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Abstract—In this paper, we assess the performance of our real-
world multi-camera traffic surveillance system along a segment
of the A9 Autobahn north of Munich. Its principal component is
a Labeled Multi-Bernoulli based tracking module that sequen-
tially fuses the detection data from parallel camera processing
pipelines. We present a systematic investigation of the system’s
characteristic failure modes that lead to a degradation of its
performance. To this end, we assess state of the art metrics
and performance measures in regard to their suitability for
flagging unwanted behavior or failures in real-world multi-object
tracking systems. Our analysis is structured into three levels of
abstraction: target-level, time-step-level, and track-level. These
abstraction levels allow us to systematically approach the analysis
from different perspectives and to direct the focus on recurring
errors and systemic deficiencies. In particular, the track-level
analysis proved to be the most expedient approach since it drew
our attention to system challenges like occlusions and other time-
correlated detection errors. It further identified the system bias
introduced by the adoption of class-dependent object extents.
Our analysis is intended to guide the future development effort
of our system and to serve as a basis for investigations and
improvements of similar systems.

Index Terms—Traffic surveillance system, error source analysis,
multi-target tracking, metrics

I. INTRODUCTION

Precise knowledge of the current traffic situation including
the location of all traffic participants is a key element to es-
tablish more automated transportation systems. Infrastructure-
mounted sensors provide a bird’s eye view of the situation that
goes beyond the field of view of on-board sensors available
to individual traffic participants. Making this global view
available to all traffic participants allows individuals to make
conscious decisions about their own actions with respect to
others and thus, improves the overall safety and efficiency of
the transportation system.

The Providentia++ research project and its predecessor Prov-
identia [1] established a test field for autonomous driving that
features such a smart traffic surveillance system. Its ultimate
goal is to provide a real-time and high-precision digital twin of
the traffic to facilitate diverse applications. To this end, parts of
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the test field are equipped with a multi-camera fusion system
that supplies real-time information about the location of the
traffic participants. The safe operation as well as a focused de-
velopment effort require a good understanding of the systems
characteristics, limits, and failure modes. A plurality of works
on performance metrics for tracking systems was published
in recent years that cover applications such as the ranking
of algorithms [2], [3], metric-driven sensor registration [4]
and optimal estimation [5]. On the other hand, large-scale
traffic surveillance systems are extensively investigated [6].
However, to the best of our knowledge, detailed error source
analyses on traffic surveillance systems were not conducted so
far. The main objective of this work is to present a systematic
investigation of the system’s deficiencies and biases.

For this purpose, we employ several metrics and performance
measures that have been proposed for multi-object tracking
systems and evaluate their suitability to flag unwanted sys-
tem behavior or failures: The optimal sub-pattern assignment
metric (OSPA) [7] combines localization and cardinality de-
viations into a unified error per time step. It sparked sub-
sequent metric definitions, including the generalized OSPA
(GOSPA) [8] which further allows dividing the cardinality er-
ror into missed and false targets. The importance of error type
differentiability for the practical usability of metrics and a list
of the basic types of tracking errors are highlighted in [9]. The
popular CLEAR multiple object tracking (MOT) statistics [10]
were developed for the benchmarking of trackers and condense
different performance values into a small number of easily
comparable values. However, we believe that they are more
suitable for comparative analyses and are thus, not included
in our error source analysis. Our analysis is structured into
three levels of abstraction: target-level, time-step-level, and
track-level. These abstraction levels entail different strategies
to systematically approach the analysis and to focus the
evaluation effort.

The paper is organized as follows. First, we concisely de-
scribe the design of the implemented surveillance system in
Section II. Second, we present the evaluation methods and
measures in Section III and use them to systematically analyze
the system in Section IV. Finally, we summarize our results
and provide an outlook on future research in Section V.
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Fig. 1: Test field overview. The outer gantry piers indicated by stars are located at N48°14/29.796"” E11°38'21.083" (S50) and
N48°14/16.170” E11°38'14.251" (S40). The field of views of the cameras are colored. An exemplary camera frame is shown.

