close to 0 ms.

Finally, the results demonstrate the efficacy of the proposed approach in supporting
alternative traffic management schemes per slice, tailored to the TCP flavor used and
application requirements. Slice (state and performance) isolation is obviously possible
when sharing a real queue and capacity, provided that both are sufficiently large to
accommodate the slices.

Experiment 2- Netronome SmartNIC

The results of the SmartNIC experiment, like the BMv2 experiment, are shown in
Fig 6.8. In general, we see a similar trend to the BMv2 results but on a larger scale (x10
flows). The throughput results for the three slices in Fig. 6.8a are similar to the baseline
implementation results depicted in Fig. 6.8b. Although we can only report the virtual
queue delay in the SmartNIC setup for reasons discussed earlier, the virtual queue
delay for all three slices is kept below the corresponding burst limit, and the hard rate
limits are followed.

More specifically, the DCTCP flows (slice DC) in Fig.6.8d fluctuate around the 5ms
marking threshold, similar to BMv2. However, because congestion control (via mark-
ing) takes a few RTTs to respond and reduce the rate to the target value, DCTCP traffic
fills the virtual queue in this case. The synchronized TCP oscillation, manifested as
delay variation and the typical on/off marking pattern, is smoothed out after about
two seconds as on/off marking is broken due to micro marking bursts spread more
evenly over time.

Looking at the delay plot of the Enterprise slice in Fig. 6.8e, we observe a tenfold
increase in the number of dropped packets, which is attributed to the tenfold increase
in the number of flows. We also see better utilization of the slice capacity, indicating
that no TCP flow synchronization is taking place.
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(a) vQueue throughput.
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Figure 6.8.: Results of SmartNIC software switch in the first experiment.

For the Peering slice in Fig. 6.8f where the number of flows is scaled up (x10), the effects
of global synchronization noted in Fig. 6.7f for the Cubic TCP flows are amplified. This
results in increased under-utilization of the slice capacity, as shown by the CDF and
throughput plots. To break synchronization issues, one could use our vQueue imple-
mentation and a random dropping scheme, such as the RED-like scheme, enforcing
a linear increase in the drop probability starting at a minimum delay threshold and
ending at a maximum threshold where 100% of the packets are dropped.
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Figure 6.9.: BMv2 - performance isolation with over-utilized link results.

Experiment 3- BMv2 performance isolation with over-utilized link

In the context of network slicing, performance isolation means that service-specific
performance requirements are always met on each network slice instance, regardless
of the congestion and workloads of other slice instances running on the shared infras-
tructure. The corresponding delay and throughput, using priority queues for both
the virtual queue and P4 meters, are depicted in Fig. 6.9a and Fig. 6.9b. The DC and
Enterprise slices traffic is prioritized over the Peering slice traffic, where they share the
switch’s high-priority physical queue. The three slices operate concurrently, sharing
the limited link capacity of a single egress port (285 Mbps). Because the real rate limit
is less than the sum of the virtual rate limiters, the real queue delays must also be
managed. To that end, the virtual queue policies we implemented use the maximum
of packets’ virtual and real queue delays for drop and mark decisions.

In the vQueue case, we see that the QoS requirements of the two high-priority slices are
met, while the low-priority one (Peering Slice) sees a decrease in throughput (Fig. 6.9b)
and an increase in the packets’ real queue delay, while this delay remains within the
pre-defined bounds (30 ms) (Fig. 6.9a). While in the cases of DC and Enterprise slices,
there is no real queuing delay because their traffic is prioritized, the Peering slice is
controlled by the real queuing delay (Peer.vQueue:Real). The vQueue is no longer
operational in the Peering slice case because it cannot reach the virtual rate limit and it
reaches the burst limit of 30 ms as long as the higher priority slices use their maximum
throughput levels.

In the standard P4 meters case, the throughput results are similar to vQueue results as
shown in Fig. 6.9b, with the same noticeable decrease in throughput for the Peering
slice. Looking at the delay results in Fig. 6.9a, also there is no real queuing delay for
the DC and Enterprise slices, as expected because their traffic is prioritized. However,
because it is not controlled as in the vQueues case, the increase in packets’ real queuing
delay for the low-priority traffic (Peering slice) is significant (up to 800ms).

