
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

A Novel Approach for Solving Constrained
Optimization Problems with QAOA using

Encoders

Burak Mete

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

A Novel Approach for Solving Constrained
Optimization Problems with QAOA using

Encoders

Ein neuartiger Ansatz zur Lösung von
eingeschränkten Optimierungsproblemen

mit QAOA unter Verwendung von Encodern

Author: Burak Mete
Supervisor: Irene Lopez Gutierrez
Advisor: Prof. Dr. Christian Mendl
Submission Date: 15.05.2022

I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, 15.05.2022 Burak Mete

Abstract

The Quantum Approximate Optimization Algorithm (QAOA) [1] is a meta-heuristic
gate-model quantum algorithm, mainly used for solving combinatorial optimization
problems, such as Max-Cut, or the Travelling Salesman Problem. The main goal of
the algorithm is to find an upper bound to the ground state energy, using the cost
Hamiltonian, which is based on the objective function of the optimization problem.
Usually, the solutions to such an optimization problem are provided as a binary
string, therefore any computational basis state can be considered as one solution to the
optimization problem. In the algorithm, the application of cost Hamiltonian achieves
phase separation, in relation to the costs of each solution. The algorithm also includes
another Hamiltonian called the mixer, and it is defined as a Hermitian matrix that
does not commute with the cost Hamiltonian. The mixer Hamiltonian tries to mix the
probabilities of all possible solutions. The aim of applying such a mixer Hamiltonian is
to be able to explore the whole solution space and avoid potential local minima.

In recent work, Hadfield [2] showed that the role of mixer Hamiltonians can be
expanded when there are constraints involved in the optimization problem. Preparing
according to the hard constraints of a problem, the mixer is ensured, not only to
explore the whole solution space but to also restrict it according to the corresponding
constraints. However, preparing a mixer can be cumbersome, since it requires distinct
ansatz for different problems and constraints.

This paper proposes a different approach for solving such constrained optimization
problems. Instead of using a problem-specific mixer Hamiltonian, the model uses
an encoding scheme, that shrinks the search space into the feasible subspace. After
applying the cost Hamiltonian and the encoder in a cascaded manner, the aim is to
find an approximate solution to the optimization problem, that satisfies the constraints,
using the Travelling Salesman Problem as an example.

Therefore, the overall goal is to provide an optimization scheme for a constrained
optimization problem, along with comparing the convergence of the algorithm with
the state-of-art approaches.

iii

Contents

Abstract iii

1 Introduction 1

2 Theoretical Background 4
2.1 Quantum Computing . 4
2.2 Combinatorial Optimization Problems . 9
2.3 Solving Combinatorial Optimization Problems with Quantum Computing 11

2.3.1 The Quantum Approximate Optimization Algorithm (QAOA) . 13
2.3.1.1 Preparing Cost and Mixer Hamiltonians 14
2.3.1.2 Defining the Unitary Operators 15

2.3.2 Specific QAOA Models for Constraint Problems 19
2.4 Quantum Variational Algorithms . 22
2.5 Optimization . 23

3 Methodology 27
3.1 Travelling Salesman Problem . 27

3.1.1 Problem Formulation . 29
3.2 The Novel QAOA Ansatz with an Encoder 32

3.2.1 Encoder Structure . 38
3.3 Optimization . 42

4 Experimental Results 44
4.1 Training . 46
4.2 Model Parameters . 49

5 Conclusion 51

6 Discussion 54

List of Figures 56

List of Tables 58

iv

Contents

Bibliography 59

v

1 Introduction

Over the past few decades, there has been far-reaching research, dedicated to promising
quantum algorithms, to outperform their classical counterparts. Accompanying the
advances in quantum software, the progress in quantum hardware laid the foundations
for displaying the advantages of quantum software in the forthcoming years. The
concept of a quantum computer being able to outperform a classical computer on any
application problem, such that classical devices are unable to solve the problem in a
reasonable amount of time even with future improvements to classical software and
hardware, is called Quantum Supremacy.

There are several realizations of quantum computers with different approaches,
such as Gate-Model Quantum Computing [3, 4], or one of its alternatives, Adiabatic
Quantum computing [5]. Quantum Annealers, which follow the adiabatic process, have
been one of the early instances of physical implementations of a quantum computer,
implemented by D-Wave [6]. Using the D-Wave2X Quantum Processing Unit (QPU),
it was demonstrated that [7, 8] a quantum algorithm can outperform its classical
analogues, in various non-trivial optimization problems. Furthermore, in 2016, IBM
launched the first cloud-based quantum computer with public access, using the Gate-
Model approach [9], however the limits on the number of qubits and the computation
being prone to errors, have been the primary obstacles to implementing promising
quantum algorithms. More recently, Google’s Sycamore superconducting circuit has
demonstrated quantum supremacy, on a certain sampling problem [10].

Although it is not trivial to showcase that any quantum algorithm is capable of
beating the performance of its equivalent classical algorithms while maintaining a high
solution accuracy, several instances are promising candidates to do so, especially in
the Noisy Intermediate-Scale Quantum (NISQ) era. One of the auspicious examples
of such an algorithm is the Quantum Approximate Optimization Algorithm (QAOA).
QAOA is a meta-heuristic, gate-model variational quantum algorithm, that is mainly used
for solving combinatorial optimization problems. One of several advantages of QAOA
is that it works with a relatively small number of qubits while keeping the circuit
sufficiently shallow. Furthermore, it has a very high representative capability, since it
has a lot of use-case problems to tackle upon.

1

1 Introduction

There are several important aspects of preparing a successful QAOA ansatz. One
of the most eminent factors to consider is, to formulate a cost Hamiltonian and a mixer
Hamiltonian, in accordance with the problem structure, which is further discussed in
Section 2.3.1.1. Moreover, the selection of a classical optimization scheme is also another
crucial aspect of learning success. Since the objective function that the algorithm tries
to maximize or minimize over, could include a large number of local minimum and local
maximum, the optimization method should also be selected accordingly and carefully,
in order not to get stuck while trying to reach the global maxima/minima.

Constrained optimization problems, which are a subset of general combinatorial
optimization problems, pose even more difficulties since their optimal solutions lie in a
feasible subspace, which is a subset of the general solution space. There are classical
approaches implemented for solving various instances of constrained optimization
problems that also emerge frequently in real-life problems. However, for a large portion
of problems, the classical methods fail to provide an exact, or an approximate solution
in reasonable complexity.

Furthermore, even though there are several quantum algorithms that are dedicated
to solving constrained optimization problems, they often do not propose a general-
purpose ansatz that can be used for various problem structures, or that can scale
efficiently as the problem size grows. In order to remedy these problems, this thesis
proposes a novel QAOA ansatz interleaved with an encoder that is designated for
solving combinatorial optimization problems with hard constraints. The encoder circuit
presents a general-purpose solution by projecting the states onto the feasible subspace,
which guarantees that the output signifies a solution that satisfies the hard constraints,
while the optimization task then becomes to find the most optimal solution among
them. Thus, the overall goal of this work is to introduce a general-purpose ansatz for
solving constrained optimization problems, that incorporates a more efficient solution
that can also be conveniently applied for larger problem scales.

In the remaining chapters, the discussion is organized as follows. Chapter 2, gives
a theoretical background, on general concepts in quantum computing and classical
ways to solve combinatorial optimization problems, along with the QAOA process,
its practical uses, and how to formalize a QAOA ansatz depending on the problem
structure. Chapter 3 describes the problem statement of the Travelling Salesman
Problem (TSP) and proposes a novel approach for solving problems that are in the
same class. Chapter 4 presents the results of the ansatz and displays the comparison
between similar approaches in terms of performance and accuracy. Chapter 5 presents
the conclusions, along with final remarks on the algorithm. Finally, Chapter 6, gives a

2

1 Introduction

general overview of the problem statement and the methods that have been used, and
an analysis of how to further improve the precision and the efficiency of the method.

3

2 Theoretical Background

2.1 Quantum Computing

In this section, before going into detail about various solutions based on quantum
algorithms, the fundamentals of quantum computing are discussed, along with the
used notation in the following chapters.

A quantum wave function is a mathematical object that describes the quantum state of
a system. It is mostly represented by the Greek Letters psi (ψ) and phi (ϕ). Furthermore,
it can be used to describe different properties of a particle, depending on the context.
For instance, it can be used to describe a particle’s position in a position space, a
polarization of a photon, an energy level of an electron, or the spin of an elementary
particle, which is an intrinsic angular momentum. Moreover, The Hilbert space is a
vector space, that is also equipped with an inner product, that describes the distance
between two elements of that space. It is a generalization of the Euclidean space,
such that it can also be infinite-dimensional, and it is defined over the set of complex
numbers.

Whenever the quantum state of a system can only take up values that are a superpo-
sition of d independent and distinguishable states, this system is called a d-level system,
that lives on a d-dimensional Hilbert space, Hd. The superposition principle states that,
a d-level quantum state can be in a linear combination of possible basis states in such a
form,

|ψ⟩ = α0 |0⟩+ α1 |1⟩ · · ·+ αd |d⟩ , (2.1)

that each coefficient αi, represents the probability of that particle, collapsing into their
corresponding basis state |i⟩. The probability of measuring the state |i⟩ = |αi|2, such
that ∑d

i |αi|2 = 1, meaning that the sum of probabilities of measuring each basis state is
a valid probability distribution.

Qubits are the smallest information unit, that can be stored in a quantum processor,
that can be used to describe a state of a 2-level quantum system. Even though it
has 2 distinct states that it can take after being measured, in contrast to its classical
counterpart ’bits’, a qubit can be in any state that is a superposition of 0 and 1 states,

4

2 Theoretical Background

before such a measurement occurs. The more general term, qudit, is used to describe
the states in a general d-qubit quantum system.

In the upcoming chapters, Dirac (bra-ket) notation [11] is being used to describe
quantum systems and operations. A quantum state vector ψ is represented with a
coloumn vector ket

|ψ⟩ ,

and the bra vector shows its adjoint, or the conjugate transpose

⟨ψ| .

U is generally used for a unitary matrix. The symbol H appears frequently, and there
are several use cases, that differ according to the context. When the symbol H also
includes a hat, Ĥ describes a Hamiltonian operator, which is a Hermitian matrix. If it
appears in the context of a quantum gate in a circuit, it represents the Hadamard gate.
Sometimes, it is also used to represent the Hilbert Space, which is demonstrated as H

The |0⟩ and |1⟩ states are also known as the computational basis states, or the bases
in the Z-basis. They are the eigenvalues of the Pauli-Z operator, such that,

σz |0⟩ = 1 · |0⟩ |−⟩ = |0⟩ − |1⟩√
2

. (2.2)

The |+⟩ and |−⟩ states are the basis states in the X-basis, and they refer to the equal
superposition of the computational basis states with alternating phases, such that,

|+⟩ = |0⟩+ |1⟩√
2

|−⟩ = |0⟩ − |1⟩√
2

. (2.3)

One useful tool, to analyze and also visualize the state of a single qubit is called Bloch
sphere, which is shown in Figure 2.1.

One constantly mentioned operator set is called the Pauli Gates, which includes Pauli-
X, Pauli-Y, and Pauli-Z operators, which are both Unitary and Hermitian matrices.
They are commonly represented with a sigma symbol σ.

A subscript after an operator defines at which qubit line does that operator act upon.
For instance, the string Z1Z2X3X4 describes a system with 4 qubits, where Z gates act
on the first 2 qubits, and X gates act on the other 2. The string of different operators
represents the Kronecker Product of those operators. Similarly, quantum state vectors
that are demonstrated as a string, also illustrate a Kronecker product. For instance the
expressions

5

2 Theoretical Background

φ

θ

|+⟩

y⃗

|0⟩

|ψ⟩

Figure 2.1: Bloch Sphere and representation of a single state.

|01⟩ = |0⟩ |1⟩ = |0⟩ ⊗ |1⟩ ,

all represent the same quantum state. The inner product of two quantum states is being
shown as ⟨v|w⟩, and the outer product is |w⟩ ⟨v|.

Quantum computing, is essentially built upon making calculations regarding the
changes occurring in a quantum state [3]. There are different realizations of a quantum
computer, such as Gate-Model Quantum Computation, Adiabatic Quantum Computa-
tion, and Topological Quantum Computation [12]. Being one of the prevailing models,
Gate-Model Quantum Computing utilizes Quantum Logic Gates to manipulate and make
computations on quantum systems.

One of the strengths of the gate-model quantum computation is its ability to provide
a framework for simulating physical systems. The main objective of this task is to find
a solution to the question of how the final state of a system will evolve over time given
initial conditions. Furthermore, simulating quantum systems with a classical computer
is rather a non-trivial and inefficient task [3]. The key obstacle for a classical computer
while simulating a quantum system, is that the complexity of a quantum system grows
exponentially.

The dynamics of a quantum system over time is governed by the Schrödinger’s
Equation,

∂

∂t
ψ(x) =

[
− 1

2m
∂2

∂x2 + V(x)
]
ψ(x). (2.4)

The above equation utilizes continuous quantum wave function ψ(x) to represent a
position of a particle. In the context of quantum states that have a discrete number of

6

2 Theoretical Background

possible states (qudits), the same equation is being used as

iℏ d
dt

|ψ(t)⟩ = Ĥ |ψ(t)⟩ , (2.5)

where Ĥ is the Hamiltonian operator. Hamiltonian is a Hermitian operator, and operated
on a wave function, it describes the total energy of that particular quantum system. At
the same time, it governs the time evolution of a quantum wave function. The time
evolution is described by unitary maps, that have the form,

|ψ(t)⟩ = e−iĤt/ℏ |ψ(0)⟩ = U(t) |ψ(0)⟩ . (2.6)

Therefore, a unitary map (similarly, unitary gate, unitary transformation), which is a
bounded linear transformation on Hilbert space, is essential to explain how a quantum
state evolves in time. Therefore, the quantum gates in the gate-model computation
are implemented as unitary transformations. A quantum circuit is reversible since an
inverse of a unitary always exists and it is equal to its adjoint operator U†.

Formulated first by Feynman [13], figuring out how Hamiltonian acts on a system,
is called the Hamiltonian Simulation problem, and it is an essential problem in various
domains in quantum physics and quantum chemistry. Since a Hamiltonian is a 2n × 2n

Hermitian matrix, exponentiating that matrix is exponentially costly with respect to
the number of qubits in the system. Therefore, as the system size grows, finding the
exact time evolution becomes an intractable task. However, there are different sets of
Hamiltonians, in which calculating the exact time evolution is less costly. One example
of that is, Hamiltonians that are diagonal in some basis |u⟩, that can be generalized as

Ĥ = ∑
i

αi |i⟩ ⟨i| . (2.7)

The matrix exponential of a matrix is generally in the form

eH =
∞

∑
k=0

1
k!

