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Abstract

In many real-world applications, 6D ego-motion estimation and mapping must be per-
formed in real-time. Particularly in the robotics field, low-latency and robust motion esti-
mation are essential for the control of autonomous vehicles. Dynamically generated maps
are also essential for obstacle avoidance and path planning. To date, it remains a rather chal-
lenging task to fuse a variety of sensors and their substantial volumes of data in real-time.
The complexity of the problem increases when the sensors are subjected to external pertur-
bations and measurement errors. The problem is particularly hard when the ego-motion
estimation and mapping are to be done in 6D, accurately, robustly, with low-latency, and in
a small form factor.

In this thesis, we propose to tackle the problem by leveraging range, magnetic, and in-
ertial sensing in a coarse-to-fine manner. The content of this work is divided into two main
subsections: robust attitude and heading estimation in an indoor environment using a multi-
sensor fusion approach, and low-latency 6D ego-motion estimation and mapping techniques
using LiDAR-based systems. In the first part, we present a novel multi-sensor fusion ap-
proach based on skewed redundant inertial and magnetic sensors. It is developed to perform
robust attitude and heading estimation with the ability to compensate for external magnetic
field anomalies. We formulated a correlation-based filter model for preprocessing the sen-
sory data and adopted an Recurrent Neural Networks (RNN) fusion model to perform robust
estimation in an indoor environment. In the second part, we present a low-latency SLAM
framework based on LiDAR scan slicing and concurrent matching approach. This frame-
work uses sliced point cloud data from a rotating LiDAR in a concurrent multi-threaded
matching pipeline and utilizes the attitude and heading angles to enable high update rate
and low-latency 6D ego-motion estimation. A Lissajous spinning pattern is applied to over-
come the sensor’s limited Field of View (FOV). A two-dimensional roughness model is de-
veloped to extract the feature points for fine matching and registration of the point cloud. In
addition, the pose estimator engages a temporal motion predictor that assists in finding the
feature correspondences in the map for the fast convergence of the non-linear optimizer.

We have validated the proposed ego-motion estimation and mapping methods through
a series of extensive experiments ranging from telepresence, hand-carried, to drone-attached
setups. Throughout the experiments, different environments are explored, such as indoor
labs, offices, domestic and industrial sites, as well as a wide range of mixed conditions. Re-
sults indicate that the methods are capable of carrying out high-precision, and low-latency
estimation as well as robustness in terms of fast motion and environmental degradation.
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Kurzfassung

In vielen realen Anwendungen müssen 6D-Ego-Motion-Schätzung und -Mapping in Echt-
zeit durchgeführt werden. Gerade im Bereich der Robotik sind eine niedrige Latenz und eine
robuste Bewegungsschätzung für die Steuerung autonomer Fahrzeuge unerlässlich. Dyna-
misch generierte Karten sind auch für die Hindernisvermeidung und Wegplanung unerläss-
lich. Bis heute bleibt es eine ziemlich herausfordernde Aufgabe, eine Vielzahl von Sensoren
und ihre erheblichen Datenmengen in Echtzeit zu fusionieren. Die Komplexität des Problems
nimmt zu, wenn die Sensoren externen Störungen und Messfehlern ausgesetzt sind. Das
Problem ist besonders schwierig, wenn die Ego-Motion-Schätzung und -Zuordnung in 6d
genau, robust, mit geringer Latenz und in einem kleinen Formfaktor durchgeführt werden
sollen.

In dieser Arbeit schlagen wir vor, das Problem anzugehen, indem wir Entfernungs-,
Magnet- und Trägheitssensorik auf grobe bis feine Weise nutzen. Der Inhalt dieser Arbeit
ist in zwei Hauptunterabschnitte unterteilt: robuste Lage- und Kursschätzung in einer Inne-
numgebung unter Verwendung eines Multi-Sensor-Fusion-Ansatzes und 6D-Ego-Motion-
Schätzung und Mapping-Techniken mit niedriger Latenzzeit unter Verwendung von Lidar-
basierten Systemen. Im ersten Teil stellen wir einen neuartigen Multisensor-Fusionsansatz
vor, der auf symmetrischen redundanten Inertial- und Magnetsensoren basiert. Es wurde
entwickelt, um eine robuste Lage- und Steuerkursschätzung mit der Fähigkeit durchzu-
führen, Anomalien externer Magnetfelder zu kompensieren. Wir haben ein korrelationsba-
siertes Filtermodell zur Vorverarbeitung der sensorischen Daten formuliert und ein RNN-
Fusionsmodell übernommen, um eine robuste Schätzung in einer Innenumgebung durch-
zuführen. Im zweiten Teil stellen wir ein SLAM-Framework mit niedriger Latenz vor, das
auf Lidar-Scan-Slicing und gleichzeitigem Matching-Ansatz basiert. Dieses Framework ver-
wendet geschnittene Punktwolkendaten aus einem rotierenden Lidar in einer gleichzeitigen
Multithread-Matching-Pipeline und nutzt die Lage- und Kurswinkel, um eine hohe Aktua-
lisierungsrate und eine 6D-Ego-Motion-Schätzung mit geringer Latenz zu ermöglichen. Ein
Lissajous-Spinnmuster wird angewendet, um das begrenzte FoV des Sensors zu überwin-
den. Ein zweidimensionales Rauheitsmodell wird entwickelt, um die Merkmalspunkte für
die Feinabstimmung und Registrierung der Punktwolke zu extrahieren. Zusätzlich setzt der
Posenschätzer einen zeitlichen Bewegungsprädiktor ein, der dabei hilft, die Merkmalskor-
respondenzen in der Karte für die schnelle Konvergenz des nichtlinearen Optimierers zu
finden.

Wir haben die vorgeschlagenen Ego-Motion-Schätz- und Mapping-Methoden durch eine
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Reihe umfangreicher Experimente validiert, die von Telepräsenz über handgetragene bis hin
zu Drohnen-Setups reichen. Während der Experimente werden verschiedene Umgebungen
erkundet, wie z. B. Innenlabore, Büros, Wohn- und Industriestandorte sowie eine breite Pa-
lette von gemischten Bedingungen. Die Ergebnisse zeigen, dass die Methoden in der Lage
sind, hochpräzise Schätzungen mit geringer Latenz sowie Robustheit in Bezug auf schnelle
Bewegung und Umweltzerstörung durchzuführen.
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Chapter 1

Introduction

1.1 Motivation

Figure 1.1: Airplane autonomous inspection using UAVs. An example where real-time motion esti-
mates and mapping are needed simultaneously for navigation. In such applications, high-accuracy
GPS/INS systems are impractical due to the weight, cost, and external magnetic perturbations. GPS
signals are also unreliable underneath the structures of the hangar. Camera-based localization sys-
tems, on the other hand, provide poor performance and this is mainly due to the texture-less surfaces
and far-field view. The UAV’s navigation stack requires 6D motion estimation. The estimation latency
is critical in such applications as the robot experiences a very fast motion behavior.

The problem of real-time Simultaneous Localization and Mapping (SLAM) is one of the
most fundamental challenges in robotics. Localization and perception techniques for au-
tonomous robot missions (see Figure. 1.1 for an example) have become one of the major
drivers for the development of SLAM solutions in recent years. The mass production of
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2 Chapter 1. Introduction

inexpensive, versatile, and compact Light Detection and Ranging (LiDAR) and Magnetic
and Inertial Measurement Unit (MIMU) sensors, initially targeted at the smartphone and
autonomous car markets, now enables autonomous robots to be equipped with such sophis-
ticated sensor systems.

Robotic systems using multi-sensor SLAM can explore the environment and create a map
while localizing themselves simultaneously. This problem is also sometimes referred to as
the kidnapped robot problem [13], since the robot needs to determine its location and sur-
roundings on its own without any additional infrastructure. In outdoor environments, the
satellite-based Global Positioning System (GPS) provides information about absolute posi-
tion, but not about the environment’s structure, which is key to avoiding collision and per-
forming path planning. There are, however, a number of possible application scenarios, such
as urban canyons and indoor environments, which may require additional costly infrastruc-
ture for localization. Several such scenarios are classified as GPS-denied environments. A
wide variety of approaches are available ranging from relatively inexpensive WiFi-based
approaches to more expensive radar methods that provide centimeter-level accuracy. The
downside is that many of these methods do not provide information about the environment
and obstacles.

1.2 Towards Real-time 6D SLAM for Indoor Applications

It is a common requirement across a wide range of applications to create accurate Three Di-
mensional Space (3D) representations of the world and to localize the robot within these 3D
representations (see Fig. 1.2a for an example). State-of-the-art technology in this field comes
from the use of laser scanning. Lasers are especially appropriate for 3D reconstruction be-
cause they provide range accuracy that can be as low as a few centimeters regardless of the
distance measured. Additionally, ambient light and surface normals are not significant fac-
tors. High spatial resolution can be obtained by using coherent laser beams. In addition,
the high sample rate of laser measurements (up to millions of measurements per second)
translates into excellent temporal resolution as well. The registration of LiDAR data is an
issue in this regard. In order to obtain accurate reconstructions, the LiDAR position must be
known with high precision during the measurements. Two methods are used in industrial
reconstruction to achieve the required level of precision.

First, a mechanism stays stationary except for the movement of the actuator directing
the laser beam (see Fig. 1.2b for an example). Data from several sources are collected and
merged offline. A limited number of scans can be collected using this method, which is
time-consuming and easy to obstruct the result.

An alternative approach is to use independent positioning systems (such as industry-
grade GPS/INS systems) to register moving LiDAR data (see Fig. 1.2c for an example). Due
to the weight, cost, or limited availability of GPS signals, high accuracy GPS/INS systems
are often impractical. An example is shown in Fig. 1.2d. In this figure, an autonomous drone
flies around an airplane for mapping and inspection. High-accuracy GPS/INS systems are
too heavy to carry due to the limited flight payload. Additionally, in such applications, GPS
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(a) (b) (c) (d)

Figure 1.2: (a) A map of an indoor area. (b) A Leica scanner attached to a tripod. (c) A laser scanner
and industry grade GPS/INS mounted on an autonomous car. The car is equipped with multiple
GPS/INS systems and uses the Differential GPS (DGPS) to provide precise motion estimates. (d) Au-
tonomous drone for airplane inspection and mapping. In such application, high-accuracy GPS/INS
systems are impractical due to the weight and cost. GPS signals are also unreliable inside the hangar
or below structures of the buildings. The latency of the estimation is critical for real-time navigation.

signals are unreliable underneath the structures of the hangar. Moreover, due to a large
amount of external ferromagnetic material in such environment, INS data is also unreliable.
This is mainly because the INS sensors are sensitive to external magnetic perturbations. On
the other hand, cameras can capture visual patterns from their surroundings. The global
shutter camera eliminates the difficulty of estimating the pose state as pixels in a picture
share the same timestamp. However, cameras are sensitive to changes in lighting condi-
tions. Furthermore, a homogeneously colored surface, for instance, can pose a challenge to
methods that are based on vision.

The focus of this thesis is on the capability to localize a robot in real-time while creating
high-precision maps from a moving platform without precise and independent positioning
information being available. A common understanding is that to obtain such maps without
independent positioning, localization and mapping must be solved simultaneously. How-
ever, the challenges include how to achieve this accurately in 6D, in real-time, robustly, with
low latency, and in a small form factor.

This thesis seeks to combine range, inertial, and magnetic sensing to compute the ego-
motion and reconstruct the environment in 3D. Even though it is possible to further enhance
6D reconstruction by using loop closure, this dissertation will focus on low-latency and real-
time methods capable of providing high precision 6D motion estimation. The low-latency
and real-time attributes make the resulting system suitable for autonomous navigation: the
robust 6D motion estimation is critical for robot control, and the maps are crucial for obstacle
avoidance and path planning. Further, the complete map of the environment can be used as
an input for further processing such as scene segmentation, 3D reasoning, and virtual reality
applications.

1.3 Principal Contributions

The thesis proposes to solve a low-latency state estimation problem by combining data from
various sensors in order to provide 6D ego-motion in real-time and reconstruct the envi-
ronment in 3D. In order to solve the aforementioned problem, several difficulties must be
addressed. As part of the proposed research, different sensor modalities will be used, while
sensors of each kind must also be characterized in distinct ways.
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The range measurement capabilities of LiDARs are excellent. It is critical to keep in mind
that LiDAR measurements are made continuously over time, resulting in a unique times-
tamp associated with each laser point. To create a coherent map from the laser points when
the LiDAR moves with 6D motion, high-frequency motion estimates must be made to re-
duce the distortion caused by the LiDAR’s intrinsic motion. The continuous motion over
time is often approximated by a large number of variables in state estimation. Continuous
slicing of incoming laser measurements in a multi-threaded pipeline is utilized to overcome
this challenge. Additionally, the state-of-the-art laser scanners come with a limited Field of
View (FOV). Although for 3D planar pose estimation these sensors are practical, this limita-
tion results in poor 6D pose estimation, specially when encountering vertical and rotational
movements. An actuated LiDAR system is utilized to overcome this limitation.

The ability of 6D pose estimation using the aforementioned LiDAR solutions crucially
depends on the reliable estimation of attitude and heading angles in real-time [10], [11]. This
additional source of sensory data can be attained mainly from an Attitude and Heading Ref-
erence System (AHRS). Robust attitude and heading estimation in an indoor environment
with respect to a known reference is an essential component for 6D pose estimation. Af-
fordable AHRSs are typically using low-cost solid-state MEMS-based sensors. The precision
of heading estimation on such a system is typically degraded due to the encountered drift
from the gyro measurements and distortions on the magnetic field sensing. In this regard,
multi-sensor MIMU fusion is utilized to perform robust heading estimation with the ability
to compensate for the external magnetic field anomalies.

This thesis explores a new method of fusing information from various sensors. As op-
posed to composing all sensor data into a single, full-blown problem, we divide the process-
ing into a series of modules and solve them sequentially. Within each module in the system,
an advantage of each sensor is explored, a sub-problem is solved, and results are generated
for the following modules to process. The modularized processing pipeline also improves
robustness, by selecting “healthy” sensor modes when forming the final solution. Here,
“healthy” means the sensor data contains sufficient information to carry out the desired es-
timation. For example, when a LiDAR experiences a fast rotational movement, useful infor-
mation becomes sparse causing estimation failures. Similarly, in an asymmetric or extruded
environment such as a long and straight corridor, traditional solutions can produce ambigu-
ous poses sliding along the corridor. Likewise, the AHRSs cannot estimate the attitude and
heading angles precisely in the presence of external magnetic perturbations. In these cases,
the proposed method determines a degraded subspace in the problem state space. During
degradation, part of the problem is resolved within the subspace that is well-conditioned.
Consequently, only healthy elements are combined in the final solution.

Scope of the thesis: In this thesis, a multi-sensor fusion technique that implements low-
latency, real-time 6D SLAM for indoor applications is presented, which significantly en-
hances the performance of existing SLAM frameworks.
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Figure 1.3: System overview of the proposed low-latency, real-time 6D SLAM system for indoor ap-
plications. We propose to tackle the problem by leveraging range, magnetic, and inertial sensing in a
coarse-to-fine manner. This work is divided into two main subsections: robust attitude and heading
estimation in an indoor environment using a multi-sensor fusion approach (green part), and low-
latency 6D ego-motion estimation and mapping techniques with LiDAR-based systems (blue part).

Summary of Contributions: To solve the low-latency, real-time 6D ego-motion estimation
and mapping problem, the thesis makes the following contributions:

• A skewed redundant magnetic and inertial sensor platform and the methodology to
configure redundant sensing kinematic for non-orthogonal observation is developed.
Additionally, a correlation-based preprocessing filter model is designed. Multiple
RNN-based deep fusion models are investigated to improve accuracy and mitigate the
external perturbation for robust heading estimation in a saturated indoor environment.

• The proposed processing pipeline is dynamically reconfigurable, which fully or par-
tially bypasses failure modules and combines the rest system to deal with sensor degra-
dation. It can handle environmental degradation and aggressive motion.

• A method embedded in the processing pipeline determines sensor degradation. It sep-
arates well-conditioned subspace from degenerate subspace in the underlying problem
state space, solves the problem only in the well-conditioned subspace, and therefore
actively eliminates sensor noise in the degraded subspace.

• A modularized processing pipeline to fuse data from range, magnetic, and inertial sen-
sors for 6D ego-motion estimation and mapping. The resulting system achieves high
accuracy and low drift. In LiDAR processing module, the method uses a voxel repre-
sentation to efficiently retrieve registered laser points for scan matching.

• Also in the LiDAR processing module, the method conducts scan matching on multiple
threads. Each thread processes a subgroup of scan slices while multiple subgroups are
processed in parallel to carry out the onboard processing in real-time, which increases
the update rate of the 6D pose estimation, and reduces the overall estimation latency.
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• A novel sensor payload design in which a small, lightweight multi-line 360° laser scan-
ner is actuated with a Lissajous pattern. This structure is employed to reduce the revisit
time and provides a dense point cloud with consistency in scanning the environment.
The designed platform meets the size and payload restrictions of mobile robot applica-
tions such as UAVs.

1.4 Thesis Structure

Chapter 2 introduces the theoretical background needed to understand the proposed con-
cepts and the decisions made within the scope of this work. The proposed methodology is
confronted with related work. The main advantages are discussed and compared to the state-
of-the-art. Chapter 3 presents a novel approach for robust indoor heading estimation based
on skewed redundant magnetometer-only fusion. A correlation-based fusion technique is
introduced for perturbation mitigation using the proposed skewed redundant configuration
and the experimental results are presented. Chapter 4 covers the deep-learning-based fusion
of a skewed redundant magnetic and inertial sensor for robust attitude and heading state
estimation in a saturated indoor environment and the experimental result of the proposed
system is comprehensively discussed. Chapter 5 introduces the techniques for low-latency
SLAM based on LiDAR scan slicing and concurrent matching. The pipeline is developed
for 6D ego-motion estimation with high update rate and low latency and the experimental
results are discussed. Chapter 6 concludes this work by summarizing the most distinct out-
comes of this manuscript, discussing their limitations, and briefly outlining some potential
conceptual improvements for future work.

Parts of this thesis have been published in international peer-reviewed scientific journals [1]–
[4], and conferences [6]–[9].



Chapter 2

Fundamentals and Related Work

This chapter introduces the relevant background needed to better understand the proposed
methodologies within the scope of this work. Prior art that technically relates to this work
is surveyed and discussed. Section 2.1 presents the basics of sensor systems and covers
topics from external reference systems to LiDAR acquisition systems. Assets and drawbacks
thereof are briefly debated to better comprehend the strategical decisions made for this work.
Section 2.2 deals with state-of-the-art methodologies that aim to solve attitude and heading
reference estimation using multi sensor fusion approaches. Section 2.3 deals with state-of-
the-art methodologies for SLAM. The last section delves into the area of low-latency 6D
SLAM using LiDARs and MIMUs and highlights the basic fundamentals used in this work.

2.1 Sensor Systems

In recent years, multi-rotor UAVs have gained popularity as improvements in battery effi-
ciency and computational power, as well as sensor size, made payload limitations less rel-
evant. Additionally, they offer great mobility with six degrees of freedom and can hover,
take off, and land vertically. It is, however, an unstable system that requires constant effort
to maintain a controllable state in the air and therefore requires sensors to determine its po-
sition at a high frequency to correct for external influences, such as airflow. Further, for the
inspection task, the UAV delivers the inspection equipment to the measurement spots while
avoiding collisions with the surrounding area. It is therefore of primary importance to deter-
mine the pose of the drone as it could otherwise cause damage to itself and the environment.
In order to increase the system’s accuracy and prevent failures, multiple sensors are there-
fore used. Multi-sensor systems have been proven capable of autonomous flight [12] [13], as
well as inspection operations [14]. In this section, we review some of the common sensors
used in SLAM applications and refer the reader to Brena et al. for a comprehensive survey
of potential sensors [15].

2.1.1 External Reference Systems

A Global Navigation Satellite System (GNSS) like Global Positioning System (GPS) or
GLONASS uses the triangulation procedure in order to determine a point on the earth by
gathering information from at least four satellites. The accuracy ranges anywhere between a

7
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few meters to several hundred meters. There are many advantages of using a GPS module,
including its small size and low cost, which makes it useful to position commercial robots
outdoors, and this is also true when there are external perturbations in sensory data. On
the other hand, it should be noted that GNSSs are typically not available in the following
circumstances: inside buildings, underwater, in suburban environments, or in other areas
where satellites are not directly in sight. Consequently, it cannot be applied to the local-
ization of mobile robots that are used in an indoor environment. In the meantime, there
are also indoor localization systems with external references, such as Bluetooth, Wireless Fi-
delity (WiFi), or Ultra Wideband (UWB) [16]. A large number of researchers explored UWB
[17] [18] [19] as well as Bluetooth [20] [21] for indoor applications. The problem with these
systems is that they are less flexible because they require beacons with a known position that
must be installed and are not suitable for adaptable indoor settings.

2.1.2 Vision Sensors

During the recording of images from a camera, visible characteristics of the environment can
be captured. With the help of these images, one is able to produce maps of the surroundings
and, with the assistance of these maps, one is able to locate the target. In spite of the fact that
a single picture does not contain any information about position, it is derived by comparing
multiple pictures and by measuring the difference in the location of landmarks, like trees
or houses. Using stereo cameras, as there is no temporal difference between the images, is
an excellent method for estimating distance. Red-Green-Blue-Depth (RGB-D) cameras, on
the other hand, can supplement the images with a measure of distance. The only limiting
factor is the computational overhead of low-cost cameras. Additionally, in order to properly
perform a visual navigation task, adequate ambient light and a sufficient number of visual
features in each and every image are essential. It is worth mentioning that vision-based nav-
igation systems were the first to produce dense maps for UAV applications and they remain
an active area of research and development today [22]. Several recent achievements have
come from monocular [23] [24], stereo [25] [26] and RGB-D [27] [28] approaches, and Lu et
al. provide an overview [29].

2.1.3 Environmental, Magnetic and Inertial Measurement Unit

2.1.3.1 Environmental Sensors

Environmental sensors include barometric pressure sensors that measure air pressure [30],
relative humidity sensors measuring relative humidity levels, and temperature sensors that
measure ambient temperature to enable adaptive multi-sensor fusion solutions [31] [32].

2.1.3.2 Magnetometer Sensors

Magnetometer sensors detect the magnitude of magnetism and geomagnetism generated by
a magnet or current. In this context, Micro-electromechanical System (MEMS) variants are
widely used into aerial applications for their light weight and low cost, making them a suit-
able candidate for being utilized by UAVs [33]. Considering that the magnetic observation is
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a vector field, it is characterized by its magnitude and direction or its components along the
coordinate axes. A sensor with at least three axes is required to determine the Earth’s mag-
netic field vector. In a Cartesian coordinate system at the measurement point p, the magnetic
field vector bp ∈ R3 can be defined as

bp = bp,x i + bp,y j + bp,z k , (2.1)

where the x-axis is oriented along the geographical meridian, and the direction to the north is
positive, the y-axis along the parallel with a positive direction toward the east, and the z-axis
is directed downward. The observation point p is the origin of the measurement coordinate
system.

