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Introduction

The discovery of neutrino oscillations was a revolutionary milestone in the history of particle physics. Requiring
neutrinos to carry a mass, neutrino oscillations are not foreseen in the widely successful standard model of particle
physics. Even though neutrino oscillations are not sensitive to the absolute neutrino mass scale, they provide a
lower limit of 0.01 eV1. Moreover, it is known from β-decay experiments, that the neutrino mass must be tiny.
As of today, an upper bound of 0.8 eV could be determined, which is already more than five orders of magnitude
smaller than the mass of the next lightest fermion. The lightness of the neutrino brings up the fundamental ques-
tion of how neutrinos obtain their mass, since the associated mass generation mechanism appears to be different
from all other fermions in the standard model. The exact knowledge of the neutrino mass is of uttermost impor-
tance to identify the mass generation model that is realized in nature. Moreover, the neutrino mass is a crucial
input parameter in cosmology. Neutrinos are the most abundant massive particles in our universe: Each cm3 of
the universe is penetrated by 336 neutrinos from the big bang. Despite their small mass, neutrinos have a large
influence on the structure formation in the early universe due to their vast abundance.

The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed to determine the absolute neutrino-mass scale
via the kinematics of molecular tritium β-decay with an unprecedented sensitivity of 0.2 eV at 90 % confidence
level after five calendar years. This is achieved in a neutrino-mass model independent way by measuring the inte-
grated β-electron spectrum in the close vicinity of the tritium endpoint at E0 = 18.57keV. The effective electron
antineutrino mass m2

ν leads to a reduction of the maximal available electron energy and to a slight distortion of the
spectral shape, that is most prominent in the endpoint region. To obtain a considerable m2

ν sensitivity, two cruxes
have to be addressed: First, only a small fraction of β-electrons are emitted at the highest energies. Second, the
imprint of m2

ν in the experimental spectrum is minuscule. The KATRIN experiment tackles these challenges by
employing an ultra-stable high-luminosity windowless gaseous tritium source in combination with a spectrometer
with an eV-scale energy resolution at a low background level O (0.1 cps). Additionally, a comprehensive under-
standing of the experimental functionality and of all systematic uncertainties is required.

Furthermore, the KATRIN experiment is sensitive to sterile neutrinos with an associated fourth mass eigenstate m4
at the eV mass scale. Sterile neutrinos are a minimal extension of the standard model, forming the right-handed
counterpart to the known left-handed neutrino flavors. Due to their handiness, sterile neutrinos do not participate
in any fundamental interaction except for gravitation. Thanks to their mixing with the known active neutrinos,
their existence can be probed in laboratory experiments. Experimentally, eV-scale sterile neutrinos are well moti-
vated by several anomalies observed in short-baseline neutrino oscillation experiments. The signature of a sterile
neutrino in β-decay experiments is a kink-like spectral distortion at electron energies around E0 −m4.

In spring and fall 2019, the KATRIN experiment recorded its first two science runs, already collecting more than
five million signal electrons in the region of interest. The objective of this thesis is a comprehensive analysis of the
first two measurement campaigns in terms of the neutrino mass and the existence of light sterile neutrinos.

This thesis is structured as follows: Chapter 1 provides an overview of the key aspects of neutrino physics. The par-
ticular focus is put on the neutrino-mass determination with the so-called kinematic approach via single β-decay.
Chapter 2 describes the working principle of the KATRIN experiment in detail. In order to perform a high-level
data analysis, realistic models of the molecular tritium β-decay and the experimental response are indispensable.
Both were implemented in the analysis framework Samak, which was largely developed in this and the author’s
previous work [1]. With accumulating statistics, the model required continued revision. In view of the increasing

1Natural units are used throughout this thesis, i.e. c = 1
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precision, effects become relevant, that only have a tiny impact on the experimental spectrum, such as the energy
and angular dependence of the inelastic scattering probabilities. Chapter 3 describes the analysis software and
the analysis strategy. Moreover, a large selection of statistical methods for parameter inference, limit calculation
and sanity checks were implemented and adapted for the use in KATRIN and subsequently applied to data and
simulation. Furthermore, the influence of systematic uncertainties on the model spectrum, for example the uncer-
tainty on the source potential distribution, is evaluated with extensive Monte Carlo simulations and incorporated
in the chi-squared analysis with the covariance matrix approach. The individual systematic effects are addressed
in detail in chapter 4. The following two chapters (5 and 6) introduce the reader to the first and second measure-
ment campaigns of the KATRIN experiment. During this work, the data taking was supported by various near-time
analyses to monitor the global system stability. The characteristic features of the respective measurement cam-
paigns, such as the time evolution of the column density or the observed background rate over-dispersion, are
summarized. The blinding protocol, crucial to guarantee a bias-free analysis, is presented in chapter 7. Chapters
8 and 9 are dedicated to the neutrino-mass analyses of the first and second measurement campaigns, respectively.
The best-fit results are shown and upper limits on mν are derived. Additionally, numerous studies are carried out
to test the robustness of the analysis. The combined analysis of both data sets is presented in chapter 10. The
same data sets are further on analyzed with respect to light sterile neutrinos in chapter 11. Exclusion contours
for different analysis cases are presented and compared to results from existing experiments. Furthermore, many
complementary analyses, for example to investigate the correlation between active and sterile decay branch, are
carried out. In chapter 12, the thesis concludes with a summary.
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Chapter 1

Neutrino physics

This chapter gives an introduction to neutrino physics. It is structured as follows: Section 1.1 provides a brief
overview of the postulation and the discovery of the neutrino. Thereafter, the groundbreaking discovery of neu-
trino oscillations and their theoretical description are addressed in section 1.2. In order for neutrino oscillations
to occur, neutrinos must possess a mass. Possible approaches to determine the absolute neutrino-mass scale are
presented in section 1.3. At last, the possible existence of additional sterile neutrinos and their experimental
signatures are discussed in section 1.4.

1.1 Postulation and discovery of the neutrino

1.1.1 Postulation

In the beginning of the 20th century when radioactivity was first being explored and the nuclear structure was
mostly unknown, James Chadwick made an observation that puzzled the physicists of his time. In 1914, he
measured the energy spectrum of β-electrons, expecting a mono-energetic line based on the assumed two-body
nature of β-decay. However, a continuous spectrum was observed instead [2]. To resolve the seemingly violation
of energy conservation, Wolfgang Pauli postulated in 1930 the existence of a neutral spin 1

2 particle, that would
be produced alongside the electron and that would carry the missing part of the decay energy [3].

n→ p+ e− + ν̄e. (1.1)

Pauli named the particle "neutron" and restricted it to have at most 1 % of the mass of a proton. In 1934, Enrico
Fermi derived the theoretical description of β-decay [4], which is still used by modern day experiments to predict
the shape of β-spectra. Fermi changed the name of Pauli’s hypothetical particle to "neutrino", as the comparably
heavy neutron, as it is known today, had been already discovered two years earlier. By comparison with the
available data, Fermi concluded that the neutrino must be either massless or lighter than an electron.

1.1.2 Discovery of the electron neutrino

As neutrinos interact only very rarely with other particles, it took 26 years since their postulation to confirm
their existence experimentally. Carrying no charge, neutrinos only participate in the weak interaction, which has
a characteristic1 small cross section in the order of σ ≈ 10−43 cm2. This circumstance has earned neutrinos the
nickname "ghost particles". In principle, neutrinos also interact gravitationally due to their nonzero mass. However,
in the context of laboratory-based experiments, this effect is negligible.

The first time neutrinos were detected in 1956 by Reines and Cowan at the Savannah River site in the United
States [5]. They exposed large waters tanks to a high flux of electron antineutrinos from a nearby nuclear reactor.

1Considering neutrinos with E = O (MeV), e.g. from a nuclear reactor.
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Chapter 1. Neutrino physics 1.2. Neutrino oscillations

Occasionally, an electron antineutrino interacts with a proton from the water, producing a neutron and a positron
during the process of inverse β-decay

ν̄e + p→ n+ e+. (1.2)

The positron annihilates immediately with a surrounding electron, emitting two back-to-back gamma rays. The
gamma rays were detected with a liquid scintillator, which was filled in the inter-space between the water tanks.
To distinguish the neutrino-induced positrons from background events, the neutron had to be reconstructed as
well. The neutron is moderated in the water and eventually captured on cadmium, which was dissolved in form
of cadmium chloride in the water tanks. The neutron capture process is accompanied by the emission of several
gamma rays. The following scintillation light is delayed with respect to the prompt annihilation signal by the
neutron thermalization timescale of a few µs. The coincidence of prompt and delayed scintillation light pulses
served as distinctive signature of an electron antineutrino interacting with the detector.

1.1.3 Discovery of muon and tau neutrinos

A second neutrino kind, the muon neutrino νµ, was discovered in 1962 by Ledermann, Schwartz and Steinberger
at the Brookhaven Alternating Gradient Synchrotron (AGS) [6]. They investigated the pion decay reactions

π−→ µ− + ν̄µ and π+→ µ− + νµ (1.3)

with a spark chamber. As no electronic showers were observed, they concluded that the produced neutrinos must
be intrinsically different to from the known electron flavor.

The third and last kind of neutrino in the standard model, the tau neutrino ντ, was discovered in 2000 by the
DONUT experiment at Fermilab [7]. A high-energy proton beam was directed on a tungsten target inducing a
particle shower. In some rare cases, subsequent decays lead to the production of τ leptons, which in turn decayed
into ντ. A massive shielding was placed between the primary interaction point and an emulsion lead detector to
remove all particles except the neutrinos from the beam. Propagating unhindered through the shielding, the tau
neutrinos were finally measured through charged current interactions in the lead. The produced τ would only
leave a short track in the detector, because of its short decay length of only 2 mm. The distinct signature was a
track with a kink-like structure, which marks the τ decaying into other particles.

The picture of three generations of neutrinos was already established in 1989 by measurements of the Z0 resonance
by the ALEPH experiment at the Large Electron Positron (LEP) collider CERN [8]. Within the standard model, the
Z0 boson is expected to decay into all fermion species, that are lighter than Z0/2, with comparable probability
as long as the respective decay channel is energetically allowed. The decay into neutrinos cannot be observed
directly. Thus, the associated partial decay width is invisible Γinv = NνΓν. However, it can be reconstructed through
comparison of the visible partial decay width Γvis, corresponding to the Z0 decay into charged leptons and quarks,
to the total decay width ΓZ = Γinv + Γvis. The more generations of neutrino flavors exist, the larger ΓZ is compared
to Γvis. Latest result of several LEP experiments yield Nν = 2.984± 0.008 [9], confirming exactly three kinds of
light neutrinos, that participate in the weak interaction.

1.2 Neutrino oscillations

The discovery of neutrino oscillations around the turn of the millennium fundamentally changed the picture of
particle physics. Neutrinos were observed to change their flavor while propagating from source to experiment.
This mechanism is only possible if neutrinos possess a mass, which is not foreseen in the widely recognized stan-
dard model of particle physics.

The theoretical concept of neutrino oscillations is briefly revised in section 1.2.1. Thereafter, the solar neutrino
problem, which triggered a huge experiment effort to search for neutrino oscillations in the mid-1960s, is ad-
dressed in section 1.2.2 alongside the solution found by the SNO experiment in 2001. Moreover, the discovery of
atmospheric neutrino oscillation in 1998 by the Super-Kamiokande experiment is presented in section 1.2.2.1.
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1.2. Neutrino oscillations Chapter 1. Neutrino physics

1.2.1 Theoretical description

The neutrino oscillations were first introduced by Pontecorvo in 1958 [10]. Initially, his theory proposed neutrino-
antineutrino oscillations. Later, he reformulated it to neutrino-flavor oscillations in view of the solar neutrino
problem [11]. In parallel, Maki, Nakagawa and Sakata developed a formalism that described the mixing between
massive neutrinos in 1962 [12].

Integral part of the neutrino oscillation theory is the fact that the neutrino-flavor eigenstates do not coincide with
the neutrino-mass eigenstates. However, |νe〉 , |νµ〉 and |ντ〉 can each be expressed as a linear combination of the
mass states |ν1〉 , |ν2〉 and |ν3〉:





|νe〉
|νµ〉
|ντ〉



=





Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3









|ν1〉
|ν2〉
|ν3〉



 . (1.4)

The mixing between flavor and mass eigenstates is determined by the unitary transformation matrix U , which is
named after its creators: Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. It is often stated in its factorized in
the form

U =





1 0 0
0 c23 s23
0 −s23 c23



 ·





c13 0 s13 e−iδD

0 1 0
−s13 e−iδD 0 c13









c12 s12 0
−s12 c12 0

0 0 1









eiδM1 0 0
0 eiδM2 0
0 0 1



 (1.5)

with si j = sin(θi j) and ci j = cos(θi j). The PMNS matrix is characterized by three mixing angles θ and one complex
Dirac phase δD, which can cause CP violation. In case neutrinos are Majorana particles, two additional Majorana
phases δM appear, which are relevant for neutrinoless double β-decay.

As the mixing between first and third generation θ13 is found to be small, it is often instructive to use a simplified
two-flavor oscillation model. Considering, for example, the oscillation between |νe〉 and |νµ〉, equation (1.5) can
be simplified to

�

|νe〉
|νµ〉

�

=
�

cosθ sinθ
− sinθ cosθ

��

|ν1〉
|ν2〉

�

(1.6)

with the associated mixing angle θ . In weak interaction processes, neutrinos are always produced in flavor eigen-
states. An electron neutrino, for example, produced at a reference time t = t0 can be written as

|ν (t = t0)〉= cosθ |ν1〉+ sinθ |ν2〉 . (1.7)

After the interaction, the mass eigenstates are the physical states that propagate through space with a definite
energy Ei and momentum pi . Thus, the neutrino evolves as

|ν (t > t0)〉= cosθe−iE1 t |ν1〉+ sinθe−iE2 t |ν2〉 . (1.8)

Since the two mass eigenstates have different energy eigenvalues E1 6= E2, the mass eigenstates soon propagate
out of phase and the neutrino has no longer a defined flavor. However, if the neutrino is experimentally detected
after some time t1, it is projected onto a flavor eigenstate, which couples to the weak interaction. The survival
probability is given by the modulus square:

Psurv(t1) = | 〈ν (t1)|νe〉 |2 (1.9)

⇒ Psurv(t1) = 1− sin2(2θ ) sin2
�

(E2 − E1) t1

4

�

. (1.10)

Considering ultra relativistic neutrinos, their energies can be approximated as

Ei =
q

p2
i +m2

i = pi

√

√

√

1+
m2

i

p2
i

Taylor
≈ pi +

m2
i

2pi
≈ E +

m2
i

2E
(1.11)
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and the survival probability can be rewritten as

⇒ Psurv(t1) = 1− sin2(2θ ) sin2

�

∆m2 L
4E

�

(1.12)

with the traveled distance L and the neutrino mass splitting ∆m2 = m2
2 −m2

1 [1, 13]. The survival probability is
depicted in figure 1.1 for the example of νe → νµ. It illustrates, that the amplitude of the neutrino oscillation is
determined by the mixing angle while the oscillation frequency is given by the mass splitting ∆m2.
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Figure 1.1: Two-flavor neutrino oscillations for νe → νµ. The survival probability as a function of L/E is calculated
according to equation (1.12). The solar oscillation parameters are used: sin2(θ ) = 0.307 (sin2(2θ ) = 0.851) and
∆m2 = (7.53± 0.18)× 10−5 eV2.

1.2.2 Solar neutrino problem

The sun emits vast amounts of electron neutrinos, creating an immense flux of 60 billion particles per cm2 per
second on earth [14]. The neutrinos are exclusively produced in electron flavor through nuclear fusion processes
in the dominant pp-chain and the sub-dominant CNO cycle. Depending on the involved fusion isotopes, neutrino
energies up 18 MeV can be reached.

For the first time solar neutrino neutrino were detected in 1970 by the Homestake experiment [15, 16]. Build
underground in a gold mine in South Dakota under the leadership of Raymond Davis Jr., the experiment followed
a radiochemical detection strategy with 600 t of perchloroethylene. The common dry-cleaning fluid is rich in the
chlorine isotope 37Cl, serving as target for neutrino capture

νe +
37Cl→ 37Ar+ e− (1.13)

with an energy threshold of 0.8 MeV. The Argon would subsequently decay via electron capture back into chlorine
with a relatively short half-life time of only 35 days. Every few weeks, the 37Ar isotopes were extracted and their
quantify was determined with a proportional counter. The deduced neutrino flux could only account for a third
of the prediction from the solar model.

When the result was confirmed by other experiments, such as GALLEX, SAGE and Kamiokande, the missing neu-
trino flux became famous as the solar neutrino problem. All of the aforementioned experiments were almost
exclusively sensitive to the electron flavor, because solar neutrinos do not have enough energy to produce muon
or tau leptons in charged current interactions. The solar neutrino problem could only be resolved in 2001 by
the Sudbury Neutrino Observatory (SNO) [17], which was the first experiment that was sensitive to all neutrino
flavors.

The SNO experiment, situated in an underground mine in Canada, detected solar neutrinos through their inter-
action with 1000 t of heavy water D2O. The experiment was able to observe neutrinos through three different
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channels, namely elastic scattering off electrons (equation (1.14)) as well as charged current (equation (1.15))
and neutral current (equation (1.16)) interactions with deuterium. The last channel, in which the deuterium
nucleus is dissociated, is equally likely for all neutrino flavors.

νx + e−→ νx + e− CC for νe, NC for all flavors (1.14)

νe + d → p+ p+ e− CC for νe (1.15)

νx + d → p+ n+ e− NC for all flavors (1.16)

Each channel produced a specific signal in form of Cherenkov light or Gamma rays, which were detected by a
setup of 9600 photomultiplier tubes (PMTs). Finally, the total neutrino flux and the electron neutrino flux could
be determined separately. While the electron neutrino flux was consistent with previous measurements, the total
neutrino flux matched the expectation of the solar model. Arthur McDonald, the experiment’s director, and his
colleagues concluded that the electron neutrinos produced in the sun must change their flavor on their way to
earth by the mechanism of neutrino oscillations.

Solar neutrino experiments are especially sensitive to the mixing between first and second generation. Latest
results are [9]:

∆m2
12 = (7.53± 0.18)× 10−5 eV2, sin2(θ12) = 0.307± 0.013. (1.17)

1.2.2.1 Atmospheric neutrino oscillations

The Super-Kamiokande experiment is an underground neutrino observatory in the Kamioka mine in Japan. Study-
ing electron and muon neutrinos created in the atmosphere, it achieved the first experimental confirmation of
neutrino oscillations in 1998.

The earth atmosphere is constantly hit by cosmic rays, producing large amounts of secondary particles in form
of hadronic showers. Subsequent decays of charged pions lead to the production of neutrinos and antineutrinos
with a flavor composition of νµ : νe = 2 : 1. The neutrino energies range from MeV up to PeV.

The Super-Kamiokande experiment comprises a 50 kt tank with ultra-pure water, which is surrounded by 11 146
PMTs. Neutrinos and antineutrinos can be detected by charged current interactions with water molecules

νx + n→ p+ `x and ν̄x + p→ n+ ¯̀
x . (1.18)

The produced leptons `x emit Cherenkov light, which is used to reconstruct energy and direction of the incoming
neutrinos. The direction provides information on the neutrino flight distance L, that is crucial to calculate the
expected oscillation probability according to equation (1.12). Vertically upward going neutrinos travel much
longer distances (L ≈ 13 000km) than vertically downward going neutrinos (L ≈ 15km), because the former
have to traverse the earth in order to reach the detector. Moreover, the lepton type and the associated neutrino
flavor can be distinguished from the structure of the Cherenkov ring: Electrons produce fuzzy light rings, because
they scatter off the ambient water molecule while they propagate. As muons interact only little, they create sharp
light rings. Tau neutrinos could initially not be detected, due to the short half-life of the τ.

Events, that were assigned to νµ, exhibited a significant L/E dependence. Moreover, the ratio of νµ to νe events was
much smaller than the expected. Both features could be explained by two-flavor neutrino oscillations νµ→ ντ. As
tau neutrinos could not be reconstructed, the oscillation was observed in form of νµ disappearance. Latest results
on the atmospheric mixing parameters are [9]:

∆m2
32 = (2.453± 0.033)× 10−3 eV2, sin2(θ23) = 0.546± 0.021 for normal ordering, (1.19)

∆m2
32 = (−2.536± 0.034)× 10−3 eV2, sin2(θ23) = 0.539± 0.022 for inverted ordering. (1.20)

Events, reconstructed as νe, did not show a L/E dependence, i.e. no signature of neutrino oscillations. Due to
the small mass splitting ∆m12 ≈ 8× 10−5 and relatively high neutrino energies, the oscillation νe → νµ occurs
on length scales of L ≈ 105 km, that are not accessible for atmospheric neutrino experiments. Thus, electron
neutrinos reach the detector before they have oscillated. Even though the oscillation νe → ντ occurs on accessible
length scales with ∆m2

31 ≈∆m2
32, it could not be detected with Super-Kamiokande due to the small mixing angle

sin2(θ13) = (2.20± 0.07)× 10−2 [9].
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1.3 Neutrino mass

Neutrino oscillations provide the possibility to infer the neutrino mass splittings∆m2
i j to a high precision. However,

they are not sensitive to the absolute neutrino mass scale, e.g. the mass of the lightest mass eigenstate. Currently,
three complementary approaches are being explored: Cosmology, neutrinoless double β-decay and the kinematic
study of weak interaction processes such as single β-decay. Each method is addressed in the following.

1.3.1 Cosmology

The evolution of the universe from the Big Bang to its present state is described with the ΛCDM model. During
the Big Bang, vast amounts of ultra-relativistic neutrinos and antineutrinos, so-called relic neutrinos, have been
produced. Even though neutrinos are known to interact only very little, they have a large influence on structure
formation processes in the evolution of the universe due to the extraordinary abundance. Having a large free-
streaming length, relic neutrinos act as hot dark matter and wash out small scale structures. The observation of
anisotropies in the cosmic microwave background in addition to large-scale structures (LSS) allows to infer the
sum of the neutrino mass eigenstates

mtot =
3
∑

i=1

mi . (1.21)

The current upper limits at 95 % confidence level (C.L.) lie between mtot ≤ 0.087 eV and mtot ≤ 0.54 eV, depending
on the considered data set and model parameters. The large variation stems from the model dependence of the
cosmological approach. Some parameters, such as the Hubble constant and the number of neutrino species, are
strongly correlated. Thus, different parameter combinations may mimic the same observation.

1.3.2 Neutrinoless double β-decay

Double β-decay, abbreviated as 2νββ, is the process of two simultaneous β-decays in the same nucleus

2n→ 2p+ 2e− + 2ν̄e. (1.22)

For some isotopes single β-decay energetically forbidden. Some of these isotopes may decay via 2νββ instead.
This is illustrated in figure 1.2 (left) at the example of the Germanium isotope 76Ge. As the binding energy of
76As is higher than the one of 76Ge, the latter cannot undergo single β-decay. However, the double decay to 76Se
is kinematically allowed. Since its first experimental confirmation in 1987 [18], 2νββ has been observed for 12
different isotopes. Being a second order weak nuclear process, 2νββ is very unlikely, which is mirrored by the
extremely large half-life times between 1018 and 1022 years [19].

Neutrinoless double β-decay, abbreviated as 0νββ, is a hypothetical decay mode, in which no physical antineu-
trinos are emitted

2n→ 2p+ 2e−. (1.23)

Instead, a virtual antineutrino produced in one of the β-decays is absorbed at the other vertex by a second neutron.
As this process violates lepton number conversation by two units, it is not foreseen in the Standard model of particle
physics. Neutrinoless double β-decay requires neutrinos to be so-called Majorana particles and to carry a mass.
Majorana’s theory states that there is no fundamental difference between neutrinos and antineutrinos, except
from their chirality. Antineutrinos are produced in weak interaction processes as right-handed particles. However,
since neutrinos possess a nonzero mass, they have a small left-handed component which scales with mββ/E.
Their absorption at the second vertex can only occur, if the right-handed antineutrino changes its handiness and
becomes a left-handed neutrino. The larger the neutrino mass, the larger its left-handed component is and the
more likely it is for 0νββ to occur. The mass that influences the half-life time is the coherent sum over all neutrino
mass eigenstates, weighted by the respective entries of the PMNS matrix

mββ = |
3
∑

i=1

U2
eimi |. (1.24)
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By experimentally measuring the half-life time of 0νββ-decaying isotopes, the absolute neutrino mass scale can be
inferred. However, the translation between half-life time and mββ requires knowledge of the associated nuclear
matrix element. To account for the theoretical uncertainty on the former, experiments usually provide a range of
upper limits on mββ using different nuclear matrix elements. Moreover, due to the complex phases in the PMNS
matrix, cancellations are possible in equation (1.24).

The experimental signature of 0νββ, illustrated in figure 1.2 (right), is a sharp peak at the full decay energy. Its
amplitude provides information on the half-life time of the decaying isotope. As of today, 0νββ has not been
observed. The most stringent upper limits on the neutrino mass stem from the KamLAND-Zen experiment using
136Xe with mββ < 61−165meV [20] and from the GERDA experiment using Ge with mββ < 79−180meV [21].

Figure 1.2: Left: Mass excess or equivalently binding energy for isotopes with A= 76. It is differentiated between
isotopes with even numbers of protons and neutrons ("even-even") and isotopes with odd proton and neutron
numbers ("odd-odd"). In general, odd-odd isotopes have larger binding energy than even-even isotopes with the
same proton number Z . Energetically allowed single β-decay are highlighted as green arrows. As single β-decay
is energetically forbidden for Germanium (dotted line), the isotope can only decay via double β-decay to Selenium
(violet arrow). Right: Energy spectra of double β-decay (2νββ) and neutrinoless double β-decay (0νββ). While
the standard double β-decay has a continuous electron energy spectrum, neutrinoless double β-decay manifests
itself as a monoenergetic peak at the full decay energy. Taken from [13].

1.3.3 Single β-decay

High-precision measurements of single β-decay or electron capture are considered to be the most direct way to
determine the absolute scale of the neutrino mass. As it requires no prior assumption on the nature of the neutrino
(Dirac vs. Majorana), it is considered to be model-independent. In the following, the neutrino-mass determination
using single β-decay is discussed in detail.

Nuclear β-decay is a radioactive decay, that is mediated by the weak interaction. A neutron decays into a proton
under the emission of an electron and an electron antineutrino as stated in equation (1.1). The total energy Q,
that is released in the decay, is given by the mass difference of the nucleus in the initial state A

Z X and the nucleus
in the final state A

Z+1 X′ and the produced electron

Q = m(AZ X)−m( A
Z+1 X′)−me. (1.25)

The mass of the neutrino is assumed to be zero in the definition of the Q-value. The decay energy is distributed
among the decay products. The daughter nucleus receives the recoil energy Erec. If it is bound in a molecular
structure, it can also obtain additional energy through vibrational and rotational excitation as well as through
excitation of the shell electrons. This aspect is addressed in detail in section 2.2.1. The remaining energy, called
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endpoint E0, is shared between the electron and the electron antineutrino

E0 =Q− Erec = E + Eν (1.26)

with E being the kinetic electron energy and Eν being the total neutrino energy. This equation underlines, that
the energies of the leptons are related by energy conservation. Even if the electron antineutrino is created without
any kinetic energy, the energy available to the electron will differ from E0 by the rest mass of the neutrino.

The definition of the latter, however, requires further explanation. As ν̄e is created in the electron flavor eigen-
state, it has no specific mass. Instead, using the formalism of quantum mechanics, |ν̄e〉 can be described as a
superposition of the three known neutrino mass eigenstates |mi〉 weighted by the respective entries in the PMNS
matrix Uei

|ν̄e〉=
3
∑

i=1

Uei |mi〉 . (1.27)

Evaluation of the expectation value yields the probability |Uei |2, that the antineutrino carries a rest mass mi . As the
neutrino mass splittings ∆m2

i j are known to be small compared to the sensitivity of any existing experiment [9],
an effective electron antineutrino mass mν is defined in equation (1.28). Further on, mν is simply referred to as
neutrino mass.

mν =

√

√

√

3
∑

i=1

|Uei |2 m2
i . (1.28)

The energy distribution dΓ
dE of the β-decay electrons, visualized in figure 1.3, can be calculated by Fermi theory [22]

dΓ
dE
(E, m2

ν) =
G2

F · cos2 θc

2π3
· |Mnucl.|2 · F(Z , E) · (E +me) ·

q

(E +me)2 −m2
e (1.29)

· (E0 − E)
q

(E0 − E)2 −m2
ν ·Θ(E0 − E −mν).

The formula contains several fundamental constants and kinematic parameters, namely:

GF : Fermi constant E: Electron kinetic energy
θc: Cabibbo angle me: Electron mass

Mnucl.: Nuclear matrix element E0: Endpoint energy (defined in equation (1.26))
F(Z , E): Fermi function of the daughter nucleus mν: Neutrino mass (defined in equation (1.28))

Z: Atomic number Θ: Heaviside step function

The Heaviside step function ensures energy conservation, as it requires the total neutrino energy Eν = E0−E ≥ mν

to be larger than or equal to the neutrino mass. The nuclear matrix element determines the coupling strength be-
tween initial and final states of the system. In case of a super-allowed β-decaying isotope, such as tritium,Mnucl.
is energy-independent in the endpoint region and thus has no influence on the shape of the spectrum. The Fermi
function accounts for the Coulomb interaction between outgoing decay electron and the daughter nucleus2. As
both Mnucl. and F are independent from the neutrino mass, the influence of m2

ν on the energy spectrum stems
only from the phase space term (E0 − E)

Æ

(E0 − E)2 −m2
ν.

In principle, m2
ν could be determined by comparing the measured and the expected endpoint energy. However, as

both cannot be determined with sufficient precision, the spectral shape in the vicinity of the endpoint has to be
studied. The spectral distortion caused by m2

ν is illustrated in figure 1.3 (b) for several hypothetical m2
ν values.

Relative to the rate, it is most prominent in the close vicinity of the endpoint. However, to fraction of β-electrons,
that lie within the last 40 eV below E0 is as small as 10−8. At the time of writing, the KATRIN experiments provides
the most stringent upper limit mν ≤ 0.8 eV2 at 90 % C.L. [23].

As the KATRIN experiment uses molecular tritium at nonzero temperature, the theoretical electron energy spec-
trum in equation (1.29) has to be revised. All KATRIN-specific modifications of the decay spectrum are addressed
in section 2.2.1.

2In the case of tritium β-decay, F(Z = 2, E) has to be used.
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Figure 1.3: Differential electron energy spectrum of the tritium isotope in arbitrary units (a.u.). They spectrum
is calculated according to equation (1.29) with Z = 2. (a): The spectrum is shown in the complete energy range
up to the tritium endpoint of E0 = 18.6keV. (b): The imprint of the effective electron antineutrino mass mν

(equation (1.28)) on the spectrum is shown for different hypothetical m2
ν values. The energy range is limited to

the endpoint region, in which the relative spectral distortion is most prominent. The neutrino-mass imprint on
the experimental spectrum, including a realistic background level, is discussed in appendix F.3.

1.4 Sterile neutrinos

The standard model of particle physics foresees three active neutrino generations; νe, νµ and ντ. Based on the
measured width of the Z0 resonance, it is indeed well established that there are only three light neutrinos, that
interact via the weak interaction [8]. However, several minimal extensions of the standard model propose at least
one additional neutrino species νs, so-called sterile neutrinos, which do not take part in the weak interaction [24].
In contrast to the known active flavors, the hypothetical neutrino species is associated with right-handed neutrinos.
In this work the simplest case with only one additional sterile neutrino, so-called 3ν+1 framework, is considered.

The sterile neutrino flavor is accompanied by a fourth mass eigenstate m4, which mixes to the active flavors
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. (1.30)

with the extended 4× 4 unitary PMNS matrix. As long as the mixings of the fourth mass eigenstates to the active
flavors are relatively small, sterile neutrinos can be realized over a wide range of possible masses [25].

This work investigates the existence of sterile neutrinos at the eV mass scale, which are motivated by accumulating
anomalies in short-baseline neutrino oscillation experiments. In the following, the experimental signatures of light
sterile neutrinos are addressed in section 1.4.1. The experimental hints are summarized in section 1.4.2.

1.4.1 Signature of sterile neutrinos

Even though sterile neutrinos do not participate in the weak interaction, they still leave experimental footprints
due to their mixing with the active flavors. In the following, different ways to search for sterile neutrinos are
briefly presented. A comprehensive overview can be found for example in [26].

Neutrino oscillations As worked out in section 1.2.1, the neutrino oscillation period is given by the mass differ-
ence (L/E)osc∝ 1/∆m2. Neutrino oscillations involving eV-scale sterile neutrinos have much shorter wavelengths
than the oscillations among the active flavors, since m2

4� m2
1, m2

2, m2
3 [9]. For this reason, sterile neutrino oscilla-

tion experiments are located at a short distance from their neutrino source. Experiments studying low-energetic
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neutrinos, e.g. from a nuclear reactor, have typical baselines of a few ten meters. The typical baseline for ex-
periments that investigate high-energetic neutrinos, e.g. from an accelerator, is a few hundred meters. As the
oscillation between the active flavors has not yet developed at such short distances, the active-to-sterile oscillation
can be well described with the two-flavor oscillation formula of equation (1.12).

If the experimentally accessible L/E ratio is much larger than the oscillation length L/E � (L/E)osc, the oscilla-
tory pattern cannot be resolved anymore by the detector. Instead, an overall suppression of the flux of the original
neutrino flavor can be observed. In this case, only lower limits on ∆m2

i4 can be set with i ∈ [1,2, 3].

Neutrino-less double β-decay If neutrinos are Majorana particles and 0νββ is triggered by light Majorana
neutrino exchange, m4 will contribute to the effective Majorana mass

mββ = |
4
∑

i=1

U2
ei mi |

= |(1− |Ue4|2)
3
∑

i=1

U2
eimi + |Ue4|2eiγm4|.

(1.31)

with a possible third Majorana phase γ ∈ [−π,π]. If the active-neutrino contribution to mββ was determined by
other experiments, e.g. direct searches or cosmology, limits on mββ can be translated into constraints on sterile
neutrinos in terms of m2

4 and |Ue4|2.

Single β-decay In single β-decay, antineutrinos are produced with electron flavor. Given the mixing between
electron flavor and the fourth mass eigenstate is nonzero, the electron antineutrino comprises a small component
of the fourth mass eigenstate. Thus, the β-decay spectrum in equation (1.29) has to be extended by an additional
decay branch associated with m4. In the (3ν+1)-framework, the β-electron energy spectrum is the superposition
of active and sterile branch

dΓ
dE
(E, m2

ν, m2
4, |Ue4|2) = (1− |Ue4|2) ·

dΓ
dE
(E, m2

ν)
︸ ︷︷ ︸

Active branch

+ |Ue4|2 ·
dΓ
dE
(E, m2

4)
︸ ︷︷ ︸

Sterile branch

. (1.32)

In accordance with energy conservation, the sterile branch emerges only at electron energies E ≤ E0 −m4, which
results in a kink-like spectra distortion. The experimental signature is visualized in 1.4 at the example of a sterile
neutrino with m2

4 = (20eV)2 and |Ue4|2 = 0.2. The mixing of the electron flavor to the fourth mass eigenstate
|Ue4|2, hereinafter abbreviated as active-to-sterile mixing, is largely exaggerated for illustration.

1.4.2 Sterile-neutrino anomalies

Since the 1990s several hints for the existence of sterile neutrinos emerged in short-baseline neutrino oscillation
experiments. The so-called sterile-neutrino anomalies are discussed one by one in the following.

Reactor antineutrino anomaly The reactor antineutrino anomaly (RAA) describes the discrepancy between
measured and predicted electron antineutrino flux from nuclear reactors at short baseline (L < 100 m) [27].

Evidently, this measurement requires knowledge of the initial ν̄e spectrum, that is emitted by the nuclear reactor.
Electron antineutrinos are produced in nuclear reactors by β-decaying fission products of the nuclear fuel, namely
235U, 238U, 239Pu and 241Pu. The total ν̄e flux, which is a superposition of thousands of β-decay branches, is pre-
dicted with a semi-empirical strategy: In a first step, the electron β-decay spectra are measured experimentally,
by irradiating thin targets with Uranium and Plutonium and exposing them to a high neutron flux. In a second
step, the measured electron spectra have to be converted into electron antineutrino spectra. Before 2011, the
conversion was performed with an empirical model with 30 effective β-decays. In 2011 the conversion process
was revised, including now all known β-decay branches of thousands of fission products in addition to virtual
decay branches, which lead to an increase of the predicted ν̄e flux.
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Figure 1.4: Sterile neutrinos in β-decay experiments. If eV-scale sterile neutrinos exist, the β-decay energy
spectrum is a superposition of an active decay branch and a sterile decay branch (equation (1.32)). The signature
of sterile neutrino is a kink-like spectral distortion.

Applied in the analysis of the reactor data, the flux re-evaluation lead to a 2.5σ deficit in ν̄e flux compared to
the prediction, which is commonly referred to as the RAA [27]. The anomaly could be explained with neutrino
oscillations involving a sterile neutrino ν̄e → νs. As the flux deficit is energy-independent for L ® 15m, the sterile
neutrino is required to have a mass of ∆m2 ¦ 1eV2. The RAA confidence region at 95 % C.L. is displayed in
figure 11.8.

In 2021, the ν̄e flux prediction was again re-evaluated based on new measurements of the fissionβ-electron spectra
of 235U and 239Pu at a research reactor at the Kurchatov Institute (KI) [28]. To eliminate systematic uncertain-
ties on the absolute fission rate, the cumulative spectra of 235U and 239Pu were considered relative to each other.
The ratio (235U/239Pu) was about 5 % lower compared to previous measurements at the Institute Laue-Langevin
(ILL) [29], in which the absolute fission spectra were determined separately. The result may indicate, that the
normalization of the 235U spectrum at ILL has been overestimated. Correcting for this effect in the ν̄e flux predic-
tion for 235U, the authors of [28] can significantly reduce the discrepancy between observed and predicted total
ν̄e flux (RAA). However, as the KI data provide only relative fluxes, the final conclusion on the RAA is still pending.

Gallium anomaly The Gallium anomaly (GA) is characterized by a rate deficit in calibration measurements from
the solar neutrino experiments GALLEX [30, 31] and SAGE [32] in the 1990s and 2000s. The experiments were
designed to measure electron neutrinos from the sun via neutrino capture on Gallium

νe +
71Ga→ 71Ge+ e−. (1.33)

After a certain measurement period, the produced Germanium was chemically extracted. Its abundance was de-
termined via its subsequent decay through electron capture with a half-life of 11 days using a proportional counter.

The GA emerged in calibration measurements: To evaluate the detection efficiency of the system, different calibra-
tion sources with well known activity were inserted into the setup. While GALLEX used two 51Cr sources, SAGE
employed one 51Cr source and one 37Ar source. The calibration isotopes decay via electron capture, producing νe
with discrete energies at several hundred keV. Both experiments observed less neutrino capture events from their
calibration sources than expected. Combining both results, the deficit amounts to 15 % at 3σ significance [26].
Similar to the RAA, the rate deficit can be interpreted in terms of neutrino oscillations involving a sterile neutrino
at the eV mass scale. The associated confidence region is shown in figure 11.8.

The Gallium anomaly was recently reaffirmed by the BEST collaboration using 51Cr and a similar detection princi-
ple [33] . Different to its predecessors, BEST employed two nested 71Ga targets in order to obtained information
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on the traveled distance of the hypothetical νe → νs oscillation. The inner spherical target volume had a diameter
of 1.3 m and the outer cylindrical target volume had a diameter of 2.2 m. The calibration source was placed at
the center of the setup. Their data confirmed the overall rate deficit of the GA. However, no significant difference
between inner and outer target volume could be found. If the GA is interpreted in terms of sterile neutrinos, the
oscillation must therefore occur at a length scale that is smaller or similar to the dimension of the experimental
setup, which translates into ∆m2 ¦ 1eV2. Moreover, a relatively large mixing of sin2(2θ )≈ 0.4 between electron
flavor and new neutrino mass eigenstate is requires to explain the large rate deficit.

Neutrino-4 The Neutrino-4 collaboration claims to have found evidence for the existence of an eV-scale ster-
ile neutrino based on measurements of very-short baseline neutrino oscillations at a nuclear reactor [34, 35].
However, as pointed out below, the significance of their finding is controversially debated in the sterile-neutrino
community.

The Neutrino-4 experiment is located close to the SM-3 reactor in Dimitrovgrad in Russia and has started data
taking in 2016. Electron antineutrinos emitted by the reactor are detected through inverse β-decay (see equa-
tion (1.2)) using a liquid scintillator, that is enriched with 0.1 % gadolinium. The ν̄e signature is the coincidence
of a prompt positron signal and a delayed neutron capture signal. The detector is arranged in 50 segments and
comprises a fiducial volume of 1.4 m3. As the setup is movable, the distance to the reactor core can be varied
between 6− 12 m. The neutrino energy can be determined through the reconstructed energy of the prompt scin-
tillation pulse. The experimental data is presented in form of the ratio between observed ν̄e events and distance-
averaged ν̄e events as a function of L/E. Their latest chi-squared analysis assuming an oscillatory pattern yields
∆m2 = 7.3 eV2 and sin2(2θ ) = 0.36 at a significance of 2.9σ [35]. The 2σ contour is displayed in figure 11.8.

The result was critically received by the sterile-neutrino community. The authors of [36] and [37] independently
point out, that the energy resolution of the detector was seemingly not taken into account in the Neutrino-4 anal-
ysis. Moreover, the statistical significance of the sterile-neutrino signal is put into question. As pointed out by
[36–38], neutrino-oscillation experiments are prone to false signal claims, if Wilk’s theorem is applied unjustifi-
ably. Using Monte-Carlo methods instead of Wilk’s theorem, [36] finds a decreased significance of the Neutrino-4
result of only 2.2σ.

LSND and MiniBooNE anomalies The Liquid Scintillator Neutrino Detector (LSND) experiment observed in
the 1990s an unexpected excess of ν̄e at short baseline from a pure ν̄µ beam. The 3.8σ excess can be interpreted
in terms of sterile neutrinos in the eV mass regime [39]. The experiment was followed up by the Mini Booster
Neutrino Experiment (MiniBooNE) at Fermilab to test the LSND anomaly at different L/E ratios. However, a low-
energy excess consistent with the LSND result was observed instead [40].

The LSND experiment took place at the Los Alamos Meson Physics Facility in the United States. A beam of 800 MeV
protons was directed on a fixed target, producing large amounts of charged pions. While most π− were captured
in the target material, the π+ were merely slowed down and decayed subsequently into relatively low-energy νµ,
ν̄ν and νe. Consequently, only very few ν̄e were produced. The LSND detector was located at 30 m distance from
the beam dump. It comprised 67 t of liquid scintillator surrounded by 1220 PMTs. The electron antineutrinos
were detected via inverse β-decay (see equation (1.2)), which produced the characteristic coincidence of prompt
and delayed scintillation light.

The collaboration observed significantly more ν̄e events than expected (3.8σ) , which can be interpreted in terms
of ν̄µ → ν̄e oscillations. Due to the short baseline, the associated ∆m2 is at the eV scale, which implies an
extension of the standard 3ν framework with an additional neutrino species. The LSND finding was challenged
by the KARMEN experiment using a similar setup. Not observing a ν̄e excess, they could exclude large parts of the
favored parameter space [41].

MiniBooNE was constructed at Fermilab to investigate the LSND anomaly. The experiment was conducted with
larger neutrino energies up to 1250 MeV and at a larger baseline (541 m) than LSND, but with a similar L/E
ratio. MiniBooNE was fed by a neutrino beam that was generated through collisions of 8 GeV protons with a fixed
beryllium target. The charged mesons (π±, K±), produced in the collisions, decay in-flight in a 50 m long decay
tunnel. Through the application of magnetic fields, only mesons with a specific electric charge could be selected.
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This allowed for the operation in two different modes, namely νµ → νe (search for νe appearance) and ν̄µ → ν̄e
(search for ν̄e appearance). The MiniBooNE detector comprised 800 t of mineral oil and 1280 PMTs. The electron
(anti) neutrinos were detected through Cherenkov and scintillation light of charged particles, that are produced
in ν interactions.

Both operation modes yielded a νe/ν̄e excess at low energies with a combined significance of 4.7σ [40]. As for
LSND, the result is compatible with two-flavor oscillations involving an eV-scale neutrino. Even though not located
at the same L/E ratio, the MiniBooNE results are consistent with the LSND anomaly. The allowed parameter spaces
of both experiments are shown in figure 1.5.

Figure 1.5: The LSND and MiniBooNE anomalies [40]. Both experiments observe an excess of ν̄e at a short
baseline from a pure ν̄µ beam, which can be interpreted as an ν̄µ→ ν̄e oscillation. MiniBooNE additionally finds
a low-energy νe excess in the charge conjugated oscillation. The mass splitting ∆m2 required to explain the data
is too large to be consistent with the standard 3ν picture. Thus, constraints on a fourth neutrino mass and its
mixing are determined and depicted in this figure. The filled areas show the favored parameter space of the
LSND anomaly at 90 % and 99 % C.L. [39]. The first six lines in the top left legend correspond to the MiniBooNE
contours at different confidence levels. A part of the favored parameter space can be excluded by the KARMEN
experiment [41], which did not observe an unexpected ν̄e excess in a setup similar to the LSND experiment.
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Chapter 2

The KATRIN experiment

The Karlsruhe Tritium Neutrino (KATRIN) experiment [42] is designed to measure the effective electron antineu-
trino mass mν scale via the kinematics of single β-decay of molecular tritium.

2.1 Experimental setup

This section provides an overview of the setup of the KATRIN experiment. The focus is set on those components,
which are substantial for the modeling of the experimental response function, described in section 2.2. A compre-
hensive description of all experimental constituents can be found in the references [42, 43].

The 70 m-long setup is illustrated in figure 2.1. The individual components are described in the following from
rear to front end. Locations ~r within the setup are often described in terms of cylindrical coordinates with the z
axis being aligned with the beam line1. The position in the (x , y)-plane is characterized by a radius r2 and an
azimuth angle φ = ∠(~r,~ey)3. Moreover, the polar angle θ = ∠(~r, ~B) is defined as the angle between the local
magnetic field ~B and ~r.

2.1.1 Rear section

The so-called rear section terminates the experimental setup at the rear end. It houses the rear wall (section 2.1.1.1),
which ensures a well-defined and homogeneous source potential, and several calibration and monitoring devices.
The most-relevant device is the electron gun (2.1.1.2), with which tritium activity and energy-loss function can
be determined.

2.1.1.1 Rear wall

The rear wall is a stainless steel disk with a diameter of 14.6 cm, which seals the upstream end of the tritium
source. All decay electrons, that do not reach the detector, are eventually guided back to the rear wall. Following
the magnetic field lines, their trajectories end on the rear wall surface. Thereby, the low-energy decay electrons
can be effectively removed from the system.

The rear wall surface potential defines the ground potential of the plasma inside the tritium source. The temporal
and spatial homogeneity of the latter is of great importance, as it determines the starting potential of the β-
electrons. In order to obtain temporal stability, the rear wall surface is coated with a gold layer. While being a
good electrical conductor, gold is chemically stable, which translates into a stable work function.

1Pointing from the rear end (z = 0) to the front end.
2r = 0 corresponding to the beam line axis
3φ ∈ [0◦, 360◦] with φ = 0◦ pointing upward
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Figure 2.1: Experimental setup of the KATRIN experiment. From rear to front end it measures 70 m. The rear
section houses the rear wall and several calibration and monitor devices. Molecular tritium is injected and decays
in the windowless gaseous tritium source. From there the β-electrons are transported to the spectrometer section,
with consists of two MAC-E filters. The pre-spectrometer reflects low energetic β-electrons, which cannot be used
for the neutrino-mass determination. Through the application of large negative retarding potential to the main
spectrometer, only electrons close to the tritium endpoint are transmitted. The electrons are finally counted by
the focal plane detector at the front end. The figure is created by [44].

To compensate for work function differences between the gold rear wall surface and the stainless steel beam
tube, a bias voltage Urw is applied to the rear wall. Even though bias voltages of up to ±500 V are possible, the
standard configuration during neutrino-mass measurements is in the order of Urw ≈ ±0.1V. Simulations suggest
than a spatially homogeneous rear wall potential minimizes longitudinal plasma potential inhomogenieties in the
source [45]. Thus, the rear wall bias voltage is optimized before each measurement campaign [46].

Moreover, the rear wall surface can be used to monitor the source activity. As the gold layer has a high proton
number, β-electrons that hit the gold surface will produce many X -rays through Bremsstrahlung. The X -rays can
be further on registered with a silicon drift detector. Through its correlation with the X -ray intensity, the tritium
activity can be determined. This method is called Beta Induced X-ray Spectrometry (BIXS) and is one of the methods
used in KATRIN to monitor the source activity during tritium scans [47].

2.1.1.2 Photoelectric electron gun

The so-called photoelectric electron gun (e-gun) is situated upstream of the rear wall. It is a source of monoener-
getic electrons, that can be used for various calibration purposes along the beam line.

UV light is guided through an optical fiber to a gold surface, where electrons are created by the photoelectric
effect. The photoelectrons are then accelerated by electric fields up to kinetic energies of 21 keV. An upgrade
to 35 keV is planned [48]. The produced electron beam has a small diameter (d < 60µm [49]) and its angular
direction can be adjusted at will. A 5 mm hole at the center of the rear wall allows the electron beam to enter the
tritium source.

Similar to β-electrons, the e-gun electrons scatter inelastically off tritium molecules when traversing the WGTS.
The probability for n-fold scattering depends, as discussed in section 2.2.2, on the the product of gas density and
the inelastic scattering cross section ρdσ. Through measuring the count rate as a function of retarding energy
with the focal plane detector (section 2.1.6), ρdσ can be experimentally determined at O (0.1 %) precision [50].