Hk. (2.8)

However, the exponential is trivial to compute while working with the diagonal
matrices, such that,

Ĥ = ∑
i

αi |i⟩ ⟨i| (2.9)

eH = ∑
i

eαi |i⟩ ⟨i| . (2.10)

7

2 Theoretical Background

Similarly, if A is a diagonalizable matrix, then the exponential is

A = UDU−1

eA = UeDU−1.

Furthermore, the commutation relation is an important property that also utilizes
diagonalization. The Commutator between two operators A and B is defined as,

[A, B] = −[B, A] = AB − BA. (2.11)

If [A, B] = 0, then AB = BA, and it can be said that the matrices A and B commute.
In the context of unitary transformations, two operators can be applied to a system
interchangeably (either applying A first, then B, or vice versa), if they commute, and the
resulting quantum state will be the same. Another significant subset of Hamiltonians is
k-local Hamiltonians, where there are a set of different operators Hj that compose the
overall Hamiltonian H, such that each component acts non-trivially only on at most
k-qubits of the system, where k < n. Therefore, the summation of those components is
equal to

Ĥ =
m

∑
j=1

Hj. (2.12)

Such Hamiltonians that have the form of Hj are called local Hamiltonians while finding
its simulation is called the Local Hamiltonian Simulation.

If each pair of individual operators Hj and Hi that act on k-qubits, commute among
themselves, then the simulation becomes easier, due to the fact that the exponential of
each local term can also be computed separately. Equation 2.13 demonstrates such a
calculation, and it only holds for the cases where each pair of the local terms in the
summation commute.

e−iĤt = e−i(∑m
j=1 Hj)t = e−iH1te−iH2t . . . e−iHmt (2.13)

However, it is not always the case, that the terms in the summation commute
independently. One simple example can be given as H = σx + σz, since σx and σz anti-
commute In these settings, since it is intractable to find the exact unitary transform that
corresponds to a Hamiltonian and a time parameter t, various approximation algorithms
can be employed, in order to find a unitary map Ua, such that ||U − e−iHt| < ϵ|, where
e−iHt describes the exact time evolution, ||.|| is the spectral norm and ϵ is a hyper-
parameter that describes the maximum simulation error. There are several algorithms
to tackle this problem. 3 of these algorithms and their gate and query complexities are
listed in Table 2.1.

8

2 Theoretical Background

Algorithm Gate Complexity Query Complexity

Taylor Series O
(

tlog2(t
ϵ)

loglog t
ϵ

)
O
(

d2||H||max log d2 ||H||max
ϵ

loglog d2 ||H||max
ϵ

)
Trotter-Suzuki O

(
t2
√

ϵ

)
O
(

d3t
(dt

ϵ

) 1
2 k
)

Quantum Random Walk O
(

t√
ϵ

)
O
(

d2||H||max
t√
ϵ

)
Table 2.1: Gate and Query complexities of different Hamiltonian Simulation methods

[14, 15]

One approximate algorithm for Hamiltonian Simulation is the Trotter-Suzuki Decom-
position (also known as Trotterization or Product Formulas). Trotter-Suzuki Decompo-
sition is the process of simulating each term that appears in the sum-of-terms of the
Hamiltonian solely for a small portion of time [16]. Suppose that a Hamiltonian has
the form H = ∑i Hi, then the exact unitary transformation is equal to U(t) = e−i(∑i Hi)t.
The approximation is done as

U(t) ≈
(

e−iH1t/r . . . e−iHnt/r
)r

, (2.14)

where r describes the number of time steps of the simulation.

2.2 Combinatorial Optimization Problems

Combinatorial optimization problems, that arise in many fields such as computer vision,
communications network design, database queries, AI reasoning, or computational
biology [17], is a sub-field of mathematical optimization. Many different research areas
in operations research, computer sciences, and mathematics have been working on
the theory and better performing algorithms for solving combinatorial optimization
problems. One possible way to tackle such problems is called Linear Programming (LP),
and they perform in polynomial time for a small subset of combinatorial optimiza-
tion problems, called LP problems. However, this set does not generalize over other
combinatorial optimization problems, which can also be NP-Hard or NP-Complete.
For a general NP-Complete problem, there is also a reasonable amount of research,
dedicated to finding approximate solutions in polynomial time, such that, the final output
is relatively close to the global optimum. Another obstacle in solving combinatorial
optimization problems is, that the problem setting is almost always non-convex there-
fore there might be local minima, where the optimization algorithm might get stuck,
instead of constantly improving [18, 19].

9

2 Theoretical Background

By definition, combinatorial optimization problems, are specific types of optimization
problems where the goal is to find the optimal solution that is in a finite set, where the
optimality of a solution is decided by an objective function. Then, the optimization over
that finite is done via either maximizing, or minimizing that objective function, which is
also commonly known as the cost function, or the loss function. The binary combinatorial
optimization problems are a subset of combinatorial optimization problems, where
each discrete variable can take up to 2 distinct values. Even a deeper subset, called the
Quadratic Unconstrained Binary Optimization (QUBO), which is an NP-hard problem,
has been thoroughly investigated in the quantum computing field [20], due to its
natural close connection with the Ising model, which can be seen in Equation 2.15,
and it’s suitableness to be solved through Quantum Annealars (QA) using Adiabatic
Quantum Computing (AQC) approach [21].

H(σ) = − ∑
⟨i,j⟩

Ji,jσiσj − µ ∑
i

hiσi (2.15)

Moreover, various well-known problems in computational theory, such as Max-Cut,
Graph Coloring, Graph Partitioning, or the Travelling Salesman Problem(TSP) have
been formulated as QUBO problems [22].

As a general setting of a combinatorial optimization problem, the solution space is
the set of n-bit binary strings, the cost function maps n-bit binary strings into a real
number and the structure of the optimization routine is given as

min. C(x)

s.t. x ∈ S,

where S refers to the solution space, or the domain of the problem, x is a random
discrete variable, C : F −→ R is the cost function, and F ⊆ S.denotes the feasible
subspace, especially defined for the combinatorial optimization problems with constraints.
Sometimes, it is also useful to think of every violation of cost function, as a violation of
soft constraints, which does not necessarily have to be fulfilled, but adds a penalty term
whenever they are not satisfied by an example solution. Hence, the hard constraints,
refers to the clauses of the problem, which must be satisfied.

General cost functions of combinatorial optimization problems have the form of

C(x) = ∑
(N,Ñ)

h(N,Ñ) ∏
i∈N

xi ∏
j∈Ñ

(1 − xj) , (2.16)

where N and Ñ are subsets of the solution space. An exemplary cost function which is
formulated as,

C(x) = ∑
⟨i,j⟩∈S′

hi,j xi, (1 − xj) = ∑
⟨i,j⟩∈S′

−hi,j (xi, xj) , (2.17)

10

2 Theoretical Background

can be used to describe the problem, where two neighbouring members of the same
set S′ are tried to be assigned differently. For instance, the cost function in Equation
2.17, can be utilized to formulate the Maximum-Cut problem, where the aim is to find
two cuts in a connected graph, such that the number of edges between two cuts are
maximized. This formulation, has a very close connection with a simplified version of
the Classical Ising Model that is shown in Equation 2.15. The representative difference
between those two equations, is that in the objective function, the discrete random
variables refer to an assignment value, whereas in the Ising Model, they refer to a spin
value along the z-axis.

Following its similarity to the Classical Ising Model, a cost function, that is derived
from the general form in Equation 2.17, can also be mapped to a Hamiltonian, that
encapsulates all the soft constraints as different interactions occurring in the system.
That Hamiltonian can be used as a baseline for the learning criteria to be used in the
Quantum Algorithm later on, which is discussed in detail in the following Section
2.3. Moreover, several Hamiltonian formulations for different cost functions are also
discussed in Section 2.3.1.1. Furthermore, in this mapping, the spin-z values that
show up in the Hamiltonian formulation as a discrete random variable, can also be
thought of as assignments of eigenvalues of Pauli Z. The Pauli-Z operator is a diagonal
operator, that has the eigenvalues −1 and 1. Since the Pauli-Z is a diagonal matrix,
any tensor product of Pauli-Z gates will also be diagonal in the computational basis
states. Therefore, finally, the cost function can be converted as a Hamiltonian, which is
diagonal in the computational basis states.

2.3 Solving Combinatorial Optimization Problems with
Quantum Computing

There are several ways to implement a solution for combinatorial optimization problems
in the setting of quantum computing. One of the most common approaches is to
formulate the objective function of the problem as a Hamiltonian operator and try to
find the highest energy eigenstate of the Hamiltonian, which is going to encode the
configuration that is an approximate solution for the optimization problem. Therefore,
even though every energy eigenstate of the Hamiltonian is a valid solution to the
optimization problem, finding the highest energy eigenstate is going to be the aim of
the quantum algorithm.

As explained in Section 2.1, Adiabatic Quantum Computation is one of the methods
for doing quantum computations, and it has a very close relation with the QAOA.
Suppose that a Hamiltonian H0 is given that is acting on n number of qubits, and the

11

2 Theoretical Background

quantum system |ψ0⟩ that consists of those n qubits, is a ground state of the Hamiltonian
H0. Then, the Hamiltonian is gradually transformed into some other Hamiltonian H f ,
whose ground state is

∣∣ψ f
〉
. The transform can be given as a convex combination of H0

and H f , such as:
Ht = (1 − t)H0 + tH f (2.18)

where Ht is a time-dependent Hamiltonian that mixes two Hamiltonians H0 and
H f . The Adiabatic Theorem, states that doing the transformation slow enough achieves
successful tracking of the instantaneous ground state. Therefore, starting from a known
ground state of the Hamiltonian H0, by doing a transformation that is sufficiently slow,
the system can end up in the ground state of H f . Therefore, there is a close relation
between the Adiabatic Quantum Computing and QAOA, since while trying to find
the optimal solution for a combinatorial optimization problem, the goal is to find the
ground state of the Hamiltonian, which encapsulates the problem structure. However,
there is a limit T on how "slow" the transformation should be:

T =
1

mintg(t)2 (2.19)

where the function g gives the gap between the two lowest energy eigenvalues of the
Hamiltonian H f . Therefore, if the energy gap between the two lowest eigenstates is
too small, then the speed limit becomes too restrictive and it prohibits achieving an
exponential speedup while trying to find the desired solution, even for trivial problems
[23, 24]. Since in most combinatorial optimization problems, the costs between feasible
solutions might be too small, AQC is not always the ideal way to solve these kinds of
problems. In order to overcome the constraint on the speed limit, Quantum Annealers
(QA) has been used to tackle these problems [25, 26], however, it has also drawbacks,
since the optimization can get stuck on a local-minima while searching for a solution.
Also, similar to the principles in Adiabatic Computation, the problem Hamiltonian
has to be a gapped Hamiltonian. The term gapped Hamiltonian, can be summarized as a
Hamiltonian in an infinitely large Hilbert Space, that has a finite and non-zero energy
gap between its ground state and its first excited state.

The Quantum Approximate Optimization Algorithm (QAOA), proposed by Farhi
[1], is a meta-heuristic gate-model quantum algorithm. It is a well-studied algorithm,
mainly used for solving such combinatorial optimization problems. It is also a variational
method, meaning that the goal of the algorithm is to find the set of parameters of
certain gates in the circuit, that either maximize or minimize the objective function.

One advantage of QAOA is, that they have a very shallow architecture with a trivial
form, mainly consisting of a switching mechanism between the cost function based

12

2 Theoretical Background

operators and the mixer operators. Since it requires only a low number of qubits, and
unitaries that most of them have similar forms, QAOA is thought of as one of the best
algorithms for noisy intermediate-scale quantum (NISQ) computation, which can also
prove the quantum supremacy over its classical equivalent counterparts. Another benefit
of using QAOA is that since it is a gate-model-based approach, contrary to the AQO, it
can also work with gapless Hamiltonians.

2.3.1 The Quantum Approximate Optimization Algorithm (QAOA)

There are many interesting real-world problems that can be formulated as combinatorial
optimization problems. Given a classical objective function

C(z) : {+1,−1}N −→ R≥0 (2.20)

of a problem with n binary variables. Examples for such a binary variable can be given
as the assignment of a binary value for each variable that appears in a clause, for the
3-SAT problem.

The full set of n-bit strings denote the search space. Furthermore, any n-bit string
assignment, that also satisfies all the hard constraints of a problem, can be considered as
the feasible solution, while the set that only includes such solutions, is called the feasible
subspace of the solution space f n-bit strings that also satisfy all the hard constraints are
called the feasible space.

As opposed to the exact optimization problem, where the goal is to find the solution
that either maximizes or minimizes the objective function, in an r-approximate optimiza-
tion problem, the goal is to find the solution, within a certain approximation ratio r.
Therefore, even though getting the most optimal solution is not certain, it is guaranteed
to find the solution which at least is a factor of r of the most optimal assignment, such
that:

C(z)
Cmax

≥ r. (2.21)

The algorithm can be classified as an r-optimization problem, if any instance of the
problem (same objective function definition with alternating values) yields a solution
that is at least a factor of r of the optimal solution. Additionally, following the structure
of the Adiabatic Theorem, it is proven that the QAOA is able to capture the most
optimal solution with the correct setting [1], which is going to be explained later in the
Section 2.3.1.1.

Therefore, QAOA can be thought of as a Gate-Model implementation for approxi-
mating the adiabatic pathway. The way to achieve that is by preparing two Hamiltonians,

13

2 Theoretical Background

called the mixer Hamiltonian and the cost Hamiltonian (Also called the problem Hamilto-
nian). Starting in the ground state of the mixer Hamiltonian, which has a very simple
form so that the ground state of it is easy to prepare, the aim is to gradually acquire the
ground state of the cost Hamiltonian by following an approximation of the adiabatic
pathway. Similar to AQC, in QAOA, the transition happens gradually, by Trotterization
(see Section 2.1). Having the same transition with Equation 2.18, the Trotterization
breaks the time evolution of the Hamiltonian into discrete chunks, with parameters
β and γ, and by alternating application of the mixer and the cost Hamiltonians with
p number of different iterations, the approximation for the ground state of the cost
Hamiltonian is finally achieved. In contrast to the QA approach, this method also
includes a classical optimization, for finding the parameters β and γ in the unitaries.
The Trotterization process in QAOA is given in Equation 2.22∣∣∣ψ−→

β ,−→γ

〉
= e−iγp HM e−iβp HC e−iγ1 HM e−iβ1 HC |ψHM⟩ (2.22)

where |ψHM⟩ stands for the ground state of the mixer Hamiltonian.