From these results, we can realize that using the P4-standard meters does not suffi-

163



6. P4 Applications: Use Case Studies

ciently isolate the performance of the low-priority slice when the delay is considered
the key performance indicator for performance isolation. Meters only support under-
provisioned rate limits when latency guarantees are required, unless additional real
queue latency configuration and checks are implemented, similar to our vQueue imple-
mentation. To avoid the use of additional real queue latency controls, we must manage
the capacity margin between the (configured) sum of the slices’ (vQueues) throughput
and the physical link capacity.

6.4.2. Guaranteed Performance Targets Using vQueues

As mentioned in the previous experiment (Experiment 3- BMv2 performance isolation with
over-utilized link), it is necessary to investigate the capacity margin required between
the (configured) sum of the vQueues and the actual link capacity in order to ensure
that all slices meet their performance target. To that end, we assume the behavior
of a Markovian non-preemptive priority queuing system and estimate the physical
link capacity required to support the delay and throughput targets set per slice under
various slice priorities.

Priority scheduling effectively blocks the queues of lower-priority slices during the
busy period of higher-priority slices. We can calculate the maximum real queuing
delay (worst case scenario) for each slice based on the maximum busy period for each
slice s ∈ S with priority i ∈ I , where |I| is the highest priority. The maximum busy
period tsi for each slice s with priority i can be estimated using its burst limit bsi (in
bytes) and the bottleneck’s residual capacity ri for priority i as follows:

tsi =
bsi
ri
. (6.1)

The residual capacity available to each slice s with priority i and rate limit Lsi over the
bottleneck with nominal capacity C is derived as follows:

ri = C −
∑
∀j∈S

|I|∑
k=i+1

Ljk. (6.2)

According to Eqs. (6.1) and (6.2), the worst-case queuing delay di for each slice s with
priority i is equal to the aggregate busy period of all higher or equivalent priority slices,
including slice s, as follows:

di =
∑
∀j∈S

|I|∑
k=i

tjk. (6.3)
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Table 6.4.: Per slice priority.

Case
Slice DC Enterprise Peering

A 7 7 7
B 7 6 6
C 7 7 6
D 7 6 5

The extra worst-case queuing delay ∆di = di − di+1 for all slices with priority i is
determined by (i) the residual capacity of the link for that priority ri and (ii) the sum of
all burst sizes (derived from the delay burst limits and their respective rate limits) of
all slices with that priority, as follows:

∆di = di − di+1 =

∑
∀j∈S b

j
i

ri
. (6.4)

We can derive from this reworked equation the bound on the maximum extra latency
∆di for slices of priority i given a residual capacity ri. Alternatively, we can derive the
bound on the minimum residual capacity ri required for the given maximum extra
latency ∆di that is allowed for the slices of priority i.

When the real queuing latency cannot be controlled, these bounds restrict the number
of slices that can be supported for a given link capacity. When the real queues, on the
other hand, can be controlled, these bounds provide the worst-case rate that a slice
with a given priority can experience.

We plot in Fig. 6.10 the worst-case queuing delay of the three slices used in the ex-
periments above (i.e., slice DC, Enterprise, and Peering with target rates of 48 Mbps,
12 Mbps, and 240 Mbps, respectively) for various rates (bottleneck links), with priorities
as shown in Table 6.4. The figure has been divided into two subplots to improve read-
ability because cases B, C, and D partially overlap. Case A is similar to the initial slice
setup used in the previous first two experiments for BMv2 and SmartNIC evaluations
in Experiment 1 and Experiment 2, while Case C is similar to the slice setup used in the
third experiment, Experiment 3, for the over-utilized link evaluation. Case D yields
results similar to Case C, where DC and Enterprise traffic are both prioritized over
Peering traffic. Case B is defined to identify the corresponding limits When traffic from
slice DC is prioritized over the other two slices.

The graph corresponding to Case A: Slice DC/Ent./Peer, in Fig. 6.10a shows the worst-
case queueing delay for each slice when no traffic prioritization is applied. We find that
a capacity of 1650 Mbps is required to ensure a (maximum) 5 ms delay for DC Slice.