Moreover, the parametrization of the energy-loss function can be measured in-situ using e-gun electrons [48, 49].
The electron gun can also be used for other calibration purposes, such as the determination of the transmission
properties of the main spectrometer.
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2.1.2 Windowless gaseous tritium source

The windowless gaseous tritium source (WGTS) is a 10 m long stainless steel tube with an inner radius of rsource =
45 mm. Molecular tritium gas is injected through capillaries into its center, from where it streams freely towards
both ends. Due to the average bulk velocity of 13m s−1, only a small fraction of ≈ 10−9 of the tritium molecules
undergoes β-decay before reaching the sides [51, 52]. The produced β-electrons are emitted isotropically. At
the rear and front end of the WGTS, the tritium gas is pumped out by a set of turbomolecular pumping stations.
Before it is re-injected into the WGTS, the tritium gas is refurbished to ensure a constant and high tritium purity
εT > 95% (equation (2.1)). Thus, the tritium gas circulates in a closed loop system. The total tritium throughput
amounts to 40 g per day at an inventory of 10 g [53].

The gas is a mixture of different tritium isotopologues, namely T2, DT and HT. Stable isotopologues, such as D2,
HD and H2, are only present in trace amounts. The atomic tritium purity is defined as

εT = cT2
+

1
2

cDT +
1
2

cHT (2.1)

with the relative molecular concentrations cx . Apart from slightly different final-state distributions (section 2.2.1.1),
the characteristics of the different isotopologues are very similar.

The source activity is governed by the product of εT and the gas column density ρd. The latter has a design value
of ρd = 5× 1017 molecules/cm2, which results in an unprecedented high tritium activity of 1011 Bq.

The WGTS and the tritium molecules therein are situated in a cryostat, which cools the source system to very
low temperatures down to T = 30 K. This is necessary to achieve the aforementioned high ρd at a feasible gas
injection pressure pin = 3× 10−3 mbar. Moreover, ultra-cold tritium gas has only little molecular motion, which
minimizes the thermal Doppler broadening (section 2.2.1.2).

The tritium gas occurs in form of a weak cold magnetized plasma, which is induced by the high number of ions
and low-energetic electrons in the source. The croygenic source temperature reduces unintended plasma effects,
such as a deviation from spatial plasma potential homogeneity.

Furthermore, the central beam tube is surrounded by a system of superconducting solenoid magnets. The source
magnetic field has a strength of Bs = 2.5T4 and is orientated in bream direction. To collect as many electrons as
possible, all β-electrons that are emitted with a polar emission angle θ < 90◦ (downstream direction) are mag-
netically guided toward the spectrometer section. The β-electrons emitted with θ > 90◦ (upstream direction) are
guided toward the rear section.

2.1.3 Transport section

The purpose of the transport section is to adiabatically guide the decay electrons, that are emitted in downstream
direction, from the source to the spectrometer section. At the same time, the tritium flow must be drastically
reduced by 14 orders of magnitude from 1.8 mbar · `/s to 10−14 mbar · `/s, because the main spectrometer is
required to be essentially tritium free. The effective elimination of tritium is realized by a sequence of differential
and cryogenic pumping section.

The differential pumping section achieves a reduction of the tritium flow by seven orders of magnitude. It hosts
a series of turbomolecular pumps, which are successively positioned along the beam line. To prevent a straight
line of slight from the source to the CPS, the pumps are tilted by 20◦ against each other. Decay β-electrons
pass the DPS unhindered by following the magnetic field lines of five super-conduction solenoid magnets up to
5.5 T [54]. Different to that, positively charged ions and neutral molecules are prevented from passing and are
pumped out [55].

The remaining tritium flow is reduced by another seven orders of magnitude by the cryogenic pumping section.
Embedded in a large cryostat, the CPS comprises seven beam tube elements from which the second and the fifths
are inclined by 15◦. These beam tube elements are cooled down to 3 K, which allows for the formation of an
argon frost layer on the inner beam tube surface. Enhanced by the inclination of the beam tube elements, positive

4Design value: Bs = 3.6T [42]
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ions and molecules have a high change to hit the walls, on which they get stuck through cryosorption [56]. The
argon frost layer has be regenerated regularly by purging it with helium. The decay β−electrons are magnetically
guided to the spectrometer section by seven superconducting solenoid magnet, which produce magnetic fields up
to 5.6 T.

2.1.4 Forward beam monitor

The forward beam monitor (FBM) is a silicon drift detector, whose task it is to continuously monitor the source
activity. Being situated between the CPS and the pre-spectrometer, it is exposed to the full β-electron flux, that is
emitted in downstream direction. Its exact position can adjusted with a manipulator. During normal operation,
it is located on the eastern brim of the active flux tube. Thanks to the extraordinary high statistics up to 50 kcps,
the source activity can be measured with a statistical precision of 0.1 % within a few seconds [57].

2.1.5 Spectrometer section

The spectrometer section evaluates the energies of the electrons using the established MAC-E filter principle [58,
59]. Employing a combination of magnetic adiabatic collimation (MAC) and electrostatic potential (E), a MAC-E
filter acts on electrons as a high-pass energy filter. The spectrometer section in KATRIN comprises a tandem of two
MAC-E filters, namely the pre- and main spectrometers. The following section addresses first the general working
principle of the MAC-E filter technology (section 2.1.5.1). Thereafter, the two KATRIN-specific spectrometers are
described (section 2.1.5.2).

2.1.5.1 MAC-E filter spectroscopy

A spectrometer of the MAC-E type is penetrated by a magnetic field, generated by solenoid magnets at its up-
and downstream end. The resulting magnetic field lines are illustrated in figure 2.2 as black lines. The electrons,
arriving at the spectrometer, have polar angles up to θ ≤ 90. Affected by the Lorentz force, they propagate in
cyclotron motion along the magnetic field lines. The electron energy can be decomposed in a longitudinal E‖ and
a transversal E⊥ component with respect to the magnetic field line

E = E‖ + E⊥ (2.2)

A high voltage is applied to the spectrometer vessel, which elevates it onto a negative so-called retarding potential
U as depicted in figure 2.2 by the blue arrows. The retarding potential acts as an electrostatic high-pass filter,
reflecting all electrons with insufficient energy. As the electric field lines run parallel to the magnetic field lines, the
high-pass filter is only sensitive to the longitudinal electron energy component. Thus, only electrons with E‖ ≥ qU
are able to overcome the electrostatic barrier. However, the neutrino-mass determination requires knowledge of
the total kinetic electron energy. Thus, the transversal energy component has to be significantly reduced. This
is achieved by the magnetic adiabatic collimation principle. The magnetic field strength in the spectrometer ~B is
reduced by four orders of magnitude from both spectrometer ends toward the analyzing plane, at which ~B = Ba
is minimal. As long as the reduction is sufficiently small, the electrons propagate adiabatically and the magnetic
moment µ is conserved

µ≈
p2
⊥

|~B|
≈ const (2.3)

with the electron momentum p. Consequently, the reduction of |~B| leads to a transformation of p⊥ into p‖. The
same applies to the kinetic electron energy, which can be calculated using the relativistic energy-momentum-
relation

p2 = E(γ+ 1) ·me , with the relativistic Lorentz factor γ=
E

me
+ 1. (2.4)

Due to the nonzero magnetic field in the analyzing Ba > 0T, the transveral component cannot be eliminated com-
pletely and the MAC-E filter remains insensitive to a small residual energy ∆E. This residuals energy determines
the energy resolution of the MAC-E filter

∆E
E
=

Ba

Bmax

γ+ 1
2

. (2.5)
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s

ana

Figure 2.2: Working principle of a MAC-E filter. Two solenoid magnets at the rear and front end form a magnetic
field, whose field lines are illustrated as black lines. Electrons move in cyclotron motion (red example trajectory)
around the magnetic field lines. The electric field in the spectrometer, visualized as blue arrows, forms a negative
electrostatic barrier, which reflects electrons below a threshold energy. The electric and magnetic fields are con-
figured as such that the maximal potential, the so-called retarding potential qU , and the minimal magnetic field
strength Bana are both located in the analyzing plane. The transversal electron energy component is converted
into longitudinal energy through the reduction of the magnetic field by four orders of magnitude. The figure is
adapted from [60].

The magnitude of∆E is given by the ratio of minimal Ba and maximal Bmax magnetic field in the spectrometer. The
more the magnetic field is reduced in the analyzing plane, the better the energy resolution is. The magnetic fields
can also be configured to select certain electrons. In case the magnetic field of the pinch magnet at the downstream
side of the spectrometer Bmax is larger than the source magnet field, only electrons with polar emission angles
θ ≤ θmax are transmitted.

θmax = arsin

√

√ Bs

Bmax
. (2.6)

The magnetic field and thus also the transversal energy component increases again downstream of the analyzing
plane. The directions of electrons with larger initial polar angles than θmax flip and the associated electrons are
magnetically reflected back toward the rear section. The rejection of large polar angles is advantageous, because
these electrons will have traveled longer distance in the WGTS and have thus a large probability for multiple
scattering.

2.1.5.2 Pre- and main spectrometer

Being located downstream of the CPS, the pre-spectrometer is the first spectrometer that is encountered by elec-
trons. With a length of 3.4 m and a diameter of 1.7 m, it is significantly smaller and has a worse energy resolution
than the large main spectrometer. Its task is to filter out the low energetic β-electrons, that are not relevant for
the neutrino-mass analysis. Due to the steep rate decrease of the β-spectrum at high energies, only a tiny fraction
of β-electrons carry analyzable information on the neutrino mass (see figure 1.3). The last 40 eV below E0, for
example, comprise only a relative share of 10−8 electrons. It is desirable to stop the large number of uninteresting
β-electrons from entering the main spectrometer, in which they could cause additional background through scat-
tering on residual gas. By setting the pre-spectrometer voltage to −10 kV, the β-electron flow can be reduced by
85 %. The drawback, however, is the formation of a penning trap between the pre- and main spectrometer, which
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causes a time-depended background (see section 2.2.4). For this reason, the pre-spectrometer was switched off in
later measurement campaigns.

The main spectrometer is located downstream of the pre-spectrometer. The standard magnetic field configuration
is Bs = 2.5T, Ba = 6.3× 10−4 T and Bmax = 4.2T5, which results in an energy resolution of ∆E = 2.8eV. As the
magnetic field strength reduction along the beam line must occur slowly in order to guarantee adiabatic motion,
the main spectrometer is required to have a certain length. Designed to reach an even lower energy resolution
of 0.93 eV, the main spectrometer is 23.8 m long. The large diameter (d = 9.8m) of the spectrometer in the
analyzing plane is necessary due to the conservation of the magnetic flux.

The main spectrometer is operated at an ultra-high vacuum of 10−11 mbar to minimize the scattering probability
with residuals gas. Moreover, the spectrometer is equipped with an inner electrode system comprising 24 000
wires on the inner of the spectrometer walls. Being set to a O (100V) more negative potential than the spectrom-
eter vessel, their task it to hinder muon induced background electrons from the spectrometer wall to reach the
active flux tube.

2.1.6 Focal plane detector

Electrons that overcome the retarding potential of the main spectrometer are magnetically guided by the pinch
and the detector magnet to the focal plane detector (FPD). The task of the FPD is to count the electron rate as
a function of retarding potential, which is varied step-wise. As all electrons above a certain energy threshold are
transmitted, the FPD measures the integral electron energy spectrum.

The FPD is a silicon p-i-n diode array, that is segmented into 148 pixels of equal area. As displayed in figure 3.1,
the pixels are arranged in twelve concentric rings, comprising twelve pixels each. Additionally, four pixels in the
center form the so-called bullseye. Each pixel records its own integral tritium spectrum.

The main advantage of the pixel segmentation is its sensitivity to the arrival position of the incident particle in
the detector plane. As the electric and magnetic fields inside the KATRIN setup are well known, a volume of
possible particle tracks can be reconstructed for each FPD pixel. Due the circular geometry of the FPD, it is useful
to characterize the position in terms of radius and azimuth angle. Of particular interest is the localization of the
electron position in the tritium source and in the analyzing plane. The outer-most pixels, for example, collect only
β-electrons that were emitted at large radii in the WGTS and that traversed the analysis plane at the outer brim
of the flux tube. A pixel-wise analysis of the recorded spectra allows for the investigation of systematic effects,
such as spatial variations of the retarding potential in the analyzing plane as well as radial and azimuthal inhomo-
geneities of the electric source potential. Moreover, the pixel segmentation helps identifying possible sources for
background electrons. Pixels with undesired behavior, such as an elevated background rate or a high noise level,
can be identified and excluded from subsequent analyses.

Being coupled to the main spectrometer, the detector chamber must be operated at an ultra-high vacuum of
< 10−9 mbar. Moreover, it is cooled with liquid nitrogen to reduce leakage current and noise.

The FPD pixels have a typical detection efficiency of εFPD ≈ 95 %. Their average energy resolution is 1.52 keV
(FWHM) for 18.6 keV photoelectrons [61]. The energy resolution of the FPD is not relevant for the energy res-
olution of KATRIN, because the integral spectrum is measured as a function of the retarding energy, which is
determined by the high-precision main spectrometer. Nevertheless, the energy resolution of the FPD can still be
used to exclude backgrounds at very different energies compared to the tritium endpoint, such as electrons arising
from cosmic rays or environmental radiation. The detector region of interest (ROI) defines the energy window,
within which data is selected for the subsequent high-level analysis. The electrons from the main spectrometer
are accelerated toward the FPD with a post acceleration of up to 12 kV. To cover the boosted β-electron energies,
the ROI is shifted likewise. This is done as the intrinsic detector background is lower at higher energies.

5The design magnetic field configuration is (Bs = 3.6T, Ba = 3× 10−4 T, Bmax = 6T, which leads to an energy resolution of 0.93 eV [42].
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2.2 Model of the experimental spectrum

To infer physics parameters of interestΘ (see section 3.3.1), such as m2
ν, the measured integral spectrum Nexp(qU)

has to be described with an appropriate model Nmodel(qU,Θ). The model of the signal comprises two fundamental
components, namely the theoretical prediction of the differential tritium β-spectrum dΓ

dE (E,Θ) and the experi-
mental response function R(E, qU). The signal strength is determined by the normalization factor A. Moreover,
background component B is added. The expected electron rate can be calculated as

Ṅmodel(qU ,Θ) = A ·

∞
∫

qU

dΓ
dE
(E,Θ) · R(E, qU)dE + B. (2.7)

The rates are then converted into counts through multiplication with the associated measurement time t

Nmodel(qU) = Ṅmodel(qU) · t(qU). (2.8)

In the following section, the individual terms in equation (2.7) are addressed one after the other. First, the theoret-
ical β-spectrum from equation (1.29) has to be revised, as KATRIN uses molecular tritium at non-zero temperature.
Section 2.2.1 addresses key features of molecular tritium, the final-state distribution, the thermal Doppler effect
and small theoretical corrections. Second, a comprehensive description of the experimental response function is
given in section 2.2.2. The latter includes inelastic scattering in the source and the transmission properties of
the MAC-E filter. Sections 2.2.3 and 2.2.4 address the signal normalization and the background model, respec-
tively. At last, the measurement time distribution, which specifies the high-voltage set points qU and associated
measurement times t(qU), is presented in section 2.2.5.

2.2.1 Differential energy spectrum for molecular tritium β-decay

Like its predecessors Mainz [62] and Troitsk [63], the KATRIN experiment studies the β-decay of tritium to deter-
mine the neutrino mass

3
1He→ 3

2He+ + e− + ν̄e. (2.9)

Tritium possesses two key features, which render it a suitable isotope to research

1. Tritium decay is a super-allowed β-decay, which leads to a short half-life of T1/2 = 12.3 years. This is
advantageous, because high count rates can be achieved at rather low source densities. Moreover, the
nuclear matrix element of a super-allowed β-decay is energy-independent and easily calculable.

2. Tritium possesses the second lowest endpoint of all β-decaying isotopes E0 = 18.6keV. The total count
rate is smaller compared to isotopes with higher E0: Γ ∝ E4

0 for low E0. However, the relative fraction
of β-electrons in the interesting region close the endpoint is larger compared to isotopes with higher E0:
∝ E−3

0 . Additionally, a lower endpoint is technically easier to handle, because it requires less negative high
voltages for the MAC-E filters (see section 2.1.5).

Due to technical reasons, KATRIN employs tritium in molecular form (mostly T2). As a consequence, the daughter
molecule can be electronically excited. The arising consequences to the differential β-spectrum are discussed in
section 2.2.1.1. Moreover, the tritium source is operated at nonzero temperature. The thermal motion influences
the differential energy spectrum in form of the Doppler effect, presented in section 2.2.1.2.

2.2.1.1 Final-state distribution

As described in section 1.3.3, the kinematics of the β-decay products are related through energy and momentum
conservation. As the energy of the daughter molecule cannot be measured in KATRIN, it has to be derived theoret-
ically from quantum mechanics. The spectrum of possible molecular excitation energies and associated transition
probabilities can be calculated by solving the Schrödinger equation for all initial of final states. The calculation is
described in the references [64, 65]. Here, only a qualitative description of the final-states is given.
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The final-state distribution is displayed in figure 2.3 for the three tritium isotopologues in the WGTS, namely T2,
DT and HT. In its electronic ground state, the daughter molecule receives energy in form of rotational and vibra-
tional excitation. The ground state corresponds to the low energy peak in figure 2.3. It is centered around the
average recoil energy Erec. = 1.69eV and has a cumulative population probability of 57.4 % (considering T2).

Moreover, the shell electrons of the daughter molecule can be electronically excited to higher electronically bound
states or they can be even ionized. The so-called excited states and the electronic continuum corresponds to the
higher energies ≥ 19 eV in figure 2.3. The final-state distribution is one of the most important external inputs in
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Figure 2.3: Final-state distribution of tritium isotopologues present in the WGTS. As they have different molecular
structures, their final-state distributions are different. The ground state peak of T2 is centered at its average recoil
energy Erec. = 1.69 eV. The respective ground state peaks of DT and HT are slightly shifted compared to the T2
distribution, to account for their slightly different electronic binding and recoil energies compared to T2.

the model calculation. Each final state f reduces the energy available to the β-electron by the associated excita-
tion energy E f . Taking all possible final states into account, the phase space is a superposition of reduced-energy
phase spaces weighted by the respective excitation probabilities Pf . The standard formula from Fermi theory
(equation (1.29) has to be modified as follows:

dΓ
dE
(E, m2

ν) =
G2

F · cos2 θc

2π3
· |Mnuc.|2 · F(Z , E) · (E +me) ·

q

(E +me)2 −m2
e (2.10)

·
∑

f

Pf · (E0 − E − E f )
q

(E0 − E − E f )2 −m2
ν ·Θ(E0 − E − E f −mν).

In the boundary case with no final-state excitation (e.g. free neutron decay) E f = 0, equation (2.10) converges to
equation (1.29).

Due to their different molecular structures, the present tritium isotopologues are characterized with slightly dif-
ferent FSD. Thus, the differential spectrum has to be computed for each isotopologue separately

�

dΓ
dE

�

x . The full
spectrum is given by the sum of the isotpologue-wise spectra weighted by their relative molecular abundances

dΓ
dE
(E, m2

ν) = cT2

�

dΓ
dE

�

T2

+
1
2

cDT

�

dΓ
dE

�

DT
+

1
2

cHT

�

dΓ
dE

�

HT
. (2.11)

2.2.1.2 Doppler effect

The gas inside the WGTS is subject to thermal motion, because the source is kept at nonzero temperature (Tsource =
30K). As a consequence, the differential energy spectrum (equation (2.10)) is influenced by the Doppler Effect.
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The latter can be mathematically incorporated in the model by convolving the differential spectrum with a Gaussian
function. The Gaussian standard deviationσG, interpreted as an energy broadening, is mostly driven by the source
temperature. It calculate as

σG =

√

√2EcmskBTsourceme

M
(2.12)

with the electron center of mass energy Ecms, the Boltzmann constant kB and the mass M of the tritium isotopo-
logue. In the following, only the thermal Doppler Effect is considered. The Doppler Effect due to a non-zero bulk
velocity is expected to negligible [51].

Since the differential spectrum is binned, an analytical convolution is not possible. Therefore, the convolution is
implemented using the FSD: Each discrete final state is replaced by a Gaussian function. The expectation value
of the Gaussian corresponds to the excitation energy of the final state and the integral of the Gaussian is the exci-
tation energy. The standard deviation of the Gaussian is the broadening due to the Doppler Effect σG. At last, the
modified FSD is calculated through summation of all broadening final states.

The influence of the Doppler Effect on the neutrino mass squared is estimated to be ∆m2
ν = 0.02eV2, if the effect

is neglected in the analysis.

2.2.1.3 Theoretical corrections

The differential energy spectrum of the super-allowed tritium β-decay is very well described by the Fermi theory
section 1.3.3. However, small known deviations arise at the particle, nuclear, atomic levels. In addition to the
conventional relativistic Fermi function the following effects can be added to equations (1.29) and (2.10):

• Radiative corrections due to real and virtual photons

• Exchange between the β-electron and the orbital electron

• Influence of the finite nuclear extension on the solution of the Dirac equation

• Recoil effects due to the finite nuclear mass including those from V-A interference and weak magnetism

• Impact of the recoiling Coulomb field

• Convolution of the electron and neutrino wave functions with the nucleonic wave function through the finite
nuclear volume

• Screening by the coulomb field of the orbital electrons of the daughter atom6.

A full discussion and mathematical description of these effects can be found in [51, 66].

2.2.2 Experimental response function

The experimental response function R(E, qU), illustrated in figure 2.4, gives the probability that an electron over-
comes the retarding energy and reaches the focal plane detector

R(E, qU) =

∫ E−qU

0

∑

i

Ti(E − εscat. − εsync., qU) · Pi · fi(εscat.)dεscat.. (2.13)

The so-called integrated transmission function T , described in section 2.2.2.1, summarizes the electromagnetic
working principle of the main spectrometer as a MAC-E filter. Furthermore, all considerable electron energy-losses
ε along the beam line have to be taken into account. The dominant energy-loss stems from inelastic scattering
with tritium molecules in the WGTS εscat., which is addressed in section 2.2.2.2. The latter is characterized by the
scattering probabilities Pi for i scatterings and the associated energy-loss functions fi . Elastic scattering, found to
be negligible, is briefly mentioned in section 2.2.2.3. Moreover, energy-loss through the emission of synchrotron
radiation εsync. is addressed in section 2.2.2.4.

6This is effect is not implemented in Samak.
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Figure 2.4: Experimental response function R(E, qU) for qU = 18 542eV. Electrons with energies below the
retarding energy of the main spectrometer are not transmitted. The slope for 0 ≤ E − qU ≤ ∆E is given by
the energy resolution of the MAC-E filter (section 2.2.2.1). The transmission probability for electrons with large
surplus energies E − qU > ∆E is determined by their energy loss through inelastic scattering (section 2.2.2.2)
and the emission of synchrotron radiation (section 2.2.2.4). The transmission plateau at ∆E < E − qU ® 12 eV,
for example, comprises only electrons that traversed the WGTS without inelastic scattering. Its transmission
probability is therefore given by the zero-scattering probability P0 (section 2.2.2.2). The response function for
the first two measurement campaigns (KNM1 and KNM2) are depicted as an example. The height of the zero-
scattering plateau is smaller in KNM2 compared to KNM1, as its mean column density was significantly larger.

2.2.2.1 Spectrometer transmission

The transmission function T states the probability that an electron entering the spectrometer with the kinetic
energy E is transmitted. Being analytically computable, its formula is derived for example in [51]. As described
in section 2.1.5, electrons are only transmitted in a MAC-E filter, if their longitudinal energy component is larger
than the retarding energy in the analyzing plane. The transmission condition can be expressed in terms of the
total kinetic energy and initial polar angle θs

Eana
‖ > qU

⇒ E − Eana
⊥ > qU | equations (2.3) and (2.4)

⇒ E − Es
⊥ ·

Bana

Bs
·
γ+ 1

2
> qU |Es

⊥ = E · sin2 θs

⇒ E(1− sin2 θs ·
Bana

Bs
·
γ+ 1

2
)> qU (2.14)

In its most general form, the transmission function can thus be written as

T (E,θs, qU) =

¨

1 for E(1− sin2 θs ·
Bana
Bs
· γ+1

2 )> qU

0 otherwise
(2.15)

As θs cannot be distinguished in KATRIN and the measured spectrum contains electrons with different θs ∈
[0,θmax], it is sensible to calculate an average transmission function.
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Isotropic transmission function: Assuming an isotropic angular distribution, the average transmission function
is calculated as

T (E, qU) =

∫ θmax

0

T (E,θs, qU) · sinθs dθs (2.16)

⇒ T (E, qU) =















0 for E < qU
1−
Ç

1− E−qU
∆E

Bs
Ba

1−
Ç

1−∆E
E

Bs
Ba

for qU < E < qU +∆E

1 for qU +∆E < E

(2.17)

with maximal initial polar angle θmax from equation (2.6) and the energy resolution∆E from equation (2.5). The
transmission function is normalized to 1. The acceptance angle θmax < π is included later on as a normalization
factor of the integral spectrum.

Non-isotropic transmission function: Even though the β-electrons are emitted isotropically in the β-decay, the
angular distribution is in reality no longer uniform for a fixed electron energy E once the β-electrons exit the
source. As described in section 2.2.2.2, many β-electron scatter inelastically off tritium molecules. Electrons with
a large θs travel longer distances in the source and thus have a larger probability to scatter at least once compared
to electrons with small θs. Consequently, the angular distribution of the unscattered electrons has a preference
for small emission angles, whereas the angular distributions of electrons that scattered several times have an
accumulation of large emission angles as displayed in figure 2.6. To account for the actual angular distribution,
T (E,θs, qU) has to be weighted with the respective scattering probabilities Pi(θs)7. The integrated transmission
for the i-th scattering is calculated as

Ti(E, qU) =

∫ θmax

0

T (E,θs, qU) · sinθsPi(θs) dθs. (2.18)

The difference between the isotropic transmission function (equation (2.16)) and the more realistic nonisotropic
transmission function is visualized in figure 2.5 (left) for unscattered electrons (i = 0).

2.2.2.2 Inelastic scattering

As briefly mention in the section 2.2.2.1, the most considerable electron energy-loss occurs via inelastic scattering
off tritium molecules. Inelastic scattering is only relevant inside the WGTS, as it is the beam line element with
by far the largest pressure. The energy loss through inelastic scattering is characterized by two components.
Firstly, the inelastic scattering probabilities describe the probability for i-fold scattering. Secondly, the energy-loss
function states the probability that an electron looses a certain energy while scattering.

Inelastic scattering probabilities

As the scattering probability is low for single tritium molecules, the number of scatterings i during propagation
follows a Poisson distribution. The probability for i-fold scattering is given by [67]

Pi(zs,θs, E) =
(λ(zs,θs) ·σinel(E))

i

i!
e−λ(zs,θs)·σinel.(E) (2.19)

with the energy-dependent inelastic scattering cross section σinel.. For electron energies of E = 18 574eV, the
cross section amounts to σinel. = 3.64× 10−18 cm−2. Its energy dependence is discussed in appendix A.1.

Moreover, the scattering probabilities depend on the effective column density λ(zs,θs), that the electron traverses

7Addressed in detail in the following section, the scattering probabilities also depend on more parameters than only θs. For the sake of
readability, these dependence are not explicitly stated here.
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Figure 2.5: Integrated transmission functions, using the KNM2 configuration (chapter 6) for illustration. All
integrated transmission functions are normalized to have a maximal transmission probability of 1 for electrons
with large surplus energies. Left: Comparison of transmission functions with isotropic and non-isotropic angular
distribution. The red curve is calculated according to equation (2.16), assuming that θs is isotropically distributed
before entering the main spectrometer. The blue curve is calculated according to equation (2.18), assuming a
realistic non-isotropic angular distribution for unscattered electrons (i = 0). Right: Electrons loose energy through
synchrotron radiation in the source and transport section. The effect can be accounted for through modification
of the spectrometer transmission function (section 2.2.2.4).

on its trajectory in the WGTS,

λ(zs,θs) =
1

cosθs
·
∫ d

zs

ρ(z′)dz′ (2.20)

with the length of the WGTS d, the electron starting position zs and the electron emission angle θs. The total
column density is defined as λ(zs = 0,θ = 0) = ρd.

The scattering probabilities as a function of θs, averaged over all starting positions, are displayed in figure 2.6.
They enter the calculation of the non-isotropic transmission function in equation (2.18). The average scattering
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Figure 2.6: Angular dependent scattering probabilities. As electrons travel longer distances in the WGTS when
being emitted at large polar angles, they are likely to undergo more inelastic scatterings than electrons with small
θs. As a consequence, the distribution of polar emission angles is not uniform for a fixed election energy, once the
β-electrons exit the source. Electrons that leave the source unscattered (blue curve) often have small θs, whereas
electrons that scatter twice (green curve) are more likely to have large θs. The zs dependency is eliminated through
numerical integration over the whole source beam tube.

probabilities for all starting positions zs ∈ [0, L] and accepted emission angles θs ∈ [0,θmax] can be obtained by
through numerical integration over zs and θs. Assuming an isotropic angular distribution, the average probabilities
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are given by

Pi(E) =
1

1− cos(θmax)
1
ρd

∫ L

0

dzs

∫ θmax

0

dθs [ρ(zs) · sinθs · Pi(zs,θs, E)] . (2.21)

The average probabilities for zero to seven scatterings are stated in table 2.1, using the configuration of the second
KATRIN measurement campaign (see chapter 6) as an example. Energy-loss function

i 0 1 2 3 4 5 6 7

Pi (%) (KNM1) 78.67 18.01 2.91 0.37 0.04 0.003 3× 10−4 2× 10−5

Pi (%) (KNM2) 44.87 29.61 15.48 6.63 2.40 0.75 0.21 0.05

Table 2.1: Average inelastic scattering probabilities according to equation (2.21) using the experimental condi-
tions of the first (KNM1) and second (KNM2) measurement campaigns as examples (table C.3 and E = 18 574eV).
As ρdσ was significantly lower in KNM1 compared to KNM2, the associated probability for zero scattering is much
larger.

The energy-loss function f1(εscat.) describes the probability for an electron to loose the energy εscat. during one
inelastic scattering process. The electron energy loss arises from a combination of rotational, vibrational and
electronic excitation of the tritium molecule up to the ionization threshold at 15.486 eV [68]. Several attempts to
derive an energy-loss function model from literature values exist, such was [69]. However, the different literature-
based calculations exhibit large discrepancies among each other and are therefore not suitable for a high-precision
experiment like KATRIN. Alternatively, the energy-loss function can be inferred from a measurement in a KATRIN-
like setup using a semi-empirical model. This was done for the first time at the Troitsk ν-mass experiment [67, 70].
As the systematic uncertainties of these measurements exceed the design uncertainty budget of KATRIN [42],
new measurements using the experimental setup of KATRIN were performed, reaching an unprecedented preci-
sion [68].

In KATRIN, the energy-loss function was measured by counting the transmitted electrons from the monoenergetic
photoelectric electron gun (section 2.1.1.2) with the FPD. The electron gun generates electrons with a pulsed
laser, which can be operated in two modes: A fast mode with a repetition rate of 100 kHz, generating a quasi-
continuous electron beam, and a slow mode with a repetition rate of 20 kHz, resulting in a pulsed electron beam.
The slow mode offers the possibility to calculate time-of-flight for individual electrons, which can be used to ob-
tain a differential energy spectrum. The regular integral measurement is performed in the fast operation mode.
The analysis infers the energy-loss function with a semi-empirical parametrization consisting of three Gaussian
functions [68]

f1(εscat.) =

(

∑

j =
∑3 a j exp

�

− (εscat.−µ j)2)2

2σ2
j

�

for εscat. ≤ εc

f1(εscat.)
fBED(εc)

for εscat. > εc

(2.22)

with the parameters The probability density functions for multiple scatterings fi(ε) is obtained by convolving

a j : Gaussian amplitudes, µ j : Gaussian mean energy, σ j : Gaussian standard deviation,
εc ionization threshold energy, fBED ionization continuum [71].

equation (2.22) (i − 1)-times with itself

f2(εscat.) = f1(εscat.)þ f1(εscat.)
fi(εscat.) = f1(εscat.)þ f1(εscat.)þ ...þ f1(εscat.)

︸ ︷︷ ︸

i−1

. (2.23)

A combined fit to a set of differential and integral spectra yields the best-fit energy-loss function parameters
and associated fit uncertainties. The results from two different energy-loss analyses are used in this work, as
summarized in appendix A.2. The energy-loss function from [72] is displayed in figure 2.7 for the first three
scatterings. A full description of the energy-loss function measurement and the analysis can be found in [48, 49,
68].
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Figure 2.7: Energy-loss function for the first three inelastic scatterings. The energy-loss function was determined
in-situ with the KATRIN experiment using the semi-empirical model in equation (2.22), described in detail in [68].
The best fit parameter and uncertainties are stated in appendix A.2 and [72]. The uncertainties are too small to
be visible.

2.2.2.3 Elastic scattering

In addition to inelastic scattering, electrons also scatter elastically off tritium molecules in the WGTS. However,
the associated cross section is one order of magnitude smaller than the inelastic one and the median energy-loss
is negligible ε̄elastic = 4meV [51]. Thus, the effect is not included in the experimental response function used in
this work.

2.2.2.4 Synchrotron radiation

The electrons loose energy due to the emission of synchrotron radiation while propagating through the magnetic
fields of the source and transport sections. The synchrotron energy loss εsync. of an electron traveling through a
uniform magnetic field B for a time t is given by [73]

εsync.(E) =
µ0

3πm3
e

· B2 · E⊥ · γ · t. (2.24)

with the vacuum permeability µ0. For a fixed magnetic field configuration, εsync. is mostly driven by the transversal
energy component and the propagation time. Both can be expressed in terms of the initial polar angle θs (see sec-
tion 2.2.2.1) and the electron starting position zs. Large θs correspond to a large relative E⊥ and result therefore
into a high synchrotron energy-loss. Moreover, electrons with low zs travel longer distance in the source and emit
more synchrotron radiation.

The precise calculation of εsync., taking into account the complex magnetic field geometry in KATRIN, requires
a comprehensive Monte Carlo simulation. The simulation framework KASSIOPEIA [73, 74] allows to calculate
εsync.(θs, zs) for any magnetic field configuration. As this simulation is rather time consuming, an effective analyt-
ical synchrotron-loss model is developed and validated with the Monte Carlo simulation. The synchrotron energy
loss can be well approximated by [73]

εsync.(E, B,θ ) =
µ0

3πm3
e

· B2 · E · sin2 θ · γ ·
`

ve · cosθ
. (2.25)

with the traveled length ` and the electron velocity ve. The total synchrotron energy loss in the source and transport
section then calculates as

εsync.(E,θs) = εsync.(E, Bs,θs) + εsync.(E, Bt,θt) (2.26)

with the magnetic field Bt and the modified polar angle in the transport section

θt = θs ·
Æ

Bt/Bs. (2.27)
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Considering the standard magnetic field settings8, the energy loss through synchrotron radiation can be up to
43 meV for the maximal accepted polar angle θmax = 50.4◦. To incorporate the synchrotron radiation in the
experimental response, the transmission function in equation (2.18) has to be modified accordingly:

T (E, qU ,θs)→T (E − εsync.(E,θs), qU ,θs). (2.28)

The average transmission function can be obtained through integration over all accepted initial polar angles θs ∈
[0,θmax]. The influence on the integrated transmission function is depicted in figure 2.5 (right).

2.2.3 Signal normalization

The signal strength of the modeled integral spectrum in equation (2.7) is given by the factor A. This factor
comprises two components, namely the effective source activity Asource and the signal strength correction factor
Nsig.:

A= Asource(1+ Nsig.). (2.29)

Asource describes the source activity, as it is seen be the FPD. It is calculated from the operational parameters before
the spectral fit as

Asource = εT · 2ρd ·πr2
source ·λTritium

1
2

︸ ︷︷ ︸

I) Total number of tritium decays per second

·
1
2
(1− cosθmax)

︸ ︷︷ ︸

II) Accepted solid angle

· εFPD ·
Np

148
︸ ︷︷ ︸

III) FPD efficiency and coverage

(2.30)

with the tritium decay constant λTritium = 1.78× 10−9 s−1. The first term gives the total tritium decay rate in the
WGTS. The second term takes into account that β-electrons, regardless of their energy, can be only transmitted to
the FPD if they are emitted in downstream direction and if θs ≤ θmax. The third term considers the FPD detection
efficiency and coverage. The latter is given by the amount of the active detector pixels Np.

The calculation of Asource is not accurate enough, mainly due to uncertainties of the FPD efficiency and the size of
the flux tube. To account for unknown normalization effects, Nsig. is introduced as a nuisance parameter in the fit.
Its contribution to the total normalization A is usually on the percent level.

2.2.4 Background model

The background model B consists of three components:

B(qU , t) =
1
2

Bbase
︸ ︷︷ ︸

I) Steady-state background

+
1
2
· stime · t(qU)

︸ ︷︷ ︸

II) Scan-step-time-dependent background

+
1
2

sqU · (qU − 18574 eV)
︸ ︷︷ ︸

III) Retarding-potential-dependent background

. (2.31)

Steady-state background: Bbase makes up the largest fraction of the background. Different processes have
identified that contribute to the steady-state background [75]. The largest contribution stems likely from so-
called Rydberg atoms, that are produced through radioactive decays in the spectrometer walls. Being highly
excited but neutral, Rydberg atoms can pass the inner electrode system and enter the active flux tube volume.
Here, they are ionized by black body radiation. If emitted downstream of the analyzing plane, the generated
low-energetic electrons are accelerated toward the FPD, where they are indistinguishable from β-electrons [69].
Another process that causes steady-state background is the α-decay of short-lived radon isotopes in the main
spectrometer pumps. Multiple high-energetic electrons are produced subsequent to the α-decay through shake-
off, internal conversion and relaxation processes. If these electrons enter the main spectrometer, they have a high
chance to become trapped due to their large transversal energy component. Through scattering with residual
gas, a primary electron with E = O (keV) creates E = O (100) secondary electrons. Similar to electrons from
Rydberg atoms, the low energetic secondary electrons are accelerated toward the FPD if produced in downstream
direction. The third steady-state background contributions stems from intrinsic detector background. The steady-
state background is included as a nuisance parameter in the standard analysis. It was observed during data taking,
that the steady-state background rate varies more than expected from a Poisson distribution. The over-dispersion
is incorporated as a systematic uncertainty (section 4.10.1).

8Bs = 2.52T, Bt = 3.6 T and Bmax = 4.24T.
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Scan-step-time dependent background: The scan-step-time dependent background contribution originates
from low energetic electrons that accumulate in the inter-spectrometer penning trap. Due to the combination
of different retarding potentials in the two-spectrometer setup and the strong magnetic fields, a penning trap
formed between the pre- and main spectrometer. If an electron passes through this region and looses energy due
to scattering on residual gas molecules or by cyclotron radiation, it becomes trapped. Accumulating electrons in
the penning trap can lead to a discharge, which results in additional background in the main spectrometer. The
background rate increases with a slope stime as a function of time. To mitigate this effect, an electron catcher was
activated to remove trapped electrons after every scan step [76]. Thus, the background rate is reset to its original
value after every scan step. The accumulated background rate for a given scan step is therefore determined by
the associated scan-step measurement time t(qU). Practically, the scan-step-time dependent background is in-
ferred from background measurements above the tritium endpoint. Its uncertainty is propagated as a systematic
uncertainty (section 4.10.2).

Retarding-potential-dependent background: A retarding-potential-dependent background contribution has
to-date never been observed in KATRIN. However, due to the low background rate O (100 mcps), it cannot be
excluded with satisfying confidence. The hypothetical retarding-potential dependence is modeled with a linear
function with a slope sqU. In the standard analysis, it is included as a systematic uncertainty (section 4.10.3).

2.2.5 Measurement time distribution

As described in section 2.1.6, the FPD counts the number of transmitted electrons for different high-voltage set
points. The measurement at a fixed qU value is called a scan step. Consecutive measurements of O (40) scan-steps
yield the integral tritium β-spectrum, which also referred to as a (tritium) scan. The set of qU-values and the time
spent at each set point t(qU) is defined by the measurement time distribution (MTD). The MTDs of the first two
measurement campaigns are depicted in figures 5.1 and 6.1, respectively. A typical scan lasts 2 h. In principle,
the measurement time could be arbitrarily distributed among the scan steps. In practice, the MTD is optimized
with respect to the neutrino-mass sensitivity. Most time is spent at retarding energies qU−E0 ≈ −10 eV, for which
the neutrino-mass imprint in the integral spectrum is most prominent. Less measurement time is spent at lower
retarding energies, as the rate of the integral spectrum steeply increases for decreasing retarding energies. Thus,
sufficient statistics can be collected even with little measurement time t(qU) = O (30s). Moreover, set points
above the tritium endpoint are included to measure the background. More details on the MTD optimization can
be found in [1, 77].
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Analysis strategy

3.1 Analysis software

The analysis software used in this work is called "Simulation and Analysis with MATLAB R© for KATRIN", hereinafter
abbreviated as Samak. It was largely developed in [1] and over the course of this thesis. It is designed to perform
high-level analyses of tritium β-spectra measured by the KATRIN experiment. Its key features are the following:

1. Interface with KATRIN data files:
Samak is able to read the scan-wise KATRIN data files, which contain the measured spectra and the all
operational parameters. The retrieved parameters can be displayed and analyzed for stability.

2. Model of tritium β spectrum:
The modeling of the theoretical tritium β-spectrum, the experimental response function and the integral
spectrum is implemented according to section 2.2. In case data is analyzed, all necessary model input pa-
rameters can be directly read from the data file(s). In case a simulation is carried out, the model parameters
are retrieved from a configuration file, that can adjusted be at will.

3. Systematic uncertainties:
Systematic uncertainties are incorporated through covariance matrices. A dedicated class in Samak is able
to calculate covariance matrices for all relevant systematic effects in KATRIN (chapter 4). The magnitude of
each systematic uncertainty and the sample size can be freely specified. Diagnostic tools are able to examine
the covariance matrices for convergence and positive definiteness. Moreover, automatized graphical displays
are available. Furthermore, several systematic effects can also be included in form of a pull-term in the χ2-
analysis.

4. Data combination strategies:
Different analysis strategies in terms of scan and pixel combination can be used in Samak. They are discussed
in more detail in section 3.2.

5. Analysis:
Samak is designed to analyze both tritium data and Monte-Carlo (MC) simulations. The parameter inference
and construction of confidence regions is based on the method of least squares. The employed statistical
methods are described in more detail in section 3.3. The main focus of the analysis is put on the neutrino
mass. However, also physics beyond the neutrino mass, such as sterile neutrinos and the cosmic neutrino
background, can be investigated with Samak.

3.2 Data combination

A measurement campaign typically comprises O (100) tritium scans. Each scan contains 148 tritium spectra, one
for each FPD pixel. The total number of recorded tritium spectra thus amounts to O (104). As each of them has a
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relatively low statistics, they have to be combined in order to reach a considerable m2
ν sensitivity. Individual scans

and pixels, exhibiting irregular behavior, for example high-voltage fluctuations or high noise levels, are excluded
from the combination. Sections 3.2.1 and 3.2.2 address the scan and the pixel combination strategies used in the
KATRIN analysis.

In the following, the selected scans are labeled by an index s = 1, ..., Ns and the selected pixels are labeled by an
index p = 1, ..., Np. If no vector notation is used, the scan steps are referred to with an index i.

3.2.1 Scan combination

The MTD is approximately the same for all scans within a measurement campaign. All scans contain the same
number of scan steps and the approximately the same measurement time per scan step t i,s. The selected scans are
combined by scan-step-wise addition of all scans

N exp(〈qUi〉) =
Ns
∑

s

N exp
s (qUi) (3.1)

As the retarding energies are not exactly identical from scan-to-scan, they are approximated by the time-weighted
average

〈qUi〉=

∑Ns
s qUi,s · t i,s
∑Ns

s t i,s

. (3.2)

To keep the equations simple, the subscript p has been dropped. Nexp(〈qU〉) is later-on referred to as stacked
spectrum.

Prerequisite for the applicability of the scan stacking technique is an excellent high-voltage reproducibility at
the O (10mV) level for all scan-steps. Moreover, all other operational parameter, such as column density and
isotopologue concentrations, have to be stable from scan-to-scan. Before applying the stacking technique, all
relevant parameters of the considered data set are examined if they meet the stacking requirements. The first
two measurement campaigns pass the quality criteria and the stacking technique is applied (see sections 8.2.1
and 9.2.1). The model, that describes the stacked spectrum, is addressed in section 3.2.3.

3.2.2 Pixel combination

Each FPD pixel covers a different part the flux tube, as described in section 2.1.6. The outer-most pixels see only
β-electrons that were emitted at the outer-most part of the WGTS; the central pixels see only β-electron from
the central part of the WGTS, etc. Any azimuthal and radial variations of the electric and magnetic fields in the
source and in the analyzing plane, therefore translate into pixel-wise differences of the tritium β-spectra. In case
these inhomogeneities are sufficiently small, the pixel-wise spectra can be combined analogous to equation (3.1):
The pixel-wise counts are summed up and the associated retarding energies are averaged. Like for the scan
combination, the applicability of the selected pixel combination is validated for each measurement campaign
(sections 8.2.2 and 9.2.2).

Different pixel-combination options are available in Samak:

• Uniform: In the simplest case, all selected pixels are combined into a single, so-called uniform, spectrum.

• Multi-Ring: The pixels can be grouped according to their radial position into 13 rings.

• Multi-slice: The pixels can be grouped according to their azimuth angle into 24 slices.

The different pixel combination options are illustrated in figure 3.1. In principle, also any other arbitrary ar-
rangement is possible in Samak. The level of granularity, that means the number groups, can be chosen at will.
Sometimes it can be beneficial to arrange the pixels in larger groups to improve the statistics within each group.
For this purpose, two or more groups are combined. All pixel combinations, that are used throughout this work,
are displayed in appendix B.
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(a) Uniform
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(b) Radial position: multi-ring
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(c) Azimuth angle: multi-slice

Figure 3.1: Overview of the basic FPD pixel combinations. More options are stated in appendix B. (a) The pixel-
wise spectra are summed up to a single effective spectrum. This pixel combination is called Uniform. (b) The
spectra with the same radial position are combined, which result in 13 effective spectra. This pixel combination is
called multi-ring. (c) The spectra with the same azimuth angle are stacked, which gives 24 effective spectra. This
pixel combination is called multi-slice.

3.2.3 Model of combined spectrum

As described in the two previous sections, many tritium spectra are combined, that were measured at slightly
different experimental conditions. The combined spectrum is described by an effective model, that is configured
with the time-weighted-average input parameters. The column density used in the effective model, for example,
is calculated from the scan- and pixel-wise parameter values

〈ρd〉=

∑Ns
s

∑Np
p ρds,p · ts

∑Ns
s

∑Np
p ts

. (3.3)

with the total measurement time per scan
ts =

∑

i

t i,s. (3.4)

The same is true for all input parameters, that enter the model calculation in section 2.2.

In case the FPD is not considered uniform, each group of combined pixels is analyzed by an individual model with
the group-specific average input parameters. In the standard analysis, the physics parameter of interest Θ are
considered to be common to all groups, whereas the nuisance parameters η (section 3.3.1) can take individual
values for each group. As a consequence, the use of a finer FPD granularity leads to a larger number free fit
parameters.

3.3 Statistical methods

This section summarizes the statistical methods that are used in this work: Section 3.3.1 described the param-
eter inference and uncertainty estimation with the method of least-squares. Furthermore, a review of different
confidence belt construction techniques is given in Section 3.3.2 at the example of the neutrino mass. At last,
section 3.3.3 addresses the propagation of systematic uncertainties.

3.3.1 Parameter inference

The model of the integral spectrum Nmodel(Θ,η) depends on one or more physics parameters of interest Θ, whose
values are unknown prior to the measurement. In the neutrino-mass analyses, only 1 parameter is of immedi-
ate interest, namely Θ = m2

ν. Different to that, the sterile-neutrino analyses investigate 2 physics parameters
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Θ = [m2
4, |Ue4|2]. Additionally, the model also depends on the several nuisance parameters η, which are not of

immediate interest, but have to be accounted for in the spectral fit. Both Θ and η are free fit parameter, which
results in Npar = NΘ + Nη free fit parameters. The baseline settings are summarized in table 3.1

Moreover, the model depends on systematic nuisance parameters ζ, such as ρdσ or the tritium isotopologue

Neutrino-mass analysis Sterile-neutrino analysis

Physics parameters of interest Θ m2
ν m2

4, |Ue4|2

Nuisance parameters η Efit
0 , Nsig, Bbase (m2

ν), Efit
0 , Nsig, Bbase

Systematic nuisance parameters ζ Fixed in fit; incorporated in covariance matrix
Number of free fit parameters Npar 4 (6) 5

Table 3.1: Baseline settings for the uniform analysis of an integral spectrum with respect to the neutrino-mass or
the sterile neutrinos. The spectral model Nmodel depends on three kinds of parameters. The physics parameters of
interest Θ and the nuisance parameters η are free parameter, whose values are inferred in the fit. The treatment
of m2

ν in the sterile neutrino search, is addressed in more detail in chapter 11. The systematic nuisance parameters
ζ are fixed in the fit according to the experimentalist’s best knowledge. The associated systematic uncertainties
are propagated through covariance matrices, as discussed in section 3.3.3. If not explicitly stated otherwise, these
fit parameter configuration are considered in the respective analyses.

concentrations. These parameters are fixed according to the best knowledge of the operational parameters and
therefore not varied in the spectral fit. Systematic uncertainties ∆ζ are incorporated in the analysis, for example,
in form of a covariance matrix V . Their treatment is discussed in more detail in section 3.3.3.

Least-squares fit: The objective of the spectral fit is to find the best-fit values [Θ̂, η̂], that maximize the agree-
ment between data Nexp and model Nmodel(Θ,η).