2.3.1.1 Preparing Cost and Mixer Hamiltonians

The very first step for a QAOA is to convert the classical problem structure into the
Quantum setting. Therefore, it is required to formalize the objective function, as a
Hamiltonian operator, which contains a ground state that is an optimal solution for the
problem. In the state vector representation of that ground state wave function, every
qubit corresponds to a binary variable.

Consider an objective function that has the form C(x1, x2 . . . xn). The cost Hamiltonian
can be constructed by substituting each binary variable with a quantum spin σz

i . The
Pauli-Z operator σz has an eigenvector |0⟩ with the eigenvalue 1, and an eigenvector
|1⟩ with the eigenvalue −1. Therefore, since such a local Hamiltonian HC contains only
local Hamiltonians that include a Pauli-Z that individually commute among themselves
the HC is considered to be a classical Hamiltonian. Moreover, the eigenspace of HC
consists of computational basis states. Hence, the eigenvectors |x⟩ of HC correspond
to a solution, with the "energy", or the cost term is given as the eigenvalue of that
eigenvector, which makes every computational basis state a solution.

The design of the cost Hamiltonian varies as the problem structure changes. There
are several propositions [27, 28] for the mappings from varying Boolean functions into
cost Hamiltonians, which is also shown in Table 2.2.

Having a cost Hamiltonian, dedicated to encapsulating the objective function, results
in separation of phases, according to the cost attached to the specific basis states. For
instance, suppose a state vector that is initially in an equal superposition. After being

14

2 Theoretical Background

f (x) HC

x 1
2 I − Z

x̃ 1
2 I + Z

∧n
j=1 xj ∏n

j=1
1
2 (I − Zj)

∨n
j=1 xj I − ∏n

j=1
1
2 (I + Zj)

Table 2.2: Exemplary mappings from Boolean clauses into cost Hamiltonians [27] [28]

applied to the cost function based Hamiltonian, the states that correspond to a solution
with a high cost get bigger phases and therefore have a bigger probability of being
measured, with respect to the cost Hamiltonian, since the probability of measuring the
state is attached with its coefficient |ax|2.

QAOA also makes use of the mixer Hamiltonians while solving combinatorial op-
timization problems. The mixer Hamiltonian resembles the driver Hamiltonian in the
Quantum Annealing setting, in which the system is initialized as its ground state,
while gradually trying to acquire the ground state of a problem Hamiltonian. There,
driver Hamiltonian is specifically selected such that it does not commute with the
problem Hamiltonian. Similarly, the mixer Hamiltonian in QAOA is also selected as a
Hermitian matrix which does not commute with the cost Hamiltonian, therefore it does
not converse the energies of HC. The mixer Hamiltonian is also required because simply
applying HC can lead the algorithm to become stuck in the same state throughout the
algorithm run-time. That is because, after acquiring a state which is an eigenstate of
HC, such that, HC |ψ(θ)⟩ = E |ψ(θ)⟩, the system will remain in the same state |ψ(θ)⟩,
after applying the time evolution e−iαHC . The overall goal of the mixer Hamiltonian can
be summarized as amplitude mixing for the computational basis states.

As it is explained later in Section 2.3.1.2, the unitaries, which happen to be the time
evolutions of HC and HM with a different set of parameters, achieve phase separation
interleaved with amplitude mixing, that eventually leads to a solution.

2.3.1.2 Defining the Unitary Operators

As it was explained in Section 2.1, the Hamiltonian is the operator that yields the total
energy that the system has. Moreover, the application of a Hamiltonian on a quantum
system with a certain period of time is described by a unitary, which is given from the
time evolution of the Hamiltonian. The equation that describes the time evolution of

15

2 Theoretical Background

a quantum system over a specified time t, is called the The time-dependent Schrödinger
Equation. The Time-dependent Schrödinger Equation is given as

iℏ d
dt

|ψ(t)⟩ = Ĥ |ψ(t)⟩ (2.23)

Utilizing the Schrödinger’s Equation, the time dependent unitary transformations
(or, similarly the time evolution operators) have the form of,

U(t) = e−iĤt. (2.24)

such that,
|ψ(t)⟩ = U(t) |ψ(0)⟩ = e−iĤt |ψ(0)⟩ (2.25)

As discussed in Section 2.3.1, the overall goal of the algorithm is to find the maximum
energy eigenvector of the cost Hamiltonian using a classical optimization routine, which
can be formulated as

max
β,γ

〈
ψ−→

β ,−→γ

∣∣∣ HC

∣∣∣ψ−→
β ,−→γ

〉
. (2.26)

.
Making a close connection to the Adiabatic Method, in QAOA, the final ground

state is achieved by applying the cost Hamiltonian, in an alternating fashion with the
mixer Hamiltonian several times in a cascading manner. Even though the number of
alternating iterations increases the depth of the circuit, it is also shown to be increasing
the approximation accuracy [1]. The number of iterations parameter is p, is an hyper-
parameter, which can also be optimized depending on the problem structure. Therefore
the applications of the Hamiltonians in a fixed period of time can be represented as
unitary transformations, such as

HC
β−→ e−iHC β , HM

γ−→ e−iHMγ. (2.27)

Thus, the backbone of the QAOA ansatz is the alternating application of param-
eterized unitary transformations Up

M(γ)Up
C(β), while p represents the index of the

unitaries.
Creating the unitary transformations via time evolution of the mixer or the cost

Hamiltonians are rather trivial, since the Hamiltonians are either diagonal in the
computational basis, or the individual terms in the Hamiltonian’s commute among
themselves. Therefore, it is possible to create the unitary from local gates. For instance,
if the Hamiltonian has the form HCa = Z1Z2, then the unitary transform becomes
e−iHCa β = e−iZ1Z2β which equals to the Ising ZZ Coupling Gate, parameterized with β.
Different examples of the Hamiltonian simulation are illustrated in Figure 2.2.

16

2 Theoretical Background

Rz(θ/2)

U = e−iσz
0 σz

1 σz
2 θ

H H

H H

H Rz(θ/2) H

U = e−iσx
0 σx

1 σx
2 θ

H H

Rx(θ/2) Rx(θ/2)†

Rz(θ/2)

U = e−iσx
0 σ

y
1 σz

2 θ

Figure 2.2: Circuit representation of the exponential of the Hamiltonians in a 3 qubit
setting

In this figure, the Hamiltonians are expressed as Pauli Strings, or similarly as linear
combinations of tensor products of Pauli matrices. The final form of the unitaries
is called the Ising Coupling Gates, which can be decomposed further into CNOTs,
Hadamard gates, and single qubit rotation gates. The circuits on the figure display
a 3 qubit version, which can also be generalized to n qubits. Whenever the unitary
involves a σx or σy, the application of Hadamard gate or the X Rotation gate is crucial,
which serves the purpose of a basis change. After the parity is calculated on the last

17

2 Theoretical Background

Figure 2.3: QAOA Ansatz with l iterations, equipped with a classical optimization

qubit via the application of a series of CNOTs, a single-qubit phase rotation is applied,
depending on the time variable of the Hamiltonian. Finally, the reverse operation of
parity calculation and the change of basis is applied.

Finally, commonly referred to as QAOA energy,

Ep(
−→
β ,−→γ) =

〈
ψ−→

β ,−→γ

∣∣∣ HC

∣∣∣ψ−→
β ,−→γ

〉
can be acquired at the end of circuit iteration either via measuring repeatedly and
sampling from them, or classically [29].

To sum up, the QAOA pipeline, which is also visualized at the Figure 2.3 can be
summarized as follows:

1. Preparing the initial state |ψ⟩

2. Initializing 2p parameters for β and γ

3. Preparing the cost Hamiltonian and the mixer Hamiltonian depending on the
problem structure

4. Finding the time evolutions of the cost and the mixer Hamiltonians Up
C(β)Up

M(γ)

5. Run the circuit, which has the form of Up
M(β)Up

C(γ) . . . U1
M(β)U1

C(γ)

6. Sample S number of final states from the circuit or calculate the expectation value〈
ψ−→

β ,−→γ

∣∣∣ HC

∣∣∣ψ−→
β ,−→γ

〉

18

2 Theoretical Background

7. If sampling is used, then provide a classical loss function, depending on the
problem structure

8. Optimize over the parameters β and γ with a suitable method

9. Iterate until convergence

Furthermore, it is also proven that [1] while p −→ ∞, the QAOA gives the most
optimal result as a solution, instead of an approximation.

2.3.2 Specific QAOA Models for Constraint Problems

Along with the default QAOA ansatz, there are also other methods dedicated to solving
different types of problems with an alternating optimization scheme. In the default
setting of the QAOA, as it is discussed in the Sections 2.3.1.1 and 2.3.1.2, the role of the
cost Hamiltonian is to separate the phases of the computational basis states such that

HC |x⟩ = f (x) |x⟩ , (2.28)

where x is a computational basis state and f is the cost function. Therefore, the family
of phase separation unitaries have the form of

∑
x

e−i f (x)β |x⟩ ⟨x| . (2.29)

On the contrary, mixer Hamiltonians have the role of mixing the probabilities of
measuring each computational basis state, which helps to explore the whole solution
space.

However, with that general approach, it is not straightforward, how the QAOA ansatz
can find a solution for a combinatorial optimization problem with hard constraints. As
it was discussed in the Section 2.2, while soft constraints define how optimal is the
setting for some solution s, hard constraints decide the validity of a solution, which
means if some constraints are violated in a solution s, that means it is not a feasible
solution, therefore it must be discarded.

Two similar classical approaches for solving optimization problems with constraints
are called the Augmented Lagrangian Method [30–32] and the Penalty Method [33, 34].
In both of these methods, the goal is to divide the problem into multiple unconstrained
sub-problems, while the constraints are added as a penalty term λ in the original
objective function. Therefore, these methods can be considered as a relaxation of a

19

2 Theoretical Background

constraint problem, where the solution is only an approximation to the global optimum.
In the case of λ = 0, the solution would disregard the constraints, and for the case
λ = ∞, the solution will be determined, solely based on constraints and not the
objective function itself. Therefore, the choice of a hyper-parameter penalty term is
crucial in these types of methods.

Therefore, similar to its classical counterpart, in quantum optimization, one approach
for solving constrained optimization problems is to specify a penalty term in the
objective function, corresponding to each constraint. In such approaches [35, 36], the
cost Hamiltonian is reformulated, such that it also encapsulates the constraints with a
penalty coefficient. The new cost Hamiltonian then is defined as

Hpen
C = HC + ∑

i
λiĈi, (2.30)

where Ĉ is defined as the constraint operator.
However, penalizing the cost Hamiltonian is not a very efficient technique for solving

constrained optimization problems [37, 38], due to the fact that the penalty terms
complicate the cost Hamiltonian by adding multi-level interactions, the realization of
such methods on physical hardware becomes cumbersome [39].

In order to address these issues, Hen, Spedalieri and Sarandy [37, 38] proposed an
approach in the context of Quantum Annealing, by embodying the hard constraints into
the mixer Hamiltonian, instead of having a trivial mixer that has the same structure
across different problems. The main justification for that is, that by using general
purpose mixers, the search occurs over the full solution space rather than a restricted
feasible space. On the contrary, in this method, mixers have the responsibility for
both restricting the search space to a feasible subspace, and also providing a mixing
mechanism for exploring that feasible space, starting from any state which is in the
feasible subspace.

In that work, it is proposed that a Hamiltonian HA that embodies the hard constraints
can be prepared that has the ground subspace that spans the feasible subspace. Similar
to the default approach, HA must not commute with the cost Hamiltonian HC such
that, [HA, HC] ̸= 0 and must commute with the mixer Hamiltonian HM, therefore
[HA, HM] = 0. In addition to that, it should also be ensured that HM is generalized
enough to explore the entire feasible subspace.

More recently, Hadfield, Wang, and Rieffel [2] explored this approach even beyond
the Quantum Annealing context. Moreover, the authors also further investigate the

20

2 Theoretical Background

application of the method on several different combinatorial optimization problems
with hard constraints, such as Graph Coloring Problem, Travelling Salesman Problem
(TSP), and Single Machine Scheduling Problem, where the first one is NP-Complete
and the last two are NP-Hard problems.

One exemplary problem that they have proposed a solution for, is the Travelling
Salesman Problem, with the constraints,

n

∑
j=1

xvj = 1 ∀v ∈ V, (2.31)

∑
v∈V

xvj = 1 ∀j ∈ E′, (2.32)

stating that each city must be visited once, and at each step of the Hamiltonian cycle,
only one city must be visited. The proposed mixer Hamiltonians have the form

Buv =
n

∏
i=1

(XujXvj + YujYvj), (2.33)

HM = ∑
u,v∈E

Buv (2.34)

where u and v are different vertices that share an edge. The proposed mixer structure is
also known as the XY-Model on a ring, which is a specified version of the Heisenberg
spin model. HM, and each Buv term that constructs the HM, commutes with a general
cost Hamiltonian which is diagonal in the computational basis. The proposed mixer
structure assures, that the state remains in the feasible subspace while creating a
mechanism to explore that fully.

The problem formulation for the Travelling Salesman Problem is explained in more
detail in Section 3.1.1, along with the proposal of the novel ansatz for solving combi-
natorial optimization problems, without having to formulate problem-specific mixer
Hamiltonians.

In the following paper, Hadfield et.al. [40], also propose different design criteria for
preparing mixer Hamiltonians, and naturally, mixer Unitaries for a variety of constraint
optimization problems.

Even though, this approach necessitates providing ad-hoc mixer Hamiltonians accord-
ing to the problem structure which can be non-trivial for various examples, it generates
a framework for solving the optimization problems with varying hard constraints.

21

2 Theoretical Background

Another approach [41] designed specifically for solving the TSP problem, uses phase
estimation and quantum search together in order to find a global optimum. In that
work, the edge weights between two vertices are encoded as phases, such that the
eigenstates of the unitaries in the ansatz provides various phase configurations that
correspond to a route. Their experiments involve 4-vertex connected graphs with
alternating edge weights.