The magnetic field of a dipole, similarly, is characterized by its magnetic moment M.
The strength and direction of this field depend not only on the magnitude of the magnetic
moment but also on its orientation relative to the direction of the magnetic field [34]. In the
presence of multiple dipoles, the magnetic field Mg is defined by the sum of all magnetic
moments Mi and is given by

Mg =
∑

Mi . (2.2)

The curl of the magnetic vector potential, the magnetic field bp, is governed by the density of
magnetic moments at the measurement point and is derived classically using the Biot-Savart
law [35]. The combined field can change the measurement field vector bp due to the pres-
ence of multiple dipoles. This change in the magnetic field is the leading cause of heading
errors in an indoor environment [36]. To determine the Earth’s true magnetic field, we con-
sider the measured magnetic field as a combination of the external magnetic perturbation
and the Earth’s magnetic field. Taking Eq. 2.2 into consideration, the measured magnetic
field bQ ∈ R3 in the sensor frame with center point p can be defined as

bQ
p = bE

p + bϵ
p , (2.3)

where bϵ
p is the external magnetic field disturbance and bE

p is the Earth local magnetic field.

2.1.3.3 Inertial Sensors

Unlike other data sources, inertial sensors, such as accelerometers and gyroscopes, work
independently of external input since they are based solely on natural phenomena. A single-
axis accelerometer can measures proper acceleration [37]. The rate of change of velocity (the
acceleration) of a body in its own instantaneous rest frame is known as the proper accelera-
tion. It is important to understand that this is different from coordinate acceleration, which
is acceleration in a fixed coordinate system. In the case of two or more accelerometers that
are coordinated, they are capable of measuring differences in proper acceleration, especially
gravity, across their separation - that is, the gradient of the gravitational field. Single- and
multi-axis accelerometers can detect both the magnitude and the direction of the proper ac-
celeration, as a vector quantity. Thus, multi-axis accelerometers allow the measurement of
attitude orientation with respect to the gravitational field. In a similar vein, a gyroscope
sensor is a device that can measure and maintain angular velocity and orientation. Gyro-
scope sensors are also referred to as Angular Rate Sensors (ARS) or Angular Velocity Sensors
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(AVS). The ability to measure angular velocity in a 3D coordinate frame is achieved by using
two or more gyroscopes that operate in a coordinated manner.

Similar to the magnetic field vectors, accelerometer and gyroscope data can be measured
in a defined sensor coordinate frame p. Accordingly, the observed acceleration ap ∈ R3 in
the body frame with center point p can be defined by

ap = ap,x i + ap,y j + ap,z k , (2.4)

where ap is the acceleration vector in m/s2. Likewise, the angular rotation vp ∈ R3 in the
body frame with center point p is defined by

vp = vp,x i + vp,y j + vp,z k , (2.5)

where vp is the angular velocity vector in rad · s−1.

2.1.3.4 Inertial Measurement Unit (IMU)

An IMU is a system that measures and reports a body’s specific force, angular rate, and the
orientation of the body, using a combination of 3-DoF accelerometers and 3-DoF gyroscopes
[38].

2.1.3.5 Magnetic and Inertial Measurement Unit (MIMU)

An MIMU uses Three Degrees of Freedom (3-DoF) accelerometers, 3-DoF gyroscopes, and
3-DoF magnetometers, to continuously calculate the attitude and heading orientations. Typ-
ically, the orientation estimation using MIMU considers no external references [38] [39]. This
means the orientation estimations are based on the starting point.

2.1.3.6 Attitude and Heading Reference System (AHRS)

An AHRS consists of sensors on three axes that provide attitude and heading information,
including roll, pitch, and yaw. It is also referred to as Magnetic, Angular Rate, and Gravity
(MARG) sensors and consist of 3-DoF gyroscopes, 3-DoF accelerometers and 3-DoF magne-
tometers. The main difference between the MIMU and the AHRS is that the AHRS provides
the orientation estimation with respect to a know reference [32] [36]. The known reference
in this context means the estimated orientations are with respect to the Earth’s geometrical
characteristics. The known reference of AHRS is mainly comes from the Earth’s gravitational
and magnetic field for attitude and heading angles, respectively.

2.1.3.7 Inertial Navigation System (INS)

An INS uses 3-DoF accelerometers, 3-DoF gyroscopes, 3-DoF magnetometers, and baromet-
ric pressure sensors to continuously calculate position, orientation, and velocity of a moving
object without the need for external references [40] [41].
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2.1.4 Light Detection and Ranging (LiDAR)

Light Detection and Ranging (LiDAR) is a system that uses a laser to determine distances by
aiming the laser at an object or a surface. LiDAR determines distance by measuring the time
it takes for the reflected light to return to a receiver. Additionally, the light intensity which
is measured from reflected laser beam is primarily used to produce digital ono-colored im-
ages of the surrounding environment. Hence, they are independent of outside light sources.
Nevertheless, because of the active light-emitting process, they also have a higher power
consumption as compared to the other presented sensors, and in addition are more expen-
sive. As in modern LiDAR systems, the laser scanner is rotated around an axis to obtain a
360-degree panoramic perspective of the environment. It is possible for some LiDAR systems
to perform over 1 million measurements per second by combining multiple laser scanners
pointing in different directions [42]. There is therefore the possibility of building detailed
maps only from LiDAR data, even though cameras are able to record a lot more data in the
same time period as LiDAR. There are a number of Two Dimensional Space (2D) LiDARs that
are typically found in UAVs due to the payload constraints [43] [44] [45], but 3D LiDARs are
also quite common [46].

2.2 Attitude and Heading Reference Estimation Using Multi-MIMU

Attitude and heading estimation is one of the fundamental necessities for human-computer
interaction, robot control, as well as robot navigation [47], [48], [5]. The use of miniature in-
ertial sensors has become quite common in robotic applications. A general Magnetic and In-
ertial Measurement Unit (MIMU) in this context, contains a 3-DoF accelerometer, 3-DoF gy-
roscope, and 3-DoF magnetometer. In contrast to IMUs or MIMUs, which generally provide
only the raw sensory data, an advanced Attitude and Heading Reference System (AHRS)
utilizes the Nine Degrees of Freedom (9-DoF) sensory data and applies the sensor fusion al-
gorithm in order to provide absolute orientations. The roll, pitch, and yaw estimation are
generally defined with respect to the earth’s geometrical characteristics. The attitude and
heading estimation specifies the angular measurements on the vertical and horizontal plane
with respect to the local level frame and the geographical true north [49].

The main challenges in such sensors can be divided into multiple modalities; first is the
accuracy of such estimation in a highly congested environment and in the presence of the
external perturbations. The other modalities are the latency, update rate, and the reliability
of the estimation. In order to increase the accuracy and the reliability of such sensors, the cost
plays an important role. In this regard, multi-redundant low-cost platforms are well known
in this context [6], [50], [51].

2.2.1 Previous Work:

Determining error-free and reliable heading angle with respect to a known reference is prob-
lematic in the case of indoor applications. This problem is mainly because of different sources
of errors in the MEMS-based magnetometer measurements [52]–[55]. The most dominant
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source of error for such a magnetometer sensor is the presence of magnetic sources in an
indoor environment. Permanent magnets and ferromagnetic materials are the preeminent
cause of such magnetic perturbation. In this regard, calibration of the MEMS-based magne-
tometers for heading estimation has been investigated thoroughly during the last decades
[52], [56]–[58]. Probabilistic models for sensor calibration and fusion such as the Extended
Kalman Filter (EKF), the Unscented Kalman Filter (UKF), and Ellipsoid Fitting are well
known in this field [59]–[62]. However, dynamic magnetic deviation caused by external
anomalies cannot be fully compensated using the sensor calibration methods [63], [64]. To
overcome the aforementioned problem, redundant sensor systems have shown promising re-
sults as they are using redundant observations to determine the source of error and increase
the estimation accuracy [65]–[67].

Multiple magnetometers combined with gyroscopes were used to approximate the ex-
ternal magnetic disturbances and provide perturbation-free heading estimation [66], [68],
[69]. In these works, the authors used an estimation of the expected magnetic field using
the temporary rotation vector to compensate for the external magnetic perturbation. These
approaches need a precise and simultaneous calibration of the magnetometers and the gy-
roscopes to be able to provide an acceptable heading estimation. In [70], a magnetic head-
ing compensation method for disturbances introduced by near-surface interference was pro-
posed. The authors used inverse magnetic anomaly vector estimation to compensate for the
external perturbation. The main limitations of this approach are the predefined magnetic
field model and one-dimensional perturbation mitigation. In general, these approaches are
usually bulky, expensive, and often rely on expensive calibration procedures.

Nonetheless, it has been shown that the accuracy of the magnetic field measurement is
significantly improved by using redundant magnetometer sensors [71]–[74]. However, the
non-deterministic errors cannot be completely removed in real application scenarios due to
their transient nature. This is mainly because of limitations in the system identification proce-
dure, non-linear dynamic errors, and the use of strict calibration models. The skewed redun-
dant inertial sensor fusion, on the other hand, provides a more reliable output, as shown in
[51], [75]–[77]. The skewed configuration for redundant sensor geometry has been widely in-
vestigated for attitude estimation by applying this method on the observations from inertial-
only sensors (e.g., accelerometers and gyroscopes) [41], [78]. However, these methods have
been poorly investigated for redundant magnetometers.

2.2.2 MIMU Errors

MIMU or Multi-MIMU systems are mainly used to track an object, so that the tracking sys-
tem is able to determine the object’s current position and/or orientation by analyzing the
sensor data. Sensor information may be corrupted by a variety of errors, and then, during
the fusion, the errors will accumulate, leading to the phenomenon known as drift error. In
order to prevent this, errors in the collected data should be minimized or compensated for.
MIMU errors can be classified as deterministic or stochastic based on their nature [79], [80].
For instance, misalignment errors and scale factor errors fall under deterministic error types.
In contrast, stochastic errors are primarily characterized by noise [81]. The bias in sensor
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data usually consists of multiple components, some of which are stochastic, some of which
are deterministic [82]. As a rule of thumb, all of the errors have an impact on the output of a
sensor (see Figure 2.1).

Figure 2.1: Magnetic and inertial sensors contain two main types of errors which are deterministic
errors like scale factor, bias, misalignment and stochastic errors such as bias instability and scale fac-
tor instability. Deterministic errors are the main part of error compensation algorithms. The bias in
magnetometer sensor data usually consists of multiple components, some of which are stochastic,
some of which are deterministic [82].

2.2.3 Skewed Redundant MIMU Fusion

A combination of a 3-DoF gyroscope, a 3-DoF accelerometer, and a 3-DoF magnetometer is
typically used in low-cost sensor platforms. The estimated angles are defined as the corre-
sponding Euler angles roll (α), pitch (β), and yaw (γ). In order to improve the robustness and
the accuracy of the attitude and heading estimation, the measurements provided by the gyro-
scope, the accelerometer, and the magnetometer are typically fused (e.g., Extended Kalman
Filter (EKF) or Unscented Kalman Filter (UKF)). As previously discussed, multi-MIMU pro-
vides more robust estimation in comparison to a single-MIMU fusion. Typically, in such a
multi-MIMU fusion, sensors are mounted in an array configuration [83], [84]. However, a
significant outcome from [50], [51] shows that an ideal setup of redundant inertial sensors
in terms of fault tolerance and noise resistance is a "skewed" configuration. In the skewed-
redundant configuration, the delicate axes of each triaxial sensor are not aligned, and trans-
formations are performed to align them in a virtual coordinate frame. This method has been
examined on different sensors such as accelerometers, and gyroscopes and showed an im-
provement in the accuracy and the perturbation mitigation [51], [75], [77]. Motivated by
the aforementioned works, within the scope of this thesis, we propose a skewed-redundant
tetrahedron platform in order to increase the reliability and the accuracy of the attitude and
heading estimation. In this work, we employed triple single chip 9-DoF MIMU sensor from
Bosch-Hillcrest Labs.
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2.2.4 Extended Kalman Filter (EKF)

In practice, the assumption that the state transition and measurement are linear with a Gaus-
sian distribution is rarely true. Using the Extended Kalman Filter (EKF) one can overcome
the nonlinearity problem by linearizing the state transition function as well as the measure-
ment function. In the EKF the state transition and measurement are represented as functions
g and h with additive Gaussian noises ηt and δt:

xt = g(ut, xt−1) + ηt (2.6)

zt = h(xt) + δt (2.7)

with:
g′(ut, xt−1) :=

∂g(ut, xt−1)

∂xt−1
(2.8)

h′(xt) :=
∂h(xt)

∂xt
(2.9)

one can define the Jacobian matrices Jt around the mean µt−1 (µ̄), and Ht around µt as:

g′(ut, µt−1) := Jt and h′(µt) := Ht (2.10)

The EKF algorithm is in many ways similar to Kalman Filter with the difference of lineariza-
tion of the observation and motion functions. More details to EKF can be also found in [85].

2.2.5 Deep Sensor Fusion

The term Deep Learning (DL) refers to a subclass of Machine Learning (ML) that is able to
solve more complex problems generally due to a comprehensive architecture of neurons that
enables them to learn more sophisticated relations between inputs and outputs. Developing
deep learning models requires the use of powerful processing units that can handle many
layers of underlying data. In contrast to machine learning algorithms that require human
intervention in order to perform feature engineering, Deep Learning algorithms are capable
of mapping complex functions from the input to the output without requiring user interven-
tion. Deep Learning can also be described as Hierarchical Learning or Structured Learning.
The mechanism of Deep Learning is a Artificial Neural Network (ANN) with multiple hid-
den layers, often referred to as a Deep Neural Network (DNN). A regular ANN and a DNN
are shown schematically in Figure 2.2.

Using a hierarchy of layers in DNNs allows for the development of complex relationships
between inputs and outputs. The aim of the network is to identify high-level features that
are perceived by low-level properties. As an example, deep learning has been successfully
applied to image and text classification, natural language processing, autonomous driving,
weather and exchange rate forecasts, human gesture prediction, etc. Currently, there are two
types of DNN that are most commonly used: Convolutional Neural Networks (CNN) and
Recurrent Neural Networks (RNN). The CNN models are used quite often when it comes
to computer vision applications. In the meantime, RNNs are commonly employed for the
analysis of time-series data as well as for signal processing applications. Due to this work
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Figure 2.2: The difference between a standard Neural Network (NN) and a Deep Neural Network
(DNN). While Deep Learning incorporates neural networks within its architecture, there’s a stark
difference between DNN and NN. DNN leverages a series of nonlinear processing units comprising
multiple layers for feature transformation and extraction. It has several layers of artificial neural net-
works that carry out the machine learning process [86].

focusing on sensor fusion applications, the RNN models are addressed more deeply in this
section to provide further insights.

2.2.5.1 Recurrent Neural Networks (RNN)

Standard artificial neural networks have no memory of previous states, except the last one:
they start at the state in which they were trained. As a result, after the initial training is
completed, the network does not exhibit much evolution. ANNs can only learn from data
currently presented to them, which makes it useful only for independent inputs. The prob-
lem is that this is not true for all input sequences, so a type of neural network was developed
to help overcome it - Recurrent Neural Networks (RNN)s. Figure 2.3 (left) illustrates what
distinguishes RNNs from other types of neural networks by showing how they have loops
inside themselves that allow neurons to remember information [87]. In contrast to ANNs
that perform based on the current inputs, RNNs are based on series of inputs and previous
states. Figure 2.3 (left) depicts an RNN consisting of a basic unit of one neuron with input
Xt and output ht. Data are passed through several steps in the network by means of a loop.
An unfolded version is illustrated in Figure 2.3 (right): each chain carries information to its
successor.

Figure 2.3: Compressed (left) and unfolded (right) basic recurrent neural network [86], [88]

As is depicted in Figure 2.3, the state of the unit at time t is also an input for the next
step at time t + 1. In theory, this should mean that all the previous information is available
at the new step; in practice, however, if there are many steps involved, the network exhibits
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vanishing gradient behavior [89], [90]. This long-term dependency problem is illustrated in
Figure 2.4.

Figure 2.4: Long-term dependency problem in Recurrent Neural Networks (RNN) networks. In the-
ory, all the previous information must be available at the new step; in practice, however, if there are
many steps involved, the network can not remember. This problem is called vanishing gradient prob-
lem [89], [90].

Due to the long-term dependency on the basic version of RNN, different modifications
have been proposed to overcome this issue. Long-Short Term Memory (LSTM), Bidirectional
LSTM, and Gated RNN are in this category. In this work, we have utilized LSTM-based
DNN models for sensor fusion application. In the following section, we dive even deeper
into LSTM-based models.

2.2.5.2 Long-Short Term Memory (LSTM)

Long-Short Term Memory, also known as LSTM, is one of the most popular choices of RNNs
when long-term dependencies are considered. This means that it can be used to solve the
vanishing gradient problem which can occur in sequence learning. LSTMs were originally
proposed by Hochreiter and Schmidhuber in 1997 and are still popular today [91]. LSTMs
are distinguished by the ability to retain certain information for a long period of time. Typi-
cally, a chain-like formation of modules repeats itself in an RNN, but in its most basic form,
the RNN can be composed of just one tanh layer (see Figure 2.5).

Figure 2.5: Standard Recurrent Neural Networks (RNN) containing a single layer.

Together with tanh, sigmoid activation functions are used in LSTM. As explained in the
relevant illustration earlier, tanh keeps the values in the range [1; 1], while sigmoid has a
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range of [0; 1]. Using this strategy, one can learn which data should be kept and which
should be discarded by multiplying the values by 0 if they need to be forgotten and by 1
otherwise.

Figure 2.6: Overview of state-of-the-art LSTM cell architecture and a network of LSTM cells. A com-
mon LSTM unit is composed of a cell, an input gate, an output gate, and a forget gate. The cell
remembers values over arbitrary time intervals and the three gates regulate the flow of information
into and out of the cell [91].

To implement this, LSTMs have gates of three types: input, forget, and output gates [92].
The cell architecture is presented in Figure 2.6. The gate equations for LSTMs are as follows.
For the input gate, we can define it as

it = σ (wi [ht−1, xt] + bi) , (2.11)

and for the forget gate ft we have

ft = σ (wf [ht−1, xt] + bf ) , (2.12)

while for the output gate the ot is

ot = σ (wo [ht−1, xt] + bo) , (2.13)

where σ(·) is the sigmoid function, w· is the weight vector, ht1 is the output of the previ-
ous LSTM block at time step t1, xt is the input at the current time step, and b is the bias. The
equations describing the cell state, the candidate cell state, and the final output of the current
cell are as follows. The cell state c̄t is defined by

c̄t = tanh (wc [ht−1, xt] + bc) . (2.14)

and the candidate cell state is

ct = ft · ct−1 + it · c̄t (2.15)

and the final output defined by

ht = ot · tanh(ct). (2.16)
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This is a brief description of the standard LSTM node. The literature addresses a range of
modification approaches, such as an LSTM with a peephole interface [93], where all the gate
layers can read in to the current state. The other notable changes include depth gated RNNs
[94] as well as clockwork RNNs [95].

2.3 Simultaneous Localization and Mapping (SLAM)

The main requirement of autonomous robot navigation systems is that the robot should be
able to plan and execute its paths in an unknown environment without human assistance
[96]. The process of route planning requires the robot to make decisions based on its sur-
roundings, which has an impact on how it acts. This requires a real-time perception of the
surrounding environment [97]. Having this awareness also permits the control system to re-
ceive position feedback, which is essential for the successful execution of the planned move-
ment. This environment perception is achieved by using different types of sensors helping
the moving platform position itself in reference to surrounding landmarks [98]. Therefore,
the reason for performing localization and mapping is twofold; On one hand, the map itself
may be the primary goal of the operation, i.e. it is intended to be used for reporting to a
human correspondent, such as in the case of a construction site. On the other hand, with
a detailed map, it is more effective to accurately localize the robot and plan the future path
trajectory. The general problem in such is that the location and state of the robot are poorly
known and can only be determined with noisy sensors [99]. Furthermore, localization and
mapping are both associated with each other because localization methods require a map in
order to refer to it as a reference for current measurements, while for building a map, the
location, where the data was taken, is required in order to insert the measurements at the
right spot on the map.

This problem is referred to as Simultaneous Localization and Mapping (SLAM). By using
the SLAM technique, a robot can locate itself in reference to an initial start point while con-
structing a map of its surroundings [99], [100]. At each points of the map, landmarks have
been inserted with the position and orientation of the robot at the timestamp when they were
captured. The robot will use the most recent version of the map to plan its trajectory, taking
into account the already registered objects [101], [102]. Two types of SLAM can be distin-
guished based on the sensors used to sense the environment: visual-inertial SLAM [103],
[104] and Laser SLAM [105], [106].

Related Work: Initially, researchers discussed the topic of localization and mapping sepa-
rately. With the addition of the works of Chatila and Laumond [107] and Smith and Cheese-
man [108] SLAM evolved in the 1986 IEEE Robotics and Automation Conference in San
Francisco, California [109]. In continuation, Cadena et al. divide the progress in the field
into three eras: the classical era (1986 - 2004), the algorithmic-analysis era (2004 - 2015), and
the robust-perception era (since 2016) [110]. A brief overview of the classical period is pro-
vided by Durrant-Whyte and Bailey [109] [111], when fundamental problems were defined
and basic challenges were solved. Additionally, the probabilistic approach to SLAM with
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EKF, Rao-Blackwellized particle filters, and maximum likelihood estimation was brought to
light; Stachniss et al. explain these in great detail in [112]. After that, algorithmic analysis
covered issues such as observability, consistency, and convergence for the SLAM problem
[113]. At the same time, factor graphs were extensively studied, and open-source libraries
for SLAM were developed [114]. From that point forward, the robust-perception age cover
robustness and a high-level understanding of the environment, while being resource-aware
and employing a task-driven perception [110]. In recent surveys, attention has mainly been
focused on individual aspects of SLAM, like multi-robot [115], autonomous driving [116],
or visual SLAM [117] [118]. Huang et al. provide a comprehensive overview of the latest
algorithms [119].

2.3.1 Current Challenges

Despite Durrant-Whyte and Bailey’s belief that SLAM had been solved on a conceptual level
in 2006, it is still considered an active topic of research today [109]. The availability of suf-
ficient solutions depends on a combination of factors, including the robot, the environment,
and the performance requirements, such as accuracy or speed. We present our findings with
the assistance of Cadena et al. [110] as the main challenges today are robustness, scalability,
and latency. In robotic systems, failures are omnipresent, and having the ability to detect and
recover from them is essential. Consequently, future SLAM systems will have to be fail-safe,
failure-aware, and capable of compensating for hardware failures. While environments are
often assumed to be static, they are very dynamic, not only for short periods of time like
seconds or minutes but continuously. This calls for maps to be deformable and able to repre-
sent properties of the environment with adaptable descriptors, even when there are different
levels of detail. Maps should be able to reflect the environment’s properties in a semantically
accurate manner too. Additionally, navigation operations require an increase in update rates,
both for pose estimation and for maps. A map must therefore be able to store information
over a long time span, and cover a large area, as well as be distributed among multiple robots
[120], [121]. Latency, on the other hand, has become more and more crucial in recent years as
the ability to support real-time navigation for fast systems, such as drones and autonomous
cars, has become a necessity [122]–[124]. Finally, SLAM systems should also be adaptable to
a wide range of robot applications, which means that the workspace and the dynamic of the
system, as well as the environment, should also be considered.