The data points at each scan step follow a Poisson distribution, since the electrons arrive at a constant rate and
independently from each other. Thanks to KATRIN’s high source activity and the combination of many scans and
pixels, the number of observed electrons is high ( > 103) for all scan-steps. In the large sample limit, the Poisson
likelihood can be well approximated by a Gaussian likelihood with the chi-squared function

− 2 lnL (Θ,η) = χ2(Θ,η) =
�

Nexp −Nmodel(Θ,η)
�ᵀ

V−1
�

Nexp −Nmodel(Θ,η)
�

. (3.5)

In the well-established method of least squares, the spectral fit searches for [Θ,η] = [Θ̂, η̂], that minimizes the
chi-squared function

χ2
min = χ

2(Θ̂, η̂). (3.6)

Fit parameter uncertainties: Classically, the uncertainties on the fit parameters are calculated by constructing
confidence belts. Different confidence belt construction techniques are discussed in section 3.3.2 at the example
of m2

ν. However, it was pointed out by Wilks [78], that in case the (profile) likelihood function follows a Gaussian
distribution, the fit uncertainties can be conveniently obtained from the shape of the chi-squared function. Often,
only subset of fit parameters Θk ∈ Θ is considered at once with Nk < Npar being the number of considered
parameters. In this case, the profile chi-squared function χ2(Θk) is used. The latter is calculated by minimizing
the chi-squared function for fixed values of Θk with respect to all other fit parameters. The fit uncertainties ∆Θ̂k
at a confidence level (C.L.) α are given by the distance to Θ̂k, for which the profile chi-squared function increases
by the critical chi-square ∆χ2

crit.(α) compared to its minimum

χ2(Θ̂k ±∆Θ̂k)−χ2
min =∆χ

2
crit.(α). (3.7)

Following Wilks’s theorem [78], ∆χ2
crit.(α) can be calculated for the α of choice as

∆χ2
crit.(α)
∫

0

fNk
(x)dx = α (3.8)
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with fNk
(x) being the chi-squared distribution for Nk degrees of freedom (dof). The uncertainty estimation for η

is carried out analogously. For 1 fit parameter of interest, for example in the neutrino-mass analysis, ∆χ2
crit. = 1

corresponds to a fit uncertainty at 68.3 % C.L..

Goodness of fit: The chi-squared formalism provides a measure for the goodness of fit: χ2
min follows a chi-

squared distribution with Ndof = Ni − Npar dof. The p-value as a measure of the goodness of fit can then be
calculated with

p =

∞
∫

χ2
min

fNdof
(x)dx . (3.9)

A p-value below 5 % merits further investigation. Possible reasons for a low p-value are an inaccurate model and
under-estimated or neglected systematic uncertainties.

3.3.2 Confidence belts

Next to inferring the m2
ν central value and fit uncertainty from the data, the objective of the neutrino-mass analyses

is to obtain a m2
ν confidence region, that is based on a so-called confidence belt. In the frequentist interpretation,

a confidence interval has the following meaning: If m2
ν was measured infinite times, in the fraction α of the

experiments the true (unknown) value of m2
ν would lie inside the confidence interval [m2

ν,1, m2
ν,2]

P(m2
ν ∈ [m

2
ν,1, m2

ν,2]) = α. (3.10)

The frequentist confidence interval is calculated by constructing a confidence belt. A confidence belts consists of
many so-called acceptance regions [x1(m2

ν), x2(m2
ν)], that are calculated for all potentially true m2

ν values. The
acceptance region is defined as

P(x ∈ [x1, x2]|m2
ν) = α. (3.11)

with P(x |m2
ν) being the p.d.f. for a fixed m2

ν value. Different confidence belt construction techniques are displayed
in figure 3.4. The acceptance interval for a hypothetical "true" m2

ν-value can be drawn as a horizontal line in x
direction at m2

ν = m2
ν, true. The confidence interval for a measured value x̂ is given by the intersection of a vertical

line in m2
ν direction at x = x̂ and the acceptance regions. If all acceptance regions fulfill equation (3.11), also the

confidence interval (equation (3.10)) has the correct coverage α.

The classical way to calculate P(x |m2
ν) is with a simulated Monte Carlo (MC) spectra. Many statistically random-

ized data sets are calculated, assuming a neutrino mass squared of m2
ν. A fit with free neutrino mass squared

is performed on each of these sample spectra. The distribution of the fit result samples P(x |m2
ν). This method

has two disadvantages: Firstly, to be sensitive to the tails of the distribution P(x |m2
ν), very large sample numbers

(> 5000) are needed. Secondly, this method gets quickly computational expensive with increasing sample size.
Therefore, an alternative approach is followed in this work using a so-called Asimov spectrum, which is not statis-
tically randomized. For each m2

ν of interest, an Asimov spectrum is calculated. The associated profile chi-squared
functions χ2(x , m2

ν) are calculated, by fitting the Asimov spectra multiple times assuming a different, but fixed
neutrino masses x . All other fit parameters are free in the fit. The profile chi-squared function can be converted
into the probability density function P(x |m2

ν) with:

P(x |m2
ν)∝ exp

�

−
1
2
χ2(x , m2

ν)
�

(3.12)

To ensure the probability interpretations, equation 3.12 is normalized to 1. An example probability density func-
tion is illustrated in figure 3.2 for m2

ν = 0.2 eV2. The acceptance region is a function of m2
ν, and has therefore to

be calculated for every m2
ν of interest. To determine the acceptance region uniquely, an auxiliary criterion next to

equation (3.11) is needed.

In principle, one has complete freedom to choose the auxiliary criterion, as long as the choice is not based on
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Figure 3.2: The profile chi-squared function χ2(x |m2
ν) is obtained by analyzing a simulated Asimov spectrum.

This simulated spectrum has asymptotic statistics, as it is not statistically randomized. The probability density
function P(x |m2

ν) can be obtained from χ2(x |m2
ν) using equation (3.12).

the analyzed data set. In the following, different strategies are discussed. First, the classical confidence belts by
Neyman [79] and the arising problems close to physical boundaries are briefly are discussed. Furthermore, the
confidence belt construction techniques used in this work according to Feldman and Cousins (FC) and Lokhov and
Tkachov (LT) are presented.

Neyman confidence belt: A common choice for an auxiliary criterion is either equation 3.13, which leads to an
upper limit, or equation 3.14, which corresponds to a central confidence interval.

P(x < x1|m2
ν) = α (3.13)

P(x < x1|m2
ν) = P(x > x2|m2

ν) = (1−α)/2. (3.14)

When constructing a confidence interval for the neutrino mass squared, a quantify known to be positive, the
criteria above has problematic consequences. When the measured neutrino mass squared is significantly larger
than zero, it is desired to quote a two sided confidence interval. However, when the measured neutrino mass is
not significantly larger than zero, the lower bound will reach into the unphysical negative mass regime, as can
be seen in figure 3.4 (red dash-dotted line) for x = x̂ ≤ 0.5 eV2. In that case the experimentalist would like to
quote an upper limit on the neutrino mass instead. Even though one has complete freedom in choosing the type
of confidence interval, this choice cannot be made based on the measured value. It has be demonstrated in [80],
that this "flip-flopping" leads to a confidence interval without correct coverage, that means eq. 3.11 is not full
filled for all possible m2

ν.
Besides that, two complications arise in case the measured neutrino mass is a significant underfluctuation with
respect to the expected value: Firstly, when opting for an upper limit, one finds an empty confidence interval.
This is illustrated by the green dashed line in figure 3.4 for x = x̂ ≤ 0.4eV2. Secondly, when choosing a central
confidence interval, the lower and the upper boundary are in the unphysical negative regime.

Feldman-Cousins confidence belt: Feldman and Cousins were aware of the problem described above and pre-
sented a new criterion, which uniquely determines the acceptance region [80]. The advantage of this criterion is
that the obtained confidence interval is never empty and always positive, as illustrated in figure 3.4 (blue line).
Moreover, the correct coverage is maintained, when going from a one sided confidence interval to a two sided
confidence interval.
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For this criterion, FC define the likelihood ratio R(x , m2
ν)

1

R(x ,Θ) =
P(x |m2

ν)

P(x |m̂2
ν)

. (3.15)

It was pointed out be [81], that the likelihood ratio be can equivalently expressed in terms of chi-squared difference

− 2 ln R(x , m2
ν)≡∆χ

2
FC(x , m2

ν) = χ
2(x , m2

ν)−χ
2
best (3.16)

with

χ2
best =

¨

χ2(x , m2
ν = x) = 0 for x ≥ 0

χ2(x , m2
ν = 0) for x < 0

(3.17)

Like P(x |m2
ν), ∆χ

2
FC is evaluated using a simulated spectrum without statistical fluctuations (Asimov). The first

term is the regular profile chi-squared, illustrated for example in figure 3.2 for m2
ν = 0.2eV2. For the second term

(χ2
best) one differentiates between two cases:

1. In case x ≥ 0, then χ2
best = 0. A simulated Asimov spectrum with the MC truth m2

ν = x is fit with the identical
model spectrum.

2. In case x < 0, the chi-squared is evaluated using a simulated Asimov spectrum with the MC truth m2
ν = 0eV2

and a model spectrum with m2
ν = x . This implements a boundary at m2

ν = 0eV2.

The difference between χ2(x , m2
ν) and∆χ2

FC(x , m2
ν) is illustrated in figure 3.3 for m2

ν = 0.2eV2. The acceptance re-
gion is uniquely determined by ordering the P(x |m2

ν) in equation (3.11) according to∆χ2
FC(x ,µ)with the auxiliary

criterion

∆χ2
FC(x1, m2

ν) =∆χ
2
FC(x2, m2

ν). (3.18)
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Figure 3.3: Feldman and Cousins define ∆χ2
FC in equation (3.16), which specifies the ordering of P(x |m2

ν). To
obtain only one possible solution for the acceptance region (equation (3.11)), the auxiliary criterion in equa-
tion (3.18) is used.

1Note that even though numerical identical, P(x |m2
ν) is here interpreted as a likelihood instead of a probability density, because its calcu-

lation is based on a fixed measured value x .
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Lokhov and Tkachov (LT): The Lokhov-Tkachov confidence belt [82] is calculated with the same framework as
described above. Similar to FC, the physical boundary of the neutrino mass at zero is taken into account in the
construction of these confidence intervals. The difference to FC is, that LT do not use the likelihood ratio ordering
to achieve this.

They define that the estimator of the neutrino mass x has to be always positive. When the lower limit of the
acceptance region x1 happens to be in the negative mass regime for a particular true m2

ν, x1 is set to −∞ and the
probability distribution function in integrated from −∞ to x2. Consequently, when experimentally measuring a
negative mass, the corresponding upper limit coincides with the sensitivity. Therefore, this method is also called
method of sensitivity limit. The LT confidence belt is illustrated in figure 3.4 (orange dotted line).
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Figure 3.4: Illustration of different confidence-belt-construction techniques. A confidence belt is a conjunction of
many acceptance regions [x1(m2

ν), x2(m2
ν)] (horizontal direction), that are calculated for many different values of

m2
ν. The acceptance region construction is based on the coverage criterion in equation (3.11) and one additional

auxiliary criterion. The latter can be chosen arbitrarily as long as the choice is not influenced by the experimental
outcome of x . The one- and two-sided Neyman confidence belts use equations (3.13) and (3.14), respectively [79].
The Lokhov and Tkaschov confidence belt use equation (3.13) for x1 < 0 and equation (3.14) otherwise [82].
Feldman and Cousins employ the so-called likelihood ratio (or equivalent the chi-squared difference) ordering in
equation (3.16). The confidence interval [m2

ν,1(x), m2
ν,2(x)] for a measured value x is given by the intersection

with the acceptance regions in vertical direction. The confidence belts shown here are based on the KNM2 data
set for illustration.

3.3.3 Systematic uncertainty propagation

Systematic nuisance parameters ζ are model input parameters, whose values and uncertainties ζ̂±∆ζ̂ are esti-
mated by external measurements prior to the spectral analysis. The underlying physical processes of the systematic
effects in KATRIN are addressed in chapter 4. To guarantee a bias-free parameter inference, systematic uncertain-
ties have to be accounted for in the chi-squared function. Two complementary uncertainty propagation strategies
are used in this work: the covariance matrix approach and the use of pull terms.

3.3.3.1 Covariance matrix approach

Systematic uncertainties can be incorporated in the chi-squared function by a covariance matrix (see equation (3.5)),
which is the baseline strategy in this work. The covariance matrix approach is already extensively described
in [1, 65], thus only a brief summary is provided here.

The systematic nuisance parameters ζ are randomized according to their associated probability density functions,
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generating O (104) sample values {ζsample}. Correlations among ζ are taken into account. If not specified other-
wise, the p.d.f.s are assumed to be Gaussian with µ = ζ̂ and σ = ∆ζ̂. Subsequently, each random sample ζsample

serves as input for one simulation of an integral spectrum Nmodel
sample, which results in O (104) different sample spectra

{Nmodel
sample}.

The signal normalization Nsig., being a free fit parameter, absorbs all uncertainties on the overall signal strength.
Therefore, systematic uncertainties that translate solely into an overall fluctuation of {Nmodel

sample} must be elimi-
nated. This is archived by normalizing the statistics of each sample spectrum to the average statistics of all sample
spectra, effectively transforming {Nmodel

sample} into shape-only sample spectra. The shape-only covariance matrix V is

determined from {Nmodel
sample} using the sample covariance matrix as an estimator. Its entries encode the shape-only

uncertainties on the model points and their scan-step dependent correlations. In this work, covariance matrices
are displayed as fractional covariance matrices Vfrac, which show the relative influence of a systematic effect on
the model spectrum

Vfrac =
V

(Nmodel)ᵀNmodel
. (3.19)

If a set of systematic effects are uncorrelated, the associated covariance matrices can be calculated independently
from one another. Besides systematic uncertainties, a covariance matrices with the statistical (Poisson) uncertain-
ties on its diagonal is determined. The sum of all covariance matrices gives the total covariance matrix, as it is
used in the fit.

3.3.3.2 Pull-term approach

A complementary uncertainty propagation technique is the pull-term approach. Being statistically equivalent to
covariance matrices, this method is used as a cross check in this work. The chi-squared function in equation (3.5)
is extended with so-called pull-terms

χ2(Θ,η,ζ) = χ2(Θ,η) +χ2
pull(ζ) (3.20)

with

χ2
pull(ζ) =

(ζ− ζ̂)2

(∆ζ̂)2
. (3.21)

In this approach, ζ is not fixed in the fit but a variable fit parameter. However, it is constrained by the pull term
according to the best knowledge ζ= ζ̂±∆ζ̂.
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Chapter 4

Systematic effects in KATRIN

This chapter is devoted to systematic effects, that were observed in the first two measurement campaigns of the
KATRIN experiment. Loosely arranged from source to detector section, each systematic effect is discussed in a
separate section.

4.1 Theoretical corrections

As described in section 2.2.1.3, small known corrections on the particle, nuclear, atomic levels can be applied
to the standard Fermi function. As the integration of these theoretical corrections in the spectral model can be
computationally expensive, they are often neglected in case their influence on the neutrino mass is small com-
pared to the sensitivity. In case of exclusion, the missing theoretical corrections are incorporated as a systematic
uncertainty in form of a covariance matrix MTC. The latter is calculated by comparing the integral spectrum with
theoretical correction (RTC) to the default one (RNC)

MTC
ij = (R

TC
i − RNC

i )(R
TC
j − RNC

j ). (4.1)

Figure 4.1 illustrates the relative difference between corrected and uncorrected integral spectrum for six of the
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Figure 4.1: Theoretical correction (section 2.2.1.3) to the standard Fermi-function (section 1.3.3) originate from
the particle, nuclear and atomic level. The relative rate difference between integral spectrum with (TC) and
without (NC) theoretical correction is compared. The radiative correction yield the largest spectral change.

above mentioned effects as a function of retarding energy. The largest correction stems from radiative effects,
inducing a relative spectral change up to −8× 10−3. Recoil effects due to the finite nuclear mass (V-A interference
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Chapter 4. Systematic effects in KATRIN 4.2. Final-state distribution

and weak magnetism) change the spectrum up to 1× 10−3. All other corrections are one order of magntiude or
more smaller than that the second largest correction.
What concerns the analysis of the first two measurement campaigns, only the radiative corrections are included
in the model.

4.2 Final-state distribution

As described in section section 2.2.1.1, the FSD describe translational, rotational and electronic excitation states
of the daughter nucleus. Due to energy conservation, the FSD directly affects the electron energy spectrum.
Therefore, precise knowledge of the final-state distribution is essential for KATRIN. As the molecular excitation
cannot be measured in KATRIN, the FSD have to be calculated ab initio. The importance of an adequate description
and uncertainty estimation of the FSD has been impressively demonstrated by past neutrino mass experiments in
the 1980s. Studying the kinematics of tritium β-decay in the endpoint region similar to KATRIN, experiments
at Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL) reported on
negative m2

ν fit results [83, 84]. Originating from a rate excess near the endpoint, the anomalies were significant
at the 2σ (LANL) and 6σ (LLNL) level. Both analyses used the FSD calculation from Fackler et al. [85]. When
their tritium data was reevaluated with a modern FSD calculation from Saenz et al. [64], the significance of both
results was diminished and the extracted m2

ν values were consistent with zero [86]. Even though being a striking
experimental confirmation of the theoretical calculation by Saenz et al., this illustrates the necessity of a reliable
FSD error estimation, especially considering the large statistical power of the KATRIN.
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Figure 4.2: Illustration of the systematic uncertainty on the final-state distribution. The blue bars depict the
(binned) FSD used in KNM2 for the T2 isotopologue. The FSD uncertainty propagation for HT and DT is carried out
analogously. To propagate the systematic uncertainty on normalization and variance, an ensemble of randomized
FSD is generated following the prescription above. The pink band gives the uncorrelated 1σ variation within each
FSD bin. This illustration uses ∆NGS = 1%, ∆pGS = 4% and ∆pES = 18 %.

As theorists don’t provide any error estimation on the FSD, a heuristics treatment is developed to cover any
unknown FSD inaccuracies [1]. For this, the differences between the FSD calculations from Fackler et al. and
Saenz et al. serve as conservative indication for the magnitude of the systematic error. The description of the
ground states, comprising all translational and vibrational excitations with energies below 5 eV, are very similar
from one computation to another. Calculations for higher excited states and for the electronic continuum exhibit
larger differences. The FSD uncertainty is divided into two aspects:

Firstly, a normalization uncertainty∆NGS on the cumulative ground-state probability NGS is formulated. The latter
is randomized according to a Gaussian distribution with σ =∆NGS. The ground-states of the FSD are re-weighted
accordingly. Following the specification in the KATRIN Design Report [42], a relative uncertainty of 1 % is assumed
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4.3. Source potential Chapter 4. Systematic effects in KATRIN

as default value
∆NGS = 0.01 · NGS. (4.2)

The cumulative excited-state probability NES is adjusted accordingly for each sample s, following conservation of
probability1

N s
ES = NES + NES − N s

GS. (4.3)

Secondly, an uncertainty on the variance of the FSD is designed. To account for the different level of accuracy be-
tween ground and excited states, it is distinguished between ground-state variance uncertainty∆σ2

GS and variance
uncertainty for the entire energy range ∆σ2

ES. The variance uncertainties are implemented in form of bin-to-bin
uncorrelated probability variations ∆pGS and ∆pES, that are tuned to match the desired ∆σ2. The details of this
procedure can be found in [1]. After the suggestion of [87] and specification in the KATRIN Design Report [42],
a ∆σ2

GS = 1% and ∆σ2
GS = 2− 3% are used as default values.

The FSD uncertainties are finally propagated to the integral spectrum in form of a covariance matrix. The latter is
calculated in the usual manner, based on the randomized FSD samples. Figure 4.2 illustrates the ensemble of ran-
domized FSD for the T2 isotopologue. The decay of other tritium isotopologues in the WGTS, namely HT and DT,
is characterized by slightly different FSD (section 4.5). Their uncertainty propagation is carried out analogously
to the T2 FSD.

4.3 Source potential

As described in section 2.1.2, the molecular tritium in the source occurs in a state of a cold and strongly magne-
tized plasma. The electric potential of the plasma defines the starting potential of the β-electrons. Therefore, any
potential homogeneities propagate directly into the tritium spectrum and need to be accounted for in the model.
Unknown spatial or time-wise plasma potential variations can lead to a bias in the neutrino mass.

Within the WGTS, free electrons and ions are magnetically confined in radial direction. Thus, the plasma potential
is mostly influenced by the bias voltage of the rear wall URW, rather than the (grounded) beam tube. Nevertheless,
intrinsic work function differences between the gold-plated rear wall and the stainless-steel beamtube surface can
give rise to spatial plasma potential inhomogenieties. It is expected from simulations that the spatial inhomo-
geneities vanish with the optimal URW configuration [45], which is determined in advance of each measurement
campaign.

Moreover, the plasma potential can be characterized experimentally using krypton as a calibration source with
a well-defined energy spectrum [88, 89]. The main goal of the krypton measurements is the determination of
the longitudinal potential distribution and short-term fluctuations. Both radial and long-term plasma potential
variations can also be inferred directly from tritium data, whereas a remaining inhomogeneities would be only
perceivable as a neutrino-mass bias.

In the following sections, the determination of longitudinal (section 4.3.1), radial (section 4.3.2) and time-wise
(section 4.3.3) plasma potential variations and their uncertainties treatments are discussed.

4.3.1 Longitudinal homogeneity

The longitudinal plasma potential can be modeled with two parameters: an energy broadening σ2
0 and an energy-

loss shift ∆10. In the following, their physical meaning is briefly illustrated. A comprehensive discussion of the
phenomenological plasma model is given in [88].

If the plasma potential has a longitudinal z-dependency, each FPD pixel sees a superposition of spectra with differ-
ent electron starting potentials. The effective spectrum can be described with the average plasma potential and an
increased experimental energy resolution ∆E′ =

q

∆E2 +σ2
0. Technically, the energy broadening is incorporated

in the model by convolving the FSD and a Gaussian with the varianceσ2
0. This procedure is illustrated in figure 4.3

(left) for an arbitrary energy broadening σ2
0 = 0.2 eV2. The second plasma parameter, ∆10, takes anti-symmetric

1The cumulative probability of the entire FSD calculations at hand differ from unity by� 1 %.
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Chapter 4. Systematic effects in KATRIN 4.3. Source potential

spatial plasma potential variations into account: Electrons that are emitted at the rear-end of the WGTS (low z),
traverse a longer path in the source than electrons emitted at the front-end (high z). Encountering more tritium
molecules, low z electrons have a larger probability to scatter at least once than high z electrons. If the plasma
potential is, for example, more positive for low z than for high z, electrons that scatter at least once have on
average a lower starting energy than electrons that don’t scatter. This effect is is modeled as an energy-loss offset
between zero and one scatterings as illustrated in figure 4.3 (right) for an arbitrary energy-loss shift∆10 = 0.5eV.
Both longitudinal plasma parameters, can be assessed in krypton measurements. In the WGTS, gaseous 83mKr is

0 0.5 1 1.5 2 2.5 3 3.5 4

Excitation energy (eV)

0

0.005

0.01

0.015

P
ro

b
a

b
ili

ty

Original FSD

Broadened FSD

Energy broadening: 
0

2
 = 0.2 eV

2

10
 = 0.5 eV

10 15 20 25

Energy loss (eV)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y
 (

e
V

-1
)

Original energy-loss function

Shifted energy-loss function

Figure 4.3: Illustration of longitudinal plasma parameters. Left: The energy broadening σ2
0 is incorporated in

the model by convolving the Final-state distribution with a Gaussian with σ2 = σ2
0. By means of illustration,

the broadening effect is demonstrated here on the ground state only. Right: Anti-symmetric plasma potential
variations are taken into account by the energy-loss shift parameter ∆10. The latter describes an energy offset
between zero and one-fold scattering.

produced in an excited state via electron capture of 83Rb. The krypton excitation energy is split over an intermedi-
ate state into two excitation energies of 32.2 keV and 9.4 keV. Deexcitation occurs either by γ-emission or internal
conversion, where only the latter contributes to the krypton spectrum. The kinetic energy of the electron is the
difference between the excitation energy and the binding energy of the electron. Since the emitted electrons can
originate from various atomic shells, several spectral lines are expected per transmission energy. Only the 32.2 keV
transition can be used for calibration purposes, as its energy is above the tritium endpoint. The spectral lines have
a small natural line width O (1 eV), rendering them an attractive calibration source. By comparing the experimen-
tal spectrum to a reference spectrum, that is recorded in the absence of plasma, σ2

0 and ∆10 can be determined.

The correlated uncertainties σ2
0 and ∆10 from the krypton data analysis are propagated to the integral spectrum

in the usual manner. Pairs of σ2
0 and∆10 are randomly drawn from a multivariate Gaussian distribution, each pair

serving as input for one spectrum calculation. The longitudinal plasma covariance matrix is then estimated from
the ensemble of sample spectra.

4.3.2 Radial homogeneity

A radial inhomogeneity of the plasma potential can be resolved with the pixel segmentation of the FPD. Each
FPD pixel detects only electrons from a specific flux tube volume, that is associated with a specific radial starting
position within the WGTS. The pixel-wise distribution of fitted endpoints mirrors the radial plasma potential vari-
ation. As the electrons are negatively charged, a more positive plasma potential results in a lower endpoint.

As long as each pixel, or group of pixels with similar electron starting potential, is described with an individual
endpoint in the spectral analysis, no neutrino-mass bias is induced. Consequently, by making use of the FPD
segmentation with multipixel or multiring fit (see chapter 3), unknown radial plasma potential variations can be
accounted for.

However, simulations suggest that a radially homogeneous plasma potential minimizes longitudinal inhomo-
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4.4. Source activity Chapter 4. Systematic effects in KATRIN

geneities [45]. On top of that, a multipixel analysis is substantially more complex and computationally expensive
than a uniform analysis, mostly due to the increasing number fit parameters. Because of that, the rear-wall bias
voltage is optimized with respect to radial plasma homogeneity in advance of each measurement campaign.

4.3.3 Long-term stability

A changing plasma potential over time leads to a time-dependent electron starting potential. To good approx-
imation, this is equivalent to a time-dependent effective tritium endpoint. A spectrum, that is recorded over a
period of changing plasma potential, is consequently a superposition of spectra with different endpoints. Similar
to a longitudinal plasma inhomogeneity, the plasma variation σ2

t can be modeled as an energy-broadening of the
same magnitude. The latter is implemented in the model through a broadening of the FSD in the same way as σ2

0,
illustrated in figure 4.1 (left).

The time-wise plasma potential variations σ2
t can be inferred from tritium data in several ways. The option pur-

sued in this work is the rate analysis of a high-statistics monitor scan-step, that is recorded at qU − E0 < −300eV
(KNM2). After being corrected for scan-wise activity and retarding potential fluctuations, this scan-step is sensi-
tive to plasma potential time evolution. The analysis of the rate monitor point in KNM2 can be found in section
section 6.6.2. Another option is the analysis of the time evolution of the fitted endpoint. For the spectral fits, only
scan-steps are used that were discarded for the neutrino-mass analysis to avoid double usage of data.

The long-term plasma potential variation is combined with the longitudinal homogeneity (section 4.3.1) by sum-
mation in quadrature σ2

plasma = σ
2
0 +σ

2
t .

4.4 Source activity

The source activity Asource is determined by the amount of tritium in the source. The higher both column density
and tritium purity are, the more β-decays occur and the higher is the source activity

Asource∝ ρd · εT. (4.4)

The latter, among other fixed quantities such as the acceptance angle2, determines the signal strength of the exper-
imental tritium spectrum. Consequently, any uncertainty on Asource propagates into an uncertainty on the observed
signal rate. When discussing the uncertainty propagation, two aspects have to be examined: The uncertainty on
the absolute value of Asource (section 4.4.1) and the stability of the source activity within a scan (section 4.4.2).

4.4.1 Uncertainty on absolute value

If Asource is constant over the time-scale of a tritium scan, all scan-steps underlie the same signal strength. In
this case, the uncertainty on the absolute value of Asource translates into an uncertainty on the overall signal
normalization for the entire spectrum. Since the latter is included as a free fit parameter in all spectral analyses,
this aspect does not require additional uncertainty propagation.

4.4.2 Scan fluctuations

If Asource varies within a scan, the scan-steps observe different signal amplitudes. The spectral model, however,
only accounts for one average signal normalization for the entire spectrum. This could potentially cause a small
spectral distortion and a neutrino-mass bias. As the scan-wise activity variations are small for both measurement
campaigns, the former is not included in the spectral model but accounted for as a systematic uncertainty. The
treatment of the activity variations within a scan is performed as follows.

In the stacked scan analysis with ns scans and nk scan-steps, each scan-step k of scan s is associated with a

2The full discussion on the expected signal strength is given in section 2.2.3.
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measured source activity Ask
source. As a first step, the mean activity of each scan is normalized to the global mean

source activity to mitigate scan-wise normalization differences

Âsk
source = Ask

source

1
nsnk

∑

s

∑

k Ask
source

1
nk

∑

k Ask
source

= Ask
source

〈〈Asource〉〉
〈As

source〉
. (4.5)

The relative systematic activity uncertainty for a stacked scan-step is the error of the mean

σk
sys =

Ç

1
ns

∑

s(Âsk
source − 〈Âk

source〉)2
p

ns
·

1

〈Âk
source〉

. (4.6)

Scan-step-wise correlations are taken into account, by calculating the fractional covariance matrix for all scan-
steps:

Mactivity
frac. = cov(Âsk

source)
1
ns

1

〈Âk
source〉2

. (4.7)

As the signal normalization of the integral spectrum is directly proportional to the source activity, Mactivity
frac. can be

used as the fractional covariance matrix for the integral spectrum prediction.

4.5 Molecular gas composition

The gas injected into the WGTS comprises mainly three different tritium isotopologues: T2, HT and DT. The β-
decay of each isotopologue is described with a slightly different final-state distribution, as illustrated in figure 2.3.
Systematic uncertainties on the relative molecular abundances propagate into the spectral shape. The observable
integral spectrum is a superposition of three slightly different integral spectra, one for each isotopologue respec-
tively. Figure 4.4 shows the relative difference of integral spectra, that contain only one molecular species. The
integral spectrum of T2 is used as a reference. To mitigate normalization effects, the activity is assumed to be
identical for all three cases.

The gas composition is continuously monitored by a Laser Raman spectroscopy system in the TLK infrastructure.
The uncertainty of this measurement is mostly driven by the trueness of the LARA calibration [90].

As other molecules are only present in trace amounts, the relative molecular concentrations of the tritium isotopo-
logues are strongly correlated with each other. The correlations are estimated from LARA data for all sub-scans
within all golden scans for each measurement campaign respectively. The resulting concentration correlation ma-
trix in conjunction with the trueness values from [90] yield the concentration covariance matrix. The impact on
the integral spectrum is estimated with an ensemble test. O (103) concentration triplets are randomly drawn from
the Gaussian multivariate distribution with the concentration covariance matrix. Each concentration triplet serves
as input for an integral spectrum calculation. Using a spectral model with average concentration values, each
sample spectrum is then analyzed with respect to the neutrino mass. The standard deviation of the m2

ν fit-value
distribution equals the 1σ contribution to the systematic sensitivity budget.
It turns out that the impact on the neutrino mass is very small compared to the KNM1 and KNM2 sensitivities
(sections 8.6 and 9.7). Therefore, this systematic uncertainty is neglected in the spectral analyses presented in
this thesis.

4.6 Number of scatterings

Electrons in the source loose energy by scattering inelastically off ambient tritium molecules (see section 2.2.2.2).
The probability for s-fold scattering and the expected number of scatterings

Nscat. = ρd ·σinel.. (4.8)
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Figure 4.4: Integral spectra for different tritium isotopologues. The tritium isotopologues present in the WGTS
are described with slightly different FPD. Here, the relative difference of an integral spectrum, that contains only
HT or DT, to a T2-only integral spectrum is shown. The activity is assumed to be constant for all spectra to mitigate
normalization effects.

are determined by the column density in conjunction with the inelastic scattering cross section σinel.. As ρd and
σinel. always appear as a product in the response function calculation, their uncertainties are treated simultane-
ously. Nscat. can be determined using a mono-energetic electron source, which is installed at the rear end of the
WGTS. When passing through the WGTS, the electrons loose a certain amount of energy with a given probability
through inelastic scattering off the tritium gas. By analyzing the integral electron source spectrum, Nscat. can be
inferred to great accuracy. The only drawback from this method is that it cannot be applied to monitor Nscat. while
data taking, as its measurement interferes with the tritium scans. Other monitor parameters, that scale with ρd
and can be measured continuously, are consulted to interpolate ρd · σinel. to all times. Several parameters are
available such as the gas throughput in the injection capillaries or the FBM rate [91].

4.7 Energy-loss function

At each inelastic scattering in the source, an electron looses a variable amount of energy. As explained in sec-
tion 2.2.2.2, the energy-loss function determines the probability to loose a certain amount of energy per inelastic
scattering. As the theoretical description of this process isn’t accurate enough, dedicated measurements inside the
KATRIN apparatus are performed [68].
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Figure 4.5: Energy-loss function (section 2.2.2.2) for the first the scatterings with 1σ error band. By way of
illustration, the error band is scaled with a factor 50.
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The data is fit with a semi-empirical parametrization, comprising nine physics parameters of interest. The fit
uncertainties on these nine parameters and the associated correlation matrix are used to generate an ensemble of
randomized energy-loss functions. By way of illustration, figure 4.5 shows the mean energy-loss function for the
first three scatterings with associated error bands scaled by a factor of 50, which are estimated from an ensemble
of 1000 samples. Each sample energy-loss function then serves as input for an integral spectrum calculation. As
a last step, the spectral covariance matrix is computed from the ensemble of integral spectra.

4.8 Magnetic fields

The magnetic fields inside the KATRIN apparatus are key ingredients for the response function calculation. Source
and pinch magnetic field determine the maximal detected polar angle, which influences the mean scattering prob-
abilities as well as the mean energy loss through synchrotron radiation. In conjunction with the former two
magnetic fields, the magnetic field in the analyzing plane determines the transmission properties and energy res-
olution of the MAC-E filter in the main spectrometer.

Moreover, the θmax affects the number of tritium electrons seen by the FPD. This relation applies equally to all
retarding energies, thus rendering it a pure normalization effect which doesn’t require additional uncertainty
treatment.

Both source and pinch magnetic fields are generated by solenoid magnets, whose field strengths can be configured
by the applied electric current. The systematic uncertainty on both fields is assessed by comparing reference mea-
surements to a corresponding magnetic field simulation. The relative difference between the measurement and
the simulation is used as systematic uncertainty for all magnetic field configurations, i.e. applied electric currents.

The magnetic field in the analyzing plane can be measured with a condensed krypton source placed in the active
flux tube volume. Such an in-situ measurement of Bana took only place after the second measurement campaign
and was thus not available for the analyses in this work. In any case, such a calibration measurement cannot be ac-
complished during neutrino-mass campaigns. Therefore, an extensive magnetic field model within the simulation
software Kassiopeia is consulted. The simulation is complemented by high-precision Bartington magnetometers,
that are arranged on the outside of the main spectrometer near the analyzing plane. The deviation between mea-
sured and simulated magnetic field outside the active flux tube is used as an estimate for the systematic uncertainty
on the simulated value inside the flux tube, i.e. Bana.

Even though uncorrelated, the systematic uncertainties on all magnetic fields are treated simultaneously as they
all require thousands of re-calculations of the response function. For the propagation to the integral spectrum, an
ensemble of randomized magnetic field values is drawn from a Gaussian distribution. The resulting ensemble of
integral spectra is then used to estimate the spectral covariance matrix.

4.9 Retarding potential

The high-voltage, that defines the retarding potential of the main spectrometer, is continuously monitored by a
high-voltage divider with a precision at the part-per-million level [92]. Thanks to this extraordinary high precision,
the systematic uncertainty on the absolute high-voltage scale is negligible for the neutrino mass analysis [42].

To enable run combination through stacking, each retarding potential set point has to be reproduced from scan-
to-scan as good as possible. To first order, scan-wise variations of retarding potential values translate into an
decrease in energy resolution by σ(qU). If unaccounted in the analysis, this leads to a neutrino-mass bias of
∆m2

ν ≈ −2σ2. In the first two measurements campaigns the retarding potential could be reproduced within a few
meV. The influence on the neutrino mass was therefore negligible.

4.10 Background

The background model consists of three components: A dominant steady-state background rate and two smaller
components: one retarding potential dependent, one scan-step-duration dependent. The underlying physical
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processes of each background component are described in section 2.2.4. All three contributions come with their
own systematic uncertainty, that are addressed in the following sections, respectively.

4.10.1 Steady-state background: Non-Poisson over-dispersion

The steady-state background rate Bbase is included as a nuisance parameter in the spectral analysis. Thus, a sys-
tematic uncertainty on the absolute scale of this background component doesn’t require further treatment.

However, as described in section 2.2.4, a significant fraction of the steady-state background doesn’t follow the ex-
pected Poisson distribution. To extract the actual distribution, the rates of all scan-steps above the tritium endpoint
are analyzed for each measurement campaign respectively. The background rate over-dispersion is quantified in
terms of a Non-Poisson factor

f 2
Non−Poisson =

σ2
Gauss

σ2
Poisson

(4.9)

with the observed variance σ2
Gauss, extracted from a Gaussian fit, and the expected Poisson variance σ2

Poisson. The
spectral covariance matrix is calculated as

MNon-Poisson =
Æ

Bbase~t( f
2

Non−Poisson · 1)
Æ

Bbase~t ′ (4.10)

with the scan-step duration ~t and the identity matrix 1. As the Non-Poisson background component is uncorre-
lated from scan-step to scan-step, MNon-Poisson comprises only non-zero entries on its diagonal. Thus, MNon-Poisson
effectively increases the statistical uncertainty on the steady-state background.

4.10.2 Scan-step-time-dependent background rate

The scan-step-duration-dependent background originates from electrons that are stored in a penning trap between
the pre- and main spectrometer [76]. As discussed in section 2.2.4, this effect increases the background rate lin-
early over the duration of a scan-step. Central value and uncertainty on stime are obtained from the analysis of
tritium data: The time evolution of the rate within a scan-step is analyzed in bins of 1 s. All scan-steps are fit
simultaneously with a linear model, containing a common stime and individual rate offsets for all scan-steps.

The systematic uncertainty σ(stime) from the linear fit is accounted for with a covariance matrix in the spectral
analysis. The covariance matrix is calculated in the usual manner: An ensemble of background spectra is cal-
culated, drawing random values of stime from a Gaussian distribution with σ = σ(stime) and µ = stime. As an
independent cross check, stime can alternatively be included as a nuisance parameter in the spectral analysis. In
this case, ∆stime is incorporated in a Gaussian pull term in the χ2 function

χ2
pull =

�

µ− stime

σ(stime)

�2

. (4.11)

4.10.3 Retarding-potential-dependent background rate

To-date, no significant retarding-potential-dependent background rate near the tritium endpoint has been found.
However, an unaccounted sqU (equation (2.31)) could bias the neutrino mass. Constraints σ(sqU) can come from
dedicated background measurements or directly from tritium scans. The options are discussed in the following.

4.10.3.1 External constraints from background campaigns

Dedicated background measurements with decoupled WGTS can potentially provide the strongest constraints on
sqU. These measurements are conducted with closed valves to the source section, effectively removing all β-
electrons. With only background electrons left, sqU can be measured over a large retarding potential interval
extending up to several keV below the endpoint [93].

However, the background rate in KATRIN changed significantly over the past years [75]. This can be attributed
partly to changes in the experimental setup, such as improved vacuum conditions, and partly to unknown reasons.
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Chapter 4. Systematic effects in KATRIN 4.11. Detector efficiency

Therefore, it’s crucial to only consult external σ(sqU) from measurements with similar background conditions as
in the respective neutrino-mass campaign.

External constraints can be propagated to the integral spectrum through a covariance matrix. An ensemble of
background spectra is generated, using randomly drawn values for sqU as input. The external constraint on sqU is
used as standard deviation for the underlying Gaussian probability density function.

4.10.3.2 Retarding-potential dependence as nuisance parameter

The retarding-potential dependency of the background rate can also be directly inferred within the spectral analy-
sis. The analysis model is extended by sqU (see section 2.2.4) as an additional nuisance parameter. Within a tritium
scan, the background is mostly determined from scan-steps above E0. For lower (less negative) retarding poten-
tials, signal-to-background ratio quickly start to rise above unity, which limits the available retarding potential
range which is sensitive to sqU. Moreover, the measurement time in the background region is restricted to ≈ 20 %
of the total measurement time. As a consequence, constraints from tritium data are relatively poor compared to
external constrains from dedicated background measurements. The weaker the constraints on sqU, the larger is
the contribution to the m2

ν-systematic uncertainty budget. If available, external constraints can be included as a
Gaussian pull term in the χ2 function

χ2
pull =

�

sqU

σ(sqU)

�2

. (4.12)

4.10.3.3 Constraints from simulated tritium data

As described in the preceding paragraph, the sensitivity on sqU is relatively poor if it’s inferred within the neutrino-
mass analysis. On top of the limited background statistics within tritium data, the neutrino mass and endpoint are
correlated with sqU (see section 9.9) additionally limiting the sqU sensitivity. If no significant retarding-potential
dependency is observed in the data, the scan-steps above the endpoint can also be analyzed separately focusing
solely on sqU.

Instead of analyzing the actual background data, 104 background spectra are simulated in order to avoid using
the same data twice. The MC spectra are randomly fluctuated around the average (steady-state) background
rate according to their associated uncertainties. The Non-Poisson background component is taken into account.
A linear function, anchored at the scan-step closest to the endpoint, is then fit to each randomized background
spectrum. As a next step, the 104 hypothetical sqU values are used to calculate retarding-potential-dependent
background spectra, extrapolated to the entire analysis interval. The latter serve as input samples for a covariance
matrix.

This method also allows to include external slope constraints by using it as a cut-off threshold. Every sample fit
with sqU > σ(sqU) is discarded from the set. Consequently, the covariance matrix is calculated using only a subset
of all samples.

4.11 Detector efficiency

The number of detected signal electrons scale linearly with the detector efficiency εFPD. As the signal normalization
is a nuisance parameter in the spectral analysis, an uncertainty on the absolute efficiency value is absorbed in the fit.
However, a series of effects (intrinsic pixel differences, ROI, pile-up, back-scattering) lead to different efficiencies
for each pixel and qU . The recorded spectra are corrected for these effects.

The relative uncertainty on the efficiency correction ∆εFPD is incorporated in a covariance matrix MFPD. ∆εFPD
is assumed to be energy independent and uncorrelated for all scan-steps. Therefore, the fractional efficiency
covariance matrix has only diagonal elements:

MFPD
frac. =∆ε

2
FPD · 1. (4.13)
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Chapter 5

First measurement campaign

This chapter introduces the reader to the first science run of the KATRIN experiment, short KNM1. KNM1 took
place in spring 2019 from April 10 to May 13. For the first time the source was operated at high tritium activity
(2.45× 1010 Bq), which makes KNM1 the first campaign with considerable neutrino-mass sensitivity.

The data taking procedure and the associated measurement time distribution is described in section 5.1. Section
5.2 presents the golden scan and pixel selection based on data-quality cuts.

Prerequisite for a stacked-scan uniform analysis is an excellent stability of the relevant slow control parameters.
Sections 5.4 - 5.9 evaluate the stability of column density, molecular gas composition, electric and magnetic po-
tentials and detector efficiency. An overview of all relevant parameter is given in appendix C. The background
conditions are discussed in section 5.10.

5.1 Measurement time distribution

The integral β-spectrum was measured in 39 scan steps in an energy range of [E0− 93 eV, E0+ 47eV]1. The time
spent at each scan step is defined by the measurement-time distribution depicted in figure 5.1. With 274 recorded
scans, each lasting approximately 2 hours, data with a total net measurement time of 541.7 hours was collected.
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Figure 5.1: Measurement-time distribution (MTD) for KNM1. The full measurement interval consists of 39 scan
steps (grey), from which 27 are selected for the analysis (dark and light blue). Within the analysis interval, 26 %
of the measurement time is spent at retarding energies above the endpoint to determine the background rate. The
most time is spent in the region, which is most sensitive to the neutrino-mass signal.

The following analyses restrict the energy range to 27 scan steps within [E0 − 39eV, E0 + 47eV], if not stated
1E0 = 18 574eV is used as reference value
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Chapter 5. First measurement campaign 5.2. Data selection

otherwise. The analysis interval is illustrated in figure 5.1 in light and dark blue coloring. This narrower interval
is chosen as such that it is dominated by statistical uncertainties. Within the analysis interval, the measurement
time amounts to 521.7 net hours.

Most of the time is spent in the region around 14 eV below E0, in which the neutrino-mass signal is most promi-
nent2. The five scan steps with retarding energies above the endpoint are devoted to determine the background
rate. They make up 26 % of the measurement time within the analysis interval.

Subsequent to each scan, the rate was measured deep into the tritium spectrum at qU = E0 − 203eV for 297 s.
Utilizing the high statistics of ≈ 5.6× 103 cps3, this additional scan step was used to monitor the rate stability.

5.2 Data selection

During KNM1, more data was recorded than eventually used for the spectral analyses. The selection of good data
is based on strict quality-cuts, which address mostly the completeness of the meta data and the stability of the
relevant slow-control parameters. In the following, the scan and pixel selections are presented.

5.2.1 Golden pixels

Based on strict quality cuts, 117 out of 148 FPD pixels were selected for the final analysis. Consequently, 31 pixels
(21 %) were excluded. The pixel selection is illustrated in figure 5.2. The full list is given in appendix D.3.

Six pixels (97, 98, 110 - 122) revealed an enhanced intrinsic noise level. Four other pixels (99, 100, 112, 123)
were shadowed by the FBM that slightly reached into the flux tube. Lastly, 21 pixels (124 - 130, 134 - 147) were
excluded due to a misalignment between the flux tube and the FPD.

133

132

1
3
1

120

1
1
9

1
1
8

1
1
7

1
1
6

115 114

1
1
3

109

108

1
0
7

1
0

6

1
0
5

104

103

102

1
0
1

96

9
5

9
4

9
3

9
2

91 90

8
9

8
8

8
7

86

85

84

8
3

8
2

8
1

80

79

78

7
7

7
6

7
5

7
4

7372

7
1

7
0

6
9

6
8

67 66

6
5

6
4

63

62

61

60

59

58

57

56

55

54

53

52

51

50

4948

47

46

45

44

43 42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

2524

23

22

21

20

19 18

17

16

15

14
13

12

11

10

9

8
7

6

5

4

32

1 0

Figure 5.2: Golden pixel selection for KNM1. 117 out of 148 FPD pixels are selected for the analysis.

5.2.2 Golden scans

For the spectral analyses, 274 out of 373 tritium scans were selected. The golden scan list is defined in appendix
D.1.

All 87 scans, that were recorded at a suboptimal optimal rear-wall bias voltage RRW ∈ [175mV, 300mV] are not
included in the final analysis. Moreover 12 scans are excluded due to missing meta data, early terminated data
taking or unstable source parameters.

2Given the KNM1 configuration, the neutrino-mass signal peaks at qU − E0 = −10 eV, assuming m2
ν = 0.1eV2.

3Median count rate over the course of KNM1.
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5.3. Molecular gas composition Chapter 5. First measurement campaign

5.3 Molecular gas composition

KNM1 was the first measurement campaign with a high tritium purity εT = 97.56 %. The molecular gas was
mostly composed of T2 (cT2

= 95.25 %) with smaller admixtures of HT (cHT = 3.54%) and DT (cDT = 1.08 %).
The stable isotopologues (D2, HD, H2) were only present in trace amounts.

The tritium purity as well as the molecular composition of the tritium gas vary between the batches provided by
the Tritium Laboratory Karlsruhe. Details on the reprocessing and purification procedure can be found in [94].
Figure 5.3 shows the time evolution of εT and the concentrations of the active isotopologues. The noticeable
jumps coincide with the injection of a new batch in the KATRIN source system.
The tritium purity varied from scan to scan up to 1.4 percentage points. The molecular concentration of T2 exhibits
peak-to-peak fluctuations of 2.7 percentage points.
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Figure 5.3: Scan-wise atomic tritium purity (top) and molecular concentrations of tritiated hydrogen isotopo-
logues (bottom three) in the source during KNM1. The visible kinks originate from the injection of a fresh tritium
batch into the source.
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5.4 Column density

KNM1 was the first time that the source system and the injection capillaries were exposed to large amounts of
tritium. Radio-chemical reactions between the tritium molecules and the stain-less steel surfaces lead to the pro-
duction of CO and tritiated hydrocarbons [95]. The carbon compounds thereupon condensed on the cold surfaces,
impeding the tritium flow through the capillaries. As a result, the column density drifted over time at constant
tritium injection pressure and the nominal value could not be established.

To improve the stability during this burn-in period, the column density was lowered toρd = 1.11× 1017 molecules/cm2,
which corresponds to 22 % of its nominal value. The scan-wise column density is shown in figure 5.4. As can be
seen, the tritium injection pressure was increased several times over the course of KNM1, to minimize scan-wise
column density variations. Both measures archived a scan-wise stability of σ(ρd) = 0.8 %. The implication of the
column density drift on the stacked-scan analysis is found be to negligible (see section 8.2.1). The uncertainty on
the absolute value of ρdσinel. is 0.85 %, which is propagated as a systematic uncertainty in the analysis.
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Figure 5.4: Scan-wise mean column density as a function of time in KNM1. The visible drift was caused by radio-
chemical reactions between tritium molecules and the stain-less steel surfaces in the source system. A relative
stability of 0.8 % could be archived by increasing the tritium injection pressure several times. The uncertainty on
the absolute column density is 0.85 %.

5.5 Source activity stability within a scan

Due to time-wise changes in the column density and tritium purity, the source activity was not perfectly constant in
KNM1. While the scan-wise stability of ρd and εT was discussed in the previous sections 5.3 and 5.4, this section
addresses the average activity stability within a scan. As described in section 4.4.2, an activity variation within a
scan can lead to a shape distortion of the integral spectrum. To compensate this effect, activity variations within a
scan are accounted for in the systematics budget. Figure 5.5 show the relative source activity variation of all golden
scans and scan-steps. Scan-wise differences are eliminated by normalizing the scan-wise activities to the global
mean activity in KNM1, following equation equation (4.5). On average, Âsource was stable at the 〈σk

sys ·
p

274〉 =
0.9% level within a scan. As the spectra of all golden scans are combined into a single effective spectrum by
stacking, some scan-wise variation will average out. The relevant number for the uncertainty propagation is
therefore the error of the mean (equation (4.6)), which is on average 〈σk

sys〉 = 0.006 %. Correlations among the
scan-steps are neglected in the KNM1 analysis.
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Figure 5.5: Source activity variation for all scan-steps in KNM1. To compensate overall normalization effect,
the scan-wise activities are normalized to the global mean activity, according to equation (4.5). On average, the
activity varied within a scan-step by 0.9 % for 274 golden scans.