2.4 Quantum Variational Algorithms

Quantum Variational Algorithms (Methods) is another branch of quantum computing,
that can also be classified as a subset of Quantum Machine Learning (QML), in which
the researchers are trying to achieve quantum advantage on NISQ devices. In the setting
of gate-model quantum computation, variational methods are defined as, learning the
parameters θ that act on some set of gates in the circuit, such that, the objective function
f is minimized. The ansatz includes gates that can be parameterized or not.

The optimization cycle begins with the initialization of the quantum state, before
doing any manipulation on the system. The initial state can be a trivial state that is
easy to prepare, such as a computational basis state. Furthermore, the initial state can
also be formed, such that it encodes the information of the training inputs. If the input
features of the learning task are classical, then the encoding operation is called data
embedding or quantum feature map [42]. There are different embedding types [43], for
various data structures, namely linear embedding, phase embedding, or amplitude
embedding. Their primary aim is to do a mapping from the classical domain into a
quantum state, such that

χ −→ H (2.35)

x −→ |ψ⟩ (2.36)

where x ∈ χ is an n-dimensional vector in the feature space [44]. This approach is very
similar to the kernel method since the mapping is done from a classical vector space
into a higher dimensional Hilbert space [45].

Following the initial state preparation, the second step is to arrange an ansatz, that is
general and broad enough to capture the data correlation one wishes to obtain. Since
a 2n × 2n unitary is able to transform any arbitrary state in C into another arbitrary
state in the same space, a large enough unitary is able to capture the desired mapping.
However, that approach necessitates exponentially many parameters, which makes

22

2 Theoretical Background

|0⟩ H Rx(θ1) Ry(θ2)

Figure 2.4: Exemplary variational circuit with 2 parameters. As shown in the figure,
it is also possible to only have part of the gates on the circuit that are
parameterized, since the H gate does not have any parameters.

the learning scheme intractable. Moreover, realizing an arbitrary unitary operation on
quantum hardware is a cumbersome task [46].

Nevertheless, it is also possible to represent any quantum operation, by only using
gates from a small set, called the universal set of gates [3]. Thus, instead of having an
exponentially large unitary, the variational ansatz can only include universal gates,
that can also be parameterized, such as a phase rotation gate. Furthermore, instead of
parameterizing each element in the unitary matrix, a certain class of gates can also be
parameterized with a significantly low amount of variables. For instance, a controlled
rotation gate can be parameterized only with 1 variable even though the gate has 16
elements in total, since,

Rx(θ) = e−iθσx/2 =

[
cos θ/2 −i sin θ/2

−i sin θ/2 cos θ/2

]
. (2.37)

Moreover, it is also possible to decompose an arbitrary unitary into a set of universal
gates [47].

A very trivial variational circuit is shown in Figure 2.4.

After the ansatz is created, the final step is to prepare a cost function, mapping
the measurement outcomes into a real number. Subsequently, a classical optimization
routine is being used to find the set of parameters that either minimize or maximize
the objective function, such that

θ∗ = argminθ C(θ, x). (2.38)

The general structure of the variational methods is summarized in Figure 2.5.

2.5 Optimization

Optimization lies at the heart of quantum variational methods, and it constitutes an
essential design choice while generating hybrid quantum-classical algorithms. Further-

23

2 Theoretical Background

Figure 2.5: Schematic diagram for a quantum variational method.

more, along with ansatz selection, classical optimization influences the exactness of a
solution heavily [48].

Initially, a quantum circuit produces output through its measurement device, which
yields a real value, since all eigenvalues of Hermitian matrices are real scalars [49]. If the
goal of a quantum algorithm, is to minimize or maximize the expectation value of an
operator, in order to find an approximation of its ground state, this problem is called
Variational Quantum Eigensolver (VQE) [50, 51], in which one does not need to prepare
a non-trivial classical cost function that utilizes the measurement outcomes. However,
while tackling classical problems with quantum variational algorithms, sometimes it is
needed to provide an extra cost function, that manipulates the measurement outcomes
and produces another real scalar. Either way, as an analogy to classical machine
learning and deep learning methods, the quantum circuit itself can be interpreted as a
parameterized function, that produces a real scalar output. Hence, in order to generate
a learning routine, a classical optimization mechanism must be declared.

There are two main categories of the optimization problems, namely gradient-based
methods and derivative-free methods. One important variable in optimization is the
complexity of the objective function evaluation, and the number of function evaluations
needed to run the optimizer. The gradient-based methods rely heavily on the objective
function evaluation in order to calculate or approximate the derivatives. Therefore,
there are several cases where a gradient-based method would not be favoured [52].
For instance, for the cases where the measurement on a function evaluation is either
very noisy or time-consuming, the gradient-based methods might be intractable to
implement. In such cases, derivative-free optimization methods can be applied. One

24

2 Theoretical Background

subset of these approaches is called simplex methods, which relies on manipulating
the vertices of a simplex, representing function evaluations on different points.[53].
Nelder-Mead method is a simplex methods [54], that is also being used to optimize
quantum circuits [48, 55] .

Similar to classical machine learning, the optimization of quantum variational algo-
rithms is generally done via a gradient-based algorithm. The differentiation methods
for quantum circuits can be categorized into two, namely analytic differentiation and
numeric differentiation [56].

Even though numerical methods for differentiation quantum circuits were the pre-
dominant choice for variational circuits, it is not always a scalable and feasible method
for larger circuits with a significant amount of parameters, due to low error tolerance
in near-term quantum devices [57].

In the recent past, researchers have proposed methods for calculating the analytic
gradients of quantum circuits [58, 59].

Analytic differentiations, make use of the internal dynamics of the gates individually
while calculating the derivatives. For the gates that are generated from a Pauli String
G, such that U = e−iµG, its gradient can be found as

∂µU = −iGe−iµG, (2.39)

which allows calculating analytic gradients, by evaluating the quantum device with the
same quantum gate, only with additional phase gates. [57]

Numeric differentiation is done via evaluating the quantum circuit with varying
parameters by small margins around the current parameter values. For instance, if a
function f (θ) is being used to describe a quantum circuit, then the numerical derivative
of that function with respect to the parameters θ is going to be

∂µ f (θ) =
f (θ + ∆µ − f (θ − ∆µ)

2∆µ
(2.40)

The numerical differentiation does not require information on the internal workings
of a function, and it only requires evaluating that function with certain parameters
several times in order to calculate its gradient. However, it is only an approximation of
the derivative of that function over a given point. One notable example of numerical
differentiation in the context of quantum computing is the parameter shift rule [42].
The parameter shift rule, which has a very natural connection to the finite-differences
method, is applied by evaluating the same quantum gate with a small shift in param-
eters, in order to calculate the gradient. Hence, given an observable B̂, the gradient

25

2 Theoretical Background

can be calculated [56] via finding the difference between the expectation value of the
measured observable B̂, such that the derivative of the expectation value

⟨B̂⟩(θ) = ⟨0|U(θ)†B̂U(θ) |0⟩ (2.41)

is equal to

∂θ⟨B̂⟩(θ) = ⟨B̂⟩(θ+ ∆ω)− ⟨B̂⟩(θ− ∆ω)

2∆ω

However, since the parameter-shift rule, is applied for every free parameter, the
cost of computation scales linearly and for larger circuits with more parameters, the
optimization can become intractable. Nonetheless, there are different optimization
methods for quantum devices, that have a similar approach to the parameter shift rule.
One exemplary algorithm for that is called the Simultaneous Perturbation Stochastic
Approximation (SPSA) algorithm [60], which only requires two evaluations, even with
a larger number of parameters.

Similar to the gradient recipe of the parameter-shift rule, SPSA gradients have the
form

∂θ⟨B̂⟩(θ) = ⟨B̂⟩(θ + ∆θ)− ⟨B̂⟩(θ − ∆θ)

2∆θ
,

where ∆θ is a perturbation vector, that has differing perturbation values for each free
parameter θi. Usually, ∆θ is created via sampling from a distribution (e.g. Bernoulli
Distribution), so that the algorithm is not deterministic but rather stochastic.

Furthermore, the following work [61] gives instructions on how to fine-tune hyper-
parameters, which might drastically affect the accuracy of the optimization.

For both of these classes of optimizations, it is possible to update the parameters
dynamically with an automatic differentiation algorithm [62], such as Stochastic Gra-
dient Descent (SGD) [63]. Furthermore, since both of these methods only make use
of evaluations of the gate to be differentiated, with different parameters, they are also
quantum-hardware compatible, such that these evaluations are not needed to be done
on a classical computer, which can slow down the computation greatly.

26

3 Methodology

In this section, a novel ansatz is proposed for solving combinatorial optimization
problems with constraints. As an example of showcasing the benefits of the proposed
method, the Travelling Salesman Problem (TSP) is selected. The very first step of
preparing such a solution is to formulate the problem structure to be used in the
context of quantum computing. Therefore, the set of possible binary strings, which is
going to be the solution space, is mapped to the computational basis states, which are
on the quantum system with the same number of qubits as the length of that bit-string.
Following the problem formulation, the novel ansatz and the optimization method that
is being used are defined and explained in detail.

The implementation is done using Python, and the Qiskit Library [64] for quantum
circuit simulation. Same implementation is also done with Pennylane [56] for bench-
marking reasons. Simultaneous Perturbation Stochastic Approximation (SPSA) [60]
algorithm is used for classical optimization. The code-base is publicly available at:
https://github.com/Bmete7/QAOA-E

3.1 Travelling Salesman Problem

Being a well-known optimization problem, the Travelling Salesman Problem (TSP)
has commonly been a research subject in various fields of science and engineering. It
is categorized as an NP − Hard problem [65], therefore there is no known classical
algorithm that can solve this problem exactly in polynomial time.

The problem is formulated as follows: In the TSP, there is a ’map’, which is a
connected graph, and it includes n number of cities and m total number of different
paths between any pair of two cities. The problem also includes a travelling salesman,
whose goal is to visit each city on the map exactly once, and finally come back to the
origin city as soon as all the cities have been visited. Any route that obeys these criteria,
is also known as the Hamiltonian Cycle [66]. Each city in this graph is represented by
a vertex, while each path is represented with an edge. Therefore, the cost of travelling
along a path is embedded in the problem structure as an edge weight.

27

https://github.com/Bmete7/QAOA-E

3 Methodology

Furthermore, the overall goal of the salesman is to find the optimal route ropt, such
that the travelling cost is minimized, while the described criteria are satisfied. For
such a problem, a divide-and-conquer approach would not be sufficient, because, each
chunk of a sub-problem, is at least as complex as the main problem. Therefore, it
belongs to the set of NP-Hard problems. The most naive way to solve this problem, is
by a brute force approach, by checking all the possible combinations and finding the
minimum cost route. Considering a graph where each vertex is directly connected to
all the other nodes, the complexity becomes O(n!) for n number of vertices. Therefore,
a solution is not scalable as it becomes intractable as the graph grows. Figure 3.1 shows
an exemplary graph for the Travelling Salesman Problem, that includes 6 vertices and 9
total number of edges. Also, this figure presents a generalized version of a Travelling
Salesman Problem structure, since, in some instances, the path to travel between two
cities differ in terms of the direction. Here, because this is an undirected graph, the
costs for the same path are always the same.

A

B

C

D

E

F

ω1

ω2

ω3

ω4

ω5

ω6

ω7

ω8

ω9

ω10

Figure 3.1: An exemplary graph for illustrating the Travelling Salesman Problem using
6 cities. ω, represents the edge weights, or the cost to travel from one city to
another.

Hence, TSP looks for a solution in a graph G = (V, E), that creates a vertex tour G′,
such that, G′ = (V, E′) and E′ ⊂ E where each vertex in the tour has a degree of 2
(one incoming and one outgoing edge during the visit). The optimal solution should
minimize the tour length, where duv describes the weight of a specific edge. For such a

28

3 Methodology

vertex tour G′ that creates a route r, the cost is given as,

∑
⟨u,v⟩∈E′

du,v. (3.1)

3.1.1 Problem Formulation

The problem is represented with n2 binary variables, n being the number of vertices.
Each binary variable xvj, displays a certain condition, where a node v is being visited at
a step j. For instance, if the binary variable x23 = 1, that means the 2nd node is being
visited at the 3rd step of the route. Therefore, there are n different binary sub-strings
xv corresponding to a vertex v, that shows when the node v is being visited. Each
sub-string xv has the length of n, where each binary variable refers to a certain step
index. For instance, in each binary string s, the sub-string that includes the first n bits
refers to the binary random variables related to the first vertex, where each binary
random variable at the position j attributes that node being visited in the corresponding
step.

For the bit-string representation, the Most Significant Bit 0 (MSB 0) approach [67]
is being used, meaning that the most significant bit, represents the 0’th index. For
example, if only the first random variable of a sub-string v is 1, whereas all the other
n − 1 bits are 0, then the node v is being visited in the first step, which would make v
the origin of the route.

Figure 3.2, displays a graph with 4 nodes, where each node is labelled in the
alphabetical order, such that A = 0, . . . , D = 3.

A

B C

D

ω0

ω1

ω3

ω2ω4

Figure 3.2: Exemplary graph with 4 nodes and 5 edges

For illustrative purposes, a potential solution s as a bit-string,

s = 0001 1000 0100 0010, (3.2)

29

3 Methodology

exhibits the path, 1 −→ 2 −→ 3 −→ 0, or B −→ C −→ D −→ A for the graph in Figure 3.2.
The cost of the solution s is equal to ω1 + ω2 + ω3 + ω0.

There are 2 hard constraints of the TSP: Each city should be visited exactly once,
meaning that each vertex should appear exactly once in a vertex tour such that,

n

∑
j=1

xvj = 1 ∀v ∈ V, (3.3)

and at the each step of a vertex tour, only one city must be visited,

∑
v∈V

xvj = 1 ∀j ∈ E′, (3.4)

which can be explicitly from the problem statement, but should be defined as the
problem is being converted as an optimization problem.

While all possible bit-strings comprising the solution space are represented with the
computational basis states in C2N

the feasible subspace is being restricted according
to the constraints. Solutions that belong to the feasible subspace are called valid routes
(solutions), whereas the other bit-strings that do not satisfy the constraints are called non-
valid routes. For instance, for a graph with 3 vertices, the binary string r1 = 100010010
represents a non-valid route, as it assigns two different vertices for the same time step.
Similarly, the bit-string r2 = 000100010 also showcases a non-valid route, since it fails
to cover all the vertices in the graph. On the contrary, the bit-string r3 = 010001100
displays a valid solution, since it obeys both of the constraints. All of the routes
mentioned above belong to the solution space for the 3-vertex setting, whereas, only r3

belongs to the feasible subspace.