II. SYSTEM SETUP

In this section, we concisely present the setup of our system.
A 450 m long segment of the A9 Autobahn north of Munich
constitutes our region of interest (ROI). It is observed by
four cameras that are mounted on two separate gantries,
denoted by S40 and S50. An overview of the test field is
visualized in Fig. 1. The fundamental system design and its
processing blocks are depicted in Fig. 2. First, an object
detector condenses the image to its relevant content in parallel
pipelines allocated to each camera. The resulting detection lists
are then sequentially processed by the tracking module, which
fuses the data from all sensors and tracks all traffic objects
currently located within the ROI. Details of these steps are
outlined in the following.

A. Camera pipeline

Each camera captures raw images from the road scene which
are subsequently processed by the detector.

1) Detector: We employ a YOLOv4 network pretrained on
the MS COCO dataset [11] for detecting the vehicles in
the images. The network output consists of a list of object
detections, each comprises a bounding box in normalized
image coordinates given by (top, bottom, left, right) € [0, 1]*
as the absolute position and dimension of the axis-aligned
bounding box within the image. It further contains an object
classification o € {car, truck, bus, bike, pedestrian} and the
corresponding confidence ¢ € [0, 1] for each detection.
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2) Detection postprocessing: An accurate calibration of the
sensors is paramount for the precise positioning of the objects
and seamless fusion between the different sensors. Our frame
of reference is a dedicated HD map that allows us to determine
the exact pose of each camera. The resulting transformations
are then used to compute the objects’ location in Cartesian
world coordinates. In order to estimate the relative orientation
of the vehicle within each axis-aligned bounding box, we
take advantage of the known camera perspective. The lower
edge of the bounding box is assumed to be aligned with the
front or the back of the vehicle and we choose the lower
right (bottom, right) or left (bottom, left) bounding box corner
as reference coordinate r depending on the alignment of the
bounding box towards the vanishing point of the image. Then,
we project r from the camera-space to the road plane and
obtain the Cartesian coordinate (z,,y,), which in turn is
shifted towards the center of the vehicle by employing a
constant class-dependent vehicle width w and length ¢ (see
Fig. 3). Finally, we obtain the estimated center coordinate
z = (¢, ye) on road-level, which, together with the object’s
classification o and the corresponding classification confidence
¢, constitute a detection Z = (z,0,c¢). The final output of
each camera processing pipeline is a set of n, detections
z — {21, ..

A

B. Tracking module

The detection data streams are all processed and fused by
a single tracking module. The underlying principle is a cen-
tralized measurement-to-track fusion that, in principle, offers
optimal results since all information is available within the
processing node. Furthermore, the input scheduler ensures that
the measurements are sequentially processed in the order of
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Fig. 2: System setup consisting of one tracking module which is fed by the
output of the four parallel camera processing pipelines z; to z4. The final

system output is a set of object estimates y.

Fig. 3: Estimation of the object center
(red) using predefined car extents w, ¢ and
the projected reference point (yellow).



1) LMB prediction and update: We use a Labeled Multi-
Bernoulli (LMB) tracker [12] to process the detections pro-
vided by the cameras. In turn, the multi-object state is repre-
sented by an LMB set [13], in which each component is rep-
resented by an existence probability, a label, and a multimodal
probability density function (PDF) that encodes the knowledge
of the object state. We model the PDF with a Gaussian mixture
of the kinematic target state vector § = (x, y, vz, vy ), contain-
ing the location z, y and the Cartesian velocity v, v,. The tar-
get motion follows a constant velocity motion model [14]. The
standard deviation of the acceleration noise longitudinal and
lateral to the direction of the road are set to o}, = 10ms~2 and
012 = 1 ms™2. The survival probability Ps(z,y) € [0,0.99] of
the targets is dependent on their location, decreasing towards
the exit areas of the ROI. The LMB creates a first-order
moment approximation of all possible associations between
tracks and detections to calculate the posterior multi-object
state and thus, ensures robustness against association errors.
In particular, we determine the 10 most likely associations
using Murty’s algorithm [15]. The detection probability is set
to Pp = 0.95, the uniform clutter intensity is assumed to be
2% 10~% and we employ measurement uncertainties dependent
on the camera perspective.