5.6 Source potential

As described in section 4.3, the operation at optimal rear wall bias voltage is essential to establish a homoge-
neous electric source potential. Over the course of KNM1, the rear wall bias voltage was changed several times
Urw ∈ [−183mV,−149mV, 175mV, 300mV] to find the most stable run condition. The near-time evaluation of the
tritium endpoint in the full interval as well as the analysis of the plasma-induced electric current on the rear wall
revealed an optimal bias voltage around Urw ≈ −150mV. Within this configuration, no significant radial endpoint
dependence was found. To have similar and stable source potentials for all scans, only scans with Urw = −183 mV
(19 scans) and Urw = −149mV (255 scans) are selected for the golden scan list. No further long-term plasma
potential drifts were found (opposed to KNM2).

Subsequent to the neutrino-mass measurement, krypton measurements were performed to evaluate the longitu-
dinal plasma potential homogeneity [88]. Ideally, the source should be operated under the same conditions as in
the respective measurement campaign. Due to technical reasons, krypton measurements had to be performed at a
higher source temperature (100 K) to avoid freeze-out on the stainless-steel surfaces. As the increased temperature
is known to strongly suppress the electron-ion recombination rate, plasma effects are expected to be more promi-
nent in krypton mode compared the tritium-only mode [65, 96]. Moreover, the column density was increased to
30 % of its nominal value. In addition to these different source conditions, which need to be accounted for by
plasma simulations, several systematic uncertainties played an important role. Firstly, the reference line width of
the L3-line could not be determined to the desired accuracy. Moreover, ∆10 could not be assessed directly from
the krypton measurement, because of systematic uncertainties on the energy-loss function for krypton electrons
with energies around 32.2 keV. As the electron gun, used in the first two measurement campaigns, was only able
to reach energies up to 21 keV [68], the energy dependence of the energy-loss function could not be investigated
experimentally for the entire energy range.

Due to these reasons, the energy broadening σ0 < 75mV and energy-loss shift ∆10 < |−66mV| extracted from
the krypton measurement are considered as conservative upper limits for the neutrino-mass analysis [97]. Due
to the immaturity of the plasma model, the large systematic uncertainties in the krypton measurements and the
small influence on the neutrino mass, the longitudinal plasma uncertainties were not included in the systematic
uncertainty treatment of KNM1.
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5.7 Retarding potentials

The KATRIN experiments employs a setup of two MAC-E filter: the pre- and main spectrometer (section 2.1).
Their retarding potentials are discussed in the following.

5.7.1 Pre-spectrometer

The pre-spectrometer was set to a retarding potential of −10 kV to stop low-energy electrons with Ekin. ≤ 10keV
from reaching the main spectrometer.

As described in section 2.2.4, the combination of two MAC-E filters leads to a formation of a penning trap between
the spectrometers. Electron catchers are installed to remove the trapped electrons after every scan-step. However,
it was discovered only after the second measurement campaign, that the penning trap still causes an increase of
background rate within each scan step (sections 4.10.2 and 5.10.5).

5.7.2 Main spectrometer

The voltage applied to the main spectrometer was continuously monitored with a high-voltage divider with ppm
precision. Figure 5.6 shows the high-voltage variation within each scan-step for all golden scans. On average, the
high-voltage set points could be reproduced within σ = 34mV. The variation of the retarding potential within a
scan step was on average 15 mV, which is found to be negligible.

The radial homogeneity of the retarding potential is displayed in figure 5.7 (a). The field map is obtained with a
Kassiopeia simulation as it cannot be directly measured during tritium scans. Among the active pixels, qU varied
within σ = 33 mV.

Moreover, inner electrode system of the main spectrometer was configured to always have a 200 V more negative
potential than the retarding potential in order to hinder charged particles from the spectrometer surface to reach
the active flux tube volume.
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Figure 5.6: High-voltage reproducibility in KNM1. To perform the analysis on the stacked spectrum, the retarding
potential values of each scan-step have to be reproduced from scan to scan as precisely as possible. The top plot
shows the actual measured retarding potential values of all golden scans. The bottom plots states the scan-wise
standard deviation for each scan step. During KNM1, the mean retarding potential variation per scan-step were
σ = 34mV .
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Figure 5.7: Potentials in the analyzing plane as they are seen by the FPD. Pixels that are not included in further
analyses are colored in grey. The pixel-wise retarding potentials (a) vary within σ = 33mV from pixel to pixel.
The magnetic field strengths in the analyzing plane (b) exhibit variations within σ = 5.3× 10−6 T.

5.8 Magnetic fields

As described in section 4.8, the magnetic field strength inside the active flux tube volume cannot be monitored
continuously throughout the measurement campaign. Instead the magnetometer grid around the main spectrom-
eter vessel collects input data for a precise magnetic field model [98]. The magnetic field configuration was the
following: Bsource = 2.52 T, Bana. = 6.31× 10−4 T and Bmax. = 4.23T. All magnetic fields are assumed to be con-
stant over time [98].

The radial distribution of the magnetic field in the analyzing plane is shown in figure 5.7 (b). Among all active
pixels, the Bana. varied within σ = 5.3× 10−6 T.

5.9 Detector efficiency

The mean FPD efficiency is estimated to be εFPD ≈ 0.95. The data is corrected for small efficiency differences
between pixels and retarding energies, that originate from intrinsic pixel differences, ROI, pile-up and back-
scattering. All individual corrections are << 0.1 % [99]. The FPD region-of-interest (ROI) is fixed to 14 keV ≤
E < 32keV, regardless of the main spectrometer retarding potential qU . While the intrinsic FPD background
contribution is independent of qU , the contribution of other background sources and the tritium signal are not.
As a consequence the ROI coverage as well as the signal-to-background ratio changes with qU . To compensate
these effects, a relatively wide ROI was chosen.

5.10 Background

Five scan steps in the MTD (section 5.1) are located above the tritium endpoint qU > 18574 eV. They are used to
monitor the background rate. The average count rate of these scan steps considering all active pixels and golden
scans is 292 mcps. In the following sections 5.10.1 to 5.10.3, different aspects of the steady-state background rate
are discussed: Radial distribution (section 5.10.1) and Non-Poission over-dispersion (section 5.10.2) are derived
from the five scan steps above E0. Moreover, a discussion on signal-to-background ratio based on simulation
results are presented in section 5.10.3. Other backgrounds, such as the scan-step-time dependent background
and retarding-potential-dependent background, are discussed in section 5.10.5 and section 5.10.5, respectively.
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5.10.1 Steady-state background: Radial distribution

Due to the generation mechanism of Rydberg electrons, one of the dominant background sources, the steady-state
background rate is not expected to be uniform over the FPD [100]. As can be seen in figure 5.8, the background
rate increases for increasing radial pixel position.
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Figure 5.8: Background rate distribution over all active FPD pixels in KNM1. Excluded pixels are colored in grey.
The background rate is estimated as mean count rate considering the five scan steps above E0 of all golden scans.
Pixels at large radii measure a higher background rate than pixels located in the center of the detector. This radial
pattern is expected, because a large fraction of background electrons stems from α-decay on the inner surfaces of
the main spectrometer [100]. The cumulative background rate over all active pixel amounts to 291.4 mcps.

5.10.2 Steady-state background: Non-Poisson over-dispersion

As described in section 2.2.4, the steady-state background counts fluctuate more than expected from a Poisson
distribution. This over-dispersion is quantified as a Non-Poisson factor in equation (4.9), which is the ratio between
observed and statistically expected standard deviation.
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Figure 5.9: Background count distribution in KNM1 considering five scan steps above E0 and all golden scans and
pixels.
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Figure 5.9 shows the background count histogram, obtained from the five scan steps above E0 within all golden
scans and pixels. The scan-steps are corrected for slightly different measurement times. The distribution is fit
twice: Once with a Gaussian model and once with a Poisson model. The Non-Poisson background contribution is
fNon-Poisson = (6.25± 1.98)%4. The uncertainty is estimated via the boot-strapping technique.

5.10.3 Steady-state background: Signal-to-background ratio

All tritium induced electrons are regarded as signal, whereas all other electrons are considered background. The
signal-to-background Rsig./Rbkg. ratio varies strongly as a function of retarding energy. While the steady-state
background rate is expected to be constant, the number of expected signal electrons grows steeply with decreas-
ing qU . As a consequence, the signal-to-background ratio peaks at the scan step with lowest retarding energy
Rsig./Rbkg. = 68.6 (analysis interval), whereas it practically vanishes for scan steps close and above the endpoint.
The equilibrium between signal and background electrons is observed at qU − E0 ≈ −12 eV.
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Figure 5.10: Signal-to-background ratio in KNM1. The ratio is increasing with decreasing retarding energy, due
to the combination of constant background rate and increasing β-spectrum rate. Given the observed background
level of 292 mcps and a source activity of 2.45× 1010 Bq, the equilibrium between signal and background counts
is found around qU−E0 = 12 eV. The ratio is calculated with the KNM1 Twin simulation, described in section 8.1.

5.10.4 Retarding-potential-dependent background

The hypothetical retarding-potential-dependency of the background rate is investigated by fitting a linear func-
tion to the scan steps above the tritium endpoint. The fit, visualized in figure 5.11, finds a positive slope sqU =
(47± 51)mcps/keV at low significance (< 1σ).

As the sensitivity on the background slope is relatively poor, an external constraint from a dedicated background
measurement is consulted. Completed in 2018, the background measurement during the First Tritium campaign
(FT) is the latest reference prior to KNM1. The measurement range extended down to 1.6 keV below the endpoint
so that the slope could be determined with much higher precision than in KNM1. The observed slope is consistent
with zero sqU = (4± 5)mcps/keV [75]. However, for yet unknown reasons the steady-background rate per active
pixel was approximately 7 % higher than in KNM1. As this might point towards changed background sources with
a potentially different qU-dependence, it is debatable whether the FT constraint can be transferred to the KNM1
analysis. Moreover, only a small fraction of the large measurement interval in FT is relevant for the neutrino-mass
analysis at hand. For the mentioned reasons, a conservative upper limit ofσ(sqU) = 15mcps/keV is used in KNM1,
which corresponds to the threefold uncertainty of FT.

4Background specialists in KATRIN found fNon-Poisson = 6.4% in a similar analysis. For consistency among fitting teams, their value is used
for the spectral analysis.
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Figure 5.11: Retarding-potential-dependent background in KNM1. A linear fit to all scan steps above the tri-
tium endpoint is performed. On top of statistical uncertainties also the non-Poisson over-dispersion is taken into
account. The fitted slope is not significant (< 1σ).

The hypothetical qU-dependence is accounted for in the systematic uncertainty budget following the strategy in
section 4.10.3.3. Randomized background simulations are fit using a linear regression as displayed in figure 5.12
(left). All slopes that are smaller than the FT constraint sqU ≤ 15 mcps/keV (figure 5.12 (right)) are then propa-
gated into a background covariance matrix for the full analysis interval.
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Figure 5.12: The possible retarding-potential dependency of the background rate is incorporated in the systematic
uncertainty budget following the method of section 4.10.3.3. Left: Randomized background spectra are generated
using the average steady-state background rate and the associated uncertainties. In addition to the 5 scan steps
above the endpoint, also two scan steps with low signal-to-background ratio are included in the simulation. All
1× 104 MC samples are displayed as small squares. The coloring indicates the sample density from red (low
density) to yellow (high density). Each sample is fit using a linear regression. Right: The fitted slope values
are then propagated into a covariance matrix. Using the slope constraint from FT, only sqU ≤ 15mcps/keV are
considered.

5.10.5 Scan-step-time dependent background

The scan-step-time-dependent background is neglected in the KNM1 analysis. This systematic effect was only
discovered during KNM2, for which it is significant. For KNM1, the effect is compatible with zero. In the reanalysis,
performed after the original publication, a time-wise background rate increase of stime = (2.2± 4.3)µcps/s is taken
into account.
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Chapter 6

Second measurement campaign

This chapter introduces KATRIN’s second science run, hereinafter abbreviated as KNM2. It took place in fall 2019
from September 27 to November 141. Its key feature is the improved sensitivity compared to KNM1, reaching for
the first time into the sub-eV regime. As the measurement phase was no longer limited to the burn-in configuration
of KNM1, the column density could be substantially increased. As a result, an unprecedented tritium activity of
9.46× 1010 Bq could be reached. Moreover, improved vacuum conditions lead to a background reduction from
292 mcps in KNM1 to 220 mcps in KNM2.

The measurement time distribution and data selection are presented in sections 6.1 and 6.2, respectively. Sec-
tions 6.3 to 6.5 and 6.7 to 6.9 and sections 6.6.1 to 6.6.3 examine the stability of the relevant experimental
parameters. An overview of all relevant parameter is given in appendix C. Additionally, characteristic features and
systematic uncertainties are discussed. The background is characterized in section 6.10.

6.1 Measurement time distribution

The measurement time distribution of KNM2 is displayed in figure 6.1. It consists of 38 scan-steps in an energy
range of [E0 − 90eV, E0 + 135 eV]2. With 361 tritium scans, each lasting approximately 2 hours, a total net.
measurement time of 713.8 hours was collected. The analysis presented in this work is based on 28 scan steps
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Figure 6.1: Measurement-time distribution (MTD) for KNM2. The full measurement interval consists of 38 scan
steps (grey), from which 28 are selected for the analysis (dark and light blue). Within the analysis interval, 26 %
of the measurement time is spent at retarding energies above the endpoint to determine the background rate. The
most time is spent in the region, which is most sensitive to the neutrino-mass signal.

1Defined by date of first and last golden scan.
2E0 = 18 574eV is used as reference value.
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Chapter 6. Second measurement campaign 6.2. Data selection

in the interval [E0 − 40 eV, E0 + 135 eV], highlighted in blue colors in figure 6.1. The analysis range is selected
so that the neutrino mass analysis is dominated by statistical uncertainties. The analysis interval comprises 694.3
net. hours.

Similar to KNM1, five data points are located above the tritium endpoint to determine the background rate. As
the uncertainty on its retarding-potential-dependency turned out to be one of the largest systematic uncertainties
in KNM1, the background range was extended up to 135 eV above E0 in KNM2. The time spend in this region
makes up 26 % of the time in the analysis interval. The analysis focusing solely on the background scan-steps is
presented in section 6.10.

In addition to the 38 scan steps, that are displayed in figure 6.1, a scan-step at qU = E0 − 300 eV was recorded to
monitor the rate stability. Compared to KNM1, the HV set point of the rate monitor point reaches further into the
tritium spectrum to take advantage of the high statistics ≈ 6.7× 104 cps3. The analysis of the rate monitor point
is presented in section 6.6.2.

6.2 Data selection

More data was recorded during KNM2 than eventually analyzed for the neutrino-mass. The selection of good
data is based on strict quality-cuts, mostly focusing on the stability of the relevant slow-control parameters or
completeness of the meta data. In the following, the scan and pixel selections are presented.

6.2.1 Golden pixels

Based on strict quality cuts, 117 out of 148 FPD pixels were selected for the final analysis. Consequently, 31 pixels
(21 %) were excluded. The golden pixel numbers is given in E.3 and displayed in figure 6.2. The pixel selection
is similar, but not identical to KNM1.

Six pixels (97, 98, 110 - 122) are excluded because of an enhanced intrinsic noise level. Different to KNM1,
only one pixel (100) was shadowed by the FBM rather than two. This could be archived by an optimized FBM
monitoring position. Moreover, 24 pixels (112, 113, 123 - 130, 134 - 147) are excluded due to the misalignment
between the flux tube and the FPD.
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Figure 6.2: Golden pixel selection for KNM2. 117 out of 148 FPD pixels are selected for the analysis.
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6.3. Molecular gas composition Chapter 6. Second measurement campaign

6.2.2 Golden scans

For the spectral analyses, 361 tritium scans with stable run conditions were selected. The golden scan list is defined
in appendix E.1. 36 scans were rejected. The most common reason for rejection was a malfunction of the LARA
software, which lead to missing information on the isotopologue concentrations for the affected scans. Moreover,
several scans were rejected due to short-term failures of the inner-electrode system.

6.3 Molecular gas composition

KNM2 was conducted with high purity molecular tritium gas εT = 98.63%. The gas is an admixture of T2 (cT2
=

97.34 %), HT (cHT = 2.28 %) and DT (cDT = 0.31 %). The relative contribution of T2 is higher by 2 percentage
points compared to KNM1. The time-wise evolution, displayed in figure 6.3, exhibits similar features as in KNM1.
The kink-like structures indicate the injection of a fresh tritium batch into the WGTS.

The maximal variation from scan-to-scan were as small as 0.7 and 1.4 percentage points for εT and cT2
, respectively.
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Figure 6.3: Scan-wise atomic tritium purity (top) and molecular concentrations of tritiated hydrogen isotopo-
logues (bottom three) in the source during KNM2. The visible kinks originate from the injection of a fresh tritium
batch into the source.
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6.4 Column density

After completion of the burn-in phase (see section 5.4), the WGTS was no longer restricted to operate at reduced
source activity. Instead, the column density could be set to 〈ρd〉= 4.23× 1017 molecules/cm2, which corresponds
to 84.5 % of its design value. The increase by 62.4 percentage points compared to KNM1 translates into an increase
of signal electron rate by a factor of 1.9 within the analysis interval.

The column density is displayed in figure 6.4 as a function of live time. Variations from scan-to-scan were as small
as σ(ρd) = 0.1 %, demonstrating an excellent stability. A few individual scans exhibited slightly larger ρd drift
with maximal peak-to-peak fluctuations of 0.5 %. However, the average drift within a scan was small (0.06 %).

The relevant uncertainty on ρd for the neutrino-mass analysis is the one on the absolute value ∆ρd = 0.25 %.
The latter is illustrated as red error bar.
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Figure 6.4: Scan-wise mean column density as a function of time in KNM2. The uncertainty on the absolute
column density of 0.25 % is illustrated in red.

6.5 Source activity stability within a scan

In order to model the tritium spectra with an energy-independent signal normalization, the source activity has
to be stable within each scan. The uncertainty propagation of activity fluctuations within scans is described in
section 4.4.2.

The activity variations Âsk
source, relative to their scan-wise means, are displayed in figure 6.5 (left) for all golden

scans. The standard deviation and error of the mean (equation (4.6)) are calculated for each scan-step. On aver-
age, the relative source activity exhibited an excellent stability with 〈σk

sys ·
p

361〉= 0.04 % and 〈σk
sys〉= 0.002 %.

Compared to KNM1, the stability improved by a factor of > 2.

In addition to σk
sys, also the correlations among the scan-steps are taken into account in the KNM2 analysis fol-

lowing equation (4.7). The correlation matrix cov(Âsk
source) is displayed in figure 6.5 (right). On top of the fully

correlated diagonal entries, some moderate correlations and anti-correlations are can be seen on the off-diagonal.
The full spectral covariance matrix, considering 4 pseudo-rings is displayed in appendix E.7.
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Figure 6.5: Left: Source activity variation for all scan-steps in KNM2. To compensate overall normalization effect,
the scan-wise activities are normalized to the global mean activity, according to equation (4.5). On average, the
activity varied within a scan-step by 0.04 % for 361 golden scans, which corresponds to an error of the mean
〈σk

sys〉 = 0.002%. Right: Tritium activity correlation matrix. In addition to the scan-step-wise variations, the
correlations among the retarding energy bins are taken into account.

6.6 Source potential

6.6.1 Longitudinal homogeneity

The constraints on longitudinal plasma potential homogeneity, including short-term fluctuations and anti-symmetric
spatial variations, are inferred from the krypton campaign, that took place subsequent to KNM2 [88]. Introduced
in section 4.3.1, the longitudinal plasma is described by two parameters: an energy broadening σ2

0 and an energy-
loss shift ∆10.

The krypton campaign in KNM1 (see section 5.6) suffered from several non-understood systematic effects. Thus,
its longitudinal plasma potential constraints were not used in the KNM1 analysis. While still being subject to
large systematic uncertainties, the KNM2 krypton campaign yielded consistent results. The detailed analysis of
the krypton data is presented in [88, 89]. The relevant input parameter for the neutrino-mass analysis are:

σ2
0 = (0.0124± 0.0161)eV2 (6.1)

∆10 = (0.00± 0.61)eV. (6.2)

The energy-loss shift is not directly accessible in the krypton data, because the energy-loss function is not known at
30 keV. Therefore, a conservative upper limit based on the measured energy broadening is derived instead [88].

The large systematic uncertainty arising from the different source temperature was addressed in the KNM3 krypton
campaign. The temperature in the KNM3 krypton configuration was decreased from 100 K (KNM1,KNM2) to 80 K
in order to better match the tritium-only source conditions. To avoid freeze-out, the co-circulating krypton has to
be operated at a higher temperature than in the standard neutrino-mass configuration (30 K). It was worked out
that 80 K are sufficient to fulfill this condition.

Moreover, in later krypton campaigns a novel krypton-operation mode made the operation at high column densities
up to ρd = 75 % of its nominal value possible, which was previously prevented by accumulating impurities in the
gas mixture.
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Chapter 6. Second measurement campaign 6.6. Source potential

6.6.2 Long-term potential variations

The long-term source potential stability can be quantitatively assessed through complementary channels such as
the tritium endpoint and rate monitor point. This latter is considered in this work and its analysis is presented in
the following section.

As discussed in section 4.3.3, the long-term plasma potential variations can be accounted for in the model and
uncertainty treatment by an effective energy broadening σt . Consequently, the goal of the analysis of the rate-
monitor scan step at qU − E0 = −300 eV is the inference of σt .

In preparation for the analysis, the rate R300 at qU − E0 = −300eV is corrected for activity and retarding poten-
tial variations. Thereafter, source potential shifts arising from different rear-wall potential settings are inferred.
Additionally, small potential drifts within each rear-wall period were observed and translated into an period-wise
energy broadening. At the end, the potential shifts and drifts are converted into the global energy broadening σt ,
which is the relevant input for the neutrino-mass analysis.

6.6.2.1 Rate correction

The rate R300 at qU − E0 = −300eV for each golden scan is displayed in the top panel of figure 6.6 (grey points).
Due to fluctuations of the source activity and the retarding potential, the rates vary more then expected from
statistical uncertainties. However, both are known effects and can be accounted for. The corrected rate is displayed
as colored points. Its now only subject to statistical fluctuations and variations caused by the source potential.
The rate correction is performed as follows:
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Figure 6.6: Time evolution of the rate monitor point in KNM2. The scan step at qU − E0 = −300 eV is displayed
for each golden scan in grey. The rate is further on corrected for known source activity and retarding potential
fluctuations (colored points).

1. Activity correction: The difference of the scan-wise activity with respect to the mean activity is shown in
the middle panel of figure 6.6. By comparing the top and middle panel, it is evident that the uncorrected
rate follows the pattern of the activity evolution closely. Indeed, their correlation coefficient is very high
ρ = 0.97. The activity corrections factor fA eliminates rate fluctuations caused by the changing source
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6.6. Source potential Chapter 6. Second measurement campaign

activity. The scan-wise values are normalized to the mean activity of KNM2

fA =
〈Asource〉
Asource

. (6.3)

2. Retarding-potential correction: The scan-wise retarding potentials are displayed with respect to the mean
retarding potential in the bottom panel of figure 6.6. The calculation of the ∆qU correction requires input
from a simulation to translate the observed potential variation into an expected rate variation. A simulated
tritium spectrum Rsim.

300 is initialized with KNM2-like settings. Then it is evaluated at several retarding energies
around qU − 18574 = (−300± 1)eV, as illustrated in appendix E.4. In this small energy window, the rate-
to-qU relation is approximated by a linear function with a slope of

α= −0.74cps/mV with 〈Rsim.
300 〉= 6.59× 104 cps. (6.4)

The observed qU variations can now be converted into rate variations

fqU =∆qU

�

α ·
〈R300〉
〈Rsim.

300 〉

�

. (6.5)

The rate is finally corrected taking into account both effects:

Rcorr.
300 = (R300 · fA) + fqU . (6.6)

6.6.2.2 Rear-wall periods and energy shifts

During KNM2, the rear-wall-bias voltage was adjusted twice, effectively dividing the data set into three periods
with different electron starting potentials. As the latter doesn’t linearly scale with URW, potential shifts between the
rear-wall periods have to be experimentally determined. The period-wise scan lists are defined in appendix E.2.

The relative shifts between the rear-wall periods p are calculated by comparing their average rate 〈Rcorr.
300 〉p to the

overall KNM2 average 〈Rcorr.
300 〉

∆〈R300〉p = 〈Rcorr.
300 〉 − 〈R

corr.
300 〉p (6.7)

Central values and uncertainties are stated in table 6.1 for each period. The rate uncertainties stem from the error
of the mean of 〈Rcorr.

s 〉p. As the choice of reference rate is arbitrary, no additional uncertainty on 〈Rcorr.
s 〉 is taken

into account. The rate difference is then converted into an meV-equivalent, using the rate-to-qU relation from
equation (6.4)

∆Ueq.,p =∆〈R300〉p

�

1
α
·
〈Rsim.

300 〉
〈R300〉

�

. (6.8)

Relative to each other, the obtained potential shifts are O (±100mV).

Rear-wall URW Number of Source potential shift Energy broadening
period (mV) scans ∆〈R300〉p (cps) ∆Ueq. (mV) σt,p (cps) σt,p (mV)

1 −49.6 171 5.0± 2.9 −6.7± 3.8 26.6± 2.7 35.8± 3.7
2 −7.7 97 35.0± 2.5 −46.9± 3.4 19.8± 2.7 26.5± 3.7
3 193.0 93 −45.7± 2.8 +61.3± 3.7 22.4± 2.1 30.0± 2.9

Table 6.1: Difference of period-wise mean rate to KNM2 mean rate. The scan lists for the rear-wall periods are
given in appendix E.2.
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6.6.2.3 Period-wise energy broadening

The potential drifts within each period are described by energy broadenings σ2
t,p. The latter are obtained by fitting

a Gaussian and a Poissonian distribution to the period-wise counts. The fits are displayed in figure 6.7. The
difference of variances is attributed to a plasma potential

σ2
t,p = σ

2
Gauss −σ

2
Poisson. (6.9)

The broadenings σ2
t,p in terms of rate are then converted to an mV equivalent, which can be used as input for

the neutrino mass analysis. Results are shown in tab. 6.1. The uncertainties are obtained via the bootstrapping
technique.
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Figure 6.7: Histograms of counts at qU − 18574 = (−300± 1)eV for each rear-wall period. The counts are
corrected for activity and retarding potential variations. A Gaussian and Poisson function is fit to each sub-set.
The difference in variances is interpreted as a period-wise plasma potential broadening.

6.6.2.4 Global energy broadening

The period-wise shifts and broadenings can be effectively described as a global broadening of the stacked tritium
spectrum

σt = (51± 2)meV. (6.10)

This value is derived from a MC simulation using the period-wise∆Ueq.,p. andσt,p obtained in the previous sections
as input.

A global plasma potential probability density function is constructed by superimposing 3 Gaussian functions, one
for each period. The position of each Gaussian corresponds to ∆Ueq.,p. and the Gaussian width to the associated
period-wise broadening σeq.,p.. Each Gaussian is normalized to the period-wise measurement time in relative to
the total measurement time. The effective source potential model is displayed in figure 6.8.

The effective global broadening is estimated by sampling from the source potential distribution: O (104) source
potentials are randomly drawn from the effective source potential model. The (normalized) histogram is displayed
in figure 6.8. The uncertainty on σt is estimated by drawing O (104) values for the ∆Ueq.,p. and σeq.,p. from their
respective distributions. Each random pair of shifts and broadenings is translated into a global broadening with
the method described above. The standard deviation of the resulting global broadening distribution is taken as
uncertainty σ(σt).
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Figure 6.8: Global broadening

6.6.2.5 Pseudo-ring-wise global energy broadening

The rate monitor analysis, presented in the previous sections 6.6.2.1 to 6.6.2.4, is performed on the combined-
pixel data (uniform). To investigate whether the source potential time evolution is different for different for FPD
radii, the R300-analysis is repeated on the pixel-segmented data. To ensure sufficient statistics, the pixel-wise rates
from the active pixels are stacked into four pseudo-rings. The associated pixels numbers are stated in appendix B.

The resulting global broadenings are summarized in table 6.2. No significant differences in σt among the pseudo-
rings are observed. The period-wise energy shifts (compare section 6.6.2.2) vary between the pseudo-rings by
O (100 mV).

Uniform Pseudo-ring 1 Pseudo-ring 2 Pseudo-ring 3 Pseudo-ring 4
σt (mV) 51± 2 52± 3 51± 2 49± 3 43± 4

Table 6.2: Effective global broadening due to long-term plasma drifts and different rear-wall potentials in KNM2.
The uniform result is used in the neutrino-mass analysis and its uncertainty propagation. To search for radial
structures, the rate-monitor analysis is additionally performed for each pseudo-ring. Within uncertainties, the
results are consistent with each other.

6.6.3 Radial homogeneity

In addition to longitudinal and temporal variations, the source potential could also have a radial dependence. The
latter could appear in combination with longitudinal and temporal inhomogeneities or it could occur in form of a
constant potential offsets as a function of radius. The three possibilities are addressed in the following. None of
them exhibits a considerable radial dependence.

6.6.3.1 Radial and longitudinal

The KNM2 krypton campaign revealed small radial features in the L3-line position and the energy broadening [89].
However, to date it is unclear if the radial dependence is a physical effect from the longitudinal source potential
distribution or if it stems from systematic uncertainties on the background model.

6.6.3.2 Radial and temporal

The rate-monitor analysis performed on the pixel-wise R300 data (section 6.6.2.5) shows no significant radial σt .
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6.6.3.3 Radial only

The pseudo-ring-wise potential shifts, obtained from the rate-monitor analysis (section 6.6.2.5), exhibit radial
differences of ≤ 40mV. Due to their small magnitude, their influence on the neutrino mass is expected to be
negligible ∆m2

ν ≈ −0.002eV2.

6.6.4 Effective source potential model

Longitudinal and long-term source potential variations are characterized by the energy broadenings σ2
0 and σ2

t ,
respectively. In the model, they are combined as one effective energy broadening

σ2
plasma = σ

2
0 +σ

2
t = (0.015± 0.016)eV2. (6.11)

The description of the longitudinal source potential requires additional the energy-loss shift parameter∆10 (equa-
tion (6.2)), which is only included as a systematic uncertainty in KNM2. The associated covariance matrix is
displayed in appendix E.7. No considerable radial dependence of the source potential was observed in KNM2 and
therefore by default not included in the model. However, radial-dependent potential offsets can be (optionally)
included as free fit parameter in the spectral analysis.

6.7 Retarding potentials

The following section addresses the retarding potentials of the pre- and main spectrometer.

6.7.1 Pre-spectrometer

The retarding potential of the pre-spectrometer was constant during KNM2. It was set to −10 kV.

As described in mode detail in section 5.7.1, a penning trap formed between the pre- and main spectrometer due
to the combination of different retarding potentials and strong magnetic fields. Like in KNM1, a penning wiper
removes the stored electrons after every scan step, to avoid discharges that would cause additional background for
the main spectrometer. However, it was discovered after KNM2, that the penning trap nevertheless causes a scan-
step-time-dependent background rate (section 4.10.2). For KNM2, the effect was significant (see section 6.10.5)
and thus included in the model.

6.7.2 Main spectrometer

The retarding potential of the main spectrometer was varied in 39 HV set points (including the rate monitor
point) according to the measurement time distribution (figure 6.1). Its temporal reproducibility is presented in
figure 6.9. The top panels shows the scan-wise qU variation, relative to the average potential the of respective
scan-step. The lower panel displays the standard deviation σ(qU) of each scan-step. On average, the high-voltage
could be reproduced with 〈σ(qU)〉= 10mV, which surpasses the design goal by a factor of 5 [42].

The scan step at 〈qU〉 = 18 570V exhibits a worse reproducibility than the other scan steps (σ(qU) = 55mV).
The issue was already discovered during data taking and stems from problems with the data acquisition software
(ORCA). The time evolution of the retarding potentials of this particular scan step is displayed in appendix E.5.
After the problem was solved on October 2, the scan-wise variations could be reduced to σ(qU) = 2mV. The
radial distribution of the retarding potential in the analyzing is displayed in figure 6.10 (a). As the field map
cannot be measured during tritium scans, it is calculated with a Kassiopeia simulation. Among the active pixels,
qU varied within σ = 33meV, which is comparable to KNM1.

Furthermore, inner electrode system of the main spectrometer was set to 200 V below the retarding potential.
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Figure 6.9: High-voltage reproducibility in KNM2. To perform the analysis on the stacked spectrum, the retarding
potential values of each scan-step have to be reproduced from scan to scan as precisely as possible. The top panel
displays the retarding potential values of all golden scans, relative to the respective scan-step average. The bottom
panel shows the scan-wise standard deviation for each scan step. During KNM2, the mean retarding potential
variation per scan-step were σ = 10meV.
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Figure 6.10: Electric and magnetic potential in the analyzing plane as they are seen by the FPD in KNM2. Pix-
els that are excluded from the golden pixel list are colored in grey. The retarding potentials (a) exhibit small
fluctuations within σ = 33mV. The pixel-wise magnetic field strengths (b) vary within σ = 7.0× 10−7 T

6.8 Magnetic fields

The magnetic field configuration in KNM2 is very similar to KNM1:

Bsource = 2.52T ±1.7 % (6.12)

Bana. = 6.31× 10−4 T ±1.0 % (6.13)

Bmax. = 4.23T ±0.1 %. (6.14)
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Chapter 6. Second measurement campaign 6.9. Detector efficiency

The stated uncertainties are of systematic nature and stem from the difference between measured and simulated
field strength outside the active flux tube (see section 4.8). The systematic uncertainties are propagated to the in-
tegral spectrum with a covariance matrix in the usual manner. The covariance matrix is displayed in appendix E.7.
The magnetic fields are assumed to be constant over time [98].

The radial distribution of Bana is shown in figure 6.10 (b). Among all active pixels, the magnetic field strength
exhibits an excellent stability σ = 7× 10−7 T.

6.9 Detector efficiency

The same FPD wafer as in KNM1 was used. Therefore efficiency (εFPD ≈ 0.95) and correction factors are identical
to section 5.9. Moreover, the same detector ROI of 14keV ≤ E < 32keV was used.

6.10 Background

In the spectral analysis, the background rate is mostly inferred from the five scan-steps recorded at retarding en-
ergies qU > E0 (figure 6.1). This section takes a closer look at these data points.

The cumulative background rate, gathered from the golden pixels, amounts to 221.6 mcps. As outlined in sec-
tion 2.2.4, the background is modeled by three components. The characteristics of the steady-state background
component, which accounts for the largest share, is discussed in sections 6.10.1 to 6.10.3. Sections sections 6.10.4
and 6.10.5 are devoted to the retarding-potential and the scan-step-time dependency of the background rate, re-
spectively.

6.10.1 Steady-state background: Radial distribution

The pixel-wise background rate is displayed in figure 6.11. It is estimated as the mean rate of the five background
scan-steps for each pixel. Similar to KNM1, the rate increases as a function of FPD radius. The reason can be
found in the Rydberg atoms, which are created on the main spectrometer surface.
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Figure 6.11: Pixel-wise background rate distribution in KNM2. Due to the generation of Rydberg atoms on the
spectrometer walls, the background rate increases for increasing radial pixel position on the FPD. The stacked
background rate over all golden pixel is 221.6 mcps.
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6.10. Background Chapter 6. Second measurement campaign

6.10.2 Steady-state background: Non-Poisson over-dispersion

Similar to KNM1, an over-fluctuation of the steady-state background rate compared to the Poisson expectation is
observed in KNM2. The over-dispersion is quantified in terms of a Non-Poisson factor fNon−Poisson (equation (4.9)).

Additionally, the background rate increased by (0.38± 0.04)mcps/day over the course of KNM2 (see analysis in
section 9.4.2). As the temporal increase would artificially enhance the Non-Poisson over-dispersion, the effect has
to be eliminated in the fNon−Poisson calculation4. The background count correction is illustrated in figure E.3.

The corrected background count distribution, normalized to 357 s, is shown in figure 6.12. A Gaussian and a
Poisson distribution is fit to the data. Comparison of the variances yields fNon−Poisson = (11.14± 1.93)%5. The
uncertainty is estimated via the boot-strapping method.
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Figure 6.12: Background count distribution in KNM2 considering five scan steps above E0 and all golden scans and
pixels. The counts are corrected for the observed temporal background rate increase of (0.38± 0.04)mcps/day.
The ratio of Gaussian and Poisson σ yields the Non-Poisson over-dispersion fNon−Poisson = (11.14± 1.93)%.

6.10.3 Steady-state background: Signal-to-background ratio

A large signal-to-background ratio Rsig./Rbkg. is essential to improve the statistical sensitivity on the neutrino-mass.
Through the increase in source activity and decrease in background rate, Rsig./Rbkg. could be enhanced in KNM2
compared to KNM1.

As discussed in section 5.10.3, the signal-to-background ratio decreases as a function of retarding energy. The
relation is shown in figure 6.13 for the KNM2 statistics. At the lowest retarding energy in the analysis interval,
Rsig./Rbkg. = 230 is maximal. The equilibrium between signal and background rate is observed at qU−E0 ≈ −9eV.

4The background rate is only corrected for the fNon−Poisson analysis and not for the neutrino-mass analysis.
5Background specialists in KATRIN found fNon-Poisson = 11.2% in a similar analysis. For consistency among fitting teams, their value is used

for the spectral analysis.
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Figure 6.13: Signal-to-background ratio in KNM2. The ratio is increasing with decreasing retarding energy. The
reason for this is the combination of predominant constant background rate and steeply increasing β-spectrum.
The equilibrium between signal and background counts is found around qU − E0 = 9eV.

6.10.4 Retarding-potential-dependent background

The scan-steps above the tritium endpoint are analyzed for a retarding potential dependence. The data is fit
with a linear regression, displayed in figure 6.14, considering statistical uncertainties as well as the Non-Poisson
over-dispersion. The obtained slope of sqU = (18± 13)mcps/keV has a positive sign, but only a low significance
of 1.3σ. A more detailed analysis on the KNM2 retarding-potential-dependent background, including the full
experimental model and correlation to the neutrino-mass, follows in section section 9.9. As the background
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Figure 6.14: Linear fit to all scan steps above the tritium endpoint. The background data are stacked over all
golden pixels and scans. The Non-Poisson over-dispersion is taken into account in addition to statistical uncer-
tainties. Due to large uncertainties, the slope has only low significance (1.3σ).

slope is not significant, it is set to zero in the baseline analysis. However, the uncertainty on the retarding-
potential dependence is accounted for in the systematic uncertainty budget. Just like KNM1, the latest high-
sensitivity reference is the background measurement within the FT campaign. As discussed in section 5.10.4, the
applicability of the FT background-slope constraint is questionable, because of a different background level and a
largely extended analysis interval. However, due to lacking alternatives, the FT constraintσ(sqU) = 4.74mcps/keV
is used. Different to KNM1, the onefold instead of the threefold uncertainty is considered to be less conservative.

Following the strategy in section 4.10.3.1, 104 random sqU values are drawn from a Gaussian distribution with
µ = 0 mcps/keV and σ = 4.74mcps/keV. In case a Multi-ring analysis is performed, the constraint is scaled to
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the statistical uncertainty of each ring r, respectively:

sr
qU = sqU ·

√

√

√

Br
base

Buniform
base

. (6.15)

The qU-dependence is considered to be uncorrelated from ring-to-ring. The sqU samples are then propagated to the
integral background spectrum and finally summarized in a spectral covariance matrix, displayed in appendix E.7.

6.10.5 Scan-step-time dependent background

The scan-step-time dependency of the background rate is determined using tritium data with finer time binning.
The analysis yields [23]

stime = (3± 3)µcps/s (6.16)

Its uncertainty is propagated to the integral spectrum through a covariance matrix in the usual manner (see
section 4.10.2). The KNM2 multiring covariance matrix is display in displayed in appendix E.7.
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Chapter 7

Blinding procedure

The following chapter is dedicated to the blinding protocol that is enforced in the neutrino-mass and sterile-
neutrino analyses in KATRIN. The full analysis chain is developed and tested on an ensemble of simulated tritium
scans, called Monte Carlo twins. Being a fundamental part of the blinding process, their calculation is introduced
in section 7.1 first. Thereafter, the model blinding through the Final-state distribution is presented in section 7.2.

7.1 Monte Carlo twins

A MC twin scan is a simulated integral tritium spectrum that mimics a specific experimental tritium scan. For each
scan within a data set, a matching MC twin is calculated. As this simulated data set is used, inter alia, to spot small
systematic features or potential bugs in the analysis code and to benchmark the different analysis softwares, the MC
twins are not statistically randomized. All slow-control parameters associated to an experimental tritium scan are
used as model input for the corresponding MC twin. The relevant parameters are: isotopologue concentrations,
number of scatterings (ρdσinel.), source temperature, magnetic fields, retarding potentials, measurement time
distribution and absolute measurement time.

On top of identical slow-control parameters, the same energy-loss function and the same level of model detail
(Synchrotron loss, Non-isotropic transmission, etc.) as in the subsequent data analysis are used. Consequently,
both MC twin and experimental scan are modeled with the same response function. The Final-state distribution,
used for the MC twin calculation, depends on the step in the blinding protocol (section 7.2).

As the twins are also used to estimate the sensitivity of the considered data set, it is crucial that they contain the
same statistics as the experimental data. Therefore, the scan-wise fit results1 of Nsig. and Bbase are chosen to match
the observation. While Nsig. is identical for pixels, the simulated background rate reproduces the average radial
pattern. Moreover, neutrino mass (m2

ν = 0eV2) and endpoint (data-set dependent) are the same for all MC twin
spectra within a specific data set. Depending on the data set set, also further experimental features, such as plasma
potential variations, are modeled in the MC twins. For me more details see section 9.1. Figure 7.1 illustrates one
arbitrary experimental tritium scan and the matching MC twin scan.

7.2 Blinding protocol

A strict blinding protocol was established to prevent human-induced bias. In the case of KATRIN, this means that
the analysts are hindered to infer the central value of m2

ν, until the full analysis chain is developed. The latter
includes data selection, analysis cuts, spectral model configuration and systematic uncertainties estimation. Any
(subconscious) model tuning that would bias m2

ν, for example to more positive values, is effectively eliminated.

Model blinding, alternatively to data blinding, is enforced through a modification of the FSD. As described in
section 4.2, the FSD are a crucial ingredient of the differential spectrum. In particular the variance of the electronic

1Uniform fits to each experimental scan with m2
ν = 0eV in the standard analysis interval considering only statistical uncertainties.
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Figure 7.1: Tritium scan and corresponding MC twin. The latter is simulated using the scan-specific slow control
parameters as model input. Simulated background and signal normalization are chosen the match the experi-
mental data. For illustration purposes, an arbitrary scan within the KNM1 golden scan list was chosen (KATRIN
internal scan number 51833).

ground-state probability distribution σ2
GS strongly influences the m2

ν fit result. By modifying the true σ2
GS by∆σ2

GS,
a neutrino-mass-squared bias of∆m2

ν ≈ 2∆σ2
GS is induced. As the quantity∆σ2

GS can be positive or negative, also
m2
ν can be biased in both directions. In practice, the FSD ground-state probability distribution is replaced by a

Gaussian with σ2
Gauss = σ

2
GS +∆σ

2
GS. The value of σ2

Gauss is randomly drawn from a uniform distribution, in order
to obtain an uniform distributed neutrino-mass-squared bias. To avoid accidental unblinding, the modified FSD
is provided by an external software, written by a person outside the spectral-analysis team. The random value of
σ2

Gauss is not communicated to the analysts.

Interpreting the range of |2∆σ2
GS| as an additional systematic uncertainty of the blind analysis, the blind neutrino-

mass sensitivity is worse than the actual one. Lower and upper bounds for σ2
Gauss are chosen in a way that the

blind sensitivity coincides with the reference sensitivity from previous experiments [62, 63]. However, as σ2
Gauss

is restricted to positive values, the lower bound on ∆σ2
GS cannot meet this condition if the difference between

actual sensitivity and reference sensitivity is too large. If that is the case, σ2
GS is used as lower bound for ∆σ2

GS.
As the mean energy of the ground-state excitation and the cumulative probability remain unchanged, neither the
fit endpoint nor the signal normalization are affected by this blinding procedure.

The blinding protocol advances in three stages: In the first stage, the analysis is performed with a blinded model
on MC twins (section 7.1), that were calculated using the blinded FSD. The goal of this stage is to compare
the blind sensitivities among all independent fitting teams. Moreover, a detailed fitter comparison evaluates the
consistency of spectral model and systematic uncertainty propagation. Additionally, this first stage allows for scan-
wise analyses with fixed m2

ν = 0eV2 and blinded model, to monitor the experimental stability in near-time. After
completion of the first blinding stage, all systematic uncertainties, the limit-setting strategy and all model inputs
are frozen.

In the second blinding stage, the analysis is performed on the complete data set with free m2
ν, still employing the

blinded model. Biased central value of m2
ν and uncertainties are compared among the fitting teams. If the results

are consistent and show no unexpected behavior, such as significant radial or retarding potential dependencies of
m2
ν, the protocol proceeds to the third stage: Unblinding.

In the third and last stage, the neutrino mass campaign is unblinded. That means the data is analyzed with
respect to m2

ν using the original FSD. Moreover, the MC twins are recalculated using the original FSD to assess
the unblinded sensitivity. Apart from the FSD, no further changes in the model are allowed.
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Chapter 8

Neutrino-mass analysis of KNM1

This chapter is dedicated to the neutrino-mass analysis of the KNM1 data set.

8.1 Monte Carlo twins

Following the blinding protocol presented in chapter 7, the analysis chain is developed on MC twins. The KNM1
twins are calculated according to section 7.1 with a constant endpoint of E0 = 18573.73 eV for all scans. No
further experimental features other than the measured scan-wise slow control parameters had to be taken into
account in the KNM1 twin calculation.

8.2 Data combination

As described in chapter 5 the KNM1 data consists of 274 golden scans with 117 golden pixels each, which results
in 32 058 low-statistics tritium spectra. This section is dedicated to the scan (section 8.2.1) and pixel combination
(section 8.2.2) technique and their validation.

8.2.1 Scan combination

The scan-wise tritium spectra of all golden scans are stacked to one effective spectrum. This scan combination
technique is described in detail in section 3.2.1. As each tritium scan has slightly different slow-control parameter
(chapter 5), each experimental scan could be in principle described with one response function. In practice, the
stacked spectrum is described with one average model using the average slow-control parameter. Figure 8.2 (left)
shows the stacked scan response function as well as 1σ band of the scan-wise response functions. The differences
are� 1%.

The influence on m2
ν is evaluated by fitting the stacked MC Twin spectrum with the average model. The fit yields

a bias of m2
ν = −4.5× 10−3 eV2, which is negligible compared to the KNM1 sensitivity. Consequently, the scan

combination by stacking is justified.

To identify the source of the small nonzero m2
ν, new MC Twin-like spectra are generated. For selected simulation

inputs the average slow-control values are used, whereas the remaining parameters resemble the scan-wise values.
The m2

ν fit results are shown in figure 8.2 (right). The labels on the x-axis indicate the parameters whose values
are simulated equally for all scans. If all slow-control parameters are identical for all simulated scans, the m2

ν bias
vanishes. The scan-wise retarding potential variations (see figure 5.6), have the largest influence of m2

ν. For future
measurement campaigns, σ(qU) could be accounted for in the average model as an energy broadening, similar
to the spatial plasma variations (see section 4.3.1).
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Figure 8.1: Left: Scan-wise response functions in KNM1 compared to the average response function, that is
modeled with the scan-average slow-control parameters, such as ρd and qU . The energy range is limited to
the transmission edge, where the differences are most prominent. Right: Different MC Twin-like spectra are fit
using the stacked scan model. Fitting the stacked MC Twin spectrum, which mimics the experimental data, the
neutrino-mass is biased by m2

ν = −4.5× 10−3 eV2. As this bias is negligible compared to the KNM1 sensitivity,
the scan stacking technique is applicable in KNM1. The other entries show the m2

ν fit result of stacked Twin-like
spectra. In the simulation of these spectra, one or several scan-wise slow control parameters were replaced by
their average values. The variation of the retarding potentials qU from scan to scan has the largest impact on the
neutrino mass among all slow control parameters considered.

8.2.2 Pixel combination

The pixel-wise tritium spectra of all golden pixels are stacked to one effective spectrum. This uniform combination
strategy is described in detail in section 3.2.2. As the magnetic and electric fields are in practice not perfectly
homogeneous in the analyzing plane (figure 5.7), each pixel could be theoretically characterized with an individual
response function. In the uniform model, however, the effective spectrum is described with one average response
function that is calculated with the mean field strength values.

The validity of the uniform analysis for the KNM1 statistics is evaluated using the MC twins. Within the MC twins
generation, the magnetic and electric fields in the analyzing plane are considered as uniform. That means that
every MC Twin scan is calculated with an pixel-average response function. To evaluate the impact on the neutrino-
mass, the uniform simulated spectrum is repeatedly fit with a model using the pixel-wise field strength values.

Figure 8.2 (left) demonstrates that the variation of the pixel-wise response function are very small. Moreover,
the mean pixel-wise response function overlaps almost perfectly with the average response function. The m2

ν fit
results are shown in figure 8.2 (right). The fit results vary within σ(m2

ν) = 2× 10−3 eV2, which is small compared
to the KNM1 sensitivity.

The FPD segmentation can also be used to spot unknown radial plasma potential variations in the source. Given
that no hint for a radial dependent source potential was found (sections 5.6 and 8.7) and the negligible variation
of the pixel-wise response function, the uniform analysis is considered as suitable for KNM1.

82



8.3. Spectral model configuration Chapter 8. Neutrino-mass analysis of KNM1

0 0.5 1 1.5 2 2.5 3

E
kin

 - qU  (eV)

0

0.2

0.4

0.6

0.8

T
ra

n
s
m

is
s
io

n
 p

ro
b

a
b

ili
ty Pixel-wise: 1  band

Pixel-wise 

Average pixel

Response function

-4 -3 -2 -1 0 1 2 3 4

m
2
 (eV

 2
) 10

-3

0

2

4

6

8

10

12

O
c
c
u
re

n
c
e

Fits with pixel-wise response function

Fits with pixel-wise response function

Figure 8.2: Left: Pixel-wise response function in KNM1 compared to the average response function, that is
modeled with the pixel-average magnetic and electric field values . The energy range is limited to the transmission
edge, where the differences are most prominent. Right: The pixel-average MC Twin spectrum is fit using the pixel-
wise response function. The m2

ν fit values vary within σ(m2
ν) = 2× 10−3 eV2.