An exemplary diagram of the feasible subspace for the 4 qubit setting is shown in
Figure 3.3, which can be used for solving the TSP with 2 vertices. In the figure, the
outer circle represents the whole Hilbert space for 4 qubits, and the inner blue set S
is the solution space, which has 24 elements with unique 4-bit binary strings. It is
also a subset of the Hilbert space, since it only includes discrete bit-strings, while the
Hilbert space has infinitely many elements, with superpositions of basis states. Since
the solution space does not have linearity, it is a non-convex set. The yellow set F is also
non-convex, and it represents the feasible subspace. It is a subset of the whole solution
space. It only includes elements, where the constraints of the problem are satisfied.
The examples shown on the diagram as elements of the feasible subspace, satisfy the
criteria, while |0000⟩, which is not a member of the feasible subspace, clearly does not
satisfy the criteria mentioned in Equation 3.3 and Equation 3.4.

30

3 Methodology

C4

S

F

|0000⟩ |1100⟩

|0101⟩

|1001⟩

Figure 3.3: An illustration for showing the difference between the solution space and
the feasible subspace.

The first step for preparing a QAOA Ansatz is to formulate the cost Hamiltonian
and find the cost unitary accordingly. Since the soft constraints consist of the cost of a
route, the classical objective function can be formulated as,

C = ∑
⟨u,v⟩∈E′

du,v, (3.5)

where E′ is the set of edges that are covered in the route.
Considering the set of solutions S including bit-strings with n2 binary random

variables, the objective function C : S −→ R is defined as,

C =
n

∑
v=0

∑
u ̸=v

n−1

∑
j=0

n

∑
i=j+1

du,v δv×n+j δu×n+i (3.6)

where,

δx

{
1 if S[x] = 1

0, otherwise.
(3.7)

Since there are n2 different binary random variables, each variable can be represented
with a random variable xu,j, which means, "the node u, being visited at the step j".
Throughout the following sections, the binary setting of the random variable xvj has
been used. Equivalently, the same random variable can also have a binary form, xu×n+j.

31

3 Methodology

The objective function can be converted into a cost Hamiltonian, as it is shown on
Equation 3.8.

C = (2 − n
2
) ∑
⟨u,v⟩∈E

du,v + ∑
⟨u,v⟩∈E′

n−1

∑
j=0

du,v(Zu×n+j Zv×n+j+1 + Zu×n+j+1 Zv×n+j). (3.8)

Each edge E, that connects two vertices u and v, can be used to describe two different
paths in a route with alternating orders u −→ v and v −→ u. Therefore, there are two σz

terms in the cost function as a sum, describing alternating path formations.

3.2 The Novel QAOA Ansatz with an Encoder

Since the problem structure that we are trying to tackle is a constrained problem,
the desired output should be an element of the feasible space F, and not the more
generalized solution space S. Instead of preparing ad-hoc mixer unitaries for projecting
the solution onto the feasible subspace, another non-variational ansatz can be created
for the same purpose.

The ansatz is prepared as an encoder, which separates the solution space into two
subspaces A and B, that have the dimensions k and (N − k) respectively, where N >> k.
If the input of the encoder is a valid solution, then the encoder outputs a state, where
the qubits in the latter subspace B are all equal to |0⟩. This would ensure that the
state in subsystem B is always the same when the input is a valid solution. Therefore,
subsystem B can be discarded after encoding, while subsystem A, which is called the
latent space, is encoded with a state that can solely describe a unique valid solution.
Therefore, the encoder mechanism can be summarized as,

E |ψ⟩ =
{
|ϕ⟩A ⊗ |0⟩⊗(N−k)

B if |ψ⟩ ∈ F

|ϕ′⟩A ⊗ |ϕ′′⟩⊗(N−k)
B , if |ψ⟩ /∈ F, where, |ϕ′′⟩ ̸= |0⟩⊗(N−k)

B .

Furthermore, the decoder ansatz D, which is nothing but the inverse of the encoder
unitary, can be used to reproduce a valid solution in the N-dimensional original
subspace. Therefore, if the qubits in subsystem B, which is also called trash system, are
all mapped to |0⟩⊗(N−k)

B , the decoder is ensured to output a valid solution. Hence, even
though the original input to the encoder is not a valid solution at all, if all the qubits in
subsystem B are discarded, or set to |0⟩, the decoder then maps that intermediate state
into a valid solution. The encoding and decoding mechanism is illustrated in Figure
3.4.

32

3 Methodology

Figure 3.4: A transitional scheme, illustrating the encoding mechanism. both states,
|ψ⟩ ∈ F and |ϕ⟩ ∈ S are mapped to the feasible subspace after encoding/de-
coding. Note that, here decoding subroutine D, refers to the swapping of
subsystems B and B′, followed by the decoder.

However, when a system is discarded (traced out) and set with a completely new
state, the gradient tracking for the parameters up to that point will be lost. For this
reason, the discarding approach is not suitable for variational algorithms. Nevertheless,
one method to overcome that, which is also demonstrated in [68], is to have another
subsystem B′ that has N − k ancillary qubits, that are all initialized with a reference
state |0⟩⊗(N−k)

B . Instead of tracing out the environment B, a simple swap operation
(swap gate), between subsystem B and the reference system B′ makes sure that all the
qubits in subsystem B are equal to |0⟩. Since the ansatz is still reversible, the gradient
flow is not interrupted. Therefore, the ansatz requires extra l × (N − k) ancillary qubits,
where l describes the number of times the encoding is employed. The overall QAOA
ansatz with encoding and decoding mechanism is illustrated in Figure 3.5. In this
diagram, the qubits in subsystems A and B are initialized as an equal superposition
state, which includes every member of the solution space, including the non-valid
solutions. Following the initialization, the unitary based on the cost Hamiltonian is
applied, which has the purpose of phase separation, according to the weights of the
edges. Since the states after the cost unitary, also include non-valid solutions, the
encoder is applied in order to project each solution onto the feasible subspace. After
the encoder, subsystem A comprises the latent space, where each state corresponds to a
unique solution. Subsystem B ideally has the state |0⟩N−k, whenever the input to the
encoder stands for a valid solution. To project the state-vector back onto the feasible
subspace, subsystem B’ is discarded, via swapping it with a reference system that is
initialized with |0⟩ states. Hence, after the following decoding operation, each state
on the final system, that has a probability value larger than 0 refers to a valid solution.
If there is more than one iteration in the QAOA, then extra ancillary qubits must be
provided in the reference system.

33

3 Methodology

|0⟩⊗(N−k) B’

|+⟩⊗n
A

UC E
UM

D ψout

B

Figure 3.5: An illustration of one QAOA iteration, with an encoder. The final state
|ψout⟩ is guaranteed to be a part of the feasible subspace, which stands for a
valid solution.

This approach eliminates the need to construct mixer Hamiltonians, whose ground
space spans the feasible subspace. Nevertheless, the mixing unitaries can still be utilized
in order to create a hopping mechanism across the feasible subspace. The hopping
mechanism ensures that the entirety of the feasible subspace is being explored. The
mixers do not have to apply to all of the N-qubits. Instead, the mixer mechanism can
be applied to the latent space, which will restrict the exploring phase into the feasible
subspace. Therefore, a trivial mixer can be created as,

HM = σ1
x σ2

x . . . σk
x , (3.9)

which is trivial to prepare, both for the simulation environment, and for a quantum
hardware.

The role of the mixer, can also be displayed as a transition between two computational
basis states x0 and x1, such that | ⟨x0|UM(β) |x1⟩ | > 0.

Finally, the algorithm includes l approximation iterations. Each iteration, starts with
a parameterized unitary, based on the cost Hamiltonian. After that, the encoder ansatz
is applied, to map the state vector into the latent space. With the intention of ensuring
that the latent space only gets decoded into the valid paths, a discarding mechanism is
applied, by swapping the remaining subspace with a pre-initialized reference state, as
explained above. Then, in order to create a mixing mechanism, the mixer unitaries are
applied

UM(γl) = e−iσX
0 γl · · · · · e−iσX

k γl (3.10)

that can be realized with k number of X-rotation gates that apply to the qubits in the
latent space. After the decoding, the latent space gets mapped to the original solution

34

3 Methodology

space, where each value is a member of the feasible subspace, as illustrated in Figure
3.4.

The mixers, have another significant role in the general QAOA ansatz. Since the mixer
Hamiltonian, does not commute with the cost Hamiltonian, they do not share the same
eigenspace. Therefore, by applying a mixer, the state is mapped to a different space,
which is not an eigenspace of the cost Hamiltonian anymore. If the mixing mechanism
is not present in the ansatz, the cost unitary itself does not alter the probabilities of the
initial input state vector, since the HC is a diagonal operator and its eigenvectors are
the computational basis states.

Another way of looking at this phenomenon is to think of the approach as a time
evolution process, governed by HC. Since for a system that is evolving under the closed
system dynamics, the system’s energy will be conserved, by doing a time evolution
which is governed by the same Hamiltonian HC, the energy of the system will not
change over time.

Thus, by only having the cost unitaries based on HC, the optimization would not
converge, since changing the parameters of the cost unitary alone would not create any
difference in the expectation value of the final state.

By having a mixing mechanism, the state can jump out of the eigenspace of the
cost Hamiltonian, therefore, a change in the parameters can result in a change in the
expectation value, which enables the optimization routine to converge. Hence, an
optimized prediction can be obtained.

Since the encoder also does not share the same eigenspace with the cost Hamiltonian,
it makes sure, that not only the constraints are satisfied in the final prediction, but also
that the state is mapped to a different eigenspace. Therefore, the encoding mechanism
succeeds in replacing the mixer mechanism in 2 different aspects, namely the constraint
satisfaction checking, and jumping out from the cost Hamiltonian eigenspace. However,
the trivial mixer unitaries are still handy for creating the hopping mechanism over the
feasible subspace.

Eventually, the encoding scheme, interleaved with trivial mixing unitaries has 3-main
capabilities:

1. Restricting the search space into a much smaller latent space.

2. Ensuring that the final output, sampled from a measurement, produces a bit-string
that satisfies the problem-specific constraints.

3. Creating a mixing mechanism in the latent space, so that the entirety of the
feasible subspace is being explored.

35

3 Methodology

Furthermore, another essential part of the QAOA ansatz is the initial state preparation.
In QAOA, the initial state is generally prepared as the eigenvector of the solution space
that corresponds to the highest energy eigenvalue. That state coincides with the
eigenvector of the mixer Hamiltonian. Preparing the initial state as the highest energy
eigenstate of the mixer Hamiltonian is crucial since in that case, the evolution occurs
naturally on the feasible space [38]. In the most trivial case, where the solution space is
not restricted, the mixer Hamiltonian is defined as

HM =
N

∑
i=1

σx
i ,

which is also known as the transverse-field mixer. The eigendecomposition of the
Pauli-X gate is given as,

σx = +1 · |+⟩ ⟨+| − 1 · |−⟩ ⟨−| .

Therefore, in such a case where the mixer Hamiltonian consists of σx operators, the
initial state is prepared as |ψ′⟩, where∣∣ψ′〉 = |+⟩⊗n .

However, initial state preparation becomes more non-trivial by using the novel
approach of using an encoder architecture to map the state into the feasible subspace.
Since finding the highest energy eigenstate of the Hamiltonian governing the encoding
unitaries is burdensome, a different approach must be followed to prepare the initial
state. Similarly, the desired initial state should be an equal superposition of each
state in the feasible subspace. Instead of finding the energy eigenspace of the mixer
Hamiltonian, preparing an equal superposition in the computational basis states just
for the latent space, encoded in subsystem A, would encapsulate each possible solution.
After preparing an equal superposition in the latent space, an additional decoder must
be applied, to project the states back onto the solution space from the latent space. A
sub-circuit for preparing the initial state is illustrated in Figure 3.6.

Finally, after the ansatz is complete, a measurement along the computational basis
state is done, with the operator ĤC, since the desired solution is the maximum energy
eigenstate, that also resides in the feasible subspace F. Therefore, the expectation value
of ĤC can be calculated, or estimated via sampling in a simulator, to obtain the final
output. One QAOA iteration is terminated, via running a classical optimization routine,
to optimize the expectation value. The algorithm is terminated, when the optimization
converges.

36

3 Methodology

Figure 3.6: The sub-circuit for preparing an initial state as the highest energy eigenstate
of the mixer Hamiltonian

Therefore, the steps of the novel QAOA ansatz for solving constrained optimization
problems can be summarized as follows:

1. Initialize subsystem AB as |+⟩N and the reference subsystem as |0⟩⊗(N−k)
B ,

2. Initialize 2 × l parameters for β and γ,

3. Prepare the cost Hamiltonian depending on the problem structure,

4. Prepare the mixer Hamiltonian as the transverse-field Hamiltonian ∑N
i=1 σx

i ,

5. Apply the unitary transform Ul
C(β) based on the cost Hamiltonian,

6. Apply the encoder to map the state onto the latent space

7. Apply the mixer unitary Ul
M(γ)

8. Swap the trash system B with the reference system B′

9. Decode the system to map the state onto the feasible subspace, if the current
iteration is not the final QAOA iteration

10. Repeat the steps between 5-9 l times, where each cycle represents a QAOA
iteration, l being the number of QAOA iterations. In the final iteration, skip the
decoding part, so that the output state is in the latent space.

11. Sample S number of final states from the circuit or calculate the expectation value〈
ψ−→

β ,−→γ

∣∣∣ HC

∣∣∣ψ−→
β ,−→γ

〉
,

37

3 Methodology

12. If sampling is used, then provide a classical loss function L based on the log-
likelihood function, to overcome numerical instabilities, which has the standard
form L(β, γ) = log2(1 − Up

M(β)Up
C(γ) . . . U1

M(β)U1
C(γ)) [69],

13. Optimize over the parameters β and γ with a classical optimizer,

14. Iterate until convergence.

3.2.1 Encoder Structure

First of all, throughout this chapter, the quantum state vector that the system is in is
sometimes referred to as a bit-string. Each bit-string with the length of n corresponds
to a computational basis state. Even though, the system can be in a superposition of
different computational basis states, the term bit-string, will refer to only one of the
basis that appears in the superposition. Therefore, if a system is in a state

|ψ⟩ = |s1⟩+ |s2⟩+ · · ·+ |sN⟩√
N

,

each operand that acts on |ψ⟩, can be thought of as an operator that acts on N different
bit-strings. Therefore, the two distinct terms ’quantum state’ and ’bit-string’ are used
interchangeably throughout this section, within the context explained above.