In case B, the queuing delays for DC, Enterprise, and Peering slices are denoted as
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Figure 6.10.: Worst-case delay as a function of link capacity.

Case B:Slice DC and Case B:Slice Ent./Peer. From Fig. 6.10b, we observe that in this
case, where DC traffic is prioritized over traffic from the other two slices, the Slice
Enterprise’s 10 ms delay limit is only met when the bottleneck rate exceeds 900 Mbps.

In case C, where traffic from DC and Enterprise slices is prioritized over Peering traffic,
the worst-case queuing delays are denoted as Case C:Slice DC/Ent. and Case C:Slice
Peering. Similarly, graphs Case D: Slice DC, Case D: Slice Enterprise, and Case D: Slice
Peering show the worst-case queueing delay for each slice when different priorities are
applied between the slices. The results of cases C and D are depicted in Figs. 6.10b
and 6.10a, respectively. These results verify that both priority policies allow us to
support the corresponding maximum burst limits for all slices, even in the worst-
case scenario, as long as the bottleneck is at least 330 Mbps. This is in line with the
evaluation results of Experiment 3 analyzed before.

In general, we can observe that by using the corresponding maximum burst limits
(worst-case queuing delay) of the slices, strict slice priority allows us to determine
the necessary capacity margin required for the vQueues to operate efficiently under
different conditions. For example, 330 Mbps link capacity is needed in cases C and
D for the configured per slice QoS and rate targets. To meet their Key Performance
Indicator (KPI)s, an intelligent control plane could assign slices to different priorities
based on their requirements and physical link capacity.

6.4.3. Packet Processing Latency

We evaluate the efficiency of our proposed vQueue-based approach in the SmartNIC
setup in terms of the pipeline’s processing delay and memory consumption. We again
use P4 meters as a baseline approach for the comparison. To determine the additional
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Figure 6.11.: Packet processing latency results.

processing latency required by meters and vQueue implementations, we measure and
report the latency of a program that only performs L3Fwd functionality.

We use the same experimentation setup depicted in Fig. 3.2 and described in Subsec-
tion 3.2.1 earlier. In this setup, MoonGen [31] is used to benchmark the performance
of Agilio CX SmartNIC. MoonGen is configured to send 1500 Byte UDP packets at
2.4 Gbps to the SmartNIC after loading the three P4 implementations under test (L3Fwd,
vQueue, and Meters). The packets are processed in the card before being returned to
MoonGen, where packet latency is reported.

Furthermore, we investigate the effect of different actions taken by the examined
P4 implementations on packet processing latency. This is done by configuring each
traffic management implementation to limit the rate at 2.3 Gbps to be smaller than
the 2.4 Gbps generated traffic rate (i.e., apply Mark Action), and also at 5 Gbps to be
greater than the incoming traffic rate (i.e., Apply No-Mark Action). We ensured that no
packets were dropped by the traffic management mechanisms, as this would cause the
packet latency measurements to be disrupted. This was accomplished by arbitrarily
increasing the dropping burst size and minimizing the difference between the limited
rate in the Mark-Action case, i.e., 2.3 Gbps, and the sent rate, i.e 2.4,Gbps, to ensure
that the drop burst threshold is never reached and no packet is dropped.

The box plots of measured latency, in µs, for the various P4 implementations with
different configurations are shown in Fig. 6.11. On top of the L3Fwd pipeline, the traffic
management mechanisms in both vQueue and meter implementations contributed
an additional 8µs. Furthermore, our proposed vQueue implementation has a slight
advantage over the meter implementation in terms of packet processing load, with the
median of measured latency in the vQueue case being 0.3µs less than that measured in
the meter case. Furthermore, we can see that the packet processing latency of the two
implementations is constant regardless of whether the packets are marked or not.
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Memory usage in both implementations is almost the same, except for the use of
Cluster Local Scratch (CLS) memory, which is responsible for storing frequently used
data, whereas the vQueue implementation requires an additional 2% of the available
memory compared to the meter-based implementation.

Note that an alternative vQueue implementation using one register and one atomic
section did not improve the performance because accessing a register was faster than
the additional processing required. Depending on the target and register constraints,
it may be possible to further optimize the algorithm to achieve the optimal balance
between resource usage and processing latency, but at the expense of the generalization
of the implementation.