8.3 Spectral model configuration

The model of the integral spectrum is presented in detail in section 2.2. To simplify and speed up the model
calculation, some details in the experimental description can be approximated and neglected if the impact on
the neutrino mass is small compared to the expected sensitivity. For KNM1, the upper threshold for an effect to
be neglected is set to ∆m2

ν < 0.02 eV2, which roughly corresponds to the size of the Doppler Effect (included).
Moreover, the Final-state distribution and the parametrization of the energy-loss function are essential inputs of
the model calculation. They rely on theoretical calculation of the molecular transition probabilities (FSD) or on
a dedicated in-situ measurement (Energy-loss function). Both are subject to change over time, as calculation and
experiment evolve and become more accurate. Additionally, the understanding of the experimenters is constantly
increasing over time. Therefore, some systematic effect might re-evaluated at a later time. In KNM1 the scan-
step-time-dependent background rate was only discovered after the publication in [96, 101]. The model settings
used in KNM1 are summarized in appendix C.

8.4 Scan-wise analysis: Nuisance parameter stability

As described in section 5.1 and section 5.2.2, 274 tritium scans were selected for the KNM1 neutrino-mass analysis
with a duration of 2 h each. To evaluate the global system stability of the measurement campaign, the individual
tritium scans are analyzed successively. The FPD pixels are combined following section 8.2.2.

As the neutrino-mass sensitivity within a single scan is relatively poor, σ(m2
ν)≈ 7eV2, the fit uses fixed m2

ν = 0 eV2.
Only the standard nuisance parameter η= (Efit

0 , Bbase, Nsig.) are are allowed to vary in the fits. The single scans are
by far dominated by statistical uncertainties, thus most systematic uncertainties are neglected. Only the largest
systematic effect is included: the Non-Poisson background rate over-dispersion. The latter can also be interpreted
as an enhanced statistical uncertainty of the steady-state background rate and is statistically uncorrelated from
scan to scan.

The stability of each free nuisance parameters η as a function of tritium scans s is evaluated in terms of chi-squared

χ2 =
Nscan
∑

s=1

�

ηs − 〈η〉
σ(ηs)

�2

(8.1)

with Nscan = 274 and the weighted average 〈η〉. If η is indeed stable over time, χ2 is expected to follow a chi-
squared distribution with Nscan − 1= 273 degrees of freedom. The corresponding p-value is labeled as pconst..
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Moreover, to test whetherη fluctuates randomly around its mean, the Wald-Wolfowitz runs test is performed [102].
In contrast to the chi-squared test in equation (8.1), which evaluates average the distance between η and 〈η〉, the
runs test examines the order of occurrence. A run is a sequence of at least two adjacent values of η, that are either
above or below 〈η〉. This test evaluates if the number of runs is lower or higher than expected from a statistically
independent sample. The significance is quantified in terms of a p-value pruns.

In the following, the time evolution of the three standard nuisance parameters is analyzed: Efit
0 , Bbase ,Nsig. More-

over, the scan-wise p-values are shown.
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Figure 8.3: KNM1 time evolution of the nuisance parameters: (a) fit endpoint, (b) steady-state background
rate and (c) signal normalization. Every tritium scan within the golden scan list (section 5.2.2) is fit separately.
The standard analysis energy range (section 5.1) is used. As the statistics of a single scan are very limited, only
uncertainties from statistics and the Non-Poisson background rate over-dispersion are considered. Moreover m2

ν

is fixed to 0 eV2.
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8.4.1 Effective tritium endpoint

A change in the absolute scale of the electron starting potential in the WGTS over time would propagate to an
unstable fit endpoint. Figure 8.3 (a) depicts the scan-wise Efit

0 fit results. The latter vary within σ(Efit
0 ) = 0.25 eV

around the weighted mean 〈Efit
0 〉= 18 573.78eV.

Summation over the scan-wise residuals yields χ2 = 236.7 (273 dof), which corresponds to an excellent pconst. =
0.94. Moreover, no obvious structure is visible. This is supported by the runs test with pruns = 0.52, attesting no
significant deviation from random occurrence.

8.4.2 Steady-state background rate

The fit values of the steady-state background rate over the course of KNM1 are shown in figure 8.3 (b). The
mean background rate is 〈Bbase〉 = 292.6 mcps with fluctuations of σ(Bbase) = 11.1mcps. The good χ2 = 279.9
(273 dof) and pconst. = 0.37 demonstrate, that within uncertainties Bbase is constant over time. As discussed in
section 5.10.2, the steady-state background counts fluctuate more than expected from a Poisson distribution. The
6.4 % over-dispersion is accounted for in the single-scan fits as an additional (systematic) uncertainty. If the over-
dispersion was neglected in the single-scan analysis, pconst. = 7× 10−4 would be drastically reduced. The runs test
doesn’t reveal any unexpected behavior, pruns = 0.76.

8.4.3 Signal normalization

The scan-wise signal normalization factors are shown in figure 8.3 (c). The fit values fluctuate within σ(Nsig.) =
0.02 around the average value 〈Nsig.〉= 0.84. The signal normalization factor corrects the expected signal strength
to the actually observed one, as discussed in section 2.2.3. Thus, unnoticed variations in the source activity would
translate into unstable Nsig. fit values. However, the chi-squared test attests with χ2 = 234.3 (273 dof) and
pconst. = 0.96, that the signal normalization is indeed constant within uncertainties. Moreover, the runs test
doesn’t find a significant (pruns = 0.43) deviation from random occurrence.

8.4.4 Goodness-of-fit

The scan-wise goodness-of-fits are shown in figure 8.4. If the model describes the data well and the single-scan
uncertainties are correctly estimated, the distribution of p-values should follow a uniform distribution. As can be
seen in the right panel of figure 8.4, the observed distribution follows only very approximately a uniform one.
Indeed, the Kolmogorow-Smirnow-Test rejects the uniform hypothesis. Large p-values occur more often than
small ones, which means that the scan-wise fits are on average too good. The runs test finds pruns = 0.83, thus no
deviation from random occurrence.
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Figure 8.4: Goodness-of-fit time evolution in KNM1. Every tritium scan within the golden scan list (section 5.2.2)
is fit separately. The standard analysis energy range (section 5.1) is used. As the statistics of a single scan are very
limited, only uncertainties from statistics and the Non-Poisson background rate over-dispersion are considered.
Moreover mν is fixed to zero.
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8.5 Baseline neutrino-mass analysis

This section presents the baseline neutrino-mass-fit of the KNM1 measurement campaign in the standard analysis
interval including statistical and systematic uncertainties. Best-fit parameters (section 8.5.1), chi-squared profile
(section 8.5.2), fit parameter correlations (section 8.5.4) and improved upper limit section 8.5.3 are discussed.

8.5.1 Best-fit result

Data and best-fit model within the analysis range are shown in figure 8.5 a). The statistical error bars of the data
points are scaled by a factor of 50 to make them visible. The fit model describes the data very well, which is
mirrored with the excellent p = 0.53 (χ2

min = 21.7 at 23 dof).
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Figure 8.5: Uniform fit to KNM1 data. a) Overlay of data and best-fit model. The uncertainties are enhanced by
a factor of 50 for better visibility. b) Normalized residuals between data and best-fit model. b) Measurement-time
distribution.

The residuals, displayed in figure 8.5 b), are normalized with the square-root of the diagonal entries of the covari-
ance matrix that is used in the fit. Off-diagonal entries, which incorporate scan-step dependent correlations, are
not included in this visual representation. The blue area is the 1σ uncertainty band. The region highlighted in a
lighter blue corresponds to the statistical contribution to the total uncertainty budget. The normalized residuals
vary within < 2.6σ. Moreover, no significant pattern is visible, which is supported by the runs test pruns = 0.53.

The best-fit parameter values and 1σ uncertainties are:

m2
ν = (−0.96+0.88

−1.05)eV2 (8.2)

Efit
0 = (18573.73± 0.06)eV (8.3)

Bbase = (292.3± 0.7)mcps (8.4)

Nsig. = 0.837± 0.003. (8.5)
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The best-fit value of the neutrino mass-squared lies 1σ into the negative regime. Even though a negative mass
is nonphysical, the phase space in equation (2.10) allows for negative m2

ν-values. As the analysis follows the
Frequentist philosophy, no prior knowledge on m2

ν is incorporated in the parameter inference and the phase space
isn’t modified artificially to forbid negative values. Thus, the same phase space is used for negative and positive
m2
ν. It was validated on the MC twins that this approach ensures a bias-free the neutrino mass inference.

8.5.2 Profile chi-squared

The fit is performed with the Minuit software using the Minos minimization algorithm [103], which provides the
asymmetric fit uncertainties at 68.3 % C.L. in equation (8.2). As a sanity check to validate the convergence of the
fit, the profile chi-squared function is manually calculated around its minimum: A model with fixed m2

ν is fit to the
spectrum. The fit is repeated for different m2

ν values. The resulting profile chi-squared is displayed in figure 8.6.
The dash-dotted orange curve is based on only statistical uncertainties, whereas the solid blue curve taken all
uncertainties into account. Central values and fit uncertainties are in good agreement with the result provided by
Minos.

Figure 8.6: As a sanity check, the KNM1 chi-squared profile is calculated manually around its minimum. The
orange dash-dotted line corresponds to the analysis with only statistical uncertainties, whereas the solid blue line
is based on the full uncertainty budget. The corresponding 1σ confidence regions are illustrated as the colored
areas.

8.5.3 Confidence belt and upper limit

It was decided before the unblinding that a confidence belt at 90 % C.L. will be constructed. Depending on the
inferred best-fit value, a two-sided confidence region or an upper limit will be quoted as the main result. The m2

ν

best-fit result combined with its expected likelihoods can be converted into a confidence belt and corresponding
confidence region using statistical means. Two different limit-setting strategies, technically introduced in sec-
tion 3.3.2, are realized for KNM1: The method of Lokhov-Tkachov [82] and the well-known method of Feldman-
Cousins [80].

The confidence belts are presented in figure 8.7. The main difference between the two limit-setting strategies
is the handling of negative neutrino masses. While Feldman-Cousins use the likelihood-ratio ordering principle,
Lokhov-Tkachov opt for referring to the sensitivity at the null hypothesis m2

ν = 0eV2. Both strategies ensure the
correct coverage for all possible m2

ν measurements. However, the Feldman-Cousins method generally results in
more aggressive upper limits, if the measured neutrino mass value is negative.
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For KNM1, the upper limits at 90 % C.L. are

mν ≤ 1.1eV (Lokhov− Tkachov) (8.6)

mν ≤ 0.8eV (Feldman−Cousins). (8.7)
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Figure 8.7: As the first measurement campaign is not sensitive enough to determine the neutrino mass at high
confidence, an upper limit is quoted instead. Two limit-setting strategies are explored: The method of Lokhov-
Tkachov (LT) [82] (left) yields mν ≤ 1.1 eV (90 % C.L.), which coincides with the KNM1 sensitivity. The method
of Feldman-Cousins (FC) [80] (right) results in mν ≤ 0.8 eV (90 % C.L.).

8.5.4 Fit parameter correlations

The correlations among the fit parameters are estimated by fitting 2000 randomized spectra. The latter are gen-
erated through randomization of the MC twins following the uncertainties of the fit covariance matrix. The m2

ν

best-fit value from the data analysis (section 8.5.1) is used as input for the MC Twin simulation. Each sample
spectrum is then fit using statistical and systematic uncertainties. The fit results are displayed in figure 8.8. The
histograms on the diagonal panels show the distribution of each fit parameter. The off-diagonal scatter plots set
the fit parameter in relation to one another. Here, the coloring indicates the density from low (dark blue) to high
(yellow). The Pearson correlation coefficients ρ, measuring the degree of linear correlation, is stated in the top
left corner for each fit parameter pair. The classification of the size of ρ is based on the guideline offered by [104].

A very high positive correlation (ρ = 0.93) is observed between the neutrino mass and the fit endpoint. An
increasing endpoint shifts to first order the entire energy spectrum towards larger energies. The neutrino mass
has (almost) the opposite effect: An increasing neutrino mass causes a spectral shape distortion towards smaller
energies. Therefore, a (too) large Efit

0 can be compensated to some extent by a (too) large m2
ν and vice versa.

Moreover, the endpoint has a high negative correlation with the signal normalization (ρ = −0.89). For fixed
retarding potentials, an increasing endpoint effectively corresponds to a measurement of the tritium spectrum
deeper in the spectrum. Due to the steep rise of the tritium spectrum towards lower energies, the count rate at
fixed qU is expected to increase. The signal normalization has a similar influence on the spectrum: The larger
the signal normalization, the larger is the count rate. The observed correlation between Efit

0 and Nsig. is negative,
because a (too) large fit endpoint can be partially compensated by a (too) small signal normalization or vice versa.

The correlation between m2
ν and Nsig. is moderately negative (ρ = −0.69). This can be explained by the strong

positive correlation between m2
ν and Efit

0 . The correlations between the remaining parameter pairings are low.
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Figure 8.8: The fit parameter correlations are investigated by fitting 2000 randomized MC Twin spectra. Statistical
and systematic uncertainties are used both in the randomization and in the fit. The histograms on the diagonal
display the fit-value distribution of each parameter on its own. The scatter plots on the off-diagonal panels show the
correlation among the respective parameters. The color code indicates the density ranging from low (dark blue)
to high density (yellow). The values in the top left corners are the corresponding Pearson correlation coefficients.
The uncertainties are calculated via the bootstrapping technique.

8.6 Systematic uncertainty breakdown

The systematic uncertainties are incorporated in covariance matrices. As discussed in chapter 4, each effect is
described by an individual covariance matrix. The KNM1 covariance matrices are displayed in appendix D.5. The
fit covariance matrix, including all effects, is the sum of all matrices. To evaluate the individual influences on the
m2
ν uncertainty, the data is fit twice: Once considering only statistical uncertainties and once using the covariance

matrix of interest on top of that. The systematic-only contribution for effect i can be then calculated as

σi
syst =

Ç

σ2
tot,i −σ

2
stat (8.8)

with σtotal,i being the uncertainties provided by fit with covariance matrix i at 68.3 % C.L. and σstat being the
statistics-only uncertainty. Even though the minimization algorithm Minos [103] provides asymmetric m2

ν uncer-
tainties, only the average value is displayed in this context. The breakdown of all uncertainties on m2

ν is visualized
in figure 8.9 on the data spectrum. The expected contribution to the sensitivity, obtained from analyzing the MC
twins, is written on the very right in grey as reference. Due to the non-zero best-fit result, slight differences be-
tween data and simulation are expected.

Including statistical and all systematic uncertainties, the total uncertainty on m2
ν amounts to σtot(m2

ν) = 0.97eV2.
The statistical uncertainty is the dominant contribution with σstat(m2

ν) = 0.93 eV2, making up 93 % of the total
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variance. The remaining uncertainty is attributed to systematic effects, which sum up to onlyσsyst(m2
ν) = 0.26 eV2.

The largest systematic contribution stems from the Non-Poisson background rate over-dispersion with σNP
syst(m

2
ν) =

0.22eV2, introduced in section 5.10.2. Second and third largest effects are tritium activity fluctuations during a
scan (see section 4.4.2) and the retarding-potential-dependent background rate (see section 4.10.3).

The latter employs the background slope constraint from FT sqU ≤ 15 mcps/keV (see section 5.10.4). If no ex-
ternal constraint is applied in the covariance matrix, the systematic uncertainty increases to σ(m2

ν) = 0.27 eV2

(sensitivity σ(m2
ν) = 0.31eV2).
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Figure 8.9: KNM1 uncertainty breakdown. The top two bars indicate the total and the statistical uncertainty.
Additionally, the influence of each systematic effect on m2

ν is evaluated individually. The remaining bars and the
black values beside them visualize the contribution of each effect in the data analysis. The right-most grey values
indicate the expected sensitivity. The analysis is strongly dominated by the statistical uncertainty. The largest
systematic effect stems from the Non-Poisson background rate over-dispersion.

8.7 Radial fit parameter dependencies

In the baseline analysis the pixels are stacked into one effective spectrum. This is possible due to the excellent
stability of the magnetic and electric fields in the source and the analyzing plane, as discussed in section 8.2.2. To
search for unknown radial inhomogeneities, e.g. due to a hypothetical mismodelling of the plasma potential in
the WGTS, the FPD rings are analyzed independently from each other. An unaccounted radial dependency of the
plasma potential would manifest itself in a radial dependent fit endpoint. As discussed in section 4.3, simulations
suggest that a radial plasma potential dependency often entails a longitudinal plasma inhomogeneity. As the latter
causes a bias in the neutrino mass, the radial patterns of m2

ν and Efit
0 are the focus of the ring-wise analysis.

To collect sufficient statistics, the actual FPD rings are grouped into four pseudo-rings according to appendix B.
The statistics of each pseudo-ring, considering only the active pixels in KNM1 is summarized in table D.1. The
pseudo-ring-wise fit results of the four fit parameters are displayed in figure 8.10. Neutrino mass and endpoint,
being strongly (positive) correlated, exhibit a similar pattern. Both fit parameters indicate a downward trend as
a function of pseudo-ring. In contrast to that, the background and signal normalization increase with increasing
radius.

To quantify these radial tendencies more precisely, a linear function with free slope and offset is fit to each param-
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eter evolution. Central values and 1σ uncertainties are stated in the corresponding legends of figure 8.10. The
linear slope for m2

ν is significant1 at 1.61σ. The endpoint slope has a similar significance of 1.71σ. As both slopes
are not very significant, for instance not above 95 % C.L., the radial patterns don’t cause a serious concern for
the (uniform) neutrino-mass analysis. However, more detailed plasma investigations within dedicated Krypton
campaigns are foreseen in the future.

The steady-state background exhibits a significant (39σ) radial dependency. The radial background rate increase
is anticipated, because a large fraction of Bbase arises from impurities in the main spectrometer walls (see also
section 5.10.1). However, the poor linear fit quality (p = 9.7× 10−11) suggests that the background-pseudo-ring-
relation cannot be described well with a linear model.

The positive slope of Nsig. is moderately significant at 1.48σ. Unknown radial differences in the pixel detection
efficiency or in the flux tube volume calculation could cause a radial dependent signal normalization. As long as
these effects are independent of the retarding energy, they don’t jeopardize the neutrino-mass analysis.
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Figure 8.10: Ring-wise analysis of KNM1 data. The latter is grouped into 4 pseudo-rings (table D.1). To search
for possible radial patterns, each pseudo-ring is fit independently, inferring m2

ν, Efit
0 , BbaseandNsig. respectively. Sta-

tistical as well as Non-Poisson uncertainties are taken into account. On top of that, a linear model is fit to each
radial parameter evolution. Top left: Neutrino mass squared. The linear slope has negative sign and is significant
at 1.61σ with a good fit quality p = 0.48. Top right: Endpoint. The negative slope significant at 1.71σ. Linear
fit has a good p = 0.53. Bottom left: Background. The positive slope, anticipated from the physics model of the
background, is significant is at 39σ. However, the poor p = 9.7× 10−11 attests that the background rate doesn’t
increase linearly with pseudo-ring. Bottom right: Relative signal normalization. The positive slope is moderately
significant at 1.48σ. The linear fit has a good fit quality p = 0.7.

1For simplicity, the significance is obtained from scaling the 1σ uncertainty provided from the fit.
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8.8 Extended fit interval

The standard analysis interval is restricted to 27 scan steps, ranging from −39 eV below to 47 eV above the fit
endpoint. The full measurement interval, however, comprises 39 scan steps and retarding energies down to
−93 eV below E0 (section 5.1).

An extension of the fit interval generally leads to reduced statistical uncertainties, as more data points are included.
The drawback are increasing (known) systematic uncertainties one the hand and the risk of unknown energy-
dependent systematic effects on the other hand.

In this section, the decision to use the −39 eV range as standard analysis interval is evaluated. Firstly, the fit-
range-dependent sensitivity is presented in section 8.8.1. Secondly, the retarding-potential dependence of the fit
result is discussed in section 8.8.2.

8.8.1 Fit-interval-dependent neutrino-mass sensitivity

The m2
ν sensitivity as a function of fit interval is estimated twice: once using only statistical uncertainties and once

taking the complete uncertainty budget into account. The systematic-only sensitivity is calculated according to
equation (8.8). Here, the sensitivity is studied rather than actual fit uncertainties of the data analysis, because the
best-fit value influences the fit uncertainty. The results are displayed in figure 8.11.

As expected, the statistical m2
ν uncertainty decreases monotonously with increasing fit range (decreasing lower fit

boundary). Opposed to that, the contribution of systematic uncertainties increases. When the entire measurement
interval is analyzed, statistical and systematic uncertainties are in equilibrium.

From the perspective of the m2
ν sensitivity alone, a larger analysis interval than the selected −39 eV range would

have been profitable in KNM1. However, a more conservative analysis interval was chosen, due to the lack of
extensive systematic uncertainty investigations and and ongoing calculations of the excited states of the FSD.
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Figure 8.11: Neutrino-mass sensitivity at 68.27 % C.L. for different fit intervals. The sensitivity is calculated using
the MC twins.

8.8.2 Retarding-potential fit parameter dependencies

In order to search for energy-dependent systematic effects, fits within different fit intervals are performed. Each
fit considers both statistical as well as systematic uncertainties. The upper boundary, qU = E0+47 eV, is the same
for all fit intervals. The lower boundary is increased scan-step-wise from qU − E0 = −93eV to qU − E0 = −19 eV,
which results in 23 different fit intervals.

The best-fit parameters as a function of lower fit boundary are displayed in figure 8.12 and figure F.1. The standard
analysis interval is highlighted in orange. The reference line is anchored at the corresponding best-fit value. The
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left-most point corresponds to the largest fit interval (39 scan steps), whereas the right-most point is associated
to the smallest fit interval considered (17 scan steps).

Due to the decreasing statistics, the uncertainties on m2
ν, Efit

0 and Nsig. increase from left to right. In contrast
to that, the uncertainties on Bbase are almost independent of the lower fit boundaries, because the background-
sensitive scan-steps above the endpoint are included in all considered fit intervals. Even smaller intervals were
not analyzed, due to the vanishing sensitivity to m2

ν.

The fit-interval-dependent fit results are strongly correlated, because they are based in part on the same data.
Therefore, it is not straightforward to interpret the observed patterns. Due to the correlation, the fit results are
expected to vary less than their fit uncertainties from one analysis interval to another. Additionally, the correlations
are not equally strong for all HV set point and fit parameter, because not all scan-steps contribute the same amount
to the respective parameter sensitivity.

To estimate the expected variation while taking the correlation into account, a MC simulation on randomized twins
is performed. One-thousand sample spectra are generated by randomly drawing from a multivariate distribution
given by the fit covariance matrix. Each sample spectrum is then analyzed in the 23 fit intervals defined above. The
23 fit results of each sample are compared to the respective fit value in the standard analysis range. The standard
deviation over all samples for each fit interval yields the expected variation. This is visualized in figure 8.12 as
the grey uncertainty band.

No significant deviation from the standard analysis range is found and consequently no hint for an unaccounted
energy-dependent systematic effect. Hence, an extension to larger analysis ranges could be considered in future
neutrino-mass campaigns.
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Figure 8.12: Best-fit results of the 4 standard fit parameters as a function of lower fit boundary. Both statistical
and systematic uncertainties are taken into account. The upper fit boundary is fixed to qU = E0 + 47eV and is
the same for all fit intervals. The standard analysis range is highlighted in orange. To interpret the correlated fit
results, the same study is performed on 1000 randomized MC twins. The expected variation from the fit in the
standard analysis interval is displayed as grey uncertainty band. No significant deviation and therefore no hint for
an unaccounted energy-dependent systematic effect is found. The retarding-potential dependencies of Bbase, Nsig.
and p can be found in appendix F.1.
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8.9 Alternative scan selection

In the standard analysis all 274 golden scans are stacked into one effective spectrum. This is possible due to
the excellent time-stability of all operational parameter and the good HV-set-point reproducibility, as discussed in
section 8.2.1. To search for systematic effects, that only influence certain scans, a variety of alternative scan lists
are analyzed. The latter are subselections from the golden scan list and are based on some common attribute.
The alternative scan list Up scans comprises for example only scans that were recorded with time-wise increasing
(absolute) retarding potentials. All scan lists are defined in detail in appendix D.2.

Every alternative scan selection is analyzed in the standard analysis interval taking statistical and Non-Poisson
uncertainties into account. The m2

ν best-fit values, 1σ uncertainties and p−values are summarized in figure 8.13.
The golden pixel selection is highlighted in green. The fit results are correlated among each other, as they share
partly the same underlying data. This complicates the evaluation of the parameter stability. The larger the fraction
of common data, the less the fit values are expected to differ between each other. In particular, they are expected
to vary less than their fit uncertainties.

To obtain an indication which magnitude of m2
ν variations is acceptable, 2000 random scan lists are stacked

and analyzed. Each random scan selection contains 137 (half) out of 274 golden scans. The 1σ variation of the
resulting m2

ν best-fit distribution is displayed as a grey band in figure 8.13. The latter only serves as an orientation,
because not all alternative scan selections contain the same number of scans.

All alternative scan lists infer m2
ν-values within 3σ of the random scan selection. Moreover, 8 out of 12 considered

scan selections (66.7 %) even lie within the 1σ uncertainty band. The largest deviation is obtained using the
"URW = −183meV" scan selection, which contains only 19 scans with this particular rear-wall bias voltage. Due to
the low statistics, the discrepancy is not significant. The p−values of all scan selections are well above the critical
5 %.
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Figure 8.13: Alternative scan selections within the golden scan selection are analyzed for the standard 4 fit
parameters. Statistical and Non-Poisson uncertainties are considered. The m2

ν fit values with uncertainties (left
panel) as well as the fit qualities (right panel) are displayed. The golden scan list is highlighted in green. All
fits find a good p-value well above the critical 5 %, indicated in red. The expected degree of m2

ν variation is
calculated by analyzing 2000 stacked spectra, drawing randomly half of the scans from the golden scan selection.
No significant outliers are found. The scan numbers for each alternative scan selection are stated in appendix D.2.
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8.10 Alternative pixel selection

To search for systematic effects, that only influence certain areas of the detector, different pixel subselections
within the golden pixel list (appendix D.3) are analyzed. In section 8.10.1, alternative pixel lists that contains
approximately half of the golden pixels each are analyzed. Section 8.10.2 investigates pixel subselections with
different azimuth angles.

8.10.1 Alternative half pixel lists

For each selection, the FPD is divided into two parts of roughly equal statistics. As some FPD areas comprise
more inactive pixels than others, the number of pixels is not always the same. The associated pixel lists are given
in appendix B. Every alternative pixel selection is analyzed individually for the standard 4 fit parameters taking
statistical and Non-Poisson uncertainties into account. The m2

ν best-fit values, 1σ uncertainties and p−values are
displayed in figure 8.14.

The pixel selections come in 3 pairs: "Inner/Outer", "North/South", "East/West". The pixel lists within each pair
are the counterparts of each other and are therefore statistically uncorrelated. The significance s of the deviations
of fit results i from fit result j can be evaluated as

si j =
|m2
ν,i −m2

ν, j |
q

σ2
i (m2

ν) +σ
2
j (m2

ν)
. (8.9)

The fit results within a pair deviate by s = 0.9σ (Inner/Outer), s = 1.1σ (North/South) and s = 2.0σ (East/West).
A more detailed study on the east-west asymmetry is presented in the following section 8.10.2.

To compare the fits among the pairs or to the golden pixel selection, their correlation has to be taken into account
as they are based on partly the same data. Similar to section 8.9, 2000 random pixel lists are analyzed, each
comprising half of the active pixels. The grey band in figure 8.14 corresponds to 1σ of the resulting m2

ν distribution.
All pixel selections lie within 3σ of the uncertainty band. However, the m2

ν values based on the eastern and the
western pixels exhibit a deviation of 2.5σ compared to the expectation of the random pixel selections.
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Figure 8.14: Alternative pixel lists within the golden pixel selection are analyzed for the standard 4 fit parameters.
Statistical and Non-Poisson uncertainties are taken into account. The m2

ν fit values with uncertainties (left panel)
as well as the fit qualities (right panel) are displayed. All fits find a good p-value well above the critical 5 %. The
alternative selections can be grouped into three pairs, whose pixel numbers are counterparts of each other. The m2

ν

fit values of eastern and western pixels deviate by 2.0σ from each other. The remaining pairs show no significant
deviation. To compare all pairs among each other, 2000 random pixel selection are analyzed, each comprising
half of the active pixels.
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8.10.2 Azimuthal position

In the previous section, an east-west asymmetry in m2
ν of elevated significance was found. To investigate the

azimuthal dependence with a higher angular resolution, the pixels are grouped according to their azimuth angle
θFPD on the FPD. The finest subdivision comprises 24 slices, depicted in figure 3.1 (c), whose pixels all have the
same average azimuth angle. As the statistics within each slice is rather low, the slices are further on grouped into
8 pseudo-slices, illustrated in figure B.1 (e). Each pseudo-slice comprises three neighboring slices. The associated
pixel numbers are summarized in appendix B.

Each pseudo-slice is fit considering statistical uncertainties and the Non-Poisson over-dispersion. The neutrino-
mass-fit result is shown in figure 8.15 as a function of 〈θFPD〉. The best-fit results of Efit

0 , Bbase and Nsig. are given
in appendix F.2. The respective fits of the pseudo-slices with the three smallest mean azimuth angles 〈θFPD〉 ∈
{0◦, 45◦ and90◦} yield positive m2

ν-values, whereas all other pseudo-slices find negative m2
ν. The significance of

the m2
ν deviation between these two groups is 2.3σ. The m2

ν-asymmetry between eastern and western halves
(section 8.10.1) is thus driven by the north-west region of the detector (small azimuth angle).

However, the m2
ν distribution is also compatible with a constant (p = 0.28). As no physical effect is known that

could cause an azimuth-dependence in m2
ν, the observed asymmetry is likely to be a statistical fluctuation.
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Figure 8.15: Neutrino-mass-squared as a function of azimuthal FPD position. The azimuth angle of 0◦ is assign
to north. The angle is measured clockwise.

8.11 Statistical tests with CATS

The data set is further on subjected to statistical tests to search for unusual behavior using the diagnostics toolkit
CATS [105]. The latter is based on a local linearization of the chi-squared function. Systematic uncertainties are
taken into account with a covariance matrix.

8.11.1 Cook’s distance

The Cook’s distance D evaluates the degree of influence of each data point on the fit result. One the one hand,
its calculation is based on the normalized residuals ri , displayed in the middle panel of figure 8.5. Normalized
residuals are useful to spot outliers in the data set. On the other hand, the leverage li of each data point is
considered

`i =
∂ Rmodel

β
(m2

ν, Efit
0 , Bbase, Nsig., qUi)

∂ Rdata
β
(qUi)

. (8.10)
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The leverage describes the potential of a data point to influence the best-fit model. In other words, `i reflects the
sensitivity of a scan-step i on the free model parameters. A leverage of `= 0 corresponds to no influence, whereas
`= 1 indicates that one degree of freedom is effectively spend to infer that particular scan step.

The Cook’s distance is then calculated as follows

Di =
|ri |2

npar
·

`i

(1− `i)
(8.11)

with npar = 4 being the number of free fit parameters. A large residual combined with a high leverage results in
a large Cook’s distance. Data points with D ≥ 1 may distort the accuracy of the fit result and thus merit further
investigations [105].

Figure 8.16 displays the standardized residuals as a function of their leverage for each scan-step. The regions with
D ≥ 0.5 and D ≥ 1 are highlighted in blue and red color respectively. As already discussed in section 8.5.1, r
varies within less than 3σ. Thus, no outlier is observed. The scan step measured at the lowest retarding energy
(qU−18 574eV = −39eV) has a slightly elevated leverage l = 0.36. Being the data point with the highest statistics,
this scan-step drives the determination of the signal normalization and has there therefore a large leverage.

No data point with large cook’s distance in the critical region D > 1 is observed.

Figure 8.16: The influence of each scan-step on the fit result is evaluated. Standardized residuals r of all data
point are displayed as a function of leverages `. A data point with both large r and high ` has a large Cook’s
distance D. If D is larger than 1, the data point can potentially jeopardize the accuracy of the fit result. However,
no influential data point is observed.

8.11.2 Fits with excluded data points

This section performs an alternative method to search for influential data points. One data point at a time is
excluded from the analysis, effectively removing information from the chi-squared function. The change of the
fit result with respect to the fit with all data points indicates the influence of the removed data point. A strongly
changing fit result indicates a large influence of the associated data point and vice versa.

The m2
ν fit values as a function of removed scan step is presented in figure 8.17. The fit results are strongly

correlated among each other, therefore the fit uncertainties are not displayed. For reference, σ(m2
ν) = 0.97eV2

for the standard analysis range. No distinct pattern is visible, which is supported by a runs test pruns = 0.26. As the
fits are based partly on the same data, m2

ν is expected to vary less than its uncertainty. However, only qualitative
statements can be made, because the MC expectation was not calculated due to high computing time.
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Scan steps with little neutrino mass sensitivity, e.g. scan steps far above the endpoint, have as expected only little
impact an the fit parameter. The region most sensitive to m2

ν is located around qU − 18574 eV ≈ −10 eV (see
appendix F.3). As many data points are distributed at these retarding energies (figure 8.5 c)), the removal of a
single point influences the fit result only slightly. A moderate change O (0.5eV2) is observed upon the removal of
individual data point at qU − 18574 eV = {−19eV,−23eV,−39 eV}, respectively.
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Figure 8.17: The influence of each scan step on the fit result is determined by successively excluding scan steps
from the analysis. Here, the m2

ν fit result as a function of removed data points is shown. In the region, which is
most sensitive to m2

ν (qU−18 574eV ≈ −12eV), large changes are expected. The fit uncertainties are not included
in the figure, because the fit results are strongly correlated.
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8.12 Reanalysis with updated model configuration

After the original publication in [96, 101], a reanalysis with slightly updated model configuration was performed.
Both original and updated settings are summarized in table C.2. Both FSD and energy-loss function are replaced
by a slightly more refined version, that was also used for the KNM2 analysis. Additionally, the non-isotropic trans-
mission is included in the reanalysis, because its impact on m2

ν is larger than previously expected. Moreover,
the existence of the scan-step-time-dependent background was only discovered during the second measurement
campaign. For KNM1 the time-wise background rate increase has a slope of stime = (2.2± 4.3)µcps/s. All other
configuration and systematic uncertainties are identical to section 8.5.

The result of the reanalysis is displayed in figure 8.18. Including all updates and systematic uncertainties, the
reanalysis yields m2

ν = (−1.14± 1.00)eV2, which is 0.17 eV2 more negative than the original result. This best-
fit value would thus not change the LT-limit reported in section 8.5.3. The goodness of fit of the reanalysis
χ2

min = 21.2 (23dof p = 0.57) improves slightly with respect to the original publication by ∆χ2
min = 0.5.

To estimate the influence of the individual model updates, the latter are switched on one-by-one. The new final-
state distribution and energy-loss function cause only minor changes in m2

ν by O (10−3 eV2). The inclusion of the
non-isotropic scattering probabilities in the transmission function has with∆m2

ν = −8× 10−2 eV2 the largest influ-
ence on the neutrino mass. Only slightly smaller (in absolute) follows the scan-step-time-dependent background
rate with ∆m2

ν = −6× 10−2 eV2.

Compared to the sensitivity of σ(m2
ν) ≈ 1 eV2, the updated model configuration does not change the outcome of

the neutrino mass-analysis significantly.
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Figure 8.18: The standard neutrino-mass analysis is repeated with an updated model configuration. The new
settings are stated in table C.2. The reanalysis finds m2

ν = (−1.14± 1.00)eV2, which is more negative than the
original result by 0.17 eV2. This shift is mostly driven by the implementation of the non-isotropic transmission
function and the scan-step-time-dependent background rate. Overall, the reanalysis is consistent with the original
publication considering the KNM1 neutrino mass sensitivity of σ(m2

ν)≈ 1eV2.
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Chapter 9

Neutrino-mass analysis of KNM2

This chapter is dedicated to the neutrino-mass analysis of the KNM2 data set. Many methods are similar to the
KNM1 neutrino-mass analysis. In theses cases the corresponding KNM1 sections are referenced to avoid lengthy
repetitions.

9.1 Monte Carlo Twins

The analysis chain is validated first on MC twins following the blinding protocol described in chapter 7. The
KNM2 MC twins are calculated according to section 7.1 with a constant endpoint of E0 = 18 573.70eV for all
scans. Moreover, the effective source potential broadening (section 6.6.4) and the scan-step-time dependency of
the background rate (section 6.10.5) are included.

9.2 Data combination

The KNM2 data set comprises 361 golden scans with 117 golden pixels each, which results in 43327 golden
tritium spectra. Thanks to the excellent stability of the relevant experimental parameters (see chapter 6), these
low-statistics spectra can be combined to a great extend.

Different combination strategies are introduced in general in section 3.2. In the following, the selected scan
(section 9.2.1) and pixel (section 9.2.2) combination techniques for the KNM2 analysis are discussed. The focus
is put on their respective validation in terms of neutrino-mass bias.

9.2.1 Scan combination

All golden scans are combined through stacking. This is possible due to the excellent scan-wise stability of the
experimental parameters. The most critical parameter in this context is the high-voltage reproducibility, as dis-
cussed in section 4.9. The observed 〈σ(qU)〉 = 10meV (section 6.7) is expected to induce a neutrino-mass bias
of ∆m2

ν ≈ 2× 10−4 eV2, which is negligible compared to the neutrino-mass sensitivity. As the high-voltage repro-
ducibility is slightly different for each set point, the neutrino-mass bias is also calculated by a fit to the stacked MC
twin spectrum. The fit result coincides with the expectation. Consequently, stacking is a suitable run combination
technique for KNM2.

9.2.2 Pixel combination

Due to pixel-wise variations of qU (section 6.7) and Bana (section 6.8), the stacking of different pixels can lead to
a neutrino-mass bias. The latter is estimated through a simulation: An integral spectrum is calculated for each
golden pixel using the associated qU and Bana values. The spectra are then stacked and fit using the average
model. If all golden pixels are stacked, the (uniform) fit finds ∆m2

ν = 3× 10−3 eV2, which is negligible given the
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KNM2 sensitivity. Consequently, the uniform fit is justified in terms of electric and magnetic field homogeneity in
the analyzing plane. The same applies to multi-ring fits, because the number of combined pixels is smaller than
in the uniform case.

Apart from analyzing plane inhomogeneities, the FPD segmentation can also be used to search for radial variations
of the source potential. As discussed in section 6.6.3, neither rate monitor point nor krypton data analysis found
a considerable radial source-potential dependency. Nevertheless, the main neutrino-mass analysis of the tritium
scans performs a multi-ring fit with four pseudo-rings and ring-wise potential offsets to be conservative.

9.3 Spectral model configuration

The specral model configuration that is used in the KNM2 analysis is summarized in appendix C.

9.4 Scan-wise analysis: Nuisance parameter stability

To evaluate the temporal system stability, all 361 golden scans are analyzed individually. As the neutrino-mass-
squared sensitivity in a single scan is relatively low σ(m2

ν)≈ 6.5 eV2 (68.3 % C.L.), m2
ν is fixed to zero. Moreover,

the single-scan fits include only statistical uncertainties and the enhanced statistical background rate uncertainty
from the Non-Poisson over-dispersion. The standard analysis range is used (section 6.1).

The uniform fit results of effective endpoint (section 9.4.1), steady-state background rate (section 9.4.2) and signal
normalization (section 9.4.3) are presented in the following. Analogous to KNM1 (section 8.4), their compatibility
with no time dependence is evaluated in terms of a p-value according to equation (8.1) with Nscan = 361 and 360
dof. Moreover, the Wald-Wolfowitz runs test with pruns is performed to search for non-random patterns (see also
section 8.4). At the end, the scan-wise goodness-of-fit is evaluated in section 9.4.4.

9.4.1 Effective tritium endpoint

The fit endpoint, displayed in figure 9.1, varies with σ(Efit
0 ) = 0.168 eV around its weighted mean 〈Efit

0 〉 =
(18573.679± 0.009)eV. The chi-squared test yields p = 0.92, which means that the temporal endpoint evo-
lution is compatible with a constant.
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Figure 9.1: Scan-wise fit results of the effective endpoint as a function of live time in KNM2. The colors indicate
the three different rear-wall periods. Within uncertainties, the endpoint is compatible with no time dependence.
Key values concerning the temporal stability are summarized in table 9.1.

However, the rear-wall bias voltage was adjusted twice during KNM2 (see section 6.6.2), which should lead to
three different source potentials and consequently to three different effective endpoints. The scan-wise fit results
associated to the three rear-wall periods are highlighted in different colors in figure 9.1. The period-wise mean
endpoints, summarized in table 9.1, differ up to 93 meV from each other. These endpoint differences agree within
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uncertainties with the relative source potential shifts1, that were obtained from the rate monitor analysis in sec-
tion 6.6.2.2. The runs test finds no significant deviation from random occurrence with pruns ≥ 0.25 for all rear-wall
periods.

Data (sub-) set 〈Efit
0 〉 (eV) σ(Efit

0 ) (eV) p pruns

All golden scans 18 573.679± 0.009 0.168 0.92 0.25
Rear-wall period 1 18573.689± 0.013 0.166 0.87 1.00
Rear-wall period 2 18573.754± 0.015 0.152 0.94 0.38
Rear-wall period 3 18573.576± 0.014 0.137 1.00 0.39

Table 9.1: The temporal stability of the fit endpoint is evaluated over the course of KNM2. Within uncertainties
it is compatible with no time-dependence. The runs test attests no significant deviation from random occurrence.
Moreover, the three rear-wall periods are examined individually. The period-wise mean endpoint differ signifi-
cantly up 93 meV from each other.

9.4.2 Steady-state background rate

The fit results of the steady-state background rate are shown in figure 9.2 as a function of live time. The background
rate significantly increased by (0.38± 0.04)mcps/day2 over the course of KNM2. The average background rate is
〈Bbase〉 = 220.1mcps. The runs test on the corrected rate yields pruns = 1.2 %, which hints towards non random
occurrence.
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Figure 9.2: Scan-wise fit results on the steady-state background rate. The background rate increased over the
course of KNM2 by (0.38± 0.04)mcps/day.

9.4.3 Signal normalization

The scan-wise signal normalization factor is displayed in figure 9.3. It varied by σ(Nsig.) = 2 % over the course
of KNM2. Its time evolution is compatible with a constant p = 0.997. Moreover, no pattern is visible, which is
supported by pruns = 0.87.

9.4.4 Goodness-of-fit

The temporal p-value evolution is depicted in figure 9.4. Large p-values occur more often than small ones.
Only three out of 361 fits obtain a goodness-of-fit below the acceptance threshold of p < 0.05. Indeed, the
Kolmogorow-Smirnow-Test rejects the (expected) uniform hypothesis. A possible reason for this could be that the

1A more positive source potential translates into a smaller endpoint, because theβ-electrons are negatively charged. Therefore, the endpoint
differences have to be compared to the negative source potential shifts.

2The time-wise slope is obtained from a linear fit. The goodness-of-fit is p = 0.97.
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fit uncertainties are overestimated. Given that only statistical uncertainties and the Non-Poisson background rate
over-dispersion are considered, this explanation seems unlikely.
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Figure 9.3: Scan-wise fit results of the signal normalization factor in KNM2. The time evolution is compatible
with a constant.

Sep, 29 Oct, 06 Oct, 13 Oct, 20 Oct, 27 Nov, 03 Nov, 10

Date in 2019

0

0.2

0.4

0.6

0.8

1

p
-v

a
lu

e
 (

2
5
 d

o
f)

KNM2 scan-wise fits

0 10 20

Occurrence

Figure 9.4: Temporal p-value evolution of the scan-wise fits. As can be seen in the right panel, the associated
distribution does not follow a uniform distribution. Large p-values occur more often than small ones. However,
no distinct non-random pattern is visible (pruns = 0.73).

9.5 Baseline neutrino-mass analysis

This section presents the baseline analysis of the KNM2 campaign, which is a stacked multi-ring fit using four
pseudo-rings. The fit is performed in the standard analysis interval. Statistical as well as systematic uncertainties
are included. Best-fit parameters (section 9.5.1), chi-squared profile (section 9.5.2), fit parameter correlations
(section 9.5.4) and improved upper limit (section 9.5.3) are discussed.
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9.5.1 Best-fit result

The measured integral spectrum and the best-fit model are displayed in the top panel of figure 9.5. Data and model
agree well with each other, which is mirrored by the good p = 0.79 (χ2

min = 87.3 at 99 dof). The standardized
residuals are displayed in the lower panels of figure 9.5 for each pseudo-ring. They exhibit no irregular pattern
(pruns ≥ 0.25 for all pseudo-rings). All residuals are smaller than 2.1σ. Thus, no outlier is observed.
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Figure 9.5: Multi-ring fit with four pseudo-rings to KNM2 data. Top panel: Overlay of data and best-fit model for
each pseudo-ring. To improve the visibility, the (statistical) error bars are scaled by a factor of 50. Bottom four
panels: The residuals for each pseudo-ring are normalized with the diagonal entry of the covariance matrix, that
is used in the fit. All scan-steps have small residuals < 2.1σ. Moreover, the runs test does not find any suspicious
patterns.
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The multi-ring fit with four pseudo-rings comprises 13 free fit parameters: The physics parameter of interest,
namely m2

ν, is the same for all pseudo-rings. The nuisance parameters η = [Efit
0 +∆qU , Bbase, Nsig.] can take

different values for each pseudo-ring. Due to technical reasons, the effective fit endpoint is split into a shared
component Efit

0 and pseudo-ring-wise potential offsets ∆qU . The best-fit values are:

m2
ν = (0.26+0.33

−0.32)eV2 (9.1)

Efit
0 + 〈∆qU〉= (18 573.77± 0.04)eV (9.2)
∑

Bbase = (220.3± 0.5)mcps (9.3)

〈Nsig.〉= 0.987± 0.003. (9.4)

Within uncertainties, m2
ν is compatible with zero. Best-fit value and its uncertainty are translated into an upper

limit in section 9.5.3.
The Efit

0 + 〈∆qU〉 fit value is 0.04 eV larger than the KNM1 result. However, both values are compatible within
uncertainties. Due to different source conditions in KNM2 and KNM1, the effective tritium endpoint could in prin-
ciple differ between the first two measurement campaigns. However, large deviations O (1 eV) are not expected.

The ring-wise best-fit results are displayed in figure 9.6 and figure G.1. The effective fit endpoint exhibits a slight
increase with increasing radial position. The fitted slope however is insignificant (1.6σ). As already seen in the
background scan-step analysis in section 6.10.1, the steady-state background increases significantly as a function
of radius. A linear fit finds an increase of (0.144± 0.004 ) mcps per pixel / pseudo-ring. The poor goodness-of-fit
indicates that the radial pattern cannot be modeled well with a linear relation.

The signal normalization factor, displayed in figure G.1, exhibits no significant radial pattern. The fit values are
compatible with a constant.
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Figure 9.6: Pseudo-ring-dependent fit parameters in the KNM2 multi-ring fit with four pseudo-rings. Left: Ef-
fective fit endpoint with pseudo-ring-wise potential offsets. The effective endpoint is compatible with no radial
dependence with pconst = 0.34. A linear fit yields a slight positive slope at low significance (1.6σ). Right: Steady-
state background rate per pixel. Bbase increases significantly as a function of radius with (0.144± 0.004 )mcps per
pixel / pseudo-ring. However, its radial distribution is also not compatible with a simple linear behavior.

9.5.2 Profile chi-squared

To cross check the best-fit result and uncertainties provided by the Minuit software using the Minos minimization
algorithm, the profile chi-squared is calculated (see also section 8.5.2 for KNM1 profile). The chi-squared function
is depicted in figure 9.7 for two cases: considering only statistical uncertainties (orange) and considering all
uncertainties (blue). The m2

ν central value and uncertainty agree with the result from Minos in equation (9.1).
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Figure 9.7: KNM2 chi-squared profile for multi-ring fit using statistical uncertainties (orange) and all uncertainties
(blue). The 1σ uncertainties agree with the values from Minos.

9.5.3 Confidence belt and upper limit

The KNM2 sensitivity is not high enough to significantly determine the neutrino mass. Just like in KNM1 (sec-
tion 8.5.3), it was decided before the unblinding that a confidence belt at 90 % C.L. will be calculated. Following
the statistical methods in section 3.3.2, the Lokhov-Tkachov [82] and Feldman-Cousins [80] confidence belts are
calculated with the MC twins. They are displayed in figure 9.8. The sensitivity at 90 % C.L., assuming m2

ν = 0 eV2,
is

mν ≤ 0.7 eV (sensitivity). (9.5)

This is the first time, that a direct neutrino-mass experiment could reach into the sub-eV sensitivity regime. The
orange dotted lines in figure 9.8 mark the m2

ν baseline best-fit result and the resulting upper limits at 90 % C.L.

mν ≤ 0.9 eV (Lokhov− Tkachov) (9.6)

mν ≤ 0.9 eV (Feldman−Cousins). (9.7)

Opposed to KNM1, the best-fit has a positive sign. Therefore, the LT and FC limits agree with each other. To date,
this is the best upper limit on mν from a direct neutrino-mass measurement.
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Figure 9.8: Neutrino-mass confidence belts at 90 % C.L. following the statistical strategies from LT [82] (left) and
FC [80] (right). The neutrino-mass sensitivity at 90 % C.L. is mν ≤ 0.7eV. The orange lines highlight the KNM2
multi-ring best-fit result (equation (9.1)). Both limit-setting strategies yield the same upper limit mν ≤ 0.9eV at
90 % C.L., rendering KNM2 the first direct neutrino-mass measurement that could reach into the sub-eV regime.
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9.5.4 Fit parameter correlations

The correlation coefficients among the fit parameters are estimated by analyzing 2000 randomized KNM2 MC
spectra. The KNM2 best-fit results are used as model inputs for their calculation. Statistical as well as systematic
uncertainties are taken into account in the randomization process and in the fit. For simplicity, a uniform fit rather
than a multi-ring fit is performed. By construction, the ring-wise fit parameter are fully correlated in a multi-ring
fit. Therefore, no additional information can be gained in a multi-ring fit compared to the much faster uniform fit.