For a complete graph, there are n! different possible paths that constitute a valid
solution. However, in the problem setting, they are represented with n2 qubits, even
though 22n − n! of those states refer to a non-valid solution. Hence, instead of represent-
ing a valid solution with an n2-bit string, there exists a more efficient representation,
that inhabits a latent space that utilizes k qubits, where k = log2(n!). The encoding
and decoding scheme for an example with 3 vertices is depicted in Figure 3.7. In this
transitional diagram, two distinct cases are presented, that indicate a valid and a non-
valid state respectively. The first step is applying the encoder, to find the latent space
representation. Following the encoder, the remaining qubits in the trash subsystem
B are reset into 0, which can be realized on a quantum device with a swap operator
between another reference subsystem B′. As it can be seen from the graph, two distinct
solutions, where one of them exemplifies a non-valid solution, get mapped into the
same bit-string, that represents a valid solution

The encoder ansatz can be created in various ways. A pivotal factor in how such a
mapping into a low-dimensional space is possible is the fact that the feasible subspace
is much smaller than the original solution space. While, for each sub-string i, there are

38

3 Methodology

Figure 3.7: Two transitional diagrams for the encoder/decoder subroutines. The transi-
tion on the left displays a case where the input stands for a valid solution,
whereas the figure on the right displays a non-valid solution. Orange blocks
represent the latent subsystem A, where the green and red boxes represent
the trash subsystem B.

2n different bit-strings possible, only n of them refer to a valid solution. Hence, each
sub-string can be encoded into ⌈log2(n)⌉ qubits. For instance, for a 5-qubit setting, the
encoding can be done as follows:

10000 E−→ 00000

01000 E−→ 00100

00100 E−→ 01000

00010 E−→ 01100

00001 E−→ 10000

Note that the final encoding uses only 3 = ⌈log2(5)⌉ qubits, whereas the original
sub-string uses 5. Since there are n total number of sub-strings, total number of qubits
needed will be equal to n⌈log2(n)⌉

Another encoding scheme can be applied as follows: First of all, the first sub-string
that stores information about the initial vertex is encoded into n − 1 bits. The encoding

39

3 Methodology

is done, via applying a multi-controlled X gate (a generalization of the Toffoli gate) to
the nth bit, with inverted controls (the target qubit is flipped, whenever the control
bits are 0). If the input is a valid solution, there are two possibilities; either the first
vertex is being visited at the last step or another step. For the former case, the nth qubit
would originally have a value of 1, whereas all the other qubits are 0. For the latter, the
nth qubit is 0. It is trivial to notice that the nth qubit ends up in a 0 state in both cases
after applying a multi-controlled X gate. Eventually, the final state still preserves an
encoding that carries information about the first vertex. If the ith qubit in the sub-string
has the value of 1, that means that that vertex is being visited at the ith step. If all of
the n − 1 qubits have the value of 0, that means the vertex is being visited at the last
step (step n). Similarly, this method can be applied to all the sub-strings, to have extra
qubits to store the encoding.

This routine is applied, in order to reset some of the resources and use them as
storing system for the encoding. Moreover, even a shallower network can be utilized
for the same purpose, with the use of additional ancillary qubits to store the encoding
information, without needing to reset some portion of the resources.

Furthermore, for the remaining n− 1 sub-strings, a comparison mechanism is applied,
to store the information on whether the ith vertex is being visited before or after the
jth vertex, where i ̸= j. The comparisons between two sub-strings can be realized as
follows: A vertex u, having appeared in the route earlier than the vertex v, means that,
the bit-string u yields a larger binary value than the bit-string v. For instance, suppose
a sub-string u is 10 . . . 0, whereas the sub-string v is 0010 . . . 0. In this case, the vertex u
is being visited before the vertex v, which indicates the condition u > v. In such a case,
the encoding bit should store the value 1, whereas in the opposite case where u < v, it
should store 0. Such a comparison can be realized by a set of Toffoli gates. Each Toffoli
gate consists of two control bits and one target bit. If both of the control bits are in the
state 1, where the one control qubit is the ith bit in the sub-string u, whereas the other
is the jth bit of the sub-string v, such that i > v. The target qubit is always the same
qubit, which will store the result of the comparison. If the whole bit-string s, stands for
a valid solution, where u is being visited before v, then exactly one of the Toffoli gates
will have both control qubits set to 1, which in turn sets the target qubit to 1. However,
if u is being visited after v, then none of the Toffoli gates will have both of the control
qubits set to 0, therefore the target qubit stays at 0, which signifies that u < v. The
comparing mechanism along with an exemplary circuit for comparing two sub-strings
is presented in Figure 3.8.

Even though there are (n−1)(n−2)
2 different sub-strings to compare, there is a better

comparison mechanism, that minimizes the number of qubits needed for storing the
information. The comparison mechanism is quite comparable with the comparisons

40

3 Methodology

Figure 3.8: The encoding algorithm and the ansatz for a 3-vertex setting. The algorithm
calculates the query u > v, and its result is stored in the final ancillary qubit,
which has been reset before.

done in merge sort, which is a recursive sorting algorithm, that works with a divide
and conquer strategy. Since, there are n − 1 remaining vertices, there are also (n − 1)!
different possible valid solutions. With the mentioned divide-and-conquer approach
for comparing different combinations, the required number of qubits to store the
comparison information becomes log2(n − 1)!. Since,

log2(n − 1)! = log2(n − 1) + · · ·+ log2(1)

n log(n) = log2(n) + log2(n) + · · ·+ log2(n)

log2(n − 1)! ≤ n log(n),

asymptotically, those two complexities are equal, such that,

O(log2(n − 1)!) = O(nlogn)

. A complexity analysis between the two functions is also presented in Figure 3.9.
Therefore, the second encoding approach is even more efficient than the first proposed
encoding mechanism.

The final step is to, prepare another ansatz to reset each qubit in subsystem B to 0,
if the input was a valid solution. The ansatz is created with the same strategy as the
encoder, by applying the Toffoli gate with the control qubits indicating a portion of a
valid path.

One potential problem can arise, when

k = log2 n!, where, k /∈ Z,

41

3 Methodology

Figure 3.9: Comparing the complexities between nlogn and log2(n − 1)!

which means the number of valid paths is not exactly a power of 2. In such cases, some
states in the latent space will refer to a non-valid solution after the encoding. One
potential solution to that problem is to provide a penalty mechanism in the classical
loss function for the cases where the bit-string does not correspond to an encoding of
a valid solution. Therefore, a relaxation with 2k − n! dummy solutions can be added
with a very large route cost, such that these solutions are not favoured.

3.3 Optimization

There are several settings for benchmarking the training routine, namely, the size of the
problem set, connections in the graph, the optimizer selection, loss function definition,
and the hyper-parameter selection.

Firstly, there are several optimization algorithms is being used for the training routine
for benchmarking reasons.

One of the optimization methods is the Simultaneous Perturbation Stochastic Ap-
proximation (SPSA) algorithm, which is a gradient approximation method based on
the finite differences method. In this method, in contrast to the analytic-gradient-based
algorithms, only the function evaluations are used in order to approximate the gradi-
ents with respect to the parameters β, γ. Furthermore, it also differs from the finite
differences method, since it requires only two function evaluations in total for one
iteration. In finite differences, each parameter is being shifted independently from
the others, therefore it requires 2p function iterations, where p is the number of free
parameters.

42

3 Methodology

In SPSA, the measurements given an operator Ô, such that

⟨B̂⟩(θ) = ⟨0|U(θ)†B̂U(θ) |0⟩ , (3.11)

can be utilized to approximate the parameters, such that,

∂θ⟨B̂⟩(θ) = ⟨B̂⟩(θ + ∆θ)− ⟨B̂⟩(θ − ∆θ)

2∆θ
.

One important aspect of this algorithm is, that a perturbation vector ∆θ is being created
stochastically, such that the derivatives of each variable are approximated within
different internals. Generally, ∆θ is sampled through a distribution (e.g. Bernoulli
Distribution, Gaussian Distribution), as opposed to the finite differences method.

Another optimization methods used are derived from the Stochastic Gradient Descent
(SGD) [70], namely, the Adam Optimizer [71] and the RMSProp [72]. SGD is a gradient-
based optimization method that utilizes the back-propagation technique for updating
the parameters. However, as the circuit grows deeper, back-propagation-based methods
become less favourable due to their long execution times.

The output of the circuit has 2 distinct possibilities: First, the output can be the
expectation value of the cost Hamiltonian HC. In the training routine, the optimizer
tries to minimize the expectation value of HC. Therefore, since the value that is expected
to be minimized is the measurement value itself, there is no need to define an additional
loss function. In order to assess the success of the training routine, there is another
output type defined, as a sampling of the state vector for predicting the most optimal
route. The sampling is done 1024 times, whereas the choice of the optimal route is
being decided upon a majority vote method. The state which has been sampled the most
is selected as the model prediction.

Hyper-parameter selection is another crucial factor that significantly affects train-
ing success. Therefore, several different parameters are being evaluated for training
accuracies.

43

4 Experimental Results

The experiments are run on 3 and 4-vertex graph settings, with 2-different number
of layers. However, the optimization is only done using the 3-vertex setting due to the
limitations of simulating the QAOA ansatz. The loss function defined is a dummy
function, which returns the expectation value of the Hc. As discussed in Section 3.1.1,
The HC is defined as,

C = (2 − n
2
) ∑
⟨u,v⟩∈E

du,v + ∑
⟨u,v⟩∈E′

n−1

∑
j=0

du,v(Zu×n+j Zv×n+j+1 + Zu×n+j+1 Zv×n+j). (4.1)

Therefore, the goal of the optimizer is to find the set of parameters, that minimizes
the expectation energy of HC. Note that the HC can also be stored as a sparse matrix
since the Hamiltonian grows exponentially as the system size increases. Furthermore,
since it is a Hermitian matrix, it is also possible to generate the Hamiltonian as a linear
combination of different Pauli strings.

The results seek to find two main insights. Firstly, the learning success and the
efficiency of the novel approach presented in this Thesis are investigated, with different
optimizers and problem settings. Secondly, a benchmark is proposed, comparing the
novel approach with the state-of-the-art methods in solving constrained optimization
problems. Therefore, along with the QAOA ansatz with encoders, a different method
proposed in [2] is also implemented for benchmarking. In that method, the hard
constraints of the problem are embodied inside the mixer Hamiltonian, with a similar
purpose of restricting the exploration into a feasible subspace. For TSP, the mixer
Hamiltonian is defined as,

∑
⟨u,v⟩∈E

n

∏
j=1

(σx
ujσ

x
vj + σ

y
ujσ

y
vj). (4.2)

For benchmarking, the main factors are once again the learning curve convergence
and the model specific details that affect the performance and efficiency. Therefore,
while the former is being used to compare the training accuracy, the latter provides

44

4 Experimental Results

metrics in terms of the applicability of the models, that measure the complexities and
the resource utilization of the models. The novel QAOA ansatz proposed in this work,
which uses encoders, is abbreviated in this section as "QAOA-E", whereas the method
proposed in [2] is called as "QAOA-M". The following number after the abbreviations
indicates the number of QAOA iteration layers.

As it can be seen in the Equation 4.2, in QAOA-M, the mixers are defined as different
combinations of the XY-model Hamiltonian, where the overall Hamiltonian HM can be
expressed in terms of a sum of (2n)× m terms, with m = |E|. The cost Hamiltonian
is the same for both models, which means the global minima are the same for each
model.

The experiments for the training accuracy, are realized on a small-scale example of
the TSP problem, that only has 3 different cities, and 6 possible valid routes. The graph
that is used in the experiments, is illustrated in Figure 4.1. In this toy example, two of
the edges share the same weight, while the other edge, which is connecting the nodes 1
and 2, has a significantly higher weight. Hence, in that graph setting, the states that
refer to the most optimal routes are encoded as: 010 100 001 and 010 001 100, that refer
to the routes 1 −→ 0 −→ 2 and 2 −→ 0 −→ 1 respectively, which are the only possible
routes that do not include the edge that connects the nodes 1 and 2.

Figure 4.1: Weighted Graph for the TSP with 3 cities.

The following sections are divided into two, that both assess the QAOA-E model,
and its benchmark results with QAOA-M, in terms of their learning success and
performance, in the given order.

45

4 Experimental Results

4.1 Training

In order to analyze the behavior of the optimizers on the objective function, an energy
landscape plot can be used to represent the expectation value of HC with various
parameter configurations. For the mentioned 3-vertex graph, and the circuit setting
with 2 parameters, which includes a single QAOA iteration cycle, the energy landscapes
for both models are presented in Figure 4.2.

(a) QAOA-E1 (b) QAOA-M1

Figure 4.2: Energy landscape across different configurations of β and γ. The values on
the bar indicates the energy, or similarly the expectation value of the cost
Hamiltonian. The figure on the left displays the energy landscape of the
QAOA ansatz with encoders, while the figure on the right illustrates the
same metric for the QAOA ansatz with problem specific mixer Hamiltonians.

As it can be seen in the figure, for the QAOA-E, the preeminent parameter is the γ,
the parameter of the cost unitary, where β does not seem to play a crucial role in the
optimal configuration setting. However, for the QAOA-M, even though this behavior is
still present on a small scale, the mixer parameters also play a significant role in finding
the global optimum.

Furthermore, one conspicuous remark based on the energy landscapes, is that using
the QAOA ansatz with an encoder, significantly relaxes the objective function, as it cre-
ates a smoother objective function, with a greater number of parameter configurations
that yields an optimized solution.

To find the learning success, two distinct metrics are being measured for the training
and validation accuracy. While the training accuracy is examined through the evolution
of the objective function evaluations, the validation accuracy is calculated from the
model predictions.

46

4 Experimental Results

Consequently, both models have been trained with three different optimizers, namely
the SPSA [60], RMSProp [72] and Adam [71]. These optimizers have been specifically
selected since they incorporate two distinct types of optimization techniques, namely
the analytic and numerical methods of gradient calculation.

SPSA is implemented using noisyopt library [73], with a = 0.2, b = 0.15 as the step
size hyper-parameters. For both Adam, and RMSProp the learning rate is selected as
3 · 10−2.