2.3.2 LiDAR SLAM

In this section, we review methods for data association of the LiDAR sensor measurements
as it is the primary input for localization in this work. We use a LiDAR system for SLAM
instead of cameras. Despite the popularity of cameras, the visual feature distribution in
an industrial environment such as a hangar is not sufficient for current state-of-the-art al-
gorithms, like ORB-SLAM, to achieve the accuracy we require [26], [104]. A laser scanner
performs successive range measurements, and by rotating it, it records a surrounding view.
Based on the different scanning angles one can integrate multiple measurements into a 3D
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point cloud. The accuracy of the point cloud, however, depends on the precise angle of
the laser scanner during the measurement. While these angles are known with high preci-
sion, mobile robots move through the environment with an unknown motion. This motion
causes the point cloud to be distorted, which is an inherent challenge to LiDAR SLAM. It has
been shown that scanning skewing is a fundamental factor that can lead to incorrect rota-
tion estimations. A common cause of this phenomenon is the motion of the platform when
scanning and the fact that a single scan is made up of successively scanned points over a
certain period of time [125]. Variable degrees of distortion can result from different types
of motion. Non-rigid distortion is especially noticeable with rotational movement, affecting
particularly points that are far from the sensor. Particularly, when the motion involves rota-
tional and vertical translation simultaneously, the distortion must be compensated using an
external MIMU sensor [126], [127].

In order to derive a relation between two point clouds taken in the same environment, the
alignment of the clouds must be performed. This relation describes how two consecutively
observed point clouds, or a position on a global point cloud, has changed with respect to
each other, or with respect to the origin. Considering the point sets P1 and P2 in correspon-
dence P1 ↔ P2, and that they are related via a rigid body transform, we seek to estimate R

and t. Let us define the homogeneous 3D affine transformation matrix T = (R, t) ∈ SE(3)

as a rigid body transform composed of a rotation matrix R ∈ SO(3) and a translation vector
t ∈ R3, as

T =



R t

0 1


 , (2.17)

and accordingly, the transformation between the two point sets can be defined as

P1,a = RP2,b + t = aT bP2,b , (2.18)

where aT b is a transformation from P1,a with the coordinate frame a to P2,b with the co-
ordinate frame b. The problem is well-studied with various closed-form solutions in the
literature and in the following, we discuss methods for the alignment of point clouds and
their association with maps.

2.3.3 Point-Cloud-based SLAM

Several algorithms align point clouds with an iterative approach, including Iterative Clos-
est Point (ICP) [128], [129], which is the basis of many methods used today. We refer to
Rusinkiewicz and Levoy for an early and Pomerleau et al. for a more recent review of vari-
ants [130] [131]. ICP alternates between a correspondence search and an optimization step.
Correspondences are identified based on the nearest neighbor search and subsequently, the
transformation is calculated by the minimization of an error metric describing the distance
difference within the correspondences. The iterations are necessary since nearest neighbor
searches are more likely to be able to find correct correspondences when the point clouds are
closer aligned (see Figure 2.7). It is also important to keep in mind that due to the repeated
searches for the nearest neighbor, the algorithm will only converge to a local minimum, so
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a sufficient prior is necessary. This issue also can be address using coarse alignment tech-
niques. In this regard, Al-Nuaimi outlines several approaches for coarse alignment methods
in his work [132]. However, to form a prior for SLAM application, it is assumed that the
previously determined position from the laser is sufficient enough. While the original algo-
rithm directly operates on points, a point-to-plane approach, with planes based on the point
normals, converges quicker [130].

(a) (b) (c) (d)

Figure 2.7: Iterative Closest Point (ICP) alignment after 0, 5, 10 and 20 iterations. The red point cloud
converges to the black one with each iteration. The iterations are necessary since nearest neighbor
searches are more likely to be able to find correct correspondences when the point clouds are more
closely aligned [131].

2.3.4 Feature-based SLAM

To improve the performance of ICP, feature-based methods select specific points that are
most likely to contain the most relevant information. After that, these points are also aligned
through an iterative process such as ICP. Zhang and Singh in 2014, described an algorithm
based on corner and plane points that are classified by the curvature of the surrounding
points, to assist in fast classification and alignment [133]. In the following section, we will
elaborate on their algorithm as it is a base for the work in this thesis. In a similar manner,
Gelfand et al. compute the covariance matrix of each point in order to achieve geometrically
stable matching [134]. Following this, Deschaud expands upon this concept and chooses
those points that have a high degree of observability [135].

2.3.5 Surfel-based SLAM

The surfel-based map is a method of representing detailed geometric information of an un-
derlying point cloud and is not dependent on particular feature formulations. As shown in
Figure 2.9 (a), for each Surfel Element (surfel), a position, a normal, intensity (color), and
a radius can be defined to form an ellipsoid and approximate a set of given points. Bosse
and Zlot divide the volume into a grid of voxels and calculate a surfel for each of them
[136]. Additionally, with an increasing number of grids, which are dynamically adjusted
based on distance and robot position, they dynamically adjust the voxel size of the grid. In
a similar way, Schadler et al. studied multi-resolution surfel maps, which are stored with an
octree structure for fast access to the data [137] (see Figure 2.9 (b)). Alternatively, Behley and
Stachniss save surfels as an unordered map along with the pose in order to make it easier to
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Figure 2.8: A sensor point cloud (white) is aligned to the map point cloud (colored) to determine the
sensor’s pose (three axis in red, green, and blue to show position and orientation). Height in the map
is indicated with a gradient in color.

modify the position during loop closures [138]. Moreover, Park et al. have used what they
call a dual surfel map, using both a 3D ellipsoid and a 2D disk surfel, [139].

(a)
(b)

Figure 2.9: A multiresolution surfel map. Surfels closer to the robot have a higher resolution than
those further away [137], [140]. (a) Schematic diagram showing the each attributes of a surfel. For
each Surfel Element (surfel), a position, a normal, intensity (color), and a radius can be defined to
form an ellipsoid and approximate a set of given points. (b) A Surfel Element (surfel) map with an
octree structure [137].

2.3.6 LiDAR Odometry and Mapping (LOAM)

LiDAR Odometry and Mapping (LOAM) was first introduced by Zhang and Singh as a
lightweight SLAM algorithm that can perform in real-time [141]. The approach is considered
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state-of-the-art and leads the rankings for the KITTI autonomous driving benchmark [142]
together with its spin-off Visual-LOAM (V-LOAM), which combines visual and laser ranging
measurements [143]. The goal of this algorithm is to reduce the number of computations for
simultaneous mapping and odometry by dividing the complex problem of SLAM into two
sub-processes. The first algorithm performs odometry in real-time but with low fidelity to
estimate the velocity of the LiDAR. The second algorithm runs at a lower frequency for map
building and it returns a newly calculated part of the map that corresponds to the recent
registered observations. Originally, pose estimation latency and update rate using LOAM
is limited to the frequency of the sweeps of the laser scanner. However, many derivative
researches have relied on the LOAM such as LEGO-LOAM [144] which is a lightweight and
optimized version for ground navigation. Likewise, Yan et al. used LOAM to merge visual
and laser data in their visual-LiDAR SLAM system [145]. While LOAM only implements an
algorithm to minimize the odometry drift, full SLAM solutions including loop closure exist
as well [146]. Further applications of LOAM exist for ground vehicles [147] [148], power line
inspection [149], and search and rescue missions [150]. Subsequently, as a base of our work,
we present the fundamental algorithm by Zhang [133].

2.3.6.1 System Overview

Several LiDAR systems can be utilized with LOAM, and the point clouds that result differ
slightly. Single-line laser scanners rotate around one axis, but to get a full 3D view they must
spin around another axis, perpendicular to the first. LiDAR systems can also be multi-lined
with each laser scanner positioned at an individual angle. Those already produce a 3D point
cloud without the need for additional actuation. However, the generated 3D point clouds
using the multi-line LiDARs have limited vertical FOV, normally 30 to 45 degrees [151]. In
the first approach, scan lines are crossed and recorded at differing times, whereas in the
second approach, scan lines are parallel and recorded at the same time. In the following ex-
planations, we refer to one full rotation of a laser scanner as a scan line and a set of related
scan lines as a sweep. Real-time capability is achieved by splitting the algorithm into two
parts. The odometry algorithm has a high frequency but low accuracy and is prone to drift.
A mapping algorithm also runs at a lower frequency, but with higher accuracy and less drift.
LOAM proposes frequencies of 10Hz and 1Hz respectively. The algorithms can be broken
down into three main parts: scan registration, odometry, and mapping, which are explained
in Figure 2.10. Since odometry and mapping are similar procedures, we will go into more
detail about the feature point extraction algorithm below.

2.3.7 Feature Point Extraction

To find features within the observed point cloud, LOAM determines the points belonging to
sharp edges and planar surface patches. To decide for a category, the smoothness c of each
point PL

(k,i) is calculated with the help of the set of adjacent points S within the same scan
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Figure 2.10: Overview of LiDAR Odometry and Mapping (LOAM). The LiDAR point cloud is first
registered, then matched against the previous scan and later against the map. Based on the map the
odometry pose is transformed for a high frequency output [45]. LOAM proposes frequencies of 10Hz
and 1Hz respectively. The odometry algorithm has a high frequency but low accuracy and is prone
to drift. A mapping algorithm runs at a lower frequency, but with higher accuracy and less drift.

Figure 2.11: Feature Point Selection. Point A is selected as a feature point. Point B is discarded be-
cause of the angle to the surface (left). Furthermore, Point C and D are also omitted because they are
part of an occluded scene (right) [133].

line by
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)
∥∥∥∥∥∥
, (2.19)

where L is the LiDAR coordinate system and k is the sweep number. The c values are nor-
malized so the distance to the laser scanner does not play a role in this context. All points are
then categorized based on a threshold u, where points with a larger c value are edge points
and points with a smaller c value are planar points. Furthermore, the flattest and sharpest
points are sorted and selected based on the smoothness for the subsequent steps. To achieve
a good distribution of those points, close neighbors to already selected ones are not consid-
ered. Additionally, each scan line is divided into multiple sub-regions, which can maximally
contain two edge points and four planar points. In addition, points that are close to the
boundary of an occlusion or that are oriented almost parallel to the laser beam are avoided
[152].

2.3.8 Voxel Grid Map

In this section we investigate how new registered point clouds can be accumulated and
builds up a map. The map is a voxel-filtered point cloud, which means the space of the
cloud is divided into voxel elements, usually cubes, with a fixed size [153]. If there are mul-
tiple points inside one voxel, a centroid, the arithmetic mean position of the points, approx-
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imates these points leaving only a single point in each voxel. This voxel-filtering effectively
averages over the measurement errors, and thus the feature points are closer to the actual
features they represent [154]. When a new point cloud set is added to the map, it is first
filtered with the same voxel size as the map and then the points are added to the map point
cloud [155]. This means some voxels now contain two or more points on average in the area
the points were added. Filtering again induces that the new scan points and map point are
valued 1:1 even though the map point represents the history of all the previous points in
that voxel. Thus, a single bad registration can shift the map points aggressively. To reduce
the possible map shift, the history of the previously observed points must be considered.
Therefore, the ith map point Pi,V inside the voxel V can be calculated as

Pi,V =
(i− 1)Pi−1,V + SV

i
, with P1,V = SV (2.20)

where SV is the new scan point falling into the voxel V . This effectively reduces map shift
and allows convergence towards the actual feature. Furthermore, the corresponding unique
voxel key KV from each point S = (sx, sy, sz)

T in the new scan is derived by

KV =




kx

ky

kz




=




⌊sx · rx⌋

⌊sy · ry⌋

⌊sz · rz⌋



, with kx, ky, kz ∈ Z (2.21)

where R = (rx, ry, rz)
T is the resolution of the voxel grid given as the inverse of the voxel

side lengths vx, vy and vz , and the function κ : KV → V is bijective. For fast access, we can
save the voxel keys either in a red black tree or hash tables. While the red black tree preserves
the geometrical structure, a hash-based access is generally faster. A hash key h is calculated
quickly with the voxel key KV = (kx, ky, kz) by

h = kx + (ky << s) + (kz << 2s), with h, s ∈ N0 (2.22)

where a << b is the bit shift operator, shifting the binary numbers a and b positions to the left
and s to be the shift number, which is adjusted according to the voxel grid resolution for op-
timal performance. With this structure we only save the voxel key KV , the latest map point
Pi,V , and the number of inserted points iV . For each voxel at least one point was inserted in
order to keeping the memory consumption at a minimum. Moreover, from the voxel grid an
octree could be derived for fast nearest neighbor searches without the need to recompute a
kd-tree after a new scan was added [156], [157].

2.4 Low-Latency 6D SLAM Using LiDAR-MIMU for Indoor Appli-
cations

Autonomous UAVs require a reliable navigation system to operate in challenging environ-
ments, such as GPS-denied or cluttered indoor areas [158], [159]. Tackling the general nav-
igation mission, one needs to address a set of problems ranging from 6D pose estimation
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Figure 2.12: A voxel grid map is a voxel-filtered point cloud, which means the space of the cloud is
divided into voxel elements, usually cubes, with a fixed size [153]. The values x,y, and z indicates the
size of the voxel. If there are multiple points inside one voxel (green points), a centroid, the arithmetic
mean position of the points, approximates these points leaving only a single point in each voxel (red
point).

Figure 2.13: Real-time localization of a UAV in an indoor environment using the proposed Simultane-
ous Localization and Mapping (SLAM) framework. It provides low-latency 6D pose estimation with
a high temporal update rate for autonomous navigation while generating a full-scale 3D map of the
environment.

to trajectory planning [160], [161]. In practice, the navigation task’s performance depends
mainly on the accuracy, update rate, and latency of the perception unit. For instance, the
trajectory tracking controller of a UAV requires a high-rate pose estimation (in the range of
0.1 to 1.0 kHz) with comparatively low latency (maximum up to 50 ms) to achieve a fully
autonomous flight [162]–[164]. In this context, latency is the time difference from the sensor
observation until the localization algorithm provides the estimated pose.

6D SLAM is mainly addressed in the literature by using multiple laser scanners, which
are installed in both horizontal and vertical frames [141], [165]. However, due to the weight
and processing constraints in UAV-based applications, in practice, the use of an actuated Li-
DAR is preferred rather than installing multiple or heavier sensors with an inherently larger
FOV [166], [167]. In this regard, different spinning mechanisms have been developed to be
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mounted on drones [168], [169]. Although generally successful, existing solutions come with
some shortcomings, such as long revisit time, blind spots, inconsistencies in scanning the
environment, and skewing issues. These shortcomings cause problems in determining the
correspondences within the point cloud data for 6D positioning [170], [171].

While LiDAR-based SLAM has been studied widely in the past decade for mobile robots
[106], [141], [146], [170], [172], there is still a major gap in utilizing these systems for real-
time navigation of UAVs. This is mainly because it is not possible to rely on an aerial vehicle
remaining sufficiently motionless. The drone position must be represented at a high tem-
poral update rate with low-latency to achieve stable closed-loop control. Addressing the
challenge mentioned above, continuous-time trajectory estimators were developed in the lit-
erature [173], [174]. However, due to the limited FOV and the substantial time needed for a
complete scan period of the LiDAR, estimating continuous odometry and global registration
introduces a significant latency and low-fidelity 6D pose estimation in such a system. To ad-
dress this issue, LiDAR-inertial SLAM systems use an additional Inertial Measurement Unit
(IMU) to produce high-rate pose updates [106]. They provide acceptable results for ground-
based mobile robots. However, as UAVs experience high dynamic motions and inevitable
high-frequency vibrations due to the propellers’ rotation, IMU-based approaches leads to
having a fluctuating pose estimation in such applications [175].

To meet these challenges, within the scope of this work, we propose a low-latency lo-
calization and mapping framework using scan slicing [2]. In our approach, the point cloud
data from a rotating laser scanner with 360° horizontal FOV is continuously sliced and used
for estimating the real-time 6D pose. Besides, we introduce a novel sensor payload design
in which a small, lightweight multi-line 360° laser scanner is actuated with a Lissajous pat-
tern. This structure is employed to reduce the revisit time and provides a dense point cloud
with consistency in scanning the environment [176], [177]. To this end, while UAV local-
ization using actuated LiDARs has been presented previously [45], [173], [178], [179], this is
the first work on scan slicing of an actuated rotating LiDAR, which is utilized for real-time
low-latency indoor localization.

2.4.1 6D SLAM Using Actuated LiDAR

Commonly used multi-line LiDARs, like the ones from Velodyne or Ouster, usually have a
vertical FOV between 15° and 45°. This perfectly fits the autonomous driving scenario be-
cause the car only moves in the xy plane and all relevant features are in sight. In literature,
this is known as 3D SLAM. However, other systems like drones can move in 6D and rapidly
change its motion. When mounting the laser scanner statically beneath the drone like one
would do on a car, 6D pose estimation becomes a problem (see Figure 2.13). Because the Li-
DAR measures distances, enough laser beams have to hit the horizontal and vertical surfaces
to achieve a sufficient accuracy. While in outdoor applications the downward measurement
along with AHRS might be sufficient to estimate the 6D position. However, in an indoor
environments, obstacles and walls can block the statically mounted laser scanner from reg-
istering points for vertical and horizontal surfaces. Additionally, for applications like the
inspection of a large object (e.g, airplane), it is necessary to fly over the object, which would
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greatly reduce the number of points recorded in the vertical direction. Considering a the pre-
viously covered issues for attitude and heading angle estimation using MIMUs and AHRSs
in indoor environment, the 6D pose estimation becomes even more challenging for such ap-
plications. This implies a widespread FOV is more suitable for such operation, specifically
considering the motion characteristic of mobile robots in general. Accordingly, Youji et al.
state that the relevant features are based on the movement of the robot [147]. Therefore, as
a base of this work, we rotate the laser scanner using external actuators perpendicular to
the inner laser measurement angle to increase the FOV. This active actuation is common in
drone-based applications with 2D range finders [44] [45], and yet concepts for typical passive
actuation also exist [173]. Furthermore, manipulating the laser scanner solves another issue
compared to the static mount: As long as the robot is stationary or relevantly motion-less
the map consists solely of limited spaced out lines and only with applied motion the map
can be extended. However, if the laser scanner is already actuated while the robot is encoun-
ters motion-less moments, a dense partial map of the environment is created, which helps to
detect the velocity and the 6D pose of the robot with more confidence.

2.4.1.1 Actuation Models

We determined several models to actuate the laser scanner. The typical one is a rotation
around a single axis where one can choose different axes. We modeled two actuations within
the scope of this work. The first one is a ±40° rotation around the vertical axis. The other
one is a ±40° rotation around both horizontal and vertical axes. These methods increases
the vertical FOV from 30° to 120°. Although Yoshida et al. developed a motion that can
be controlled by a single motor, it can also be performed with rotations around the pitch
and roll axes [180] independently. Because we perform the movement with two motors, the
additional degree of freedom allows us to dynamically change the horizontal and vertical
observation time. We calculate the angles for the motors at every time point t with

pitch(t) = α(t) · sin(ψ(t))
roll(t) = α(t) · cos(ψ(t))

(2.23)

where α(t) is the opening angle and ψ(t) the rotational angle. Furthermore, as is shown
in Figure 2.14, the two-axes actuation creates a more uniform distribution of measurements
than the single axis one as previously discussed.

2.4.2 MIMU Utilization

LiDAR-only pose estimation process underestimates acceleration and the angular velocity
for 6D ego-motion estimation [181]. This is mainly is because of data acquired during con-
tinuous vehicle motion suffer from geometric motion distortion and can subsequently re-
sult in poor metric estimates. An inertial measurement unit (IMU) in turn is equipped with
multi-sensors and the fusion of MIMU and other sensor data has been proven to increase lo-
calization performance [103], [106]. Even though the original LOAM utilized an acceleration
from an IMU, attitude and heading estimation from multi-MIMU support is not included,
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Figure 2.14: Distribution of measurements on the unit sphere based on the actuation. Point clouds are
colored based on the density of measurements. A sinusoidal movement around one axis has a high
density close to the axis (green) and a lower one outside (red) (left). A rotation based on Equation 2.23
is evenly distributed (right). Both point clouds have an α of 40° [2].

and thus we establish how to integrate it into the SLAM structure. To get a reliable attitude,
heading, and the position from the multi-MIMU measurement one has to fuse the data us-
ing probabilistic approaches, which means errors accumulate quickly. However, this can be
compensated with the LiDAR data. While the strength of the ego-motion estimation process
lies in the linear movement estimation, the strength of the multi-MIMU is the detection of
changes in angular and translational movements. We therefore combine the multi-MIMU
measurements and the 6D ego-motion estimation with an EKF and set the result as a prior
for the scan to map matching process. This combined prior improves the mapping as a better
prior enables the convergence to the right local minimum. Furthermore, a prior closer to the
local minimum also reduces the optimization time as fewer iterations are needed because the
corresponding points from the two point sets are already closer to each other.

2.4.3 Low-Latency Ego-Motion Estimation

State-of-the-art laser scanners rotates with an average of 1200 Rounds Per Minute (RPM) and
provides up to 1,000,000 points per second. In a best possible way, a 360° scan is available
every ωscan = 50 milliseconds and contains several thousand measurements. The laser scan-
ner is continuously measuring and creates a constant output stream associated with time
and angle. These measurements are accumulated over time at the driver level. When the
laser scanner completes a full 360° scan, it releases all the recorded points as a single sweep.
State-of-the-art SLAM frameworks are developed based on these 360° scans for ego-motion
estimation[146], [172], [175]. In practice, the point cloud arrival rate defines the frequency of
the pose estimation. However, the ego-motion estimation can be performed after any other
measurement, which means 360° is an arbitrary margin, and individual measurements can
be bundled freely.

Although it is reasonable to compare complete 360° scans in the odometry unit; we show
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later in the proposed localization framework that our SLAM model does not depend on the
odometry unit in comparison to the typical models. The proposed SLAM framework uses
continuous slices of a full 360° scan for low-latency localization using direct scan matching
on the global map. The main intention of the proposed Continuously Slicing Point Cloud
(CSPC) is to gather smaller collections of measurements that can be used in a successive man-
ner instead of waiting for a full 360° scan. In this context, describing the term continuous in
other words, we collect the measurements from the upcoming scan into a small point cloud
slice for the last θ angle (i.e., only the data of the measurements within the last θ = 45° of the
rotation), and provide them one after another to the ego-motion estimation process. Slicing
of the points is developed in the driver level of the laser scanner, and the CSPC is published
at a rate of 1

∆q Hz. We utilized message publishing system developed by Robot Operating
System (ROS). Considering each slice is generated from the last θ = 45° of the rotation of
the LiDAR, each slice is available every ∆q = 6.25 ms and noted by Pq with q indicating the
last observed slice. With less angular coverage, the point cloud becomes more ambiguous
because opposing features are missing to prevent misguided shifts during optimization in
the pose estimation. However, the new measurements can be integrated with old ones to
achieve the necessary number of measurements to ensure correct matching. For instance,
we can add the new slice (θ = 45°) to the previously registered slices within the last 315°, in
order to obtain a repeatedly full 360°scan, however, at a much higher update rate. While the
reuse of past measurements does not affect the achieved update rate, the system’s real-time
performance needs to be carefully investigated due to the increase in computational usage.