The fit results are displayed in figure 9.9. The histograms on the diagonal illustrate the KNM2 sensitivity to the
respective fit parameter. The density scatter plots on the off-diagonal illustrate their correlations. The sample
density is indicated by the coloring and ranges from low (dark blue) to high (yellow). The respective Pearson cor-
relation coefficients are stated in the top left corners. Associated uncertainties are estimated via the bootstrapping
technique.

As the interpretation is analogous to KNM1 (section 8.5.4), only differences between the two measurement cam-
paigns are discussed further on. Due to different experimental conditions and systematic uncertainties, the pa-
rameter correlation are not expected to be identical in KNM1 and KNM2. Most notably and anticipated due to
the increasing statistic, the correlation coefficient between m2

ν and Efit
0 is significantly reduced by 9 percentage

points. According to the guideline offered by [104], it is now only considered as high instead of very high. The
remaining considerable correlations coefficients only vary within a few percentage points or are compatible within
uncertainties.
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Figure 9.9: The Pearson correlation coefficient quantifies the linear relation between two fit parameters. It is
estimated for all uniform fit parameters following the same technique as for KNM1 (section 8.5.4) using 2000
randomized KNM2 MC spectra. The fit-value distribution of each parameter is shown in the diagonal. Their
correlations are illustrated on the off-diagonal by the scatter plots. The sample density is indicated by the color code
ranging from low (dark blue) to high density (yellow). The Pearson correlation coefficient and its bootstrapping
uncertainty are stated in the top left corners, respectively.
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9.6 Comparison of pixel combination strategies

Different pixel combination strategies are applied to the KNM2 data and compared to each other. As demonstrated
in section 9.2.2, all strategies are equally well justified due to the excellent electric and magnetic field homogeneity
in the analyzing plane. The baseline neutrino-mass result presented in this section stems from a multi-ring fit,
which has the advantage to be able to accommodate radial source potential differences in form of a pseudo-
ring-wise qU-offset. However, no significant radial pattern was observed. The fit results of the different pixel
combination strategies should thus be compatible with each other.

The m2
ν fit results are displayed in figure 9.10. A uniform fit, as well as multi-ring fits with four and twelve

pseudo-rings, respectively, are considered. Indeed, the m2
ν best-fit values vary only ∆m2

ν < 0.04 eV2 from each
other. Translated into upper limits on mν at 90 % C.L., the deviations are as small as ∆mν < 0.01eV. The small
differences originate likely from the different parametrizations and numerical effects.

Based on this excellent agreement, most systematic investigations and sanity checks that follow are performed with
a uniform fit, as it is less computational expensive. For reference, the uniform fit results are stated in appendix G.2.
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Figure 9.10: Overview of m2
ν best-fit values and mν-upper limit for different pixel combination strategies. The

results from the different fits are in excellent agreement with each other.

9.7 Systematic uncertainty breakdown

The contribution of individual systematic effectsσi
syst to the total m2

ν uncertainty budget is evaluated with the same
method as in KNM1 (section 8.6). The uncertainty breakdown at 68.3 % C.L. for both data and twin is displayed
in figure 9.11 using a multi-ring fit with four pseudo-rings. The associated covariance matrices are displayed in
appendix E.7.

If only statistical uncertainties are included, the 1σ-neutrino-mass uncertainty is σstat(m2
ν) = 0.28 eV2. Including

all (statistical and systematic) uncertainties, the neutrino-mass uncertainty increases to σtot(m2
ν) = 0.32 eV2. The

(squared) difference (equation (8.8)) can be attributed to systematic uncertainties σsyst(m2
ν) = 0.16 eV2. The

KNM2 analysis is by far dominated by statistical uncertainties.

As in KNM1, the largest contribution to the systematic uncertainty budget is the Non-Poisson background rate
over-dispersion. Moreover, second and third largest effect are the scan-step-time-dependent background rate and
the uncertainty from the source potential distribution.

109



Chapter 9. Neutrino-mass analysis of KNM2 9.8. Radial-dependent neutrino mass

32 10
-2

35 10
-2

28 10
-2

31 10
-2

10 10
-2

11 10
-2

7 10
-2

8 10
-2

7 10
-2

8 10
-2

5 10
-2

4 10
-2

3 10
-2

4 10
-2

1 10
-2

2 10
-2

1 10
-2

1 10
-2

2 10
-3

6 10
-3

2 10
-3

<10
-3

<10
-3

2 10
-3

<10
-3

5 10
-3

10
-3

10
-2

10
-1

10
0

1  uncertainty on m
2
 at 68.3% C.L. (eV

 2
)

Detector efficiency

Scan fluctuations

Theoretical corrections

Energy-loss function

Number of scatterings d

Final-state distribution

Magnetic fields

Retarding-potential dependent background

Source potential

Scan-step-time-dependent background

Non-Poisson background over-dispersion

Statistics

Total

Figure 9.11: Neutrino-mass uncertainty breakdown for the KNM2 multi-ring fit with four pseudo-rings. Statistical
uncertainties σstat(m2

ν) = 0.28 eV2 dominate over systematic uncertainties σsyst(m2
ν) = 0.16 eV2. The influence of

individual systematic effects on the m2
ν uncertainty is summarized above. The Non-Poisson background rate over-

dispersion has the largest impact. The corresponding sensitivity values are given as reference on the right.

9.8 Radial-dependent neutrino mass

Being a physical constant, m2
ν is considered to be the same for all detector rings in the multi-ring fit in section 9.5.1.

However, systematic effects, such as an unknown inhomogeneity of the source potential, are able to cause a
radial m2

ν dependency if they are not accounted for in the spectral model. To investigate if such a significant
systematic effect was missed, the detector rings are analyzed independently from each other. Each ring is fit with
the standard four fit parameters (m2

ν, Efit
0 , Bbase, Nsig.). Statistical uncertainties and the uncertainty from the Non-

Poisson background rate over-dispersion are taken into account. The m2
ν fit results are displayed in figure 9.12 as

a function of detector ring. The remaining fit parameters are shown in appendix G.3 for reference.

No conspicuous structure of m2
ν as a function of detector ring is visible. A linear regression, fit to the m2

ν best-fit
values, has only low significance (1.4σ). Within uncertainties, the radial m2

ν values are compatible with a constant
function at p = 0.13. Thus, the existence of an overlooked systematic effect that would cause a significant radial
neutrino dependency mass can be excluded.
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Figure 9.12: To investigate if a large systematic effect was overlooked in the KNM2 analysis, the ring-wise spectra
are analyzed individually. The m2

ν best-fit values are shown here. The grey reference line corresponds to the
associated weighted mean. The m2

ν best-fit values are compatible with no radial dependence at p = 0.13. The
remaining fit parameters are presented in appendix G.3.
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9.9 Alternative treatment of retarding-potential-dependent background
rate

The systematic uncertainty on the retarding-potential dependency of the background rate is the fourth largest
systematic effect in KNM2 with σsyst(m2

ν) = 0.05 eV2 (figure 9.11). Its influence on the m2
ν uncertainty is mostly

driven by the external constraint σ(sqU) = 4.74 mcps/keV (see appendix G.4), which stems from background
measurements during FT. As discussed in section 6.10.4, its applicability to KNM2 is debatable. The alternative
approach to account for a possible retarding-potential background rate dependency through a nuisance parameter
is discussed in section 4.10.3. In the following, the concept is applied to the KNM2 data.

The introduction of sqU as a nuisance parameter will affect the m2
ν best-fit result through their correlation. The lat-

ter is estimated by analyzing3 1000 randomized MC twin spectra. Each spectrum is fit twice: i) with unconstrained
sqU and ii) with fixed sqU = 0 mcps/keV. The best-fit results of case i) are displayed in figure 9.13. The resulting
Pearson’s correlation coefficient is ρ(m2

ν, sqU) = −0.34± 0.03, which can be considered as low. Even though low,
the correlation is expected to reduce the neutrino-mass sensitivity and to potentially change its best-fit value. The
negative sign means that a positive background slope can be compensated to some extend by a smaller neutrino
mass squared. Moreover, the differences in the m2

ν best-fit values between the case i) and case ii) are shown in
appendix G.4. Deviations of σ(∆m2

ν) = 0.06eV2 can be expected. Proceeding to the data, the experimental spec-
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Figure 9.13: The correlation between m2
ν and sqU is estimated by analyzing 1000 randomized MC simulations.

trum is fit with sqU as an additional nuisance parameter. A stacked uniform fit is performed considering statistical
and systematic uncertainties. In order to not account for the retarding-potential dependency twice, the systematic
effect is removed from the covariance matrix.

To first cross check the covariance matrix method applied in section 9.7, a Gaussian pull term is used according to
equation (4.12) with σ(sqU) = 4.74mcps/keV. The best-fit value of sqU is consistent with zero (< 1σ). Moreover,
the systematic uncertainty contribution σsyst(m2

ν) = 0.05eV2 agrees as expected with the one from the covariance
matrix method (figure 9.11).

Thereafter, the background slope is left unconstrained in the data analysis. The fit result is

m2
ν = (0.08± 0.36)eV2

sqU = (24.2± 12.3)mcps/keV

3Stacked uniform fits in the standard analysis interval considering statistical uncertainties and the Non-Poisson background rate over-
dispersion are performed.

111



Chapter 9. Neutrino-mass analysis of KNM2 9.10. Extended fit interval

A positive qU dependence of the background rate at moderate significance (2σ) is observed. Due to the negative
correlation, the neutrino mass squared is shifted to smaller values. The difference to the standard uniform fit with
fixed sqU is ∆m2

ν = −0.2eV2, which is at the higher end of what can be expected. The influence of σ(sqU) on the
neutrino-mass uncertainty increases to σsyst(m2

ν) = 0.16eV2, rendering it the largest systematic uncertainty in the
absence of an external constraint. This demonstrates that a strong and robust constraint on sqU is essential for the
neutrino-mass analysis.

9.10 Extended fit interval

Similar to KNM1, more scan-steps were recorded than eventually used for the KNM2 baseline analysis. As de-
scribed in section 6.1, the full measurement interval consists of 38 scan-steps down to qU − E0 = −90eV. Not
all data points were included in the neutrino-mass analysis, because most systematic uncertainties increase with
increasing fit range. This concern in particular the final-state distribution, as the electronic ground state is known
to a much higher precision than the electronic excited states and the electronic continuum. Refined calculations
are on-going at the time of writing.

Analogous to KNM1 (section 8.8), an extension of the fit interval is investigated in terms of neutrino-mass sensi-
tivity (section 9.10.1) and m2

ν best-fit result (section 9.10.2).

9.10.1 Fit-interval-dependent neutrino-mass sensitivity

The neutrino-mass-squared sensitivity as a function of fit interval is evaluated using the MC twins. The upper
fit boundary is fixed to the largest retarding energy qU − E0 = 135eV. The lower fit boundary is scan-step-wise
increased from qU − E0 = −90 eV to qU − E0 = −20eV, which results in 21 different fit intervals. The sensitivity
values between the (discrete) lower fit boundaries are obtained through cubic spline interpolation. Figure 9.14
displays the 1σ sensitivity using the total uncertainty budget (blue). Further on, it is broken down into the
contributions from statistical uncertainties (orange) and from systematic uncertainties (red). The systematics-
only curve is calculated according to equation (8.8).
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Figure 9.14: The neutrino-mass-squared sensitivity at 68.27 % C.L. is calculated from the MC twins for different fit
intervals. While, the upper fit boundary is fixed to the largest retarding energy qU−E0 = 135 eV, different lower fit
boundaries are considered. The smaller the lower fit boundary, the more scan-steps are included. The sensitivity
is evaluated twice: once considering the total uncertainty budget and once using only statistical uncertainties.
The systematics-only contribution can then be calculated according to equation (8.8).

As already stated section 9.7, the m2
ν sensitivity in the standard analysis interval is dominated by statistical uncer-

tainties with σstat(m2
ν) = 0.31 eV2. The latter can be significantly improved by including more scan-steps. If the

full analysis interval is fit, σstat(m2
ν) = 0.20 eV2. In contrast to that, the systematic contribution increases slightly if

the lower fit boundary is set to −90eV below E0. The equilibrium between statistical and systematic uncertainties
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is reached at qU − E0 = −70eV. However, already for qU − E0 < −60eV, the improvement of adding another
scan-step is negligible ∆σstat(m2

ν)< 1× 10−3 eV2.

9.10.2 Retarding-potential fit parameter dependencies

As described in section 8.8.2, unknown energy-dependent systematic effects can manifest themselves in energy-
dependent best-fit values of m2

ν. To search for the latter, the experimental spectrum is repeatedly fit with different
fit intervals. The considered fit intervals are the same as in the sensitivity calculation in the previous section.

The m2
ν and Efit

0 fit results are displayed in figure 9.15. The remaining fit parameters and goodness-of-fits are shown
in appendix G.5. The reference lines are anchored at the respective fit result in the standard analysis range.

Due to their high correlation, m2
ν and Efit

0 exhibit a similar retarding-potential-dependent pattern. The large ma-
jority of the fit intervals yield smaller m2

ν and Efit
0 values than the standard analysis interval. However, the runs

test yields pruns = 0.15 for both parameters, attesting no significant deviation from random occurrence.

As explained in detail in section 8.8.2, the scan-step-wise fit results are strongly correlated among each other, as
they are based on partly the same data. Thus, a quantitative evaluation of the fit-parameter stability is not straight
forward. Similar to the analysis in KNM1, the expected retarding-potential-dependent difference to the fit result
in the standard analysis range is calculated. This is achieved by analyzing 1000 randomized MC twins in the fit
intervals of interest. The 1σ expectation band is illustrated in grey in figure 9.15. The fit results vary within the
correlated expectation band.
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Figure 9.15: The data is analyzed in different fit intervals with a stacked uniform fit with systematic uncertainties.
The lower fit boundary is varied, while the upper fit boundary is fixed to the largest retarding energy. The m2

ν and
Efit

0 results are shown here. The remaining nuisance parametrs and goodness-of-fit are displayed in appendix G.5.
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9.11 Alternative scan selection

As a sanity check, several sub-sets of the golden scan list are analyzed individually. The concept is identical to
section 8.9. The alternative scan lists for KNM2 are given in appendix E.2. The m2

ν fit results are compared among
each other and to the best fit from the golden scan selection in figure 9.16.

The alternative scan lists Up scans and Down scans comprise only scans that were recorded with time-wise in-
creasing and decreasing retarding energies respectively. Being statistically uncorrelated, their m2

ν fit results agree
within uncertainties. The same applies to the three alternative scan lists that group the golden scans according to
the rear wall bias voltage URW. The central m2

ν values decrease monotonously with increasing URW . However, the
slope obtained from a linear regression is not significant (< 1σ).

As described in figure 9.16, the comparison of all scan lists among each other is not straight forward, because they
share partly the same data. Taking the correlation into account, a 1σ expectation band is calculated by randomly
drawing 181 out of 361 golden scans. The results of all alternative scans lists lie within the expectation (≤ 1.6σ).
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Figure 9.16: KNM2 alternative scan selections. Uniform fits are performed to each scan selection considering
statistical uncertainties and the Non-Poisson background rate over-dispersion. The m2

ν results agree within uncer-
tainties. Moreover, all fits yield good p-values (right panel) well above 5 % (red band).

9.12 Alternative pixel selection

As a sanity check, different pixel sub-sets within the golden pixel selection are analyzed. Each selection divides
the FPD in two parts of roughly equal statistics: "Inner/Outer", "North/South", "East/West". The concept of this
analysis is identical to section 8.10.1.

The neutrino-mass-squared results are displayed in figure 9.17. Northern and southern as well as Eastern and
western halves agree very well with each other (< 1σ). The division into inner and outer pixels differ by 2σ from
each other, which is still acceptable. The radial m2

ν dependence was investigated in section 9.8 in more detail
using a finer radial resolution. No significant pattern could be found.

Moreover, the alternative pixel selections are compared to the expectation from 2000 random pixel lists. Each pixel
list, containing a random sub-selection of 59 out of 117 golden pixels, is analyzed. The grey band in figure 9.17
corresponds to 1σ of the obtained m2

ν distribution. All alternative pixel selections agree with the expectation at
< 3σ.
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Figure 9.17: KNM2 alternative pixel selections. Uniform fits are performed to each pixel selection considering
statistical uncertainties and the Non-Poisson background rate over-dispersion. The m2

ν fit results agree within
uncertainties.

9.13 Statistical tests with CATS

The data set is further on tested for statistical anomalies. The diagnostics toolkit CATS [105] is used, which is
based on local linearization of the chi-squared function. Systematic uncertainties are accounted for, as usual,
with covariance matrices. For simplicity a uniform instead of a multi-ring fit is considered. The Cook’s distance is
evaluated in section 9.13.1. The influence of individual data points on the fit result is determined in section 9.13.2.

9.13.1 Cook’s distance

The Cook’s distance D is defined in section 8.11.1. It relates standardized residuals and leverages to detect in-
fluential data points. A scan-step with large D may distort the accuracy of the fit result and deserves further
investigation. The scan-step-wise KNM2 values are displayed in figure 9.18. The critical regions with D ≥ 0.5
and D ≥ 1 are colored in blue and red, respectively. All standardized residuals lie within < 3σ, thus no outlier is
observed. Like in KNM1, the leverages of all scan steps are low expect for the scan step with the smallest retarding
energy qU − E0 = −40eV. This data point is particularly sensitive to the overall signal normalization, because of
its high statistics. As the agreement between model and data is excellent for this scan step, its Cook’s distance is
well outside the critical region.

To conclude, based on the Cook’s distance no influential data points could be found.

9.13.2 Fits with excluded data points

The influence of individual data points on the fit results is evaluated analogous to KNM1 (section 8.11.2). The
data is fit repeatedly, each time removing a different scan step from the analysis4. The m2

ν best-fit results as a
function of excluded scan step are shown in figure 9.19. The fit uncertainties are not stated in the figure, be-
cause they are strongly correlated. Due to this correlation, the m2

ν values are expected to vary less than their
fit uncertainty. For reference σ(m2

ν) = 0.32 eV2 in the standard analysis interval. The exact degree of variation
could be calculated with randomized MC twins. Due to high computational cost, this was not done. Qualitative

4Stacked uniform with systematic uncertainties.
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Figure 9.18: Standardized residuals as a function of leverage for the KNM2 uniform fit with systematic uncer-
tainties. High Cook’s distances, which are regions with large residual and high leverage, are highlighted: D ≥ 0.5
and D ≥ 1 are shaded in blue and red color respectively. All scan-steps are well outside the critical region.

statements, however, are still possible. The largest change is expected in the region that is most sensitive to m2
ν,

which is qU − E0 ≈ −8eV5.

The differences to the baseline best-fit result are smaller than ∆m2
ν = 0.12eV2, which is only a fraction of the

overall 1σ m2
ν sensitivity. As expected, the largest differences can be found in the high m2

ν sensitivity region.

Interestingly, also the removal of the scan step in the background region at qU − E0 ≈ 135eV induces a rel-
ative large change ∆m2

ν = 0.10eV2. This scan step is very sensitive to the retarding-potential dependency
of the background rate, which is known the be negatively correlated to m2

ν. In this analysis the model uses
sqU = (0.00± 4.74)mcps/keV. As the sqU central value is fixed to zero in the model, the observed positive sqU

(section 9.9) is compensated by a more positive m2
ν value. If the considered scan step is removed, the observed

sqU is significantly reduced (figure 6.14). Thus, the m2
ν fit value is smaller compared to the baseline fit.
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Figure 9.19: Neutrino mass squared fit result as a function of excluded data point. One scan step at a time is
excluded from the stacked uniform analysis of the KNM2 data. The largest discrepancy to the baseline fit result
is observed in the region around qU − E0 ≈ −8eV, that is most sensitive to m2

ν. All differences are smaller than
∆m2

ν = 0.12eV2, which is small compared to the overall sensitivity σ(m2
ν) = 0.32 eV2.

5Determined with the KNM2 MC twins in terms of maximal neutrino-mass signal for m2
ν = 0.1eV2

116



Chapter 10

Combined neutrino-mass analysis of
KNM1 and KNM2

This chapter presents the combined neutrino-mass analysis of the first two measurement campaigns. The mo-
tivation is to exploit the full statistics of all available measurement campaigns to maximize the neutrino-mass
sensitivity. In the case of KNM1 and KNM2, the combined sensitivity improves only slightly with respect to the
KNM2 standalone analysis. Nevertheless, the combination of measurement campaigns will become very important
in the future for the analysis of the final KATRIN data set, which will comprise O (20) measurement campaigns.
Therefore, suitable combinations methods are investigated and tested for KATRIN.

This chapter is structured as follows: Firstly, the multi-campaign model and its configuration are presented in
section 10.1. Secondly, two data combination methods are described in section 10.2. This is followed by an
estimation of the combined sensitivity in section 10.3 and the combined data analysis in section 10.4.

10.1 Multi-campaign model

Due to different operational conditions, each measurement campaign has to be described with an individual ex-
perimental model. Campaign-wise response functions are necessary to account for the different experimental
parameter values, such as the column density (22 % vs. 85 % of the nominal value). All campaign-wise settings
are identical to the standalone configurations as stated in appendix C. For KNM1, the configuration from [96] is
used. Both campaigns are described with a uniform stacked model.

The nuisance parameters are also expected to vary between the data sets. KNM2 was operated at a higher source
activity and a lower background level compared to KNM1. Therefore, campaign-wise values for steady-state back-
ground rate and signal normalization are used. Even though the tritium endpoint is a physical constant, the
effective fit endpoint is allowed to take different values for the respective measurement campaigns in order to
account for different source potentials. The campaign-wise fit parameters (Efit

0 , Nsig., Bbase) are summarized in by
ηknm1 and ηknm2 for the first and second measurement campaign, respectively. The neutrino-mass-squared is the
only fit parameter, that is shared by both models.

10.2 Combination method

The choice of a suitable data combination strategy is largely influenced by the question whether the considered
data sets are statistically uncorrelated or not. Systematic uncertainties, that affect both data sets in the same
way, can induce campaign-wise correlations. However, both measurement campaigns are strongly dominated by
statistical uncertainties, which are by nature uncorrelated. Therefore, KNM1 and KNM2 can be well approximated
as statistically independent, which facilitates the combined analysis.

In the following, two analysis methods are presented: The combination via a combined fit (section 10.2.2) and
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via summation of the chi-squared profiles (section 10.2.2). If the data sets are uncorrelated as it is the case in this
work, both methods are equivalent.

10.2.1 Combined fit

The combined fit is the most general method to analyze two (or more) measurement campaigns simultaneously.
The combined chi-squared function can be written as

χ2(m2
ν,ηknm1,ηknm2) = (N

model − Nexp)V−1(Nmodel − Nexp)T (10.1)

with the multi-campaign model Nmodel and the multi-campaign data set Nexp. The chi-squared minimization
process is conducted as usual with the Minuit software using the Minos minimization algorithm. As usual, the fit
uncertainties are derived from the profile chi-squared function χ2(m2

ν) = χ
2(m2

ν, η̂knm1, η̂knm2). Systematic effects
are incorporated in form of a multi-campaign covariance matrix V . This matrix comprises the regular KNM1 and
KNM2 covariance matrices on its diagonal (northwest and southeast quadrants). If considered, campaign-wise
correlations could be added on the off-diagonal (northeast and southwest quadrants). In the analysis at hand, all
off-diagonal entries are set to zero.

10.2.2 Combination of chi-squared profiles

As the data sets can be considered as statistically independent, the combined profile chi-squared function can be
rewritten as

χ2(m2
ν) = χ

2(m2
ν, η̂knm1) +χ

2(m2
ν, η̂knm2). (10.2)

The chi-squared profiles can be first evaluated for each campaign separately, before they are combined through
summation. Depending on the complexity of the multi-campaign model, that is required for section 10.2.1, this
method can be significantly faster than the combined fit. The drawback is that campaign-wise correlations cannot
be included with this combination method.
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Figure 10.1: Sensitivity chi-squared profiles for KNM1 and KNM2 based on MC twins considering statistical and
systematic uncertainties. The combined chi-squared profile is calculated as the sum of the standalone curves. The
respective 1σ sensitivities are illustrated as colored bands around m2

ν = 0 eV2. The MC twin spectra are evaluated
using a stacked uniform fit.
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10.3 Combined sensitivity

A first estimation of the combined sensitivity can be obtained from the standalone 1σ neutrino-mass-squared
sensitives σknm1 = 0.85eV2 and σknm2 = 0.35eV2 for KNM1 and KNM2, respectively. The combined sensitivity,
calculated according to [106], is

σcombi.(m
2
ν)≈

√

√

√

�

1
σ2

knm1

+
1

σ2
knm2

�−1

≈ 0.32 eV2. (10.3)

Furthermore, the combination methods described in section 10.2 are applied to the MC twins. As expected, both
strategies deliver the same 1σ sensitivity and coincide with the result from equation (10.3).

A graphical representation of the campaign-wise and combined sensitivities is provided in figure 10.1. The respec-
tive 1σ confidence intervals, for which the profile χ2 ≤ 1, are illustrated as colored bands around m2

ν = 0 eV2.
The combined sensitivity is only slightly better than the KNM2 standalone sensitivity, because KNM1 is much less
sensitive than KNM2.

10.4 Combined neutrino-mass constraint

The combination methods of section 10.2 are applied to the KNM1 and KNM2 data sets. The overlay of data and
best-fit model obtained by the combined fit is displayed in figure 10.2. The normalized residuals vary randomly
within the expectation.
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Figure 10.2: Result of the combined (stacked uniform) fit to KNM1 and KNM2. Top: Data and best-fit multi-
campaign model. The statistical error bars are enhanced by a factor 50, as they would be not visible otherwise.
Bottom: Normalized residuals of the combined fit. The agreement between data and best-fit multi-campaign
model is very good. The residuals fluctuate randomly within the expectation.
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The standalone and combined chi-squared profiles are depicted in figure 10.3. As expected, both methods give
the same result:

m2
ν = (0.10± 0.31)eV2 (10.4)

Efit
0,knm1 = (18573.79± 0.02)eV (10.5)

Efit
0,knm2 = (18573.68± 0.02)eV (10.6)

χ2
min = 51.1 (48dof), p = 0.35 (10.7)

The combined analysis can describe the data well, which is mirrored by the good goodness-of-fit p = 0.351. The
m2
ν best-fit value is compatible with zero. The combined analysis can constrain m2

ν better than the standalone
analyses. Analogous to sections 8.5.3 and 9.5.3, the central value and uncertainty are translated into an upper
limit at 90 % C.L.

mν ≤ 0.8 eV (FC and LT). (10.8)

Technicality, this is realized through summation of the χ2 profiles for each test m2
ν value (section 3.3.2).

As both (campaign-wise) fit endpoints are strongly positive correlated with the neutrino mass squared, their re-
spective uncertainties can be reduced compared to the standalone analyses. This is particularly the case for KNM1,
for which the combined σ(Efit

0 ) is reduced by almost a factor of three compared to the standalone σ(Efit
0 ). Fur-

thermore, the high correlation between m2
ν and Efit

0 also influences the (campaign-wise) Efit
0 best-fit values: For

KNM1, the combined m2
ν best-fit value is larger than the standalone one. This is compensated for in the combined

analysis by a larger fit endpoint∆Efit
0,knm1 = 0.06 eV. In KNM2, the opposite is observed: The combined m2

ν best-fit

value is smaller than the standalone one, which is compensated by a smaller fit endpoint ∆Efit
0,knm1 = −0.04eV

compared to the standalone KNM2 result2.
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Figure 10.3: Standalone chi-squared profiles for KNM1 and KNM2 considering statistical and systematic uncer-
tainties. The combined chi-squared profile is calculated according to section 10.2.2. The respective 1σ confidence
regions are illustrated as colored bands around the respective best-fit values.

1The number of dof of the combined analysis is equivalent to the sum of the standalone dof increased by one unit, because m2
ν is shared by

both data sets.
2The result of the combined analysis is compared to the stacked uniform result of KNM2 summarized in appendix G.2.
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10.5 Data set compatibility: Parameter goodness-of-fit

The standard goodness-of-fit of the combined data analysis is the p-value in equation (10.7). It was pointed out
by [107], that in some cases the p-value can be satisfyingly high even though the data sets are not compatible
with each other. This can occur in cases when the chi-squared minima of the individual data sets are very low or
when only few parameters are inferred from a large number of data points. The parameter goodness-of fit (PG),
proposed by [107], circumvents this problem by defining a new test statistics χ̂2.

χ̂2 = χ2
min,combi −χ

2
min,1 −χ

2
min,2 (10.9)

with

χ2
min,1 = 21.7 (23dof) Minimum of KNM1 standalone analysis,

χ2
min,2 = 27.5 (24dof) Minimum of KNM2 standalone analysis,

χ2
min,combi = 51.1 (48dof) Minimum of combined analysis.

It can be shown that χ̂2 follows a χ2-distribution with 1 dof (number of shared fit parameters), if the two data
sets are statistical independent [107].

The parameter goodness-of-fit p̂ is defined analog to the standard p-value:

p̂ = 1−
∫ χ̂2

0

χ2(x , dof= 1) d x (10.10)

The PG is further on calculated for the combined analysis of KNM1 and KNM2 using the definition above. The
result is p̂ = 0.17, which demonstrates a good compatibility of KNM1 and KNM2 with respect to the shared m2

ν

parameter.
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Chapter 11

Sterile-neutrino search of the first two
measurement campaigns

This section presents the sterile-neutrino search from the first and second KATRIN measurement campaigns. The
underlying data sets, introduced in chapters 5 and 6, are identical to the neutrino-mass analyses.

The sterile-neutrino search is conducted in the so-called 3ν+1 framework. As illustrated in figure 1.4, the electron
energy spectrum is extended by one additional sterile branch, which is associated with a fourth neutrino mass
eigenstate and its mixing to the electron flavor. The objective of this analysis is to infer constraints on m2

4 and
|Ue4|2.

This chapter is structured as follows: First, the data combination strategy and model configuration are briefly
summarized in section 11.1. Second, section 11.2 revises the statistical methods that are applied in the sterile-
neutrino search. Thereafter, the correlation between active and sterile branches is addressed in section 11.3.
As the correlation has a strong influence on the sterile-neutrino exclusion bounds, two complementary analysis
cases are defined: Analysis case I) considers m2

ν = 0eV2, whereas analysis case II) employs m2
ν as a nuisance

parameter. The main results of the sterile-neutrino search are presented in section 11.4 based on simulations and
in section 11.5 based on data. Thereafter, supplementary analyses are performed: Section 11.6 evaluates the m2

ν

sensitivity in the presence of an eV-scale sterile neutrino. Section 11.7 investigates the influence of systematic
effects on the sterile-neutrino search. Section 11.8 takes a deeper look into the tritium spectrum and presents
exclusion contours for the full energy interval. The nonphysical parameter space is investigated in section 11.9,
allowing for negative masses and mixings. At last, the validity of Wilks’s theorem in the context of the sterile-
neutrino analysis in KATRIN is discussed in section 11.10.

Most results presented in this chapter are published in [108] and [109] by the author of this thesis. Some of the
following paragraphs are only slightly adapted from these publications.

11.1 Data combination, model configuration and blinding

The integral spectra within each measurement campaign are combined to a stacked uniform spectrum, respectively.
The applicability of this data combination strategy was validated within the respective neutrino-mass analyses.

The spectral model is constructed in the 3ν+ 1 framework as introduced in section 1.4. Apart from the sterile-
neutrino extension, the model configurations for the KNM1 and KNM2 sterile-neutrino searches are identical to
the ones of the stacked uniform neutrino-mass analyses. For KNM1, the updated model configuration of the
re-analysis (section 8.12) is used. Moreover, the same systematic uncertainty budgets as for the neutrino-mass
analyses are considered. All input parameters are summarized in appendix C.

Similar to the neutrino-mass analyses, a blinding protocol (see chapter 7) was implemented. As the sterile-neutrino
search was conducted after the unblinding of the neutrino-mass analysis, the model blinding through the FSD
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was no longer applied. Moreover, the model blinding was specifically developed to artificially bias the m2
ν best-fit

value, but does not necessarily hide the best-fit in terms of [m2
4, |Ue4|2]. Therefore, the sterile-neutrino analysis was

developed and tested on simulated spectra, so-called MC twins (see section 7.1) with the unmodified FSD. Only
after three independent analysis teams, using different analysis codes, obtained consistent sensitivity estimates,
the actual data analysis was performed without any subsequent modifications.

11.2 Sterile-neutrino analysis methods

The analysis methods of the sterile-neutrino search are based on the method of least-squares, presented in sec-
tion 3.3. This section briefly summarizes how they are applied in the sterile-neutrino search.

11.2.1 Fit parameters

The fit parameters of the sterile-neutrino search are:

Physics parameters of interest: Θ= [m2
4, |Ue4|2],

Nuisance parameters: Analysis case I) η= [Efit
0 , Bbase, Nsig],

Analysis case II) η= [m2
ν, Efit

0 , Bbase, Nsig].

This results in 5 (analysis case I) and 6 (analysis case II) free fit parameters. Analysis case I), regarded as the main
analysis, considers the hierarchical scenario m1,2,3� m4. This justifies setting m2

ν to zero, which is consistent with
the lower limit derived from neutrino oscillations (0.009 eV [9]) within KATRIN’s sensitivity.

11.2.2 Grid search

Sterile-neutrino constraints are inferred from a so-called grid search based on the method of least-squares in
section 3.3.1. The two-dimensional profile chi-squared function χ2(m2

4, |Ue4|2) is calculated on a grid of many
[m2

4, |Ue4|2] pairs: At each pair, the standard chi-squared function χ2(m2
4, |Ue4|2,η) (equation (3.5)) is minimized

with respect to the nuisance parametersη. The two-dimensional exclusion contour is given by the set of parameter
values [∆m̂2

4,∆|Ûe4|2], that fulfill equation (3.7). As the sterile-neutrino search has two physics parameters of
interest, the chi-squared distribution with Nk = 2 dof has to be used. The contour curve is drawn at 95 % C.L.
(∆χ2

crit. = 5.99), if not explicitly stated otherwise.

Figure 11.1: Profile chi-squared functions χ2(m2
4, |Ue4|)|2 based on simulations. The contours are drawn as black

solid lines at 95 % C.L. Left: The simulated spectrum is based on the null hypothesis, i.e. no sterile neutrino.
Right: The simulated spectrum is calculated with m2

4 ≈ 90eV2 and |Ue4|2 ≈ 0.02. Both simulations are based on
the statistics of the KNM2 data set for illustration.
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Two profile chi-squared functions are illustrated in figure 11.1 based on a simulated spectrum with no sterile
neutrino (left) and based on a simulated spectrum with m̂2

4 ≈ 90eV2 and |Ûe4|2 ≈ 0.02 (right), respectively. The
parameter space, for which∆χ2 > 5.99, is colored in white. This region can be excluded at 95 % confidence level.
The remaining part of the parameter space with∆χ2 ≤ 5.99 is the confidence region, which comprises [m̂2

4, |Ûe4|2].
It is limited by the exclusion contour, displayed as a solid back line. The left figure illustrates a sterile-neutrino
exclusion limit, which corresponds to an open contour. The right figure illustrates a sterile-neutrino signal, which
corresponds to a closed contour.

The significance of the best-fit [m̂2
4, |Ûe4|2] with respect to the null hypothesis (no sterile neutrino) is given by the

difference in chi-squared
∆χ2

null = χ
2
null −χ

2
min (11.1)

with
χ2

null = χ
2(m2

4 = 0eV2, |Ue4|2 = 0). (11.2)

The significance in terms of chi-squared difference can be converted into a confidence level α according to equa-
tion (3.8) using Nk = 2 dof.

11.2.3 Choice of grid

The choice of grid points in the [m2
4, |Ue4|2] parameter space depends on the analyzed data set. A typical grid

comprises 50 × 50 logarithmically spaced parameter pairs with m2
4 ∈ [10−1, 1600]eV2 and |Ue4|2 ∈ [10−3, 0.5].

Grids with different grid sizes up to 100× 100 are tested to guarantee full convergence of the grid search.

The mass m2
4 is limited by the measurement range: KATRIN is only sensitive to m2

4 < (E0 −min(qU))2, because
the onset of the sterile branch would occur at even smaller (not observed) retarding energies for larger m2

4. For
m2

4 < 0.1, the peak of the sterile-neutrino signal in KATRIN is located at retarding energies, that are strongly
dominated by background electrons.

The active-to-sterile mixing |Ue4|2 = 0.5 is considered as maximal mixing: If both m2
4 and m2

ν are unconstrained
fit parameters (analysis case II), the active and sterile branches in the decay spectrum (equation (1.32)) are
interchangeable: (m2

4, |Ue4|2) ↔ (m2
ν, 1 − |Ue4|2). Consequently, no additional information can be gained by

extending the active-to-sterile mixing beyond 0.5. However, in the analysis case I), |Ue4|2 could be extended up
to |Ue4|2 = 1. In this case, the 3ν+1 framework converges to the standard 3ν framework (see section 11.5.1). At
the current KATRIN sensitivity, mixings smaller than |Ue4|2 < 10−3 cannot be observed.

11.2.4 Combined analysis

The combined sterile-neutrino analysis of KNM1 and KNM2 is conducted analogously to the combined neutrino-
mass analysis in chapter 10. The same combination methods are used, namely either the addition of the campaign-
wise profile chi-squared functions or the combined grid search (see section 10.2).

In the sterile-neutrino search, m2
ν, m2

4, and |Ue4|2 are shared between the data sets. The remaining nuisance
parameters (Efit

0 , Bbase, Nsig) are allowed to have campaign-wise values, as explained in section 10.1. The campaign-
wise fit parameters are abbreviated as ηknm1 and ηknm2, respectively. The combined chi-squared function can thus
be written as

χ2(m2
4, |Ue4|2, m2

ν,ηknm1,ηknm2) = χ
2(m2

4, |Ue4|2, m2
ν,ηknm1) +χ

2(m2
4, |Ue4|2, m2

ν,ηknm2). (11.3)

In analysis case I), KNM1 and KNM2 do not share any common nuisance parameter, because m2
ν is fixed. The

combined profile chi-squared function is thus simply given by the sum of the standalone profile chi-squared func-
tions (equation (11.4)). In analysis case II), KNM1 and KNM2 share m2

ν as a common fit parameter. Therefore,
the combined profile chi-squared function (equation (11.5)) has to be determined in a combined grid search,
minimizing the chi-squared function in equation (11.3) with a multi-campaign model (see section 10.2.1).

The compatibility between data sets is evaluated with the parameter goodness-of-fit p̂ [107], as introduced in
section 10.5. This test quantifies the penalty of combining KNM1 and KNM2 in units of chi-squared compared
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to the standalone analyses. As opposed to the neutrino-mass analysis, χ̂2 has to be compared with a chi-squared
distribution with 2 dof (analysis case I) and 3 dof (analysis case II).

Analysis case I): χ2(m2
4, |Ue4|2) = χ2(m2

4, |Ue4|2, η̂knm1) +χ
2(m2

4, |Ue4|2, η̂knm2) (11.4)

Analysis case II): χ2(m2
4, |Ue4|2) = χ2(m2

4, |Ue4|2, m̂2
ν, η̂knm1) +χ

2(m2
4, |Ue4|2, m̂2

ν, η̂knm2). (11.5)

11.3 Correlation between active and sterile neutrino branches

The model spectrum in equation (1.32) consists of the weighted sum of two branches: the active branch with
effective electron antineutrino mass m2

ν and the sterile branch with the fourth mass eigenstate m4. The branches are
weighted according to their mixing: (1−|Ue4|2) for the active branch and |Ue4|2 for the sterile branch, respectively.
Apart from the different neutrino masses and weights, the two branches are mathematically identical. Since m2

ν

is small in the observed data and simulation, the two branches are degenerate in the case of small m2
4 and large

mixing |Ue4|2 ≈ 0.5.

To quantify this relation more generally, many model spectra Nmodel are simulated for several different values of
m2

4, |Ue4|2 and m2
ν = 0 eV2. The simulated spectra are based on the KNM2 MC twins. Each simulated spectrum is fit

five times by varying m2
4 stepwise by ±1 eV2 around the respective MC truths. The fits are optimized with respect

to η, keeping |Ue4|2 fixed to its simulated value. For each (m2
4, |Ue4|2)-pair, the approximately linear relationship

m2
ν = αslope ·m2

4 + const. is determined in the vicinity of the MC truth. The linear slope αslope serves as a proxy for
the linear correlation between the two masses.

Figure 11.2 displays αslope in the (m2
4, |Ue4|2)-parameter space. The smaller the active-to-sterile mixing is, the

smaller the contribution of the sterile branch to the simulated spectrum is. For small |Ue4|2 < 0.01, the slope is
as small as |αslope| < 0.01. For small m2

4 ® 30 eV2, negative slope values are observed. For large 30 eV2 ® m2
4 ®

1000eV2, the absolute magnitude of the slope is reduced and has a positive sign.

Due to the correlation between m2
4 and m2

ν, the exclusion curves vary significantly for different treatments of m2
ν.

Therefore, two complementary sterile-neutrino-analysis cases (see section 11.2.1) are considered in the following.
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Figure 11.2: The correlation between active and sterile neutrino mass is approximated by a linear slope m2
ν =

αslope · m2
4 + const. for various values of m2

4 and |Ue4|2 by analyzing simulated spectra. The color indicates the
magnitude of αslope. For small mixing |Ue4|2 < 0.01, small slope values |αslope| < 0.01 are observed. For larger
mixing |Ue4|2 > 0.01 and small m2

4 ® 30eV2, a strong negative correlation is found. For larger mixing |Ue4|2 > 0.01
and larger m2

4 > 30 eV2 a weaker positive correlation is found.
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11.4 Sensitivity contours: Results on simulation

The sterile-neutrino sensitivities are obtained from a grid search on the respective MC twins, that mimic the
actual data set with respect to all operational parameters. As outlined in section 7.1, the MC twins are Asimov
spectra, which means that they are not statistically randomized. The Asimov sensitivity contours can therefore be
considered as the mean sensitivity. The sensitivity contours are displayed in figure 11.3 at 95 % C.L. The curves
in blueish color correspond to analysis case I) and the curves in reddish color correspond to analysis case II).
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Figure 11.3: Sensitivity contours of the KNM1 and KNM2 standalone analyses and the combined analysis at 95 %
C.L. The contour lines shaded in blue consider m2

ν = 0eV2 (case I), whereas the exclusions shaded in red include
m2
ν as an unconstrained fit parameter (case II). The sensitivity calculations are based on the respective MC twins,

which consist of non-randomized, so-called Asimov, spectra. As no statistical fluctuations are added, the combined
sensitivity of KNM1+2 is always higher than the standalone sensitivities.

11.4.1 Structure of sensitivity contours

As the analysis intervals of both data sets comprise only the last 40 eV of the β-spectrum, the sterile-neutrino
searches are only sensitive to m2

4 < 1600 eV2. For all contours, the maximum sensitivity is located at m2
4 ' 400eV2.

For smaller m2
4, the sensitivity decreases due to the reduction of the signal strength and the signal-to-background

ratio. More details on this topic can be found in appendix H.1, where the influences of the background level on
the sensitivity is investigated. For larger m2

4 > 400eV2, the sensitivity rapidly drops as the influence of the sterile
neutrino on the experimental β-spectrum shifts outside of the analysis interval.

11.4.2 Comparison of data sets

For both analysis cases, the KNM2 sensitivity contours are more stringed than the respective KNM1 contours,
since the second measurement campaign comprises more measurement time and was operated at a higher source
activity and a lower background level. Combining the statistical power of both data sets, the combined sensitivity
contours potentially yield the best constraints.

11.4.3 Comparison of analysis cases

The sensitivity contours of analysis case I) are more stringent than the respective contours of analysis case II). On
the one hand, this is due to the fact that at each point in the [m2

4, |Ue4|2] parameter space, the fit in case II) has
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gained the freedom to find a best-fit value m̂2
ν that improves the profile chi-squared over χ2(m2

ν = 0eV2):

χ2
II(m̂

2
ν)≤ χ

2
I (m

2
ν = 0eV2) ∀ [m2

4, |Ue4|2]. (11.6)

On the other hand, the global minimum of the sensitivity chi-squared function χ2
min is always located at the null

hypothesis. Because of that and equation (11.6), in analysis case II) the critical chi-squared difference is reached
only at larger |Ue4|2 at a given m2

4 than in analysis case I).

Comparing the respective sensitivity contours of analysis cases I) and II) in figure 11.3, it can be seen that the
contours coincide at one particular [m2

4, |Ue4|2] combination. At this point in the parameter space the fit in analysis
case II) finds m̂2

ν = 0 eV2, resulting in the same χ2 as analysis case I).

The difference between analysis case I) and II) is most prominent for small m2
4 ® 30 eV2. As discussed in sec-

tion 11.3, high correlations between m2
ν and m2

4 are observed at large mixings in this part of the parameter space.
The larger the correlation coefficient, the better the fit at a given grid point in analysis case II) can compensate
for a fixed m2

4 value.

11.5 Exclusion contours: Results on data

No sterile-neutrino signal is observed. Thus, exclusion bounds in the [m2
4, |Ue4|2] parameter space are calculated

at 95 % C.L. with the grid search method. This section presents the contours from the standalone analyses of the
KNM1 and KNM2 data sets and the combined exclusion. Analysis case I) is addressed in section 11.5.1, followed
by analysis case II) in section 11.5.2.

An overview of all exclusion contours is given in figure 11.4. Moreover, the KNM1 and KNM2 standalone exclusion
contours are compared in more detail in figures 11.5 and 11.6, respectively. The best-fit values are summarized
in table 11.1.
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Figure 11.4: Exclusion contours of the KNM1 and KNM2 standalone analyses and the combined analysis at
95 % C.L. The contour lines shaded in blue consider m2

ν = 0 eV2 (case I), whereas the exclusions shaded in red
include m2

ν as an unconstrained fit parameter (case II). Due to statistical fluctuations, some contours exhibit bump-
shaped features in the region 30eV2 ® m2

4 ® 100eV2. The location of the (m2
4, |Ue4|2) best-fit values, summarized

in table 11.1, generally cause slightly weaker constraints in their vicinity compared to the sensitivity. For the same
reason, the combined exclusion contour of KNM1+2 gives a weaker constraint in certain regions compared to
KNM2 standalone exclusion contour.
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Analysis case Data set m2
4 |Ue4|2 m2

ν χ2
min/dof p ∆χ2

null Significance p̂

I
KNM1 77.5 eV2 0.031 fixed 21.4/22 0.50 1.43 51.0 % -
KNM2 0.28 eV2 1.0 fixed 27.5/23 0.24 0.74 31.0 % -

KNM1+2 59.9 eV2 0.011 fixed 50.4/47 0.34 0.66 28.1 % 0.47

II
KNM1 21.8 eV2 0.155 −5.3 eV2 19.9/21 0.53 1.30 47.9 % -
KNM2 98.3 eV2 0.027 1.1 eV2 25.0/22 0.30 2.49 71.2 % -

KNM1+2 87.4 eV2 0.019 0.57 eV2 49.5/46 0.34 1.69 57.1 % 0.20

Table 11.1: Results of the KNM1 and KNM2 standalone and combined analyses. The first three rows correspond
to analysis case I) with m2

ν = 0 eV2, whereas the last three rows show the results of analysis case II) with un-
constrained m2

ν. The first five columns show the best-fit parameter values (m2
4, |Ue4|2, m2

ν) and the associated
goodness of fits (χ2

bf, p). Furthermore, the two following columns state the significance of the best fit over the
no-sterile hypothesis in terms of χ2 and confidence level. All observed sterile-neutrino signals are compatible with
the no-sterile neutrino hypothesis; i.e., no significant spectral distortion at 95 % C.L. is found. The last column
gives the parameter goodness of fit p̂ for the combined analyses.

11.5.1 Analysis case I) m2
ν
= 0 eV2

KNM1: The global chi-squared minimum χ2
min = 21.4 (22dof, p = 0.50) is found at the values m2

4 = 77.5eV2,
and |Ue4|2 = 0.031. The significance of the best fit with respect to the null hypothesis is ∆χ2

null = 1.43. The best
fit is therefore not significant at 95 % C.L.

The exclusion contour exhibits a bump-like feature in the vicinity of the best fit as illustrated in figure 11.5. Since
it is caused by a statistical fluctuation, the structure is not visible in the corresponding sensitivity contour.

KNM2: The global minimum of the chi-squared function χ2
min = 27.5 (23 dof, p = 0.24) is found at m2

4 =
0.28 eV2, and |Ue4|2 = 1.0. The significance of the best fit with respect to the null hypothesis is ∆χ2

null = 0.7;
i.e. the result is not statistically significant at 95 % C.L.

Even though not explicitly displayed in figure 11.6, the region 0.5 < |Ue4|2 ≤ 1 is explored in analysis case I). As
explained in section 11.2.3, active and sterile branches are not interchangeable in this region in case m2

ν is fixed.
Thus, new solutions of the β-spectrum can be found beyond the maximal mixing |Ue4|2 > 0.5.

The best fit being at the extreme active-to-sterile mixing |Ue4|2 = 1.0 shows that the observed decay spectrum can
be described best by only one branch with one associated free neutrino mass. As the active and sterile branches
only differ in their neutrino mass and mixing nomenclature, the two branches are indistinguishable in the scenario
at hand. However, since active-to-sterile mixing values of |Ue4|2 > 0.5 are excluded by oscillation experiments [9],
the results at hand are interpreted as signature from the active branch with free m2

ν. Indeed, the best-fit value for
m2

4 coincides with the best-fit value of m2
ν = 0.28eV2 that was found in the neutrino-mass analysis with the same

FPD pixel combination strategy (appendix G.2).

KNM1 + KNM2 combined: The best fit of the combined analysis is located at m2
4 = 59.9 eV2, and |Ue4|2 = 0.011

with χ2
min = 50.4 (dof= 47, p = 0.34). The improvement with respect to the null hypothesis is not significant with

∆χ2
null = 0.7. To evaluate the compatibility between the two statistically independent data sets, the parameter

goodness of fit is calculated according to section 11.2.4. A good agreement between the data sets is found p̂ =
47 %.