2) Classification processing: The object classification is in-
corporated by adding a vector ¢ € RI®l ||c[; = 1 to each
track representing the confidence distributed over the classes.
The classification from the detection step (o, ¢) is encoded in
a vector c, € R|O|, where the confidence c is stored at the
vector component corresponding to the class o. The remaining
components are set to \(19\_f1' During the measurement update,
the classification is updated using the confidence vector of
the last time step c_; and a damping factor v = 0.95:

c=c,+7vy(c_1 —c,).

3) Track management: We use a measurement-driven birth
model with a position dependent birth probability Pp €
[0.01, 0.2] peaking at the ROI’s entry zone. Thus, observations
that could not be associated to existing tracks lead to the ini-
tialization of new tracks. Furthermore, we employ the standard
track cleanup methods of merging, pruning, and capping [12]
to ensure real-time capability.

4) Estimator: Tracks that feature an existence probability
greater than 0.5 are provided to the output and joined to a set
of estimates y. Their kinematic state is estimated by merging
the Gaussian mixture of the target state vector and contains the
position, Cartesian velocity, and classification as a maximum
likelihood estimate.

III. METRIC DEFINITIONS

In this section, we present the performance values and metrics
that are used for the system analysis. First, we introduce
general definitions and the matching mechanism. Then, we
define the evaluation measures categorized into target-level,
time-step-level, and track-level.

A. General definitions

1) Ground truth and estimated data: We assume that all data
is collected in a time interval with Np evaluation steps and
the ground truth data '*¥7 is given as a finite sequence of
target sets. More precisely, let I := {1,..., N} be the set
of all unique track IDs contained in the whole ground truth
dataset. A single target state at time step k£ with 1 < k < Nris
defined by its track ID 4 € I, its current position =¥ and object
classification of, aggregated to the vector ¥ = (zF, o).
Note that in the ground truth data, the object classification
is the same for all time steps 0; = o} = --- = o7, Let
x* be the set of ny targets which exist at time step k, i.e.,
k= {j";,f,,j;’;kk} where {o},... 0k } C I

The estimated data y'*V7 is defined similarly with its own
track ID set J := {1,...,M} and the target sets y* =
{y’;,f,...,g’ifn } where {A},..., A% } C J defines the set

of my, target IDs which exist at time step k.

2) Tracks: Let X = {X1,...,Xn} be the set of ground
truth tracks. Each track X; € X is assigned a finite track
state sequence 7, V" = (7}, ..., 7NT). For every time step k,
the track state is either empty or the current target state if it
exists [16]:

k_ {z}'}

T ]
(0 otherwise

a‘:f €’ (existent state),

¢ (nonexistent state).

From there, the time of birth w; and time of death v; of a
track X; are defined as

min
1<k N, 7540

max k.
1<k<Np,7F#0

wi = k and v; =
Putting everything together, a true track X; € X is described
by X; = (Til:NT,wi,yi). The same definitions also hold for
the set of estimated tracks Y.

B. Matching mechanism

In order to quantify the correctness of the system output, the
matching between the ground truth data X and the estimated
data Y needs to be established. We use the target-level
matching mechanism formulated for the OSPA metric [7].
The objective is to obtain an optimal matching between the
true target set * and the estimated target set y* for each time
step k. Let U* be the set of all subsets of {o},...,oF } x
{A},..., Ak} such that each state from the smaller of both
sets is assigned a unique element from the larger set. The
optimal matching set ** is then defined via

> da@h b

(o,N)€0

0" = arg min
oeU*

where d(®)(x,y) = min(d(z,y), c¢) with the Euclidean metric
d(-,-) and a cut-off distance parameter ¢ € R. In this work,
we choose p = 2 and ¢ = Tm. All assignments (o,\) €
6% with d)(x,,yx) = c are regarded as unassigned and the
assignment set is updated as

07 = (6% \ {(0.1)}) U {(.0). (0. M)},



In addition, all previously unassigned targets that are not
already covered in the optimal assignment set ** are added
to it with a O partner, i.e.,

0 = 0" U{(0,0): (0,-) € 0" FU{(0,0) = (- A) £ 0%}
Using the final matching set 6**, each track X; € X is

assigned a match sequence m N = (w},...,7N7T) with
components ) .
p -1 7F =0  (nonexistent),
= 0 (i,0) € 0*  (no match),
A (i, \) € 0F* (match).