2.5 Chapter Summary

This chapter introduced the most relevant background needed to better comprehend the rea-
soning discussed and the concepts proposed in this work. The first part addressed the basics
of sensor systems, which are then used to detail the acquisition strategies for the creation
of multi-MIMU fusion and point cloud based SLAM. The transition from external reference
systems to laser scanning data acquisition is made to emphasize the challenges of acquiring
LiDAR-MIMU footage. State-of-the-art technologies that approach the attitude and heading
reference estimation are presented and thoroughly debated. Further topics that thematically
relate to the overall goal of low-latency 6D SLAM, such as Feature-based SLAM, are further
introduced and discussed. The prior arts’ advantages and drawbacks are compared to the
properties of the proposed low-latency 6D SLAM using LiDAR-MIMU system.



Chapter 3

Skewed-redundant Hall-effect
Magnetic Sensor Fusion for
Perturbation-free Indoor Heading
Estimation

3.1 Perturbation-free Heading Reference Estimation based on
Skewed Redundant MIMU Fusion

It is an essential component of indoor localization in robotic applications to accurately esti-
mate the current attitude and heading in relation to a known reference. Affordable Attitude
and Heading Reference System (AHRS), typically use 9-axis solid-state MEMS-based sensors
to determine attitude and heading. Such a system relies on the accuracy of measuring the
Earth’s magnetic field to estimate heading. In contrast, measures of the Earth’s magnetic field
using MEMS-based magnetometer sensors in an indoor environment are strongly affected by
external magnetic disturbances. In this chapter, we present a novel approach for robust in-
door heading estimation using skewed redundant magnetometer fusion. Based on hall-effect
magnetic sensors, a tetrahedron-shaped platform is designed for the purpose of determining
Earth’s magnetic field and for compensating for anomalies in external magnetic fields. In
addition, a correlation-based fusion technique is presented to mitigate perturbations using
the proposed skewed-redundant configuration. In the proposed fusion technique, we use a
correlation coefficient analysis to determine the distorted axis and extract the perturbation-
free vector of Earth’s magnetic field from the redundant magnetic measurements. Accord-
ing to our experimental results, the proposed scheme is capable of effectively mitigating
the anomalies in magnetic field measurements, and is capable of accurately estimating the
Earth’s true magnetic field. This evaluation was the base for the deep-fusion based approach
where covers a more comprehensive solution to attitude and heading estimation covered in
the consecutive chapter.
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Abstract—Robust attitude and heading estimation with respect
to a known reference is an essential component for indoor local-
ization in robotic applications. Affordable Attitude and Heading
Reference Systems (AHRS) are typically using 9-axis solid-state
MEMS-based sensors. The accuracy of heading estimation on
such a system depends on the Earth’s magnetic field measurement
accuracy. The measurement of the Earth’s magnetic field using
MEMS-based magnetometer sensors in an indoor environment,
however, is strongly affected by external magnetic perturbations.
This paper presents a novel approach for robust indoor heading
estimation based on skewed-redundant magnetometer fusion.
A tetrahedron platform based on Hall-effect magnetic sensors
is designed to determine the Earth’s magnetic field with the
ability to compensate for external magnetic field anomalies.
Additionally, a correlation-based fusion technique is introduced
for perturbation mitigation using the proposed skewed-redundant
configuration. The proposed fusion technique uses a correlation
coefficient analysis for determining the distorted axis and extracts
the perturbation-free Earth’s magnetic field vector from the
redundant magnetic measurement. Our experimental results
show that the proposed scheme is able to successfully mitigate
the anomalies in the magnetic field measurement and estimates
the Earth’s true magnetic field. Using the proposed platform, we
achieve a Root Mean Square Error of 12.74° for indoor heading
estimation without using an additional gyroscope.

I. INTRODUCTION

Attitude and heading estimation is one of the fundamental
requirements for robotics, human machine interaction, and
navigation in indoor environments [1]–[3]. The ability of self-
localization for autonomous systems (e.g., unmanned aerial
vehicles, mobile robots) or prediction of head motion for
teleportation or virtual reality applications [4], [5], similarly,
crucially depend on the reliable estimation of attitude and
heading angles [6]–[8]. The result of camera-based or LiDAR-
based SLAM systems, for instance, becomes more reliable by
utilizing robust attitude and heading information which can
be attained mainly from an Attitude and Heading Reference
System (AHRS) or an Inertial Measurement Unit (IMU) [9]–
[11]. The main difference between an AHRS in contrast to
the IMU is the preprocessing of the sensory data in order
to provide absolute orientation estimation with respect to the
Earth’s geometrical characteristics. The known reference of
AHRS comes from the Earth’s gravitational and magnetic
field. In this regard, attitude estimation refers to the angular
measurement on the vertical plane, with respect to the local

Fig. 1: Skewed-redundant magnetometer platform. The measurement
point p is defined as the virtual center of the multi-magnetometer
measurement system. A correlation-based fusion method is used
for the mitigation of external magnetic field anomalies and robust
heading estimation in an indoor environment.

level frame, and is computed as inclinations. Similarly, angular
measurement on the horizontal plane, with respect to the
geographical true north, is referred as heading angle (also
known as yaw or azimuth) [12].

Affordable AHRSs are typically using small-scale sensors
based on Micro-Electro-Mechanical Systems (MEMS). The
MEMS-based sensors have the advantages of low cost, low
power consumption, and high update rate. A general 9-
DoF AHRS consists of a 3-DoF accelerometer, a 3-DoF
gyroscope, and a 3-DoF magnetic field meter. Exploiting the
complementary nature of the MEMS-based inertial sensors, 3-
DoF accelerometers along with 3-DoF gyroscopes are mainly
fused for attitude estimation [13]. Similarly, the MEMS-based
AHRSs are mostly using a single 3-DoF magnetometer to mea-
sure the magnetic field strength and utilizing the previously
determined relative calibration values to extract the Earth’s ge-
ographic azimuth. In practice, the azimuth estimation from the
magnetometer is fused with the gyroscopes to provide more
stable heading estimation. Nonetheless, the general accuracy
for heading estimation on such a AHRS highly depends on
the Earth’s true magnetic field measurement.

Determining error-free and reliable heading estimation with
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respect to a known reference is problematic in case of indoor
applications. This is mainly because of different sources
of errors in the MEMS-based magnetometer measurements
[14]–[17]. The most dominant source of error for such a
magnetometer sensor, however, is the interference of the
external magnetic field in an indoor environment. Permanent
magnets and ferromagnetic materials are the main cause of
such a magnetic perturbation. In this regard, calibration of
the MEMS-based magnetometers for heading estimation has
been investigated thoroughly during the last decades [14], [18].
Probabilistic models for sensor calibration and fusion such as
the Extended Kalman Filter (EKF), the Unscented Kalman
Filter (UKF), and Ellipsoid Fitting are well known in this
field [19]–[22]. However, dynamic magnetic deviation caused
by external anomalies cannot be fully compensated using the
sensor calibration methods. To overcome the aforementioned
problem, redundant sensor systems have shown promising
results as they are using redundant measurements to determine
the source of error and increase the estimation accuracy [23]–
[25].

Multiple magnetometers in combination with gyroscopes
were used to approximate the external magnetic disturbances
and to provide perturbation-free heading estimation [24], [26]–
[28]. In these works, the authors used an estimation of the
expected magnetic field using the temporary rotation vector
to compensate the external magnetic perturbation. These ap-
proaches need a precise and simultaneous calibration of the
magnetometers and the gyroscopes to be able to provide an
acceptable heading estimation. In [29], a magnetic heading
compensation method for disturbances introduced by near-
surface interference was proposed. The authors used inverse
magnetic anomaly vector estimation to compensate for the
external perturbation. The main limitations of this approach
are the predefined magnetic field model and one-dimensional
perturbation mitigation. In general, these approaches are usu-
ally bulky, expensive, and often rely on expensive calibration
procedures. Nonetheless, it has been shown that the accuracy
of the magnetic field measurement is significantly improved
by using redundant magnetometer sensors [30]–[33]. However,
the non-deterministic errors cannot be completely removed in
real application scenarios due to their transient nature. This
is mainly because of limitations in the system identification
procedure, non-linear dynamic errors, and the use of strict cal-
ibration models. The skewed-redundant inertial sensor fusion,
on the other hand, provides more reliable output, as shown in
[34]–[37]. The skewed axes configuration for redundant sensor
geometry has been widely investigated for attitude estimation
by applying this method on accelerometers and gyroscopes.
However, this method has been poorly investigated for the
redundant magnetometers.

Inspired by the success of redundant integrated sensors for
processing high-dimensional sensor data [24], [26], [38], and
the benefits of redundant, non-orthogonal sensor structures
[38]–[41], we propose a skewed-redundant magnetometer plat-
form for perturbation-free heading estimation. The approach
undertaken in this paper relies on the use of redundant sensor
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Fig. 2: Components of the Earth’s magnetic field and the abstraction
of the heading estimation using a 3-axis magnetometer.

information to enhance the global performance of the heading
estimation while ensuring the system’s integrity. Unique non-
orthogonal placement of the triple 3-axis magnetometer is
designed based on the Hall-effect sensors principle in order to
mitigate the external magnetic perturbation by extracting the
distracted signals. The proposed approach uses a correlation-
based sensor fusion method for external magnetic perturbation
mitigation and robust heading estimation (Fig. 1). The skewed-
redundant magnetometer platform and correlation-based filter
and fusion strategy shows substantial improvement in heading
estimation accuracy in an indoor environment. Our contribu-
tions can be summarized as follows:
• We introduce a skewed-redundant magnetometer platform

based on the Hall-effect magnetic sensor principle in
order to mitigate the external magnetic perturbation.

• We propose a filter model based on correlation analysis
and investigate the proposed platform for reliable estima-
tion of the Earth’s magnetic field.

• Moreover, we validate our approach by means of using
the proposed setup in an indoor environment to prove
its general validity. We show its superior performance in
contrast to the naive approach or KF-based fusion, where
no perturbation compensation is applied.

II. MAGNETIC FIELD COMPONENTS AND HEADING
ESTIMATION USING MAGNETOMETERS

A combination of a 3-axis accelerometer, a 3-axis gyro-
scope, and a 3-axis magnetometer is typically used in low-
cost AHRS sensors. The estimated angles are defined as the
corresponding Euler angles roll (α), pitch (β ), and yaw (γ).
In order to improve the robustness of the roll and pitch
estimation, the measurements provided by the gyroscope and
accelerometer are typically fused. The magnetometer, on the
other hand, can be complemented using the gyroscope for
heading estimation. Heading estimation with respect to a
known reference can be performed by considering the fact
that solid state magnetometers are used for measuring changes
in the strength of the Earth’s magnetic field. Dominant tech-
nologies for the solid state MEMS-based magnetometers are
based on the Hall-effect or the Magneto Resisting effect [17],
[42]. Considering that the magnetic field is a vector field, it is
characterized by its magnitude and direction or its components
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along the coordinate axes. A sensor with at least three axes is
required to determine the Earth’s magnetic field vector (Fig. 2).
In a Cartesian coordinate system at the measurement point p,
the magnetic field vector Bp can be defined as

Bp = Bp,x i+Bp,y j+Bp,z k , (1)

where the x-axis is oriented along the geographical meridian,
and the direction to the north is positive, the y-axis along
the parallel with positive direction toward the east and the
z-axis is directed downward. The observation point p is the
origin of the measurement coordinate system. The angle I
between the horizontal plane and the vector Bp is called the
inclination [43]. The local magnetic declination D, sometimes
called magnetic variation, is the angle between the magnetic
north and the true north. Accordingly, the Earth’s geographic
azimuth ψp can be derived by considering the local declination
D and the perpendicular components of the measurement
vector Bp as

ψp = tan−1

(
Bp,y

Bp,x

)
±D . (2)

The magnetic field of a dipole, similarly, is characterized
by its magnetic moment M. The strength and direction of
this field depends not only on the magnitude of the magnetic
moment, but also on its orientation relative to the direction of
the magnetic field [43]. In the presence of multiple dipoles,
the magnetic field Mg is defined by the sum of all magnetic
moments Mi and is given by

Mg = ∑Mi . (3)

The curl of the magnetic vector potential, the magnetic field
Bp, is governed by the density of magnetic moments at
the measurement point and is derived classically using the
Biot-Savart law [44]. The combined field can change the
measurement field vector Bp due to the presence of multiple
dipoles. This change in the magnetic field is the leading cause
of heading errors in an indoor environment. As shown in
Fig. 3, the effect of the external magnetic field on the p-
type Hall element depends highly on the orientation and the
distance of the external magnetic moment to the perpendicular
sensing axis [45]. Moreover, a minimum number of three
Hall elements perpendicular to each other is required to
determine the magnetic field Bp as it is shown in Eq. 1.
This implies that the measuring axis with the lowest angle
to the external magnetic anomaly will report a non-correlated
measurement compared to the other axes. Additionally, in
a perturbation-free environment, the norm of the magnetic
field vector measurement should be equal to the magnitude
of the Earth’s magnetic field. This norm, Hp can be extracted
from the Earth’s geomagnetic model [46]. The aforementioned
principles are the main motivation of proposing the skewed-
redundant magnetometer platform (see Fig. 1).
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Fig. 3: Single-axis Hall-effect sensor principle [45]. The output
signal from a Hall-effect sensor is a function of the magnetic field
density around the device. A minimum of three perpendicular axes
is needed for the magnetic field vector measurement.
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Fig. 4: Output signals from a skewed-redundant magnetometer sen-
sor at measurement point p and the effect of the external disturbance
on the specific sensing axes, which are perpendicular or have a small
angle to the source of the external magnetic moment.

III. SKEWED-REDUNDANT MAGNETOMETER PLATFORM

A significant outcome in [13] is that an ideal setup of
redundant inertial sensors in terms of fault tolerance is a
”skewed” configuration in which the delicate axes of each tri-
axial sensor are not aligned and transformations are performed
to align them in a virtual coordinate frame. This method has
been examined on inertial sensors such as accelerometers as
well as gyroscopes and showed a significant improvement
in the measurement accuracy [34], [36], [37]. Following the
concept of the skewed-redundant inertial sensor, we propose
a skewed-redundant magnetometer platform and analyse its
performance.

From the sensor data, it is observable that the perpendic-
ular axis to the external magnetic anomalies can be affected
dramatically. The pattern of this change in the data is recog-
nizable, and this motivates us to examine different mounting
structures with redundant magnetometers. It is difficult to
determine which configuration yields the best performance
since the large number of possible arrangements makes it
difficult to derive a deterministic relation between the system
errors and the configuration parameters. We investigated more
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Fig. 5: Tetrahedron configuration model of the skewed-redundant
magnetometer platform using three 3-axis magnetometer sensors.
The virtual coordinate frame for the measurement are shown with
the center point p, and only two sensor frames are depicted for
simplification.

TABLE I: Formation of the extracted Direction Cosine Matrix for
the skewed-redundant tetrahedron platform depicted in Fig. 5.

Frame Direction Cosine Matrix (DCM)

Rp
ℑ,1 =

⎡
⎣
−cos(45°) 0 sin(45°)

0 −1 0
sin(45°) 0 cos(45°)

⎤
⎦

Rp
ℑ,2 =

⎡
⎣

cos(45°)cos(−60°) −cos(45°)sin(−60°) sin(45°)
sin(−60°) cos(−60°) 0

−sin(45°)cos(−60°) sin(45°)sin(−60°) cos(45°)

⎤
⎦

Rp
ℑ,3 =

⎡
⎣

cos(45°)cos(60°) −cos(45°)sin(60°) sin(45°)
sin(60°) cos(60°) 0

−sin(45°)cos(60°) sin(45°)sin(60°) cos(45°)

⎤
⎦

than ten different configurations and analyzed the data to
determine for which of them the external disturbance is per-
ceivable by considering the minimum number of axes and the
coverage orientation. The skewed configuration in comparison
to the orthogonal structures showed better results. Using a
tetrahedron skewed configuration [47], we recorded the data
shown in Fig. 4, which illustrates that the axis which has
the minimum angle difference to the source of the external
magnetic perturbation, reports uncorrelated output while the
other axes of the magnetic measurements are less impacted.

To determine the Earth’s true magnetic field, we consider
the measured magnetic field as a combination of the external
magnetic perturbation and the Earth’s magnetic field. Taking
Eq. 3 into consideration, the measured magnetic field BQ in
the sensor frame with center point ℑ can be defined as

BQ
ℑ = BE

ℑ +Bε
ℑ , (4)

where Bε
ℑ is the external magnetic field disturbance and BE

ℑ is
the local Earth’s magnetic field. To have all the true signals
in the measurement point p, sensor data needs to be aligned

to a defined virtual coordinate frame with the center point
p. Additionally, we normalize the measured magnetic field
vector to be able to use the correlation analysis later for sensor
filtering and fusion. We can define BQ

p,k for each sensor k using

BQ
p,k = Rp

ℑ,k

[
BQ

ℑ,k,x∥∥∥BQ
ℑ,k

∥∥∥

BQ
ℑ,k,y∥∥∥BQ
ℑ,k

∥∥∥

BQ
ℑ,k,z∥∥∥BQ
ℑ,k

∥∥∥

]T

, (5)

where Rp
ℑ,k is the Direction Cosine Matrix (DCM) with

respect to roll (α), pitch (β ), and yaw (γ) angles. The angles
roll, pitch, and yaw are the representative rotation of the 3-
axis magnetometer from the sensor coordinate frame with
the center point ℑ around the virtual coordinate frame with
the center point p. Based on the skewed configuration, the
proposed structure with the mounting angles is depicted in
Fig. 5. A rotation matrix can be defined for an individual
sensor k according to the static angles using

Rp
ℑ,k =

⎛
⎜⎝

cβcγ −cβ sγ sγ
cαsγ + sαsβ sγ cαcγ− sαsβ sγ −sαcβ
sαsγ− cαsβcγ sαcγ + cαsβ sγ cαcβ

⎞
⎟⎠ . (6)

Similarly, Table I shows the extracted Direction Cosine Matrix
from the generic rotation matrix defined in Eq. 6 for each
of the three sensors in the tetrahedron skewed-redundant
platform.

IV. SKEWED-REDUNDANT MAGNETOMETER FUSION

The main source of magnetometer errors are the sensor
offsets, scale factor, non-orthogonality, and magnetic deviation
[24], [48], [49]. The latter is based on the magnetization
characteristics of the sensor and can have a static or dynamic
source. The static magnetic deviation error consists of soft- and
hard-iron parts. In this paper, we are not going to the details
of the sensor hard-iron and soft-iron calibration procedure.
We assume the measured magnetic field BQ

p,k is calibrated by
using the method described in [14]. Additional to the static
magnetic deviation error which can be addressed by applying
the offline calibration, the dynamic magnetic deviation error
is still problematic and subsists as the most dominant error
source. The proposed multi-magnetometer fusion, therefore,
uses dynamic weighting based on the normalized correlation
coefficient analysis to filter the axes affected by the external
disturbance. This mitigates the external dynamic magnetic
field perturbation and allows for the estimation of the true
Earth’s magnetic field. Let us define the true Earth’s magnetic
field vector BF

p as

BF
p =

n

∑
k=1

JkMk(Sp,kBQ
p,k +bp,k +Wp,k(t)) , (7)

where n = 3 is the number of sensed magnetic field vectors
that are transformed to the measurement point p in the skewed-
redundant multi-magnetometer setup, Sp,k is the scale factor of
the sensor k, bp,k is the bias vector, Wp(t) is the white noise
vector, Mk represent the skew-symmetric misalignment matrix
and Jk is the adaptive correlation-based identity dynamic
weighting matrix.
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We use the general definition of the Sp,k and Mk for the
proposed magnetometer sensor setup from [31], and [25].
It should be noted that separating all components of the
encountered errors for the magnetometer platform requires
unique setups (e.g., turning tables) and is hard to accomplish.
However, this is not essential in the case of the MEMS-based
sensors because some error elements predominate and the error
model can, therefore, be simplified [50], [51].

The biases bp,k are approximated for each 3-axis magne-
tometer sensor and can be defined as

bp,k = bC
k +bRC

k +bGM
k (t)+bRW

k (t)+bBI
k (t) , (8)

where bC
k are the constant components of the bias vector and

can be extracted from sensor design characteristics, bRC
k is the

stochastic process with maximum constant value which is ex-
tracted from the hard-iron calibration procedure and having the
distribution bRC

k �N(μb
k ,σ

b2
k ). The bGM

k is a first-order Gauss-
Markov stochastic process applied on the sensor constant bias
estimation. Constant biases of the sensors are extracted from
the standard deviation of the measurements considering that
each measurement is a discrete sample measurement at t [52].
Therefore, bGM

k is defined as

ḃGM
k (t) = ζ .bGM

k (t)+Ek(t) , (9)

where ζ = 1/T is the inverse of the correlation time with the
initial condition

lim
t0→∞

bGM
k (t0) = 0 ,

and Ek(t) is a zero-mean Gaussian white-noise process which
is applied on the sensor constant bias vector. We denote the
finite bandwidth of the respective magnetometer data by Δ f ,
which can be calculated from the auto-correlation function as
expressed in [53]. The Nyquist-Shannon sampling rate equals
2Δ f which is equal to two samples per period T . Hence,
defining T/2 as the correlation time, the Nyquist sampling
rate ζ is equal to the inverse of the correlation time. The
bRW

k (t) is a random walk stochastic process defined as

ḃRW
k (t) = Ek(t)

with the initial condition bRW
k (t0) = 0. The bBI

k (t) are the bias
instabilities which were added to the original model developed
in [30] and [54] to describe more precisely the noise char-
acteristics observed for the skewed-redundant magnetometer
platform (see Fig. 5). We use the same definition of the
proposed bias instabilities vector as in [30]. The white noise
process Wp,k is defined as

Wp,k(t) = σw
p,k Ek(t) , (10)

where σw
w,k are the standard deviation of the measurements.

The fixed parameters (i.e., the constant components of the
scale factors) and bias vector components were estimated
with a classical least-squares parametric compensation. The
remaining parameters were estimated with variance analysis
techniques, as explained in [30] and [55].

b)a)

Fig. 6: Structure of the 3D printed model of the tetrahedron platform
with the illustration of the dimension of the module.