Due to statistical fluctuations in both data sets, the combined exclusion improves for m2
4 ≤ 50 eV2 compared to

the KNM2 standalone result while providing slightly weaker constraints for m2
4 > 50eV2. The KNM1 exclusion

bounds are improved by the combined analysis for the entire mass range.
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11.5.2 Analysis case II) with m2
ν

free

The KNM1 and KNM2 standalone exclusion contours are shown figures 11.5 and 11.6, respectively, with the red
solid lines corresponding to analysis case II). In addition, the isolines of the m2

ν fit values are included in the
illustration as dotted light red lines. An isoline corresponds to a set of (m2

4, |Ue4|2) pairs with equal fit value of m2
ν.

The combined exclusion contour of analysis case II) is included in the overview in figure 11.4.

Figure 11.5: KNM1 data exclusion contours with I) fixed m2
ν and II) free m2

ν. The m2
ν fit results within the grid

search with free m2
ν are illustrated as isolines, i.e., (m2

4, |Ue4|2) pairs with equal fit value of m2
ν. The isolines are

labeled with the corresponding value of m2
ν in eV2. The location of the respective best fits are marked by star

symbols.

KNM1: The global chi-squared minimum is found at m2
4 = 21.8eV2 and |Ue4|2 = 0.155 with a good χ2 =

19.9 (21dof, p = 0.53). The best fit yields no significant improvement over the null hypothesis ∆χ2
null = 1.30.

For small active-to-sterile mixings |Ue4|2 < 10−2, the m2
ν fit values agree with the 1σ confidence region of the

neutrino-mass analysis in section 8.12. However, the global best-fit value of m2
ν is largely negative m2

ν = −5.3 eV2.
As discussed in section 11.6 at the example of KNM2, the m2

ν sensitivity is reduced in the 3ν+1 framework, if no
external constraints on the active-to-sterile mixing are considered. Therefore, the negative m2

ν best-fit value is not
considered significant.

The exclusion contour is similar to analysis case I) for m2
4 ® 60 eV2. For smaller m2

4, analysis case II) yields weaker
constraints than case I) due to the high correlation between m2

4 and m2
ν, as expected.

KNM2: The best fit is found at m2
4 = 98.3eV2, |Ue4|2 = 0.027, and m2

ν = 1.1eV2 with χ2 = 25.0 (dof = 22,
p = 0.30). The best fit improves with respect to the null hypothesis by ∆χ2 = 2.5, thus not reaching the ∆χ2

threshold at 95 % C.L. for a significant result.

For small m2
4 ≤ 40eV2 and large |Ue4|2 ≥ 0.04, the fit finds negative m2

ν values of the same order of magnitude as
m2

4, reflecting the expected strong negative correlation between m2
ν and m2

4. For small mixing, |Ue4|2 < 6 · 10−3,
the m2

ν fit values lie within the 1σ confidence region of the neutrino-mass analysis (chapter 9 and appendix G.2).

For most parts of the parameter space, analysis case II) yields weaker constraints than the case I) analysis, as
expected. Different to the sensitivity contours, the case II) exclusion contour does not coincide with the case I)
contour for fit values of m2

ν = 0eV2 (located here at m2
4 ≈ 30 eV2). Instead it yields a slightly stronger constraint

on |Ue4|2, because χ2
min, II) < χ

2
min, I).
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Figure 11.6: KNM2 data exclusion contours with I) fixed m2
ν and II) free m2

ν. The m2
ν fit results within the grid

search with free m2
ν are illustrated as isolines, i.e., (m2

4, |Ue4|2) pairs with equal fit value of m2
ν. The isolines are

labeled with the corresponding value of m2
ν in eV2. For small mixing |Ue4|2 < 6 · 10−3, the neutrino-mass squared

values lie within the 1σ confidence region of the neutrino-mass analysis (chapter 9), as expected. The location of
the analysis case II) best fit is highlighted by a star symbol. The best fit of analysis case I) is not included in the
plot, as it is located at the extreme active-to-sterile mixing |Ue4|2 = 1 (see table 11.1). The contour for analysis
case II) exhibits a bump-like structure in the vicinity of its best fit, which is caused by a statistical fluctuation.

KNM1 and KNM2 combined: The best fit of the combined exclusion in analysis case II) is found at m2
4 =

87.4 eV2, |Ue4|2 = 0.019 and m2
ν = 0.57 eV2. The latter agrees within 1σ with the standard neutrino-mass analysis

(chapter 10). The smallest chi-squared value is χ2 = 49.9 (46dof, p = 0.34), which mirrors a good fit quality. It
improves with respect to the null hypothesis by ∆χ2 = 1.7, rendering the sterile-neutrino signal not significant at
95 % C.L. The compatibility between the data sets is determined to be good with p̂ = 0.20.

The combined exclusion improves over the KNM1 standalone analysis for all m2
4. As already observed for analysis

case I), the combined exclusion contours yields for some m2
4 slightly weaker constraints than the KNM2 standalone

result due to statistical fluctuations in both data sets.

11.5.3 Comparison of exclusion and sensitivity contours

Due to statistical fluctuations, it is expected that the sterile-neutrino constraints derived from data slightly differ
from the sensitivity contours. Overall, the exclusion contours of the first two measurement campaigns (figure 11.4)
agree well with the sensitivity estimated (figure 11.3). A direct comparison between the contours is provided in
appendix H.2.

Moreover, a sensitivity band can be calculated by analyzing many randomized simulated spectra instead of a sin-
gle simulated Asimov spectrum. It illustrates the deviation from the mean sensitivity contour, that is expected for
an individual contour, that is based on a fluctuated spectrum. Likewise, it helps to evaluate in more detail if the
exclusion contour derived from data varies more than expected from the mean sensitivity or not. As this calcula-
tion is rather computationally expensive, it is only conducted for the case I) analysis. For both data sets > 1500
simulated spectra are analyzed. These spectra are based on the respective MC twins, but are additionally random-
ized according to statistical and systematic uncertainties. For each simulated spectrum, a sensitivity contour is
drawn at 95 % C.L. The standard deviation of the obtained sensitivity contours is called the 1σ-sensitivity band.
The 1σ-sensitivity band for the combined analysis is compared to the mean Asimov sensitivity and the exclusion
contour in figure 11.7. The corresponding illustrations for the standalone analyses are shown in appendix H.2.
The difference between exclusion and sensitivity contours lies within the expectation for the KNM1 and KNM2
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standalone analyses as well as for the combined analysis.

Figure 11.7: To estimate the expected degree of variations between Asimov sensitivity contours and exclusion
contours, 1σ-sensitivity bands are calculated for the KNM1 and KNM2 standalone analyses (appendix H.2) as
well as for the combined analysis (this figure). The sensitivity bands are derived from the analysis of > 1500
randomized MC spectra per measurement campaign. As the calculation is computationally expensive, only analysis
case I) with m2

ν = 0 eV2 is considered. The combined exclusion contour agrees well with the sensitivity estimate.

11.5.4 Comparison to other experiments

To put this work into context, the case I) exclusion contours are compared to constraints from a selection of
other experiments displayed in figure 11.8, focusing on sterile-neutrino searches in the electron disappearance
channel. The KATRIN results improve on the constraints from the completed Mainz and Troitsk experiments for
m2

4 ® 300eV2.

As short-baseline neutrino oscillation experiments are sensitive to different observables than β-decay experiments,
the variables have to be transformed accordingly to relate the results. While KATRIN is directly sensitive to |Ue4|2,
sterile-neutrino oscillations are characterized by sin2(2θee) = 4|Ue4|2(1−|Ue4|2). Moreover, the mass splitting can
be written as ∆m2

41 ≈ m2
4 −m2

ν, which is valid within 2× 10−4 eV2 [110]. For analysis case I), this approximation
is equivalent to ∆m2

41 ≈ m2
4.

The KATRIN constraints are able to exclude the large ∆m2
41 solutions of the combined gallium experiments for

20eV2 ® ∆m2
41 ® 1000 eV2. Moreover, a considerable fraction of the reactor antineutrino anomaly for 50 eV2 ®

∆m2
41 ® 1000eV2 is challenged by the KATRIN results. The combined analysis of the first and second science runs

disfavors the Neutrino-4 hint of a signal for sin2(2θee)¦ 0.4 at 95 % C.L.

Furthermore, the results are compared to constraints from 0νββ experiments. If neutrinos are Majorana particles
and 0νββ is triggered by light Majorana neutrino exchange, m4 will contribute to the effective Majorana mass

mββ = |
4
∑

i=1

U2
eimi |

= |(1− |Ue4|2)
3
∑

i=1

U2
eimi + |Ue4|2eiγm4|

(11.7)

with a possible third Majorana phase γ ∈ [−π,π]. By limiting the active-neutrino contribution to mββ to the
non-degenerate regime; i.e., between 0 and 0.005 eV (0.01 and 0.05 eV) for the normal (inverted) ordering, the
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current upper limit of mββ can be translated into constraints on sterile neutrinos. The conversion from the observ-
able half-life to mββ depends on the nuclear matrix elements. As an illustration, the calculation with the nuclear
matrix elements that result in the least stringent limit mββ < 0.16eV [20, 21] is selected. The width of the two
gray exclusion bands in figure 11.8 reflects the uncertainties on the entries of the PMNS matrix and the unknown
Majorana phases [9].

Moreover, the projected final KATRIN sensitivity is estimated. A net measurement time of 1000 days, a reduced
background rate of 130 mcps for 117 active pixels and design model configurations [42] are assumed. The pro-
jected final sensitivity will improve the global sensitivity for∆m2

41 ¦ 5 eV2 and will provide complementary results
to short-baseline oscillation experiments for smaller masses.
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Figure 11.8: The 95 % C.L. KATRIN exclusion contours from the first two measurement campaigns with
m2
ν = 0eV2, standalone and combined, are shown. The final sensitivity was computed following the first mea-

surement campaign while assuming 1000 live days and a reduced background of 130 mcps [108]. The second
measurement campaign yields more stringent constraints than both Mainz [111] and Troitsk [112] experiments
for m2

4 ® 300 eV2. Moreover, the large ∆m2
41 solutions of the RAA and BEST+GA anomalies [27, 33] can be ex-

cluded to a great extent. The combined analysis is in tension with the positive results claimed by Neutrino-4 [34]
for sin2(2θee) ¦ 0.4. Moreover, KATRIN data improves the exclusion bounds set by short-baseline oscillation
experiments for ∆m2

41 ¦ 10eV2 [113–117]. Constraints from 0νββ with mββ < 0.16eV are shown as gray
bands [9, 20, 21]
.

11.6 Neutrino-mass sensitivity in 3ν+ 1 framework

As described in section 11.3, a sizable correlation between the effective electron antineutrino mass and the fourth
mass eigenstate is observed. This relation results in weaker constraints on the active-to-sterile neutrino mixing
when m2

ν is included as a free fit parameter in the sterile-neutrino search (see section 11.5.2). Turning the analysis
concept upside down, the 3ν+ 1 model extension is expected to cause a reduction in m2

ν sensitivity [118]. In the
following, the m2

ν sensitivity in the 3ν+1 framework is calculated at the example of the KNM2 standalone analysis.

For both data and MC twins, the chi-squared profiles are calculated as a function of m2
ν, as displayed in figure 11.9.
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For different fixed m2
ν ∈ [−1, 2.5] eV2, a two-dimensional grid search over the (|Ue4|2, m2

4) parameter space is
performed, minimizing the chi-squared function with respect to all other nuisance parameters. The value χ2(m2

ν)
in the chi-squared profile corresponds to the global minimum found in the grid search with the respective fixed
m2
ν.

The global chi-squared minima for different fixed m2
ν values are displayed in appendix H.3. For m2

ν ≤ 0 eV2, the
best fits are located at m2

4 < 2eV2 and large mixing |Ue4|2 ≈ 0.5. As m2
ν and m2

4 are strongly correlated in this
region (figure 11.2), the chi-squared profiles are flat. Assuming the existence of a sterile neutrino, this corresponds
to a complete loss of sensitivity. The latter can be restored by using external constraints on m2

4 or |Ue4|2. Restricting
m2

4 > 20 eV2 or |Ue4|2 < 0.04, lower and upper 1σ sensitivities on m2
ν have the same size. For m2

ν > 0 eV2, the
best fits are located at 10 eV2 < m2

4 < 200eV2 and moderate mixings O (10−2). In this part of the parameter space,
the correlation between the two masses is less pronounced. As a result, the 1σ uncertainty on m2

ν in the 3ν+ 1
extension is only increased by a factor of 2 compared to the standard neutrino-mass analysis.

The neutrino-mass sensitivity in the 3ν+1 framework can be fully restored by limiting the active-to-sterile mixing
to small values. For |Ue4|2 < 10−4, the sensitivity on m2

ν converges to the nominal one in the 3ν framework. Using
the same constraint, central value and uncertainties of the standard neutrino-mass analysis in chapter 9 can be
reproduced.
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Figure 11.9: Central value and 1σ uncertainty on m2
ν within 3ν+ 1 framework for data (blue) and simulation

(orange). The uncertainty obtained within the 3ν framework is given in gray for comparison.

11.7 Influence of systematic uncertainties

The sterile-neutrino searches consider the same systematic effects as the respective neutrino mass analyses, sum-
marized in appendix C. The influence of systematic uncertainties on the KNM1 and KNM2 contours is evaluated
with the respective MC twin simulations considering m2

ν = 0eV2 (analysis case I). Two grid searches are per-
formed on each stacked uniform twin spectrum: once considering only statistical uncertainties and once using the
full covariance matrix that encodes statistical and all systematic uncertainties. The sensitivity contours with and
without systematic uncertainties are displayed in appendix H.4 at 95 % C.L. For both data sets, systematic effects
change the sensitivity contour only slightly.

To assess the influence of systematic uncertainties in a more quantitative way, a raster scan is performed: For fixed
values of m2

4, the sensitivity on |Ue4|2 is calculated. Since m2
4 is fixed in a raster scan, the number of degrees of

freedom is reduced to 1. This means, that ∆χ2
crit = 1 corresponds to a confidence level of 68.3 % or 1σ. This
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method allows the calculation of the systematic-only contribution:

σsyst =
q

σ2
total −σ

2
stat (11.8)

with σ2
total being the |Ue4|2 sensitivity obtained from a raster scan with the full covariance matrix and σ2

stat being
the |Ue4|2 sensitivity calculated from a raster scan considering only statistical uncertainties.

Figure 11.10 (bottom panel) displays σsyst and σstat for KNM1 and KNM2. As the second measurement campaign
has much more statistics than the first measurement campaign, its statistical |Ue4|2 sensitivity is significantly better
than the KNM1 sensitivity for all m2

4. Different to that, the systematic-only contribution are similar for both
measurement campaigns. Both measurement campaigns are statistics dominated in the analyzed energy range,
withσ2

stat/σ
2
total > 0.5 (top panel) for all considered values of m2

4. The median relative contribution of the statistical
uncertainty to the total |Ue4|2 uncertainty budget at 68.3 % C.L., (σ2

stat/σ
2
total)median, is as large as 99 % and 86 %

for KNM1 and KNM2, respectively.
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Figure 11.10: Comparison of statistical and systematic sensitivity on |Ue4|2 at 68.3 % C.L. for KNM1 and KNM2.
The sensitivities are obtained from raster scans for different fixed values of m2

4. The solid curves in the lower
panel correspond to the statistics-only contributions σ2

stat, whereas the dotted curves illustrate the systematic-only
contributions σ2

syst. While KNM1 and KNM2 have similar systematic-only sensitivities, σ2
stat is significantly better

in KNM2 compared to KNM1. The ratio between statistical uncertainties and the total uncertainty budget is shown
in the upper panel. Both measurement campaigns are dominated by statistical uncertainties, as σ2

stat/σ
2
total > 0.5

for all m2
4.

Furthermore, the influence of individual systematic effects is investigated at the example of KNM2. For each
systematic effect, a raster scan considering only the respective systematic uncertainty on top of the statistical
uncertainty is carried out. The systematics-only contributionsσsyst are displayed in figure 11.11 as a function of m2

4
for all systematic effects in the KNM2 analysis. For m2

4 ≤ 600 eV2, the systematic effects are dominated by the non-
Poisson rate distribution of the background, the scan-step-duration-dependent background, and source-potential
variations. For larger m2

4 > 600eV2, all systematic contributions, except for the non-Poisson rate distribution of
the background, rapidly increase. The largest systematic contribution for larger m2

4 is given by the molecular
final-state distribution. This can be explained by an increased uncertainty on the excited molecular states in this
energy region. In table 11.2, the median relative contribution of each systematic effect is summarized, sorted by
magnitude. The median is calculated using the same linearly spaced m2

4 values for all systematic effects.
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Figure 11.11: KNM2 sensitivity breakdown obtained from a simulated twin data set with m2
ν = 0eV2. The

systematic-only contributions are extracted from raster scans for different fixed values of m2
4 at 68.3 % C.L. For

reference, also the statistics-only sensitivity and the combined sensitivity contributions on |Ue4|2 are provided.
Only the region m2

4 > 1 eV is shown, since there is no sensitivity to the systematic-only contribution in small mass
regions. The median relative contributions (σ2/σ2

total)median are listed in table 11.2. All systematic effects are small
compared to the statistical uncertainty. The statistical uncertainty even dominates over all systematic uncertainties
combined, σ2

stat/σ
2
total > 0.5 for all m2

4.

Effect (σ2/σ2
total)median

Statistical 0.86

Source-potential variations 0.06
Scan-step-duration-dependent background 0.04
Non-Poisson background 0.02
Magnetic fields 0.03
Molecular final-state distribution 0.05
qU-dependent background 0.01
Column density × inelastic scattering cross section 0.01
Detector efficiency 0.01
Activity fluctuations < 0.01
Energy-loss function < 0.01
High-voltage stability and reproducibility < 0.01
Theoretical corrections < 0.01

Total systematic uncertainty 0.14

Table 11.2: KNM2 breakdown of the relative sensitivities on |Ue4|2, given as the median (σ2/σ2
total)median over

all m2
4. The systematic effects are listed in descending order of the maximal uncertainty max(σ2

syst/σ
2
total). The

systematic uncertainty inputs are those used in the neutrino-mass analysis (appendix C). The analysis is dominated
by statistical uncertainties with (σ2

stat/σ
2
total)median > 0.5.
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11.8 Extension of the fit interval

All contour curves presented up to here are based on the standard analysis intervals, which extend down to 39 eV
(KNM1) and 40 eV (KNM2) below the fit endpoint. An expansion of the fit interval is very beneficial for the sterile-
neutrino search, as it increases the accessible parameter space for m2

4. However, due to insufficient understanding
of systematic uncertainties at high electron energy losses, the full measurement interval down to 93 eV (KNM1)
and 90 eV (KNM2) below the fit endpoint was not selected as baseline result. Here, the same systematic uncer-
tainties as in the standard analysis range are considered.

To investigate whether large unaccounted systematic effects appear at smaller retarding energies, a supplementary
analysis is performed taking all scan steps into account. In addition, the full-range exclusion contours demonstrate
the potential benefit of a larger fit interval for KATRIN’s sterile-neutrino search. However, because of the afore-
mentioned reasons, the exclusion contours in this section have to treated with caution. A more robust analysis
would require a comprehensive review of the systematic uncertainty budget.

The full-range exclusion contours at 95 % C.L. are displayed in figure 11.12 for analysis case I) and figure H.6 for
analysis case II) alongside the respective contours in the standard analysis intervals. An overview of the best-fit
results and their significances is provided in table H.1. As discussed previously, the full-range exclusion contours
extend to larger masses compared to the standard analysis interval. The KNM1 contour is closed in both analysis
cases, which corresponds to a sterile-neutrino signal at 95 % C.L. However, an open exclusion contour can be
drawn at 99 % C.L. The KNM1 best fits of both analysis cases are located at similar large masses m2

4 ≈ 4000eV2

and moderate mixings |Ue4|2 ≈ 0.014. As the signal cannot be reproduced in the KNM2 analysis, it stems likely
from a statistical fluctuation or an unaccounted systematic effect. Moreover, this region is already excluded by the
sterile-neutrino search of the Troitsk experiment [112] at 95 % C.L., displayed in figure H.7. The combined KNM1
and KNM2 analysis is presented in figure H.7 for analysis case I). It yields an open exclusion contour at 95 % C.L.
and improves upon the constrains from Mainz [111] for m2

4 ® 6000eV2 and upon the constraints from Troitsk for
m2

4 ® 2000 eV2.
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Figure 11.12: Analysis case I) contour curves considering the full measurement interval of KNM1 and KNM2. If
not explicitly stated otherwise, the contours are drawn at 95 % C.L. The positive signal at 95 % in KNM1 stems
likely from a statistical fluctuation or an unaccounted systematic effect. Moreover, the closed contour opens at
99 % C.L., as illustrated by the gray dash-dotted line.

137



Chapter 11. Sterile-Neutrino Search 11.9. Nonphysical parameter space

11.9 Nonphysical parameter space

Moreover, supplementary analyses are performed on the KNM1 and KNM2 data sets for both analysis cases al-
lowing the sterile-neutrino parameters to take nonphysical values: m2

4 ∈ [−40eV2,+40eV2], |Ue4|2 ∈ [−0.5, 1].
The resulting two-dimensional chi-squared profiles, depicted in figures H.11 and H.12, can be divided into four
quadrants. The north-east quadrant is considered to be the physical quadrant. The remaining three quadrant are
considered to be nonphysical, as they would formally correspond to tachyonic sterile neutrinos (m2

4 < 0eV2) or
negative tritium decay rates (|Ue4|2 < 0).

No significant sterile neutrino is found in the nonphysical parameter space. Even though the global chi-squared
minimum is often found outside the physical region, the improvement in terms of χ2

min with respect to the physical
region is insignificant (≤ 2.7) for all considered cases.

11.10 Test of Wilks’s theorem

The confidence regions presented in this work are constructed with grid searches. In this process, the asymptotic
behavior of the chi-squared test statistic is utilized as formulated by Wilks’s theorem to avoid costly Monte Carlo
simulations. In this section, the applicability of Wilks’s theorem is validated with Monte Carlo methods for different
exemplary Monte Carlo truths. The hypothesis test that determines whether a grid point is compatible with the
best-fit hypothesis H1 or not is based on the ∆χ2 test statistics

∆χ2 = χ2(H0)−χ2(H1). (11.9)

In the grid search, H0 is set to the [m2
4, |Ue4|2] values of the respective grid point while fixing H1 to the global

best fit. According to Wilks’s theorem, ∆χ2 converges to a chi-squared distribution with 2 dof in the large sample
limit if H0 is true. The application of Wilks’s theorem dramatically facilitates the sterile-neutrino analysis, because
it provides the threshold value ∆χ2

crit = 5.99, above which a grid point H0 is considered incompatible with H1 at
95 % C.L. If Wilks’s theorem was not applicable, the probability density function of the ∆χ2 test statistics had to
be calculated with Monte Carlo methods for each grid point, which would be an enormous computational effort.
However, it was pointed out by [38] using the example of neutrino oscillation experiments, that the unjustified
application of Wilks’s theorem can lead to inaccurate confidence regions or even to a falsely claimed discovery.
Therefore, the applicability of Wilks’s theorem in the sterile-neutrino analysis in KATRIN is investigated in detail
in the following.

The usage Wilks’s theorem can be justified by numerically calculating the probability density functions of the∆χ2

function with MC methods and comparing the result to the prediction from Wilks.

As a first step, O (103) randomized tritium spectra are simulated using statistical and systematic uncertainties. The
spectral model configurations are the same as for the MC twins. Secondly, each sample spectrum is analyzed with
the grid search method and m2

ν = 0 eV2 (analysis case I). For each sample grid, ∆χ2 is calculated according to
equation (11.9) with H0 being the MC truth and H1 being the global best fit of the respective sample. The locations
of the best fits in the [m2

4, |Ue4|2] plane are displayed in figure H.8 at the example of KNM2-like MC simulations
with H0 = [m2

4 = 0 eV2 ,|Ue4|2 = 0]. The histogram of ∆χ2, shown in figure H.9 (left), is then compared to a
chi-squared distribution with 2 dof. The critical∆χ2 value for 95 % C.L. can then be retrieved from the cumulative
probability density function, illustrated in figure H.9 (right).

The procedure is carried out for both data sets and different MC truths. The corresponding figures for KNM1 and
different MC truths are provided in appendix H.6. The null hypothesis with H0 = [m2

4 = 0 eV2 ,|Ue4|2 = 0] is, by
definition, the boundary physics case. As it can be realized with an infinite number of sterile parameter pairs with
|Ue4| = 0 and arbitrary m2

4, a hypothetical deviation from Wilks’s theorem is anticipated to be most prominent
here. The results for all MC truths and data sets are summarized in table 11.3. The numerical ∆χ2

crit values are
in good agreement to the prediction from Wilks’s theorem. The uncertainties on ∆χ2

crit are estimated with the
bootstrapping method.

Furthermore, the impact on the exclusion contour is estimated at the example of KNM2 assuming that the numer-
ically calculated ∆χ2

crit values of table 11.3 are representative for all grid points. The exclusion curve at 95 % C.L.
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is drawn 3 times with 3 different threshold values: 1) ∆χ2
crit = 5.99 (Wilks’s theorem), 2) ∆χ2

crit = 6.31± 0.30
(Numerical values from null hypothesis) and 3) ∆χ2

crit = 6.69 ± 0.27 (Numerical values from a sterile-neutrino
hypothesis). The resulting exclusion curves as well as their 1σ-uncertainty bands are displayed in figure H.10.
The contour differ only very little from one another.

In conclusion, the numerically calculated threshold values∆χ2
crit and the respective coverages agree well with the

prediction of Wilks’s theorem for both data sets and all MC truths considered. Moreover, using the∆χ2
crit obtained

in this work instead of Wilk’s theorem results only in a small shift of the exclusion curve. The application of Wilk’s
theorem is therefore justified for the sterile-neutrino search in KATRIN.

Data set MC truth ∆χ2
crit at 95 %C.L.

m2
4 |Ue4|2

KNM1 0eV2 0 5.92± 0.26
KNM2 0eV2 0 6.31± 0.30
KNM2 92.7 eV2 0.024 6.69± 0.27
KNM2 20 eV2 0.07 6.30± 0.22

Table 11.3: The critical chi-squared difference, which corresponds to 95 % C.L., is numerically calculated by
analyzing simulated MC spectra for KNM1 and KNM2. For KNM2, two sterile-neutrino hypotheses are investigated
in addition to the null hypothesis. The resulting ∆χ2

crit agree within uncertainties to the predicition of Wilks
(∆χ2

crit = 5.99). The underlying ∆χ2 distributions are displayed in figure 11.13 and appendix H.6.
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Figure 11.13: Test of Wilks’s theorem for the KNM2 sterile-neutrino analysis considering the null hypothesis.
Left: ∆χ2 is calculated for each simulated sample spectrum according to equation (11.9). The MC truth is the
null hypothesis with m2

4 = 0eV2 and |Ue4|2 = 0. The black solid line corresponds to the expectation from Wilks’s
theorem. Right: The empirical cumulative density function is calculated from the ∆χ2 samples in the left figure.
The 95 % quantile corresponds to ∆χ2

crit = 6.31± 0.30, which is in good agreement with Wilks prediction. The
uncertainty is estimated with the boot-strapping method. The corresponding figures for KNM1 and other MC
truths are given in appendix H.6.
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Chapter 12

Summary and Conclusion

This thesis is dedicated to the analyses of the first two measurement campaigns of the KATRIN experiment. In
terms of effective electron antineutrino mass, a world-best upper limit below the sub-eV level could be reached.
Moreover, to exploit the full physics potential of the KATRIN experiment, a search for light sterile neutrinos was
conducted.

After a nearly 20-year-long journey from design to commissioning, the KATRIN experiment took its first neutrino-
mass data in spring 2019 ("KNM1"). In total, 274 tritium scans were recorded, which accumulate to a net measure-
ment time of 23 days. The first measurement campaign was the first operation at high tritium purity (> 95%),
which is one of the most important prerequisites to achieve considerable neutrino-mass sensitivity. The source
activity was eventually limited to 2.5× 1010 Bq (25 % design value), as initial radio-chemical reactions between
tritium molecules and surfaces in the source system required the operation at reduced column density. An energy-
independent background rate of 290 mcps was observed, which exceeds the design value many times over and
currently limits the statistical sensitivity. Overall, an excellent stability of all operational parameters could be
achieved, for some parameters even exceeding the design requirements.

The second measurement campaign ("KNM2") followed in fall 2019 and comprised 361 tritium scans and 29 net
measurement days. No longer limited to operate in the burn-in configuration, the column density could be in-
creased and an unprecedented source activity of 9.5× 1010 Bq could be reached. Moreover, the background rate
was reduced by 25 % with respect to KNM1, due to improved vacuum conditions in the main spectrometer.

Neutrino-mass analysis

The first two measurement campaigns are analyzed with respect to the neutrino mass, which is the main ob-
jective of KATRIN. The neutrino-mass results that were obtained in the scope of this thesis were published in
[23, 65, 96, 101].

A least-squares fit to the KNM1 spectral data yields m2
ν = (−0.96+0.88

−1.05)eV2. Within uncertainties, the result is con-
sistent with no neutrino mass. However, it adds to a long list of direct neutrino-mass experiments, that inferred
a negative best-fit value of m2

ν. Even though nonphysical, negative m2
ν values are allowed in the calculation of

the decay spectrum. Neither prior assumption on m2
ν, nor artificial modification of the phase space are made.

Thorough investigations were carried out to search for unaccounted systematic effects that could be responsible
for a negative m2

ν bias. None were found. Consequently, the result is interpreted as a 1σ statistical fluctuation
into the nonphysical mass regime. Taking the physical boundary mν > 0 eV into account, the KNM1 best-fit result
is translated into an upper limit of mν ≤ 1.1eV at 90 % C.L., which coincides with the experimental sensitivity.

Thanks to an increased source activity and a reduced background level, the KNM2 sensitivity could be greatly
improved to mν ≤ 0.7 eV at 90 % C.L. The spectral analysis of the KNM2 data set infers m2

ν = (0.26+0.33
−0.32)eV2.

Like in KNM1, the best-fit value is consistent with no neutrino mass. The result translates into an upper limit of
mν ≤ 0.9eV (90 % C.L.). Combining the first two measurement campaigns, an improved upper limit of mν ≤ 0.8eV
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(90 % C.L.) can be obtained. Reaching for the first time in the sub-eV regime, the first two KATRIN results mark
a milestone in the direct neutrino-mass search.

The influences of statistical and systematic effects on the neutrino-mass are investigated in detail. Both data
sets are strongly dominated by statistical uncertainties: The total uncertainty budget at 68.27 % C.L. in KNM1
amounts to σtot(m2

ν) = 0.97eV2, from which the vast majority can be attributed to statistical uncertainties with
σstat(m2

ν) = 0.93eV2. A similar observation is made for KNM2. The total budget uncertainty ofσtot(m2
ν) = 0.32 eV2

is governed by statistical uncertainties with σstat(m2
ν) = 0.28 eV2. Moreover, the influence of individual systematic

effects is evaluated. For both campaigns, the largest contribution to the systematic m2
ν uncertainty stems from the

Non-Poisson background rate over-dispersion. As the latter effectively increases the relative statistical uncertainty
on the steady-state background rate, it is expected to become less relevant in future measurement campaigns.

The baseline fit intervals in KNM1 and KNM2 comprise data points down to 39 eV and 40 eV below the tritium
endpoint, respectively. Even though an extension of the range would have been beneficial in terms of statistical m2

ν

sensitivity, the narrow energy interval was selected over wider one, because systematic effects become more rele-
vant for larger electron-energy losses. This concerns in particular the uncertain high-energy part of the final-state
distribution, for which refined calculations were ongoing at the time of the analysis. However, both measurement
campaigns recorded additional data points at retarding energies down to 93 eV (KNM1) and 90 eV (KNM2) below
the endpoint. The sensitivity equilibrium between statistical and known systematic effects is only found at the
full measurement range for KNM1 and at 70 eV below E0 for KNM2. Moreover, the data sets are analyzed using
the full energy range. No significant energy dependence in terms of m2

ν, which would point towards unaccounted
systematic effects, is found.

In both measurement campaigns, 117 out of 148 slightly different FPD pixels were selected and jointly analyzed.
However, different pixel combination strategies were applied: In KNM1, all selected pixels were combined to a
single uniform spectrum. This was possible due to an excellent spatial homogeneity of the electric and magnetic
fields in the source and the analyzing plane. In KNM2, the selected pixels were grouped into four pseudo-rings.
The pseudo-rings were fit with a shared m2

ν value and individual nuisance parameters. The latter include ring-wise
source potential offsets ∆qU to account for a possible radial dependency. The multi-ring fit, however, revealed
only small ring-wise differences ∆qU < 100 meV. Different pixel combination strategies applied to the KNM2
data yield consistent results with ∆m2

ν < 0.04 eV2.

Moreover, various sub-sets within the standard pixel selection are analyzed independently, allowing for individual
m2
ν values. An unexpected radial or angular pattern in m2

ν would hint toward an unaccounted systematic effect.
The data sets are divided into 4 and 12 (pseudo-) rings for KNM1 and KNM2, respectively. While in KNM1 the
fitted m2

ν values tend to decrease with FPD radius, the opposite is observed for KNM2. In both cases the radial
pattern is insignificant (< 2σ) and therefore attributed to statistical fluctuations. Moreover, the pixels are grouped
according to their azimuth angle on the FPD. For the KNM2 data set, no angular m2

ν dependence is observed. In
KNM1, however, an asymmetry between the north-eastern quarter and the remaining FPD is observed at 2.3σ
significance. As no physical effect is known that could explain such a pattern and the asymmetry is not observed
in KNM2, it likely stems from a statistical fluctuation.

To further search for missed systematic effects, several sub-sets of the golden tritium scan selection are ana-
lyzed independently. The scans are grouped by scanning strategy ("upward/downward"), temporal occurrence
("first/middle/last third") or operational parameters (e.g. rear wall bias voltage). No significant m2

ν dependence
is observed.

With hundreds of scheduled measurement days ahead, KATRIN will further improve its statistics by a factor of 50.
Extensive investigations of systematic effects are in progress to reduce the already small systematic uncertainties
even more. Moreover, a novel operation mode, called "shifted analysis plane", achieved a reduction of the back-
ground rate by a factor of 2. Combining all three characteristics (high-statistics, small systematic uncertainties and
a low background), the KATRIN experiments targets a m2

ν sensitivity close to its design value around 0.2-0.3 eV
(90 %) C.L. by 2025.
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Sterile-neutrino analysis

Accumulating anomalies in short-baseline neutrino oscillation experiments, that could be resolved with the exis-
tence of eV-scale sterile neutrinos, triggered a huge experimental effort. In this thesis, a search for light sterile
neutrinos in the KATRIN experiment was conducted using the same data as for the neutrino-mass analysis. Consid-
ering the 3ν+1 framework, the spectral model is extended by a sterile decay branch, which is characterized by a
fourth neutrino mass eigenstate m2

4 and its mixing to the electron flavor |Ue4|2. The signature of a sterile neutrino
in KATRIN is a kink-like spectral distortion, that is most prominent at electron energies around E0 −m4. Limited
by the energy range, the analysis is sensitive to m2

4 ® 1600eV2. Given the statistics of the first two measurement
campaigns, mixings down to |Ue4|2 ¦ 6× 10−3 are accessible.

The search for sterile neutrinos with the KATRIN experiment provides an independent test of the short-baseline
neutrino oscillation anomalies. Being based exclusively on the shape of the β-spectrum, the analysis is robust and
independent of any normalization effects, such as the absolute source activity. Moreover, KATRIN is influenced by
a different set of systematic effects than neutrino-oscillation experiments.

No sterile-neutrino signal is observed at 95 % C.L. Thus, exclusion contours are calculated instead. The obtained
constraints on the active-to-sterile mixing improve upon the results from previous tritium β-decay experiments.
Moreover, a significant fraction of the large∆m2

41 solutions of the reactor and gallium anomalies can be excluded.
Furthermore, the claimed sterile-neutrino signal of the Neutrino-4 collaboration is disfavored at 95 % C.L. by the
KATRIN data for sin2(2θee) ¦ 0.4. The sterile-neutrino constraints, that were derived in the frame of this thesis,
are published in [108] and in [109]1.

In a supplementary analysis, the nonphysical parameter space was explored allowing m2
4 and |Ue4|2 to take neg-

ative values. No significant improvement of the goodness-of-fit with respect to the physical parameter space was
found.

Furthermore, the coverage of the calculated confidence regions was validated with extensive Monte Carlo simula-
tions. The applicability of Wilks’ theorem could be confirmed at several representative sterile-neutrino hypothesis.

The impact of systematic effects on the sterile-neutrino search is evaluated. Both data sets are strongly dominated
by statistical uncertainties for all considered m2

4 values. The median relative contribution of statistical uncer-
tainties to the total |Ue4|2 uncertainty budget (σ2

stat/σ
2
total)median amounts to 99 % and 86 % for KNM1 and KNM2,

respectively. Whereas the influence of systematics uncertainties on |Ue4|2 is comparable between the measurement
campaigns, statistical uncertainties in KNM2 are significantly smaller compared to KNM1.

Furthermore, different treatments of m2
ν in the 3ν + 1 framework are investigated. The main analysis case I),

presented above, considers the hierarchical scenario m1,2,3 � m4, which justifies fixing m2
ν to 0 eV2. In a com-

plementary analysis case II), m2
ν is allowed to vary freely as an unconstrained nuisance parameter. The case II)

generally yields weaker constraints on m2
4 and |Ue4|2 than case I), due to the correlation between the active and

the sterile decay branches. For small m2
4 ® 30 eV2 values, a negative correlation between m2

ν and m2
4 is observed

with increasing absolute strength for increasing |Ue4|2. Indeed, the difference between the analysis cases in terms
of exclusion contours is most pronounced for small sterile masses. For larger m2

4 values, the correlation is less pro-
nounced and has a positive sign. Assuming the existence of a light sterile neutrino, the correlation also translates
into a reduction in m2

ν sensitivity by a factor of 2 compared to the neutrino-mass analysis in the 3ν framework.
By constraining the sterile neutrino mass or mixing, the nominal sensitivity can be restored.

For the same reasons as in the neutrino-mass analysis, the baseline sterile-neutrino search is restricted to the rel-
atively narrow analysis interval. In the case of the sterile-neutrino search, the extension to the full measurement
range is extremely beneficial as it opens the door to larger m2

4 values up to ® 8600eV2. However, the results have
to be regarded with caution due to ongoing investigations of systematic effects that occur at large electron energy
losses. Indeed, the analysis of the KNM1 data set considering the full measurement interval produces a closed
contour at 95 % C.L. However, the associated best-fit result can be excluded by the open KNM2 exclusion contour
(95 % C.L.) for the full interval. Due to the aforementioned reasons, it is rather doubtful that the KNM1 full-range
result is the signature of an actual sterile neutrino rather than a neglected systematic effect.

1as corresponding author

143



Chapter 12. Summary and Conclusion

The sterile-neutrino analysis of future KATRIN measurement campaigns will provide a crucial input to resolve
the gallium and reactor antineutrino anomalies at large ∆m2

41. Moreover, it will provide complementary results
to short-baseline oscillation experiments for small ∆m41 ® 10eV and will soon test the entire Neutrino-4 signal
region.
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Appendix A

KATRIN Experiment

A.1 Energy-dependent scattering cross section

The cross section σinel. characterizes the inelastic scattering between electrons and tritium molecules. The scatter-
ing probabilities section 2.2.2.2 depend the product ρdσinel., which can be directly measured in KATRIN. There-
fore, only the energy dependence of the σinel. is needed as an external input. This work uses the high-energy Born
approximation based calculation from [119–121]:

σinel. =
4πa2

0

T/RH
·
�

M2
tot · ln

�

4ctot
T
R

�

− 0.01
�

(A.1)

with the parameters:

Bohr radius: a2
0 = 28.003× 10−18 cm2

Non-relativistic kinetic electron energy T = 1
2 meβ

2 = 1
2 me

�

1− m2
e

(me+E)2

�

Rydberg energy RH = 13.606eV
Expectation value [122] Mtot = 1.536 for T2
Subdominant parameter [121] ctot = 1.18

The energy-dependent scattering cross sections is displayed in figure A.1 using the formula and parameter val-
ues above. For an electron energy around to the tritium endpoint, σinel.(18574 eV) = 3.64× 10−18 cm−2. The
uncertainty is estimated to be 0.5 % [65].
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Figure A.1: Inelastic scattering cross section as a function of electron energy.
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A.2 Energy-loss function parameter

The energy-loss function (section 2.2.2.2) is measured in-situ in KATRIN. All details on the measurement and
analysis can be found in [48, 49, 68]. As the analysis was refined several times and new data was recorded,
the energy-loss parameter values used in this work slightly differ from those published in [68]. Thus, they are
explicitly stated in the table A.1. An ionization threshold energy of Ei = 15.487 eV (T2) is used in both cases. The
parameters are correlated among each other. The correlations have to be taken into account when propagating the
parameter uncertainties to the integral spectrum. The correlation matrices is are stated in table A.2 and table A.3.

Parameter Analysis from May 2019[123] Analysis from April 2020 [72]

a1 (eV−1) 0.0314± 0.0013 0.0323± 0.0011
a2 (eV−1) 0.2982± 0.0009 0.2960± 0.0006
a3 (eV−1) 0.0765± 0.0004 0.0760± 0.0004
µ1 (eV) 11.9359± 0.0091 11.9160± 0.0077
µ2 (eV) 12.8267± 0.0023 12.8042± 0.0019
µ3 (eV) 14.9726± 0.0048 14.9658± 0.0037
σ1 (eV) 0.1797± 0.0080 0.1825± 0.0065
σ2 (eV) 0.4708± 0.0024 0.4692± 0.0020
σ3 (eV) 0.8700± 0.0134 0.8999± 0.0117

Table A.1: Best-fit parameter values of the energy-loss function from dedicated energy-loss function measure-
ments. The parametrization in equation (2.22) is used. The analysis is described in [68].

a1 µ1 σ1 a2 µ2 σ2 a3 µ3 σ3

a1 1.0000 0.4151 0.2559 0.1481 0.4824 -0.6544 -0.1250 -0.1877 0.2397
µ1 0.4151 1.0000 0.7570 -0.0801 0.5475 -0.4265 -0.0416 -0.0866 0.0974
σ1 0.2559 0.7570 1.0000 0.0311 0.5271 -0.5938 -0.1015 -0.1492 0.2029
a2 0.1481 -0.0801 0.0311 1.0000 0.1303 -0.3499 0.1409 -0.2060 -0.1779
µ2 0.4824 0.5475 0.5271 0.1303 1.0000 -0.2469 0.2393 0.0547 -0.3041
σ2 -0.6544 -0.4265 -0.5938 -0.3499 -0.2469 1.0000 0.3221 0.3387 -0.5643
a3 -0.1250 -0.0416 -0.1015 0.1409 0.2393 0.3221 1.0000 -0.4451 -0.8799
µ3 -0.1877 -0.0866 -0.1492 -0.2060 0.0547 0.3387 -0.4451 1.0000 0.0154
σ3 0.2397 0.0974 0.2029 -0.1779 -0.3041 -0.5643 -0.8799 0.0154 1.0000

Table A.2: Parameter correlation matrix for measurement in May 2019[123].

a1 µ1 σ1 a2 µ2 σ2 a3 µ3 σ3

a1 1.0000 0.4155 0.2506 0.1299 0.5049 -0.6496 -0.1091 -0.1884 0.2159
µ1 0.4155 1.0000 0.7680 0.1115 0.5677 0.4204 0.0295 0.0847 0.0765
σ1 0.2506 0.7680 1.0000 0.0106 0.5426 0.5791 0.0829 0.1536 0.1737
a2 0.1299 0.1115 0.0106 1.0000 0.1606 0.3728 0.1884 0.0609 0.2204
µ2 0.5049 0.5677 0.5426 0.1606 1.0000 0.2501 0.2336 0.0990 0.3162
σ2 -0.6496 0.4204 0.5791 0.3728 0.2501 1.0000 0.3088 0.3785 0.5447
a3 -0.1091 0.0295 0.0829 0.1884 0.2336 0.3088 1.0000 0.4198 0.8864
µ3 -0.1884 0.0847 0.1536 0.0609 0.0990 0.3785 0.4198 1.0000 0.0294
σ3 0.2159 0.0765 0.1737 0.2204 0.3162 0.5447 0.8864 0.0294 1.0000

Table A.3: Parameter correlation matrix for measurement in April 2020[72].
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Appendix B

Pixel combination

The basic pixel combinations are presented in section 3.2.2 and displayed in figure 3.1. Sometimes it can be
beneficial to arrange the pixels in larger groups to improve the statistics within each group. Fur this purpose, two
or more groups are combined. All pixel combinations, that are used throughout this work in addition to the ones
in section 3.2.2, are summarized in tables B.1 to B.3 and visualized in figure B.1.

Ring Pixel numbers Pseudo-ring Pixel numbers Halves Pixel numbers

0 (bullseye) 0− 3
)

1 0− 27



























Inner 0− 63

1 4− 15
2 16− 27
3 28− 39

)

2 28− 634 40− 51
5 52− 63
6 64− 75

)

3 64− 99































Outer 64− 147

7 76− 87
8 88− 99
9 100− 111











4 100− 147
10 112− 123
11 124− 135
12 136− 147

Table B.1: Radial pixel lists. To search for a radial pattern, e.g. in terms of m2
ν, the FPD pixels can be grouped

according to their radial position in rings or pseudo-rings. Different levels of granularity are available in Samak.
The pixel lists include all FPD pixels. Applied to a specific data set, the overlap of the respective golden pixel list
has to be considered.
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Appendix B. Pixel combination

Halves Pixel numbers

Northern half 0, 1, 5− 10, 16− 21, 28− 33, 40− 45, 52− 57, 64− 69, 76− 81,
88− 93, 100− 105,112− 117, 124− 129,136− 141

Southern half 2− 4,11− 15, 22− 27, 34− 39, 46− 51, 58− 63, 70− 75, 82− 87,
94− 99,106− 111,118− 123, 130− 135,142− 147

Eastern half 0, 3− 7, 14− 18,25− 30,37− 42,49− 54,61− 66,73− 78,85− 90,
97− 102, 109− 114,121− 126, 133− 138,145− 147

Western half 1, 2, 8− 13, 19− 24, 31− 36, 43− 48, 55− 60, 67− 72, 79− 84,
91− 96, 103− 108,115− 120, 127− 132,139− 144

Table B.2: Alternative pixel lists. As a sanity check, the FPD pixels can be grouped into two parts. The pixel
lists include all FPD pixels. Applied to a specific data set, the overlap of the respective golden pixel list has to be
considered.

Slice Angle Pixel numbers Pseudo-slice 〈Angle〉

0 0◦ 7, 31,55, 79,103, 127
)

1 15◦1 15◦ 18,42, 66,90, 114,138
2 30◦ 6, 30,54, 78,102, 126
3 45◦ 0, 17,41, 65,89, 113,137

)

2 60◦4 60◦ 5, 29,53, 77,101, 125
5 75◦ 16,40, 64,88, 112,136
6 90◦ 4, 28,52, 76,100, 124

)

3 105◦7 105◦ 27,51, 75,99, 123,147
8 120◦ 15,39, 63,87, 111,135
9 135◦ 3, 26,50, 74,98, 122,146

)

4 150◦10 150◦ 14,38, 62,86, 110,134
11 165◦ 25,49, 73,97, 121,145
12 180◦ 13,37, 61,85, 109,133

)

5 195◦13 195◦ 24,48, 72,96, 120,144
14 210◦ 12,36, 60,84, 108,132
15 225◦ 2, 23,47, 71,95, 119,143

)

6 240◦16 240◦ 11,35, 59,83, 107,131
17 255◦ 22,46, 70,94, 118,142
18 270◦ 10,34, 58,82, 106,130

)

7 285◦19 285◦ 21,45, 69,93, 117,141
20 300◦ 9, 33,57, 81,105, 129
21 315◦ 1, 20,44, 68,92, 116,140

)

8 330◦22 330◦ 8, 32,56, 80,104, 128
23 345◦ 19,43, 67,91, 115,139

Table B.3: Angular pixel lists. To search for an angular pattern, e.g. in terms of m2
ν, the FPD pixels can be grouped

according to their azimuth angle in slices or pseudo-slices. Different levels of granularity are available in Samak.
The pixel lists include all FPD pixels. Applied to a specific data set, the overlap of the respective golden pixel list
has to be considered.
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(a) Radial groups with four pseudo-rings
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(b) Inner/outer halves
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(c) Northern/southern halves
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(d) Eastern/western halves
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(e) Azimuthal groups with eight pseudo-slices

Figure B.1: Display of different FPD pixel combinations. To enhance the statistics, the pixel-wise tritium spectra
can be combined into groups.
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Appendix C

Overview Tables of KNM1 and KNM2
Campaigns

Parameter KNM1 KNM2

Campaign period 2019, April - May 2019, September - November
Analysis interval1 [E0 − 39eV, E0 + 47 eV] [E0 − 40eV, E0 + 135 eV]
Number of β-scans 274 361
Number of scan-steps per β-scan 27 28
Net measurement time (hours) 521.7 694.3
Number of counts 2.03× 106 4.31× 106

Signal 1.48× 106 3.76× 106

Background 0.55× 106 0.55× 106

Table C.1: Scan overview for KNM1 and KNM2. All values refer to the respective analysis interval and the golden
data selection.

KNM1 original [96] KNM1 Re-analysis KNM2

Theoretical corrections Only radiative Only radiative Only radiative
Doppler Effect included included included
Final-state distribution KNM1 [65] KNM2 [23] KNM2 [23]
Elastic scattering neglected neglected neglected
Inel. scattering cross section energy-dependent energy-dependent energy-dependent
Max. order of scatterings 7 7 7
Energy-loss function (see appendix A.2) [123] [72] [72]
Synchrotron radiation included included included
Non-isotropic transmission neglected included included
Scan-step-time background neglected 2.2µcps/s 3µcps/s
Source potential broadening not observed not observed σ2

plasma = 0.015 eV2

Table C.2: Model configuration for KNM1 and KNM2. The original KNM1 configuration is the baseline KNM1
analysis presented in this work. A re-analysis was performed after the first publication in [96]with slightly updated
settings, presented also in section 8.12.