Let Nmach,; denote the total number of actual matches where
the components of 771'1 Nt differ from 0 and —1. Similarly, let
Nexist,i denote the total number of steps where the track exists,
i.e, where the components of 7rz-1:N T are not —1.

Further, let IT; be the match set containing all the IDs of the
estimated states which are matched to the -th ground truth
track over the whole time:

I, = {nF 7l ¢ {-1,0}, k€ {1,...,Nz}}.

The same definitions may be applied in the transposed sense to
the estimated tracks Y; € Y resulting in the match sequence
w;:N " and the match set .

Furthermore, let the match start &; and the match end 7; of
track X; indicate the time step at which it is firstly and lastly
matched:

w; = max k.

kb {—1,0}

min k
kmkg{—1,0}

For estimated tracks Y}, one can similarly define the match
end as

and 7; =

v; = max k.
k. ¢{—1,0}

C. Target-based evaluation

1) Target categorization: Based on the results from the match-
ing process, a true target x¥ can be categorized as

. k_
cat(ah) = false negative m; = —1, 0
matched otherwise,

and an estimated target yf can be categorized as

false positive 1 = —1,
cat(yF) = { P vs 2

matched otherwise.

2) Delayed birth and death: Using the track lifetime bounded
by w; and v; and the match start w; and end 7;, true targets
x¥ categorized as false negative (1) can be further subdivided

into delayed birth w; < k < @;,
cat/(z}) = { delayed death 7; < k < v, 3)
other otherwise.

Likewise, estimated targets yf categorized as false positive (2)
can be further subdivided into

delayed death 7, < k <
cat'(y’»“) _ { claye cal VJ <S l/J7 (4)

other otherwise.

D. Time-step-based evaluation

1) GOSPA metric: The GOSPA metric [8], a generalization
of the widely used OSPA metric [7], quantifies the distance
between two sets of targets at each time step. Particularly, it
consolidates penalties for localization and cardinality errors
between a ground truth reference target set and an estimated
target set. As mentioned in [8], the parameter choice of o = 2
allows the metric to be decomposed into a separate error
for the localization inaccuracy of matched targets, a missed
detection error, and a false detection error. In this work, we
will therefore use v = 2. Localization errors enter into the
computation with the Euclidean distance d(-,-) between the
matched targets and cardinality errors are counted with the
factor ¢ /2, respectively. Let n*. be the number of missed
targets and mf, . the number of falsely estimated targets in
time step k. With these, the GOSPA distance is computed
with

c? .
d(mkvyk) = ( Z d(mf,yif )p + ) (nﬁliss + m?alse))
i,mh¢{—1,0}

P

©)
E. Track-based evaluation

1) Track localization accuracy: Given a track X; and its
match sequence 7ri1:N T, the Root Mean Square Error (RMSE)
of the complete trajectory is defined as

ok k¢ {—1,0} d(‘”k’yﬁk)g :
'L S .6

RMSE(X;) = ( ~
match

2) Track categorization: Using the basic types of tracking
errors defined in [9], a true track X; can be categorized into

false negative for |II;| = 0,

cat(X;) = fragmented for [II;| > 1 )
merged for II; = {j},|¥,| > 1,
unambiguous  otherwise,

and an estimated track Y} can be categorized into

false positive for |¥;| = 0,

cat(¥;) = merged for [¥;| > 1 ®)
fragmented  for U, = {i}, |II;| > 1,
unambiguous otherwise.

Furthermore, we define the track coverage as

N, match,

coverage(X;) = N
exist,i

€))

Let N, ; be the number of actual matches where the object
classification o? of the match yf;k = (y;C , of) is equal to the
true object classification o;, then ‘the class score is defined as
N, 0,1

class score(X;) = IS .
match,

(10)



TABLE I: Total number of true and estimated targets and the partitioning according to their categorization.