The adaptive correlation-based identity dynamic weighting
matrix Jk, which is used for identifying the external perturba-
tion using the correlation analysis is defined as

Jk =

⎛
⎜⎜⎜⎝

ωk,x

‖ωk,X‖ 0 0

0 ωk,y

‖ωk,Y‖ 0

0 0 ωk,z

‖ωk,Z‖

⎞
⎟⎟⎟⎠ , (11)

while the individual component of the dynamic weight vector
ωk is defined as the correlation between each axis and the
corresponding axes measuring the same direction of the mag-
netic field in the virtual measurement point p. For the triple
measurement, we can define

ωk =

[∣∣∣ρxη ,xaxb

∣∣∣
∣∣∣ρyη ,yayb

∣∣∣
∣∣∣ρzη ,zazb

∣∣∣
]T

, (12)

while the normalization term in the identity weighting matrix
for the number of n sensors can be defined from all the
corresponding axes using

∥∥ωk,N
∥∥=

n

∑
i=1

∣∣ωi,N
∣∣ . (13)

Eventually, the joint correlation coefficient ρ between the cur-
rent axis measurement η and the two similar non-orthogonal
axis a and b, which are rotated using the Rp

ℑ,k from the
measurement sensor frame with the center point ℑ to a virtual
frame with the center point p, can be calculated by

ρη ,ab =

√√√√ r2η ,a + r2η ,b +2rη ,arη ,bra,b

(1− r2a,b)+ ε
, (14)

while ε is usually taken as a small value to prevent dividing
by zero. The last λt (i.e., t = 100ms at 100Hz sensor sampling
rate system a queue that considers the last 10 observations)
sets of the measured data have been considered for the joint
correlation calculation. In other words, a queue with a size of
λt is used for calculating the average in the correlation calcu-
lation. Based on the basic concept of the Pearson correlation
coefficient [56], rχ1,χ2 between two sensor measurements (i.e.,
the measurement η and a in Eq(14)) can be defined as

rχ1,χ2 =
∑λt

i=1(χ1i −χ1)(χ2i −χ2)√
∑λt

i=1(χ1i −χ1)
2
√

∑λt
i=1(χ2i −χ2)

2
, (15)
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Strong Magnet

Skewed-Redundant 
Magnetometer

Fig. 7: Test setup of the skewed-redundant magnetometer platform
in an indoor environment using the MAVI robot platform [57].

while the Pearson correlation coefficient is a measure of the
linear correlation between two variables χ1 and χ2 and has
a value between -1 and +1, where 1 is total positive linear
correlation, 0 is no linear correlation, and -1 is total negative
linear correlation. Further, the average values χ1 and χ2 are
calculated from the last λt sets of the measured data. Lastly,
considering Eq. 7, and taking the BF

p as a magnetic field vector,
the heading estimation can be extracted from Eq. 2.

V. EXPERIMENTAL RESULTS

We designed a skewed-redundant magnetometer sensor
platform and used the described correlation-based fusion to
estimate the true Earth’s magnetic field in an indoor envi-
ronment. To evaluate the proposed method and mitigate the
external magnetic field perturbation, a tetrahedron configu-
ration is utilized and the azimuth angle estimation has been
performed using the proposed fusion approach. We designed
a 3D printed frame for mounting the sensors in a skewed-
redundant structure. The designed sensing platform consists
of three 3-axis AK8963C magnetometer sensors from Asahi
Kasei Microdevices Corporation. The sensors are located on
the planar surface of the 3D printed tetrahedron frame as
shown in Fig. 6.

In order to evaluate the heading estimation and data record-
ing, we used two different setups: one is a stationary platform
mounted on an absolute rotary shaft encoder which can be ro-
tated while providing the absolute orientation, and the second
is the mobile robot platform MAVI [57] with the ability of self-

TABLE II: Root Mean Square Error (RMSE) of the proposed fusion
system (λt = 10 and λt = 50) compared with the Kalman filtered
aproach as well as the raw heading estimation. The measurement
is a result of observation for over 100 iterations with and without
external magnetic field perturbation.

Heading Estimation No Perturbation With External Perturbation

Raw Estimation 16.79 63.41

(R
M

SE
)[°]

Kalman Filter 12.28 36.65
Proposed [λt = 10] 11.92 18.60
Proposed [λt = 50] 10.37 12.74

localization using Inertial-LiDAR fusion (Fig. 7). In the first
scenario, the computed heading from the turning encoder on
a static table is used as a reference to assess the performance
of the proposed method. We consider the offset of the heading
reference that is calculated from the absolute shaft encoder to
the Earth’s true magnetic heading using the Earth’s magnetic
model [46].

The proposed fusion method has been tested in multiple sce-
narios portraying different magnetic configurations artificially
introduced by permanent magnets or ferromagnetic materials.
The comparison with the heading direction estimated from
the raw and Kalman filtered data is shown in Table II. We
used all the nine axes of the skewed-redundant magnetometer
for the Kalman filter, but only one axis has been considered
for naive heading estimation in the experiments. The result
of the heading estimation (Fig. 8) using the correlation-based
fusion shows the improvement and robustness in the presence
of the external magnetic field anomaly. We achieved a RMSE
of 12.74° in an indoor environment by using only the skewed-
redundant magnetometer data fusion with no help of the gyro-
scopes. We also tested the proposed system in a large outdoor
area with no additional permanent magnet or ferromagnetic
material presence in the near surroundings. The result of
this experiment shows that the output of the proposed fusion
algorithm with no external disturbances provides a similar
heading estimation accuracy as the Kalman filter approach.
Furthermore, all the results are validated on an internally
recorded dataset in our lab with more than 1.2 million sample
sets which are encountered with and without external magnetic
anomalies.

Additionally, we used the MAVI platform to perform a head-
ing estimation using the Inertial-LiDAR localization system
and used it as a reference for error calculation of the heading
estimation in a diverse indoor environment. The experiment
was conducted using a predefined trajectory followed by the
MAVI platform while the estimated heading of the localization
system is compared with the proposed fusion approach. In all
the tests, the offset of the heading in the starting moment
has been set to zero. As shown in Fig. 9, the average error
encountered within the different environments is variable. This
is caused by the changes in the external magnetic anomalies.
The fluctuations observed for various indoor environments
in the processed probability distributions indicate that the
influences of magnetic disturbances on heading estimation
are highly reliant on the construction of the building and
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Fig. 8: Experimental result of the proposed method in comparison
with no-filter magnetic sensor data and the Kalman filter for heading
estimation in the presence of external magnetic field perturbations.
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Fig. 9: Error of the heading estimation using the proposed method
in different indoor environments in the presence of external magnetic
field perturbations.

surroundings. Although the external anomalies were diverse
from magnetic characteristics in tested indoor environments,
the average error for azimuth estimation within these tests
shows the reliability of the proposed approach.

VI. CONCLUSIONS

In this paper, we proposed a skewed-redundant magne-
tometer fusion approach for robust heading estimation in an
indoor environment. We provided a description of heading
estimation using the Earth’s magnetic field and the different
sources of perturbation for heading estimation in the presence
of the external magnetic anomalies. We showed the prin-
ciple of the Hall-effect magnetic sensors and analyzed the
source of the external magnetic field on a 3-axis MEMS-
based magnetic sensors. Inspired from the skewed-redundant
configuration, we designed a tetrahedron platform using triple
3-axis magnetometer in order to detect and mitigate the
magnetic perturbations. In order to filter the sensory data and
mitigate the external disturbances, we proposed a correlation-
based fusion approach for multi-magnetometer platforms. We
further investigated the suggested method in different indoor
environments and validated the algorithm using the internally

recorded dataset. Additionally, experiments using a mobile
robot platform have been conducted in diverse scenarios to
verify the generality of the proposed fusion method by means
of robust heading estimation using the skewed-redundant mag-
netometer platform.

In future work, we plan to use a deep neural network to
enhance the quality of the estimation. Additionally, in cases
where there is a constructive disturbance along with changes
in user dynamics, the perturbation mitigation approach will be
further enhanced to take into account the uncertainty between
perturbation and agent motion. Furthermore, the effect of the
number of the sensing axes on the estimation of the true
Earth’s magnetic field needs to be studied using analytical
models.
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Chapter 4

Deep Fusion of a Skewed Redundant
Magnetic and Inertial Sensor for
Heading State Estimation in a
Saturated Indoor Environment

4.1 Attitude and Heading Reference Estimation based on Skewed
Redundant MIMU Deep Fusion

It is indispensable for various robot applications to be able to detect, estimate and make use
of the attitude and heading in an indoor environment with respect to a known reference.
Affordable Attitude and Heading Reference System (AHRS) use low-cost solid-state MEMS-
based sensors in order to provide accurate attitude and heading information. With such a
system, the accuracy of heading estimation is typically degraded because of the drift that oc-
curs from the gyro measurements as well as the distortion induced by the Earth’s magnetic
field. In this chapter, we present a novel approach for robust indoor heading and attitude
estimation using skewed redundant inertial and magnetic sensors. The presented approach
uses Recurrent Neural Networks (RNN) fusion as a suitable technique for performing robust
heading estimation as well as compensating for anomalies in the external magnetic field. We
employ our previously described correlation-based filter model both for preprocessing the
data and for enabling perturbation mitigation. In experiments we have conducted using
the proposed method, we demonstrate that the proposed method enables the mitigation of
anomalies in a saturated indoor environment and achieve accurate and robust attitude and
heading estimation over the long run. Result of proposed technique as a robust attitude and
heading estimation is used in the next chapter where we tackle the SLAM problem.
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Robust attitude and heading estimation in an indoor environment with respect to a known

reference are essential components for various robotic applications. A®ordable Attitude and

Heading Reference Systems (AHRS) are typically using low-cost solid-state MEMS-based

sensors. The precision of heading estimation on such a system is typically degraded due to the
encountered drift from the gyro measurements and distortions of the Earth's magnetic ¯eld

sensing. This paper presents a novel approach for robust indoor heading estimation based on

skewed redundant inertial and magnetic sensors. Recurrent Neural Network-based (RNN) fu-
sion is used to perform robust heading estimation with the ability to compensate for the external

magnetic ¯eld anomalies. We use our previously described correlation-based ¯lter model for

preprocessing the data and for empowering perturbation mitigation. Our experimental results

show that the proposed scheme is able to successfully mitigate the anomalies in the saturated
indoor environment and achieve a Root-Mean-Square Error of less than 2:5� for long-term use.

Keywords: Heading estimation; skewed redundant; RNN; magnetic and inertial sensor.

1. Introduction

Attitude and heading estimation are fundamental requirements for robotics, human–
machine interaction, and navigation in indoor environments [1–3]. The ability of self-

localization for autonomous systems (e.g. unmanned aerial vehicles, mobile robots)

or observing head motion for teleportation or virtual reality applications [4, 5],

crucially depend on the reliable estimation of attitude and heading angles [6–8]. The
result of camera-based or LiDAR-based SLAM systems, for instance, becomes more

reliable by utilizing robust attitude and heading data, which can be attained mainly

from an Attitude and Heading Reference System (AHRS). Similarly, a Magnetic and

Inertial Measurement Unit (MIMU) can be used for tightly coupled fusion approa-

ches [9–11]. The main di®erence between AHRSs in contrast to MIMUs is the pre-

processing of the sensory data in order to provide absolute orientation estimation

International Journal of Semantic Computing
Vol. 15, No. 3 (2021) 313–335
°c World Scienti¯c Publishing Company
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with respect to the Earth's geometrical characteristics. The known reference of

AHRS comes from the Earth's gravitational and magnetic ¯eld. In this regard, at-

titude estimation refers to the angular measurement on the vertical plane, concerning

the local level frame, and computed as inclinations. Similarly, angular incline on the

horizontal plane, with respect to the actual geographical north, is referred to as

heading angle (also known as yaw or azimuth) [12].

A®ordable AHRSs are typically using small-scale sensors based on solid-state

Micro-Electro-Mechanical Systems (MEMS). The MEMS-based sensors have the

advantages of low cost, low power consumption, and high update rate. A general 9-

DoF AHRS consists of a 3-DoF accelerometer, a 3-DoF gyroscope, and a 3-DoF

magnetic ¯eld meter. Exploiting the complementary nature of the MEMS-based

inertial sensors, 3-DoF accelerometers along with 3-DoF gyroscopes are mainly fused

for attitude estimation [13]. Similarly, the MEMS-based AHRSs mostly use a single

3-DoF magnetometer to measure the magnetic ¯eld strength and utilize the previ-

ously determined relative calibration values to extract the Earth's geographic azi-

muth. In practice, the magnetometer-based azimuth estimation is fused with the

gyroscopes to provide a more stable heading estimation. Nonetheless, the general

accuracy for heading estimation on such an AHRS highly depends on the Earth's

true magnetic ¯eld measurement in the long term heading estimation. This is

mainly because of the accumulated drift caused by the integration of the gyro data,

and this drift is conventionally compensated using the heading estimation with

magnetometers.

Determining error-free and reliable heading angle with respect to a known ref-

erence is problematic in the case of indoor applications. This problem is mainly

because of di®erent sources of errors in the MEMS-based magnetometer measure-

ments [14–17]. The most dominant source of error for such a magnetometer sensor is

the presence of magnetic sources in an indoor environment. Permanent magnets and

ferromagnetic materials are the preeminent cause of such magnetic perturbation. In

this regard, calibration of the MEMS-based magnetometers for heading estimation

has been investigated thoroughly during the last decades [14, 18]. Probabilistic

models for sensor calibration and fusion such as the Extended Kalman Filter (EKF),

the Unscented Kalman Filter (UKF), and Ellipsoid Fitting are well known in this

¯eld [19–22]. However, dynamic magnetic deviation caused by external anomalies

cannot be fully compensated using the sensor calibration methods [23]. To overcome

the aforementioned problem, redundant sensor systems have shown promising

results as they are using redundant observations to determine the source of error and

increase the estimation accuracy [24–26].
Multiple magnetometers combined with gyroscopes were used to approximate

the external magnetic disturbances and provide perturbation-free heading esti-

mation [25, 27, 28]. In these works, the authors used an estimation of the expected

magnetic ¯eld using the temporary rotation vector to compensate for the external

magnetic perturbation. These approaches need a precise and simultaneous cali-

bration of the magnetometers and the gyroscopes to be able to provide an
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acceptable heading estimation. In [29], a magnetic heading compensation method

for disturbances introduced by near-surface interference was proposed. The authors

used inverse magnetic anomaly vector estimation to compensate for the external

perturbation. The main limitations of this approach are the prede¯ned magnetic

¯eld model and one-dimensional perturbation mitigation. In general, these

approaches are usually bulky, expensive, and often rely on expensive calibration

procedures.

Nonetheless, it has been shown that the accuracy of the magnetic ¯eld mea-

surement is signi¯cantly improved by using redundant magnetometer sensors

[30–33]. However, the non-deterministic errors cannot be completely removed in real

application scenarios due to their transient nature. This is mainly because of lim-

itations in the system identi¯cation procedure, nonlinear dynamic errors, and the use

of strict calibration models. The skewed redundant inertial sensor fusion, on the

other hand, provides a more reliable output, as shown in [34–37]. The skewed con-

¯guration for redundant sensor geometry has been widely investigated for attitude

estimation by applying this method on the observations from inertial-only sensors

(e.g. accelerometers and gyroscopes). However, this method has been poorly inves-

tigated for redundant magnetometers.

Inspired by the success of redundant integrated sensors for processing high-

dimensional sensor data [25, 38, 39], and the bene¯ts of redundant, non-orthogonal

sensor con¯gurations [39–42], we propose a skewed redundant magnetometer and

inertial platform for perturbation-free heading estimation. Following our prior work

[43], the approach undertaken in this paper relies on the use of redundant sensor

observations to enhance the overall accuracy of the heading estimation while en-

suring that the latency and the update rate of the estimation remains acceptable for

teleoperation and autonomous robotic applications. Unique non-orthogonal place-

ment of triple 3-axis MIMUs is designed based on the Hall-e®ect sensor principle to

mitigate the external magnetic perturbation by extracting the saturated signals

(Fig. 1). The proposed approach uses a correlation-based ¯lter model for magnetic

¯eld observation and recurrent neural network (RNN)-based sensor fusion for ex-

ternal magnetic perturbation mitigation and robust heading estimation. The skewed

redundant sensor platform and deep fusion model show substantial improvement in

heading estimation accuracy in an indoor environment. Our contributions can be

summarized as follows:

. We introduce a skewed redundant magnetic and inertial sensor platform and the

methodology to con¯gure redundant sensing kinematic for non-orthogonal ob-

servation.

. We propose a correlation-based preprocessing ¯lter and investigate multiple RNN-

based deep fusion models to improve accuracy and mitigate the external pertur-

bation for robust heading estimation in a saturated indoor environment.

. Multiple experiments were designed and conducted to evaluate the proposed

system's performance toward the reliable state estimation in di®erent indoor
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environments with the presence of external magnetic anomalies. We compared the

result of the heading estimation to multiple well-known and state-of-the-art fusion

methods.

In this work, we extend our previously presented correlation-based skewed redun-

dant magnetic fusion concept [43] by incorporating an inertial-based multi-sensor

fusion for robust heading estimation using RNNs. Considering system dynamics and

saturated observations, our proposed approach decrease the external perturbations'

e®ect using the hybrid ¯lter model and the deep fusion. In doing so, we are able to

momentarily extract the error patterns and fuse MIMUs, which results in a more

robust heading estimation for long-term use.

The rest of this paper is organized as follows. Section 2 describes the magnetic

¯eld components and the basics of heading estimation using magnetic hall-sensors.

Section 3 introduces the skewed redundant sensor platform and the kinematic of the

non-orthogonal observation, while Sec. 4 details the correlation-based preprocessing

¯lter and RNN-based fusion models. Experimental evaluations are presented in

Sec. 5. Finally, Sec. 6 concludes this paper and examines the limitations and po-

tential future works.

2. Magnetic Field Components and Heading Estimation

A combination of a 3-axis accelerometer, a 3-axis gyroscope, and a 3-axis magne-

tometer is typically used in low-cost AHRSs. The estimated angles are de¯ned as the

corresponding Euler angles roll (�), pitch (�), and yaw (�). In order to improve the

robustness of the roll and pitch estimation, the measurements provided by the gy-

roscope and accelerometer are typically fused. The magnetometer, on the other hand,

can be complemented using the gyroscope for heading angle estimation. Heading

Fig. 1. Skewed redundant magnetic and inertial sensor for robust heading estimation in indoor envir-
onments using RNN-based fusion.
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angle estimation with respect to a known reference can be performed by considering

the fact that solid-state magnetometers are used to measure changes in the strength

of the Earth's magnetic ¯eld. Dominant technologies for the solid-state MEMS-based

magnetometers are based on the Hall-e®ect, or the Magneto Resisting e®ect [17, 44].

Considering that the magnetic observation is a vector ¯eld, it is characterized by its

magnitude and direction or its components along the coordinate axes. A sensor with

at least three axes is required to determine the Earth's magnetic ¯eld vector (see

Fig. 2). In a Cartesian coordinate system at the measurement point p, the magnetic

¯eld vector bp 2 R3 can be de¯ned as

bp ¼ bp;xi þ bp;yj þ bp;zk; ð1Þ

where the x-axis is oriented along the geographical meridian, and the direction to the

north is positive, the y-axis along the parallel with a positive direction toward the east,

and the z-axis is directed downward. The observation point p is the origin of the

measurement coordinate system. The angle I between the horizontal plane and the

vector bp is called the inclination [45]. The local magnetic declination D, sometimes

called magnetic variation, is the angle between the magnetic north and the true north.

Accordingly, the Earth's geographic azimuth  p can be derived by considering the local

declination D and the perpendicular components of the measurement vector bp as

 p ¼ tan�1
bp;y

bp;x

� �
D: ð2Þ

The magnetic ¯eld of a dipole, similarly, is characterized by its magnetic moment

M. The strength and direction of this ¯eld depend not only on the magnitude of the

magnetic moment but also on its orientation relative to the direction of the magnetic

¯eld [45]. In the presence of multiple dipoles, the magnetic ¯eld Mg is de¯ned by the

sum of all magnetic moments Mi and is given by

Mg ¼
X

Mi: ð3Þ

Fig. 2. Components of the Earth's magnetic ¯eld and the abstraction of the heading estimation using a

3-axis magnetometer. The angle  p is the true heading with respect to horizontal plane, with respect to the

actual geographical north.
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The curl of the magnetic vector potential, the magnetic ¯eld bp, is governed by the

density of magnetic moments at the measurement point and is derived classically

using the Biot–Savart law [47]. The combined ¯eld can change the measurement ¯eld

vector bp due to the presence of multiple dipoles. This change in the magnetic ¯eld is

the leading cause of heading errors in an indoor environment. As shown in Fig. 3, the

e®ect of the external magnetic ¯eld on the p-type Hall element depends highly on the

orientation and the distance of the external magnetic moment to the perpendicular

sensing plane [46]. Moreover, a minimum number of three Hall elements perpen-

dicular to each other is required to determine the magnetic ¯eld bp as it is shown in

Eq. (1). This implies that the measuring axis with the lowest angle to the external

magnetic anomaly will report a non-correlated measurement (generally saturated

observation) compared to the other axes. Additionally, in a perturbation-free envi-

ronment, the norm of the magnetic ¯eld vector measurement should be equal to the

magnitude of the Earth's magnetic ¯eld. This norm, Hp can be extracted from the

Earth's geomagnetic model [48]. Besides, these observations have a complex pattern

in their essence and lead to a nonlinear relation to a true heading estimation. The

aforementioned principles are the main motivation of proposing the skewed redun-

dant sensing platform and RNN-based fusion.

3. Skewed Redundant Platform

Data measured by sensors are inherently clouded by noise; that is to say, they display

a band of measurements around the actual signal. Methods have been developed to

reduce the uncertainty around the measurement such that there is higher con¯dence

in the measured signal. A signi¯cant outcome in [49] shows that an ideal setup of

redundant inertial sensors in terms of fault tolerance is a non-orthogonal con¯gu-

ration in which the delicate axes of each triaxial sensor are not aligned, and trans-

formations are performed to align them in a virtual coordinate frame. This method

has been examined on inertial sensors such as accelerometers as well as gyroscopes

and showed a signi¯cant improvement in the measurement accuracy for attitude and

Fig. 3. Single-axis Hall-e®ect sensor principle [46]. The output signal from a Hall-e®ect sensor is a

function of the magnetic ¯eld density around the device. A minimum of three perpendicular axes is needed
for the magnetic ¯eld vector measurement.
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heading estimation [34, 36, 37]. Following the non-orthogonal inertial sensor con-

¯guration concept, we propose redundant sensing kinematic for non-orthogonal

observation based on skewed redundant placement.

As we described in Sec. 2, considering the principle of the hall-e®ect magnet-

ometers, it is observable that the perpendicular axis to the external magnetic

anomalies can be a®ected dramatically [43]. The pattern of this change in the data is

recognizable, and this motivates us to examine di®erent mounting structures with

redundant sensor setup. It is di±cult to determine which con¯guration yields the

best performance since many possible arrangements make it challenging to derive a

deterministic relation between the system errors and the con¯guration parameters.