6.5. Summary

In this chapter, we implement and analyze two applications to demonstrate the benefits
of adopting programmable data planes for future networks.

In the first application, we redesign the UPF of the 5G Core networks to follow the
microservice-based architecture. This design enables more efficient deployments of
the UPF into cloud environments to better leverage the benefits of this computing
paradigm. A PoC implementation of this design using P4 is described, and the lim-
itations in the P4 language and targets identified when conducting this exercise are
discussed. Finally, the integration of this application into the P4-enhanced cloud envi-
ronments is illustrated, where the optimal management scheme proposed in Chapter 5
can be used to optimize the orchestration of the microservice-based UPF.

The second contributed application is a programmable traffic management solution
that enforces different configured QoS requirements in terms of rate and delay into
different network slices. While this solution holds as a stand-alone solution for different
use cases, it complements the UPF implementation, wherein QoS enforcement is among
its designated tasks. The solution uses and implements vQueues for controlling not
only the rate of different slices, a task achievable using the standard P4 meters, but
also the delay. The programmable traffic management solution is implemented on
software and SmartNIC-based P4 targets, where portability issues are discussed and
mitigated. We validate the proposed approach’s performance using elastic congestion-
controlled traffic and investigate the relationship between the shared link and the
required network slices’ capacity for the proposed approach to operate efficiently using
vQueues. In comparison to standard P4 meters, we demonstrate that our design has
comparable rate-limiting performance, full access to state information, and a slightly
lower processing delay.
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Emerging applications such as IoTs and CPSs have stringent connectivity requirements
imposed on the underlying networks in terms of forwarding performance. On the
other hand, the required connectivity services and functions by these applications are
changing rapidly which demands the adoption of programmability in these networks
to define their behavior flexibly. Different solutions such as SDN, NFV, and more
recently P4 programmability have been proposed to fulfill these requirements. P4
programmability is regarded as a promising technology because it extends the flexibility
provided by the SDN paradigm by enabling programmability at the data plane of
packet processors, and it improves the performance of the NFV paradigm by enabling
programmability on hardware accelerators.

To address the connectivity needs of emerging applications, the thesis proposes the
integration of P4 programmable packet processors into the NFV cloud environment
to enhance its processing performance without sacrificing the flexibility attained via
programmability. However, this integration also raises a new plane of problems and
challenges in terms of the design and management of such environments.

Given that the P4 language is target independent, this means that it can be used to
program different types of packet processors such as CPUs, NPUs, FPGAs, and ASICs.
Accordingly, the management plane should decide where to place the NF workload.
To take the optimal placement decision, the management plane needs to know the
limitations, capabilities, and performance of the different device types. However,
this information is not fully explored in the literature. Accordingly, a comprehensive
evaluation of the different P4 device types is needed to understand the performance of
these devices.

Furthermore, keeping in mind that P4 devices enable data plane programmability, the
processing latency, and thus the forwarding latency, on these devices may vary based
on the complexity of the loaded packet processing pipeline. Hence, proper modeling
of the performance of these devices is necessary to anticipate the performance of these
devices when different influential factors are varied.

When the performance models of the different P4 devices are available, the optimal in-
tegration and deployment of P4 devices into NFV cloud environments become possible.
Both the offline optimal planning for selecting and building the network’s substrate
and the optimal runtime management of an already built-up network are important
management problems that need to be formulated and studied.

169



7. Conclusion and Outlook

In the following, Section 7.1 summarizes the key contributions and outcomes of this
thesis, and Section 7.2 reports on some interesting and challenging future research
directions related to the deployment of programmable packet processors into cloud
environments.

7.1. Summary

The thesis addresses the issues and challenges that arise when integrating and deploy-
ing P4 programmable packet processors into NFV cloud environments. The four major
contributions in the thesis are presented in Chapters 3, 4, 5, and 6. Each contribution
paves the way for the follow-up contribution until eventually the objective of the thesis
is reached. The performance evaluation and measurements on P4 devices conducted
in Chapter 3 provide the necessary realistic input regarding the forwarding latency
on P4 data and control planes, which is needed for parametrizing the performance
models presented in Chapter 4. The developed performance models in Chapter 4 en-
able the performance-aware optimal management of P4-enhanced cloud environments
presented in Chapter 5. Finally, the applications presented in Chapter 6 demonstrate
the usability of the proposed P4-enhanced NFV cloud environment, which can be
optimally managed using the framework presented in Chapter 5. In the following, we
summarize the individual major contributions of the thesis presented in Chapters 3-6.