The learning curves for the QAOA-E1 model with different optimizers is presented
in Figure 4.3, where the y-axis signifies the expectation value of the cost Hamiltonian.

Figure 4.3: The running average plot of the evolution of loss using 3 different optimizers
for QAOA-E1.

Furthermore, the predictions of the models are acquired as follows: Instead of
measuring the expected energy of the system given the Hamiltonian HC, the model
returns a sample from the latent space during the validation and the test modes.
Therefore, in the last iteration, discarding and decoding phases are skipped, and
the measurements are done on the encoded states. In order to create a more robust
predictor that is less prone to noise, the sampling is done abundantly (1024 times in
the 3 vertex setting), where the final sample is selected using the majority vote approach.
The majority vote approach, basically means that the state that is sampled the most is
being selected as the model prediction. The accuracy plot of QAOA-E1 with the same
problem setting is presented in Figure 4.4.

47

4 Experimental Results

Figure 4.4: The evolution of the validation accuracy of QAOA-E1, using the RMSProp
optimizer.

Finally, the two models have been trained SPSA, and the same hyper-parameters for
a different graph, which also has the same optimal solution, but with slightly different
edge weights (respectively 6, 10 and 15). Therefore, the ground state energy of the
Hamiltonian has a different energy spectrum. The comparison of convergences of two
models has been plotted in Figure 4.5

Figure 4.5: Comparison of learning curves of QAOA-E and QAOA-M, using SPSA

48

4 Experimental Results

4.2 Model Parameters

There are several circuit parameters that can be used to determine the algorithm
efficiency. One significant parameter that drastically influences the time complexity
of the circuit evaluation is the circuit depth. As the depth of the circuit grows larger,
the classical optimizers that rely on back-propagation, perform worse, both in terms of
time efficiency, and learning accuracy, as the vanishing gradient problem [74] poses
challenges in finding the optimal parameter configuration. Two other important criteria
are the number of qubits, and the number of operations utilized in the circuit which
increases the vulnerability to the noise of the circuit.

Comparison between two models
Model Number of Circuit Depth Number of Number of Epoch Duration

Vertices Operations Qubits for RMSProp
QAOA-El 3 18 24 l · 6 + 9 0.12s

4 154 174 l · 10 + 16 0.20s
QAOA-Ml 3 147 552 9 0.71s

4 485 2976 16 23.5s

Table 4.1: Comparing QAOA-E and QAOA-M in terms of their efficiencies using several
metrics.

The depth of the model QAOA-M1 approximately equals to (2n · n ·m)(4n+ 1), where
m denotes the number of edges in the graph. Within the same problem settings, the
depth of the QAOA-E1 ansatz equals to 2n−1 · (n − 1) · (n − 1) +

(n·(n−1)
2 + 1

)
· (n − 1),

which does not utilize the edge information and is the same for every n-vertex graph
setting.

Figure 4.6: Asymptotic complexity of the models with respect to their circuit depths.

49

4 Experimental Results

Comparison results between QAOA-E and QAOA-M, in terms of the model parame-
ters, are given in Table 4.1. Furthermore, the semilogy plot in Figure 4.6 visualizes the
asymptotic computational complexity of both of the methods in terms of their circuit
depths.

50

5 Conclusion

To sum up, this thesis aimed to provide an alternative solution for solving constrained
optimization problems. It can be concluded that the QAOA-E is proposing a general-
purpose method, which is also shown to be working efficiently on small-scale examples.
Compared to the other state-of-the-art methods, several resolutions can be inferred from
the experimental results, on when it is more plausible to use QAOA-E over different
methods.

Firstly, as it can be seen on the energy landmark plot, in the QAOA-E, the parameter
of the mixer unitaries evidently are not decisive factors in the expectation value of
the cost Hamiltonian. Instead, only the parameters of the cost unitaries are critical in
finding the optimal configuration. Because the projection of the states onto the feasible
subspace is done by the non-variational encoder sub-circuit, the mixers only have a
limited role, that is creating an exploration mechanism over the states that are already
in the feasible subspace. For the same reason, in QAOA-E, the convergence in training
happens much faster, since the number of parameters to be optimized is halved, and
the objective function has a smoother form. In QAOA-M [2], the same projection occurs
by using the problem-specific mixer Hamiltonian models, whose eigenstates refer to
the feasible states. Therefore in this family of solutions, the correct configuration of
the mixers affects the final expectation value more. However, since the experiments
are done on a very small-scale example, the difference in the training speed is not
eye-catching.

Furthermore, even though the mixer unitaries proposed in QAOA-M have trivial
forms that are easy to implement, QAOA-E is also comprised of a set of gates that can
be implemented in the same way, according to the algorithm explained in Section 3.2
that only includes CNOT’s, Pauli gates, and the Hadamard gates. Hence, the proposed
ansatz is not problem-specific and can be scaled up as the problem size increases.

A considerable difference between the two methods is, that the QAOA-E is sig-
nificantly shallower compared to the QAOA-M. Most of the classical optimization
algorithms that utilize analytic gradients rely heavily on back-propagation. Therefore,

51

5 Conclusion

having a variational algorithm that has a larger depth, can increase numerical insta-
bilities and lead to a worse training accuracy. Moreover, having a deeper variational
ansatz can lead to a vanishing gradient problem, which reduces the importance of the
parameters that act during earlier steps of the model, which can also cause barren
plateaus on the learning problem [74, 75]. Therefore, for the classical optimizers that
rely on back-propagation, QAOA-E presents a more feasible variational ansatz.

Moreover, having a shallower circuit also implies being less vulnerable to noise, which
will be particularly crucial when the ansatz is implemented on real quantum hardware.
It is also worthy to mention that QAOA-M only utilizes 1 and 2-local operations, while
QAOA-E comprises unitaries with higher localities. Nevertheless, there are efficient
decompositions of such multi-controlled-X gates [3, 76], into polynomial number of 1
and 2-local operations.

However, one important factor in why QAOA-E is able to create an ansatz for project-
ing the statevector successfully onto the feasible subspace while having a significantly
shallower circuit, is that it utilizes ancillary qubits while forming the latent space
representation. Furthermore, the number of ancillary qubits scales polynomially, as
the problem size, or the number of QAOA iteration cycles increases. Compared to the
QAOA-E, the QAOA-M does not use any ancillary qubits, which can be particularly
favoured when there are limitations on the execution device, either a real quantum
hardware or a simulation environment. Furthermore, the systems that include less
number of qubits are also more resilient to noise.

It is also worth mentioning that, the computational limits are reached since the
experimental results are obtained using a quantum circuit simulator environment.
While utilizing a quantum circuit simulator, the states, and the operators, are basically
represented as complex vectors and matrices. For instance, for the 4-graph setting, the
cost Hamiltonian would be represented as a 216 × 216 complex-valued matrix, which
requires a memory allocation close to 70 GBs.

In order to remedy this shortcoming, a workaround is also implemented that is being
used for both of the models. The cost Hamiltonian is normally created by calculating
the Kronecker product of different Pauli string terms and then adding them together.
However, since the cost Hamiltonian term only includes Pauli-Z operators, the final
Hamiltonian is always going to be a diagonal operator, where the elements are either 1
or −1, multiplied with a coefficient corresponding to the edge weights. Therefore, the
final operator will eventually be a sparse matrix, except for its diagonal terms, which

52

5 Conclusion

are all non-zero terms. Hence, storing the operator as a sparse matrix increases the
efficiency of the overall algorithm vastly. Using the SciPy’s sparse matrix representation
[77] and the Pennylane’s [56] integration of the sparse matrices with the measurement
operators, makes it possible to run the circuit.

53

6 Discussion

In a nutshell, the QAOA-E aims to achieve a problem-independent ansatz for the
constrained optimization problems, that can also be efficiently scaled up for larger
tasks. Having implemented on small-scale examples, the model shows convincing
results both in terms of learning success along with its efficiency in utilizing resources
compared to its counterparts. The model is proven to be converging rapidly for an
example model of a constrained optimization problem, namely the Travelling Salesman
Problem.

Although the model is proven to be converging in a few iterations for smaller scales,
there are still a few problems that the model faces that need to be addressed. The first
problem arises, when the number of edges in the graph is not equal to an exact power
of 2, such that

k = log2 |E|, where, k /∈ Z.

In such a setting, there are g number of computational basis states in the latent
space, that represent a non-valid route, where g = 2⌈log2 |E|⌉ − |E|. For instance, for
a complete graph with 7 vertices, 3152 states over 8192 possible states in the latent
space, represent a non-valid solution. Even though there is a potential fix for that
problem, by penalizing the non-valid routes that are successfully being encoded into
the latent space. An implementation of the penalization could be done by relaxing the
problem structure, by adding dummy edges with a particularly large weight, between
the vertices that do not share a connection. Nevertheless, with this approach, the model
fails to provide any generalized solution for distinguishing those particular states for
any given graph. Another solution might be, neglecting the output during the training
in the iterations where the prediction is a non-valid route. However, this heuristic
might also cause over-fitting in the model, since it impedes full exploration of possible
parameter configurations.

Furthermore, the ansatz only assumes graphs that are connected, which means the
model does not utilize edge information on the graph and presumes that there is a
connection between each vertex in the graph. This indicates that, for a graph that is
not completely connected, the number of non-valid states in the latent space would be
even more, since some of the routes that satisfy the constraints might include an edge
that does not appear on the original graph.

54

6 Discussion

For the mentioned problems in the encoding mechanism, the aim of the future work
will focus on a better encoder ansatz, which only includes valid routes in its feasible
subspace.

Moreover, even though the ansatz is eventually shallower compared to its counter-
parts, the depth of the circuit still grows exponentially as the problem scales up, which
makes the model challenging to be implemented on a NISQ-era device.

Due to the limits on the computation on a simulation device, the method is unable to
prove any supremacy over the classical methods on larger scales, similar to the other
state-of-the-art approaches for solving constrained optimization problems using quan-
tum algorithms. Even though the sparse matrix representation of the cost Hamiltonian
makes the measurement possible in terms of tractability, the circuit simulation is still a
cumbersome task as the number of qubits increases. One potential way of tackling this
issue could be utilizing a different simulation technique. For instance, a tensor network
based simulator could be very beneficial in terms of computability, since the operators
in the ansatz are all single, or 2-qubit gates. However, with the state-of-the-art quantum
software frameworks, optimizing over a tensor network for a complicated task remains
to be a challenging issue.

All in all, even for the small toy examples, the variational method interleaved with an
encoder is proven to converge. Furthermore, the toy model ansatz is an implementation
for the recipe of a general n-vertex graph, proposing that the model can be scaled
up for larger and more complex graphs, which makes it a viable method for solving
constrained optimization problems.

55

List of Figures

2.1 Bloch Sphere and representation of a single state. 6
2.2 Circuit representation of the exponential of the Hamiltonians in a 3 qubit

setting . 17
2.3 QAOA Ansatz with l iterations, equipped with a classical optimization 18
2.4 Exemplary variational circuit with 2 parameters. As shown in the figure,

it is also possible to only have part of the gates on the circuit that are
parameterized, since the H gate does not have any parameters. 23

2.5 Schematic diagram for a quantum variational method. 24

3.1 An exemplary graph for illustrating the Travelling Salesman Problem
using 6 cities. ω, represents the edge weights, or the cost to travel from
one city to another. 28

3.2 Exemplary graph with 4 nodes and 5 edges 29
3.3 An illustration for showing the difference between the solution space

and the feasible subspace. 31
3.4 A transitional scheme, illustrating the encoding mechanism. both states,

|ψ⟩ ∈ F and |ϕ⟩ ∈ S are mapped to the feasible subspace after encod-
ing/decoding. Note that, here decoding subroutine D, refers to the
swapping of subsystems B and B′, followed by the decoder. 33

3.5 An illustration of one QAOA iteration, with an encoder. The final state
|ψout⟩ is guaranteed to be a part of the feasible subspace, which stands
for a valid solution. 34

3.6 The sub-circuit for preparing an initial state as the highest energy eigen-
state of the mixer Hamiltonian . 37

3.7 Two transitional diagrams for the encoder/decoder subroutines. The
transition on the left displays a case where the input stands for a valid
solution, whereas the figure on the right displays a non-valid solution.
Orange blocks represent the latent subsystem A, where the green and
red boxes represent the trash subsystem B. 39

3.8 The encoding algorithm and the ansatz for a 3-vertex setting. The
algorithm calculates the query u > v, and its result is stored in the final
ancillary qubit, which has been reset before. 41

56

List of Figures

3.9 Comparing the complexities between nlogn and log2(n − 1)! 42

4.1 Weighted Graph for the TSP with 3 cities. 45
4.2 Energy landscape across different configurations of β and γ. The values

on the bar indicates the energy, or similarly the expectation value of the
cost Hamiltonian. The figure on the left displays the energy landscape of
the QAOA ansatz with encoders, while the figure on the right illustrates
the same metric for the QAOA ansatz with problem specific mixer
Hamiltonians. 46

4.3 The running average plot of the evolution of loss using 3 different
optimizers for QAOA-E1. 47

4.4 The evolution of the validation accuracy of QAOA-E1, using the RM-
SProp optimizer. 48

4.5 Comparison of learning curves of QAOA-E and QAOA-M, using SPSA 48
4.6 Asymptotic complexity of the models with respect to their circuit depths. 49

57

List of Tables

2.1 Gate and Query complexities of different Hamiltonian Simulation meth-
ods [14, 15] . 9

2.2 Exemplary mappings from Boolean clauses into cost Hamiltonians [27]
[28] . 15

4.1 Comparing QAOA-E and QAOA-M in terms of their efficiencies using
several metrics. 49

58

Bibliography

[1] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization
algorithm,” arXiv preprint arXiv:1411.4028, 2014.

[2] S. Hadfield, Z. Wang, E. G. Rieffel, B. O’Gorman, D. Venturelli, and R. Biswas,
“Quantum approximate optimization with hard and soft constraints,” in Proceed-
ings of the Second International Workshop on Post Moores Era Supercomputing, 2017,
pp. 15–21.

[3] M. A. Nielsen and I. Chuang, Quantum computation and quantum information, 2002.

[4] E. G. Rieffel and W. H. Polak, Quantum computing: A gentle introduction. MIT Press,
2011.

[5] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, “Quantum computation by
adiabatic evolution,” arXiv preprint quant-ph/0001106, 2000.