However, we investigated several con¯gurations and analyzed the data to determine

for which of them the external magnetic disturbance is perceivable. Additionally, we

considered the minimum number of sensors and the coverage orientation. The

skewed con¯guration in comparison to the orthogonal structures showed signi¯-

cantly determinable results. Using a tetrahedron skewed con¯guration [49], we

recorded the data shown in Fig. 4, which illustrates that the external magnetic

perturbation causes a determinable pattern in the observation using non-orthogonal

con¯guration. As the plot shows, the axis, which has the minimum angle di®erence to

the external magnetic anomalies source, reports a saturated output. In contrast, the

(a)

(b)

Fig. 4. Output signals from a skewed redundant magnetometer sensor at measurement point p and the
e®ect of the external disturbance on the speci¯c sensing axes, which are perpendicular or have a small angle

to the source of the external magnetic moment. (a) Shows the normalized magnetic ¯eld observations.

(b) The extracted X and Y components of the magnetic ¯eld.
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other axes of the magnetic measurements are less impacted. This causes the

extracted magnetic ¯eld components to face a dynamic soft-iron error.

The geometrical relationship of the skewed redundant MIMU con¯guration was

leveraged to develop a method that extended the dynamic range of the sensors. Three

sensor frames were con¯gured in the designed sensing platform, each having its own

orthogonal three-dimensional axes (see Fig. 5). The relationship between the skewed

sensors was de¯ned through coordinate transformations. To navigate between

skewed reference frames, rotational matrices were used to go between each coordi-

nate frame. Coordinate transformations done for practical implementation are more

easily visualized with Euler angles. Euler angles refer to a yawing orientation, a

pitching orientation, and a rolling orientation. De¯ning the principal axis as yaw for

the z-axis, pitch for the y-axis, and roll for the x-axis relates the Euler angles to the

axis of motion as shown in Fig. 6. Euler angles enable an intuitive understanding of

the attitude and heading changes within the body frame.

3.1. Magnetic ¯eld measurement

To determine the Earth's true magnetic ¯eld, we consider the measured magnetic

¯eld as a combination of the external magnetic perturbation and the Earth's mag-

netic ¯eld. Taking Eq. (3) into consideration, the measured magnetic ¯eld bQ 2 R3

in the sensor frame with center point = can be de¯ned as

bQ
= ¼ bE

= þ b �
=; ð4Þ

where b �
= is the external magnetic ¯eld disturbance and bE

= is the Earth local

magnetic ¯eld. To have all the true signals in the measurement point p, sensor data

needs to be aligned to a de¯ned virtual coordinate within the body frame.

Fig. 5. Tetrahedron con¯guration model of the skewed redundant magnetometer platform using three 3-

axis magnetometer sensors. The virtual coordinate frame for the measurement is shown with the center

point p, and only two sensor frames are depicted for simpli¯cation.
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Additionally, we normalize the measured magnetic ¯eld vector to be able to use the

correlation-based features later for sensor ¯ltering and fusion. We can de¯ne bQ
p;k for

each sensor k using

bQ
p;k ¼ Rp

=;k
bQ
=;k;x

jjbQ
=;k jj

bQ
=;k;y

jjbQ
=;k jj

bQ
=;k;z

jjbQ
=;k jj

" #T

; ð5Þ

where Rp
=;k 2 SOð3Þ is the Direction Cosine Matrix (DCM) with respect to roll (�k),

pitch (�k), and yaw (�k) angles. The angles roll, pitch, and yaw are the represen-

tative rotation of the 3-axis magnetometer from the sensor coordinate frame with the

center point = around the virtual coordinate frame with the center point p. Based on

the skewed con¯guration, the proposed structure with the mounting angles is

depicted in Fig. 5. A Direction Cosine Matrix (DCM) can be de¯ned for an individual

sensor k according to the static angles using

Rp
=;k ¼

c�kc�k �c�ks�k s�k
c�ks�k þ s�ks�ks�k c�kc�k � s�ks�ks�k �s�kc�k
s�ks�k � c�ks�kc�k s�kc�k þ c�ks�ks�k c�kc�k

0
@

1
A: ð6Þ

3.2. Inertial measurement

Similar to the magnetic ¯eld vectors, accelerometer and gyroscope data are measured

in the same coordinate frame =. This means we can use the same DCM as de¯ned in

Eq. (6). Accordingly, the observed acceleration ap;k 2 R3 in the body frame with

center point p can be de¯ned by

ap;k ¼ Rp
=;k ½ a=;k;x a=;k;y a=;k;z �T ; ð7Þ

where a=;k is the acceleration vector for sensor k in m=s2. Likewise, the angular

rotation bfvp;k 2 R3 in the body frame with center point p is de¯ned by

vp;k ¼ Rp
=;k ½ v=;k;x v=;k;y v=;k;z �T ; ð8Þ

where v=;k is the angular velocity vector in rad � s�1.

(a) (b)

Fig. 6. Structure of the 3D printed model of the tetrahedron platform with the illustration of the
dimension of the module.
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4. Skewed Redundant RNN Fusion

To the best of our knowledge, this is the ¯rst work that applies deep learning for

heading estimation using a skewed redundant sensor platform. For that reason, we

investigated numerous structures ranging from simple to more sophisticated dense

models. However, the ¯rst step is to preprocess the sensory data and use the ¯ltered

observation to train the deep model (see Fig. 7). We use a correlation-based ¯lter for

magnetic ¯eld observation that allows reducing the external magnetic perturbation.

In addition, we feed the raw inertial data (e.g. acceleration and the angular velocity)

to the network in order to compensate for the dynamics of the system and estimate a

robust heading for long-term performance in an indoor environment.

4.1. Correlation-based ¯lter model

The main sources of magnetometer errors are the sensor o®sets, scale factor, non-

orthogonality, and magnetic deviation [25, 50, 51]. The latter is based on the sensor's

magnetization characteristics and can have a static or dynamic source. The static

magnetic deviation error consists of soft- and hard-iron parts. In this paper, we are

not going to the details of the sensor hard-iron and soft-iron calibration procedure.

We assume the measured magnetic ¯eld bQ
p;k is calibrated by using the method

described in [14]. Additional to the static magnetic deviation error, which can be

addressed by applying the o®line calibration, the dynamic magnetic deviation error

is still problematic and subsists as the most dominant error source. Therefore, the

proposed multi-magnetometer ¯lter model uses dynamic weighting based on the

normalized correlation coe±cient analysis to re¯ne the axes a®ected by the external

disturbance. This mitigates the external dynamic magnetic ¯eld perturbation and

allows for the estimate of the true Earth's magnetic ¯eld. Let us de¯ne the true

Earth's magnetic ¯eld vector bF
p 2 R3 as

bF
p;k ¼ JkMkðSp;kWp;kðtÞbQ

p;k þ cp;kÞ; ð9Þ

where n ¼ 3 is the number of sensed magnetic ¯eld vectors that are transformed to

the measurement point p in the skewed-redundant multi-magnetometer setup, Sp;k is

Fig. 7. System overview of the tetrahedron platform with the illustration of the skewed redundant RNN-

based fusion.
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the scale factor of the sensor k, cp;k 2 R3 is the bias vector, WpðtÞ 2 SOð3Þ is the

white noise diagonal matrix, Mk 2 SOð3Þ represents the skew-symmetric misalign-

ment matrix, and Jk 2 SOð3Þ is the adaptive correlation-based diagonal dynamic

weighting matrix.

We use the general de¯nition of the Sp;k and Mk for the proposed magnetometer

sensor setup from [26, 31]. It should be noted that separating all components of the

encountered errors for the magnetometer platform requires unique setups (e.g.

turning tables) and is hard to accomplish. However, this is not essential in the case of

the MEMS-based sensors because some error elements predominate. The error

model, therefore, can be simpli¯ed [52, 53]. The biases cp;k are approximated for each

3-axis magnetometer sensor and can be de¯ned as

cp;k ¼ cC
k þ cRC

k þ cGM
k ðtÞ þ cRW

k ðtÞ þ cBI
k ðtÞ; ð10Þ

where cC
k is the constant component of the bias vector and can be extracted from

sensor design characteristics, cRC
k is the stochastic process with maximum constant

value which is extracted from the hard-iron calibration procedure and having the

distribution cRC
k � Nð� c

k ; �
c 2
k Þ. The cGM

k is a ¯rst-order Gauss–Markov stochastic

process applied on the sensor constant bias estimation. Constant biases of the sensors

are extracted from the standard deviation of the measurements considering that

each measurement is a discrete sample measurement at t [54]. Therefore, cGM
k is

de¯ned as

cGM
k ðtÞ ¼ � � _cGM

k ðtÞ þ EkðtÞ; ð11Þ
where � ¼ 1=T is the inverse of the correlation time with the initial condition

lim
t0!1

cGM
k ðt0Þ ¼ 0;

and EkðtÞ is a zero-mean Gaussian white-noise process which is applied on the sensor

constant bias vector. We denote the ¯nite bandwidth of the respective magnetometer

data by �f , which can be calculated from the auto-correlation function as expressed

in [55]. The Nyquist–Shannon sampling rate equals 2�f which is equal to two

samples per period T . Hence, de¯ning T=2 as the correlation time, the Nyquist

sampling rate � is equal to the inverse of the correlation time. The cRW
k ðtÞ is a

random walk stochastic process de¯ned as

_cRW
k ðtÞ ¼ EkðtÞ

with the initial condition cRW
k ðt0Þ ¼ 0. The cBI

k ðtÞ are the bias instabilities which

were added to the original model developed in [30, 56] to describe more precisely the

noise characteristics observed for the skewed-redundant magnetometer platform (see

Fig. 5). We use the same de¯nition of the proposed bias instabilities vector as in [30].

The white noise process Wp;k is de¯ned as

Wp;kðtÞ ¼ �w
p;kEkðtÞI 3; ð12Þ
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where �w
w;k is the standard deviation of the measurements, and I 3 2 R3 is an identity

matrix. The ¯xed parameters (i.e. the constant components of the scale factors) and

bias vector components were estimated with a classical least-squares parametric

compensation. The remaining parameters were estimated with variance analysis

techniques, as explained in [30, 57].

The adaptive correlation-based diagonal dynamic weighting matrix Jk , which is

used for identifying the external perturbation using the correlation analysis is

de¯ned as

Jk ¼

!k;x

jj!k;Xjj
0 0

0
!k;y

jj!k;Yjj
0

0 0
!k;z

jj!k;Zjj

2
6666664

3
7777775
; ð13Þ

while the individual component of the dynamic weight vector !k 2 R3 is de¯ned as

the correlation between each axis and the corresponding axes that are measuring the

same direction of the magnetic ¯eld in the virtual measurement point p. For the

triple measurement, we can de¯ne

!k ¼ ½ j	ðx
; x1; x2Þj j	ðy
; y1; y2Þj j	ðz
; z1; z2Þj �T ; ð14Þ
while the normalization term in the diagonal weighting matrix for the number of n

sensors for an arbitrary axis N8 k 2 Z, k ¼ 1; . . . ; 3 of the sensor k can be de¯ned

from all the corresponding axes using

jj!k;Njj ¼
Xn
i¼1

j!i;Nj: ð15Þ

Eventually, the joint correlation coe±cient 	 between the current axis measurement

(e.g. x
) of the sensor k and the two similar non-orthogonal axis (e.g. x1 and x2) can

be calculated by

	ð
; x1; x2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 2

;x1 þ r 2


;x2 þ 2r
;x1r
;x2rx1;x2
ð1� r 2

x1;x2Þ þ �

s
; ð16Þ

while � is usually taken as a small value to prevent dividing by zero. Based on the

basic concept of the Pearson correlation coe±cient [58], r�1;�2
between two sensor

measurements (i.e. the measurement 
 and j in Eq. (16)) can be de¯ned as

r�1;�2
¼

P�t
i¼1ð�1i � �1Þð�2i � �2ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP�t

i¼1 ð�1i � �1Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP�t

i¼1 ð�2i � �2Þ2
q ; ð17Þ

while the Pearson correlation coe±cient is a measure of the linear correlation be-

tween two variables �1 and �2 and has a value between �1 and þ1, where 1 is a total

positive correlation, 0 is no correlation, and �1 is a total negative correlation.
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The last �t (i.e. t ¼ 100ms at 100Hz sampling rate system results a queue that

contains the last 10 observations) sets of the measured data have been considered for

the joint correlation calculation. In other words, a queue with a size of �t is used for

calculating the average values �1 and �2 in the correlation calculation.

4.2. Training and test data

We use a comprehensive dataset for training and testing, which we recorded it in

di®erent indoor environments using a 3-DoF gimbal system. Our datasets, which we

will refer to as the LMT datasets in the following, contain the raw data of the

tetrahedron magnetic ¯eld and inertial sensor observation associated with the ab-

solute orientations provided by the 3-DoF gimbal's absolute sensors. The recorded

dataset covers di®erent conditions for each of the non-disturbing sets, static mag-

netic distortion, and environment with dynamic magnetic anomalies. We recorded

the data in various indoor environments ranging from a general o±ce area to a

kitchen and corridor. Each heading estimation set has a length of 60 to 1800 s and

varying rotational and translational velocity. The absolute orientation as ground

truth (with 0:1� resolution) and the raw sensor data are recorded with a frequency of

100Hz (i.e. �t ¼ 10ms). The designed sensing platform uses a 9-axis System in

Package (SiP) that combines two chips: the MPU-6500, which contains a 3-axis

gyroscope and a 3-axis accelerometer; and AK8963C, a 3-axis magnetometer sensor

from Asahi Kasei Microdevices Corporation. In total, the recorded dataset contains

� 1:2 million data samples (d ¼ 200min).

4.3. RNN-based sequence learning and fusion

As shown by the rotation matrices in Eq. (6), and the magnetic ¯lter model in

Eq. (9), the trigonometric components make the data relationship inherently non-

linear for the heading estimation. The solution space for the skew angles could

therefore not be easily navigated. To this end, we utilized a recurrent neural network

as a fusion model for heading estimation. RNNs are neural networks that have

memories for temporal learning. RNNs can process sequential data since they le-

verage historical information for current state prediction and learn dependencies in a

sequence. Therefore, RNNs are well suited for time series data and complex nonlinear

problems that involve temporal and spatial information [59]. The framework that we

used in this paper is based on Long Short-Term Memory (LSTM), one of the most

popular types of RNNs, as they can learn long-term dependencies by introducing

memory gates and units. The gates on such an LSTM framework automatically

decide when to store or discard data in a training phase, which lets them detect the

pattern within the data. Figure 8 shows the di®erent LSTM-based architectures we

investigated.

We separated the recorded dataset into a training set (� 1 Million samples,

d ¼ 170min), a validation set (60 k samples, d ¼ 10min), and a test set (120 k

samples, d ¼ 20min). As input for the network, we take the present acceleration
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(vp;kðtÞ), angular velocity (ap;kðtÞ), and raw or ¯ltered magnetic ¯eld (bp;kðtÞ=bFp;kðtÞ)
data as well as past values thereof within a certain time window �. � ¼ 0 ms would

imply to consider only the current observation.

The Adam optimizer was used with a learning rate of 1� 10�4 and with a batch

size of 32 samples. A learning rate decay scheduler was used to decrease the initial

learning rate of 1� 10�5 every 10 epochs. The neural networks were trained for 100–
500 epochs, depending on the data input selection. After each of the LSTM layers, a

dropout layer with a drop rate of 15% is added to circumvent over¯tting. The last

layers are fully connected, as usual, with 27 and 1 unit, respectively, to provide the

relative heading output where �ðtÞ represents the estimated heading angle. We

further used the Recti¯ed Linear Unit (ReLU) as an activation function for the fully

connected layers. The mean absolute error (MAE) was deployed as a loss function

and showed superior performance compared to the mean squared error (MSE). The

RNN models were implemented in Keras and Tensor°ow. The inference time of the

heading angle is in the domain of single-digit millisecond (Dual Core ARM Cortexr

A7 @1.6GHz) and, hence, suitable for real-time applications.

(a) (b)

(c) (d)

Fig. 8. Investigated neural network architectures: (a) `̀ LSTM (Simple)", (b) `̀ LSTM (All-Subdivided)",

(c) `̀ LSTM (Dense)", (d) `̀ LSTM (Mag-Subdivided)".
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5. Experimental Results

5.1. Setup

We developed a skewed redundant sensor platform and used the described fusion

model to estimate the heading angle in an indoor environment. We designed a 3D

printed frame for mounting the sensors on the structure. Figure 9 shows the sensor

platform and the 3-DoF gimbal used to record the dataset and for system evaluation.

This setup has three joints perpendicular to each other, allowing to rotate 360� freely
in the space. Each of the actuators are equipped with an absolute sensor providing a

12-bit resolution joint pose. As shown in the ¯gure, roll, pitch, and yaw axes can be

controlled independently from one another. We placed the platform in di®erent

locations using a linear laser ruler to keep the heading angle with respect to the

known reference in an indoor environment. We consider the o®set of the heading

reference that is calculated from the absolute shaft encoder to the Earth's true

magnetic heading using the Earth's magnetic model [48]. Di®erent patterns were

used to rotate the sensor along each axis. We applied random rotational velocity for

each joint. The maximum angular velocity during tests was set to 360�/s.
To illustrate the gimbal motion during a simple test, Fig. 10 depicts the recorded

observations. As shown in this plot, the sensor's ¯nal heading is calculated based on

the gimbal kinematic, and it is shown as an absolute heading (GT). Angular velocity,

Fig. 9. Setup of the skewed redundant MIMU platform mounted on a 3-DoF gimbal.
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acceleration, and the magnetic ¯eld in all nine axes are transformed considering the

skewed con¯guration.

5.2. Performance analysis

In order to evaluate the proposed method, ¯rst, we demonstrate the correlation-

based magnetic ¯eld ¯lter performance. In [43], it has been shown that saturated

channels in multi-axis magnetic ¯eld observation can be compensated using the

correlation-based ¯lter. However, in this work, we modify this ¯lter to independently

perform on each of the 3-axis observations. The output of the ¯lter for the a®ected

observation is shown in Fig. 11. The e®ect of the perturbation on the raw data

bp;y;1ðtÞ can be seen (e.g. around time ¼ 50 s). This data, therefore, is ¯ltered using

Fig. 10. Illustration of how the skewed redundant raw data from the sensor observation formed for a
motion during a simple test.
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the correlation analysis of all the other observed channels. It can be seen that bFp;y;1ðtÞ
is fully eliminated, which shows the improvement and robustness in the presence of

the external magnetic ¯eld anomaly.

In order to evaluate the heading estimation performance, we use two metrics,

mean absolute error (MAE), and root-mean-square error (RMSE). Since the errors

are squared before they are averaged, the RMSE gives a relatively high weight to

large errors. This means the RMSE is most useful when large errors are particularly

undesirable. The e®ect of the window size for the ¯nal heading estimation is shown in

Table 1. We found out empirically that considering the 70 last values for each

heading estimate (� ¼ 700ms) delivers the best results. Overall, the LSTM structure

with all-subdivided input showed the lowest error with correlation-based magnetic

Fig. 11. Result of the correlation-based magnetic ¯eld ¯lter for perturbation mitigation using redundant

con¯guration. (Top) Raw data from a 3-axis magnetometer sensor measuring the magnetic ¯eld. (Bottom)

Filtered data.

Table 1. Qualitative comparison of di®erent RNN models by means of the Mean Absolute Error (MAE)
and Root-Mean-Square Error (RMSE) for di®erent window size between 0.1–1.0 s.

RNN models [LMT dataset] All raw data (ap;k ;vp;k ;bp;k) Raw (ap;k ;vp;k) þ Filtered (bF
p;k)

Method Window � [s] 1.0 0.7 0.5 0.3 0.1 1.0 0.7 0.5 0.3 0.1

MAE [�] LSTM (Dual) 8.41 9.03 8.17 10.51 13.67 4.72 3.91 4.61 6.84 7.17

LSTM (All-subdivided) 6.83 5.41 7.93 9.49 11.73 2.28 2.11 2.93 3.74 5.62
LSTM (Dense) 7.45 8.06 7.80 8.27 12.09 3.76 3.18 2.98 3.56 5.89

LSTM (Mag-subdivided) 7.61 8.12 8.01 10.45 13.36 3.71 3.26 3.01 4.11 6.27

RMSE [�] LSTM (Dual) 8.90 8.51 9.36 11.29 18.39 4.14 4.02 4.38 5.65 8.68
LSTM (All-subdivided) 7.91 7.72 9.15 10.60 13.37 3.70 2.48 3.08 5.18 7.44

LSTM (Dense) 8.65 9.21 8.55 10.81 18.02 4.09 3.91 3.41 4.72 7.28

LSTM (Mag-subdivided) 9.05 8.96 8.52 10.16 16.24 3.92 3.80 4.16 6.42 8.02
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¯eld ¯ltering. The proposed neural networks are trained on a subset of the LMT

dataset and validated on the complementary set of data. We achieved a RMSE of less

than 2:5� for heading estimation using the LMT dataset. The second best-performing

structure is the LSTM dense model, where the RMSE error increases to 3:0� for the
window size of � ¼ 500.

In Fig. 12, a simple example where the sensor is rotating in three-dimensional

space using the gimbal is shown. The absolute heading is available as ground truth

(GT), and the error of the two best performing heading estimations are visualized.

All the models are highly dependent on the number of available data within the

window size. If the data is not available, the accuracy of the estimation degrades

dramatically. This issue can be seen at the beginning of the motion, where we feed

fewer data to the network, and as soon as the window size reached its maximum

amount of observations, the estimation error decreases quickly. In addition, we can

see that the estimation error increases when the rotational velocity gets close to zero.

This mainly can be interpreted as there was a fast change in the angle, and in the

meanwhile, all the gyros present near-zero observations for all the axes. This means

the heading estimation was mainly estimated from the magnetic ¯eld measurements.

The proposed fusion method has been tested in multiple scenarios portraying

di®erent magnetic con¯gurations arti¯cially introduced by permanent magnets or

ferromagnetic materials. Additionally, we used two di®erent scenarios for analyzing

the system's performance for long-time heading estimation compared to the state-of-

the-art methods. For the ¯rst test, a stationary platform mounted on a gimbal is

used. For the second scenario, while the system experienced the translational motion,

the heading estimation is performed. We compared the two best-performing pro-

posed structures with two di®erent fusion models (see Table 2). The Extended

Kalman Filter is used with single or with skewed redundant MIMU observations.

Additionally, a quaternion-based attitude estimation ¯lter (known as Madgwick

¯lter) with gyroscope-based correction steps and automatic fusion weight adaptation

are used for comparison [60]. In long-term heading estimation (e.g. 60min), the

heading estimation error reached 3:2�. As shown in Table 2, for a short time (e.g.

1.0min), the estimation error with the proposed models is higher than for the

Fig. 12. Heading estimation error for fast motion using the two best performing models in comparison to
the GT heading. The errors are shown with �100 magni¯cation rate.
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conventional methods. This is mainly due to the need for an observation of at least

500ms of window size.

6. Conclusions

This paper proposed a skewed redundant magnetometer and inertial sensor fusion

approach for robust heading estimation in an indoor environment. We exhibited

heading estimation using the Earth's magnetic ¯eld and the di®erent perturbation

sources for heading angle estimation in the presence of the external magnetic

anomalies. We showed the Hall-e®ect magnetic sensors' principle and analyzed the

external magnetic ¯eld's source on 3-axis MEMS-based sensors. Inspired by the

skewed redundant con¯guration, we designed a tetrahedron platform using a triple 9-

axis sensor to detect and mitigate the saturated channels on the observation signals.