Total Matched False negative/missed False positive
True targets 8735 8070 (92.4 %) 665 -
Estimated targets 8199 8070 - 129

TABLE II: Breakdown of target-level cardinality errors due to track lifetime discrepancies.

Total Delayed birth Delayed death Other
Missed targets 665 136 (20.5 %) 174 (26.2 %) 355 (53.3%)
False positive targets 129 - 36 (27.9 %) 93 (72.1 %)

IV. SYSTEM EVALUATION

In this section, the performance of the real-world traffic
surveillance system is evaluated using the presented methods.
The objective is to estimate the currently achievable position-
ing accuracy of our system (Section IV-A) and to identify
systematic errors that degrade the results (Section IV-B). In the
process, we further evaluate the methods on their expediency.

A. Experiment I: Single-object localization accuracy

In the first experiment, a vehicle' equipped with a high pre-
cision GPS device? is used for generating a dataset of ground
truth position data to determine the positioning precision of
the multi-camera fusion system for this particular vehicle.
The dataset consists of 11 passes through the ROI and covers
all lanes in both driving directions. Traffic density was low,
which results in an ideal object separability. In turn, the results
of this experiment can be considered as a baseline for the
achievable position under optimal conditions. With the final
sequence of matched truth and system positions, the overall
track localization accuracy can be computed using (6). The
result amounts to an RMSE of 1.50m. It should be noted
that the calculated RMSE value does not reflect the universal
positioning accuracy of the system: There is a strong bias since
only a single passenger car is considered and the data was
captured in low traffic density and ideal weather conditions.
Nonetheless, the result yields an estimate of the currently
achievable system precision if systematic errors dependent
on the object classification and track association failures are
reduced to a minimum.

B. Experiment II: Multi-object tracking performance

In the main experiment, we focus on the performance during
complex multi-object scenarios and analyze potential system
biases. Our data basis is a 57s sequence which encompasses
multiple challenging situations due to high traffic density,
many lane changes, and variable object types. We manually la-
beled all vehicles in the sequence by estimating the true object

'BMW 1 Series (F40), dark color

2Emlid Reach RS2 using Real-Time Kinematic (RTK) correction provided
by the real-time positioning service SAPOS resulting in centimeter-level
precision.

location using the camera images. The resulting ground truth
data comprises 165 tracks, sampled at 5 Hz, i.e., Ny = 285
evaluation steps.

1) Target-based evaluation: First, the ground truth data is
matched to the output of our tracking system following the
target-based matching process described in Section III-B. We
start with analyzing the tracking result solely on the base
of the target matches. In Table I, all targets are categorized
according to the definitions in (1) and (2). For a deeper insight
into the false positives and false negatives, we categorize
the faults according to the delayed birth and death using
(3) and (4). We find that 46.7% of all missed targets are
due to missing coverage at the start and the end of the true
tracks. Similarly, 27.9% of all false positives are caused by
estimated tracks living on after the death of its corresponding
true track. Detailed results are listed in Table II. In conclusion,
the target-level analysis helped with characterizing the faulty
system behavior due to track lifetime discrepancies and has
thus proved to be valuable.

2) Time-step-based evaluation: We calculate the GOSPA met-
ric (5) and its components for all time steps of the annotated
sequence; see Fig. 4. First, we pursue the strategy to single
out and further analyze steps showing GOSPA peaks in order
to identify major systemic deficiencies. We start with the time
series GOSPA for the whole scene (Fig. 4a) and recognize
that it is difficult to discern steps with particularly striking
error characteristics. The issue is that many different and
distributed failure modes are combined into the metric which
complicates the identification of particular error sources. To
mitigate this effect, we follow the approach of restricting the
evaluation scope and removing all errors originating from the
already identified track lifetime discrepancies. We divide the
ROI into two independent evaluation regions, the northbound
and southbound lanes, and calculate separate GOSPA metrics
individually (Figs. 4c and 4e). Afterwards, we specifically
remove the delayed birth and death errors (Figs. 4b, 4d and 4f).
We then manually inspect several selected scenes in which
the GOSPA metric exhibits a peak that are highlighted by
black bars in Figs. 4d and 4f. It can be noted that in all of
these scenes there is discernible erroneous system behavior.
Particularly, there are always multiple simultaneous errors, for
example three occluded and therefore misdetected vehicles on
the northbound lanes at time step 18 s. For our application, it is
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Fig. 4: GOSPA metric and its components [m] plotted over time [s] for the entire ROI and separated by north and south lanes.
In the left column, birth and death delay errors are included and in the right column they are excluded. The black bars indicate