Benchmarking the Performance of P4 Programmable Packet Processors. To
understand the capabilities and limitations of different P4 device types, it is important
to conduct a comprehensive evaluation of these devices. The first major contribution
presents a performance study of the different components that build a P4-based system.
Different important data plane performance metrics such as the average baseline
forwarding latency, the processing latency of atomic P4 operations, the variation in
forwarding latency due to scaling up the number of incoming distinct flows, and the
rule insertion time were evaluated. Moreover, an evaluation of the performance of
P4RT-based controller is conducted using a novel tool developed for this purpose. The
measurements revealed the capabilities and limitations of different investigated P4
devices towards advancing the common knowledge on the performance of this class of
devices.

Modeling the Performance of P4 Programmable Packet Processors. Different
performance models for P4-based systems were proposed using the measurements
collected in the previous contribution. These models realize the various factors that can
affect the system performance and include them as parameters that can be tuned based
on the tested scenario. The modeling exercise is divided into two parts. In the first stage,
we concentrate on modeling the challenging part, which is the relationship between
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the data plane’s forwarding latency and the complexity of the loaded P4 program. In
this direction, we use the previous contribution’s measurements to develop a generic
method for predicting packet forwarding latency when running arbitrary P4 programs
on different P4 packet processors. The proposed method is validated by running three
realistic network functions on three P4 targets, with the recorded estimation accuracy
always exceeding 95%.

The second stage builds on the first stage’s model to propose two queueing theory-
based models that abstract the performance of complete P4-based systems, including
the control plane, as feedback-oriented queues with all the factors that influence the
system’s performance included. To keep the model simple, the first model assumes
exponentially distributed service times, whereas the second model relaxes this assump-
tion and uses generic service processes whose distribution is based on measurements to
provide more realistic performance predictions. Finally, the two models are evaluated
and validated through simulations that vary a wide range of parameters and analyze
their impact on the packet’s sojourn time in the system. When any of the influential
parameters are varied, the results of the two models are very similar, with the exception
that the second (refined) model has lower sojourn time values than the model with
exponentially-distributed service times. The accuracy of the two models is found to
be very high when compared to simulation results. This evaluation resulted in the
development of constraints for dimensioning the permissible input traffic that the
system can handle without packet drops.

Performance-Aware Management of P4-based Cloud Environments. The pre-
vious contribution’s performance models are used to formulate and evaluate two
optimization problems related to managing P4-enhanced NFV environments. The
first problem called PA-P4VNF-RA seeks to optimize the infrastructure substrate of
P4-enhanced NFV environments. The optimization problem seeks the optimal set
of P4 packet processors capable of handling a given processing workload, as well
as the optimal placement solution for this workload into the chosen hosting devices.
When selecting the optimal set of P4 packet processors to handle a given processing
workload, the multi-objective function aims to maximize system performance while
minimizing capital expenditure costs. The problem constrains the solution space to
satisfy the NF workload requirements while recognizing the distinct capabilities of
the various candidates hosting P4 devices. The second optimization problem is called
PA-P4SFC-E, and it aims to find the best way to embed SFCs into P4-enhanced NFV
environments at runtime. The optimization problem seeks the best placement and
routing of SFCs on a P4 programmable substrate. Furthermore, a greedy solution is
designed and implemented to solve the PA-P4SFC-E problem faster at runtime. The
performance models developed in the previous contribution allow for the calculation
of the forwarding delay resulting from various possible placement options, guiding
the search in the two problems towards the most performance-efficient solution that
meet functional and QoS requirements.
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A detailed evaluation of the two problems is carried out after populating the model’s
parameters using results from previous contributions and surveyed literature works.
When analyzing the PA-P4VNF-RA problem, the trade-off between cost and perfor-
mance objective functions is highlighted. When evaluating the PA-P4SFC-E problem,
the impact of various system parameters such as SFC length and the degree of adoption
of IPUs and programmable ASICs is considered. Finally, the greedy solution’s evalua-
tion revealed its effectiveness in handling scaled-up scenarios in terms of execution
time, at the expense of reduced optimality.