2Only considered in the re-analysis
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Appendix C. Overview Tables of KNM1 and KNM2 Campaigns

Parameter
KNM1 KNM2
Value Uncertainty Value Uncertainty

Average source parameters
Activity 2.46× 1010 Bq − 9.46× 1010 Bq −
Relative activity fluctuations within scan 0.006 % (error of the mean) 0.002 % (error of the mean)
Column density ρd 1.11× 1017 cm−2 0.85 % 4.23× 1017 cm−2 0.25 %
Atomic tritium purity εT 97.56 % 98.63 %

Molecular fraction cT2
95.26 % 97.34 %

Molecular fraction cHT 3.53 % 2.27 %
Molecular fraction cDT 1.08 % 0.31 %

Temperature Tsource 30.1 K 30.1 K
Rear wall bias voltage Urw [−183, −149] mV [−49.6, −7.7, 193] mV
Effective source potential broadening σ2

plasma not considered 0.015 eV2 0.016 eV2

Energy-loss shift parameter ∆10 not considered 0 meV 61 meV

Average retarding potentials
Pre-spectrometer −10 kV − −10 kV −
Main-spectrometer Scan-step dependent, see analysis interval in table C.1: U ≈ −18.6kV
Inner electrode offset −200 V − −200 V −
Post-acceleration 10 kV − 10 kV −

Average magnetic fields
Bsource 2.52 T 2.5 % 2.52 T 1.7 %
Bana 6.31× 10−4 T 1.0 % 6.31× 10−4 T 1.0 %
Bmax 4.23 T 0.2 % 4.24 T 0.1 %

Focal plane detector
Active pixel 117 − 117 −
Mean efficiency εFPD > 95 % 0.1 % > 95% 0.1 %
ROI [14-32] keV − [22-32] keV −

Average backgrounds
Steady-state background rate 292 mcps 0.7 mcps 220 mcps 0.5 mcps

Non-Poisson factor f 2
Non−Poisson 6.4 % − 11.2 % −

Signal-to-background equilibrium qU − E0 = −12 eV − qU − E0 = −9 eV −
Retarding-potential dependence sqU 0 mcps/keV 15 mcps/keV 0 mcps/keV 4.74 mcps/keV
Scan-step-time dependence stime 2.2µcps/s2 4.3µcps/s2 3.0µcps/s 3.0µcps/s

Table C.3: Overview of the key experimental parameters in KNM1 and KNM2. The values are averaged over all
golden scans and golden pixels of the respective measurement campaign.

152



Appendix D

First measurement campaign

D.1 Golden scan list

KNM1 included 274 scans in the final analysis. The first 19 scans (51410 - 51442) were recorded at Urw = −183 mV
whereas the rear wall bias voltage was set to Urw = −149mV for the remaining 255 scans. The full scan list is
found below.

51410 51411 51412 51413 51414 51415 51416 51417 51418 51419 51420 51421 51422 51423 51424 51425
51426 51441 51442 51443 51444 51446 51447 51448 51449 51450 51451 51452 51453 51454 51455 51456
51457 51458 51459 51460 51461 51462 51463 51464 51465 51466 51467 51468 51469 51470 51472 51473
51474 51475 51476 51477 51478 51479 51480 51481 51486 51487 51488 51489 51490 51491 51492 51493
51494 51495 51496 51497 51498 51499 51500 51501 51502 51503 51516 51517 51521 51522 51523 51524
51525 51526 51527 51528 51529 51530 51531 51532 51533 51534 51535 51536 51537 51538 51539 51540
51541 51542 51543 51544 51545 51546 51547 51548 51549 51550 51551 51552 51553 51554 51555 51556
51557 51558 51559 51560 51561 51562 51563 51564 51565 51566 51579 51580 51581 51582 51583 51584
51585 51586 51639 51640 51641 51642 51643 51644 51645 51646 51647 51651 51652 51653 51654 51655
51656 51657 51658 51659 51660 51664 51665 51669 51670 51671 51672 51673 51674 51675 51676 51677
51678 51679 51680 51681 51682 51683 51684 51685 51686 51687 51688 51689 51690 51692 51693 51694
51695 51696 51701 51703 51704 51705 51706 51707 51708 51709 51822 51823 51824 51825 51826 51827
51828 51829 51830 51831 51832 51833 51834 51835 51836 51837 51838 51839 51840 51841 51842 51843
51844 51845 51846 51847 51848 51849 51850 51851 51852 51853 51854 51855 51856 51857 51858 51859
51860 51870 51871 51872 51873 51874 51875 51876 51879 51880 51881 51882 51883 51884 51885 51886
51887 51888 51889 51890 51891 51892 51893 51894 51895 51898 51908 51909 51910 51911 51912 51913
51919 51920 51921 51922 51923 51924 51925 51926 51927 51928 51929 51930 51931 51932 51933 51934
51935 51936

D.2 Alternative scan lists

As a sanity check, several alternative scan lists are investigated. These lists are subselections from the golden scan
list.

Up scans

This alternative scan list contains all scans, whose scan-steps are recorded in upward direction. In this context,
upward means from small to large (absolute) main-spectrometer voltages. The scan-step at U = −18535 V was
consequently measured before the scan-step at U = −18 621V. This scan list comprises the following 140 scans:

51410 51412 51414 51416 51418 51420 51422 51424 51426 51441 51443 51447 51449 51451 51453 51455
51457 51459 51461 51463 51465 51467 51469 51473 51475 51477 51479 51481 51486 51488 51490 51492
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Appendix D. First measurement campaign D.2. Alternative scan lists

51494 51496 51498 51500 51502 51516 51517 51521 51523 51525 51527 51529 51531 51533 51535 51537
51539 51541 51543 51545 51547 51549 51551 51553 51555 51557 51559 51561 51563 51565 51580 51582
51584 51586 51639 51641 51643 51645 51647 51651 51653 51655 51657 51659 51664 51669 51671 51673
51675 51677 51679 51681 51683 51685 51687 51689 51693 51695 51701 51703 51705 51707 51709 51822
51824 51826 51828 51830 51832 51834 51836 51838 51840 51842 51844 51846 51848 51850 51852 51854
51856 51858 51860 51870 51872 51874 51876 51880 51882 51884 51886 51888 51890 51892 51894 51898
51908 51910 51912 51920 51922 51924 51926 51928 51930 51932 51934 51936

Down scans

This alternative scan list contains all scans, whose scan-steps are recorded in downward direction. In this context,
downwards means from large to small (absolute) main-spectrometer voltages. The scan-step at U = −18 535V
was consequently measured after the scan-step at U = −18621 V. This scan list comprises the following 134 scans:

51411 51413 51415 51417 51419 51421 51423 51425 51442 51444 51446 51448 51450 51452 51454 51456
51458 51460 51462 51464 51466 51468 51470 51472 51474 51476 51478 51480 51487 51489 51491 51493
51495 51497 51499 51501 51503 51522 51524 51526 51528 51530 51532 51534 51536 51538 51540 51542
51544 51546 51548 51550 51552 51554 51556 51558 51560 51562 51564 51566 51579 51581 51583 51585
51640 51642 51644 51646 51652 51654 51656 51658 51660 51665 51670 51672 51674 51676 51678 51680
51682 51684 51686 51688 51690 51692 51694 51696 51704 51706 51708 51823 51825 51827 51829 51831
51833 51835 51837 51839 51841 51843 51845 51847 51849 51851 51853 51855 51857 51859 51871 51873
51875 51879 51881 51883 51885 51887 51889 51891 51893 51895 51909 51911 51913 51919 51921 51923
51925 51927 51929 51931 51933 51935

First third

This alternative scan list contains all scans within the first third all the golden scan list. The following 92 scans
are included:

51410 51411 51412 51413 51414 51415 51416 51417 51418 51419 51420 51421 51422 51423 51424 51425
51426 51441 51442 51443 51444 51446 51447 51448 51449 51450 51451 51452 51453 51454 51455 51456
51457 51458 51459 51460 51461 51462 51463 51464 51465 51466 51467 51468 51469 51470 51472 51473
51474 51475 51476 51477 51478 51479 51480 51481 51486 51487 51488 51489 51490 51491 51492 51493
51494 51495 51496 51497 51498 51499 51500 51501 51502 51503 51516 51517 51521 51522 51523 51524
51525 51526 51527 51528 51529 51530 51531 51532 51533 51534 51535 51536

Middle third

This alternative scan list contains all scans within the middle third all the golden scan list. The following 91 scans
are included:

51707 51708 51709 51822 51823 51824 51825 51826 51827 51828 51829 51830 51831 51832 51833 51834
51835 51836 51837 51838 51839 51840 51841 51842 51843 51844 51845 51846 51847 51848 51849 51850
51851 51852 51853 51854 51855 51856 51857 51858 51859 51860 51870 51871 51872 51873 51874 51875
51876 51879 51880 51881 51882 51883 51884 51885 51886 51887 51888 51889 51890 51891 51892 51893
51894 51895 51898 51908 51909 51910 51911 51912 51913 51919 51920 51921 51922 51923 51924 51925
51926 51927 51928 51929 51930 51931 51932 51933 51934 51935 51936

Last third

This alternative scan list contains all scans within the last third all the golden scan list. The following 91 scans are
included:

51537 51538 51539 51540 51541 51542 51543 51544 51545 51546 51547 51548 51549 51550 51551 51552
51553 51554 51555 51556 51557 51558 51559 51560 51561 51562 51563 51564 51565 51566 51579 51580
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51581 51582 51583 51584 51585 51586 51639 51640 51641 51642 51643 51644 51645 51646 51647 51651
51652 51653 51654 51655 51656 51657 51658 51659 51660 51664 51665 51669 51670 51671 51672 51673
51674 51675 51676 51677 51678 51679 51680 51681 51682 51683 51684 51685 51686 51687 51688 51689
51690 51692 51693 51694 51695 51696 51701 51703 51704 51705 51706

σ(ρd)< 1

This alternative scan list contains all scans whose column density (ρd) lies within 1σ around the mean value. The
following 214 scans are included:

51410 51411 51412 51413 51414 51415 51416 51417 51418 51419 51420 51421 51422 51423 51424 51425
51426 51441 51442 51443 51444 51446 51447 51448 51449 51450 51451 51452 51453 51454 51455 51456
51457 51458 51459 51460 51461 51462 51463 51464 51465 51466 51467 51468 51469 51470 51472 51473
51474 51475 51476 51477 51478 51479 51480 51481 51486 51487 51488 51489 51490 51491 51492 51493
51494 51495 51496 51497 51498 51523 51524 51525 51526 51527 51528 51529 51530 51531 51532 51533
51534 51535 51536 51537 51538 51539 51540 51541 51542 51543 51544 51545 51546 51580 51581 51582
51583 51584 51585 51586 51639 51655 51656 51657 51658 51659 51660 51664 51665 51677 51678 51679
51680 51681 51682 51683 51684 51685 51686 51703 51704 51705 51706 51707 51708 51709 51822 51823
51824 51825 51826 51827 51828 51829 51830 51831 51832 51833 51834 51835 51836 51837 51838 51839
51840 51841 51842 51843 51844 51845 51846 51847 51848 51849 51850 51851 51852 51853 51854 51855
51856 51857 51858 51859 51860 51870 51871 51872 51873 51874 51875 51876 51879 51880 51881 51882
51883 51884 51885 51886 51887 51888 51889 51890 51891 51892 51893 51894 51895 51898 51908 51909
51910 51911 51912 51913 51919 51920 51921 51922 51923 51924 51925 51926 51927 51928 51929 51930
51931 51932 51933 51934 51935 51936

σ(ρd)> 1

This alternative scan list contains all scans whose column density (ρd) is more than 1σ away from the mean
value. The following 60 scans are included:

51499 51500 51501 51502 51503 51516 51517 51521 51522 51547 51548 51549 51550 51551 51552 51553
51554 51555 51556 51557 51558 51559 51560 51561 51562 51563 51564 51565 51566 51579 51640 51641
51642 51643 51644 51645 51646 51647 51651 51652 51653 51654 51669 51670 51671 51672 51673 51674
51675 51676 51687 51688 51689 51690 51692 51693 51694 51695 51696 51701

High εT

This alternative scan list contains all scans whose tritium purity (εT) is smaller than the median εT. The following
137 scans are included:

51410 51411 51412 51413 51414 51415 51416 51417 51418 51419 51420 51421 51422 51423 51424 51425
51426 51441 51442 51443 51444 51446 51447 51448 51449 51450 51451 51452 51453 51454 51455 51456
51457 51458 51459 51460 51461 51462 51463 51464 51465 51466 51467 51468 51469 51470 51472 51473
51474 51475 51476 51477 51478 51479 51480 51481 51486 51487 51488 51489 51490 51491 51492 51493
51494 51495 51496 51497 51498 51499 51500 51501 51502 51503 51516 51517 51521 51522 51523 51524
51525 51526 51527 51528 51529 51530 51531 51532 51533 51534 51535 51536 51537 51538 51539 51540
51541 51542 51543 51544 51545 51546 51547 51548 51549 51550 51551 51552 51553 51554 51555 51557
51558 51559 51560 51647 51651 51652 51653 51654 51664 51665 51669 51670 51671 51672 51675 51676
51678 51682 51683 51688 51695 51701 51703 51704 51705

Low εT

This alternative scan list contains all scans whose tritium purity (εT) is larger than the median εT. The following
137 scans are included:
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51556 51561 51562 51563 51564 51565 51566 51579 51580 51581 51582 51583 51584 51585 51586 51639
51640 51641 51642 51643 51644 51645 51646 51655 51656 51657 51658 51659 51660 51673 51674 51677
51679 51680 51681 51684 51685 51686 51687 51689 51690 51692 51693 51694 51696 51706 51707 51708
51709 51822 51823 51824 51825 51826 51827 51828 51829 51830 51831 51832 51833 51834 51835 51836
51837 51838 51839 51840 51841 51842 51843 51844 51845 51846 51847 51848 51849 51850 51851 51852
51853 51854 51855 51856 51857 51858 51859 51860 51870 51871 51872 51873 51874 51875 51876 51879
51880 51881 51882 51883 51884 51885 51886 51887 51888 51889 51890 51891 51892 51893 51894 51895
51898 51908 51909 51910 51911 51912 51913 51919 51920 51921 51922 51923 51924 51925 51926 51927
51928 51929 51930 51931 51932 51933 51934 51935 51936

URW = −183 meV

This alternative scan list contains all scans with rear wall bias voltage URW = −183meV. The following 19 scans
are included:

51410 51411 51412 51413 51414 51415 51416 51417 51418 51419 51420 51421 51422 51423 51424 51425
51426 51441 51442

URW = −149 meV

This alternative scan list contains all scans with rear wall bias voltage URW = −149meV. The following 255 scans
are included:

51443 51444 51446 51447 51448 51449 51450 51451 51452 51453 51454 51455 51456 51457 51458 51459
51460 51461 51462 51463 51464 51465 51466 51467 51468 51469 51470 51472 51473 51474 51475 51476
51477 51478 51479 51480 51481 51486 51487 51488 51489 51490 51491 51492 51493 51494 51495 51496
51497 51498 51499 51500 51501 51502 51503 51516 51517 51521 51522 51523 51524 51525 51526 51527
51528 51529 51530 51531 51532 51533 51534 51535 51536 51537 51538 51539 51540 51541 51542 51543
51544 51545 51546 51547 51548 51549 51550 51551 51552 51553 51554 51555 51556 51557 51558 51559
51560 51561 51562 51563 51564 51565 51566 51579 51580 51581 51582 51583 51584 51585 51586 51639
51640 51641 51642 51643 51644 51645 51646 51647 51651 51652 51653 51654 51655 51656 51657 51658
51659 51660 51664 51665 51669 51670 51671 51672 51673 51674 51675 51676 51677 51678 51679 51680
51681 51682 51683 51684 51685 51686 51687 51688 51689 51690 51692 51693 51694 51695 51696 51701
51703 51704 51705 51706 51707 51708 51709 51822 51823 51824 51825 51826 51827 51828 51829 51830
51831 51832 51833 51834 51835 51836 51837 51838 51839 51840 51841 51842 51843 51844 51845 51846
51847 51848 51849 51850 51851 51852 51853 51854 51855 51856 51857 51858 51859 51860 51870 51871
51872 51873 51874 51875 51876 51879 51880 51881 51882 51883 51884 51885 51886 51887 51888 51889
51890 51891 51892 51893 51894 51895 51898 51908 51909 51910 51911 51912 51913 51919 51920 51921
51922 51923 51924 51925 51926 51927 51928 51929 51930 51931 51932 51933 51934 51935 51936

D.3 Golden pixel list

KNM1 included 117 out of 148 FPD pixels in the final analysis. The associated pixel numbers are:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 101 102 103 104 105 106 107 108 109
113 114 115 116 117 118 119 120 131 132 133
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D.4 Pseudo-ring statistics

To search for radial dependence in terms of m2
ν, the FPD pixels are grouped into four pseudo-rings.

Pseudo-ring FPD rings Number of active pixels Number of signal electrons

1 Bullseye & 1− 2 28 3.58× 105

2 3− 5 36 4.50× 105

3 6− 8 33 4.28× 105

4 9− 11 20 2.54× 105

Table D.1: KNM1 Pseudo-ring-wise statistics. To investigate a possible radial dependence of the fit parameter, the
bullseye and the 11 active FPD rings are grouped according to appendix B into 4 pseudo-rings with approximately
the same statistics.

D.5 Covariance matrices

The covariance matrices used in the spectral analyses of the KNM1 data set are shown in figures D.1 to D.10 using
the systematic uncertainties in table C.3 as input. The left panels visualize the respective fractional covariance
matrix, calculated according to equation (3.19). The right panels state the correlation coefficients, that described
the correlation between scan steps.

Most systematic effects, such as the final-state distribution, influence only the signal electrons. The respective
(fractional) covariance matrices are therefore zero for bins above the tritium endpoint. In these cases, the cor-
relation coefficient cannot be calculated and the associated bins are colored in grey in the correlation matrix.
Moreover, in some case the fractional covariance matrix contains relatively large entries for bins just below the
endpoint, because the expected number of counts is small compared to the systematic uncertainty. To improve the
visibility, the respective bins are colored in grey.
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Figure D.1: KNM1 total covariance matrix inclduing statistical and all systematic uncertainties (left) and correla-
tion matrix (right).
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Figure D.2: KNM1 background rate (Non-Poisson) covariance matrix (left) and correlation matrix (right).
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Figure D.3: KNM1 scan fluctuations covariance matrix (left) and correlation matrix (right).
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Figure D.4: KNM1 retarding-potential-dependent background covariance matrix (left) and correlation matrix
(right).
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Figure D.5: KNM1 final-state distribution covariance matrix (left) and correlation matrix (right).
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Figure D.6: KNM1 magnetic fields covariance matrix (left) and correlation matrix (right).
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Figure D.7: KNM1 number of scatterings covariance matrix (left) and correlation matrix (right).
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Figure D.8: KNM1 focal plane detector efficiency covariance matrix (left) and correlation matrix (right).

-39 eV -25 eV -13 eV -3 eV 47 eV

Retarding energy - 18574 eV

-39 eV

-25 eV

-13 eV

-3 eV

47 eV

R
e

ta
rd

in
g

 e
n

e
rg

y
 -

 1
8

5
7

4
 e

V

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

F
ra

c
ti
o

n
a

l 
c
o

v
a

ri
a

n
c
e

10
-9

-39 eV -25 eV -13 eV -3 eV 47 eV

Retarding energy - 18574 eV

-39 eV

-25 eV

-13 eV

-3 eV

47 eV

R
e

ta
rd

in
g

 e
n

e
rg

y
 -

 1
8

5
7

4
 e

V

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

C
o

rr
e

la
ti
o

n
 c

o
e

ff
ic

ie
n

t

Figure D.9: KNM1 energy-loss function covariance matrix (left) and correlation matrix (right).
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Figure D.10: KNM1 theoretical corrections covariance matrix (left) and correlation matrix (right).
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Appendix E

Second measurement campaign

E.1 Golden scan list

The golden scan list comprises 361 tritium scans with stable run conditions. The KATRIN internal scan numbers
are:
56160 56161 56162 56163 56164 56165 56166 56167 56168 56169 56170 56171 56172 56173 56174 56176
56177 56178 56179 56180 56181 56182 56183 56184 56186 56187 56188 56189 56190 56191 56192 56193
56194 56195 56196 56268 56269 56270 56271 56272 56273 56274 56275 56276 56277 56278 56279 56280
56281 56282 56284 56285 56286 56287 56288 56289 56290 56291 56292 56293 56294 56301 56302 56303
56304 56305 56306 56307 56308 56309 56310 56311 56312 56313 56314 56315 56316 56317 56319 56320
56321 56322 56323 56324 56325 56326 56327 56328 56329 56330 56333 56334 56335 56336 56337 56338
56341 56342 56343 56344 56345 56346 56347 56348 56349 56350 56351 56352 56353 56354 56355 56356
56357 56358 56359 56360 56361 56362 56363 56364 56365 56366 56367 56368 56369 56370 56379 56380
56381 56382 56383 56384 56385 56386 56387 56388 56389 56390 56391 56392 56393 56394 56395 56396
56397 56398 56399 56400 56401 56402 56403 56404 56405 56406 56407 56409 56412 56413 56414 56415
56416 56417 56418 56472 56473 56474 56475 56476 56477 56478 56479 56560 56561 56562 56563 56564
56565 56566 56575 56576 56577 56578 56579 56580 56581 56582 56583 56584 56585 56586 56587 56588
56589 56590 56591 56592 56593 56594 56595 56598 56599 56600 56601 56602 56603 56604 56605 56606
56607 56608 56609 56610 56611 56612 56613 56621 56622 56623 56624 56625 56626 56627 56628 56629
56636 56639 56640 56641 56642 56643 56644 56645 56646 56647 56648 56654 56655 56656 56657 56658
56659 56660 56661 56662 56663 56664 56669 56670 56671 56672 56673 56674 56684 56685 56688 56689
56690 56691 56692 56693 56706 56707 56708 56709 56710 56711 56712 56713 57015 57016 57017 57018
57019 57020 57022 57023 57024 57025 57026 57035 57036 57038 57039 57040 57041 57042 57043 57044
57045 57046 57047 57048 57049 57050 57051 57052 57053 57054 57055 57056 57057 57058 57059 57060
57061 57062 57068 57069 57070 57071 57072 57073 57074 57075 57076 57077 57078 57079 57080 57081
57082 57083 57084 57085 57086 57087 57088 57089 57090 57091 57092 57093 57094 57095 57096 57103
57104 57105 57106 57107 57108 57109 57110 57111 57120 57121 57122 57123 57124 57125 57126 57127
57128 57129 57130 57131 57132 57133 57134 57135 57136

E.2 Alternative scan lists

As a sanity check several alternative scan lists are analyzed separately.

Up scans

This alternative scan list contains all scans, whose scan-steps are recorded in upward direction. In this context,
upward means from small to large (absolute) main-spectrometer voltages. The scan-step at U = −18534 V was
consequently measured before the scan-step at U = −18 709V. This scan list comprises the following 187 scans:

161



Appendix E. Second measurement campaign E.2. Alternative scan lists

56160 56162 56164 56166 56168 56170 56172 56174 56177 56178 56180 56182 56184 56187 56188 56190
56192 56194 56196 56269 56271 56273 56275 56277 56279 56281 56284 56286 56288 56290 56292 56294
56302 56304 56306 56308 56310 56312 56314 56316 56319 56322 56324 56326 56329 56333 56335 56336
56338 56342 56344 56346 56348 56350 56353 56354 56356 56358 56360 56362 56364 56366 56368 56370
56380 56382 56384 56386 56388 56390 56392 56394 56396 56398 56400 56402 56404 56406 56407 56412
56414 56416 56418 56473 56475 56477 56479 56561 56563 56565 56575 56577 56579 56580 56582 56584
56586 56588 56590 56592 56594 56595 56599 56601 56603 56604 56605 56607 56609 56611 56613 56622
56624 56626 56628 56636 56640 56642 56644 56646 56648 56655 56657 56659 56661 56663 56669 56671
56673 56684 56688 56690 56692 56706 56708 56710 56712 57015 57017 57019 57022 57024 57026 57036
57039 57040 57042 57044 57046 57048 57050 57052 57054 57056 57057 57059 57061 57068 57070 57072
57073 57075 57077 57079 57081 57083 57085 57087 57088 57090 57092 57094 57096 57104 57105 57107
57109 57111 57121 57122 57124 57126 57128 57130 57132 57134 57136

Down scans

This alternative scan list contains all scans, whose scan-steps are recorded in downward direction. In this context,
downwards means from large to small (absolute) main-spectrometer voltages. The scan-step at U = −18 534V
was consequently measured after the scan-step at U = −18709 V. This scan list comprises the following 174 scans:

56161 56163 56165 56167 56169 56171 56173 56176 56179 56181 56183 56186 56189 56191 56193 56195
56268 56270 56272 56274 56276 56278 56280 56282 56285 56287 56289 56291 56293 56301 56303 56305
56307 56309 56311 56313 56315 56317 56320 56321 56323 56325 56327 56328 56330 56334 56337 56341
56343 56345 56347 56349 56351 56352 56355 56357 56359 56361 56363 56365 56367 56369 56379 56381
56383 56385 56387 56389 56391 56393 56395 56397 56399 56401 56403 56405 56409 56413 56415 56417
56472 56474 56476 56478 56560 56562 56564 56566 56576 56578 56581 56583 56585 56587 56589 56591
56593 56598 56600 56602 56606 56608 56610 56612 56621 56623 56625 56627 56629 56639 56641 56643
56645 56647 56654 56656 56658 56660 56662 56664 56670 56672 56674 56685 56689 56691 56693 56707
56709 56711 56713 57016 57018 57020 57023 57025 57035 57038 57041 57043 57045 57047 57049 57051
57053 57055 57058 57060 57062 57069 57071 57074 57076 57078 57080 57082 57084 57086 57089 57091
57093 57095 57103 57106 57108 57110 57120 57123 57125 57127 57129 57131 57133 57135

Rear-wall period 1: URW = −49.6 meV

This alternative scan list contains all scans with rear wall bias voltage URW = −49.6meV. The following 171 scans
are included:

56160 56161 56162 56163 56164 56165 56166 56167 56168 56169 56170 56171 56172 56173 56174 56176
56177 56178 56179 56180 56181 56182 56183 56184 56186 56187 56188 56189 56190 56191 56192 56193
56194 56195 56196 56268 56269 56270 56271 56272 56273 56274 56275 56276 56277 56278 56279 56280
56281 56282 56284 56285 56286 56287 56288 56289 56290 56291 56292 56293 56294 56301 56302 56303
56304 56305 56306 56307 56308 56309 56310 56311 56312 56313 56314 56315 56316 56317 56319 56320
56321 56322 56323 56324 56325 56326 56327 56328 56329 56330 56333 56334 56335 56336 56337 56338
56341 56342 56343 56344 56345 56346 56347 56348 56349 56350 56351 56352 56353 56354 56355 56356
56357 56358 56359 56360 56361 56362 56363 56364 56365 56366 56367 56368 56369 56370 56379 56380
56381 56382 56383 56384 56385 56386 56387 56388 56389 56390 56391 56392 56393 56394 56395 56396
56397 56398 56399 56400 56401 56402 56403 56404 56405 56406 56407 56409 56412 56413 56414 56415
56416 56417 56418 56472 56473 56474 56475 56476 56477 56478 56479

Rear-wall period 2: URW = −7.7 meV

This alternative scan list contains all scans with rear wall bias voltage URW = −7.7meV. The following 97 scans
are included:

56560 56561 56562 56563 56564 56565 56566 56575 56576 56577 56578 56579 56580 56581 56582 56583
56584 56585 56586 56587 56588 56589 56590 56591 56592 56593 56594 56595 56598 56599 56600 56601
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E.3. Golden pixel list Appendix E. Second measurement campaign

56602 56603 56604 56605 56606 56607 56608 56609 56610 56611 56612 56613 56621 56622 56623 56624
56625 56626 56627 56628 56629 56636 56639 56640 56641 56642 56643 56644 56645 56646 56647 56648
56654 56655 56656 56657 56658 56659 56660 56661 56662 56663 56664 56669 56670 56671 56672 56673
56674 56684 56685 56688 56689 56690 56691 56692 56693 56706 56707 56708 56709 56710 56711 56712
56713

Rear-wall period 3: URW = 193.0meV

This alternative scan list contains all scans with rear wall bias voltage URW = 193.0meV. The following 93 scans
are included:

57015 57016 57017 57018 57019 57020 57022 57023 57024 57025 57026 57035 57036 57038 57039 57040
57041 57042 57043 57044 57045 57046 57047 57048 57049 57050 57051 57052 57053 57054 57055 57056
57057 57058 57059 57060 57061 57062 57068 57069 57070 57071 57072 57073 57074 57075 57076 57077
57078 57079 57080 57081 57082 57083 57084 57085 57086 57087 57088 57089 57090 57091 57092 57093
57094 57095 57096 57103 57104 57105 57106 57107 57108 57109 57110 57111 57120 57121 57122 57123
57124 57125 57126 57127 57128 57129 57130 57131 57132 57133 57134 57135 57136

E.3 Golden pixel list

The golden pixel list contains 117 out of 148 pixels. The pixel numbers are stated below and visualized in fig-
ure 6.2.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 99 101 102 103 104 105 106 107 108
109 114 115 116 117 118 119 120 131 132 133

E.4 Rate monitor analysis
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Figure E.1: Simulation of rate monitor point R300 at qU − E0 = −300 eV with KNM2-like settings. The rate-to-
potential relation is approximated by a linear model in the vicinity of±1 eV. A fit finds a slope ofα= −0.74cps/mV
at an average rate 〈R300〉 = 6.59× 104 cps. This relation is used in section 6.6.2 to translate shifts and drifts in
terms of rate into an meV-equivalent.
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Appendix E. Second measurement campaign E.5. Retarding potential

E.5 Retarding potential
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Figure E.2: Retarding potential as a function of time for the high-voltage set point 〈qU〉= 18 570V in KNM2. Its
reproducibility (σ(qU) = 55mV) was significantly worse than for all other set points (〈σ(qU)〉 = 10 mV). The
problem was addressed during data taking and eliminated on October 2. Considering all scans after scan number
56277, the retarding potential at 〈qU〉= 18570 V varied as little as σ(qU) = 2 mV.

E.6 Background
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Figure E.3: Correction of the time-wise background slope in KNM2.

E.7 Covariance matrices

The multiring covariance matrices used in the spectral analyses of the KNM2 data set are shown in figures E.4
to E.15 using the systematic uncertainties in table C.3 as input. Four pseudo-rings are considered. The left panels
visualize the respective fractional covariance matrix, calculated according to equation (3.19). The right panels
state the correlation coefficients, that described the correlation between scan steps. Some bins are colored in grey
for better visibility, as described in appendix D.5.
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Figure E.4: KNM2 total covariance matrix inclduing statistical and all systematic uncertainties (left) and correla-
tion matrix (right).
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Figure E.5: KNM2 background rate (Non-Poisson) covariance matrix (left) and correlation matrix (right).
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Figure E.6: KNM2 scan-step-time-dependent background covariance matrix (left) and correlation matrix (right).
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Figure E.7: KNM2 source potential covariance matrix (left) and correlation matrix (right).
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Figure E.8: KNM2 retarding-potential-dependent background covariance matrix (left) and correlation matrix
(right).

1 2 3 4

Pseudo-ring

1

2

3

4

P
s
e
u
d
o
-r

in
g

-2

-1

0

1

2

3

4

5

6

7

F
ra

c
ti
o
n
a
l 
c
o
v
a
ri
a
n
c
e

10
-5

1 2 3 4

Pseudo-ring

1

2

3

4

P
s
e
u
d
o
-r

in
g

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

C
o
rr

e
la

ti
o
n
 c

o
e
ff
ic

ie
n
t

Figure E.9: KNM2 magnetic fields covariance matrix (left) and correlation matrix (right).
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Figure E.10: KNM2 final-state distribution covariance matrix (left) and correlation matrix (right).
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Figure E.11: KNM2 number of scatterings covariance matrix (left) and correlation matrix (right).
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Figure E.12: KNM2 energy-loss function covariance matrix (left) and correlation matrix (right).
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Figure E.13: KNM2 theoretical corrections covariance matrix (left) and correlation matrix (right).
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Figure E.14: KNM2 scan fluctuations covariance matrix (left) and correlation matrix (right).
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Figure E.15: KNM2 focal plane detector efficiency covariance matrix (left) and correlation matrix (right).
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Appendix F

Neutrino-mass analysis of KNM1

F.1 Retarding potential fit parameter dependencies

Retarding potential dependence of steady-state background Bbase, signal normalization Nsig. and p-value. The
remaining fit parameters, m2

ν and Efit
0 are discussed in detail in section section 8.8.
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Figure F.1: Best-fit results of the fit parameter as a function of lower fit boundary. Statistical and systematic
uncertainties.
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Appendix F. Neutrino-mass analysis of KNM1 F.2. Azimuthal fit parameter dependencies

F.2 Azimuthal fit parameter dependencies

To investigate the east-west asymmetry in m2
ν in the KNM1 data analysis, the FPD are grouped into slices with

similar azimuth angle (section 8.10.2). The fit results of the nuisance parameters are displayed in figure F.2. As
presented in section 8.5.4, the neutrino mass has a very high positive and a moderate negative correlation with
the fit endpoint and the signal normalization, respectively. The fit results of Efit

0 thus exhibit a similar azimuthal
pattern as m2

ν, whereas the Nsig. best-fit values show the inverse pattern. The background per number pixels,
being only weakly correlated with m2

ν, features a different behavior. The southwest detector area (θ = 135◦) is
significantly lower than the uniform result.
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Figure F.2: KNM1 best-fit results of the nuisance parameters as a function of azimuth angle. The associated best-fit
values for m2

ν are displayed in figure 8.15.
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F.3. Neutrino-mass imprint in the integral spectrum Appendix F. Neutrino-mass analysis of KNM1

F.3 Neutrino-mass imprint in the integral spectrum

The signature of m2
ν in the differential tritium β-spectrum is visualized in figure 1.3 in a 5 eV-wide energy window

below the endpoint. In practice, however, experimental effects, such the background level or the energy resolution
influence the strength of the neutrino-mass imprint in the integral spectrum. The neutrino-mass signal strength is
defined as the ratio of model spectra with and without nonzero m2

ν value

Nmodel(m2
ν)

Nmodel(m2
ν = 0eV2)

(F.1)

and is depicted in figure F.3 for KNM1 and KNM2 in the standard analysis interval. KNM2 was operated at a higher
signal strength and lower background level than KNM1. Consequently, the expected neutrino-mass signal is more
prominent in KNM2 than in KNM1. Due to the improved signal-to-background ratio, the KNM2 neutrino-mass
signal peaks at larger retarding energies than in KNM1.
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Figure F.3: Expected neutrino-mass imprint in the integral spectrum for KNM1 and KNM2 for different values of
m2
ν.
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Appendix G

Neutrino-mass analysis of KNM2

G.1 Signal normalization in multi-ring fit
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Figure G.1: Pseudo-ring-dependent signal normalization factor in the KNM2 multi-ring fit with four pseudo-rings.
Nsig is compatible with no radial dependence with pconst = 0.71.

G.2 Fit result using uniform pixel segmentation

The KNM2 uniform fit in the standard analysis range including statistical and systematic uncertainties is:

m2
ν = (0.28± 0.32)eV2

Efit
0 = (18573.69± 0.02)eV

Bbase = (220.3± 0.5)mcps

Nsig. = 0.986± 0.002

χ2
min = 27.5 (24 dof).

G.3 Radial fit parameter dependencies

The neutrino-mass is a physical constant and is therefore by nature the same of all FPD detector rings. To search
for unknown systematic effects, that lead to a radial neutrino-mass dependence, a ring-wise analysis is performed.
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Appendix G. Neutrino-mass analysis of KNM2G.4. Alternative treatment of retarding-potential-dependent background rate

In contrast to the multi-ring analysis in section 9.5.1, the neutrino-mass is allowed to have different values for the
individuals rings. The radial distribution of the nuisance parameters are shown in figure G.2. Effective tritium
endpoint and signal normalization are constant within uncertainties. The background rate exhibits, as expected,
a significant increase as a function of detector radius. The results are compatible to the results in section 9.5.1
with uniform m2

ν.
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Figure G.2: Ring-wise analysis of KNM2 data. Grey reference line is respective weighted mean. Top Endpoint. The
linear fit yields a very small radial slope at low significance 1.9σ. Bottom left: Background rate per pixel increases
as a function of radii. The radial dependence cannot be described well with a linear function (p < 1× 10−9).
Bottom right: Signal normalization. Linear slope has only low significance 1.3σ. Pattern is compatible with a no
radial dependence at p = 0.27.

G.4 Alternative treatment of retarding-potential-dependent background
rate

Expected change of best-fit result

In a complementary analysis, the KNM2 data are fit with sqU (retarding-potential-dependent background slope) as
a nuisance parameter (section 9.9). Due to the correlation between m2

ν and sqU, the fit result and the uncertainty
is expected to change. To estimate the expected change randomized MC twins are fit twice: Once with sqU =
0mcps/keV and once with free sqU. The difference

∆m2
ν = m2

ν (free sqU)−m2
ν (fixed sqU) (G.1)

is shown in figure G.3. As both analyses are bias-free, the median∆m2
ν = 0eV2.However, deviations of σ(∆m2

ν) =
0.06eV2 are expected. In some fits, the central m2

ν values even differed up to 0.2 eV2.
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Figure G.3: Expected influence of retarding-potential-dependent background rate on fit result. Randomized MC
twins are analyzed twice: Once with fixed retarding-potential background slope and one with free retarding-
potential background slope. The differences of m2

ν best-fit value (equation (G.1)) are shown.

Neutrino-mass uncertainty as a function of retarding-energy-dependent background slope
constraint

External constraints σ(sqU) can be included in the fit in form of a pull term according to equation (4.12). Uniform
fits to the data with different σ(sqU) are performed. The 1σ systematic uncertainty on m2

ν as a function of σ(sqU)
is displayed in figure G.4. The stronger (smaller) the constraint, the smaller is the systematic uncertainty on m2

ν.
If sqU is left unconstrained in the fit (χ2

pull = 0), the systematic uncertainty on m2
ν increases to σ(m2

ν) = 0.16eV2.
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Figure G.4: KNM2 neutrino-mass uncertainty as a function of retarding-energy-dependent background slope
constraint. The uncertain retarding-potential dependency of the background rate propagates into a systematic
uncertainty on m2

ν at 68.3 % C.L. The influence on m2
ν is evaluated by fitting the data with sqU as a fit parame-

ter, which is constrained with a Gaussian pull term with σ(sqU). The one-fold and threefold FT constraints are
illustrated as grey dotted reference lines. They were used in the KNM2 and KNM1 neutrino-mass analysis respec-
tively. The systematic uncertainty contribution that arises when sqU is unconstrained in the KNM2 fit, amounts to
σ(m2

ν) = 0.16eV2.
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G.5 Retarding potential fit parameter dependencies

Retarding potential dependence of steady-state background Bbase, signal normalization Nsig. and p-value. The
remaining fit parameters, m2

ν and Efit
0 are discussed in detail in section section 9.10.
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Figure G.5: Retarding-potential dependent fit parameter for KNM2 stacked uniform fit with systematics.
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Sterile Neutrino Search

H.1 Influence of background level on sterile-neutrino search

The influence of the background rate is evaluated with simulated KNM2-like spectra without statistical fluctua-
tions. Different steady-state background rates are assumed between 0 mcps and 200 mcps. The sensitivity con-
tours, drawn at 95 % C.L., are displayed in figure H.1. The lower the background rate, the smaller active-to-sterile
mixings can be excluded. In KNM2, the scan steps that are most sensitive to m2

4 < 100eV2 are dominated by back-
ground electrons (see section 6.10.3). Thus, the improvement in sensitivity caused by the background reduction
is most prominent for small masses.
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Figure H.1: Sensitivity contours at 95 % C.L. based on KNM2-like simulations with different steady-background
levels. The lower the background rate, the more stringent are the sterile-neutrino constraints.

H.2 Comparison of exclusion and sensitivity contour

As described in section 11.5.3, 1σ sensitivity bands at 95 % C.L. for analysis case I) are calculated based on
randomized MC twins. The exclusion contours of the KNM1 and KNM2 standalone analyses are compared to the
respective mean (Asimov) sensitivity and the associated sensitivity bands in figure H.2. The corresponding display
for the combined analysis is shown in figure 11.7. All exclusion contours agree well with the sensitivity estimates.
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A direct comparison between exclusion and sensitivity for analysis case II) is given in figure H.3. Also for anal-
ysis case II), the exclusion contours agree well with their respective sensitivity estimate. As expected, moderate
difference are visible, in particular in the vicinity of the respective best fits.

(a) KNM1 (b) KNM2

Figure H.2: To evaluate the agreement between exclusion and mean sensitivity contours in more detail for analysis
case I), 1σ-sensitivity bands are calculated at 95 % C.L. as described in section 11.5.3 for the KNM1 and KNM2
standalone analyses. The exclusion contours differ from the Asimov sensitivity contours within the expectation.
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Figure H.3: Comparison between (Asimov) sensitivity and exclusion contour in analysis case II) at 95 % C.L.
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H.3 Neutrino-mass sensitivity in 3ν+ 1 framework

The hypothetical existence of eV -scale sterile neutrinos affects the sensitivity to m2
ν, if no external constraints on the

active-to-sterile mixing are consulted. In appendix H.3, the m2
ν sensitivity is calculated in the 3ν+ 1 framework

by performing grid searched on data and MC twins for different fixed values of m2
ν. The m2

ν sensitivity can be
then retrieved from the resulting chi-squared profile. Figure H.4 shows the best-fit locations in the [m2

4,|Ue4|2]
parameter space for 36 different fixed neutrino mass squared values m2

ν ∈ [−1,2.5] eV2.

10-2 10-1

|U
e4

|
2

100

101

102

103

m
42
 (

e
V

2
)

-1

-0.5

0

0.5

1

1.5

2

2.5

m
2
 (

e
V

2
)

KNM2 exclusion contour at 95% C.L. with free m
2

Best fit for m
2
 free

Best fits for different fixed m
2

Figure H.4: To obtain the profile chi-squared functionχ2(m2
ν) in the 3ν+1 framework, grid searches are performed

on the data with different fixed m2
ν ∈ [−1, 2.5]. The respective best fits of the grid searches are displayed as filled

points. Their colors indicate the fixed m2
ν value.

H.4 Influence of systematic uncertainties

The influence of systematic uncertainties on the sterile-neutrino contours is evaluated with (Asimov) MC twin
spectra. For each simulated spectrum, two grid searches are performed: The first considers only statistical uncer-
tainties and the second considers statistical and all systematic uncertainties. The sensitivity contours are depicted
at 95 % C.L. in figure H.5. If systematic uncertainties are included, the grid searches yield slightly weaker con-
straints compared to the statistics-only sensitivity contours. However, the influence is small for both data sets.
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Figure H.5: Sensitivity contours at 95 % C.L. for KNM1 and KNM2 analysis case I). The solid lines result from
grid searches considering only statistical uncertainties. The dotted lines are calculated with the total uncertainty
budget of statistical and systematic uncertainties. The influence of systematic uncertainties on the sensitivity
contour is small for both data sets.
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H.5 Extension of the fit interval

As a supplement analysis, the KNM1 and KNM2 data is analyzed for sterile neutrinos using the full measurement
interval. The same systematic uncertainty budget as for the standard analysis interval is used. The results are
discussed in section 11.8. The contour curves at 95 % C.L. for analysis case II) are given in figure H.6. Moreover,
the combined KNM1 and KNM2 analysis is compared to KATRIN predecessor experiments in figure H.7. The
best-fit results and their significances are summarized in table H.1.
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Figure H.6: Analysis case II) contour curves considering the full measurement interval of KNM1 and KNM2. If not
explicitly stated otherwise, the contours are drawn at 95 % C.L. The positive signal at 95 % of the KNM1 vanishes
stems likely from a statistical fluctuation or unaccounted systematic effect. Moreover, the closed contour open for
99 % C.L., illustrated by the gray dash-dotted line.
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Analysis case Dataset m2
4 |Ue4|2 m2

ν χ2
min/dof p ∆χ2

null Significance p̂

I
KNM1 3986 eV2 0.014 fixed 29.2/34 0.70 6.72 96.5 % -
KNM2 1886 eV2 0.006 fixed 32.4/33 0.50 3.62 83.6 % -

KNM1+2 5963 eV2 0.017 fixed 63.9/69 0.65 5.17 92.4 % 0.10

II
KNM1 4042 eV2 0.014 −0.68 eV2 28.5/33 0.69 6.81 96.7 % -
KNM2 97.7 eV2 0.013 0.56 eV2 31.8/32 0.48 0.81 33.4 % -

Table H.1: Best-fit results of the KNM1 and KNM2 sterile-neutrino searches for the full measurement interval.

H.6 Test of Wilks’s theorem

The applicability of Wilk’s theorem is tested for the KNM1 and KNM2 statistics. Following the procedure in sec-
tion 11.10, the critical chi-squared difference for 95 % C.L. is numerically calculated for different MC truths. The
∆χ2 distributions are sampled by analyzing randomized tritium spectra, based on the respective MC truths. The
position of the global chi-squared minimum of each each sample is shown in figure H.8 for the Null hypothesis.
The ∆χ2 probability density functions and the associated cumulative probability density functions are displayed
in figure H.9.

The influence of ∆χ2
crit on the KNM2 exclusion contour (analysis case I) is illustrated in figure H.10. The exclu-

sion curves drawn for different numerical ∆χ2
crit values (see table 11.3) are only slightly shifted compared to the

exclusion contour assuming Wilks’s theorem.

Figure H.8: Positions of best fits from grid search on 1500 randomized KNM2-like tritium spectra. The MC truth
is m2

4 = 0 eV2 ,|Ue4|2 = 0. The black solid line is the sensitivity curve, obtained with Asimov twins, at 95 % C.L.

181



Appendix H. Sterile Neutrino Search H.6. Test of Wilks’s theorem

0 5 10 15
2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

F
re

q
u

e
n
c
y

2000 KNM1 pseudo-experiments

with MC truth: m
4

2
 = 0 eV

2
, |U

e4
|
2
 = 0

Chi-squared distribution for 2 dof

(a) KNM1, MC truth: m2
4 = 0 eV2 and |Ue4|2 = 0

0 2 4 6 8 10

 
2

0

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

95% quantile

Chi-squared distribution for 2 dof:     
2

crit.
 = 5.99

Empirical KNM1 cdf (2000 samples): 
2

crit.
 = 5.92

(b) KNM1, MC truth: m2
4 = 0eV2 and |Ue4|2 = 0

0 5 10 15
2

0

0.05

0.1

0.15

0.2

F
re

q
u
e
n
c
y

1500 KNM2 pseudo-experiments

with MC truth: m
4

2
 = 92.7 eV

2
, |U

e4
|
2
 = 0.024

Chi-squared distribution for 2 dof

(c) KNM2, MC truth: m2
4 = 92.7 eV2 and |Ue4|2 = 0.024

0 2 4 6 8 10

 
2

0

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

95% quantile

Chi-squared distribution for 2 dof:      
2

crit
 = 5.99

Empirical KNM2 cdf (1500 samples): 
2

crit
 = 6.69

(d) KNM2, MC truth: m2
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Figure H.9: Test of Wilks’s theorem Left: ∆χ2 is calculated for O (103) simulated sample spectra according to
equation (11.9). The respective MC truths are stated in the captions. The black solid lines correspond to the
expectation from Wilks’s theorem, respectively. Right: The empirical cumulative density function is calculated
from the ∆χ2 samples. The 95 % quantile corresponds to ∆χ2

crit. Its is estimated with the boot-strapping method.
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Figure H.10: The threshold value∆χ2
crit that corresponds to 95 % C.L. is numerically calculated for two exemplary

grid points. The impact on the exclusion contour is demonstrated assuming that the numerically calculated∆χ2
crit

is representative for the entire parameter space considered. The orange dashed-dotted line corresponds to contour
with∆χ2

crit from the MC simulation, in which the Null hypothesis is set as MC truth. Since the numerical threshold
value is larger than the predicted one, the exclusion curve is shifted towards larger mixings. The orange area
illustrates the 1σ uncertainty on ∆χ2

crit. The red dotted line and area show the exclusion curve using ∆χ2
crit. from

a sterile-neutrinos hypothesis simulation. The two colorful contour curves are to be compared with the black solid
line, which is the exclusion curve assuming Wilks’s theorem. The shift of the exclusion curve is small.
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H.7 Nonphysical parameter space

In a supplementary analysis, the [m2
4, |Ue4|2] parameter space is extended to negative values. Grid searches are

performed in four quadrants to obtain the respective profile chi-squared functions. The results for analysis case
I) are shown in figure H.11 for KNM1 and KNM2, respectively. The corresponding display for analysis case II) is
provided in figure H.12. The best fit within each quadrant is marked with a star symbol with the global best fit
for all quadrants being highlighted in red color. If no improvement over to the Null hypothesis could be found, no
best fit is given. No significant sterile-neutrino signal could be observed in the nonphysical parameter space.

(a) KNM1 with χ2
null = 22.8 (24dof)

(b) KNM2 with χ2
null = 28.2 (25dof)

Figure H.11: Chi-squared profiles for the physical and non-physical parameter space for analysis case I) (fixed
m2
ν). As a sanity check, the modeled sterile-neutrino signal is extended to nonphysical values of m2

4 and |Ue4|2.
The north-east quadrant corresponds to the physical region. The best fit of each quadrant is marked with a star
symbol. The global best fit is highlighted in red. In case χ2

min ≥ χ
2
null, no best fit is given.
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(a) KNM1 with χ2
null = 21.2 (23 dof)

(b) KNM2 with χ2
null = 27.5 (24 dof)

Figure H.12: Chi-squared profiles for the physical and non-physical parameter space for analysis case II) (free
m2
ν). As a sanity check, the modeled sterile-neutrino signal is extended to nonphysical values of m2

4 and |Ue4|2.
The north-east quadrant corresponds to the physical region. The best fit of each quadrant is marked with a star
symbol. The global best fit is highlighted in red. In case χ2

min ≥ χ
2
null, no best fit is given.
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p.d.f. probability density function

SNO Sudbury Neutrino Observatory

PMT Photomultiplier tube

RAA Reactor antineutrino anomaly

GA Gallium anomaly
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GALLEX Gallium-Experiment
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LSND Liquid Scintillator Neutrino Detector

MiniBooNE Mini Booster Neutrino Experiment

KARMEN Karlsruhe Rutherford Medium Energy Neutrino
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