time steps of manually inspected scenes.
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Fig. 5: Distribution of the GOSPA metric and its components
[m] for the north and south lanes. Birth and death delay errors
are excluded. In Figs. S5c and 5d, the dashed line indicates the
mean value.

not ideal to focus the analysis on steps with superimposed er-
rors since severe errors might stay undetected when occurring
alone. In conclusion, the approach to analyze particular time
steps with large GOSPA values has not been the right way
to systematically identify the system’s characteristic failure
modes. In our analysis, the GOSPA peaks originated from the
combination of multiple simultaneous errors and not individual

severe errors. The applied restrictions on the evaluation scope
were not sufficient to mitigate this effect.

In another approach, we discard the temporal ordering of the
GOSPA metric and instead analyze the general distribution of
the metric’s values. The results from the analysis based on
the values of Figs. 4d and 4f are shown in Fig. 5. Here, we
can clearly observe that the GOSPA distances restricted to
the area of the south lanes concentrate at higher values than
those restricted to the north lanes. The same shift is visible
in the localization error. In addition, we see that targets are
more often missed on the north lanes and that false targets
occur more frequently on the south lanes. These are valuable
assessments indicating that the system is biased on the location
of the vehicles, particularly if they are on the lanes directed to
the north or the south. We argue that analyzing the distribution
characteristics of the GOSPA metric provides more insight
into system characteristics and biases than analyzing the time
series.

3) Track-based evaluation: Finally, the objective of the track-
level evaluation is to focus the analysis on tracks displaying
distinctively bad results in order to identify reoccurring error
patterns. To this end, we employ the track-based error catego-
rization (7) and (8) to identify particularly critical tracks. Fur-
ther, we calculate the relative track coverage (9) of all ground
truth tracks. We find that 87.9 % of all ground truth tracks are
unambiguously matched to a single estimated track and their
mean track coverage amounts to 94 %. On the other hand, the
remaining faulty tracks expectably exhibit considerably lower
track coverages. Detailed results are listed in Table III. We
expect a significant share of the false negative target errors to
be constituted by these faulty tracks showing lower coverage.
On the other hand, it is sensible to assume that the false



TABLE III: Total number of true and estimated tracks, the partitioning according to their track-based error categorization and

the relative coverage of the true tracks.

Total Unambiguous match  Fragmented Merged False negative False positive
True tracks 165 145 (87.9%) 17 2 1 -
Estimated tracks 184 145 25 7 - 7
True track coverage (mean) 0.91 0.94 0.71 0.89 0.00 -
8 (median)  0.98 0.98 0.69 0.89 0.00 -

TABLE IV: Breakdown of faulty tracks based on their main source of error determined by manual inspection.

Time-correlated Inter-camera

Total Match error Occlusion . s
detection errors association
Fragmented true tracks 17 4 12 1 0
Merged estimated tracks 7 4 3 0
False positive tracks 7 0 2 3 2

positive tracks contain a major part of all false positive target
errors. Thus, we conduct a manual data inspection while fo-
cusing on the these erroneous tracks which helped to recognize
several systematic error patterns. We conclude that in total 8
tracks were wrongly categorized as fragmented or merged
when larger localization errors caused mismatches between the
true and estimated tracks. For 17 of the manually inspected
tracks, the bad tracking result can be pinpointed to completely
or partly occluded objects. The observed occlusions cause not
only the fragmentation of 12 tracks, but also 3 track mergers.
On top of this, truncated bounding boxes due to only partially
visible objects result in 2 false positive tracks. This can be
explained since the calculation of the object position on street-
level fails in these situations. Furthermore, we observe that
other detection errors which persist over multiple time steps
cause in total 4 faulty tracks. For two false positive tracks,
the inter-camera measurement association fails which causes
the duplication of the tracks, most probably due to remaining
calibration inaccuracies. The one false negative ground truth
track is uncovered because it is born directly before the
sequence’s end. The results from this manual inspection are
summed up in Table IV.