In order to pre-¯lter the sensory data, we proposed a correlation-based ¯lter model

for multi-magnetometer platforms. RNN-based sensor fusion models are presented

and used for skewed redundant MIMU fusion. We investigated multiple structures

using LSTM models. We further investigated the models' performance in di®erent

indoor environments for di®erent scenarios and validated the algorithm using the

internally recorded dataset. Additionally, experiments using a gimbal platform have

been conducted in diverse scenarios to verify the generality of the proposed fusion

method by means of robust heading estimation using the skewed redundant mag-

netometer platform. Experiments showed that although the proposed system is re-

liable for heading estimation in long-term use, it has a high dependency on the input

window size. As a result, for short-term heading estimation, the performance of the

conventional methods was similar or better than the proposed model. However, due

to the observed drifts in long-term use, the proposed system provides a more reliable

estimation with less deviation in saturated indoor environment.

Table 2. MAE and RMSE of the proposed fusion system compared with the Kalman ¯ltered approach as

well as the Madgwick-based fusion. The measurement is a result of observation for di®erent use time with

external magnetic ¯eld perturbation in an indoor environment.

Experiments Rotation only (þAnomaly) Dynamic motion (þAnomaly)

Method time [m] 1.0 15.0 30.0 60.0 1.0 15.0 30.0 60.0

MAE [�] EKF (Single) 1.02 2.37 3.09 3.44 1.15 2.60 2.93 3.55
EKF (Skewed redundant) 0.96 2.09 2.72 2.92 0.93 2.16 2.89 3.24

Madgwick (Single) 0.82 2.48 3.15 3.46 1.97 2.23 3.18 3.82

LSTM (Dense) 4.19 1.89 2.30 2.92 5.18 2.21 2.68 3.12

LSTM (All-subdivided) 4.70 1.46 1.88 1.91 4.48 1.82 2.11 2.91
RMSE [�] EKF (Single) 2.03 2.85 3.58 3.97 2.73 3.01 3.82 4.27

EKF (Skewed redundant) 1.82 1.98 3.02 3.16 2.06 2.19 3.72 3.91

Madgwick (Single) 1.67 3.14 3.97 4.41 1.91 3.57 4.16 5.26

LSTM (Dense) 5.12 1.82 2.59 3.09 5.60 2.98 3.12 3.62
LSTM (All-subdivided) 5.73 2.07 1.96 2.18 5.92 2.39 2.47 3.21
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In future work, we plan to investigate on more complex deep neural networks to

enhance the quality of the estimation. Additionally, in cases where there is a con-

structive disturbance along with changes in user dynamics, the perturbation miti-

gation approach will be further enhanced to take into account the uncertainty

between perturbation and agent motion. Furthermore, the e®ect of the number of

the sensing axes on the estimation of the true Earth's magnetic ¯eld needs to be

studied using analytical models.
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Chapter 5

LoLa-SLAM: Low-Latency LiDAR
SLAM Using Continuous Scan
Slicing

5.1 Low-Latency 6D LiDAR Localization and Mapping for Real-
Time Indoor Applications

The utilization of real-time 6D pose estimation is a key component for autonomous indoor
navigation of mobile robots, specially for Unmanned Aerial Vehicle (UAV)s. In this chapter
we present a low-latency SLAM framework based on LiDAR scan slicing and concurrent
matching, called LoLa-SLAM. The proposed framework uses sliced point cloud data from
a rotating LiDAR in a concurrent multi-threaded matching pipeline. This way the 6D ego-
motion estimation with high update rate and low latency is guaranteed. The LiDAR sensor
is actuated by a 2-DoF Lissajous spinning pattern, which overcomes the sensor’s limited
field of view. The present work proposes to estimate the two-dimensional roughness of a
point cloud in order to extract feature points for fine matching and registration of the set of
points. Furthermore, the pose estimator employs a temporal motion predictor to assist in
finding the feature correspondences in the domain map, which aids the nonlinear optimizer
in achieving a fast convergence rate. Taking this as a second step, a Extended Kalman Filter
(EKF) is used for the final ego-motion estimation. Multiple experiments were performed to
evaluate the framework by comparing the accuracy, the latency, and the update rate of the
pose estimation for the trajectory flown in an indoor environment. Based on the comparison
between the state-of-the-art frameworks and the generated volumetric map, we quantify the
superior quality of the generated voxel grid map. Additionally, measured ground truth po-
sition information recorded from a total station unit was used to examine the precision of
ego-motion estimation.
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LoLa-SLAM: Low-Latency LiDAR SLAM Using
Continuous Scan Slicing

Mojtaba Karimi , Member, IEEE, Martin Oelsch , Member, IEEE, Oliver Stengel, Edwin Babaians ,
and Eckehard Steinbach , Fellow, IEEE

Abstract—Real-time 6D pose estimation is a key component
for autonomous indoor navigation of Unmanned Aerial Vehicles
(UAVs). This letter presents a low-latency LiDAR SLAM frame-
work based on LiDAR scan slicing and concurrent matching, called
LoLa-SLAM. Our framework uses sliced point cloud data from a
rotating LiDAR in a concurrent multi-threaded matching pipeline
for 6D pose estimation with high update rate and low latency.
The LiDAR is actuated using a 2D Lissajous spinning pattern to
overcome the sensor’s limited FoV. We propose a two-dimensional
roughness model to extract the feature points for fine matching
and registration of the point cloud. In addition, the pose estimator
engages a temporal motion predictor that assists in finding the
feature correspondences in the map for the fast convergence of the
non-linear optimizer. Subsequently, an Extended Kalman Filter
(EKF) is adopted for final pose fusion. The framework is evaluated
in multiple experiments by comparing the accuracy, latency, and
the update rate of the pose estimation for the trajectories flown
in an indoor environment. We quantify the superior quality of the
generated volumetric map in comparison to the state-of-the-art
frameworks. We further examine the localization precision using
ground truth pose information recorded by a total station unit.

Index Terms—SLAM, aerial systems, perception and autonomy,
low-latency localization.

I. INTRODUCTION

THE demand for unmanned aerial vehicles (UAVs) for
autonomous exploration and inspection is growing. The

compact design-factor, relatively low cost, and maneuverability
of UAVs make them well suited for various tasks [1]. Au-
tonomous UAVs require a reliable navigation system to operate
in challenging environments, such as GPS-denied or cluttered
indoor areas [2], [3]. Tackling the general navigation mission,
one needs to address a set of problems ranging from 6D pose
estimation to trajectory planning [4], [5]. In practice, the nav-
igation task’s performance depends mainly on the accuracy,
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Fig. 1. Real-time localization of a UAV in an indoor environment using the
proposed SLAM framework. It provides low-latency 6D pose estimation with
a high temporal update rate for autonomous navigation while generating a full-
scale 3D map of the environment.

update rate, and latency of the perception unit (see Fig. 1). For
instance, the trajectory tracking controller of the UAV requires
a high-rate pose estimation (in the range of 0.1 to 1.0 kHz)
with comparatively low latency (maximum 50 ms) to achieve
a fully autonomous flight [6]–[8]. In this context, latency is the
time difference from the sensor observation until the localization
algorithm provides the estimated pose.

Visual-inertial localization and mapping is well studied for
drone localization as it can meet the aforementioned require-
ments [9], [10]. However, in large indoor areas, the accuracy of
visual-inertial localization approaches tends to degrade dramat-
ically [11], [12]. This is mainly due to the considerable distance
between the camera and the scene, which causes feature tracking
failures in the camera frames. As an alternative, laser scanning
technology is employed to capture precise range measurements
enabling LiDAR-based localization and mapping systems. To
address the 6D pose estimation task, three-dimensional simul-
taneous localization and mapping (3D SLAM) is the preferred
way. 3D SLAM is mainly addressed in the literature by using
multiple laser scanners, which are installed in both horizontal
and vertical frames [13], [14]. However, due to the weight
and processing constraints in UAVs, in practice, the use of an
actuated LiDAR is preferred rather than installing multiple or
heavier sensors with an inherently larger FoV [15], [16]. In this
regard, different spinning mechanisms have been developed to
be mounted on drones [17], [18]. Although generally successful,
existing solutions come with some shortcomings, such as long
revisit time, blind spots, inconsistencies in scanning the environ-
ment, and skewing issues. These shortcomings cause problems
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in determining the correspondences within the point cloud data
for 6D positioning [19], [20].

While LiDAR-based SLAM has been studied widely in the
past decade for mobile robots [19], [21]–[24], there is still a
major gap in utilizing these systems for real-time navigation
of UAVs. This is mainly because it is not possible to rely on
an aerial vehicle remaining sufficiently motionless. The drone
position must be represented at a high temporal update rate with
low-latency to achieve stable closed-loop control. Addressing
the challenge mentioned above, continuous-time trajectory es-
timators were developed in the literature [25], [26]. However,
due to the limited FoV and the substantial time needed for
a complete scan period of the LiDAR, estimating continuous
odometry and global registration introduces a significant latency
and low-fidelity 6D pose estimation in such a system. To address
this issue, LiDAR-inertial SLAM systems use an additional
Inertial Measurement Unit (IMU) to produce high-rate pose
updates [24]. They provide acceptable results for ground-based
mobile robots. However, as UAVs experience high dynamic
motions and inevitable high-frequency vibrations due to the
propellers’ rotation, IMU-based approaches leads to having a
fluctuating pose estimation in such applications [27].

To meet these challenges, we propose a low-latency localiza-
tion and mapping framework using scan slicing (LoLa-SLAM).
In our approach, the point cloud data from a rotating laser
scanner with 360◦ horizontal FoV is continuously sliced and
used for estimating the real-time 6D pose. Besides, we introduce
a novel sensor payload design in which a small, lightweight
multi-line 360◦ laser scanner is actuated with a Lissajous pat-
tern. This structure is employed to reduce the revisit time and
provides a dense point cloud with consistency in scanning the
environment [28], [29]. To this end, while UAV localization
using actuated LiDARs has been presented previously [25],
[30]–[32], to the best of our knowledge, this is the first work on
scan slicing of an actuated rotating LiDAR, which is utilized for
real-time low-latency indoor localization. This work has three
main contributions. First, it presents an actuated LiDAR sensor
platform’s design and implementation based on a centralized
servo mechanism and a 2D Lissajous pattern to improve the FoV
and reduce the revisit time. Second, this letter proposes a novel
real-time LiDAR-based low-latency SLAM framework based on
scan slicing and a concurrent multi-threaded matching pipeline.
Third, multiple experiments were designed and conducted to
evaluate the proposed framework’s performance toward the
reliable localization of a UAV in an indoor environment.

The rest of this letter is organized as follows: Section II de-
scribes the problem and notation used in this work. Section III in-
troduces the sensor platform and the Lissajous LiDAR actuation
pattern, and Section IV details the continuous sliced scanning
model. The low-latency localization framework is introduced in
Section V. Experimental evaluations are presented in Section VI.
Finally, Section VII concludes this letter and examines potential
future works.

II. PROBLEM STATEMENT AND SENSOR PLATFORM

Rotating laser scanners use the time-of-flight (ToF) concept
that operates by emitting laser light and capturing its reflection

Fig. 2. CAD model of the sensor payload design for UAVs represented
with the coordinate frames. A 2-DoF centralized servo mechanism is utilized
for LiDAR actuation. The system includes a rotating 16 beam-line LiDAR,
2-DoF centralized servo mechanism for LiDAR actuation, motor drivers, and a
processing unit.

to measure distances to nearby objects. In the case of multi-line
scanning, multiple laser beams are used with a rotating structure
at a fixed velocity to provide a more extended FoV compared
to single-line planar LiDARs. Each of the ToF measurements is
associated with the horizontal and vertical angle of the corre-
sponding beam. This information is combined to compute the
3D coordinates of the sensed point, and accordingly, a LiDAR
generates a point cloud corresponding to the set of observed
points. The LoLa-SLAM system studied in this work is vali-
dated on the actively actuated LiDAR system shown in Fig. 2.
The Velodyne VLP-16 laser scanner has a vertical FoV of 30◦

and a horizontal FoV of 360◦ with approximately 0.4◦ angular
resolution and 16 laser beams. The laser scanner is connected to
a centralized hinge joint with 2-DoF. Each of the joints can be
controlled individually with a maximum velocity of 360◦/s in a
range of ±45◦ with 0.087◦ resolution.

We use right-handed coordinate systems with an uppercase
subscript. All laser points are measured in the LiDAR coordinate
frame {L}. As depicted in Fig. 2, the origin of this frame is in the
geometric center of the laser scanner. The collected points that
belong to one complete rotation of a multi-beam laser in 360◦

are represented as a single full scan. Classically, each full scan is
used in the SLAM algorithms to determine the ego-motion of the
platform. In this work, instead of using a full scan of a rotating
LiDAR, we use continuously sliced scans as a set of points P
with right subscript q, q ∈ Z+ to indicate the slice number. Each
slice is a subset of an upcoming full scan. Each point in the sliced
point cloudP is defined as i, i ∈ Pq in the LiDAR frame {L} and
is marked byPL

(q,i). Similarly, the sensor coordinate frame{S} is
a 3D coordinate system coinciding with {L} and the joint frame
{Jpitch} and {Jroll}. Map coordinate frame {M} is a coordinate
system coinciding {S} with the initial position {0}. A point
in the sliced point cloud Pq , in the map coordinate is denoted
as PM

(q,i). With the specified notation defined above, the low-
latency localization and mapping is defined as: given a sequence
of continuous sliced scans in the sensor frame PM

q , estimate the
6D pose of the platform in the map coordinate frame {M} as
MT S,q(t), and create a representative map of the environment.
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III. LIDAR ACTUATION USING LISSAJOUS PATTERN

The limited vertical FoV of state-of-the-art laser scanners
is one of the main challenges for 6D positioning. In robotic
applications, this issue is normally addressed by an articulated
sensor, where it is driven by one or more dedicated actuators in
order to increase the FoV. However, such observation requires a
non-negligible amount of time to capture. This becomes prob-
lematic for drones while they are floating in the air. Periodic actu-
ation of the LiDAR sensor in roll and/or pitch direction repeats
the observation of the surface patches and allows for a larger
FoV. To enhance this procedure, researchers have developed
non-raster scan actuation motions, called Lissajous pattern [28],
[29], [33]. Considering the fact that a state-of-the-art rotating
LiDAR provides a constant sampling rate, the main benefit of
using a Lissajous scan pattern-based actuation of the LiDAR is
the reduced revisit time (by 54%) within the defined FoV [29]. In
addition, compared to the other actuation models, avoiding the
orderly nature of the raster scan by using a simultaneously pe-
riodic sinusoidal trajectory can be defined as another advantage
of the Lissajous pattern.

Motivated by these works, we propose a 2D Lissajous pattern
for a rotating 360◦ LiDAR. This pattern allows us to rotate the
LiDAR to observe the vertical and horizontal surfaces equitably.
We designed and developed an actuated LiDAR payload with
2-DoF, as shown in Fig. 2, to be able to precisely execute this
pattern. Based on the systematic study of the scan skewing
problem [34], we developed a mechanism that actuates the laser
scanner in a combined roll and pitch motion around a centralized
axes to minimize the measurement distortion. The platform is
manufactured using printed ABS material. The proposed 2D
Lissajous scan pattern at time t for the roll (α) and pitch (β)
axes are defined by

α(t) = Aroll(t) sin(2πfct),

β(t) = Apitch(t) cos(2πfct),
(1)

where the frequency fc is the period of one full sweep, and the
amplitudes Aroll and Apitch are defined as the maximum angles
of the motion. We set the period of one full sweep to 8.0 seconds
and the maximum amplitude to 45◦. These values are obtained
heuristically based on the dynamics of the drone and the FoV
of the sensor. We use a slow start mechanism, which increases
the amplitude of the Lissajous actuation pattern from zero to its
maximum value within the first three sweeps. We use the smooth
start mainly to prevent damage to the rotating laser scanner as
the sudden and fast motion will cause hardware damage in long
term use. Although it is not necessary, this smooth increase of the
amplitude at the start, while the robot is stationary (e.g., before
takeoff), helps in the initialization of the SLAM algorithm. This
is because, at the start, there is a large number of the newly
observed points, which must be added to the map. The generated
Lissajous pattern in comparison with a single axis raster scan is
illustrated in Fig. 3.

IV. CONTINUOUS SCAN SLICING

The laser scanner used in this work rotates with a maximum of
1200 rounds per minute (rpm) and provides 300 000 points per

Fig. 3. The proposed 2D Lissajous pattern for the roll and pitch joints of the
sensor platform. The frequency of the pattern is defined to perform one sweep in
8.0 seconds. In the start, a smooth increase in the amplitude is used to minimize
potential hardware damage and also to generate the initial map.

Fig. 4. Continuous Slicing Point Cloud (CSPC) model. This model gathers
smaller collections of measurements that can be used in a concurrent pipeline
instead of the normally used full 360◦ scan. Each slice Pq is defined for the last
θ◦ of the rotation of the LiDAR.

second. A 360◦ scan is available every ωscan = 50 milliseconds
and contains 15 thousand measurements. The laser scanner is
continuously measuring and creates a constant output stream
associated with time and angle. These measurements are accu-
mulated over time at the driver level. When the laser scanner
completes a full 360◦ scan, it releases all the recorded points as
a single scan. State-of-the-art SLAM frameworks are developed
based on these 360◦ scans for ego-motion estimation [22], [23],
[27]. In practice, the point cloud arrival rate defines the frequency
of the pose estimation. However, the ego-motion estimation
can be performed after any other measurement, which means
360◦ is an arbitrary margin, and individual measurements can
be bundled freely.

Although it is reasonable to compare complete 360◦ scans
in the odometry unit; we show later in the proposed localiza-
tion framework that our SLAM model does not depend on the
odometry unit. The proposed SLAM framework uses continuous
slices of a full 360◦ scan for low-latency localization using
direct scan matching on the global map. The main intention
of the proposed continuous slicing point cloud (CSPC) is to
gather smaller collections of measurements that can be used in
a successive manner instead of waiting for a full 360◦ scan.
In this context, describing the term continuous in other words,
we collect the measurements from the upcoming scan into a
small point cloud slice for the last θ angle (i.e., only the data of
the measurements within the last θ = 45◦ of the rotation), and
publish them one after another. As shown in Fig. 4, slicing of the
points is developed in the driver level of the laser scanner, and
the CSPC is published at a rate of 1

Δq Hz. Considering each slice
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Fig. 5. Overview of the LoLa-SLAM framework. The results of the multi-
threaded localization pipeline are fused using the EKF. The feature map is a
voxelized map of the collected feature points with respect to the corresponding
pose at time t. The voxelized high-resolution map is generated directly from the
input CSPC.

is generated from the last θ = 45◦ of the rotation of the LiDAR,
each slice is available everyΔq = 6.25 ms and noted byPq with
q indicating the last observed slice. With less angular coverage,
the point cloud becomes more ambiguous because opposing fea-
tures are missing to prevent misguided shifts during optimization
in the pose estimation. However, the new measurements can
be integrated with old ones to achieve the necessary number
of measurements to ensure correct matching. For instance, we
can add the new slice (θ = 45◦) to the previously registered
slices within the last 315◦, in order to obtain a repeatedly full
360◦scan, however, at a much higher update rate. While the
reuse of past measurements does not affect the achieved update
rate, the system’s real-time performance needs to be carefully
investigated due to the increase in computational usage.

V. MULTI-THREADED LOW-LATENCY LOCALIZATION

A. System Overview

The overall framework of the proposed system is depicted
in Fig. 5. Let’s consider PL

q to be the points in the LiDAR
coordinate frame {L} published in real-time with the update rate
of 1

Δq Hz and the LiDAR to follow the motion with the generated

Lissajous pattern. The point cloud PL
q is first registered in the

sensor coordinate frame using the transformation provided by
the absolute status of the joints. During the start phase, the
generated map points at time t are denoted with M(t), and as
we assume the platform’s pose is in the stationary state; we only
collect the extracted feature points. The feature extraction node
takes the point cloud PS

q in the sensor coordinate frame and
extracts the feature points. Let us assume for the first iteration
that the minimum initial map is already available from the
initialization step.

The multi-threaded localization pipeline takes the previously
registered feature pointsDM

q−1 in combination with the extracted

feature points from the current slice D̃q, for registration in the
map. While, in principle, the current slice could be combined
with more than one previous slice, for complexity and latency
reasons, we limit it in our implementation to one previous scan
slice. The combined feature points DS

q are used to compute the

precise motion of the LiDAR from matching the last sweeps
within the map. With the slicing process described previously,
a single thread is unable to handle the computation in real-time.
The computation time increases because the diminished point
clouds do not result in equally reduced optimization time, and the
reuse of measurements adds additional calculations. Thus, we
run the pose estimation in multiple threads with a modern multi-
core processor and then fuse the individual concurrent estimates.
Each thread extracts the pose transform concerning the map
and uses the initial condition of the predicted 6D pose from
the linear predictor unit. The Extended Kalman Filter (EKF)
unit takes all the concurrent transformations published by the
localization unit and fuses them for estimating the final 6D pose.
Finally, the map builder unit takes and adds the new feature
points into the map with respect to the associated final pose
from the EKF unit. Similar to [22], considering that our approach
uses a voxelized feature map for pose estimation, and as this unit
runs in a dedicated process, a growing map does not affect the
real-time localization procedure.

B. Point Cloud Registration and Feature Extraction

The measured point cloud is registered in the sensor coordi-
nate frame using the transformation STL(t). This transforma-
tion is obtained by considering the kinematics of the LiDAR
actuation. As shown in Fig. 2, the laser scanner is attached to
the sensor frame with two actively controlled joints to follow the
pattern generated by Eq. (1). The homogeneous transformation
is performed for all points i in PL

(q,i). Let us define the homo-
geneous 3D affine transformation matrix T (t) = (R(t), t(t)) ∈
SE(3) as a rigid body transform composed of a rotation matrix
R(t) ∈ SO(3) and a translation vector t(t) ∈ R3, as

T =

(
R t

0 1

)
, (2)

and accordingly, the points in the sensor coordinate frame PS
(q,i)

can be defined as

PS
(q,i) =

LT S,q(t)
−1PL

(q,i), (3)

while the transformation LT S,q(t) can be extracted from

LT S,q(t) =
L T Jpitch,q(t)

JpitchT Jroll,q(t)
JrollT S,q(t). (4)

The geometric properties of the point cloud PS
(q,i) in the sensor

coordinate frame (i.e., roughness and normal vector) remain
unchanged after performing the rigid transformations. Before
the feature extraction, we use linear interpolation between the
predicted pose and the previously estimated pose to remove the
distortion of the point cloud similar to the approach from [22].
We extract the roughness value as a feature representation in this
work. In this context, roughness value defines a term to evaluate
the smoothness of the local surface. The feature extraction
process is similar to the method used in [21]. However, instead of
extracting the one-dimensional roughness of the points along the
LiDAR’s beam-lines, we extract a two-dimensional roughness
value from the organized point cloud. We extract the two-
dimensional roughness value by taking all neighboring points
within a predefined spherical area and calculate the roughness
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Fig. 6. Illustration of the feature points in the LiDAR point cloud data. For
better visualization, we show the accumulated CSPC data. a) Shows the raw
point cloud from the LiDAR measurements color-coded along the z axis. b)
Shows the calculated roughness of the points color-coded with cyan for low and
red for high roughness values.

value in both vertical and horizontal directions. First, we find the
set of adjacent points using the nearest neighbor search along
the KD-tree. To improve the system’s performance, as the size
of each slice is smaller compared to the full scan mode, we filter
correspondences to maintain small patches using ties broken by
distance. This allows us to reduce the estimation time of the
feature points for each slice. We define the two-dimensional
roughness value Z for the point i by calculating the differences
of the neighboring point set N S

(q,j),n and normalize the term
according to the distance as

Zi = 1−

∥∥∥∥∥∥
1

nPS
(q,i)

n∑

j=1

N S
(q,j)

∥∥∥∥∥∥
, (5)

where n is the number of the considered nearest neighbors of
point i. The feature point set D̃(q,i) is stored with the corre-
sponding calculated roughness value. Recalling that each slice
is a small portion of one full rotation of the LiDAR, the extracted
feature points, which are sorted based on their roughness value,
are well distributed within the observed point cloud for the entire
FoV. In addition, we use the local entropy to assess the saliency
of the feature points [35], and we remove those that have a higher
local entropy value. This procedure helps us to avoid selecting
points that have a high roughness score while not being reliable
feature points. This can be inferred from the fact that their nearby
points are not well aligned. For a simple example, consider the
points distributed along with the objects on a crowded table.
These points might have a high roughness score, but they are
not as reliable as the corner points on the wall’s edge for the
localization. Fig. 6 illustrates the result of the proposed method
for feature extraction.