P4 Applications: Use Case Studies. Two applications are implemented and ana-
lyzed to show the advantages of using programmable data planes in cloud environ-
ments for future networks. The UPF of the 5G Core networks is redesigned in the first
application to follow the microservice-based architecture. This design allows for more
efficient deployments of the UPF into cloud environments, allowing for greater utiliza-
tion of the benefits of this computing paradigm. A PoC implementation of this design
in P4 is described, as are the limitations in the P4 language and targets identified dur-
ing this exercise. Finally, we show how to integrate this application into P4-enhanced
cloud environments, where the optimal management scheme proposed in the previous
contribution can be used to optimize the orchestration of the microservice-based UPF.

The second contributed application is a programmable traffic management solution
that enforces different configured QoS requirements in terms of rate and delay across
different network slices. While this solution can be used as a stand-alone solution
for various use cases, it also complements the UPF implementation by enabling QoS
enforcement on a per-flow basis. The solution employs and implements vQueues to
control not only the rate of different slices, which can be accomplished with standard P4
meters, but also the delay. The programmable traffic management solution is deployed
on software and SmartNIC-based P4 targets, and portability issues are discussed and
addressed. We validate the proposed approach’s performance using elastic congestion-
controlled traffic and investigate the relationship between the shared link and network
slices’ required capacity for the proposed approach to operate efficiently using vQueues.
We show that our design has comparable rate-limiting performance, full access to state
information, and a slightly lower processing delay than standard P4 meters.

7.2. Future Work

We believe that the following research topics are interesting for future work.

Evaluating the power consumption of programmable packet processors. As
the interest in building sustainable networks is increasing, evaluating the energy
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consumption of different programmable packet processors becomes more important.
In this thesis, we benchmarked the forwarding latency of different P4 programmable
packet processors and then we proposed a method for estimating this forwarding
latency as a function of the complexity of the loaded data plane pipeline. A similar
approach can be followed to derive models that can relate the power consumption
of P4 devices to the required processing workload. Furthermore, the optimization
problems proposed in Chapter 5 can be extended by incorporating the developed
power models to enable management with awareness related to performance and
power consumption.

Worst-case delay modeling for programmable packet processors. While the per-
formance models derived in this thesis focus on the average delay as the metric of
interest, some user applications such as those that include control loops for safety-
critical applications require guarantees related to the worst-case delay in the network.
Deriving such models is possible by using modeling techniques such as network cal-
culus instead of the ones used in this thesis which is based on stochastic queueing
theory.

The coexistence of different programmable data plane technologies in cloud en-
vironments. While this thesis considers P4 programmable packet processors and
the deployment of this class of devices into cloud environments, it is worth investi-
gating other technologies that also enable programmability at the data plane such as
eBPF [105], PoF [17], etc. More interestingly is studying the interoperability issues that
could arise when these different technologies coexist in the cloud environment. In
this case, the development of a generic abstraction layer for accessing these different
acceleration techniques is of paramount importance.

Deploying microservice-based RAN into P4-enhanced cloud environment. As
cloud-native solutions are becoming more prominent in cellular networks, the study
that focuses on the cloudification of the RAN becomes more interesting. Finding
the best design that separates the different functions of the RAN, while keeping the
dependency between these functions minimal is a challenging task. While this thesis
considered the cloudification of the UPF and discussed the deployment of the new
design into P4-enhanced cloud environments, applying a similar approach to the RAN
is even more important, especially since the processing of RAN functions heavily
depends on the usage of hardware accelerators.
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A. Abbreviations

NIC Network Interface Card

eBPF extended Berkeley Packet Filter

PoF Protocol-oblivious Forwarding

P4 Programming Protocol-Independent Packet Processors

L3Fwd Layer 3 Forwarding

L2Fwd Layer 2 Forwarding

FPGA Field-Programmable Gate Array

ASIC Application-Specific Integrated Circuit

SDN Software-defined networking

NFV Network Functions Virtualization

LPM Longest Prefix Match

MAU Match-Action Unit

API Application Programming Interface

P4RT P4Runtime

gRPC Google Remote Procedure Call

P4C P4 Compiler

JSON JavaScript Object Notation

BMv2 Behavioral Model

OvS Open vSwitch

NPU Network Processor Unit

RTL Register-Transfer Level
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A. Abbreviations