Our method for computing the objects’ center positions
as presented in Section II-A2 is strongly influenced by the
classification of the objects since it employs class-dependent
constant object extents. Thus, we measure the influence of
the object classification on the localization accuracy quan-
tified with the track-based RMSE (6). In this analysis, we
only consider the 145 unambiguously matched ground-truth
tracks in order to minimize the influence of track association
inconsistencies on the localization error. First, we partition
the tracks based on their true classification and notice that
the track RMSE of cars concentrate at values below 0.5m,
while the track RMSE of trucks are generally spread out below
2.0m (see Fig. 6b). This is plausible since the larger extent of
trucks also imply potentially higher localization errors when
computing the center position. On the other hand, multiple
car tracks display an unstable object classification signified
by a low class score (see Fig. 6a). After dividing the RMSE

analysis of the car tracks based on high and low class scores,
we determine that nearly all of the low-accuracy car tracks
are simultaneously often misclassified. This effect can be
explained since the misclassification of an object causes the
inaccurate computation of its center position due to employing
unsuitable object extents.

The conducted track-based analysis helped in directing the
focus on major error sources. For this purpose, the straight-
forward categorization of tracks using their match sequence
proved to be very effective in highlighting critical tracks. In
turn, the further analysis of these tracks drew our attention to
several systemic deficiencies. Moreover, it helped to determine
that the localization accuracy of a track is biased on its
object classification, while especially misclassifications have
a deteriorating effect.
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Fig. 6: Class score (mean in red) and distribution of the
RMSE for all unambiguously matched ground truth tracks and
partitioned based on the object classification. The RMSE of
car tracks are further divided into high and low class scores.



V. CONCLUSION AND OUTLOOK

In this work, we analyzed the performance of our real-world
multi-camera surveillance system. We presented an estimate
on the currently achievable positioning accuracy and identified
failure modes and biases of the system. To this end, we
conducted analyses on target, time step, and track-level and
evaluated the strategies on their suitability to a systematic error
source analysis. We found that a deeper analysis of the target-
level errors is valuable to understand the characteristics of the
system such as track lifetime discrepancies. Furthermore, the
strategy to focus the analysis on time steps which show a peak
in the GOSPA metric turned out not to be the right approach
since it highlighted only simultaneous errors and no solitary
severe errors. This shortcoming might be leveraged if the
scope of the evaluation is further scaled down by conditioning
the GOSPA metric to situations, targets, or locations one
suspects to contain notable error characteristics. In addition,
we determined a distinct bias dependent on the location of
the objects by analyzing the distribution characteristics of the
GOSPA metric restricted to subareas of our ROI. We found
the distribution analysis more informative than the time series
GOSPA evaluation.

Analyzing the error sources on track-level was the most
expedient approach to direct the focus on reoccurring failure
patterns. Further, we determined that the localization accuracy
of the tracks is biased on the object classification. However,
in future analyses, the amount of evaluation data should be
extended to further enhance the validity of the results. The
error source analysis may be improved by using a track-
based matching that incorporates the track history or penalizes
switches [16], [17]. Another approach would be to implement
the matching by maximizing the detection and association suc-
cess [18]. This might reduce wrongly fragmented or merged
flagged tracks.

The analysis we conducted serves to improve the tracking
system deployed in Providentia++. In particular, we sys-
tematically identified the need for a more robust occlusion
handling as well as a handling of strongly correlated errors and
calibration inaccuracies. Our presented approach is general so
that other perception and tracking systems can benefit from
similar analyses.
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