C. Low-Latency Localization and Mapping

Pose Estimation. The localization framework proposed in this
letter uses the predicted pose as an initial condition. It matches
the feature points of the sliced scan into the map and extracts the
corresponding transformation. This procedure is concurrently
performed on each of the combined sliced point sets DS

q . The
output of this process are synchronous individual pose estimates.
The combined feature point set DS

q can be determined by

DS
q = MT S,q−1

−1DM
q−1 + D̃q. (6)

The estimated poses are later used for updating the state esti-
mator in the EKF. Considering the point sets DS

q and MM
q in

correspondenceDS
q ↔ MM

q , and that they are related via a rigid
body transform, in each thread we seek to estimate R and t such
that

MM
q = RDS

q + t = MT S,q(t)DS
q , (7)

where the problem is well-studied with various closed-form
solutions in the literature. To solve for the pose within the
map, we need to establish a geometric relationship between DM

q

and MM
q . Using the predicted transformation M T̂ S,q(t+Δq),

which we extracted from the previous observations of the mo-
tion, we first transform the feature points in DS

q into the map
coordinate frame using

D̂M
q = M T̂ S,q(t+Δq)DS

q . (8)

Both of the point sets now are in the same coordinate frame, but
they are not aligned perfectly as we used only the predicted trans-
formation. However, we can find the nearest neighbor points for
each feature point i in D̂M

q within the map point set. It is worth to
mention that some of the points do not have any correspondence
on the map. This means the closest point in the map is far from
the selected feature point in D̂M

q ; therefore, we filter them using a
simple threshold value based on Euclidean distance. Now we can
derive a geometric relationship between all of the corresponding
selected points in D̂M

q , and the nearest points in the map as a
non-linear function

fq,i(D̂M
q,i,

M T S,q) = di, i ∈ D̂M
q ∈ MM

q , (9)

where stacking Eq. (9) for each feature point in DS
q , we can

obtain a non-linear function fq and rewrite it as

fq(DS
q ,

M T̂ S,q
−1MT S,q) = d, q ∈ Z+, (10)

whered contains the corresponding Euclidean distances for each
point, and each row of f is associated with one feature point.
We use the Levenberg-Marquardt trust-region algorithm as a
non-linear least squares solver for this problem [36]. In our
optimization problem, a groups of scalars must be converged
together. This means the three components of a translation
vector and the four components of the Quaternion that define
the sensor’s pose are used as a parameter set. We use the Huber
loss function to reduce the influence of outliers on the non-linear
least squares solver’s solution. To solve Eq. (10), we compute
the Jacobian matrix J for the non-linear function f with respect
to MT S,q where

J =
∂f

∂MT S,q
, (11)

and we further solve Eq. (10) with non-linear iteration toward
minimizing the d to zero.

Linear Pose Predictor: We use a linear prediction based on the
observed history of the estimated pose as an initial transforma-
tion for finding the correspondences within the map. We define
the predicted transformation ˆMT S,q(t+Δq) = (R̂[Θ−1], t̂)
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Fig. 7. (a) A UAV platform with an on-board computing unit and an active
LiDAR payload. (b) The 360◦ reflector prism for tracking of the UAV (c) The
Leica TS60 Tachymeter total station.

using the linear prediction model

ˆM tS,q(t+Δq) =

b∑

i=0

AM
i tS,q(t− iΔq), (12)

ˆMRS,q(t+Δq) = MRS,q

[
b∑

i=0

AiΘ
−1(t− iΔq)

]
, (13)

where b indicates the number of previous observations, Ai =
λi,bI3 is the predictor coefficients, and Θ is the element-wise
Euler angle vector representation that is used to calculate the
rotation matrix. Because the previously observed poses are
equally-spaced values in time, a polynomial interpolation can
be defined as a linear combination of the given observation. The
predictor coefficient λi,b is a scalar multiplication for the identity
matrix I3. In our linear model these elements defined by the ith
component of the bth row of Pascal’s triangular matrix of the
binomial coefficients [37].

VI. EXPERIMENTAL EVALUATION

To assess the performance of the proposed framework, we
tested our approach on a recorded data set from a large sports
hall. To evaluate the pose estimation accuracy, an octocopter
equipped with the sensor payload is tracked with a Leica TS60
Tachymeter total station. The total station in tracking mode has
a stated measurement accuracy of 0.2 cm at a rate of 10 Hz. To
enable tracking with the total station, a 360◦ reflector prism is
mounted on the octocopter as shown in Fig. 7. The static trans-
formation is applied to have the total station’s measurements in
the same coordinate system as the UAV. The octocopter is flown
multiple times with different trajectories in a sports hall. Flight
duration in total is about 36 minutes, and the velocity varies from
0.05 to 6.0 km/h. The data were recorded applying Lissajous,
raster, and static modes. In the static mode, the LiDAR was
held in a horizontal state. In the other two modes, the LiDAR
was actuated using the defined patterns. Five data acquisition
options are used for the LiDAR point cloud; the default mode
(Full) is a 360◦ scan at 20 Hz, and the other modes are using
scan slicing with a segment size of 30, 45, 90, and 180 degrees,
respectively.

An example of 6D trajectory tracking using LoLa-SLAM and
the total station is illustrated in Fig. 8. The results show that

Fig. 8. Absolute trajectory error of the UAV in a sports hall in comparison to
the GT pose trajectory from the total station.

Fig. 9. Distribution of the 6D pose error with respect to the GT data of the
total station. The root mean square error (RMSE) for this trajectory is equal to
3.6 cm.

TABLE I
RESULTS OF MULTIPLE EXPERIMENTS USING THE RECORDED DATA SET IN A

SPORTS HALL. ALL THE EXPERIMENTS ARE CONDUCTED USING THE ONBOARD

CORE.I7 INTEL PROCESSOR - 4 CORES AND WITH 16 GB OF RAM

Fig. 10. Histogram of the absolute pose error (APE) distribution when per-
forming active-controlled hovering (PD controller) with 20 Hz and 160 Hz pose
feedback.
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Fig. 11. Reconstructed 3D map of a sports hall using the LoLa-SLAM framework. a) Concurrent pose estimations from the multi-threaded localization and the
fused 6D pose of the UAV. b) The dense point cloud map from a different perspective.

there is less deviation in the horizontal direction compared to
the vertical direction. We can see that the larger errors mostly
appear when the drone moves fast in the vertical direction. This
issue could have two origins; First, for the linear predictor,
as the map matching uses this prediction as an initial input
in the localization step, a poor prediction could cause such a
wrong matching. Second, imperfect observations caused by the
LiDAR actuation: due to the insufficient points in the vertical
face compared to the horizontal. To investigate more on this
problem, we further compared the proposed method with the
static LiDAR; this means even fewer points are observed in the
vertical faces, and as expected, the error in the vertical direction
increased considerably. In addition to this, as shown in Fig. 9, the
RMSE of a selected trajectory is only 3.6 cm; however, due to
the fast motion, the maximum pose error increased up to 26.8 cm
at some points.

Furthermore, the latency and accuracy of the pose estimation
are investigated. In Table I, we provide a comparison to the
well known state-of-the-art SLAM framework LOAM [21].
By analyzing the results, we can see a trade-off between the
chosen slice size, pose estimation accuracy, and the update rate.
Choosing a smaller slice size results in a higher update rate;
however, this means fewer features in each slice are used for
localization. Consequently, the accuracy of the pose estimation
starts deviating. In an extreme scenario, with using the slice size
θ = 30◦, the system cannot track the pose, and therefore the
localization starts drifting. If the drift is larger than 0.5 m, we
consider the localization to fail.

Considering a slice size θ = 45◦ is a satisfactory candidate,
we achieve a latency of less than 20 ms on average, which is
acceptable for real-time drone navigation. In comparison, using
the full scan mode, we observe a latency of 93 ms. Besides, we
investigate the use of LoLa-SLAM in a closed-loop system while
the drone was hovering using a PD controller. The histogram of
the APE distribution is shown in Fig. 10. The figure shows that,
while the accuracy of the pose estimation is lower using LoLa-
SLAM compared to LOAM, the drone deviation is smaller due to
the shorter latency and higher temporal update rate. While LoLa-
SLAM provides a higher update rate and lower latency, it is
computationally more expensive than the other approaches. For
instance, on average, the proposed framework needs around 30%
more processing power compared to LOAM. However, thanks

Fig. 12. Density comparison between the 3D maps. The distribution of the
point spacing (nearest-neighbor distance) for randomly selected 500 K points
within each map.

to the concurrent multi-threaded map matching, the system still
runs in real-time.

The accuracy and overall validity of the proposed system
are additionally assessed using the created dense 3D map. To
evaluate the map quality, Fig. 11 shows the resulting point cloud
from different perspectives, which allows for better interpre-
tation of the scene. The tripod of the total station and pillars
in the sports hall can be identified in the globally aligned and
voxelized 3D map. It is worth stating that this level of 3D
mapping is not obtainable without a precise localization. To
evaluate the superior quality of the created map compared to
LOAM, we further illustrate the density comparison between
the point clouds similar to the method described in [25]. The
point densities show the uniformity of the generated map. The
distribution of the point spacing (nearest-neighbor distance) for
randomly samples points is visualized in Fig. 12. The densities
are represented as distributions of point spacing, as determined
by each point’s nearest neighbor. We use randomly selected
500 K points within each map and determined the density in
a sphere with 0.2 m area around each point. This comparison
shows that LoLa-SLAM has the highest proportion of points in
the distance of less than 3.0 cm.

VII. CONCLUSION

In this work, we presented a customized system to localize
a UAV in an indoor GPS-denied environment. We approached
this challenge by employing an actuated LiDAR platform and
utilizing the 2D Lissajous spinning pattern. We further devel-
oped a novel SLAM framework based on the continuous sliced
point cloud to reduce the ego-motion estimation latency, named
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LoLa-SLAM. We showed that the proposed SLAM system’s
accuracy and reliability remain adequate, and this is while the
temporal update rate increased by at least 2X for the pose estima-
tion. Besides, we demonstrated the proposed framework could
simultaneously generate a high-quality 3D map. We demonstrate
both the low-latency pose estimation and the overall accuracy of
LoLa-SLAM by multiple experiments in an indoor environment.
We showed that the update rate increases by choosing a smaller
slice size; however, the proposed system can fail in the feature
matching process if the slice size is too small. In addition,
we examined the computational complexity which increases by
30% compared to the common methods.

In future work, to further improve the system, the odometry
predictor and the EKF fusion can be integrated with redundant
attitude and heading reference systems (AHRS) [24], [38]. Fur-
thermore, adding an adaptive slice size controller based on the
UAV’s velocity can also be investigated to improve the system
performance. Besides, environment aware attentive control of
the LiDAR can be employed to improve the point cloud obser-
vation, map generation, and reliable pose estimation in complex
indoor environments.
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Chapter 6

Conclusion and Future Work

Through the integration of range, magnetic, and inertial sensing, this thesis considered how
to estimate real-time and low-latency 6D ego-motion while constructing a point-cloud map
of the explored environment. The focus of this work is divided into two main sections; robust
attitude and heading estimation in an indoor environment, and low-latency 6D ego-motion
estimation and mapping techniques. In the first chapter of this thesis, we introduced the
problem. In Chapter 2, we provide the fundamentals necessary to understand the thesis’s
core ideas. In addition, we reviewed the literature related to magnetic, inertial, and laser
based methods that have been utilized in the field of 6D SLAM.

In the context of Chapter 3 and 4, we presented a fusion and filtering approach for ro-
bust attitude and heading estimation in an indoor environment. This approach combined
skewed magnetometers and inertial sensors. We demonstrated heading estimation by using
the Earth’s magnetic field and the different sources of perturbation for heading angle esti-
mation in the presence of external magnetic anomalies. Using a three-axis MEMS sensor,
we investigated the Hall-effect magnetic sensor’s principle, as well as analyzed the external
magnetic field’s source. We designed a tetrahedron platform based on the skewed redun-
dant configuration, using triple 9-axes sensors to detect and mitigate over-saturated chan-
nels in the observation signals. A correlation-based filter model for multiple magnetometer
platforms has been presented. For the skewed redundant MIMU fusion, RNN-based fusion
models were presented. We investigated multiple fusion models using LSTM-based neural
networks. Additionally, we investigated how the models performed in different indoor en-
vironments with different scenarios, and validated the algorithm by using the data we had
recorded internally. Moreover, experiments using a gimbal platform have been conducted
in a number of scenarios to demonstrate robust attitude and heading estimation using the
skewed redundant platform to verify the generality of the proposed fusion method. The
experimental results indicate that although the proposed system is reliable for estimating
heading over long-term periods, it is extremely sensitive to the size of the input measure-
ment history. As a result, for short-term heading estimation, conventional methods per-
formed similar or better than the developed model. However, due to the observed drifts in
long-term use, the proposed system provides a more reliable estimation with less deviation
in a saturated indoor environment. The proposed framework achieved a Root Mean Square
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Error in attitude and heading estimation of less than 2.5 degrees for long-term use. Finally,
the result of the attitude and heading estimation is further utilized in the next Chapter where
we tackle the 6D low-latency ego-motion estimation.

In Chapter 5, we present a 6D SLAM framework with low latency ego-motion estima-
tion in an indoor environment that has GPS denial. We approached the 6D pose estimation
challenge by employing an actuated LiDAR platform and utilizing the 2D Lissajous spin-
ning pattern. We further developed a novel framework based on the continuous sliced point
cloud to reduce the ego-motion estimation latency. The experimental results showed that the
proposed SLAM system’s accuracy and reliability remained excellent, even when the tem-
poral update rate increased by 4x for the estimation of ego-motion. In addition, we showed
that the proposed framework could be used to construct a 3D point cloud map from the
captured data of the explored area. In multiple experiments in an indoor environment, we
demonstrate both the low-latency ego-motion estimation as well as the overall accuracy of
the LiDAR-MIMU SLAM algorithm. The proposed framework enables the 6D pose esti-
mation in less than 20ms latency. Generally, we found that the update rate increases when
choosing a smaller slice size, however, the proposed system can fail in the feature match-
ing process when the slice size is too small. A further consideration was the computational
complexity, which increased by 30% when compared with the conventional methods.

As the result of this work and state-of-the-art, skewed redundant observation of magnetic
and intertial sensors enables significant improvement in final state estimation. The effect of
the number of sensing axes on the final state estimation has been established. Specially, with
the power of DNN, complex fusion models can be applied regardless of the degree of mea-
surement redundancy. To this end, in future work, to enhance the accuracy of the fusion ap-
proach for attitude and heading reference estimation, continuous-redundant MIMU systems
can be investigated. The continuous-redundant MIMU idea emerged when we investigated
the actuated LiDAR platform for solving the 6D pose estimation problem. In this way, a
single 9-DoF MIMU can monitor a larger FOV (or measurement axis in this case), where the
DNN can be used to fuse the observation to the final estimate of attitude and heading refer-
ence. As of the date of presenting this work, there are no redundant-axes, or continuous-axis
MEMS-MIMU systems available in the market. Sensors with redundant-axes or continuous-
axes can utilize a MEMS-based or beam steering technique to observe acceleration, magnetic
field, or angular velocity from multiple axes in a small footprint. Such a system can be a
perfect fit for the future research direction in this field.

Additionally, the event-based LiDAR sensors can compress the information of moving ob-
jects in a cost effective way, which in turn, enables energy-efficient and real-time processing
in various applications such as object detection, motion recognition, and SLAM. The possibil-
ity of achieving superior performance in terms of accuracy and latency by using event-based
measurement techniques can be explored for future work. In this regard, as to this date
where this work is presented, there is no event-based LiDAR system available in the market,
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however, enhancing LiDAR point clouds with event-based cameras would be the perfect fit
for future research directions. Event-based cameras react to the changes in light intensity and
output dense event streams consisting of triggered pixels. Unfortunately, depth information
is not available for event cameras. In order to address these problems, enhancing LiDAR and
event-based cameras would lead to a significant reduction in ego-motion estimation latency
as well as an increase in the overall performance of such a multi-sensor system.
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1.1 Airplane autonomous inspection using UAVs. An example where real-time motion esti-
mates and mapping are needed simultaneously for navigation. In such applications, high-
accuracy GPS/INS systems are impractical due to the weight, cost, and external magnetic
perturbations. GPS signals are also unreliable underneath the structures of the hangar.
Camera-based localization systems, on the other hand, provide poor performance and
this is mainly due to the texture-less surfaces and far-field view. The UAV’s navigation
stack requires 6D motion estimation. The estimation latency is critical in such applica-
tions as the robot experiences a very fast motion behavior. . . . . . . . . . . . . . . . . . . . 1

1.2 (a) A map of an indoor area. (b) A Leica scanner attached to a tripod. (c) A laser scan-
ner and industry grade GPS/INS mounted on an autonomous car. The car is equipped
with multiple GPS/INS systems and uses the Differential GPS (DGPS) to provide precise
motion estimates. (d) Autonomous drone for airplane inspection and mapping. In such
application, high-accuracy GPS/INS systems are impractical due to the weight and cost.
GPS signals are also unreliable inside the hangar or below structures of the buildings. The
latency of the estimation is critical for real-time navigation. . . . . . . . . . . . . . . . . . . 3

1.3 System overview of the proposed low-latency, real-time 6D SLAM system for indoor ap-
plications. We propose to tackle the problem by leveraging range, magnetic, and inertial
sensing in a coarse-to-fine manner. This work is divided into two main subsections: robust
attitude and heading estimation in an indoor environment using a multi-sensor fusion ap-
proach (green part), and low-latency 6D ego-motion estimation and mapping techniques
with LiDAR-based systems (blue part). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Magnetic and inertial sensors contain two main types of errors which are deterministic er-
rors like scale factor, bias, misalignment and stochastic errors such as bias instability and
scale factor instability. Deterministic errors are the main part of error compensation algo-
rithms. The bias in magnetometer sensor data usually consists of multiple components,
some of which are stochastic, some of which are deterministic [82]. . . . . . . . . . . . . . . 13

2.2 The difference between a standard Neural Network (NN) and a Deep Neural Network
(DNN). While Deep Learning incorporates neural networks within its architecture, there’s
a stark difference between DNN and NN. DNN leverages a series of nonlinear processing
units comprising multiple layers for feature transformation and extraction. It has several
layers of artificial neural networks that carry out the machine learning process [86]. . . . . 15

2.3 Compressed (left) and unfolded (right) basic recurrent neural network [86], [88] . . . . . . 15
2.4 Long-term dependency problem in Recurrent Neural Networks (RNN) networks. In the-

ory, all the previous information must be available at the new step; in practice, however,
if there are many steps involved, the network can not remember. This problem is called
vanishing gradient problem [89], [90]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Standard Recurrent Neural Networks (RNN) containing a single layer. . . . . . . . . . . . . 16
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2.6 Overview of state-of-the-art LSTM cell architecture and a network of LSTM cells. A com-
mon LSTM unit is composed of a cell, an input gate, an output gate, and a forget gate. The
cell remembers values over arbitrary time intervals and the three gates regulate the flow
of information into and out of the cell [91]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Iterative Closest Point (ICP) alignment after 0, 5, 10 and 20 iterations. The red point cloud
converges to the black one with each iteration. The iterations are necessary since near-
est neighbor searches are more likely to be able to find correct correspondences when the
point clouds are more closely aligned [131]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 A sensor point cloud (white) is aligned to the map point cloud (colored) to determine the
sensor’s pose (three axis in red, green, and blue to show position and orientation). Height
in the map is indicated with a gradient in color. . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.9 A multiresolution surfel map. Surfels closer to the robot have a higher resolution than
those further away [137], [140]. (a) Schematic diagram showing the each attributes of a
surfel. For each Surfel Element (surfel), a position, a normal, intensity (color), and a ra-
dius can be defined to form an ellipsoid and approximate a set of given points. (b) A
Surfel Element (surfel) map with an octree structure [137]. . . . . . . . . . . . . . . . . . . . 22

2.10 Overview of LiDAR Odometry and Mapping (LOAM). The LiDAR point cloud is first reg-
istered, then matched against the previous scan and later against the map. Based on the
map the odometry pose is transformed for a high frequency output [45]. LOAM proposes
frequencies of 10Hz and 1Hz respectively. The odometry algorithm has a high frequency
but low accuracy and is prone to drift. A mapping algorithm runs at a lower frequency,
but with higher accuracy and less drift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.11 Feature Point Selection. Point A is selected as a feature point. Point B is discarded because
of the angle to the surface (left). Furthermore, Point C and D are also omitted because
they are part of an occluded scene (right) [133]. . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.12 A voxel grid map is a voxel-filtered point cloud, which means the space of the cloud is
divided into voxel elements, usually cubes, with a fixed size [153]. The values x,y, and z

indicates the size of the voxel. If there are multiple points inside one voxel (green points),
a centroid, the arithmetic mean position of the points, approximates these points leaving
only a single point in each voxel (red point). . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.13 Real-time localization of a UAV in an indoor environment using the proposed Simulta-
neous Localization and Mapping (SLAM) framework. It provides low-latency 6D pose
estimation with a high temporal update rate for autonomous navigation while generating
a full-scale 3D map of the environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.14 Distribution of measurements on the unit sphere based on the actuation. Point clouds are
colored based on the density of measurements. A sinusoidal movement around one axis
has a high density close to the axis (green) and a lower one outside (red) (left). A rotation
based on Equation 2.23 is evenly distributed (right). Both point clouds have an α of 40° [2]. 29
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