LUTs LookUp Tables

TCAM Ternary Content Addressable Memory

SRAM Static Random Access Memory

RAM Random Access Memory

PISA Protocol-Independent Switch Architecture

DPDK Data Plane Development Kit

CPU Central Processing Unit

NUMA Non-Uniform Memory Access

OF OpenFlow

IT Information Technology

NF Network Function

NFV Network Function Virtualization

OFCProbe OpenFlow Controller Probe

P4RCProbe P4Runtime Controller Probe

MTU Maximum Transmission Unit

PTP Precision Time Protocol

FSM Finite State Machine

ONOS Open Network Operating System

PCIe Peripheral Component Interconnect Express

RTT Round-trip Time

TCP Transmission Control Protocol

SYN Synchronize

RPC Remote Procedure Call

B5G Beyond 5G

AQM Active Queue Management
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A. Abbreviations

VNF Virtualized Network Function

UPF User Plane Function

SFC Service Function Chain

QoS Quality of Service

COTS Commercial off-the-shelf

IT Information Technology

IoT Internet of Things

NP Nondeterministic Polynomial Time

CFG Control Flow Graph

IR Intermediate Representation

MAC Media Access Control

TTL Time to Live

VxLAN Virtual Extensible LAN

VNI VxLAN Network Identifier

PASTA Poisson Arrivals See Time Averages

OFLOPS OpenFlow Operations Per Second

PA-P4VNF-RA Performance-Aware P4 Virtual Network Functions Resource
Allocation

PA-P4SFC-E Performance-Aware P4 Service Function Chain Embedding

ToR Top of Rack

CAPEX Capital expenditures

VNF-OP VNF Orchestration Problem

VNF-AAPC Accelerator-aware VNF Placement and Chaining

FW Firewall

NAT Network Address Translation
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A. Abbreviations

VDecap VxLAN Decapsulation

LB Load Balancer

V1M V1Model

SUME SimpleSumeSwitch

ILP Integer Linear Programming

IPU Infrastructure Processing Unit

AIC Akaike Information Criterion

RMSE Root Mean Square Error

CDF Cumulative Density Function

NP Nondeterministic Polynomial Time

vQueue Virtual Queue

AQM Active Queue Management

ECN Explicit Congestion Notification

SLA Service Level Agreement

trTCM two rate Three Color Marker

CIR Committed Information Rate

PIR Peak Information Rate

DDR4 Double Data Rate Fourth Generation

WAN Wide Area Network

TD Tail Drop

DCTCP Data Center TCP

DC Data Center

KPI Key Performance Indicator

CLS Cluster Local Scratch

UE User Equipment
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A. Abbreviations

RAN Radio Access Network

UPF User Plane Function

DN Data Network

AMF Access and Mobility Management Function

AUSF Authentication Server Function

SMF Session Management Function

NSSF Network Slice Selection Function

NRF NF Repository Function

PCF Policy Control function

UDM Unified Data Management

gNB Next Generation NodeB

SBA Service-Based Architecture

NEF Network Exposure Function

PDU Protocol Data Unit

3GPP 3rd Generation Partnership Project

PIFO Push-In-First-Out

FIFO First-In-First-Out

SP-PIFO Strict-Priority-Push-In-First-Out

PIEO Push-In-Extract-Out

LSTF Least Slack Time First

CoDel Controlled Delay

RED Random Early Drop

PIE Proportional Integral controller Enhanced

vEPG virtual Evolved Packet Gateway

PoC Proof of Concept
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A. Abbreviations

ISF Ingress Steering Function

ULF Uplink Function

DLF Downlink Function

ODF On-Demand Function

REST Representational State Transfer

LIF Lawful Intercept Function

SOTA state-of-the-art

PDR Packet Detection Rule

FAR Forward Action Rule

QFI QoS Flow Identifier

TPD Thermal Design Power

CPS Cyber-Physical Systems
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