[6] P. I. Bunyk, E. M. Hoskinson, M. W. Johnson, E. Tolkacheva, F. Altomare, A. J.
Berkley, R. Harris, J. P. Hilton, T. Lanting, A. J. Przybysz, et al., “Architectural
considerations in the design of a superconducting quantum annealing processor,”
IEEE Transactions on Applied Superconductivity, vol. 24, no. 4, pp. 1–10, 2014.

[7] H. Neven, “„when can quantum annealing win?“” Google Research Blog, vol. 8,
2015.

[8] V. S. Denchev, S. Boixo, S. V. Isakov, N. Ding, R. Babbush, V. Smelyanskiy,
J. Martinis, and H. Neven, “What is the computational value of finite-range
tunneling?” Physical Review X, vol. 6, no. 3, p. 031 015, 2016.

[9] C. Vu, “Ibm makes quantum computing available on ibm cloud to accelerate
innovation,” IBM News Room, 2016.

[10] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas,
S. Boixo, F. G. Brandao, D. A. Buell, et al., “Quantum supremacy using a pro-
grammable superconducting processor,” Nature, vol. 574, no. 7779, pp. 505–510,
2019.

[11] P. A. M. Dirac, “A new notation for quantum mechanics,” in Mathematical Pro-
ceedings of the Cambridge Philosophical Society, Cambridge University Press, vol. 35,
1939, pp. 416–418.

59

Bibliography

[12] A. Y. Kitaev, “Quantum computations: Algorithms and error correction,” Russian
Mathematical Surveys, vol. 52, no. 6, p. 1191, 1997.

[13] R. P. Feynman et al., “Simulating physics with computers,” Int. j. Theor. phys,
vol. 21, no. 6/7, 1982.

[14] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, “Simulating
hamiltonian dynamics with a truncated taylor series,” Physical review letters,
vol. 114, no. 9, p. 090 502, 2015.

[15] A. M. Childs and N. Wiebe, “Hamiltonian simulation using linear combinations
of unitary operations,” arXiv preprint arXiv:1202.5822, 2012.

[16] M. Suzuki, “General theory of fractal path integrals with applications to many-
body theories and statistical physics,” Journal of Mathematical Physics, vol. 32, no. 2,
pp. 400–407, 1991.

[17] D. Du and P. M. Pardalos, Handbook of combinatorial optimization. Springer Science
& Business Media, 1998, vol. 4.

[18] S. Yakovlev, “Convex extensions in combinatorial optimization and their ap-
plications,” in Optimization Methods and Applications, Springer, 2017, pp. 567–
584.

[19] S. Onn and U. G. Rothblum, “Convex combinatorial optimization,” Discrete &
Computational Geometry, vol. 32, no. 4, pp. 549–566, 2004.

[20] G. Kochenberger, J.-K. Hao, F. Glover, M. Lewis, Z. Lü, H. Wang, and Y. Wang,
“The unconstrained binary quadratic programming problem: A survey,” Journal
of combinatorial optimization, vol. 28, no. 1, pp. 58–81, 2014.

[21] A. Lucas, “Ising formulations of many np problems,” Frontiers in physics, p. 5,
2014.

[22] F. Glover, G. Kochenberger, and Y. Du, “A tutorial on formulating and using
qubo models,” arXiv preprint arXiv:1811.11538, 2018.

[23] S. Jansen, M.-B. Ruskai, and R. Seiler, “Bounds for the adiabatic approxima-
tion with applications to quantum computation,” Journal of Mathematical Physics,
vol. 48, no. 10, p. 102 111, 2007.

[24] B. W. Reichardt, “The quantum adiabatic optimization algorithm and local min-
ima,” in Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Com-
puting, ser. STOC ’04, Chicago, IL, USA: Association for Computing Machinery,
2004, pp. 502–510, isbn: 1581138520. doi: 10.1145/1007352.1007428. [Online].
Available: https://doi.org/10.1145/1007352.1007428.

60

https://doi.org/10.1145/1007352.1007428
https://doi.org/10.1145/1007352.1007428

Bibliography

[25] N. G. Dickson, M. Johnson, M. Amin, R. Harris, F. Altomare, A. Berkley, P. Bunyk,
J. Cai, E. Chapple, P. Chavez, et al., “Thermally assisted quantum annealing of a
16-qubit problem,” Nature communications, vol. 4, no. 1, pp. 1–6, 2013.

[26] D-wave sys, i. (2016a). d-wave developer guide.

[27] J. Choi and J. Kim, “A tutorial on quantum approximate optimization algorithm
(qaoa): Fundamentals and applications,” in 2019 International Conference on In-
formation and Communication Technology Convergence (ICTC), IEEE, 2019, pp. 138–
142.

[28] S. Hadfield, “On the representation of boolean and real functions as hamiltonians
for quantum computing,” ACM Transactions on Quantum Computing, vol. 2, no. 4,
pp. 1–21, 2021.

[29] R. Shaydulin and S. M. Wild, “Exploiting symmetry reduces the cost of training
qaoa,” IEEE Transactions on Quantum Engineering, vol. 2, pp. 1–9, 2021.

[30] C. Lemarchal, “Lagrangian relaxation,” in Computational combinatorial optimization,
Springer, 2001, pp. 112–156.

[31] D. P. Bertsekas, “Projected newton methods for optimization problems with
simple constraints,” SIAM Journal on control and Optimization, vol. 20, no. 2,
pp. 221–246, 1982.

[32] E. G. Birgin and J. M. Martinez, Practical augmented Lagrangian methods for con-
strained optimization. SIAM, 2014.

[33] M. Schluter and M. Gerdts, “The oracle penalty method,” Journal of Global Opti-
mization, vol. 47, no. 2, pp. 293–325, 2010.

[34] D. W. Coit, A. E. Smith, and D. M. Tate, “Adaptive penalty methods for ge-
netic optimization of constrained combinatorial problems,” INFORMS Journal on
Computing, vol. 8, no. 2, pp. 173–182, 1996.

[35] E. Rieffel, D. Venturelli, M. Do, I. Hen, and J. Frank, “Parametrized families
of hard planning problems from phase transitions,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 28, 2014.

[36] E. G. Rieffel, D. Venturelli, B. O Gorman, M. B. Do, E. M. Prystay, and V. N.
Smelyanskiy, “A case study in programming a quantum annealer for hard
operational planning problems,” Quantum Information Processing, vol. 14, no. 1,
pp. 1–36, 2015.

[37] I. Hen and M. S. Sarandy, “Driver hamiltonians for constrained optimization in
quantum annealing,” Physical Review A, vol. 93, no. 6, p. 062 312, 2016.

61

Bibliography

[38] I. Hen and F. M. Spedalieri, “Quantum annealing for constrained optimization,”
Physical Review Applied, vol. 5, no. 3, p. 034 007, 2016.

[39] V. Choi, “Minor-embedding in adiabatic quantum computation: I. the parameter
setting problem,” Quantum Information Processing, vol. 7, no. 5, pp. 193–209, 2008.

[40] S. Hadfield, Z. Wang, B. O’gorman, E. G. Rieffel, D. Venturelli, and R. Biswas,
“From the quantum approximate optimization algorithm to a quantum alternating
operator ansatz,” Algorithms, vol. 12, no. 2, p. 34, 2019.

[41] K. Srinivasan, S. Satyajit, B. K. Behera, and P. K. Panigrahi, “Efficient quantum
algorithm for solving travelling salesman problem: An ibm quantum experience,”
arXiv preprint arXiv:1805.10928, 2018.

[42] M. Schuld and N. Killoran, “Quantum machine learning in feature hilbert spaces,”
Physical review letters, vol. 122, no. 4, p. 040 504, 2019.

[43] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R.
McClean, K. Mitarai, X. Yuan, L. Cincio, et al., “Variational quantum algorithms,”
Nature Reviews Physics, vol. 3, no. 9, pp. 625–644, 2021.

[44] N. Nguyen and K.-C. Chen, “Quantum embedding search for quantum machine
learning,” IEEE Access, 2022.

[45] M. Schuld, “Supervised quantum machine learning models are kernel methods,”
arXiv preprint arXiv:2101.11020, 2021.

[46] C.-K. Li, R. Roberts, and X. Yin, “Decomposition of unitary matrices and quantum
gates,” International Journal of Quantum Information, vol. 11, no. 01, p. 1 350 015,
2013.

[47] A. Daskin and S. Kais, “Decomposition of unitary matrices for finding quantum
circuits: Application to molecular hamiltonians,” The Journal of chemical physics,
vol. 134, no. 14, p. 144 112, 2011.

[48] S. Khairy, R. Shaydulin, L. Cincio, Y. Alexeev, and P. Balaprakash, “Learning
to optimize variational quantum circuits to solve combinatorial problems,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 2367–
2375.

[49] S.-G. Hwang, “Cauchy’s interlace theorem for eigenvalues of hermitian matrices,”
The American Mathematical Monthly, vol. 111, no. 2, pp. 157–159, 2004.

[50] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A.
Aspuru-Guzik, and J. L. O brien, “A variational eigenvalue solver on a photonic
quantum processor,” Nature communications, vol. 5, no. 1, pp. 1–7, 2014.

62

Bibliography

[51] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, “The theory of
variational hybrid quantum-classical algorithms,” New Journal of Physics, vol. 18,
no. 2, p. 023 023, 2016.

[52] O. Kramer, D. E. Ciaurri, and S. Koziel, “Derivative-free optimization,” in Compu-
tational optimization, methods and algorithms, Springer, 2011, pp. 61–83.

[53] J. Larson, M. Menickelly, and S. M. Wild, “Derivative-free optimization methods,”
Acta Numerica, vol. 28, pp. 287–404, 2019.

[54] J. A. Nelder and R. Mead, “A simplex method for function minimization,” The
computer journal, vol. 7, no. 4, pp. 308–313, 1965.

[55] S. Khairy, R. Shaydulin, L. Cincio, Y. Alexeev, and P. Balaprakash, “Reinforcement-
learning-based variational quantum circuits optimization for combinatorial prob-
lems,” arXiv preprint arXiv:1911.04574, 2019.

[56] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, M. S. Alam, S. Ahmed, J. M. Arrazola,
C. Blank, A. Delgado, S. Jahangiri, et al., “Pennylane: Automatic differentiation of
hybrid quantum-classical computations,” arXiv preprint arXiv:1811.04968, 2018.

[57] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran, “Evaluating analytic
gradients on quantum hardware,” Physical Review A, vol. 99, no. 3, p. 032 331,
2019.

[58] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, “Quantum circuit learning,”
Physical Review A, vol. 98, no. 3, p. 032 309, 2018.

[59] M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe, “Circuit-centric quantum
classifiers,” Physical Review A, vol. 101, no. 3, p. 032 308, 2020.

[60] J. C. Spall, “An overview of the simultaneous perturbation method for efficient
optimization,” Johns Hopkins apl technical digest, vol. 19, no. 4, pp. 482–492, 1998.

[61] J. Spall, “Implementation of the simultaneous perturbation algorithm for stochas-
tic optimization,” IEEE Transactions on Aerospace and Electronic Systems, vol. 34,
no. 3, pp. 817–823, 1998. doi: 10.1109/7.705889.

[62] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Automatic dif-
ferentiation in machine learning: A survey,” Journal of Marchine Learning Research,
vol. 18, pp. 1–43, 2018.

[63] N. Ketkar, “Stochastic gradient descent,” in Deep learning with Python, Springer,
2017, pp. 113–132.

63

https://doi.org/10.1109/7.705889

Bibliography

[64] G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-Haim, D. Bucher,
F. J. Cabrera-Hernández, J. Carballo-Franquis, A. Chen, C.-F. Chen, et al., “Qiskit:
An open-source framework for quantum computing,” Accessed on: Mar, vol. 16,
2019.

[65] W. Espelage, F. Gurski, and E. Wanke, “How to solve np-hard graph problems on
clique-width bounded graphs in polynomial time,” in International Workshop on
Graph-Theoretic Concepts in Computer Science, Springer, 2001, pp. 117–128.

[66] C. Berge, “Graphs and hypergraphs,” 1973.

[67] G. G. Langdon Jr, Computer Design. Computeach Press, Incorporated, 1982.

[68] J. Romero, J. P. Olson, and A. Aspuru-Guzik, “Quantum autoencoders for efficient
compression of quantum data,” Quantum Science and Technology, vol. 2, no. 4,
p. 045 001, 2017.

[69] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning, 4.
Springer, 2006, vol. 4.

[70] H. Robbins and S. Monro, “A stochastic approximation method,” The annals of
mathematical statistics, pp. 400–407, 1951.

[71] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[72] G. Hinton. “Coursera neural networks for machine learning lecture 6.” (2018),
[Online]. Available: https://www.cs.toronto.edu/tijmen/csc321/slides/
lecture_slides_lec6.pdf (visited on 10/05/2022).

[73] A. Mayer, “Noisyopt: A python library for optimizing noisy functions.,” J. Open
Source Softw., vol. 2, no. 13, p. 258, 2017.

[74] S. Hochreiter, “The vanishing gradient problem during learning recurrent neural
nets and problem solutions,” International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, vol. 6, no. 02, pp. 107–116, 1998.

[75] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven, “Barren
plateaus in quantum neural network training landscapes,” Nature communications,
vol. 9, no. 1, pp. 1–6, 2018.

[76] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor,
T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum
computation,” Physical review A, vol. 52, no. 5, p. 3457, 1995.

64

https://www.cs.toronto.edu/tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/tijmen/csc321/slides/lecture_slides_lec6.pdf

Bibliography

[77] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,
J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson,
C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python,” Nature Methods,
vol. 17, pp. 261–272, 2020. doi: 10.1038/s41592-019-0686-2.

65

https://doi.org/10.1038/s41592-019-0686-2

	Abstract
	Contents
	Introduction
	Theoretical Background
	Quantum Computing
	Combinatorial Optimization Problems
	Solving Combinatorial Optimization Problems with Quantum Computing
	The Quantum Approximate Optimization Algorithm (QAOA)
	Preparing Cost and Mixer Hamiltonians
	Defining the Unitary Operators

	Specific QAOA Models for Constraint Problems

	Quantum Variational Algorithms
	Optimization

	Methodology
	Travelling Salesman Problem
	Problem Formulation

	The Novel QAOA Ansatz with an Encoder
	Encoder Structure

	Optimization

	Experimental Results
	Training
	Model Parameters

	Conclusion
	Discussion
	List of Figures
	List of Tables
	Bibliography

